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Abstract 

It is generally accepted that the fatigue crack growth depends on the stress intensity 

factor range (ΔK) and the maximum stress intensity factor (Kmax). Numerous driving forces 

were introduced to analyze fatigue crack growth for a wide range of stress ratios.  However, 

it appears that the effect of the crack tip stresses and strains need to be included into the 

fatigue crack growth analysis as well. Such an approach can be successful as long as the 

stress intensity factors are correlated with the actual elastic-plastic crack tip stress-strain 

field. Unfortunately, the correlation between the stress intensity factors and the crack tip 

stress-strain field is often altered by residual stresses induced by reversed plastic 

deformations. 

A two-parameter model (ΔKtot, Kmax,tot) based on the elastic-plastic crack tip stress-

strain history has been proposed. The applied stress intensity factors (ΔKappl, Kmax,appl) were 

modified and converted into the total stress intensity factors (ΔKtot, Kmax,tot) in order to 

account for the effect of local crack tip stresses and strains on the fatigue crack growth. The 

fatigue crack growth was regarded as a process of successive crack re-initiations in the crack 

tip region and predicted by simulating the stress-strain response in the material volume 

adjacent to the crack tip and estimating the accumulated fatigue damage. The model was 

developed to predict the mean stress effect for steady-state fatigue crack growth and to 

determine the fatigue crack growth under simple variable amplitude loading histories. 

Moreover, the influence of the applied compressive stress on fatigue crack growth can be 

explained with the proposed two-parameter model. A two-parameter driving force in the 

form of: p (1 p)
max,tot totΔκ K ΔK −=  was derived based on the local stresses and strains at the crack 
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tip using the Smith-Watson-Topper (SWT) fatigue damage parameter: D = σmaxΔε/2. The 

parameter p is a function of material cyclic stress-strain properties and varies from 0 to 0.5 

depending on the fatigue crack growth rate. The effects of the internal (residual) stress 

induced by the reversed cyclic plasticity manifested themselves in the change of the resultant 

(total) stress intensity factors driving the crack. 

Experimental fatigue crack growth data sets for two aluminum alloys (7075-T6 and 

2024-T351), two steel alloys (4340 and 4140), and one titanium alloy (Ti-6Al-4V) were used 

for the verification of the model under constant amplitude loading. This model was also 

capable of predicting variable-amplitude fatigue crack growth. Experimental fatigue crack 

growth data sets after single overloads for the aluminum alloy 7075-T6, steel alloy 4140, and 

titanium alloy Ti-6Al-4V were also used for the verification of the model. The results 

indicate that the driving force Δκ can successfully predict the stress ratio R effect and also 

the load-interaction effect on fatigue crack growth. 
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Chapter 1 
Introduction and Research Objectives  

Throughout their service life, machines, equipment, vehicles, buildings and aircraft 

are subjected to loads, the majority of which fluctuates with time. This kind of loading may 

cause small cracks to grow during the life of a component and lead to fatigue failure. The 

cracks either pre-exist at the time of manufacturing or are created by in-service conditions. 

Therefore, the growth of the crack should be predictable to provide guidelines for inspection 

programs, which ensure that cracks will never propagate and fail prior to detection. 

Therefore, fatigue crack growth prediction models must be developed.  

During the last five decades, a lot of research effort has focused on fatigue crack 

growth and prediction models. The most successful and popular model has been Paris’ law 

[1], based on the applied stress intensity range, ΔKappl, as the only governing parameter for 

fatigue crack growth. The Paris equation initiated widespread research aiming at possible 

improvements to its original form and at the analytical modeling of fatigue crack growth, in 

general. One of the fundamental problems concerning the Paris expression and all other 

fatigue damage accumulation models is the quantification of the mean stress effect. In other 

words, the apparent effectiveness of the applied stress intensity range, ΔKappl, is influenced 

by the load ratio R (min. load/max. load). 

In 1971, Elber [2] modified the applied stress intensity factor range, ΔKappl, 

introducing a closure mechanism in order to quantify the effect of the load ratio, R, on 

fatigue crack growth. The closure model has been also used to account for interaction effects 

under variable amplitude loading [3,4,5,6,7]. The contemporary belief is that the crack tip 

closure concept can explain both mean stress and variable amplitude effects on fatigue crack 
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growth. However, mounting evidence suggests that this may not be true; the model is 

difficult to use, and it requires experimental calibrations [8,9,10,11]. Therefore, fatigue 

research has attempted [11,12,13,14,15] to use alternative methods, for example by assuming 

a new two-parameter driving force combining the applied maximum stress intensity factor, 

Kmax,appl, and the applied stress intensity range, ΔKappl, in order to analyze fatigue crack 

growth behavior. The two-parameter driving forces are capable of explaining the R-ratio 

effect on fatigue crack growth behavior. However, the available two-parameter driving force 

models [11, 12, 14, 15] tend to be suitable only for high stress ratios. In general, they can not 

explain the influence of the compressive part of the load history on fatigue crack growth; also 

they can not predict fatigue crack growth under variable amplitude loading. 

The main goal of the current research is to develop a two-parameter model 

accounting for mean stress and load interaction effects for fatigue crack growth analysis. 

More specifically, the following research objectives were undertaken:  

• To investigate and understand mechanisms controlling fatigue crack growth in terms 

of local stresses and strains near the crack tip, 

• To predict the effect of mean and minimum compressive stresses on fatigue crack 

growth at different stress ratios for a variety of engineering materials, 

• To investigate load-interaction or load-history effects on fatigue crack growth 

response, and  

• To develop a fatigue crack growth prediction methodology appropriately accounting 

for mean stress and load interaction effects. 

To accomplish these objectives, a two-parameter fatigue crack propagation model 

based on the elastic-plastic stress-strain history at the crack tip has been proposed. In the 
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proposed model the applied stress intensity factors, Kmax,appl and ΔKappl, are modified to 

account for the effect of residual stresses induced by reversed plasticity at the crack tip. 

Therefore, an original mathematical formulation of the model has been developed to 

represent the residual stress effect in terms of the residual stress intensity factor, Kr, which 

can be used to modify the applied stress intensity factors. A fatigue crack growth equation in 

terms of the two-parameter driving force, p 0.5
max,tot totK ΔK , was derived based on local stresses 

and strains at the crack tip and the Smith-Watson-Topper (SWT) [16] fatigue damage 

parameter, D = σmax·Δε/2, for both plane stress and plane strain conditions. The parameter 

“p” is a function of cyclic stress-strain material properties and varies from 0 to 0.5 depending 

on the fatigue crack growth rate. Then, three two-parameter driving forces, p 1 p
max,tot totK ΔK − , 

0.5 0.5
max,tot totK ΔK , and p 0.5

max,tot totK ΔK , have been introduced to predict the mean stress effect on 

fatigue crack growth in different growth rate regimes. It was found that the driving force in 

the form of p 0.5
max,tot totK ΔK  could be used for fatigue crack growth predictions under a wide 

range of load ratios, and fatigue crack growth rates spanning from the near threshold to the 

high growth rate regime.  

The dissertation is structured to first review pertinent literature of linear elastic 

fracture mechanics (LEFM) principles. In the second part of the literature review, a brief 

review of fatigue crack growth predictive methodologies for fatigue crack growth under 

constant and variable amplitude loading is included. The background and literature review is 

followed by fatigue crack propagation modeling including the formulation of a model: 

analysis of strains and stresses at the crack tip, residual stress intensity factor calculation, Kr, 

and consequently the calculation of the total stress intensity factors, Kmax,tot and ΔKtot. This 

section also contains the analytical derivation of the two-parameter driving force, 
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p (1 p)
max,tot totK ΔK − , for predominantly elastic, plastic and elastic-plastic behavior of the material 

at the crack tip. The fatigue crack propagation modeling section ends by describing different 

methods for the determination of the elementary material block size, ρ*. The verification 

section presents the experimental fatigue crack growth data at different R-ratios for a variety 

of materials under constant amplitude loading. It ties together the experimental and analytical 

results as necessary to demonstrate and illustrate the mean stress effect and the capability of 

the proposed model for the steady-state fatigue crack growth prediction. The validation 

section also includes the experimental data and analytical results demonstrating load-

interaction effects on fatigue crack growth. In both cases, the analytical results are obtained 

by the predictive methodologies theorized. The dissertation finishes with a brief summary of 

the conclusions and recommendations for future research activities.  
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Chapter 2  
Literature Review  

2.1 Linear Elastic Fracture Mechanics  

Linear elastic fracture mechanics (LEFM) principles are used to correlate the stress 

magnitude and the stress distribution near the crack tip to the remote stresses/loads, crack 

shape, crack size, and material properties of a component. The crack tip stress field can be 

determined using the stress intensity factor for mode I loading, KI.  

2.1.1 Ideal Sharp Crack  

In the mid-1950s, Irwin [17] showed that the local elastic stresses near the crack tip in 

an isotropic linear elastic material are a  function of  “r” and “θ” coordinates, as shown in 

Figure 2-1 [18]: 

 I
x x

K θ θ 3θσ = cos [1- sin sin ]+ψ (r,θ)                             (a)
2 2 22πr

 

 I
y y

K θ θ 3θσ = cos [1+ sin sin ]+ψ (r,θ)                            (b)
2 2 22πr

 

 I
xy xy

K θ θ 3θτ = cos sin cos +ψ (r,θ)                                 (c)
2 2 22πr

 (2.1) 

 zσ = 0                            plane stress                                         (d)  

 z x yσ = ν(σ +σ )             plane strain                                        (e)  

 yz zxτ = τ = 0                                                                              (f)  
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The terms ψx, ψy and ψxy are higher-order terms from the series expansion of the complete 

stress field solution, and they are insignificant in the close vicinity of the crack tip. The stress 

components in the potential plane of the crack (θ = 0) can be expressed as follows:  

 I
x y

Kσ = σ =
2πx

 (2.2) 

All non-zero stress components in Eq set (2.1) tend to infinity as the distance from the crack 

tip, r, tends to zero (crack tip). Thus, a mathematical singularity exists at the crack tip and no 

specific value of the stress can be given at the crack tip.    

2.1.2 Blunted Crack 

The distribution of stress components ahead of a blunt crack tip with the tip radius ρ*, 

as shown in Figure 2-2, can be obtained from the Creager and Paris [19] solution: 

 I I
x

K Kρ* 3θ θ θ 3θσ = - cos + cos 1-sin sin +        (a)
2r 2 2 2 22πr 2πr

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 I I
y

K Kρ* 3θ θ θ 3θσ = cos + cos 1+ sin sin +         (b)
2r 2 2 2 22πr 2πr

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 I I
xy

K Kρ* 3θ θ θ 3θτ = - sin + sin cos cos +               (c)
2r 2 2 2 22πr 2πr

 (2.3) 

 zσ = 0                           Plane stress                                         (d)  

 z x y zσ = ν(σ +σ )             Plane strain : ε = 0                            (e)  

The elastic stresses near the crack tip in the potential crack plane (θ = 0) are 

 I
x

K ρ*σ = 1- +           (a)
2x2πx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 I
y

K ρ*σ = 1+ +          (b)
2x2πx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.4) 
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 xyτ = 0                                     (c)  

2.1.3 Crack Tip Plasticity and Plastic Zone Corrections  

It is obvious that from Eqs. (2.1), in the case of a sharp crack, stresses tend to infinity 

when r, the distance from the crack tip, tends toward zero. Therefore, most materials deform 

plastically in the crack tip region. The plastically deformed region is called the crack tip 

plastic zone. To use LEFM principles, the plastic zone size must not be excessively large 

compared with the overall dimensions of the crack and the cracked body.  

Irwin [20] was the first one to develop a model for the modification of the linear-

elastic crack tip solution in order to account for the elastic-plastic behavior of material near 

the crack tip. He replaced the actual crack length by a longer equivalent crack length, as 

shown in Figure 2-3. For the first approximation, Irwin assumed that the stress over the 

plastic zone was equal to the yield stress and calculated the plastic zone size under plane 

stress condition as: 

 I
p

ys

K1r =
2π σ

2
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.5) 

When yielding occurs, stresses must redistribute themselves in order to satisfy equilibrium. 

Consequently, the plastic zone size will increase. A simple force balance, F1 = F2, leads to a 

more accurate estimation of the plastic zone size (corrected plastic zone), rpc, as shown in 

Figure 2-3: 

 
2

I
1 2 p

ys

K1F = F Δr =
2π σ

⎛ ⎞
⇒ ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.6) 
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2

I
pc p p p

ys

K1r = r +Δr = 2r =
π σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.7) 

The equations above are valid only for plane stress and an ideal elastic-plastic material.  

Dugdale [21] and Barenblatt [22] introduced another model, called the strip yield 

model, in order to determine the plastic zone size near the crack tip. The Dugdale crack was 

assumed to be in a thin elastic plate of infinite length and width, for a non-hardening material 

in plane stress. The plastic zone was modeled by assuming a crack of length p2a + 2r , where 

rp is the length of the plastic zone, with the yield stress, σys, tending to close the crack, as 

shown in Figure 2-4 [23]. The size of the plastic zone, rp, was determined based on the 

condition that the stress singularity at the crack tip of the Dugdale crack must disappear. In 

other words, the stress intensity factor due to the nominal stress, S, must be balanced out by 

the stress intensity factor due to the compressive yield stress, ysσ , acting in the plastic zone. 

The stress intensity factor caused by the nominal stress is given as 

 S pK = S π(a + r )  (2.8) 

and the stress intensity factor due to the compressive yield stress is given as [24] 

 
ys

p -1
σ ys

p

a + r aK = -2σ cos
π a + r

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.9) 

From the condition 
ysS σK + K = 0  it follows that 

 
p ys

a πS= cos
a + r 2σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.10) 

By expanding the right side of equation (2.10) using a Taylor series and neglecting higher-

order terms, one can determine the plastic zone size, rp: 
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2

2 2
I

p 2
ys ys

Kπ S a πr = =
8σ 8 σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.11) 

A comparison between equation (2.7) and equation (2.11) shows that the Irwin and 

Dugdale’s models predict similar plastic zone sizes [25].  

The plastic zone correction proposed by Irwin or Dugdale can be used only for a 

crack. In 1985, Glinka [26] determined the plastic zone size and plastic zone adjustment in a 

notch body for both tension and bending loads. The first approximation of the plastic zone 

size, rp, ahead of a notch tip was calculated from the Hencky-Mises-Huber criterion on the 

basis of the elastic stress distribution near a blunt crack tip. For plane stress, the plastic 

yielding criterion takes the following form:   

 2 2
eq x x y yσ = σ -σ σ +σ  (2.12) 

Substituting equations (2.4) into equation (2.12) results in 

 
2

I
eq

K 3 ρ*σ = 1+
4 r2πr

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (2.13) 

The first approximation to the plastic zone size can be obtained from equation (2.13) if the 

value of the equivalent stress at pr = r  is assumed equal to the yield stress, eq ysσ = σ . 

 
2

I
ys

pp

K 3 ρ*σ = 1+
4 r2πr

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.14) 

Glinka also adjusted the plastic zone size by adding the increment Δrp to the first estimation, 

rp. The adjustment results from the stress redistribution caused by plastic yielding. Because 

of plastic yielding, the real stresses in the plastic zone are lower than those derived on the 

basis of linear-elastic analysis. To satisfy equilibrium conditions, stress redistribution occurs 
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and results in an increase in the plastic zone, as shown in Figure 2-5. Such an increase in the 

plastic zone can be interpreted, analogously with Irwin [27], as an increase in the 

hypothetical elastic stresses. The forces F1 and F2 represented by area F1 and F2 in Figure 2-5 

must be equal, and the plastic zone increment, pΔr , can be calculated as: 

 
pr

1 2 y y p p y p p
ρ*/2

ρ*F = F σ dr -[σ (r )×(r - )] = σ (r )×Δr
2

⇒ ∫  (2.15) 

I
y p

pp

K ρ*where                                      σ (r ) = 1+
2r2πr

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.16) 

Substituting Eqs. (2.4)-b and (2.16) into Eq. (2.15) and solving for pΔr results in 

 

1/21/2
p

p p
p 1/2 3/2

p p

r ρ*2 -
ρ* r r 1Δr = ρ* -ρ* -

ρ* 2ρ* 1 ρ*+
r 2 r

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎣ ⎦
⎜ ⎟⎡ ⎤ ⎝ ⎠⎛ ⎞ ⎛ ⎞

⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.17) 

Therefore, the elastic stress increases near the notch tip due to the presence of the plastic 

zone. The corrected (increased) stress can be determined, at a given point ahead of the crack 

tip, from the following equation: 

 p
σ(corrected)C =
σ(elastic)

 (2.18) 

The correction factor, pC , can be calculated from expressions (2.19) or (2.20), as discussed in 

Appendix A. 

 

2

p

pp
p 2

p

Δr3 ρ*1+ × 1+
4 r rΔr

C = 1+ ×
r 3 ρ*1+

4 r

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⇒

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.19) 
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or 

 

2

p

p
p

p 2
p

Δr3 ρ*1+ × 1+ρ*4 rx +Δr 2C = 1+ ×
r

3 ρ*1+ ρ*4 x +
2

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎣ ⎦⇒
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.20) 

The correction factor, pC , depends on the distance “x” from the crack tip, and its decay can 

be finally written in the form of expression (2.21): 

α
α

p p p p*
p p p

p p
p p

r +Δr r +Δr 3C = 1+ (C -1) = 1+ (C -1)      where     α =ρ* x + r +Δr 2r - + r +Δr
2

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

         (2.21)  

The correction factor, *
pC , was verified by Glinka [28] using elasto-plastic FE data. 

2.2 Elasto-Plastic Stress-Strain Material Response at Notches and Cracks 

Elastic stress-strain analysis can not be directly used for the calculation of stresses 

and strains in the vicinity of the crack tip due to plasticity. Unfortunately, no closed-form 

analytical solutions exist for elastic-plastic stresses and strains at notches and cracks. 

Therefore, several approximate methods are used [29]. The most frequently used is Neuber’s 

rule [30], which is generalized by Barkey et al. [31] for multi-axial loading and by Seeger 

and Heuler [32].  

Neuber’s rule states that the theoretical stress concentration factor, Kt, is the 

geometric mean of the local stress concentration factor, Kσ, and the local strain concentration 
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factor, Kε. The theoretical stress concentration factor, Kt, is the relation between the nominal 

elastic stress, S, the local elasto-plastic stress, a
22σ , and strain, a

22ε , near the notch tip.  

 
a a

2 22 22
t σ ε

σ εK = K K
S e

=  (2.22)  

For nominally elastic behavior, the remote (nominal) strain, e, can be related to the remote 

stress, S, using Hooke’s law. Neuber’s rule, Eq. (2.22), then takes the following form: 

 ( )2
t e e a a

22 22 22 22

K S
= σ ε = σ ε

E
 (2.23) 

Superscript “e” represents the elastic strain and stress while superscript “a” shows the local 

(actual) stress and strain at the notch tip. Neuber’s rule can also be represented in terms of the 

equality of the total strain energy (the strain energy and the complement of the strain energy 

density) at the notch tip, as shown in Figure 2-6(a) by the rectangles A and B. 

It has been observed [30, 33] that Eq. (2.23) overestimates the local strain at the notch 

tip. Therefore, in 1985, Glinka [34] introduced another equation based on the equivalence of 

the strain energy density (ESED). The ESED method can be interpreted in terms of the 

equality between the strain energy density at the notch tip of a linear elastic body (superscript 

“e” in Eq. (2.24)) and that of a geometrically identical, elastic-plastic body (superscript “a” 

Eq. (2.24)), both subjected to the same loading. 

 
e a
22 22ε ε

e e a a
22 22 22 22

0 0

σ dε = σ dε∫ ∫  (2.24) 

Relationship (2.24) can be illustrated based on the equality of the area under the linear-elastic 

curve and the area under the actual elastic-plastic material stress-strain response, as shown in 

Figure 2-6(b). 
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Both methods consist of two parts, namely the constitutive equation and the relationship 

linking the fictitious linear elastic stress-strain state e e
ij ij(σ ,ε )  at the notch tip with the actual 

stresses and strains a a
ij ij(σ ,ε ) , as shown in Figure 2-7. By solving appropriate simultaneous 

equations, the constitutive equation and either the Neuber or ESED equation, the local strains 

and stresses can be estimated at the notch tip.  

2.3 Fatigue Crack Growth Predictive Methodologies  

A goal in fatigue design is to develop reliable models that predict fatigue crack 

growth. The models allow the calculation of fatigue life of a component in terms of number 

of cycles, N, for growing a crack from an initial size, ai, to a final size, af. 

 
f

i

a

f i
a

daN = N - N =
da
dN

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫  (2.25) 

In Eq. (2.25), Ni is the number of cycles required to create the initial crack and Nf is the 

number of cycles required to grow the crack to af. The term da
dN

 represents the fatigue crack 

growth increments, depending on loading conditions, crack geometry, and specimen 

geometry. 

  With the advent of fracture mechanics in the 1960s, Paris et al. [35] were the first to 

recognize fracture mechanics as a powerful tool for characterizing the behavior of fatigue 

cracks. They postulated that the rate of crack growth per cycle, da
dN

, is a function of the 

stress intensity factor range, ΔK. Later, different expressions were introduced to show the 
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relationship between da
dN

 andΔK , and several models were developed to predict fatigue life 

under constant and variable amplitude loadings. 

2.3.1 Fatigue Crack Growth Prediction under Constant Amplitude Loading 

Constant amplitude crack growth data normally can be presented as plots of the 

fatigue crack growth rate, da
dN

, versus the stress intensity range,ΔK . A schematic plot of log 

(da/dN) versus log (ΔK), a sigmoidal curve, is shown in Figure 2-8. The stress intensity 

range, ΔK , is influenced by the applied stress range, Δσ, the crack length, a, and the 

geometry factor, Y, which depends upon the geometry and the relative crack length, α = a/W. 

 max min max minΔK = K - K = YΔσ πa = Y(σ -σ ) πa  (2.26) 

Several regions can be identified in such diagrams. In region I, there is a threshold 

stress intensity range, thΔK , below which the crack does not grow. The crack growth rate in 

the near threshold region is sensitive to the microstructure and mean stress. 

Most parts of the fatigue crack growth are associated with the intermediate range II. 

One of the most successful models for FCG prediction under constant amplitude loading in 

region II is the Paris law relationship [1]. 

 mda = C(ΔK)
dN

 (2.27) 

The material constants “C” and “m” can be found in the literature and data books for a 

number of metals [36, 37, 38]. They depend on mean stress, test temperature, load 

frequency, and the environment. ASTM E647 provides guidelines and procedures for the 

measurement of these parameters.  

Fatigue life, number of cycles to failure, may be calculated by integrating Eq. (2.27). 
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( ) ( )

f f

i i

a a

m m
a a

da daN =
C ΔK C YΔσ πa

=∫ ∫  (2.28) 

In the case of where “Y” is constant, a small edge crack in a semi-infinite plate or a through 

crack in an infinite plate, a closed form solution exist for the integration of fatigue life under 

constant amplitude loading.  

 
m m/2 (m-2)/2 (m-2)/2

i f

f
2 2

i

2 1 1N = -      for      m 2
(m - 2)C(ΔσY) π a a

a1N = ln                                         for      m = 2
CΔσ πY a

⎡ ⎤
≠⎢ ⎥

⎣ ⎦  (2.29) 

In the case of a variable geometry factor, numerical integration becomes necessary. 

To perform the integration, the first step is to assume the crack increment, Δaj. It is necessary 

that the crack increment be sufficiently small for accurate representation of the fatigue life 

curve, “a” versus “N”. For any material, geometry, and load, ΔKj can be calculated for each 

crack increment from the following equation. 

 j j jΔK = YΔσ πa                                 (a)  (2.30) 

where j j-1 ja = a +Δa                                       (b)  

Then, the crack growth rate, da/dN, is estimated by using any mathematical form of the ΔK 

and da/dN equations. Finally, the number of cycles, ΔNj, for each constant crack increment, 

Δaj, may be determined by the following equations: 

  

( )

( )
( )

m

j
j

mj j
j j m

j j

j j-1 j

da = C ΔK                                         (a)
dN

Δa Δa
= C ΔK ΔN =             (b)

ΔN C ΔK

N = N +ΔN                                               (c)

⎛ ⎞
⎜ ⎟
⎝ ⎠

⇒  (2.31) 
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The calculated aj and Nj after each increment can be used to create the “a” versus “N” curve, 

which in turn can be utilized to predict fatigue life.  

In region III, the fatigue crack growth rate increases rapidly as the stress intensity 

range, ΔK, increases. The fraction of fatigue life corresponding to this region is negligible 

due to very fast crack growth rates, and therefore region III is generally less important in 

fatigue analysis. 

2.3.1.1 The R-ratio Effect on Fatigue Crack Growth 

For a wide range of materials, experimental FCG data shows that by increasing the R-

ratio, fatigue crack growth will increase for a given ΔK. A qualitative picture of the R-ratio 

effect is shown in Figure 2-9 [39]. Because the Paris equation cannot show the R-ratio effect 

on fatigue crack growth, two kinds of models have been developed to characterize the mean 

stress effect on FCG. 

2.3.1.1.1 Crack Closure Model 

In 1970, Elber [2] proposed the crack closure mechanism in order to explain the stress 

ratio effect on fatigue crack growth. He observed that a fatigue crack is closed during 

unloading, even though the load is still in tension; and, during the next loading, it is open 

only if the load is sufficiently high. Crack closure occurs as a result of crack-tip plasticity, 

and the plastically deformed material left in the wake of a propagating crack, as shown in 

Figure 2-10. From this observation, Elber also postulated that fatigue crack growth occurs 

only during that portion of the cyclic loading in which the crack is completely open. The load 

level at which the crack opens is called the crack opening load level, opP , and corresponds to 

the opening stress intensity factor, opK . The crack opening load, opP , is defined as the load 
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associated with a 2% deviation from linearity on the load-displacement curve. The methods 

for the calculation of the crack opening load are described in ASTM-E647. The portion of the 

load cycle that is below opK  does not contribute to fatigue crack growth, and the effective 

stress intensity factor range, effΔK , smaller than the applied stress intensity factor range 

should be used for fatigue crack growth prediction. 

 m
eff

da = C(ΔK )
dN

 (2.32) 

 
eff max,appl op appl op min,appl

eff max,appl min,appl appl op min,appl

ΔK = K - K < ΔK       if           K > K

ΔK = K - K = ΔK      if           K < K
 (2.33) 

Thus, the effective stress intensity factor range, effΔK , is used to explain the R-ratio effect on 

fatigue crack growth rates. However, at high stress ratios, due to the absence of the crack 

closure, the effective driving force, which is close to the applied value, can not show the R-

ratio effect on fatigue crack growth. Therefore, the empirical parameter U is used to modify 

the effective stress intensity factor range, effΔK , at high stress ratios. 

 eff applΔK UΔK=  (2.34) 

Elber proposed the following relationship for a range of R > 0. 

 U = 0.4R + 0.5  (2.35) 

Schijve [40] also proposed an alternative equation for the U parameter to show the 

mean stress effect on fatigue crack growth at a wide range of R-ratios varying from -1 to 0.54 

for 2024-T3 aluminum alloy: 

 2U = 0.55 + 0.33R + 0.12R  (2.36) 
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In general, the U parameter depends on R-ratio as well as the stress state, specimen 

geometry, the stress intensity factor range, and environment. 

The crack closure mechanism is referred to as “plasticity-induced” crack closure or 

the Elber mechanism. It is recognized that other mechanisms may be responsible for crack 

closure effects. Suresh and Ritchie [41] proposed five mechanisms for fatigue crack closure 

to explain closure effects, especially in the behavior of fatigue cracks in the near-threshold 

region: (1) plasticity, (2) roughness or asperity, (3) oxide, (4) phase transformation, and (5) 

viscous fluids. Due to the importance of the first three, the following discussion is limited to 

plasticity, roughness, and oxide mechanisms. 

Plasticity-induced crack closure results from the residual deformation left in the wake 

of a propagating crack. During one cycle of crack growth, the plastically deformed material, 

the cyclic plastic zone, builds in front of the crack tip. As the crack grows into the plastic 

zone, this plastically deformed material is left on the flanks of the propagating crack, leading 

to crack closure at positive stress levels [39]. During crack propagation, the increased stress 

intensity range and consequently enlarged cyclic plastic zone result in an envelope of 

plastically deformed material in the wake of the growing crack, as shown in Figure 2-10 and 

Figure 2-11(b). 

Oxide-induced closure depends on the stress ratio and environmental effects. During 

the propagation of a fatigue crack in a moist atmosphere, the freshly formed fracture surfaces 

oxidize. The oxide debris and other corrosion products can become wedged between the 

crack faces, as shown in Figure 2-11(c). At low R-ratios and in a moist atmosphere, oxide-

induced closure is significant in the near threshold regime where the crack opening is small. 

This phenomenon can be seen in the experiments done by Suresh et al. [42]. They found that 
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the addition of moisture to hydrogen or helium atmosphere led to crack growth retardation at 

low ΔK  levels and low R-ratios due to this oxide formation in a steel alloy. Moreover, they 

found that at high stress ratios (R = 0.75) there was no oxide-induced crack closure effect in 

either wet or dry environments in a martensitic 2 1
4

Cr-1Mo steel. Consequently, the ΔKth 

values were almost the same in moist air, dry helium, and dry hydrogen for high stress ratios. 

Asperity or roughness-induced crack closure results from micro-structural effects. On 

a global scale, fatigue cracks propagate in Mode I. However, on a microscopic scale, because 

of micro-structural heterogeneity, crack deflections can lead to local mixed modes. Crack 

deflections and the associated Mode II and/or Mode III plastic displacements cause crack 

surface offsets with peaks on the mating surfaces interfering with each other. This surface 

roughness induces crack closure at positive applied loads, as shown in Figure 2-11(d). 

Coarse-grained materials usually produce a surface with more roughness in fatigue compared 

to fine-grained materials, and consequently the closure effects are higher [43]. 

Despite a large amount of crack closure data generated during the last 30 years, there 

are still significant difficulties correlating crack closure measurement with crack growth 

behavior. Experimental results indicate that the crack-opening load, Pop, depends on the 

measurement location relative to the crack tip and the technique employed [8, 9]. Generally, 

measurements taken at points far away from the crack tip give lower opening loads compared 

to measurements taken close to the crack tip. In 1992, Ling and Schijve [44] proposed that 

heat treatment can change the crack-opening load, Pop. Furthermore, the crack-opening load, 

opP , depends on the crack length [45]. 

Garrett and Knott [46] showed that crack closure has little effect on FCG rates in 

plane strain conditions in the air and cannot explain the relation between the stress ratio and 
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fatigue crack growth. Moreover, crack closure cannot be used to explain some overload-

induced crack delays and arrests measured under plane strain at high R ratios, because the 

experimental measurements of the opening load for A542-2 steel after 100% overload 

(ΔKBL= 10 MPa√m, R = 0.05) show an increase of the ΔKeff [47]. The FE data proposed by 

Wei and James [48] showed that the crack-opening load depends on the stress state, plane 

stress or plane strain, at the crack tip. The data also demonstrated that larger crack closure 

opening loads are predicted for plane stress conditions. 

Recently, Donald and Paris [15, 49] observed that by using the crack closure model, 

fatigue crack growth curves cannot be correlated in the near threshold regime for aluminum 

alloys. Therefore, an estimation of the effective stress intensity range at the crack tip should 

take into account the additional cyclic crack tip strain below the opening load. They proposed 

a new partial crack closure model. Using the proposed model, they modified the opening 

stress intensity factor, Kop, and introduced new driving forces, 2/ πΔK  and 2/ π0ΔK , for fatigue 

crack growth prediction. 

 2 / π0 max op
2ΔK K K
π

= −  (2.37) 

 ( )2/ π max op min appl op min
2 2 2ΔK K K 1 K ΔK K K
π π π

⎛ ⎞= − − − = − −⎜ ⎟
⎝ ⎠

 (2.38) 

The ΔK2/π gives an overestimate of the effective SIF and the ΔK2/π0 gives an underestimate of 

the effective SIF. An improved correlation of fatigue crack growth rates results from the 

driving forces in five aluminum alloys at load ratios, R, from -1.0 to 0.7. Since most cycles of 

crack growth accumulate to threshold, this discovery was very important for improving life 

prediction. However, the model requires measurement and prediction of opening loads. 
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Kujawski [13, 14] also showed that the crack closure model can not predict fatigue 

crack growth behavior near the threshold for aluminum alloys. For many materials, for 

example, 7017-T6 aluminum alloy and Ti-24Al-11Nb titanium aluminide, it was found that 

the correction for closure is not sufficient to collapse the fatigue crack growth curves into a 

single curve at different R-ratios [50, 51]. In 1974, Shih and Wei [52] showed crack closure 

was likely to be only one of several factors that contributed to observed R effects. Their 

experimental results in Ti-6Al-4V titanium alloy showed that crack closure is observed only 

at stress ratios less than 0.3. However, FitzGernald and Wei [53] indicated that the R-ratio 

affects fatigue crack growth in Ti-6Al-4V titanium alloy for 0.05 < R < 0.9. They also 

showed [52] that under variable-amplitude loading (single tensile overload) at   ROL > 0.3 

crack closure is absent; however, fatigue crack growth is significantly retarded. Therefore, 

crack closure is not the only factor that needs to be considered to account for the stress ratio 

and variable amplitude loading effects. 

In 1994, Sadananda and Vasudevan [11] showed that the closure contribution from 

asperities resulting from oxides or corrosion products, or surface roughness is only 20% of 

the estimate based on a change in the slope of load-displacement curves near the threshold. 

Moreover, it was shown that plasticity-induced closure is insignificant at the near threshold. 

Therefore, the closure mechanism can not describe the stress ratio effect on fatigue crack 

growth for the threshold regime. They postulated that there are two load parameters, *
thΔK and 

*
max,thK , that must be exceeded simultaneously if fatigue crack growth is to occur. They also 

proposed a new model based on two parameters, ΔK and Kmax, to describe variations in the 

fatigue crack threshold with the load ratio.  
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Clerivet and Bathias [54] proposed that the crack closure model can not fully explain 

the R-ratio and environment effects on fatigue crack growth for 7175 T651 aluminum alloy. 

They showed that the effective stress intensities determined in laboratory air and in a salt 

water environment are the same. Therefore, the closure model can not explain the 

environmental effect on FCG. In other words, the experimental results can not show the 

effect of oxide- or corrosion-induced closure on FCG. They also concluded that the measured 

closure loads have no relevance to fatigue processes. 

In a vacuum test, where closure is absent, the FCG should be faster than the air test, 

but experimental results contradict such a belief [55]. Therefore, the possibility of other 

factors on FCG behavior must be addressed. 

A comparison of predictions by the closure model and the observed crack growth 

rates for BS4360 50B structural steel, Figure 2-12, following a single tensile overload show 

that the predicted growth rates are less than the experimental measurements from the 

minimum point to the stabilized FCG rate for both plane strain and plane stress conditions. 

The discrepancy between predicted and measured growth rates is due to discontinuous 

closure, first identified experimentally by Fleck [10, 56]. The phenomenon of discontinuous 

closure refers to the point at which the crack surfaces are first closed behind the crack tip and 

is induced by a residual hump of stretched material due to a single overload, as shown in 

Figure 2-13. As a result, the opening load obtained from the closure measurements when the 

crack flanks first come into contact is greater than the actual opening load when the crack tip 

is closed. The measured stress intensity factor range is less than that experienced at the crack 

tip, and consequently, the predicted FCG rates are less than the measured values, as shown in 

Figure 2-12. 
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2.3.1.1.2 Two-Parameter Models 

The above stated observations show that the possible role of other factors on FCG 

prediction must be considered. Therefore, numerous research activities [11, 12, 13, 14, 15] 

have attempted  to modify the general form of the Paris equation by introducing a two-

parameter driving force in the form of a combination of the maximum SIF, maxK , and the 

stress intensity range,ΔK . The first form of the fatigue crack growth equation in terms of a 

two-parameter driving force was proposed by Walker in 1970 [12]. 

 

 
( )

m
mappl (1-p) p

1 1 max,appl appl1-p

Kda = C = C K ΔK
dN 1- R

⎡ ⎤Δ
⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (2.39) 

where:                          m(1-p)
1C = C(1- R)  

The constants “C” and “m” are the Paris coefficient and slope for R = 0, respectively, and the 

“p” parameter is a material constant. However, the Walker equation is valid only for R ≥ 0 

and for region II crack growth. 

In 1963, Broek, Schijve and Erdogan [57] proposed another combination of the two-

parameter driving force to show the mean stress effect on FCG for region II. 

 2
max

da = CK ΔK
dN

 (2.40) 

Forman, Kearny and Engle [58] observed that the crack growth rate tends to infinity 

when Kmax approaches KIC. They suggested the following equation for regions II and III in 

terms of a two-parameter driving force.  

 
n

IC max

da A(ΔK)=
dN (1- R)(K - K )

 (2.41) 
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where “A” and “n” are empirical material constants. 

Another empirical equation for regions II and III was introduced by Weertman [59]. 

 
4

2 2
IC max

da CΔK=
dN K - K

 (2.42) 

None of the above equations addresses the fatigue crack growth behavior at threshold. 

To predict FCG behavior in the threshold regime, Klesnil and Lukas [60] modified the Paris 

equation: 

 m m
th

da = C(ΔK -ΔK )
dN

 (2.43) 

Later, Donahue et al. [61] introduced a similar relationship: 

 m
th

da = C(ΔK -ΔK )
dN

 (2.44) 

Priddle [57] proposed an empirical relationship to describe the entire crack growth 

curve, taking into account both ICK  and thΔK : 

 
m

th

IC max

ΔK -ΔKda = C
dN K - K

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.45) 

McEvily [62] developed another equation that can be fitted to the entire crack growth 

rate region. 

 2
th

IC max

da ΔK= C(ΔK -ΔK ) 1+
dN K - K

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.46) 

Parida and Nicholas [51] introduced a two parameter driving force in terms of the 

mean stress intensity factor, Kmean, and the stress intensity range, ΔK, to consolidate fatigue 

crack growth data into a single curve for different R-ratios, 0.1 < R < 0.8, in titanium 

aluminide, Ti-24Al-11Nb. They modified the Paris equation as follows: 
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 ( ) ( )
nm 1 m

mean
da C K ΔK
dN

−⎡ ⎤= ⎣ ⎦  (2.47) 

where: max min
mean

K + KK =
2

  

For this material, m = 0.5 provides the best driving force to represent the experimental data 

as a single curve, based on regression analysis. For other materials, the magnitude of the 

exponent “m” can be determined from regression analysis of the experimental data. 

However, this driving force can be used only for positive stress ratios. 

Recently, Dinda and Kujawski [14] proposed a two-parameter fatigue crack driving 

force, α + (1-α)
maxK (ΔK ) , to show the effect of R-ratios on fatigue crack growth behavior in 

different materials. The parameter α is an empirical fitting parameter. He also demonstrated 

that for α = 0.5, a good correlation of FCG data with the driving force, + 0.5
max(ΔK . K ) , can be 

obtained in six aluminum alloys, especially in the threshold region [13]. FCG data for 

different R-ratios can then be correlated when the data is shown in terms of the proposed 

driving force without the necessity of the concept of crack closure. Kujawski [13] also 

compared the correlating ability of the two-parameter driving force to the closure-based ΔKeff 

approach. It was found that the two-parameter model is as effective as the crack closure 

model to show the R-ratio effect on fatigue crack growth [14]. However, this model can not 

predict the effect of the compressive part of loading on FCG. Moreover, the correlation of 

experimental FCG data for positive stress ratios was better than for negative ones. 

Donald and Paris [15] postulated that fatigue crack growth depends not only on the 

stress intensity range, ΔK, but also on the maximum stress intensity factor, Kmax. To show the 

Kmax contribution to stress ratio effects, they did two tests, one at the constant R-ratio of 0.7 

and the other at a constant Kmax of 22 MPa√m with a decreasing ΔK (0.5 < R < 0.95) for two 
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aluminum alloys, 6061-T6 and 2024-T3. Figure 2-14 shows the experimental results for the 

two tests in 2024-T3 aluminum alloy. Although both curves were closure free, the 

discrepancy between the two curves, especially at near-threshold fatigue crack growth rates, 

could be observed due to differences in Kmax, as shown in Figure 2-14. Therefore, they 

introduced a two-parameter driving force in the form of (1 n) n
eff maxΔK K−  to account for the Kmax 

effect on FCG prediction. In the proposed two-parameter driving force, the exponent “n” is 

an experimental fitting parameter. Using the proposed driving force, (1 n) n
eff maxΔK K− , provided a 

single curve of the FCG data for 2024-T3 aluminum alloy, as shown in Figure 2-15. 

2.3.2 Fatigue Crack Growth Prediction under Variable Amplitude Loading 

Most fatigue loaded components and structures experience a spectrum of stresses 

under typical operating conditions. Under constant amplitude loading, fatigue crack growth 

depends on crack size and applied load. However, under variable amplitude loading, it also 

depends on the preceding cyclic loading history as a consequence of load interaction. The 

complexity of fatigue crack growth predictions under variable amplitude loading was 

highlighted in the literature review done by Skorupa [63, 64], from which the following lines 

are taken. 

“The reviewed data suggest that, depending on a particular combination of load 

parameters, material, geometry and environment, variable-amplitude load sequences 

of the same type can produce either retardation or acceleration in fatigue crack 

growth [63].” 

“Mechanisms linked to plastic straining at the crack tip enable an interpretation of the 

majority of the experimental results. Some observations, however, which cannot be 

understood in terms of plasticity-induced crack closure, or which are even in 
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contradiction with the crack closure approach, indicates a possible role of other 

factors. A general conclusion is that conditions under which various phenomena can 

affect variable-amplitude fatigue crack growth and interactions between them are 

insufficiently recognized [64].” 

Therefore, fatigue life prediction under variable-amplitude loading must be estimated with 

excessive safety factors for design and proper prediction models used. Various types of load 

sequences—over-loads, under-loads, and combinations of overloads and under-loads—

induce different load-interaction effects, which can cause significant acceleration or 

retardation of fatigue crack growth rate. Therefore, a more complete understanding of 

interaction and sequence effects is essential for developing crack growth prediction models 

under variable amplitude loading. Due to the beneficial effect of overloads on fatigue life 

prediction, the main focus of this study is to show the effect of overloads on subsequent 

fatigue crack growth. 

2.3.2.1 Overload Effects on Fatigue Crack Growth 

Overloads can retard fatigue crack growth rates; therefore, most load-interaction 

studies have concentrated on overload effects. The typical retardation of the crack growth 

following a single overload is presented schematically in Figure 2-16. The number of delay 

cycles, ND, is a measure of the magnitude and extent of retardation, as shown in Figure 2-16.  

Numerous researchers have demonstrated fatigue crack growth retardation following 

a single overload for various metals. Representative crack growth retardation following a 

single overload, analogous to Figure 2-16 , has been reported in 7075-T6 aluminum [82, 65], 

7075-T651 aluminum [66], 2024-T3 aluminum [65, 67], 2024-T351 aluminum [68, 69], 

D16Cz aluminum [70], 4340 steel [71], 4140 steel [72], 18G2A steel [73], FV520B steel 
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[74], A514F steel [75], Ti-6Al-4V [67], and Ti-6222 [76]. The crack growth retardation 

induced by a single overload increases with an increase of the overload-ratio, OLR, which 

also results in an increase of the number of delay cycles, ND, and a decrease of the minimum 

fatigue crack growth rate [65, 77, 78, 79, 80]. Moreover, as the number of overload cycles 

increases, the amount of the retardation following single overloads is more pronounced [67, 

79]. 

Initial acceleration was not observed for any materials, especially for high overload 

ratios as shown in the publications by Shin et al. [80] for stainless steel at OLR of 2, by 

Damri et al. [81] for mild steel at OLR of 2.5, and Chanani [82] for the 7075-T6 aluminum 

alloy at OLR of 1.8. However, Tsukuda et al. [83] showed that initial acceleration depends 

not only on the overload ratio but also on the R ratio ( min,BL

max,BL

K
R

K
= ). The 2017-T3 aluminum 

alloy, they [83] found that at R = 0 for overload ratios of 1.5 and 2, there was an initial 

acceleration; however, at R-ratios of 0.5 and 0.7, with the same overload ratios, the initial 

acceleration was absent. It was found that FCG retardation decreases with an increase of the 

R-ratio [80, 83].  

Results from the literature [63, 80, 84, 85] show that FCG retardation, following a 

single overload, is not consistent with the change in baseline loading, ΔKBL, as shown in 

Figure 2-17. The experimental results for aluminum alloys [85, 86], aluminum-lithium alloy 

[87], steel alloys [85], and a Ti alloy [84] indicated a U-shaped plot of the delay cycles, ND, 

versus ΔKBL with significantly less delay occurring at some intermediate baseline loading. 

However, other experimental results for stainless steel [80] and structural steel [88] showed 

different plots of ND versus ΔKBL, in total contrast to the U-shape curves, as illustrated in 

Figure 2-17. 
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For single-periodic overloads, as shown in Figure 2-18, Yildirim and Vardar [89, 90, 

91] showed that fatigue crack growth rate depends on the number of constant amplitude 

cycles between tensile overloads, NCA. Their experiments on Al 7075-T6 and Al 2024-T3 

specimens demonstrated that retardation increases and then decreases as the number of 

constant amplitude cycles between single tensile overloads increases. However, the 

maximum retardation occurs when tensile overloads are applied at ND/2, where ND is the 

number of delay cycles in the case of a single overload (Figure 2-18). For Al-alloy 7075-T6, 

they [89] also proposed that the crack growth rate for different occurrence ratios 

(
CA

1OCR =
N

) follows constant amplitude loading behavior, with a parallel shift such that it 

can be modeled as a pseudo-constant-amplitude crack growth. Hence, fatigue crack growth 

rates can be predicted using the Paris equation without changing the exponent. In other 

words, single-periodic overloads can be treated as pseudo-constant-amplitude loading in 

developing fatigue crack growth prediction models. 

Mills and Hertzberg [92] showed that in periodic overloads, interaction effects of 

tensile overloads in the 2024-T3 aluminum alloy can be related to the increment of crack 

extension separating overloads. Maximum interaction between two single or block overloads 

(minimum fatigue crack growth rate) was obtained when the increment of crack extension 

separating peak loads or the distance between two tensile overloads was almost OLr
4

, where 

rOL is the plastic zone size resulting from a single overload. It was noted that the interaction 

effect can be eliminated only if the amount of crack extension is approximately three times 

the plastic zone size resulting from a single overload OL(= 3r ) . These observations contrast 

with the fact that crack growth returns to the normal growth rate when the crack propagates 
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through rOL rather than 3rOL. In addition, the fatigue crack growth retardation resulting from 

periodic overload blocks was found to be greater than that associated with single-periodic 

overloads. 

2.3.2.2 Prediction Models 

Several predictive models have been formulated since the 1970s to account for load 

interaction effects and to estimate quantitatively fatigue crack growth lives under variable 

amplitude loading conditions. Because of the complexity of mechanisms governing FCG 

under variable amplitude loading, only semi-empirical models can provide reasonable FCG 

predictions. The earliest models, the Wheeler [93] and Willenborg [94] models, were based 

on the compressive residual stresses ahead of crack tip induced by overloads. The second 

generation of the models, i.e. the crack closure models [3, 4, 5, 6, 7] were based on the 

plastic deformation left in the wake of a propagating crack. These models are still used in 

different computer programs and codes for fatigue life estimation. A description of the 

models follows. 

2.3.2.2.1 Crack-Tip Plasticity Models 

The most popular crack-tip plasticity or yield zone models were proposed by Wheeler 

[93] and Willenborg [94] in the early 1970s. Due to the simplicity of the models, they have 

been used widely in different fatigue crack growth computer programs such as AFGROW 

and CRCAKS2000. Both models can predict FCG retardation as long as the fatigue crack 

propagates through the overload plastic zone. 

  The Wheeler model [39, 93] predicts crack growth retardation by modifying the 

Paris equation as follows: 
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 ( ) ( )m
ii

i

da Cp C ΔK
dN

⎡ ⎤= ⎣ ⎦  (2.48) 

where, the retardation parameter, ( )i
Cp , ranging from 0 to 1 depends on the current plastic 

zone,   rp,i, and the overload plastic zone, rp,OL. 

 ( )
p

p,i
i

p,OL i

r
Cp

r Δa
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (2.49) 

The Wheeler exponent “p” is a fitting empirical parameter depending upon the loading 

history. Other terms in Eq. (2.49) are defined graphically in Figure 2-19. The model predicts 

that the maximum retardation occurs immediately after the overload and it decreases by 

growing the crack through the overload plastic zone. The retardation effect ceases as soon as 

the current plastic zone touches the boundary of the overload plastic zone, ( )i
Cp 1= .  

 A major limitation of the Wheeler model is the shaping factor, p, which must be 

determined experimentally for loading history. Moreover, the observed phenomenon of the 

delayed retardation, and also crack growth acceleration, cannot be predicted with the 

Wheeler model. 

The Willenborg model [39, 94] predicts that crack retardation will occur due to the 

compressive residual stresses induced by the overload at the crack tip. The compressive 

stresses can be expressed in terms of the reduced stress intensity factor, Kred, to modify the 

applied stress intensity factors. To calculate compressive stresses at the crack tip, Willenborg 

et al. introduced the required stress, σreq, which is required to produce a yield zone, rp,req, 

whose boundary just touches the overload plastic zone boundary, rp,OL, as shown in Figure 

2-20. The required stress can be expressed in terms of the required maximum stress intensity 

factor, Kmax,req, which is determined as follows: 
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 i p,req i OL p,OLa + (r ) = a + r  (2.50) 

 ( )i OL
max,req max,OL

p,OL

a a
K = K 1

r
−

−  (2.51) 

The compressive residual stress is the difference between the maximum stress, σmax, and the 

required stress, σreq. In terms of the stress intensity factor, the difference between the required 

maximum stress intensity factor, Kmax,req, and the maximum stress intensity factor, Kmax,i, is 

then defined as the reduced stress intensity factor, Kred. 

 red max,req max,iK K K= −  (2.52) 

Subsequently the effective stress intensity factors can be obtained. 

 )max,eff max,i redi
K K K= −  (2.53) 

 )min,eff min,i redi
K K K= −  (2.54) 

Fatigue crack growth in each cycle can then be calculated from the Paris Eq. (2.27), Walker 

Eq. (2.39), or Forman Eq. (2.41) based on effective stress intensity factors. The Willenborg 

model cannot predict delayed retardation; the maximum retardation occurs immediately after 

an overload. Moreover, similar to the Wheeler model, FCG accelerations can not be 

predicted with this model. A major advantage of the Willenborg model is that only the 

constant-amplitude crack growth data is used to predict fatigue crack growth retardation 

without using the empirical shaping factor. 

2.3.2.2.2 Crack Closue Model 

Crack closure models based on the crack closure phenomenon can predict the effects 

of load interactions, such as acceleration and retardation of the fatigue crack growth. Several 

crack closure models such as PREFFAS [3], ONERA [4], and CORPUS [5] have been 
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developed recently to account for load interaction effects under variable amplitude loading 

[39]. A detailed description of theses models can be found in reference [39]. Among them, 

the most successful finite element model has been developed by Newman [6,7]. The 

Newman model was based on the strip yield plastic zone that is left in the wake of the 

advancing crack. The plastically deformed material can induce crack closure even at positive 

stress levels. According to this model, the fatigue crack growth rate for highly irregular 

loading, should be calculated on a cycle by cycle basis. 

However, the crack opening load, Pop, changes in a variable amplitude loading 

history; and consequently, the effective stress intensity, ΔKeff, can vary with each cycle. 

Therefore, the determination of the crack opening load and the corresponding crack opening 

stress intensity factor, Kop, is the main problem in the crack closure models in the case of 

variable amplitude loading. The Newman model [6,7] assumed that the crack opening load, 

Pop, remains constant during a small crack increment and does not change after each load 

cycle. In engineering approaches, for simplicity, it was assumed that the crack opening stress 

intensity factor, Kop, is constant during a given block of variable amplitude loading. It can be 

calculated from the constant amplitude fatigue test with an equivalent stress intensity range 

defined as ΔK = Kmax,VA - Kmin,VA, where Kmax,VA is the maximum stress intensity factor and 

Kmin,VA is the minimum stress intensity factor in the block of variable amplitude loading [42]. 

However, the fatigue crack growth rate is predicted for each cycle using the Paris law. 

 m
eff,i

i

da   =  A(ΔK )
dN

       (2.55) 

where:                                              eff,i max,i opΔK = K - K  

The constant “A” is not the same as constant “C” used in the Paris equation. The constant 

“C” in the Paris equation was calculated based on the applied stress intensity factor, ΔKappl. 
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However, the constant “A” should be estimated based on the effective stress intensity factor, 

ΔKeff, at each cycle. The constant “C” can be corrected for a new closure level with the 

following equation [95].   

 
( )m

i

CA =
U

 (2.56) 

where:                                                eff,i
i

appl,i

ΔK
   U = 

ΔK
 

Eq. (2.55) should be solved using a numerical integration method to obtain cycle-by-cycle 

fatigue crack growth and consequently the fatigue life from an initial crack size to a final 

crack size. A number of computer programs, such as NASGRO, FASTRAN-II, MODGRO, 

and FLAGRO have been developed to estimate fatigue life under variable amplitude loading. 
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Figure 2-1: Stress distribution and the system of coordinates at the sharp crack tip [18]. 

 
Figure 2-2: The stress distribution and the system of coordinates used for at the blunt 

crack tip. 
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Figure 2-3: Irwin’s plastic zone size, the equivalent crack size and the original and 

corrected stress distribution. 

 

 
Figure 2-4: The Dugdale crack model and plastic zone size [23]. 
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Figure 2-5: Plastic yielding and redistribution of the elastic stress field ahead of a notch 

tip [26]. 

 
Figure 2-6: Graphical representation of Neuber’s rule and the equivalent strain energy 

density (ESED) method: a) Neuber’s rule b) ESED method [18]. 
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Figure 2-7: Stress states in geometrically identical elastic and elastic-plastic bodies 

subjected to identical boundary conditions [18]. 

 

 
Figure 2-8: Typical fatigue crack growth rate in metals [18]. 
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Figure 2-9: The R-ratio effect on the fatigue crack growth [39]. 

 
Figure 2-10: Evolution of the crack tip plastic zone ahead of a fatigue crack and crack 

tip closure [18]. 
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Figure 2-11: Mechanisms of fatigue crack closure: a) no closure; b) plasticity-induced 

closure; c) oxide-induced closure; d) roughness-induced closure [41]. 

 

 
Figure 2-12: Comparison of measured and predicted fatigue crack growth rates after a 

single overload (R = 0.05, OLR = 2, ΔKBL = 25 MPa√m) on a 3 mm CT specimen in 
BS4360 50B structural steel [64]. 
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Figure 2-13: The phenomenon of discontinues closure [10]. 
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Figure 2-14: Fatigue crack growth rates as a function of ΔKappl for two different tests: 

constant Kmax (Kmax = 22 MPa√m), and constant R (R = 0.7) in Al 2024-T3 [15]. 

 
Figure 2-15: Fatigue crack growth rates as a function of the two-parameter driving 
force, ΔKeff (1-n) Kmax

 n, for two different tests, constant Kmax (Kmax = 22 MPa√m) and 
constant R (R = 0.7) in Al 2024-T3 [15]. 
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Figure 2-16: Schematic of typical overload retardation in a K-controlled test: a) crack 

length versus number of cycles; b) crack growth rate versus crack length; c) single 
overload and associated terminologies. 
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Figure 2-17: Effect of ΔKBL on the amount of retardation following a single overload 

[63]. 

 
Figure 2-18: Schematic of the crack growth retardation after a single periodic-tensile 

overload [91]. 
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Figure 2-19: Schematic of the Wheeler model [39]. 

 

 
 

Figure 2-20: Schematic of the Willenborg model [39]. 
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Chapter 3 
 Modeling of Fatigue Crack Growth  

3.1 Formulation of the Proposed Model 

It is generally accepted that the local stresses and strains near the crack tip control the 

fatigue crack growth process. Unfortunately, determination of the crack tip stress and strain 

in the case of elastic-plastic behavior is difficult and it is strongly dependent on the 

theoretical and numerical method used for the analysis. Therefore, fracture mechanics 

principles are often used in order to defocus attention from the local crack tip stress-strain 

field and to express all necessary quantities in terms of global parameters such as the nominal 

stress, crack size, geometry, etc., which are combined into one parameter called the stress 

intensity factor (SIF). Such approaches are successful as long as the SIF is uniquely 

correlated with the actual elastic-plastic crack tip stress-strain field. Unfortunately, the 

correlation between the SIF and the crack tip stress-strain filed is often altered by residual 

stresses induced by reversed plastic deformations. 

There are also several difficulties in defining the crack tip geometry on the basis of 

the mechanics of continua. The classical fracture mechanics solutions [96, 97] concerning 

stresses and strains at the crack tip were derived for a sharp crack having tip radius *ρ = 0 . 

Such a crack-tip geometry leads to a singular solution resulting in unrealistically high strains 

and stresses in the vicinity of the crack tip. In spite of the importance of these fundamental 

fracture mechanics solutions, they unfortunately cannot be directly used for the determination 

of the actual stresses and strains in the vicinity of the crack tip. Therefore, several attempts 

were made in the past [98, 99, 100 ] to model the crack as a notch with a small but finite tip 

radius *ρ > 0 . The advantage of using the blunt crack model lies in the fact that notch 
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theories can be applied and the calculated crack tip stresses and strains become more 

realistic. There are two important implications resulting from such a model: the crack tip 

radius is assumed to be finite ( *ρ > 0 ) and the crack region just behind the tip remains open, 

as shown in Figure 3-1. 

In the case of pure elastic behavior, the crack subjected to tensile loading behaves like 

a notch of length/depth 2a with tip radius equal to *ρ , as shown in Figure 3-1(a). However, 

under compressive loading, as shown in Figure 3-1b, the opposite crack surfaces come into 

contact with each other except for the region just behind the crack tip. In Figure 3-1(b), the 

crack induces the same local stress field as two circular notches under compressive loading. 

The argument for using such a crack model comes from the Neuber micro-support concept 

[101] applied for calculating the fatigue notch factor. Neuber suggested that there is a limit to 

the smallest notch tip radius the material can ‘feel’ as a notch. The minimum effective notch 

tip radius, *ρ , was considered to be a material property, determining the maximum stress 

concentration which can be generated in the material. 

Due to the Bauschinger effect, the plastic deformations induced by the first reversal 

of the cyclic load are greater than those generated during a subsequent unloading reversal, 

even if both reversals are of the same magnitude. The plastically deformed material volume 

near the crack tip resists deformation during subsequent reversals of cyclic loading. 

Therefore, cyclic deformations near the tip of a propagating fatigue crack may be smaller 

than deformations induced during the first reversal applied to a virgin crack without any 

previous history. Thus, the plastic zone created during loading can not disappear and a small 

portion of the plastic zone is deformed again in the reversed direction. This re-deformed part 

of the plastic zone is called the cyclic plastic zone (Figure 3-2(c) and load level 4). This 
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plastically deformed material is left at the crack tip like an obstacle or a small ‘ball’ for 

subsequent reversals (Figure 3-2(c)). The plastically deformed material prevents the region 

behind the crack tip from being closed. In other words, the fatigue crack surfaces come into 

contact with each other but not just behind the crack tip, even if compressive loads are 

applied. Very small or no change in the opening displacement behind the crack tip during the 

unloading part of a cycle can be interpreted, based on global macro-measurements, as crack 

tip closure, even if there is no physical contact between crack surfaces. Schematically, this 

effect is illustrated in Figure 3-2(a) and Figure 3-2(b), showing the applied load history and 

qualitative variations in the stress and strain at the crack tip. 

The possibility of the existence of “empty” or stress-free space behind the crack tip 

was found experimentally by Bowels [102] and Zhang [103]. The “empty” stress-free region 

appearing just behind the crack tip was also found by carrying out thorough Finite Element 

analyses [104, 105]. The plastic zone effect on the crack tip displacements can be modeled 

by assuming the displacement field behind the crack tip in the form of an opening shown in 

Figure 3-3(a). From a superposition point of view, the plastic zone deformations and the 

displacement field behind the crack tip, shown in Figure 3-3(a), can be replaced by an 

equivalent stress field as illustrated in Figure 3-3(b). It is assumed that the residual 

stresses, rσ (x) , in the plastic zone are generated by reversed plastic deformations ahead of 

the crack tip, and that they can be determined by solving the elastic-plastic notched body 

boundary problem. A symmetric compressive residual stress field is added in order to 

simulate the effect of the opening behind the physical crack tip. The resultant model of the 

crack tip region, accounting for the plastic zone deformation resistance and the opening 

behind the crack tip, is shown in Figure 3-3(b). 
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The effect of the plastic zone and the crack tip opening behind the crack tip can be 

subsequently quantified by estimating the residual stress contribution to the applied stress 

intensity factors. Two effects need to be considered: the difference in the stress/strain 

concentration at the crack tip associated with the tensile and compressive part of the loading 

cycle (Figure 3-1), and the effect of the plasticity-induced residual stress around the crack tip. 

A real engineering material, according to the Neuber [101] micro-support concept, 

can be modeled (Figure 3-4) as a medium made of elementary blocks of dimension *ρ . The 

elementary material block can be considered as the smallest material volume to which the 

mechanics of continuum and bulk material properties such as modulus of elasticity, E, 

Poisson’s ratio, ν , strength coefficient, K′  and strain hardening exponent, n′ , apply. The 

same idea, but from the material science point of view, was discussed by Forsyth [106], who 

stated that “the micro-structural features in metals cause break up of the crack front into 

segments that relate to elementary blocks operating with some degree of independence from 

their neighbors but under the general influence of the macroscopic crack of which they are 

part”. Therefore, it is anticipated that the dimension *ρ  can be indirectly dependent on the 

micro-structural features of the analyzed material, but cannot be uniquely associated with any 

specific micro-structural particle size. The elementary material block size, *ρ , can be 

understood rather as an average dimension of an inhomogeneous material block which still 

behaves like the bulk material. The resolution of the mechanics of continua is not sufficient 

to determine a meaningful stress and strain field within the elementary blocks of size *ρ . 

Therefore, only the average continuum mechanics stresses and strains can be assigned to 

those elementary blocks of material. 
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     Based on the observations discussed above, the following fatigue crack model has been 

proposed: 

• The material is assumed to be composed of identical elementary material blocks of a 

finite linear dimension *ρ (Figure 3-4). 

• The fatigue crack can be analyzed as a notch with tip radius *ρ . 

• Fatigue crack growth is regarded as successive crack re-initiations over the distance 

*ρ . 

• The material properties used in the proposed model are the Ramberg-Osgood cyclic 

stress strain curve [107]  

 
'

1
n

'

σ σε = +
E K

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.1) 

and the strain-life (Manson-Coffin) fatigue curve [108]. 

 ( ) ( )b cf
f

σΔε = 2N + ε 2N
2 E

′
′  (3.2) 

• The number of cycles “N” to failure of the first elementary block of the material at 

the crack tip can be determined from the strain-life (Manson-Coffin) fatigue curve  

(3.2), by accounting for the stress-strain history and by using the Smith-Watson-

Topper (SWT) fatigue damage parameter [16]. 

  max
ΔεD = σ
2

 (3.3) 

• The fatigue crack growth rate can be determined as the average fatigue crack 

propagation rate over the elementary material block of size *ρ . 

 
*da ρ=

dN N
 (3.4) 
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The simulation of the crack tip stress-strain history includes the effect of the cyclic elastic-

plastic stress-strain material behavior and the effect of local residual stresses induced by the 

reversed cyclic plastic deformations in the crack tip region. 

3.2 Analysis of Strains and Stresses at the Crack Tip 

The calculation of elastic–plastic strains and stresses at the crack tip requires solving 

the elastic-plastic stress-strain boundary problem of a cracked body. Analytical solutions of 

such complex problems are seldom attainable. Numerical Finite Element solutions are 

feasible but not very convenient in practice due to the complexity of the FE model. 

Moreover, they are lengthy in the case of cyclic loading. Therefore, a simplified method 

based on the Neuber [30] or the ESED [34] rule was applied. The method requires a two-step 

approach: first the linear elastic stress-strain analysis needs to be carried out and second the 

actual elastic-plastic crack tip strains and stresses must be determined from the Neuber [30] 

or ESED [34] rules for which the linear elastic stress data is the input.  

3.2.1 The Linear Elastic Analysis of Stresses and Strains near the Blunt 

Crack Tip 

The fatigue crack growth expressions are most often formulated in terms of the stress 

intensity factor range, ΔK. Therefore, the analysis below is carried out wherever possible 

using the stress intensity factor and fracture mechanics principles. The linear elastic stress-

strain analysis must also be carried out using a two-step approach because the stress response 

at the crack tip to the tensile load (no contact between crack surfaces) is different than the 

compressive one. 
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– Crack Tip Stresses Induced by Tensile Loading (Kmin,appl  > 0) 

The calculations of linear elastic stresses and strains induced by tensile loading are in 

essence reduced to the analysis of a notch of depth “a” and having tip radius *ρ (Figure 3-5a). 

The Creager-Paris solution [19] was used assuming that the crack tip radius, *ρ , 

would always be small in comparison with the crack depth, a. 

 
*

x
K ρ 3θ K θ θ 3θσ = - cos + cos 1- sin sin +                (a)

2r 2 2 2 22πr 2πr
⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
*

y
K ρ 3θ K θ θ 3θσ = cos + cos 1+ sin sin +                 (b)

2r 2 2 2 22πr 2πr
⎡ ⎤
⎢ ⎥⎣ ⎦

 (3.5) 

 
*

xy
K ρ 3θ K θ θ 3θτ = - sin + sin cos cos +                        (c)

2r 2 2 2 22πr 2πr
 

The linear-elastic stress components along the crack plane (θ = 0 , r = x ) are: 

 
*

x
K ρσ = 1- +                (a)

2x2πx
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
*

y
K ρσ = 1+ +                (b)

2x2πx
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.6) 

 xyτ = 0                                          (c)  

The maximum stress at the crack tip can be determined from the applied stress intensity 

factor, assuming x = *ρ /2 . 

 y *

2Kσ =
πρ

 (3.7) 

However, the calculations need to be carried out for elementary material blocks of the size 

*ρ . Therefore the average stress over each elementary block was used in the analysis. 
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i+1

i

x *
e
y,i

i+1 i x

1 K ρσ = +1 dx
x - x 2x2πx

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫   (3.8) 

After integrating expression (3.8), the average stress over elementary block ‘i’ can be written 

in the form: 

  y,ie
y,i *

K×ψ
σ =

2πρ
 (3.9) 

where: y,1 y,2 y,3 y,4ψ = 1.633, ψ = 0.8967, ψ = 0.6773, ψ = 0.5641 for the first four blocks. 

A similar expression can be derived for the stress component xσ . 

 x,ie
x,i *

K×ψ
σ =

2πρ
 (3.10) 

where: x,1 x,2 x,3 x,4ψ = 0.4376, ψ = 0.5287, ψ = 0.4814, ψ = 0.4378   

Based on Eq. (3.9), the maximum and minimum linear elastic stresses and the stress range 

over the first elementary material block induced by the applied maximum nominal tensile 

stress, max,applS > 0, (or the maximum stress intensity factor max,applK ) and the applied minimum 

tensile stress, min,applS > 0, can be calculated as: 

 y,1 max,appl y,1 max,apple
max,net max,appl y,1** *

ψ K ψ S Y πa aσ = = = S Y ψ
2ρ2πρ 2πρ

 (3.11) 

 y,1 min,appl y,1 min,apple
min,net min,appl y,1** *

ψ K ψ S Y πa aσ = = = S Y ψ
2ρ2πρ 2πρ

 (3.12) 

 y,1 max,appl y,1 min,appl y,1e
net appl appl y,1** * *

ψ K ψ K ψ aΔσ = - = ΔK = ΔS Y ψ
2ρ2πρ 2πρ 2πρ

 (3.13) 

where: min,appl max,appl appl
min,appl max,appl appl

K K ΔK
S = , S = , ΔS =

Y πa Y πa Y πa
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The nominal or reference stress (Smax,appl or Smin,appl) in the stress intensity factor 

expression is easy to identify in the case of a simple loading configuration such as uniform 

tension or bending. However, any stress/load parameter can be chosen as the reference in the 

case of complex stress fields, such as residual stress distributions or thermally induced stress 

fields. As long as the stress intensity factor is used as the load parameter, the choice of the 

reference stress is not important. Therefore, for consistency reasons, the nominal stresses are 

used wherever possible. Expressions (3.11) - (3.13) are valid only for tensile loading, i.e. for 

K > 0. The net stress components are needed as input into the Neuber rule equations. 

 

– Crack Tip Stresses Induced by Compressive Loading (Kmin,appl < 0) 

The crack tip stress concentration under compressive loading is much less than in 

tension. This is due to the fact that under the compressive minimum nominal stress, 

min,applS < 0 , the contact pressure is transferred through the contacting crack surfaces. In such 

a case the crack should be treated according to the model in Figure 3-5(b) as a single or two 

identical circular holes. The stress at the edge of a circular hole (θ 0=  and *x = ρ ) of 

diameter, *2ρ , in a wide plate can be estimated from the well known classical solution [101] 

for the circular notch problem in an infinite plate (for θ 0=  and *x = ρ ). 

 
2 4* *

x
ρ ρσ = S 1- 2.5 +1.5
x x

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.14) 

 
2 4* *

y
ρ ρσ = S 1+ 0.5 +1.5
x x

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.15) 
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The stress concentration factor at the edge of the hole *(x ρ )= , according to Eq. (3.15), is   

Kt = 3 and the minimum compressive stress at that point can be calculated as: 

 e
min,net min,applσ = 3S  (3.16) 

The applied nominal minimum stress, Smin,appl, can also be related to a pseudo minimum 

applied stress intensity factor: 

  min,appl
min,appl

K
S =

Y πa
 (3.17) 

Thus, the minimum local stress at the edge of the notch can finally be related to the minimum 

applied stress intensity factor, Kmin,appl. 

 min,apple
min,net

3K
σ =

Y πa
 (3.18) 

However, the Creager-Paris solution (3.7) would suggest that if the problem is treated as a 

blunt crack a certain net minimum stress intensity factor, Kmin,net, needs to be applied in order 

to generate the same stress at the crack tip as determined from Eq. (3.18). 

 min,nete
min,net *

2K
σ =

πρ
 (3.19) 

A combination of Eqs. (3.18) and (3.19) makes it possible to determine the net stress 

intensity factor, Kmin,net,  which will give the same crack tip stress as that calculated from Eq. 

(3.18) when substituted into the Creager-Paris expression (3.19). 

 
* *

min,net
min,net min,appl

min,appl

K3 ρ 3 ρK = K or =
2Y a K 2Y a

 (3.20) 

In order to determine the fluctuations of the linear elastic stress near the crack tip, it is 

necessary to account for the differences in the tensile and compressive parts of the cycle, i.e.  
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 y,1 max,appl y,1 max,apple
max,net max,appl y,1** *

ψ K ψ S Y πa aσ = = = S Y ψ
2ρ2πρ 2πρ

 (3.21) 

 min,apply,1 min,net y,1 y,1e
min,net min,appl*

Kψ K 3ψ 3ψ
σ = = = S

2 2 Y πa 2 22πρ
 (3.22) 

 

e e e
net max,net min,net

*
min,apply,1 max,appl y,1 y,1

max,appl min,appl* *

Δσ = σ -σ

Kψ K 3ψ ψ 3 ρ= - = K - K
2Y a2 2 Y πa2πρ 2πρ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.23) 

It can be seen from Eq. (3.23) that the contribution of the compressive part of the applied 

stress reversal (from 0 to Kmin,appl) to the local crack tip stress range is relatively small and 

depends on the crack tip radius, *ρ , and crack size, a. It is possible that the circular hole 

approximation (Figure 3-5(b)) might be non-conservative, but this will be discussed later. 

The maximum crack tip stress, σemax,net, and the stress range, Δσenet, over the first elementary 

material block obtained from the linear elastic analysis are the input for calculating the 

elastic-plastic stress-strain response. 

3.2.2 Elastic-Plastic Analysis of Stresses and Strains near the Crack Tip 

The purpose of the elastic-plastic stress-strain analysis is to determine the actual 

stress-strain history over the first (i = 1) elementary material block and the residual stress 

induced by reversed plastic yielding in the crack tip region. 

 In order to avoid solving the complete but unfortunately very complex elastic-plastic 

cracked body boundary problem, the well known Neuber’s rule [30] was used for each 

load/stress reversal. Neuber’s rule was originally derived for a uni-axial stress state (i.e. pure 

shear) but it has been recently expanded for multi-axial proportional and non-proportional 

loading conditions [109, 110]. Neuber’s rule is based on the equivalence of the strain energy 
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density at the notch tip between the linear elastic and elastic-plastic behavior of 

geometrically identical notched bodies subjected to identical external loads. In the case of a 

uni-axial stress state at the notch tip, Neuber’s rule provides the relationship between the 

hypothetical linear elastic notch tip stress-strain input data and the actual elastic-plastic 

stress-strain response. 

 e e a a
y,i y,i y,i y,iσ ε = σ ε  (3.24) 

For cracked bodies in plane stress, the stress state near the crack tip is bi-axial. In the case of 

bodies in plane strain, the near tip stress state is tri-axial but the third principal stress is a 

function of the other two, and in both situations the modified bi-axial Neuber’s rule [109] can 

be used. In addition, the elastic stress tensor used as input does not rotate during loading, and 

all stress components change proportionally. Therefore, the Hencky equations [111] of total 

deformation theory of plasticity can be applied. 

In the case of a bi-axial stress state, the Hencky stress-strain relationships, the 

Ramberg-Osgood stress-strain constitutive Eq. (3.1) and the multi-axial Neuber rule [109] 

can be combined to obtain a set of five equations from which all elastic-plastic crack tip 

strains and stresses can be determined over each material block ahead of the crack tip. 
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 (3.25) 
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where: ( ) ( )
1

a n2 2 eqa a a a a a
eq x,i x,i y,i y,i eq

σ
           σ = σ -σ σ + σ         and     f(σ ) =

K

′⎛ ⎞
⎜ ⎟⎜ ⎟′⎝ ⎠

 

In the case of cracked bodies in plane stress, the stress state over the first elementary material 

block reduces to one normal stress component. Therefore, the equation set (3.25) reduces to 

the classical uni-axial Neuber rule associated with the Ramberg-Osgood equation. 
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e e a a
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 (3.26) 

Neuber’s Eq. (3.24) can also be written in terms of the nominal stress or the stress intensity 

factor over the first elementary material block. 

 
( ) 22e

y,1 y,1 nete e a a
y,1 y,1 y,1 y,1*

σ ψ K1σ ε = = = σ ε
E E 2πρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.27) 

The maximum stress and starin at the crack tip induced by the first reversal can be 

determined from the Neuber rule (3.27) and the Ramberg-Osgood strain-stress curve (3.1). 

 

12
a 2 a n

max,net y,1 amax max
max*

1
a a n

a max max
max

K ×ψ (σ ) σ1 = +σ
E E K2πρ

σ σε = +
E K
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 (3.28) 
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The crack tip strain and stress ranges can be determined from Neuber’s equation but written 

in terms of ranges, for the hysteresis loop, according to Massing’s hypothesis stress-strain 

curve. 

 

12
a 2 a n

net y,1 a

*

1
a a a n

ΔK ×ψ1 (Δσ ) Δσ= + 2(Δσ )
E E 2K2πρ

Δε Δσ Δσ= +
2 2E 2K
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⎧ ⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ′⎝ ⎠⎪ ⎝ ⎠
⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟′⎪ ⎝ ⎠⎩

 (3.29) 

The equations above enable the determination of elastic-plastic strains and stresses at the 

crack tip induced by two reversals of the load history, represented by fluctuations in the 

stress intensity factors, i.e. Kmax,net and ΔKnet. After calculating the elastic-plastic strains and 

stresses at various locations, the residual stress distribution ( )rσ x  induced by the application 

of the loading and unloading stress reversals can be determined. 

 Schematic diagrams showing stress distributions ahead of the crack tip 

corresponding to the maximum and minimum load levels respectively generated at three 

different stress ratios, Rappl > 0.5,  0 ≤ Rappl ≤ 0.5 and R < 0, are presented in Figure 3-6. Both 

stress distributions, i.e. those corresponding to the maximum and minimum loads, are most 

often tensile at high applied stress ratios (Rappl > 0.5), as illustrated in Figure 3-6(a). In such a 

case the crack tip displacement field and the crack tip stress field are only dependent on the 

applied stress intensity factors. However, compressive residual stresses might be generated at 

the minimum load level for low stress ratios (Rappl < 0.5), as shown in Figure 3-6(b) and 

Figure 3-6(c). The residual stresses remain present in the crack tip region even at zero 

applied load level. Therefore, residual stresses have to be included in the relationship 

correlating the applied load, the crack tip stress-strain response, and the displacement field 
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for subsequent stress/load reversals. It is assumed that the compressive stress ahead of the 

crack tip is acting as a clamp over the crack tip region and its action has to be overcome 

before the increments of the applied (or the net) stress intensity range can be fully effective 

as stated in Eqs. (3.28) and (3.29). Again, the residual compressive stress effect needs to be 

expressed in terms of the stress intensity factor before it could be included in any fatigue 

crack growth expression. 

Neuber’s rule makes it possible to determine the residual stress distribution 

throughout the plastic zone ahead of the crack tip. However, in order to simulate the 

character of the displacement field around the crack tip, shown in Figure 3-3(a), the 

compressive part of the residual stress field from ahead of the crack tip was symmetrically 

added over the region behind the crack tip, as shown in Figure 3-3(b). The residual stress 

field shown in Figure 3-3(b) was subsequently used for calculating the residual stress 

intensity factor, Kr. 

3.3 Calculation of the Residual Stress Intensity Factor, Kr 

The compressive residual stress ahead of the crack tip prevents deformation and 

opening displacement behind the crack tip. Therefore, it was assumed, analogously to the 

well-know Dugdale [112] model, that the effect of residual stress σr(x) can be expressed in 

terms of the stress intensity factor calculated for a crack tip (Figure 3-3(b)) surrounded by the 

compressive stress applied to the crack surface. Calculation of the residual stress intensity 

factor, Kr, was carried out using the weight function method. The following universal weight 

function expression (3.30) was used in the analysis [113, 114]. 

 
1 31
2 2

1 2 3
2P x x xm(x,a) = 1+ M 1- + M 1- + M 1-

a a a2π(a - x)

⎡ ⎤
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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 (3.30) 
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The geometry factors, M1, M2 and M3, for edge and through cracks in a finite width plate can 

be found in Appendix B. Additional M1, M2 and M3 factors for various geometrical 

configurations are given in references [115, 116]. 

The stress intensity factor was calculated by integrating the product of the residual 

stress σr(x) and the weight function m(x,a) over the crack surface area. 

 
a

r r
0

K = σ (x)m(x,a)dx∫  (3.31) 

The physical crack tip location at “x = a” is chosen as the upper limit for the integration of 

expression (3.31). It was also found that region “rp” was close to the cyclic plastic zone size. 

A special numerical procedure was developed for calculating the integral (3.31) [117]. 

 The residual stress intensity factor can be calculated from Eq. (3.31) for any stress 

ratio and any load magnitude. When the calculated residual stress intensity factors for any 

constant stress ratio are plotted against the applied maximum stress intensity factor, a linear 

relationship of the Kr versus Kmax,appl can be obtained. The typical linear Kr-Kmax,appl 

relationship can be shown for any material in Figure 3-7. Moreover, the slope of the Kr 

versus Kmax,appl line decreases with increasing stress ratio, R. Knowing the linear relationship 

of the Kr versus Kmax,appl, the residual stress intensity factor, Kr, can be obtained for any load 

magnitude without using Eq. (3.31). Application of the linear relation between the residual 

stress intensity factor and the applied maximum stress intensity factor can significantly 

decrease the computational time required for the fatigue crack growth analysis. 

3.4 Calculation of Total (resultant) Stress Intensity Factors 

The residual stress effect cannot be assessed by simple superposition of stress 

intensity factors because the nature of the crack opening displacement field needs to be 
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accounted for. The residual stress at the crack tip is induced by the first two loading reversals 

(0 -1 and 1-4, Figure 3-2(a)) even when the minimum load is tensile. Because of the residual 

stress created by the first two loading reversals, the maximum stress at the crack tip 

corresponding to the maximum load at the end of the third reversal (at point 8 in Figure 

3-2(a)) can not reach the same level as the one at the end of the first loading reversal (at point 

1, Figure 3-2(a)). This effect can be modeled by using the resultant maximum stress intensity 

factor, Kmax,tot, obtained be decreasing the applied maximum stress intensity factor, Kmax,appl, 

by the residual stress intensity factor, Kr. The interactions of the stress intensity factor, the 

plastic zone and the residual stress manifest themselves mainly in the change (decrease) in 

the resultant maximum stress intensity factor, Kmax,tot, without significant changes in the 

resultant minimum stress intensity factor, Kmin,tot. It is assumed that the minimum stress 

intensity factor is not affected by the crack tip residual stress. As a result of such a correction, 

both the resultant maximum stress intensity factor, Kmax,tot, and the resultant stress intensity 

range, ΔKtot, are affected by the plasticity-induced crack tip residual stresses. However, the 

magnitude of the residual stress effect depends on the applied stress ratio and it has to be 

treated differently for positive and negative stress ratios, R. 

 

– Calculation of Total Stress Intensity Factors at Positive Stress Ratios, Rappl  ≥ 0 

The reversed plastic deformations around the crack tip induced at relatively high 

stress ratios (Rappl > 0.5) and relatively small stress intensity ranges (near threshold FCG), are 

usually not sufficient to produce compressive residual stresses (Figure 3-6(a)). Therefore, the 

residual stress intensity factor is close to zero (Kr = 0) and the total SIFs are the same as the 

applied ones: 
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 min,tot min,net min,applK = K = K  (3.32) 

 max,tot max,net max,applK = K = K  (3.33) 

 tot max,tot min,tot net applΔK = K - K = ΔK = ΔK  (3.34) 

However, either for other positive stress ratios (0 ≤ Rappl ≤ 0.5) or for relatively high stress 

ratios (Rappl > 0.5) and high stress intensity ranges (medium range FCG rates), the residual 

stresses at the crack tip can change the effectiveness of applied SIFs. The maximum total 

stress intensity factor, Kmax,tot, is calculated in such a case by adding the negative residual 

stress intensity factor, Kr, to the maximum applied stress intensity factor, Kmax,appl. However, 

the minimum total SIF is assumed to be unaffected by the residual stress and equals the 

applied minimum SIF, Kmin,appl. In such a case, the total SIFs are calculated as:  

 min,tot min,net min,applK = K = K  (3.35) 

 max,tot max,net r max,appl rK = K + K = K + K  (3.36) 

 tot max,tot min,tot max,appl r min,appl appl rΔK = K - K = K + K - K = ΔK + K  (3.37) 

 

– Calculation of Total Stress Intensity Factors at Negative Stress Ratios, Rappl  < 0 

In the case of negative stress ratios Rappl < 0, the maximum total (resultant) stress 

intensity factor, Kmax,tot, is calculated analogously as in the case of Rappl > 0, i.e. the Kmax,tot is 

the algebraic sum of the maximum net, Kmax,net, and the negative Kr residual stress intensity 

factor. However, the compressive part of the loading cycle is not entirely effective as far as 

FCG is concerned. Therefore, the minimum net stress intensity factor Kmin,net, is not equal to 

the applied one and needs to be determined according to Eq. (3.20). Thus, all the stress 

intensity quantities at negative stress ratios can be determined from Eqs. (3.38) - (3.40). 
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 min,tot min,net min,appl
3 ρ*K = K = K

2Y a
 (3.38) 

 max,tot max,net r max,appl rK = K + K = K + K  (3.39) 

 
*

tot max,tot min,tot max,appl r min,appl net r
3 ρΔK = K - K = K + K - K = ΔK + K

2Y a
 (3.40) 

The resultant maximum stress intensity factor, Kmax,tot, and the resultant stress intensity 

range, ΔKtot, are the two main parameters governing fatigue crack growth rate. However, 

they need to be combined into one driving force expression analogous to the fatigue damage 

parameter used in classical fatigue theories. 

3.5 Analytical Derivation of the Two-Parameter Fatigue Crack Driving Force 

Δκ and the Fatigue Crack Growth Expression da/dN-Δκ    

Expressions (3.28), (3.29) and Neuber’s rule provide the link between the stress-strain 

response at the crack tip and the applied stress intensity factor history. Therefore, the fatigue 

crack growth expression can be derived providing that an appropriate fatigue damage 

accumulation parameter is employed. The Smith-Watson-Topper (SWT) damage parameter 

[16] was chosen in the analysis to determine the fatigue damage accumulation at the crack 

tip: 

 
a

a
max

ΔεD = σ
2

 (3.41) 

After including the SWT damage parameter into the Manson-Coffin strain-life material 

fatigue curve, the following expression is obtained, relating the SWT damage parameter to 

the number of cycles to failure. 

 
( ) ( ) ( )

2'a
2b b+cfa ' '

max f f f f

σΔεσ = 2N +σ ε 2N
2 E

 (3.42) 
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Eqs. (3.28) and (3.29) provide a unique relationship between the applied stress 

intensity factor and the actual strains and stresses at the crack tip, providing there are no 

additional effects altering those equations. Unfortunately, this is true only in the case of 

cracks subjected to cyclic loads applied at relatively high stress ratios, R > 0.5. At low stress 

ratios, a compressive residual stress field is generated ahead of the crack tip and Eqs. (3.28) 

and (3.29) can be used only when the net maximum stress intensity factor, Kmax,net, and the 

net stress intensity range ΔKnet are corrected for the effect of the residual stress rσ . In other 

words, the resultant maximum SIF, Kmax,tot, and the resultant SIF range, ΔKtot, discussed 

below must be used in those equations. 

The actual maximum stress at the crack tip can be obtained from the set of two 

equations involving the resultant stress intensity factor, Kmax,tot, the Nueber rule, and the 

cyclic stress-strain material curve. 

 

( )
12 2a a nmaxmax,tot y,1 a max

max*

1
a a n

a max max
max

σK ×ψ σ1 = +σ
E E K2πρ

σ σε = +
E K

′

′

⎧ ⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ′⎝ ⎠⎪ ⎝ ⎠
⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟′⎪ ⎝ ⎠⎩

 (3.43) 

The actual crack tip strain range can be determined from the set of two equations involving 

the resultant stress intensity range, ΔKtot, the Nueber rule, and the cyclic stress-strain material 

curve, expanded by a factor of two. 

 

( ) ( )
12 2a a n

tot y,1 a

*

1
a a a n

ΔσΔK ×ψ1 Δσ= + 2 Δσ
E E 2K2πρ

Δε Δσ Δσ= +
2 2E 2K

′

′

⎧ ⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ′⎝ ⎠⎪ ⎝ ⎠
⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟′⎪ ⎝ ⎠⎩

 (3.44) 
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Unfortunately, derivation of closed form solutions for a
maxσ and aΔε  are not feasible. 

However, approximate closed form solutions can be obtained if some terms in Eqs. (3.43) 

and (3.44) are neglected. At high applied loads, i.e. at high maximum stress intensity factors 

and high stress intensity factor ranges, the strains at the crack tip are predominantly plastic. 

Therefore, the elastic terms in Eqs. (3.43) and (3.44) can be neglected. In the near threshold 

fatigue crack growth region, the strains at the crack tip are predominantly elastic; therefore, 

the plastic terms in Eqs. (3.43) and (3.44) can be neglected. However, it is often observed for 

notched machine components subjected to service cyclic loading that the maximum notch tip 

strains are predominantly plastic but the subsequent strain ranges are predominantly elastic. 

For each material behavior, the fatigue crack growth equation, in terms of the two-parameter 

driving force, can be derived in a closed form as follows. 

3.5.1 Predominantly Plastic Material Behavior at the Crack Tip 

Eqs. (3.43) and (3.44) take a simpler form after neglecting the elastic terms. 

 

12
a n

max,tot y,1 a max
max*

1
a n

a max
max

K ×ψ σ1 = σ
E K2πρ

σε =
K

′

′

⎧ ⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ′⎝ ⎠⎪ ⎝ ⎠
⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟′⎪ ⎝ ⎠⎩

 (3.45) 

 
( )

12
a n

tot y,1 a

*

1
a a n

ΔK ×ψ1 Δσ= 2 Δσ
E 2K2πρ

Δε Δσ=
2 2K

′

′

⎧ ⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ′⎝ ⎠⎪ ⎝ ⎠
⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟′⎪ ⎝ ⎠⎩

 (3.46) 

Therefore, the maximum stress and the strain range at the crack tip can be subsequently 

determined in closed form. 
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( ) ( ) ( )

( ) ( )

'

'
''

'

''

'

n
1 n +12' nn

y,1a 2 n +1
max max,tot*

1`
2 n +1n 1

y,1a 2 n +1
tot' *

K ψ
σ = K

2πEρ

2 ψ
Δε = ΔK

4πEK ρ

⎧
⎛ ⎞⎪
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⎜ ⎟⎪
⎜ ⎟⎪ ⎝ ⎠⎨

⎪
⎛ ⎞⎪
⎜ ⎟⎪
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 (3.47) 

For consistency, the elastic term in the strain-life expression (3.42) should be neglected as 

well, resulting in: 

 ( )
a

b+ca ' '
max f f f

Δεσ = σ ε 2N
2

 (3.48) 

After substituting for the maximum stress and the strain range in Eq. (3.48), one can write the 

expression relating the number of cycles to failure to the two stress intensity factor 

parameters. 

 
( ) ( ) ( ) ( )

2
n' 1

b+cy,1 2 2 ' 'n'+1 n'+1
max,tot tot f f fn'+3

*n'+1

ψ
K ΔK = σ ε 2N

2 πEρ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.49) 

Thus, the number of cycles Nf needed to fail the elementary material block, ρ*, at the crack 

tip is: 

 
( ) ( ) ( )

1
2 b+c

n' 1
y,1 2 2n'+1 n'+1

f max,tot totn'+3' '
*f f n'+1

ψ1 1N = × K ΔK
2 σ ε 2 πEρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.50) 

The fatigue crack growth rate (3.4) can be subsequently calculated as: 

 
( ) ( ) ( )

1-
2 b+c

n' 1*
y,1* 2 2n'+1 n'+1

max,tot totn'+3' '
*f f f n'+1

ψda ρ 1= = 2ρ × K ΔK
dN N σ ε 2 πEρ

⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.51) 
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Because the only variables in Eq. (3.51) are the maximum stress intensity factor and the 

stress intensity factor range, the fatigue crack growth expression can be written in a short 

form. 

 ( ) ( )
γp 1-p

max,tot tot
da = C K ΔK
dN

⎡ ⎤
⎣ ⎦

 (3.52) 

where: 
( )

'

'

1-
b+c2

y,1*
n +3

' ' *n +1
f f

ψ n' 2C = 2ρ ; p = ; γ = -
n' +1 b + c

2 σ ε πEρ

⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Eq. (3.52) indicates how the two stress intensity factor parameters, i.e. Kmax,tot and ΔKtot, 

should be combined into one fatigue crack driving force. However, The plastic driving force, 

n 1
1+n 1+n
max,tot totK ΔK

′
′ ′ ,  can be used to predict FCG only in the high and medium FCG-rate regime 

where plastic strains dominate at the crack tip. In these regimes, the parameter “p” is almost 

constant and depends mainly on the cyclic strain hardening exponent of the cyclic stress-

strain material curve, n´. The plastic driving force, 
n 1

1+n 1+n
max,tot totK ΔK

′
′ ′ , enables the analysis of 

FCG for various stress ratios “R” without the necessity of changing any of the constants (Eq. 

(3.52)). In other words, Eq. (3.52) represents a master da/dN-ΔK curve valid for all R-ratios. 

3.5.2 Predominantly Elastic Material Behavior at the Crack Tip 

 Similar analysis can be carried out while neglecting the plastic terms in Eqs. (3.43) 

and (3.44). This is supposed to be an approximation of the crack tip material stress-strain 

behaviour in the near threshold fatigue crack growth regime. The final fatigue crack growth 

expression derived for the near threshold fatigue crack growth regime has taken the 

following form: 
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 ( ) ( )
γp 1-p

max,tot tot
da = C K ΔK
dN

⎡ ⎤
⎣ ⎦

 (3.53) 

where: 
( )

1-2 2b
y,1*

2
f

ψ 1C = 2ρ ; p = 0.5; γ = -
4πρσ b

⎡ ⎤
⎢ ⎥

′⎢ ⎥
⎣ ⎦

 

The elastic driving force, 0.5 0.5
max,tot totK ΔK , can be subsequently used to predict FCG for the near 

threshold region (at low FCG rates) where elastic strains dominate at the crack tip. In this 

region, the parameter “p” is almost constant and equal to 0.5 (p = 0.5). 

As mentioned earlier, the elastic (p = 0.5) and plastic ( np =
n +1

′
′

) driving forces can be used 

only for one of the two FCG regimes. In other words, these solutions (Eqs. (3.52) and (3.53)) 

become less accurate in the FCG regions where both elastic and plastic strains are equally 

important. To predict the fatigue crack growth at any FCG rate, in the region spanning from 

the near threshold to the high fatigue crack growth rate regime, the concept of approximate 

elasto-plastic driving force with one constant “p” has been introduced. It has been observed 

that the maximum notch tip strains are predominantly plastic, but the subsequent strain 

ranges are often dominated by elastic strains. Therefore, analogous expression such as those 

derived above can be used but with the “p” exponent valid over the entire range of fatigue 

crack growth rates, i.e. from threshold up to final fracture. 

3.5.3 Elastic-Plastic Material Behavior at the Crack Tip 

It was assumed that the crack tip strain, a
maxε , induced by the loading reversal was 

predominantly plastic, and during unloading the strain, aΔε , was predominantly elastic. 

Considering only the plastic terms of the Ramberg-Osgood and Neuber equations for the 
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loading reversal and only the elastic terms for the unloading reversal, Eqs. (3.43) and (3.44) 

take the following forms:  

 

2

max,tot y,1 a a
max max*

1
a n

a max
max

K ×ψ1 = σ .ε
E 2πρ

σε =
K

′

⎧ ⎛ ⎞
⎪ ⎜ ⎟

⎜ ⎟⎪⎪ ⎝ ⎠
⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟′⎪ ⎝ ⎠⎩

 (3.54) 
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E E2πρ

Δε Δσ=
2 2E
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⎪
⎩

 (3.55) 

The maximum stress and the strain range at the crack tip can be subsequently determined in a 

closed form given by expression (3.56). 
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⎪
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 (3.56) 

The plastic term in the Manson-Coffin together with the SWT parameter (Eq. (3.42)) was 

also omitted.  

 
( ) ( )

2'a
2bfa

max f

σΔεσ = 2N
2 E

 (3.57) 

By substituting Eq. set (3.56) into Eq. (3.57), the number of cycles Nf needed to fail the 

elementary material block at the crack tip can be calculated: 
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1
n' 2b

1 n'+12
n n'

y,1y,1 2 n'+1
f max,tot tot*2 *

f

ψ (K )ψ1N = × K ΔK
2 2πEρ2(σ ) 2πρ
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 (3.58) 

The fatigue crack growth rate can be subsequently calculated as: 

 
( ) ( ) ( )

-1
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1 n'+12
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y,1y,1* 2 n'+1
max,tot tot*2 *

f f

ψ (K )ψda ρ= = 2ρ × K ΔK
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 (3.59) 

Because the only variables in Eq. (3.59) are the maximum stress intensity factor and the 

stress intensity range, the fatigue crack growth expression can be written in the following 

short form: 

 ( ) ( )
γp 0.5

max,tot tot
da = C K ΔK
dN

⎡ ⎤
⎣ ⎦

 (3.60) 

where: 

-1
1 2b

3n +1 n'+1
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2 n*
f

ψ1 K n 1C = 2ρ ; p = ; γ = -
2(σ ) E n' +1 b2πρ

′

′

⎡ ⎤
⎡ ⎤⎛ ⎞⎢ ⎥′ ′⎢ ⎥⎜ ⎟× ×⎢ ⎥⎜ ⎟⎢ ⎥′⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

 

The FCG expression (3.60) indicates how the two SIF parameters, ΔKtot and Kmax,tot, 

characterizing the loading cycle, should be combined into one driving force, over the entire 

range of fatigue crack growth rates, in the form of: 

 p 0.5
max,tot totΔκ = K ΔK  (3.61) 

The crack growth expressions (3.52), (3.60) and (3.53) are formally the same as those 

proposed by Walker [12], Donald and Paris [15] and Kujawski [14], except that the resultant 

maximum stress intensity factor Kmax,tot and the resultant stress intensity range ΔKtot, 

accounting for the compressive residual stress effect, are used.  
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A similar analysis was carried out assuming plane strain at the crack tip, by 

modifying the stress-strain relationship as proposed in references [118, 119]. The form of the 

fatigue crack driving force (3.61) derived for the plane strain at the crack tip was the same as 

in the case of plane stress. The only difference found was the constant “C*” in the fatigue 

crack growth expression.  

 ( ) ( )
γp 1-p*

max,tot tot
da = C K ΔK
dN

⎡ ⎤
⎣ ⎦

 (3.62) 

The constants “C*” derived for the crack tip in plane strain state are: 

– for predominantly plastic plane strain state at the crack tip 
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 (3.63) 

– for predominantly elastic plane strain state at the crack tip 
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 (3.64) 

– for elastic-plastic plane strain state at the crack tip 
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 (3.65) 
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3.5.4 The Effect of “Stabilized” Fatigue Damage Accumulation on Fatigue 

Crack Growth 

 The fatigue crack growth equations derived above make it possible to predict FCG 

based on the number of cycles required to fracture the first elementary material block of a 

virgin material ahead of the crack tip. However, for the current elementary material block at 

the crack tip, the number of cycles changes because the fatigue damage has already 

accumulated in this elementary material block. Glinka [100] assumed that only four elements 

ahead of the crack tip can accumulate damage simultaneously because of the high strain 

gradient in the vicinity of the crack tip. By using the four-element model, he showed that the 

number of cycles stabilizes after the fatigue crack grows over a few elements. Using the 

Miner fatigue damage summation rule [120, 121], the number of cycles to fracture any 

elements ahead of the crack tip, Nj, can be expressed in terms of the number of cycles to 

fracture the first element, Nf, and the fatigue damage accumulation parameter, Фj. 

 *
j f j fN N N Φ N Φ= = =  (3.66) 

where:                 

22 2
c(n 1)c(n 1) c(n 1)

1 1 1
j j 3 j 2 j 1

4 3 2

x x xΦ 1 Φ Φ Φ
x x x

′′ ′++ +

− − −

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
          (3.67) 

The parameter Ф is the stabilized value of the parameter Фj and can be calculated from 

several iterations of Eq. (3.67), where Фj = 0 for j ≤ 0. Eq. (3.67) also shows that the fatigue 

damage accumulation in the elements far away from the crack tip depends on the cyclic and 

fatigue properties of the material. However, the calculated stabilized fatigue damage 

accumulation parameter, Ф, (Ф ≥ 0.7) for different materials shows that this parameter can 

not be more than 30% of the critical accumulated damage in the first elementary material 

block [100]. In other words, the fatigue crack growth increases up to 30% after the failure of 
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a few elementary material blocks ahead of the crack tip but it stabilizes later over the next 

elements [100]. Therefore, the fatigue crack growth rate (3.4) should be expressed in terms of 

the number of cycles after stabilization, N*. 

 
* *

*
f

da ρ ρ= =
dN N ΦN

 (3.68) 

After substituting for the number of cycles, Nf, in Eq. (3.68), the two-parameter fatigue crack 

growth equation accounting for the effect of fatigue damage accumulation can then be 

derived. 

 ( ) ( )
γp 1-p

d max,tot tot
da = C K ΔK
dN

⎡ ⎤
⎣ ⎦

 (3.69) 

                                              d
CC
Φ

=   for plane stress and 

                                              
*

d
CC
Φ

=  for plane strain 

The constant “C” can be determined from Eqs. (3.52), (3.60), and (3.53); and the constant 

“C*” can be determined from Eqs. (3.63) - (3.65) depending on the material behavior at the 

crack tip. 

All constants in the fatigue crack growth expressions derived above can be 

determined analytically if the material properties in the form of the cyclic stress-strain curve 

(3.1) and the fatigue strain-life expression (3.2) are available. The only unknown parameter 

which needs to be determined is the size of the elementary material block, *ρ . 

3.6 Determination of the Elementary Material Block Size, ρ* 

In order to determine the elementary material block size, *ρ , a limited fatigue crack 

growth data is necessary. The obvious material properties are the threshold stress intensity 
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factor ΔKth and the fatigue limit Δσth. For the fatigue crack not to grow at the threshold stress 

intensity range, ΔKth, the local stress at the crack tip must be equal to the fatigue limit, Δσth. 

Due to the fact that the fatigue limit is less than the material yield limit, only the elastic 

stress-strain analysis can be carried out. Thus, according to the Creager–Paris solution, the 

two material properties can be related using the relationship below: 

 th y,1a
th *

ΔK ×ψ
Δσ =

2πρ
  (3.70) 

Eq. (3.71) may subsequently be used for the determination of the elementary material block 

size, *ρ : 

 
( )2 2

y,1* th
a
th

ψ ΔKρ =
2π Δσ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.71) 

The elementary material block size (3.71) is in such a case close to the well-known parameter 

resulting from the Kitagawa diagram [122]. However, care must be taken in order to make 

sure that the fatigue limit a
thΔσ  was obtained at the same stress ratio R as the stress ratio at 

the crack tip induced by the threshold stress intensity range ΔKth. Further, some care needs to 

be taken while determining the threshold stress intensity factors. Namely, the fatigue crack 

may not grow due to one of the following [11]: the applied maximum stress intensity factor is 

less than the maximum threshold stress intensity factor (Kmax, appl < Kmax, th), or the applied 

stress intensity range is less than the threshold stress intensity range (ΔKappl < ΔKth). If the 

crack ceases to grow at the stress ratio R = 0 it is not certain whether the maximum stress 

intensity or the stress intensity range has reached the threshold level. Therefore, the optimum 

stress ratio at which the threshold stress range ΔKth can be determined, without producing 
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significant plasticity at maximum stress intensity factor, is 0.2 < R < 0.3 and in such a case 

the “elastic” solution, Eq. (3.71), can be used. 

Because of the difficulties with using Eq. (3.71), discussed above, the estimation of 

the crack tip radius, ρ*, can be carried out by using the experimental fatigue crack growth 

data and solving simultaneously the complete set of Eqs. (3.43), (3.44), and (3.72). 

 
( )2 2b b+c'a * *

fa ' '
max f f

σΔε 2ρ 2ρσ = +σ ε
2 E da/dN da/dN

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.72) 

Depending on the nature of available experimental fatigue crack growth data, various 

methods for estimating the ρ* can be suggested. 

 If the near threshold fatigue crack growth data at high stress ratios Rappl > 0.5 is 

available, the determination of the crack-tip radius, ρ*, can be found by using the applied 

stress intensity factors. At high stress ratios and close to the threshold, the total stress 

intensity factors, Kmax,tot and ΔKtot, have the same magnitudes as the applied ones. Therefore, 

the applied SIFs can be used in Eqs. (3.43), (3.44) and consequently the ρ* parameter can be 

estimated from Eqs (3.43), (3.44) and (3.72) by using the iteration technique. Due to the 

scatter of fatigue crack growth data, it is recommended that several near threshold FCG data 

points are selected. The ρ* parameter can then be calculated for each FCG data point. The 

average of the calculated ρ* parameters is considered as the ρ* parameter for the analyzed 

material.  

In order to determine the elementary material block size ρ* in the absence of the near 

threshold fatigue crack growth data, one set of fatigue crack growth data obtained at any 

stress ratio is sufficient. The ρ* parameter can be obtained by using an iteration technique. 

First, the residual SIF, Kr, can be determined for the assumed ρ* magnitude followed by the 
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determination of the total stress intensity factors, Kmax,tot and ΔKtot, corresponding to given 

experimental FCG reference data points. The total stress intensity factors are used to 

calculate the magnitude of the two-parameter driving force, p (1-p)
max,tot totΔκ = K ΔK . Second, the 

experimental fatigue crack growth data points can be plotted in terms of the two parameter 

driving force, da/dN vs. Δκ . Finally, by using Eqs. (3.43), (3.44), (3.72) and the assumed ρ* 

parameter, the analytically derived FCG curve (exact solution) can be drawn (Figure 3-8) in 

the same system of coordinates, da/dN vs. Δκ . If the analytically derived FCG curve is in a 

good agreement with the experimental FCG data points, the initial assumption concerning the 

ρ* parameter was correct. Otherwise, the entire process needs to be iterated until the correct 

ρ* is determined. In this method, the estimation of the ρ* parameter needs several iterations 

which are time consuming. Therefore, instead of using the exact solution, the approximate 

solution resulting from Eq. (3.52) can be used for the comparison with the experimental FCG 

reference data points. However, it is recommended to use in this case the high fatigue crack 

growth data as the reference because the high-rate FCG is governed predominantly by plastic 

strains and the use of Eq. (3.52) is justified. Moreover, at high fatigue crack growth rates, the 

approximate solution is the same as the exact solution.  

In summary, the ρ* parameter may be regarded as an empirical parameter, even 

though it has some physical meaning as well. Its value for a given material can be determined 

by fitting the theoretical solution into experimental set of fatigue crack growth data by 

solving the complete set of Eqs. (3.43), (3.44), and (3.72) discussed above. The magnitude of 

the parameter ρ* decreases with the increase of the strain hardening exponent, n΄.  
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Figure 3-1: A crack model for linear elastic analysis of stresses and strains near the 

crack tip; a) stress concentration near the crack tip according to Creager-Paris solution 
b) stress concentration for a circular notch simulating the crack under compressive 

loading. 
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Figure 3-2: Schematic of the crack tip geometry, the cyclic plastic zone and the crack 
tip stress-strain response; a) applied load (stress intensity factor) history, b) qualitative 
stress-strain response at the crack tip, c) evolution of the crack opening displacements 

in the crack tip region.  
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Figure 3-3: Approximate crack tip displacement field and corresponding residual stress 
distribution; a) illustration of the displacement field around the plastic zone, b) residual 

stress distribution required for generating the displacement field.  
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Figure 3-4: The idealized crack tip geometry and the discrete structure of the material; 

a) the crack tip geometry and averaged stresses over individual elementary material 
blocks, b) the crack and the discrete elementary material blocks.  

 
Figure 3-5: Schematic of stress distributions ahead of the crack tip induced by tensile 

and compressive loading; a) stress concentration and the nomenclature for the Creager-
Paris notch tip stress expressions, b) stress concentration and stress distribution 

induced by compressive loading. 
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Figure 3-6: Approximate elastic-plastic crack tip stress distribution induced by cyclic 

loading; a) at high stress ratios R > 0.5, b) at low stress ratios  0  ≤ R ≤ 0.5, c) at negative 
stress ratios R < 0. 
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Figure 3-7: Typical linear plot of Kr vs. Kmax,appl at various stress ratios R. 

 
Figure 3-8: Schematic of the iterative determination of ρ* parameter using the high 

FCG data at arbitrary stress ratio R.  
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Chapter 4 
Validation of the Proposed Model 

4.1 Fatigue Crack Growth Prediction under Constant Amplitude Loading 

The two-parameter fatigue crack growth driving forces, p (1 p)
max,tot totK ΔK − , 0.5 0.5

max,tot totK ΔK  

and p 0.5
max,tot totK ΔK , were used to model the effect of the stress ratio R on the fatigue crack 

growth under constant amplitude loading. The total stress intensity factors corrected for the 

residual stress effect were used to determine the magnitude of each driving force. 

First, the experimental fatigue crack growth data are plotted in terms of each two-parameter 

driving force. Then, the “approximate” closed form solutions (Eqs. (3.52), (3.53), and (3.60)) 

and the “exact” numerical solution are also shown in the same diagrams to verify the 

proposed methodology for fatigue crack growth prediction. It should be noted that the 

“exact” solution can be obtained numerically by solving simultaneously the complete set of 

Eqs. (3.42) - (3.44), and (3.4). It can be noted that by increasing the ρ* parameter the 

predicted FCG rates decrease particularly in the near the threshold region. In other words, the 

near the threshold FCG data is very sensitive to the ρ* parameter.       

Fatigue crack growth data for five materials were used for the validation of the model 

under constant amplitude loading: two steel alloys St-4340 and St-4140, two aluminum 

alloys Al 7075-T6 and Al 2024-T351, and one titanium alloy Ti-6Al-4V. The cyclic (3.1) 

and fatigue properties (3.2) for the materials are given in Table 4-1. 

4.1.1 Modeling of Fatigue Crack Growth in Al 7075-T6 Alloy 

 To predict fatigue crack growth using the two-parameter FCG model, the material 

properties in the form of the cyclic stress-strain curve (3.1) and the fatigue strain-life 
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expression (3.2) need to be known. Linear regression analysis for the fatigue data [123] Δσ/2 

vs. Δεp/2 are used to obtain the cyclic stress-strain material properties K΄ and n΄ in Eq. (3.1) 

with a coefficient of correlation r = 0.945. Similar linear regression analysis is used for the 

fatigue data Δεe/2 vs. 2Nf (with a coefficient of correlation r = -0.888) and Δεp/2 vs. 2Nf 

(with a coefficient of correlation r = -0.927) to obtain the stain-life fatigue properties σ΄f, b, 

ε΄f, and c in Eq. (3.2). The cyclic (3.1) and fatigue properties (3.2) can then be found in Table 

4-1. The Ramberg-Osgood stress-strain curve and the Manson-Coffin fatigue curve for the 

7075-T6 aluminum alloy are illustrated in Figure 4-1 and Figure 4-2, respectively.  

 Due to the availability of the near threshold data obtained at high stress ratios, the ρ* 

parameter was determined from Eqs. (3.43), (3.44), and (3.72), as described in section 3.6 

(Table 4-2). Based on the material cyclic stress-strain properties (Table 4-1) and the 

determined ρ* parameter, the residual stress distribution ahead of the crack tip, σr, can be 

determined from Eq. set (3.25), as described in section 3.2.2. For example, for the loading 

condition ΔKappl = 32.6 MPa√m and R = 0 the residual stress distribution, σr, can be shown in 

Figure 4-3. After the residual stress distribution is properly determined, the residual stress 

intensity factor, Kr, can be calculated at the crack tip from Eq. (3.31), as described in 

section 3.3. Figure 4-4 shows the computed Kr corresponding to the applied load ΔKappl = 

32.6 MPa√m (R=0). However, the value of Kr at the crack tip is calculated to determine the 

total stress intensity factors (Figure 4-4). The linear Kr-Kmax,appl relationship at different stress 

ratios for the Al 7075-T6 material is plotted in Figure 4-5. 

 Since the near threshold data is not so accurate, the ρ* parameter was also determined 

by using the FCG data in the Paris regime. However, for the determination of the ρ* 

parameter in this regime, the total stress intensity factors, Kmax,tot and ΔKtot, must be used. 
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The evolution of the ρ* parameter determined from the applied SIFs, Kmax,appl and ΔKappl, and 

also from the total SIFs, Kmax,tot and ΔKtot, are plotted at two stress ratios of 0 and 0.5 for 

7075-T6 aluminum alloy in Figure 4-6 and Figure 4-7, respectively. The magnitude of the ρ* 

parameter determined from the applied SIFs increases as fatigue crack growth rates increase 

(Figure 4-6). However, it is clear from Figure 4-7 that the variation of the ρ* parameter 

determined from the total SIFs at different FCG rates and also different stress ratios, R, is 

almost constant.      

 Based on the material data listed in Table 4-1 and the determined ρ* parameter, the 

constants of Eqs. (3.52), (3.53), and (3.60) can be calculated, Table 4-3. The stabilized 

fatigue damage parameter, Ф, can be determined from several iterations of Eq. (3.67) and is 

given in Table 4-2.  

The fatigue crack growth data for the 7075-T6 aluminum alloy was found in [124, 

125, 126]. The fatigue crack growth data sets were obtained at various stress ratios, Rappl, and 

are shown in Figure 4-8 as a function of the applied stress intensity factor range, ΔKappl. The 

two-parameter fatigue crack growth driving forces, p (1 p)
max,tot totK ΔK − , 0.5 0.5

max,tot totK ΔK , and 

p 0.5
max,tot totK ΔK , were used to model the effect of the stress ratio R on the fatigue crack growth 

under constant amplitude loading. The total stress intensity factors corrected for the residual 

stress effect were used to determine the magnitude of each driving force. It is seen (Figure 

4-9) that in the high and medium FCG rate regimes, the “plastic” driving force, 

p (1 p)
max,tot totK ΔK − , was successful in correlating the fatigue crack growth data obtained at various 

stress ratios. The “elastic” driving force, 0.5 0.5
max,tot totK ΔK , was the least successful one even in 

the near threshold region (Figure 4-10). It can be noted that the elastic driving force may be 

used only to consolidate FCG data at very low fatigue crack growth rates; therefore, it should 
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not be used for fatigue crack growth predictions away from the threshold. However, it was 

found (Figure 4-11) that the combination of the elastic and plastic stress-strain material 

behavior at the crack tip in the form of the “mixed” driving force, p 0.5
max,tot totK ΔK , could be 

used to correlate FCG data at various R-ratios for the FCG rates spanning from near 

threshold to the high growth rate regime. 

The “approximate” closed solutions, in the form of Eqs. (3.52), (3.53), and (3.60) 

were attainable after neglecting the plastic or elastic terms in the Ramberg-Osgood and 

Manson-Coffin equations. Unfortunately, such solutions become inaccurate in the regions 

where both terms are equally important. However, numerical solutions to the complete set of 

Eqs. (3.42) - (3.44), and (3.4), i.e. without neglecting any terms, are possible. The final 

solution can not be derived in a closed form but it can be illustrated graphically. The 

numerical solution called as the “exact solution”. The “exact” solutions accounting for the 

effect of stabilized fatigue damage accumulation, and result from solving the complete set of 

Eqs. (3.42) - (3.44), and (3.68). The “approximate” closed form solutions accounting for the 

effect of fatigue stabilized damage accumulation are obtained from Eq. (3.69).  

 Both the “exact” FCG curves and the approximate closed form solutions (Eqs. (3.52), 

(3.53) and (3.60)) are shown in Figure 4-9, Figure 4-10, and Figure 4-11, where the fatigue 

crack growth rate is shown as a function of the appropriate driving force Δκ. The exact FCG 

curves and the approximate closed form solutions (Eq. (3.69)) accounting for the effect of 

“stabilized” fatigue damage accumulation are plotted on the same figures with dashed curves. 

It can be seen from the figures that the effect of “stabilized” fatigue damage accumulation 

resulted in increasing the fatigue crack growth, which is more conservative for fatigue life 

prediction.  
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 The best results in correlating the FCG under various stress ratios were obtained 

while using the “mixed” driving force in the form of p 0.5
max,tot totK ΔK . As shown in Figure 4-11, 

the exact numerical solution presented in terms of the mixed driving force had good 

agreement with the experimental data over the entire range of FCG data. However, the 

elasto-plastic approximate solution (Eq. (3.60)) agreed well only with the low FCG data. 

Therefore, it is recommended that in practice the two lines da/dN vs. p 0.5
max,tot totK ΔK  should be 

fitted to the existing FCG data for the determination of constants “C” and “γ” in Eq. (3.60), 

i.e. one line covering the near threshold FCG data and the other approximating the so-called 

Paris regime (Figure 4-12). The fitting parameters “C” and “γ” can be found in Table 4-3. 

The two power law curves characterized by two sets of constants (the exponent “γ” and the 

constant “C”) can be subsequently used for FCG analyses. 

4.1.2 Modeling of Fatigue Crack Growth in Al 2024-T351 Alloy 

The fatigue crack growth data for the Al 2024-T351 aluminum alloy was found in 

[127, 128, 129]. The fatigue crack growth data sets were obtained at various stress ratios, 

Rappl, and are shown in Figure 4-13 as a function of the applied stress intensity factor range, 

ΔKappl. 

The cyclic (3.1) and fatigue properties (3.2) for the Al 2024-T351 aluminum alloy 

were obtained from reference [130], as listed in Table 4-1, but the same data can also be 

found on the Society of Automotive Engineers (SAE) web-site (fde.uwaterloo.ca) maintained 

by the Fatigue Design & Evaluation Committee. Due to the availability of the near threshold 

data obtained at high stress ratios, the ρ* parameter was determined from Eqs. (3.43), (3.44), 

(3.72), as described in section 3.6 (Table 4-2). Based on the material data listed in Table 4-1 
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and the determined ρ* parameter, the constants from Eqs. (3.52), (3.53), and (3.60) were 

calculated and are found in Table 4-3. The stabilized fatigue damage parameter, Ф, can be 

determined from several iterations of Eq. (3.67) and is given in Table 4-2 as well.  

The two-parameter fatigue crack growth driving forces, p (1 p)
max,tot totK ΔK − , 0.5 0.5

max,tot totK ΔK  

and p 0.5
max,tot totK ΔK , were used to model the effect of the stress ratio R on the fatigue crack 

growth under constant amplitude loading. The total stress intensity factors corrected for the 

residual stress effect were used to determine the magnitude of each driving force. It is seen 

(Figure 4-14) that in the high and medium FCG rate regimes, the “plastic” driving force, 

p (1 p)
max,tot totK ΔK − , was successful in correlating the fatigue crack growth data obtained at various 

stress ratios. The “elastic” driving force, 0.5 0.5
max,tot totK ΔK , was the least successful one even in 

the near threshold region (Figure 4-15). It can be noted that the elastic driving force may be 

used only to consolidate FCG data at very low fatigue crack growth rates; therefore, it should 

not be used for fatigue crack growth predictions away from the threshold. However, it was 

found (Figure 4-16) that the combination of the elastic and plastic stress-strain material 

behavior at the crack tip in the form of the “mixed” driving force, p 0.5
max,tot totK ΔK , could be 

used to correlate FCG data at various R-ratios for the FCG rates spanning from the near 

threshold to the high growth rate regime. 

The “approximate” closed solutions, in the form of Eqs. (3.52), (3.53), and (3.60) 

were attainable after neglecting the plastic or elastic terms in the Ramberg-Osgood and the 

Manson-Coffin equations. Unfortunately, such solutions become inaccurate in the regions 

where both terms are equally important. However, numerical solutions to the complete set of 
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Eqs. (3.42) - (3.44), and (3.4), i.e. without neglecting any terms, are possible. The final 

solution can not be derived in a closed form but it can be illustrated graphically. 

Both the “exact” FCG curves and the approximate closed form solutions (Eqs. (3.52), 

(3.60) and (3.53)) are shown as diagrams (Figure 4-14, Figure 4-15, and Figure 4-16) where 

the fatigue crack growth rate is shown as a function of the appropriate driving force Δκ.  

The best results in correlating the FCG under various stress ratios were obtained 

while using the mixed driving force in the form of p 0.5
max,tot totK ΔK . As shown in Figure 4-16, 

the exact numerical solution presented in terms of the mixed driving force had good 

agreement with the experimental data over the entire range of FCG data. However, the 

elasto-plastic approximate solution (Eq. (3.60)) agreed well only with the low FCG data. 

Therefore, it is recommended that in practice the two lines da/dN vs. p 0.5
max,tot totK ΔK  should be 

fitted into the existing FCG data for the determination of constants “C” and “γ” in Eq. (3.60), 

i.e. one line covering the near threshold FCG data and the other approximating the so-called 

Paris regime (Figure 4-17). The fitting parameters “C” and “γ” can be found in Table 4-3. 

The two power law curves characterized by two sets of constants (the exponent “γ” and the 

constant “C”) can be subsequently used for FCG analyses. 

4.1.3 Modeling of Fatigue Crack Growth in 4340 Steel Material 

The fatigue crack growth data for the 4340 steel alloy was found in [131, 132, 133, 

134]. The fatigue crack growth data sets were obtained at various stress ratios, Rappl, and are 

shown in Figure 4-18 as a function of the applied stress intensity factor range, ΔKappl. 

 The cyclic (3.1) and fatigue properties (3.2) for the 4340 steel alloy were obtained 

from reference [131] and are listed in Table 4-1. Due to the availability of the near threshold 
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data obtained at high stress ratios, the ρ* parameter was determined from Eqs. (3.43), (3.44), 

(3.72), as described in section 3.6 (Table 4-2). Based on the material data listed in Table 4-1 

and the determined ρ* parameter, the constants of Eqs. (3.52), (3.53), and (3.60) can be 

calculated and found in Table 4-3. The stabilized fatigue damage parameter, Ф, can be 

determined from several iterations of Eq. (3.67) and is given in Table 4-2 as well. 

The two-parameter fatigue crack growth driving forces, p (1 p)
max,tot totK ΔK − , 0.5 0.5

max,tot totK ΔK  

and p 0.5
max,tot totK ΔK , were used to model the effect of the stress ratio R on the fatigue crack 

growth under constant amplitude loading. The total stress intensity factors corrected for the 

residual stress effect were used to determine the magnitude of each driving force. It is seen 

(Figure 4-19) that in the high and medium FCG rate regimes, the “plastic” driving force, 

p (1 p)
max,tot totK ΔK − , was successful in correlating the fatigue crack growth data obtained at various 

stress ratios. The “elastic” driving force, 0.5 0.5
max,tot totK ΔK , was the least successful one even in 

the near threshold region (Figure 4-20). It can be noted that the elastic driving force may be 

used only to consolidate FCG data at very low fatigue crack growth rates; therefore, it should 

not be used for fatigue crack growth predictions away from the threshold. However, it was 

found (Figure 4-21) that the combination of the elastic and plastic stress-strain material 

behavior at the crack tip in the form of the “mixed” driving force, p 0.5
max,tot totK ΔK , could be 

used to correlate FCG data at various R-ratios for the FCG rates spanning from the near 

threshold to the high growth rate regime. 

The “approximate” closed solutions, in the form of Eqs. (3.52), (3.53), and (3.60) 

were attainable after neglecting the plastic or elastic terms in the Ramberg-Osgood and the 

Manson-Coffin equations. Unfortunately, such solutions become inaccurate in the regions 
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where both terms are equally important. However, numerical solutions to the complete set of 

Eqs. (3.42) - (3.44), and (3.4), i.e. without neglecting any terms, are possible. The final 

solution can not be derived in a closed form but it can be illustrated graphically. 

Both the “exact” FCG curves and the approximate closed form solutions (Eqs. (3.52), 

(3.60) and (3.53)) are shown as diagrams (Figure 4-19, Figure 4-20, and Figure 4-21) where 

the fatigue crack growth rate is shown as a function of the appropriate driving force Δκ.  

The best results in correlating the FCG under various stress ratios were obtained 

while using the mixed driving force in the form of p 0.5
max,tot totK ΔK . As shown in Figure 4-21, 

the exact numerical solution presented in terms of the mixed driving force had good 

agreement with the experimental data over the entire range of FCG data. However, the 

elasto-plastic approximate solution (Eq. (3.60)) agreed well only with the low FCG data. 

Therefore, it is recommended that in practice the two lines da/dN vs. p 0.5
max,tot totK ΔK  should be 

fitted into the existing FCG data for the determination of constants “C” and “γ” in Eq. (3.60), 

i.e. one line covering the near threshold FCG data and the other approximating the so-called 

Paris regime (Figure 4-22). The fitting parameters “C” and “γ” can be found in Table 4-3. 

The two power law curves characterized by two sets of constants (the exponent “γ” and the 

constant “C”) can be subsequently used for FCG analyses. 

4.1.4 Modeling of Fatigue Crack Growth in 4140 Steel Material 

The fatigue crack growth data for the 4140 steel alloy was found in [72]. The fatigue 

crack growth data sets were obtained at various stress ratios, Rappl, and are shown in Figure 

4-23 as a function of the applied stress intensity factor range, ΔKappl. 



 

93 

 

The cyclic (3.1) and fatigue properties (3.2) for the 4140 steel alloy were obtained 

from reference [135] and are listed in Table 4-1. Due to the absence of the near threshold 

fatigue crack growth data at high stress ratios, the curve fitting method, as discussed in 

section 3.6, was used for estimating the ρ* parameter (Table 4-2). Based on the material data 

listed in Table 4-1 and the determined ρ* parameter, the constants of Eqs. (3.52), (3.53), and 

(3.60) can be calculated and found in Table 4-3. The stabilized fatigue damage parameter, Ф, 

can be determined from several iterations of Eq. (3.67) and is given in Table 4-2 as well. 

The two-parameter fatigue crack growth driving forces, p (1 p)
max,tot totK ΔK − , 0.5 0.5

max,tot totK ΔK  

and p 0.5
max,tot totK ΔK , were used to model the effect of the stress ratio R on the fatigue crack 

growth under constant amplitude loading. The total stress intensity factors corrected for the 

residual stress effect were used to determine the magnitude of each driving force. It is seen 

(Figure 4-24) that in the high and medium FCG rate regimes, the “plastic” driving force, 

p (1 p)
max,tot totK ΔK − , was successful in correlating the fatigue crack growth data obtained at various 

stress ratios. The “elastic” driving force, 0.5 0.5
max,tot totK ΔK , was the least successful one even in 

the near threshold region (Figure 4-25). It can be noted that the elastic driving force may be 

used only to consolidate FCG data at very low fatigue crack growth rates; therefore, it should 

not be used for fatigue crack growth predictions away from the threshold. However, it was 

found (Figure 4-26) that the combination of the elastic and plastic stress-strain material 

behavior at the crack tip in the form of the “mixed” driving force, p 0.5
max,tot totK ΔK , could be 

used to correlate FCG data at various R-ratios for the FCG rates spanning from the near 

threshold to the high growth rate regime. 
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The “approximate” closed solutions, in the form of Eqs. (3.52), (3.53), and (3.60) 

were attainable after neglecting the plastic or elastic terms in the Ramberg-Osgood and the 

Manson-Coffin equations. Unfortunately, such solutions become inaccurate in the regions 

where both terms are equally important. However, numerical solutions to the complete set of 

Eqs. (3.42) - (3.44), and (3.4), i.e. without neglecting any terms, are possible. The final 

solution can not be derived in a closed form but it can be illustrated graphically. 

Both the “exact” FCG curves and the approximate closed form solutions (Eqs. (3.52), 

(3.60) and (3.53)) are shown as diagrams (Figure 4-24, Figure 4-25, and Figure 4-26) where 

the fatigue crack growth rate is shown as a function of the appropriate driving force Δκ.  

The best results in correlating the FCG under various stress ratios were obtained 

while using the “mixed” driving force in the form of p 0.5
max,tot totK ΔK . As shown in Figure 4-26, 

the exact numerical solution presented in terms of the mixed driving force had good 

agreement with the experimental data over the entire range of FCG data. However, the 

elasto-plastic approximate solution (Eq. (3.60)) agreed well only with the low FCG data. 

Therefore, it is recommended that in practice the two lines da/dN vs. p 0.5
max,tot totK ΔK  should be 

fitted into the existing FCG data for the determination of constants “C” and “γ” in Eq. (3.60), 

i.e. one line covering the near threshold FCG data and the other approximating the so-called 

Paris regime (Figure 4-27). The fitting parameters “C” and “γ” can be found in Table 4-3. 

The two power law curves characterized by two sets of constants (the exponent “γ” and the 

constant “C”) can be subsequently used for FCG analyses. 
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4.1.5 Modeling of Fatigue Crack Growth in Ti-6Al-4V Material 

The fatigue crack growth data for the Ti-6Al-4V alloy was found in [136, 137]. The 

fatigue crack growth data sets were obtained at various stress ratios, Rappl, and are shown in 

Figure 4-28 as a function of the applied stress intensity factor range, ΔKappl. 

The cyclic (3.1) and fatigue properties (3.2) for the Ti-6Al-4V alloy were obtained 

from reference [131] and are listed in Table 4-1. Due to the availability of the near threshold 

data obtained at high stress ratios, the ρ* parameter was determined from Eqs. (3.43), (3.44), 

(3.72), as described in section 3.6 (Table 4-2). Based on the material data listed in Table 4-1 

and the determined ρ* parameter, the constants of Eqs. (3.52), (3.53), and (3.60) can be 

calculated and found in Table 4-3. The stabilized fatigue damage parameter, Ф, can be 

determined from several iterations of Eq. (3.67) and is given in Table 4-2 as well. 

The two-parameter fatigue crack growth driving forces, p (1 p)
max,tot totK ΔK − , 0.5 0.5

max,tot totK ΔK  

and p 0.5
max,tot totK ΔK , were used to model the effect of the stress ratio R on the fatigue crack 

growth under constant amplitude loading. The total stress intensity factors corrected for the 

residual stress effect were used to determine the magnitude of each driving force. It is seen 

(Figure 4-29) that in the high and medium FCG rate regimes, the “plastic” driving force, 

p (1 p)
max,tot totK ΔK − , was successful in correlating the fatigue crack growth data obtained at various 

stress ratios. The “elastic” driving force, 0.5 0.5
max,tot totK ΔK , was the least successful one even in 

the near threshold region (Figure 4-30). It can be noted that the elastic driving force may be 

used only to consolidate FCG data at very low fatigue crack growth rates; therefore, it should 

not be used for fatigue crack growth predictions away from the threshold. However, it was 

found (Figure 4-31) that the combination of the elastic and plastic stress-strain material 
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behavior at the crack tip in the form of the “mixed” driving force, p 0.5
max,tot totK ΔK , could be 

used to correlate FCG data at various R-ratios for the FCG rates spanning from the near 

threshold to the high growth rate regime. 

The “approximate” closed solutions, in the form of Eqs. (3.52), (3.53), and (3.60) 

were attainable after neglecting the plastic or elastic terms in the Ramberg-Osgood and the 

Manson-Coffin equations. Unfortunately, such solutions become inaccurate in the regions 

where both terms are equally important. However, numerical solutions to the complete set of 

Eqs. (3.42) - (3.44), and (3.4), i.e. without neglecting any terms, are possible.  

The final solution can not be derived in a closed form but it can be illustrated 

graphically. Both the “exact” FCG curves and the approximate closed form solutions (Eqs. 

(3.52), (3.60) and (3.53)) are shown as diagrams (Figure 4-29, Figure 4-30, and Figure 4-31) 

where the fatigue crack growth rate is shown as a function of the appropriate driving force 

Δκ. The best results in correlating the FCG under various stress ratios were obtained while 

using the “mixed” driving force in the form of p 0.5
max,tot totK ΔK . However, for fatigue crack 

growth rates more than 2×10-5 mm/cycle, there are some discrepancies between the predicted 

and experimental curves, as shown in Figure 4-29 and Figure 4-31. Although two different 

sets of fatigue crack growth data were used for the comparisons, the “exact” FCG curves and 

the approximate closed form solutions were plotted using one set of cyclic and fatigue 

properties of the material. Probably, the Ti-6Al-4V material used to generate the fatigue 

crack growth data da/dN > 2×10-5 mm/cycle might have had slightly different cyclic da/dN > 

2×10-5 mm/cycle and fatigue properties than the properties used in the analysis. Moreover, 

the change of mechanism in this material at the FCG rate of about 2×10-5 mm/cycle can 

probably be another reason for the discrepancies. The change of mechanism results in the 
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change of the material properties in the form of the cyclic stress-strain curve and the fatigue 

strain-life expression yielding two different exact solutions or two different approximate 

solutions.  

As shown in Figure 4-31, the exact numerical solution presented in terms of the 

mixed driving force had good agreement with the experimental data over the entire range of 

FCG data. However, the elasto-plastic approximate solution (Eq. (3.60)) agreed well only 

with the low FCG data. Therefore, it is recommended that in practice the two lines da/dN vs. 

p 0.5
max,tot totK ΔK  should be fitted into the existing FCG data for the determination of constants 

“C” and “γ” in Eq. (3.60), i.e. one line covering the near threshold FCG data and the other 

approximating the so-called Paris regime (Figure 4-32). However, in this case, fitting one 

line into the experimental FCG data in the Paris regime is not possible mainly due to the 

change of mechanism in the material, as discussed in the previous paragraph. Therefore, it is 

recommended that two fitted lines be plotted in the Paris regime. The fitting parameters “C” 

and “γ” can be found in Table 4-3. The two power law curves characterized by two sets of 

constants (the exponent “γ” and the constant “C”) can be subsequently used for FCG 

analyses. 

4.2 Under a Single Overload 

The proposed model was also used to predict the fatigue crack growth rate after 

application of a single tensile overload. The interaction effects which occur under variable 

amplitude loading can manifest themselves in a change of the magnitude of the total stress 

intensity factors and consequently the change of the fatigue crack growth rate. The crack 

growth rate, at each crack increment Δai, can be estimated by numerical solutions to the 

complete set of Eqs. (3.42) - (3.44), and (3.4), involving the total stress intensity factors. 
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Fatigue crack growth under variable amplitude loading can also be predicted from the 

“approximate” closed solutions, in the form of Eqs. (3.52), (3.53), and (3.60). However, in 

both cases, care should be taken for the calculation of the total SIFs after applying the 

overload. The numerical solution is termed further on as the “exact solution”. 

It can be assumed that the plastic zone induced by the constant amplitude loading just 

before applying the overload remains in the wake of the advancing crack tip. After applying 

the overload, the fatigue crack growth is influenced by the stresses induced by the overload 

plastic zone. A typical residual stress distribution used to calculate the residual stress 

intensity factors after the overload is shown in Figure 4-33. The residual stress field consists 

of two stress fields that are not symmetric: the first one created by the base constant 

amplitude loading remains in the wake of the advancing crack tip; the second one was 

created by a single overload. As the crack is penetrating into the overload plastic zone, the 

magnitude of the residual stress intensity factor increases, due to the increase of the 

compressive residual stress, and consequently the fatigue crack growth rate decreases. As 

soon as the magnitude of the residual SIF induced by the overload stress field is the same as 

that one induced by the subsequent constant amplitude base loading, the overload effect is 

assumed to cease. In other words, beyond this point the fatigue crack growth needs to be 

calculated by using the residual SIF induced by the post-overload or the current load 

fluctuations. 

Experimental fatigue crack growth data obtained after the application of a single 

overload in the aluminum alloy 7075-T6, 4140 steel alloy and the titanium alloy Ti-6Al-4V 

were used for the verification of the model for the FCG analysis under variable amplitude 

loading. 
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4.2.1 Modeling of Variable Fatigue Crack Growth in the Al 7075-T6 Alloy 

The experimental fatigue crack growth data after the application of a single overload 

to the Al 7075-T6 aluminum alloy specimens was found in reference [82]. The predicted and 

the experimental fatigue crack growth following a single tensile overload are shown in 

Figure 4-34 and Figure 4-35. The experimental post-overload FCG rate was measured [82] in 

load-controlled fatigue tests on the 7075-T6 aluminum alloy single-edge notched (SEN) 

specimens at R = 0.1 with the overload ratios of 1.5 and 1.8 and the base stress intensity 

range ΔKBL = 11.4 MPa√m and ΔKBL = 8.955 MPa√m, respectively. Both predicted fatigue 

crack growth rates, i.e. one based on the numerical “exact” and the other on “approximate” 

closed form solution (Eq. (3.60)) are shown in Figure 4-34 and Figure 4-35. It is felt that the 

discrepancy between the numerical “exact” solution and the experimental curve was due to 

the inaccuracy of the ρ* parameter. The ρ* parameter was estimated using one constant 

amplitude FCG data set from reference [124-126] and the predictions were carried out for 

another set of data borrowed from reference [82]. It is not certain whether the material 

properties of the two different sets of specimens tested in different laboratories and separated 

by at least a few years time span were exactly the same. However, in the case of using Eq. 

(3.60) (the constants “C” and “γ” in this equation is determined based on the curve fitting 

method) for FCG prediction, the discrepancy between the analytical “approximate” solution 

and the experimental curve was not so significant. 

4.2.2 Modeling of Variable Fatigue Crack Growth in the Ti-6Al-4V Alloy 

The experimental fatigue crack growth data obtained after the application of a single 

tensile overload from the Ti-6Al-4V alloy was found in reference [67]. The predicted and the 

experimental fatigue crack growth following a single tensile overload is shown in Figure 
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4-36. The experimental post-overload FCG rate was measured in load-controlled fatigue tests 

on the Ti-6Al-4V alloy center-cracked specimen at R = 0 with the overload ratio of 2 and the 

base stress intensity range of ΔKappl  = 16.33 MPa√m. Both predicted fatigue crack growth 

rates, i.e. one based on the numerical “exact” and the other on “approximate” closed form 

solution (Eq. (3.60)) are shown in Figure 4-36. It is felt that the discrepancy between the 

numerical “exact” solution and the experimental curve was due to the inaccuracy of the ρ* 

parameter. The ρ* parameter was estimated using one constant amplitude FCG data set from 

reference [136, 137] and the predictions were carried out for another set of data from 

reference [67]. It is not certain whether the material properties of the two different sets of 

specimens tested in different laboratories and separated by at least a few years time span 

were exactly the same. However, the fatigue crack growth can be predicted pretty well based 

on two fitted lines to the current experimental fatigue crack growth data, da/dN 

versus p 0.5
max,tot totK ΔK , as shown in Figure 4-36.   

4.2.3 Modeling of Variable Fatigue Crack Growth and Fatigue Life in 4140 

Steel 

The experimental fatigue crack growth data and the fatigue life measurements after 

the application of a single overload for the 4140 steel was taken from reference [72]. The 

predicted and experimental fatigue crack growth following a single tensile overload is shown 

in Figure 4-37, Figure 4-38, and Figure 4-39. Furthermore, the predicted and the 

experimental fatigue lives in terms of number of cycles are also shown in Figure 4-40, Figure 

4-41, and Figure 4-42. The tests were carried out for three different loading conditions: R = 

0.1; ΔKBL = 17.82 MPa√m, R = 0.5; ΔKBL = 19.8 MPa√m and R = 0.1; ΔKBL = 35.64 MPa√m 
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with the overload ratio of 2. The experimental post-overload FCG rates were measured in the 

K-controlled fatigue tests on 4140 steel CT specimens.  

Both predicted fatigue crack growth rates (da/dN vs. “a”), i.e. one based on the 

numerical “exact” and the other on “approximate” closed form solution (Eq. (3.60)) are 

shown in Figure 4-37, Figure 4-38, and Figure 4-39 for the three different loading conditions. 

Moreover, both predicted fatigue lives, “a” vs. “N”, based on the numerical “exact” solution 

and the “approximate” closed form solution (Eq. (3.60)) are shown in Figure 4-40, Figure 

4-41, and Figure 4-42. It should be noted that the “approximate” closed form solution was 

based on Eq. (3.60) in which the constants “C” and “γ” were determined by the curve fitting 

method. 

Because the constant amplitude FCG data set and the predictions were carried out for 

similar specimens tested in the same laboratory, good comparison between the theoretical 

and experimental curves was obtained for both the fatigue crack growth rate prediction 

(da/dN vs. “a”) and fatigue life prediction (“a” vs. “N”). 
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Table 4-1: Material properties. 

 

Material  Al 7075-T6 Al 2024-T351 St-4340 St-4140 Ti-6Al-4V

E  
(MPa) 71700 70000 200000 205000 117000 

ν 0.32 0.32 0.3 0.3 0.3 

Monotonic 
material 

properties 
 

σys 
(MPa) 468.85 403.46 889.32 645.65 1185 

K′  
(MPa) 737.81 751.5 1910 1640 1772 Cyclic 

stress-
strain 

 n′  0.056 0.1 0.123 0.15 0.106 

σ′f  
(MPa) 729.62 909.48 1879 1530.7 2030 

b -0.059 -0.1 -0.0859 -0.087 -0.104 

ε′f 0.2638 0.36 0.64 0.63 0.841 

Strain -life 
curve 

 

c -0.802 -0.65 -0.636 -0.58 -0.688 

Reference [123] [130] [131] [135] [131] 
 

 

Table 4-2: The elementary material block size (crack tip radius) ρ*. 

 

Material Al 7075-T6 Al 2024-T351 St-4340 St-4140 Ti-6Al-4V 

*ρ (m)  4×10-6 8×10-6 2×10-6 4×10-6 8×10-6 

Φ  0.69 0.75 0.75 0.78 0.73 
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Table 4-3: Parameters and constants of the two-parameter fatigue crack growth model. 

 

Material  Al 7075-T6 Al 2024-351 St-4340 St-4140 Ti-6Al-4V

γ 2.32 2.67 2.77 3 2.53 

p 0.05 0.09 0.11 0.13 0.096 

Pl
as

tic
 

C 

m

mm/cycle
(MPa m)

 6.1×10-9 9.13×10-10 4.25×10-11 1.64×10-11 1×10-10 

γ 16.95 10 11.64 11.49 9.62 

p 0.5 0.5 0.5 0.5 0.5 

El
as

tic
 

C 

m

mm/cycle
(MPa m)

 2.61×10-14 5.43×10-13 5.25×10-15 2.81×10-15 4.67×10-16

γ 16.95 10 11.64 11.49 9.62 

p 0.05 0.09 0.11 0.13 0.096 

El
as

tic
 –

 P
la

st
ic

 

C 

( )m
(0.5+p)

mm/cycle

MPa m
 1.63×10-12 8.72×10-12 1.83×10-13 7.22×10-14 1.88×10-13

5 γ 7 6.2 4.1 4.9 
5.8 

p 0.05 0.09 0.11 0.13 0.096 

7×10-11 

Fi
tte

d 
Li

ne
 (P

ar
is

 
R

eg
im

e)
 

C 

( )m
(0.5+p)

mm/cycle

MPa m
 1.5×10-10 8×10-11 6×10-8 9×10-12 

5×10-12 

γ 90 90 40 90 100 

p 0.05 0.09 0.11 0.13 0.096 

Fi
tte

d 
Li

ne
 (N

ea
r 

Th
re

sh
ol

d)
 

C 

( )m
(0.5+p)

mm/cycle

MPa m
 63×10-19 3×10-29 9×10-23 3×10-43 3×10-44 
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Figure 4-1: The Ramberg-Osgood stress-strain material curve, 7075-T6 Al alloy. 
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          Figure 4-2: The Manson-Coffin fatigue curve, 7075-T6 Al alloy.  
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Figure 4-3: Distribution of compressive residual stress ahead of the crack tip induced by the applied load ΔKappl = 32.6 

MPa√m & R = 0, 7075-T6 Al alloy.  
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                Figure 4-4: Residual stress intensity factor versus crack length for the applied load ΔKappl = 32.6 MPa√m & R = 0, 

7075-T6 Al alloy. 
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                      Figure 4-5: Linear interpolation of the residual stress intensity factor, 7075-T6 Al alloy.  
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   Figure 4-6: Evolution of the ρ* parameter determined from the “applied” stress intensity range, 7075-T6 Al alloy. 
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         Figure 4-7: Evolution of the ρ* parameter determined from the “total” stress intensity range, 7075-T6 Al alloy. 
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Figure 4-8: Fatigue crack growth data for 7075-T6 aluminum alloy obtained at stress ratios -2 ≤ R ≤ 0.82 [124-126]. 
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Figure 4-9: Fatigue crack growth as a function of the “plastic” two parameter driving force, Kmax,tot

 pΔKtot (1-p), 7075-T6 Al 
alloy. 
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  Figure 4-10: Fatigue crack growth as a function of the “elastic” two parameter driving force, Kmax,tot 0.5ΔKtot 0.5, 7075-T6 Al 

alloy. 
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Figure 4-11: Fatigue crack growth as a function of the “mixed” two parameter driving force, Kmax,tot 

pΔKtot 0.5, 7075-T6 Al 
alloy. 
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Figure 4-12: Two lines fitted into the experimental FCG as a function of the “mixed” two parameter driving force, 

Kmax,tot 
pΔKtot

0.5, 7075-T6 Al alloy  
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Figure 4-13: Fatigue crack growth data for 2024-T351 aluminum alloy obtained at stress ratios -1 ≤ R ≤ 0.7 [127-129]. 
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Figure 4-14: Fatigue crack growth as a function of the “plastic” two parameter driving force, Kmax,tot

 pΔKtot (1-p), 2024-T351 Al 
alloy. 
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Figure 4-15: Fatigue crack growth as a function of the “elastic” two parameter driving force, Kmax,tot 0.5ΔKtot 0.5, 2024-T351 Al 

alloy. 
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Figure 4-16: Fatigue crack growth as a function of the “mixed” two parameter driving force, Kmax,tot 

pΔKtot 0.5, 2024-T351 Al 
alloy. 
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Figure 4-17: Two lines fitted into the experimental FCG as a function of the “mixed” two parameter driving force, 

Kmax,tot 
pΔKtot

0.5, 2024-T351 Al alloy.  
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Figure 4-18: Fatigue crack growth data for 4340 steel obtained at stress ratios -1 ≤ R ≤ 0.7 [131-134]. 
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Figure 4-19: Fatigue crack growth as a function of the “plastic” two parameter driving force, Kmax,tot

 pΔKtot (1-p), 4340 steel. 
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Figure 4-20: Fatigue crack growth as a function of the “elastic” two parameter driving force, Kmax,tot 0.5ΔKtot 0.5, 4340 steel. 
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Figure 4-21: Fatigue crack growth as a function of the “mixed” two parameter driving force, Kmax,tot 

pΔKtot 0.5, 4340 steel. 
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Figure 4-22: Two lines fitted into the experimental FCG as a function of the “mixed” two parameter driving force, 

Kmax,tot 
pΔKtot

0.5, 4340 steel. 
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                           Figure 4-23: Fatigue crack growth data for 4140 steel obtained at stress ratios -1 ≤ R ≤ 0.7 [72]. 



 

127 

 

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1 10 100

Kmaxtot 
PΔKtot

(1-P), (MPa√m)

da
/d

N
(m

m
/c

yc
le

)
R=0.7
R=0.5
R=0.3
R=0.1
R=0.08
R=0.06
R=0.05
 Exact Sol'n
Eq. (3-52)

 
Figure 4-24: Fatigue crack growth as a function of the “plastic” two parameter driving force, Kmax,tot

 pΔKtot (1-p), 4140 steel. 
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Figure 4-25: Fatigue crack growth as a function of the “elastic” two parameter driving force, Kmax,tot 0.5ΔKtot 0.5, 4140 steel. 
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Figure 4-26: Fatigue crack growth as a function of the “mixed” two parameter driving force, Kmax,tot 

pΔKtot 0.5, 4140 steel. 
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Figure 4-27: Two lines fitted into the experimental FCG as a function of the “mixed” two parameter driving force, 

Kmax,tot 
pΔKtot

0.5, 4140 steel. 
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                     Figure 4-28: Fatigue crack growth data for Ti-6Al-4V alloy obtained at stress ratios -5 ≤ R ≤ 0.8 [136, 137]. 
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Figure 4-29: Fatigue crack growth as a function of the “plastic” two parameter driving force, Kmax,tot

 pΔKtot (1-p), Ti-6Al-4V 
alloy. 
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Figure 4-30: Fatigue crack growth as a function of the “elastic” two parameter driving force, Kmax,tot 0.5ΔKtot 0.5, Ti-6Al-4V 

alloy. 
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Figure 4-31: Fatigue crack growth as a function of the “mixed” two-parameter driving force, Kmax,tot 

pΔKtot 0.5, Ti-6Al-4V alloy. 
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Figure 4-32: Two lines fitted into the experimental FCG as a function of the “mixed” two parameter driving force, 

Kmax,tot 
pΔKtot

0.5, Ti-6Al-4V alloy. 
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Figure 4-33: Schematic of residual stress distribution used for the calculation of residual stress intensity factors after an 

overload. 
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Figure 4-34: Experimental and predicted fatigue crack growth rates after 50 percent overload (7075-T6 Al alloy, ΔKBL=11.4 

MPa√m).  
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Figure 4-35: Experimental and predicted fatigue crack growth rates after 80 percent overload (7075-T6 Al alloy, ΔKBL=8.955 

MPa√m). 
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Figure 4-36: Experimental and predicted fatigue crack growth rates after 100 percent overload (Ti-6Al-4V alloy, ΔKBL=16.33 

MPa√m). 
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Figure 4-37: Experimental and predicted fatigue crack growth rates after 100 percent overload (4140 steel, ΔKBL=17.82 

MPa√m). 
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Figure 4-38: Experimental and predicted fatigue crack growth rates after 100 percent overload (4140 steel, ΔKBL= 19.8 

MPa√m). 
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Figure 4-39: Experimental and predicted fatigue crack growth rates after 100 percent overload (4140 steel, ΔKBL=35.64 

MPa√m). 
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Figure 4-40: Experimental and predicted fatigue crack propagation life after 100 percent overload (4140 steel, ΔKBL=17.82 

MPa√m). 
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Figure 4-41: Experimental and predicted fatigue crack propagation life after 100 percent overload (4140 steel, ΔKBL= 19.8 

MPa√m). 
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Figure 4-42: Experimental and predicted fatigue crack propagation life after 100 percent overload (4140 steel, ΔKBL=35.64 

MPa√m). 
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Chapter 5 
Conclusions and Recommendations 

A fatigue crack growth model based on the simulation of the elastic-plastic stress-

strain response at the crack tip has been proposed. It was assumed that the crack can be 

modeled as a deep notch with tip radius ρ*. The analysis was carried out as for a classical 

notch without the necessity of introducing the concept of the crack closure behind the crack 

tip. It was found that the simulated crack tip stress-strain history and the Smith-Watson-

Topper fatigue damage parameter made it possible to derive fatigue crack growth expressions 

analogous to previously proposed empirical fatigue crack growth equations accounting for 

the mean stress effect. Application of the model resulted in the derivation of a two parameter 

driving force combining the effect of the maximum stress intensity factor and the stress 

intensity range. It was shown that after correcting the applied stress intensity factors for the 

effect of the plasticity induced residual stresses near the crack tip it was possible to derive 

one master fatigue crack growth curve valid for a wide range of stress ratios. It was also 

possible to predict the fatigue crack growth rate based on the Ramberg-Osgood stress-strain 

material curve and the fatigue strain-life Manson-Coffin equation obtained from smooth 

material specimens tested under constant amplitude strain control loading. 

Three forms of fatigue crack driving force were derived, p (1 p)
max,tot totK ΔK − , 0.5 0.5

max,tot totK ΔK  

and p 0.5
max,tot totK ΔK , depending on the simplifications used while solving the basic set of 

equations. It was shown that the driving force in the form of p 0.5
max,tot totK ΔK  was able to 

correlate FCG data for a wide range of stress ratios and FCG rates. The driving force 

p (1 p)
max,tot totK ΔK −  could only be used for predicting high FCG rates. The driving force 
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0.5 0.5
max,tot totK ΔK  was not good for FCG predictions, even in the near threshold region. The model 

was also able to account for the beneficial effect of the compressive part of a loading cycle. It 

was found that the relative contribution of the compressive part of the stress reversal was 

relatively small and depended on the crack tip radius, ρ*, and the actual crack size, a. It was 

also noted that modeling the crack tip as a circular hole might be non-conservative as far as 

the effect of applied compressive stresses is concerned. Furthermore, the model was also able 

to predict the fatigue crack growth after a single tensile overload.  

 The Creager-Paris solution used in the analysis is only valid for long cracks with 

*a ρ . Therefore, the proposed model does not apply to short cracks whose lengths are 

relatively short compared to the elementary material block size ρ*. The classical notch stress-

strain analysis (instead of Creager-Paris solution) has the potential to handle short crack 

problems. 

It was assumed and validated that the effects of the residual stress and plastic zone 

manifest themselves through the decrease in the resultant maximum stress intensity factor, 

Kmax,tot, without significant changes in the resultant minimum stress intensity factor, Kmin,tot. 

It is recommended that the local stresses and strains ahead of the crack tip be measured, or 

calculated by finite element analysis, for each loading reversal. This recommendation would 

improve the assumptions for the correction of the applied stress intensity factors, Kmax,appl and 

ΔKappl. 

The proposed model can also be used to predict the corrosion effect on fatigue crack 

growth. The ρ* parameter depends on the fatigue crack growth data. Changing the ρ* 

parameter depending on the environment allows the model to account for the environmental 

effects.  
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The model can be potentially applied to analyses of fatigue crack growth under 

spectrum loading providing that additional elements involving the load interaction and 

memory effects are added. 
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Appendix A The Derivation of Correction Factor Cp  

The equivalent stresses can be related in Eq. (A.1), see Figure A-1. 

 eq,C p eq,B
eq,C p eq,A ys

eq,B eq,A ys

σ C σ
σ C σ σ

σ σ σ

× = ⎫⎪ ⇒ × = =⎬= = ⎪⎭
 (A.1) 

By substituting the equivalent stresses at points A and C, which are calculated from Eq. 

(2.13), into Eq. (A.1) the following equations can be obtained. 

  
( )

2 2

I I
p ys

p p ppp p

K K3 ρ* 3 ρ*1+ ×C = 1+ = σ
4 r +Δr 4 r2πr2π r +Δr

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A.2)  

                                                                      or 

 
( )

2 2

p I I
ys *

p p ppp

C ×K K3 ρ* 3 ρ*σ = 1+ = 1+
4 r +Δr 4 r2πλ2π λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A.3)  

The relationship between plastic zone sizes is resulted from Figure A-1:  

 p p p
*
p p

λ r +Δr
=

λ r
 (A.4)  

The general form of Eq. (A.4) can be expressed in the form of:  

 p*

p p

r
λ = r

r +Δr
 (A.5)  

The general form of Eq. (A.3) can then be expressed in the form of: 

 
2 2

p I I
**

C ×K K3 ρ* 3 ρ*1+ = 1+
4 r 4 λ2πr 2πλ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A.6)  

Substituting Eq. (A.5) into Eq. (A.6), the correction factor “Cp” can be calculated as follow: 
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2

2
p I I

pp

p pp p

C ×K K3 ρ* 3 ρ*1+ = 1+ r4 r 42πr r r2πr r +Δrr +Δr
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 (A.7)  

 

2

p

pp
p 2

p

Δr3 ρ*1+ × 1+
4 r rΔr

        C = 1+ ×
r 3 ρ*1+

4 r

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⇒

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (A.8)  
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Figure A-1 :  The original and the corrected equivalent stress distribution. 
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Appendix B Parameters Mi for Weight Functions m(x,a) 

Parameters M1, M2, and M3 for an edge crack in a plate of the finite width “w”. See Figure 

B-1(a) for the nomenclatures. 

2 3 4 5

1

6 7 8 9 10

2

a a a a aM = 0.0719768-1.51346 - 61.1001 +1554.95 -14583.8 + 71590.7
w w w w w

a a a a a-205384 + 356469 -368270 + 208233 - 49544
w w w w w

aM = 0.246984 + 6.47543
w

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛
⎜
⎝

2 3 4 5

6 7 8 9 10

2

3

a a a a+176.457 - 4058.76 + 37303.8 -181755
w w w w

a a a a a+520551 -904370 + 936863 -531940 +127291
w w w w w

a aM = 0.529659 - 22.3235 + 532.074 -5479
w w

⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3 4 5

6 7 8

a a a.53 + 28592.2 -81388.6
w w w

a a a+128746 -106246 + 35780.7
w w w

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Parameters M1, M2, and M3 for a central through crack in a finite width plate subjected to 

symmetric loading. See Figure B-1(b) for the nomenclatures. 
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Figure B-1 : The system of coordinates and nomenclature for the universal weight 

function; a) edge crack in a finite thickness plate, b) through central crack in a finite 
width plate.
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