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Controller Gain Optimization for Position Control of

an SMA Wire

There has been an increasing interest in the field of ‘smart structures’ and ‘smart materials’.

In constructing smart structures, a class of materials called smart materials are often used

as sensors and actuators. An example of a smart material is shape memory alloy (SMA).

A common actuator configuration uses an SMA wire with a constant load. The non-linear

input-output behaviour of SMAs, known as hysteresis, made them difficult to model and

control.

The research in this thesis examines the effect of PID-controller gain optimization on

SMA wire control at different frequencies of operation. A constant-load SMA wire actuator

with a PID-controller is used in the study. Heat is applied to the wire using an input electric

current. The system is cooled through convection with the surrounding area. The lack of

active cooling prevents the system from operating at high frequencies.

Three different cost functions are proposed for various applications. The Preisach

model is chosen to model the hysteretic behaviour of the SMA wire contraction. Varying

material properties such as electrical resistance and heat capacities are modelled to give

a more accurate representation of the system’s physical behaviour. Simulations show that

by optimizing the controller gain values, the bandwidth of the system is improved.

An interesting observation is made in the heating cycle of the SMA wire. In order to

achieve faster cooling, overshoot is observed at low frequencies. This is a result of the

system hysteresis. The system hysteresis allows different input signals to achieve the same

output value. Since the rate of cooling is proportional to the temperature above ambient,

better cooling is achieved by reaching a higher temperature. The error caused by the

overshoot is compensated by the better cooling phase, which is not actively controlled.
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Chapter 1

Introduction

There has been an increasing interest in the field of ‘smart structures’ and ‘smart materials’.

Smart structures are designed to adapt to changes in their surrounding environment, such

as vibrations or airflow, by adjusting their shape or other physical properties such as

stiffness. In constructing smart structures, a class of materials called smart materials are

often used as sensors and actuators. An example of a smart material is shape memory alloy

(SMA). As the name suggests, SMAs possess the ability to ‘remember’ an undeformed

shape. An SMA wire under load contracts when it is heated, and returns to its initial

length upon cooling. A commonly used shape memory alloy is a nickel-titanium alloy

called nitinol. We will concentrate on the application of SMA wires as actuators.

There are many advantages to using SMAs in actuator applications. It is shown in [27]

that SMAs have a very high power to weight ratio among common actuators. Power to

weight ratio is the amount of power generated per kilogram of actuator. Motors tends to

yield high power, but at the same time they can be very heavy. The most intriguing finding

is that even at very small scales, SMAs maintain a high power to weight ratio. This is

useful if weight is a concern in the structure. For example, in the three-link robotic arm

discussed in [1], the inertia and moments that the SMA actuators add to the dynamics of

the arm are found to be negligible due to their light weight.

SMA actuators are also very simple and quiet. This is because the actual material can

be used for actuation without addition of mechanical parts. The simplest SMA actuator

is a constant-load SMA wire. Upon heating, the wire goes through a phase change and
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2 Controller Gain Optimization for Position Control of an SMA Wire

contracts due to an associated change in material modulus. As it cools, the wire returns

to its original length. Since heating can be done by applying electric current through the

wire, electric power is converted to do mechanical work using the material alone.

Despite the advantages mentioned above, there are drawbacks to using SMAs for various

applications. The phase change in SMAs exhibits a highly nonlinear behaviour called

hysteresis. Hysteresis of these materials makes them very difficult to model. Hysteresis

models can be divided into two categories: physical and phenomenological. Physical models

relate the physical properties of the material such as internal energy with the hysteretic

behaviour. Phenomenological models produce behaviours similar to the physical system,

but the parameters used in the models do not necessarily have any physical meaning.

Hence it is often difficult to identify these parameters experimentally.

The phase transformation involves heating and cooling the material to different tem-

peratures. In most applications, heating is done by applying current through the wire. The

cooling of SMAs can be difficult in practice since active cooling mechanisms will add more

weight and complexity to the actuator. Cooling by heat convection to the surrounding

environment is slow and this prevents the actuators from operating at high frequencies.

This problem is reduced in situations where the system is operating in high altitudes, as

in airplane wings and helicopter blades, due to lower ambient temperature and air flow.

Underwater applications also allow for more efficient cooling as discussed in the review by

Seelecke and Müller [49].

1.1 Thesis Goals

In the case where active cooling methods are not used, the slow cooling of the SMA material

limits the frequencies of operation. Hence, it is worthwhile to study the control of SMA

wires without active cooling mechanisms. The goal of this work is to study a closed-loop

position control system: an SMA wire under constant load with a proportional-integral-

derivative(PID) controller. The wire contraction is required to reach specified periodic

target values. Optimal control is applied to try to improve the cooling time by heating the

wire ‘just enough’, allowing the system to operate at higher frequencies.
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1.2 Outline

This work is organized as follows. Chapter 2 provides background on modeling shape mem-

ory alloys. Actuator designs using SMAs are discussed. Different modelling approaches are

mentioned. A state-space representation for the most common model, the Preisach model

is described. Model identification using experimental data is briefly discussed.

A summary of research on the control of shape memory alloys is given in Chapter 3.

A brief background on dissipativity theory is presented. Results on the dissipativity of

the Preisach model are given and the application to control discussed. Optimal control

strategies in various smart structures applications are discussed. An example of an inverse

model used to reduce hysteretic nonlinearity is given.

Chapter 4 provides the framework for the optimal control problem. The control objec-

tives using the SMA wire actuator are described. An attempt to derive a derivative for

the Preisach model is given. Different optimization algorithms that do not require deriva-

tive information are investigated. The Nelder-Mead simplex algorithm for optimization is

chosen and described in the chapter.

In Chapter 5, the numerical implementation of the optimal control problem is discussed.

Different numerical methods are compared to reduce the simulation time of the model.

A number of cost functions are considered for optimization. The numerical results are

presented and discussed in Chapter 6. The final chapter describes the contributions of this

work and future research directions.





Chapter 2

SMA Modelling

This chapter provides background on modeling shape memory alloys. A physical de-

scription of the SMA phase transformation is given. A state-space representation for

the Preisach model is described. Model identification using experimental data is briefly

discussed. It provides the foundation for simulating the SMA wire behaviour in the control

problems discussed later.

2.1 Physical Behaviour

Hysteresis is a phenomenon that appears in a variety of ferromagnetic and electromag-

netic materials. For static hysteretic systems, the output only depends on the past input

extrema, and not the rate at which the input is applied. Static hysteresis is also called

rate-independent hysteresis. Assume we have two inputs u1(t) and u2(t) having the same

maximum and minimum values, but the signals are not necessarily identical. Then, a static

hysteretic system will produce identical input-output graphs for the same initial conditions.

Hysteretic behaviour is observed in smart materials, including SMAs. A commonly used

shape memory alloy is a nickel-titanium alloy called nitinol. As temperature changes, niti-

nol goes through a continuous phase change between martensite and austenite crystalline

phases.

At low temperatures, the alloy is in full martensite state. As the material is heated,

fractions of the alloy become austenite. The percentage of the alloy that is in the austenite

5
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Figure 2.1: SMA Phase Transition Hysteresis Loop

state is called the austenite phase fraction. The phase transformation is characterized by

a hysteresis loop as in Figure 2.1. As the alloy is heated, it changes from full martensite

to austenite continuously between temperatures As and Af . Similarly, it changes from full

austenite to martensite between temperatures Ms and Mf during cooling.

During the phase transformation, the Young’s modulus of the material changes as a

function of phase fraction. Consider a wire with length l with a constant load of mass m,

which corresponds to fixed strain at room temperature (see Figure 2.2). When the wire is

heated, it goes through a phase change from martensite to austenite. The phase change

results in an increase in stiffness, and hence reduced strain. On the other hand, when the

wire is cooled, it goes through a phase change from austenite to martensite. The opposite

happens and as the stiffness of the wire decreases, strain is increased.

This phase transformation process provides a way to convert electricity into mechanical

work. Besides the constant load actuator of Figure 2.2, there are other actuator config-

urations using SMAs. In [21, 22], a series of springs made of SMAs are used to control

vibrations for a rotor-bearing system. By heating the individual springs, the authors are

able to change the spring constants and alter the damping of the overall system. SMAs are

also used in making adaptive tuned vibration absorbers (ATVA) [47]. Heating or cooling

of the SMA changes its stiffness and thus tunes the frequency of the ATVA.

In [17], a constant-load wire similar to Figure 2.2 is used and stability results on PI-
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Figure 2.2: Constant-load SMA Wire Actuator

controllers are given. The modelling and control of two types of SMA actuators are dis-

cussed in [36]. The first is a differential type with two SMA wires. One wire is heated

while the other cools and the contraction of these wires create the differential mechanism.

Another actuator is a bias type with an SMA wire and a bias spring. The bias spring acts

as reverse actuation to the wire during cooling.

Torsional actuators using SMAs are discussed in [45]. An SMA rod or tube is pre-twisted

and connected to a torsional spring. As the temperature increases, the actuator attempts

to return to its pre-twisted configuration, and thus it applies a torque to the torsional

spring. This type of actuator is used to change the rotor twist of tilt-rotor aircrafts to

accommodate both hover and forward flight modes.

The constant-load actuator will be studied in this work. The position of the mass can

be measured by the wire contraction. Controlling the wire contraction means controlling

the material phase fraction. To control the phase fraction, the temperature of the wire

needs to be controlled. In the actuator setup, temperature is controlled through an applied

electric current. A good simulation model for the system’s hysteretic behaviour is needed

for the controller gains optimization.

We first take a look at the simplest case of hysteretic systems, a relay. The simple

relay can be found, for example, in valves where a certain threshold needs to be reached

before the valve is turned on or off. To illustrate the memory of the hysteresis, we use a

simple relay γ1,0 that is centred at 0 with half-width 1 and output values of -1 and +1 as
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Figure 2.3: A Simple Relay

Figure 2.4: Relay Input

illustrated in Figure 2.3. The input-output behaviour of the relay can be defined as:

[γ1,0u(t)] = y(t) =


1, if u ≥ 1

y(t− ε), if − 1 < u < 1

−1, if u ≤ −1

(2.1)

for small ε > 0.

Suppose the input signal u(t) is as shown in Figure 2.4. Starting at t = 0, the input

is at u = −2, therefore the output is at y = −1. As we increase the input signal up to

point A in Figure 2.4, the output will remain at y = −1. Once the input passes u = 1,

the output value will switch to y = +1. At point B, the output of the system would have
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Figure 2.5: Relay Output

followed the path shown on the left in Figure 2.5. If we now decrease the output to point

C, since the system has memory, the output remains at y = +1. Once the input decreases

past u = −1, the output will also switch to y = −1. Arriving at point D, the output would

have followed the path shown on the right in Figure 2.5.

Hysteretic systems are classified by the type of memory they exhibit. A local memory

hysteretic system’s future output only depends on the current output and current input

values. The simple relay in the previous example is a local memory hysteretic system. A

non-local memory hysteretic system’s future output depends on current output and the

history of input extrema.

The non-local memory of the hysteresis in SMAs creates branches and minor loops

inside the main hysteresis loop. Figure 2.6 shows an example of an input-output map of a

sample hysteretic system. The major loop bounds the region between the input and output

saturation values. Branches are created as the input changes. New branches are created

only when an input reversal occurs. Successive branches inside the major loop may cross

to create minor loops.

2.2 SMA Modelling

There are numerous models used to describe hysteretic systems. The Preisach model [38]

was originally used to describe hysteresis in magnetic materials, but the generality of the

model made it a suitable candidate for modelling smart materials as well. The mathe-
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Figure 2.6: Branches and Loops in Hysteresis

matical models provide the tools for analysis, but often contain parameters that have no

physical meaning. A dynamic hysteresis model presented in [46] divides the hysteresis into

static and eddy current components. Simulation results show that the model agrees with

experimental measurements. A free energy model using Helmholtz and Gibbs free energy

relations is described in [51] for ferroelectric materials by looking at energies in the lattice

level.

In 1986, Jiles and Atherton [30] presented a mathematical model of the hysteresis

mechanism in ferromagnets. The model is based on the idea of domain wall movements.

The domain walls separate regions of the material of different polarity. When an external

magnetic field is applied, the interactions between different domains cause the domain walls

to move, and thus the magnetization of the overall material changes. The model can be

extended to other materials with hysteresis. In SMAs for example, the two ‘polarities’ can

be thought of as the martensite and austenite phases. A discussion on determining the

parameters for the Jiles-Atherton model is given in [43].

For this work, the Preisach model is chosen over the other models because it is very

easy to implement. The Preisach model is able to reproduce minor loops inside the main

hysteresis loop. This is due to the model’s ability to model non-local memory hysteresis.

The Preisach model simulation output has been shown to accurately reproduce experimen-
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tal data. Furthermore, the inverse of the Preisach model can be calculated using different

numerical methods, for example [28]. The model inverse is useful in reducing the effect of

hysteresis in control applications and is discussed later

In many cases, determining the parameters for a model can be very difficult. Model

identification and implementation of the Preisach model can be found in [38]. Mathematical

properties of the Preisach operator are discussed in [5]. In addition to its mathematical

properties, the Preisach model is based on the physical structure of magnetic materials. A

physical interpretation is often lacking in models that only try to fit the input-output map

of hysteresis using arbitrary equations. Furthermore, the Preisach model has been shown

to be suited for piezoceramic and shape memory alloy representation [26]. Because of this

generality, findings based on the Preisach model can be extended to other materials that

exhibit static hysteretic behaviour.

There are three steps to modelling electrically heated SMA wire actuators: converting

current to temperature, temperature to phase fraction and phase fraction to the output y

(cf. Figure 2.7). Temperature above ambient is the input to the Preisach model, but since

we cannot change temperature directly, an electric current is applied to the wire. The

heating model is used to convert input current to temperature.

The change in temperature causes a change in the phase fraction of the alloy. The

Preisach model structure captures the static hysteresis of the phase transition. The model

is identified through experimental data of the observable output y. Because the phase

fraction is not observable, the relationship between the phase transition and the output is

often incorporated in the model identification process. Since the Preisach model reproduces

only static hysteresis, this can only be done if the output depends only on the phase fraction

and no other dynamics are involved. This is the case for the constant load actuator of

Figure 2.2 investigated in this work and described in more detail later.

2.3 Preisach Model

In this section, we will look at the Preisach model and its state-space representation. We

will follow the formulation used in [15]. The input-output map of SMA wire studied in

this work, using the experimental data obtained in [14], is shown in Figure 2.8. The input
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Figure 2.7: Preisach Model Block Diagram

is the temperature in degrees Celsius above ambient and the output is wire contraction

measured in millimetres. The Preisach model reconstructs this relationship as a weighted

sum of relays. Each of these individual relays, γr,s, is characterized by the input offset s

and half-width r > 0 and has output of +1 or -1 (Figure 2.9). The weighting function is

denoted by µ(r, s), and the output at time t is given by the following weighted sum of the

relays

y(t) =

∫ ∞

−∞

∫ ∞

0

µ(r, s)[γr,su(t)]drds (2.2)

where [γr,su(t)] denotes the output of the relay γr,s subject to input u(t).

2.3.1 The Preisach Plane

Each of the relays used in the Preisach Model can be described by a point in the (r, s)-

plane. This plane is the domain P for the weighting function µ. Limitations exist for

the input signal u(t) for any physical system. One common limitation is input saturation

where the signal u(t) lies in the range [−usat, usat]. Input saturation can be a result of

the electrical limitation of the power supply. More importantly, in repeated applications,

overheating of the wire will damage its memory and thus shortens the wire’s lifetime.

This means that not all the relays in P will be used. The restricted domain, called the

Preisach Plane, is a triangle in P given by Pr = {(r, s) s.t. |s| ≤ usat− r} (cf. Figure 2.10).

The weighting function can be assumed to be zero outside the Preisach plane, hence µ has

compact support.
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Figure 2.8: Hysteresis Loop

Figure 2.9: A Relay of Centre s and Half-Width r
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Figure 2.10: The Preisach Plane

2.3.2 Boundary and Initial State

Recall that the system behaviour is dependent on input history, thus an initial state of

the relays is required. The weighting functions of magnetic materials are symmetric about

the origin, so a logical choice of the initial state is the boundary defined by s = 0. This

boundary ψ∗ represents relays with output of +1 if s < 0 and -1 if s > 0. In SMAs however,

the hysteresis is not symmetric about the origin, as shown previously in Figure 2.1.

Since the input to the SMA wire is temperature above ambient, which is always positive

without active cooling, the input range is shifted down to accommodate the symmetric

nature of the Preisach model. Given a temperature range from 0 to tempmax degrees

above ambient, u = 0 corresponds to tempmax

2
degrees above room temperature. −usat and

usat corresponds to room temperature and tempmax degrees above ambient respectively.

The boundary ψ∗SMA defined by the line s = −usat + r is chosen as an initial boundary.

This represents the system in negative saturation, or full martensite for the SMA wire at

room temperature.
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Figure 2.11: Boundary Evolution

The Preisach plane can be divided into two sets, P+(t) and P−(t), corresponding to

the relays that have output +1 and -1 at time t respectively. One can describe the changes

of P+(t) and P−(t) by following the evolution of the boundary, denoted ψ(t). By the

definition of the initial boundary ψ∗SMA, the set P+(t) is empty and P−(t) = Pr initially.

We will look at an example to illustrate the evolution of the Preisach plane and its

boundary, as shown in Figure 2.11. Assume that the input u(t) starts at negative saturation

and increases to u = 4 monotonically. As our input increases, relays that satisfy u = s+ r

switch from an output of -1 to +1 (Fig 2.11a). The part of P−(t) that lies below the

line s = u − r becomes a part of P+(t) as a result. P+(t) grows until a segment of the
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boundary reaches s = 4−r (Fig 2.11b). If we now decrease the input from u = 4 to u = −2

monotonically, relays that satisfy u = s − r switch from an output of +1 to -1. The part

of P+(t) that lies above the line s = u+ r now becomes a part of P−(t) (Fig 2.11c). P−(t)

grows until a segment of the boundary reaches s = −2 + r (Fig 2.11d).

Since the relays in the sets P+(t) and P−(t) have output values of +1 and -1 respectively,

the output function of the Preisach model in equation (2.2) can be rewritten as:

y(t) =

∫∫
P+(t)

µ(r, s)drds−
∫∫

P−(t)

µ(r, s)drds

=

∫∫
P+(t)

µ(r, s)drds−
[∫∫

P
µ(r, s)drds−

∫∫
P+(t)

µ(r, s)drds

]
= 2

∫∫
P+(t)

µ(r, s)drds−
∫∫

Pr

µ(r, s)drds (2.3)

Since P+(t) and P−(t) can be defined by the boundary ψ, the output of the Preisach model

can be written as a function of the boundary:

y(ψ) = 2

∫∫
P+(ψ)

µ(r, s)drds−
∫∫

Pr

µ(r, s)drds (2.4)

2.3.3 Wiping Out Property

The Preisach model is used to describe the class of rate independent or static hysteretic

systems. Rate independence means that the relationship between the input and output is

invariant to the frequency of the input. An important consequence of rate independence is

that the output of these systems only depends on the input extrema of the past, and not

all of the input history. This is called the wiping out property.

To illustrate this property, we will continue with the previous example, shown in Fig-

ure 2.12. Suppose now that the input is increased monotonically to u = 6. As before,

relays that satisfy u = s + r switch from an output of -1 to +1. The part of P−(t) that

lies below the line s = u − r becomes a part of P+(t) as a result (Fig 2.12b). P+(t)

grows until a segment of the boundary reaches s = 6− r (Fig 2.12d). Note that once the

boundary have moved past s = 4 − r (Fig 2.12c), the boundary segments corresponding

to the previous input extrema are “wiped out”(the dotted-line in Figure 2.12 represents
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Figure 2.12: Wiping Out Property

the previous boundary). We can represent the history of input extrema using a reduced

memory sequence, which will be discussed later.

2.4 Preisach Model as a Dynamical System

In order to employ the tools in control theory, one would prefer to work with a state space

representation where stability techniques such as Lyapunov and dissipativity theory may

be applied. The formulation is given in this section. We first introduce the definition of a

dynamical system as presented in [55]:
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Definition 2.4.1 A (continuous stationary) dynamical system Σ is defined through the

sets U , U , Y , Y, X and the maps φ and r. These satisfy the following axioms:

(i) U is called the input space and consists of a class of U-valued functions on R. The

set U is called the set of input values. The space U is assumed to be closed under

the shift operator, i.e., if u ∈ U then the function uT defined by uT (t) = u(t+T ) also

belongs to U for any T ∈ R;

(ii) Y is called the output space and consists of a class of Y -valued functions on R. The

set Y is called the set of output values. The space Y is assumed to be closed under

the shift operator, i.e., if y ∈ Y then the function yT defined by yT (t) = y(t+T ) also

belongs to Y for any T ∈ R;

(iii) X is an abstract set called the state space;

(iv) φ is called the state transition function and is a map from R2
+ ×X × U into X. It

obeys the following axioms:

(iv)a (consistency): φ(t0, t0, x0, u) = x0, ∀t0 ∈ R, x0 ∈ X, and u ∈ U ;

(iv)b (determinism): φ(t1, t0, x0, u1) = φ(t1, t0, x0, u2), ∀(t1, t0) ∈ R2
+, x0 ∈ X, and

u1, u2 ∈ U satisfying u1 = u2 for t0 ≤ t ≤ t1;

(iv)c (semi-group property): φ(t2, t0, x0, u) = φ(t2, t1, φ(t1, t0, x0, u), u), ∀t0 ≤ t1 ≤ t2,

x0 ∈ X, and u ∈ U ;

(iv)d (stationarity): φ(t1 + T, t0 + T, x0, uT ) = φ(t1, t0, x0, u), ∀(t1, t0) ∈ R2
+, T ∈ R,

x0 ∈ X, and u, uT ∈ U related by uT = u(t+ T ) ∀t ∈ R;

(v) r is called the read-out function and is a map from X × U into Y ;

(vi) the Y -valued function r(φ(t, t0, x0, u), u(t)) defined for t = t0 is, ∀x0 ∈ X, t0 ∈ R and

u ∈ U , the restriction to [t0,∞) of a function y ∈ Y. This means that ∃ y ∈ Y such

that y = r(φ(t, t0, x0, u), u(t)) for t ≥ t0.
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2.4.1 Input, Output and State Spaces

Definition 2.4.2 [15] The input space U is defined as the set of continuous real-valued

functions that satisfy

U =

{
u ∈ C0| |u| ≤ usat ∀t and lim

t→−∞
u(t) = u∗

}
where u∗ is the input value corresponding to the relaxed state of the system, for example at

room temperature. The boundedness of the inputs allow a bounded Preisach Plane Pr and

the limit restriction avoids discontinuity at the initial boundary.

Definition 2.4.3 [15] The output space Y is the set of continuous real-valued functions.

Note that both the input and output spaces are closed under the shift operator.

Definition 2.4.4 [15] The state space B is the set of continuous functions ψ : [0, usat] 7→
R with Lipschitz constant 1 and initial condition ψ(usat) = 0.

This definition ensures that the state space is complete and all elements of B are inside

the Preisach plane Pr.
A state-space representation is defined using the input, output and state spaces defined

above. The state-transition and read-out operators of the state-space representation for the

Preisach model are given in detail in Appendix A. The state-space representation allows

the use of dissipativity and Lyapunov theory to obtain stability results and is discussed

later.

2.4.2 Reduced Memory Sequences

As we have seen in the previous section on the wiping out property, only the a subset

of previous input extrema affects the output. Furthermore, once the input exceeds the

magnitude of the previous extrema, the history of these extrema is wiped out. At any time

t, we record the input extrema that have an effect on the output. An alternating sequence

of input extrema is formed. The magnitude of the values in the sequence is decreasing

and converges to the present input value u(t). This sequence is called the reduced memory

sequence.
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Figure 2.13: Sample Input Signal

Table 2.1: Reduced Memory Sequence

Reduced Memory Sequence

A {2}
B {2, -1}
C {2, -1, 1}
D {2, -3}
E {5}
F {5, -2}
G {5, -2, 3}
H {5, -2, 3, 1}
I {5, -2, 3, 1, 2}

We will use an example to illustrate the idea of reduced memory sequences. Suppose

we would like to record the extrema of the input shown in Figure 2.13. The extrema

are labeled from A to I and their corresponding reduced memory sequences are shown in

Table 2.1. Note that at point E, the new input extremum exceeds the previous extremum

A in magnitude, therefore the entire history up to that point is wiped out.

A reduced memory sequence stores the subset of input extrema that affects the current

output value. This reduces the memory needed in numerical simulations. Instead of

storing all the input values, only a countable set of input extrema and the current input

value are stored. The elements of the reduced memory sequence defines the corners of the
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Figure 2.14: Region Ω Corresponding to Output Change yα − yαβ

Preisach boundary. This property is used to implement the Preisach model efficiently and

is discussed in the following section.

2.5 Model Identification

In [38], Mayergoyz introduced a method to obtain information on the weighting surface

µ(r, s) from experimental data. The method uses first-order descending curves or FOD

curves. A first-order descending curve involves first bringing the system to negative sat-

uration. The input is then increased monotonically to a value α, and then decreased

monotonically to a value β. The output at the end of the sequence is recorded. The first-

order in the term ‘FOD’ comes from the fact that the input changes from increasing to

decreasing once, and it ends when the input is decreasing.

The formulation in [38] uses a different coordinate system for the Preisach plane. We

will develop a similar result with the (r, s)-plane configuration. Let yα denote the output

of the system after the input has increased monotonically to α from negative saturation

and let yαβ denote the output of the system after the input has further decreased to β from

α. Then the change in output during cooling, as a function of α and β is

F (α, β) = yα − yαβ.
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Using equation (2.4),

yα = 2

∫∫
P+(α)

µ(r, s)drds−
∫∫

Pr

µ(r, s)drds

yαβ = 2

∫∫
P+(αβ)

µ(r, s)drds−
∫∫

Pr

µ(r, s)drds

yα − yαβ = 2

∫∫
P+(α)

µ(r, s)drds− 2

∫∫
P+(αβ)

µ(r, s)drds (2.5)

where P+(α) and P+(αβ) denote the region P+ corresponding to outputs yα and yαβ

respectively. Equation (2.5) can be rewritten as

yα − yαβ = 2

∫∫
Ω

µ(r, s)drds (2.6)

where Ω is the region shown in Figure 2.14.

The relationship between the weighting surface µ and F , using Leibniz integral rule, is

given by

F (α, β) = 2

∫ α−β
2

0

∫ α−r

β+r

µ(r, s)dsdr

∂F

∂β
= 2

−1

2

∫ α+β
2

α+β
2

µ(
α− β

2
, s)ds︸ ︷︷ ︸

=0

+

∫ α−β
2

0

∂

∂β

(∫ α−r

β+r

µ(r, s)ds

)
dr


= 2

∫ α−β
2

0

∂

∂β

(∫ α−r

β+r

µ(r, s)ds

)
dr

= −2

∫ α−β
2

0

µ(r, β + r)dr

∂2F

∂α∂β
= −2

(
1

2
µ(
α− β

2
, β +

α− β

2
)

)
= −µ(

α− β

2
,
α+ β

2
) (2.7)

The output of the system is recorded for α and β in [−usat, usat]. A smooth surface is

fit onto the experimental data. The weighting surface µ(r, s) can be identified by differen-

tiating the fitted surface twice using equation (2.7). The weighting surface is mainly used
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in analysis and is not necessary for the purposes of this work. Furthermore, differentiating

a fitted surface and then integrating again will introduce unwanted errors for a small ex-

perimental data set. Fortunately, even with a limited set of FOD data, the output of the

Preisach model can be approximated by interpolating the known output values.

Numerical implementation of the Preisach model is demonstrated with the following

example. First, a smooth surface is fit onto the experimental data. This gives the function

F (α, β) over the possible input range. To calculate the output given the boundary in

Figure 2.15, P+ defined by the boundary ψ is divided into regions Ω1 and Ω2, shown in

Figure 2.16. The corresponding reduced memory sequence s for this input history is

s = {−8, 4,−6, 2, 0} (2.8)

Note that each region can be defined by elements of s. By the definition of the FOD data,

the integral of µ over the two regions are given by:

2

∫∫
Ω1

µ(r, s)drds = F (4,−8)− F (4,−6)

2

∫∫
Ω2

µ(r, s)drds = F (2,−6)− F (2, 0)

The positive saturation value is∫∫
Pr

µ(r, s)drds =
F (8,−8)

2

Using equation (2.4), the system output is

y(ψ) = 2

∫∫
P+(ψ)

µ(r, s)drds−
∫∫

Pr

µ(r, s)drds

= 2

∫∫
Ω1

µ(r, s)drds+ 2

∫∫
Ω2

µ(r, s)drds−
∫∫

Pr

µ(r, s)drds

= F (4,−8)− F (4,−6) + F (2,−6)− F (2, 0)− F (8,−8)

2

In general, we can write the output of the Preisach model in terms of elements in the

reduced memory sequence s. Let Mi and mi denote the ith maximum and minimum value

in s. For example, in the reduced memory sequence (2.8), M2 = 2 and m2 = −6. If the



24 Controller Gain Optimization for Position Control of an SMA Wire

Figure 2.15: Sample Boundary

Figure 2.16: Regions Ω1 and Ω2
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input is increasing, then the number of maximum and minimum values are the same. There

are 2n elements in s. The first minimum value corresponds to negative input saturation

and the last maximum value corresponds to the current input. The output of the system

is given by

y =
n−1∑
i=1

[F (Mi,mi)− F (Mi,mi+1)] + F (Mn,mn)−
F (usat,−usat)

2
(2.9)

For decreasing input, there is one more minimum value than maximum value. Let n be

the number of maximum values in s. The output of the system is then given by

y =
n∑
i=1

[F (Mi,mi)− F (Mi,mi+1)]−
F (usat,−usat)

2
(2.10)

These equations can be easily implemented using a reduced memory sequence and infor-

mation on F over all possible input values. The output resulting from any input can be

calculated by a sum of trapezoids as described above.

It has been mentioned that the Preisach model is symmetric about the origin, but it is

clearly not the case for the SMA wire. The input to the SMA wire is temperature above

ambient temperature. Therefore, an offset term is added so that the output is zero when

the system is at negative saturation. The offset term is

ysat+ + ysat−

2

where ysat+ and ysat− are the output values corresponding to the input saturation values.

2.6 Summary

In this chapter, background on different shape memory alloy modelling techniques was

given. The Preisach model for SMA was introduced. The state-space representation for

the Preisach model was described and will be useful in the discussion of dissipativity theory

in controlling SMAs. Model identification using experimental data was briefly discussed.

This allows the computation of the output of the Preisach model without explicitly finding

the weighting surface. This method will be used in the simulations later on.





Chapter 3

Control of Shape Memory Alloys

In this chapter, we will concentrate our discussion on the following control strategies. A

brief background on dissipativity of the Preisach model is given for velocity control. An

example of an inverse model used to reduce hysteretic nonlinearity is given. Optimal

control strategies in various smart structures applications are discussed.

3.1 Dissipativity of Preisach Model

We first give the definition of dissipativity [55].

Definition 3.1.1 A dynamical system is said to be dissipative with respect to the supply

rate w : U × Y 7→ R if there exists a non-negative storage function S : X 7→ R+ such that

∀t1 ≥ t0, initial state x0 ∈ X, and input u ∈ U ,

S(x0) +

∫ t1

t0

w(u(t), y(t))dt ≥ S(φ(t1, t0, x0, u)) (3.1)

where y(t) = r(φ(t, t0, x0, u), u(t)).

Dissipativity can be used to obtain stability result of a system. Since stability is often

described using the distance between trajectories, we need to introduce the notion of norms

in order to quantify distance.

27
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Definition 3.1.2 A real-valued function ‖·‖ on a set U is called a norm if, for all u, v ∈ U ,

it satisfies the following axioms:

(i) (Positivity) ‖u‖ ≥ 0;

(ii) (Strict Positivity) ‖u‖ = 0 ⇔ u = 0;

(iii) (Homogeneity) ‖au‖ = |a|‖u‖, ∀a ∈ R;

(iv) (Triangle Inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

For the spaces of real-valued functions, a very common norm is the Lp norm. The Lp
norm of a function f(t) on the interval [a, b] is defined as:

‖f(t)‖p =

(∫ b

a

|f(t)|pdt
) 1

p

, for1 ≤ p <∞;

‖f(t)‖∞ = max
a≤t≤b

|f(t)|.

The space of all functions with finite Lp-norm over the interval [a, b] is denoted Lp(a, b).

For most physical systems, the mathematical model is given in input-output form. We

have the following definition of stability relating the input and output signals.

Definition 3.1.3 [54] A system is called input-output stable if for any inputs u(t) ∈ U ,

there exists finite constants k and b such that the corresponding output y(t) satisfies

‖y(t)‖ ≤ k‖u(t)‖+ b, ∀t ≥ 0.

A system satisfying the above definition is said to be finite gain stable with gain k.

A major result in dissipativity theory that can be used in feedback control is that the

interconnection of dissipative systems is also dissipative under some simple assumptions [24,

25]. We first define a class of dissipative systems.

Definition 3.1.4 [40] Given matrices P,R, S of appropriate dimensions with P, S sym-

metric. A system is called (P,R, S)-dissipative if it is dissipative with respect to the supply

rate

w(u, y) = 〈y, Py〉+ 2〈y,Ru〉+ 〈u, Su〉 (3.2)

where 〈, 〉 denotes the scalar product.
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Figure 3.1: Feedback Configuration

Note that (−I, 0, k2I)-dissipativity is equivalent to

‖y‖ ≤ k‖u‖

for some positive constant k, or the system has finite gain k. Furthermore, a system is

called passive if P = 0, R = I, S = 0.

The Small-Gain Theorem and the Passivity Theorem(eg. [31, 54]) are stated below

without proof.

Theorem 3.1.5 Consider the feedback system of Figure 3.1. Assume that the subsystems

H1 and H2 have finite gains k1 and k2 respectively. Then the feedback connection is finite

gain stable if k1k2 < 1.

Theorem 3.1.6 [31] The feedback connection of two passive systems is passive.

The two theorems stated above can be used to show stability of an interconnected system

by examining each subsystem individually.

In [16], the Preisach plane Pr is divided into the following regions (cf. Figure 3.2):

P1 = {(r, s) ∈ Pr| s > r}
P2 = {(r, s) ∈ Pr| |s| ≤ r} (3.3)

P3 = {(r, s) ∈ Pr| s < −r}

The energy transfer of the relays when they go through a change in output is defined.

Let q+ = 2µ(r, s)(s + r) and q− = −2µ(r, s)(s − r) where q+ represents the energy loss

when the relay is switched from output of −1 to +1 and similarly q− represents the energy
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Figure 3.2: Preisach Plane Regions

loss when the relay is switched from output of +1 to −1. Since a negative energy loss

means that the system is gaining energy, the total stored energy is given by [16]:

Q(ψ(t)) = 2

∫
P1∩P+(t)

µ(r, s)(s− r)dsdr − 2

∫
P3∩P−(t)

µ(r, s)(s+ r)dsdr (3.4)

By the definitions of the regions P1 and P3, Q(ψ) is nonnegative. Furthermore, since µ

and Pr are bounded, so is Q(ψ). Hence Q(ψ) is a valid storage function.

Theorem 3.1.7 [16] If µ ∈ Mp, the Preisach model with storage function Q as defined

in equation (3.4) is dissipative with respect to the supply rate w = uẏ, where ẏ is the time

derivative of the read-out operator r(ψ).

Experimental results in [16] show stability of the velocity control of an SMA actuator

using a PD-controller.
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Figure 3.3: Inverse Model in Open-loop Control

3.2 Inverse Model for SMA Wire Actuator

A popular method to control the hysteresis in smart materials is to implement an inverse

compensator, for example in [12, 20]. Inverse compensators attempt to remove the hystere-

sis nonlinearity and reduce the problem complexity and are discussed later. The idea of

an inverse model is to reconstruct the input given output information of the system. The

inverse model calculates the necessary input that is required to obtain a desired output.

The inverse model is put in series with the actual system as shown in Figure 3.3.

The inverse model is used as a feedforward controller in open-loop applications. It

calculates the corresponding current for the desired reference position. The current is

then applied to the actual SMA wire to obtain the desired wire position. Hysteresis model

inversion can be done both analytically and numerically. Analytical or model-based inverse

filter is used to control piezoelectric transducers in an atomic force microscope [20] for an

energy-based hysteresis model. Two numerical algorithms to determine inverse Preisach

models are presented in [28].

In [52], a neural network is used to create an inverse model for an SMA wire actuator.

The idea is as follows: first, the neural network is designed to model position as a function

of input voltage. The neural network takes input voltage, and a tag signal indicating

whether the input voltage is increasing or decreasing, as inputs. The tag signal is included

so that the network would behave differently when the input is increasing/decreasing, as

it would be in a hysteretic system. The output is displacement.

The major hysteresis loop of wire displacement with respect to input voltage is used to

train the network. Experimental results show that the neural network can effectively recre-

ate the hysteresis loop of the wire. The neural network model can be used for simulation

purposes.

Next, the same set of data is used to train the inverse model. A schematic of the neural

network training is shown in Figure 3.4. A tag signal is included to serve the same purpose
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Figure 3.4: Neural Network Inverse Training Schematic

Figure 3.5: Inverse Model with Feedback Control

as before. The new neural network is trained to map the displacement of the wire to the

input voltage. The results of the inverse model are compared with the training data.

In training the neural network, a sinusoidal input at 1
60

Hz is used to allow sufficient

cooling time for the wire. The resulting inverse model is tested experimentally with a

reference target of 1
60

Hz. Since the neural network models both the hysteretic behaviour

of the wire and the heating dynamics converting voltage to temperature, it is expected to

perform well at the same frequency at which it is trained. The inverse model is tested with a

10Hz signal in simulation, but its performance is not verified experimentally. Experimental

results show reasonably good tracking, and encourage further study in improving this

technique.

The disadvantage of the above open-loop control scheme is that it relies on the accuracy

of the inverse model. Uncertainties in the model will result in a possibly unstable system.

A feedback controller is included in [12] to provide better tracking results. The controller

corrects modelling uncertainty and disturbances by comparing the desired and actual out-

put values of the system. The schematic of an inverse model with feedback control is shown

in Figure 3.5.

The signal yd(t) is the desired output trajectory. The inverse model calculates the

corresponding input signal ud(t). The error between the actual output and the desired

output is fed into the controller. The controller regulates this error by adding an extra
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control signal uc(t). This method is shown to have better tracking performance in [12]. An

inverse model is also used in H∞ control design for magnetostrictive materials in [41].

3.3 Control of SMA Actuated Smart Structures

Many smart structures use SMAs as actuators and sensors. There has been research on

controlling smart structures using SMA actuators, for example [35] and [7]. In order to

devise control strategies for these structures, a lumped model of the actuator and the

dynamics of the structure is often used. In the numerical analysis in [7], combined models

of the structure and actuators are used. The actuator dynamics are simplified and do not

account for the hysteretic behaviour.

One of the main application of SMA actuators is in vibration control. In [35], the modal

equations of a cantilever beam are used to describe the effects of different frequencies on

the system. The uncertainty of this problem is the natural frequencies of the structure.

The authors proposed a new H∞ robust control algorithm for natural frequency variations.

There is no consideration for the hysteretic behaviour of the actuators. The model assumes

that any arbitrary actuation can be achieved. In another paper [7] on cabin noise control,

a linear approximation of the actuator behaviour is used.

The hyperbolic tangent function is used in [19] along with reinforcement learning to ad-

just the parameters of the hyperbolic tangent function to approximate the local behaviour

in the hysteresis. Different simplifications to the modelling of the SMA actuator allow for

the use of linear control theory techniques such as linear quadratic regulator and variable

structure control [18]. But since the actuator is highly nonlinear, the simplifications come

at the cost of accuracy. These examples motivate the need for good modelling and control

algorithms for the hysteretic behaviour of SMA.

A real-time control application is presented in [47]. The objective is to design an

adaptive tuned vibration absorber (ATVA) using SMA elements. Young’s modulus of the

ATVA changes as the SMA undergoes a phase transformation. A piecewise model is used

to relate Young’s modulus to temperature. The phase change resulting from heating and

cooling are treated separately. The heat capacity of the SMA are assumed to take on two

different values based on the current temperature. Proportional controller, PD-controller
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and fuzzy control are considered in the paper. The PD-controller has superior performance

and is very simple to implement.

3.3.1 Optimal Control

In applications using smart materials as actuators and sensors, the optimal placement of

the actuators and sensors are often of interest (e.g. [8]). In order to use standard optimal

control techniques such as a linear quadratic regulator (LQR), a reduced-order model of

a thin cylindrical shell structure is used in [2]. The resulting PDE-model is implemented

numerically. The algebraic Ricatti equations for the LQR control problem are then solved

using the reduced-order model. Similar techniques are used in [50] and [7] to obtain optimal

controllers for piezoelectric material applications.

In [48], an energy-based model is used for SMA actuators. It uses Helmholtz free energy

and Gibb’s energy, and probabilities of phase transition. Experimental results show that

the model is able to reproduce hysteretic behaviour very well. The authors took this model

and implemented it in NUDOCCS [23] for optimal control. NUDOCCS uses a sequential

quadratic programming method to solve the non-linear optimization problem. The optimal

control signal is calculated to drive the system from one fixed reference point to another.

The calculations are performed in the order of nano-seconds, making it possible to be

incorporated in real-time control applications.

The performance of the optimal controller is compared with a PI-controller. Simulated

results show that the optimal controller performs better than the PI-controller, whose

gain values are tuned manually. Due to the lack of mathematical analysis of the different

models, only numerical optimization methods are used, see [11].

3.4 Summary

In this chapter, different techniques used to control SMA actuators are discussed. A

definition of dissipativity is given, and results on the dissipativity of the Preisach model is

presented. The stability result for velocity control is discussed. A neural network inverse

model for the SMA actuator is described. Several control strategies for SMA actuated

smart structures are discussed.
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Because of the complexity of hysteresis, analysis involving hysteresis is usually avoided.

The varying physical parameters of the material needs to be taken into account for a more

accurate model. This will be addressed in the simulation of the SMA wire. Since the use

of SMA actuators in smart structures is popular, it is useful to consider the control of the

actuators individually, as well as how they interact with the structure as a whole.





Chapter 4

Optimal Control Problem

This chapter provides the framework for the optimal control problem. The objectives of

the control problem are given. An attempt to derive a derivative for the Preisach model

is given. Different optimization algorithms that do not require derivative information are

investigated. The Nelder-Mead simplex algorithm for optimization is chosen and described

in the chapter.

4.1 Objectives

In many control problems, the objective is to find the ‘best’ control for a given task. It

is then necessary to define a measure of performance. We assume that control signals

are ‘better’ if they result in a lower performance index. In addition, there are usually

constraints on the controller or system. Common physical constraints are input and out-

put saturations. The optimal controller is the admissible control u(t) that minimizes the

performance index, or cost function, under the constraints in the overall system.

As described in Chapter 2, the system output is the contraction of the SMA wire

under a constant load subject to input current. In Gorbet and Wang [17], stability results

on position control of SMA wire are given. The results are used to show stability using

approximated proportional-integral-derivative (PID), PI and PD controllers. In particular,

two PI controllers are tested and have shown to give good performance. For the purposes

37
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of this study, we will be using a PID controller. A PID-controller is defined by

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de

dt
(4.1)

where e(t) = r(t) − y(t) is the difference between the reference signal and the system

output. Instead of determining the optimal control signal, the objective is to find the

optimal PID-controller gain values Kp, Ki, and Kd.

We will look at three different cost functions for output tracking. A common objective

is for the output of the system to track the input signal over a time interval of T seconds.

Imagine an inkjet printer cartridge or a laser cutter actuated by SMA wires. It is important

that the system is able to track the reference signal as closely as possible. A common cost

function for the above problem is

J1(Kp, Ki, Kd) =

∫ T

0

(r(t)− y(t))2dt (4.2)

where

y(t) = wire contraction

r(t) = desired contraction

T = length of control time interval

In certain applications, it is not necessary to track a reference signal over a time interval.

A possible objective is for the actuator to move the load from point A to point B and back

every T seconds. If there is no restriction on the path it takes to go from point A and

point B, only the output values at every T seconds need to match the reference. A simple

cost function for this problem is

J2(Kp, Ki, Kd) =
n∑
i=1

|yis − ris|2 (4.3)
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where

yis = contraction at ith switch time

ris = desired contraction at ith switch time

n = number of switching times

In certain applications, the displacement of the wire over the time interval is of interest.

Then it is not necessary to specify the exact contraction value of the wire. Furthermore,

the reference signal can be used as an extra design parameter to the problem. A proposed

cost function for this problem is

J3(Kp, Ki, Kd) =
n−1∑
i=1

|∆yi −∆yd|2 (4.4)

for a fixed reference signal r(t) where

∆yi = |yis − yi+1
s |

yis = contraction at ith switch time

∆yd = desired wire travel

n = number of switching times

In output tracking problems for periodic signals, the common practice is to find the

optimal controller for the step response of the system. This approach works when there

is full control over both the heating and cooling phases of the system. In the absence of

active cooling, it is important not to overheat the SMA wire so that it will have enough

time to cool before the next heating cycle. Since the step response does not contain a

cooling phase, it is reasonable to assume that the optimal controller obtained from the

step response may not be optimal for periodic reference signals.

The goal of this research is to compare the performance of a controller that is optimized

for a step reference, and controllers that are optimized for periodic reference signals of

different frequencies. Furthermore, we want to investigate the bandwidth of each of these
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optimal controllers. A common definition of bandwidth is given in terms of the transfer

function G(jω) of the system:

ω̄ = sup
ω
{ω | ‖G(jω)‖ > k∗} (4.5)

where k∗ is a specified gain value.

The system in this study is nonlinear and hence it does not have a transfer function.

Therefore, a different definition of bandwidth is needed and is defined below.

Definition 4.1.1 For a given cost function Ji and fixed reference signal frequency ω, con-

troller H1 has better performance over another controller H2 if

Ji(H1, ω) < Ji(H2, ω)

where Ji(Hl, ω) is the cost function value of the overall system with controller Hl and a

reference signal frequency ω.

The bandwidth of the system with controller Hl is defined by

ω̄l = sup
ω
{ω|Ji(Hl, ω) < e∗} (4.6)

where e∗ is a specified error value.

Furthermore, controller H1 is said to have a wider bandwidth than another controller

H2 if ω̄1 > ω̄2.

For systems that may be subject to reference signals of varying frequencies, it is useful to

have a controller that works over a range of frequencies, rather than changing to a different

controller for each frequency.

The performances of the various controllers will be compared using the cost functions

described in this section. In the following sections, we will look at the tools to determine

the controller gains that minimizes the above cost functions. Since the system output is

calculated numerically, numerical optimization methods will be used to solve the optimal

control problem.
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4.2 Derivative of Preisach Model

In most optimization algorithms, a derivative function is needed to efficiently solve the

optimization problem. The derivative function provides a means to decide the direction of

search in each iteration. An attempt was made to find a derivative of the Preisach model

and the PID-controller to help us solve the optimal control problem.

The derivative of the first cost function, equation (4.2), by Leibniz Rule, is

∇Kp,Ki,Kd
(f) = −

∫ T

0

2(r(t)− y(t))Du(y)∇Kp,Ki,Kd
(u) dt (4.7)

First, we need to determine the derivative of the Preisach model output y(t) with

respect to the input signal u(t). Since the input signal is a function, and the output is

dependent on past history, a point-wise derivative is not sufficient. In finding the derivative

at time t, any changes to the input before time t will have an effect on the output and

hence the derivative. Du(y) needs to be evaluated for all time t and integrated over the

time period.

Consider a small change in the input signal u1(t) to u2(t). If the change in u2(t) causes

a previous input extremum before time t to be wiped out, the derivative Du1(y) will be

different from Du2(y) since the input history has changed. Hence it is not clear how the

change in the control signal would influence the output. Determining the derivative of the

Preisach model remains a problem to be solved, and will greatly benefit the development

of optimal control of systems with Preisach representations.

The main problem is due to the fact that the Preisach model output is dependent on

past input history. Because of the complexity of the derivative, an algorithm that does not

require derivative information is used and is described in the next section. The derivative

function, if it exists, would be very useful in optimal control of systems with Preisach

representations.

4.3 Optimization Algorithms

In optimization problems, derivative information on the cost function can be very useful in

determining the solution. However, the convexity of the cost function is more important
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than the availability of a derivative. Convexity of the cost function implies that a global

minimum exists and is unique under mild assumptions [44]. While many optimization

algorithms uses the convexity property, it is sometimes very difficult to prove that a cost

function is indeed convex.

For optimization problems involving simulations, a closed form of a derivative function is

usually not available. Finite difference approximations of the derivatives are used instead.

The accuracy of the finite difference approximations depend on the smoothness of the

function. However, the cost functions in simulations can be noisy and discontinuous due

to numerical calculations. It is discussed in [32] that derivative-based algorithms are not

robust to noise and discontinuities of the cost function. The derivative approximations will

lead to a local minimum within the noise, which is not very useful.

In our optimization problem, the cost functions are found to be non-convex. Since the

output of the Preisach model is calculated using an interpolation of the experimental data,

it is subject to noise from numerical calculations. Furthermore, the derivative information

of the Preisach model is not available. Therefore, a non-derivative-based algorithm needs

to be chosen.

4.3.1 Direct Search Methods

Optimization algorithms that do not require derivatives or their approximations are often

called direct search methods. Without explicit derivative information, the direct search

methods use a set of predefined rules to traverse the domain towards a minimum. Because

these methods do not take advantage of any auxiliary information about the problem, their

performance is inferior to algorithms designed for the specific situation. On the other hand,

this property gives these methods robustness for different types of problems.

A simple method is called the compass search [32]. For an n-dimensional problem,

starting at an initial point x0, evaluate the function at points a fixed distance ∆ away

from x0 in each of the n directions. The direction that yields the smallest function value

becomes the new initial point for the next iteration. If none of the n directions yield an

improvement, the distance ∆ is adjusted and the iteration is repeated.

The advantage of this method is that it is very simple to understand and implement.

It also guarantees convergence to a local minimum by the definition. On the other hand,
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there is no guarantee on the rate of convergence to the minimum.

Another example of a direct search method is Powell’s algorithm [9]. While it is similar

to the compass search, the direction of search is modified during each iteration. Starting at

an initial point x0 and a set of n linearly independent vectors s1, s2, ..., sn, a line search is

performed along s1 to locate a minimum point x1. Then, a line search is performed along

s2 to locate a minimum point x2 and so on. After searching along all n vectors, a new

search direction is obtained by connecting the newest point xn with the initial point x0 to

get sn+1. The process is repeated until convergence is achieved.

Powell’s algorithm relies on the fact that the function is strictly convex in the line search

directions. If it is not convex, there is no guarantee that the line searches will return a

minimum. The algorithm simplifies the optimization problem to one dimension in each

iteration, and the line searches can be performed using any optimization algorithm.

4.3.2 Genetic Algorithms

Genetic algorithms [13] are based on the rules of natural selection. They attempt to

capture the natural selection phenomenon with a mathematical structure. Starting with

an initial population, they combine with each other and produce the next generation. The

new generation maintains some of the good traits of their predecessors, and new parts are

added as well. The later generations are expected to improve upon the initial population.

A simple genetic algorithm is given in [13] to illustrate the idea. Assume that there

is a black box with five on-off switches. The output from different configurations of the

switches can be regarded as a payoff value. Hence the higher the output value, the better

the configuration is. The input configuration is coded in binary: a string of five digits is

used, with 1’s and 0’s representing the ‘on’ and ‘off’ position of the switches respectively.

An initial population of size 2n is generated randomly. Each member of the initial

population are associated with a corresponding output value of the function. These can

be viewed as the fitness levels of each member. The likelihood of a member to produce a

good ‘offspring’ can be quantified by their fitness as a percentage of the total population

fitness. Using these probabilities, n couples are chosen from the initial population.

The reproduction process is performed in the following manner: for each of the n

couples, a number i between 1 and 4 is chosen at random. Members of the new generation



44 Controller Gain Optimization for Position Control of an SMA Wire

are created by swapping the part of the string from position i to the end between the

couple. Hence for each couple, two new members are created and only top 2n members of

the entire population is used to produce the next generation. The optimization terminates

when the ‘fitness levels’ of each of the members of the population converges.

The idea of genetic algorithms is very intriguing. The main disadvantage of genetic

algorithms is the complexity. While the operations in each iterations seem to be simple, it

requires a coding of the domain of the function to be minimized. Hence, we will make use

of a popular, yet easy to implement, algorithm described in the following section.

4.4 Nelder-Mead Simplex Algorithm

One of the more popular direct search methods is the Nelder-Mead Simplex Algorithm [42].

A simplex in n dimensions is a geometric object defined by n+ 1 vertices, where the lines

connecting any two vertices are linearly independent. For example, a simplex in 2-D is a

triangle, while a simplex in 3-D is a tetrahedron. Each iteration of the algorithm involves

a simplex with n + 1 vertices. The function values at each of the vertices are calculated,

and a new simplex is generated after each iteration. The algorithm terminates when the

size of the simplex, and the function values at its vertices satisfy some specified condition.

Since the publication of [42], many different variations have been introduced. One

of these variations is called the multi-directional search method [53, 56]. In the multi-

directional search method, the entire simplex is adjusted rather than individual vertices as

in the Nelder-Mead Algorithm. This method is more complicated and is more numerically

costly to implement.

There has been little discussion in literature on the convergence of the Nelder-Mead

method, limited to low dimensions (n ≤ 2) [34]. In [39], a counter example was used to

show that the Nelder-Mead method converged to a non-minimizing point for n = 2.

Despite the lack of theoretical analysis and its deficiencies, the method is widely popu-

lar. The Nelder-Mead algorithm is used to solve an optimal transmitter location problem

in [37]. The Nelder-Mead provided faster and better solutions than other methods that

the authors used. It is also used in solar cell designs [6].

Combinations of the Nelder-Mead algorithm and other optimization methods are also
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very popular. A random method is used to choose initial points for the Nelder-Mead algo-

rithm for antenna optimization [33] with many local minimums of similar function values.

Genetic algorithms discussed in the previous section are used in combination with the

Nelder-Mead algorithm to create a hybrid optimization method [10]. A similar approach

is used to optimize road noise barrier design in [3]

One of the reasons for its popularity is due to the small number of function evaluations.

If derivatives of the cost function is not available, and the function evaluations are costly

to calculate, then using finite-difference approximations will be expensive and slow. The

algorithm does not guarantee convergence, but the same applies to other algorithms for a

non-convex problem. Different initial values are used and the ‘best’ result from different

trials will be used as the optimal solution. The Nelder-Mead algorithm is described in the

following section.

4.4.1 Algorithm Description

The algorithm starts with an initial estimate x0 = (x1
0, x

2
0, . . . , x

n
0 ) and constructs a non-

degenerate simplex with vertices x0 and xi = (x1
0, x

2
0, . . . , x

i
0 +δ, . . . , , xn0 ) for i = 1 . . . n and

predefined parameter δ > 0. Four parameters must be specified: coefficients of reflection

(ρ), expansion (χ), contraction (γ), and shrinkage (σ). The parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1. (4.8)

Using these parameters, the Nelder-Mead method either finds a new vertex for the simplex,

or performs a shrink of the simplex, leaving only the vertex that yields the best function

value at each iteration.

Each iteration of the Nelder-Mead Algorithm is as follows [34]:

1. Order. Order the n + 1 vertices to satisfy f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1), x1 is

called the best point and xn+1 is the worst point.

2. Reflect. Compute the reflection point xr from

xr = x̄ + ρ(x̄− xn+1) = (1 + ρ)x̄− ρxn+1 (4.9)
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where x̄ =
∑n

i=1
xi

n
is the centroid of the n best points. Evaluate fr = f(xr). If

f1 ≤ fr < fn, replace the worst point xn+1 with the reflection point xr and terminate

the iteration.

3. Expand. If fr < f1, calculate the expansion point xe

xe = x̄ + χ(xr − x̄) = x̄ + ρχ(x̄− xn+1) = (1 + ρχ)x̄− ρχxn+1 (4.10)

and evaluate fe = f(xe). If fe < fr, replace the worst point xn+1 with xe and ter-

minate the iteration; otherwise, replace the worst point xn+1 with xr and terminate

the iteration.

4. Contract. If fr ≥ fn, perform a contraction between x̄ and the better of xn+1 and

xr.

a. Outside. If fn ≤ fr < fn+1, perform an outside contraction:

xc = x̄ + γ(xr − x̄) = x̄ + γρ(x̄− xn+1) = (1 + γρ)x̄− γρxn+1 (4.11)

and evaluate fc = f(xc). If fc ≤ fr, replace the worst point xn+1 with xc and

terminate the iteration; otherwise, go to Step 5.

b. Inside. If fr ≥ fn+1, perform an inside contraction:

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄ + γxn+1 (4.12)

and evaluate fcc = f(xcc). If fcc < fn+1, replace the worst point xn+1 with xcc

and terminate the iteration; otherwise, go to Step 5.

5. Shrink. Evaluate f at the n points

vi = x1 + σ(xi − x1), i = 2, . . . , n+ 1. (4.13)

The unordered vertices of the simplex at the next iteration consists of x1,v2, . . .vn+1.
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In the case where some of the vertices have the same function value, we employ the

following tie-breaking rules:

Non-Shrink Ordering Rule. When a non-shrink step (Steps 1 to 4) occurs, the

worst vertex xn+1 is discarded. The accepted point created during the iteration, denoted

by v, becomes a new vertex and takes position j + 1 where

j = max
0<l<n

{l|f(v) < f(xl+1)}

and all other vertices retain their relative ordering from the previous iteration.

Shrink Ordering Rule. When a shrink step (Step 5) occurs, the only vertex that

remains from the previous iteration is the best point x1. If x1 and one or more of the

new points are tied as the best point, keep x1 as the best point, and order the rest of the

vertices using the Non-Shrink Ordering Rule above.

The Nelder-Mead method attempts to find a new point that is better than the worst

point at each iteration. The resulting points are then arranged from best to worst and a

new iteration takes place. The worst point is improved after each iteration. The best point

is improved if the expand step (Step 3) occurs.

The algorithm terminates when either 1) the radius of the simplex is less than a pre-

scribed threshold, or 2) the difference between the value of the cost function at the best

point and the worst point is less than a threshold value. It can be seen from the algorithm

that in the worst case, i.e. a shrink step, each iteration require n+ 3 function evaluations,

and n+ 2 function values need to be stored in memory at any given time.

4.5 Summary

The objectives of the optimization problem are presented. Three different cost functions

are proposed to compare the performances of controllers. A summary of an attempt to

determine the derivative of the Preisach model and the PID-controller is given. Several

direct search methods are discussed and the Nelder-Mead simplex algorithm is chosen. The

advantages of the Nelder-Mead method and the algorithm description are presented. We

now have the tools needed to solve the optimal control problem.





Chapter 5

Simulation

In this chapter, the simulation setup for the optimization problem is presented. Different

numerical methods are compared to reduce the simulation time of the model.

5.1 Simulation Setup

The schematic of the simulation program is shown in Figure 5.1. The reference signal r(t)

is defined by

r(t) =

 q, (i− 1)τ < t ≤ iτ
2

0, iτ
2
< t ≤ iτ

(5.1)

where q is the magnitude of the reference signal, i = 1...n, n is the number of cycles and

τ is the period of the reference signal.

Figure 5.1: Simulation Schematic

49
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The PID-controller is given by

i(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de

dt

where e(t) = r(t) − y(t), y(t) is the wire contraction measured in millimeters. The inte-

gral term is calculated using the trapezoid rule, whereas the derivative is a simple finite

difference approximation. The controller gain values are parameters to be optimized. The

gains are restricted to have positive values.

The control signal input i(t) is electric current. The heating model used in the simula-

tions is
dT

dt
=
Ri(t)2 − hA(T (t)− Tamb)

ρcpV
(5.2)

with parameters

ρ density of the wire,

V volume of the wire,

A surface area of the wire,

R electrical resistance of the wire,

h heat convection coefficient to surrounding area,

cp specific heat of the wire,

Tamb ambient temperature of surrounding area.

In equation ( 5.2), the term Ri2(t) corresponds to the electrical power generated by the

input current. Since this term is always positive, it contributes to the heating of the wire.

The second term in the equation corresponds to the exchange of heat with the surrounding

area through convection. Since the input to the Preisach simulator is the temperature

above ambient and not the absolute temperature, define θ(t) = T (t) − Tamb. Rewriting

equation (5.2) using dθ
dt

= dT
dt

gives

dθ

dt
=
Ri(t)2 − hAθ(t)

ρcpV
(5.3)
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Table 5.1: FOD Surface Fit Data
x2 0.0483

x3 -47.2120

x4 0.1041

x5 -23.7060

ū 174.1

u 0.0

y(ū, ū) 12.54

y(ū, u) 0.0

Table 5.2: NiTi Wire Parameters at 25◦C
Length 380mm

Diameter 0.3048mm

Density 6500kg/m3

Heat Capacity (Full Martensite or Austenite) 460J/Kg◦C

Resistance (Austenite) 4.5Ω

Resistance (Martensite) 5Ω

Current Saturation 1A

Load 2 kg

Max. Contraction 12.54mm

The Preisach simulator was described in Sections 2.2 and 2.5. The output of Preisach

simulator is the wire contraction in millimetres. The experimental data used in the simu-

lator is taken from [14]. A surface is fit onto the FOD data and is given by the following

equation [14]:

F̃ (α, β) = c1
e−x4(u+x5) − e−x4(β+x5)

[1 + e−x2(α+x3)][1 + e−x4(β+x5)]
+ y(ū, u) (5.4)

with

c1 = [y(ū, ū)− y(ū, u)]
[1 + e−x2(ū+x3)][1 + e−x4(ū+x5)][1 + e−x4(u+x5)]

[1 + e−x4(u+x5)][e−x4(u+x5) − e−x4(ū+x5)]

The surface parameters are given in Table 5.1.

The parameters of the NiTi wire are listed in Table 5.2. The constant-load one wire
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actuator setup described in Section 2.2 is used. The electrical resistance and heat capacity

of the wire varies as the wire temperature changes. The electrical resistance is different for

the martensite and austenite phases. The resistance of the wire can be approximated using

phase fraction information. The martensite phase fraction is the fraction of the wire that

is in the martensite phase. Since the wire only has two phases, the sum of the austenite

and marteniste phase fraction is one. The martensite phase fraction can be approximated

by the fraction of the actual wire contraction to the maximum contraction

Fa =
y

ymax
(5.5)

The resistance of the wire is then approximated by the following equation

R = FaRa + (1− Fa)Rm (5.6)

where Fm is the martensite phase fraction, Rm and Ra are the martensite and austenite

resistances respectively.

The heat capacity is shown to vary with temperature in [4]. At full martensite and full

austenite phases, the heat capacity is constant. During phase transformations, part of the

energy applied to the wire contributes to the heating, while most of it is used to change

the phase of the material. Therefore, the heat capacity of the wire is much higher during

phase transformations. In the heating process, the heat capacity is given by [4]

cp = c0 +H
log(100)

|As − Af |
e
− 2 ln 100
|As−Af |

∣∣∣T−As+Af
2

∣∣∣
, As ≤ T ≤ Af (5.7)

where c0 is the heat capacity given in Table 5.2, H is the latent heat, As and Af are the

starting and ending phase transition temperatures for austenite. During cooling, the heat

capacity is given by [4]

cp = c0 +H
log(100)

|Ms −Mf |
e
− 2 ln 100
|Ms−Mf |

∣∣∣T−Ms+Mf
2

∣∣∣
, Mf ≤ T ≤Ms (5.8)

where Ms and Mf are the starting and ending phase transition temperatures for martenite.

The parameter values used to determine the electrical resistance and heat capacity are listed

in Table 5.3.
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Table 5.3: Resistance and Heat Capacity Parameters

As 53◦C

Af 80◦C

Ms 47◦C

Mf 19◦C

C0 460J/Kg◦C

Ra 4.5Ω

Rm 5Ω

Maximum Wire Contraction 12.54mm

5.2 Numerical Implementation

The MATLAB routine ‘fminsearch’ is used to determine the optimal PID-controller values.

The Nelder-Mead algorithm parameter values used in ‘fminsearch’ are

ρ = 1, χ = 2, γ =
1

2
, and σ =

1

2
. (5.9)

Since the model does not involve an active cooling component, the input signal is

restricted to be positive. The heat equation (5.3) involves the square of the input current.

A negative input current will not cause the temperature to decrease since the cooling

mechanism is through heat convection with the surrounding area and is not controlled

by the input current. The heat equation along with the Preisach simulation were first

evaluated using the standard MATLAB routine ‘ode45’. It is a variable time step method

that uses the Runge-Kutta method. Two problems occurred when this method was used.

First, the simulation run time for this routine were large. It is not desirable when the

optimization routine requires many iterations.

The second problem is due to the step size change in the variable time step method. In

a variable time step method, an initial step size is chosen. Then, the differential equation

is solved using this step size. The resulting function value is compared with the value

obtained in the previous time step. If the change in the function value is too low, the

iteration is repeated with a bigger step size. Similarly, if the difference is too large, a

smaller step size is used to adapt to the high frequency behaviour. The current time step

ends when the change in function value falls within a threshold interval.
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Before moving on to the next time step, a number of function evaluations are required.

For each of these evaluations, the Preisach simulator is called and the reduced memory

sequence in the simulator is updated. Let si denote the reduced memory sequence at the

start of the ith time step. Assume that the step size is set to be ∆. The numerical method

calculates the resulting temperature Ti of this time step. In the process, the Preisach

simulator is called with Ti and it is added to si to form a new sequence s̄i.

If the numerical method decides that a change in step size is required, a new temperature

T̄i is calculated using a different step size ∆̄. This new temperature is then fed to the

Preisach simulator. The new input T̄i is added to s̄i because the memory in the Preisach

simulator is not reset. The correct reduced memory sequence should have been found by

adding T̄i to si, the original reduced memory sequence at the beginning of this iteration.

Further changes of the step size within this iteration will further affect the reduced memory

sequence. Since the outputs corresponding to two different reduced memory sequences

are not necessarily equal, the variable time step method will cause error in the Preisach

simulator output.

Since the temperature does not vary rapidly, simpler lower-order numerical methods

can be used. Time step sizes are predetermined to prevent unwanted Preisach simulator

evaluations. Two numerical methods are chosen to evaluate the heat equation (5.3): the

4th-order Runge-Kutta method and finite differences. Two different time-step size config-

urations were investigated using the above methods.

The ‘RK4’ scheme uses the Runge-Kutta method with a fixed time step size of 0.001s.

It is observed that the temperature changes more during the first second after the switching

time of the reference signal. During the remaining time of the period, including the cooling

phase, the temperature changes more gradually. A simple variable time step scheme is used.

For the first second after the switching time, a fixed step size of 0.001s is used. A fixed step

size of 0.01s is used for the remaining time of the period. Different numerical methods using

this time-step scheme were programmed and tested. ‘V-RK4’ and ‘V-FD’ uses the variable

time step scheme with the Runge-Kutta method and finite difference methods respectively.

‘V-RKFD’ uses the Runge-Kutta method for the first second and finite difference method

for the remaining time using the variable time step scheme.

The simulation run times and tracking error with different controller gains are summa-
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Table 5.4: Simulation Time-step Scheme Comparison

Trial 1 Trial 1 Trial 2 Trial 2 Trial 3 Trial 3

Method Time (s) Error Time (s) Error Time (s) Error

RK4 183.81 0.38053 69.859 0.41316 169.16 1088.4

V-RK4 74.938 0.38356 26.297 0.41668 47.375 1089.2

V-FD 33.781 0.38386 23.687 0.41689 34.312 1088.2

V-RK4 42.438 0.38357 28.921 0.41809 41.547 1089.1

rized in Table 5.4. The tracking error is calculated using equation (4.2). It is true that

two signals with similar tracking error may be very different. Looking at the actual output

responses confirms that they are indeed similar signals. Figure 5.2 shows the wire contrac-

tion and temperature responses for ‘RK4’ and ‘V-FD’ for the same set of controller gains.

The two responses are visually indistinguishable. It can be seen from Table 5.4 that the

tracking error for a given set of controller gains is similar for the four numerical schemes.

The ‘V-FD’ scheme has the shortest simulation time in each of the trials, therefore, this

scheme is chosen.

The ‘V-FD’ scheme is used because it has the fastest run-time for different controller

gain values. The tracking error with this scheme is also very consistent with the other

methods. Since the temperature fluctuations are small, a simple numerical method is

sufficient. The optimizations are implemented in MATLAB and the results are given in

the next chapter.

5.3 Summary

The simulation setup for the optimization problem was presented in this chapter. Differ-

ent numerical methods were compared to reduce the simulation time of the model. The

optimizations are performed and results are presented in Chapter 6.
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Figure 5.2: Wire Contraction and Temperature responses for RK4 and V-FD Schemes



Chapter 6

Optimal Controllers and Bandwidth

In this chapter, the optimization results are presented for the three cost functions defined

in Section 4.1. For each cost function, an optimal controller is found for each design

frequency. Optimization is performed using different initial values, and the best result is

used. Each optimal controller is then used for the different frequencies and the tracking

error is noted.

The constant-load SMA wire actuator configuration is used. The wire contraction is

the measured output and is modelled using the Preisach model. An Nitinol wire with an

un-stretched length of 380mm is used. The varying electrical resistance and heat capacity

of the wire is modelled using equations (5.6) to (5.8). An input saturation of 1A is used

according to the wire specifications. The input current is also saturated at 0A to take into

account for the lack of cooling mechanisms in the system. The parameters of the NiTi wire

are listed in Table 5.2.

The reference signal used is defined by

r(t) =

 8, (i− 1)τ < t ≤ iτ
2

0, iτ
2
< t ≤ iτ

(6.1)

where i = 1...n, n is the number of cycles, τ is the period of the reference signal. The

amplitude of 8mm corresponds to approximately 2.1% strain of the SMA wire.

57
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Table 6.1: Optimal Controllers using J1

Reference Frequency (Hz) Kp Ki Kd Normalized Error en

Step 4.5228 0.094519 0.0013198 0.0384

0.02 11.1 4.7152 0 0.07496

0.05 6.8696 4.1866 5.0807 0.1896

0.0625 3.8741 5.7286 0.00028438 0.2035

0.08 0.116 0.2216 0 0.2248

0.125 18.684 7.8235 0 0.5262

0.25 1.1477 0.4265 1.3460 0.7228

6.1 Output Tracking

For the output tracking problem, the following cost function is used:

J1(Kp, Ki, Kd) =

∫ T

0

(r(t)− y(t))2dt (6.2)

where

y(t) = wire contraction

r(t) = desired contraction

T = length of control time interval

The reference signal is given in equation (6.1). The reference signal frequencies are 0.02,

0.05, 0.0625, 0.08, 0.125, and 0.25Hz.

The optimal controller for each design frequency is given in Table 6.1. The normalized

error is calculated using the following formula:

en =

∫ T

0
(r(t)− y(t))2dt∫ T

0
(r(t))2dt

(6.3)

The denominator corresponds to the tracking error of a zero output or the energy of the

reference signal. The duration of each simulation is different to ensure that each reference

signal has a 50% duty cycle. Therefore, the errors have to be normalized to take into
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account the different energies of each reference signal. Each optimal controller is then used

for the different frequencies and the tracking error is recorded. The normalized error is

shown in Figure 6.1.

As expected, each optimal controller has the lowest normalized error at the frequency

for which it is optimized. For the controller optimized using the the 0.02Hz reference

signal, the error is much higher than the controllers optimized at higher frequencies. It is

an expected result since the controllers are not optimized to deal with the rapid change of

the input signal.

The controller optimized at 0.08Hz seems to be an exception to the above observation.

While this controller has high error values between 0.125 and 0.333Hz, the performance

of this controller is similar to the controllers that were optimized for high frequencies.

This may be a result of multiple near optimal solutions. In some cases, using different

initial values, the different optimized controller gains achieve similar error values at the

optimization frequency. While they have similar error values at one frequency, the different

gain values may have an effect on the error at a different frequency.

The step-optimized controller has good error values for low frequencies and high error

values at high frequencies. Optimizing at each frequency does improve the performance

of the system. The 0.02Hz controller performs better than the step controller at low

frequencies. At higher frequencies, the 0.25Hz controller gives better performance than the

step controller.

On the other hand, controllers optimized for higher frequency have higher error for low

frequencies. Furthermore, one would expect the error would vary continuously with respect

to the optimization frequency. However, at 0.25Hz, the controller optimized at 0.05Hz has

a lower error than controllers optimized at 0.0625 and 0.02Hz. This could be a result of

the optimization converging to a local optimum rather than a global optimum.

Since the Nelder-Mead method does not guarantee convergence, the local behaviour of

the cost function near the optimal values are plotted. Figure 6.2 shows that the optimal

controllers found in each case are at least local minimum values.
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Two level curves of the cost function for the 0.25Hz reference signal are shown in

Figures 6.3 and 6.4. The optimal controller is found near the minimum in Figure 6.3 at

Kp = 1.1477, Ki = 0.42653 and Kd = 1.346. On the other hand, starting at an initial

value of Kp = Ki = Kd = 5, the Nelder-Mead method converged to a point Kp = 5.1667,

Ki = 5.1667 and Kd = 4.75 on the plateau in Figure 6.4. This solution is clearly not

optimal. It is a result of the non-convexity of the solution space. Figure 6.4 shows that

the cost function is not convex with two flat areas and a valley.

To improve the ‘optimality’ of the solutions, different initial values are used and the

best solution is recorded. Although global optimality is not guaranteed, all of the optimiza-

tions converged to a solution. There are three termination conditions for the optimization

method: 1) both the size of the simplex and the function values at the vertices converge

within a set radius; 2) a maximum number of iterations is reached; or 3) a maximum

number of function evaluations is reached. Using different initial values, all optimizations

terminated under condition 1). As shown previously in Figure 6.2, the optimizations con-

verged to local minimum values.

The wire contraction, temperature, and input current plots of each of the optimal

controllers at each frequency are shown in Figures 6.5 to 6.10. As previously discussed, the

input current is saturated between 0 and 1A. In most cases, there is a lot of chatter in the

input current. They also seem to be multi-valued. This is because the data is plotted as

points rather than lines. The rapid change of the input current between the two saturation

points is likely caused by numerical differentiation. The only responses that do not have

input current chattering are the 0.02, 0.08 and 0.125Hz controllers, and they are the only

controllers with Kd = 0.

Looking at the error values alone does not indicate whether our objective has been met.

An output that stays in the middle between the reference values will have a better error

than an output that reaches the upper value and not the lower one. Figures 6.10 and 6.11

show the responses of the controllers optimized at 0.25Hz and step response respectively

for a 0.25Hz reference signal. Even though the step controller manages to reach the target

of 8mm, it fails to return close to 0mm during the cooling phase. The 0.25Hz controller

does not reach either of the reference points, but since the signal stayed near the middle,

the error is ‘balanced’ out.
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Figure 6.2: Cost Functions Near Optimal Controllers
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Figure 6.3: Tracking Error for 0.25Hz Reference Signal with Kd=1
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Figure 6.4: Tracking Error for 0.25Hz Reference Signal with Kd=4.75
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Since the Preisach model is static, only the heating dynamics govern the response time

of the system. The time constant of the heat equation (5.3) is

τ = −ρcpV
hA

. (6.4)

For the SMA wire used in the simulation, τ = 3.0378s at full martensite or austenite. This

corresponds to a 98% cooling time of 12.1512s. A cooling phase of 12.1512s translates

to a periodic signal of approximately 0.04Hz. Since the heat capacity cp increases during

phase transformations, the cooling time increases as well. Therefore, it is reasonable for

the system to have poor performance for higher frequencies.
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The response of the system with the step-optimized controller at 0.02Hz is shown in

Figure 6.12. At first glance, it seems that the step-optimized controller has better tracking

than the 0.02Hz-optimized controller (Fig 6.5). The two responses are plotted together in

Figure 6.13. While the 0.02Hz controller has overshoot, it has a better cooling phase than

the step controller. This is because the 0.02Hz controller cools to a lower temperature of

approximately 60◦C at steady state.

This observation can be illustrated by looking at the input-output maps in Figure 6.14.

The black dashed-line represents the major loop of the SMA wire’s output hysteresis. The

blue and the red line represent the input-output maps of Figures 6.5 and 6.12 respectively.

By entering the interior of the major loop, the blue curve (Fig 6.5) is able to achieve

the same output values as the red curve (Fig 6.12), but at lower temperatures after the

overshoot (Fig 6.14). This is a result of the hysteretic behaviour of the SMA wire. Since

the step response does not have a cooling phase, the system only travels along the major

loop to reach the target point and tries to stay constant by maintaining the temperature.
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Table 6.2: Optimal Controllers using J2

Reference Frequency (Hz) Kp Ki Kd Normalized Error en

0.02 5.9967 3.1898 0.00051125 0.0000

0.05 7.9383 4.4434 2.0528 0.0002

0.0625 5.9807 4.175 5.0342 0.0010

0.08 10.6033 9.2409 10.5912 0.0035252

0.125 13.8728 5.8458 0 0.0442

0.25 1.1475 0 1.928 0.2443

6.2 Point Tracking

For the point tracking problem, the following cost function is used:

J2(Kp, Ki, Kd) =
n∑
i=1

|yis − ris|2 (6.5)

where

yis = contraction at ith switch time

ris = desired contraction at ith switch time

n = number of switching times

The reference signal is given in equation (6.1). The reference signal frequencies are 0.02,

0.05, 0.0625, 0.08, 0.125, and 0.25Hz.

The optimal controller for each design frequency is given in Table 6.2. The normalized

error is calculated using the following formula:

en =

∑n
i=1 |yis − ris|2∑n

i=1 |ris|2
(6.6)

The denominator corresponds to the tracking error of a zero output. Each optimal con-

troller is then used for the different frequencies and the tracking error is recorded. The

normalized error is shown in Figure 6.15.
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A few observations can be made from Figure 6.15. For low frequency signals, the error

for the controllers optimized at lower frequencies are smaller. On the other hand, for

high frequency signals, the error for the controllers optimized at higher frequencies are

smaller. This result suggests that a controller optimized at a frequency f will also have

good performance for a range of frequencies near f .

One might think that for a fixed reference frequency f , the performance of a controller

A optimized at a frequency fA will be better than controller B optimized at fB if |fA−f | <
|fB − f |. That is to say that the controller optimized at 0.08Hz will have a higher error

than the controller optimized at 0.125Hz for a reference signal of 0.25Hz. Figure 6.15 shows

otherwise. Although it is true that the controllers each have a certain bandwidth where

they have good performance, there is no apparent rule to rank their performances for a

given frequency. This may be a result of the sub-optimality of the controllers found. If the

global optimal solutions are guaranteed to be found, then they may result in the expected

ordering. The controller optimized at 0.25Hz has low errors at each tested frequency. We

can say that this controller has the best bandwidth among the sample set.

The wire contraction, temperature, and input current plots of each of the optimal

controllers at each frequency are shown in Figures 6.16 to 6.21. The controllers optimized

at 0.02 (Fig 6.16), 0.05 (Fig 6.17) and 0.0625Hz (Fig 6.18) give good performance for the

cost function J2. This is a result of the cooling time of the system. As the frequency

increases, the output of the system can only manage to stay ‘near the middle’ to achieve

the best error values possible. Therefore, the SMA wire is not suitable for this application

at frequencies higher than 0.125Hz.
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Table 6.3: Optimal Controllers using J3

Reference Frequency (Hz) Kp Ki Kd Normalized Error en

0.08 10.7056 9.0962 10.4593 0.00002321

0.125 5.3877 4.577 5.1752 0.0022

0.25 0.9731 0.0933 2.0231 0.3514

0.333 1.0686 0.0905 1.9207 0.4792

0.5 6.2908 0 0 0.5471

1 9.4945 10.5247 10.2634 0.8004

6.3 Spread Tracking

For the spread tracking problem, the following cost function is used:

J3(Kp, Ki, Kd) =
n−1∑
i=1

|∆yi −∆yd|2 (6.7)

where

∆yi = |yis − yi+1
s |

yis = contraction at ith switch time

∆yd = desired wire travel

n = number of switching times

The reference signal is given in equation (6.1). The reference signal frequencies are

0.08, 0.125, 0.25, 0.333, 0.5 and 1Hz. ∆yd is chosen to be 7.4mm, which corresponds to

2% strain for 100,000 cycle lifetime [29].

The optimal controller for each design frequency is given in Table 6.3. The normalized

error is calculated using the following formula:

en =

∑n−1
i=1 |∆yi −∆yd|2∑n−1

i=1 |∆yd|2
(6.8)

The denominator corresponds to the tracking error of a zero output. Each optimal con-

troller is then used for the different frequencies and the tracking error is recorded. The

normalized error is shown in Figure 6.22.
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A few observations can be made from Figure 6.22. For low frequency signals, the error

for all the controllers are small. This is because at low frequencies, the wire has more time

to cool. Since the controllers do not contribute to the cooling phase, the low frequency of

the signal allows for better tracking during cooling.

A similar observation can be made at high frequencies such as 1Hz. The errors of each

of the controllers are all very close to 0.8. The high error is more a result of the reference

signal frequency than the controller gain values. At high frequencies, the system does not

have adequate time for cooling. This results in poor tracking during the cooling phase.

Optimizing for the higher frequencies can only improve the tracking during the heating

phase slightly.

There are two main groups of curves in Figure 6.22. The first group consists of the

error curves for 0.08, 0.125 and 1Hz reference signals. While it is expected to see the

lower frequency controllers have similar error behaviour, the shape of the 1Hz error curve

is unexpected. The second group consists of the error curves for 0.25 and 0.333Hz signals.

These two error curves are almost identical because of similar controller gains. They also

have relatively low error values across all tested frequencies. One hypothesis is that there

is also an optimal frequency for the system. Optimizing near this optimal frequency will

give good error values across a wide range of frequencies.

The error curve of the controller optimized at 0.5Hz does not follow the general shape

of other controllers. A possible explanation for the discrepancy is that the controller found

may not be the global optimal controller. However, this controller does have significantly

lower error value at 0.5Hz. It is also the best controller among the optimization results

using different initial values. Therefore, it may be the case that some controllers only

work for the specific frequency it is optimized for, and others work well over a range of

frequencies.

The wire contraction, temperature, and input current plots of each of the optimal

controllers for each frequency are shown in Figures 6.23 to 6.28. Similar to the previous

two cost functions, the controllers give good performance at low frequencies as a result of

the cooling time. Once again, the system output stays near the middle to achieve good

error values at higher frequencies. There is an exception to the above observation at 0.5Hz

(Figure 6.27). Since J3 only considers the displacement over consecutive switching times,
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the control objective can be achieved without alternating between heating and cooling.
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Cost Function Kp Ki Kd

J1 0.116 0.2216 0

J2 10.6033 9.2409 10.5912

J3 10.7056 9.0962 10.4593

Table 6.4: Controller Gains for Different Cost Functions at 0.08Hz

6.4 Comparing Cost Functions

The three cost functions investigated have different applications, but the objectives are

quite similar. The wire contraction and temperature plots of all three cost functions for

the optimal controllers at each frequency are shown in Figures 6.29 to 6.30. In most cases,

the system outputs are very similar for all three cost functions. At 0.5Hz, the output for

J3 is very different from the other cost functions. This is because the cost function J3 only

includes the displacement over consecutive switching times. Therefore, the system does

not have to follow the ‘zig-zag’ pattern of other outputs to achieve the objective.

The system outputs at 0.125Hz are quite different for the three cost functions. This is

because at this frequency, the system has enough time for cooling. Therefore, it is able to

reach each target more effectively. Finally, at 0.08Hz, the system output for J2 and J3 are

very similar. This is because by reaching close to 0mm and 8mm at the switching times

for J2, implies that it has also reached a spread of 7.6mm.

In Figure 6.29, the system output for all three cost functions are very similar at 0.08Hz.

The outputs are almost identical when the wire contraction increases from 0 to 10mm

initially. The optimal controller gains for the two cost functions at 0.08Hz are given in

Table 6.4. While the outputs are similar, the controller gains for J2 are much larger than

the gains for J1. This is a result of the input saturation. The magnitude of the gains is less

significant when the input reaches positive saturation. It can be seen in the input plots of

Figures 6.8, 6.19 and 6.23 that during the initial contraction from 0 to 10mm, the input

is at positive saturation almost the entire time. Therefore, input saturation is a possible

reason for the existence of multiple near-optimal solutions.
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Chapter 7

Conclusions and Future Research

The research in this thesis examined the effect of PID-controller gain optimization on SMA

wire control at different frequencies of operation. A constant-load SMA wire actuator with

a PID-controller is used in the study. Heat is applied to the wire using an input electric

current. The system is cooled through convection with the surrounding area. The lack

of active cooling prevents the system from operating at high frequencies. By optimizing

the controller gain values, the bandwidth of the system is improved over the controller

optimized from the step response.

Three different cost functions are proposed for various applications. A square wave

is used as the reference signal. The Preisach model is chosen to model the hysteretic

behaviour of the SMA wire contraction. The system is implemented in MATLAB for

simulations. Varying material properties such as electrical resistance and heat capacities

are modelled to give a more accurate representation of the system’s physical behaviour.

Using each cost function, optimal PID-controller gain values are obtained for a set

of reference signal frequencies. The performance of the controllers at different reference

frequencies are compared. Results show that the optimal controllers also give good per-

formance in a range of frequencies near the frequency at which they are optimized. This

allows the use of one controller for applications that involves a reference signal of varying

frequencies as opposed to changing the controller gains whenever the reference frequency

changes slightly.

An interesting observation is made in the heating cycle of the SMA wire. In order to

101



102 Controller Gain Optimization for Position Control of an SMA Wire

achieve faster cooling, overshoot is observed at low frequencies. This is a result of the

system hysteresis. The system hysteresis allows different input signals to achieve the same

output value. Since the rate of cooling is proportional to the temperature above ambient,

better cooling is achieved by reaching a higher temperature. The error caused by the

overshoot is compensated by the better cooling phase, which is not actively controlled.

7.1 Summary of Contributions

The main contribution of this research is summarized below.

• Improvement in performance by optimizing controller gain values over controller de-

signed from the step response for periodic reference signals. The optimal controllers

take into account the lack of control in the cooling phase to obtain better tracking

results.

7.2 Future Research Directions

Ideas for some future projects are outlined below.

• This work is based on a PID-controller in feedback with an SMA wire. Other con-

trollers such as variable structure control and inverse models can be used to study the

bandwidth of the system through optimization. More sophisticated control schemes

may provide better tracking results.

• Different actuator configurations such as a differential or a spring-biased type as well

as other smart materials can be used in a similar study. Results may improve the

performance of actuators where a cooling mechanism is costly to implement.

• The third cost function defined in Section 4.1 suggested that the reference signal

amplitude can be used as an optimization parameter. For certain applications, the
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system output is not required to track a specific reference signal. Only the relative

spread of the output signal is of interest. The control signal and hence the system

output depends on the reference signal. Therefore, by adjusting the reference signal

amplitude, the cost function may be reduced for a fixed controller. At the same

time, the additional design parameter increases the complexity of the optimization

problem. Therefore, more effective optimization methods are needed to investigate

this problem.

• The major obstacle in the optimization problem is the non-convexity of the solution

space. Therefore, different optimization algorithms may be explored to obtain the

global optimal solution.

• Finally, it is observed that in some cases, overshoot improves the system performance

during the cooling phase. In some applications, overshoot is not desired. Different

cost functions can be investigated to overcome this problem. On the other hand, for

applications where overshoot is not a major concern, it might be worthwhile to study

how this overshooting behaviour can be used to improve overall system performance.





Appendix A

State-space Representation for

Preisach Model

This section provides the state-transition and read-out operators for the Preisach model

as described in [15]. This state-space representation is shown to satisfy the dynamical

systems definition in Section 2.4.

A.1 State-Transition and Read-Out Operators

The state-transition operator is an operator that describes the change of state when an

input is applied to some initial state. We first introduce an intermediate space:

Definition A.1.1 The space of reduced memory sequences S is defined as the set of

reduced memory sequences sn where |sn| ≤ usat ∀n.

The idea of the intermediate space is to first convert the input signal into a reduced

memory sequence, and from this sequence, we construct the boundary, or the state ψ.

Since ψ uniquely defines the regions P+(t) and P−(t), we can then obtain the output using

equation (2.2).

Next we define the mappings that relate the spaces B, S, U and Y .
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Definition A.1.2 The mapping Fτ : U → S takes an input signal u(t)and creates a

reduced memory sequence up to time t = τ as defined in Section 2.4.2.

Since the reduced memory sequence does not contain all of the input history, the map Fτ

does not have an inverse. But since inputs that share the same reduced memory sequence

produce the same output value, we can treat these inputs as an equivalence class of inputs.

Definition A.1.3 The mapping F r
τ : S → U takes a reduced memory sequence up to time

t = τ and recreate a possible input signal u(t) as follows [15]:

Choose an arbitrary t0 < τ . Partition the interval [t0, τ ] by

ti = t0 +
τ − t0

2

i−1∑
k=0

1

2k
, ∀i ≥ 1.

Assign values of u in the following manner: u(t) = 0 for t ≤ t0and u(ti) = si for i ≥ 1.

Connect the discrete points u(ti) with straight lines.

Definition A.1.4 The mapping Gτ : S → B takes a reduced memory sequence up to time

t = τ and create the corresponding boundary in the Preisach plane Pr.

Definition A.1.5 The mapping G−1
τ : B → S takes a boundary in the Preisach plane Pr

and reconstruct a corresponding reduced memory sequence up to time t = τ .

The inverse of G exists since the spaces B and S share the wiping out property, thus

any reduced memory sequence uniquely defines a boundary and vice versa.

Definition A.1.6 The concatenation operator ♦ is defined by

u(t0,t1]♦v(t1,t2] =

 u, t0 < t ≤ t1

v, t1 < t ≤ t2

We are now ready to define the state-transition operator.

Definition A.1.7 The state-transition operator is the mapping φ defined by

ψ1 = φ(t1, t0, ψ0, u) = Gt1Ft1((F
r
t0
G−1
t0
ψ0)♦u(t0,t1])
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The state-transition operator takes the present boundary ψ at time t = t0, first convert

it to a corresponding reduced memory sequence via G−1
t0 . Then an equivalent input is

reconstructed using F r
t0

. This ‘past input’ is then concatenated with the new input u. The

new joint input is then used to construct a new reduced memory sequence, and in turn

produces the new boundary ψ1.

Note that (F r
t0
G−1
t0 ψ0)♦u(t0,t1] need not be a continuous function. Since there is no

continuity requirement in the construction of the reduced memory sequence, the problem

created by a discontinuous input is avoided.

Lastly, we define the read-out operator.

Definition A.1.8 The read-out operator r is defined as

y(t) = r(ψ) =

∫∫
P+(ψ)

µ(r, s)drds−
∫∫

P−(ψ)

µ(r, s)drds (A.1)

where P+(ψ) and P−(ψ) denotes the regions P+(t) and P−(t) defined by the boundary ψ

at time t respectively.

Note that equation (A.1) is a modified version of equation (2.2). Since the relays in the

region P+(t) and P−(t) have output values of +1 and -1 respectively, the function γ(r, s)

in equation (2.2) can be accounted for by splitting into two integrals. The regions P+(t)

and P−(t) are defined by the evolution of the boundary ψ. Since the boundary contains

continuous line segments of slope +1 or -1, the integrals in equation (A.1) are well-defined.

We now show that the state space formulation described above indeed satisfies the

axioms in Definition 2.4.1. Axioms (i)-(iii), (v) and (vi) are satisfied by construction.

(iv)a (consistency): For any t0 ∈ R, ψ0 ∈ B and an input u ∈ U , we have

φ(t0, t0, ψ0, u) = Gt0Ft0((F
r
t0
G−1
t0
ψ0)♦u(t0,t0])

= Gt0Ft0(F
r
t0
G−1
t0
ψ0)

= Gt0G
−1
t0
ψ0

= ψ0
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(iv)b (determinism): For any t1 ≥ t0 ∈ R, ψ0 ∈ B and inputs u1, u2 ∈ U satisfying

u1(t) = u2(t) for t0 ≤ t ≤ t1, we have

φ(t1, t0, ψ0, u1) = Gt1Ft1((F
r
t0
G−1
t0
ψ0)♦u1(t0,t1])

φ(t1, t0, ψ0, u2) = Gt1Ft1((F
r
t0
G−1
t0
ψ0)♦u2(t0,t1])

if we let u0 = F r
t0
G−1
t0 ψ0 then

φ(t1, t0, ψ0, u1) = Gt1Ft1(u0♦u1(t0,t1])

φ(t1, t0, ψ0, u2) = Gt1Ft1(u0♦u2(t0,t1])

since the mapping Fτ and Gτ are deterministic, equal inputs create the same reduced

memory sequence and thus the same boundary; also since u1(t0,t1] = u2(t0,t1], hence

φ(t1, t0, ψ0, u1) = φ(t1, t0, ψ0, u2)

(iv)c (semi-group property) For any t0 ≤ t1 ≤ t2 ∈ R, ψ0 ∈ B and input u ∈ U , we need

to show that

φ(t2, t0, φ0, u) = φ(t2, t1, φ(t1, t0, ψ0, u), u)

Left hand side: if we let u0 = F r
t0
G−1
t0 ψ0 then

φ(t2, t0, ψ0, u) = Gt2Ft2((F
r
t0
G−1
t0
ψ0)♦u(t0,t2])

= Gt2Ft2(u0♦u(t0,t2])

= Gt2Ft2ũ

where ũ = u0♦u(t0,t2].
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Right hand side: if we let u0 = F r
t0
G−1
t0 ψ0 then

φ(t2, t1, φ(t1, t0, ψ0, u), u) = Gt2Ft2((F
r
t1
G−1
t1
φ(t1, t0, ψ0, u))♦u(t1,t2])

= Gt2Ft2((F
r
t1
G−1
t1
Gt1Ft1((F

r
t0
G−1
t0
ψ0)♦u(t0,t1])♦u(t1,t2])

= Gt2Ft2(F
r
t1
Ft1((F

r
t0
G−1
t0
ψ0)♦u(t0,t1])♦u(t1,t2])

= Gt2Ft2((F
r
t1
Ft1(u0♦u(t0,t1]))♦u(t1,t2])

= Gt2Ft2((F
r
t1
Ft1ũ(−∞,t1])♦u(t1,t2])

= Gt2Ft2(ũ
′
(−∞,t1]♦u(t1,t2])

= Gt2Ft2ũ
′
(−∞,t2]

= Gt2Ft2ũ

The last equality holds since the inputs create the same reduced memory sequences,

and hence the same output values. Hence we have

φ(t2, t0, ψ0, u) = φ(t2, t1, φ(t1, t0, ψ0, u), u)

as required.

(iv)d (stationarity) For any t1 ≥ t0 ∈ R,T ∈ R, ψ0 ∈ B and inputs u, uT ∈ U satisfying

uT (t) = u(t+ T ) ∀t ∈ R, we need to show that

φ(t1 + T, t0 + T, ψ0, u) = ψ(t1, t0, ψ0, uT )

Gt1+TFt1+T ((F r
t0+TG

−1
t0+Tψ0)♦u(t0+T,t1+T ]) = Gt1Ft1((F

r
t0
G−1
t0
ψ0)♦uT (t0,t1])

Left hand side: since the boundary and reduced memory sequences do not contain

information in time, i.e. Gt1+TFt1+T = Gt1Ft1 and F r
t0+TG

−1
t0+T = F r

t0
G−1
t0 . Using the

fact that uT (t) = u(t+ T ) ∀t ∈ R, we have

Gt1+TFt1+T ((F r
t0+TG

−1
t0+Tψ0)♦u(t0+T,t1+T ]) = Gt1Ft1((F

r
t0
G−1
t0
ψ0)♦uT (t0,t1])

as required.

Thus, we have shown that the state space representation presented in the above sections

defines a dynamical system.
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MATLAB Codes

B.1 Main Simulation File

function [f]=SMA(K)

%initialization

temp_amb=25;

load sim_data.mat load refv.mat

%define parameters

L=0.380; % meters, measured

d=12/1000*2.54/100; % meters, from 12mil specifications

rho=6500; % kg/m^3, from Madill’s thesis, confirmed in D&P paper

c_p=460; % J/kgC, from Madill’s thesis

h=75; % W/m^2C, from Madill’s thesis

H=0.0618 % latent heat

%transformation temperatures

A_s=53

A_f=80

M_s=47
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M_f=19

V=pi*(d/2)^2*L; % m^3, wire volume calculation

A=pi*d*L; % m^2, wire surface area for cooling purposes

Ra=4.5;

Rm=5;

for i=1:3

if K(i)<0

K(i)=0

end

end

Ki=K(1);

Kp=K(2);

Kd=K(3);

%define variables

t_it=length(t) in=zeros(1,t_it); out=zeros(1,t_it);

temp=zeros(1,t_it); temperature = temp_amb;

R=Ra;

e1=ref(1);

e2=ref(1);

int_e=0;

[y]=pm(fod,index,0,fab_file,fab_coeffs,1)

in(1)=0;
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out(1)=y;

temp(1)=temperature;

%loop over time interval

for i=2:length(t)

dt=t(i)-t(i-1)

u=Ki*int_e+Kp*e2+Kd*(e2-e1)/dt;

%input restrictions

if u>1

u=1

end if u<0

u=0

end if ref(i)==0

int_e=0

u=0

end

%varying heat capacities

if u>0

if (temp(i-1)>=A_s) &&(temp(i-1)<=A_f)

c=c_p+H*(log(100)/abs(A_s-A_f))*exp(-2*(log(100)/abs(A_s-A_f))*...

abs(temp(i-1)-0.5*(A_s+A_f)))

else

c=c_p

end

else
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if (temp(i-1)>=M_s) &&(temp(i-1)<=M_f)

c=c_p+H*(log(100)/abs(M_s-M_f))*exp(-2*(log(100)/abs(M_s-M_f))*...

abs(temp(i-1)-0.5*(M_s+M_f)))

else

c=c_p

end

end

temperature=dt*(((R*(u^2)))-h*A*(temperature-25))/(rho*c*V)+temperature

%access Preisach Model file to obtain output

[y]=pm(fod,index,(temperature-temp_amb),fab_file,fab_coeffs,0)

output=y; in(i)=u; out(i)=output; temp(i)=temperature; e1=e2;

e2=ref(i)-output; int_e=int_e+.5*(e1+e2)*dt;

phase_frac=output/(index(length(index))-index(1));

R=phase_frac*Ra+(1-phase_frac)*Rm;

end %t loop

%display results

subplot(3,1,1);

hold on

plot(t,out,’.’);

plot(t,ref,’-r’);

hold off

xlabel(’Time (s)’)

ylabel(’Wire Contraction (mm)’)

title(’Hysteresis

Output - Ref=0.5, Ki=0, Kp=3, Kd=0’)

subplot(3,1,2);

plot(t,temp,’.’);
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xlabel(’Time (s)’)

ylabel(’Temperature (Degrees

Celcius)’)

title(’Temperature Plot’)

subplot(3,1,3);

plot(t,in,’.’);

xlabel(’Time (s)’)

ylabel(’Current (A)’)

title(’Current Plot’)

%error output

f=trapz(t,(out-ref).^2)

end

B.2 Preisach Simulator

function [y]=pm(fod,index,u,fab_file,fab_coeffs,rr)

% Declare "memory" variables as global

global rms yo

% Size of identification grid (nxn)

n = length(index)

% Some useful variables

umax = index(n); umin = index(1); ymax = fod(n,n); ymin = fod(n,1);

hmax=umax; hmin=umin;

% Initialize "memory" variables if this is the first call

% Assume P- = P, P+ is empty, and u=umin

if (rr==1)

rms=[umax umin;umin umin];



116 Controller Gain Optimization for Position Control of an SMA Wire

yo=ymin;

end evalstr=[fab_file ’(fab_coeffs,’]; h_plus=0;

% Get the value of the last input

uo = rms(1,end);

% First, a few special cases which are easy enough to handle seperately

if (u==uo) % input hasn’t changed since last time

y=yo;

elseif (u>=umax) % positive saturation

rms = [umax umax;umin umax];

y = ymax;

elseif (u<=umin) % negative saturation

rms = [umax umin;umin umin];

y = ymin;

else % Not a special case: determine the new RMS & output

if (u>uo) % increasing input

cut = max(find(rms(1,:)>u));

rms = [rms(:,1:cut) [u;rms(2,cut)] [u;u]];

rms1=rms;

elseif (u<uo) %decreasing input

cut = max(find(rms(2,:)<u));

rms = [rms(:,1:cut) [rms(1,cut);u] [u;u]];

rms1=rms;

end

while (length(rms(2,:))>1),

if (rms(2,1)~=rms(2,2))

%use rms for the corners of the trapezoids
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trapezoid=0.5*(eval([evalstr num2str(rms(1,2))...

’,’num2str(rms(2,2)) ’)’])-eval([evalstr num2str(rms(1,1))...

’,’ num2str(rms(2,1)) ’)’]) );

h_plus = h_plus + trapezoid;

end

[n1,n2]=size(rms)

rms=rms(:,2:n2); % pop the trapezoid index off the top

end;

%

% Compute the output

%

big_triangle = 0.5*( eval([evalstr ’hmax , hmax)’])- ...

eval([evalstr ’hmax , hmin)’]) );

offset = 0.5*( eval([evalstr ’hmax,hmax)’])+ ...

eval([evalstr ’hmax,hmin)’]) );

y = 2*h_plus - big_triangle + offset; rms =rms1 end

% Save output state for next time

yo = y; end
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