
Customizing kernels in Support Vector
Machines

by
Zhanyang Zhang

A thesis presented to the
University of Waterloo

in fulfilment of the requirement for the degree of
Master of Mathematics

in
Statistics

Waterloo, Ontario, Canada, 2007
c©Zhanyang Zhang 2007

Contents

1 A Review of Support Vector Machines 1

1.1 Historical development of Support Vector Machines 2

1.2 Maximal Margin Support Vector Machines 5

1.2.1 Mathematical setups . 5

1.2.2 The Maximal Margin Problem 8

1.2.3 Optimization theorem . 10

1.2.4 The solving of Maximal Margin SVMs 15

1.3 Soft Margin SVMs . 17

1.4 SVMs with kernels . 19

1.4.1 Kernel visualization via a simple simulated experiment . . 26

1.5 Support Vector Regression . 28

1.6 Implementation of SVMs in R . 31

1.7 Strength and weakness of SVMS . 37

2 Methods of customizing kernels in fitting SVMs 39

2.1 Linear combination of kernel functions 39

2.2 Feature selection in designing kernels 46

3 Data Analysis 49

3.1 A comparison between linear kernel, Gaussian kernel and com-
bined kernel on a chemical data . 49

3.1.1 SVMs with Gaussian Kernel on the chemical data 50

3.1.2 SVMs with Linear Kernel on the chemical data 54

i

3.1.3 SVMs with combination kernels on the chemical data . . . 56

3.2 More experiments using ordinary kernels and customized kernels . 60

4 Conclusion 66

ii

Acknowledgements

I wish to sincerely thank my supervisor Professor Paul Marriott for his guidance
in defining the thesis and encouraging independent thought during this research.
I also want to thank Professor Mu Zhu for the great advice he provided me. Lastly,
I want to thank my parents and my girl friend Ting Lu as well, who have always
been so supportive to me during my study at Waterloo.

iii

Abstract

Support Vector Machines have been used to do classification and regression anal-
ysis. One important part of SVMs are the kernels. Although there are several
widely used kernel functions, a carefully designed kernel will help to improve
the accuracy of SVMs. We present two methods in terms of customizing kernels:
one is combining existed kernels as new kernels, the other one is to do feature
selection.

We did theoretical analysis in the interpretation of feature spaces of combined
kernels. Further an experiment on a chemical data set showed improvements of a
linear-Gaussian combined kernel over single kernels. Though the improvements
are not universal, we present a new idea of creating kernels in SVMs.

Chapter 1

A Review of Support Vector
Machines

Support Vector Machines (SVMs) have become a popular tool in recent years in
the literature of statistical learning, classification and pattern recognition. Many
scientists and researchers have been working on both the theory and application
of SVMs. They has been successfully applied in areas such as hand-written char-
acter recognition, text categorization, computer vision, and bioinformatics. And
the algorithm itself has been improved significantly compared to the original idea
due to Vapnik and etc.

The earliest SVM was a hyperplane classifier which separates the training data in
an n-dimensional input space according to a certain separated criterion. Different
criterions will lead to some variation in the algorithms of SVMs. For instance,
hard margin criterion leads to maximal margin SVMs; soft margin ends up wtih
soft margin SVMs. A special case is when the criterion is chosen to be some
particular loss function, then the analysis can be extended to regression. Detailed
definition of different SVMs will be discussed during the following chapters.

Later kernel functions are introduced to reproduce feature spaces in which an
optimal hyperplane classifier is searched for just as the original idea of SVMs. It
turns out that the algorithm of kernel Support Vector Machines is formally sim-
ilar to the original one. According to Mercer’s theorem [11], a function has to
satisfy several properties to be a kernel function. Every kernel function implicitly

1

determines a feature space with probably a higher dimension. Frequently it is
difficult to find a reasonable linear classifier in the original input space, but we
can expect the existence of a linear classifier in a certain feature space determined
by some chosen kernel. The power of kernels lies in the fact that they allow the
flexibility of constructing various of non-linear relationships among data points
of the original input space to accommodate particular data structures.

The implementation of SVMs is a quadratic programming problem, for which
plenty of algorithms are available, such as Sequential Minimal Optimization
(SMO). The solution of the parameters in support vector machines turns out to be
sparse, indicating only part of the training data are taking effect in determining
the optimal classifier. Those data points are called support vectors.

1.1 Historical development of Support Vector Machines

The concept of Support Vector Machines was first introduced by Vladimir Vap-
nik et al [3]. at the computational learning theory conference held in 1992. In
his paper, he proposed both the theoretical features and application of maximal
margin classifier. He also introduced the concept of support vectors for a hyper-
plane classifier. However the main features of Support Vector Machines had been
around since the 1960s. Duda and Hart [14] discussed large margin hyperplane
in their book published in 1973. The use of kernels was discussed by Wahba [8],
Aronszajn [2], Poggio [18] and others. In a 1964 paper, Aizermann et al. [1] talked
about the geometric interpretation of kernels as inner products in a feature space.
Mangasarian [13] in his 1965 paper discussed the optimization techniques which
was similar to the method used in Vapnik’s 1992 paper. Smith [7], Bennett and
Mangasarian [12] further proposed the slack variables technique used in linear
and nonlinear separation problems in 1960s. Those important previous findings
led to Vapnik’s revolutionary paper of 1992. In 1995 Cotes and Vapnik [5] ad-
vanced the maximal margin classifier presented in 1992 to soft margin classifier in
order to deal with more noisy data. The analysis was extended to support vector
regression in the same year at Vapnik’s book [19].

During the late 1990s, SVMs had aroused many people’ interest. People from
different disciplines such as statistics, optimization, functional analysis, and com-

2

puter science worked together to contribute to the development of SVMs. We-
ston and Watkins[10] in 1999 extended the analysis to multi-class casees. Smola,
Scholkopf and Mueller[17] investigated support vector machines from a new per-
spective by defining a general cost function. In 1998, Scholkopf, Smola, et al[15].
proposed a new algorithm called ν-Support Vector Machines which is similar to
soft margin SVMs. Critianini and Taylor’s book [6] published in 1999 is a first
comprehensive introduction of SVMs.

In the last several years, SVMs have been successfully applied in various of fields
such as gene expression and digit recognition. Gene expression data comes from
DNA microarrays. A DNA microarray (also commonly known as gene or genome
chip, DNA chip, or gene array) is a collection of microscopic DNA spots attached
to a solid surface, such as glass, plastic or silicon chip forming an array.

A certain pattern of the DNA sequence may indicate a particular biological expres-
sion or disease, for instance,the appearance of a certain cancer. Categorization
methods are needed here to distinguish different types of genes according to their
expression. Different from traditional data sets, gene expression data sets usually
have very large dimension; the data itself is usually very unbalanced (many more
negative instances than positive instances. And traditional classification methods
might not perform well on such data. However, SVMs are believed to be capable
to do the job. Brown et al. [4] gives a good use of SVMs applied to gene expression
data for classifying unseen genes.

Another successful real world application of SVMs is the hand-written digit recog-
nition problem. The original problem is motivated by the need of US Postal Service
to automate sorting mail using the hand-written Zip codes. The data information
is encoded in such a way: each digit is located at a 16 × 16 matrix and the infor-
mation is recorded in every single grid (the dimension of the data is then 256).
The number of observations in the training set is 7291, with every record a 257
(256 predictor plus one categorical response) dimensional vector representing a
digit between 0 and 9. The number of observations in the test set is 2007. Several
multi-class SVMs have been tried on this data set. The training set is reported to
be totally separable with a maximal margin SVM with kernel function chosen to
be polynomial having degree 3. The results of experiments have been reported
in a series of papers by Burges, Cotes, Scholkopf, Vapnik etc. and summarized in

3

Figure 1.1: An example of getting DNA microarray data. The first step is isolate mRNA
information from two types of cells. This step is usually called RNA isolation. The next
step is called Reverse Transcriptase Labeling, meaning to reverse the information back
to cDNA and label it with two different fluorochrome according to the different types.
The final step is to attach the DNA information to a solid surface such as a silicon chip.
These microarrays can be used to identify disease genes by comparing gene expression in
diseased and normal cells. Source: http://en.wikipedia.org/wiki/Dnamicroarray.

4

[20].

1.2 Maximal Margin Support Vector Machines

Maximal Margin SVMs are the earliest SVMs. The name comes from using a
maximal margin as the optimization criterion in model training. Before going
further to show how the problem is presented and solved, it is necessary to look
at some mathematical theories first.

1.2.1 Mathematical setups

In a classification problem, a set of collected data D = {(x1, y1), (x2, y2), ..., (xl, yl)},
is called training set (A data set on which the learning algorithm is trained).
X = {x1, x2, ...xl} is usually called the p-dimensional predictors (covariances, ex-
planatory variables), and Y = {y1, y2, ...yl} is referred as the labels (response vari-
ables). For instance, in the USPS data discussed above, the 16 × 16 matrix entries
will be 256-dimensional predictors. The categorical variable valued from 0 to 9
indicating the digit value is the response. Typically, Y takes values in unordered
sets in classification problems. For instance, Y = {−1,+1} gives a binary classifi-
cation.

The solving of a classification problem is to search for an optimal classifier (Opti-
mal means minimizing or maximizing some criterion) f ∈ F , mapping from X to
Y, where F is a certain function class.

f : X 7−→ Y

One common function class is the linear function class. However, such a class
may not be large enough for all kinds of classification problems. One way of
introducing non-linear classifiers is to map the input space to a feature space
(also called embedding), then search for a linear relation in the embedding space.
Typically, a function Φ maps the original p-dimensional predictors X into a m-
dimensional feature space X∗.

Φ : X 7−→ X∗

5

X ⊆ Rp,X∗ ⊆ Rm

f is chosen to be a linear function in the feature space X∗:

f (x) = wTΦ(x) + b

where w = (w1,w2, ...,wm) ∈ Rm and b ∈ R1.

This function is chosen such that this hyperplane will optimally separate data
points in the feature space. Again, being optimal depends on what optimization
criterion is chosen.

In Support Vector Machines, the chosen optimization criterion involve inner prod-
ucts of embedded vector 〈Φ(xi),Φ(x j)〉, and the estimate of the weight vector
w = (w1,w2, ...,wm) is a linear combination of embedded vector Φ(xi), i = 1, 2, ...l

ŵ =
l∑

i=1

ciΦ(xi)

Where ci ∈ R, i = 1, 2, ..l are the coefficients. Under such a circumstance, the
optimal classifier is :

f̂ (x) =
l∑

i=1

ci〈Φ(xi),Φ(x)〉 + b̂

So it’s important to introduce an inner product function taking values onX∗×X∗. A
kernel function K(·, ·) in SVMs is defined to be an inner product in the embedding
feature space:

K(xi, x j) = 〈Φ(xi),Φ(x j)〉

It should be noted that in SVMs, the form of the chosen embedding function Φ
need not to be known. Once a kernel function is specified, the embedding func-
tion is implicitly determined. It is the kernel function that characterizes a certain
SVM when the optimization criterion is given. As a similarity measure in the
embedded space, kernel functions is the essence of SVMs. However, a function
has to satisfy several conditions to be a kernel function.

6

0 2 4 6 8 10

0
2

4
6

8
10

x

y

Figure 1.2: Possible 5 linear classifiers which separate two different classes completely in
a linear separable data set. The data set is simulated from two groups of Gaussian. There
are infinitely many linear functions that could make total separation on this training set.
Thus, it’s important to choose an ”optimal” one according to some optimization criterion.
For instance, if we choose the margin of a classifier as the criterion and aim to maximize
it, we will end up with a SVM classifier.

7

1.2.2 The Maximal Margin Problem

Consider the simplest case,Y = {−1,+1}, indicating a binary response. The reason
why Y is set to be {−1,+1} instead of {0, 1} is to better represent the optimization
problem. Suppose the training setD = {(x1, y1), (x2, y2), ..., (xl, yl)} is linear separable,
which means there exists a hyperplane (w, b) and a constant c > 0, such that

yi(wtxi + b) > c

for all i = 1, 2, ..., l. No complicated feature space is induced and the projection
function Φ is chosen to be the identity since the data set itself can be separated by
a hyperplane. The margin M of a hyperplane classifier f (x) = wtx+ b is defined to
be the minimal one among all the distances of data points to the hyperplane.

M = min
i

di

where di is the distance of the ith observation to the hyperplane, i = 1, 2, ...l

di =
yi(wtxi + b)
‖w‖

For a point (xi, yi), its distance to a hyperplane wtx+ b = 0 can be computed in the
following way:
Let x∗ denote the corresponding foot of perpendicular. We know that

di = ‖xi − x∗‖

In the other hand, we know the direction xi−x∗ is perpendicular to the hyperplane
wtx + b = 0. So xi − x∗ must have the same direction with w, and we can assume:

xi − x∗ = kw

where k ∈ R1 is a constant. Because x∗ is on the hyperplane, we have

wtx∗ + b = 0

wt(xi − kw) + b = 0

wtxi + b − kwtw = 0

Thus we have

k =
wtxi + b

wtw
=

wtxi + b
‖w‖2

8

0 2 4 6 8 10

0
2

4
6

8
10

x

y

+

+

+

Figure 1.3: Maximal Margin Classifier for a linear separable data set. Points with ”+”
are support vectors. The data is simulated as two groups of Gaussian with different
centers. The total number of training set is 40 with only 3 support vectors. The margin
of this classifier is the distance from any of the three support vectors to the hyperplane
(Those 3 distances are equal.)

Since xi − x∗ = kw, we have:

di = ‖xi − x∗‖ = |k|‖w‖ = |w
txi + b|
‖w‖2 ‖w‖ = |w

txi + b|
‖w‖

Note the classifier is assumed to be capable of separating the two classes com-
pletely. This means there exists a constant c > 0, such that yi(wtxi + b) > c for all
i = 1, 2, ..., l. So for those data labeled with +1, (wtxi + b) > 0, and for those labeled
with -1, (wtxi + b) < 0. Thus we can claim that |wtxi + b| = yi(wtxi + b). Further, we
have

di =
|(wtxi + b)|
‖w‖ =

yi(wtxi + b)
‖w‖

For a linearly separable training set, there is infinite number of separating hy-
perplane (See figure 1.2), among which the Maximal Margin Classifier gives the
largest margin. This optimization problem can be presented as follows:

max
(w,b)

M

9

subject to
yi(wtxi + b) ≥ 1 (i = 1, 2, ...l)

Since the actual value of the positive constant c does not effect the problem, it can
be set to 1. According to the constraints we see that di ≥ 1

‖w‖ , i=1,2,...l.
The margin M is the minimum of di, thus M ≥ 1

‖w‖ . If (w∗, b∗) is the hyperplane
which has the largest margin M∗, we must have points on the boundary satisfying
yi(w∗tx + b∗) = 1 (See figure 1.3). Under such a case, M∗ = 1/‖w∗‖. So if we
want to maximize M under constraints, we can simply minimize ‖w‖ under the
same contraints, or equivalently minimize 1

2‖w‖
2 for convenience. So another

presentation of the maximal margin problem is given as:

min
(w,b)

1
2
‖w‖2 (1.1)

subject to
−(yi(wtxi + b) − 1) ≤ 0 (i = 1, 2, ...l)

The constraints on (w, b) are linear inequalities, which define a convex region,
usually called feasible region. The objective function is quadratic and convex,
so we have a quadratic convex optimization problem, for which plenty of al-
gorithms are available. However, when it comes to a real algorithm, problems
with equality constraints are much easier to handle with. It is usual for such
a problem to transform it into its dual presentation. Another very important
advantage of solving the dual problem rather than primal is that the objective
function in the dual problem has a nice inner product form. This form will also
make it easier to further introduce kernel functions in the objective. In order to see
how the dual problem arises, let us first look at some classical optimization theory.

1.2.3 Optimization theorem

In the following, we are going to quote and prove several important optimization
theorem which Support Vector Machines stand on.

Fermat’s Theory (Optimization with no constraints) Suppose f : Θ → R1,
where Θ ⊂ Rn is open and f ∈ C1, a necessary condition for θ∗ to be a minimum
of f (θ) is that

∇ f (θ∗) = 0

10

If f happens to be a convex function, then the condition is also sufficient.

Proof (Necessary condition):
Suppose ∇ f (θ∗) > 0, according to the definition of

‖∇ f (θ∗)‖2 = limh→0+
f (θ∗) − f (θ∗ − h∇ f (θ∗))

h
Thus we have f (θ∗)− f (θ∗ − h∇ f (θ∗)) > 0 which contradicts with the minimum of
θ∗. The same argument will follow when ∇ f (θ∗) < 0.
End of Proof.

Proof (Sufficient condition):
Prove with contradiction. Suppose there exist another θ ∈ Θ, such that f (θ∗) >
f (θ), let v = θ − θ∗thus:

0 = ∇ f (θ∗) · v = limh→0+
f (θ∗ + hv) − f (θ∗)

h
.

Because f (θ∗ + hv) = f ((1 − h)θ∗ + hθ) and f is a convex function, we have

f (θ∗ + hv) = f ((1 − h)θ∗ + hθ) ≤ (1 − h) f (θ∗) + h f (θ)

substitute the relationship, there will be a contradiction:

0 ≤ limh→0+
h(f (θ) − f (θ∗))

h
< 0.

End of Proof.

Now look at the following generalized optimization problem:
minimize

f (θ)

subject to gi(θ) ≤ 0(i = 1, 2, ...l)
θ ∈ Θ

Usually this problem is called the primal problem. For a problem with constraints
like the above one, we can consider the so called Lagrangian function:

L(θ, α) = f (θ) +
l∑

i=1

αigi(θ)

11

Those αi ≥ 0 are the Lagrangian multipliers. Now we can define the correspond-
ing dual problem:

max
α

inf
θ∈Θ

L(θ, α)

Subject to
α ≥ 0

Further we can define:
L̃(α) = inf

θ∈Θ
L(θ, α)

Then the dual problem is to maximize L̃(α) for all non-negative αi. Next, we will
show the two optimization problems (one minimizing f (θ), the other maximizing
L̃(α)) have the following relationship:

Theorem: Weak duality If θ is a feasible solution of the original primal prob-
lem and α is a feasible solution of the Lagrangian dual problem, then L̃(α) ≤ f (θ).

Proof:

L̃(α) = inf
θ∈Θ

L(θ, α)

≤ L(θ, α)

= f (θ) +
l∑

i=1

αigi(θ)

≤ f (θ)

Since
αi ≥ 0, gi(θ) ≤ 0

End of Proof.

If it turns out that if there exists some θ∗, α∗, such that f (θ∗) = L̃(α∗), provided
that α∗ ≥ 0, gi(θ∗) ≤ 0, then θ∗, α∗ solve the original primal problem and the La-
grangian dual problem. A necessary condition for such a case is that α∗gi(θ∗) = 0
for every i = 1, 2, 3, ...l. The reason is if there exist some j such that α∗g j(θ∗) < 0,
then L̃(α∗, β∗) would be strictly less than f (θ∗). This condition is often called
Karush-Kuhn-Tucker complementarity condition. In order to ensure that solving
the primal problem is equal to solving the dual problem, we need the following

12

Kuhn-Tucker Theorem:

The Kuhn-Tucker Theorem Suppose thatΘ ⊂ Rn is open, f , g1, g2...gl : Θ→
R1 are C1, f is a convex function, and the feasible region

D = {θ ∈ Θ : gi(θ) ≤ 0, i = 1, 2, 3, ...l}

is also convex. Necessary and sufficient conditions for a normal point θ∗ ∈ D to
be an optimum are the existence of αi ∈ R1, αi ≥ 0, i = 1, 2, 3...., such that

5 f (θ∗) +
l∑

i=1

αi 5 gi(θ∗) = 0

and
αigi(θ∗) = 0, i = 1, 2, 3....l

Proof (Sufficient conditions)
We will prove it by contradiction. Suppose there exists a θ such that f (θ) < f (θ∗).
Let v = θ − θ∗, according to the definition of derivatives,

5 f (θ∗) · v = lim
h→0+

f (θ∗ + hv) − f (θ∗)
h

= lim
h→0+

f (θ∗ + h(θ − θ∗)) − f (θ∗)
h

Because f is convex,

5 f (θ∗) · v ≤ lim
h→0+

(1 − h) f (θ∗) + h f (θ) − f (θ∗)
h

= lim
h→0+

h(f (θ) − f (θ∗))
h

= f (θ) − f (θ∗)

< 0

On the other hand, for each i with gi(θ∗) = 0, we have

5gi(θ∗) · v = lim
h→0+

gi(θ∗ + hv) − gi(θ∗)
h

= lim
h→0+

gi(θ∗ + hv)
h

≤ 0

13

Note gi(θ∗ + hv) = gi(hθ + (1 − h)θ∗), and hθ + (1 − h)θ∗ ∈ D since D is convex. So
we have gi(θ∗ + hv) ≤ 0 , hence 5gi(θ∗) · v ≤ 0 for each i with gi(θ∗) = 0.
However, this will lead to a contradiction what we have known:

5 f (θ∗) · v = −
l∑

i=1

αi 5 gi(θ∗) · v ≥ 0

Since αigi(θ∗) = 0 for each i, the each term in the RHS would be other zero or
non-negative.
Thus we have proved that θ∗ must be the solution of the optimization problem.

The necessary condition (A sketch proof):
Suppose θ∗ ∈ D is the optimum. Consider the following cone:

C = {
l∑

i=1

λi 5 g(θ∗)|λi > 0}

We aim to show that − 5 f (θ∗) is in the polar of C, which means there exists
λ∗i ≥ 0, i = 1, 2, ..l such that

− 5 f (θ∗) =
l∑

i=1

λi 5 g(θ∗)

According to Generalized Farkas Theorem [16], if this is not true, there is some
vector v in the polar of C, such that

− 5 f (θ∗) · v > 0

Again the definition of derivatives indicate that this is a contrary of the assump-
tion that θ∗ is a minimizer.
End of proof: Kuhn-Tucker Theorem

Now guaranteed by the Kuhn-Tucker Theorem, we can state the following theo-
rem which will ensure the safety of moving from primal to dual:

Theorem: Strong Duality Suppose thatΘ ⊂ Rn is open, f , g1, g2...gl : Θ→ R1

are C1, f is a convex function, and the feasible region

D = {θ ∈ Θ : gi(θ) ≤ 0, i = 1, 2, 3, ...l}

14

is also convex, then the duality gap is zero (the primal and dual have the same
optimal value).

Proof: Suppose θ∗ is the optimal solution of the primal problem. According to
the necessary condition of Kuhn-Tucker Theorem, there exists α∗i ≥ 0, i = 1, 2, 3...l,
such that

5 f (θ∗) +
l∑

i=1

α∗i 5 gi(θ∗) = 0

According to the sufficient condition of Fermat’s theorem, when α = α∗, θ∗ min-
imise the Lagrange Primal L(θ, α∗) = f (θ) +

∑l
i=1 α

∗
i gi(θ).

Thus we have the following equation:

L̃(α∗) = L(θ∗, α∗) = f (θ∗) +
l∑

i=1

α∗i gi(θ∗)

By the KKT complementarity condition, we have αigi(θ∗) = 0, i = 1, 2, 3....l and
L̃(α∗) = f (θ∗).
According to the Weak Duality Theorem,

sup
α≥0

L̃(α) ≤ f (θ∗)

So α∗ must be the optimal solution of the dual problem, and the values of the two
optimization problem are equal:

˜L(α∗) = f (θ∗)

End of proof.

1.2.4 The solving of Maximal Margin SVMs

Now we know under some regularity conditions, the primal optimization prob-
lem(2) of maximizing the margin can be transformed into its dual presentation.
Based the dual presentation, we can further introduce the Lagrange Primal:

Lp =
1
2
‖w‖2 −

l∑
i=1

αi[yi(wtxi + b) − 1] (1.2)

15

where αi ≥ 0 are the Lagrange multipliers. The dual can be easily obtained by
setting to zero the derivatives of the Lagrangian primal with respect to (w, b),
and substituting the relations back to the Lagrangian. This is guaranteed by the
convexity of the problem (thus ensured by the sufficient condition of Fermat’s
Theorem)

Take derivatives with respect to w, b and set them to zero:

∂Lp

∂w
= 0 : w −

l∑
i=1

αiyixi = 0

∂Lp

∂b
= 0 :

l∑
i=1

αiyi = 0

Substituting them back to the Lagrange Primal, we have

Lp =
1
2
‖w‖2 −

l∑
i=1

αi[yi(wtxi + b) − 1]

=
1
2
‖w‖2 −

l∑
i=1

αiyiwtxi −
l∑

i=1

αiyib +
l∑

i=1

αi

=
1
2
‖x‖2 − wt(

l∑
i=1

αiyixi) − (
l∑

i=1

αiyi)b +
l∑

i=1

αi

Substitute w =
∑l

i=1 αiyixi,
∑l

i=1 αiyi = 0, we have the following:

Lp =
1
2
‖w‖2 − wtw − 0 +

l∑
i=1

αi

=

l∑
i=1

αi −
1
2
‖w‖2

=

l∑
i=1

αi −
1
2

l∑
i=1

l∑
j=1

αiα jyiy j〈xi, x j〉

Finally we optain the Lagrange Dual problem:

max
α

LD =

l∑
i=1

αi −
1
2

l∑
i=1

l∑
j=1

αiα jyiy j〈xi, x j〉 (1.3)

16

subject to
∑l

i=1 αiyi = 0
αi ≥ 0(i = 1, 2, ...l)

The reason that
∑l

i=1 αiyi = 0 appears in the constraints is that this relation have
not been used in obtaining the objective function of the dual. Instead of optimiz-
ing with (w, b), LD search for optimal αis corresponding to every observation.

Let α̂i denote the optimal solution of the dual problem. By the Karush-Kuhn-
Tacker complementarity condition:

α̂i[yi(wtxi + b) − 1] = 0, i = 1, 2, ...l

So for only those points on the boundary, namely yi(wtxi+b) = 1, the corresponding
αi is non-zero. These data points, which completely determine the hyperplane
classifier (w, b) , are called support vectors.
The optimal weight vector ŵ is a linear combination of observations as shown
before:

ŵ =
l∑

i=1

α̂iyixi =
∑
i∈SV

α̂iyixi (1.4)

where SV refers to the set of support vectors.
The intercept b̂ is determined by y∗(wtx∗ + b) = 1, where (x∗, y∗) is an arbitrary
support vector. Finally, the optimal hyperplane classifier is given as:

f̂ (x) = ŵtx + b̂ =
∑
i∈SV

α̂iyi〈xi, x〉 + b̂. (1.5)

1.3 Soft Margin SVMs

Mostly the training sets are not linear separable, meaning that the above optimiza-
tion problem is an ill-posed one. This motivates the introducing of slack variables
ξi to presentation (2)(still considering binary classification with no feature space
induced):

min
(w,b,ξi)

1
2
‖w‖2 + C

l∑
i=1

ξi (1.6)

17

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

4

*

*

*

**

*

*

*

*

*

*

*
*

**

*

*

*
*

*

*
*

*
*

*

*

*
*

*

Figure 1.4: An example of soft margin SVM. Since the data set is not linear separable,
maximum margin SVMs can not be used here. The solid line is the fitted classification
boundary: wtx + b = 0; the dashed lines are contours of : wtx + b = ±1. The marked
points are support vectors. Notice the number of support vectors become significantly
larger than maximum margin SVM.

18

subject to
yi(wtxi + b) ≥ 1 − ξi

ξi ≥ 0
i = 1, 2, ...l

C > 0 is often referred as the penalized constant or cost. It has to be determined by
cross-validation (this is usually called parameter tuning). The hard-Margin Classi-
fier only minimize the norm of w such that the hyperplane successfully separates
all l samples in the training set. The slack variables ξi are introduced to allow
for some points to be misclassified since no hyperplane can separate them all.
Thus the cost parameter C is a trade-off between model complexity and the accu-
racy on a training set. Figure 2.4 shows a simulated example of a soft margin SVM.

The equivalent Lagrange Dual is given by:

max
α

LD =

l∑
i=1

αi −
1
2

l∑
i=1

l∑
j=1

αiα jyiy j〈xi, x j〉 (1.7)

subject to
∑l

i=1 αiyi = 0
0 ≤ αi ≤ C i = 1, 2, ...l

The hyperplane classifier is still determined by αis by the same way:

ŵ =
l∑

i=1

α̂iyixi =
∑
i∈SV

α̂iyixi

where SV corresponds to the subset with αi non-zero. b̂ is chosen by yi(wtxi+b) = 1
with 0 < αi < C. The optimal classifier is the same as (6):

f̂ (x) = ŵtx + b̂ =
∑
i∈SV

α̂iyi〈xi, x〉 + b̂

1.4 SVMs with kernels

In most cases trying to find an optimal linear SVM in the original input space X
is difficult. However, as discussed before, it is likely that a linear classifier will
perform well in a feature space (the original input space mapped by a feature
mapping function Φ). Figure 1.5 and figure 1.6 show an example where no

19

−4 −2 0 2 4

−
4

−
2

0
2

4

Figure 1.5: An example which linear SVMs are not adequate. The solid ellipse line is the
real boundary: x2 + xy + y2 = 5. Data is simulated according to this boundary: For any
given point (x,y), if x2 + xy + y2 > 5, then it is marked as class 0 (the smaller points);
otherwise it is marked as class 1 (the larger points). With such a distribution, any linear
classifier will not do well in separating those two classes.

20

Scatterplot of training data in feature space

 0 5 10 15 20 25 30

−
20

−
15

−
10

 −
5

 0
 5

 1
0

 1
5

 0
 5

10
15

20
25

X*X

Y
*Y

S
qr

t(
2)

*X
*Y

Figure 1.6: Mapping the original training set to a 3-dimensional feature space where
linear SVMs can perform well. As we can see from this figure, the separating plane
can be searched in this 3-dimensional space. The mapping function takes the form of :
Φ(x) = (x2

1,
√

2x1x2, x2
2).

21

linear SVMs can do well in the original space, but linear SVMs can work in the
3-dimensional feature space.

SVMs with induced feature spaces are often referred to as kernel SVMs. By
introducing the feature space, we are actually searching for nonlinear relationship
in the original input space. Figure 1.7 shows this non-linear relationship in an
example using soft Margin SVMs with a Gaussian kernel. This simulation study
is inspired by a visualization method introduced in the book by Hastie et. al.
(2001) [9].
The nice thing about SVMs is that we can simply move from linear SVMs to kernel
SVMs while keeping the general presentation formulas. Indeed, when mapping
function is introduced, instead working on the points (x1, x2, ...xl), we are working
on (Φ(x1),Φ(x2), ...,Φ(xi)). As a contrast to the presentation of linear SVMs in (8),
the corresponding Lagrange Dual when introducing the feature space is then:

max
α

LD =

l∑
i=1

αi −
1
2

l∑
i=1

l∑
j=1

αiα jyiy j〈Φ(xi),Φ(x j)〉 (1.8)

subject to
∑l

i=1 αiyi = 0
0 ≤ αi ≤ C, i = 1, 2, ...l

The w vector in feature space: f (x) = wtΦ(x) + b is given by:

ŵ =
l∑

i=1

α̂iyiΦ(xi) =
∑
i∈SV

α̂iyiΦ(xi)

where b̂ is determined by y j(ŵtΦ(xi) + b̂ = 1, or y j(
∑

i∈SV α̂iyi〈Φ(xi),Φ(x j)〉 + b̂) = 1
for some j satisfying with 0 < α j < C. The optimal classifier f̂ (x) is:

f̂ (x) = ŵtx + b̂ =
∑
i∈SV

α̂iyi〈Φ(xi),Φ(x)〉 + b̂ (1.9)

Note expressions (9) and (10) only involve inner products of training points, so
without explicitly giving the mapping Φ one can still train a SVM as long as the
kernel function

K(x, z) = 〈Φ(x),Φ(z)〉

is specified. However, for a function K(x, z) to be a kernel function, it first has to
satisfy some properties. Obviously, K must be symmetric, because inner product

22

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

gamma=0.5

*

*

*

*

*

*

**

*
*
** *

*
*

*
* *

**

*
**

*
** *

*
*

*

*

* *
*

**

Figure 1.7: An example of soft margin SVM with kernels. The Gaussian kernel: K(x, z) =
exp−σ‖x − z‖2 is used. The solid line is the fitted classification boundary: wtφ(x)+b = 0;
the dashed lines are contours of : wtφ(x) + b = ±1. Parameters in the Gaussian kernel
are set to be σ = 0.5, cost = 5.

23

is symmetric: K(x, z) = K(z, x).
For a given K(x, z), the question is whether we can find out the associated feature
mapping φ j. Though φ j is not needed with SVMs, specifying the form of φ j will
help us understand what kind of feature space we are in when searching for a
linear classifier in that space.
Several widely used kernels are:

Linear Kernel K(x, z) = 〈x, z〉,
Polynomial Kernel K(x, z) = (〈x, z〉 + c)d,

Gaussian Kernel K(x, z) = exp(−σ‖x − z‖2),
Sigmoid Kernel K(x, z) = tanh(γ〈x, z〉 − θ).

Except for the linear kernel, it is not so obvious why those other three would
kernel functions. This question is answered if the associated feature mapping
function φ is specified. For example, a polynomial kernel with degree 2 and offset
1 in a 2-dimensional space

K(x, z) = [x1z1 + x2z2) + 1]2

can be actually expressed in the following form:

K(x, z) = x2
1z2

1 + 2x1z1x2z2 + x2
2z2

2 + 2x1z1 + 2x2z2 + 1

= (x2
1,
√

2x1x2, x2
2,
√

2x1,
√

2x2, 1) · (z2
1,
√

2z1z2, z2
2,
√

2z1,
√

2z2, 1)

= φ(x) · φ(z)

where the mapping function is given by

φ(x) = (x2
1,
√

2x1x2, x2
2,
√

2x1,
√

2x2, 1).

In other words, the polynomial kernel has implicitly defined a feature mapping
function from R2 to R6.

In order to ensure that any given function K(x, y) is a kernel function, namely, K
can be expressed as a product of feature mappings, we need to introduce Mercer’s
theorem [11]:

Theorem (Mercer) Let X ba a compact subset of Rn. Let L2(X) denote the L-2 function
space on X. Suppose K is a continuous symmetric function such that the integral operator
TK : L2(X)→ L2(X),

(TK f)(·) =
∫

X
K(·, x) f (x)dx

24

is positive, which means ∫
X×X

K(x, z) f (x) f (z)dxdz ≥ 0

for all f ∈ L2(X). Then we can expand K(x, z) in a uniformly convergent series (on X×X
) in terms of eigen-functions φ j ∈ L2(X), normalized in such a way that ‖ φ j ‖L2= 1, and
positive associated eigenvalues λ j > 0,

K(x, z) =
∞∑

i=1

λ jφ j(x)φ j(z).

According to Mercer’s theorem, a kernel function K has to satisfy: for any finite
subset of X, the corresponding kernel matrix determined by [Ki j] where Ki j =

K(x[i], x[j]) is symmetric and positive semi-definite. For Mercer kernels, there
always exist implicitly determined mapping functions so that the kernel can be
presented as inner products of mapping functions. But the representation is not
unique. For instance, we can choose the mapping function to be

ξ j(x) =
√
λ jφ j(x)

With φ j, λ j be the corresponding eigenvalue and eigenfunction of K(x, z). This
will ensure that SVMs are searched in some feature space. However, experiments
show that non-Mercer Kernels also give good results sometimes. For example,
the sigmoid kernel is not a Mercer one but is proved useful.
The choice of a kernel and its fine-tuning are essential in fitting SVMs. The class
of kernel functions which can be chosen from is large. And there are many ways
to produce new kernels with some widely used kernels. Especially,

Linear combinations of kernels is a kernel K(x, z) = αK1(x, z) + βK2(x, z)
Products of kernels is a kernel K(x, z) = K1(z, z)αK2(x, z)β

where α ≥ 0, β ≥ 0.

Before we develop our strategies to customize kernels for a particular data struc-
ture, let’s first investigate how those four widely used kernels look like in a
simulated example.

25

−3 −2 −1 0 1 2

−
2

0
2

4

A Plot of the training sample

Figure 1.8: A scatter plot of the training sample. Data is simulated as mixtures of
Gaussian. One group centers at (−1, 1), the other centers at (1,−1)

1.4.1 Kernel visualization via a simple simulated experiment

In order to the see the behaviors of several widely used kernels in SVMs, we try
to visualize them in a two dimensional space. The data is simulated in such the
following way:
Step1: Generate two group of Bivariate Gaussian observations with each size 10,
one center is at (−1, 1), and the other center is at (1,−1). Group1={µ+i , i = 1, ...10},
and Group2= {µ−i , i = 1, ...10}. µ+i ∼ N((−1, 1), I), µ−i ∼ N((1,−1), I).

Step2: Each time randomly pick a center µ+j from Group1, generate a Bivariate
Gaussian observation X+i ∼ N(µ+j ,

1
5 I). Keep doing this 100 times. In the same

way, generate 100 Bivariate Gaussian from centers in Group2.

Step3: Generate a label vector Y with size 200 : Y[1 : 100] = 1; Y[100 : 200] = −1.
See figure 1.8 for the scatter plot.

Combine the simulated data (X+i ,Yi), i = 1, ...100 and (X−i ,Yi), i = 100, ...200 as
training sample, fit 4 different SVMs corresponding to 4 common-used kernels:

26

−3 −2 −1 0 1 2

−
2

0
2

4

Linear Kernel

+ +

+
+

+
+
+

+
+++

+

+ +
+

+
+

+
+ +
+ ++ ++ +

+

+

+

+ ++
+

++

+

+

+ ++ +

+

+

+
+

+

++
+ +

+
+

+

+

++

+

++ +
+

+
+

+

−3 −2 −1 0 1 2

−
2

0
2

4

Gaussian Kernel

+
+

+

+

+
+
+

+

+

+ ++
++ ++ + ++ +

++

+

+
++

+
+

++
+

+ ++

+

+
+

+

++
+ ++ ++

+

++ +
+

+

+
+

−3 −2 −1 0 1 2

−
2

0
2

4

Polynomial Kernel

+ +

+

+

+
+
++

+ ++
+

++ + + +
++

+

+
+

+
+

+
+

+ ++

+

+++
+ ++ +

+
+

+

+

+
+

−3 −2 −1 0 1 2

−
2

0
2

4

Sigmoid Kernel

+
+

+

+

+

++

+

+

+

+

+

+
++

+
+

+
++

+

+
+

+

+

+

+

+

++
++

+

++

+

++
++

+

+

+

+ +

+

+

+

++

+

+ +

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+ ++ + +

+

+
+

+

+

+

+
++

+

+++
+ +

+
++

+

+
+

+
+

+ +

++
+

+

+

+
+

+

+

+

+
++

++ +

+

+

++

+

Figure 1.9: Four different kernels in classification. The four corresponding kernels used
are Klinear(x, z) = 〈x, z〉, Kpolynomial(x, z) = (〈x, z〉 + 1)3, Kgaussian(x, z) = exp(−‖x−z‖2

2), and
Ksigmoid(x, z) = tanh(3〈x, z〉 + 1). The solid line is the classification boundary, a contour
for f̂ = 0. The dashed lines are contours for f̂ = −1, f̂ = 1. Points with ”+ ” are support
vectors. The cost parameter C is set to be the default value 1 for all four kernels.

27

Linear, Gaussian, Polynomial, and Sigmoid. Parameters are specified as follows:

Klinear(x, z) = 〈x, z〉,
Kpoly(x, z) = (〈x, z〉 + 1)3,

Kgaussian(x, z) = exp(
−‖x − z‖2

2
,)

Ksigmoid(x, z) = tanh(3〈x, z〉 + 1).

Generate a test sample T = {ti}, then make predictions f̂ (ti) based on the fitted
model. Hence we can plot the classification boundary by making contour plots
of f̂ (ti) = 0, 1,−1. See figure 1.9.

Judging from these four plots, we can see that Gaussian kernel does better than
linear kernel in the middle of the plane, while worse than linear kernel at both
corners. Unlike linear kernel, the Gaussian kernel is a local one. For instance, a
test point x is classified as in group1, if f̂ (x) > 0. Note

f̂ (x) = wtφ(x) + b =
∑
i∈SV

αiyi exp−σ‖xi − x‖2

If the point x is far away from most support vectors, f̂ (x) will not be significantly
different from 0, which makes the classification of x not reliable. Consider this
example: there are few training data and hence support vectors at both corners.
This explains why Gaussian kernel does not work well at corners.

Except for the sigmoid kernel, most support vectors lie in between the dashed
line for those other three, which should be the case. The numbers of support vec-
tor machines for linear, Gaussian and polynomial do not have a large difference.
while the sigmoid kernel identify too many number of support vectors. The ratio
of the number of support vectors to the total number of training data is believed
to relate to the upper bound of generalized classification error, thus should be
controlled.

1.5 Support Vector Regression

Support Vector Machines can be applied to regression by introducing a proper
loss function. Suppose we have a training set {(x1, y1), (x2, y2), ..., (xl, yl)}, where

28

0 2 4 6 8

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

0 2 4 6 8

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

0 2 4 6 8

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

Figure 1.10: A simulated experiment of SVM regression. The data is generated in such
away: yi = exp(−xi) + εi, where εi ∼ N(0,1). The upper plot shows the 2-dimensional
training sample, where the solid line is: yi = exp(−xi). The left of the lower plots
shows the fitted kernel support vector regression model with Gaussian kernel. The model
parameters are set to be σ = 0.1,C = 5. The right of the lower plots shows the fitted kernel
support vector regression model with polynomial kernel. The model parameters are set to
be: degree=3, offset=1.

29

yi, i = 1, 2, ...l are treated as continuous variables. Consider the following linear
regressor:

f (x) =< w, x > +b

We aim to find an ”optimal” f̂ . Under least square regression, the loss function is
gives as:

L(x, y, f) =
l∑

i=1

(f (xi) − y)2

Here in support vector regression, we define the loss function to be the form of:

Lε(x, y, f) = max(0, | f (x) − y| − ε)

The introducing of ε ≥ 0 will ensure the existence of a global minimum and a
sparse solution. Lε is called linear ε-insensitive loss. Sometimes, the quadratic
ε-insensitive loss Lε2 = [Lε]2 is also used.
Based on the linear ε-insensitive loss, optimal regressor is given by minimizing
the functional:

1
2
‖w‖2 + C

l∑
i=1

Lε(xi, yi, f)

The cost parameter C is introduced to measure the trade-off between complexity
and loss. In order to make the optimization problem to have a nice form, two slack
variables ξ+, ξ− are introduced, one for exceeding the target value by more than
ε, and the other for being more than below the target value. Thus, an equivalent
representation is:

min
(w,b,ξ+,ξ−)

1
2
‖w‖2 + C

l∑
i=1

(ξ+ + ξ−)

subject to
< w, xi > +b − yi − ε ≤ ξ+, i = 1, 2...l
yi − (< w, xi > +b) − ε ≤ ξ−, i = 1, 2...l
ξ+, ξ− ≥ 0, i = 1, 2...l

This problem can be transformed into the following one by introducing the La-
grange multipliers α:

max
αi

l∑
i=1

yiαi − ε
l∑

i=1

|αi| −
1
2

l∑
i, j=1

αiα j < xi, x j >

30

subject to
∑l

i=1 αi = 0
−C ≤ αi ≤ C, i = 1, 2...l

According to Karush-Kuhn-Tucker conditions, only part of these α∗i are non-zeros,
which are called support vectors. The optimal regressor can be represented as
f̂ (x) =

∑
i∈SV α

∗
i < xi, x > +b∗, where b∗ is chosen so that f (xi) − yi = −ε for any i

with 0 < α∗i < C.
When kernels K(xi, x j) are introduced, the optimization problem become:

max
αi

l∑
i=1

yiαi − ε
l∑

i=1

|αi| −
1
2

l∑
i, j=1

αiα jK(xi, x j)

subject to
∑l

i=1 αi = 0
−C ≤ αi ≤ C, i = 1, 2...l

The corresponding non-linear regressor is given as f̂ (x) =
∑

i∈SV α
∗
i K(xi, x) + b∗.

Figure 1.10 give examples of fitting SVMs using Gaussian and polynomial kernel
functions.

1.6 Implementation of SVMs in R

There are many packages to implement SVMs. In the popular statistical tool R, one
widely used package to run SVMs is ”e1071”. In this package, there is a function
called ”svm” which is capable to fit different SVMs with different kernels. The
following codes are just a simple example of running SVMs in R:

> library(e1071)

> data(spam) #load the spam data

> dim(spam)

[1] 4601 58

> table(spam$type)

nonspam spam

2788 1813

> N=dim(spam)[1]

31

> N

[1] 4601

> s=sample(1:N, 3000)

> train=spam[s,] #make the training sample

> test=spam[-s,] #make the test sample

>

> # fit svm with linear kernel

> model.linear=svm(type˜., data=train, kernel="linear", cost=1)

> pred.linear=predict(model.linear,test)

> table(pred.linear, test$type)

pred.linear nonspam spam

nonspam 919 77

spam 41 564

>

> #fit svm with gaussian kernel

> model.gaussian=svm(type˜., data=train, gamma=1/58, cost=1,

kernel="radial")

> pred.gaussian=predict(model.gaussian,test)

> table(pred.gaussian, test$type)

pred.gaussian nonspam spam

nonspam 922 71

spam 38 570

>

> #fit svm with polynomial kernel

> model.poly=svm(type˜., data=train, degree=3,coef0=1,

kernel="polynomial",cost=1)

> pred.poly=predict(model.poly,test)

> table(pred.poly, test$type)

pred.poly nonspam spam

nonspam 939 361

spam 21 280

>

32

The data in the example is known in machine learning literature as the ”spam”
data, which is about spam email automatical detection. It can be downloaded
from the web site: http://www.ics.uci.edu/mlearn/databases/spambase/ .

In this data set, there is a label ”type” indicating whether a record is a spam or
a non-spam email. The predictors are mostly the frequencies of certain words
appearing in the email. Those selected words are thought to have some relation
with the outcome of whether an email is a spam or not. As shown in the codes,
the dimension of spam data is 4601 × 58: 4601 instances : 1813 spam and 2788
non-spam ; 58 attributes : 57 predictors and 1 response.

We fit 3 models with linear kernel, Gaussian kernel, and polynomial kernel re-
spectively in the codes. It should be noted that several parameters need to be
specified when fitting SVMs. In all three models, the ”cost” parameter denotes
the constant of the regularization term in the Lagrange formulation - C in the
following expression:

min
(w,b,ξi)

1
2
‖w‖2 + C

l∑
i=1

ξi

The ”gamma” parameter denote σ in the Gaussian kernel:

K(x, z) = exp(−σ‖x − z‖2)

The ”degree” and ”coef0” parameters denote d and c in the polynomial kernel:

K(x, z) = (〈x, z〉 + c)d

Those parameter will effect the performance of SVMs so that need to be numer-
ically tuned. The following we give an example using the Gaussian kernel to
illustrate one way to tune parameters in SVMs.

In the SVM model with Gaussian kernel, there are two parameters that need to
be tuned: ”gamma” and ”cost”. At first, we need to generate two vectors as
candidates for ”gamma” and ”cost”. Then for each pair of candidates, we do a
5-folder cross validation and record the average errors as criterions to evaluate
the performance of models. For a classification table like the following table 1.1

33

 Contour plot of False−positive

gamma

co
st

0.01 0.12 0.23 0.34 0.45

0.
1

0.
4

1.
2

3.
8

11
.5

 Contour plot of False−Negative

gamma

co
st

0.01 0.12 0.23 0.34 0.45
0.

1
0.

4
1.

2
3.

8
11

.5

 Contour plot of classification error

gamma

co
st

0.01 0.12 0.23 0.34 0.45

0.
1

0.
4

1.
2

3.
8

11
.5

 Contour plot of 1−Area under ROC curve

gamma

co
st

0.01 0.12 0.23 0.34 0.45

0.
1

0.
4

1.
2

3.
8

11
.5

Figure 1.11: Tuning of parameters in Gaussian kernel on the spam data. These are
four contour plots of those four criterions. Those two parameters that need to be tuned
are gamma and cost in a SVM model with the Gaussian kernel. Finally, we select
gamma=0.01, cost=5 as the overall best parameters in the Gaussian kernel on the spam
data.

34

0 (observed) 1 (observed)
0 (predicted) a b
1 (predicted) c d

Table 1.1: A classification table with predicted and observed frequencies

We define three types of errors: CE=Classification error rate, FP=False positive
error rate, FN=False negative error rate, where

CE =
b + c

a + b + c + d

FP =
c

c + a

FN =
b

b + d

The other criterion that we might look at is the area under ROC(Receiver Op-
erating Characteristic) curve. A good discussion of ROC curve can be found
at wikipedia.org: http://en.wikipedia.org/wiki/Roccurve. The area under ROC
curve is a value between 0 and 1. The closer is this value to 1, the closer is the
model to perfect classification.

In order to pick up the best ”gamma” and ”cost”, we make four contour plots
of those four criterions: classification error rate, false positive error rate, false
negative error rate and 1− area under ROC curve. The reason of using ”1− area”
instead of ”area” itself is to be consistent with the other 3 criterions (So that the
lower the better). Figure 1.11 shows this plot. Judging from the plot, we choose
gamma=0.01 and cost=5 as the tuned parameters in the Gaussian kernel, since all
four criterions seem to be lower at the point (0.01, 5).

Next to make a comparison between SVM with default Gaussian kernel and SVM
with tuned Gaussian kernel,we randomly select 100 instances as the test set and
leave the others as the training set. To further illustrate the performance of SVMs,
a logistic regression model is also fitted. Figure 1.12 shows the ROC curves of
those three models. Table 1.2 shows the four criterions of the three models on this
testing set. Judging from those results, the tuned SVM (gamma=0.01, cost=5)
does give the most accurate prediction.

35

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−specifity

se
ns

iti
vi

ty

solid line = Gaussian svm

dashed line = tuned svm

dotted line = GLM

ROC curves of three models on spam data

Figure 1.12: ROC curves of three models on testing spam data. There are 100 instances
in the testing set. The solid line denote the ROC curve of SVM with default Gaussian
kernel. The dashed line denote the ROC curve of SVM with tuned Gaussian kernel, and
the associated parameters are set to be: gamma=0.01, cos=5. The dotted line denote the
ROC curve of logistic regression.

36

model FP FN CE Area
SVM with default Gaussian kernel 0.06 0.2 0.13 0.9696
Logistic regression model 0.04 0.26 0.15 0.9548
Tuned SVM with Gaussian kernel 0.02 0.18 0.10 0.9888

Table 1.2: A summary of errors using 3 models on the spam data

It should be noted that ”e1071” is not the only package that can handle with
SVMs. In fact, one limitation of ”e1071” is that it can only deal with several fixed
kernels like linear, Gaussian, sigmoid, and polynomial. This limitation is avoided
in another R package ”kernlab”. In this package, there is a function ”ipop”
which can solve quadratic programming problems with customized kernels. In
other words, this function is able to solve SVMs with kernels defined by users.
However, one drawback of this function is that it is slower than the ”svm” function
in ”e1071”. Both functions agree well in making predictions with SVMs.

1.7 Strength and weakness of SVMS

Support vector machines as a machine learning algorithm have their advantage
compared to traditional pattern recognition methods. It is believed that well
designed SVMs usually give more precise predication in classification problems.

Compared to other machine learning algorithms, SVMs also have several ad-
vantages. In most cases, when it refers to a criterion such as the classification
error, SVMs are more accurate than other learning methods such as KNN, Neural
networks. Under the convexity condition, SVMs won’t get stuck at some local
minima as some learning algorithms may have. Since we can cooperate all kinds
of kernel functions into the dual problem in SVMs, the range of applications that
can potentially solved by SVMs is large. In another word, theoretically we can
always specify the most appropriate kernel function to accompany some data
structures.

However, there are weaknesses in support vector machines. Although the plenty
choice of kernel function makes the model very flexible, it is usually quite diffi-
cult to find the most suitable kernel. The other problem is that if there are only
limited number of training examples too rich a hypothesis will lead to over fitting

37

and hence poor generalization. The third problem lies in the fact that when the
number of observations becomes too large, the large number of parameters in
SVMs (the Lagrangian multipliers) are chosen by tuning heuristics, making the
system difficult and unreliable to use. Usually the training of SVMs is relatively
slower than other machine learning algorithms since it has a large number of
parameters to optimize. Another notable disadvantage of SVMs which is com-
mon in all machine learning algorithms is frequently a lack of understanding the
learning models, thus make it difficult to do statistical inference. For instance,
non convincing interpretation of the support vectors in SVMs has been given.

38

Chapter 2

Methods of customizing kernels in
fitting SVMs

2.1 Linear combination of kernel functions

We know kernel functions are essential in fitting SVMs, however, no convincing
theorem has been given regarding what kind a kernel would be proper for a par-
ticular data structure. What we do know is the choice of a kernel corresponds to
the choosing of a similarity measure and the choosing of feature space, as a kernel
implicitly determines the feature space for learning.

We have already seen that strength and drawbacks both exist in those 4 widely
used kernel function in the simulated example (chapter 1). Since no kernel seems
to be universally better than the others, we might further think of linear combina-
tion of kernels. The motivation lies in the hope that a combined one can capture
the merits of the existed kernels while throw away the drawbacks.

We have already showed in chapter 1 that a linear combination of kernels with
non-negative coefficients is also a kernel. On the same training sample as illus-
trated in figure 1.8, we use the following two types of kernels to fit SVMs:

Kl−g(x, z) = βKlinear(x, z) + (1 − β)KGaussian(x, z)

Kl−p(x, z) = βKlinear(x, z) + (1 − β)KPoly(x, z)

Several β are tried to see how the mixture kernels behave. The results are illus-

39

−3 −2 −1 0 1 2

−
2

0
2

4

0.1

+
+

+

+

+
+
+

+

+

+

+

+
++

+ +
++ ++ + ++ +

+

+

+

+

++
+

+

++ +
+

+ ++

+

+
+

+

++
+ +

+

+

+

++
++ +

+

+
+

+
+

−3 −2 −1 0 1 2

−
2

0
2

4

0.3

+
+

+

+

+
+
+

+

+

+

+

+
++

+ +
++ ++ ++ +

+

+

+

+

++
+

+

++ +
+

+ ++

+

+
+

+

++
+ +

+

+

+

++
++ +

+

+
+

+
+

−3 −2 −1 0 1 2

−
2

0
2

4

0.7

+ +

+

+
+
+

+

+

++ +
++

+ +
++ ++ ++ +

+

+

+

+

+ ++
+

+

++ +
+

+ ++

+

+
+

+

++
+ +

+

+

+

++
++ +

+

+
+

+
+

−3 −2 −1 0 1 2

−
2

0
2

4

0.95

+ +

+
+

+
+
+

+
+

+

++
+

+ +
+

+
+

+ +
+ ++ ++ +

+

+

+

++
+

++ +
+

+ ++

+

+

+
+

+

++
+ +

+
+

+

+

++

+

++ +
+

+
+

+
+

Figure 2.1: An example of mixtures of linear and Gaussian kernels. The training sample
is the same as shown in figure 8 (two groups of Gaussian). The new kernels used are
linear combination of a linear kernel and Gaussian kernel: K = βKlinear + (1 − β)KGaussian,
β = 0.1, 0.3, 0.7, 0.95 respectively. We can see as β becomes larger, the classification
boundary behaves closely to a linear classifier.

40

−3 −2 −1 0 1 2

−
2

0
2

4

0.1

−3 −2 −1 0 1 2
−

2
0

2
4

0.3

−3 −2 −1 0 1 2

−
2

0
2

4

0.7

−3 −2 −1 0 1 2

−
2

0
2

4

0.95

Figure 2.2: An example of mixtures of linear and Polynomial kernels. The training sample
is the same as shown in figure 8 (two groups of Gaussian). The new kernels used are
linear combination of a linear kernel and Gaussian kernel: K = βKlinear+ (1−β)Kpolynomial,
β = 0.1, 0.3, 0.7, 0.95 respectively.

41

trated in figure 2.1 and 2.2. From the plots we can see that β becomes larger,
the classification boundary behaves closely to a linear classifier. When β = 0.9,
the classifier seems to perform better both at corners and middle of the plane,
catching both the merits of linear kernels and Gaussian kernels.

To further investigate why convex combination might be useful, let us look at the
new feature mapping function under combined kernel. Suppose

K(x, z) = βK1(x, z) + (1 − β)K2(x, z), β > 0

According to Mercer’s theorem, let K1,K2 have such representations:

K1(x, z) =
∞∑

i=1

φi(x)φi(z)

K2(x, z) =
∞∑

i=1

ψi(x)ψi(z)

Since we know as the convex combination of K1,K2, K(x, z) also has a similar
representation:

K(x, z) =
∞∑

i=1

ξi(x)ξi(z)

=

∞∑
i=1

[βφi(x)φi(z) + (1 − β)ψi(x)ψi(z)]

Let
ξi(x)ξi(z) = βφi(x)φi(z) + (1 − β)ψi(x)ψi(z)

Further, let x = z, we have at least one form of representation ξi(x) in terms of φ
and ψ:

ξi(x) =
√
βφi(x)2 + (1 − β)ψi(x)2 (2.1)

In order to visualize those features implicitly determined by various of kernel
functions, we did a simulation:
First of all, generate a one dimensional array with length 50 and range: [−4, 4],

42

denoted as x[i], i = 1, 2, ...50; Next, generate different kernel matrices with different
kernel functions. For a kernel function K, the corresponding kernel matrix is:

[Ki j] = K(x[i], x[j])

Note the kernel matrices are semi-positive definite. Thus we can use R to do
matrix decomposition to obtain the corresponding eigenvectors:

K=Ak Λ A

Where A[, j] = v j, j = 1, ..50 is the jth eigenvector and Λ is the diagonal matrix
with eigenvalues λi, i = 1, ...50. Further, K[i, j] can be expressed in the following
form:

K[i, j] =
50∑

k=1

λkvikv jk

So we can define the feature mapping to be: Φ : R1 → R50:

Φ(x[i]) = (
√
λ1vi1,

√
λ2vi2,

√
λ50vi50)t

And the kth element of Φ(x[i]) is:

φk(x[i]) =
√
λkvik

Because we have the following relation:

K[i, j] = K(x[i], x[j])

= 〈Φ(x[i]),Φ(x[j])〉

=

50∑
k=1

φk(x[i])φk(x[j])

At last, we can make plots of φk(x[i]) vs x[i], i = 1, 2, ...50. We only gives the first
6 element of the feature mapping Φ. Figure 2.3, 2.4, 2.5 and 2.6 give this kind of
plot.
Figure 2.3 shows the first 6th feature mapping of a gaussian kernel. We have
stated that the dimension of the feature space corresponding to a Gaussian kernel
is in fact infinite. What’s more, every element in the feature space defined by the
Gaussian kernel will have norm 1: Suppose Φ(x) = u, then:

‖u‖ = 〈Φ(x),Φ(x)〉 = K(x, x) = 1

43

−4 −2 0 2 4

0.
4

0.
6

0.
8

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

6
0.

0
0.

6

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

4
0.

0
0.

4

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

4
0.

0
0.

4

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

2
0.

0

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

15
0.

00
0.

15

dt

ph
i[,

 i]

Figure 2.3: A simulated experiment: The first 6 feature plots of Gaussian kernel: K(x, z) =
exp(−0.5|x − z|2)

−4 −2 0 2 4

−
4

0
4

dt

ph
i[,

 i]

−4 −2 0 2 4

−
1e

−
07

2e
−

07

dt

ph
i[,

 i]

−4 −2 0 2 4

0.
0e

+
00

2.
0e

−
07

dt

ph
i[,

 i]

−4 −2 0 2 4

−
2e

−
08

4e
−

08

dt

ph
i[,

 i]

−4 −2 0 2 4

−
2e

−
08

6e
−

08

dt

ph
i[,

 i]

−4 −2 0 2 4

−
4e

−
08

2e
−

08

dt

ph
i[,

 i]

Figure 2.4: A simulated experiment: The first 6 feature plot of Linear kernel: K(x, z) =
〈x, z〉

44

−4 −2 0 2 4

−
10

0
0

10
0

dt

ph
i[,

 i]

−4 −2 0 2 4

−
40

−
20

0

dt

ph
i[,

 i]

−4 −2 0 2 4

−
3

−
1

1
3

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

5
0.

5

dt

ph
i[,

 i]

−4 −2 0 2 4

−
1e

−
06

2e
−

06

dt

ph
i[,

 i]

−4 −2 0 2 4

−
5e

−
07

1e
−

06

dt

ph
i[,

 i]

Figure 2.5: A simulated experiment: The first 6 feature plot of Polynomial kernel:
K(x, z) = (〈x, z〉 + 1)3

−4 −2 0 2 4

−
1.

5
0.

0
1.

5

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

8
−

0.
5

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

4
0.

0
0.

4

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

4
0.

0
0.

4

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

2
0.

0

dt

ph
i[,

 i]

−4 −2 0 2 4

−
0.

15
0.

00
0.

15

dt

ph
i[,

 i]

Figure 2.6: A simulated experiment: The first 6 feature plot of combined kernel:
Kl−g(x, z) = 0.8Klinear(x, z) + 0.2KGaussian(x, z)

45

Further it can be shown that the feature mappings of a Gaussian kernel involves
sin(nx), cos(nx). As we can see from the plot that those functions behaves like sin
or cos functions.
Figure 2.4 shows the situation of a linear kernel. From the plot we can see that it
actually only has one feature φ1(x) = −x (the sign does not matter here). Figure
2.5 shows 4 features for a polynomial kernel with degree 3. The possible features
are combinations of the basis: {1, x, x2, x3}.

Figure 2.6 shows the first 6th feature plot of a kernel function which is a combi-
nation of a linear one and a Gaussian one:

Kl−g(x, z) = 0.8Klinear(x, z) + 0.2KGaussian(x, z)

If we denote the possible feature mappings for the Gaussian one as: φ1, φ2,,
and denote the mappings for the new kernel as ξ1, ξ2,, by (10) we have:

ξ1(x) =
√

0.8x2 + 0.2φ1(x)

ξi(x) =
√

0.2φi(x) i = 2, 3, 4,

Because all the other features in the linear case are 0s. As we can see from figure
2.6, the first has both linearity and non-linearity and the others look similar to the
Gaussian ones.
This also gives an interpretation of combining two kernel together: by combining
a Gaussian kernel to a linear kernel, we are essentially adding more Gaussian
features to the implicitly determined feature space. Some times the dominant
feature might be linear, but more features might be needed to give more accurate
classification.

2.2 Feature selection in designing kernels

Kernel matrices are essential in fitting SVMs. So it is important to customize
kernels in SVMs. When it refers to the design of kernel matrices, we have two
options. One is to try to decide what kind of kernel functions to use, for example,
linear, Gaussian, or combined, etc. We have discussed this a lot. The other option
is to decide which predictors to include in the model.

46

Just as we do feature selection in fitting linear models or fitting generalized lin-
ear models, sometimes it is quite helpful to do feature selection in fitting SVMs.
Because in some cases, due to the extremely large dimension of data sets, other
kernel functions rather than linear function might be too time and resource con-
suming when fitting SVMs. Thus in order to improve model accuracy, it might
be helpful to go the second option. And experiments have shown that feature
selection does improve the performance of SVMs. Particularly in microarray data
analysis using SVMs, feature selection is practised a lot. Zhang, et al. [21] gave
a good discussion of feature selection and proposed a recursive feature selection
method in fitting SVMs.

According to their method, a score criterion s j for the jth feature is defined to
evaluate each feature’s contribution to the classification model. Remember the
model assumption in linear SVMs is:

f (x) = wtx + b

If f (x) > 0 then a point x will be classified in class X+; otherwise it will be classified
in class X−. Suppose n1 is the number of samples of class X+ and n2 is the number
of samples of class X−. Let m+ denote the mean of class X+ and m− denote the
mean of class X−. It is reasonable to define such a total score of separation to
represent how well the data has been separated:

S =
1
n1

∑
x+∈X+

f (x+) − 1
n2

∑
x−∈X−

f (x−)

=
1
n1

(wt
∑

x+∈X+
x+ + n1b) − 1

n2
(wt
∑

x−∈X−
x− + n2b)

= wt[
1
n1

∑
x+∈X+

x+ − 1
n2

∑
x−∈X−

x−]

= wt[m+ −m−]

=

d∑
j=1

w j[m+j −m−j]

Where w = (w1,w2, ...,wd), m+j denote the jth element of m+ and m−j denote the jth
element of m−.

Further for the jth predictor, we can define its contribution to the separation as:

s j = wt
j [m+j −m−j]

47

If the total number of predictors are d, for a fitted model with all d predictors
included, we can rank their score s j:

s(1) ≥ s(2) ≥ s(3)... ≥ s(d)

Based on this ranking, feature selection can be done repeatedly eliminating the
predictors that ranks the last until an optimization goal is achieved. Detailed
algorithm of this recursive feature selection method can be found in the paper by
Zhang and et al. [21]

48

Chapter 3

Data Analysis

The following we are trying to apply the idea of combined kernel in SVMs to real
data analysis. We first give a detailed comparison on a chemical data between
SVMs with ordinary kernel functions and SVMs with combined kernel functions.
Next we display more experiments on several widely used data sets in the machine
learning literature.

3.1 A comparison between linear kernel, Gaussian
kernel and combined kernel on a chemical data

The data we are going to use is about drug discovery. The total number of
observations is 1280. There are two types of predictors in the data set: 480 binary
predictors and 6 continuous predictors. The outcome variable is binary with two
labels ”0” and ”1”. Table 3.1 shows the frequency table of the response variable
”y”:

class 0 1 total
frequency 1223 57 1280
percent% 95.5 4.5 100

Table 3.1: A frequency table on the chemical data

Judging from this table, we can see that the two classes are quite unbalanced.
One noticeable thing is the fact that this is a large n and small p data set: very

49

high dimension (p = 486) and relatively small n (1280). The other noticeable thing
is that the predictors are mixtures of binary variables and continuous variables.
Due to the particular structure of the predictors, a well designed kernel might
give good predictions.

3.1.1 SVMs with Gaussian Kernel on the chemical data

First, SVMs with the Gaussian kernel are tested. The R package used is ”e1071”
with the particular function ”svm”. There are two parameters that need to be
numerically tuned in SVMs with Gaussian kernels. One parameter is σ in the
kernel function:

K(x, z) = exp(−σ‖x − z‖2)

Note sometimes γ is used instead of σ. The other parameter C is the constant of
the regularization term in the Lagrange formulation.

min
(w,b,ξi)

1
2
‖w‖2 + C

l∑
i=1

ξi

In order to find out the best σ and C, two vectors ”gamma” and ”cost” are created
to represent those candidates. 10 Elements in ”gamma” correspond to candidates
for σ and 10 elements in ”cost” correspond to candidates for C. ”gamma” and
”cost” are chosen as

gamma = [0.0001, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.015, 0.02, 0.04, 0.08]

cost = [0.01, 0.1, 0.5, 1, 1.5, 2.5, 3.5, 5.5, 7.5, 10.5]

Those candidates are chosen around the default values. And the default values of
gamma and cost in the R function ”svm” are set to : gamma=1/[the data dimen-
sion]=1/487=0.00205, cost=1. Next we need experiments to determine the most
appropriate parameters for our models.

For every pair of elements in ”gamma” and ”cost”, we need to specify some train-
ing sets and testing sets to fit SVM models and make predictions. Because the
number of ”1”s is quite small (57), we use the following sample strategy:

50

Of all the 1223 ”0”s, we randomly choose half of them as the first part of the
training set, leaving the other half ”0”s as the first part of the test set. Of all the
57 ”1”s, we randomly choose half of them as the second part of the training set,
leaving the other half ”1”s as second part of the test set. The whole training and
test sets can be obtained after combining the first part and second part together.
So the number of observations in the training set is:

[1223/2] + [57/2] = 612 + 28 = 640

And the number of observations in the test set is:

(1233 − 612) + (57 − 28) = 640

For every pair of ”gamma” and ”cost”, we generate 5 pairs of training sets and
testing sets (every pair is a 640 training+ a 640 testing), then fit 5 models and make
5 predictions on the testing sets. Three types of errors are reported according to
the classification table (see table 3.2) of the predicted outcomes and the observed
outcomes.

0 (obs) 1 (obs)
0 (pred) a b
1 (pred) c d

Table 3.2: A typical classification table

The three types of errors are defined to be: CE=Classification error rate, FP=False
positive error rate, FN=False negative error rate, where

CE =
b + c

a + b + c + d

FP =
c

c + a

FN =
b

b + d
The average errors from the 5 models are recorded to three 10 × 10 matrices
representing those three types of errors. Contour plots are made to help us to
select the best γ (or σ) and ”cost”. See figure 3.1.

51

 Contour plot of classification error rate

gamma

co
st

1e−04 0.002 0.005 0.01

0.
01

0.
1

0.
5

1
2.

5
5.

5

 Contour plot of False Positive rate

gamma

co
st

1e−04 0.002 0.005 0.01

0.
01

0.
1

0.
5

1
2.

5
5.

5

 Contour plot of False Negative rate

gamma

co
st

1e−04 0.002 0.005 0.01

0.
01

0.
1

0.
5

1
2.

5
5.

5

Figure 3.1: Contour plots of three types of errors for the Gaussian kernel.

52

Judging from the contour plots, it seems that when σ and ”cost” are around the
default values (0.00205, 1), the overall performance of SVM on the three types of
errors is better than the other candidates. Finally we set

σ∗ = 0.002, cost∗ = 1

Furthermore, we generate 8 pairs of training sets and testing sets using the same
method described before, on which the Gaussian SVMs with σ∗ = 0.002, cost∗ = 1
is tested. Three types of errors using the tuned Gaussian kernels are shown in
table 3.3.
Further more, those 8 pairs of data sets will also be used in evaluating linear SVMs
and SVMs with combined kernels for comparison reasons. It should be noted that
here we are actually using the whole data set to do both parameter tuning and
model evaluation. This will tend to bias the model performance upwards. Ideally,
we should cut the whole data set into two parts: one part for parameter tuning
and the other one for model evaluation. One reason we did not conduct this is
that the number of ”1”s in the whole data set is rather small. If we split the data
into two pieces, the number of ”1”s in each piece will become even smaller and the
models would become unstable. The other reason is that our aim is to compare
the performance among SVMs with different kernels. Since the same strategy is
applied across all three SVMs with different kernels, we would expect uniform
biases with all three models. Thus the comparison will be still meaningful.

data — error CE FP FN
set 1 0.0734 0.0638 0.2759
set 2 0.0719 0.0573 0.3793
set 3 0.0781 0.0687 0.2759
set 4 0.0719 0.0622 0.2759
set 5 0.0734 0.0606 0.3448
set 6 0.0953 0.0835 0.3448
set 7 0.0656 0.0507 0.3793
set 8 0.0563 0.0442 0.3103
average 0.0732 0.0613 0.3232
standard error 0.0111 0.0118 0.0449

Table 3.3: Errors of tuned SVMs with Gaussian kernel on the chemical data

53

3.1.2 SVMs with Linear Kernel on the chemical data

Next, linear kernel SVMs are tested on the data set. The linear kernel function

K(x, z) = 〈x, z〉

does not involve parameters that need to be numerically tuned. However, like
the Gaussian kernel, there is still a ”cost” parameter C that needed to be tuned.
This C is is the constant of the regularization term in the Lagrange formulation.
Again, we need to choose some values as the candidates of the ”cost” parameter
C. We set the candidate ”cost” vector to be the same as the previous one in tuning
of the Gaussian SVMs:

cost = [0.01, 0.1, 0.5, 1, 1.5, 2.5, 3.5, 5.5, 7.5, 10.5]

We use the same strategy as above in determining the optimal ”cost” parameter:
For every single value of ”cost” parameter C j, j = 1, 2, ..10, we generate 10 pairs
of training set and testing set (Ai,Bi), i = 1, 2, ...10. Let Ai denote the training set,
and let Bi denote the testing set. Note the same sample generating method as
the Gaussian one is used. For every pair of (Ai,Bi), together with C j, we can fit a
model, make a predication and produce three types of errors. Next we record the
average errors as 3 vectors CE j,FP j,FN j, j = 1, ...10:

CE j =
1

10

10∑
i=1

CE(Ai,Bi,C j)

FP j =
1

10

10∑
i=1

FP(Ai,Bi,C j)

FN j =
1

10

10∑
i=1

FN(Ai,Bi,C j)

Making plots of CE,FP and FN versus the candidate ”cost” vectors will help us
find out that overall best ”cost” parameter C.
Judging from the figure 3.2, we can see that when C equals to the default value 1,
the three types of errors are controlled in a relatively low level. Thus we set the
optimal cost parameter in the linear kernel to be 1:

C∗ = 1

To further make a comparison, we use this tuned C∗ and fit 8 linear kernel SVMs
on the same 8 sets. The three types of error rates are listed in table 3.4.

54

0 2 4 6 8 10

0.
04

0
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

Classification Error

cost

C
E

0 2 4 6 8 10

0.
03

0.
04

0.
05

0.
06

False Positive

cost

F
P

0 2 4 6 8 10

0.
20

0.
25

0.
30

0.
35

0.
40

False Negative

cost

F
N

Figure 3.2: Errors vs cost for SVMs with linear kernel

55

data — error CE FP FN
set 1 0.0422 0.0262 0.3793
set 2 0.0391 0.0229 0.3793
set 3 0.0406 0.0295 0.2759
set 4 0.0422 0.0196 0.5172
set 5 0.0359 0.0180 0.4138
set 6 0.0375 0.0196 0.4138
set 7 0.0297 0.0033 0.5862
set 8 0.0391 0.0278 0.2759
average 0.0382 0.0208 0.4051
standard error 0.0041 0.0082 0.1071

Table 3.4: Errors of tuned SVMs with Linear kernel on the chemical data

3.1.3 SVMs with combination kernels on the chemical data

In the following, we are going to use a new kernel which is a convex combination
of a linear kernel and a Gaussian kernel. Note there are two different types of
predictors : 480 binary predictors and 6 continuous predictors. For the binary
part, we impose a linear kernel, and for the continuous part, we impose a Gaussian
kernel. The reason why we set kernels like this is that experiments showed that
Gaussian kernel works better on continuous predictors while linear kernel works
better on discrete predictors. Our new kernel is a convex combination of those
two parts (not just a combination of kernel functions, but a combination of two
different information source):

K(x, z) = βKl(x[1 : 480], z[1 : 480]) + (1 − β)KG(x[481 : 486], z[481 : 486])

0 ≤ β ≤ 1

where Kl denote the linear kernel and KG denote the Gaussian kernel:

Kl(u, v) = 〈u, v〉

KG(u, v) = exp[−σ‖u − v‖2]

For such a new kernel, there are 4 parameters that need to be numerically be
tuned: the cost parameter in the linear part Cl; the cost parameter in the Gaussian
part CG ; the ”gamma” parameter σG and the association parameter β. Tuning all

56

*
* * * * * * * *

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Experiment 1

beta

E
rr

or

* * * * * * * * *

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Experiment 2

beta

E
rr

or

* * * * * * * * *

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Experiment 3

beta

E
rr

or

* * * *
* * * * *

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Experiment 4

beta

E
rr

or

* * * * * * * * *

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Experiment 5

beta

E
rr

or

* * * * * * * * *

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Experiment 6

beta

E
rr

or

* * * * * * * *
*

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

Experiment 7

beta

E
rr

or

* * *
* * * * *

*

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Experiment 8

beta

E
rr

or

Figure 3.3: Averaged three types of error vs β from 8 experiments: Circles denote false
positive; large solid points denote false negative; small solid points denote five times of
classification error rate.

57

of those 4 parameters together turns out to be too time and resource consuming.
Thus, we set three of those 4 parameters to be the default value:

Cl = CG = 1

σG =
1

dimension
=

1
6
= 0.167

Then we are going to choose an optimal β from the following 9 values:

β = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Although we might not achieve a best prediction by only tuning β, later we are
going to show that a sub-optimal model with combined kernels are better than
single kernels on this chemical data.

We did 8 experiments : For each experiment, generating 10 pairs of samples (
training+testing); fix every single value of β, fitting 10 models, and record the
average errors. After that, making plots of beta versus errors.

Judging from figure 3.3, when β is in between 0.1 and 0.3, those three types of
errors are relatively low. Thus we set the optimal β to be 0.2:

β∗ = 0.2

Again, using this tuned β∗, we fit 8 models on the same 8 sample sets as the
Gaussian one and the linear one. The errors are reported in table 3.5:

data — error CE FP FN
set 1 0.0250 0.0098 0.3448
set 2 0.0297 0.0115 0.4138
set 3 0.0172 0.0065 0.2414
set 4 0.0187 0.0065 0.2759
set 5 0.0312 0.0131 0.4138
set 6 0.0266 0.0065 0.4483
set 7 0.0234 0.0065 0.3793
set 8 0.0187 0.0065 0.2759
average 0.0238 0.0083 0.3491
standard error 0.0053 0.0027 0.0770

Table 3.5: Errors of tuned SVMs with combined kernel on the chemical data

58

To further comparison the performance of those three models, we plot three box
plots according to three different types of errors. See figure 3.4. A summary of
the average errors can be found in the table 3.6.

error CE FP FN
Gaussian 0.0732 0.0613 0.3232
Linear 0.0382 0.0208 0.4051
Combined 0.0238 0.0083 0.3491

Table 3.6: Average Errors of SVMs with three different kernels on the chemical
data

Form this table, we can see that, compared to the linear one, the combined one
improves 37% on classification error, 60% on false positive rate, 14% on false neg-
ative rate; while compared to the Gaussian one, the combined one improves 67%
and 86% on classification error rate and false positive respectively, though it is 8%
worse on false negative. So we can conclude that the model with linear-Gaussian
combined kernel does give a good prediction on this chemical data.

It is also helpful to look at the number of support vectors of the three different
models on the 8 sample sets. A summary can be found in the table 3.7:

of SVs Gaussian Linear Combined
set 1 284 68 72
set 2 226 85 67
set 3 275 77 62
set 4 264 73 68
set 5 218 65 66
set 6 240 87 82
set 7 240 68 58
set 8 251 75 78
average 249.75 74.75 70.375
percent 39.02% 11.68% 11.00 %

Table 3.7: The number of support vectors of the 3 models on the chemical data

59

The average percent = the average number of support vector / 640 (the total
number of samples in the training set). Usually the lower this percent is, the
better the model will be. It should be noted that models with Gaussian kernels
often have larger number of support vectors. But the number of support vectors
in the combined case does not increase though Gaussian kernel are imposed on
part of predictors, which indicates the combined kernel is appropriate for this
chemical data.

3.2 More experiments using ordinary kernels and cus-
tomized kernels

The following we have done 3 more experiments on 3 different real data sets,
using both ordinary kernel functions and linear-Gaussian combined functions.
On every data set, we have done 7-folder cross validation to make comparisons.

Data description
SPAM E-mail Database:
Source: http://www.ics.uci.edu/mlearn/databases/spambase/
Number of Instances: 4601 (1813 Spam = 39.4%)
Number of Attributes: 58 (57 continuous, 1 nominal class label)
Model fitting: Fit 5 SVM models using kernels as Gaussian, Linear, Polynomial,
Sigmoid, and Linear-Gaussian combined kernel with β = 0.2. Parameters in the
kernels are set to be default. Using 7-folder cross validation.

Pima Indians Diabetes Database:
Source: http://www.ics.uci.edu/mlearn/databases/pima-indians-diabetes/
Number of Instances: 768(type 1 =268 34.9%)
Number of Attributes: 9(8 continuous, 1 nominal class label)
Model fitting: Fit 5 SVM models using kernels as Gaussian, Linear, Polynomial,
Sigmoid, and Linear-Gaussian combined kernel with β = 0.8. Parameters in the
kernels are set to be default. Using 7-folder cross validation.

Wisconsin Breast Cancer Database:
Source:http://www.ics.uci.edu/mlearn/databases/breast-cancer-wisconsin/

60

Combined Gausssian Linear

0.
02

0.
04

0.
06

0.
08

classification error rate

Combined Gausssian Linear

0.
02

0.
04

0.
06

0.
08

false positive error rate

Combined Gausssian Linear

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

false negative error rate

Figure 3.4: Box plots of the three types of errors on the 8 sample sets of the chemical data.
Three kernels are compared: linear kernel, the Gaussian kernel and the combined kernel.

61

Gaussian Linear Poly Sigmoid Beta=0.2

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

False Positive on the Spam data

Gaussian Linear Poly Sigmoid Beta=0.2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

False Negative on the Spam data

Gaussian Linear Poly Sigmoid Beta=0.2

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Classification error on the Spam data

Figure 3.5: 7-folder cross validated error rate on the Spam data

62

Gaussian Linear Poly Sigmoid Beta=0.8

0.
1

0.
2

0.
3

0.
4

False Positive on the Pima data

Gaussian Linear Poly Sigmoid Beta=0.8

0.
2

0.
3

0.
4

0.
5

False Negative on the Pima data

Gaussian Linear Poly Sigmoid Beta=0.8

0.
15

0.
20

0.
25

0.
30

0.
35

Classification error on the Pima data

Figure 3.6: 7-folder cross validated error rate on the Pima data

63

Gaussian Linear Poly Sigmoid Beta=0.3

0.
00

0.
02

0.
04

0.
06

0.
08

False Positive on the WBC data

Gaussian Linear Poly Sigmoid Beta=0.3

0.
00

0.
05

0.
10

0.
15

0.
20

False Negative on the WBC data

Gaussian Linear Poly Sigmoid Beta=0.3

0.
00

0.
02

0.
04

0.
06

0.
08

Classification error on the WBC data

Figure 3.7: 7-folder cross validated error rate on the WBC data

64

Number of Instances: 699 Benign:458(65.5%) Malignant: 241(34.5%)
Number of Attributes: 11(10 continuous, 1 nominal class label)
Model fitting: Fit 5 SVM models using kernels as Gaussian, Linear, Polynomial,
Sigmoid, and Linear-Gaussian combined kernel with β = 0.3. Parameters in the
kernels are set to be default. Using 7-folder cross validation.

Cross validated error Summary
Dataset Error Gaussian Linear Poly Sigmoid Combined

WBC
FP 0.049 0.043 0.026 0.051 0.053
FN 0.003 0.015 0.093 0.017 0.010
CE 0.031 0.031 0.053 0.037 0.037

Pima
FP 0.265 0.225 0.118 0.306 0.267
FN 0.279 0.288 0.464 0.307 0.231
CE 0.270 0.247 0.238 0.306 0.252

Spam
FP 0.067 0.078 0.044 0.092 0.093
FN 0.116 0.099 0.478 0.122 0.085
CE 0.086 0.087 0.214 0.104 0.090

Table 3.8: Error Summary using different kernels on 3 data sets

Table 3.8 is a summary of cross validated errors. Figure 3.5, 3.6 and 3.7 shows the
box plots of three types of errors according to different types of models. Judging
from the table and plots, we can see that although models with linear-Gaussian
combined kernel does not perform better than all the other ordinary kernels on
all 3 data sets, it does provide another option when people need to think about
what kind of kernels to use in their SVMs.

65

Chapter 4

Conclusion

The first objective of this thesis is to present a new method of designing kernels
in SVMs, explain how it can be done and try to interpret it. The second objective
is to compare the new technique to the existed techniques.

A review of SVMs was given in Chapter 1. From the simplest case–a linear max-
imal margin SVM, we went further to soft margin SVMs with kernels and SVM
regression. We also showed how to implement SVMs in R using the two packages
”e1071” and ”kernlab”.

In chapter 2, we discussed two solutions in customizing kernels when fitting
SVMs. One is to use convex combination of two existed kernels as new kernels in
SVMs. The other one is to exclude some predictors in the kernel functions when
computing kernel matrices. We call the second one as feature selection in SVMs.
For the method of combined kernels, we did some theoretical analysis based
on Mercer’s theorem [11]. We gave one possible form of feature mappings of a
combined kernel in terms of the feature mappings corresponding to the original
kernels. We also did an simulation study to try to interpret the feature mappings
of a combined kernel. For the second method, we described and explained the
recursive feature selection algorithm due to Zhang et al. [21]

We did a data analysis on a chemical data in chapter 3 to implement the method
of combined kernels. The predictors in the data have two types: 480 binary pre-
dictors and 6 continuous predictors. The combined kernel we used was a convex

66

combination of a linear kernel on the binary predictors and a Gaussian kernel
on the continuous predictors. We did cross validation to determine the associa-
tion parameter of two kernels. A comparison between this combined kernel and
single kernels like linear or Gaussian was also made. Judging from the results,
compared to a linear kernel, the linear-Gaussian combined kernel improves 37%
on classification error rate, 60% on false positive rate, and 14% on false negative
rate; while compared to the Gaussian one, the combined one improves 67% and
86% on classification error rate and false positive respectively, though it is 8%
worse on false negative rate.
Further we did three more data analysis on other three real data sets. Again, only
linear-Gaussian combined kernel was tried. We also made comparisons between
the combined ones and the single ones. Though no significant improvements on
error rates had been found by using the combined kernels, we did present a new
possible way to create kernels in SVMs.

For future work, the feature selection method discussed in chapter 2 can also be
implemented and compared with those SVMs where no feature selections have
been done. And we can practise both methods in one analysis: doing feature
selection first, then trying combined kernels.
In the data analysis part, we only tried linear-Gaussian combined kernel. It is
meaningful to see how other combined kernels behave, like linear-polynomial,
Gaussian-polynomial, and etc. Further more, a convex combination of more than
2 kernels might also be worth investigating. Finally, the methods in customizing
kernels can also be applied to SVM regression.

67

Bibliography

[1] M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of
the potential function method in pattern recognition learning. Automation
and Remote Control, 25:821–837, 1964.

[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the Acercan
Mathematical Society, 68:337–404, 1950.

[3] B.E.Boser, I.M.Guyon, and V.N.Vapnik. A training algotighm for optimal
margin classifiers. Proceedings of the 5th Annual ACM workshop on Computa-
tional Learning, pages 144–152, 1992.

[4] M. Brown and W.Grundy. Knowledge-based analysis of microarray gene
expression data using support vector machines. Technical report, 1999.

[5] C.Cortes and V. Vapnik. Support vector networks. Machine learning, 20:273–
297, 1995.

[6] N. Cristianini and J. Shawe-Taylor. Support Vector Machines and Other Kernel-
based learning methods. Cambridge University Press, 1999.

[7] F.W.Smith. Pattern classifier design by linear programming. IEEE Transactions
on Computers, 17:367–372, 1968.

[8] G.Wahba. Spline models for observational data. CBMS-NSF Regional confer-
ence series in Applied Mathematics, 59, 1990.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The Elemetns of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

[10] J.Weston and C. Herbrich. Support vector machines for multi-class pattern
recognition. Proceedings of the 6th European Symposium on Artificial Neural
Networks (ESANN), 1999.

68

[11] Jorgens Konrad. Linear integral operators. Pitman, 1982.

[12] K.P.Bennett and O.L. Mangasarian. Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Software,
1:23–34, 1992.

[13] O.L. Mangasarian. Linear and nonlinear separation of patterns by linear
programming. Operational Research, 13:444–452, 1965.

[14] R.O.Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

[15] B. Scholkopf, A. Smola, R. Williamson, and P. Barlett. New support vector
algorithms. Technical report, 1998.

[16] K. Shimizu, E. Aiyoshi, and R. Katayama. Generalized farkas’ theorem and
optimization of infinitely constrained problems. Journal of Optimization Theory
and Applications, 40(3):451–462, 1983.

[17] A. Smola, B. Scholkopf, and K. R. Muller. General cost functions for support
vector regression. Proc. of the Ninth Australian Conf. on Neural networks, pages
79–83, 1998.

[18] T.Poggio. and F.Girosi. Networks for approximation and learning. Proceed-
ings of the IEEE, 78(9), 1990.

[19] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

[20] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[21] X. Zhang and et al. Recursive svm feature selection and sample classification
for mass-spectrometry and microarray data. BMC Bioinformatics, 7:197–210,
2006.

69

	Text2:
	Text3: ii
	Text4: iii
	Text5: iv
	Text1: v

