
Struts2JSF:

Framework Migration in J2EE

using Framework Specific Modeling Languages

by

Aseem Paul S. Cheema

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2007

c©Aseem Paul S. Cheema, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Java 2 Enterprise Edition is a portable, robust, scalable and secure platform for enterprise

software development based on Java technologies, and embraces open standards through

the Java Community Process (JCP). J2EE development is not very productive because of

the complexity of the platform and the lack of good tool support. Object-Oriented Frame-

works are a reliable design and code reuse approach. Many frameworks have emerged

since J2EE’s release to ease development. Struts has become the de-facto standard, while

JavaServer Faces (JSF) is a new framework, which has been included in the J2EE spec-

ification and hence standardized. Both Struts and JSF frameworks are based on Model-

View-Controller design pattern. JSF takes a similar approach to Struts for the controller

component, but adds to it by providing user interface components with server-side state

for the view component.

This work deals with the problem of migrating an application based on the Struts frame-

work to the new JSF framework. The software migration task is divided into view and con-

troller migration. Controller migration is semi-automated using Antkiewicz’s Framework-

Specific Modeling Languages (FSML) approach. Guidelines are provided for view migra-

tion, which boils down to the problem of componentization. JSF and Struts frameworks

can also be used together where JSF supports the view component while Struts supports

the controller component. Merits and demerits of this approach are also discussed.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Andrew J. Malton for his continuous guidance

and support at each step of the process. His knowledge and experience in the field of

Software Migration, Software Engineering and his ability to convey his understanding

clearly to students, helped me get a clear perspective of the problem. Without his guidance,

I would have strayed without accomplishment.

I thank Prof. Krzysztof Czarnecki and Prof. Steve MacDonald for taking the time to

review my work and to serve on the committee.

I thank Michal Antkiewicz for introducing me to framework-specific modeling and

Eclipse plugin development. He went to the extent of pair programming with me to give

me a head start on designing a FSML and implementing an Eclipse plugin.

I thank Mr. Mike Goel from Taxwide Inc. for allowing me to use the TOAST ap-

plication source code for the case study. The case study was used for evaluation of the

prototype developed as a part of this work.

I thank all SWAG group members for their support and valuable advice regarding my

research work. I specifically thank them for providing a wonderful work environment with

the right mixture of work and play.

I thank my family for being by my side throughout and for their continuous encour-

agement to pursue higher studies and to accomplish the goals I set for myself.

iv

Contents

1 Introduction 1

1.1 Software Migration . 2

1.2 Object-Oriented Frameworks . 5

1.3 Framework Migration . 8

1.4 Thesis Organization . 10

2 Technical Background 11

2.1 Java Web Development . 12

2.2 Frameworks To the Rescue . 15

2.3 Model-View-Controller . 16

2.4 Struts Overview . 18

2.5 JavaServer Faces Overview . 23

2.6 Why migrate to Struts to JSF? . 27

2.7 Chapter Summary . 31

3 Migration Strategies 33

3.1 Complete Migration . 34

3.2 Partial Migration . 41

3.3 FSMLs for Framework Migration . 43

vi

3.4 Chapter Summary . 48

4 The Prototype FSML 49

4.1 Struts2JSF FSML . 49

4.2 Analyze Code . 54

4.3 Migrate Code . 61

4.4 Prototype Implementation . 71

4.5 Chapter Summary . 74

5 View Migration 75

5.1 Struts2JSF Tag Library Map . 76

5.2 Componentization . 81

5.3 Tiles and JSF . 82

5.4 Chapter Summary . 86

6 Migration Case Study - ToastAdmin 87

6.1 Controller Migration . 90

6.2 View Migration . 96

6.3 Lessons Learned . 99

6.4 Chapter Summary . 100

7 Conclusion 101

A Glossary of Terms 104

vii

List of Tables

5.1 Struts2JSF Tag Library Map . 76

6.1 Form Beans (in Struts) to Managed Beans (in JSF) Mappings 91

viii

List of Figures

1.1 The Software Migration Barbell[65] . 4

1.2 Framework Migration . 8

2.1 Tiers in multi-tiered J2EE applications. [13] 13

2.2 Model-View-Controller [29] . 17

2.3 Struts Overview . 19

2.4 JSF Overview . 24

2.5 JSF Request Life Cycle . 26

3.1 Partial/Complete Migration Overview . 35

3.2 FSML for Round-Trip Engineering . 44

3.3 FSML for Framework Migration - The Process 46

4.1 Struts to JSF FSML Definition . 50

4.2 The J2EE Component Deployment Descriptor - “web.xml” 55

4.3 Struts Configuration File - Forms . 56

4.4 Struts Action . 58

4.5 Struts Action Configuration . 59

4.6 Struts Message . 60

4.7 Migration Algorithm . 64

ix

4.8 Merging Actions and Forms . 65

4.9 Struts execute Method Code . 68

4.10 JSF execute Method Code . 69

4.11 Prototype Implementation . 71

5.1 Example of Migrating Tiles from Struts to JSF 83

5.2 Example of Migrating a Tiles Layout . 85

6.1 Architecture of the Taxwide Operations And Security Tool (TOAST) . . . 88

6.2 ToastAdmin Screenshot . 89

6.3 Expected and Actual Action Class Hierarchy in ToastAdmin 94

6.4 ToastAdmin Layout . 97

x

Trademarks

Java, Java 2 Standard Edition, Java 2 Enterprise Edition, Java Enterprise Edition 5.0,

JavaServer Pages, JavaServer Faces, Servlets, Enterprise JavaBeans, Java Transactions

API, JavaBeans, Java Naming and Directory Interface, Java Messaging Service, JavaBeans

Activation Framework, Sun Java Studio Creator are registered trademarks or trademarks

of Sun Microsystems, Inc.

Active Server Pages, ASP .Net, Microsoft Visual Studio .Net, Microsoft Visual Studio

2005 are registered trademarks or trademarks of Microsoft Corporation.

xi

Chapter 1

Introduction

As a large, high-stake software system becomes old and the underlying technologies become

obsolete, the maintenance costs tend to rise. One way of handling this problem is to migrate

the software system to a newer environment. The environment may be the programming

language, the underlying operating platform, the database system or a framework. This

is referred to as Software Migration. This work deals with the problem of Framework

Migration, specifically concentrating on frameworks in Java 2 Enterprise Edition (J2EE)

[15] domain.

In this work, we study migration strategies for migrating an application based on the

Struts [39] framework to the new JSF [45] framework. We break the migration task into

two separate migration tasks involving the view and the controller components. The two

components are loosely coupled by configuration files. The controller component migration

is semi-automated using a Framework Specific Modeling Language (FSML) [64], discussed

in Chapter 3 and Chapter 4. A step-by-step guide to migrating the view component of an

application is discussed in Chapter 5.

The rest of this chapter is organized as follows: Section 1.1 discusses research work re-

lated to Software Migration in general, Section 1.2 discusses Object-Oriented Frameworks,

1

2 Struts2JSF: Framework Migration in J2EE using FSML

and Section 1.3 discusses the need for Framework Migration and the challenges posed by

the problem.

1.1 Software Migration

Software Maintenance [52] is defined as

“Modification of a software product after delivery to correct faults, to im-

prove performance or other attributes, or to adapt the product to a modified

environment”.

Software Maintenance tasks are classified as corrective, adaptive, perfective and emergency

[52]. A slightly different classification of Software Maintenance tasks is as corrective,

adaptive, perfective and preventive as in [63].

Software Maintenance can be the most expensive phase of the Software Development

Life Cycle. As the code becomes older, the maintenance costs tend to increase for a number

of reasons. Unavailability of original developers, manpower shortages for a particular skill-

set, obsolete technologies, continuously changing business requirements and design flaws

originating from quick-fix maintenance activities are some of the most prominent reasons

for increased maintenance costs. In Parnas’ words [67], the software system tends to

undergo an aging process because of prolonged maintenance.

Software Migration is deemed a Software Maintenance activity. Malton defines software

source migration in the Software Migration Barbell [65] as

“The re-engineering task of deploying existing software in a new environ-

ment, by significant modification of the source code.”

As the stake in a software system increases, it becomes more important than ever to

migrate the legacy system of critical importance to adopt new technologies. Migrating

Introduction 3

large software systems manually is a daunting task. A manual migration is harder than

writing a new system from scratch because of the constraints the legacy system imposes

and hence is not feasible. Many attempts have been made to automate and/or semi-

automate the migration activity. Most use ad-hoc migration processes that are specific to

the technologies under consideration. These processes tend to follow a pattern: reverse

engineering followed by forward engineering.

Terekhov and Verhoef [69] give an account of their experiences with language conver-

sions in The Realities of Language Conversions1. It is highlighted that “easy conversion

is an oxymoron” and the difficulties of language conversions are often underestimated re-

sulting in failures. A three step process is suggested for language conversion: restructuring

in the original program, syntax swap and restructuring in the target program. Also, the

requirements for the conversion tools are listed.

Kontogiannis et al. [61] report on experiences with PL/IX to C++ language conver-

sion. The importance of the Abstract Syntax Tree (AST) representation is highlighted and

used throughout the process. The process used is specific to the languages under consid-

eration and consists of the following steps: data structure transformations, generation of

supporting utilities to handle the different language constructs and generation of the new

system guided by AST traversal.

Martin and Muller [66] present the Ephedra approach for C to Java migration and

provide account of their experiences using this approach on three case studies. Ephedra

is a three step approach: insertion of C function prototypes, object-orientation with the

removal of multiple inheritance and transliteration of source code. Ephedra is specific to

C/C++ to Java migration.

1Migration, conversion and transformation have been used synonymously in the literature, and in this

work. All three refer to software source migration.

4 Struts2JSF: Framework Migration in J2EE using FSML

Malton proposes a three step systematic approach for Source Migration called the

Barbell Model [65] in The Software Migration Barbell. In this work, Malton also classifies

Software Migration as follows:

• Dialect Conversion implies Software Migration from one version of a programming

language to another. This is usually a result of evolution of compiler technology.

Java to Java 2 conversion is an example of Dialect Conversion. This is the easiest to

automate.

• API migration refers to source migration that is a result of a change in the API of

external libraries or a framework.

• Language Conversion implies Software Migration between two different languages

and is the hardest of the three because of a paradigm shift. C to Java migration is

an example of Language Conversion.

The Barbell Model consists of three phases namely, source normalization, blind trans-

lation, and target optimization. The model is depicted in Figure 1.1.T r a n s l a t i o n
N o r m a l i z a t i o n O p t i m i z a t i o n

Figure 1.1: The Software Migration Barbell[65]

Normalization means modifying code in the source environment to ease the translation

process. The automation tools usually make some assumptions about the source. Transla-

tion depends on the automation tools and hence the assumptions. If the assumptions fail,

Introduction 5

the translation may be error prone. Normalization can be used to assure the validity of

assumptions on which the translation process depends.

Translation represents the actually migration step or process. During this phase, the

code is a mixture of source and target environments and hence cannot be compiled. We

lose all the support of tools like compilers, IDEs, etc. during this phase. Malton insists

that the translation should be as blind and as fast as possible because of lack of support

during this phase.

Optimization refers to code modification in the target environment to achieve the goal

of maintainability. At the end of translation, the target code still has “bad smells” from

the source code. The aim of optimization is to remove these bad smells, and make the

code as native to the target environment as possible.

1.2 Object-Oriented Frameworks

The Object-Oriented (OO) paradigm promotes reuse by data abstraction, encapsulation

and inheritance [60]. Encapsulation brings the data and the methods together in one

module (class) promoting modularization and enabling reuse of the module. Inheritance

also promotes reuse of code, as other classes can extend base classes thereby inheriting the

code of the base class. The component of reuse in OO is a class.

Johnson and Foote [60] define a framework2 as “a set of classes that embodies an ab-

stract design for solutions to a family of related problems”. A framework is therefore a

partial design and implementation of an application in a given problem domain. This pro-

motes reuse of design and architecture as well as the lower level components like classes.

Frameworks provide a semi-complete application that is completed by extending the frame-

2A framework is a very general concept. This work uses the term framework to refer to Object-Oriented

Application Framework.

6 Struts2JSF: Framework Migration in J2EE using FSML

work at hot spots or extension points. This enables reuse at a higher abstraction level.

The primary difference between a framework and a library is the “Inversion of Control”

concept [12]. The framework controls the execution sequence and calls the application

specific code. While using libraries, the application code controls the execution and calls

library methods.

Most academic research work related to OO Frameworks dates back to late 90’s. In

[56], Fayad and Schmidt provide an overview of OO Application Frameworks. In this work

they identify modularity, reusability, extensibility and Inversion of Control as the primary

benefits of OO Application Frameworks. They provide framework classification based on

a framework’s scope as follows:

• System infrastructure frameworks simplify the development of infrastructure software

like operating systems, database management systems, etc.

• Middleware integration frameworks simplify the development of distributed applica-

tions.

• Enterprise application frameworks are domain specific frameworks for application

development.

Based on the above classification, most of the frameworks for J2EE web development

are Enterprise application frameworks.

Another classification of frameworks is provided based on the ways to extend a frame-

work. This classification is a rather popular classification. It classifies frameworks as

follows:

• Whitebox Frameworks use inheritance as the primary extension technique.

• Blackbox frameworks use object composition as the primary extension technique.

Introduction 7

Based on the above classification, most of the frameworks for J2EE web development

are “Graybox frameworks” as they use mixture of inheritance and object composition as

their extension techniques. Fayad and Schmidt [56] explain how Whitebox frameworks

require deep knowledge of framework structure for application development and provide a

tightly coupled system, but are easier to develop. On the other hand, it is easier to develop

applications with Black Box frameworks and they provide loosely coupled software systems,

but Black Box frameworks are harder to develop.

Frameworks are also compared to the other reuse techniques like design patterns and

class libraries [56]. Design patterns are solutions to recurring problems but are not con-

crete implementations. Frameworks on the other hand, use many combinations of design

patterns and provide concrete implementations of semi-complete application for a par-

ticular domain. Frameworks also complement class libraries by providing semi-complete

application and by implementing inversion of control.

Most of the other research work related to Object-Oriented frameworks is experience

reports on framework development and does not address the problem of Framework Migra-

tion. Harinath et al. [58] describe their experiences with the design and implementation

of an Object-Oriented framework for distributed control applications. Commercial off-

the-shelf (COTS) products were used and integration challenges were discussed. They

mention that using COTS software does not immediately solve all the problems claimed to

be addressed. Weinand et al. [70] present the architecture of ET++, an Object-Oriented

Application Framework based on MacApp [27] and its seamless integration in a Unix

environment with a conventional window system. They emphasize how the use of Object-

Oriented concepts increased productivity and a complex system was implemented by just

two programmers in one year. Srinivasan and Vergo [68] report their experiences with the

development of an Object-Oriented framework for speech recognition applications. They

8 Struts2JSF: Framework Migration in J2EE using FSML

report that the initial learning curve associated with the framework is overshadowed by

the productivity gains for application development.

1.3 Framework Migration

Since the Object-Oriented paradigm became main stream, many Object-Oriented frame-

works have emerged. These frameworks provide code reuse in the large, hence facilitating

design and architecture reuse. As the use of frameworks has increased, a large number

of software systems have been developed on top of base frameworks, thereby increasing

the dependence on the base frameworks. The application code contains the business logic,

while the framework stitches it to the underlying technology.

Situations arise when the underlying framework does not evolve and becomes a con-

straint on application evolution. This is particularly true when the frameworks are open

source or commercial off-the-shelf (COTS) frameworks. This gives rise to the need to mi-

grate the application code to a different, more advanced framework, that supports the new

features required by the application. This is where Framework Migration comes into play.

Framework migration is a specialization of Software Migration, where the environment

is the framework. The goal is to remove an application’s dependency on one framework,

and create dependency on another equivalent framework. Figure 1.2 depicts this scenario.S o u r c eA p p l i c a t i o nS o u r c e F r a m e w o r k T a r g e tA p p l i c a t i o nT a r g e t F r a m e w o r kF r a m e w o r k M i g r a t i o n
Figure 1.2: Framework Migration

Introduction 9

Protocol Mismatch is a challenging problem in Framework Migration. A Framework is a

semi-complete application, which is extended at hot spots or extension points to implement

the application specific functionality. This is also referred to as Framework Completion.

The framework hot spots or the framework’s interface to the application represents a

completion protocol, which is a contract the application must follow in order to use the

framework. When two frameworks have a different framework completion protocol, we

face the problem of Protocol Mismatch. Protocol Mismatch is the hardest problem in

Framework Migration. Migration between two frameworks with same completion protocol

is relatively simple and can be compared to API Migration.

There is not a great deal of work in the area of Framework Migration. Chi [55] used

a virtualization technique for Framework Migration. A virtual framework is designed that

has a similar interface to the source framework. The virtual framework uses an adaptor to

talk to the target framework and hence the application can be used with both source and

target frameworks with minimal code modification.

Using virtualization technique has the benefit of requiring minimal code changes, but

faces three problems. Firstly, because of virtualization, the performance in the target

environment (framework) will be affected as the application code will not be native to

the target environment. Secondly, a separate maintenance activity will be required to

maintain the application code and the virtual framework code, thereby increasing the

costs and complexity. Thirdly, if the source and target frameworks use disparate interfaces,

virtualization might not even be possible. In this work, the virtualization technique is not

used for Framework Migration because of disparate framework completion protocols of

source (Struts) and target (JSF) frameworks. A semi-automated code migration strategy

is used in this work using a FSML. The migration strategy is discussed in detail in Chapter

3.

10 Struts2JSF: Framework Migration in J2EE using FSML

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 discusses the technical background necessary

to understand the Struts to JSF framework migration problem and presents the business

case for Struts to JSF migration; Chapter 3 discusses migration strategies and the process

of using an FSML for Framework Migration; Chapter 4 presents the prototype implemen-

tation of a special FSML and the migration process for Struts to JSF controller migration;

Chapter 5 provides a guide for the manual migration of the view component; Chapter 6

reports on experiences with a migration activity using the prototype developed; Chapter

7 concludes this work and discusses future directions.

Chapter 2

Technical Background

With the advent of the Internet in the day-to-day lives of people, more and more enterprise

systems are moving to web-enabled software systems. Java 2 Enterprise Edition (J2EE)

[14] is Sun Microsystem Inc.’s solution [41] for developing web-enabled enterprise solutions.

J2EE is the platform of choice for enterprises for its portability, open standards, scalability

and security. But J2EE is also well known for its complexity and hence is not one of the

most productive solutions.

Object-Oriented Frameworks are a proven code and design reuse approach as discussed

in section 1.2. In the recent past, as the J2EE platform has matured, many application

development frameworks have emerged for J2EE application development [39, 36, 9, 49, 50,

33, 31, 48, 1]. These frameworks aim at making J2EE development easy and productive,

and exploit known Design Patterns and best practices. Over fifty such frameworks exist for

J2EE development and more than thirty of these frameworks have serious, large community

support.

In the midst of this mesh of frameworks, Java community realized the need of a standard

framework for application development. This gave birth to JavaServer Faces (JSF) [45], a

framework for component based user interface development. JSF is similar to Struts [39] in

11

12 Struts2JSF: Framework Migration in J2EE using FSML

some aspects while different in others. Struts is a de-facto standard for J2EE application

development and has strong community support.

This chapter gives technical background required to understand the techniques and

technology used in the rest of this work. The chapter is organized as follows: Section 2.1

discusses Java web development and challenges, Section 2.2 discusses the role of frameworks

in J2EE application development, Section 2.3 discusses the Model-View-Controller (MVC)

Design Pattern, Section 2.4 gives an overview of the Struts framework, Section 2.5 gives an

overview of the JSF framework and Section 2.6 discusses the rationale behind migrating

from Struts to the JSF framework.

2.1 Java Web Development

Since its introduction in 1996, the Java platform has evolved significantly and is now used

to solve many different problems. The Java platform comes in three different flavors: Java

2 Standard Edition (J2SE) [18] is used for console-based and desktop development, Java 2

Enterprise Edition (J2EE) is used for distributed enterprise applications and Java 2 Micro

Edition (J2ME) [16] is used for embedded system development.

All Java platforms are based on the Java Virtual Machine (JVM) [26], which is re-

sponsible for executing the bytecode. Java programs are compiled into bytecode, and not

executable code. The bytecode is executed by the JVM, which is the interpreter for the

bytecode. This brings portability to the Java platform. Java code compiled to bytecode

can be run on any hardware platform for which a JVM implementation exists. Portability

is the one great feature that brings Java into the limelight.

The J2EE platform is Java’s solution to the problem of distributed enterprise applica-

tion development. It takes an approach of dividing the application into components and

deploying the components on different tiers, hence making it a multi-tired model. The most

Technical Background 13

commonly used multi-tier approach in J2EE development is to break down the application

functionality into four tiers [13], shown in Figure 2.1.

• Client Tier

• Web Tier

• Business Tier

• Enterprise Information System (EIS) Tier

Figure 2.1: Tiers in multi-tiered J2EE applications. [13]

The Client tier is represented by the components that run on the client side, such as

Java Applets [2], browsers and Java Desktop applications. The Web tier is composed of

JavaServer Pages (JSP) [25] and Servlets [17] that execute in the J2EE servlet container

environment on the J2EE server machine. These web components are managed by the

14 Struts2JSF: Framework Migration in J2EE using FSML

J2EE servlet container and are responsible for response generation and navigation. The

Business tier consists of Enterprise Java Beans (EJB) [8] that are also deployed on J2EE

Server. These are responsible for business logic. The Enterprise Information Systems (EIS)

tier represents other enterprise systems that communicate with J2EE components. These

may include Web Services [62], databases or legacy systems.

The J2EE platform provides a rich set of APIs for the development of Web tier compo-

nents and Business tier components. It is a portable framework because of its underlying

JVM technology that offers scalability and security. One of the negative points about J2EE

is that it is a very complex framework and hence affects developer productivity negatively.

2.1.1 Challenges

J2EE provides a portable, robust, scalable and secure platform for web development. But,

J2EE application development can be challenging due to the complexity of the platform

and unavailability of a good Integrated Development Environment (IDE).

Complexity

J2EE is known for its complexity. The specification document itself is 229 pages long [14].

It is made up of more than thirty different technologies that have their own specifications

and acronyms. Any beginner in J2EE is overwhelmed with the amount of learning required

to get a simple application running. Some people would argue that J2EE is not for simple

web applications, but the majority of web applications using J2EE are simple, and do not

use enterprise level features like Enterprise JavaBeans (EJB), Java Transactions API (JTA)

[20], etc. The complexity of the J2EE platform is one of the biggest challenges adopting

the technology, and a serious development challenge.

Technical Background 15

Tools

J2EE is a specification and not an implementation. This ensures that there is never a

vendor lock-in situation. The specification discusses the standards that every implemen-

tation must follow to be certified. This has created a large market for J2EE application

servers. On the other hand, the J2EE specification itself is completely silent about any

Integrated Development Environments (IDE)ial. Other J2EE competitors like Microsoft’s

.Net platform [28] have great tools for Rapid Application Development (RAD) based on

the platform. IDEs are known to improve productivity. But in the J2EE world, there is no

one IDE that provides comprehensive coverage of all J2EE features and frameworks, and

hence J2EE application development is still a difficult task.

There are a number of tools that aim at developer productivity improvements by pro-

viding IDEs for J2EE development. Some of them are as follows: Oracle JDeveloper

[35], NetBeans IDE [32], Sun Java Studio Creator [19], IntelliJ IDEA [11], MyEclipse [30],

Eclipse Web Tools Platform [7], etc. Another interesting tool that takes a different ap-

proach is RoadMapAssembler [54]. It provides a tool for design-pattern based incremental

development of J2EE applications, thereby improving developer productivity and code

quality.

2.2 Frameworks To the Rescue

In recent times, a number of frameworks have been proposed for J2EE web development.

Some of these frameworks solve specific problems, but most offer ease of development by

enabling developers to write a minimum of code. Presently there are more than thirty

different frameworks that have a serious community of developers supporting them.

Frameworks provide a robust solution to the challenging problem of J2EE application

16 Struts2JSF: Framework Migration in J2EE using FSML

development. Most frameworks use J2EE best practices and hence the code quality is

better using the framework solution. Inversion of Control frameworks take control of the

execution of code and provide an architecture of the J2EE application, to which application

specific code segments are added.

Frameworks usually solve a specific problem. Hence, choosing an off-the-shelf frame-

work makes development less complex because we code to the framework rather than the

J2EE platform. This brings in the application framework layer between J2EE and the

application and hides the complexity of the J2EE platform.

Some frameworks enable ease of development of RAD tools, like JSF. This ensures

better productivity.

Most of the J2EE frameworks use proven Design Patterns [57]. Model-View-Controller

(MVC) is the most common architectural level Design Pattern used by the frameworks.

Section 2.3 gives an introduction to the MVC Design Pattern.

2.3 Model-View-Controller

Mixing business logic code and User Interface code in web applications, that involve

user interaction, results in a number of development and maintenance problems. Such

high coupling results in code duplication, discourages code reuse because of strong inter-

dependencies and hence causes ripple effects when a change occurs. Such mixing of code

should be avoided under all circumstances. This is a well studied problem, and has been

tackled using the Model-View-Controller (MVC) Design Pattern depicted in Figure 2.2,

which has its roots in Smalltalk-80 [57]. This section discusses the problem in the web

context, explains MVC Design Pattern briefly and discusses the consequences of using

MVC.

Enterprise applications need to support multiple types of users with different interfaces.

Technical Background 17

" E n c a p s u l a t e s a p p l i c a t i o n s t a t e" R e s p o n d s t o s t a t e q u e r i e s" E x p o s e s a p p l i c a t i o n f u n c t i o n a l i t y" N o t i f i e s v i e w s o f c h a n g e s
" R e n d e r s t h e m o d e l s" R e q u e s t s u p d a t e f r o m m o d e l s" S e n d s u s e r g e s t u r e s t o c o n t r o l l e r" A l l o w s c o n t r o l l e r t o s e l e c t v i e w " D e f i n e s a p p l i c a t i o n b e h a v i o r" M a p s u s e r a c t i o n t o m o d e l u p d a t e" S e l e c t s v i e w f o r r e s p o n s e" O n e f o r e a c h f u n c t i o n a l i t y

S t a t eQ u e r y S t a t eC h a n g eC h a n g eN o t i f i c a t i o n V i e wS e l e c t i o nU s e rG e s t u r e sM e t h o d I n v o c a t i o n sE v e n t s
Figure 2.2: Model-View-Controller [29]

The most common interfaces used in the web context are a browser that requires an HTML

front end, wireless devices that require a WML front end and web services that require an

XML front end. In this context, it is inappropriate to mix business logic code and User

Interface code. Such an approach will result in code duplication in each application and

will pose serious maintenance problems. The MVC Design Pattern solves this problem

by drawing a clear separation between business logic code and User Interface code. The

business logic code can hence be reused in all different kind of applications.

A Design Pattern is a description of communicating objects and classes that is cus-

tomized to solve a general design problem in a particular context [57]. In the MVC Design

Pattern, we have three major components. The model is responsible for business logic

and data access code that might communicate with other information systems. The view

is responsible for rendering the model data to the user. It accesses information systems

through the model and presents the state of the model to the user. The controller is the in-

18 Struts2JSF: Framework Migration in J2EE using FSML

termediary between the model and the view. It translates user interactions in the interface

into actions to be performed by the model.

In the Java web development world, MVC is also known as Model 2 [29]. The controller

component is implemented using Servlets and is responsible for request processing and data

validation. The view is largely JavaServer Pages (JSP) pages and HTML, and is responsible

for response generation. The model is Java code and is responsible for business logic and

communication with databases, Enterprise Information Systems, Web Services, etc.

Using the MVC architectural pattern, the code reuse and maintenance problems dis-

cussed earlier are solved. Firstly, as we make the model component independent of view

and controller components, the model can be reused for different applications. The web

based application, the WML based application for wireless clients and the XML based web

services can all use the same model component, for example, and hence proper code reuse

is facilitated. Secondly, because of a clear separation of concerns, it becomes easier to add

new types of clients without effecting the existing application. Thirdly, each application

can be modified without affecting any other applications. Hence, the MVC architectural

pattern facilitates code reuse and avoids maintenance difficulties.

Both frameworks under consideration use MVC Design Pattern. Section 2.4 and Section

2.5 give an overview of the Struts and the JSF framework respectively, from the MVC

perspective.

2.4 Struts Overview

Apache Struts is a free, open source framework for creating Java based web applications

[39]. It has become the de-facto standard for enterprise applications based on J2EE tech-

nologies because of its popularity and strengths. Struts framework is based on the MVC

architectural pattern. This section discusses the features and components of the Struts

Technical Background 19

framework that are critical to understanding the migration strategy from the MVC per-

spective, as depicted in Figure 2.3.C o n t r o l l e rO A c t i o n S e r v l e tO A c t i o n sO F o r m B e a n sO s t r u t s O c o n f i g . x m lV i e wO J S P P a g e s u s i n gS t r u t s t a g l i b r a r i e s(b e a n , h t m l , l o g i c ,n e s t e d)O A p p R e s o u r c e sO t i l e s O d e f s . x m l

M o d e lO J a v a c o d e
D a t a b a s e / S e r v i c e s

Figure 2.3: Struts Overview

2.4.1 Controller

ActionServlet

The controller component serves as the central point of access for all requests from clients.

ActionServlet is a Servlet provided by the Struts’ base framework and is the core of the

controller component of Struts. It follows the Front Controller Design Pattern [53]. All

HTTP requests are received by the ActionServlet, which is responsible for invoking cor-

responding actions and using proper views for response generation. ActionServlet is also

responsible for initializing the Struts framework by reading the configuration file. The

information about what actions and views to use is present in the main configuration file.

This configuration file also contains values for configuration parameters for this Servlet.

20 Struts2JSF: Framework Migration in J2EE using FSML

Except for configuring the values of some parameters, the application developer has no

other responsibilities when using the ActionServlet.

Actions

The application developer provides the Action classes. They must extend the Action ab-

stract base class in the package org.apache.struts.action, which requires the implementation

of the execute method. This is where the Struts framework code ends and the application

code begins. The Action classes are responsible for communication between the view and

the model. These classes transfer data from the view to the model and then present the

results back to the view. Each Action class is configured in the configuration file, and an

ActionMapping object exists for each action at runtime. Actions are mapped to the URL

patterns in the configuration file and this information is utilized by the ActionServlet,

which is responsible for invoking the Actions. Actions should not have any business logic

code. Their sole responsibility is data communication between view and model, and the

navigation logic. The Struts framework provides many built-in actions that provide a li-

brary of commonly used actions. Some of the most commonly used built-in actions are as

follows:

• DispatchAction provides a mechanism for modularizing a set of related functions in

a single action by providing an abstract class.

• LookupDispatchAction is an implementation of DispatchAction included in Struts.

• ForwardAction provides a mechanism for forwarding to a specified URL.

• IncludeAction provides a mechanism for including JSP content.

• LocaleAction provides a mechanism for setting a locale and forwarding to a specified

URL.

Technical Background 21

ActionForms

ActionForms are data containers. At implementation level these are regular Java beans

with getter and setter methods. They must extend the org.apache.struts.action.ActionForm

abstract base class. They are responsible for transferring data from the view component

to the controller component. Hence, the data from the HTML forms is transferred to the

Java beans by the controller layer. Also, form beans are used for transferring data from

the model component to the view component, by the controller component. The controller

in Struts is responsible for initializing and populating the ActionForms. Application devel-

opers write ActionForm classes and declare these as form beans in the Struts configuration

file.

Two methods in ActionForm classes are reset and validate. The reset method is called

just before the controller layer populates the form beans with data from HTML forms. The

validate method is called after the form bean has been populated to check the validity of

the data. Overriding these two methods for each ActionForm is the application developer’s

responsibility.

DynaActionForm is a special kind of ActionForm that does not need a corresponding

Java bean to be written by the application developer. It is declared in the Struts config-

uration file and uses standard Java data types. Each property for the DynaActionForm is

also declared in the declaration.

2.4.2 View

Tag Libraries

The Struts framework provides a JSP tag library that helps in the development of JSP

pages. These tag libraries are used to create HTML forms and are also used to display

form bean data in the web pages. These libraries also provide tags for conditional logic,

22 Struts2JSF: Framework Migration in J2EE using FSML

iteration, displaying nested object data, etc. There are four different tag libraries in Struts:

• The HTML tag library is used to generate HTML forms. These forms have elements

that are associated with form bean properties using tag libraries. The Struts API and

base framework take care of transferring data from these form elements to the form

bean objects and vice versa. The HTML tag library example shown below generates

an HTML input element with text as its type and associates it with the bankName

property of a form bean associated with this HTML form. The html:form associates

a form with an Action which has an associated form bean.

<html:form action="/AddSignatory"/>

<html:text property="bankName" size="20" maxlength="128"/>

• The Bean tag library is used to access the data in form beans. It is also used to

display data from Java property files for internationalization purposes. The example

below shows how the bean tag library is used to display a property label.user from

a Java properties file. The Java property file is associated at an application level in

the Struts configuration file.

<bean:message key="label.user"/>

• The Logic tag library is used for simple conditional logic in JSP. The example below

shows how to use the logic tag library to see if any message is present in the message

queue to be displayed to the user.

<logic:messagesPresent message="true"> </logic:messagesPresent>

• The Nested tag library is used to nest different tags from the Struts tag libraries,

which do not work together, otherwise. It is also used to access the nested object

properties.

Technical Background 23

The Struts tag libraries provide tags that are the fundamental building blocks for the

view component.

Tiles Plug-in

Tiles [46] is a template system that exploits JSP includes and moves the JSP include

programming tasks to XML based declarations in configuration files. This enables reuse

of view components. Tiles started as an independent product that is now fully integrated

with Struts. It can still be used independently though.

Validation Framework

Struts provides a declarative validation framework. Both client-side JavaScript based val-

idations and server side Java based validations are supported by the framework. It is used

for validation of user input data.

2.5 JavaServer Faces Overview

J2EE is a popular framework for enterprise application development and is known for its

stability and performance. But it is a well known fact that J2EE does not support rapid

application development of enterprise systems due to the complexity of the framework

and the lack of good Integrated Development Environments (IDE). J2EE also lacks User

Interface development features.

The promise of JavaServer Faces (JSF) is to bring rapid application development to

server side J2EE development by providing a User Interface component framework and

enabling easy development of IDEs for server side J2EE programming [45]. JSF has a very

similar architecture to Struts framework, except that it provides a set of User Interface

components that have server side state as shown in Figure 2.4.

24 Struts2JSF: Framework Migration in J2EE using FSMLC o n t r o l l e ru F a c e s S e r v l e tu M a n a g e d B e a n su f a c e s u c o n f i g . x m lV i e wu J S F P a g e s u s i n gJ S F t a g l i b r a r i e s(c o r e , h t m l)u A p p R e s o u r c e su t i l e s u d e f s . x m l
M o d e lu J a v a c o d eB rowser D a t a b a s e / S e r v i c e s

Figure 2.4: JSF Overview

2.5.1 Controller

Managed Beans

Managed Beans are JavaBeans [21] that have properties and methods related to data and

events on the user interface side. The UI Component values are bound to Managed Bean

properties using the component tag’s value attribute, as shown below.

<h:outputText value="#{BeanName.propertyName}"/>

The methods in Managed Bean are bound to the UI Component events, such as action

listeners. The JSF core framework is responsible for converting User Interface actions into

Managed Bean method invocations and also setting, getting the properties of Managed

Beans.

2.5.2 View

User Interface Components

A JavaServer Faces implementation is required to provide a basic set of User Interface

components that have server side state. The JSF base framework is responsible for main-

Technical Background 25

taining the state and mapping the state to the markup (HTML) elements. There are two

fundamental actions that occur behind the scenes to enable server side state handling of

User Interface components: decoding and encoding [59]. Decoding refers to parsing of

incoming requests parameters to extract and set the state of components that may have

been modified by the user. Encoding implies converting the state of the components to

markup tags (usually HTML, though encoding depends on the specific rendering plug-in

being used).

All JSF UI components consist of two parts. These are the component and the renderer

[59]. The component is responsible for the state and behavior of the UI component. The

renderer dictates how the state will be read from request parameters and how the markup

will be generated from the state. The JSF component model is extensible. New components

can be defined by programming the component and the renderer.

2.5.3 The JSF Request Life Cycle

The JSF Request Life Cycle consists of six phases as depicted in Figure 2.5:

• The first phase is the Restore View phase. As mentioned earlier, the JSF core

framework maintains server side state of UI Components. During this phase, if a

component tree does not exist for a view on the server side, it is created.

• The second phase is the Apply Request Values phase, which is when the values from

the request parameters are applied to the components.

• The third phase is Process Validations phase, which applies data conversions (eg.

string to date, string to number) and then validates the input values. If validation

fails, the response is rendered without other phases being invoked.

26 Struts2JSF: Framework Migration in J2EE using FSMLR e s t o r eV i e w A p p l yr e q u e s tv a l u e s P r o c e s sv a l i d a t i o n s U p d a t em o d e lv a l u e s I n v o k ea p p l i c a t i o n R e n d e rr e s p o n s e
Figure 2.5: JSF Request Life Cycle

• If validation succeeds, then it is followed by fourth phase, the Update Model phase,

which is responsible for copying the values to the backing beans. These backing bean

properties are bound to the UI components in the JSF component tags.

• The fifth phase is Invoke Application phase, which invokes the listeners and actions.

The JSF components are bound to methods of the backing bean using listeners and

actions. The listener method is invoked before the action method.

• The sixth phase is Render Response phase. This phase is responsible for rendering

the response to the client by loading the next view.

Each phase of the life cycle except for the first and the last phase, is followed by Process

Events phase.

Technical Background 27

2.6 Why migrate to Struts to JSF?

Struts is the de-facto standard for developing Java based web applications. It is a stable

framework that provides many excellent features and hence simplifies development. It has

a strong and loyal community supporting it. Then why bother migrating to JSF? We need

to look at what JSF offers to answer this question. There are many technical and other

reasons for migrating to JSF, discussed in this section.

2.6.1 Technical Reasons

Event-Oriented Approach

While using the basic Java web development technologies (JSP, Servlets), we have to think

in terms of HTTP requests and responses. This requires a familiarity with the HTTP

protocol. While some features of Struts allow us to think in terms of objects and properties,

others still require to work at request/response level. For example, for the binding of a

form element to an object property, we just provide the name of the property and hence

the protocol details are abstracted away. But, when actions are invoked in Struts, the

developer must think in terms of HTTP requests.

On the other hand, JSF uses an event-oriented approach. Various events in the User

Interface invoke application methods on the server side. This abstracts away the commu-

nication protocol details for the developer. Hence, the event-oriented approach provided

by JSF is a natural and better way for User Interface development.

UI Component Framework

While using the Struts framework, we use the Struts tag libraries to generate the HTML

pages. This strategy is similar to JSP. Hence, the User Interface is created using tags that

generate HTML.

28 Struts2JSF: Framework Migration in J2EE using FSML

In JSF, the User Interface is created using a set of components. The events are gen-

erated by these components. The JSF specification provides a basic set of User Interface

components like text fields, password fields, command buttons, radio button, check boxes,

etc. But the real power of JSF is its support for third-party components. This creates a

new market place for components. There are already many commercial and open source

component libraries available that provide complex components like tree views, data grids,

date input fields, etc. Hence, the User Interface in JSF is an assembly of components and

thus reduces development costs.

Multiple Client Device Support

While Struts tags in the User Interface generate HTML, the JSF tags in the User Interface

represent a component-renderer pair on the server side. The component is responsible

for the state while the renderer is responsible for rendering. This renderer architecture is

pluggable, as the renderer for the same component can be replaced to generate different

markup. Hence, the application can be modified with minimal coding effort to support

different client devices. Presently JSF components can be displayed using HTML, WML

and XML. Also, because of this pluggable renderer architecture, it is possible to create

renderers that generate DHTML, JavaScript, XML and AJAX code for a richer client

experience.

Tool Support

It is a well known fact that good tools can greatly enhance productivity. The popularity of

ASP.Net [3] for example, is largely due to the presence of some good RAD (Rapid Applica-

tion Development) environments like Microsoft Visual Studio .Net. There are about fifty

different frameworks available for Java web development. The tool vendors are therefore

Technical Background 29

reluctant to support any one framework. The inclusion of JSF in Java Enterprise Edi-

tion 5.0 implies standardization on a web development framework. This encourages tool

vendors to provide support for JSF. A large number of tools already support JSF for RAD.

JSF provides core framework for development of custom components. All JSF compo-

nents extend from the core components and this makes it possible for tool vendors to write

IDEs that can handle different kinds of JSF components in a similar manner. Hence, JSF

is designed with tool support in mind and facilitates development of such tools.

Flexible Controller Architecture

While using Struts, the actions are tightly coupled to the Struts API by extending Action

classes. In JSF, action methods can be implemented as Plain Old Java Objects (POJO).

JSF uses Dependency Injection (Inversion of Control) as it instantiates and initializes beans

of any type. Struts on the other hand has a restriction that Action and ActionForm classes

should be of certain type from the Struts API.

Moreover, in Struts there are action objects and form beans. Form beans represent data

while action objects represent the logic. This is not good practice in an Object-Oriented

setting that is based on the concept of encapsulating logic and data in one unit. Hence,

JSF provides a more flexible controller architecture that is more intuitive as well, as it

removes the unnecessary mediator layer in between the model objects and form beans that

represent User Interface data.

Basic Features

Apart from bringing a completely new perspective of User Interface components and event

handling to Java web development, JSF also supports all of the basic features that most

other frameworks provide. JSF provides a basic validation mechanism that can be ex-

30 Struts2JSF: Framework Migration in J2EE using FSML

tended. Declarative navigation handling is at the heart of JSF and is more flexible than

navigation handling in Struts because it works at the page level. Internationalization and

localization is supported by both JSF and Struts equally well. JSF also provides a basic

data conversion mechanism along with an extensible architecture for data conversion.

2.6.2 Other Reasons

Java Community Process

JCP [44] is a community of Java developers from around the world that develop and evolve

Java technology specifications. JSF was born and evolved as a JCP JSR - 127 [22] (Java

Specification Request). Apache Software Foundation [43], Borland Software Corporation

[4], IBM Corporation [10], Oracle Corporation [34] and Sun Microsystems Inc. [41] are

some of the many expert group members for JSF. This encourages developers and tool

vendors to trust the framework. Struts on the other hand, does not enjoy such a support

from industry leaders.

Strong Industry Support

Because JSF is built with RAD tools in mind, industry responded quickly by providing

support for JSF in all of the major IDEs for Java web development. Moreover, the market

for User Interface components that was created furthered industry’s interest in JSF. Many

commercial and open source components are already on the market and competing with

other implementations with the same features. Struts does not enjoy such industry interest.

Specification vs Implementation

As mentioned earlier, JSF was born as a JSR (Java Specification Request). It is a specifi-

cation for which many implementations can exist. Presently the Reference Implementation

Technical Background 31

from Sun and MyFaces from Apache Software Foundation are two most popular JSF imple-

mentations. Any JSF implementation must provide the basic User Interface components

in addition to the core APIs. But most implementations also provide some extra features

in terms of better components for ease of User Interface development. This encourages

competition in the JSF world and hence we can expect some great innovations in the area.

Struts on the other hand, is an implementation itself, and hence only one Struts exists.

JSF is the Standard

Since the release of Java Enterprise Edition 5.0 (Java EE) [15], JSF has been included in

the specification. This means that all container implementations for Java EE will have to

provide a JSF implementation. Hence, JSF will be ubiquitous. Struts on the other hand,

is not a part of Java EE specification.

2.6.3 Summary

In this section we discussed some technical and non-technical reasons to migrate from

Struts to JSF. Although Struts provides a stable framework for web development, JSF

has many features that make it attractive. In this work, we will discuss the issues that

arise while carrying out this migration activity. We will discuss strategies to solve this

migration problem. Some tasks that can be automated in this migration will be identified

and algorithms for automating these tasks will be presented.

2.7 Chapter Summary

In this chapter we discussed the technical background necessary to understand the Struts

to JSF migration problem and presented the business case for the migration. Chapter 3

32 Struts2JSF: Framework Migration in J2EE using FSML

discusses various migration strategies and presents the process of using framework-specific

modeling for framework migration purposes.

Chapter 3

Migration Strategies

Both the Struts and the JSF frameworks implement the MVC design pattern and provide

an application development framework for the view and the controller components. Both

frameworks largely rely on XML based configuration files to combine the two components.

Both frameworks play no role in the development of the model component. Hence, the

migration activity involves controller migration, view migration and the migration of con-

figuration files. The model component of the application can be reused without any code

modifications, provided that the MVC design pattern is not violated by introduction of

dependencies of the model on the controller or the view components.

In some small scale applications based on the Struts framework, a clear distinction

cannot be made between the controller and the model components. In such applications the

controller component is largely responsible for performing model functions. The migration

strategies discussed in this work are still applicable because the part of the controller

component that is responsible for model related tasks will be unaffected by migration.

Also, the migration activity does not affect the application logic that is encapsulated in

the model or the controller component.

Because of the close resemblance of the source and the target frameworks, facilities exist

33

34 Struts2JSF: Framework Migration in J2EE using FSML

for the co-existence of the two frameworks [38]. These facilities allow the developer to use

the JSF user interface components in the view component, while still using the Struts

based controller component. The Struts community has provided libraries to facilitate

communication between the two frameworks in a co-existence scenario. Co-existence will

be discussed briefly in Section 3.2.

Based on the goal of migration, the migration strategies can be classified as Complete

Migration and Partial Migration. Figure 3.1 gives an overview of partial and complete

migration and highlights the differences between them. The Complete Migration strategy

produces an application based solely on the JSF framework, completely removing all appli-

cation dependencies on the Struts framework. Both the controller and the view components

are migrated to the JSF framework. The Complete Migration strategy, its advantages and

its disadvantages are discussed in further details in Section 3.1. The Partial Migration

strategy produces an application based on both the JSF and the Struts frameworks. The

view component is migrated to the JSF framework while the controller component and

the configuration files are still based on the Struts framework. Struts Faces Integration

Library (SFIL) [38] makes this possible. The Partial Migration strategy, its advantages

and its disadvantages are discussed further in Section 3.2.

Both strategies are incremental in nature in the context of the view migration. This

implies that the JSP scripts constituting the view component can be migrated individually.

Hence, both strategies support a working application during the migration process.

3.1 Complete Migration

The Complete Migration strategy aims at a complete migration to JSF, and a complete

removal of application dependence on the Struts framework. It involves the migration of

the controller component, the view component and the framework configuration files. The

Migration Strategies 35

S t r u t s b a s e dc o n t r o l l e r M o d e l
S t r u t s b a s e dV i e w S t r u t s b a s e dc o n fi g u r a t i o n

S t r u t s b a s e dc o n t r o l l e r M o d e l
S F I L b a s e dV i e w S t r u t s b a s e dc o n fi g u r a t i o n

J S F b a s e dc o n t r o l l e r
M o d e l

J S F b a s e dV i e w J S F b a s e dc o n fi g u r a t i o n

A f t e r P a r t i a l M i g r a t i o n

A f t e r C o m p l e t e M i g r a t i o n

O r i g i n a l A p p l i c a t i o n

M i g r a t i o nN o m i g r a t i o n
L e g e n d :S F I L : S t r u t s F a c e s I n t e g r a t i o n L i b r a r y

Figure 3.1: Partial/Complete Migration Overview

36 Struts2JSF: Framework Migration in J2EE using FSML

migration should be carried out in the following order:

1. Controller component

2. Configuration files

3. View component

3.1.1 Controller Migration

The controller component migration should be carried out before any other component

migration. The controller component is composed of Java source code. It is dependent

on the model component but is independent of the view component according to MVC

principles. Hence, the Struts based controller component can be migrated to a working JSF

controller component without view migration. The configuration files can be considered

as part of the controller component because these configuration files have parameters for

the runtime instance of the controller component. Controller migration involves Java API

migration and the merging of Java classes.

The source code in the Struts Action classes can be classified as model invocation

code and Struts framework invocation code. The model invocation code encapsulates the

application logic while the Struts invoking code is responsible for communicating with the

base framework. The goal of the code migration will be to replace the Struts invocation

code with equivalent JSF invoking code, without affecting the model invocation code.

Another important aspect of controller migration is the merging of the Action and the

Form Bean classes. The Struts framework keeps data (Form Bean) and the operations

(Actions) in two separate classes. This is not a good Object-Oriented practice. In the JSF

framework, the data and the operations reside in one class called a Managed Bean. Hence

the related Actions and Form Beans are merged together to form Managed Beans.

Migration Strategies 37

The controller migration involving API migration and the high level class restructuring

is semi-automated using an FSML. The general process of using an FSML for framework

migration is presented in Section 3.3. The details of using the process presented in Section

3.3 for the specific migration task of Struts to JSF controller migration are presented in

Chapter 4.

3.1.2 Configuration Migration

Both the Struts and the JSF frameworks use an XML based configuration file to allow for

declarative customizations. This simplifies framework development because changes to the

applications can be made declaratively by modifying the configuration file. The formats

of XML files are governed by the Document Type Definition (DTD) [51] file.

DTDs specify a set of tags that can exist in a configuration file and also the order in

which the tags are present. It dictates the structure of the XML document. Both the

Struts and the JSF configuration files must declare conformance to their corresponding

DTDs.

• <!DOCTYPE struts-config PUBLIC

"-// Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://struts.apache.org/dtds/struts-config_1_1.dtd">

• <!DOCTYPE faces-config PUBLIC

"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"

"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

The root element of the Struts configuration file is “struts-config” and the root element

of JSF configuration file is “faces-config”. The top level XML elements of interest during

migration in the Struts configuration file are the following:

• form-beans

38 Struts2JSF: Framework Migration in J2EE using FSML

• global-forwards

• action-mappings

• message-resources

The JSF configuration file elements of interest during migration are the following:

• managed-bean

• navigation-rule

• navigation-case

This section will discuss all of the XML elements of Struts configuration file and their

corresponding XML elements in the JSF configuration file.

form-beans, action-mappings to managed-beans

The form-beans element is a collection of form-bean elements. These form-bean elements

represent data transfer objects, and each bean has an associated name attribute. The

action-mappings element is a collection of action elements. The action element represents

the operations to be carried out on the form-bean element. Each action has a name

attribute which associates the action with a form-bean.

During controller migration, Form Beans and Actions in Struts are merged into Man-

aged Beans. From the configuration perspective, form-beans in Struts are declared as

managed-beans in JSF. The actions in Struts are not declared anywhere in the JSF con-

figuration file. This is because the JSF framework provides a low level mapping of user

interface components to the managed bean properties and methods to give it an event-

oriented context. This also makes JSF’s configuration file much smaller compared to the

Strut’s configuration file.

Migration Strategies 39

global-forwards, forward to navigation-rule, navigation-case

An action in Struts also contains a collection of forward elements. This collection collec-

tively represents the set of navigation options from the action invocation. On the other

hand, in JSF the navigation is declared at the view level. This means that forward elements

in Struts map to navigation-cases and navigation-rules in JSP or JSF pages.

message-resources

The Struts framework provides support for internationalization. This is accomplished us-

ing a Java properties file for each locale to support. The XML element message-resources

is used to identify these Java property files. The Struts framework requires this declara-

tion be made in the configuration file. All tags utilizing messages using Struts tags will

use these Java property files for internationalization. JSF takes a different approach to

internationalization. JSF still uses the Java properties files as its base technology, but it

does not require the declaration in the main configuration file. Each JSP or JSF page can

individually load a properties file and display messages using JSF tags. This means more

work in the view tier, but at the same time, more flexibility in terms of making changes

declaratively at run-time. Please note that any changes to the configuration file require

re-instantiation of the controller servlet and hence a re-deployment of the application.

3.1.3 View Migration

View migration is not automated in this work. The problem of View migration boils down

to the problem of componentization. The Struts view consists of various combinations of

Struts tags that generate HTML markup code to generate responses. The JSF view consists

of user interface components. This migration problem involves some straightforward tag

migrations from Struts tags to JSF tags.

40 Struts2JSF: Framework Migration in J2EE using FSML

The JSF tag library is not as extensive as the Struts tag libraries. In particular the

logic tags provided by Struts do not have an equivalent in the JSF world. This brings

the challenging problem of componentization in the picture. Various combinations of the

Struts tags are used to generate some complex user interface components that do not have

an equivalent in the JSF component library. There are two ways to solve this migration

problem. One way is to use JavaServer Pages Standard Tag Library (JSTL) [24] that

encapsulates as simple tags the core functionality common to many JSP based web ap-

plications. It provides logic tags that can be used to replace the Struts logic tags along

with the JSF tags. This approach works only when the JSTL tags are not mixed within

JSF components. When mixed together with no clear line of separation, the result is often

unpredictable because the two tag libraries are processed during different phases of JSF’s

request processing life cycle. Hence this approach is not reliable. The second, more reliable

approach is to create some custom JSF components and use these components to replace

the Struts tag library combinations. Chapter 5 discusses view migration in greater detail.

The Struts to JSF tag library map is presented and the combination of the Tiles feature of

Struts and the JSF tag library is described. Tiles is independent of the Struts framework,

although it is distributed as a package with the Struts binaries. It is compatible with JSF

and is the preferred templating engine for JSF.

3.1.4 Pros and Cons of Complete Migration

The advantages of the Complete Migration strategy come from the fact that all depen-

dence on the Struts framework is removed. Firstly, the new migrated application source is

native JSF source in every sense of the term and hence has performance as well as space

advantages. Only the JSF front controller servlet instance exists at run time as compared

to both the JSF and the Struts front controller in the case of partial migration. In partial

Migration Strategies 41

migration, the requests are received by the Struts controller and then passed to the JSF

controller, hence affecting performance. Secondly, the migrated application source is not

constrained by the Struts framework and can exploit all of the features in JSF. For exam-

ple the managed beans are no longer a specialization of Struts’ abstract base classes and

this allows for more controller flexibility. Complete Migration avoids the complexity that

comes from the integration of two independently developing frameworks.

For large critical applications, the Complete Migration strategy involves more risk as

it takes an all or nothing approach to migration. For such migration activities, Partial

Migration can serve as a proof of concept and if successful, can be followed by Complete

Migration.

3.2 Partial Migration

JSF is primarily a user interface component framework. Although JSF does provide a

flexible event oriented controller architecture, but it also is extensible and can be used as a

complimentary framework to other frameworks. Using the JSF framework to complement

the Struts framework is a particularly common scenario because of the similarities between

the two frameworks. The view component of an application can be migrated to JSF

components while the controller can still be based on Struts.

The Struts-Faces integration library [38] (SFIL) is of crucial importance in this particu-

lar scenario. SFIL translates the user interface events from a JSF view component to Struts

actions and events. The controller will have both a Struts ActionServlet instance and a

JSF FacesServlet instance. The requests will be generated from the JSF components, but

SFIL will translate these requests to Struts’ request processing phases and execute related

application controller code, which invokes the business logic code.

The Partial Migration strategy does not require migration of the controller component

42 Struts2JSF: Framework Migration in J2EE using FSML

or the configuration files. Only the view component is migrated. All Struts tags are

replaced by the SFIL tags. In this work, we do not discuss the coexistence of Struts and

JSF in further details.

3.2.1 Pros and Cons of Partial Migration

This approach provides an incremental way of migrating from Struts to JSF and hence is

useful for large, complex applications where Complete Migration is considered risky. But

it comes with a number of drawbacks.

Firstly, the most significant drawback of this approach is that it does not take advantage

of the marketplace of JSF user interface components because of the dependence on the

SFIL. Only the most basic user interface components are supported by SFIL and that

restricts the use of advanced JSF user interface components.

Secondly, some of the new features of JSF in the controller component are not used,

because the controller component is primarily based on Struts. These features include

declarative navigation handling and backing beans that encapsulate the related data from

view and methods that operate on data.

Thirdly, this migration requires knowledge of the Struts framework, the JSF framework

and STIL. Dependence of the application on the two frameworks and the STIL will translate

into more maintenance tasks to keep up with both framework updates and new features.

It also means that the developers require a larger skill set.

Hence, it is suggested that Partial Migration should only be used as a proof of concept

of migration and should be followed by Complete Migration to completely remove the

dependence on the Struts framework.

Migration Strategies 43

3.3 FSMLs for Framework Migration

Section 3.3.1 provides an introduction to Framework-Specific Modeling Languages and dis-

cusses the benefits of using an FSML for framework completion and round-trip engineering.

Section 3.3.2 discusses the process of using a FSML for framework migration instead.

3.3.1 Introduction to FSML

Antkiewicz and Czarnecki [64] defined Framework-Specific Modeling Languages (FSML)

and discussed the usefulness of FSML for Round-Trip engineering:

A Framework-Specific Modeling Language (FSML) is a Domain-Specific

Modeling Language that is designed for a specific framework, called its base

framework. A FSML consists of an abstract syntax, a mapping of the abstract

syntax to the framework API, and, optionally, a concrete syntax.

It is particularly well-suited for model driven development on top of frameworks. Using

framework-specific modeling based on an FSML, the task of framework completion can be

simplified. The authors describe the task of framework completion as a mixture of concept

configuration and open-ended programming with restrictions. Concept configuration refers

to the instantiation of framework-provided concepts in the application code by making

implementation choices, which are called features. Open-ended programming refers to

application code that is not framework specific, but is mixed with the framework specific

code to implement the differences between the framework and the application. It also

contains the business logic or the code responsible for invocation of business logic residing

elsewhere. Open-ended programming is restricted in the sense that it should not violate

framework’s general rules of engagement.

44 Struts2JSF: Framework Migration in J2EE using FSML

The framework provided abstractions and implementation choices are formalized in

terms of an abstract syntax of an FSML that defines the framework concepts and features.

A concrete syntax of an FSML defines rendering details for comprehension of models

created using an FSML, and is optional. The mappings can be classified as Forward

Mappings that define the code generation from model or Reverse Mappings that define

model generation from code. A complete FSML with all these parts can be used for

round-trip engineering. Figure 3.2 shows a birds-eye view of using an FSML for round-trip

engineering.

Figure 3.2: FSML for Round-Trip Engineering

In this work we used an FSML for a completely different purpose: the automation of

source code migration by using Forward Mappings to generate code for the target frame-

work completion. Section 3.3.2 provides the details of this process.

Migration Strategies 45

3.3.2 The Process

In this work we have used framework-specific modeling to automate source code migra-

tion between frameworks. This is accomplished by designing and implementing a special

purpose FSML common to both the source and the target frameworks. Figure 3.3 gives

a high level view of the process of framework migration using a common FSML for the

source and the target frameworks. The process involves the following steps:

• Define a common FSML.

• Analyze Code to generate the model.

• Migrate Code using the model and the application source code.

Each of these is discussed in further detail in this section.

Define a common FSML

The first and the most critical task while using framework-specific modeling for framework

migration is designing and implementing a common FSML. By the definition of FSML, it

is specific to a framework. In this work, an FSML is used as a framework specific modeling

language for two frameworks, the source framework and the target framework. The FSML

based model will be extracted from the application code in the source framework and then

used to migrate the code to the target framework. The model extraction step in the process

is done by Code Analysis which is analogous to reverse-mapping and the target source code

migration is done by Code Re-writing which is analogous to forward-mappings [64].

The technique used in this work is possible only if the two frameworks are sufficiently

similar. The two frameworks must have identical or similar concepts and features. Minor

differences in the two frameworks concepts and features can be handled by the forward-

46 Struts2JSF: Framework Migration in J2EE using FSML

Figure 3.3: FSML for Framework Migration - The Process

Migration Strategies 47

mappings that will generate code for the target framework. This assumes that this migra-

tion is one directional process, and we will always be migrating from the source framework

to the target framework. To solve the problem in the other direction, the FSML will have

to be reconstructed, and will be significantly different.

Another approach can be taken if the frameworks do not possess similar concepts and

features. Model transformations can be used to transform the model based on the source

FSML to the target FSML and code can be generated thereafter. This work does not take

this approach and hence this approach is not discussed any further.

Analyze Code

This is a reverse engineering activity. The source application code is parsed and searched

for framework concept instances. The model is generated that is expressed in terms of

framework concepts as an instance of the FSML. This model presents an overview of the

application from the framework’s perspective.

The input to the process is the source application. The process refers to the FSML

while parsing the source code. The output of the process is a model, which is expressed

using the common FSML. This model is referred to by the next step in the process, Migrate

Code.

Migrate Code

The final step of this migration process is code migration. Using the model extracted

from the source, target application code is generated. This is similar to Forward Mapping

in [64], but the migrated code is based on the target framework rather than the source

framework.

The source code is copied from the source application and modifications are then made

48 Struts2JSF: Framework Migration in J2EE using FSML

to the code. This is different from generating code from scratch, which is not what this

process does. Source code cannot be generated from the model from scratch because the

model does not capture information about open ended programming, which is an important

part of the application. Open ended programming encapsulates the business logic code.

This code is not modified in framework migration. Only the framework-specific code that

is captured in the model is migrated.

To implement this code replacement, the model needs to save pointers to the source

application code concept instances. We will refer to this as Code Marking in this work. This

is implementation specific and will be discussed further in our prototype implementation

in Chapter 4.

3.4 Chapter Summary

Complete and partial migration strategies, and their pros and cons were discussed in Section

3.1 and Section 3.2. Section 3.3 introduced Framework Specific Modeling Languages and

presented the process of using an FSML for framework migration. Chapter 4 will discuss

the prototype implementation of the process discussed in this chapter.

Chapter 4

The Prototype FSML

By the definition of an FSML, it consists of an abstract syntax, a mapping of the abstract

syntax to framework API and optionally a concrete syntax. Chapter 3 discussed the

process of using a special FSML for framework migration. This chapter gives the details of

a prototype implementation of an FSML for the Struts to JSF migration scenario. Section

4.1 presents the abstract syntax of the FSML, Section 4.2 presents the reverse mappings

used in Analyze Code to identify concept instances in the source code, Section 4.3 presents

forward mappings used in Migrate Code to migrate to JSF code and Section 4.4 discusses

the implementation environment.

4.1 Struts2JSF FSML

This section presents the abstract syntax of the Struts2JSF FSML that captures framework

concepts and features necessary for the Struts to JSF migration.

49

50 Struts2JSF: Framework Migration in J2EE using FSML

Figure 4.1: Struts to JSF FSML Definition

The Prototype FSML 51

4.1.1 Model

Figure 4.1 shows the hierarchical structure of Struts2JSF FSML. The top-level concept is

the Model. This represents the whole application based on the Struts framework. The first

class concepts in the model are actions, path and forms.

The concept actions represents a collection of zero to many instance of the Action

concept. The concept path represents the file system path that represents the Struts’ main

configuration file. The concept forms represents a collection of zero or more instances of

the Form concept.

4.1.2 Form

The concept Form represents a subclass of org.apache.struts.action.ActionForm. Instances

of Form exist as data transfer form objects. These objects are instantiated by the Struts

base framework with the request data. They can exist in request scope, session scope, or

application scope. Request scope form objects are created and destroyed for each request.

Session scope form objects live through the lifetime of a user session and are shared by all

requests associated with the session. Application scope form objects live throughout the

application lifetime and are shared by all requests and sessions.

The Form has a name associated with it. Name is a string uniquely identifying a form.

The Form also has a className associated with it. This className is the fully qualified

Java class name associated with this Form and must be a subclass of ActionForm in the

Java package org.apache.struts.action.

4.1.3 Action

The concept Action represents a subclass of the class org.apache.struts.action.Action. This

action is also declared in the main Struts configuration file. Every HTTP request originat-

52 Struts2JSF: Framework Migration in J2EE using FSML

ing from a client is parsed by the Struts front controller servlet to identify the associated

Action. This Action is invoked if data validation succeeds.

The feature path represents a string starting with a forward slash (/). The HTTP

request is parsed for this string to associate a request with an Action. This string is unique

and hence is used as an identifier of the Action in the Struts framework as well as in the

FSML we defined.

The feature className represents the fully qualified Java class name that is associ-

ated with the Action. It has an execute method that contains the application logic and

Framwork-Specific code to be executed on the Action invocation.

The feature declaredInConfig is a boolean flag that indicates if the Action is declared in

the main Struts configuration file. This is not of particular importance from the migration

perspective, but can be used as a validation criterion. The framework can invoke only

those actions that are declared in the configuration file. Any subclass of org.apache.-

struts.action.Action not declared in the configuration file as an Action is not known to the

framework and hence the framework can never invoke it.

The feature extendsAction is also a boolean flag that indicates if the class associated

with this Action is a subclass of org.apache.struts.action.Action. This is also used as

a validation criterion. Every action class should be a subclass of the above mentioned

framework specific class.

The features attribute and form represent a Form associated with the Action. The

Form is a data transfer object that contains the request parameters. Some Actions do

not have any associated Form because they do not require any data from the client side

to process the request. A Logout Action is an example of such an Action because it just

invalidates the user session on the server side and does not need any other information. The

feature is a string that uniquely identifies the Form concept associated with this Action.

The Prototype FSML 53

The two features are used for the same entity because different versions of Struts used the

two names to identify same framework concept.

The feature messages is a collection of instances of the concept Message, discussed in

Section 4.1.4. Each message represents a message to be displayed to the client after the

execution of the Action. The collection holds a message for each possible result of this

Action.

The feature forwards is a collection of instances of the concept Forward discussed in

Section 4.1.5. The concept Forward represents a navigation case when a user is forwarded

to a different view based on the application logic. The Action contains the code to navigate

to different Forwards. A collection of the possible forwards associated with the Action are

represented by this feature.

4.1.4 Message

The concept Message represents an information message, error message or any other kind of

message to be displayed to the user. The Struts base framework keeps track of a collection

of messages that have not yet been displayed to the user. Once a message is displayed to

the user, it is removed from the collection.

This collection of messages is of type org.apache.struts.Action.ActionMessages. The

concept Message represents each message in this collection. Every Action has a number

of messages associated with it. These messages represent the text to be displayed for

different outcomes of the Action. The Action is responsible for adding messages to the

collection which are then displayed to the user.

A Message has a feature called viewId that represents the string that can be used to

access this message in the view component.

A Message has a feature called messageKey. With the aim of providing international-

54 Struts2JSF: Framework Migration in J2EE using FSML

ization and localization features, Struts provides a facility to store all messages in a Java

properties file. This feature represents the key from the Java properties file that can be

used to retrieve the text associated with a message. One Java properties file will exist for

each locale supported. Each properties file has the same keys, but the values of the keys

will be different for different languages.

A Message has three features called arg0, arg1 and arg2. These provide a way to

personalize the messages being displayed to the user. They are just strings and store the

Java code used to get the personalized string to be displayed.

A Message has a feature called isError. This is a boolean which is true if the message is

of type org.apache.struts.action.ActionError that is a subclass of the ActionMessage class

from the same package.

4.1.5 Forward

The concept Forward represents a navigation case from an Action. It has a feature path

associated with it, which represents a string starting with a forward slash (/) that uniquely

identifies a view to navigate to. Forward also has a feature global which is a boolean.

If global is true then any Action can navigate to this forward. Global forwards exist

independent of the Action in the model.

4.2 Analyze Code

In this section we discuss the code segments, that the source code is parsed for, to identify

different framework concept instances that exist in application code based on Struts. Code

analysis is performed with the purpose of generating a model, based on the FSML, of the

source application. This model guides the Migrate Code step in the migration process. The

The Prototype FSML 55

code segments that represent each of the concepts discussed in Section 4.1 are presented

using an example application based on Struts.

4.2.1 Model

As discussed in Section 4.1.1, a model is the top level concept in the Struts2JSF FSML. The

source application code is searched for the main Struts configuration file, called “struts-

config.xml” by default. A different name can also be given to the main configuration

file, which is configured in the web application deployment descriptor, where the Struts

ActionServlet is configured.< s e r v l e t >< s e r v l e t ó n a m e > a c t i o n < / s e r v l e t ó n a m e >< s e r v l e t ó c l a s s >o r g . a p a c h e . s t r u t s . a c t i o n . A c t i o n S e r v l e t< / s e r v l e t ó c l a s s >< i n i t ó p a r a m >< p a r a m ó n a m e > c o n f i g < / p a r a m ó n a m e >< p a r a m ó v a l u e > / W E B ó I N F / s t r u t s ó c o n f i g . x m l < / p a r a m ó v a l u e >< / i n i t ó p a r a m >< i n i t ó p a r a m >< p a r a m ó n a m e > d e b u g < / p a r a m ó n a m e >< p a r a m ó v a l u e > 3 < / p a r a m ó v a l u e >< / i n i t ó p a r a m >< i n i t ó p a r a m >< p a r a m ó n a m e > d e t a i l < / p a r a m ó n a m e >< p a r a m ó v a l u e > 3 < / p a r a m ó v a l u e >< / i n i t ó p a r a m >< l o a d ó o n ó s t a r t u p > 0 < / l o a d ó o n ó s t a r t u p >< / s e r v l e t >

1234567891 01 11 21 31 41 51 61 71 81 9
Figure 4.2: The J2EE Component Deployment Descriptor - “web.xml”

The deployment descriptor for the J2EE web component must be called “web.xml”.

Figure 4.2 shows the part of the deployment descriptor where the Struts front controller

servlet is configured. At lines 3 through 5, the servlet class is declared as org.apache.-

56 Struts2JSF: Framework Migration in J2EE using FSML

struts.action.ActionServlet. If a need arises to subclass the main servlet, then this class

is subclassed, and the new subclass is used as the class for the main servlet. This is

particularly a useful extension point for security enhancements for the whole application.

At lines 6 through 9, the parameter “config” is given a value “/WEB-INF/struts-

config.xml”. This is the relative path to the main Struts configuration file. The Action-

Servlet is an instance of the main Struts configuration file in the form of a Java object

that is managed by the base framework. The path feature of the model concept is given

the value of the relative path of the main Struts configuration file.

4.2.2 Form

As discussed in Section 4.1.2, forms are data transfer objects. The Struts base framework

is responsible for instantiating and managing forms. The forms are configured in the main

Struts configuration file as shown in Figure 4.3..< f o r m � b e a n s >< f o r m � b e a nn a m e = " u s e r F o r m "t y p e = " c o m . t a x w i d e . t o a s t a d m i n . s t r u t s . f o r m . u s e r . U s e r F o r m " / >< f o r m � b e a nn a m e = " l o g i n F o r m "t y p e = " c o m . t a x w i d e . t o a s t a d m i n . s t r u t s . f o r m . L o g i n F o r m " / >< f o r m � b e a nn a m e = " u s e r L i s t "t y p e = " c o m . t a x w i d e . t o a s t a d m i n . s t r u t s . f o r m . u s e r . U s e r L i s t " / >< f o r m � b e a nn a m e = " l o c a t i o n L i s t "t y p e = " c o m . t a x w i d e . t o a s t a d m i n . s t r u t s . f o r m . l o c a t i o n . L o c a t i o n L i s t F o r m " / >< / f o r m � b e a n s >.

.7891 01 11 21 31 41 51 61 71 81 92 0.
Figure 4.3: Struts Configuration File - Forms

The form-beans XML element in the configuration file represents by the forms feature

The Prototype FSML 57

of the model concept. It is a collection of forms, each of which is represented by the form-

bean XML element. Each form concept has two features associated with it. The name

feature is the name attribute of the form-bean XML element. The className feature is the

type attribute of the form-bean XML element. The configuration file is parsed to retrieve

the forms available to the application, which are added to the model.

4.2.3 Action

As discussed in Section 4.1.3, each HTTP request is parsed to identify a corresponding

Action. Each Action has an associated class in the source code and is declared in the

Struts configuration file. Some features associated with this concept are retrieved from the

configuration file, while others are retrieved by parsing the source code.

The source code is searched for classes that subclass the Action class in the Struts

base framework. Each of these classes represents a action concept. Figure 4.4 shows an

example of an Action subclass. The source code is parsed to instantiate many features

of the action concept. The features that are instantiated by parsing the source file are

className, extendsAction, messages and forwards. The className represents the fully

qualified class name of the Action class. The extendsAction is set to true for each action

concept. Lines 93 through 95 represent an instance of the concept message. The feature

messages is a collection of the messsage concepts in the action. This will be discussed in

further detail in Section 4.2.4. Each of the lines 62, 71 and 97 in Figure 4.4 represents a

concept instance of forward. A collection of concept instances of forward that belong to

the action is represented by the concept features. This is discussed in further details in

Section 4.2.5.

For each action concept, the configuration file is consulted to instantiate rest of the

features. Figure 4.5 shows a part of the configuration file where the Actions are declared.

58 Struts2JSF: Framework Migration in J2EE using FSML

p a c k a g e c o m . t a x w i d e . t o a s t a d m i n . s t r u t s . a c t i o n ;i m p o r t o r g . a p a c h e . s t r u t s . a c t i o n . A c t i o n ;.p u b l i c c l a s s L o g i n A c t i o n e x t e n d s A c t i o n {.p u b l i c A c t i o n F o r w a r d e x e c u t e (A c t i o n M a p p i n g m a p p i n g ,A c t i o n F o r m f o r m , H t t p S e r v l e t R e q u e s t r e q u e s t ,H t t p S e r v l e t R e s p o n s e r e s p o n s e) {.i f (.){r e t u r n m a p p i n g . f i n d F o r w a r d (" m a i n ") ;}e l s e i f (.){r e t u r n m a p p i n g . f i n d F o r w a r d (" l i m i t e d M a i n ") ;}.A c t i o n E r r o r s e r r s = n e w A c t i o n E r r o r s () ;A c t i o n M e s s a g e m s g = n e w A c t i o n M e s s a g e (" e r r o r . i n v a l i d L o g i n ") ;e r r s . a d d (" i n v a l i d L o g i n " , m s g) ;a d d E r r o r s (r e q u e s t , e r r s) ;r e t u r n m a p p i n g . g e t I n p u t F o r w a r d () ;.}}

123 .3 2.4 54 64 7.5 85 9.6 26 36 46 5.7 17 2.9 39 49 59 69 7.1 1 0.1 4 0
Figure 4.4: Struts Action

The Prototype FSML 59

.< s t r u t s w c o n f i g >.< g l o b a l w f o r w a r d s >< f o r w a r d n a m e = " h o m e "p a t h = " / S h o w H o m e P a g e . d o " / >< f o r w a r d n a m e = " m a i n "p a t h = " / S h o w M a i n P a g e . d o " / >< f o r w a r d n a m e = " a c c e s s D e n i e d "p a t h = " / S h o w A c c e s s D e n i e d P a g e . d o " / >< f o r w a r d n a m e = " l i m i t e d M a i n "p a t h = " / S h o w L i m i t e d M a i n P a g e . d o " / >< / g l o b a l w f o r w a r d s >.< a c t i o n w m a p p i n g s >.< a c t i o na t t r i b u t e = " l o g i n F o r m "n a m e = " l o g i n F o r m "p a t h = " / L o g i n "i n p u t = " H o m e P a g e "s c o p e = " r e q u e s t "v a l i d a t e = " t r u e "t y p e = " c o m . t a x w i d e . t o a s t a d m i n . s t r u t s . a c t i o n . L o g i n A c t i o n " / >.< / a c t i o n w m a p p i n g s >.< / s t r u t s w c o n f i g >

.4 .3 03 13 23 33 43 53 63 73 83 9.4 7.5 96 06 16 26 36 46 56 6.2 3 82 8 0
Figure 4.5: Struts Action Configuration

60 Struts2JSF: Framework Migration in J2EE using FSML

The actions from the source code are mapped to the actions from the configuration file by

comparing the full qualified class name of the source class with the XML attribute type

of the action XML element, contained within action-mappings XML element. If a match

is successfully made, the feature declaredInConfig is set to true. The values of features

attribute, form and path are set equal to the attributes attribute, name and path of action

XML element respectively.

4.2.4 Message

As discussed in Section 4.1.4, the concept message is a message to be displayed to the

user. A message can only exist within an action. A collection of all the message instances

within an action are represented by the feature messages in action.A c t i o n M e s s a g e s m s g s = n e w A c t i o n M e s s a g e s () ;m s g s . a d d (" s t a t u s C h a n g e d " ,n e w A c t i o n M e s s a g e (" m s g . s t a t u s C h a n g e d " ,c a s h b a c k . g e t T w C a s h b a c k I d () ,p r e v S t a t u s , s t a t u s)) ;s a v e M e s s a g e s (r e q u e s t , m s g s) ;
(a) Message in Codem s g . s t a t u s C h a n g e d = C h a n g e o f S t a t u s f o r C a s h b a c k { 0 } f r o m p r e v i o u ss t a t u s { 1 } t o n e w s t a t u s { 2 } s u c c e e d e d .

(b) Message Text in Java Property File

Figure 4.6: Struts Message

Figure 4.6(a) shows the code used to identify the concept instance for message. This

code is parsed to instantiate various features of the message. The method add is the entry

point for a message into a collection of messages, that are queued in the framework to

The Prototype FSML 61

be displayed to the user by the method saveMessages. We are interested only in the add

method and its arguments to instantiate the message concept. The first argument is used

to set the value of the feature viewId.

The second argument is an instance of ActionMessage. The arguments passed to the

constructor of ActionMessage are used to set the rest of the features of the message. The

first argument is represented by the feature messageKey. This is the key from the Java

properties file that stores the text corresponding to the message. The other arguments are

used to set the features arg0, arg1 and arg2, as the need be. These are used to personalize

the messages for the user.

Figure 4.6(b) shows the section of Java properties file related to the corresponding key.

The curly bracketed indexes (0, 1, 2) are replaced with the string values returned by arg0,

arg1 and arg2 respectively to personalize the messages for the user.

4.2.5 Forward

Each of the return statements at lines 62, 71, 97 in Figure 4.4 represents a concept instance

of forward. The source code is parsed to find return statements. Each of the return

statements used the findForward method which takes a String argument. This argument

is used to set the value of the name feature of the form concept instance.

4.3 Migrate Code

The next major step in the process is when the actual source transformation takes place.

The model created by source code analysis in last step is used to guide the migration

process. The model does not capture the application specific source code that contains the

application logic. Hence, it is not possible to generate the target application code from

scratch. This problem is solved by copying the source application code and making the

62 Struts2JSF: Framework Migration in J2EE using FSML

necessary modifications only to the code specific to the Struts framework. This leaves the

application code, that encapsulates the application logic, unmodified. This is achieved

by storing references to the source code in the model. These references map concept

instances to the location in the source code. Section 4.3.1 gives more details on source

code referencing. The algorithm for the source code migration at a high abstraction level is

discussed in Section 4.3.2. Section 4.3.3 and Section 4.3.4 give details of forward mappings

used to migrate code to the JSF framework.

4.3.1 Concept Instance References

In the last step we analyzed code to identify concept instances. In this step we will

be re-writing the code corresponding to these concept instances so that we replace the

dependence on the source framework with the dependence on target framework. This is

done while leaving the application specific code as it is. This requires a mapping of the

concept instances in the code. This mapping can be achieved by storing references to the

source code along with the concept instances in the model.

A reference should facilitate navigation from the model element to the source code

related to a concept instance. Hence the reference should provide the source file and the

character offset for the concept instance related source code. As we re-write the concept

instance’s source code, these offsets becomes invalid. Hence, with each re-writing the offsets

of all concept instances related to the source file being modified have to be re-calculated.

The FSML base framework provides a utility to achieve this code referencing from the

model using Markers. These are based on code marking facilities provided by the Eclipse

framework to provide for code referencing. Source code modifications do not affect these

Markers and hence re-calculations do not have to be performed at each step. The FSML

base framework extends this functionality for forward mapping purposes. Markers were

The Prototype FSML 63

used extensively in this prototype implementation.

4.3.2 Algorithm

Figure 4.7 show a high abstraction level migration algorithm. This section discusses the

algorithm in further details. Section 4.3.3 and Section 4.3.4 discuss the individual steps in

the code migration algorithm in further details.

Line 4 declares a collection of compilation units. This collection will hold all the new

compilation units that will be created during the migration process that are added to the

target application source based on the JSF framework.

Lines 5 through 11 loop over the collection of forms in the model. For each form, a

new compilation unit is created in the JSF code which is based on the source of the form’s

compilation unit.

Lines 12 through 33 loop over the collection of actions in the model. For each action,

if a form is associated with the action, then a compilation unit has already been created.

The data members and methods of the action are copied to the new compilation unit.

Section 4.3.3 discusses this merging of actions and forms in further details. If a form is

not associated with the action, the new compilation unit is created for the action, and

the data members and the methods are copied to this new compilation unit. The new

compilation unit is also added to the target application source code. After this, the code

in the execute method is rewritten. All actions are required to implement the execute

method. The Struts-based code is rewritten to JSF-based code. There are three different

kinds of code rewrites processed. All statements involving form variables are modified to

use the data members of the new compilation unit, and hence the this keyword is used. All

code related to messages is migrated to use JSF-specific code to generate user messages.

All return statements are modified to return Java Strings. All three code migrations are

64 Struts2JSF: Framework Migration in J2EE using FSML

m i g r a t e (S t r u t s 2 J S F M o d e l m o d e l , S o u r c e C o d e s t r u t s C o d e ,S o u r c e C o d e J S F C o d e){ C o l l e c t i o n n e w C U s ;f o r e a c h f o r m i n m o d e l{ C r e a t e a n e w c o m p i l a t i o n u n i t i n J S F C o d e ,b a s e d o n t h e f o r m ' s c o m p i l a t i o nu n i t f r o m s t r u t s C o d e ;A d d n e w c o m p i l a t i o n u n i t t o n e w C U s c o l l e c t i o n ;}f o r e a c h a c t i o n i n m o d e l{ i f f o r m i s a s s o c i a t e d w i t h a c t i o nC o m p U n i t = F i n d t h e c o m p i l a t i o n u n i t f o rt h e f o r m i n n e w C U s ;e l s e C o m p U n i t = C r e a t e n e w c o m p i l a t i o n u n i ta n d a d d i t t o n e w C U s ;A d d a l l d a t a m e m b e r s a n d m e t h o d s o f a c t i o nt o t h e C o m p U n i t ;R e w r i t e f o r m v a r i a b l e t o t h i s i n e x e c u t e m e t h o d ;f o r e a c h m e s s a g e i n a c t i o nr e w r i t e m e s s a g e c o d e i n e x e c u t e m e t h o d ;f o r e a c h f o r w a r d i n a c t i o nr e w r i t e r e t u r n s t a t e m e n t c o d e i n C o m p U n i t ;R e n a m e t h e e x e c u t e m e t h o d i n C o m p U n i t ;}}

1234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 13 23 33 4
Figure 4.7: Migration Algorithm

The Prototype FSML 65

discussed in further detail in Section 4.3.4.

4.3.3 Actions and Form Beans

Struts has Actions and Form Beans. Actions encapsulate the code that processes the

controller logic, while Form Beans are data transfer objects. The Actions execute on the

Form Beans and the Form Beans are passed to the Action methods. This is not a very

good Object Oriented (OO) approach. One of the most important concepts of OO is to

encapsulate data and related methods together in a class. JSF provides a more intuitive

way of doing this. JSF only has Managed Beans. Managed Beans have data members that

represent request/response data and methods that encapsulate controller logic.F o r m 1
F o r m 2

A c t i o n 1A c t i o n 2A c t i o n 3A c t i o n 4A c t i o n 5

M a n a g e d B e a n 19 F o r m 19 e x e c u t e A c t i o n 19 e x e c u t e A c t i o n 29 e x e c u t e A c t i o n 3M a n a g e d B e a n 29 F o r m 29 e x e c u t e A c t i o n 4M a n a g e d B e a n 39 e x e c u t e A c t i o n 5S t r u t s J S F
Figure 4.8: Merging Actions and Forms

Hence Struts to JSF code migration requires merging Actions and Form Beans into

Managed Beans, as depicted in Figure 4.8. In Struts, one Form Bean is used as a data

transfer object for many Actions. Form Beans have data members, while Actions have

66 Struts2JSF: Framework Migration in J2EE using FSML

methods. Hence, for each Form Bean, a Managed Bean is created in JSF code. After this,

the methods from the Actions and their data members are transferred to the Managed

Beans. As all Actions have an execute method, this method has to be renamed each time

an Action is added to a Managed Bean.

If an Action is not associated with any Form Bean, an independent Managed Bean can

be created. This Managed Bean will have exactly same data members and methods as the

Action.

4.3.4 Code Migrations

The execute method is the entry point into the Actions. But as many actions are merged

together with a form, the execute method is renamed. Moreover, the execute method will

be an action listener in JSF. This implies that this method should follow some stringent

rules about the method signature. Action’s execute method in the Struts framework has

the following signature:

public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServle-

tRequest request, HttpServletResponse response)

On the other hand, the JSF action listener should return a String and should have no

arguments. There is no condition on the name of the method because it is declaratively

associated with the event in the view tier. Hence, the method is renamed by concatenating

“execute” and the name of the action. This also guarantees uniqueness, because all Actions

have unique names. The ActionMapping argument is not required in the JSF context, as

this is just a Java instance of the Action declaration in the Struts configuration file. An

ActionForm argument is also not required because the data and the methods have been

encapsulated in the same class. The request and response are still required, but these can

be obtained using a FacesContext in JSF as follows:

The Prototype FSML 67

• request = FacesContext.getExternalContext().getRequest();

• response = FacesContext.getExternalContext().getResponse();

Hence, we add this code to the beginning of each execute method to provide a handle to

the request and response objects. This facilitates the use of the rest of the code without

modification as the same variable names are used as the method argument names.

Figure 4.9 shows an example of the execute method in a Struts action. Figure 4.10

shows the same execute method after migration to JSF. These diagrams will be used in

the following sections to explain the code migrations.

Rewrite Form Variable

Unlike Struts, we have data and the related methods in the same class in JSF. In Struts,

the execute method had a ActionForm argument, which is type casted to the appropriate

form before it is used. Line 11 in Figure 4.9 depicts this type casting. On the other hand,

in JSF this data is the part of the same class. Hence we can access these data members

directly from within the class, with the use of this keyword. Two tasks are performed to

carry out this form variable migration.

Firstly, the casting statement, which declares a new form variable and casts the form

to the appropriate type, is removed from the code. Line 11 in the Struts code in Figure

4.9 is removed and there is no equivalent in JSF code in Figure 4.10. The variable name

(contactForm) is temporarily remembered because it is required for the migrations in the

second task.

Secondly, all uses of the form variable are replaced by the this keyword. For example,

all the usages of contactForm in Figure 4.9 are replaced by this in Figure 4.10. This

completes the form variable rewrites.

68 Struts2JSF: Framework Migration in J2EE using FSMLp a c k a g e c a . u w a t e r l o o . s w a g . c m . s t r u t s . a c t i o n ;i m p o r t j a v a x . s e r v l e t . h t t p . H t t p S e r v l e t R e q u e s t ;.p u b l i c c l a s s A d d C o n t a c t A c t i o n e x t e n d s B a s e A c t i o n {p u b l i c A c t i o n F o r w a r d e x e c u t e (A c t i o n M a p p i n g m a p p i n g , A c t i o n F o r m f o r m ,H t t p S e r v l e t R e q u e s t r e q u e s t , H t t p S e r v l e t R e s p o n s e r e s p o n s e) {i f (! h a v e A c c e s s (r e q u e s t . g e t S e s s i o n ()))r e t u r n m a p p i n g . f i n d F o r w a r d (" A c c e s s D e n i e d ") ;C o n t a c t F o r m c o n t a c t F o r m = (C o n t a c t F o r m) f o r m ;A c t i o n M e s s a g e c o m m o n M e s s a g e = n e w A c t i o n M e s s a g e (" m s g . c m n M s g ") ;H t t p S e s s i o n s e s s i o n = r e q u e s t . g e t S e s s i o n () ;U s e r u s e r = (U s e r) s e s s i o n . g e t A t t r i b u t e (I C o n s t a n t s . U S E R) ;C o n t a c t c o n t a c t = n e w C o n t a c t () ;c o n t a c t . s e t U s e r I D (u s e r . g e t U s e r I D ()) ;c o n t a c t . s e t N a m e (c o n t a c t F o r m . g e t N a m e ()) ;c o n t a c t . s e t E m a i l (c o n t a c t F o r m . g e t E m a i l ()) ;c o n t a c t . s e t T e l e p h o n e (c o n t a c t F o r m . g e t T e l e p h o n e ()) ;c o n t a c t . s e t N o t e s (c o n t a c t F o r m . g e t N o t e s ()) ;i f (c o n t a c t F o r m . g e t D o b () ! = n u l l & &c o n t a c t F o r m . g e t D o b () . l e n g t h () > 0)c o n t a c t . s e t D o b (U t i l i t y . t o D a t e (c o n t a c t F o r m . g e t D o b ())) ;b o o l e a n c o n t a c t A d d e d = d b U t i l i t y . a d d C o n t a c t (c o n t a c t) ;i f (c o n t a c t A d d e d) {A c t i o n M e s s a g e s m s g s = n e w A c t i o n M e s s a g e s () ;A c t i o n M e s s a g e m s g = n e w A c t i o n M e s s a g e (" m s g . a d d S u c c e s s " ,c o n t a c t . g e t N a m e ()) ;m s g s . a d d (" a d d C o n t a c t S u c c e s s " , m s g) ;m s g s . a d d (" c o m m o n M e s s a g e " , c o m m o n M e s s a g e) ;s a v e M e s s a g e s (r e q u e s t , m s g s) ;r e t u r n m a p p i n g . f i n d F o r w a r d (" m a i n P a g e ") ;}A c t i o n M e s s a g e s m s g s = n e w A c t i o n M e s s a g e s () ;A c t i o n M e s s a g e m s g = n e w A c t i o n M e s s a g e (" m s g . a d d F a i l u r e " ,c o n t a c t . g e t N a m e ()) ;m s g s . a d d (" a d d C o n t a c t F a i l u r e " , m s g) ;s a v e M e s s a g e s (r e q u e s t , m s g s) ;r e t u r n m a p p i n g . g e t I n p u t F o r w a r d () ;}}

1234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 13 23 33 43 53 63 73 83 94 04 14 24 34 44 5
Figure 4.9: Struts execute Method Code

The Prototype FSML 69

p u b l i c S t r i n g e x A d d C o n t a c t A c t i o n () {H t t p S e r v l e t R e s p o n s e r e s p o n s e = S t r u t s 2 J S F U t i l i t y . g e t R e s p o n s e () ;H t t p S e r v l e t R e q u e s t r e q u e s t = S t r u t s 2 J S F U t i l i t y . g e t R e q u e s t () ;i f (! h a v e A c c e s s (r e q u e s t . g e t S e s s i o n ())){ r e t u r n " A c c e s s D e n i e d " ;}H t t p S e s s i o n s e s s i o n = r e q u e s t . g e t S e s s i o n () ;U s e r u s e r = (U s e r) s e s s i o n . g e t A t t r i b u t e (I C o n s t a n t s . U S E R) ;C o n t a c t c o n t a c t = n e w C o n t a c t () ;c o n t a c t . s e t U s e r I D (u s e r . g e t U s e r I D ()) ;c o n t a c t . s e t N a m e (t h i s . g e t N a m e ()) ;c o n t a c t . s e t E m a i l (t h i s . g e t E m a i l ()) ;c o n t a c t . s e t T e l e p h o n e (t h i s . g e t T e l e p h o n e ()) ;c o n t a c t . s e t N o t e s (t h i s . g e t N o t e s ()) ;i f (t h i s . g e t D o b () ! = n u l l & & t h i s . g e t D o b () . l e n g t h () > 0)c o n t a c t . s e t D o b (U t i l i t y . t o D a t e (t h i s . g e t D o b ())) ;b o o l e a n c o n t a c t A d d e d = d b U t i l i t y . a d d C o n t a c t (c o n t a c t) ;i f (c o n t a c t A d d e d) {S t r u t s 2 J S F U t i l i t y . s a v e M e s s a g e (" a d d S u c c e s s " ," m s g . a d d C o n t a c t S u c c e s s " , c o n t a c t . g e t N a m e ()) ;S t r u t s 2 J S F U t i l i t y . s a v e M e s s a g e (" c o m m o n M e s s a g e " ," m s g . c m n M s g ") ;r e t u r n " m a i n P a g e " ;}S t r u t s 2 J S F U t i l i t y . s a v e M e s s a g e (" a d d F a i l u r e " ," m s g . a d d C o n t a c t F a i l u r e " , c o n t a c t . g e t N a m e ()) ;r e t u r n n u l l ;}

1234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 13 23 33 43 53 6
Figure 4.10: JSF execute Method Code

70 Struts2JSF: Framework Migration in J2EE using FSML

Rewrite Messages

JSF provides a queue for user messages, similar to Struts. But the protocol for interac-

tion is different for the two frameworks. To bridge the gap between the two protocols, a

Struts2JSFUtility class is provided. This utility class provides a number of static methods

to bridge the different protocols of interaction.

Line 32 in Figure 4.9 queues a message in the Struts base framework. Line 26 in

Figure 4.10 is the equivalent for the JSF framework using the Struts2JSFUtility class. In

Struts, we first create an instance of ActionMessage and then that ActionMessage is added

to the queue. Hence, we need to refer to the ActionMessage creation code, to call the

Struts2JSFUtility equivalent. For Line 32 in Figure 4.9, the message is created in Line 30.

All the statements to create a message (Line 30), add the message to the queue (Line 32),

and save the queue in the framework (Line 34) are replaced by the single line of code, Line

26 in Figure 4.10.

Rewrite Forwards

The execute method in Struts returns an ActionForward instance. This ActionForward

encapsulates the string to represent the navigation case, and stores the information on

whether to use the redirect or forward to navigate to the next view. On the other hand,

JSF moves this information to the configuration file. Hence, we need only the string

representation of the navigation case.

The string is returned as it is in the JSF code. Hence, this code migration boils down

to replacing the ActionForward instance in all return statements with the corresponding

character strings.

Lines 10, 35 and 43 in Figure 4.9 are replaced with Line 7, 30 and 35 respectively. The

call to getInputForward is replaced with return null statement. Return null implies that

The Prototype FSML 71

the same view should be displayed to the user.

4.4 Prototype Implementation

As a part of this work, a prototype1 for automated controller migration has been imple-

mented. This section discusses the technical details of the prototype implementation.

E c l i p s e M o d e l i n g F r a m e w o r kg p . f s m l d e . s t r u t s b o x s w a g . s t r u t s 2 J S Fs w a g . s t r u t s 2 J S F c o d e
E c l i p s e P l a t f o r m

Figure 4.11: Prototype Implementation

The prototype is implemented as an Eclipse plugin based on the Eclipse Platform [5].

The prototype is built on top of many other components. Figure 4.11 shows the software

stack used to implement the prototype.

The base of the prototype is the Eclipse Platform. Eclipse is an extendible open source

development platform. It has built-in support for Java development, but it is being used

for many other development purposes. This has been possible because of the extendibility

of the platform. It has a large support community and is growing at a fast pace.

The Struts2JSF prototype consists of two Eclipse plugins: swag.struts2JSF, discussed

in further detail in Section 4.4.1, and swag.strut2JSFcode, discussed in further detail in

1This section is based on the joint work of the author and M. Antkiewicz. The prototype implementation

is based on the base FSML framework.

72 Struts2JSF: Framework Migration in J2EE using FSML

Section 4.4.2.

4.4.1 swag.struts2JSF Eclipse Plugin

The first step in the automated controller migration based on FSML is to define the FSML.

The plugin swag.struts2JSF is used to define the FSML for migration and to generate the

required code from the meta-model of the FSML. This has been implemented using the

Eclipse Modeling Framework (EMF) [6], defined by the Eclipse Foundation [5] as follows:

“Eclipse Modeling Framework (EMF) is a modeling framework and a code

generation facility for building tools and other applications based on a struc-

tured data model.”

EMF has three fundamental pieces:

• EMF - provides facilities for describing the meta-model on which the models are

based. The meta-model is referred to as ecore model, and is the core of the EMF

framework.

• EMF.Edit - provides base framework classes for building editors for models.

• EMF.Codegen - provides a code generation facility that generates Java code for

modell manipulation.

The EMF core framework is used to define the meta-model for the Struts2JSF FSML

in Ecore format. EMF.Codegen is used to generate the code required to manipulate

the models based on the Struts2JSF FSML. The code generated is used extensively by

swag.struts2JSFcode wizards to analyze application code to generate a model instance

and to migrate the code to the target framework. EMF.Edit is used to create editors

The Prototype FSML 73

to visually manipulate the generated model. Although we do not modify the models in

this work, but this can be particularly useful if we want to customize the model before

migration.

4.4.2 swag.struts2JSFcode Eclipse plugin

The two steps in automated controller migration are Analyze Code and Migrate Code.

The swag.struts2JSFcode plugin provides two wizards that perform the code analyses and

migration. The plugin depends on two other plugins: gp.fsml and de.strutsbox.

The de.strutsbox plugin [40] itself is based on EMF and it provides facilities to ma-

nipulate the Struts configuration files. These facilities have been used extensively in

swag.struts2JSFcode for reading the Struts configuration files.

gp.fsml is the base framework for implementing FSMLs. The gp.fsml plugin for Eclipse

provides many utility classes that facilitate code analysis, manipulation and marking. Both

the code analysis and code migration components use these facilities extensively.

Code Analysis

Code Analysis is performed by the New Wizard, which uses the NewWizards extension

point from the base Eclipse framework. The code in this section depends largely on the

gp.fsml plugin as it extends the Queries base class provided by the plugin. The Queries

base class provides facilities for searching for all the method invocations of a given method,

retrieving the arguments being passed to the method, generating different IDs for concept

instances, getting Abstract Syntax Trees of compilation units, etc.

Code Analysis is performed by selecting a Struts project and then selecting the Struts2JSF

Analysis Wizard from the New menu. The wizard asks for the name of the model file, and

generates a model based on the Struts2JSF FSML by analyzing the project code.

74 Struts2JSF: Framework Migration in J2EE using FSML

While analyzing the Struts code, the code is marked using the Marker utility provided

by the gp.fsml plugin. This utility exploits the marker facilities provided by the Eclipse

platform, and provides ways to uniquely identify and map each marker to the associated

concept in the model.

Code Migration

Code Migration is performed by the Export Wizard, which uses the ExportWizards ex-

tension point from the base Eclipse framework. This wizard asks the user to select the

project in which to create the new JSF code. The code generation largely utilizes the facil-

ities provided by the CodeTransformations class in gp.fsml. CodeTransformations provides

facilities for creating new compilation units, adding new types to the compilation units,

adding import declarations, adding extends declarations, etc.

The code marking facilities of gp.fsml are also utilized extensively to map concept

instances to the source code.

4.5 Chapter Summary

This chapter discussed the technical details of a prototype FSML implemented for migra-

tion purposes. This prototype was used for a migration case study. Chapter 5 discusses

the migration of the view component. The case study is discussed in Chapter 6.

Chapter 5

View Migration

As discussed in Chapter 3 the migration activity involves controller migration, view mi-

gration and the migration of configuration files. Configuration file migration was discussed

in Chapter 3. The controller migration process and the prototype for automated con-

troller migration was discussed in Chapter 3 and Chapter 4. This chapter discusses view

migration, which is a manual process.

Applications based on the Struts framework use tag libraries that generate the markup

for generating responses. Applications based on the JSF framework use a similar approach

by using tag libraries to represent user interface components. Markup code is generated

by the renderer to generate responses. From an application developer point of view, the

two approaches are semantically different because the JSF tags represent components that

have a server side state. The migration process involves replacing the Struts tags with

equivalent JSF tags. Some of the Struts tags have a one-to-one mapping with JSF tags,

while others do not. Straight forward tag mappings are discussed in Section 5.1. When

there is no one-to-one mapping, certain combinations of Struts tags are replaced by a single

JSF tag. Particular patterns of Struts tag combinations represent JSF components. Hence

this migration comes down to the problem of componentization. This is discussed in further

75

76 Struts2JSF: Framework Migration in J2EE using FSML

detail in Section 5.2.

Tiles is an built-in templating technology for the Struts framework. On the other hand,

JSF does not have a similar templating technology. Tiles was born as an independent

project [46], that was later included in Struts. As such, the Tiles plug-in is independent of

the Struts base framework, and it can also be used with JSF. Since applications based on

Struts use Tiles, it is recommended to use Tiles with JSF. We will discuss the problems

arising from this and how to handle these problems in Section 5.3.

5.1 Struts2JSF Tag Library Map

Struts has four different kind of tag libraries: html, bean, logic and nested. Each Struts tag

library tag is preceded by the name of the tab library (html, bean, logic or nested) plus a

colon. JSF has two tag libraries: core and html. The core tag library tags are preceded by

“f:” and the html tag library tags are preceded by “h:”.

Table 5.1: Struts2JSF Tag Library Map

Struts Tag Equivalent JSF Tag

html:text h:inputText

html:password h:inputSecret

html:hidden h:inputHidden

bean:message h:outputText

html:select h:select*

html:option f:selectitem

html:optionsCollection f:selectitems

Continued on next page

View Migration 77

Table 5.1 – continued from previous page

Struts Tag Equivalent JSF Tag

html:textarea h:inputTextarea

html:button h:commandButton

html:checkbox h:selectBooleanCheckbox

html:image h:graphicImage

html:form h:form

bean:message h:message

Table 5.1 shows a tag library map from Struts to JSF migration. It presents only the

most basic tags. A detailed discussion follows for each of the tag mappings, along with a

discussion of more complex features and attributes of each tag.

Migrating html:form to h:form

These tags are responsible for generating an HTML form element for user input. The

html:form tag in Struts can be replaced by h:form tag, and is followed by the replacement

of all the code (both raw HTML and Struts tags) within the html:form with code for

equivalent JSF components.

The most important attribute from the migration perspective is the action of the Struts

html:form tag. This associates an HTML form with a Form Bean instantiated and managed

by the Struts base framework. In JSF, h:form cannot be directly associated with a Managed

Bean. Instead each of the elements in the h:form tag have to specify the Managed Bean.

This requires a manual mapping of a Form Bean in Struts to a Managed Bean in JSF, and

78 Struts2JSF: Framework Migration in J2EE using FSML

then adding the Managed Bean in the value attribute using standard JSP 2.0 Expression

Language [23] in JSF.

Migrating html:text to h:inputText

HTML provides the input element to support basic user input. As the view tier in Struts

and JSF is responsible for generating HTML-based markup, both provide tags and user

interface components that are analogous to these HTML input elements. The HTML input

element has a type attribute that can have any of the following values: text, password,

checkbox, radio, submit, reset, file, hidden, image and button. There are Struts and JSF

tags that represent all of these types of input elements.

The following types have one-to-one mapping in both Struts and JSF: text (html:text,

h:inputText); hidden (html:hidden, h:inputHidden), password (html:password, h:input-

Secret), and button (html:button, h:commandButton). These tags can be directly replaced.

The property attribute identifies the data member of the Form Bean in Struts that is

associated with the value in the HTML element. On the other hand, JSF uses the value

attribute to identify both the Managed Bean and the data member associated with the

value of the HTML element. Therefore, migration requires a manual mapping of the Form

Bean in Struts to the correct Managed Bean in JSF, based on the action attribute in the

html:form tag in Struts.

Migrating bean:message to h:outputText

Both Struts and JSF provide localization support. This is achieved using these tags. Both

tags emit HTML markup to generate verbatim text in the present locale. The Struts

bean:message tag uses the key attribute to specify the key for the Java properties file. JSF

uses the value attribute in the Expression Language to set the text to be displayed. The

View Migration 79

value attribute and localization in JSF is discussed later in this section, in the subsection

titled ”f:loadBundle”.

Migrating html:select to h:select*

These tags are used to generate the HTML select element. This element is used to display

multiple or single selection menus, list boxes and checkboxes. For each option to be listed,

the HTML option element is used. The Struts tags used to work with select element are

the following: html:select and html:multibox.

The html:select tag has a multiple attribute to generate multiple selection list boxes.

The html:multibox tag is used to generate a list of checkboxes to select from. JSF has

a number of different selection tags, starting with h:select. The ones that are analogous

to the Struts html:select tag are the following: h:selectOneListBox, h:selectManyListBox,

h:selectOneMenu and h:selectManyMenu. The Struts html:select tag should be replaced

by one of these tags depending on if the multiple attribute is set to true or false.

The html:multibox tag in Struts generates a group of checkboxes. This tag should be

replaced by the h:selectManyCheckbox JSF tag. Another Struts tag related to selection is

html:radio. It is replaced by the h:selectOneRadio tag in JSF.

The HTML select element contains many option elements. The Struts and JSF tags

related to generating options for the select tag are discussed in next sub section.

Migrating html:option to h:selectitem

These tags are used by Struts and JSF to generate HTML option elements. The Struts

tags related to this are: html:option, html:options and html:optionsCollection. The JSF

tags related to this are: f:listitem, f:listitems. The Struts html:option tag has a straight-

forward migration to f:listitem, and the html:options and html:optionsCollection should be

80 Struts2JSF: Framework Migration in J2EE using FSML

migrated to f:viewitems tags.

This tag migration involves some controller modifications as well. The Struts tags can

deal with any Java collection. In JSF, the f:listitem and f:listitems expect a Java Collection,

array or Map of type SelectItem (in javax.faces.model). A Wrapper design pattern [57]

can be used to accomplish this, to avoid modification of the existing controller code.

These label and value attributes of the Struts tags are analogous to the itemLabel and

itemValue tags in JSF.

Migrating html:button to h:commandButton

These tags generate the HTML elements related to the input types button, submit and

reset. The Struts tags related to these are: html:button, html:submit and html:cancel. JSF

has only one tag to which all of these Struts tags should be migrated: h:commandButton.

In Struts, the action attribute in html:form tag specified which execute method should

be called on submission. But in JSF a method is associated with the click event of an

h:commandButton using the action and actionListener tags. This is one of the major

differences between the two frameworks. In JSF this provides for more flexibility in terms

of method call backs.

Migrating to f:loadBundle

The f:loadBundle tag in JSF has to be used in the f:view tags to support localization and

personalization using Java property files. In Struts, this is done at an application level, by

declaring this in the configuration file. The f:loadBundle tag is used to load a bundle of

properties from a Java properties file for the specified locale.

<f:loadBundle basename="java.properties.file" var="msg"/>

View Migration 81

The basename attribute specifies the name of the Java properties file and var attribute

specifies the name of the variable to be used by other tags to access the text from the

properties file. The html:outputText uses this as follows:

<h:outputText value="#{msg.[key]}"/>

Hence, this f:loadBundle should be added at the top of each f:view JSF tag. The value

of the basename attribute is read from the message-resources XML element in the Struts

configuration file.

Migrating HTML Tables to h:panelGrid

Some of the JSF tags are incompatible with regular HTML tags. This is especially true for

the HTML table related tags (<table>, <tr> and <td>) inside of the h:form component

tag. This can be avoided by using h:panelGrid tag in JSF. The h:panelGrid provides

facilities to generate HTML tables.

5.2 Componentization

The goal of view migration is to have JSP pages that generate identical looking responses to

the user. Componentization, in Struts to JSF migration, refers to replacing combinations

of Struts tags with a single or a combination of JSF components that represent the same

markup element when responses are generated.

The JSF framework provides extension points to add new user interface components.

This has created a marketplace for user interface components. Some of the most popular

libraries for JSF user interface components are MyFaces [23], Oracle ADF Faces [24] and

JScape’s WebGalileo Faces [25]. Also, the JSF framework provides some basic components

that are included in the base framework. Hence, componentization is largely dependent on

82 Struts2JSF: Framework Migration in J2EE using FSML

the choice of JSF implementation and component libraries. In this work, we discuss only the

components that are available in the reference implementation of JSF by Sun Microsystems.

It is highly recommended to identify opportunities to replace repeating patterns of Struts

tags with equivalent custom JSF components [59]. Custom JSF components are beyond

the scope of this work.

5.3 Tiles and JSF

Templating technologies provide for reuse of view code. In JSP this is accomplished using

JSP includes. JSF does not provide a templating technology. Tiles, being an independent

technology, can be used with JSF. The approach to using Tiles with JSF is again largely

dependent on the choice of JSF implementation. Some implementations (ex. MyFaces)

provide a view handler that is Tiles-aware, and hence simplifies the Tiles and JSF integra-

tion [38]. Most JSF implementations do not provide a built-in Tiles and JSF integration

facility. JSF has a view handler extension point that can be extended to provide this facil-

ity. As JSF and Tiles integration is not a part of the JSF specification, and is important

only for the Struts to JSF migration, this section discusses using Tiles with JSF when

the implementation does not provide an integration facility. Sun Microsystem’s reference

implementation, for example, does not provide any such facility. This section discusses

how to use Tiles with JSF without using any extension points of the JSF framework.

The Tiles plugin has two major components: the Tiles configuration file and the Tiles

Servlet. In the migration from Struts to JSF, the following steps should be taken to use

Tiles with JSF:

• Add a TilesServlet configuration in the JSF deployment descriptor (web.xml).

• Create a JSP page for each Tile.

View Migration 83

• Migrate the layout to use the combination of JSF and Tiles.

With Struts, Tiles is used as a plug-in and is configured using the controller and plug-

in XML elements in the main Struts configuration file as shown in Figure 5.1(a). These

configuration element are not mirated to the JSF configuration file. Instead, we declare

a TilesServlet in the application deployment descriptor as shown in Figure 5.1(b). This

enables the use of Tiles in JSF..< c o n t r o l l e rp r o c e s s o r C l a s s = " o r g . a p a c h e . s t r u t s . t i l e s . T i l e s R e q u e s t P r o c e s s o r " / >.< p l u g ò i n c l a s s N a m e = " o r g . a p a c h e . s t r u t s . t i l e s . T i l e s P l u g i n " >< s e t ò p r o p e r t y p r o p e r t y = " d e f i n i t i o n s ò c o n f i g "v a l u e = " / W E B ò I N F / t i l e s ò d e f s . x m l " / >< / p l u g ò i n >.
(a) Tiles Configuration in Struts.< s e r v l e t >< s e r v l e t � n a m e > t i l e s < / s e r v l e t � n a m e >< s e r v l e t � c l a s s > o r g . a p a c h e . s t r u t s . t i l e s . T i l e s S e r v l e t < / s e r v l e t � c l a s s >< i n i t � p a r a m >< p a r a m � n a m e > d e f i n i t i o n s � c o n f i g < / p a r a m � n a m e >< p a r a m � v a l u e > / W E B � I N F / t i l e s � d e f s . x m l < / p a r a m � v a l u e >< / i n i t � p a r a m >< i n i t � p a r a m >< p a r a m � n a m e > d e f i n i t i o n s � p a r s e r � v a l i d a t e < / p a r a m � n a m e >< p a r a m � v a l u e > t r u e < / p a r a m � v a l u e >< / i n i t � p a r a m >< l o a d � o n � s t a r t u p > 1 < / l o a d � o n � s t a r t u p >< / s e r v l e t >.
(b) Tiles Configuration in JSF

Figure 5.1: Example of Migrating Tiles from Struts to JSF

84 Struts2JSF: Framework Migration in J2EE using FSML

Because Struts has built-in support for the Tiles framework, it is possible to forward

HTTP requests directly to the tile in the Tiles plugin. In JSF, navigation works at page

level. It is not possible to navigate to a tile from the Tiles framework. To accomplish this

kind of navigation, we need to create a new JSP page that includes a tile. This has to

be done for each tile in the Tiles configuration file. This JSP page simply uses the insert

tag from Tiles tag library to include the tile. The navigation graph can now be written in

terms of these JSP pages. The code for such JSP pages will look similar to the following

code.

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<tiles:insert definition="HomePage" flush="false" />

This JSP inserts a tile called HomePage into the JSP page. In Struts this would not be

required as the request can be directly forwarded to the HomePage tile. A simple script

can be used to generate each page by reading all the tile in the Tiles configuration file. A

Java program was used for this purpose in the case study in this work.

The most critical part of using Tiles and JSF is to modify the layout JSP files. The

power of the Tiles framework comes from the fact that it allows us to not only reuse the

JSP page contents, but also allows us to reuse the layout by defining the layout in separate

JSP files. The view migration applies to all the JSP pages that hold the content, whereas

layout migration here refers to the migration of the JSP pages responsible for the layouts

in Tiles. Figure 5.2 shows the code of such a layout JSP in Struts and in JSF.

The HTML table shown in Figure 5.2(a) and the related markup tags have been replaced

by the h:gridLayout tags in JSF shown in Figure 5.2(b). Each of the tiles:insert statement

should be enclosed in a separate f:subview. This means that an independent component

tree exists for each tile being inserted on the server side.

View Migration 85< b o d y >< t i l e s : i n s e r t a t t r i b u t e = " c s s " / >< t a b l e w i d t h = " 1 0 0 % " b o r d e r = " 1 " >< t r > < t d c o l s p a n = " 2 " a l i g n = " c e n t e r " >< t i l e s : i n s e r t a t t r i b u t e = " h e a d e r " / >< / t d >< / t r >< t r v a l i g n = " t o p " >< t d a l i g n = " l e f t " w i d t h = " 2 0 % " >< t i l e s : i n s e r t a t t r i b u t e = " n a v i g a t i o n " / >< / t d >< t d a l i g n = " l e f t " >< t i l e s : i n s e r t a t t r i b u t e = " m a i n " / >< / t d >< / t r >< t r > < t d c o l s p a n = " 2 " a l i g n = " c e n t e r " >< t i l e s : i n s e r t a t t r i b u t e = " f o o t e r " / >< / t d >< / t r >< / t a b l e >< / b o d y >
(a) Tiles Layout File in Struts< f : v i e w >< f : l o a d B u n d l eb a s e n a m e = " c o m . t a x w i d e . t o a s t a d m i n . f a c e s . A p p l i c a t i o n R e s o u r c e s "v a r = " m s g s " / >< t i l e s : i n s e r t a t t r i b u t e = " c s s " f l u s h = " f a l s e " / >< h : p a n e l G r i d c o l u m n s = " 2 " >< f : f a c e t n a m e = " h e a d e r " >< f : s u b v i e w i d = " h e a d e r " >< t i l e s : i n s e r t a t t r i b u t e = " h e a d e r " f l u s h = " f a l s e " / >< / f : s u b v i e w >< / f : f a c e t >< f : s u b v i e w i d = " n a v i g a t i o n " >< t i l e s : i n s e r t a t t r i b u t e = " n a v i g a t i o n " f l u s h = " f a l s e " / >< / f : s u b v i e w >< f : s u b v i e w i d = " m a i n " >< t i l e s : i n s e r t a t t r i b u t e = " m a i n " f l u s h = " f a l s e " / >< / f : s u b v i e w >< / h : p a n e l G r i d >< / f : v i e w >
(b) Tiles Layout File in JSF

Figure 5.2: Example of Migrating a Tiles Layout

86 Struts2JSF: Framework Migration in J2EE using FSML

5.4 Chapter Summary

This chapter presented guidelines for migrating a view component based on Struts to a view

component based on JSF by migrating the JSP tags. The process discussed in Chapter

3 and Chapter 4 and the view migration technique discussed in this chapter was used to

carry out a migration case study. Chapter 6 discusses the case study and presents the

lessons learned from the migration task. Chapter 7 concludes this work.

Chapter 6

Migration Case Study - ToastAdmin

Taxwide, Inc. [42] is a tax preparation and accounting firm that has more than 15 loca-

tions throughout the Greater Toronto Area. TOAST stands for Taxwide Operations And

Security Tool. TOAST is a software system under development at Taxwide Inc. and is

largely used for streamlining the Instant Tax Refund business process. Figure 6.1 shows a

high level architectural diagram of the TOAST system.

The two major server side software systems in TOAST are Toast Web Services and

ToastAdmin. At the heart of the TOAST system is the Toast Database. This database

system is based on MySQL. The Toast Web Services provide a secure interface to the back

end database system. The Web Services [62] are implemented using J2EE technologies.

ToastAdmin is a web application that is used for the administration of the system. This

web application is based on J2EE technologies and the Struts framework.

On the client side, a light weight browser application is used to access ToastAdmin.

ToastClient is the application used by employees to carry on various day to day operations

at Taxwide Inc. This is a desktop application based on the Java Swing GUI framework

that communicates with the rest of the system through Toast Web Services. Swing is

distributed as a part of Java SE Software Development Kit [18].

87

88 Struts2JSF: Framework Migration in J2EE using FSML

T o a s tC l i e n t T o a s tC l i e n t T o a s tC l i e n t T o a s tC l i e n t
T O A S T W e b S e r v i c e s

T o a s t A d m i n
B r o w s e r

D a t a b a s e
t a x w i d e . c o m

Figure 6.1: Architecture of the Taxwide Operations And Security Tool (TOAST)

Migration Case Study - ToastAdmin 89

Figure 6.2: ToastAdmin Screenshot

90 Struts2JSF: Framework Migration in J2EE using FSML

The component of interest in this system is ToastAdmin1. Figure 6.2 shows a screenshot

of the administration application. As a part of this work, ToastAdmin was migrated

to the JSF framework using the complete migration strategy discussed in Section 3.1.

Controller migration was carried out using the Eclipse plug-in discussed in Section 4.4.

View migration was carried out manually using the techniques discussed in Chapter 5.

This chapter discusses the migration of ToastAdmin in further details.

6.1 Controller Migration

Section 4.4 discussed the prototype FSML that was implemented as a part of this work.

The prototype was used to carry out the controller component migration to JSF in a semi-

automated fashion in this case study. The configuration files were migrated manually after

the automated migration of the Java code of the Controller component.

The size of the Struts version of the ToastAdmin application is 19,566 lines of Java

code. The controller component contributes 4,697 lines of code while the model component

contributes 14,869 lines of code. The JSF version of the ToastAdmin application has a

total of 18,398 lines of Java code. The controller component contributes 3,529 lines of

code, while the model component contributes 14,869 lines of code. The size of the model

component is unchanged, while the controller component is smaller in size for the JSF

version. However, this difference in lines of code is minor and insignificant. The lines of

code were calculated using the metrics plugin, which is a part of the Eclipse platform. The

plugin provides for lines of code while ignoring comments and blank lines.

1A permission was obtained from Taxwide Inc. to use the application for this case study.

Migration Case Study - ToastAdmin 91

Table 6.1: Form Beans (in Struts) to Managed Beans (in

JSF) Mappings

Form Bean, Actions Managed Bean

userForm User

/AddUser

loginForm Login

/Login

userList UserList

/ShowUsers

locationList LocationList

/ShowLocations

editUserForm EditUser

/ShowEditUserPage

/UpdateUser

/ShowDeleteUserPage

/DeleteUser

locForm Location

/AddLocation

/ShowEditLocationPage

/EditLocation

editLocForm EditLocation

/ShowDeleteLocationPage

/DeleteLocation

Continued on next page

92 Struts2JSF: Framework Migration in J2EE using FSML

Table 6.1 – continued from previous page

Form Bean, Actions Managed Bean

signatoryForm Signatory

/ShowAddSignatory

/AddSignatory

signatoryListForm SignatoryList

/ShowSignatories

assignChequesForm AssignCheques

/AssignCheques

chequeListForm ChequeList

/SearchCheques

cashbackListForm CashbackList

/ShowCashbackList

setCashbackStatusForm CashbackStatus

/ShowSetCashbackStatus

/SetCashbackStatus

editSignatoryForm EditSignatory

/UpdateSignatory

/ShowEditSignatory

overviewForm Overview

/ShowMainPage

sysSettingsForm SysSettings

/ShowSysSettings

/UpdateSystemSettings

Continued on next page

Migration Case Study - ToastAdmin 93

Table 6.1 – continued from previous page

Form Bean, Actions Managed Bean

newRequestForm Request

/RequestCashback

limitedCashbackListForm LimitedCashback

/ShowLimitedCashbacks

ReportForm Report

/GenerateReport

Table 6.1 shows the Actions and Form Beans of Struts version of ToastAdmin and the

equivalent Managed Beans of the JSF version. The table does not list the Actions and the

equivalent Managed Beans for those Actions that do not have an associated Form Bean.

All such Actions have an equivalent Managed Bean.

The names of the Managed Beans are given manually. These names are entered when

the configuration files are migrated. Each Managed Bean was declared in the configuration

file, and the table shows the names that were given to these Managed Beans. The results of

the migration were encouraging overall except for some minor issues that were discovered.

These issues are discussed in the next section along with some discussion of the solutions

to these issues.

6.1.1 Issues

Action Class Hierarchy

In ToastAdmin, the Action classes had a richer class hierarchy than just all the Actions

extending the abstract base Action class provided by the Struts framework. For example

94 Struts2JSF: Framework Migration in J2EE using FSML

in ToastAdmin we have a class BaseAction which is extended by each of the other action

classes. This BaseAction provides a method hasAccess that checks to see if the associated

HttpSession has the required privileges. Figure 6.3 shows this scenario.

A c t i o n
M y A c t i o n 1 M y A c t i o n 2 M y A c t i o n 3

B a s e A c t i o n
M y A c t i o n 1 M y A c t i o n 2 M y A c t i o n 3

A c t i o n

Figure 6.3: Expected and Actual Action Class Hierarchy in ToastAdmin

During migration, the Actions actually become methods of the Managed Beans. More-

over the Form class hierarchy has already been implemented as a Managed Bean class

hierarchy in the migrated code and Java does not support multiple inheritence. Such an

Action class hierarchy poses some serious automation challenges. Using the FSML we did

capture the framework specific abstractions. But our approach does not capture the details

of application-specific code. Hence, such an extensive application specific class hierarchy

for Actions is not handled by our approach.

It is possible to solve this problem by capturing the Action class hierarchy in the FSML

and then flatting out the class hierarchy in the migration process. This would mean code

repetition, but would get us to a working Controller component. The code can later be

Migration Case Study - ToastAdmin 95

optimized and restructured to have a proper class hierarchy.

Data Validation

A Form Bean in Struts has a validate method that validates user input data before it invokes

Actions on that data. This framework abstraction was not captured in the prototype

FSML. Every Action has an attribute validate that can be set to true or false. This can

easily be captured in the FSML, and the Analyze Code and Migrate Code stages can be

modified to call the validate method in the execute method of an action before invoking

the rest of the code. For this case study, we implemented this validation manually achieved

this.

There were 31 Actions and 29 Form Bean in the Struts-based application that were

migrated to 19 Managed Beans in the JSF-based application. This migration was not fully

automated because of the issues discussed earlier. The manual steps taken to migrate to a

working controller based on JSF are as follows:

• A library component was created that provided the common functionality that Ac-

tions inherited from their super classes. This task was simple, as there was only one

method from the super class that was in all the Action subclasses. This method was

moved to a library class as a static member. Code in each action was modified to call

the new library method instead of superclass method. This task took approximately

one person day.

• A JSF configuration file was written to configure the Managed Beans and migrate the

navigation rules. This task took approximately one person week. The effort involved

in this migration task was discussed in Chapter 3 in detail.

• Data validation was migrated to either a separate library or to the corresponding

96 Struts2JSF: Framework Migration in J2EE using FSML

Managed Beans. For simple validation rules, where the JSF core framework val-

idation was sufficient, validation was moved to the view component. Otherwise,

validation was moved to the library and appropriate library calls were inserted. This

talk took approximately one person week.

Hence, the controller migration took approximately two person weeks in total.

6.2 View Migration

The controller component was migrated before the view component. Hence, while the view

component was being migrated, a working Controller component was available to perform

page by page testing of the web application.

Tiles

As discussed earlier Tiles is an independent templating technology that is an addition to

Struts but works well with JSF. It is highly recommended to use Tiles as the templating

technology for JSF-based applications. In this case study, the Struts-based application

extensively used Tiles. We used it as our templating technology for the JSF application

as well. Figure 6.4 shows the layout of the ToastAdmin application. It has a HEADER

at the top. There is a NAVIGATION menu and the MAIN content section beside each

other. There is a FOOTER at the end of the layout. Each set of JSP pages that fills all

the four sections of the layout make up one web page or one Tile. The Tiles configuration

file is needs no modification for JSF. But as discussed in Chapter 5, we need to create a

new JSP page for each tile, where each page simply includes the Tile definition in it.

The total number of new JSP pages created, one for each tile, in ToastAdmin is 24.

These JSP pages are the vertices of the navigation graph in JSF. This migration was

Migration Case Study - ToastAdmin 97

Figure 6.4: ToastAdmin Layout

98 Struts2JSF: Framework Migration in J2EE using FSML

carried out fully automatically by using a Java program. The time taken to write the Java

program was approximately one person day. The time taken to execute the program to

carry out tiles migration in ToastAdmin was negligible.

JSP Pages

After the migration of the tiles, we need to migrate each JSP page that uses them. This in-

volves replacing the Struts tag libraries with the JSF user interface components as discussed

in Chapter 5. One of the major issues encountered in this migration was the replacement

of the Struts logic tags. These tags provide flexibility and control in the Struts view tier.

In JSF we have more abstract user interface components that make it easier to construct

pages but result in a loss of flexibility and control.

For example, in ToastAdmin we provide a list of users that can access the system. If the

user is an administrator, the Admin text is displayed next to its name in the list of users.

In Struts this is achieved using a simple logic tag to check if the user is an administrator.

This is not supported in JSF because JSF does not provide logic tags. JSFs tags are the

user interface components with server side state. There are two different ways of achieving

the same effect in JSF.

One way is to use the rendered attribute of the JSF tags to display or not display any

JSF component. This is a straightforward approach that works for the simple problem

we just discussed. It also requires modification of the associated Managed Bean in certain

cases. But this might not work for more complex uses of the logic tags. In that case,

the second approach would be to use custom components. JSF supports customer user

interface components. We used the Datatable user interface component to display the

list of users. It is possible to extend this user interface component and add the needed

functionality to the component. This would mean that code would move from the view

Migration Case Study - ToastAdmin 99

tier to the controller tier. This is preferred in certain cases where the web design team

does not have Java skills, but might not be preferable in other scenarios where the web

design teams need more flexibility and have the required skills. In ToastAdmin, we solved

this problem using the rendered attribute, as it served our needs well.

There were a total of 33 JSP pages that were migrated to JSF pages. This took

approximately 4 person weeks. A large proportion of the time was spent in modifying the

data model (Managed Beans) where the JSF tags did not provide sufficient flexibility to

replace Struts tags. This was particularly true where Struts logic tag library had been

used. In ToastAdmin, this problem was faced in 6 JSP pages when the HTML table was

used in conjunction with the Struts logic tags.

JSF and JSTL

It is possible to use JSF and JavaServer Pages Standard Tag Library (JSTL) together,

but it is not possible to mix JSF and JSTL. JSTL provides many logic and iteration

library tags, but the only way JSTL can access the data from a JSF controller is by using

the Managed Beans. Using expression language in JSTL it is possible to directly access

Managed Beans because these are just regular JavaBeans. On the other hand, it is not

possible to use any JSTL tags within JSF components. That does not work because these

two tag libraries are executed at different times during request processing life cycle of JSF,

and do not produce the desired result. Hence, JSTL and JSF can be used together if a

clear line of separation is drawn in terms of using the tag libraries.

6.3 Lessons Learned

The controller component migration should be carried out before the view migration. If

the controller component is already migrated, then unit testing for each web page can

100 Struts2JSF: Framework Migration in J2EE using FSML

be performed during the migration process. Controller migration should be followed by

configuration file migration, followed by view migration. The configuration files provide

for loose coupling between the controller and the view components. Hence it is required

for the view component to communicate with the controller component.

View migration should be carried out incrementally, while testing each page individually

against the controller. This validates the migration process as the migration moves ahead.

The Tiles plugin works with the JSF framework and is independent of the Struts frame-

work. Tiles should be used as the preferred templating technology when migrating from the

Struts framework. This minimizes the migration work involved in the view tier and hence

lowers the risks. If another templating technology has to be used, then it is recommended

to start by migrating to the JSF framework using Tiles. Once a working view component

is available, then migrate to the selected templating technology.

Struts logic tags can be replaced by JSTL logic tags as the JSF view tier does not provide

for any logic tags. But JSTL tags do not work within the scope of a JSF component in a

JSP page. Hence, extending the basic JSF components to create custom component that

achieve the desired logic is recommended.

The flush attribute of each of the tiles:insert tags should be set to false. The true value

throws an exception. This is a minor incompatibility issue when using Tiles with JSF.

6.4 Chapter Summary

This chapter discussed the results of a migration case study performed using the process

and techniques discussed in previous chapters. Code metrics, the issues related to the

controller migration, the view migration challenges related to the JSF tags and the lessons

learned from the case study were discussed. Chapter 7 concludes this work.

Chapter 7

Conclusion

The Struts framework has become the de-facto standard for J2EE-based web application

development. The JSF framework is the new framework which has similarities to Struts,

but extends it by providing a more flexible controller component. It improves on Struts

by offering an event-oriented approach, an extendible user interface component framework,

and improved tool support. Existing Struts based applications with a requirement for a

rich user interface should consider migrating to the JSF framework. The implementation

choice should be based on the richness of the user interface component library.

In Chapter 3 we discussed two strategies for migration to JSF: the Complete migra-

tion strategy and the Partial migration strategy. Section 3.2 discussed the advantages

and disadvantages of the partial migration strategy. The partial migration strategy aims

at an application that uses the JSF framework for the user interface components in the

view component and the Struts framework for the Controller component. It requires less

migration effort since the Controller component is unmodified. But the application can

only use the components provided by the Struts-Faces Integration Library (SFIL) [38].

This strategy does not exploit the market place of the user interface components available

for view component in JSF. Unfortunately, the partial migration strategy results in an

101

102 Struts2JSF: Framework Migration in J2EE using FSML

application dependent on two separately developing and evolving technologies. Any new

features of JSF that can not be supported by Struts can not be used by the application.

The declarative navigation handling in the controller component and the data conversion

extension points in the View component are examples of such features. Hence, the complete

migration strategy is recommended to produce a pure and native JSF application.

The research objective of this work was also to explore opportunities for automating

the migration from Struts to JSF. The migration was divided into controller migration,

view migration and configuration file migration. Controller migration is similar to API

migration and was automated using a framework-specific modeling approach based on a

special purpose Framework Specific Modeling Language (FSML). The FSML used in this

work captures the common concept abstractions for the Struts and JSF frameworks. This

enables reverse engineering of a Struts-based controller to a model and then forward engi-

neering (code migration) to a JSF-based controller from the model. Framework modeling

has been used for round trip engineering of framework-based applications before [64]. But

this work successfully used framework specific modeling for migration purposes. This is

possible only when the frameworks have similar framework concept abstractions and hence

a common FSML is possible.

Configuration file migration is discussed and it is largely a manual process, except for

the automatic creation of Tiles pages using a script. View migration is also a manual

process and can be carried out in an incremental fashion once the controller component

and the configuration files are migrated.

Future Work

An FSML was used for migration purposes in this work. This was possible only because

the two frameworks involved in the migration are sufficiently related and have similar

Conclusion 103

framework abstractions that are captured by the common FSML. In framework migration

scenarios, where the two frameworks do not provide similar framework abstractions, it is

not possible to define a common FSML. In such migration scenarios two different FSMLs

can be used for the source and the target framework. Model transformation can be used to

transform the source model, reverse engineered from the source application and expressed

in the source FSML, into the target model which will guide the forward engineering or the

code migration and is expressed in the target FSML.

View component migration can be automated using an FSML or other program trans-

formation tools. TXL is one such programming language specifically designed for source

analysis and program transformation [47]. It uses a rule-based approach to parse and

rewrite structured programs. It can be used to replace the Struts tags with equivalent JSF

user interface components. As the JSF user interface component framework is extendible,

different implementations of JSF provide different components. Therefore, the TXL rules

would be specific to the JSF implementation under consideration. Stratego [37] is another

such tool that can assist in automated migration of the view component.

In this work, we did not capture the validation methods in the Form Beans as a frame-

work abstraction in the defined FSML. These validations were moved to the action listeners

in the JSF Managed Beans. The FSML can be extended to capture this framework ab-

straction as well.

Appendix A

Glossary of Terms

HTTP - HyperText Transfer Protocol

XML - eXtensible Markup Language

HTML - HyperText Markup Language

WML - Wireless Markup Language

JSP - JavaServer Pages

JSF - JavaServer Faces

J2EE - Java 2 Enterprise Edition

Java EE - Java Enterprise Edition

J2SE - Java 2 Second Edition

JVM - Java Virtual Machine

JRE - Java Runtime Environment

J2ME - Java 2 Micro Edition

EIS - Enterprise Information System

EJB - Enterprise Java Bean

JTA - Java Transaction API

IDE - Integrated Development Environment

104

Glossary of Terms 105

RAD - Rapid Application Development

AJAX - Asynchronous JavaScript and XML

DHTML - Dynamic HyperText Transfer Protocol

ASP - Active Server Pages

API - Application Programming Interface

POJO - Plain Old Java Objects

JCP - Java Community Process

JSR - Java Specification Request

OOP - Object Oriented Programming

MVC - Model View Controller

DTD - Document Type Definition

JSTL - Java Standard Tag Library

SFIL - Struts Faces Integration Library

FSML - Framework Specific Modeling Language

Bibliography

[1] Apache Axis - Apache Software Foundation.

http://ws.apache.org/axis/.

[2] Applets - Sun Microsystems, Inc.

http://java.sun.com/applets.

[3] ASP.Net - The Official Microsoft ASP.Net 2.0 Site.

[4] Borland Software Corporation.

http://www.borland.com.

[5] Eclipse - An open development platform.

http://www.eclipse.org.

[6] Eclipse Modeling Framework - Eclipse Tools.

http://www.eclipse.org/emf/.

[7] Eclipse Web Tools Platform.

[8] Enterprise JavaBeans Technology, Sun Microsystems Inc.

http://java.sun.com/products/ejb.

106

http://ws.apache.org/axis/
http://java.sun.com/applets
http://www.borland.com
http://www.eclipse.org
http://www.eclipse.org/emf/
http://java.sun.com/products/ejb

Glossary of Terms 107

[9] Hibernate Object Relation Mapping.

http://www.hibernate.org/.

[10] IBM Corporation.

http://www.ibm.com.

[11] IntelliJ IDEA.

[12] Inversion of Control and The Dependency Injection pattern.

http://www.martinfowler.com/articles/injection.html.

[13] The J2EETM1.4 Tutorial.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.

[14] Java 2 Platform, Enterprise Edition - 1.4.

http://java.sun.com/j2ee/1.4/index.jsp.

[15] Java Platform, Enterprise Edition - 5.0.

http://java.sun.com/javaee.

[16] Java Platform Micro Edition.

http://java.sun.com/javame/index.jsp.

[17] Java Servlet Technology.

http://java.sun.com/products/servlet/.

[18] Java Standard Edition Overview - Sun Microsystems Inc.

http://java.sun.com/javase.

[19] Java Studio Creator.

http://www.hibernate.org/
http://www.ibm.com
http://www.martinfowler.com/articles/injection.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://java.sun.com/j2ee/1.4/index.jsp
http://java.sun.com/javaee
http://java.sun.com/javame/index.jsp
http://java.sun.com/products/servlet/
http://java.sun.com/javase

108 Struts2JSF: Framework Migration in J2EE using FSML

[20] Java Transactions API, Sun Microsystems Inc.

http://java.sun.com/products/jta.

[21] JavaBeans - Sun Microsystems, Inc.

http://java.sun.com/products/javabeans.

[22] JavaServer Faces - Java Community Process (Java Specification Request).

http://jcp.org/en/jsr/detail?id=127.

[23] JavaServer Pages 2.0 Expression Language.

[24] JavaServer Pages Standard Tag Library.

[25] JavaServer Pages Technology.

http://java.sun.com/products/jsp/.

[26] JVM - Java Virtual Machine.

http://www.java.com/getjava/.

[27] MacApp: User Interface Framework for Mac OS X.

http://developer.apple.com/tools/macapp/.

[28] Microsoft .Net Platform.

http://www.microsoft.com/net/default.mspx.

[29] Model-View-Controller, Java Blueprints - J2EE Patterns.

http://java.sun.com/blueprints/patterns/MVC-detailed.html.

[30] MyEclipse.

[31] MyFaces - The Apache Software Foundation.

http://myfaces.apache.org.

http://java.sun.com/products/jta
http://java.sun.com/products/javabeans
http://jcp.org/en/jsr/detail?id=127
http://java.sun.com/products/jsp/
http://www.java.com/getjava/
http://developer.apple.com/tools/macapp/
http://www.microsoft.com/net/default.mspx
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://myfaces.apache.org

Glossary of Terms 109

[32] NetBeans IDE.

[33] Oracle ADF Faces - Oracle Corporation.

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/-

exchange/jsf/index.html.

[34] Oracle Corporation.

http://www.oracle.com.

[35] Oracle JDeveloper.

[36] Spring Framework.

http://www.springframework.org/.

[37] Stratego Program Transformation Language.

http://www.program-transformation.org/Stratego/WebHome.

[38] Struts-Faces Integration Library, Apache Software Foundation.

http://struts.apache.org/1.x/struts-faces/.

[39] Struts Project Homepage - The Apache Software Foundation.

http://struts.apache.org.

[40] Strutsbox Eclipse Plugin for Struts Development.

http://www.box.de/.

[41] Sun Microsystems, Inc.: JavaServer Faces.

http://jcp.org/en/jsr/detail?id=127.

[42] Taxwide Inc.

http://www.taxwide.com.

http://www.oracle.com
http://www.springframework.org/
http://www.program-transformation.org/Stratego/WebHome
http://struts.apache.org/1.x/struts-faces/
http://struts.apache.org
http://www. box.de/
http://jcp.org/en/jsr/detail?id=127
http://www.taxwide.com

110 Struts2JSF: Framework Migration in J2EE using FSML

[43] The Apache Software Foundation.

http://www.apache.org.

[44] The Java Community Process Program.

http://jcp.org/en/home/index.

[45] The JavaServer Faces Technology - Sun Microsystems, Inc.

http://java.sun.com/javaee/javaserverfaces/.

[46] Tiles Library Documentation.

http://www2.lifl.fr/∼dumoulin/tiles/.

[47] The TXL Programming Language (Turing eXtender Language).

http://www.txl.ca/nabouttxl.html.

[48] WebGalileo Faces - Java Web Components.

http://www.javawebcomponents.com/index.html.

[49] WebWork - Web Application Framework.

http://www.opensymphony.com/webwork/.

[50] WebWork - Web Application Framework.

http://tapestry.apache.org/.

[51] World Wide Web Consortium.

[52] IEEE Standard for Software Maintenanece. IEEE Std 1219-1998, October 1998.

[53] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns. Prentise Hall PTR,

2003.

http://www.apache.org
http://jcp.org/en/home/index
http://java.sun.com/javaee/javaserverfaces/
http://www2.lifl.fr/~dumoulin/tiles/
http://www.txl.ca/nabouttxl.html
http://www.javawebcomponents.com/index.html
http://www.opensymphony.com/webwork/
http://tapestry.apache.org/

Glossary of Terms 111

[54] Jun Chen and Steve MacDonald. Roadmapassembler: a new pattern-based j2ee de-

velopment tool. In CASCON, pages 55–69, 2005.

[55] Jack S. Chi. Virtual frameworks for source migration. Master’s thesis, School of

Computer Science, University of Waterloo, 2004.

[56] Mohamed Fayad and Douglas S. Schmidt. Object-Oriented Application Frameworks.

In Communications of the ACM. Special Issue on Object-Oriented Application Frame-

works, volume 40. ACM, 1997.

[57] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[58] Raja Harinath, Jaideep Srivastava, Jim Richardson, and Mark Foresti. Experiences

with an Object Oriented Framework for Distributed Control Applications. In ACM

Computing Surveys, volume 32. ACM, March 2000.

[59] Richard Hightower. JSF for Non-believers: JSF Component Development.

http://www-128.ibm.com/developerworks/java/library/j-jsf4.

[60] Ralph E. Johnson and Brian Foote. Designing reusable classes. In Journal of Object-

Oriented Programming 1(2), pages 22–35, June-July 1988.

[61] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Muller, and J. Mylopoulos.

Code migration through transformations: An experience report. In Proceedings of

CASCON, pages 1–13, Toronto, ON, 1998.

[62] Yves Lafon. Web Services - World Wide Web Consortium.

http://www.w3.org/2002/ws, 2006.

http://www-128.ibm.com/developerworks/java/library/j-jsf4
http://www.w3.org/2002/ws

112 Struts2JSF: Framework Migration in J2EE using FSML

[63] B. Lientz and E. Swanson. Software Maintenance Management. Addison-Wesley,

1980.

[64] K. Czarnecki M. Antkiewicz. Framework-Specific Modeling Languages with Round-

Trip Engineering. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors,

MoDELS - Model Driven Engineering Languages and Systems, pages 692–706, Genoa,

Italy, October 2006.

[65] Andrew J. Malton. The software migration barbell. In First ASERC Workshop on

Software Architecture, August 2001.

[66] H.A. Muller and J. Martin. C to Java Migration Experiences. In Proceeding of the

Sixth European Conference on Software Maintenance and Reengineering, pages 143–

153, March 2002.

[67] David Lorge Parnas. Software Aging. In Proceedings of the 16th International Con-

ference on Software Engineering ICSE ’94, pages 279–287, May 1994.

[68] Savitha Srinivasan and John Vergo. Object Oriented Reuse: Experience in Developing

a Framework for Speech Recognition Applications. In Proceedings of the 20th Inter-

national Conference on Software Engineering, pages 322–330, Kyoto, Japan, 1998.

[69] A. A. Terekhov and C. Verhoef. The Realities of Language Conversions. In IEEE

Software, volume 17, pages 111–124, November 2000.

[70] Andre Weinand, Erich Gamma, and Rudolf Marty. ET++-an Object Oriented Ap-

plication Framework in C++. In In Proceedings of the Conference on Object-oriented

Programming Systems, Languages and Applications, pages 46–57, San Diego, CA,

USA, 1988.

	Introduction
	Software Migration
	Object-Oriented Frameworks
	Framework Migration
	Thesis Organization

	Technical Background
	Java Web Development
	Frameworks To the Rescue
	Model-View-Controller
	Struts Overview
	JavaServer Faces Overview
	Why migrate to Struts to JSF?
	Chapter Summary

	Migration Strategies
	Complete Migration
	Partial Migration
	FSMLs for Framework Migration
	Chapter Summary

	The Prototype FSML
	Struts2JSF FSML
	Analyze Code
	Migrate Code
	Prototype Implementation
	Chapter Summary

	View Migration
	Struts2JSF Tag Library Map
	Componentization
	Tiles and JSF
	Chapter Summary

	Migration Case Study - ToastAdmin
	Controller Migration
	View Migration
	Lessons Learned
	Chapter Summary

	Conclusion
	Glossary of Terms

