
 

 

The Impact of NOD Reaction Kinetics on Treatment Efficiency 

by 

Laura Jean Jones 

 

 

A thesis 

presented to the University of Waterloo  

in fulfilment of the 

thesis requirement for the degree of 

Master of Applied Science  

in 

Civil Engineering 

 

 

Waterloo, Ontario, Canada, 2007 

© Laura J. Jones, 2007 



 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of this thesis, 
including any required final revisions, as accepted by my examiners. 
  
I understand that my thesis may be made electronically available to the public. 
 
 



 iii

Abstract 

In situ chemical oxidation (ISCO) with permanganate is a remedial technology that has been 

prevalent over the last decade.  Permanganate is injected into the subsurface to oxidized 

reduced organic contaminants with the intent of mineralizing the organics to innocuous 

compounds such as water, oxygen, and carbon dioxide. However, the demand for 

permanganate from the naturally occurring reduced components associated with aquifer 

materials inhibits the ability of permanganate to effectively oxidize the target contaminants.  

This demand for permanganate is referred to as the Natural Oxidant Demand (NOD) and 

results from the presence of naturally occurring reduced aquifer species such as inorganic 

species containing iron, manganese, or sulfur, and natural organic matter.  Traditionally, 

NOD has been considered to be an instantaneous sink for permanganate that required 

satisfaction before permanganate could propagate through the subsurface.  However, recent 

research has suggested that NOD is kinetically controlled and not instantaneous resulting in 

the effectiveness of ISCO systems to be underestimated using traditional approaches.  The 

objectives of this research were to develop a comprehensive NOD kinetic model from 

existing laboratory data of several aquifer materials, and then to use this model to estimate 

the impact of NOD kinetics on treatment efficiency. 

The NOD kinetic model primarily was developed using results of bench-scale experiments 

performed on four aquifer materials, measuring the reduction of permanganate and 

oxidizable materials.  Data analysis indicated that there are two bulk reactions occurring: a 

fast reaction and a slow reaction.  For both of these reactions a second-order rate law was 

deemed to be appropriate; first-order with respect to each reactant.  The slow reaction was 

subject to passivation and the reaction rate coefficient decreased hyperbolically as manganese 

oxide reaction by-products precipitated on grains.  The developed NOD kinetic model was 

incorporated into a 1-dimensional transport model and was used to successfully simulate the 

results of NOD column studies. 

Experimental efforts were completed to validate the 1-dimensional reactive transport model 

with data for organic contamination.  A column study was completed to characterize the 

oxidation of an isolated trichloroethylene residual source zone.  The chloride breakthrough 
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data were used to represent the rate of TCE oxidation and a bromide tracer test was used as a 

conservative tracer to determine the dispersivity and porosity of the column.  Both the 

simulated bromide and chloride breakthrough curves fit the experimental data well using 

published and calculated transport and chemical parameters.  

The impact of NOD kinetics on treatment efficiency was evaluated through numerical 

simulations of four common organic contaminants using two injection schemes: vertical well 

flushing and inject-and-leave.  The treatment efficiency was defined as the fraction of 

supplied permanganate used to oxidize the organic compound.  Two aquifer materials were 

simulated representing a wide range of NOD characteristics.  The results indicated that 

despite a great difference in the ultimate NOD (order of 15) the treatment efficiency only 

varied by 0-7% between the materials.  In general, the treatment efficiency of the 

contaminant increased as the solubility and the reaction rate coefficient increased. 

For treatment of organic compounds with a low solubility and reaction rate coefficient, the 

fast and slow NOD reaction kinetics should both be characterized since both exert a strong 

demand for permanganate in both the vertical flushing and inject-and-leave schemes.  For 

organic compounds having moderate solubility and reaction rate coefficient the NOD species 

that require kinetic characterization depends on the injection scheme used: for a vertical well 

flushing scheme only the fast NOD requires characterization, whereas for the inject-and-

leave scheme both the fast and slow NOD require characterization.  For treatment of organic 

compounds with high solubility and reaction rate coefficient only the fast NOD requires 

characterization since the organic and fast NOD are depleted at the same time and the slow 

NOD does not play a significant role in permanganate consumption while free phase organic 

and fast NOD remain. 

Traditional modelling approaches were compared, using the vertical well flushing scheme, to 

compare the treatment efficiency with the NOD kinetic model to past methods.  The model 

was used to simulate ISCO treatment when NOD kinetics were not included and when the 

ultimate NOD was assumed.  The simulations with no NOD term overestimated the treatment 

efficiency whereas the simulations with the ultimate NOD model underestimated efficiency.  

These findings further stressed the importance of the NOD kinetics on treatment efficiency. 
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The kinetics of the NOD kinetics must be characterized to determine if ISCO is a viable, 

cost-effective treatment option when considering ISCO as a redial strategy.  

Mischaracterization of these reactions could result in either over or underestimation of the 

treatment efficiency and poor design of pilot and full-scale treatment systems. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

In Situ Chemical Oxidation (ISCO) is a remedial technology that has been proven 

effective at treating residual source zones of contamination (USEPA, 2006; ITRC, 2005).  

ISCO involves the injection of a chemical oxidant into the subsurface to treat 

contaminated soils and groundwater, producing potentially innocuous by-products such 

as carbon dioxide, oxygen, and water (ITRC, 2005). ISCO source zone treatment, as well 

as other in situ techniques, is an appealing remediation technology since it eliminates the 

need to handle wastes above ground surface or offsite.  ISCO reduces the source zone 

contaminant mass by lowering the concentration of aqueous phase contaminants which 

increases the concentration gradient, thereby increasing the rate of mass transfer (Schnarr 

et al., 1998).  Four oxidants have been used with success in ISCO: permanganate, 

persulfate, Fenton’s reagent (i.e., iron catalyzed hydrogen peroxide), and ozone (ITRC, 

2005; Siegrist et al., 2001; Schnarr et al., 1998). One of these four oxidants, 

permanganate, is often chosen due to its stability, ability to react with a wide range of 

contaminants, and relatively low cost.   

Permanganate (MnO4
-) is a common oxidant that has been used in the waste water 

industry for several decades (Weber, 1972), and the overall reaction with an organic 

compound can be expressed as 

 OX224 RCOMnOMnOR ++⎯→⎯+ − k  (1-1) 

where R is the organic compound, k is the reaction rate, MnO2 is manganese dioxide – a 

reaction by-product, and Rox is an intermediate organic by-product that maybe further 

oxidized in the presence of permanganate (Stewart, 1965).  In some cases, the 

intermediate organic by-products may not reach full mineralization; the possibility of 

toxic by-products being formed is possible (ITRC, 2005).  Waldemer and Tratnyek 

(2006) studied the permanganate oxidation kinetics of 24 common groundwater organic 

contaminants in the aqueous phase, covering three classes of contaminants, and found 
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that the reactions were first-order with respect to both permanganate and the contaminant.  

These findings supported results from other researchers who found that the reaction 

between permanganate and aqueous phase organics was first-order with respect to both 

reactants (Forsey 2004; Hunkler et al., 2003; Poulson and Naraoka, 2002; Hood et al., 

2000; Huang et al., 2001; Siegrist et al., 2001; Yan and Schwartz, 2000; Yan and 

Schwartz, 1999; Huang et al., 1999).  The reaction rate coefficients for contaminants 

range from 7.00E-06 M-1s-1 for stable contaminants that resist reaction with 

permanganate such as benzene, to  2.37E+02 M-1s-1 for highly reactive contaminants like 

p-cresol (Waldemer and Tratnyek, 2006).  If a constant concentration of 5 g/L KMnO4 is 

assumed, these rates correspond to a half-life that ranges from less than 0.1 seconds for p-

cresol to over 3.5 days for benzene. 

While reaction rate coefficients and half lives are important factors in determining 

whether permanganate ISCO will be effective at a site, there are other concerns that must 

be addressed. Two main concerns that may limit the effectiveness of permanganate ISCO 

at some contaminated sites are: the formation of manganese oxide precipitates as a 

reaction by-product (Crimi and Siegrist, 2004; Li and Schwartz, 2004; Conrad et al., 

2002; Huang et al., 2002; Lamarche, 2002; Reitsma and Randhawa, 2002; Siegrist et al., 

2002; Li and Schwartz, 2000), and the interaction of permanganate with the natural 

aquifer material (Mumford et al., 2005; Hood, 2000; Schnarr et al., 1998; Barcelona and 

Holm, 1991). 

1.1.1 Precipitate Formation 

As illustrated in equation 1-1, the oxidation of reduced species by permanganate results 

in the formation of manganese oxides, commonly assumed to be manganese dioxide 

(MnO2) (Stewart, 1965).  Li and Schwartz (2004) investigated the nature of the oxidation 

by- products formed during TCE oxidation in a batch reactor (with no aquifer material) 

using X-ray diffraction.  They discovered that minerals other than MnO2 were formed 

during the oxidation; however, all manganese by-products formed were insoluble and 

therefore could cause reduced porosity and inhibit mass transfer. 
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The impacts of by-product solids being formed during permanganate ISCO has been 

noted in studies involving 1-D column tests, 2-D sandbox studies, and field sites which 

have encountered resistance, due to reduced porosity, during permanganate injection (i.e., 

experiencing increased headloss or requiring a greater head to be able to supply 

permanganate to the source zone) (Crimi and Siegrist, 2004; Li and Schwartz, 2004; 

Conrad et al., 2002; Huang et al., 2002; Lamarche, 2002; Reitsma and Randhawa, 2002; 

Siegrist et al., 2002; Li and Schwartz, 2000).  This phenomenon has been attributed to 

clogging of the pore space and well screens by manganese oxides. 

Huang et al. (2002) used tracer tests before and after permanganate treatment in columns 

to estimate a porosity reduction of 20%.  Reitsma and Randhawa (2002) conducted 

several column studies, in which, hydraulic conductivity was measured over time as each 

column was flushed with PCE (20 mg/L) and permanganate (4 g/L KMnO4).  The authors 

found that the hydraulic conductivity of the aquifer material decreased by a factor of 5-10 

over 48 hours and eventually encountered complete plugging after 120-150 hours.  

Conrad et al. (2002) used a 2-D sandbox to visualize the formation of manganese oxides 

during permanganate oxidation of TCE.  Their results indicated that formation of 

manganese oxides may not inhibit the ISCO processes during treatment of a residual 

source zone; however, they observed the formation of a “rind” surrounding TCE pool 

source zones resulting in incomplete oxidation of TCE.  This finding is supported by 

MacKinnon and Thomson (2002) who completed a 2-D MnO4
- treatment of a PCE pool. 

They found that although a mass flux of PCE leaving the system decreased over time, 

there was still some pooled PCE present.  They further suggested that MnO2 deposition at 

the PCE interface resulted in a decrease in mass transfer and lower concentrations of 

PCE.  However, MacKinnon and Thomson (2002) did demonstrate that over all, ISCO 

significantly enhanced the mass transfer rate from a pooled source zone relative to a 

water flush. 

Further to the physical effects of precipitates on the source zone (i.e., plugging and pore 

space reduction and mass transfer impacts), some studies have also suggested that MnO2 
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precipitates will act as a catalyst for the auto decomposition of permanganate (Huang et 

al., 1999) which can lead to a small long-term demand for permanganate. 

Attempts are currently underway to model the mass transfer of contaminants from the 

pure phase to the aqueous phase in the presence of permanganate (Brown and Gupta, 

submitted; Urynowicz and Siegrist, 2005).  Urynowicz and Siegrist used micro-

extraction/reaction vessels with TCE to measure the rate of dissolution of TCE in the 

presence of permanganate under static and mixed conditions.  They found that dissolution 

was greater in the static reactor than in the mixed reactor and presented a simple model 

for the dissolution of TCE.  However, it is unclear how this dissolution model would 

perform when adapted into a reactive transport model.  Brown and Gupta (submitted) 

investigated the mass transfer of BTEX and naphthalene from coal tar into an aqueous 

solution containing permanganate.  At a concentration of 0.5 g/L KMnO4, the mass 

transfer coefficients were unchanged from reactors containing no permanganate; 

however, when the concentration of permanganate was increased to 1.0 g/L KMnO4, 

significant reductions in mass transfer were observed.  The reduction in mass transfer 

with 1.0 g/L KMnO4 could not be quantified due to experimental complications. 

The presence of manganese oxide by-products has been shown to limit mass transfer of 

free phase contaminants, particularly when NAPL pools are present; however, this 

phenomenon could have a positive side.  Adventus Group of Freeport, Illinois, is 

marketing the reduced mass transfer and porosity as a treatment option they have named 

In Situ Biogeochemical Stabilization (ISBS) 

(www.adventusgroup.com/products/isbs.shtml, 2007).  ISBS involves the injection of 

permanganate at high concentrations to build a rind of manganese oxides surrounding a 

pooled NAPL source zone slowing and eventually preventing mass transfer of 

contaminants.  To date there is no evidence to support that this process is possible to 

achieve at the field scale. 
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1.1.2 Natural Oxidant Demand 

Early ISCO experiments by Schnarr et al. (1998) observed that more permanganate was 

required to fully oxidize an emplaced TCE source zone than was required based on the 

stochiometry of the redox reaction.  This finding resulted in the hypothesis that the 

aquifer material was being oxidized in conjunction with the contaminant.  Barcelona and 

Holm (1991) also reported that “the oxidation-reduction capacities of aquifer solids 

represent(ed) obstacles to effective in situ treatment of subsurface contamination by 

chemical or microbial means”.    

Permanganate consumption by uncontaminated aquifer solids is called the natural oxidant 

demand (NOD) and is defined as the unwanted consumption of permanganate by 

naturally occurring organic material and reduced minerals associated with aquifer solids.  

The additional demand results in a competition for the injected permanganate between 

the aquifer solids and the target contaminants.  To estimate NOD consumption, Hood 

(2000) performed column experiments on several sandy aquifer materials and used mass 

balance considerations to determine the mass of permanganate consumed by each 

material.  His results showed that there was a poor correlation between the permanganate 

demand of an aquifer material and the natural organic matter present.  Hood’s results may 

have been compromised by one material with a mid-range organic matter content 

exhibiting a high oxidant demand that appears to be an outlier.  Xu (2006) estimated the 

NOD of several aquifer materials and found that the NOD was highly correlated to the 

natural organic matter (NOM). 

NOD is typically determined though batch experiments measuring the reduction in 

permanganate over time and mimics the experimental method of typical biochemical 

oxygen demand tests (BOD – measures the total reductive capacity of waste waters) 

(Mumford et al., 2004; Mumford et al., 2002; Xu et al., 2004).  Long-term batch 

experiments are used to determine an ultimate NOD; however, they fail to fully 

characterize the reaction kinetics.   
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The traditional conceptual model for the NOD reaction is to assume a simple reaction 

between the aquifer solids and permanganate which is represented by an instantaneous 

sink of permanganate equal to the ultimate NOD (Zhang and Schwartz, 2000).  Recent 

work by Xu et al. (2004) and Mumford et al. (2005) have indicated that NOD is 

kinetically controlled and the NOD properties (i.e., reaction rates and concentration of the 

reduced species) vary widely between aquifer materials.  

Xu (2006) conducted a series of bench-scale column experiments focusing on NOD 

reactions of uncontaminated materials from several sandy aquifers across North America.  

The column breakthrough curves showed evidence of multiple reactions.  Initially 

permanganate breakthrough was delayed by 0.26 to 1.19 pore volumes relative to a 

conservative tracer; the delay was deemed to represent a fast reaction.  The tail of the 

permanganate breakthrough curve failed to reach the inlet concentration after several 

pore volumes of permanganate were flushed through the column indicating the presence 

of a slow reacting species.  Other researchers have also made similar hypotheses about 

multiple reactions contributing to NOD (Mumford et al., 2005). 

1.1.2.1 Nature of Reductive Species 

Barcelona and Holm (1991) attributed the reduction capacity of sandy aquifer material to 

two main components, NOM and reduced inorganic species containing manganese, 

sulphur, and iron.  Other researchers have compared the reduction capacity to the aquifer 

material geochemistry and reached similar conclusions with regard to which reduced 

species contributed to high reduction capacities (Hartog et al., 2002; Christensen et al., 

2000; Appelo and Postma, 1996; Heron et al., 1994).  Xu et al. (2004) studied the 

geochemistry of 10 sandy aquifer materials and determined that the main reduced 

components in the aquifers were organic carbon and inorganic species containing reduced 

iron, indicating that manganese and sulphur did not play a large role in the oxidant 

demand.  Mumford (2002) suggested that the inorganic species associated with aquifer 

solids would react quickly with permanganate while the organic matter would react at a 

much slower rate; these findings were supported by the results observed by Xu et al. 

(2004).  Results from Barcelona and Holm (1991) indicate that organic carbon in the 
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aquifer solids represents a significant percent of the reduced species in the aquifer.  Xu et 

al. (2004) also found significant fractions of organic carbon in several aquifer materials 

exhibiting high NOD.   

Organic carbon can be present in aquifers in several forms: biogenic carbon 

(undecomposed plant matter), humic substances (altered/decomposed plant matter), 

bitumen/kerogen (geologically aged organics), and black carbon (combustion by-

products) (Allen-King et al., 2002; Gustafsson et al., 2001).  Biogenic carbon, such as 

plant roots, represents only a small faction of the total organic matter in aquifers.  An 

example cited by Allen-King et al. (2002) stated that biogenic carbon in grassland soil 

was roughly 20 times less than the humic carbon present.  Humic substance/humus is 

defined by Sposito (1989) as the organic matter that is not identified as unaltered/partially 

altered biomass (such as plant parts or identified biochemicals).  Allen King et al. (2002) 

stated that humic substances are polymeric compounds that are produced from biogenic 

compounds which have been microbial degraded.  Swift (1996) presented three main 

fractions in humic substances: fulvic acids, humic acids and humins.  These fractions 

vary based on their ability to precipitate in acids/dissolve in bases, molecular weight, and 

structure.  Humic substances have been identified as the most prevalent form of organic 

matter in surface soils (Sposito, 1989).  Kerogen/bitumen are organic geopolymers that 

result from changes to biogenic material over a long period of time when exposed to high 

temperatures and pressures (Allen-King et al. 2002).  Kerogen and bitumen are frequently 

not included when considering the Normal Soil Organic Matter (NSOM) which generally 

includes only bitumen and humus (Allen-King et al., 2002).  Black carbon is the term that 

includes combustion by-products such as soot and chars (Gustafsson et al., 2001).  Black 

carbon is not always considered to be organic matter, but is included in measurement of 

the fraction of organic carbon (foc) in aquifer materials (Allen-King et al., 2002).  The 

composition of the organic matter in soils varies significantly from site to site; however, 

Allen-King et al. (2002) suggested that humic substances make up the majority of organic 

carbon in most aquifers with possibly large fractions of black carbon or kerogen and 

bitumen depending on the site. 
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Several reactions have been proposed as surrogate reactions for the organic portion of 

NOD.  Barcelona and Holm (1991) proposed using phthalic acid as a surrogate for the 

organic carbon present in the aquifer.  Phthalic acid contains carbon and oxygen in the 

aromatic ring structure and closely matches the structure of many humics found in the 

subsurface (Barcelona and Holm, 1991).  The reaction between phthalic acid and 

permanganate is 

)s(MnO10CO8OH8H10MnO10OHC 2224468 ++→++ +−  (1-2) 

Mumford et al. (2005) proposed the use of a simple carbohydrate to obtain the 

stochiometry between organic carbon and permanganate, as given by 

)s(MnO4CO3OH4OHMnO4OCH3 22242 +++→+ −−   (1-3) 

However, at the end of the 14-week batch experiments exposing aquifer material from 

CFB Borden to permanganate, only 60-90% of the organic carbon remained (Mumford et 

al., 2005).  Based on these findings, the authors suggested that significant over-estimation 

of the NOD would occur if it was assumed that all organic carbon in the aquifer material 

is oxidized by permanganate. 

Reduced inorganic minerals, specifically those containing iron, manganese, or sulfur, can 

also contribute to the NOD of the aquifer materials.  The stochiometric ratio between 

permanganate and reduced minerals varies significantly between different inorganic 

species.  These ratios could be used to estimate the amount of permanganate each mineral 

would consume during oxidation if the geochemistry of the aquifer material is known.  

For example, the oxidation of siderite, pyrite, and rhodochrosite by permanganate 

respectively are given by 

)s(MnOHCO3)s()OH(Fe3H2OH7MnO)s)(CO(Fe3 233243 +++→++ −+−  (1-4) 

)s(MnO14SO6)s()OH(Fe3H2OH2MnO14)s(FeS3 2
2
42242 ++→+++ −+−  (1-5) 

)s(MnO5HCO3HOH2MnO2MnCO3 23243 ++→++ −+−  (1-6) 
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Xu (2006) summarized the inorganic reduced species in aquifer materials and focusing on 

iron, manganese, and sulfur.  Iron is the most abundant transition metal in the earths 

crust, occurring in two valence states (i.e., ferrous Fe(II) and ferric Fe(III)).  Reduced 

iron (ferrous) minerals are thought to be the most significant inorganic species 

contributing to NOD.  In aquifer systems the most common ferrous minerals are siderite, 

amorphous ferrous sulphide, mackinawite, and pyrite (ferrous).  Several oxidation states 

exist for manganese; however, of these states, the ones with the most impact on the redox 

chemistry of aquifer soils are Mn(II), Mn(III) and Mn(IV) (Appelo and Postma, 1996).  

Mn(IV), the most stable of these oxidation states, is present in aquifer materials as 

pyrolusite, birnessite, and vernadite (Xu, 2006).  Mn(II) commonly exists in carbonates 

such as rhodochrosite or as an insoluble ion in acidic aquifers (Xu, 2006).  Mn(III) is 

often found in oxides and oxyhydroxides such as manganite, bixbyite, and hausmannite 

(Xu, 2006).  Sulfur also plays an important role in redox chemistry as it exists in aquifers 

minerals containing sulphate (e.g. gypsum) and sulphide (e.g. mackinawite, pyrite and 

marcasite) and as elemental sulphur (Xu, 2006).  The most common sulphur containing 

minerals that affect groundwater chemistry are gypsum and pyrite (Hartog, 2003; 

Christensen et al., 2000; Appelo and Postma, 1996). 

1.1.3 Existing NOD Kinetic Models 

Various mathematical models have been developed to simulate the subsurface processes 

occurring during in situ chemical oxidation (Mumford, 2002; Reitsma and Dai, 2001; 

Hood and Thomson, 2000; Zhang and Schwartz, 2000), and could be used during site 

screening to determine if ISCO is an effective treatment option given the site 

characteristics and contaminant properties.  However, to date, no defendable model has 

been developed which accurately captures the complex NOD reaction kinetics taking 

place during ISCO treatment.  The kinetics are necessary to determine the impact of 

NOD on the treatment efficiency during site screening and remedial design.  Historical 

methods of modelling the NOD as an instantaneous sink of permanganate would 

significantly underestimate the treatment efficiency, since the NOD had to be satisfied 

before permanganate can be propagated through the domain.  However, excluding NOD 
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from the model would significantly overestimate the efficiency since an important sink 

for permanganate would not be included. 

1.2 Research Objective 

The ability of permanganate to treat a contaminant of concern depends on several 

conditions, most notably whether the permanganate is being used efficiently to reduce the 

mass of contaminants in the subsurface rather than being consumed by the inherent 

demand from the aquifer material (NOD).  The objective of this research is to determine 

the role that NOD kinetics play in ISCO treatment efficiency where competition for 

permanganate arises between the aquifer material and dissolved phase organics. 

The research objective was completed by: 

1. Developing a defendable NOD kinetic model based on the experimental data 

compiled by Xu (2006); 

2. Developing a one-dimensional multi-component reactive transport model capable 

of simulating the governing physical and chemical processes (mass transfer, 

sorption, target contaminant reaction, NOD reaction, and free phase mass 

destruction); 

3. Conducting a representative column experiment so that the data can be used to 

validate (Schnoor, 1996) the developed model; and 

4. Using the NOD kinetic model in conjunction with the reactive transport model to 

simulate scenarios that examine the treatment efficiency of permanganate during 

representative in situ chemical oxidation applications. 

1.3 Thesis Scope 

Chapter 2 provides details of batch and column experiments completed by Xu (2006), 

and develops the NOD kinetic model.  Chapter 3 presents the background and findings 

from the representative column experiments performed on the treatment a TCE source 
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zone.  Generated data is used to benchmark the mathematical model.  Chapter 4 examines 

the implications of NOD kinetics on treatment efficiency by using the one-dimensional 

transport model to simulate the permanganate treatment of several common contaminants 

using two common injection schemes.  Chapter 5 presents the conclusions and 

summarizes recommendations for future study. 
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CHAPTER 2: DEVELOPMENT OF THE NOD KINETIC MODEL 

2.1 Theoretical Considerations 

As discussed in Chapter 1, organic carbon and inorganic species are the main reducants 

that contribute to permanganate consumption and therefore the permanganate rate law 

could be written as  

 

  

 

(2-1) 

 

 

where −
4MnO

C , NOM
iC , inorganic

jC , and 
2MnOC  represent the concentration of permanganate, 

the concentration of the ith component of the natural organic matter, the concentration of 

jth inorganic component, and the concentration of manganese dioxide; NOM
ik , inorganic

jk and 

2MnOk are the reaction rate coefficients associated with the NOM, inorganic species, and 

the manganese dioxide; and α and β are the respective reaction orders. However, for Eq. 

(2-1) to be useful in a predictive sense, the concentration, rate coefficient, and reaction 

order for each reductant must be known.  An alternative to Eq. (2-1) is to consider the 

overall heterogeneous reaction between the bulk oxidizable aquifer matter (OAM) and 

permanganate which may be written as 

 

(2-2) 

 

where p and q are stochiometric coefficients.  The term “bulk OAM” refers to all 

significant non-target reductants associated with the aquifer materials as discussed in 

Section 1.2 and includes organic carbon, and minerals containing S(-II), Mn(+II), and 

Fe(+II).   Associated with Eq. (2-2) are the following general rate law expressions:  

 

   (2-3a) 
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where OAM
bulkk  and 

−
4MnO

bulkk  is the bulk reaction rate coefficient with respect to the bulk 

OAM and permanganate; α and β are the overall reaction order with respect to 

permanganate and the OAM; and OAMC and −
4MnOC  are the concentrations of the bulk 

OAM (mass/system volume) and permanganate (mass/volume of solution).  To evaluate 

the reaction kinetics associated with Eq. (2-3) from an experimental perspective, it is 

customary to hold one of the reactants constant or in excess to observe changes in the 

other reactant (Levenspiel, 1999).  Once the experimental program has been executed, the 

experimental data are then analysed to determine suitable reaction rate coefficients and 

reaction orders that honour the experimental data.  The purpose of this chapter is to 

present an overview of the experimental findings reported by Xu (2006), and then to use 

these data to develop a NOD kinetic model that can be used in groundwater flow and 

transport modelling applications to adequately represent the interaction between 

permanganate and aquifer materials. 

2.2 Experimental Methods and Results 

Xu (2006) performed short-term batch experiments that were designed to yield kinetic 

data that describe the behaviour of permanganate in the presence of various aquifer 

materials, and column experiments which were used to investigate permanganate 

transport in a system that mimics the subsurface environment.   

Aquifer Materials: Xu (2006) obtained nine aquifer materials from eight sites across 

North America, but only the following aquifer materials are relevant to this study: 

material from the sand pit at Canadian Forces Base (CFB) Borden, material from the East 

Gate Disposal Yard (EGDY) in Washington State, and two materials from Launch 

Complex 34 in Cape Canaveral Florida (denoted here as the Lower Sand Unit (LC34-

LSU) and the Upper Sand Unit (LC34-USU)) (Table 2.1).  Based on a visual inspection 
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and grain size analysis, these aquifer materials were predominantly sand; however, the 

EGDY aquifer material was heterogeneous and contained large cobbles.  Xu (2006) 

contains details on material handling and preparation.  Relevant physical and chemical 

properties of these four aquifer materials are summarized in Table 2.2 (Xu, 2006).   

To quantify the overall reactivity of the naturally-occurring reductants Xu (2006) used 

the acidified dichromate chemical oxygen demand method consistent with previous 

efforts to quantify the reductive capacity of aquifer solids (Lee and Batchelor, 2003; 

Korom, 1996; Pedersen et al., 1991; Barcelona and Holm, 1991, and Powell et al., 1988).  

Since a fraction of the complex natural organic matter, and various crystalline and 

amorphous inorganic components present in aquifer materials may be recalcitrant to 

permanganate (Christensen et al., 2000; Evanko and Dzomak, 1998; Blair et al., 1995) 

the use of the dichromate COD test to estimate permanganate consumption will lead to 

significant overestimation.  To overcome this potential overestimation, Xu and Thomson 

(2007) extended the permanganate COD test used in water and wastewater applications to 

test aquifer solids since the ultimate permanganate consumption rather than dichromate 

demand by aquifer materials is of interest in permanganate ISCO applications.  Both the 

dichromate and permanganate COD test results are presented in Table 2.3 and indicate 

that the permanganate COD values were less than the dichromate COD test results for all 

aquifer materials except for the LC34-USU solids.  This outlier is presumed to be due to 

experimental variability.  Assuming that the difference between the dichromate and 

permanganate COD test results are reflective of the fraction of the total reductive 

capacity that is recalcitrant to oxidation by permanganate, then between 35 and 100% of 

the dichromate COD value can be considered reactive.  

2.2.1 Batch Experiments 

Following the method of excess, two series of experiments were conducted by Xu (2006): 

(1) an excess permanganate experiment which allows Eq. (2-3a) to be reduced to 

(2-4a) βαβ )()()()()(
4

OAMobs
OAM
bulkMnOOAM

OAM
bulk

OAM CkCCk
dt

Cd
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and (2) an excess aquifer material experiment which allows Eq. (2.3b) to be replaced by  

(2-4b) 

where obs
OAM
bulkk )( , and obs

MnO
bulkk )( 4

−

are the observed bulk reaction rate coefficient with respect 

to the OAM and permanganate. 

Excess Aquifer Material Mass Kinetic Experiments: The mass of aquifer material used in 

these experiments was determined so that the permanganate mass employed would be at 

least ten times less than the ultimate permanganate consumption as estimated from the 

long-term NOD experiments performed by Xu (2006) and the permanganate COD tests 

(Table 2.3).  Each experimental run consisted of loading ~100 g of aquifer material in the 

reactor and then adding the permanganate solution (0.06 – 2.5 g/L).  Table 2.4 lists the 

aquifer material mass, solution volume, and permanganate concentration used for each 

experimental run.  All KMnO4 solutions were prepared by heating at 80oC for ~1 hour, 

and then filtering the cooled solution through a 0.45-μm glass fibre filter (Pall Corp.).  A 

phosphate buffer (sodium phosphate dibasic at 10 mM) was added to the permanganate 

solution to maintain a neutral pH (~7.2).  At specified reaction times (nominally 2, 5, 10, 

20, 40, 70, 120, and 180 min) an aliquot (~2 mL) of the permanganate solution was 

extracted from the reactor with a syringe (LUER-LOK, Becton & Dickinson), and filtered 

through a 0.45 μm syringe filter (Acradisc, Pall Corp.).  The permanganate concentration 

was quantified with a spectrophotometer (Milton Roy, 20D) at 525 nm.  All experiments 

were performed in duplicate using 300 mL reactor vessels in conjunction with a 3.2 cm 

stir bar placed on a stir plate.  The data collected from these experiments are shown in 

Figure 2.1 where each data point represents the average from the duplicate experimental 

runs and hence no error bars are shown.  In this figure, the five sets of data represent the 

five experiments in which different initial concentrations of permanganate were used for 

each material.  These data indicate that permanganate consumption by a given aquifer 

material is a function of the initial permanganate concentration and that consumption 

slows significantly over the course of the experiment.  This trend is especially evident for 
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totalaqOAM VmCODC /=

the EGDY aquifer material where the initial decrease in permanganate concentration is 

much higher than that observed later in the experiment. 

Excess Permanganate Mass Kinetic Experiments:  In these experimental runs two to three 

masses of aquifer material (10 to 25 g) from each site were loaded into a reactor followed 

by the addition of a specified volume (between 100 to 150 mL) of a permanganate 

solution with a concentration of 20 g/L.  After a specified reaction duration (nominally 5, 

15, 30, and 60 min) the experimental run was quickly terminated by filtering the slurry 

through a 6-μm filter paper (Whatman, VWR Lab) and rinsing the material retained on 

the filter with Milli-Q water until only a faint pink color persisted.  The solid material 

remained on the filter paper was then transferred to aluminum trays, dried at 80oC for 24 

hours, and ground in a porcelain mortar to pass through a 150-μm sieve.  Aliquots of the 

ground aquifer material were then submitted for dichromate COD analyses to capture 

changes in the overall reductive capacity.  Table 2.5 lists the aquifer material mass, 

solution volume, and permanganate concentration used for each experimental run.  The 

results from the COD test were used to represent the concentration of the bulk oxidizable 

aquifer material ( OAMC ) as estimated from 

(2-5) 

where COD is the dichromate COD test result expressed as g-KMnO4/kg of dry aquifer 

material, maq is the mass of dry aquifer material, and Vtotal is the total system volume 

(solution and aquifer material); hence the units for OAMC  are g-KMnO4/L.  Data 

generated from these kinetic experiments indicate that the differing mass of aquifer 

materials had little impact on the measured COD thus an average value was taken for 

each time point.  Thus, each data point on Figure 2.2 is the average of six or nine COD 

values and the error bars indicate the standard deviation.  All data points in Figure 2.2 

cannot be fit using a traditional first-order or second-order fit, since that the COD value 

dropped quickly during the first 5 min, indicative of a fast reaction, followed by a 

relatively slow decrease over the next 1 to 2 hours.  Unfortunately the first sampling 

episode was at 5 min and therefore lack of data at a resolution <5 min is a concern. 
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2.2.2 Column Experiments 

Column experiments are generally considered to be more representative of in-situ 

conditions than short-term batch experiments since they provide more realistic aquifer 

material contact.  Thus, a series of permanganate column experiments were designed to 

complement and expand the findings of the batch experiments.   

A typical column was constructed from a 40-cm long section of nominal 3.81 cm (1.5-

inch) diameter transparent Plexiglas pipe equipped with four equally spaced sampling 

ports.  Due to the high NOD associated with the EGDY aquifer materials as indicated 

from the batch test results, columns for this material were constructed from 12-cm long 

sections of nominal 2.54 cm (1-inch) diameter Schedule 40 PVC pipe to minimize 

experimental time.  Permanganate source solutions were prepared by adding analytical 

grade KMnO4 (EM Science) to Milli-Q water and boiling for ~1 hour.  The cooled 

solution was filtered (0.45-μm glass fibre, Pall Corporation) and standardized by titration 

into a sulphuric acid and sodium oxalate solution (APHA, 1998). 

To avoid problems associated with dry packing, homogenized aquifer material was wet 

with Milli-Q water to near saturation before use.  Each column was packed in three 

stages: (1) the bottom 1.0 cm of the column (0.3 cm for the EGDY columns) was filled 

with 0.59 to 0.84 mm diameter glass beads (Potters Industries Ltd.) on top of which a thin 

layer of glass wool (Pyrex, VWR) was placed; (2) the next 38 cm (or 10 cm for the 

EGDY columns) was packed with aquifer material in 1 to 2 cm lifts compacted using a 1 

cm diameter glass rod with the column attached to vertical vibrating rod; and (3) the top 

of the packed aquifer material was fitted with a 500-mm stainless steel screen, then filled 

with 0.59 to 0.84 mm diameter glass beads (Potters Industries Ltd.) and topped with a 

thin layer of glass wool (Pyrex, VWR).  Both the bottom and top tubing couplers were 

fitted with a 500-mm stainless steel screen to prevent solids from escaping. Control 

columns filled exclusively with clean 0.59 to 0.84 mm diameter glass beads (Potters 

Industries Ltd.) were used to validate the experimental set-up and quantify 

apparatus/permanganate interactions.  
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Each column was operated in a continuous up-flow mode using a peristaltic pump (Cole-

Parmer Instrument Co., Model No. 7553-80, 1-100 RPM, size 14 tubing) to control the 

rate of inflow, and a constant hydraulic head applied at the effluent end.  Column 

experiments for each aquifer material were conducted in duplicate. 

Table 2.6 summarizes the various column experiments performed.  Prior to each 

experiment, the column was flushed with Milli-Q water until a stable flow rate was 

achieved (this process took about 1 to 5 hours).  For a typical experiment trial the column 

was flushed with the permanganate source solution until sufficient permanganate 

breakthrough was observed, then flushed with Milli-Q water until no permanganate was 

detected (or no pink color appeared) in the effluent, and then flushed again with the same 

source solution until sufficient permanganate breakthrough was observed.  The purpose 

of the second flush was to investigate the breakthrough behaviour of permanganate in a 

system that was previously exposed to permanganate.  At designed times, samples (with a 

typical volume of 0.2 to 0.5 mL) were taken and used to quantify permanganate 

concentration by spectrophotometry (Milton Roy Company, Spectronic 20D) at 525 nm 

with a method detection limit of 1.3 mg/L.   

Tracer tests using sodium bromide solution  (Fischer Scientific) at a constant 

concentration ranging from 50 to 100 mg/L were conducted to compare the tracer and 

permanganate breakthrough curves, as well as to evaluate hydrodynamic properties 

(porosity and dispersivity) of each aquifer material packed column.  Bromide 

concentrations were determined by ion chromatography (IC) (Dionex AS4A-SC 4mm x 

250 mm column; 1.8 mM sodium carbonate, 1.7 mM sodium bicarbonate eluate; 1.5 

mL/min flow rate) with a MDL of 1.2 mg/L. 

The breakthrough of permanganate and bromide (Br-) obtained from the duplicate 

columns at identical sampling times were normalized to the source concentration and 

averaged.  The resulting breakthrough curves are shown in Figure 2.3.  In general for all 

cases, the arrival of permanganate was delayed with respect to Br-.  After breakthrough, 

the permanganate concentration increased towards the source concentration, but showed 

extensive tailing and in all aquifer materials never reached the source concentration.  This 
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incomplete breakthrough (C/Co <1.0) occurred despite several pore volumes (PVs) being 

flushed through various columns.  This observation suggests that a slow reaction between 

the aquifer material and permanganate was still occurring at the end of each experimental 

run and is consistent with observations from the long-term batch tests in which 

measurable permanganate consumption was observed for >200 days for most aquifer 

materials (Xu, 2006).  All column tests showed a delay in permanganate breakthrough 

relative to Br- indicative of a fast reaction at the time scale of these observations. 

 

2.3 Kinetic Model 

Data presented in Figure 2.2 clearly indicate that the COD test value dropped quickly 

during the first 5 min followed by a relatively slow decrease over the next 1 to 2 hours.  

For all materials, the decrease in the dichromate COD ranged from 0.98 to 8.4 g 

KMnO4/kg (10 to 30% of the initial COD value) over the first 5 min, and from 0.84 to 6.8 

g KMnO4/kg over the next 55 min, implying some “very fast” and “intensive OAM-

consuming” reactions took place over the first 5 minutes.  The average observed COD 

consumption rate decreased by an order of magnitude from the first 5 min (0.5 g 

KMnO4/kg/min) to the next 55 minutes (0.04 g KMnO4/kg/min).  Unfortunately, the 

elapsed reaction time prior to the first sampling episode was 5 min and therefore the 

reaction rates occurring over a time frame less than 5 min could not be resolved.   

Based on these observations and the data in Table 2.3, it was assumed that the bulk 

concentration of OAM can be represented by a fast, slow and non-reactive component as 

expressed by  

(2-6) 

with  

(2-7) 
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where total
OAMC is the total concentration of OAM as captured by the dichromate COD test 

on unoxidized aquifer solids (expressed in terms of an equivalent mass of KMnO4 per 

volume of system), fast
OAMC is the fraction of COD attributed to the fast reaction (COD 

decrease over the first 5 min), slow
OAMC is the fraction of the COD attributed to the slow 

reaction (the remaining COD available for reaction with permanganate),  reactivenon
OAMC − is the 

fraction of the COD that was non-reactive with permanganate as estimated from the 

difference between the dichromate and permanganate COD values, and ρb is the bulk 

density.  Table 2.7 lists the concentration of each component for the aquifer materials 

investigated.  

Supported by observations from the batch and column experiments, and the clear 

presence of a fast and slow reacting OAM, the following overall kinetic model was 

assumed sufficient to capture the observed NOD behaviour 

 

 

 

(2-8) 

 

 

where −
4MnO

C  is the permanganate concentration (mass of permanganate per volume of 

solution); fast
OAMk  and slow

OAMk is the fast and slow OAM reaction rate coefficient (units 

depend on reaction orders); fast
MnO

k −
4

 and slow
MnO

k −
4

 is the fast and slow permanganate reaction 

rate coefficient (units depend on reaction orders); fastα  and slowα  is the reaction order 

associated with the concentration of the fast and slow reacting OAM; and fastβ  and slowβ  

is the reaction order associated with the permanganate concentration. 
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The slow OAM reaction rate coefficient and order where estimated using the integral 

method (Levenspiel, 1999) with the followed rate expression  

 

(2-9) 

 

where obs
slow
OAMk )(  is the observed slow OAM reaction rate coefficient.  Using the excess 

permanganate data (Figure 2.2) and ignoring the data at t = 0 the remaining data were 

well represented (r2 > 0.86) by a first-order kinetic model ( slowα  = 1) with the observed 

rate coefficients obs
slow
OAMk )( for each aquifer material ranging from 0.0016 to 0.0059 min-1 

(Table 2.8).   

 

Given the presence of a fast reacting OAM component identified above, the inherent 

assumption in the excess aquifer material experiments is clearly violated and hence the 

data shown in Figure 2.1 need to be separated into: permanganate consumption 

associated with the fast reacting OAM, and permanganate consumption associated with 

the slow reacting OAM.  Since there was no clear point (that could be visually observed) 

where the reaction rate shifted from fast to slow, the data were fit using the polynomial fit 

method (Folger, 1999) and displayed in terms of permanganate consumption rate as a 

function of the mass of permanganate consumed.  Specifically each experimental series 

was fit with a least-squares method to the double-exponential function given by  

(2-10) 

where A, B, a, and b are fitting parameters.  Figure 2.4 shows the results of this fitting 

effort.  For each experimental series, Eq. (2-10) was differentiated to estimate the 

permanganate consumption rate and plotted as a function of cumulative mass consumed 

(Figure 2.5).  The profiles in Figure 2.5 for each aquifer material clearly show a shift in 

reaction rate (as indicated by the vertical line) after a critical mass of permanganate, 

denoted as crit
MnO

M −
4

, had been consumed.  This critical mass of permanganate consumed 

which varied between 0.007 and 0.07 g KMnO4/kg is presumed to be related to 
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satisfaction of the fast reacting OAM.  Small fluctuations in the timing of the reaction 

rate shift between the different experimental series for an aquifer material are assumed to 

be the result of experimental variability.  For some experimental series the permanganate 

mass is completely consumed prior to reaching crit
MnO

M −
4

 (e.g., those experimental series 

involving an initial low concentration of permanganate such as the 0.5 g/L series for the 

EGDY aquifer material).  Additionally, the materials which are completely consumed 

before the shift in reaction rate can be discerned have a slower initial reaction rate due to 

the rate being limited by the concentration of permanganate available.  Assuming that the 

experimental data after crit
MnO

M −
4

 are representative of the slow permanganate reaction 

where the concentration of the slow reacting OAM ( slow
OAMC ) is in excess, then the 

following holds  

 

(2-11) 

 

where obs
slow
MnO

k )(
4
−  is the observed slow permanganate reaction rate coefficient.  The 

integral method was used in conjunction with Eq. (2-11) to estimate the observed reaction 

rate coefficient and order of the slow permanganate reaction.  The slow permanganate 

reaction was found to be first-order with respect to permanganate (βslow = 1), and in 

general the coefficient of variation was >0.80 with some notable exceptions.  Table 2.7 

lists the first-order reaction rate coefficients for each experimental series for the four 

aquifer material investigated.  Poor goodness-of-fit was obtained for 5 of the 20 

experimental series and was presumed to be due to few (three) data points used.  In 

general the reaction rate coefficients consistently decreased as the initial permanganate 

concentration for each experimental series increased (e.g., obs
slow
MnO

k )(
4
−  deceased from 

2.11E-01 to 1.04E-02 min-1 as the permanganate concentration increased from 0.06 to 0.6 

g/L for the LC34-USU aquifer material).  The one exception to this observation was the 

0.4 and 0.5 g/L experiment series for the Borden material which, for unknown reasons, 

had essentially the same reaction rate coefficient.  
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Since there was insufficient data <5 min to determine the fast OAM reaction from the 

excess permanganate data and the initial portion of the excess aquifer material data are 

compromised due to the depletion of the fast OAM it was assumed that the reaction order 

associated with the fast reactions was second-order overall (i.e., first-order with respect to 

each reactant and hence fastα  = 1 and fastβ  = 1).  Other models may have fit the data 

equally; however, they were not investigated during this research.  This assumption 

yields the following modified NOD kinetic model  

 

 

 

 

(2-12) 

 

 

 

 

and fastγ  and slowγ  is the stochiometric mass ratio between permanganate and the fast and 

slow OAM (mass OAM/mass KMnO4).  

To estimate the remaining kinetic parameters ( fast
OAMk , fast

MnO4
k − , fastγ  and slowγ ) for each 

aquifer material the kinetic model Eq. (2-12) was solved using a fourth-order Runge-

Kutta integration scheme coupled with a least-squares parameter estimation algorithm.  
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Table 2.10 lists the optimal fast reaction rate coefficients along with their respective 

confidence intervals and Figure 2.6 and 2.7 show the model comparison to the observed 

data.  The fit on these figures is excellent in almost all scenarios.  In Figure 2.6 the fast 

OAM depletes in much less than 5 minutes for all materials.  Since the reaction rate 

coefficient was similar for the 0.4 g/L and 0.5 g/L batch reactors in the Borden excess 

aquifer material experiments, only one reactor was included in the model.  The 0.3 g/L fit 

of the Borden material deviates slightly from the experimental results for the last two data 

points.  The stochiometric mass ratio for the fast reacting components are < 1 for all 

materials and are lower than the typical range of 6 to 20 cited in the literature (Mumford 

et al., 2005).  It is presumed that these low mass ratios are due to the fast reactions which 

have not been adequately characterized previously.  The mass ratio for the slow reaction 

slowγ  varies between individual experimental series for each aquifer material since a 

different slow
MnO4

k −  was determined for each permanganate concentration.   The use of the 

slow permanganate reaction rate coefficients (Tables 2.8 and 2.9) to determine these 

remaining kinetic parameters ensured that they were optimal; however, this limits the 

portability of this developed model since a different slow permanganate reaction rate 

coefficient is required for each experiment series or initial concentration.  While a kinetic 

model like this is suitable for the analysis of batch reactor data, its utility for use in 

transport modelling is severely restricted.  As previously mentioned the slow 

permanganate reaction rate coefficients for each aquifer material decreased as the initial 

permanganate concentration was increased, and supported by experimental evidence (Xu, 

2006) this decrease was hypothesized to be due to precipitation of manganese oxides.  

These oxides have been shown to cover individual grains presumably associated with 

reaction sites and this solid phase will negatively affect the rate of reaction between the 

solids and permanganate due to increased diffusional resistance.  

This hypothesis is similar to the catalyst deactivation process due to aging, fouling or 

poisoning observed in chemical engineered packed-bed reactors, and as catalysts are 

deactivated the rate of the reaction decreases (Folger, 1999).  Similarly, this implies that 

the slow reaction coefficient decreases as manganese oxide by-products are formed, and 

hence we assumed that 
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(2-13) 

where f is some decay function and formedMnO2  is the mass of permanganate consumed 

per mass of aquifer material.  To determine if there was quantitative evidence of 

passivation, the following four functional decay relationships (linear, exponential, 

hyperbolic and a modified hyperbolic) were explored:  

(2-14a) 

 

(2-14b) 

 

(2-14c) 

 

(2-14d) 

where a, b, and/or c are fitting parameters.  Using the fast reaction rate coefficients and 

stochiometric mass ratio ratios for each aquifer material (Table 2.10), each functional 

decay relationship was implemented and the overall least-squares best fit value (for all 

four aquifer material) was determined.  The best fit was obtained with the hyperbolic 

decay function (Eq.2.14c), and the optimal values and confidence intervals for a and b are 

listed in Table 2.11.  Figures 2.8 and 2.9 illustrate the kinetic model fits for each aquifer 

material.  The fits obtained in Figures 2.8 and 2.9 do not fit the data as well as those 

previously given in Figure 2.6 and 2.7, however, the changes to the model reflect the 

fouling of the reaction surface and allow it to be used for simulating column experiments.  

These changes also make the model more robust as the reaction rate coefficient is not 

dependent on the initial mass of permanganate in the system. 

The resulting two component kinetic model with passivation was adapted into the one-

dimensional reactive transport model developed to simulate the in situ oxidation of a 

contaminant source zone (Appendix B).  This model was used to simulate the column 
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experiments described in Section 2.2.2.  The bromide tracer curve was used to determine 

the dispersivity and porosity of each aquifer material packed column.  The porosity was 

determined by the time at which 50% of the bromide broke through in the column 

effluent.  After the porosity was known, the dispersivity was estimated by altering the 

dispersivity in the transport model until a good fit to the experimental data was obtained.  

The porosity and dispersivity results are presented in Table 2.12.  

The first attempt to fit the permanganate breakthrough showed that the curve obtained by 

the proposed batch model was the correct shape, but did not perfectly match the 

laboratory data (overestimated permanganate consumption in the column).  Subsequently, 

the model was adjusted by making small changes to the a and b parameters until a good 

fit to the permanganate breakthrough data was obtained (Figure 2.9).  The model fit the 

data fairly well for materials with a high NOD (i.e., EGDY and LC34-LSU); however, 

the tail was not perfectly captured in the materials with a lower oxidant demand (i.e., 

Borden and LC34-USU).  For both of these materials, the tail in the model fit is slightly 

lower than the experimental data and represents more permanganate reacting with the 

aquifer material than is actually occurring.  Table 2.13 contains a summary of the kinetic 

parameters used for each aquifer material.  
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Table 2.1: General site information. 

Sample ID Sample Location Soil Texture Depositional Environment

Borden
Grownwater Field 

Laboratory, CFB Borden 
Ontario

fine/medium 
sand

Late Wisconsinian Period/ deposited in a 
prograded beach environment/ 

glaciolacustrine sand/ unconfined aquifer
0.9 4.21E-04 3.0-4.5

EDGY East Gate Disposal Yard, 
Fort Lewis, WA

loamy sand, 
gravel cobbles

Vashon glacial drift deposit/ recessional 
outwash 5.5 2.24E-03 - 

1.6E-01 5.5-7.6

LC34-LSU Launch Complex 34, 
Cape Canaveral AFS, FL

loamy coarse/ 
medium sand

Pleistocene and recent seashore 
erosional deposits 1.8 1.82E-04 - 

8.97E-04 9.7-13.6

LC34-USU Launch Complex 34, 
Cape Canaveral AFS, FL

loamy coarse/ 
medium sand

Pleistocene and recent seashore 
erosional deposits 1.8 1.82E-04 - 

8.97E-04 3.0-8.2

Depth to 
Water     

(m bgs)

Sample Depth 
(m bgs)

K      
(cm/s)

 

 

Table 2.2: Relevant physical and chemical characteristics of aquifer materials. 
Characteristic Borden EDGY LC34-LSU LC34-USU
grain size:

% gravel 0.2 73.62 4.01 0.9
% sand 89.7 21.22 83.84 91.96
% clay & silt 10.1 5.16 12.16 7.15
% < 2 mm 99.4 18.3 86.55 95.25
d60 (mm) 0.2 22.75 0.49 0.25
d30 (mm) 0.15 6.3 0.13 0.15
d10 (mm) 0.075 0.45 0.065 0.085
hydraulic conductivity (cm/s)1 0.0056 0.203 0.004 0.007
coefficient of uniformity 2.67 50.56 7.54 2.94
coefficient of gradation 1.5 3.88 0.53 1.06

specific gravity (g/mL) 2.71 2.67 2.71 2.69
pH (-) 8.4 7.2 8.6 8.8
bulk surface area (m2/g) 4.155 3.121 2.16 1.919
cation exchange capacity (cmol(+)/kg) 3.5 8.4 12.8 8.3
% total carbon (g/g) 1.58 0.3 4.15 3.15
total organic carbon (g/g): < 2 mm - 0.228 0.184 0.0878
% total organic carbon (g/g): bulk 0.024 0.17 0.074 0.039
Fe (amorphous) (mg/g) 0.297 1.189 0.504 0.407
% total sulphur (g/g)2 0.02 -4 -4 -4 

bulk mineralology3 quartz guartz quartz quartz
plagioclase feldspar calcite calcite

calcite (plagioclase) aragonite aragonite
trace trace trace

magnetite & feldspars feldspars
ilmenite

notes:
1. Estimated by the Hazen Equation
2. MDL 0.01%
3. No Fe or Mn minerals detected
4. Data not collected  
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Table 2.3: Dichromate and permanganate COD tests from Xu (2006). 

Site ID Avg Stdev Avg Stdev
Borden 10.21 ± 0.43 3.52 ± 0.85
EGDY 54.48 ± 1.25 32.58 ± 0.69
LC34 LSU 30.19 ± 0.41 13.36 ± 0.48
LC34 USU 11.09 ± 0.32 11.32 ± 1.32
1) Average and standard deviation based on data from 5 
tests of each aquifer material.
2) Units of g KMnO4/kg dry aquifer material

Dichromate-COD1, 2 Permanganate COD1,2

 

 

Table 2.4: Excess aquifer material experimental parameters from Xu(2006). 
Aquifer Material Mass Solution Volume Concentration

Site ID (g) (mL) ( g KMnO4/L)
Borden 100 100 0.1, 0.2, 0.3, 0.4, 0.5
EDGY 80 100 0.5, 1.0, 1.5, 2.0, 2.5

LC34-LSU 100 100 0.4, 0.6, 0.8, 1.0, 1.2
LC34-USU 100 100 0.06, 0.2, 0.4, 0.6, 0.8  

 

Table 2.5: Excess oxidant experimental parameters from Xu(2006). 
Concentration Solution Volume Aquifer Mass

Site ID (g KMnO4/L) (mL) (g)
Borden 20 130 15, 20
EDGY 20 150 15, 20, 25

LC34-LSU 20 150 15, 25
LC34-USU 20 150 10, 20  

 

Table 2.6: Relevant column parameters from Xu(2006). 

K Flow Rate
Mass of 
Material

Flush 
Duration

Sampling location - 
distance from inlet

Site ID (g/L) (mL/min) (g) (hrs) (cm)
Borden 5.17 0.84 710 8.6 20, 38
EDGY 4.94 0.3 100 23.5 10

LC34-LSU 4.93 0.83 620 36 20, 38
LC34-USU 4.95 0.77 720 10 20, 38  
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Table 2.7: Fractionation of COD 
CODfast CODslow CODnon-reactive

Site ID
Borden 0.98 0.84 6.69
EDGY 8.43 6.82 21.90

LC34-LSU 3.02 4 16.83
LC34-USU 1.22 0.89 01

1) LC34-USU Permanganate COD> Dichromate
COD therefore non-reactive fraction assumed to
 be zero

(g KMnO4/kg dry aquifer material)

 

 

Table 2.8: OAM slow reaction rates. 

Site ID
Borden 1.6E-03 ± 1.9E-03 0.86 7.8E-05 ± 9.4E-05
EDGY 3.2E-03 ± 5.3E-04 0.99 1.6E-04 ± 2.7E-05

LC34-LSU 2.8E-03 ± 1.7E-03 0.96 1.4E-04 ± 8.3E-05
LC34-USU 1.8E-03 ± 1.9E-03 0.89 9.0E-05 ± 9.6E-05

r2kobs

(min-1) (L g KMnO4
-1 min-1)

s low
OAMk

 
 

Table 2.9: MnO4
- slow reaction rate coefficients. 

Concentration
Site ID (g KMnO4/L)

0.1 1.35E-01 ± 1.12E-02 0.91 3.01E-02 ± 7.56E-02
0.2 8.72E-02 ± 3.51E-03 0.59 7.54E-03 ± 2.37E-02
0.3 1.18E-01 ± 2.67E-04 0.79 3.22E-03 ± 1.80E-03
0.4 1.29E-01 ± 6.35E-05 0.87 1.59E-03 ± 4.29E-04
0.5 9.75E-02 ± 2.58E-04 0.66 2.24E-03 ± 1.74E-03
0.5 3.21E-04 ± 1.23E-03 0.78 9.13E-03 ± 3.50E-02
1.0 1.96E-04 ± 4.90E-04 0.80 5.57E-03 ± 1.39E-02
1.5 9.35E-05 ± 5.62E-05 0.93 2.66E-03 ± 1.60E-03
2.0 6.20E-05 ± 1.64E-05 0.98 1.76E-03 ± 4.67E-04
2.5 4.48E-05 ± 4.59E-06 0.99 1.28E-03 ± 1.31E-04
0.4 2.37E-04 1.88E-04 0.84 6.74E-03 ± 5.34E-03
0.6 1.14E-04 ± 3.71E-04 0.73 3.26E-03 ± 1.06E-02
0.8 6.08E-05 ± 6.16E-05 0.53 1.73E-03 ± 1.75E-03
1.0 3.58E-05 ± 1.06E-05 0.96 1.02E-03 ± 3.02E-04
1.2 2.16E-05 ± 9.27E-06 0.87 6.15E-04 ± 2.64E-04
0.06 3.89E-03 ± 2.73E-03 0.84 2.87E-02 ± 2.01E-02
0.2 6.84E-04 ± 7.54E-04 0.70 5.04E-03 ± 5.56E-03
0.4 2.45E-04 ± 1.11E-04 0.81 1.81E-03 ± 8.18E-04
0.6 1.92E-04 ± 8.40E-05 0.81 1.41E-03 ± 6.19E-04
0.8 9.27E-05 ± 8.40E-05 0.87 6.83E-04 ± 6.19E-04

(L g OAM-1 min-1)
r2

EDGY

LC34-LSU

LC34-USU

kobs

(min-1)

Borden

slow
MnO 4

k −
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Table 2.10: Fast reaction rate coefficients for the OAM and permanganate. 

Site ID
Borden 2.24E-01 ± 6.00E-02 2.04E+00 ± 6.93E-01 0.15 ± 0.12
EDGY 2.02E-02 ± 4.91E-03 1.94E-01 ± 6.01E-02 0.14 ± 0.11
LC34-LSU 6.27E-02 ± 2.66E-02 3.76E-01 ± 1.97E-01 0.22 ± 0.18
LC34-USU 4.39E-02 ± 1.17E-02 2.83E-01 ± 9.42E-02 0.21 ± 0.16

g MnO4
-/g OAM

γfast

(L g KMnO4
-1 min-1) (L g OAM-1 min-1)

fast
OAMk f ast

MnO f
k −

 
 

Table 2.11: Hyperbolic decay fitting parameters and stochiometric ratio of the slow 
OAM reaction. 

Site ID (g MnO2
-1)

Borden 0.0653 ± 0.0953 57700 ± 6300 7.15 ± 0.32
EDGY 0.0036 ± 0.0010 23 ± 9 3.87 ± 0.85
LC34-LSU 0.0056 ± 0.0025 10100 ± 1500 6.40 ± 0.52
LC34-USU 0.0046 ± 0.0012 11000 ± 1300 8.50 ± 0.31

a b γslow

(L g OAM-1 min-1) g MnO4
-/g OAM

 
 

Table 2.12: Physical properties of the aquifer packed columns. 
porosity dispersivity

Site ID (-) (m)
Borden 0.39 0.0010
EDGY 0.33 0.0077
LC34-LSU 0.34 0.0020
LC34-USU 0.35 0.0003  

 

Table 2.13: Final kinetic parameters derived for each aquifer material. 

a b γslow

Site ID (L g KMnO4
-1 min-1) (L g OAM-1 min-1) (L g OAM-1 min-1) (g MnO2

-1) g MnO4
-/g OAM

Borden 2.24E-01 2.04E+00 0.0100 60000 7.15
EDGY 2.02E-02 1.94E-01 0.0080 100 3.87
LC34-LSU 6.27E-02 3.76E-01 0.0006 12000 6.40
LC34-USU 4.39E-02 2.83E-01 0.0040 12500 8.50

fast
OAMk f ast

MnO f
k −
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Figure 2.1: Results of the excess aquifer materials experiment in which the 

degradation of permanganate was measured over time in batch reactors.  (a) CFB 
Borden, (b) EGDY, (c) LC34 LSU, and (d) LC34 USU. 
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Figure 2.2: Results from the excess oxidant short term batch experiment for (a) CFB 

Borden, (b) EGDY, (c) LC34 LSU, and (d) LC34 USU. 
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Figure 2.3: Results of the column breakthrough experiments for (a) CFB Borden, 

(b) EGDY, (c) LC34 LSU, and (d) LC34 USU. 
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Figure 2.4: Results from the excess aquifer material with and fit with Eq. (2-10) (a) 

Borden, (b) EGDY, (c) LC34 LSU, and (d) LC34 USU. 
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Figure 2.5: Illustration in the change in reaction rate after a set mass of 

permanganate had been removed from the system for (a) CFB Borden, (b) EGDY, 
(c) LC34 LSU, and (d) LC34 USU. 
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Figure 2.6: Kinetic model fit to observed excess oxidant data (a) CFB Borden, (b) 

EGDY, (c) LC34-LSU, and (d) LC34-USU. 
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Figure 2.7: Kinetic model fit to observed excess OAM data (a) Borden (b) EGDY, (c) 

LC34-LSU, and (d) LC34-USU. 
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Figure 2.8: Kinetic model fit to observed excess oxidant data incorporating 
passivation (a) CFB Borden, (b) EGDY, (c) LC34-LSU, and (d) LC34-USU. 
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Figure 2.9: Kinetic model fit to observed excess OAM data incorporating 

passivation (a) CFB Borden, (b) EGDY, (c) LC34-LSU, and (d) LC34-USU. 
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Figure 2.10: Kinetic model fit to column experiment data incorporating passivation 

(a) CFB Borden, (b) EGDY, (c) LC34 LSU, and (d) LC34 USU. 
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CHAPTER 3: COLUMN EXPERIMENT 

Column experiments were completed to generate data to validate the performance of the 

one-dimensional model that has been developed (Appendix A) to simulate the 

competition for permanganate between a contaminant (target reductant) and aquifer 

material (non-target reductants).   

3.1 Experimental Design and Objectives 

The objective of these column experiments was to represent an aquifer system where a 

residual source zone, contained in a high NOD material, is being actively flushed with 

permanganate.  The permanganate migrates through the system from the down-gradient 

side of the source; thus, permanganate has to migrate through uncontaminated aquifer 

material prior to contact with the source zone.  To represent this system physically each 

column was designed to contain an isolated residual zone of TCE-contaminated material 

in the middle of the column and was flushed in three stages: first the column was flushed 

with Milli-Q water until steady-flow was achieved, then the column was flushed with 

permanganate (at one of two concentrations) until significant breakthrough of 

permanganate was achieved, and finally the column was flushed again with Milli-Q water 

until permanganate was no longer detected in the effluent.  Effluent samples were taken 

throughout all flushing stages and used to determine the concentration of permanganate, 

chloride, bromide, and TCE. 

At the termination of each column experiment, the column was cut open lengthwise and 

the aquifer materials were sub-sampled to determine the mass of manganese by-products 

deposited and TCE mass remaining in the column.   

To investigate the impact of different permanganate concentrations, two column 

experiments were performed: one using a solution of 5 g/L KMnO4 (denoted as the 5 g/L 

column) and the other using a solution of 10 g/L (denoted as the 10 g/L column). 
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3.2 Materials and methods 

EGDY aquifer material was chosen for these column experiments because it exhibited 

significant permanganate consumption.  A material with significant permanganate 

consumption was preferred to ensure that these experiments were able to capture the 

competition for permanganate between the aquifer material and contaminant.   

Each column was constructed from a 10 cm long section of 2.54 cm schedule 40 PVC 

pipe, with end caps constructed of PVC fittings and sealed with PVC cement and 

silicone.  The bottom end cap was drilled and affixed with 1.11 cm stainless steel tube 

couplers (Swagelok) and the top end cap was tapped with tubing to allow for outflow.   

The bottom of the column was fit with a 500 μm stainless steel screen to prevent aquifer 

material in the column from escaping.  Each column was packed in 1 to 2 cm lifts; the 

lifts were each compacted using a 1 cm diameter glass rod.  The first 3 cm was packed 

with uncontaminated material and was then allowed to saturate with Milli-Q water which 

was gravity fed into the column from the bottom.  This uncontaminated zone was 

followed by a 2 to 3 cm of material spiked with TCE (BDH reagent grade) at 

approximately 2% NAPL saturation.   The pore space was again allowed to fully saturate 

under a gravity feed.  The top 4 to 5 cm of the column was packed with additional 

uncontaminated material and the pore space was allowed to saturate.  Figure 3.1 

illustrates the experimental design for the columns and Figure 3.2 is a photograph of the 

experimental set-up.  The top of the column was also fit with a 500 μm stainless screen 

and filled with clean size A 20/30 glass beads (Potters Industries Ltd.) to occupy the void 

space at the top of the column and glass wool was used to protect the exit tubing from 

being blocked by the glass beads.  The columns were then sealed with Teflon tape. 

The TCE spiked aquifer material was prepared by combining 60 g of aquifer solids with 

7.0 mL of water and 1.7 mL of TCE in a batch reactor and allowing the material to 

equilibrate for 24 hours before being packed into the columns.  The bulk TCE 

concentration of this material was 46000 mg/kg and accounts for sorption of TCE to the 
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aquifer material.  Appendix B contains theoretical calculations used to determine the 

mass of TCE added to the aquifer material.   

The columns were flushed in upflow mode using a triple head peristaltic pump (Cole-

Parmer Instrument Co., Model No. 7553-80, 1-100 RPM, size 14 tubing), at a designed 

flow rate of 0.2 mL/min (Darcy flux of 172 cm/day).  A free exit condition was used at 

the outlet.  Initially each column was flushed with Milli-Q water until steady outflow was 

achieved and no air bubbles were observed in the effluent.  The column feed was then 

switched to a permanganate solution of either 5 or 10 g/L KMnO4 (Analytic Grade, EM 

Science) and 100 mg/L bromide (Br-, Fisher Scientific).  Bromide was used as a 

conservative tracer to determine the porosity and dispersivity of the aquifer material.    

When a significant concentration of permanganate was observed in the column effluent, 

the treatment in of the column was ceased and the column was flushed once again with 

Milli-Q water until no permanganate was observed in the effluent.   

The column effluent was collected frequently (every 15 to 30 minutes during the initial 

10 hours and then every hour during daytime over the following days) and used to 

quantify TCE, KMnO4, chloride (Cl-, is an oxidation by-product of TCE), and Br-.  Due 

to the low flow rate, duplicate samples were not collected.  Exactly 0.8 mL of effluent 

from each column was decanted into a Hewlett-Packard glass 2 mL auto-sampler vial.  

The exact volume of sample in the auto-sampler vial was important due to the method of 

TCE analysis.  If permanganate was visually detected in the effluent, the sample was 

quenched in the 2 mL auto-sampler vial using a sufficient volume of sodium thiosulphate 

(Na2S2O3, EMD Chemicals Inc.) to ensure the all permanganate was reduced to protect 

the analytical equipment.  TCE and ion concentrations were quantified throughout the 

experiment; however, the concentration of permanganate was only measured when it was 

visually observed in the effluent. 

Manganese oxides (reaction by-products) were extracted from a sub-sample of the 

aquifer material at the end of the experiment in three segments – pre source zone (0-3 

cm), source zone (3-6 cm), and post source zone (6-10 cm).  The material from the source 
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zone was further sub-sampled into three 1-cm long intervals (3-4, 4-5, and 5-6 cm) to 

determine the mass of TCE remaining at the end of the experiment. 

3.3 Analytical Methods 

3.3.1 TCE Concentration 

The TCE concentration was determined using solid phase micro extraction (SPME) with 

gas chromatography according to ASTM Standard Practice D6520-00 (ASTM, 2003).  

Since the SPME method samples the vial headspace, each sample vial can only be used 

once and hence duplicate measurements were not possible. 

For measurement purposes, 0.8 mL of each sample was placed into a 2 mL septum-sealed 

auto-sampler vial and allowed to equilibrate into the headspace for a minimum of two 

hours.  The vials were then placed into the auto-sampler (Varian 8200) of the gas 

chromatographer (GC; Hewlett Packard 6890).  The SPME fibre (Supelco 100 mm 

polydimethylsiloxane) was exposed to the headspace of the auto-sampler vials for 4 

minutes for adsorption and was then injected into the injector port of the GC at 250oC for 

two minutes of desorption.  The GC was operated in splitless mode and vented to split 

mode at 15 seconds with a constant septum purge of 2 mL/min.  Helium was used as the 

carrier gas with an oven temperature of 50oC and a flame ionization detector (FID) 

temperature of 280oC.  The column used was a Hewlett Packard HP5 with a length of 30 

m, a diameter of 0.32mm, and a film thickness of 0.25 μm.  

Standards were prepared to create an 11 point calibration curve ranging in concentration 

from 0.1 to 800 mg/L.  The method detection limit (MDL) was estimated to be 0.05 mg/L 

(USEPA MDL Procedure – CFR, 1986), the standard deviation of 7 duplicate samples of 

the 0.1 mg/L standard multiplied by 3.14.  Repeat measurements of the 10 mg/L 

calibration standard were used throughout all GC runs to ensure accurate TCE 

measurements. 
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3.3.2 Ion Concentrations 

The concentration of Cl- and Br- was measured by ion chromatography using a Dionex 

AI-450 ion chromatographer with a Dionex AS4A 4x250 anion analytical column and a 

Dionex ASRS anion chemical suppressor.  The eluent was a solution containing 1.8 mM 

sodium carbonate (Na2CO3) and 1.7 mM sodium bicarbonate (NaHCO3) and the 

regenerant was a solution of 25 mM sulphuric acid (H2SO4).  For each sample, 50 μL was 

injected into the sample loop, at a flow rate of 2 mL/min.  The chromatograph was run 

for 20 minutes to allow for the conductivity to return to the baseline.  The vials from the 

TCE analysis were used for ion analysis and were diluted with 0.8 mL of Milli-Q water 

to ensure sufficient supernatant was available for analysis.  Each sample was analyzed in 

duplicate.  Standards for chloride and bromide were prepared according to Standard 

Method 4110 (APHA, 1998).  The MDL for Cl- and Br- analysis was 0.5 mg/L. 

3.3.3 Permanganate Concentration 

The concentration of permanganate in the effluent was measured using a combination of 

titration and spectrophotometry.  The concentration of permanganate was determined by 

titration of the 5 g/L feed solution with sodium oxalate ((COONa)2, BDH Laboratories) 

using Method 4500 for KMnO4 (APHA, 1998).  The 5 g/L feed solution was then used to 

calibrate the spectrophotometer (Milton Roy Company Spectronic 20D) to 525 nm.  

When permanganate was visually observed in the effluent, frequent samples of effluent 

were collected and diluted with a known volume of Milli-Q water to obtain a sufficient 

sample size and concentration, and analyzed using the spectrophotometer with an MDL 

of 1.3 mg/L.   

3.3.4 MnOx and TCE Bulk Soil Concentrations 

The bulk concentration of manganese in the aquifer materials following the column 

experiment was determined by using the modified Chao’s method (Chao, 1972) proposed 

by Neamana et al. (2004).   Manganese precipitates were extracted from a small mass (< 

10 g) of oven dried (50oC over night) aquifer solids from the three zones of each column.  

The material from both columns was extracted for two hours using an acidified 1.0 M 
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hydroxylamine hydrochloride (NH2OH-HCl) at pH 2.0 and adjusted by a 2% nitric acid 

(HNO3) solution. The manganese content was determined using an inductively coupled 

plasma (ICP) emission spectroscopy with a Spectro Flame instrument (Spectro 

Analytica).  The MDL of this method is 0.01 mg/L 

Bulk TCE concentration for the aquifer material from the TCE spiked zone, was 

determined by a methanol extraction procedure (Sawhney et al., 1988).  The TCE was 

extracted by placing a small amount of aquifer material (< 5 g) into a 25 mL vial with 5 

mL of methanol (Burdick and Jackson, Analytic Grade).  The vials were continuously 

inverted end-over-end for 12 hours to ensure adequate contact between the methanol and 

aquifer material.  The methanol was then diluted into Milli-Q water (dilution factor 10-

100 Milli-Q water : 1 methanol) and anaylzed using the SPME method described in 

Section 3.3.1.  The bulk TCE concentration was calculated based on the mass of aquifer 

material used in the extraction, the volume of methanol added, and the dilution factor. 

Since there was only a small mass of aquifer materials within the columns, and samples 

were required for both Mn and TCE extractions, only one extraction for each interval was 

completed.  The extraction samples were measured once. 

3.4 Results and Analysis 

Instead of a 3 cm thick TCE spiked zone, the source zone in the 5 and 10 g/L columns 

had a thicknesses of 2.8 and 2.5 cm respectively.  Based on bulk TCE analysis, the 

concentration of TCE in the source zone was 45800 mg/kg, which corresponds to masses 

of 1.27 and 1.13 g in the 5 and 10 g/L columns respectively. 

The actual flow rates measured in the columns deviated from the design flow of 0.2 

mL/min; the 5 g/L column was much lower at 0.060±0.005 mL/min or 52 cm/day, while 

the 10 g/L column achieved an average flow rate of 0.174±0.006 mL/min or 150 cm/day.  

The lower flow rate for the 5 g/L column was attributed to fouling of the tubing within 

the pump and resulted in a much longer duration of treatment for the 5 g/L column as 

compared to the 10 g/L column. 
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The concentration of permanganate in the nominal 5 g/L solution was determined to be 

4.93 g/L and the nominal 10 g/L solution was 9.92 g/L.  The concentration of Br- was 147 

mg/L in the 5 g/L permanganate solution, and 134 mg/L in the 10 g/L permanganate 

solution. 

The 5 g/L column was flushed with permanganate for ~ 70 hours before the column 

became completely blocked with manganese oxide particles so that the column was 

unable to conduct fluid.  Consequently, the 5 g/L column was not flushed with Milli-Q 

water following treatment.  At the end of the 70 hours, the effluent permanganate 

concentration reached only ~ 25% of the inlet concentration.  The 10 g/L column was 

flushed with permanganate for ~ 8 hours before the inlet solution was switched to Milli-Q 

water.  The 10 g/L column was then flushed for an additional 44 hours with Milli-Q 

water before the final flushing phase was terminated. 

3.4.1 Breakthrough Data 

Breakthrough curves (BTCs) for bromide, TCE, permanganate, and chloride for the 5 and 

10 g/L columns are shown in Figures 3.3 and 3.4 respectively.  The Br- and MnO4
- BTCs 

were normalized to the influent concentration.  Time zero is defined as the point when 

permanganate was visually observed to enter each column and therefore chloride and 

TCE concentrations detected prior to the start of the permanganate flush occur before 

time zero on the Cl- and TCE BTCs.   

3.4.1.1 Bromide 

The breakthrough for bromide (Figures 3.3(a) and 3.4(a)) was analyzed to determine the 

porosity and dispersivity of the columns.  The porosity was calculated from the time 

when the bromide effluent concentration reached 50% of the source concentration and the 

volume of the column.  The dispersivity was determined by matching the bromide BTC 

with the results from a 1-D transport model (Appendix A).   

The porosity of the 5 g/L column was determined to be 0.59, which is substantially 

higher than the expected porosity of 0.33 for EGDY aquifer material based on Xu’s 
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(2006) column experiments.  It was hypothesized that the top of the column had a large 

amount of void space due to poor column construction which lead to an increase in the 

volume of solution required for 50% of the bromide to breakthrough.  The void space 

also caused continuous mixing of pooled effluent further delaying bromide breakthrough.  

The lack of adequate porosity values for the 5 g/L column, along with the plugging that 

eventually occurred, made it impossible for the results of the 5 g/L column study to be 

used for validation of the model.  It further meant that the dispersivity of the 5 g/L 

column could not be determined.  Due to these reasons, the 5 g/L column cannot be used 

for modelling purposes, however, the results are nonetheless interesting, so will be 

further discussed. 

The porosity of the 10 g/L column was determined to be 0.28 which is much closer to the 

previously reported value of 0.33 (Xu, 2006).  Due to the experimental data and the 

calculated porosity values, which do no indicate there were significant experimental 

errors, it was assumed that the 10 g/L column was packed correctly, with no large void 

space at the end of the column.  The difference between this porosity and the previously 

reported value is assumed to be due to a combination of the packing of the column, and 

the presence of DNAPL.  Although the design NAPL saturation of 2% would result in 

minor changes to the porosity (0.007), the actual saturation in the source zone may have 

been much higher due to the increased mass of TCE present for sorption considerations.  

Based on the porosity of the column ~ 5.8 PVs of permanganate were supplied to the 

column.  The dispersivity of the 10 g/L column was determined to be 0.01 m which was 

approximately the value obtained from analysis of Xu’s EGDY NOD column results 

(0.008 m).   

3.4.1.2 TCE 

The general shape of the TCE BTCs is similar for both columns (Figures 3.3(b) and 

3.4(b)).  The concentration of TCE generally increases with fluctuations until a maximum 

concentration was reached after 132 mg of permanganate were delivered to the 5 g/L 

column, and 185 mg of permanganate to the 10 g/L column.  The TCE concentration in 

the 5 g/L column proceeded to decrease slowly over the following 2 days eventually 



 49

reaching non-detect levels near the end of the experiment.  The concentration of TCE in 

the 10 g/L column decreased at a much faster rate, and remained at non-detect levels for 

the duration of the permanganate flush.  During the post-treatment Milli-Q flush, TCE 

concentrations in the 10 g/L column rebounded to as high as 25 mg/L.  The lower 

concentration of TCE post-treatment, relative to pre-treatment, could be due to 

manganese precipitates inhibiting mass transfer; however, there is no evidence that 

supports this hypothesis. 

In the 5 and 10 g/L column, the maximum TCE concentration in the effluent pre-

oxidation was approximately 160 mg/L, substantially less than the maximum solubility 

reported in literature (e.g., 1100 mg/L; Merck, 2003.  This lower concentration is 

suspected to be due to a combination of TCE sorption on to the aquifer materials and, 

incomplete transfer into solution and a lower maximum solubility.     

The significant fluctuation in the effluent TCE concentration is suspected to be the result 

of a number of factors including: sampling error, SPME fibres coming in contact with 

sample, and the small variations in the darcy flux.  Sampling errors could occur due to 

samples being open to the atmosphere for differing lengths of time before they were 

transferred to the auto-sampler vials and sealed; thereby allowing for some TCE to be 

depleted through volatilization.  Additionally, the SPME fibre may have been exposed to 

the aqueous sample during its injection and removal from the vial due to small volumes 

of sample which were observed to adhere to the vial cap.  The consequences of such an 

occurrence are not known.  Small variations in the darcy flux would affect the contact 

time in the source zone (mass transfer) and down-gradient of the source zone (sorption) 

and the time available for reactions. 

3.4.1.3 Permanganate 

The permanganate BTCs for the 5 and 10 g/L columns (Figures 3.3(c) and 3.4(c) 

respectively) were investigated to understand the timing of the permanganate 

breakthrough.  For the 5 g/L column, the permanganate first appeared after ~ 0.44 g of 

permanganate had been supplied to the column, due to the extremely slow flow rate of 
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the 5 g/L column, this mass corresponded to approximately 1 day into the permanganate 

flush. By the time a measurable concentration of permanganate was detected in the 

effluent of the 5 g/L column, the concentration of TCE in the effluent had dropped 

significantly to below 20 mg/L.  Eventually, when the effluent concentration of 

permanganate reached a maximum concentration of 1.15 g/L, the concentration of TCE 

in the effluent had dropped to less than 2 mg/L.  These concentrations are significantly 

higher than the MOE standard of 5 μg/L (MOE, 2003). The breakthrough of 

permanganate in the 10 g/L column was first detected after only 0.21 g of permanganate 

had been supplied, which represents a breakthrough time of approximately 2 hours or 1.5 

PVs.  As with the 5 g/L column, the TCE concentration decreased as the effluent 

concentration of permanganate increased; however, the decrease of TCE and increase in 

the permanganate concentration of the effluent of the 10 g/L column was much more 

rapid.  Within an hour and a half of when permanganate was first detected in the effluent, 

the concentration of TCE in the effluent was <1 mg/L and the permanganate 

concentration was >2 g/L and after an additional hour and a half, the TCE concentration 

was below the detection limit.  The initial delay in permanganate breakthrough and 

slower increase in permanganate concentration in the 5 g/L column, compared to the 10 

g/L column, is likely due to the greater time available for mass transfer of TCE into the 

aqueous phase and reaction with aquifer materials or aqueous phase TCE. 

The permanganate BTCs were analyzed to determine the mass of permanganate 

consumed based on the mass of permanganate supplied to the columns and the mass of 

permanganate recovered from the effluent.  Approximately 90% of the permanganate 

supplied to the 5 g/L column was consumed by TCE and the aquifer material within the 

column.  The mass of permanganate consumed in the 5 g/L column was 1.14 g.  Based on 

the stochiometry of the TCE/KMnO4 reaction and the mass of Cl- recovered from the 

effluent, approximately 0.45 g of permanganate (or 40%) was used to reduce the TCE 

concentrations, the remaining 60% went to satisfying the NOD demand.  The mass of 

permanganate consumed in the 10 g/L column was 0.59 g; of this, approximately 0.2 g of 

the permanganate (or 34%) was consumed by the TCE and the remaining 66% was used 

to satisfy the permanganate demand. 
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3.4.1.4 Chloride 

The chloride BTCs for the 5 and 10 g/L experiments (Figures 3.3(d) and 3.4(d) 

respectively) show that the concentration of chloride in the effluent started at a non-zero 

value while Milli-Q water was flushed, and decreased steadily until permanganate 

reached the zone of TCE spiked material.  The source of this chloride is unknown and 

any attempts at explanation are speculation.   

The maximum concentration of chloride observed in the 5 and 10 g/L columns was 700 

and 880 mg/L respectively near the end of the permanganate flush (i.e., at 70 hours in the 

5 g/L column and 4.7 PVs in the 10 g/L column).  Since the highest observed 

concentration of TCE exiting the column was ~ 160 mg/L, the observed chloride 

concentrations in the effluent support that increased mass transfer of TCE into the 

aqueous phase was accomplished (based on the stochiometry of TCE oxidation and the 

maximum observed concentration of TCE, 130 mg/L of chloride would be expected in 

the effluent if there was no increase in mass transfer). 

The lower concentration observed to exit the 5 g/L column could be indicative of several 

processes.   The concentration of TCE in the column may have reached a lower solubility 

due to inhibited mass transfer by flow short circuiting (i.e. non-uniform flow through 

column) or manganese by-product formation.  Additionally, complete mineralization of 

TCE may not have occurred (i.e., TCE could be present in the effluent or, organic 

reaction by-products could bind chlorine and prevent the release of chloride ions).  Yan 

and Schwartz (2000) investigated the reaction pathway of TCE oxidation and found that 

several of the intermediate by-products contained chlorine.  Incomplete reaction is 

supported by low non-zero TCE concentrations in effluent samples from the 5 g/L 

column which also contained measurable concentrations of permanganate.  Permanganate 

was first detected in the 5 g/L effluent at 29 hours and measurable amounts of TCE were 

detected in the effluent from 28.5 to 57 hours; after which the concentrations dropped 

below the MDL. An early, unaccounted for, unidentified, peak on several gas 

chromatograms may be indicative of chlorine-containing organic oxidation by-products.    

The presence of unidentified peaks on the chromatograms occurred consistently 
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throughout the first 25 hours of the permanganate flush, however, these peaks were much 

higher during the initial stages of the permanganate flush when only small concentrations 

of permanganate were suspected to have reached the source zone.   

3.4.2 Bulk Soil Concentrations 

The bulk soil manganese (Mn) and TCE concentrations for both column experiments are 

shown in Figure 3.5 for the 5 and 10 g/L columns.   

3.4.2.1 Manganese 

The Mn concentration in the soil post treatment is expressed in terms of g MnO2/kg 

aquifer material following MacKinnon and Thomson (2002).  As expected, the lowest 

concentration of manganese oxides (24.72 g/kg and 4.27 g/kg for the 5 and 10 g/L 

columns respectively) was observed in the first 3 cm of the column (the first section 

packed with uncontaminated material) and was assumed to be the product of reaction 

between the permanganate and the aquifer materials.  Evidence of manganese oxides 

being produced in systems with no contamination is presented by Xu (2006).  Xu (2006) 

reported that 15.8 g MnO2/kg aquifer material were produced in long-term batch 

experiments containing EGDY aquifer material and permanganate; less than the value 

observed in the 5 g/L column but greater than the value observed in the 10 g/L column.  

The greater concentration of Mn in the 5 g/L column is likely due to sampling error that 

may have included material from the adjacent source.  The lower concentration of Mn in 

the 10 g/L column was likely due to incomplete oxidation of the slow reacting OAM.  

The highest Mn concentration was observed in the TCE source zone located between 3 

and 6 cm and is presumed to have been produced by the oxidation of aquifer materials 

and TCE.  In the down-gradient 4 cm of the columns, the Mn concentration was higher 

than the up-gradient interval but lower than the source zone.  Manganese observed in the 

last section of the columns was due to reaction between permanganate and aquifer 

materials, transport of manganese by-products from the source zone, and further reaction 

between aqueous TCE originating from the source zone and permanganate.  Evidence 

that manganese oxides were transported from the source zone was observed by the 
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presence of solid precipitates in the effluent.  Although these precipitates were not 

analyzed for composition, due their brown colour it was assumed that they were 

manganese oxides.  Other researchers have reported finding brown precipitates in the 

effluent of column and 2-D studies (MacKinnon and Thomson, 2002; Schroth et al., 

2001). 

The concentration of Mn deposited in the 5 g/L column was much higher than the 10 g/L 

column.  Visual evidence of precipitates deposited in the 5 and 10 g/L columns is shown 

in Figure 3.6 as dark bands. The dark area in each column is coincident with the TCE 

source area.  The 5 g/L column had a thick band of manganese oxides which likely 

caused the plugging of the column resulting in the premature termination of the 

experiment.  To a lesser extent, the 10 g/L column also had a band of manganese oxides; 

however, it is presumed that the porosity was not significantly decreased.  The greater 

concentration of Mn in the 5 g/L column is likely due to the greater mass of 

permanganate supplied (since treatment lasted for several days); which resulted in more 

oxidation of both the spiked TCE zone and the oxidizable materials within the aquifer.  

Approximately 67% of the permanganate consumed within the 5 g/L column remained in 

the column as manganese precipitates, where as 65% remained in the 10 g/L column; the 

remaining fraction is assumed to have been transported out of the column.  

3.4.2.2 TCE 

After treatment, the bulk TCE concentration in the 5 g/L experiment was significantly 

reduced from the initial concentration with more than 98% of the TCE removed.  As 

expected, higher removal was observed on the up-gradient side and lower removal 

occurred down-gradient side of the source zone, because the up-gradient side was 

exposed to higher concentrations of permanganate and has higher mass transfer.  The 10 

g/L column also experienced significant depletion of the source, more than 85% removal 

of TCE with less permanganate supplied than the 5 g/L column (0.84 g of KMnO4 in the 

10 g/L column compared to 1.26 g in the 5 g/L column).  However, the distribution of 

TCE remaining in the column at the end of the experiment is confusing.  The highest 

removal was observed in the mid section of the source zone with less removal at both the 
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up-gradient and down-gradient ends of the source zone.  This trend could indicate short 

circuiting in the column, an initial heterogeneous distribution of TCE in the contaminated 

material, or sampling errors due to single samples taken from each of the 3 one cm-long 

sections of the source zone.  However, the effects of possible short-circuiting or 

heterogeneous distribution of TCE were presumed to be minimal since there was only a 

4% difference in TCE mass removal between the highest and lowest concentrations in the 

source zone. 

3.5 Mass Balance Considerations 

The BTC and the results of the soil extractions were used to determine the mass balance 

of Mn and TCE during the experiments. 

3.5.1 Manganese Mass Balance 

The mass balance of manganese (Table 3.1) was completed by analyzing the mass of 

manganese supplied to the column (as permanganate), the mass of manganese present in 

the effluent as permanganate, and the mass of manganese remaining in the column at the 

end of the experiment duration.   

The mass of permanganate supplied to the column was determined by the flow rate and 

the concentration of permanganate in the source solution; the mass of permanganate was 

converted into the mass of manganese (~ 0.40 g supplied to the 5 g/L column and ~ 0.29 

g to the 10 g/L column).  The mass of manganese exiting the column as permanganate 

was determined based on the permanganate BTC and converting the mass of 

permanganate in the effluent to a mass of manganese (~ 0.04 g exited the 5 g/L column 

and ~ 0.09 g from the 10 g/L column).  The mass of manganese oxides remaining in the 

column at the end of the experiment was determined from the bulk soil concentrations of 

MnO2 which was converted to a mass of Mn (~ 0.25 g in the 5 g/L column and ~ 0.13 g 

in the 10 g/L column).  The unaccounted for mass of manganese could have been due to 

un-quantified manganese oxides in the effluent, non-representative soil samples, flow rate 

variations, and/or experimental error. 
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3.5.2 TCE Mass Balance 

The TCE mass balance (Table 3.2) was determined through analysis of the TCE and Cl- 

BTCs and the bulk TCE concentration post treatment.  

The initial mass of TCE in the column was determined based on the bulk concentration of 

TCE in the spiked material and the thickness of the source zone within each column.  The 

initial mass of TCE in the columns was ~ 1.27 g and ~ 1.14 g for the 5 and 10 g/L 

columns respectively.  The TCE BTCs were analyzed to determine the mass of TCE 

exiting the column in the effluent during flushing.  Approximately 0.01 g of TCE was 

accounted for in the effluent of both the 5 and 10 g/L columns.  The chloride BTCs were 

used to estimate the mass of TCE destroyed in the column by assuming complete 

mineralization of TCE (i.e., 1 mole of TCE oxidizes to produce 3 moles of chloride).  The 

results indicate that ~ 0.19 g and ~ 0.08 g of TCE were oxidized in the 5 and 10 g/L 

columns respectively.  Fluctuations in the flow rate and outflow concentrations 

(particularly during times when no data was available) could result in over or under 

estimation of the mass destroyed or present in the effluent.  The mass of TCE remaining 

in the columns post treatment was determined from the bulk soil TCE concentrations.  In 

the 5 g/L column, ~ 0.01 g of TCE remained at the end of the column experiment, 

whereas ~ 0.10 g of TCE remained in the 10 g/L column. The TCE mass balance does 

not account for the full initial mass in the source zone.  The unaccounted for mass of TCE 

could be due to incorrect characterization of the initial mass of TCE present, non-

representative soil samples, flow rate variations, experimental error, and sorption of 

aqueous TCE to the down-gradient aquifer materials.  Based on the foc of the aquifer 

material (0.003 g organic carbon/g material; Xu, 2006) and the log Kow for TCE (2.29; 

Merck, 2003, the full unaccounted for mass could be sorbed to the down-gradient 

materials in the column, however these materials were not extracted. 
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Table 3.1: Manganese mass balance for the 5 and 10 g/L columns.  Unaccounted for 
manganese is assumed to have exited the column as oxidation by-products. 

Pathway 5 g/L column 10 g/L column
g g

Supplied 0.40 0.29
Effluent 0.04 0.09
Mass in Column 0.25 0.13
Unaccounted 0.11 0.07

Mass of Manganese

 

Table 3.2: TCE mass balance for the 5 and 10 g/L columns.  Unaccounted for TCE 
is assumed to be sorbed to the soil in the final 4 cm of the column. 

Pathway 5 g/L column 10 g/L column
g g

Pre-oxidation Mass 1.27 1.14
Post-oxidation Mass 0.01 0.10
TCE Effluent 0.01 0.01
Chloride Effluent 0.19 0.08
Unaccounted 1.06 0.95

Mass of TCE
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Br- 

MnO4
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Figure 3.1: Schematic of column showing over all dimensions and location of TCE 
contaminated region. 

 

 
Figure 3.2: Image of the column experiment showing the 10-cm long column, the 

effluent collection vial, and the column set-up. 
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Figure 3.3:  Breakthrough curves for (a) Bromide, (b) TCE, (c) Permanganate, and 

(d) Chloride for the column flushed with a 5 g/L solution of permanganate.  Also 
indicated is the start of the permanganate flush. 
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Figure 3.4:  Breakthrough curves for (a) Bromide, (b) Chloride, (c) TCE, and (d) 

Permanganate for the column flushed with a 10 g/L solution of permanganate.  Also 
indicated is the start and end time of the permanganate flush. 
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Figure 3.5: Bulk soil concentration for (a) Mn expressed as g MnO2/kg soil and (b) 

TCE expressed at the fraction of TCE removed. 
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Figure 3.6: Images of Mn deposition within the (a) 5 g/L column and (b) 10 g/L 

column. 
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CHAPTER 4: TREATMENT EFFICIENCY  

The NOD kinetic model developed in Chapter 2 was adapted into the 1-D reactive 

transport model presented in Appendix A to investigate the efficiency of permanganate 

treatment systems subject to NOD kinetic considerations.  The model included the 

important physical and chemical processes of permanganate ISCO: advection, dispersion, 

mass transfer between the free and aqueous phase, reaction (productive reaction between 

the organic compound and permanganate, and non-productive reaction between the 

aquifer material and permanganate), and sorption.  For the purpose of this study, 

treatment efficiency is defined as the percent of permanganate supplied to the system that 

was consumed by the oxidation of reduced organic compounds; therefore, a treatment 

efficiency of less than 100% indicates that permanganate was consumed to satisfy the 

NOD and/or exited the system. 

4.1 Model Validation 

The results from the 10 g/L column study discussed in Chapter 3 were used to validate 

the transport model developed in Appendix A including the NOD kinetic expressions 

derived in Chapter 2.    For a complete discussion on the model validation refer to Section 

A.5 in Appendix A.  

4.2 Model Simulations 

The model was used to simulate the treatment of several common non-aqueous organic 

compounds.  The compounds modeled were chosen from an assembled list (Table 4.1) of 

chemicals with a wide variety in "
ik .  From this list, four were chosen for further 

investigation based on preliminary results: TCE, perchloroethylene (PCE), Trans 

dichloroethylene (DCE), and naphthalene (a prevalent component of creosote).  These 

chemicals were chosen due to the varying chemical properties (most importantly Cs and 
"
ik ), the historical prevalence of these organic compounds in industry, and the persistence 

of these chemicals at contaminated sites (i.e., lack of complete natural attenuation).  

Naphthalene has a low Cs and a small "
ik .  PCE has a higher Cs and "

ik  than naphthalene, 
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but is amongst the lowest when compared to the other 9 chemicals listed in Table 4.1.  

TCE has a Cs approximately 10 times higher than PCE and a "
ik  20 times higher.  Trans 

DCE has the highest Cs and "
ik  of the chemicals investigated in these simulations, both of 

which are amongst the highest of all chemicals summarized in Table 4.1 (in fact, out of 

the 10 chemicals listed, Trans DCE has the largest "
ik ). 

The developed model was used to simulate each compound as a residual source zone 

contained in the EGDY or Borden aquifer material.  These materials were chosen since 

they have vastly different NOD properties – Borden was observed to consume the least 

amount of permanganate (only 2.12 ± 0.57 g KMnO4/kg – 14.6% fast) during the bench 

scale studies completed by Xu (2006) and had the smallest fOC of all soils investigated, 

whereas, EGDY had both the highest consumption of permanganate (32.29 ± 3.55 g – 

38.6% fast) and the greatest fOC.   

Two sets of simulations were completed for each aquifer material.  The first set of 

simulations represents the vertical well flushing scenario in which injection and 

extraction wells are used to force permanganate through the source zone.  The second set 

of simulations represents an inject-and-leave treatment system in which several injection 

points are used to quickly deliver permanganate uniformly and radially from the point of 

injection.  See Section A.1 for additional details of these injection schemes.   

4.2.1 Simulation Details 

Table 4.2 summarizes the details of the inject-and-leave and vertical well flushing 

schemes.  The contaminated material comprising the simulated source zones had a NAPL 

saturation (Sn) between 1.5 and 5% (i.e., a residual source zone) to prevent NAPL 

migration and limit mass transfer effects from oxidation by-products.  The mass of each 

compound simulated was consistent across each injection scheme, however, the Sn varied 

due to differing densities of the organic compounds (Table 4.1).   
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The simulated domain for the vertical well flushing scheme had a length of 10 cm and a 

diameter of 2.54 cm with a mass of 0.5 g for each compound.  The length of the 

simulated domain does not impact the results since the number of pore volumes (PVs) is 

used for comparison purposes.  A longer domain would more realistically represent an 

actual injection scheme; however, it would require a longer simulation time to achieve 

the same results.  The simulated domain for the inject-and-leave scheme was a slice of 

the aquifer 1 cm thick and 1 m in diameter surrounding the injection point.  The 

simulated domain contained an organic compound mass of 400 g.  For both injection 

schemes, the entire spatial domain contained contamination, rather than an isolated 

source zone, to allow for a fair comparison of the mass of permanganate used to treat the 

organic compound versus that used to satisfy the NOD.  The vertical well flushing 

simulations were flushed with a 5 g/L permanganate solution at 0.25 L/day for 

approximately 1.15 days (corresponds to 20 PVs for the EGDY material).  A much higher 

injection rate of 15 L/min was used in the inject-and-leave simulations to deliver 

permanganate (5 g/L) to the entire solution domain within 5 minutes.  The permanganate 

injection was then terminated and the permanganate was allowed to react for 6 hours.  A 

spatial discretization of 0.001m and a time step of 0.005 s were used for all simulations.  

Table 4.3 summarizes various transport and mass transfer parameters used. 

4.3 Vertical Well Flushing 

The results of the vertical flushing model simulations indicate that the reaction kinetics 

do change the treatment efficiency, but not to a large extent.  Figure 4.1 shows the 

breakthrough curves (BTCs) at the extraction well for permanganate and aqueous organic 

compound, and the fraction of OAM and organic compound mass remaining.  The BTCs 

are normalized to the injected permanganate concentration (5 g/L) and the maximum 

solubility of the chemical (see Table 4.1). The point where the fast fraction of OAM has 

been satisfied is indicated by a solid square symbol on the OAM mass remaining profile.   

Figure 4.2 shows the treatment efficiency for both the EGDY and Borden material.  For 

all figures, the PVs flushed are not equal in the two materials because the porosity of the 

Borden material is ~ 1.33 times higher than the EGDY material (Table 4.3).  Hence, 20 
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PVs of permanganate supplied to the EGDY material corresponds to the same mass of 

permanganate supplied in 15 PVs to the Borden material. 

4.3.1 Breakthrough Curves and Consumption of OAM and the Organic 

Compound 

The results presented in Figure 4.1 are largely controlled by the mass action law that 

represents the reaction between the organic compound and permanganate as given by 

-
4MnOi

"
i

i CCk
dt

dC
−== r  (4-1) 

where r is the reaction rate (M/L3T), "
ik is the reaction rate coefficient (L3/MT), Ci is the 

concentration of the dissolved organic (M/L3), and -
4MnO

C  is the concentration of 

permanganate (M/L3). The reaction rate is dependant on three parameters: the reaction 

rate coefficient, the organic compound concentration, and the permanganate 

concentration.  Since the solubility represents the maximum aqueous concentration of an 

organic compound, Cs is an important factor that controls the overall reaction rate.  

Similar to the reaction rate law (Equation 4-1) the kinetics of the OAM reactions are 

dependant on the concentration of OAM and permanganate, and the reaction rate 

coefficient (see Chapter 2).  The kinetics of the NOD reactions of the Borden and EGDY 

material, determined in Chapter 2, indicate that the fast
OAMk  and  slow

OAMk  for EGDY and 

Borden are similar, however, the COAM for the two materials differs greatly.  For EGDY 

the fast
OAMk  observed was 0.105 L/min and the initial slow

OAMk  was 0.113 L/min but it 

decreased rapidly.  For Borden the fast
OAMk  was 0.160 L/min and the initial slow

OAMk  was 0.402 

L/min (which also decreased rapidly).  The differences between the profiles of the two 

materials in Figure 4.1 are therefore largely attributed to the different fast
OAMC  and slow

OAMC  

values. 

The rising limb of the organic compound BTC is the same for all chemicals investigated; 

all rise quickly during the first PV to a maximum concentration as the permanganate is 
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flushed into the system.  The breakthrough of MnO4
- in the EGDY material is slightly 

delayed when compared to the Borden material which is partially due to the difference in 

porosity which affects the PVs, but is also due to the higher NOD of the EGDY material 

where more permanganate is consumed by the aquifer solids, and less is available for the 

organic compound reaction.  In the organic compound BTCs for naphthalene and PCE in 

both aquifer materials, there is a slight oscillation in the concentration profile that 

coincides with the satisfaction of the fast
OAMC  and is suspected to be due to numerical 

issues.  In general, the BTCs for compounds with similar Cs and "
ik  values (e.g., PCE and 

naphthalene, or TCE and Trans DCE) behave much the same.   

For the compounds with a lower Cs and "
ik  (e.g., PCE and naphthalene), the breakthrough 

concentration decreases quickly after the maximum concentration was reached coincident 

with permanganate breakthrough; the organic compound concentration is decreased and 

does not have enough time to transfer from the free phase into solution.  The naphthalene 

concentration decreases until both it and the permanganate concentration reach near 

steady state values when the competition for permanganate between slow
OAMC  and 

naphthalene are similar.  The PCE concentration however, continues to decrease and the 

permanganate concentration increases.  In this case, instead of reaching a steady 

concentration, the PCE concentration profile decreases at a constant rate since the rate of 

PCE removal is greater than the rate of slow
OAMC  removal.   The breakthrough concentration 

of both PCE and naphthalene reach a lower maximum value in the Borden material than 

the EGDY material and stays lower throughout the simulation due to the lower fast
OAMC  and 

slow
OAMC  of the Borden material which allows permanganate to breakthrough more quickly.   

The high Cs and "
ik  values of Trans DCE and TCE combine to create a fast rate of 

reaction which significantly delays the arrival of permanganate and allows the organic 

concentration to remain at close to 100% while a significant mass of organic compound 

remained in the system. There are two main differences between the TCE and Trans DCE 

BTCs: the concentration of TCE remains high longer due to the lower Cs and "
ik  (organic 
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mass remains longer relative to Trans DCE), and the presence of TCE and permanganate 

appear concurrently in the extracted fluid (permanganate does not breakthrough in the 

Trans DCE simulations until there is no aqueous organic).  For both compounds, the 

extraction well organic concentration decreased as the mass close to the injection well 

was destroyed and the available travel time for the organic compound to reach Cs through 

mass transfer decreased.  Eventually the organic concentration was low enough that 

permanganate could breakthrough at the extraction well since the rate of reaction with the 

organic compound was low (small aqueous concentration of organic compound and 

permanganate).  Due to the extremely high "
ik  for Trans DCE, the organic concentration 

at the extraction well had to essentially be zero before any permanganate could 

breakthrough.   

As previously discussed, the mass removed was greater for the Borden material due to a 

lower NOD.  The mass of the organic compound remaining decreases at an 

approximately steady rate for all simulations except for TCE and Trans DCE where there 

was a marked rate change when most of the mass had been removed.  In general, the 

timing of the fast
OAMC  satisfaction occurs later as both Cs and "

ik  increase which produces a 

faster rate of organic reaction and hence more permanganate consumption by the 

oxidation reaction rather than the NOD reaction.  However, in the Trans DCE simulation 

the satisfaction of fast
OAMC  coincides with the complete removal of Trans DCE mass. The 

profiles for OAM remaining in the two materials cross due to the slightly higher fast
OAMk  of 

the Borden material which results in a faster decrease in OAM mass at the start of the 

simulation, however, the OAM reduction in the EGDY material crosses the Borden 

profile before the fast
OAMC  is depleted as it accounts for a greater percent of the total

OAMC  in the 

EGDY material (15.5% rather than 9.7% for Borden).  The profiles of OAM mass 

removal represent the total
OAMC  not just the reactive fractions of the OAM, however, over 

half of the slow
OAMC  remains at the end of every simulation. 
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Since most field ISCO applications would not deliver 20 PVs of permanganate (Siegrist 

et al., 2001), these results indicate that for organics with a low Cs and "
ik , the competition 

for permanganate between the organic compound and the OAM occurs when the fast
OAMC  is 

satisfied and only the slow
OAMC  reaction remains.  However, for organics with a higher Cs 

and "
ik , the organic compound competes for permanganate with the fast

OAMC  which greatly 

reduces the rate of satisfaction and results in the fast
OAMC  remaining the dominant NOD 

reaction for a longer period.  For example, when the fast
OAMC  is depleted, only 20-30% of 

the TCE mass remained, indicating that for organics with a high Cs and "
ik  the fast

OAMC  

reaction dominates the NOD and should be characterized with accuracy.  Likewise 

organic compounds with lower Cs and "
ik , the fast reactions occur quickly and 

competition arises between the slow
OAMC  and organic and hence the slow NOD reactions 

need to be characterized.   

4.3.2 Treatment Efficiency 

Treatment efficiency is defined here as the percent of permanganate injected used to 

oxidize the organic compound.  The efficiency is a cumulative term so at any given time 

the efficiency is a factor of all that has occurred previously.  The treatment efficiency 

indicates how well the designed injection system is at destroying the aqueous phase 

organic compound which drives mass transfer and results in increased mass removal (the 

primary goal of ISCO).  An efficiency of less than 100% indicates that either 

permanganate was extracted or was used to satisfy the NOD. 

Generally, as the Cs and "
ik  of the organic compound increase so does the efficiency, and 

therefore the treatment efficiency profiles were similar for both materials (Figure 4.2).  

However, the efficiency was greater for all organic compounds investigated for the 

Borden material (2-7%) due to the lower NOD which meant that more permanganate was 

available for reaction with the organic compound; the ultimate NOD of the EGDY 

material was 15 times greater than the Borden material.  The relatively small difference 
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in the treatment efficiency (given the large difference in ultimate NOD) is due to the 

interactions of all the controlling factors that determine the treatment efficiency: Cs and 
"
ik , injection rate, rate of mass transfer, etc.  NOD is only one component of the overall 

model.  Additionally, the ultimate NOD assumes that the permanganate has unlimited 

time available for reaction and can only react with COAM which is not true when flushing 

permanganate through contaminated material. 

The most important time period to investigate the treatment efficiency is during the first 5 

to 10 PVs since typically, injections do not last for a long duration (Siegrist et al., 2001).  

During the first 5 to 10 PVs, the treatment efficiency of TCE, PCE, and naphthalene 

increased more rapidly in the Borden material than in the EGDY material due to the 

lower demand for permanganate from the fast
OAMC  fraction.  During this time, the efficiency 

of Trans DCE started at nearly 100% but decreased more rapidly in the EGDY material 

also due to the high consumption of permanganate from the fast
OAMC  .  The impact on 

treatment efficiency due to the reaction rate coefficients of slow
OAMC  and fast

OAMC  is not 

apparent in these figures, but as discussed in Section 4.3.1, the fast reaction kinetics seem 

to compete for permanganate in systems containing organic compounds with high Cs and 
"
ik  values (e.g., TCE and Trans DCE), whereas the slow reaction competes for 

permanganate with organic compounds that have low Cs and "
ik  values since the 

treatment efficiency continues to increase after the fast
OAMC  was removed from the system 

(e.g., naphthalene and PCE). 

The efficiency of naphthalene removal was limited by a low Cs and "
ik  which lead to 

slow rates of reaction.  The permanganate treatment efficiency slowly increased over the 

first 5 PVs volumes and reached a maximum efficiency when the competition for 

permanganate between naphthalene and the aquifer solids reached steady state.  The 

maximum efficiency of naphthalene in the EGDY material was ~ 12.5% whereas the 

efficiency in the Borden material reached a maximum of ~ 17%. 
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The removal efficiency of PCE was also limited by the Cs and "
ik , however since the 

reaction rate was higher (Equation 4-1), the treatment efficiency was greater.  As with 

naphthalene, the treatment efficiency increased during the first 5 PVs before reaching an 

approximately steady efficiency; however, unlike naphthalene, in the Borden material, 

the treatment efficiency decreased slightly from the maximum value corresponding to the 

time at which approximately 25% of the PCE mass was removed.  The decrease in 

efficiency is due to complete removal of PCE close to the injection well, which decreases 

the time available for mass transfer.  As with naphthalene, the treatment efficiency of 

PCE in the Borden material is greater (maximum ~ 23%) than in the EGDY material (~ 

20%) due to less competition for permanganate from the NOD.  Preliminary results 

indicated that if the flow through the domain was decreased, more time would be 

available for reaction and mass transfer to occur and would result in a higher PCE 

treatment efficiency.  For example, if the flow rate were to decrease by one half then the 

maximum treatment efficiency of PCE removal from the EGDY material would increase 

by 140% and the mass removed would increase by 130%.  The efficiency of the PCE and 

naphthalene systems are both limited by the rate of permanganate injection: a slower 

injection rate results in higher treatment efficiency since it is limited by time available for 

reaction and mass transfer. 

The competition for permanganate is strong between TCE and the fast reacting OAM 

within the first PV with the mass of both reduced (Figure 4.1).  Initially, the treatment 

efficiency of TCE rapidly increased to over 80% before it reached a maximum 

determined by the competition for permanganate between the fast
OAMC  and the organic 

compound.  It took longer to reach the maximum efficiency for the EGDY material since 

it has a greater permanganate demand from the fast
OAMC .  After 5 PVs in the EGDY material 

and 2 PVs in the Borden material the efficiency reached a quasi steady state value of ~ 

89% for the Borden and ~ 83% for the EGDY material.  As with PCE, the treatment 

efficiency slowly started to decrease when mass close to the injection well was removed; 

however, unlike PCE, the treatment efficiency also started to decrease more rapidly 

corresponding to the near complete destruction of TCE and significant breakthrough of 

permanganate (at 15 PVs in the EGDY material and 10 PVs in the Borden material).  The 
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treatment efficiency of TCE is somewhat limited by the fast
OAMC  and the injection rate; 

however, the treatment efficiency of the system is very high. 

The efficiency curves for Trans DCE removal from for both the Borden and EGDY 

material are initially close to 100% indicating that the fast
OAMC  reacts more slowly than the 

Trans DCE.  Despite the extremely fast rate of reaction for Trans DCE, the efficiency of 

the EGDY material quickly drops to 98% due to the high demand for permanganate from 

the fast
OAMC .  As the organic compound mass is destroyed near the injection well, the 

treatment efficiency decreases and permanganate is used to satisfy the NOD of the treated 

material.  As expected, the treatment efficiency of the EGDY material decreases at a 

more rapid rate due to the higher fast
OAMC  associated with the EGDY material. The 

treatment efficiency steadily decreases until it reaches ~ 80% efficiency for the Borden 

material and ~ 75% for the EGDY material at which point only 1% of the initial Trans 

DCE mass remains.  Even with the extremely fast reaction rate for the Trans DCE and 

permanganate reaction, there are still noticeable differences in the treatment efficiencies 

of the two materials; however, due to the high efficiency of both systems, the oxidation 

reaction with Trans DCE is dominant in both materials. 

4.3.3 Implications 

The simulation results of the vertical well flushing scheme indicate that the NOD kinetic 

parameters values do not have a large impact on the treatment efficiency.  Despite, the 

ultimate NOD of the EGDY material being approximately 15 times greater than the 

Borden material, the treatment efficiency during the simulations was only 2-7% lower 

supporting the hypothesis that using the ultimate NOD as a predictive tool for 

determining the treatment efficiency in a given material will lead to underestimating the 

treatment efficiency, particularly for materials with a high ultimate NOD.   

The results also indicate that the fast
OAMC  competes for permanganate with organic 

compounds that have high Cs and "
ik  values, whereas the slow

OAMC  competes for 
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permanganate with organic compounds that have low Cs and "
ik  values (the fast

OAMC  is 

satisfied prior to permanganate treating the organic).  This would imply that for organics 

with high Cs and "
ik , such as TCE, the kinetic parameters associated with fast

OAMC  should be 

characterized, whereas if the aquifer is contaminated with organic compounds having low 

Cs and "
ik  values both the fast

OAMC  and slow
OAMC  need to be characterized. 

Organic compounds with a high Cs and "
ik  result in a fast rate of reaction and have a 

higher treatment efficiency since permanganate can be used effectively to destroy the 

organic compound of concern rather than transporting through the treatment zone or 

reacting with the OAM species.  Organic compounds with a low Cs and "
ik  have a lower 

treatment efficiency since permanganate must first satisfy the fast
OAMC  before it can be used 

to significantly deplete the organic mass. 

4.4 Inject-and-Leave 

The results of the inject-and-leave simulations were influenced by the same factors 

(mainly the Cs and "
ik  of the organic compounds) as the vertical well flushing 

simulations, indicating that the NOD reaction kinetics do impact the treatment efficiency, 

but not to a large extent.  Figure 4.3 shows the concentration profiles of permanganate 

and aqueous organic compound at a representative point in space 1 m from the injection 

point along with the fraction of organic compound and OAM mass remaining throughout 

the domain.  Figure 4.4 illustrates the PCE concentration profiles in the EGDY material 

at 0.5 m from the injection point to determine the impact of distance from the injection 

well on the concentration profiles.  Figure 4.5 shows the treatment efficiency for both the 

EGDY and Borden material.  Unlike Figures 4.1 and 4.2, the figures representing the 

inject-and-leave results have time on the x-axis rather than pore volumes since after 5 

minutes, the injection was discontinued. 
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4.4.1 Concentration Profiles and Oxidation of Organic compound and OAM 

As with the vertical well flushing scheme, the model results indicate that organics with 

low Cs and "
ik   (naphthalene and PCE) behave in a similar fashion.  However, in this 

case, the profiles for TCE are also similar in shape and are controlled by the same factors 

with only Trans DCE deviating from the basic trends.  The concentration profiles and 

mass remaining for Trans DCE are not included; due to the high Cs and "
ik , Trans DCE is 

completely removed from the domain during the initial 5 minutes when the permanganate 

was supplied to the system.  The findings show that the inject-and-leave scheme is more 

dependent on mass transfer, characterized by high concentration of the organic 

compounds while flushing occurs, and a fast decrease in concentration after flushing is 

terminated.  Since the rate of flushing is faster than the vertical well flushing scheme, the 

Reynold’s number and subsequently the mass transfer coefficient increase and the 

aqueous mass is replaced at close to the same rate as it is destroyed.  However, after 

injection ceased, the removal of TCE, PCE and naphthalene behave much like they 

would in a batch reactor system since there was no advective transport and hence a small 

mass transfer rate. 

For TCE, PCE, and naphthalene, the concentration of the organic compound and 

permanganate increased during the first 5 minutes while flushing occurred, and then 

dropped after flushing was terminated.  The rate at which both the organic compound and 

permanganate concentration decreased was determined by the Cs, "
ik , concentration of 

permanganate, and the NOD reaction kinetics.  While a large concentration of 

permanganate remained, the organic concentration decreased since the rate of the reaction 

was greater than the rate of mass transfer (i.e., more organic was removed from the 

aqueous phase by reaction than could be replaced by mass transfer).  Organics with 

higher Cs and "
ik  depleted more quickly due to the faster rate of reaction.  For all three 

organic compounds, after the permanganate mass reached a critical point, the 

concentration of the organic compound rebounded as the reaction rate became slower 

than the rate of mass transfer.  Organics with a higher Cs and "
ik  had a faster rate of 
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reaction; therefore, lower concentrations of permanganate were required before the 

organic concentration rebounded.  The concentration of naphthalene, which had the 

lowest Cs and "
ik  of all four organic compounds, rebounded when approximately 40% of 

the permanganate remained; the concentration of TCE (higher Cs and "
ik ) rebounded 

when less than 15% of permanganate remained.   For all three organic compounds, the 

magnitude of the rebound was greater in the EGDY material since less permanganate 

remained due the higher slow
OAMC  (the full concentration of fast

OAMC  for both materials was 

satisfied during the initial permanganate flushing period).  The TCE concentration did not 

rebound in the Borden material since the concentration of permanganate at the end of the 

simulation remained high enough that all TCE transferred into the aqueous phase was 

oxidized.   

To confirm that the concentration profiles at 1 m were representative of other locations 

within the domain, the concentration profiles for the PCE simulation were investigated at 

a mid-point of the domain (0.5 m).  The concentration profiles were similar at 0.5 m from 

the injection point when compared to 1 m (Figure 4.4), with a slightly higher 

concentration of permanganate and lower concentration of PCE closer to the injection 

point.  The differences in the profiles are due to a greater fraction of the OAM satisfied 

closer to the injection well during the initial permanganate flush which resulted in less 

permanganate consumed to satisfy the NOD after the injection was terminated.  With less 

permanganate required to satisfy NOD, higher concentrations of permanganate and 

greater mass removal of PCE were observed.  From these results, it can be assumed that 

regions closer to the injection point experience a greater removal of organic compound 

and satisfaction of the NOD; this finding corresponds to the vertical well flushing 

scheme. 

The profiles of the removal of OAM and organic compound for naphthalene, TCE, and 

PCE support the finding that the destruction of organic compound is limited by the mass 

transfer.  All three organic compounds experienced an initial fast removal rate during the 

initial flushing phase of the simulation, ranging from 4% mass removal of naphthalene, 
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which has a low Cs and "
ik , to over 85% mass removal of TCE, which has a high Cs and 

"
ik .  As previously stated, the fast

OAMC  was satisfied at some point during the initial flushing 

phase.  After the initial flushing was complete, the rate of organic and OAM mass 

removal slowed due to a limited mass of permanganate available and the decreased rate 

of mass transfer in a stagnant system.  There was still, however, an increased mass 

removal in the Borden material over the EGDY material since less permanganate is 

required to satisfy the slow
OAMC .  The difference in mass removal is small (< 0.5%) for 

naphthalene, since the rate of organic mass removal was limited by the low Cs and "
ik , 

which were quickly overcome by the mass transfer, making the organic reaction the rate 

limiting step.  However, the difference in TCE mass remaining at the end of the 

simulation was ~ 4% greater in the EGDY material than in the Borden material.  The 

OAM mass remaining profiles, indicate that the OAM mass removal is approximately the 

same for each organic in a given aquifer material with less than 0.3% difference between 

the different organics.  This finding implies that while the organic mass removal is 

dictated by the aquifer material simulated, the COAM satisfaction is not dependant on the 

on the organic compound, which is contrary to the findings for the vertical well flushing 

scheme due to the heavy reliance on mass transfer and fast satisfaction of the fast
OAMC .  This 

finding also implies that the ability of an organic compound to compete for permanganate 

with the slow
OAMC  is limited by the slow rate of mass transfer. 

4.4.2 Treatment Efficiency 

Due to the high injection rate used at the beginning on the inject-and-leave simulations, a 

large mass of permanganate exited the system through advection within the first 5 

minutes.  The unreacted permanganate leaving the system during this time was taken into 

consideration when determining the treatment efficiency of the inject-and-leave scheme 

to more accurately reflect the efficiency of the treatment system. 

As with the vertical flushing scheme, the treatment efficiency for the EGDY material 

(4.5(a)) is less than the Borden material (4.5(b)). These results were expected due to the 
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greater permanganate demand of the oxidizable materials in the EGDY material.  

Another significant trend is that the treatment efficiency for all materials is lower than 

those observed in Figure 4.2 for the vertical well flushing scenario, due to the greater 

effects of velocity on the results.  Based on the thin film model (Pankow and Cherry, 

1996; Powers et al., 1994), the mass transfer coefficient is proportional to velocity and a 

higher velocity results in a thinner film thickness which decreases the time for diffusion 

across the film.  Despite the lower overall efficiencies of all materials, the efficiency 

profiles indicate that treatment efficiency again increases with increasing Cs and "
ik . 

The treatment efficiency of naphthalene, PCE, and TCE increases slightly over time as 

more of the slow
OAMC  is satisfied allowing a greater mass of permanganate to react with the 

organic compound. For the organics with lower Cs and "
ik  (i.e., naphthalene and PCE), 

the treatment efficiency increases slowly over the entire duration of the simulation since 

the overall reaction rate is slower and permanganate cannot be used efficiently during the 

initial flushing phase.  However, for TCE, which has a higher Cs and "
ik , the efficiency 

increases rapidly during the flushing stage as permanganate is supplied and the fast
OAMC  is 

satisfied.  After the flushing ceases, the efficiency increases slowly since there is only a 

finite mass of permanganate available and a slower rate of mass transfer.   

Final treatment efficiency of naphthalene was 3.7% in the Borden material and only 1.8% 

in the EGDY material.  For PCE the efficiencies were 1.5% and 3.7% for the EGDY and 

Borden materials respectively.  The lower treatment efficiency of PCE compared to 

naphthalene was not expected from the Cs and "
ik , however, the stochiometric ratio for 

the PCE reaction is significantly lower (4 MnO4
- : 3 PCE) than it is for naphthalene (16 

MnO4
- : 1 naphthalene) which explains the difference.  The TCE efficiencies were 11.7% 

and 15.4% for the EGDY and Borden materials, which parallels the results of the vertical 

flushing scheme where increased Cs and "
ik  resulted in a greater difference in treatment 

efficiency between the two aquifer materials. 
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The treatment efficiencies for permanganate ISCO of Trans DCE were 92.8% for the 

EGDY material and 92.1% for the Borden material.  Unlike all other organic compounds, 

the treatment efficiency is lower in the Borden material than in the EGDY material which 

is due to the slightly higher fast
OAMk  for the fast reaction of the Borden material which 

interferes with the treatment efficiency of Trans DCE.  However, the difference in 

treatment efficiency is very small compared to the differences with the other organic 

compounds.  The final treatment efficiencies for both the EGDY material and the Borden 

material were similar (0.5-4% difference for all organics) indicating that the NOD kinetic 

parameters did not play a large role in the treatment efficiency. 

4.4.3 Implications 

The simulation results of the inject-and-leave scheme indicate that the NOD kinetic 

parameters values do not have a large impact on the treatment efficiency.  Despite the 

ultimate NOD of the EGDY material being approximately 15 times greater than the 

Borden material, the treatment efficiency during the simulations was only 0.5-4% lower 

supporting the hypothesis that using the ultimate NOD as a predictive tool for 

determining the treatment efficiency will lead to underestimating the treatment 

efficiency, particularly for materials with a high ultimate NOD.   

The results also indicate that the fast
OAMC  was depleted rapidly during the initial flushing 

phase and only compounds with a very high Cs and "
ik  (e.g., Trans DCE) can compete 

effectively with fast
OAMC .  The slow

OAMC  competes for permanganate with organic compounds 

after the injection is ceased, however, the results indicate that the Cs and "
ik  have little 

bearing on the rate of slow
OAMC  destruction implying that the oxidation reaction is limited by 

the transfer of the organic into the aqueous phase.  Organics with very high Cs and "
ik , 

such as Trans DCE, fully deplete during the initial flushing period regardless of the 

kinetic parameters associated with the fast
OAMC  and slow

OAMC  reactions.  However, for all other 

organics both the fast
OAMC  and slow

OAMC  reactions should be characterized to adequately 

determine the mass of permanganate required since a significant mass of organic remains 
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after the fast
OAMC  has been satisfied due to the limits of mass transfer and limited 

permanganate. 

4.5 Traditional modelling approaches 

As stated in Section 1.1.2, assuming the ultimate NOD of the aquifer material as an 

instantaneous sink for permanganate that must be satisfied before permanganate can 

propagate through the system is suspected to lead to significant underestimation of the 

treatment efficiency, whereas not including NOD kinetics would lead to over estimation 

of the efficiency.  To support this hypothesis, two sets of simulations were completed for 

the vertical flushing of the EGDY material.  In the first set of simulations, the NOD was 

ignored so that the permanganate concentration is only reduced through oxidation of the 

reduced organic compounds.  In the second set of simulations, the ultimate NOD of the 

EGDY material had to be satisfied before permanganate could propagate through the 

subsurface. 

4.5.1 No NOD Considerations 

Figure 4.6 shows the comparison of treatment efficiency between the simulations where 

NOD kinetics (as developed in Chapter 2) were used to simulate the consumption of 

OAM compared to the simulations where NOD was not included as a sink for 

permanganate.  As expected, the treatment efficiency for all simulations was 

overestimated when NOD was not included in the model.   

Naphthalene and PCE (low Cs and "
ik ), which had low treatment efficiencies, had a final 

treatment efficiency marginally higher when no COAM was included reflecting the lack of 

reaction between permanganate and slow
OAMC .  However, for both PCE and naphthalene 

there is considerable difference in the treatment efficiency of the two systems over the 

first 5 to 10 PVs since the treatment efficiency increases at a more rapid rate when no 
fast

OAMC  is present to consume large amounts of the permanganate during the initial PVs.    
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The treatment efficiency of TCE is much greater in the system in which no COAM was 

included.  The maximum treatment efficiency was close to 100% after permanganate was 

supplied for 1 PV, reflecting the absence of the fast
OAMC  term.  The treatment efficiency of 

TCE decreases at ~ 10 PVs when a significant fraction of the TCE had been removed 

close to the injection well, leaving less time available for reaction to occur between the 

front of the source and the extraction well.  However, the treatment efficiency is still 

greater with no NOD term included for the entire simulation. 

The general shape of the Trans DCE treatment efficiency profile is similar when NOD is 

not included compared to the NOD kinetic model.  However, the treatment efficiency is 

greater at all times for the simulation not including NOD kinetics.  When the treatment 

efficiency starts to decrease (indicating a significant mass of Trans DCE had been 

depleted from the source zone), it decreases at a slower rate than the NOD kinetic model 

since permanganate is not consumed by fast
OAMC .   However, as with the NOD kinetic 

model simulation, the entire mass of Trans DCE is eventually depleted.  During the 

simulation not including NOD kinetics, the full mass of Trans DCE is removed from the 

system after 8 PV of permanganate had been supplied, however, with the NOD kinetics 

included, 9 PVs of permanganate were supplied before the mass was removed.  

4.5.2 Ultimate NOD 

The ultimate NOD is the traditional modelling approach used to handle NOD in ISCO 

simulations.  Long-term batch tests are performed on aquifer materials to determine the 

mass of permanganate required to satisfy the natural demand.  The value reached at the 

end of the tests (typically on the order of several days to weeks) is taken as the ultimate 

NOD of the material.  To model the ultimate NOD in the vertical well flushing scheme, 

one reactive OAM component was used and the kOAM was adjusted to a large number 

ensuring that the ultimate NOD for the mass of the material in the domain was satisfied 

prior to 50% breakthrough of permanganate in the extraction well.  Figure 4.7 compares 

the efficiency results of the NOD kinetic model for the EGDY material with the results 

using the ultimate NOD model of EGDY material. 
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The treatment efficiency of all organic compounds is significantly underestimated when 

the ultimate NOD model is used.  Very little permanganate is used by organic compounds 

with low Cs and "
ik  (i.e., naphthalene and PCE) during the entire simulation duration 

since most of the permanganate mass is used instantly by the COAM. When the NOD is 

satisfied near the injection well, some permanganate is used to treat the organic 

compound, however due to the lower Cs and "
ik  of these materials, the reaction is not 

instantaneous and very little organic compound mass is removed before permanganate is 

transported down-gradient to where the NOD has not yet been satisfied.   

The treatment efficiency of TCE increases more quickly than PCE and naphthalene due 

to the higher Cs and "
ik  which results in more TCE removal before permanganate 

transports down-gradient to material with unsatisfied COAM.  However, the treatment 

efficiency of permanganate is much less than when the NOD kinetic model is used and 

no permanganate can be effectively used to decrease organic compound mass until the 

NOD is satisfied.   

The treatment efficiency of Trans DCE (very high Cs and "
ik ) is initially high with over 

80% efficiency, but quickly drops to around 50%; the initial high efficiency is due to the 

reaction between permanganate and the initial aqueous concentration of the organic 

compound.  After the aqueous concentration is oxidized, the efficiency decreases 

significantly indicating that a greater mass of permanganate is consumed by the aquifer 

material than by the Trans DCE.  Since the Cs and "
ik  are high enough to compete for 

permanganate (due to the initial high efficiency), the treatment efficiency is limited by 

the mass transfer from free phase to the aqueous phase which results in the mass being 

depleted before permanganate can be supplied to the source.  Most of the mass removal 

of Trans DCE is due to mass transfer since only 35% of the COAM is satisfied at the end of 

the simulation despite near complete removal of Trans DCE after only 10 PVs. 
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4.5.3 Implications 

The results of the no NOD model and the ultimate NOD model stress the importance of 

characterizing the NOD reaction kinetics with a reasonable degree of accuracy when 

determining if permanganate ISCO is a viable treatment option.  The fast
OAMC  is important 

for all organics whether they have a high or low Cs and "
ik ; whereas the slow

OAMC  is only 

important when the organic has low Cs and "
ik .    

Not including OAM species as a permanganate sink while investigating the aquifer 

material leads to over-estimation of the treatment efficiency and could result in 

incomplete oxidation or a more expensive clean-up strategy than predicted.  The 

treatment efficiency was overestimated by up to 15% when the NOD reactions were 

ignored.  For example TCE is effectively removed (less than 1% of the mass remaining) 

after 8.8 PVs of permanganate were flushed when NOD kinetics were not included, 

however, when NOD kinetics are included ~ 40% of the TCE mass remains.  By not 

including the NOD kinetics when designing the remediation system, the mass of 

permanganate required and duration of flushing would be underestimated.  

Using traditional modeling approaches which ensure the ultimate NOD of the material is 

satisfied before the permanganate front can propagate through the subsurface 

significantly underestimates the treatment efficiency.  The treatment efficiency of three of 

the organic compounds investigated (with lower Cs and "
ik   – TCE, PCE, and 

naphthalene) was roughly 10% of the value determined using the NOD kinetics, which 

would lead to cost estimates of permanganate ISCO being greatly overestimated and the 

treatment technique being prematurely discarded as a possible remedial strategy during 

the technology screening process. 

 



 81

Table 4.1: Chemical properties of selected organic compounds. 

MnO4
-

Contaminant
2-Chlorophenol 2.85E+04 1.24E+06 7.43E+01 128.56 15 26 3 C6H5ClO
Chloroform 7.95E+03 1.49E+06 5.63E-04 119.38 31 2 3 CHCl3
Dichlorvos 1.00E+04 1.42E+06 1.57E+01 220.98 N/A 6 1 C4H7Cl2O4P
Ethylbenzene 2.06E+02 8.67E+05 3.90E-03 106.17 1100 14 1 C8H10

MTBE 5.10E+04 7.41E+05 9.80E-05 88.15 12.34
10 1 C5H12O

Naphthalene 3.10E+01 9.97E+05 1.10E-02 128.17 1300 16 1 C10H8

PCE 2.00E+02 1.62E+06 3.50E-02 165.83 277 4 3 C2Cl4
TCE 1.10E+03 1.46E+06 8.00E-01 131.39 126 2 1 C2HCl3
Trans-DCE 5.00E+03 1.27E+06 3.90E+01 96.94 59 8 3 C2H2Cl2
Vinyl Chloride 2.25E+03 1.21E+06 2.10E+00 96.94 57 8 3 C2H2Cl2
1) Merk, 2003
2) Waldemer and Tratnyek, 2006
3) USEPA, 1986
4) USEPA, 1993

MolWt FormulaStochiometryContaminant Solubility 
(g/m3) 1

Density 
(g/m3) 1

k"        
(M-1s-1) 2

KOC               

mL H2O/g C 3
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Table 4.2: Injection scheme properties. 
Injection Mass of Dimensions Injection Rate
Scheme Contaminant (g) Chemical EGDY/Borden (cm) (L/day)

Naphthalene 3.5% / 2.5%
PCE 2.2% / 1.6%
TCE 2.4% / 1.7%
Trans DCE 2.8% / 2.0%
Naphthalene 4.5% / 3.3%
PCE 2.8% / 2.0%
TCE 3.1% / 2.2%
Trans DCE 3.6% / 2.6%

Inject and 
Leave

Vertical 
Flushing 0.5 g

400 g

NAPL Saturation (-)

diameter 2.54             
length 10 cm

Well diameter 1.6 cm 
Domain diameter 101.6 cm 

Domain thickness 1 cm

0.250

21600        
(for 5 min)

 
 

Table 4.3: Transport and mass transfer parameters  
 

EGDY Borden
Porosity (-)1 0.28 0.39

Dispersivity (m)1 0.01 0.001
β2' (mass tansfer)2 1 1

f oc
3 0.002 0.003

1) Calculated
2) Powers et al., 1994
3) Xu, 2006

MaterialParameter
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Figure 4.1: Normalized breakthrough concentration of the organic compound and 
permanganate, and fraction of OAM and NAPL mass remaining during the vertical 

flushing simulation for (a) naphthalene, (b) PCE, (c) TCE, and (d) Trans DCE. 
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Figure 4.2: Treatment efficiency of the vertical well flushing simulations for (a) 

EGDY aquifer material and (b) Borden aquifer material. 
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Figure 4.3: Normalized concentration of organic compound and permanganate and 
fraction of OAM and NAPL mass remaining during the inject-and-leave simulation 

for (a) naphthalene, (b) PCE, and (c) TCE. 
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Figure 4.4: Concentration profile for PCE and permanganate in the EGDY inject-

and-leave simultion a 0.5 m and 1 m from the injection point. 
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Figure 4.5: Treatment efficiency for the inject-and-leave simulations for (a) EGDY 

aquifer material and (b) Borden aquifer material. 
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Figure 4.6: Treatment efficiency of the EGDY vertical flushing scenario compared 

to material with no NOD (a) with NOD considered, (b) with no NOD considerations. 
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Figure 4.7: Treatment efficiency of the EGDY vertical flushing scenario using (a) 

NOD kinetic model and (b) Ultimate NOD model. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This investigation into the competition for permanganate between aquifer materials and 

organic compounds produced several conclusions related to the kinetic nature of the 

NOD reactions, and on the treatability of material with different NOD properties using 

permanganate ISCO. 

5.1.1 NOD Kinetic Model 

Through analysis of bench-scale experiments completed by Xu (2006), it was determined 

that there are two distinct reactions occurring in the NOD process: a fast reaction which 

results in an almost instantaneous consumption of permanganate and OAM, and a slower 

reaction which continued for the remainder of the experiment.   

Due to insufficient data < 5 minutes, the fast reaction was assumed to follow a first-order 

rate law, while the slow reaction was fit to the data using the integral method.  

Furthermore, the slow reaction appeared to decrease as the concentration of 

permanganate in the excess aquifer material experiments increased.  To capture this 

observation, it was proposed that that decreasing rate of reaction was due to passivation 

by manganese oxide by-product formation and was reasonably captured by a hyperbolic 

decay function.  The mass ratio of OAM:MnO4 for the slow reaction was within 

published ranges. 

5.1.2 Column Experiment 

The column experiment was completed to aid in the validation of the 1-D reactive 

transport model developed to simulate ISCO processes.  The model contained several 

simplifying assumptions; however, it was able to simulate the chloride and bromide 

breakthrough curves obtained from the experiment with reasonable accuracy and minimal 

adjustment to the transport and chemical parameters.  Adsorption of TCE to the aquifer 
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material may have accounted for some of the mass of TCE lost.  The chloride 

breakthrough curve was used to track the fate of oxidized TCE. 

5.1.3 Model Simulations and Treatment Efficiency 

The validated model was used to simulate permanganate treatment of four common 

organic compounds (TCE, PCE, Trans DCE, and naphthalene) present as residual source 

zones in two aquifer materials (EGDY and CFB Borden) using two common oxidant 

injection schemes (vertical well flushing and inject-and-leave).  The results were 

analyzed to determine the treatment efficiency of different organic compounds in the 

aquifer materials and the impact of NOD kinetics on the treatment efficiency. 

Treatment efficiency was defined as the percent of total permanganate supplied used to 

treat the organic compound of concern.  For all simulations performed, CFB Borden 

aquifer material showed higher treatment efficiency due to a lower demand for 

permanganate from the aquifer material (ultimate NOD of EDGY was ~ 15 times larger 

than Borden material).  

The treatment efficiency of the organic compound increased as the Cs and "
ik  increased.  

Compounds with lower Cs and "
ik   (e.g., naphthalene and PCE) are limited by the organic 

reaction rate, and competition for permanganate occurs between the organic compound 

and the slow
OAMC .   Compounds with a higher Cs and "

ik  (e.g., TCE and Trans DCE), which 

have higher treatment efficiencies, are limited by permanganate consumption of the 
fast

OAMC  which reduces the permanganate mass available for reaction with the organic 

compound.  

Treatment of organic compounds having low Cs and "
ik  (e.g., naphthalene or PCE) 

requires that the kinetics of fast
OAMC  and slow

OAMC  both be characterized since both exert a 

strong demand for permanganate in both vertical flushing well and inject-and-leave 

schemes.  With organic compounds having moderate Cs and "
ik  (e.g. TCE) the OAM 
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species that require kinetic characterization depends on the injection scheme used; while 

using the vertical well flushing scheme, only the fast
OAMC  requires characterization, whereas 

using the inject-and-leave scheme both the fast
OAMC  and slow

OAMC  require characterization.  For 

organic compounds with high Cs and "
ik  (e.g. Trans DCE) only the fast

OAMC  requires 

characterization since the organic and fast
OAMC  are depleted at the same time and the slow

OAMC  

does not play a significant role in permanganate consumption while free phase organic 

and fast
OAMC  remain. 

The EGDY material in the vertical well simulations was used to investigate the impacts 

on the treatment efficiency when an ultimate consumption approach was used to simulate 

NOD rather than the kinetic model approach.  The results indicated that the ultimate 

NOD approach significantly underestimated the treatment efficiency, whereas ignoring 

the NOD sink resulted in over estimation of the treatment efficiency when compared to 

the kinetic model.  Both approaches stress the importance of being able to characterize 

NOD kinetics. 

5.2 Recommendations 

With a kinetic model for NOD in place, most of the important processes of ISCO 

treatment are now well understood.  At this point it is recommended that these processes 

be developed into a 3-dimensional reactive transport model to aid in the understanding of 

the fate of permanganate in the subsurface during treatment and be able to model the 

interaction of several injection wells.  A 3-dimensional model would also be able to 

model a greater number of injection schemes. 

Modelling efforts could also be made to determine the most efficient injection well 

design (flow rate, concentration, etc) to minimize the mass of permanganate supplied to 

treat each compound.  For compounds with a slow reaction rate, this would involve a 

slower rate of injection allowing more reaction time, and for organics with a high 

solubility this would involve a faster injection rate which would result is less 

permanganate being used for satisfaction of the NOD. 



 91

CHAPTER 6: REFERENCES 

Allen-King, R. M., Grathwohl, P., & Ball, W.P. 2002. "New modeling paradigms for the 

sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in 

soils, sediments, and rocks." Advances in Water Resources 25: 985-1016. 

APHA 1998. A. E. Greenberg & R.R. Trussell, (Eds). Standard Methods for the 

Examination of Water and Wastewater, 20th Ed. Washington D.C., American Public 

Health Association, American Water Works Association, and Water Environment 

Federation. 

Appelo, C. A. J. & Postma, D. 1996. Geochemistry, Groundwater and Pollution. 

Rotterdam, A.A. Balkema Publishers.  

ASTM 2003. ASTM D6520-00, Standard Practice for the Solid Phase Micro Extraction 

(SPME) of Water and its Headspace for the Analysis of Volatile and Semi-Volatile 

Organic Compounds. ASTM Annual Book of Standards. West Conshohocken, PA, 

ASTM International. 11.02, Water (II). 

Barcelona, M. J. & Holm, T.R. 1991. "Oxidation-reduction capacities of soil." 

Environmental Science and Technology 25(9): 1565-1572. 

Barry, D.A., Miller, C.T., & Culligan-Hensley, P.J. 1996. "Temporal discretization errors 

in non-iterative split-operator approaches to solving chemical reaction/groundwater 

transport models." Journal of Contaminant Hydrology 22: 1-17. 

Bear, J. 1972. Dynamics of Fluids in Porous Media. New York, N.Y., American Elsevier 

Publishing Company. 

Blair, G. J., Lefroy, R.D.B., & Lisel, L. 1995. "Soil carbon fractions based on their 

degree of oxidation and the development of carbon management index for aquicultural 

systems." Australian Journal of Aquacultural Research 46: 1459-1466. 



 92

Brown, D.G. & Gupta, L. submitted. "Reduced mass transfer of BTEX and naphthalene 

from coal tar into water following oxidation with potassium permanganate." 

Chemosphere 

Carrayrou, J., Mose, R., & Behra, P. 2004. "Operator-splitting procedures from reactive 

transport and comparison of mass balance errors." Journal of Contaminant Hydrology 68: 

239-268. 

CFR 1986. CFR Title 40, Part 136: Guidelines Establishing Test Procedures for the 

Analysis of Pollutants. USEPA, National Archives and Records Administration. 

Chao, T. T. 1972. "Selective dissolution of manganese oxides from soils and sediments 

with acidified hydroxylamine hydrochloride." Soil Science Society of America Journal 

36: 764-768. 

Christensen, T. H., Bjerg, P.L, Banwart, S.A., Jakobsen, R., Heron, G., & Albrechtsen, 

H.J. 2000. "Characterization of redox conditions in groundwater contaminant plumes." 

Journal of Contaminant Hydrology 45: 165-241. 

Conrad, S. H., Glass, R.J., & Peplinski, W.J. 2002. "Bench-scale visualization of DNAPL 

remediation processes in analog heterogeneous aquifers: surfactant floods and in situ 

oxidation using permanganate." Journal of Contaminant Hydrology 58: 13-49. 

Crimi, M. L. & Siegrist, R.L. 2004. "Impact of reaction conditions on MnO2 genesis 

during permanganate oxidation." Journal of Environmental Engineering 130(05): 562 - 

572. 

Evanko, C. A., & Dzombak, D.A. 1998. "Influence of structural features on sorption on 

NOM-analogue organic acids to goethite." Environmental Science and Technology 

32(19): 2846-2855. 



 93

Folger, S. 1999. Elements of Chemical Reaction Engineering 3rd Edition. Upper Saddle 

River, New Jersey, Prentice Hall PTR.  

Forsey, S. P. 2004. In situ chemical oxidation of creosote/coal tar residuals: Experimental 

and numerical investigation. Earth Sciences. Waterloo, University of Waterloo. Ph.D.  

Frind, E. O. 1988. "Solution of the Advection-Dispersion Equation with Free Exit 

Boundary." Journal of Numerical Methods for Partial Differential Equations 4: 301-313. 

Frind, E. O., Molson, J.W., & Schimer, M. 1999. "Dissolution and mass transfer of 

multiple organics under field conditions: The Borden emplaced source." Water Resources 

Research 35(3): 683-694. 

Gustafsson, O., Bucheli, T.D., Kukulska, S., Andersson, M., Largeau, C., Rouzaud, J.N., 

Reddy, C.M., & Eglington, T.I. 2001. "Evaluation of a protocol for the quantification of 

black carbon in sediments." Global Biogeochemical Cycles 15(4): 881-890. 

Hartog, N. 2003. Reactivity of organic matter and other reductants in aquifer sediments. 

Netherlands, University Utrecht. Ph.D.  

Hartog, N., Griffioen, J., & van der Weijden, D.H. 2002. "Distribution and reactivity of 

O2-reducing components in sediments from a layered aquifer." Environmental Science 

and Technology 36(11): 2338-2344. 

Heron, G., Christensen, T.H., & Tjell, J.C. 1994. "Oxidation capacity of aquifer 

sediments." Environmental Science and Technology 28(1): 153-158. 

Hood, E. D. 2000. Permanganate flushing of DNAPL source zones: experimental and 

numerical investigation. Department of Civil Engineering. Waterloo, University of 

Waterloo. Ph.D.  



 94

Hood, E. D., & Thomson, N.R. 2000. Numerical simulation of in situ chemical oxidation. 

Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, Batelle 

Press.  

Hood, E.D., Thomson, N.R., Grossi, D., & Farquhar, G.J. 2000. "Experimental 

determination of the kinetic rate law for the oxidation of perchloroethylene by potassium 

permanganate." Chemosphere 40: 1383-1388. 

Huang, K. C., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M. 2002. "Chemical 

oxidation with potassium permanganate in a porous medium." Advances in 

Environmental Research 7: 217-229. 

Huang, K. C., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M. 2001. "Oxidation of 

chlorinated ethenes by potassium permanganate: a kinetic study." Journal of Hazardous 

Materials 87: 155-169. 

Huang, K. C., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M. 1999. "Kinetic study 

of oxidation of trichloroethylene by potassium permanganate." Environmental 

Engineering Science 16(4): 265-275. 

Hunkler, D., Aravena, R., Parker, B.L., Cherry, J.A., & Diao, X. 2003. "Monitoring 

oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: 

Laboratory and field studies." Environmental Science and Technology 37(4): 798-804. 

ITRC 2005. Technical and Regulatory Guidance for In Situ Chemical Oxidation of 

Contaminated Soil and Groundwater, 2nd edition. Washington, D.C., Interstate 

Technology & Regulatory Council, In Situ Chemical Oxidation Team. 

Imhoff, P. T., Jaffe, P.R., & Pinder, G.F. 1993. "An experimental study of complete 

dissolution of a nonaqueous phase liquid in saturated porous media." Water Resources 

Research 30(2): 301-320. 



 95

Korom, S. F., M.J. McFarland, R.C. Sims (1996). "Reduced sediments: a factor in the 

design of subsurface oxidant delivery systems." Ground Water Monitoring and 

Remediation Winter 1996(100-105). 

Lamarche, C. 2002. In situ chemical oxidation of an emplaced creosote source. Civil 

Engineering. Waterloo, University of Waterloo. MASc. 

Lee, W., & Batchelor, B. 2003. "Reductive capacity of natural reductants." 

Environmental Science and Technology 37(3): 535-541. 

Levenspiel, O. 1999. Chemical Reaction Engineering, Third Edition. New York, N.Y., 

John Wiley & Sons, Inc. 

Li, X. D., & Schwartz, F.W. 2004. "DNAPL remediation with in situ chemical oxidation 

using potassium permanganate.  Part I. Mineralogy on Mn oxide and its dissolution in 

organic acids." Journal of Contaminant Hydrology 68: 39-53. 

Li, X. D., & Schwartz, F.W. 2000. Efficiency problems related to permanganate 

oxidation schemes. Remediation of Chlorinated and Recalcitrant Compounds, Monterey, 

California, Batelle Press. 

MacKinnon, L. K., & Thomson, N.R. 2002. "Laboratory-scale in situ chemical oxidation 

of a perchloroethylene pool using permanganate." Journal of Contaminant Hydrology 56: 

49-74.  

McCourt, J. L. 2005. Impacts of MnO2 solids on mass transfer from pooled TCE 

following ISCO with permanganate. Department of Civil Engineering. Waterloo, 

University of Waterloo. MASc. 

Merck 2003. The Merck Index. Whitehouse Station, New Jersey, Merck and Company 

Limited. 



 96

Miller, C. T., Poirier-McNeil, M., & Mayer, A.S. 1990. "Dissolution of Trapped 

Nonaqueous Phase Liquids: Mass Transfer Characteristics." Water Resources Research 

26(11): 2783-2796. 

MOE 2003. Technical Support Document for Ontario Drinking Water Standards, 

Objectives, and Guidelines. Ministry of the Environment, Government of Ontario, 

Toronto, ON. 

Mumford, K. 2002. Investigation of natural oxidant demand reactions in a sandy aquifer 

material. Civil Engineering. Waterloo, University of Waterloo. MASc. 

Mumford, K. G., Lamarche, C.S., Thomson, N.R. 2004. "Natural oxidant demand of 

aquifer materials using the push-pull technique." Journal of Environmental Engineering 

130(10): 1139-1146. 

Mumford, K. G., Thomson, N.R., & Allen-King, R.M. 2005. "Bench-scale investigation 

of permanganate natural oxidant demand kinetics." Environmental Science and 

Technology 39(8): 2835-2840. 

Mumford, K. G., Thomson, N.R., & Allen-King, R.M. 2002. Investigation the kinetic 

nature of natural oxidant demand during ISCO. Remediation of Chlorinated and 

Recalcitrant Compounds, Monterey, California, Batelle Press. 

Neamana, A., Wallerb, B., Mouéléc, F., Trolarda, F., & Bourriéa. G. 2004. "Improved 

methods for selective dissolution of manganese oxides from soils and rocks." European 

Journal of Soil Science 55(1): 47 – 54. 

Pankow, J. F. & Cherry, J.A. 1996. Dense Chlorinated Solvents and other DNAPLS in 

Groundwater. Waterloo, Ontario, Waterloo Press. 



 97

Pedersen, J. K., Berg, P.L., Cheristensen, T.H. 1991. "Correlation of nitrate profiles with 

groundwater and sediment characteristics in a shallow sandy aquifer." Journal of 

Hydrology 124: 263-277. 

Poulson, S. R. & Naraoka, H. 2002. "Carbon isotope fractionation dating permanganate 

oxidation of chlorinated ethylenes (cDCE, TCE, PCE)." Environmental Science and 

Technology 36(15): 3270-3274. 

Powell, R. M., Callaway, R.W., Michalowski, J.T., Vandegrift, S.A., & White, M.V. 

1998. "Comparison methods to determine oxygen demand for bioremediation of a fuel 

contaminated aquifer." International Journal of Environmental Analytical Chemistry 34: 

253-263. 

Powers, S. E., Abriola, L.M., & Weber, W.J. 1994. "An experimental investigation of 

nonaqueous phase liquid dissolution in saturated subsurface systems: Transient mass 

transfer rates." Water Resources Research 20(2): 321-332. 

Reitsma, S., & Dai, Q.L. 2001. "Reaction-enhanced mass transfer and transport from 

non-aqueous phase liquid source zones." Journal of Contaminant Hydrology 49: 49-66. 

Reitsma, S., & Randhawa, J. 2002. Experimental investigation of manganese dioxide 

plugging of porous media. Remediation of Chlorinated and Recalcitrant Compounds, 

Monterey, California, Batelle Press. 

Sawhney, B. L., Pignatello, J.J., & Steinberg, S.M. 1988. "Determination of 1,2-

dibromoethane (EDB) in field soils: implications for volatile organic compounds." 

Journal of Environmental Quality 17(1): 149-152. 

Schnarr, M., Truax, C., Farquhar, G., Hood, E. Gonnulu, T., & Stickney, B. 1998. 

"Laboratory and controlled field experiments using potassium permanganate to remediate 

trichloroethylene and perchloroethylene DNAPLs in porous media." Journal of 

Contaminant Hydrology 29: 205-224. 



 98

Schnoor, J. L. 1996. Environmental Modelling: Fate and Transport of Pollutants in 

Water, Air, and Soil. New York, NY., John Wiley & Sons, Inc. 

Schroth, M. H., Oostrom, M., Wietsma, T.W., & Istok, J.D. 2001. "In situ oxidation of 

trichloroethene by permanganate: effects on porous medium hydraulic properties." 

Journal of Contaminant Hydrology 50: 79-98. 

Siegrist, R. L., Urynowicz, M.A., Crimi, M.L., & Lowe, K.S. 2002. "Genesis and effects 

of particles produced during in situ chemical oxidation using permanganate." Journal of 

Environmental Engineering 128(11): 1068-1076. 

Siegrist, R. L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S. 2001. Principals 

and Practices of In Situ Chemical Oxidation Using Permanganate. Columbus, Ohio, 

Batelle Press. 

Sposito, G. 1989. The Chemistry of Soil. New York, N.Y., Oxford University Press. 

Stewart, R. 1965. Oxidation in Organic Chemistry: Oxidation by Permanganate. New 

York, Academic Press Inc. 

Swift 1996. Organic matter characterization (Chapter 35). Methods of Soil Analysis, Part 

3 Chemical Methods. Madison, WI., Soil Science Society of America and American 

Society of Agronomy: 1019-1069. 

Thomson, N. R. 1995. 3D3PT Manual. Waterloo, ON, Department of Civil Engineering, 

University of Waterloo. 

Tunnicliffe, B. S. & Thomson, N.R. 2004. "Mass removal of chlorinated ethenes from 

rough-walled fractures using permanganate." Journal of Contaminant Hydrology 75: 91-

114. 



 99

Urynowicz, M.A. & Siegrist, R.L. 2005. "Interphase mass transfer during chemical 

oxidation of TCE DNAPL in aqueous system." Journal of Contaminant Hydrology 80: 

93-106 

USEPA 2006. Engineering Issue: In Situ Chemical Oxidation, Environmental Protection 

Agency, Washington D.C. 

USEPA 1993. Technical Information Review.  Methyl tertiary Butyl Ether, 

Environmental Protection Agency, Washington D.C. 

USEPA 1986. Superfund Public Health Evaluation Manual, Environmental Protection 

Agency, Washington D.C. 

Waldemer, R. H. & Tratnyek, P.G. 2006. "Kinetics of contaminant degradation by 

permanganate." Environmental Science and Technology 40(3): 1055-1061. 

Weber, W. J. 1972. Physicochemical Processes for Water Quality Control. New York, 

N.Y., Wiley -Interscience - John Wiley & Sons, Inc. 

Weber, W. J. J. & DiGiano, F.A. 1996. Process Dynamics in Environmental Systems. 

New York, N.Y., John Wiley & Sons, Inc. 

Xu, X. 2006. Interaction of Chemical Oxidants with Aquifer Materials. Civil and 

Environmental Engineering. Waterloo, University of Waterloo. Ph.D. 

Xu, X., & Thomson, N.R. 2007. "Estimation of the maximum consumption of 

permanganate by aquifer solids using a modified chemical oxygen demand test." Journal 

of Environmental Engineering in press. 

Xu, X., Thomson, N.R., MacKinnon, L.K., & Hood, E.D. 2004. Oxidant Stability and 

Mobility: Controlling Factors and Estimation Methods. Fourth International Conference 



 100

for the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, Ca., Batelle 

Press. 

Yan, Y. E. & Schwartz, F.W. 2000. "Kinetics and mechanisms for TCE oxidation." 

Environmental Science and Technology 34(12): 2535-2541. 

Yan, Y. E. & Schwartz, F.W. 1999. "Oxidative degradation and kinetics of chlorinated 

ethylenes by potassium permanganate." Journal of Contaminant Hydrology 37: 343-365. 

Zhang, H. & Schwartz, F.W. 2000. "Simulation the in situ oxidative treatment of 

chlorinated ethylenes by potassium permanganate." Water Resources Research 36(10): 

3031-3042. 



 101

APPENDIX A: REACTIVE TRANSPORT MODEL DEVELOPMENT 

A one-dimensional reactive transport model was developed to analyze the impact of the 

NOD reaction kinetics on treatment efficiency.  This appendix overviews the 

requirements of the conceptual model, develops a mathematical representation, and 

outlines the numerical solution method.  The developed model is validated with the 

laboratory results discussed in Chapter 3. 

A.1 Conceptual Model Requirements 

Permanganate is usually delivered to the source zone using either an inject-and-leave or 

an active flushing system.  An inject-and-leave system (Figure A.1) quickly introduces 

permanganate into the source zone from a single well or drive-point and the oxidant is 

radially distributed.  In this scheme, there is several injection points spaced throughout 

the source zone based on a calculated radius of influence.  As the name implies, inject-

and-leave systems do not recover un-reacted oxidant from of the subsurface.  An active 

well flushing system (Figure A.2) operates on a different principal.  Injection and 

extraction wells are used to force permanganate through the subsurface, at a rate higher 

than the ambient groundwater flow, to ensure the permanganate migrates in the desired 

direction.  Extraction wells also have the benefit of removing excess permanganate from 

the subsurface and recovering oxidation by-products.  Several injection and extraction 

wells are used to ensure permanganate is delivered to the entire source zone.   

ISCO targets aqueous phase contaminants, reducing the concentration through oxidation 

of the organic contaminant.  The rate of contaminant mass transfer from the free phase to 

the aqueous phase is relative to the concentration gradient (i.e. the difference between the 

maximum effective solubility and the aqueous concentration of a contaminant).  The 

concentration of an aqueous organic contaminant decreases through oxidation, causing 

the concentration gradient at the pore scale to increase and results in more NAPL 

transferring into solution.  The overall effect of ISCO is an increased rate of mass transfer 

over the ambient groundwater flow conditions and results in a faster depletion of the 

source zone mass.   
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Assuming that the aquifer is homogenous, both of the typical injection schemes can be 

represented by a one-dimensional model.  In the inject-and-leave scenario, the height of 

the model domain is assumed to remain constant and equal to a thin slice of the screened 

portion of the injection well.  Permanganate propagates uniformly and radially from the 

injection point throughout the radius of influence of the well (Figure A.3).  The active 

well flushing scheme can also be represented by a one-dimensional model by choosing to 

model a single flow channel or flow path from the injection well to the extraction well 

(Figure A.4). In this case it is assumed that the flow path has uniform aquifer properties 

and uniform flow.  

As permanganate is transported through the subsurface, three possible pathways can be 

taken by the permanganate as illustrated in the pore scale conceptual model presented by 

Mumford et al., 2005 (Figure A.5).  Permanganate can react with the aqueous phase 

target contaminant within the pore or it can be consumed by the reduced species 

associated with the aquifer material.  Permanganate that does not react with either the 

contaminant or reduced aquifer species is propagated to the next pore space.  The fraction 

of permanganate consumed is determined by the reaction kinetics of the organic 

contaminant and reduced aquifer species and the transport properties (i.e. advection and 

dispersion).  This conceptual model was adapted, using a representative elemental 

volume (REV), to produce a mathematical representation simulating the in situ treatment 

of a residual source zone for both injection schemes.  

Attempts to model permanganate treatment of saturated zone contamination have been 

performed by Zhang and Schwartz (2000) and Hood (2000).  Zhang and Schwartz (2000) 

developed a 3D model (ISCO3D) to simulate ISCO including the processes of transport, 

mass transfer, sorption, and oxidation.  Zhang and Schwartz, however, incorrectly 

assumed that NOD was not kinetic in nature; which meant that NOD had to be satisfied 

before permanganate could propagate through the subsurface.  Hood (2000) altered a 

reactive transport model created by Thomson (1995), 3D3PT, to include the processes of 

in situ chemical oxidation.  The alterations from Hood (2000) included: the transport of a 

non-specific oxidant and reaction by-products, the reaction between the oxidant and 
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aqueous phase contaminant, the simple reaction between oxidant and organic carbon, and 

updating flow field based on change in NAPL saturation.  However, the simple kinetic 

reaction between organic carbon and permanganate did not accurately model the complex 

NOD kinetics.  Models created by Zhang and Schwartz (2000) and Hood (2000) were 

both early attempts to model the subsurface processes of ISCO; however, we now know 

that both models presented overly simple NOD reactions and new efforts are required to 

obtain more representative model results. 

A.2 Mathematical Representation 

To model either of the one-dimensional systems described in Section A.1, a mathematical 

model was developed to simulate dissolution, transport, sorption, oxidation of multi-

component NAPL contaminants, and NOD reaction kinetics.  

A.2.1 Assumptions 

The following assumptions were used in the development of this reactive transport 

model: 

1. The ambient hydraulic gradient was assumed to be negligible compared to the 

gradient imposed by permanganate injection, thus, the flow rate is determined by 

the injection rate;  

2. The porous medium was assumed to be homogenous with respect to porosity, 

grain size, and reduced species distribution, hence flow through the media was 

uniform; 

3. The fraction of organic carbon (fOC) was assumed to be directly proportional to 

the concentration of oxidizable materials within the aquifer solids for sorption 

purposes. 

4. The pH was assumed to remain constant at near neutral due to the high buffering 

capacity of most aquifer materials; and 



 104

5. The impact of ionic strength was negligible. 

A.2.2 Modeled Species 

In the aqueous phase the organic contaminant (Corg), permanganate (CMnO4-), and chloride 

(CCl-) were modeled.  Chloride is included to simulate either a conservative tracer or a 

reaction by-product.  For the free phase, the mass of the contaminants (Morg) was 

assumed to be non-mobile and depleted through mass transfer. In the solid phase, the 

amount of fast ( fast
OAMC ) and slow ( slow

OAMC ) reacting OAM and the sorbed mass of 

contaminant (Csorb) is included (i.e. as the aquifer material is oxidized the bulk 

concentration of oxidizable materials decreases). 

A.2.3 Governing Equations 

The one-dimensional model was created using the mathematical representation of several 

important physical and chemical processes in the source zone and uncontaminated 

materials. 

A.2.3.1 Contaminant Transport and Mass Depletion 

The transport of all aqueous species can be expressed by the one-dimensional reactive 

transport equation (Bear, 1972) 
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where Ci is the aqueous concentration of species i (M/L3), species i can be an organic 

contaminant, permanganate, or chloride, θT is the total porosity of the medium 

(dimensionless), Sw is the water saturation (dimensionless), Di is the hydrodynamic 

dispersion of species i (L2/T), T
iγ  is the total kinetic source/sink term for the aqueous 

species (i.e., mass transfer M
iγ , and reaction R

iγ ) (M/L3T), S
iλ  is the equilibrium sorption 

source/sink term (M/L3T), α is the dispersivity (L), qT is the aqueous flux (L/T), τ is the 

tortuosity of the medium (dimensionless), and D0,i is the free solution molecular diffusion 

of species i (L2/T). 

The rate of mass removal of the NAPL from the free phase can be expressed as 

M
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where M
i,orgγ  is the mass transfer sink term for the free phase of the organic species i 

(M/L3T). 

A.2.3.2 NAPL Mass Transfer 

The mass transfer from the residual free phase to the aqueous phase can be captured by 

the single film theory (e.g., Powers et al., 1994) and expressed as 

( )org
S
orgorgmWT

M
org CCkS −= ,θγ  (A-6) 

with the mass transfer coefficient is defined as 

2
50

,0
, d

ShD
k org

orgm =  (A-7) 



 106

where km,org is the lumped mass transfer coefficient of the organic (1/T), S
orgC  is the 

maximum solubility of the organic (M/L3), Sh is the Sherwood number (dimensionless), 

and d50  is the median particle diameter of the aquifer material (L). 

The Sherwood number is a ratio of total interfacial mass transferred relative to the mass 

transferred by diffusion (Weber and DiGiano, 1996).  The Sherwood number is based on 

intrinsic properties and cannot be measured (Frind et al., 1999); thus various empirical 

relationships have been derived linking the Sherwood number to easily measured 

parameters (e.g., Powers et al., 1994; Imhoff et al.,1993; Miller et al., 1990).  Zhang and 

Schwartz (2000) unified expressions derived by others into the following general form 

'
2

'
1Re' ββα nSSh =  (A-8) 

where α’, β1
’, and β2

’ are empirical dimensionless fitting parameters, Re is the Reynolds 

number (dimensionless), and Sn is the NAPL saturation (dimensionless).  This model  

used the fitting parameters outlined by Powers et al. (1994) with  

'
2

369.0673.0
' 13.4

β

δα
ONS

U
=  (A-9) 

where δ is the normalized grain size, U is the uniformity coefficient, and SNo is the initial 

NAPL saturation; β1
’ is 0.598 and β2

’ is between 0.5 and 1.0. The normalized grain size is 

defined by the median grain size (d50) normalized to a medium sized grain of sand (0.05 

cm) (Powers et al., 2004).  The Reynolds number characterizes the fluid flow through the 

pore space and is expressed as 

W

w

μ
dυρ 50Re =  (A-10) 

where υ  is the pore water velocity (M/T), ρw is the density of water (M/L3), and μw is the 

dynamic viscosity of water (M/LT). 
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A.2.3.3 Sorption 

Sorption is an important process, particularly when the fraction of organic carbon in an 

aquifer is large.  Aqueous phase organic contaminants sorb to the organic fraction of 

aquifer material causing the advancement of the plume to be retarded.  The process of 

sorption can be modelled as an instantaneous equilibrium process (Pankow and Cherry, 

1996).  When proper NOD kinetics are considered, the fraction of organic material in the 

aquifer decreases as it is oxidized, which releases contaminants from the sorbed phase. 

dB

iorg
isorb k

C
C

ρ
,

, = , and (A-11) 

( )
dt
Ckd isorbd

B
S
i

,ρλ = , with (A-12) 

OCOCd Kfk = , and (A-13) 

OAM/OAMfOC CRf
OC

=  (A-14) 

where S
iλ  is the sorption equilibrium source/sink (M/L3T), kd is the sorption or 

distribution coefficient (dimensionless), fOC  is the fraction of organic carbon 

(dimensionless), KOC is the organic carbon normalized sorption coefficient 

(dimensionless), and Rfoc/OAM is the initial ratio between the fOC and COAM. 

A.2.3.4 Organic Contaminant and Permanganate Reaction 

The organic reaction term is a large sink for permanganate and aqueous phase 

contaminants during successful applications of ISCO.  The oxidation reaction between 

the contaminant and permanganate can be expressed by parallel second-order reactions 

(Waldemer and Tratnyek, 2006) 

−

−

−=−

4

4

MnOiorg,
MnO

iorg,WT
ORGR
iorg, CCkSθγ  (A-14) 

and 
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with the reaction rate coefficients related by, 

iorg
iorg

MnOiMnOiorgii MolWtkbMolWtkak ,
,

,
44
−− ==″  (A-16) 

where ORGR
iorg

−
,γ  is the aqueous organic sink term (M/L3T) of species i due to reaction, 

iORGR
MnO

,

4

−
−γ  is the sink term for permanganate due to reaction with the contaminant i, korg, i is 

the second-order rate constant for the oxidation of organic contaminant i due to 

permanganate(L3/MT), and iorg
MnO

k ,

4
−  is the second-order rate constant for the consumption 

of permanganate due to contaminant i, Corg,i is the concentration of contaminant i, −
4MnO

C  

is the concentration of the permanganate (M/L3T), ″
ik is the general second-order 

reaction rate coefficient expressed in moles (M/L3T), ai is the stochiometric coefficient 

for permanganate, −
4MnO

MolWt  is the molecular weight of permanganate, bi is the 

stochiometric coefficient for contaminant i, and iorgMolWt ,  is the molecular weight of 

contaminant i.  

A.2.3.5 NOD Model 

The mathematical model for the NOD reactions occurring in the subsurface was 

developed in Chapter 2 of this thesis. 
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Where COAM is the concentration of the OAM, fast
OAMC is the portion of the OAM attributed 

to the fast reaction (M/L3), slow
OAMC  is the portion of the OAM attributed to the slow 

reaction (M/L3), reactivenon
OAMC −  is the portion of the OAM that does not react with 

permanganate (M/L3), fastR
OAM
−γ  is the sink term for the fast reacting OAM due to reaction 

with permanganate (M/L3T), slowR
OAM
−γ  is the sink term for the slow reacting OAM due to 

reaction with permanganate (M/L3T), OAMR
MnO
−

−
4

γ is the sink term for the permanganate due to 

NOD (M/L3T), fast
OAMk  and slow

OAMk  are the fast and slow reaction rate coefficients 

respectively for the degradation of the OAM (L3/MT), and fast
MnO

k −
4

 and slow
MnO

k −
4

 are the fast 

and slow reaction rate coefficients respectively for the consumption of permanganate 

(L3/MT). 

The slow reaction rate of the OAM is not constant and is affected by passivation of soil 

particles due to the formation of MnO2 precipitates following a modified hyperbolic 

decay function. 

( )cformed

slow
MnnO MnOb

ak
214 +

=−  (A-21) 

Where a, b, and c are fitting parameters for the decay function and MnO2
formed

 is the mass 

of permanganate consumed per mass of aquifer material. 

A.3 Boundary and Initial Conditions 

The inlet boundary was set to a Type 1 or Dirchlet boundary condition (concentration 

specified), since the concentration of all aqueous species is known at this location.  The 

outlet boundary was set to a Type 4 or free exit boundary (Frind, 1988).  The initial 

concentrations of the aqueous species within the domain were assumed to be background 

conditions.  The initial aqueous concentration of contaminants was assumed to be equal 

to the solubility limit due to mass transfer from the source zone. 
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A.4 Solution Method 

Operator splitting is a common method employed to solve the reactive transport equation 

because it significantly reduces the computation time required and can achieve excellent 

results (Carrayrou et al., 2004).  The method involves the decoupling of the processes of 

transport and reaction and solving them separately.  For the purpose of this research the 

Strang-splitting SNI scheme was used due to it high accuracy and ease of implementation 

when modelling the reactive transport equation (Carrayrou et al., 2004; Barry et al., 

1996).  The Strang operator splitting approach involves solving the equations over 2Δt, 

alternating transport over one time step, batch reaction over two time steps, and transport 

over one additional time step (Carrayrou et al., 2004). 

To facilitate the solution of the governing equations the one-dimensional spatial domain 

was discretized into a finite number of control volumes.  The governing processes were 

integrated over each control volume and propagated through time using the Strang-

splitting operator approach.  The non-reactive advection-dispersion equation was solved 

over Δt, using a Thomas solver, while mass transfer, sorption, and reaction terms were 

solved over 2Δt, using a Runge-Kutta approach. 

A.5 Model Validation 

The model was validated using the laboratory results of the 10 g/L column experiment 

(Chapter 3).  The column was 10 cm long and had a diameter of 2.54 cm.  It contained a 

source zone of trichloroethylene (TCE) contamination located between 3 and 5.5 cm. The 

column was flushed with permanganate for 8 hours before switching the inlet solution to 

Milli-Q water and flushing for approximately 44 additional hours.  The effluent was 

analyzed to determine the concentration of oxidation by-product chloride, conservative 

tracer bromide, permanganate, and TCE. 

The breakthrough curves for bromide and chloride were used for model validation.  

Bromide was used to determine the porosity and validate the dispersivity determined 

through analysis of Xu’s (2006) experiments.  Chloride was used to trace the TCE in the 
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column, accounting for both the oxidation and mass transfer of TCE.  TCE was not used 

for model validation do to the large fluctuations observed in the TCE breakthrough data. 

Permanganate was also not used for model validation due to the presence of TCE and 

permanganate together in the effluent; the model overestimated the consumption of 

permanganate in the column which may be attributed to the incomplete oxidation of TCE 

noted in Chapter 3. 

The porosity was determined based on the breakthrough of the bromide tracer curve as 

discussed in Chapter 3.  Once the porosity was determined the flushing of the 

conservative tracer through the column was modelled to validate the dispersivity of the 

material.  The porosity was determined to be 0.28 and the dispersivity was determined to 

be 0.01 m.  The resulting BTC showed that the dispersivity was similar to that previously 

determined (0.008 m) when modelling the EDGY NOD column experiment completed by 

Xu (Figure A.6). 

The experiment was simulated and the resulting chloride breakthrough curve was 

compared to the experimental results to validate that the processes of oxidation and mass 

transfer were adequately accounted for by the model.  Accurate simulation of these 

processes is essential to ensure the quality of the model results when it is used to 

investigate the competition for permanganate between contaminants and NOD.  Only the 

general trend in the chloride concentration was considered due to the moderate 

fluctuations in the concentration.   

Table A.1 summarizes all the physical and chemical properties that were used in the 

model validation.  The reaction rate coefficient was set to 0.443 M-1s-1 as reported by 

Waldemer and Tratnyek (2006) for unbuffered solutions.  The solubility of TCE was 

adjusted from 1100 mg/L (maximum solubility reported in the literature; Merck, 2003 to 

700 mg/L to reflect the maximum concentration observed when Milli-Q water was 

exposed to pure phase TCE for several days.  Other researchers have reported maximum 

concentrations less than the maximum solubility reported by Merck (2003.  Tunnicliffe 

and Thomson (2004) reported a maximum TCE concentration of 110 mg/L in a fracture 

experiment with a TCE and PCE source zone (Raoult’s law does not account for the 
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lower than expected maximum concentration).  McCourt (2005) reported a maximum 

TCE concentration of 120 mg/L in reactor vials containing TCE and in glass beads.   

With these chemical properties (and others summarized in Table A.1), the model was 

used to simulate the chloride breakthrough curve successfully (Figure A.7).  One trend 

that the model failed to capture was the slight decrease in chloride concentration prior to 

the completion of the permanganate flush.  It was assumed that the decrease in 

concentration was due to mass transfer effects from manganese by-product formation.  

However, since the model used in future study will have lower NAPL saturations, it is 

assumed that these effects on mass transfer will be negligible.  Conrad et al. (2002) noted 

large impacts on mass transfer for pooled source zones, but not for residuals sources and 

indicates that this assumption is justifiable.  They noted large impacts on the mass 

transfer for pooled source zones, but not for residual sources.  The sorption process did 

not play a large role in the chloride BTC, due to the fast reaction rate between 

permanganate and TCE. 

The chloride BTC from the column experiment indicates that 0.08 g of TCE reacted in 

the column which would account for in 0.199 g of KMnO4 reacted (model predicted 

0.250 g of KMnO4 would be consumed by the contaminant).  Further the model predicted 

that 0.487 g of KMnO4 would react with the OAM, and the remaining mass of reacted 

permanganate in the column experiments was 0.575 g.  Both of the model numbers 

closely correspond to the actually masses of permanganate consumed indicated by the 

experimental results. 

A.6 Numerical Code 

The mathematical model was adapted into a computer model using FORTRAN90.  The 

code is available in Appendix C of this thesis. 
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Table A.1: Chemical and physical properties used during model validation.  Source of each value is also stated as fit, 
calculated, literature, or assumed. 

Chemical/Physical Porperty Value Source
Solubility 700 mg/L Model Fit - approximate laboratory value
Density 1.46 g/mL Literature - Merck, 2001

k" 0.443 M-1s-1 Literature - Waldemer and Tratnyek, 2006
MolWt 131.4 Literature - Merck, 2001
Log kow 2.29 Literature - Merck, 2001

Stochiometric Coefficent MnO4
- 2 Calculated

Stochiometric Coefficient TCE 1 Calculated
Porosity 0.28 Calculated

Dispersivity 0.01 m Model Fit
Flow Rate 0.174 mL/min Observed

β2' (empirical mass transfer value) 1 Assumed (range of 0.5-1.0)

Chemical

Physical
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Figure A.1: Inject-and-leave injection scheme. 

 

 
Figure A.2: Well flushing injection scheme. 
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Figure A.3: Inject-and-leave scheme as a 1-D domain (a) the full extent of the radial 

flow from the injection point and (b) a section of the full domain to illustrate the 
discretization. 

 



 116

Injection Well 
MnO4

-
Extraction Well 
Unreacted MnO4

-, 
Oxidation by-products

dx

1-D domain

(a)

(b)

Injection Well 
MnO4

-
Extraction Well 
Unreacted MnO4

-, 
Oxidation by-products

dx

Injection Well 
MnO4

-
Extraction Well 
Unreacted MnO4

-, 
Oxidation by-products

dx

1-D domain

(a)

(b)

 
 

Figure A.4: Active well flushing scheme as a 1-D domain (a) cross sectional view – 
modeled flow path illustrated as column connected the injection and extraction well 

– and (b) plan view – modeled flow path enclosed in rectangle. 
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Figure A.5: Conceptual model of pore scale permanganate oxidation including non-
productive consumption of permanganate by aquifer species (Mumford et al., 2005). 
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Figure A.6: Observed and simulated bromide breakthrough curve. 
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Figure A.7: Observed and simulated chloride breakthrough curve. 
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APPENDIX B:  THEORETICAL COLUMN EXPERIMENT 

CALCULATIONS 

log Kow
TCE 2.29
Kow 194.9845 concentration in octanol/concentration in water
Solubility 1100 mg/L
Koc 122.8402 mass sorbed/mass of OC / water concentration
foc 0.003 mass of OC/mass soil g/g

Kp=foc*Koc Kp 0.3685206 mass sorbed/mass soil * 1/(Water Concentration)
Cs=Cw*Kp Cs 0.4053727 mass sorbed/mass soil g/g

pore volume length 4 cm
diameter 2.54 cm
Volume 20.268299 mL 6.08049 mL

Porosity 0.28 porosity 0.33
Pore volume 5.6751238 mL Pore Volume 2.006562

Dissolved Mass of TCE 0.0062426 g

Volume of Soil 14.593175 mL Volume of Soil 4.073928
Mass of Soil 39.693437 g Mass of Soil 11.08108

Mass of TCE adsorbed 16.090635 g Mass TCE adsorbed 4.491969 g
3.076691 mL

0.277653 mL/g
Mass of Soil 60 g 32.92362 10.86479

100% ML TCE 16.65915 0.217296 16.87645
50% ML TCE 8.329576 0.217296 8.546872
10% ML TCE 1.665915 0.217296 1.883211 chosen from batch

experiment visual
2.749488 g TCE inspection

60 g soil Actual Sn 20.4%
7 g DI Water  
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APPENDIX C: NUMERICAL CODE 

!     Last change:  LJ   24 Apr 2007   10:58 am 

!Reactive Transport 
!Laura Jones, November 2005 
 
!******** Copied straight from Kevin's Code 
!!*Note: to convert from radial to linear scenario: 
!       1. Switch velocity calculation subroutines in the transport subroutine 
!       2. Set rwell=0, position of inflow boundary face 
!       3. Change r position vectors rw and re to equal rp 
!       4. Change the definition of q to be Qwell/hwell where 
!          hwell is now the area on which Qwell is exerted 
!       5. Change volume calculation from pi*h*(re**2-rw**2) to h*dr 
!       6. Set grid spacing (dr) to not be a function of rwell 
!!*Note: X is the contaminant being oxidized 
 
program RTMultiComp 
 
implicit none 
 
REAL (KIND=8) :: rwell, QWell, CKMnO4Well, CClWell, hwell                       !Well 
Characteristics 
REAL (KIND=8) :: dr, rmax, dt, theta                                       !Solution characteristics 
REAL (KIND=8) :: napltop, naplbottom                                            !Column Properties 
REAL (KIND=8) :: pi, rhow, muw                                                  !Constants 
REAL (KIND=8) :: n, rhob, d50, d10, d60, U, foc, focRatio                                      !Soil 
Properties 
REAL (KIND=8) :: q, qKMnO4, qCl                                                 !Well Fluxes 
REAL (KIND=8) :: Tor, DMolwKMnO4, DMolwNAPL, DMolwCl                            
!Diffusion in water 
REAL (KIND=8) :: DMolKMnO4, DMolNAPL, DMolCl, alphaR                            
!Diffusion and dispersivity in porous media 
REAL (KIND=8) :: TotMoles 
REAL (KIND=8) :: KMnO4toOAMf, KMnO4toOAMs, kCl 
REAL (KIND=8) :: CTCEold, delTCE 
REAL (KIND=8) :: alphas, betas, alphaf, betaf                                   !Reaction orders for 
the OAM reactions 
REAL (KIND=8) :: betap1, betap2 
REAL (KIND=8) :: COAMsInit, COAMfInit, COAMAtT 
Real (KIND=8) :: DCOD, PCOD, fracslow, kOAMsp, kOAMfp, kOAMssp, kOAMs, 
kOAMf, kOAMss, beta 
REAL (KIND=8) :: k1, k2, k3, k4 
REAL (KIND=8) :: FromNAPL, MassMnO4, MasstoNAPL, C 
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REAL (KIND=8) :: MnO2blc 
REAL (KIND=8) :: e, f, g 
REAL (KIND=8) :: VolContam 
 
 
 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: MassInit, MassAtT, Solubility, 
Density, k, Molwt, CoefMnO4, CoefNAPL, Koc  !NAPL Properties 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: CNAPLWell, qNAPL 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: kNAPL, kNAPLp 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: kOAMSlow, MnO2, 
kMnO4slow 
 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: CKMnO4, CCl, CKMnO4old, 
COAMs, COAMf, COAMsold, COAMfold, Csorbed, Csorbedold 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: TotMass, RhoAvg 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: Reynolds, Sh, alphap 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: Sw                   
!Saturations - Water and NAPL 
 
REAL (KIND=8), DIMENSION (:,:), ALLOCATABLE :: Mass, Moles, MoleFrac, 
MassFrac, CSat 
REAL (KIND=8), DIMENSION (:,:), ALLOCATABLE :: km, Sn, SnInit 
REAL (KIND=8), DIMENSION (:,:), ALLOCATABLE :: CNAPL, CNAPLold 
 
!Solution arrays 
REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: rp, re, rw, Vol 
real (KIND=8), DIMENSION (:), ALLOCATABLE :: vw,vp,ve 
real (KIND=8), DIMENSION (:), ALLOCATABLE :: Dw1,De1,aW1,aP1,aE1 !for 
MnO4 
real (KIND=8), DIMENSION (:), ALLOCATABLE :: Dw2,De2,aW2,aP2,aE2 !for 
NAPL 
real (KIND=8), DIMENSION (:), ALLOCATABLE :: Dw3,De3,aW3,aP3,aE3 !for Cl 
real (KIND=8), DIMENSION (:,:), ALLOCATABLE :: A1,A2,A3 
REAL (KIND=8), DIMENSION (:), ALLOCATABLE :: B1,B2,B3 
 
INTEGER :: t, i, NAPLComp, loop, nblc, napltopblc, naplbottomblc, RunMode, 
drwellratio, it, itmax, flag 
INTEGER, DIMENSION(:), ALLOCATABLE :: tmax 
 
OPEN (Unit = 11, file = "NAPLProperties.txt") 
OPEN (Unit = 12, file = "RunMode.txt") 
OPEN (Unit = 13, file = "SoilProperties.txt") 
OPEN (UNIT = 14, File = "OAMProperties.txt") 
OPEN (UNIT = 15, File = "efg.txt") 
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read (11, *) NAPLComp             !Number of Components in NAPL 
 
read (12, *) RunMode              !Column (1) vs. Radial (2) 
 
read (15, *) e, f, g 
 
IF (RunMode == 1) THEN 
  rwell = 0.d0                    !position of Inflow Boundary (m) 
  rmax = 0.1d0                   !domain extent (m) 
  dr = 0.001d0                    !grid spacing (m) 
  napltop = 0.00d0 
  naplbottom = 0.1d0 
  napltopblc = napltop/dr + 1.d0 
  naplbottomblc = naplbottom/dr 
ELSEIF (RunMode == 2) then 
  rwell = 0.016                   !injection well radius (m) 
  rmax = 1.016d0                        !domain extent (m) 
 ! drwellratio = 0.1                 !ratio between well radius and grid spacing (-) 
  dr = 0.001          !grid spacing (m) 
  napltop = rwell 
  naplbottom = rmax 
  napltopblc = napltop/dr + 1.d0 - rwell/dr 
  naplbottomblc = naplbottom/dr - rwell/dr 
else 
  PRINT *, "Invalid run mode option" 
  GOTO 100 
END IF 
 
nblc = (rmax - rwell)/dr + 1 
napltopblc = napltop/dr - 15.d0 
naplbottomblc = naplbottom/dr - 15.d0 
 
ALLOCATE (MassInit(NAPLComp), Solubility(NAPLComp), Density(NAPLComp), 
kNAPL(NAPLComp), kNAPLp(NAPLComp), k(NAPLComp)) 
ALLOCATE (MassAtT(NAPLComp)) 
ALLOCATE (Molwt(NAPLComp), CoefMnO4(NAPLComp), 
CoefNAPL(NAPLComp), Koc(NAPLComp)) 
ALLOCATE (CNAPLWell(NAPLComp), qNAPL(NAPLComp)) 
ALLOCATE (tmax(NAPLComp)) 
 
ALLOCATE (CKMnO4(nblc), CCl(nblc), CKMnO4old(nblc), COAMs(nblc), 
COAMf(nblc), COAMsold(nblc), COAMfold(nblc)) 
ALLOCATE (Csorbed(nblc), CsorbedOld(nblc)) 
ALLOCATE (kOAMSlow(nblc), MnO2(nblc), kMnO4slow(nblc)) 
ALLOCATE (TotMass(nblc), RhoAvg(nblc)) 
ALLOCATE (Reynolds(nblc), Sh(nblc), alphap(nblc)) 
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ALLOCATE (rp(nblc), re(nblc), rw(nblc), Vol(nblc)) 
ALLOCATE (Sw(nblc)) 
 
ALLOCATE (Mass(NAPLComp, nblc), Moles(NAPLComp, nblc), 
MoleFrac(NAPLComp, nblc), MassFrac(NAPLComp, nblc), CSat(NAPLComp, nblc)) 
ALLOCATE (km(NAPLComp, nblc), Sn(NAPLComp,nblc), Sninit(NAPLComp, nblc)) 
ALLOCATE (CNAPL(NAPLComp, nblc), CNAPLold(NAPLComp, nblc)) 
 
ALLOCATE (vw(nblc),vp(nblc),ve(nblc)) 
ALLOCATE (Dw1(nblc),De1(nblc),Dw2(nblc),De2(nblc),Dw3(nblc),De3(nblc)) 
ALLOCATE (aW1(nblc),aP1(nblc),aE1(nblc)) 
ALLOCATE (aW2(nblc),aP2(nblc),aE2(nblc)) 
ALLOCATE (aW3(nblc),aP3(nblc),aE3(nblc)) 
ALLOCATE (A1(nblc,3),B1(nblc),A2(nblc,3),B2(nblc),A3(nblc,3),B3(nblc)) 
 
 
READ (11, *) (MassInit(loop), loop = 1, NAPLComp) 
READ (11, *) (Solubility(loop), loop = 1, NAPLComp) 
READ (11, *) (Density(loop), loop = 1, NAPLComp) 
READ (11, *) (k(loop), loop = 1, NAPLComp) 
READ (11, *) (MolWt(loop), loop = 1, NAPLComp) 
READ (11, *) (CoefMnO4(loop), loop = 1, NAPLComp) 
READ (11, *) (CoefNAPL(loop), loop = 1, NAPLComp) 
read (11, *) (tmax(loop), loop = 1, NAPLComp) 
read (11, *) (Koc(loop), loop = 1, NAPLComp) 
 
pi = 3.14159 
rhow = 0.9991*1000.*1000.          !Density of water (g/m3) 
muw = 1.307                      !viscosity of water (g/m.s) 
 
!Reading in Soil Properties of the Column 
READ (13, *) n, d50, d10, d60, foc 
rhob = (1-n)*2.72*1000.*1000.      !bulk soil density (g/m3) 
U = d60/d10 
 
!Well injection Properties 
if (Runmode==1) then 
  QWell = 0.174/1000./1000./60.             !volumetric flow rate - darcy flux = ~120 cm/day 
(m3/s) 
ELSEIF (Runmode==2) then 
  QWell = 15000./1000./1000./60.             !volumetric flow rate - darcy flux = ~120 
cm/day (m3/s) 
end if 
CKMnO4Well = 5.d0*1000.                   !injection concentration of KMnO4 (g/m3) 
CClWell = 0.d0                          !injection concentrations of Chloride (or other 
conservative tracer) 
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CNAPLWell = 0.d0                        !Injection concentrations of NAPLs - Likely 0, if 
changes will need to read in 
 
!Well Properties 
if (RunMode == 1) then 
  hwell = pi*(1.*2.54/2./100.)**2        !Cross-sectional area of column (m2) 
  q = QWell/hwell 
  Vol = hwell*dr                          !Volume of blocks (m3) 
ELSEIF (RunMode == 2) then 
  hwell = 0.01d0                          !Screen height (m) 
  q = QWell/2./pi/rwell/hwell 
  do i = 1, nblc 
    Vol(i) = hwell* ((i*dr)**2*pi - ((i-1)*dr)**2*pi)    !Volume of blocks (m3) 
  end do 
end if 
qKMnO4 = CKMnO4Well*q 
qNAPL = CNAPLWell*q 
qCl = CClWell*q 
 
 
dt = 0.005d0                             !time step (s) 
theta = 0.5                             !time weighting scheme - Crank Nicholson 
 
Mass = 0.d0 
VolContam = 0.d0 
do i = napltopblc, naplbottomblc 
  VolContam = VolContam + Vol(i) 
end do 
do loop = 1, NAPLComp 
  do i = napltopblc, naplbottomblc 
    Mass(loop, i) = MassInit(loop)*Vol(i)/VolContam 
  end do 
end do 
 
Tor = n**(7./3.)/n**2                   !Tortuosity (-) 
DMolwKMnO4 = 1.632e-5/100/100            !molecular diffusion coefficient in water for 
KMnO4 (m2/s) - from breakthrouhg 
DMolwNAPL = 6.80e-6/100./100.                  !molecular diffusion coefficient in water for 
NAPLs (m2/s) - from mumford 
DMolwCl = 2.032e-5/100/100 .              !molecular diffusion coefficient in water for Cl 
(m2/s) - from breakthrough 
 
DmolKMnO4 = DmolwKMnO4*Tor              !effective molecular diffission coefficient 
for KMnO4 (m2/s) 
DmolNAPL = DmolwNAPL*Tor                !effective molecular diffussion coefficient for 
NAPLs (m2/s) 
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DmolCl = DmolwCl*Tor    !effective molecular diffusion coefficient for 
Cl (m2/s) 
alphar = 0.0006                         !dispersivity (m) 
 
 
CSat = 0.d0 
do i = napltopblc, naplbottomblc 
  do loop = 1, NAPLComp 
    CSat(loop, i) = Solubility(loop) 
  end do 
end do 
 
 
RhoAvg = 0.d0 
Sn = 0.d0 
do i = napltopblc, naplbottomblc 
  do loop = 1, NAPLComp 
    Sn(loop, i) = Mass(loop, i)/(Density(loop)*n*Vol(i)) 
  end do 
end do 
 
 
!Mass Transfer Variables 
betap1 = 0.598 
betap2 = 1. 
alphap = 0. 
!PRINT *, alphap 
!pause 
 
!OAM Properties - Need to figure out 
READ (Unit = 14, *) DCOD, PCOD, fracslow, kOAMsp, kOAMfp, kOAMs, kOAMf, 
beta 
COAMsInit = (DCOD-(1-fracslow)*DCOD)*rhob/1000.             !in g/m3 
COAMfInit = (1-fracslow)*DCOD*rhob/1000.         !in g/m3 
focRatio = foc/(COAMsInit+COAMfInit) 
 
!Reaction Stuff 
do loop = 1, NAPLComp 
  kNAPL(loop) = k(loop)/1000/MolWt(loop)*CoefMnO4(loop) 
  kNAPLp(loop) = k(loop)/1000/158*CoefNAPL(loop) 
end do 
kCl=0.045/1000/35/1000*2/3 
 
!Radial face position 
do i=1, nblc 
  rp(i) = rwell + (i-1./2.)*dr 
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  if (RunMode == 1) then 
    re(i) = rp(i) 
    rw(i) = rp(i) 
  ELSEIF (RunMode == 2) then 
    rw(i) = rwell + (i-1)*dr 
    re(i) = rwell + (i)*dr 
  end if 
end do 
 
!Initializing column concentrations 
CKMnO4 = 0.d0 
 
CNAPL = Csat 
 
CCl = 0.d0 
Csorbed=0.d0 
 
OPEN(21, FILE = "Coutsola13.dat") 
OPEN(22, FILE = "FracRemovedsola13.dat") 
OPEN(23, FILE = "MnO4.dat") 
 
do loop = 1, NAPLComp 
  CKMnO4Well = 5.d0*1000.                   !injection concentration of KMnO4 (g/m3) 
  CKMnO4 = 0.d0 
  CCl = 0.d0 
  Csorbed=0.d0 
  IF (Runmode==2) then 
    QWell = 150000./1000./1000./60.             !volumetric flow rate - darcy flux = ~120 
cm/day (m3/s) 
  end if 
 
  WRITE(21, *) 'Contaminant= ',loop 
  WRITE(21, "(a)") 'Titles="Concentration of outflow"' 
  WRITE(21, "(a)") ' "t" "CNAPL out (g/L)" "CKMnO4 out (g/L)", "CCl out (g/L)"' 
  WRITE(22, *) 'Contaminant= ',loop 
  WRITE(22, "(a)") 'Title="Fraction of Mass Removed"' 
  WRITE(22, "(a)") ' "t" "FracMass " "FracOAM"' 
  WRITE(23, *) 'Contaminant= ',loop 
  WRITE(23, "(a)") 'Titles="Treatment efficiency"' 
  WRITE(23, "(a)") ' "PV" "Efficiency"' 
 
  COAMs = COAMsInit 
  COAMf = COAMfInit 
  CKMnO4 = 0.d0 
  MnO2 = 0.d0 
  CCl = 0.d0 
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  Sw = 1 - Sn(loop, :) 
 
  PRINT *, Sn(loop, napltopblc) 
  Sninit = Sn 
 
  MasstoNAPL = 0.d0 
 
  do t = 0, tmax(loop)/(2.*dt) 
 
    if (t .gt. 5*60/(2.*dt)) then 
      QWell = 0.d0 
      q = QWell/2./pi/rwell/hwell 
    else 
      MassMnO4 = QWell*CKMnO4well*(t*2.*dt) 
    end if 
 
    qKMnO4 = q*CKMnO4well 
 
    !Transport of KMnO4 
    call Transport(Qwell, hwell, Sw*n, nblc, vw, vp, ve, rw, rp, re, Dw1, De1, alphar, 
DmolKMnO4,& 
    &aW1, aP1, aE1, dr, A1, B1, CKMnO4, theta, dt, qKMnO4/Sw(1)/n, RunMode) 
    !Transport of NAPL 
    call Transport(Qwell, hwell, Sw*n, nblc, vw, vp, ve, rw, rp, re, Dw2, De2, alphar, 
DmolNAPL,& 
    &aW2, aP2, aE2, dr, A2, B2, CNAPL(loop, :), theta, dt, qNAPL(loop)/Sw(1)/n, 
RunMode) 
    !Transport of Tracer 
    call Transport(Qwell, hwell, Sw*n, nblc, vw, vp, ve, rw, rp, re, Dw3, De3, alphar, 
DmolCl,& 
    &aw3, ap3, ae3, dr, A3, B3, CCl, theta, dt, qCl/Sw(1)/n, RunMode) 
 
 !   C=0.d0 
 !   do i=1, nblc 
 !     C=C+CKMnO4(i)*Vol(i) 
 !   end do 
 
    !Mass Transfer Parameters 
    Reynolds = vp*rhow*d50/muw 
    do i=napltopblc, naplbottomblc 
      alphap(i) = 1.0*4.13*(d50/0.0005)**0.673*U**0.369/SnInit(loop, i)**betap2 
    end do 
    Sh=alphap*Reynolds**betap1*Sn(loop,:)**betap2 
    km=0 
    km(loop, 1:nblc) = Sh*DmolwNAPL/d50**2       !Mass Transfer Coefficient (1/s) 
!    km=km/2000 
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    !Update Mass 
    MassAtT = 0 
    COAMAtT = 0 
    do i = 1, nblc 
      k1 = km(loop, i)*(CSat(loop, i)-CNAPL(loop, i)) 
      k2 = km(loop, i)*(CSat(loop, i)-(CNAPL(loop, i)+k1*0.5*dt*2.)) 
      k3 = km(loop, i)*(CSat(loop, i)-(CNAPL(loop, i)+k2*0.5*dt*2.)) 
      k4 = km(loop, i)*(CSat(loop, i)-(CNAPL(loop, i)+k3*dt*2.)) 
      if (Mass(loop, i)<1./6.*(k1+2.*k2+2.*k3+k4)*2.*dt*Vol(i)*Sw(i)*n) then 
        CNAPL(loop, i) = CNAPL(loop, i) + Mass(loop, i) 
        Mass(loop, i) = 0 
      else 
        Mass(loop, i) = Mass(loop, i) - 1./6.*(k1+2.*k2+2.*k3+k4)*2.*dt*Vol(i)*Sw(i)*n 
!        if (i>napltopblc .and. t>1) then 
!          PRINT *, CNAPL(loop, i) 
!        endif 
        CNAPL(loop, i) = CNAPL(loop, i) + 1./6.*(k1+2.*k2+2.*k3+k4)*2.*dt 
!        if (i>napltopblc .and. t>1) then 
!          PRINT *, CNAPL(loop, i) 
!          pause 
!        endif 
      endif 
      MassAtT(loop) = MassAtT(loop) + Mass(loop, i) 
    end do 
 
    !Reaction Terms - Solved using Runge Kutta 
 
    kOAMSlow = e/(1+f*(MnO2)**g)/60./1000. 
    kMnO4slow = kOAMslow/beta/n 
    CsorbedOld = Csorbed 
!    MasstoNAPL =0.d0 
    do i = 1, nblc 
      CTCEold = CNAPL(loop, i) 
      call reaction(kMnO4slow(i), kOAMfp, kOAMSlow(i), kOAMf, CKMnO4(i), 
CNAPL(loop, i), COAMs(i), COAMf(i), 1, &            !For Multi component NAPL, 1= 
NAPLComp 
      &2*dt, kNAPL(loop), kNAPLp(loop), FromNAPL, MnO2blc) 
      delTCE = CTCEold - CNAPL(loop, i) 
      CCl(i) = CCl(i) + delTCE*0.8099           !converting reacted TCE to chloride 
      foc=(COAMs(i)+COAMf(i))*focRatio 
      Csorbed(i) = CNAPL(loop, i)/(foc*Koc(loop)*rhob) 
      CNAPL(loop, i) = CNAPL(loop, i) - rhob*foc*Koc(loop)*(Csorbed(i)-
CsorbedOld(i)) 
      COAMAtT = COAMAtT + COAMf(i)*1./nblc + COAMs(i)*1./nblc 
      MasstoNAPL = MasstoNAPL + FromNAPL*Vol(i)*n 
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      MnO2(i) = MnO2(i) + MnO2blc*Vol(i)*n/(Vol(i)*(1-n)*rhob) 
    end do 
 
    !Update Densities and Saturations 
    do i = napltopblc, naplbottomblc 
      Sn(loop,i) = Mass(loop,i)/(Density(loop)*n*Vol(i)) 
    end do 
    Sw = 1 - Sn(loop, :) 
 
    !2nd Transport of KMnO4 
    call Transport(Qwell, hwell, Sw*n, nblc, vw, vp, ve, rw, rp, re, Dw1, De1, alphar, 
DmolKMnO4,& 
    &aW1, aP1, aE1, dr, A1, B1, CKMnO4, theta, dt, qKMnO4/Sw(1)/n, RunMode) 
    !2nd Transport of NAPL 
    call Transport(Qwell, hwell, Sw*n, nblc, vw, vp, ve, rw, rp, re, Dw2, De2, alphar, 
DmolNAPL,& 
    &aW2, aP2, aE2, dr, A2, B2, CNAPL(loop, :), theta, dt, qNAPL(loop)/Sw(1)/n, 
RunMode) 
    !2nd Transport of Tracer 
    call Transport(Qwell, hwell, Sw*n, nblc, vw, vp, ve, rw, rp, re, Dw3, De3, alphar, 
DmolCl,& 
    &aw3, ap3, ae3, dr, A3, B3, CCl, theta, dt, qCl/Sw(1)/n, RunMode) 
 
!    if (t*2.0*dt/60>40) then 
!      PRINT *, MassAtT(loop) 
!      pause 
!    end if 
!    PRINT *, t*2.0*dt/60, CKMnO4(1)/1000., COAMf(1), COAMs(1), CNAPL(loop, 1) 
!    pause 
    if (RunMode==1) then 
      if (MOD(t, 30/dt)==0) then 
        WRITE (21,*) t*2.0*dt*Qwell/(hwell*rmax*n), CNAPL(loop, nblc)/1000., 
CKMnO4(nblc)/1000., CCl(nblc) 
        WRITE (22,*) t*2.0*dt*Qwell/(hwell*rmax*n), MassAtT(loop)/MassInit(loop), 
COAMAtT/(COAMsInit+COAMfInit) 
        PRINT *, t*2.0*dt/60, CKMnO4(nblc)/1000., COAMf(nblc), COAMs(nblc) 
        if (t>0) then 
          WRITE (23,*) t*2.0*dt*Qwell/(hwell*rmax*n), -
1.*MasstoNAPL/MassMnO4*100 
!          PRINT *,t*2.0*dt*Qwell/(hwell*rmax*n), -1.*MasstoNAPL/MassMnO4*100 
        end if 
      end if 
    ELSEIF (RunMode==2) then 
      if (MOD(t, 30/dt)==0) then 
        WRITE (21,*) t*2.0*dt/60, CNAPL(loop, nblc)/1000., CKMnO4(nblc)/1000., 
CCl(nblc) 
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        WRITE (22,*) t*2.0*dt/60, MassAtT(loop)/MassInit(loop), 
COAMAtT/(COAMsInit+COAMfInit) 
        PRINT *, t*2.0*dt/60, CKMnO4(nblc)/1000., COAMf(nblc), COAMs(nblc) 
        if (t>0) then 
          WRITE (23,*) t*2.0*dt/60, -1.*MasstoNAPL/MassMnO4*100 
!          PRINT *,t*2.0*dt*Qwell/(hwell*rmax*n), -1.*MasstoNAPL/MassMnO4*100 
        end if 
      end if 
    end if 
  end do 
 
end do 
 
100 continue 
 
CLOSE (Unit = 11) 
CLOSE (Unit = 12) 
CLOSE (Unit = 13) 
CLOSE (Unit = 14) 
CLOSE (Unit = 15) 
CLOSE (Unit = 21) 
CLOSE (Unit = 22) 
CLOSE (Unit = 23) 
 
 
end program 
 
!---SUBROUTINES 
!---Transport subroutine 
subroutine Transport(Q, h, por, big, v1, v2, v3, r1, r2, r3, D1, D3, alpha, D,& 
  &a1, a2, a3, delta, A, B, C, theta, deltat, flux, RunMode) 
 
  implicit none 
  real (KIND=8) :: Q, h 
  integer :: big, RunMode 
  real (KIND=8) :: v1(big), v2(big), v3(big), por(big) 
  real (KIND=8) :: r1(big), r2(big), r3(big) 
  real (KIND=8) :: D1(big), D3(big) 
  real (KIND=8) :: alpha, D 
  real (KIND=8) :: a1(big), a2(big), a3(big) 
  real (KIND=8) :: delta 
  real (KIND=8) :: A(big,3), B(big), C(big) 
  real (KIND=8) :: theta, deltat, flux 
 
  !---Velocities at faces and centroids (m/s) 
  if (RunMode==1) then                  !Linear solution 
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    call velocitycalc_lin(v1, v2, v3, Q, h, por, big) 
  ELSEIF (RunMode == 2) then            !Radial solution 
    call velocitycalc(v1, v2, v3, r1, r2, r3, Q, h, por, big) 
  end if 
 
  !---Dispersion constants for KMnO4 and aqueous TCE (m2/s) 
  call Dispcalc(D3, D1, v3, v1, alpha, D, big) 
 
  !---Matrix coefficients for KMnO4 
  call acalcup(a1, a2, a3, v1, v3, D1, D3, r1, r2, r3, delta, big) 
  call acalcup_type3(a1(1), a2(1), a3(1), v3(1), D3(1), r2(1), r3(1), delta) 
  call acalcup_type4(a1(big), a2(big), a3(big), v1(big), v3(big)& 
  &, D1(big), D3(big), r1(big), r2(big), r3(big), delta) 
 
  !---Advective Diffusive Transport for dt 
  call makeA(A, theta, a1, a2, a3, deltat, big) 
  call makeB_Type34(B, C, theta, a1, a2, a3, deltat, flux, big, r1(1), r2(1), delta) 
 
  !---Solve for Aqueous Concentrations 
  call thomas(A, C, B, big, big) 
 
 
end subroutine 
 
!---Reaction Subroutine 
 
subroutine reaction(kOAMsp, kOAMfp, kOAMs, kOAMf, CKMnO4, CNAPL, COAMs, 
COAMf, NAPLComp, & 
&dt, kNAPL, kNAPLp, FromNAPL, MnO2) 
 
  implicit none 
  INTEGER:: NAPLComp, i 
  REAL (KIND=8)::dt 
  REAL (KIND=8)::kOAMs, kOAMsp, kOAMf, kOAMfp 
  REAL (KIND=8)::CKMnO4, CKMnO4old, COAMs, COAMsold, COAMf, COAMfold 
  REAL (KIND=8)::CNAPL(NAPLComp), CNAPLold(NAPLComp), 
kNAPL(NAPLComp), kNAPLp(NAPLComp), CSat(NAPLComp), km(NAPLComp) 
  REAL (KIND=8)::kn1(NAPLComp), kn2(NAPLComp), kn3(NAPLComp), 
kn4(NAPLComp) 
 
  !Runge Kutta parameters s=OAMs, f=OAMf, m=permanganate 
  REAL (KIND=8):: ks1, ks2, ks3, ks4, kf1, kf2, kf3, kf4,  km1, km2, km3, km4 
  Real (KIND=8):: P1, P2, P3, P4, FromNAPL, MnO2 
 
  !Updating Old concentrations 
  CKMnO4old = CKMnO4 
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  CNAPLold = CNAPL 
  COAMsold = COAMs 
  COAMfold = COAMf 
 
  P1 = 0.d0 
  P2 = 0.d0 
  P3 = 0.d0 
  P4 = 0.d0 
 
!Runge Kutta stuff 
  ks1 = -kOAMsp*CKMnO4*COAMs 
  kf1 = -kOAMfp*CKMnO4*COAMf 
  km1 = -kOAMf*CKMnO4*COAMf - kOAMs*CKMnO4*COAMs 
  do i = 1, NAPLComp 
    kn1(i) = -kNAPLp(i)*CKMnO4*CNAPL(i) 
    P1 = - kNAPL(i)*CKMnO4*CNAPL(i) 
    km1 = km1 - kNAPL(i)*CKMnO4*CNAPL(i) 
  end do 
 
  ks2 = -kOAMsp*(CKMnO4+km1*0.5*dt)*(COAMs+ks1*0.5*dt) 
  kf2 = -kOAMfp*(CKMnO4+km1*0.5*dt)*(COAMf+kf1*0.5*dt) 
  km2 = -kOAMf*(CKMnO4+km1*0.5*dt)*(COAMf+kf1*0.5*dt) - 
kOAMs*(CKMnO4+km1*0.5*dt)*(COAMs+ks1*0.5*dt) 
  do i = 1, NAPLComp 
    kn2(i) = -kNAPLp(i)*(CKMnO4+km1*0.5*dt)*(CNAPL(i)+kn1(i)*0.5*dt) 
    P2 = - kNAPL(i)*(CKMnO4+km1*0.5*dt)*(CNAPL(i)+kn1(i)*0.5*dt) 
    km2 = km2 - kNAPL(i)*(CKMnO4+km1*0.5*dt)*(CNAPL(i)+kn1(i)*0.5*dt) 
  end do 
 
  ks3 = -kOAMsp*(CKMnO4+km2*0.5*dt)*(COAMs+ks2*0.5*dt) 
  kf3 = -kOAMfp*(CKMnO4+km2*0.5*dt)*(COAMf+kf2*0.5*dt) 
  km3 = -kOAMf*(CKMnO4+km2*0.5*dt)*(COAMf+kf2*0.5*dt) - 
kOAMs*(CKMnO4+km2*0.5*dt)*(COAMs+ks2*0.5*dt) 
  do i = 1, NAPLComp 
    kn3(i) = -kNAPLp(i)*(CKMnO4+km2*0.5*dt)*(CNAPL(i)+kn2(i)*0.5*dt) 
    P3 = - kNAPL(i)*(CKMnO4+km2*0.5*dt)*(CNAPL(i)+kn2(i)*0.5*dt) 
    km3 = km3 - kNAPL(i)*(CKMnO4+km2*0.5*dt)*(CNAPL(i)+kn2(i)*0.5*dt) 
  end do 
 
  ks4 = -kOAMsp*(CKMnO4+km3*dt)*(COAMs+ks3*dt) 
  kf4 = -kOAMfp*(CKMnO4+km3*dt)*(COAMf+kf3*dt) 
  km4 = -kOAMf*(CKMnO4+km3*dt)*(COAMf+kf3*dt) - 
kOAMs*(CKMnO4+km3*dt)*(COAMs+ks3*dt) 
  do i = 1, NAPLComp 
    kn4(i) = -kNAPLp(i)*(CKMnO4+km3*dt)*(CNAPL(i)+kn3(i)*dt) 
    P4 = - kNAPL(i)*(CKMnO4+km3*dt)*(CNAPL(i)+kn3(i)*dt) 
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    km4 = km4 - kNAPL(i)*(CKMnO4+km3*dt)*(CNAPL(i)+kn3(i)*dt) 
  end do 
 
  FromNAPL = 1./6.*(P1+2.*P2+2.*P3+P4)*dt 
  MnO2 = -1./6.*(km1+2.*km2+2.*km3+km4)*dt + 1./6.*(P1+2.*P2+2.*P3+P4)*dt 
  CKMnO4 = CKMnO4old + 1./6.*(km1+2.*km2+2.*km3+km4)*dt 
  do i = 1, NAPLComp 
    CNAPL(i) = CNAPLold(i) + 1./6.*(kn1(i)+2.*kn2(i)+2.*kn3(i)+kn4(i))*dt 
  end do 
 
  COAMs = COAMsold + 1./6.*(ks1+2.*ks2+2.*ks3+ks4)*dt 
  COAMf = COAMfold + 1./6.*(kf1+2.*kf2+2.*kf3+kf4)*dt 
 
end subroutine 
 
 
 
!---Calculation of velocities for radial solution!!! 
subroutine velocitycalc(v1, v2, v3, r1, r2, r3, Q, h, por, big) 
  implicit none 
  integer :: big 
  real (KIND=8) :: v1(big), v2(big), v3(big), r1(big), r2(big), r3(big), por(big) 
  real (KIND=8) :: Q, h, pi 
 
 
  pi=3.14159 
 
  v1 = Q/2.0/pi/h/por/r1 
  v2 = Q/2.0/pi/h/por/r2 
  v3 = Q/2.0/pi/h/por/r3 
end subroutine 
 
!---Calculation of Dispersion constants 
subroutine Dispcalc(D1, D2, v1, v2, alpha, D, big) 
  implicit none 
  integer :: big 
  real (KIND=8) :: D1(big), D2(big), v1(big), v2(big) 
  real (KIND=8) :: alpha, D 
 
 
  D1 = alpha*v1 + D 
  D2 = alpha*v2 + D 
 
end subroutine 
 
!---Calculation of matrix coefficients for upstream scheme 
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subroutine acalcup(a1, a2, a3, v1, v3, D1, D3, r1, r2, r3, delta, big) 
  implicit none 
  integer :: big 
  real (KIND=8) :: a1(big), a2(big), a3(big) 
  real (KIND=8) :: v1(big), v3(big), D1(big), D3(big) 
  real (KIND=8) :: r1(big), r2(big), r3(big) 
  real (KIND=8) :: delta 
 
 
  a1 = (v1*r1/delta + D1*r1/delta**2)/r2 
  a2 = (-D1*r1/delta**2-v3*r3/delta - D3*r3/delta**2)/r2 
  a3 = (D3*r3/delta**2)/r2 
end subroutine 
 
!---Calculation of matrix coefficients for Type 3 inflow, upstream scheme 
subroutine acalcup_type3(a1, a2, a3, v3, D3, r2, r3, delta) 
  implicit none 
  real (KIND=8) :: a1, a2, a3, v3, D3, r2, r3, delta 
 
  a1 = 0 
  a2 = (-v3*r3/delta - D3*r3/delta**2)/r2 
  a3 = (D3*r3/delta**2)/r2 
end subroutine 
 
!---Calculation of matrix coefficients for Type 4 outflow, updtream scheme 
subroutine acalcup_type4(a1, a2, a3, v1, v3, D1, D3, r1, r2, r3, delta) 
  implicit none 
  real (KIND=8) :: a1, a2, a3, v1, v3, D1, D3, r1, r2, r3, delta 
 
  a1 = (v1*r1/delta + D1*r1/delta**2-D3*r3/delta**2)/r2 
  a2 = (-D1*r1/delta**2 - v3*r3/delta + D3*r3/delta**2)/r2 
  a3 = 0 
end subroutine 
 
!---Assemble stiffness function matrix 
subroutine makeA(A, theta, a1, a2, a3, deltat, big) 
  implicit none 
  integer :: big 
  real (KIND=8) :: A(big, 3) 
  real (KIND=8) :: a1(big), a2(big), a3(big) 
  real (KIND=8) :: deltat, theta 
 
 
  A(:, 1) = -theta*a1 
  A(:, 2) = -theta*a2 + 1/deltat 
  A(:, 3) = -theta*a3 
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  A(1, 1) = 0 
  A(big, 3) = 0 
end subroutine 
 
!---Assemble forcing function matrix for Type 3 inflow and Type 4 outflow 
subroutine makeB_Type34(B, C, theta, a1, a2, a3, deltat, flux, big, r1, r2, delta) 
  implicit none 
  integer :: big 
  real (KIND=8) :: B(big), C(big), a1(big), a2(big), a3(big) 
  real (KIND=8) :: deltat, theta, flux, r1, r2, delta 
 
 
  B(2: big-1) = (1 - theta)*(a1(2: big-1)*C(1: big-2) + a2(2: big-1)*C(2: big-1)& 
  &+ a3(2: big-1)*C(3: big)) + C(2: big-1)/deltat 
  B(1) = (1 - theta)*(a2(1)*C(1)+a3(1)*C(2)) + flux*r1/delta/r2 + C(1)/deltat  !for 
Type 3 inflow 
  B(big) = (1 - theta)*(a1(big)*C(big - 1) + a2(big)*C(big)) + C(big)/deltat  !for 
Type 4 outflow 
end subroutine 
 
!---Matrix solver 
subroutine thomas (aa, uu, ff, nn, mndf) 
 
 implicit real (KIND=8)(a-h, o-z) 
 dimension aa(mndf, 3), uu(mndf), ff(mndf) 
 
! decompose a 
 do 10 i = 2, nn 
   aa(i, 1) = aa(i, 1)/aa(i-1, 2) 
 10   aa(i, 2) = aa(i, 2) - aa(i, 1)*aa(i-1, 3) 
  
! forward substitution 
 uu(1) = ff(1) 
 do 20 i = 2, nn 
 20   uu(i) = ff(i) - aa(i, 1)*uu(i-1) 
  
! backward substitution 
 uu(nn) = uu(nn)/aa(nn, 2) 
 do 30 k = 2, nn 
   i = nn - k + 1 
 30   uu(i) = (uu(i) - aa(i,3)*uu(i+1))/aa(i,2) 
 
 return 
 end      
 
!---Calculation of velocities for linear scenario 
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subroutine velocitycalc_lin(v1, v2, v3, Q, h ,por, big) 
  implicit none 
  integer :: big 
  real (KIND=8) :: v1(big), v2(big), v3(big), por(big) 
  real (KIND=8) :: Q, h 
 
 
  v1 = Q/h/por   !If linear, why are we bothering with V1, V2, and V3??? 
  v2 = Q/h/por 
  v3 = Q/h/por 
end subroutine 
 
subroutine decomp(N, A, B) 
 
  implicit none 
  INTEGER :: N, I, J, K 
  REAL (KIND=8) :: Ratio 
  REAL (kind=8), DIMENSION (:) :: B(N) 
  REAL (KIND=8), DIMENSION (:,:) :: A(N, N) 
 
  DO I = 1, N 
    do J = I+1, N 
      if (A(I, I) == 0) then 
        Ratio = 0.d0 
      else 
        Ratio = A(J, I)/A(I, I) 
      end if 
      do K = I+1, N 
        A(J, K) = A(J, K) - A(I, K)*Ratio 
      end do 
      B(J) = B(J) - B(I)*Ratio 
    end do 
  END DO 
 
end subroutine 
 
subroutine bsub(N, A, X, B) 
 
  implicit none 
  INTEGER :: N, I, J 
  REAL (KIND=8) :: SumAB 
  REAL (KIND=8), DIMENSION (:) :: X(N), B(N) 
  REAL (KIND=8), DIMENSION (:,:) :: A(N, N) 
 
  DO I = N, 1, -1 
    SumAB = B(I) 
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    do J = I+1, N 
      SumAB = SumAB-A(I, J)*X(J) 
    end do 
    if (A(I, I) == 0) then 
      X(I) = 0 
    else 
      X(I) = SumAB/A(I, I) 
    end if 
 
  END DO 
end subroutine 
 


