
The Valuation and Risk Management of a DB

Underpin Pension Plan

by

Kai Chen

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Actuarial Science

Waterloo, Ontario, Canada, 2007

c© Kai Chen, 2007



I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Kai Chen

ii



Abstract

Hybrid pension plans offer employees the best features of both defined benefit and

defined contribution plans. In this work, we consider the hybrid design offering a

defined contribution benefit with a defined benefit guaranteed minimum underpin.

This study applies the contingent claims approach to value the defined contribution

benefit with a defined benefit guaranteed minimum underpin. The study shows

that entry age, utility function parameters and the market price of risk each has a

significant effect on the value of retirement benefits.

We also consider risk management for this defined benefit underpin pension

plan. Assuming fixed interest rates, and assuming that salaries can be treated as a

tradable asset, contribution rates are developed for the Entry Age Normal (EAN),

Projected Unit Credit(PUC), and Traditional Unit Credit (TUC) funding methods.

For the EAN, the contribution rates are constant throughout the service period.

However, the hedge parameters for this method are not tradable. For the accruals

method, the individual contribution rates are not constant. For both the PUC and

TUC, a delta hedge strategy is derived and explained.

The analysis is extended to relax the tradable assumption for salaries, using the

inflation as a partial hedge. Finally, methods for incorporating volatility reducing

and risk management are considered.
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Chapter 1

Introduction

In recent years, the design of pension plans has become an important topic for

pension fund managers. There are two basic kinds of pension plans: Defined Ben-

efit(DB) and Defined Contribution(DC).

In a defined contribution plan, the total rate of contribution is fixed in advance,

sometimes at a set rate, such as 7% of annual salary. The level of pension benefits is

unpredictable; the amount of pension employees receive depends on the investment

experience of their own pension accounts and the cost of annuitization at retirement.

Depending on the long-term investment results that employees achieve, the defined

contribution pension could be significantly higher, or significantly lower, than the

pension under a comparable defined benefit plan. Examples of defined contribution

plans include 401(k) plans, 403(b) plans, employee stock ownership plans, and

profit-sharing plans.

In a defined benefit plan, employees receive a pension based on a formula. The

plan may state this promised benefit as an exact dollar amount, such as $1000 per

month at retirement. More commonly, the benefit is calculated through a specified

1



Introduction 2

formula that includes such factors as years of service and salary. For example, a

defined benefit pension might be calculated as 1.5% of average salary for the final

5 years of employment, for every year of service with an employer. The benefits

in most traditional DB plans may be protected, within certain limitations, by fed-

eral insurance. For example, in the U.S., such insurance is provided through the

Pension Benefit Guaranty Corporation (PBGC). Nevertheless, it is the employers’

responsibility to ensure that contributions and investment earnings are sufficient

to provide the employees’ pension benefits. To compare DB plans with DC plans,

we assume there is a defined benefit account equal to the market value of the DB

benefits.

To mitigate the effect of adverse investment experience on a defined contribution

plan, some employers use hybrid pension plans to support employees after retire-

ment. Hybrid pension plans have advantages of both the DB plan and the DC plan.

For example, a common hybrid pension plan is the cash balance plan. It defines the

promised benefit in terms of a stated account balance. So it is a defined benefit plan

with defined contribution characteristics, as the post-retirement risk is transferred

to the employee. Another kind of hybrid pension plan has been designed to offer

“greater of” retirement, resignation, and death benefits that are the maximum of

two different benefit accounts. One benefit account is based on the accumulation

of defined contributions, the other one is regular defined benefit plan, based on

the employee’s final salary and years of service. The defined contribution account

accumulates contributions paid by employees and also their employers. When an

employee reaches a special settlement, such as death, disability or retirement, the

maximum value of two accounts will be paid to the employee, and his or her spouse.

This pension plan guarantees minimum DB benefits to protect employees against

adverse investment experiences. The features and more details of this pension plan
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in Australian retirement funds are discussed in Britt(1991). The retirement bene-

fits provided by a number of large public employers in Canada are also of this form,

such as York University and McGill University(2006).

The payoff of this hybrid pension plan can be decomposed into two parts. The

first part is the value of the defined contribution account. The other part is the max-

imum of the value of the DB account minus the DC account and zero. The payoff

of the second part is similar to an exchange option, developed by Margrabe(1978).

The exchange option gives holder the right to give up an underlying asset worth

S2 and receive in return another underlying asset worth S1, which has the payoff

max{S1 − S2, 0}. Boyle and Schwartz(1976) extend option pricing techniques to

price the benefits of life insurance products, by assuming mortality is independent

of the risky assets, and is fully diversifiable. In this case the risk-neutral mortality

measure is the same as the real world measure.

Sherris(1995) applies a contingent claims approach to the case of guaranteed

minimum DB retirement benefits. He demonstrates that lattice models are not

computationally feasible for retirement fund benefits, although they are commonly

used in the valuation of financial options. Sherris(1995) prices the option under

a number of different assumptions, but does not add in wider risk management

questions. In this work, we start from the work of Sherris and develop pricing

and risk management models for the DB guarantee. We first consider different

measures and different pricing models using Monte Carlo simulation. Secondly,

we consider the risk management of hybrid pension plans. We have researched

the relationships between salaries, bonds, stocks and inflation. We find salary

growth rates and inflation rates have very high correlation. Implementing ideas

from exchange option valuation, we propose four funding strategies and analyze

sensitivities of monthly hedging costs to different assumptions.
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We consider the current situation for pension plans in Chapter 2. In this chapter,

we illustrate some pension plan designs and describe the current scientific literature

on pricing and hedging pension risks. In Chapter 3, we use a traditional actuarial

method to calculate the expected cost of a particular hybrid plan under the nature’s

measure. We also consider the equilibrium pricing model in the incomplete market.

We propose four funding strategies using different cost methods with tradable salary

assumption in Chapter 4. We show the numerical results by simulation in Chapter

5. In Chapter 6, we analyze the relationship between salary and other financial

indexes, such as bonds, stocks and inflation. In Chapter 7, we assume that the

salary is no longer tradable. We introduce the stochastic interest rate in our model

in Chapter 8. To smooth the hedging cash flows, we consider alternative cost control

approaches in Chapter 9. Chapter 10 describes our further work.



Chapter 2

Current Pension Systems and

Pension Fund Risk Management

In the current pension system, there are two basic kinds of pension plans: De-

fined Benefit (DB) and Defined Contribution (DC). In the last two decades, many

countries have put reform of the existing pension systems on the political agenda,

because the global aging problem together with adverse investment experience has

resulted in widespread underfunding of DB plans. As the contribution period in

a pension fund may be very long, generally from 20 to 40 years, pension fund

managers need to consider a long-term investment strategy, as well as uncertain-

ties caused by the economy, legal reforms, and of course the aging problem. In

this chapter, we introduce some popular pension plans in detail. We analyze their

important properties and illustrate some current risk management methods.

5



Current Pension Systems and Pension Fund Risk Management 6

2.1 Defined Benefit Plan

In a defined benefit plan, benefits are defined in advance by a formula, and employer

contributions are treated as the variable factor. Employees will earn defined benefits

at retirement without investment risk (though there is a default risk). The formula

for establishing the benefits may vary, but generally may be classified into two

categories: flat benefit or unit benefit.

In a flat benefit formula, retirement benefits are independent on the length of

service under the plan beyond a minimum period of service. The compensation

base is normally the average earnings during a specified period before retirement.

Another type of flat benefit formula ignores differences in both compensation and

length of service. It only provides a flat dollar amount of benefits for all qualified

employees at retirement. This type of formula was typical of the early negotiated

plans but is rare today.

In a unit benefit formula, an explicit unit of benefit is credited for each year of

recognized service with the employer. The credit benefits earned each year can be

fixed, or determined by the final salary, the final average salary or the whole career

average salary. There are various forms of limit of plans and ancillary benefits.

The most common limits exclude (1) all service performed before a specified age,

(2) the first year or few years of service, or (3) all service over a maximum number

of years, such as 30 or 35. The withdrawal benefits, death benefits and disability

benefits are also an important consideration in the design of pension plans.



Current Pension Systems and Pension Fund Risk Management 7

2.2 Funding Methods for DB Plans

There are many cost methods, as described by Aitken(1996), to calculate the ac-

tuarial value of pension benefits. They are generally acceptable to the supervisory

authorities for funding purposes. The two main categories of cost methods are the

accruals method and the level premium method. We describe three most common

approaches here. These will be emphasized again in Chapter 4.

2.2.1 Terminology

We illustrate some notation that we will use in our work. Given an employee

who enters the plan at age xe, and the normal retirement age (NRA) xr, we let

T = (xr − xe) denote the time to the normal retirement age, which is also the

maximum years of the membership. We use the following notation for the DB

benefit.

St is the employee’s salary at age xe + t. For simplicity, we assume that this

increases monthly, which is the frequency of the valuation and hedging process.

α is the DB accrual rate, which defines how much benefit accrues with each year

of service.

T−t|ä
(12)
xe+t is the value at exit time t of a deferred annuity of 1/12 per month

according to the pension plan rules. At the normal retirement age (NRA), where

t = T , ä
(12)
xr denotes the value at retirement time T of an annuity of 1/12 per month.

At is an index representing the return of the DC account. At is the accumulation

at t of $1 invested in the underlying DC fund at time 0.

To be clarified, the word ‘projected’ will be used to denote a random variable in

later chapters. For example, DB(t, T ) and DC(t, T ) denote the projected value of



Current Pension Systems and Pension Fund Risk Management 8

the DB account and DC account at time T with the information available at current

time t. That means DB(t, T ) and DC(t, T ) are two random variables. DBi(t, T )

and DCi(t, T ) denote the projected value of DB account and DC account at time

T with the current time t according to different cost methods, where i = T denotes

the traditional unit credit (TUC) cost method, i = P denotes the projected unit

credit (PUC) cost method, and i = E denotes the entry age normal (EAN) cost

method.

2.2.2 Traditional Unit Credit Cost Method

The accruals method includes the traditional unit credit, and the projected unit

credit cost method. The traditional unit credit (TUC) actuarial liability is the

value of pension benefits accrued from the entry to the valuation date. It is always

used for flat benefit pension plans. Under the traditional unit credit cost method,

an employee’s given credited years of service is determined by the past service. It

is often used when the annual benefit accrual is expressed as a flat dollar amount

or a specified percentage of the employee’s current salary for each year.

For a final salary plan, where the final benefit is DBT (T, T ) = αTST ä
(12)
xr , the

TUC value of retirement benefit at the valuation time t with an exit time s can be

expressed as,

DBT (t, s) = αtSt · T−s|ä
(12)
xe+s|St (2.1)

where t ≤ s ≤ T , α is the accrual rate, St is the salary at time t, and T−s|ä
(12)
xe+s

is the deferred annuity rate with the exit time s. Then, the actual benefit value,

αtSt, is known at time t.

Under the traditional unit credit (TUC) cost method, the retirement benefit is

defined as the expected increase in the employee’s accumulated plan benefit during
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the year. Under a final salary plan, the increase in an employee’s accumulated

benefit is a combination of that year’s benefit accrual and the adjustment of the

salary base.

2.2.3 Projected Unit Credit Cost Method

The traditional unit credit (TUC) cost method fails to satisfy the criteria of an

“ideal” actuarial cost method, because the normal cost of the plan is volatile. It is

likely to rise from year to year, and the actuarial liability may fall short of the plan

termination liability. Both of these shortcomings are modified by the projected unit

credit (PUC) cost method.

The projected unit credit (PUC) cost method adds the salary scale to the tra-

ditional unit credit cost method. The current salary is projected to retirement by

a salary scale in the unit benefit calculation. The PUC method is very commonly

used for final salary plans.

For a final salary plan, where the final benefit is DBP (T, T ) = αTST ä
(12)
xr , the

PUC value of retirement benefit at the valuation time t with the exit time s can be

mathematically expressed as,

DBP (t, s) = αtSs · T−s|ä
(12)
xe+s|St (2.2)

where t ≤ s ≤ T , α is the accrual rate, Ss is the salary at time s, and T−s|ä
(12)
xe+s

is the deferred annuity rate with the exit time s.

Under the projected unit credit (PUC) credit method, the retirement benefit is

expected to increase because of the increase of years of service, since the salary scale

has been projected to the exit time. So, although both TUC and PUC generate

increasing contributions over time, the PUC benefits start higher and increase less.
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2.2.4 Entry Age Normal Cost Method

The entry age normal (EAN) cost method funds the retirement benefit using level

annual contributions, unlike unit credit methods which are based on accruals. A

salary-increase assumption in used when the pension benefit is based on career

average or final average salary. Under the entry age normal (EAN) cost method for

conventional final salary DB benefits, the value of DB benefits is calculated by the

projected years of service and the projected final salary.

DBE(t, s) = αsSs · T−s|ä
(12)
xe+s|St (2.3)

where t ≤ s ≤ T , α is the accrual rate, Ss is the salary at time s, and T−s|ä
(12)
xe+s

is the deferred annuity rate with the exit time s.

The entry age normal (EAN) cost method treats earned years of service and

unearned years of service equally. Table 2.1 summarizes three valuation formulas

of the DB benefit at the normal retirement age. We will show it in Chapter 4 again.

Table 2.1: DB Valuation Formulas Based on Different Cost Methods

DB Account (DB(t, T ))

EAN DBE(t, T ) = kTST

PUC DBP (t, T ) = ktST

TUC DBT (t, T ) = ktSt

Where we define k = α× ä12
xr.

2.2.5 Other Cost Methods

Besides the individual cost method, there are some aggregate methods, such as

individual aggregate cost method, aggregate method, frozen initial liability(entry
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age normal), frozen initial liability(attained age normal) and aggregate entry age

normal cost method. Aggregate cost methods usually consider value of the future

benefits and the future liabilities for all participants, active, deferred vested, and

retired. The portion of the total projected cost to be allocated to each plan year is

generally expressed as a percentage of covered payroll if benefits are related to pay.

It is one of peculiarities of the aggregate cost method that no actuarial liability

every directly emerges. The normal cost is defined and derived in such a way that

the present value of future benefits, less plan assets and any unfunded liability,

is always fully and precisely offset by the actuarial value of future normal cost

accruals.

2.3 Defined Contribution Plan

A pure defined contribution plan is a pension scheme where only contributions are

fixed and benefits therefore depend on returns on the assets of the fund. Pension

benefits are totally defined by the investment performance and employees make

investment decisions. All investment risk is transferred to employees. The pension

benefits may be very low when employees make bad, or unlucky investment decisions

or the financial market is poor. Defined contribution plans have been far more

popular recently for two main reasons. First, an employee knows the value of

his or her retirement account at any time; his or her plan is then more easily

portable from a company to another one. Moreover, employers do not bear any

risk linked with the retirement system of companies. The problem here is the

real need for a downside protection for employees. The ultimate aim of a pension

plan is to finance retirement and it usually provides the most important source of

employees’ incomes after retirement. To provide some down side protection, some
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plans incorporate guarantees or top-ups for when the benefit is very low. The main

problem considered in this thesis is the DB minimum, which has not been much

written about in the scientific literature. However, there are other forms of DC

guarantees, with some relevant academic research.

2.3.1 Defined Contribution Plan with Guaranteed Rate

Defined contribution pension guarantees resemble minimum cash values for equity-

linked life insurance policies in some ways. Brennan and Schwartz(1976), Boyle

and Schwartz(1977) and Banicello and Ortu(1993) have discussed such insurance

policy guarantees. However guarantees on defined contribution plans are more

complicated, since there are a series of sequential guarantees instead of a single

guarantee at the maturity.

Pennacchi(1999), extending Zarita(1994), values the guaranteed rate of return

on the defined contribution plan by contingent claims analysis. He illustrates that

the martingale pricing technique for calculating contingent claims values can be a

unifying framework for valuing many kinds of guarantees. He allows for employ-

ees’ salaries to be stochastic, and thus the monthly contributions follow a random

process. Real interest rates also follow a stochastic process. This adds uncertainty

in the cost at employees’ retirement annuities. Under the restriction that equilib-

rium asset prices do not allow for arbitrage opportunities, the martingale pricing

approach can be applied to value a variety of guarantees on pension fund returns.

Boulier et al.(2001) consider pension fund management of protected defined

contribution plans where a guarantee is given on pension benefits, and the guarantee

depends on the level of the stochastic interest rate when the employee retires. They

assume that there are three different assets in the market: cash, bonds and stocks.
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The pension fund will be invested in a portfolio which is constructed by these three

assets to guarantee the retirement benefit. Boulier et al.(2001) assume that the

guarantee G(T ) at retirement is a function of the short interest rate and the wealth

process X(t) at time t is invested in the risk-free asset, the stock index and the

rolling bond. They propose four steps to maximize the expectation of the utility

of the surplus between the wealth process and the guarantee. This can be solved

by numerical methods. There are two important features of this strategy. First,

the model introduces a stochastic interest rate process. For any movement of the

rate, the manager exactly knows how to react and rebalance the portfolio. Second,

this strategy is described by the wealth invested in the three classes of assets: cash,

long-term bonds and stocks. So a practical tool can be easily implemented to help

employers in choosing their hedging portfolios.

2.4 Pension Reform

The contemporary discussion of pension reforms has been initiated mainly by con-

cern for the long-term financial viability of existing pension systems. In some coun-

tries, particularly in Latin America and Eastern Europe, such systems have more or

less broken down. In developed OECD (Organization for Economic Co-operation

and Development) countries, this problem is less dramatic but still urgent. Given

the anticipated developments in demography and productivity growth, pension re-

form has become a serious global problem. For example, the average contribution

rate in the European Union is 16 percent today. A report by the EU commis-

sion(2001) estimates that it has to be increased to 27 percent in 2050 if the present

rules are kept unchanged. The Social Security Administration(2001) shows that

the average contribution rate in the U.S. is 12.4 percent and is expected to increase
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to 17.8 percent in 2050 with unchanged rules. Pension reforms are necessary based

on those predictions.

Comparisons of pension systems and discussions of pension reforms are usu-

ally between defined benefit and defined contribution systems. Lindbeck and Pers-

son(2003) propose a three-dimensional classification: actuarial versus non-actuarial,

funded versus unfunded, and defined benefit versus defined contribution pension

system. Each of these dimensions is associated with a special aspect of pension

reform: labor market distortions, aggregate saving, and considerations of risk, re-

spectively.

Bader and Gold(2003) discuss the actuarial and financial economic valuation

models. They illustrate many principles that are universally accepted in financial

economics and almost as universally violated in the actuarial model. They propose

that a new model should rely on market values and reject the use of expected

returns on assets for discount rates.

Sinn(1999) and Miles(2000) focus on the second dimension and analyze pension

reform and the demographic crisis under the funded and unfunded pension schemes.

Miles(2000) uses stochastic simulation on calibrated models to assess the optimal

degree of reliance on funded pensions and on the pay-as-you-go(PAYGO) system.

Sinn(1999) also discusses the transition from pay-as-you-go(PAYGO) system to a

funded system. Both of them agree that the pay-as-you-go(PAYGO) system does

not waste economic resources and there is no Pareto improving way of making

this transition although there is a higher rate of return relative to sustainable GDP

growth. A combination of these two systems could be used to optimize the expected

welfare of employees. Miles(2000) tests various combination of assumptions about

the distribution of rates of return and pension generosity and concludes that the

optimal size of unfunded pensions is highly sensitive to both of the distribution of
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rates of return and the efficiency of annuities contracts.

In our research, we focus on the last dimension: defined benefit versus de-

fined contribution pension systems. In the United States private pension market,

defined contribution pension plans have been growing over the last two decades.

Some recent research also shows that many public pension plans are converting

from defined benefit to defined contribution. A defined contribution plan can offer

employees flexibility, portability, and investment portfolio choice, with investment

risks transferred to employees. In an interesting approach to balancing DC and DB

plan benefits, the State of Florida implemented state-wide pension reform in 2002.

In the new Public Employee Optional Retirement Program(PEORP), the State of

Florida granted each and every employee who wants to convert from the traditional

defined benefit plan to the self-managed defined contribution plan, the right but

not the obligation, to switch back into the defined benefit plan at any time prior to

retirement. The strike price of this DB buy-back option is the employee’s accumu-

lated benefit obligation(ABO) in the defined benefit plan. Lachance et al.(2003)

and Milevsky and Promislow(2004) evaluatee this guaranteed defined contribution

pension, and came up with very different conclusions.

Lachance et al.(2003) developed a theoretical framework to analyze the op-

tion design and illustrated how employee characteristics influence the option’s cost.

They adopted the risk neutral valuation technique based on no-arbitrage argu-

ments and calculated the employee’s optimal time of exercise by maximizing the

employee’s expected utility function. They showed that offering employees an op-

portunity to buy back the DB benefit requires balancing participant protection and

employer costs.

Milevsky and Promislow(2004) also considered the State of Florida pension

reform. Their conclusions were different from the Lachance et al.(2003) results.
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They thought Lachance et al.(2003) overestimated the incremental liability created

by exercising the option. However, they only used a strictly deterministic model

in which all parameters are fixed with certainty. Although this assumption helps

us to concentrate on the time of exercising the buy-back option, a more refined

model with stochastic factors should be introduced. Ignoring mortality and early

termination probabilities in their model, they concluded that nobody should retire

from the DC plan; rather, they all eventually return to the DB plan. Since they

did not consider the random factors to valuate an option, their results are very

doubtful.

2.5 Hybrid Pension Plans

In general, defined benefit plans provide a specific benefit at retirement for each

eligible employee, while defined contribution plans specify the amount of contribu-

tions to be made by the employer toward an employee’s retirement account. In a

defined contribution plan, the actual amount of retirement benefits provided to an

employee depends on the amount of the contributions as well as the gains or losses

of the account. Each plan type has advantages and disadvantages, so an employer

or a plan sponsor may want to combine the advantages of each type of plan, such as

the ease of communication of a defined contribution plan coupled with employer’s

assumption of investment risks and rewards in the defined benefit plan. Hybrid

plans attempt to combine the advantages of each of pure types of plans into a sin-

gle plan. For example, the guaranteed defined contribution plan with a buy-back

option in the Florida State is a kind of hybrid pension plan.
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2.5.1 Cash Balance Plan

A significant and common hybrid pension plan is the cash balance plan. A cash

balance plan is actually a defined benefit plan that defines the benefit and also has

the characteristic of a defined contribution plan. In other words, a cash balance plan

defines the promised benefit in terms of a stated account balance. The cash balance

plan was introduced by Bank of America in the early 1980s. In contrast to pure

defined benefit plans, a cash balance plan defines a lump-sum account at retirement,

but not a payable annuity. This is similar to the pure defined contribution pension

plan. But cash balance plan accounts grow by a predetermined formula, where the

pure defined contribution plan accounts grow by the actual earnings of the plan.

In a typical cash balance plan, an employee’s account is credited each year

with a “pay credit” (such as 5 percent of compensation from his or her employer)

and an “interest credit” (either a fixed rate or a variable rate that is linked to an

index such as the one-year treasury bill rate). Increases and decreases in the value

of the plan’s investments do not directly affect the benefit amounts promised to

participants. Thus, the investment risks and rewards on plan assets are borne solely

by the employer. When a participant becomes entitled to receive benefits under a

cash balance plan, the benefits that are received are defined in terms of an account

balance. The benefits in most of the U.S. cash balance plans are also protected

by federal insurance provided through the Pension Benefit Guaranty Corporation

(PBGC).
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2.5.2 Defined Contribution Plan with Minimum Benefit

Guaranteed Rates

The reformed defined contribution plans sometimes include a guaranteed minimum

benefit(DC-MB). Many countries have converted their public pension systems from

a pay-as-you-go(PAYGO) defined benefit plan to a defined contribution plan with

minimum benefit guarantees. Such plans offer a guaranteed rate of return to em-

ployees. The cost of benefit guarantee is becoming a more common topic in the

academic literature. The cost of pension guarantees has been analyzed in papers by

Pesando(1982), Marcus(1985,1987), Bodie and Merton(1993), Smetters(2001,2002),

and Bodie(2001). Smetters(2001) considers recent privatization plans, such as the

Feldstein-Samwick(1997) plan and the Gramm(1998) plan. He shows that unfunded

minimum benefit guarantees can be costly enough to undo most of the salutary

long-run benefit typically associated with funded private accounts.

Bodie and Merton(1993) explain an effective method of managing the risk as-

sociated with fixed guaranteed benefits inside traditional defined benefit plans. A

common technique to control guarantees costs is over-funding. This creates a buffer

against shocks on the investment performance. A higher contribution rate could

be used to over-fund the private pension fund. The mandatory contribution rate

in Chile, for example, is 10% of payroll, which could produce large enough benefits

to cover the minimum benefits. The same method has been used in Argentina and

is the dominant strategy in most countries. This over-funding technique does not

work well for the DC-MB, although it is very effective for defined benefits plans.

Smetters(1998), and Feldstein and Ranguelova(2000) suggest that participants

in DC-MB plans could sell part of their upside potential for downside protection.

It is like going short a call option and long a put option. Smetters(2002) considers
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two approaches of controlling the cost of DC-MB. In the first one, Smetters sug-

gests constructing a standardized portfolio consisting of some bonds. Investors or

employees bear basis risk if they choose a portfolio different from the standardized

portfolio. However, this approach is only effective for some smaller DB to DC-MB

conversions, since agents might anticipate an implicit guarantee and assume a lot

of basis risk, a so-called Samaritan’s Dilemma. The second approach considers a

little more brute force and allows for a fair amount of portfolio selection. It taxes

assets in DC-MB accounts in good states of the world and subsidizes assets in bad

states of the world. These two alternative methods are both more effective than

the over-funding method, since they shift resources from the good states of the

world to the bad states. As a result, unfunded liabilities are lower under these two

compared to the traditional over-funding method which does not shift.



Chapter 3

The Valuation of a DB Underpin

Pension

3.1 Introduction

In this chapter, we will consider a particular DB underpin pension plan which offers

“greater of” benefits and which has not been discussed extensively in the academic

literature. This DB underpin pension plan offers a defined contribution benefit with

a guaranteed defined benefit minimum underpin. Employees in this plan have their

own defined benefit and defined contribution accounts. The pension benefit at exit,

such as retirement, death and disability, is determined by the maximum of DB and

DC accounts. Britt(1991) discusses the features and more details of this pension

plan in Australian retirement funds. Sherris(1995), and Lin and Chang(2004) eval-

uate the cost of this plan. This DB underpin plan has been also provided by a

number of large public employers in Canada, such as York University and McGill

University.

20
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There are many approaches to valuing pension liabilities. Using option pricing

techniques to value actuarial liabilities is gaining acceptance. The initial applica-

tion of such techniques was to investment guarantees provided in maturity benefits

of life insurance products as first discussed in Boyle and Schwartz(1976). In 1990’s,

option pricing techniques had been adopted or proposed to value a range of actu-

arial liabilities. For instance, Wilkie(1989) discusses the use of these approaches in

valuation of pension payments from U.K. pension schemes. The contingent claims

framework based on arbitrage free pricing has also been applied to the valuation

of life insurance policy cash flows. In this chapter, we use the contingent claims

approach to calculate the expected cost of a DB underpin pension plan. This ap-

proach allows the calculation of a market value for these pension liabilities. Since

these pension benefits are non-tradable, we can not replicate pension liabilities and

the financial market is incomplete.

3.2 The Model and Assumptions

Traditional actuarial valuation techniques are based on deterministic assumptions

for the interest rate, the salary growth rate and the crediting rate for the defined

benefit account. Details of the traditional actuarial valuation approach for defined

benefit pensions are found in Bowers et al.(1986). This approach can not be used

when we have embedded options involved. The valuation of these benefits requires

the use of a stochastic model. We assume in the chapter a constant interest rate

and that salary growth rate and defined contribution crediting rate are stochastic.

Stochastic interest rates will be considered in Chapter 8.

The rate of salary growth is denoted by s(t) and the crediting rate is denoted

by f(t) at time t. They are assumed to follow two stochastic differential equations
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of the form

ds(t) = µ1(s(t), t)dt + σ1(s(t), t)dZs(t), (3.1)

df(t) = µ2(f(t), t)dt + σ2(f(t), t)dZf (t), (3.2)

with dZs(t)dZf (t) = ρfsdt, where ρfs denotes the instantaneous correlation

coefficient between the standardized Wiener increments dZs(t) and dZf (t). So we

can rewrite the stochastic process for f(t) as

df(t) = µ2(f(t), t)dt + σ2(f(t), t)

(
ρfsdZs(t) +

√
(1− (ρfs)2)dZ∗

f (t)

)
(3.3)

where dZs(t) and dZ∗
f (t) are independent Wiener increments.

This result is used for the numerical evaluation of the pension plan with min-

imum defined benefit guarantee and for simulation of the processes. For this DB

underpin pension plan, the early exercise time is determined by the mortality and

service table. We assume withdrawal or retirement is independent of the option

value. We define the termination value of the DB account at the exit time t with

entry age xe and normal retirement age xr as

DB(t, t) = α · t · St · T−t|ä
(12)
xe+t (3.4)

where t is the years of service, T = xr − xe is the normal retirement time, α is

the accrual rate, T−t|ä
(12)
xe+t is the deferred annuity value at age xe + t, and St is the

annual salary which is equal to the amount that the member earns in the whole

year before time t. We first assume the mortality rate and the interest rate are

constant. So the deferred annuity can be considered as deterministic.

At time t, the annual salary St is a function of the salary growth rate variable

s(t):

dSt = s(t)Stdt, (3.5)
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where s(t) is defined from equation (3.1).

Another account DC(t, t), the defined contribution account, is constructed by

accumulating monthly contributions with the contribution rate c. The contributions

are accumulated using the crediting rate. So this account is analogous to a notional

security that has a negative continuous dividend equal to the contribution rate times

salary. The value of DC(t, t) is determined from

dDC(t, t) = [f(t)DC(t, t) + cSt]dt, (3.6)

where:

f(t) is defined in equation (3.2),

St is defined in equation (3.5),

c is the assumed contribution rate.

In general, the maximum value of the defined benefit account and the accu-

mulated account is paid at the end of month when members die or retire. On

withdrawal, the benefit may be the defined contribution account. In some DB

underpin pension plans which are used in the U.S., the maximum value of two

accounts is only paid when employees retire or die. At the moment of withdrawal,

the plan pays the value of the defined contribution account to employees. How-

ever, under others, such as McGill university’s pension plan, the maximum value

of two accounts is paid as long as members leave the plan for any reason (i.e. re-

tirement, withdrawal, disability or death). Pension benefits can be expressed as

max(DB(T, T ), DC(T, T )) = DC(T, T ) + max(DB(T, T )−DC(T, T ), 0) at retire-

ment time T .
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In practice, we need a flexible and efficient way to calculate the value of benefits.

In the next section, we will use numerical techniques to price this pension plan with

minimum DB guarantee.

3.3 Numerical Techniques

Following Sherris(1995), we simulate variables using the following equations. The

rate of salary growth and the crediting rate at time t+h, st+h and ft+h are derived

from the risk-adjusted stochastic difference equation as Sherris(1995)

s(t + h) = s(t) + (αs + bss(t)− λsσss(t)
γs−1.0)h + σss(t)

γs−1.0
√

hZs(t) (3.7)

f(t+h) = f(t)+(αf+bff(t)−λfσff(t)γf−1.0)h+σff(t)γf−1.0
√

h(ρZs(t)+
√

1− ρ2Z∗
f (t))

(3.8)

where Zs(t) ∼ N(0, 1), Z∗
f (t) ∼ N(0, 1), and Zs(t) and Z∗

f (t) are independent;

h is the time step. We use a monthly time interval. The correlation coefficient

between the rate of salary growth and the crediting rate is ρ.

This formulation allows several alternative distributions to be generated for the

rate of salary growth and the crediting rate depending on the parameter γs. If

γs = 1, then the unconditional distribution of st is normal; if γs = 1.5, then the

unconditional distribution of st is gamma; and if γs = 2, then the unconditional

distribution of st is lognormal.1

There are many discussions about how to model the salary growth better, since

salary is not tradable and is not a continuous process. Equation (3.7) may not be

1This model has been used for interest rates with γs equal to one in Vasicek(1997) and with

γs equal to 1.5 in Cox, Ingersoll, and Ross(1985).
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the best choice. We retain it at this stage to reproduce Sherris’(1995) results as

a starting point for our own work. Sherris(1995) uses equation (3.7) and equation

(3.8) to generate the salary growth rate and the crediting rate and value the whole

benefit, DC(T, T ) + max(DB(T, T ) − DC(T, T ), 0). However, we only consider

the cost of the DB guarantee, max(DB(T, T ) − DC(T, T ), 0). To compare with

his results, we adopt the same processes in this section. Although parameters in

Sherris’ model are not appropriate for current situations, we use the same ones

as a starting point for comparison with Sherris’(1995) results. We use the same

parameters and same mortality table, which are summarized in Table 3.1 and Table

3.2, respectively. Sherris(1995) shows the costs of the DB underpin pension plan.

We use the same model and same values of parameters to analyze the difference

between costs of the pension plan and costs of the DB guarantee. In Section 3.5,

we will use more reasonable values of parameters to analyze sensitivities of the DB

underpin guarantee to parameters.

Six sets of parameters in stochastic difference equations for the rate of salary

growth and the crediting rate are given by Table 3.1. We assume the DC contribu-

tion rate c is equal to 12.5%, the discount rate is 0.1, and h = 1/12. Here we use

the risk-free zero coupon bond as the discount rate. We also assume the risk free

rate and the annuity are constant and the mortality table is given. Let the accrual

rate be 1.5% and the life annuity be 10, we have k = 15%, which is equal to the

accrual rate times the annuity. The decrement rate is given by Table 3.2, where

the normal retirement age is 65.
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Table 3.1: Assumptions for Stochastic Simulation Valuations

Parameter Values

αs bs σs γs αf bf σf γf

0.072 -1.2 0.08 1.0 0.1296 -0.96 0.2 1.0

Scenario 1 2 3 4 5 6

λs 0.0 0.0 0.0 0.0 -0.1 0.0

λf 0.168 0.168 0.168 0.000 0.000 0.100

ρ 0.0 0.5 -0.5 0.0 0.0 0.0

µs = αs−λsσs

−bs
0.06 0.06 0.06 0.06 0.067 0.06

µf =
αf−λf σf

−bf
0.10 0.10 0.10 0.135 0.135 0.114

3.4 Results

In this section, we present some numerical results and investigate the sensitivity of

the results to the various parameters. We assume that the maximum value of two

accounts is paid at any exit, including retirement, withdrawal, death and disability.

If the employee dies before the retirement, we assume the DB benefit is calculated

in the same way as the early retirement benefit with the deferred annuity. We

consider the difference between the defined benefit account and the accumulated

account when the plan ends. This is expressed as max(DB(t, t) − DC(t, t), 0) at

the exit time t. We use 10,000 paths to simulate the rate of salary growth and

the crediting rate, using six scenarios to indicate the sensitivity to the assumption.

The results for entry age 20, 30, 40 and 50 are shown in Table 3.3.

Sherris(1995) analyzes the cost of the whole DB underpin pension plan, where

the payoff is max(DB(t, t), DC(t, t)) = max(DB(t, t) − DC(t, t), 0) + DC(t, t) at

time t. However, our objective is to value the DB underpin guarantee, where the

payoff is max(DB(t, t) −DC(t, t), 0) at the exit time t. We start with comparing
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Table 3.2: Annual Decrement Rates for Retirement Benefit Valuations
Age Withdrawal Death and Age Withdrawal Death and Retirement

Disability Disability

20 0.1665 0.0009 43 0.0396 0.00231

21 0.1602 0.00089 44 0.03555 0.00262

22 0.1539 0.00083 45 0.0315 0.00297

23 0.1476 0.00075 46 0.02745 0.00338

24 0.1413 0.00067 47 0.0234 0.00385

25 0.135 0.00063 48 0.01935 0.00439

26 0.1287 0.00063 49 0.0153 0.00501

27 0.1224 0.00064 50 0.01125 0.00572

28 0.1161 0.00066 51 0.009 0.00655

29 0.1098 0.00068 52 0.00675 0.00751

30 0.1035 0.00072 53 0.0045 0.0086

31 0.0972 0.00077 54 0.00225 0.00983

32 0.0909 0.00082 55 0 0.01123

33 0.0846 0.00087 56 0 0.01282

34 0.0783 0.00093 57 0 0.01462

35 0.072 0.00101 58 0 0.01665

36 0.06795 0.0011 59 0 0.01895

37 0.0639 0.00121 60 0 0.02154

38 0.05985 0.00132 61 0 0.02443

39 0.0558 0.00146 62 0 0.02784

40 0.05175 0.00163 63 0 0.03185

41 0.077 0.00183 64 0 0.03659

42 0.04365 0.00205 65 0 0.04215 0.95785
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with Sherris’(1995) results and our results in this section. In the following sections,

we will improve and update values of parameters to test sensitivities.

Table 3.3: The Lump Sum Mean Cost and Standard Error of the Guarantee as a

Percent of Salary

Entry Age 20 30 40 50

Scenario Mean(StErr) Mean(StErr) Mean (StErr) Mean (StErr)

1 0.2116 0.8700 1.795 1.809

(0.0431) (0.1661) (0.2946) (0.2446)

2 0.1190 0.5345 1.184 1.378

(0.0245) (0.1035) (0.1951) (0.1838)

3 0.3063 1.239 2.096 2.325

(0.0626) (0.2349) (0.2903) (0.3816)

4 0.0486 0.2267 0.6541 0.8801

(0.01698) (0.07474) (0.1728) (0.1644)

5 0.0767 0.3536 0.8939 1.060

(0.0263) (0.1098) (0.2178) (0.1903)

6 0.1159 0.5315 1.168 1.354

(0.0306) (0.1279) (0.2331) (0.2110)

The unconditional or long-term mean salary growth rate is given by

µs = −(αs − λsσs)/bs, and the long-term mean crediting rate is given by µf =

−(αf − λfσf )/bf . In scenario 1, the salary growth rates and crediting rates are

uncorrelated and normally distributed. Scenarios 2 and 3 examine the sensitivity

of results to a variation in the correlation between the salary growth rate and the

crediting rate. In all simulations, the value for λf is chosen to produce a risk-

adjusted long-term crediting rate equal to the risk-free rate discount. In the first

three scenarios, the long-term crediting rate µf is equal to the risk free rate. In

scenarios 4, 5, and 6, we assume there is no risk-adjusted factor. So the cost is
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calculated under the nature’s measure.

Sherris(1995) considers the maximum value of two pension accounts, but we

focus on the difference between values of two accounts. The expected value of

the defined contribution account plus the expected cost of guarantee will be the

expected cost of the DB underpin pension plan, which is Sherris’(1995) result. This

change gives us different results. Sherris’(1995) results indicate that the correlation

coefficient has very little effect on the aggregate cost of benefit, but our results

show it has a important effect. Results are very sensitive to values of parameters.

When the correlation coefficient between salary growth rate and crediting rate is

negative, the cost is higher. The cost decreases when the correlation coefficient is

positive.

In the last three scenarios, we calculate the cost under the nature’s measure.

Scenario 4 indicates the effect of not making a risk adjustment to the crediting rate.

This creates an inconsistency between the discount rate and the crediting rate. In

scenario 5, we use the same parameters, except that the market price of risk for the

salary growth rate is equal to -0.1. We set the market price of risk for the crediting

rate as +0.1 in scenario 6. This has a major effect on the expected cost; clearly,

the determination of market price of risk should be made carefully.

We also consider different entry ages. The expected cost increases when the

entry age increases. This is because younger members have higher probability of

each withdrawal and lower death and disability probabilities. So the expected cost

will be lower overall.

Table 3.3 shows us the lump sum costs of the DB underpin guarantee. In Section

3.5, we will test the sensitivity of the DB underpin guarantee to changes in the

values of parameters. The market is incomplete here. Both results are calculated
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under the nature’s measure.

3.5 Scenario Test

In the previous sections, we started with Sherris’ model and assumptions, since

there are only few literatures about the DB underpin pension plan. Sherris(1995)

only considered the valuation of the DB underpin pension plan. His model2 was too

complicated and had too many parameters. However, he did not really justify his

model and parameters. In this section, we will start with two geometric Brownian

motions and change the parameters in our model to move appropriate values.

We assume salary growth rate and crediting rate follow two stochastic differen-

tial equations as follows

ds(t) = µsdt + σsdZs(t), (3.9)

df(t) = µfdt + σfdZf (t), (3.10)

with dZs(t)dZf (t) = ρfsdt, where ρfs denotes the instantaneous correlation

coefficient between the standardized Wiener increments dZs(t) and dZf (t).

We first test the sensitivity of the results to a change in the discount rate and

in the contribution rate. Intuitively, a higher discount rate or a lower contribution

rate represents a lower expected value of the DB underpin guarantee. Sherris(1995)

used a discount rate of 10% p.y., which gives a low expected cost for the guarantee.

The retirement benefit at the normal retirement age has a significant effect on

the expected cost. Clearly, a lower, more realistic discount rate will generate a

considerably higher overall value.

2See equation (3.7) and equation (3.8)
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If employees (or employers) are willing to pay more contributions to the DC

account during the working period, the value of their defined contribution account

increases, while the value of the defined benefit pension does not change. This

increases the probability that the value of DC account is greater than the value

of the DB account. In other words, there is more chance that the value of the

guarantee is zero. Hence, the expected cost is lower.

We fix the salary growth rate and the crediting rate and consider the following

four scenarios, as in given Table 3.4.

Table 3.4: Change in Discount Rate and Contribution Rate*

Scenario Discount Contribution

Rate Rate

1 0.05 0.125

2 0.05 0.15

3 0.07 0.125

4 0.07 0.15
*Mean of Salary Growth Rate: 5.5%, StD of Salary Growth Rate: 4%,

Mean of Crediting Rate: 7%, StD of Crediting Rate: 10%.

Table 3.5: Expected Lump-Sum Cost of the Guarantee as Percentage of Initial

Salary with Fixed Salary Growth and Crediting Rate

Entry Age 20 30 40 50

Scenario 1 0.2699 0.4884 0.5698 0.3875

Scenario 2 0.1347 0.2639 0.3055 0.1859

Scenario 3 0.1612 0.2852 0.3555 0.2965

Scenario 4 0.0714 0.1511 0.1933 0.1333

From Table 3.5, the expected cost of the guarantee decreases by almost 50%

when the contribution rate increases from 12.5% to 15%. This result shows that
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employer can reduce the guarantee cost significantly by increasing the contribution

rate as we expect. As the discount rate changes from 5% to 7%, the expected

cost decreases, and the effect is, not surprisingly, greatest for younger lives. The

expected cost is clearly very sensitive to the change of discount rate.

We now consider the sensitivities of the results to the salary growth rate and the

crediting rate for the DC fund. A higher crediting rate represents a good investment

performance by the DC fund leading to a higher value of the defined contribution

account which leads to a lower cost for the guarantee.

Since the salary growth rate affects both the defined benefit account and the

defined contribution account, it is not immediately obvious how the salary growth

rate assumption affects the price. As the salary growth rate increases, the final

salary increases and the value of defined benefit account increases. Meanwhile,

contributions invested to the defined contribution account are higher, since the

salary is higher, so the value of defined contribution account increases too.

To explore the sensitivity of the results to the salary growth rate and the cred-

iting rate, we test several scenarios with different combinations, as shown in Table

3.6 and Table 3.7. We fix the salary growth rate and change the mean and standard

deviation of the crediting rate first. The results are shown on Table 3.8. If we com-

pare scenario 1 and scenario 5, which have the same contribution rate and discount

rate, the expected cost decreases as the mean of the crediting rate increases as we

expect. Also, we find that the expected cost increases when the standard deviation

of the crediting rate increases from 0.15 to 0.2. When the crediting rate is more

volatile, the probability that the value of DB account is greater than the value of

DC account increases. Hence, the expected cost is higher.

Next, we fix the crediting rate and change the mean and the standard deviation
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of salary growth. From Table 3.9, the expected cost is lower when salary growth

decreases, showing that the effect on the DB value is greater than the effect on the

DC value.

Since this expected cost is the lump sum at the entry age, we want to amortize

it into employees’ monthly payroll and get the monthly expected cost as Table 3.10.

We divide the expected lump sum cost by the value of salary indexed annuity to

get the amortized cost. It represents an additional monthly cost rate of the salary.

Given the fixed mortality table, the salary indexed annuity only depends on the

salary scale and the discount rate. We find the sensitivity of the amortized cost is

similar to the sensitivity of the lump sum cost.
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Table 3.6: Change in Crediting Rate**

Scenario Discount Mean of StD of Contribution

Rate Crediting Rate Crediting Rate Rate

5 0.05 0.1 0.15 0.125

6 0.05 0.1 0.15 0.15

7 0.07 0.1 0.15 0.125

8 0.07 0.1 0.15 0.15

9 0.05 0.1 0.2 0.125

10 0.05 0.1 0.2 0.15

11 0.07 0.1 0.2 0.125

12 0.07 0.1 0.2 0.15
**Mean of Salary Growth Rate: 5.5%, StD of Salary Growth Rate: 4%.

Table 3.7: Change in Salary Growth Rate

Scenario Discount Mean of StD of Contribution

Rate Salary Growth Salary Growth Rate

13 0.05 0.04 0.02 0.125

14 0.05 0.04 0.02 0.15

15 0.07 0.04 0.02 0.125

16 0.07 0.04 0.02 0.15

17 0.05 0.045 0.04 0.125

18 0.05 0.045 0.04 0.15

19 0.07 0.045 0.04 0.125

20 0.07 0.045 0.04 0.15
***Mean of Crediting Rate: 10%, StD of Crediting Rate: 20%,
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Table 3.8: Expected Lump-Sum Cost of the Guarantee as Percentage of Initial

Salary with Fixed Salary Growth

Entry Age 20 30 40 50

Scenario 5 0.1572 0.2692 0.3430 0.2671

Scenario 6 0.0754 0.1457 0.1857 0.1342

Scenario 7 0.1005 0.1609 0.2155 0.2109

Scenario 8 0.0432 0.0813 0.1168 0.0984

Scenario 9 0.2353 0.4322 0.5018 0.3692

Scenario 10 0.1485 0.2899 0.3267 0.2188

Scenario 11 0.1447 0.2472 0.3217 0.2771

Scenario 12 0.0832 0.1602 0.2077 0.1659

Table 3.9: Expected Lump-Sum Cost of the Guarantee as Percentage of Initial

Salary with Fixed Crediting Rate

Entry Age 20 30 40 50

Scenario 13 0.1143 0.1884 0.2423 0.2209

Scenario 14 0.0600 0.1117 0.1431 0.1206

Scenario 15 0.0800 0.1251 0.1581 0.1668

Scenario 16 0.0388 0.0658 0.0933 0.0919

Scenario 17 0.1488 0.2487 0.3212 0.2651

Scenario 18 0.0841 0.1518 0.1961 0.1558

Scenario 19 0.0969 0.1565 0.2048 0.2023

Scenario 20 0.0518 0.0925 0.1303 0.1153
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Table 3.10: Amortization to Monthly Expected Cost of the Guarantee as Percentage

of Salary(%)

Entry Age 20 30 40 50

Scenario 1 2.93 3.15 3.17 2.79

Scenario 2 1.46 1.72 1.70 1.34

Scenario 3 2.20 2.40 2.47 2.46

Scenario 4 0.97 1.27 1.34 1.11

Scenario 5 1.71 1.75 1.91 1.92

Scenario 6 0.82 0.95 1.03 0.97

Scenario 7 1.37 1.37 1.50 1.75

Scenario 8 0.59 0.69 0.81 0.82

Scenario 9 2.55 2.81 2.79 2.66

Scenario 10 1.61 1.78 1.82 1.58

Scenario 11 1.97 2.08 2.23 2.30

Scenario 12 1.13 1.35 1.44 1.38

Scenario 13 1.45 1.46 1.58 1.76

Scenario 14 0.76 0.87 0.93 0.96

Scenario 15 1.22 1.22 1.25 1.52

Scenario 16 0.59 0.64 0.74 0.85

Scenario 17 1.78 1.81 1.97 2.04

Scenario 18 1.01 1.10 1.20 1.20

Scenario 19 1.41 1.44 1.54 1.77

Scenario 20 0.75 0.85 0.98 1.01



Chapter 4

Funding Strategies with Two

Traded Assets

4.1 Introduction to Risk Management

In the last chapter, we developed the valuation approach for the DB underpin

pension guarantee. In this chapter, we focus on the funding of the pension guarantee

using financial engineering principles, and we propose four funding strategies to

manage the risk.

As we have discussed, the DB underpin pension benefit is the maximum of the

DB and DC accounts. The payoff of the guarantee of this pension plan is defined as

the maximum of zero and the difference of the DB and DC accounts. Given entry

age xe, it can be expressed as

max(0, DB(0, T )−DC(0, T )) (4.1)

where T is the time at retirement, and DB(0, T ) and DC(0, T ) are the values

37
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of the DB and DC accounts given the information at t = 0, corresponding to

the entry age xe. As both DB and DC involve uncertainty, this is similar to the

Margrabe(1978) option, which is an option to exchange two risky tradable assets.

We will describe the Margrabe option later in Section 4.3, and will use a similar

pricing and hedging approach to construct the hedging portfolio, where it is feasible.

There are many cost methods to calculate the actuarial value of pension benefits.

They are generally acceptable to the supervisory authorities for different funding

purposes. We have discussed some of them in Chapter 2. According to different

cost methods, the valuation formulas of the DB and DC account are different. That

difference affects our funding strategies as well.

In Chapter 3, we have analyzed three valuation formulas based on the Entry Age

Normal (EAN) cost method, Projected Unit Credit (PUC) cost method, and Tra-

ditional Unit Credit (TUC) cost method. Here, we emphasize those cost methods

again. In the Entry Age Normal cost method, the value of DB account is calculated

using the projected salary and all years of service. The value of DB account also

includes all past and future contributions. The Projected Unit Credit method and

the Traditional Unit Credit method both consider the known information at given

time. Only earned years of service and paid contributions are credited to calculate

the value of DB and DC accounts. The only difference is that PUC cost method

uses the projected final salary and TUC cost method uses the current salary. For

each strategy, we will explain the valuation formula in detail.

4.2 Assumptions

Assumption 1: No early retirement.
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In the following chapters, we consider the cost of the guarantee assuming no

exits before retirement. This is a common assumption in pension plan funding

calculation. Generally, the pension plan cost is lower if employees leave the plan

before the normal retirement age, so the ‘no exits’ assumption is conservative. The

calculation of the present value of the pension guarantee allowing for exits before

retirement is a straightforward extension of the ‘no exits’ case.

Assuming that the mortality table is given, the expected present value of pension

guarantee can be considered as a weighted sum of benefits paid at each exit time.

Under nature’s measure, the weights are determined by the discount rate and the

probability that employees quit the plan for any reason, such as death, retirement

and resignation. The expected present value of pension guarantee can be expressed

as

Costxe =
12T∑
j=1

j−1
12
| 1
12

q(τ)
xe e−rj/12 max(0, DB(j/12, j/12)−DC(j/12, j/12)) (4.2)

where

xe is the entry age;

DB(j/12, j/12) is the value of the defined benefit account at time j/12,

given the exit time j/12, which is defined by equation(3.4);

DC(j/12, j/12) is the value of the defined contribution account at time j/12,

given the exit time j/12, which is defined by equation(3.6);

j−1
12
| 1
12

q
(τ)
xe is the probability that the employee quits the plan at time j/12.

With no early retirement assumption, employees will not quit the pension

plan before the normal retirement age. The present value of this guarantee is

e−rT max(0, DB(T, T )−DC(T, T )), where T = xr − xe is the time at retirement.
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Assumption 2: Salary is tradable.

Given the mortality rate and interest rate, there are two random variables in

our model, the salary growth rate and the crediting rate. In Section 3.5, we will

consider the salary growth rate and the crediting rate as two geometric Brownian

motions. Let St denote the employee’s salary at age xe + t and At denote an index

representing the return on the DC funds. For simplicity, we assume that these two

increase monthly, which is the frequency of the hedging and valuation process. So

St is accumulated by the salary growth rate, and At is the accumulation at t of $1

invested in the underlying DC fund at time 0. Given the initial salary S0, we can

express St and At mathematically,

dSt = s(t)Stdt (4.3)

dAt = f(t)Atdt (4.4)

where s(u) and f(u) are the salary growth rate and the crediting rate defined

by equation (3.9) and equation (3.10), respectively.

In this chapter, we assume the interest rate is deterministic and two processes

St and At are tradable. In this case, St and At are two random processes and

under the ‘tradable’ assumption, those two processes can be perfectly replicated in

the financial market. We use these hypothetical assets to construct the hedging

portfolio and show numerical results to analyze hedging costs and risks of our

funding strategies.

However, St is not tradable in practice. Employers and pension fund managers

may use traded assets to hedge it to some extent. At can be easily replicated as it

represents the accumulation of the traded asset in the DC account. Employees’ DC

contributions are usually invested in a mix of fixed income securities and stocks.
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But it is hard to find financial securities to replicate the salary. In Chapter 6, we

discuss the relationship between the inflation and salaries. In Chapter 7, we relax

the assumption that St is tradable by considering the use of inflation as a partial

salary hedge because of a high correlation between salaries and inflation.

4.3 Margrabe Option

Margrabe(1978) develops an equation for the value of this kind of option to exchange

one risky asset for another. Margrabe(1978) shows the valuation of the European-

type exchange option is an extension of the Black-Scholes equation.

Let Y1 and Y2 be the prices of assets one and two. Assume there are no dividends:

all returns come from capital gains. Assume also that the rate of return on each

asset is given by

dYi = Yi[αidt + σidZi] i = 1, 2

with dZ1dZ2 = ρdt, where ρ denotes the instantaneous correlation coefficient

between the standardized Wiener increments dZ1 and dZ2.

A European-type option can be only exercised at maturity date T . It will yield

Y1 − Y2 if exercised or nothing if not exercised. This implies the initial condition

w(Y1, Y2, T ) = max(0, Y1 − Y2). (4.5)

Assume Y1 and Y2 are non-negative, the option value w(Y1, Y2, t) at time t is

worth at least zero, and no more than Y1. If assets one and two are worth at least

zero, the boundary condition is

0 ≤ w(Y1, Y2, t) ≤ Y1. (4.6)
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Margrabe(1978) shows that the function w(Y1, Y2, t) is the solution to the dif-

ferential equation:

wt +
1

2

[
w11σ

2
1Y

2
1 + 2w12σ1σ2Y1Y2 + w22σ

2
2Y

2
2

]
= 0. (4.7)

which is subject to the initial condition (4.5) and the boundary condition (4.6).

The closed form solution is quite similar to the Black-Scholes formula:

w(Y1, Y2, t) = Y1N(d1)− Y2N(d2)

d1 =
ln(Y1/Y2) + 1

2
σ2(T − t)

σ
√

T − t
(4.8)

d2 = d1 − σ
√

T − t.

Here, N(·) is the cumulative standard normal density function and σ2 = σ2
1 −

2σ1σ2ρ + σ2
2 is the variance of (Y1/Y2)

−1d(Y1/Y2).

Margrabe(1978) also proves this problem can be transformed into the Black-

Scholes problem by letting asset two be the numeraire.

In following sections, we consider different approaches to the DB underpin guar-

antee valuation. One object is to be able to express the option in term of the

Margrabe option so that we can apply the pricing formula, i.e. Equation 4.8.

4.4 Strategy 1: EAN Cost Method

Given the ‘no early exits’ assumption, at the valuation time t, the present value

of the DB underpin option is e−r(T−t) max(0, DB(t, T ) − DC(t, T )), where T =

(xr − xe)/12 is the time on retirement. In strategy 1, we consider an Entry Age

Normal (EAN) cost method. The EAN cost method calculates future liabilities
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first, then finds the appropriate level contribution rate to match liabilities. It is no

longer very popular in pension valuation problems, because all years of service and

contributions are considered at any given time before retirement. Employers take

all liabilities into consideration at the beginning of the plan and there is substantial

pre-funding-that is, funding benefits before service occurs. This unnecessary ties

up company capital. It also ignores the important option to terminate the plan.

The option to terminate means there is no need to pre-fund. Later, we will consider

unit credit methods, such as PUC and TUC. Those methods are based on the past

years of service and contributions, and avoid the pre-funding issue.

In the EAN cost method, we assume that the value of DB account is calculated

using the projected final salary and all earned and unearned years of service. The

projected value at time t of DB account at retirement time T can be expressed as

DBE(t, T ) = αTST ä(12)
xr |St (4.9)

where ST is the projected final salary based on current salary St at the valuation

time t, and credited years of service T includes all earned (t) and unearned (T − t)

years of service.

Since the value of the DB account includes all years of service and the final

salary, the value of the DC account should be consistent. We assume the value

of the DC account is projected to include all contributions, both past and future.

Given the monthly contribution rate c, the projected value at time t of DC account
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at retirement time T can be expressed as

DCE(t, T ) = DCE(t, t)
AT

At

+
12T−1∑
j=12t

cSj/12

12

AT

Aj/12

=
12t−1∑
j=0

cSj/12

12

At

Aj/12

· AT

At

+
12T−1∑
j=12t

cSj/12

12

AT

Aj/12

= DCE(t, t)
AT

At

+
12T−1∑
j=12t

cSt

12

Sj/12

St

AT

Aj/12

(4.10)

where the current value of the DC account at time t, DCE(t, t), and the salary

St at time t are known; s(u) and f(u) are the salary growth rate and crediting rate,

respectively.

The projected final value of DC account DCE(t, T ) comprises the accumulation

of past contributions DCE(t, t) =
∑12t−1

j=0

cSj/12

12
At

Aj/12
and the accumulation of future

contributions
∑12T−1

j=12t

cSj/12

12
AT

Aj/12
. In equation (4.9) and equation (4.10), we treat all

earned and unearned years of service and all past and future contributions equally.

At the entry age, we have the projected value of DB and DC accounts at time 0.

DBE(0, T ) = αTST ä(12)
xr |S0 (4.11)

DCE(0, T ) =
12T−1∑

j=0

cSj/12

12

AT

Aj/12

|S0 (4.12)
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Then, the expected value of the DB underpin option at time 0 (entry) is

C(S0, A0, T ) = EQ
0

[
e−rT

(
DBE(0, T )−DCE(0, T )

)+
]

= EQ
0


e−rT

(
αTST ä(12)

xr −
12T−1∑

j=0

cSj/12

12

AT

Aj/12

)+



= EQ
0


e−rT

(
αTST ä(12)

xr − c

12
AT

12T−1∑
j=0

cSj/12

Aj/12

)+



(4.13)

We see that the exchange is more complicated than the regular exchange option

through the factor (
∑12T−1

j=0

cSj/12

Aj/12
). Even though each term in the sum is lognormal,

the sum of dependent lognormal random variables is not tractable. This term

indicates that option is path dependent, since different paths for the salary to DC

fund return ratio will give different payoffs for the guarantee.

Although the guarantee is not analytically tractable, we can use Monte Carlo

simulation to estimate the value.

In Figure 4.1, we show the value at entry of the guarantee accrued over the entire

working lifetime, for ages at entry from 25 to 64. We assume the monthly salaries

follow a lognormal process with volatility σs = 0.02. We assume the monthly DC

fund returns follow a lognormal process with volatility σf = 0.2. The processes are

dependent, through the correlation coefficient ρ = −0.15, of the underlying normal

processes. We assume a constant risk free rate of 5% per year continuously com-

pounded. The estimates under a risk neutral measure are determined using 10,000

simulations. We assume the contribution rate is 12.5% of salary, paid monthly, the

accrual rate is α = 1.5% per year of service, and the annuity factor at retirement

is 10.0.
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Figure 4.1: Value at Entry of the DB Underpin Option under a Risk Neutral

Measure, per unit of Initial Salary
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Figure 4.2: Amortized Value of the DB Underpin Option under a Risk Neutral

Measure, % of Salary, Monte Carlo Valuation using 10,000 Sample Paths
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The guaranteed cost is expressed as a multiple of the initial salary. Figure 4.1

shows that the option is valuable for younger employees, with a value of 2.25 times

the starting salary at age 25, reducing to 0.0164 times the starting salary for a life

entering the plan at age 64. The standard errors for the estimates of the guarantee

cost at entry range from 0.0181 for age 25 to 0.00013 at age 64.

Following the EAN approach, we can also amortize the expected cost like in

Chapter 3. For this we must divide the lump sum value by the value of a salary

indexed annuity. This annuity is also valued under the risk neutral measure, and

also assumes no exits, giving a value:

EQ
0

[
12T∑
j=1

e−rj/12Sj/12

12

]
= TS0 (4.14)

because under the risk neutral measure the discounted value at t of a risky asset

due at t + u is always simply the current value at t of the asset.

The amortized cost of DB underpin guarantee at different entry ages is given in

Figure 4.2. This shows that the amortized cost also decreases with the entry age.

For more common entry ages, from 30 to 45, say, the amortized cost is between

5.3% and 4.4% of salary. These rates may be economically feasible, but are con-

siderably higher than current funding ratio for these plans. However, the ‘no exits’

assumption is conservative, so the cost is probably over stated.

We can also calculate the delta hedging portfolio for the pension plan using

Monte Carlo simulation. The expected value of the guarantee at any time t is

determined by two processes St and At at time t. At time t, if the salary St and

the value of the underlying fund assets St are changed, the expected value of the

guarantee in equation (4.13) is also changed. So we can estimate the first partial

derivatives of the guarantee with respect to the salary and the underlying fund

assets individually.
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In strategy 1, we treat all earned and unearned years of service in DB account

and all past and future contributions in DC account equally. We estimate hedging

parameters by simulating the effect of the value of accounts on the DB under-

pin option. The expected present value of the DB underpin pension guarantee,

C(S0, A0, T ) defined by equation (4.13), is evaluated using simulation under the

risk-neutral measure as given by equation (4.15).

C(S0, A0, T ) = e−rT EQ
0 [(DBE(0, T )−DCE(0, T ))+]

≈ Ĉ(S0, A0, T ) (4.15)

≈ 1

N
e−rT

N∑
i=1

(
αT Ŝi,T ä(12)

xr − c

12
Âi,T

12T−1∑
j=0

cŜi,j/12

Âi,j/12

)+

where Ŝi,j/12 and Âi,j/12 are the simulated value of the salary and the underlying

assets for i-th simulation at time j/12; and Ĉ(S0, A0, T ) is the simulated present

value of the DB underpin pension guarantee at time 0.

Equation (4.15) shows that this cost is the present value of the expected value

of the expected payoff of the plan, where the expectation is taken with respect

to the probability distribution of terminal value of two accounts. Given that the

contribution rate and initial salary are fixed, Ŝi,j/12 and Âi,j/12 are determined by

the salary growth rate and the crediting rate.

In equation (4.16) and (4.17), the hedging parameters at time t can be calculated

by a finite difference estimate of the first derivatives of the cost,

∆St,T =
∂C(St, At, T )

∂S

≈
Ĉ(St + ε, At, T )− Ĉ(St − ε, At, T )

2ε
(4.16)

∆At,T =
∂C(St, At, T )

∂A

≈
Ĉ(St, At + ε, T )− Ĉ(St, At − ε, T )

2ε
(4.17)
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where St and At are values of salary and underlying assets at time t, and ε is close

to zero.

At time t between the entry age xe and the retirement age xr, we will rebalance

the hedging portfolio. The shares of ∆D,t and ∆A,t will be held in long position of

the salary and the underlying fund assets, respectively. Since ∆A,t is negative in

fact, we actually short the share of −∆A,T in the underlying fund assets.

This strategy works well for regular options. However, in our DB underpin pen-

sion plan, we have two random variables, the salary growth rate and the crediting

rate. The crediting rate only affects the terminal value of the DC account. The

values of the DB and DC accounts both depend on salaries. The value of the DB

account is proportional to salaries and the value of the DC account is accumulated

by monthly contributions which are proportional to salaries. Once salaries change,

both the expected terminal values of DB and DC account change and the expected

value of the guarantee changes. This means that we need to take a long position

in salaries to partially hedge the DB account, and take a short position in salaries

to partially hedge the DC account at the same time. If the salary increases, both

the DB and DC account values increase. The projected terminal value of pension

guarantee can either increase or decrease. Hence, the change of the projected value

is very volatile. This causes significant variance of the delta with respect to the

salary. In Figure 4.3, we plot the convergence of delta with increasing number of

simulations. The value of delta with respect to salary will converge with a higher

number of simulations. The figure shows that around 10,000 simulations might be

required each month. is a computationally intensive hedging problem.

In strategy 2, we split the DB underpin pension guarantee and implement the

valuation of the Margrabe option. Strategy 2 avoids the computational problem

for the calculation of delta values.
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Figure 4.3: Convergence of Delta
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4.5 Strategy 2: EAN Cost Method

In equation (4.13), the exchange part is more complicated than the regular exchange

option through the factor (
∑12T−1

j=0

cSj/12

Aj/12
). This causes the hedging problem since

the sum of lognormal random variable is not tractable. In strategy 2, we propose

another funding strategy to avoid the relation between the DC account and the

future salary. Since the value of DB account depends on the years of service and

the number of contribution payments is equal to twelve times years of service1, we

split the DB and DC accounts into the individual monthly parts and value and

hedge each part separately. We then calculate the total hedging cash flows. In this

strategy, we still treat all the earned and unearned years of service and all paid and

unpaid contributions equally. The only difference is that we split the whole DB

underpin guarantee into several parts and hedge them individually.

Mathematically, our hedging object is to hedge the final payment (DB(0, T )−
DC(0, T ))+, where T is the time at retirement. In this section, we still use the

Entry Age Normal (EAN) cost method. At any valuation time, the DB underpin

guarantee still includes all earned and unearned years of service and past and future

contributions. That means that values of DB and DC accounts are calculated as

same as the last section. At time 0, the projected values of DB and DC accounts

are expressed as

DBE(0, T ) = αTST ä(12)
xr |S0 (4.18)

DCE(0, T ) =
12T−1∑

j=0

cSj/12

12

AT

Aj/12

|S0 (4.19)

In this strategy 2, we split the DB underpin guarantee to avoid this problem.

In equation (4.19), the summation includes 12T parts,
cSj/12

12
AT

Aj/12
. At time j/12,

1Because we assume monthly contributions.
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cSj/12

12Aj/12
is known. The only random process here is AT . Comparatively, we also split

the projected value of DB account into 12T parts. In equation (4.18), ST is the

projected final salary at retirement based on current salary. T is the retirement

time. Since the contribution is paid monthly, we re-write T · ST as
∑12T−1

j=0 ST /12.

Then, equation (4.18) is expressed as

DBE(0, T ) =
12T−1∑

j=0

αä
(12)
xr

12
ST |S0 (4.20)

The present value of the DB underpin option is

e−rT EQ
0 [(DBE(0, T )−DCE(0, T )+]

= e−rT EQ
0




(
12T−1∑

j=0

αä
(12)
xr

12
ST −

12T−1∑
j=0

cSj/12

12

AT

Aj/12

)+



= e−rT EQ
0




(
12T−1∑

j=0

αä
(12)
xr Sj/12

12

ST

Sj/12

−
12T−1∑

j=0

cSj/12

12

AT

Aj/12

)+



= e−rT EQ
0




(
12T−1∑

j=0

Sj/12

12

(
αä(12)

xr

ST

Sj/12

− c
AT

Aj/12

))+



(4.21)

It can be easily shown that the maximum of sums is less than the sum of

maximums, i.e. the option on the sum is cheaper than the sum of the options, so

max

(
0,

12T−1∑
j=0

Sj/12

12

(
αä(12)

xr

ST

Sj/12

− c
AT

Aj/12

))

≤
12T−1∑

j=0

Sj/12

12

(
max(0, αä(12)

xr

ST

Sj/12

− c
AT

Aj/12

)

)

=
12T−1∑

j=0

Sj/12

12

(
max(0, αä(12)

xr Y1,j/12(T )− cY2,j/12(T ))
)

(4.22)
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where Y1,j/12(T ) and Y2,j/12(T ) are values at time T of two assets:

dY1,j/12(u) = Y1,j/12(u)[µsdu + σsdZs(u)] (4.23)

dY2,j/12(u) = Y2,j/12(u)[µfdu + σfdZf (u)] (4.24)

where j/12 ≤ u ≤ T . Initial conditions are Yi,j/12(j/12) = 1, i = 1, 2.

Equation (4.22) shows that we can hedge max(0, αä
(12)
xr Y1,j/12(T )− cY2,j/12(T ))

at each time j/12 between 0 and T and sum them together. The total amount

will overhedge the amount of max(0, DBE(0, T )−DCE(0, T )). The excess can be

simulated, and will be released at the end of the contract.

Using a similar approach to Margrabe(1978), for each individual “option”, we

have

w∗(Y1,t, Y2,t, T ) = max(0, αä(12)
xr Y1,t(T )− cY2,t(T )) 0 ≤ t ≤ T (4.25)

and boundary conditions

0 ≤ w∗(Y1,t, Y2,t, u) ≤ αä(12)
xr Y1,t (4.26)

The function w∗(Y1,t, Y2,t, u) is the solution to the differential equation:

w∗
u +

1

2

[
(αä(12)

xr )2w∗
11σ

2
sY

2
1,t + 2αä(12)

xr cw∗
12σsσfY1,tY2,t + c2w∗

22σ
2
fY

2
2,t

]
= 0. (4.27)

Equation (4.27) can be solved, subject to initial conditions (4.25) and boundary

conditions (4.26):

w∗(Y1,t, Y2,t, u) = αä(12)
xr Y1,tN(d1,t)− cY2,tN(d2,t)

d1,t =
ln(αä

(12)
xr Y1,t/(cY2,t)) + 1

2
σ2(T − u)h

σ
√

(T − u)h
(4.28)
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d2,x+ih = d1,x+ih − σ
√

(T − u)h. 0 ≤ t ≤ u ≤ T

Here, N(·) is the cumulative standard normal density function and σ2 = σ2
s −

2σsσfρsf + σ2
f is the variance of (Y1,t/Y2,t)

−1d(Y1,t/Y2,t).

Equation (4.28) gives the closed form solution. We can calculate the delta

hedging parameters. The first derivatives with respect to Y1,t and Y2,t are:

∆1,t,u =
∂w∗(Y1,t, Y2,t, u)

∂Y1,t

= αä(12)
xr ·N(d1,t) + αä(12)

xr · Y1,t
∂N(d1,t)

∂Y1,t

− c · Y2,t
∂N(d2,t)

∂Y1,t

= αä(12)
xr ·N(d1,t) (4.29)

∆2,t,u =
∂w∗(Y1,t, Y2,t, u)

∂Y2,t

= αä(12)
xr · Y1,t

∂N(d1,t)

∂Y2,t

− c · Y2,t
∂N(d2,t)

∂Y2,t

− c ·N(d2,t)

= −c ·N(d2,t) (4.30)

The notation ∆1,t,u(∆2,t,u) denotes the delta hedging amount at time u for the

salary and the DC underlying asset, and it is hedged by the contribution at time

t, where 0 ≤ t ≤ u ≤ T .

According to this funding strategy, we divide the final pension benefits into

12 parts. We propose that each part of the final benefit is hedged by the single

contribution at time t, where 0 ≤ t ≤ T . This means that we will have 12t parts

in the hedging fund at time t, where t = 1, 1 1
12

, . . . , T = xr − xe. We need to sum

12t parts together to get the following,

∆∗
1,t =

12t∑
j=1

∆1,j/12,t ·
Sj/12

12
(4.31)

∆∗
2,t =

12t∑
j=1

∆2,j/12,t ·
Aj/12

12
(4.32)
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At time t, we will invest ∆∗
1,t into the salary St and ∆∗

2,t into the underlying

assets of the DC account At. The value of hedging portfolio is equal to

H(t) = ∆∗
1,t + ∆∗

2,t (4.33)

where ∆∗
1,t and ∆∗

2,t are defined by equations (4.31) and (4.32). One month

later, at time t + 1
12

, the hedging portfolio established at t and brought forward to

t + 1
12

has value:

Hbf(t +
1

12
) = ∆∗

1,t

St+ 1
12

St

+ ∆∗
2,t

At+ 1
12

At

(4.34)

The new hedge costs H(t + 1
12

), so the cash flow for the guarantee at t + 1
12

is

CF (t +
1

12
) = H(t +

1

12
)−Hbf(t +

1

12
) (4.35)

and the monthly hedging cash flow as a proportion of salary is

cf(t +
1

12
) =

CF (t + 1
12

)

St+ 1
12

(4.36)

In this strategy, we split the DB underpin pension guarantee. That solves the

difficulty of hedging the complicated exchange part (
∑12T−1

j=0

cSj/12

Aj/12
). However, this

hedge will, as noted above, exceed the true cost. Employers need more money to

construct such a hedging portfolio.

4.6 Strategy 3: PUC Cost Method

In our first two strategies, we adopt the Entry Age Normal (EAN) cost method and

treat all earned and unearned years of service and past and future contributions

equally. Philosophically, the EAN approach ignores the fact that the DB benefit

is accruing over time. The employer maintains an option to close the plan to new
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accruals, or to close it altogether. It is therefore inconsistent with the nature of the

developing liability to treat accrued benefits, which are a debt on the plan assets,

on an equal footing with future service benefits, which are not.

For this reason, most pension actuaries now use an accruals approach to funding,

whereby the liability is not recognized until the relevant service has been completed.

For a final salary DB plan, there are two accruals approaches. The first one we

discuss is the Projected Unit Credit (PUC) approach. In a conventional DB valu-

ation, the PUC valuation uses the projected final salary, but only the past service

at the valuation is included in the liability.

Using the PUC cost method, we can use past service and future salary to express

the projected value at time t of DB account at retirement time T as

DBP (t, T ) = αtST ä(12)
xr |St (4.37)

The main difference between equation (4.37) for PUC and (4.9) for EAN is that

the PUC only counts the earned years of service. To be consistent, we consider the

DC account using past paid contributions only, that is

DCP (t, T ) = DCP (t, t)
AT

At

|At (4.38)

The projected value of DC account is accumulated by the current value of DC

account. So the projected value at retirement age T of the pension guarantee with

entry age xe and the current age xe + t can be expressed as

max(0, DBP (t, T )−DCP (t, T ))|St, At

= max(0, αtSte
R T

t s(u)duä(12)
xr −DCP (t, T )e

R t
t f(u)du)|St, At

= max(0, αtST ä(12)
xr −DCP (t, t)

AT

At

)|St, At (4.39)
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The present value of the pension guarantee is then e−r(T−t) max(0, DBP (t, T )−
DCP (t, T )).

At time t, the salary St and the value of the DC account DCP (t, t) is known.

There is no allowance for future contributions into the DC account. There are two

stochastic processes ST and AT in equation (4.39). We can adopt the valuation of

the Margrabe option again. Similar to equation (4.28), the value of the guarantee

at time t with retirement age T is

w∗(St, At, u) = c1,tStN(d1,t)− c2,tAtN(d2,t)

d1,t =
ln(c1,tSt/(c2,tAt)) + 1

2
σ2(T − u)

σ
√

(T − u)
(4.40)

d2,t = d1,t − σ
√

(T − u)h. 0 ≤ t ≤ u ≤ T

where c1,t = αä
(12)
xr t and c2,t = DCP (t, t) is the value at t of accumulated

past contributions. N(·) is the cumulative standard normal density function and

σ2 = σ2
s − 2σsσfρsf + σ2

f is the variance of (St/At)
−1d(St/At).

We can calculate the delta hedging parameters. The first partial derivatives

at time u with respect to St and At are ∆1,t,u = c1,tN(d1,t), ∆2,t,u = −c2,tN(d2,t),

respectively.

We also need to rebalance the hedging portfolio at each period. At time (t+1)−,

the value of the hedging portfolio is accumulated. We then rebalance the hedging

portfolio at time t + 1 and get the cash flow at time t + 1.

This strategy also solves the problem that the value of DC account depends on

the future salaries. We can also apply the exchange option valuation approach to

calculate delta hedging cash flows.
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4.7 Strategy 4: TUC Cost Method

In the projected unit credit cost method, given the current salary St, the projected

DB benefit is dependent on the projected future salary, which is St · e
R T

t s(u)du. In

this section, we consider the traditional unit credit cost method(TUC) instead of

PUC cost method. TUC is always used for flat benefit pension plans. It also uses

past years of service and past contributions. However, it assumes future salaries will

not change. So the only difference between TUC and PUC is that the projected DB

benefit is dependent on the current salary at time t under TUC cost method. As

shown in Table 4.1, the projected DB benefit using TUC cost method, DBT (t, T ),

is deterministic at time t, since the current salary is given.

DBT (t, T ) = αtStä
(12)
xr (4.41)

The DC account also counts past contributions.

DCT (t, T ) = DCT (t, t)
AT

At

|At (4.42)

The projected payoff of the guarantee, which is max(0, DBT (t, T )−DCT (t, T )),

is no longer the payoff of a Margrabe option, it is the exact form of the European

type put option, since DBT (t, T ) is a constant.

From equation (4.39), the projected value at retirement age T of the pension

guarantee with entry age xe and the current age xe + t can be expressed as

max(0, DBT (t, T )−DCT (t, T ))|At

= max(0, αtStä
(12)
xr −DCT (t, t)

AT

At

)|At (4.43)

The only stochastic part in equation (4.43) is AT . This form is similar to the

payoff of an European type put option. We can apply the Black-Scholes formula to
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get the value of the pension guarantee at current age x + th

w∗(St, At, u) = c1,te
−r(T−t)N(−d2,t)− c2,tAtN(−d1,t)

d1,t =
ln(c2,tAt/c1,te

−r(T−u)) + 1
2
σ2(T − u)

σ
√

(T − u)
(4.44)

d2,t = d1,t − σ
√

(T − u). 0 ≤ t ≤ u ≤ T

where c1,t = αtStä
(12)
xr and c2,t = DCT (t, T ).

The first derivative with respect to At is −c2,tN(−d1,t), which is the delta pa-

rameter at time t.

Under the TUC cost method, we also rebalance the hedging portfolio every

month. There is only one random variable in this hedging problem. The payoff

of the guarantee is similar to the payoff of the regular European put option. The

hedging portfolio is constructed by the stock, since the salary is assumed as a

constant. So the assumption on salaries will not affect the result too much. Later,

we will show some numerical results to compare with different salary assumptions

in Chapter 7.

4.8 Summary

In this chapter, we propose four strategies according to different cost methods.

Strategy 1 and strategy 2 use the Entry Age Normal (EAN) cost method. The

EAN cost method considers all past and future service equally. Strategy 3 adopts

the Projected Unit Credit (PUC) cost method. The valuation under the PUC

cost method includes the past service and the projected final salary. Strategy 4

considers the Traditional Unit Credit (TUC) cost method, which only includes the

past service and the current salary.
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Table 4.1 illustrates three valuation formulas of DB and DC accounts according

to the different cost methods.

Table 4.1: Valuation Formulas Based on Different Cost Methods

DB Account (DB(t, T )) DC Account (DC(t, T ))

EAN DBE(t, T ) = kTST DCE(t, T ) = DCE(t, t)AT

At
+

∑12T−1
j=12t

cSj/12

12
AT

Aj/12

PUC DBP (t, T ) = ktST DCP (t, T ) = DCP (t, t)AT

At

TUC DBT (t, T ) = ktSt DCT (t, T ) = DCT (t, t)AT

At

Adopting different cost methods, four funding strategies are different in term

of credited years of service, salary projection and counted contributions. Table

4.2 briefly describes the differences in the funding strategies according to different

cost methods. Because of different valuation approaches, results are also different.

The following chapter will show same numerical results under different funding

strategies.

Table 4.2: Funding Strategies According to Cost Mehods

Cost Method Service Salary Projection Contributions

Strategy 1 & 2 EAN Past+Future To Retirement Paid+Unpaid

Strategy 3 PUC Past To Retirement Paid

Strategy 4 TUC Past No Projection Paid



Chapter 5

Numerical Examples of Hedging

Costs

5.1 Introduction

In the last chapter, we proposed four funding strategies according to three cost

methods. In this chapter, we will illustrate some numerical results on the other

three funding strategies. We use the same assumptions as in the last chapter:

no early retirement, and salary is tradable. In our three funding strategies, the

value of the DC account at a given time t only depends on the future crediting

rate. Therefore, the salary growth rate only affects the DB account and the first

derivative of the pension underpin guarantee with respect to salary is more stable.

61
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5.2 Numerical Simulation

To implement the funding strategies proposed in the last chapter, we use Monte

Carlo simulation to generate the salary process and the crediting rate process under

P-measure. We then estimate the future salary and the value of DC account. The

hedge parameters are found using Q-measure.

We simulate the salary as following,

St+h = St · e(µs− 1
2
σ2

s)h+σs

√
hWs(t) (5.1)

So the value of DC account can be generated by

DCi(t + h, t + h) = DCi(t, t) · e(µf− 1
2
σ2

f )h+σf

√
hWf (t) + c · hSt+h (5.2)

where Ws(t) ∼ N(0, 1), Wf (t) ∼ N(0, 1), and the correlation coefficient is ρsf .

The value of the DC account is calculated using the three different hedging cost

methods. i = E, P, T denotes different cost methods, h = 1/12 denotes the monthly

interval.

We generate 10,000 paths of the salary growth rate and the crediting rate. On

each path, we dynamically hedge the pension fund every month using the last three

strategies. We test monthly hedging costs for different entry ages.

Hedging this hybrid pension plan by those funding strategies, we assume the

fund is rebalanced at the end of each month, leading to a monthly hedging cost cash

flow at each period. Using different funding strategies, we can calculate the hedge

portfolio of the salary and the underlying DC fund at time t, ∆S(t) and ∆A(t),

respectively. Then, the value of hedging portfolio is equal to

H(t) = ∆S(t)St + ∆A(t)DC(t, t) (5.3)



Numerical Examples of Hedging Costs 63

Table 5.1: Parameters for the Scenario Test
Mean of StD of

Salary Growth Salary Growth Discount Rate

Scenario 1 0.04 0.02 0.05

Scenario 2 0.04 0.04 0.05

Scenario 3 0.05 0.02 0.05

Scenario 4 0.04 0.02 0.05

Scenario 5 0.04 0.02 0.05

Scenario 6 0.04 0.02 0.05

Scenario 7 0.04 0.02 0.035

Mean of StD of Contribution

Crediting Rate Crediting Rate Rate

Scenario 1 0.1 0.2 0.125

Scenario 2 0.1 0.2 0.125

Scenario 3 0.1 0.2 0.125

Scenario 4 0.15 0.2 0.125

Scenario 5 0.1 0.15 0.125

Scenario 6 0.1 0.2 0.10

Scenario 7 0.1 0.2 0.125

One month later, at time t + 1
12

, the hedging portfolio established at t and

brought forward to t + 1
12

has value:

Hbf(t +
1

12
) = ∆S(t)St

St+ 1
12

St

+ ∆A(t)DC(t, t)
At+ 1

12

At

(5.4)

The new hedge costs H(t + 1
12

), so the cash flow for the guarantee at t + 1
12

is

CF (t +
1

12
) = H(t +

1

12
)−Hbf(t +

1

12
) (5.5)

and the monthly hedging cash flow as a proportion of salary is

cf(t +
1

12
) =

CF (t + 1
12

)

St+ 1
12

(5.6)
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We assume the accrual rate is 1.5%, which is close to the value used, for example,

in the McGill plan. The other parameters are given by scenario 1 in Table 5.1.

5.3 Hedging Costs

Table 5.2: Lump Sum Hedging Costs as Percentage of Salary Under Scenario 1

Entry Age Strategy 2(%) Strategy 3(%) Strategy 4(%)

20 216.12 191.60 51.26

(0.5837) (0.3110) (0.5015)

25 197.22 168.06 52.36

(0.5549) (0.2664) (0.4643)

30 158.11 144.60 52.95

(0.2394) (0.2248) (0.4215)

35 131.04 120.86 50.64

(0.1978) (0.1870) (0.3660)

40 104.06 97.20 46.78

(0.1600) (0.1482) (0.3002)

45 78.51 74.72 41.55

(0.1230) (0.1086) (0.2267)

50 54.66 52.82 33.98

(0.0872) (0.0752) (0.1566)

55 32.89 32.39 22.40

(0.0516) (0.0433) (0.0876)

Table 5.2 shows the mean and standard error (in brackets) of lump sum hedging

costs for different entry ages and three strategies with 10,000 simulations. The lump

sum hedging costs are calculated by the accumulation of all hedging cash flows, i.e.
∑12T

j=1 e−r j/12CF (j/12). The costs for funding strategy 2 are always higher than

costs for funding strategy 3 and 4, since it overhedges the DB underpin pension
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plan. We assume no early retirement. The hedging cost low entry ages is very high.

For example, the highest mean of lump sum hedging costs is 216.12% at entry age

20 in funding strategy 2.

At employees’ retirement, employers pay the guaranteed retirement benefits.

Employers either receive the excess of their investment, or pay extra costs to the

pension plan. Because the retirement benefit is known at the last payment, the

last cash flow is the amount overhedged or underhedged in the funding strategy.

Employers guarantee employees the pension benefits at retirement. They do not

want to overhedge or underhedge the pension benefits too much. Table 5.3 shows

the last payment for employers by those three funding strategies.

Table 5.3: The Last Payment for Employers as Percentage of the Final Salary

Under Scenario 1
Entry Age Strategy 2(%) Strategy 3(%) Strategy 4(%)

20 -282.01 0.72 4.62

25 -263.06 0.51 4.64

30 -231.75 0.32 4.26

35 -203.01 0.73 4.97

40 -170.87 0.76 4.74

45 -135.62 0.43 3.97

50 -101.46 0.56 3.97

55 -61.01 0.86 3.80

In strategy 2, we overhedge the DB underpin pension fund. The last cash flow is

negative and high. Employers will receive a huge amount of money when employees

retire. In other words, employers must have paid too much before employees’

retirement. In strategy 2, hedging costs are over-estimated. Later, we will mainly

focus on funding strategy 3 and 4. In strategy 3, the last payment for employers is
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Figure 5.1: Histogram for the Last Payment in Strategy 3
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Figure 5.2: Histogram for the Last Payment in Strategy 4
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Table 5.4: The Mass Probability that the Last Payment is Equal to Zero with

10,000 Simulations

Entry Age Strategy 3 Strategy 4

20 0.7587 0.7625

25 0.7194 0.7248

30 0.6784 0.6828

35 0.6294 0.6350

40 0.5706 0.5859

45 0.5049 0.5121

50 0.4015 0.4083

55 0.2748 0.2839

very close to zero since we use the projected final salary. In strategy 4, the value

of DB underpin guarantee is calculated by the current salary. Employers under-

estimate the salary. So the last payments for employers are around 4%, which is

approximately the salary growth rate. However, the last payments in strategy 3 and

strategy 4 are very volatile. We will show more figures later to illustrate the growing

volatility. From employers’ view, the last payment should, ideally, be close to zero.

Then, employers do not have to pay extra money at employee’s retirement or spend

too much before the retirement to construct the hedging portfolio. Figure 5.1 and

Figure 5.2 show the histogram for the last payment in strategy 3 and strategy 4

with 10,000 simulations. The mass probability that the last payment is equal to

zero is shown in Table 5.4.

Table 5.2 shows us the lump sum hedging costs. Next, we amortize this lump

sum cost into a monthly contribution rate, i.e.
∑12T

j=1 e−r j
12 CF ( j

12
)/

∑12T
j=1 e−r j

12
Sj/12

12
.

and get amortized monthly hedging costs as Table 5.5,

After the amortization, expected values of hedging costs in strategy 2 and 3
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Table 5.5: Amortized Monthly Hedging Costs as Percentage of Monthly Salary

Under Scenario 1
Entry Age Strategy 2(%) Strategy 3(%) Strategy 4(%)

20 6.33 5.10 1.36

(0.0044) (0.0083) (0.0133)

25 6.05 4.92 1.54

(0.0042) (0.0079) (0.0135)

30 5.76 4.71 1.69

(0.0038) (0.0074) (0.0135)

35 5.45 4.50 1.88

(0.0035) (0.0069) (0.0135)

40 5.12 4.25 2.05

(0.0032) (0.0064) (0.0131)

45 4.74 3.99 2.25

(0.0029) (0.0059) (0.0124)

50 4.32 3.69 2.39

(0.0026) (0.0053) (0.0111)

55 3.84 3.33 2.50

(0.0024) (0.0047) (0.0093)

decrease as the entry age increases. The expected value of hedging costs in strategy

4 increases when the entry age increases. This result is sensitive to the discount

rate. We discounted all hedging cash flows back to calculate the present value of the

hedging cost, and divided by the salary-related annuity which is also determined

using the discount rate. In scenario 7, we keep all parameters same except that the

discount rate changes to 3.5%. When the discount rate decreases, the annuity rate

increases. However, we do not change it in scenario 7 since it is hard to estimate

the change of annuity rates in the discount rate.

Table 5.6 shows that the expected values of amortized monthly hedging costs
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Table 5.6: Amortized Monthly Hedging Costs as Percentage of Monthly Salary

Under Scenario 7
Entry Age Strategy 2(%) Strategy 3(%) Strategy 4(%)

20 5.93 4.61 2.60

(0.0048) (0.0091) (0.0191)

25 5.72 4.51 2.76

(0.0045) (0.0087) (0.0208)

30 5.49 4.38 2.89

(0.0041) (0.0081) (0.0198)

35 5.23 4.25 3.06

(0.0036) (0.0075) (0.0188)

40 4.95 4.05 3.12

(0.0034) (0.0069) (0.0172)

45 4.62 3.85 3.19

(0.0031) (0.0063) (0.0154)

50 4.25 3.60 3.21

(0.0027) (0.0056) (0.0131)

55 3.81 3.29 3.12

(0.0025) (0.0049) (0.0105)

decrease with age at entry in strategy 2 and 3. In strategy 4, the expected value

of amortized monthly hedging cost increases when the interest rate decreases from

5% to 3.5%. Although we amortize the monthly hedging costs by dividing the

salary-related annuity factor, this cost is still very sensitive to the discount rate.

To avoid the effect on the discount rate, we propose another way to calculate

the monthly hedging cost. We already have dynamic hedging cash flows at each

period. Instead of calculating the present value of cash flows and amortizing it, we

calculate the monthly cost by using the monthly cash flow as a proportion of the

salary in that month. And then, we find the average of monthly costs.
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Table 5.7: Average Monthly Hedging Costs Under Scenario 1

Entry Age Strategy 2(%) Strategy 3(%) Strategy 4(%)

20 6.13 4.77 1.50

(0.0017) (0.0081) (0.0151)

25 5.88 4.65 1.66

(0.0018) (0.0078) (0.0150)

30 5.61 4.49 1.80

(0.0019) (0.0073) (0.0148)

35 5.33 4.32 1.97

(0.0019) (0.0068) (0.0144)

40 5.02 4.12 2.12

(0.0020) (0.0063) (0.0138)

45 4.67 3.90 2.31

(0.0020) (0.0058) (0.0128)

50 4.26 3.63 2.42

(0.0020) (0.0052) (0.0113)

55 3.79 3.30 2.52

(0.0020) (0.0046) (0.0093)

The first amortized monthly hedging cost is calculated by the expected present

value of future cash flows over the expected present value of future monthly salaries,

i.e.
∑12T

j=1 e−r j/12CF (j/12)/
∑12T

j=1 e−r j/12 Sj/12

12
, where CF (j/12) and Sj/12 are the

cash flow and the monthly salary at time j/12, respectively, and r is the discount

rate. The second average monthly hedging cost is calculated by the expected cost

of the cash flow over the monthly salary at each period, i.e.
∑12T

j=1 cf(j/12) =
∑12T

j=1 CF (j/12)/Sj/12. There is no discount rate in the second one.

The average monthly hedging costs are different with the amortized monthly

hedging costs. The amortized monthly hedging costs can be implicitly considered

as a monthly contribution rate, which is even for each month. However, the average
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Table 5.8: Monthly Hedging Costs as Percentage of Salary(%) Under Strategy 2

Entry Age Beginning Middle Retirement

20 8.59 6.42 -282.01

25 8.24 6.15 -263.06

30 7.86 5.90 -231.75

35 7.43 5.55 -203.01

40 6.96 5.22 -170.87

45 6.42 4.85 -135.62

50 5.80 4.42 -101.46

55 5.05 3.93 -61.01

monthly hedging costs are time-dependent. It changes from time to time. Table

5.8, Table 5.9, and Table 5.10 show expected hedging costs at different time period

in the whole plan.

Given the entry age, we show the hedging cost flows in Figure 5.3. Figure 5.3

does not include the last payment.

We first consider the sample distribution of the average hedging cost. Given

the entry age, we show the histogram for the distribution of average hedging costs

in strategy 3 and 4. Figure 5.4 and Figure 5.5 show the distributions of 10,000

paths in funding strategy 3 and 4 for entry ages 25, 35, 45 and 55. We calculate the

probability density estimate of the 10,000 sample paths in Figure 5.6 and Figure 5.7.

The estimate is based on a normal kernel function, using a window parameter which

is optimal for estimating normal density. The density is evaluated at 100 equally-

spaced points covering the range of the data. In Figure 5.6, density functions

for earlier entry age have lower summit and heavier tail. All 4 estimated density

functions have the similar shape to the normal distribution. The earlier the entry

age, the higher the mean. In Figure 5.7, we find strategy 4 has the opposite
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Table 5.9: Monthly Hedging Costs as Percentage of Salary(%) Under Strategy 3

Entry Age Beginning Middle Retirement

20 8.59 5.11 0.72

25 8.24 4.97 0.51

30 7.85 4.83 0.32

35 7.42 4.61 0.73

40 6.95 4.38 0.76

45 6.41 4.15 0.43

50 5.79 3.86 0.56

55 5.04 3.51 0.86

Table 5.10: Monthly Hedging Costs as Percentage of Salary(%) Under Strategy 4

Entry Age Beginning Middle Retirement

20 0.15 1.15 4.62

25 0.21 1.26 4.64

30 0.29 1.47 4.26

35 0.41 1.68 4.97

40 0.56 1.88 4.74

45 0.78 2.12 3.97

50 1.08 2.29 3.97

55 1.50 2.43 3.80
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Figure 5.3: Hedging Cost Flows for Average Monthly Hedging Cost
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properties. The earlier the entry age, the lower the mean and the lighter tail.

These properties are identical to results from Table 5.7.

Next, we test the scheme of monthly hedging costs. Given the entry age, we use

Monte Carlo simulation with 10,000 paths to calculate monthly hedging cash flows

and monthly hedging costs. We pick 4 different entry ages here.

Figure 5.8 and Figure 5.9 illustrate 20 sample paths for each entry age in strategy

3 and 4, respectively. The lower bounds are shown very clearly on Figure 5.8 and

Figure 5.9. The volatilities close to the retirement are very high. We draw the

90%, 50%, and 10% quantiles, and mean of monthly hedging costs on the same

graph. Figure 5.10 and Figure 5.11 show that the mean and the median of monthly

hedging costs are close, and they are closer to the 10% quantile than 90% quantile.

Hence, the mean of monthly hedging costs are always above the median.

5.4 Scenario Tests

As shown in Table 5.1, we have seven scenarios. In this section, we will run 10,000

simulations on each scenario and test the sensitivity of hedging costs to each vari-

able. We change the assumptions for the contribution rate, the crediting rate and

the salary growth rate. The results are given in Table 5.11 and 5.12. The numbers

in brackets are the standard errors.

Table 5.1 shows all parameters for seven scenarios. Considering scenario 1 as

the benchmark, we calculate the average monthly hedging costs for different param-

eters. Since only the discount rate is changed in scenario 7, the average monthly

hedging costs will not change.

Scenario testing results for funding strategy 3 are shown in Table 5.11. In
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Figure 5.9: Monthly Hedging Costs on 20 Sample Paths in Strategy 4, as % of
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Figure 5.10: Quantile of Monthly Hedging Costs in Strategy 3



Numerical Examples of Hedging Costs 83

25 30 35 40 45 50 55 60 65
−0.02

0

0.02

0.04

0.06

0.08
Entry Age 25

Age

M
on

th
ly

 H
ed

gi
ng

 C
os

ts

35 40 45 50 55 60 65
−0.02

0

0.02

0.04

0.06

0.08

0.1
Entry Age 35

Age

M
on

th
ly

 H
ed

gi
ng

 C
os

ts

45 50 55 60 65
−0.05

0

0.05

0.1

0.15
Entry Age 45

Age

M
on

th
ly

 H
ed

gi
ng

 C
os

ts

55 60 65
−0.05

0

0.05

0.1

0.15

0.2
Entry Age 55

Age

M
on

th
ly

 H
ed

gi
ng

 C
os

ts

90% Quantile
50% Quantile
10% Quantile
Mean

Figure 5.11: Quantile of Monthly Hedging Costs in Strategy 4
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Table 5.11: Average Monthly Hedging Costs for the Scenario Test as Percent of

Monthly Salary in Funding Strategy 3

Entry Age Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

20 4.77 4.82 4.99 3.69 3.54 5.74
(0.0081) (0.0080) (0.0078) (0.0077) (0.0067) (0.0101)

25 4.65 4.68 4.84 3.66 3.47 5.68
(0.0078) (0.0076) (0.0073) (0.0076) (0.0065) (0.0096)

30 4.49 4.52 4.65 3.61 3.40 5.58
(0.0073) (0.0073) (0.0068) (0.0074) (0.0063) (0.0093)

35 4.32 4.34 4.45 3.56 3.33 5.49
(0.0068) (0.0067) (0.0064) (0.0073) (0.0060) (0.0088)

40 4.12 4.15 4.23 3.47 3.23 5.39
(0.0063) (0.0063) (0.0060) (0.0069) (0.057) (0.0083)

45 3.90 3.93 3.99 3.38 3.11 5.28
(0.0062) (0.0062) (0.0055) (0.0064) (0.0053) (0.0077)

50 3.63 3.65 3.70 3.23 2.98 5.16
(0.0052) (0.0055) (0.0050) (0.0059) (0.0048) (0.0069)

55 3.30 3.33 3.35 3.029 2.80 5.05
(0.0046) (0.0048) (0.0045) (0.0052) (0.0042) (0.0060)

scenario 2 and scenario 3, we change the mean and the standard deviation of the

salary growth rate. The results are similar to scenario 1. The average monthly

hedging costs and standard errors are almost same. This is because we take the

ratio of monthly hedging cash flows and monthly salaries, so the effect of the salary

growth rate is cancelled. When the mean of salary growth rate increases or the

standard deviation increases, the average monthly hedging costs increase slightly.

Since the salary growth rate is objectively determined by employers, this shows

that a salary policy change will not cause significant effect on the funding strategy.

We change the mean and the standard deviation of the crediting rate in scenario 4

and scenario 5, respectively. In scenario 4, the mean crediting rate increases from

10% to 15%. The average monthly hedging costs and standard errors decrease. In
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scenario 5, the standard deviation of the crediting rate goes down from 20% to

15%. The average monthly hedging costs and standard errors go down too. The

results from those two scenarios are intuitive. When the crediting rate increases

or the investment returns are better, on average, the DC benefit will be higher,

on average, so the hedging costs should be lower. When the investment market is

less volatile, the investment risk also decreases. This is the reason that the average

and standard error of monthly hedging costs are both decreasing. On the opposite

side, the average and standard error of monthly hedging costs will go up when the

investment market is poor or more volatile. The contribution rate is changed from

0.125 to 0.1 in scenario 6. The less contribution to the defined contribution plan,

the higher the guarantee risk and the higher hedging costs. The marginal costs are

higher for higher entry ages, since there is less time to accumulate contributions

into the DC account.

In Table 5.12, we show scenario testing results for funding strategy 4. In scenario

2, the standard deviation of the salary growth rate goes up. Monthly hedging costs

also increase slightly as in Table 5.11. However, when the mean of the salary

growth rate grows up in scenario 3, monthly hedging costs change a lot, especially

for lower entry ages. Since we apply the current salary instead of projected final

salary to predict the future retirement benefit, the monthly hedging cost is very

sensitive to the change in salary growth rate. In scenario 4 and 5, the changes in

the crediting rate cause the same results as in funding strategy 3. Monthly hedging

costs decrease when the mean of crediting rate increases or the standard deviation

decreases. When the contribution rate changes in scenario 6, monthly hedging costs

do not change a lot. For example, the contribution goes down from 12.5% to 10%.

Average monthly hedging costs only change about 1.5% for entry age 55 and 0.4%

for entry age 20.
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Table 5.12: Average Monthly Hedging Costs for the Scenario Test as Percent of

Monthly Salary in Funding Strategy 4

Entry Age Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

20 1.50 1.51 2.34 0.35 0.48 2.17
(0.0151) (0.0162) (0.0210) (0.0046) (0.0081) (0.0194)

25 1.66 1.66 2.50 0.47 0.58 2.40
(0.0150) (0.0163) (0.0207) (0.0055) (0.0087) (0.0192)

30 1.80 1.80 2.58 0.61 0.73 2.65
(0.0148) (0.0161) (0.0196) (0.0064) (0.0096) (0.0191)

35 1.97 1.95 2.71 0.80 0.92 2.92
(0.0144) (0.0155) (0.0186) (0.0075) (0.0101) (0.0185)

40 2.12 2.14 2.82 1.02 1.11 3.21
(0.0138) (0.0152) (0.0173) (0.0069) (0.0105) (0.0175)

45 2.31 2.32 2.91 1.31 1.34 3.53
(0.0128) (0.0142) (0.0155) (0.0091) (0.0105) (0.0162)

50 2.42 2.44 2.98 1.61 1.63 3.87
(0.0113) (0.0128) (0.0134) (0.0092) (0.0101) (0.0142)

55 2.52 2.54 2.94 1.94 1.89 4.23
(0.0093) (0.0108) (0.0106) (0.0088) (0.0088) (0.0114)



Chapter 6

Salary, Inflation, and Equity

Returns

6.1 Objectives

To reduce risks in the pension plan, both financial economists and traditional actu-

aries start to hedge the pension plan liabilities. Many models have been proposed

to help pension fund managers match the future asset and liability cash flows.

Pension fund managers construct portfolios to hedge liabilities based on financial

assets, such as stocks, bonds, options, and swaps. For example, to hedge their

pension liabilities, the Boots Company invested all the pension plan fund in bonds

(Ralfe et al. (2002)). One problem with this method is that there are sometimes not

enough eligible bonds, since the pension plan liabilities are generally very long term.

Also, the nature of the liabilities in a final salary plan is that they are increasing

with salaries. We will explore whether one of the major asset classes offers a salary

hedge that replicates salary, at least to some extent.

87
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This is also relevant for the DB underpin guarantee. In Chapter 4, we assumed

the salary is tradable. However, it is hard to replicate salaries in practice. In

this chapter, we first consider the relationship between salaries and three other

financial indexes: bonds, stocks, and inflation. Then, we construct a tractable

model for salary and inflation.

6.2 Data Analysis

The data we consider in this section is Canadian annual data from 1954 to 2003,

from 2002 Report on Canadian Economic Statistics 1924-2003 (2003). We use the

Canadian data to determine the correlations between salary growth and three other

asset classes: stock indexes, long bond indexes and the inflation index.

Assuming the values of four indexes were 100 each in 1954, we can draw a graph

to see the accumulated values of these four indexes in the latest 50 years, from 1954

to 2003.

From Figure 6.1, the salary and inflation indexes have similar shapes, but it is

hard to visualize a relationship between the stock index, long bond index and the

salary index. We can see that stocks have increased more than bonds, and that

salaries and inflation rates have increased the least. Also, the mean increase rate

of salaries is higher than inflation rates.

To see the relationship more clearly, we compare the annual increase rate of

these four indexes. Since the stock index and the long bonds are more volatile than

the salary and the inflation, we use a 7-year average value of stock index and long

bonds.

Salary growth and inflation appear quite similar in Figure 6.2. The correlation
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Figure 6.1: The accumulated values of four indexes in the latest 50 years
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between the salary growth rates and the inflation rate is 0.7905.

We also consider changes of these four assets chosen in the latest 30 years, which

is from 1974 to 2003. Figure 6.3 and Figure 6.4 show the accumulated values and

the annual increase rates of these four indexes, respectively.

In these two figures, we can see more recent relationship between the salary and

the inflation clearly. The correlation coefficient between the increase rate of these

two indexes is 0.9041.

We also consider correlations between the salary and another two assets: stocks

and long bonds. We find that stocks also have a positive correlation with salaries,

though much lower than the inflation rate. Long bonds have a negative correlation

with salaries.

Table 6.1: The correlation between salaries and inflation, stocks and long bonds in

the latest 50 years

Corr Coefficient Inflation Index Stock Index Long Bonds

Salary Index 0.7905 0.1540 -0.2441

Table 6.2: The correlation between salaries and inflation, stocks and long bonds in

the latest 30 years

Corr Coefficient Inflation Index Stock Index Long Bonds

Salary Index 0.9041 0.3758 -0.4631
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Figure 6.3: The accumulated values of four indexes in the latest 30 years
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Figure 6.4: The annual increase rates of four indexes in the latest 30 years
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6.3 Selection of Hedging Assets

Traditionally, actuaries do not really try to hedge. Due to lower interest rates and

the growing longevity, actuaries start to worry more about their future liabilities.

In current approaches for making provision for pension plan liabilities, almost every

kind of financial asset is used to construct the pension plan asset portfolio. The

selection of the hedging assets should be determined by characteristics of the benefit

cash flows.

If the amount of future benefits is fixed, it is easy (at least in principle) to hedge

the liabilities with long bonds. The Boots Company moved their pension plan fund

to a 100% bond portfolio in July 2001, even though Boots plan was a final salary

plan. They used bonds to match salary related benefits. (Subsequently, they closed

the DB plan and opened a DC plan.) Since the default risk of high grade bonds

is low, the value of assets at retirement is almost certain. The fund managers can

match values of assets and expected value of liabilities by using government bonds,

if sufficient long term bonds exist. If the value of future benefits is variable, bonds

with fixed return can not be used to hedge the liabilities perfectly. A combination

of risky assets and risk-free assets may offer a better hedge.

In the DB underpin pension plan, pension benefits depend on two accounts

and both are related to the salary, especially the defined benefit account. The DB

account is defined by a formula with salaries. The DC account is accumulated by

the monthly contribution, which is proportional to the monthly salary. We therefore

require the increase rate of the hedging portfolio to be highly correlated with the

salary growth. The inflation rate is highly correlated to salary growth. It is a good

choice to use the inflation to hedge the salary. In the financial market, it is not

possible to trade the inflation. However, inflation-linked bonds, which are indexed
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with the inflation index, have been introduced in the U.K., Canada, and the U.S.,

and can be used to hedge the inflation risk, in principle.

However, it is hard to use the inflation-linked bond in our model. First, inflation-

linked bonds have been introduced recently, especially in the North America. Sec-

ond, inflation-linked bonds are more volatile than inflation, so using inflation intro-

duces basis risk in our model. In practice, we can not buy and sell inflation. But

we will consider inflation to construct the model, and assume that pension fund

managers can use inflation-linked bonds to construct the hedging portfolio. Next,

we will consider two possible models for salary and inflation.

6.3.1 A Vector Autoregressive Model

Wilkie(1995) present a vector autoregressive(VAR) model to connect salary and

inflation. A first order VAR model would be:

lt = µl + A11(lt − µl) + A12(st − µs) + σl(t)Wl(t) (6.1)

st = µs + A21(lt − µl) + A22(st − µs) + σs(t)Ws(t) (6.2)

where Wl(t) and Ws(t) follow on standard Brownian distribution, N(0, 1). They

are correlated, with correlation coefficient ρls. Alternatively, we can replace Ws(t)

by ρlsWl(t) +
√

1− ρ2
lsW (t), where Wl(t) and W (t) are independent.

Let β = ρls · σs(t)/σl(t), we have

σs(t)Ws(t) = σs(t) · ρlsWl(t) + σs(t) ·
√

1− ρ2
lsW (t)

= σl(t) · ρlsσs(t)

σl(t)
Wl(t) + σs(t) ·

√
1− ρ2

lsW (t)

= σl(t) · βWl(t) + σs(t) ·
√

1− ρ2
lsW (t) (6.3)
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From equation (6.1), we have

σl(t)Wl(t) = (lt − µl)− A11(lt − µl)− A12(st − µs) (6.4)

Plug this and equation (6.3) into equation (6.2), we can rearrange lt to get

st−µs = β(lt−µl)+(A21−A11)(lt−µl)+(A22−βA12)(st−µs)+σs(t)·
√

1− ρ2
lsW (t)

(6.5)

Empirical studies indicate that the volatility of the inflation is not deterministic.

The weakness of this model is that the volatilities of the inflation rate and the salary

growth rate are assumed to be constant.

6.3.2 Connection between Inflation and Salary

The last two models for inflation and salary both give us unsatisfactory results.

We need to find a practicable and feasible model to connect stochastic inflation

and salary growth. Wilkie(1995) finds that logarithms of salary inflation and the

salary are indeed cointegrated, that is, it is reasonable to model the difference in

logarithms as a stationary series. Cairns et al.(2006) also consider the incomplete

market issue. They assume the salary is not fully tradable. It can be split into the

hedgeable part and non-hedgeable part.

Following Cairns et al.(2006), we assume the pension plan member has a salary

at time t of St, which is governed by equation (6.6).

St = SH
t · SN

t (6.6)

where

SH
t = SH

0 · e(µs− 1
2
σ2

s)t+σsZs(t) (6.7)
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and

SN
t =

S0

SH
0

e−
1
2
σ2
0t+σ0Z0(t) (6.8)

SH
t is the hedgeable component of St and SN

t is non-hedgeable component. µs

and σs are the mean and the standard deviation of the salary. ZS(t) is a standard

Brownian motion. For the non-hedgeable part, we introduce σ0 to allow for possible

correlation between the salary and equity returns and Z0(t) is a second standard

Brownian motion independent of Zs(t).

Equation (6.6) is also equivalent to Wilkie(1995)’s assumption. We assume the

mean and the standard deviation of the inflation index are µI and σI , respectively.

The inflation index It and the salary St at time t satisfies equation (6.9).

St = It · SSI
t (6.9)

where

It = I0 · e(µI− 1
2
σ2

I )t+σIZI(t) (6.10)

and

SSI
t =

S0

I0

e(µSI− 1
2
σ2

SI)t+σSIZSI(t) (6.11)

ZI(t) and ZSI(t) are two independent standard Brownian motions. Then, St/It

follows a log-normal distribution. If the only hedgeable part of the salary is the

inflation index, the Brownian motions Zs(t) in equation (6.7) and ZI(t) in equation

(6.10) are equivalent. Matching parameters in equation (6.6) and equation (6.9),

we have µs = µI , σs = σI , µSI = 0, and µ0 = σSI . We assume the risk free asset is

always available in the market. Therefore, we can construct the hedging portfolio

to match the mean of the salary regardless of the standard deviation of the salary.



Chapter 7

Hedging Costs

7.1 Introduction

In Chapter 5, we illustrated numerical results of three funding strategies. The most

important assumption we used in Chapter 4 and Chapter 5 is that salary is fully

tradable. In this chapter, we assume salary is no longer tradable. In Chapter 6,

we have analyzed the relationship between salary and other financial indexes, such

as long-term bonds, stocks, and inflations. We first want to connect the salary and

the inflation and make the model tractable. Second, we assume the hedging asset

for DB account is invested in inflation-linked bonds and the hedging asset for DC

account is still invested in stock indexes. We consider three models and use one of

them to test our funding strategies.
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7.2 The Model for Salary and Inflation

In this chapter, we assume the salary is not fully tradable. We have analyzed three

models for salary and inflation in Chapter 6. The third model is more reasonable

and tractable. Here, we will assume the salary is partially tradable. We split the

salary process into two parts.

We assume the pension plan member has a salary at time t of St, which is

governed by equation (7.1).

St = SH
t · SN

t (7.1)

where

SH
t = SH

0 · e(µs− 1
2
σ2

s)t+σsZs(t) (7.2)

and

SN
t =

S0

SH
0

e−
1
2
σ2
0t+σ0Z0(t) (7.3)

SH
t is the hedgeable component of St and SN

t is non-hedgeable component. µs

and σs are the mean and the standard deviation of the salary. ZS(t) is a standard

Brownian motion. For the non-hedgeable part, we introduce σ0 to allow for pos-

sible correlation between the salary and inflation and Z0(t) is a second standard

Brownian motion independent of Zs(t).

We assume the hedgable part SH
t can be replicated by the inflation and risk-

free bond. At time t, with all known information, we can calculate the value of the

hedging portfolio H(t),

H(t) = ∆S(t)SH
t + ∆A(t)DC(t, t) (7.4)
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One month later, at time t + 1
12

, the hedging portfolio established at t and

brought forward to t + 1
12

has value:

Hbf(t +
1

12
) = ∆S(t)SH

t

SH
t+ 1

12

SH
t

+ ∆A(t)DC(t, t)
At+ 1

12

At

(7.5)

The new hedging portfolio H(t + 1
12

) is calculated by the information available

at time t + 1
12

, so the cash flow for the guarantee at time t + 1
12

is

CF (t +
1

12
) = H(t +

1

12
)−Hbf(t +

1

12
) (7.6)

and the monthly hedging cash flow as a proportion of salary is

cf(t +
1

12
) =

CF (t + 1
12

)

St+ 1
12

(7.7)

The hedge portfolio share of the salary and the underlying fund at time t, ∆S(t)

and ∆A(t), are calculated by the current salary, inflation, years of service, and the

DC underlying asset. However, only part of salary can be replicated. ∆S(t) and

∆A(t) are invested into the inflation and the underlying asset, respectively. This

will cause more risks because of the volatility of the non-hedgable part, σ0. Since we

modify the salary assumption and keep original hedging strategies. This hedging

maybe only suboptimal. In the following sections, we will use some numerical results

to show hedging costs will not change too much when σ0 is small, and hedging costs

are very volatile when σ0 is large.

7.3 Numerical Results

Since salary is assumed not fully hedgeable in this chapter, we assume part of the

salary is hedgeable and the process of the salary follows equation (7.1). Given
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the salary at time t, the salary at time t + h can be calculated recursively by the

following equation(7.8).

St+h = St · e(µs− 1
2
σ2

s− 1
2
σ2
0)h+σs

√
h·Zs(t)+σ0

√
h·Z0(t) (7.8)

We generate the salary and crediting rate processes by Monte Carlo simulation

and implement funding strategy 3 and 4 in this section with 10,000 simulations.

Therefore, at any time t, we can calculate the value of the hedging portfolio. The

growth of the hedging portfolio is dependent on the hedgeable part of the salary

and the crediting rate because salary is not fully tradable here. We consider the

non-hedgable part as a hedging risk. Equation (7.9) shows that the hedgeable part

of the salary is defined as:

SH
t+h = SH

t · e(µs− 1
2
σ2

s)h+σs

√
h·Zs(t) (7.9)

We also rebalance the hedging portfolio every period and calculate the ratio of

hedging cash flow and current salary. Similar to the last section, we can find the

average monthly hedging cost for funding strategy 3 and 4 by equation (7.7).

Based on the last 30 years Canadian inflation index and salary index data, we

estimate that the value of parameter σ0 is approximately equal to 0.016. The value

of parameter σ0 expresses the standard deviation of the log-ratio of the salary and

the inflation index. For the hedgeable part of the salary, the hedging portfolio

can be constructed by the inflation and the risk-free bond. To be consistent with

results in Chapter 5, the mean and standard deviation of hedgeable salary growth

rate which are defined by equation (7.9) are given in Table 7.1.

Since salary satisfies equation (7.8) and is not fully tradable, we only consider the

tradable part when we apply the exchange option valuation to calculate hedging

cash flows. At any time t, the hedgeable part of salary satisfies equation (7.9).
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Table 7.1: Parameters for the Scenario Test
Mean of Hedgeable StD of Hedgeable

Salary Growth Salary Growth Discount Rate

Scenario 1 0.04 0.012 0.05

Scenario 2 0.04 0.037 0.05

Scenario 3 0.05 0.012 0.05

Scenario 4 0.04 0.012 0.05

Scenario 5 0.04 0.012 0.05

Scenario 6 0.04 0.012 0.05

Mean of StD of Contribution

Crediting Rate Crediting Rate Rate

Scenario 1 0.1 0.2 0.125

Scenario 2 0.1 0.2 0.125

Scenario 3 0.1 0.2 0.125

Scenario 4 0.15 0.2 0.125

Scenario 5 0.1 0.15 0.125

Scenario 6 0.1 0.2 0.10

We can implement funding strategy 3 and 4 on this hedgeable part of salary to

calculate the value of hedging portfolio. Then, we rebalance the hedging portfolio

in the next period and find hedging cash flows. Table 7.2 and Table 7.3 show results

in 6 scenarios. Standard errors are shown in brackets.

We also draw the histogram of 10,000 paths and estimated density for average

monthly hedging costs to observe the distribution of simulated hedging costs. Given

the entry age, we compare the distribution of monthly hedging costs. Results show

us that, in Figure 7.3, the density functions for earlier entry ages have lower summit

and heavier tail. In Figure 7.4, the shapes of the estimated density function are

almost identical to Figure 5.7.

Because of the path dependence of hedging costs, we draw the quantile of
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Table 7.2: Average Monthly Hedging Costs for the Scenario Test as Percent of

Monthly Salary in Funding Strategy 3

Entry Age Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

20 4.83 4.83 4.99 3.70 3.55 5.76
(0.0085) (0.0081) (0.0079) (0.0079) (0.0068) (0.0103)

25 4.65 4.68 4.83 3.66 3.48 5.70
(0.0082) (0.0077) (0.0075) (0.0077) (0.0068) (0.0099)

30 4.51 4.54 4.66 3.63 3.44 5.61
(0.0078) (0.0073) (0.0072) (0.0075) (0.0065) (0.0095)

35 4.30 4.36 4.46 3.57 3.35 5.52
(0.0072) (0.0068) (0.0066) (0.0074) (0.0063) (0.0090)

40 4.13 4.16 4.25 3.48 3.25 5.40
(0.0068) (0.0065) (0.0062) (0.0070) (0.060) (0.0084)

45 3.94 3.95 4.01 3.39 3.13 5.31
(0.0062) (0.0059) (0.0055) (0.0067) (0.0055) (0.0078)

50 3.66 3.67 3.72 3.24 3.01 5.17
(0.0057) (0.0054) (0.0052) (0.0063) (0.0052) (0.0074)

55 3.34 3.33 3.36 3.04 2.83 5.06
(0.0049) (0.0047) (0.0045) (0.0057) (0.0044) (0.0061)

monthly hedging costs in strategy 3 and 4 in Figure 7.5 and Figure 7.6, respec-

tively. In funding strategy 3, 90% quantile lines in Figure 7.5 are higher than in

Figure 5.10 and 10% quantile lines are lower for given entry ages. This means

the difference between 10% quantile and 90% quantile becomes wider and monthly

hedging costs are more volatile. In funding strategy 4, we can not see too much

difference in Figure 5.11 and Figure 7.6.

Comparing Table 7.2 and 7.3 with Table 5.11 and 5.12, we find there is no

significant difference under fully hedgeable assumption and not fully hedgeable as-

sumption. In funding strategy 3, monthly hedging costs with not fully hedgeable

assumption in Table 7.2 are slightly higher than monthly hedging costs with hedge-
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Figure 7.1: Histogram for Average Monthly Hedging Cost in Strategy 3
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Table 7.3: Average Monthly Hedging Costs for the Scenario Test as Percent of

Monthly Salary in Funding Strategy 4

Entry Age Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

20 1.51 1.52 2.35 0.37 0.49 2.18
(0.0151) (0.0161) (0.0211) (0.0047) (0.0082) (0.0195)

25 1.65 1.67 2.52 0.48 0.60 2.40
(0.0150) (0.0162) (0.0208) (0.0056) (0.0089) (0.0192)

30 1.79 1.82 2.60 0.63 0.75 2.65
(0.0148) (0.0161) (0.0197) (0.0066) (0.0098) (0.0191)

35 1.95 1.99 2.72 0.83 0.94 2.93
(0.0144) (0.0156) (0.0188) (0.0077) (0.0104) (0.0185)

40 2.12 2.12 2.84 1.04 1.13 3.22
(0.0138) (0.0149) (0.0175) (0.0085) (0.0105) (0.0174)

45 2.32 2.32 2.92 1.32 1.36 3.53
(0.0129) (0.0142) (0.0157) (0.0093) (0.0107) (0.0163)

50 2.43 2.43 3.00 1.63 1.64 3.87
(0.0114) (0.0125) (0.0133) (0.0094) (0.0103) (0.0143)

55 2.52 2.50 2.95 1.95 1.91 4.24
(0.0094) (0.0107) (0.0108) (0.0089) (0.090) (0.0115)

able assumption in Table 5.11. The higher the volatility, the more risks and the

more hedging costs. To be consistent, we consider the same value of parameters for

the fully hedgeable assumption and not fully hedgeable assumption. Sensitivities of

hedging costs to parameters, such as the entry age, the salary growth rate, the cred-

iting rate, and the contribution rate, are similar under fully hedgeable assumption

and not fully hedgeable assumption.

Although the average monthly hedging costs do not change too much when

σ0 = 0.016, the standard errors of monthly hedging costs increase. Since the non-

hedgable part of salary causes more risks, results are more volatile. When the

non-hedgable part volatility σ0 increases, we can see the average monthly hedging
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costs and volatilities increase even more. In scenario 2, the volatility of the salary

is 4%. Table 7.4 and Table 7.5 show us that there are more risks in our problem

when σ0 is high. When σ0 = 0, it means that the non-hedgable part is a constant.

That case is equivalent to this situation where salary is fully tradable. In strategy

3, standard errors of hedging costs increase when the non-hedgabale part volatility

increases. Since the non-hedgable part of salary is not hedged using strategy 3,

the hedging cost is more volatile when σ0 is high. In strategy 4, we consider the

current salary instead of the projected final salary for the DB underpin guarantee.

Therefore, the assumption on salaries does not cause too much difference on the

monthly hedging costs. Table 7.5 shows the hedging cost is very close when σ0

increases.
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Table 7.4: Average Monthly Hedging Costs with Different σ0 under Scenario 2 in

Strategy 3
Entry Age σ0 = 0 σ0 = 0.016 σ0 = 0.03 σ0 = 0.039

σs = 0.04 σs = 0.037 σs = 0.026 σs = 0.009

20 4.82 4.83 4.84 4.84
(0.0080) (0.0081) (0.0119) (0.0142)

25 4.65 4.68 4.70 4.72
(0.0076) (0.0077) (0.0116) (0.0138)

30 4.51 4.53 4.55 4.56
(0.0073) (0.0073) (0.0110) (0.0129)

35 4.30 4.33 4.38 4.40
(0.0067) (0.0068) (0.0105) (0.0124)

40 4.15 4.16 4.20 4.18
(0.0063) (0.0065) (0.0100) (0.0115)

45 3.93 3.95 3.97 4.01
(0.0062) (0.0059) (0.0091) (0.0107)

50 3.65 3.67 3.70 3.73
(0.0055) (0.0054) (0.0081) (0.0098)

55 3.33 3.33 3.34 3.35
(0.0048) (0.0047) (0.0071) (0.0096)
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Table 7.5: Average Monthly Hedging Costs with Different σ0 under Scenario 2 in

Strategy 4
Entry Age σ0 = 0 σ0 = 0.016 σ0 = 0.03 σ0 = 0.039

σs = 0.04 σs = 0.037 σs = 0.026 σs = 0.009

20 1.51 1.52 1.52 1.53
(0.0162) (0.0161) (0.0160) (0.0161)

25 1.66 1.67 1.67 1.68
(0.0163) (0.0162) (0.0161) (0.0162)

30 1.80 1.82 1.82 1.83
(0.0161) (0.0161) (0.0162) (0.0162)

35 1.95 1.99 2.00 2.01
(0.0155) (0.0156) (0.0156) (0.0156)

40 2.14 2.12 2.15 2.14
(0.0152) (0.0149) (0.0150) (0.0150)

45 2.32 2.32 2.33 2.33
(0.0142) (0.0142) (0.0142) (0.0143)

50 2.44 2.43 2.44 2.44
(0.0128) (0.0125) (0.0125) (0.0125)

55 2.54 2.50 2.53 2.55
(0.0108) (0.0107) (0.0109) (0.0110)



Chapter 8

Hedging with Stochastic Interest

Rates

8.1 Introduction

In Chapter 4, we propose four different funding strategies for the minimum DB

guarantee. In Chapter 7, we have assumed that the salary is not completely hedge-

able and showed that the monthly hedging costs are higher when the non-hedgable

volatility, σ0, is high. In previous chapters, we assumed the annuity rate at retire-

ment is a constant and that employers can buy the annuity product from insurance

companies at the given rate. Then, the value of the DB account only depends on

the salary scale at retirement because other factors are all assumed to be constant.

In general, pension fund liabilities involve very long term guarantees. If the mor-

tality and interest rate are all stochastic, the real value of the annuity can be very

high or low at retirement. When we construct our hedging portfolio, we need to

consider both the mortality risk and the interest risk. In this chapter, we assume

112
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the interest rate is no longer a constant, but instead follows a stochastic process.

Since we are considering average monthly hedging costs, the effect of the interest

rate is not significant when we implement funding strategy 3. This is because that

the interest rate is not involved in the calculation of the average monthly hedging

costs. In strategy 3, only the annuity factor is affected by the interest rate. At

retirement, the value of DB account depends on both he final salary and the annuity

rate. When the interest rate goes up, the annuity cost goes down. Employers pay

less for the DB retirement benefits. As the interest rate goes down, the annuity

rate at retirement goes up. The value of the hedging portfolio may not be enough

to pay the DB retirement benefits to employees. Employers will spend more money

and hedging costs also increase. In strategy 4, the stochastic interest rate causes

more trouble, since it also affects monthly hedging cash flows. Strategy 4 is based

on the Traditional Unit Credit (TUC) cost method. The values of the salary and

the DC underlying asset are assumed known at the valuation time t. The interest

rate affects the roll-up of the delta hedging portfolio. The hedging cost in strategy

4 is, therefore, more sensitive to the interest rate than in strategy 3. We will discuss

both strategies separately.

8.2 Affine Term Structures

Before we discuss hedging the DB underpin pension guarantee when the interest

rate is random, we will clarify some definitions and assumptions. The primary

objects of investigation are zero coupon bonds, also known as pure discount

bonds, of various maturities.

Definition 8.2.1. A zero coupon bond with maturity date T is a contract
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which guarantees the holder 1 dollar to be paid on the date T . The price at time t

of a bond with maturity date T is denoted by p(t, T ).

Now, we make an assumption to guarantee the existence of a sufficiently rich

and regular bond market.

Assumption 8.2.2. We assume the following.

• There exists a (frictionless) market for T -bonds for every T > 0.

• The relation p(t, t) = 1 holds for all t.

• For each fixed t, the bond price p(t, T ) is differentiable with respect to time of

maturity T .

The bond price p(t, T ) is a stochastic object with two variables, t and T , and, for

each outcome in the underlying sample space, the dependence upon these variables

is very different. For a hybrid pension guarantee at time t, employers consider the

long-term interest rate from retirement time T to death time S, where T < S.

Hence, we need a contract guaranteeing a riskless rate of interest over the future

interval [T, S]. In the financial market, such an interest rate is called a forward

rate.

At time t, assume there are two zero coupon bonds in the market with maturity

time T and S, with t < T < S. Then, the price of those two bonds are p(t, T ) and

p(t, S), respectively. To guarantee one dollar at time S, we can spend p(t, S) dollars

to purchase the S-year bond or we can purchase some T-year bonds and switch to

the (S-T)-year bond at the maturity time T . Under the no arbitrage assumption,

the money we spend should be equal, which is p(t, S) dollars at time t. Using p(t, S)

dollars at time t, we can purchase p(t, S)/p(t, T ) shares of T-bonds. At time T , we
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receive p(t, S)/p(t, T ) dollars since the maturity of T-bonds. In other words, the

price of S-bonds at time T will be p(t, S)/p(t, T ). The net effect is that, based on a

contract at time t, an investment of one dollar at time T has yielded p(t, T )/p(t, S)

dollars at time S. We call the resulting annualized rate the forward rate for [T, S].

Definition 8.2.3.

1. The continuously compounded forward rate for [T,S] contracted at

t is defined as

R(t; T, S) = − log p(t, S)− log p(t, T )

S − T

2. The instantaneous forward rate with maturity S, contracted at t, is

defined as

f(t, S) = −∂ log p(t, S)

∂S
.

3. The instantaneous short rate at time t is defined as

r(t) = f(t, t).

The instantaneous forward rate is the limit of the continuously compounded

forward rate when T → S. It is very important, since it can be interpreted as

the riskless rate of interest over the infinitesimal interval [S, S + dS], when it is

contracted at time t. From this definition, it is easy to find the following useful

results.

Lemma 8.2.4. For t ≤ s ≤ T , we have

p(t, T ) = p(t, s) · exp{−
∫ T

s

f(t, u)du}

and in particular

p(t, T ) = exp{−
∫ T

t

f(t, u)du}
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With these definitions, we go back to discuss the DB underpin pension guarantee

with stochastic interest rates.

The continuous-time short-term interest rate is one of the most fundamental

and important prices determined in financial market. Many popular models are

currently used by academic researcher and industrial practitioners. There are

many well-known papers about these interest rate models by Merton(1973), Va-

sicek(1977), Dothan(1978), Cox, Ingersoll, and Ross(1980,1985), Longstaff(1989),

Hull and White(1990), Black and Karasinski(1991), Longstaff and Schwartz(1992),

and Cairns(2004).

The general form of the short-term interest rate model is given by

dr = µ(t, r)dt + σ(t, r)dZ (8.1)

Where Z is a Wiener process, µ(t, r) is the drift, and σ(t, r) is the diffusion.

We illustrate a (far from complete) list of the most popular short interest models

with time-independent drift and diffusion.

1. Merton dr = αdt + σdZ

2. Vasicek dr = (α + βr)dt + σdZ

3. CIR SR dr = (α + βr)dt + σr1/2dZ

4. Dothan dr = σrdZ

5. GBM dr = βrdt + σrdZ

6. Brennan-Schwartz dr = (α + βr)dt + σrdZ

7. CIR VR dr = σr3/2dZ

8. CEV dr = βrdt + σrγdZ

There are also some short rate models with time dependent parameters.
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1. Black-Derman-Toy dr = Θ(t)rdt + σ(t)rdZ

2. Ho-Lee dr = Θ(t)dt + σdZ

3. Hull-White (extended Vasiček) dr = (Θ(t)− a(t)r)dt + σ(t)dZ (a(t) > 0)

4. Hull-White (extended CIR) dr = (Θ(t)− a(t)r)dt + σ(t)
√

rdZ (a(t) > 0)

Among those models, we want to pick some reasonable models to model interest

rates properly. It turns out that there are some models are much easier to deal

with analytically than the others. So we give the definition of such interest rates

processes, which are called affine term structures.

Definition 8.2.5. If the term structure {p(t, T ); 0 ≤ t ≤ T, T > 0} has the form

p(t, T ) = F (t, r(t); T ) (8.2)

where F has the form

F (t, r; T ) = eC(t,T )−B(t,T )r (8.3)

and where C and B are deterministic functions, then the model is said to possess

an affine term structure (ATS).

The functions C and B are functions of two real variables t and T , but concep-

tually it is easier to think of C and B as being functions of t, while T is treated

as a fixed value. The existence of an affine term structure is extremely convenient

from an analytical and a computational point of view. Another advantage is that

many interest models have an affine term structure. For example, Vasiček, Ho-Lee

and Hull-White (extended Vasiček) all have an ATS. Björk(1998) presents a prob-

abilistic reason why many models have such a property. He also illustrates some

popular affine one factor models.
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Proposition 8.2.6. (Affine term structure) Assume that the short rate of in-

terest is given by

dr(t) = µ(t, r(t))dt + σ(t, r(t))dZ.

where µ(t, r(t)) and σ(t, r(t)) are of the form

{
µ(t, r) = α(t)r + β(t),

σ(t, r) =
√

γ(t)r + δ(t).
(8.4)

Then the model admits an affine term structure of the form (8.3), where C and B

satisfy that the equations

{
Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1,

B(T, T ) = 0.
(8.5)

{
Ct(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T ),

C(T, T ) = 0.
(8.6)

Equation (8.5) determines the function B which does not involve C. Having

solved equation (8.5), we may then insert the solution B into equation (8.6) to

obtain C.

8.3 Estimated Annuity Rates

Boyle and Hardy(2003) implement a numeraire approach to calculate the market

value of guaranteed annuity options. They use the zero coupon bond which matures

at retirement as the numeraire and find the corresponding risk neutral measure,

which is often called the ‘forward measure’. Since the guaranteed annuity rate is

fixed in a GAO contract, there is a closed form of the value of a GAO contract if

the interest rate follows a one-factor process. However, in the DB underpin pension
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guarantee case, the payoff at retirement is much more complicated. Therefore, we

will solve this problem numerically.

To be simple, we use the Vasiček model since it is a mean reverting model with

an ATS. For an affine term structure, we can find the price of zero coupon bonds

at time t with given maturity. That means at any rebalance time we are able to

calculate the forward rate from the retirement time T to the death time S. Given

the mortality table from Table 8.1 and no expense assumption, we can calculate

the projected annuity rate at retirement.

Assume the annuity is paid at the begin of the month and the normal retirement

age is 65, the annuity rate at retirement T can be expressed as

a65(T ) =
1

12

12·(ω−65)∑
s=0

s/12p65 · p(T, T + s) (8.7)

where s/12p65 is the survival probability that insured survives in the s-th month

after age 65, which is linear interpolated from Table 8.1; p(T, T + s) is the price at

time T of zero coupon bonds with maturity T + s; ω is the limiting life age, which

is 110 here.

Equation (8.7) describes the annuity rate at retirement T . This annuity contract

pays 1/12 per month until the insured dies. Before retirement, we assume there is

no exit and the annuity rate can be calculated by the forward rate. At the valuation

time t, the annuity rate is equal to

a65(t) =
1

12

12·(ω−65)∑
s=0

s/12p65 · p(t, T + s)

p(t, T )
(8.8)

The short rate of interest follows a Vasiček model, which is given by

dr = (b− ar)dt + σdZ
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Table 8.1: Annual Decrement Rates for Annuity Rate Valuations

Age Death Probability Age Death Probability

65 0.02059 88 0.13708

66 0.02216 89 0.14728

67 0.02389 90 0.15868

68 0.02585 91 0.17169

69 0.02806 92 0.18570

70 0.03052 93 0.20023

71 0.03315 94 0.21495

72 0.03593 95 0.22976

73 0.03882 96 0.24338

74 0.04184 97 0.25637

75 0.04507 98 0.26868

76 0.04867 99 0.28030

77 0.05274 100 0.29120

78 0.05742 101 0.30139

79 0.06277 102 0.31089

80 0.06882 103 0.31970

81 0.07552 104 0.32786

82 0.08278 105 0.33539

83 0.09041 106 0.34233

84 0.09842 107 0.34870

85 0.10725 108 0.35453

86 0.11712 109 0.35988

87 0.12717 110 1
*Extracted from Life Table: United States, 1979-81
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Table 8.2: Values of Parameters in the Vasiček Model

dr(t) = (b− ar(t))dt + σdZ

Initial Rate r(0) b a Volatility σ

0.05 0.02 0.35 0.025

The Vasiček model has the property of being mean reverting in the sense that

it will tend to revert to the mean level b/a. Equations (8.5) and (8.6) become
{

Bt(t, T )− aB(t, T ) = −1,

B(T, T ) = 0.
(8.9)

{
Ct(t, T ) = bB(t, T )− 1

2
σ2B2(t, T ),

C(T, T ) = 0.
(8.10)

Proposition 8.3.1. (The Vasiček term structure) In the Vasiček model, bond

prices are given by

p(t, T ) = eC(t,T )−B(t,T )r(t) (8.11)

where

B(t, T ) =
1

a
(1− e−a(T−t)) (8.12)

C(t, T ) =
(B(t, T )− T + t) · (ab− 1

2
σ2)

a2
− σ2B2(t, T )

4a
(8.13)

Using this proposition and equation (8.8), we can calculate the annuity rate

given the short rate at time t. We assume values of parameters in the Vasiček

model as given in Table 8.2.

Assume the mortality table and values of parameters are given, we can combine

equations (8.8) and (8.11) to simulate the annuity rate at t.

Based on the specific mortality table, we pick up the appropriate parameters in

the Vasiček model to determine the mean of annuity rates. Figure 8.1 illustrates
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Figure 8.1: Simulated Annuity Rates
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the mean of annuity rates and five sample paths. The mean of annuity rates is

around 10, which is the same as the fixed annuity rate we used before. Then, we

can compare our results between the fixed interest case and the stochastic interest

case. Given the entry age, the volatility of the projected annuity rate goes up when

the employee is close to his retirement.

8.4 Numerical Results for Strategy 3

Under funding strategy 3, the effect of the stochastic interest rates only affects the

annuity rate. We keep the same assumptions as last chapter except that the interest

rate follows a Vasiček process with parameters given in Table 8.2. For simplicity, we

assume the interest rate is independent of the salary growth rate and the crediting

rate.

At time t, the projected payoff at retirement age T of the pension guarantee

can be expressed as

max(0, DBP (t, T )−DCP (t, T ))

= max(0, αST a65(t)t−DCP (t, T ))

= max(0, αSt
ST

St

a65(t)t−DCP (t, t)
AT

At

) (8.14)

At rebalance time t, the salary St, the value of the DC account DCP (t, t) and

the current short rate r(t) are known. We can calculate the price of the annuity rate

a65(t). Hence, we implement funding strategy 3 to construct the hedging portfolio

in order to match the projected liabilities in equation (8.14).

Table 8.3 gives us monthly hedging costs as a percentage of salaries. The stan-

dard errors are shown in brackets. Based on parameters of the Vasiček model given
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Table 8.3: Average Monthly Hedging Costs with Stochastic Interest Rates as Per-

cent of Monthly Salary under Funding Strategy 3

Entry Age Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

25 4.68 4.69 4.84 3.67 3.49 5.69
(0.0086) (0.0085) (0.0087) (0.0078) (0.0072) (0.0106)

30 4.50 4.55 4.69 3.63 3.42 5.62
(0.0083) (0.0084) (0.0085) (0.0076) (0.0069) (0.0106)

35 4.32 4.38 4.45 3.57 3.33 5.53
(0.0082) (0.0080) (0.0081) (0.0074) (0.0068) (0.0103)

40 4.14 4.18 4.26 3.49 3.25 5.40
(0.0079) (0.0079) (0.0081) (0.0073) (0.0068) (0.0101)

45 3.96 3.94 4.01 3.38 3.14 5.31
(0.0079) (0.0078) (0.0080) (0.0070) (0.0068) (0.0100)

50 3.67 3.67 3.71 3.24 3.00 5.17
(0.0077) (0.0076) (0.0079) (0.0069) (0.0069) (0.0098)

55 3.35 3.34 3.36 3.06 2.84 5.03
(0.0078) (0.0076) (0.0079) (0.0070) (0.0074) (0.0098)

in Table 8.2, the mean of annuity rates is around 10, which is comparable to the

fixed annuity as we assumed before. If the annuity rates decrease, the projected

DB benefits decrease. So the value of guarantee also goes down and hedging costs

decrease. Compared with Table 7.2, the monthly average hedging cost is similar,

since the annuity rate is very close to 10 that we used before. However, the standard

error is much higher for higher entry age. Table 8.4 shows the monthly hedging

cost and standard errors given scenario 1.

From Table 8.3, we can also see that the sensitivities of hedging costs to other

assumptions, such as salary growth rates, crediting rates, and the contribution

rate, are pretty much similar. The hedging costs are not sensitive to the mean

and the standard deviation of salary growth rates. The changes of salary growth

rates only cause a slight difference since we calculate the proportion of monthly
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Table 8.4: Average Monthly Hedging Costs as Percent of Monthly Salary with

Deterministic/Stochastic Interest Rates Under Scenario 1
Entry Age Deterministic Stochastic

Interest Rate(5%) Interest Rate

25 4.65 4.68
(0.0082) (0.0086)

30 4.51 4.55
(0.0078) (0.0084)

35 4.30 4.32
(0.0072) (0.0082)

40 4.13 4.14
(0.0068) (0.0079)

45 3.94 3.96
(0.0062) (0.0079)

50 3.66 3.67
(0.0057) (0.0077)

55 3.34 3.35
(0.0049) (0.0078)

salaries at the valuation time. When the mean of crediting rates goes up or the

standard deviation of crediting rates goes down, employers have less risk in their

DC accounts, so hedging costs decrease. If employees and employers are willing to

invest more contributions each month, the hedging costs also decrease.

We use parameters in scenario 1 here to draw two figures. Figure 8.2 exhibits

the histogram of monthly hedging costs with different entry ages. As the entry

age increases, the mean hedging cost moves to the left of the figure, and sample

paths are closer to the mean as the entry age increases. This means the monthly

hedging cost increases as the entry age increases. Figure 8.3 displays the quantile of

monthly hedging costs with different entry ages. Compared with Figure 7.5, there

is no significant difference. This is because we assume that interest rates follow

a stochastic process with an affine term structure. When we consider a long-term
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Figure 8.2: Histogram for Average Monthly Hedging Cost in Strategy 3
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case, the forward rate is almost fixed. Hence the stochastic interest rate assumption

does not cause much problem.

The hedging costs are very sensitive to the annuity rate. If values of parameters

are changed in the interest rate model, the estimated annuity rate also changes. As

an illustration, we change the mean reverting rate in the Vasiček model.

Table 8.5: Values of Parameters in the Vasiček Model

dr(t) = (b− ar(t))dt + σdZ

Initial Rate r(0) b a Volatility σ

0.05 0.028 0.35 0.025

In Table 8.5, we change the value of parameter b to increase the mean reverting

rate from 0.02/0.35 ≈ 0.057 to 0.028/0.35 = 0.08. Then, the estimated annuity

rate is around 8.6. Assume all other assumptions are the same in scenario 1, we

find the average monthly hedging costs as following.

Table 8.6: Average Monthly Hedging Costs with Stochastic Interest Rates as Per-

cent of Monthly Salary in Funding Strategy 3 under Scenario 1
Entry Age 20 25 30 35

Hedging Costs 3.42 3.30 3.14 2.95
(Standard Errors) (0.0064) (0.0059) (0.0056) (0.0054)

Entry Age 40 45 50 55
Hedging Costs 2.75 2.50 2.21 1.86

(Standard Errors) (0.0051) (0.0049) (0.0049) (0.0048)

We find that the average monthly hedging cost in Table 8.6 is much lower than

the first column in Table 8.3. Mean reversion is a tendency for a stochastic process

to remain, or tend to return over time to a long-run average value. Since we reduce

the mean reversion rate from 8% to 5.7%, the expected annuity rate goes up. Also,
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the interest rate is more unstable and is hard to reach the long term average. This

also causes more risks and more hedging costs for employers.

8.5 Numerical Results for Strategy 4

Under funding strategy 4, the effect of stochastic interest rates is more complicated.

We have discussed in Section 8.1 that hedging costs using strategy 4 are sensitive to

the short interest rates. We keep the same assumptions as the last chapter except

the interest rate follows a Vasiček process with parameters given in Table 8.2. We

assume the interest rate is independent of the salary growth rate and the crediting

rate.

At time t, the projected payoff at retirement age T of the pension guarantee

can be expressed as

max(0, DBT (t, T )−DCT (t, T ))

= max(0, αSta65(t)t−DCT (t, t)e
R T

t f(u)du)

= max(0, αSta65(t)t−DCT (t, t)
AT

At

) (8.15)

Equation (8.15) is calculated by adopting the traditional unit credit (TUC) cost

method. The salary St, the value of the DC underlying asset and the current short

rate r(t) are known at time t. We can calculate the price of the annuity rate a65(t)

using the forward risk-neutral valuation argument. Hence, equation (8.15) is similar

to the payoff of a regular European put option. We implement funding strategy

4 to construct the hedging portfolio. The difference is that the interest rate is no
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longer deterministic. So the present value of the pension guarantee should be

p(t, T ) max(0, DBT (t, T )−DCT (t, T ))

= p(t, T ) max(0, αSta65(t)t−DCT (t, t)
AT

At

) (8.16)

where p(t, T ) is the price at time t of a zero-coupon bond with maturity time

T .

Implementing the Black-Scholes valuation, we have the value of the pension

guarantee at time t,

c1,tp(t, T )N(−d2,t)− c2,tAtN(−d1,t)

d1,t =
ln(c2,tAt/(c1,tp(t, T ))) + 1

2
σ2(T − u)

σ
√

(T − u)
(8.17)

d2,t = d1,t − σ
√

(T − u). 0 ≤ t ≤ u ≤ T

where c1,t = α · St · a65(t) · t and c2,t = DCT (t,t)
At

.

Table 8.7 shows us monthly hedging costs under strategy 4 as a percentage of

salaries and standard errors. The parameters of each scenario are given by Table

7.1 and parameters of the Vasiček model are given by Table 8.2. The stochastic

interest rate affects not only the estimated annuity rate, but also the price of the

zero-coupon bond p(t, T ). That causes higher and more volatile hedging costs.

Since the mean reverting rate is approximately 5.7%, we also assume the discount

rate is 5.7% and keep all other parameters same. Table 8.8 compares the monthly

hedging cost and standard errors for both deterministic interest rate and stochastic

interest rate. The hedging cost using strategy 4 is very sensitive to the interest

rate. When the interest rate is stochastic, both hedging costs and standard errors

are higher, especially for higher entry ages.
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Table 8.7: Average Monthly Hedging Costs with Stochastic Interest Rates as Per-

cent of Monthly Salary under Funding Strategy 4

Entry Age Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

25 1.56 1.53 2.29 0.45 0.56 2.25
(0.0163) (0.0172) (0.0216) (0.0057) (0.0098) (0.0210)

30 1.68 1.71 2.46 0.59 0.69 2.48
(0.0164) (0.0174) (0.0214) (0.0069) (0.0102) (0.0213)

35 1.83 1.87 2.50 0.77 0.86 2.77
(0.0166) (0.0174) (0.0205) (0.0078) (0.0113) (0.0211)

40 2.03 2.04 2.69 0.99 1.06 3.02
(0.0166) (0.0175) (0.0200) (0.0091) (0.0123) (0.0207)

45 2.20 2.19 2.78 1.25 1.29 3.38
(0.0160) (0.0170) (0.0190) (0.0099) (0.0129) (0.0204)

50 2.29 2.36 2.82 1.57 1.57 3.69
(0.0152) (0.0163) (0.0172) (0.0111) (0.0132) (0.0197)

55 2.44 2.47 2.85 1.94 1.88 4.07
(0.0145) (0.0152) (0.0157) (0.0118) (0.0136) (0.0183)

Figure 8.4 shows us histograms for average monthly hedging cost under scenario

1. The tails of histogram are very heavy in all four figures. This means the volatil-

ities of hedging costs are very high. Figure 8.5 shows us quantile average monthly

hedging cost under scenario 1. Since the TUC cost method only considers the

current salary, employers underestimate the value of the hedging portfolio in the

beginning of the plan. Hedging costs are very high and unstable when employees

are close to the retirement age.

Given the stochastic interest rate assumption, results are different in strategy 3

and strategy 4. In strategy 3, the only factor which is affected by stochastic interest

rates is the annuity rate. With the mean-reverting assumption, hedging costs do

not change too much since we consider a long-term forward valuation. However,

hedging costs are very sensitive to the interest rate in strategy 4, as the monthly
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Table 8.8: Average Monthly Hedging Costs as Percent of Monthly Salary with

Deterministic/Stochastic Interest Rates Under Scenario 1
Entry Age Deterministic Stochastic

Interest Rate(5.7%) Interest Rate

25 1.32 1.56
(0.0136) (0.0163)

30 1.49 1.68
(0.0137) (0.0164)

35 1.66 1.83
(0.0134) (0.0166)

40 1.80 2.03
(0.0128) (0.0166)

45 1.98 2.20
(0.0120) (0.0160)

50 2.13 2.29
(0.0107) (0.0152)

55 2.27 2.44
(0.0090) (0.0145)

hedging cash flows are highly related to the price of zero-coupon bond.
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Figure 8.4: Histogram for Average Monthly Hedging Cost in Strategy 4
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Figure 8.5: Quantile of Average Monthly Hedging Cost in Strategy 4



Chapter 9

Costs Control

9.1 Introduction

In the last three chapters we have shown that hedging cash flows can be very volatile,

even though the expected average hedging costs may be reasonable. However,

the average monthly hedging costs are time dependent. The results demonstrate

hedging costs are particularly unstable when employees are close to retirement.

Obviously, employers want to reduce their risks and stabilize their hedging cash

flows. In this chapter, we will propose some alternative ways to smooth hedging

cash flows and to reduce the monthly hedging costs.

135
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9.2 Unstable Hedging Cash Flows and Hedging

Cost Spikes

Figure 9.1 and Figure 9.2 show us five sample paths of monthly hedging costs with

different entry ages under strategies 3 and 4. The parameters here are given by

scenario 1 in Table 5.1 and interest rates follow a Vasiček model.

From these figures, we see that there is a significant chance that monthly hedging

costs are very high. In this chapter, we will discuss some approaches for costs con-

trol. When the hedging cash flows are very high, we use alternative ways to reduce

the spiked cash flows. We note that in a DB underpin pension plan, employers can

control salaries and they can also determine how to construct the hedging portfolio.

Given the mortality rate, there are three random factors in our model: salary

growth rate, crediting rate, and interest rate. Generally, employers or pension

sponsors can control the first two factors. The salary growth rate is determined by

employers. If the cost is exorbitant, employers may choose to give smaller increases

in employees’ salaries. Although the crediting rate is affected by the financial

market, employers may have the right to construct the investment portfolio by

choosing either low-risk low-return securities or high-risk high-return securities.

The selection of securities determines the expected return and volatility of the DC

account.

Figure 9.1 and Figure 9.2 show us sample paths of monthly hedging cash flows.

First, we explore what causes the volatility in the hedging costs, using a scatter

plot. In Figure 9.3 and Figure 9.4 we plot the salary growth rate and the crediting

rate for a new entrant age 35. We have superimposed crosses where the monthly

hedging costs spikes over 50%. We can see there are more spikes in Figure 9.4 than
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Figure 9.1: 5 Sample Paths of Monthly Hedging Cost under Strategy 3
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Figure 9.2: 5 Sample Paths of Monthly Hedging Cost under Strategy 4
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Figure 9.3: Scatter Plot of Salary Growth Rates and Crediting Rates, Strategy 3,

Spike Level:50%

Figure 9.4: Scatter Plot of Salary Growth Rates and Crediting Rates, Strategy 4,

Spike Level:50%
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Figure 9.5: Scatter Plot of Salary Growth Rates and Crediting Rates, Strategy 3,

Spike Level:80%

Figure 9.6: Scatter Plot of Salary Growth Rates and Crediting Rates, Strategy 4,

Spike Level:80%
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Figure 9.7: Scatter Plot of Salary Growth Rates and Crediting Rates, Strategy 3,

Spike Level:50%

Figure 9.8: Scatter Plot of Salary Growth Rates and Crediting Rates, Strategy 4,

Spike Level:50%
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in Figure 9.3. Since funding strategy 4 is highly related to the interest rate, the

randomness of the interest rate causes higher volatilities and more hedging costs

spikes. Moreover, it seems there are more spikes on the right side of figures where

the salary growth rate is high, though this is not entirely clear for these plots.

In Figure 9.5 and Figure 9.6, we have superimposed crosses where the monthly

hedging costs spikes over 80%. Some spikes disappear when salary growth rates

are lower. To see this clearly, we ignore the effect of stochastic interest rates and

assume the interest rate is constantly equal to 5%. In Figure 9.7 and Figure 9.8,

we see that most spikes are associated with increase of more than around 1% per

month in salary. There are still some spikes associated with values more than

around 10% per month or less than -10% per month in crediting rate. Besides the

effect of stochastic interest rates, spikes can be caused by high salary growth rates

and by volatile crediting rates. In Section 9.3 and Section 9.4, we will discuss two

alternative approaches to control the hedging costs. We will also consider how to

reduce the interest rate risk as further work.

9.3 Salary Growth Rate Control

Although the salary affects both the DB and DC accounts, it causes more significant

effects on the DB guarantee cost when the security market goes down. When the

salary is high and crediting rate is low, the projected guarantee moves further into-

the-money. So employers are requested to deposit more money into the hedging

portfolio. That causes a spike in the hedging cash flows. However, employers want

their hedging costs to be smooth. We propose two ways to control the impact

of salary increase. Both salaries and pension are benefits provided by employers.

They do not have to offer both high salaries and high retirement benefits.
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Table 9.1: Average Monthly Hedging Costs with Stochastic Interest Rates as Per-

cent of Monthly Salary in Funding Strategy 3
Entry Age No Costs Salary Growth Control

Control 1 Month 3 Months 6 Months 12 Months

25 4.68 4.41 4.35 4.21 4.08
(0.0086) (0.0082) (0.0082) (0.0079) (0.0080)

30 4.50 4.33 4.27 4.15 4.05
(0.0083) (0.0081) (0.0079) (0.0077) (0.0077)

35 4.32 4.18 4.13 4.02 3.94
(0.0082) (0.0079) (0.0078) (0.0073) (0.0075)

40 4.14 4.15 4.03 3.99 3.84
(0.0079) (0.0077) (0.0074) (0.0071) (0.0073)

45 3.93 3.82 3.79 3.72 3.68
(0.0079) (0.0076) (0.0073) (0.0071) (0.0070)

50 3.63 3.59 3.57 3.53 3.50
(0.0077) (0.0075) (0.0075) (0.0071) (0.0071)

55 3.31 3.29 3.29 3.28 3.27
(0.0078) (0.0078) (0.0077) (0.0075) (0.0076)

Table 9.2: Average Monthly Hedging Costs with Stochastic Interest Rates as Per-

cent of Monthly Salary in Funding Strategy 4
Entry Age No Costs Salary Growth Control

Control 1 Month 3 Months 6 Months 12 Months

25 1.56 1.21 1.14 1.00 0.94
(0.00163) (0.0121) (0.0109) (0.0093) (0.0087)

30 1.68 1.37 1.29 1.14 1.07
(0.0164) (0.0126) (0.0116) (0.0100) (0.0094)

35 1.83 1.57 1.48 1.33 1.25
(0.0166) (0.0133) (0.0123) (0.0106) (0.0100)

40 2.03 1.76 1.69 1.53 1.45
(0.0166) (0.0136) (0.0127) (0.0113) (0.0106)

45 2.20 2.01 1.94 1.80 1.71
(0.0160) (0.0143) (0.0135) (0.0122) (0.0115)

50 2.29 2.22 2.17 2.06 1.98
(0.0152) (0.0144) (0.0139) (0.0128) (0.0122)

55 2.44 2.43 2.42 2.37 2.32
(0.0145) (0.0141) (0.0139) (0.0133) (0.0129)
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The most simple control for the employer is to stop increasing the salary for a

period, such as one month or half a year. Employees still pay monthly contributions

as a proportion of their salaries. This control does not only affect the value of DB

benefit, but also the value of DC account. It will decrease the value of both benefits,

but will have a more significant effect on the DB benefit.

We explore a strategy whereby, if the monthly hedging cash flow is higher than

50% of the monthly salary, employers will stop increasing the salary for a while.

That is employers set a 0% salary cap when there is a hedging cost spike. Tables

9.1 and 9.2 show the average hedging costs after applying the cap for both strategy

3 and strategy 4. We can see that the salary limit control reduces both monthly

hedging costs and standard errors using strategy 3 and strategy 4. The longer the

salary limiting period, the more reduction on hedging costs.

In strategy 3, we adopt the projected unit credit cost method. The DB guarantee

is valued using the projected final salary. So the salary limit control does not cause a

significant reduction in the monthly hedging costs. However, we use the traditional

unit credit cost method in strategy 4. The DB guarantee is valued using the current

salary. Employers underestimate the value of DB guarantee in the beginning of the

plan and the monthly hedging cash flows include the impact of salary increases.

After we implement the salary limit control, Table 9.2 shows us that monthly

hedging costs with salary limit are much lower than those without salary limit.

The monthly hedging costs volatility can be significantly reduced, by smoothing

out the salary growth rate. Figure 9.9 and Figure 9.10 demonstrate the difference

in strategy 3 of 95% quantile and mean of monthly hedging costs among no salary

limit, one-month limit and twelve-month limit. We still generate 10,000 paths. The

value of parameters are given by scenario 1 in Table 7.1. The stochastic interest

rate follows a Vasiček model with parameters in Table 8.2. We find that the only
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Figure 9.9: Comparison of 95% Monthly Hedging Costs Quantiles using Strategy 3

with Stochastic Interest Rate Assumption, Without and With Salary Limit
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Figure 9.10: Comparison of Mean of Monthly Hedging Costs using Strategy 3 with

Stochastic Interest Rate Assumption, Without and With Salary Limit
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Figure 9.11: Comparison of 95% Monthly Hedging Costs Quantiles using Strategy

4 with Stochastic Interest Rate Assumption, Without and With Salary Limit
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Figure 9.12: Comparison of Mean of Monthly Hedging Costs using Strategy 4 with

Stochastic Interest Rate Assumption, Without and With Salary Limit
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Figure 9.13: Comparison of 95% Monthly Hedging Costs Quantiles using Strategy

4 with Deterministic Interest Rate Assumption, Without and With Salary Limit
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Figure 9.14: Comparison of Mean of Monthly Hedging Costs using Strategy 4 with

Deterministic Interest Rate Assumption,Without and With Salary Limit
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difference occurs approximately after age 60. Although the difference in the mean

of hedging costs is small, the reduction in the 95% quantile means employers face

less risks with salary limit control.

In Figure 9.11 and Figure 9.12, we can compare the change from using a salary

cap in strategy 4, considering the 95% quantile and the mean of monthly hedging

costs. As we analyzed before, the monthly hedging costs in strategy 4 are very

volatile at the end of the plan. The salary limit control works here even better

than in strategy 3. Both the 95% quantile and the mean of hedging costs drop

a lot near retirement. If we assume no interest risk, Figure 9.13 and Figure 9.14

demonstrate results of 95% quantile and mean under the deterministic interest rate

assumption. The mean of monthly hedging costs is very smooth. This shows that

the salary limit control can reduce the salary risk and the volatility of monthly

hedging costs.

We note that by changing the salary process to introduce dynamic cost control,

the real world process is no longer consistent with the risk neutral measure we need,

which assumes unconstrained salaries.

9.4 Arithmetic Average on Salaries

In all final salary pension plans, the benefit will actually be based on the average

salary in the period before retirement. In such a plan, the final DB benefit is

calculated by the average of the final 3 or 5 years salary. This policy is usually

specified in the pension contract at the beginning of the plan. There are two benefits

of using final average salary for our model. First, using the average of salaries can

reduce the volatility. Second, our model considers a DB pension guarantee. Since

employees’ salaries usually increase all the time, the final average salary is less than
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the final salary. This causes a lower DB benefit, and therefore a lower DB pension

guarantee.

When we consider the final average salary, our model is similar to an asian

option problem. There are some numerical approaches to calculating the regu-

lar European type asian option, such as Kemna and Vorst(1990), and Turnbull

and Wakeman(1991). First Kemna and Vorst(1990) use Monte-Carlo simulation.

However, it is time-consuming and does not lead to the hedging portfolio. A faster

approach based on an Edgeworth expansion around lognormal distribution has been

given by Turnbull and Wakeman(1991). Levy(1992) also remarks that the higher

terms in the Edgeworth expansion have a negligible numerical value for reasonable

values of the parameters of the model and proposes simply to use a Lognormal

approximation for pricing, giving a closed-form formulae for the approximate price.

However, there are three random variables in our model, the salary, the DC

underlying asset, and the interest rate. For simplicity, we consider a constant

interest rate case. In strategy 3, the DB benefit is calculated by the projected salary.

It is like a asian exchange option. In strategy 4, the DB benefit is calculated by the

current salary. When we consider the average salary plan, all past years salaries are

known. So it is still a European option problem in strategy 4 with different strike

price.

Here, we only use strategy 4 to consider a simple model. Figure 9.15 shows the

mean of the monthly hedging cost with entry age 35. The 1-year average and 5-year

average hedging costs are lower than the original one. Since the average salary is

usually less than the current salary, the expected value of DB pension guarantee

is also lower. The average salary plan also reduces the volatility of the monthly

hedging cost. Figure 9.16 shows the 95% quantile of the monthly hedging cost with
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entry age 35. The 1-year average and 5-year average quantiles are significantly

lower than the no average one. This is also because the volatility of the average

salary is lower than the volatility of the salary. Hence, the average pension plan

has both lower expected costs and lower volatilities.

In strategy 3, the calculation is more complicated, since both salaries and DC

underlying assets are projected to the retirement. In the further work, we will

use the Edgeworth expansion to approximate the average salary process to apply

strategy 3.

9.5 Other Cost Control Methods

In the last two sections, we proposed cost control approaches by limiting the salary

increase dynamically to smooth the spike of hedging cash flows and introducing the

average salary. The salary cap stabilizes the hedging cash flows, especially when

employers are getting older. We also consider other cost control methods based on

the crediting rate or the interest rate.

9.5.1 Cap and Floor on the DC Account

The value of DC account depends on the amount of contributions and the invest-

ment performance. Usually, the contribution rate is specified by the pension policy.

Some employers, such as York University, allow voluntary contributions. However,

the extra contributions will not be used to compare with the DB benefits at retire-

ment. Therefore, employers’ investment choices significantly affect the value of DC

account. In most DB underpin pension plans, DC accounts are managed by profes-

sional investment companies. They construct the investment portfolio by equities,
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bonds, and other financial securities, but the overall strategy and risk tolerance is

determined by the plan sponsor.

The estimated value of DB guarantee is negatively correlated to the value of

DC account. If the crediting rate is high, the projected DB guarantee is lower. For

a higher value of the DC account, the estimation of the DB guarantee is usually

out-of-the-money. So the value of hedging portfolio is also lower. However, due

to the volatility, the difference between the projected value and the actual value

can be huge at the next valuation time. The DB guarantee easily changes from

out-of-the-money to in-the-money. So the hedging cash flow may be huge because

of the volatility of the crediting rate.

On the opposite side, the projected DB guarantee is higher, if there is a lower

crediting rate. The estimation of the DB guarantee is in-the-money. This causes a

higher value of the hedging portfolio. If the market goes up, the projected value of

DB guarantee decreases at the next valuation time. There exists a lower hedging

cash flow, or even negative cash flow.

Usually, the pension fund is managed by the Pension Administration Commit-

tee, such as at Mcgill University. The DC underlying portfolio is constructed by

equities and fixed income securities. A higher return or a lower volatility can re-

duce the monthly hedging cost. However, due to the risk-return trade off, it will

be difficult to determine an optimal balance. We leave this for future work.

9.5.2 Interest Rate Derivatives

Another random factor in our model is the interest rate. In strategy 3, the interest

rate will only affect the annuity factor. Figure 9.3 and Figure 9.7 show spikes

of hedging cash flows with/without stochastic interest rates. In strategy 4, the
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Figure 9.17: Scatter Plot of Salary Growth Rates and Interest Rates, Strategy 3,

Spike Level:50%

Figure 9.18: Scatter Plot of Salary Growth Rates and Interest Rates, Strategy 4,

Spike Level:50%
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interest rate affect more than in strategy 3. Figure 9.4 and Figure 9.8 show spikes

of hedging cash flows with/without stochastic interest rates. In Chapter 8, we have

compared hedging costs with/without stochastic interest rates.

Figure 9.17 and Figure 9.18 plot scatters of the salary growth rate and the

interest rate. It is hard to say how stochastic interest rates affect the hedging cash

flow from two figures. Since the DB underpin guarantee is usually exercised for a

long term, some interest rate derivatives may be used to reduce the volatility arising

from the interest volatility. In further work, we will consider using such derivatives

to control interest risk.



Chapter 10

Comments and Further Work

10.1 Salary Growth Rate

Since the DB underpin pension guarantee is highly related to the salary, the as-

sumption of the salary growth rate becomes a very important issue. It is hard to

predict the future salary change. In our model, we assume salary follows a Brow-

nian geometric motion. This is a simple but not necessarily practical assumption,

since it may generate negative salary growth. There are many studies about how

to model salary growth. We have analyzed the high correlation between salary and

inflation in Chapter 3. This may help us to predict the salary growth rate. In future

work, we will consider more extensive integrated models for the salary growth and

inflation rates.

158
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10.2 Other Risk Management Approaches

Pension fund actuaries are interested in risk management. They are worry about

how much risk they should take if they offer the pension plan. We have moved our

interest and research focus to the risk management and the pension fund hedging.

For the DB underpin guarantee we have calculated the first order derivative of and

implement delta hedging. In the future, we will consider more complicated hedging

approaches and introduce some derivatives to hedge the risk of the DB guarantee.

We have shown the relationship between salary and financial indices in Chapter

6. We used inflation and risk-free bonds to partially hedge the salary in Chapter

7 because of the high correlation between salary and inflation. We assumed that

inflation was tradable through inflation-linked bonds. These bonds have not been

widely used in the U.S. and Canada. A problem is that inflation-linked bonds are

rather more volatile than inflation, but also give a real return, typically of 1-2%. We

plan to introduce inflation-linked bonds into our model. This will introduce higher

hedging volatility, but more realistically represent the traded assets available.

10.3 Costs Control

In Chapter 9, we discussed several cost control methods. There are three random

variables in our model, the salary growth rate, the crediting rate, and the interest

rate. We have proposed two ways to reduce the hedging costs and the volatility

using salary control. We first limit the salary growth rate when there is a hedging

cash flow spike. This is an ex-post control, we also consider a modified pension

design using the final average salary. This is an ex ante control. Both approaches

reduce the volatility of monthly hedging costs.
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Also in future work, we will consider the other two random factors: the crediting

rate and the interest rate. The DC underlying portfolio is constructed by a mix of

equities and fixed income securities. A higher equity proportion should decrease the

cost of the guarantee on average, but at the cost of higher volatility. An interesting

open problem is the determination of an optimal balance in the benchmark DC

fund.

In our model, the DB underpin guarantee is positively related to the annuity

factor. It is hard to say how stochastic interest rates affect the hedging cash flow

from two figures. In further work, we plan to explore the use of interest rate

derivatives to manage the interest rate risk in future work.
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