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Abstract

An investigation of the problem of inelastic scattering process under the Coulomb
Born approximation is given. Different approaches to calculate Coulomb wavefunc-
tions in the momentum space representation are analyzed and a discussion of their
existences in the generalized distribution sense is provided. Inokuti’s approach of
finding the differential cross section in the momentum space representation under
the Coulomb Born approximation is described and a different approach with an ap-
plication of the Bremsstrahlung integral is developed and compared with Inokuti’s
approach.
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Chapter 1

Introduction and Overview

The investigation of collisions of charged particles with atoms and molecules was
initiated in 1930 by Bethe, whose work put a variety of theoretical and experimental
data together in a coherent picture. His work concerning collision cross sections
and the stopping force for fast particles established a number of important results
through Quantum Mechanical theory based on the Born approximation. Before
Bethe’s work, Bohr had begun investigating the subject of atomic collisions in
1913. He had developed a theory of the stopping force of materials for fast particles
which regards the collision as a producing sudden transfer of energy and momentum
to atomic electrons. He had given the general structure of cross-section formulas
correctly, but owing to the lack of knowledge of Quantum Mechanics at that time,
certain dynamical details were not clear in his work.

Bethe’s achievements on the subject of atomic collision made an impact in
the last century. The past developments in understanding of fast collisions have
been successful, experiments in such area had been improved by modern advanced
technology, and the results are characterized by remarkably improved resolution
both in electron energy and in beam collimation, while progress have been made
by theoretical researchers using a variety of approaches. In this chapter, I briefly
provide descriptions of atomic scattering process, outline important work from the
past and introduce certain fundamental formulas in scattering theory. In the end, I
shall describe why it is necessary to review a subset of this subject, that is inelastic
scattering.

Theoretical treatments of atomic collisions of charged particles with atoms and
molecules are classified into two kinds: those dealing with fast collisions and those
dealing with slow ones. The basis to distinguish either one from the other is that
the particle speed is fast or slow relative to mean orbital speed of atomic electrons
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in the shell. For example, an electron of a few keV kinetic energy is considered fast
with respect to any discrete-level excitation of He, while it is not fast compared to
the K-shell ionization of Ar.

In this thesis, we limit our attention to inelastic scattering as it is a well-studied
subject and it will be our main theme. For sufficiently fast collisions, the influence
of the incident particle upon an atom or molecule may be regarded as a sudden and
small external perturbation, for which perturbation method may be used to help us
extract useful informations from a complicated problem. In this thesis, we confine
ourselves to first Born approximation, which fails at lower energies. In inelastic
scattering, kinetic energy of the incident particle is transfered to raise the atomic
electron from state i to state f , leading to excitation or ionization. Generally
speaking, the study of fast collisions is a property of target atoms or molecules in
essence.

However, at lower energies, the Born approximation is not valid and the problem
is more difficult than in the fast atomic scattering case because we must study the
combined system of the incident particle plus the target atoms or molecules. An
inelastically scattered particle cannot be considered to be moving in an equivalent
static potential as its state is continuously changing with the target along the
trajectory. In this case, a different approximate method must be employed and our
work has been done based on the distorted wave approximation as introduced by
Mott and Massey.[MM65]

We are in particular interested in studying atomic scattering by a Coulomb field.
We consider an incident particle carrying charge ze (e is the proton charge), which
collides with an Z-electrons atom inelastically and the target atom is initially at
its ground state. As this is an inelastic collision process, there is a change in the
energy of the incident particle and this energy change is absorbed by the atomic
electrons, leading to excitation and ionization. We describe these internal changes
of the system with the full many-body Hamiltonian. In the second chapter, a brief
review of Bethe Theory on inelastic collisions of fast charged particles with atoms
and molecules will be given and physical observables, the differential scattering,
total scattering cross sections and collision strength will be discussed.[I71] [BJ86]

In the third chapter, perturbation methods (Born approximation and distorted
wave approximation) will be used to describe high and low energy scatterings. We
consider physical circumstances in which first order perturbation methods should
be sufficient.[FI] Typically, the full inelastic scattering amplitude was obtained by
the partial-wave decomposition. But for high incident energies, the contributions
to the collision strength from a wide band of incident angular momentum values
corresponding to large impact parameters should dominate. The partial wave sum-
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mation becomes impractical because of its slow convergence. We investigate this
matter and explain, under such circumstance, that the distorted wave approxima-
tion or the Coulomb-Born approximation becomes more reliable.

In Quantum Mechanics, momentum space description is known to be equiv-
alent to coordinate space description. Effort has been put into investigation of
the scattering problem in coordinate space representation. However, studying the
scattering problem from the point of view on momentum space representation is in-
trinsically appealing, since the basic quantities involved are scattering amplitudes
and experimental settings, allowing us to obtain momentum measurements. In
fact, these quantities are related. In chapter four, we conduct an investigation
on non-relativistic inelastic collision problems in momentum space representation.
The primary goal of this chapter is to obtain an expression for Coulomb wavefunc-
tions in the momentun space representation. Different approaches are used and are
discussed in chapter four.

In chapter five, we calculate the inelastic differential cross section using the
momentum representation approach. Essentially, it is our goal in this thesis to
calculate a matrix element integral given in chapter three. We apply results from
chapter three and chapter four and show that a dynamic matrix element is related
to Bremsstrahlung integral.

In chapter six, we investigate the inelastic scattering process from the point of
view of momentum transfer from the incident particle to the target electrons and
compare this result with plane-wave approximation result. Observations will be
made on the weight function, w(k′,k;kf ,ki) and we explain how it affects the cross
section because of its unresolvable singularities. [GM51][FI]

In chapter seven, the results are summarized and discussed.
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Chapter 2

The Bethe Theory - Collisions Of
Fast Electrons With Atoms

In this chapter, a brief review of the Bethe theory of fast electron collisions and
an introduction of physical quantities of cross section and generalized oscillator
strength are given.

Physical Picture

We consider a dynamical system composed of an incident particle and an atomic
scatterer interacting with each other. We shall consider it according to quantum
mechanics. In general, such a collision of a particle and atomic scatterer may have
several different possible outcomes. An incident particle, an electron for example,
may

• be deflected without affecting the atom; this is also known as elastic scatter-
ing,

• be absorbed by the ion; this is called absorption,

• be deflected and give some of its kinetic energy to raise atomic electrons to
an excited state; this is called ionic excitation,

• provide sufficient energy to knock an atomic electron out of the vicinity of
the nucleus; it is called ionization,
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• react with the atomic nucleus and raise it into an excited state; it is called
nuclear excitation,

• create quarks from protons and neutrons of the nucleus.

For our purpose, we focus on an inelastic collision process in which a particle
of velocity v, mass M1, and charge ze bombards a stationary atom with mass M2

and Z atomic electrons. Suppose the target atom is in its ground state initially,
often denoted as state 0, and the colliding particle gets deflected into the solid angle
element dω along the direction with polar angles (θ, φ) measured in the center-of-
mass system and induces state transitions within the target to state n. Suppose
the interaction is Coulombic. V is written as

V = −
Z∑

j=1

ze2

|r− rj|
+
zZNe

2

r
, (2.1)

where ZNe is the charge of the atomic nucleus. It describes the interaction of the
incident particle with the electrons and nucleus of the target atom.

2.1 Cross Sections

In classical mechanics, the motion of the incident particle is well defined such that
it is moving along a trajectory and is scattered into a certain direction characterized
by polar angles (θ, φ) which may be calculated from initial conditions. However in
quantum theory, we are allowed to describe such a scattering event as a probability
event: we may calculate only the probability that the particle got scattered into a
certain direction, not precise angles of scattering.

A generic form of scattering experiment consists of an incident beam of mo-
noenergetic particles from a source collimated by slits. The beam of particles is
scattered by the target atom at position O, and a detector is used to count the
number of particles per unit time which got scattered into an element of solid angle
dΩ centered about O specified by polar angles (θ, φ). When the detector subtends
a solid angle dΩ about the scattering center O in the direction (θ, φ), it can count
NdΩ, number of particles per unit time. This number is proportional to the flux
of particles in the incident beam, defined as the number of particles per unit time
crossing a unit area placed normal to the direction of incidence. Thus, the differen-
tial cross section is defined as the number of particles scattered near the direction
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(θ, φ) per unit time per unit solid angle divided by the incident flux,

dσ

dΩ
=
N

F
. (2.2)

The total cross section is then defined as the integral of the differential scattering
cross section, dσ, given above over all solid angles,

σ =

∫ (
dσ

dΩ

)
dΩ

=

∫ 2π

0

dφ

∫ π

0

dθ sin θ

(
dσ

dΩ

)
. (2.3)

The dimensions of differential cross section and total cross section are of an area,
as is suggested by their names.

While the total cross section is a useful measure to consider as it is a quantity
independent of the angle of scattering, it is the differential cross section which
interests theoretical researchers the most.

2.2 Bethe Theory

When the particle is travelling sufficiently fast and in nonrelativistic frame, the
differential cross section for inelastic scattering of the target atom whose state
changed from 0 to n is obtained from the transition amplitude by Fermi’s golden
rule [BJ86],

dσ

dΩ
=

2π

h̄v0

|T0n|2ρ(Wn), (2.4)

with

ρ(Wn) =
p2

n

(2πh̄)3

dpn

dWn

(2.5)

dWn

dpn

= vn, (2.6)

where ρ(Wn) is the density of final states per unit energy per unit solid angle, v0

and vn are initial and final velocities of the incident particle, Ton is the amplitude
for transition from state 0 to state n according to Born approximation:

Ton =< ψnkn|V |ψ0k0 >, (2.7)
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where the ψ are eigenfunctions of the system and k0 and kn are initial and final
momentum of the incident particle.

In the Born approximation, the differential cross section, calculated in the lowest
order under interaction V between the particle and the atom becomes,

dσ =
M2k′

k(2π)2h̄4

∣∣∣∣∫ eiK·rψ∗nV ψ0dr

∣∣∣∣2 dΩ, (2.8)

where K = k− k′.

For certain potentials, such as V (r) = 1
r
, the nuclear interaction represented by

the second term in V gives no contribution because of the orthogonality of states n
and 0. Integration over r on the first term is trivial, althought the integral diverges
because the integrand behaves as O(r−1) for r → ∞, but it may be tackled by
introducing a converging factor, e−εr with ε→ 0+,∫

eiK·r

|r− rj|
dr = lim

ε→0

∫
e−εreiK·r

|r− rj|
dr

=
4π

K2
eiK·rj . (2.9)

With the above relations, the differential cross section is transformed into

dσ = 4z2

(
Me2

h̄2

)2
k′

kK4
|ε(K)|2dΩ (2.10)

where ε(K) is an element of matrix

ε(K) =

〈
n

∣∣∣∣∣
Z∑

j=1

eiK·rj

∣∣∣∣∣ 0
〉
. (2.11)

One may consider the differential cross section as independent of φ either because
state 0 is spatially symmetric or because the atom is oriented at random, therefore,
|ε(K)|2 is a function of a scalar variable K. Furthermore, K is independent of φ,
we may replace dΩ by

2π sin θdθ =
πd(K2)

kk′
(2.12)

because

K2 = |k− k′|2

= k2 + k′2 − 2kk′ cos θ

d(K2) = 2kk′ sin θdθ. (2.13)
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Also, we have

dσ = 4πz2

(
Me2

h̄2

)2
1

k2K4
|ε(K)|2d(K2) (2.14)

for the differential cross section. The factor |ε(K)|2 gives the conditional proba-
bility that the atom makes the transition to a particular state n upon receiving a
momentum transfer h̄K. This quantity ε(K) reflects the response of the atom and
is known as the inelastic scattering form factor, which is widely used in nuclear and
particle physics.
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Chapter 3

Differential Cross Section of
Inelastic Collision

In this section, differential cross section of inelastic collision will be derived. Quan-
tum mechanically, the full scattering cross section was obtained by the partial-wave
decomposition. But for high incident energies, the partial wave summation becomes
impractical because of its slow convergence. We investigate this matter and explain,
under such circumstance, that distorted wave approximation or the Coulomb-Born
approximation becomes more reliable. In particular, a simplest inelastic collision
event is investigated, namely, the collision of an electron with a hydrogen atom, to
help us understand better the technique required in studying inelastic collisions in
general.

3.1 Potential Scattering - General Features

The Schroedinger equation describing the system is written as

ih̄
∂

∂t
Ψ(r, t) =

[
− h̄

2

2µ
∇2 + V (r)

]
Ψ(r, t) (3.1)

where µ is the reduced mass of the system which consists of 2 particles of masses
mA and mB,

µ =
mAmB

mA +mB

, (3.2)

and E = 1
2
µv2 is the kinetic energy of the particle.
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In experiment, the incident beam of particles is switched on for times very long
compared with the time a particle takes to cross the interaction region, so that
the steady state conditions apply. As we are considering only a time independent
potential V (r), we are seeking a stationary solution of the form

Ψ(r, t) = ψ(r)e−i Et
h̄ (3.3)

where the wave function ψ(r) satisfies the time independent Schroedinger equation[
− h̄

2

2µ
∇2 + V (r)

]
ψ(r) = Eψ(r). (3.4)

Let

k2 =
2µE

h̄2

U(r) =
2µ

h̄2 V (r),

and express the time independent Schroedinger equation in a condensed form(
∇2 + k2 − U(r)

)
ψ(r) = 0. (3.5)

Suppose the potential decreases faster than r−1 as r → ∞. For large r, U(r)
vanishes and (3.5) reduces to free particle Schroedinger equation

(∇2 + k2)ψ(r) = 0 (3.6)

Far from the scattering centre, the physical condition suggests ψ(r) must describe
both the incident beam of particles and the particles which have been scattered, so
that we write it as

ψ(r) ∼ ψinc(r) + ψsc(r) (3.7)

Particles in the incident beam all travel in the same direction, which we take to be
the z axis and have the same momentum of magnitude p = h̄k, and the incident
wave ψinc consists of plane waves,

ψinc(r) = eik·r = eikz (3.8)

and is normalized such that it represents a beam with one particle per unit volume.
On the other hand, the scattered wave function ψsc(r) must represent an outward
radial flow of particles and it has the form

ψsc(r) = f(k, θ, φ)
eikr

r
(3.9)
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where (r, θ, φ) are the spherical coordinates of the position vector r of the scat-
tered particle. The amplitude f of the outgoing spherical wave r−1eikr, called the
scattering amplitude, depends on the direction (θ, φ) and it determines the flux of
particles being scattered near direction (θ, φ).

Note that, both incoming and outgoing waves of the form r−1e±ikrf(k, θ, φ)
satisfy the free particle equation (3.6) in the limit of large r. However, the phys-
ical condition implies that the use of an outgoing scattering wave function is the
appropriate one.

ψ(r) ∼ eik·r + f(k, θ, φ)
eikr

r
as r →∞ (3.10)

I now show that the free particle equation has solution of the form r−1e±ikrf(k, θ, φ)
in the limit of large r.

The Laplacian under spherical coordinate system has the form [DK67]:

∇2ψ(r) =
1

r2

∂

∂r

(
r2 ∂

∂r

e±ikr

r
f(k, θ, φ)

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

e±ikr

r
f(k, θ, φ)

)
+

1

r2 sin2 θ

∂2

∂φ2

e±ikr

r
f(k, θ, φ)

=
1

r2

∂

∂r

(
±ikre±ikrf(k, θ, φ)− e±ikrf(k, θ, φ)

)
+

e±ikr

r3 sin θ

∂

∂θ

(
sin θ

∂

∂θ
f(k, θ, φ)

)
+

e±ikr

r3 sin2 θ

∂2

∂φ2
f(k, θ, φ)

= −k
2

r
e±ikrf(k, θ, φ) +O(r−3)

= −k2ψ(r) (3.11)

in the limit of large r.

Therefore, the stationary scattering wave function, which we denote by ψk(r), is
a particular solution of the Schroedinger equation (3.5) which has an asymptotic
boundary condition

ψk(r) ∼ eik·r + f(k, θ, φ)
eikr

r
(3.12)

for large r. Here the subscript k indicates that the wave function ψk corresponds
to the incident plane wave eik·r.
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3.1.1 Probability Current Density

As mentioned in the previous chapter, the wave function associated with a par-
ticle has a statistical interpretation in quantum mechanics. According to Born’s
postulate, if a particle is described by a wave function Ψ(r, t) which is normalized
to unity, the probability of finding the particle at time t within a volume element
dr = dxdydz about a point r is

P (r, t)dr = |Ψ(r, t)|2dr. (3.13)

Furthermore, the probability of finding the particle somewhere must remain unity
as time varies. The probability is conserved in time, and we define the probability
current density j,

j(r, t) =
h̄

2iµ
[Ψ∗∇Ψ− (∇∗Ψ)Ψ] , (3.14)

which describes the flow of probability density.

We apply j to analyse our asympototic scattered wave function in (3.9). As we
are working in the limit of large r, only the radial direction will contribute to the
spatial derivative. That is,

∇ = r̂
∂

∂r
. (3.15)

where r̂ is a unit vecor in the direction of r. Substitute (3.15) and (3.9) into (3.14),
and the radial current of scattered particles in the direction (θ, φ) per unit time is

j(r) =
h̄k

mr2
|f(k, θ, φ)|2. (3.16)

It represents the number of particles crossing unit area per unit time, and as the
detector presents a cross sectional area r2dω to the scattered beam, the number
of scattered particles entering an element of area of the detector per unit time is
h̄k
m
|f(k, θ, φ)|2dω. If the incident beam is such that one electron falls on unit area

per unit time, the number I(θ, φ)dω scattered into a given solid angle dω per unit
time is equal to |f(k, θ, φ)|2dω. Therefore we have

Ik(θ, φ) = |f(k, θ, φ)|2, (3.17)

and f(k, θ, φ) is called the scattering amplitude. Sometimes, it is more convenient
to express the differential cross section in terms of particle currents

Ik(θ, φ) =
jsc
jin

(3.18)
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where jin is the incoming current in the beam direction and jsc is the current
scattered near direction (θ, φ) after the interaction. The problem now is to find an
explicit form of the probability current density, hence scattering amplitude, which
will then lead to an expression for the differential cross section.

3.2 Traditional Approach to Differential Cross Sec-

tion

In the particular case of scattering by a central potential V (r), we note that the
system is completely symmetrical about the direction of incident beam which is
often taken as the z axis and the wave function is independent of the azimuthal
angle φ. In the classical approach, because of the symmetry, the wave function is
approximated by a series of Legendre polynomials[S55]

ψk(r, θ) =
∞∑
l=0

Rl(k, r)Pl(cos θ), (3.19)

where Pl is the Legendre polynomial of order l and Rl satisfies the equation[
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ k2

]
Rl(k, r) = 0. (3.20)

Each term in the series is known as a partial wave and is a simultaneous eigenfunc-
tion of the operators L2 and Lz belonging to eigenvalues l(l+1)h̄2 and 0 respectively.
Such method is called the partial waves method.

The general solution of (3.20) is a linear combination of spherical Bessel and
Neumann functions jl(kr) and nl(kr),

jl(r) → 1

r
sin

(
r − lπ

2

)
(3.21)

nl(r) → −1

r
cos

(
r − lπ

2

)
, r →∞, (3.22)

and applying their asymptotic expressions [B20], we have

Rl(k, r) →
1

kr

[
Bl(k) sin

(
kr − lπ

2

)
− Cl(k) cos

(
kr − lπ

2

)]
as r →∞.

(3.23)
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To compare with boundary condition (3.10) of the problem, it is convenient to
rewrite (3.23) in a more compact form

Rl(k, r) → Al(k)
1

kr
sin

(
kr − lπ

2
+ δl(k)

)
(3.24)

where
Al(k) =

[
B2

l (k) + C2
l (k)

] 1
2 (3.25)

and

δl(k) = − arctan

[
Cl(k)

Bl(k)

]
. (3.26)

Finding the scattering amplitude f(k, θ, φ) requires the comparison of the asymp-
totic solutions (3.10) and (3.19) upon the substitution of (3.24). To do this, we
need to expand eik·r in terms of Legendre polynomials,

eik·r =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ)

→
∞∑
l=0

(2l + 1)l(kr)−1 sin

(
kr − lπ

2

)
Pl(cos θ) (3.27)

where we have applied the asymptotic Bessel solution (3.21) in the last line. Equat-
ing both asymptotic forms (3.10) and (3.19), we obtain

∞∑
l=0

(2l + 1)il(kr)−1 sin

(
kr − lπ

2

)
Pl(cos θ) +

eikrf(k, θ)

r

=
∞∑
l=0

Al(k)

kr
sin

(
kr − lπ

2
+ δl(k)

)
Pl(cos θ) (3.28)

The sine functions are written in complex exponential form and comparing coeffi-
cients of eikrand e−ikr on the two sides of the above equation, we obtain equations
which give us Al and f(k, θ)

2ikf(k, θ) +
∞∑
l=0

(2l + 1)ile−
ilπ
2 Pl(cos θ) =

∑∞
l=0Ale

i(δl− lπ
2

)Pl(cos θ) (3.29)

∞∑
l=0

(2l + 1)ile
ilπ
2 Pl(cos θ) =

∑∞
l=0Ale

−i(δl− lπ
2

)Pl(cos θ) (3.30)

Al(k) = (2l + 1)ileiδl (3.31)

f(k, θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ) (3.32)
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Note that the resulting expansion of the scattering amplitude (3.32) is complex.
The sum expansion is useful unless the series in l converges slowly, in other words,
the partial wave sum is a useful representation if only a few angular momenta are
expected to contribute significantly to the infinite sum. However, this is not always
the case and this brings our attention to another approximation method: Born
approximation.

3.3 Perturbation Approximation - Born Approx-

imation

In this section, we shall see that a perturbative approximation known as Born
approximation is best applied to find the scattering amplitude when the kinetic
energy of the incident particles is large in comparison with the interaction energy.
In Born approximation, the scattering wave function is expanded in powers of the
potential, in particular, the first term of this expansion, also known as the first
Born approximation, plays a significant role in the development of the scattering
theory.[MM65]

We recall that our problem is to solve (3.5) where the wave function ψ has an
asymptotic form (3.12). Here we find the solution ψ by solving the Lippmann-
Schwinger Integral Equation, which is equivalent to the stationary Schroedinger
equation. The Lippmann-Schwinger Integral equation is written as

ψk(r) = ϕk(r) +

∫
dr′G(k, r, r′)U(r′)ψk(r

′) (3.33)

where ϕk is the solution of the homogeneous equation in the form of incident plane
wave, and G(k, r, r′) is given by the Green’s function. Their solutions are

ϕk(r) = eik·r (3.34)

G(k, r, r′) = − 1

4π

eik|r−r′|

|r− r′|
(3.35)

As the incident energy is large, we regard the potential energy U(r′) as a pertur-
bation acting on the wave function ψk and write the solution (3.33) of the integral
equation as

ψk(r) = ψ
(0)
k (r) + ψ

(1)
k (r) + ψ

(2)
k (r) + · · · (3.36)
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where the nth expansion term is proportional to the potential raised to the nth
power:

ψ
(0)
k (r) = ϕk(r) = eik·r (3.37)

ψ
(1)
k (r) =

∫
dr′G(k, r, r′)U(r′)ϕk(r

′) (3.38)

ψ
(2)
k (r) =

∫
dr′
∫
dr′′G(k, r, r′)U(r′)G(k, r′, r′′)U(r′′)ϕk(r

′′) (3.39)

and so on.

To obtain f(k, θ) we require the asymptotic form of (3.33) and match it with the
boundary condition (3.12) for large r. We note that for r → ∞ and r′ finite, we
have

|r− r′| → r − r̂ · r′ +O(1/r) (3.40)

and hence
eik|r−r′|

|r− r′|
→ eikr

r
e−ik′·r′ + · · · (3.41)

where terms of higher order in 1
r

have been neglected. In (3.41) we have introduced
the final wave vector k′ = kr̂ which points in the direction of the scattered particle.
Hence from (3.33), (3.35) and (3.41)

ψk(r) → eik·r − eikr

r

1

4π

∫
eik′·r′U(r′)ψk(r

′)dr′. (3.42)

Therefore, we obtain

f(k, θ) =
1

4π

∫
e−ik′·r′U(r′)ψk(r

′)dr′. (3.43)

The first Born approximation is defined as taking the first term of expansion for ψ
in (3.36) in the integral, and the scattering amplitude in the Born approximation
is given by

f(k, θ) = − 1

4π

∫
e−iK·rU(r)dr (3.44)

where K represents the change of the momentum K = k′ − k. Note that under
the first Born approximation, the scattering is simply the Fourier transform of
the potential. Hence, we obtain the differential cross section under the first Born
approximation

I(k, θ) = − µ2

4π2h̄2

∣∣∣∣∫ e−iK·rV (r)dr

∣∣∣∣2 (3.45)

16



upon the substitution of V which is given in the beginning of the chapter, (3.5).
As we can see, although this approximate formula is valid only for fast particles, it
may be evaluated with much less labour than is required by the expression given
by the partial wave method.

By now, it is a reasonable question to ask ourselves when is Born approximation
a good approximation.

In the integral (3.43), we replaced the exact solution for ψk(r) by an approximate
solution ϕk(r) = eik·r according to Born. Therefore we are expecting ϕk(r) should
not be too different from ψk(r) within the range where Born approximation is
effective. In the region where the potential U(r) contributes appreciably, we require∣∣∣∣ 1

4π

∫
eik|r−r′|

|r− r′|
U(r′)ψexact(r

′)dr′
∣∣∣∣ '

∣∣∣ 1
4π

∫
eik|r−r′|

|r−r′| U(r′)eik·r′dr′
∣∣∣ (3.46)

� 1 (3.47)

This inequality is easily satisfied in the high k limit because the integrand oscillates
rapidly with average value zero. Another condition that ensures this inequality is
that the potential is sufficiently weak.

3.4 Inelastic Collision - General Formulae

The goal of this section is to derive an explicit expression for differential cross
section of electron collision with hydrogen atom. We consider a beam of electrons
falling on a hydrogen atom initially in ground state. Intensity of the beam is made
such that one electron crosses unit area per unit time and we assume that the
incident and atomic electrons are distinguishable. The mass of electron is small
compared to the mass of proton and the motion of the proton in the collision is
neglected.

We follow the derivation from [MM65] closely in the following presentation.

The wave equation for the system of incident electron and hydrogen atom is[
h̄2

2m

(
∇2

1 +∇2
2

)
+ E +

e2

r1
+
e2

r2
− e2

r12

]
Ψ (r1, r2) = 0 (3.48)

where the subscript 1 is used for the incident electron and 2 for the atomic electron.
The total energy of the system is the sum of the incident kinetic energy and energy
of the atomic electron in its ground state:

E =
1

2
mv2 + E0 (3.49)
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The solution of (3.48) may be expanded in the form

Ψ (r1, r2) = ψn(r2)Fn(r1) (3.50)

The functions ψn(r1) are the proper functions for the hydrogen atom, and satisfy(
h̄2

2m
∇2

2 + En +
e2

r2

)
ψn(r2) = 0 (3.51)

Substituting (3.50) into (3.48) and recognizing that ψn(r2) is a solution of (3.51),
we obtain(

h̄2

2m
∇2

1 + E +
e2

r1
− e2

r12

)
ψn(r2)Fn(r1) +

(
h̄2

2m
∇2

2 +
e2

r2

)
ψn(r2)Fn(r1) = 0(

h̄2

2m
∇2

1 + E +
e2

r1
− e2

r12

)
ψn(r2)Fn(r1)− Enψn(r2)Fn(r1) = 0(

h̄2

2m
∇2

1 + E − En

)
ψn(r2)Fn(r1) =

(
e2

r12
− e2

r1

)
ψn(r2)Fn(r1)

(3.52)

Because the wave function ψn(r2) satisfies the normalisation condition∫
ψn(r2)ψ

∗
n(r2)dr2 = 1, (3.53)

we multiply (3.52) by ψ∗n(r2) in the both sides and integrate over the coordinate
space of the atomic electron. We have(

h̄2

2m
∇2

1 + E − En

)
Fn(r1) =

∫ (
e2

r12
− e2

r1

)
Ψ(r1, r2)ψ

∗
n(r2)dr2. (3.54)

We note that for large r1, the right hand side vanishes, and Fn satisfies the wave
equation [

∇2
1 +

2m

h̄2 (E − En)

]
Fn(r1) = 0, (3.55)

and it is the wave equation for a free particle with energy E−En. Here we assume
E > En, that is an electron has enough energy to excite the nth state of the atom.
Let k2

n = 2m(E−En)

h̄2 ; we then have(
∇2

1 + k2
n

)
Fn(r1) = 0 (3.56)
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and its solution must have the asymptotic form (3.10). Since we are interested only
in high energy impact, the perturbation of the incident particle by the interaction
with the atom is small. We apply the first order Born approximation to F (r1) as
plane wave as before in Ψ,

Ψ(r1, r2) = eik·r1ψ(r2). (3.57)

Substituting (3.57) on the right hand side of (3.54), we obtain

(
∇2

1 + k2
n

)
Fn(r1) =

2m

h̄2

∫ (
e2

r12
− e2

r1

)
eik·r1ψ(r2)ψ

∗
n(r2)dr2. (3.58)

The solution of this equation is [MM65]

Fn(r) =
m

2πh̄2

∫ ∫
eikn|r−r1|

|r− r1|
eik·r1

(
e2

r1
− e2

r12

)
ψ(r2)ψ

∗
n(r2)dr1dr2. (3.59)

With (3.41), the solution has an asymptotic form

Fn(r) ∼ m

2πh̄2

eikr

r

∫ ∫
ei(k−kn)·r1

(
e2

r1
− e2

r12

)
ψ(r2)ψ

∗
n(r2)dr1dr2. (3.60)

Hence, according to (3.17), the differential cross section is

In(θ) =
kn

k

m2

4π2h̄4

∣∣∣∣∫ ∫ ei(k−kn)·r1
(
e2

r1
− e2

r12

)
ψ(r2)ψ

∗
n(r2)dr1dr2

∣∣∣∣2 . (3.61)

We note that the interaction of an electron with an hydrogen atom is described by
potential V (r1, r2) = e2

r1
− e2

r12
. The differential cross section may be written in a

more compact form

In(θ) =
kn

k

m2

4π2h̄4 | < knn|V |k0 > |2. (3.62)

In the case of inelastic collisions, we consider the Coulombic collision of an electron
with an atom in which the atom is raised from the state ni to state nf by the
impact. If Eni

and Enf
are the energies of the two atomic states and ki, and kf are

the initial and final momentum vectors of the colliding electron, the conservation
of energy gives

1

2
m(v2

i − v2
f ) = Enf

− Eni
, (3.63)
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where v = h̄k
m

. Within the range of validity of the first Born approximation, the
differential cross section describing the collision is given by

I(θ) =
kf

ki

m2

4π2h̄4 | < kfnf |V |kini > |2 (3.64)

where the Coulomb potential is given by

V (r) =
e2

|r−R|
. (3.65)

The expression given in (3.64) is the differential cross section under the Born ap-
proximation, and is useful in the case of fast scattering process. For high incident
energy, contributions to the cross section from a wide band of momenta become
important. Then the partial wave summation becomes impractical because of its
slow convergence and it is under this circumstance that the Born approximation is
more reliable than the partial wave treatment. We study the inelastic scattering
process in the Born approximation from a point of view other than the partial wave
decomposition and we see in later chapters how (3.64) is treated in the momentum
space representation.
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Chapter 4

Distorted Wave Function -
Treatments In Momentum
Representation

Calculations of electron-atom or electron-ion scattering are of both fundamental
and practical interest. The fundamental interacting force at the atomic level is
the Coulomb force. Researchers have been investigating the Coulomb problem
for many decades. Much effort has been put into the investigation of Coulomb
scattering problem, but most of the studies were made in coordinate space.

The momentum-space description is known to be equivalent to the coordinate-
space description. Momentum-space methods in scattering theory are intrinsically
appealing, since the basic quantities involved are scattering amplitudes. Experi-
ments involve momentum measurements, and, therefore, these quantities are di-
rectly related to experimental data.

In this chapter, we conduct an investigation on non-relativistic inelastic collision
problems in momentum space representation. As we discusssed in the last chapter,
our primary interest is to calculate the differential excitation cross section of atomic
systems by electron and nuclei impact under Coulomb Born approximation. The
matrix being involved to calculate the differential excitation cross section requires
a transformation of the Coulomb wavefunction to the momentum description. The
calculation is presented in the following section.
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4.1 Coulomb Wavefunction in Momentum Rep-

resentation

Although the problem of scattering by the long-range Coulomb force has a well
defined solution in coordinate space, it causes difficulty in momentum space. The
fact is that the Fourier transform of the so called coordinate-space Coulomb wave-
function does not exist in a functional sense. The logarithmic singularity due to the
long range of the Coulomb force, that can be treated easily in coordinate-space, is
far more difficult in momentum-space. [HW75] In the momentum-space represen-
tation, the wavefunction is defined as the Fourier transform of the coordinate-space
wavefunction.

φ
(+)
k (p) =

1

(2π)3

∫
e−ip·rψ

(+)
k (r)dr. (4.1)

We begin with the non-relativistic Coulomb wavefunctions, which behave as dis-
torted plane waves at large distance with appropriate ingoing and outgoing spherical
waves.[AB+56][AC]

ψ
(+)
ki

(r) = Nki
eiki·r

1F1(−iηi, 1; i(kir − ki · r)), (4.2)

and
ψ

(−)
kf

(r) = Nkf
eikf ·r

1F1(iηf , 1;−i(kfr + kf · r)), (4.3)

where the normalization constants are

Nki
= e−(π/2)ηiΓ(1 + iηi),

Nkf
= e−(π/2)ηf Γ(1− iηf ), (4.4)

ηi and ηf are physical parameters which are defined as

ηi =
mZZ ′e2

h̄2ki

(4.5)

ηf =
mZZ ′e2

h̄2kf

, (4.6)

and 1F1(α, β;x) is the confluent hypergeometric function which is a convergent
series for all values of x.

1F1(a, b;x) = 1 +
ax

b1!
+
a(a+ 1)x2

b(b+ 1)2!
+ · · · . (4.7)
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If we substitute (4.7) in (4.2) and let r = 0, we can find at the origin,

|ψ(+)
ki

(r)|2 =
2πηi

e2πηi − 1
. (4.8)

Since for the case of a slow projectile in a repulsive field, ηi is large and positive,
|ψ(+)

ki
(r)|2 is very small at the origin. This means that very few particles come

near the scattering center. On the other hand, for large and negative ηi, |ψ(+)
ki

(r)|2
is large at the origin, of the order of |ηi|. The wavefunction is called distorted
because f(k, θ) mentioned in Chapter 3 is different by a logarithmic phase factor

e−iηi ln(sin2 θ
2) at large distance.

A convenient coordinate system in which to perform the Fourier transform (4.1)
of the wavefunction described, is the parabolic coordinate system.[GM51]

We define

x =
√
ξη cos θ

y =
√
ξη sin θ

z =
ξ − η

2
where ξ, η ∈ [0,∞) ; θ ∈ [0, 2π]. (4.9)

The Jacobian of the parabolic coordinate system is

J =
ξ + η

4
. (4.10)

Therefore, differentials dxdydz may be written as

dxdydz =
ξ + η

4
dξdηdθ. (4.11)

We first calculate the transformation of wavefunction (4.2) and consider ki parallel
to the z axis. We let

p = kir − ki · r

=
ki(ξ + η)

2
− ki(ξ − η)

2
= kiη (4.12)

We have simplified p in terms of the integrating variable η, and therefore
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φki
(k) =

1

(2π)3

∫
eikir

1F1(−iηi; 1; ikiη)e
−ik·rdr (4.13)

In (4.13), we suppress the normalization constant Nki
. We also express k in terms

of parabolic coordinates,

kx =
√
αβ cos Θ,

ky =
√
αβ sin Θ,

kz =
α− β

2
, (4.14)

where α, β ∈ [0,∞) ; Θ ∈ [0, 2π]. We write the dot product of k and r as functions
of the parabolic coordinates defined above and we get the identity,

k · r =
√
ξηαβ cos θ cos Θ +

√
ξηαβ sin θ sin Θ +

(α− β)(ξ − η)

4

=
√
ξηαβ cos (θ −Θ) +

(α− β)(ξ − η)

4
. (4.15)

A classical technique to solve the Fourier integral of a spatial wavefunction is to
introduce a convergence factor, e−εr, where ε is a real positive parameter to ensure
the integral is convergent and, hence, may be evaluated.

φki
(k) =

1

(2π)3
lim
ε→0

∫
d3reεreiki·r−ik·r

1F1(−in; 1; ip)

=
1

(2π)3
lim
ε→0

∫ ∞

0

dξ

∫ ∞

0

dη

∫ 2π

0

dθ
(ξ + η)

4
e−

ε(ξ+η)
2 e

ik(ξ−η)
2

−i α−β
2

ξ−η
2

×1F1(−in; 1; ikη)e−i
√

αβξη cos (θ−Θ) (4.16)

We first evalaute the angular integral and make use of the integral from [RG63].∫ 2π

0

e−i
√

αβξη cos (θ−Θ)dθ = 2πJ0(
√
αβξη). (4.17)

We let

u = ki − kz

= ki −
α− β

2
. (4.18)
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The Fourier integral for Coulomb wavefunction becomes

φki
(k) =

1

4(2π)2
lim
ε→0

∫ ∞

0

∫ ∞

0

(ξ + η)e
−ξ(ε−i(ki−kz))

2
− η(ε+i(ki−kz))

2

× 1F1(−iηi, 1; ikiη)J0(
√
αβξη)dξdη

=
1

4(2π)2
lim
ε→0

[∫ ∞

0

dη e−
η(ε+iu)

2 1F1(−iηi; 1; ikiη)

∫ ∞

0

dξ ξe−
ξ(ε−iu)

2 J0(
√
αβξη)

]
+

1

4(2π)2
lim
ε→0

[∫ ∞

0

dη ηe−
η(ε+iu)

2 1F1(−iηi; 1; ikiη)

∫ ∞

0

dξ e−
xi(ε−iu)

2 J0(
√
αβξη)

]
(4.19)

in which we can calculate the inner integral with help from 6.643.1 of [RG63],∫ ∞

0

xµ− 1
2 e−αxJ2ν(2β

√
x)dx =

Γ(µ+ nu+ 1
2
)

βΓ(2ν + 1)
e−

β2

2αα−µMµ,ν

(
β2

α

)
(4.20)

where

Mλ,µ(z) = zµ+ 1
2 e−

z
2 1F1

(
µ− λ+

1

2
; 2µ+ 1; z

)
. (4.21)

Therefore,

φki
(k) = 1

4(2π)2
limε→0

∫∞
0
dη e−

η(ε+iu)
2 1F1(−iηi; 1; ikiη)

4
(ε−iu)2

e−
αβη

2(ε−iu)

× 1F1(−1; 1; αβη
2(ε−iu)

)

+ 1
4(2π)2

limε→0

∫∞
0
dη ηe−

η(ε+iu)
2 1F1(−iηi; 1; ikiη)

2
ε−iu

e−
αβη

2(ε−iu)

× 1F1(0, 1; αβη
2(ε−iu)

). (4.22)

Using the relation

1F1(α, γ; z) = ez
1F1(γ − α, γ;−z) (4.23)

with the choice of α = 2, γ = 1, we transform the second confluent hypergeometric
function in the first term, and obtain

1F1(−1, 1; z) = ez
1F1(2, 1;−z) (4.24)

= ez(−z + 1)e−z (4.25)

= (1− z). (4.26)
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In (4.24), the confluent hypergeometric function was rewritten according to 9.212.4
of [RG63]

α 1F1(α+ 1; γ; z) = (z + 2α− γ) 1F1(α; γ; z) + (γ − α) 1F1(α− 1; γ; z) (4.27)

with the choice of α = 1, γ = 1. We have reduced 1F1(2; 1;−z) to 1F1(1; 1;−z)
and notice that the confluent hypergeometric function has a special property,

1F1(1, 1; z) = ez, (4.28)

giving us the second equality. For the confluent hypergeometric function in the
second term of (4.22), we use relation (4.23) with the choice of α = 0, and γ = 1,

1F1(0, 1; z) = 1 (4.29)

We obtain the following simple form for the Fourier integral

φki
(k) =

1

4(2π)2
lim
ε→0

[∫ ∞

0

dη e−
η(ε+iu)

2 1F1(−iηi; 1; ikη)
4

(ε− iu)2
e−

αβη
2(ε−iu)

(
1− αβη

2(ε− iu)

)]
+

1

4(2π)2
lim
ε→0

[∫ ∞

0

dη ηe−
η(ε+iu)

2 1F1(−iηi; 1; ikiη)
2

ε− iu
e−

αβη
2(ε−iu)

]
=

1

4(2π)2
lim
ε→0

4

(ε− iu)2

[∫ ∞

0

dη e
− η

2
(ε+iu)(1+ αβ

ε2+u2 )
1F1(−iηi; 1; ikiη)

]
+

1

4(2π)2
lim
ε→0

[(
2

ε− iu
− 2αβ

(ε− iu)2

)∫ ∞

0

dη ηe
− η

2
(ε+iu)(1+ αβ

ε2+u2 )
1F1(−iηi; 1; ikiη)

]
= lim

ε→0

1

4(2π)2

[
4

(ε− iu)2
I0 +

(
2

ε− iu
− 2αβ

(ε− iu)2

)
I1

]
(4.30)

Again, we calculate the integrals with the help from 7.621.4 of [RG63],∫ ∞

0

e−sttb−1
1F1(a; c; kt)dt = Γ(b)s−b

2F1(a, b; c; ks
−1) (4.31)

with conditions: |s| > |k|, Re(b) > 0, Re(s) > max(0, Re(k)), and the first and
second integrals become

I0 =
2(ε− iu)

ε2 + |ki − k2|2 2F1(−iηi, 1; 1;
2iki(ε− iu)

ε2 + |ki − k|2
) (4.32)

I1 = (
2(ε− iu)

ε2 + |ki − k|2
)2

2F1(−iηi, 2; 1;
2iki(ε− iu)

ε2 + |ki − k|2
) (4.33)
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where 2F1(α1, α2; β;x) is the hypergeometric function which is convergent if |x| < 1
and divergent if |x| > 1. For x = 1, the series converges if β > α1 + α2; while for
x = −1, it converges if β > α1 + α2 − 1. We show that the series converge for any
choice of x in our case. Employ the relation 9.131.1 of [RG63],

2F1(α, β; γ; z) = (1− z)−α
2F1(α, γ − β; γ;

z

z − 1
) (4.34)

and,

2F1(−in, 0; 1; z) = 1. (4.35)

Let
2ik(ε− iu)

ε2 + |k− k′|2
=
a

b
. (4.36)

The 2F1 function converges for |a| < |b|. Consider the case when |a| > |b|. We use
the transformation given above, with α = −iηi, β = 1, γ = 1,

2F1(−iηi, 1; 1; z) = (1− z)iηi
2F1(−iηi, 0; 1;

z

z − 1
)

= (1− z)iηi . (4.37)

We find a simpler expression for I0 with the substitution

2F1(−iηi, 2; 1;
2iki(ε− iu)

ε2 + |ki − k|2
) =

(
1− 2iki(ε− iu)

ε2 + |ki − k|2

)iηi

.

and therefore

I0 =
2(ε− iu)

ε2 + |ki − k|2
(1− 2iki(ε− iu)

ε2 + |ki − k|2
)iηi . (4.38)

For the second integral I1, we need transformations for 2F1 functions for |z| > 1,

2F1(−iηi, 2; 1; z) = −iηi(1− z)iηi−1z−iηi−1
2F1(1 + iηi, 1 + iηi; iηi; 1−

1

z
) (4.39)

and

2F1(1 + iηi, 1 + iηi; iηi; 1−
1

z
) =

[
1−

(
1− 1

z

)]−(1+iηi)

+(1 + iηi)

(
z − 1

z

)[
1−

(
1− 1

z

)]−(2+iηi)

2F1(−iηi, 2; 1; z) = −iηi(1− z)iηi−1z−iηi−1

×

[(
1

z

)−(1+iηi)

+
i+ iηi

iηi

(
z − 1

z

)(
1

z

)−(2+iηi)
]

= (1− z)iηi−1[1− z(1 + iηi)] (4.40)
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Therefore,

I1 =

(
2(ε− iu)

ε2 + |ki − k|

2
)2(

1− 2iki(ε− iu)

ε2 + |ki − k|2

)iηi−1 [
1− 2iki(1 + iηi)(ε− iu)

ε2 + |ki − k|2

]
.

(4.41)
Combining the above results, we reach the point where all the integrals have been
solved and the Coulomb wavefunction in momentum description may be written as

φki
(k) =

2

(2π)2(ε− iu)(ε2 + |ki − k|2)

(
1− 2iki(ε− iu)

ε2 + |ki − k|2

)iηi

+
2ε(ε− iu)− (ε2 + |ki − k|2)
(2π)2(ε− iu)(ε2 + |ki − k|2)2

[
1− 2iki(ε− iu)

ε2 + |ki − k|2

]iηi−1

×
[
1− 2iki(ε− iu)(1 + iηi)

ε2 + |ki − k|2

]
(4.42)

where 1− 2iki(ε−iu)

ε2+|ki−k|2 = (ε−iki)
2+k2

ε2+|ki−k|2 , so that

φki
(k) =

1

2π2(ε− iu)(ε2 + |ki − k|2)

(
(ε− iki)

2 + k2

ε2 + |ki − k|2

)iηi

+
1

2π2

2ε(ε− iu)− (ε2 + |ki − k|2)
(ε− iu)(ε2 + |ki − k|2)2

(
(ε− iki)

2 + |k|2

ε2 + |ki − k|2

)iηi−1

×ε
2 + |ki − k|2 − 2ik(1 + iηi)(ε− iu)

ε2 + |ki − k|2

=
1

2π2(ε− iu)

[(ε− iki)
2 + k2]

iηi[
ε2 + |ki − k|2

]iηi+1

×

(
1 +

[
2ε(ε− iu)− (ε2 + |ki − k|2)

]
[(ε− iki)

2 + k2 + 2ηiki(ε− iu)]

[(ε− iki)2 + k2]
[
ε2 + |ki − k|2

] )

=
1

2π2(ε− iu)

[(ε− iki)
2 + k2]

iηi[
ε2 + |ki − k|2

]iηi+1A (4.43)
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where the last factor, A, may be further simplified,

A =

(
1 +

[
2ε(ε− iu)− (ε2 + |ki − k|2)

]
[(ε− iki)

2 + k2 + 2ηiki(ε− iu)]

[(ε− iki)2 + k2]
[
ε2 + |ki − k|2

] )

=
[(ε− iki)

2 + k2]
[
ε2 + |ki − k|2

]
[(ε− iki)2 + k2]

[
ε2 + |ki − k|2

]
+

[
2ε(ε− iu)− (ε2 + |ki − k|2)

]
[(ε− iki)

2 + k2 + 2ηiki(ε− iu)]

[(ε− iki)2 + k2]
[
ε2 + |ki − k|2

]
=

2(ε− iu)
[
ε
(
(ε− iki)

2 + |k|2
)

+ 2ηiεki(ε− iu)− ηiki(ε
2 + |ki − k|2)

]
[(ε− iki)2 + k2]

[
ε2 + |ki − k|2

] (4.44)

Keeping in mind that u = ki − kz, we notice that the term,

2ηiεki(ε− iu) = 2ηiε
2ki − 2iηiεkiu

= 2ηiε
2ki − 2iηiεk

2
i + 2iηiεkikz

= iηiε(−2k2
i + 2kikz − 2iεki) (4.45)

= −iηiε(ε
2 + k2 + k2

i − 2kikz − ε2 − k2 + 2iεki + k2
i )

= −iηiε(ε
2 + |ki − k|2 − k2 − ((ε− iki)

2)) (4.46)

We substitute this back in the original expression A, and get

A =
2(ε− iu)

[
ε(1 + iηi) [(ε− iki)

2 + k2]− in(ε− iki)(ε
2 + |k− k|2)

]
[(ε− iki)2 + k2] (ε2 + |ki − k|2)

(4.47)

Combining the above results, we have the momentum space representation of the
distorted Columbic wavefunction,

φki
(k) = − 1

π2
lim
ε→0

[k2 + (ε− iki)
2]

iηi−1

(ε2 + |ki − k|2)iηi+2

[
in(ε− iki)(ε

2 + |ki − k|2)− ε(1 + iηi)
[
(ε− iki)

2 + k2
]]

= − 1

2π2
lim
ε→0

d

dε

[
[k2 + (ε− iki)

2]
iηi[

ε2 + |ki − k|2
]1+iηi

]
. (4.48)

This compact and closed result of the Coulomb wavefunction in momentum space
representation is the same as that given in [GM51].
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4.2 Another Approach

Another approach is to replace e−εr, where ε is a real positive parameter, by the
identity

e−εr = − d

dε

e−εr

r
. (4.49)

Introducing this trick, equation (4.13) may be re-expressed in the form

φki
(k) =

1

(2π)3

∫
d3r lim

ε→0

∂

∂ε

−e−εr

r
ei(ki−k)·r

1F1(−iηi; 1; ip). (4.50)

By comparing it with the expected result derived earlier, we see that the new
look of the expression gives us a more convenient way to calculate the momentum
representation of the Coulomb wavefunction. Less work is needed to derive the
compact form of the solution. By Leibniz’ rules, we take the limit and the partial
derivative outside of the integral,

φki
(k) = − 1

(2π)3
lim
ε→0

d

dε

∫
d3r

e−εrei(ki−k)·r

r
1F1(−iηi; 1; ip). (4.51)

Again, we solve this integral using parabolic coordinates (4.9),

φki
(k) =

1

(2π)3
lim
ε→0

d

dε

∫ ∞

0

∫ ∞

0

dξdη
e−ε ξ+η

2
+i ξ−η

2
(ki−α−β

2
)

ξ+η
2

ξ + η

4

×
∫ 2π

0

dθ e−i
√

αβξη cos (θ−Θ)

=
1

2(2π)2
lim
ε→0

d

dε

∫ ∞

0

dη 1F1(−iηi; 1; ikiη)e
− η(ε+iki−ikz)

2

∫ ∞

0

e−
ξ(ε−iki+ikz)

2 J0(
√
αβξη)dξ

The second integral may be solved using 6.614 of [RG63],∫ ∞

0

e−αxJν(β
√
x)dx =

β

4

√
π

α3
e−

β2

8α

[
I 1

2
(ν−1) − I 1

2
(ν+1)

]
(4.52)

with Re(α) > 0, |Re(ν)| < 1.We have∫ ∞

0

e
ξ(ε−iki+ikz)

2 J0(
√
αβξη)dξ =

2e
− αβη

2(ε−i(ki−kz))

ε− i(ki − kz)
. (4.53)

30



The first integral in equation (4.53) may be solved using (4.31),∫ ∞

0
1F1(−iηi; 1; ikiη)e

− η
2

ε2+(ki−kz)2+αβ

ε−i(ki−kz) dη =
2(ε− i(ki − kz))

ε2 + (ki − kz)2 + αβ

×2F1

(
−iηi, 1; 1;

2iki(ε− i(ki − kz))

ε2 + (ki − kz)2 + αβ

)
.

(4.54)

The 2F1 function has relations (4.31) and (4.35) which we use again to obtain

φki
(k) = − 1

2π2 limε→0
d
dε

1
ε2+(ki−kz)2+αβ

(
1− 2iki(ε−i(ki−kz))

ε2+(ki−kz)2+αβ

)iηi

= − 1
2π2 limε→0

d
dε

1
ε2+(ki−kz)2+αβ

×
(

ε2+(ki−kz)2+αβ−2iki(ε−i(ki−kz))
ε2+(ki−kz)2+αβ

)iηi

. (4.55)

We note that α, β are originally introduced as coordinate parameters for k, and
we have the relation,

ε2 + (ki − kz)
2 + αβ = ε2 + k2

i − 2kikz + k2
z + αβ

= ε2 + k2
i − 2kikz + k2

z + k2
x + k2

y

= ε2 + k2
i − 2kikz + k2

z

= ε2 + |ki − k|2 . (4.56)

The last equality is due to the assumption that ki is parallel to the z axis. Similarly,

ε2 + (ki − kz)
2 + αβ − 2iki(ε− i(ki − kz)) = ε2 + k2

i − 2kikz + k2
z + k2

x + k2
y

−2ikiε− 2ki(ki − kz))

= ε2 − 2ikiε+ (iki)
2 + k2

= (ε− iki)
2 + k2. (4.57)

Collecting the above results together, the Coulomb wavefunction is, as before,

φki
(k) = − 1

2π2
lim
ε→0

d

dε

1

ε2 + |ki − k|2

(
(ε− iki)

2 + k2

ε2 + |ki − k|2

)iηi

.
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4.3 Approach using contour integral

We may find the momentum representation of the Distorted Columbic wavefunction
by using contour integral representation of the confluent hypergeometric function,
namely

1F1(iν; 1; z) =
1

2iπ

∮
dt

t

(
t

t− 1

)iν

ezt. (4.58)

To do so, we require the relation between the confluent hypergeometric function
and Laguerre function, and tools from contour integral theory to solve integrals with
removable singular points in the complex plane.

4.3.1 Laguerre Functions

The function L
(α)
µ (z) satisfies the ”Laguerre differential equation”:

z
d2

dz2
L(α)

µ (z) + (α+ 1− z)
d

dz
L(α)

µ (z) + µL(α)
µ (z) = 0 (4.59)

.

The functions L
(α)
µ (z), called ”generalized Laguerre functions”, generalize con-

fluent hypergeometric functions. As one designates α = 0, the functions L
(α)
µ (z) ≡

Lµ(z), which are the elementary Laguerre polynomials, defined by [A68]

Lµ(z) =
1

2πi

∮
e−zt/(1−t)

(1− t)tµ+1
dt. (4.60)

The Laguerre differential equation becomes [M54]

z
d2

dz2
Lµ(z) + (1− z)

d

dz
Lµ(z) + µLµ(z) = 0. (4.61)

The confluent hypergeometric equation

zy′′(z) + (c− z)y′(z)− ay(z) = 0, (4.62)

often called Kummer’s equation, has one solution of the form [A68]
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y(z) = 1F1(a, c; z) (4.63)

= 1 +
a

c

x

1!
+
a(a+ 1)

c(c+ 1)

z2

2!
+ · · · (4.64)

=
∞∑

n=0

(a)n

(c)n

zn

n!
. (4.65)

We note that both equations have regular singularities at z = 0 and irregular
singularities at z = ∞. To verify the contour integral representation of 1F1 function,
we see, from above, that

1F1(iν; 1; z) = L−iν(z) (4.66)

=
1

2πi

∮
e−zt/(1−t)

(1− t)t1−iν
dt (4.67)

In order to obtain the above result, we employ the substitutions,

x =
t

t− 1
(4.68)

dx =
−dt

(t− 1)2
. (4.69)

This substitution gives us an expression for 1F1(iν; 1; z),

1F1(iν; 1; z) =
1

2πi

∮
ezx(t− 1)

t1−iν
dx (4.70)

=
1

2πi

∮
ezx( x

x−1
− 1)

( x
x−1

)1−iν
dx (4.71)

=
1

2πi

∮
ezx

x

(
x

x− 1

)iν

dx, (4.72)

as desired. Here the integration contour C is closed and loops around x = 0 and
x = 1 once counterclockwise.

Going back to our original problem, the Fourier transformation of the Coulomb
Wavefunction, we replace the confluent hypergeometric function, 1F1 with the con-
tour integral shown above
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φki
(k′) =

1

(2π)3

∫
d3r lim

ε→0

∂

∂ε

−e−εr

r
ei(k−k′)·r

1F1(−in; 1; ip) (4.73)

= − 1

(2π)3
lim
ε→0

∂

∂ε

∫
d3r

e−εr

r
ei(k−k′)·r 1

2iπ

∮
dt

t

(
t

t− 1

)in

eipt.

We then proceed with the interchange of order of integration because the space
integral converges uniformly in t on the contour, C, because of the convergence
factor, ε, being introduced earlier. We first perform the space integral.

Let q = k′ − k, and suppose (tk + q) ‖ z under spherical coordinate system∫
d3r

e−(ε−ikt)r

r
e−i(tk+q)·r (4.74)

=

∫ ∞

0

∫ π

0

∫ 2π

0

e−(ε−ikt)r

r
e−i|tk+q|r cos θr sin θ dφdθdr (4.75)

= 2π

∫ ∞

0

∫ π

0

e−(ε−ikt)r

r
e−i|tk+q|r cos θr sin θ dθdr (4.76)

Using the change of variable, x = − cos θ; −1 < x < 1, we get∫
d3r

e−(ε−ikt)r

r
e−i(tk+q)·r

= 2π

∫ ∞

0

∫ 1

−1

e−(ε−ikt)rei|tk+q|rxrdxdr (4.77)

=
4π

|tk + q|

∫ ∞

0

e−(ε−ikt)r sin |tk + q|rdr (4.78)

Applying the equality from integral table[RG65],∫ ∞

0

e−px sin (q′x+ λ)dx =
q′ cosλ+ p sinλ

p2 + q′2
; p > 0, (4.79)

we find ∫
d3r

e−(ε−ikt)r

r
e−i(tk+q)·r

=
4π

(ε− ikt)2 + |tk + q|2
(4.80)

=
4π

ε2 + q2 + 2t(q · k− iεk)
(4.81)

=
4π

2b(t− a)
. (4.82)
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Here we have substituted

b = q · k− iεk

a = −q
2 + ε2

2b
.

Moving onto the contour integral, we need to deform the integral contour C such
that the integration may be done. Notice that there is still a branch cut between
points t = 0 and t = 1 on the real axis.

φki
(k′) = − 1

(2π)3ib
lim
ε→0

∂

∂ε

∮ (
t

t− 1

)in
1

t(t− a)
dt. (4.83)

The integrand has simple poles at t = 0 and t = a, with the branch points from
the original contour C. To evaluate the complex integral by Cauchy’s theorem, the
contour needs to be deformed to enclose the pole a and the pole at t = 0, as well
as the branch cut lie outside the contour. [P57]

By Cauchy’s Theorem, ∮
tin−1(t− 1)−in

t− a
dt (4.84)

= (−2πi)Res(a) (4.85)

= −2πi

a

(
a

a− 1

)in

. (4.86)

We finally combine above results and obtain the transform putting back a and b

φki
(k′)

=
1

(2π)2
lim
ε→0

∂

∂ε

1

ab

(
a

a− 1

)in

= − 1

2π2
lim
ε→0

∂

∂ε

(q2 + ε2 + 2q · k− 2iεk)−in

(q2 + ε2)1−in

We recall that q = k′ − k, so that

q2 + ε2 + 2q · k− 2iεk = k′2 + ε2 − k2 − 2iεk (4.87)

= k′2 − (k + iε)2. (4.88)

And we obtain the same result for the momentum space representation of the
distorted Coulomb wave function, as before utilizing a complex contour integral.
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In fact, the authors of [GM51] stated only their results on momentum space rep-
resentation of the distorted Coulomb wave function. They haven’t mentioned which
kind of method they used to obtain their results in their article, but their results
lead us to a general idea on an alternate formulation to calculate the differential
cross section under Born approximation.

The momentum representation of the Coulomb wavefunction for the incident
particle is given by (4.48). Differentiating the expression and multiplying by the
normalization constant, we obtain

φki
(k) = lim

ε→0
φ

(1)
ki

(k) + φ
(2)
ki

(k) (4.89)

where

φ
(1)
ki

(k) = ε
π2 e

−πηi
2 Γ(2 + iηi) [k2 − (ki + iε)2]

iηi [|k− ki|2 + ε2]
−2−iηi (4.90)

φ
(2)
ki

(k) = −ηi(ki+iε)
π2 e

−πηi
2 Γ(1 + iηi) [k2 − (ki + iε)2]

−1+iηi [|k− ki|2 + ε2]
−1−iηi .(4.91)

The first term (4.90) has been studied in [H75] which showed how it can be inter-
preted as a Coulomb distorted plane wave state in the momentum representation,

φ
(1)
ki

(k) =
[
D(+)(ki,k)

]−1
δ(k− ki) (4.92)

where
D(+)(ki,k) = e

−πηi
2 Γ(1− iηi)(2ki)

−iηi(k − ki − iε)iηi . (4.93)

In contrast to the momentum representation of a plane wave eiki·r, which we require,
the Fourier transform of the plane wave expression is

F(eiki·r) =
∫
drei(ki−k)·r

= (2π)3δ(ki − k). (4.94)

We see that the expression in (4.92) is a distortion of the plane wave in the mo-
mentum space representation and D(+)(ki,k) is the Coulomb distortion factor in
the momentum representation. Its amplitude is

|D(+)|2 = 2πηi

{
[e2πηi − 1]−1 for k > ki

[1− e−2πηi ]−1 for k < ki.

which are often called Gamow factors.
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Chapter 5

Momentum Space Representation
On Inelastic Differential Cross
Section

Even though the differential cross section for particle scattering by a Coulomb field
was first deduced by Rutherford from Newtonian mechanics [RCE51], and also
exactly the same formula was developed in wave mechanics within position space
representation, it was Inokuti who first investigated this problem from a point of
view other than the partial wave decomposition where the differential cross section
is written with respect to momentum change. It will be shown that the dynamic
matrix element in equation (63) obtained from Chapter 3 is related to a matrix
element integral for Bremsstrahlung without Born Aprroximation. We keep in mind
that we are considering high energy scattering in which the Born approximation is
good. We also denote kini as the initial state of the incident electron momentum
and kfnf as final states of the scattered electron momentum.

In this chapter, we apply the results obatined from Chapter 3 and Chapter 4 and
develop an expression for the differential cross section for inelastic collision.

5.1 Distorted Wave Approximation

It was shown in Chapter 3 that the differential cross section for scattering may be
obtained from

I(θ) =
kf

ki

m2

4π2h̄4 | 〈kfnf |V |kini〉 |2, (5.1)
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where the potential V is

V (r, rj) =
N∑

j=1

e2

|rj − r|
, (5.2)

and describes the Coulomb interaction between the incident electron at position r
and the target electrons at position rj. N is the number of electrons at the target
atom.

We express the Coulomb potential in terms of a Fourier intergral

V =
e2

2π2

N∑
j=1

∫
e−iq·(r−rj)

q2
dq. (5.3)

The limits of q in spherical coodinates (q, θ, φ) are q ∈ (0,∞); θ ∈ (0, π); φ ∈
(0, 2π). By letting r− rj = Rj and taking Rj along the z axis, the Fourier integral
becomes

e2

2π2

∫
e−iq·(r−rj)

q2
dq

= e2

2π2

∫∞
0
dq
∫ π

0
dθ
∫ 2π

0
dφ sin θe−iqRj cos θ

= e2

2π2
4π
Rj

∫∞
0

sin(qRj)

q
dq. (5.4)

Using 3.721 of [RG63] ∫ ∞

0

sin(ax)

x
dx =

π

2
sgn(a), (5.5)

the right hand side of (5.4) becomes

N∑
j=1

e2

Rj

,

which is the Coulomb potential V . Expanding the exponential factor in the Fourier
integral, the differential cross section in (5.1) may be written as

kf

ki

m2

4π2h̄4

∣∣∣∣∣ e22π2

∫
dq

1

q2

〈
kf |e−iq·r|ki

〉〈
nf |

N∑
j=1

eiq·rj|ni

〉∣∣∣∣∣
2

. (5.6)

This expression divides neatly into two factors:

• the first matrix element deals only with incident electron momentum param-
eters which is independent of the state transition involved within the target
atom;
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• the second matrix element involves the atomic parameters.

The expansion of the matrix element in (5.1) into two matrix element factors in
(5.6) is due to the fact that the solution of the Schroedinger equation describing
the system is a product of a function of only incident electron coordinates and a
function of only atomic electrons’ coordinates as described in Chapter 3 (49). We
use the distorted Coulomb wavefunction to calculate the first matrix element,〈

kf |e−iq·r|ki

〉
(5.7)

and the second matrix element is the form factor which is taken between the target
states [I71], 〈

ηf |
N∑

j=1

eiq·rj|ηi

〉
≡ Fif (q). (5.8)

We call this method Distorted Wave Approximation (DWA) as introduced by
Inokuti.

5.2 Asymptotic Expansion for Distorted Coulomb

Wavefunction

The distorted Coulomb wave is normalized so that it is consistent with (5.1). We
begin with the asymptotic expression of the distorted Coulomb wavefunction. We
require the aymptotic expansion of confluent hypergeometric function 1F1(a; b; z)
for large |z| when b is a positive integer and z complex as in the case for the
wavefunction,

1F1(a; b; z) = W1(a; b; z) +W2(a; b; z) (5.9)

where W1 and W2 have asymptotic expressions

W1(a; b; z) ∼
Γ(b)

Γ(b− a)
(−z)−aG(a, a− b+ 1;−z)

W2(a; b; z) ∼)
Γ(b)

Γ(a)
ezza−bG(1− a, b− a; z) (5.10)

and G denotes the semi-convergent series

G(α, β; z) = 1 +
αβ

z · 1!
+
α(α+ 1)β(β + 1)

z2 · 2!
+ · · · . (5.11)
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From (5.9), (5.10) and (5.11), we obtain the asymptotic expansion for distorted
Coulomb wavefunction for large r,

ψ
(−)
ki

(r) = e−(π/2)ηiΓ(1 + iηi)e
iki·r

1F1(−iηi, 1; i(kir − ki · r)). (5.12)

Let kiξ = kir − ki · r and take the expansions as far as terms in ξ−1. We have

ψ
(−)
ki

(r) ∼ eiki·reiηi ln(kiξ)

(
1 +

η2
i

ikiξ

)
+ eiπ ηie

ikiξ

kiξ
eiki·re−iηi ln(kiξ)

Γ(1 + iηi)

Γ(1− iηi)
. (5.13)

The physical quantity ηi describing the wavefunction is composed of the parameters
of the system,

ηi =
mZZ ′e2

h̄2ki

. (5.14)

Substituting (5.14) into (5.13), and noting that h̄ki = mvi, vi being the electron
speed, the second term in (5.13) may be written

=
ZZ ′e2

mv2
i

eiπΓ(1 + iηi)

Γ(1− iηi)

eikiξ+iki·r−iηi ln(kiξ)

ξ

=
eikir−iηi ln(2kir)−iηi ln 1

2
(1−cos θ)

2r
csc2 θ

2
, (5.15)

where θ is the angle between vectors ki and r. Therefore the wavefunction has the
asymptotic form

ψ
(−)
ki

(r) ∼
(
1 +

η2
i

ikir(1−cos θ)

)
eiki·r+iηi ln(kr(1−cos θ))

+ eikir−iηi ln(2kir)

r
ZZ′e2

2mv2
i

csc2 θ
2
e−iηi ln 1−cos θ

2
+iπ Γ(1+iηi)

Γ(1−iηi)
. (5.16)

We require the conjugate of the asymptotic expression for the wavefunction in
order to validate the normalization condition which may be obtained by taking the
conjugate the both sides of (5.16), and we have

ψ
(−)∗
ki

(r) ∼
(
1− η2

i

ikir(1−cos θ)

)
e−iki·r−iηi ln(kr(1−cos θ))

+ e−ikir+iηi ln(2kir)

r
ZZ′e2

2mv2
i

csc2 θ
2
eiηi ln 1−cos θ

2
−iπ Γ(1−iηi)

Γ(1+iηi)
. (5.17)

As for large r, the r−1 terms are negligible and the asymptotic expressions for the
wave function may be reduced to

ψ
(−)
ki

(r) ∼ eiki·r+iηi ln(kr(1−cos θ))

ψ
(−)∗
ki

(r) ∼ e−iki·r−iηi ln(kr(1−cos θ)). (5.18)
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We note that if ηi is small, for example for fast projectile, the wavefunction becomes
not very different from the plane wave eiki·r at large distance from the scattering
centre. From (5.18), the normalization condition gives∫

ψ
(−)∗
ki

(r)ψ
(−)
ki

(r)dr = 1. (5.19)

Similary, we may obtain the asymptotic expression for outgoing distorted Coulomb
wavefunction

ψ
(+)
kf

(r)

= e−(π/2)ηf Γ(1− iηf )e
ikf ·r

1F1(iηf , 1;−i(kfr + kf · r)) (5.20)

∼
(
1− η2

f

ikf r(1+cos θ)

)
eikf ·r−iηf ln(kf r(1+cos θ))

+ e
ikf r+iηf ln(2kf r)

r
ZZ′e2

2mv2
f

sec2 θ
2
eiπ+iηf ln 1+cos θ

2
Γ(1−iηf )

1+iηf
. (5.21)

For large r, the r−1 terms are negligible, and we multiply (5.21) by its conjugate,
then integrate it with respect to position coordinate r. We obtain unity and the
normalization condition is satisfied.

5.3 Evaluating Matrix Element

We are ready to calculate the first matrix element (5.7) given the incoming and
outgoing distorted Coulomb wavefunction (5.12) and (5.20). Setting Q = ki−kf−q,
we obtain 〈

kf |e−iq·r|ki

〉
= e−

π
2
(ηi+ηf )Γ(1 + iηi)Γ(1 + iηf )J, (5.22)

where

J =

∫
eiQ·r

1F1(−iηi, 1; i(kir − ki · r)) 1F1(−iηf , 1; i(kfr + kf · r))dr. (5.23)

For the integral J to converge, we may multiply the expression by a convergence
factor e−λr, where λ is a real positive small parameter. Noting that

e−λr = − d

dλ

(
e−λr

r

)
, (5.24)

we have

J = − lim
λ→0

d

dλ
I, (5.25)
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where

I =

∫
dr
e−λr

r
eiQ·r

1F1(−iηi, 1; i(kir − ki · r)) 1F1(−iηf , 1; i(kfr + kf · r)). (5.26)

This integral is also involved in the calculation of Bremsstrahlung and may be re-
duced to an ordinary hypergeometric function.[N54] The reduction has been carried
out by Bess who used transformations to parabolic coordinates and several theo-
rems on Bessel function [B50], and later Nordsieck who evaluated this integral using
contour integration [N54]. We keep to the notation used by Nordsieck [N54], and
the result for evaluating this integral is

I =
2π

α
eπηi

(
α

γ

)−iηi
(
γ + δ

γ

)iηf

2F1 (1 + iηi,−iηf ; 1; z) . (5.27)

In the expression for I, we have

α =
Q2 + λ2

2
(5.28)

β = kf ·Q− iλkf (5.29)

γ = ki ·Q + iλki − α (5.30)

δ = kikf + ki · kf − β (5.31)

z =
αδ − βγ

α(γ + δ)
, (5.32)

and 2F1 is the hypergeometric function which is analytic in the neighborhood of
the origin but singular at z = 1 and may be represented by a power series

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(n+ 1)
zn. (5.33)

The circle of convergence of this series is the unit circle |z| = 1, and the behavior
of this series in its circle of convergence is:

• divergence when R(c− a− b) ≤ 1;

• absolute convergence when R(c− a− b) > 0;

• conditional convergence when −1 < R(c− a− b) ≤ 0.
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Therefore we need to ensure that the hypergeometric function in I is convergent,
that is, to check the argument ∣∣∣∣αδ − βγ

α(γ + δ)

∣∣∣∣ < 1. (5.34)

At this stage, we assume the series converges and carry on differentiating I as in
(5.25), but we return to this later. We omit the subscripts and write the hypergeo-
metric function 2F1 (1 + iηi,−iηf ; 1; z) as F (. . . ). Differentiating I with respect to
λ, we obtain

dI

dλ
= 2πeπηi

×
[
(−1− iηi)α

−2−iηiγi(ηi−ηf )(γ + δ)iηfF (. . . )dα
dλ

+i(ηi − ηf )α
−1−iηiγ−1+i(ηi−ηf )(γ + δ)iηfF (. . . )dγ

dλ

+iηfα
−1−iηiγi(ηi−ηf )(γ + δ)−1+iηfF (. . . ) d

dλ
(γ + δ)

+α−1−iηiγi(ηi−ηf )(γ + δ)iηf dF (... )
dλ

]
. (5.35)

The above expression is complicated, so we partition it into subexpressions to make
the manipulations easier.

T1 = −(1 + iηi)α
−2−iηiγi(ηi−ηf )(γ + δ)iηfF (. . . )dα

dλ
(5.36)

T2 = i(ηi − ηf )α
−1−iηiγ−1+i(ηi−ηf )(γ + δ)iηfF (. . . )dγ

dλ
(5.37)

T3 = iηfα
−1−iηiγi(ηi−ηf )(γ + δ)−1+iηfF (. . . ) d

dλ
(γ + δ) (5.38)

T4 = α−1−iηiγi(ηi−ηf )(γ + δ)iηf dF (... )
dλ

(5.39)

To begin analyzing each term, we first need to expand parameters in the above
equations in terms of physical parameters of the system, such as initial momentum
and final momentum, according to relations (5.28) - (5.32).

γ = ki ·Q + iλki −
Q2 + λ2

2

=
k2

i − k2
f − q2

2
− kf · q + iλki −

λ2

2

=
k2

i + 2iλki + (iλ2)

2
−

(k2
f + q2 + 2kf · q)

2

=
1

2

[
(ki + iλ)2 − |kf + q|2

]
(5.40)

=
1

2

[
(ki + iλ)2 − |ki −Q|2

]
, (5.41)
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γ + δ = ki ·Q + iλki −
Q2 + λ2

2
+ kikf + ki · kf − kf ·Q + iλkf

=

(
ki − kf −

ki − kf − q

2

)
·Q + kikf + ki · kf + iλ(ki + kf )−

λ2

2

=
k2

i + k2
f + 2kikf − q2

2
+ iλ(ki + kf )−

λ2

2

=
(ki + kf + iλ)2 − |ki − kf −Q|2

2
, (5.42)

and
dα

dλ
= λ. (5.43)

Therefore, we write T1 as

T1 = − (1+iηi)λ

[ 1
2
(Q2+λ2)]

2+iηi

[
1
2
[(ki + iλ)2 − |ki −Q|2]

]i(ηi−ηf )

×
[

1
2
[(ki + kf + iλ)2 − |ki − kf −Q|2]

]iηf F (. . .)

= −4π2(1 + iηi)
λ[(ki+iλ)2−|ki−Q|2]

i(ηi−ηf )

π2(Q2+λ2)2+iηi

× [(ki + kf + iλ)2 − |ki − kf −Q|2]iηf F (. . .) (5.44)

This expression is connected to the so called Coulombian asymptotic states in
equation (16) of [H75].

lim
ε→0

e
−πη

2 Γ(2 + iη)
ε

π2

[p2 − (k + iε)2]iη

[|p− k|2 + ε2]2+iη
= δ(p− k)[D(+)(p, k)]−1, (5.45)

where
D(+)(p, k) = lim

ε→0
(p− k − iε)iη(2k)−iηe

−πη
2 Γ(1− iη). (5.46)

In our expression (5.44), we observe that the factor

λ

π2

[(ki + iλ)2 − |ki −Q|2]iηi

(Q2 + λ2)2+iηi
(5.47)

looks similar to (5.45) when we substitute

p = ki −Q (5.48)

k = ki, (5.49)

except for the factor [(ki + iλ)2 − |ki − Q|2]iηi . In order to obtain a form where
(5.45) is applicable, we require a careful analysis of this factor because

[(ki + iλ)2 − |ki −Q|2]iηi = (−1)iηi [|ki −Q|2 − (ki + iλ)2]iηi , (5.50)
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in which (−1)iηi is ambiguous in the sense that it produces two different forms,
that is e±πηi , determined from which direction we choose to rotate in the complex
plane. To reach the right decision, we first expand

(ki + iλ)2 − |ki −Q|2

= (ki + iλ− |ki −Q|)(ki + iλ+ |ki −Q|) (5.51)

= −[|ki −Q| − (ki + iλ)](ki + iλ+ |ki −Q|). (5.52)

In inelastic collision |ki −Q| < ki, this implies

|ki −Q| − (ki + iλ) =
√

(|ki −Q| − ki)2 + λ2e−i(π−τ), (5.53)

where τ is the argument

τ = arctan
λ

ki − |ki −Q|
. (5.54)

Therefore,
ki + iλ− |ki −Q| = eiπ[|ki −Q| − (ki + iλ)]. (5.55)

and
[(ki + iλ)2 − |ki −Q|2]iηi = e−πηi [|ki −Q|2 − (ki + iλ)2]iηi . (5.56)

Applying the change (5.56) and (5.45), T1 may be written

T1 = −4π2(1 + iηi)e
−πηi δ(Q)(D(+))−1e

πηi
2

Γ(2+iηi)
[(ki + iλ)2 − |ki −Q|2]−iηf

× [(ki + kf + iλ)2 − |ki − kf −Q|2]iηf F (. . .)

= −4π2e−πηiδ(Q) (D(+))−1e
πηi
2

Γ(1+iηi)
[(ki + iλ)2 − |ki −Q|2]−iηf

× [(ki + kf + iλ)2 − |ki − kf −Q|2]iηf F (. . .) (5.57)

where we have applied the identity

Γ(1 + z) = zΓ(z) (5.58)

to the first equation in order to get the second one.

Note here that the expression (5.45) was carefully defined by Haeringen such
that it was used to find what he called Coulombian asymptotic states for |ki > and
|kf > in the momentum space representation. Therefore, k and η in (5.45) have
specific physical meanings in the problem, in our case, known as ki and ηi. The
equation (5.44) has a singular point at Q = 0 when we take the limit λ→ 0+; this
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phenomenon was suggested by the delta function in (5.57). Furthermore because
of this δ function, the above expression exists only in the generalized distributions
sense described by van Haeringen [H75].

The term defined in (5.46) is the Coulomb distortion factor in the momentum
representation as may be seen from its amplitude. It is convenient to define it
for real ki, so that ηi is real, and a branch cut −π < arg(|ki − Q| − ki) < π
in the complex plane. With this in mind, we multiply (5.46) by its conjugate,
(2ki)

iηi(2ki)
−iηi = 1 and we obtain

|D(+)|2 = e−πηiΓ(1− iηi)Γ(1 + iηi)
[
|ki−Q|−ki−iλ
|ki−Q|−ki+iλ

]iηi

= iηie
−πηi π

sin(iηiπ)

[
|ki−Q|−ki−iλ
|ki−Q|−ki+iλ

]iηi

= 2ηiπ
e2πηi−1

[
|ki−Q|−ki−iλ
|ki−Q|−ki+iλ

]iηi

, (5.59)

where in obtaining the last expression, we have used the identities (5.58),

Γ(1 + z)Γ(−z) = − π

sin(zπ)
(5.60)

and

sin z =
eiz − e−iz

2!
. (5.61)

Note that |ki − Q| − ki − iλ lies in the third quardrant of the complex plane as
|ki −Q| − ki < 0 and |ki −Q| − ki + iλ lies in the second quadrant. Then[

|ki −Q| − ki − iλ

|ki −Q| − ki + iλ

]iηi

=
[
e−2i(π−τ)

]iηi
(5.62)

where

τ = arctan
λ

||ki −Q| − ki|
. (5.63)

As λ→ 0, τ → 0 and (5.59) has the form

|D(+)|2 =
2πηi

1− e−2πηi
. (5.64)

For the second term (5.37), we first differentiate (5.41),

dγ

dλ
= i(ki + iλ), (5.65)
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then
T2 = T21 + T22 (5.66)

where

T21 = −ki(ηi − ηf )

αγ

(γ
α

)iηi

(
γ + δ

γ

)iηf

F (· · · ) (5.67)

T22 = −iλ(ηi − ηf )

αγ

(γ
α

)iηi

(
γ + δ

γ

)iηf

F (· · · ). (5.68)

Recalling that we are taking the limit λ→ 0, T21 is expressed as

T21 = −4ki(ηi − ηf )Q
−2(1+iηi)(2ki ·Q−Q2)−1+i(ηi−ηf )

× [2(kikf + ki · kf ) + 2(ki − kf ) ·Q−Q2]
iηf F (· · · )|λ→0, (5.69)

On the other hand, the expression for T22 may be written in terms of one dimen-
sional delta function [S71]

lim
λ→0

1

π

λ

Q2 + λ2
= δ(Q), (5.70)

so that

T22 = − 4iπ(ηi−ηf )

(ki+iλ)2−|ki−Q|2
1
π

λ
Q2+λ2

[
(ki+iλ)2−|ki−Q|2

Q2+λ2

]iηi

×
[

(ki+kf+iλ)2−|ki−kf−Q|2
(ki+iλ)2−|ki−Q|2

]iηf

F (· · · )

= −4iπ(ηi − ηf )δ(Q)[2ki ·Q−Q2]−1+i(ηi−ηf )

×Q−2iηi [2(kikf + ki · kf )−Q2 + 2(ki − kf ) ·Q]iηfF (· · · )|λ→0

= −4iπ(ηi − ηf )δ(Q)[2ki ·Q−Q2]−1+i(ηi−ηf )

×Q−2iηi [2(kikf + ki · kf )]
iηfF (· · · )|λ→0. (5.71)

In the last expression, we consider Q = 0 in the last factor which comes from the
delta function. However, we retain the parameter Q in other factors as it is unclear
at this stage what they will become. For instance, we shall obtain an undefined
solution from [2ki ·Q−Q2]−1 which is not practical in calculating the differential
cross section.

We now find an expression for the third term (5.38). Differentiating (5.42),

d

dλ
(γ + δ) = i(ki + kf + iλ), (5.72)
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we obtain
T3 = T31 + T32 (5.73)

where

T31 = −ηf (ki + kf )α
−1−iηiγi(ηi−ηf )(γ + δ)−1+iηfF (· · · ) (5.74)

T32 = −iηfλα
−1−iηiγi(ηi−ηf )(γ + δ)−1+iηfF (· · · ). (5.75)

Substituting (5.28), (5.41) and (5.42) into (5.74), and taking the limit as λ → 0,
we obtain

T31 = −4ηf (ki + kf )Q
−2(1+iηi)(2ki ·Q−Q2)i(ηi−ηf )

×[2(kikf + ki · kf ) + 2(ki − kf ) ·Q−Q2]−1+iηfF (· · · )|λ→0. (5.76)

Similarly, T32 may be expressed in terms of delta function (5.70),

T32 = −δ(Q)
4iηf π

(ki+kf )2−|ki−kf−Q|2

[
k2

i−(k2
i +Q2−2ki·Q)

Q2

]iηi

×
[

(ki+kf )2−|ki−kf−Q|2
k2

i−(k2
i +Q2−2ki·Q)

]iηf

F (· · · )|λ→0

= −4iπδ(Q)ηfQ
−2iηi(2ki ·Q−Q2)i(ηi−ηf )

×[2(kikf + ki · kf )]
−1+iηfF (· · · )|λ→0 (5.77)

We leaveQ in the expressions because it is unclear how to treat it, for instanceQ−2iηi

as we take the limit Q approaches zero. As there are common factors appearing
in T2 and T3, it is reasonable to combine them. We note that kiηi = kfηf =
mZZ ′e2/h̄2, and we get

T2 + T3 = T23A + T23B (5.78)

where

T23A = 4iπδ(Q)Q−2iηi(2ki ·Q−Q2)−1+i(ηi−ηf )[2(kikf + ki · kf )]
−1+iηf

×[ηf (2ki ·Q−Q2)− 2(ηi − ηf )(kikf + ki · kf )]F (· · · )|λ→0 (5.79)

T23B = 4Q−2−2iηi(2ki ·Q−Q2)−1+i(ηi−ηf )F (· · · )|λ→0.

×[2(kikf + ki · kf ) + 2(ki − kf ) ·Q−Q2]−1+iηf

×ki{2ηi(2ki ·Q−Q2)− (ηi − ηf )[2(kikf + ki · kf )− 2kf ·Q]}. (5.80)

Moving on to the last term T4 which involves differentiation of the hypergeometric
function with respect to the parameter λ, we require an expression (15.2.1) of
[RG63] to do the first derivative,

d

dx
F (a, b; c;x) =

ab

c
F (1 + a, 1 + b; c+ 1; x), (5.81)
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then the fourth term has the expression

T4 = (−iηf )(1 + iηi)
(

γ+δ
γ

)iηf

F (2 + iηi, 1− iηf ; 2; z)
(

γ
α

)iηi 1
α

dz
dλ

= 2e−πηi(−iηf )(1 + iηi)
[

(ki+kf+iλ)2−|ki−kf−Q|2
(ki+iλ)2−|ki−Q|2

]iηf

×F (2 + iηi, 1− iηf ; 2; z)
[
|ki−Q|2−(ki+iλ)2

Q2+λ2

]iηi
1

Q2+λ2
dz
dλ
, (5.82)

in which we have substituted (5.28), (5.41) and (5.42). Recall that z is defined by
the expression (5.32). Before we differentiate z, we rewrite z as

z = 1− γ(α+β)
α(γ+δ)

= 1− AB
C[2(kikf+ki·kf )+A−B+C]

, (5.83)

where

A = (ki + iλ)2 − |ki −Q|2

= 2ikiλ+ 2ki ·Q− C (5.84)

B = |Q + kf |2 − (kf + iλ)2

= 2kf ·Q− 2iλkf + C (5.85)

C = Q2 + λ2. (5.86)

Then, the first derivative of z with respect to λ has the form

dz

dλ
= −C−2[2(kikf + ki · kf ) + A−B + C]−2

{2ikiBC[2(kikf + ki · kf ) + 2iλ(ki + kf ) + 2(ki − kf ) ·Q− C]

−2ikfAC[2(kikf + ki · kf ) + 2iλ(ki + kf ) + 2(ki − kf ) ·Q− C]

+2λAC[2(kikf + ki · kf ) + 2iλ(ki + kf ) + 2(ki − kf ) ·Q− C]

−2λBC[2(kikf + ki · kf ) + 2iλ(ki + kf ) + 2(ki − kf ) ·Q− C]

−2λAB[2(kikf + ki · kf ) + 2iλ(ki + kf ) + 2(ki − kf ) ·Q− C]

−2iABC(ki + kf )}. (5.87)

We multiply dz
dλ

by 1/C as this term appears in (5.82). We shall see later that this
process is necessary as it will be shown that there are terms in the expression that
behave like delta functions which would provide us an efficient way to analyze the
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expression. We write

1

C

dz

dλ
= [2(kikf + ki · kf ) + A−B + C]−2

{4i
(

kf AW

C2 − kiBW
C2

)
+ 4λ(ki + kf )

(
kiB
C2 − kf A

C2

)
+2i

(
kiB
C
− kf A

C

)
+ 4λW

(
B
C2 − A

C2

)
+4iλ2(ki + kf )

(
B
C2 − A

C2

)
+ 2λ

(
A
C
− B

C

)
+

2iAB(ki+kf )

C2 + 4λWAB
C3 +

4iλ2(ki+kf )AB

C3 − 4λAB
C2 }, (5.88)

where we have let
W = kikf + ki · kf + (ki − kf ) ·Q. (5.89)

There are factors in (5.88) which we can simplify first,

kfAW

C2
− kiBW

C2
=

2kf Wki·Q
C2 − 2kiW (kf ·Q)

C2 +
4iλkikf W

C2 − (ki+kf )W

C
(5.90)

kiB

C2
− kfA

C2
= 2

C2 [ki(kf ·Q)− kf (ki ·Q)]− 4iλkikf

C2 +
ki+kf

C
(5.91)

kiB

C
− kfA

C
= 2kikf ·Q

C
− 2kfki·Q

C
− 4iλkikf

C
+ (ki + kf ) (5.92)

B

C2
− A

C2
= 2

[
(kf−ki)·Q

C2 − iλ(ki+kf )

C2 + 1
C

]
(5.93)

A

C
− B

C
= 2

[
(ki−kf )·Q

C
+

iλ(ki+kf )

C
− 1
]

(5.94)

AB

C2
= 4(ki·Q)(kf ·Q)

C2 + 4iλ
C2 [ki(kf ·Q)− kf (ki ·Q)] + 2

C
[(ki ·Q)− (kf ·Q)]

+
2iλ(ki+kf )

C
+

4λ2kikf

C2 − 1 (5.95)

AB

C3
= 4(ki·Q)(kf ·Q)

C3 + 4iλ
C3 [ki(kf ·Q)− kf (ki ·Q)] + 2

C2 [(ki ·Q)− (kf ·Q)]

+
2iλ(ki+kf )

C2 +
4λ2kikf

C3 − 1
C
. (5.96)
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Substituting the above expressions (5.90)- (5.96) into (5.88), we obtain

1

C

dz

dλ
= [2(kikf + ki · kf ) + A−B + C]2 {

8i
C2 {W [kf (ki ·Q)− ki(kf ·Q)] + (ki + kf )(ki ·Q)(kf ·Q)} (5.97)

−16λ
C2 [kikfW + (ki ·Q)(kf ·Q)] (5.98)

+4i
C

[(ki + kf )(ki − kf ) ·Q
+ki(kf ·Q)− kf (ki ·Q)−W (ki + kf )] (5.99)

−8iλ2

C2 {kikf (ki + kf ) + 2[ki(kf ·Q)− kf (ki ·Q)]} (5.100)

+4λ
C

[2kikf +W − (ki − kf ) ·Q] (5.101)

−16λ3

C2 kikf (5.102)

−4λ+ 16λ
C3 W (ki ·Q)(kf ·Q) (5.103)

+16iλ2

C3 {(ki + kf )(ki ·Q)(kf ·Q) +W [ki(kf ·Q)− kf (ki ·Q)]}
(5.104)

+16λ3

C3 {Wkikf − [ki(kf ·Q)− kf (ki ·Q)](ki + kf )} (5.105)

+16iλ4

C3 kikf (ki + kf )}. (5.106)

The above expression is long and complicated, and, to make manipulations easier,
we consider subexpressions one at a time.
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W [kf (ki ·Q)− ki(kf ·Q)] + (ki + kf )(ki ·Q)(kf ·Q)

= kf (ki ·Q)[ki ·Q + (kikf + ki · kf )]

+ki(kf ·Q)[kf ·Q− (kikf + ki · kf )] (5.107)

kikfW + (ki ·Q)(kf ·Q)

= kikf [kikf + ki · kf + (ki − kf ) ·Q] + (ki ·Q)(kf ·Q) (5.108)

(ki + kf )(ki − kf ) ·Q + ki(kf ·Q)− kf (ki ·Q)−W (ki + kf )

= ki[kf ·Q− (kikf + ki · kf )]− kf [ki ·Q + (kikf + ki · kf )] (5.109)

2kikf +W − (ki − kf ) ·Q (5.110)

= 3kikf + ki · kf

(ki + kf )(ki ·Q)(kf ·Q) +W [ki(kf ·Q)− kf (ki ·Q)]

= ki(kf ·Q)[2ki ·Q + kikf + ki · kf − kf ·Q]

+kf (ki ·Q)[2kf ·Q + kikf − ki · kf − ki ·Q] (5.111)

Wkikf − [ki(kf ·Q)− kf (ki ·Q)](ki + kf )

= kikf (kikf + ki · kf ) + (ki ·Q)[kikf + kf (ki + kf )]

−(kf ·Q)[kikf + ki(ki + kf )] (5.112)

[2(kikf + ki · kf ) + A−B + C]2

= [4W 2 + C2 − 4WC − 4λ2(ki + kf )
2 − 4iλ(ki + kf )(2W − C)]

×[(2W − C)2 + 4λ2(ki + kf )
2]−2. (5.113)

In the previous section, we saw that characteristic factors are required to allow an
expression to behave as a delta function as λ→ 0:

• a factor λ/(Q2 + λ2)2 is necessary to produce the delta function distribution
according to (5.45) ;

• a factor λ/(Q2 + λ2) for the ordinary one dimensional delta function (5.70).

Taking the limit λ → 0, there are terms of the expression (5.97) - (5.106) which
have delta function behavior and terms which do not contribute to the matrix
element. Such terms which vanish as λ → 0 come from the fact that λ remains in
the numerator after simplifications. Using these, each subexpression in (5.88) has
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a simpler form

(5.97) = 8iQ−4{2[kikf + ki · kf + (ki − kf ) ·Q]−Q2}−2

×{kf (ki ·Q)[ki ·Q + kikf + ki · kf ]

+ki(kf ·Q)[kf ·Q− (kikf + ki · kf )]} (5.114)

(5.98) = −4kikfλC
−2(kikf + ki · kf )

−1 (5.115)

(5.99) = 4iQ−2{2[kikf + ki · kf + (ki − kf ) ·Q]−Q2}−2

×{ki[kf ·Q− (kikf + ki · kf )]

−kf [ki ·Q + (kikf + ki · kf )]} (5.116)

(5.100) = 0 (5.117)

(5.101) = 4λC−1(3kikf + ki · kf ) [2(kikf + ki · kf )]
−2 (5.118)

(5.102) = 0 (5.119)

(5.103) = 4λC−2(ki ·Q)(kf ·Q)Q−2(kikf + ki · kf )
−1, (5.120)

and (5.104), (5.105) and (5.106) vanish when we take the limit λ→ 0.

At this stage, we write 1
C

dz
dλ

as sum of three terms:

i) we note that we have left a few λs in the above expressions to indicate their role
in the delta function behavior. We pull out the common factor λC−2 from (5.115)
and (5.120), leaving

−4
λ

C2

[
kikf

(kikf + ki · kf )
− (ki ·Q)(kf ·Q)

Q2(kikf + ki · kf )

]
(5.121)

as the factor at the front is related to the delta function δ(Q) from (5.45). It may
be shown that the expression in the square brackets may be written in terms of the
angle between ki and kf such that it results in a simpler expression

−4
λ

C2
tan2 θif

2
. (5.122)

ii) for the second term, we combine (5.114) and (5.116) by pulling out common
factors, and we obtain

4i

Q4
{2[kikf + ki · kf + (ki − kf ) ·Q]−Q2}−2

× {kf [2(ki ·Q)−Q2](ki ·Q + kikf + ki · kf )

+ki[2(kf ·Q) +Q2][ki ·Q− (kikf + ki · kf )]}. (5.123)

iii) the third term is
λ

C

3kikf + kikf

(kikf + ki · kf )2
. (5.124)
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5.3.1 Argument z in the limit Q→ 0

To this point, we have manipulated dI
dλ

such that its expression consists of sum of
three terms T1, T2 + T3 and T4. Within each term, we use a delta function rep-
resentation in the distribution sense (5.45) such that each term involves a product
of a delta function δ(Q) and a hypergeometric function F (· · · ; z) where z is given
by (5.32) and λ is a small positive convergence factor.

Taking the limit λ→ 0,

z = −2
[
Q2(kikf + ki · kf − kf ·Q)− 2(kf ·Q)(ki ·Q− 1

2
Q2)
]

×Q−2 [|ki − kf −Q|2 − (ki + kf )
2]
−1
. (5.125)

We express Q in terms of coordinates (Qx, Qy, Qz), such that Q2 = Q2
x + Q2

y +
Q2

z. Due to the characteristics of the delta function δ(Q) = δ(Qx)δ(Qy)δ(Qz), we
consider the limits of Qx → 0 and Qy → 0 first, so that

z = −2[kikf +ki ·kf−2(kikf )z][(ki−kf )
2
x +(ki−kf )

2
y +(ki−kf−Q)2

z−(ki +kf )
2]−1.

(5.126)
Then take the limit of Qz → 0, giving

z = −2[kikf + ki · kf − 2(kikf )z][|ki − kf |2 − (ki + kf )
2]−1. (5.127)

z may be simplified further if we take ki to lie on the z axis such that

ki · kf = (kikf )z = kikf cos θif . (5.128)

Then the argument z is simply

z = tan2 θif

2
. (5.129)

We notice that the hypergeometric function is convergent only for |z| < 1, thus the
constraint for θif is −π

2
≤ θif ≤ π

2
.

5.4 Evaluating Matrix Element (Continued)

Before we move onto the calculation of dI
dλ

, we summarize the final expression for
T4 given by (5.82), and replace 1

C
dz
dλ

by sums of (5.122), (5.123) and (5.124):

T4 = T41 + T42 + T43 (5.130)
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where T41, T42 and T43 are (5.122), (5.123) and (5.124) multiplied by the factor

2e−πηi(−iηf )(1 + iηi)
[

(ki+kf+iλ)2−|ki−kf−Q|2
(ki+iλ)2−|ki−Q|2

]iηf

×F (2 + iηi, 1− iηf ; 2; z)
[
|ki−Q|2−(ki+iλ)2

Q2+λ2

]iηi

. (5.131)

We notice that T41 has a delta function distribution given by (5.45), so that

T41 = 2e−πηi(−iηf )(1 + iηi)
[

(ki+kf+iλ)2−|ki−kf−Q|2
(ki+iλ)2−|ki−Q|2

]iηf

×F (2 + iηi, 1− iηf ; 2; z)
(
−4π2 tan2 θif

2

)
×
[
|ki−Q|2−(ki+iλ)2

Q2+λ2

]iηi
λ

π2(Q2+λ2)2

= −8π2e−πηi(−iηf )
[

(ki+kf+iλ)2−|ki−kf−Q|2
(ki+iλ)2−|ki−Q|2

]iηf

×F (2 + iηi, 1− iηf ; 2; z)
(
tan2 θif

2

)
×δ(Q) (D(+))−1eπηi/2

Γ(1+iηi)
(5.132)

which also appears in T1 as may be seen from (5.57). Considering T1 and T41

together, we may factor out their common factors

T1 + T41 =

4π2e−
πηi
2 δ(Q)(D(+))−1(Γ(1 + iηi))

−1
[

(ki+kf+iλ)2−|ki−kf−Q|2
(ki+iλ)2−|ki−Q|2

]iηf

×
[
2 tan2 θif

2
F (2 + iηi, 1− iηf ; 2; tan2 θif

2
)− F (1 + iηi,−iηf ; 1; tan2 θif

2
)
]
(5.133)

To write the above expression clearly, we take the above expression to the limit of
λ→ 0 first, then consider the delta function δ(Q).

[(ki + kf + iλ)2 − |ki − kf −Q|2]iηf [(ki + iλ)2 − |ki −Q|2]−iηf

= [2(kikf + ki · kf )]
iηf [(ki + iλ) + |ki −Q|]−iηf [(ki + iλ)− |ki −Q|]−iηf

= [2(kikf + ki · kf )]
iηf (2ki)

−iηf [ki − |ki −Q|]−iηf . (5.134)

The other term

(D(+))−1 = (2ki)
iηieπηi/2(Γ(1− iηi))

−1 limλ→0(|ki −Q| − ki − iλ)iηi

= (2ki)
iηie−πηi/2(Γ(1− iηi))

−1(ki − |ki −Q|)−iηi . (5.135)
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To obtain the last equation, we have used the fact that |ki −Q| − ki < 0, so that

lim
λ→0

(|ki −Q| − ki − iλ) = e−iπ(ki − |ki −Q|)−iηi . (5.136)

Therefore,

T1 + T41 =

4π2e−πηiδ(Q)(2ki)
i(ηi−ηf )[Γ(1 + iηi)Γ(1− iηi)]

−1(ki − |ki −Q|)−i(ηi+ηf )[2(kikf + ki · kf )]
iηf

×
[
2 tan2 θif

2
F (2 + iηi, 1− iηf ; 2; tan2 θif

2
)− F (1 + iηi,−iηf ; 1; tan2 θif

2
)
]

(5.137)

Similarly, T43 has delta function property (5.70)

T43 = 2πe−πηi(−iηf )(1 + iηi)
[

(ki+kf+iλ)2−|ki−kf−Q|2
(ki+iλ)2−|ki−Q|2

]iηf

×F (2 + iηi, 1− iηf ; 2; z)
[
|ki−Q|2−(ki+iλ)2

Q2+λ2

]iηi

δ(Q)
3kikf+ki·kf

(kikf+ki·kf )2
(5.138)

(5.139)

Taking λ→ 0,

T43 = 2π(−iηf )(1 + iηi)[2(kikf + ki · kf )]
iηfQ−2iηiδ(Q)

(2ki ·Q−Q2)i(ηi−ηf )F (2 + iηi, 1− iηf ; 2; z)
3kikf+ki·kf

(kikf+ki·kf )2
. (5.140)

Similary, we pull out the same factors from T23A and T43

T43 + T23A =

2iπδ(Q)Q−2iηi(2ki ·Q−Q2)−1+i(ηi−ηf )[2(kikf + ki · kf )]
−1+iηf

×
[
−2ηf (1 + iηi)(2ki ·Q)F (2 + iηi, 1− iηf ; 2; tan2 θif

2
)

3kikf+ki·kf

kikf+ki·kf

+2[ηf (2ki ·Q−Q2)− 2(ηi − ηf )(kikf + ki · kf )]F (1 + iηi,−iηf ; 1; tan2 θif

2
)
]

(5.141)

As a summary of this section, we have rewritten the expression dI
dλ

as sum of four
terms

dI

dλ
= (T1 + T41) + [(T2 + T3)A + T43] + T42 + (T2 + T3)B (5.142)

which we label by (I), (II), (III) and (IV ) respectively. We successfully manip-
ulated (I) and (II) to a point that the expressions contain delta functions. This
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is very important as this delta function behavior characterizes the inelastic process
such that the differential cross section is an expression of the change of momentum,
as may be seen from

δ(Q) = δ(ki − kf − q). (5.143)

We shall see in the following chapter that, because of this property, we may replace
every q by ki − kf , the change of momentum of incident and scattered particle.

Secondly, the branch cut we defined to make the phase change in (5.56) is
crucial in our case. If another branch cut were chosen, a different phase change in
(5.56) would be found as we may as well rotate the vector ki + iλ − |ki − Q| to
vector |ki −Q| − (ki + iλ) by π clockwise. Such choice would introduce an extra
exponential term e2πηi in (5.56) and T1, thus leading to a different expression for
(I). This change is not significant for small ηi (high incident energy) but is serious
when ηi is large.

We have also restricted angles of scattering in our expression such that −π/2 ≤
θif ≤ π/2 as a requirement on our hypergeometric series to be convergent. When
θif lies beyond the constraint, a proper transformation of hypergeometric function
is necessary to guarantee a full range for θif for our expression.

57



Chapter 6

Comparison between Inokuti’s
Result and Ours

The study of differential cross section for atomic inelastic collision using Coulomb
Born approximation in momentum representation was initiated by Inokuti.[FI]
Inokuti first expressed the Coulomb interaction between the incident electron and
the target electrons as a Fourier integral as discussed in Chapter 5. He then de-
fined a weight function which contains information about the response of the target
due to the transfer of momentum from the incoming particle. He points out a few
elementary properties of the weight function and its implications, and obtains an
expression for the dynamic matrix < kfηf |V |kiηi > which is comparable to the
plane wave Born approximation.

6.1 Plane Wave Born Approximation

Plane wave Born approximation is not very different from Coulomb Born approx-
imation. It simply uses plane wave functions to describe incoming particle and
scattered particle rather than Coulomb waves. It is a reasonable approximation
in the sense that both incident particle and scattered particle will not be affected
by the Coulomb field at a very large distance. We thus consider having eiki·r to
describe the incident particle and eikf ·r to describe the scattered particle. The
dynamic matrix in (5.6) consists of two parts

< kfηf |V |kiηi >=
e2

2π2

∫
1

q2
< kf |eiq·r|ki >

〈
ηf |

N∑
j=1

eiq·rj|ηi

〉
dq. (6.1)
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Under plane wave Born approximation, the first matrix element is reduced to

< kf |e−iq·r|ki >= (2π)3δ(Q), (6.2)

where Q = ki − kf − q. The delta function results from the first matrix element
which restricts the q integration in (6.1) so that only a unique q contributes. There-
fore, the dynamic matrix element under plane wave Born approximation has the
form

< kfηf |V |kiηi >= 4πe2K−2Fif (K), (6.3)

where K = ki − kf represents the change of momentum in the scattering process
and Fif is the target form factor as discussed in chapter 5.

6.2 Weight Function Under Coulomb Born Ap-

proximation

In chapter 4, we expressed the Coulomb wavefunctions in momentum space repre-
sentation and used them to calculate the differential cross section as in chapter 5.
In this section, we keep the Coulomb wavefunctions in position space but express
them as

ψ
(+)
ki

(r) =

∫
dkφ

(+)
ki

(k)eik·r, (6.4)

ψ
(−)
kf

(r) =

∫
dk′φ

(−)
kf

(k′)eik′·r. (6.5)

Using wavefunctions (6.4) and (6.5), we may write the first element matrix in (6.1)
as

< kf |e−iq·r|ki > =

∫
drψ

(−)∗
kf

(r)ψ
(+)
ki

(r)e−iq·r (6.6)

=

∫
dr

∫
dkφ

(+)
ki

(k)

∫
dk′φ

(−)∗
kf

(k′)ei(k−k′−q)·r. (6.7)

When we first evaluate the r integral before k and k′ integrals, we obtain simply a
delta function in the first matrix element

< kf |e−iq·r|ki >= (2π)3

∫
dk

∫
dk′φ

(−)∗
kf

(k′)φ
(+)
ki

(k)δ(ki − kf − q). (6.8)
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Substitution of (6.8) and the target property form factor Fif into the dynamic
matrix (6.1) leads to

< kfηf |V |kiηi >= 4πe2K−2

∫
dk′
∫
dkw(k′,k;kf ,ki)Fif (k− k′), (6.9)

where the weight function is defined as

w(k′,k;kf ,ki) = |ki − kf |2|k− k′|−2φ
(−)∗
kf

(k′)φ
(+)
ki

(k). (6.10)

The introduction of K−2 in (6.10) is to make the expression comparable to the
dynamic matrix element obtained from plane wave approximation (6.3). The use
of the Coulomb wave under Inokuti’s approach shows the redistribution of the
momentum transfer from the incident particle to the target particle according to
the weight w(k′,k;kf ,ki), and the response of the target atom is constrained to
different values of k− k′.

As pointed out by Inokuti, the weight function has the delta function singular-
ities at unique values of k and k′. This may be seen from the wavefunctions ψki

and ψkf
in chapter 4,

ψki
(k) = − 1

π2
lim
ε→0

[k2 + (ε− iki)
2]

iηi−1

(ε2 + |ki − k|2)iηi+2

×
[
in(ε− iki)(ε

2 + |ki − k|2)− ε(1 + iηi)
[
(ε− iki)

2 + k2
]]
, (6.11)

where the denominator dominates at k = ki. Similarly, the scattered wavefunction
has singularity at k′ = kf . It is these delta function singularities that constrain the
integration of w to unique values of k and k′ such that∫

dk

∫
dk′w(k′,k;kf ,ki)Fif (k− k′) = φ

(−)∗
kf

(kf )φ
(+)
ki

(ki)Fif (ki − kf )(6.12)

= ψ
(−)∗
kf

(0)ψ
(+)
ki

(0)Fif (ki − kf ). (6.13)

We note that, in the last expression, the wavefunctions have been rewritten in the
coordinate space representation and are evaluated at the origin. The form factor is
also restricted to specific momentum transfer at ki − kf . Therefore, the dynamic
matrix element has the form

< kfηf |V |kiηi >= 4πe2K−2ψ
(−)∗
kf

(0)ψ
(+)
ki

(0)Fif (ki − kf ). (6.14)

The result given is only an estimation and a careful analysis of the weight function
is needed. We believe that the weight function doesn’t necessarily behave exactly
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like a delta function at k = ki and k′ = kf as discussed in chapter 5. There are
terms which contribute to a delta function, but there are also terms which don’t
contribute to a delta function.

In the above discussion, although it was shown that the weight function has
dominant values at k = ki and k′ = kf , a quantitative evaluation is required in
order to confirm Inokuti’s result.
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Chapter 7

Summary And Discussions

In this chapter, we recapitulate results from previous chapters in consecutive order,
and point out areas where further progress may be made.

We presented different approaches to calculate the Fourier transform of Coulomb
wave functions. The direct approach may not be as efficient as other methods used
to evaluate the transform, and it requires a careful analysis of the confluent hyperge-
ometric function in order to obtain a result which is consistent with one obtained by
Guth and Mulin [GM51], but it provides us with a clearer picture of the Coulomb
wavefunctions compared to plane waves in the momentum space representation.
The existence of the confluent hypergeometric function in Coulomb wavefunctions
introduces a distortion factor in their momentum space representation. As may
be seen from (4.93), the existence of Coulomb wavefunctions in momentum space
representation is questionable. This may be seen from the product of the distortion
factor and the delta function, as it produces an ambiguous factor which we are un-
able to resolve in order to understand the momentum space wavefunction in detail.
Van Haeringen (1976) [H75] discussed this matter, and he stated that the distorted
wavefunction exists only in the generalized function sense. Further verification and
investigation is needed in this matter as we believe that the solution of this would
resolve other problems we experience in calculating the differential cross section in
momentum space.

We have investigated the inelastic scattering problem from the point of view of
momentum space representation. We developed an expression to calculate the dif-
ferential cross section using Coulomb Born approximation. Under Coulomb Born
approximation, the combined scattering system is described by two factors: one
deals only with incident and scattered particle momentum parameters which is in-
dependent of the state transition involved within the target atom, and the form

62



factor which is taken between the target states. Our calculation of the first term
using Coulomb wavefunction leads to a point where the first matrix element is a
sum of delta functions and terms that behave like delta functions. This is a very
important property as the delta function behavior characterizes the inelastic scat-
tering process such that the differential cross section is an expression of momentum
transfer. A restriction on scattering angle was proposed in order to ensure the
convergence of the hypergeometric series. For a scattering angle which lies beyond
the constraint, a proper transformation of the hypergeometric function is needed to
guarantee convergence of the hypergeometric series. We believe that difficulties in
analyzing the expression of the first matrix element are caused by unclear behavior
of the momentum representation of Coulomb wavefunctions. Decisions were made
on which delta function representations may be used, as one representation (5.45)
was demonstrated in the form given by van Haeringen, while the other (5.70) was
the usual delta function representation as a limit. We used the former one as we
tried to be consistent with the idea of the existence of the Coulomb wavefunction
in momentum space representation in a generalized distribution sense. The latter
one was used only when the expression may not be manipulated in a form given
in (5.45). To conclude which delta function representation to use, it is necessary
to work on this problem by using only the usual delta function representation as
a limit. Comparison of the two results would help us understand better the true
behavior of Coulomb wavefunction in momentum space representation.

We also presented an approach suggested by Inokuti to calculate the first dy-
namic matrix element. Instead of relating the first matrix element to the Bremsstra-
hlung integral, he made use of the position representation of Coulomb wavefunction
as the inverse Fourier transformation of Coulomb wavefunction in momentum rep-
resentation. Given in the remark of his paper [FI], his result for differential cross
section under Coulomb Born approximation is comparable to the result obtained
from the plane wave approximation. Although we agree that the weight function
should maintain delta function singularities at k = ki and k′ = kf , which come
from the momentum space representation of Coulomb wavefunctions, we believe
that the distortion factors should be added into consideration as this is the actual
expression of the Coulomb wavefunction in momentum space representation. With
this in mind, the response of the target is still subject to the momentum trans-
fer from the scatterer, and the resulting expression of the differential cross section
would have to include distortion factors.

With our approach, we think this subject is worth reviewing. We expect that
the inelastic scattering process may be described by a measurable quantity, that is,
the change of momentum of the scatterer. To extend current work, further research
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may be done on detailed analysis of Coulomb wavefunction in the momentum space
representation in the generalized distribution sense. Also, investigation of proper-
ties of, and a quantitative evaluation of, the weight function, and comparison with
experimental data are useful areas for future study.
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