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Abstract

The classification of data with imbalanced class distributions has posed a signif-

icant drawback in the performance attainable by most well-developed classification

systems, which assume relatively balanced class distributions. This problem is es-

pecially crucial in many application domains, such as medical diagnosis, fraud de-

tection, network intrusion, etc., which are of great importance in machine learning

and data mining.

This thesis explores meta-techniques which are applicable to most classifier

learning algorithms, with the aim to advance the classification of imbalanced data.

Boosting is a powerful meta-technique to learn an ensemble of weak models with a

promise of improving the classification accuracy. AdaBoost has been taken as the

most successful boosting algorithm. This thesis starts with applying AdaBoost to

an associative classifier for both learning time reduction and accuracy improvement.

However, the promise of accuracy improvement is trivial in the context of the class

imbalance problem, where accuracy is less meaningful. The insight gained from a

comprehensive analysis on the boosting strategy of AdaBoost leads to the inves-

tigation of cost-sensitive boosting algorithms, which are developed by introducing

cost items into the learning framework of AdaBoost. The cost items are used to

denote the uneven identification importance among classes, such that the boosting

strategies can intentionally bias the learning towards classes associated with higher

identification importance and eventually improve the identification performance on

them. Given an application domain, cost values with respect to different types of

samples are usually unavailable for applying the proposed cost-sensitive boosting

algorithms. To set up the effective cost values, empirical methods are used for

bi-class applications and heuristic searching of the Genetic Algorithm is employed

for multi-class applications.

This thesis also covers the implementation of the proposed cost-sensitive boost-

ing algorithms. It ends with a discussion on the experimental results of classification

of real-world imbalanced data. Compared with existing algorithms, the new algo-
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rithms this thesis presents are superior in achieving better measurements regarding

the learning objectives.
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Chapter 1

Introduction

1.1 The Difficulty with Classification of Imbal-

anced Data

Classification is a fundamental task of knowledge discovery in databases (KDD) and

data mining. In constructing a classification model, a learning algorithm reveals

the underlying relationship between the attribute set and class label, and identifies

a model that best fits the training data. The task of the constructed classifier is

to predict the class labels for any unseen input objects. Therefore, the learning

objective is a classification model with good generalization capability (i.e., a model

that accurately predicts the class labels of previously unknown records). For the

best generalization, the model should fit the training data properly. If the model

fits the training data poorly (i.e., the model underfits the data), both the training

error and generalization error are high. In such a case, by learning the training

set better, both training error and generalization error decrease. If the model fits

the training data too well, the performance on the training examples still increases

while the generalization error would become worse. This phenomenon is known as

model overfitting.

Model overfitting is important in machine learning. In order to avoid overfitting,
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additional techniques are introduced to limit exhaustive learning on the training set.

Such techniques search for the most common regularities in the data for improved

generalization performance. For example, the Minimum Description Length (MDL)

principle [78] is stated as: given a limited set of observed data, the best explanation

(i.e., model) is the one that permits the greatest compression of the data. That is,

the more we are able to compress the data, the more we learn about the underlying

regularities that generated the data. Such a process generates an unavoidable

maximum-generality bias favoring the discovery of more general rules (i.e., the larger

disjuncts) [41, 87]. However, such an inductive bias of maximum-generality has

posed a serious difficulty with the classification of imbalanced data.

The imbalanced data problem is characterized as having many more instances of

certain classes than others. Particularly for a bi-class application, the imbalanced

problem is one in which one class is represented by a large set of samples, while

the other one is represented by only a few. In most applications, even though the

degree of imbalance varies from one application to another, the correct classification

of samples in the rare class often has a greater value than the contrary case. For

example, in a disease diagnostic problem where the disease cases are usually quite

rare as compared with normal populations, the recognition goal is to detect people

with disease. Hence, a favorable classification model is one that provides a higher

identification rate on the disease category. With this kind of application, because

the interested instances occur infrequently, models that describe the rare classes

have to be highly specialized and cannot be easily simplified into more general

rules with broader data coverage. Classification rules that predict the small classes

tend to be rare, undiscovered or ignored; consequently, test samples belonging to

the small class are misclassified more often than those belonging to the prevalent

class. Therefore, the maximum-generality bias works well for the large class but

not for the small class.

Noisy data may also make it difficult to learn the rare cases. In the real world,

data contains various types of errors, either random or systematic. Random errors

are often referred to as noise. Given a sufficiently high level of background noise, a
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learner may not be able to distinguish between rare cases and noise-induced ones

[99]. Most of the so-called noise-tolerant techniques that try to minimize the overall

impact of noise usually perform at the expense of the rare cases, as they tend to

remove noisy data and the rare cases as well.

The difficulty of the class imbalance problem and its occurrence in practical ap-

plications of machine learning and data mining has attracted considerable research

interest [68]. Published solution approaches to the class imbalance problem can be

categorized as data level and algorithm level [15]. At the data level, the solution

objective is to re-balance the class distribution by re-sampling the data space, in-

cluding oversampling instances of the small class and undersampling instances of

the prevalent class. Sometimes this can involve a combination of the two techniques

[14, 27]. At the algorithm level, solutions try to adapt existing classifier learning

algorithms to bias towards the small class, such as cost sensitive learning [65] and

recognition-based learning [43]. Obvious shortcomings with the re-sampling (data

level) approaches are: 1) the optimal class distribution of a training data set is

usually unknown; 2) an ineffective resampling strategy may risk losing information

of the prevalent class when undersampling and overfitting the small class when

oversampling; and 3) extra learning cost for analyzing and processing data is un-

avoidable in most cases. Solutions at the algorithm level, being either classifier

learning algorithm-dependent or application-dependent, are shown to be effective if

applied in a certain context. These factors indicate the need for additional research

efforts to advance the classification of imbalanced data.

1.2 Practical Problem Domains

The class imbalance problem is pervasive in a large number of domains of great

importance to the data mining community. This problem is intrinsic to some appli-

cation domains; while in other cases, it happens when the data collection process

is limited due to certain reasons [15]. The following examples illustrate such cases.
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• Fraud Detection. Fraud, such as credit card fraud and cellular fraud, is a

costly problem for many business organizations. In the United States, cellular

fraud costs the telecommunications industry hundreds of millions of dollars

per year [84, 93]. One method for detecting fraud is to check for suspicious

changes in user behavior. The purchasing behavior of someone who steals a

credit card is probably different from that of the original owner. Companies

attempt to detect fraud by analyzing different consuming patterns in their

transaction databases. However, in their transaction collections, there are

many more legitimate users than fraudulent examples.

• Medical Diagnosis. Clinical databases store large amounts of information

about patients and their medical conditions. Data mining techniques applied

on these databases attempt to discover relationships and patterns among

clinical and pathological data to understand the progression and features of

certain diseases. The discovered knowledge can be used for early diagnosis.

This is an important factor in saving a patient’s life. In clinical databases,

disease cases are fairly rare as compared with the normal populations.

• Intrusion Detection. As network-based computer systems play increasingly

vital roles in modern society, attacks on computer systems and computer net-

works grow more commonplace. Learning prediction rules from network data

is an effective anomaly detection approach to automate and simplify the man-

ual development of intrusion signatures. Different types of network attacks

are present - some overwhelming, others rare - in the collection of network con-

nection records. For example, the KDD-CUP’99 contest data contains four

categories of network attacks: denial-of-service (dos), surveillance (probe),

remote-to-local (r2l), and user-to-root (u2r). Among these 4 types of attacks,

the u2r and r2l categories are intrinsically rare.

• Detection of oil spills from radar images of the ocean surface [53].

Only about 10% of oil spills originate from natural sources, such as leakage

from sea beds. Much more prevalent is pollution caused intentionally by ships
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that want to dispose of oil residue in their tanks. Radar images from satellites

provide an opportunity for monitoring coastal waters. since oil slicks are less

reflective of radar than the average ocean surface, they appear dark in an

image. An oil spill detection system based on satellite images could be an

effective early warning system, and possibly a deterrent to illegal dumping,

and could have significant environmental impact. Although satellites are con-

tinually producing images, images containing oil spills are much fewer than

those without oil spills.

• Modern Manufacturing Plants. In a modern manufacturing plant such as

a Boeing assembly line [76], more and more processes are being handled by au-

tomated or semi-automated cells, each with a computer as its controller that

renders an automatic alarm when flaw patterns are detected. In construct-

ing an alarm system through supervised learning, the number of available

defective cases is significantly fewer than that of ordinary procedures.

• Risk Management [28]. Every year, the telecommunications industry in-

curs several billion dollars in uncollectible debt. Hence, controlling uncol-

lectible bills is an important problem in the industry. One solution is to

use large quantities of historical data to build models for assessing risk on a

per customer or per transaction basis, in order to support risk management

policies that reduce the level of uncollectible debt. In a data set containing

customer-summary information of 40-49 thousand records, the non-paying

customers comprise just a few percent of the population.

In addition to these examples, other reported applications involve text classi-

fication [12] and direct marketing [59]. Some of these applications, such as fraud

detection, intrusion detection, medical diagnosis, etc., are also recognized as anom-

aly detection problems. In anomaly detection, the goal is to find objects that are

different from most other objects [85]. Because anomalous and normal objects

can be viewed as defining two distinct classes, a considerable subset of anomaly

detection systems perceive anomaly detection as a dichotomous data partitioning
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problem in which data samples are categorized as either abnormal or normal. As

anomalies are commonly rare as compared with normal observations, the class im-

balance problem is thus intrinsic to the anomaly detection applications.

1.3 Objectives of this Thesis

A range of classification modelling algorithms have been well developed and success-

fully applied to many application domains. However, standard classifiers generally

perform poorly on the imbalanced data sets as they are designed to generalize from

training data, and pay less attention to the rare cases [30, 53, 68, 76]. Most popular

classification modelling systems have been observed to provide inadequate perfor-

mance when encountering the class imbalance problem. These classification systems

involve decision trees [5, 15, 44, 99], support vector machines [3, 44, 75, 103], neural

networks [44], bayesian network [28], nearest neighbour [5, 107] and the new associa-

tive classification approaches [61, 97]. A number of solutions have previously been

proposed. Yet, they are either application-oriented or learning algorithm-oriented.

In particular, these solutions made a strong assumption of a bi-class application,

which is not always true in practice. Therefore, a solution which is applicable to

most classifier learning algorithms is preferable.

The objective of this thesis is to investigate meta-techniques applicable to most

classifier learning algorithms in order to advance the classification of imbalanced

data. In the literature, some ensemble methods have emerged as meta-techniques

for improving the generalization performance of existing learning algorithms. Spe-

cially, AdaBoost [31, 32, 81, 82] is reported as the most successful boosting al-

gorithm to improve classification accuracies of a “weak” learning algorithm. Since

AdaBoost is an accuracy-oriented algorithm, its learning strategy may bias towards

the prevalent classes as they contribute more to the overall classification accuracy.

Consequently, the identification performances of AdaBoost on the small classes

are not always satisfactory. In this thesis, the AdaBoost algorithm is adapted for

improving the classification performance of imbalanced data.
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Associative classification is a new classification approach integrating association

mining and classification, which makes it an important tool for knowledge discovery

and data mining. Even though many publications have reported that the AdaBoost

algorithm has been successfully applied to most popular classifiers [25, 31, 81, 83],

to our knowledge there is no reported work on boosting associative classifiers. The

first objective of this research is to investigate techniques for applying the Ad-

aBoost algorithm to an associative classifier, in order to explore many features of

the boosted associative classification systems. The second objective of this thesis

is to develop boosting algorithms for the classification of imbalanced data in the

scenario of bi-class applications, which encompass a large number of domains of

great importance in the data mining community, such as anomaly detection. Moti-

vated by these practical problems, effective boosting strategies are investigated in

an effort to bias the learning towards the small class and eventually improve the

identification performance. Yet, bi-class is not the only scenario where the class

imbalance problem is pervasive. In practice, some applications have more than two

classes where the imbalanced class distributions constrain the classification per-

formance. Due to the complicated situations when multiple classes are present,

methods for bi-class problems are not directly applicable. The third object of this

thesis addresses the class imbalance problem involving multiple classes.

1.4 Thesis Organization

There are eight chapters in this thesis including this introduction.

To give a better understanding of the research field, a review of the class im-

balance problem is presented in Chapter 2. This includes a summary of the nature

of the problem; an exploration on the learning difficulties with standard learning

algorithms in the presence of imbalanced data; a discussion of the existing ap-

proaches for solving the class imbalance problem regarding their advantages and

disadvantages; and the presentation of several evaluation measures.

Chapter 3 provides an investigation of ensemble methods. The effect of combin-
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ing redundant ensembles is studied in terms of the statistical concepts of bias and

variance. This discussion demonstrates why ensemble combination can improve

the generalization performance. In particular, many features of the AdaBoost al-

gorithm are presented to validate its successful performance in practice.

In Chapter 4, the AdaBoost algorithm is applied to an associative classification

system. The chapter starts with a study of several techniques for association min-

ing and associative classification. Based on this study, one associative classification

system is selected for applying the AdaBoost algorithm. In addition to the ex-

ploration of the advantages of the boosted associative classification, new weighting

strategies for voting multiple classifiers are also proposed and preseneted in this

chapter.

Chapter 5 and Chapter 6 present the development of boosting algorithms for

classifying imbalanced data, while Chapter 5 focuses on bi-class applications and

Chapter 6 on multi-class applications. As presented in these chapters, several new

boosting algorithms are investigated through adapting the original AdaBoost algo-

rithm. The general idea of the boosting approach in dealing with the class imbalance

problem is to boost more weights on the samples in the rare classes, such that the

next round of learning will bias towards them. For this purpose, cost items are used

for distinguishing different types of samples. The resulting boosting algorithms are

regarded as being cost sensitive.

Some experimental results are provided in Chapter 7. The experiments fall

into three parts. Experiments in the first part are designed for evaluating several

associative classification systems and the boosted associative classification system.

Experiments in the second part focus on classifying the imbalanced data of binary

classes. Experiments in the third part focus on classifying the imbalanced data

of multiple classes. Several real-world data sets are tested on the proposed algo-

rithms and the classification results are investigated according to different learning

objectives.

Chapter 8 is the conclusion of this thesis with a discussion on the contributions

made in this thesis and suggestions for future work.
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Chapter 2

Review of the Class Imbalance

Problem

2.1 Nature of the Problem

In a data set with the class imbalance problem, the most obvious characteristic

is the skewed data distribution among classes. However, theoretical and experi-

mental studies presented in [5, 42, 44, 46, 99, 100] indicate that the skewed data

distribution is not the only parameter that influences the modelling of a capable

classifier in identifying rare events. Other influential facts include small sample

size, separability and the existence of within-class sub-concepts.

• Imbalanced Class Distribution. Within the scenario of bi-class applica-

tions, one class presented with very few samples but associated with a higher

identification importance is referred to as the positive class, while the other

one is taken as the negative class. The imbalance degree of a class distribution

can be denoted by the ratio of the sample size of the positive class to that

of the negative class. In practical applications, the ratio can be as drastic

as 1:100, 1:1000, or even larger [15]. In [100], research was conducted to ex-

plore the relationship between the class distribution of a training data set and
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the classification performances of decision trees. Their study indicates that

a relatively balanced distribution usually attains a better result. However,

at what imbalance degree the class distribution deteriorates the classification

performance cannot be stated explicitly, since other factors such as sample

size and separability also affect performance. In some applications, a ratio as

low as 1 : 35 can make some methods inadequate for building a good model,

while in some other cases, 1 : 10 is tough to deal with [46].

• Small Sample Size. Given a fixed imbalance degree, the sample size plays

a crucial role in determining the “goodness” of a classification model. In the

case that the sample size is limited, uncovering regularities inherent in a small

class is unreliable. Experimental observations reported in [44] indicate that as

the size of the training set increases, the large error rate caused by the imbal-

anced class distribution decreases. This observation is quite understandable.

When more data can be used, relatively more information about the small

class benefits the classification modelling, which is then able to distinguish

rare samples from the majority. Hence, the authors of [44] suggest that the

imbalanced class distribution may not be a hindrance to classification if a

large enough data set is provided, assuming that the data set is available and

the learning time required for a sizeable data set is acceptable.

• Separability. The difficulty in separating the small classes from the preva-

lent classes is the key issue of the small class problem. Assuming that there

exist highly discriminative patterns among each class, then not very sophis-

ticated rules are required to distinguish class objects. However, if patterns

among each class are overlapping at different levels in some feature space,

discriminative rules are hard to induce. Experiments conducted in [67] vary

the degree of overlap between classes. It is then concluded that “the class

imbalance distribution, by itself, does not seem to be a problem, but when

allied to highly overlapped classes, it can significantly decrease the number

of minority class examples correctly classified”. A similar claim based on

experiments is also reported in [44] as “Linearly separable domains are not
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sensitive to any amount of imbalance. As a matter of fact, as the degree of

concept complexity increases, so does the system’s sensitivity to imbalance.”

• Within-Class Concepts. In many classification problems, a single class is

composed of various sub-clusters, or sub-concepts. Samples of a class are col-

lected from different sub-concepts. These sub-concepts do not always contain

the same number of examples. This phenomena is referred to as within-class

imbalance, corresponding to the imbalanced class distribution between classes

[42]. The presence of within-class sub-concepts worsens the imbalance distri-

bution problem (no matter between or within class) in two aspects: 1) the

presence of within-class sub-concepts increases the learning concept complex-

ity of the data set; and 2) the presence of within-class sub-concepts is implicit

in most cases.

2.2 Standard Classification Algorithms

Supervised learning can generate classification models of two types: rule-based

and instance-based classifiers. A rule-based classifier learning algorithm generalizes

rules for classifying the test instances, and an instance-based classifier learning

algorithm stores the training instances and predicts the class of the stored instances

which are nearest (according to some distance measure) to the test instance. In

this section, a subset of well developed classifier learning algorithms is reviewed and

discussed. This review is brief and cursory, but it yields insight into the difficulty

of classification modelling in the presence of imbalanced data.

2.2.1 Decision Trees

Decision trees use simple knowledge representation to classify examples into a finite

number of classes. In a typical setting, the tree nodes represent the attributes,

the edges represent the possible values for a particular attribute, and the leaves

11



are assigned with class labels. Classifying a test sample is straightforward once a

decision tree has been constructed. An object is classified by following paths from

the root node through the tree, taking the edges corresponding to the values of

attributes. Some popular tree algorithms include ID3 [74], C4.5 [72] and CART

[9, 11].

A decision tree classifier is modelled in two phases: Tree Building and Tree

Pruning. In tree building, the decision tree model is built by recursively splitting the

training data set based on a locally optimal criterion until all or most of the records

belonging to each of the partitions bear the same class label. After building the

decision tree, a tree pruning step is performed to reduce the size of the decision tree.

Decision trees that are too large are susceptible to overfitting. Pruning attempts to

improve the generalization capability of a decision tree by trimming the branches

of the initial tree. The tree pruning approach is error based: start from the bottom

of the tree and examine each non-leaf subtree. If replacement of this subtree with a

leaf, or with its most frequently used branch, would lead to a lower predicted error

rate, then prune the tree accordingly [72].

When building decision trees, the class label associated with a leaf is found by

examining the training cases covered by the leaf and choosing the most frequent

class. In the presence of the class imbalance problem, decision trees may need

to create many tests to distinguish the small classes from the large classes. In

some learning processes, the split action may be terminated before the branches

for predicting small classes are detected. In other learning processes, the branches

for predicting the small classes may be pruned as being susceptible to overfitting.

Correctly predicting a small number of samples from the small classes contributes

too little success to reduce the error rate significantly, as compared with the error

rate increased by overfitting. Since the pruning is based on the predicting error,

there is a high probability that some branches that predict the small classes are

removed and the new leaf node is labelled with a dominant class. Since C4.5 is a

well-known decision tree classification system, many class-imbalance research efforts

are based on C4.5 [16, 44, 99].
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2.2.2 Neural Networks

Neural networks have the topology of a directed graph and loosely simulate the

structure of biological neural networks in human brains. They are composed of

processing nodes that transfer activities to each other via connections. These

one-way inter-unit connections hold the processing ability of the network through

weights obtained by learning from a set of training data. Each node evaluates the

input values, calculates a total for the combined input values, compares the total

with a threshold value, and determines what its own output will be. A neural

network’s learning is defined as changes in the memory weight matrix. There is

a variety of strategies to train the network, including applications of numerical

and statistical methods such as back-propagation of errors, differential equations,

least-squares fitting and others.

Two kinds of Neural Networks which are often used for classification are Back-

propagation (BP) and Radial Basis Function (RBF) networks[90]. BP network is a

feed-forward network with one input layer, one output layer, and one or more hid-

den layers. The activation function of a hidden node is often a sigmoid-function.

The RBF network consists of three layers: the input layers, the pattern (or hidden)

layer, and the output layer. It is a fully connected feed-forward network with all

connections between its processing nodes. The active function is called a radial

basis function (RBF). Radial basis functions are a special class of functions, which

produce localized, bounded, and radially symmetric activation (e.g., Gaussian func-

tion). Reported experimental results indicate that the BP [13, 44]and RBF [109]

perform deficiently with imbalanced data sets. The main reason is the small class

is inadequately weighted in the networks [13].

2.2.3 Bayesian Classification

Bayesian classification is based on the inferences of probabilistic graphic models

which specify the probabilistic dependencies underlying a particular model using

a graph structure [66]. In its simplest form, a probabilistic graphical model is a
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graph in which nodes represent random variables, and the arcs represent conditional

dependence assumptions. Hence it provides a compact representation of joint prob-

ability distributions. An undirected graphical model is called as a Markov network,

while a directed graphical model is called as a Bayesian network or a Belief Net-

work [39]. Once a probabilistic network is built one can derive the probability of

an event, conditioned by a set of observations for classification.

Näıve Bayesian Classification assumes attribute independence. It thus makes

computation possible and yields optimal classifiers when the assumptions are sat-

isfied. The independence assumption is seldom satisfied in practice, however, as

attributes (variables) are often correlated [97]. To explore the probabilistic depen-

dencies which underlie a particular model, learning a Bayesian network from data

can be subdivided into parameter learning and structural learning, the latter being

the more difficult concept. Recently, there has been significant work on methods

whereby both the structures and the parameters of the graphic models can be

learned directly from databases [39].

The problem of learning a probabilistic model is to find a network that best

matches the given training data set. To exhaustively explore the dependencies

among attributes, a complete graph, where every attribute is connected to every

other attribute, is favorable. However, such networks do not provide any useful

representation of the independence assertions in the learned distributions and overfit

the training data [34]. Hence, the networks are learned according to certain scoring

functions to approximate those dependency patterns which dominate the data.

Obviously, for a given imbalanced data set, dependency patterns inherent in the

small classes are usually not significant and hard to be adequately encoded in the

networks. When the learned networks are inferred for classification, the samples of

the small classes are most likely misclassified. Experimental results in [49] reported

this observation.
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2.2.4 Support Vector Machines

Support Vector Machines(SVMs) are one of the binary classifiers based on maxi-

mum margin strategy introduced by Vapnik [92]. Originally, SVMs were for linear

two-class classification with margin, where margin means the minimal distance

from the separating hyperplane to the closest data points. SVMs seek an optimal

separating hyperplane, where the margin is maximal. The solution is based only

on those data points at the margin. These points are called as support vectors.

The linear SVMs have been extended to nonlinear examples when the nonlinear

separated problem is transformed into a high dimensional feature space using a set

of nonlinear basis functions. However, the SVMs are not necessary to implement

this transformation to determine the separating hyperplane in the possibly high

dimensional feature space. Instead, a kernel representation can be used, where the

solution is written as a weighted sum of the values of a certain kernel function

evaluated at the support vectors. The kernel function is thus the key component

in this approach. Gaussian radial basis functions and polynomial kernel functions

are often used in practice. When perfect separation is not possible, slack variables

are introduced for sample vectors to balance the tradeoff between maximizing the

width of the margin and minimizing the associated error.

SVMs are believed to be less prone to the class imbalance problem than other

classification learning algorithms [44], since boundaries between classes are calcu-

lated with respect to only a few support vectors and the class sizes may not affect

the class boundary too much. Nevertheless, research works in [3, 103] still indi-

cate that SVMs can be ineffective in determining the class boundary when the

class distribution is askew. Experiments were conducted on SVMs in [103] to draw

boundaries for two data sets: the first data set with the ratio of the number of

the large class instances to the number of the small class instances of 10:1, and

the second data set with the ratio of 10000:1. It turned out that the boundary

of the second data set was much more skewed towards the small class than the

boundary for the first data set, and thus caused a higher incidence of classifying

test instances to the prevalent class. The underlining reason for this phenomenon
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is that as the training data gets more imbalanced, the support vector ratio between

the prevalent class and the small class also becomes more imbalanced. The small

amount of cumulative error on the small class instances count for very little in the

tradeoff between maximizing the width of the margin and minimizing the training

error. SVMs simply learn to classify everything as the prevalent class in order to

make the margin the largest and the error the minimum.

2.2.5 Associative Classifiers

Associative classification is a new classification approach integrating association

mining and classification into a single system [21, 56, 57, 61, 96, 98, 104]. Associ-

ation mining, or pattern discovery, aims to discover descriptive knowledge from a

database, while classification focuses on building a classification model for catego-

rizing new data. By and large, both association pattern discovery and classification

rule mining are essential to practical data mining applications. Considerable ef-

forts have been made to integrate these two techniques into one system. A typical

associative classification system is constructed in two stages: 1) discovering all the

event associations (in which the frequency of occurrences is significant according to

some tests); and 2) generating classification rules from the association patterns to

build a classifier. In the first stage, the learning target is to discover the association

patterns inherent in a database (also referred to as knowledge discovery). In the

second stage, the task is to select a small set of relevant association patterns to

construct a classifier given the predicting attribute. Several learning algorithms for

constructing associative classifiers are studied and analyzed in Chapter 4.

The associative rules for classification are derived from the discovered associa-

tion patterns, which are defined as attribute values or items that occur together

with high frequencies in certain tests. In the presence of imbalanced data, associa-

tion patterns describing the small classes are unlikely found as the combination of

items characterizing the small classes occur too seldom to be detected as patterns.

Classification rules for predicting the small classes are therefore rare and weak.
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This observation is also discussed in [62, 97, 99].

2.2.6 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is an instance-based classifier learning algorithm, which

uses specific training instances to make predictions without having to maintain an

abstraction (or model) derived from data. Initial theoretical results can be found

in [18] and an extensive overview can be found in [22]. The conceptual idea of

the K-Nearest Neighbor algorithm is simple and intuitive. Given a test sample,

the algorithm computes the distance (or similarity) between the test sample and

all of the training samples to determine its k-nearest neighbors. The class of the

test sample is decided by the most abundant class within the k-nearest neighbor

samples.

In the presence of the imbalanced training data, samples of the small classes

occur sparsely in the data space. Given a test sample, the calculated k-nearest

neighbors bear higher probabilities of samples from the prevalent classes. Hence,

test cases from the small classes are prone to being incorrectly classified. Research

works in [5, 107] reported this observation.

2.3 Reported Research Solutions

A number of solutions to the class imbalance problem are reported in the litera-

ture. Almost all of them are designed for the bi-class scenario, where the imbalanced

problem is observed as that in which one class is represented by a large number

of samples while another is represented by only a few, but associated with higher

identification importance. Reported solutions are developed at both the data and

algorithmic levels. At the data level, the objective is to re-balance the class dis-

tribution by re-sampling the data space. At the algorithm level, solutions try to

adapt existing classifier learning algorithms to strengthen learning with regards to

the small class. Cost-sensitive learning solutions incorporating both the data and
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algorithmic level approaches assume higher misclassification costs with samples in

the rare class and seek to minimize the high cost errors. Several boosting algo-

rithms are also reported as meta-techniques to tackle the class imbalance problem.

These boosting approaches will be discussed in details in Section 5.5.

2.3.1 Data-Level Approaches

Solutions at the data-level include many different forms of re-sampling, such as ran-

domly oversampling the small class, randomly undersampling the prevalent class,

informatively oversampling the small class (in which no new samples are created,

but the choice of samples to resample is targeted rather than random), informatively

undersampling the prevalent class (the choice of samples to eliminate is targeted),

oversampling the small class by generating new synthetic data, and combinations

of the above techniques[14, 15, 27, 108].

Even though resampling is an often-used method in dealing with the class im-

balance problem, the matter at issue is what is or how to decide the optimal class

distribution given a data set. A thorough experimental study on the effect of a train-

ing set’s class distribution on a classifier’s performance was conducted in [100]. The

general conclusion was that, with respect to the classification performance on the

small class, a balanced class distribution (class size ratio is 1:1) performs relatively

well but is not necessarily optimal. Optimal class distributions differ from data set

to data set.

In addition to the class distribution issue, how to effectively re-sample the train-

ing data is another issue. Random sampling is simple but not sufficient in many

cases. For example, if the class imbalance problem of a data set is dominated by

within-class concepts, random over-sampling may over-duplicate samples on some

parts and less so on others. A more favorable resampling process should be, first,

detecting the subconcepts constituting the class; then, oversampling each concept

respectively to balance the overall distribution. However, such an informative re-

sampling process increases the cost for data analysis. Informatively undersampling
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the prevalent class attempting to make the selective samples more representative

poses another problem: what is the criterion in selecting samples? For example, if

samples are measured by some distance measurements, those majority class sam-

ples which are relatively far away from the minority class samples may represent

more the majority class features, while those which are relatively close to the mi-

nority class samples may be crucial in deciding the class boundary by some classifier

learning algorithms. Which part should be more focused on when selecting quality

samples? These issues cannot be settled systematically. A number of techniques

are reported, but each of them may only be effective if applied in a certain context.

2.3.2 Algorithm-Level Approaches

Generally, a common strategy to deal with the class imbalance problem is to choose

an appropriate inductive bias. For decision trees, one approach is to adjust the

probabilistic estimate at the tree leaf [71, 105]; another approach is to develop

new pruning techniques [105]. For SVMs, proposals such as using different penalty

constants for different classes [58], or adjusting the class boundary based on a

kernel-alignment ideal [103], are reported. For association rule mining, multiple

minimum supports for different classes are specified to reflect their varied frequen-

cies in the database [62]. To develop an algorithmic solution, one needs knowledge

of both the corresponding classifier learning algorithm and the application domain,

especially a thorough comprehension on why the learning algorithm fails when the

class distribution of available data is uneven.

In recognition-based one-class learning, a system is modelled with only examples

of the target class in the absence of the counter examples. This approach does

not try to partition the hypothesis space with boundaries that separate positive

and negative examples, but it attempts to make boundaries which surround the

target concept. For classification purposes, it measures the amount of similarity

between a query object and the target class, where a threshold on the similarity

value is introduced. Two classifier learning algorithms are studied in the context
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of the one-class learning approach: neural network training [43] and SVMs [63].

Under certain conditions such as multi-modal domains, the one-class approach is

reported to be superior to discriminative (two-class learning) approaches [43]. The

threshold in this approach represents the boundary between the two classes. A too

strict threshold means that positive data will be sifted, while a too loose threshold

will include considerable negative samples. Hence, to set up an effective threshold

is crucial with this approach. Moreover, many machine learning algorithms such

as decision trees, Näıve Bayes and associative classification, do not function unless

the training data includes examples from different classes.

2.3.3 Cost-Sensitive Learning

Cost-sensitive classification considers the varying costs of different misclassification

types. A cost matrix encodes the penalty of classifying samples from one class as

another. Let C(i, j) denote the cost of predicting an instance from class i as class

j. With this notation, C(+,−) is the cost of misclassifying a positive (rare class)

instance as the negative (prevalent class) instance and C(−, +) is the cost of the

contrary case. In dealing with the class imbalance problem, the recognition impor-

tance of positive instances is higher than that of negative instances. Hence, the cost

of misclassifying a positive instance outweighs the cost of misclassifying a negative

one (i.e., C(+,−) > C(−, +)); making a correct classification usually presents 0

penalty (i.e., C(+, +) = C(−,−) = 0). The cost-sensitive learning process then

seeks to minimize the number of high cost errors and the total misclassification

cost.

A cost-sensitive classification technique takes the cost matrix into consideration

during model building and generates a model that has the lowest cost. Reported

works in cost-sensitive learning fall into three main categories:

• Weighting the data space. The distribution of the training set is modified

with regards to misclassification costs, such that the modified distribution

is biased towards the costly classes. This approach can be explained by the
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Translation Theorem derived in [106]. Against the normal space without

considering the cost item, let us call a data space with domain X × Y ×C as

the cost-space, where X is the input space, Y is the output space and C is the

cost associated with mislabelling that example. If we have examples drawn

from a distribution D in the cost-space, then we can have another distribution

D̂ in the normal space such that

D̂(X,Y ) ≡ C

EX,Y,C∼D[C]
D(X, Y, C) (2.1)

Where EX,Y,C∼D[C] is the expectation of cost values. According to the trans-

lation theorem, those optimal error rate classifiers for D̂ will be optimal cost

minimizers for D. Hence, when we update sample weights integrating the

cost items, choosing a hypothesis to minimize the rate of errors under D̂ is

equivalent to choosing the hypothesis to minimize the expected cost under D.

• Making a specific classifier learning algorithm cost-sensitive. For

example, in the context of decision tree induction, the tree-building strategies

are adapted to minimize the misclassification costs. The cost information

is used to: 1) choose the best attribute to split the data [60, 76]; and 2)

determine whether a subtree should be pruned [7].

• Using Bayes risk theory to assign each sample to its lowest risk

class. For example, a typical decision tree for a binary classification problem

assigns the class label of a leaf node depending on the majority class of the

training samples that reach the node. A cost-sensitive algorithm assigns the

class label to the node that minimizes the classification cost [19, 105].

Converting sample-dependent costs into sample weights, methods in the first

group, is also known as cost-sensitive learning by example weighting [1]. The

weighted training samples are then applied to standard learning algorithms. This

approach is at the data-level without changing the underlying learning algorithms.

Methods in the second and third groups, adapting the existing learning algorithms,
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are at the algorithm-level. Cost-sensitive learning assumes that a cost-matrix is

known for different types of errors or samples. Given a data set, however, the cost

matrix is often unavailable.

2.4 Evaluation Measures

Evaluation measures play a crucial role in both assessing the classification perfor-

mance and guiding the classifier modelling. Traditionally, accuracy is the most

commonly used measure for these purposes. However, for classification of imbal-

anced data, accuracy is no longer a proper measure since the rare class has very

little impact on the accuracy as compared to that of the prevalent class [47, 99]. For

example, in a problem where a rare class is represented by only 1% of the training

data, a simple strategy can be one that predicts the prevalent class label for every

example. It can achieve a high accuracy of 99%. However, this measurement is

meaningless to some applications where the learning concern is the identification of

the rare cases.

In the bi-class scenario, positive and negative class samples can be categorized

into four groups after a classification process as denoted in the confusion matrix

given in Table 2.1.

Table 2.1: Confusion Matrix

Predicted as Positive Predicted as Negative

Actually Positive True Positives (TP) False Negatives (FN)

Actually Negative False Positive (FP) True Negatives (TN)

Several measures can be derived using the confusion matrix:

• True Positive Rate: TPrate =
TP

TP + FN

22



• True Negative Rate: TNrate =
TN

TN + FP

• False Positive Rate: FPrate =
FP

TN + FP

• False Negative Rate: FNrate =
FN

TP + FN

• Positive Predictive Value: PPvalue =
TP

TP + FP

• Negative Predictive Value: NPvalue =
TN

TN + FN

Clearly neither of these measures are adequate by themselves. For different evalu-

ation criteria, several measures are devised.

2.4.1 F-measure

If only the performance of the positive class is considered, two measures are im-

portant: True Positive Rate (TPrate) and Positive Predictive Value (PPvalue). In

information retrieval, True Positive Rate is defined as recall (R) denoting the per-

centage of retrieved objects that are relevant:

R = TPrate =
TP

TP + FN
(2.2)

Positive Predictive Value is defined as precision (P) denoting the percentage of

relevant objects that are identified for retrieval:

P = PPvalue =
TP

TP + FP
(2.3)

F-measure (F) is suggested in [55] to integrate these two measures as an average

F −measure =
2RP

R + P
(2.4)
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In principle, F-measure represents a harmonic mean between recall and precision

[85]:

F −measure =
2

1
R

+ 1
P

(2.5)

The harmonic mean of two numbers tends to be closer to the smaller of the two.

Hence, a high F-measure value ensures that both recall and precision are reasonably

high.

2.4.2 G-mean

When the performance of both classes is concerned, both True Positive Rate (TPrate)

and True Negative Rate (TNrate) are expected to be high simultaneously. Kubat

et al [53] suggested the G-mean defined as

G−mean =
√

TPrate · TNrate (2.6)

G-mean measures the balanced performance of a learning algorithm between these

two classes. The comparison among harmonic, geometric, and arithmetic means

are illustrated in [85] by way of an example. Suppose that there are two positive

numbers 1 and 5. Their arithmetic mean is 3, their geometric mean is 2.236, and

their harmonic mean is 1.667. The harmonic mean is the closest to the smaller

value and the geometric mean is closer than the arithmetic mean to the smaller

number.

2.4.3 ROC Analysis

Some classifiers, such as Bayesian Network inference or some Neural Networks,

assign a probabilistic score to its prediction. Class prediction can be changed by

varying the score threshold. Each threshold value generates a pair of measurements

of (FPrate, TPrate). By linking these measurements with the False Positive Rate
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Figure 2.1: ROC curves for two different classifiers

(FPrate) on the X axis and the True Positive Rate (TPrate) on the Y axis, a Receiver

Operating Characteristics (ROC) graph plotted in Figure 2.1.

The ideal model is one that obtains 1 True Positive Rate and 0 False Positive

Rate (i.e., TPrate = 1 and FPrate = 0). Therefore, a good classification model

should be located as close as possible to the upper left corner of the diagram,

while a model that makes a random guess should reside along the main diagonal,

connecting the points (TPrate = 0, FPrate = 0), where every instance is predicted

as a negative class, and (TPrate = 1, FPrate = 1), where every instance is predicted

as a positive class. A ROC graph depicts relative trade-offs between benefits (true

positives) and costs (false positives) across a range of thresholds of a classification

model. A ROC curve gives a good summary of the performance of a classification

model. To compare several classification models by comparing ROC curves, it

is hard to claim a winner unless one curve clearly dominates the others over the

entire space [69]. The area under a ROC curve (AUC) provides a single measure

of a classifier’s performance for evaluating which model is better on average. It has
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been shown that there is a clear similarity between AUC and well-known Wilcoxon

statistics [38].
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Chapter 3

Ensemble Methods and AdaBoost

The use of ensemble methods has gained momentum in recent years [79, 94]. Re-

searchers have continuously explored the benefits of using ensemble methods to

solve complex recognition problems [48, 51]. An ensemble method for classifica-

tion tasks constructs a set of base classifiers from the training data and performs

classification by taking a vote on the prediction of each base classifier.

3.1 Classifier Ensemble Learning

The basic idea of classifier ensemble learning is to construct multiple classifiers from

the original data and then aggregate their predictions when classifying unknown

samples. There are a number of training parameters and factors which can be

manipulated to create ensemble members: the initial condition, the training data,

the architecture of the classifiers, and the training algorithm. The most frequently

used methods for creating ensembles are those which alter the training data, either

the training set or the input features [95]. Once a set of classifiers has been created,

an effective way of combining their outputs must be found [54]. A variety of schemes

have been proposed for combining multiple classifiers. The majority vote is by far

the most popular approach [94]. A general framework of the ensemble learning
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Figure 3.1: A General Framework of the Ensemble Learning Method

method by altering the training data is presented in Figure 3.1.

The main motivation for combining classifiers in redundant ensembles is to im-

prove their ability to generalization. Each component classifier is known to make

errors with the assumption that it has been trained on a limited set of data. How-

ever, the patterns that are misclassified by the different classifiers are not necessarily

the same [51]. This observation suggests that the use of multiple classifiers can en-

hance the recognition ability of the patterns under classification. Combining a set

of imperfect estimators is then viewed as a way to enhance the overall recognition

capability from the individual estimators with limitations.

The effect of combining redundant ensembles is also studied in terms of the

statistical concepts of bias and variance. Bias-variance decomposition is a formal

method for analyzing the prediction error of a predictive model. Given a classifier,

bias-variance decomposition distinguishes among: 1) the bias error, a systematic

component in the error associated with the learning method and the domain; 2) the

variance error, a component associated with differences in models between samples;

and 3) an intrinsic error, a component associated with the inherent uncertainty

in the domain [70]. The bias can be characterized as a measure of its ability to

generalize correctly to a test set, while the variance can be similarly characterized as
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a measure of the extent to which the classifier’s prediction is sensitive to the data on

which it was trained. The variance is then associated with overfitting: if a method

overfits the data, the predictions for a single instance will vary between samples

[94]. There is a tradeoff between the bias and variance of training a classifier:

attempting to decrease the bias by considering more of the data will likely result

in a higher variance; trying to decrease the variance by paying less attention to the

data usually results in an increased bias. The improvement in performance arising

from ensemble combinations is usually the result of a reduction in variance, rather

than a reduction in bias. This occurs because the usual effect of ensemble averaging

is to reduce the variance of a set of classifiers, while leaving the bias unaltered.

3.2 Bagging

Bagging [8] is also known as bootstrap aggregating. Given a standard training set D

of size N , we generate L new training sets Di (i = 1 · ·L) also of size N by sampling

examples uniformly from D with replacements. By sampling with replacements it

is likely that some examples will be repeated in each Di. This kind of sample is

known as a bootstrap sample. The L models are fitted using the above L bootstrap

samples and are combined later in classification by voting.

Bagging improves the generalization error by reducing the variance of the base

classifiers. The performance of bagging depends on the stability of the base classi-

fier. If a base classifier is unstable (i.e., classifiers that undergo significant changes

in response to small perturbations of the training set or other training parameters),

bagging helps to reduce the variance errors. If a base classifier is stable, then the

error of the ensemble is primarily caused by bias in the base classifier. In this

case, bagging may not be able to improve the performance of the base classifier

significantly [85]. Hence, Bagging is believed to be effective especially for classifiers

characterized by a high variance and a low bias.
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3.3 Random Forests

A random forest [10] is specially designed for decision tree classifiers. It combines

the predictions made by multiple decision trees, where each tree is generated based

on an independent set of random vectors of a data set. Let the number of training

samples be N and the number of variables be M . The number m (m << M) of

input variables is randomly selected to split at each node of the decision tree. The

tree is then grown to its entirety without any pruning. This may help reduce bias in

the resulting tree [85]. This procedure is repeated several times to construct several

classification trees. The predictions are then combined using a majority voting. To

increase randomness, bagging can also be used to generate bootstrap samples.

The strength and correlation of random forests may depend on the size of m. If

m is sufficiently small, then the tree tends to become less correlated. It is therefore

superior in handling a data set with a very large number of input variables. Since

only a subset of the features needs to be examined at each node, this approach helps

significantly to reduce the runtime of the algorithm. It has been shown empirically

that a random forest produces a highly accurate classifier [10].

3.4 Boosting

Boosting iteratively changes the data space and applies a base classification learning

algorithm to the updated data space so as to generate a sequence of classifiers.

Unlike bagging, boosting assigns a weight to each training sample and adaptively

changes the weight at each boosting round. Generally, boosting places greater

weights on those examples most often misclassified by the previous classifier so

that the next round of learning will focus on them. The weights assigned to the

training samples can be used in two ways: 1) they can be taken as probabilities of

samples to be selected; and 2) they can be used by the base classification learning

algorithm to model a classifier. Two fundamental questions of a boosting algorithm

are: 1) how to update the data space by altering the sample weights on each
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boosting round; and 2) how to reduce several hypotheses to a single one. AdaBoost

[32] has addressed these two questions by selecting a special parameter α on each

round for both updating the data space and weighting the classifiers for voting.

By tuning such a parameter, AdaBoost holds many properties which become the

strong theoretic explanations for its success in producing accurate classifiers.

AdaBoost combines several classifiers. This suggests a major component in

variance reduction, like bagging. As stumps (single-split trees with only two termi-

nal nodes typically have low variance but high bias) are used as the base learner,

bagging performs very poorly and AdaBoost improves the base classification sig-

nificantly [33, 80]. This observation indicates that AdaBoost is also capable of bias

reduction.

3.4.1 AdaBoost Algorithm

AdaBoost for Bi-class Cases

The AdaBoost algorithm was originally designed for bi-class applications. The

algorithm takes as input a training set {(x1, y1), · · ·, (xM , yM)} where with the ith

sample (xi, yi): xi is an attribute value vector as a realization of the attribute set

X = {X1, X2, · · ·, XN}, and class label yi assumes a value in Y , with two classes,

assuming that Y = {−1, +1}. AdaBoost calls a given base learning algorithm

repeatedly in a series of rounds t = 1, · · ·, T . The weight of the ith training sample

on the iteration t is denoted by Dt(i). Initially, all weights are set equally. The

Pseudocode for AdaBoost is given in Figure 3.2.

The base learner’s task is to come up with a base classifier ht : X → Y based

on the distribution Dt to minimize the classification error. Once the base classifier

ht has been trained, AdaBoost chooses a parameter αt ∈ R which measures the

performance of the classification ht. The data distribution Dt is then updated. The

final classification criterion H is a weighted majority vote of the T base classifiers

where αt is the weight assigned to ht.
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Given:{(x1, y1), · · ·, (xM , yM)} where xi ∈ X, yi ∈ Y = {−1, +1}
Initialize D1(i) = 1/M .

For t = 1, · · ·, T :

1. Train the base learner ht: X → Y using distribution Dt

2. Calculate the error:

εt = Pri∼Di(ht(xi) 6= yi) (3.1)

3. Choose the weight updating parameter αt

4. Update and normalize sample weights:

Dt+1(i) =
Dt(i)exp(−αtht(xi)yi)

Zt

(3.2)

Where, Zt is a normalization factor.

Output the final classifier:

H(x) = sign(
T∑

t=1

αtht(x)) (3.3)

Figure 3.2: AdaBoost Algorithm
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AdaBoost for Multi-class Cases

There are several methods of extending AdaBoost to the multi-class case. The

straightforward generalization approach, called AdaBoost.M1 in [32], is adequate

when the base learner is effective enough to achieve reasonably high accuracy (train-

ing error should be less than 0.5). See Figure 3.3 for its pseudocode.

This method fails if the learner cannot achieve at least 0.5 accuracy. In this

case, several more sophisticated methods have been developed [82]. These generally

work by reducing the multi-class problem to a larger binary class problem. However,

these methods require additional effort in the design of the base learning algorithm.

3.4.2 Choose Parameter α

With the AdaBoost algorithm for the bi-class cases, αt is specifically selected by

minimizing the training error of the combinational classifier. It has been shown in

[81] that the training error of the final classifier is bounded as

1

m
|{i : H(xi) 6= yi}| ≤

∏
t

Zt (3.8)

where

Zt =
∑

i

Dt(i)exp(−αtyiht(xi)) (3.9)

=
∑

i

Dt(i)(
1 + yiht(xi)

2
e−α +

1− yiht(xi)

2
eα) (3.10)

Let

f(x) =
T∑

t=1

αtht(x)
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Given:{(x1, y1), · · ·, (xM , yM)} where xi ∈ X, yi ∈ Y = {c1, · · ·, ck}
Initialize D1(i) = 1/M .

For t = 1, · · ·, T :

1. Train the base learner ht: X → Y using distribution Dt

2. Calculate the error: εt = Pri∼Di(ht(xi) 6= yi)

3. Choose the weight updating parameter αt

4. Update and normalize sample weights:

Dt+1(i) =
Dt(i)exp(−αtI[ht(xi) = yi])

Zt

(3.4)

where Zt is a normalization factor, and

I[ht(xi) = yi] =

{
+1 if ht(xi) = yi

−1 if ht(xi) 6= yi

(3.5)

Output the final classifier:

H(x) = arg max
ci

(
T∑

t=1

αt[ht(x) = ci]) (3.6)

Where for any predicate π,

[π] =

{
1 if π holds

0 otherwise
(3.7)

Figure 3.3: AdaBoost.M1 Algorithm
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By unraveling the update rule of Equation 3.2, we have that

Dt+1(i) =
exp(−∑

t αtht(xi)yi)

m
∏

t Zt

=
exp(−yif(xi))

m
∏

t Zt

(3.11)

By the definition of the final hypothesis of Equation 3.3, if H(xi) 6= yi, then

yif(xi) ≤ 0 implying that exp(−yif(xi)) ≥ 1. Thus,

[H(xi) 6= yi] ≤ exp(−yif(xi)). (3.12)

Combining Equation 3.11 and 3.12 gives the error upper bound of Equation 3.8

since

1

m

∑
i

[H(xi) 6= yi] ≤ 1

m

∑
i

exp(−yif(xi)) (3.13)

=
∑

i

(
∏

t

Zt)D
t+1(i) =

∏
t

Zt (3.14)

Let rt =
∑

i

Dt(i)yiht(xi) in Equation 3.10, then minimizing Zt on each round,

αt is induced as

αt =
1

2
ln(

1 + rt

1− rt

) =
1

2
ln(

∑

i,yi=ht(xi)

Dt(i)

∑

i,yi 6=ht(xi)

Dt(i)
) (3.15)

Plugging the value of αt into Equation 3.10, this gives the upper bound

Zt =
√

1− r2
t (3.16)

The training error of the composite classification H is at most
∏

t

√
1− r2

t . To min-

imize the overall training error, the learning objective on each round is to maximize

rt. Considering that
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∑

i,yi 6=ht(xi)

Dt(i) =
1− rt

2
(3.17)

Maximizing rt is equivalent to minimizing the training error on each round.

The parameter α is specifically derived to minimize a training error upper bound

of the combinational classifier. With this setting of α, it is reasonable to model a

classifier that minimizes the training error on each round. Generally, given a classi-

fication learning algorithm, the learning objective is to minimize the training error.

By applying AdaBoost, it can be expected to achieve a combinational classifier with

its training error minimized.

In Section 6.2, we prove the bound (Equation 3.8) still holds on the training error

of the final hypothesis of AdaBoost.M1. By minimizing the error upper-bound, αt

of AdaBoost.M1 is induced in the same format as in Equation 3.15.

3.4.3 Weighting Efficiency

The sample weight updating goal of AdaBoost is to decrease the weight of training

samples which are correctly classified and increase the weights of those incorrectly

classified. Therefore, αt should be a positive value, demanding that the training

error should be less than randomly guessing (0.5) based on the current data distri-

bution; that is

∑

i,yi=ht(xi)

Dt(i) >
∑

i,yi 6=ht(xi)

Dt(i) (3.18)

α is selected to minimize Z as a function of α (Equation 3.10). In the scenario

of the predictive attribute Y ∈ {−1, +1}, the first derivative of Z is

Z ′
t(α) =

dZ

dα
= −

∑
i

Dt(i)ht(xi)yiexp(−αtht(xi)yi) (3.19)

= −Z
∑

i

Dt+1(i)ht(xi)yi (3.20)
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by definition of D(t+1) (Equation 3.2). To minimize Zt, αt is selected such that

Z ′(α) = 0

∑
i

Dt+1(i)ht(xi)yi =
∑

i,ht(xi)=yi

Dt+1(i)−
∑

i,ht(xi)6=yi

Dt+1(i) = 0 (3.21)

That is

∑

i,ht(xi)=yi

Dt+1(i) =
∑

i,ht(xi)6=yi

Dt+1(i) (3.22)

Hence, after weights have been updated, weight distributions on misclassified and

correctly classified samples are even. This makes the learning of the next iteration

to minimize
∑

i,ht(xi)6=yi

Dt+1(i) the maximally difficult [81].

3.4.4 Forward Stagewise Additive Modelling

It has been shown that AdaBoost is equivalent to forward stagewise additive mod-

elling using an exponential loss function. The exponential loss function is related to

the Bernoulli likelihood [33]. From this point, the rather obscure work of the com-

putational learning is well explored in a likelihood method of standard statistical

practice [77]. The exponential loss function is defined as

L(y, f(x)) = exp(−yf(x)) (3.23)

where

f(x) =
T∑

t=1

αtht(x) (3.24)

so that H(x) = sign(f(x)). Hence, on each round, one must solve
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(αt, ht) = arg min
α,h

∑
i

exp[−yi(ft−1(xi) + αh(xi))] (3.25)

= arg min
α,h

∑
i

Dt(i)exp(−αyih(xi)) (3.26)

where, Dt(i) = exp(−yifm−1(xi)). The solution to Equation 3.26 is then obtained

in two steps. First, for any value of α > 0,

ht = arg min
h

∑
i

Dt(i)I[yi 6= ht(xi)] (3.27)

where, for any predicate π, I[π] equals 1 if π holds, 0 otherwise. Therefore, ht

is the classifier that minimizes the weighted error rate based on the current data

distribution. Once the classifier is fixed, the second step is to decide the value of α

to minimize the right side of Equation 3.26. This task is identical to the learning

objective of AdaBoost (Equation 3.10). Then α can be fixed as stated in Equation

3.15. The approximation is then updated as

ft(x) = ft−1(x) + αtht(x) (3.28)

which causes the weights for the next iteration to be

Dt+1(i) = Dt(i) · exp(−αtyiht(xi)) (3.29)
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Chapter 4

Boosting An Associative Classifier

Experiments reported in [21, 56, 57, 61, 98, 104] show that associative classifica-

tion systems achieve competitive classification results with traditional classification

approaches such as C4.5. The reason is that the associative classifier is composed

of high quality rules, which are generated from highly confident event associations

that reflect the close dependencies among events. In addition, only significant rules

are employed when classifying a new object. Meanwhile, classification rules induced

from significant event associations are more easily understood by humans. Another

advantage of this approach is its greater flexibility in handling unstructured data.

Boosting is a popular method for improving the accuracy of any given learn-

ing algorithm. In the past several years, many publications have reported that

the AdaBoost algorithm has been successfully applied to most popular classifiers

[25, 31, 81, 83]. All of the reported works have shown impressive improvements

in the generalization behavior and the tendency of being robust against overfitting

in their experiments. To our knowledge, however, there is no reported work on

boosting associative classifiers. In this chapter, we attempt to apply the AdaBoost

algorithm to an associative classification system. Three types of associative classi-

fication systems are studied: 1) associative classifiers based on Apriori algorithm;

2) high-order pattern and weight-of-evidence rule-based classifier (HPWR); and 3)

associative classification by emerging patterns (EPs). In this research, we choose
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HPWR classification system for apply the AdaBoost algorithm. In a more general

case, AdaBoost.M1 is implemented.

4.1 Association Mining

Association mining was first proposed to analyze basket data. The basket prob-

lem assumes that in a grocery shop there are a large number of items, such as

bread, milk, butter, beer, diapers and so on. Marketers would like to know what

items people often buy together. For example, it may be found through analyz-

ing transaction data that customers usually buy milk, butter and bread together.

Marketers can then use this information to place these items in proper locations

and adjust their selling strategies. In a similar manner, the same sort of ques-

tion is encountered in recommender systems, diagnosis decision support, intrusion

detection, etc. The challenge is how to discover those events that are frequently

associated together from large databases, especially when no domain knowledge is

available. Ever since its introduction, association mining has become an important

technique for knowledge discovery from databases (KDD). The Apriori algorithm

[2] is reported for the analysis of transactional data. This algorithm regards an

itemset, e.g., {milk, butter, bread}, as a frequent itemset if its frequency, which in-

dicates how often the component items occur together, is greater than a pre-defined

threshold. Each frequent itemset denotes one association pattern in a transactional

data set. Another well-developed method, which we refer to as high-order pattern

discovery [101], detects association patterns using residual analysis, which provides

a rigorous statistical base to justify the significance of the discovered patterns. In

their presentation, more general and formal terminologies are used: an item is de-

fined as a primary event, an itemset as a compound event and a frequent itemset

as an event association or association pattern. To present these two association

mining algorithms consistently, it is better to use the same terminology.
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4.1.1 Terminology and Definitions

Consider a data set D containing M samples. Every sample x is described in terms

of N attributes, each of which can assume values in a corresponding discrete finite

alphabet. Let X = X1, X2, · · ·, XN represent this attribute set. Each attribute,

Xi, 1 ≤ i ≤ N , can be seen as a random variable taking on values from its alphabet

αi = α1
i , · · ·, αmi

i , where mi is the cardinality of the alphabet of the ith attribute. An

additional attribute Y is considered as the target class with a set of k memberships

{c1, c2, ···, ck} denoting the set of k class members. A sample can then be represented

as {x, y}, where, x = {x1, · · ·, xN} is a realization of X, xi can assume any value in

αi and y can assume any value in Y . The jth sample in the database is denoted as

{xj, yj}, where 1 ≤ j ≤ M .

Definition 4.1.1 A primary event of a random variable Xi(1 ≤ i ≤ N) is a real-

ization of Xi, which takes on a value from αi.

We denote the pth(1 ≤ p ≤ mi) primary event of Xi as

[Xi = αp
i ]

or simply xip. We use xi denoting a realization of Xi.

Let s be a subset of integers {1, · · ·, N} containing k elements (k ≤ N), and Xs

be a subset of X such that

Xs = {Xi|i ∈ s}

Then xs
p denotes the pth realization of Xs. We use xs denoting a realization of Xs.

Definition 4.1.2 A compound event associated with the variable set Xs = {Xi|i ∈
s} is a set of primary events instantiated by a realization xs. The order of the

compound event is |s|.

Definition 4.1.3 Let T be a statistical test. If a compound event xs passes the test

T, we say that the primary events of xs compose an event association, or xs is an

association pattern of order |s|.
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4.1.2 Apriori Algorithm

Let us denote the frequency of observed occurrences of a compound event xs as oxs .

The support of the compound event xs is defined as its probability in the data set.

That is

support(xs) =
oxs

M
(4.1)

where M is the data size. A compound event xs can be considered as an association

pattern only if its support is greater than a pre-defined minimum support.

A general rule has the form of X ⇒ Y denoting that the observation of X

infers that Y is probably true. An association rule denotes the causal relationship

between two compound events. Let l and k be two subsets of integers {1, · · ·, N},
where l ∩ k = φ. It follows then that X l and Xk are two subsets of X

X l = {Xi|i ∈ l}

and

Xk = {Xj|j ∈ k}

such that

X l
⋂

Xk = φ

Let xl denote a realization of X l and xk a realization of Xk. To test if xl ⇒ xk is

an association rule, the measure confidence is defined as

confidence(xl ⇒ xk) =
support(xk, xl)

support(xl)
(4.2)

If the confidence(xl ⇒ xk) is greater than a pre-defined minimum confidence,

xl ⇒ xk can be considered as an association rule.
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To detect all association patterns, the algorithm makes multiple passes over the

database. In the first pass, the algorithm simply counts primary event occurrences

to determine the 1-order compound event. In each subsequent pass, say pass k, the

algorithm starts with the (k-1)-order event associations found in the (k-1)th pass

and generates new possible compound events. Next, the database is scanned and

the supports of candidates are counted to determine which of the candidates are

association patterns. See [2] for more details.

4.1.3 High-Order Pattern Discovery Using Residual Analy-

sis

This method tests the statistical significance of the frequency of occurrences of a

pattern candidate against that of its expected number of occurrences [101]. The

expected number of occurrences of a compound event xs is its expected total num-

ber of occurrences under the assumption that the variables in Xs are mutually

independent. The expected number of occurrences of xs is denoted as

exs = M ·
∏

i∈s,xi∈xs

P (xi) (4.3)

where P (xi) is estimated by the ratio of observed frequency of xi to the sample size

M .

To test whether or not xs is a significant association pattern, the standardized

residual, defined in [36], is used to scale the deviation between oxs and exs :

zxs =
oxs − exs√

exs

(4.4)

The standardized residual zxs is the square root of chi-square χ2, having an

asymptotic normal distribution with a mean of approximately zero and a variance

of approximately one. Hence, if the absolute value of zxs exceeds 1.96, then, by

a conventional criteria, xs is considered as a significant association pattern with a
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confidence level of 95%. The standardized residual is considered to be of normal

distribution only when the asymptotic variance of zxs is close to 1; otherwise, it has

to be adjusted by its variance for a more precise analysis. The adjusted residual is

expressed as

dxs =
zxs√
vxs

(4.5)

where vxs is the maximum likelihood estimate of the variance of zxs . More details

can be found in [101].

4.1.4 Computational Complexity

Association mining is time-consuming when data arrays contain a large number of

rows and/or columns. Many studies [2, 37, 101] indicate the inherent nature of a

combinatorially explosive number of event associations. Consider a data set with

N M-ary attributes. The total number of combinations of kth order association

patterns is given by

pk = (M)k ·
(

N

k

)
, 2 ≤ k ≤ N (4.6)

where pk denotes the total number of primary event combinations at order k. There

are

(
N

k

)
sets of variables of size k and Mk possible events for each variable set.

The complexity of an algorithm which exhaustively searches high order patterns is

(M + 1)N . If the upper bound of the association order is set as K < N , the search

space is
K∑

k=2

(Mk ·
(

N

k

)
).

Let the ratio of the number of pattern candidates of order k to the number of

candidates of order k − 1 be

ζk =
pk

pk−1

=
M · (N − k + 1)

k
(4.7)
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From the equation, we can observe that as the order of the patterns increases

from k=2 upwards, especially when k is small as compared to N, ζk increases rather

quickly. That is, the size of the search space for kth order patterns increases quickly

with respect to that of the (k − 1)th order patterns. For real world data, the

pattern associations are sparsely scattered rather than uniformly distributed in the

hypothesis space. If a compound event is not an association pattern of (k−1)-order,

it cannot be expanded as a higher order event association. All k-order association

pattern candidates are generated from (k − 1)-order association patterns. Thus,

the search complexity cannot be determined exactly since it is highly dependent

upon the characteristics of the input data. Some research efforts are reported to

deduce the computational complexity of association mining. Among them, the

algorithm FP-growth [37] mines association patterns without repeatedly scanning

the database, and checks a large set of candidates by pattern matching when using

the Apriori algorithm .

4.2 Associative Classifiers

4.2.1 Associative Classifiers Based on Apriori Algorithm

The Apriori algorithm finds all association rules in the database that satisfy the

pre-defined minimum support and minimum confidence constraints. For those as-

sociation rules detected, there is not a fixed target at the right-hand side. For

classification purposes, rules for prediction should have an identical pre-determined

target attribute. Works trying to induce classifiers from these discovered associa-

tion rules are reported in [57, 61, 96, 104]. Classification rules are extracted from

association rules by restricting the right-hand side to the classification attribute.

CBA [61] ranks these classification rules in sequence of their confidence, support

and the order of generation. A minimum set of classification rules are then cho-

sen according to the training error rate. In classifying an unknown case, the first

rule that satisfies the case will be used. If no rule applies, the default class (the
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majority class) will be taken. CMAR [57] suggests a weighted χ2 analysis to per-

form a classification based on multiple association rules. Given a new data object,

CMAR collects the subset of rules matching the new object from the set of rules

for classification. These rules may not be consistent with the class labels. CMAR

first groups those according to class labels. Then, a ”combined effect” is accounted

for each group by adopting a weighted χ2 as the measure to determine the final

class membership of the object. Generally speaking, with the Apriori algorithm,

the setting of minimum support and confidence is rather ad hoc. The user typically

changes parameters and runs the mining algorithm many times in search of “op-

timal” results. Such a process is very time-consuming and little has been done to

alleviate it [17]. Meanwhile, how to measure the rule qualities when a large number

of rules are generated is another challenging issue.

4.2.2 Classification by Emerging Patterns

Emerging patterns (EPs) are defined as event associations whose supports change

significantly from one data set to another [20]. A data set is partitioned into several

subgroups according to their class labels. The difference in the supports of an event

association in one subgroup from those of an opposing group is measured. It is re-

ferred to as the growth rate. Those patterns whose growth rates satisfy a predefined

threshold are detected. They are regarded as capturing the class discriminant infor-

mation. Hence, such a pattern discovery process is directly classification-oriented.

Both CAEP [21] and DeEPs [56] employ EPs as classification rules. CAEP first

finds all the EPs from the training data of each class. When classifying a new

object by aggregating the differentiating power of the set of EPs that apply, a score

is obtained for each class, and that with the highest score wins. Arguing that the

process to discover all EPs from the training data is time-consuming, DeEPs pro-

pose a “lazy” learning approach. Whenever a new instance is being considered,

DeEPs uses it as a filter to remove irrelevant training values in order to reduce the

training space. Boundary EPs are detected for each class. To classify this instance,

a collective score for each class is calculated by summarizing the frequencies of the
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selected EPs pertaining to each class. As an EP discovery process is instance-based,

all the training data should be stored for re-learning during the entire classification

process.

4.2.3 High-Order Pattern and Weight-of-Evidence Rule Based

Classifier

High-order pattern and weight of evidence rule-based classifier (HPWR) [97, 98] is a

well-developed classification system. As introduced in Section 4.1.3, the algorithm

of high-order pattern discovery detects significant association patterns by using

residual analysis in statistics. At the next stage, classification rules are generated

using weight of evidence to quantify the evidence of significant association patterns

in support of, or against, a certain class membership [98].

In information theory, the difference in the gain of mutual information when

predicting attribute Y takes on the value ci over that when it takes on some other

values, given x, is defined as the weight of evidence. This measure furnishes an

evidence provided by x in favor of ci being a plausible value of Y as opposed to

Y taking other values. Denoted by W (Y = ci/Y 6= ci|x), the weight of evidence

assumes the following forms

W (Y = ci/Y 6= ci|x) = I(Y = ci : x)− I(Y 6= ci : x) (4.8)

= log
P (Y = ci|x)
P (Y = ci)

− log
P (Y 6= ci|x)
P (Y 6= ci)

(4.9)

= log
P (x|Y = ci)
P (x|Y 6= ci)

(4.10)

where I(·) is the mutual information. The weight of evidence is positive if x provides

positive evidence supporting Y taking on ci; otherwise, it is negative, or zero.

As stated in [97, 98], significant event associations related to ci and x are used in

the classification inference process. Suppose that n sub-compound events x1, · · ·, xn
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are detected, where (xk, Y = ci) is a significant association pattern and ∪n
k=1xk = x;

xp

⋂
xq = Φ when p 6= q, 1 ≤ k, p, q ≤ n. Then the weight of evidence W (Y =

ci/Y 6= ci|x) can be obtained from the sum of the weight of evidence provided by

each of them

W (Y = ci/Y 6= ci|x)

= log
P (x1|Y = ci)

P (x1|Y 6= ci)
+ ... + log

P (xn|Y = ci)

P (xn|Y 6= ci)
(4.11)

= W (Y = ci/Y 6= ci|x1) + ... + W (Y = ci/Y 6= ci|xn) (4.12)

=
n∑

k=1

W (Y = ci/Y 6= ci|xk) (4.13)

Thus, the calculation of weight of evidence is to find a proper set of disjoint signif-

icant event associations from x and to sum individual weight of evidence provided

by each of them. The task is to maximize the term in Equation 4.13. The most

plausible value ci of Y is the one that renders the highest weight.

4.2.4 Analysis

Among these three types of associative classification systems, certain similarities

and differences are present:

1. Associative classifiers based on the Apriori algorithm like CBA and HPWR

are typical associative classification systems. Traditionally, association and

classification are two independently important tasks for practical applications.

Association is mainly used in data mining for discovering descriptive knowl-

edge from databases, while classification is addressed in the field of machine

learning for exploring boundaries among classes. As association pattern min-

ing and classification rule mining are both indispensable in a data mining

system, there is a need to integrate both into an association classification

system. This is reflected by many research efforts to that effect. In general,
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the pattern discovery phase detects all event associations without necessarily

relating the class it might be associated with. When the predicting attribute

for classification is given at the second stage, a subset of association patterns

or rules relevant to the predicting attribute is selected to construct a classifier.

Theoretically, when a different predicting attribute is assigned, no re-learning

is necessary for pattern discovery. Both CBA and HPWR share such a view.

On the other hand, the learning processes of CAEP and DeEPs are more like

those of a traditional classifier. Their classification rules are generated from

emerging patterns (EPs). The discovering of EPs is class-based (one class

against other classes) assuming the predicting attribute is known at the pat-

tern discovery phase. This learning process serves the purpose of classification

instead of exploring descriptive knowledge across the entire database.

2. HPWR, CAEP and DeEPs use multiple rules to classify a new object: HPWR

employs weight of evidence, which accounts for the strength of the association

between the class membership and all the admissible statistically significant

conditions. The total weights of evidence provided by several applicable pat-

terns are “addable” if they are conditionally independent [102]; CAEP obtains

a score for each class by aggregating the differentiating power of EPs which ap-

ply to the test object, and DeEPs determine collective scores for all classes by

compactly summarizing the number of occurrences of the discovered bound-

ary EPs. Thus, all relevant EPs of a class contribute to the final decision.

On the other hand, CBA uses only one rule for prediction. One problem with

this is that it cannot handle partial information from the test object [98]. For

example, if an unknown instance to be classified is O = [A,B,C] and accord-

ing to rule1: A ⇒ class1, O belongs to class1, but according to rule2: B ⇒
class2 and rule3: C ⇒ class2, O belongs to class2. Then CBA will classify O

as class1 since rule1 precedes rule2 and rule3 even though the combination of

rule2 and rule3 might be more determining.

3. HPWR discovers all the association patterns using residual analysis. The sta-

tistical significance of an association pattern is guaranteed, which eliminates
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the need of using unstandardized (widely varying) and arbitrary thresholds.

Meanwhile, the residual is easily interpreted in terms of the degree of sat-

isfaction in the discovery when compared with others. CBA employs the

Aproiri algorithm to detect association rules by testing their supports and

confidences. EPs used by CAEP and DeEPs are discovered by calculating

their supports in one class against others and obtaining a growth rate re-

flecting the significance of the support changes. One learning issue with the

latter two pattern discovery methods, the Aproiri algorithm and EPs mining,

is the setting of the threshold: with the Apriori algorithm, it is the minimum

support and minimum confidence; with EP mining, it is the growth rate (set

as infinite in DeEPs).

4.3 Boosting the HPWR Classification System

There are two approaches in applying the AdaBoost.M1 (Figure 3.3) algorithm to

a specific base learner. One is to resample instances from the original data set.

The probabilities of samples to be selected are not equal across the entire training

set. They depend on how often these samples were misclassified by the previous

classifiers. Normalized sample weights become the new probability values of the

samples to be selected. The other approach is to introduce sample weights into the

learning process directly. Some evidence indicates that the latter works better in

practice due to less information loss [73, 83].

Sample weights can be induced into the learning process directly when boosting

an HPWR classification system. The learning process of HPWR tests the occur-

rences or probabilities of event associations in the samples. A normalized sample

weight can be taken as the occurrence probability of the sample. The observed

probability of an event or an event association can then be calculated as the sum-

mation of weights of samples in which this event or event association occurs.
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4.3.1 Residual Analysis on Weighted Samples

Let D(i) denote the weight of the ith sample. After normalization over all the

database, each weight can be taken as the probability of the sample, as well as the

probability of each primary event in this sample. Thus, the relative frequency of

occurrences, of a primary event of xi can be calculated as

oxi
= M · P (xi) = M ·

M∑
j=1,xi∈xj

D(j) (4.14)

The observed number of occurrences of compound event xs as oxs and its ex-

pected number of occurrences as

oxs = M · P (xs) = M ·
M∑

j=1,xs∈xj

D(j) (4.15)

exs = M ·
∏

xi∈xs

p(xi) = M ·
∏

xi∈xs

M∑
j=1,xi∈xj

D(j) (4.16)

To determine whether a compound event xs is a pattern or not, the Standardized

Residual (Equation 4.4) or Adjusted Residual (Equation 4.5) is tested.

4.3.2 Weight of Evidence Provided by Weighted Samples

Suppose there are n sub-compound events x1, ···, xn are detected, where (xk, Y = cj)

is a significant association pattern and ∪n
k=1xk = x; xp

⋂
xq = Φ when p 6= q,

1 ≤ k, p, q ≤ n. Then

P (xk, Y = cj) =
M∑

i=1,xk∈xi,yi=cj

D(i) (4.17)
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P (Y = cj) =
M∑

i=1,yi=cj

D(i) (4.18)

and,

P (xk|Y = cj) =
P (xk, Y = cj)

P (Y = cj)
(4.19)

In the like manner, we have

P (xk, Y 6= cj) =
M∑

i=1,xk∈xi,yi 6=cj

D(i) (4.20)

P (Y 6= cj) =
M∑

i=1,yi 6=cj

D(i) (4.21)

and

P (xk|Y 6= cj) =
P (xk, Y 6= cj)

P (Y 6= cj)
(4.22)

The weight of evidence W (Y = ci/Y 6= ci|xk) provided by xk in support of, or

against, cj can then be obtained from Equation 4.19 and Equation 4.22 as

w(Y = cj/Y 6= cj|xk) = log
P (xk|Y = cj)

P (xk|Y 6= cj)
(4.23)

The sum of the weight of evidence provided by each of xk (1 ≤ k ≤ n) are then

obtained by Equation 4.13.

4.3.3 Weighting Strategies for Voting

We assume that a new observation, x, is to be classified into one of the class labels

in Y= {c1, c2, · · ·, ck}. The most plausible value of Y is the one with the highest
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weight of evidence provided by the observation. The weight of evidence provided

by x in favor of ci as opposed to other values is expressed as ri:

ri = W (Y = ci/Y 6= ci|x) = log
P (x|Y = ci)

P (x|Y 6= ci)
(4.24)

Therefore, the output of the tth classifier ht learned through HPWR can be pre-

sented in the following two ways:

ht(x) → ci, 1 ≤ i ≤ k (4.25)

or

h′t(x) → ci, with confidence rti 1 ≤ i ≤ k (4.26)

In Equation 4.25, only the class label assignment is considered, while in Equation

4.26 both the class label assignment and the confidence level evaluated by the

weight of evidence are considered. When voting multiple classifiers by applying the

AdaBoost.M1 algorithm, these two versions of component classifier outputs can be

plugged into Equation 3.6 to get the combination classification. Based on these

two versions of outputs, we explore three weighting strategies for voting the final

hypothesis:

•Strategy 1 (Classifier-based weighting strategy). If we only consider

the class label assignment of each classifier while ignoring the weight of evidence

in HPWR (i.e., Equation 4.25), Equation 3.6 remains the same. This is exactly

the voting strategy used in the AdaBoost.M1 algorithm. Voting factor α is deter-

mined by the classifier’s performance based on training error. A certain component

classifier will provide the same confidence in classifying a set of objects via voting.

Therefore, we call this strategy classifier-based weighting.

•Strategy 2 (Sample-based weighting strategy). Noticing that both the

classifier weighting factor, α, in AdaBoost.M1 and the weight of evidence, r, in

HPWR are strength measures in deciding a class label, we replace α with r in
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Equation 3.6. The weighted combination of the output of each classifier then be-

comes:

H(x) = arg max
ci,i=1··k

(
T∑

t=1

rtiI[ht(x) = ci]) (4.27)

This weighting strategy uses the weight of evidence of each classifier in support-

ing or rejecting a class label given a new object as the confidence measure for voting

the final classification. As each classifier provides a specific prediction confidence

for each sample, this weighting scheme is called sample-based weighting.

•Strategy 3 (Hybrid weighting strategy). In this strategy, we consider

both the class label assignment and the prediction confidences evaluated in terms

of the weight of evidence as the outputs of a classifier. That is, we apply both h′t(x)

and rti in Equation 4.26 to Equation 3.6. The weighted combination of the output

of each classifier then becomes:

H(x) = arg max
ci,i=1··k

(
T∑

t=1

αtrtiI[ht(x) = ci]) (4.28)

Here, the weight of a classifier in voting is a product of the classifier weighting

factor, α, in AdaBoost.M1 and the weight of evidence, r, of HPWR. We call this

strategy Hybrid weighting.

The weighting strategy of the original AdaBoost.M1 algorithm is classifier-based

(Strategy 1). The intention of a boosting algorithm is to force each learning iteration

to concentrate on a specific part of the data space by changing the data distribution.

It is quite possible that a classifier has different prediction confidences in different

data spaces. When a classifier-based weighting scheme is adopted, this difference

is overlooked in voting. Sample-based weighting strategy (Strategy 2) uses rti, the

weight of evidence rendered for each test object as the voting factor in the final

classification. The obvious advantage of a sample-based weighting scheme is that

it takes into account the different voting priorities with respect to each classifier’s
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learning space. The hybrid strategy (Strategy 3) is a combination of Classifier-

based and Sample-based weighting strategies, where the voting weight of a classifier

is calculated as a product of the weight of evidence, rti, of the classification inference

in HPWR by the classifier weighting factor, α, in the AdaBoost.M1 algorithm.
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Chapter 5

Boosting for Learning Bi-Class

Imbalanced Data

5.1 Why Boosting?

The performance of a range of well-developed classification systems is degraded

when encountering the class imbalance problem. The major research objective of

this thesis is to investigate a solution which is applicable to most classifier learn-

ing algorithms to enhance the classification of imbalanced data. Solutions at the

algorithm-level change the underlying learning methods, and so are unique to spe-

cific classification systems. Since the most obvious characteristic of an imbalanced

data set is the skewed data distributions among classes, the straightforward solu-

tions at the data-level is to manually generate a balanced data set by resampling.

These solutions are applicable to most classification systems without changing their

learning methods. However, as stated in Section 2.3.1, the significant shortcomings

with the resampling approach are:

1. The optimal class distribution is always unknown;

2. The criterion in selecting samples is uncertain;
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3. Undersampling the prevalent class may risk information loss; and

4. Oversampling the small class may risk model overfitting.

Ensemble methods, such as boosting and bagging, construct multiple classifiers

by resampling the data space: weighting samples by boosting and replacing samples

by bagging. The improvement in performance arising from ensemble combinations

is usually the result of a reduction in variance. Variance measures how much a

learning algorithm’s guess bounces around for different training sets. Variance is

therefore associated with overfitting: if a method overfits the data the predictions

for a single instance will vary between samples. Both boosting and bagging are

capable of reducing variance, and hence are immune to the model overfitting prob-

lem.

According to the bias-variance decomposition analysis, the model bias also con-

tributes to the prediction error of a classifier. With an imbalanced data set, small

class samples occurring infrequently, models that describe the rare classes have to

be highly specialized. Standard learning methods pay less attention to the rare

samples as they try to extract the regularities from the data set. Such a model

performs poorly on the rare class due to the introduced bias error. Bagging is be-

lieved to be effective for variance reduction, but not for bias reduction. AdaBoost,

however, is stated to be capable of both bias and variance reduction [33].

The AdaBoost algorithm weighs each sample to reflect its importance and places

the greatest weights on those samples which are most often misclassified by the

preceding classifiers. The sample weighting strategy is equivalent to re-sampling

the data space combining both up-sampling and down-sampling. Boosting attempts

to reduce the bias error as it focuses on misclassified samples [31]. Such a focus

may cause the learner to produce an ensemble function that differs significantly

from the single learning algorithm. Hence the advantages of AdaBoost for learning

imbalanced data can be summarized as:

1. A boosting algorithm is applicable to most classification systems;
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2. Resampling the data space automatically eliminates the extra learning cost

for exploring the optimal class distribution and the representative samples;

3. Resampling the data space through weighting each sample results in little

information loss as compared with eliminating some samples from the data

set;

4. Combining multiple classifications decreases the risk of model overfitting; and

5. AdaBoost is capable of reducing the bias error of a certain classification learn-

ing method.

These positive features make the boosting approach an attractive technique

in tackling the class imbalance problem. Given a data set with an imbalanced

class distribution, misclassified samples are often in the minority class. When the

AdaBoost algorithm is applied, samples in the minority class may receive more

weights such that successive learning will focus on the minority class. Intuitively,

the AdaBoost algorithm might improve the classification performance on the small

class. However, experimental results reported in [29, 47, 88] show that the im-

proved identification performances for the small class are not always guaranteed or

satisfactory. The straightforward reason is that AdaBoost is accuracy-oriented: its

weighting strategy may bias towards the prevalent class since it contributes more

to the overall classification accuracy. Hence, the issue becomes how to adapt the

AdaBoost algorithm to incline its boosting strategy towards the class of interest.

5.2 Cost-Sensitive Boosting Algorithms

The weighting strategy of AdaBoost is to increase weights of misclassified samples

and decrease weights of correctly classified samples until the weighted sample dis-

tributions between misclassified samples and correctly classified samples are even

on each round. This weighting strategy distinguishes samples on their classification
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outputs: correctly classified or misclassified. However, it treats samples of differ-

ent types (classes) equally: weights of misclassified samples from different classes

are increased by an identical ratio, and weights of correctly classified samples from

different classes are decreased by another identical ratio. Given a bi-class data

set with imbalanced class distributions, samples of the rare class are prone to be

misclassified. Due to the relatively few samples in the rare class, the number of

misclassified samples in the rare class is smaller than that of the prevalent class.

For example, consider a data set with class distributions of 10% of the rare class

and 90% of the prevalent class. Suppose that after a classification process, the

average classification error rate is 20%, with 60% of the rare samples and 15.6%

of the prevalent samples misclassified. By weight updating of AdaBoost, on the

next round the weighted sample distributions will be 17.5% of the rare class and

82.5% of the prevalent class. Even though the class distribution of the rare class

is improved, it is still smaller than that of the prevalent class. The learning objec-

tive in dealing with the imbalanced class problem is to improve the identification

performance for the small class. This learning objective expects that the weighting

strategy of a boosting algorithm will preserve a considerable weighted sample size

of the small class. A desirable boosting strategy is one which is able to distinguish

samples from different classes, and boost more weights on those samples associated

with higher identification importance.

To denote the different identification importance among samples, each sample

is associated with a cost item: the higher the value, the greater the importance of

correctly identifying that sample. Let {(x1, y1, C1), · · ·, (xm, ym, Cm)} be a sequence

of training samples, where each xi is an n-tuple of attribute values; yi is a class

label in Y = {−1, +1}; and Ci ⊂ [0, +∞) is an associated cost item. For an

imbalanced data set, samples with class label y = −1 are much more than samples

with class label y = +1. As the learning objective is to improve the identification

performance for the small class, the cost values associated with samples of the

small class can be set higher than those associated with samples of the prevalent

class. Keeping the same learning framework of AdaBoost, the cost items can be fed
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into the weight updating formula of AdaBoost (Equation 3.2) to bias its weighting

strategy. There are three ways to introduce cost items into the weight updating

formula of AdaBoost: inside the exponent, outside the exponent, and both inside

and outside the exponent. Three modifications of Equation 3.2 then become:

• Modification I

Dt+1(i) =
Dt(i)exp(−αtCiht(xi)yi)

Zt

(5.1)

• Modification II

Dt+1(i) =
Ci ·Dt(i)exp(−αtht(xi)yi)

Zt

(5.2)

• Modification III

Dt+1(i) =
Ci ·Dt(i)exp(−αtCiht(xi)yi)

Zt

(5.3)

Each modification can be taken as a new boosting algorithm denoted as AdaC1,

AdaC2 and AdaC3, respectively. As these algorithms use cost items, they can also

be regarded as cost-sensitive boosting algorithms. For the AdaBoost algorithm,

the selection of the weight updating parameter is crucial in converting a weak

learning algorithm into a strong one [33]. When the cost items are introduced

into the weight updating formula of the AdaBoost algorithm, the updated data

distribution is affected by the cost items. Without re-inducing the weight updating

parameter taking the cost items into consideration for each cost-sensitive boosting

algorithm, the boosting efficiency is not guaranteed. With the AdaBoost algorithm,

the weight updating parameter α is calculated to minimize the overall training error

of the combined classifier. Using the same inference method, we induce the weight

updating parameter α for each algorithm.

5.2.1 AdaC1

Unravelling the weight updating rule of Equation 5.1, we obtain
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Dt+1(i) =
exp(−∑

t αtCiyiht(xi))

m
∏

t Zt

=
exp(−Ciyif(xi))

m
∏

t Zt

(5.4)

where

Zt =
∑

i

Dt(i)exp(−αtCiyiht(xi)) (5.5)

and

f(xi) =
∑

t

αtht(xi) (5.6)

The over all training error is bounded as

1

m
|{i : H(xi) 6= yi}| ≤ 1

m

∑
i

exp(−Ciyif(xi)) (5.7)

=
∑

i

(
∏

t

Zt)D
t+1(i) =

∏
t

Zt (5.8)

Thus, the learning objective on each boosting iteration is to find αt so as to minimize

Zt (Equation 5.5). According to [81], once Ciyiht(xi) ∈ [−1 + 1], the following

inequality holds

∑
i

Dt(i)exp(−αCiyih(xi)) ≤
∑

i

Dt(i)(
1 + Ciyiht(xi)

2
e−α +

1− Ciyiht(xi)

2
eα)

(5.9)

By zeroing the first derivative of the right hand side of the Inequality 5.9, αt can

be determined as

αt =
1

2
log

1 +
∑

i,yi=ht(xi)

Ci ·Dt(i)−
∑

i,yi 6=ht(xi)

Ci ·Dt(i)

1−
∑

i,yi=ht(xi)

Ci ·Dt(i) +
∑

i,yi 6=ht(xi)

Ci ·Dt(i)
(5.10)
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To ensure that the selected value of αt is positive, the following condition should

hold

∑

i,yi=ht(xi)

Ci ·Dt(i) >
∑

i,yi 6=ht(xi)

Ci ·Dt(i) (5.11)

The Pseudocode for AdaC1 is given in Figure 5.1.

Let rt =
∑

i

Dt(i)Ciyiht(xi), then αt =
1

2
log

1 + rt

1− rt

. By plugging αt into Equa-

tion 5.9, it can be proved by the method used in [81] that the training error of the

composite classification H is at most
∏

t

√
1− r2

t . To minimize the overall training

error, the learning objective on each round is to maximize rt. Considering that

rt =
∑

i,yi=ht(xi)

Ci ·Dt(i)−
∑

i,yi 6=ht(xi)

Ci ·Dt(i) (5.12)

maximizing rt is equivalent to minimizing the cost error
∑

i,yi 6=ht(xi)

Ci ·Dt(i) on each

round. This observation is based on the fact that αt is approximated by minimizing

an upper bound of the Zt. In the upper bound (Equation 5.9), each sample is

weighted by its cost item. It turns out that to minimize the upper bound, a classifier

should minimize the cost error.

5.2.2 AdaC2

Unravelling the weight updating rule of Equation 5.2, we obtain

Dt+1(i) =
Ct

iexp(−∑
t αtyiht(xi))

m
∏

t Zt

=
Ct

iexp(−yif(xi))

m
∏

t Zt

(5.13)

where f(xi) is the same as defined in Equation 5.6 and

Zt =
∑

i

Ci ·Dt(i)exp(−αtyiht(xi)) (5.14)
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Given:{(x1, y1, C1), · · ·, (xM , yM , CM)} where xi ∈ X, yi ∈ Y = {−1, +1},
Ci ∈ (0 + 1], i = 1 · ·M
Initialize D1(i) = 1/M .

For t = 1, · · ·, T :

1. Train the base learner ht: X → Y using distribution Dt

2. Choose the weight updating parameter:

αt =
1

2
log

1 +
∑

i,yi=ht(xi)

Ci ·Dt(i)−
∑

i,yi 6=ht(xi)

Ci ·Dt(i)

1−
∑

i,yi=ht(xi)

Ci ·Dt(i) +
∑

i,yi 6=ht(xi)

Ci ·Dt(i)

3. Update and normalize the sample weights:

Dt+1(i) =
Dt(i)exp(−αtCiht(xi)yi)

Zt

Where, Zt is a normalization factor:

Zt =
∑

i

Dt(i)exp(−αtCiyiht(xi))

Output the final classifier:

H(x) = sign(
T∑

t=1

αtht(x))

Figure 5.1: AdaC1 Algorithm
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Then, the training error of the final classifier is bounded as

1

m
|{i : H(xi) 6= yi}| ≤ 1

m

∑
i

exp(−yif(xi)) =
∏

t

Zt

∑
i

CiD
t(i)

C
(t+1)
i

(5.15)

Where C
(t+1)
i denotes the (t+1)th power of Ci. There exists a constant γ such that

∀i, γ < C
(t+1)
i . Then,

1

m
|{i : H(xi) 6= yi}| ≤

∏
t

Zt

∑
i

Ci ·Dt(i)

C
(t+1)
i

≤ 1

γ

∏
t

Zt (5.16)

Since γ is a constant, the learning objective at each boosting iteration is to find αt

so as to minimize Zt (Equation 5.14). Zt can be expressed as

∑
i

Ci ·D(i)(t)exp(−αyiht(xi)) =
∑

i

Ci ·Dt(i)(
1 + yiht(xi)

2
e−α +

1− yiht(xi)

2
eα)

(5.17)

Zeroing the first derivative of the right hand side, αt is then uniquely selected as

αt =
1

2
log

∑

i,yi=ht(xi)

Ci ·Dt(i)

∑

i,yi 6=ht(xi)

Ci ·Dt(i)
(5.18)

To ensure that the selected value of αt is positive, the following condition should

hold

∑

i,yi=ht(xi)

Ci ·Dt(i) >
∑

i,yi 6=ht(xi)

Ci ·Dt(i) (5.19)

The Pseudocode for AdaC2 is given in Figure 5.2.
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Given:{(x1, y1, C1), · · ·, (xM , yM , CM)} where xi ∈ X, yi ∈ Y = {−1, +1},
Ci ⊂ (0, +∞), i = 1 · ·M
Initialize D1(i) = 1/M .

For t = 1, · · ·, T :

1. Train the base learner ht: X → Y using distribution Dt

2. Choose the weight updating parameter:

αt =
1

2
log

∑

i,yi=ht(xi)

Ci ·Dt(i)

∑

i,yi 6=ht(xi)

Ci ·Dt(i)

3. Update and normalize the sample weights:

Dt+1(i) =
Ci ·Dt(i)exp(−αtht(xi)yi)

Zt

Where, Zt is a normalization factor:

Zt =
∑

i

Ci ·Dt(i)exp(−αtyiht(xi))

Output the final classifier:

H(x) = sign(
T∑

t=1

αtht(x))

Figure 5.2: AdaC2 Algorithm
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Let rt =
∑

i

CiD
t(i)yiht(xi) and Rt =

∑
i

CiD
t(i), then αt =

1

2
log

Rt + rt

Rt − rt

. Plug-

ging into Equation 5.17, we can derive that

Zt =
√

R2
t − r2

t (5.20)

The training error of the composite classification H is at the most
1

γ

T∏
t=1

√
R2

t − r2
t .

With Rt and γ as constants, to minimize the overall training error, learning objec-

tive on each round is to maximize rt. Considering that

rt =
∑

i,yi=ht(xi)

CiD
t(i)−

∑

i,yi 6=ht(xi)

Ci ·Dt(i) (5.21)

maximizing rt is equivalent to minimizing the cost error
∑

i,yi 6=ht(xi)

Ci ·Dt(i) on each

round. Since the cost item is used to weigh each sample directly, it is understandable

that the learning objective is to minimize the cost error on each round.

5.2.3 AdaC3

The weight updating formula (Equation 5.3) of AdaC3 is a combination of AdaC1

and AdaC2 (with the cost items being both inside and outside the exponential

function). The training error bound of AdaC3 can then be expressed as

1

m
|{i : H(xi) 6= yi}| ≤ 1

γ

∏
t

Zt (5.22)

where γ is a constant and ∀i, γ < C
(t+1)
i , and

Zt =
∑

i

Ci ·Dt(i)exp(−αtCiyiht(xi)) (5.23)
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Since γ is a constant, the learning objective at each boosting iteration is to find αt

so as to minimize Zt (Equation 5.23). According to [81], once Ciyiht(xi) ∈ [−1, +1],

the following inequality holds

∑
i

Ci ·Dt(i)exp(−αCiyih(xi)) ≤
∑

i

Ci ·Dt(i)(
1 + Ciyiht(xi)

2
e−α +

1− Ciyiht(xi)

2
eα)

(5.24)

By zeroing the first derivative of the right hand side of Inequality 5.24

αt =
1

2
log

∑
i

Ci ·Dt(i) +
∑

i,yi=ht(xi)

C2
i D

t(i)−
∑

i,yi 6=ht(xi)

C2
i D

t(i)

∑
i

Ci ·Dt(i)−
∑

i,yi=ht(xi)

C2
i D

t(i) +
∑

i,yi 6=ht(xi)

C2
i D

t(i)
(5.25)

To ensure that the selected value of αt is positive, the following condition should

hold:

∑

i,yi=ht(xi)

C2
i D

t(i) >
∑

i,yi 6=ht(xi)

C2
i D

t(i) (5.26)

The Pseudo code for AdaC3 is given in Figure 5.3.

Let rt =
∑

i

C2
i ·Dt(i)yiht(xi) and Rt =

∑
i Ci · Dt(i), then αt =

1

2
log

Rt + rt

Rt − rt

.

Plugging into Equation 5.24, we can derive the upper bound of Zt

Zt ≤
√

R2
t − r2

t (5.27)

The training error of the composite classification H is at the most
1

γ

T∏
t=1

√
R2

t − r2
t .

With Rt and γ as constants to minimize the overall training error, the learning

objective on each round is to maximize rt. Considering that
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Given:{(x1, y1, C1), · · ·, (xM , yM , CM)} where xi ∈ X, yi ∈ Y = {−1, +1},
Ci ∈ (0 + 1], i = 1 · ·M
Initialize D1(i) = 1/M .

For t = 1, · · ·, T :

1. Train the base learner ht: X → Y using distribution Dt

2. Choose the weight updating parameter:

αt =
1

2
log

∑
i

Ci ·Dt(i) +
∑

i,yi=ht(xi)

C2
i D

t(i)−
∑

i,yi 6=ht(xi)

C2
i D

t(i)

∑
i

Ci ·Dt(i)−
∑

i,yi=ht(xi)

C2
i D

t(i) +
∑

i,yi 6=ht(xi)

C2
i D

t(i)

3. Update and normalize the sample weights:

Dt+1(i) =
Ci ·Dt(i)exp(−αtCiht(xi)yi)

Zt

Where, Zt is a normalization factor:

Zt =
∑

i

Ci ·Dt(i)exp(−αtCiyiht(xi))

Output the final classifier:

H(x) = sign(
T∑

t=1

αtht(x))

Figure 5.3: AdaC3 Algorithm
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rt =
∑

i,yi=ht(xi)

C2
i D

t(i)−
∑

i,yi 6=ht(xi)

C2
i D

t(i) (5.28)

maximizing rt is equivalent to minimizing
∑

i,yi 6=ht(xi)

C2
i ·Dt(i) (i.e., training error

weighted by the square of the cost item) on each round. The weighting strategy of

AdaC3 is a combination of AdaC1 and AdaC2. αt is approximated by minimizing

an upper bound of the Zt (Equation 5.24), where each sample is weighted by its

cost item twice. It turns out that to minimize the upper bound, a classifier should

minimize the cost error weighted by the square of the cost item.

5.2.4 Analysis

By introducing the cost item into the weight updating formula of AdaBoost in

different ways, three cost-sensitive boosting algorithms, namely AdaC1, AdaC2 and

AdaC3, are developed. It is easy to prove that if each individual cost item is set as

1 (i.e., Ci = 1), the proposed three cost-sensitive AdaBoost algorithms will reduce

to the original AdaBoost algorithm. The main step of each cost-sensitive boosting

algorithm is the inference of the weight updating parameter for each algorithm

taking the cost item into consideration. This parameter is used for updating sample

weights and voting a set of classifiers as well.

Let αC1, αC2, and αC3 denote the weight updating parameters of AdaC1, AdaC2

and AdaC3, respectively. Using the same inference method by AdaBoost, each of

them is reduced by minimizing its sample weight normalization factor Zt. αC1 and

αC3 are approximated by minimizing the upper bounds of Zt respectively, and αC2

is an exact solution to minimize its Zt. By the solutions of α, the learning objectives

for AdaC1 and AdaC2 are to minimize the cost error
∑

i,yi 6=ht(xi)

Ci ·Dt(i) and that

of AdaC3 is to minimize the squared-cost error
∑

i,yi 6=ht(xi)

C2
i ·Dt(i) on each round.

The goal to develop the cost-sensitive boosting algorithms is to improve the
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standard classification learning algorithms’ identification performances on the im-

portant class. Generally, the learning objective of a standard classification learning

algorithm is to minimize the error instead of the cost error. However, if each sam-

ple is associated with a cost item, the learning objective of minimizing the training

error can be transferred to minimizing the cost error by applying the Translation

Theorem (Equation 2.1). That is, in weighting each sample by its associated cost

item, the classifier which optimizes error rate will optimize the cost error on the

updated data space [106].

AdaC2 weighs each sample by its associated cost item according to the definition

of Dt+1 of Equation 5.2. Thus, by applying the AdaC2 algorithm, a classifier that

minimizes the error rate will minimize the cost error simultaneously. On each round,

the first derivative of Zt (Equation 5.14) as a function of αt (αC2) is

Z ′
t(α) =

dZt

dαt

= −
∑

i

Ci ·Dt(i)ht(xi)yiexp(−αtyiht(xi)) = 0 (5.29)

By the weight updating formula of AdaC2 (Equation 5.2), the unique solution for

αt (αC2) makes

∑

i,ht(xi)=yi

Dt+1(i) =
∑

i,ht(xi)6=yi

Dt+1(i) (5.30)

That is, weight distributions on the correctly classified samples and misclassified

samples are even. Similar to AdaBoost, this makes the learning of the next iteration

to minimize the training error maximally difficult.

The weighting strategy of AdaC1 does not update sample weights by the cost

items. By applying AdaC1, a standard learning algorithm can not minimize the

cost error on each round as expected. AdaC3 weighs each sample by the cost item

once. By applying AdaC3, a standard learning algorithm is able to minimize the

cost error. Expected by the AdaC3 algorithm, however, the learning objective

should be to minimize the squared-cost error.
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5.3 Cost-Sensitive Exponential Loss and AdaC2

AdaC2 tallies with the stagewise additive modelling, where steepest descent search

is carried on to minimize the overall cost loss under the exponential function. By

integrating a cost item C into Equation 3.23, the cost-sensitive exponential loss

function becomes

C · L(y, f(x)) = C · exp(−yf(x)) (5.31)

The goal is to train a classifier which minimizes the expected cost loss under the

exponential function. On each iteration, ht and αt is learned separately to solve

(αt, ht) = arg min
α,h

∑
i

Ci · exp[−yi(ft−1(xi) + αh(xi))] (5.32)

= arg min
α,h

∑
i

Ci ·Dt(i)exp(−αyih(xi)) (5.33)

where Dt(i) = exp(−yifm−1(xi)). The solution to Equation 5.33 is obtained in two

steps. First, for any value of α > 0, ht is the one which minimizes the cost error,

which is

ht = arg min
h

∑
i

Ci ·Dt(i)I[yi 6= ht(xi)] (5.34)

Standard classification learning algorithms minimize the error rate instead of the

expected cost. However, the translation theorem derived in [106] can be applied

to solve this problem. Against a normal space without considering the cost item,

a data space associated with different cost factors is regarded as a cost-space. If

we have examples drawn from a distribution in the cost-space, then we can have

another distribution in the normal space. In our case, weighing each sample by its

cost item, we obtain a sample distribution in the normal space
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D̂t(i) = Ci ·Dt(i) (5.35)

According to the translation theorem, those optimal error rate classifiers for

D̂ will be optimal cost minimizers for D. Thus, ht can be fixed to minimize the

error rate for D̂t, which is equivalent to minimizing the cost error for Dt. Once the

classifier is fixed, the second step is to decide the value of α to minimize the right

side of Equation 5.33. This job shares the learning objective of AdaC2 (Equation

5.14). α is fixed as stated in Equation 5.18. The approximation is then updated as

ft(x) = ft−1(x) + αtht(x) (5.36)

which causes the weights for the next iteration to be

Dt+1(i) = Dt(i) · exp(−αtyiht(xi)) (5.37)

To minimize the cost-sensitive exponential loss (Equation 5.31), the learning objec-

tive on each round is to minimize the expected cost. By applying the translation

theorem, each sample is reweighted by its cost factor. Therefore, each sample weight

for learning of the next iteration is updated as

D̂t+1(i) = Ci ·Dt(i) · exp(−αtyiht(xi)) (5.38)

5.4 Cost Factors

For cost-sensitive boosting algorithms, the cost items are used to characterize the

identification importance of different samples. The cost value of a sample may

depend on the nature of the particular case [91]. For example, in detection of

fraud, the cost of missing a particular case of fraud will depend on the amount

of money involved in that particular case [30]. Similarly, the cost of a certain

72



kind of mistaken medical diagnosis may be conditional on the particular patient

who is misdiagnosed [91]. In the case that the misclassification costs or learning

importance for samples in one class are the same, a unique number can be set up

for each class. For a bi-class imbalanced data set, there will be two cost items:

CP denoting the learning importance (misclassification cost) of the positive class

and CN denoting that of the negative class. Since the purpose of the cost-sensitive

boosting is to boost a larger class size on the positive class, CP should be set greater

than CN . With a higher cost value on the positive class, a considerable weighted

sample size of the positive class is boosted to strengthen learning. Consequently,

more relevant samples are identified.

Referring to the confusion matrix Table 2.1, the recall value (Equation 2.2)

measures the percentage of retrieved objects that are relevant. A higher positive

recall value is more favorable for a bi-class imbalanced data set based on the fact

that misclassifying a positive sample as a negative one will cost much more than the

reverse. There are some econometric applications, like credit card fraud detection,

misclassifying a valuable customer as a fraud may cost much more than the opposite

case in the current climate of intense competition. The cost of misclassifying a

negative case is regarded as higher than misclassifying a positive sample. For this

kind of application, we still associate a higher cost value with the positive class.

By applying the cost-sensitive boosting algorithm, many more relevant samples are

included to generate a “denser” data set for further analysis, and so a conclusive

decision.

Given a data set, the cost setup is usually unknown. For a binary application,

the cost values can be decided using empirical methods. Suppose the learning

objective is to improve the identification performance on the positive class. This

learning objective expects a higher F-measure value (Equation 2.4) for the positive

class. As stated previously, with a higher cost value for the positive class than

that of the negative class, more weights are expected to be boosted for the positive

class, and the recall value of the positive class is improved. However, if weights

are over-boosted for the positive class, more irrelevant samples will be included
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simultaneously. The precision value (Equation 2.3), measuring the percentage of

relevant objects in the set to all objects returned by a search, decreases. Hence,

there is a trade-off between recall and precision values: when recall value increases,

precision value decreases. To get a better F-measure value, weights boosted for

the positive class should be fair in order to balance the recall and precision values.

Therefore, cost values can be tested by evaluating the F-measure value iteratively.

The situation is similar if the learning objective is to balance the classification

performance evaluated by G-mean (Equation 2.6).

As stated in [26], given a set of cost setups, the decisions are unchanged if

each one in the set is multiplied by a positive constant. This scaling corresponds

to changing the accounting unit of costs. Hence, it is the ratio between CP and

CN that denotes the deviation of the learning importance between the two classes.

Therefore, the job of searching for an effective cost setup for applying the cost-

sensitive boosting algorithms is actually to obtain a proper ratio between CP and

CN , for a better performance according to the learning objective.

5.5 Other Related Algorithms

There are some other reported boosting algorithms for classification of imbalanced

data in the literature. These boosting algorithms can be categorized into two

groups: the first group represents those that can be applied to most classifier learn-

ing algorithms directly, such as AdaCost [29], CSB1 and CSB2 [88], and RareBoost

[47]; the second group includes those that are based on a combination of the data

synthesis algorithm and the boosting procedure, such as SMOTEBoost [16], and

DataBoost-IM [35]. Synthesizing data may be application-dependent and hence

involves extra learning cost. We only consider boosting algorithms that can be

applied directly to most classification learning algorithms. Among this group, Ada-

Cost [29], CSB1 and CSB2 [88] employ cost items to bias the boosting towards the

small class, and RareBoost [47] has been developed to directly address samples of

the four types as tabulated in Table 2.1 (confusion matrix).
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5.5.1 AdaCost

In AdaCost, Equation 3.2 is replaced by

Dt+1(i) = Dt(i) · exp(−αtyiht(xi)βsgn(ht(xi),yi)) (5.39)

where β is called a cost adjustment function. The requirement for this function is as

follows: for an instance with a higher cost factor, the function increases its weight

“more” if the instance is misclassified, but decreases its weight “less” otherwise. In

[29], the authors provide their recommended setting as: β+ = −0.5Cn + 0.5 and

β− = 0.5Cn + 0.5, where Cn is the cost of misclassifying the nth example.

In AdaCost, αt is calculated as

αt =
1

2
log

1 + rt

1− rt

(5.40)

where

rt =
∑

i

Dt(i)exp(−αtyiht(xi)βsgn(ht(xi),yi)) (5.41)

AdaCost is a variation of AdaC1 by introducing a cost adjustment function instead

of a cost item inside the exponential function. However, the selection of the cost

adjustment function is somehow ad hoc, and when the cost factors are set equally

for both positive and negative class, the AdaCost algorithm will not reduce to the

AdaBoost algorithm.

5.5.2 CSB1 and CSB2

CSB1 modifies the weight updating formula of AdaBoost ( Equation 3.2) to

Dt+1(i) =
Dt(i)Csgn(ht(xi),yi)exp(−yiht(xi))

Zt

(5.42)
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And CSB2 changes it to

Dt+1(i) =
Dt(i)Csgn(ht(xi),yi)exp(−αtyiht(xi))

Zt

(5.43)

where sgn(ht(xi), yi) denotes “+” if ht(xi) equals to yi (xi is correctly classi-

fied), “–” otherwise. The parameters C+ and C− are set as C+ = 1 and C− =

cost(yi, ht(xi)) ≥ 1, where cost(i, j) is the cost of misclassifying a sample of class i

to class j. For the weight updating of the next iteration, CSB1 does not use any

αt factor (or αt = 1) and CSB2 uses the same αt as computed by AdaBoost. Even

though the weight updating formula of CSB2 is similar to AdaC2, CSB2 does not

reference the weight updating parameter α by taking the cost set up into consid-

eration. Affected by the cost factors, the boosting efficiency of AdaBoost varies by

both CSB1 and CSB2.

5.5.3 RareBoost

RareBoost scales False Positive examples in proportion to how well they are distin-

guished from True Positive examples, and scales False Positive examples in propor-

tion to how well they are distinguished from True Negative examples (refer to Table

2.1). In their algorithm, the weight updating factor αp
t for positive predictions at

the tth iteration is calculated as

αp
t =

1

2
ln

TPt

FPt

(5.44)

where TPt and FPt denote the weight summation over all True Positive exam-

ples and False Positive examples, respectively. The weight updating factor αn
t for

negative predictions at the tth iteration is calculated as

αn
t =

1

2
ln

TNt

FNt

(5.45)
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where TNt and FNt denote the weight summation over all True Negative examples

and False Negative examples, respectively. Weights are then updated separately

using different factors respecting positive predictions and negative predictions.

This weighting strategy decreases the weights of True Positives (TP) and True

Negatives (TN), and increases the weights of False Positives (FP) and False Neg-

atives (FN) only if TP > FP and TN > FN . The constraint of TP > FP is

equivalent to require that the precision measure (Equation 2.3) of the positive class

be greater than 0.5. In the presence of the class imbalance problem, the small class

is always associated with both poor recall and precision values. Hence, such a con-

straint is a strong condition. Without this condition being satisfied, the algorithm

will collapse. We therefore discard this algorithm without further consideration.

5.6 Resampling Effects

In this section, we will show how each boosting algorithm updates weights corre-

sponding to the four types of examples tabulated in Table 2.1. Here we are not

trying to figure out how the weight of a specific training sample will change over

all the iterations, given that its role among TP and FN or FP and TN will switch

from iteration to iteration. Our interest is on how the weight updating mechanism

of each boosting algorithm treats the four groups of samples differently. In this sec-

tion, our study concentrates on AdaBoost [32, 81], AdaCost [29], CSB2 [88], and

the proposed three boosting algorithms, AdaC1, AdaC2, and AdaC3. For cost-

sensitive boosting algorithms, we use CP to denote the misclassification cost of the

positive class and CN for that of the negative class. This study is inspired by the

method used in [47].

Referring to Equation 3.2, 5.1, 5.2, 5.3, 5.39, and 5.43, AdaBoost, AdaC1,

AdaC2, AdaC3, AdaCost and CSB2 update sample weights on these four groups

from the tth iteration to the (t + 1)th iteration as summarized in Table 5.1.

For the AdaBoost algorithm, weights of False Negatives and False Positives
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Table 5.1: Weighting Strategies

AdaBoost TPt+1 = TPt/e
αt FPt+1 = FPt · eαt

TNt+1 = TNt/e
αt FNt+1 = FNt · eαt

AdaC1 TPt+1 = TPt/e
CP ·αt FPt+1 = FPt · eCN ·αt

TNt+1 = TNt/e
CN ·αt FNt+1 = FNt · eCP ·αt

AdaC2 TPt+1 = CP · TPt/e
αt FPt+1 = CN · FPt · eαt

TNt+1 = CN · TNt/e
αt FNt+1 = CP · FNt · eαt

AdaC3 TPt+1 = CP · TPt/e
CP ·αt FPt+1 = CN · FPt · eCN ·αt

TNt+1 = CN · TNt/e
CN ·αt FNt+1 = CP · FNt · eCP ·αt

AdaCost TPt+1 = TPt/e
β+
+ ·αt FPt+1 = FPt · eβ−− ·αt

TNt+1 = TNt/e
β−+ ·αt FNt+1 = FNt · eβ+

− ·αt

CSB2 TPt+1 = TPt/e
αt FPt+1 = CN · FPt · eαt

TNt+1 = TNt/e
αt FNt+1 = CP · FNt · eαt

are improved equally; weights of True Positives and True Negatives are decreased

equally with αt being a positive number. The learning objective in dealing with the

imbalance class problem is to obtain a satisfactory identification performance on the

positive (small) class. This learning objective expects that the weighting strategy

of a boosting algorithm preserves a considerable weighted sample size of the small

class. A desirable weight updating rule is to increase the weights of False Negatives

more than those of False Positives, but decrease the weights of True Positives more

conservatively than those of True Negatives [29]. The resampling strategies of each

cost-sensitive boosting algorithm are:

- AdaC1: False Negatives get more weight increase than False Positives with

eCP ·αt
> eCN ·αt

; True Positives lose more weights than True Negatives with
1

eCP ·αt
<

1

eCN ·αt
.

- AdaC2: False Negatives receive a greater weight increase than False Positives;

True Positives lose less weights than True Negatives given CP > CN .
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- AdaC3: Sample weights are updated by the combinational results of AdaC1

and AdaC2. As both AdaC1 and AdaC2 increase more weights on False

Negatives than False Positives, AdaC3 furthers this effect. On the correctly

classified part, AdaC1 decreases weights of True Positives more than those

of True Negatives, while AdaC2 preserves more weights on True Positives

than True Negatives. Due to the complicated situations of training error and

cost setups, it is difficult to decide when AdaC3 preserves more weights or

decreases more weights for True Positives.

- AdaCost: False Negatives receive a greater weight increase than False Pos-

itives and True Positives lose less weight than True Negatives by using a

cost adjustment function. The recommended cost adjustment function is :

β+ = −0.5Cn + 0.5 and β− = 0.5Cn + 0.5, where Cn is the misclassification

cost of the nth example, β+ (β−) denotes the output in case of the sample

correctly classified (misclassified). Since the cost factors for instances in the

positive class is set greater than those for instances in the negative class,

β+
+ < β−+ and β+

− > β−− , where β+
+ (β+

−) denotes the outputs for correctly

classified (misclassified) samples in the positive class, β−+ (β−−) denotes the

outputs for correctly classified (misclassified) samples in the negative class.

- CSB2: Weights of True Positives and True Negatives are decreased equally;

False Negatives get more boosted weights than False Positives.

In summary, all cost-sensitive boosting algorithms increase the weights of False

Negatives more than those of False Positives. On the true predictions (True Positive

and True Negative), their weighting strategies are different. Their resampling effects

regarding the boosting objective for learning imbalanced data are summarized in

Table 5.2.
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Table 5.2: Resampling Effects

True Predictions False Predicitions

An ideal Decreases the weights of True Increases the weights of

weighting Positives more conservatively than False Negatives more than

strategy those of True Negatives those of False Positives

AdaBoost × ×
AdaC1 × ∨
AdaC2 ∨ ∨
AdaC3 Uncertain ∨

AdaCost ∨ ∨
CSB2 × ∨
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Chapter 6

Boosting for Learning Multi-Class

Imbalanced Data

6.1 Multi-Class Imbalance Problem

Bi-class imbalanced data is not the only scenario where the class imbalance problem

prevails. In practice, some applications have more than two classes where the

unbalanced class distributions prohibit classification performance. An example is

taken from the network intrusion detection problem provided as part of the KDD-

CUP’99 contest as mentioned in Section 1.2. Each record in this data set represents

either an intrusion or a normal connection. There are four kinds of attacks, where

two kinds of attacks, remote-to-local (r2l) and user-to-root (u2r), are represented

with only 0.23% and 0.01% of the training samples and 5.20% and 0.07% of the test

samples, respectively. The winning entry identified only 8.4% and 13.2% attacks

of these two categories as compared with 83.3% and 97.1% identification rates

of the other two kinds of attacks, surveillance (probe) and denial-of-service (dos)

[24]. Obviously, the identification rates of the rare classes lag far behind those of

prevalent classes. However, correct identification of each kind of attack is equally

important for further security actions.
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Most existing approaches tackling the class imbalance problem, such as resam-

pling the data space of the data-level approaches, and recognition-based learning of

the algorithm-level approaches, assume a bi-class setting. Due to the complicated

situations when multiple classes are present, these methods are not applicable.

There are several approaches for extending the binary classifiers to handle multi-

class problems [86]. Let Y = {c1, c2, · · ·, ck} be the set of classes of the input data.

When it is assumed that the classifiers output a binary decision, there are two ba-

sic approaches. In the first approach, a classifier between one class and the k - 1

other classes is trained (in total k classifiers). This is called the 1-r (one-against-

rest) approach. In the second approach, a classifier is trained between each pair of

classes (in total k(k - 1)/2 classifiers). Here, a single classifier is used to distinguish

between a pair of classes (ci, cj). Instances that do not belong to either ci or cj

are ignored when constructing the binary classifier for (ci, cj). This is called the

1-1 (one-against-one) approach. In both 1-r and 1-1 approaches, a test sample is

classified by combining a set of decisions. One strategy is to use voting, where the

object is assigned to the class with the highest number of votes. The obvious prob-

lems with these approaches are that both cases increase the learning cost and may

lead to ties or contradictory voting [23] among the different classes. To avoid these

ties and inconsequential labels, other efforts are necessary. In the presence of data

with imbalanced class distributions, another crucial problem especially with the

1-r approach is that one class versus the other classes will worsen the imbalanced

distribution even more for the small classes.

Cost-sensitive boosting algorithms for tackling the class imbalance problem in

the scenario of bi-class applications were developed by adapting the AdaBoost al-

gorithm. Even though AdaBoost was originally designed for binary classification

problems, there are several methods to extend the AdaBoost algorithm to multi-

class problems. The straightforward generalization is AdaBoost.M1 (Figure 3.3).

In this chapter, a new cost-sensitive boosting algorithm is developed by adapting

AdaBoost.M1 for tackling the multi-class imbalance problem. However, given a

problem domain, the cost matrix is often unavailable. For bi-class problems, with-
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out the cost matrix, empirical methods can be used by testing a range of ratios of

cost values manually. Such a strategy is not workable with multi-class cases since

the search space increases exponentially as the class number increases. To figure

out a satisfactory cost setup manually for multiple classes is not a trivial job. For

this reason, research on cost-sensitive learning is usually limited to bi-class appli-

cations. Therefore, two critical research issues in this chapter are: 1) developing

an effective cost-sensitive boosting algorithm for classifying multi-class imbalanced

data; and 2) obtaining an effective cost setup for a given data set to apply to the

cost-sensitive boosting algorithm.

6.2 AdaBoost.M1 Algorithm

The original AdaBoost algorithm is designed for bi-class applications. AdaBoost.M1

(Figure 3.3) is a straightforward extension to multi-class problems. AdaBoost.M1

differs slightly from AdaBoost by replacing the weight updating formula of Equation

3.2 as

Dt+1(i) =
Dt(i)exp(−αtI[ht(xi) = yi])

Zt

(6.1)

where Zt is a normalization factor, and

I[ht(xi) = yi] =

{
+1 if ht(xi) = yi

−1 if ht(xi) 6= yi

(6.2)

and the final hypothesis of Equation 3.6 by

H(x) = arg max
ci

(
T∑

t=1

αt[ht(x) = ci]) (6.3)

By using the same inference methods provided in [32, 82], we can prove the following

bound still holds on the training error of the final hypothesis output H(x) (Equation

6.3) of AdaBoost.M1:

83



1

m
|{i : H(xi) 6= yi}| ≤

∏
t

Zt (6.4)

where

Zt =
∑

i

Dt(i)exp(−αtI[ht(xi) = yi]) (6.5)

To prove this theorem, we reduce the setup for AdaBoost.M1 to an instantiation

of AdaBoost. For clarity, variables in the reduced AdaBoost space are marked

with tildes. For each of the given samples (xi, yi) an AdaBoost sample (x̃i, ỹi) is

generated, where x̃i = xi and ỹi = 1 (i.e., each AdaBoost sample has label 1).

The AdaBoost distribution D̃ over samples is set to be equal to the AdaBoost.M1

distribution D. On each round, an AdaBoost hypothesis h̃t is defined as

h̃t(xi) = I[ht(xi) = yi] =

{
+1 if ht(xi) = yi

−1 if ht(xi) 6= yi

and

f̃(xi) =
T∑

t=1

αth̃t(x) (6.6)

Suppose the final hypothesis H(x) of AdaBoost.M1 makes a mistake on the

instance (xi, yi) so that H(xi) 6= yi. By the definition of the final hypothesis in

Equation 6.3, we obtain

T∑
t=1

αt[h(xi) = yi] ≤
T∑

t=1

αt[ht(xi) = H(xi)]

This implies that

T∑
t=1

αt[h(xi) = yi] ≤ 1

2

T∑
t=1

αt (6.7)
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and

T∑
t=1

αt[h(xi) 6= yi] ≥ 1

2

T∑
t=1

αt (6.8)

Then

f̃(xi) =
T∑

t=1

αtI[h(xi) = yi] (6.9)

=
T∑

t=1

αt[h(xi) = yi]−
T∑

t=1

αt[h(xi) 6= yi] (6.10)

≤ 0 (6.11)

implying that exp(−f̃(xi)) ≥ 1. Thus

[H(xi) 6= yi] ≤ exp(−f̃(xi)). (6.12)

Therefore, by using the same inference method of AdaBoost, we can get the

stated bound on the training error (Equation 6.4). To minimize the error upper-

bound of the overall training error, Zt is minimized on each round. αt is induced

in the same way as in Equation 3.15. To make αt a positive value, each weak

hypothesis has a training error of less than 1/2.

6.3 AdaC2.M1 Algorithm

We extend AdaC2 to multi-class problems, denoted as AdaC2.M1. We choose

AdaC2 as it possesses several good features as listed below:

1. Weight updating strategy of AdaC2 weighs each sample by its associated cost

item directly. This enables a standard classification learning algorithm that
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optimizes error rate to optimize cost error rate according to the translation

theorem;

2. Weight updating strategy of AdaC2 increases more weight on misclassified

samples of the small class and less on those of the prevalent class, decreases

less weights on correctly classified samples form the small class and more on

those from the prevalent class. This ensures that more weights are always

accumulated on the small class to bias the learning;

3. AdaC2 tallies with the stagewise additive modelling, where a steepest descent

search is carried on to minimize the overall cost loss under the exponential

function;

Suppose that we have k classes. Let C(i, j) denote the cost of misclassifying

an example of class i to the class j. In all cases, C(i, j) = 0.0 for i = j. Let C(i)

denote the cost of misclassifying samples of class i. C(i) is usually derived from

C(i, j). There are many possible rules for the derivation, among which one form

suggested in [89] is:

C(i) =
k∑
j

C(i, j). (6.13)

Moreover, we can easily expand this class-based cost to a sample-based cost. We

make the misclassification cost stand for the recognition importance with respect

to each class. Thus, for samples in the same class, their misclassification costs

can be set with the same value. Suppose that the ith sample belongs to class

j. We associate this sample with a misclassification cost Ci, which equals the

misclassification cost of class j (i.e., Ci = C(j)).

AdaC2.M1 is developed by inheriting the general learning framework of the

AdaBoost.M1 algorithm, and introducing the cost value outside the exponent in its

weight updating formula (Equation 6.1):
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Dt+1(i) =
Ci ·Dt(i)exp(−αtI[ht(xi) = yi])

Zt

(6.14)

Unravelling the weight updating rule of Equation 6.14, we obtain

Dt+1(i) =
Ct

iexp(−∑
t αtI[ht(xi) = yi])

m
∏

t Zt

(6.15)

=
Ct

iexp(−I[ht(xi) = yi])

m
∏

t Zt

(6.16)

where Ct
i stands for Ci to the power of t, and

Zt =
∑

i

Ci ·Dt(i)exp(−αtI[ht(xi) = yi]) (6.17)

By using the same inference methods of AdaBoost.M1, we can prove the training

error of the final classifier is bounded as

1

m
|{i : H(xi) 6= yi}| ≤

∏
t

Zt

∑
i

CiD
t(i)

Ct+1
i

≤ 1

γ

∏
t

Zt (6.18)

Where γ is a constant that ∀i, γ < Ct+1
i . Thus the learning objective on each round

is to find αt to minimize Zt (Equation 6.17). αt is then selected by taking costs

into consideration as

αt =
1

2
log

∑

i,yi=ht(xi)

Ci ·Dt(i)

∑

i,yi 6=ht(xi)

Ci ·Dt(i)
(6.19)

To ensure that the selected value of αt is positive, the following condition should

hold:

∑

i,yi=ht(xi)

Ci ·Dt(i) >
∑

i,yi 6=ht(xi)

Ci ·Dt(i) (6.20)

The Pseudocode for AdaC2 is given in Figure 6.1.
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Given:{(x1, y1, C1), · · ·, (xM , yM , CM)} where xi ∈ X, yi ∈ Y = {c1, c2, · · ·, ck},
Ci ⊂ (0, +∞), i = 1 · ·M
Initialize D1(i) = 1/M .

For t = 1, · · ·, T :

1. Train the base learner ht: X → Y using distribution Dt

2. Choose the weight updating parameter:

αt =
1

2
log

∑

i,yi=ht(xi)

Ci ·Dt(i)

∑

i,yi 6=ht(xi)

Ci ·Dt(i)

3. Update and normalize sample weights:

Dt+1(i) =
Ci ·Dt(i)exp(−αtI[ht(xi) = yi])

Zt

Where, Zt is a normalization factor.

I[ht(xi) = yi] =

{
+1 if ht(xi) = yi

−1 if ht(xi) 6= yi

Output the final classifier:

H(x) = arg max
ci

(
T∑

t=1

αt[ht(x) = ci])

Where for any predicate π,

[π] =

{
1 if π holds

0 otherwise

Figure 6.1: AdaC2.M1 Algorithm
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6.4 Resampling Effects

In a multi-class application of k classes, the confusion matrix obtained from a

classification process can be given in Table 6.1. In the table, ci denotes the class

label of the ith class.

Table 6.1: Confusion Matrix

Predicted class

c1 c2 · · · · ·· ck

True c1 n11 n12 · · · · ·· n1k

class c2 n21 n22 · · · · ·· n2k

· · · · ·
· · · · ·
· · · · ·
ck nk1 nk2 · · · · ·· nkk

The general weighting strategy of AdaBoost.M1 is to increase the weights of

false predictions and decrease those of true predictions. Let TP stand for the true

predictions and FP the false predictions of a classification output. Referring to the

confusion matrix of Table 6.1, for class ci the true prediction number as denoted

by TP (i) equals to nii, and the false prediction number FP (i) equals to
k∑

j=1,j 6=i

nij.

Thus, TP =
k∑

i=1

TP (i) =
k∑

i=1

nii and FP =
k∑

i=1

FP (i) =
k∑

i=1

k∑

j=1,j 6=i

nij. It has been

shown that after weights have been updated by AdaBoost.M1, sample distributions

on these two parts are even. AdaC2.M1 adapts AdaBoost.M1’s weighting strategy

by inducing the cost items. In this section, we will explore the weight updating

mechanisms of both AdaBoost.M1 and AdaC2.M1 to indicate the difference in the

resampling effect between AdaC2.M1 and AdaBoost.M1.
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6.4.1 AdaBoost.M1

Based on the inference in [81], α is selected to minimize Z as a function of α

(Equation 6.5). The first derivative of Z is

Z ′
t(α) =

dZ

dα

= −
∑

i

Dt(i)I[ht(xi) = yi]exp(−αtI[ht(xi) = yi])

= −Zt

∑
i

Dt+1(i)I[ht(xi) = yi]

by definition of D(t+1) (Equation 6.1). To minimize Zt, αt is selected such that

Z ′(α) = 0:

∑
i

Dt+1(i)I[ht(xi) = yi]

=
∑

i,ht(xi)=yi

Dt+1(i)−
∑

i,ht(xi)6=yi

Dt+1(i) = 0

That is

∑

i,ht(xi)=yi

Dt+1(i) =
∑

i,ht(xi)6=yi

Dt+1(i) (6.21)

Hence, after weights have been updated, the weight distributions on misclassified

samples and correctly classified samples are even (i.e., TP = FP ). This will make

the learning of the next iteration the most difficult [33].

According to the weight updating formula of AdaBoost.M1 (Equation 6.1), the

weights of samples in the two groups specified to class i, TP(i) and FP(i) respec-

tively, updated from the tth iteration to the (t + 1)th iteration, can be summarized

as TPt+1(i) = TPt(i)/e
αt and FPt+1(i) = FPt(i) · eαt . With αt being a posi-

tive number, weights of false predictions (FP) are improved by an identical ratio,
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Figure 6.2: Resampling Effects of AdaBoost.M1

and weights of true predictions (TP) are decreased by another identical ratio. In

another word, The weighting scheme of AdaBoost.M1 treats samples of different

classes equally.

To illustrate this weighting effect, we take an example. Suppose that we have

a data set of three classes. The sample distribution after a classification process is

shown in Figure 6.2(a). The left hand side represents correctly classified samples

which occupy a larger proportion of the space, and the right hand side represents

samples misclassified. On each side, samples are grouped by class labels (i.e., c1,

c2 and c3). After the weighting and normalizing processes of AdaBoost.M1, the

correctly classified space shrinks and the misclassified space expands until these

two parts are equal. Figure 6.2 (b) demonstrates this result. The notable point

is that each part (class), correctly classified and misclassified, shrinks or expands

at the same ratio. Observationally, the classes with relatively more misclassified

samples expand, which are not necessarily the classes we care about. However, to

strengthen the learning on the “weak” classes, we expect more weighted sample

sizes can be boosted on them.
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6.4.2 AdaC2.M1

The learning objective of the AdaC2.M1 algorithm is to select αt for minimizing Zt

on each round (Equation 6.18). The first derivative of Zt as a function of αt is

Z ′
t(α) =

dZ

dα

= −
∑

i

Ci ·Dt(i)I[ht(xi) = yi]exp(−αtI[ht(xi) = yi])

= −Zt

∑
i

Dt+1(i)I[ht(xi) = yi]

based on the definition of D(t+1) (Equation 6.14). To minimize Zt, αt is selected

such that Z ′(α) = 0. The unique solution for αt is presented by Equation 6.19. By

the definition of Dt+1 (Equation 6.14), for the next iteration we will have

∑

i,ht(xi)=yi

Dt+1(i) =
∑

i,ht(xi)6=yi

Dt+1(i) (6.22)

It indicates that the weight of the correctly classified group and that of the misclas-

sified group become even after sample weights have been updated by AdaC2.M1

(i.e., TP = FP ). As with AdaBoost.M1, this weighting result will make the learn-

ing of the next iteration the most difficult.

By the weight updating formula of AdaC2.M1( Equation 6.14), sample weights

of two groups with respect to class i, TP (i) and FP (i), updated from the tth

iteration to the (t+1)th iteration, can be summarized as TPt+1(i) = c(i) ·TPt(i)/e
αt

and FPt+1(i) = c(i) · FPt(i) · eαt . c(i) denotes the misclassification cost of class

i. This weighting process can be interpreted in two steps. At the first step, each

sample, no matter to which group (TP or FP) it belongs, is first weighted by its

cost item (which equals to the misclassification cost of the class to which the sample

belongs). Samples of the classes with larger cost values will obtain more sample

weights whereas samples of the classes with smaller cost values will find their size
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Figure 6.3: Resampling Effects of AdaC2.M1

diminishes. Consequently, at this phase, the class with the largest cost value will

always increase its class size. The second step is actually the weighting procedure

of AdaBoost.M1. That is, weights of false predictions are increased and those of

true predictions are shrunk. The expanding or shrinking ratio for samples of all

classes is the same.

To demonstrate this weighting process, we use the same example as illustrated

for AdaBoost.M1. In this case, we associate each class with a misclassification

cost. Suppose that the costs are 3, 1 and 2 with respect to class c1, c2 and c3.

Each sample obtains a cost value according to its class label. Let the sample

distribution after a classification process presented in Figure 6.3(a) be the same

as that presented in Figure 6.2(a). By the weighting strategy of AdaC2.M1, the

first step is to reweigh each sample by its cost item. After normalizing, the size of

classes with relatively larger cost values is expanded, while that of the other classes

is shrunk. In our example, the sizes of class c1 and c3 are increased and class size of

class c2 is decreased, as shown in Figure 6.3 (b). In the second step, the correctly

classified space shrinks while the misclassified space expands until they are even.

If we compare Figure 6.3(c) with Figure 6.2 (b), clearly we can find that class c1

attains a larger class size by AdaC2.M1 than by AdaBoost.M1.

This observation shows that AdaC2.M1 can use cost values to adjust the sam-
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ple distribution among classes. For those classes with poor performance, we can

associate them with relatively higher cost values such that relatively more weights

can be accumulated on them. As a result, learning will be biased to enable more

relevant samples be identified. However, if weights are over boosted, more irrelevant

samples will be included. Precision values of these classes and recall values of the

other classes will decrease. Hence, to figure out an efficient cost setup which is able

to yield satisfactory classification performance is the next problem to be solved.

6.5 Obtaining an Effective Cost Setup

For cost-sensitive boosting, cost values are used to adapt the boosting strategy.

Higher cost values are associated with classes with higher identification importance

such that the learning can be biased towards them by boosting more weights on

them, resulting that more relevant samples are identified. However, if the learning

is biased too much towards a class, when more relevant samples are identified (high

recall), more irrelevant samples will be included simultaneously (low precision);

and the identification rates (recall) of some other classes will be severely damaged.

An optimum cost set up is one which is able to achieve the best performance

corresponding to the learning objective. Therefore, such a cost set up is specific

not only to the given data, but also the learning objective and the base classification

system as well.

To simplify the problem, we assume that the identification importance for sam-

ples of a class are the same such that a unique number can be set up for each class.

As stated previously, the ratio between two cost values denotes the deviation of the

learning importance between the two classes. For a binary application, the optimum

interval of cost ratios can be located by manually testing a range of cost value ra-

tios. For a multi-class application, since the search space is increased exponentially

as the class number increases, empirical methods would not be workable. Search

algorithms can be applied for setting up effective cost values. However, given the

large search space, knowledge-poor search algorithms may be too costly. Heuristic-
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based methods, such as genetic algorithms, hill-climbing and simulated annealing,

provide a promising alternative, as they are operationally effective methods that

direct a search in a problem space within practical time and space limits.

6.5.1 Widely Used Heuristic-Based Searching Algorithms

Three widely used optimization techniques are the hill-climbing algorithm [45], the

simulated annealing algorithm [50] and the genetic algorithm [40].

Hill-climbing begins with one initial solution to the problem at hand, usually

chosen at random. Then a new solution is generated. If the new result is in a

“closer” state for the new solution than for the previous one, the new solution

is kept; otherwise, the new solution is dropped. The algorithm is then repeated

until no new solution can be found that causes an increase in the current solution’s

goodness, and this solution is returned as the result. Hill-climbing is what is known

as a greedy algorithm, meaning it always makes the best choice available at each

step in the hope that the overall best result can be achieved in this way. However,

hill-climbing can find the global optimization only in convex spaces; otherwise, most

often it tends to be a local optimization.

Simulated annealing borrows its name from the industrial process of anneal-

ing, in which a material is heated to above a critical point to soften it, then gradually

is cooled in order to erase defects in its crystalline structure and so producing a

more stable and regular lattice arrangement of atoms. In simulated annealing, there

is a heuristic function that defines a goodness landscape. Simulated annealing offers

a way to overcome the major drawback of hill-climbing by adding the concept of

“temperature”, a global numerical quantity which gradually decreases over time.

At each step of the algorithm, the solution changes. The goodness of the new solu-

tion is then compared to the goodness of the previous solution; if it is higher, the

new solution is kept. Otherwise, the algorithm makes a decision whether to keep

or discard it based on temperature. If the temperature is high, as it is initially,

even changes that cause significant decreases in goodness may be kept and used
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as the basis for the next round of the algorithm, but as temperature decreases,

the algorithm becomes more and more inclined to only accept goodness-increasing

changes. Finally, the temperature reaches zero and the system “freezes”; whatever

configuration it is in at that point becomes the solution. Simulated annealing is,

however, rather of a sequential nature, and its parallelization is quite a difficult

task.

Genetic Algorithm (GA) is a directed random search technique invented by

Holland [40]. It is based on the theory of natural selection and evolution. GA is a

robust search method requiring little information to search in a large search space.

Generally, GA requires two elements for a given application:

• Encoding of candidate solutions

• Fitness function for evaluating the relative performance of candidate solutions

in order to identify the better solution

Genetic Algorithm codes candidate solutions of the search space as binary

strings of fixed length. It employs a population of strings initialized at random,

which evolve to the next generation by genetic operators such as selection, crossover

and mutation. The fitness function evaluates the quality of solutions. Selection al-

lows solutions with higher fitness values to appear with higher probabilities in the

next generation. Crossover combines candidate solutions by exchanging parts of

their strings, starting from a randomly chosen crossover point. This leads to new

solutions inheriting desirable qualities from both previous solutions. Mutation flips

single bits in a string, which prevents the GA from premature convergence by ex-

ploiting new regions in the search space. GA tends to take advantage of the fittest

solutions by giving them greater weight, concentrating the search in those regions

which lead to better solutions of the problem.

The obvious advantage with the GA is it is intrinsically parallel: the GA searches

through a population of points, while the other two algorithms, simulated annealing

and hill climbing, are serial. Serial method can only explore the solution space of a
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problem in one direction at a time. If the solution that it discovers turns out to be

suboptimal, there is nothing to do but abandon all work previously completed and

start over. Conversely, GA has multiple offspring: if one path turns out to be a

dead end, they can easily eliminate it and continue work on more promising avenues.

Hence they would have a greater chance of finding the optimal solution on each run.

Furthermore, because of the parallelism that allows it to implicitly evaluate many

schema at once, the GA is particularly well-suited to solving problems where the

space of all potential solutions is truly huge - too vast to search exhaustively in

any reasonable amount of time. As the fitness of each component is independent,

any improvement to any one part will result in an improvement of the system as

a whole. Though it might not find the best solution, it would come up with a

partially optimal solution.

6.5.2 Searching by Genetic Algorithm

In our case, we employ the GA to search for an effective cost setup for a given

problem. The final output of the search algorithm will be applied to the AdaC2.M1

algorithm in order to improve the base classification performance. Here, we set the

cost values for samples in the same class with an identical value. Let C(i) denote

the cost value of class i. Cost values of k classes then make up a cost vector of k

elements [C(1) C(2) · · · C(k)]. This vector is encoded in GA. The fitness value of

each cost vector is the classification performance when the cost vector is integrated

into the AdaC2.M1 algorithm and applied to a base classification system. The final

output of GA is a vector that yields the most satisfactory classification performance

among all candidates.

Evaluation of the classification performance depends on the learning objective.

In dealing with a multi-class imbalance problem, the learning objective can be

one which either achieves high recognition success of a specific class, or balances

identifying ability among all classes. For the former, the classification performance

is evaluated by F-measure; for the latter, the classification performance is evaluated
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by G-mean.

In summary, the cost setup searching procedure can be described as follows:

1. Randomly generate an initial population of cost vectors;

2. Test the fitness of each cost vector by integrating the cost vector into the

AdaC2.M1 algorithm applied to a base classification system;

3. Sort the cost vectors according to their fitness values;

4. Retain those cost vectors with higher fitness values by a certain proportion;

5. Produce a new population from those survival vectors by genetic operators,

such as crossover, mutation;

6. Repeat step 2 until reaching the prefixed iteration number; and

7. Output the cost vector with the best fitness value

Figure 6.4 describes this process. Due to the nature of the GA, the searching

of cost setups might be time-consuming with some applications. This approach is

still acceptable considering that this searching is usually an off-line procedure, such

that the learning time is not a crucial issue.
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Figure 6.4: Searching Cost Values by the GA
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Chapter 7

Experimental Studies

7.1 Associative Classification

In Chapter 4, three types of associative classification systems were studied. The

AdaBoost algorithm was applied to an associative classification system HPWR.

When the weights of evidence provided by the HPWR classifiers were used as con-

fidence measures in voting, new weighting strategies for voting multiple classifiers

were investigated.

In this section, we set up experiments for evaluating associative classification

with respect to three aspects:

1. The weighting strategies for voting multiple classifiers. Theoretical

analysis showed that the sample-based weighting strategy was superior to

that of classifier-based in voting the final classification, as the sample-based

voting reflected the uneven learning concentration across the entire data space

of each classifier. Since the objective of combining multiple classifiers is to

attain a more powerful discrimination ability, the key question is which of

the three weighting strategies will, by and large, achieve better classification

results when applied to real data sets;
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2. The performance of the Boosted-HPWR system. Many studies indi-

cated that high-order association mining was time-consuming when the num-

ber of attributes became large. If a Boosted-HPWR classifier combines a

sequence of classifiers constructed by low-order association rules, is it possi-

ble for the Boosted-HPWR system to achieve both the learning time reduction

and accuracy improvement; and

3. The comparisons of associative classifications. Associative classifica-

tion systems were reported to be competitive with traditional classification

approaches such as C4.5. How will experimental results illustrate this point?

7.1.1 Data Sets and Experiment Settings

In [73], performances of C4.5 and C4.5 applied by AdaBoost were examined and

compared on 27 data sets taken from the UCI Machine Learning Repository [64],

with considerable diversity in sample size, the number of classes, and the number of

attributes. In this section, our experiments are carried out using these same data

sets. The descriptions of these data sets are summarized in Table 7.1.

In experiments reported in [73], continuous data in each data set was pre-

discretized using the commonly used discretization utility in MLC++ [52] with

the default setting. The classification performances were evaluated by their clas-

sification accuracies, which were based on the percentage of correct predictions on

the test sets. 10-fold cross validation was used, in which a data set was divided into

10 subsets; each subset was in turn used as testing data while the remaining data

was used as the training data set. The average accuracy across all 10 trials was

then reported. In our experiments, in order to compare the performances fairly, we

adopt the same routines as described above.
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Table 7.1: Description of Datasets

Data set # Attributes #Class # Instances
1 Anneal 38 6 798
2 Audiology 69 24 226
3 Auto 25 7 205
4 Breast-w 9 2 699
5 Chess 36 2 3196
6 Cleve 13 2 303
7 Crx 15 2 690
8 Diabetes 8 2 768
9 German 20 2 1000
10 Glass 9 7 214
11 Hepatitis 19 2 155
12 Horse 22 2 368
13 Hungarian 13 2 294
14 Hypo 25 2 3163
15 Iris 4 3 150
16 Labor 16 2 57
17 Letter 16 26 20000
18 Lymp 18 4 148
19 Phoneme 7 47 5438
20 Segment 19 7 2310
21 Sick 25 2 3163
22 Sonar 60 2 208
23 Soybean 35 19 683
24 Splice 60 3 3190
25 Vehicle 18 4 846
26 vote 16 2 435
27 Waveform 21 3 5000

7.1.2 Evaluation of Weighting Strategies for Voting Multi-
ple Classifiers

In Section 4.3.3, we studied three weighting strategies for voting multiple classifier:

classifier-based weighting strategy, sample-based weighting strategy, and hybrid
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weighting strategy. To evaluate their performance, each of these strategies was

evaluated on the data sets as tabulated in Table 7.1.

The objective of boosting is to generate a more accurate composite classifier by

combining moderately inaccurate, or simply “weaker”, classifiers. It was observed

that in a learning process, finding a number of rough rules of thumb was much easier

than finding a single, highly accurate prediction rule. The rationale of boosting is to

combine weak rules into a single prediction rule. Experiments on boosting decision

trees usually limit the tree to a single root split so as to ensure a simple classifier

[6]. It was also stated in [80] that boosting might fail to perform well when a

classifier with complex rules was given. In associative classifiers such as HPWR,

classification rules are induced from event associations. The number of events in

an association is called the order of the association. High order associations are

more complex than low order associations, as they describe the properties of the

domain more accurately and more specifically than the low order events [97, 101].

It was observed that when the classifiers generated from high order associations

were boosted, the voting results failed to improve. Often, they were even worse

than that of their component classifiers. Such phenomena may be attributed to the

overfitting of training sets. Hence, we used low order associations in boosting to

avoid overfitting.

The parameter T governing the number of classifiers generated was set at 10

for these experiments. In actual fact, in the boosting experiments, the iteration of

boosting can be terminated in three ways: 1) the number of iterations reaches the

prefixed number, such as 10; 2) the training error of the current classifier is over

0.5; and 3) the training error of the current classifier is 0, such that the sample

weights do not change, and the classifiers in the succeeding iterations will remain

unchanged.

The results of the experiments are reported in Table 7.2. Each number in the

column labelled “Od” is the order limitation of association patterns with respect to

each data set. In order to build “weak” classifiers, this parameter was set relatively

low to ensure the use of low order patterns in this part of the experiments. The
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results in the column labelled HPWR are the average accuracies of the original

HPWR classifiers. Stra1 stands for Classifier-based, Stra2 for Sample-based, and

Stra3 for Hybrid weighting strategy. Results in these columns showes both the av-

erage accuracies of the voted classifications and the improvements when the results

are compared with those of the original HPWR classifiers. The best classification

result on each data set is in bold font.

It was observed that in most cases the voting results from all three classifier

weighting strategies were better than the original HPWR classifiers, to different

degrees. The exceptions were: a) for the data set “Iris”, the voting results of

all three remained the same as the original HPWR classifier; b) for the data set

“Labor”, the voting results from Stra2 and 3 were decreased; and c) for “Diabetes”,

“Letter” and “Phoneme”, Stra1 made no improvements.

When three weighting strategies were compared, Stra1 achieved the best results

on 5 data sets; Stra2 on 16 data sets; and Stra3 on 6 data sets. For “Hypo”,

Stra2 and Stra3 achieved the same best result; For “Iris”, all results were the same.

As for the average classification accuracy, Stra1 improved HPWR’s accuracy by

4.02%, Stra2 by 5.58% and Stra3 by 4.10%. The experimental comparisons of

three weighting strategies indicated that the sample-based weighting was superior

to the other two strategies.

On the whole, our experimental comparisons and theoretical analysis showed

that the sample-based weighting furnished a boosted classification system with

greater discriminative ability than its rivals. The sample-based weighting scheme

was capable of providing each prediction with a specific voting confidence. Thus, the

uneven learning concentration across the entire data space of each classifier could

be taken into consideration during voting. The overall superior experimental re-

sults of sample-based weighting (Stra2) in comparison with those of classifier-based

weighting (Stra1) was a convincing support of this advantage. Hybrid weighting

(Stra3) is a combination of sample-based and classifier-based weighting. The results

from Table 7.2 showed that this weighting strategy generated similar classification

results as those of classifier-based weighting.
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Table 7.2: Voting Result Comparisons of Three Weighting Strategies

Data Od HPWR Stra1 Stra2 Stra3
Set Acc% Acc% ↑% Acc% ↑% Acc% ↑%

Anneal 2 88.07 99.76 11.69 99.43 11.36 99.43 11.36
Audiology 2 70.83 71.86 1.03 79.17 8.34 75.00 4.17

Auto 3 65.79 72.54 6.75 80.32 14.53 77.25 11.46
Breast-w 4 96.11 96.76 0.65 96.91 0.8 96.43 0.32

Chess 3 87.56 97.38 9.82 97.50 9.94 97.57 10.01
Cleve 4 80.22 86.75 6.53 88.82 8.60 82.00 1.78
Crx 3 81.62 83.53 1.91 84.15 2.53 82.73 1.11

Diabetes 3 73.30 73.30 0.0 74.46 1.16 76.26 2.96
German 3 76.30 78.72 2.42 79.39 3.09 77.89 1.59
Glass 3 69.76 69.76 0.0 74.59 4.83 72.73 2.97

Hepatitis 3 89.07 90.75 1.68 92.84 3.77 91.21 2.14
Horse 3 81.87 85.57 3.70 87.03 5.16 86.64 4.77

Hungarian 4 83.24 85.93 2.69 86.43 3.19 85.72 2.48
Hypo 3 97.58 99.11 1.53 99.21 1.63 99.21 1.63
Iris 2 96.91 96.91 0.0 96.91 0.0 96.91 0.0

Labor 2 94.97 95.33 0.36 93.12 -1.85 93.12 -1.85
Letter 2 72.30 72.75 0.45 74.96 2.66 73.06 0.76
Lymp 4 79.67 91.68 12.01 90.29 10.62 92.21 12.54

Phoneme 4 61.56 61.56 0.0 65.50 3.94 64.17 2.61
Segment 3 83.64 90.34 6.70 91.22 7.58 91.37 7.73

Sick 3 95.45 96.97 1.52 96.67 1.22 96.22 0.77
Sonar 3 81.88 85.35 3.47 85.08 3.20 86.00 4.12

Soybean 2 87.34 92.01 4.67 92.98 5.64 91.14 3.80
Splice 2 85.25 94.30 9.05 93.75 8.50 92.82 7.57
Vehicle 3 64.87 65.34 0.47 68.88 4.01 66.68 1.81
Vote 3 91.41 96.30 4.89 94.32 2.91 94.00 2.59

Waveform 2 71.56 84.04 12.48 84.94 13.38 83.60 12.04
Average 81.41 85.43 4.02 86.99 5.58 85.51 4.10

7.1.3 Evaluation of Boosted-HPWR Systems

An important concern in learning an associative classifier is the computational com-

plexity in mining association patterns when data arrays contain a large number of

rows and/or columns. Many studies [2, 37, 101] have indicated the inherent nature
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of a combinatorial explosive number of frequent patterns. In handling this prob-

lem, one approach is to extensively “prune” possible pattern candidates as early as

possible so as to alleviate complexity [4]. Another option is to limit the order of

association patterns. But, in general, higher order associations describe the rela-

tional context of the domain more accurately and more specifically than lower order

association patterns. The classification rules generated from low order associations

might be weaker when compared with those induced from high order associations.

Hence, classification performance will be influenced by the order of the association

[97]. Neither of the two techniques can solve the problem completely. A technique

which reduces the computational complexity while keeping or even enhancing the

classification performance is desired. The underlying idea of boosting is to produce

a more accurate prediction rule through combining simple and moderately inaccu-

rate ones. We applied the AdaBoost algorithm to the HPWR classification system

for both learning time reduction and accuracy improvement.

Accuracy Improvement

Experimental results tabulated in Table 7.2 indicated that the classification accu-

racies of the composite classifiers were generally improved. However, it was insuf-

ficient to claim that a Boosted-HPWR classifier was better than a single HPWR

classifier. To explore whether or not a Boosted-HPWR classifier can improve the

performance of an HPWR classifier, it is more appropriate to compare the Boosted-

HPWR classifier constructed from low-order associations with an HPWR classifier

constructed from high-order associations.

As the results obtained through the sample-based weighting were the best among

three weighted voting strategies, we used these values for comparisons of boosted-

HPWR classifiers. HPWR classifiers from high-order associations were evaluated on

the same data sets as described in Table 7.1. To keep the comparisons consistent,

we used the same training and test sets. The experimental settings for all the

experiments in this study, as interpreted in Section 7.1.1, were the same except for

the upper bounds of pattern orders. In [73], performances of decision tree C4.5
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and boosted C4.5 were examined and compared on these data sets. Their results

were the averages of 10-fold cross-validations obtained from all data sets. We also

listed their results to provide a general view of the performance improvement after

boosting. Table 7.3 shows the experimental results.

Table 7.3: Comparisons of Simple Classifiers and Their Boosted Versions

Boosted Boosted C4.5 Boosted Boosted-HPWR
C4.5 C4.5 vs C4.5 HPWR HPWR vs HPWR

DataSet Acc% Acc% Acc%↑ Od Acc% Od Acc% Od↓ Acc% ↑
Anneal 92.33 95.27 2.94 4 96.90 2 99.43 2 2.53

Audiology 77.88 84.29 6.41 3 80.24 2 79.17 1 -1.07
Auto 82.34 84.78 -2.44 4 80.74 3 80.32 1 -0.42

Breast-w 94.72 95.91 1.19 6 96.82 4 96.91 2 -0.09
Chess 91.45 95.41 3.96 4 94.83 3 97.50 1 2.67
Cleve 77.06 78.61 1.55 6 93.75 4 88.82 2 -4.93
Crx 85.30 84.36 -0.94 5 83.89 3 84.15 2 0.26

Diabetes 74.61 71.82 -2.79 3 73.30 3 74.46 0 1.16
German 71.56 70.86 0.7 3 76.30 3 79.39 0 3.09
Glass 67.52 76.45 8.93 3 69.76 3 74.59 0 4.83

Hepatitis 79.61 82.32 2.71 3 89.07 3 92.84 0 3.77
Horse 85.08 81.17 -3.91 6 83.22 3 87.03 3 3.81

Hungarian 78.47 78.95 0.48 6 84.73 4 86.43 2 1.70
Hypo 99.52 99.64 0.12 3 97.58 3 97.58 0 1.63
Iris 95.20 93.47 -1.73 2 96.91 2 96.91 0 0.0

Labor 80.88 86.14 5.26 2 94.97 2 93.12 0 -1.85
Letter 88.01 95.34 7.33 2 72.30 2 74.96 0 2.66
Lymp 78.31 82.57 4.26 6 85.24 4 90.29 2 5.05

Phoneme 80.56 83.64 3.08 4 61.56 4 65.50 2 3.94
Segment 96.79 98.13 1.34 6 86.66 3 91.22 3 4.56

Sick 98.66 98.95 0.29 3 95.45 3 96.67 0 1.22
Sonar 74.38 80.38 6.0 5 83.21 2 85.08 3 1.87

Soybean 92.42 92.84 0.42 2 87.34 2 92.98 0 5.64
Splice 94.09 94.57 0.48 3 92.73 2 93.75 1 1.02
Vehicle 72.91 77.28 4.37 3 64.87 3 68.88 0 4.01
Vote 94.94 94.71 -0.13 5 91.91 3 94.32 2 2.41

Waveform 72.64 81.47 8.80 6 77.83 2 84.94 4 7.01
Average 84.34 86.64 2.30 ≈ 4 84.89 ≈ 3 86.99 ≈1 2.10

The improvement was calculated as the difference in accuracy between boosted

and base classifiers. A positive value implies an improvement in performance,
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whereas a negative values implies the opposite. The results from HPWR are tab-

ulated on the right side of Table 7.3. Besides the classification accuracies, we also

show the upper bounds of pattern orders for each set of experiments. For most

data sets, HPWR classifiers constructed from high-order associations yielded bet-

ter results than those from low-order associations. We then compared the Boosted

HPWR from low-order association patterns with HPWR from high-order associa-

tion patterns. For those data sets where increasing association orders did not im-

prove the classification performance, we just compared Boosted HPWR and base

HPWR with the same upper bounds of pattern orders. The average order of asso-

ciation patterns in HPWR was 4, and that of Boosted HPWR was approximately

3.

Comparing the improvements obtained by Boosted-HPWR versus HPWR with

those by Boosted-C4.5 versus C4.5, we found that Boosted-HPWR improved the

accuracy by an average of 2.10% and Boosted-C4.5 2.30% over these 27 data sets.

Boosted-HPWR obtained the highest improvement of 7.01% on the data set “Wave-

form”, while Boosted-C4.5 achieved the highest improvements of 8.93% on “Glass”

and 8.80% on “Waveform”. Over the 27 data sets, Boosted-HPWR decreased the

performances of HPWR on 5 data sets, obtained similar results (improvement was

around or below 1%) on 6 data sets, and improved the performance on the remain-

ing 16 data sets. Boosted-C4.5 decreased the performances on 6 datasets, obtained

similar results on 9 data sets, and managed significant improvements on the re-

maining 12 data sets. According to these experimental results, Boosted-HPWR

obtained similar improvement over HPWR as Boosted-C4.5 does over C4.5.

Complexity Deduction

We have provided a thorough analysis on the complexity of the association mining

algorithm in Section 4.1.4. As in our experiments, for most of the training sets the

learning time was not longer than 60 seconds on a Pentium 4 PC, which was quite

acceptable. However, learning on data “Auto”, “Horse” and “lymhogrphy” was

time-consuming. Taking a close look at the data descriptions in Table 7.1, we can
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see that all three sets of data have a large number of attributes. If a great number

of high order pattern candidates have to be detected, the increase of association

order becomes the crucial factor in increasing the computational complexity.

In these cases, to control the computation complexity, the only possible solution

is to limit the searching space. Enhancing the pruning constraints can reduce the

number of high-order association candidates, but the search of high-order spaces is

still necessary. Or we can reduce the upper bound of the association pattern order.

Although a single classifier constructed from low order association rules might be

weaker as compared with a classifier composed from high-order association rules,

such shortcomings can be compensated by boosting. As experiments reported in

the previous section indicated, boosted “weak” classifiers in most cases had come

up with more accurate composite classifiers in comparison with a single high-order

classifier. Meanwhile, the computation complexity of learning a composite classi-

fier remained the same as that of each component classifier. Therefore, boosting

“weak” HPWR classifiers composed of low-order association rules has the advantage

of reducing the computation complexity, as well as achieving higher classification

performance in most cases.

Table 7.4: Comparisons on Execution Time

Data Number of HPWR Boosted-HPWR
Set Attributes Order time(sec) Order ] of trials time(sec)

Auto 25 4 90 3 5 17
Horse 22 6 826 3 10 19

Lymphography 18 6 912 4 10 10

Table 7.4 shows the comparisons in the execution time of learning Boosted-

HPWR classifiers with low-order association rules versus single HPWR classifiers

with high-order association rules. It is clear that learning a Boosted-HPWR clas-

sifier of lower order took a significantly shorter time than learning a single HPWR

classifier of higher order. We consider boosting classifiers composed of low-order

109



association rules as an effective approach in reducing computational complexity,

while achieving better classification performance.

7.1.4 Evaluation of Associative Classifiers

In [56], 40 data sets were used to test both DeEPs and CBA. Among them 25 data

sets were tested in [73] except “Audiology” and “Phoneme”. In this section, we

compare the performances of the associative classification systems and also compare

them with the conventional classification system C4.5 to achieve a general idea of

the performance of associative classifiers. Table 7.5 shows the classification results

when applying associative classifiers DeEP, CBA, and HPWR and decision tree

C4.5 to the experimental data.

Each individual associative classifier was compared with C4.5 over these 25

data sets. DeEPs performed better on 12 data sets, similarly (difference around

or below 1%) on 4 data sets, worse on 8 data sets, and its average accuracy was

similar to C4.5. CBA performed better on 8 data sets, similarly on 7 data sets,

worse on 10 data sets, and its average accuracy was lower than C4.5 by 1.99%.

HPWR performed better on 13 data sets, similarly on 1 data set, worse on 11 data

sets, and its average accuracy was slightly higher by 1.26%. These comparison

results demonstrated that associative classifiers were competitive with conventional

classifiers such as C4.5. When these three associative classifiers were compared,

DeEPs performed the best on 8 data sets, CBA on 7 data sets and HPWR on the

remaining 10 data sets. The average accuracy of HPWR was slightly better.

7.2 Classification of Bi-Class Imbalanced Data

In this section, we set up experiments to investigate boosting algorithms - Ad-

aBoost, AdaC1, AdaC2, AdaC3, AdaCost and CSB2 - in terms of their capabilities

in dealing with the bi-class imbalance problem.
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Table 7.5: Comparison of Associative Classifiers with C4.5

DataSet C4.5 DeEP CBA HPWR
Anneal 92.33 94.41 98.10 96.90
Auto 82.34 67.65 79.00 80.74

Breast-w 94.72 96.42 95.28 96.82
Chess 91.45 97.81 98.12 94.83
Cleve 77.06 81.17 77.24 93.75
Crx 85.30 84.18 85.90 83.89

Diabetes 74.61 76.82 72.90 73.30
German 71.56 74.40 73.20 76.30
Glass 67.52 58.49 72.60 69.76

Hepatitis 79.61 81.18 80.20 89.07
Horse 85.08 84.21 82.10 83.22

Hungarian 78.47 81.11 81.87 84.73
Hypo 99.52 97.19 98.40 97.58
Iris 95.20 96.00 92.90 96.91

Labor 80.88 87.67 83.00 94.97
Letter 88.01 93.60 51.76 72.30
Lymp 78.31 75.42 77.33 85.24

Segment 96.79 94.98 93.51 86.66
Sick 98.66 94.03 97.30 95.45

Sonar 74.38 84.16 78.30 83.21
Soybean 92.42 90.00 92.23 87.34
Splice 94.09 69.71 70.03 92.73
Vehicle 72.91 70.95 68.78 64.87
Vote 94.94 95.17 93.54 91.91

Waveform 72.67 84.36 75.34 77.83
Average 84.75 84.43 82.76 86.01

The associative classification system HPWR and decision tree classification sys-

tem C4.5 were used as the base classifiers. In Section 4.3.3, three weighting strate-

gies for voting multiple classifiers were studied. In the previous experimental sec-

tion, we have demonstrated that the sample-based weighting furnished a boosted

classification system with greater discriminative ability than the rest. However,

this voting scheme is specific to the HPWR classifier. Hence, in order to get a gen-
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eral view of the performance of each boosting algorithm independent of the voting

strategies, the standard voting strategy of the AdaBoost algorithm was adopted

when each boosting algorithm was applied to the base classification systems C4.5

and HPWR.

In the literature, three measures were reported for evaluating classification per-

formance in the presence of the class imbalance problem: F-measure, G-mean and

the ROC analysis. F-measure is evaluated when the learning objective is to achieve

a balanced performance between the identification rate (recall) and the identifica-

tion accuracy (precision) of a specific class . G-mean is evaluated when the learning

objective is to balance the identification rates between the positive class and the

negative class. The ROC analysis method is used to compare classification models

or select possibly optimal models given various learning parameters. The ROC

analysis method, however, needs a classifier to yield a score representing the degree

to which an example pertains to a class. For decision trees, the class distributions

at each leaf is usually used as the score [67]. For HPWR, no such score is provided.

For consistent results in this section, the experimental performances were evaluated

by F-measure and G-mean.

7.2.1 Data Sets

We used four medical diagnosis data sets taken from the UCI Machine Learning

Database [64] for the test. All data sets have two output labels: one denotes

the disease category which was treated as the positive class, and another repre-

sents the normal category which was treated as the negative class. These data

sets were selected as the class imbalance problem, inherent in the data, hindered

the learning from building an effective classification model to distinguish diseased

people from the normal population. These four data sets are: Breast cancer data

(Cancer), Hepatitis data (Hepatitis), Pima Indian’s diabetes database (Pima), and

Sick-euthyroid data (Sick).
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1. Breast cancer data. This breast cancer domain was obtained from the Uni-

versity Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Each

instance is described by 9 attributes, 3 of which are linear and 6 are nomi-

nal. There are 286 instances in this data set, 9 instances with missing values.

Class distributions are 29.7% of recurrence-events (positive class) and 70.3%

of no-recurrence-events (negative class).

2. Hepatitis data. This is a small collection of hepatitis domain data with only

155 instances in the whole data set. Each instance is described by 19 at-

tributes with only one being continuously-valued. The data set is composed

of 32 positive instances (20.65%) in class “DIE” and 123 negative instances

(79.35%) in class “LIVE”.

3. Pima Indian’s diabetes database. The diagnostic variable investigated is whether

the patient shows signs of diabetes. In this data, each instance is described by

8 continuously valued attributes. There are 768 instances, 500 instances being

negative and 268 being positive. Therefore, the two classes are non-evenly

distributed with 34.9% of positive instances and 65.1% of negative instances,

respectively.

4. Sick-euthyroid data: The goal of this data set is to predict the disease of

thyroid domains. The data are collected with 25 attributes, 7 being contin-

uous and 18 being Boolean values. The data set contains 3163 instances,

with 9.26% of the instances being euthyroid and the remaining 90.74% being

negative. There are several instances with missing attribute values.

There are some missing attribute values in data set Cancer, Hepatitis and Sick.

C4.5 handles missing attribute values and HPWR treats missing attribute values

as having an unknown value “?”. Each data set was randomly divided into two

disjointed parts: 80% for training and the remaining 20% for testing. This process

was repeated 10 times to obtain an average performance.
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7.2.2 Cost Setups

In our experiments, the misclassification costs for samples in the same category were

set with the same value: CP denoted the misclassification cost of the positive class

and CN represented that of the negative class. With these cost-sensitive boosting

algorithms, cost items are used to boost more weights towards the positive (small)

class. The larger the cost ratio of the positive class to the negative class, the more

the weights are expected to boost on the positive class. The ratio between CP

and CN denotes the deviation of the learning importance between the two classes.

Since values of CP and CN were not available for a given data set, a range of values

was tested. Considering the constraint stated in Equation 5.9 and 5.24, we fixed

the cost item of the positive class to 1 and changed the cost item of the negative

class from 0.1 to 0.9. That was, a set of cost settings of [1.0 : 0.1, 1.0 : 0.2, 1.0 :

0.3, 1.0 : 0.4, 1.0 : 0.5, 1.0 : 0.6, 1.0 : 0.7, 1.0 : 0.8, 1.0 : 0.9] was tested. The cost

ratio of the positive class to the negative class was growing smaller as the cost item

of the negative class changed from 0.1 to 0.9. If these two items are set equally as

CP = CN = 1, the proposed three boosting algorithms AdaC1, AdaC2 and AdaC3

will be reduced to the original AdaBoost algorithm. For CSB2, the requirements

for the cost setup are: if a sample is correctly classified, CP = CN = 1; otherwise,

CP > CN ≥ 1. Hence, we fixed the cost setting for False Negatives as 1 and used

the cost settings of CN for True Positives, True Negatives and False Positives. Then

the weights of true predictions were updated from the tth iteration to the (t + 1)th

iteration by TPt+1 = CN · TPt/e
αt and TNt+1 = CN · TNt/e

αt .

7.2.3 F-measure Evaluation

The cost setup is one aspect that influences the weights boosted towards each class.

Another factor that determines the weight distributions is the resampling strategy

of each boosting algorithm. A thorough study on the resampling effects of these

boosting algorithms (Section 5.6) indicated their distinctive boosting emphasis with

respect to the four types of examples tabulated in Table 2.1. In this part of the
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experiments, we explore: 1) how these boosting schemes affect the recall and pre-

cision values of the positive class as the cost ratio is changing; and 2) whether or

not these boosting algorithms are able to improve the recognition performance for

the positive class. For the first issue, we plot the F-measure, recall and precision

values corresponding to the cost setups of the negative class to illustrate the trend.

For the second issue, we tabulate the best F-measure values on the positive classes

attainable by these boosting algorithms, within the cost setups for the experimental

data sets.

Figures 7.1, 7.2, 7.3, and 7.4 shows the trade-offs between recall and precision.

Each figure corresponds to one data set. In each figure, each sub-graph plots

F-measure, recall and precision values of the positive class with respect to the

cost setups when applying one boosting algorithm out of AdaC1, AdaC2, AdaC3,

AdaCost and CSB2 to one base classifier, left side C4.5 and right side HPWR. From

these plots, some general views we obtain are:

1. Except for AdaC1, the other algorithms were able to achieve higher recall

values than precision values with the recall line lying above the F-measure

line and the precision line below the F-measure line in most setups. AdaC1

could not always obtain higher recall values than precision values. In the

plots of C4.5 applied to Cancer, Hepatitis and Pima data and in the plots of

HPWR applied to Cancer and Hepatitis data, recall values were lower than

precision values with all cost setups;

2. AdaC2 and AdaC3 were sensitive to the cost setups. When the cost item of

the negative class was set with a small value denoting a large cost ratio of

positive class to negative class, AdaC2 and AdaC3 could achieve very high

recall values, but very low precision values as well; there was an obvious trend

with plots of AdaC2 and AdaC3 in that the recall lines fell and precision lines

climbed when the cost setup of the negative class was changing from smaller

to larger values. Comparatively, AdaC1 and AdaCost were less sensitive to

the cost setups. Their recall lines and precision lines stayed relatively flat
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Figure 7.1: F-measure, Recall and Precison values of the positive class respecting to
the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3, AdaCost
and CSB2 to the base learners C4.5 and HPWR on the Cancer Data
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Figure 7.2: F-measure, Recall and Precision values of the positive class respecting to
the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3, AdaCost
and CSB2 to the base learners C4.5 and HPWR on the Hepatitis Data
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Figure 7.3: F-measure, Recall and Precison values of the positive class respecting to
the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3, AdaCost
and CSB2 to the base learners C4.5 and HPWR on the Pima Data
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Figure 7.4: F-measure, Recall and Precision values of the positive class respecting to
the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3, AdaCost
and CSB2 to the base learners C4.5 and HPWR on the Sick Data
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when the cost setup was changing. CSB2 produced values oscillating slightly

as the cost setup was changing.

3. Comparing AdaCost with AdaC1, recall values of AdaCost were higher than

those of AdaC1 in most cases.

These observations are consistent with the analysis of the resampling effects

of these boosting algorithms. AdaC1, AdaC2 and AdaC3 all boost more weights

on False Negatives than those on False Positives; on the correctly classified part,

AdaC1 decreas weights of True Positives more than those of True Negatives, AdaC2

preserve more weights of True Positives than those of True Negatives. Therefore,

AdaC1 conserve more weights on the negative class, AdaC2 boost more weights to-

wards the positive class, and AdaC3 is a combinational result of AdaC1 and AdaC2.

These analyses account for the observation that AdaC2 and AdaC3 achieved higher

recall values than AdaC1. AdaCost [29] is a variation of AdaC1, in that it intro-

duces a cost adjustment function instead of a cost item inside the exponential

function. The cost adjustment function increases its weight “more” if misclassified

and decreases the weight “less” otherwise. AdaCost therefore boosted more weights

on the positive class than AdaC1. As a result, recall values obtained by AdaCost

were usually higher than those of AdaC1. CSB2 increased weights more on False

Negatives than False Positives, but decreased weights on true predictions equally.

After normalization, it was not always guaranteed that the overall boosted weights

on the positive class were more than those on the negative class, as samples of the

positive class were few.

Table 7.6 shows the best F-measure values achieved by each boosting algo-

rithm and the cost settings with which these values were achieved. To indicate

at what recall and precision values these F-measure values were achieved, we also

list the corresponding recall and precision values of the positive class. In these

tables, “F” denotes F-measure, “R” recall and “P” precision of the positive class.

Comparing with the F-measure (on the positive class) values obtained by the base

classifications, those significantly better F-measure values through t-test with 95%
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Table 7.6: F-measure Comparisons

Base AdaBoost AdaC1 AdaC2 AdaC3 AdaCost CSB2
Cost 1:0.9 1:0.6 1:0.6 1:0.4 1:0.1

F 39.51 42.60 44.77 48.22 49.81 48.72 48.31
C4.5 R 34.53 39.25 41.86 56.45 56.65 54.92 65.10

Cancer P 47.92 48.36 50.18 42.28 44.76 44.81 40.37
Data Cost 1:0.9 1:0.7 1:0.6 1:0.2 1:0.4

F 41.44 46.44 50.70 53.98 54.97 50.75 50.73
HPWR R 44.17 44.68 49.06 70.80 83.45 59.50 66.98
Od=6 P 40.91 49.58 54.18 44.61 41.44 44.64 41.04

Cost 1:0.1 1:0.5 1:0.8 1:0.8 1:0.8
F 50.89 55.87 61.39 71.63 70.13 62.05 60.55

C4.5 R 53.84 53.98 64.20 77.89 66.78 60.85 61.60
Hepa P 50.08 69.56 60.86 70.16 74.94 63.29 59.53
Data Cost 1:0.6 1:0.7 1:0.7 1:0.7 1:0.9

F 56.45 61.86 63.59 65.19 62.88 61.93 58.51
HPWR R 68.68 59.23 60.86 81.73 75.99 64.67 64.23
Od=3 P 52.20 66.93 71.11 57.02 56.77 61.29 56.20

Cost 1:0.6 1:0.9 1:0.9 1:0.3 1:0.7
F 64.98 65.61 66.17 68.69 68.29 67.77 64.98

C4.5 R 59.57 60.42 61.40 82.52 81.99 83.75 59.96
Pima P 72.26 72.55 71.75 59.15 58.69 57.11 71.81
Data Cost 1:0.3 1:0.7 1:0.6 1:0.3 1:0.9

F 67.98 68.17 72.59 71.03 73.36 69.05 65.58
HPWR R 70.97 68.85 81.15 80.94 80.89 76.33 68.55
Od=4 P 65.52 67.77 65.83 63.49 67.25 63.40 64.22

Cost 1:0.5 1:0.9 1:0.9 1:0.7 1:0.9
F 84.79 84.04 85.31 82.38 83.53 83.46 79.18

C4.5 R 83.87 82.96 84.75 83.46 84.26 84.74 80.57
Sick P 85.73 85.19 86.03 81.46 82.97 82.45 79.15
Data Cost 1:0.9 1:0.9 1:0.8 1:0.9 1:0.6

F 69.22 79.77 86.36 78.05 81.04 82.67 64.88
HPWR R 70.89 80.99 86.36 83.19 86.85 87.11 71.05
Od=3 P 68.30 79.08 76.15 73.44 76.01 78.78 59.96

confidence interval are presented in italics and the best results with respect to each

base classifier applied to a data set are denoted in bold.

Comparing with the base classifications on the Cancer data, most cost-sensitive

boosting algorithms obtained significantly better F-measure values except AdaC1

when applied to C4.5. On the Hepatitis data, when applied to C4.5, all cost-
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sensitive boosting algorithms achieved significantly better F-measure values; when

applied to HPWR, AdaC1, AdaC2 and AdaC3 obtained significantly better F-

measure values. On the Pima data, AdaC1 and AdaC3 when applied to HPWR

got significantly better results. On the Sick data, except CSB2, the other boosting

algorithms including AdaBoost achieved significantly better values when applied on

HPWR. Taking one base classifier associated with one data set as one entity, among

these 8 entities (2 base classifier crossing with 4 data sets), AdaBoost achieved

significantly better results on 1 entity, AdaC1 on 4 entities, AdaC2 on 5 entities,

AdaC3 on 6 entities, AdaCost on 4 entities and CSB2 on 3 entities. For the best

performance out of the 8 entities, AdaC1 won 2 times, and AdaC2 and AdaC3 both

won 3 times.

7.2.4 G-mean Evaluation

G-mean is defined as the geometric mean of True Positive Rate and True Negative

Rate (Equation 2.6). True Positive Rate denotes recall of the positive class and

True Negative Rate denotes the recall of the negative class. With the class imbal-

ance problem, recall of the positive class is often very low. Cost-sensitive boosting

algorithms deliberately boost more weights towards the positive class to improve

recognition recall. However, if the positive class is over-boosted, samples from the

negative class will be mis-categorized to the positive class. Consequently, recall of

the negative class will be reduced. G-mean reflects the idea of maximizing the recall

on each of the two classes while keeping these recall values balanced. In this part of

the experiments, we explore: 1) how these boosting schemes affect the recall values

of positive class and negative class as the cost ratio is changing; and 2) whether or

not these boosting algorithms were able to improve the G-mean measurements by

increasing the recall values of the positive class. As in the previous section, we use

figures to illustrate the first issue and use a table to clarify the second issue.

Figures 7.5, 7.6, 7.7, and 7.8 show the trade-offs between recall values of the

positive class and the negative class. As before, each figure corresponds to one

data set. In each figure, a sub-graph plots G-mean values, recall values of both the
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Figure 7.5: G-mean values, Recall values of both the positive class and negative
class respecting to the cost setups of the negative class by applying AdaC1, AdaC2,
AdaC3, AdaCost and CSB2 to the base learners C4.5 and HPWR on the Cancer
Data
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Figure 7.6: G-mean values, Recall values of both the positive class and negative
class respecting to the cost setups of the negative class by applying AdaC1, AdaC2,
AdaC3, AdaCost and CSB2 to the base learners C4.5 and HPWR on the Hepatitis
Data
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Figure 7.7: G-mean values, Recall values of both the positive class and negative
class respecting to the cost setups of the negative class by applying AdaC1, AdaC2,
AdaC3, AdaCost and CSB2 to the base learners C4.5 and HPWR on the Pima Data
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Figure 7.8: G-mean values, Recall values of both the positive class and negative
class respecting to the cost setups of the negative class by applying AdaC1, AdaC2,
AdaC3, AdaCost and CSB2 to the base learners C4.5 and HPWR on the Sick Data
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positive class and the negative class with respect to the cost setups when applying

one boosting algorithm out of AdaC1, AdaC2, AdaC3, AdaCost and CSB2 to

one base classifier, left side C4.5 and right side HPWR. The observations are: 1)

AdaC1 and AdaCost usually achieved higher negative recall values than positive

recall values with their positive recall lines lying below and negative lines lying

above their G-mean lines in most cases; 2) there was an obvious trend with plots of

AdaC2 and AdaC3, in that the positive recall lines fell and the negative recall lines

climbed with the cost setup changing from smaller values to larger values. With

small cost setups of the negative class, positive recall lines were above negative

recall lines. These two lines later intersected at a certain cost setup, and then

negative recall lines lay above the positive recall lines. Lines of CSB2 also showed

this trend, but oscillated in some cases. These observations were consistent with

the analysis of the resampling effects of the boosting algorithms as discussed in the

previous section.

Table 7.7 shows the best G-mean values achieved by each boosting algorithm

and the cost settings with which these values were achieved. The corresponding

recall values of the two classes are also listed. In these tables, “G” denotes G-mean,

“R+” recall of the positive class and “R−” recall of the negative class. Comparing

with the G-mean values obtained by the base classifications, those significantly

better G-mean values through t-test with a 95% confidence interval are presented

in italics and the best results of each base classifier when applied to a data set are

denoted in bold. The resulting table furnished the same features as those in Table

7.6.

7.3 Classification of Multi-Class Imbalanced Data

In this section, we set up experiments to investigate the cost-sensitive boosting

algorithm AdaC2.M1 with respect to its capability in dealing with the multi-class

imbalance problem. Both AdaBoost.M1 and AdaC2.M1 were applied to the de-

cision tree classification system C4.5 and the associative classifier HPWR. Their
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Table 7.7: G-mean Comparison

Base AdaBoost AdaC1 AdaC2 AdaC3 AdaCost CSB2
Cost 1:0.9 1:0.6 1:0.6 1:0.4 1:0.9
G 53.21 56.19 57.81 61.12 62.79 61.90 57.88

C4.5 R+ 34.53 39.25 41.86 56.45 56.65 54.92 50.17
Cancer R− 83.27 82.00 82.01 66.78 69.87 70.94 68.17
Data Cost 1:0.7 1:0.9 1:0.9 1:0.2 1:0.4

G 55.78 59.36 63.64 65.51 65.99 65.00 64.83
HPWR R+ 44.17 44.68 51.54 60.95 56.13 59.50 66.98
Od=6 R− 71.91 79.40 78.94 71.24 65.99 71.92 63.22

Cost 1:0.1 1:0.5 1:0.2 1:0.7 1:0.8
G 65.92 68.86 73.00 83.57 79.13 75.97 71.72

C4.5 R+ 53.84 53.98 64.20 77.89 76.46 65.59 61.60
Hepa R− 85.32 91.90 86.23 91.33 84.04 89.31 85.68
Data Cost 1:0.1 1:0.7 1:0.6 1:0.6 1:0.4

G 74.21 72.22 74.54 82.37 81.38 74.49 74.77
HPWR R+ 68.68 59.23 64.23 81.73 85.80 65.30 71.64
Od=3 R− 82.79 90.29 88.28 83.37 79.38 87.90 82.91

Cost 1:0.2 1:0.9 1:0.9 1:0.5 1:0.7
G 71.70 72.23 72.68 74.08 73.62 73.66 71.69

C4.5 R+ 59.57 60.42 62.19 82.52 81.99 76.91 59.96
Pima R− 86.79 86.72 85.25 66.85 66.43 70.67 86.27
Data Cost 1:0.3 1:0.7 1:0.6 1:0.3 1:0.9

G 75.23 75.33 78.42 76.85 78.92 76.09 73.27
HPWR R+ 70.97 68.85 81.15 80.94 80.89 76.33 68.55
Od=4 R− 79.94 82.50 75.87 73.15 77.07 76.12 78.98

Cost 1:0.5 1:0.8 1:0.9 1:0.5 1:0.9
G 90.95 90.37 91.37 90.95 90.94 91.20 88.25

C4.5 R+ 83.87 82.96 84.75 84.93 84.26 84.94 80.57
Sick R− 98.54 98.49 98.55 97.46 98.21 97.97 96.84
Data Cost 1:0.8 1:0.7 1:0.8 1:0.8 1:0.6

G 82.57 88.83 91.52 90.65 91.79 92.42 82.00
HPWR R+ 70.89 80.99 85.84 86.30 86.85 88.04 71.05
Od=3 R− 96.38 97.58 97.60 95.35 97.03 97.04 94.80

performances on data sets with multiple classes where the imbalanced class dis-

tributions hindered the classification performances of the base classifications were

compared and analyzed. The Genetic Algorithm was implemented to search the

cost setups for applying AdaC2.M1.

Four data sets Balance-Scale data, Car data, New-thyroid data and Nursery
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data were taken from the UCI Machine Learning Database [64] for our experiments.

Given a multi-class data set with imbalanced class distribution, the identification

performances of the small classes are usually unsatisfactory. To remedy this, the

learning objective can be: 1) to balance the identification abilities over every class;

and/or 2) to improve the recognition success on a specific small class. With re-

spect to the different learning objectives, the classification performance should be

evaluated by different measures.

7.3.1 Evaluation Measures

Referring to the confusion matrix of Table 6.1, the true prediction of the ith class is

the number of nii. If the learning objective is to improve the identification ability

of a specific class, the evaluation measure is F-measure. Let Ri and Pi denote recall

and precision, respectively, of class Ci , Ri and Pi are then defined as:

Ri =
nii∑k

j=1 nij

(7.1)

and

Pi =
nii∑k

j=1 nji

(7.2)

F-measure (F) is then calculated as an average:

Fi −measure =
2RiPi

Ri + Pi

(7.3)

If the learning objective is to balance the identification performances among

classes, the classification performance of each class should be equally represented

in the evaluation measure. For the bi-class scenario, Kubat et al [53] suggested

the G-mean as the geometric means to recall values of two classes. Expanding this

measure to the multiple class scenario, we define G-mean as the geometric means

of recall values to all classes:
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G−mean =

(
k∏

i=1

Ri

)1/k

(7.4)

As each recall value representing the classification performance of a specific class

is equally represented, G-mean is capable of measuring the balanced performance

among classes of a classification output.

F-measure (Equation 7.3) and G-mean (Equation 7.4) are used in evaluating

and comparing the classification performance, as well as the fitness functions by the

Genetic Algorithm when searching for efficient cost setups with respect to different

learning objectives.

7.3.2 Experiment Method

For each data set, available samples were used for both cost setup searching and

performance evaluation. Normally in such a case, the data needs to be partitioned

into three disjoint sets: 1) training set, a set of examples used for learning classi-

fication model; 2) validation set, a set of examples used to tune the parameters of

the cost values; and 3) test set, a set of examples used to assess the performance.

Performance is evaluated by k-fold cross validations. In our case, however, avail-

able data examples, mainly examples of the small classes, are insufficient for so

many partitions. For this reason, we employed two sections of partitions. The first

section of partitions was for searching cost setups by the GA. The data set was

randomly divided into two sets: 80% as the training set and the remaining 20% as

the validation set for measuring the fitness of a bunch of cost setups generated by

the GA. The output was a cost vector which obtains the best fitness value among

all tests. This process was repeated 20 times, such that one prototype was obtained

from a pool of 20 cost vectors. In these experiments, we used the default parame-

ters for the GA: population size was 50; generation number was 20; mutation rate

was 0.2; crossover rate was 0.8; and migration rate was 0.2. The second section of

partitions, totally independent from the first section, was for evaluating the classi-

fication performance. The whole data set was repartitioned into two sets: 80% as
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Figure 7.9: Experiment Procedure

the training set and the remaining 20% as the test set. This process was repeated

10 times to obtain an average performance. For a consistent comparison, the bases

classification models C4.5 and HPWR, base classifiers applied by AdaBoost.M1 and

by AdaC2.M1, were all evaluated on data partitions of the second section. This

procedure is described in Figure 7.9

The cost setup used by AdaC2.M1 was the prototype from the validation tests

with the first section of partitions. In our experiments, we took the mean of a

pool of 20 cost vectors as the cost setup prototype. As stated in [26], given a set

of cost setups, the ratios among cost values denote the deviations of the learning

importance among classes. The decisions are unchanged if each one in the set is

multiplied by a positive constant. Therefore, to set up a unique scale, normalizing

each cost vector in the pool is a necessary step before calculating the mean values.

The normalization method was, first, to set the value of the element with the

maximum value in a vector as 1, then, to scale other elements’ values in the vector
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with the ratio of 1 over the maximum value. After normalizing each cost vector,

a mean vector was calculated as the prototype. The prototype vector was also

normalized before putting it in use for further experiments.

In the following subsections, for the convenience of the discussion, AdaBoost.M1

is abridged as AdaBoost and AdaC2.M1 as AdaC2.

7.3.3 Balance-Scale Database

This database was generated to model psychologically experimental results. Each

example is classified as having the balance scale tip to the right, tip to the left,

or be balanced. The attributes are the left weight, the left distance, the right

weight, and the right distance. The correct way to find the class is the greater of

left − distance · left − weight and right − distance · right − weight. If they are

equal, it is balanced. Table 7.8 describes the class distribution. There are in total

625 samples in this data set and among them 7.84% of samples belong to the small

class “Balanced”.

Table 7.8: Class Distribution of the Balance-Scale Dataset

index class name class size class distribution
C1 Balanced 49 7.84%
C2 Left 288 46.08%
C3 Right 288 46.08%

Performance of Base Classifications and Applied by AdaBoost

We started with the second section of data partitions to test the performance of the

base classifiers C4.5 and HPWR, and the performance of bases classifiers applied

by AdaBoost. For this part of the experiments, the classification performance was

recorded with respect to both each individual class and the overall performance.
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Regarding each class, recall value, precision value and F-measure value were re-

ported. Regarding the overall performance, the classification accuracy and G-mean

value were calculated. Experiment results are tabulated in Table 7.9.

Table 7.9: Performance of Base Classifications and Applied by AdaBoost

C4.5 HPWR (Od=3)
Class Meas. Base AdaBoost Base AdaBoost

R 0 5.11 10.70 44.06
C1 P N/A 6.5 11.82 32.89

F N/A 5.84 10.83 35.84
R 73.21 92.28 88.31 87.43

C2 P 69.53 88.75 86.79 91.99
F 72.29 90.38 87.43 89.64
R 67.94 91.36 87.63 88.42

C3 P 73.89 87.88 87.07 89.91
F 71.91 89.42 86.99 89.03

Accuracy 70.33 85.77 83.35 86.68
G-mean 0 11.46 33.32 68.50

In this table, “F” denotes F-measure, “R” recall and “P” precision; “Od” is

the order limitation of association patterns for constructing the HPWR classifier.

Taking a look at the results, we find that: 1) with respect to the decision tree

classification system C4.5, the base classification for the small class C1 was poor,

as no relevant samples were identified, and performance for class C2 and C3 was

much better. Since the recall value of class C1 was zero, G-mean value was also

zero. By applying the AdaBoost algorithm, very few samples of the small class were

correctly classified, and performance for class C2 and C3 was significantly improved.

The overall classification accuracy was also significantly improved, however, the G-

mean value kept very low as a result of a low recall value for class C1; and 2) with

respect to the associative classification system HPWR, the base classification for the

small class C1 was poor with very low recall, precision and F-measure values, while

these values of the other two classes were much higher. By applying AdaBoost,
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even though F-measure values of all classes were improved, that of the small class

C1 was far below those of the other two classes. The overall performance accuracy

and G-mean were all improved accordingly.

These observations indicated the poor performance for the small class of both

base classifications and those applied by AdaBoost. We since expected to improve

the performance for the small class C1. By applying AdaC2, two learning objectives

were: 1) to balance the classification performance among classes evaluated by G-

mean; and 2) to improve the identification ability on class C1 evaluated by F-

measure.

G-mean Evaluation

We ran GA for searching efficient cost setups with data partitions of the first section.

With respect to the first learning objective, the fitness function was G-mean. The

resulting prototype of a cost vector [1.00 0.6331 0.6438] was specific to C4.5 and

another one [1.00 0.8120 0.8512] was for HPWR. The common feature of these

two vectors was that a higher cost value was assigned to the small class C1 and

relatively lower and similar values were associated with the other two classes. This

format was consistent with the learning expectation to strengthen the small class

C1. Integrating these cost vectors into AdaC2, its performance was evaluated by the

data partitions of the second section. Table 7.10 tabulates results for comparing the

performances of base classification, applied by classification, applied by AdaBoost,

and applied by AdaC2 in terms of their abilities in balancing the performances

among classes.

G-mean is calculated as the geometric means of recall values of all classes. For

each class crossing with each learning algorithm, the recall value, as well as the

precision value (in italics), are tabulated. G-mean values are presented in bold.

Comparing classification performances of the base classifications C4.5 and HPWR,

applied by AdaBoost, and applied by AdaC2, AdaC2 achieved the best G-mean

values. With respect to each class, AdaC2 improved recall values of the small class
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Table 7.10: G-mean Evaluation

C4.5 HPWR (Od=3)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2
C1 R 0 5.11 77.58 10.70 44.06 65.72

P N/A 6.50 14.12 11.82 32.89 30.83
C2 R 73.21 92.28 64.73 88.31 87.43 83.12

P 69.53 88.75 97.24 86.79 91.99 91.38
C3 R 67.94 91.36 65.23 87.63 88.42 83.95

P 73.89 87.88 93.22 87.07 89.91 90.81
G-mean 0 11.46 68.42 33.32 68.50 76.08

Cost Vector [1.00 0.6331 0.6438 ] [1.00 0.8120 0.8512]

significantly, while at the same time, decreased recall values of the other two classes

accordingly, more by C4.5 and less by HPWR.

F-measure Evaluation

With respect to the second learning objective, the fitness function was F-measure

evaluation on class C1. The resulting prototype cost vectors were [1.00 0.7597 0.7518]

for C4.5 and [1.00 0.9469 0.9934] for HPWR. Again, they took the same format

of a higher cost value associated with the small class C1 and relatively lower and

similar values to the other two classes. Integrating this cost vector to AdaC2, the

classification performance of class C1 was evaluated by the data partitions of the

second section. Table 7.11 presents the results.

With respect to class C1 crossing each learning algorithm, recall (R), precision

(P) and F-measure (F) values are reported, with F-measure values presented in

bold type. For reference of the performances on the other two classes, these values

are presented in italics. Applying AdaC2 to both classification systems C4.5 and

HPWR, the common observation is that AdaC2 achieved the best F-measure values

by improving the recall values and preserving higher precision values as well on class

C1, as compared with the base classifications and applied by AdaBoost.
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Table 7.11: F-measure Evaluation on Class C1

C4.5 HPWR (Od=3)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2

R 0 5.11 54.31 10.70 44.06 50.92
C1 P N/A 6.50 16.03 11.82 32.89 34.35

F N/A 5.84 24.25 10.83 35.84 39.78
R 73.21 92.28 78.19 88.31 87.43 88.05

C2 P 69.53 88.75 92.54 86.79 91.99 90.94
F 72.29 90.38 84.41 87.43 89.64 89.43
R 67.94 91.36 75.00 87.63 88.42 86.68

C3 P 73.89 87.88 92.95 87.07 89.91 90.38
F 71.91 89.42 83.01 86.99 89.03 88.42

Cost Vector [1.00 0.7597 0.7518 ] [1.00 0.9469 0.9934]

When comparing the reported results achieved by applying AdaC2 in Table 7.11

with those in Table 7.10, some interesting points are noticed. With respect to each

classification system, C4.5 or HPWR, the two cost vectors searched by GA for Table

7.11 and Table 7.10 were in the same format: a higher cost value was associated

with the small class C1 and relatively lower and similar values were associated with

the other two classes. However, the ratios between cost values for Table 7.11 were

smaller than those for Table 7.10. Hence, class C1 achieved relatively lower cost

values in Table 7.11 than in Table 7.10. Consequently, recall values of class C1

in Table 7.11 were lower than those in Table 7.10, and precision values were in

the contrary situation. These might result from the fact that a higher F-measure

should balance the trade-offs between recall and precision values. A relatively lower

cost value on the small class restrained a higher recall value, but preserved a higher

precision performance at the same time. This observation indicates how the cost

setups employed by AdaC2 adjust the learning focus and influence the classification

performances among classes.
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7.3.4 Car Evaluation Database

This database was derived for car evaluation. There are 1728 instances with each

described by 6 nominal ordered attributes. All data are grouped into 4 classes.

Table 7.12 describes the class distribution. Class C3 and C4 are small classes with

only 3.993% and 3.762% of the entire samples, respectively.

Table 7.12: Class Distribution of the Car Dataset

index class name class size class distribution
C1 unacc 1210 70.023%
C2 acc 384 22.222%
C3 good 69 3.993%
C4 v-good 65 3.762%

Performance of Base Classifications and Applied by AdaBoost

Testing on the second section of data partitions evaluated the performance of the

base classifiers C4.5 and HPWR, and applied by AdaBoost. Experimental results

are tabulated in Table 7.13.

With respect to the classification systems of C4.5, base classification performed

significantly better on classes C1 and C2 than on the two small classes C3 and C4

in terms of F-measure values. By applying AdaBoost, performances of class C1 and

C2 retained similar values; that of class C4 was significantly improved; and that

of class C3 was also improved but far below the other classes. As for the overall

performance, the classification accuracy of C4.5 was improved slightly; G-mean

value was improved by 4.22%. With respect to the classification systems HPWR,

base classification achieved the best F-measure value on class C1, which numbered

a major size of the whole data set, and obtained poor F-measure values on the two

small classes C3 and C4. By applying AdaBoost, F-measure values on all the 4

classes were slightly improved. However, performance on class C3 was far below
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Table 7.13: Performance of Base Classifications and Applied by AdaBoost

C4.5 HPWR (Od=4)
Class Meas. Base AdaBoost Base AdaBoost

R 96.37 97.07 95.73 96.42
C1 P 98.76 98.01 99.50 99.08

F 97.54 97.53 97.56 97.73
R 90.83 90.56 56.71 56.48

C2 P 85.87 87.17 75.66 80.46
F 88.17 88.73 64.02 65.83
R 71.75 73.95 43.94 60.21

C3 P 70.68 83.89 28.73 26.73
F 70.97 77.81 31.39 36.40
R 79.02 91.51 80.16 84.48

C4 P 73.68 85.93 34.31 38.89
F 74.86 88.45 47.16 52.61

Accuracy 93.44 94.40 84.37 85.59
G-mean 83.36 87.58 64.83 71.61

those of the other classes. The overall performance accuracy was slightly improved

and G-mean value was improved by 6.78%.

By applying AdaC2 to both classification systems C4.5 and HPWR, the learning

objectives were: 1) to further balance the classification performance among classes

evaluated by G-mean; and 2) to improve the recognition performance on class C3

evaluated by F-measure.

G-mean Evaluation

By running GA with the fitness function G-mean according to the first learning

objective, a resulting prototype cost vector [0.3281 0.6682 0.7849 1.00] was specific

to C4.5 and another one [0.2628 0.4608 1.00 0.9632] to HPWR. The common fea-

tures of these two vectors were that class C1 achieved the lowest cost value and

the two small classes C3 and C4 got relatively higher cost values. For C4.5, class
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C4 achieved the highest cost value and, for HPWR, though C3 achieved the high-

est value, cost values for C3 and C4 were similar. Integrating these cost vectors

into AdaC2, its performances in terms of its abilities in balancing the performances

among classes were compared with those of base classifications and AdaBoost. Ta-

ble 7.14 tabulates these results.

Table 7.14: G-mean Evaluation

C4.5 HPWR (Od=4)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2
C1 R 96.37 97.07 95.86 95.73 96.42 89.06

P 98.76 98.01 98.81 99.50 99.08 99.85
C2 R 90.83 90.56 94.59 56.71 56.48 79.26

P 85.87 87.17 87.61 75.66 80.46 70.77
C3 R 71.75 73.95 85.40 43.94 60.21 74.15

P 70.68 83.89 84.92 28.73 26.73 45.70
C4 R 79.02 91.51 91.39 80.16 84.48 96.88

P 73.68 85.93 87.77 34.31 38.89 55.62
G-mean 83.36 87.58 91.46 64.83 71.61 84.20

Cost Vector [0.3281 0.6682 0.7849 1.00] [0.2628 0.4608 1.00 0.9632]

By applying to both classification systems C4.5 and HPWR, AdaC2 obtained

the best G-mean values as compared with the base classification and applied by

AdaBoost. With respect to C4.5, by applying AdaBoost recall values of class

C4 was significantly improved from 79.02% to 91.51%, and class C1 achieved the

best value. To balance the performances among classes, the cost value associated

with class C1 was low as the searching result of the GA, such that AdaC2 could

strengthen the learning on the other classes. Consequently, recall values of class C2

and C3 were improved; especially on class C3, the improvement was from 79.02%

to 85.49%. The recall value of class C4 remained at a level achieved by AdaBoost

and, as a trade-off, recall value on class C1 was slightly decreased. With respecting

to HPWR, the situation was similar. By applying AdaBoost, class C1 achieved the

best recall value. Even though recall values of the two small classes C3 and C4
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were improved accordingly, recall values of class C2, C3, and C4 were lower than

that of class C1. By the searching result of the cost vector, the lowest cost value

was assigned to class C1, which allowed AdaC2 to bias the learning towards the

other classes. Consequently, recall values of class C2, C3, and C4 were improved

significantly and the recall value of class C1 was decreased.

F-measure Evaluation

Employing the fitness function F-measure evaluation on class C3, with respect to

the second learning objective, the prototype cost vector generated by the GA was

[0.5412 0.7536 0.8217 1.00] for C4.5 and [0.5832 0.3246 1.00 0.9327] for HPWR.

In both vectors, the two small classes C3 and C4 obtained higher cost values.

Integrating these cost vectors to AdaC2 and applied to both C4.5 and HPWR,

classification performances were compared with those of the base classifications

and applied by AdaBoost. Table 7.15 presents the results.

Table 7.15: F-measure Evaluation on Class C3

C4.5 HPWR (Od=4)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2

R 96.37 97.07 97.26 95.73 96.42 99.09
C1 P 98.76 98.01 98.84 99.50 99.08 93.33

F 97.54 97.53 98.03 97.56 97.73 96.03
R 90.83 90.56 93.07 56.71 56.48 35.91

C2 P 85.87 87.17 89.70 75.66 80.46 89.60
F 88.17 88.73 91.30 64.02 65.83 50.66
R 71.75 73.95 83.64 43.94 60.21 92.25

C3 P 70.68 83.89 82.89 28.73 26.73 42.28
F 70.97 77.81 83.04 31.39 36.40 57.14
R 79.02 91.51 91.14 80.16 84.48 96.51

C4 P 73.68 85.93 86.29 34.31 38.89 39.54
F 74.86 88.45 87.33 47.16 52.61 55.92

Cost Vector [0.5412 0.7536 0.8217 1.00] [0.5832 0.3246 1.00 0.9327]
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By applying to both classification systems C4.5 and HPWR, AdaC2 achieved the

best F-measure values on class C3. The improvement on the base classification C4.5

was from 70.97% to 83.04%, and that of HPWR was from 31.39% to 57.14%. These

improvements were achieved by increasing recall values and preserving reasonable

precision values on class C3.

With the experiment on this data set, the notable point was that for HPWR,

in both Table 7.14 and 7.15 class C3 achieved the highest cost value. In Table 7.14

the lowest cost value was associated with class C1, and in Table 7.15 the lowest cost

value was associated with class C2. Hence, in both tables, recall values of class C3

were improved but at the sacrifice of recall reduction on class C1 in Table 7.14, and

that on class C2 in Table 7.15. Notably, class C3 achieved a very high recall value

in Table 7.15, as the recall value of class C2 was badly damaged. This observation

indicated the significant class overlapping between class C2 and C3.

7.3.5 New-Thyroid Database

The goal of this data set is to predict a patient to the class euthyroidism (normal),

hypothyroidism (hypo) or hyperthyroidism (hyper). This data is a simple database

containing 215 instances of patients, each described by 5 attributes. Table 7.16

describes the class distribution. Two classes hyper and hypo are small with 16.28%

and 13.95% of the entire samples, respectively.

Table 7.16: Class Distribution of the New-Thyroid Dataset

index class name class size class distribution
C1 normal 150 69.77%
C2 hyper 35 16.28%
C3 hypo 30 13.95%
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Performance of Base Classifications and Applied by AdaBoost

The performances of base classifications and those by applying AdaBoost are tab-

ulated in Table 7.17.

Table 7.17: Performance of Base Classifications and Applied by AdaBoost

C4.5 HPWR (Od=3)
Class Meas. Base AdaBoost Base AdaBoost

R 97.03 94.47 91.56 86.01
C1 P 91.18 92.76 96.13 95.94

F 93.90 93.44 93.73 90.72
R 82.29 88.13 94.90 94.90

C2 P 91.91 89.79 79.54 69.23
F 86.25 88.31 86.16 79.23
R 79.66 79.55 88.17 90.67

C3 P 94.67 85.74 88.05 84.80
F 85.04 80.97 87.17 86.97

Accuracy 91.57 91.12 91.66 88.17
G-mean 85.38 86.61 91.18 90.11

With respect to classification systems of C4.5, the base classifier performed

significantly better in terms of F-measure on class C1 than on the other two small

classes C2 and C3. By applying AdaBoost, the performance of class C1 remained

of a similar value, while that of class C2 was improved by 2.06% and that of class

C3 was decreased by 4.07%. The classification accuracy of C4.5 did not change

a lot and G-mean value was slightly improved by 1.23%. With respect to the

classification systems of HPWR, the base classification’s performance on class C1

was much better than those on the other small classes. In terms of recall values,

HPWR achieved much better performances on the two small classes C2 and C3 than

C4.5 did. By applying AdaBoost, the overall accuracy and G-mean were decreased

instead of increased and, accordingly, F-measure values of all classes were decreased.

As with the previous two data sets, AdaC2 was tested on this data set for

two learning objectives: one was to balance the classification performance among
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classes; and the other was to improve the performance on a specific class. For the

second learning objective, the class with the worst performance was selected. With

C4.5, for both the base classification and that applied by AdaBoost, F-measure

values of class C3 were the worst. With HPWR, F-measure values of class C2 were

the worst for both base classification and that applied by AdaBoost. However, a

noticeable point was that the poor F-measure values of class C3 by C4.5 were caused

by the low recall values, and the poor F-measure values of class C2 by HPWR were

caused by low precision values.

G-mean Evaluation

The search results of cost vectors [0.4206 0.6256 1.0000] and [1.00 0.7999 0.9374]

were specific to C4.5 and HPWR, respectively. Referring to Table 7.17, by applying

AdaBoost to C4.5, class C1 achieved the highest recall value and class C3 the lowest

value. The search result for applying AdaC2 associated the highest cost value with

class C3 and the lowest value with class C1 for balancing the performances; similarly

with HPWR, by applying AdaBoost, class C2 achieved the highest recall value and

C1 the lowest recall value. The search result for applying AdaC2 assigned the

highest cost value to class C1 and the lowest value to C2. Applying these cost

vectors to AdaC2, classification performances are tabulated in Table 7.18.

Applied to C4.5, AdaC2 achieved the best G-mean value by increasing recall

values of class C2 and C3, which were associated with higher cost values. Applied to

HPWR, AdaC2 obtained a similar G-mean value with the base classification: recall

value of class C1 was decreased, even though the highest cost value was associated

with it, recall value of C2 kept the same, and that of C3 was increased. AdaC2

obtained a better G-mean value as compared with AdaBoost: recall values of C1

and C3 were improved (as results of higher cost values), while recall value of C2

remained the same.
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Table 7.18: G-mean Evaluation

C4.5 HPWR (Od=3)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2
C1 R 97.03 94.47 91.06 91.56 86.01 89.00

P 91.18 92.76 95.16 96.13 95.94 96.75
C2 R 82.29 88.13 91.78 94.90 94.90 94.90

P 91.91 89.79 81.12 79.54 69.23 74.29
C3 R 79.66 79.55 88.74 88.17 90.67 91.78

P 94.67 85.74 85.71 88.05 84.80 85.91
G-mean 85.38 86.61 90.14 91.18 90.11 91.59

Cost Vector [0.4206 0.6256 1.00] [1.00 0.7999 0.9374]

F-measure Evaluation

Two cost vectors [0.7697 0.9804 1.0000] and [1.00 0.6536 0.7095] were specific to

C4.5 and HPWR, respectively, as the search results of the GA. Applying these cost

vectors to AdaC2, classification performances were compared with those of the base

classifications and applied by AdaBoost in Table 7.19.

Table 7.19: F-measure Evaluation

C4.5 HPWR (Od=3)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2

R 97.03 94.47 91.91 91.56 86.01 89.21
C1 P 91.18 92.76 94.97 96.13 95.94 96.09

F 93.90 93.44 93.28 93.73 90.72 92.34
R 82.29 88.13 93.25 94.90 94.90 94.90

C2 P 91.91 89.79 82.68 79.54 69.23 75.60
F 86.25 88.31 86.38 86.16 79.23 83.54
R 79.66 79.55 87.63 88.17 90.67 88.16

C3 P 94.67 85.74 85.47 88.05 84.80 88.05
F 85.04 80.97 86.13 87.17 86.97 87.98

Cost Vector [0.7639 0.9804 1.00] [1.00 0.6536 0.7095]
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Applied to C4.5, AdaC2 achieved the best F-measure value on class C3 as

compared with the base classification and applied by AdaBoost. This improved

performance on class C3 was obtained by increasing the recall value. AdaC2 was

also applied to HPWR for improving the performance on class C2. The tabulated

results indicated that AdaC2 failed to improve the F-measure value on class C2

of the base classification, though it did generate a better result as compared with

AdaBoost.

As discussed previously, the poor F-measure value of class C2 by HPWR was

due to the low precision value. The cost value associated with C2 was the lowest

among three classes in an effort to constrain the recall value and pursue a better

precision value. This effort should be taken as a success when compared with

AdaBoost, since the precision value 79.23% of AdaBoost was increased to 83.54%

by AdaC2. This value, however, was still lower than that of the base classification.

This observation indicates that if the poor F-measure value of a class is caused by

the combination of a high recall value and a low precision value, AdaC2 may be

inadequate in improving the F-measure value.

7.3.6 Nursery Database

Nursery Database was derived to rank applications for nursery schools. There are

12960 instances, each described by 8 nominal attributes. The original data has 5

classes. Since one class, “recommend”, has only 2 instances, we combine it with

class “very-recommend”. Table 7.20 describes the class distribution. With this

data set, class C4 “very-recom” is the small class with only 2.55% of the entire

samples.

Performance of Base Classifications and Applied by AdaBoost

Experimental results of base classifications C4.5 and HPWR, and those by applying

AdaBoost, are tabulated in Table 7.21. Obviously, performances on class C4 with

respect to each classification algorithm were the worst among these 4 classes, even
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Table 7.20: Class Distribution of the Nursery Dataset

index class name class size class distribution
C1 not-recom 4320 33.33%
C2 priority 4266 32.92%
C3 spec-prior 4044 31.20%
C4 very-recom 330 2.55%

thought they were improved by applying AdaBoost. Classification accuracy and G-

mean value of C4.5 were improved by applying AdaBoost. Classification accuracy

of HPWR was improved by applying AdaBoost, though the G-mean value kept 0

as no relevant sample was recognized for the small class C4. Similarly, AdaC2 was

tested according two learning objectives: 1) to further balance the classification

performance among classes; and 2) to improve the recognition ability on class C4.

Table 7.21: Performance of Base Classifications and Applied by AdaBoost

C4.5 HPWR (Od=4)
Class Meas. Base AdaBoost Base AdaBoost

R 100.0 100.0 100.0 100.0
C1 P 100.0 100.0 100.0 100.0

F 100.0 100.0 100.0 100.0
R 96.30 98.51 79.55 92.40

C2 P 96.05 98.08 89.39 88.62
F 96.17 98.29 84.17 90.41
R 97.50 98.89 97.44 94.87

C3 P 97.79 99.01 81.83 92.30
F 97.65 98.95 88.95 93.50
R 78.09 88.16 0.00 0.00

C4 P 77.76 91.91 N/A N/A
F 77.84 89.92 N/A N/A

Accuracy 97.47 98.87 90.07 93.51
G-mean 92.506 96.25 0.00 0.00
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G-mean Evaluation

Table 7.22: G-mean Evaluation

C4.5 HPWR (Od=4)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2
C1 R 100.0 100.0 100.0 100.0 100.0 100.0

P 100.0 100.0 100.0 100.0 100.0 100.0
C2 R 96.30 98.51 97.55 79.55 92.40 75.43

P 96.05 98.08 98.61 89.39 88.62 85.77
C3 R 97.50 98.89 99.06 97.44 94.87 85.96

P 97.79 99.01 98.49 81.83 92.30 89.36
C4 R 78.09 88.16 93.44 0.00 0.00 100.0

P 77.76 91.91 87.57 N/A N/A 32.85
G-mean 92.56 96.25 97.45 N/A N/A 89.70

Cost Vector [0.7072 0.4888 0.6516 1.00] [0.6538 0.9669 0.7209 1.00]

Two cost vectors [0.7072 0.4888 0.6516 1.00] and [0.6538 0.9669 0.7209 1.00]

were generated as the search results by the GA specific to C4.5 and HPWR, re-

spectively. The common feature of these two cost setups was that the highest cost

value was assigned to the small class C4. Applying this cost vector to AdaC2,

classification results were presented and compared in Table 7.22. These tabulated

results indicated that, applied to both C4.5 and HPWR, AdaC2 achieved the best

G-mean values by improving the recall values of class C4.

F-measure Evaluation

Two cost vectors [0.7131 0.5310 0.2895 1.00] and [0.8264 0.8485 0.1027 1.00] were

generated by the searching of GA specific to C4.5 and HPWR, respectively. Again,

the highest cost values in both vectors were associated with class C4. Applying

these cost vectors to AdaC2, classification results were stated in Table 7.23. By

applying AdaBoost to C4.5, F-measure on class C4 was significantly improved, from

77.84% to 89.92%, while by AdaC2 the F-measure was further improved to 91.97%.
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Table 7.23: F-measure Evaluation on Class C4

C4.5 HPWR (Od=4)
Class Meas. Base AdaBoost AdaC2 Base AdaBoost AdaC2

R 100.0 100.0 100.0 100.0 100.0 100.0
C1 P 100.0 100.0 100.0 100.0 100.0 99.94

F 100.0 100.0 100.0 100.0 100.0 99.97
R 96.30 98.51 98.25 79.55 92.40 93.18

C2 P 96.05 98.08 97.91 89.39 88.62 51.01
F 96.17 98.29 98.14 84.17 90.41 65.94
R 97.50 98.89 98.26 97.44 94.87 3.90

C3 P 97.79 99.01 98.91 81.83 92.30 69.65
F 97.65 98.95 98.59 88.95 93.50 6.95
R 78.09 88.16 93.71 0.00 0.00 98.57

C4 P 77.76 91.91 90.43 N/A N/A 52.90
F 77.84 89.92 91.97 N/A N/A 68.29

Cost Vector [0.7131 0.5310 0.2895 1.00] [0.8264 0.8485 0.1027 1.00]

With respect to HPWR, the base classification failed in recognizing relevant samples

of class C4. By applying AdaBoost, this situation was not changed. By applying

AdaC2, the performance on class C4 was greatly increased with a high recall value.
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Chapter 8

Conclusion and Future Research

The research presented in this thesis is mainly on cost-sensitive boosting for the

classification of imbalanced data. It proposes several new boosting algorithms,

applicable to most standard classification systems, for advancing the learning of

imbalanced data. The work described in this dissertation was motivated by the

recognition of: (1) the unsatisfactory performances of a range of well-developed

classification systems when encountering the imbalanced data; (2) the large number

of application domains of great importance in machine learning and data mining

impaired by the class imbalance problem; and (3) the inability of most available

algorithms to cope with the class imbalance problem.

8.1 Summary of Contributions

The contributions of the research is best summarized by the evaluation of the

research outcome, corresponding to the research objectives as stated in Section 1.3.

• Boosting an associative classifier. This research investigates techniques

for applying the AdaBoost algorithm to the HPWR classification system, and

then analyzes various features of the boosted-HPWR classifier.

A boosted-HPWR classifier combines a sequence of classifiers constructed us-

ing low-order association rules for both learning time reduction and accuracy

149



improvement. When the weights of evidence provided by the base HPWR

classifier are used as the confidence measures in voting, a new sample-based

weighting strategy for voting multiple classifiers is achieved as illustrated to

be superior in reflecting the distinct learning focus of the classifier on the

sample space.

• Boosting for learning bi-class imbalanced data. Since AdaBoost was

developed for improving the classification accuracy of a base classifier, its

effectiveness for classifying imbalanced data is inadequate. Cost-sensitive

boosting algorithms for learning bi-class imbalanced data are developed by

introducing cost items into the learning framework of AdaBoost.

The cost items are used to denote the uneven learning importance among

samples such that the new boosting strategies can bias the learning focus

intentionally. Meanwhile, the boosting efficiency is another factor to be con-

sidered. For the boosting algorithms developed, their weight updating para-

meters are deduced taking the cost items into consideration. The study in

this dissertation shows that AdaC2, one of the proposed algorithms, tallies

with the stagewise additive modelling in statistics where the steepest descent

search is able to minimize the overall cost exponential-loss.

• Boosting for learning multi-class imbalanced data. In practice, there

are some applications with more than two classes where the unbalanced class

distributions hinders the classification performance. For classifying multi-

class imbalanced data, the AdaC2.M1 is developed by expanding AdaC2.

AdaC2.M1 is capable of adjusting the data distributions and bias the learning

focus directed by the cost setups. For a given problem domain, the cost matrix

is often unavailable. The empirical method used for bi-class applications is not

workable for multi-class applications. The efficient cost setups for applying

AdaC2.M1 are generated by the searching of the Genetic Algorithm.

• Experimental evaluations on the proposed algorithms. Experiments

are conducted on real-world data sets for evaluating the boosted-HPWR in
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terms of accuracy improvement and learning time reduction, as well as evalu-

ating cost-sensitive boosting algorithms, applied to the decision tree classifica-

tion system C4.5 and the associative classification system HPWR, for classify-

ing both bi-class and multi-class imbalanced data in terms of the recognition

performance on a specific small class and the balanced performance among all

classes. When compared with other related algorithms, these experimental

results indicate that the proposed algorithms are superior in achieving better

measurements with respect to the learning objectives.

8.2 Suggested Future Research

Several interesting problems related to this research are still open for future inves-

tigation. The following is a list of some possible directions.

• More investigations on other application domains. In Section 1.2,

several application domains where the class imbalance problem prevails are

listed. In our experimental study on classifying imbalanced data, most of

the data sets are medical diagnosis data taken from the UCI machine learn-

ing repository. The proposed cost-sensitive boosting algorithms can also be

applied to other application domains, such as fraud detection and network

intrusion, to explore their effectiveness in these specific domains.

• More investigations on other base classification systems. In this the-

sis, two kinds of base classification systems, the decision tree classification sys-

tem C4.5 and the associative classification system HPWR, are investigated

for classifying imbalanced data using the proposed cost-sensitive boosting

algorithms. Other standard classification systems, such as bayesian network

classifier, neural networks, and support vector machines, are all reported to be

affected by the class imbalance problem. The proposed cost-sensitive boost-

ing algorithms are applicable to any base classifier where AdaBoost can be
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applied. As AdaBoost performs differently with respect to the base classifica-

tion systems, further study can investigate how these cost-sensitive boosting

algorithms effect different base classification systems.

• Cost-sensitive boosting of real-valued classifiers. In this research, cost-

sensitive boosting algorithms are developed by adapting the discrete Ad-

aBoost algorithm, which assumes the outputs of a base classifier are hard

class labels. As a variation of AdaBoost, RealBoost was proposed to boost

base classifiers with real-valued outputs of class probability estimates instead

of class labels. The proposed cost-sensitive boosting methods are applica-

ble to the RealBoost algorithm by: integrating cost values into the boosting

framework of RealBoost and developing cost-sensitive boosting algorithms us-

ing the same inference methods as introduced in this thesis. Affected by the

cost setup, weights boosted towards samples will be biased and class probabil-

ity estimation will vary. These factors on small classes will be strengthened

when higher cost values are associated. The analysis of this discussion in-

dicates that the cost-sensitive boosting approach should be as effective for

the real-valued classifiers in tackling the imbalanced data as for the discrete

classifiers. Further investigation with real applications is required.

• Classification of imbalanced data with multiple class labels. In clas-

sic pattern recognition problems, classes are mutually exclusive by definition.

Classification errors occur when the classes overlap in the feature space. There

is a different situation where the classes by definition are not mutually exclu-

sive. Thereby, a single example may belong to any number of classes. Such

a situation challenges the classic pattern recognition paradigm and demands

a different treatment. With some application domains of this kind, the class

imbalance problem is present. Combined with the multiple class label issue,

the class imbalance problem assumes an even more complex situation. The

current thesis research can be extended to classification of imbalanced data

of multiple class labels with further research efforts.
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There are of course many other worthwhile research possibilities that are not

included in the list. I believe that because of the challenging topics and tremendous

potential applications, the classification of imbalanced data will continue to receive

more and more attention in both the scientific and the industrial worlds.

8.3 Publications Resulting from this Research

Journal

• Yanmin Sun, Yang Wang, and Andrew K.C. Wong, Boosting An Associative

Classifier, IEEE on Knowledge and Data Engineering, vol. 18, no. 7, pp.

988-992, July 2006.

• Yanmin Sun, Mohamed S. Kamel, Andrew K. C. Wong, and Yang Wang,

Cost-Sensitive Boosting for Classification of Imbalanced Data, Revised for

Patten Recognition.

• Yanmin Sun, Andrew K. C. Wong, Mohamed S. Kamel, and Yang Wang,

Cost-Sensitive Boosting for the Classification of Multi-Class Imbalanced Data,

Submitted to IEEE on Knowledge and Data Engineering.

• Yanmin Sun, Andrew K. C. Wong, and Mohamed S. Kamel, An Overview

on Classification of Imbalanced Data, Submitted to International Journal of

Pattern Recognition and Artificial Intelligence.

Conference

• Yanmin Sun, Mohamed S. Kamel, and Yang Wang, Boosting for Learning
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IEEE International Conference on Data Mining, pages 592 - 602, HongKong,
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