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Abstract 

Virtual manufacturing has gained considerable importance in the last decade. To obtain 

reliable predictions in a virtual environment, the factors that influence the outcome of a 

manufacturing operation need to be carefully modeled and integrated in a simulation 

platform. The dynamic behavior of the Computer Numerical Control (CNC) system, which 

has a profound influence on the final part geometry and tolerance integrity, is among these 

factors. Classical CNC drive identification techniques are usually time consuming and need 

to be performed by an engineer qualified in dynamics and control theory. These techniques 

require the servo loop or the trajectory interpolator to be disconnected in order to inject the 

necessary identification signals, causing downtime to the machine. Hence, these techniques 

are usually not practical for constructing virtual models of existing CNC machine tools in a 

manufacturing environment. 

This thesis presents an alternative strategy for constructing virtual drive models with 

minimal intervention and downtime to the machinery. The proposed technique, named “rapid 

identification”, consists of executing a short G-code experiment and collecting input/output 

data using the motion capture feature available on most CNC controllers. The data is then 

processed to reverse engineer the equivalent tracking and disturbance transfer functions and 

friction characteristics of the machine. It is shown that virtual drive models constructed this 

way can be used to predict the real machine’s contouring performance for large class of drive 

systems, controlled with different control techniques. 

In the proposed scheme, the excitation is delivered by smoothly interpolated motion 

commands. Hence, convergence of parameters to their true values is not guaranteed. When 

the real system contains pole-zero cancellations, namely due to feedforward control action, 

this also results in a loss of identifiability. In order to guarantee the stability of the identified 

drive models, the pole locations are constrained with frequency and damping ratio limits. 

Hence, the rapid identification task is cast as a constrained minimization problem. 

Two solution strategies have been developed. In the first approach, Lagrange Multipliers 

(LM) technique is applied, which yields successful estimation results. However, 
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implementation of LM is computationally intensive and requires the use of a dedicated 

symbolic solver. This limits the portability for industrial implementation. In the second 

approach, a Genetic Algorithm (GA) search technique is developed, which is a more 

practical but slightly approximate alternative. The GA allows parameter bounds to be 

incorporated in a natural manner and converges to 2-3% vicinity of the LM solution in one-

tenth of the computation time. The GA solution can be easily ported to different computation 

platforms. 

Both LM and GA identification techniques were validated in simulations and 

experiments conducted on virtual and real machine tool drives. It is shown that although the 

parameters estimated using the rapid identification scheme do not always match their true 

values, the key tracking and disturbance rejection characteristics of the drives are 

successfully captured in the frequency range of the CNC motion commands. Therefore, the 

drive models constructed with rapid identification can be used to predict the contouring 

accuracy of real machine tools in a virtual process planning environment. 
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Chapter 1 

Introduction 

1.1 Introduction 

Virtual manufacturing has gained considerable importance in the last decade, with the 

increasing availability of computational power which enables accurate simulation of complex 

phenomena that govern manufacturing operations [1], [2]. The ability to predict, evaluate, 

and optimize the performance of production machines and processes, without having to build 

costly prototypes or run production trials, is highly appealing to both machine tool builders 

and end users. The ultimate objective of virtual manufacturing is to achieve the shortest 

possible cycle time and lowest cost, while maintaining the desired product quality from the 

very first part onwards. The time, money, and engineering effort that could be saved through 

sidestepping the prototyping and testing stages also promises shorter turnaround times for 

putting new products on the market, in response to changing demands. 

To obtain reliable predictions in a virtual environment, the factors that influence the 

outcome of a manufacturing operation need to be carefully modeled and integrated into a 

simulation platform. These factors typically originate from the process, the machine 

dynamics, and the interaction between the two. Among factors pertaining to the machine tool, 

the dynamic behavior of the Computer Numerical Control (CNC) system has a profound 

influence on the final part geometry, as well as the tolerance integrity and surface quality. 

When axis servo errors become excessive, the part geometry gets distorted and tolerances 

may be violated. If the tool motion is not smooth, this would cause noticeable feed marks on 

the machined part. In either case, the part may become unacceptable. 

In order to predict the impact of the CNC system on the final part quality, a Virtual CNC 

(VCNC) simulator was developed in [3]. The VCNC enables the contouring performance of 
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a real machine tool to be predicted and optimized in a virtual process planning environment. 

However, its prediction accuracy relies strongly on the validity of feed drive models that are 

identified from the actual machine. Standard identification tests are usually time consuming 

and need to be performed by an engineer who is qualified in dynamics and control theory. 

Sometimes, these experiments require the servo loop or the trajectory interpolator to be 

disconnected, so special identification signals like sine or square waves, random noise, or 

sine wave speeds can be injected into the servo system. When these factors are considered, 

building even basic virtual models of CNC systems may require significant downtime to the 

production machines, which is usually not practical in a manufacturing environment. 

In this thesis, an alternative identification strategy is developed for constructing virtual 

models of machine tool drives. The proposed technique, named “rapid identification”, 

consists of executing a short G-code experiment and collecting input and output data using 

the motion capture feature available on most CNC systems. The rapid identification test can 

be conducted quickly, as if running a diagnostic routine, without any hardware or software 

modification to the machine. The collected data is then processed with the intention of 

reverse engineering the equivalent tracking and disturbance transfer functions of the closed 

loop drive system, as well as the guideway friction. It is shown that a virtual drive model 

constructed this way enables accurate prediction of the real machine’s contouring accuracy 

for a variety of feed drive systems controlled with different control techniques. 

The excitation input, in rapid identification, is delivered through motion commands 

interpolated by trajectory generator. These signals are typically smooth up to the acceleration 

level (i.e. 2C  continuity) and lack the persistence of excitation to allow accurate estimation 

of a large number of parameters. On the other hand, if the real servo system contains pole-

zero cancellations, which usually occur when feedforward action is employed in the 

controller, this also results in incorrect estimation of the closed loop dynamics. Deviations 

between the true and identified drive models are acceptable as long as the virtual model 

captures the dynamics of the real drive system with sufficient closeness in the frequency 

range of the CNC motion commands as observed in Section 3.4. In extreme cases, the non-
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convergence of parameters can also result in the identification of critically stable or even 

unstable virtual models, which have limited practical value. In order to avoid this problem, 

bounds are imposed on the closed loop pole locations, which results in the identification 

problem to assume the form of a constrained optimization problem. 

Two solution strategies have been developed in this thesis. In the first approach, 

Lagrange Multipliers (LM) technique is applied, which yields successful estimation results. 

However, implementation of LM is found to be computationally intensive, and also requires 

the use of a dedicated symbolic solver, like Matlab’s Symbolic Toolbox, to construct and 

solve a system of nonlinear equations for each constraint activation case (i.e. Kuhn-Tucker 

switching conditions [4]). These factors significantly limit the portability of the LM 

technique for industrial implementation. As a more practical but slightly approximate 

approach, a Genetic Algorithm search technique has also been developed. The GA’s ability 

to constrain the search space allows the parameter bounds to be incorporated in a natural 

manner. Computational speed of the GA has been streamlined by decoupling all a priori 

calculations from the terms that need to be recomputed for each iterative cycle. It is shown 

that the GA solution converges to 2-3% vicinity of the LM solution in one-tenth of the 

computational time with a repeatable rate of 100%. The developed rapid identification 

scheme has been verified in simulations and experiments conducted on virtual and real 

machine tool drives. It is shown that the identified drive models can be successfully used for 

predicting the contouring accuracy of real machine tools in a virtual process planning 

environment. 
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter presents a review of literature and industrial state-of-the-art in the areas of 

virtual manufacturing, feed drive identification, and evolutionary programming. Section 2.2 

introduces the concept of virtual manufacturing and the Virtual CNC framework. Various 

techniques dedicated to the modeling and identification of feed drives are surveyed in 

Section 0. Evolutionary programming, which is the basis of the Genetic Algorithm solution, 

is introduced in Section 2.4. Conclusions for the chapter are presented in Section 2.5. 

2.2 Virtual CNC 

Many companies involved in manufacturing have started developing new technologies 

and products that exploit modern computers’ ability to simulate manufacturing operations in 

a virtual environment. CAD/CAM packages such as MasterCam® and ESPRIT® provide 

toolpath visualization and analysis modules to help avoid potential collisions, which might 

 
Figure 2.1. Simulation of a machining path in CAD/CAM software. 
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occur during the machining process. A snapshot of such an interface is shown in Figure 2.1. 

One disadvantage of these analysis tools is that they typically lack the dynamic information 

about the machine or the manufacturing process, and provide only a geometric visualization 

of what happens in the “ideal case”. Recently drive manufacturers like Omron™, Jtekt™, 

and Schneider Electric™ have provided simulation software which allows the user to 

simulate the dynamic behavior of a drive system, by providing NC code as the input. Such 

software usually yields accurate predictions, since the drive parameters are known by the 

manufacturer. An example application, SimuCN® developed by NUM™ CNC, is shown in 

Figure 2.2. Other companies such as Siemens [5], Mori Seiki [6], and Ford Automotive [7] 

have also been contributing the development of virtual manufacturing technologies, by 

researching simulation systems that can predict and emulate the behavior of machining 

centers and Computer Numerical Control (CNC) systems. 

The overall objective of virtual manufacturing is to be able to combine the effect of 

machine tool dynamics, manufacturing process, and the interaction between the two in a 

common simulation platform. The Virtual CNC (VCNC) shown in Figure 2.3 was developed 

 
Figure 2.2. SimuCN® interface. 
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at the University of British Columbia for this purpose; as a module to facilitate the simulation 

of a real CNC system in a virtual environment. The Virtual CNC allows the performance of 

machine tools to be optimized during design, development and end user stages [8], [9]. The 

user can prototype a real CNC by selecting standard modules out of libraries of feed drive 

models, control laws, trajectory generation algorithms, and feedback devices. 

After the virtual CNC is configured, the contouring performance can be predicted and 

optimized for different part programs. The VCNC can be used as a design and testing 

platform by machine tool builders and controller developers [8], or as a process planning tool 

by end users [10]. The prediction accuracy of the VCNC was verified in experiments 

performed on real machinery, which matched the simulation results within less than 10% 

error. Such prediction accuracy was only achievable after scrupulous modeling and 

identification of the real machine’s feed drive dynamics, indicating the importance of having 

a reliable model to obtain accurate predictions. 

The structure of the VCNC is composed of three main functions: 1) The toolpath 

interpolation; 2) Simulation of the drives’ response; 3) Performance evaluation. In the 

toolpath interpolation, the trajectory commands are generated using a Cutter Location (CL) 
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Figure 2.3. Overview of the Virtual CNC system. 
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file which is obtained from a CAD/CAM package like Unigraphics® or CATIA®. The user 

can select what type of feed profile (trapezoidal or S-curved velocity) will be used. 

Simulation of the drive’s response considers the interaction between the open loop drive 

dynamics and the servo controller. The user can configure a detailed drive model using 

modules for ball screw (geared) or linear (direct driven) feed drives, available in a library. 

The controller library contains a wide range of control laws ranging from simple P, PID, P-PI 

cascade controllers to more complex techniques proposed in literature such as Pole-

Placement [11], Generalized Predictive [12], Adaptive Sliding Mode [13] and feedforward 

[14], [15] control. Sensor noise, quantization, actuator saturation, backlash, and 

computational delays can also be defined for each virtual CNC model. During performance 

evaluation, important variables such as the contour error history, drive torque and current 

signals are presented to the user in context of the commanded toolpath, which allows critical 

regions to be easily identified. This enables corrective actions to be taken either by 

modifying the part program or improving the CNC design. The Virtual CNC is currently a 

module of CutPro machining process simulation software which is commercialized through 

Manufacturing Automation Laboratories Inc., a UBC spin-off company. 

2.3 Modeling and Identification of Feed Drives 

The Virtual CNC is a promising tool towards achieving the overall objective of 

simulating a complete digital factory in the virtual environment. However, the prediction 

accuracy of the VCNC is strongly dependent on the correctness of the drive models that are 

identified from real machinery. There has been extensive research in literature dedicated to 

building models of feed drive systems, as reviewed in the following. 

i
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Figure 2.4. Simplified drive dynamic model. 
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One of the basic models which is widely used was proposed by Koren [16]. This model 

considers only the linear rigid body dynamics, as shown in Figure 2.4. The current command 

u  injected into the current amplifier ( aK ) results in the armature current i , which is then 

converted into actuation torque mT  through the motor ( tK ). Part of the actuation torque is 

consumed by disturbances ( dT ) originating from nonlinear guideway friction and possibly 

the cutting process. The remaining torque actuates the drive system, which is represented by 

an equivalent inertia J  and viscous friction B  reflected on the actuator. The motor angular 

velocity ω  is integrated to obtain angular position θ , which is then converted into linear axis 

movement x  through the gear ratio gr . Models have also been proposed that capture and 

integrate the nonlinear effect of friction in the feed drive. Armstrong et al. [17] has presented 

a very broad survey of the available techniques used to model and compensate friction in 

servo systems. They have proposed a seven parameter model which adequately captures the 

effect of pre-sliding displacement, static friction, and the full Streibeck curve describing how 

the friction force changes with the relative sliding velocity between two surfaces in contact. 

Later, Lee and Tomizuka [18] and Erkorkmaz and Altintas [19] have applied simpler 

versions of this model to identify the friction dynamics in CNC drives. These models focus 

primarily on the static, Coulomb, and viscous friction regimes. 
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Figure 2.5. General feed drive model in Virtual CNC. 



Chapter 2. Literature Review 9 

 

The main disadvantage of rigid body type models is that they fail to capture the effect of 

structural vibrations which becomes prevalent when high bandwidths are demanded in the 

control law. To address these issues, Varanasi and Nayfeh [20] and Erkorkmaz and 

Kamalzadeh [21] have worked on building Finite Element models and conducting frequency 

response experiments to identify the torsional and axial vibrations of ball screw drives. The 

backlash and motion loss in the nut interface have been identified by Kao et al. [22] and 

Cuttino et al. [23], with models of varying complexity. The volumetric and thermal errors, 

which influence the final tool positioning accuracy, were modeled by researchers at NIST in 

[24]. Several of the listed models have successfully been incorporated into the general feed 

drive template in the Virtual CNC shown in Figure 2.5. 

Depending on circumstances, some of the dynamic factors listed above play a more 

dominant role than the others in determining the final accuracy of a feed drive system. In 

overall, experimental identification of models that capture the relevant dynamics is usually 

time consuming and needs to be performed by an engineer who is competent in control 

theory and sometimes metrology. The identification experiments may require the servo loop 

or the interpolator to be disconnected, in order to inject particular excitation signals to the 

drive system. When these factors are considered, building even basic virtual models of CNC 

drives can result in considerable downtime to the actual production machines, which is not 

always practical in a manufacturing environment. 
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To address these issues, a rapid identification strategy has been developed in this thesis, 

which has been reported in [25], [26], and [27]. The rapid identification technique, shown in 

Figure 2.6, consists of executing a short G-code experiment and collecting input and output 

data using the “motion capture” feature available on most CNC systems. The data is 

processed with the intention of reverse engineering the equivalent tracking and disturbance 

transfer functions of the closed loop drive system, and the guideway friction. It is shown that 

accurate prediction of the real machine’s contouring capability for a variety of feed drive 

systems can be achieved through such virtual drive model. 

One drawback of the rapid identification scheme is that the motion commands generated 

by the interpolator are smooth, typically up to the acceleration level (i.e. 2C  continuity), and 

therefore lack the persistence of excitation to allow accurate estimation of all model 

parameters using data captured for a short period of time. Furthermore, when feedforward 

control is used to widen the effective tracking bandwidth, majority of the stable axis 
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Figure 2.6. Overview of rapid identification technique. 
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dynamics are cancelled out by placing poles and zeros inside a trajectory pre-filter [14], [15]. 

This cancellation renders the identification of closed loop dynamics very difficult. In either 

case, there is high likelihood that the identified parameters will not converge to their true 

values. Such a deviation is normally acceptable, as long as the identified model captures the 

dynamics of the real drive system with sufficient closeness in the frequency range of the 

CNC motion commands. In extreme cases this non-convergence can also result in the 

identification of critically stable or even unstable virtual drive models, which have very 

limited practical value. 

In order to guarantee stability of the identified model, bounds need to be imposed on the 

closed loop pole locations. This results in the identification task to assume the form of a 

constrained minimization problem, which has been solved using the Lagrange Multipliers 

(LM) technique in [25], [26] and a Genetic Algorithm in [27]. LM theoretically yields the 

best possible parameter estimates for the collected data, and this strategy was found to be 

successful in identifying virtual drive parameters. However, it is a computationally lengthy 

approach and requires the use of a specialized symbolic solver like Matlab’s Symbolic Math 

Toolbox [28], which significantly limits its portability for industrial implementation. On the 

other hand, the Genetic Algorithm (GA) is a slightly less exact approach but converges much 

faster than the LM solution, and can be easily be ported to different platforms as it does not 

require the use of a symbolic solver. The two approaches are explained in detail in Chapter 3 

and Chapter 4. 

2.4 Evolutionary Computation 

Artificial Intelligence has been finding widespread use in solving complex engineering 

problems which are difficult to solve using traditional algebraic or gradient based 

optimization methods. There are three major areas of interest to engineers in the field of 

artificial Intelligence; these are fuzzy logic, neural networks, and evolutionary programming 

[29]. Fuzzy logic is used when the system does not have a direct relationship between the 

inputs and outputs. Fuzzy logic is usually used for transferring existing expert knowledge 

into automated decision making processes. Neural networks are used for mimicking 
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processes where the relationship between inputs and outputs are not exactly known, but can 

be “learned” through observation, expert knowledge or pattern recognition. Genetic 

Algorithms (GA’s) relate to an evolutionary programming technique which applies the 

Principle of Natural Selection to find the best solution out of a large pool of candidates which 

undergo several cycles of evolution. This concept was pioneered by Holland in his book in 

1975 [30]; however it is Fogel who made this technique practical in the 1980’s, as an 

alternative to classical approaches, by mimicking the evolutionary process in organ cells [31]. 

The ability to constrain the search space with desired bounds lends Genetic Algorithms to be 

suitable for solving complex optimization problems in controller design and identification 

which are constrained, nonlinear, multivariable, and typically non-convex [32]. 

A schematic of the GA is shown in Figure 2.7, which cycles through five main processes. 

The first part of the cycle starts with a Parent Population of solution candidates. This 

population is used to produce a new generation in the Crossover phase, which inherits 

characteristics from the parent pairs. Randomness is introduced by perturbing the new 

solutions in the Mutation phase. After ensuring compliance with the given constraints [32], 

the solution candidates are evaluated for how well they minimize an overall objective. The 

best solutions are then carried forward to spawn the next generation using the Selection 

process. This cycle is repeated until the solution pool converges to the optimal result. 

The main advantage of the Genetic Algorithm is the ease at which it can be adopted to 

solve different kinds of problems. The designer only requires to supply the objective function 

CROSSOVER

MUTATION INITIAL POPULATION
INITIAL (PARENT)

POPULATION

CONSTRAINT

SELECTION

 
Figure 2.7. A Schematic of the Genetic Algorithm. 
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and the constraints. Afterwards, the GA iteratively converges toward the optimal result. This 

allows problems which are difficult to solve by algebra or conventional numerical techniques 

to be efficiently handled. Although GA’s have been around since the 1980’s, it is with the 

recent increase in the availability of computational power that they have become more 

widespread. By restructuring the problem to streamline the computations and casting the 

search in terms of the right parameters, Genetic Algorithms can provide solutions at a rate 

which are comparable to deterministic calculations [33]. Problems such as airport traffic 

control [34], shortest traveling distance between multiple points [35], operation planning of 

NC processes [36], and AC motor modeling [37] have been successfully solved using GA’s. 

Other applications in which GA’s have been applied are identifying the dynamics of 

generators [38], [39], bearing stiffness and damping values in rotor assemblies [40], friction 

models in precision linear stages [41], and robotic applications [42][43][44]. 

. In this thesis, the GA is used to identify the equivalent command following and 

disturbance rejection properties and guideway friction in CNC machine tool drives, as 

explained in Chapter 4. 

2.5 Summary 

This chapter has presented a survey of academic literature and industrial practice relevant 

to virtual simulation of CNC systems, identification of feed drives, and the use of 

evolutionary programming to solve complex engineering problems. It is shown that virtual 

production simulations, as promising as they are, rely on the accuracy of the machine and 

process models that are available. Hence, there is a strong need to identify dynamic models 

of existing machine tools in a practical and reliable manner, while causing minimal 

disruption to their operation. To address these issues, the concept of rapid identification has 

been introduced, which will be further explained in the next two chapters.
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Chapter 3 

Rapid Identification Problem and Lagrange Multipliers Solution 

3.1 Introduction 

In this chapter, a mathematical framework is presented for solving the rapid identification 

problem. In Section 3.2, a generalized model is developed which captures the key dynamics 

of a large class of CNC drive systems. Based on this model, the constrained identification 

problem is constructed and the solution is formulated in Section 3.3, using the Lagrange 

Multipliers (LM) technique. Simulation and experimental results demonstrating the 

effectiveness of the LM solution are presented in Section 3.4. The conclusions are presented 

in Section 3.5. 

3.2 Generalized Model for Closed Loop Axis Dynamics 

In this section a dynamic model is developed which is applicable to a large class of CNC 

drives. This model can be used to describe the overall closed loop behavior of ball screw or 

linear drives, controlled with various feedback techniques such as P, PI, PD, PID, and P-PI 

cascade control, with or without feedforward dynamic or friction compensation. The model 

also considers the existence of nonlinear Coulomb friction, hence enabling the prediction of 

quadrant glitches and tracking errors that arise from sudden changes in the friction field 

during motion reversals. The main assumptions made in developing the model are: 1) Rigid 

body motion is dominant (i.e. flexible modes are not excited); 2) Actuator saturations are 

avoided; and 3) The effect of nonlinearities like torque ripples, backlash, and lead errors, are 

minor in comparison to the servo errors that originate from the interaction between the 

controller dynamics and the drive’s rigid body motion. These conditions are typically 

realized on most feed drive systems. 
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Two of the most common control structures used in CNC drives are shown in Figure 3.2. 

In Figure 3.2(a), the velocity loop is closed using proportional–integral (PI) control, and the 

position loop is closed using proportional (P) control. In Figure 3.2(b), the position loop is 

directly closed using a proportional-integral-derivative (PID) controller, which typically 

results in motor torque commands. In both cases, feedforward compensation of axis 

dynamics can be applied to widen the servo tracking bandwidth, in order to improve the 

positioning accuracy. In the figure, J  [kgm2] is the equivalent inertia and B  [kgm2/sec] is 

the viscous damping coefficient. u  [V] is the torque command applied to the current 

amplifier, K  [Nm/V] is the product of the amplifier gain ( ampK  [A/V]), motor torque 

constant ( tK  [Nm/A]), ball screw transmission gain ( gr  [mm/rad]), and the gear ratio ( n ), if 

there is one, between the motor and ball screw ( nrKKK gtamp= ). rx  [mm] is the 

commanded and x  [mm] is the actual axis position. In both cases, the equivalent closed loop 

dynamics can be represented in the form: 
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 (3.1) 

 

Above )(sGtrack  and )(sGdist  are the equivalent tracking and disturbance transfer 

functions. The most dominant source of nonlinear friction in feed drives is Coulomb and 

static friction. A full model to describe the Stribeck curve requires extensive testing and 

identification procedures to be carried out [17]. In this work, Coulomb friction is considered 

Tracking TF

xr x

x
-s2+a1s+a2+a3s-1

b0s2+b1s+b2+a3s-1

Scaled Disturbance TF Scaled Friction Model

s2+a1s+a2+a3s-1

1 d
dt

d0 x>0

d1 x<0

 
Figure 3.1. General representation of closed loop dynamics. 
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as the main contributor to contouring and tracking errors during motion reversals. The 

friction model is expressed in the form: 

)NV()PV( xdxdd && ⋅+⋅= −+ (3.2) 
 

where )PV(x&  is a binary function which assumes a value of “1” when the axis velocity is 

positive and “0” otherwise. )NV(x&  takes a value of “1” when the axis velocity is negative 

and “0” otherwise. +d  and −d  are the control signal equivalent values of Coulomb friction 

for positive and negative directions of motion. Substituting the friction model in Eq. (3.2) 

into the closed loop linear dynamics in Eq. (3.1) yields the general axis model shown in 

Figure 3.1: 
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Figure 3.2. Common control structures used in CNC drives. 
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For the P-PI structure, the model parameters are obtained as: 
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In the PID structure, the parameters become: 
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It should be noted that the derived model in Eq. (3.3) allows the closed loop dynamics for 

a large class of feed drive systems to be represented with only 8 parameters (3 poles, 3 zeros, 

and 2 friction amplitudes). This model can also be used to capture the dominant dynamics of 

drive systems controlled with more complex controllers such as state feedback and pole-

placement control. The time-dependent terms correspond to physically meaningful variables 

such as commanded and actual axis position ( rx , x ), velocity ( rx& , x& ), acceleration ( rx&& , x&& ), 

and integrated tracking error ( ∫ ττ−τ
t

r dxx
0

)]()([ ). These profiles can be captured on the fly in 

most CNC systems. If necessary, velocity and acceleration and integrated tracking error 

profiles can be constructed through numerical differentiation or integration of discrete-time 

position signals (i.e. )2/()(ˆ
11 skkk Txxx −+ −=& , )2/()ˆˆ(ˆ

11 skkk Txxx −+ −= &&&& , 

∑ =
−= k

m mmrski xxTe 1 ,, )(  where sT : sampling period). The derived model can also capture 

the response of simpler control structures, which may or may not contain feedforward, 

integral, or derivative action. If feedforward friction compensation is used in the control law, 

this results in lower values to be estimated for the remaining Coulomb friction. Finally, the 
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closed loop model is linear with respect to its parameters, allowing Least Squares type of 

identification techniques to be applied [45]. 

3.3 Constrained Parameter Identification using Lagrange Multipliers 

As shown in Figure 2.6 in Chapter 2, the rapid identification experiment is conducted by 

executing a series of NC instructions comprised of short random linear movements, to deliver 

as much excitation as possible to the drive system. The maximum feed and acceleration 

values are set below the physical limits of the drives, in order to avoid actuator saturation. 

The overall displacement range is selected such that the maximum feed can only be reached 

when traveling from one end of the motion range to the other. The commanded displacement 

between consecutive NC blocks is generally too short to reach the desired maximum feedrate, 

which enables the performance of the drive to be observed for a wide range of feeds within 

the machine’s working envelope. The execution of multiple back and forth movements at 

different velocities allow for the effect of Coulomb friction, which brings amplitude 

dependence into the drive model, to be clearly observed. In order to deliver the excitation in 

as high frequency range as possible, smooth acceleration profiling (i.e. “S-curve” 

functionality) should be disabled in the interpolator, if possible. This results in trapezoidal 

and triangular velocity transitions, which provide higher frequency content, as opposed to 

parabolic velocity transitions.  

The axis position commands and encoder measurements ( krx ,  and kx ) are collected 

while running the identification NC code. The data collection is carried out at the control 

loop period sT  for a total of N  samples. The objective is to find the parameters ( 1a , 2a , 3a , 

0b , 1b , 2b , 0d , 1d ) for the dynamic model in Eq. (3.3) such that the discrepancy between 

measured ( kx ) and predicted ( kx̂ ) axis movements is minimized in a least squares sense: 

∑
=

−=
N

k
kk xxf
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2]ˆ[
2
1   Minimize   :Objective

 
(3.6) 
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The motion commands generated by the interpolator are relatively smooth and generally 

lack the persistence of excitation for all estimated parameters to converge to their true values, 

even though only rigid body motion is considered. This is not a major problem, as long as the 

identified drive model captures the key dynamics of the real system within the frequency 

range of the CNC motion commands. However, incorrect estimation of the drive dynamics 

may also result in unstable or poorly damped pole locations, which have limited practical 

value for conducting virtual manufacturing simulations. In order to avoid this problem and 

guarantee stability of the identified drive models, bounds need to be imposed on the 

frequency and damping ratio values of the closed loop poles. The characteristic polynomial 

in Eq. (3.3) and its pole locations are: 

2
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(3.7) 

 

As the damping ratio becomes large ( 1>>ζ ), the third closed loop pole starts 

approaching zero (i.e. −→ 03p ), which is undesirable. In order to guarantee the necessary 

stability margins, the closed loop pole frequencies need to be constrained with lower bounds 

and the damping ratio needs to be constrained with lower and upper bounds, resulting in the 

below statement of identification constraints: 
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≤≥
≥≥
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min,2min1
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hh
hpph nn

 
(3.8) 

 

where 0min >p , 0min. >ωn , and 0minmax >ζ>ζ . Assuming that 1max >ζ , the 

allowable pole locations are shown in Figure 3.3. In the following, the identification problem 

is solved as a constrained minimization problem using Lagrange Multipliers technique with 

Kuhn-Tucker switching conditions [4], in order to handle the inequality constraints. 
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Assuming that the commanded position ( krx , ), velocity ( krx ,& ), acceleration ( krx ,&& ), 

measured velocity ( kx& ) and acceleration ( kx&& ), and integrated tracking error 

( ∑ =
−= k

m mmrsi xxTe 1 , )( ) are available at the kth sample, the axis position can be predicted 

by taking the inverse Laplace transform of Eq. (3.3): 
−+ δ⋅−δ⋅−β+β+β+α−α−α= )NV()PV(ˆ ,2,1,021, kkkrkrkrkkkiik xxxxxxxex &&&&&&&& (3.9) 

 

The model parameters, normalized with respect to 2a  (i.e. coefficient for axis position) 

are obtained as: 
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The identification problem is solved to determine the vector of normalized model 

parameters ( θ ). Clustering the axis position measurements into an output vector: Y  and 

defining the regressor matrix Φ , 
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Figure 3.3. Allowable locations for (a) real, (b) complex poles. 
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the objective function in Eq. (3.6) is re-expressed as: 
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2
1   Minimize   :Objective ΦθYΦθY −−= Tf (3.12) 

 

The inequality constraints in Eq. (3.8) are transformed into equality constraints using the 

slacking variables 1σ , 2σ , 3σ , ℜ∈σ4 : 
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Considering Eq. (3.7) and (3.10), the first three optimization variables ( iα , 1α , 2α ) are 

related to the constraint variables ( p  , nω , ζ ) as: 
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The differential relationship between these variables can be constructed as by taking the 

total differential of the expressions in Eq. (3.14): 
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The inverse gradient can then be obtained by inverting the matrix G : 
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The constrained optimization problem is solved by constructing the augmented objective 

function ),,,,,,,,(' 43214321 σσσσλλλλθf  and setting its partial derivatives with respect to 

the optimization variables (θ ), Lagrange multipliers ( 4321 ,,, λλλλ ) and slacking variables 

( 4321 ,,, σσσσ ) to zero: 
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The partial derivative with respect to the optimization variables yields a system of 8 

equations with resemblance to the standard least-squares estimation problem [45]:  
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Defining the matrices P  and R  as: 
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The system in Equation (3.18) can be expanded as: 
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The partial derivatives with respect to the Lagrange multipliers yield the constraint 

equations: 
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The partial derivatives with respect to the slacking variables yield the Kuhn-Tucker 

switching conditions [4]:  
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These equations imply that the ith constraint is either active ( 0=σi , equality state), or 

inactive ( 0=λ i , inequality state) [4]. Considering that there are four constraints, this leads 

to 1624 =  possible constraint activation scenarios, which have been shown in Table 3.1. 

Among these, Cases 10, 12, 14, and 16 are infeasible, since they correspond to maxζ=ζ  and 

minζ=ζ  holding at the same time, which is not possible if minmax ζ>ζ . Case 1 corresponds 

to the unconstrained solution of Eq. (3.12), which is the result of the standard Least Squares 

technique [45]. If the solution for this case violates the bounds in Eq. (3.8), then the 

remaining 11 cases need to be evaluated one by one. For each feasible case, the system in 

Eqs. (3.20)-(3.21) is reconstructed and solved by substituting in the known values of 

Lagrange multipliers and slacking variables from Table 3.1, the partial derivatives ( ip α∂∂ / , 

1/ α∂∂p , 2/ α∂∂p , in α∂ω∂ / , 1/ α∂ω∂ n , 2/ α∂ω∂ n , iα∂ζ∂ / , 1/ α∂ζ∂ , 2/ α∂ζ∂ ) from Eq. 

(3.16), and replacing the iα , 1α , 2α  terms with their expressions in terms of p , nω , and ζ  

from Eq. (3.14). Each nonlinear equation system is solved using Matlab’s Symbolic Math 

Toolbox [28], resulting in a solution (or in some cases, multiple solutions) for p , nω , ζ , 0β , 

1β , 2β , +δ , −δ , the unknown Lagrange multipliers and the slacking variables. The 

normalized denominator parameters iα , 1α , 2α , are computed using Eq. (3.14). Each 

solution is checked for constraint feasibility (Eq. (3.13)) and feasible solutions are evaluated 

for how well they minimize the objective function (Eq. (3.12)). The feasible solution that 

yields the lowest value for the objective is selected as the optimal parameter set ( 1a , 2a , 3a , 

0b , 1b , 2b , 0d , 1d ) for the dynamic model in Eq.(3.3). 
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3.4 Simulation and Experimental Results 

The effectiveness of the proposed identification strategy has been verified in simulations 

and experimental case studies conducted on virtual and actual feed drives. Since virtual axis 

dynamics are already known, the simulations allow a comparison between the true and 

identified drive parameters. The experiments were conducted to validate practical 

effectiveness of the rapid identification strategy. 

The NC code used in the tests is shown in Table 3.2, which consists of 200 random linear 

movements commanded within a range of ±10 [mm] with a maximum feedrate of 200 

[mm/sec]. Due to the short travel distance between consecutive position commands, this 

velocity is not reached. Instead, the drive’s response is observed for a wide range of 

Table 3.1. Possible cases of constraint activation (cases 10, 12, 14, and 16 are 
infeasible). 

Case 1λ  1σ  2λ  2σ  3λ  3σ  4λ  4σ  
1 0  0  0  0  

2 0  0   0 0  

3 0   0 0  0  

4 0   0  0 0  

5  0 0  0  0  

6  0 0   0 0  

7  0  0 0  0  

8  0  0  0 0  

9 0  0  0   0 

10 0  0   0  0 

11 0   0 0   0 

12 0   0  0  0 

13  0 0  0   0 

14  0 0   0  0 

15  0  0 0   0 

16  0  0  0  0 
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velocities, as intended. The maximum acceleration and deceleration values for the 

interpolator were set to 2000 [mm/sec2], which correspond to the limits of the drive system. 

The S-curve functionality in the interpolator was disabled, which produced trapezoidal 

velocity profiles with sharper motion transients. This was done to improve the parameter 

convergence. The data was collected at a sampling period of sT =1 [msec] for a duration of 

22 [sec]. A sample data set captured for a window of 1 [sec] is shown in Figure 3.4. The 

signals comprise of commanded, measured, and modeled (identified) position profiles. 

In applying the Lagrange Multipliers solution, the pole location bounds were selected as 

minp = min,nω =6.28 [rad/sec] (1 [Hz]), minζ =0.2 [ ], and maxζ =2.0 [ ]. The LM solution was 

implemented in Matlab on a Pentium IV computer. The use of the Symbolic Math Toolbox 

brought significant overhead to the computation of the solution, which sometimes took up to 

15-20 minutes when all constraint activation scenarios needed to be checked. Nevertheless, 

the models identified with the LM technique were quite successful in replicating the real 

drive systems’ dynamic response, as demonstrated in the following subsections. 

3.4.1 Simulation Results 

In the simulations, a virtual model of a Fadal VMC 2216 machining center was used, 

which was constructed through careful identification of the rigid body dynamics, nonlinear 

guideway friction, amplifier current limits, nut backlash, DAC quantization, and encoder 

measurement noise This model had been thoroughly verified in tracking and contouring 

experiments conducted on the real machine using different control schemes in earlier work 

[8]. The simulations were conducted considering different control structures to be 

implemented on the machine, such as P-PI cascade, PID, and adaptive sliding mode control. 
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Table 3.2. Identification NC code. 
N0000 G00 X0.000 F12000 
N0010 G01 X 0.258 
N0020 G01 X-0.790 
N0030 G01 X-2.992 
N0040 G01 X-8.099 
N0050 G01 X-1.327 
N0060 G01 X 4.185 
N0070 G01 X-7.681 
N0080 G01 X-8.438 
N0090 G01 X-2.615 
N0100 G01 X-9.327 
N0110 G01 X-6.157 
N0120 G01 X-0.573 
N0130 G01 X-7.102 
N0140 G01 X 4.357 
N0150 G01 X 3.234 
N0160 G01 X-1.363 
N0170 G01 X-1.079 
N0180 G01 X 0.167 
N0190 G01 X 0.562 
N0200 G01 X 1.458 
N0210 G01 X-2.784 
N0220 G01 X-3.270 
N0230 G01 X-6.535 
N0240 G01 X-8.278 
N0250 G01 X-2.133 
N0260 G01 X 6.087 
N0270 G01 X-9.778 
N0280 G01 X-5.338 
N0290 G01 X 8.677 
N0300 G01 X-5.464 
N0310 G01 X 5.719 
N0320 G01 X-1.785 
N0330 G01 X-7.612 
N0340 G01 X 2.687 
N0350 G01 X 7.248 
N0360 G01 X-6.835 
N0370 G01 X 2.024 
N0380 G01 X-7.648 
... 

... 
N1630 G01 X-8.131 
N1640 G01 X-5.721 
N1650 G01 X 1.918 
N1660 G01 X-8.511 
N1670 G01 X 8.689 
N1680 G01 X-0.193 
N1690 G01 X-0.128 
N1700 G01 X-4.498 
N1710 G01 X 1.432 
N1720 G01 X 7.033 
N1730 G01 X 3.820 
N1740 G01 X 6.886 
N1750 G01 X-5.564 
N1760 G01 X 7.172 
N1770 G01 X-2.652 
N1780 G01 X 0.551 
N1790 G01 X 4.521 
N1800 G01 X-9.637 
N1810 G01 X-1.713 
N1820 G01 X 8.878 
N1830 G01 X9.849  
N1840 G01 X-5.730 
N1850 G01 X-4.483 
N1860 G01 X 0.362 
N1870 G01 X 5.308 
N1880 G01 X-7.907 
N1890 G01 X-5.381 
N1900 G01 X-3.796 
N1910 G01 X 2.959 
N1920 G01 X-3.515 
N1930 G01 X-1.919 
N1940 G01 X 4.187 
N1950 G01 X 9.234 
N1960 G01 X 3.739 
N1970 G01 X 6.345 
N1980 G01 X-6.731 
N1990 G01 X 9.038 
N2000 G01 X-2.641 
N2010 G01 X 0.000 
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P-PI Cascade Controlled System 

The rapid identification strategy was first evaluated on a P-PI cascade controlled drive 

system. The identification converged to the unconstrained solution without any of the 

stability constraints (Eq.(3.21)) becoming active. The true and estimated closed loop 

parameters are summarized in Table 3.3. A comparison between the true and estimated 

tracking and disturbance frequency response functions (FRF’s) is presented in Figure 3.5. As 

can be noted in the table, there is discrepancy between the true and estimated pole locations. 

Although the slowest pole ( 3p ) at 4.68 [Hz] is captured with reasonable closeness at 4.88 

[Hz] in x and y axes, the complex conjugate poles ( 1p  and 2p ) which actually have a 

frequency of 36.26 [Hz] are estimated as a pair of real poles at 368.80 and 47.84 [Hz] for x, 

and 436.91 and 45.52 [Hz] for y axes. The zero ( 3z ) at 21.88 and 21.90 [Hz] in the x and y 

axes is closely estimated at 23 and 22.81 [Hz] respectively. In addition, there is around 16.9× 

and 18.4× mismatch between the estimated and true friction parameters ( 0d  and 1d ) in x and 

y axes.  
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Considering the FRF’s shown in Figure 3.5 (a) and (b) it is seen that the identified 

transfer functions are able to represent the tracking characteristics of the x and y axes 

accurately up to a frequency range of 30 [Hz], which is reasonably wide for tracking most 

CNC motion commands. 
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Figure 3.4. Identification trajectory captured in VCNC. 
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Table 3.3.Actual and estimated closed loop parameters for P-PI controlled drive 
system. 

 X Axis Y Axis 
Actual Estimated Actual Estimated 

Pa
ra

m
et

er
s 

1a  372.76 2648.46 372.76 3061.86
2a  62009.83 776813.58 61999.31 878064.60
3a  1527104.87 21349028.29 1527104.86 24070716.71
0b  0 1.08 0 1.19
1b  0 -415.03 0 -472.93
2b  11106.33 65194.67 11095.82 75718.61
0d  441 7210 409 7523
1d  -302 -5277 -388 -7160

Poles 
and Zeros 

Frequency 
[Hz] 

Damping 
[ ] 

Frequency
[Hz] 

Damping
[ ] 

Frequency
[Hz] 

Damping
[ ] 

Frequency 
[Hz] 

Damping 
[ ] 

Po
le

s 1p  36.26 0.75 368.80 1.00 36.26 0.75 436.91 1.00
2p  36.26 0.75 47.84 1.00 36.26 0.75 45.52 1.00
3p  4.68 1.00 4.88 1.00 4.68 1.00 4.88 1.00

Ze
ro

s 1z  − − 58.91 -0.72 − − 59.74 -0.72
2z  − − 58.91 -0.72 − − 59.74 -0.72
3z  21.88 1.00 23.00 1.00 21.90 1.00 22.81 1.00
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Figure 3.5. Estimated and actual tracking and disturbance frequency response 

functions (FRF’s) for P-PI controlled servo system (simulation). 
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In addition, considering the real and estimated disturbance transfer functions (Figure 

3.5 (c) and (d)), it can be seen that there is close agreement in the phase shift up to 10 [Hz] 

and a D.C. amplitude difference of 13.9× for x and 15.7× for y axes, which compensates for 

the discrepancy between true and estimated friction parameters to a large extent. In overall, it 

can be said that the estimated transfer functions are successful in capturing the key dynamic 

characteristics required to predict the tracking and contouring performance of the actual 

drives with reasonable closeness. The actual and identified axis dynamics have been 

compared in tracking circular and diamond shaped toolpaths at 200 [mm/sec] feed with 2000 

[mm/sec2] trapezoidal acceleration transients. The comparison results are shown in Figure 

3.6 and Figure 3.7, which are seen to be in close agreement. 
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Figure 3.6. Predicted and actual contouring of P-PI controlled servo system 

(simulation). 
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PID Controlled System 

The second simulation study was conducted for a PID controlled drive system, which 

does not have an inner velocity control loop. The actual and estimated drive parameters are 

summarized in Table 3.4.  

As seen from the table, there is close match in this case between the actual and identified 

pole and zero locations. This is verified by the consistency in the actual and estimated 

frequency response functions (Figure 3.8), both for tracking and disturbance. The tracking 

transfer functions are in close agreement up to 30 [Hz]. The disturbance transfer functions 

appear to be in agreement up to 80 [Hz]. When averaged, there is 15 [%] discrepancy 

between the actual and estimated friction parameters ( 0d  and 1d ). 
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Figure 3.7. Predicted and actual contouring of P-PI controlled servo system (simulation). 
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Table 3.4. Actual and estimated closed loop parameters for PID controlled drive system.

 X Axis Y Axis 
Actual Estimated Actual Estimated 

Pa
ra

m
et

er
s 

1a  192.65 214.13 178.75 123.02

2a  44356.23 60040.19 41031.98 40099.88

3a  316830.21 685295.65 293085.57 146558.19

0b  0 -0.35 0 -0.08

1b  190.10 203.86 175.85 123.16

2b  44356.23 60043.78 41031.98 40089.20

0d  441 620 409 478

1d  -302 -280 -388 -428
Poles 

and Zeros 
Frequency

[Hz] 
Damping 

[ ] 
Frequency

[Hz] 
Damping

[ ] 
Frequency

[Hz] 
Damping

[ ] 
Frequency 

[Hz] 
Damping 

[ ] 

Po
le

s 1p  33.00 0.45 38.21 0.42 31.74 0.43 31.69 0.30
2p  33.00 0.45 38.21 0.42 31.74 0.43 31.69 0.30
3p  1.17 1.00 1.89 1.00 1.17 1.00 0.59 1.00

Ze
ro

s 1z  − − 129.50 -1.00 − − 270.83 -1.00
2z  35.96 1.00 32.88 1.00 35.96 1.00 42.98 1.00
3z  1.17 1.00 1.89 1.00 1.17 1.00 0.59 1.00
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Figure 3.8. Estimated and actual tracking and disturbance frequency response functions 

(FRF’s) for PID controlled servo system (simulation). 
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The circular and diamond contouring results for the actual and estimated transfer 

functions are shown in Figure 3.9, which are also in close agreement. 

Adaptive Sliding Mode Controlled System 

The third control structure which was evaluated is adaptive sliding mode control. When 

adaptation is conducted only for the unknown disturbance, the control law assumes a PID-

like structure with feedforward velocity and acceleration terms [13]. The true and estimated 

drive parameters are summarized in Table 3.5. Due to the existence of feedforward control 

action, there is full pole-zero cancellation in both axes, resulting in a tracking transfer 

function equal to unity with zero phase shift in the ideal case. This makes the accurate 

identification of drive parameters very difficult. It is seen that the identified poles and zeros 

do not match their true values. However, the near-cancellation effect can be observed 

between poles at 7.04 and 93.76 [Hz] and zeros at 7.05 and 101.62 [Hz] in the x axis, and 

poles at 7.86 and 108.50 [Hz] and zeros at 7.87 and 116.02 [Hz] in the y axis, yielding 

reasonably flat tracking transfer functions up to 50 [Hz] range, as seen in Figure 3.10(a) and 

(b). There is 5.8× and 5.1× inconsistency between actual and estimated friction model 

parameters, in x and y axes, which is compensated by the 4.0× and 3.9× D.C. gain difference 

in the real and estimated disturbance transfer functions (Figure 3.10 (c) and (d)), which are in 

close phase agreement up to 10 [Hz]. 
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Figure 3.9. Predicted and actual contouring of PID controlled system (simulation). 
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Table 3.5. Actual and estimated closed loop parameters for SMC controlled drive system.
 

X Axis Y Axis 
Actual Estimated Actual Estimated 

Pa
ra

m
et

er
s 

1a  390.10 566.95 493.09 449.09
2a  57029.44 370137.94 87925.67 484496.30
3a  3801962.50 15346572.85 5861711.35 22962987.98
0b  1.00 0.85 1.00 0.87
1b  390.10 574.83 493.09 455.36
2b  57029.44 370142.25 87925.67 484500.13
0d  441 2367 409 2023
1d  -302 -1858 -388 -2016
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Damping 
[ ] 

Frequency
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Frequency
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le

s 1p  31.83 1.00 93.76 0.44 31.83 1.00 108.50 0.29
2p  21.94 0.69 93.76 0.44 27.25 0.86 108.50 0.29
3p  21.94 0.69 7.04 1.00 27.25 0.86 7.86 1.00

Ze
ro

s 1z  31.83 1.00 101.62 0.50 31.83 1.00 116.02 0.32
2z  21.94 0.69 101.62 0.50 27.25 0.86 116.02 0.32
3z  21.94 0.69 7.05 1.00 27.25 0.86 7.87 1.00
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Figure 3.10. Estimated and actual tracking and disturbance frequency response 

functions (FRF’s) for sliding mode controlled servo system (simulation). 
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The contouring results obtained with the actual and estimated drive models for the two 

toolpaths are shown in Figure 3.11, which are again in agreement. 

The simulation results validate the proof of concept for the proposed rapid identification 

strategy. They show that theoretically it is possible to construct virtual models of existing 

feed drives, using data captured during a short G-code experiment. Although the identified 

models may not exactly have the same parameters as the actual drive system, they are still 

successful in predicting the tracking and contouring accuracies of CNC machine tools for 

different part programs. 

3.4.2 Experimental Results 

Following successful concept validation in simulation results, the rapid identification 

technique was tested experimentally on a ball screw drive, to demonstrate its practical 

effectiveness. The ball screw drive setup, controlled with a dSPACE motion controller, is 

shown in Figure 3.12. Position measurements were obtained from the encoder mounted on 

the motor, which provides a resolution equivalent to 1.25 [um] of table motion. Due to the 

availability of only a single drive, the x and y axis trajectories were tested separately and the 

results were synchronized by overlapping the command trajectories, which enabled the 

estimation of equivalent contour error profiles. 
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Figure 3.11. Predicted and actual contouring performance of sliding mode controlled 

servo system (simulation). 
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Two control cases have been considered: In the first case, the control loop is closed using 

a Pole Placement Controller (PPC) [11] with a Kalman Filter (KF) [46] for disturbance 

observation and cancellation. In the second case, a Zero Phase Error Tracking Controller 

(ZPETC) [14] is added to the scheme, to widen the tracking bandwidth with feedforward 

control action. The implemented control scheme is shown in Figure 3.13. The ZPETC 

improves the tracking accuracy by widening the overall command following bandwidth. In 

order to achieve this, it cancels out all of the poles and stable (or well damped) zeros of the 

closed loop system achieved with the pole-placement controller. Considering Figure 3.13, the 

discrete-time transfer function between the filtered position commands )(* zxr  and the final 

axis position )(zx  can be expressed as, 
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In the numerator, )(zB+  contains all of the stable and well-damped, and )(zB−  contains 

the unstable or poorly damped zeros. The expression for the ZPETC is given as [14], 
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Figure 3.12. Setup of one axis ballscrew system. 
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It can be shown that this results in an overall tracking transfer function of  
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which has zero phase shift at all frequencies, and a gain very close to one for a wide 

frequency range. After conducting the rapid identification, the axis models were verified by 

running the circular toolpath in Figure 3.6 at 100 [mm/sec] feed with 600 [mm/sec2] 

trapezoidal acceleration transients. The actual and predicted tracking and contour error 

profiles are shown in Figure 3.14, which are in close agreement for both the low bandwidth 

(PPC + KF) and high bandwidth (PPC + KF + ZPETC) controllers, thus demonstrating the 

practicality and effectiveness of the proposed identification scheme. 
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Figure 3.13. ZPETC + PPC + KF control scheme implemented on ball screw drive. 
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Figure 3.14. Predicted and experimentally verified contouring performance for servo 

system controlled with (a) pole placement, (b) zero phase error tracking 
control. 
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3.5 Conclusions 

This chapter has provided a basic mathematical framework for the rapid identification 

strategy. It has presented a solution which utilizes Lagrange Multipliers for solving the 

constrained identification problem. This guarantees the stability of identified drive models, 

regardless of the lack of excitation in the command signals, or presence of pole-zero 

cancellations in the drive dynamics. The practicality and effectiveness of the proposed 

identification scheme has been demonstrated in simulation and experimental results, in which 

the tracking and contouring accuracy of a real drive system could be successfully predicted in 

a virtual process planning environment. One major downfall of the Lagrange Multipliers 

technique was found to be its mathematical complexity, which required the use of a 

dedicated symbolic math solver in order to handle different constraint activation cases. This 

resulted in a computationally lengthy solution, which sometimes took up to half an hour on a 

Pentium IV Personal Computer. The dependence on a symbolic solver also limits the 

portability of the LM solution for industrial implementation. In the next chapter, these issues 

have been addressed by developing an alternative strategy to solve the constrained 

identification problem more efficiently, using a Genetic Algorithm. 
 



40 

Chapter 4 

Constrained Parameter Estimation using a Genetic Algorithm 

4.1 Introduction 

In this chapter, a Genetic Algorithm (GA) approach is developed for solving the 

constrained identification problem defined in earlier Chapter 3. The structure of the GA is 

explained in detail in Section 4.2. This is followed by simulation and experimental results 

that validate the practicality and effectiveness of the GA identification scheme. The 

conclusions are presented in Section 4.4.  

4.2 Genetic Algorithm Solution 

The structure of the proposed Genetic Algorithm (GA) is shown in Figure 2.7. It is 

similar to the one proposed by Fogel et al. [33]. The first part of the cycle starts with a Parent 

Population of solution candidates. This population is used to produce a new generation in the 

Crossover phase, which inherits its characteristics from the parent pairs. Randomness is 

introduced by perturbing the new solutions in the Mutation phase. After ensuring compliance 

with the stability constraints [32], the solution candidates are evaluated for how well they 

minimize the objective in Eq. (3.12). The best solutions are carried forward to spawn the next 

generation using the Selection process. This cycle is repeated until the solution pool 

converges to an optimal set of parameters which best replicate the observed feed drive 

response. In setting up the GA identification, the solution search is conducted directly in 

terms of the closed loop pole frequency ( pn ,ω ) and damping )(ζ  values, as shown in Figure 

4.1. Adopting this strategy simplifies the incorporation of stability constraints expressed in 

Eq. (3.8). The upper bounds for pole frequencies ( maxmax, , pnω ) are set to half of the 



Chapter 4. Constrained Parameter Estimation using a Genetic Algorithm 41 

 

sampling frequency (i.e. Nyquist frequency) used in the data collection process. The 

following notation is adopted in describing the GA identification framework: 

⎩
⎨
⎧

=
Number Candidate :
Number Generation : 
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It should be noted that the GA identification technique can easily be generalized to 

handle more complex problems with a larger number of parameter constraints. In this case, 

each constrained parameter would be introduced as an additional bounded variable, resulting 

in the search space to assume the form of a hyperprism. In the following, phases of the GA 

identification scheme are explained in detail. 

4.2.1 Initial (Parent) Population 

The initial population is generated with a uniform distribution within the highlighted 

search space in Figure 4.1. After the first cycle is complete, the new parent generation is 

determined through a selection process applied on the mutated solution candidates from the 

earlier generation. 

4.2.2 Crossover Operation 

The crossover operation spawns the next generation of candidates by combining pairs 

from the current generation. It has a smoothening effect on the solution pool, which 

facilitates convergence. Every solution candidate ( t
iυ ) is randomly matched with another 
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Figure 4.1. Solution search space for GA identification. 
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candidate ( t
jυ ). These pairs are then used to produce two new candidates in the next 

generation: 1+t
iυ  and 1+t

jυ . Since the solution candidates are made up of real numbers, the 

crossover operation needs to be conducted in the domain of real numbers instead of binary. 

To achieve this, the Simulated Binary Crossover (SBX [47]) operation was adopted with a 

slight modification which prevents the divergence of the new generation away from the 

parents. The process of SBX is shown in Figure 4.2. The implemented SBX has the 

following mathematical expression [47], 
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The specific case use in this thesis is n = 2, 
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Figure 4.2. Simulated binary crossover (SBX) operation. 
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Above, r  is a random weighting factor with a uniform distribution between zero and one, 

which determines the closeness of the offspring to one of the parents. Possible outcomes of 

the SBX operation are illustrated in Figure 4.2. 

4.2.3 Mutation 

Mutation is used to randomly perturb the candidates in the new generation. This helps 

prevent the Genetic Algorithm from converging to local minima. Each candidate is perturbed 

in the form: 

)1,0(]'[ 11
iii

t
i

t
i NRη+= ++ υυ (4.4) 

 

Above, )1,0(iN  is a random number generated with a normal distribution which has zero 

mean and unit variance. This variable is computed separately for each candidate. iR  is a 

scaling factor defined as, 
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Considering that 99.73% of the values generated by )1,0(iN  will be in the range of -3 to 

+3 (i.e. three standard deviations), the scaling factor iR  maps these outcomes such that the 

perturbed solutions span the search space in Figure 4.1 bounded by the corners points 

),,( minminminmin pζωυ  and ),,( maxmaxmaxmax pζωυ . The iη  term represents a momentum 

step size, which is employed in evolutionary programming to facilitate larger perturbation in 

initial cycles. As iterations continue, iη  converges to a stationary random sequence around 

“1”. Its mathematical expression is given as [31], 

tt

NN iti

2/1'   ,   2/1   :where

))1,0()1,0('exp(

==

+=

ττ

ττη

 
(4.6) 

 



Chapter 4. Constrained Parameter Estimation using a Genetic Algorithm 44 

 

Above, )1,0(tN  is generated from a normally distributed random sequence, 

independently from )1,0(iN . )1,0(tN  is updated only once for each generation. Essentially, 

)1,0(iN  represents individual mutations which can affect each candidate separately while 

)1,0(tN  represents an overall mutation affecting the whole generation. τ  and 'τ  ensure that 

the step size is different for each iteration. 

4.2.4 Constraint Checking 

Each candidate is checked for compliance with the constraints. If any value of nω , ζ , or 

p  is outside the valid search range, it is replaced by the closest bound: 
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4.2.5 Selection 

Selection of successful candidates is carried out using a hybrid approach which combines 

Top Percent and Random Tournament techniques, as shown in Figure 4.3. Top Percent 

ensures that solutions which yield the lowest value for the objective in Eq. (3.12) are 

included in the crossover process. Random Tournament, on the other hand, arbitrarily 

matches pairs out of the mutated pool and selects the superior candidate out of each pair. 

This approach may lead to the same candidate being chosen more than once, as seen with 

4'υ  for example in Figure 4.3. 

During implementation of the GA, numerical evaluation of the cost function was found to 

bring the largest computational load. Naming N  as the number of collected data samples, 

computing the objective function using the form in Eq. (3.12) would require 239 +N  

multiplications, 169 +N  additions, and 1 division. Typically N  is larger than 1000 and in 

our experimental results 8192=N . In order to avoid this computational bottleneck, 
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calculation of the objective function was realized in a more efficient manner as explained in 

the following paragraphs. 

The parameter vector θ  in Eq. (3.11) can be separated into two parts as: 
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Given the pole frequency and damping values for a particular solution candidate 
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i pζωυ , the normalized denominator parameters T

i ][ 211 ααα=θ  can be 

determined using Eq. (3.14). The remaining parameters T][ 2102
−+ δδβββ=θ  can 

then be uniquely calculated by constructing a Least Squares sub-problem [45], assuming that 

the inverse for 22 ΦΦ T  exists. Hence, 
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Using this idea, and modifying the notation to represent each solution candidate as 
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Figure 4.3. Selection of best solution candidates. 
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the normalized drive parameters can be solved in the form: 
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It should be noted that the matrix terms ijp  and kr  are directly the individual entries of 

P  and R  matrices defined in Eq. (3.19). The value of the objective function (i.e. fitness) for 

each candidate can then be evaluated by expanding Eq. (3.12) using Eqs. (4.10) and (4.11), 

which results in: 
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Above, matrices Α , B , and Γ  depend solely on the experimental data and are computed 

only once prior to running the Genetic Algorithm. Given ),,( ,
t
i

t
i

t
in

t
i pζωυ  for a solution 

candidate, evaluation of the objective function using Eq. (4.12) requires only 32 

multiplications, 22 additions and 1 division, hence reducing the computational load by 2-3 

orders of magnitude. It should be noted that a similar reduction can also be obtained in more 

complex problems with a larger number of constrained variables. This step, which improves 

the numerical efficiency, was crucial in realizing a practically viable Genetic Algorithm for 

solving the constrained identification problem. This numerical simplification is also one of 

the contributions in this thesis. 
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4.3 Simulation and Experimental Results 

The Genetic Algorithm identification technique was validated in simulations and 

experiments conducted on virtual and real feed drive systems. Simulations were conducted 

on a virtual machine tool model to verify the parameter convergence and servo error 

prediction capability. Experiments were conducted on a ball screw drive and a 5-axis 

machining center, to demonstrate the practicality and effectiveness of the GA. Where 

applicable, the GA has been compared to the LM technique described in Chapter 3. 

The GA was configured to have a population size of 4000 candidates in each generation. 

The parameter search ranges were set as min,nω = minp =0.2 [Hz], max,nω = maxp =500 or 800 

[Hz] (depending on the sampling frequency), minζ =0.2, and maxζ =2.0. The crossover rate is 

0.5 and the mutation rate is 0.05. The selection operation was carried out by choosing the 

best 5 solutions (i.e. 0.125%) using the Top Percent approach, and the remaining using the 

Random Tournament approach, as explained in Section 4.2.5. The GA was implemented in 

Matlab on a Pentium IV computer. The implementation did not require the use of any 

specialized toolboxes and was written in a manner that could be directly ported into C++ or 

any other programming language. The Lagrange Multipliers solution was also implemented 

in Matlab on the same PC platform, but required the use of the Symbolic Math Toolbox, as 

mentioned in Chapter 2, to handle cases where the unconstrained solution of Eq. (3.12) 

violated the parameter bounds in Eq. (3.8). 

The LM solution represents the best theoretical estimate that could be obtained with the 

collected data and given parameter constraints. When all constraint activation cases need to 

be checked, the solution takes around 15-20 minutes to compute. On the other hand, the 

Genetic Algorithm was observed to converge within 2-3% closeness of the LM solution in 

about 2-3 minutes, making the GA a more practical alternative to the LM approach, even if it 

is slightly less exact. Sample results are presented in the following. 
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4.3.1 Validation on a Virtual Machine Tool 

In the first example, the Genetic Algorithm is compared to the Lagrange Multipliers (LM) 

solution in simulation results obtained using the virtual machine tool model (Fadal VMC 

2216) reported in Section 3.4.1. The drive’s axes were controlled using PID controllers tuned 

to provide a bandwidth of 57 [Hz]. The rapid identification data generated by running the G-

code in Table 3.2 was used.  

The identification results obtained with the two schemes are shown in Figure 4.4 and 

Table 4.1.  Figure 4.4 shows the convergence of GA parameter estimates to the LM solution. 

Table 4.1 presents the actual and estimated values of the search variables, model parameters, 

and tracking transfer function zeros. Considering Figure 4.4, it can be seen that in about 300 

iterations, the Genetic Algorithm converges closely to the LM solution. The actual solutions 

are captured at 500 iterations with a repeatability rate of 100%. All the test cases result are 

documented in Appendix A. 
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Figure 4.4. Estimated parameters for PID controlled virtual drive. 

 
Table 4.1. Actual and estimated parameters for PID controlled virtual drive. 

Search 
variables Actual Lagrange Multipliers 

Estimate 
Genetic Algorithm 

Estimate 
nω  [Hz] 33 38.21 38.20 

ζ  [ ] 0.45 0.42 0.42 
p  [Hz] 1.17 1.89 1.94 

Model 
Parameters Actual Lagrange Multipliers 

Estimate 
Genetic Algorithm 

Estimate 
1a  192.65 214.13 214.41

2a  44356.23 60040.19 60072.73

3a  316830.21 685295.65 703594.29

0b  0 -0.35 -0.34

1b  190.1 203.86 203.74

2b  44356.23 60043.78 60076.41

0d  441 620 627

1d  -302 -280 -277
Zero 

Locations Actual Lagrange Multipliers 
Estimate 

Genetic Algorithm 
Estimate 

1z  [Hz] -35.96 127.32 129.58

2z  [Hz] -1.17 -32.72 -32.87

3z  [Hz] - -1.89 -1.95
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As shown in Table 4.1, the natural frequency and damping ratio are estimated in a 

consistent manner between both solutions ( LMn,ω =38.21, GAn,ω =38.20 [Hz] and 

LMζ = GAζ =0.42), and the estimates are reasonably close to their true values ( Actualn,ω =33 

[Hz], Actualζ =0.45). The estimates for the real pole are also consistent among each other 

( LMp =1.89, GAp =1.94 [Hz]), but slightly different from the actual pole location 

( Actualp =1.17 [Hz]). Considering that the real pole is cancelled by a zero in all cases 

( Actualz ,2 = −1.17, LMz ,3 = −1.89, GAz ,3 = −1.95 [Hz]), this pole does not have any effect on 

the command following properties but it influences the response of axis position to 

disturbances, as can be inferred from the block diagram in Figure 3.1. The GA identified 

model was validated in a tracking simulation using a trajectory of ±20 [mm] of forward and 

backward motion commanded at a feedrate of 70.71 [mm/sec] with acceleration transients of 

424.26 [mm/sec2]. The simulation result is shown in Figure 4.5, in which the tracking error, 

using the reference trajectory, predicted with the GA identified model is generally within 10-

15% closeness of the actual tracking error. 

4.3.2 Validation on a Ball Screw Drive 
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Figure 4.5. Predicted and actual tracking performance of virtual feed drive (simulation). 
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In the second example, the GA is tested on the ball screw drive controlled with the 

ZPETC + PPC + KF scheme, explained in Section 3.4.2. As mentioned earlier, in this control 

configuration accurate identification of the closed loop dynamics is very difficult, due to the 

pole-zero cancellations that take place between the feedback loop and the ZPETC. The 

parameter convergence obtained using experimental identification data is shown in Figure 

4.6. As can be seen, the GA estimates converge closely to the LM solution in less than 50 

iterations. The actual discrete-time controller design parameters and model estimates 

obtained with GA and LM techniques are shown in Table 4.2. The control system was 

designed at a sampling period of sT  = 1 [msec] and the closed loop poles were placed at 

2,1p =0.86846+j0.11762 in the z-domain, corresponding to a natural frequency of 

Actualn,ω =30 [Hz] and a damping ratio of Actualζ =0.7. These poles are cancelled out by the 

zeros of the ZPETC at 4,3z =0.86846+j0.11762, and replaced by two deadbeat delay terms 

4,3p =0. The closed loop zero at 1z =-0.99937, which is very close to -1, is not directly 

cancelled out but its phase lag is removed by incorporating another zero at 2z = −1.0006 
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Figure 4.6. Estimated parameters for ZPETC + PPC + KF controlled ball screw drive 
(experimental). 
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through spectral factorization (i.e. 1/−0.99937= −1.0006) and adding an additional delay term 

5p =0 to make the ZPETC causal.  

It was shown in [48] that additional closed loop poles contributed by the Kalman filter do 

not affect the tracking transfer function, as they get cancelled out by collocated zeros. Hence, 

their effect is ignored, which simplifies the ZPETC design and analysis. During parameter 

identification and model validation the command trajectory was shifted forward in time by 2 

samples, which is the preview horizon of the designed ZPETC [14]. One shift accounts for 

the pole excess and the other for the number of unstable zeros, in the closed loop system. 

Table 4.2. Actual and estimated parameters for ZPETC + PPC + KF controlled ball screw 
drive. 

Actual Parameters 
(discrete-time system) 

Search 
Variables 

Lagrange Multipliers 
Estimate 

Genetic Algorithm 
Estimate 

Sampling Period nω  [Hz] 77.83 77.30 

sT  = 0.001 [sec] ζ  [ ] 0.203 0.202 
PPC + KF (closed loop) p  [Hz] 4.36 4.39 

Poles  
2,1p =0.86846+j0.11762 Model 

Parameters
Lagrange Multipliers 

Estimate 
Genetic Algorithm 

Estimate 
( nω =30 [Hz], ζ =0.7) 

Zeros     1z =-0.99937 1a  225.94 223.76
ZPETC (feedforward  filter) 2a  244579.87 241310.90
Poles 3a  6551189.40 6510957.51

5,4,3p  = 0 (3 delays) 0b 0.75 0.76
Zeros 1b  240.24 238.13

2z  = -1.0006 

4,3z  =  0.86846 + j0.11762 

2b  244452.20 241460.26

0d  1032.57 1024.55
Overall Transfer Function 1d  -996.03 -987.61

Poles Zero 
Locations 

Lagrange Multipliers 
Estimate 

Genetic Algorithm 
Estimate 3,2,1p′  = 0 (3 delays) 

Zeros 1z  [Hz] -4.37 -4.39

2,1z′  = -1.0006, -0.99937 3,2z  ω =89.76 [Hz], ζ =0.26 ω =88.65 [Hz], ζ =0.26 
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Considering the LM and GA estimates, it is seen that the natural frequency, damping 

ratio, and real poles are estimated consistently between the two techniques: LMn,ω =77.83, 

GAn,ω =77.30, LMp =4.36, GAp =4.39 [Hz], LMζ =0.203, GAζ =0.202. The identified natural 

frequency and damping ratio, however, are very different from their actual closed loop values 

of Actualn,ω =30 [Hz] and Actualζ =0.7. Furthermore, the damping estimate is very close to its 

minimum acceptable limit minζ =0.2. The identified zero locations are also close to the pole 

estimates LMz ,1 = −4.37, GAz ,1 = −4.39, LMz ,3,2
ω =89.76, GAz ,3,2

ω =88.65 [Hz], LMz ,3,2
 ζ =0.26, 

GAz ,3,2
ζ =0.26, thus emulating the effect of “cancelled dynamics” observed in the real system. 

In this example, the dominant closed loop poles were estimated at significantly different 

locations than their actual values, which resulted in the identified model to have marginal 

stability characteristics. The non-convergence of parameters was caused by the cancellation 

of closed loop dynamics with a feedforward filter, which resulted in a loss of identifiability. 

In other cases involving different control structures or identification signals, parameter 

convergence can also be hampered by the lack of excitation in smoothly interpolated motion 

commands. In either case there is no guarantee over the locations at which the closed loop 

poles will be estimated unless bounds are imposed, as done here, to ensure the stability of 

identified virtual drive models. 
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The prediction accuracies of the estimated models were verified in tracking and 

contouring experiments. The drive’s position measurements were obtained from the encoder 

mounted on the motor, which provided a resolution equivalent to 1.25 [um] of linear table 

motion. Due to the availability of only a single drive, the x and y axis trajectories were tested 

separately and the results were synchronized by overlapping the command trajectories. This 

enabled the equivalent contour error profiles to be estimated. It was seen that the identified 

models were quite successful in predicting the tracking quality of the actual drive, even 

during velocity reversals. Predictions obtained with the LM model were presented in 3.4.2 

and will not be repeated here. The GA identified model, being very close to the LM solution, 

displayed a similar performance. A sample result for contouring a 40 [mm] diameter circular 

toolpath at 200 [mm/sec] feed is shown in Figure 4.7. As can be seen, the GA identified 

model is reasonably successful in predicting the experimental tracking and contouring 

accuracy, in spite of the reported mismatch between the true and estimated parameters. This 

is due to the identified model displaying similar dynamic characteristics to the real drive 

system in the frequency range of the motion commands, as discussed earlier. 
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Figure 4.7. Predicted and experimentally verified contouring performance of ball screw 

drive. 
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4.3.3 Validation on a Machining Center 

In the third example, the practicality and effectiveness of the GA identification scheme is 

demonstrated with experimental results obtained on a commercial machine tool. A Deckel 

Maho 80P hi-dyn 5-axis machining center was used in the experiments [49]. The x and y axis 

dynamics were identified, which enabled a comparison between the actual and predicted 

contouring performance. The same identification procedure can also be applied for the z 

(vertical), A (tilt), and C (rotary) axes. The machining center is controlled with a Heidenhain 

TNC 430M controller which has a built-in oscilloscope feature that allows the commanded 

and measured axis position data to be captured during the machine’s operation [50]. The data 

capture window is 4096 samples over a period of 2.4576 [sec], corresponding to a sampling 

period of 0.6 [msec]. The feedback is obtained through linear encoders which provide a 

measurement resolution of 0.1 [um]. The experiments took only a couple of minutes to 

perform and no hardware or software modification was required to the machine. 

The identification was conducted by running two sets of G-code files; the first one which 

caused the machine’s drives to move at very slow speeds by commanding short travel 

distances up to 30 [um], and the second one which generated high speed movements by 

commanding relatively larger travel distances up to 10 [mm]. The maximum feedrate was set 

to 250 [mm/sec]. This allowed the drives’ response to be observed for a wide range of feeds 

that span the machine’s operating envelope, including very slow movements which are 

encountered during motion reversals. The G-codes used in identifying the x axis are shown in 

Table 4.3 and Table 4.4 Measurements collected from the two experiments were 

concatenated into a single data vector, which was processed by the Genetic Algorithm. The 

position and velocity profiles for the collected data from the x axis are shown in Figure 4.8. 

Identification of the y axis follows an identical procedure. The identified parameters are 

summarized in Table 4.5. As can be seen, the x and y axes have well matched natural 

frequency values ( xn,ω = yn,ω =13.14 [Hz]), which is essential for minimizing the contouring 
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errors during linear and circular tool movements. The damping ratios are reasonably close as 

well xζ =1.14, yζ =1.09. 

Estimation of the 3rd real pole at high frequencies ( xp =439.27, yp =612.75 [Hz]) 

indicates the dominance of 2nd order dynamics. 

The identified virtual drive models were validated in contouring experiments conducted 

on the same machine. Diamond and circular toolpaths were used, as shown in Figure 4.9 and 

Figure 4.10. The contouring experiments were conducted at a feedrate of 200 [mm/sec]. The 

command trajectory captured from the machine’s interpolator was passed through the virtual 

drive models to predict the tracking and contouring errors for the toolpaths. The virtual 

predictions have been overlaid on top of the experimental measurements in the figures. As 

Table 4.3. G-code used for generating low speed movements. 
0 BEGIN PGM RAPIDIDENT MM 
;Rapid Identification on TNC 430 5 axis machine 
1 BLK FORM 0.1 Z X-50.000 Y-50.000 Z-50.000 
2 BLK FORM 0.2 X+50.000 Y+50.000 Z+50.000 
3 TOOL CALL 0 Z 
4 L Z+200.000 F MAX 
5 L X+0.000 Y+0.000 R0 F MAX M3 
7 L X-0.000 F 15000.000   
8 L X+0.000 
9 L X-0.002 
10 L X-0.002 
11 L X-0.004 
12 L X-0.001 
13 L X-0.006 

 
14 L X-0.001 
15 L X-0.008 
16 L X+0.002 
17 L X-0.012 
... 

 
... 
... 
... 
... 
... 

 
... 
200 L +0.009 
201 L +0.007 
202 L X-.001 
203 L +0.012 

 
204 L X+0.028 
205 L X+0.000 
206 M30 
207 END PGM 
RAPIDIDENT MM 

 
Table 4.4. G-code used for generating high speed movements. 

0 BEGIN PGM RAPIDIDENT MM 
;Rapid Identification on TNC 430 5 axis machine 
1 BLK FORM 0.1 Z X-50.000 Y-50.000 Z-50.000 
2 BLK FORM 0.2 X+50.000 Y+50.000 Z+50.000 
3 TOOL CALL 0 Z 
4 L Z+200.000 F MAX 
5 L X+0.000 Y+0.000 R0 F MAX M3 
6 L Z+0.000 F MAX 
7 L X-9.375 F 15000.000 
8 L X+9.375 
9 L X-5.280 
10 L X-5.552 
11 L X+0.158 
12 L X+6.539 
13 L X-1.538 

 
14 L X+0.482 
15 L X+0.117 
16 L X-1.579 
17 L X+3.552 
... 

 
... 
... 
... 
... 
... 

 
... 
101 L X-.158 
102 L +5.552 
103 L +5.280 
104 L X-.375 

 
105 L X+9.375 
106 L X+0.000 
107 M30 
108 END PGM 
RAPIDIDENT MM 



Chapter 4. Constrained Parameter Estimation using a Genetic Algorithm 57 

 

can be seen, the drive models are quite successful in predicting the actual tracking and 

contouring errors during linear movements, circular arcs, as well as sharp corners, thus 

validating the effectiveness of the proposed GA identification technique. 
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Figure 4.8. Experimentally collected identification data from Heidenhain TNC 430 

controller. 
 

Table 4.5. Estimated virtual drive parameters for Deckel Maho 80P hi-dyn 
machining center. 

Search Variables X Axis Y Axis 
nω  [Hz] 13.14 13.14 

ζ  [ ] 1.14 1.09 
p  [Hz] 439.27 612.75 
Model Parameters X Axis Y Axis 
1a  2948.25 4030.00 

2a  526359.32 699755.18 

3a  18813165.66 26243010.58 

0b  0.83 0.82 

1b  -2027 -2540.3 

2b  289780 370630 

0d  4443.5 1801 

1d  832.84 -2711.6 
Zero Locations X Axis Y Axis 

1z  [Hz] 363.67 468.00 

2z  [Hz] 32.69 33.33 

3z  [Hz] -7.69 -8.27 
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4.4 Conclusions 

This chapter has presented a Genetic Algorithm (GA) for solving the constrained 

parameter identification problem. The problem formulation has been cast to exploit the GA’s 

inherent ability to constrain the search space, which ensures the stability of identified drive 

models. Evaluation of the cost function has been streamlined by separating all a priori 

calculations from the terms that are dependent on individual solution candidates. The 

proposed methodology can also be extended to handle more complex identification problems 
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Figure 4.9. Predicted and experimentally verified contouring performance of machining 

center for a diamond toolpath (feedrate: 200 [mm/sec]). 
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with a larger number of constrained variables. The practicality and effectiveness of the GA 

identification scheme has been verified in simulations and experiments conducted on virtual 

and real machine tools. It is shown that the GA can be used for estimating stable models of 

existing machine tool drives in a practical and efficient manner, it is easy to implement on 

different computing platforms, and drive models identified with the GA can be employed in 

predicting the contouring accuracy of real machine tools in a virtual process planning 

environment. 
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Figure 4.10. Predicted and experimentally verified contouring performance of machining 

center for a circular toolpath (feedrate: 200 [mm/sec]). 
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Chapter 5 

Conclusions 

This thesis has presented a rapid identification strategy for constructing virtual models of 

existing CNC drive systems with minimal intervention to the production machinery. The 

proposed technique consists of executing a short G-code experiment and collecting input and 

output data using the motion capture feature available on most CNC systems. The collected 

data is then processed with the intention of reverse engineering the equivalent tracking and 

disturbance transfer functions of the closed loop drive system, and also the effect of 

guideway Coulomb friction. It is shown that a virtual drive model constructed this way 

enables accurate prediction of the real machine’s contouring accuracy for large class of feed 

drive systems controlled with different control techniques. 

The excitation input is delivered through motion commands interpolated by the trajectory 

generator. Since the motion commands are smooth, they lack the persistence of excitation to 

allow all model parameters to be estimated accurately. Furthermore, if the real servo system 

contains pole-zero cancellations, which typically occur when feedforward control action is 

used, this also results in incorrect estimation of the closed loop dynamics. The non-

convergence problem brings the risk of identifying critically stable or even unstable virtual 

drive models, which have limited or no practical value. To address this issue, the rapid 

identification task has been cast as a constrained minimization problem in which frequency 

and damping ratio bounds are imposed on the closed loop pole locations. 

Two solution strategies have been developed. In the first approach, Lagrange Multipliers 

(LM) technique is used, which yields successful estimation results. However, implementation 

of LM is computationally intensive and requires the use of a dedicated symbolic solver for 

handling the constraint activation scenarios that need to be considered when the 
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unconstrained solution is computed to be infeasible. These factors significantly limit the 

portability and practicality of the LM technique for industrial implementation. 

In the second approach, a Genetic Algorithm (GA) search technique has been developed, 

which is a more practical but slightly approximate alternative. The GA’s ability to constrain 

the search space allows parameter bounds to be incorporated in a natural manner. The 

computation of the GA has been streamlined by decoupling all a priori calculations from the 

terms that need to be recomputed for each solution candidate. This results in 2-3 orders of 

magnitude reduction in the computational load, compared to using the objective function in 

its original form for evaluating the fitness of each candidate. It is shown that the GA 

converges within 2-3% vicinity of the LM solution in one-tenth of the computation time, and 

can be easily ported to different platforms for industrial implementation. 

Both LM and GA identification techniques have been validated in simulations and 

experiments conducted on virtual and real machine tool drives. It is shown that although the 

parameters estimated with the rapid identification scheme do not always match their true 

values, the key tracking and disturbance rejection characteristics of the drives are 

successfully captured in the frequency range of the CNC motion commands. Therefore, the 

drive models constructed with rapid identification can be used to predict the contouring 

accuracy of real machine tools in a virtual process planning environment.  

Due to the time limitation, the actual convergence of the system has not been studied and 

it should be investigated further, in order to determine the maximum number of iteration 

cycles for the genetic algorithm. Furthermore, the NC trajectories used in this thesis are 

based on trial and error, more tests should be conducted in order to obtain the most optimal 

trajectory. Finally, volumetric error modeling can be incorporated to achieve better 

prediction of the machine’s final contouring accuracy. 
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PID Result

X Axis

P = 0.07 -2943.87 4884.02 3.32 2895.29 -5040.32 -19.13 13.23

-2943.87 129192050.83 5217.94 -5974.88 -127038376.58 44541892.45 694583.52 -694548.72

4884.02 5217.94 104569710956.76 127038383.55 -44550970.54 -87613857788.65 2747.25 8547.00

3.32 -5974.88 127038383.55 515631.00 0.00 -125195411.85 3110.73 3620.41

2895.29 -127038376.58 -44550970.54 0.00 125195400.24 125.45 -686005.85 686343.74

-5040.32 44541892.45 -87613857788.65 -125195411.85 125.45 85689028883.82 776371.32 -719047.54

-19.13 694583.52 2747.25 3110.73 -686005.85 776371.32 11334.00 0.00

13.23 -694548.72 8547.00 3620.41 686343.74 -719047.54 0.00 10419.00

R
T

= 3.29 -0.60 129191932.30 518523.76 -5974.97 -127038271.30 3153.24 3580.59

A = 521456.90 6.57 -1733.08 257863340.00

6.57 0.28 -11766.35 17086.81

-1733.08 -11766.35 516027544.81 -3616974.58

257863340.00 17086.81 -3616974.58 373857684362.75

B = 1042913.81 13.16 -1734.29 516247204.61

Γ = 521465.16
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 213.42 213.04 212.82 212.54 213.04 213.68 213.83 212.90 212.72 213.64

a2 = 59913.85 59903.18 59907.42 59821.44 59799.41 60047.11 59941.51 59903.53 59871.84 59862.96

a3 = 658081.59 678264.79 634723.36 687813.17 681554.05 669815.31 685088.91 652840.15 651192.92 676122.73

b0 = -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34

b1 = 203.75 202.90 203.67 202.17 202.82 203.75 203.55 203.33 203.18 203.56

b2 = 59917.32 59906.85 59910.85 59825.21 59803.04 60050.69 59945.10 59907.06 59875.38 59866.48

d0 = 610.67 616.58 602.99 618.62 616.88 615.40 619.49 608.62 607.77 616.05

d1 = -284.95 -280.06 -289.78 -276.95 -278.53 -283.47 -279.32 -285.71 -285.72 -280.63

p1 [Hz] = 38.20 38.17 38.23 38.14 38.13 38.23 38.18 38.20 38.20 38.16

p1 zeta = 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

p2 [Hz] = 38.20 38.17 38.23 38.14 38.13 38.23 38.18 38.20 38.20 38.16

p2 zeta = 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

p3 [Hz] = 1.82 1.88 1.75 1.91 1.89 1.85 1.90 1.80 1.80 1.87

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 129.79 130.05 129.46 130.58 130.70 129.21 130.03 129.72 129.85 130.34

z1 zeta = -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

z2 [Hz] = 32.92 32.99 32.96 33.06 32.99 32.91 32.91 32.97 32.99 32.91

z2 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z3 [Hz] = 1.82 1.88 1.75 1.91 1.89 1.85 1.90 1.81 1.80 1.87

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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PID Result

Y Axis

A

P = 0.10 -3447.74 9463.67 23.64 3365.96 -9714.41 -21.90 16.27

-3447.74 130069619.39 5963.36 -10823.24 -127382858.57 54354573.69 696432.12 -696396.10

9463.67 5963.36 106863835287.21 127382865.83 -54364257.41 -87631279510.00 -23504.25 20451.75

23.64 -10823.24 127382865.83 515631.00 0.00 -125195411.85 3152.01 3578.37

3365.96 -127382858.57 -54364257.41 0.00 125195400.24 125.45 -685442.48 685858.06

-9714.41 54354573.69 -87631279510.00 -125195411.85 125.45 85689028883.82 819702.12 -741320.32

-21.90 696432.12 -23504.25 3152.01 -685442.48 819702.12 11323.00 0.00

16.27 -696396.10 20451.75 3578.37 685858.06 -741320.32 0.00 10439.00

R
T

= 23.60 -0.65 130069485.21 518992.09 -10823.33 -127382749.65 3235.11 3497.60

A = 522411.10 47.17 -2423.57 259272491.56

47.17 0.39 -13732.27 34346.01

-2423.57 -13732.27 519047603.91 -2847469.15

259272491.56 34346.01 -2847469.15 376204258511.42

B = 1044822.20 94.37 -2424.87 519411461.99

Γ = 522435.07
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 121.57 121.84 121.91 122.65 122.42 123.17 121.56 121.97 122.76 121.72

a2 = 39969.80 39846.50 40142.58 40086.61 40058.68 40059.37 40016.60 40012.55 40115.43 39934.88

a3 = 108746.02 141620.89 125602.84 145565.69 140617.89 141574.65 124697.04 137145.86 136197.90 140358.38

b0 = -0.08 -0.08 -0.09 -0.09 -0.08 -0.09 -0.08 -0.08 -0.09 -0.08

b1 = 122.62 122.07 122.55 122.80 122.69 123.43 122.21 122.32 123.16 121.98

b2 = 39960.67 39836.12 40132.88 40076.03 40048.31 40048.81 40006.94 40002.37 40105.17 39924.61

d0 = 460.25 472.27 469.40 477.27 474.78 475.62 467.30 472.55 473.88 472.76

d1 = -430.14 -424.67 -430.53 -427.76 -427.88 -428.17 -428.80 -427.46 -429.34 -425.91

p1 [Hz] = 31.69 31.60 31.74 31.69 31.69 31.68 31.69 31.67 31.71 31.64

p1 zeta = 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

p2 [Hz] = 31.69 31.60 31.74 31.69 31.69 31.68 31.69 31.67 31.71 31.64

p2 zeta = 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

p3 [Hz] = 0.44 0.57 0.50 0.58 0.56 0.57 0.50 0.55 0.55 0.57

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 276.44 289.85 266.53 271.96 273.47 272.81 275.22 276.69 268.79 283.04

z1 zeta = -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

z2 [Hz] = 43.29 43.55 43.16 43.10 43.17 42.93 43.37 43.33 42.98 43.50

z2 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z3 [Hz] = 0.44 0.57 0.50 0.58 0.56 0.57 0.50 0.55 0.55 0.57

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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P-PI Result

X Axis

P = 470.09 -4071.20 2870766.34 14192.22 -91039.96 -2890937.30 57.32 169.14

-4071.20 86720098.35 336557.31 -2871335.33 -85519746.33 1244415212.90 587514.04 -588333.94

2870766.34 336557.31 39539797957.15 85519810.22 -1244492060.95 -35770419680.63 12515.25 17704.50

14192.22 -2871335.33 85519810.22 515631.00 0.00 -125195411.85 -16912.78 23769.26

-91039.96 -85519746.33 -1244492060.95 0.00 125195400.24 125.45 -574922.75 574271.46

-2890937.30 1244415212.90 -35770419680.63 -125195411.85 125.45 85689028883.82 7494600.14 -7494805.89

57.32 587514.04 12515.25 -16912.78 -574922.75 7494600.14 11411.00 0.00

169.14 -588333.94 17704.50 23769.26 574271.46 -7494805.89 0.00 10469.00

R
T

= 14144.32 -336.04 86741367.80 423145.38 -2871333.32 -85522171.59 2582.35 4249.24

A = 420321.47 27934.08 -336968.54 184852741.97

27934.08 1863.02 -32726.88 12039171.10

-336968.54 -32726.88 331261744.49 529475198.27

184852741.97 12039171.10 529475198.27 135678452754.28

B = 840642.93 56222.72 -337640.62 358335477.57

Γ = 425759.61
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 2929.18 2712.31 2701.78 2404.89 2612.99 3209.30 2706.45 2711.81 2822.79 2564.27

a2 = 850140.42 788900.46 759604.52 705031.17 736974.73 929338.15 783826.63 785805.65 815595.43 748602.00

a3 = 23331825.09 21658797.19 20778800.53 19376364.04 20159946.08 25493241.90 21509954.91 21560995.56 22368683.97 20563535.84

b0 = 1.17 1.09 0.99 0.99 0.99 1.30 1.07 1.11 1.16 1.03

b1 = -457.60 -422.38 -404.20 -374.69 -393.00 -504.63 -418.79 -422.59 -440.31 -398.81

b2 = 72427.97 66954.45 66990.37 59162.32 64987.22 79573.68 66844.77 67111.14 69976.04 63165.58

d0 = 7904.28 7332.26 6480.63 6564.67 6855.57 8684.10 7265.97 7356.78 7650.53 6945.79

d1 = -5793.03 -5371.80 -6167.68 -4809.69 -5031.68 -6377.88 -5319.21 -5405.13 -5626.12 -5083.99

p1 [Hz] = 414.83 379.65 379.94 329.23 365.39 460.10 378.96 379.79 397.91 355.42

p1 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p2 [Hz] = 46.49 47.15 45.18 48.65 45.60 45.80 46.91 46.93 46.47 47.82

p2 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p3 [Hz] = 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 59.18 59.10 60.87 58.58 60.19 58.85 59.51 58.58 58.52 59.09

z1 zeta = -0.72 -0.72 -0.72 -0.71 -0.72 -0.72 -0.72 -0.71 -0.71 -0.71

z2 [Hz] = 59.18 59.10 60.87 58.58 60.19 58.85 59.51 58.58 58.52 59.09

z2 zeta = -0.72 -0.72 -0.72 -0.71 -0.72 -0.72 -0.72 -0.71 -0.71 -0.71

z3 [Hz] = 22.86 22.92 22.78 23.01 22.72 22.75 22.93 22.81 22.74 22.99

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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P-PI Result

Y Axis

A

P = 470.19 -4111.67 2871445.60 14194.53 -91026.85 -2891623.62 56.45 169.77

-4111.67 86737552.74 336557.31 -2872022.28 -85521047.94 1244786004.30 587578.14 -588398.65

2871445.60 336557.31 39498613482.35 85521111.83 -1244862852.35 -35752401389.19 9157.50 19536.00

14194.53 -2872022.28 85521111.83 515631.00 0.00 -125195411.85 -16944.71 23770.86

-91026.85 -85521047.94 -1244862852.35 0.00 125195400.24 125.45 -574245.18 574187.70

-2891623.62 1244786004.30 -35752401389.19 -125195411.85 125.45 85689028883.82 7513729.53 -7494801.99

56.45 587578.14 9157.50 -16944.71 -574245.18 7513729.53 11414.00 0.00

169.77 -588398.65 19536.00 23770.86 574187.70 -7494801.99 0.00 10477.00

R
T

= 14146.61 -336.53 86758837.85 423158.15 -2872020.26 -85523474.41 2552.46 4247.27

A = 420378.85 27939.09 -336827.69 184906495.50

27939.09 1863.44 -32875.61 12042568.40

-336827.69 -32875.61 331331882.55 530544222.16

184906495.50 12042568.40 530544222.16 135605585879.44

B = 840757.69 56232.31 -337500.75 358424171.20

Γ = 425812.46
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 2978.66 3148.44 2601.89 3164.07 3058.17 2714.60 2628.40 3524.97 2648.60 2763.19

a2 = 859306.79 886908.54 760283.07 892518.75 853168.10 777013.34 753886.31 1006658.79 742619.21 791177.89

a3 = 23574778.15 24255172.27 20886320.94 24415910.58 23307185.67 21300652.15 20671422.26 27578184.45 20308056.49 21688001.70

b0 = 1.17 1.22 1.05 1.20 1.15 1.04 1.02 1.36 0.97 1.07

b1 = -461.62 -481.12 -405.44 -482.33 -460.85 -414.06 -401.50 -546.51 -394.46 -422.90

b2 = 73494.09 78400.98 64087.75 78661.87 76263.40 67004.92 64848.79 87400.24 65696.24 68255.02

d0 = 7347.17 7680.82 7052.70 7674.78 7364.81 6629.09 6449.82 8622.69 6334.34 6770.33

d1 = -6991.16 -7315.86 -5161.75 -7307.58 -7014.61 -6307.37 -6137.24 -8207.91 -6028.51 -6442.77

p1 [Hz] = 423.16 451.85 361.47 454.29 437.86 380.97 366.89 511.60 371.50 388.81

p1 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p2 [Hz] = 46.03 44.36 47.75 44.41 43.99 46.19 46.55 44.54 45.16 46.09

p2 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p3 [Hz] = 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 59.67 59.52 59.09 60.10 60.19 60.13 59.78 59.99 61.00 59.86

z1 zeta = -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72

z2 [Hz] = 59.67 59.52 59.09 60.10 60.19 60.13 59.78 59.99 61.00 59.86

z2 zeta = -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72

z3 [Hz] = 22.88 22.55 22.99 22.64 22.54 22.90 22.90 22.72 22.77 22.86

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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SMC Result

X Axis

P = 0.00 -117.97 364.71 1.51 117.71 -368.27 -1.12 0.59

-117.97 125308741.73 2981.68 -395.10 -125248516.57 -541727.78 688575.59 -688579.25

364.71 2981.68 89501877010.05 125248525.00 538027.84 -86592829873.57 -22588.50 25335.75

1.51 -395.10 125248525.00 515631.00 0.00 -125195411.85 2828.33 3933.74

117.71 -125248516.57 538027.84 0.00 125195400.24 125.45 -688486.44 688519.97

-368.27 -541727.78 -86592829873.57 -125195411.85 125.45 85689028883.82 157140.20 -145273.66

-1.12 688575.59 -22588.50 2828.33 -688486.44 157140.20 11522.00 0.00

0.59 -688579.25 25335.75 3933.74 688519.97 -145273.66 0.00 10327.00

R
T

= 1.51 0.00 125308749.18 515748.52 -395.10 -125248525.02 2841.36 3920.73

A = 515866.16 3.02 -2.21 250605803.85

3.02 0.00 -471.18 1423.66

-2.21 -471.18 501213818.66 -7392.41

250605803.85 1423.66 -7392.41 352065377427.18

B = 1031732.32 6.05 -2.21 501223302.21

Γ = 515866.31
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 563.15 562.88 566.27 565.16 566.77 557.07 565.39 565.66 567.23 554.92

a2 = 370078.01 369425.59 370273.55 369708.69 370307.33 369741.98 369332.67 370403.09 370735.66 366241.68

a3 = 15304659.73 15221615.16 15306266.62 15218798.31 15310818.53 15243434.15 15188121.80 15342178.68 15333310.44 15144283.54

b0 = 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

b1 = 571.04 570.76 574.16 573.06 574.66 564.96 573.28 573.54 575.13 562.72

b2 = 370082.44 369430.21 370278.02 369713.36 370311.79 369746.54 369337.39 370407.45 370740.11 366246.10

d0 = 2363.07 2354.40 2363.99 2355.19 2364.49 2356.77 2351.59 2367.22 2367.64 2337.89

d1 = -1856.36 -1851.08 -1857.34 -1852.14 -1857.66 -1852.55 -1849.73 -1859.03 -1860.01 -1836.48

p1 [Hz] = 93.78 93.70 93.79 93.73 93.79 93.78 93.68 93.80 93.84 93.31

p1 zeta = 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

p2 [Hz] = 93.78 93.70 93.79 93.73 93.79 93.78 93.68 93.80 93.84 93.31

p2 zeta = 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

p3 [Hz] = 7.02 6.99 7.02 6.98 7.02 6.99 6.98 7.03 7.02 7.01

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 101.65 101.55 101.66 101.58 101.66 101.65 101.52 101.68 101.73 101.04

z1 zeta = 0.49 0.49 0.49 0.49 0.50 0.49 0.49 0.49 0.50 0.49

z2 [Hz] = 101.65 101.55 101.66 101.58 101.66 101.65 101.52 101.68 101.73 101.04

z2 zeta = 0.49 0.49 0.49 0.49 0.50 0.49 0.49 0.49 0.50 0.49

z3 [Hz] = 7.03 7.00 7.03 7.00 7.03 7.00 6.99 7.04 7.03 7.03

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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SMC Result

Y Axis

A

P = 0.00 -81.79 260.09 1.07 81.67 -262.84 -0.65 0.54

-81.79 125274029.74 4286.17 -281.27 -125231986.86 -500602.46 688617.11 -688620.77

260.09 4286.17 89430596188.28 125231996.50 495692.86 -86537664103.28 -43956.00 36324.75

1.07 -281.27 125231996.50 515631.00 0.00 -125195411.85 2673.09 4056.03

81.67 -125231986.86 495692.86 0.00 125195400.24 125.45 -688466.71 688502.47

-262.84 -500602.46 -86537664103.28 -125195411.85 125.45 85689028883.82 186183.12 -168015.78

-0.65 688617.11 -43956.00 2673.09 -688466.71 186183.12 11522.00 0.00

0.54 -688620.77 36324.75 4056.03 688502.47 -168015.78 0.00 10322.00

R
T

= 1.07 0.00 125274038.68 515712.54 -281.27 -125231995.31 2682.03 4047.09

A = 515794.13 2.14 -0.21 250538937.71

2.14 0.00 -326.87 1014.79

-0.21 -326.87 501079809.17 27059.46

250538937.71 1014.79 27059.46 351662868848.43

B = 1031588.26 4.27 -0.22 501087015.07

Γ = 515794.20
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 442.30 443.25 436.91 447.82 443.85 445.83 442.77 441.21 448.34 439.90

a2 = 480536.47 484304.21 478035.86 484129.76 485913.06 481396.94 480154.88 481773.67 483551.01 482670.90

a3 = 22720934.07 22894600.41 22540962.86 22924951.87 22869843.60 22793081.37 22629030.48 22704767.25 22905249.08 22815922.91

b0 = 0.87 0.87 0.88 0.87 0.87 0.87 0.87 0.87 0.87 0.87

b1 = 448.52 449.52 443.11 454.09 450.17 452.06 449.00 447.46 454.60 446.15

b2 = 480540.39 484308.13 478039.89 484133.62 485917.18 481400.81 480158.95 481777.73 483554.86 482674.82

d0 = 2003.31 2019.10 1989.85 2020.17 2021.40 2008.43 1998.38 2005.18 2018.07 2012.05

d1 = -1997.31 -2013.08 -1984.27 -2013.92 -2016.05 -2002.23 -1992.90 -1999.67 -2011.78 -2006.04

p1 [Hz] = 108.08 108.52 107.83 108.47 108.71 108.16 108.04 108.24 108.39 108.35

p1 zeta = 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

p2 [Hz] = 108.08 108.52 107.83 108.47 108.71 108.16 108.04 108.24 108.39 108.35

p2 zeta = 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

p3 [Hz] = 7.84 7.84 7.82 7.86 7.80 7.85 7.82 7.81 7.86 7.84

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 115.50 116.04 115.18 115.98 116.28 115.60 115.45 115.69 115.89 115.83

z1 zeta = 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

z2 [Hz] = 115.50 116.04 115.18 115.98 116.28 115.60 115.45 115.69 115.89 115.83

z2 zeta = 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

z3 [Hz] = 7.85 7.85 7.83 7.87 7.81 7.87 7.83 7.82 7.87 7.85

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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ZPETC Result

X Axis & Y Axis

P = 0.00 -118.56 -1528.07 -19.66 118.01 1520.83 -2.04 1.30

-118.56 68626328.38 1953.18 1512.75 -68596051.33 -163841.70 688761.89 -688766.26

-1528.07 1953.18 17779812744.34 68596059.75 160130.98 -14237423606.37 -312.51 -1875.04

-19.66 1512.75 68596059.75 936273.62 0.01 -68580241.80 5973.05 6436.56

118.01 -68596051.33 160130.98 0.01 68580233.74 1762.09 -688590.80 688601.35

1520.83 -163841.70 -14237423606.37 -68580241.80 1762.09 14239627660.71 17928.25 -11003.66

-2.04 688761.89 -312.51 5973.05 -688590.80 17928.25 21071.00 0.00

1.30 -688766.26 -1875.04 6436.56 688601.35 -11003.66 0.00 18877.00

R
T

= -19.66 -0.01 68626336.58 936392.39 1512.76 -68596059.18 5970.43 6439.29

A = 936511.26 -39.33 -0.17 137223898.45

-39.33 0.00 -472.76 -6098.70

-0.17 -472.76 274461954.36 7866.57

137223898.45 -6098.70 7866.57 60485755382.95

B = 1873022.52 -78.65 -0.18 274476571.62

Γ = 936511.72
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 223.83 222.09 223.54 222.08 225.16 224.29 219.71 217.25 220.75 222.27

a2 = 244080.43 243437.35 244569.07 242804.79 243886.93 244059.06 243124.83 243689.80 242957.87 243084.85

a3 = 6519729.61 6474942.92 6514641.21 6469218.71 6501997.31 6537475.37 6460137.65 6356067.32 6403613.72 6438261.09

b0 = 0.75 0.75 0.75 0.76 0.75 0.75 0.76 0.76 0.76 0.76

b1 = 238.37 236.60 238.12 236.56 239.70 238.83 234.21 231.80 235.24 236.77

b2 = 244230.16 243586.13 244718.74 242953.41 244036.29 244209.15 243273.29 243836.20 243105.18 243232.86

d0 = 1030.65 1025.55 1031.15 1023.83 1028.74 1032.14 1023.67 1015.79 1018.47 1021.70

d1 = -994.32 -989.74 -995.03 -987.95 -992.64 -995.53 -988.01 -981.90 -983.65 -986.37

p1 [Hz] = 77.76 77.67 77.84 77.56 77.72 77.75 77.63 77.74 77.60 77.61

p1 zeta = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

p2 [Hz] = 77.76 77.67 77.84 77.56 77.72 77.75 77.63 77.74 77.60 77.61

p2 zeta = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

p3 [Hz] = 4.35 4.33 4.33 4.34 4.34 4.36 4.32 4.24 4.29 4.31

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 89.47 89.31 89.58 89.15 89.41 89.47 89.24 89.34 89.17 89.21

z1 zeta = 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.26

z2 [Hz] = 89.47 89.31 89.58 89.15 89.41 89.47 89.24 89.34 89.17 89.21

z2 zeta = 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.26

z3 [Hz] = 4.35 4.34 4.34 4.34 4.35 4.37 4.33 4.25 4.29 4.32

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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DMG Test Case

X Axis

P = 13.61 -559.81 97838.56 1078.50 -674.93 -97921.56 -24.32 -21.60

-559.81 7804138.00 26759.26 -97900.30 -7703285.94 18728888.89 69932.83 -70140.50

97838.56 26759.26 4285841049.38 7701547.22 -18757222.22 -3773640046.30 2569.44 -6458.33

1078.50 -97900.30 7701547.22 85860.82 28.24 -7841693.60 -2367.51 -1203.34

-674.93 -7703285.94 -18757222.22 28.24 7842614.10 7500.00 -68558.17 68763.42

-97921.56 18728888.89 -3773640046.30 -7841693.60 7500.00 4620891203.70 131875.00 -128472.22

-24.32 69932.83 2569.44 -2367.51 -68558.17 131875.00 3070.00 0.00

-21.60 -70140.50 -6458.33 -1203.34 68763.42 -128472.22 0.00 3734.00

R
T

= 1078.13 -12.87 7802964.06 85155.97 -97862.16 -7702664.44 -1489.14 -2084.26

A = 85680.48 2156.18 -1449.60 15625692.09

2156.18 54.42 -2253.42 391511.11

-1449.60 -2253.42 30923560.66 5566719.92

15625692.09 391511.11 5566719.92 13742276547.57

B = 171360.95 4312.44 -1475.34 31231620.20

Γ = 85686.06
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 2950.11 2935.88 3000.83 2948.34 2954.44 2940.28 2955.44 2955.70 2826.85 2960.94

a2 = 527085.54 525284.51 535812.19 527256.56 526615.78 523626.18 528361.84 528457.66 503377.86 528545.90

a3 = 18790850.41 18871992.20 19152858.80 18874094.34 18664746.89 18537748.45 18916647.44 18951127.44 17823895.98 18839665.28

b0 = 0.84 0.83 0.83 0.83 0.84 0.83 0.83 0.83 0.83 0.83

b1 = -2029.44 -2013.98 -2056.88 -2026.09 -2030.33 -2018.06 -2029.20 -2027.15 -1939.40 -2032.78

b2 = 290211.06 287388.91 294378.29 289333.20 291333.10 289945.91 289903.05 289565.18 278695.82 291058.44

d0 = 4432.02 4441.98 4512.93 4446.92 4408.03 4378.82 4456.42 4462.39 4210.40 4442.91

d1 = 826.64 839.38 850.08 834.63 818.48 813.72 837.90 842.11 781.92 831.59

p1 [Hz] = 439.54 437.23 447.66 439.23 440.31 438.07 440.37 440.41 419.95 441.30

p1 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p2 [Hz] = 22.23 22.19 22.14 22.21 22.21 22.20 22.20 22.18 22.27 22.19

p2 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p3 [Hz] = 7.75 7.84 7.79 7.80 7.69 7.68 7.80 7.82 7.68 7.76

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 360.56 362.22 370.85 361.73 361.65 361.05 363.50 364.79 347.18 363.93

z1 zeta = -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

z2 [Hz] = 32.70 32.73 32.69 32.71 32.72 32.75 32.71 32.72 32.85 32.72

z2 zeta = -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

z3 [Hz] = 7.67 7.75 7.70 7.71 7.61 7.60 7.72 7.73 7.60 7.67

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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DMG Test Case

Y Axis

A

P = 13.62 -571.93 97978.46 1079.15 -666.56 -98073.92 -23.91 -20.83

-571.93 7801379.62 260092.59 -98014.91 -7701580.69 18618258.10 69913.50 -69791.25

97978.46 260092.59 4294762731.48 7699445.90 -18893072.92 -3776089891.98 -1041.67 -25208.33

1079.15 -98014.91 7699445.90 85860.10 4.36 -7840347.22 -2365.63 -1195.25

-666.56 -7701580.69 -18893072.92 4.36 7841475.56 72592.59 -68629.67 68676.83

-98073.92 18618258.10 -3776089891.98 -7840347.22 72592.59 4608371913.58 135486.11 -119097.22

-23.91 69913.50 -1041.67 -2365.63 -68629.67 135486.11 3092.00 0.00

-20.83 -69791.25 -25208.33 -1195.25 68676.83 -119097.22 0.00 3607.00

R
T

= 1078.78 -8.90 7804371.01 85164.14 -98027.11 -7703165.13 -1486.08 -2074.31

A = 85701.06 2157.49 -1444.03 15627391.94

2157.49 54.48 -2300.13 391991.89

-1444.03 -2300.13 30913032.10 6260242.17

15627391.94 391991.89 6260242.17 13785770661.54

B = 171402.12 4315.04 -1461.83 31236133.95

Γ = 85706.64
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CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10

a1 = 4023.51 3964.03 4004.31 3926.62 4022.65 4000.84 3921.56 3859.27 3909.74 3936.78

a2 = 698963.09 688630.48 693679.16 681890.21 698577.95 693794.78 681298.95 669456.58 678941.92 683774.53

a3 = 25998712.54 25641533.20 25651291.00 25441918.25 25947315.82 25682465.44 25373127.34 24825331.70 25247096.69 25493432.57

b0 = 0.81 0.81 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.80

b1 = -2534.65 -2494.82 -2517.44 -2464.65 -2535.10 -2519.58 -2468.10 -2428.55 -2461.12 -2473.74

b2 = 371117.16 365289.16 370219.98 361068.71 371380.27 369939.46 361341.95 356409.26 360574.59 362302.29

d0 = 1791.01 1764.90 1773.70 1747.71 1789.44 1775.24 1746.34 1714.01 1739.65 1752.57

d1 = -2688.47 -2649.65 -2652.89 -2623.49 -2684.75 -2658.43 -2622.10 -2568.29 -2610.40 -2631.04

p1 [Hz] = 611.70 602.22 608.72 596.26 611.57 608.14 595.44 585.55 593.57 597.88

p1 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p2 [Hz] = 20.17 20.17 20.16 20.14 20.18 20.18 20.18 20.21 20.19 20.15

p2 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p3 [Hz] = 8.50 8.51 8.43 8.54 8.48 8.44 8.51 8.46 8.49 8.53

p3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

z1 [Hz] = 471.75 466.15 473.81 466.22 471.06 470.07 460.95 453.99 459.32 465.56

z1 zeta = -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

z2 [Hz] = 33.33 33.37 33.37 33.41 33.33 33.36 33.39 33.43 33.40 33.40

z2 zeta = -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

z3 [Hz] = 8.21 8.22 8.15 8.25 8.19 8.16 8.22 8.18 8.21 8.24

z3 zeta = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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