
Dynamic Factored Particle Filtering

for Context-Specific Correlations

by

Dimitri Mostinski

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2007

c©Dimitri Mostinski, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Dimitri Mostinski

ii

Abstract

In order to control any system one needs to know the system’s current state. In many

real-world scenarios the state of the system cannot be determined with certainty due to

the sensors being noisy or simply missing. In cases like these one needs to use probabilistic

inference techniques to compute the likely states of the system and because such cases are

common, there are lots of techniques to choose from in the field of Artificial Intelligence.

Formally, we must compute a probability distribution function over all possible states.

Doing this exactly is difficult because the number of states is exponential in the number

of variables in the system and because the joint PDF may not have a closed form. Many

approximation techniques have been developed over the years, but none ideally suited the

problem we faced.

Particle filtering is a popular scheme that approximates the joint PDF over the variables

in the system by a set of weighted samples. It works even when the joint PDF has no closed

form and the size of the sample can be adjusted to trade off accuracy for computation time.

However, with many variables the size of the sample required for a good approximation

can still become prohibitively large.

Factored particle filtering uses the structure of variable dependencies to split the prob-

lem into many smaller subproblems and scales better if such decomposition is possible.

However, our problem was unusual because some normally independent variables would

become strongly correlated for short periods of time.

This dynamically-changing dependency structure was not handled effectively by exist-

ing techniques. Considering variables to be always correlated meant the problem did not

scale, considering them to be always independent introduced errors too large to tolerate. It

was necessary to develop an approach that would utilize variables’ independence whenever

possible, but not introduce large errors when variables become correlated.

We have developed a new technique for monitoring the state of the system for a class of

systems with context-specific correlations. It is based on the idea of caching the context in

which correlations arise and otherwise keeping the variables independent. Our evaluation

shows that our technique outperforms existing techniques and is the first viable solution

for the class of problems we consider.

iii

Acknowledgments

I would like to thank my supervising professors Pascal Poupart and Charles Clarke for all

the help with this work. I received excellent feedback and we have had many interesting

discussions, which resulted in this work and some very exciting findings. Thanks to you,

I’m proud of my accomplishments in my graduate career so far and have much more to

expect in the future. Thank you!

iv

Contents

1 Introduction 1

2 Environment 5

2.1 Application Level Track Interface . 5

2.1.1 Some terminology . 6

2.1.2 Coordinates . 7

2.1.3 Tasks . 8

2.1.4 Protocol . 9

2.1.5 Application examples . 10

2.2 Hardware Level Track Interface . 13

2.3 Connecting Interfaces . 15

3 Modeling 16

3.1 State Variables . 16

3.2 Observation . 17

3.3 Action . 17

3.4 Dependency relations of state variables . 18

3.5 Learning System Parameters . 20

3.5.1 Train Speeds . 20

4 Tracking 24

4.1 Sources of uncertainty . 24

4.1.1 Sensors . 24

v

4.1.2 Switches . 25

4.1.3 Trains . 25

4.2 Dealing with uncertainty . 25

4.3 Applying particle filtering . 27

4.3.1 Defining particles . 27

4.3.2 Factored Particles . 28

4.3.3 Creating complete particles . 32

4.3.4 Applying the system dynamics . 33

4.3.5 Processing an observation . 34

4.3.6 Resampling and factoring particles 35

4.4 Dynamic particle filtering with context-specific correlations 37

4.4.1 Preliminary experimental results 37

4.4.2 Context-specific correlations . 39

4.4.3 Factored particle filtering with caches 40

4.4.4 Dynamic factored particle filtering 46

5 Results 47

5.1 Simulation-Based Evaluation of Tracking Accuracy 47

5.2 Observation Prediction Accuracy . 49

5.3 KL Divergence with respect to the Gold Standard 50

6 Conclusions 53

vi

List of Tables

2.1 Protocol summary . 11

3.1 Conditional probability distribution for Sw′
s 20

5.1 Average Expected Error in Train Position in mm 48

5.2 Switch State Tracking Accuracy . 49

5.3 Observation Prediction Accuracy . 50

vii

List of Figures

2.1 Typical switch . 6

2.2 Representation of a three-way switch . 7

2.3 Examples of coordinates . 7

2.4 More examples of coordinates . 8

2.5 Follow the leader on a simple track . 12

2.6 Follow the leader on a simple track . 14

3.1 Variable dependencies . 18

3.2 Oval Track . 21

3.3 t12 speed parameters in mm/sec . 22

3.4 t20 speed parameters in mm/sec . 22

4.1 Possible state transitions . 38

4.2 DBN for our problem’s domain . 45

5.1 Sample system’s output and track layout 48

5.2 KL divergence with respect to the gold standard 52

viii

Chapter 1

Introduction

This work is motivated by the Real-Time Programming course at the University of Wa-

terloo. A major part of this course is constructing a real-time control system for a model

train track with multiple trains and switches that can be controlled by a computer. A

few years back the hardware used for the course was changed from a custom-made track

to off-the-shelf components from Marklin – a major German manufacturer of model train

sets. This transition made it easier to maintain the lab, but introduced a major problem

into the development of the control system that we have set out to fix.

With the old hardware, the system was able to know the locations of trains and states

of the switches, so routing the trains to desired locations was purely a control problem.

With the new hardware, most of the time, neither the switch states, nor the train positions

can be known for certain. There are sensors that get hit when a train passes over them,

but if the trains are not moving there is simply no way to know where they are. We discuss

the complications more in Section 4.1, and for now, simply say that tracking the positions

of trains has become a much more complicated problem than routing the trains ever was.

The change in hardware therefore introduced a whole other component into the course that

had to be dealt with in a structured and formal way, which was the goal of this work.

In more general terms, the problem we are facing is monitoring the state of a stochastic

process based on noisy and incomplete data. Because we do not know the exact state of

the system, we must maintain a probability distribution (a.k.a. belief) over the possible

system states.

1

2 Dynamic Factored Particle Filtering for Context-Specific Correlations

Belief monitoring for stochastic processes is a common task in Artificial Intelligence.

Unfortunately, exact computation in most real-world scenarios is intractable, so approx-

imations must be used. A classic problem of trading off accuracy for computation time

therefore applies to belief monitoring.

A popular method for approximating and monitoring the belief using a weighted set

of samples is called Particle Filtering, or Condensation [5]. Its simplicity (i.e., samples

are easy to manipulate), and versatility (samples can approximate any arbitrary PDF)

has permitted its deployment in a wide range of applications. Real-time applications also

benefit from the fact that the size of the sample can be decreased to fit the computation

of the next belief state within the required time constraints. However, the size of the

sample required for an acceptable approximation tends to be exponential in the number

of variables in the system [2]. For a system with more than a few variables it too becomes

intractable.

Fortunately, in many applications, the set of all variables can be split into weakly-

correlated clusters [7]. If such a decomposition is possible, the size of the sample required

can be dramatically reduced for a small cost to approximation accuracy. This method

breaks the correlations between clusters at the end of every time step, which reduces the

variance of the sampling process and concentrates on most likely samples for each cluster

independently.

However, in some problems, variables are considered weakly-correlated if they evolve

independently most of the time, but may get strongly correlated for short periods of time.

An example of this type of correlation is evident in our application where one train’s

position is normally independent of another switch’s state unless the train has just passed

the switch. In the latter case the switch determines which branch the train will follow.

These context-specific correlations cannot be handled adequately by existing tech-

niques. Going with a factored approach means that once in awhile the error introduced

by factoring may be unacceptably large, while not factoring the variables would mean in-

curring a considerable unnecessary computational overhead most of the time. In solving

the belief monitoring problem for trains control we were able to design a solution for these

specific types of correlations.

The basic idea was to keep the variables factored, but remember the event that triggered

Introduction 3

the correlation in what we called a cache. When a non-zero observation is received, a cache

can be used to reconstruct the true joint PDF of correlated variables and correctly adjust

all correlated variables’ marginals.

Our method does not increase the variance of the sampling process compared to the

factored approach (which is the minimum variance achievable) and captures all the corre-

lations that existed (which is the maximum accuracy achievable). We hypothesized that

with the problem at hand we would get the accuracy of plain Particle Filtering for the

price of Factored Particle Filtering, and our results confirm this hypothesis. Our approach

also facilitated the use of Rao-Blackwellisation [4] which is an approach to further reduce

variance by calculating exactly some marginals whenever possible. As such, our method is

the first for this class of context-specific correlations.

We have also investigated the possibility of dynamically creating clusters of correlated

variables when correlations do occur. This has been tried previously by Ng et al. [6] for the

Mars rover. In that problem, orientation of the rover was used for both determining when

to create a cluster as well as when to break it. In our case we created a cluster when a

train passed a switch and broke it some time afterwards, when keeping the cluster around

presented little benefit to the accuracy of the approximation.

There were other problems with dynamically creating clusters in our application. The

clusters had a tendency to grow as trains passed more switches. They became overlapping

as different trains passed the same switches. These aspects have had a significant impact

on the complexity of the sampling process, and introduced unnecessary variance into the

system, and in our testing was not as successful as the factored particle filtering with caches

approach.

Our contributions mainly lie in three areas.

• CS 452: We developed the necessary theoretical background to approach the problem

of model train tracking in a principled way. This problem has to be solved by students

every term in order to complete their projects. Without knowing the necessary

background it is practically impossible to develop a reliable system.

• Particle Filtering: We applied a well-accepted technique to a real-world problem

with some unusual properties. We have identified the limitations of existing theory

for context-specific correlations.

4 Dynamic Factored Particle Filtering for Context-Specific Correlations

• AI Research: We developed a new technique for the class of problems with context-

specific correlations. We have evaluated and compared our technique to existing

techniques in AI and showed that ours performs the best results both in scaling and

accuracy. To our knowledge this is the first viable solution for the class of problems

we consider.

The rest of the thesis is structured as follows: in Chapter 2 we outline the environment

that we deal with, we introduce the general goals of the complete system, which our belief

monitoring is a part of; in Chapter 3 we model that environment, define variables and

correlations; in Chapter 4 we present the methods for monitoring the belief state of the

system with Section 4.4 targeting directly the context-specific correlations. We present the

results in Chapter 5 and conclude in Chapter 6 outlining the directions for future research.

Chapter 2

Environment

In this work, we facilitate the development of a real-time control system for a Marklin

rail-road model. We do not develop the control system itself, but lay out a design that can

be implemented using our technique and show how effective our technique is.

The rail-road model consists mainly of straight and curved track pieces, switches, and

trains. Straight and curved track pieces can be equipped with sensors to detect train

movements. The rail-road (trains and switches) can be controlled by a computer via

digital interface. The model is characterized by high degree of uncertainty in its state. For

one, the switch state cannot be directly queried, secondly the train positions cannot be

queried either and have to be inferred from a series of discrete sensor hits, which themselves

need to be localized in time. The control system will thus have to possess a high degree of

Artificial Intelligence.

2.1 Application Level Track Interface

We would like application level interface to be

• Intuitive – Easy to use

• Deterministic – Contain no uncertainty or probabilistic aspects

• Real-Time – Support real-time constraints

5

6 Dynamic Factored Particle Filtering for Context-Specific Correlations

In particular we want the interface to support the creation of three classes of applica-

tions commonly implemented as part of the Real-Time Programming course of the Uni-

versity of Waterloo. They are “joystick” control, delivery service, and “follow the leader”.

Detail descriptions of these problems as well as outlines of sample solutions are given near

the end of this section. Of course, while completing their tasks, the trains must behave

intelligently – avoid collisions, not create dead-locks, and get to their destinations as soon

as possible.

A computer interface is only able to send commands to the track at the fairly low rate

of about 5 commands per second. This quickly becomes a bottleneck when multiple trains

are active. The bandwidth must also be utilized intelligently to maximize the system’s

throughput.

2.1.1 Some terminology

In discussing the railroad track layout it is useful to refer to a switch’s branches in a

consistent way. In most cases, the switch looks similar to the one depicted on Figure 2.1.

As illustrated we refer to the three end points of a switch as left branch, right branch, and

a trunk.

Figure 2.1: Typical switch

When going over a switch in the forward direction a train can end up leaving along

either the right branch or the left branch depending on the switch state. When going over

Environment 7

the switch in the opposite, or backwards, direction a train will always leave the switch

along the trunk whether it came from the left or the right branch.

We note that a more complicated type of switch can be represented by a group of typical

switches. For example Figure 2.2 shows how a single three-way switch can be represented

by two regular switches.

Figure 2.2: Representation of a three-way switch

2.1.2 Coordinates

If the track has at least one switch and the track is connected, every point on the track can

be addressed relative to some switch. We assume the track has this property and define

the following rules for addressing points on the track. The address is a tuple < S, B, D >

where S ∈ ℵ is switch number, B ∈ {L,R, T} is a switch branch (left, right, or trunk),

and D ∈ <+ is the distance measured in centimeters. We define the set of such tuples as

COORD for future reference. Figure 2.3 illustrates this scheme with few examples.

Figure 2.3: Examples of coordinates

8 Dynamic Factored Particle Filtering for Context-Specific Correlations

To find a point < s, b, d >, we find the switch s, and travel the distance d along

the branch b. If while traveling we encounter another switch going in forward direction,

we proceed along the right branch as a heuristic. If we encounter another switch in the

backward direction we proceed along the trunk. Figure 2.4 illustrates examples of such

addresses.

Figure 2.4: More examples of coordinates

We note that the same point may have multiple addresses.

2.1.3 Tasks

Trains will perform real-time tasks. For each train we want to specify a destination and the

deadline by which to get there. In order to control the speed we also specify a maximum

speed allowed while completing the task. The task is thus a tuple < T, C, S, D > where

T ∈ ℵ is the train number, C ∈ COORD is a coordinate as described above, S ∈ <+ is

maximum allowed speed measured in centimeters per second, and D ∈ ℵ is the time the

task must be completed by. D is measured in ticks since the start of the system, and can

be converted to and from the conventional time units.

The set of such commands comprises a schedule. The schedule must be finite and can

change over time as new tasks are added to the system and old ones leave the system.

For each submitted task, the system will produce an output tuple < S, T > where

S ∈ {success, late, failure} is the end result of executing this task and T ∈ ℵ is the time

the task left the system. For a successful task t an output tuple o would be such that

o.s = success and the time the task left the system o.t ≤ t.d the deadline set for the task.

Environment 9

For a failed task o.s = failure and o.t will be the time the task was terminated, for an

invalid command, for example, it would be the time the task was submitted.

The following set of rules defines the semantics of task execution.

• The train will always try to go to its destination by the shortest path and will only

take detours if the shortest way is blocked by other traffic.

• If the train’s path is blocked, the train will attempts the alternate route only if it

believes it can still meet the deadline.

• If there is no time to take a detour the train will wait for the way to become clear

until the deadline passes.

• If the deadline passes while the train is blocked the task will fail, whereas if the

deadline passes while the way is clear the train will still go to its destination.

• Once the train reaches its destination it will stop unless another task is given to it.

• A train that is stopped or blocked while waiting for the way to become clear, will

move out of another train’s way, if necessary. In the case of two trains blocking each

other, the train whose task has a higher chance of succeeding will assume priority.

In order to follow such rules, the state of the system has to be estimated accurately.

The goal of this thesis is to provide a solution for tracking the state of the system well

enough, to allow implementing such a policy for train control.

2.1.4 Protocol

In order to show, how common problems in Real-Time Programming can be solved, we

design a general protocol for supplying commands to the system. We then present solutions

to relevant problems using our protocol.

The protocol describes the means of inputting the schedule into the system and receiving

the results. The protocol must also allow us to specify more complicated behaviours to the

system rather than merely going from place to place, “follow the leader” for example (to

be discussed in detail later).

10 Dynamic Factored Particle Filtering for Context-Specific Correlations

We could simply enter the task tuples into the system on-line. However if we want a

train to follow some route and not stop at every intermediate point we would like to know

when the train is only approaching its destination. For that purpose the protocol allows

another parameter to be sent to the system along with the input tuple. This parameter is

progress report request r where 0% ≤ r ≤ 100%.

Once the train completes the amount of journey specified by report parameter the

system sends an acknowledgement to the user stating the train identifier and its current

position. The task for which the report is sent is understood to be the last task given to

that train.

Once the task is complete (or terminated) the system sends another report, well refer

to it as complete report, containing the train identifier, the status of the task, and the time

at which the task was completed. This is basically the output tuple discussed before plus

the train identifier.

If a task arrives for the train while it is in the process of executing an earlier task, the

train will abandon the task it is currently doing and proceed with the new one. In this

case the complete report is not sent as the previous status of the train is assumed to be

known to the user.

Another useful feature of the protocol is to simply query the position, speed, and

destination of the train. We define a poll command for that purpose which contains a

train identifier only.

In response to the poll command the system sends an update message. The update

message contains the train number, its coordinate, speed, and the coordinate of where the

train is going if it currently has a task.

Table 2.1 summarizes the protocol.

2.1.5 Application examples

Here we discuss how the three classes of problems mentioned in the beginning of this section

can be solved using this interface.

Environment 11

Command Parameters Disposition Description

go train, coordinate, max-

imum speed, deadline,

report

input submits a task to the system

report train, coordinate output reports the train’s progress in com-

pleting a task

complete train, status, time output reports on the final status of a task

poll train input queries the system about the train

status

update train, coordinate,

speed, target

output updates the user of the train status

Table 2.1: Protocol summary

Joystick Control

The idea of the joystick is simple: having a joystick (or the four directional arrows present

on most keyboards) we assign meaning to each direction for a particular train as follows.

• Forward - The trains should speed up if not at the maximum speed.

• Backwards - The train should slow down or stop if it is at the minimum speed. If the

train is already stopped the train should reverse and start moving at the minimum

speed in the reverse direction.

• Right/Left - The train should follow right/left branch the next time it encounters a

switch going in forward direction.

We keep the train going by adding new tasks to the system whenever one is near

completion. To keep the speed at the desired level we set the maximum allowed speed to

the desired speed and set the deadline to current time. This ensures that if the way is clear

the train will go to its destination at maximum allowed speed. We note that all the tasks

are going to be late or cancelled (in case of blocking traffic), but being on time is not an

aspect of the “Joystick” problem.

12 Dynamic Factored Particle Filtering for Context-Specific Correlations

To implement turning whenever a left or right signal arrives we choose a target along

the specified branch of the next switch.

Delivery Service

Delivery service is the one most closely related to the suggested protocol. There are

producers and consumers of resources positioned somewhere along the track. Once in a

while consumers produce orders for certain producers. The train must pick the ordered

goods at the producer and deliver them to the consumer by the specified time. Each order

therefore yields two tasks: going to a producer and going to the consumer. The application

must simply manage the time to set appropriate deadlines. Under normal circumstances

translating orders to these tasks is all that the application has to do.

One variation of the delivery service is a simple random movement. Here we simply

generate random places to go and go there. Only one task is necessary whenever we decide

to go somewhere and we give this task a very loose deadline.

Follow the Leader

This application requires more care in developing. For the sake of example we’ll assume

the track has the simple layout depicted on Figure 2.5.

Figure 2.5: Follow the leader on a simple track

The basic idea is for one train to traverse a route (circle in the example) counter-

Environment 13

clockwise (Start → Point 1 → Point 2 → Point 3 → Start etc). This train is the leader.

Then we add another train. It approaches the switch from the left branch and waits for

the leader to come around. Then the follower positions itself after the leader and continues

to traverse the circle as well. If the leader is too far ahead the follower increases its speed,

if the leader is too close the follower slows down.

Later more trains can be added in the same manner each following the train added

before it. The track can also be more complicated but the idea is the same: the leader

chooses some route while the follower follows.

We note that we force the leader to traverse the loop counter-clockwise because the

deadline we set is tight forcing the train to choose the shortest path.

We present pseudo code for the two routines one for the leader and one for the follower

in Figure 2.6.

2.2 Hardware Level Track Interface

So far we have described a high level interface presented to the application developer. The

control system on the other hand needs to communicate with the track using the native

interface defined by Marklin, the manufacturer of the track and trains used in this work.

We now describe this low level interface that is communicated from the system to the track

via computer serial port.

Marklin trains have 14 speed settings, or gears, and can go both forward and backward.

The train is given one byte for its speed which can range from 0 to 14. If this byte is set

to 15 the train stops and reverses its direction (the next time it will be given a positive

speed it will move in the opposite direction). Along with speed another byte needs to be

sent that identifies the train. A train command is thus two bytes long.

A Marklin train’s gear is a discrete number from 0 to 14. For different trains this

number translates to a different actual velocity on the track. Furthermore trains do not

always keep their velocity constant. The same is true for the acceleration and deceleration

of trains. The system will need to learn these properties for every train.

Switches can be told to throw either way by sending a two byte command. One byte

specifies the desired position of the switch and the other one identifies the switch. Switches

14 Dynamic Factored Particle Filtering for Context-Specific Correlations

Figure 2.6: Follow the leader on a simple track

Environment 15

are thrown by miniature electromagnets which do not automatically turn off once the

operation is complete. Another one-byte command needs to be sent after an approximate

150 ms delay to turn off these electromagnets.

In order to track the train movements the track is equipped with sensors. The sensor

registers a direction of the train when it passes. The sensor hit is recorded in memory

and needs to be queried by the computer with a one byte command sent to the track. In

response to the query the track dumps into the computer all the sensor hits that happened

since the last time these sensors were queried. The time of the hit is therefore some time

in between the sensor queries and the train identifier needs to be inferred from the system

state.

After every command the computer interface needs to take a pause approximately 200

ms long. The interface can therefore send about 5 commands a second to the track.

2.3 Connecting Interfaces

As one can see, there is a substantial difference in hardware and application interfaces,

that is between what we have and what we want to achieve. This work is about facilitating

the creation of application interface while controlling the system through the hardware

interface.

There is a lot of uncertainty in trains’ positions, controlling this uncertainty is the key

aspect of this work. Once we have a good handle on the system’s state higher-level control

problems can be solved.

We have provided information about the desired control system in order to define the

context of our work. The development of the control system is outside the scope of this

thesis.

Chapter 3

Modeling

We model the system by a set of variables. The system undergoes transitions in a discrete

sequence of steps called the time steps. Values assigned to the variables at the next

time step depend on the their values at current time step, observation received from the

system, and action communicated to the system. If knowing variable’s current value,

observation, and action allows us to determine variable’s next value deterministically, we

call that variable observable. If this information only allows us to construct a probability

distribution function over the possible next values for the variable, we call that variable

unobservable. Variables may be correlated such that the value of a variable at the next time

step depends on the values of all correlated variables at the current time step. Dynamic

Bayesian Networks, or DBNs, are an intuitive way of presenting such correlations.

In the following sections we first define the variables for the problem of train control in

CS 452. We then provide and explain those variables’ correlations by means of a DBN.

3.1 State Variables

T Time at the beginning of the time step. This variable is observable.

Velt ∈ < The velocity train t has. This variable is unobservable.

Post ∈ COORD The position of train t. This variable is unobservable.

16

Modeling 17

Geart ∈ {0,1, ..,14} The gear assigned to train t. This variable is observable through

actions.

Dirt ∈ {−1,1} The direction of train t. The direction of the train is relative to Post. In

essence if Dirt = 1 the coordinate of train t is increasing, and decreasing otherwise.

This variable is observable through actions.

Sws ∈ {L,R} The state of switch s. The switch is thrown left if Sws = L, and right

if Sws = R. This variable is unobservable. Although actions imply a value for

this variable, switches may fail to throw, they can also be thrown manually without

notifying the system.

3.2 Observation

An observation at step x, Ox ≡ {Hiti|Hiti ∈ {0, 1} for each installed sensor i}. Sensors

are installed at various positions on the track and register a train passing in a certain direc-

tion. Therefore Hiti implies a pair of coordinate and direction relative to that coordinate

(Post, Dirt) where the train has passed.

Sensors are commonly installed in pairs such that positions of two sensors are the same,

but they register trains passing in different directions. There is an off-the-shelf component

that implements such a pair of sensors available from manufacturer.

3.3 Action

Action at step x, Ax is an ordered set of atomic actions Actj such that each Actj is one of

the three operations that can be performed on the track.

Tr(t, g) Tell train t to move at gear g

Rev(t) Tell train t to reverse. The train changes direction and stops (gear is set to 0)

Sw(s, p) Tell switch s to throw to specified position p (throw left if p = L and throw right

if p = R)

18 Dynamic Factored Particle Filtering for Context-Specific Correlations

The order of Actj is the order in which the actions are communicated to the track.

Depending on the order the two operations may have different effects. For example a Rev

command followed by a Tr command causes the train to reverse and proceed at a given

gear. Submitting these actions in another order causes the train to stop completely after

changing the direction.

Formally Ax ≡ {Actj|Actj ∈ {Tr(train, gear)∀train, gear} ∪ {Rev(train)∀train} ∪
{Sw(switch, position)∀switch, position}}

3.4 Dependency relations of state variables

We represent dependency relations between the state variables as a Dynamic Bayesian

Network on Figure 3.1. Arrows represent the direct dependencies of the variables and the

absence thereof represents conditional independence. State variables at the next time step

are marked with primes. What this DBN illustrates is what variables at the current time

step effect what variables at the next time step.

Figure 3.1: Variable dependencies

Modeling 19

We now quantify these dependency relations. Parameters of the system we must learn

are designated by θ.

V el′t ∼ N(θspt,g , θvart,g) (3.1)

velocity is assumed to have normal distribution where θspt,g is approximate velocity train t

has when traveling at gear g, and θvart,g is the variance of train t velocity around the mean

value θspt,g , when traveling at gear g.

Pos′t ∼ δ(Pos′t, Post ⊕Dirt ∗ V elt ∗ (T ′ − T)) (3.2)

position is Dirac delta function where ⊕ is the operator that evaluates the new coordinate

a given distance away from current coordinate given Sws for every relevant switch s.

T ′ ∼ δ(T ′, T + Tobs + TA) (3.3)

time is Dirac delta function where TA is the time necessary to communicate the generated

action A to the track and Tobs is the time necessary to produce an observation. The time

it takes to communicate an action to the track is dependent on the type of action only –

Ttr, Tsw, and Trev are the times for a single Tr, Sw, and Rev commands to be processed.

A generated action may contain multiple atomic actions as described in Section 3.3. Ta is

thus the sum of times required to communicate all the atomic actions contained in A.

Table 3.1 presents the probability of Sw′
s given Sws and action A. It is presented as

a value for every relevant combinations of prior variable assignments. Here θrs is the

probability that switch s will correctly change to the right position when such command

is given to it and similarly θls is the probability that the switch will correctly change to

the left position.

Gear′t ≡

g ifTr(t, g) ∈ A

0 ifRev(t) ∈ A

Geart otherwise

(3.4)

Dir′t ≡
{
−1 ∗Dirt Rev(t) ∈ A

Dirt otherwise
(3.5)

20 Dynamic Factored Particle Filtering for Context-Specific Correlations

Sws Sw′
s Sw(s,R) ∈ A Sw(s,L) ∈ A Pr(Sw′

s | Sws,A)

L L 0 0 1

L R 0 0 0

R L 0 0 0

R R 0 0 1

L L 1 0 1− θrs

L R 1 0 θrs

R L 1 0 0

R R 1 0 1

L L 0 1 1

L R 0 1 0

R L 0 1 θls

R R 0 1 1− θls

Table 3.1: Conditional probability distribution for Sw′
s

3.5 Learning System Parameters

3.5.1 Train Speeds

For every train t and gear g we need to know two parameters: θspt,g and θvart,g . These

parameters were learned offline in a series of experiments ran on a oval track with two

different locomotives t12 and t20.

The oval track (see Figure 3.2) was equipped with three sensors set a known distance

apart. Each time a train would pass from one sensor to the next a measurement of the

speed was taken by recording the travelling time and dividing by the distance between

sensors. Three measurements were therefore made each time a train would complete a lap.

While the train was assigned a certain gear, 50 measurements were taken. After the 50

measurements were complete the train’s gear was changed in a different manner depending

on the experiment. The gears were either gradually decreased from 14 to 1 in a series

referred to as decelerating experiments, or increased from 1 to 14 in a series referred to

as accelerating experiments. The trains were also ran forwards in a series referred to as

Modeling 21

Figure 3.2: Oval Track

forwards experiments or backwards in a series referred to as backwards experiments, with

one of the directions arbitrarily labeled forwards and the other one backwards.

Three experiments were run for every train totaling 150 measurements for every θt,g.

• forwards decelerating

• forwards accelerating

• backwards decelerating

An average was calculated over the three tests ran and variance was calculated. A

sample set for every train and every gear contained 150 values. In certain cases however

it proved to be impossible to get the total of 150 values because one of the trains behaved

highly irregularly at slow speeds – it would stop and had to be pushed to continue, or

would fail to move at all. So samples for those gears and that train were not collected.

Figures 3.3 and 3.4 show separately the averages for the three tests ran as well as the

average over three experiments with standard deviation represented as bounds around the

average value.

As one can see the behaviours of the two tested trains are dramatically different. Train

12 shows a linear dependency of the velocity vs. gear setting. This train also behaves

22 Dynamic Factored Particle Filtering for Context-Specific Correlations

Figure 3.3: t12 speed parameters in mm/sec

Figure 3.4: t20 speed parameters in mm/sec

Modeling 23

predictably at low speeds. It can also be seen that the velocity for the same gear seems to

be lower if the train is accelerating and higher if it is decelerating. The variance in speed

is also fairly small.

For the train 20, all of those assertions fail. It is a simpler model of the locomotive than

train 12 and behaves worse. It does not move or gets stuck on the smaller gear settings and

there are no visible trends in the velocity vs. gear dependency other than generally higher

gear meaning higher velocity. Nevertheless, with large enough variance, we can represent

the velocity distribution as a function of the gear.

Chapter 4

Tracking

The high-level problems of train control such as collision detection and following the sched-

ule can be solved if the system knows the positions of the trains on the track. The basic

mechanism available for ascertaining the trains’ positions is polling the status of sensors,

positioned at various points along the track. When polled, the sensor reports a hit if

the train passed that sensor since the last time it was polled. To be detected the train

would have to move in the direction the sensor is set up to detect trains in. We wish to

approximate the trains’ actual positions at any time to the best of our ability.

We discuss the difficulties of tracking trains in our domain and first, attempt to solve

them using existing techniques. We show that existing techniques are not suitable because

they either don’t scale or provide inaccurate results. We then develop our own technique

based on existing techniques discussed in this section. Our technique can be applied to a

new class of problems and solves the problems of scaling and accuracy. Extensive evaluation

of our technique is presented in the next section.

4.1 Sources of uncertainty

4.1.1 Sensors

The sensors, which can malfunction and are therefore unreliable, can only tell us if they

were hit since the last time they were polled. In addition to dealing with false hits and

24

Tracking 25

missed real hits we also have a time and space uncertainty about the train’s position when

we get a real sensor hit. The time uncertainty translates into the space uncertainty given

the train’s speed and can be bounded only by querying the sensors on a regular basis.

4.1.2 Switches

The switches on the track can also be faulty. Sometimes they can fail to throw when

directed to. The switches can also be thrown manually by hand. In the latter case the

system has no way of knowing that the switch was flipped. There is no way of querying

the switch state; so additional uncertainty about a train’s position is introduced when a

train is passing over a switch.

4.1.3 Trains

The trains can be directed to move at one of 14 gears. However the trains do not keep their

actual velocity constant very well. The actual velocities to which these 14 gears correspond

(θsp) vary from train to train and some trains keep their actual velocity constant better

than others (θvar). As a result of this, as time passes, the uncertainty of a moving train’s

position grows and can only be decreased when a sensor hit is reported.

4.2 Dealing with uncertainty

With all those complications it becomes apparent that the system has no hope of knowing

the position of the train exactly. We therefore must settle for a probabilistic approach that

would ideally give us the train position plus some bound on the error in train’s position

approximation. Alternatively we can, and as it turns out must, learn the probability

density function (PDF) of a train’s position to have an idea of where the train is. We

can then ask queries like what is the probability that a given train is within 10 cm of the

specified location.

What kind of a PDF are we likely to deal with? On the straight piece of track a

normal distribution would likely do the trick, however when a train moves over a switch

our PDF should intuitively split and have two local maxima, one on each of the two switch

26 Dynamic Factored Particle Filtering for Context-Specific Correlations

branches. Reversing near the switch can also present a problem and so can faulty sensors.

It is therefore best to not make assumptions about the characteristics of the PDF.

To keep track of the trains’ positions we choose to use a method by Michael Isard

and Andrew Blake [5] called Condensation, also known as Particle Filtering. Originally

developed for vision this method allows us to keep track of general PDFs corresponding to

trains’ positions and describe the system dynamics in an intuitive way.

The basic idea is to represent, and more importantly track the dynamics of a PDF as

a set of weighted snapshots drawn from that PDF – a weighted sample. By “snapshot”

we mean an assignment of some values to every state variable. Weight assigned to the

snapshot is a measure of how certain we are that the world looks like this snapshot, in

other words the likelihood that the state variables have the values specified in the snapshot.

The method iterates through a number of steps.

1. Sample the PDF. We sample our tracked PDF by choosing, with replacement,

elements of our weighted set such that each element has a probability of being chosen

equal to its weight (Note: the weights are normalized). In doing so we get a set of

snapshots, or a sample, that represent the likely states of the system after a previous

iteration of the algorithm.

2. Apply system dynamics. Each of the chosen snapshots undergoes transformations

according to system dynamics. For example, a train’s position variable may be

assigned a value a certain distance away depending on the time passed since last

iteration and the speed of the train. Such transformations are performed for every

variable in a snapshot to create a new snapshot, and the set of new snapshots forms

a new sample. If the system dynamics are not deterministic, for example if the speed

of the train is not known for certain, a snapshot may yield different snapshots after

the system dynamics are applied.

3. Assign weights to new snapshots. Now that we have a new sample we con-

sider the received observation. Snapshots in the new sample are assigned weights

proportional to the probability of receiving an observation, equal to the one we have

received, given the snapshot itself and its predecessor snapshot. The weights are then

Tracking 27

normalized and we end up with a weighted sample to be used in step 1 at the next

time step.

4.3 Applying particle filtering

4.3.1 Defining particles

In Particle Filtering terms a snapshot of the world is called a particle. As stated previously

a particle must contain assignments of all state variables and the set of all particles and

their weights represents the joint PDF of all the state variables. In the most basic terms

for two trains, and two switches our particle might contain the following values

T : 10 : 50 : 12.325 - Current time

V el1 : 125cm/s - Train 1 speed

V el2 : 80cm/s - Train 2 speed

Pos1 : 3R100 - Train 1 position

Pos2 : 1T50 - Train 2 position

Gear1 : 10 - Train 1 gear

Gear2 : 6 - Train 2 gear

Dir1 : 1 - Train 1 direction

Dir2 : −1 - Train 2 direction

Sw1 : R - Switch 1 state

Sw2 : L - Switch 2 state

However, to adequately represent the joint distribution of these state variables the

number of particles necessary in the sample would be prohibitively large. We are therefore

interested in reducing the number of state variables in our particles.

We note, first of all, that some of those variables can be inferred from the actions or the

environment and projection of joint PDF onto those variables is the delta function around

specific values. Geart is known from actions and T is known from the environment. It is

therefore convenient to store those as separate variables outside of our particles.

Next we note that according to Equation 3.1 a projection of joint probability onto V elt

values is a normal distribution with mean θspt,g and variance θvart,g . This is an assumption

28 Dynamic Factored Particle Filtering for Context-Specific Correlations

that we have made. We assume the velocity distribution does not change with time and

therefore requires no tracking. We can thus keep V elt values out of the particles since their

PDF is known given a value for Geart.

Finally, since Dirt values are relative to, and fully determined by Post values and

performed actions, we can keep track of Dirt values in the background. Whenever we

update the Post value or process Rev(t) command we’re going to update the corresponding

Dirt values deterministically. This means that keeping the Dirt values in the particles will

require no more particles to represent the joint PDF than if they were not included –

all that matters is keeping track of Post values and Dirt values come for free. In further

discussion in this section we won’t concentrate on those values anymore and simply imagine

them attached to Post values.

We are left with Post and Sws values in our simplified particles. These are the variables

whose PDFs, not just values, change with time and require tracking. As in the previous

example for two trains and two switches, a particle might look like this:

Pos1 : 3R100 - Train 1 position

Pos2 : 1T50 - Train 2 position

Sw1 : R - Switch 1 state

Sw2 : L - Switch 2 state

We are able to take state variables out of the particles because they have no uncertainty

and therefore there is no need to keep track of them in every particle - a single value is

enough. One exception is V elt values. We assume that their distribution is fixed and

completely represented by its mean and variance for different Gear values.

4.3.2 Factored Particles

The variables left inside the particles are correlated. Switch states imply where the train

is likely to go when it passes this switch. Alternatively if an observation suggests that a

certain train has followed a certain path this would affect our belief in how switches along

that path are set.

We argue that although a probabilistic dependence between Post and Sws exists it

is weak. For the majority of the time one switch’s state does not effect another train’s

Tracking 29

position unless the train is very close to the switch. Also weak are the dependencies of Post

values for different trains and Sws values for different switches. A technique proposed by

Brenda Ng, Leonid Peshkin, and Avi Pfeffer [7] called “Factored Particle Filtering” allows

us to take advantage of the fact that variables’ interdependencies are weak and further

simplify the particles by organizing the remaining variables into clusters.

Clusters are subsets of variables such that interdependencies between variables in differ-

ent clusters are weak and can be broken with little effect on the quality of approximation.

The quality can even be improved if the variables are indeed weakly correlated and the

number of particles required for classical particle filtering is prohibitively large. We basi-

cally put every variable into its own cluster – one for every train containing that train’s

position and one for every switch containing that switch’s state. As in the previous exam-

ple for two trains and two switches the clusters would be Ct1 ≡ {Pos1}, Ct2 ≡ {Pos2},
Cs1 ≡ {Sw1}, and Cs2 ≡ {Sw2}.

Variables in every cluster can then be stored separately in what is referred to as factored

particles. Still with the same example factored particles corresponding to our clusters might

look like
{

Pos1 : 3R100
} {

Pos2 : 1T50
} {

Sw1 : R
} {

Sw2 : L
}

The advantage of factored particles is that the total number of particles is reduced

because each sample of factored particles approximates only the marginal PDF of variables

in the corresponding cluster and not the total joint PDF. Whereas classical factored particle

filtering normally requires a number of particles exponential in the number of variables to

maintain an acceptable quality of joint probability distribution, factored particle filtering

maintains each cluster separately and therefore requires a number of particles linear in the

number of clusters. This improvement means that we can even get a better approximation

with less particles provided the variables in different clusters are really weakly correlated.

Factored Particles technique adds two more steps to the algorithm presented in Section

4.2 between Steps 1 and 2, let’s refer to them as Steps 1a and 1b. These two steps together

break the weak interdependencies that exist between clusters we’ve defined.

1. (a) Project operation begins when step 1 ends – that is when we have just created

a sample of complete particles. For each particle and each cluster we simply

30 Dynamic Factored Particle Filtering for Context-Specific Correlations

take those values from the complete particles that belong to the cluster and

store these variables as a new factored particle. The treatment in [7] draws an

analogy to the database project operations where complete particles define a

relation and factored particles are projections of this relation on the subsets of

attributes in the relation. Identical rows in the projection relation, however, are

not merged.

(b) Join operation creates new complete particles from the factored particles by

combining factored particles from every cluster while making sure that the fac-

tored particles picked from different clusters are consistent. For example if we

consider that a train has certain length, we cannot pick another train’s position

such that the two trains overlap. Such conditions are made possible because Pro-

jection operation broke the conditional dependencies between different trains’

positions. Again the analogy to database cross-product operation on multiple

relations is made where each factored particle represents a relation.

As suggested in [7] it is convenient to think of these steps as a single Project-Join

operation. It takes as input a sample of complete particles where conditional dependen-

cies between variables exist and returns another sample of complete particles where these

dependencies are removed.

There are a couple more things to say about this technique. A Project-Join operation

creates an approximation of the joint PDF it took as input. By doing this approximation

we introduce bias into the system. Suddenly even if we use infinitely many particles

the approximated PDF will never match the true PDF because the variables are weakly

correlated. So why is this still desirable?

To answer this question, we note that simply by having few particles we’re introducing

correlations between variables. For example, consider a system of two binary variables A

and B. Suppose we only use 2 particles to approximate their PDF and the particles are:

{0, 0} and {1, 1}. This sample suggests a very strong correlation in that Pr(A = 1|B =

1) = 1 while Pr(A = 1|B = 0) = 0! Now if we knew that A and B were not correlated, if

they were two coin flips for example, what we should have concluded from the sample is

that Pr(A = 1) = 0.5 independent of B. This is the conclusion a Project-Join operation

would allow us to make.

Tracking 31

We first project the sample into two clusters to get two samples of factored particles

A : {{0}, {1}} and B : {{0}, {1}}. Once we join those factored particles we would get a new

sample {0, 0}, {0, 1}, {1, 0}, and {1, 1}. The output sample of the Project-Join operation

generally consists of more particles than the input sample. To keep the number of complete

particles constant Ng et al. [7] propose a technique called importance sampling, which we

are going to use as well.

The basic idea is to construct a complete particle in steps. Start with all variables

in complete particle unset and then pick clusters one by one, sample a factored particle

for that cluster, and assign values to corresponding variables in complete particle until all

variables are set. This process is repeated until we get the required number of complete

particles.

This method becomes difficult when clusters overlap. In a case like this, when picking

a factored particle some of its variables may have already been set in the complete particle.

We must only pick factored particles that are consistent with earlier choices made for the

complete particle that is being constructed.

To correct for the fact that we were forced to only pick certain particles, we multiply

the initial weight of the resulting complete particle by the fraction of factored particles in

the current cluster that are consistent with the choices already made.

We now take yet another view of the process, and treat the cycle as starting with step

1b, following steps 2, 3, 1, and ending at step 1a. In this view, what we actually store are

factored particles. We begin by creating complete particles and taking them through the

Condensation process. Once the weighted sample is acquired we sample from it, project

the new sample into factored particles, and store the result.

Now, what do we end up storing? What we store are the samples for the variables in the

corresponding clusters. Why do we store the samples? Samples allow us to estimate the

marginal probability distributions for variables in the cluster. We estimate the marginal

distributions because it is computationally intractable to calculate them exactly. However,

not all variables are the same. While Post values are continuous Sws variables can only be

one of the two values L or R. Therefore to store the exact marginal distributions of Sws

variables we need one and only one value rs = Pr(Sws = R) for every switch s. And as it

turns out we can efficiently maintain rs values.

32 Dynamic Factored Particle Filtering for Context-Specific Correlations

The technique of marginalizing out variables in the state space exactly is called Rao-

Blackwellisation [4]. We are going to marginalize out the Sws values and maintain their

marginals rs throughout the algorithm. This means we will not have factored particles for

Cs clusters because we can efficiently do better than sampling.

4.3.3 Creating complete particles

To start step 2 of the Condensation algorithm we need to create complete particles from

factored particles. We use Importance Sampling method described in [7] with special

treatment given to assigning values to Sws variables. This section describes how we produce

a fixed number N of complete particles pi with weights wi.

w1 , p1 : {Pos1, Pos2, .., PosT Sw1, Sw2, .., SwS}1

w2 , p2 : {Pos1, Pos2, .., PosT Sw1, Sw2, .., SwS}2

..

wN , pN : {Pos1, Pos2, .., PosT Sw1, Sw2, .., SwS}N

We first scan the action A generated at the previous step to update the deterministic

parameters Geart, Dirt. We also update the rs value, setting it to

rs + (1− rs) ∗ θrs if Sw(s,R) ∈ A (prob. s was right plus prob. it was left and changed)

rs ∗ (1− θls) if Sw(s, L) ∈ A (prob. s was right and did not change)

(1− γ)rs + γ(1− rs) otherwise (note rs goes to 0.5 over time)

(4.1)

where 0 ≤ γ ≤ 1 is the probability that switch gets thrown when no action is given for

that switch. To clarify:

• If the switch was directed to throw right the probability that it is right afterwards is

equal to the probability that it was already right plus the probability it was left and

changed when it was told to.

• If the switch is directed to throw left the probability it is right afterwards is equal to

the probability it was right and failed to switch.

Tracking 33

• Finally, if the switch was not told to throw either way we become less certain of its

state with every iteration of the algorithm. Passing trains may affect the mechanism

as well as people can be throwing switches manually. We assign constant probability

γ to the event of switch throwing without the system’s knowledge. The value of rs

gets degraded in the absence of actions for switch s. Note that as time goes by rs

tends to 0.5 meaning switch s is as likely to be thrown right as is to be thrown left.

Now for each i we start with wi = 1 and all variables in pi unset. For each cluster Ctt

in turn, we randomly pick a value from associated sample for Post that is consistent with

values already chosen {Pos1, .. , Post−1} for other variables. We multiply wi by the fraction

of factored particles in Ctt sample consistent with variables already chosen. By the end of

this process we end up with particles pi where all Post variables are assigned. We do not

initialize the Sws variables and simply remember, that should we wish to initialize those

values we would pick a value R with probability rs and L otherwise.

We next pick values for V elt according to Equation 3.1 for every Post value in every

particle pi. Then if in some particle pi for some train t moving a distance Dirt∗V elt∗(T ′−T)

from position Post involves going over a switch s in forward direction, and Sws is not yet

assigned a value in pi, we set Sws to R with probability rs in particle pi.

This concludes the setting of variables and calculating the initial weights of complete

particles pi. We now need to apply the system dynamics to get the new sample of complete

particles p′i.

4.3.4 Applying the system dynamics

We are now ready to apply Equation 3.2 to every Post value in every particle to get new

positions Pos+
t . And that would complete step 2 of Condensation algorithm if the trains

could pass through each other. We applied the system dynamics in such a way that each

train moved a certain distance away from their current positions. We did not take into

account that in the same particle a train cannot go the distance if another train is in the

way. Note, that a train in one particle may pass through a train in another particle because

those are two different versions of the world.

We need to detect any collision that might have happened between the trains. We

should note that the collisions we are looking for do not imply that the trains necessarily

34 Dynamic Factored Particle Filtering for Context-Specific Correlations

collide, or even that it is likely they would collide. All we are concerned with is that in a

single particle all Post → Pos+
t transitions are feasible when considered together.

For example if train 1 goes from point A to point B while train 2 goes from point B

to point A when there is only one path from A to B we understand that both transitions

are not possible at the same time. We therefore must modify the final destinations for

both trains to get a feasible transition for the particle. We do this by finding a point C

between A and B where the collision would occur. We have selected speeds V el1 and V el2

already and we know the initial locations of the trains Pos1 ≡ A and Pos2 ≡ B and we

know the time they start moving is T . We can therefore easily solve this problem and

also find time Tcol where both trains reach the point C. We resolve the collision by setting

Pos+
1 = Pos+

2 = C.

For every pair of positions Posl and Posm in a particle pi we need to determine if going

to positions Pos+
l and Pos+

m means the trains would collide. If they would, we need to

calculate time Tcoll,m when these trains will be at the same spot. After we sort all Tcol

values we can start resolving corresponding collisions starting with the one that is going

to occur first. Particles involved in collisions would back off covering smaller distance then

they were originally assigned. After all collisions are resolved Pos+
t values become Pos′t

values and there will be one for every Post in every particle pi.

We have now completed Step 2 of Condensation and proceed to Step 3.

4.3.5 Processing an observation

The dynamics of our system at current step are defined as going from particle pi to particle

p′i. Each transition is a hypothesis of what the world looked like and how it has changed.

We now use the observation to evaluate our hypotheses. In terms of our previous example

a hypothesis might be

pi :

{
Pos1 : 3R100

Pos2 : 1T50

}
→ p′i :

{
Pos′1 : 3R120

Pos′2 : 1L10

}

Note that we do not specify the modifications to Sws values because observations we receive

do not directly affect these variables. Given an observation O we need to assign weights

w′
i = wi ∗ Pr(O | pi, p

′
i)

Tracking 35

We must then normalize w′
i so that

∑
w′

i = 1.

Recall that weights wi were created because we sampled the factored particles in order

to create complete particles. These weights are therefore the prior probability of each

particle. Pr(O | pi, p
′
i) are the means of testing the hypothesis. Let’s see how it is being

calculated.

Transition from pi to p′i by itself implies that certain sensors were hit. For example,

if there was a sensor z1 at 3R110 facing in the direction of increasing 3R coordinate, the

case above would imply that z1 ∈ O. On the other hand if there was a sensor z2 at 3T10

facing any direction, the case above would imply that z2 /∈ O.

Let Oe be the observation implied by the pi → p′i transition and U be the set of all

sensors then

Pr(O | pi, p
′
i) = PrH |O∩Oe| ∗ PrF |O−Oe| ∗ PrM |Oe−O| ∗ (1− PrF)|U−O∪Oe| (4.2)

Where PrH is the probability that a train passes a sensor and the sensor correctly reported

a hit. Each sensor hit that is in both O and Oe multiplies the weight by PrH. PrF is the

probability that a train did not pass a sensor, but a false hit was reported by the sensor.

This could happen if a human tripped a sensor manually. Each hit that is in the O, but

not in Oe multiplies the weight by PrF . PrM is the probability that train passed the

sensor, but the sensor failed to report a hit. Each sensor hit that is in Oe, but not in O

multiplies the weight by PrM . The last term in the equation corresponds to the sensors

that were not hit and are not reported.

Step 3 completes when weights w′
i are calculated and normalized. We proceed to Step

1.

4.3.6 Resampling and factoring particles

We sample new complete particles with replacement from p′i with probabilities w′
i to get N

new particles p̃i and proceed to Step 1a. We project the Post values into their respective

clusters, however Sws values require special care. For each switch s we sum up the weights

of all particles where Sws = R as wr
s and sum up the weights of all particles where Sws = L

as wl
s. Note, that because some particles would have Sws unassigned (1 − wr

s − wl
s) ≥ 0

36 Dynamic Factored Particle Filtering for Context-Specific Correlations

is the total probability of all particles that don’t have Sws assigned. Then new marginals

are computed as follows

r′s = 1 ∗ wr
s + 0 ∗ wl

s + r∗s ∗ (1− wr
s − wl

s) (4.3)

where r∗s is the value of rs after applying the system dynamics function – Equation 4.1 to

rs value from previous time step.

We have now finished an iteration of the tracking logic and wait for the next time step

to repeat it all over again.

Tracking 37

4.4 Dynamic particle filtering with context-specific

correlations

Very early in the experimental stage we started seeing problems with the factored particle

filtering approach presented so far. This lead to revisit the way we characterized variables’

interdependencies. We realized that interdependencies were unusual in a specific way that

was not handled adequately by the presented algorithm based on existing techniques. As

such we ended up creating our technique based on factored particle filtering.

In this section we explain the shortcomings of existing techniques and present our

technique to deal with specific types of correlations that exist in our system and other

systems that share their structure with ours.

4.4.1 Preliminary experimental results

We first say a few words about results of running the proposed factored particle algorithm

on an experimental layout and on a simulator. We hoped that the system would be able to

determine with good accuracy the states of the switches by monitoring train movements

over time. Through experiments, it has become evident that although this does happen to

some extent, it cannot be considered satisfactory.

We found that posterior distribution of a switch state variable changes with respect to

its prior distribution in response to a train movement if and only if the following conditions

are met: A train passes this switch in the forward direction and hits a sensor on either the

right or the left branch of the switch in a single time step.

Consider Figure 4.1. If we had a complete particle pi transitioning into particle p′i where

a train went form point A to point C

pi :
{

Pos1 : A
}
→ p′i :

{
Pos′1 : C

Sw1 : R

}

the switch’s state would be initialized to R position. This transition implies that the sensor

on the path from A to C should have been hit. The weight w′
i assigned to the particle

p′i would then depend on whether this sensor hit was in the observation or not. If an

observation told us that the sensor on path from A to C was hit, w′
i would grow, and when

38 Dynamic Factored Particle Filtering for Context-Specific Correlations

Figure 4.1: Possible state transitions

the complete particle got refactored the marginal probability rs = Pr(Sws = R) would

grow as well.

If, on the other hand, our particle corresponded to a move from A to B, then the switch

state cannot be confirmed by an observation. What we mean is that this particle would be

weighted independently of the switch assignment because we have nothing to tell us which

branch the train is on.

Logically, this makes sense. If a train passed from A to C we do know that the switch

is thrown R. If the train passed from B to C we have no indication of the switch’s state.

In order to make conclusions about the switch state in the latter case, we would have to

remember that before B the train was at A. With the switch variables decoupled from train

variables factored particle filtering does not allow us to do this.

One way to overcome this problem would be to introduce persistent interdependencies

between switch states and train positions. If we do this we can no longer factor the complete

particles into separate train and switch particles. Every train position would have to be

coupled with all switch states.

This would present a number of other complications. If we still factor particles such that

every train has its own cluster (train’s position plus all switch states) only train positions

with the same switch assignments will be consistent. This is a severe limitation as the

Tracking 39

trains can be in different parts of the track and have absolutely no effect on each other.

Further, the set of factored particles for each cluster would have to approximate the join

probability of corresponding train plus all the switches, and as a result, the required number

of factored particles would grow exponentially in the number of switches. The number of

switches is the physical parameter of the track, we therefore introduce a computational

limit on the size of the track, which is especially undesirable.

Finally, this approximation is too crude because only transitions like the one from A

to C in the earlier example really tell us something about the switch position and not

subsequent transitions. Yet, we’d still like the system to infer the switch states from train

movements better that it does with the present algorithm.

4.4.2 Context-specific correlations

While designing the factored particle filtering approach we have made an assumption that

train position variables and switch state variables are weakly correlated to the point that

they can be split into different clusters. In the previous section we’ve shown that in

particular circumstances train positions are strongly correlated to switch states. However

it is a specific train that is correlated with a specific switch and for a very short period of

time. As such, this correlation does not lend itself easily to any of the techniques we’ve

discussed so far. We call them context-specific correlations (analogous to context-specific

independence [1]), meaning that they exist in the specific context eg. a switch is correlated

with a train if the train has just passed that switch.

We wish to be able to capture context-specific correlations such that for a short period

of time a train would be correlated to the switches it just passed. We note, however, that

every particle in a train’s factored particle set moves independently, so each particle can

potentially pass different switches at different points in time. We therefore have to link

each factored particle to a particular switch state assignment independently.

As time passes we want those assignments to expire ending the correlation between the

corresponding variables. We also want to discount the assignments that were made a few

time steps back.

40 Dynamic Factored Particle Filtering for Context-Specific Correlations

4.4.3 Factored particle filtering with caches

Caches

When a train passes a switch in the forward direction we initialize the Sws variable using

the marginal rs as described in Section 4.3.3. We now wish to store the value assigned to

that switch and associate this value with the new position of the train Pos′t – the position

where the train ends up in because of the assigned Sws value.

Consider the train factored particle set. Over the course of a few time steps each

particle follows some route. Two particles can correspond to positions far apart, and their

routes can be very different, passing different switches at different points in time. We

therefore extend not the cluster as a whole, but particles themselves. So, every particle

in the train factored particle set would contain a position value, plus zero or more switch

state assignments, let’s call them Caches. A cache stores an assignment of switch variable

Sws and carries it over into the next time step linked with the specific position value Post.

We also wish to remember when the cache was created and therefore store the time step

when the assignment was made as part of our cache. So for a train factored particle set

with three elements we may store something like that:

Pos1 : 1R30 {Sw1 : R at T100}
Pos1 : 1L50 {Sw1 : L at T101, Sw2 : L at T98}
Pos1 : 2R10 {}

An important aspect to cover is when do the caches expire. A cache is valuable as long

as it can say something about the present state of the switch better, than rs value. An old

cache tells us the state the switch was in some time ago. At every time step, according to

our system dynamics, the switch has probability γ of flipping the other way. Therefore as

time passes, cache’s value decreases and rs, which is updated every time step, becomes a

better indicator of the switch’s position.

Other events that significantly decrease cache’s value are commands given to the cor-

responding switch. The command will affect the rs value according to Equation 4.1 and

because actions are expected to be more or less reliable, caches can be dropped at that

point in time.

In this work we chose to delete the cache after a fixed number of time steps or sooner,

Tracking 41

if a command is given to the corresponding switch. Generalizing, we can say that the

aging of cache should apply to other domains and commands correspond to events that

significantly changes the marginal distribution of variable corresponding to a cache.

Factored particle filtering with caches

We must now modify step 1b of our algorithm. When sampling factored particles for

different trains we must make sure we don’t pick particles that have inconsistent caches

– that is different switch value assignments at the same time step. Suppose, for example,

that we pick the following particle for train 1 {Pos1 : 1T30 {Sw1 : R at T100}}. Then

a particle for train 2 {Pos2 : 2R10 {Sw1 : L at T100}} is inconsistent and needs to be

resampled. Note that if the time stamps are different then the caches are consistent and

the most recent cache represents the most likely assignment of the switch variable.

Although factored particle filtering algorithm prescribes that the initial weight of a

particle must be multiplied by the ratio of all values consistent with values already chosen,

we argue that the probability of a particle being inconsistent is very low. Only if two trains

pass the same switch in a single time stamp would we get an inconsistency. Most likely

this would never happen. We therefore assume that all particles are consistent and if we

do find a case of inconsistency we would simply pick a different value without adjusting

the initial weight.

When sampling a new complete particle it is also a convenient time to detect any old

caches. If a factored particle contains an old cache, or a cache that was invalidated by

a switch command this cache needs to be ignored and not considered in the resulting

complete particle. We set the maximum number of steps for a cache to be valid in advance

based on the discount factor and common sense.

Let’s look at an example. Suppose the maximum age for a cache is 3 and we are at

time step T10. We have two trains and the following factored particles:

42 Dynamic Factored Particle Filtering for Context-Specific Correlations

Pos1 : 1T30 {}
Pos1 : 1T50 {Sw1 : R at T6, Sw2 : L at T9}
Pos1 : 2R10 {}

Pos2 : 3T10 {Sw1 : R at T8, Sw2 : R at T7, Sw5 : R at T9}
Pos2 : 4L90 {}
Pos2 : 2T10 {}

suppose we picked the second particle from first cluster and first particle from the second

cluster. Suppose that action at previous time step A9 contained a command for switch 5.

We would create the following complete particle:

{
Pos1 : 1T50 { , Sw2 : L at T9}
Pos2 : 3T10 {Sw1 : R at T8 , Sw2 : R at T7}

}

we see that one of Pos1 caches got invalidated due to its age. Furthermore one of Pos2

caches got invalidated because a command was given to the corresponding switch. These

caches do not exist anymore.

We now need to initialize those Sws values that have valid caches. Knowing the cache

age we can re-create the proper PDF for the corresponding switch. In each time step, a

switch has probability γ of changing its state. We can easily calculate the probability that

the switch changed its value since the cache was created and with that probability assign

Sws value that is different from cache. Otherwise Sws gets the same value as the one in

cache.

However, we are going to use a more simple scheme and show that it has the same

effect on the rs values as the one we’ve just described. We are going to assign Sws variable

the value specified in the most recent cache, and when calculating rs value, compensate for

this, by adjusting the weights used in computation. Let us see how our simplified scheme

would work by going back to the previous example. Our complete particle would look like

Tracking 43

this.

pi

Pos1 : 1T50 { , Sw2 : L at T9}
Pos2 : 3T10 {Sw1 : R at T8 , Sw2 : R at T7}
Sw1 : R Due to Pos2

Sw2 : L Due to Pos1

First of all, we note that what we are really interested in is maintaining the proper rs

values. These values contain the knowledge we have about each switch state. Sws values

exist only temporarily, until the particles are factored, and are really just means of tracking

rs values – the encoding of switch PDFs.

Recall Equation 4.3 that specifies how we calculate rs values based on the weighted

set of complete particles. The assignment of Sws variable will determine if the particle’s

weight is counted towards wr
s or wl

s term. Let us go back to our example and apply system

dynamics to the sample particle to obtain its weight.

pi → p′i

Pos′1 : 1T80 { , Sw2 : L at T9}
Pos′2 : 3R20 {Sw1 : R at T8 , Sw2 : R at T7, Sw3 : R at T10}
Sw′

1 : R Due to Pos2

Sw′
2 : L Due to Pos1

Sw′
3 : R Due to Pos2 → Pos′2 transition

In this transition, train 2 passed switch 3 in forward direction ending up on the right

branch of switch 3. We have initialized Sw′
3 value by picking R with probability r3 and

created a new cache and attached it to Pos′2 value.

We process the observation as we normally do and obtain a weight w′
i for our new com-

plete particle p′i. Now we are about to apply Equation 4.3 while refactoring the complete

particle. Let us show that we can calculate rs value correctly despite the simplified scheme

we have used to assign Sws value in pi.

In our example Sw2 is assigned the value of L due to a cache that is one time step old.

If we were to properly assign Sw2 its value then with probability γ we would assign Sw2

a value R. This is because γ is the probability the switch state changed in one time step.

This means that when properly calculating r2 using Equation 4.3, w′
i could be counted

towards wr
s with probability γ and otherwise it is counted towards wl

s term. Well we can

44 Dynamic Factored Particle Filtering for Context-Specific Correlations

still make w′
i be counted correctly if we add γ ∗w′

i to wr
s and (1− γ) ∗w′

i to wl
s. The same

argument works for older caches with the only difference that the portion going to each of

the two sums (wr
s and wl

s) is harder to calculate.

We note that the portion of the weight going to each of two sums is determined by

γ and the age of cache only. We can therefore pre-compute these portions for all valid

ages of the cache. Let us denote by γx the portion of the particle’s weight going to the

term where we would normally sum the weights for particles with the opposite Sws value

assignments. In our previous example γ1 ∗ wi is added towards wr
s. We note that γ1 = γ,

but γ2 6= γ ∗ γ. Also newly created caches (new switch assignments made due to train

movements like Sw3 in previous example) must not be discounted therefore γ0 = 0. In

general γx = (1− γx−1) ∗ γ + γx−1 ∗ (1− γ).

To calculate rs values correctly despite our simplified scheme we don’t even change

Equation 4.3, but we do change how we calculate wr
s and wl

s values.

wr
s =

∑
i

(1− γx(i,s)) ∗ w′
i +

∑
j

γx(j,s) ∗ w′
j

wl
s =

∑
j

(1− γx(j,s)) ∗ w′
j +

∑
i

γx(i,s) ∗ w′
i

for all i such that Sws = R in p′i and j such that Sws = L in p′j and x(i, s) is the age of

the cache that was used to initialize each Sws value in particle i.

Generalizing to other domains

The solution that was presented is highly tailored to our application’s domain. Our results,

presented later, indicate that this method produces the best results over the set of proposed

solutions. We would like to understand the specifics of this solution and see where else

Factored Particle Filtering With Caches may be applicable.

Let us first consider the Dynamic Bayesian Network that represents our problem on

Figure 4.2.

The most important aspect is that position and switch variables really evolve completely

independently most of the time. A single event that is stored in a cache completely specifies

the correlation of the two variables. This condition is necessary for us to be able to keep

the correlated variables in separate clusters.

Tracking 45

Figure 4.2: DBN for our problem’s domain

Another necessary condition is that dynamics of the cached variable must be such

that knowing a value a few time steps back, can be used to derive the variable’s current

value better, that by considering current observation-action pair. In the trains domain,

for example, we simply can’t infer a current state of the switch from our observations, and

actions are noisy. We can only infer a position of a switch at the time the train passed

over it and cache captures exactly this information.

If these two conditions are met, then a weight given to a complete particle after pro-

cessing an observation gives us the marginal probability of cached variable’s value at the

time the cache was created. If we can use this information to construct a PDF at present

time step, the cache is sufficient for tracking the corresponding variable.

We thought about other problems that would resemble ours. A completely unrelated,

but structurally similar problem may be that of tracking infectious disease outbreaks in

different areas of the world by monitoring patients in one country. When a person comes

to a doctor with a rare disease it is sufficient to ask which countries that person has been

to in the last little while to update our belief about where the outbreak may be going on.

In that sense each person is a variable in its own cluster and so are countries. Not factoring

these variables means all people and all countries belong to the same giant cluster.

This problem is not as dynamic as trains and particle filtering may not be the approach

to take, but disease monitoring shares a lot of the structure with trains. For our purposes

countries are effectively unobservable and similar to switches observations only tell us about

46 Dynamic Factored Particle Filtering for Context-Specific Correlations

variable’s past value when it was correlated with the observable variable. This tells us that

the structure is not unique to the trains domain and factored particle filtering with caches

is likely applicable to other problems.

4.4.4 Dynamic factored particle filtering

A more general approach to handling context-specific correlations is simply create clusters

dynamically. If we know an event that triggers a correlation, like train passing over a

switch, we can create a cluster with just that one train and the switch it has just passed. If

that train passes another switch, that switch would have to be added to the cluster. This

point describes how a cluster can grow.

Another unfortunate side-effect is that if a train passes a switch that is already in the

cluster with some other train, clusters would become overlapping, which in turn will make

the joint operation more complex. Clusters may overlap by more than one variable and

importance sampling becomes exponentially more complex with the number of overlapping

variables.

We can battle the problems of growing and overlapping clusters by breaking them up.

If we knew when correlations ended, this would be a good time to break a cluster. In her

work Brenda Ng [6] considered a problem of mars rover. Wheels on the two sides of the

rover would generally move independently, except when the rover would be on the incline.

The cluster was created while the rover was on the incline and broken once the rover was

level again.

But in trains domain and possibly other domains, correlations do not end, but rather

gradually fade away. For comparison reasons we’ve implemented a dynamic factored par-

ticle filtering approach for our trains problem and set the same rules for breaking a cluster

up as for deleting our caches.

This approach is more general and makes fewer assumptions about the problem’s struc-

ture, yet it increases the variance of the tracking process. The clusters must maintain the

approximate joint PDF for all the switches in it, while caches allowed us to calculate the

marginals exactly.

Chapter 5

Results

We have implemented and tested four solutions to the trains problem. They are: Plain

Particle Filtering (PF), Factored Particle Filtering (FPF), Factored Particle Filtering With

Caches (CFPF), and Dynamic Factored Particle Filtering (DFPF). We have run a number

of experiments on a simulator and on a real experimental track. In this chapter we report

the results of those experiments.

The track layout used for these experiments is depicted on Figure 5.1. The simulator

was made to match the layout of the physical track. Figure 5.1 also shows bidirectional

sensors as black squares, 10 most likely positions for every train as numbered circles, and

switch numbers followed by corresponding rs values near the locations of switches.

5.1 Simulation-Based Evaluation of Tracking Accu-

racy

For the first series of experiments we have used a simulator. It gives us a unique ability,

knowing the true simulated trains’ locations and switches’ states, compare them against

the algorithm predictions.

Three simulated trains traversed a path along the track. Keeping the trains on correct

routes required flipping switches and reversing the trains. Avoiding collisions required

stopping trains and setting them back in motion at various points along the route.

47

48 Dynamic Factored Particle Filtering for Context-Specific Correlations

Figure 5.1: Sample system’s output and track layout

For trains we calculate the expected error by multiplying each particle’s weight by the

distance from predicted train’s location to the simulated location and sum over all particles.

The average expected absolute error is reported for 1000, 500, and 250 particles in Table

5.1. The average is taken over the duration of test runs.

Number of particles 1000 500 250

Plain (PF) 79.45 143.78 227.10

Factored (FPF) 273.92 252.65 305.07

Dynamic (DFPF) 112.29 149.15 178.60

Caches (CFPF) 84.26 103.70 136.06

Table 5.1: Average Expected Error in Train Position in mm

We can see that while for 1000 particles PF gives the best results, its performance is

significantly degraded when the number of particles is decreased to 500. For 500 and 250

particles CFPF gives the best results.

For switches we report the probability assigned to the correct simulated state of the

switch. Average probability assigned to the correct simulated switch status over the dura-

tion of test run are reported for 1000, 500, and 250 particles in Table 5.2.

The number of particles does not seem to affect the switch prediction accuracy by much.

Results 49

Number of particles 1000 500 250

Plain (PF) 0.81 0.81 0.84

Factored (FPF) 0.58 0.60 0.61

Dynamic (DFPF) 0.77 0.76 0.76

Caches (CFPF) 0.80 0.81 0.80

Table 5.2: Switch State Tracking Accuracy

We attribute this to the fact that switches are binary variables, and the sample necessary

to accurately track their distribution can be quite small. The reason we cannot decrease

the number of particles even further is because we need at least that many to track the

train positions.

We note that CFPF comes in close second to PF, and DFPF is not far off. With

sufficient number of particles PF represents the best, unbiased approximation to the true

joint PDF. CFPF, DFPF, and FPF are all approximations of PF in that sense and CFPF

comes closest.

It is interesting to see that PF can do quite well for a subset of variables, while other

variables in the same run are approximated much worse.

5.2 Observation Prediction Accuracy

The next set of experiments were run using a real track with real trains. A playback file

that contained the times the sensors were hit and actions given to the track, was recorded

and used for evaluation of all four techniques off-line. The playback file contained the two

trains that were run in various add-hoc paths around the track. Again the trains were often

reversed or stopped to avoid collisions and switches were thrown to make trains behaviour

interesting. Most of the time both trains were in motion.

When a sensor hit was observed, we calculated how many particles were consistent with

that hit and divided by the total number of particles. This metric gave us the accuracy of

observation prediction. It is a number equivalent to the percentage of sensor hits accurately

predicted by our system. We took an average value for the duration of the run and made

50 Dynamic Factored Particle Filtering for Context-Specific Correlations

50 runs. We report the average over the 50 runs for 5000, 1000, 500, and 250 particles in

Table 5.3.

Number of particles 5000 1000 500 250

Plain (PF) 0.47 0.26 0.14 0.08

Factored (FPF) 0.39 0.37 0.36 0.30

Dynamic (DFPF) 0.49 0.46 0.43 0.29

Caches (CFPF) 0.47 0.47 0.45 0.34

Table 5.3: Observation Prediction Accuracy

We note that 100% in this metric is not the goal for the system to achieve. The only

way to have a 100% observation prediction accuracy is to have an absolutely deterministic

system. The maximum achievable value for this metric is highly dependent on the variance

inherent in the system. To know if we are performing well, we ran plain particle filtering

algorithm with 25,000 particles. This took much more time to compute, but the accuracy

we got was only 49%. This tells us that we are very close to the maximum achievable

observation prediction accuracy given our system’s variance.

Because the real track was characterized by a higher degree of variance than the simula-

tor, we found that PF requires 5000 particles to compare with the rest. For 1000, 500, and

250 particles CFPF gives the best results with DFPF being second. Also CFPF degrades

the slowest as the number of particles is decreased. A 47% accuracy in this case means

that 47 per cent of all particles predicted a hit while others cover the system’s variance.

5.3 KL Divergence with respect to the Gold Standard

For the last set of experiments we wanted to evaluate the quality of tracking switch PDFs.

Because we did not know the true states of switches we have used the data received by

running PF with 25,000 particles as a gold standard. We then ran PF, FPF, DFPF, and

CFPF with 1000 particles each and computed the KL divergence of those four runs versus

the gold standard. We have used the same playback file that was used in the previous

experiments.

Results 51

KL divergence (Equation 5.1) [3] is a general metric that tells us the difference between

two PDFs. KL divergence is non-negative, and zero if the two PDFs are equivalent.

DKL(P || Q) =
∑

i

P (i) log
P (i)

Q(i)
(5.1)

Figure 5.2 shows the KL divergence for switch PDFs. We can see that KL divergence

for CFPF is closest to zero out of the four techniques. CFPF also presents no spikes evident

in other techniques. The spikes are likely caused by events that are comparably harder to

track than the general dynamics of the process.

52 Dynamic Factored Particle Filtering for Context-Specific Correlations

Figure 5.2: KL divergence with respect to the gold standard

Chapter 6

Conclusions

We have considered a real world problem of train monitoring, which is a necessary part of

controlling the train system in CS 452. We have presented a principled solution for this

problem using the latest techniques in AI. The theory contained in this work will become

a part of material taught in CS 452 in the future.

Due to interesting properties of the problem, we were able to create a functionally new

approach in the framework of Factored Particle Filtering for tracking stochastic processes.

If strong correlations occur between otherwise independent clusters of variables for short

periods of time, our technique allows capturing and using the information about the trig-

gering event in a ”cache” for proper inference, without adjusting the decomposition of

variables. For a class of problems that to our knowledge has not been considered so far,

our technique allows tracking context-specific correlations with precision of unbiased plain

Particle Filtering while keeping all variables factored.

We have compared our technique against other techniques some of which, like plain

Particle Filtering, have been around for awhile, and others, like Dynamic Factored Particle

Filtering, were only recently proposed. In a series of experiments involving simulation and

real track data we have shown that our technique provides the best results in terms of both

accuracy and scaling.

Our experiments show, that for the trains problem Factored Particle Filtering With

Caches gives the best overall results. Dynamic Factored Particle Filtering, which comes

in second, proved to be a lot harder to implement. The resampling process becomes very

53

54 Dynamic Factored Particle Filtering for Context-Specific Correlations

complex due to cluster sizes and overlaps. Recall that we keep variables in clusters for the

same amount of time we would otherwise hold a cache.

Factored Particle Filtering with the same decomposition as our technique provides

inaccurate results, and plain Particle Filtering requires much more particles to keep up

with our technique, in other words plain Particle Filtering does not scale.

For future work we would like to consider how the generated PDFs can best be used for

making decisions for controlling the trains. Recall that what we end up with is a weighted

sample of possible train positions. This information needs to be aggregated so that the

train can successfully be routed. A most simple approach is to calculate a weighted mean

and variance of our sample, but perhaps there are better ways.

Bibliography

[1] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific indepen-

dence in Bayesian networks. In Uncertainty in Artificial Intelligence, pages 115–123,

1996.

[2] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In

Uncertainty in Artificial Intelligence, pages 33–42, 1998.

[3] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and

sons, 1991.

[4] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-Blackwellised particle filtering

for dynamic Bayesian networks. In Uncertainty in Artificial Intelligence, pages 176–183,

2000.

[5] M. Isard and A. Blake. CONDENSATION—conditional density propagation for visual

tracking. International Journal of Computer Vision, 29(1):5–18, 1998.

[6] B. Ng. Factored inference for efficient reasoning of complex dynamic systems. PhD

thesis, Harvard University, Cambridge, MA, 2006.

[7] B. Ng, L. Peshkin, and A. Pfeffer. Factored particles for scalable monitoring. In

Uncertainty in Artificial Intelligence, pages 370–377, 2002.

55

