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Abstract 

Chitosan membrane has found applications in biomedical, wastewater treatment, and 

petrochemical fields that involve the use of silver ions (Ag+).  However, mobility of Ag+ in 

chitosan membranes has seldom been studied.  In this study, transport properties of Ag+ in 

chitosan membranes are studied in-depth, to determine diffusivity coefficient, permeability 

coefficient, and sorption uptake of Ag+ in chitosan.  All parameters are evaluated based on 

the influence of feed concentration, membrane thickness and operating temperature. 

The diffusivity is determined from the time lag obtained from transient diffusion 

experiments.  The permeability is determined from the steady state of permeation 

experimentally.  The diffusivity and corresponding permeability coefficients of Ag+ in 

chitosan range from 9108.6 −×  to 2.0× 10-7 (cm2/s) and from 6.6× 10-8 to 2.0× 10-7 {mol 

m/[m2 s (mol/L)]}, respectively, over the conditions tested.  Temperature dependencies of 

these two parameters are found to follow the Arrhenius relationship.   

Sorption uptake of the silver salt in chitosan correlates well with the Langmuir 

isotherm.  Also determined from the sorption tests are degree of membrane swelling at 

different concentrations.  This information allows diffusivity coefficients to be determined 

from the steady state permeation rate.  These values of diffusivity are compared with that 

obtained using the time lag method. 
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Chapter 1 

Introduction 

 

1.1 Background 

Chitosan is a biopolymer derived by deacetylation of chitin, an abundant biopolymer 

obtained mainly from shellfish waste as a byproduct of the seafood industry.  Due to the 

amino (-NH2) and hydroxyl (-OH-) groups in its structure that function as ligands, chitosan is 

a chelating polymer with excellent adsorption capacities for a number of metal ions.  

Chitosan is also characterized by being cationic, biocompatible, and antibacterial.   These 

characteristics allow chitosan to find wide applications as a material in biomedical processes, 

food industry, and water purification.  It has been documented that, in the past decade, there 

are three areas of potential applications for chitosan that involve incorporating or adsorbing 

silver ions (Ag+) into chitosan membranes: 

▪ as a potential base membrane to accommodate a silver facilitating agent for 

olefin/paraffin separation [1] 

▪ as a biomaterial for controlled release of silver compounds for wound dressing [2,3] 

▪ as an adsorbent for recovering silver from industrial wastewater [4-7] 
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Despite these applications involving Ag+ in chitosan membranes where information 

regarding mobility of Ag+ is significant, the transport properties of Ag+ or even other metal 

ions in chitosan have seldom been mentioned in the literature. 

It is the goal of the present work to study the mobility of Ag+ in chitosan by 

evaluating the transport properties of Ag+ in chitosan membranes.  The scope of the work 

includes experimentally determining the permeation properties, permeability coefficients and 

diffusivity coefficients of Ag+ in chitosan.  The diffusivity coefficient is determined from the 

transient response of permeation experiments using the time lag method and the permeance 

and permeability coefficients from the steady state of permeation.  In addition, the sorption 

uptake of Ag+ in chitosan membranes at equilibrium is also determined.  In evaluating these 

properties, the effects of three experimental variables were investigated: feed concentration, 

membrane thickness and operating temperature.   

To our knowledge, this is the first time the transport properties of Ag+ within chitosan 

membranes were studied in depth.  This study is expected to provide information that is 

fundamental to the various applications involving Ag+ with chitosan membranes. 

 

1.2 Outline of the Thesis 

This thesis includes the following sections: Chapter 1 gives a brief background, 

research initiatives, scope and objectives of this study.  A detailed background review of the 

literature on the related subjects is presented in Chapter 2.  This chapter also includes the 

theoretical background of diffusion and adsorption, which is used to analyze the 

experimental data in this study.  Chapter 3 outlines the method of membrane preparation and 
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procedures for the two parts of the experimental work – permeation and sorption tests.  In 

Chapter 4, the results from both permeation and sorption tests investigating the effect of feed 

concentration, membrane thickness, and operating temperature are summarized and analyzed.  

A comparison between the diffusivity coefficients obtained using the steady state permeation 

rate and time lag is also presented in this chapter.  Finally, the conclusions drawn from this 

study and recommendations for future work are given in Chapter 5. 
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Chapter 2 

Literature Review 

 

 

2.1 Chitosan 

2.1.1 Source, Structure and Manufacturing 

Chitosan is a polymer derived from chitin, the second most abundant natural polymer 

and naturally occurring polysaccharide found in shells of crustaceans, cell walls of fungi and 

exoskeletons of insects [8-10]. 

Chemically, chitin is known to be a long polymer chain of β(1→4) linked 2-

acetamido-2-deoxy-β-D-glucose units [11] and chitosan is its N-deacetylated product [12].  

Both can be considered to be analogues of cellulose, where the hydroxyl groups at carbon-2 

have been replaced by the acetamido and amino groups, respectively [11,13] (Fig. 2.1).    

Chitosan was first discovered in 1859 by boiling chitin in concentrated potassium hydroxide 

(KOH) [14].  It was then formally named chitosan by Hoppe-Seyler in 1894 [14,15]. 
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Figure 2.1  Structure of chitin, chitosan, and cellulose 

 

Commercially, chitin and chitosan are obtained from shellfish wastes of the seafood 

processing industry (mainly shells of crabs, krills and shrimps) [4,12,16-18].  The process of 

using shell materials to produce chitin and then chitosan is illustrated in Fig. 2.2.  It involves 

removal of proteins from the shell material by sodium hydroxide (NaOH) solution, followed 

by extraction of minerals such as calcium carbonate and calcium phosphate using 

hydrochloric acid (HCl).  The resulting material, chitin, is then treated with 40-45% NaOH 

solution to hydrolyze the N-acetyl linkage (i.e., deacetylation), followed by purification 

procedures to produce chitosan [11,18,19].  At this stage, the product can be dried to give 

flaked chitosan [18].  It should be noted that chitosan in its free amine form is not soluble in 

water.  At acidic pH’s (pH<6.5), the free amino groups (-NH2) are protonated to become 

cationic amine groups (-NH3
+), thereby forming chitosanium salts.  Therefore, acid is 

generally required to prepare aqueous solutions of chitosan [11,18]. 
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Chitosan is a versatile biomaterial available in many useful forms that can be readily 

obtained or are commercially available.  Some forms being pursued commercially are: film, 

fiber, beads, gels, paste, solutions and microcrystalline powders [18,20]. 

 

Figure 2.2  Manufacturing process of chitin and chitosan 

 

2.1.2 Properties and Applications 

 

Chelating Property – Wastewater Treatment 

One of the most important properties of chitosan is the ability to chelate heavy metal 

ions [15].  With the nitrogen electrons, the amino groups on chitosan serve as ligands or 

binding sites for metal ions, forming metal complexes.  Chitosan is capable of chelating 

many metal ions including iron, copper, magnesium, silver, cadmium, mercury, lead, nickel, 

Crustacean shell 

Grind (size reduction) 

Deproteinization with NaOH 

Demineralization with HCl 

Washing and dry 

Chitin 

Deacetylation with NaOH 

Washing and dry 

Chitosan 
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zinc, manganese, chromium and uranium [9,15,21].  As a result, chitosan is a promising 

adsorbent to remove heavy metal ions from industrial wastewater. 

 

Cationic Property – water purification, food industry, cosmetics 

The amino group also makes chitosan a cationic polyelectrolyte.  When dissolved in 

acidic media at pH<6.5, chitosan possesses a high positive charge density, allowing it to 

interact with negatively charged surfaces.  This property makes chitosan an excellent 

flocculent to aggregate with negatively charged colloids [11,18].  Being a flocculent and 

having the ability to chelate iron, chitosan is a useful pool and spa clarifier [18].  In the food 

industry, chitosan has been used for coagulation of suspended solids from food processing 

waste [21,22].  In addition, its ability to bind to negatively charged fats and lipids and its film 

forming capacities make chitosan a potential candidate for food packaging applications [23].  

Due to its adherence to skin and hair that are composed of negatively charged proteins and 

mucopolysaccharides, chitosan is also useful in cosmetics or personal care products [18]. 

 

Biological Properties – medicine, biotechnology and agriculture  

Chitosan is a natural polymer that is biocompatible, non-toxic, biodegradable and 

physiological inert [11,18].  These biological characteristics provide chitosan a wide 

spectrum of applications.  In the medical field, for example, chitosan is a candidate for 

wound healing treatment [2,18,22,24,25] due to its water-absorption, biocompatibility and 

oxygen permeability.  It may also be used in drug delivery [22,26] and drug controlled 

release systems [27].  With its excellent film forming capabilities, it has a potential 

application as contact lenses [25,28].  In biotechnology, chitosan has been used as enzyme 
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and cell immobilization supports [11,22].  In agriculture, chitosan can be used as seed 

coating or soil additive to increase crop yields [18,29].  Very importantly, since chitosan is a 

biodegradable polymer, it is eco-friendly and safe for humans and the environment [11]. 

In addition to the above applications, chitosan is also used for paper making, textile 

finishing and in photographic processes [21].  Furthermore, because of its excellent 

hydrophilicity, chitosan has also shown to be a suitable membrane material for solvent 

dehydration by pervaporation [30,31]. 

 

2.2 Applications of Chitosan with Silver Ions 

In the past decade, chitosan membrane has found potential applications that involve 

incorporation of silver ions (Ag+).  These applications include facilitated transport using Ag+-

incorporated chitosan membranes, chitosan wound dressing incorporating silver compounds, 

and silver recovery from wastewater using chitosan as an adsorbent. 

 

2.2.1 Facilitated Transport – Olefin/Paraffin Separation 

Carrier-facilitated transport membranes incorporate a reactive carrier that helps 

transport one of the components of the feed across the membrane.  In the process, the feed 

mixture is contacted with the membrane on the upstream side.  The carrier selectively and 

reversibly complexes the component of interest and diffuses to the downstream membrane 

interface where the reaction is reversed and the component is recovered. 

The dominant technology for olefin/paraffin separations in the petrochemical industry 

is low-temperature and high-pressure distillation that is highly energy-intensive due to 
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similar volatilities between an olefin and its associated paraffin.  Work has been done since 

the 1980s to employ facilitated transport as a possible alternative to the conventional 

distillation process [32].   Since silver reacts with olefins specifically and reversibly by 

forming an olefin-silver complex, it has been a popular choice as an olefin carrier for 

facilitated transport [33-38].  The olefins are able to form a reversible complex with Ag+ and 

thus pass through the membrane through the physical solution-diffusion mechanism as well 

as the chemically facilitated transport, while paraffins permeate through the membrane via 

solution-diffusion only.  It was documented that the separation performance of silver-based 

polymer electrolyte membranes was remarkably high [34,36].  Furthermore, recent studies in 

our lab showed that chitosan serving as a base membrane to incorporate a silver facilitating 

agent was one of the most effective for olefin/paraffin separation as compared to other base 

membranes [1]. 

 

2.2.2 Wound Dressing 

Ag+ is known to possess excellent antibacterial properties [5,24,39].  For burn injuries 

where the normal skin barrier and host defense mechanisms that prevent infection are 

disrupted, the use of silver compounds such as silver sulfadiazine (AgSD) is believed to be 

an effective treatment to prevent infection as they offer high antibacterial activity [40].  As a 

novel biomaterial well known for accelerating healing of wounds, chitosan is suited for the 

manufacture of wound dressings [41,42].  In recent years, chitosan membranes have been 

shown to be a potential wound dressing to incorporate AgSD for treatment of burn injuries 

[2,3].  AgSD-incorporated chitosan membrane serves as a rate-controlling reservoir to release 

silver compounds to the wounds in a sustained way.  This provides an alternative to the 
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traditional method of direct application of AgSD cream that has raised concerns with 

potential silver toxicity.  In addition, this material gives more effective long-term inhibition 

of bacterial growth, reducing the frequency of cream application that causes discomfort for 

patients and require substantial nursing effort. 

 

2.2.3 Silver Recovery from Wastewater 

In the past decade, concerns have been raised about the presence of soluble silver in 

wastewater from industrial processes (including photographic and electroplating industries) 

due to its toxicity to aquatic organisms [4,5].  Being a valuable metal, silver has been 

recovered by several methods [4].  Chitosan has been known for its ability to adsorb metals 

and has been described as an excellent metal adsorbent since 1970s.  It has also been 

documented as an effective means to remove silver from aqueous solutions [4-7]. 

Compared to existing recovery methods such as precipitation and ion-exchange, the 

use of chitosan as a base material for silver recovery has many advantages including lower 

operating cost, the avoidance of formation of a sludge that is expensive to refine [4] and 

effectiveness even at low ionic concentrations [15].  Although efficient removal of certain 

anionic silver salts present in industrial effluents is yet to be developed, the binding behavior 

of chitosan to Ag+ was found to be largely comparable to that of commercial resins.   High 

selectivity, high adsorption capacity, and easy recovery of silver from chitosan resin were 

also documented [5].  Based on the information in the literature, chitosan appears to be an 

attractive candidate for recovery of Ag+ from industrial wastewater. 
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2.3 Studies Regarding Ag+ Mobility in Chitosan 

All applications mentioned in the previous section involve transport of Ag+ in 

chitosan.  However, the transport properties of Ag+ (or even other metal ions) in chitosan 

have seldom been reported in the literature.  One exception is the study by Karajewska [13], 

who investigated the diffusion of 15 metal ions, including Ag+.  Only the permeability 

coefficients of the ions were determined, and the focus lay on the comparison between the 

metal ions and neutral non-electrolytes in terms of two transport models.  Another study 

concerning transport of metal ions in chitosan was that by Du et al. [43], who determined the 

permeation rate of six metal ions in silk a fibroin/chitosan blend.  However, Ag+ was not 

studied and the aim was to determine the effect of the composition of chitosan blend 

membranes on the permeation rate and permeability coefficient of K+.  There is little work 

reported in the literature that deals with the mobility of Ag+ in chitosan in depth to provide 

fundamental and useful information for practical applications. 
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2.4 Transport through Membranes 

2.4.1 Solution-Diffusion Mechanism 

As chitosan membrane is non-porous, the transport of a silver salt compound follows 

the solution-diffusion mechanism, whereby the solute dissolves into the membrane and 

diffuses across through the free volume of the membrane.  The most widely adopted model to 

describe solute transport through a membrane is schematically shown in Fig. 2.3 [44]. 

 

 

Figure 2.3  Concentration profile for solute transport across the membrane 

 

The solute is transported from the feed side (higher concentration) to the downstream 

side (lower concentration) via the following series of steps: 

1. diffusion from the bulk solution to the membrane surface 

2. sorption into the membrane 

3. diffusion across the membrane  

4. desorption at the downstream side of the membrane 

5. diffusion to the bulk solution in the permeate 

C1b 

C1m 

C2m 

Membrane

C2b 
  x 
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Each step represents a resistance, but step 3 in general is rate determining step.  The effects 

of the boundary layers (steps 1 and 5) are often assumed to be negligible.  This assumption is 

most valid when the concentration gradient across the membrane is large, the solution on 

both sides of the membrane is well stirred or the overall resistance is dominated by the 

membrane.  All these criteria are satisfied in this study due to the nature of chitosan and the 

experimental set-up, as discussed later. 

 

2.4.2 Fick’s Law of Diffusion 

When no chemical interactions between the solute and the membrane take place, the 

transport of components inside a non-porous membrane is described by molecular diffusion, 

which may be described by Fick’s first law:  

x
C

DJ m

∂
∂

−=        (2.1) 

where J is the rate of transfer per unit area of section, called the permeation rate or diffusion 

flux, Cm is the concentration of diffusion substance in the membrane, x  is the length 

measured normal to the membrane section, and D is the diffusivity coefficient.  If diffusion 

occurs effectively in one direction only and the diffusivity coefficient is constant with respect 

to concentration and does not vary from point to point, Fick’s second law of diffusion gives: 

2

2

x
C

D
t
C m

∂
∂

=
∂
∂

      (2.2) 

Consider the diffusion through a plane membrane of thickness l where constant 

concentrations, C1m and C2m, are maintained at the membrane surfaces x = 0 and x = l, 

respectively.  At the steady state, the permeation rate can be derived from Eq. 2.1 as 
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l
CCDJ mm )( 21 −

=       (2.3) 

In some cases where the concentrations of the diffusing substance on each side of the 

membrane surface are not readily known, the permeation rate can be written as: 

)('
)(

21
21

bb
bb CCP

l
CCP

J −=
−

=     (2.4) 

where C1b and C2b are the bulk concentrations on the upstream and downstream sides of the 

membrane, respectively.  Eq. 2.4 defines the permeability coefficient (P) and the permeance 

(P’).  If a linear relationship exists between the bulk concentration and the concentration of 

the diffusing substance at the membrane surface, the sorption isotherm will be linear and can 

be described by Eq. 2.5 where S is the solubility of the diffusing substance in the membrane. 

bm SCC =         (2.5) 

From Eqs. 2.3-2.5, one can find that the permeability coefficient (P) is a function of both 

diffusivity coefficient (D) and solubility (S), as shown in Eq. 2.6. 

DSP =        (2.6)  

In terms of its physical meaning, the diffusivity coefficient is related to the ability of 

diffusing substances to move in the polymeric network and can be considered as a measure 

of the rate at which the individual molecules move within the membrane.  The permeability 

coefficient can be considered as the total count of diffusing substances moving across the 

membrane from a point of view outside of the membrane.  In other words, the permeability 

coefficient is related to the global measurement of the rate of transport across the membrane, 

given in terms of the measurable changes in the concentrations in the bulk solutions on both 

sides of the membrane, while the diffusivity coefficient characterizes the mobility within the 

membrane, described quantitatively in terms of the concentration within it [45,46].  
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Solubility is a measure of sorption uptake, which measures the maximum capacity of the 

sorbate in the membrane at specific conditions (adsorbent concentration, temperature, etc.)   

 

2.4.3 Time Lag Method for Determination of Diffusivity 

The time lag method to study permeation was originally conceived by Daynes [47] 

followed by Barrer [48].  It allows diffusivity to be directly evaluated from experimental data 

without needing intensive mathematical treatment as required by other techniques [49].  

Consider a diffusion process across the membrane down a concentration gradient and that the 

following conditions apply: the diffusivity coefficient is constant, the membrane is originally 

free of diffusing substances, and the concentration of the diffusing substance on the 

downstream side is negligibly low ( 02 =bC ).  Suppose at 0=t , the feed at a constant 

concentration bC1  is in contact with the membrane.  Thus, by integrating Eq. 2.2 with respect 

to time, the amount of diffusant Qt that has passed through the membrane over the duration t 

can be expressed by Eq. 2.7[50]:  

∑
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−−=

1
2

22
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l
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m

t π
π

  (2.7) 

As time approaches infinity, the permeation rate approaches a steady level, and Qt becomes 

6
1

2
1

−=
l
Dt

lC
Q

m

t       (2.8) 

The graph of Qt vs. t yields a straight line represented by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

D
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l
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Q m
t 6

2
1       (2.9) 

which upon extrapolating to the t-axis will yield an intercept τ, where 
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D
l
6

2

=τ          (2.10) 

τ is the so-called “time lag” of diffusion, and is associated with the time necessary for 

the permeation rate to reach steady state.  With Eq. 2.10, the diffusivity coefficient (D) can 

be determined directly from permeation measurements over the transient period of diffusion.  

From the steady state of the permeation, permeability can be deduced using Eq. 2.4 [50,51].  

As will be shown later, the diffusivity coefficient of Ag+ in chitosan is in fact affected by 

concentration.  As a result, the diffusivity determined by the time lag method is the overall 

“apparent diffusivity”.   

Although the time lag method is the most common method used to determine gas 

diffusion coefficients in polymer membranes [52,53] and its use for gas diffusion and related 

work is common [49,52-57], it has rarely been used for ionic diffusion.  Among the very few 

documented studies that use time lag for ionic diffusivity in polymer membranes, there were 

discrepancies in the results [44] and sometimes the transport process was not really diffusion 

under a concentration gradient as the driving force [58].  As far as we know, the work 

presented here is the first case where the time lag method is applied directly to ionic 

diffusivity in diffusion, where the experimental results showed a considerable degree of 

consistency. 

 

2.4.4 Temperature Dependency of Permeation Properties 

The Arrhenius equation is often utilized for correlation of permeation properties in 

gas permeation [57,59].  Permeability and diffusivity coefficients are expressed as the 

following when the Arrhenius relationships are followed: 
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⎜
⎝
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RT
E

DD dexp0       (2.12) 

where Ep and Ed are the energies of activation for permeation and diffusion (kJ/mol), 

respectively, P0 [mol m/m2 s (mol/L)] and D0 (cm2/s) are the respective pre-exponential 

factors, R is the gas constant (J mol/K), and T is the temperature (K).  Eqs. 2.11 and 2.12 can 

be linearized by taking natural logarithms to yield: 

0lnln P
RT
E

P p +−=       (2.13) 

0lnln D
RT
E

D D +−=       (2.14) 

Therefore, if the Arrhenius relationships are followed, plots of ln P and ln D versus 
T
1 will 

give straight lines with slopes of 
R

E p−  and 
R

ED−  and intercepts of ln P0 and ln D0, 

respectively.  In addition, the temperature dependency of solubility can normally be 

expressed by: 

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=
RT

HSS sexp0                 (2.15) 

where sHΔ  is the heat of sorption (kJ/mol).  From Eqs. 2.6 and 2.13-2.15, it can be seen tat 

sHΔ  is related to the activation energy by: 

dps EEH −=Δ       (2.16) 
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A positive sHΔ  indicates that the sorption of the permeant in the membrane is endothermic 

and that the sorption uptake will increase with an increase in temperature.  A negative sHΔ  

indicates exothermic sorption and that the sorption capability will decrease with temperature. 

 

2.5 Equilibrium Models of Adsorption 

The adsorption isotherms provide information on the maximum uptake of adsorbates 

at a given feed concentration and relate the coverage of the adsorbates on the adsorbent with 

the concentrations of the adsorbate in the solution.  The Langmuir and Freundlich models are 

among the most commonly used to describe equilibrium sorption isotherms.   

 

2.5.1 The Langmuir Equation 

Langmuir was the first to propose a theory of adsorption onto a flat surface from a 

kinetic viewpoint.  The Langmuir theory is based on the principle that the rate of adsorption 

onto the surface and the desorption rate from the surface are equal when an adsorption 

equilibrium is reached [60].  Assumptions of the Langmuir model include:  

▪ Homogeneous adsorbent surface (i.e. adsorption energy is constant at all adsorption 

sites), 

▪ Localized adsorption on surface (i.e. adsorbed atoms or molecules are adsorbed at 

definite, localized sites), and 

▪ Each adsorption site can accommodate only one molecule or atom. 

The Langmuir equation, valid for monolayer sorption onto a homogeneous surface with 

definite, localized sites, is given by: 
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e

e
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bC
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1

θ        (2.17) 

where θ is the fractional coverage (dimensionless), Ce is the adsorbate concentration in the 

liquid phase at equilibrium (mg/L), and b is the affinity constant or Langmuir constant, a 

measure of the affinity of an adsorbate molecule for the surface.  For a larger b, the coverage 

of the adsorbent surface by adsorbate molecules is greater at a given adsorbate concentration 

in the liquid phase due to the stronger affinity of adsorbate molecules towards the adsorption 

sites.  The fractional coverage θ can be described as the ratio of qe, the amount of adsorbate 

adsorbed by the adsorbent at equilibrium (mg/g) to qmax, the maximum amount that can be 

adsorbed (mg/g): 

maxq
qe=θ        (2.18) 

The Langmuir model can be rearranged to yield: 

bq
C

qq
C

e
e

e

maxmax

11
+=       (2.19) 

Consequently, a plot of 
e

e

q
C vs. eC  will result in a straight line of slope 

max

1
q

and intercept 

bqmax

1 .  This linear relationship can be used to determine the validity of the Langmuir model, 

and to determine the maximum adsorption amount qmax and the Langmuir constant b from 

experimental equilibrium sorption data [61]. 

 

2.5.2 The Freundlich Equation 

In some adsorption processes, fundamental adsorption isotherm equations such as the 

Langmuir equation are not adequate because the basic assumptions in the Langmuir model 
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are not readily satisfied.  For example, a heterogeneous surface and multi-site adsorption may 

be encountered [61].  To this end, empirical approaches have been proposed to describe the 

equilibrium data.  One of the earliest empirical models used was the Freundlich equation [60] 

given by: 

n
ee kCq =        (2.20) 

where k [(mg/g)/(L/mg)n] and n (dimensionless) are Freundlich constants indicating sorption 

capacity and intensity, respectively [62].  The linearized form of Eq. 2.19 is: 

ee Cnkq logloglog +=      (2.21) 

If the Freundlich model applies to the equilibrium sorption data, a logarithmic plot of eq  vs. 

eC  will yield a straight line with a slope of n and an intercept of klog . 

In the literature, both the Langmuir and Freundlich models have been used to fit 

experimental equilibrium sorption data.  Table 2.1 summarizes the models used for several 

systems involving chitosan.  Despite the fact that metal sorption on chitosan takes place 

inside the material rather than merely on the external surface, some have found that the 

sorption of metals fits the Langmuir equation.  Others, on the other hand, have found that 

sorption follows Freundlich behavior.  The discrepancy is mainly caused by the differences 

in the types of chitosan used and the experimental conditions. 
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Table 2.1  Isotherm models for equilibrium sorption data of different metals on chitosan in the literature 

Adsorbate Concentration (mg/L) Adsorbent Adsorption Models Reference 

Cd(II)a 0 – ~60  Crushed crab shell chitosan Freundlich [6] 
FeSO4, FeCl3 2 – 14 Chitosan beads Langmuir [62] 

CuSO4 62.7 – 75.3 Chitosan particles Langmuir [63] 
Pb(NO3)2 10 – 1000 Chitosan particles Freundlich [64] 
K2Cr2O7 500 Chitosan coated oil palm shell charcoal Langmuir [65] 
Cr2(SO4)3 0.015-1.73 Chitosan granules Langmuir [66] 

NiSO4 ~20 – 400 Chitosan resins Freundlich [67] 
a The anions are not disclosed. 
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Chapter 3 

Experimental 

 

In this study, the transport parameters determined experimentally include 

permeability coefficient and diffusivity coefficient of Ag+ in chitosan, as well as sorption 

uptake of AgNO3 in chitosan.  The first two parameters are determined from the permeation 

tests, and the third in the sorption tests.  Table 3.1 lists the three variables and their range 

evaluated in both tests.  The net membrane thickness is referred to the thickness of the dry 

chitosan membrane before being used in the permeation and sorption tests.  

Diffusivity has a dimension of length square over time, and the unit used in this study 

is (cm2/s).  Permeability is sometimes also given a unit of (cm2/s) in the literature [13,43,44].  

Due to the different physical meaning between the two parameters, the unit of {mol m/[m2 s 

(mol/L)]} is used for permeability in this study to characterize the permeation rate 

normalized by the concentration gradient (i.e. the driving force).  Sorption uptake is 

represented in mass ratio as (g silver nitrate/g chitosan). 

 

Table 3.1  Range of evaluation for each of the three variables in permeation and sorption tests 

 Feed concentration (M) Net membrane thickness (μm) Temperature (ºC) 
Permeation test 0.08 – 1 20 – 50 21 – 61 
Sorption test 0 – 1 16 – 51 23 – 63 
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3.1 Materials 

Membranes used in this study were prepared from chitosan flakes (Flonac N, 

molecular weight 100,000) supplied by Kyowa Technos Co. Ltd., Japan.  Silver nitrate 

(AgNO3), acetic acid, and sodium hydroxide were purchased from Aldrich Chemical 

Company.  De-ionized laboratory water was used in the aqueous solutions for membrane 

preparation and treatment.   

AgNO3 was chosen as the silver compound for this study due to its lower cost 

compared to other silver compounds such as silver tetrafluoroborate (AgBF4), silver 

perchlorate (AgClO4) and silver triflate (AgCF3SO3).  It should be noted that in the 

permeation experiment, it is the coupled Ag+ and NO3
- ions that are moving, rather than 

merely Ag+ ions by itself because electro-neutrality is always maintained. 

 

3.2 Membrane Preparation 

Homogeneous dense chitosan membranes were prepared by the solution casting 

technique.  Chitosan flakes were dissolved in dilute acetic acid solution by the protonation of 

the amine groups of chitosan to form a homogeneous solution.  The polymer solution, 

comprising 1.1 wt.% chitosan, 2 wt.% acetic acid and 96.9 wt.% water, was filtered and then 

cast onto a horizontally positioned glass plate with a casting knife.  By adjustment of the size 

of the casting gap, the amount of solution and consequently the resulting thickness of the 

product membrane were controlled.  The cast chitosan solution film was air-dried in an 

environmentally controlled chamber supplied by D.F.S. Inc., France.  The dried membrane in 
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the form of a chitosan salt was then subjected to alkaline treatment by 1M sodium hydroxide 

solution for 24h, to convert the cationic amine groups (-NH3
+) into the free amine form (-

NH2).  The resulting membrane was rinsed thoroughly by de-ionized water, cut into 

membrane samples of same cross-sectional areas, and dried in vacuum.  The original 

thicknesses of the dried membrane samples were measured using a digital micrometer 

supplied by Mitutoyo Inc.  The original membrane thicknesses of the membranes so formed 

were between 15 and 36μm.  Thicker membranes were prepared by a similar method except 

that the chitosan polymer solution was poured into Petri dishes instead of cast on glass plates.  

Finally, membrane samples were stored in de-ionized water for permeation tests or stored 

under room temperature for sorption tests. 

 

3.3 Permeation Tests 

The apparatus used in the permeation tests is shown schematically in Fig. 3.1.  The 

vertical permeation cell consists of two compartments, a feed compartment of 125mL and a 

receptor compartment of 2L.  A piece of wet chitosan membrane (that had been stored in de-

ionized water prior to the test) with a cross-sectional area of 10.8 cm2 separated the two 

compartments and was mounted horizontally against the opening of the feed compartment 

and sealed by a plastic ring to ensure that the solution within the feed compartment did not 

leak to the receptor compartment.  Before the measurement started, the receptor compartment 

was filled with 1.5 L of de-ionized water.   
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Figure 3.1  Schematic view for permeation test set-up. V1, V2, feed and receptor compartment, 

respectively.  M, membrane.  S1, S2, mechanical and magnetic stirrer for V1 and V2, respectively.  CP, 

conductivity measuring probe.  CM, conductivity meter.  DA, data acquisition system. 

 

At the beginning of the measurement (time zero), 50mL of AgNO3 solution of known 

concentration was charged into the feed compartment.  Throughout the test, the liquids in 

both compartments were stirred continuously, by a magnetic stirrer in the receptor 

compartment and by a mechanical stirrer in the feed compartment.  As a result of the 

diffusion process of AgNO3 from the high-concentration feed solution to the low-

concentration receptor solution, the concentration of AgNO3 in the receptor compartment 

gradually increased from zero from the start of the measurement.  The change in the 

concentration of AgNO3, an ionic compound, in the receptor compartment was determined 

by recording the conductivity of the solution.  This was performed by a conductivity probe, 

which was immersed in the receptor solution and was connected to an inoLab Cond Level 2 

conductivity meter that provided the conductivity readings.  Data from the conductivity 

meter was transmitted to MultiLab pilot data acquisition software that stored the conductivity 

S1 

S2 

M 

CP 

CM 

DA 

V1 

V2 
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data as a function of time.  For the permeation test, the conductivity data were logged at five-

second intervals from time zero to a time after the steady state of permeation was reached.  

The measured conductivity was correlated to AgNO3 concentration by previously established 

concentration-conductivity calibration curves.  Therefore, the measurement of conductivity 

in the receptor compartment over time could be related to the permeation rate of AgNO3 

across the chitosan membrane.   

All permeation tests, except for those where the effect of temperature was evaluated, 

were carried out at room temperature.  For experiments at higher temperatures, the solutions 

in both compartments were pre-heated to the desired temperature and a heating plate 

equipped with a build-in magnetic stirrer was placed under the permeation cell throughout 

the test to maintain the desired temperature. 

It should be pointed out that during the course of each permeation experiment, the 

AgNO3 concentration in the feed compartment was much higher than that in the receptor 

compartment so that the variation in the feed AgNO3 concentration was negligibly small.  

This satisfies one of the conditions used to derive the time lag equation. 

 

3.4 Sorption Tests 

Prior to the sorption process, chitosan membranes of equal cross-sectional areas (12.2 

cm2) are dried in vacuum.  The original weights (mo) and original thicknesses (lo) of the dried 

membranes were measured.  Chitosan membranes were then immersed in 40mL of AgNO3 

solutions of known concentration over a period of at least 24h.  Upon removal, the 
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membranes’ surface water was quickly blotted and the wet weights (mw), i.e., weight of the 

chitosan membrane sorbed with both water and AgNO3, were measured.  The wet 

thicknesses (lw) of the membranes were measured using the micrometer right after 

measurement of the wet weights.  The membrane samples were then dried in vacuum at 50ºC 

for 12 h to remove sorbed water.  This was followed by the measurement of the dry weights 

(md) i.e., weight of chitosan membrane plus AgNO3.  These measurements allow the 

determination of AgNO3 and water uptake in chitosan on a mass basis.   

All sorption tests were carried out at room temperature, except for the experiments to 

study of the effect of temperatures.  In this case, the solutions containing chitosan membranes 

were placed in an oven at the desired temperatures.   
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Chapter 4 

Results and Discussion 

 

4.1 Permeation Profile 

In the permeation tests, the conductivity of the initially ion-free solution in the 

receptor compartment is measured as a function of time.  A typical plot showing the 

conductivity data gathered at five-second intervals in a permeation test is presented in Fig. 

4.1.  The experimental conditions in this case were a feed AgNO3 concentration of 0.07M, 

chitosan membrane thickness of 19μm and room temperature. As the de-ionized water 

obtained in the lab may contains a trace amount of ions, the initial receptor solution before 

diffusion of Ag+ takes place sometimes has a small conductivity between 0 and 3μS/cm.  The 

original conductivity of the de-ionized laboratory water is deducted from all conductivity 

data before correlation to the actual solution concentration. 

Fig. 4.2 is the concentration profile corresponding to Fig. 4.1, obtained using a 

previously established calibration curve. (The calibration curve used in this study is 

presented in Appendix A.)  Both of the transport parameters of Ag+ in chitosan, diffusivity 

and permeability, are obtained from the concentration profiles in each permeation test.  The 

first part of the diffusion process is the transient permeation, followed by steady state mass 

transfer.  The steady state diffusion can be described by Eq. 2.9, and is indicated on the 
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overall concentration profile by the constant slope, representing constant permeation rate.  

The time lag τ as shown in Fig. 4.2 is obtained by extrapolating the steady state region of the 

curve back to zero concentrations.  From transient permeation, diffusivity coefficient (D) is 

determined from τ using Eq. 2.10. From steady state permeation, permeance (P’) and 

subsequently permeability coefficient (P) are obtained from the slope of the permeation curve 

using Eq. 2.4. 
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Figure 4.1  Time dependency of conductivity of the receptor solution, for diffusion of 0.07M AgNO3 

through a 19μm chitosan membrane at room temperature. 
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Figure 4.2  Time dependency of AgNO3 concentration in the receptor compartment for the same 

experimental conditions as Fig. 4-1.  τ is the time lag. 

 

4.2 Membrane Thickness in Permeation 

During the period between diffusing substances first entering the membrane and the 

time when a steady state of permeation is reached, the concentration at any point inside the 

membrane varies with time.  Fig. 4.3 schematically demonstrates the change in the 

concentration profile across the membrane with permeation time.  Prior to the permeation 

test, the membrane sample was stored in de-ionized water, and thus was swollen entirely by 

water.  At the beginning of permeation, the water-swollen membrane was brought in contact 

with AgNO3 solution on the feed side and water on the permeate side.  AgNO3 molecules 

started to be admitted from the side of the membrane in contact with the feed solution.  The 
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silver concentration inside the membrane was therefore the highest at the surface contacting 

with the feed AgNO3 solution, and the silver concentration was the lowest at the membrane 

surface on the permeate side.  That is, a curved concentration profile along the membrane 

thickness is established, starting at the highest point inside the membrane surface of the feed 

side and gradually lowers towards the permeate side.  As permeation approaches the steady 

state, more AgNO3 molecules have been admitted into the membrane and the concentration 

profile gradually becomes more linear until the steady state when a straight profile across the 

membrane thickness is observed.   

   

Figure 4.3  Schematic illustration of the concentration profile of permeate substances across the 

membrane during a permeation experiment.  

 

As will be shown by the results from the sorption test, the membrane swells when 

immersed in the solution and to an extent determined by the solution concentration.  This 

means that the membrane thickness is different between the transient state and the steady 

state of permeation, due to variation in the silver and water content inside the membrane.  

This deviation of membrane thickness should be taken into account for the determination of 
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the diffusivity and permeability coefficients.  From the sorption experiments (refer to Section 

4.3), a relationship is obtained between the original thickness of dry chitosan membrane and 

the actual thickness of the swollen membrane at sorption equilibrium: 

o

w

l
l

R =        (4.1) 

where ol  is the original thickness of the dry chitosan membrane only; and wl is the wet 

thickness when it is in sorption equilibrium with a AgNO3 solution of known concentration.  

The ratio R  of the two thicknesses, is obtained as a function of AgNO3 concentration. 

Determination of the diffusivity coefficient from the time lag is related to the 

transient state of permeation, a relatively short period after the start of permeation test.  

During the relatively short transient state, only a small amount of AgNO3 was admitted into 

the membrane.  The silver concentration inside the membrane is thus very low and the 

membrane is swollen due mostly to water. As a result, the thickness of Ag+ free membrane 

was chosen for determination of the diffusivity coefficient.  The membrane thickness used 

was thus corrected from the original thickness by the R value corresponding to zero 

concentration of AgNO3.  Unlike the diffusivity coefficient, the permeability coefficient is 

obtained from the permeation rate at the steady state.  At this stage, the concentration profile 

of the solution inside the membrane is assumed to be linear.  The membrane thickness used 

in determination of the permeability coefficient is therefore estimated by adjusting the 

original thickness by the average of the R values at zero concentration and the R values at the 

specific feed AgNO3 concentration in the test. 
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4.3 Influence of Feed Concentration 

4.3.1 Permeation 

Permeation tests to determine the effect of feed AgNO3 concentration were carried 

out under room temperature for membranes of three different thicknesses: 18, 20, and 26μm.  

These values of thicknesses are referred to the original thickness of a dry chitosan membrane 

before the permeation tests.  The concentration dependency of the steady state permeation 

rate is shown in Fig. 4.4.  The results obtained with three membranes with different 

thicknesses show similar trends of increasing permeation rate with concentration.  This is 

expected as a larger concentration difference across the membrane means a larger driving 

force for permeation.  Figs. 4.5 and 4.6 show the calculated permeance and permeability 

coefficients as a function of AgNO3 concentration, respectively.  The value of the 

permeability coefficient is obtained from the permeance by normalizing it with the 

membrane thickness estimated based on the feed concentration as described in Section 4.2.  

Both parameters increase with feed concentration from 0.08M before reaching a maximum at 

around 0.5-0.7M and then tend to decrease slightly at higher concentrations up to 1.0M.  The 

effect of feed concentration on the permeability coefficient of silver ions in chitosan 

membrane has not been documented in the literature.  Yet our results at low concentrations 

are similar to those of Du et al. [43] dealing with diffusion of K+ in chitosan.  They reported 

that the permeability increases with increasing feed K+ concentration in the range of 0.001-

0.1M.    
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Figure 4.4  Effect of feed AgNO3 concentration on the permeation rate of Ag+ through chitosan 

membranes of thicknesses 16, 18, and 26 μm at room temperature.   
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Figure 4.5  Effect of feed AgNO3 concentration on the permeance of Ag+ through chitosan 

membranes of thicknesses 16, 18, and 26 μm at room temperature. 
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Figure 4.6  Effect of feed AgNO3 concentration on the permeability of Ag+ through chitosan 

membranes of thicknesses 16, 18, and 26 μm at room temperature. 

 

The diffusivity coefficient, determined from the time lag using a membrane thickness 

based on the method described previously (i.e., water-swollen thickness), varies with 

concentration as presented in Fig. 4.7.  Note that the equation used to calculate the diffusivity 

coefficient (Eq. 2.10) is derived from Fick’s second law assuming that the diffusivity 

coefficient is constant with concentration.  Our results show that the diffusivity coefficient of 

Ag+ in chitosan is in fact a function of concentration.  As a result, the diffusivity coefficient 

determined using the time lag can be considered to be the overall “apparent diffusivity”.  As 

will be shown later, the results from the sorption tests in combination with those from the 

permeation tests will allow the estimation of the diffusivity coefficient from the steady state 



 

  36

permeation rate (Eq.2.3).  This will allow a comparison between the values obtained from the 

two methods, providing a deeper understanding of this parameter. 
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Figure 4.7  Effect of feed AgNO3 concentration on the diffusivity coefficient of Ag+ through chitosan 

membranes of thicknesses 16, 18, and 26 μm at room temperature.  The diffusivity coefficient is 

evaluated from the time lag for transient permeation. 

 

4.3.2 Sorption 

The equilibrium sorption uptake of AgNO3 for a concentration range of 0-1M and at 

room temperature is shown in Fig. 4.8 on a mass basis.  The adsorption capacity of the 

adsorbate AgNO3 in a chitosan membrane at equilibrium, qe (mg/g), can be determined by: 

1000×
−

=
o

od
e m

mm
q       (4.2) 
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where mo is the original weight of a dry chitosan membrane before adsorption (g), md is the 

dry weight of a dry chitosan membrane after adsorption (g).  Ce (mg/L), the concentration of 

AgNO3 in the liquid phase at equilibrium, is evaluated by: 

V
mq

CC oe
e −= 0        (4.3) 

where C0 is the initial concentration of AgNO3 in the solution (mg L-1) and V is the volume 

of the AgNO3 solution that remains relatively constant during the sorption experiments (mL).   
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Figure 4.8  Effect of AgNO3 concentration on sorption uptake of AgNO3 in chitosan membranes at 

room temperature.  

 

To evaluate the applicability of the Langmuir relationship, the plot of 
e

e

q
C vs. Ce is 

prepared (Fig. 4.9), and a linear relationship is obtained with a correlation coefficient of 

0.9875.  This signifies compliance of adsorption of Ag+ on chitosan with the Langmuir 
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isotherm.  According to Eq. 2.18, the straight line has a slope of 
max

1
q

and an intercept 

of
bqmax

1 .  Using linear regression, the values of qmax and b are determined to be 629 mg g-1 

and 0.000148 L mg-1, respectively.   
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Figure 4.9  Adsorption isotherm of AgNO3 in chitosan membranes, linearized according to the 

Langmuir equation. 

 

In order to determine whether the Freundlich equation applies to the experimental 

sorption data (Eq. 2.20), qe is plotted against Ce on a logarithmic scale (Fig. 4.10).  It is found 

that the linear relationship is tremendously reduced in the mid to low concentration range, 

with a correlation coefficient of only 0.6443.  This shows a relatively poor correlation with 

the Freundlich equation as compared to the Langmuir equation in the concentration range 

studied. 
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Figure 4.10  Adsorption isotherm of AgNO3 in chitosan membranes, linearized according to the 

Freundlich equation. 

 

Fig. 4.11 presents the trend of water uptake of the same membrane samples 

corresponding to the AgNO3 uptake in Fig. 4.8,.  At higher AgNO3 solution concentrations, 

the uptake of water by chitosan substantially decreases.  Generally speaking, both Ag+ and 

water contents inside the membrane affect membrane swelling, and the degree of swelling is 

an overall contribution of the two effects.  Because hydration of Ag+ is limited, the 

contribution of the water content inside the membrane should be significant.  Therefore, the 

degree of membrane swelling will decrease with increasing concentration of AgNO3 due to 

lower concentration of water.   
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Figure 4.11  Effect of AgNO3 concentration on sorption uptake of H2O in chitosan membranes at 

room temperature. 

 

When the sorption equilibrium is reached, the wet membrane thickness (lw) was also 

measured.  The intensity of membrane swelling is gauged by taking the ratio of the wet 

thickness at sorption equilibrium to the original thickness of dry chitosan membrane prior to 

the sorption test, as expressed by Eq. 4.1.  This ratio R is determined at different AgNO3 

concentrations (Fig. 4.12).  As expected, R decreases as the AgNO3 concentration increases, 

representing a decrease in extent of membrane swelling that is related to amount of water and 

AgNO3 uptake.   Based on this information, the membrane thickness used for calculating the 

diffusivity and permeability coefficients from the transient and steady state of permeation, 

respectively, can be estimated, as discussed previously.  The measurement of wet membrane 
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thickness also allows determination of the actual volume of chitosan membrane at sorption 

equilibrium for a given AgNO3 concentration.  Subsequently, the sorption uptake of AgNO3 

in chitosan on a mol per volume basis, corresponding to that on a mass basis, can be obtained 

(Fig. 4.13).  These data will be used to evaluate the diffusivity coefficient from the steady 

state permeation rate (Eq. 2.3). 
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Figure 4.12  Effect of AgNO3 concentration on the thickness of chitosan membrane at room 

temperature. R = wet membrane thickness at sorption equilibrium / original membrane thickness 

before sorption. 
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Figure 4.13  Effect of concentration on sorption uptake of AgNO3 in chitosan membranes at room 

temperature (mol/ volume basis.) 
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4.4 Influence of Membrane Thickness 

4.4.1 Permeation 

The permeation tests to determine the effect of membrane thickness were carried out 

at room temperature with a feed AgNO3 concentration of 1.0M.  The membrane thicknesses 

used in the calculation for the permeability and diffusivity coefficients as well as those used 

for the x-axis of the plots presented in this section (Section 4.4.1) are the actual thickness of 

the swollen membrane estimated by the method described in Section 4.2.   Fig. 4.14 shows a 

linear increase in the permeation rate with the inverse of the membrane thickness, as 

predicted by Fick’s law and also in agreement with most physical processes including gas 

permeation through membranes [57,68].  The results for membrane thickness dependencies 

of permeance, permeability, and diffusivity are presented in Figs 4.15, 4.16, and 4.7, 

respectively.  Their trends with membrane thickness in the concentration range tested are all 

in accordance with that shown in Figs 4.5 to 4.7.  The diffusivity coefficient is usually 

constant for certain medium, pressure (in the case for gas diffusion), and temperature [51].  

The result in Fig. 4.17, however, shows that the diffusivity coefficient tends to increase with 

membrane thickness.  While the above implication of the diffusivity coefficient is usually 

only approximately true [51], there are other factors involved that complicate the diffusion 

process of Ag+ in chitosan.  One of these is associated with the chelating interaction between 

Ag+ and chitosan.  The transport process includes both adsorption and diffusion of Ag+ and 

accompanying anions through the membrane.  During the transport process, the amino and 

hydroxyl groups on the surface of the chitosan membrane have the ability to form chitosan-
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Ag+ complexes (chelating).  This may happen before, after, or together with the diffusion of 

AgNO3 through the membrane and may influence the entire permeation process.  Therefore, 

the chemical interaction between chitosan and Ag+ is expected to affect the diffusivity and 

permeability parameters.  In addition, the local Ag+ concentration varies from point to point 

along the membrane thickness due to a non-uniform concentration profile.  The difference in 

concentration and the subsequent difference in the degree of membrane swelling result in 

different local diffusivities.  As a consequence of the factors that are involved in the 

permeation of Ag+ in chitosan, the values of the permeation properties determined from the 

experiments are in fact the overall apparent properties.  
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Figure 4.14  Effect of membrane thickness on permeation rate of Ag+ for feed AgNO3 concentration 

of 1.0M at room temperature. 
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Figure 4.15  Effect of membrane thickness on permeance of Ag+ for feed AgNO3 concentration of 

1.0M at room temperature. 
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Figure 4.16  Effect of membrane thickness on permeability of Ag+ for feed AgNO3 concentration of 

1.0M at room temperature. 
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Figure 4.17  Effect of membrane thickness on diffusivity of Ag+ for feed AgNO3 concentration of 

1.0M at room temperature. 

 

There have been studies on the adsorption of metal ions on solid particles, a process 

that involves the steps of external diffusion, internal diffusion within chitosan, and uptake of 

ions on the interior sites via chemical complexation [6,61,62,69].  Table 4.1 summarizes the 

studies that have investigated chitosan as sorbent for metal ions and the suggested rate 

controlling step.  It can be seen that external diffusion is rarely rate determining. While there 

is no uniform agreement in whether chemical complexation or internal diffusion is rate 

controlling, the results do show that chemical complexation definitely plays a role in the 

adsorption process.   

It is clear that at the present stage, the exact mechanisms of permeation involving 

chemical complexation/chelation of metal ions on chitosan are unknown.  Nevertheless, the 
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role of chelation and its influence on ionic permeation is ineligible, making the permeation 

process of Ag+ in chitosan more than simple Fickian diffusion. 

 

Table 4.1  Results in different studies regarding rate determining step in adsorption process 

Adsorbate Adsorbent Rate controlling step Reference 
Cd(II) Chitosan Diffusion [6] 

Cu(II), Pb(II), Cr(VI) Chitosan Diffusion [61] 
Fe(II), Fe(III) Chitosan Chemical complexation [62] 
Cr(VI), Cu(II) Chitosan Chemical complexation [69] 

 

 

4.4.2 Sorption  

The effect of membrane thickness on AgNO3 uptake in chitosan at room temperature 

is given by Fig. 4.18.  The membrane thickness on the x-axis is referred to the original 

thickness prior to sorption.  The results show that the sorption uptake of AgNO3 in chitosan 

membrane is independent of membrane thickness for both concentrations tested, indicating 

that the sorption occurs in the bulk of the polymer as opposed to just on the surface.  The 

corresponding water uptake shows no dependency on the membrane thickness either (Fig. 

4.19). 
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Figure 4.18  Sorption uptake of AgNO3 in chitosan membranes for AgNO3 concentrations of 1.0 and 

0.5M at room temperature. 
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Figure 4.19  Sorption uptake of H2O in chitosan membranes for AgNO3 concentrations of 1.0 and 

0.5M at room temperature. 
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4.5 Influence of Operating Temperature 

4.5.1 Permeation 

Fig. 4.20 displays the effect of temperature on the AgNO3 permeation rate at a feed 

AgNO3 concentration of 1M through chitosan membranes of 21μm thick.  The increase in the 

permeation rate with temperature is expected according to the free volume theory [70], which 

states that the thermal motion of polymer chains randomly produces free volumes.  As 

temperature rises, the frequency of the polymer chain motion increases resulting in a larger 

free volume and thus a higher permeation rate.  An increase in the mobility of Ag+ with 

temperature may also be another contributing factor of increasing permeation rate with 

temperature.   
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Figure 4.20  Effect of operating temperature on permeation rate of Ag+ through chitosan membrane 

of 21μm and for feed AgNO3 concentration of 1.0M. 
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The values of permeance, permeability coefficient, and diffusivity coefficient at 

different temperatures are summarized in Table 4.2.  To analyze the temperature 

dependencies of the permeability and diffusivity coefficients, the Arrhenius equation was 

used (Eqs. 2.13-2.14).  The plots showing permeability and diffusivity coefficients versus the 

reciprocal of temperature on a semi-log scale are demonstrated in Figs. 4.21 and 4.22, 

respectively.  In both cases, linear relationships are obtained, indicating the Arrhenius 

relationships are followed.  A least square fit to the experimental data is used to determine 

the activation energies for permeation (Ep) and diffusion (Ed), which are shown in Table 4.3.  

With the calculated values of Ep and Ed, the heat of sorption is determined using Eq. 2.15 and 

is also shown in Table 4.3. 

 

Table 4.2  Permeance (P’), permeability coefficient (P) and diffusivity coefficient (D) values of Ag+ 

in chitosan membrane at different temperatures a 

Temperature 

(oC) 

P' x 104 

[mol/m2 s (mol/L)] 

P x 108

{mol m/[m2 s (mol/L)]} 

D x 108 

(cm2/s) 
21 33.6 10.2 6.9 
30 36.5 10.8 6.4 
35 35.6 11.2 7.8 
47 46.5 13.2 8.6 
51 49.3 14.6 10.2 
56 71.9 19.6 9.8 
61 63.2 17.8 9.0 

a Feed AgNO3 concentration 1.0M, membrane thickness 21μm. 
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Figure 4.21  Effect of operating temperature (T) on permeability of Ag+ through chitosan membrane.  

Feed AgNO3 concentration 1.0M, membrane thickness 21μm. 
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Figure 4.22  Effect of operating temperature (T) on diffusivity of Ag+ through chitosan membrane.  

Feed AgNO3 concentration 1.0M, membrane thickness 21μm. 
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Table 4.3  Activation energies for permeation (Ep) and diffusion (Ed) and the heat of sorption (ΔHs) 

for Ag+ in chitosan membrane 

Arrhenius activation parameters 
Ep (kJ/mol) 13.3 
Ed (kJ/mol) 8.5 
ΔHs (kJ/mol) 4.8 

 

 

4.5.2 Sorption 

The value of sHΔ  is positive (Table 4.3), suggesting that the sorption of Ag+ on 

chitosan is an endothermic process.  The actual sorption data presented in Fig. 4.23, however, 

do not exhibit an evident trend, probably due to the weak endothermic sorption process as 

suggested by the small value of sHΔ .  Likewise, the water uptake displayed in Fig. 4.24 does 

not provide a clear picture either.  It is recommended that more work be conducted on this 

regard in the future.   
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Figure 4.23  Sorption uptake of AgNO3 in chitosan membrane at different temperatures and at an 

AgNO3 concentration of 1.0M. 
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Figure 4.24  Sorption uptake of H2O in chitosan membrane at different temperatures and at an 

AgNO3 concentration of 1.0M. 
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Membrane swelling was also studied at different temperatures.  As shown in Fig. 

4.25, the temperature has very little influence in the range tested.  This result is no surprise as 

swelling is related to water and AgNO3 uptake.  No evident effect of temperature on the 

membrane swelling is observed.  This is in agreement with the data in Figs. 4.23 and 4.24, 

where silver uptake and water uptake are only affected by the temperature slightly. 
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Figure 4.25  Effect of operating temperature on thickness of chitosan membranes. R = wet membrane 

thickness at sorption equilibrium / original membrane thickness before sorption. 
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4.6 Diffusivity Coefficient from the Steady State Permeation Rate 

Determination of the diffusivity coefficient from the steady state permeation rate 

using Eq. 2.3 is not feasible when the concentrations at the membrane surface are not readily 

known.  Nevertheless, with the results from the sorption tests of this study, information 

required to determine the diffusivity coefficient from Eq. 2.3 can be obtained.  Fig. 4.13 

shows the equilibrium concentration of silver within the chitosan membrane at different 

concentrations of AgNO3 solution.  At the steady state, the membrane surface on the 

upstream side is in equilibrium with the feed solution.  Therefore, the relationship in Fig. 

4.13 can be used to estimate C1m for a given feed AgNO3 concentration.  C2m, the 

concentration of Ag+ at the membrane surface on the permeate side can be assumed to be 

negligible.  This assumption is based on the fact of the extremely dilute condition in the 

receptor compartment (<10-3M) as a result of constant stirring and its relatively large volume 

compared to that of the feed.  The diffusivity coefficient can then be estimated based on 

steady state Fickian permeation using Eq. 2.3.  The membrane thickness used in this 

calculation is the estimated thickness at the steady state, which is essentially the same as that 

used in the determination of the permeability coefficient. 

Figs. 4.26-4.28 show a comparison between the values of the diffusivity coefficient 

determined by the time lag method and by the steady state permeation rate at different feed 

concentrations, membrane thicknesses, and operating temperatures, respectively.  It is shown 

that the values obtained from both methods show very similar trends with feed concentration.  

The values obtained from the steady state of permeation are nonetheless much larger than 
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that from the time lag method.  This difference can be attributed to the fact that the 

diffusivity coefficients are determined during different stages of diffusion.  The diffusivity 

coefficient determined using Eq. 2.3 corresponds to the steady state permeation data when a 

linear concentration profile is established; while that determined using the time lag 

corresponds to the initial transient state of permeation.  In the stage of permeation before 

steady state is reached, the Ag+ concentration inside the membrane is lower, thus reducing 

the diffusivity (Fig.4.3).  Another possible factor contributing to the difference is the 

chelating interactions between Ag+ and chitosan that result in the formation of chitosan-metal 

complexes.  During the transient state when the Ag+ concentration is low, most Ag+ entering 

the membrane may tend to form complexes and as a result their mobility within the 

membrane is restricted.  When Ag+ concentration rises as the steady state is approached, 

most complexing sites in chitosan may be occupied.  Therefore, Ag+ ions admitted into the 

membrane will be able to freely diffuse in the membrane, resulting in a higher diffusivity.   

The transient state of permeation is relatively short period in the permeation process.  

As most applications of chitosan involving Ag+ are related to steady state of permeation, the 

diffusivity values obtained from the steady state permeation rate would be more relevant 

from the application point of view. 
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Figure 4.26  Comparison of diffusivity coefficients determined by time lag and from by Eq. 2.3 for 

different AgNO3 feed concentrations.  Membrane thickness (original thickness lo ): a) 18μm b) 20μm 

c) 26μm, room temperature. 

a) 
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Figure 4.27  Comparison of diffusivity coefficients determined by time lag and by Eq. 2.3 for 

different membrane thicknesses (actual thickness at transient state for time lag method, and actual 

thickness at steady state for Fick’s law). Feed AgNO3 concentration 1.0M, room temperature. 
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Figure 4.28  Comparison of diffusivity coefficients determined by time lag and by Eq. 2.3 at 

operating temperatures. Feed AgNO3 concentration 1.0M, membrane thickness 21μm. 
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Chapter 5 

Conclusions and Recommendations 

 

5.1 Conclusions 

The diffusivity of Ag+ in chitosan was studied using the time lag method and steady 

state permeation.  The diffusivity coefficient was found to be concentration dependent, and 

the diffusivity evaluated was the overall “apparent diffusivity”.  The diffusivity coefficient 

also varied with operating temperature, and the temperature dependency followed the 

Arrhenius trends. 

The sorption of Ag+ in chitosan appeared to be a slightly endothermic process.  The 

sorption uptake was shown to take place mainly in the bulk of chitosan membrane, and the 

sorption isotherm could be described by the Langmuir equation.  The maximum adsorption 

capacity was determined to be 629mg/g at room temperature.   

The swelling of chitosan was related to the Ag+ and water sorption uptake.  The 

degree of swelling tended to decrease with an increase in AgNO3 concentration, but the 

operating temperature did not appear to affect swelling significantly. 

The chelating interactions between Ag+ and chitosan had an impact on the transport 

properties of Ag+.  In addition, as the diffusivity coefficient is dependent on concentration, 

the permeation process is not a mere Fickian diffusion with constant diffusivity. 
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The diffusivity coefficients determined by the time lag method and from the steady 

state permeation rate were found to display similar trends with the variables investigated: 

AgNO3 concentration, membrane thickness, and temperature.  The differences in values 

obtained by the two methods were attributed to the different stages of permeation (i.e., the 

transient permeation in the initial stage and the steady state permeation in the later stage).   In 

addition, the Ag+-chitosan interaction caused by the chelating properties of chitosan was 

another factor that affected the mobility of Ag+ during transient and steady state permeation. 

 

5.2 Recommendations 

The following are recommended as an extension of this work to provide further 

insight into transport of Ag+ in chitosan. 

▪ In the present study, the sorption tests were carried out at a narrow temperature range 

from room temperature to 63oC, and the heat of sorption determined was not substantially 

different from zero.  It is recommended that sorption tests be carried out at a wider 

temperature range so as to confirm endothermic or exothermic sorption of Ag+ in 

chitosan. 

▪ Investigations on the rate of Ag+ uptake in chitosan membrane should be carried out to 

determine the permeation mechanism of the Ag+ mobility in chitosan membranes.  If the 

rate of adsorption is dependent on the membrane thickness, the permeation of Ag+ in 

chitosan would be diffusion controlled.  Otherwise, the permeation would be reaction 

controlled. 
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▪ Different silver salts can be utilized for the permeation and sorption tests to determine the 

effect of anions in the silver salts on transport of Ag+ in chitosan.  
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Appendix A 
Calibration Curves 

The calibration curves used in this study are constructed by preparing AgNO3 solutions of 

known concentration and measuring the conductivity.  The conductivity values used for the 

concentration vs. conductivity plots have been deducted from that of the de-ionized water.  

The experimental data gathered for calibration are summarized in Table A.1, followed by the 

concentration vs. conductivity plot over the entire range of the data obtained (Fig. A.1). 

During the transient state of the permeation tests in this study, the conductivity of the 

receptor solution does not exceed 55 μS/cm.  As a result, the curve used to convert the 

conductivity to concentration profile in the permeation tests only consists of calibration data 

up to a conductivity of 66μS/cm (Fig. A.2).   

 

Table A.1  Calibration data  

Concentration (M) Conductivity (μS/cm) De-ionized water (μS/cm) Net conductivity (μS/cm) 
3.00E-03 384 1.3 382.7 
2.50E-03 325 0.9 324.1 
2.00E-03 261 1 260 
1.75E-03 231 1 230 
1.50E-03 193.7 1.3 192.4 
1.00E-03 129.9 0.9 129 
5.00E-04 65.8 0.9 64.9 
4.00E-04 53.2 1 52.2 
2.50E-04 33.6 0.9 32.7 
2.20E-04 37 1 36 
2.00E-04 27.4 1 26.4 
1.75E-04 29.5 1 28.5 
1.50E-04 25.3 0.9 24.4 
1.25E-04 27.4 1 26.4 
1.00E-04 17.8 1 16.8 
s8.80E-05 15.4 1 14.4 
6.00E-05 10.8 0.9 9.9 
3.00E-05 6 0.9 5.1 
1.50E-05 3.6 0.9 2.7 
5.00E-07 2.6 1 1.6 
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Figure A.1  Concentration vs. conductivity for conductivity up to 382.7 μS/cm. 
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Figure A.2  Calibration curve used for permeation tests. 
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Appendix B 
Experimental Data for Permeation Tests 

 

The tables presented in Appendix B summarize the data for permeation tests at different 

conditions: Tables B.1-B.3 are related to the effect of feed AgNO3 concentration, Tables B.4-

B.6 the effect of membrane thickness, and Tables B.7-B.9 the effect of temperature.  Data 

presented for each effect are corresponding to one another.  That is, for example, data listed 

in the first row of Table B.1 are obtained from the same permeation test as the data listed in 

the first rows of Table B.2 and Table B.3. 

 

Table B.1  Effect of feed AgNO3 concentration on the diffusivity coefficient. (room temperature) 

C1b 
(M) 

Time lag 
(s) 

l o 

(μm) 
R Actual l  at transient 

permeation (μm) 
D x 108 

(cm2/s) 
0.69 26.32 25.4 1.48 37.5 8.92 
0.48 26.08 24.8 1.48 36.6 8.58 
0.11 227.35 26.2 1.48 38.7 1.10 
0.26 76.75 26.5 1.48 39.2 3.33 
0.40 45.63 24.7 1.48 36.5 4.87 
0.48 40.96 26.7 1.48 39.5 6.33 
0.56 34.63 24.9 1.48 36.8 6.52 
0.64 26.96 26.4 1.48 39.0 9.41 
0.78 27.73 26.9 1.48 39.8 9.50 
0.83 28.12 26.6 1.48 39.3 9.16 
1.00 23.27 26.3 1.48 38.9 10.82 
0.73 32.31 25.4 1.48 37.5 7.27 
0.98 28.55 24.9 1.48 36.8 7.91 
0.90 25.58 25.3 1.48 37.4 9.11 
0.08 262.81 25.0 1.48 36.9 0.87 
0.18 104.08 25.1 1.48 37.1 2.20 
0.36 50.05 25.6 1.48 37.8 4.77 
0.11 188.07 18.7 1.48 27.6 0.68 
0.22 115.24 17.2 1.48 25.4 0.93 
1.02 19.98 19.1 1.48 28.2 6.65 
0.58 33.37 16.6 1.48 24.5 3.01 
0.87 20.53 16.8 1.48 24.8 5.00 
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C1b 
(M) 

Time lag 
(s) 

l o 

(μm) 
R Actual l at transient 

permeation (μm) 
D x 108 

(cm2/s) 

0.18 64.12 18.6 1.48 27.5 1.96 
0.36 27.33 18.7 1.48 27.6 4.66 
0.64 18.93 19.2 1.48 28.4 7.09 
0.80 21.81 19.3 1.48 28.5 6.22 
0.77 29.64 18.9 1.48 27.9 4.39 
0.26 36.84 17.3 1.48 25.6 2.96 
0.55 24.94 17.5 1.48 25.9 4.47 
0.83 24.57 19.4 1.48 28.7 5.58 
0.98 23.61 19.3 1.48 28.5 5.74 
0.11 188.07 18.7 1.48 27.6 0.68 
0.50 21.49 19.7 1.48 29.1 6.57 
1.02 19.98 19.1 1.48 28.2 6.65 
0.30 36.04 20.0 1.48 29.6 4.04 
0.79 24.22 21.3 1.48 31.5 6.82 
0.18 64.12 18.6 1.48 27.5 1.96 
0.36 27.33 18.7 1.48 27.6 4.66 
0.64 18.93 19.2 1.48 28.4 7.09 
0.80 21.81 19.3 1.48 28.5 6.22 
0.77 29.64 18.9 1.48 27.9 4.39 
0.83 24.57 19.4 1.48 28.7 5.58 
0.98 23.61 19.3 1.48 28.5 5.74 

 

Table B.2  Effect of feed AgNO3 concentration on the permeation rate, permeance, and permeability 

coefficient (room temperature, receptor compartment 1.5L, membrane diameter 37mm) 

C1b 
(M) 

ΔC2b/Δt 
(mol/L s) 

l o 

  (μm) 
R Actual l  at 

SSa (μm) 

J x 104 
(mol/m2 s) 

P' x 104 
[mol/m2 s (mol/L)] 

P x 108 
[mol m/m2 s (mol/L)] 

0.69 1.55E-06 25.4 1.42 36.2 21.68 31.60 11.43 
0.48 1.12E-06 24.8 1.44 35.7 15.67 32.73 11.70 
0.11 8.13E-09 26.2 1.47 38.5 0.11 1.04 0.40 
0.26 3.62E-07 26.5 1.46 38.6 5.05 19.74 7.63 
0.40 6.67E-07 24.7 1.45 35.7 9.30 23.05 8.24 
0.48 8.49E-07 26.7 1.44 38.5 11.84 24.89 9.58 
0.56 1.02E-06 24.9 1.43 35.7 14.18 25.41 9.08 
0.64 1.31E-06 26.4 1.43 37.7 18.25 28.29 10.66 
0.78 1.63E-06 26.9 1.42 38.1 22.73 29.04 11.07 
0.83 1.48E-06 26.6 1.41 37.6 20.69 24.91 9.36 
1.00 1.89E-06 26.3 1.40 36.8 26.33 26.20 9.65 

(continued) 
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C1b 
(M) 

ΔC2b/Δt 
(mol/L s) 

l o 

  (μm) 
R Actual l  at 

SSa (μm) 

J x 104 
(mol/m2 s) 

P' x 104 
[mol/m2 s (mol/L)] 

P x 108 
[mol m/m2 s (mol/L)] 

0.73 1.43E-06 25.4 1.42 36.1 19.94 27.18 9.81 
0.98 1.79E-06 24.9 1.40 34.9 24.96 25.46 8.89 
0.90 1.77E-06 25.3 1.41 35.6 24.62 27.27 9.71 
0.08 6.99E-08 25.0 1.47 36.8 0.98 12.95 4.76 
0.18 2.24E-07 25.1 1.46 36.7 3.13 17.55 6.45 
0.36 6.56E-07 25.6 1.45 37.1 9.15 25.31 9.39 
0.11 9.40E-08 18.7 1.47 27.5 1.31 11.42 3.14 
0.22 3.33E-07 17.2 1.46 25.1 4.64 21.47 5.39 
1.02 2.43E-06 19.1 1.40 26.7 33.92 33.39 8.92 
0.58 1.05E-06 16.6 1.43 23.8 14.63 25.37 6.03 
0.87 2.03E-06 16.8 1.41 23.7 28.25 32.55 7.71 
0.18 3.08E-07 18.6 1.46 27.2 4.29 24.08 6.56 
0.36 8.07E-07 18.7 1.45 27.1 11.26 30.91 8.38 
0.64 1.58E-06 19.2 1.43 27.4 21.98 34.51 9.46 
0.80 1.74E-06 19.3 1.42 27.3 24.32 30.58 8.36 
0.77 1.69E-06 18.9 1.42 26.8 23.54 30.70 8.23 
0.26 5.79E-07 17.3 1.46 25.2 8.08 30.74 7.75 
0.55 1.36E-06 17.5 1.44 25.1 18.94 34.33 8.62 
0.83 1.89E-06 19.4 1.41 27.4 26.36 31.63 8.67 
0.98 2.21E-06 19.3 1.40 27.1 30.88 31.47 8.52 
0.11 9.40E-08 18.7 1.47 27.5 1.31 11.42 3.14 
0.50 1.28E-06 19.7 1.44 28.3 17.91 35.70 10.12 
1.02 2.43E-06 19.1 1.40 26.7 33.92 33.39 8.92 
0.30 6.06E-07 20.0 1.45 29.1 8.46 28.65 8.34 
0.79 1.82E-06 21.3 1.42 30.2 25.37 31.99 9.65 
0.18 3.08E-07 18.6 1.46 27.2 4.29 24.08 6.56 
0.36 8.07E-07 18.7 1.45 27.1 11.26 30.91 8.38 
0.64 1.58E-06 19.2 1.43 27.4 21.98 34.51 9.46 
0.80 1.74E-06 19.3 1.42 27.3 24.32 30.58 8.36 
0.77 1.69E-06 18.9 1.42 26.8 23.54 30.70 8.23 
0.83 1.89E-06 19.4 1.41 27.4 26.36 31.63 8.67 
0.98 2.21E-06 19.3 1.40 27.1 30.88 31.47 8.52 

a steady state of permeation 

 

 

 

 

 

(continued) 
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Table B.3  Diffisivity coefficients determined from the steady state permeation rate (D*) for different 

feed AgNO3 concentrations (room temperature) 

C1b 
(M) 

ΔCm 
(mol/m3) 

Actual l  at steady state of 
permeation (μm) 

ΔCm/l  
 (mol/m4) 

D* x 108 

(cm2/s) 
0.69 1.44E+03 36.2 7.51E+07 28.85 
0.48 1.36E+03 35.7 7.24E+07 21.64 
0.11 1.03E+03 38.5 5.31E+07 0.21 
0.26 1.22E+03 38.6 6.10E+07 8.27 
0.40 1.32E+03 35.7 7.07E+07 13.17 
0.48 1.36E+03 38.5 6.72E+07 17.62 
0.56 1.40E+03 35.7 7.40E+07 19.16 
0.64 1.43E+03 37.7 7.15E+07 25.51 
0.78 1.47E+03 38.1 7.26E+07 31.32 
0.83 1.48E+03 37.6 7.42E+07 27.90 
1.00 1.53E+03 36.8 7.76E+07 33.92 
0.73 1.46E+03 36.1 7.60E+07 26.24 
0.98 1.52E+03 34.9 8.16E+07 30.59 
0.90 1.50E+03 35.6 7.91E+07 31.11 
0.08 9.51E+02 36.8 5.20E+07 1.88 
0.18 1.14E+03 36.7 6.06E+07 5.16 
0.36 1.30E+03 37.1 6.70E+07 13.67 
0.11 1.05E+03 27.5 7.52E+07 1.74 
0.22 1.19E+03 25.1 9.14E+07 5.08 
1.02 1.53E+03 26.7 1.07E+08 31.67 
0.58 1.40E+03 23.8 1.12E+08 13.11 
0.87 1.49E+03 23.7 1.18E+08 23.87 
0.18 1.14E+03 27.2 8.18E+07 5.25 
0.36 1.30E+03 27.1 9.18E+07 12.27 
0.64 1.43E+03 27.4 9.81E+07 22.40 
0.80 1.48E+03 27.3 1.01E+08 23.97 
0.77 1.47E+03 26.8 1.03E+08 22.88 
0.26 1.23E+03 25.2 9.39E+07 8.60 
0.55 1.39E+03 25.1 1.05E+08 18.02 
0.83 1.49E+03 27.4 1.02E+08 25.90 
0.98 1.52E+03 27.1 1.05E+08 29.32 
0.11 1.05E+03 27.5 7.52E+07 1.74 
0.50 1.37E+03 28.3 9.19E+07 19.50 
1.02 1.53E+03 26.7 1.07E+08 31.67 
0.30 1.25E+03 29.1 8.29E+07 10.21 
0.79 1.47E+03 30.2 9.19E+07 27.62 
0.18 1.14E+03 27.2 8.18E+07 5.25 
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C1b 
(M) ΔCm (mol/m3) Actual l   at steady state of 

permeation (μm) 

ΔCm/l  
 (mol/m4) 

D* x 108 

(cm2/s) 
0.36 1.30E+03 27.1 9.18E+07 12.27 
0.64 1.43E+03 27.4 9.81E+07 22.40 
0.80 1.48E+03 27.3 1.01E+08 23.97 
0.77 1.47E+03 26.8 1.03E+08 22.88 
0.83 1.49E+03 27.4 1.02E+08 25.90 
0.98 1.52E+03 27.1 1.05E+08 29.32 

 

Table B.4  Effect of membrane thickness on the diffusivity coefficient (Feed AgNO3 concentration 

1.0M, room temperature) 

l o 

 (μm) 
Time lag 

(s) R Actual l at transient 
permeation (μm) 

D x 108 

(cm2/s) 
22.0 18.13 1.48 32.5 9.72 
24.7 21.01 1.48 36.5 10.59 
19.7 20.66 1.48 29.2 6.86 
23.7 21.04 1.48 35.1 9.74 
22.7 20.65 1.48 33.6 9.10 
28.3 30.96 1.48 41.8 9.40 
23.2 22.96 1.48 34.3 8.52 
33.6 32.10 1.48 49.7 12.83 
28.0 27.13 1.48 41.4 10.52 
42.0 36.23 1.48 62.1 17.72 
36.9 33.05 1.48 54.5 15.00 
47.3 40.50 1.48 69.9 20.08 
27.5 21.71 1.48 40.7 12.72 
49.3 49.07 1.48 72.8 18.01 
45.6 41.39 1.48 67.4 18.31 
50.2 48.21 1.48 74.2 19.01 
22.2 18.33 1.48 32.8 9.77 
27.0 23.73 1.48 39.9 11.18 
36.4 35.39 1.48 53.7 13.60 
24.1 25.23 1.48 35.6 8.37 
21.6 21.83 1.48 31.9 7.78 
24.2 25.15 1.48 35.8 8.48 

 

 

 

 

(continued) 
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Table B.5  Effect of membrane thickness on the permeation rate, permeance, and permeability (feed 

AgNO3 concentration 1.0M, room temperature, receptor compartment 1.5L, membrane diameter 

37mm) 

l o  

(μm) 
R Actual l  at 

SSa (μm) 

ΔC2b/Δt 
(mol/L s) 

J x 104 
(mol/m2 s) 

P' x 104 
[mol/m2 s (mol/L)] 

P x 108 
[mol m/m2 s (mol/L)] 

22.0 1.40 30.8 2.48E-06 34.53 34.53 10.64 
24.7 1.40 34.6 2.43E-06 33.96 33.96 11.76 
19.7 1.40 27.6 2.42E-06 33.77 33.77 9.33 
23.7 1.40 33.2 2.12E-06 29.58 29.58 9.83 
22.7 1.40 31.8 1.79E-06 25.02 25.02 7.97 
28.3 1.40 39.6 1.53E-06 21.34 21.34 8.45 
23.2 1.40 32.5 2.10E-06 29.35 29.35 9.53 
33.6 1.40 47.1 1.73E-06 24.19 24.19 11.40 
28.0 1.40 39.2 1.76E-06 24.62 24.62 9.65 
42.0 1.40 58.8 1.47E-06 20.51 20.51 12.07 
36.9 1.40 51.7 1.71E-06 23.86 23.86 12.33 
47.3 1.40 66.2 1.39E-06 19.44 19.44 12.87 
27.5 1.40 38.6 2.31E-06 32.17 32.17 12.41 
49.3 1.40 69.0 1.20E-06 16.79 16.79 11.59 
45.6 1.40 63.9 1.31E-06 18.27 18.27 11.67 
50.2 1.40 70.3 1.24E-06 17.29 17.29 12.15 
22.2 1.40 31.1 3.05E-06 42.57 42.57 13.23 
27.0 1.40 37.8 2.02E-06 28.20 28.20 10.67 
36.4 1.40 50.9 1.49E-06 20.76 20.76 10.57 
24.1 1.40 33.7 2.40E-06 33.49 33.49 11.30 
21.6 1.40 30.3 2.18E-06 30.36 30.36 9.18 
24.2 1.40 33.9 1.95E-06 27.27 27.27 9.24 

a steady state of permeation 
 

Table B.6  Diffisivity coefficients determined from the steady state permeation rate (D*) for different 

membrane thicknesses (feed AgNO3 concentration 1.0M, room temperature) 

l o 

 (μm) 
C1b 
(M) ΔCm (mol/m3) Actual l  at steady state of 

permeation (μm) 

ΔCm/l  
 (mol/m4) 

D* x 108 

(cm2/s) 
22.0 1.0 1.53E+03 30.8 9.27E+07 37.24 
24.7 1.0 1.53E+03 34.6 8.25E+07 41.18 
19.7 1.0 1.53E+03 27.6 1.03E+08 32.66 
23.7 1.0 1.53E+03 33.2 8.60E+07 34.41 
22.7 1.0 1.53E+03 31.8 8.97E+07 27.89 
28.3 1.0 1.53E+03 39.6 7.21E+07 29.58 
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l o 

 (μm) 
C1b 
(M) ΔCm (mol/m3) Actual l  at steady state of 

permeation (μm) 

ΔCm/l  
 (mol/m4) 

D* x 108 

(cm2/s) 

23.2 1.0 1.53E+03 32.5 8.80E+07 33.36 
33.6 1.0 1.53E+03 47.1 6.06E+07 39.90 
28.0 1.0 1.53E+03 39.2 7.28E+07 33.80 
42.0 1.0 1.53E+03 58.8 4.86E+07 42.24 
36.9 1.0 1.53E+03 51.7 5.53E+07 43.18 
47.3 1.0 1.53E+03 66.2 4.31E+07 45.07 
27.5 1.0 1.53E+03 38.6 7.40E+07 43.45 
49.3 1.0 1.53E+03 69.0 4.14E+07 40.56 
45.6 1.0 1.53E+03 63.9 4.47E+07 40.87 
50.2 1.0 1.53E+03 70.3 4.06E+07 42.55 
22.2 1.0 1.53E+03 31.1 9.19E+07 46.30 
27.0 1.0 1.53E+03 37.8 7.55E+07 37.34 
36.4 1.0 1.53E+03 50.9 5.61E+07 37.02 
24.1 1.0 1.53E+03 33.7 8.47E+07 39.56 
21.6 1.0 1.53E+03 30.3 9.44E+07 32.15 
24.2 1.0 1.53E+03 33.9 8.43E+07 32.35 

 

Table B.7  Effect of temperature on the diffusivity coefficient (Feed AgNO3 concentration 1.0M, 

average membrane thickness 21µm) 

T 
(oC) 

l o 

 (μm) 
Time lag 

(s) R Actual l  at transient 
permeation (μm) 

D x 108 

(cm2/s) 
21.1 21.6 24.61 1.48 31.92 6.90 
30.1 21.1 25.28 1.48 31.18 6.41 
35.1 22.4 23.32 1.48 33.10 7.83 
46.7 20.2 17.21 1.48 29.85 8.63 
51.3 21.1 15.93 1.48 31.18 10.17 
56.5 19.5 14.14 1.48 28.82 9.79 
60.9 20.1 16.36 1.48 29.70 8.99 
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Table B.8  Effect of temperature on the permeation rate, permeance, and permeability (feed AgNO3 

concentration 1.0M, average membrane thickness 21µm, receptor compartment 1.5L, membrane 

diameter 37mm) 

T 
(oC) 

l o 

(μm) 
R Actual l  at 

SSa (μm) 

ΔC2b/Δt 
(mol/L s) 

J x 104 
(mol/m2 s) 

P' x 104 
[mol/m2 s (mol/L)] 

P x 108 
[mol m/m2 s (mol/L)] 

21.1 21.6 1.40 30.25 2.41E-06 33.57 33.57 10.16 
30.1 21.1 1.40 29.55 2.62E-06 36.48 36.48 10.78 
35.1 22.4 1.40 31.37 2.55E-06 35.64 35.64 11.18 
46.7 20.2 1.40 28.29 3.34E-06 46.55 46.55 13.17 
51.3 21.1 1.40 29.55 3.54E-06 49.33 49.33 14.58 
56.5 19.5 1.40 27.31 5.16E-06 71.94 71.94 19.65 
60.9 20.1 1.40 28.15 4.53E-06 63.24 63.24 17.80 

a steady state of permeation 

 

Table B.9  Diffisivity coefficients determined from the steady state permeation rate (D*) for different 

temperature (feed AgNO3 concentration 1.0M, membrane thickness 21µm) 

T 
(oC) C1b (M) ΔCm (mol/m3) Actual l  at steady state of 

permeation (μm) 

ΔCm/l  
 (mol/m4) 

D* x 108 

(cm2/s) 

21.1 1.0 1.53E+03 30.25 9.44E+07 35.56 
30.1 1.0 1.53E+03 29.55 9.67E+07 37.74 
35.1 1.0 1.53E+03 31.37 9.11E+07 39.15 
46.7 1.0 1.53E+03 28.29 1.01E+08 46.10 
51.3 1.0 1.53E+03 29.55 9.67E+07 51.04 
56.5 1.0 1.53E+03 27.31 1.05E+08 68.78 
60.9 1.0 1.53E+03 28.15 1.01E+08 62.33 
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Appendix C 
Experimental Data for Sorption Tests 

 

In the sorption tests, the AgNO3 solution used has a volume of 40mL and the membrane 

samples have a cross-sectional area of 1.22×10-3 m2.  Tables C.1 and C.2 are corresponding 

to each other (i.e., data in the same row of the two tables are from the same sorption test.) 

 

Table C.2  Effect of AgNO3 concentration on sorption uptake of AgNO3 and H2O in chitosan 

membranes (room temperature) 

C0 

(M) 

C0 

(mg/L) 

mo 

(g) 

mw 

(g) 

md 

(g) 

H2O 

uptakea 

AgNO3 

uptakeb 

qe 

(mg/g) 

Ce 

(mg/L) 
Ce/qe 

0.071 1.20E+04 0.039 0.074 0.054 0.51 0.38 384.62 1.16E+04 30.20 
0.176 2.99E+04 0.029 0.055 0.043 0.41 0.48 482.76 2.95E+04 61.14 
0.258 4.38E+04 0.019 0.031 0.029 0.11 0.53 526.32 4.36E+04 82.82 
0.359 6.10E+04 0.039 0.081 0.063 0.46 0.62 615.38 6.04E+04 98.22 
0.470 7.99E+04 0.025 0.047 0.041 0.24 0.64 640.00 7.95E+04 124.16 
0.563 9.57E+04 0.043 0.088 0.068 0.47 0.58 581.40 9.51E+04 163.56 
0.633 1.08E+05 0.029 0.05 0.045 0.17 0.55 551.72 1.07E+05 194.20 
0.803 1.36E+05 0.028 0.049 0.045 0.14 0.61 607.14 1.36E+05 224.03 
0.847 1.44E+05 0.034 0.06 0.053 0.21 0.56 558.82 1.43E+05 256.54 
0.998 1.70E+05 0.041 0.077 0.066 0.27 0.61 609.76 1.69E+05 276.96 
0.009 1.48E+03 0.039 0.071 0.041 0.77 0.05 51.28 1.43E+03 27.91 
0.005 8.01E+02 0.035 0.069 0.043 0.74 0.23 228.57 6.01E+02 2.63 
0.001 2.10E+02 0.021 0.037 0.025 0.57 0.19 190.48 1.10E+02 0.58 
0.044 7.41E+03 0.031 0.071 0.039 1.03 0.26 258.06 7.21E+03 27.92 

0 0 0.045 0.111 0.045 1.47 0 0 0 - 
a unit: (g H2O/g chitosan) 
b unit: (g AgNO3/g chitosan) 
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Table C.3  Effect of AgNOs concentration on membrane thickness and corresponding Ag+ uptake on 

mol per volume basis (room temperature) 

C0  
(M) 

l o 

 (μm) 
l w 

 (μm) 
R wet vol. of chitosan 

(m3) 
AgNO3 adsorbed 

(g) 
Ag+ uptake
(mol/m3) 

0.071 27.9 40.0 1.43 4.88E-08 0.015 1.81E+03 
0.176 21.7 35.2 1.62 4.29E-08 0.014 1.92E+03 
0.258 15.3 25.1 1.64 3.06E-08 0.010 1.92E+03 
0.359 32.7 45.4 1.39 5.54E-08 0.024 2.55E+03 
0.470 23.5 27.9 1.19 3.40E-08 0.016 2.77E+03 
0.563 34.6 49.1 1.42 5.99E-08 0.025 2.46E+03 
0.633 22.2 26.2 1.18 3.19E-08 0.016 2.95E+03 
0.803 17.9 26.9 1.50 3.28E-08 0.017 3.05E+03 
0.847 21.7 32.7 1.51 3.99E-08 0.019 2.81E+03 
0.998 32.0 37.9 1.18 4.62E-08 0.025 3.18E+03 
0.009 22.4 33.2 1.48 4.05E-08 0.002 2.91E+02 
0.005 24.0 30.2 1.26 3.68E-08 0.008 1.28E+03 
0.001 14.0 17.5 1.25 2.13E-08 0.004 1.10E+03 
0.044 22.2 31.6 1.42 3.85E-08 0.008 1.22E+03 

0 31.0 56.8 1.83 6.92E-08 0 0.00E+00 

 

Table C.4  Effect of membrane thickness on sorption uptakse of AgNO3 and H2O in chitosan 

membranes and corresponding Ag+ uptake on mol per volume basis (AgNO3 concentration 1.0M, 

room temperature) 

l o 

 (μm) 
mo 

(g) 

mw 

 (g) 

md 

(g) 

H2O 

uptakea 
AgNO3 

Adsorbed (g) 
AgNO3 

uptakeb 
wet vol. 

chitosan (m3) 
Ag+ uptake 

(mol/m3) 

33.0 0.035 0.077 0.06 0.49 0.025 0.71 4.68E-08 3.14E+03 
19.3 0.027 0.054 0.045 0.33 0.018 0.67 3.11E-08 3.41E+03 
48.8 0.079 0.166 0.132 0.43 0.053 0.67 8.68E-08 3.59E+03 
24.4 0.033 0.069 0.055 0.42 0.022 0.67 3.52E-08 3.68E+03 
35.8 0.044 0.087 0.073 0.32 0.029 0.66 5.27E-08 3.24E+03 
31.9 0.046 0.103 0.077 0.57 0.031 0.67 5.75E-08 3.17E+03 
23.4 0.032 0.068 0.052 0.50 0.020 0.63 4.13E-08 2.85E+03 
28.0 0.037 0.077 0.059 0.49 0.022 0.59 4.35E-08 2.98E+03 
19.5 0.027 0.058 0.045 0.48 0.018 0.67 3.30E-08 3.21E+03 
15.5 0.019 0.037 0.031 0.32 0.012 0.63 2.77E-08 2.55E+03 

a unit: (g H2O/g chitosan) 
b unit: (g AgNO3/g chitosan) 
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Table C.5  Effect of membrane thickness on sorption uptake of AgNO3 and H2O in chitosan 

membranes and corresponding Ag+ uptake on mol per volume basis (AgNO3 concentration 0.5M, 

room temperature) 

l o 

 (μm) 
mo 

(g) 

mw 

(g) 

md 

(g) 

H2O 

uptakea 
AgNO3 

Adsorbed (g) 
AgNO3 

uptakeb 
wet vol. 

chitosan (m3) 
Ag+ uptake 

(mol/m3) 

36.2 0.051 0.106 0.078 0.55 0.027 0.53 6.45E-08 2.46E+03 
34.9 0.058 0.12 0.088 0.55 0.030 0.52 7.07E-08 2.50E+03 
50.8 0.053 0.114 0.082 0.60 0.029 0.55 7.51E-08 2.27E+03 
23.6 0.032 0.066 0.048 0.56 0.016 0.50 3.78E-08 2.49E+03 
21.8 0.029 0.061 0.044 0.59 0.015 0.52 3.63E-08 2.43E+03 
16.5 0.021 0.047 0.034 0.62 0.013 0.62 3.10E-08 2.47E+03 
33.1 0.045 0.096 0.068 0.62 0.023 0.51 5.64E-08 2.40E+03 
35.4 0.053 0.111 0.078 0.62 0.025 0.47 6.39E-08 2.30E+03 
24.4 0.032 0.065 0.048 0.53 0.016 0.50 4.38E-08 2.15E+03 
19.7 0.026 0.053 0.039 0.54 0.013 0.50 3.35E-08 2.28E+03 
16.0 0.024 0.048 0.037 0.46 0.01 0.54 2.85E-08 2.68E+03 

a unit: (g H2O/g chitosan) 
b unit: (g AgNO3/g chitosan) 

 

TableC.6  Effect of temperature on sorption uptake of AgNO3 and H2O in chitosan membranes and 

corresponding Ag+ uptake on mol per volume basis (feed AgNO3 concentration 1.0M) 

T 

(oC) 

mo 

(g) 

mw 

 (g) 

md 

(g) 

H2O 

uptakea 
AgNO3 

Adsorbed (g) 
AgNO3 

uptakeb 
wet vol. 

chitosan (m3) 
Ag+ uptake 

(mol/m3) 

30 0.018 0.035 0.028 0.39 0.010 0.56 2.29E-08 2.57E+03 
40 0.032 0.068 0.051 0.53 0.019 0.59 3.90E-08 2.87E+03 
50 0.031 0.061 0.048 0.42 0.017 0.55 3.67E-08 2.73E+03 
63 0.031 0.072 0.051 0.68 0.020 0.65 4.07E-08 2.89E+03 

a unit: (g H2O/g chitosan) 
b unit: (g AgNO3/g chitosan) 

 

Table C.7  Effect of temperature on membrane thickness 

T (oC) l o (μm) l w (μm) R 
30 14.3 18.8 1.31 
40 22 32 1.45 
50 22.6 30.1 1.33 
63 22.6 33.4 1.48 
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Appendix D 
Sample Calculations 

Determination of the permeation parameters 

 

Values used in this sample calculation are corresponding to the first rows of Table B.1 –B.3: 

Original membrane thickness ol  = 25.4 μm 

Diameter of membrane = 37mm 

Cross sectional area of membrane A = 310075.1 −× m2 

Volume of the receptor compartment V = 1.5L 

Feed AgNO3 concentration C1b = 0.6861M 

Time lag s32.26=τ  

Slope of the AgNO3 concentration in the receptor compartment vs. time 

Ls
mol

t
C b 62 105539.1 −×=
Δ

Δ
 

 

Diffusivity 
τ6

2lD =  

Linear regression for the relationship presented by Fig. 4.12 yields 

4778.11546.0 +−= xy , where y = R, wet membrane thickness at sorption 

equilibrium / original membrane thickness before sorption, and x = AgNO3 

concentration (M).  At the transient state, the concentration of AgNO3 inside the 

membrane is approximately zero. 

4778.14778.101546.0 =+×−=R  

membrane thickness at transient state: 5.374778.14.25 =×=×= Rll o  μm 

s
cm

s
mlD

222

92.8
32.266

)6.37(
6

=
×

==
μ

τ
 

 

Permeation rate 
A
V

t
C

J b ×
Δ

Δ
= 2  
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sm
mol

m
L

Ls
molJ 2

4
23

6 1068.21
10075.1
5.1105539.1 −

=
− ×=

×
××=  

 

Permeance 
bb CC

JP
21

'
−

=  

 

)(
1060.31

6861.0

1068.21
'

0

2

4
2

4

1

2

L
molsm

mol

L
mol

sm
mol

C
JP

C

b

b

−

−

×=
×

==

≅

 

 

Permeability lPP ×= '  

At the steady state, R is estimated as 

[ ])4778.11546.0()4778.101546.0(
2
1

1 +×−++×− bC  

[ ] 4248.1)4778.16861.01546.0()4778.101546.0(
2
1

=+×−++×−=  

membrane thickness at the steady state  mRll o μ19.364248.14.25 =×=×=  

)(
10143.11019.36

)(
1060.31

2

76

2

4

L
molsm

molmm

L
molsm

molP −−− ×=×××=  

 

Diffusivity coefficient determined using the steady state permeation rate (D*) 

mm CC
lJD

21

*
−
×

=  

02 ≅mC  

l = membrane thickness at the steady state = 36.19 μm 

Linear regression for the relationship shown in Fig. 4.13 yields 

4.2856)ln(2.365 += xy , where y = Ag+ uptake (mol/m3) and x = AgNO3 

concentration (M). 
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311 82.27184.2856)6861.0ln(2.3654.2856)ln(2.365
m
molCC bm =+=+=  

 
s

cm

m
mol

m
sm

mol

D
2

7

3

2
4

10885.2
82.2718

19.361068.21
* −

−

×=
××

=
μ

 

 

 

Determination of the sorption parameters 

 

Values used in this sample calculation are corresponding to the first rows of Table C.1 and 

C.2: 

Diameter of membrane = 39.4 mm 

Cross sectional area of membrane A = 3102192.1 −× m2 

Volume of the AgNO3 solution V = 0.04L 

AgNO3 concentration Co = 0.071M 

Original weight of dry membrane before sorption mo = 0.039g 

Wet weight of membrane after sorption mw = 0.074g 

Dry weight of membrane after sorption md = 0.054g 

Original membrane thickness ol = 27.9 μm 

Wet thickness of membrane after sorption wl  = 40.0 μm 

Molecular weight of AgNO3 (MW) = 169.85 g/mol 

 

L
mg

mol
g

L
molMCo 1198985.169071.0071.0 =×==  

 

H2O uptake = 
gChitosan

OgH
m

mm

o

dw 25128.0
039.0

054.0074.0
=

−
=

−  
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AgNO3 uptake = 
gChitosan
gAgNO

m
mm

o

od 338462.0
039.0

039.0054.0
=

−
=

−
 

 

Parameters for sorption isotherm: 

qe = amount of AgNO3 adsorbed by chitosan at equilibrium 

g
mg

m
mm

q
o

od
e 62.3841000 =×

−
=  

 Ce = concentration of AgNO3 in the liquid phase at equilibrium 

L
mg

L

g
g

mg

L
mg

V
mq

CC oe
e 11614

04.0

039.062.384
119890 =

×
−=−=  

 

43.1
9.27
0.40

===
m
m

l
l

R
o

w

μ
μ  

 

Ag+ uptake in mol per volume basis 

wet volume of chitosan at sorption equilibrium (vw) 

= 3823 1088.40.40102192.1 mmmlA w
−− ×=××=× μ  

AgNO3 (g) adsorbed = md-mo = 0.054-0.039 = 0.015 g 

 Ag+ uptake ( 3m
mol ) = 

Chitosanm
molAgNO

m
mol

g
g

v
MW

gAgNO

w
3

3
38

3

1811
10488

87.169

015.0
)(

=
×

= −  
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Appendix E 
Error Analysis 

 

The following plots demonstrate the reproducibility of experimental results in this study. 
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Figure E.1  Effect of temperature on diffusivity coefficient of Ag+ through chitosan membranes.  5 

data points are presented for diffusivity at room temperature (~23oC).  Feed AgNO3 concentration 

1.0M, average membrane thickness 21µm. 
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Figure E.2  Effect of AgNO3 concentration on sorption uptake of AgNO3 in chitosan membranes at 

room temperature.  10 data points are presented for AgNO3 concentration of 1.0M and 11 for 0.5M.  
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Figure E.3  Sorption uptake of AgNO3 in chitosan membrane at different temperatures and at an 

AgNO3 concentration of 1.0M.  9 data points are presented for room temperature (~23oC). 


