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Abstract

Employment of the multiple-antenna transmitters/receivers in communication systems

is known as a promising solution to provide high-data-rate wireless links. In the multi-

user environments, the problems of signaling and fairness for multi-antenna systems

have emerged as challenging problems. This dissertation deals with these problems in

several multi-antenna multi-user scenarios.

In part one, a simple signaling method for the multi-antenna broadcast channels

is proposed. This method reduces the MIMO broadcast system to a set of parallel

channels. The proposed scheme has several desirable features in terms of: (i) accom-

modating users with different number of receive antennas, (ii) exploiting multi-user

diversity, and (iii) requiring low feedback rate. The simulation results and analyti-

cal evaluations indicate that the achieved sum-rate is close to the sum-capacity of the

underlying broadcast channel.

In part two, for multiple-antenna systems with two transmitters and two receivers,

a new non-cooperative scenario of data communication is studied in which each re-

ceiver receives data from both transmitters. For such a scenario, a signaling scheme

is proposed which decomposes the system into two broadcast or two multi-access sub-

channels. Using the decomposition scheme, it is shown that this signaling scenario

outperforms the other known non-cooperative schemes in terms of the achievable mul-

tiplexing gain. In particular for some special cases, the achieved multiplexing gain is
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the same as the multiplexing gain of the system, where the full cooperation is provided

between the transmitters and/or between the receivers.

Part three investigates the problem of fairness for a class of systems for which a sub-

set of the capacity region, which includes the sum-capacity facets, forms a polymatroid

structure. The main purpose is to find a point on the sum-capacity facet which satisfies

a notion of fairness among active users. This problem is addressed in the cases where

the complexity of achieving interior points is not feasible, and where the complexity of

achieving interior points is feasible.

In part four, K-user memoryless interference channels are considered; where each

receiver sequentially decodes the data of a subset of transmitters before it decodes the

data of the designated transmitter. A greedy algorithm is developed to find the users

which are decoded at each receiver and the corresponding decoding order such that the

minimum rate of the users is maximized. It is proven that the proposed algorithm is

optimal.

The results of the parts three and four are presented for general channels which

include the multiple-antenna systems as special cases.
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Chapter 1

Introduction

In the recent years, the expectation for multimedia services in wireless systems and the

demand for connectivity have exponentially been increasing. This, in turn, puts pres-

sure on the valuable resource of frequency spectrum, and necessitates the development

of spectrally efficient signaling schemes. On the other hand, the explosive improve-

ment in VLSI technology provides the possibility of implementing more sophisticated

algorithms in low-power high-speed electronic processors with a reasonable cost.

The most effective scheme to increase the spectral efficiency is the scheme known

as frequency reuse. In this scheme, several links communicate at the same time and

at the same frequency through a shared channel. As a result, the overall data rate in

a bandwidth would increases. The main source of impairment in this scheme is the

interference of the users over each other, which is called the co-channel interference.

The most challenging part of the signaling design based on the frequency reuse scheme
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Introduction 2

is to mange and mitigate the destructive effects of the co-channel interference. This is

essential to attain the overall throughput promised in the multi-user information theory.

On the other hand, in such systems, there is an inherent competition among the users

to exploit the resources of the shared medium. In the presence of this competition,

proving fairness among the users, while achieving a high spectral efficiency, emerges as

a challenging part of signaling design.

A well-known method to cope with the co-channel interference is to impose con-

straint on the geographic distances among the concurrent links and to control the power

of the transmitters [20,60]. While this method is widely utilized in the current cellular

systems, it is not suitable for the dense networks.

Another scheme to reduce the effect of interference is to provide cooperation among

the transmitters and/or among the receivers. The most famous structure, resulted

from full cooperation, is the multiple-input multiple-output (MIMO) systems. In these

systems, each transmitter and/or receiver is equipped with several antennas. In other

words, each transmitter (receiver) is formed by the several fully-cooperated transmit

(receive) units. By taking advantage of the cooperation among the transmit units,

the interference of the data streams sent by the transmit units over each other can

be completely canceled-out by using some pre-processing operations. Similarly, the

interference of the data streams received by receive units (antennas) can be canceled out.

It is shown that in point to point multiple-antenna system, the capacity of the system

linearly increase with the minimum number of transmit and receive antennas [58]. In



Introduction 3

fact, by using multiple antennas at both sides of communication links, the additional

dimension of space is integrated to the available dimensions of time and frequency [57,

58]. Such an extra dimension would be helpful to mitigate the co-channel interference

in the MIMO multi-user systems.

Using multiple-antenna systems changes the transmit and receive signals from the

scaler quantities to the vector quantities. In the new space, a lot of results, proven for

the scalar systems, are no longer valid. This includes the problems of optimal signaling

and fairness.

This thesis deals with the problems of signaling and fairness in some MIMO multi-

user systems. However, the results on fairness are presented in general forms which

include the MIMO systems as special cases.

The organization of this thesis is as follows. The rest of this chapter is devoted

to a brief summary of the materials presented in the following chapters. In chapter

two, an efficient signaling scheme over MIMO broadcast channels is proposed and its

performance is analyzed. In chapter three, for a multiple-antenna system with two

transmitters and two receivers, a new scenario of signaling, X channel, is proposed and

its performance is evaluated. In chapter four, we investigate the problem of fairness for

a wide class of multiuser systems for which the whole or a major subset of the capacity

region (which include the sum-capacity facet) forms a structure known as Polymtroid.

This includes the MIMO broadcast channels and the multi-access channels as special

cases. In chapter five, the problem of fairness for general memoryless interference chan-
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nels is investigated.

Summary of the Dissertation

Chapter two presents a simple signaling method for broadcast channels with multiple

transmit multiple receive antennas. This method reduces the MIMO broadcast system

to a set of parallel channels. The proposed scheme has several desirable features in terms

of: (i) accommodating users with different number of receive antennas, (ii) exploiting

multi-user diversity, and (iii) requiring low feedback rate. To analyze the performance

of the scheme, an upper-bound on the outage probability of each sub-channel is derived

which is used to establish the diversity order and the asymptotic sum-rate of the scheme.

It is shown that the diversity order of the jth data stream, 1 ≤ j ≤ M , is equal to

N(M−j+1)(K−j+1), where M , N , and K indicate the number of transmit antennas,

the number of receive antennas, and the number of users, respectively. Furthermore, it

is proven that the throughput of this scheme scales as M log log(K) and asymptotically

(K −→∞) tends to the sum-capacity of the MIMO broadcast channel. The simulation

results indicate that the achieved sum-rate is close to the sum-capacity of the underlying

broadcast channel.

Chapter three investigates a new scenario of data communication for multiple-

antenna systems with two transmitters and two receivers in which each receiver receives

data from both transmitters (X-Channels). In this scenario, it is assumed that each

transmitter is unaware of the other transmitter’s data (non-cooperative scenario). In
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this chapter, two signaling schemes are proposed for X channels which are based on us-

ing some linear filters at the transmitters and the receivers. The filters are designed such

that the system is decomposed into either two non-interfering multi-antenna broadcast

sub-channels or two non-interfering multi-antenna multi-access sub-channels. In addi-

tion, the null spaces of the channels are exploited to achieve the highest multiplexing

gain in the system. By using the decomposition schemes, the multiplexing gain (MG)

of this scenario is derived, which shows improvement as compared with the other known

non-cooperative schemes. In particular, it is shown that for some specific cases, the

achieved MG is the same as the MG of the system if full cooperation is provided either

between the transmitters or between the receivers.

Chapter four studies the problem of fairness in a wide class of multi-user systems

for which a subset of capacity region, including the corner points and the sum-capacity

facet, has a special structure known as polymatroid. Multiaccess channels with fixed

input distributions and multiple-antenna broadcast channels are examples of such sys-

tems. Any interior point of the sum-capacity facet can be achieved by time-sharing

among corner points or by an alternative method known as rate-splitting. The main

purpose of this part is to find a point on the sum-capacity facet which satisfies a notion

of fairness among active users. This problem is addressed in two cases: (i) where the

complexity of achieving interior points is not feasible, and (ii) where the complexity

of achieving interior points is feasible. For the first case, the corner point for which

the minimum rate of the active users is maximized (max-min corner point) is desired
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for signaling. A simple greedy algorithm is introduced to find the optimum max-min

corner point. For the second case, the polymatroid properties are exploited to locate

a rate-vector on the sum-capacity facet which is optimally fair in the sense that the

minimum rate among all users is maximized (max-min rate). In the case that the

rate of some users can not increase further (attain the max-min value), the algorithm

recursively maximizes the minimum rate among the rest of the users.

Chapter five considers K-user memoryless interference channels, where each receiver

sequentially decodes the data of a subset of transmitters before it decodes the data of

the designated transmitter. Therefore, the data rate of each transmitter depends on

(i) the subset of receivers which decode the data of that transmitter, (ii) the decoding

order, employed at each of these receivers. In this chapter, a greedy algorithm is

developed to find the users which are decoded at each receiver and the corresponding

decoding order such that the minimum rate of the users is maximized. It is proven that

the proposed algorithm is optimal.

Chapter 6 presents a summary of the thesis contributions and discusses several

future research directions.



Chapter 2

Signaling Over MIMO Broadcast

Channels

2.1 Introduction

Multiple input multiple output (MIMO) systems have received considerable attention

as a promising solution to provide reliable and high data rate communication [17, 57,

58]. More recently, the work on MIMO systems has been extended to MIMO multi-

user channels [63, 64, 66, 71]. In [63, 64], a duality between the broadcast channel and

the multiple access channel is introduced. This duality is applied to characterize the

sum-capacity of the broadcast channel as a convex optimization problem. In [71], a

reformulation of the sum-capacity as a min-max optimization problem is introduced

and a signaling method which achieves the sum-capacity is presented. It is shown

7



Signaling over MIMO Broadcast Channels 8

that in an optimal signaling (maximizing the sum-rate), the power is allocated to, at

most, M2 uses (active users), where M is the number of transmit antennas [72]. In

practical systems, the number of users is large. In this case, finding the set of active

users by solving the optimization problem is a complex operation. In addition, to

perform such a computation, all the channel state information is required at the base

station which necessitates a high data rate feedback link. The duality and signaling

method introduced in [63, 64, 71] are based on a result, known as dirty paper coding,

on cancelling known interference at the transmitter [7]. Dirty paper coding states

that in an AWGN channel with interference, if the transmitter non-causally knows the

interference, the capacity of the channel is the same as the capacity of the channel

without interference. A method for approximate implementation of the dirty paper

coding is presented in [12,13].

A number of research works have focused on practical methods for signaling over

MIMO broadcast channels. In [65], a simple method that supports one user at a given

time is presented. This method exploits a special kind of diversity, multiuser diversity,

which is available in the multiuser system with independent channels [34]. To exploit

multiuser diversity, the transmission resources are allocated to the user(s) which result

in the highest throughput for the given channel condition. Unlike [65], the signaling

method presented in other related works support multiple users at a given time. In [43],

a variation of channel inversion method is used, where the inverse of the channel matrix

is regularized and the data is perturbed to reduce the energy of the transmitted signal.
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However, in this method, the pre-coding matrix depends on the data, and therefore,

the method is computationally extensive.

In addition, no method for selecting active users is suggested. In [3], a signaling

method based on the QR decomposition and dirty paper coding is introduced. The QR

decomposition converts the channel matrix, and consequently the interference matrix1,

to a lower triangular form. Dirty paper coding eliminates the remaining interference.

By modifying the QR decomposition, a greedy method for selecting active users which

exploits multiuser diversity is presented in [61]. References [3, 43, 61] present methods

to support M simultaneous users, each with one receive antenna.

When there is more than one antenna at the receiver, a generalized version of the

zero forcing method is utilized in [6, 56]. However, the methods of [6, 56] are highly

restrictive in the sense that the number of transmit antennas must be greater than

the total number of the receive antennas. In addition, similar to the conventional zero

forcing, the method presented in [6, 56] degrades the signal-to-noise-ratio (SNR).

In this chapter, an efficient sub-optimum method for selecting the set of active users

and signaling over such users is proposed. This method converts the interference matrix

– but not necessarily the channel matrix – to a lower-triangular form. This is in contrast

to the earlier method proposed in [3, 61] which uses QR decomposition to triangularis

the channel matrix. In the proposed method, first, the direction in which each user has

the maximum gain is determined. The base station selects the best user in terms of the

1The entry (p, q) of the interference matrix denotes the interference of user p over user q
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largest maximum gain, where the corresponding direction is used as the modulation

vector (MV) for that user. The algorithm proceeds in a recursive manner where in each

step, the search for the best direction is performed in the null space of the previously

selected MVs. Finally, the transmitted signal is formed as a linear combination over

the selected MVs. It is shown that in this method, data stream j has no interference on

data stream i, i = 1, · · · , j − 1. Dirty paper coding is used to eliminate the remaining

interference. Thus, the underlying sub-channels can be treated independent of each

other in terms of encoding/decoding and provision of QoS. In addition, this method

offers other desirable features such as: (i) accommodating users with different number

of receive antennas, (ii) exploiting multi-user diversity, and (iii) requiring low feedback

rate. It is easy to see that for the special case of N = 1, the proposed algorithm is the

same as the methods presented in [3, 61].

To analyze the performance of the scheme, an upper-bound on the outage proba-

bility of each sub-channel is derived which is used to establish the diversity order and

the asymptotic sum-rate of the scheme. It is shown that the diversity order of the jth

data stream, 1 ≤ j ≤ M , is equal to N(M − j + 1)(K − j + 1). Furthermore, it is

proven that the throughput of this scheme scales as M log log(K) and asymptotically

(K −→ ∞) tends to the sum-capacity of the MIMO broadcast channel. The simu-

lation results indicate that the achieved sum-rate is close to the sum-capacity of the

underlying broadcast channel.

The rest of the chapter is organized as follows: In Section 2.2, the system model
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and the proposed signaling method are presented. In Section 2.3, an algorithm to

select the active users and the corresponding MVs is developed. The performance

analysis of the system is presented in Section 2.4. In this section, an upper-bound

on the outage probability of each sub-channel is derived which is used to establish

the diversity order and the asymptotic sum-rate of the scheme. In Section 2.5, the

simulation results and comparisons with the sum-capacity of the MIMO broadcast are

discussed. In Section 2.6, the proposed algorithm is modified to reduce the required

rate of the feedback. Some concluding remarks are provided in Section 2.7.

2.2 Preliminaries

Consider a MIMO broadcast channel with M transmit antennas and K users, where

the rth user is equipped with Nr receive antennas. In a flat fading environment, the

baseband model of this system is given by,

yr = Hrs + wr, 1 ≤ r ≤ K, (2.1)

where Hr ∈ CNr×M denotes the channel matrix from the base station to user r, s ∈ CM×1

represents the transmitted vector, and yr ∈ CNr×1 signifies the received vector by user

r. The vector wr ∈ CNr×1 is white Gaussian noise with a zero-mean and unit-variance.

The base station supports M simultaneous data streams, distributed among at most

M users (active users), indexed by π(j), j = 1, . . . , M . The transmitted vector s is
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equal to:

s =
M∑

j=1

djvj, (2.2)

where vj ∈ CM×1, j = 1, . . . ,M , is the modulation vector (MV) corresponding to user

π(j), π(j) ∈ {1, 2, . . . , K}, and dj contains the information for user π(j). Note that

with this formulation, a given user may receive multiple data streams. Vectors vj,

j = 1, . . . , M , form an orthonormal set. Dirty-paper coding is used such that for i > j,

the interference of data stream i over data stream j is canceled.

To detect the data stream j, user π(j) multiplies the received vector by a demodula-

tion vector u†j. In the next section, we propose a method to select the set of active users

{π(1), π(2), . . . , π(M)} ⊂ {1, 2, . . . , K} , modulation vectors vj, and demodulation

vectors uj, for j = 1, . . . , M .

2.3 Selecting active users, modulation, and demod-

ulation vectors

Assuming channel state information (CSI) is available at the base station, the proposed

algorithm works as follows. First, for each user, the maximum gain and the correspond-

ing direction are determined2. Next, the best user in terms of the largest gain is chosen

as an active user. The MV for the selected user is along the corresponding direction.

2The gain of the channel H along the direction (unit vector) x is defined as the square root of

x†H†Hx.
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These steps are repeated recursively until the M MVs and the set of active users are

determined. In each step, the search for the best direction is performed in the null

space of the previously selected MVs. It is shown that in this manner, any given MV

has no interference over the previously selected MVs. In the following, the proposed

algorithm is presented in details.

Algorithm 2.1.

1. Set j = 1 and Ξ = [0]M×M .

2. Find σ2
j , where

σ2
j = max

r
max

x
x†H†

rHrx.

s.t. x†x = 1

Ξ†x = 0. (2.3)

Set π(j) and vj equal to the optimizing parameters r and x, respectively.

3. Set

uj =
1

σj

Hπ(j)vj. (2.4)

4. Substitute vj in column j of matrix Ξ.

5. Set j ← j + 1. If j ≤ M , move to step two; otherwise, stop.

In Step 2 of the algorithm, maximization over r selects the best user, and therefore,

exploits the multiuser diversity. Maximization over x determines the best MV for each
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user, and at the same time converts the interference matrix to a lower triangular form,

implying that data stream j has no interference over data stream i, i = 1, . . . , j − 1.

This property has been proven in the following theorem.

Theorem 2.2. Consider the following optimization problem:

max
x

x†H†Hx,

s.t. x†x = 1

Ξ†x = 0, (2.5)

where H and Ξ = [ξ(1), ξ(2), . . . , ξ(%̂)] are complex matrices. Let v be the vector that

maximizes (2.5) and σ2 be the corresponding optimum value. Define vector u as follows:

u =
Hv

σ
. (2.6)

If there exists a vector v̂ such that Ξ†v̂ = 0 and v†v̂ = 0, then

u†Hv̂ = 0. (2.7)

Proof. According to (2.6),

u†Hv̂ =

(
Hv

σ

)†
Hv̂ =

1

σ
v†H†Hv̂. (2.8)

To optimize the cost function in (2.5), Lagrange multipliers technique is adopted.

L(x, λ̂, θ̂) = −x†H†Hx + λ̂(x†x− 1) + θ̂ Ξ†x, (2.9)
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where λ̂ and θ̂ = [θ̂1, θ̂2, . . . , θ̂%̂] are Lagrange multipliers. The gradient of L(x, λ̂, θ̂),

corresponding to the vector x, is

∇xL(x, λ̂, θ̂) = −2H†Hx + 2λ̂x +

%̂∑

l=1

θ̂lξ
(l). (2.10)

Since v maximizes the cost function, v satisfies (2.10). Therefore,

∇xL(x, λ̂, θ̂) = −2H†Hv + 2λ̂v +

%̂∑

l=2

θ̂lξ
(l) = 0. (2.11)

Multiplying both sides of (2.11) by v̂† results in

∇xL(x, λ̂, θ̂) = −2v̂†H†Hv + 2λ̂v̂†v + v̂†
%̂∑

l=2

θ̂lξ
(l) = 0. (2.12)

If v̂†v = 0 and v̂†ξ(l) = 0 for l = 1, . . . , %̂ are substituted into in (2.12),

v̂†H†Hv = 0. (2.13)

Finally, (5.14) and (2.13) result in

u†Hv̂ = 0. (2.14)

The interference of data stream i over data stream j is equal to u†jHπ(j)vi. Noting

(2.3) which derive vj and according to v†jvi = 0, Theorem 2.2 implies that u†jHπ(j)vi =

0, for i > j. This means that data stream i has no interference over data stream j,

j = 1, . . . , i− 1. Note that if i < j, the interference of data stream i over data stream j

is canceled by dirty paper coding. Therefore, the MIMO broadcast channel is effectively
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reduced to a set of parallel sub-channels with gains σj, j = 1, . . . , M . As a result, the

sum-rate of the system is equal to

R =
M∑

j=1

log(1 + σ2
j Pj) Nat/Sec/Hz, (2.15)

where Pj is the power allocated to data stream j, and
∑M

j=1 Pj ≤ PT . Note that (2.15)

is based on the channel model (2.1), where the power of the noise is normalized. To

maximize (2.15), the power can be allocated using water-filling [19].

In the proposed algorithm, it is assumed the CSI is available at the transmitter which

necessitates a high-data-rate feedback link. In Section 2.6, the proposed algorithm is

modified to reduce the rate of the feedback at the cost of adding some hand-shaking

steps to the algorithm.

2.4 Performance Analysis

In this section, the performance of the proposed algorithm is investigated. To simplify

the analysis, we assume: (i) available power PT is divided equally among the active

users, (ii) at most one data stream is assigned to each user. To impose the second

restriction, we can simply eliminate a user, whenever that user is allocated one data

stream in Step 2 of the algorithm. It is apparent that the sum-rate of the system

with these two restrictions lower-bounds the maximum sum-rate achievable by the

proposed algorithm. Although these assumptions simplify the derivations, it is shown

that the results dealing with the asymptotic sum-rate remain valid even if we relax
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these restrictive assumptions.

To study the performance of the system, we first derive an upper-bound on the

outage probability of each sub-channel. Using the derived upper-bound, we study the

diversity and asymptotic sum-rate achieved by the proposed algorithm. In this study,

it is assumed that all users are equipped with N receive antennas.

2.4.1 Outage Probability

The outage probability of sub-channel j is defined as Pr(σ2
j < z), j = 1, . . . , M , for a

given z. For σ2
1, the derivation of the outage probability Pr(σ2

1 < z) is strait-forward.

In the proposed algorithm, for j = 1, we have Ξ = [0]M×M . From (2.3), we have

σ2
1 = max

1≤r≤K
max

x
x†H†

rHrx. (2.16)

s.t. x†x = 1

Referring to [25], maxx x†H†
rHrx subject to x†x = 1 is equal to the maximum eigenvalue

of the matrix H†
rHr. Therefore, (2.16) can be written as

σ2
1 = max

{
λmax(H

†
1H1), . . . , λmax(H

†
KHK)

}
, (2.17)

where λmax(H
†
rHr) denotes the maximum eigenvalue of H†

rHr. By assuming Rayleigh

fading channel, the entries of Hr, r = 1, . . . , K, have independent normal distribution

with zero-mean and unit-variance. Therefore, H†
rHr follows a Wishart distribution [31].

The distribution of the maximum eigenvalue of a Wishart matrix is formulated in the

following lemma.
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Lemma 2.3. [31, 33] Assume that the entries of A ∈ Cm̃×ñ have a zero mean, unit

variance Gaussian distribution; then, the cumulative distribution function (CDF) of the

maximum eigenvalue of the matrix A†A is equal to

Gm̃,ñ(z) = Pr
{
λmax(A

†A) ≤ z
}

=
1∏n

k=1 Γ(m− k + 1)Γ(n− k + 1)
det(Ψ), (2.18)

where n = min{m̃, ñ}, m = max{m̃, ñ}, and Ψ is an n × n Hankel matrix which is a

function of z ∈ [0,∞) defined as

Ψ = [γ(m− n + p + q − 1, z)]n×n
(p,q) , p, q = 1, . . . , n, (2.19)

and γ is incomplete gamma function

γ(n + 1, z) = n!

(
1− e−z

n∑

k=1

zk

k!

)
. (2.20)

Since λmax(H
†
rHr) for different r’s, 1 ≤ r ≤ K, are i.i.d random variables, using

(2.17) and Lemma A.1 in Appendix A, we obtain

Pr(σ2
1 ≤ z) = GK

N,M(z). (2.21)

Unlike Pr(σ2
1 ≤ z), the derivation of the outage probability for σ2

j , j = 2, . . . , M ,

is not simple. Alternatively, we derive an upper-bound for the outage probability of

each sub-channel using the CDF of the axillary variables σ̂2
j , j = 2, . . . ,M , defined as

follows. Let us order the values of maxx x†H†
rHrx, r = 1, . . . , K, subject to x†x = 1

and Ξ̂†
jx = 0, where Ξ̂j is a unitary matrix, j = 2, . . . , M , selected randomly from

OCM×(j−1), the set of M × (j − 1) complex unitary matrices. σ̂2
j is selected as the jth
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largest element at this ordered set, i.e.

σ̂2
j = jth max

r, 1≤r≤K
max

x
x†H†

rHrx.

s.t. x†x = 1

Ξ̂†
jx = 0 (2.22)

Lemma 2.4. The outage probability of the sub-channel j is upper-bounded by the CDF

of σ̂2
j . In other word,

Pr(σ2
j ≤ z) ≤ Pr(σ̂2

j ≤ z). (2.23)

Proof. Assume that users π(1), . . . , π(M) corresponding to the MVs v1, . . . ,vM have

been selected. According to the proposed algorithm, vj, j = 1, . . . ,M , is in the (M −

j + 1)-dimensional hyperplane Ωj which is the intersection of the null spaces of the

previously selected MVs, i.e.

vj ∈ Ωj =
{
x | v†1x = 0, . . . ,v†j−1x = 0

}
(2.24)

Fix the hyperplane Ωj, and multiply the channel matrix Hπ(i), for i = 1, . . . , j−1, with

a unitary matrix Φ̃i selected randomly and uniformly from OCM×M , the set of M ×M

complex unitary matrices.

H̃π(i) = Hπ(i)Φ̃i, i = 1, . . . , j − 1. (2.25)

It is apparent that H̃π(i) has the gain of σ2
i in the direction ṽi = Φ̃†

ivi.
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Let us define σ̄2
j as follows:

σ̄2
j = jth max

r, 1≤r≤K
max

x
x†H̃†

rH̃rx.

s.t. x†x = 1

x ∈ Ωj (2.26)

where H̃r = Hr, for r = 1, . . . , K, r /∈ {π(1), . . . , π(j − 1)}.

Let us define the set D, with cardinality of K − j + 1, of: maxx x†H†
rHrx subject

to x†x = 1, x ∈ Ωj for r = 1, . . . , K, r /∈ {π(1), . . . , π(j − 1)}. Similarly, let us define

the set D, with cardinality of K, of: maxx x†H̃†
rH̃rx subject to x†x = 1, x ∈ Ωj for

r = 1, . . . , K. Regarding (2.3) and (2.26), we have σ2
j = maxD, and σ̄2

j = jth maxD.

Since H̃r = Hr for r /∈ {π(1), . . . , π(j − 1)}, the set D is equal to the union of D and

j − 1 values of maxx x†H̃†
rH̃rx subject to x†x = 1, x ∈ Ωj for r ∈ {π(1), . . . , π(j − 1)}.

It follows that σ2
j ≥ σ̄2

j . Consequently, for a given real number z, Pr(σ2
j ≤ z) ≤ Pr(σ̄2

j ≤

z).

We claim that σ̄2
j in (2.26) has the same distribution as σ̂2

j in (2.22). As mentioned

before, Ωj is the intersection of the null spaces of vi, i = 1, . . . , j−1. Since the channel

matrices Hπ(i), i = 1, . . . , j − 1, are randomized using the unitary random matrices

Φ̃†
i , the vector space Ωj is a random and independent hyperplane with respect to H̃r,

r = 1, . . . , K. Furthermore, since the channel matrices Hr, r = 1, . . . , K, are multiplied

with unitary matrices (Φ̃†
i , for Hπ(i), i = 1, . . . , j − 1, and identity matrix for the rest),

the entries of H̃r, r = 1, . . . , K, have the same distribution as the entries of Hr (normal
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i.i.d distribution with zero mean and unit variance). Therefore, in both (2.22) and

(2.26), we have K matrices with the same distribution while the inner maximization is

performed in an (M − j +1)-dimensional hyperplane which is random and independent

of the channel matrices. Thus, each realization in problem (2.22) corresponds to a

realization in problem (2.26) with the same probability. Consequently, σ̄2
j and σ̂2

j have

the same distribution.

The following lemma helps to derive Pr(σ̂2
j ≤ z).

Lemma 2.5. Consider a vector space Ω̂ defined by

Ω̂ = {x | x ∈ CM×1, Ξ̂†x = 0}, (2.27)

where Ξ̂ is a complex matrix. Assume that Ω̂ is spanned by a set of orthogonal vectors

{φ̂(1)
, φ̂

(2)
, . . . , φ̂

(ν)}, where ν ≤ M . Then, given the complex matrix H, the result of

the following optimization,

max
x

x†H†Hx,

s.t. x†x = 1

x ∈ Ω̂, (2.28)

is equal to λmax(Ĥ
†Ĥ), the maximum eigenvalue of matrix Ĥ†Ĥ, where

Ĥ = HΦ̂ (2.29)

and

Φ̂ = [φ̂
(1)

, φ̂
(2)

, . . . , φ̂
(ν)

]. (2.30)
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Proof. λmax(Ĥ
†Ĥ), the maximum eigenvalue of matrix Ĥ†Ĥ is equal to [25],

λmax(Ĥ
†Ĥ) = max

y
y†Ĥ†Ĥy.

s.t. y†y = 1 (2.31)

If (2.29) is substituted into (2.31), we obtain

λmax(Ĥ
†Ĥ) = max

y
y†Φ̂†H†HΦ̂y.

s.t. y†y = 1. (2.32)

Let x = Φ̂y = y1φ̂1 + . . . + yνφ̂ν . Since {φ̂(1)
, φ̂

(2)
, . . . , φ̂

(ν)} is an orthogonal vector

set, then y†y = x†x. Also, x is a linear combination of vectors {φ̂(1)
, φ̂

(2)
, . . . , φ̂

(ν)};

therefore, x ∈ Ω̂. Consequently,

λmax(Ĥ
†Ĥ) = max

x
x†H†Hx.

s.t. x†x = 1

x ∈ Ω̂. (2.33)

According to Lemma 2.5, σ̂2
j in (2.22) is equal to

σ̂2
j = jth max

{
λmax(Ĥ

†
1,jĤ1,j), . . . , λmax(Ĥ

†
K,jĤK,j)

}
, (2.34)

where λmax(Ĥ
†
r,jĤr,j) is the maximum eigenvalue of Ĥ†

r,jĤr,j, Ĥr,j = HrΦ̂j, and Φ̂j is

a matrix with orthogonal columns which span the complex vector space Ω̂j = {x|x ∈
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CM×1, Ξ̂†
jx = 0}. Note that in (2.22), Ξ̂j has j − 1 non-zero orthogonal columns.

Therefore, the dimension of the complex vector space Ω̂j is M − (j − 1), resulting in

Φ̂j ∈ CM×(M−j+1). Since the columns of Φ̂j are orthonormal and the entries of Hr

have independent unit variance Gaussian distributions (Rayleigh channel), the entries

of Ĥr,j ∈ CN×(M−j+1) have independent unit variance Gaussian distributions. Further-

more, it is easy to see that Ĥr,j, r = 1, . . . , K, are independent for different r. Conse-

quently, according to the definition, Ĥ†
r,jĤr,j, r = 1, . . . , K, have Wishart distribution.

Therefore, by using Lemma 2.3, we obtain

Pr
{

λmax(Ĥ
†
r,jĤr,j) ≤ z

}
= GN,M−j+1(z). (2.35)

Using (2.34), (2.35), Lemma A.1 in Appendix A, and regarding the independency of

Ĥr,j for different r’s, we obtain

Pr(σ̂2
j ≤ z) =

K∑
i=K−j+1

(
K

i

)
Gi

N,M−j+1(z)[1−GN,M−j+1(z)]K−i. (2.36)

By using (2.21), (2.36), and Lemma 2.4, we have

Theorem 2.6.

Pr(σ2
j ≤ z) ≤

K∑
i=K−j+1

(
K

i

)
Gi

N,M−j+1(z)[1−GN,M−j+1(z)]K−i (2.37)

with equality if j = 1.

Theorem 2.6 provides a lower-bound on the performance of the proposed method.

In the following, we use the above result to investigate the achieved diversity and the

asymptotic sum-rate.
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2.4.2 Diversity Analysis

The diversity order in a wireless channel is equal to the asymptotic slope (z → 0) of the

outage probability curve. This quantity determines the asymptotic slope of the curve

of the symbol error rate versus signal-to-noise-ratio. In the following theorem, we use

this definition to establish the diversity order of the jth data stream.

Theorem 2.7. Sub-channel j achieves the diversity order at least equal to (K − j +

1)(M − j + 1)N .

Proof. To derive the minimum diversity of the sub-channel j, we first obtain the limiting

function (z → 0) of the introduced upper-bound on Pr(σ2
j ≤ z). In Appendix B, it is

shown that

lim
z→0

Gm̃,ñ(z) = cm̃,ñz
m̃ñ (1 + O(z)) , (2.38)

where cm̃,ñ is defined in (B.9). Using (2.38) and (2.37), we have,

lim
z→0

Pr(σ2
j < z) ≤

(
K

K − j + 1

)
cK−j+1
N,M−j+1z

(K−j+1)N(M−j+1) (1 + O(z)) , (2.39)

where cN,M−j+1 is equal to cm̃,ñ by substituting N for m̃ and M − j + 1 for ñ in (B.9).

Using (2.39), we conclude that the sub-channel j, 1 ≤ j ≤ M , achieves the minimum

diversity order of (K − j + 1)N(M − j + 1).

Theorem (2.7) states that the diversity of all the sub-channels is proportional to

the number of users K and number of receive antennas N . This means that the pro-
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posed method exploits both multiuser and receive diversities. In addition, the transmit

diversity of sub-channel j is equal to M − j + 1.

Note that if we use a codebook with a fixed rate ϑj for the jth sub-channel and

the channels are constant for a codeword duration, the probability of error for the

sub-channel j, Pej, is obtained by,

Pej = Pr

(
log(1 +

PT

M
σ2

j ) < ϑj

)
(2.40)

= Pr

(
σ2

j <
exp(ϑj)− 1

PT

M

)
(2.41)

≤
(

K

K − j + 1

)
cK−j+1
N,M−j+1

(
exp(ϑj)− 1

PT

M

)(K−j+1)N(M−j+1)

. (2.42)

Therefore, the slope of the curve Pej versus PT is at most (K − j + 1)N(M − j + 1).

2.4.3 Asymptotic Sum-Rate Analysis

By using (2.15) and Theorem 2.6, a lower-bound on the average sum-rate of the pro-

posed method can be computed. However, an examination of the asymptotic behavior

(K → ∞) of the sum-rate provides insight into the performance of the proposed al-

gorithm. For this investigation, we apply some results from theory of extreme order

statistics. Appendix A contains some theorems that will be used in our following dis-

cussion.

As mentioned in (2.17), σ2
1 is equal to the maximum of K i.i.d random variables

with common CDF of GN,M(z). Similarly, σ̂2
j , j = 2, . . . , M , in (2.34) is equal to the
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jth largest of K i.i.d random variables with common CDF of GN,M−j+1(z). In general,

the behavior of the jth largest of K i.i.d random variables with common CDF F (z)

depends on the tail of the F (z) (large z). In Appendix C, it is shown that

Gm̃,ñ(z) = 1− e−zzm̃+ñ−2

Γ(m̃)Γ(ñ)

(
1 + O(z−1e−z)

)
, (2.43)

which has the form of F (z) in (A.13) for large z. Using (2.43) and applying Lemma

A.5 from Appendix A with α̃ = M + N − 2 and β̃ = Γ(M)Γ(N) for σ2
1, we obtain

Pr
{

η̂1 − log log(
√

K) ≤ σ2
1 ≤ η̂1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
, (2.44)

where

η̂1 = log

(
K

Γ(M)Γ(N)

)
− (M + N − 2) log log

(
K

Γ(M)Γ(N)

)
. (2.45)

Similarly, using (2.43) and applying Lemma A.5 with α̃ = M + N − j − 1 and

β̃ = Γ(M − j + 1)Γ(N) for σ̂2
j , j = 2, . . . , M , we obtain

Pr
{

η̂j − log log(
√

K) ≤ σ̂2
j ≤ η̂j + log log(

√
K)

}
≥ 1−O

(
1

log K

)
, (2.46)

where

η̂j = log

(
K

Γ(M − j + 1)Γ(N)

)
−(M+N−1−j) log log

(
K

Γ(M − j + 1)Γ(N)

)
. (2.47)

Lemma 2.8. For σ2
j , j = 1, . . . , M , we have,

Pr
{

η̂j − log log(
√

K) ≤ σ2
j ≤ η̂1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
. (2.48)
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Proof. For j = 1, (2.48) is the same as (2.44). For j = 2, . . . , M , the proof is as follows.

From (2.46), we have

Pr
{

η̂j − log log(
√

K) ≤ σ̂2
j

}
≥ 1−O

(
1

log K

)
. (2.49)

Using (2.49) and Lemma 2.4, we obtain

Pr
{

η̂j − log log(
√

K) ≤ σ2
j

}
≥ 1−O

(
1

log K

)
. (2.50)

On the other hand, from (2.44), we have

Pr
{

σ2
1 ≤ η̂1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
. (2.51)

It is easy to see that

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
M . (2.52)

Using (2.51) and (2.52), we have,

Pr
{

σ2
j ≤ η̂1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
. (2.53)

Equations (2.50) and (2.53) result in (2.48). This conclusion comes from the fact

that if A and B are two events with Pr(A) ≥ 1 − ε1 and Pr(B) ≥ 1 − ε2, then

Pr(A
⋂

B) ≥ 1− ε1 − ε2.

Using Lemma 2.8, we can prove the following theorem.

Theorem 2.9.

lim
K→∞

R

M log[PT

M
log(K)]

= 1, (2.54)
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with probability one, where R is the sum-rate of the proposed method. In addition,

lim
K→∞

RSum-Capacity −R −→ 0, (2.55)

with probability one, where RSum-Capacity indicates the sum-capacity of the MIMO broad-

cast channel.

Proof. Since log(.) is an increasing function and using (2.48), we have,

Pr

{
log

(
1 +

PT

M
[η̂j − log log

√
K]

)

≤ log(1 +
PT

M
σ2

j )

≤ log

(
1 +

PT

M
[η̂1 + log log

√
K]

)}

≥ 1−O

(
1

log K

)
. (2.56)

Consequently,

lim
K→∞

Pr





log
(
1 + PT

M
[η̂j − log log

√
K]

)

log[PT

M
log(K)]

≤ log(1 + PT

M
σ2

j )

log[PT

M
log(K)]

≤
log2

(
1 + PT

M
[η̂1 + log log

√
K]

)

log[PT

M
log(K)]





≥ 1−O

(
1

log K

)
. (2.57)

Using (2.45) and (2.47), we conclude that the left hand side and the right hand side of

the inequalities inside Pr in (2.57) tend to the same value of one as K →∞, therefore

lim
K→∞

log(1 + PT

M
σ2

j )

log(PT

M
log K)

= 1, (2.58)
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with probability one.

Equation (2.58) indicates that the rate of each sub-channel attains log[PT

M
log(K)],

when K →∞. Using (2.15), the sum-rate of the proposed method achieves M log[PT

M
log(K)].

On the other hand, according to (2.56),

Pr

{
log

(
1 +

PT

M

[
η̂j − log log

√
K

])
≤ log

(
1 +

PT

M
σ2

j

)}
≥ 1−O

(
1

log K

)
. (2.59)

In [52], it is shown that,

Pr

{
RSum-Capacity

M
≤ log

(
1 +

PT

M
[log(KN) + O(log log[K])]

)}
≥ 1−O

(
1

log2 K

)
.

(2.60)

As mentioned before, if A and B are two events with Pr(A) ≥ 1− ε1 and Pr(B) ≥

1 − ε2, then Pr(A
⋂

B) ≥ 1 − ε1 − ε2. Therefore, the probability that the inequalities

inside Pr in (2.59) and (2.60) are both valid is greater than 1−O
(

1
log K

)
−O

(
1

log2 K

)
.

Subtracting these two inequalities, we obtain

Pr

{
log(1 +

PT

M
σ2

j )−
RSum-Capacity

M
≥

log

(
1 +

PT

M

[
η̂j − log log

√
K

])
− log

(
1 +

PT

M
[log(KN) + O(log log[K])]

)}

≥ 1−O

(
1

log K

)
−O

(
1

log2 K

)
. (2.61)

Using (2.47), we conclude that the right side of the inequality inside Pr in (2.61) tends

to zero as K →∞. Consequently, for large K, with probability one, we have

0 ≤ log(1 +
PT

M
σ2

j )−
RSum-Capacity

M
, j = 1, . . . , M. (2.62)
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Using (2.62), we obtain that when K → ∞, R ≥ RSum-Capacity. Since RSum-Capacity

provides an upper bound on the sum-rate of any algorithm , we obtain

lim
K→∞

RSum-Capacity −R = 0, (2.63)

with probability one.

Equation (2.54) indicates that the average sum-rate of the proposed method in-

creases linearly with the number of transmit antennas. Furthermore, the increase with

the number of users K is proportional to log log(K). In addition, Theorem 2.9 states

that for large K, the proposed method achieves the sum-capacity of the MIMO broad-

cast channel. Note that these results are derived with two assumptions of equal power

distribution among active users (no water-filling) and allocation of at most one data

stream to each user. Apparently, Theorem 2.9 remains valid even if these two restrictive

assumptions are relaxed.

2.5 Simulation Results

In this section, the outage probability and the sum-rate of the proposed method are

simulated and compared with the bounds derived by the Theorem 2.6 and with the

sum-capacity. In these simulations, the perfect channel state information is assumed

to be available at the base station.

Figures 2.1 and 2.2 show the outage probability of each individual sub-channel as
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compared with the upper-bound CDFs introduced in Theorem 2.6.
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Figure 2.1: Outage Probability for the Sub-Channels (Solid Curves) and the Upper-

Bound for Outage Probability (Dashed Curves) – K = 6, M = 3, N = 1.

Figures 2.3 and 2.4 show the sum-rate of the proposed method in comparison with

the sum-capacity and the derived lower-bound on sum-rate. In the simulation of the

sum-rate, the power is optimally allocated to active users by using the water-filling

method, while in the simulation of the lower-bound, the power is divided equally among
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Figure 2.2: Outage Probability for the Sub-Channels (Solid Curves) and the Upper-

Bound for Outage Probability (Dashed Curves) – K = 3, M = 3, N = 2.
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the sub-channels. To compute the sum-capacity of the MIMO broadcast channel, the

algorithm presented in [70] is used.

Figure 2.3 depicts the average sum-rate of the proposed method, the derived lower-

bound, and the average sum-capacity versus K (number of users) for different number

of receive antennas. This figure shows that the sum-rate of the proposed method is

very close to the sum-capacity, even when the number of users is small. Based on this

result, we conclude that the major part of the sum-capacity is achieved with only M

data streams, regardless of the number of receive antennas. In addition, Fig. 2.3 shows

that the derived lower-bound provides an accurate estimate of the sum-rate over a wide

range of values for K.

Figure 2.4 shows the sum-rate of the proposed method in comparison with the

sum-capacity as well as the derived lower-bound versus the transmit power. It can be

seen that the sum-rate of the proposed scheme is very close to the sum-capacity. In

addition, Fig. 2.4 shows that the derived lower-bound provides an accurate estimate

of the sum-rate for the different power levels.

Figure 2.5 shows the sum-rate of the proposed method versus the values of M

(number of transmit antennas). It can be seen that the average sum-rate increases

linearly with the number of transmit antennas.
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2.6 Reducing the Feedback Rate

In this section, we modify the proposed algorithm to reduce the rate of the feedback

at the cost of adding some hand-shaking steps to the algorithm. As mentioned in

Section 2.3, one part of the algorithm is to find the direction in which each user has

maximum gain. This part of the processing can be accomplished at the receiver and

then if the maximum gain of the user is larger than a given threshold, the gain and the

corresponding direction are reported to the transmitter. The base station selects the

best user in terms of the largest gain. By using this technique, the complete channel

state information is not required at the transmitter and the rate of the feedback is

significantly reduced. The details of the algorithm are presented in the following.

Algorithm 2.10.

1. Set j = 1 and Ξ = [0]M×M .

2. The user r, r = 1, . . . , K, calculates σ̃2
r(j), defined as follows:

σ̃2
r(j) = max

x
x†H†

rHrx.

s.t. x†x = 1

Ξ†x = 0. (2.64)

ṽr(j) represents the optimizing parameter x.
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3. The user r, r = 1, . . . , K, calculates

ũr(j) =
1

σ̃r(j)

Hrṽr(j). (2.65)

4. The user r, r = 1, . . . , K, sends σ̃2
r(j) and ṽr(j) to the base station, if σ̃2

r(j) ≥ th(j).

th(j) is a threshold which is predetermined by the base station.

5. The base station selects the user with the largest σ̃2
r(j), namely π(j). σ2

j , vj, and

uj are the gain, the corresponding MV, and the demodulation vector of the user

π(j), respectively.

6. The π(j)th user sends ujHπ(j)vi, i = 1, . . . , j − 1, to the base station. This

information is required for dirty paper coding.

7. The base station sends vj to all the users. Each user substitutes vj in the jth

column of Ξ.

8. Set j ← j + 1. If j ≤ M move to step two; otherwise stop.

The performance of this method is the same as that of the first algorithm (assume

that the gain of at least one user is larger than the threshold th(j)). However, the rate

of the feedback required in the modified algorithm is significantly reduced as compared

to that of the first algorithm.

Threshold th(j) is determined such that with high probability there exists at least

one user with gain larger than th(j). Refereing to Lemma 2.8, we conclude that when



Signaling over MIMO Broadcast Channels 39

K is large, with probability one the largest gain is greater than η̂j − log log(
√

K).

Consequently, for large k, an appropriate choice for th(j) = η̂j − log log(
√

K), where η̂j

is defined in (2.45).

2.7 Conclusion

In this chapter, a simple signaling method for a multi-antenna broadcast channel is pro-

posed. This method reduces the MIMO broadcast system to a set of parallel channels.

The proposed scheme has several desirable features in terms of: (i) accommodating

users with different number of receive antennas, (ii) exploiting multi-user diversity, and

(iii) requiring low feedback rate. The simulation results indicate that the achieved

sum-rate is close to the sum-capacity of the underlying broadcast channel. To analyze

the performance of the scheme, an upper-bound on the outage probability of each sub-

channel is derived which is used to establish the diversity order and the asymptotic

sum-rate of the scheme. It is shown that the diversity order of the jth data stream,

1 ≤ j ≤ M is equal to N(M − j + 1)(K − j + 1). Furthermore, it is proven that the

throughput of this scheme scales as M log log(K) and asymptotically (K −→∞) tends

to the sum-capacity of the MIMO broadcast channel.



Chapter 3

Signaling over MIMO X Channels

3.1 Introduction

Wireless technology has been advancing at an exponential rate, due to the increasing

expectations for multi-media services. This, in turn, necessitates the development of

novel signaling techniques with high spectral efficiency. Using multiple antennas at

both ends of wireless links is known as a unique solution to support high-data-rate

communication [18,58]. Multiple-antenna systems incorporate additional dimension of

space to the transmission, resulting in a multiplicative increase in the overall through-

put [58, 72]. The multiplicative increase in the rate is measured by a metric known as

the multiplexing gain (MG), ρ, defined as the ratio of the sum-rate of the system, R,

40
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over the logarithm of the total power PT in the high power regime, i.e.

ρ = lim
PT→∞

R

log2(PT )
. (3.1)

It is widely known that in a point to point multiple-antenna system, with M trans-

mit and N receive antennas, the MG is min(M, N) [58]. In multi-antenna multi-user

systems, when the full cooperation is provided at least at one side of the links (either

among the transmitters or among the receivers), the system still enjoys a multiplicative

increase in the throughput with the smaller value of the following two quantities: the

total number of transmit antennas, and the total number of receive antennas. For ex-

ample, in a multiple access channel with two transmitters, with M1 and M2 antennas,

and one receiver with N antennas, the MG is equal to min(M1 + M2, N) [28]. Sim-

ilarly, in a multiple-antenna broadcast channel, with one transmitter, equipped with

M antennas, and two receivers, equipped with N1 and N2 antennas, the MG is equal

to min(M,N1 + N2) [28]. However, for the case that cooperation is not available, the

performance of the system will be deteriorated due to the interference of the links over

each other. For example, in a multiple-antenna interference channel with two trans-

mitters and two receivers, each equipped with N antennas, the MG of the system is

N [28].

Extensive research efforts have been devoted to the multiple-antenna interference

channels. In [62], the capacity region of the multiple-input single-output (MISO) in-

terference channel with strong interference (see [8]) and the capacity region of the
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single-input multiple-output (SIMO) interference channel with very strong interference

(see [4]) are characterized. In [50], the superposition coding technique is utilized to

derive an inner-bound for the capacity of the multiple-input multiple-output (MIMO)

interference channels. In [69], several numerical schemes are proposed to compute sub-

optimal transmit covariance matrices for the MIMO interference channels. In [28], the

MG of the MIMO interference channel with general configuration for the number of

transmit and receive antennas is derived. To increase the MG of such systems, the full

cooperation among transmitters is proposed in [16, 54], which reduces the system to

a single MIMO broadcast channel. To provide such a strong cooperation, an infinite

capacity link connecting the transmitters, is presumed. In [26], the performance of

single-antenna interference channels is evaluated, where the transmitters or receivers

rely on the same channel, used for transmission, to provide cooperation. It is shown

that the resulting MG is still one, i.e., this type of cooperation is not helpful in terms

of the MG. In [28], a cooperation scheme in the shared communication channel for

the MIMO interference systems is proposed and shown that such a scheme does not

increase the MG.

In this chapter, we propose a new signaling scenario in multiple antenna systems

with two transmitters and two receivers. In this scenario, each receiver receives data

from both transmitters. It is assumed that neither the transmitters nor the receivers

cooperate in signaling. In other words, each transmitter is unaware of the data of the

other transmitter. Similarly, each receiver is unaware of the signal received by the
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other receiver. This scenario of signaling has several applications. For example, in

a wireless system where two relay nodes are utilized to extend coverage area or in a

system where two base stations provide different services to the users. This system

can be considered as a combination of two broadcast channels (from the transmitters’

points of view) and two multi-access channels (from the receivers’ points of view). By

taking advantage of both perspectives, it is shown that by using some linear filters

at the transmitters and the receivers, the system is decomposed to either two non-

interfering multi-antenna broadcast sub-channels or two non-interfering multi-antenna

multi-access sub-channels. It is proven that such a scheme outperforms other known

non-cooperative schemes in terms of the achievable MG. In particular, it is shown that

in the specific case that both receivers (transmitters) are equipped with N antennas,

the total MG of ρ = b4N
3
c is achievable, where the two transmitters (receivers) have dρ

2
e

and bρ
2
c antennas, respectively. Note that even if the full cooperation is provided either

between the transmitters or between the receivers, the maximum MG is still ρ. Next,

it is argued that such decomposition schemes result in some degradation (power offset)

in the performance of the system. To overcome this problem, a design is proposed in

which the signaling scheme is jointly designed for both sub-channels (two broadcast or

two multi-access sub-channels).

The authors proposed this scenario of signaling and established the possibility of

achieving higher MG initially in [39]. Later in [38], we extended the scheme proposed

in [39] to more general configurations for the number of transmit and receive antennas,
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and developed two signaling schemes based on: (i) linear operations at the receivers and

the dirty paper coding at the transmitters, and (ii) linear operations at the transmitters

and the successive decoding at the receivers. In [29], the idea of overlapping the inter-

ference terms proposed in [38] has been adopted to show that the zero-forcing scheme

can achieve the multiplexing gain of the X channels for some special configurations for

the number of transmit and receive antennas. Furthermore, in [29], an upper-bound on

the MG of the X channels, where each transmitter and receiver is equipped with N an-

tennas, is derived. In [10], the X channel with the partial and asymmetric cooperation

among transmitters has been considered and the MG of the system has been derived.

The rest of the chapter is organized as follows. In Section 3.2, the system model

is explained. In Section 3.3, the two signaling schemes which decompose the system

into two broadcast or two multi-access sub-channels are explained. The performance

analysis of the scheme, including computing the MG and the power offset (for some

special cases) is presented in Section 3.4. In Section 3.5, the decomposition scheme is

modified and a joint design for signaling scheme is proposed. Simulation results are

presented in Section 3.6. Concluding remarks are presented in Section 3.7.

Notation: All boldface letters indicate vectors (lower case) or matrices (upper case).

(.)† denotes transpose conjugate operation, and C represents the set of complex num-

bers. OCM×N represents the set of all M×N complex matrices with mutually orthogo-

nal and normal columns. A⊥B means that each column of the matrix A is orthogonal

to all columns of the matrix B. The sub-space spanned by columns of A is represented
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by Ω(A). The null space of the matrix A is denoted by N(A). Identity matrix is

represented by I. Adopted from MATLAB notation, x(i : j) denotes a vector including

the entries i to j of the vector x. The ith column of the matrix A is shown by a(i).

3.2 Channel Model

We consider a MIMO system with two transmitters and two receivers. Transmitter t,

t = 1, 2, is equipped with Mt antennas and receiver r, r = 1, 2, is equipped with Nr

antennas. This configuration of antennas is shown by (M1,M2, N1, N2). For simplicity

and without loss of generality, it is assumed that

M1 ≥ M2 and N1 ≥ N2. (3.2)

Assuming flat fading environment, the channel between transmitter t and receiver

r is represented by the channel matrix Hrt, where Hrt ∈ CNr×Mt . The received vector

yr ∈ CNr×1 by receiver r, r = 1, 2, is given by,

y1 = H11s1 + H12s2 + w1, (3.3)

y2 = H21s1 + H22s2 + w2,

where st ∈ CMt×1 represents the transmitted vector by transmitter t. The vector

wr ∈ CNr×1 is a white Gaussian noise with zero mean and identity covariance matrix.

The power of st is subject to the constraint Tr(E[sts
†
t ]) ≤ Pt, t = 1, 2. PT denotes the

total transmit power, i.e. PT = P1 + P2.
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In the proposed scenario, the transmitter t sends µ1t data streams to receiver 1 and

µ2t data streams to receiver 2.

Throughout the chapter, we have the following assumptions:

• The perfect information of the entire channel matrices, Hrt, r, t = 1, 2, is available

at both transmitters and at both receivers.

• Each transmitter is unaware of the data sent by the other transmitter, which

means that there is no cooperation between transmitters. Similarly, receivers do

not cooperate.

3.3 Decomposition Schemes

In what follows, we propose two signaling schemes depending on the values of (M1,M2, N1, N2).

In the first scheme, by using linear transformations at the transmitters and at the re-

ceivers, the system is decomposed into two non-interfering broadcast sub-channels.

Therefore, we can use any signaling scheme, developed for the MIMO broadcast chan-

nels, over the resulting sub-channels. As a dual of the first scheme, in the second scheme,

linear transformations are utilized to decompose the system into two non-interfering

multi-access sub-channels. It is shown that depending on the value of (M1,M2, N1, N2),

one the these two schemes offer a higher MG.
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In the rest of the chapter, it is assumed that

M1 < N1 + N2, (3.4)

N1 < M1 + M2. (3.5)

Otherwise, if M1 ≥ N1 + N2, the maximum multiplexing gain of N1 + N2 is achievable

by a simple broadcast channel formed by the first transmitter and the two receivers.

Similarly, if N1 ≥ M1 + M2, then the maximum multiplexing gain of M1 + M2 is

achievable by a simple multi-access channel including the two transmitters and the first

receiver. The two signaling schemes presented in this chapter cover all the possibilities

for the number of transmit and receive antennas, excluding the aforementioned cases.

It is conjectured that the achieved MG is optimal for all cases. The optimality is proven

for some special cases of practical interest.

To attain the highest MG, we take advantage of the null-spaces of the direct or cross

links.

Defintion 3.1. We call a system as irreducible, if

Irreducible Type I: N1 ≥ N2 ≥ M1 ≥ M2, (3.6)

or

Irreducible Type II: M1 ≥ M2 ≥ N1 ≥ N2. (3.7)

Otherwise the system is called reducible.
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Unlike the irreducible systems, a portion of the achieved MG in a reducible X

channel is attained through exploiting the null-spaces of the direct or cross links. In

the reducible systems, the null-spaces of the links provide the possibility to increase

the number of data streams sent from one of the transmitters to one of the receivers,

without imposing any interference on the other receiver or restricting the signaling

space of the other transmitter. By excluding null spaces utilized to increase the MG,

the system is reduced to an equivalent system with (M ′
1,M

′
2, N

′
1, N

′
2) antennas, where

(M ′
1,M

′
2, N

′
1, N

′
2) ≤ (M1, M2, N1, N2). As will be explained later, the null-spaces of the

links in the reducible systems are exploited to the extend that the equivalent (reduced)

system is not reducible anymore.

Defintion 3.2. If the reduced X channel satisfies the condition of the type I irreducible

systems, i.e. N ′
1 ≥ N ′

2 ≥ M ′
1 ≥ M ′

2, the original system is called reducible to type I.

Similarly, if M ′
1 ≥ M ′

2 ≥ N ′
1 ≥ N ′

2, the original system is called reducible to type II.

In what follows, it is shown that the type I irreducible systems and the reducible

systems to type I can be decomposed into two non-interfering broadcast sub-channels.

Moreover, it is shown that the type II irreducible systems, and the reducible systems to

type II can be decomposed into two non-interfering multi-access sub-channels.

We define µ′rt, r, t = 1, 2, as the number of data streams transmitted from trans-

mitter t to receiver r, excluding the number of extra data streams attained through

exploiting the null-spaces of the links. In other words, µ′rt represents the number of
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data streams in the equivalent (reduced) channel.

3.3.1 Scheme I – Decomposition of the System into Two Broad-

cast Sub-Channels

As depicted in Fig. 3.1, in this scheme, the transmit filter Qt ∈ OCMt×(µ1t+µ2t) is

employed at transmitter t, t = 1, 2. Therefore, the transmitted vectors st, t = 1, 2, are

equal to

st = Qts̃t, (3.8)

where s̃t ∈ C(µ1t+µ2t)×1 contains µ1t data streams for receiver one and µ2t data streams

for receiver two. The transmit filters Qt, t = 1, 2, have two functionalities: (i) Confining

the transmit signal from transmitter t to a (µ1t + µ2t)-dimensional sub-space which

provides the possibility of decomposing the system into two broadcast sub-channels

by using linear filters at the receivers, (ii) Exploiting the null spaces of the channel

matrices to achieve the highest multiplexing gain.

At each receiver, two parallel receive filters are employed. The received vector y1

is passed through the filter Ψ†
11, which is used to null out the signal coming from the

second transmitter. The µ11 data streams, sent by transmitter one intended to receiver

one, can be decoded from y11, the output of Ψ†
11. Similarly, to decode µ12 data streams,

sent by transmitter two to receiver one, the received vector y1 is passed through the

receive filter Ψ†
12, which is used to null out the signal coming from transmitter one.
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Receiver two has a similar structure with parallel receive filters Ψ†
21 and Ψ†

22. Later, it

is shown that if µrt, r, t = 1, 2, satisfy a set of inequalities, then it is possible to deign

Qt and Ψrt to meet the desired features explained earlier. It means that the system is

decomposed into two non-interfering MIMO broadcast sub-channels (see Fig. 3.2).

Next, we explain how to select the design parameters including the number of data

streams µrt, r, t = 1, 2 and the transmit/receive filters. The primary objective is to

prevent the saturation of the rate of each stream in the high SNR regime. In other

words, the MG of the system is µ11 + µ12 + µ21 + µ22.

The integer variables ζrt, r, t = 1, 2, defined as follows, will be useful in our subse-

quent discussions:

• ζ11 denotes the dimension of Ω(H12Q2).

• ζ21 denotes the dimension of Ω(H22Q2).

• ζ12 denotes the dimension of Ω(H11Q1).

• ζ22 denotes the dimension of Ω(H21Q1).

In the sequel, we categorize the design scheme into the four general cases depend-

ing on (M1,M2, N1, N2), where in all cases, the system is either irreducible type I or

reducible to type I. To facilitate the derivations, we use the auxiliary variables M ′
t , N ′

r,

and µ′rt, for r, t = 1, 2. As will be explain later, for each case, M ′
t and N ′

r are computed

directly as a function of Mt and Nr for r, t = 1, 2. Then, µ′rt, r, t = 1, 2, are selected
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such that the following constraints are satisfied,

µ′11 : µ′11 + µ′12 + µ′22 ≤ N ′
1, (3.9)

µ′12 : µ′12 + µ′11 + µ′21 ≤ N ′
1, (3.10)

µ′22 : µ′22 + µ′21 + µ′11 ≤ N ′
2, (3.11)

µ′21 : µ′21 + µ′22 + µ′12 ≤ N ′
2, (3.12)

µ′11 + µ′21 ≤ M ′
1, (3.13)

µ′22 + µ′12 ≤ M ′
2. (3.14)

Each of the first four inequalities corresponds to one of the parameters µ′rt, r, t = 1, 2,

in the sense that if µ′rt, r, t = 1, 2, is zero, the corresponding inequality is removed from

the set of constraints. After choosing µ′rt, r, t = 1, 2, for each case, µrt, r, t = 1, 2, are

computed as function of µ′rt, r, t = 1, 2, as will be explained later.

Note that we have many options to choose µ′rt, r, t = 1, 2. It is shown that as

long as the integers µ′rt, r, t = 1, 2, satisfy (3.9) to (3.14), the system achieves the MG

of µ11 + µ12 + µ21 + µ22. However, it turns out that to achieve the highest MG, µ′rt,

r, t = 1, 2, should be selected such that µ′11 + µ′12 + µ′21 + µ′22 is maximum.

In what follows, for each of the four cases, we explain:

1. How to compute the auxiliary variables M ′
t and N ′

r as a function of Mt and Nr,

r, t = 1, 2,

2. After choosing µ′rt, r, t = 1, 2, satisfying (3.9) to (3.14), how to compute µrt,
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r, t = 1, 2,

3. How to choose the transmit filters Qt, t = 1, 2,

4. How to compute ζrt, r, t = 1, 2.

Having completed these steps, the procedure of computing the receive filters Ψ†
rt,

r, t = 1, 2, is similar for all cases. Later, we will show that this scheme decomposes the

system into two non-interfering broadcast sub-channels.

Scheme I – Case I: N1 ≥ N2 ≥ M1 ≥ M2

In this case, the system is irreducible. Therefore, the equivalent system is the same

as the original system i.e. N ′
r = Nr, r = 1, 2, and M ′

t = Mt, t = 1, 2.

Using the above parameters, we choose µ′rt, r, t = 1, 2, subject to (3.9)-(3.14) con-

straints. Since we do not exploit the null-space of any of the links to transmit data

streams, µrt is the same as µ′rt, i.e. µrt = µ′rt, r, t = 1, 2. In this case, Q1 and Q2 are

randomly chosen from OCM1×(µ11+µ21) and OCM2×(µ12+µ22), respectively.

Regarding the definition of ζrt, r, t = 1, 2, it is easy to see that,

ζ11 = µ12 + µ22, ζ12 = µ11 + µ21, ζ21 = µ12 + µ22, ζ22 = µ11 + µ21. (3.15)

Scheme I – Case II: N1 ≥ M1 > N2 ≥ M2

In this case, at transmitter one, (M1−N2)-dimensional sub-space N(H21) is exploited

to transmit M1−N2 data streams from transmitter one to receiver one without imposing

any interference at receiver two. In other words, while the component of s1 in N(H21)
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does not impose any interference at receiver two, it provides the possibility to increase

the number of data streams sent from transmitter one to receiver one by M1 − N2.

Let us exclude the (M1 − N2)-dimensional subspace N(H21) from the available space

at transmitter one. In addition, let us exclude the (M1 − N2)-dimensional subspace

Ω(H11N(H21)) from the available space at receiver one. Then, the system is reduced to

an X channel with equivalent antennas (M ′
1,M

′
2, N

′
1, N

′
2) =

(
M1−{M1−N2},M2, N1−

{M1 −N2}, N2

)
or,

N ′
1 = N1 + N2 −M1, N ′

2 = N2, M ′
1 = N2, M ′

2 = M2. (3.16)

Clearly, N ′
1 ≥ N ′

2 ≥ M ′
1 ≥ M ′

2, therefore the original system is reducible to type I.

Let us select µ′rt, r, t = 1, 2, subject to (3.9)-(3.14) constraints. µ′rt, r, t = 1, 2,

give us the number of data streams in the reduced X channel, excluding the M1 −N2

data streams, sent from transmitter one to receiver one relying on N(H21). Clearly, the

numbers of data streams in the original system are computed as,

µ11 = µ′11 + M1 −N2, µ12 = µ′12, µ21 = µ′21, µ22 = µ′22. (3.17)

Q1 is chosen as,

Q1 ∈ OCM1×(µ11+µ21), Q1 = [Σ1,Σ2], (3.18)

where,

Σ1 ∈ OCM1×(N1−M2), Σ1 ∈ N(H21), (3.19)

Σ2 = OCM1×(µ′11+µ21), Σ2⊥Σ1. (3.20)
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Such a structure for Σ1 guarantees the full usage of N(H21) for signaling.

Q2 is randomly chosen from OCM2×(µ12+µ22).

It is easy to see that,

ζ11 = µ12 + µ22, ζ12 = µ11 + µ21, ζ21 = µ12 + µ22, ζ22 = µ′11 + µ21. (3.21)

Scheme I – Case III: N1 ≥ M1 ≥ M2 > N2 and N1 + N2 ≥ M1 + M2

In this case,

(i) at transmitter one, (M1−N2)-dimensional sub-space N(H21) is utilized to increase

the number data streams sent from transmitter one to receiver one by M1 − N2

without imposing interference at receiver two,

(ii) at transmitter two, (M2−N2)-dimensional sub-space N(H22) is utilized to increase

the number data streams sent from transmitter two to receiver one by M2 − N2

without imposing interference at receiver two.

We exclude

(i) (M1−N2)-dimensional sub-space N(H21) from the signaling space at transmitter

one,

(ii) (M2−N2)-dimensional sub-space N(H22) from the signaling space at transmitter

two,

(iii) (M2−N1) + (M2−N2)-dimensional sub-space Ω
(
H11N(H21)

)
∪Ω

(
H12N(H22)

)

from the signaling space at receiver one.
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Then, the reduced system is an equivalent X channel with (M ′
1,M

′
2, N

′
1, N

′
2), where,

N ′
1 = N1 + 2N2 −M1 −M2, N ′

2 = N2, M ′
1 = N2, M ′

2 = N2, (3.22)

where N ′
1 ≥ N ′

2 ≥ M ′
1 ≥ M ′

2. Therefore, the original system is reducible to type I. The

number of data streams in the equivalent channel, µ′rt, r, t = 1, 2, are selected subject

to (3.9)-(3.14) constraints. Then, we have,

µ11 = µ′11 + M1 −N2, µ12 = µ′12 + M2 −N2, µ21 = µ′21, µ22 = µ′22. (3.23)

Q1 is chosen as,

Q1 ∈ OCM1×(µ11+µ21), Q1 = [Σ1,Σ2], (3.24)

where,

Σ1 ∈ OCM1×(M1−N2), Σ1 ∈ N(H21), (3.25)

Σ2 = OCM1×(µ′11+µ21), Σ2⊥Σ1. (3.26)

Q2 is chosen as,

Q2 ∈ OCM2×(µ12+µ22), Q2 = [Σ3,Σ4], (3.27)

where,

Σ3 ∈ OCM2×(M2−N2), Σ3 ∈ N(H22), (3.28)

Σ4 = OCM2×(µ′12+µ22), Σ4⊥Σ3. (3.29)
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It is easy to see that,

ζ11 = µ12 + µ22, ζ12 = µ11 + µ21, ζ21 = µ′12 + µ22, ζ22 = µ′11 + µ21. (3.30)

Scheme I – Case IV: M1 > N1 ≥ N2 ≥ M2 and N1 + N2 ≥ M1 + M2

In this case, at transmitter one, (i) (M1 − N2)-dimensional sub-space N(H21) is

utilized to increase the number data streams sent from transmitter one to receiver one

by M1 −N2 without imposing interference at receiver two, (ii) (M1 −N1)-dimensional

sub-space N(H11) is exploited to increase the number data streams from transmitter

one to receiver two by M1 − N1, without imposing interference at receiver two. By

excluding the utilized subspaces at transmitter one, receiver one, and receiver two, the

equivalent system is an X channel with (M ′
1,M

′
2, N

′
1, N

′
2) where,

N ′
1 = N1 + N2 −M1, N ′

2 = N1 + N2 −M1, M ′
1 = N1 + N2 −M1, M ′

2 = M2.(3.31)

It is easy to see that N ′
1 ≥ N ′

2 ≥ M ′
1 ≥ M ′

2. Therefore, the original system is reducible

to type I.

µ′rt, r, t = 1, 2, are selected subject to (3.9)-(3.14) constraints. Then,

µ11 = µ′11 + M1 −N2, µ12 = µ′12, µ21 = µ′21 + M1 −N1, µ22 = µ′22. (3.32)

In addition, Q1 is chosen as

Q1 ∈ OCM1×(µ11+µ21), Q1 = [Σ1,Σ2], (3.33)
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where,

Σ1 ∈ OCM1×(M1−N2+M1−N2), Σ1 ∈ N(H21) ∪ N(H11), (3.34)

Σ2 = OCM1×(µ′11+µ′21), Σ2⊥Σ1. (3.35)

Q2 is randomly chosen from OCM2×(µ12+µ22).

It is easy to see that,

ζ11 = µ12 + µ22, ζ12 = µ11 + µ′21, ζ21 = µ12 + µ22, ζ22 = µ′11 + µ21. (3.36)

The next steps of the algorithm are the same for all of the aforementioned cases.

We define

H̃rt = HrtQt, r, t = 1, 2. (3.37)

Ψrt ∈ OCNt×(Nt−ζrt), r, t = 1, 2, are chosen such that

Ψ11⊥H̃12, (3.38)

Ψ12⊥H̃11, (3.39)

Ψ21⊥H̃22, (3.40)

Ψ22⊥H̃21. (3.41)

According to the definition of ζrt, one can always choose such matrices. Clearly, any

signal sent by transmitter one does not pass through the filters Ψ†
12 and Ψ†

22. Similarly,

any signal sent by transmitter two does not pass through the filters Ψ†
21 and Ψ†

11.

We define

Hrt = Ψ†
rtH̃rt, r, t = 1, 2, (3.42)
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wrt = Ψ†
rtwr, r, t = 1, 2, (3.43)

and

yrt = Ψ†
rtyr, r, t = 1, 2. (3.44)

Therefore, the system is decomposed into two non-interfering broadcast channels. The

MIMO broadcast channel viewed from transmitter 1 is modeled by (see Fig. 3.2)





y11 = H11s̃1 + w11,

y21 = H21s̃1 + w21,

(3.45)

and the MIMO broadcast channel viewed from transmitter two is modeled by (see

Fig. 3.2)





y12 = H12s̃2 + w12,

y22 = H22s̃2 + w22.

(3.46)

3.3.2 Scheme 2 – Decomposition of the System into Two Multi-

access Sub-Channels

This scheme is indeed the dual of the scheme one, detailed in Sub-section 3.3.1. As

depicted in Fig. 3.3, in this scheme, the parallel transmit filters Ψ11 and Ψ21 are

employed at transmitter one, and the parallel transmit filters Ψ12 and Ψ22 are employed
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at transmitter two. Therefore, the transmitted vectors are equal to

s1 = Ψ11s11 + Ψ21s21, (3.47)

s2 = Ψ12s12 + Ψ22s22, (3.48)

where srt ∈ Cµrt×1 contains µrt data streams from transmitter t intended to receiver r.

The transmit filter Ψ11 nulls out the interference of the µ11 data streams, sent from

transmitter one to receiver one, at receiver two. Similarly, the transmit filter Ψ21 nulls

out the interference of the µ21 data streams sent from transmitter one to receiver two at

receiver one. In a similar fashion, at transmitter two, the two parallel transmit filters

Ψ22 and Ψ12 are employed.

At receiver r terminal, the received vector is passed through the receive filter Q†
r,

where Qr ∈ OCNr×(µr1+µr2),

ỹr = Q†
ryr, r = 1, 2. (3.49)

The functionalities of the receive filters Qt, t = 1, 2, are (i) to map the received signal

in a (µr1 + µr2)-dimensional sub-space, which allows us to null out the interference

terms by using transmit filters Ψrt, r, t = 1, 2, and (ii) to exploit the null spaces of the

channel matrices to attain the highest MG.

Similar to the previous section, it is shown that if the numbers of data streams µrt,

r, t = 1, 2, satisfy a set of inequalities, then it is possible to deign Qt and Ψrt to meet

the desired features explained earlier. Consequently, the system is decomposed into

two non-interfering MIMO multi-access sub-channels (see Fig. 3.4).
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Next, we explain how to select the design parameters including the numbers of data

streams µrt, r, t = 1, 2 and the transmit/receive filters. Again, the primary objective is

to prevent the saturation of the rate of each stream in the high SNR regime. In other

words, the MG of the system is µ11 + µ12 + µ21 + µ22.

Similar to the previous sub-section, we define the parameters ζrt ,r, t = 1, 2, as

follows.

• ζ11 denotes the dimension of Ω(H†
21Q2).

• ζ21 denotes the dimension of Ω(H†
11Q1).

• ζ12 denotes the dimension of Ω(H†
22Q2).

• ζ22 denotes the dimension of Ω(H†
12Q1).

To facilitate the derivations, we use the auxiliary variables M ′
t , N ′

r, and µ′rt, for

r, t = 1, 2. For each case, the variables M ′
t and N ′

r are computed directly as a function

of Mt and Nr for r, t = 1, 2. Then, the auxiliary integer variables µ′rt, r, t = 1, 2, are
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selected such that the following constraints are satisfied,

µ′11 : µ′11 + µ′21 + µ′22 ≤ M ′
1, (3.50)

µ′21 : µ′11 + µ′21 + µ′12 ≤ M ′
1, (3.51)

µ′22 : µ′22 + µ′12 + µ′11 ≤ M ′
2, (3.52)

µ′12 : µ′22 + µ′12 + µ′21 ≤ M ′
2, (3.53)

µ′11 + µ′12 ≤ N ′
1, (3.54)

µ′22 + µ′21 ≤ N ′
2. (3.55)

Each of the first four inequalities corresponds to one of the parameters µ′rt, r, t = 1, 2,

in the sense that if µ′rt, r, t = 1, 2, is zero, the corresponding inequality is removed from

the set of constraints. After choosing µ′rt, r, t = 1, 2, for each case, µrt, r, t = 1, 2, are

computed as function of µ′rt, r, t = 1, 2.

Similar to scheme one, to achieve the highest MG, we choose µ′rt, r, t = 1, 2 subject

to (3.50) to (3.55) such that µ′11 + µ′12 + µ′21 + µ′22 is maximum.

In what follows, for each of the four cases, we explain:

(i) How to compute the auxiliary variables M ′
t and N ′

r as a function of Mt and Nr,

r, t = 1, 2,

(ii) After choosing the auxiliary variables µ′rt, r, t = 1, 2, satisfying (3.50) to (3.55),

how to compute µrt, r, t = 1, 2,

(iii) How to choose the receive filters Qt, t = 1, 2,
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(iv) How to compute ζrt, r, t = 1, 2.

Having completed these steps, the procedure of computing the filters Ψ†
rt, r, t = 1, 2,

is similar for all cases. Later, we will show that this scheme decomposes the system

into two non-interfering multi-access channels.

Scheme II – Case I: M1 ≥ M2 ≥ N1 ≥ N2

In this case, the system is irreducible type II. Therefore, the equivalent system is

the same as the original system, i.e., N ′
r = Nr, r = 1, 2 and M ′

t = Mt, t = 1, 2. Using

the above parameters, we choose µ′rt, r, t = 1, 2, subject to (3.50) – (3.55). Similar to

Scheme I – Case I, we have µrt = µ′rt, r, t = 1, 2. Q1 and Q2 are randomly chosen from

OCN1×(µ11+µ12) and OCN2×(µ21+µ22), respectively.

According to the definition of ζrt, r, t = 1, 2, it is easy to see that

ζ11 = µ21 + µ22, ζ12 = µ21 + µ22, ζ21 = µ12 + µ11, ζ22 = µ11 + µ12. (3.56)

Scheme II – Case II: M1 ≥ N1 > M2 ≥ N2

In this case, at the receiver one, the signal coming from transmitter two does not have

any component in the (N1−M2)–dimensional subspace N(H†
12). This sub-space can be

exploited to increase the number of data streams sent from transmitter one to receiver

one by N1 − M2 without restricting the available signaling space at the transmitter

two and at the receiver two. Consequently, the system is reduced to a system with

(M ′
1,M

′
2, N

′
1, N

′
2) =

(
M1 − {N1 −M2},M2, N1 − {N1 −M2}, N2

)
antennas, or

M ′
1 = M1 + M2 −N1, M ′

2 = M2, N ′
1 = M2, N ′

2 = N2. (3.57)
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It is easy to see that M ′
1 ≥ M ′

2 ≥ N ′
1 ≥ N ′

2, i.e. the original system is reducible to type

II. We choose µ′rt, r, t = 1, 2, subject to (3.50) – (3.55). Then, we have

µ11 = µ′11 + N1 −M2, µ12 = µ′12, µ21 = µ′21, µ22 = µ′22. (3.58)

Q1 is chosen as,

Q1 ∈ OCN1×(µ11+µ21), Q1 = [Σ1,Σ2], (3.59)

where,

Σ1 ∈ OCN1×(N1−M2), Σ1 ∈ N(H†
12), (3.60)

Σ2 = OCN1×(µ′11+µ12), Σ2⊥Σ1. (3.61)

Q2 is randomly selected from OCN2×(µ21+µ22).

It is easy to see that,

ζ11 = µ21 + µ22, ζ12 = µ21 + µ22, ζ21 = µ12 + µ11, ζ22 = µ′11 + µ12. (3.62)

Scheme II – Case III: M1 ≥ N1 ≥ N2 > M2 and M1 + M2 ≥ N1 + N2

In this case, at receiver one, the signal coming from transmitter two has no component

in the (N1 − M2)– dimensional sub-space N(H†
12). This sub-space can be exploited

to increase the number of data streams sent from transmitter one to receiver one by

N1 − M2 without restricting the available signaling space at transmitter two and at

receiver two. In addition, at receiver two, the signal coming from transmitter two has

no component in the (N2−M2)– dimensional sub-space N(H†
22). This sub-space can be
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exploited to increase the number of data streams sent from transmitter one to receiver

two by N2−M2, without restricting the available signaling space at transmitter two and

at receiver one. Therefore, the reduced system has (M ′
1,M

′
2, N

′
1, N

′
2) antennas, where

M ′
1 = M1 + 2M2 −N1 −N2, M ′

2 = M2, N ′
1 = M2, N ′

2 = M2. (3.63)

M ′
1 ≥ M ′

2 ≥ N ′
1 ≥ N ′

2. Therefore, the original system is reducible to type II.

After choosing µ′rt, r, t = 1, 2, subject to (3.50) – (3.55), we have

µ11 = µ′11 + N1 −M2, µ12 = µ′12, µ21 = µ′21 + N2 −M2, µ22 = µ′22. (3.64)

Q1 is chosen as,

Q1 ∈ OCN1×(µ11+µ21), Q1 = [Σ1,Σ2], (3.65)

where,

Σ1 ∈ OCN1×(N1−M2) Σ1 ∈ N(H†
21), (3.66)

Σ2 = OCN1×(µ′11+µ12) Σ2⊥Σ1. (3.67)

Q2 is chosen as,

Q2 ∈ OCN2×(µ21+µ22), Q2 = [Σ3,Σ4], (3.68)

where,

Σ3 ∈ OCN2×(N2−M2), Σ3 ∈ N(H†
22), (3.69)

Σ4 = OCN2×(µ′21+µ22), Σ4⊥Σ3. (3.70)



Signaling over MIMO X Channels 66

Therefore, we have,

ζ11 = µ21 + µ22, ζ12 = µ′21 + µ22, ζ21 = µ12 + µ11, ζ22 = µ′11 + µ12. (3.71)

Scheme II – Case IV: N1 > M1 ≥ M2 ≥ N2 and M1 + M2 ≥ N1 + N2

In this case, (i) (N1 − M2)– dimensional sub-space N(H†
12) is utilized to increase the

number of data streams sent from transmitter one to receiver one by (N1 −M2), (ii)

(N1 − M1)– dimensional sub-space N(H†
11) is utilized to increase the number of data

streams sent from transmitter two to receiver one by (N1 −M1). Therefore, we have,

M ′
1 = M1 + M2 −N1, M ′

2 = M1 + M2 −N1, N ′
1 = M1 + M2 −N1, N ′

2 = N2,

µ11 = µ′11 + N1 −M2, µ12 = µ′12 + N1 −M1, µ21 = µ′21, µ22 = µ′22,

(3.72)

where M ′
1 ≥ M ′

2 ≥ N ′
1 ≥ N ′

2 i.e., the original system is reducible to type II. Q1 is

chosen as,

Q1 ∈ OCN1×(µ11+µ21), Q1 = [Σ1,Σ2], (3.73)

where,

Σ1 ∈ OCN1×(N1−M2+N1−M2), Σ1 ∈ N(H†
12) ∪ N(H†

11), (3.74)

Σ2 = OCN1×(µ′11+µ′12), Σ2⊥Σ1. (3.75)

Q2 is randomly selected from OCN2×(µ21+µ22). In this case, we have,

ζ11 = µ21 + µ22, ζ12 = µ21 + µ22, ζ21 = µ′12 + µ11, ζ22 = µ′11 + µ12. (3.76)
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The next steps of the algorithm are the same for all above cases. We define

H̃rt = Q†
rHrt, r, t = 1, 2. (3.77)

Ψrt ∈ OCMr×(Mr−ζrt), r, t = 1, 2, are chosen such that,

Ψ11⊥H̃†
21, (3.78)

Ψ21⊥H̃†
11, (3.79)

Ψ12⊥H̃†
22, (3.80)

Ψ22⊥H̃†
12. (3.81)

According to the definition of ζrt, we can always choose such matrices. Clearly, any

signal passed through the filters Ψ†
11 and Ψ†

12 has no interference at the output of

the filter Q2. Similarly, any signal passed through the filters Ψ†
21 and Ψ†

22 has no

interference at the output of the filter Q2. We define

Hrt = H̃rtΨrt, r, t = 1, 2, (3.82)

and

w̃r = Q†
rwr, r, t = 1, 2. (3.83)

This system is decomposed into two non-interfering multiple-access channels: (i) the

multi-access channel viewed by receiver one with channels H11 and H12, modeled by

(see Fig. 3.4),

ỹ1 = H11s11 + H12s12 + w̃1, (3.84)
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and, (ii) the multi-access channel viewed by receiver two with channels H21 and H22,

modeled by (see Fig. 3.4),

ỹ2 = H21s21 + H22s12 + w̃2. (3.85)
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Ψ22
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Q
†
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ỹ1

Q
†
2
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s̃21

s̃12

s̃22

Figure 3.3: Scheme Two: Decomposition of the System into Two Multi-Access Sub-

Channels
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Q
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Figure 3.4: Scheme Two: The Resulting Non-Interfering MIMO Multi-Access Sub-

Channels
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3.4 Performance Evaluation

The decomposition schemes, presented in Section 3.3, simplify the procedure of the

performance evaluation for the X channels in the high SNR regime. In what follows,

the MG of the X channel is studied. In addition, for some special cases, a metric known

as power offset is evaluated.

3.4.1 Multiplexing Gain

Theorem 3.3. The MIMO X channel with (M1,M2, N1, N2) antennas, decomposed into

two non-interfering broadcast or multi-access sub-channels, achieves the multiplexing

gain of µ11 + µ21 + µ12 + µ22, if µrt, r, t = 1, 2, are selected according to the schemes

presented in Section 3.3.

Proof. As explained in Sub-section 3.3.1, the X channel is decomposed into two non-

interfering broadcast sub-channels (3.45) and (3.46). The first broadcast sub-channel is

formed with the channel matrices H11 ∈ C(µ11+µ21)×(N1−ζ11), and H21 ∈ C(µ11+µ21)×(N2−ζ21).

The inequalities (3.9) and (3.12) guarantee that N1 − ζ11 ≥ µ11 and N2 − ζ21 ≥ µ21.

Therefore, as long as the matrix [H
†
11,H

†
21] is full rank, the broadcast sub-channel

achieves the MG of µ11 + µ21 by sending µ11 data streams to receiver one and µ21 data

streams to receiver two. It is easy to see that the [H
†
11,H

†
21] is full rank with probability

one. Similarly, the second broadcast sub-channel is formed with the channel matrices

H12 ∈ C(µ12+µ22)×(N1−ζ12), and H22 ∈ C(µ12+µ22)×(N2−ζ22). Constraints (3.11) and (3.12)
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respectively guarantee that N1 − ζ21 ≥ µ21 and N2 − ζ22 ≥ µ22. Therefore, as long as

the matrix [H
†
12,H

†
22] is full rank, the second broadcast sub-channel achieves the MG of

µ12 + µ22 by sending µ12 data streams to receiver one and µ22 data streams to receiver

two.

A similar arguments are valid for the scheme presented in Sub-section 3.3.2.

Next, the MG of some special cases is computed in a closed-form.

Corollary 3.4. For the special case of N1 = N2 = N in the scheme of Sub-section 3.3.1,

the MG of ρ = b4N
3
c is achievable where the total number of transmit antennas is equal

to ρ, which are divided between transmitters as M1 = dρ
2
e and M2 = bρ

2
c.

Proof. By direct verification in the Scheme I – Case I.

Corollary 3.5. In the special case of M1 = M2 = M in the scheme presented in

Sub-section 3.3.2, the MG of ρ = b4M
3
c is achievable where the total number of receive

antennas is equal to ρ, which are divided between receivers as N1 = dρ
2
e and N2 = bρ

2
c.

Proof. By direct verification in the Scheme II – Case I.

Regarding Theorem 3.3, the MG of the X channel outperforms the MG of the

interference channel with the same number of antennas. For example, the MGs of a X

channels with (3, 3, 3, 3), (4, 3, 4, 3), (9, 5, 8, 7) antennas are 4, 5, and 11 respectively,

while the MGs of the interference channels with the same number of antennas are

respectively 3, 4, and 9 [28]. For all the cases listed in Corollaries 3.4 and 3.5, the MG
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of the X channel is the same as the MG of the system with full cooperation between

transmitters or between receivers. For example, the multiplexing gains of the X channels

with (2, 2, 3, 3), (3, 3, 2, 2), (3, 2, 4, 4), and (3, 3, 5, 5) antennas are respectively 4, 4, 5,

and 6.

The improvement in MG of the X channels as compared to the interference channels

can be attributed to two phenomena as explained next.

• For simplicity, we consider an X channel with (2, 2, 3, 3) antennas, and assume

that transmitter t sends one data stream drt to receiver r, r = 1, 2. Therefore,

there are four data streams in the shared wireless medium. At receiver one, we

are interested to decode d11 and d12, while d22 and d21 are treated as interfer-

ence. The signaling scheme is designed such that at the receiver one terminal,

the interference terms d21 and d22 are received in the directions for which the dis-

tractive components are along each other. Therefore, at receiver one with three

antennas, one direction is occupied with the destructive component of both in-

terference terms d21 and d22, while we have two interference-free dimensions to

receive d11 and d12. The design scheme provides similar condition at the receiver

two terminal, while d22 and d21 are desired data streams and d22 and d21 are

interference terms. Such overlaps of interference terms in each receiver save the

available spatial dimensions to exploit the highest MG.

• It is well-known that the MG for a point-to-pint MIMO channel, a MIMO broad-
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cast channel, and a MIMO multi-access channel is the same, as long as in all

three systems we have the same total number of transmit antennas and the same

total number of receive antennas. The immediate conclusion is that to attain the

maximum MG, the cooperation at one side of the communication link is enough.

Now, consider an interference channel with M1 = M2 = 2 and N1 = N2 = 3, and

assume that two data streams d1 and d2 are sent from transmitter one to receiver

one and two data streams d3 and d4 are sent from transmitter two to receiver two.

In this scenario, the data streams d1 and d2 have the possibility of cooperation

at two points: (i) at transmitter one, and (ii) at receiver one. Similarly, the

data streams d3 and d4 have the possibility of cooperation at two points: (i) at

transmitter two, and (ii) at receiver two. Regarding the aforemention discussion,

the system does not gain MG from the provided cooperation for d1 and d2 at

both transmitter one and receiver one. Similar argument is valid for d3 and

d4. However, the performance of the system is deteriorated because there is no

possibility of cooperation between (d1, d2) and (d3, d4).

Let us consider an X channels with (2, 2, 3, 3) antennas. In the X channels, the co-

operation between d11 and d21 is provided at transmitter one, and the cooperation

between d12 and d22 is provided at transmitter two. Similarly, the cooperation

between d11 and d12 is provided at receiver one, and the cooperation between d21

and d22 is provided at receiver two.
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3.4.2 Power Offset

In Corollaries 3.4 and 3.5, some special cases are listed for which the MG of the X

channel is the same as the MG of a point-to-point MIMO system resulting from full

cooperation between transmitters and/or between receivers. However, it does not mean

that the system does not gain any improvement through cooperation. The gain of the

cooperation is reflected in a metric known as the power offset. The power offset is

defined as the negative of the zero-order term in the expansion of the sum-rate with

respect to the total power, normalized with multiplexing gain, i.e.,

R = ρ(log2(PT )− L∞) + o(1), (3.86)

where PT denotes the total power, and L∞ denotes the power offset in 3dB unit. In

this definition, it is assumed that the noise is normalized as in system model (3.3). The

power offset was first introduced in [49] to evaluate the performance of the different

CDMA schemes. Later, the power offset for MIMO channels in [36] and some special

cases of MIMO broadcast channels in [30] were computed. In what follows, the result

of [30] is adopted to compute the power offset of some special cases of MIMO X channels.

Theorem 3.6. In an X channel with (M1,M2, N1, N2) = (2k̄, 2k̄, 3k̄, 3k̄) antennas

(k̄ is a positive integer number), where the entries of channel matrices have Rayleigh

distribution, if the decomposition scheme is employed, the power offset is equal to,

L∞(M1,M2, N1, N2) = L∞(2k̄, 2k̄)− 1

2

(
log2(α) + log2(1− α)

)
, (3.87)
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in 3dB units, where P1 = αPT , P2 = (1− α)PT , 0 ≤ α ≤ 1,

L∞(M,N) = log2 M +
1

ln(2)


γ̄ + 1−

M̃−Ñ∑
i=1

1

i
− M̃

Ñ

M̃∑

i=M̃−Ñ+1

1

i


 , (3.88)

γ̄ = 0.5772, M̃ = max{M, N}, and Ñ = min{M, N}. Furthermore, the power offset of

the X channel with (2k̄, 2k̄, 3k̄, 3k̄) antennas with respect to a MIMO Rayleigh Channel

with 4k̄ transmit antennas and 6k̄ receive antennas is equal to,

3

2 ln(2)

6k̄∑

i=2k̄+1

1

i
− 1− 1

2

(
log2(α) + log2(1− α)

)
(3.89)

in 3dB unit.

Proof. In this case, the transmit filter Q1, is randomly chosen from OC2k̄×2k̄, indepen-

dent of H11 and H21. In addition, the receive filters Ψ11 ∈ OC2k̄×2k̄ and Ψ21 ∈ OC2k̄×2k̄

are independent of H11, and H21, respectively. Therefore, the matrices H11, and H21,

defined in (3.42), have Rayleigh distribution. Similar arguments are valid for H12, and

H22. Therefore, the system is decomposed to two broadcast sub-channels, each with the

Rayleigh distribution. Therefore, the sum-rate of the MIMO broadcast sub-channel,

viewed from transmitter t, is approximated by [30]

2k̄[log2(Pt)− L∞(2k̄, 2k̄)] + o(1). (3.90)

By summation of the approximated formulas for the two MIMO broadcast sub-channels,

(3.87) is obtained.

In [36], it is proven that the power offset for a MIMO Rayleigh channel with M
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transmit and N receive antennas is obtained by (3.88). By substituting M = 4k̄ and

N = 6k̄ in (3.88), and subtracting (3.88) from (3.87), (3.89) is derived.

3.5 Joint Design

The decomposition schemes proposed in Section 3.3 simplify the signaling design and

the performance evaluation for the X channels. However, such decomposition schemes

deteriorate the performance of the system because: (i) Ψrt, r, t = 1, 2, are chosen such

that the interference terms are forced to be zero, while the statistical properties of

the interference should be exploited to design these filters, (ii) Qt, t = 1, 2 are chosen

randomly, while the gain of the channel matrices in the different directions should be

considered in choosing Qt, t = 1, 2. For example, consider an X channel with (2, 2, 3, 3)

antennas. In Sub-section 3.3.1, the receive filters Ψrt, r, t = 1, 2, are chosen such that

the interference of each broadcast sub-channel over the other one is forced to be zero.

In low SNR regimes, the performance of the system is improved by choosing whitening

filters for Ψrt, r, t = 1, 2, instead of zero-forcing filters. In high SNR, the whitening

filters converge to zero-forcing filters, and the resulting improvement diminishes. Note

that in the X channel with (2, 2, 3, 3), the transmit filters Qt, t = 1, 2, are such that

the entire two-dimensional spaces available at transmitter one and two are used for

signaling. Therefore, we can not improve the signaling scheme by modifying Qt, t = 1, 2.

In a system with (3, 3, 3, 3) antennas, the same arguments for Ψrt, r, t = 1, 2 are
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valid. In this case, the transmit filters Qt, t = 1, 2, are chosen randomly, therefore the

signaling space at each transmitter is confined to a randomly-selected two-dimensional

sub-space of a three-dimensional space. One can take advantage of the degrees of

freedom available for choosing Qt to find the signaling sub-spaces at transmitter one

and two for which the channels offer the highest gains.

Optimizing the filters Qt and Ψrt, r, t = 1, 2, depends on the signaling scheme

employed for the MIMO broadcast or multi-access sub-channels. On the other hand,

designing the signaling schemes for the sub-channels depends on the selected filters.

Therefore, we have to jointly develop the design parameters. In what follows, we

elaborate a joint design scheme based on a generalized version of Zero-Forcing Dirty

Paper Coding (ZF-DPC) scheme, presented in [37], for the resulting broadcast sub-

channels in Scheme I. In this scheme, the number of data streams µrt, r, t = 1, 2, and

also integer parameters µ′rt, r, t = 1, 2 are selected as explained in Sub-section 3.3.1. In

addition, we use filters Qt and Ψ†
rt, r, t, in a similar fashion as shown in Fig. 3.1 , but

with a different design.

According to the generalized ZF-DPC, explained in [37] for MIMO broadcast chan-

nels, the vectors s̃t, t = 1, 2, are equal to linear superpositions of some modula-

tion vectors where the data is embedded in the coefficients. The modulation matrix

Vt ∈ OC(µ1t+µ2t)×(µ1t+µ2t) is defined as

Vt = [v
(1)
t ,v

(2)
t , . . . ,v

(µ1t+µ2t)
t ], (3.91)
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where v
(i)
t , i = 1, . . . , µ1t +µ2t, denote the modulation vectors, employed by transmitter

t, to send µ1t data streams to receiver one and µ2t data streams to receiver two. The

vectors s̃1 and s̃2 are equal to

s̃1 = V1d1, (3.92)

s̃2 = V2d2, (3.93)

where the vector dt ∈ C(µ1t+µ2t)×1 represents the µ1t +µ2t streams of independent data.

The covariance of the vector dt is denoted by the diagonal matrix Pt, i.e. E[dtd
†
t ] =

Pt, t = 1, 2. At transmitter t, the data streams which modulate the vectors v
(i)
t ,

i = 1, . . . , µ′1t and i = µ′1t + µ′21 + 1, . . . , µ1t + µ′2t, are intended for the receiver one,

and the data streams which modulate the vectors v
(i)
t , i = µ′1t + 1, . . . , µ′1t + µ′2t and

i = µ1t + µ′2t + 1, . . . , µ1t + µ2t, are intended for receiver two. We define d1t and d2t as

d1t =




dt(1 : µ′11)

dt(µ
′
11 + µ′21 + 1 : µ11 + µ′21)


 , (3.94)

and

d2t =




dt(µ
′
11 + 1 : µ′11 + µ′21)

dt(µ11 + µ′21 + 1 : µ11 + µ21)


 , (3.95)

which represent the data streams, sent by transmitter t to receiver one and two, re-

spectively. The modulation and demodulation vectors are designed such that the data

stream i has no interference over the data stream j for j < i. Choosing the code-

word for the data stream j, the interference of the data stream j over data stream i is
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non-causally known, and therefore can be effectively canceled out based on the dirty-

paper-coding (DPC) theorem [7]. However, if the data streams i and j are sent to the

same receiver, none of them has interference over the other, and DPC is not needed.

At receiver one, to decode d11, the signal coming from transmitter two, i.e. H̃12V12d2,

is treated as interference, therefore the covariance of the interference plus noise, R11,

is equal to,

R11 = H̃12V2P2V
†
2H̃12 + I, (3.96)

where H̃12 is defined in (3.77). The received vector y1 is passed through the whitening

filter Ψ†
11 = R

− 1
2

11 . The output of Ψ†
11 is passed through the filter U†

11 which maximizes

the effective SNR. The design of U†
rt, r, t = 1, 2, is explained later. Similarly, to

decode d21 at receiver two, the signal from transmitter two, i.e. H̃22V2d2 is treated as

interference. The received vector y2 is passed through the whitening filter Ψ†
21 = R

− 1
2

21 ,

where

R21 = H̃22V2P2V
†
2H̃22 + I. (3.97)

The output of Ψ†
21 is passed through the filter U†

21 which maximizes the effective SNR.

Let us assume that the modulation matrix V2, the covariance matrix P2, and the

transmit filter Q2 are known, therefore one can compute Ψ†
11 and Ψ†

21. In the sequel,

we explain how to choose Q1, V1, P1, U11, and U21.

The following algorithm is proposed to compute the columns of the matrix Q1 ∈

OCM1×(µ11+µ21). The proposed algorithm is greedy in the sense that in each step, the di-
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rection along which the corresponding link has the highest gain is added to the columns

of the matrix Q1. In the algorithm, the following four sets of vectors are sequentially

included in the columns of Q1: (i) the µ′11 mutually orthogonal directions for which the

equivalent channel matrix Ψ†
11H11 has the highest gains, (ii) the µ′21 mutually orthog-

onal directions for which the equivalent channel matrix Ψ†
21H21 has the highest gains,

(iii) if µ11−µ′11 6= 0, a set of directions such that N(H21) ∈ Ω(Q1), (iv) if µ21−µ′21 6= 0,

a set of directions such that N(H11) ∈ Ω(Q1). Each set of vectors are chosen orthogonal

to the previously selected columns. In what follows, we detail the algorithm in four

stages.

Stage I

• Choose q
(i)
1 , i = 1, . . . , µ′11, as µ′11 right singular vectors (RSV) corresponding to

the µ′11 largest singular values of the matrix Ψ†
11H11.

Stage II

• Choose Φ1 = [φ1, . . . , φµ11+µ21−µ′11
] such that [Φ1,q

(1)
1 , . . . ,q

(µ′11)
1 ] forms a unitary

matrix.

• Choose q′(i)1 , i = 1, . . . , µ′21, as the µ′21 RSVs corresponding to the µ′21 largest

singular values of the matrix Ψ†
21H21Φ1.

• Let q
(µ′11+i)
1 = Φ1q

′(i)
1 , i = 1, . . . , µ′21.

Stage III
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• If µ11 − µ′11 6= 0, then choose q
(i)
1 , i = µ′11 + µ′21 + 1, . . . , µ11 + µ′21, such that

Ω([q
(1)
1 , . . . ,q

(µ11+µ′21)
1 ]) = Ω([q

(1)
1 , . . . ,q

(µ′11+µ′21)
1 , N(H21)]).

Stage IV

• If µ21 − µ′21 6= 0, then choose q
(i)
1 , i = µ11 + µ′21 + 1, . . . , µ11 + µ21, such that

Ω([q
(1)
1 , . . . ,q

(µ11+µ21)
1 ]) = Ω([q

(1)
1 , . . . ,q

(µ11+µ′21)
1 , N(H11)]).

After computing Q1, the broadcast sub-channel with H11 and H21, defined in Sub-

section 3.3.1 as Hr1 = Ψ†
r1Hr1Q1, r = 1, 2, is formed. Here, we explain how to choose

the modulation and demodulation vectors for this broadcast sub-channel, based on the

scheme presented in [37]. In the scheme presented in [37], the modulation vectors for

different users can be selected iteratively in a specific order. Here, the modulation

vectors are selected in the following order: (i) µ′11 modulation vectors for receiver one,

(ii) µ′21 modulation vectors for receiver two, (iii) µ11 − µ′11 modulation vectors for re-

ceiver one, (iv) µ21 − µ′21 modulation vectors for receiver two. Here is the detail of the

proposed scheme to find the modulation and the demodulation vectors.

Step one - Choosing µ′11 modulation vectors for receiver one

1) Respectively choose v
(i)
1 and u

(i)
11 , i = 1, . . . , µ′11, as RSV and left singular vector

(LSV), corresponding to the ith largest singular value, σ
(i)
11 , of the matrix H11.

Therefore, we have [25]

σ
(i)
11 =‖ H11v

(i)
1 ‖, i = 1, . . . , µ′11, (3.98)
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u
(i)
11 =

H11v
(i)
11

σ
(i)
11

, i = 1, . . . , µ′11. (3.99)

With the above choice of the matrix Q1, it is easy to see that v
(i)
1 is equal to the

column i of the identity matrix I(µ11+µ21)×(µ11+µ21), for i = 1, . . . , µ′11.

Step two - Choosing µ′21 modulation vectors for receiver two

2) Define ϕ
(1)
1 , . . ., ϕ

(µ11+µ21−µ′11)
1 such that [v

(1)
1 , . . . ,v

(µ′11)
1 , ϕ

(1)
1 , . . . , ϕ

(µ11+µ21−µ′11)
1 ]

forms a unitary matrix. Then, define Ĥ21 as

Ĥ21 = H21[ϕ
(1)
1 , . . . , ϕ

(µ11+µ21−µ′11)
1 ]. (3.100)

3) Respectively choose v
(i)
21 and u

(i)
21 as the RSV and LSV, corresponding to the ith

largest singular value σ
(i)
21 of the matrix Ĥ21. Therefore, we have,

σ
(i)
21 =‖ Ĥ21v

(i)
21 ‖, i = 1, . . . , µ′21, (3.101)

u
(i)
21 =

Ĥ21v
(i)
21

σ
(i)
21

, i = 1, . . . , µ′21. (3.102)

Then, let

v
(µ′11+i)
1 = [ϕ

(1)
1 , . . . , ϕ

(µ11+µ21−µ′11)
1 ]v

(i)
21 , i = 1, . . . , µ′21. (3.103)

It is easy to see that with the aforementioned choice of Q1, v
(µ′11+i)
1 is equal to

the column µ′11 + i of the matrix I(µ11+µ21)×(µ11+µ21), for i = 1, . . . , µ′21.

Step three - Choosing µ11 − µ′11 modulation vectors for receiver one
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4) Define ϕ
(1)
2 , . . ., ϕ

(µ11+µ21−µ′11−µ′21)
2 such that [v

(1)
1 , . . . ,v

(µ′11+µ′21)
1 , ϕ

(1)
2 , . . . , ϕ

(µ11+µ21−µ′11−µ′21)
2 ]

forms a unitary matrix. Then, define Ĥ11 as

Ĥ11 = H11[ϕ
(1)
2 , . . . , ϕ

(µ11+µ21−µ′11−µ′21)
2 ]. (3.104)

5) Respectively choose v
(i)
11 and u

(i+µ′11)
11 as the RSV and LSV, corresponding to the ith

largest singular value of the matrix Ĥ11, denoted by σ
(i+µ′11)
11 , for i = 1, . . . , µ11 −

µ′11. Therefore, we have,

σ
(i+µ′11)
11 =‖ Ĥ11v

(i)
11 ‖, i = 1, . . . , µ11 − µ′11, (3.105)

u
(i+µ′11)
11 =

Ĥ11v
(i)
11

σ
(i+µ′11)
11

, i = 1, . . . , µ11 − µ′11. (3.106)

Then,

v
(µ′11+µ′21+i)
1 = [ϕ

(1)
2 , . . . , ϕ

(µ11+µ21−µ′11−µ′21)
2 ]v

(i)
11 , i = 1, . . . , µ11 − µ′11. (3.107)

Step four - Choosing µ21 − µ′21 modulation vectors for receiver two

6) Define ϕ
(1)
3 , . . ., ϕ

(µ21−µ′21)
3 such that [v

(1)
1 , . . . ,v

(µ11+µ′21)
1 ,ϕ

(1)
3 , . . . , ϕ

(µ21−µ′21)
3 ] forms

a unitary matrix. Then, define
̂̂
H21 as

̂̂
H21 = H21[ϕ

(1)
3 , . . . , ϕ

(µ21−µ′21)
3 ]. (3.108)

7) Respectively choose v
(i)
21 and u

(i+µ′21)
21 as RSV and LSV, corresponding to the ith

largest singular value of the matrix
̂̂
H11, denoted by σ

(i+µ′21)
21 , for i = 1, . . . , µ21 −

µ′21. Therefore, we have,

σ
(i+µ′21)
21 =‖ ̂̂

H21v
(i)
21 ‖, i = 1, . . . , µ21 − µ′21, (3.109)
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u
(i+µ′21)
21 =

Ĥ21v
(i)
21

σ
(i+µ′21)
21

, i = 1, . . . , µ21 − µ′21. (3.110)

Then, let

v
(µ11+µ′21+i)
1 = [ϕ

(1)
3 , . . . , ϕ

(µ21−µ′21)
3 ]v

(i)
21 , i = 1, . . . , µ11 − µ′11, (3.111)

As shown in [37], by using this scheme, the broadcast channel, viewed from trans-

mitter one is reduced to a set of parallel channels with gains σ
(i)
11 , i = 1, . . . , µ11 and

σ
(j)
21 , j = 1, . . . , µ21. For power allocation, the power P1 can be equally divided among

the data streams or the water-filling algorithm can be used for optimal power alloca-

tion [19].

Similar procedure is applied for transmitter two to compute Q2, V2, U12, U22, P2,

where

R22 = H21V1P1V
†
1H

†
21 + I, (3.112)

Ψ†
22 = R

− 1
2

22 , (3.113)

R12 = H11V1P1V
†
1H

†
11 + I, (3.114)

Ψ†
12 = R

− 1
2

12 . (3.115)

Note that to compute Q1, V1, and P1, we need to know Q2, V2, and P2 (Ψ11,

and Ψ21 are functions of Q2, V2, and P2), and vice versa. To derive the modulation

vectors, we can randomly initialize the matrices, and iteratively follow the scheme, until
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the resulting matrices converge. Simulation results show that the algorithm converges

very fast.

The dual of the proposed scheme here can be employed to improve Scheme II,

presented in section 3.3.2.

3.6 Simulation Results

In the simulation part, we assume that the entries of the channel matrices have complex

normal distribution with zero mean and unit variance.

Figure. 3.5 shows the sum-rate versus power for a X channel with (2, 2, 3, 3) anten-

nas, where the decomposition scheme presented in Section 3.3 is employed. Therefore,

the achievable sum-rate is indeed equal the twice of the sum-capacity of a MIMO

broadcast channel with 2 transmit antennas, and two user each with one antennas.

The sum-capacity of the MIMO broadcast channel is fully characterized in [63,64,71].

To compute the sum-capacity, the effective algorithm presented in [70] is utilized. As

a comparison, the capacity of a point-to-point MIMO channel with 4 transmit and 6

receive antennas is depicted. It is easy to see that both curves have the same slope

(multiplexing gain). In addition, as expected by (3.89), the sum-rate of the X channel

has 6.2 dB power loss in comparison with that of the MIMO channel.

Figure 3.6 shows the sum-rate versus power for an X channel with (2, 2, 3, 3) and

(3, 3, 3, 3) antennas, where ZD-DPC scheme is used. As it is shown in Fig. 3.6, for the
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case of (2, 2, 3, 3) antennas, the joint design scheme has better performance than the

decomposition scheme in low SNR regimes. The improvement is mainly due to utilizing

whitening filters instead of zero-forcing filters. It is easy to see that in the high SNR,

the whitening filters converge to zero-forcing filters. Note that in this case, optimizing

Qt, t = 1, 2 offers no improvement. The reason is that the entire two-dimensional

space available at each transmitter is utilized and there is no room for improvement.

As depicted in Fig. 3.6, for the case of (3, 3, 3, 3)-antenna X channel, the joint design

scheme has better performance as compared with the decomposition scheme in both

high and low SNR regimes. The improvement relies on the fact that in this case at

each transmitter, a two-dimensional sub-space of the three-dimensional space is needed

for signaling. By using the scheme presented in Section 3.5, a sub-space for which the

channel gains are optimal is chosen.

3.7 Conclusion

In a multiple-antenna system with two transmitters and two receivers, a new non-

cooperative scenario of data communication is studied in which each receiver receives

data from both transmitters. It is shown that by using some linear filters at the

transmitters and at the receivers, the system is decomposed into two broadcast or

two multi-access sub-channels. Using the decomposition scheme, it is shown that

this signaling method outperforms other known non-cooperative schemes in terms
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of the achieved multiplexing gain. In particular, it is shown that for a system with

(d1
2
b4N

3
ce, b1

2
b4N

3
cc, N,N) and (N, N, d1

2
b4N

3
ce, b1

2
b4N

3
cc) antennas, the multiplexing gain

of b4N
3
c is achievable, which is the MG of the system where full-cooperation between

the transmitters or between the receivers is provided.



Chapter 4

Fairness in Multiuser Systems with

Polymatroid Capacity Region

4.1 Introduction

In the multi-user scenarios, multiple transmitters/receivers share a common communi-

cation medium, and therefore, there is an inherent competition in accessing the chan-

nel. Information theoretic results for such systems imply that in order to achieve a high

spectral efficiency, the users with stronger channel should have a higher portion of the

resources. The drawback to this is the loss of the fairness among the users. Providing

fairness, while achieving high-spectral efficiency, is thus a challenging problem.

A lot of research has addressed this problem and suggested different criteria to design

a fair system. One of the first criteria is known as max-min measure. In this method,

89
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the main effort is to maximize the minimum rate of the users, by giving the highest

priority to the user with the worst channel. In other words, this method penalizes the

users with better channel and sacrifices overall efficiency.

By relaxing the strict condition on fairness, the spectral efficiency can be increased.

By compromising between fairness and throughput, proportional fairness is proposed

in [32]. Based on this criterion, the rates of users with a stronger channel can be

increased with the cost of decreasing the rates of users with a weaker channel. Any

change in the rates is acceptable if the total proportional increase in the rates of some

users is larger than the total proportional decrease in the rates of the rest. In fact,

by relaxing the strict condition on fairness, the spectral efficiency increases. In [23], a

criterion based on Nash Bargaining solution in the context of Game Theory is proposed.

This method generalizes the proportional fairness and increases the efficiency of the

system.

All of the aforementioned methods deal with a general multi-user system. However,

for a wide class of multi-user systems, the capacity region has a special structure that we

can exploit to provide fairness. Particularly in some multiuser systems, the boundary of

the capacity region includes a facet on which the sum-rate is maximum (sum-capacity

facet). In such systems, one can benefit from the available degrees of freedom, and

determine the fairest rate-vector on the sum-capacity facet.

As a special case, we consider a class of multi-user systems, in which the whole or

a subset of the capacity region which includes the corner points and the sum-capacity
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facet forms a structure known as polymatroid. For this class of multi-user systems,

the sum-capacity facet has a! corner points, where a is the number of users with non-

zero power (active users). The sum-capacity facet is the convex hull of these corner

points. This means that the interior points of the sum-capacity facet can be attained

by time-sharing among such corner points. As an example of such systems, it is shown

that the capacity region of multiaccess channels (MAC) with fixed and independent

input distributions forms a polymatroid [59]. In MAC, the sum-capacity is achieved

by successive decoding. Applying different orders for the users in successive decoding

results in different rate-vectors, all with the sum-rate equal to the sum-capacity. The

resulting rate-vectors correspond to the corner points of the sum-capacity facet. Any

point in the convex hull of these corner points is on the boundary. In [73], it is proven

that the Marton inner bound (see [42]) for capacity region of the broadcast channel

under fixed joint probability of the auxiliary and input variables, with some conditions,

has a polymatroid structure1. As another example, we will show that a subset of the

capacity region for multiple-input multiple-output (MIMO) broadcast channel which

includes the corner points forms a polymatroid.

In [59], the optimal dynamic power allocation strategy for time-varying single-

1Throughout the chapter, we deal with the systems where the underlying capacity region or a its

subset which included sum-capacity facet forms a polymatroid. Apparently, the proposed method can

be applied over any achievable region which has the similar geometrical structure. In this case, the

sum-capacity facet is replaced with maximum-sum-rate facet.
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antenna multiple-access channel is established. To this end, the polymatroid properties

of the capacity region for time-invariant multiple-access channel with fixed input distri-

butions have been exploited. In [53], the polymatroid properties have been used to find

a fair power allocation strategy. This problem is formulated by representing a point on

the face of the contra-polymatroid (see [24,59]) as a convex combination of its extreme

points.

This article aims at finding a point on the sum-capacity facet which satisfies a notion

of fairness among active users by exploiting the properties of polymatroids. In order

to provide fairness, the minimum rate among all users is maximized (max-min rate).

In the case that the rate of some users can not increase further (attain the max-min

value), the algorithm recursively maximizes the minimum rate among the rest of the

users. Since this rate-vector is in the face of the polymatroid, it can be achieved by time

sharing among the corner points. It is shown that the problem of deriving the time-

sharing coefficients to attain this point can be decomposed to some lower-dimensional

subproblems. An alternative approach to attain an interior point for multiple access

channels is rate splitting [21, 45]. This method is based on splitting all input sources

except one into two parts and treating each spilt input as two virtual inputs (or two

virtual users). By splitting the sources appropriately and successive decoding of virtual

users in a suitable order, any point on the sum-capacity facet can be attained [21, 45].

Similar to the time-sharing procedure, we show that the problem of rate-splitting can

be decomposed to some lower-dimensional subproblems.
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There are cases that the complexity of achieving interior points is not feasible. This

motivates us to compute the corner point for which the minimum rate of the active

users is maximized (max-min corner point). A simple greedy algorithm is introduced

to find the max-min corner point.

The rest of the chapter is organized as follows. In Section 4.2, the structure of the

polymatroid is presented. In addition, the relationship between the capacity region of

some channels and the polymatroid structure is described. Section 4.3 discusses the

case in which the optimal fair corner point is computed. In Section 4.4, the optimal fair

rate-vector on the sum-capacity facet is computed by exploiting polymatroid structures.

In addition, it is shown that the problem of deriving the time-sharing coefficients and

rate-splitting can be solved by decomposing the problem into some lower-dimensional

subproblems.

4.2 Preliminaries

4.2.1 Polymatroid Structure

Defintion 4.1. [68, Ch. 18]: Let E = {1, 2, . . . , a} and f : 2E −→ R+ be a set

function. The polyhedron

B(f, E) = {(x1, . . . , xa) : x(S) ≤ f(S),∀S ⊂ E, ∀xi ≥ 0} (4.1)
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is a polymatroid, if the set function f satisfies

(normalized) f(∅) = 0 (4.2)

(increasing) f(S) ≤ f(T ) if S ⊂ T (4.3)

(submodular) f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) (4.4)

Any function f that satisfies the above properties is termed as rank function. Note that

(4.1) imposes 2|E| constraints on any given vector (x1, . . . , xa) ∈ B(f, E).

Corresponding to each permutation π of the set E, the polymatroid B(f, E) has a

corner point υ(π) ∈ Ra
+ which is equal to:

υπ(i)(π) =





f({π(i)}) i = 1

f({π(1), . . . , π(i)})

−f({π(1), . . . , π(i− 1)}) i = 2, . . . , a

(4.5)

Consequently, the polymatroid B(f, E) has a! corner points corresponding to different

permutations of the set E. All the corner points are on the facet x(E) = f(E). In

addition, any point in the polymatroid on the facet x(E) = f(E) is in the convex hull

of these corner points. The hyperplane x(E) = f(E) is called as dominant face, or

simply face of the polymatroid. In this chapter, we use the term sum-capacity facet to

denote the face of the polymatroid.
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4.2.2 Capacity Region and Polymatroid Structure

For a wide class of multi-user systems, the whole or a subset of the capacity region forms

a polymatroid structure. As the first example, consider a multiaccess system with a

users, where the distribution of inputs are independent and equal to p(x1), . . . , p(xM).

Then, the capacity region of such a system is characterized by [2, 35]

{
ϑ ∈ Ra

+|ϑ(S) ≤ I (y; {xi, i ∈ S}|{xi, i ∈ Sc}) ∀S ⊂ E
}

, (4.6)

where y is the received signal, ϑ represents rate vector, I denotes the mutual informa-

tion, and Sc is equal to E − S. It has been shown that the above polyhedron forms a

polymatroid [59].

As the second example, we consider the capacity region of a multiple-antenna broad-

cast system. In the sequel, we show that a subset of the capacity region which includes

the corner points and sum-capacity facet forms a polymatroid.

Consider a MIMO Broadcast Channel (MIMO-BC) with M transmit antennas and

K users, where the rth user is equipped with Nr receive antennas. In a flat fading

environment, the baseband model of this system is given by

yr = Hrs + wr, 1 ≤ r ≤ K, (4.7)

where Hr ∈ CNr×M denotes the channel matrix from the base station to user r, s ∈ CM×1

represents the transmitted vector, and yr ∈ CNr×1 signifies the received vector by user

r. The vector wr ∈ CNr×1 is a white Gaussian noise with zero-mean and identity-

matrix covariance. Consider an order of the users (π(1), π(2), . . . , π(K)). By assuming
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that user π(i) knows the codewords selected for the users π(j), j = 1, . . . , i − 1, the

interference of the users π(j), j = 1, . . . , i−1, over user π(i) can be effectively canceled

based on dirty-paper-coding theorem [7]. Therefore, the rate of user π(i), i = 1, . . . , K,

is equal to

ϑπ(i) = log
det

(
INr,Nr + Hπ(i)

(∑
j≥i P

dual
π(j)

)
H†

π(i)

)

det
(
INr,Nr + Hπ(i)

(∑
j>i P

dual
π(j)

)
H†

π(i)

) , (4.8)

where Pdual
π(j) is the covariance of the signal vector to user π(j). The capacity region

is characterized as the convex hull of the union of such rate-vectors over all permu-

tations (π(1), π(2), . . . , π(K)) and over all positive semi-definite covariance matrices

Pdual
i , i = 1, . . . , K such that Tr

(∑K
r=1 Pdual

r

)
≤ PT , where PT denotes the total trans-

mit power [67]. In [3, 63, 64], a duality between the MIMO-BC and the MIMO-MAC

is established. In the dual MIMO-MAC, the channel between user r and the base sta-

tion is H†
r and the covariance of the power allocated to user r is Pr. The relationship

between Pr and Pdual
r , r = 1, . . . , K, has been derived [63]. The duality is used to

characterize the sum-capacity of the MIMO-BC as follows

RSum-Capacity = max
P1,...,PK

log det

(
IM,M +

K∑
r=1

H†
rPrHr

)
.

s.t.

K∑
r=1

Tr(Pr) ≤ PT ,

Pr º 0 (4.9)

The above optimization problem determines the power allocated to each user in the dual

MIMO-MAC, and consequently, the power of each user in the MIMO-BC. Note that
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only a subset of users is active and the power allocated to the rest is zero. Equation (4.9)

determines the so-called sum-capacity facet. If the cardinality of the set of active users

is a, i.e. E = {1, · · · , a}, the sum-capacity facet has a! corner points corresponding

to different permutations of the active users. Note that the rates of the non-active

users remain zero regardless of the permutation. The corner point corresponding to a

permutation can be computed using (4.8). Assuming the active users are indexed by

i = 1, . . . , a, we define

Di = H†
iP

∗
i Hi, i = 1, . . . , a, (4.10)

where P∗
i , i = 1, . . . , a, correspond to optimizing matrices in (4.9). It is shown that the

corner point in (4.8) can be reformulated as [63]

ϑπ(i) = log
det

(
IM,M +

∑
j≤i Dπ(j)

)

det
(
IM,M +

∑
j<i Dπ(j)

) , i = 1, . . . , a, (4.11)

which is the corner point of the dual MAC.

Regarding the polymatroid structure of the multiaccess channels and considering the

duality of the MIMO-MAC and MIMO-BC, we can observe the polymatroid structure of

a subset of MIMO-BC capacity region which includes the sum-capacity facet. However,

to provide a better insight about the problem, we introduce a special polymatroid and

establish its relationship with the capacity region of the MIMO-BC. For a set of positive

semi-definite matrices Di, we define the set function g as,

g(S) = log det (I + D(S)) for S ⊂ E. (4.12)
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Lemma 4.2. Given g(S) defined in (4.12), the polyhedron B(g, E) defined as follows

is a polymatroid.

B(g, E) = {(x1, . . . , xa) ∈ Ra
+ : x(S) ≤ g(S), ∀S ⊂ E}. (4.13)

Proof. Clearly, g(∅) = 0. Assume B º 0 and C º 0 are two Hermitian matrices.

If B − C º 0, then det(B) ≥ det(C) [67, Proposition I.2]. Furthermore, if ∆ º 0,

then [67, Proposition I.3]

det(∆ + B + C)

det(∆ + B)
≤ det(B + C)

det(B)
. (4.14)

Using above properties, it is straight-forward to prove (4.3) and (4.4) for the set function

g(.).

In the set function g(S), define Di as defined in (4.10). It is easy to verify that the

polymatroid B(g, E) is a subset of the capacity region of the MIMO-BC. The hyperplane

x(E) = g(E) and its corner points (4.11) are the same as the sum-capacity facet and

its corner points. Due to this property, we focus on the polymatroid B(g, E) (see Fig.

4.1).

4.3 The Fairest Corner Point

As mentioned, in some cases, the complexity of computing and implementing an ap-

propriate time-sharing or rate-splitting algorithm is not feasible. This motivates us to

compute the corner point for which the minimum rate of the active users is maximized
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 Corner Point 1

O

A
B

C

D

Corner Point 2

π = (1, 2)

π = (2, 1)

ϑ1

ϑ2

Figure 4.1: Capacity Region of the MIMO-BC and Its Corner Points. The Region OABCD

Is a Polymatroid. The Line BC Is the Sum-Capacity Facet.

(max-min corner point). In the following, we present a simple greedy algorithm to find

the max-min corner point of a general polymatroid B(f, E).

Algorithm 4.3.

1. Set α = a, S = ∅.

2. Set π∗(α) as

π∗(α) = arg min
z∈E,z /∈S

f (E − S − {z}) . (4.15)

3. If α > 1, then S ←− S ∪ {π∗(α)}, α ←− α− 1, and go to Step 2; otherwise stop.

The following theorem proves the optimality of the above algorithm.

Theorem 4.4. Let the vector υ(π∗) be the corner point of the polymatroid B(f, E)

corresponding to the permutation π∗ = (π∗(1), . . . , π∗(a)). For any other permutation
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π = (π(1), . . . , π(a)),

min
i

υπ∗(i)(π
∗) ≥ min

i
υπ(i)(π). (4.16)

Proof. Assume that in the permutation π∗, the user t̂ which is located in position l in

the permutation π∗ ( i.e. t̂ = π∗(l)) has the minimum rate

υπ∗(l)(π
∗) = min

i
υπ∗(i)(π

∗). (4.17)

Let us define two sets:

• The set of users located before π∗(l) in π∗: Φ = {π∗(1), . . . , π∗(l − 1)}.

• The set of users located after π∗(l) in π∗: Ψ = {π∗(l + 1), . . . , π∗(a)}.

Using (4.5), we have

υt̂(π
∗) = f(Φ ∪ {t̂})− f(Φ). (4.18)

In the following, we consider different scenarios which generate new permutations and

prove that in all cases, (4.16) is valid.

Case 1. Permutation in Φ and Ψ: By considering (4.18), it is apparent that any

permutation of the users in Φ and Ψ does not change the rate of the user π∗(l) (see

Fig. 4.2).

Case 2. Moving a set of users from Ψ to the set Φ: Assume a set Υ of users,

Υ ⊂ Ψ, is moved from Ψ to the set Φ to generate a new permutation π (see Fig. 4.3).

The rate of the user t̂ in the new permutation is equal to:

υt̂(π) = f(Φ ∪Υ ∪ {t̂})− f(Φ ∪Υ). (4.19)



Fairness in Multiuser Systems 101

t̂π =

t̂Φπ
∗

= Ψ

ΨΦ

Figure 4.2: Case 1. Permutation in Φ and Ψ.

From (4.4), we can show that

f(Φ ∪ {t̂}) + f(Φ ∪Υ) ≥ f(Φ ∪Υ ∪ {t̂}) + f(Φ). (4.20)

Using (4.18), (4.19), and (4.20), we conclude that υt̂(π) ≤ υt̂(π
∗), and therefore,

mini υπ(i)(π) ≤ mini υπ∗(i)(π
∗).

π =

t̂Φπ
∗

= Ψ

t̂ Ψ − ΥΦ ∪ Υ

Figure 4.3: Case 2. Moving a set of users from Ψ to the set Φ.

Case 3. Moving one or more users from the set Φ to the set Ψ (with or without

moving some users from the set Ψ to the set Φ): Assume that one or more users move

from Φ to Ψ (with or without moving some users from the set Ψ to the set Φ) to

generate the new permutation π. As depicted in Fig. 4.4, assume that the user ν is

positioned last in the permutation π among the users moved from Φ to Ψ (user π(1)

is positioned first and user π(a) is positioned last in the permutation π).
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Ψ

t̂ ν

Ω

t̂Φ

π =

π
∗

=

Figure 4.4: Case 3. Moving one or more users from the set Φ to the set Ψ (with or

without moving some users from the set Ψ to the set Φ).

Let Ω be the set of users located before the user ν in the permutation π. Using

(4.5), we have,

υν(π) = f(Ω ∪ {ν})− f(Ω). (4.21)

It is clear that,

{t̂} ∪ Φ− {ν} ⊂ Ω. (4.22)

Using (4.4) with S = Φ ∪ {t̂} and T = Ω, and regarding (4.22), we have,

f(Ω ∪ {ν})− f(Ω) ≤ f(Φ ∪ {t̂})− f(Φ ∪ {t̂} − {ν}). (4.23)

On the other hand, the user ν is in the set Φ in permutation π∗. It means that in Step

2 of the algorithm, this user has been compared with other users in the set Φ ∪ {t̂}

to be located in the position l, but the user t̂ has been chosen for the position, i.e.

f
(
Φ ∪ {t̂} − {t̂}) ≤ f

(
Φ ∪ {t̂} − {ν}), therefore,

f (Φ) ≤ f
(
Φ ∪ {t̂} − {ν}) . (4.24)



Fairness in Multiuser Systems 103

Using (4.18), (4.21), (4.23), and (4.24), we conclude that υν(π) ≤ υt̂(π
∗), and

therefore, we have mini υπ(i)(π) ≤ mini υπ∗(i)(π
∗). Note that the permutation of users

located before (or after) the user ν in the permutation π does not increase υν(π).

Remark: For multiple access channels, the above algorithm suggests that to attain

the fairest corner point with successive decoding, at each step, one should decode the

strongest user (the user with the highest rate, while the signals of the remaining users

are considered as interference). Note that in MAC, the corner point corresponding to

the specific permutation π is obtained by the successive decoding in the reverse order

of the permutation.

It is worth mentioning that by using a similar algorithm, one can find the corner

point for which the maximum rate is minimum. The algorithm is as follows:

Algorithm 4.5.

1. Set α = 1, S = ∅.

2. Set π∗(α) as

π∗(α) = arg max
z∈E,z /∈S

f (S + {z}) . (4.25)

3. If α < a, then S ←− S ∪ {π∗(α)}, α ←− α + 1, and go to Step 2; otherwise stop.

The optimality of the above algorithm can be proven by a similar method as used

to prove Theorem 4.4.
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4.4 Optimal Rate-Vector on the Sum-Capacity Facet

4.4.1 Max-Min Operation over a Polymatroid

In the following, the polymatroid properties are exploited to locate an optimal fair

point on the sum-capacity facet. For an optimal fair point, the minimum rate among

all the users should be maximized (max-min rate). For a sum-capacity of RSum-Capacity,

a fair rate allocation would ideally achieve an equal rate of
RSum-Capacity

a
for the a active

users. Although this rate-vector is feasible for some special cases (see Fig. 4.5), it is

not attainable in the general case (see Fig. 4.6). The maximum possible value for the

minimum entry of a vector x, where x ∈ B(f, E), can be computed using the following

lemma.

x1

x2

x3

x1 = x2 = x3

Figure 4.5: All-Equal Rate-Vector Is on

the Sum-Capacity Facet

x1

x2

x3

x1 = x2 = x3

Figure 4.6: All-Equal Rate-Vector Is

NOT on the Sum-Capacity Facet
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Lemma 4.6. In the polymatroid B(f, E), define

δ = max min
i∈E

xi.

s.t. (x1, . . . , xa) ∈ B(f, E). (4.26)

Then,

δ = min
S⊂E,S 6=∅

f(S)

|S| . (4.27)

Proof. Consider x ∈ B(f, E), and let σ = mini xi. Therefore,

∀S ⊂ E, σ|S| ≤ x(S). (4.28)

Noting ∀S ⊂ E, x(S) ≤ f(S) and using the above inequality, we have

∀S ⊂ E, σ|S| ≤ f(S). (4.29)

Consequently, σ ≤ minS⊂E, S 6=∅
f(S)
|S| . Therefore, minS⊂E, S 6=∅

f(S)
|S| provides an upper

bound on mini xi. By selecting x = δ1a ∈ B(f, E), where δ = minS⊂E, S 6=∅
f(S)
|S| , the

upper bound is achieved, and the proof is completed.

In minimization (4.27), if the minimizer is not the set E, then δ (the optimal max-

min value) is less than
RSum-Capacity

a
( RSum-Capacity = f(E) is the sum-capacity), and

therefore, the ideal fairness is not feasible. For example, in the polymatroid depicted

in Fig 4.6, the minimizing set in (4.27) is the set {3}, and therefore δ = f({3}).

In the following, a recursive algorithm is proposed to locate a rate vector x∗ on

the sum-capacity facet which not only attains the optimal max-min value δ, but also
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provides fairness among the users which have the rates higher than δ. The proposed

algorithm partitions the set of active users into ς +1 disjoint subsets, S〈0〉, ..., S〈ς〉, such

that in the i’th subset the rate of all users is equal to %〈i〉, i = 0, · · · , ς, where δ = %〈0〉 <

%〈1〉 < · · · < %〈ς〉. Starting from %〈0〉, the algorithm maximizes %〈i〉, i = 1, · · · , ς, given

that %〈j〉’s, j = 0, · · · , i− 1, are already at their maximum possible values. To simplify

this procedure, we establish a chain of nested polymatroids, B(f〈α〉, E〈α〉), α = 0, . . . , ς,

where

B(f〈ς〉, E〈ς〉) ⊂ B(f〈ς−1〉, E〈ς−1〉) ⊂ . . . ⊂ B(f〈0〉, E〈0〉) = B(f, E). (4.30)

In this algorithm, we use the result of the following lemma.

Lemma 4.7. Let E = {1, . . . , a} and A ⊂ E, A 6= E. If the set function f : 2E −→ R+

is a rank function, then h : 2E−A −→ R+, defined as

h(S) = f(S ∪ A)− f(A), S ⊂ E − A, (4.31)

is a rank function.

Proof. By direct verification.

Using the following algorithm, one can compute the rate-vector x∗.

Algorithm 4.8.

1. Initialize the iteration index α = 0, E〈0〉 = E, and f〈0〉 = f.
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2. Find %〈α〉, where

%〈α〉 = min
S⊂E〈α〉,S 6=∅

f〈α〉(S)

|S| . (4.32)

Set S〈α〉 equal to the optimizing subset.

3. For all i ∈ S〈α〉, set x∗i = %〈α〉.

4. Define the polymatroid B(f〈α+1〉, E〈α+1〉), where

E〈α+1〉 = E〈α〉 − S〈α〉, (4.33)

and ∀S ⊂ E〈α+1〉,

f〈α+1〉(S) = f〈α〉(S ∪ S〈α〉)− f〈α〉(S〈α〉). (4.34)

5. If E〈α+1〉 6= ∅, set α ←− α + 1 and move to step 2, otherwise stop.

This algorithm computes the optimization sets S〈α〉, α = 0, · · · , ς and their corre-

sponding %〈α〉, where E =
⋃ς

j=0 S〈j〉 and x∗i ∈ {%〈0〉, · · · , %〈ς〉}, i = 1, · · · , a.

To provide better insight about the algorithm, let us apply it over the polymatroids

depicted in figures 4.5 and 4.6. For the polymatroid in Fig. 4.5, the algorithm results

in x∗ = (%〈0〉, %〈0〉, %〈0〉) where %〈0〉 = f({1,2,3})
3

. For the polymatroid shown in Fig 4.6,

the resulting point is x∗ = (%〈1〉, %〈1〉, %〈0〉), where %〈0〉 = f({3})
1

and %〈1〉 = f〈1〉({1,2})
2

=

f({1,2,3})−f({3})
2

(see Fig. 4.7).

In the following, we prove some properties of the vector x∗.

Theorem 4.9. Assume that Algorithm 4.8 is applied over the polymatroid B(f, E), then
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x1

x2

x3

x
∗ = (%(1)

, %
(1)

, %
(0))

Figure 4.7: The Fairest Rate Vector x∗ on the Sum-Rate Facet of the Polymatroid

(I) x∗ ∈ B(f, E) and is located on the sum-capacity facet x(E) = f(E).

(II) The minimum entry of the vector x∗ attains the optimum value determined by

Lemma 4.6 and

δ = %〈0〉 < %〈1〉 < · · · < %〈ς〉. (4.35)

Proof. Part (I): We show that x∗ ∈ B(f, E). According to the algorithm, we have

%〈0〉 = minS⊂E,S 6=∅
f(S)
|S| , where S〈0〉 is the minimizing set. In addition, x∗i = %〈0〉 for all

i ∈ S〈0〉. It is straight-forward to check that the assigned values for x∗i , i ∈ S〈0〉, do not

violate the constraints of the polymatroid B(f, E), expressed in (4.1). By substituting

the assigned values for xi, i ∈ S〈0〉, in the constraints of the polymatroid B(f, E), the

constraints over the coordinate i, i ∈ E − S〈0〉, are updated as follows: from the

definition of the polymatroid, we have a set of constraints on x(S), S ⊂ E−S〈0〉, which
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has the following format:

∀A ⊂ S〈0〉,x(S ∪ A) ≤ f〈0〉(S ∪ A). (4.36)

Since S ∩ A = ∅, then x(S ∪ A) = x(S) + x(A). Consequently, from (4.36), we have,

∀A ⊂ S〈0〉,x(S) ≤ f〈0〉(S ∪ A)− x(A). (4.37)

Consequently, ∀ S ⊂ E − S〈0〉,

x(S) ≤ min
A⊂S〈0〉

{f〈0〉(S ∪ A)− x(A)}. (4.38)

We claim that minA⊂S〈0〉{f〈0〉(S ∪A)− x(A)} is equal to f〈0〉(S ∪ S〈0〉)− f〈0〉(S〈0〉). The

proof is as follows:

∀A ⊂ S〈0〉, f〈0〉(S ∪ A)− x(A) (4.39)

≥ f〈0〉(S ∪ A)− f〈0〉(A) (4.40)

≥ f〈0〉(S ∪ S〈0〉)− f〈0〉(S〈0〉). (4.41)

The first inequality relies on the fact that ∀A, x(A) ≤ f〈0〉(A). The second inequality

is proven by using (4.4) and the fact that A ⊂ S〈0〉 and S ∩S〈0〉 = ∅. It is easy to check

that the above inequalities change to equalities for A = S〈0〉.

Regarding the above statements, for the non-allocated entries of x, we have the

following set of constraints,

∀S ⊂ E − S〈0〉, x(S) ≤ f〈0〉(S ∪ S〈0〉)− f〈0〉(S〈0〉). (4.42)
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Let us define E〈1〉 = E〈0〉 − S〈0〉, f〈1〉(S) = f〈0〉(S ∪ S〈0〉) − f〈0〉(S〈0〉), ∀S ⊂ E〈1〉.

By using Lemma 4.7, the set of constraints (4.42) on E〈1〉 defines the polymatroid

B(f〈1〉, E〈1〉), which is a subset of B(f, E). Now, we use the same procedure that is

applied for B(f〈0〉, E〈0〉) over B(f〈1〉, E〈1〉), and continue recursively. Therefore, in it-

eration indexed by α, α = 0, . . . , ς, the rates of a subset of coordinates are deter-

mined such that the constraints of the polymatroid B(f〈α〉, E〈α〉) are not violated. Since

B(f〈α〉, E〈α〉) ⊂ B(f, E), then x∗ ∈ B(f, E). Direct verification proves that x∗(E) = f(E).

Part (II): We must show that the smallest entries of x∗ is equal to minS⊂E
f(S)
|S| .

According to the algorithm, for all i ∈ E, we have x∗i ∈ {%〈0〉, ..., %〈ς〉}. Furthermore,

%〈0〉 = minS⊂E
f(S)
|S| .

From the algorithm, we have

%〈j〉 =
f〈j〉(S〈j〉)
|S〈j〉| = min

S⊂E〈j〉

f〈j〉(S)

|S| <
f〈j〉(S〈j+1〉 ∪ S〈j〉)
|S〈j+1〉 ∪ S〈j〉| =

f〈j〉(S〈j+1〉 ∪ S〈j〉)
|S〈j+1〉|+ |S〈j〉| . (4.43)

Therefore,

%〈j〉 < f〈j〉(S〈j+1〉∪S〈j〉)
|S〈j+1〉|+|S〈j〉| =⇒ (4.44)

%〈j〉 < f〈j〉(S〈j+1〉∪S〈j〉)−%〈j〉|S〈j〉|
|S〈j+1〉| =⇒ (4.45)

%〈j〉 < f〈j〉(S〈j+1〉∪S〈j〉)−f〈j〉(S〈j〉)
|S〈j+1〉| = %〈j+1〉, (4.46)

where (4.46) relies on LHS of (4.43). Consequently, %〈0〉 < %〈1〉 < . . . < %〈ς〉 and the

proof is complete.

The remaining issue in Algorithm 4.8 is how to compute minS⊂E,S 6=∅
f(S)
|S| . These
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types of problems are known as geometric minimizations. In order to find the minimizer,

the smallest value of β is desirable such that there is a set S with f(S) = β|S|. For

the special case of single antenna Gaussian multiaccess channels, computing such β is

very simple. For the general case, β can be computed by Dinkelbach’s discrete Newton

method as follows [15].

The algorithm is initialized by setting β equal to f(E)/|E|, which is an upper bound

for optimum β. Then, a minimizer Y of f(S)− β|S| is calculated, as will be explained

later. Since f(E) − β|E| = 0, then f(Y ) − β|Y | ≤ 0. If f(Y ) − β|Y | = 0, the current

β is optimum. If f(Y ) − β|Y | < 0, then we update β = f(Y )/|Y |, which provides

an improved upper bound. By repeating this operation, the optimal value of β will

eventually be calculated [15]. It is shown that the number of β visited by the algorithm

is at most |E| [15].

Using this approach, the minimization problem

minS⊂E,S 6=∅
f(S)
|S| is changed to minS⊂E,S 6=∅ f(S) − β|S|. By direct verification of (4.4),

it is easy to see that f(S) − β|S| is a submodular function. There have been a lot of

research on submodular minimization problems [15, 27, 48]. In [27, 48], the first com-

binatorial polynomial-time algorithms for solving submodular minimization problems

are developed. These algorithms design a strongly polynomial combinatorial algorithm

for testing membership in polymatroid polyhedra.
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4.4.2 Decomposition of the Time-Sharing Problem

In the following, we take advantage of the special properties of x∗ and polymatroids

to break down the time-sharing problem to some lower-dimensional subproblems. In

the previous sub-section, a chain of nested polymatroids B(f〈α〉, E〈α〉), α = 0, . . . , ς, is

introduced, where B(f〈α−1〉, E〈α−1〉) ⊂ B(f〈α〉, E〈α〉) for α = 1, . . . , ς. Since S〈j〉 ⊂ E〈j〉

for j = 0, . . . , ς and regarding the definition of polymatroid, B(f〈j〉, S〈j〉), j = 1, . . . , ς,

is a polymatroid, which is defined on the dimensions S〈j〉. According to the proof

of Theorem 4.9, the vector %〈j〉1|S〈j〉| ∈ B(f〈j〉, S〈j〉) is on the hyperplane x(S〈j〉) =

f(S〈j〉). Let {π〈j〉
τj , τj = 1, . . . , |S〈j〉|!} be the set of all permutations of the set S〈j〉, and

ω〈j〉(π〈j〉
τj ) be the corner point corresponding to the permutation π

〈j〉
τj in the polymatroid

B(f〈j〉, S〈j〉). Then, there exist the coefficients 0 ≤ λ
〈j〉
τj ≤ 1, τj = 1, . . . , |S〈j〉|!, such that

%〈j〉1|S〈j〉| =
|S〈j〉|!∑
τj=1

λ〈j〉τj
ω〈j〉(π〈j〉

τj

)
, (4.47)

where
|S〈j〉|!∑
τj=1

λ〈j〉τj
= 1. (4.48)

Note that E =
⋃ς

j=0 S〈j〉. Consider a permutation π
〈j〉
τj as one of the total |S〈j〉|!

permutations of S〈j〉, for j = 0, · · · , ς, then the permutation π formed by concatenating

these permutations, i.e. π =
(
π
〈ς〉
τς , · · · ,π

〈0〉
τ0

)
, is a permutation on the set E.

Theorem 4.10. Consider the permutation π =
(
π
〈ς〉
τς , · · · ,π

〈0〉
τ0

)
of the set E.

(I) The corner point corresponding to the permutation π in the polymatroid B(f, E)
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is

υi(π) = ω
〈j〉
i (π〈j〉

τj
), for i ∈ S〈j〉, (4.49)

where ω〈j〉(π〈j〉
τj ) is the corner point of the polymatroid B(f〈j〉, S〈j〉) corresponding

to the permutation π
〈j〉
τj , and ω

〈j〉
i (π

〈j〉
τj ) denotes the value of ω〈j〉(π〈j〉

τj ) over the

dimension i, i ∈ S〈j〉.

(II) The vector x∗ is in the convex hull of the set of corner points corresponding to

the following set of permutations

{(
π〈ς〉

τς
, · · · ,π〈0〉

τ0

)
, 1 ≤ τς ≤ |S〈ς〉|!, . . . , 1 ≤ τ0 ≤ |S〈0〉|!} , (4.50)

where the coefficient of the corner point corresponding to the permutation π =

(
π
〈ς〉
τς , · · · , π

〈0〉
τ0

)
is equal to λ

〈ς〉
τς . . . λ

〈0〉
τ0 , i.e.

x∗ =

|S〈ς〉|!∑
τς=1

. . .

|S〈0〉|!∑
τ0=1

λ〈ς〉τς
. . . λ〈0〉τ0

υ
( (

π〈ς〉
τς

, · · · , π〈0〉
τ0

) )
. (4.51)

Proof. Part (I) From recursive equation (4.34), we can show that

For S ∈ E −
j−1⋃
i=0

S〈i〉, f〈j〉(S) = f

(
S ∪

{
j−1⋃
i=0

S〈i〉
})

− f

({
j−1⋃
i=0

S〈i〉
})

. (4.52)

Consider the permutation π =
(
π
〈ς〉
τς , · · · , π

〈0〉
τ0

)
. Set ξ =

∑j
i=1 |S〈i〉|. By using (4.5)

and (4.52), for ξ < κ ≤ ξ + |S〈j+1〉|, υπ(κ)(π) is equal to

υπ(κ)(π) = f ({π(1), . . . , π(κ)})− f ({π(1), . . . , π(κ− 1)})

= f

({
j−1⋃
i=0

S〈i〉, π(ξ + 1) . . . , π(κ)

})
− f

({
j−1⋃
i=0

S〈i〉, π(ξ + 1), . . . , π(κ− 1)

})

= f〈j〉 ({π(ξ + 1) . . . , π(κ)})− f〈j〉 ({π(ξ + 1) . . . , π(κ− 1)}) .
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According to definition of polymatroid and its corner points, the RHS of (4.53) is the

value of ω
〈j〉
π(κ)(π

〈j〉) in the corresponding corner point of the polymatroid B(f〈j〉, S〈j〉).

Part (II) Since
∑|S〈0〉|!

τ0=1 λ
〈0〉
τ0 = 1 and by using (4.47) and part (I) of the theorem, it

is easy to verify that the ith, i ∈ S〈0〉, entry of

|S〈0〉|!∑
τ0=1

λ〈0〉τ0
υ

(
π〈ς〉

τς
, . . . , π〈0〉

τ0

)
(4.53)

is equal to %〈0〉. Similarly, the entry i, i ∈ S〈1〉, of

|S〈1〉|!∑
τ1=1

λ〈1〉τ1

|S〈0〉|!∑
τ0=1

λ〈0〉τ0
υ

(
π〈ς〉

τς
, . . . , π〈0〉

τ0

)
, (4.54)

is equal to %〈1〉, while the entry i, i ∈ S〈0〉, remains %〈0〉. By continuing this procedure,

part (II) of the algorithm is proven.

Regarding the above statements, the problem of finding time-sharing coefficients

is decomposed to some lower-dimensional subproblems. In each sub-problem, the ob-

jective is to find the coefficients of the time-sharing among the corner points of the

polymatroid B(f〈j〉, S〈j〉), j = 0, . . . , ς, to attain %〈j〉1|S〈j〉|. In this part, we present an

algorithm which finds the coefficients of the time-sharing over the corner points of a

general polymatroid B(f, E) to attain a vector x located on the face of the polymatroid.

Algorithm 4.11.

1. Initialize α = 1, ω1 = υ(π∗) (the fairest corner point obtained by Algorithm 4.3).
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2. Solve the linear optimization problem

max ε

s.t.
∑α

i=1 µ̂iωi − x ≥ ε

0 ≤ µ̂i ≤ 1 (4.55)

Let µ̂α
i , i = 1, . . . , α be the optimizing coefficients.

3. If x =
∑α

i=1 µ̂α
i ωi, Stop.

4. α ←− α + 1. Set e = x−∑α
i=1 µ̂α

i ωi and determine the permutation π for which

eπ(1) ≥ eπ(2) ≥ . . . ≥ eπ(|E|). Set ωα = υ(π) and move to step 2.

The idea behind the algorithm is as follows. In each step, the time-sharing among

some corner points is performed. If the resulting vector is equal to x, the answer is

obtained; otherwise a permutation π is determined such that eπ(1) ≥ eπ(2) ≥ . . . ≥

eπ(|E|), where the error vector e represents the difference between the vector x and

resulting vector from time-sharing. We can compensate the error vector e by including

an appropriate corner point in the set of corner points participating in time-sharing.

Clearly, the best one to be included is the one which has the highest possible rate for

user π(1) and lowest possible rate for user π(|E|). Apparently, this corner point is

υ(π), computed by Algorithm 4.11.

Note that Algorithm 4.11 can be applied over the sub-polymatroids B(f〈j〉, S〈j〉),

j = 0, . . . , ς, to attain %〈j〉1|S〈j〉| or directly applied over the original polymatroid to
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attain x∗ . If a and |S〈j〉| are relatively small numbers, the decomposition method has

less complexity, otherwise applying Algorithm 4.11 over the original problem is less

complex.

4.4.3 Decomposition of Rate-Splitting Approach

As mentioned, an alternative approach to achieve any rate-vector on the sum-capacity

facet of MAC is rate splitting [21, 45]. This method is based on splitting all input

sources except one into two parts, and treating each spilt input as two virtual inputs

(or two virtual users). Thus, there are at most 2a−1 virtual users. It is proven that by

splitting the sources appropriately and successively decoding virtual users in a suitable

order, any point on the sum-capacity facet can be attained.

Similar to the time-sharing part, we prove that to attain the rate vector x∗, the

rate-splitting procedure can be decomposed into some lower-dimensional subproblems.

Consider a MAC, where the capacity region is represented by polymatroid B(f, E) and

the vector x∗, derived in Algorithm 4.8, is on its face. Assume that the users in the

set S〈j〉 are decoded before the set of users in {S〈j−1〉, S〈j−2〉, . . . , S〈0〉} and after the

users in the set {S〈ς〉, . . . , S〈j+2〉, S〈j+1〉} .Therefore, by similar discussion used in (4.36)

to (4.42), we conclude that the rate of the users in the set S〈j〉 is characterized by the

polymatroid B(f〈j〉, S〈j〉), where the rate-vector %〈j〉1|S〈j〉| is on its face. Regarding the

results presented in [21,45], we can attain the rate-vector %〈j〉1|S〈j〉| by properly splitting
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the sources of all inputs, except for one, in the set S〈j〉 to form 2|S〈j〉| − 1 virtual users

and by choosing the proper order of the decoding of the virtual users. Consequently,

using Algorithm 4.12 (below), we achieve the rate-vector x∗ in the original polymatroid.

Algorithm 4.12.

1. Apply rate-splitting approach to attain the rate-vector %〈j〉1|S〈j〉| on the face of the

polymatroid B(f〈j〉, S〈j〉), for j = 0, . . . , ς. Therefore, for each j, 0 ≤ j ≤ ς, at

most 2|S〈j〉| − 1 virtual users are specified with a specific order of decoding.

2. Starting from j = ς, decode the virtual users in the set S〈j〉 in the order found in

Step 1. Set j ← j − 1. Follow the procedure until j < 0.

4.5 Conclusion

We considered the problem of fairness for a class of systems for which a subset of

the capacity region forms a polymatroid structure. The main purpose is to find a

point on the sum-capacity facet which satisfies a notion of fairness among active users.

This problem is addressed in cases where the complexity of achieving interior points

is not feasible, and where the complexity of achieving interior points is feasible. For

the first case, the corner point for which the minimum rate of the active users is

maximized (max-min corner point) is desired for signaling. A simple greedy algorithm

is introduced to find the optimum max-min corner point. For the second case, the
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polymatroid properties are exploited to locate a rate-vector on the sum-capacity facet

which is optimally fair in the sense that the minimum rate among all users is maximized

(max-min rate). In the case that the rate of some users can not increase further (attain

the max-min value), the algorithm recursively maximizes the minimum rate among the

rest of the users. It is shown that the problems of deriving the time-sharing coefficients

and rate-splitting scheme can be solved by decomposing the problem to some lower-

dimensional subproblems. In addition, a fast algorithm to compute the time-sharing

coefficients to attain a general point on the sum-capacity facet is proposed.



Chapter 5

Optimal Order of Decoding in

Interference Channels

5.1 Introduction

Wireless technology has been advancing at an exponential rate, due to increasing ex-

pectations for multi-media services. This, in turn, necessitates the development of novel

techniques of signaling with high spectral efficiency. Channel sharing is known as an

effective scheme to increase the spectral efficiency and coverage in the wireless systems.

The main source of impairment in such systems is the interference among the links.

These systems are known with the general name of interference channels.

The interference channel was first introduced by Shannon [51]. In [4], it is shown

that in the Gaussian interference channels, very strong interference amounts to no inter-

119
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ference at all. In [8,22,47], the result of [4] is extended to general discrete interference

channels with strong interference. In [5,46], the capacity of degraded interference chan-

nels is investigated. The best result on the capacity region of the interference channels

is introduced in [22]. In the scheme presented in [22], each transmitter splits its message

into two independent massages, one is private which is only decodable by the intended

receiver and the other is common which is decodable at both receivers.

A lot of research efforts have been devoted to the problem of fairness in the interfer-

ence channels. In [1], K-user Gaussian interference channels without any constraint on

the transmit powers are considered and the maximum signal-to-interference-plus-noise-

ratio (SINR) that all the transmitters can attain simultaneously is computed. The

result in [1] is formulated as the inverse of the Perron-Frobenius eigenvalue (see [25]) of

a non-negative matrix. Recently in [41], the result of [1] is generalized to the case where

the power of the transmitters are constrained. In [14], the problem of spectrum sharing

in unlicensed bands is investigated. It is shown that in a K-user interference channel,

any rate vector inside the rate region is achievable with a piece-wise constant power

allocation over 2K bandwidth intervals. In addition, it is investigated whether fairness

and efficiency can be attained if the users follow a selfish spectrum sharing strategy.

Generally in the literature, including [1, 14, 41], it is assumed that each receiver only

decodes the data of the designated transmitter, while the signals coming from other

transmitters are treated as interference.

In this chapter, we consider a K-user memoryless interference channel, where each
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receiver sequentially decodes the data of a subset of transmitters before it decodes

the data of the designated transmitter. Since part of the interference is canceled out,

this system can potentially achieve higher data rate. In this system, the data rate of

each transmitter depends on (i) the subset of receivers which decode the data of that

transmitter, (ii) the decoding order employed at each receiver which decodes the data

of that transmitter. The main objective of this chapter is to find the set of transmitters

which are decoded at each receiver and the corresponding order of decoding such that

the minimum rate of the users is maximized. A simple greedy algorithm is proposed

and proven to be optimal. We established similar result for the memoryless multi-access

channels in [40].

5.2 Problem Formulation

We focus on a K-user memoryless interference channel modeled by

Pr(y1, y2, . . . , yK |x1, x2, . . . , xK). (5.1)

It is assumed that user t, t ∈ E = {1, 2, . . . , K}, utilizes the codebook C[t], with the

input distribution Pr(xt). Receivers have the possibility of successive decoding. Each

receiver decodes the data of some of the users in a specific order and then it decodes the

data of the designated transmitter. For the sake of brevity, we say “user t is decoded

at receiver r”, instead of saying “the data of the user t is decoded at receiver r”.

The order of decoding at receiver r is denoted by the permutation
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π[r] = (π[r](1), π[r](2), . . . , π[r](K)) of the set E. Receiver r first decodes user π[r](K),

then user π[r](K−1), and so forth until it decodes the data of the designated transmitter

(See Fig. 5.1). In the permutation π[r], if l > i (l < i), we say user π[r](l) is located

before (after) user π[r](l), which means that at receiver r, user π[r](l) is decoded before

(after) user π[r](i). Apparently, the users located after user r in the permutation π[r] are

not decoded at receiver r. The orders of decoding at all receivers, i.e., π[1],π[2], . . . , π[K],

are denoted by Π.

Stop Start

= r

π[r](η[r](r))
π

[r] = π[r](K)

D[r]

Figure 5.1: Order of Decoding at Receiver r

Defintion 5.1. The vector η[t] is defined such that η[t](r) shows the position of user t

in π[r], therefore,

π[r](η[t](r)) = t.

Defintion 5.2. The set D[r] is defined as the set of users which are decoded at receiver

r, i.e.,

D[r] = {π[r](η[r](r)), π[r](η[r](r) + 1), . . . , π[r](K)}. (5.2)

Note that π[r](η[r](r)) is equal to r, which is the last user, decoded at receiver r.

The users located after user r in π[r] are not decoded at receiver r.



Order of Decoding in Interference Channels 123

Defintion 5.3. The set E[t] is defined as the set of receivers which decode user t.

Apparently, t ∈ E[t].

Receiver r and the transmitter in D[r] can be considered as a multi-access channel,

while the contributions of the users in E −D[r] are treated as interference. Regarding

the order of decoding applied at receiver r, the rate of user t, t ∈ D[r], is upper-bounded

by

ϑt ≤ I(yr; xt|xπ[r](η[t](r)+1), xπ[r](η[t](r)+2), . . . , xπ[r](K)). (5.3)

Note that {xπ[r](η[t](r)+1), xπ[r](η[t](r)+2), . . . , xπ[r](K)} is the set of users decoded before

user t at receiver r.

Therefore, if the decoding orders Π are employed at the receivers, the maximum

possible value for ϑt, denoted by ϑt(Π), is obtained by,

ϑt(Π) = min
r, r∈E[t]

I(yr; xt|xπ[r](η[t](r)+1), xπ[r](η[t](r)+2), . . . , xπ[r](K)). (5.4)

Example Consider a 3-user memoryless interference channel, where the order of

decoding is as follows:

π[1] = (2, 1, 3) (5.5)

π[2] = (3, 1, 2) (5.6)

π[3] = (1, 3, 2) (5.7)

Therefore, receiver one first decode the data of transmitter three and then its own data,

i.e. D[1] = {1, 3}. Receiver two just decode its own data (sent by transmitter two),



Order of Decoding in Interference Channels 124

i.e. D[2] = {2}. Receiver three first decodes the data of transmitter two, then decodes

its own data. i.e. D[3] = {3, 2}. Consequently, transmitter one is only decoded at

receiver one. i.e. E[1] = {1}, transmitter two is decoded at receiver two and three, i.e

E [2] = {2, 3}, and transmitter three is decoded at receiver one and three E[3] = {1, 3}.

Therefore, the rate of the users are obtained by,

ϑ1(Π) = I(y1; x1|x3), (5.8)

ϑ2(Π) = min
{

I(y2; x2), I(y3; x2)
}

, (5.9)

ϑ3(Π) = min
{

I(y1; x3), I(y3; x3|x2)
}

. (5.10)

Note that since at receiver one, user three is decoded before user one, it is helpful for

user one in terms of reducing the interference and increasing the data rate. Whereas,

it is restrictive for user three by imposing extra condition on the data rate of this user

(user three must be decodable at receiver one).

The objective of this chapter is to find the optimal decoding orders π[t], t = 1, . . . , K,

such that the minimum of ϑt(Π), t = 1, . . . , K, is maximized.

Note that there are
(∑K

i=1
K!
i!

)K

possible choices for the decoding orders, and it is

prohibitively complex to find the optimal answer through the exhaustive search.

We define the set function f[r] as

f[r](S) = I (yr; {xi, i ∈ S}|{xi, i ∈ Sc}) , ∀S ⊂ E. (5.11)

It is proven that f[r](S) is a rank function as [59] (see Definition 4.1). In addition, it is
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easy to see that (5.3) and (5.4) are respectively rewritten as

ϑt ≤ f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)))− f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)−1)). (5.12)

and

ϑt(Π) = min
r, r∈E[t]

(5.13)

f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)))− f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)−1)).

5.3 Algorithm

In this section, we develop an algorithm to specify the optimal decoding orders. In

the proposed algorithm, the decoding order for each receiver is determined in a greedy

fashion, independent of the decoding orders selected for the other receivers. While this

algorithm has a very low complexity, we prove that the resulting decoding orders are

optimal.

Algorithm 5.4.

For each receiver r, r ∈ E,

1. Set α = K, D∗[r] = ∅.

2. Set π∗[r](α) as

π∗[r](α) = arg min
z∈E,z /∈S

f[r]
(
E −D∗[r] − {z}) . (5.14)
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3. Set D∗[r] ←− D∗[r] ∪ {π∗[r](α)} and α ←− α − 1. If α ≥ 1 and π∗[r](α + 1) 6= t,

then go to step two, otherwise go to the next step.

4. If α 6= 0, randomly allocate the entries of E −D∗[r] to π[r](1), π[r](2), . . . , π[r](α).

The following theorem proves the optimality of the proposed algorithm.

Theorem 5.5. Let
(
ϑ1(Π

∗), ϑ2(Π
∗), . . . , ϑK(Π∗)

)
be the rate vector corresponding to the

decoding orders π∗[1], π∗[2], . . ., π∗[K]. Then for the rate vector
(
ϑ1(Π), ϑ2(Π), . . . , ϑK(Π)

)

corresponding to any decoding orders π[1], π[2], . . ., π[K], we have

min
i

ϑi(Π
∗) ≥ min

i
ϑi(Π). (5.15)

Proof. Let η∗[r] and E[∗r] respectively be η[r] and E[r] corresponding to the decoding

orders obtained by the algorithm. Assume that user t̂ has the minimum rate among

the users, where the decoding orders π∗[1],π∗[2], . . . , π∗[K] are employed at the receivers.

Therefore, regarding (5.13), ∃r̂ ∈ E [∗t̂] such that

ϑt̂(Π
∗) = f[r̂](xπ∗[r̂](1), xπ∗[r̂](2), . . . , xπ[∗r̂](η[∗t̂](r̂)))−

f[r̂](xπ[∗r̂](1), xπ[∗r̂](2), . . . , xπ[∗r̂](η[∗t̂](r̂)−1)) (5.16)

In other words, among the receives which decode user t̂, the receiver r̂ imposes the

dominant upper-bound on the data rate of the user t̂. For now, we assume that t̂ 6= r̂.

Similar arguments are used to prove the optimality of the algorithm for the case that

t̂ = r̂.
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In what follows, we prove that if the decoding orders π∗[1],π∗[2], . . . , π∗[K] are per-

muted to generate new decoding orders, then the minimum rate of users is not greater

than ϑt̂(Π
∗).

Case 1. Choosing arbitrary permutations for π[l], l ∈ E, l 6= r̂: Assume that

arbitrary decoding orders are chosen for the receivers l, l ∈ E and l 6= r̂, while the user

r̂ is employed π∗[r̂] as the decoding order. Then user t̂ is still decoded at receiver r̂, in

the order determined by π∗[r̂]. Therefore, according to (5.13), the rate of user t̂ is still

upper-bounded by the right-hand side of (5.16), which is ϑt̂(Π
∗). Consequently, if the

new decoding orders are employed, the minimum rate of the users is less than or equal

to ϑt̂(Π
∗).

Before starting the other cases, we define two sets:

• The set of users located after user t̂ in the permeation π∗[r̂],

Φ∗[r̂] = {π∗[r̂](1), . . . , π∗[r̂](η[∗t̂](r̂)− 1)}. (5.17)

Note that r̂ ∈ Φ∗[r̂]. In addition, some of the users in Φ∗[r̂] are not decoded at

receiver r̂.

• The set of users decoded before user t̂ at receiver r̂ according to the permutation

π∗[r̂]:

Ψ∗[r̂] = {π∗[r̂](η[∗t̂](r̂) + 1), . . . , π∗[r̂](K)} (5.18)
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Therefore, according to (5.16), we have

ϑt̂(Π
∗) = f[r̂](Φ∗[r̂] ∪ {t̂})− f[r̂](Φ∗[r̂]). (5.19)

Case 2. Permutation in Φ∗[r̂] and Ψ∗[r̂], choosing arbitrary permutations for π[l],

l ∈ E, l 6= r̂ (see Fig. 5.2): Assume that the order of users in Φ∗[r̂] and Ψ∗[r̂] are

permuted to generate a new decoding order π[r̂] for receiver r̂. Note that in the new

permutation π[r̂], the set of users located after and before user t̂ are still Φ∗[r̂] and Ψ∗[r̂].

Also assume that for the rest of receivers, arbitrary decoding orders are chosen. In

this case, in π[r̂], user r̂ is still located after user t̂ and therefore, user t̂ is decoded

at receiver r̂. In addition, according to (5.13), the rate of user t̂ is still less than

f[r̂](Φ∗[r̂]∪{t̂})− f[r̂](Φ∗[r̂]), to be decodable at receiver r̂. Therefore, if the new decoding

orders are employed, the minimum rate of the users is less that or equal to ϑt̂(Π
∗).

t̂

t̂

Ψ
∗[r̂]

Ψ
∗[r̂]

Φ
∗[r̂]

Φ
∗[r̂]

π
∗[r̂]

=

π
[r̂]

=

Figure 5.2: Case 2. Permutation in Φ∗[r̂] and Ψ∗[r̂].

Case 3. Moving a subset of users from Ψ∗[r̂] to Φ∗[r̂], choosing arbitrary permuta-

tions for π[l], l ∈ E, l 6= r̂ (See Fig 5.3): Assume a set Υ of users, Υ ⊂ Ψ∗[r̂], is moved

from Ψ∗[r̂] to Φ∗[r̂] to generate a new decoding order π[r̂] for receiver r̂. Note that in the

permutation π[r̂], the position of user t̂ is still before user r̂, which means that user t̂
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is decoded at receiver r̂. Assume that arbitrary permutations are chosen for the other

receivers. According to (5.13), if the new decoding orders are employed, the rate of

user t̂ is less than or equal to,

ϑt̂(Π) ≤ f(Φ∗[r̂] ∪Υ ∪ {t̂})− f(Φ∗[r̂] ∪Υ), (5.20)

to be decodable at receiver r̂, regardless of the decoding orders chosen for the other

receivers.

Using (4.4), we have,

f(Φ∗[r̂] ∪ {t̂})+f(Φ∗[r̂] ∪Υ) ≥

f(Φ∗[r̂] ∪Υ ∪ {t̂}) + f(Φ∗[r̂]). (5.21)

Using (5.19), (5.20), and (5.21), we conclude that ϑt̂(Π) ≤ ϑt̂(Π
∗), and therefore, the

minimum rate of the users in the new decoding orders is less than or equal to ϑt̂(Π
∗).

Note that permuting the users located before (or after) user t̂ in π[r̂] does not

increase the rate of user t̂.

Ψ
∗[r̂]

t̂Φ
∗[r̂]

π
∗[r̂]

=

t̂ Ψ
∗[r̂]

− ΥΦ
∗[r̂]

∪ Υπ
[r̂]

=

Figure 5.3: Case 3. Moving a set of users from Ψ∗[r̂] to the set Φ∗[r̂].

Case 4. Moving one or more users from the set Φ∗[r̂] to the set Ψ∗[r̂], with or without

moving some users from the set Ψ∗[r] to the set Φ∗[r̂], choosing arbitrary permutations
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for π[l], l ∈ E, l 6= r̂(See Fig 5.4): Assume that one or more users move from Φ∗[r̂] to

Ψ∗[r̂] (with or without moving some users from the set Ψ∗[r̂] to the set Φ∗[r̂]) to generate

the new permutation π[r̂]. As depicted in Fig. 5.4, assume that the user ν is positioned

last in the permutation π[r̂] among the users moved from Φ∗[r̂] to Ψ∗[r̂] (user π(1) is

positioned first and user π(K) is positioned last in the permutation π). In the new

permutation, user ν is located before user r̂, which means that this user is decoded at

receiver r̂, otherwise, user ν is indeed user r̂ which is apparently decoded at receiver r̂.

ν

t̂ Ψ
∗[r̂]

π
∗[r̂]

= Φ
∗[r̂]

Ω

t̂π
[r̂]

=

Figure 5.4: Case 4. Moving one or more users from the set Φ∗[r̂] to the set Ψ∗[r̂] (with

or without moving some users from the set Ψ∗[r̂] to the set Φ∗[r̂]).

Let Ω be the set of users located after the user ν in the permutation π[r̂]. Using

(5.13), and since ν is decoded at receiver r̂, the rate of user ν is upper-bounded by,

ϑν(Π) ≤ f[r̂](Ω ∪ {ν})− f[r̂](Ω), (5.22)

to be decodable at receiver r̂. It is clear that,

{t̂} ∪ Φ∗[r̂] − {ν} ⊂ Ω. (5.23)
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Using (4.4) with S = Φ∗[r̂] ∪ {t̂} and T = Ω, and regarding (5.23), we have,

f[r̂](Ω ∪ {ν})− f[r̂](Ω)

≤ f[r̂](Φ∗[r̂] ∪ {t̂})− f[r̂](Φ∗[r̂] ∪ {t̂} − {ν}). (5.24)

On the other hand, user ν is in the set Φ∗[r̂] in permutation π∗[r̂]. It means that in Step

2 of the algorithm, this user has been compared with other users in the set Φ∗[r̂]∪{t̂} to

be located in the position η∗[t̂](r̂) of the permutation π∗[r̂], but user t̂ has been chosen

for the position, i.e., f[r̂]
(
Φ∗[r̂] ∪ {t̂} − {t̂}

)
≤ f[r̂]

(
Φ∗[r̂] ∪ {t̂} − {ν}

)
, therefore,

f[r̂]
(
Φ∗[r̂]

)
≤ f[r̂]

(
Φ∗[r̂] ∪ {t̂} − {ν}

)
. (5.25)

Using (5.19), (5.22), (5.24), and (5.25), we conclude that vν(Π) ≤ vt̂(Π
∗), regardless

of the decoding orders chosen for the other receivers. Therefore, if the new decoding

orders are employed, the minimum rate of the users is less than or equal to ϑt̂(Π
∗). Note

that permuting of the users located before (or after) user ν in π[r̂] does not increase

the rate of user ν.

5.3.1 Special Case: Gaussian Interference Channels

A Gaussian interference channel, including K users, is represented by the gain matrix

G = [grt]K×K where grt is the power gain from transmitter t to receiver r. A white

Gaussian noise with zero mean and variance σ2
r is added to the received signal at receiver
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r terminal. In this case, f[r], defined in (5.11), is written as

f[r](S) = log2

(
σ2

r +
∑
t∈S

grtpt

)
, (5.26)

where pt denotes the power of transmitter t.

We can show that Algorithm 5.4 simplifies as follows. The set of users decoded at

receiver r, D∗[r], is equal to

D∗[r] = {t : grtpt ≥ grrpr}. (5.27)

At receiver r, user i is decoded before user t if gripi ≥ grtpt. Therefore, to obtain the

optimal decoding order for receiver r, we sort gripi, i ∈ E, decreasingly. The optimal

decoding order for receiver r, i.e., π[∗r] is such that,

grπ[∗r](K)pπ[∗r](K) ≥ grπ[∗r](K−1)pπ[∗r](K−1) ≥ . . . ≥ grrpr. (5.28)

In addition, the set of receivers which decode user t, i.e., E∗[t] is derived as,

E∗[t] = {r : grtpt ≥ grrpr}. (5.29)

In this case, the rate of user t is obtained by

ϑt(Π
∗) = min

r,r∈E∗[t]
log2


1 +

grtpt

σ2
r +

∑
i:grtpt>gripi

gripi


 . (5.30)

5.4 Conclusion

In this chapter, a K-user memoryless interference channel is considered where each

receiver sequentially decodes the data of a subset of transmitters before it decodes
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the data of the designated transmitter. Therefore, the data rate of each transmitter

depends on (i) the subset of receivers which decode the data of that transmitter, (ii) the

decoding order, employed at each of these receivers. In this chapter, a greedy algorithm

is developed to find the users which are decoded at each receiver and the corresponding

decoding order such that the minimum rate of the users is maximized. It is proven that

the proposed algorithm is optimal.



Chapter 6

Conclusion and Future Research

This dissertation focuses on the problem of signaling and fairness for the MIMO multi-

user systems.

In Chapter Two, a simple signaling method for broadcast channels with multiple

transmit multiple receive antennas is proposed. In this method, for each user, the

direction in which the user has the maximum gain is determined. The best user in terms

of the largest gain is selected. The corresponding direction is used as the modulation

vector (MV) for the data stream transmitted to the selected user. The algorithm

proceeds in a recursive manner where in each step, the search for the best direction is

performed in the null space of the previously selected MVs. It is demonstrated that

with the proposed method, each selected MV has no interference on the previously

selected MVs. Dirty paper coding is used to cancel the remaining interference. To

analyze the performance of the scheme, an upper-bound on the outage probability

134
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of each sub-channel is derived which is used to establish the diversity order and the

asymptotic sum-rate of the scheme. It is shown that the diversity order of the jth data

stream, 1 ≤ j ≤ M , is equal to N(M − j +1)(K− j +1), where M , N , and K indicate

the number of transmit antennas, the number of receive antennas, and the number

of users, respectively. Furthermore, it is proven that the throughput of this scheme

scales as M log log(K) and asymptotically (K −→∞) tends to the sum-capacity of the

MIMO broadcast channel. The simulation results indicate that the achieved sum-rate

is close to the sum-capacity of the underlying broadcast channel.

Chapter three presents a new scenario of data communication for a multiple-antenna

system with two transmitters and two receivers in which each receiver receives data from

both transmitters (X-Channels). In this scenario, it is assumed that each transmitter

is unaware of the other transmitter’s data (non-cooperative scenario). This system

can be considered as a combination of two broadcast channels (from the transmitters’

points of view) and two multi-access channels (from the receivers’ points of view).

Taking advantage of both perspectives, two signaling schemes for such a scenario are

developed. In these schemes, some linear filters are employed at the transmitters and at

the receivers which decompose the system into either two non-interfering multi-antenna

broadcast sub-channels or two non-interfering multi-antenna multi-access sub-channels.

The main objective in the design of the filters is to exploit the structure of the channel

matrices to achieve the highest multiplexing gain (MG). It is shown that the proposed

non-cooperative signaling schemes outperform other known non-cooperative schemes
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in terms of the achievable MG. In particular, it is shown that in some specific cases,

the achieved MG is the same as the MG of the system if full cooperation is provided

either between the transmitters or between the receivers.

Chapter four investigates the problem of fairness in a wide class of multi-user sys-

tems for which a subset of capacity region, including the corner points and the sum-

capacity facet, has a special structure known as polymatroid. Multi-access channels

with fixed input distributions and multiple-antenna broadcast channels are examples

of such systems. Any interior point of the sum-capacity facet can be achieved by time-

sharing among corner points or by an alternative method known as rate-splitting. The

main purpose of this part is to find a point on the sum-capacity facet which satisfies a

notion of fairness among active users. This problem is addressed in two cases: (i) where

the complexity of achieving interior points is not feasible, and (ii) where the complexity

of achieving interior points is feasible. For the first case, the corner point for which

the minimum rate of the active users is maximized (max-min corner point) is desired

for signaling. A simple greedy algorithm is introduced to find the optimum max-min

corner point. For the second case, the polymatroid properties are exploited to locate

a rate-vector on the sum-capacity facet which is optimally fair in the sense that the

minimum rate among all users is maximized (max-min rate). In the case that the rate

of some users can not increase further (attain the max-min value), the algorithm recur-

sively maximizes the minimum rate among the rest of the users. It is shown that the

problems of deriving the time-sharing coefficients or rate-spitting scheme can be solved



Summary of Contributions and Future Research 137

by decomposing the problem to some lower-dimensional subproblems. In addition, a

fast algorithm to compute the time-sharing coefficients to attain a general point on the

sum-capacity facet is proposed.

In chapter five, a K-user memoryless interference channel is considered where each

receiver sequentially decodes the data of a subset of transmitters before it decodes

the data of the designated transmitter. Therefore, the data rate of each transmitter

depends on (i) the subset of receivers which decode the data of that transmitter, (ii) the

decoding order, employed at each of these receivers. In this chapter, a greedy algorithm

is developed to find the users which are decoded at each receiver and the corresponding

decoding order such that the minimum rate of the users is maximized. It is proven that

the proposed algorithm is optimal.

6.1 Future Research Directions

The dissertation can be continued in several directions as briefly explained in what

follows.

In the signaling scheme, presented in chapter two, it is assumed that the channel

state information or the best modulation vectors are perfectly available at the trans-

mitter. An extension to this work is to consider the effect of quantizing the channel

state information for the practical scenarios where the feedback channels have limited

capacity. The main objective would be to find the performance degradation of the
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proposed scheme as a function of the number of quantizing levels.

In chapter two, it is shown that in a limited SNR, the difference between the sum-

capacity of the system and the sum-rate of the proposed scheme diminishes as the

number of users increases. An insightful direction to extend this work is to compute

the difference of the sum-capacity and the sum-rate where the number of users is limited

and SNR is high. The derived multiplexing gain of the scheme shows that the curve of

the sum-rate versus SNR and the curve of the sum-capacity versus SNR have the same

slope in the high SNR. Computing the power offset of the proposed scheme along with

the derived multiplexing gain provides a complete picture from the performance of the

scheme in the high SNR regime.

As mentioned in chapter three, the X channel can be considered as the building

block of a system with two transmitters, two relay nodes, and two receivers, where each

relay node retransmits the data of the two transmitters. Investigating the achievable

region and signaling schemes for such relay channel is an interesting direction for future

research.

In chapter five, the optimal order of decoding is derived where the receivers have

the possibility of successive decoding. A fruitful future work is to derive the optimal

power allocation to attain a specific rate vector for both cases of single-antenna and

multiple-antenna interference channels.



Appendix A

Some Results from the Theory of

Order Statistics

Let z1, z2, . . . , zK be i.i.d random variables with a common CDF F (.) and probability

density function f(.). Let Fj:K(.) denote the CDF of the jth largest variable, z{j} =

jth max{z1, . . . , zK}. Then, we have the following lemmas and theorems.

Lemma A.1. [9, Chapter 2, Page 8]

Fj:K(z) = Pr(z{j} ≤ z) =
K∑

i=K−j+1

(
K

i

)
F i(z)[1− F (z)]K−i. (A.1)

When K −→ ∞, the following theorem characterizes the limiting distribution of

Fj:K(.).

Theorem A.2. [55, Smirnov, 1949] Assume that there exists the sequence of normal-
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izing constants ai > 0 and bi, i = 1, . . . , K, such that

lim
K−→∞

Fj:K(aKz + bK) = Υ̃{j}(z). (A.2)

Then, Υ̃{j}(z) has the following form:

Υ̃{j}(z) = Λ(z)

j−1∑
i=0

{− log[Λ(z)]}i

i!
, (A.3)

where Λ(z) belongs to one of the following three types of functions:

Type (i) Λ1(z) =





0 z ≤ 0

exp(−z−ε̃) z > 0, ε̃ > 0

(A.4)

Type (ii) Λ2(z) =





exp(−(−z)ε̃) z ≤ 0, ε̃ > 0

1 z > 0

(A.5)

Type (iii) Λ3(z) = exp(−e−z). (A.6)

The following theorem gives the necessary and sufficient condition for distribution

F (z) to belong to the domain of attraction of one of the three limiting forms.

Theorem A.3. [55] Suppose aK > 0 and bK are sequences of real numbers. For

distribution function Fj:K and Λl(z), where j is a fixed natural number, we have

lim
K−→∞

Fj:K(aKz + bK) = Υ̃
{j}
l (z) = Λl(z)

j−1∑
i=0

{− log[Λl(z)]}i

i!
, (A.7)

if and only if

lim
K−→∞

K [1− F (aKz + bK)] = − log[Λl(z)]. (A.8)
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The following theorem determines the rate of the convergence to the limiting dis-

tributions.

Theorem A.4. [11, Dziubdziela, 1974] Assume F (z) with normalizing sequences aK

and bK is in the domain of attraction of type l limiting distribution, l ∈ {1, 2, 3}. If

1
2

< F (aKz + bK) < 1 and − log[Λl(z)] < ∞, then for natural number j,

∣∣∣∣Fj:K(aKz + bK)− Υ̃
{j}
l (z) +

1

2
Kδ̃2

Kg(j, Kδ̃K)

∣∣∣∣ ≤
1

2
π exp(2Kδ̃K)Kδ̃3

K

[
4

3(1− 2δ̃K)
+

(
16

9
Kδ̃3

K

1

(1− 2δ̃K)2
+

+
8

3
Kδ̃2

K

1

1− 2δ̃K

+ Kδ̃K

)
exp

(
Kδ̃2

K

{
1 +

4

3
δ̃K

1

1− 2δ̃K

})]
+ Θ(z), (A.9)

where

Θ(z) =

∣∣∣∣∣
1

(j − 1)!

∫ − log[Λl(z)]

Kδ̃K

$j−1 exp(−$)d$

∣∣∣∣∣ , (A.10)

and

δ̃K(z) = 1− F (aKz + bK), (A.11)

and

g(z, ϑ̃) =





0 z ≤ 0

exp(−ϑ̃) 0 < z ≤ 1

exp(−ϑ̃)
(

ϑ̃µ+1

(µ+1)!
− ϑ̃µ̃

(µ̃)!

)
µ̃ + 1 < z ≤ µ̃ + 2 µ̃ = 0, 1, 2, . . .

(A.12)

In the following lemma, we apply the above theorems for a specific distribution

which is used throughout this chapter.
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Lemma A.5. Let z1, z2, . . . , zK be K i.i.d random variables with a common CDF

F (z) = 1− 1

β̃
zα̃e−z α̃ ≥ 0, β̃ > 0, (A.13)

then,

• Distribution function F (z) is in the domain of attraction of type (iii) limiting

distribution with normalizing sequences

aK = 1, (A.14)

bK = log

(
K

β̃

)
− α̃ log log

(
K

β̃

)
. (A.15)

• If z{j} denotes the jth largest random variable, then,

Pr
{

bK − log log(
√

K) ≤ z{j} ≤ bK + log log(
√

K)
}
≥ 1−O

(
1

log K

)
. (A.16)

Proof. Part One:

Using aK and bK , defined in (A.14) and (A.15), we have

lim
K−→∞

K(1− F (aKz + bK)) = K
1

β̃
(aKz + bK)−α̃ exp(−aKz − bK) =

lim
K−→∞

K
1

β̃

[
z + log

(
K

β̃

)
− α̃ log log

(
K

β̃

)]−α̃

exp

[
−z − log

(
K

β̃

)
+ α̃ log log

(
K

β̃

)]
=

lim
K−→∞

exp(−z)

[
z + log

(
K

β̃

)
− α̃ log log

(
K

β̃

)]−α̃ [
log

(
K

β̃

)]α̃

=

= exp(−z) = − log[Λ3(z)]. (A.17)

Therefore, regarding Theorem A.3, the distribution (A.13) is in the domain of attraction

of type (iii) limiting distribution.
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Part Two:

Substituting log log(
√

K) and − log log(
√

K) in Υ̃
{j}
3 (z), defined in (A.7), we obtain

Υ̃
{j}
3

(
log log

√
K

)
= exp

(
− 1

log
√

K

) j−1∑
i=0

1

i! logi
√

K
= 1−O

(
1

log K

)
, (A.18)

and

Υ̃
{j}
3

(
− log log

√
K

)
=

1√
K

j−1∑
i=0

logi
√

K

i!
= O

(
logj

√
K√

K

)
. (A.19)

Therefore,

Υ̃
{j}
3

(
log log

√
K

)
− Υ̃

{j}
3

(
− log log

√
K

)
≥ 1−O

(
1

log K

)
. (A.20)

In the following, we apply Theorem A.4 to find out how Fj:K(z) is close to limiting dis-

tribution Υ̃
{j}
3 (z) at z = log log

√
K and z = − log log

√
K. To simplify the derivation,

we first calculate some terms appeared in Theorem A.4 at these two points.

Using (A.11), (A.14), and (A.15), for F (z) in (A.13), we obtain

δ̃K(z) = 1− F (aKz + bK) =
e−z

K

[
1 + O

(
1

log K

)]
. (A.21)

Therefore,

δ̃K

(
log log

√
K

)
=

1

K log
√

K

[
1 + O

(
1

log K

)]
, (A.22)

and

δ̃K

(
− log log

√
K

)
=

log
√

K

K

[
1 + O

(
1

log K

)]
. (A.23)

It is easy to show that Θ(z) in (A.10) is equal to,

Θ(z) =

∣∣∣∣∣exp[−Kδ̃K(z)]

j−1∑
i=0

[Kδ̃K(z)]i

i!
− Υ̃

{j}
3 (z)

∣∣∣∣∣ . (A.24)
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On the other hand, using (A.22), we obtain

exp[−Kδ̃K(log log
√

K)] = 1−O

(
1

log K

)
, (A.25)

and using (A.22), we obtain

exp[−Kδ̃K(− log log
√

K)] = O

(
1√
K

)
. (A.26)

Consequently, using (A.18), (A.22), (A.24) and (A.25), we have

Θ
(
log log

√
K

)
= O

(
1

log K

)
, (A.27)

and using (A.19), (A.23), (A.24) and (A.26), we have

Θ
(
− log log

√
K

)
= O

(
logj

√
K√

K

)
. (A.28)

Regarding (A.12), we have,

g(j, Kδ̃K(z)) =





exp(−Kδ̃K(z)) j = 1

exp(−Kδ̃K(z))
(

[Kδ̃K(z)]j−1

(j−1)!
− [Kδ̃K(z)]j−2

(j−2)!

)
j ≥ 2

(A.29)

Therefore, using (A.22), we obtain,

Kδ̃2
K(log log

√
K)g

(
j, Kδ̃K(log log

√
K)

)
= o

(
1

K

)
, (A.30)

and using (A.23), we obtain,

Kδ̃2
K(− log log

√
K)g

(
j, Kδ̃K(− log log

√
K)

)
= o

(
1

K

)
. (A.31)
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Applying Theorem A.4 for z = log log
√

K, and using (A.22), (A.27), and (A.30),

we have

∣∣∣∣Fj:K(log log
√

K + bK)− Υ̃
{j}
3 (log log

√
K) + o

(
1

K

)∣∣∣∣ ≤ O

(
1

log K

)
. (A.32)

Similarly, Applying Theorem A.4 for z = − log log
√

K, and using (A.23), (A.28), and

(A.31), we have

∣∣∣∣Fj:K(− log log
√

K + bK)− Υ̃
{j}
3 (− log log

√
K) + o

(
1

K

)∣∣∣∣ ≤ O

(
logj

√
K√

K

)
. (A.33)

Using (A.20), (A.33), and (A.32), we obtain

∣∣∣Fj:K

(
log log

√
K + bK

)
− Fj:K

(
− log log

√
K + bK

)∣∣∣ ≥ 1−O

(
1

log K

)
. (A.34)

Since Fj:K(.) denotes CDF of z{j}, (A.34) results in (A.16).
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Gm̃,ñ(z) for Small z

In chapter two, Lemma 2.3, the distribution of the largest eigenvalue of a Wishart

matrix Gm̃,ñ(z), is presented. In this appendix, we obtain the behavior of Gm̃,ñ(z) for

the small values z.

By substituting the Taylor expansion of ez and e−z into (2.20),

γ(n + 1, z) =

n!

(
1− e−z

n∑
m=1

zm

m!

)
= n!e−z

(
ez −

n∑
m=1

zm

m!

)

= n!

(
1− z +

z2

2!
− z3

3!
+ · · ·

) ( ∞∑
m=1

zm

m!
−

n∑
m=1

zm

m!

)

= n!

(
1− z +

z2

2!
− z3

3!
+ · · ·

) ( ∞∑
m=n+1

zm

m!

)

=
zn+1

n + 1
(1 + O(z)). (B.1)

146
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Substituting (B.1) in (2.19), we have,

Ψ =

[
zm−n+p+q−1

m− n + p + q − 1
(1 + O(z))

]n×n

(p,q)

. (B.2)

It is known that if a column or row of a matrix is multiplied by variable z, the

determinant of the resulting matrix is z times the determinant of the original matrix.

Using this property, first, we factor zm−n+q from column q, 0 ≤ q ≤ n of the Ψ,

and then we factor zp−1 from row p, 1 ≤ p ≤ n. The remaining matrix is equal to

[
1

m−n+p+q−1
(1 + O(z))

]n×n

(p,q)
, and the power of z outside the determinant is equal to

n∑
q=1

(m− n + q) +
n∑

p=1

(p− 1) = mn. (B.3)

Therefore,

det(Ψ) = zmn det

([
1

m− n + p + q − 1
(1 + O(z))

]n×n

(p,q)

)
. (B.4)

By substituting (B.4) into (2.18), we have

Gm̃,ñ(z) =

zmn

∏n
k=1 Γ(m− k + 1)Γ(n− k + 1)

det

([
1

m− n + p + q − 1
(1 + O(z))

]n×n

(p,q)

)
.(B.5)

According to (B.5), the coefficient of the smallest degree of z is equal to

c =
1∏n

k=1 Γ(m− k + 1)Γ(n− k + 1)
det

([
1

m− n + p + q − 1

]n×n

(p,q)

)
. (B.6)

We apply the following formula to calculate the determinant in (B.6) (see [44, p. 92,
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Problem 3])

det

([
1

xp + yq

]

(p,q)

)
=

∏
q>p(xq − xp)(yq − yp)∏

p,q(xp + yq)
, (B.7)

where xp and yq depend only on p and q, respectively. Substituting xp = m−n + p− 1

and yq = q in (B.7), we compute the determinant term in (B.6), resulting in

lim
z→0

Gm̃,ñ(z) = cm̃,ñz
m̃ñ, (B.8)

where cm̃,ñ is equal to

cm̃,ñ =
Πn−1

ζ̂=1
(n− ζ̂)!

∏n
k=1(m− k)!Πn

ζ̂=1
(m− n + ζ̂)ζ̂(m + n− ζ̂)ζ̂

, (B.9)

where n = min{m̃, ñ} and m = max{m̃, ñ}.
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Gm̃,ñ(z) for Large z

In this appendix, we obtain the behavior of Gm̃,ñ(z), the distribution of the largest

eigenvalue of a Wishart matrix (see Lemma 2.3) for the large values of z.

By using (2.20), the determinant of matrix Ψ in (2.19) has the following structure:

det(Ψ) =

det
(
[γ(m− n + p + q − 1, z)]n×n

(p,q)

)
=

ϕ̃0 + ϕ̃1(z)e−z + ϕ̃2(z)e−2z + · · ·+ ϕ̃n(z)e−nz, (C.1)

where ϕ̃0 is a constant number, and ϕ̃i(z), i = 1, · · · , n are polynomials. Therefore,

when z →∞,

det(Ψ) → ϕ̃0 + κ̃z ι̃e−z, (C.2)

where ι̃ is the degree of ϕ̃1(z), and κ̃ is the coefficient of z ι̃ in ϕ̃1(z). In the following,

we determine ϕ̃0, κ̃, and ι̃.
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Computing ϕ̃0: Using the expansion (2.20), it is easy to verify that

lim
z→∞

γ(m− n + p + q − 1, z) = (m− n + p + q − 2)!. (C.3)

Regarding (C.1) and (C.3) ,

ϕ̃0 = lim
z→∞

det(Ψ) = det
(
[(m− n + p + q − 2)!]n×n

(p,q)

)
. (C.4)

On the other hand, since Gm̃,ñ(z) is the CDF of a random variable, limz→∞ Gm̃,ñ(z) = 1.

Substituting (C.4) in (2.18), we have

lim
z→∞

Gm̃,ñ(z) =
det

(
[(m− n + p + q − 2)!]n×n

(p,q)

)
∏n

k=1 Γ(m− k + 1)Γ(n− k + 1)
= 1. (C.5)

Considering (C.4) and (C.5), we obtain

ϕ̃0 =
n∏

k=1

Γ(m− k + 1)Γ(n− k + 1). (C.6)

Computing κ̃, and ι̃: Applying the method of expansion by minors, we expand the

determinant of Ψ in (2.19), based on the last row of the matrix. It is evident that the

largest power of z in ϕ̃1(z) is determined by Ψ(n, n), multiplied by the constant term

of its cofactor. By using (2.19) and (2.20), it is easy to show that this term is equal to

det
(
[(m− n + p + q − 2)!]

(n−1)×(n−1)
(p,q)

)
γ(m + n− 1, z), (C.7)

where γ(m+n−1, z) is entry (n, n) of matrix Ψ, and det
(
[(m− n + p + q − 2)!]

(n−1)×(n−1)
(p,q)

)

is the constant part of its cofactor. Using (2.20), we obtain

γ(m + n− 1, z) = (m + n− 2)!− zm+n−2e−z
(
1 + O(z−1)

)
. (C.8)
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By rewriting (C.5), we obtain

det
(
[(m− n + p + q − 2)!]n×n

(p,q)

)
=

n∏

k=1

Γ(m− k + 1)Γ(n− k + 1). (C.9)

By substituting m− 1 for m and n− 1 for n in (C.9),

det
(
[(m− n + p + q − 2)!]

(n−1)×(n−1)
(p,q)

)
=

n−1∏

k=1

Γ(m− k)Γ(n− k). (C.10)

Considering (C.7), (C.8), and (C.10), we have

κ̃ = −
n−1∏

k=1

Γ(m− k)Γ(n− k), (C.11)

and,

ι̃ = m + n− 2. (C.12)

Using (C.2), (C.6), (C.11), (C.12), and (2.18), we have,

Gm̃,ñ(z) = 1− e−zzm+n−2

(m− 1)!(n− 1)!

(
1 + O(z−1e−z)

)
, (C.13)

Since m = max{m̃, ñ} and n = min{m̃, ñ}, we have

Gm̃,ñ(z) = 1− e−zzm̃+ñ−2

(m̃− 1)!(ñ− 1)!

(
1 + O(z−1e−z)

)
. (C.14)
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