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Abstract

How to improve the radio resource utilization and provide better quality-of-service

(QoS) is an everlasting challenge to the designers of wireless networks. As an indis-

pensable element of the solution to the above task, medium access control (MAC)

protocols coordinate the stations and resolve the channel access contentions so that

the scarce radio resources are shared fairly and efficiently among the participating

users. With a given physical layer, a properly designed MAC protocol is the key to

desired system performance, and directly affects the perceived QoS of end users.

Distributed random access protocols are widely used MAC protocols in both

infrastructure-based and infrastructureless wireless networks. To understand the

characteristics of these protocols, there have been enormous efforts on their perfor-

mance study by means of analytical modeling in the literature. However, the existing

approaches are inflexible to adapt to different protocol variants and traffic situations,

due to either many unrealistic assumptions or high complexity.

In this thesis, we propose a simple and scalable generic performance analysis

framework for a family of carrier sense multiple access with collision avoidance (CSMA/

CA) based distributed MAC protocols, regardless of the detailed backoff and channel

access policies, with more realistic and fewer assumptions. It provides a systematic ap-

proach to the performance study and comparison of diverse MAC protocols in various

situations. Developed from the viewpoint of a tagged station, the proposed frame-

work focuses on modeling the backoff and channel access behavior of an individual

station. A set of fixed point equations is obtained based on a novel three-level renewal

process concept, which leads to the fundamental MAC performance metric, average

frame service time. With this result, the important network saturation throughput is

then obtained straightforwardly. The above distinctive approach makes the proposed

analytical framework unified for both saturated and unsaturated stations.

iii



The proposed framework is successfully applied to study and compare the per-

formance of three representative distributed MAC protocols: the legacy p-persistent

CSMA/CA protocol, the IEEE 802.15.4 contention access period MAC protocol, and

the IEEE 802.11 distributed coordination function, in a network with homogeneous

service. It is also extended naturally to study the effects of three prevalent mech-

anisms for prioritized channel access in a network with service differentiation. In

particular, the novel concepts of “virtual backoff event” and “pre-backoff waiting pe-

riods” greatly simplify the analysis of the arbitration interframe space mechanism,

which is the most challenging one among the three, as shown in the previous works

reported in the literature. The comparison with comprehensive simulations shows

that the proposed analytical framework provides accurate performance predictions in

a broad range of stations. The results obtained provide many helpful insights into

how to improve the performance of current protocols and design better new ones.
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Chapter 1

Introduction

1.1 Wireless Communication Networks

Driven by the vision of communications from anywhere, anytime, various wireless

networks such as nation- or continent-wide cellular networks, wireless metropolitan

area networks (WMANs) and wireless local area networks (WLANs) have been de-

ployed almost ubiquitously in recent years. Meanwhile, as the Internet has evolved

to a worldwide information transport platform, many wireless networks serve as ac-

cess networks to the Internet. The combination of these two types of networks have

greatly promoted the rapid growth of wireless communications and mobile computing

around the world.

As the most popular wireless network, cellular networks can provide wide area

coverage and seamless roaming. Evolved from the analog technology based first gen-

eration (1G), digital technology based second generation (2G) to the current wideband

code division multiple access (CDMA) technology based third generation (3G), cellu-

lar networks can now provide 144kbps-2Mbps data rate to users in different environ-

ments. The next generation (4G) cellular networks may be based on the orthogonal
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Introduction 2

frequency division multiplex (OFDM) technology [64], and are expected to provide

high transmission rate of 100 Mbps [35].

The representative WMAN is the emerging worldwide interoperability for mi-

crowave access (WiMAX) network [34]. Based on the IEEE 802.16 series stan-

dards [47], WiMax networks use the orthogonal frequency division multiple access

(OFDMA) and multiple input multiple output (MIMO) technologies [108] and can

support data rates up to 75 Mbps in a 20 MHz channel.

Compared with the above two types of networks, WLANs are much easier and

cheaper1 to set up, and usually cover small hotspot areas such as airports, malls,

offices, hotels and residential homes. Due to its great success in the past years, the

IEEE 802.11 series standards [45] are the de facto standards for present WLANs. The

current main stream IEEE 802.11g standard uses OFDM technology to provide up

to 54 Mbps data rate at the 2.4 GHz band. The next generation WLAN standard,

IEEE 802.11n, is expected to provide data rate as high as 200 Mbps using OFDM

and MIMO [107]. High data rate WLANs are expected to have higher market share

in the next a few years [114].

The above networks with increasingly higher data rates have or will contribute

to meeting the rapid growth of demand for wireless access to the Internet. In the

development of these networks, the common challenge of how to further improve

the resource utilization efficiency and provide better quality-of-service (QoS) attracts

great efforts from both industry and academia. Medium access control (MAC) pro-

tocols play a critical role in determining the performance of these wireless networks,

which directly affects the perceived QoS of end users. In the next section, we give an

overview of the prominent wireless MAC protocols.

1WLANs operate in the unlicensed Industrial, Scientific and Medical (ISM) bands.
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1.2 Wireless Medium Access Control Protocols

A medium access control (MAC) protocol coordinates the nodes in a network and

resolves the contention among their accessing the shared medium (the wireless chan-

nel in wireless networks) so that the scarce system resources are shared fairly and

efficiently [75]. With a given physical layer, a properly designed MAC protocol is the

key to desired system performance such as high throughput and short delay.

Wireless MAC protocols can be classified into three categories [16]: random ac-

cess, guaranteed access and hybrid access protocols. Random access protocols are

distributed contention-based protocols that are quite suitable for networks with sta-

tions carrying bursty traffic. Classic random access protocols include ALOHA [2],

slotted ALOHA [80], and non/p/1-persistent CSMA [55]. To avoid the possible con-

tinuous collisions, random backoff policies (e.g., uniform backoff, geometric backoff,

binary exponential backoff) have been added to the classic protocols2. One resulting

protocol family is the various CSMA/CA protocols widely used in WLANs, WPANs

and WSNs, etc. The main advantage of the random access protocol are that it does

not require a central controller and its relatively simple implementation; while the

main disadvantage is that channel idle periods and frame collisions are inevitable,

which wastes the valuable channel bandwidth. Guaranteed access are contention-free

protocols with which stations access the channel in an orderly manner (via polling

or scheduling), and thus a certain level of QoS can be provided. The main overhead

2Stations in wireless systems are usually operating in half-duplex mode. Due to the fact that

a large fraction of transmitting energy leaks into the receiving path, it is very difficult for a node

to receive data reliably when its transmitter is transmitting unless the transmission and reception

use different frequency bands. As a result, collision detection is almost impossible and carrier sense

multiple access with collision avoidance (CSMA/CA) instead of with collision detection (CSMA/CD)

is usually deployed in wireless systems.
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of guaranteed access protocols incurs when the polled or scheduled station has no

need to use the medium at the moment, which usually occurs to stations with bursty

traffic. A hybrid access protocol normally combines the advantages of the random

access and guaranteed access protocols to achieve flexibility, efficiency and QoS provi-

sioning [16]. With the hybrid protocols, each station sends a request, using a random

access protocol, to the central controller (e.g., the base station in a cellular system or

the access point in a WLAN) indicating the time or bandwidth required for its future

transmissions. After a request is received, usually the admission control scheme (if

exists) decides whether to grant it or not. For the former, the controller allocates

time slots and notifies the requesting stations the start time and duration assigned.

Later transmissions from these stations are then collision-free. Hybrid MAC proto-

cols are normally deployed in infrastructure-based networks to support a variety of

delay-sensitive multimedia applications with satisfactory QoS provisioning.

Due to its flexibility, random access protocols may be used alone in infrastructure-

less wireless networks (e.g., mobile ad hoc networks or ad hoc mode WLANs) or be

used as part of the hybrid protocols in infrastructure-based wireless networks (e.g.,

uplinks of cellular or WiMAX systems). In addition, random access protocols can

easily incorporate some mechanisms to provide prioritized channel access to differ-

ent stations [1], which is indispensable for networks providing service differentiation.

Since the MAC protocol adopted is critical to not only the system performance but

also the perceived QoS of end users in a wireless network, it is important to fully

understand the characteristics of the widely used random access protocols. In this

thesis, we focus mainly on studying the performance of CSMA/CA based distributed

MAC protocols in various wireless networks.
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1.3 Performance Modeling Approaches for Distri-

buted MAC Protocols

Performance evaluation of MAC protocols is usually carried out by simulations/field

measurements or theoretical modeling approach. While simulation/field measure-

ment studies, usually time consuming, may only address particular scenarios under

specific conditions, analytical modeling enables one to gain deeper insight into the

characteristics of the protocol.

The performance of MAC protocols is traditionally analyzed by developing stochas-

tic models, often with various assumptions and approximations. In the literature,

there are mainly three techniques commonly used in this area, as briefly discussed

below. More details of the related work will be given in Chapters 4 and 5.

1.3.1 The S-G Analysis

The so-called “S-G” approach [87], where S is the carried load and G is the offered

load, was widely used in the 1970’s-90’s to analyze the throughput-delay perfor-

mance of both slotted and non-slotted multiple access protocols such as ALOHA and

CSMA [55, 96, 97, 91, 4, 88, 83]. It assumes an infinite number of nodes collectively

generate traffic equivalent to an independent Poisson source with an aggregate mean

packet generating rate of S packets per slot, and the aggregated new transmissions

and retransmissions are approximated as a Poisson process with rate of G packets

per slot. The scenario considered is mainly of theoretical interest in the sense that a

practical system has just a finite number of users, each of which usually has a buffer

size larger than one as assumed in the S-G analysis. In addition, this technique is

usually used only for a homogeneous network.
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1.3.2 The Equilibrium Point Analysis

Equilibrium point analysis (EPA) is a fluid-type approximation analysis usually ap-

plied to systems in steady state [32, 91]. It assumes that the system always works

at its equilibrium point so that the number of users in any working mode is always

fixed, i.e., the expected increase in the number of stations in each mode is zero at

this point. For its analysis, it requires a set of nonlinear equations, the number of

which equals the number of the working modes (e.g., different backoff stages [79, 106]

or the frame queue length in the buffer [90, 17]) in the system. When the number

of working modes increases, e.g., considering both the backoff stages and the queue

lengths, the computing complexity of the EPA approach increases quickly even just

for a homogeneous network, which is similar to that of the Markov analysis discussed

next.

1.3.3 The Markov Analysis

Compared with the previous two techniques, the Markov analysis is the most widely

used one in the performance modeling of MAC protocols. It has been used mainly

from two different perspectives:

• Modeling the system state — The early works in this category (e.g., [54, 95])

usually consider a simple MAC protocol for a homogeneous system in which

the stations have only two states: 1) backlogged, in which a frame is waiting in

the buffer for transmission; and 2) thinking, in which the buffer is empty and a

frame will be generated according to a Bernoulli experiment. Therefore, those

works usually take the number of backlogged stations as the system state to form

a one-dimensional Markov chain, and thus the size of the state space equals the

number of stations. When the MAC protocols become more complicated, multi-
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dimensional Markov chains are introduced. For instance, when some multi-stage

backoff policies are included in the protocol, a multi-dimensional Markov chain

with each dimension representing the number of stations in a corresponding

backoff stage can be developed as in [79]. On the other hand, if the protocol

defines different behavior for different classes of stations, each dimension of

the Markov chain may represent the number of stations in an individual class

(e.g., [109] for integrated voice and data system with packet reservation multiple

access (PRMA) [37]. Furthermore, Markov analysis may also be extended to

consider the buffer status of each station, but only limited to a homogeneous

network with a very small number of stations and small buffer sizes [87].

• Modeling the state of an individual station — This type of usage of the Markov

analysis becomes popular after it appears in the saturation throughput analysis

of the IEEE 802.11 DCF in [5, 6]. In this model, the backoff stage and the

backoff counter value are combined together to form the state space of the two-

dimensional discrete time Markov chain that models the backoff procedure of

an individual station in the WLAN. Numerous variants of this model have been

proposed for the performance study of DCF (e.g., [110, 15, 104, 19, 31]) and

many other protocols such as the IEEE 802.11e EDCA [48, 115, 82, 56], IEEE

802.15.4 [46, 68, 76, 89] and HomePlug [60, 51].

For the Markov analysis, the state transition probabilities of the Markov chain

must be found to solve the model. To determine the state transition probabilities,

usually the traffic is assumed to be Poisson or Bernoulli so that the memoryless

characteristic of the Markov chain is maintained, or the stations are assumed to

be saturated as always having at least one frame waiting for transmission. Even

with such simplifying assumptions, a common issue in all the above models is the
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complexity involved in deciding the transition probability matrix for the single- or

multi-dimensional Markov chain, especially when the number of states is large. The

state space of the Markovian model increases with both the complexity of the protocol

studied and the number of stations in the system, which hinders its usage in systems

with large station population.

1.4 Motivations and Objectives

Performance study of MAC protocols by means of analytical modeling is helpful for

researchers to understand the complex relationships among protocol parameters, find

the bottleneck and improve the protocol performance. All these also shed light to

future protocol design. It is desirable to have a systematic approach of analyzing the

diverse MAC protocols so that their performance can be studied and compared in an

efficient manner. However, the existing performance modeling approaches discussed in

the previous section are inflexible to adapt to different protocol variants, due to either

the many unrealistic assumptions or the high complexity. The main objective of this

thesis is to propose a simple and scalable generic performance analysis framework

for various CSMA/CA based distributed MAC protocols regardless of the detailed

backoff and channel access policies, with more realistic and fewer assumptions, and

provide accurate performance predictions. In particular, the objectives of this thesis

are to

• extract the common essence of various CSMA/CA based distributed MAC pro-

tocols;

• propose a general framework to reflect the common essence of these protocols;
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• provide an analytical approach for performance modeling of both saturated and

unsaturated stations, with general arrival traffic distributions;

• apply the proposed framework to study the performance of representative distri-

buted MAC protocols in networks with homogeneous service or service differen-

tiation, in terms of average frame service time and network saturation through-

put;

1.5 Main Contributions

The main contributions of this thesis are listed as follows:

• Proposal of a three-level renewal process method to model the backoff and chan-

nel access behavior of a tagged station in a wireless network with CSMA/CA

based MAC protocols;

• Development of a generic analysis framework based on the above method for

the performance study of such MAC protocols; the computational complexity

of this framework does not scale up with the complexity of the backoff and

channel access policies as in other models (e.g., Markov analysis based models

in Section 1.3);

• Proposal of a performance modeling approach for unsaturated stations oper-

ating in practical networks; the approach also naturally covers the saturated

stations as a special case. In addition, it is applicable to station traffic with

general frame arrival process. On the contrary, other existing approaches mainly

focus on saturated stations that rarely work in reality, and the few reported ex-

tensions to those approaches can only handle limited traffic models.
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• Performance analysis and comparison of three representative distributed MAC

protocols; possible improvements are suggested; the intrinsic relationship among

the protocols is also revealed;

• Insights of the different effects of popular service differentiation mechanisms in

networks supporting multi-service or with multiple classes of stations; especially,

within one framework, different effects of the same mechanism in different traffic

situations are revealed for the first time in the open literature. The insights

provided by this work will help wireless network designers and operators to select

proper service differentiation mechanism(s) for their specific requirements.

1.6 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 describes the sys-

tem model, including the wireless networks under consideration and the distributed

MAC protocols to be studied. The generic analytical framework for CSMA/CA based

distributed MAC protocols is presented in Chapter 3. In Chapter 4, we analyze the

performance of three representative distributed MAC protocols in networks with ho-

mogeneous service, demonstrating the applications of the proposed framework. Three

commonly used service differentiation mechanisms in wireless LANs are analyzed in

Chapter 5. Finally, concluding remarks and discussion on future work are given in

Chapter 6. The content of this thesis is disseminated in papers [131]–[137].



Chapter 2

System Model

In this chapter, we first present the basic network model that will be used in Chap-

ters 3 and 4, followed by the extended network model that will be studied in Chapter 5.

Four representative distributed MAC protocols (three for homogeneous service and

one for heterogeneous service) are introduced in the Section 2.2.

2.1 Network Model

A basic network is considered in Chapter 3 for the development of the generic perfor-

mance model and in Chapter 4 for the analysis of networks with homogeneous service.

It is a single-hop wireless network consisting of N functionally identical stations and

an optional receiving-only central receiver1. Specifically, all the stations are within

the transmission range of one another so there are no hidden terminals in the network.

The time axis is slotted, and all the stations are synchronized so that all stations start

their transmissions only at the beginning of a slot. In addition, all the stations can

1This optional central receiver can be the base station in a cellular network (note only uplink is

considered), or a data sink in a sensor network, etc.

11
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correctly sense the channel status. Ideal wireless channel without transmission error

is assumed so that all transmitted frames may be lost only due to collisions caused

by simultaneous transmissions from multiple stations. All MAC frames are assumed

to have the same fixed length, which is a widely adopted assumption in MAC proto-

col analysis [4], and can be easily achieved in practice by commonly used link layer

functions, such as fragmentation or concatenation of the upper layer packets. A short

acknowledgment (ACK) frame is transmitted by the receiver immediately after every

successful MAC frame transmissions, and a negative ACK (NACK) frame is trans-

mitted in respond to a collision. Alternatively, the sending stations will determine

that there is a collision if the ACK frame is not received within a timeout period,

in which no station other than the receiver is allowed to transmit. In this case, the

timeout period can be deemed as if it is occupied by a virtual negative ACK (NACK)

frame transmitted by the central receiver. The aggregate transmission time of the

MAC frame and the associated ACK or NACK is L slots, and no new transmission

from any station will start during this period.

The basic network model described above is extended to a multi-service network

in Chapter 5 when service differentiation mechanisms are studied. The multi-service

network consists of S classes of stations, with Ns stations in each class. MAC frame

lengths or the physical layer data rates used by each class may be different. For

stations in the same class, the incoming traffic is the same and they receive the

same type of service from the network. The optional central receiver in the basic

network model can be naturally included in the extended network model, say, as a

station of its own class. Thus, the extended network model can represent either an

infrastructure-based or an infrastructureless wireless network, and can be used to

study networks with a broad range of traffic situations: peer-to-peer traffic only as

in an ad hoc network, all uplink traffic over a wireless access channel in a cellular
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or WiMax network, or either symmetric or asymmetric to-and-from AP traffic in a

WLAN [11].

In this thesis, two important performance metrics of MAC protocols are of our

primary interest: the average frame service time of an individual station and the

network throughput. The former is the most important metric in evaluating the

perceived QoS of each station, since it directly determines the service rate for the

MAC frames of the station. The latter is obtained as the aggregation of the per station

throughput, which can be derived easily if the average frame service time is given. In

particular, for the network throughput, we concentrate mainly on the saturation case

in which every station always has at least one frame in the MAC buffer waiting for

transmission. The throughput in this case, saturation throughput, is a fundamental

performance figure defined as the limit reached by the system throughput as the

offered load increases, and represents the maximum load that the system can carry

in stable conditions [6]. On the contrary, the network throughput is trivially given by

the total incoming traffic load in the unsaturation case where none of the stations in

the network is saturated. The average frame service time is always studied in both

saturation and unsaturation cases.

All the MAC protocols studied in this article belong to the CSMA/CA family. In

the sequel, for ease of presentation, a successful channel sensing refers to the event

that a station senses the channel and the channel is idle. In contrast, a failed channel

sensing or channel sensing failure refers to the event that a station senses the channel

which is busy due to transmission(s) from other station(s).
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2.2 Four Representative Distributed MAC Proto-

cols

In this thesis, four representative distributed MAC protocols that are widely used in

current wireless networks will be studied, and they are briefly reviewed one by one in

this section.

2.2.1 The p-persistent CSMA/CA Protocol

As a simple but highly efficient multiple access protocol, the slotted p-persistent

CSMA/CA protocol was first proposed in [55]. Since then it has been widely used

and its application can still be found nowadays in various networks such as mobile

ad hoc network (MANET) [50], vehicular networks [98, 120] and factory control net-

works [69].

In the slotted p-persistent CSMA/CA protocol, a station will sense the channel

when it has a frame for transmission. If the channel is idle, the station transmits the

frame with probability p. With probability 1− p, the station will defer its decision of

frame transmission by one slot. If the channel is still idle in the next slot, the station

will repeat the above procedure. When the channel is sensed busy, the station waits

until the channel becomes idle again and then operates as above. This probabilistic

channel access rule can be deemed as that the station follows a geometric backoff pol-

icy, and the backoff procedure stops when there is a transmission from other stations

and restarts itself after the transmissions ends. From this perspective, this protocol

is an exact fit for the proposed analytical model (presented in Chapter 3), and it will

be used as a basic example to illustrate the details of the model in Section 4.1.
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2.2.2 The IEEE 802.15.4 MAC

The fast growth of public interest in wireless sensor networks and wireless personal

area networks (WPAN) in recent years has led to the standardization of the IEEE

802.15.4-2003 [46], which contains a protocol stack targeting at low-power low-rate

wireless networks. The standard has been quickly accepted by industry, and many

products have appeared in the market since its ratification. In this subsection, we

briefly review the MAC protocol specified in the IEEE 802.15.4-2003 standard. More

details of the protocol, such as specific parameter settings or physical layer related

information, can be found in [46, 127].

The MAC layer in the IEEE 802.15.4 standard specifies two operating modes: an

ad hoc non-beacon-enabled mode and a beacon-enabled mode. In the ad hoc mode,

nodes in the network use a non-slotted CSMA with collision avoidance (CSMA/CA)

mechanism to contend for channel access. If the channel is sensed to be idle, the trans-

mission of a frame will begin immediately; otherwise the node will backoff and try to

access the channel in a future slot. This mechanism has been extensively studied in

the literature and its performance is well understood [55, 4]. In the beacon-enabled

mode, a personal area network (PAN) coordinator transmits a beacon periodically to

form the so-called “superframe” time structure, as shown in Figure 2.1. A superframe

consists of a beacon that enables the beacon-enabled mode, contention access period

(CAP), contention free period (CFP), and an optional inactive portion in which all

the nodes may enter a sleep mode to reduce power consumption. The CAP and CFP

together form the active portion of the superframe, during which all communication

among the nodes should take place. In the CFP, the network coordinator alone con-

trols entirely the contention-free channel access by assigning guaranteed time slots

(GTS) to those nodes with their GTS requests granted. The assignment of the GTS

to those nodes is determined by the scheduling scheme adopted by the network coordi-
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Beacon Beacon

inactive portion

Superframe Durataion

Beacon Interval

Contention Access Period Contention Free Period

...... GTS GTS

Figure 2.1: IEEE 802.15.4 superframe structure in the beacon-enabled mode

nator, which is open in the standard. Therefore, depending on the specific scheduling

scheme used, the performance analysis of CFP is actually the same as that of the

well-studied centralized scheduling schemes in cellular systems (e.g., [52, 119]).

In the CAP, a non-persistent slotted CSMA/CA with binary exponential backoff

multiple access protocol is defined in the standard. Three variables need to be main-

tained for each frame before it is successfully transmitted. They are respectively the

number of random backoff stages experienced (NB), the current backoff exponent

(BE), and the contention window (CW )2. According to this protocol, a node with

a frame waiting for transmission at the MAC buffer is required to backoff a random

number of slots first, with CW set at a value of two. At the end of this backoff stage,

the node will do the first channel clear assessment (CCA). If the channel is sensed

idle, CW is decremented by one and the node will do the second CCA in the next

slot. Only when both CCAs indicate an idle channel (thus CW reaches zero), will the

node start the transmission in the next slot; otherwise, it will enter the next backoff

2The term contention window is the number of slots that the channel has to be sensed idle by a

node before its transmission of a frame, which is completely different from the contention window

defined in the IEEE 802.11 DCF.
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stage and reset CW to two.

The number of backoff slots in stage NB, 0 ≤ NB ≤ NBmax, is drawn from a

uniform distribution over [0, 2BENB − 1], where BE0 = macMinBE is the initial and

minimum backoff exponent for each frame. BENB+1 = BENB + 1 is upper-bounded

by aMaxBE which is the default maximum value of backoff exponent, and NBmax is

the maximum number of backoff stages allowed for a frame. If all the NBmax backoff

stages end up with a busy channel indicated by the associated CCAs, a Channel

Access Failure event will be reported to the upper layer; the node may then start

the above procedure again for the next frame. The standard specifies the following

default parameter values: macMinBE = 3, aMaxBE = 5 and NBmax = 5. Their

impact on the protocol performance will be discussed in Section 4.2.5. During the

backoff procedure, if the node succeeds in accessing the channel, it will reset the three

parameters NB,BE and CW to the default values for initial transmission of the next

frame.

In this study, we focus on the contention access period only to illustrate the

protocol performance by the proposed analytical model, i.e., the inactive portion

and the contention free period in the active portion will not be considered in the

superframe time structure. With this protocol, termed CAP-MAC in the sequel,

a node will always contend for channel access according to the protocol for CAP,

whenever it has a frame to transmit. Therefore, the superframe contains equal-

size time slots with fixed length, which is normalized to unit time in the sequel for

presentation simplicity. In fact, since the contention access related activities such

as backoff counter decrement occurs only in the CAPs and freeze in the CFPs and

inactive portion of the superframes, the impact of these two periods on the MAC

performance can be taken into our proposed model as having a constant time cost

(equal to the aggregate length of the CFP and the inactive portion of a superframe)
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associated to every A slots, where A is the length of each CAP in units of slots. A

similar approach is used in [76], but for generating low duty cycle constant rate traffic

as a special case of unsaturated nodes.

2.2.3 The IEEE 802.11 Distributed Coordination Function

The recent popularity of WLAN is mainly due to the simple and robust MAC proto-

col specified in the IEEE 802.11 standard, which defines two modes: the mandatory

distributed coordination function (DCF) and the optional point coordination func-

tion (PCF). Although the PCF is designed for real-time traffic [23, 101], it is not

widely deployed due to its inefficient polling schemes, limited QoS provisioning, and

implementation complexity [11]. In practice, most of the WLANs deploy DCF as the

MAC protocol. Therefore, we will focus on the DCF only in the following.

In the standard, DCF specifies the channel access method as follows. Every station

adopts the CSMA/CA principle. When a station has a frame at the MAC sublayer

buffer, it will first sense the channel. If the channel is busy, it will backoff with a

randomly chosen number BOslot of time slots, where BOslot is uniformly distributed

over [0, CWr), and CWr is the contention window for retransmission stage r. After

the channel becomes idle for a duration of DCF-interframe-space (DIFS), the backoff

counter counts down for each time slot when the channel is idle. Different from the

CAP-MAC described previously, in DCF the backoff counter (BC) freezes when the

channel is busy due to a successful transmission or collisions from other stations,

and it resumes after the channel turns idle again. When the BC reaches zero, the

station will transmit immediately. A station resets its CW to the minimum value

CWmin = 32 after each successful transmission. If two or more stations transmit at

the same time slot, a collision occurs and all involved stations will double their CWs,

which is upper-bounded by CWmax = 1024 in the standard, and backoff again. The
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frame will be discarded if retransmission fails after a pre-defined retry limit, which

depends on the frame length.

Usually a sender transmits data frames directly when its backoff counter reaches

zero, and the receiver will reply with an explicit acknowledgment (ACK) after a

duration of short interframe space (SIFS) if the data frame is successfully decoded

(see Figure 2.2(a)). This is called the basic access mode. To improve the efficiency of

transmitting long frames, the standard also defines an optional request-to-send/clear-

to-send (RTS/CTS) access mode. When the frame length is larger than a threshold,

the source station will send out an RTS frame to its intended destination station,

which will reply with a CTS frame if the RTS is correctly decoded. After that, the

source will transmit the data frame and wait for the corresponding ACK frame from

the destination. There are periods of short-interframe-space (SIFS) in between the

RTS, CTS, data and ACK frames (see Figure 2.2(b)). As DIFS is longer than SIFS,

an ongoing transmission sequence as described above will not be interrupted by a new

transmission. In case of a collision, the source stations in the basic mode will wait

for duration of (ACK timeout + DIFS) before resuming their backoff procedure;

in the RTS/CTS mode, the source stations wait a duration with the same length

because the CTS frame has the same length as the ACK frame. In both the basic

and the RTS/CTS access modes, neighboring stations that detect a collision will

defer a duration of extended-interframe-space (EIFS) before resuming their backoff

procedure. The EIFS equals the summation of SIFS, DIFS and the transmission time

of the CTS or ACK frame with the lowest mandatory transmission rate so that all

the stations will resume their backoff procedure at the same time. The CTS/ACK

timeout and EIFS mechanism serves as an implicit NACK in DCF. The above timing

relationship is illustrated in Figure 2.2(c).

In addition to the above physical carrier sense (PCS) mechanism, a virtual carrier
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Figure 2.2: The IEEE 802.11 DCF channel access mechanisms
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sense (VCS) mechanism is also introduced in the DCF. It is implemented by means of

the so-called network allocation vector (NAV), which is maintained by every station

that is not currently involved in any transmission or reception of frames. Each such

station may set the NAV according to the information in the Duration/ID field of the

RTS or Data frame. In the RTS/CTS mode, stations may reset its NAV (to zero) if a

transmission does not start during a period with a duration of (2 SIFS+CTS+2 Slot)

after the NAV is set according to the duration value of the RTS frame3. Before the

NAV expires, the station may stop the physical carrier sensing activity to save energy.

2.2.4 The IEEE 802.11e Enhanced Distributed Channel Ac-

cess Mechanisms

In the widely deployed IEEE 802.11 based WLANs, DCF is the dominant MAC proto-

col, which guarantees an equal long term channel access probability to all stations [41].

When heterogeneous applications coexist in a WLAN, the DCF MAC is inefficient in

protecting Quality-of-Service (QoS)-critical applications (e.g., real-time voice sessions

or teleconferences) from the QoS-resilient applications (e.g., emails). Aiming to en-

hance the QoS provisioning demanded by multimedia services in WLANs, the IEEE

802.11e amendment [48] to the legacy IEEE 802.11 standard was released recently. In

this standard, the newly defined enhanced distributed channel access (EDCA) sup-

ports service differentiation mainly by distributed prioritized channel access among

different access categories (ACs) with three AC-dependent parameters: contention

window (CW), transmission opportunity (TXOP) and arbitration interframe space

(AIFS). The details of their usage are given below and their service differentiation

3This does not occur in the single-hop network studied in this work because all the neighboring

stations either correctly set the NAV and the source station will surely transmit within the specified

duration, or the NAV is not set due to a collision.
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Figure 2.3: An illustration of prioritized channel access for different station classes

effects are analyzed in Chapter 5.

In the EDCA, user traffic is first classified into multiple ACs, such as voice, video,

best-effort and background. Each station regulates its frame transmission using the

contention parameters associated with each AC. When a station has a frame at the

MAC sublayer buffer, it will first sense the channel. If the channel is busy, it performs

the backoff procedure by first setting the backoff counter to an integer sampled from

the minimum CW size. Therefore the first differentiation mechanism is to assign

higher priority ACs with a smaller value of minimum CW size such that higher priority

ACs statistically spend less time on backoff. After the channel becomes idle for the

AC-dependent AIFS, the station can count down the backoff counter at the beginning

of each idle slot and also the first slot of a channel busy period. Since the higher

priority ACs are assigned with smaller value AIFS, they obtain higher chances to

access the channel than low priority ACs. Fig. 2.3 shows an example of four ACs,

where AC1 has the highest priority. To illustrate the effect of different AIFS lengths,

the time between two busy periods, except AIFS1, is divided into four contention

zones, Zi, i = 1, 2, 3, 4. In Z1, only AC1 stations are allowed to contend for channel

access, while in Z2 the contentions are between AC1 and AC2, i.e., contentions in

Zi involve ACj, j ≤ i. Consequently, each AC encounters different contentions in
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its allowable contention zones. After one station succeeds in contending for channel

access, it can transmit for a duration up to the TXOP. Different TXOP durations can

be assigned to different ACs to further differentiate the service. The three mechanisms

may be used individually or be combined together.



Chapter 3

A Generic Performance Analysis

Framework for Distributed MAC

Protocols

3.1 Introduction

A simple yet accurate analytical model is proposed in this chapter to analyze the

performance of a family of carrier sense multiple access with collision avoidance

(CSMA/CA) based MAC protocols commonly used in wireless networks. We model

the behavior of an individual station instead of modeling the channel. The proposed

model is based on a novel concept of three-level renewal process, the key parameter

of which can be solved by the fixed point technique. The new modeling approach

significantly simplifies the mathematical analysis, where the important performance

metrics of MAC throughput (of individual station or the whole network) and the

average frame service time can be directly obtained. The proposed model is a gen-

24
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eral framework which is applicable to CSMA/CA based MAC protocols with various

backoff procedures and channel access policies.

In the remainder of this chapter, we first present the three-level renewal process

which is the core of the analytical framework. Following that, the MAC performance

analysis based on it is given. Finally, we present two extensions of the basic frame-

work.

3.2 Renewal Process Based Framework

In a steady state network with a CSMA/CA based MAC protocol as described in

Chapter 2, a randomly tagged station contends for the channel access following the

same rule for each frame, i.e., it uses the same initial parameters pertaining to the

backoff, transmitting and possible retransmitting processes for each frame. Therefore,

the channel access process of an individual station is regenerative with respect to

the time instants of the completion of its each successful frame transmission. The

period between two consecutive successful frame transmissions from the same station

thus forms a renewal cycle in a renewal process [70], which directly relates to some

important MAC performance metrics such as MAC throughput and average frame

service time. This key observation inspires the derivation of the basic analytical model

presented below.

3.2.1 Three-Level Renewal Process

For many CSMA/CA based MAC protocols, a hierarchical three-level renewal process,

as illustrated in Fig. 3.1, can model precisely the behavior of a tagged station. A

common characteristic of these protocols is that a certain form of backoff procedure

is required before a station can access the channel, and the backoff procedure may be
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Figure 3.1: Illustration of the concept of 3-level renewal process

interrupted usually by transmissions from other stations and resume after the channel

becomes idle again. The time instants that the backoff procedure resumes (or restarts

itself) can naturally be viewed as basic renewal points. Over a larger time scale, the

end of each transmission from the tagged station is a higher level of renewal point

of the frame service process. If the time scale is even larger, the renewal points can

also be set at the end of each successful transmission from the tagged station, which

delimit the important highest level renewal cycle as identified earlier.

In Figure 3.1, a level-1 renewal cycle X is defined as the period between the end

of a channel busy event to the end of the next one. There may be a number of idle

slots in which no station transmits between two consecutive channel busy events.
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From the viewpoint of the tagged station, a level-1 cycle is of type X1 if the busy

channel is caused by transmission from other stations, and it will be of type X2 if

its own transmission causes the channel busy. Notice that the transmission in an X2

level-1 cycle may be a successful transmission or a collision due to the simultaneous

transmissions from other stations.

A level-2 renewal cycle Y is from the end of an X2 cycle to the end of the next X2

cycle. As shown in Fig. 3.1, there can be U (U ≥ 0) X1-cycles before the X2-cycle.

Depending on the result of transmission in the X2-cycle included, a level-2 cycle can

be either of type Y1, in which the transmission results in a collision, or of type Y2, in

which the transmission succeeds.

Finally, a level-3 renewal cycle Z is from the end of a Y2 level-2 cycle to the end

of the next Y2 cycle. Similarly, there can be V, V ≥ 0, Y1 cycles before the Y2 cycle.

Therefore, the successful transmission of a frame in the Z cycle can be viewed as the

reward for the level-3 renewal cycle. The throughput of the tagged station can thus

be obtained as the average reward in a Z cycle.

3.2.2 MAC Performance Analysis

As an important MAC performance metric, the average frame service time (or access

delay) ζ, is defined as the average duration from the instant that a frame becomes

the head-of-line at the MAC buffer to the end of its successful transmission. As can

be seen, ζ is exactly the average length of the level-3 renewal cycle in the proposed

analytical model. The normalized throughput obtained by an individual station, per

station MAC throughput, is the ratio of the transmission time of the MAC frame

over ζ, and the saturation throughput of the network is thus simply the aggregation

of the per station throughput.

To obtain the average length of the level-3 cycle, we need to find out the character-
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istics of the random variables that determine the structure of the whole hierarchical

renewal process. Depending on the specific channel access policies, the basic fixed

point equations extracted from the analysis of level-1 cycles may be slightly different

for different MAC protocols. After the average length of a level-1 cycle E[X] has

been obtained, however, the analysis of the other two levels is shared by different

protocols, which is one of the advantages of the proposed framework.

As shown in Figure 3.1, a level-2 cycle contains a number U of type X1 cycles

and an ending X2 cycle, where U follows a geometric distribution with parameter

Ptx, which is the probability that a level-1 cycle is of type X2. Therefore, the average

length of a level-2 cycle is

E[Y ] =
E[X]

Ptx

. (3.1)

Similar to the case in a Y cycle, the number of level-2 cycles contained in a level-3 cycle

also follows a geometric distribution, but with parameter Psuc, which is the probability

that a transmission from the tagged station is successful. Thus, the average length

of a level-3 cycle is

E[Z] =
E[Y ]

Psuc

. (3.2)

Notice that E[Z] equals the average frame service time ζ. Therefore, in the

remainder of this dissertation, E[Z] and ζ will be used interchangeably. Since there is

only one successful MAC frame transmission from the tagged station during a level-3

cycle, the normalized per station throughput is directly given by

ηs =
L

E[Z]
, (3.3)

and the aggregated throughput in a homogeneous network is thus

η = Nηs. (3.4)

In the above analysis, the detailed expressions of Ptx and Psuc depend on the

specific backoff procedure and channel access policy defined in the protocol being
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studied. Since there is no assumption on the backoff procedure, the proposed analyt-

ical framework is applicable to protocols with various backoff procedures as long as

the procedure restarts itself for each MAC frame.

3.3 Discussion

To simplify the presentation of the development of the above framework, we have

implicitly assumed that the network is composed of saturated stations with only one

type of service. In what follows, we discuss two extensions of the framework with this

assumption relaxed.

3.3.1 Modeling Unsaturated Stations

The above analysis is directly applicable for a network with saturated stations. The

throughput in this case, saturation throughput, is a fundamental performance figure

defined as the limit reached by the system throughput as the offered load increases,

and represents the maximum load that the system can carry in stable conditions [6].

It is of theoretical importance to obtain this MAC performance metric. In practice, a

network with saturated stations corresponds to the case when some delay-insensitive

data applications (such as bulk file transfer through FTP) running on the stations.

With multimedia applications that usually generate bursty traffic, a station may

work in the unsaturated situation in which the MAC buffer may be empty from time

to time. The proposed analytical framework can also be applied to the analysis of

unsaturated stations. In this case, a station will contend to access the channel only

when it has a frame in the buffer waiting for transmission, which occurs with the

probability of having a non-empty buffer. For a station usually having a MAC buffer

that can accommodate tens of frames (which is in effect almost a lossless queueing
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Figure 3.2: The level-3 cycle for unsaturated stations

system in practice), this probability can be satisfactorily approximated by the ratio

of the average frame service time ζ ′ over a given average frame inter-arrival time 1/λ.

Since the proposed framework is developed from the viewpoint of a busy station,

i.e., it does have a frame in service, ζ ′ can be obtained from the above analysis for

saturated stations with just slight changes reflecting the effects of the aforementioned

probability to the contention behavior of other stations. The details of this extension

can be found in the application instances in Chapter 4.

More specifically, the level-3 cycle for an unsaturated station is slightly different

from the one for a saturated station. As shown in Figure 3.2, the level-3 cycle Z is

changed to the period between the instant of a frame arrival to the one when it is

successfully transmitted. Between two Z cycles, there exists a possible station idle

period (PSI) if the MAC buffer becomes empty after the current frame is transmitted.

The PSI can be of length zero, e.g., when at least one more frame is waiting in the

buffer. Since the tagged station is always busy in a Z cycle, the same structure of

the lower two level renewal cycles still applies to the Z cycles as in the basic model

in Figure 3.1.
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3.3.2 Modeling Networks with Service Differentiation

The analysis and discussion up to this point are for networks with homogeneous

services in which all the stations carry the same type of traffic and follow the same

backoff and channel access policy with same relevant parameters. In practice, wireless

networks are usually designed and operated to provide heterogeneous services to users.

In addition, service differentiation is either a required or desired feature. In such

networks, stations may carry different types of traffic, with backoff and channel access

policies using different parameters determined by their service requirements.

The proposed analytical framework can be readily extended to the analysis of

networks with service differentiation. We may select one tagged station from each

service class and analyze them respectively according to the proposed framework.

This is because the framework is developed from the viewpoint of any tagged station,

and the effect of all the other stations are effectively reflected by the success or

failure of the frames transmitted and the channel status seen by the tagged station.

As explained earlier, usually a set of fixed point equations can be obtained for one

tagged station. For K classes of stations, we may obtain K sets of equations which

are interconnected among one another. These equations can be solved numerically

to obtain the key parameters for further derivation of the desired MAC performance

metrics. Several types of service differential mechanisms commonly used in current

wireless networks are studied in Chapter 5.

3.4 Summary

We have proposed a simple yet accurate (as will be shown in later chapters) analytical

framework for CSMA/CA based MAC protocols. By proposing a novel hierarchical

three-level renewal process mechanism, we can describe and analyze the protocols in a
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straightforward manner. Two important MAC protocol performance metrics, the per

station throughput and the average frame service time, are obtained immediately, due

to the direct relationship between the level-3 renewal cycle and the frame service time.

We have also discussed the extension of this framework to the analysis of networks

with unsaturated stations and/or with service differentiation. The only assumption

made in developing the proposed analytical framework is that a station restarts its

backoff procedure upon serving a new MAC frame, regardless of the detailed param-

eter changing mechanisms of the backoff procedures. Therefore, the framework has

a wide applicability to a family of CSMA/CA based MAC protocols. In the next

chapter, application instances are given for networks with homogeneous service to

show the usage details of the framework.



Chapter 4

Networks with Homogeneous

Service

For CSMA/CA based protocols, the hierarchical three-level renewal process based

analytical framework proposed in Chapter 3 makes the performance analysis easy to

follow. The representative protocol is the legacy slotted p-persistent CSMA/CA [55].

Other good examples include the MAC protocol for the contention access periods

of the IEEE 802.15.4 standard [46], and the de facto standard MAC protocol for

WLANs, IEEE 802.11 distributed coordination function (DCF).

In the remainder of this chapter, we first study the legacy slotted p-persistent

CSMA/CA protocol, followed by the analysis of the IEEE 802.15.4 MAC and the

IEEE 802.11 DCF, respectively. We then compare the performance of the three

protocols with same input traffic in Section 4.5. In each of the first three sections,

the basic analysis for saturated stations is given first, followed by the analysis for

unsaturated stations and some numerical results for performance evaluation.

For presentation simplicity, we will use the same notations for the key variables

such as E[X], E[Y ], E[Z], Ptx, and Psuc in the analysis of the different protocols when

33
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there is no confusion from the context. Self-explanatory subscripts are applied to the

variables in Section 4.5 to avoid ambiguity.

4.1 The p-persistent CSMA/CA Protocol

According to the protocol description in Section 2.2.2, the probabilistic channel access

rule of the p-persistent CSMA/CA protocol can be deemed as that the station adopts

a geometric backoff policy. This backoff procedure stops when there is a transmission

from other stations and restarts itself after the transmissions ends. A level-1 cycle is

thus the period between the two instants when the backoff procedure restarts. From

this perspective, this protocol is an exact fit for the proposed three-level renewal

process model. With the given parameter p, the mean length of a level-1 cycle can be

obtained straightforwardly, and so do the average lengths of level-2 and level-3 cycles

by following the approach outlined in Section 3.2.2.

4.1.1 Analysis of Saturated Stations

As explained above, starting from the first idle slot after a channel busy period either

caused by a successful frame transmission or a collision, the stations will backoff

according to the geometric backoff procedure with the parameter p. The channel is

sensed idle in a slot only when none of the stations transmits, which occurs with

probability

q = (1 − p)N , (4.1)

otherwise the channel becomes busy. Therefore, the number of consecutive idle slots

preceding the channel busy period follows a geometric distribution with parameter
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1 − q. The average number E[I] of idle slots preceding a busy slot is thus given by

E[I] =
q

1 − q
. (4.2)

Notice that the ending part of a level-1 cycle is a busy channel period with length of

L slots. The average length of a level-1 cycle is thus given by

E[X] = E[I] + L

=
L − (L − 1)(1 − p)N

1 − (1 − p)N
.

(4.3)

As explained in Section 3.2.1, a level-1 cycle is of type X2 if the ending transmission

block involves a transmission from the tagged station. Given that there is at least

one station transmits, the conditional probability that the tagged station transmits

in a level-1 cycle is

Ptx = Pr{the tagged station transmits | at least one station transmits}

=
Pr{the tagged station transmits, at least one station transmits}

Pr{at least one station transmits}
=

p

1 − (1 − p)N
.

(4.4)

Among the level-2 cycles, the transmission from the tagged station will be suc-

cessful only when none of the other N − 1 stations transmits in the same slot. This

occurs with probability

Psuc = (1 − p)N−1. (4.5)

Substituting (4.3) – (4.5) into (3.1) – (3.4), we obtain the average length of the

level-3 cycle

E[Z] =
L − (L − 1)(1 − p)N

p(1 − p)N−1
, (4.6)

the per station throughput

ηs =
Lp(1 − p)N−1

L − (L − 1)(1 − p)N
, (4.7)
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and the network throughput

η =
NLp(1 − p)N−1

L − (L − 1)(1 − p)N
. (4.8)

4.1.2 Analysis of Unsaturated Stations

For unsaturated stations, the following analysis is carried out as outlined in Sec-

tion 3.3.1. In the sequel, the superscript ′ will be added to relevant variables to

indicate the unsaturated analysis.

Consider a generally distributed traffic with average frame inter-arrival time 1/λ

slots at the MAC layer buffer of a station. Denote E[Z ′] the average frame service

time in slots. The key is that an unsaturated station will contend for channel access

only with probability

ρ = ⌈λ · ζ ′⌉1 = ⌈λ · E[Z ′]⌉1, (4.9)

where ⌈x⌉1 is the smaller of x or one, which is necessary because ρ can reach its upper

bound of one if the frame service time is longer than the average frame inter-arrival

time, which corresponds to the saturated case analyzed previously.

Notice that the three-level renewal process model is developed from the tagged

station’s viewpoint, with the condition that the station is serving a frame, i.e., it is

contending for channel access with other busy stations. With this condition taken

into consideration, the channel is idle in a slot with probability

q′ = (1 − p)(1 − pρ)N−1. (4.10)

Accordingly, the average length of a level-1 cycle is changed to

E[X ′] =
L − (L − 1)(1 − p)(1 − pρ)N−1

1 − p(1 − pρ)N−1
. (4.11)
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Given that the tagged station is contending for channel access, the conditional prob-

ability that it transmits in a level-1 cycle is given by

P ′
tx =

p

1 − (1 − p)(1 − pρ)N−1
, (4.12)

and the probability of successful transmission is

P ′
suc = (1 − pρ)N−1. (4.13)

With the above results, we can obtain the average length of the level-3 cycle as

E[Z ′] =
L − (L − 1)(1 − p)(1 − pρ)N−1

p(1 − pρ)N−1
, (4.14)

and the per station throughput

η′
s =

Lp(1 − pρ)N−1

L − (L − 1)(1 − p)(1 − pρ)N−1
. (4.15)

Since the stations are unsaturated, the network throughput is not the summation of

per station throughput as for the saturated stations, but equals the total incoming

traffic, i.e.,

η′ = NLλ. (4.16)

Given N , L, λ and p, equations (4.9) and (4.14) can be solved numerically. If λ

is too large such that the average frame service time ζ ′ = E[Z ′] becomes larger than

the average frame inter-arrival time 1/λ, the station enters the saturated situation,

i.e., ρ will be set to one and equations (4.10) – (4.15) reduce to their corresponding

versions for saturated stations (4.1) – (4.7).

4.1.3 Numerical Results

In order to verify the accuracy of the analytical results given by the proposed frame-

work, computer simulations1 have been conducted and simulation results are com-

pared to analytical ones. The network simulated is basically the same as described in

1The simulator is written in C language.
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Chapter 2. We have simulated an ideal channel without transmission errors, mainly

because the effect of such errors to the performance is not studied in our work2. The

assumption of an unbreakable channel busy period of L slots caused by the frame

and ACK/NACK transmissions is slightly relaxed in the sense that L can be a non-

integer in the simulation. The stations are synchronized again at the end of each L

slots, so the time slot boundaries are not always fixed-length apart as in the analysis.

For unsaturated stations, we have tested Poisson and constant bit rate (CBR) arrival

traffic with the same average inter-arrival time in each case simulated. In particular,

the initiating times for the CBR traffic are uniformly distributed over the average

inter-arrival time period in different simulation rounds. For all the simulation results

presented in this thesis, each data point shown in the figures is the mean result of

at least 20 rounds of simulations with different random number generator seeds, and

each round of simulation lasts for successful transmission of at least 100, 000 frames.

We have run two groups of simulations to verify the accuracy of the analysis for

the p-persistent CSMA/CA protocol with saturated stations. One group is for L = 10

and the other group is for L = 100. The number of stations in the network varies

from N = 5 to 60, with three different values of p : 0.005, 0.01 and 0.05, respectively.

The normalized network throughput η is shown in Figure 4.1. With the same

pair of p and N , the network throughputs of L = 10 and L = 100 are remarkably

different. For instance, with p = 0.005, the throughput for the former increases with

N when N < 60 while that for the latter increases only when N < 35 and then starts

to decrease. In addition, the maximum network throughput that can be achieved by

different L differs as well. From the figure, the maximum η for L = 10 is about 0.63

while that for L = 100 can reach about 0.9. We will study the maximum network

throughput of p-persistent CSMA/CA protocol in detail in Section 4.5.1.

2It can be easily included in our framework following the approach in [24, 128]
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The average MAC frame service time ζ is shown in Figure 4.2. It can be observed

that, in contrast to the network throughput, ζ always increases with N for a given

pair of p and L. In addition, ζ for L = 100 is always larger than L = 10 for any given

pair of p and N , which is in fact clearly shown in (4.6).

The above results show that a larger L leads to a higher network throughput, but

the frame service time will increases as well, which is usually undesirable in practice.

Therefore, a proper trade-off between network throughput and average frame service

time of individual station should be made, with the requirements from both network

service provider and end users taken into consideration.

We have also studied the protocol performance when the stations are unsaturated.

In the simulations, each station in the network carries a Poisson arrival traffic with

mean rate λ frames/slot, although the analysis is valid for a general arrival traffic

type.

Figure 4.3(a) shows the average frame service time ζ ′ versus the average traffic

arrival rate λ with L = 10 and p = 0.05 for station population N = 10 and 20,

respectively. Define the maximum average traffic arrival rate that keeps the stations

in the unsaturated state, i.e., λζ ′ < 1, as the sustainable rate. For the same L and

p, the sustainable rate is roughly halved when N is doubled. In addition, when λ

approaches the sustainable rate, the average frame service time ζ ′ increases steeply

for N = 20. In contrast, a gradual increase of ζ ′ in the corresponding situation is

observed for the case of N = 10. This is because the increment of λ for an individual

station brings the network traffic increment proportional to N . The heavier the

network traffic load, the severer the channel contention, and thus the longer average

frame service time.

Figure 4.3(b) shows the relationship between ζ ′ and N when different L and λ are

given. Compared with the case of a small L, a steeper increase of ζ ′ is observed for
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Figure 4.1: Saturation throughput of p-persistent CSMA/CA protocol



Networks with Homogeneous Service 41

0 10 20 30 40 50 60
10

1

10
2

10
3

10
4

N

A
ve

ra
ge

 fr
am

e 
se

rv
ic

e 
tim

e 
(s

lo
ts

)

L=10 (slots)

p=0.005, ana.
p=0.005, sim.
p=0.01, ana.
p=0.01, sim.
p=0.05, ana.
p=0.05, sim.

(a)

0 10 20 30 40 50 60
10

2

10
3

10
4

10
5

N

A
ve

ra
ge

 fr
am

e 
se

rv
ic

e 
tim

e 
(s

lo
ts

)

L=100 (slots)

p=0.005, ana.
p=0.005, sim.
p=0.01, ana.
p=0.01, sim.
p=0.05, ana.
p=0.05, sim.

(b)

Figure 4.2: Average frame service time for saturated stations with p-persistent

CSMA/CA protocol
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a large L, even with reduced λ and smaller N .

In fact, two applications of the proposed analytical model for unsaturated stations

have been demonstrated in Figure 4.3. For a network with given number of stations,

we can obtain the sustainable rate for each station, as shown in Figure 4.3(a). On the

other hand, with a given per station average traffic arrival rate, we can also determine

the maximum number of stations that can be admitted into a network (usually called

admission region), as shown in Figure 4.3(b). Such results are very useful to the design

of the call admission control scheme, which is usually an indispensable element in a

network with QoS provisioning capability.

Inspection of Figures 4.1-4.3 shows that the analytical results approximate the

simulation results very well in all cases, even though the analytical and simulation

models are not identical, as mentioned earlier in this subsection. The reason for

this can be attributed to the fact that the performances shown are average values.

Therefore, for the p-persistent CSMA/CA protocol, analytical results will be given

without further comparison to simulation results in the remainder of the this chapter.

4.2 The CAP-MAC in IEEE 802.15.4

4.2.1 The Basic Analysis

According to the channel access policy of this protocol (see Section 2.2.2), the renewal

point of the level-1 renewal cycle can be set when a station resets its contention

window to the minimum value after each transmission trial (regardless of the result)

or when it senses a busy channel at the end of the Mth backoff stage. Correspondingly,

in Figure 4.4, a level-1 renewal cycle is defined as the period between the two adjacent

time instants that the tagged station starts a stage 0 backoff. Although the renewal

points are different from those in the model for the slotted p-persistent CSMA/CA
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Figure 4.4: The level-1 renewal cycle for IEEE 802.15.4 MAC

protocol, level-1 renewal cycles in this case can still be classified into two types, as

illustrated in Figure 4.4. The X1 type is a cycle that includes no transmission from

the tagged station, resulting from M channel sensing failures. In contrast, the X2

type is a cycle that contains a period L of transmission from the tagged station, after

experiencing m backoff stages, 0 ≤ m ≤ M . Again, the ending points of the X2 cycles

delimit the level-2 cycles as in the basic model. Also, the transmission in an X2 cycle

may be a successful transmission or a collision due to the simultaneous transmissions

from other stations. Thus, the level-2 and level-3 renewal cycles remain the same as

in the basic model (Figure 3.1). Note that the difference in the level-1 cycle modeling

from the one for p-persistent CSMA/CA results from the fact that the backoff period

of the tagged station overlaps with the transmission time from other stations in the

CAP-MAC, which means that there is no explicit L in its X1 cycles.

To analyze this variant of the model, the number of channel sensing attempts

R conducted by the tagged station is viewed as a reward associated to a level-1

renewal cycle. For a homogeneous service network, the sensing failure probability α,

defined as the probability of finding a busy channel when the tagged station senses

the channel in a slot, is the same for all the channel sensing activities from all the

stations. With a given α, the number of sensing attempts for one station in a level-1
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renewal cycle follows a truncated3 geometric distribution with parameters α and M .

More specifically, with probability 1−α the station succeeds in sensing an idle channel

and transmits the frame by only one sensing attempt; with probability α(1 − α) the

station succeeds in transmitting the frame by two sensing attempts, and so forth. The

number of backoff stages contained in a level-1 cycle follows the same distribution.

Therefore, the average length of a level-1 cycle can be obtained accordingly. By the

renewal reward theorem [70], the channel sensing probability τ for the tagged station

is given by the ratio of the average sensing attempts over the average length of the

level-1 cycle, which is a function of α. On the other hand, the channel sensing failure

probability α can be obtained as a function of τ by carefully studying the transition

probabilities among the channel states (idle and busy). These two equations can

be solved by the fixed point technique to obtain α and τ , which can then be used

to derive the average lengths of the three-level cycles and, finally, the desired MAC

performance metrics.

In what follows, we first consider a slightly simpler protocol to illustrate the essence

of the above model, then extend to the double channel sensing (DS) case specified in

the standard.

4.2.2 The Single-Sensing Case (One CCA)

In the single-sensing (SS) case, a station senses the channel once at the end of a backoff

stage. If the channel is idle, the station transmits at the beginning of the next slot;

otherwise, it enters the next backoff stage. This is the only difference between the SS

and the DS.

According to the discussion in the previous subsection, with a given channel sens-

ing failure probability α, the average number of sensing attempts for one station in a

3It is truncated because the maximum number of sensing attempts allowed in an X cycle is M .
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level-1 renewal cycle is

E[R] = (1 − α) + 2α(1 − α) + 3α2(1 − α) + · · ·

+ (M − 1)αM−2(1 − α) + MαM−1

=
M−1∑

m=0

αm, (4.17)

and the average length of a level-1 renewal cycle is

E[X] = (1 − α)(b0 + 1 + L) + α(1 − α)(b0 + b1 + 2 + L) + · · ·

+ αM−1(1 − α)(
M−1∑

m=0

(bm + 1) + L) + αM

M−1∑

m=0

(bm + 1)

=
M−1∑

m=0

αm(bm + 1) + (1 − αM)L, (4.18)

where L is the duration of a frame transmission in units of slots, and bm, 0 ≤ m ≤ M ,

is the average number of slots in backoff stage m. Note that at the end of each

backoff stage, there is always one slot used for sensing the channel. In addition, with

the probability of αM , the tagged station encounters M contiguous sensing failures

and thus ends up the current renewal cycle without a transmission period incurred.

Therefore, a period of L is included in the level-1 renewal cycle only with probability

(1 − αM), which is reflected by the last term in (4.18).

According to the renewal reward theorem [70], the sensing attempt rate for the

tagged station is given by E[R]/E[X], i.e., τ can be obtained as

τ =
E[R]

E[X]
=

∑M−1
m=0 αm

∑M−1
m=0 αm(bm + 1) + (1 − αM)L

. (4.19)

Next we derive the sensing failure probability α. In a randomly chosen slot, the

channel state is either idle with probability Pi or busy with probability Pb = 1 − Pi,
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depending on the behavior of the stations. To obtain Pi, consider the channel status

for two consecutive slots. Using conditional probabilities, we have

Pi = P(i,i)Pi + P(b,i)(1 − Pi), (4.20)

which yields

Pi =
P(b,i)

1 + P(b,i) − P(i,i)

, (4.21)

where P(b,i)

(
P(i,i)

)
is the conditional probability that the next channel state is idle

given that the current channel state is busy (idle). Since a transmission lasts for L

slots, a randomly chosen busy slot will end with probability 1/L in the next slot,

which comes from

P(b,i) = Pr{next slot is idle | current slot is the last busy slot}×

Pr{current slot is the last busy slot}

+ Pr{next slot is idle | current slot is not the last busy slot}×

Pr{current slot is not the last busy slot}

= 1 × 1

L
+ 0 × L − 1

L

=
1

L
.

(4.22)

On the other hand, considering the sensing probability independence assumption, the

channel will remain in the idle state in slot k + 1 when it is idle in slot k only if none

of the stations starts to sense in slot k, where k is an arbitrary slot index. Thus, we

have

P(i,i) = (1 − τ)N . (4.23)

Substituting P(b,i) and P(i,i) into (4.21), we obtain

Pi =
1

1 + L(1 − (1 − τ)N)
. (4.24)
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Thus, the sensing failure probability α is given by

α = 1 − Pi

=
L(1 − (1 − τ)N)

1 + L(1 − (1 − τ)N)
.

(4.25)

With given L, N and bm, the set of fixed-point equations (4.19) and (4.25) can be

solved numerically to obtain α, τ and E[X].

To complete the analysis, we need to obtain the parameters Ptx and Psuc. As

shown in Figure 4.4, for every level-1 renewal cycle X, it contains a transmission of

L slots (i.e., it is a type X2 cycle) with probability

Ptx = 1 − αM . (4.26)

Furthermore, the conditional probability that a transmission from the tagged station

is successful is

Psuc = (1 − τ)N−1, (4.27)

because none of the other N − 1 stations should sense the channel in the same slot

as the tagged station does.

Combining (4.18), (4.26), (4.27) and (3.1) – (3.4), we obtain the average length

of level-3 cycles E[Z] as:

E[Z] =
1

τ(1 − τ)N−1(1 − α)
, (4.28)

which is also the average frame service time, ζ. Following the basic model, the

throughput of an individual station is

ηs =
L

E[Z]
= Lτ(1 − τ)N−1(1 − α). (4.29)

For the homogeneous network, the throughput is

η = Nηs = NLτ(1 − τ)N−1(1 − α). (4.30)
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4.2.3 The Double-Sensing Case (Two CCAs)

In this subsection, we study the double-sensing channel access mechanism specified

in the standard. Similar to the single sensing case, the analysis can be done with

appropriate changes in the equations regarding α and τ . In the following, the super-

script (d) is added to all the relevant variables for the double-sensing case.

Let p1 denote the probability of sensing a busy channel in the first CCA, and p2

the probability of sensing a busy channel in the second CCA given that the channel

is idle in the first CCA. Let α(d) denote the probability of sensing failure, which is

defined as sensing a busy channel in either of the two CCA events. At the end of

each backoff stage, the tagged station will either enter the next backoff stage with

probability α(d) or start a transmission with probability 1 − α(d). Therefore,

α(d) = p1 + (1 − p1)p2. (4.31)

In addition, for each backoff stage, a station must spend one slot for the first

CCA, and spend another slot for the second CCA with probability 1 − p1. Hence,

the average number of slots spent for channel sensing in each backoff stage ending up

without a transmission is

c = 1 + (1 − p1) = 2 − p1. (4.32)

In the situation that the station succeeds in starting a transmission at the end of a

backoff stage, the two successful CCA events will occupy two slots. In summary, the
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average length of a level-1 renewal cycle for the double-sensing case is

E[X(d)] = (1 − α(d))(b0 + 2 + L) + α(d)(1 − α(d))(b0 + c + b1 + 2 + L) + · · ·

+ (α(d))M−1(1 − α(d))(
M−1∑

m=0

bm + (M − 1)c + 2 + L) + (α(d))M

M−1∑

m=0

(bm + c)

=
M−1∑

m=0

(α(d))mbm + c

M∑

m=1

(α(d))m + (1 − (α(d))M)(2 + L).

(4.33)

Denote τ (d) the counterpart of τ in the double-sensing case, which refers to the

probability of starting the first CCA in a slot for the tagged station. We have

τ (d) =
E[R(d)]

E[X(d)]
=

∑M−1
m=0 (α(d))m

E[X(d)]
, (4.34)

where α in (4.17) is replaced with α(d) to obtain E[R(d)] as the average number of

attempts to start sensing4 in the double-sensing case.

To compute τ (d), we need to know α(d), p1 and p2, which can be derived as follows.

Let P ′
(i,b) denote the probability that the channel turns busy in slot k+1 given that it

is idle in slot k, for an arbitrary slot index k. This can only occur when the channel

in slot k − 1 is idle and at least one station starts to sense the channel at that time,

due to the requirement of two consecutive successful channel sensing events before a

transmission. Hence,

P
(d)
(i,b) = [1 − (1 − τ (d))N ]P

(d)
(i,i). (4.35)

Also, since the channel is either idle or busy in any slot, we have

P
(d)
(i,b) = 1 − P

(d)
(i,i). (4.36)

4Note that only the first channel sensing activity is counted as the reward associated to a renewal

cycle; the second one does not contribute to it.
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Combining (4.35) and (4.36) and letting t = 1 − (1 − τ (d))N , we obtain

P
(d)
(i,i) =

1

1 + t
. (4.37)

Note that the derivation of (4.21) does not rely on any specific assumption of the

channel sensing mechanism, so the relationship among the relevant probabilities is

also valid for the DS case. Substituting (4.37) into (the DS version of) (4.21), and

noting that P
(d)
(b,i) = 1/L, we have

P
(d)
i =

1 + t

1 + (L + 1)t
. (4.38)

Then, the channel sensing failure probabilities for the two sensing attempts can be

obtained as:

p1 = 1 − P
(d)
i =

Lt

1 + (L + 1)t
, (4.39)

p2 = P
(d)
(i,b) =

t

1 + t
. (4.40)

Substituting the above two equations into (4.31), we obtain

α(d) =
L(1 − (1 − τ (d))N)

1 + L(1 − (1 − τ (d))N)
. (4.41)

Note that the channel sensing failure probability α(d) for the DS case has a rela-

tionship to the channel sensing probability τ (d) exactly same as that of α to τ in the

SS case. However, τ (d) as a function of α(d) is different from τ as a function of α, due

to the time cost of the second CCA slot in the DS case. This difference causes the

lower throughput of the DS mechanism compared to the SS with the same protocol

parameters, as will be shown in Sec. 4.2.5.

Similarly to the SS case, with α(d) and τ (d) we can obtain straightforwardly the

performance metrics for the DS case. The average frame service time is

E[Z(d)] =
1

τ (d)(1 − τ (d))N−1(1 − α(d))
, (4.42)
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the MAC throughput of an individual station is

η(d)
s = Lτ (d)(1 − τ (d))N−1(1 − α(d)), (4.43)

and the network throughput is

η(d) = Nη(d)
s = NLτ (d)(1 − τ (d))N−1(1 − α(d)), (4.44)

where τ (d) and α(d) are given in (4.34) and (4.41), respectively. Note that the network

throughput η(d) is consistent with (29) in [76], which is obtained with a much more

complicated Markov chain based approach.

4.2.4 Analysis of Unsaturated Stations

For presentation succinctness, we only give the analysis for unsaturated stations in

the single-sensing case. The analysis is based on the key idea that a station will

not attempt to sense5 the channel when its MAC buffer is empty, i.e., the station

will contend to access the channel only when it has a frame in the buffer waiting for

transmission, which occurs with probability ρ = ⌈λE[Z ′]⌉1. The sensing probability

τ ′ for a busy station remains in the same format as in (4.19) except α is now α′.

Thus, τ ′ is given by

τ ′ =

∑M−1
m=0 (α′)m

∑M−1
m=0 (α′)m(bm + 1) + (1 − (α′)M)L

. (4.45)

Consider the conditional probability that the channel will remain in the idle state

in slot k +1 given that it is idle in slot k. Such an event will occur only when neither

the tagged station nor any of the n, 0 ≤ n ≤ N − 1, other busy stations starts to

sense in slot k. Hence, we have

P ′
(i,i) = (1 − τ ′)(1 − ρτ ′)N−1 (4.46)

5In fact, the station will not transmit in this case either.
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Following the approach in Sec. 4.2.2, α′ can be obtained as

α′ =
L(1 − P ′

(i,i))

1 + L(1 − P ′
(i,i))

, (4.47)

and

E[Z ′] =
1

τ ′P ′
(i,i)(1 − α′)

, (4.48)

ρ = ⌈λE[Z ′]⌉1, (4.49)

With given λ,N and L, τ ′, α′, E[Z ′] and ρ can be obtained from equations (4.45)–

(4.63). Following the method given earlier, the throughput and average frame service

time in the unsaturated case can be readily obtained from E[Z ′].

4.2.5 Numerical Results

In this subsection, we present simulation results and compare them with the analytical

ones to demonstrate the accuracy of the proposed analytical model. The simulator is

written in the C language. In the following, the normalized throughput and average

frame service time in units of slots are given, but they can be easily converted to

actual throughput in units of bit per second and time in units of seconds with the

parameter values given in the standard.

Performance of Default Parameters and Potential Improvements

First, we study the performance of the MAC protocol with default parameter values

given in the standard, i.e., the minimum backoff exponent BEmin = 3, the maximum

backoff exponent BEmax = 5, and the maximum allowed backoff stage for a frame

NBmax = 5. The saturation throughput and average frame service time versus the

number of stations N in the networks with the above default settings are shown in
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Figure 4.5(a) and Figure 4.5(b), respectively, marked as “def” in the figures. The

frame length is L = 8. It can be seen that the throughput decreases sharply with the

number of stations while the average frame service time shows an opposite trend. This

is because with small values of BEmin = 3 (corresponding to b0 = 3.5) and BEmax = 5,

the backoff slots are uniformly distributed over a relatively small range of [0, 31], which

causes the probability of simultaneous channel sensing conducted by multiple stations

increases quickly with N . In contrast, the probability of finding the channel idle in

the sensing slots decreases quickly when N increases. Therefore, a large portion

of time is spent in backoff and thus the network throughput downgrades with the

significantly increased frame service time. To overcome this issue, a straightforward

solution is to remove the upper limit of maximum backoff exponent (or set it to a

large number, e.g., 10 as in IEEE 802.11). That is, every time a station enters a

new backoff stage, it simply increments the backoff exponent by one. In this way,

the selection range of backoff slots is enlarged so that the probability of simultaneous

channel sensing increases slower with N than it does in the default settings. The

performance of this slightly different variant of the standard protocol is shown in the

figures as “BEmin=3”. We can see that the performance is about the same when

N is small (N < 10). However, the performance gain becomes obvious when N is

large. The network throughput is almost doubled for N = 30 and it is ten-folded for

N = 60. Meanwhile, the average frame service time is always shorter than that in

the default setting, and the gap between them increases with N , e.g., ζ for N = 60

decreases to just 1/3 of that with the default settings.

For larger BEmin’s (4 and 5), the performance is also shown in Figure 4.5 as

“BEmin=4” and “BEmin=5”, respectively. It is interesting to observe that the sat-

uration network throughput first increases with N when N is small (less than 15 for

“BEmin=4” and 25 for “BEmin=5”), then start to decrease with N , but much slower
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Figure 4.5: Performance of CAP-MAC with saturated stations
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than in the “BEmin=3” and the default settings cases. This is because when N is

small, stations can access the channel to transmit frames relatively easily with rela-

tively small collision probability. For a small N , a larger BEmin means the stations

spend more time in backoff for each frame transmission, resulting in a larger portion

of channel idle time and lower network throughput. As N increases, more stations

contribute to the increase of network throughput by more successful frame transmis-

sions and more overlapped backoff time until this is offset by the increasing collision

probability, upon which the maximum network throughput is reached. After that

optimal point, further increasing N will cause a busier channel with less opportunity

for stations to transmit and, even worse, higher collision probability for transmissions,

leading to decreased network throughput. A larger BEmin gives a larger range for the

selection of the number of backoff slots, which mitigates the above two adverse effects

and makes the degradation of network throughput slower. For the same reason, ζ

for larger BEmin cases is slightly longer when N is small, but becomes much shorter

with large N , as shown in Figure. 4.5(b).

Single Sensing vs. Double Sensing

In developing the analytical model in this section, we have considered both the single

sensing and double sensing mechanisms. Two expressions with the same form, (4.25)

and (4.41), have been obtained for the channel sensing failure probabilities α and

α(d) as a function of the sensing probability τ and τ (d), respectively. However, the

difference in channel sensing requirements leads to the two different expressions for

the relationship between the two probabilities, as shown in (4.19) and (4.34). In

the following, we study the effect of this difference on the performance of the two

mechanisms.

The probabilities of success for a frame transmission (Psuc) in the SS and DS cases
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Figure 4.6: Comparison between the SS and DS cases
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Figure 4.7: Saturation throughput comparison between SS and DS modes

are compared in Figure 4.6(a). With the same parameter (e.g., N,L and BEmin)

values, Psuc of the DS is higher than that of the SS, which may suggest that the

DS mechanism is preferable over the SS. However, as shown in Figure 4.6(b), the

probability p1 of sensing a busy channel in the first CCA slot in the DS case alone is

always larger than that in the SS, which means a station gets less chance to transmit

in the DS than in the SS during the same given period of time. Therefore, the DS

mechanism is in an obvious disadvantage position, considering further the potential

adverse effect of the probability p2 of sensing a busy channel in the second CCA slot.

The net effect of the above two contradicting factors is a lower network throughput of

DS, which is clearly shown in Figure 4.7. It can be seen that with the same parameters

(L=8), network throughput of the SS mode is always about 10% higher than that of
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Figure 4.8: Average frame service time in the SS case

the DS mode, which conforms with the simulation results presented in [78, 89]. In

addition, the performance gain of larger BEmin still exists in the SS case due to the

similar reasons given in Section 4.2.5.

Figure 4.8 shows the average frame service time for the SS case. The relationships

among the results for different parameter settings are similar to those in Figure 4.5(b).

It should be mentioned that according to the general relationship between network

throughput and average frame service time of the SS case is always shorter than that

of the DS case with the same protocol parameters.
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Unsaturated Stations

To demonstrate the effectiveness of the model for the unsaturated case, Figure 4.9

shows the average frame service time versus the frame arrival rate for N = 20. Poisson

traffic is used in the simulation to compare with the analytical results. Ts increases

quite slowly with low to medium load, and it soars when the load becomes high until

it reaches a saturation level which depends only on N when the other parameters are

given. It can be seen that the analytical results approximate the simulation ones very

well.
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4.3 The IEEE 802.11 DCF

4.3.1 Analysis of Saturated Stations

According to the protocol described in Section 2.2.3, there are two salient attributes

of the DCF as listed below:

• The backoff procedure freezes when the channel is busy, which is similar to the

p-persistent CSMA/CA protocol but different from the CAP-MAC;

• The backoff parameter changes after each collision involving the tagged station,

which is different from the p-persistent CSMA/CA protocol but similar to the

behavior of the CAP-MAC when it encounters channel sensing failure.

Therefore, although a level-1 cycle for DCF is still the period between two consecutive

transmissions from the tagged station as in the basic model, the level-2 cycles are

actually semi-renewal due to the changing backoff parameters caused by the binary

exponential backoff activity at this level. However, the renewal points for level-3

cycles remain to be the time instants when a new frame starts to be served. Note

that they are equivalent to the instants when the CW is reset to CW0, which are the

same as the renewal points for level-1 cycles in the model for the CAP-MAC. This

resemblance inspires us to analyze DCF directly at level-3, using an approach similar

to the one used for analyzing the level-1 cycles in CAP-MAC, as outlined below.

The assumption that each transmission results in a collision with a constant in-

dependent probability β regardless of the backoff and transmission history of the

frame [6] is adopted in this analysis. With a given collision probability, the number

of transmission trials H is thus a random variable with geometric distribution. For

each new frame, H can also be deemed as a reward associated to the level-3 renewal

cycle. Therefore, by the renewal reward theorem, the probability of a station to
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transmit (or equivalently, access the channel) at the beginning of a randomly chosen

generic slot, γ, is given by the ratio of the average number of transmission trials to

the total number of generic slots in the level-3 cycle. On the other hand, the collision

probability β can also be obtained as a simple function of the transmitting probabil-

ity γ, due to the fact that a collision occurs only when any other station transmits

simultaneously with the tagged station. These two equations can be jointly solved to

obtain the above two probabilities.

More specifically, a collision occurs if at least one of the other N − 1 stations

transmit in the same slot. Thus, we have

β = 1 − (1 − γ)N−1. (4.50)

Denote M the retry limit specified in the protocol, and E[ω] the average number of

total backoff slots the tagged station has to wait during the level-3 cycle. It is clear

that there are E[H] transmissions during E[ω] +E[H] slots. Hence, the transmitting

probability is given by

γ =
E[H]

E[ω] + E[H]
. (4.51)

In fact, the probability of successfully delivering a frame with one transmission is

(1 − β), with two transmissions is β(1 − β), and so on. Moreover, the frame will be

removed from the MAC sublayer buffer after the Mth trial regardless of the transmis-

sion result. Therefore, similar to the E[R] in (4.17), H follows a truncated geometric

distribution with parameters β and M , and the average number of transmissions for

a frame is given by

E[H] =
M−1∑

i=1

iβi−1(1 − β) + MβM−1

=
M−1∑

i=0

βi.

(4.52)
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Let br denote the average number of backoff slots in backoff stage r, r = 0, 1, . . . ,M ,

where r = 0 refers to the initial backoff stage with the minimum contention window

W = CW0. It is clear that the average number of backoff slots for a frame is the

weighted summation of the br’s as given by

E[ω] =
M−1∑

i=0

(
βi(1 − β)

i∑

r=0

br

)
+ βM

M−1∑

i=0

bi

=
M−1∑

i=0

(βibi).

(4.53)

Finally, we have

γ =

∑M−1
i=0 βi

∑M−1
i=0 βi(bi + 1)

. (4.54)

Given a specific backoff policy, i.e., the backoff parameters such as W and M , the

equation set (4.50) and (4.54) can be solved numerically to obtain a pair of β and γ.

Note that different from the fixed length slot used in the previous two protocols,

a generic slot in the above analysis may refer to an idle time slot, a successful trans-

mission or a collision with corresponding probabilities, as in [6]. According to the

above argument, a level-3 cycle can be deemed as a sequence of generic slots in which

the tagged station either does not transmit or it transmits but encounters a collision,

followed by an ending generic slot containing the successful transmission from the

tagged station. In other words, in each generic slot, the tagged station conducts a

Bernoulli experiment with its successful transmission defined as the event success.

Consequently, the average length of the level-3 cycle in units of generic slots has a

geometric distribution with parameter γ(1 − β). Thus, E[Z] can be obtained as

E[Z] =
1

γ(1 − β)
E[GS], (4.55)
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where E[GS] is the average length of a generic slot, as given by

E[GS] = Pr{channel is idle} · 1 + Pr{channel is busy} · L

= (1 − γ)N · 1 + (1 − (1 − γ)N) · L

= (1 − γ)N + L − L(1 − γ)N .

(4.56)

The network throughput can be obtained following the approach given in the basic

model, i.e.,

η =
NL

E[Z]
. (4.57)

Alternatively, it can be obtained as the portion of the average time used for successful

transmissions in a generic slot [6]. The former item is given by Nγ(1−γ)N−1L, while

the latter is given in (4.56). Combining the two expressions, we have

η =
Nγ(1 − γ)N−1L

(1 − γ)N + L − L(1 − γ)N
. (4.58)

Noticing from (4.50) that 1 − β = (1 − γ)N−1, it is easy to verify that the two

expressions for the network throughput (4.57) and (4.58) are equivalent.

4.3.2 Analysis of Unsaturated Stations

We have successfully applied the proposed model to analyze the network with unsat-

urated stations for the previous two protocols. Similar analysis for the DCF can be

carried out straightforwardly. Following the same key idea that a station will compete

for channel access only when it has a frame for service, we can obtain the following
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equation set for DCF:

β′ = 1 − (1 − ργ′)N−1 (4.59)

γ′ =

∑M−1
i=0 (β′)i

∑M−1
i=0 (β′)i(bi + 1)

(4.60)

E[GS ′] = (1 − γ′)(1 − γ′ρ)N−1 + L
(
1 − (1 − γ′)(1 − γ′ρ)N−1

)
(4.61)

E[Z ′] =
E[GS ′]

γ′(1 − β′)
(4.62)

ρ = ⌈λE[Z ′]⌉1, (4.63)

where λ is the average frame arrival rate on an individual station. The above equation

set can be solved numerically when N , L and λ are given to obtain E[Z ′], which is

the main desired MAC performance metric for unsaturated stations.

4.3.3 With Default Parameters in DCF

Contention Window

In the DCF specification, the initial value of the backoff counter in backoff stage r is

uniformly chosen over [0, CWr), where CWr = 2r · W = 2r · 32 is the corresponding

contention window. Therefore, the average backoff time in stage r is br = CWr

2

slots. The maximum number of allowed retransmission is M = 7. In addition, the

contention window is bounded by 1024, so m′ = log2(1024/32) = 5 is the number of

backoff stages that have different contention window size. That is, when the backoff

stage r ≥ m′, the contention window will be the same (1024). Substituting these

parameters into (4.53), we obtain the average number of backoff time slots of a station
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as

E[ω] =
W − 1

2
(1 − β) + · · · +

∑m′

i=0(2
iW − 1)

2
βm′

(1 − β)

+ · · · +
∑m′

i=0(2
iW − 1) + (M − m′)2m′

W

2
βM

=
A − B

2(1 − β)(1 − 2β)
,

A = W (1 − β)(1 − (2β)m′+1) + Wβ(1 − 2β)(2β)m′

(1 − βM−m′

),

B = (1 − 2β)(1 − βM+1).

(4.64)

The final expression for E[ω] in (4.64) is valid only when β 6= 0.5, but E[ω] can be

evaluated directly at the first step of (4.64) for β = 0.5.

Combining (4.54) and (4.64), the transmission probability of the station is thus

obtained as

τ =
2(1 − βm)(1 − 2β)

A + B
, (4.65)

where A and B are given in (4.64). This result is consistent with that derived in [110]

using the much more complicated two-dimension Markov chain approach.

Successful Frame Transmission Time and Collision Time Calculation

Denote Ts the time duration spent by the tagged station on a successful transmission,

and Tc the time duration for a collision. In the basic access mode,

Ts = T(data) + SIFS + T(ACK) + DIFS, (4.66)

Tc = T(data) + ACK Timeout + DIFS. (4.67)

In the above, T(x) represents the transmission time of the corresponding frame

type x. In fact, Ts ≈ Tc because ACK Timeout ≈ SIFS + T(ACK) as specified in

the standard. Note that Ts also represents the time duration that the channel is
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sensed busy by the tagged station due to a successful transmission of another station.

For the time period of busy channel due to a collision among other stations, it is

Tdata + EIFS for the basic access mode, which can be safely approximated by Tc

in (4.67) according to the standard. Once a transmission starts, the channel will be

deemed busy for the whole period of either Ts or Tc due to two reasons:

1. In the case of a successful transmission, the duration of SIFS is shorter than

a slot time given by the standard, which assures that no new transmission will

start before the transmission of the ACK frame from the receiver;

2. In the case of a collision, the EIFS period helps to prevent new transmissions

to start before the end of Tc.

Therefore, we can use Ts (or Tc) normalized by the slot time as L in the analysis for

the basic mode of DCF.

In the RTS/CTS mode, for the tagged station we have

T (RTS)
s = T(RTS) + T(CTS) + T(data) + T(ACK) + 3SIFS + DIFS, (4.68)

T (RTS)
c = T(RTS) + CTS Timeout + DIFS. (4.69)

Similar to the basic mode, T
(RTS)
s is for the channel busy period caused by a successful

transmission from either the tagged station or others. Thus, we may still set L equal

to the normalized T
(RTS)
s . On the other hand, the channel busy period caused by

collisions from other stations is T(RTS) + EIFS, which can also be approximated by

T
(RTS)
c in (4.69). However, since T

(RTS)
s 6= T

(RTS)
c in this mode, the calculation of
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E[GS] need to be changed to

E[GS](RTS) = Pr{channel is idle} · 1 +

Pr{channel is busy due to a successful transmission} · T (RTS)
s +

Pr{channel is busy due to a collsion} · T (RTS)
c

= (1 − γ)N + Nγ(1 − γ)N−1T (RTS)
s +

(1 − (1 − γ)N − Nγ(1 − γ)N−1)T (RTS)
c .

(4.70)

The remaining part of the analytical model can be applied to the RTS/CTS mode

without further modification.

We have used L to represent the time for successful frame transmission in the

analysis and directly used it in the calculation of network throughput. If a more

accurate expression for throughput is desired, the L in the numerator of (4.58) should

be replaced by the normalized Tdata. Similar replacement is also applicable to the

other two protocols when necessary.

Usually T
(RTS)
c << Tc (or Ts) < T

(RTS)
s , so E[GS](RTS) is usually much smaller

than E[GS] in the basic mode and thus a higher network throughput can be achieved

in the RTS/CTS mode compared with the basic mode, when all the other parameters

(e.g., W and M) are the same. Therefore, the RTS/CTS mode is “recommended

for the majority of the practical cases” in [6]. With the advance of physical layer

technologies, the data rate of WLAN has increased dramatically, e.g., the emerging

standard IEEE 802.11n [114] can provide raw data rate of 216Mbps.
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The high data rate makes T(data) much smaller, and it is possible that the extra

cost of (T(RTS) + T(CTS) + 2SIFS) in T
(RTS)
s occupies so large a portion that the

benefit from the reduction of T
(RTS)
c is offset6. Therefore, the RTS/CTS mode is not

always recommended for networks with high data rate.

4.3.4 Numerical Results

As for the previous two protocols, simulations have also been run to verify the analysis

accuracy for the DCF. As an illustration of converting the normalized units to the

practical ones, the throughput is in units of Mbps and the average frame service time

is in units of mili-second.

Table 4.1: Some DCF Parameters Used in the Analysis and Simulations

minimum CW (W ) 32 retransmit limit (M) 7

m′ 5 MAC frame data rate 11 Mbps

slot time 20 µs SIFS 10 µs

DIFS 50 µs DSSS PHY header 192 µs

RTS frame size 28 Bytes CTS frame size 14 Bytes

ACK frame size 14 Bytes control frame data rate 1Mbps

We have tested the performance of DCF in both the basic mode and the RTS/CTS

mode for a given range of N , with two different MAC frame payload values, 1000 Bytes

(Payload-1) and 3000 Bytes (Payload-2), respectively. The parameters used in the

6Every frame is associated with the same amount of physical layer overhead, regardless of the

payload (the whole frame from the MAC layer). It is such fixed and relatively large physical layer

overhead that makes the effect described here possible to occur in high data rate systems.
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analysis and simulations are for the IEEE 802.11b as given in Table 4.1. With this

setting, the time for the RTS/CTS exchange sequence is 2 ∗ 192 + 10 + 28 ∗ 8 +

14 ∗ 8 = 730µs, which is quite large, especially compared with the transmission time

of Payload-1 (2 ∗ 192 + 10 + 1000 ∗ 8/11 + 14 ∗ 8 ≈ 1233µs). The disadvantage of

using RTS/CTS mode when the channel data rate is just relatively high (still much

lower than the 216Mbps in IEEE 802.11n) is clearly shown in Figure 4.10. It is

observed that with Payload-1, the RTS/CTS mode always gives a lower throughput

(Figure 4.10(a)) and longer average frame service time (Figure 4.10(b)) than those

given by the basic mode, due to the large overhead of the RTS/CTS control frame

exchange. With Payload-2, the RTS/CTS mode outperforms the basic mode only

after N > 30, where the collision probability becomes relatively high. This is because

only in this case does the time saved by short collision time of the RTS frames (in

comparison with the longer collision time of the date frame) become larger than

the extra time cost of the RTS and CTS frames in the final successful transmission.

Therefore, the RTS/CTS mode should be used with caution when the overhead of

the control frames is large.

To illustrate the application of the analysis model for the unsaturated stations,

we show in Figure 4.11 the maximum supportable N for a given range of traffic

arrive rates with two different payload values. The maximum supportable N refers

to the maximum number of stations that can remain in the unsaturated situation

with the given payload size and average traffic arrival rate. Due to the fixed overhead

of physical layer headers and the associated ACK frame, double valued payload size

does not decrease the maximum supportable N by half. From the figure we can also

observe that the maximum supportable N decreases non-linearly with the increasing

λ, because there are more overlapped backoff and collisions slots shared by the stations

when the traffic load is high.



Networks with Homogeneous Service 71

0 10 20 30 40 50 60
3

4

5

6

7

8

9

10

11

N

N
et

w
or

k 
th

ro
ug

hp
ut

 (
M

bp
s)

M1: basic mode, M2: RTS/CTS mode

1000Bytes, M1, ana
1000Bytes, M2, ana
3000Bytes, M1, ana
3000Bytes, M2, ana
1000Bytes, M1, sim
1000Bytes, M2, sim
3000Bytes, M1, sim
3000Bytes, M2, sim

(a)

0 10 20 30 40 50 60
0

50

100

150

200

250

300

N

A
ve

ra
ge

 fr
am

e 
se

rv
ic

e 
tim

e 
(m

s)

M1: basic mode, M2: RTS/CTS mode

1000Bytes, M1, ana
1000Bytes, M2, ana
3000Bytes, M1, ana
3000Bytes, M2, ana
1000Bytes, M1, sim
1000Bytes, M2, sim
3000Bytes, M1, sim
3000Bytes, M2, sim

(b)

Figure 4.10: Saturation throughput and average frame service time of DCF in basic

and RTS/CTS modes
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4.4 Discussion on the Proper Selection of Fixed

Point

From the above application instances, we can see that it is important to properly de-

termine the fixed point, which is the key to the quantitative analysis in the proposed

analytical framework. To model the MAC protocol, the criterion for selecting the

fixed point is that the MAC behavior of each node can be independently modeled

around the parameter associated with the fixed point; the equations describing differ-

ent nodes are coupled by the fixed point. For the p-persistent CSMA/CA protocol,

it is obvious that the transmitting probability p is the fixed point because this is

the only parameter that determines the channel access behavior of the stations. In
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analyzing the CAP-MAC, the probability to start sensing the channel is selected as

the fixed point; in contrast, the channel access probability serves as the fixed point

in the analysis of IEEE 802.11 DCF. It is difficult, if not impossible, to present a

theoretical proof that these two probabilities strictly meet the fixed point selection

criterion in their respective context, but it can be intuitively justified. In the CAP-

MAC protocol, each node observes the shared common channel, and independently

determines its backoff behavior according to the protocol specification. The channel

sensing probability associated with a certain node is exclusively determined by the

node’s backoff procedure; therefore, the channel sensing probabilities associated with

different nodes are independent from each other due to the independent backoff pro-

cedures. In the homogeneous network, all the nodes are configured with the same

backoff parameters, and therefore they have the same channel sensing probability.

Similar arguments hold for the channel access probability for the DCF case. It is

noteworthy that if an improper fixed point without the independency property is

selected, the analytical model will lead to inaccurate performance results.

4.5 Maximum Saturation Throughput of the Three

Protocols

In this section, we compare the maximum network throughput that can be achieved

with the three protocols studied in this chapter. Meanwhile, we will derive the optimal

key parameter(s) that lead to the maximum network throughput for each protocol.

In the following, for a fair comparison, the network under study has N stations; the

channel busy period due to a frame transmission and the associated overhead (e.g.,

ACK/NACK, inter-frame spaces) is L slots; and the slot length is normalized to unit

for all the three protocols.
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4.5.1 p-Persistent CSMA/CA

In the p-persistent CSMA/CA protocol, the only parameter that can be adjusted is

the backoff probability p. The expression for network throughput in (4.8) is complex

and it is difficult to do an exact optimization. However, when p << 1 and it is

acceptable to approximate (1−p)N by (1−Np), we can get a much simpler expression

for the network throughput as

ηpp =
NLp(1 − p)N−1

L − (L − 1)(1 − p)N

≈ NLp[1 − (N − 1)p]

L − (L − 1)(1 − Np)

=
NLp[1 − (N − 1)p]

1 + N(L − 1)p
.

(4.71)

Taking the derivative of the above ηpp with respect to p and letting it equal to zero,

we have the second degree equation

N(N − 1)(L − 1) · p2 + 2(N − 1) · p − 1 = 0. (4.72)

The optimal p∗ rendering the maximum network throughput is the solution of the

above equation, as given by

p∗ =
−2(N − 1) +

√
(2(N − 1))2 − 4N(N − 1)(L − 1) · (−1)

2N(N − 1)(L − 1)

=

√
N

N−1
(L − 1) + 1 − 1

N(L − 1)
.

(4.73)

Substituting p∗ back into (4.71), we can obtain a complex expression for the maximum

network throughput η∗
pp.

When L and N are large so that 1 can be neglected as compared with L,
√

L and

N , we can further simplify (4.73) as

p∗ ≈ 1

N
√

L
. (4.74)
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Substituting the above p∗ into (4.71), the maximum achievable network throughput

is approximated by a simple expression as

η∗
pp ≈

√
L − 1√
L + 1

. (4.75)

It is noteworthy that η∗
pp → 1 when L → ∞.

4.5.2 CAP-MAC

To obtain the maximum network throughput of the CAP-MAC, we re-write (4.30) as

ηCAP = NLτ(1 − τ)N−1(1 − α)

=
NLτ(1 − τ)N−1

1 + L(1 − (1 − τ)N)
.

(4.76)

When τ is very small, we may again use the approximation (1 − Nτ) to replace

(1 − τ)N so that

ηCAP ≈ NLτ [1 − (N − 1)τ ]

L + 1 − L(1 − Nτ)

=
NLτ [1 − (N − 1)τ ]

1 + NLτ
.

(4.77)

Comparing the above expression for ηCAP to (4.71), we notice that, if τ is replaced

by p, they are in fact very similar except for a slight difference in the denominator:

an item of NLτ in (4.77) corresponds to an item of N(L − 1)p in (4.71). Hence,

intuitively, for the same value of p and τ , ηCAP will be smaller than ηpp. We compare

them with the same value of p and τ in Figure 4.12. It can be seen that when L is

small (L = 10 in the figure), the throughput gap is obvious; when L is large (L = 100

in the figure) so that L − 1 ≈ L, the throughput gap is almost negligible. In both

cases, N does not affect the gap.
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Figure 4.12: Saturation throughput comparison between p-persistent CSMA/CA and

CAP-MAC

A procedure similar to the previous one can be used to find the optimal τ ∗ as

given by

τ ∗ =

√
N

N−1
L + 1 − 1

NL
, (4.78)

and another complex expression for the maximum network throughput for CAP-

MAC. The τ ∗ in (4.78) is very close to p∗ in (4.73), especially when N and/or L

are large compared to 1. The key parameter p can be directly adjusted in the p-

persistent CSMA/CA protocol. However, it is not straightforward to adjust the τ to

its optimal value. In the CAP-MAC protocol, τ is not directly adjustable; instead, the

corresponding parameters are: the minimum backoff exponent BE0, the maximum

backoff exponent BEmax, and the maximum allowed retry limit M . The optimal τ
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can only be approached by adjusting these three parameters. Next we discuss a viable

way of achieving this target.

As discussed in Section 4.2.5, we may select a large BEmax such that BEmax ≥
BE0 + M , which effectively removes the upper limit of the backoff window so that

the protocol can work well in a network with large station population. Then, we can

select a parameter pair of (BE0,M) for the CAP-MAC to achieve the τ ∗. Given the

optimal τ ∗, the corresponding α∗ can be obtained from (4.25).

With Binary Exponential Backoff

Noticing that for the binary exponential backoff procedure adopted in the CAP-MAC,

we have

bm = 2BEm−1 = 2m · 2BE0−1,m = 0, 1, . . . ,M,

in (4.18) and (4.19). Given τ and α, equation (4.19) determines the relationship

between BE0 and M . Since
M−1∑

m=0

αm =
1 − αM

1 − α
,

we may rewrite (4.19) as

τ =

∑M−1
m=0 αm

∑M−1
m=0 αm(2m2BE0−1 + 1) + (1 − αM)L

=
(1 − αM)/(1 − α)

2BE0−1(1 − (2α)M)/(1 − 2α) + (1 − αM)/(1 − α) + (1 − αM)L

=

[
2BE0−1 (1 − (2α)M)(1 − α)

(1 − 2α)(1 − αM)
+ 1 + L(1 − α)

]−1

.

(4.79)

Thus, we have

2BE0−1 =
(1 − 2α)(1 − αM)

(1 − (2α)M)(1 − α)

[
1

τ
− 1 − L(1 − α)

]

⇒BE0 = 1 + log2

[
(1 − 2α)(1 − αM)

(1 − (2α)M)(1 − α)

(
1

τ
− 1 − L(1 − α)

)] (4.80)
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Given a BE0 we may get the corresponding M , and vice versa.

However, there are other constraints: BE0 > 1, M > 0, and both have to be

integers in the CAP-MAC. Therefore, with the optimal τ ∗ and α∗ given previously,

we may not always be able to choose an appropriate pair of integer BE∗
0 and M∗ with

the current version of CAP-MAC. This problem can be solved if we let W = 2b0 and

remove the constraint that log2 W has to be an integer. Instead of adjusting BE0, we

change W according to a given M . In this way, we may achieve a network throughput

closer to the maximum one than by adjusting BE0.

With Fixed Backoff Window

If a fixed backoff window Ŵ is adopted, we have

bm =
Ŵ

2
,m = 0, 1, . . . ,M. (4.81)

Equation (4.19) can thus be re-written as

τ =
(1 − αM)/(1 − α)

(1 + W/2)(1 − αM)/(1 − α) + L(1 − αM)

=
1

(1 + Ŵ/2) + L(1 − α)
,

(4.82)

which yields

Ŵ = 2

(
1

τ
− L(1 − α) − 1

)
. (4.83)

The optimal fixed backoff window size Ŵ ∗ is obtained by the above expression with

the given optimal values τ ∗ and α∗. Note that M , the maximum number of allowed re-

transmissions for a frame, does not appear in the above expression, which is expected

because the backoff window is fixed.
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SS versus DS

Some numerical results given in Section 4.2.5 show that for the same network con-

figuration (i.e., N , L, BEmin, BEmax and M), the throughput of the DS mode is

always less than that of the SS mode. However, the resemblance between (4.30) and

(4.44) implies that the DS mode can give the same maximum network throughput as

the SS mode if τ (d) can be set to the optimal τ ∗. Indeed, by adjusting the backoff

related parameters, we may also achieve the target τ ∗ in the DS mode. Taking the

fixed backoff window as an example, similar to the SS mode, we just need to set

Ŵ (d) = 2

(
1

τ ∗
− L(1 − α(d)∗) − 1 − c∗

)
, (4.84)

where α(d)∗ and c∗ can be obtained from (the corresponding version of) (4.41) and

(4.32), respectively, with the given τ ∗.

4.5.3 DCF

A careful examination of the expression (4.58) will reveal that they are in fact the same

expressions if γ is replaced by p. Then, we obtain immediately the same expression

for the optimal γ∗ as

γ∗ =

√
N

N−1
(L − 1) + 1 − 1

N(L − 1)
. (4.85)

In addition, since the binary exponential backoff policy is also adopted in DCF as in

CAP-MAC, we can follow a procedure similar to the one in Section 4.5.2 to approach

the optimal γ∗ by adjusting the minimum contention window W and the maximum

allowed retransmissions M .
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4.5.4 Numerical Results

Figure 4.13 shows the maximum network throughput ηmax and the corresponding

optimal transmission probability p∗ for the p-persistent CSMA/CA protocol with

saturated stations, for three cases L = 10, 100 and 1000, respectively. It can be seen

that with the optimal p∗ selected according to the number of saturated stations N

in the network, the maximum network throughput is basically determined by the

parameter L and independent of N , as indicated in (4.75).

As pointed out in the previous section, the theoretical maximum network through-

put of the IEEE 802.11 DCF is the same as that of the p-persistent CSMA/CA pro-

tocol when all the protocol overheads are the same. However, the specific binary

exponential backoff policy adopted by the IEEE 802.11 standards brings difficulty

in approaching the theoretical maximum network throughput as discussed earlier.

Similar difficulty exists for the CAP-MAC to achieve its theoretical maximum net-

work throughput. In Figure 4.14(a), the symbol η∗ refers to the theoretical maximum

network throughput, and η∗ refers to the one achieved by the BEB backoff policy

adopted by the CAP-MAC (without the BEmax limit). It is observed that due to the

limited ability of adjusting the τ to approach the optimal value in the BEB policy,

η∗ is always lower than η∗. The corresponding initial contention window (by symbol

2BE0) is given in Figure 4.14(b). In contrast, if the fixed contention window policy

is adopted and the limitation of W ∗ = 2n (n integer) is removed, the protocol does

achieve the theoretical maximum network throughput with the corresponding optimal

backoff window W ∗ shown in Figure 4.14(b).



Networks with Homogeneous Service 81

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

η m
ax

Maximum network throughput with saturated stations

L=10
L=100
L=1000

(a)

10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

N

p*

Optimal p for saturated stations

L=10
L=100
L=1000

(b)
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protocol with saturated stations
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Figure 4.14: Optimal initial backoff window and maximum network throughput of

CAP-MAC SS protocol with saturated stations
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4.5.5 Discussion on the Optimization for Unsaturated Sta-

tions

The objective of the optimization in the previous subsection is to maximize the net-

work throughput for saturated stations. For a network with unsaturated stations,

the network throughput is always the given aggregate incoming traffic. Therefore,

the objective of optimization for such a case is naturally switched to minimize the

average frame service time ζ ′, or equivalently, E[Z ′].

Without loss of generality, we take the p-persistent CSMA/CA protocol as an

example to discuss the possible parameter optimization with a given per station traffic

load λ. In this protocol, the adjustable parameter is p and the relationship between

E[Z ′] and p are given by equations (4.9) and (4.14). Nevertheless, it is very difficult, if

not impossible, to give a closed-form solution to these two non-linear equations, which

makes the task of finding the expression for the optimal p that minimizes E[Z ′] even

more challenging. Notice that p is limited over (0, 1), however, we propose to use the

global search algorithm to find the optimal p. For a given λ, the p increases from a

small value close to zero (e.g., 0.001) to a value close to and strictly less than one (e.g.,

0.999) with a small incremental step ∆p = 0.001. In each step, the corresponding

E[Z ′] is calculated by solving numerically the aforementioned two equations and

compared with the recorded E[Z ′]min, which is updated when necessary. With this

global search algorithm, the final E[Z ′]min and its corresponding p∗ can be found

for a given λ. It is possible that some values of p may make the stations saturate.

However, this renders no adverse effect to the algorithm because in such cases the

resulting E[Z] is larger than the final E[Z ′]min.

As an example, Figure 4.15 shows the E[Z ′]min and the corresponding p∗ versus

λ for the case of L = 10 with two different N values (10 and 20). The results show
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CSMA/CA protocol with unsaturated stations
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that when the traffic load is light, the optimal transmission probability should be

set relatively high; with the increase of the traffic load, p∗ decreases almost linearly.

When the traffic load increases close to the sustainable rate, the service time increases

very fast as in Figure 4.3(a) even though the optimal p∗ is used.

Note that the above approach is effectively applicable to both the CAP-MAC

and the DCF protocols with appropriate mapping between the optimal p and the

adjustable parameters such as BEmin and W following the discussion in Section 4.5.2.

Also, the weakness of unable to give a transmission probability equal to the theoretical

optimal still exists in the BEB policies; thus the minimum E[Z ′] achieved by BEB is

slightly larger than the theoretical one.

4.6 Related Work

Being a simple and elegant random access protocol, the p-persistent CSMA/CA pro-

tocol is first analyzed by Kleinrock and Tobagi with the “S-G” technique to obtain

the throughput-delay characteristics for infinite stations in [55]. Its performance in a

network with finite number of stations is studied by the same authors in [97], using

the technique of embedded Markov chain, the computational complexity of which

becomes inhibitive for systems with large station population. After these two classic

papers, there is a long time in which the analysis of this protocol is of very limited

interest to researchers, until it is studied again much later by Cali et al. when they

use p-persistent CSMA/CA as an alternative version of the IEEE 802.11 DCF MAC

protocol in [12] and [13].

In contrast, the wide deployment of IEEE 802.11 DCF based wireless LANs (Wi-Fi

networks) has attracted great interests from researchers. There are numerous work on

the performance study of DCF in terms of throughput and average frame service time,
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especially for the saturation case. A well-known one on this topic is first reported

in [5] and further detailed in [6] by Bianchi. The BEB procedure is modeled as a

discrete time two-dimensional Markov chain. The assumption of constant conditional

collision probability of frames regardless of the transmission history is first adopted in

these papers and later justified theoretically by Sharma et al. in [86] by relating it to

the mean-field models in statistical physics. A direct extension of the Markov model

in [6] is proposed by Wu et al. in [110] and Chatzimisios et al. in [18] to take into

consideration the retransmission limit for each frame as specified in the standard.

Along this line, many papers modify the basic Markov model proposed in [6] to

consider some other details of the DCF [15, 104, 19, 31, 7], or adapt the Markov model

to other backoff variants [74, 102, 111]. Cali et al. analyze the p-persistent version of

IEEE 802.11 DCF in [12] and [13], using the concept of virtual transmission time of a

frame. Based on simulation results, they conclude that the maximum throughput is

achieved when the average channel idle time is equal to the average time for collisions,

which is further justified analytically in [10]. Tay and Chua analyze the protocol

behavior from the long term average point of view in [92]. By computing the average

rates of transmission, collision and successful transmission, and utilizing the condition

that all these rates sum up to one, the saturation throughput is obtained. Based on

the analysis, some insights on how to achieve the optimal performance by adjusting

the protocol parameters according to the number of stations are also given in the

paper. Following this direction, Kumar et al. represent the average transmission

attempt rate as the ratio of average transmission times over the average backoff slots,

and calculate it using the fixed point technique [57]. It is also pointed out in this

paper that by using the fixed point equations, the analysis of the Markov chain in

[6] is in fact not necessary. Medepalli and Tobagi extend further this approach to

compute the average cycle time of a frame and the saturation throughput in [66].
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The only paper adopts the equilibrium point analysis is [106] by Wang et al., which

requires a computational effort comparable to that of the Markov chain based models.

Another thread of work is to obtain higher moments of the frame service time.

Carvalho and Garcia-Luna-Aceves compute the first two moments of the service time

in [15]. In [123], Zanella and Pellegrini study the statistical characteristics of the

frame service time by means of probability generating function (PGF), considering

directly the distributions of the time of successful transmission, collisions and backoff

slots. In another paper [125], Zhai et al. give the PGF of frame service time using

generalized state transition diagram [81] based on the Markov chain developed in [6].

Vu and Sakurai present a more accurate service time PGF compared with that in

[125] by taking into consideration of the dependence between the number of backoff

slots and the number of transmissions and collisions of the stations [103]. Using a

two-dimensional absorbing discrete time Markov chain, Issariyakul et al. model the

channel access time in DCF as a phase-type distribution in [49], which is numerically

solved by the matrix geometric technique [71].

Recently there are also some papers on the performance of DCF with unsaturated

stations. Among them, Zhai et al. combine the results in [125] with M/G/1 analysis

to calculate the throughput, delay, jitter and packet loss rate for Poisson arrival

traffic [124]. Zaki and EI-Hadidi[122] modified the basic Markov model proposed

in [6] to have a constant state transition time equal to the slot time. Cantieni et

al. [14] proposed another modified Markov model by adding some extra states for

the so-called “post-backoff” procedure. In both papers, M/G/1 queueing analysis

is used to obtain the channel throughput, which may not be directly applicable to

some practical applications such as VoIP over WLAN. The post-backoff states are

also incorporated in the Markov chain developed by Duffy et al. in [25], where the

stations are assumed to buffer one frame only. Similar Markov chain based analytical
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models for finite load situation (e.g., [85] ,[130]) have also been proposed, all assuming

specific traffic sources such as Poisson or Bernoulli arrivals. Tikoo and Sikdar [93, 94]

extended the work in [92] to the unsaturation case by considering the MAC sublayer

queue status. It also models each station as a discrete time G/G/1 queue to obtain

the frame delays. Along this thread, Ling et al. propose a more accurate model

in calculating the average frame service time in [135] and use it to obtain the voice

capacity of a DCF based ad hoc mode WLAN.

For the IEEE 802.15.4 MAC protocol considered in this paper, there are several

recent analytical works appeared in the literature. A Markov chain based analyti-

cal model is proposed in [68, 67] to analyze the access delay of uplink transmissions

in an IEEE 802.15.4 beacon enabled PAN of nodes with finite size buffer. Many

details of the protocol are taken into consideration in the model. With the assump-

tion of Poisson arrivals to each node and the use of M/G/1/K queueing model, the

probability generating functions (PGF) of the access delay and packet queue size at

the nodes are derived. In addition, up to date these are the only papers that analyze

comprehensively the performance of 802.15.4 MAC protocol with the complete super-

frame structure. With the assumption that each station’s probability to start sensing

the channel is independent, the Markov model proposed in [76] gives satisfactory

throughput accuracy in the saturated case, where all the nodes always have frames in

their MAC buffers waiting for transmission. A more complicated three-dimensional

Markov chain is proposed in [89], also for the saturated case only. Another Markov

chain based model is presented in [78], and both throughput and power efficiency

are studied. It replaces the uniform distribution with a geometric distribution in the

selection of a random number of slots in each backoff stage, primarily for analytical

tractability. Also, the model limits itself only to a Bernoulli frame arrival process for

the unsaturated case. Both [89] and [78] advocate changing the initialization of CW
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to one, i.e., using single sensing instead of double sensing for the collision avoidance

purpose.

Simulation-based studies of the IEEE 802.15.4 protocol have also been reported in

the literature for the studies of delay performance [127], energy efficiency in a dense

wireless mircosensor network [9], a small size star-topology network [65], scalability

issues and the impact of interference from co-existing WLANs in medical environment

(e.g, hospitals) [36]. The only performance evaluation that is based on real hardware

experiments is reported in [58].

4.7 Summary

We have applied the analytical framework proposed in Chapter 3 to analyze three rep-

resentative CSMA/CA based MAC protocols: p-persistent CSMA/CA, IEEE 802.15.4

CAP-MAC and IEEE 802.11 DCF. In each application instance of the framework,

a pair of fixed point equations is obtained by properly deriving the parameters to

capture the features of the specific backoff procedure and channel access policy in the

protocol studied. After the fixed point equations are solved, the MAC throughput

and the average frame service time for an individual station are obtained. The ap-

plications have demonstrated that the proposed framework is a versatile one. It can

be used for networks with saturated or unsaturated stations, and for diverse back-

off policies. The accuracy of the analysis has been verified by extensive simulation

results.

In addition to the analysis of protocols with default parameters given in the stan-

dards, we have also analyzed the the theoretical and practical maximum throughput

for networks with saturated stations. We found that the theoretical maximum net-

work throughputs of the three protocols are very close especially with large L, despite
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that the backoff policies are completely different. Besides, in the course of deriving

the optimal values of the adjustable parameters in the three protocols, the limita-

tion of binary exponential backoff is discussed in detail. A backoff scheme with fixed

backoff window for all the backoff stages is found to be more flexible than the BEB,

and is able to approach the theoretical maximum network throughput.

For performance optimization in networks with unsaturated stations, we have

studied the minimum average frame service time and the corresponding optimal trans-

mission probability, taking p-persistent CSMA/CA as an example. The approach

used is easily extensible to the other two protocols, considering the direct mapping

relationship between p and the backoff parameters.



Chapter 5

Networks with Service

Differentiation

In the previous chapter, we have studied the performance of several representative

distributed MAC protocols in networks with homogeneous service. With the increas-

ing popularity of multimedia applications, wireless networks nowadays are more likely

to provide multi-service to users. Accordingly, QoS-aware MAC protocols that can

provision differentiated service to different stations have emerged. For instance, in

order to enhance the QoS provisioning demanded by multimedia services in WLANs,

the recently released IEEE 802.11e [48] defines three service differentiation mech-

anism: contention window (CW), transmission opportunity (TXOP) and arbitrary

interframe space (AIFS). Similar approaches have also been adopted by the Multi-

band OFDM Alliance (MBOA) in its contention based medium access protocol called

prioritized channel access (PCA) [26] for emerging ultra-wideband wireless personal

area networks (WPANs).

Performance evaluation of these mechanisms by means of simulations and theoret-

ical modeling approaches have shown that they are effective in service differentiation

91
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provisioning. However, the scenarios studied are quite limited, mostly for networks

with saturated stations. To better understand and quantify the effects of these mech-

anisms in a broader range of network situations, in this chapter, we extend the an-

alytical framework for DCF in Chapter 4 to evaluate their performance in networks

with both saturated and unsaturated stations.

The remainder of this chapter is organized as follows. The three mechanisms are

analyzed using the proposed framework one by one in the following three sections. Re-

lated work on the performance study of these mechanisms is discussed in Section 5.4.

The salient features discussed in this chapter are summerized in Section 5.5.

5.1 Service Differentiation with CWs

In this section, the channel busy time caused by frame transmissions from all the

stations are assumed to have the same fixed length of L physical slots, regardless of

the transmission result as a success or collision. The case of different frame lengths

are analyzed in the next section. We derive two key probabilities first, then proceed

to the MAC performance metrics.

5.1.1 Analysis of Saturated Stations

Let γk and βk denote the transmitting probability and the frame collision probability

of a station of class k, respectively1. A frame transmitted by a class k station will

experience a collision only when one or more stations of any class transmit in the

1In this chapter, the terms “class” and “AC” are used interchangeably.
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same slot. Therefore, we have the frame collision probability for a class k station as

βk = 1 − (1 − γk)
Nk−1

K∏

i=1,i6=k

(1 − γi)
Ni

= 1 −
∏K

i=1(1 − γi)
Ni

1 − γk

, k = 1, . . . , K.

(5.1)

Since each station performs its backoff procedure only depending on the transmission

result of its frame, it enters the next backoff stage only when its frame experiences a

collision, which occurs with probability βk. Therefore, similar to the derivation of γ

in (4.54) in Chapter 4, we have the transmitting probability of a class k station given

by

γk =

∑Mk−1
i=0 (βk)

i

∑Mk−1
i=0 (βk)i(bi,k + 1)

, k = 1, . . . , K, (5.2)

where bi,k = CWi,k/2 is the average number of backoff slots in backoff stage i, i =

0, . . . ,Mk, and Mk is the retry limit of class k stations. Note that the class-dependent

CW parameters have been included in the analysis.

Equations (5.1) and (5.2) can be solved numerically to obtain the transmitting

probability γk and frame collision probability βk for all the classes.

In the network with K classes of stations, the channel is idle when none of the

stations transmit, which occurs with probability

Pidle =
K∏

k=1

(1 − γk)
Nk . (5.3)

Therefore, the average length of generic slots in this network is

E[GS] = Pidle · 1 + (1 − Pidle) · L

= L − (L − 1)
K∏

k=1

(1 − γk)
Nk .

(5.4)

Following the reasoning in Section 4.3.1, from the viewpoint of a tagged class k

station, it conducts a Bernoulli experiment in each generic slot with its successful
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transmission defined as the success event. Thus, the average frame service time for

the tagged class k station is

ζk =
1

γk(1 − βk)
E[GS], k = 1, . . . , K, (5.5)

where E[GS] is given by (5.4). The per station throughput of class k is2

ηk =
L

ζk

, k = 1, . . . , K, (5.6)

and the network throughput is

η =
K∑

k=1

Nkηk. (5.7)

5.1.2 Analysis of Unsaturated Stations

For the analysis of unsaturated stations in a network with the three service differen-

tiation mechanisms adopted, the approach given in Section 3.3.1 is still applicable.

Similar to the cases in Chapter 4, the key to the analysis in this scenario is that an

unsaturated station of class k contends only with probability of γ′
kρk, where

ρk = ⌈λkζk⌉1, k = 1, . . . , K, (5.8)

and λk is the average incoming frame rate of a class k station. Therefore, we have

the frame collision probability for the tagged station of class k as

β′
k = 1 −

∏K

i=1(1 − γ′
iρi)

Ni

1 − γ′
kρk

, k = 1, . . . , K. (5.9)

Since the proposed model is developed from the viewpoint of a tagged station

of each class when it is contending for channel access, we have the transmitting

probability as

γ′
k =

∑Mk−1
i=0 (β′

k)
i

∑Mk−1
i=0 (β′

k)
i(bi,k + 1)

, k = 1, . . . , K. (5.10)

2As discussed in Chapter 4, L can be replaced by the transmission time of the MAC frame

payload for a more accurate throughput calculation, if desired.
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In addition, the tagged station of class k contends only with the busy stations from

both its own class and the other classes. Therefore, the channel seen by a class k busy

station is different from that seen by a busy station of another class. Consequently,

the channel idle probability is class-dependent as

P ′
idle,s = (1 − γ′

k)(1 − γ′
kρk)

Nk−1

K∏

i=1,i6=s

(1 − γ′
iρi)

Ni , k = 1, . . . , K. (5.11)

We further have the class-dependent average length of generic slots as

E[GS ′
k] = P ′

idle,s · 1 + (1 − P ′
idle,k) · L, k = 1, . . . , K, (5.12)

and the average frame service time for the tagged class k station as

ζ ′
k =

1

γ′
k(1 − β′

k)
E[GS ′

k], k = 1, . . . , K. (5.13)

5.1.3 Numerical Results

The differentiation effects of class-dependent CW parameters have been examined by

both analysis and simulations. We take the basic access mode of the IEEE 802.11e as

the example protocol and consider two classes of stations with different CW param-

eters. In the following numerical examples, the frame payload is set to 1,000 bytes.

Other parameters are set as given in Table 4.1 unless explicitly stated.

For saturated stations of both classes, Figure 5.1 shows the average frame service

times for both classes versus the minimum CW (CWmin,1) of class 1 stations while

keeping CWmin,2 = 32 and the maximum CW for both classes as 1024. It can be seen

from Figure 5.1(a) that the average frame service time of class 1 stations (ζ1) does

not change much with CWmin,1, especially when the number of stations in each class

N is small. In contrast, as shown in Figure 5.1(b), the average frame service time

of class 2 stations (ζ2) is obviously affected by CWmin,1, even for a small N . When
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Figure 5.1: Effect of CWmin,1 on the average frame service times for saturated stations



Networks with Service Differentiation 97

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

CW
min,2

 / CW
min,1

ζ 2 / 
ζ 1

CW
min,2

 = 32, CW
max

=1024, N1=N2=N

N=5, ana
N=5, sim
N=10, ana
N=10, sim
N=15, ana
N=15, sim

Figure 5.2: ζ2/ζ1 vs. CWmin,2/CWmin,1

CWmin,1 increases from 4 to 16, ζ2 is shortened dramatically; and the larger the N ,

the larger the decrease. When CWmin,1 is further increased to 24, the decrease of ζ2

is just marginal. The ratio of ζ2 over ζ1 versus the ratio of CWmin,2 over CWmin,1

is given in Figure 5.2. It shows that the relationship between these two ratios is

almost linear, with the slope determined mostly by N if other parameters (such as

CWmax and CWmin,2) are kept the same. All these results demonstrate that the class

with small minimum CW have higher priority in access the channel. In addition, the

smaller the minimum CW, the larger the performance gap between the two classes.

The effect of the maximum CW of the high priority class is shown in Figure 5.3.

With the fixed CWmin,1 = 4, CWmin,2 = 32 and CWmax,2 = 1024, CWmax,1 changes

from 256 to 1024. We can see from Figure 5.3(a) that ζ1 is almost constant. Fig-
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Figure 5.3: Effect of CWmax,1 on the average frame service times for saturated stations
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Figure 5.4: Average frame service times with changing traffic load

ure 5.3(b) shows that ζ2 also changes just marginally, except when CWmin,1 changes

from the relatively small value of 256 to 512 for N = 15. Combining the results in

Figures 5.1 and 5.3, we may conclude that the minimum CW of the high priority

class is the main determining factor of the performance of the two classes, while the

maximum CW of it has a much weaker effect.

Figure 5.4 shows the average frame service times of the two classes for changing

traffic load (with average frame arrival rate λ frames per slot) to each station, with

CWmin,1 is half of CWmin,2. It can be observed that when λ < 6 × 10−4, the average

frame service times of the two classes are both small and increase very slowly. In other

words, the CW differentiation effect is not obvious when traffic load is in the range

of low to intermediate. When λ is increased to about 6.7 × 10−4, ζ2 shows a sharp
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increase because class 2 stations become saturated with this load. This phenomenon

is similar to those in Figures 4.3 and 4.9, and the reason is also similar. Interestingly,

ζ1 also experience a remarkable increase, which is due to the severer contention from

class 2 stations resulting from the largely increased ζ2. More interestingly, despite

that class 2 stations have already been saturated, ζ2 further increases with λ until

class 1 stations also become saturated when λ reaches about 8 × 10−4. The reason

of this further increase is that ζ1 keeps increasing before class 1 stations become

saturated finally, which corresponds to deteriorating contention and longer ζ2; and it

stops only after class 1 stations also become saturated.

From the above, we can see that the service differentiation effect of class-dependent

CW is only obvious when the stations are about to enter the saturation situation,

and it is enforced when the number of high priority class stations becomes larger.

5.2 Service Differentiation with TXOP

With the TXOP service differentiation mechanism, the stations of different classes

may be allowed to transmit different number of frames after one successful chan-

nel access. In effect, this mechanism also includes the cases of allowing stations to

transmit frames of different lengths with the same data rate, or to transmit the same

length of frames with different data rates, or both. The effect of allowing different

TXOPs on the analysis lies in the calculation of the duration of channel busy peri-

ods, which depends on the stations involved in the transmission. Therefore, equations

(5.1) and (5.2) are applicable to the analysis of saturated stations and equations (5.9)

and (5.10) are applicable to the analysis of unsaturated stations.
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5.2.1 Analysis of Saturated Stations

For notation simplicity, let Lk denote the TXOP assigned to class k stations and also

the duration of channel busy time caused by a transmission from a class k station.

Without loss of generality, assume that L1 ≥ L2 ≥ · · · ≥ LK . Since the stations

start to transmit at the beginning of a generic slot independently, it is not difficult to

obtain the probability of having at least one class k station transmitting in a slot as

φk = 1 − (1 − γk)
Nk , k = 1, . . . , K. (5.14)

In the basic access mode, the duration of a channel busy period is determined

by the longest Lk, no matter whether the busy period is caused by a successful

transmission or a collision. Then, the average duration of a randomly chosen channel

busy period can be calculated as

E[L] =
K∑

k=1

(
Lk · φk

k−1∏

i=1

(1 − φi)
)
. (5.15)

Accordingly, the average length of a generic slot is3

E[GS] = Pidle · 1 + E[L], (5.16)

where Pidle is given in (5.3).

In the RTS/CTS access mode, the duration of channel busy time caused by a

collision is constant (denoted as Lcol) while that caused by a successful transmission

will depend on the transmitting station. In addition, the transmission time of the

RTS/CTS exchange has to be included in the channel busy time L
(RTS)
k for each

successful transmission from class k stations. Hence, to calculate the average length

of a generic slot, we need the probabilities of having a collision (Pcol) or a successful

3Note that all the probabilities in (5.15) sum up to (1-Pidle).
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transmission from a class k station (Psuc,k) in a slot, which can be obtained as

Psuc,k = Nkγk(1 − γk)
Nk−1

K∏

i=1,i6=s

(1 − γi)
Ni , k = 1, . . . , K, (5.17)

Pcol = 1 − Pidle −
K∑

k=1

Psuc,k. (5.18)

With the above results, the average length of generic slots in the RTS/CTS mode is

calculated as

E[GS(RTS)] = Pidle · 1 + Pcol · Lcol +
K∑

k=1

Psuc,kL
(RTS)
k . (5.19)

Equations (5.16) and (5.19) can be substituted into (5.6) to obtain the per station

throughput of class k in the basic and the RTS/CTS access mode, respectively. After

that, (5.7) can be used to obtain the corresponding network throughput.

5.2.2 Analysis of Unsaturated Stations

We consider the basic access mode in this subsection to explain the main point of the

analysis. As explained in Section 5.1.2, the channel seen by the tagged busy stations

is class-dependent in a network with unsaturated stations. Thus, from the viewpoint

of a tagged busy station of class k, it sees a slot containing transmission from at least

one class i station with probability

φ′
i,k =





1 − (1 − γ′
iρi)

Ni−1(1 − γ′
i), k = i

1 − (1 − γ′
iρi)

Ni , k 6= i
k = 1, . . . , K, i = 1, . . . , K. (5.20)
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Accordingly, we have the class-dependent E[L′
k] and the E[GS ′

k] for a tagged busy

station of class k as follows

E[L′
k] =

K∑

i=1

(
Li · φ′

i,k

i−1∏

j=1

(1 − φ′
j,k)

)
, (5.21)

E[GS ′
k] = P ′

idle, k · 1 + E[L′
k], (5.22)

where P ′
idle, k is given in (5.11). Then, the average frame service time for the tagged

class k station can be obtained according to (5.13).

5.2.3 Numerical Results

To show the net effect of TXOP to saturated stations, the CW parameters for the

two classes of stations are set to the same. In the following numerical results, the

payload size of class 2 stations is 500 bytes, and that of class 1 stations ranges from

1000 to 3000 bytes.

As shown in Figure 5.5(a), the average frame service times (ζ) are almost the same

for the two classes. This is because for saturated stations, the contention behavior is

completely determined by the CW parameters. With the same CW parameters, all

the stations get the same chance in accessing the channel to transmit their frames in

the long run [41]. On the contrary, the per station throughputs (η) of the two classes

are different due to the different payloads they carry. When ζ increases with the

class 1 payload size, η1 increases proportionally while η2 decreases slightly. Note that

with the given payload parameters, the average frame service time in the RTS/CTS

mode is always longer than that in the basic mode, due to the large overhead of

RTS/CTS exchange, especially for the class 2 stations with small payload size (see

Section 4.3.4). Correspondingly, the throughput in the RTS/CTS mode is lower than

that in the basic mode.
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Figure 5.5: Effect of class 1 payload size for saturated stations
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Figure 5.6: Voice capacity with background data traffic

To demonstrate the efficacy of the analytical model for the TXOP, we show the

maximum number of supportable voice sessions N2max (also called voice capacity [11])

in a network with background data traffic from saturated class 1 stations with frame

payload of 1000 bytes. Each class 2 station carries a 64kbps voice session using the

ITU-T G.711 codec [8], the parameters of which is given in Table 5.1. Figure 5.6

shows that the model predicts the voice capacity of the network accurately as verified

Table 5.1: Parameters for the 64kbps ITU-T G.711 Voice Codec

Sample Period (ms) Arrival Rate (frames/sec) Payload (bytes)

20 50 160

30 33.33 240



Networks with Service Differentiation 106

by simulations.

5.3 Service Differentiation with AIFS

With the AIFS mechanism, stations are classified according to their assigned AIFS.

In order to focus on the analysis of this mechanism, the following assumptions are

adopted in this section: 1) stations belonging to the same class have the same CW;

2) all the stations have the same TXOP; and 3) the basic access mode is used by all

the stations, and L denotes the time duration of a channel busy period.

5.3.1 Analysis of Saturated Stations

Due to the different AIFS values assigned, stations of different classes are eligible to

contend for channel access in different zones, as shown in Figure 2.3. More specifi-

cally, a station of class k is eligible to decrease its backoff counter and transmit, if its

backoff counter has been decremented to zero, in zones Zk to ZK , for k = 1, . . . , K.

As a result, stations face different contention situations and experience different frame

collision probabilities in different zones. On the other hand, each station performs

its backoff procedure only depending on the transmission results of its frames trans-

mitted in the eligible zones, i.e., it enters the next backoff stage only when its frame

experiences a collision, which occurs with probability of βk, the mean collision prob-

ability of frames transmitted in any of the eligible zones. Therefore, (5.2) still holds

for stations following the AIFS mechanism, with the above new interpretation of βk.

Then, with the assumption that a station of class k transmits independently with

probability γk in any slot in its eligible zones, we have the following analysis for the

collision probabilities.
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Frame Collision Probabilities

For a class k station, the collision probability of its transmitted frames in Zone z is

given by

βz,k = 1 −
∏z

i=1(1 − γi)
Ni

1 − γk

, k = 1, . . . , K, z = k, . . . ,K, (5.23)

where the eligibility for transmission in the zones of the station classes has been taken

into consideration. The probability βz,k’s where z = 1, . . . , k−1 are undefined because

there is no frame transmission from any class k stations in these zones .

In Zone z, a slot is idle when none of the eligible stations transmit. Hence, the

probability that a Zone z slot is idle is

az =
z∏

i=1

(1 − γi)
Ni , z = 1, . . . , K. (5.24)

For a randomly chosen transmission in the network, it starts in Zone z with probability

πz = (1 − (az)
∆z)

z−1∏

i=1

(ai)
∆i , z = 1, . . . , K − 1,

πK =
K−1∏

i=1

(ai)
∆i .

(5.25)

Since a class k station transmits with independent constant probability in its eligible

zones, the average collision probability of its transmitted frames can be obtained as

βk =
K∑

z=k

( πz∑K

z=k πz

βz,k

)
, k = 1, . . . , K, z = k, . . . ,K. (5.26)

Equations (5.2) and (5.23)–(5.26) can be solved numerically to obtain γk and βk

for k = 1, . . . , K. With these probabilities given, we can proceed to obtain the average

frame service time for each station class using either of the two methods introduced

below.
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Average Frame Service Time (Method 1)

The contention zones caused by the AIFS mechanism raise new challenges to the

analysis of average frame service time for each station class. In this subsection,

we derive the average frame service time based on the analysis of a randomly chosen

transmission in the network and its effects on the backoff counter decrement procedure

and the associated delay of different stations, as Method 1. The other method that

follows the approach in Section 4.3.1 is presented in the next subsection.

Define ∆z = AIFSNz+1 − AIFSNz, z = 1, . . . , K − 1 as the length of Zone z in

units of slots in Figure 2.3, which is also the number of idle slots for which a class z+1

station has to wait more than a class z station does before it is eligible to decrement

the backoff counter or transmit. Given a transmission starts in any of the ∆z slots of

Zone z, z = 1, . . . , K − 1, the transmission may start at the first slot with probability

1 − az, at the second slot with probability az(1 − az), and so on. Therefore, for such

a transmission, the average number of generic slots spent in Zone z is

E[Oz] =
(1 − az) · 1 + az(1 − az) · 2 + · · · + a∆z−1

z (1 − az) · ∆z

1 − (az)∆z

=

∑∆z−1
i=0 (az)

i − ∆z(az)
∆z

1 − (az)∆z

, z = 1, . . . , K − 1.

(5.27)

Thus, the corresponding time spent in Zone z can be obtained as

E[Dz] =
(1 − az) · (0 + L) + az(1 − az) · (1 + L)

1 − (az)∆z

+ · · ·

+(az)
∆z−1(1 − az) ·

(
(∆z − 1) + L

)

1 − (az)∆z

=
(1 − az)

∑∆z−1
i=1 i(az)

i + (1 − (az)
∆z)L

1 − (az)∆z

, z = 1, . . . , K − 1.

(5.28)

For Zone K (i.e., the last zone), the number of slots spent in it is simply given by

E[OK ] =
1

1 − aK

, (5.29)
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because it follows the geometric distribution with parameter aK and the transmission

must occur in Zone K if the previous zones have been passed idly. Accordingly, the

time spent in Zone K is

E[DK ] = (
1

1 − aK

− 1) + L. (5.30)

Note that if a transmission occurs in Zone z, the (possibly existing) preceding

zones are all idle4. Hence, a station of class k can deduct the average value of

E[Ôz,k] =





∑z−1
i=k ∆i + E[Oz], z = 1, . . . , K, k = 1, . . . , z

0, z = 1, . . . , K, k > z
. (5.31)

from its backoff counter for a transmission occurring in Zone z. In contrast, the

corresponding average time cost associated to this transmission is the same for stations

of all the classes, as given by

E[D̂z,k] = E[D̂z] =
z−1∑

i=1

∆i · 1 + E[Dz], z = 1, . . . , K, k = 1, . . . , K. (5.32)

Therefore, for a randomly chosen transmission in the network, a class k station may

deduct its backoff counter by the average value of

E[Õk] =
K∑

z=1

πz · E[Ôz,k], k = 1, . . . , K, (5.33)

and spends a time period with average duration of

E[D̃k] =
K∑

z=1

πz · E[D̂z], k = 1, . . . , K. (5.34)

Define such a randomly chosen transmission in the network as a virtual backoff event

for all the stations. A class k station spends an average of E[Zk] =
∑Mk−1

i=0 βi
k(bi,k +1)

4This is not applicable to z = 1 because the channel idle time in AIFS1 is included in the

calculation of L for each channel busy period.
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Figure 5.7: Illustration of the backoff segments and pre-backoff waiting periods for a

class 2 station

backoff slots for one frame5, as given in (5.2). According to the above, for a class k

station, it takes (E[Zk]/E[Õk]) virtual backoff events for it to finish the the E[Z]

backoff slots, on average. In each such virtual backoff event, the station spends a

time period with duration of E[D̃k]. Therefore, the average frame service time of a

class k station is given by

ζk =

∑Mk−1
i=0 (βk)

i(bi,k + 1)

E[Õk]
E[D̃k], k = 1, . . . , K. (5.35)

The above ζk can be substituted into (5.6) to obtain the per station throughput of

class k, and further into (5.7) for the corresponding network throughput.

Average Frame Service Time (Method 2)

In this method, the average frame service time of a class k station is decomposed

into two parts: the pre-backoff waiting time and the backoff time. Define one backoff

segment of a class k station as the period from it begins to decrement the backoff

counter in the first eligible zone to the end of this decrement procedure caused by a

transmission from any station, as illustrated in Figure 5.7. For each backoff segment,

there may be zero or more pre-backoff waiting periods preceding it, the number of

5Note that the generic slots used for transmitting the frame are included in E[Zk].
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which is a random variable. Based on the above main understanding, we take a

network with two classes of stations as an example to present the essence of this

method as below.

As the high priority class station, the tagged class 1 station involves the contention

in both Zone 1 and Zone 2. Therefore, it experiences no pre-backoff waiting periods.

Among the average E[Z1] generic slots it spends for one frame, approximately E[Z1]π1

are in Zone 1 and E[Z1]π2 are in Zone 2. The average length of a generic slot in Zone z

can be computed as

E[GSz] = az · 1 + (1 − az) · L, z = 1, 2, (5.36)

where az is the probabilities of the channel being idle in Zone z, as given by (5.24).

Then, the average frame service time for AC1 is given by

ζ1 = E[Z1]
(
π1E[GS1] + π2E[GS2]

)
(5.37)

The frame service time of the tagged class 2 station contains two parts, as ex-

plained earlier. The backoff time that it spends in Zone 2 is given by

ξ = E[Z2]E[GS2]. (5.38)

The pre-backoff waiting time can derived as follows. As shown in Fig. 5.7, when the

tagged class 2 station is backing off in Zone 2, the backoff procedure is interrupted

when any station transmits, which occurs with probability 1 − a2. Therefore, the

backoff procedure of total E[Z2] slots is divided into E[Z2](1− a2) segments. In each

segment, only when there are M consecutive idle slots (i.e., an idle Zone 1) after

the end of a channel busy period can the class 2 stations start their backoff counter

decrementing procedure. This occurs with probability equal to π2. With probability

π1, one or more class 1 stations may transmit in any of the slot in Zone 1 and the
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current uncompleted Zone 1 is ended immediately by this transmission. Therefore, for

the tagged class 2 station, there are 1/π2 such pre-backoff waiting periods preceding

each of its backoff segment, on average. The mean length of the pre-backoff waiting

periods is E[D1] given by (5.28). Thus, the total time spent in such pre-backoff

waiting periods by the tagged class 2 station is given by

ω = E[Z2](1 − a2)
E[D1]

π2

. (5.39)

Summing up the two parts given in (5.38) and (5.39), we obtain the average frame

service time for the tagged class 2 station as

ζ2 = ξ + ω. (5.40)

In the above example, only two contention zones are involved so the time of backoff

segments for class 1 stations and that of pre-backoff waiting periods for class 2 are

relatively simple to calculate. In a network with more than two classes, for a station

of class k with k > 2, the pre-backoff waiting periods are of k−1 types, each of which

covers different number of contention zones. In addition, for a station of class k with

k > 1, each backoff segment may cover more than one contention zones. These factors

make the analysis with Method 2 much more complicated as compared to Method 1.

Therefore, Method 1 is recommended in obtaining the average frame service time for

the stations.
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5.3.2 Analysis of Unsaturated Stations

Following the approach used for the analysis of the previous two mechanisms, we have

the following equations for unsaturated stations

β′
z,k = 1 −

∏z

i=1(1 − γ′
iρi)

Ni

1 − γ′
kρk

, k = 1, . . . , K, z = k, . . . ,K, (5.41)

β′
k =

K∑

z=k

( π′
z,k∑K

z=k π′
z,k

β′
z,k

)
, k = 1, . . . , K, z = k, . . . ,K, (5.42)

γ′
k =

∑Mk−1
i=0 (β′

k)
i

∑M−1
i=0 (β′

k)
i(bi,k + 1)

, k = 1, . . . , K (5.43)

a′
z,k =





(1 − γ′
k)(1 − γ′

kρk)
Nk−1

∏z

i=1,i6=s(1 − γ′
iρi)

Ni , z = 1, . . . , K, k = 1, . . . , z,

∏z

i=1(1 − γ′
iρi)

Ni , z = 1, . . . , K, k = min(z + 1, K − 1), . . . , K − 1,

(5.44)

π′
z,k = (1 − (a′

z,k)
∆z)

z−1∏

i=1

(a′
i,k)

∆i , z = 1, . . . , K − 1, k = 1, . . . , K, (5.45)

π′
K,k =

K−1∏

i=1

(a′
i,k)

∆i , k = 1, . . . , K. (5.46)

With the above results of a′
z,k and πz,k, each tagged busy station of class k can obtain

a set of class-dependent equations as the counterparts of (5.33)–(5.35) in Method 1.

All these equations can then be solved jointly to obtain the average frame service

time for each station class.

5.3.3 Numerical Results

The net effect of class-dependent AIFS on service differentiation is examined in this

subsection. For all the station classes, CWmin = 32, CWmax = 1024 and the MAC

frame payload size is 1000 bytes.
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First, a network with three station classes and 5 saturated stations in each class is

considered. The difference between the AIFS of the first two classes is fixed as ∆1 = 1.

Figure 5.8 shows the average frame service time (ζ’s) and the throughput (η’s) versus

∆2, the difference between the AIFS of class 2 and class 3. When ∆2 increases

from 1 to 6, ζ3 increases almost exponentially while ζ1 almost keeps constant and ζ2

decreases slightly6. Correspondingly, η3 decreases exponentially while ζ1 almost keeps

constant and ζ2 have a slight increase. This shows that ∆2 affects mainly the class 3

stations, because it determines the length of Zone 2 which delays the backoff counter

decrement procedure and the channel access of class 3 stations only. A large ∆2

gives class 3 stations little chance to start the backoff counter decrement procedure.

On the contrary, a longer Zone 2 gives class 1 and class 2 stations more chance to

contend just between these two classes, which renders a better successful transmission

probability than that in Zone 3 where class 3 stations join the contention. Compared

with class 2 stations, however, class 1 stations can further backoff and access the

channel in Zone 1, which is even less crowded than Zone 2. Hence, the length of

Zone 2 (∆2) has much smaller effect on the class 1 stations than on the class 2 ones.

With ∆1 = ∆2 = 2, Figure 5.9 shows the effect of N , the number of saturated

stations in each class, on the perceived performance of each class. As N increases,

the performance of all the stations degrades (i.e., longer average frame service time

and lower throughput), due to the severer contention in channel access. Moreover,

the performance gaps among the classes increases with N . This is because a larger N

means more higher priority stations contend and succeed in accessing the channel in

the zone(s) where the lower priority stations are ineligible to contend, which causes

longer pre-backoff waiting time to lower priority stations. In addition, class 3 stations,

having the lowest priority in channel access, are more sensitive to N than stations in

6Note the log-scale of the y-axis in the figure.
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the other two classes.

The effect of AIFS for unsaturated stations is also studied. Two classes with the

difference between their AIFS as ∆ = 1 are considered, and there are 10 stations in

each class. Figure 5.10 shows the average frame service time (ζ) of the two classes

changing with the incoming traffic on each station (λ frames per slot). When λ is

smaller than about 6.2 × 10−4, both classes are unsaturated; and the smaller the λ,

the smaller the performance gap between the two classes. After the class 2 stations

become saturated at λ = 6.3 × 10−4, ζ1 has a slow but steady increase with λ until

class 1 stations also become saturated when λ reaches around 7.6× 10−4. Therefore,

ζ2 still increases accordingly because the service time for low priority stations is

still affected by the increasing ζ1 in this area. Comparing Figures 5.4 and 5.10, we

observe that the service differentiation effect of ∆ = 1 is roughly the same as having

the CWmin halved. As ∆ = 1 is the minimum possible difference between AIFS while

the ratios of CWmin among the classes can be fine-tuned, one may conclude that

the service differentiation effect of AIFS mechanism is coarser than that of the CW

mechanism.

5.4 Related Work

The three main service differentiation mechanisms discussed above were proposed and

evaluated by means of simulation in [1]. Performance studies of one or more of the

three mechanisms by simulations have also been reported in [38, 39, 63, 22, 116, 73].

Test-bed based experimental evaluation of the IEEE 802.11e protocol is reported

in [72]. All these studies demonstrate the diverse effectiveness of service differentiation

provided by the three mechanisms.

In the literature, two main techniques have been used to analyze the performance
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Figure 5.8: Effects of AIFS for saturated stations
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Figure 5.9: Effects of N for saturated stations
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Figure 5.10: Average frame service time with changing traffic load

of these service differentiation mechanisms. The discrete time Markov chain widely

used in modeling the DCF has been extended to study the performance of EDCA and

PCA. Setting up a two-dimension (2-D) Markov chain for stations of each class, the

differentiation effect of CW is studied in [77]. Similar 2-D Markov models also appear

in [40, 43] for the same topic. A three-dimensional Markov chain is used in [113, 112,

117, 115], where the third dimension represents the station classes. Effects of three

backoff related parameters (initial window size, retry limit and the backoff increasing

factor) on saturation throughput and delay are studied. The same 3-D Markov model

is used in [129] to study the effects of TXOP. The effects of AIFS, however, are not

investigated in all the above papers. The contention in different zones delimitated

by AIFS is analyzed and the network throughput is given in [82], again with a 2-
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D Markov chain for each station class. A three-dimensional Markov chain different

from the one in [113] is developed in [126] to obtain the saturation throughput, where

the third dimension represents the remaining idle slots before the backoff counter

decrements as required by the AIFS of a station. A similar model is used in [61] to

analyze a network with only two classes of stations. In [56], another three-dimension

Markov chain is developed to describe the protocol behavior and a recursive method

is proposed to compute the mean access delay. In [118], a multi-dimensional Markov

chain model is proposed for throughput and delay analysis. As the dimension equals

the number of stations in the network and each dimension represents the backoff

counter value of a station, the state space of the multi-dimensional Markov chain is

huge even for a moderate number of stations, and the computational complexity to

solve the model is prohibitively high.

Another technique is to approximate the system dynamics by mean value analysis,

which is applied in [62] to derive the network saturation throughput. Due to the

specific approach of handling the extra delay to low priority stations caused by longer

AIFS, the model in [62] is applicable only to the case of small difference in AIFS’ of

the station classes. In [44], the station transmission probabilities are obtained from

both mean value analysis and multiple two-dimension Markov chain analysis; then the

network throughput and frame service time are derived. In [42], the PCA is analyzed

using the similar approach introduced in [44], and only throughput is given.

All of the above papers study the saturated situation case only. The common

procedure in these models is that the network saturation throughput is obtained

first, usually from the analysis of a typical transmission in the network. Then the

per station saturation throughput is derived according to the proportional sharing of

network throughput among the stations. Finally, the average frame service time is

given as the reciprocal of the per station throughput. However, the last step cannot be
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applied to unsaturated stations, as have been explained in Section 4.1.2. Therefore,

even if the per station throughput were known (same as the given incoming traffic

load), the frame service time would be very difficult, if not impossible, to obtain

with those models. This is the main obstacle in extending those previously reported

models to the unsaturated station case.

Recently, the analysis of EDCA with unsaturated stations has been reported in

[27] and its follow-up series [28, 29], which extend the three-dimensional Markov

model [117] for saturated stations by adding a set of states with no frame to trans-

mit. The frame service time for low priority stations is underestimated due to the

overly simplified calculation of blocking delay in the AIFS periods caused by higher

priority stations. Moreover, only “extreme non-saturation condition” is considered in

the service time analysis for unsaturated stations, which leads to a seriously flawed

estimation of the key parameter (queue utilization factor) of the model and further

undermines its accuracy.

5.5 Summary

In this chapter, we have proposed a novel analytical model for EDCA-like service

differentiation MAC protocols unified for both saturated and unsaturated stations.

We model the backoff and channel access behavior of a tagged station in each class,

and obtain their respective average frame service time. Based on this result, satura-

tion throughput of individual station is derived. The wide applicability of the model

enables us to understand the different effects of the same prioritizing mechanisms in

saturated and unsaturated conditions. In addition, the analysis of all the three main

service differentiation mechanisms are naturally integrated into this model.

The numerical results show that the service differentiation effects of the three
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mechanisms are effective especially in a network with saturated stations. Their effects

are not so obvious when the traffic load in the network is light and most of the stations

are far from saturated. Basically, in the CW mechanism, the minimum CW of each

class has a larger effect than the maximum CW when the latter is sufficiently large.

Also, the CW mechanism may achieve fine-tuning in service differentiation due to the

small granularity of the CW parameter. The TXOP mechanism, if used alone, does

not provide differentiation in the chance of channel access, but it does yields different

throughput for different classes. The AIFS parameters in the AIFS mechanism has

a very strong effect of service differentiation, especially for the lower priority classes.

Due to the nature of the AIFS parameter, the smallest possible change of it is one

slot. However, an increase of just one slot in the AIFS of a low priority class will cause

significant performance degradation to this class and the lower priority ones, but has

much smaller effect on the higher priority classes. Compared to the CW mechanism,

the AIFS mechanism usually has a much larger granularity in service differentiation

among the classes. In general, the three mechanisms may be combined together to

achieve the desired level of service differentiation effectively and efficiently.



Chapter 6

Conclusions and Future Work

In this chapter, we summarize the major research contributions of this thesis, and

propose future work.

6.1 Major Research Contributions

In this thesis, we have proposed a simple but accurate generic performance analysis

framework for a family of CSMA/CA based distributed MAC protocols and applied

it to analyze the performance of several popular MAC protocols in wireless networks

with homogeneous service and with service differentiation. Any CSMA/CA based

distributed MAC protocols can be analyzed with the proposed framework, as long

as the backoff and channel access policies are the same for each MAC frame. More

specifically, the main contributions of this thesis are

• A generic performance analysis framework for CSMA/CA based distributed

MAC protocols : Developed from the perspective of a tagged station (of each

class), the generic performance framework focuses on modeling the backoff pro-

cedure and the channel access behavior and setting up a set of fixed point

122
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equations for the key element in the analysis of CSMA/CA based protocols, the

probability of channel accessing of an individual station. Based on this key vari-

able, two important MAC performance metrics, average frame service time and

the per station throughput are derived from a novel three-level renewal process.

The proposed generic framework is applicable to a family of CSMA/CA based

distributed MAC protocols regardless of the details of the backoff procedure,

the channel access policy and the arrival traffic. First, the backoff procedure

may be memoryless (as the geometric backoff in the p-persistent CSMA/CA

protocol), and the counting down of the backoff counter may depend on the

channel status (as in the IEEE 802.11 DCF), or not (as in the IEEE 802.15.4

CAP-MAC). Secondly, the station may access the channel immediately or one

time slot after one successful channel sensing, or after two successful channel

sensing events, or even more. Finally, for unsaturated stations, traffic arrival

distribution can be general, instead of being limited to Bernoulli or Poisson

arrivals as assumed in most previous works.

• A unified performance modeling approach for both saturated and unsaturated sta-

tions : Most previously reported performance analysis models follow the path of

setting up a model to derive the system throughput, obtaining the per station

throughput based on the proportional sharing of resource among the stations,

and then the average frame service time for each station. Such a path is vi-

able for networks with saturated stations. However, it is not applicable to

networks with unsaturated stations or with mixed saturated and unsaturated

stations because it is impossible to derive the average frame service time from

the throughput of an unsaturated station. The modeling approach in this thesis

takes the opposite way by focusing on obtaining the average frame service time,

which is the key performance metric for networks with both unsaturated and
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saturated stations. With this result, the per station throughput and system

throughput for networks with saturated stations are straightforwardly derived.

Therefore, the modeling approach is unified for networks with saturated and/or

unsaturated stations. This unification of modeling helps in studying, within

one framework, the protocol performance under a broad range of traffic load,

especially in the transition stage where stations change from unsaturation to

saturation. Using this unified approach, the capacity region of a network with

regard to given applications can be obtained, which is the most important in-

formation needed by the call admission control scheme to guarantee satisfactory

QoS provisioning to end users.

• Insights into three representative distributed MAC protocols : The performance

of three popular distributed MAC protocols — p-persistent CSMA/CA, the

IEEE 802.15.4 CAP-MAC and the IEEE 802.11 DCF — in a network with ho-

mogeneous service have been analyzed and compared with the proposed frame-

work. By studying the saturation throughput, we show the mutual-convertible

relationship between the p-persistent CSMA/CA protocol and the IEEE 802.11

DCF. We found that the saturation throughput of the three protocols are very

close to each other when N and L are large. In addition, we pointed out that, for

the CAP-MAC, the double-sensing mechanism can achieve the same maximum

saturation throughput as the single-sensing mechanism does, although the for-

mer gives a lower saturation throughput with a variety of protocol parameters,

especially the default parameters given in the standard. The limitation of the

widely used binary exponential backoff has also been discussed in detail.

• Simple and elegant performance analysis of prevalent service differentiation

mechanisms : Assigning class dependent minimum contention window (CW)
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size, transmission opportunity (TXOP) and arbitration inter-frame space (AIFS)

to stations of different classes are the three main service differentiation mech-

anisms used in current WLANs and WPANs. The proposed analytical frame-

work is naturally extended to study the effects of CW and TXOP, because of

the station-centric modeling approach used. Two novel concepts, virtual back-

off events and pre-backoff waiting periods, have been introduced in the more

challenging analysis of the effects of AIFS. These two concepts directly reflect

the essential service differentiation effect of AIFS (delay the channel access of

lower priority class stations) from two different aspects, which make the analysis

much simpler and easier to follow than those in other models. The analysis of

the three mechanisms show that although all of them can provide service dif-

ferentiation to stations of different classes, the AIFS mechanism gives a coarser

differentiation effect than the CW mechanism, and the TXOP alone just gives

throughput differentiation. It is favorable to jointly use the three mechanisms

to achieve an effective and efficient service differentiation effect in a network.

An immediate application of the above extended framework is to analyze

a network with heterogeneous traffic among the stations even though a non-

differentiation MAC protocol is used, e.g., a WLAN with an access point (AP)

serving as a gateway to the outside networks and many mobile nodes (MNs)

carrying different applications within the WLAN.

6.2 Future Work

The research work in this thesis focuses on the performance analysis of distributed

MAC protocols in single-hop wireless networks. The following relevant research topics

are of importance and deserve further investigation:
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• Closed-form solution to the proposed analytical model : In the current work, the

two important MAC performance metrics — average frame service time and

per station throughput — are obtained from the proposed analytical model by

numerical methods. It is desirable to find a closed-form solution to a (proba-

bly) simplified analytical model, so that optimization of the parameters can be

performed with methods other than the exhaustive search used in this work.

In addition, a sensitivity analysis of each parameter may be conducted. Such

results will be helpful in the design of a relatively simple, implementable, dy-

namic/adaptive tuning scheme of the MAC parameters according to the required

QoS level of various services coming from upper layers.

• Cross-layer design for QoS Provisioning : Most modern wireless networks, in-

cluding WLANs and WPANs, are required to support multimedia applications

with diverse QoS requirements. One typical QoS requirements is the effective

bandwidth [53] of a bursty traffic with variable data rate [84]. The QoS anal-

ysis and flow (or call) level capacity planning in wireless networks is in fact a

cross-layer problem, in which the effective bandwidth required by the network

layer of QoS guarantee needs to be provisioned by the MAC layer with the help

of call admission control (CAC) [21, 100]. Our proposed analytical model uni-

fied for both saturated and unsaturated stations is an indispensable element in

the cross-layer analytical framework. The MAC service time statistics obtained

from the proposed model can be used by the queueing analysis at the network

layer to predict the performance of both the existing and the newly arrived

flows, and the proper admission control decision can be made to guarantee the

QoS requirements of all the admitted flows. Such a cross-layer design framework

is an interesting and challenging topic.
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• Performance model for multi-hop wireless networks: The wireless networks con-

sidered in this thesis are single-hop networks in which all the stations are within

the transmission ranges of one another and the carrier sensing result is the

same for all the stations at a given time. The situation is different in multi-

hop wireless networks such as the emerging wireless mesh networks [30, 59]

and vehicular networks [99, 121], where the carrier sensing results are location

dependent. The resulting hidden-terminal problem [96] degrades significantly

the performance of CSMA/CA based MAC protocols in multi-hop wireless net-

works. Since the DCF and EDCA have been naturally used in multi-hop wireless

networks [105, 3, 20] due to their success in WLANs, it is important to ana-

lyze their performance taking into consideration the hidden-terminal problem

and other issues such as the effects of routing schemes on the traffic load on

stations along a path [33]. How to extend the proposed model to analyze the

performance of such protocols in multi-hop networks needs more investigation.



Abbreviations and Symbols

Abbreviations

AC access category

ACK acknowledgement

AIFS arbitration interframe space

AP access point

BO backoff

BE backoff exponent

CAC call admission control

CAP contention access period

CCA channel clear assessment

CDMA code division multiple access

CFP contention free period

CSMA carrier sense multiple access

CSMA/CA carrier sense multiple access with collision avoidance

CTS clear to send

CW contention window

128
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DCF distributed coordination function

DIFS DCF interframe space

DS double sensing

EPA equilibrium point analysis

EDCA enhanced distributed channel access

GS generic slot

GTS guaranteed time slot

MAC medium access control

MIMO multiple in put multiple output

NACK negative acknowledgement

NAV network allocation vector

OFDM orthogonal frequency division multiplex

OFDMA orthogonal frequency division multiple access

PCF point coordination function

PCS physical carrier sense

PSI possible station idle period

QoS quality of service

RTS request to send

SIFS short interframe space

SS single sensing

TXOP transmission opportunity

VCS virtual carrier sense

WiMAX worldwide interoperability for microwave access

WLAN wireless local area network



ABBREVIATIONS AND SYMBOLS 130

WMAN wireless metropolitan area network

WPAN wireless personal area network

Main Symbols

Dz the time spent in zone z of a randomly chosen transmission

H the number of transmission trials for a frame

K the number of station classes in a network with service differentiation

L the channel busy period in units of slots caused by a frame, the

associated ACK/NACK transmission and the interframe spaces

M the frame transmission retry limit in CAP-MAC and DCF

Mk the frame transmission retry limit for class k stations

N the number of stations in a network with homogeneous service

Nk the number of stations in class k in a network with K station classes

Oz the number of generic slots spent in zone z of a randomly chosen

transmission

p transmitting probability in the p-persistent CSMA/CA protocol

Pb the probability that the channel is busy

Pcol the probability of a collision in the channel

Pi the probability that a channel is idle

Pidle the probability that a generic slot is idle

Psuc the probability of a Y cycle is of type Y2

Psuc,k the probability of a successful transmission from a class k station

Ptx the probability of a X cycle is of type X2
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R the random number of transmission trials for a frame

W (CW0) the minimum contention window

Ŵ the fixed contention window size

X level-one renewal cycle

X1 level-one cycle with transmission from other stations

X2 level-two cycle with transmission from the tagged station

Y level-two renewal cycle

Y1 level-two cycle with a collision involving the tagged station

Y2 level-two cycle with a successful transmission from the tagged station

Z level-three renewal cycle

bm the average number of backoff slots in backoff stage m

∆z the length of zone z in units of slots

α the channel sensing failure probability in CAP-MAC

β the conditional frame collision probability in DCF

ηs the throughput of an individual station

η the network throughput

γ the transmission probability of a tagged station in DCF

λ the frame arrival rate in units of frame per slot

ω the number of total backoff slots for a frame in DCF

πz the probability of a randomly chosen transmission starting in zone z

φk the probability that a class k station transmits

ρ the probability of having an empty MAC buffer of a station

τ the transmitting probability of a frame in CAP-MAC

ζ average frame service time
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(d) the superscript indicating variables for the DS case in CAP-MAC

∗ the superscript indicating the optimal value of a variable

′ the superscript indicating variables for unsaturated stations



Bibliography

[1] I. Aad and C. Castelluccia. Differentiation mechanisms for IEEE 802.11. In

Proc. IEEE INFOCOM’01, pages 209–218, 2001.

[2] N. Abramson. The ALOHA System–Another Alternative for Computer Com-

munications. In Proc. 1970 Fall Joint Comput. Conf. AFIPS Conf., pages

281–285, 1970.

[3] Y. Barowski, S. Biaz, and P. Agrawal. Towards the performance analysis of

IEEE 802.11 in multi-hop ad-hoc networks. In Proc. IEEE WCNC’05, pages

100–106, 2005.

[4] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 2nd edition, 1992.

[5] G. Bianchi. IEEE 802.11: saturation throughput analysis. IEEE Commun.

Lett., 2(12):318–320, 1998.

[6] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination

function. IEEE J. Select. Areas Commun., 18(3):535–547, Mar. 2000.

[7] G. Bianchi and I. Tinnirello. Remarks on IEEE 802.11 DCF performance anal-

ysis. IEEE Commun. Lett., 9(8):765–767, Aug. 2005.

[8] U. Black. Voice Over IP. Prentice Hall, 2nd edition, 2001.

133



Biblography 134

[9] B. Bougard et al. Energy efficiency of the IEEE 802.15.4 standard in dense

wireless microsensor networks: modeling and imporovement perspectives. In

Proc. Design Automation and Test in Europe Conference and Exhibition, pages

196 – 201, Mar. 2005.

[10] R. Bruno, M. Conti, and E. Gregori. Optimal capacity of p-persistent CSMA

protocols. IEEE Commun. Lett., 7(3):139–141, 2003.

[11] L. X. Cai, X. Shen, J. W. Mark, L. Cai, and Y. Xiao. Voice capacity analysis

of WLAN with unbalanced traffic. IEEE Trans. Veh. Technol., 55(3):752–761,

May 2006.

[12] F. Cal̀ı, M. Conti, and E. Gregori. Dynamic tuning of the IEEE 802.11 pro-

tocol to achieve a theoretical throughput limit. IEEE/ACM Trans. Network.,

8(6):785C–799, Dec. 2000.

[13] F. Cal̀ı, M. Conti, and E. Gregori. IEEE 802.11 Protocol: Design and Perfor-

mance Evaluation of an Adaptive Backoff Mechanism. IEEE J. Select. Areas

Commun., 18(9):1774–1786, 2000.

[14] G. R. Cantieni, Q. Ni, C. Barakat, and T. Turletti. Performance analysis under

finite load and improvements for multirate 802.11. Elsevier Science, 28:1095–

1109, 2005.

[15] M. M. Carvalho and J. J. Garcia-Luna-Aceves. Delay analysis of IEEE 802.11

in single-hop networks. In Proc. IEEE ICNP’03, pages 146–155, Nov. 2003.

[16] A. Chandra, V. Gummalla, and J. O. Limb. Wireless medium access control

protocols. IEEE Commun. Surv., 3(2):2–15, 2000.



Biblography 135

[17] C. J. Chang and C. H. Wu. Slot allocation for an integrated voice/data TDMA

mobile radiosystem with a finite population of buffered users. IEEE Trans. Veh.

Technol., 43(1):21–26, 1994.

[18] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas. IEEE 802.11 packet delay

— a finite retry limit analysis. In Proc. IEEE Globecom’03, pages 950–954, Dec.

2003.

[19] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas. IEEE 802.11 wireless LANs:

performance analysis and protocol refinement. EURASIP J. Appl. Sig. Process.,

1(1):67–78, Mar. 2005.

[20] C. Chaudet, D. Dhoutaut, I. G. Lassous, and F. ENST. Performance issues

with IEEE 802.11 in ad hoc networking. IEEE Commun. Mag., 43(7):110–116,

2005.

[21] Y. Cheng, X. Ling, W. Song, L. X. Cai, W. Zhuang, and X. Shen. A cross-layer

approach for WLAN voice capacity planning. IEEE J. Select. Areas Commun.,

May 2007.

[22] S. Choi, J. del Prado, S. S. N, and S. Mangold. IEEE 802.11e contention-based

channel access (EDCF) performance evaluation. In Proc. IEEE ICC’03, pages

1151–1156, 2003.

[23] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai. Investigation of the

IEEE 802.11 medium access control (MAC) sublayer functions. In Proc. IEEE

INFOCOM’97, volume 13, pages 126–133, Apr. 1997.



Biblography 136

[24] X. J. Dong and P. Varaiya. Saturation throughput analysis of IEEE 802.11

wireless LANs for a lossy channel. IEEE Commun. Lett., 9(2):100–102, Feb.

2005.

[25] K. Duffy, D. Malone, and D. J. Leith. Modeling the 802.11 distributed coordina-

tion function in non-saturated conditions. IEEE Commun. Lett., 9(8):715–717,

2005.

[26] ECMA International. High rate ultra wideband PHY and MAC

standard ECMA-368, Dec. 2005. available at http://www.ecma-

international.org/publications/standards/Ecma-368.htm.

[27] P. E. Engelstad and O. N. Østerbø. Non-saturation and saturation analysis of

IEEE 802.11e EDCA with starvation prediction. In Proc. ACM MSWiM’05,

pages 224–233, 2005.

[28] P. E. Engelstad and O. N. Østerbø. Analysis of the total delay of IEEE 802.11e

EDCA and 802.11 DCF. In Proc. IEEE ICC’06, pages 552–559, 2006.

[29] P. E. Engelstad and O. N. Østerbø. The delay distribution of IEEE 802.11e

EDCA and 802.11 DCF. In Proc. IEEE IPCCC’06, pages 87–96, 2006.

[30] SM Faccin, C. Wijting, J. Kenckt, and A. Damle. Mesh WLAN networks:

concept and system design. IEEE Wirel. Commun., 13(2):10–17, 2006.

[31] C. H. Foh and J. W. Tantra. Comments on IEEE 802.11 saturation throughput

analysis with freezing of backoff counters. IEEE Commun. Lett., 9(2):130–132,

2005.

[32] A. Fukuda and S. Tasaka. The equilibrium point analysis-a unified analytic tool

for packet broadcast networks. In Proc. IEEE Globecom’83, pages 1–33, 1983.



Biblography 137

[33] Y. Gao, D.-M. Chiu, and J. C. S. Lui. Determining the end-to-end throughput

capacity in multi-hop networks: methodology and applications. In Proc. ACM

SIGMETRICS’06, pages 39–50, 2006.

[34] A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen. Broadband wireless access

with WiMax/802. 16: current performance benchmarks and future potential.

IEEE Commun. Mag., 43(2):129–136, 2005.

[35] S.G. Glisic. Advanced Wireless Communications: 4G technologies. John Wiley

and Sons, 2004.

[36] N. Golmie, D. Cyhper, and O. Rebala. Performance analysis of low rate wireless

technologies for mdeical applications. (Elsevier) Comput. Commun., 28:1266–

1275, June 2005.

[37] D. J. Goodman, R. A. Valenzuela, K. T. Gayliard, and B. Ramamurthi. Packet

reservation multiple access for local wirelesscommunications. IEEE Trans. Com-

mun., 37(8):885–890, 1989.

[38] A. Grilo and M. Nunes. Performance evaluation of IEEE 802.11e. In Proc.

IEEE PIMRC’02, pages 511–517, 2002.

[39] D. He and C. Q. Shen. Simulation study of IEEE 802.11e EDCF. In IEEE

VTC’03-Spring, pages 685–689, 2003.

[40] J. He, L. Zheng, Z. Yang, and C. T. Chou. Performance analysis and service

differentiation in IEEE 802.11 WLAN. In Proc. IEEE LCN’03, pages 691–697,

2003.

[41] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance

anomaly of 802.11 b. In Proc. IEEE INFOCOM’03, pages 836–843, 2003.



Biblography 138

[42] C. Hu, H. Kim, J. Hou, D. Chi, and S. S. N. Provisioning quality controlled

medium access in ultrawideband-operated WPANs. In Proc. IEEE INFO-

COM’06, Apr. 2006.

[43] J. Hui and M. Devetsikiotis. Designing improved MAC packet schedulers for

802.11e WLAN. In Proc. IEEE Globecom’03, pages 184–189, 2003.

[44] J. Hui and M. Devetsikiotis. A unified model for the performance analysis of

IEEE 802.11e EDCA. IEEE Trans. Commun., 53(9):1498–1510, Sept. 2005.

[45] IEEE. Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications (IEEE 802.11), 1999.

[46] IEEE. Wireless Medium Access Control (MAC) and Physical Layer (PHY)

specifications for low-rate wireless personal area networks (LR-WPANs) (IEEE

802.15.4), 2003.

[47] IEEE. IEEE Standard for Local and Metropolitan Area Networks part 16: Air

Interface for Fixed Broadband Wireless Access Systems (IEEE 802.16), 2004.

[48] IEEE. IEEE Std. 802.11e-2005 (Amendment to IEEE Std. 802.11 1999 Edition),

2005.

[49] T. Issariyakul, D. Niyato, E. Hossain, and A. S. Alfa. Exact distribution of

access delay in IEEE 802.11 DCF MAC. In Proc. IEEE GLOBECOM’05, pages

2534–2538, Nov.-Dec. 2005.

[50] S. Jiang, J. Rao, D. He, X. Ling, and C. C. Ko. A simple distributed PRMA

for MANETs. IEEE Trans. Veh. Technol., 51(2):293–305, 2002.

[51] M. H. Jung, M. Y. Chung, and T. J. Lee. MAC throughput analysis of Home-

Plug 1.0. IEEE Commun. Lett., 9(2):184–186, 2005.



Biblography 139

[52] AC Kam, T. Minn, and K.Y. Siu. Supporting rate guarantee and fair access for

bursty data trafficin W-CDMA. IEEE J. Select. Areas Commun., 19(11):2121–

2130, 2001.

[53] F. P. Kelly. Notes on effective bandwidth. In F. P. Kelly, S. Zachary, and

I. Ziedins, editors, Stochastic Networks: Theory and Applications, pages 141–

168. Oxford Univ. Press, 1996.

[54] L. Kleinrock and S. S. Lam. Packet switching in a multiaccess broadcast chan-

nel: performance evaluation. IEEE Trans. Commun., 23(4):410–423, 1975.

[55] L. Kleinrock and F. A. Tobagi. Packet switching in radio channels: Part I–

Carrier sense multiple-access modes and their throughput-delay characteristics.

IEEE Trans. Commun., 23(12):1400–1416, Dec. 1975.

[56] Z.-N. Kong, D. H. K. Tsang, B. Bensaou, and D. Gao. Performance analysis of

IEEE 802.11e contention-based channel access. IEEE J. Select. Areas Commun.,

22(10):2095–2106, Dec. 2004.

[57] A. Kumar, E. Altman, D. Miorandi, and M. Goyal. New insights from a fixed

point analysis of single cell IEEE 802.11 WLANs. In Proc. IEEE INFOCOM’05,

pages 1550–1561, Mar. 2005.

[58] J.-S. Lee. Performance evaluation of IEEE 802.15.4 for low-rate wireless per-

sonal area networks. IEEE Trans. Consum. Electron., 52(3):742–749, Aug.

2006.

[59] M. J. Lee, J. Zheng, Y. B. Ko, and D. M. Shrestha. Emerging standards for

wireless mesh technology. IEEE Wirel. Commun., 13(2):56–63, 2006.



Biblography 140

[60] M. K. Lee, R. E. Newman, H. A. Latchman, S. Katar, and L. Yonge. Home-

Plug 1. 0 powerline communication LANsprotocol description and performance

results. Intern. J. Commun. Syst., 16(5):447–473, 2003.

[61] B. Li and R. Battiti. Supporting service differentiation with enhancements

of the IEEE 802.11 MAC protocol: models and analysis. Technical report,

University of Trento, Italy, May 2003.

[62] Y. Lin and V. W.S. Wong. Saturation throughput of IEEE 802.11e EDCA

based on mean value analysis. In Proc. IEEE WCNC’06, Apr. 23-29 2006.

[63] A. Lindgren, A. Almquist, and O. Schelén. Quality of service schemes for

IEEE 802.11 wireless LANs–an evaluation. Mobile Networks and Applications,

8(3):223–235, 2003.

[64] H. Liu and G. Li. OFDM-Based Broadband Wireless Networks: Design and

Optimization. Wiley-Interscience, 2005.

[65] G. Lu, B. Krishnamachari, and C. Raghavendra. Performance evaluation of the

IEEE 802.15.4 MAC for low-rate low-power networks. In Proc. IEEE ICPCC’04,

Apr. 2004.

[66] K. Medepalli and F. A. Tobagi. Throughput Analysis of IEEE 802.11 Wireless

LANs using an Average Cycle Time Approach. In Proc. IEEE Globecom’05,

pages 3007–3011, Nov.-Dec. 2005.
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