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Abstract

The piano action is the mechanism that transforms the finger force applied to a key into

the motion of a hammer that strikes a piano string. This thesis focuses on improving the

fidelity of the dynamic model of a grand piano action which has been already developed

by Hirschkorn et al. at the University of Waterloo. This model is the state-of-the-art

dynamic model of the piano in the literature and is based on the real components of the

piano action mechanism (key, whippen, jack, repetition lever, and hammer). Two main

areas for improving the fidelity of the dynamic model are the hammer shank and the

connection point between the key and the ground.

The hammer shank is a long narrow wooden rod and, by observation with a high-speed

video camera, the flexibility of this part has been confirmed. In previous work, the piano

hammer had been modelled as a rigid body. In this work, a Rayleigh beam model is used

to model the flexible behaviour of the hammer shank. By comparing the experimental

and analytical results, it turns out that the flexibility of the hammer shank does not

significantly affect the rotation of the other parts of the piano mechanism, compared with

the case that the hammer shank has been modelled as a rigid part. However, the flexibility

of the hammer shank changes the impact velocity of the hammer head, and also causes a

greater scuffing motion for the hammer head during the contact with the string.

The connection of the piano key to the ground had been simply modelled with a revolute

joint, but the physical form of the connection at that point suggests that a revolute-

prismatic joint with a contact force underneath better represents this connection. By

comparing the experimental and analytical results, it is concluded that incorporating this

new model significantly increases the fidelity of the model for the blows.

In order to test the accuracy of the dynamic model, an experimental setup, including

a servo motor, a load cell, a strain gauge, and three optical encoders, is built. The servo

motor is used to actuate the piano key. Since the purpose of the motor is to consistently

mimic the finger force of the pianist, the output torque of the motor is controlled. To

overcome the problem associated with the motor torque control method used in previous

work, a new torque control method is implemented on a real-time PC and a better control

of the motor torque output is established.

Adding a more realistic model of the piano string to the current piano action model and
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finding a better contact model for the contacts that happen between the surfaces that are

made of felt (or leather), are two main areas that can be worked on in the future research.

These two areas will help to further increase the fidelity of the present piano action model.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The piano action is the mechanism that transforms the finger force applied to a key, into

a motion of a hammer that strikes a piano string. Besides carrying the force from the

key to the string, this mechanism allows the pianists to control the amount of force they

want to transfer to the piano string. The action mechanisms of the different brands of

pianos have the same basic shape, but the material that has been used in them and their

dimensions are slightly different. The feel and performance of a typical piano, to a great

extent, is related to the design of its piano action. To identify the important geometric

and material parameters of the action and their effects on the feel and performance of a

typical piano, the piano maker of that piano needs a high-fidelity design tool for the action

mechanism. By keeping the identified important parameters of the action mechanism

constant in the manufacturing process, all of the manufactured pianos (with the same

brand) will have the same feel and performance. Therefore, a high-fidelity design tool for

the action mechanism is pivotal for piano makers. A very good mechanistic dynamic model

of the piano action mechanism has been developed by Hirschkorn et al. [1] at the University

of Waterloo. Their model was based on an action mechanism of the Boston GP-178 grand

piano, which is depicted in Figure 1.1. There is still some room for improvement in their

model, particularly the flexibility of the hammer shank and the connection of the piano

key to the ground, which this thesis addresses.

1
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Figure 1.1: Action Mechanism of the Boston GP-178 Grand Piano

Including the biomechanical aspect to the dynamic model of the piano action is also

important and in order to take the first step toward that purpose, the pianist finger force,

as the input to the piano action model, is replaced by the displacement of the last bone of

the fingertip.

Since the input of the piano action model is the pianist finger force, in the previous

experimental setup used to validate the piano model [2], the motor is run in the torque

control mode. Since there were some problems associated with that torque control method

[32], a new method1 for running the motor in the torque control mode on a real-time PC

is developed.

1.2 Action Mechanism

An exploded view of the piano action mechanism, used in this thesis, is shown in Figure

1.2. The key, whippen, jack, repetition lever, and hammer are the five main parts of the

mechanism. The key rests on a balance rail at its middle.

As shown in Figure 1.3 (a), for each key, there is a vertical peg attached to the balance

rail that passes through the hole in the key. For the key to freely rotate around the balance

rail, there is enough backlash between the peg and the key hole. Also, as shown in Figure

1.3 (b), to minimize the lateral motion of the key, another vertical peg at the front rail

1Explained in Section 2.5.
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Figure 1.2: Components of the Boston GP-178 Grand Piano Action Mechanism

Figure 1.3: (a) Connection of the Piano Key to the Balance Rail (b) Connection of the

Key Front to the Front Rail

goes into a hole at the bottom of the key front.

Figure 1.4 shows that the whippen and the hammer are connected to the ground with

pin joints, and the jack and the repetition lever are joined to the whippen with pin joints.

The collection of the whippen, jack, and repetition lever is called the whippen assembly.

As the front of the key is pressed by the pianist, the key starts to rotate clockwise around
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Figure 1.4: Location of the Pins in the Action Mechanism

Figure 1.5: Rotation Sequence in a Piano Action Mechanism
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its resting point on the balance rail. As a result, the capstan moves upward and presses

on the bottom of the whippen assembly. Then, the whippen assembly rotates counter-

clockwise and pushes up the knuckle of the hammer, causing it to rotate and strike the

piano string (shown in Figure 1.5).

The jack and the repetition lever have specific functionalities. Once the hammer strikes

the piano string, the hammer should not remain in contact with the string and it must

bounce off, immediately. This requirement of the piano action is called escapement and

the jack provides this. When the key is depressed, the jack transfers the force from the

whippen to the hammer. When the hammer is only 1 mm from the string, the end of the

horizontal arm of the jack (the toe) hits a fixed stop, causing the jack to rotate clockwise

and detach from the knuckle. This allows the hammer to fly freely and fall back from

the string, while the key is still fully depressed. Then, the hammer is caught at the back

check (which has a high coefficient of friction) and is prevented from bouncing back and

re-striking the hammer.

A piano action should also have a repetition mechanism, allowing repeated strikes on

the key. Once the hammer has escaped, it is no longer moving with the key. Releasing the

key must re-latch the hammer to allow successive strikes. This requirement is satisfied by

the repetition lever. Once the note is complete, by partially releasing the key, the hammer

is released from the back check and held up by the repetition lever so that, the hammer is

3 mm away from the string. At the same time, the jack moves away from the fixed stop

and falls back under the knuckle.

1.3 Literature Review

1.3.1 Piano Action Modelling

Although a piano is an expensive musical instrument, there is not much research on the

dynamic modelling of the piano action mechanism reported in the literature2. Dynamic

phenomena, such as the contact and friction that exist at the different locations of the

action mechanism, are so complex that modelling the action mechanism is a very difficult

2Major parts of the material in this section are taken from [2].
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task. Of all the dynamic models available for the piano action mechanism in the literature,

only the model by Hirschkorn et al. [1] is considered to be a solid mechanistic model for

the contacts between the different bodies in the piano action mechanism (other dynamic

models use kinematic constraints to represent the contact). For completeness, however, a

concise description of all the work done is summarized as follows.

In 1921, Pfeiffer performed one of the first analyses of the piano action [15]. He con-

ducted extensive analytical investigations of the various actions and components, and iden-

tified how changes to certain parameters affected both the kinematic and dynamic charac-

teristics of the action. Since he used a very simple dynamic model based on conservation of

energy, his sensitivity analysis was fairly rough. Also, he could not experimentally validate

his model.

Matveev and Rimsky-Korsakov, in 1937 [16], initiated one of the earliest attempts to

model the piano action. They simplified the action to a one-dimensional mechanism which

had two masses connected by a spring. One mass represents the hammer, and the other

represents the key and the whippen assembly. His model could fairly predict the general

behaviour of the grand pianos.

In 1972, Oledzki reviewed this model again [17]. He observed a qualitative difference

between the model results and the behaviour of an upright piano action. To improve the

prediction of this model, he replaced the constant mass of the key with a variable mass,

which changed with the position of the key.

In 1987, Topper and Wills [18] proposed a more advanced model, consisting of two

rotating bodies interconnected by a spring. The two bodies represent the key and hammer,

and the spring represents the compliance in the whippen. The parameters in Topper and

Wills’s model were determined through direct measurements of the action components;

however, to obtain good agreement with the experimental data of a real action, model

parameters eventually had to be re-calibrated. Once re-calibrated, the model could predict

the down-stroke motion of the action, well.

In 1992, Gillespie [19] modelled the action using four bodies representing the key, whip-

pen, jack, and hammer. The model used rigid bodies, connected by kinematic constraints.

There was no friction, damping, or compliance in the bodies. Although, he did not consider

all the features of a piano action in his model, by tuning the values of his model parameters
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he was able to obtain a fairly good agreement between his model and experimental results.

In 1996, Gillespie in his Ph.D. thesis significantly expanded his previous model [20]

and added several features. By adding a repetition lever to the original four bodies, he

completed his model. To account for the compliance of some of the contacts and bodies,

springs, damping, and friction were included in certain locations. He could obtain a strong

similarity between the simulation results and experimental data for his model. However,

similar to his previous model, the values of his model parameters were not determined

by actual mechanical tests and to make the simulation results similar to the experimental

data, the values of his model parameters were tuned by trial-and-error.

In 1995, Van den Berghe, De Moor, and Minten [21] created a model that used macros

for each of the five bodies of the action and bond graphs to simulate the system. In

this method, springs and/or dampers are placed between each massive body, and the

Newton-Euler equations are applied for each center of mass, resulting in a model with many

degrees of freedom. The completed piano model consisted of 37 second-order differential

equations and 27 constraint equations. The parameters of the model were based on physical

properties. His model was not computationally efficient and this was the main limitation

of his model. He reports four hours simulation time on a 486DX33 PC for 1 second of real

time. In a later attempt to improve the computational efficiency of the model, a simplified

model was created, and trained to match the experimental results. However, that model

could not predict the response of the piano action for the different ranges of the pianist’s

blows.

In 1999, Hayashi et al. [22] used a one-dimensional model for the piano action to help

develop an automatic playing piano. Their model was very similar to the model proposed

by Matveev and Rimsky-Korsakov [16], however, their proposed model included a third

mass resting on top of the other masses, which represented the hammer. There were some

constrains in their model that limited the motion of the masses to represent the maximum

travel of the bodies. Their model could only predict the motion of the hammer prior to

string contact and for this range of motion, there was a good agreement between their

model and the experimental results. However, the subsequent motion of the action was

not modelled in their work.

Lastly, in 2006, Hirschkorn et al. [1] developed a high-fidelity model of the action. This
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model is mechanistic, i.e., the parameters of this model were directly measured from the

mechanical properties of the action. The main five parts of the action mechanism were

explicitly available in this model. They used a modified Hunt and Crossley [8] contact

model and a simple friction model that took care of both static and kinetic friction forces.

Their model predicted the dynamic response of the action for hard blows very well, and

also gave reasonable results for soft blows. However, their model could not predict the

vibrations of the hammer shank and the key lift-off from the ground, which have been

confirmed through observations with a high-speed video camera, for forte blows. This

is because in their model, the hammer shank was modelled with a rigid body (not a

flexible beam). Also, the connection between the key and the ground was modelled with

a revolute joint and this joint does not allow the key to lift off from the ground. The key

lift-off happens when the front of the key reaches the ground in forte blows.

Based on this literature review, it was concluded that addressing the limitations of

Hirschkorn’s piano action model will lead to developing the most high-fidelity model of a

typical grand piano action.

1.3.2 Flexible Beam Mechanics

Finite Element Method vs. Analytical Beam Models

and Discretization Methods

The deformation of a flexible body in a multibody system is studied either on a segment-

by-segment basis or over the entire range of the body. In general, the former approach gives

rise to the Finite Element Analysis (FEA) approach, whereas the latter is about analyzing

flexible beams by using analytical beam models3.

The FEA approach can be implemented to analyze a flexible body with any shape;

however, the analytical beam models can be only used for analyzing flexible beams. The

variables in the FEA are actual displacements and rotations of the nodes, whereas the

variables employed in the analytical beam models are generalized elastic coordinates. To

refine the results in the FEA, smaller elements are used, and in the analytical beam models

3These models include Euler-Bernoulli, Rayleigh, and Timoshenko, and will be explained in the next
section.
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more shape functions are added to achieve the same refinement [5].

Although the FEA method directly results in Ordinary Differential Equations (ODEs)

for a flexible body, the analytical beam models produce Partial Differential Equations

(PDEs). With the Rayleigh-Ritz discretization method, these PDEs are converted to

ODEs, which then can be solved by using an appropriate ODE solver.

Taylor polynomials are usually used in Rayleigh-Ritz discretization; however, the use of

orthogonal polynomials, such as the Legendre or Chebyshev polynomials, further improve

the behaviour of the generated dynamic equations, in terms of the numerical computation.

Analytical Beam Models

There are various models of the flexible beam in the literature. The Euler-Bernoulli model

for a flexible beam, which is a simplification of the linear isotropic theory of elasticity,

is the simplest one. By definition, when an Euler-Bernoulli beam undergoes deformation,

the beam cross-sections remain planar and perpendicular to the reference (centroidal) axis.

From this, the following assumptions about this beam model can be inferred [4]:

1. The beam’s elastic configuration is completely determined by four variables, corre-

sponding to the axial deformation, two lateral deflections, and a torsional angle.

2. The shear due to bending, and warping due to torsion are neglected.

3. The beam exhibits very little strain, but possibly large deflections.

If the rotational inertia of the cross-sections of the beam is also considered in the beam

model, then the model is called a Rayleigh beam. The Rayleigh model of a flexible beam

yields more accurate results than those of the Euler-Bernoulli model. The Timoshenko

model of a flexible beam is even more accurate than the Rayleigh model, since it also

incorporates the shear effects [13]. Once a model for the flexible beam is chosen, the

Rayleigh-Ritz approach can be adopted to discretize the Partial Differential Equations

(PDEs) of the beam.
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Figure 1.6: Flexible Beam and its Associated Reference Frames [4]

Shape Functions and Elastic Coordinates

Figure 1.6 illustrates a flexible beam, its body-fixed reference frame, and other associated

reference frames. Frame OXYZ is the inertial reference frame.

The reference frame AiX
iY iZi is the beam-fixed frame with its origin located at the

centroid of the cross-section and its transverse axes aligned with the area principal axes

at that point. The X i axis is directed along the undeformed straight centroidal axis, and

remains tangent to the centroidal line at Ai as the beam deforms. Frame BixRyRzR is

the reference frame, defined for the cross-section that is distance Si
R from the origin of
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body reference frame AiX
iY iZi. This cross-sectional frame is a result of the translation

of the body reference frame, along the undeformed centroidal axis. Due to the assumption

that plane sections remain plane, this frame, albeit a body-fixed one, moves along the

cross-section without deformation to Cix
i
fy

i
fz

i
f , as the beam undergoes deformation, thus

defining the position and orientation of the section at any instant of time [5].

The deformation of any generic particle on the centroidal axis of the beam located at

the distance Si
R from the origin of body reference frame AiX

iY iZi, can be specified by

four deformation variables associated with the centroidal axis as beam deforms. The four

chosen variables are u(x, t) the pure axial deformation of the centroidal axis, v(x, t) and

w(x, t), the transverse deformations in the direction of the Y i and Zi axes, respectively,

and φ(x, t) the angle of twist of the beam section on which the particle resides with respect

to the deformed centroidal axis.

Since the dynamic equations of the flexible beam, in terms of u, v, w, and φ, are long,

they are not shown here. However, to discretize the dynamic equations to convert them

from Partial Differential Equations (PDEs) to Ordinary Differential Equations (ODEs),

Taylor polynomials can be used in the following Rayleigh-Ritz approach:

u(x, t) =
nu∑

n=1

un(t)xn (1.1)

v(x, t) =
nv∑

n=1

vn(t)xn+1 (1.2)

w(x, t) =
nw∑
n=1

wn(t)xn+1 (1.3)

φ(x, t) =

nφ∑
n=1

φn(t)xn (1.4)

where x corresponds to the distance Si
R shown in Figure 1.6 and un(t), vn(t), wn(t), and

φn(t) are called elastic coordinates. nu, nv, nw, and nφ are the number of elastic coordinates

used for the four deformation variables. The greater the number of the elastic coordinates

used in the formulation, the greater the number of vibration modes of the flexible beam

can be captured.

In Figure 1.6, it is clear that there is no rigid body motion of the beam with respect
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to the body-fixed frame. As it was mentioned earlier in this section as the beam moves,

the three coordinate axes of the body frame are kept coincident with the three principal

axes at the end of the beam. In other words, the following boundary conditions are always

satisfied

u(0, t) = 0 (1.5)

v(0, t) = 0, v′(0, t) = 0 (1.6)

w(0, t) = 0, w′(0, t) = 0 (1.7)

φ(0, t) = 0 (1.8)

where the prime represents the derivative with respect to x. In addition, Chebyshev and

Legendre polynomials can be implemented as the shape function, and the details regarding

their implementation are in [5].

The DynaFlexPro software4 is used to generate the dynamic equations of the piano

action mechanism in this work. The latest version of this software supports Rayleigh

flexible beam model, and any of Taylor, Chebyshev, or Legendre polynomials can be used

as shape function. The FEA approach is not incorporated in this software, yet. Since the

piano action model is created in this software, the Rayleigh flexible beam model will be

used to model the hammer shank.

1.3.3 Biomechanical Model of the Fingertip

Adding a biomechanical model of the pianist’s hand, elbow, and arm to the piano action

model can disclose interesting issues about the pianists’ gesture, when they play the piano,

that may eventually help the piano tutors to better teach piano lessons. However, before

adding the model of the pianist’s hand, arm, and elbow to the action model, one needs

to precisely characterize the contact between the pianist’s fingertip and the top of the key

front. Once this contact location is characterized, then the input to the piano action model

can be changed from the pianist’s fingertip force to the displacement of the last bone of

the fingertip. Therefore, a model for representing the stiffness and damping characteristics

4The DynaFlexPro software is explained in Section 3.1.
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of the fingertip pulp is needed5.

The mechanical properties of the fingertip pulp, in terms of its stiffness and damping,

have been already investigated for a few different purposes. Serina et al. [23, 24] have

investigated the role of the fingertip pulp in attenuating the dynamic forces transmitted to

the wrist during activities such as typing. The purpose of their research was to examine the

hypothesis that repeated loading of the fingertip contributes to tendon and nerve disorders

of the wrist. Consequently, they adopted a structural model for the fingertip pulp, based

on the theory of elastic membranes [24]. According to their model, in any indentation

situation, the pressure on the fingertip is constant across the contact area [24]. With

almost the same purpose, but different approaches, Pawluk [26, 27, 28] and Wu [29, 30]

tried to find the mechanical response of the fingertip pulp to the dynamic loading. Wu

used a two-dimensional non-linear FEA method to model the fingertip pulp; however, due

to the high computational cost of the FEA methods, his work was disregarded. Pawluk

has investigated the dynamic response of the fingertip pulp, based on the Fung’s quasi-

linear viscoelastic model of the tissue. Her model captured the principal features of the

distributed pressure response of the fingertip [31].

Fingertip pulp has been also studied to examine the relationship between the stimula-

tion of the mechanoreceptors (that are concentrated in the curved region of the fingertips),

and the force applied to the fingertip [23, 24, 25]. Further research in this area might pro-

vide a further understanding about the force feedback which the pianists experiences from

their fingertips while they plays the piano. This can help piano tutors to better realize the

learning process of playing the piano.

As it was mentioned in Section 1.3.2, the DynaFlexPro software does not support the

FEA approach yet, and therefore in the scope of this thesis, the final fingertip pulp model

was needed to be a lumped model with mechanistic components. This also results in fast

simulation times of the whole model (action model and the fingertip).

After all the fingertip pulp models in the literature were examined, it was only Pawluk’s

model that, according to the two criteria of the thesis, seemed to be an appropriate choice.

However, based on the information she has provided in her papers [27, 28], her theoretical

5A good fingertip model is also necessary in the case the motor torque control should be replaced by
the motor shaft position control. More details are provided in Section D.4.
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Figure 1.7: Proposed Non-Linear Model for the Fingertip Pulp

results could not be reproduced. Also, the parameters of her model were so sensitive to

small changes that, her model was not used in this thesis.

Finally, after thoroughly examining all the models, a non-linear model for the fingertip

pulp, shown in Figure 1.7, was proposed. This model has non-linear spring-damper com-

ponents and closely reproduces Pawluk’s experimental data. The details of this model are

given in Section 3.8.

1.4 Contributions of the Thesis

The performance of a piano, to a great extent, is related to the design of its piano action.

For piano makers, a high-fidelity design tool for designing piano action, based on the

mechanical properties of the piano action components, is crucial. The main purpose of

this thesis is to improve the fidelity of the state-of-the-art dynamic model of a piano action

mechanism developed by Hirschkorn et al. [1] at the University of Waterloo. The flexibility

of the hammer shank and the connection of the piano key to the ground were identified as

the main areas for improvement. As it will be discussed in the following chapters, by re-

modelling the hammer shank with a flexible beam, the fidelity of the piano action model is

not improved but this discloses the facts that the flexibility of the hammer shank causes a

scuffing motion for the hammer head and also changes its impact velocity. By re-modelling

the revolute joint of the key with a revolute-prismatic joint however, the fidelity of the

model significantly increases.

Adding biomechanical aspects to the piano modelling may eventually help the piano

tutors to better teach piano lessons. To that end, in this thesis, the first step for adding
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the biomechanical aspect to the available piano model, i.e. proposing a mechanistic model

that represents the stiffness and damping characteristics of the fingertip pulp, is taken.

By using experimental data, the values of the parameters of this model were obtained.

This allows changing the input of the piano model from the pianist finger force to the

displacement of the last bone of the fingertip.

Lastly, to tackle the problem associated with the previous torque control method of the

motor6 used in the experimental setup for validating the analytical results, a new method,

on a real-time PC is developed. This new method results in a better performance for the

torque control of the motor.

In summary, the main contributions of the thesis are as follow:

• Improving the fidelity of the dynamic model of a grand piano action developed by

Hirschkorn et al. [1] by adding a flexible beam model for the hammer shank and

modifying the connection point between the key and the ground.

• Adding biomechanical aspects to the piano model by replacing the pianist’s finger

force, as the piano action model input, by the displacement of the pianist’s last finger

bone.

• Implementing a new method for controlling the torque output of the motor.

6Explained in Section 2.5.



Chapter 2

Experimentation

The same action mechanism from the Boston GP-178 grand piano that was used by

Hirschkorn [2] is also adopted for the experimental setup for this thesis.

This action mechanism in Figure 2.1 is1, in fact, the keyboard of the GP-178 grand

piano, stripped to a single key. In terms of space, this configuration provides access to the

different locations of the action mechanism to install the encoders at specific locations.

The dynamics of a vibrating string is quite complex, and including it in the piano model

is beyond the scope of this thesis. Modelling the contact between the hammer head and

the rigid bar is not difficult and is similar to the modelling the other contacts that exist

in the piano action2. Therefore, similar to Hirschkorn’s work [2], a rigid bar is used in the

experimental setup, instead of a real string.

In order to run the experiments with this mechanism, the following measurement in-

struments and motor are required:

• A load cell for measuring the force transferred from the motor arm to the key,

• Three encoders for measuring the rotation of the different parts of the action,

• A high-speed video camera for measuring the lift-off from the key,

• A strain gauge for measuring the flexibility of the hammer shank, and

1Figure 1.1 shows the same action mechanism in another view.
2Figure 3.5 shows the 14 contact locations in the piano action mechanism.

16
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• A motor for actuating the key.

Figure 2.1: Modified Keyboard with the Key 52

Aside from the strain gauge and the real-time target PC, all the hardware is available

from the previous work [2]. A short description of the equipment is provided in the following

sections.

2.1 Actuation of the Key

For two reasons, providing an actuating element for the experimental setup is necessary.

First, the consistency of the experimental setup, for a specific input force profile should

be tested. Secondly, the pianist is not able to play the piano with any given force profile,

and a precise electromechanical device is needed for this purpose. Therefore, a Kollmorgen

MT308A1 DC brushless rotary motor was chosen [2]. To create a linear motion with this

motor, a small resizable aluminium arm was attached to the output shaft [2]. The motor,
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Figure 2.2: (a) Motor and Actuation Arm (b) Motor Drive

its arm, and the CE03250 amplifier used for running that are presented in Figure 2.23.

According to the distance over which the motor is required to provide a linear motion

(10 mm)4, the length of the motor arm was chosen as 100 mm [2]. With this arm length,

the motor is capable of generating peak forces as high as 120 N. Since, in the literature,

actual pianists’ finger forces have been tested [2], and found not to exceed 50 N, the 120

N force from the motor suffices for this application. Although in the previous work [2]

a National Instruments PCI-7342 Motion card was used for controlling the motor torque

output, in this thesis, the motor is controlled by a National Instruments PCI-6229 DAQ

card on a real-time target PC. More detail about this is provided in Section 2.5.

2.2 Force Measurement

To compensate for the imperfections that exist in the torque control of the motor, a torque

(or force) sensor should be adopted for measuring the actual torque output of the motor

3Actual tests confirm that this motor and the CE03250 amplifier are capable of producing a desired
force profile with a very high precision.

4Since θ=10/100 and sin(θ) ≈ θ, this distance is appropriate.
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in each experiment. The torque of the motor is eventually transferred to the front of the

key by the motor arm. Instead of measuring the motor torque by a torque sensor, it is

more direct to measure the force on the top of the key front. Therefore, a 25 lb (111 N)

rated subminiature load cell was used for directly measuring the force transferred from the

motor arm to the piano key [2].

Figure 2.3: Load Cell Mounted on the Key

This load cell model is strain gauge based, and the National Instruments SCXI-1520

signal conditioning module was used for reading that. By using the PCI-6034E multifunc-

tion DAQ card, it was possible to read the load cell with a 2 kHz sampling rate [2]. It was

the highest sampling rate that could be used without missing data in any time step.

Since the load cell was very light (1.1 g), its mass was not considered in the action

model. Figure 2.3 depicts the load cell mounted on the top of the front of the key, by using

an adhesive strip.

2.3 Position Measurement

For measuring the rotation of the different parts of the action mechanism, a modular

encoder system, from the MicroE Systems Company, was used [2]. This system consists of

optical encoders and scales which are not physically connected. As opposed to the other

common encoder types, this type of encoder introduces no friction and adds very little



Experimentation 20

inertia to the system.

The scales are mounted on different parts of the mechanism. When these parts rotate,

the scales rotate, as well. An optical sensor measures the amount of rotation by counting

the number of small bars printed over the scales. The scales (linear and circular) and

optical sensor are represented in Figure 2.4 (a). Figure 2.4 (b) signifies a circular scale

mounted on the piano hammer which is read by an optical sensor.

Figure 2.4: (a) Optical Encoder and Scales (b) Encoder and Scale Mounted on the Hammer

A small processor is attached to each optical encoder and it interpolates the readings

and provides a quadrature encoder signal, meaning that the resolution is 4 times better

than the actual graduations on the scales. In this work, two circular scales with 1.25 in and

2.25 in diameters, and one linear scale with 50 mm length were used. The resolution of the

circular scales is 163,840 and 327,680 counts/revolution, respectively, and the resolution of

the linear scale is 0.5 µm/count.

The quadrature signal is measured by the National Instruments PCI-6602 Counter/Timer

board. By taking advantage of the high-speed capture and buffer capabilities of this

Counter/Timer board, it is possible to read the optical sensors with a 2 kHz sampling

rate.

The experimental setup with the motor, load cell, and attached encoders is illustrated

in Figure 2.5.
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Figure 2.5: Experimental Setup

2.4 High-Speed Video Imaging

A high-speed video camera is necessary in order to attain some specific types of accurate

measurements. For measuring the lift-off from the key, for instance, a high-speed video

camera provides accurate measurements.

A Photron Fastcam-X 1280 was used for the video recording [2]. The software, included

with the camera, allows tracking the planar coordinates at any desired point in the videos.

The camera is capable of capturing high speed videos at resolutions up to 1280 by 1024

pixels and speeds up to 16,000 frames per second, although the higher frame rates are

possible with lower resolutions only. The resolution of 1280 by 1024 pixels and the speed

of 2,000 frames per second were used for video recording in this work.
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2.5 Real-Time Target PC

Hirschkorn used two different open-loop methods for controlling the motor torque output

[32]:

1. By directly writing the motor torque demand signal at the analog port of the amplifier

(motor drive), and

2. By using the National Instruments PCI-7342 motion card.

Due to the limited computational speed of the CPU of the available PCs, the first

method could not be run faster than 100 Hz (10 ms refresh rate)5. This refresh rate was

not fast enough for sending the torque demand signal to the motor, for some typical pianist

finger force profiles. Figure 2.6 shows an example in which a pianist finger force profile

cannot be accurately reproduced with a 10 ms refresh rate.

Figure 2.6: A Typical Finger Force Profile of a Pianist with 100 Hz Sampling Rate

5In this case, a PC with a 2.4 MHz CPU was used.
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Figure 2.7: Spline Interpolation of the Specified Motor Output Profile

The second method can potentially be run with 8330 Hz (120 µ s) frequency; however,

the software that National Instruments has included with the PCI-7342 motion card, allows

set points only 10 ms away from each other. The points between 10 ms are automatically

interpolated by using splines. As seen in Figure 2.7, this introduces a problem.

The solid line represents the specified motor output profile, and the broken line is the

interpolated motor output profile that is sent to the motor drive. At times this low (10 ms

between points), there is significant overshoot due to the cubic spline interpolation, and

this is an artifact of the spline function.

By checking the performance of these two methods, it is concluded that a solution for

improving the performance of the motor torque control is to increase the execution time

(refresh rate) in the first method. One way is the employment of a real-time execution

platform which can be a PCI eXtensions for Instrumentation (PXI) or a real-time PC.

For this project, it is decided to provide a PC with a real-time operating system. A PC

with a Pentium 4 CPU was purchased, and a real-time operating system from National

Instruments was installed on it. The torque control programs are then run on this real-

time PC which allows the deterministic and fast execution of programs. Since this real-time

platform provides a faster execution time than a regular PC, it can be simultaneously used
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Figure 2.8: Idea of Using a PC as a Real-Time Platform

for reading the load cell, while the motor demand signal is sent to the amplifier from there.

It turns out that the fastest frequency at which the real-time PC is able to read the load

cell and send the torque demand signal to the amplifier simultaneously is 500 Hz (five times

faster than in [2]).

Figure 2.8 shows how the real-time PC target (PC(II)) is implemented for real-time

applications. The torque control programs are developed at the host machine (PC(I)).

Then, programs are transferred to the real-time target machine by a cross-over cable,

where they can be executed fast and deterministically.
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2.6 Strain Measurement

A strain gauge is needed for measuring the strain on the hammer shank. The hammer shank

is an octagonal wooden rod, and the width of each of its edges is 2.57 mm. According to

this geometry, only a very narrow strain gauge can be mounted on one of the shank’s

edges. For this application, the strain gauge type EA-06-062DN-350 from Intertechnology

Inc. is purchased. The nominal resistance of this strain gauge is 350 ohm and the width

and length of this strain gauge are 1.95 mm and 5.51 mm, respectively, as shown in Figure

2.9.

Figure 2.9: (a) Strain Gauge (b) Strain Gauge Mounted on the Hammer Shank

As shown in Figure 2.10, this strain gauge was incorporated in a Wheatstone bridge.

Three passive 350-ohm resistors were added to the bridge, to complete its electric circuit.

The same devices that were used for reading the load cell, i.e., National Instruments

SCXI-1520 signal conditioning module and PCI-6034E multifunction DAQ card, are used

for reading this strain gauge.
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Figure 2.10: Strain Gauge Electric Circuit

Figure 2.11: Typical Motor Force Profile

2.7 Strain Results

A reasonably hard blow from a pianist is called forte. The effect of the flexibility of the

hammer shank on the dynamic response of the piano action is appropriately large for this
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blow. Consequently, for the typical forte profile in Figure 2.11, the strain on the hammer

shank was experimentally measured. The maximum of the motor force profile is 30 N.

Figure 2.12: Hammer and its Flexible Shank

Figure 2.12 illustrates the hammer shank and the point at which the strain has been

measured. It should be noted that the strain is measured at the top of the hammer shank,

where the strain gauge is mounted.

The measured strain at the specified point of the hammer shank is depicted in Figure

2.13, for three trials. Three trials are performed for the strain measurement to verify that

the experimental setup is capable of producing consistent and repeatable results. As it

is seen, the strain profiles for the three trials are virtually identical. This shows that the

experimental setup can produce very consistent strain profiles with the same force input

to the motor.

The positive strain shows that the top part of the hammer shank is in tension and the

negative strain shows that point is in compression. A comparison between the theoretical
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and experimental results for the strain is conducted in Chapter 5.

Figure 2.13: Measured Strain for Three Trials with a Forte Blow

2.8 Motor Torque Control

As it was mentioned in Section 2.5, to control the torque output of the motor, by using

a real-time PC the motor torque demand signal is sent to the amplifier analog port. The

maximum refresh rate at which the torque demand signals could be sent by this method,

is 500 Hz6. In this method, since no feedback from the actual torque output of the motor

is used to modify the motor torque demand signal, the control loop is open.

6This is the maximum refresh rate that the real-time operating system can provide. In faster refresh
rates, some cycles may not have enough time to execute.
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Figure 2.14: Desired and Actual Force Output Curves
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The curves in Figure 2.14 show the performance of this method. These force profiles re-

flect the static force response of the motor, i.e., in the experiments run to obtain these force

profiles, the motor arm pushes on a static surface. As it is seen, in the open-loop operation

mode, the difference between the desired force profile that is loaded onto the amplifier, and

the actual force output of the motor measured by the load cell is not significant7.

However, there is a simple way by which the open-loop performance of the system

can be slightly improved. By shifting the actual force output 8 ms back, a better match

between the desired force output and the actual force output is obtained. At the maximum

points of the force curve the match is not so good, but overall, the shifting back is a good

solution to provide more accuracy, with maintaining the system working open-loop.

Figure 2.15 shows two typical force curves before and after 8 ms shifting back. This

figure shows that by applying the shifting, the maximum difference between the desired

and actual force curves goes down to 6.5 % (check the bottom plots in Figure 2.15). Based

on this error, the performance of the open-loop operation is quite satisfactory.

To improve the performance of this new method even further, the neural network

technique and a few linear control methods were tried; however, none of them increased

the accuracy of the control on the motor torque output. These control methods are included

in Appendix D.

By using the equipment described in this chapter, it turned out that the experimental

setup is capable of producing consistent responses for a given pianist finger force profile. To

validate the response of the piano action model developed in this thesis, a few experiments

were conducted and the response of the action model was compared with the corresponding

experimental data.

7For small rotation angles of the key, since the motor force and the motor arm are perpendicular to each
other and the length of the motor arm is constant, as well, the equation T = F.d, where d is the motor arm,
is valid. Therefore, in this case the words torque control and force control can be used, interchangeably.



Experimentation 31

Figure 2.15: Two Typical Force Curves before (Top Profiles) and after (Bottom Profiles)

8 ms Shifting Back



Chapter 3

Dynamic Model of the Piano Action

The components, physical parameters, and geometric dimensions of the dynamic model

of the piano action in this thesis are measured from key 52 of the Boston GP-178 grand

piano. Although this is a specific piano action mechanism, this model can be modified to

be used for other actions too.

Since all the components of the piano action move exclusively in a single plane, the

model of the piano has been kept two-dimensional. Except for the model of the hammer

shank and the connection of the piano key to the ground, the dynamic model created in

this work is similar to that in [2].

The piano action mechanism used in this thesis is shown in Figure 1.1. Newton’s second

law can be used to precisely model certain dynamic aspects of this mechanism; however,

for some dynamic phenomena such as friction and contact between surfaces made of felt (or

leather), that exist in many locations of this mechanism, there is no accurate mechanistic

model in the literature [33]. Although finding a high-fidelity model for the friction and

contact for this specific mechanism is not the focus of this work, the model used for the

contact and friction significantly affects the precision of the model results.

The felt bushing in Figure 3.1 is another element that is difficult to precisely model.

The bushing creates friction in the joint and also allows some translational motion.

32
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Figure 3.1: Felt Bushing on the Whippen

3.1 Action Mechanism

The DynaFlexPro software is used to generate the dynamic equations of the piano action

mechanism. This software is a package for modelling and simulating the dynamics of

mechanical multibody systems [10], developed at the University of Waterloo, and works

based on Linear Graph Theory [36]. A graph is created by describing the interconnections

(edges) between all of the physical locations (nodes) in a system. With a very methodical

approach, a graph can be converted into a system of equations.

A partial graph of the system is presented in Figure 3.21. The rigid bodies, which

account for the masses, moments of inertia, and gravitational forces on the bodies, are

represented by the dashed lines. Besides the key, whippen, jack, repetition lever, and

hammer, a massless body has been also added to the mechanism. The key is attached to

this massless body with a revolute joint, and this massless body is connected to the ground

with a prismatic joint. Therefore, the massless body allows the key to lift off the balance

rail without adding any inertia effects to the mechanism. In Section 5.2, the results of

this model indicate that the massless body, along with the revolute and prismatic joints,

1The exact locations of the points on the different components are shown in Figure A.1 in Appendix
A.
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Figure 3.2: Simplified Graph of a Piano Action

improve the previous simple revolute joint model for the connection of the key to the

ground [2].

The joints, which connect the bodies together, should also be included in the graph.

Two revolute joints connect the whippen and hammer to the ground, and two revolute

joints connect the jack and repetition lever to the whippen. The latter joints also include

rotational springs. As it was mentioned earlier in this section, a revolute joint connects the

key to the massless body, and a prismatic joint connects the massless body to the ground.

There are 14 edges for the contacts between the bodies, but it is too complicated to

represent them in the graph, and they are, instead, discussed in Section 3.2. There is also

one edge for representing the pianist finger force in the mechanism which is not shown in

the graph.

The DynaFlexPro software takes the topology and parameters of a mechanical system,

as the input, in the form of a text file, and then generates the dynamic equations of the

system, symbolically.
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Figure 3.3: ModelBuilder Representation of the Piano Action Mechanism

ModelBuilder is a Graphical User Interface (GUI) that easily creates the input text file

of a given mechanical system. Figure 3.3 illustrates the piano action mechanism in the

ModelBuilder GUI. In this figure, the 9 boxes represent the 8 moving parts of the model

and the ground. The lines between these boxes represent the joints, contact forces, or

external forces that exist between the parts. The revolute joints connecting the jack and

repetition to the whippen also include rotational springs. By clicking on each box or line,

the properties of the corresponding part or constraint can be set or modified. The inputs
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and modelling variables of the mechanical system are also set in ModelBuilder. Once the

input text file is created, it is used by DynaFlexPro for creating the dynamic equations of

the mechanical system.

The representative spanning tree for the graph of the piano has been selected so that

the pianist finger force is the input to the mechanism and the nine system variables are:

θk, θw, θh, θj, θr, Yk, u1, v1, and v2
2.

Figure 3.4: Variables of the Action Model

2The system variables of the piano action model proposed by Hirschkorn et al. [2] were: θk, θw, θh, θj ,
and θr.
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According to Figure 3.4, θk, θw, and θh are the angles measured counterclockwise from

the ground coordinate system to the local coordinate systems attached to the key, whippen,

and hammer base, respectively. However, θj and θr are the angles measured counterclock-

wise from the local coordinate system of the whippen to the local coordinate systems

attached to the jack and repetition lever. Yk is the vertical displacement of the key along

the prismatic joint, measured from the rest position of the key in the positive direction

of the y axis of the ground coordinate system. u1 is the longitudinal generalized elastic

coordinate, and v1 and v2 are the two bending generalized elastic coordinates3.

The set of eight Ordinary Differential Equations (ODEs) generated by DynaFlexPro

has the following form

[M ]{q̈} = {F} (3.1)

where M is the mass matrix of the system, and F is a vector of quadratic velocity terms

(e.g., centripetal acceleration), gravitational, and contact forces4.

3.2 Contact Mechanics

There are 14 contact locations in this mechanism, presented in Figure 3.55. The materials

at the contacting surfaces are felt and leather. Hirschkorn et al. [2] proposed a modified

Hunt and Crossley model [8] to represent the mechanical behaviour of these materials in

contact. The contact force includes both normal and friction forces, with the following

expression for the normal component of the contact force:

fn = ffit(x)(1 + Dẋ) (3.2)

where x is the penetration depth, ẋ is the relative normal speed, and D is the damp-

ing factor. The function ffit is the nonlinear spring force, calculated from a third-order

polynomial fit curve of the form,

ffit(x) = ax3 + bx2 + cx (3.3)

3In Section 3.5, it is explained why only three generalized elastic coordinates are used for the flexible
beam.

4The expanded form of these equations is too large to show; however, it can be provided upon request.
5The content of this section is derived from the Hirschkorn’s thesis [2].
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Figure 3.5: Contact Locations in the Piano Action Mechanism

The same contact model is adopted in this work. Hirschkorn determined the parameters

(a, b, c, and D) of the model by performing a loading experiment for each contact location

in the mechanism [2]. The typical results for the normal force during loading and unloading,

and the resulting fit curve are shown in Figure 3.6.

The weakness of this model is that the hysteretic damping behaviour is speed-dependent,

and it is known from previous research (Stamm [33]) that the behaviour of the real felt

is not. The effect of this discrepancy, however, can be minimized by choosing a damping

term (D) that produces the best reaction forces at speeds similar to those seen in the piano

action for a given finger force profile.

3.3 Contact Detection

In order to determine whether the bodies are in contact, regardless of the form of the contact

model, contact detection is necessary. Contact detection depends on the geometries of the
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Figure 3.6: Contact Force during Loading and Unloading [2]

contact surfaces and the positions of the bodies, i.e., different geometries require different

calculations.

For the contact surfaces in the piano mechanism, three different geometries were con-

sidered: circle, line, and a hybrid surface that consists of an arc with two lines extending

tangentially from each end. It turned out that these three shapes can reasonably represent

all the contact surfaces found in the action.

All 14 contacts and their types are listed in Table 3.1. The form of the calculation used

to determine the contact force is not affected by the geometry chosen for each contact.

The geometry of the contact only determines whether the bodies are in contact, and the

penetration depth. Therefore, certain contact types can be used in situations where they

might not closely resemble the physical shape of the bodies. For instance, the felt under

the front of the key is actually a flat, horizontal disk, but treating it as a circular contact

with a large radius can still produce the correct penetration depth.
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Contact Description Type

1 Key - Whippen at Capstan Circle - Circle

2 Key - Ground at Key Front Line - Circle

3 Key - Ground at Key Back Line - Circle

4 Key - Hammer at Back Check Line - Circle

5 Whippen - Jack Line - Circle

6 Whippen - Repetition Line - Circle

7 Jack - Hammer at Knuckle Hybrid - Circle

8 Jack - Ground at Button Circle - Line

9 Jack - Repetition Line - Circle

10 Repetition - Hammer at Knuckle Hybrid - Circle

11 Repetition - Ground at Stop Line - Circle

12 Hammer - Ground at String Circle - Line

13 Hammer - Ground at Rest Circle - Line

14 Massless Body - Ground at Key Pin Circle - Line

Table 3.1: Contact Types in Piano Action

3.4 Tangential Friction Model

The same simple friction model, based on the Coulomb friction law that was used in [2],

was chosen to model the tangential friction force in this work.

The Coulomb friction law states that if two bodies are in contact with no relative

motion, a friction force ft exists that resists any motion, as long as the force does not

exceed µsfn, and is calculated by

ft ≤ µsfn (3.4)

where µs is the static coefficient of friction, and fn is the normal force at the contact, as

determined from Equation (3.2).

If there is motion between the bodies, the resisting friction force is determined from

ft = µkfn (3.5)

where µk is the kinetic coefficient of friction.
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One common method of modelling the Coulomb friction is to create a piecewise curve,

based on the tangential speed of the bodies, as seen in Figure 3.7, which approximates the

behaviour of friction.

Figure 3.7: Piecewise and Smoothed Friction Curves [2]

The coefficient of friction linearly increases, until it reaches the maximum static friction

coefficient value, when the tangential speed reaches the threshold velocity. This simulates

the fact that when there is no (or very little) relative velocity between the surfaces, the

friction force opposes the motion up to the static coefficient of friction. Once the relative

tangential speed exceeds the threshold velocity, the friction coefficient is reduced to the

kinetic coefficient of friction.

Since piecewise curves can cause difficulty in numerical simulations, a smoothed friction

curve was chosen instead. Based on the relation (slightly modified from Cull and Tucker

[34])

µ = A

(
tanh(st/vt) +

B1st/vt

1 + B2(st/vt)4

)
(3.6)

where µ is the coefficient of friction, A, B1, and B2 are constants that are determined from
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the static and kinetic coefficients of friction, st is the relative tangential speed of the two

contacting surfaces, and vt is the threshold velocity. A sample of this curve is given in

Figure 3.7. The tangential friction force is then calculated from

ft = µfn (3.7)

in which fn is computed from Equation (3.2). When the relative tangential speed becomes

large, the coefficient of friction approaches A. This means that the constant, A, is chosen

to be the kinetic coefficient of friction. B1 and B2 are manually adjusted so that the

maximum peak of the curve matches the static coefficient of friction.

This smoothed Coulomb friction model was used for the four contacts that undergo

significant tangential motion: 1, 4, 7, and 10 in Table 3.1. The tangential friction was

ignored for the other contacts, since the system constraints allow very little tangential

movement.

A similar model was used for rotational friction in the five pin joints. The same type of

curve was used to relate the torque on the joint to the rotational speed of the body. The

only difference is that the torque is not dependent on any normal force. The friction in

the joints is primarily determined by the tightness of the felt bushings (i.e., a large pin in

a small hole), which is constant once the action is assembled. This modified form is

T = E

(
tanh(ω/ωt) +

F1ω/ωt

1 + F2(ω/ωt)4

)
(3.8)

where T is the resulting torque, E, F1, and F2 are constants determined from the measured

torque in the joint, ω is the rotational speed, and ωt is the threshold rotational speed.

3.5 Dynamics of the Rayleigh Beam

The Rayleigh beam model [37], combined with a complete second-order deformation field

and Rayleigh-Ritz discretization scheme [4], has been incorporated into DynaFlexPro. In

this software, Taylor, Legendre, and Chebyshev polynomials can be used as the shape

function. The Rayleigh beam model can be used to model any flexible beam as long as

shear effects are negligible.
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Figure 3.8: Hammer Shank

The hammer shank for which a flexible beam model was considered is shown in Figure

3.8. Since the motion of the hammer shank is planar, only two deformation variables,

i.e., u(x, t), the pure axial deformation of the centroidal axis along the X axis, and v(x, t),

the transverse deformation of the beam about the Z axis, are needed to describe the

deformation of the beam.

The Taylor polynomial was used as the shape function and by doing a convergence

study it turned out that one longitudinal generalized elastic coordinate and two bending

generalized elastic coordinates are enough for capturing all of the relevant vibration modes

of the hammer shank for the forte force profile in Figure 2.11. This choice of shape

function is represented by u1200 which simply means that the number of generalized

elastic coordinates in the axial and transverse directions is one and two, respectively. Also,

there is no deflection in the other transverse direction and the torsion of the beam is zero.

The results of the convergence study are shown in Figure 3.9. On the first column

of this figure, the first, second, and third plots show the deflections of the end point of

the hammer shank for the u1100, u1200, and u2300 choices of shape function. The first
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Figure 3.9: Computation of the Hammer Shank Deflection with Different Shape Function

Choices
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plot on the second column of this figure shows the difference between the hammer shank

deflections obtained from the u1100 and u1200 choices of shape function. The second plot

on the same column shows the difference between the hammer shank deflections obtained

by the u1200 and u2300 choices of shape function. From these two plots, it can be seen

that the difference between the hammer shank deflection obtained from u1200 and u2300

choices of shape function is quite negligible (as opposed to that of u1100 and u1200 choices

of shape function), and therefore is was concluded that the u1200 choice of shape function

provides accurate results.

3.6 Regulation of the Piano Action Model

As the result of expansion and contraction of wood and compression and wear of felt, piano

action components tend to change over time. To compensate for these changes, the relative

orientation of action components is designed to be adjustable. For example, to adjust the

height of the capstan, it can be screwed in or out. Also, to adjust the dip of the key,

washers can be placed under the key front, and the back check metallic arm can be bent

to change its position. Doing these adjustments is called the regulation process, and it

should be performed regularly to maintain the proper feel and response of the piano. This

process is outlined in Steinway and Sons manual [7].

The regulation adjustments are extremely fine and it is impossible in practice to transfer

all of the measurements from a properly regulated action to a model and expect the model

to be precisely regulated like the real action. For this reason, once the geometry parameters

of the components are determined, for fine-tuning the regulation procedure is performed

on the model, as well.

With references to the locations labeled in Figure 3.10, the regulation procedure is

outlined as follows:

1. By placing small paper washers under the felt at the front of the key, the key dip is

adjusted. The key front should travel 10.0 mm, at rest until it hits the felt under the

key front.

2. The hammer height at rest should be 48.0 mm. This is adjusted by screwing the
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Figure 3.10: Key Points for the Regulation of the Piano Action

capstan in or out.

3. By screwing the rest pad in or out the rest position of the jack is adjusted. The right

side of the jack should be aligned with the right edge of the knuckle post.

4. The rest position of the repetition lever is adjusted by the screw on the felt pad. The

repetition lever should be at the same height as the jack under the knuckle.

5. The button above the toe of the jack is adjusted so that when the hammer height is

1.0 mm below the string, the jack rotates out from under the knuckle.

6. The screw above the repetition lever should be adjusted so that once the jack releases

from the hammer, and it rests on the repetition, the hammer height is 3.0 mm.

7. The back check location is adjusted by bending the metal wire connecting it to the

key. Under a medium blow, the hammer should be caught by the back check when

the hammer height is 15.0 mm.

3.7 Initial Conditions and Numerical Solution

To solve the ODEs of the piano action mechanism, initial conditions for the nine modelling

variables are required. To find the initial conditions for the modelling variables, first the
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regulation requirements outlined in Section 3.6 should be met by the model. Once these

requirements are satisfied, the components of the piano model are raised and allowed to

settle under gravity with a zero force input on the key front. Then, the final values of the

nine modelling variables at static equilibrium are picked as the initial conditions (Table

3.2).

θh(0) 0.293 (rad)

θj(0) 0.337 (rad)

θk(0) 0.032 (rad)

θr(0) 0.377 (rad)

θw(0) 0.025 (rad)

uf1(0) 0.000 (m/m)

vf1(0) 0.000 (mm−1)

vf2(0) 0.000 (mm−2)

Yk(0) 0.490× 10−4 (m)

Table 3.2: Sample Initial Values of the Piano Modelling Variables

The Maple lsode[backfull] stiff ODE solver, with absolute and relative tolerances of

10−6 and 10−13, respectively, was used to solve the piano action ODEs [11]. It was found

that the solvers dedicated to stiff systems were much more efficient for this system. The

contacts in the system are very stiff with forces that change drastically with small variations

in the position of the contacting surfaces. The Rayleigh beam model introduces a strong

structural spring into the equations of the piano action model, and therefore is another

contributing factor in the stiffness of the system ODEs.

A convergence study indicated that these error tolerances were sufficient to avoid in-

accuracies in the results. The maximum relative difference between the results for the

hammer shank deflection, from the relative tolerance of 10−13 to the relative tolerance of

10−14 with the same absolute tolerance of 10−6, was only 0.004 percent. This value was

0.002 percent, where the relative tolerance was kept constant at 10−13, and the absolute

tolerance was changed from 10−6 to 10−7.

Running a complete simulation, for the system with the force profile in Figure 2.11 as
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the input to the piano action, requires about 75 minutes on a 2.4 GHz PC computer. This is

true for the case when the hammer shank and the connection of the key to the ground have

been modelled with a flexible beam and a prismatic-revolute joint, respectively. However,

the Maple environment is not the most efficient platform for running simulations in terms

of time, and the simulation time can be significantly reduced by implementing the model

and solvers in a dedicated, compiled language such as C.

The model solution is compared to the experimental results in Chapter 5.

Figure 3.11: Force Response of a Fingertip as a Function of the Indentation for the Constant

Velocities of Indentation (Loading Curve Only) [28]

3.8 Biomechanical Model of the Fingertip

As it is mentioned in Section 1.3.3, to represent the characteristics of the fingertip pulp, the

non-linear spring-damper model in Figure 1.7 was proposed. This model closely reproduces
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Pawluk’s experimental data [28] shown in Figure 3.116. The following discussion explains

why this model has been proposed.

The existence of a static stiffness in the fingerpad, observed in the curve correspond-

ing to 0.2 mm/s velocity of indentation, in the experimental data of Pawluk in Figure

3.11, suggests that even the simplest model, describing the fingerpad force response to

an arbitrary indentation, must contain a spring. Furthermore, the stiffness of this spring

must be an exponential function of the displacement to describe the quasi-static force re-

sponse correctly (in Figure 3.11, the force profile corresponding to the 0.2 mm/s velocity

of indentation has an exponential form). Since the force response also changes with the

velocity, a damper must be included in the model. To achieve a static response, the damper

must be parallel with the spring. To maintain the exponential force response for all the

constant-velocity trajectories, the damping constant must also be an exponential function

of the displacement. However, a model, including a spring and a damper in parallel, is

incomplete since it predicts that by increasing the velocity, the force response increases

without any limitation. Therefore, to limit the maximum of the force response as a func-

tion of velocity, it is necessary to add a spring in series with the damper. To make the

instantaneous stiffness an exponential function of the position, the spring constant of this

series spring needs to be an exponential function of the position, too. As a result, the

simplest and most primitive model, which can conceptually describe the fingerpad force

response to the indentation profiles with constant velocity, is a Kelvin model [31] whose

components are exponentially dependent on the displacement, as depicted in Figure 3.12

with the following governing equations.

K = f1(X) = a1e
b1X

K2 = f2(X2) = a2e
b2X2

C1 = f3(X1) = a3e
b3X1

For this proposed model, by using the governing equations for the coefficients of the damper

and springs, the external force and indentation are related to each other. These equations

6For the piano and forte blows the contact force range of 0-5 and 0-30 Newtons and velocity range of
0-250 and 0-675 mm/s are common, respectively [2]. Therefore, Pawluk’s experimental data is not very
appropriate for the fingertip model for the piano application.
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Figure 3.12: Kelvin Model

exponentially relate the coefficients of the springs and damper to the displacement and

velocity, respectively, in the simplest possible form. The model parameters a1, a2, a3, b1,

b2, and b3 are determined from the experimental data.

In Figure 3.12, F is the tensile force, and X is the total indentation which is equal to

(X1+X2). The relationship between F and X is established as follows:

From geometry,

X1 = X −X2 (3.9)

From equilibrium,

C1
d(X −X2)

dt
= K2X2 (3.10)

F = KX + K2X2 = KX + C1
dX1

dt
(3.11)

From (3.10) and (4.11), respectively, it can be concluded that

dX2

dt
=

dX

dt
− dX1

dt
(3.12)

=
dX

dt
− (a2e

(b2X2)X2)

(a3e(b3(X−X2)))
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F = a1e
(b1X)X + a2e

(b2X2)X2 (3.13)

Figure 3.13: Correspondence between the Proposed Model and the Actual Fingertip Pulp

Equations (3.12) and (3.13) are the governing equations of this model, relating F and

X to each other. The differential equation (3.12) is solved for X2 for a given X and, by

substituting X2 in Equation (3.13), F is calculated.

Figure 3.13 exhibits the correspondence between the proposed model and the actual

fingertip pulp. This model only represents the mechanical properties of the fingertip under

pressure, when this mechanical model is under tension. The mechanical properties of the

fingertip during the unloading phase cannot be simulated with this model.

The parameters of the model (a1, a2, a3, b1, b2, and b3) should be determined so that the

model best predicts the experimental data. The experimental data from Pawluk, illustrated

in Figure 3.11, was used to determine the parameters of the model.

An iterative method, shown in Figure 3.15, is implemented to determine the model pa-

rameters. By considering two extreme cases, the initial values for the six model parameters

were estimated. By running the iterative algorithm, the values of the model parameters

converged and at that point, the iterative algorithm was stopped and the final values were

picked.
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The two extreme cases, based on which the initial values of the six model parameters

were selected, were as follows. By assuming that the indentation profile has a constant

speed, then at a very high speed of indentation, the damper force is high and X1 is neg-

ligible, and it can be assumed that X2≈ X. On the other hand, at a very low speed of

indentation, X2 is negligible and it follows that X1≈ X. In the former case, from Equation

(3.11) it is concluded (X2≈ X)

F ≈ KX + K2X = a1e
(b1X)X + a2e

(b2X)X (3.14)

In the latter case, from Equation (3.11) it is concluded (X1≈ X)

F ≈ KX + C1
dX

dt
= a1e

(b1X)X + a3e
(b3(X))d(X)

dt
(3.15)

Equations (3.14) and (3.15) are functions of indentation (X) only, and are valid for

a very high-speed and a very low-speed indentation, respectively. The experimental data

from Figure 3.11 is used7 to determine a1, a2, a3, b1, b2, and b3. First, (3.15) should be

fit to the lowest speed force profile (0.2 mm/s) in Figure 3.11. By using the lsqcurvefit8

function in MATLAB, this can be done. a1, a3, b1, and b3 are obtained as follows:

a1 = 0.0000 N/mm, a3 = 0.0979 N · s/mm, b1 = 12.5966 mm−1, and b3 = 2.7481 mm−1

Equation (3.14) should be fit to the highest speed force profile (80 mm/s) in Figure

3.11. By knowing a1 and b1 from the previous step, a2 and b2 are found by using the

lsqcurvefit function in MATLAB. The results are

a2 = 0.1046 N/mm and b2 = 2.3269 mm−1

These initial values are verified to see how realistic they are. By substituting these

values in equations (3.12) and (3.13), these equations are numerically solved to see whether

the force profiles, obtained from them for the high speed and low speed of indentations,

(80mm/s and 0.2 mm/s), matched the corresponding force profiles of Figure 3.11. Figure

7The Autocad software was used to extract the data from the curves in Figure 3.11.
8lsqcurvefit solves non-linear curve-fitting problems. It fits the given input and output data to a user-

defined non-linear function.
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Figure 3.14: Force Response of the Model to Two Different Ramp Trajectory Inputs Com-

pared with the Same Experimental Results

3.14 shows the results of the comparison. It can be seen that there is a close match

between the model and experimental results for the indentation velocity of 80 mm/s. For

the indentation velocity of 0.2 mm/s, however, the discrepancy is high. Based on this

observation, the obtained initial values, seem to be good enough as the starting point of

the iterative algorithm for finding a1, a2, a3, b1, b2, and b3.

To obtain the final values of the model parameters, the estimated initial values for the

six model parameters were used in the iterative algorithm, shown in Figure 3.15. All of

the experimental curves in Figure 3.11 were used in the iteration process and the following

values for the six parameters of the model were obtained9:

a1 = 0.0178 N/mm, a2 = 0.0518 N/mm, a3 = 0.0889 N · s/mm, b1 = 2.6177 mm−1,

b2 = 2.6788 mm−1, and b3 = 0.6919 mm−1

9With these final values of the six parameters, Figure 3.14 has been plotted again in Figure 4.15, in
Section 4.3.
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(a)

↓

Set the initial values for the a2, a3, b2, and b3.

(b)

↓

With the initial values of a2, a3, b2, and b3

in (a), evaluate X2 and dX2/dt from 3.12.

(c)

↓

Using equations:
F = a1 eb1X X + a2 eb2X2 X2 and (I)
F = a1 eb1X X + a3 eb3(X−X2) d(X −X2)/dt (II)
and “nlinfit” function in MATLAB, now the new set of a1, a2,
a3, b1, b2, and b3 for the experimental values of F , X2, and
dX2/dt in (b) can be calculated. The same a1 and b1 obtained
from (I) is used in (II) for calculating a3 and b3. If the
values of the a2, a3, b2, and b3 obtained here are close to
those obtained in (b), then these parameters are the final
results; otherwise, the new values of the a2, a3, b2, and b3

have to be used in (a) again for the new iteration. Once the
values of the a2, a3, b2, and b3 obtained from (c) are close
(within a specified tolerance) to the values in (b), iteration
is stopped (evaluated F in (b) does not need to be the same
as the experimental results).

a1, a2, a3, b1, b2, and b3 are
the final model parameters.

The values of a2, a3, b2, and b3 here
are close to the values already available
in (b) within 1× 10−4 tolerance

Otherwise a2, a3, b2, and
b3 should be used in (a) as
the new initial values.

→

Figure 3.15: Iterative Algorithm for Finding the Parameters of the Model



Chapter 4

Simulation Results

This chapter outlines the simulation results for the piano action models with hammer shank

represented by a Rayleigh beam, and the connection of the key to the ground is modelled

with a revolute-prismatic joint. Also, the precision of the non-linear model, proposed for

the fingertip pulp in predicting the experimental data for the force range of 0-2 N, is

discussed.

4.1 Flexibility of the Hammer Shank

4.1.1 Computed Results for the Hammer Shank Deflection

To check the effect of the flexibility of the hammer shank on the response of the action,

the hammer shank was modelled with the Rayleigh beam. The model of the connection of

the piano key to the ground kept a revolute joint and the models of the rest of the piano

action components are similar to that of [2].

Figure 4.1 exhibits the general bending shape of the hammer shank, according to the

simulation results for the input force profile given in Figure 2.11. The horizontal axis on

this figure is the X axis of the local reference frame on the hammer shank, illustrated

in Figure 2.12, and the vertical axis shows the corresponding deflection of points along

the shank at different instants in time. This figure confirms that the maximum deflection

occurs at the end point of the hammer shank (first mode of vibration). Therefore, in this
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thesis, the deflection of the hammer shank was studied at its end point.

Figure 4.1: General Bending Shape of the Hammer Shank According to the Simulation

Results

Figure 4.2 shows the computed lateral (Y ) deflection of the end point of the hammer

shank, relative to its local reference frame. The percent deflection has been calculated by

dividing the deflection by the length of the beam, which is 0.086 m. According to this

figure, since the maximum deflection of the shank is less than 2%, the assumption of small

beam deflection, which is one of the requirements of the Rayleigh beam theory, is satisfied.

Figure 4.2 demonstrates that, as the hammer starts to accelerate, the backward defor-

mation at the tip of the hammer shank increases. When the hammer head strikes the rigid

piano string at the instant marked A (see the top left plot in Figure 4.2), the vibrations

significantly spike1. At the B moment, 1 ms after the A moment, the contact with the

rigid string ceases and the hammer head returns from the top. Measurements show that

for a forte blow in a real piano, hammer-string impact contact times of 3-4 ms are typical.

Therefore, model predicts the duration of the hammer-string contact (1 ms) fairly close to

the experimental data.

1The maximum tip deflection during impact is about 1.5 mm.
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Figure 4.2: Relative Deflection of the Tip of the Hammer Shank

Figure 4.3: Free Body Diagram of the Hammer when it is caught at the Back Check
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Figure 4.4: Rotation of the Main Parts of the Piano Action
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At the C moment, 9 ms later, the hammer head starts its contact with the back check

(see Figure 1.2 for the location of the back check). Due to the damping in this contact

location, the vibrations are damped out quite quickly.

Figure 4.3 shows the free body diagram of the hammer when it is caught at the back

check. On this diagram, the normal force on the back check represents the resultant force

coming from the contact 4 (Figure 3.5) and back check arm (Figure 1.2). The tangential

force at the back check represents the friction force. The resultant moment of the normal

and tangential forces at the back check location of the hammer head, about the hammer

pivot is counterclockwise2. This confirms the backward deflection of the hammer shank

when it is caught at the back check.

Slightly before the D moment, the key begins to fall back; however, the hammer head

is still in contact with the back check (the key and hammer rotation diagrams in Figure 4.4

reflect this) and simultaneously rotates with that. At the D moment, the key completely

releases the hammer head at the back check.

At the E moment, the repetition lever and the jack do not have significant relative

motion with respect to the whippen and therefore, the rotation of the whippen assembly

can be described by the rotation of the whippen itself. As can be seen in Figure 4.4, at

this moment the back of the key is bouncing on the ground and through the capstan (see

Figure 1.2 for the location of the capstan) it causes the whippen to bounce on top of it.

Since, at this moment, the hammer base rests on the whippen through the knuckle,

this bouncing motion of the key transfers to the hammer, accounting for the form of the

hammer shank vibrations after the E moment.

The lowest vibration frequency of the hammer shank between the A and C moments

and after the E moment is 303 Hz3.

2The counterclockwise resultant moment of the friction and normal forces at the back check, on the piano
hammer, about the hammer pivot is: 4.2644 (cos(20.87) 0.0220 - sin(20.87) 0.1326) + 0.9192 (cos(20.87)
0.1326 + sin(20.87) 0.0220) = 0.0073.

3By increasing the hammer shank modulus of elasticity by 10%, 20%, 30%, and 50%, the natural
frequency of vibration increases to 313, 326, 344, and 370 Hz, respectively. By increasing the hammer
shank density by 10%, 20%, 30%, and 50%, the natural frequency of vibration changes to 303, 303, 278,
and 278 Hz, respectively.
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Figure 4.5: Impact Velocity and the Rotation of the Hammer for a Rigid and Flexible

Shank

4.1.2 Effect of the Shank Flexibility on the Head Velocity

Since the impact velocity of the hammer head determines the string vibrations, the effect

of the hammer shank flexibility on this velocity was explored. Figure 4.5 represents the

hammer head impact velocity and the rotation of the hammer base for two cases: when
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the hammer shank is modelled as a rigid body and when the hammer shank is modelled

as a flexible body. The left hand figure shows the two curves in one diagram and the right

hand figure shows the difference between them. It is calculated from these figures that the

difference between the impact velocities in the two different cases reaches the maximum of

27% (using (VFlexShank − VRigShank)/VFlexShank) during the contact period. This difference

in velocity, during the impact, might have a notable effect on the piano string vibrations.

However, this result is highly dependent on the accuracy of the hammer-string contact

model. Given that the current hammer-string contact model is very simple and is adjusted

for the contact between the rigid bar (not an actual string) and the hammer head, more

research is needed before the significance of the results can be interpreted.

4.1.3 Shank Flexibility Causes Head Scuffing Motion

The flexibility also changes the position and footprint of the contact region between the

hammer head and the piano string, during the contact time. Figure 4.6 shows the piano

hammer and the piano string, before the contact. If the hammer shank is modelled as

a rigid body, during the contact, point A on the hammer head does not move in the x

direction in the hammer base local reference frame. If the hammer shank is modelled as

a flexible body, however, point A on the hammer head will have some motion along the x

axis during the contact time, known as scuffing, in the hammer base local reference frame.

This alters the footprint of the contact between the hammer head and the piano string

during the contact, and this, in turn, affects the tone generated on the string.

Figure 4.6: Scuffing Motion of the Hammer Head
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Figure 4.7: X Component of the Displacement of the Hammer Head Tip

The effect of the hammer shank flexibility on the X position of the contact point

between the hammer head and the piano string, expressed in the global reference frame,

is shown in Figure 4.7. Clearly, there is a significant shift in the X position of the contact

point due to the shank flexibility (around 0.7 mm of extra scuffing), which can result in a

noticeable change in the sound of the piano string.

4.1.4 Effect of the Shank Flexibility on the Rotation of the

Components of the Piano Action Mechanism

When the rotation curves of a given component of the piano action mechanism with the

hammer shank is modelled as a rigid body and as a flexible beam, are plotted, the dif-

ference between the curves is not distinguishable. This means that the flexibility of the

hammer shank has almost no effect on the rotation of the components of the piano action

mechanism.

The small percentage of difference between the rotations of the different components

of the piano action is shown in Figure 4.8. Table 4.1 shows the values of the parameters
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Figure 4.8: Difference between the Rotation of the Piano Components for the Rigid and

Flexible Hammer Shank Cases
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that have been used in calculating the percentage difference in this figure.

Max (Rig Key) 0.0345 (rad)

Max (Rig Whippen) 0.1270 (rad)

Max (Rig Jack) 0.3529 (rad)

Max (Rig Repetition) 0.3770 (rad)

Max (Rig Hammer) 0.2965 (rad)

Table 4.1: Values used in Figure 4.8

4.1.5 Comparison between Experimental and Computed Strains

To validate the computed results obtained for the flexibility of the hammer shank, a strain

gauge was mounted on top of the hammer shank, as shown in Figure 2.9. With this strain

gauge, for the finger force profile shown in Figure 2.11 (the same force profile that was

used in the model), the strain on the top of the hammer shank was measured. The solid

curve in Figure 4.9 indicates the measured strain.

Figure 4.2 represents the deflection of the hammer shank tip. To obtain comparable

data with the strain gauge reading, however, it was needed to extract the strain on top of

the hammer shank from the model at the location shown in Figure 2.12. The formula for

measuring the axial strain by using the elastic variables of the Rayleigh beam is as follows

[4]:

εxx = H11 + yH12 + zH13 + H14 (4.1)

in which

H11 = u′ +
u′2

2
(4.2)

H12 = −v′′ + u′′v′ − w′′φ (4.3)

H13 = −w′′ + u′′w′ + v′′φ (4.4)

H14 =
1

2
(a1y

2 + a2z
2 + a3yz) (4.5)
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w ≡ 0 (4.6)

φ ≡ 0 (4.7)

a1 = v′′2 + φ′2 (4.8)

a2 = w′′2 + φ′2 (4.9)

a3 = 2v′′w′′ (4.10)

where the prime represents the derivative with respect to x. The axial and bending deflec-

tions, u and v, are obtained from equations (1.1) and (1.2) by setting nu = 1 and nv = 2,

respectively, giving:

u(t, x) = xu1(t) (4.11)

v(t, x) = x2v1(t) + x3v2(t) (4.12)

Figure 4.9: Experimental vs. Theoretical Strain Measurement

By substituting these values in the εxx formula, the axial strain on top of the ham-

mer shank can be evaluated. Also, according to the reference frame in Figure 2.12, the
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coordinates of the strain gauge are as follows:

X = 0.031 m, Y = 0.0031 m, and Z = 0 m

In Figure 4.9, the right-hand side plot shows the computed strain and the left-hand side

plot shows the measured strain for the piano action model. As it can be seen in this figure,

the pattern of the theoretical and experimental results is the same. Also, except for the

static deflection of the hammer shank when it is caught at the back check, the theoretical

and experimental results are in good agreement.

The flexible beam model in DynaFlexPro software has been validated by the discrete

flexible link model in the Adams software4. Therefore, the discrepancy between the curves

when the hammer head is caught at the back check is unlikely due to the flexible beam

model in DynaFlexPro. The strain gauge measurement is unlikely erroneous either, since

the strain gauge measurement instrument has been carefully calibrated by mechanical

experiments.

According to Figure 4.3, the contact and friction forces at the back check location of

the hammer head have the dominant effect on the static deflection of the hammer shank.

Therefore, the inaccuracy of the contact or friction model at the back check is the likely

source of discrepancy between the curves.

4.2 Key Lift-off

In forte blows, the connection of the key to the ground allows a significant lift-off for the

key at that location, when the front of the key reaches the ground. Key also lifts off when

the pianist removes his finger from the key front and the back of the key falls down on the

ground. Since a simple revolute joint does not allow the key to have a vertical motion at

its connection point to the ground, it seemed necessary to redesign the joint model for this

location. To check the effect of the key lift-off on the response of the action, a new model

was considered for the connection of the key and ground.

4Adams is a software for analyzing the kinematics and dynamics of mechanical systems. Adams is a
product of MSC Software Corporation.
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Figure 4.10: The Computed Key Lift-off and the Rotation of the Key

A massless body was added to the mechanism, and a revolute joint was placed between

this body and the key. The massless body then was connected to the ground with a

prismatic joint and a contact force. To model the friction between the key and vertical peg

(Figure 1.3 (a)), the damping parameter of the contact force was used.
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Figure 4.11: Experimental vs. Theoretical Results for the Prismatic-Revolute Joint Model

for the Connection of the Piano Key to the Ground

To exclusively examine the effect of this new model for the connection of the key to the

ground, the hammer shank was kept as a rigid body in the piano action model.
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Figure 4.12: (a) Key Lift-off (b) The Scale Attached to the Key and the Corresponding

Encoder

Since the contact surfaces in contact 12 (contact between the hammer head and the piano

string in Figure 3.5) and in contact between the massless body and the ground are very

similar, the three parameters for the stiffness of the contact for the contact between the

massless body and the ground were opted to be the same as those for the contact 12 (Table

3.1). The location of the contact point on the ground was selected so that the piano key

was at the same height at the rest position as it was when a revolute joint was used for

modelling the connection of the key to ground. The damping parameter of the contact was

tuned so that when the key falls back on the balance rail the bouncing motion of the key

is damped out quick enough. After tuning these parameters, it turned out that to satisfy

the static position of the hammer shank, according to the regulation process (outlined in

Section 3.6), it is also necessary to adjust the location of the contact point on the hammer

for the contact between the hammer and back check.

Figure 4.10 displays the computed key lift-off and the rotation of the key. It is evident

that when the front of the key reaches the ground (part A in diagrams) and back of the

key falls down on the ground (part B in diagrams), the key lifts off the balance rail.

Figure 4.11 displays the model results versus experimental results for the finger force

profile in Figure 2.11. It should be noted that the discrepancies between the model and

experimental results specified in boxes A and B for the rotation of the key in Figure 4.11
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Figure 4.13: Experimental vs. Theoretical Results for the Revolute Joint Model for the

Connection of the Piano Key to the Ground [1]

are due to the erroneous reading of the encoder that measures the rotation of the key. At

these moments, the key is bouncing on the balance rail (Figure 4.12 (a)), and therefore the

centre of the circular scale attached to the key changes (Figure 4.12 (b)). This causes the

encoder not to measure the correct rotation of the key, while it is bouncing on the balance
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rail5. The discrepancy between the model and experimental results specified in box C is

merely due to the model inaccuracy.

By comparing Figure 4.11 with Figure 4.13 that shows the model results for the forte

blow6, in case the key is connected to the ground with a revolute joint (i.e., previous model

in [1]), it is evident that the new proposed model noticeably increases the fidelity of the

model, especially when the key falls back on the ground.

4.3 Fingertip

By using the final values of the parameters from Section 3.8, Pawluk’s experimental data

were reproduced with the proposed non-linear model and the results are shown in Figure

4.14. In this figure, the non-linear model predicts the experimental data very well. It

should be mentioned that there are also other methods (for instance, a Neural Network)

that can be used to find a function that maps experimental data. However, the elegance

of this non-linear model is that it is very simple and has mechanistic components that

directly represent the stiffness and damping of the fingertip pulp.

The proposed non-linear model successfully predicts the general behaviour of the fin-

gertip pulp explained in [28]. It confirms that for an indentation profile with a constant

velocity, when the velocity dips below a certain limit, the fingertip force stops decreasing

and remains constant. Also, when the velocity goes beyond a certain limit, the fingertip no

longer increases and remains constant. These threshold velocities (after which the fingertip

force does not change) are illustrated in Figure 4.15. They are approximately 0.2 mm/s

corresponding to 1.9 N (maximum force), and 80 mm/s corresponding to 5.3 N (maximum

force), both for a 1.6 mm indentation. At these threshold velocities, there is a good match

between the model results and experimental data, too.

5More details are available in [2].
6The discrepancies between the model and experimental results specified in boxes D and E for the

rotation of the key in Figure 4.13 are due to the erroneous reading of the encoder that measures the
rotation of the key. The discrepancies between the model and experimental results specified in boxes F
and G are merely due to the previous model inaccuracy.
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Figure 4.14: Proposed Model Results versus the Pawluk Experimental Results. The 12

Curves are Matched Two-by-Two, and each Pair is for a Certain Constant Velocity of

Indentation
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Figure 4.15: Model Force Response to two Extreme Cases: High-Velocity, and Low-Velocity

Indentation Profiles, Compared with Experimental Data
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Conclusions and Future Research

5.1 Conclusions

The principal goal of this research was to increase the fidelity of an existing dynamic model

of the piano action, developed at the University of Waterloo. Toward that end, the hammer

shank, which had already been modelled with a rigid body in the previous model [2], was

replaced with a flexible beam. The effect of the hammer shank flexibility in increasing

the fidelity of the model, compared with experimental results for the rotation of the five

piano parts, was investigated. It turned out that even in forte blow, the flexibility of

the hammer shank did not significantly affect the rotation of the other parts of the piano

mechanism, compared with the case that the hammer shank had been modelled as a rigid

part. However, the flexibility of the hammer shank changed the impact velocity of the

hammer head, and also caused a greater scuffing motion for the hammer head during the

contact with the string.

To validate the theoretical results of the flexibility of the hammer shank, a strain gauge

was mounted on top of the hammer shank. The pattern of the theoretical and experimental

results was the same and, except for the static deflection of the hammer shank when it was

caught at the back check, the theoretical and experimental results were in good agreement.

It was concluded that the inaccuracy of the contact or friction model at the back check

was the likely source of discrepancy between the results.

In the previous work [2], the connection of the key to the ground had been modelled

74
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with a revolute joint. A new model, including a revolute joint, a prismatic joint, and a

contact force at the bottom of the key, was proposed for this location. This new model

allowed the key to lift off the balance rail, very similar to what happened experimentally.

The damping and stiffness parameters of the contact force were tuned so that a better

agreement between the theoretical and experimental results for the rotation of the action

mechanism parts was obtained. It turned out that the new model for the connection of

the key to the ground significantly increased the fidelity of the model for the forte blows.

By using a real-time PC, a new method for controlling the output torque of the motor

was implemented, and a slightly better open-loop performance than the previous work [32]

was obtained. With this method, the actual torque output of the motor was quite close to

the desired torque output of the motor and there was only 8 ms lag between them.

5.2 Future Research

Although the contact model used in the action mechanism model predicts the contact forces

for the forte blows, very well, it does not predict the contact forces for the piano blows with

the same accuracy [1]. Contrary, in this contact model, the contact force depends upon

the speed of the contacting bodies, even though the contact experiments demonstrate that

the contact force for felt is not dependent on the contact speed [33]. This limitation of the

original piano action model developed by Hirschkorn et al. [1] has not yet been addressed.

In the future, other felt contact models can be investigated, along with other methods of

modelling hysteretic behaviour, such as the Preisach Model [35].

The actual contact between the piano string and the hammer head is much more com-

pliant than the current model (contact between the hammer head and the rigid bar).

Therefore, adding a more realistic model of the piano string to the current piano action

model is another interesting issue that can be done in the future. Depending upon the

complexity of the model that is going to be considered for the piano string, the computa-

tional cost of the model increases; however, it might disclose some other interesting factors

about the dynamic characteristics of the model. The duration of the contact between the

hammer head and the piano string, the penetration of the hammer head in the piano string,

the sound generated, and scuffing motion of the hammer head while it is in contact with
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the piano string, are a few examples.

The available biomechanical model of the fingertip predicts the mechanical character-

istics of the fingertip in the low contact force range of 0-2 Newtons and velocity range

of 0.2-80 mm/s. To incorporate this model into the present piano model, however, the

parameters of this model need to be tuned, according to the experimental data obtained

from a pianist fingertip, in an appropriate contact force and velocity range. For the piano

and forte blows the contact force range of 0-5 and 0-30 Newtons and velocity range of 0-250

and 0-675 mm/s are common, respectively. Furthermore, since this model only predicts

the contact force in the fingertip in the loading phase, another model should be developed

to predict the contact force in the unloading phase.

Finally, to address the discrepancy between the theoretical and experimental strains

on top of the hammer shank, the accuracy of the contact and friction models at the back

check location of the hammer shank can be investigated.
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Appendix A

Model Parameters

All of the parameters that have been used in the action model are listed in the following

sections. Figure A.1 shows all of the key points of the action components that in order to

model the piano action, must be considered. It shows all joints, centres of mass, contact

points, and coordinate systems for the piano action components as well as the ground1.

A.1 Mass Properties

Table A.1 lists the masses, mass moments of inertia, and locations of the centres of mass

(as defined in Figure A.1) for the components of the piano action.

The mass of each body was measured by using a lab scale. To locate the centres of the

mass, the bodies were suspended by a thread from two different points. Then a vertical

line was drawn under the fulcrum, and the location of the intersection was measured for

each body. The measured intersections were reported as the centres of the mass.

To determine the mass moments of inertia, the bodies were suspended from a string

and swung like a pendulum. The mass moments of inertia about the pivot point Ip, were

then determined from the following expression for the period of a pendulum:

1The major portion of the material presented in the Appendix A is directly taken from [2] with minor
changes. In Figure A.1 the massless body, and in Table A.11 the contact 14 have been added, respectively.
In Table A.1, the hammer base, hammer shank, and hammer head are added and the previous hammer
(total body) is removed. Tables A.4, A.8, A.9, A.10, and Section A.4 are new.
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Figure A.1: Defined Points on the Action Components
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Mass Moment of Centre of Mass (m)

Component Mass (kg) Inertia (kg·m2) x y

Key 0.12008 2.75E-03 0.0514 0.0158

Whippen 0.01196 1.69E-05 0.0502 -0.0018

Jack 0.00265 7.78E-07 0.0008 0.0195

Repetition 0.00371 4.10E-06 0.0021 -0.0012

Hammer Base 0.00226 0.251e-6 -0.0180 -0.0033

Hammer Shank 0.00156 9.615e-7 0.0430 0

Hammer Head 0.00792 2.253e-6 -0.0045 0.0223

Table A.1: Inertia Properties of the Action Components

Ip = mgl

(
T

2π

)2

(A.1)

where m is the mass of the body, g is the gravitational constant, l is the distance from the

pivot point to the centre of the mass of the body, and T is the period of oscillation. The

moments of inertia about the centre of mass, Icm, were then calculated by the parallel axis

theorem:

Icm = Ip −ml2 (A.2)

The three parts of the hammer, as depicted in Figure A.1, were not separable. Hence,

determining the mass, mass moments of inertia, and locations of the centres of mass for

them, accomplished a bit differently. Once the mass, mass moment of inertia, and centre

of the mass of the hammer were determined experimentally by knowing the density of the

wood and the geometry of the hammer, the SolidWorks software was used for determining

the mass, mass moment of inertia, and centre of mass of the hammer base, hammer shank,

and hammer head.

A.2 Geometric Properties

With a flatbed scanner all the bodies were scanned, and the images were scaled to match the

known dimensions. Then, the images were imported into AutoCAD where the bodies were
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traced and the dimensions measured. The ground dimensions were determined the same

way, though the initial image was obtained using a digital camera, since the experimental

apparatus could not be placed on a flatbed scanner.

Tables A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, and A.10 list the coordinates of the key

points and describe the contact surfaces for the fixed locations and all of the components

of the action. All the coordinates are expressed in the frame shown on each body in Figure

A.1.

All of the contact surfaces in the model are one of three possible two-dimensional

geometries:

Circle A simple circular surface defined by the centre of the circle and radius.

Line A line defined by a point on the line and a unit normal vector.

Hybrid A shape consisting of an arc segment and two lines extending infinitely from the

tangents of the arc. This is described by the centre and radius of the arc, and the

starting and ending angles of the arc, as measured counter-clockwise from the positive

x-axis.

Position (m) Unit Vector Radius

Point Description x y x y (m)

Pg1 Pin Location 0.0000 -0.0048

Pg2 Pin Location -0.1810 0.0528

Pg3 Pin Location -0.0883 0.1166

Pg4 Circle Contact 0.2172 -0.0074 0.0050

Pg5 Circle Contact -0.2037 -0.0112 0.0050

Pg6 Line Contact -0.0580 0.0663 0.000 -1.000

Pg7 Circle Contact -0.0843 0.1149 0.0033

Pg8 Circle Contact -0.1921 0.0766 0.0050

Pg9 Line Contact -0.2196 0.1716 0.000 -1.000

Table A.2: Geometric Properties of the Ground
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Position (m) Unit Vector Radius

Point Description x y x y (m)

Pk2 Pin Location 0.2278 0.0261

Pk3 Circle Contact -0.1176 0.0263 0.0097

Pk4 Line Contact 0.2175 0.0000 0.000 -1.000

Pk5 Line Contact -0.2208 0.0010 -0.041 -0.999

Pk6 Line Contact -0.2187 0.0817 0.904 0.427

Table A.3: Geometric Properties of the Key

Position (m) Radius

Point Description x y (m)

Pmb2 Circle Contact 0.000 0.000 0.005

and Pin Location

Table A.4: Geometric Properties of the Massless Body

Position (m) Unit Vector Radius

Point Description x y x y (m)

Pw2 Pin Location 0.0989 -0.0035

Pw3 Pin Location 0.0483 0.0275

Pw4 Line Contact 0.0759 0.0189 0.969 0.247

Pw5 Circle Contact 0.0595 0.0030 0.0253

Pw6 Line Contact 0.0170 0.0015 0.000 1.000

Table A.5: Geometric Properties of the Whippen

Position (m) Unit Vector Radius

Point Description x y x y (m) Arc (rad)

Pj2 Hybrid Contact -0.0010 0.0495 0.0010 1.571 - 3.142

Pj3 Circle Contact 0.0247 -0.0050 0.0021

Pj4 Circle Contact -0.0093 0.0300 0.0050

Pj5 Line Contact 0.0031 0.0477 1.000 0.000

Table A.6: Geometric Properties of the Jack
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Position (m) Unit Vector Radius

Point Description x y x y (m) Arc (rad)

Pr2 Hybrid Contact 0.0363 -0.0521 0.0552 1.300 - 1.571

Pr3 Circle Contact -0.0351 -0.0089 0.0050

Pr4 Circle Contact 0.0527 -0.0009 0.0050

Pr5 Line Contact 0.0561 0.0017 0.317 0.948

Table A.7: Geometric Properties of the Repetition Lever

Position (m) Radius

Point Description x y (m)

Phb2 Circle Contact -0.0170 -0.0091 0.0044

Table A.8: Geometric Properties of the Hammer Base

Position (m) Unit Vector

Point Description x y x y

Phs2 Line Contact 0.0180 -0.0031 0.000 -1.000

Table A.9: Geometric Properties of the Hammer Shank

Position (m) Radius

Point Description x y (m)

Phh2 Circle Contact 0.0467 -0.0025 0.0549

Phh3 Circle Contact -0.0041 0.0356 0.0102

Table A.10: Geometric Properties of the Hammer Head
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A.3 Contact Properties

The contact parameters for all 14 contact locations are listed in Table A.11.

Contact Points Curve Parameters Damping Friction Parameters

# a b c Factor A B1 B2

1 Pk3 Pw5 1.26E+10 3.26E+07 7.92E+03 1.877 0.167 0 1

2 Pk4 Pg4 4.41E+10 -1.02E+07 1.57E+04 1.219 0 0 0

3 Pk5 Pg5 2.42E+10 -1.11E+07 6.54E+03 2.502 0 0 0

4 Pk6 Phh2 5.86E+11 -3.70E+07 3.11E+04 2.446 0.434 1.78 1

5 Pw4 Pj4 5.28E+09 -7.54E+05 4.42E+03 5.781 0 0 0

6 Pw6 Pr3 2.53E+10 -9.89E+06 7.07E+03 7.732 0 0 0

7 Pj2 Phb2 3.92E+11 1.10E+07 3.23E+04 4.694 0.177 1.85 1

8 Pj3 Pg6 7.46E+10 -2.29E+07 1.32E+04 1.527 0 0 0

9 Pj5 Pr4 6.02E+10 -1.68E+07 6.96E+03 0.779 0 0 0

10 Pr2 Phb2 1.09E+12 -7.51E+07 2.23E+04 2.935 0.332 0.73 1

11 Pr5 Pg7 8.82E+11 -7.59E+07 1.67E+04 4.985 0 0 0

12 Phh3 Pg9 1.81E+10 8.19E+07 1.16E+04 0.800 0 0 0

13 Phs2 Pg8 8.58E+08 -1.11E+06 2.39E+03 8.964 0 0 0

14 Pg1 Pmb2 1.81E+10 8.19E+07 1.16E+04 100 0 0 0

Table A.11: Contact Properties

The Curve Parameters define the three polynomial terms of the fit curve of Equation

(3.3). This curve and the Damping Factor are used in Equation (3.2).

The three Friction Parameters, which are derived from the static and kinetic coefficients

of friction, are used in Equation (3.6). The coefficients of friction for each pair of contacting

bodies were measured by holding the first body fixed, pushing the second body into the first

with a known force, and then measuring the force required to initiate the bodies sliding,

and keep them sliding.
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A.4 Hammer Shank Properties

Table A.12 lists the parameters of the hammer shank that are used in its Rayleigh beam

model.

Parameter Value Unit

E (Modulus of Elasticity) 10.18× 109 Pa

ρ (Density) 560 kg/m3

L (Length) 0.086 m

A (Area) 32.38× 10−6 m2

Jzz (Second Moment of Area) 83.44× 10−12 m4

Table A.12: Properties of the Hammer Shank

A.5 Other Properties

In addition to the mass, geometric, and contact properties already listed, the model incor-

porates rotational springs and friction in the revolute joints of the action bodies.

The spring force in the jack was measured to be approximately constant at 0.0042 N·m.

The spring force in the repetition lever follows the standard linear spring model with values

shown in Equation (A.3)

T = −0.073(θr − 0.832) (A.3)

where T is the torque acting on the revolute joint (in N·m), and θr is the angle between

the repetition lever and the whippen (in radians).

The friction parameters for the revolute joints of the five bodies, as defined in Equation

(3.8), are listed in Table A.13.

The rotational friction parameter E is derived directly from the kinetic frictional torque

in the joint. This torque was determined by measuring the force required to rotate the

joint at a known distance from the centre of the joint. Static friction, as described by F1

and F2, was not included in these joints.
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Component E F1 F2

Key 0.0122 0 0

Whippen 0.000397 0 0

Jack 0.000397 0 0

Repetition 0.00247 0 0

Hammer 0.00101 0 0

Table A.13: Rotational Friction Parameters
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Experimental Equipment

The following tables list the software and equipment used in the experimental piano action.

Vendor Package Version

Kollmorgen ServoStar MotionLink 4.4.6

National Instruments LabVIEW Express 7.1

Photron Motion Tools 1.0.5

Table B.1: Software

Vendor Part Description

Kollmorgen MT308A1 DC Brushless Servo Motor

Kollmorgen CE03250 DC Brushless Servo Drive, 3 Amp

National Instruments PCI-6229 Multifunction PCI IO Board

Table B.2: Actuation Equipment
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Vendor Part Description

Sensotec Model 13, 25 lb Subminiature Strain Load Cell, 25 pound

INTERTECHNOLOGY Type EA-06-062DN-350 Strain Gauge, 350 ohm Bridge

National Instruments PCI-6034E Multifunction PCI IO Board

National Instruments SCXI-1520 SCXI Strain/Bridge Module

Table B.3: Force and Strain Measurement Equipment

Vendor Part Description

MicroE Systems M1510S-40 Digital Encoder Sensor

MicroE Systems R3213 Encoder Rotary Scale, 1.25 inch

MicroE Systems R5725 Encoder Rotary Scale, 2.25 inch

National Instruments PCI-6602 Counter/Time PCI Board

Table B.4: Position Measurement Equipment

Vendor Part Description

Photron FASTCAM-X 1280 PCI High Speed Video System, 1,280 x 1,024 pixel

Table B.5: High-Speed Video Equipment
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Experimental Setup Wiring

For reading the strain gauge, the configuration shown in Figure C.11 was used.

The PC (II) in this figure runs on a real-time operating system and is dedicated for

controlling the motor. The PCI-6229 Multifunction IO board, which is compatible with

the NI real-time operating system, was used to send the motor demand signal. The fastest

update rate at which the motor torque demand signal can be sent to the amplifier with

this PC is 500 Hz. The programs run on this real-time platform are first developed on

the PC (I), and then are passed to the real-time PC (II) through a cross-over cable for

deterministic execution.

To send the motor torque demand signal from the PC (II) at a high speed, the PC (II)

is not used for reading the load cell or strain gauge, too. The PC (III) is individually used

for reading the load cell or strain gauge. On this PC, using the high-speed buffer feature

of the PCI-6602 and PCI-6034E cards, it is possible to read the load cell (or strain gauge)

with 2 kHz update rate. This high update rate allows capturing more data in a given span

of time. This is an important issue in the case of strain gauge, since when the hammer

strikes the piano string, high-frequency vibrations are created in the hammer shank and

to capture them a high update rate is needed.

Since there is only one signal conditioning unit available in the experimental setup, it is

not possible to capture the data from the load cell and strain gauge, simultaneously (two

1In this figure, a circular scale has been used to measure the rotation of the key. The vertical motion
of the key is measured by a high-speed video camera, separately.

92



Experimental Setup Wiring 93

separate signal conditioning units are needed for that purpose). To work around this, first

the signal conditioning unit is used to read the load cell and with a given input force profile

to the motor, the response of the motor is measured by the load cell. To make sure the

motor torque output is consistent, this process is repeated a few times; then, in the next

step, the signal conditioning unit is used for reading the strain gauge. The motor is run

with the same given force profile, and this time the strain gauge is read. Finally, once the

experiment is completed, the duration and maximum point of the strain and motor output

torque curves are used to synchronize the strain curve with the motor output force curve.
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Figure C.1: The Wiring of the Experimental Setup used for Reading the Strain Gauge

with 2 kHz Sampling Rate



Appendix D

Motor Torque Control

As it was mentioned in Section 2.8, to improve the performance of the open-loop torque

control even further, the neural network technique and a few linear control methods were

tried in this work. For this purpose, the CE03250 amplifier in Figure 2.2 b was used to run

the motor, and the sub-miniature load cell in Figure 2.3 b was used as the feedback device.

Before explaining the control methods that were tried, a few points should be mentioned:

1. The maximum of the non-linearity/hysteresis of the sub miniature load cell is ±0.5%

of the full scale, and its maximum non-repeatability is ±0.1% of the full scale. Therefore,

the maximum error in reading from the load cell is ±0.6% of the full scale (25 lb), which is

0.67 N. This imposes a limitation (0.67 N) to the amount of the maximum error reduction

that can be obtained by any control method1.

2. The fastest update rate at which the amplifier analog port can be written by using

the real-time PC is 500 Hz, as explained in Section 2.5. The amplifier analog port is where

the motor torque demand signal is sent. This means that the input force profile to the

motor cannot contain any frequency faster that 500 Hz (the force profile cannot be sampled

faster than 500 Hz).

3. The response of the motor to two different step inputs (with a 10 N magnitude) with

the present amplifier is shown in Figure D.1. According to this figure, the motor takes

approximately 25 ms to reach its final value, in response to the step function. Therefore,

1The research group has another load cell with the same brand. This load cell is capable of measuring
the loads up to 1000 gr, and therefore it provides a higher precision of 0.059 N in reading a load.
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Figure D.1: Response of the Motor to Two Step Functions

assuming the system is linear, if a force curve with 2 ms sampling time is passed through

the amplifier, then the motor always runs in its transient phase in each time interval of 2 ms

(does not have enough time to reach its final force value in each 2 ms interval). However,

by using some input/output data from the motor and analyzing them, it turns out that

the motor does not behave quite linearly. Four step functions with different amplitudes

are put through the amplifier, and then the response of the motor to them is measured.

Figure D.2 shows the step input curves and the corresponding motor response to each

of them. Since the pattern of the system response changes for the step input functions with

different magnitudes, it is concluded that the motor does not display a linear behaviour2.

4. Figure D.3 reveals a typical measurement by the load cell before and after applying

a 100 Hz low-pass filter. This 100 Hz low-pass hardware filter is embedded in the signal

conditioning module. This filter is another source of inaccuracy in the system in the sense

that it introduces a lag in the measurements, as shown in Figure D.3. Therefore, the 8 ms

latency in the force curves in Figure 2.14 is not due to the motor inductance only. On the

2If the system is linear, then a linear transfer function like G(s) exists for it. Therefore, with a step
function with a magnitude of A as the input to the system, the system response will be G(s) A

S . It is
obvious that for different values of A, the system response should keep its pattern and change linearly.
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Figure D.2: Response of the Motor to Four Step Functions

other hand, as long as a load cell is used for measuring the force of the motor, the use of

a low-pass filter cannot be ignored and therefore, this uncertainty always exists.

The following sections describe the control methods that are tried to improve the open-

loop performance of the motor.
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Figure D.3: Typical Measurements of the Load Cell before and after Filtering by a 100 Hz

Low-Pass Filter

D.1 Neural Network

In order to increase the fidelity of the torque control, the neural network (NN) method

was tried first. The approach here was to train an NN that took the actual force output

of the motor as the NN’s input and then set the desired force output as the NN’s output.

The idea is shown in Figure D.4. Ten different input and output normalized forte force

profiles, each with approximately 600 points (5 of them are shown in Figure 2.14) and

with just slightly different patterns, were used to train the NN. The real-time PC, in the

configuration shown in Figure 2.8, was used to generate this data. One more input and

output forte force profile, as shown in Figure 3.5, was used for validating the network

output.

The NN was set up so that it had five inputs and one output. The inputs to the network

were Fouti, Fouti−1, Fouti−2, Fouti−3, and Foutav, and the output was Fini. This means

that for any force input to the network, besides the current time step, the output of the

network depends on the history of the force profile at the three time steps before and also

the average of the force profile from the beginning of the force profile up to the current



Motor Torque Control 99

Figure D.4: Neural Network Input and Output

Figure D.5: Typical Desired and Actual Force Output of the Motor

time step. This is one of the most common NN forms, for such a problem.

Figure D.6 displays the performance of one of the best NNs obtained during the training

process for predicting the desired force output in Figure D.5. The NN had one hidden layer
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Figure D.6: Neural Network Prediction

with five neurons with the Log Sigmoid3 transfer function, and the output layer had one

neuron with the Linear 4 transfer function. Although the prediction of the NN was very

close to the actual motor input, this method was not implemented, for the following reasons

• There is no guarantee that the NN method consistently gives a valid result for any

forte force profile (cannot be proven).

• For this problem, an NN does not improve the performance of the open loop system,

significantly.

• The output of the neural network is noisy and needs to be filtered by a low-pass filter

before passing through the amplifier.

• Generally, an NN is good for the rough modelling of a system, but less appropriate

for this delicate control problem.

3The equation of this transfer function is f(x) = 1
(1+e−x) .

4The equation of this transfer function is f(x) = x.
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D.2 Proportional-Integral-Derivative (PID) Controller

The PID controller works well for many applications, because it is based on the error

between the actual and desired output and tries to minimize this error. The challenge in

this method is finding good values for the Kp, Ki, and Kd parameters, and this, in turn,

comes down to finding a good model of the system (motor + amplifier + load cell). Figure

D.7 indicates how the PID controller can be used to run the motor.

Figure D.7: Using the PID Controller to Run the Motor

The curves in Figure D.1 were used in the MATLAB system identification toolbox and

with the process models method, a third order transfer function was found that matched

those curves, quite closely5.

G(s) =
K

(1 + 2 Zeta Tw s + (Tw s)2)(1 + Tp3 s)
(D.1)

Three was the lowest order that matched the behaviour of the system very closely and

5The process models method results in a continuous-time model that is characterized by a static gain
K, one or several time constants T , a possible zero Tz, a possible time delay (dead time) Td, and a possible
enforced integration.
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also predicted the behaviour of the system in the curves of Figure 2.14 fairly closely. The

values of the model parameters are as follows.

K = 0.9322 Newton, Tw = 1.5268, Zeta = 0.3679, and Tp3 = 2.3086

The curves in Figure D.8 show how well this linear model predicts the response of the

actual system.

Figure D.8: Comparison between the Model and Actual Output

This model of the system (which does not perfectly match the behaviour of the system)

was used in the MATLAB Simulink environment to find good values for the Kp, Ki, and

Kd parameters. Many random combinations of values for Kp, Ki, and Kd parameters were

tested but the rise time of the system for the step function input could not be reduced.

Figure D.9 shows the model responses for the different values of Kp, Ki, and Kd parameters.

The values of Kp, Ki, and Kd parameters in this figure, are the best that could be found

by trial-and-error. As it is seen, the rise time of the system could not be reduced less than

1 ms.

On the other hand, by using the gradient descent optimization method in MATLAB,

the values of Kp, Ki, and Kd parameters were varied to find the values that reduced the
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Figure D.9: Step Response of the Model for Different Values of Kp, Ki, and Kd

rise time of the system6. This was done by setting a few constraints on the step response

of the model, as shown in red, in Figure D.10. The values used for the parameters of this

optimization method are given in Table D.1.

Tolerance on the Kp, Ki, and Kd parameters 0.001

Tolerance on the constraints (shown in Figure D.10) 0.001

Maximum iterations 1000

Table D.1: Values of the Parameters used in the Gradient Descent Optimization Method

However, this method did not perform well, either. The results of this method are

shown in Figure D.10.

6Gradient descent is an optimization algorithm that approaches a local minimum of a function by
taking steps proportional to the negative of the gradient (or the approximate gradient) of the function at
the current point.
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In another attempt to find the system model, the ARMAX7 method instead of the

process models method in system identification toolbox in MATLAB was implemented.

However, it turned out that this method does not result in a more accurate model for the

system than that of the process models method.

Figure D.10: Step Response of the Model for Different Values of Kp, Ki, and Kd Obtained

by Implementing the Gradient Descent Optimization Method

Since the models of the system obtained from the ARMAX and process models methods,

cannot perfectly mimic the behaviour of an actual system, it could not be concluded that

the PID controller cannot perform well for the actual system. Therefore, in the next step,

another approach was considered to find a more accurate model for the system.

By taking a closer look at the curves in Figure 2.14, it is evident that in terms of

latency, the response of the motor to an increasing demand torque (the derivative of the

7This method results in a discrete-time model in the form of A(q)y(t) = B(q)u(t−nk)+C(q)e(t), where
y is the system output, u is the system input, q is the delay operator, and e is the generalized error. The
terms A(q)y(t), B(q)u(t − nk), and C(q)e(t) are called autoregressive, exogenous, and moving average,
respectively.
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Figure D.11: Different Increasing and Decreasing Force Profiles used for Identifying the

Motor Model

torque profile is positive) is different from the motor’s response to a decreasing demand

torque (the derivative of the torque profile is negative)8.

Based on this observation, it was planned to find two different models for the motor

to represent the behaviour of the motor to increasing and decreasing input torque profiles.

8This might be due to the hysteresis in the motor or the load cell.
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Then, it was possible to split a given force profile into increasing and decreasing sections,

and use the corresponding transfer function for each section, to determine the appropriate

Kp, Ki, and Kd variables for the PID controller, as the motor runs over the entire force

profile.

A few types of increasing and decreasing force profiles (the ramp and quarter sine

curve) were chosen and by running a few tests, the response of the motor to them was

determined. The input curves to the motor and the response of the motor to them are

shown in Figure D.11. The slopes of these curves are carefully chosen to be in the same

range as the slopes of the actual pianist finger force curves in Figure 2.14. Since the motor

has a latency to reach its steady state response for the decreasing force profiles in Figure

D.11, 30 ms were allowed to attain its steady state response. For the system identification

process, the portions of these force profiles after t=30 ms are used. Because the motor has

already reached the steady state response at this moment, and starts to respond to the

decreasing force profile.

Figure D.12: Comparison between the Model and Actual Output for the Standard Ramp

and Quarter-Sine Curves

Next, by using the data in Figure D.11 and the process models method, the response of
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the system to the increasing and decreasing force profiles were identified and two third order

transfer functions obtained. Three was the lowest order that predicted the behaviour of the

system well for the increasing and decreasing force profiles. The values of the parameters

of the transfer function, Equation (D.1), for the increasing force profiles are

K = 0.9267 Newton, Tw = 1.9800, Zeta = 0.2496, and Tp3 = 4.6276

Figure D.13: Comparison between the Model and Actual Output for a Non-Standard Curve

Figure D.12 shows how well this transfer function predicts the behaviour of the system

to the increasing ramp and quarter-sine profiles. Figure D.13 reflects a non-standard

increasing force profile and the response that this model predicts for this.

The values of the parameters of the transfer function, Equation (D.1), for the decreasing

force profiles are

K = 0.9407 Newton, Tw = 7.6406, Zeta = 0.2569, and Tp3 = 2.2222

Figure D.14 shows how well this transfer function predicts the behaviour of the system

to the decreasing ramp and quarter-sine profiles. Figure D.15 exhibits a non-standard

decreasing force profile and the response that this model predicts for that. According to
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Figure D.14: Comparison between the Model and Actual Output for the Standard Ramp

and Quarter-Sine Curves

Figure D.15: Comparison between the Model and Actual Output for a Non-Standard Curve
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these figures, it is obvious that the model does not predict the actual response of the system

well.

Using two transfer functions, compared with having a single transfer function for both

increasing and decreasing force profiles, did not increase the fidelity of the model in predict-

ing the actual behaviour of the system, for a typical force profile that has both increasing

and decreasing sections. Figure D.16 shows the result of using these two transfer functions

to predict the actual response of the motor for a typical force profile. It can be seen that

the performance of the transfer function for the increasing force profiles, at the increas-

ing sections A and B of the force profile is fairly good. However, the performance of the

transfer function for the decreasing force profiles, at the decreasing sections A and B of

the force profile is discouraging.

Figure D.16: Predicting the Actual Output of the Motor by Using Two Transfer Functions

Finally, regardless of a precise model for the system, using the LabVIEW software9

a PID controller was established for the system. The feedback from the load cell was

9The LabVIEW software is a platform and development environment for a visual programming language
from National Instruments. It is commonly used for data acquisition, instrument control, and industrial
automation.
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connected to the PID controller in the LabVIEW, and the controller output was sent to

the motor drive. Some actual tests were accomplished by using this controller. Although

many combinations of the different values for the Kp, Ki, and Kd parameters were tried,

none of them resulted in a stable controller that improved the open-loop performance of

the system. Based on these results, the feedforward method, along with a PID controller,

was tried in the next step.

D.3 Feedforward plus PID Control

In the feedforward method, shown in Figure D.17, the desired output of the system is passed

through the inverse transfer function of the system, and then, this result is fed through

the system as the input. The performance of this method depends on the accuracy of the

inverse transfer function of the system. To improve the performance of the system even

further, a PID controller can be added to the system, as depicted in Figure D.18. If the

feedforward section of the control loop works well, the PID controller can minimize the

remaining errors from the feedforward part of the control loop.

Figure D.17: Feedforward Method for Running the Motor

To find an inverse transfer function of the system, by using the process models method

in the system identification toolbox of MATLAB and the two curves in Figure D.1, a

reverse system identification (i.e., from the output to input) was done. The same third

order transfer function given in Equation (D.1) with the following values for its parameters

was obtained
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K = 1.0770 Newton, Tw = 1611.7, Zeta = 224.18, and Tp3 = 0.0725

Figure D.18: Feedforward Method along with the PID Controller for Running the Motor

Figure D.19: Comparison between the Model and Actual Output

This inverse transfer function can closely predict the inverse response of the system for

the force profiles in Figure D.1; however, as shown in Figure D.19, it cannot predict the
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inverse response of the system to the typical pianist force profiles shown in Figure 2.14,

well.

Since the inverse transfer functions did not even improve the open-loop performance

of the system, it was pointless to add a PID controller to the system, as suggested in

Figure D.18. Therefore, the feedforward method, along with a PID controller, was not

incorporated.

D.4 Conclusions and Suggestions

The system is nonlinear, i.e., by analyzing only the response of the system as an impulse

input, the transfer function of the system cannot be found. Even two separate transfer

functions for the increasing and decreasing force profiles cannot predict the behaviour of the

system, well. Two factors, the 0.67 N error in the load cell (according to the manufacturer

specifications sheet) and the latency caused by the signal filtering, do not allow to reduce

the error (i.e. the difference between the actual and desired force). None of the methods

that were tested (the NN and linear controllers) could improve the open-loop performance

of the system.

Based on these results, in the future, the efficiency of the non-linear control methods to

control the torque output of the motor can be investigated. The other matter that can be

tested is replacing the pianist finger force as the input to the piano model by the position

of the last bone of the pianist finger. In this case, in the experimental setup, instead

of controlling the torque output of the motor, the position of the motor shaft should be

controlled. Controlling the position of the motor shaft might be easier than controlling the

torque output of the motor. However, in this case an appropriate material representing

the fingertip pulp should be attached to the motor arm and to complete the piano model,

a precise model of the corresponding fingertip pulp should be added to the piano model.

The reading from the key optical encoder should be used as the position feedback.


