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Abstract 

Carbon dioxide is a main greenhouse gas that is responsible for global warming and climate 

change.  The reduction in greenhouse gas emission is required to comply with the Kyoto 

Protocol.  Looking at CO2 emissions distribution in Canada, the electricity and heat 

generation sub-sectors are among the largest sources of CO2 emissions.  In this study, the 

focus is to reduce CO2 emissions from electricity generation through capacity expansion 

planning for utility companies.  In order to reduce emissions, different mitigation options 

are considered including structural changes and non structural changes.  A drawback of 

existing capacity planning models is that they do not consider uncertainties in parameters 

such as demand and fuel prices. 

 

Stochastic planning of power production overcomes the drawback of deterministic models 

by accounting for uncertainties in the parameters.  Such planning accounts for demand 

uncertainties by using scenario sets and probability distributions.  However, in past 

literature different scenarios were developed by either assigning arbitrary values or by 

assuming certain percentages above or below a deterministic demand. Using forecasting 

techniques, reliable demand data can be obtained and can be inputted to the scenario set. 

The first part of this thesis focuses on long term forecasting of electricity demand using 

autoregressive, simple linear, and multiple linear regression models.  The resulting models 

using different forecasting techniques are compared through a number of statistical 

measures and the most accurate model was selected.  Using Ontario electricity demand as a 

case study, the annual energy, peak load, and base load demand were forecasted, up to year 

2025.  In order to generate different scenarios, different ranges in economic, demographic 

and climatic variables were used.  
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The second part of this thesis proposes a robust optimization capacity expansion planning 

model that yields a less sensitive solution due to the variation in the above parameters.  By 

adjusting the penalty parameters, the model can accommodate the decision maker‟s risk 

aversion and yield a solution based upon it.  The proposed model is then applied to Ontario 

Power Generation, the largest power utility company in Ontario, Canada. Using forecasted 

data for the year 2025 with a 40% CO2 reduction from the 2005 levels, the model suggested 

to close most of the coal power plants and to build new natural gas combined cycle turbines 

and nuclear power plants to meet the demand and CO2 constraints. The model robustness 

was illustrated on a case study and, as expected, the model was found to be less sensitive 

than the deterministic model.    
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1. Introduction 

Carbon dioxide is a main greenhouse gas (GHG) that is responsible for climate change. The 

usage of fossil fuel is the primary source that increases the concentration of carbon dioxide 

(CO2) in the atmosphere (Intergovernmental Panel on Climate Change, 2007).  Back in 

1998, the United Nations Framework Convention on Climate Change (1998) has already 

developed the Kyoto Protocol to stabilize the GHG emissions in the atmosphere by having 

industrialized countries commit to reduce their GHG emissions.  The legal binding accord 

was signed by 165 countries to reduce GHG emissions. Canada, for instance, committed to a 

GHG emission target of 6% below the 1990 levels by 2008 – 2012.    

 

According to Environment Canada (2006), Canada emitted 758 Mt CO2 equivalent (CO2 eq) 

in 2004, an increase from 599 Mt CO2 eq in 1990.  In order to meet the Kyoto target, 

Canada must decrease the emission by 195 Mt CO2 eq from the 2004 emission level.  To 

effectively reduce GHG emissions, we should target one of the largest contributors.  With 

emissions accounting for over 17% of Canada‟s total, the electricity and heat generation 

sub-sectors are among the largest GHG contributors.  In this study, the focus is to reduce 

CO2 emission from electricity generation. Using the fleet of Ontario Power Generation 

(OPG), the largest electric utility company in Ontario, Canada, as a case study, this thesis 

will develop a capacity expansion planning model to satisfy demand in 2025 while meeting 

CO2 emission targets at a minimum cost. 

 

To reduce CO2 emissions from a fleet of power plants, Hashim et al. (2007) proposed the 

use of different CO2 control strategies, which include employing fuel balancing and/or fuel 

switching, making enhanced use of alternative energy and/or advanced technologies, and 

employing CO2 removal technologies.  Fuel balancing is to adjust the operation of 
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generation stations to reduce CO2 emissions.  Fuel switching is to switch from 

carbon-intensive fuels (e.g. coal) to less carbon-intensive fuels (e.g. natural gas).  Existing 

generation stations must be retrofitted in order to use another fuel.  Energy produced by 

alternative fuel (e.g. uranium, wind, and solar) emits no CO2, and hence will reduce CO2 

emission.  Advanced fossil-fuel technologies include integrated gasification combined 

cycle (IGCC), supercritical and ultra-supercritical pulverized coal power plants, and natural 

gas combined cycle (NGCC).  These generators have higher efficiency than sub critical 

pulverized coal power plants, and therefore, less CO2 is produce from them per unit energy 

generated.  The CO2 removal technologies considered here are an end-of-pipe option, 

namely CO2 scrubbing from flue gas.  CO2 is captured instead of released to the 

atmosphere, transported through pipelines under critical pressures, and sequestrated deep 

into reservoirs to ensure that the temperature and pressure conditions are beyond critical 

values.  Shafeen et al. (2004a, 2004b) have recently shown that CO2 sequestration is a 

feasible option in Ontario, Canada.    

  

It would be difficult to incorporate mitigation options into a fleet in a short period, except 

for fuel balancing.  Long-term planning is important to the electric sector because the lead 

time of construction is long.  Using optimization methods, one could determine an 

expansion plan with minimal cost while meeting CO2 constraints. 

 

Optimization is used in many practical decision problems.  It can inform the decision 

maker which strategy to execute in order to minimize the cost or maximize the profit.  

Typical applications of optimization could be found in engineering, transportation, 

production, and many other fields. An example of an optimization problem would be 

minimizing the cost of capacity expansion while satisfying future demand and meeting all 

regulations.  In the electricity sector, power generation expansion planning is very 
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important because the lead time of construction is long.  Many models in the past addressed 

the issue of power generation planning, including models incorporating distributed regional 

demand (e.g. Nakata & Ashina , 2002), models considering multi period planning (e.g. 

Turvey & Anderson , 1977), and models including emission constraints (e.g. Bai & Wei 

,1996, Hashim et al., 2005 and 2007, Hsu & Chen, 2004, Johnson & Keith, 2004, and 

Sirikum & Techanitisawad, 2006). 

 

All the models mentioned above are deterministic in nature and this represents a major 

drawback. Deterministic electric capacity planning models find the optimal solution (i.e. 

least-cost investment solution), which allows the utility to meet demand growth.  

Deterministic models are incapable of resolving most real world problems.  In reality, 

model parameters are uncertain and always have a probability of occurrence.  Parameters 

such as the fuel prices and power demand are not known with certainty. Consider the 

problem where it is desired to plan for power generation in order to provide reliable supply 

of electricity in a given country or region.  The amount of electricity generated must satisfy 

electricity demanded.  However, the electricity demand is uncertain, and this is especially 

true for long term expansion planning where the electricity demand ten or twenty years from 

now is needed as an input parameter.  An expansion plan found to be optimal for one 

particular scenario might be very costly for another.  

 

Stochastic programming can be used to incorporate uncertainties of the parameters in the 

solution.  In stochastic programming, uncertainty is accounted by using a set of scenarios 

with known probabilities.  Stochastic programming models attempt to explicitly 

incorporate the conflicting objectives of optimal solutions and model robustness. When the 

error (i.e. slack or surplus) is „almost‟ zero for any realization of the scenario, the optimal 

solution is model robust.  Robust programming models take a step further and incorporate 
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the objective of solution robustness in addition to the objectives of optimal solutions and 

model robustness.  The optimal solution is solution robust when the cost for any realization 

of the scenario is „close‟ to the scenario optimal.  Scenario optimal is the optimal of a 

scenario when we know that particular scenario will occur with certainty. Robust 

programming models are often employed with the ability of incorporating the decision 

makers‟ risk aversion into the model (Yu & Li, 2000).  The objective here is to formulate a 

more “robust” model that can lead to a more robust plan.  Both stochastic and robust 

optimizations deal with uncertain and noisy information in which the parameters have a 

probability of occurrences.   

 

Robust optimization models have been used in logistic problems (e.g. Yu & Li, 2000 and 

Leung et al., 2002), financial risk management (e.g. Mulvey, 1996), and process design (e.g. 

Kang et al. 2004).  The only attempt in using robust optimization for power generation 

planning seems to be that of Malcolm & Zenios (1994). However, power capacity planning 

with CO2 constraints has never been modeled with robust optimization before.  In this 

thesis, we will develop such a model and illustrate its use with a case study. 

 

As mentioned above, both stochastic and robust programming require a set of scenarios with 

known probabilities as an input.  Most scenario sets in the literature are often not assigned 

properly.  From the articles we have studied, they are either made up from a combination of 

certain percentage above or below a mean value, (e.g. Killmer et al., 2001, Chaton & 

Doucet, 2003, and Yokoyama & Ito, 2002) or made up of arbitrary values and probabilities 

without proper forecasting (e.g. Yu & Li, 2000, and Leung et al., 2002).  In order to obtain 

dependable results from stochastic models, the model should have a more reliable input 

data.  If the data is not dependable, the results will not be reliable. This is why forecasting 

represents an important step in stochastic power system planning. Scenario sets can be 
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generated by forecasting different situations (e.g. economic conditions, climatic data, etc.).  

This thesis proposes the use of simple forecasting techniques to develop such scenario sets 

and should lead to an enhancement in stochastic planning models. 

 

The proposed model is based on the capacity expansion model developed by Hashim et al. 

(2007).  Hashim et al. (2007) developed a power system capacity expansion model under 

CO2 consideration.  The model is a deterministic mixed integer linear program that 

minimizes cost and satisfies the annual energy demand, physical constraints, and CO2 

constraints.  The model described in this thesis takes into account uncertainties in the 

parameters, such as power demand and fuel prices.  By incorporating these uncertainties, 

the model becomes capable of tackling the decision makers‟ favoured risk aversion, and the 

optimal solution becomes less sensitive to fluctuations of the parameters.   

 

This thesis applies the proposed methodology on a real-life case study.  With technical and 

economical data gathered through literature, an optimal capacity expansion plan is 

developed for OPG to meet the demand in 2025, while reducing CO2 emissions by 40%.   

 

The remainder of this thesis is organized as follows.  After this introductory chapter, the 

deterministic formulation of the capacity expansion model will be described.  In Chapter 3, 

different forecasting techniques are described, and a case study of forecasting Ontario 

electricity demand is presented.  The concept of robust optimization and the robust 

formulation of the capacity expansion model are presented in Chapter 4.  The description 

and solution of the case study will then be presented in Chapter 5. Chapter 5 also discusses 

the effects on the optimal solution when the risk aversion of the decision maker changes, 

and compares the robust solution with deterministic solutions. Concluding remarks are 

given at the end of the thesis.  
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2. Formulation of the power system capacity expansion model 

In order to present the robust optimization formulation of the capacity expansion model, it is 

important to describe the deterministic formulation because the robust optimization model 

is built on the deterministic formulation.  The power system capacity expansion problem 

deals with minimizing capital and operating costs of the system while satisfying customer 

demand and meeting physical constraints. In addition, we included CO2 considerations in 

developing the optimal system. The CO2 mitigation options considered in this work consist 

of structural and non-structural changes.  Structural changes include 1) fuel switching, 

switching from carbon-intensive fuel (i.e. coal) to less carbon-intensive fuel (i.e. natural 

gas), 2) adding carbon capture and sequestration systems, and 3) building new power plants.  

The non-structural change considered includes fuel balancing by adjusting the operation of 

generating station to reduce CO2 emissions.   

 

Electric power demand is not constant over time.  Figure 1a shows the hourly power 

demands of Ontario in 2005.  Power demand is higher during the day and it changes with 

the season.  The load duration curve (LDC) (Figure 1b) is obtained by rearranging the 

demands in decreasing order.  The continuous curve is then approximated by step functions 

to facilitate the use of mathematical programming model.  In Figure 1c, the LDC is 

decomposed into two piecewise functions corresponding to peak and base load demand.  Dl 

and θl are the demand and duration of load block l (i.e. peak and base load), respectively. 
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Figure 1 – Electric power demand 

a) Electric power demand over a year (Independent Electricity System Operator [IESO], 2007),  

b) Load duration curve, and c) Piecewise load duration curve 

 

2.1. Deterministic power capacity expansion model 

In this section we will present the deterministic model for power capacity expansion 

planning with CO2 mitigation.  The model is an extension to that of Hashim et al. (2007) in 

that it also incorporates the use of load duration curves.  

 

The objective function (OF) is the annualized cost for operating the fleet including the 

operating cost of existing fleet, the retrofit cost for fuel switching, the capital and operating 

cost of new possible plants, and the cost for capture, transport, and storage of CO2.  Capital, 

retrofit, and fixed operating costs depend on the capacity of the plant (i.e. cost is 

independent of the energy output of the plant, $ / MW).  On the other hand, variable costs 

depend on the operation of the plant (i.e. cost is dependent on the energy output of the plant, 

$ / MWh).  Equations (1) to (8) list the different components associated with the OF.   

 

Fixed operating cost for existing plants (F and NF): 

 



Fi j

iji
fixed

ij
NFi

ii
fixed

i xECxECFP maxmax
 (1) 

The fixed operating cost is a function of plant capacity.   
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Variable operating cost for F and NF: 

    



NFi l

illi

Fi j l

ijllijij ECEHPCVP   (2) 

VP accounts for the variable operating cost for existing generators.  For F, the unit variable 

cost is separated into two components: the variable operating cost excluding fuel and the 

fuel cost (i.e. the cost of fuel j that generator i is using, Pj, multiply by the heat rate for 

generator i ,Hi).  For NF, the unit variable operating cost includes the fuel cost.   

 

Retrofit cost (from coal-fired to natural-gas-fired) for F:  

 



Fi j

ijiij xERRP max  (3) 

If an existing coal-fired plant is chosen to be retrofitted, RP will account for the capital cost 

for fuel switching.  

 

Capital and fixed operating cost for P
new

: 

  



newPi

ii
fixed

i
new

i yECSFNP max  (4) 

For every new plant (i.e. yi = 1), annualized capital and fixed operating costs are added to the 

objective function. 

 

Variable operating cost for P
new

: 

   



newPi l

illiji EHPCVNP   (5) 

VNP accounts for the variable operating cost and the fuel cost for generating electricity from 

new possible power plants. The fuel j is presubscribed to either coal or natural gas for new 

fossil-fuelled plants.  For non-fossil plants, the term PjHi is dropped from the equation. 

 

Capital and fixed operating cost for added carbon capture system to F: 

   



cFi j k

ijki
cfixed
k

c
k zECSFCCS max

 (6) 

FCCS accounts for the annualized capital and fixed operating costs for a carbon capture 

system (CCS) installed at generators cFi . 
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Variable operating cost for added carbon capture system to F: 

  



cFi j k l

lijkijl
c
k zECVCCS   (7) 

Ck
c
 is the unit variable operating cost in $ per MWh for a given CO2 capture percentage, εi. 

VCCS accounts for the cost of operating the CCS for generators cFi . 

 

Capital and annual operating cost for CO2 sequestration pipeline: 

   



cc PFh q

hq
fixed

hq
seq
hq uCSPiCO2  (8) 

CP2Pi accounts for the capital and annual operating costs for all pipelines used for CO2 

transport in the fleet. 

 

The summation of the above costs will yield the objective function, OF, which we want to 

minimize. 

 PiCOVCCSFCCSVNPFNPRPVPFPOF 2Min   (9) 

 

The constraints of the model are described in Sections 2.1.1 to 2.1.8.  

 

2.1.1. Demand satisfaction 

 lDEEE ll

Fi j k

ijkl

Fi j

ijl

PNFi

il
cnew






























  



  (10) 

The energy generated in load block l, which is the capacity allocated during load block l 

minus the power required for the CCS multiply by θl, must be greater or equal to the energy 

demand during load block l. Energy demand, Dl, is given by: 

 jjjl PPD )( 1  (11) 
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2.1.2. Fuel selection and plant shut down 

 Fix
j

ij  1  (12) 

The above constraint is states that each existing fossil fuel generator is either shut down 

(i.e. 0
j

ijx ) or operates on one fuel.   

 

2.1.3. Capacity constraints 

 jFixEE iji

l

ijl  ,max  (13) 

 NFixEE ii

l

il  max  (14) 

 new
ii

l

il PiyEE  max  (15) 

For existing fossil fuel generators, the total capacity allocated for fuel j must equal zero if 

the generator is not using fuel j, otherwise, it must not exceed the capacity of the generator.  

For new power plants, if yi equals zero (i.e. no new plant i is built), the capacity allocated to 

all load blocks must be zero; otherwise, it must not exceed the capacity of the plant.   In 

addition to meeting power capacity constraints, the generators should not exceed the amount 

of energy output governed by the capacity factor.   

 jFixbEE ijilil

l

ijl  ,max  (16) 

 NFixbEE iili

l

lil   max  (17) 

 new
iili

l

lil PiybEE   max  (18) 

Additional constraints are added to nuclear, hydro, and winder power plants.  Base load 

hydro stations and nuclear power plants are used to meet base load demands only because 

they are designed to operate continuously.  Wind turbines are used to meet base load 

demand because they are not disputable and therefore cannot be used to meet peak load 
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demands. Peak load hydro stations are constrained to meet peak load demand because they 

cannot be run continuously. 

 

2.1.4. CO2 emission 

CO2 ij is the CO2 emission factor of boiler Fi  using fuel j and CO2 i is the emission factor 

of boiler newPi .  The amounts of CO2 produced in existing and new fossil fuel boilers 

are respectively listed below: 

 FiECO
j l

ijlliji   2
 (19) 

 
new

l

illii PiECO   2  (20) 

For boilers without a capture system, the amount of CO2 produced equals the amount of CO2 

emitted.  For each new fossil fuel boiler with a capture system, the CO2 emission is still 

equals αi because αi already excluded the CO2 captured from the capture system.  For each 

existing boiler with capture system, the amount of CO2 released will be the difference 

between αi and the amount captured.  The annual CO2 emission by the entire fleet must 

satisfy a CO2 reduction target. 

 current

Pi

i

Fi j k l

iijki COz
new

2)1()1(  


  (21) 

Substituting αi from equation (19) and (20) leads to, 

 current

Pi

illi

Fi j k l

ijllijijki COECOECOz
new

222 )1()1(  


  (22) 

 

2.1.5. Capacity constraint on CCSs 

Capacity constraints on CCSs only apply to existing fossil fuel boilers.  Parameters of 

cPi already incorporated the power requirement of the capture system.  For existing 

boilers, the amount of power required for the CCS is defined as, 

 lkjFizECOEE c
ijkijliij

req
ijkijkl  ,, ,2   (23) 
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To ensure that Eijkl does not exceed Ei
max

 when a capture system is installed and that Eijkl 

equals to zero when a capture system is not installed, the following inequality is used. 

 kjFiEzE c

iijk

l

ijkl  , ,max
 (24) 

 

2.1.6. Selection of CCSs 

Only one capture system can be installed for each existing fossil fuel boiler.  Additional 

constraints are added to ensure that a capture system will not be added to existing natural gas 

plants because the CO2 emission is not intense for natural gas plants.  

 c

j k

ijk Fiz  1  (25) 

If an existing coal-fired boiler shuts down, no capture process will be put online. 

 jFixz c

ij

k

ijk  ,  (26) 

 

2.1.7. Sequestration 

If CCS is put online, either for F
c 
or P

new
, a CO2 sequestration site must be determined.  

 c

j k

ijk

q

iq Fizw   (27) 

 c
i

q

iq Piyw   (28) 

To ensure only one sequestration location is selected for each boiler, the following 

inequality is used.  

 
cc

q

iq PFiw  1  (29) 

It is not reasonable for multiple boilers in the same plant to sequestrate to different sites.  

To ensure only one sequestration site is selected for each plant with multiple boilers, the 

following inequality is further imposed on the model: 

 hq, q'iq, iGiww hqiiq   ,',1''  (30) 
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The following three inequalities ensure that only one pipeline is build for each power plant 

equipped with CCSs. Equation (31) ensures that if any boiler within the plant is selected to 

have sequestration to site q, uhq will be equal to one.   

 qhGiwu hiqhq  ,,  (31) 

The following inequality is used to ensure that each power plant has only one pipeline. 

 hu
q

hq  1  (32) 

If no boiler within plant h is being sequestrated to site q, no pipeline should be built. 

 qhGiwu h

i

iqhq  ,,  (33) 

 

2.1.8. Linearization 

In VCCS, the operating cost of CCSs for F
c
 has a continuous variable, Eijl, multiplied by a 

binary variable, zijk, which turns the model to a nonlinear model.  We can linearize the 

model through an exact linearization procedure similar to the way of Hashim et al. (2007). 

 

The first step is to set a new variable equal to the nonlinear term.  For the operating cost of 

CCSs on F
c
, the new variable is defined as ijkl. 

 lkjFizE c
ijkijlijkl  ,,,  (34) 

To convert ijkl to a continuous variable, the next two constraints are used.  First, ijkl is set 

to a non-negative variable with an upper bound of Eijl.   

 lkjFiE c

ijlijkl  ,,,0   (35) 

Secondly, ijkl must equal zero if the binary variable zijk equals zero and ijkl must equal Eijl if 

the binary variable zijk is one, i.e. 

   lkjFiMzzME c

ijkijklijkijl  ,,,1   (36) 

where M is any large number.   
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Substituting ijkl to VCCS yields the following equation 

  

  



cFi j k l

lijkl
c
kCVCCS   (37) 

The nonlinear term exists in both Equations (22) and (23) (i.e. Eijl is multiplied by zijk), and 

they can be linearized through the substitution of the nonlinear term with ijkl, i.e.   

 current

Pi

illi

Fi j k l

ijkliijllij COECOECO
new

222 )1()(  


  (38) 

 lkjFiCOEE c

ijkliij

req

ijkijkl  ,, ,2   (39) 

 

2.2. Summary 

The deterministic formulation of the capacity expansion model is described in this chapter.  

The model presented is an extension of that of Hashim et al. (2007).  Using different 

structural and non-structural changes, the proposed model can help in determining the 

optimal system configuration for a utility company in meeting consumer demands while 

meeting CO2
 
emission targets. One drawback of the above model is that it cannot account 

for uncertainty.  Long term capacity expansion models for power generation should 

account for uncertainties because parameters such as fuel prices and electricity demands are 

highly uncertain in nature.  To overcome this drawback, the model presented in this chapter 

is converted to a robust optimization model in Chapter 4.   
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3. Forecasting electricity demand 

Forecasting is an important step in planning for any industry.  It determines the quantities 

to be produced, the amount of raw materials to be acquired, and the capacity of a plant to be 

expanded. In the power generation industry, reliable forecasting is evident because the loss 

of load expectation should be maintained within 0.1 days/year (Ontario Power Authority 

[OPA], 2005b).  Electric utility companies simply cannot wait for the demand to emerge 

and then react to it.  The construction of power generators requires up to five years 

(Canadian Energy Research Institute [CERI], 2004). Forecasting future demand using 

proper techniques can ensure the inputs to planning models are more accurate.   

 

Al-Alawi & Islam (1996) identified three main categories in load forecasting problems: 1) 

long term forecasting (5 to 25 years ahead) is used for system and capacity planning and is 

usually called annual peak load demand and energy forecast, 2) medium term forecasting 

(few months to few years ahead) is used for maintenance schedules and is commonly called 

monthly load and energy forecast, and 3) short term forecasting (few hours to few weeks 

ahead) is used for scheduling generating capacity and day to day operations and is 

commonly referred as to hourly load forecast. 

 

This thesis will focus on long term forecasting of Ontario electricity demand.  In particular, 

this thesis will forecast Ontario annual energy demand, annual peak load demand, and base 

load demand.  Annual energy demand and annual peak load demand models have been 

developed in the past using both time series and regression approaches.  Al-Alawi & Islam 

(1996, 1997) wrote a two part tutorial on electricity demand forecasting methodologies.  

They suggested that demands are heavily influenced by weather, socio-economic and 

demographic variables.  Mohamed & Bodger (2005) developed a multiple linear regression 
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model for forecasting electricity consumption in New Zealand.  Their model forecasted 

electricity consumption by using factors such as Gross Domestic Product (GDP), electricity 

price, and population.  Soliman et al. (2004) found that time series models of four degree 

are the best models compared to other multiple linear regression models in determining the 

peak load demand of a big utility company in Egypt.  Egelioglu et al. (2001) developed an 

electricity consumption model for Northern Cyprus based on the cost of electricity, 

population, and number of tourists.  Independent Electricity System Operators (IESO, 

2005b) of Ontario developed a set of multivariate econometric equations to estimate the 

relationship between energy consumption, peak load demand, and other factors such as 

number of employments, Ontario housing stocks, population, and weather factors.  

 

Past literature predefines the form of the forecasting model.  In reality, the factors affecting 

electricity consumption are unknown.  In this study statistical methods in determining the 

factors most appropriate for forecasting electricity are used in order to ensure that the factors 

chosen are most suitable.  For the sake of simplicity of the forecasting models, this study 

focuses on the development of linear models only.  Different forecasting techniques such 

as the time series approach, simple linear regression, and multiple linear regression using 

different independent variables are compared for forecasting Ontario electricity demand up 

to year 2025.  The results will provide a range of values for each dependent variable and 

can be inputted into a stochastic model as scenario sets, for developing a capacity expansion 

planning strategy.  The dependent variables (the variables to be forecasted) are annual 

energy demand, annual summer peak load demand, and base load demand.  In this study we 

did not attempt to forecast the annual winter peak load demand because summer peak load 

demand has already exceeded winter peak load demand in the past few years.  Also, the 

summer peak load demand growth rate is greater than that of the winter peak load demand.  
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This phenomenon exists because more consumers are using natural gas for space heating in 

the winter.  

 

The steps for forecasting Ontario annual energy demand are described in Sections 3.1 to 3.3. 

The results of annual peak load demand and base load demand are then shown in Section 

3.4.   

 

3.1. Data analysis 

Forecasting is based on the concept that data series have underlying patterns.  The first 

thing to do in forecasting is data analysis, through plots to visualize the patterns. The plots 

can tell whether the data series exhibit trend, seasonality, or are stationary.  
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Figure 2 - Ontario’s annual energy demand since 1970 

Figure 2 shows the annual energy consumption of Ontario from 1970 to 2005 (Andrzej 

Zerek, personal communication, May 11, 2006).  As expected, annual energy consumption 

does not have seasonality, but rather, it has a positive trend.  The hump between 1988 and 
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1992 cannot be explained from this graph suggesting that a simple linear regression using 

time (i.e. year) as an explanatory variable might not yield the best model. 

 

With all forecasting methodologies, the data series must be separated into two parts, one 

part for parameter estimations, or model fitting, and the other for model testing.  Model 

testing can ensure that the developed model can produce a good prediction to the rest of the 

data series and is able to produce good forecasts with white noise residuals.  In this study, 

the first 80 percent of the data was used for parameter estimations and the remaining 20 

percent of the data was used for model testing.   

 

To measure the forecasts accuracy, a number of statistics can be calculated.  These 

measures include mean absolute error (MAE), mean squared error (MSE), and mean 

absolute percentage error (MAPE). The equations for these three measures are given below. 

 



N

t

te
N

MAE
1

1
 (40) 

 



N

t

te
N

MSE
1

21
 (41) 

 



N

t t

t

Y

e

N
MAPE

1

100*
1

 (42) 

Where N is the number of observations, et is the error term (i.e. ttt FYe  ), Yt are the 

observed values, Ft are the forecasted values, and t is the time index. 

 

To determine whether there are any remaining patterns in the residuals, Makridakis et al. 

(1998) suggested using an autocorrelation function (ACF).  This is a statistical function 

that measures how two data series are related.  In time series, the correlation is measured 

within the same data series at different lags and hence the name autocorrelation.  ACF 
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shows whether the residual at time t is correlated with the residual at times t-1, t-2, and etc.  

If the resulting values calculated from the residuals are larger than the ACF critical value 

then Makridakis et al. (1998) suggested that some information in the series is not captured 

by the model.  

 

3.2. Time series 

Forecasting using time series is a well developed technique.  Time series is usually used for 

short term load forecasting.  Examples from the literature can be found in Hagan & Behr 

(1987), Amjady (2001), and Paarmann & Najar (1995).  Soliman et al. (2004) suggested 

the use of time series analysis of order 4 to conduct long term peak load demand forecast for 

an Egyptian utility company.   

 

Time series modelling explains the current demand using past data. The general form of 

autoregressive (AR) models is: 

 ntntttt YbYbYbYbY   ...332211  (43) 

In AR models, the right hand side variables are past observations of the dependent variable. 

Yt is the current demand, which we wish to forecast, and depends on the demand at t-1, t-2, 

… to t-n, where n is the order of the time series.  The general notation of an AR model with 

order n is AR(n).  For example, the model in Soliman et al. (2004) is an AR(4) model; the 

current demand depends on the past four observations. 

    

The preferred order of the time series can be determined by using Akaike‟s Information 

Criterion (AIC) (Akaike, 1974).  AIC balances the complexity of the model with the 

goodness of its fit to the sample data. AIC is calculated using the following formula 

 
N

d
V

2
)log(AIC   (44) 
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where V is the loss function,  d is the number of estimated parameters (with AR, d equals to 

n), and N is the number of observed values.  The preferred order of the time series would be 

the one with the smallest AIC value.   

 

Table 1 - AIC of different order for the annual energy demand of Ontario 

Order AIC 

1 2.86 

2 2.30 

3 2.33 

4 2.43 

5 2.53 

6 2.62 

7 2.64 

8 2.68 

9 2.73 

10 2.84 

 

For Ontario annual energy demand, the AICs of orders one to ten were computed and the 

results are shown in Table 1.  The smallest AIC value occurs at order 2, which means that 

an AR(2) model would be preferred over other AR models.  The energy regression model 

using and AR(2) model was found to be  

 21 685.0684.1   ttt EnergyEnergyEnergy  (45) 

The forecasted demand and the actual energy demand are plotted in Figure 3a.  Figure 3b 

shows the residuals, and Figure 3c shows the ACF.  The vertical dashed line on the graphs 

separates the fitting data (on the left) and the testing data (on the right).  Looking at the 

residuals and the ACF, there is no trend or correlation indicating that the residuals yield 

white noise.  A statistical analysis of the above model will be discussed in Section 3.5 

along with the detailed comparison to other forecasting models.  
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Figure 3 - AR(2) model for energy demand 

 

3.3.  Regression 

Most of the time, load and energy demand depends on other variables; these variables are 

called explanatory variables.  For short term forecasts, load and energy demand are 

correlated with weather, time of the day (e.g. morning, evening, and overnight), day of the 

week (e.g. weekdays and weekends), and holidays.  For medium term forecasts, load and 

energy demand are correlated with weather and season.  Socio-economic variables such as 

gross domestic products (GDP) and population of the region tend to have an impact on long 

term forecasts.  Nonlinear relationship of the form f(GDP, population, peak load demand), 

and f(energy demand, temperature, GDP, population) can therefore be employed to forecast 

energy and load demand, respectively.  Such econometric models are beneficial in 

understanding the system economic and are able to deal with interdependencies.  However, 

their complexity do not necessary provide a better forecast than simple statistical 
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techniques.  Two difficulties of such models are technical issues regarding equation 

specifications and the cost for the amount of data, computing, and human resources 

(Makridakis et al., 1998).  In this study, simpler regression techniques with year as the 

explanatory variable and with economic, demographic, and weather factors as explanatory 

variables are used instead of econometric models.  The results of these regression models 

are compared with the time series model described earlier in Section 3.2.   

 

3.3.1. Simple linear regression 

Simple linear regression has a form of  

 bxaY   (46) 

where a is the intercept,  b is the coefficient of the explanatory variable, and x is the 

explanatory variable.  For simple linear regression, x represents year. Figure 2 that was 

discussed earlier shows a positive linear trend in energy consumption.  A simple linear 

regression using year as an explanatory variable can, therefore, suggest how energy 

consumption changes as years past.  In autoregression, the model relates past consumption 

with the demand of the current year.  This simple linear regression will relate the year with 

energy consumption.  Two regression models using year as an explanatory variable were 

developed: 1) using data from 1970 to 2005 and 2) using data from 1993 to 2005.  The 

second regression model uses data since 1993 because the hump in Figure 2 diminishes in 

1993 and the energy consumption seems to be linear since.  The model using data since 

1970 is: 

 tt yearEnergy 290610*66.5 6   (47) 

and the regression model using data since 1993 is 

 tt yearEnergy 200410*86.3 6   (48) 

Figure 4a and Figure 5a show the results of equation 47 and 48 respectively.  Figure 4b and 

Figure 5b show the residual of the models.  Looking at Figure 4c, the ACF plot shows 
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correlation with different lag indicating some information is missing from the model.  

Figure 5c didn‟t show any correlation with other lags, and therefore, the simple regression 

model using data from 1993 has a better fit.  

 

Figure 4 – Simple regression model for energy demand (from 1970) 
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Figure 5 –Simple regression model for energy demand (from 1993) 

 

As with the time series model, there is no underlying information provided with this type of 

regression.  To understand the underlying effects, it is more desirable to use multiple linear 

regression with more representative variables.   

 

3.3.2. Multiple linear regression 

As mentioned before, the development of multiple linear regressions uses economic, 

demographic, and weather variables for long term electricity demand forecasting. The 

general form of a multiple linear regression model can be written as  

 
i

ii xbaY  (49) 

where 

 bi is the coefficient for explanatory variable i 

 xi is explanatory variable i 

 i is the set of explanatory variables 
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The list of potential explanatory variables are GDP, GDP per capita (GDPpp), number of 

employments, population, dwelling counts, heating degree days (HDD), and cooling degree 

days (CDD). These data are obtained from CANSIM II, Statistics Canada‟s key 

socio-economic database, and Environment Canada (2005).   

 

Degree days (DD) measures how hot or cold the weather has been for a particular day.  

HDD measures how cold the weather has been and is defined as: 

  dbd TTHDD  ,0max  (50) 

where, 

Tb is the base temperature, which was chosen 10
o
C in this study 

Td is the mean temperature of a given day 

d is the number of days into the year 

HDDd is the heating degree days in day d 

 

and CDD, measures how hot the weather has been, i.e. 

  bdd TTCDD  ,0max  (51) 

where, 

Tb is the base temperature, which was chosen to be 20
o
C in this study 

CDDd is the cooling degree days in day d 

 

Knowing HDDd and CDDd can help in determining the annual HDD and CDD.  The 

summation of HDDd and CDDd for the whole year will yield the annual HDD and CDD.  

From here onward, we will denote annual HDD and CDD as HDD and CDD, respectively. 

HDD and CDD are potential explanatory variables in forecasting the annual energy demand 

by estimating the weather in a particular year. For annual peak load demand, maximum 

CDDd (MaxCDD), the hottest day in a year, is a potential explanatory variable.   

 

Ontario‟s climate varies from one region of the province to another.  To get the average DD 

of Ontario, we took a weighted average based on dwelling counts.  DD accounts for how 
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much electricity is required for space heating and space cooling; dwelling counts in each 

region approximates the indoor area to heat or cool.   

 

Ontario is separated in thirteen regions for calculating the weighted average DD: 4 regions 

in Southwestern Ontario, 3 regions in Central Ontario, 2 regions in Eastern Ontario, 2 

regions in Northeastern Ontario, and 2 regions in Northwestern Ontario.  The DD in each 

region is described by a representative city.  The weighted average is:  

 
r

r
r DD

dwellingTotal

dwelling
DD  (52) 

where, 

DD is the weighted average of annual or maximum degree days (HDD, CDD, or 

MaxCDD) 

dwellingr is the dwelling counts in region r 

Total dwelling is the dwelling counts in Ontario 

DDr is the annual or maximum degree days (HDD, CDD, or MaxCDD) in region r 

r is the set of regions 

The regions, representative cities, and percentage of dwelling counts in each region are 

listed in Table 2.   
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Table 2 - Data for calculating the weighted average DD 

Region Representative City 
Percentage 

(dwelling counts) 

Southwestern 

Windsor 4.28% 

London 8.46% 

Kitchener 6.44% 

Owen Sound 1.74% 

Central 

Hamilton 11.01% 

Toronto 36.96% 

Barrie 4.91% 

Eastern 
Peterborough 4.79% 

Ottawa 12.84% 

Northeastern 
Sudbury 4.91% 

Timmins 1.20% 

Northwestern 
Thunder Bay 1.53% 

Kenora 0.92% 

 

The other five potential variables are economic and demographic variables.  These 

variables should provide a strong relation with load and energy demands. To investigate the 

relationships between the variables, relational plots can be used.  Figure 6 shows the 

relationship between annual energy demand and GDP.  The plot shows discontinuity near 

130 TWh.  Two different linear relationships can be seen prior and after this point.  
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Figure 6 - Annual energy demand as a function of GDP 

 

To examine the relationship as a time series, GDP per annual energy demand (TWh) versus 

year is plotted in Figure 7. The figure suggests that energy demand in Ontario has gone 

through three phases. In the first phase, electricity productivity decreases, meaning the 

electricity consumption increases faster than economic growth.   In the second phase, the 

electricity growth and economic growth are coupled.  In the last phase, electricity 

productivity improves.  A report by ICF Consulting ([ICF], 2005) also suggests that 

Ontario went through different demand phases.  The report suggests some reasons as to 

why the economy becomes more electricity efficient but very little research has been done 

to understand the relative importance.  We decided to forecast Ontario electricity demand 

(i.e. annual energy demand, annual peak load demand, and annual base load demand) based 

on data since 1993, the beginning of the third phase, since there is not enough data to 

quantitatively analyze the historical trends in Ontario (ICF, 2005). 
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Figure 7 - GDP per annual energy demand (TWh) 

 

Scatterplots for each combination of variables were generated and it was found that all 

economic and demographic variables have strong linear relations with load and energy 

demands.  The scatterplots also showed strong linear relationships among the explanatory 

variables.  This phenomenon is called collinearity (Miles & Shevlin, 2001 and Makridakis 

et al., 1998).  Stepwise regression to choose a subset of the variables was employed.   

 

The procedure adds or removes the most or least statistically significant term, the one with 

the lowest or highest p-value, until there are none left. The p-value is recalculated on the 

residuals after each step.  The entering p-value is set at 0.05 and the exiting p-value is set at 

0.10 while formulating the regressions. The set of variables considered in stepwise 

regression is listed in Table 3.  
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Table 3 – Variables used in the stepwise regression procedure 

GDP ln(GDP) 

GDP per capita ln(GDP per capita) 

Number of Employment ln(Number of Employment) 

Dwelling counts ln(Dwelling counts) 

Population ln(Population) 

Year ln(year) 

HDD CDD 

MaxCDD (for peak load demand) 

 

Defining different initial variables to be included in the first step of stepwise regression will 

yield different regressions.  Several models were generated after experimenting with 

different initial variables.  The resulting regression models are listed in Table 4. 

 

Table 4 – Possible multiple linear regression models for energy demand 

Dependent 

Variable 
Explanatory Variables 

Have 

negative 

coefficient? 

MAE (MWh) 

Fitting Data 
Fitting + 

Testing Data 
Testing Data 

Energy 

a + b1* Employment  

 + b2* HDD  

 + b3 * CDD 

No 661 755 1167 

a + b1*GDP No 889 1034 1825 

a + b1* ln(Employment) No 942 956 1453 

a + b1* Employment No 855 918 1485 

ln(Energy) 

a + b1* Employment 

 + b2* (HDD*Dwelling) 

 + b3* (CDD*Dwelling) 

No 648 803 1328 

a + b1* Employment  

 + b2* HDD  

 + b3* CDD 

No 597 819 1505 

a + b1* GDP No 836 934 1608 

a + b1* Employment No 813 899 1503 

a + b1 * ln(Employment) No 875 917 1469 

a + b1 * ln(GDP) No 959 1247 2432 
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The following approach was used in order to select the most appropriate model: 

1. Remove all models with negative coefficients for any of the selected explanatory 

variables since it is not logical.  (e.g. an increase in employment or dwelling counts will 

not decrease the energy demand) 

2. Select models within the lowest MAE range for fitting data.  To find the lowest range, 

plot the MAE for all models.  Looking at Figure 8, a break in MAE values for the seven 

models is observed after the third model.  After this step, the possible set of regression 

models that remain to be considered has decreased to three models with MAE lower 

than 700 MWh. 
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Figure 8 - MAE of possible energy demand regression models 

 

3. From here, select the model with lowest MAE for all data (fitting and testing data). 

Using the above selection approach, the final regression model for Ontario annual energy 

demand was chosen to be: 

 
tt

tt

CDDHDD

EmploymentEnergy

965.15877.3

345.15178.47204




 (53) 

Energy demand in Ontario for a given year is therefore a function of number of 

employments, HDD, and CDD of the same year.  An analysis of this model is shown in 

Figure 9.  The residuals and ACF plot indicate that the model produces white noise 

residuals.   
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Figure 9 - Multiple regression model for energy demand 

 

3.4. Regression models for annual peak load demand and base load demand 

Regression models for annual peak load demand and base load demand were also developed 

using the same methodologies described in the previous section and are presented here.  

The MAE of all regression models will be presented and compared in the next section.  

After the comparison, the best regression model representing the annual energy demand, 

annual peak load demand, and base load demand will then be selected.   

 

Figure 10 shows the annual peak load demand of Ontario since 1970 (Andrzej Zerek, 

personal communication, May 11, 2006).  The figure shows a positive linear trend with no 

hump.  From the calculation of AIC, for order one to ten, the autoregressive model should 

have an order of three.  The formula of the AR(3) model obtained is: 

 321 4962.03555.0137.1   tttt PeakPeakPeakPeak  (54) 
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Figure 10 – Ontario’s annual peak load demand since 1970 

 

Figure 11 shows the results, the residuals, and the ACF plot of the AR(3) model.  As with 

the figures of Section 3.2 and 3.3, the vertical dashed line in the graphs separates the fitting 

data (on the left) and the testing data (on the right).   
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Figure 11 - AR(3) model for peak load demand 

 

This study also developed two simple linear regression models for the annual peak load 

demand: using data since 1970 and using data since 1993.  Figure 10 shows a linear trend 

since 1970 but since Ontario electricity productivity has increase since 1993 (see Figure 7), 

doing simple linear regression using data starting from 1993 is more accurate. The 

regression model using data since 1970 is 

 tt yearPeak 8.49810*73.9 6   (55) 

and the regression model using data since 1993 is 

 tt yearPeak 8.51310*00.1 6   (56) 

The above two models are analysed in Figure 12 and Figure 13, respectively.  Looking at 

Figure 12c we can conclude that the simple linear regression from 1970 is not an accurate 

model because some lags lie outside the ACF critical value.   
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Figure 12 – Simple regression model for peak load demand (from 1970) 

 

Figure 13 – Simple regression model for peak load demand (from 1993) 
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Using stepwise regression, different multiple linear regression models for peak load demand 

are developed.  All possible regressions are listed in Table 5.  Using the selection 

approach described in Section 3.3.2, the multiple linear regression model shown in Figure 

14 and equation 57 was selected.  

 
ttt MaxCDDEmploymentPeak 24 10*20.110*62.1054.9)ln(    (57) 

 

Table 5 - Possible multiple linear regression models for peak load demand 

Dependent 

Variable 
Explanatory Variables 

Have 

negative 

coefficient? 

MAE (MWh) 

Fitting Data 
Fitting + 

Testing Data 
Testing Data 

Peak load 

a + b1* Employment  

 + b2* MaxCDD  
No 179 304 582 

a + b1* Population  

 + b2* MaxCDD 
No 206 367 686 

a + b1* Employment  

 + b2* GDP 

 + b3* MaxCDD 

Yes 142 451 1132 

a + b1* Population  

 + b2* Dwelling 

 + b3* MaxCDD 

Yes 157 270 531 

ln(Peak load) 

a + b1* Employment  

 + b2* MaxCDD 
No 157 318 671 

a + b1* Employment  

 + b2* GDP 

 + b3* MaxCDD 

Yes 126 468 1220 

a + b1* Employment  

 + b2* ln(MaxCDD) 
No 155 334 718 
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Figure 14 – Multiple regression model for peak load demand 

 

Base load demand data from 1987 to 2004 is obtained from IESO (2005a) and is plotted in 

Figure 15.  The time series also shows a positive trend.  AR, simple linear regression, and 

multiple linear regression models were developed for base load demand.   

 

AIC suggested an AR(4) be used for the time series. Simple regression using data since 

1970 and 1993 and multiple linear regression were also developed.  
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Figure 15 – Ontario’s base load demand since 1987 

 

Table 6 shows all possible multiple linear regression models generated using stepwise 

regression. The results are plotted in Figure 16 to Figure 19.  The residuals of all four 

models did not exhibit any significant correlation with other lags.  The formula of the 

AR(4) model is 

 4321 4475.009968.07662.07823.0   ttttt BaseBaseBaseBaseBase   (58) 

the regression model using data since 1970 is 

 tt yearBase 2.16210*13.3 5   (59) 

the regression model using data since 1993 is 

 tt yearBase 0.21110*11.4 5   (60) 

and the multiple regression model is 

 )ln(10*91.810*60.6 34

tt EmploymentBase   (61) 
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Table 6 - Possible multiple linear regression models for base load demand 

Dependent 

Variable 
Explanatory Variables 

Have 

negative 

coefficient? 

MAE (MWh) 

Fitting 

Data 

Fitting + 

Testing Data 
Testing Data 

Base load 

a + b1* Dwelling  No 180 231 364 

a + b1* Employment No 132 149 230 

a + b1*GDP No 148 136 146 

a + b1*GDPpp No 151 154 179 

a + b1* ln(Dwelling) No 182 217 316 

a + b1* ln(Employment) No 133 134 179 

a + b1* ln(GDP) No 156 140 132 

a + b1*ln(GDPpp) No 153 163 200 

ln(Base load) 

a + b1* Dwelling No 176 252 440 

a + b1* Employment No 134 166 282 

a + b1*GDP No 148 137 152 

a + b1*GDPpp No 149 147 164 

a + b1 * Population No 163 218 374 

a + b1*ln(GDPpp) No 151 157 187 

 

 

 

Figure 16 - AR(4) model for base load demand 
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Figure 17 – Simple regression model for base load demand (from 1987) 

 

Figure 18 – Simple regression model for base load demand (from 1993) 
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Figure 19 – Multiple regression model for base load demand 

 

3.5. Comparisons of models 

Comparisons were made among the four different regression models: AR, simple linear 

regression (using data since 1970 and data since 1993), and multiple linear regression. To 

see which model yielded the most accurate results, we looked at MAE, MSE and MAPE.  

The mean errors in Table 7 are calculated using the entire set of data (both fitting and testing 

data).  Simple linear regression using data from 1970 for energy and peak load demand are 

not included because the ACF plots suggested that these two models have autocorrelation 

and hence they are not accurate models.  Multiple linear regression was chosen to be the 

best model in all instances because the mean error values are the lowest among different 

forecasting methods.   
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Table 7- Comparisons between models 

  MAE MSE MAPE 

Energy Demand Models 

Multiple Regression 755 813810 0.52% 

Regression from 1993 1096 1764470 0.76% 

AR(2) 2382 9194313 2.00% 

Peak Load Demand Models 

Multiple Regression 318 225697 1.34% 

Regression from 1993 600 581434 2.57% 

AR(3) 656 763922 3.38% 

Base Load Demand Models 

Multiple Regression 134 31552 1.20% 

Regression from 1987 184 53074 1.77% 

Regression from 1993 159 38884 1.45% 

AR(4) 207 67567 1.90% 

 

3.6. Forecasting electricity to year 2025 

Forecasting results can be inputted into a stochastic model as a set of scenarios. With 

employment forecasts form Ontario Ministry of Finance (2005) and different weather 

scenarios, different electricity demand can be forecasted.  The lower bound on the forecast 

uses low employment growth rate with mild weather scenarios; the upper bound on the 

forecast uses high employment growth rate with extreme weather scenarios.  The values of 

mild weather scenario are the minimum HDD, CDD, and MaxCDD from 1978 to 2005; the 

values of extreme weather scenario are the maximum HDD, CDD, and MaxCDD from 1978 

to 2005.   Figure 20 to Figure 22 show the forecast of annual energy, peak load, and base 

load demand from 2006 to 2025, respectively.  The figures show the upper and lower 

bound, the median forecast (using median employment growth and median weather values), 

and IESO (2005a) forecast.   
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Figure 20 – Annual energy demand forecast to 2025 

 

Figure 21 – Peak load demand forecast to 2025 
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Figure 22 – Base load demand forecast to 2025 

 

In Ontario, provincial electricity forecasts are published by IESO.  IESO (2005b) uses 

multivariate econometric equations to estimate the relationship between different factors 

and electricity demands.    In 2005, IESO forecasted the energy and peak load demand for 

years 2006 to 2015.  Their forecast lies within the range of our proposed forecast.  For 

annual peak demand, IESO forecasts lie near the lower bound of the proposed forecast after 

2010.  It might be because they assume large conservation efforts will take effect starting 

from 2010.  In 2010, the Smart Meters program will be in place and will require all 

consumers to install a Smart Meter (PowerWise, 2006).  Smart Meters will allow 

distribution companies to track the time and interval use of electricity. By adjusting the 

price of electricity during peak hours, it will encourage consumers to use less electricity 

during those hours.   
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The models presented here did not account for the conservation efforts that the Government 

of Ontario is persuading.  In 2004, the Government of Ontario established the Conservation 

Bureau to develop a provincial wide electricity conservation program (Conservation 

Bureau, 2006). Since the program has only been in place for one year, it is unsure how 

electricity usage will get altered in the future.  

 

In 2025, the annual energy demand lies within the range 175 TWh to 194 TWh; the annual 

growth rate ranges from 0.7% to 0.97%, and peak load demand will range from 32,300 MW 

to 38,800 MW, which represents a 1.21% to 1.82% annual growth.  The base load demand 

will be between 14,000 and 14,800 MW in 2025, this represents a growth rate between 

0.71% and 0.99% annually.  To incorporate these results into a stochastic model, we take 

the values in 2025 and assume uniform distributions.  Therefore, the probabilities and 

values of the scenario sets can be established.  

 

3.7. Summary 

Stochastic models require a scenario set.  Using forecasting techniques, this study 

generates scenario sets to input to stochastic models instead of selecting arbitrary values as 

done in past literature. Comparing different forecasting techniques such as autoregressive 

models, simple linear regression, and multiple linear regression, it is shown that multiple 

linear regression most accurately describe Ontario electricity demands.  Three models were 

developed: annual energy demand, peak load demand, and base load demand.  It was found 

that by the year 2025, annual energy demand will range from 175 TWh to 194 TWh, peak 

load demand will range from 32,300 MW to 38800 MW, and base load demand will range 

from 14,000 MW to 14,800 MW.  Using these ranges, a scenario set is generated by 

assuming uniform probability distributions.   
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4. Robust optimization  

Capacity expansion models have two distinct components: structural and control (Mulvey et 

al., 1995 and Malcolm & Zenios, 1994). The structural component is fixed and free of noise 

from the inputs while the control component is subjected to noisy input data. Two types of 

decision variables are usually used in this type of models: design and control variables.  

Design variables, part of the structural component, determine the structure and the size of 

the process.  These variables are fixed and can not be adjusted once a specific realization of 

the data is observed.  Control variables, part of the control component, state the mode and 

level of production.  These variables can be adjusted after observing the values of the 

uncertain parameters.  The optimal value of a control variable depends on the observation 

of the uncertain parameters and the optimal value of the design variables.  In the models 

within this section, the design and the control variables are denoted by 1n
Rx  and 

2n
Ry , respectively.  To illustrate, let‟s consider the following deterministic model [P1]: 

[P1] ydxc TT Minimize  (62) 

 bAx tosubject  (63) 

 eCyBx   (64) 

 0y  (65) 

   21 ,1,0
nn

Ryx    

Equation (63) is the structural constraint, meaning that the coefficients are fixed and free of 

noise.  Equation (64) is the control constraint, meaning that the coefficients are subject to 

noise. 
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A scenario set, },...,2,1{ Ss  , is introduced to define the robust optimization problem.  For 

each scenario, Ss , the coefficients in the control constraints will become {ds, Bs, Cs, es} 

with a probability of ps, where



Ss

sp 1 .   

 

Robust optimization uses the concept of multiple criteria decision-making to balance the 

trade-off between solution robustness and model robustness. The optimal solution is 

solution robust if it remains close to the optimal solution of any scenario realization.  The 

optimal solution is model robust if the violation of constraints is close to zero for any 

realization of the scenario.  It is unlikely that [P1] can yield a solution that is both solution 

and model robust for all scenarios and a trade off must be considered.  Mulvey et al. (1995) 

developed the following general modeling framework of robust optimization to measure 

such a trade-off between solution robustness and model robustness. 

  

A set of control variables {y1, s =1,2,…S} and a set of error vectors {z1, s =1,2,…S }, to 

measure the infeasibility of the control constraints in scenario s, are introduced with a 

variable for any realization of s.   The robust optimization model version of model [P1] is 

then formulated as: 

[RO1] ),...,,(),...,,,(Minimize 2121 SS zzzyyyx    (66) 

 bAx tosubject  (67) 

 SsezyCxB ssss ,...2,1  (68) 

 0y  (69) 

 21 ,}1,0{
nn

Ryx    

When considering multiple scenarios in robust optimization, the objective function, 

ydxc TT  , will become a random variable taking the value s
T
s

T
s ydxc  , with a 

probability ps.  In stochastic programming, σ(∙) takes the mean value of s  (i.e. 
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



Ss

ssp  )( ).  A distinguishing feature of robust optimization from stochastic 

programming is that higher moments of the distribution of s  can be introduced to measure 

the trade-off between the mean difference between the cost of implementing the plan in 

scenario s and the optimal cost for scenario s had we known that particular scenario will 

occur with certainty.  To account for solution robustness, σ(∙) should be the expected cost 

(i.e. 
Ss

ssp  )  plus a solution robustness measures (λ) multiplied a solution robustness 

term, i.e. 

  2*
21 ),...,,,( 




Ss

sss

Ss

ssS ppyyyx   (70) 

*
s  is the optimal cost for scenario s had we known that scenario s was going to be true.  As 

λ increases, equation (70) puts a higher emphasis on finding a solution that is close to the 

optimal for individual scenarios.  However, the construction changes the linear model into 

a non-linear model due to the quadratic from in the formulation.  Therefore, an alternative 

approach to account for the deviation and which can be easily transformed to a linear form is 

often used. 

 



Ss

sss

Ss

ssS ppyyyx *
21 ),...,,,(   (71) 

 

Equation (68) allows violation in the control constraints by adding error variables, zS, 

because the problem will likely be infeasible according to [P1] under some scenarios.  

However, the violation is penalized in the second term of the objective function, ρ(z1, 

z2,…,zS), the model robustness term. As the model robustness measure, ω, increases, the 

model is forced to produce a solution that satisfy “most” of the constraints by ensuring the 

errors to be as close to zero as possible for all scenarios.  Changing the value of λ and ω will 

vary the trade-off between solution robustness, measured by σ(∙), and model robustness, 
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measured by ρ(∙).  Following the formulation proposed by Yu & Li (2000), we will take the 

following forms for ρ(∙): 

 



Ss

ssS zpzzz ),...,,( 21  (72) 

Equation (68) can be omitted from the model by replacing zS with: 

 sssss eyCxBz  )(  (73) 

Therefore, |zs| can be written as,  

 sssss eyCxBz   (74) 

The robust formulation will then be 

[RO2] 



Ss

sssss

Ss

sss

Ss

ss eyCxBppp  *Minimize  (75) 

 bAx tosubject  (76) 

 0y  (77) 

   21 ,1,0
nn

Ryx    

The above model can be linearized as using the theorem (Theorem 1) initiated by Li (1996).   

 

Theorem 1.  

The following equation can be used to linearize minimize Z = | f(x) - g|, subject to Fx  

(F is a feasible set): 

 2)(Minimize  gxfZZ  (78) 

 0)(tosubject  xfg  (79) 

 0  (80) 

 Fx  

This theorem can be verified as follows: 

For f(x) – g ≥ 0, δ is forced as δ = 0 at the optimal solution, which results in ZZ = Z. 

For f(x) – g < 0, δ is forced as δ = g – f(x) at the optimal solution, which results in ZZ = g – 

f(x) = Z. 

The theorem is then proved. 
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The linearized form of [RO2] will then be as follows: 

  [L-RO] 

 

  












Ss

sssss

Ss

sss

Ss

ss

eyCxBp

pp



 2Minimize *

 (81) 

 bAx tosubject  (82) 

 Ssss ,...2,10*    (83) 

 SsyCxBe ssss ,...2,10    (84) 

 0,, y  (85) 

 21 ,}1,0{
nn

Ryx    

In addition to being a linear system, Yu & Li (2000) proved that the above approach is more 

computationally efficient than other conventional methods for solving robust optimization 

problems.  [L-RO] allows also the penalty of infeasibility (i.e. ω) be different for positive 

and negative deviations (i.e. ω
+ 

and ω
-
), meaning different weight can be put in penalizing 

positive and negation violations of the control constraints. 

 

4.1. Robust power system capacity expansion model 

Following the concept described above, the binary variables in the deterministic model 

described in Section 2.1 are looked at as design variables; they define the structure of the 

fleet, and that optimal value is independent of any realization of the uncertain parameters.  

The continuous variables in the deterministic model represent control variables; they could 

be adjusted once the uncertain parameters are observed, and the optimal value is dependent 

on both the realization of uncertain parameters and the value of the design variables. The 

uncertain parameters include demand of each load block and the fuel price of coal and 

natural gas.  The objective function for the robust optimization becomes then: 
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 2Minimize *

 (86) 

where, 

 PiCOVCCSFCCSVNPFNPRPVPFP sss 2  s   (87) 

     



NFi l

s
il

s
li

Fi j l

s
ijl

s
li

s
jij

s ECEHPCVP   (88) 

    



newPi l

s
il

s
li

s
ji

s EHPCVNP   (89) 

   



cFi j k l

s
l

s
ijkl

c
k

s CVCCS   (90) 

 *
s  is the optimal cost for scenario s assuming scenario s occurred with certainty 

In equation (10), the inequality shows that the energy produced in load block l must be 

greater than or equal to Dl, which means equation (86) shouldn‟t be penalizing 

overproduction. ωl
+
 should then be set to 0 and the optimization problem becomes: 
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    







Ss

sls

Ss

ssss

Ss

ss ppp  2Minimize *  (91) 

 subject to: (12), (25) – (33) and: 

 ssss  0*   (92) 

 sEEED s
s
l

Fi j k

s
ijkl

Fi j

s
ijl

PNFi

s
il

s
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cnew




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where, 
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Equations (12) and (25) to (33) remain the same for the robust optimization model.  

Equations (92) and (93) are constraints for transforming the absolute terms in the objective 
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function (solution robustness term and model robustness term, respectively) to linear 

functions. Equations (94) – (105) are altered from the deterministic model to incorporate 

different scenarios into the constraints. This robust optimization model will be illustrated in 

a case study as given below.  

 

4.2. Summary 

The concept of robust optimization is described in this chapter.  Also, the deterministic 

model described in Chapter 2 is formulated as a robust optimization model in this chapter.    

The model described in this chapter accounts for uncertainty in fuel prices and electricity 

demand.  Using the same methodology, one can incorporate uncertainties in different 

parameters.  A case study is shown in the next chapter using the robust optimization model.  

The next chapter will also show that the optimal solution yield by the robust optimization 

model is less sensitive to the uncertainties given in a scenario set. 
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5. Case study 

5.1. Problem description 

OPG is the largest generation company in Ontario, Canada, owning around 70% of 

generation capacity and generates around 70% of the province‟s electricity (IESO, 2007).  

OPG has a total capacity of 21,920 MW with the characteristic of fossil-fuel generators 

listed in Table 8, the operating costs are listed in Table 9, and the characteristics and costs of 

non-fossil generators are listed in Table 10.  All costs are in 2005 CDN dollars. The 

variable operating cost for fossil fuel generators does not include fuel cost.  According to 

Energy Information Administration [EIA], (2005), the coal and natural gas prices in 2005 

are $2.35/ GJ and $8.55/ GJ, respectively. The amortized factor is 0.10608, based on an 

economic life time of 30 years with an interest rate of return of 10%.  

 

OPG currently operates 4 coal power plants and 1 natural gas (NG) power plant, emitting 

30.2 million tonnes of CO2 in 2005 (OPG,2007).  In this case study, OPG‟s current fleet is 

optimized under stochastic demand and forecasted fuel prices for the year 2025 with CO2 

emission constrained to 60% of current emission levels.      

 

Table 8 - Characteristics of existing fossil-fuel plants (Hashim et al., 2007) 

Plant 

Name 

Plant 

Description 

# of 

units 

Unit 

Capacity 
Fuel Heat Rate

1
 

Capacity 

Factor
2
 

CO2 Emission 

   MW  GJ/MWh  tonne/MWh 

             Coal NG 

L Lambton 4 487  Coal 10.07  0.75 0.94  0.56  

NN Nanticoke 8 477.5  Coal 10.18  0.75 0.93  0.56  

A Atikokan 1 211  Coal 10.61  0.75 1.02  0.61  

LN Lennox 4 525  Natural Gas 10.80  0.75 0.65  0.65  

TB Thunder Bay 2 153  Coal 10.61  0.75 1.02  0.61  

1. DSS Management Consultants ([DSS], 2005) 

2. Assumed to have a capacity factor of 75% 



 55 

 

Table 9 - Cost of existing fossil-fuel plants 

Plant Var. Oper. Cost Fixed Oper. Cost 

 $/MWh $/kW 

  Coal1 NG2 Coal1 NG2 

L 2.45  0.00  37  16  

NN 2.25  0.00  33  16  

A 5.11  0.00  75  21  

LN - 0.00  - - 

TB 5.11  0.00  75  21  

1. DDS (2005) 

2. Assumed to be same as new NG power plants (see Table 14) 

 

Table 10 - Capacity of existing non-fossil plants 

Plant 

Name 
Plant Description 

Total 

Capacity
1
 

Capacity 

Factor
4 

Var. Oper. 

Cost
6 

Fixed Oper. 

Cost
6
 

    MW   $/MWh $/kW 

N Nuclear 66452 0.84 28.38  0.00  

HB Base Hydro 31383 0.66 4.17 0.00  

HP Peak hydro 3745 0.42 10.38 0.00  

W Wind Turbines 7 0.35 05  475 

1. IESO (2007) 

2. Including Pickering A, Pickering B, and Darlington nuclear plants 

3. Base load hydro stations: Adam Beck, Decew and R.H. Saunders stations (Ontario Ministry of Energy, 

2006) 

4. Average capacity factor in 2005 (IESO,2007) 

5. Ontario Power Authority [OPA], (2005a, pp. 198) 

6. Hashim et al. (2007) 

7. OPG (2006) 

 

To create the baseline emission level, this study optimized the current fleet based on the 

demand of year 2005.  The electricity demands in 2005 are 156,971 GWh, 26,160 MW, 

and 12,145 MW for annual energy demand, peak load demand, and base load demand, 

respectively (IESO, 2006).  In 2005, OPG generated around 70% of the electricity demand 

(IESO, 2007).  This study also assumes that OPG holds enough generation capacity to 
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fulfill 70% of the base and peak load demands.  Therefore, OPG‟s electricity demands in 

2005 are assumed to be 109,880 GWh, 18,312 MW, and 8,501 MW for annual energy 

demand, peak load demand, and base load demand, respectively.  Using a piecewise linear 

function, this thesis separates the LDC into two blocks, peak and base demand.  The 

duration of peak load is calculated by first calculating the energy demand in each load block.  

To convert the base load power demand to the base load energy demand, the power demand 

was multiplied by 8760 hrs; yielding a value of 74,471 GWh. Subtracting the annual energy 

demand from the base load energy demand yields a peak load energy demand of 35,408 

GWh. The duration for peak load is 3609 hrs, which is calculated by dividing the peak load 

energy demand with the incremental peak load power demand, 9097.2 MW. 

 

The linearized planning model is written in the GAMS programming language and solved 

with the CPLEX solver.  The fleet configuration for the baseline is optimized with the 

model explained in Section 2.1 and the result is shown in Table 11.    The cost for 

operating the system generated by the model is $2,826 million and the CO2 emission is 28.5 

million tonnes. The CO2 emission provided by the model is 5.6% less than the actual 

emission published by OPG.  The small difference between the two values validates the 

model.   
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Table 11 - Fleet configuration for year 2005 

Plant Name 
# of units in 

service 
Fuel 

Capacity in 

service 

Capacity allocated to 

base load 

Capacity allocated to 

peak load 

   MW MW MW 

L 4 Coal 1948 0  1948  

NN 8 Coal 3820 833 2987 

A 1 Coal 211 0  211  

LN 3 Natural Gas 1575 0  1369 

TB 2 Coal 306 0  306  

N 

 

6,645 5580 0  

HB 3,138 2,086  0  

HP 3,745 0  2,990 

W 7 2.1 0 

 

Assuming a 40% CO2 reduction by 2025, the emission level needs to be less than or equal to 

17.1 million tonnes.  The optimal solution must meet both the CO2 constraint and the 

electricity demand in 2025.  Chapter 3 forecasted Ontario electricity demand to 2025 using 

socio-economic and weather factors. The electricity demand is forecasted under three 

different scenarios.  Assuming that OPG will continually supply 70% of the electricity 

demand in Ontario, the annual electricity, peak load, and base load that OPG should meet in 

different scenarios are listed in Table 12.  EIA (2005) forecasted fuel prices in 2025 under 

three different scenarios. Table 13 shows the natural gas and coal prices under different 

scenarios.  Since no probabilities are given by EIA (2005), this study assumes probabilities 

for the different scenarios are uniformly distributed.  Furthermore, the uncertainties in the 

demand and fuel prices are assumed to be independent, while coal and natural gas prices are 

assumed to be correlated.  The result of this assumption is 9 different planning scenarios, 

each with an equal probability of occurrence.     
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Table 12 – OPG’s electricity demand in year 2025 

Scenario 
Annual Energy 

Demand (TWh) 

Power Demand 

(MW) 

Energy Demand in each 

load block (GWh) 

Load block 

duration (hrs) 

   Peak Base Peak Base Peak Base 

Low 122.6 22,663 9,798 36,744 85,828 2,856 8,760 

Medium 129.0 24,794 10,094 40,608 88,425 2,762 8,760 

High 135.7 27,127 10,359 44,928 90,745 2,679 8,760 

 

Table 13 - Fuel prices in year 2025 (EIA, 2005) 

Scenario Natural Gas Coal 

Low $4.96 $1.67 

Medium $6.10 $2.20 

High $7.36 $3.02 

 

To reduce the CO2 emission and to meet the increasing demand, few alternatives are 

considered.  To meet the increasing demand, different technologies of new possible power 

plants are considered: pulverized coal (PC), IGCC, NGCC, nuclear and wind power plants.  

The economic and technical data for each new possible fossil fuel plant are calculated with 

the Integrated Environmental Control Model (IECM, 2007).  IECM is a modeling program 

that calculates costs and gives performance analyses of emission control equipment for coal 

and natural gas power plants. The results from the program are listed in Table 14.  Each 

fossil fuel plant has a different boiler size and each plant can have up to 10 boilers.  For 

plant PN3, the maximum number of boilers is 15 units instead of 10 units because the 

optimizer tends to choose to build more than 10 NGCC boilers with a capacity of 760 MW.  

For new fossil plants with capture, different capture technologies are used.  The CO2 

recovery technique used for PC and NGCC plants is chemical absorption with 

monoethanolamine (MEA).  Seloxol-based CO2 capture was chosen for IGCC+CCS.   

For all technologies, the amount of CO2 captured is 90 percent of the amount produced.  

The location of new possible plants with CCSs is assumed to be located at the Nanticoke 
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area.  Aside from fossil fuel plants, the model also allows for up to 6 nuclear plants to be 

built to meet the base load demand and for up to 10 wind power plants to be built to meet the 

demand.   

 

Table 14 - Economic and technical data for new possible plants 

Plant 

Name 

Plant 

Description 

Max. # 

of units 

Unit 

Capacity 

Heat 

Rate 

Capacity 

Factor 

Capital 

Cost  

Var. Oper. 

Cost 

Fixed 

Oper. Cost 

CO2 

Emission 

      MW GJ/MWh  $/kW $/MWh $/kW tonne/MWh 

New fossil plants without capture
1
       

PP1 PC 10 458  9.60  0.75 1,777  2.87  57  0.88  

PP2 PC 10 527  9.59  0.75 1,725  2.86  53  0.87  

PI1 IGCC 10 275  11.17  0.75 2,377  1.24  98  0.99  

PI2 IGCC 10 552  11.11  0.75 2,217  1.24  73  0.98  

PI3 IGCC 10 830  11.09  0.75 2,140  1.24  63  0.98  

PN1 NGCC 10 253  7.18  0.75 753  0.00  21  0.37  

PN2 NGCC 10 507  7.18  0.75 749  0.00  16  0.37  

PN3 NGCC 15 760  7.18  0.75 746  0.00  14  0.37  

New fossil plants with capture
1
        

PC1 PC+CCS 10 337  13.02  0.75 3,074  7.35  96  0.12  

PC2 PC+CCS 10 459  13.01  0.75 2,900  6.08  83  0.12  

PC3 PC+CCS 10 492  13.01  0.75 2,851  5.82  80  0.12  

IC1 IGCC+CCS 10 466  13.27  0.75 3,328  5.81  112  0.09  

IC2 ICGG+CCS 10 701  13.23  0.75 3,264  5.65  74  0.09  

NC1 NGCC+CCS 10 432  8.41  0.75 1,221  1.89  29  0.04  

NC2 NGCC+CCS 10 648  8.41  0.75 1,241  1.87  27  0.04  

New non-fossil plants        

Nuc Nuclear 6 1346  0.92 3,0942 15.562  -  

NW Wind 10 10  0.33 1,9133 0.003  473   

1. Calculated with IECM (2007) 

2. CERI (2005) 

3. OPA (2005a) 

 

To meet the CO2 emission constraints, less CO2 must be emitted.  Other than closing the 

existing fossil boilers, the model can choose to retrofit the existing coal power plants to 

NGCC or add CCSs.  For existing boilers, chemical absorption with MEA is the capture 
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technology used in the model.  The percent of CO2 captured is 90 percent.  The retrofit and 

CCS costs for the existing fossil fuel plants are listed in Table 15.   

 

Table 15 - Capture system cost of existing fossil-fuel plants 

Plant Retrofit Cost
1
 

Electricity Required 

for Carbon Capture
2 

Capital  

Cost
3
 

Fixed Oper. 

Cost
3
  

Var. Oper. 

Cost
3
 

 $/kW MWh/tonne CO2 $/kW $/kW $/MWh 

L 599  0.317 654  18  6.05  

NN 599  0.317 654  18  6.05  

A 602  0.317 683  22  6.07  

TB 602 0 762  26  6.08  

1. Assumed retrofit costs 80% of new NGCC of the same size 

2. Hashim et al. (2007) 

3. Calculated with IECM 

 

The captured CO2 is assumed to be transported by pipelines to Lake Erie or Lake Huron.  

The two lakes are saline aquifers located within Ontario and have been shown to be good 

locations for CO2 storage (Shafeen et al., 2004).  Based on Shafeen et al. (2004) findings, 

Hashim et al. (2007) conducted an economic evaluation on CO2 sequestration for different 

plants in Ontario.  The results of the economic evaluation are used in this study and are 

shown in Table 16.   
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Table 16 - Costs associate with carbon transportation and storage (Hashim et al., 2007) 

Plant Capital Cost of Pipeline Fixed Oper. Cost 

 $M $M/year 

  Erie Huron Erie Huron 

Existing plants    

L 351  617  27  47  

NN 331  717  25  53  

A 1,884  1,489  141  112  

TB 121  949  121  72  

New plants with capture   

PC1 325  711  24  53  

PC2 339  725  25  54  

PC3 347  733  26  55  

IC1 335  721  25  54  

IC2 337  723  25  54  

NC1 302  688  23  52  

NC2 311  697  23  52  

 

5.2. Robust solutions 

For robust models, the values of λ and ω will change the solution.  As λ increases, the 

model puts a higher emphasis on minimizing the deviation of the scenario cost from the 

scenario optimal cost.  As ω increases, the model puts a higher emphasis on minimizing the 

violation of the constraints for all scenarios.  To assist with the selection, the model was run 

by varying λ and ω.  The expected generation shortage, expected cost deviation, and 

expected cost for different pairs of λ and ω are shown in Figure 23.   
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Figure 23 - Results from varying λ and ω (o denotes robust solustion described in text) 

 

For a given λ, the expected shortage decreases as ω increases. With a smaller λ, the expected 

shortage decreases faster because the conflict between objectives is reduced and is easier to 

reduce the error with less emphasis on solution robustness.  For a given ω, the expected 

cost deviation decreases as λ increases.  With a larger λ, the solution is closer to scenario 

optimal.  However, the solution is kept close to scenario optimal by increasing the amount 

of shortage.  The expected cost increases as ω increases. With a small ω, the model decides 

to generate less electricity since shortage is not being penalized much. As λ increases, the 

expected cost decreases.  With more emphasis on solution robustness, the model tries to 

minimize deviation from scenario optimal, and hence, lowering the expected cost.  
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From Figure 23, the decision maker can identify unattainable goals and select the best value 

of λ and ω according to their needs.  For example, suppose it is desired to get a plan that can 

meet 99.5% of the expected energy demand, which means that the expected shortage should 

be less than 645 GWh, with an expected cost less than $ 5150 millions and an expected cost 

deviation less than $ 230 millions.  To meet all three criteria, the following combinations 

can be used: λ= 0.1 and 230 ≤ ω ≤ 245, λ = 1 and 245 ≤ ω ≤ 2290, or λ = 5 and 395 ≤ ω ≤ 

455.  From the plots it can also be seen that it is impossible to meet 99.9% of the expected 

energy demand with an expected cost less than $ 5150 millions.   

 

The robust model is solved with λ = 1 and ω = 250, shown as „o‟ on Figure 23, and the 

optimal fleet configuration is shown in Table 17.  Except for 7 boilers in NN and 4 boilers 

in LN, all the existing fossil fuel boilers are shut down.  To meet the demand, the model 

chose to build 13 NGCC with a total capacity of 9,880 MW and 2 nuclear plants with a total 

capacity of 2,692 MW.  To reduce 40% CO2 emission, no CCS is required, and therefore, 

no sequestration is required.  The model chose to build new NGCC boilers instead of 

retrofitting existing boilers because the cost for retrofitting existing boilers is not low 

enough to offset the high heat rates of existing boilers.  With close to 12,000 MW of power 

generation capacity using natural gas, the infrastructure for transporting natural gas might 

not be able to accommodate the needs of the power plants.  In future works, the amount of 

fuel used should also be considered when developing the optimal strategy.   
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Table 17 – Optimal fleet configuration for year 2025 

Plant 

Name 

Plant Description # of units in 

service 
Fuel 

Capacity in 

service 

    MW 

NN Nanticoke 7 Coal 3,342.5 

LN Lennox 4 NG 2,100 

N Existing Nuclear   6,645 

HB Hydro Base   3,138 

HP Hydro Peak   3,745 

W Existing Wind   7 

PN3 New NGCC (760 MW) 13 NG 9,880 

Nuc New Nuclear 2  2,692 

 

When we know which scenario will occur with certainty, we can implement the optimal 

plan.  However, if we plan for a specific scenario and another scenario is realized, the 

chosen plan will be sub-optimal.  To evaluate whether the plan of the robust model is less 

sensitive to different scenarios within the set, the result of the robust model is compared to 

two different scenario optimal plans.  The two scenarios compared are the „baseline‟ case, 

with the medium scenario for both the demand and the fuel prices, and the extreme case, 

with the high scenario for both demand and fuel prices.  The extreme case represents a very 

risk-averse strategy.  The optimal plans for each scenario were evaluated.  The resulting 

outcomes were ranked according to value of the cost deviation or the generation shortage.   
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Figure 24 - Cost deviation comparison 

 

Figure 24 shows that the extreme and baseline plans are more sensitive in most scenarios 

than the robust plan.  The cost deviations are mostly affected by different demands rather 

than by different fuel prices.  Other than the scenarios similar to the design scenario, the 

scenario optimal plans deviate more from the optimal solution for that particular scenario 

compared to the robust plan.  

 

Figure 25 shows the generation shortage for the three plans.  There is no shortage for the 

extreme case because it is designed based on the scenario with the highest demand. All three 

plans have enough capacity to meet the demand in the low and medium demand scenarios.  

For high demand scenarios, the robust plan has 1,659 GWh shortage compared to 6,242 

GWh for the baseline plan.   
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Figure 25 - Generation shortage comparison 

 

As expected, the objective function value from the robust model is lower than implementing 

either the baseline or the extreme plan (Table 18).  The robust plan is the optimal plan (i.e. 

the plan with the lowest OF value) based on the set of scenarios.  The expected cost 

deviation for the robust plan is also the lowest among the three plans.  For the expected 

cost, the robust plan has a higher value than the baseline plan; however, the baseline plan 

has a much higher expected shortage.  The expected shortage of the extreme plan is zero, at 

a cost of higher expected cost than the two other plans.   

 

Table 18 - Overall costs for different plans 

 Robust Extreme Baseline 

OF  

($ millions) 
5,499 5,627 5,626 

Expected cost  

($ millions) 
5,135 5,281 4,801 

Expected cost deviation  

($ millions) 
226 346 305 

Expected shortage  

(GWh) 
553 0 2,081 
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To quantify the importance of randomness when solving stochastic problems, two values 

can be used: Value of the Stochastic Solution (VSS) and Expected Value of Perfect 

Information (EVPI). 

 

VSS is the difference between the objective function of the expected value solution (EEV) 

and the stochastic solution (SS) (Birge & Loveaux, 1997 and Manandhar et al., 2003).  

VSS is defined by 

 SSEEVVSS   (106) 

where, 

SS  objective function value of the stochastic model considering all the 

possible scenarios 

EEV objective function value of the stochastic problem by using optimal 

design variables from deterministic model 

 

VSS is the cost of ignoring uncertainty (Birge & Loveaux, 1997), which is also the benefit 

of knowing the value and the probability of distribution of the uncertain parameters 

(Manandhar et al., 2003). 

 

EVPI is the difference between the expected value of the SS and the Wait and See Solution 

(WSS).  In the literature, the SS is from a stochastic model without a risk parameter.  Since 

the model in Section 4.1 involves risk parameters, EVPI is calculated as the difference 

between the expected total cost of the stochastic model and WSS.  EVPI is defined by 

   WSSSSExEVPI   (107) 

where, 

Ex(SS) expected total cost of the robust solution considering all the possible 

scenarios  

WSS mean expected values for solving all the deterministic objective 

function within the scenario set 
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 
s

sspWSS *  

EVPI is the loss of profit due to the presence of uncertainty (Birge & Loveaux, 1997), which 

is also the measurement of the maximum amount a decision maker would pay in return for a 

complete and accurate information about the future (Manandhar et al., 2003). 

  

VSS of the model is $127 million and $ 128 million based on the baseline and the extreme 

plan, respectively; in other words, by considering the uncertain parameters, the robust plan 

saves $127-128 millions. EVPI of the model is $200 million; in other words, if it were 

possible to know the demand and prices perfectly and expand the capacity that can 

accommodate all fluctuations, the capacity expansion plan can save $200 millions. 

 

5.3. Summary 

This chapter presents a case study focusing on long term capacity expansion plan of OPG 

given a CO2 reduction target.  Different alternatives are considered to meet demand in year 

2025 and the CO2 reduction target including structural and nonstructural changes.  With 

fuel balancing and building new power plants with less CO2 emission, OPG can reduce its 

CO2 emission by 40% without installing CCS.  In order to reduce the CO2 emissions, it is 

required to close all coal plants except for the Nanticoke plant.  To meet the demand in 

2025, the model suggests that 13 NGCC power plants (total of 9,882 MW) and 2 nuclear 

power plants (total of 2,690 MW) be installed.  The amount of fuel available is not 

constrained in the model and hence the model chose to have close to 12,000 MW of power 

generating capacity fuelled by natural gas. In future work, the amount of fuel available 

should be constrained. Comparison between deterministic models and robust models were 

made in this chapter and it can be seen that the optimal strategy from robust models are less 

sensitive to the scenario sets than the optimal strategies from deterministic models.   
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6. Concluding remarks 

Power capacity expansion models frequently encounter uncertainty in parameters, which 

have a probability of occurrence.  When parameters are uncertain, it is impossible to satisfy 

demand in all scenarios without a high cost.  With the use of robust optimization, trade-offs 

between suffering shortage and the cost of operating the fleet can be identified.  This thesis 

presented a robust optimization model for power capacity expansion problems with CO2 

consideration and is formulated as a mixed integer linear program.  The model is then 

applied to a case-study using Ontario Power Generation‟s fleet to satisfy demand in 2025 

and reduce CO2 emission by 40%. The uncertain parameters are demand and fuel prices.  

Assuming a scenario set with associated probability, the optimal plan yield is less sensitive 

to the changes in the input parameters.  That is, the optimal plan is more solution and model 

robust than deterministic plans.   

 

The scenario set used are also generated in this thesis.  In past literature, all scenario sets 

are selected arbitrary.  This thesis uses forecasting techniques to generate scenario sets.   

Different types of regression methods are discussed and compared, such as, autoregressive 

models, simple linear regression, and multiple linear regression.  After comparison, 

multiple linear regression yields the most accurate model for describing Ontario electricity 

demands.  Three models were developed: annual energy demand, peak load demand, and 

base load demand.  It was found that by the year 2025, annual energy demand will range 

from 175 TWh to 194 TWh, peak load demand will range from 32,300 MW to 38,800 MW, 

and base load demand will range from 14,000 MW to 14,800 MW.  The scenario set is then 

used in the proposed robust optimization model with uniform distribution. 
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With the proposed robust optimization model, the optimal fleet configuration of OPG in 

year 2025 with CO2 consideration should be as follow:  

1. Close all coal power plants except for 7 boilers at Nanticoke. (3,342.5 MW) 

2. In addition of the Lennox plant, build 13 760 MW NGCC power plants. (11,980 MW) 

3. In addition to the existing nuclear plants, build 2 new nuclear plants. (9,337 MW) 

4. Operates all existing power plants using renewable energy. (6,890 MW) 

5. No CCS is required to reduce CO2 emissions by 40%. 

 

It might not be reasonable to have 11,980 MW of power generating capacity fuelled by 

natural gas because the availability of a fuel is constrained by the infrastructure of 

transporting that fuel.  In future work, the amount of fuel available should be constrained.   

 

Robust optimization can also incorporate decision maker‟s risk aversion.  To help the 

decision makers with their preference, this thesis generates a series of solution by varying 

the value of model and solution robustness measures.  This series of solution provides an 

idea as to how the model and solution robustness is related to the expected cost.  By 

determining their preferences on model robustness, solution robustness, and expected costs, 

the decision makers can choose an optimal solution reflecting their risk aversion by 

choosing the value of the measures that meets their needs.  The series of solution can also 

notify the decision makers which preferences are non-feasible. 

 

To quantify the importance of considering randomness in the robust model, we determined 

the value of stochastic solution (VSS) and the expected value of perfect information (EPVI). 

By calculating the VSS, it can be shown that it will costs the decision makers $127 and 128 

million if they ignore the uncertainty and develop the capacity expansion plan using 

baseline and extreme scenarios, respectively.  By calculating the EPVI, it can be shown 
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that the capacity expansion plan can save $200 million if all the demand and prices are 

known with certainty, meaning the decision makers should pay up to this amount for more 

complete and accurate information about the future. 

 

The proposed methodology offers an alternative to developing a power capacity expansion 

model with CO2 consideration.  Using this methodology, the decision makers can 

generating solutions that takes into account for uncertainty and are consistent with their 

preferences.   
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Appendix A. Historical electricity demand 

Table A.1 – Historical electricity demand 

Year Annual Energy Demand (TWh) Peak Load Demand (MW) Base Load Demand (MW) 

1970 64,287  9,026  - 

1971 68,134  9,613  - 

1972 73,496  10,184  - 

1973 78,163  10,965  - 

1974 82,696  11,510  - 

1975 84,222  12,248  - 

1976 90,852  12,497  - 

1977 92,854  13,041  - 

1978 95,423  13,357  - 

1979 98,126  13,616  - 

1980 100,172  14,189  - 

1981 101,658  14,975  - 

1982 100,835  14,143  - 

1983 106,071  15,168  - 

1984 112,293  15,869  - 

1985 116,047  16,181  - 

1986 120,575  16,946  - 

1987 126,454  18,522  8,976  

1988 134,394  19,520  8,989  

1989 140,771  20,086  9,826  
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Table A.1 – Historical electricity demand (con’t) 

Year Annual Energy Demand (TWh) Peak Load Demand (MW) Base Load Demand (MW) 

1990 136,743  20,453  9,554  

1991 136,971  21,150  9,911  

1992 134,375  19,976  9,850  

1993 133,486  20,937  9,859  

1994 134,874  20,923  9,952  

1995 137,037  21,770  10,100  

1996 137,416  21,428  10,123  

1997 138,371  21,667  10,430  

1998 139,931  22,443  10,971  

1999 144,095  23,435  10,903  

2000 146,945  23,222  11,624  

2001 146,911  25,269  11,157  

2002 152,959  25,414  11,537  

2003 152,110  24,753  11,604  

2004 153,437  23,976  11,983  

2005 156,971  26,160  - 
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Appendix B. Historical socio-economical and weather data 

Table B.1 – Historical socio-economical and weather demand 

Year 
GDP ($ 

Million 1997) 
GDPpp ($) 

Employment 

(Thousands) 

Dwelling 

Counts 

(Thousands) 

Population 

(Thousands) 
HDD CDD MaxCDD 

1970 164,987  - - 2,273  7,549  - - - 

1971 175,517  - - 2,346  7,768  - - - 

1972 188,539  - - 2,438  7,947  - - - 

1973 202,173  - - 2,531  8,058  - - - 

1974 212,827  - - 2,631  8,189  - - - 

1975 212,784  - - 2,709  8,304  - - - 

1976 226,951  - 3,741  2,784  8,402  2,295  64  4.19  

1977 227,528  - 3,804  2,854  8,496  2,048  83  6.34  

1978 227,953  - 3,924  2,921  8,583  2,663  105  7.52  

1979 235,881  - 4,093  2,990  8,653  2,454  98  5.43  

1980 235,947  - 4,165  3,038  8,731  2,466  92  6.04  

1981 237,013  26,903  4,292  3,079  8,804  2,299  86  6.10  

1982 230,610  25,847  4,199  3,112  8,910  2,384  60  6.31  

1983 240,958  26,646  4,249  3,166  9,029  2,252  187  7.69  

1984 260,070  28,358  4,410  3,219  9,157  2,289  109  5.63  

1985 270,904  29,133  4,570  3,272  9,283  2,355  75  5.40  

1986 281,956  29,871  4,729  3,349  9,423  2,218  83  6.60  

1987 296,072  30,700  4,896  3,451  9,617  1,996  172  7.84  

1988 311,990  31,697  5,083  3,553  9,821  2,221  216  8.96  

1989 322,499  31,905  5,199  3,666  10,072  2,571  126  6.51  
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Table B.1 – Historical socio-economical and weather demand (con’t) 

Year 
GDP ($ 

Million 1997) 
GDPpp ($) 

Employment 

(Thousands) 

Dwelling 

Counts 

(Thousands) 

Population 

(Thousands) 
HDD CDD MaxCDD 

1990 316,929  30,779  5,194  3,755  10,269  1,958  102  7.23  

1991 304,468  29,200  5,017  3,830  10,410  2,112  175  7.75  

1992 307,233  29,067  4,933  3,915  10,547  2,234  31  4.38  

1993 310,170  29,015  4,938  3,977  10,675  1,995  107  6.73  

1994 328,500  30,366  5,014  4,044  10,799  2,391  107  7.84  

1995 340,081  31,055  5,100  4,095  10,931  2,335  180  8.45  

1996 343,826  31,020  5,167  4,144  11,065  2,381  94  6.42  

1997 359,353  32,008  5,291  4,195  11,209  2,374  86  6.06  

1998 376,716  33,144  5,453  4,241  11,348  1,692  162  6.65  

1999 405,034  35,202  5,637  4,300  11,486  1,965  209  9.03  

2000 429,105  36,723  5,817  4,364  11,660  2,161  94  4.85  

2001 436,762  36,709  5,926  4,435  11,866  1,880  184  9.33  

2002 450,636  37,236  6,031  4,511  12,070  2,035  242  8.76  

2003 457,649  37,329  6,213  4,602  12,236  2,356  131  6.93  

2004 470,026  37,884  6,317  4,690  12,385  2,220  88  4.95  

2005 483,253  38,534  6,398  4,779  12,522  2,161  255  8.18  

Source: Ontario Ministry of Fiance (2005) and Environment Canada (2005) 
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Appendix C. Socio-economical and weather data for forecasting 

demand 

Table C.1 - High Scenario 

Year 

GDP ($ 

Millions 

1997) 

Population 

(Thousands) 

Dwelling 

Counts 

(Thousands) 

Employment 

(Thousands) 

GDPpp           

($ 1997) 
HDD CDD MaxCDD 

2005 483,253  12,522  4,779  6,398  38,534  2,663  255  9.33  

2006 497,267  12,713  4,854  6,507  39,151  2,663  255  9.33  

2007 511,688  12,874  4,929  6,617  39,777  2,663  255  9.33  

2008 526,527  13,036  5,004  6,730  40,413  2,663  255  9.33  

2009 541,796  13,197  5,079  6,844  41,060  2,663  255  9.33  

2010 558,050  13,358  5,158  6,960  41,799  2,663  255  9.33  

2011 574,792  13,519  5,236  7,079  42,551  2,663  255  9.33  

2012 592,035  13,679  5,314  7,199  43,317  2,663  255  9.33  

2013 609,797  13,838  5,392  7,321  44,097  2,663  255  9.33  

2014 628,090  13,997  5,471  7,446  44,891  2,663  255  9.33  

2015 644,421  14,154  5,548  7,558  45,564  2,663  255  9.33  

2016 661,176  14,311  5,626  7,671  46,248  2,663  255  9.33  

2017 678,366  14,467  5,704  7,786  46,941  2,663  255  9.33  

2018 696,004  14,621  5,782  7,903  47,646  2,663  255  9.33  

2019 714,100  14,774  5,859  8,021  48,360  2,663  255  9.33  

2020 730,524  14,926  5,935  8,118  48,989  2,663  255  9.33  

2021 747,326  15,076  6,011  8,215  49,626  2,663  255  9.33  

2022 764,515  15,225  6,088  8,314  50,271  2,663  255  9.33  

2023 782,099  15,371  6,164  8,413  50,924  2,663  255  9.33  

2024 800,087  15,515  6,240  8,514  51,586  2,663  255  9.33  

2025 818,489  15,656  6,316  8,616  52,257  2,663  255  9.33  

Source: Ontario Ministry of Fiance (2005) and Environment Canada (2005) 
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Table C.2 - Medium Scenario 

Year 

GDP ($ 

Millions 

1997) 

Population 

(Thousands) 

Dwelling 

Counts 

(Thousands) 

Employment 

(Thousands) 

GDPpp           

($ 1997) 
HDD CDD MaxCDD 

2005 483,253  12,522  4,779  6,398  38,534  2,243  107  6.69  

2006 497,267  12,713  4,854  6,507  39,151  2,243  107  6.69  

2007 511,688  12,874  4,929  6,617  39,777  2,243  107  6.69  

2008 526,527  13,036  5,004  6,730  40,413  2,243  107  6.69  

2009 541,796  13,197  5,079  6,844  41,060  2,243  107  6.69  

2010 558,050  13,358  5,158  6,940  41,799  2,243  107  6.69  

2011 574,792  13,519  5,236  7,037  42,551  2,243  107  6.69  

2012 592,035  13,679  5,314  7,136  43,317  2,243  107  6.69  

2013 609,797  13,838  5,392  7,235  44,097  2,243  107  6.69  

2014 628,090  13,997  5,471  7,337  44,891  2,243  107  6.69  

2015 644,421  14,154  5,548  7,432  45,564  2,243  107  6.69  

2016 661,176  14,311  5,626  7,529  46,248  2,243  107  6.69  

2017 678,366  14,467  5,704  7,627  46,941  2,243  107  6.69  

2018 696,004  14,621  5,782  7,726  47,646  2,243  107  6.69  

2019 714,100  14,774  5,859  7,826  48,360  2,243  107  6.69  

2020 730,524  14,926  5,935  7,897  48,989  2,243  107  6.69  

2021 747,326  15,076  6,011  7,968  49,626  2,243  107  6.69  

2022 764,515  15,225  6,088  8,039  50,271  2,243  107  6.69  

2023 782,099  15,371  6,164  8,112  50,924  2,243  107  6.69  

2024 800,087  15,515  6,240  8,185  51,586  2,243  107  6.69  

2025 818,489  15,656  6,316  8,258  52,257  2,243  107  6.69  

Source: Ontario Ministry of Fiance (2005) and Environment Canada (2005) 
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Table C.3 - Low Scenario 

Year 

GDP ($ 

Millions 

1997) 

Population 

(Thousands) 

Dwelling 

Counts 

(Thousands) 

Employment 

(Thousands) 

GDPpp           

($ 1997) 
HDD CDD MaxCDD 

2005 483,253  12,522  4,779  6,398  38,534  1,692  31  4.38  

2006 497,267  12,713  4,854  6,507  39,151  1,692  31  4.38  

2007 511,688  12,874  4,929  6,617  39,777  1,692  31  4.38  

2008 526,527  13,036  5,004  6,730  40,413  1,692  31  4.38  

2009 541,796  13,197  5,079  6,844  41,060  1,692  31  4.38  

2010 558,050  13,358  5,158  6,919  41,799  1,692  31  4.38  

2011 574,792  13,519  5,236  6,995  42,551  1,692  31  4.38  

2012 592,035  13,679  5,314  7,072  43,317  1,692  31  4.38  

2013 609,797  13,838  5,392  7,150  44,097  1,692  31  4.38  

2014 628,090  13,997  5,471  7,229  44,891  1,692  31  4.38  

2015 644,421  14,154  5,548  7,301  45,564  1,692  31  4.38  

2016 661,176  14,311  5,626  7,374  46,248  1,692  31  4.38  

2017 678,366  14,467  5,704  7,448  46,941  1,692  31  4.38  

2018 696,004  14,621  5,782  7,522  47,646  1,692  31  4.38  

2019 714,100  14,774  5,859  7,598  48,360  1,692  31  4.38  

2020 730,524  14,926  5,935  7,643  48,989  1,692  31  4.38  

2021 747,326  15,076  6,011  7,689  49,626  1,692  31  4.38  

2022 764,515  15,225  6,088  7,735  50,271  1,692  31  4.38  

2023 782,099  15,371  6,164  7,782  50,924  1,692  31  4.38  

2024 800,087  15,515  6,240  7,828  51,586  1,692  31  4.38  

2025 818,489  15,656  6,316  7,875  52,257  1,692  31  4.38  

Source: Ontario Ministry of Fiance (2005) and Environment Canada (2005) 
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Appendix D. IESO forecasting results 

Table D.1 – IESO forecasting results 

Year 
Annual Energy 

Demand (TWh) 

Peak Load 

Demand (MW) 

2,006  156,840  26,764  

2,007  158,346  27,075  

2,008  160,348  27,498  

2,009  161,231  27,930  

2,010  162,626  27,987  

2,011  164,211  28,293  

2,012  165,974  28,613  

2,013  167,005  29,029  

2,014  168,405  29,346  

2,015  169,734  29,759  

Source: IESO (2005a)  

 


