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Abstract

del Pezzo surfaces are isomorphic to either P! x P! or P? blown up a times, where
0 < a < 8. We will look at lines on del Pezzo surfaces isomorphic to P? blown up a
times with 0 < a < 6. We will show that when we count points of bounded height
on one of these surfaces, the number of points on lines give us the primary growth
order, but the secondary growth order calculates the number of points on the rest
of the surface and hence is a better representation of the geometry of the surface.
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Chapter 1

Introduction

Bombieri, Lang, and Vojta have conjectured that for a variety V' of general type
over k, the set of k-rational points is not Zariski dense [8]. If the set of k’-rational
points on a variety V is Zariski dense in a finite extension k' of k, then we say
V has a “potentially dense” set of k-rational points. Fano varieties in general are
conjectured to have a potentially dense set of k-rational points and, in particular,
k-rational points on del Pezzo surfaces are known to be potentially dense [4]. This
thesis looks at counting points of bounded height on rational del Pezzo surfaces.
In particular, all del Pezzo surfaces in this thesis will already have a dense set of
k-rational points so the counting will be done with respect to a height function,
since there are only a finite number of points of bounded height.

Chapter 2 presents background material on heights, intersection numbers, and
del Pezzo surfaces. Chapter 3 works through Manin and Tschinkel’s paper “Points
of bounded height on del Pezzo surfaces,” [6]. They show that for P? blown up at 5
or 6 points, the number of rational points of bounded height on lines corresponds to
the primary growth order and the number of points of bounded height not on lines
gives the error term. Chapter 4 directly calculates an upper bound for the number
of points of bounded height on P! x P! blown up at one point. The calculations
show that, as in the previous chapter, the number of points of bounded height on
lines corresponds to the primary growth order and the number of points of bounded
height not on lines gives the error term. In both cases, however, the “error term”
coming from points not lying on lines is the more significant quantity since it reflects
the arithmetic of the entire surface rather than that of a line.



Chapter 2

Background and Definitions

2.1 Heights

In order to count the number of points of bounded height on a surface over a number
field k&, we need to know how to calculate the height of a point.

We will first consider the case k = Q. For a nonzero rational number x € Q,
define the archimedean absolute value of x to be:
|2]0o = max{z, —x}
Note that this is just the ordinary absolute value on R restricted to Q. Now for
each prime p define the p-adic or finite absolute value of x to be:

’x‘p _ p—ordp(z)

where z = p®®)¢ with a,b € Z and p { ab; in particular, if z € Z then ord,(z)
is the highest power of p dividing x. Let Mg represent the set consisting of the
archimedean absolute value |- |« and the p-adic absolute values |- |, for each prime

.
For a general number field k, an absolute value is any real-valued function
|-k —[0,00)
such that the following properties hold:
(1) |z|=0if and only if z =0

(2) |zy| = |z] - |y|
(3) |z +y| <zl + [y
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In addition, we say the absolute value is archimedean if |z + y| > max{|z|, |y|} and
nonarchimedean or finite otherwise. Let M}, represent the set containing all absolute
values whose restriction to Q is in Mg. Let M}, » denote the set of archimedean
absolute values in k and let M}, ¢ denote the set of finite absolute values in k

We say a point P = [xg : x1 : -+ : x,] has homogeneous coordinates in k if
x; € Oy, where O, is the ring of integers of k, and gcd(:r;l) = 1. Now define the
(multiplicative) height Hy(P) of a point P = [xg : z1 : -+ : x,] in P"(k) with

homogeneous coordinates in k to be:

= H max{|Zo|v, |T1]v, - |[Tnlo}

’UGMk

In particular, when k& = Q,

H(P) = max{|x0|, |‘T1|7 SRR |xn’}

In general, the height function measures the size of a rational point. However,
it is often difficult to directly determine the height function for a general variety V/,
so we use ample divisors on V' together with Weil’s Height Machine to construct
a height function on V. Weil’s Height Machine maps each divisor D on a smooth
projective variety V' to a corresponding height function Hy,p. Recall that Div(V)
is the group of all divisors on V', that two divisors are linearly equivalent if there
difference is the divisor of a rational function, and that Pic(V') is Div(V) modulo
linear equivalence.

Theorem 2.1.1. (Weil’s Height Machine) Let k be a general number field. For
every smooth projective variety V defined over k there exists a map

D~ HV,D

such that:
(a) For any hyperplane h C P", there exists a constant C such that for any point
P e P(k):
Hpn (P) = exp(O(1))H(P)
(b) Let ¢ : V. — W be a morphism and let D € Div(W). Then for any point
PeV(k):
Hy4p(P) = exp(O(1))Hw,p(¢(P))

(¢) For divisors D, E € Div(V) and any point P € V (k).
Hypye(P) = exp(O(1))Hy,p(P) Hy,5(P)

3



(d) If D is ample, then for every finite extension k' of k and every constant B, the
set

Nyvw)(D, B) = #{P € V(K') | Hy,p(P) < B}
is finite. We call Ny (D, B) the counting function of V' with respect to D.

Proof. See, for example, the proof of Theorem B.3.2 in [5]. ]

Thus part (a) of Weil’s Height machine lets us evaluate the height of a point
by calculating the height on P, (b) lets us embed an abstract variety into P" and
thus makes calculating the height much easier, (c) lets us calculate the height of a
divisor in terms of its irreducible components, and (d) shows us that the counting
function is well-defined. In the next two chapters we will use Weil’s height machine
to compute heights on del Pezzo surfaces.

When counting points of bounded height on a copy of P”, it is easiest to use
Schanuel’s theorem to evaluate the counting function.

Theorem 2.1.2. (Schanuel) Let k be a number field of degree d over Q and let
n > 1 be an integer. Then

O(BlogB), ifk=Qandn=1
O(B"+=14) - otherwise

Npn(ry(B) = C(k,n)B"*' + {
where C(k,n) is a constant depending on k and n.
Proof. See the proof of Theorem B.6.2 in [5]. O
Note that this together with part (b) of the Height Machine gives
Npiy (C, B) = exp(O(1)) B4

for any rational curve C' of degree d on P'. In order to calculate the degree of a
curve, we need to know about intersection numbers.

2.2 Intersection numbers

We will assume in this section that all of our varieties are projective. Recall that a
variety of dimension one is called a curve and a variety of dimension two is called
a surface. Thus a divisor on a surface is a finite sum of curves.



Theorem 2.2.1. Let V' be a surface. Given two divisors C,D € Div(V), the
intersection number C.D is the unique function from Div(V') to N that satisfies:
(a) if C" and D are nonsingular curves meeting transversally, then C.D = #{P €
(CND)}.

(b) C.D =D.C

(c) (Cy +Cy).D =Cy.D+ Cy.D

(d) if Cy is linearly equivalent to Co, then C1.D = Cy.D

Proof. See proof of Theorem 1.1 in [3] O

For example, if C' and D are two (distinct) lines on P?, D.F = 1.

The degree of a curve C' is the number of times it is intersected by a line L, i.e.
C.L. Note that the degree is independent of the line chosen.

2.3 del Pezzo surfaces

A Fano wvariety is any smooth projective variety V' with an ample anticanonical
divisor — K. A special class of these, called del Pezzo surfaces, consists of varieties
that are either isomorphic to P? blown up at no more than 8 points or to P! x P!

A line on a del Pezzo surface V' over k is any divisor (or curve) C' defined over
k such that —Ky.C' = 1. We say a del Pezzo surface is split if all lines are defined
over k. In the next two chapters, we will calculate the height of points on del Pezzo
surfaces and we will find that the number of points of bounded height on lines
is greater than the number of points of bounded height not on lines. In order to
calculate the height of points not on lines, however, we need to know what are all
the lines so that we can be sure not to include them.

As an example, we will find the 16 lines on the del Pezzo surface V5 which is
isomorphic to P? blown up at 5 points Py, ..., Ps.

First we need to determine —Ky;. Let L be the divisor class of a hyperplane O(1)
in P. Let 7 be the blowing-down map 7 : V5 — P2. Recall that the anticanonical
divisor —Kpn is (n + 1)H, where H is a hyperplane. Since Vs is P? blown up five
times, we have

5
~Ky, =31"L- ) E
=1

where 37*L comes from P? since a line L is a hyperplane in P? and E; is the
exceptional line associated to the blow-up of the point P;.
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Now, before we can determine which curves C satisty —Ky,.C' = 1, we will first
compute some basic results to use later.

First note that in general, two lines L and L’ on IP? intersect exactly once, so if
we look at the pullbacks of these lines on Vs, we still get 7*L.7*L’ = 1 (Note that
L is a general line and it is not fixed. Thus we may sometimes abuse notation and
write (7*L)? where we mean 7*L.7*L’). On the other hand, the exceptional curves
E; do not intersect a line L in general position on P? since we can choose L to be
whatever line we want, so 7*L.FE; = 0. Also, the E;’s are all parallel, so they do not
intersect and thus when i # j, E;.E; = 0. Finally, we look at the self-intersection
number (E;)%. If L;; is the line on P? passing through P; and P;, then by above, we
have 7*L;;. E; = 0. But we also know that 7*L;; = A;; + E; + E;, where A;; is the
strict transform of 7*L;;. Thus we have (A;; + E; + E;).E; = 0. Now, E,.E; =0
by the above, E;.A;; = 1 by construction, so we must have (F;)* = —1.

Thus, using our above calculations, we get:

5
—Ky, B, = (37°L-) E).E
=1
=1

So we have five lines E;.

Now look at the pullback of the line L;; on P? passing through P; and P; for
@ # j. As we noted above, the pullback 7*L;; is made up of three lines: E;, E; and
a line A;; that intersects both F; and E,. We want the divisor class of A;;, which
is m*L;j — E; — E;. Now when we calculate the intersection multiplicity —Ky;. A
we get:

R
_KV5'(7T*Lij — Ez — Ej) = _KV5-7T*Lij —|— KV5'Ei + KV5-Ej

5
i=1

5
i=1
3—0-2
1

So we have ( g ) = 10 lines A;;.

To determine the last line, we look for a conic. Conics are determined by any
five distinct points they pass through, so we will look at the conic passing through
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Py, ..., P;s. By similar reasoning as in the previous calculation, we can write this
conic as 2m1*L — Zle E;. To verify this is the last line on Vj, we calculate the
intersection multiplicity:

5 5
~Ky,.2r°L =Y E;) = 2(-Ky,)m'L+Ky,. Y E;

i=1 =1
5
= 2B37'L-) E)m"L—5
=1

5

= 6(r"L)’ - (2) _E;).x"L-5
=1

— 6-0-5

=1

So we have found all 16 lines on V5.

Similar calculations give us the lines on other del Pezzo surfaces. The following
table shows the number of lines on V, of each type for 1 < a < 6.

a E; A;; Conics Total number of lines
1 1 0 0 1
2 2 1 0 3
3 3 3 0 6
4 4 6 0 10
5 5 10 1 16
6 6 15 6 27

Table 2.1: Lines on V

Note that the case a = 2 is discussed in the last chapter (where we call A5 E).
The cases 3 < a < 6 are discussed in the next chapter.



Chapter 3

The del Pezzo surfaces of degree 3
to 6

In this chapter, I will work through the paper Points of bounded height on del Pezzo
surfaces by Manin and Tschinkel, [6].

Look at the del Pezzo surfaces that are isomorphic to P2 blown up at a points,
0 < a < 8. Given a split del Pezzo surface V, over k, the degree d is the self-
intersection number of the (ample) canonical divisor. Calculating the degree (and
letting 7 be the blow-down map and L a general line on P?) gives us:

d = K
= (3L-) E)
=1
= (L)’ —67°L.(>_E)+ () _Ei)
=1 =1
= 9-0+(—a)
= 9—a

Let E, represent the set of exceptional curves (lines) on V, and U, the complement
to the set of exceptional lines on V, i.e. U, = V,\ UleEa [. The goal is to prove that
for any € > 0:

1. When a < 3:

[ O(B(log B)®), iftk=Q
N, (=K, B) = { O(B*), in general
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and when a = 4 over Q:

Nu,(=K, B) = O(B(log B)°)

This result will be used to prove the next two:
2. When a = 5:

O(B/4¢), ifk=Q

_ p2?
Ny, (O(1), B) = ¢B” + { O(B3/%¢), in general

and when a = 6:
Ny, (O(1),B) = cB2 4+ O(B3*), ifk=Q

c1B? < Ny, (0(1), B) < ¢uB**=, in general

To prove these results, first look at the exponent on B. Begin with a general
projective variety V' over a (sufficiently large) number field &, an ample line bundle
L on V', and an infinite quasiprojective subset U of V. Define

By (L) = limsuplog Ny (L, B)/log B
which is essentially the largest exponent with respect to B in Ny (L, B); for example
in result 2 above we find (y; (L) = 2 from the term cB?.

There is a unique minimal Zariski closed subset Z in U such that

Pu(L) = Bz(L) > Bz (L)

Note that this means that U is the smallest Zariski closed subset of Z that has the
same growth order as Z and whose complement U\ Z has a strictly smaller growth
order than that of Z. So Z is the union of all the irreducible Zariski closed subsets
of U that have the same growth order as U.

Note that U\Z is Zariski open. Call Z the (minimal) accumulating subset (in
U with respect to L). Letting V = Vi, Z = Zy, and V; = Vp\Zp, we see that by
repeating this process, we construct a chain of open subsets

V=V%DOVD>- DV, D

such that Z; = V;\V;y; is the minimal accumulating subset in V;. We call the
sequence {V;} an arithmetical stratification with growth orders 3; = Py (L).

In particular, we will prove for del Pezzo surfaces over Q with a < 6 if the
exceptional curves are defined over QQ, they form the first accumulating subset.
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3.1 Proving Result 1

3.1.1 Finite heights

For a projective variety V over a field £ and an ample sheaf L on V, we can
decompose a given Weil height Hj into a product of archimedean and finite local
heights via an isomorphism L ~ O(D) for some divisor D. Thus for any z € V\D,

Hp(r) = Hp,oo(2)Hp, ()
where Hp o (z) and Hp, s(x) denote the product of archimedean and of finite local
heights respectively.
Note that if we let D; be the divisor {z; = 0} on P, then:

Hp, jlwg oy - iap) = [ max(jz;/ail,)
UGM}c’f J

To get an estimate for Hp, r, we look for a good way to represent points in P"(k).
Let A be the ring of integers in k, A* the group of units. Choose a family of ideals

ai, . ..,a, C A representing all ideal classes and put

AZIé ={(zo:a1:-12p) € An+1|3iag0d($0,$17 S Tn) = ai}
Note that A* acts diagonally on ATY! ie. for u € A, w(xg: @y : -+ 1 x,) = (ug :
uxy : -+ uTy,). Thus we can identify P™(k) with A;‘rﬁl JA*. From now on when

n+1

we represent a point by its coordinates we take coordinates in AJ% . Thus we can

express the height function above as
Hp, j(x) = di(z)Nyso(w:) (3.1)

where d; : P"(k) — Qs is a finite-valued function. Since d;(x) takes on only finitely
many values y, the range of Hp, ¢(x) is the union of a finite number of copies of Z
with each copy multiplied by a different y. Thus we can think of finite heights as
being almost integers.

Lemma 3.1.1. Let .
n: (P Do) (k) — Q!
i=0
be the map
n(x) = (Hpy, (@), ..., Hp,, 1(z))

Then the number of points x with Hoy(x) < B having the same image n(x) is
bounded by O(1) if k = Q and by O(B*) for any ¢ for general k.
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Proof. When k = Q, we get Hp, ;(z) = |z;| so if we know Hp, r, then we can
reconstruct projective coordinates of x up to a finite bounded ambiguity.

In general, if we know the norm Nj/g(x;), we can reconstruct the ideal of z; in
A since (x;) divides (Ng/g(z;)).

Now suppose that [ is an ideal dividing (Ng/g(x;)). Then Nyq(/) divides
(Nijg(zi))?, where d is the degree of k over Q. Thus there are O((Nyq(z:)))
choices for Ny g(f). We know that Ny q(I) is an integer, so we can factor it in
the integers as a product of primes p;: Ny(f) = pi'ps” - --pir. Over k, the ideal
generated by each p; factors as a product of prime ideals P;; Py - -+ P;,. Thus we
have N o(P;;) = p;” and Zé‘iﬂ a; = d.

Now the question becomes how many ways are there to write e; = Zaijaij
where «a;; is a non-negative integer? Consider the map ¢; : Z! — Z given by
i1, o, .. ) = Za_ja_j. For each i, there are no more than ([[; )l —
, , v] g
;-1 ;-1 ;-1
ﬁi — < (z?z-)li such ways. Since d is fixed and [; is bounded, we see that (;T)l
j 1] 1 3
is O(p;'). Thus, there are no more than O(Nyq([)) divisors of Njq(/). Thus
the number of ideals dividing (Ny/q(z;)) is bounded by C(e)(Ny/q(x;))®, which is

O(B°).

Now take a family of ideals {(x;)} corresponding to a given n(x). From (3.1)
we see that a set of such points is a union of a bounded number of subsets {(z :
E1T1 © E9g © ... EnTy)} Where xg, ..., x, are fixed, and ¢; € A* are variable (g
can be killed by the overall multiplication by A*). Now:

Howy (o : €121 1 €902 1 ... 1 €0y,)
= ( 11 max(1, !w/mld) Hp, (ot 2 @)
’UGMoo -

Note that [T, ., maxi>i(1, [gi2:/70],) < B only if i B2 < gyl < ¢B? for
alle=1,...,n, all v € M, and some constants ¢;,co > 0. Let r; be the number
of real embeddings of k£ and 2ry be the number of complex embeddings of k£ and set
r =1y +ry — 1. Then from the Dirichlet theorem (see, for example, Prop. VI.1.1
in [7]) it follows that there are no more than O((log B)") such units. O

3.1.2 Finite exceptional heights on del Pezzo surfaces

For each | € F,, choose an exceptional height function H; ;. We may assume they
take values in Z- since we already showed that finite heights are almost integers.

11



If F, has e lines [;, set

ﬁ(*r) = (Hll,f(x>7 s 7Hle,f(x)) < Z€>O

To compute Hj, s(x), we represent [; as an infimum (or ged) of divisors D;; for
which Hp,; ; are known, and then

Hlj,f(x) - g(?d(HDmf)

Lemma 3.1.2. If a > 3 then the number of points x € U,(k) with H_k(z) < B
having the same image n(x) doesn’t exceed O(1) when k = Q and O(B®) for any
e>0.

Proof. Look at the birational morphism 7 : V, — P? that blows down pairwise
disjoint lines on V,. Choose three of these lines, call them [y, [5,l3. Note that 7
takes each line {; on V, to a point P, on P2. Choose the lines Dis, Di3, and Dys on
P? so that [; = 7*(D;; N Dyy,) = m*(B;) for {i,j, k} = {1,2,3}, i.e. so that the line
D;; goes through the points P; and P;. Define the line /;; on V, to be the (proper)
inverse image of D;;, 7 1(D;;).

Then by Weil’s Height Machine we have

Hp,, j(m(x)) = Hxop,,s(2)
- d;j(x)lewf(m)Hlij,f(x)Hlyf(x)

where dj;(z) is a finite-valued function.

Thus if we are given 7(z), we can determine n(7(x)) up to a constant, and thus
by Lemma 3.1.1 we can determine 7(z) up to O(1) if k = Q and up to O(B?) in
general for any ¢ > 0, where B is a bound for Ho@y(m(x)). Since —K is ample
there exists a constant ¢ > 0 such that ¢(—K) — 7*O(1) is effective. Then the
Height Machine gives H_g(x)¢ > Hr-01) = Hoq)(m(x)). Thus we can take B to
be a fixed positive power of B. O

Note that the last proof relied on knowing {Hy, ¢(v)} and {H,,, ;(z)} for i,j €
{1,2,3}. So, in other words, if we look at the intersection graph of the [;’s with
the [;;’s and label each vertex with the integer value of the corresponding height
function, then we can determine the number of points with the same representation

up to O(1) if £ = Q and up to O(B°) in general.

Thus when a > 4, we must have strong constraints on {H;, s(x)} and {H,, s(z)}
since choosing any three {i, j,k} € {1,2,...,a} gives us enough information.
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Lemma 3.1.3. (o) If INI' = @, then ged(H,, s(z), Hy ¢(x)) is a finite-valued
function and we say H; ¢(x) and Hy ¢(x) are almost relatively prime.

(b) Consider a complete subgraph A of E, of the form:

1 2 3

Figure 3.1: A subgraph of type A

Then for each i € {1,2,3}, there is a function o; : U,(k) — Af’m»m and finite-valued
function d; : U,(k) — Q* such that

o1(x) + o9(z) + 03(x) =0
Nijoloi(z)) = di(z) Hy, f(z) Hy 4 ()

i.e. o;(x) is the product of the finite heights of the intersecting lines l; and l; shown
in the graph A above.

Proof. Part (a) is classical and was first proved by A. Weil. The proof of (b) uses
technology beyond the scope of this thesis, so the proof will not be included. [

Theorem 3.1.4. For V = V3 over an arbitrary number field k we have:

[ O(B(log B)®), fork=Q
Nuy (=K, B) = { O(B'), in general

Proof. The intersection graph of Ej is the hexagon: (ly, 119, l2, l23, l3,113). Let A be
the class of 7°O(1) in Pic(V'). Calculating the anticanonical divisor gives us:

3
~Ky, = 30=> 1
i=1
= (h+lo+lb)+(i+hs+1l)+(la+los+13) =l — 1o — 13

1<i<3 1<i<j<3

13



Thus for z € Us(k),

H—K('T) = eXp(O(1>) H le(aj) H le‘j<x)

1<i<3 1<i<j<3

> C [] Hi) ] Hi)

1<i<3 1<i<j<3

Now considering H;(x), H;j(x) as independent integer variables, we see there are
O(B(log B)?) different ways to label the hexagon and each labelling corresponds to
O(1) points if £ = Q and to O(B°) points in general. O

Note that this is an overestimate, since it was proven in [1] that for &k = Q:
Nuy(—K, B) = exp(O(1)) B(log B)*

From the blow-down morphism 7 : V3 — P? we see that Ny, (—K, B) > exp(O(1))B,
so that Gy, (—K) = 1.

Theorem 3.1.5. For V =V, over k = Q we have:
Nuv,(—K, B) = O(B(log B)")

Proof. For each A € Ej choose a finite height Hy f(z) : Uy(Q) — Z~o. Then define
the subset UM of U;(Q) to be the set

U™ — {x € Uy(Q) | Hr f(z) = min (Hy ¢(x))}

NEE,

Note that
Us(Q) = U o

AEE,

Thus to prove Ny, (—K, B) = O(B(log B)%), it suffices to show Ny (=K, B) =
O(B(log B)®) for each \ € Ej.

Represent V; by P? blown up at points P,, ..., P; and let 7 be the blow-down
map. Then let \; denote the preimage of p; and A;; denote the inverse image of the
line joining p; and p;.

Look at U and consider the complete subgraph I' of Ej:
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1 23

A A

13 3

Figure 3.2: The subgraph I' of E,

Let A be the class of 7*O(1) in Pic(V}). Note that we can express the anticanonical
divisor —K as:

—K = 3A—Z)\i
3

= Mo+ Ao+ A1)+ M+ A2+ X))+ Qo+ Aoz +A5) = D\
=0
== )\01+)\1+)\12+)\2+)\23

Thus, since H_g(x) < B, we also have the weaker inequality (letting H;(x) repre-
sent H), ¢(x) for ease of notation):

H01 (ZE)Hl(%)Hu(l‘)Hg([E)HQg(l’) S B

Considering each of the H;(z) as an independent variable and writing H; for brevity,
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the following sum counts the number of solutions to the above inequality:

NN S S

Ho1H1H12HoHa3<B Ho1H1H12H2<B H23<B/Ho1H1H12H>

SR A
H01H1H12H2

Ho1H1H12H2<B

IN

O —
H01H1H12H2

Ho1H1H12H2<B

B Z 1 Z 1 Z 1 Z 1
Hy,; H, His Ho
Ho1<B Ho1H,1<B HoyH1H12<B HoyH1Hi2H2<B

:0(BlogB)ZHLm vy Loy L

1 H12
Ho1<B Ho1H1<B Ho1H1H12<B

— O(B(log B)")

IN

However, it is not clear how to reconstruct  with reasonable indeterminacy from
Hoy (), Hy(x), Hizo(z), Ha(z), Haz(2).

Thus we will weaken the inequality further so that we can reconstruct z. Set
Hl(z) = [Hi(z)/Hy(x)] > 1 (since we're in U*)). Then we get

HOl (,CL’)HQ(.CE)H{ (.Z')ng(l’)HQ(QZ)HQg(.’L') S B

Using the same method as above, we get an overestimate of the number of solu-
tions to this of O(B(log B)®). From now on, we will assume we know the heights
Hoi(z), Ho(x), Hi(z), Hi2(x), Ha(z), Has(x).

Calculating the (weaker) estimate O(B°)
(i) Reconstruction of Hs(x), Hi3(z). Consider the subgraph of I':

()\Oa )\017 >\127 )\27 )\37 /\13)
and apply Lemma 3.1.2(b) to get:
dl(x)Hg(a:)Hm(x) + d2<3§')H12(.CIZ‘)H2($> + d3<3§')H3($)H13($) =0

Note that we are using the assumption £ = Q.

Thus we have:
O(B) > dy(x)Ho(x)Hor () + do(z) Hyo(x) Hy(x) = —d3(x) Hs() Hyz(2)
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Knowing Hy(z), Hoi(z), Hi2(x), Hy(z) and letting a = O(B), we can reconstruct
Hj(z), Hi3(x) in O(7(a)) ways, where 7(a) counts the number of divisors of a.
Write a = 2%p7* - - pt» where ey > 0 and the p; are distinct odd prime divisors
of aand e; > 1 for i > 1. If a = 2%p{' ---pir < B, then p;* < B for each i > 1.
Taking the logarithm of both sides gives us e; log p; < log B and thus ¢; < log B for
t > 1 since p; > 2. Also we have 2° < B and taking the logarithm of both sides
gives us eglog 2 < log B which implies ey < 2log B. Thus we have

m(a) = H(emtl)
< zélogB—l-l)(logB—l—l)"
= O((log B)"™)

Let N be the smallest integer such that B is less than the product of the first N
primes. Then max{7(a)|a < B} = O((log B)Y) = O(B?).

(ii) Reconstruction of Hy(x) mod Hy(z). Now consider a subgraph of F; (and
not of T'): (A1, A13, A2, A2z, Ao, Aog) which is isomorphic to I'. From this graph we
get:

dy(2) Hy(x) His(x) + dy(x) Ha(2) Has(2) + di(x) Ho(2) Hoz(z) = 0

Thus, knowing His(z), Ha(x), Has(z) and using Lemma 3.1.2(a) since Hy3(x) and
Hy(x) are almost relatively prime , we can reconstruct Hy(z) mod Hy(x) up to a
finite ambiguity.

(11i) Reconstruction of . Let b = Hp(x) mod Hy(x). We can reconstruct
Hi(x) since Hy(z) = Ho(x)Hj(x) + b. Now if we look at the hexagon subgraph of
[ (A, Ar, Aa, Aos, Az, Ai3), we know all of the associated heights and thus by the
proof of Lemma 3.1.2, we can reconstruct x up to a finite ambiguity.

Calculating the estimate O(B(log B)®)

To get the sharper estimate, we normalize the points we blow up so that the
function d;(z) in Lemma 3.1.2(b) only takes on the two values +1 and thus allows
us to refine step (i) above.

Choose coordinates in P? in such a way that Vj is isomorphic to P? blown up at
Po=(1:1:1),P,=(1:0:0),=(0:1:0), =(0:0:1) and let 7 : V;, — P?
be the blow down map. Let A; and \;; be as before. Let x € Uy(Q). Then m(x)

can be represented by (1, z2,23) € Z3 ;.

17



Define the following ten integers for {7, j, k} = {1,2,3}:

d; = ng<xj7 xk)

Yi = l’i/djdk

D = ged{yidr — yrd;}
ik

i = \yidy, — yrd;| /D

Each of these integers is the finite height associated to a line A € E;. The corre-
spondence is shown in the following table.

)\i : )\0 )\01 )\1 )\12 )\2 )\23 )\3 )\13 )\02 )\03
Hi(x): D 2z dy |ys| do |yu]| ds |yo] 22 23

Table 3.1: Lines on Ej4 and their corresponding finite heights

To see the correspondence, note that d; will be nonzero everywhere except on
the corresponding line. But d; = ged(z;, z) is only nonzero when z; = x; = 0, i.e.
on ;. Similarly y; is nonzero when z; = 0 and z;z;, # 0, i.e. on the line \;j;. D
is nonzero when y;dp = ypd; for ¢ # k which happens when x; = x5 = x3; i.e. on
Xo. zj is nonzero when xy = xy = x5 or when |y;di, — ypd;| = 0 and D # 0, which
happens on A;.

The following figure shows all the subgraphs of type A with the vertices labelled
by their respective finite heights.

VAPRA D _lyl_ly,l D _ly,| _lyl
ZZ 3 1 Z3 2 1 Zl 3 2

VAP ABRA d _d _d

1 2 3 1 2 3

Figure 3.3: Subgraphs of E, of type A
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For each subgraph, take the product of the labels of each pair of connected
vertices. Note that one product always equals the sum of the other two:

So in the first case we have:
Dzy = |y1d3 — y3di|
which implies

Dzy = |yn|ds + |ys|di, ifyn >0>yso0rys >0>y
lys|dy = Dzo + |y1]ds,  ifyr1,y5 <Oory; =0
\y1]ds = Dzy + |ys|dy, if y1,y3 >0o0rys =0

The second and third cases are similar.

In the fourth case we have:

lyilzr = |yil |yads — ysda| /D
[y1Y2d3 — Yaysdi + Yaysdi — y1ysda|/ D
= [y2(y1ds — y3d1)/D + y3(y2di — y1d2)/D|
= E|yolze £ |yslzs

In the fifth case we have:

diz1 = dilyads — y3da|/ D

= |y2dids — yadads + ysdads — ysdida|/ D
|ds(y2di — y3d2) /D + do(ysds — ysdi) /D]
= d3z3 = dazs

Now we find an upper bound for H_g(z) using the procedure from (i) - (ii7)
above. As before, for brevity, we will write H; for H;(x). Thus we have:

NU(A)(—K, B) S C Z 7'((51H01H0 —|— 52H12H2)

Ho1HoH{H12 H2Ha3<B

where §; = +1 by construction.
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Then we have:

Z 7(61Ho1 Ho + 02 H12Hy)
Ho1HoH{H12 H2 Ha3<B

= Z T(01Hor Hy + 92 H12H>) Z 1

Ho1HoH12H2<B H{ H23<(B/Ho1HoH12H2)
< 0 Ho1 H 0oH{9Hy)—————(log B+ O(1
o H;H<BT(1 oo Ot 2)15[0111101[[121112(% +O)

01HoH12H2<

b)T (o Oab
- <Z 7(a)7( )T(b1a+ 2 )) (Blog B + O(B))
a
ab<B

where a = Hy1 Hy and b = Hi5Hy. Now we just need to show:

Z T(@)T(b)Ta(gla—l— d2b) _ O((log B)?)

Step 1: Prove

g(n) = Z 7(a)T(b)7(d1a + d2b) = O(n(logn)*)

ab<n

Recall that we are trying to reconstruct Hs(x) and Hi3(z) from He(x), Ho(z),
Hi(x), His(z), Ho(x), Hoz(x). By construction, we know that Hsz(x)His(z) =
+Hoi(z)Ho(x) &+ Hio(x)Ho(x) = 010 + d9b. Thus 6; depends on a,b. However, it
suffices to prove this estimate for constant ¢;’s in two separate cases:

(i) when 61 =1, 0y = —1, and a > b

(ii) when 6; =d, =1l and a > b

Note that in the second case, if we let @' = a + b, b = b, then ¢’ > b and

a'tl = (a+0b)b = ab+b*> < n+b* < 2n. Thus we can see that the second case
reduces to the first one:

Z 7(a)T(b)T(a +b) = Z 7(a = b)r(b)7(a")
e

So from now on we will assume we are in the first case.

Y rla)yr)r(a—b) = > () > 7(a)r(a—Db) (3.2)

ab<n b<n b<a<(n/b)
b<a
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Note that for a fixed b:

> r(a)r(a—1b)

b<a<(n/b)
< Z 7(a) Z T(a —b)
b<a<n/b 0<a—b<n/b—b
< ) T 2 D
b<a<n/b 0<rs=a—-b<n/b—>
0<s<r
< (Y Trs+0)(2 > 1)
0<rs+b<n/b 0<rs<n/b—b
0<s<r
ce Y e Y
0<pg<n/b 0<rs<n/b—b
0<g<p 0<s<r
pg=rs+b
Sy
0<g<p
0<s<r

rs+b=pqg<n/b

S S
0<q,s<4/n/b 0<p= (n/bq)

pg=b mod s

IA

Define the following function and recall that b is fixed:

w(g,s) = #{p mod s|pg=>b mod s}
B { d = ged(q,s), ifd|b

0, otherwise

Note that in the range {1,...,[;]} there are no more than (bqls + 1> distinct sets

{c+1,c4+2,...,¢c+ s} of length s. For each set {c+1,c+2,...,c+ s} we see that
there are w(q, s) number of p’s. Continuing our approximation, we get:

<4 > a&q,s)(Eg;—k1>

0<q,s<+/n/b
n
A
djb 0<gq,5<+/n/b

(¢,8) =(0,0) mod d
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Assuming (g, s) = (0,0) mod d, we can write ¢ = zd and s = yd. Then continuing
the approximation, we get:

INA
M~
Y
VN
S
N
o
R
&ﬁ
~
\_/@‘
+
@)
=
+
QU3
~
S
+
[S—y
N——

AN
i
| —
N
gl=
)
g
SIS
+
@
/N
g
N—
SN—

< 422 (%log% (10g( Z/b) +O(1)> +0 (%(IOQS( Z/b) +O(1))>>

< 4o_4(b) <ﬁ log® 2y O(E log 2))

where o_1(b) = Zdlball
Returning to 3.2, we get:

Sy Y T@ﬁ@—b)§§4§:dMaﬂ®(%b§%+%X%bg%D

b<n b<a<(n/b) b<n

< 4(n(logn)?+ O(nlogn)) Z %T(b)a_l(b)

b<n

— O(n(logn)")

Step 2: Let ¢, = > 4, T(@)T(b)T(81a 4 02b) and f(n) = L. Since we then have
g(m) =3, ., Cn, We can use Abel’s summation to get:

EZTWVQ&$M+%M _ %§%+[ o) du
= O((log B)Y)+ O </B W du>
= O((log B)*) + O((log B)*)

= O((log B)")
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3.2 Proving Result 2

Lemma 3.2.1. Let a > 2. Let {ly,la,...,l.} be the set of all exceptional lines on
a del Pezzo surface V.= V41 of degree 8 — a. The class of their sum in Pic(V')
equals g% (—Ky).

Proof. Let W, represent the formal symmetry group of the configuration of lines
l;, in other words, W, is the group of the permutations of lines that preserves their
intersection indices. From the classical identification of W, ; with the Weyl group,
it follows that the subgroup of W, -invariant elements is cyclic, with generator
—Ky. Thus

izi — C(—Ky)

In order to determine C', we just intersect both sides of the above equation by — K\, .
Note that (—Ky)? = 8 —a. And since [;.(—Ky) = 1, we have (37, [;).(—Ky) = e.

Thus C' = = ]

Corollary 3.2.2. Choose some Weil heights H_i and H,), for all i. Then there
exists a constant A such that for every x € U,11(k) one can find a line | = [(z)
with the property:

H(w) < A(H_g ()"

Proof. From Lemma 3.2.1 we get:

° e
; 8_@( V)

Thus by Weil’s height machine we get that:

[ H..(z) = exp(O(1)) (H_g ()~

Since there are e lines [;, we must have at least one line [ with

Hi(x) < A(H-g (2))"/"
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Note that the same argument shows we must have at least one line I’ with
Hy(x) > B(H_jo(x))"/

Thus since there are an infinite number of points © € U, (k) and only a finite
number of lines [ € E,y;, there must be at least one line ! such that Hy(x) >
B(H_g(x))"®= for infinitely many 2. Thus the exceptional height has the same
growth order as the ample height infinitely often.

Theorem 3.2.3. Assume that for a given ground field k, some a > 2, and all split
del Pezzo surfaces V, of degree 9 — a over k we have:

ﬁUa(_K) S /BCL
Then for all split del Pezzo surfaces V, 1, we have:

9—a

/BUU.+1<_K) < ﬁa-H = ] _ aﬁa

Proof. Fix k, a split del Pezzo surface V,, 1, and some heights Hy, H;, on V,1(k).
By Corollary 3.2.2, we can partition U(k) into a finite number of subsets U; ordered
by lines [ such that for all z € U;, Hj(z) < A(H_g(x))"/®=). It suffices to prove
the number of points z with H_f,,,(z) < B in U, is O(B%+17¢) | Embed [ into a
maximal system of pairwise disjoint lines on V1 : ly,ls,...,ls,lo+1 = [. Denote by
7 : Vay1 — P? the morphism that blows down this system. Let A be the class of
7*O(1) in Pic(V,41). Choosing all necessary Weil heights, we have for « € U:

H—Ka+1 (l‘) = eXp<O(1))H3A—l1—"~—la+1<x>
= exp(O(1))Hi(x) ™ Han—ty .t (¥)
> CH_g,,, ()" " Y H_g, (o(2))

where o : V1 — V, blows down [,,; = [.

Thus for x € U;:

H g, (z)"V9 > CH g, (o(x))

a+1

which implies
H—Ka+1 (I) Z C/(H—Ka (o‘(;p)))(s_a)/(g—a)

We assumed that the number of points o(z) with H_g, (o(x)) < B is O(BP*¢).
Thus when

B>H g, (x)> C’(H_Ka(U(x)))(éé—a)/(fa—a)

a+1
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we have f,11 = =20, + €.

]

Now for k = Q and a = 4, Result 1 tells us that that fy,(—K) < s =1 +¢,

and so applying Theorem 3.2.3 we get:

Bs = 354 =—-+c

Be= 305 =5+e¢

Similarly, for a general field k£ with a = 3, Result 1 gives us fy,(—K) < 3 =

1+ ¢, and applying Theorem 3.2.3 gives us:
6

Bi= 205 25—1‘5
3
Ps = %54 =§+€

Bs= 30 =2+e¢

Thus by considering V5 and Vg as blow-ups of V3 and V, we get result 2. Note
that when k = Q, we use the smaller set of values for 34, 35, 3¢ since both sets

represent upper bounds on the actual growth order.
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Chapter 4

The del Pezzo surface of degree 7

Let V be P! x P! blown up at ([0 : 1],[0 : 1]). In this chapter, we compute the
number of rational points P on V' that have height Ho(P) less than or equal to B,
where C' is an ample divisor. Since V is birational to P2, we know that the Néron-
Severi group of V., NS(V) is actually equal to Pic(V). Thus NS(V) @ R = R",
where n is an integer, has an intersection product. We will show that, as in the
last chapter, although the number of points of bounded height on lines dominates
our growth rate, the number of points of bounded height not on lines is a better
representation of the geometry of the surface.

To calculate the height of a point we first determine what are the ample divisors
on P! x P!, We look at the effective cone NE(V), which is the cone generated by
effective divisors on V. Its closure is denoted by NE(V). The cone of ample divisors
is the dual of NE(V') and if we take its closure, we get the nef cone, which is the
set of divisors {D : D.C > 0,VC € NE(V)}.

Define 7 to be the blowing-down map 7 : V — P! x P! and 7; : V — P! to be
the composition of 7 with the projection onto the it factor. Then Fj is the class
of 7 *(P), where P is a generic point in P'. Thus we can write F; = 77 (P). Let
F; represent the strict transform of the line [0 : 1] X P! and let F5 represent the
strict transform of the line P! x [0 : 1]. Observe that Pic(V) is spanned by the
divisor classes Fi, Iy, E, where E' is the exceptional divisor of the blow-up. Thus
any divisor D on P! x P! has the form D = v, F| + Yo F, + 3 E, where the v; are
integers. We need to determine what are the restrictions on the ~; so that D is
ample, i.e. so that D is in the nef cone. To do this, we first calculate NE(V) and
then take its dual.

We want to find a basis for NE(V), so we note that E, F, — E,F, — E are
all effective divisors since we can express F; as the sum of the line F; and E and
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F3 as the sum of the line Ey and E. To determine whether they are a basis for
NE(V), we compute the dual of the set they generate: {D : D.E > 0,D.(F}—FE) >
0,D.(F, — E) > 0}.

To determine which divisors are in this set, we must calculate some intersection
multiplicities. First note that F; and F3 intersect at one point and so Fi.Fy, =
F5.Fy = 1. Then note that in general, F; does not intersect E, so I}.E = F».FE = 0.
Also, if we choose two different representatives for F;, they are parallel and do not
intersect, so F2 = FZ = 0. To determine E?, recall that we can write F} = E| + E.
Thus we have 0 = F|.E = (E, + E).E = E;.E+ E? Thus E* = —F,.E = —1 since
E, and FE intersect exactly once.

Using the intersection multiplicities calculated above we get:

-3 =
Yo+73 = 0
M+ > 0

To determine the generators of the dual, we look at the condition —vy3 = yo+v3 =
0, which implies 75 = 73 = 0, so F} is a generator of the dual. Similarly F; is a
generator of the dual. The condition v + v3 = ¥9 + 73 = 0 implies v; = 15 = —73,
so F1 + Fy, — E also generates the dual.

If these three generators are all nef, then we know we chose the right basis and
we're done. Fi and Fy are obviously nef. To see that F| + Fy, — F is nef, note
that we can write Fy + F» — F as (F} — E) + F; and as F} + (Fy, — E). Thus
E(Fi+F,—FE)=EF +EF,—E*=1and

(FL —E).(FL+F,—-E) = (FL—E).((F\-E)+ E)
= (FL—E).(FL—E)+(F,—E).F,
= (F} —2E.F, + E*) + (F\.F, — E.F)
= —1+1
=0

and similarly, (F,—FE).(Fi+F,—FE) = (Fo—FE).((F,—E)+F,) = 0,80 F1+F,—E is
nef. Thus the ample divisors on V" are of the form C' = ay Fi + oo Fo+ 5(F1 + Fo— E),
where aq, as, 3 > 1 are integers.

Note that there is a birational morphism ¢ : V' — P? that maps ([p : ¢l,[s :
t]) — [gs : pt : ps| for (p,s) # (0,0) and F — {z = 0}. Note that this map
takes [0 : 1] x PY to [1 : 0 : 0] and P* x [0 : 1] to [0 : 1 : 0]. Note further that
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Vv '{z=0}) = FUE,UE; and *L = E + E| + E,, where L is the class of a line
in P2. Thus calculating the height of the point ([p : ¢|,[s : ¢]) on V with respect
to I + Fy, — E = E + E| + F5 is equivalent to calculating the usual height of the
point [gs : pt : ps] on P? by Weil’s Height Machine.

Assume ged(p,q) = ged(s,t) = 1. Set g = ged(p, s) and write p = gp’ and
s = gs'. Then
He(lp gl [s: 1) = max{[p|, |q|}** max{|s], [t|}**(max{|gs], |[pt|, [ps|}/9)”
= max{|gp/[, [q}** max{|gs'|, []}** max{|gs'|, [p't], |gp's'|}".
Now we look at the possible cases:
Assuming |p| > |q| and |s| > |¢| gives us

Ho(lp:ql,[s:t]) = |gp'|*|gs|*?|gp's')’
ga1+a2+,@|p/|a1+6|8/|a2+ﬂ

Assuming |p| > |q| and |s| < |t| gives us

Holpralls:t) = || "I/t
=

Note that if we make the substitution v = 5, we get:

Hc([P : q], [s . t]) _ ga1+az+ﬁ|p/|a1+ﬁ|u|az+ﬂ

Thus we can calculate the height in this case by using the same bounds as in the
first case.

Assuming |p| < |q| and |s| > |t| gives us

Ho(lp:ql,[s:t]) = |q|*[gs'|**|qs'|"
g°2|q| 7'

Note that if we make the substitution v = g, we get:

HC([P . q], [s . tD _ ga1+a2+ﬁ‘v|a1+ﬁ‘8/’az+ﬁ

Thus we can calculate the height in this case by using the same bounds as in the
first case.

Assuming |p| < |q| and |s| < |¢|, we have
He(lp:ql,[s:t]) = lal*[t]** max{|qs'], [p't]}”

Note that we cannot make a nice substitution as above, so we need to consider the
two cases |¢gs'| < |p't| and |¢s| > [p't].
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4.1 |p[ = |g| and [s| > ||

Going back to our first assumption, |p| > |¢| and |s| > |¢|, we calculate the number
of points ([p : ¢, [s : t]) such that Ho([p : ¢|,[s : t]) < B. We fix g and count the
number of points with g®1+azt8|p/|a1+h|g/|a2 0 < B,

Note first that |t| and |g| both have a lower bound of 0 and upper bounds
of g|s'| and g¢|p| respectively. Taking t = 0 and ¢ = 0 shows us that |s'| and
|p'| both have lower bounds of 1. Further note that |s’| has an upper bound of

1
|s'| < (W) " from the inequality g™ +tezt8|p/|[o1+8|g/|2t8 < B. To
get an upper bound for |p/|, note that if |s’| = 1, then |p'| < B/g*Fe2+5,

The main term M in our calculations comes from the assumptions that |p/| > 2
and |ql, |$'[,|t] > 1. The error term Err comes from the cases where |p'| = |¢| = 1,
lg| = 0, or |t] = 0. Thus the total number of points for a fixed g with height less
than or equal to B is 4M + 4Err. The constant 4 takes into account that for each
point of the form ([p : q], [s : t]) with p, q, s, positive there are three other points:

([_p : q]u [S : t])7 ([_p : Q]’ [_S : t])v ([p : Q]v [_S : t])
The lattice of integer points under the constraints above (slightly) overesti-

mates the number of points with height less than B. We count each lattice point
(Py, Py, Py, P, P.) by associating to it the hypercube

g q ' t s’
/ / / / / 1ds" dt dp' dq dg
g—1Jg-1Jp'—-1Jt—-1Js'—1

We then integrate 1 over ¢, t, p’, ¢, and g, using the bounds from above. Note
that we should subtract 1 from each lower bound that to ensure that we include
the entire hypercube.

Note that the following expression overestimates the number of possible values
for ¢ and t. To get a closer approximation we should integrate over ¢ from 0 to
o(p') and over t from 0 to ¢(s’), where ¢(x) is Euler’s function.
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Calculating 4 M:

a1+B

(B/ga1+a2+ﬁ 0‘1“"/8 gp B/ga1+a2+ﬁ O‘2+ﬁp T agtp gs’
AM < 4/ / / / 1dtds dgdp
1 0

a1+B

/(B/ga1+a2+ﬁ) a2+ﬁp/ Tas+p

= 447 P s'ds' dp'

/(B/g&1+a2+ﬁ)oq+ﬁ

1 0

1

(B/ga1+a2+ﬁ)m

- apsglh ) | ()
1

P (1 23;12) dp'

= 9Baxts oz2+ﬁ g T axt+p

1
/ (B/greato)as?

1

Note that oy = ap if and only if 1 — 2o‘1+ﬂ —1, so there are two cases to consider
when we evaluate the remaining integral

4.1.1 a1 7é 07%)

We will start with the case oy # as and evaluate the remaining integral in the
above expression.

P (1 Qzéig) dp/

/(B/ga1+042+6)a11+,3

1

a1+8
i (e
2— 2“1+5 g 222110
ag+p agt+h

_ 1 4P (B/ga1+a2+ﬁ)2(ﬁ*ﬁ) 1 oo+p

2 ag—aq 2 ag—aq
1 1 1 1
_ 1lootp BZ(W*W)Q*Q(alJrO&QJrﬁ)(W*m) 1 4P
2 ag—a 2 ag—ay
11 _of_ 22 o
_ latBp (a1+ﬁ a2+ﬁ>g 2(a1+5 a2+6> 1 ax+B
2a2 [e%1 2 ag—aq
Returning to our main term, we get:
ﬂ1+6
(B/ga1+0c2+ﬁ a1+/3 B/ga1+a2+5 02+5p az+p gs’
4/ / / / 1 dt ds' dq dyf
1 0
2079
_ it BalJrgg a1+@ a2+ Ba2+ﬂg as 18

Q2 —0q Q2 —0q
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1
Now we sum over the possible values for g. Note that g goes from 1 to Beite2ts,

If g = 1, then we have this many points (plus an error term which we will
calculate later as part of Err) with height less than B:

2 2
ootB payTs _ 2248 payts
ag—o Q2 —Q]

Note that the following integral sums the number of points as g ranges from 2

1
to Beitax+s,

a2—Qaq a2—aq

1
Boai1tast+pB ) 20y ) 20,
/ 22HB BarTE g e — Q2db ngw) dg
1
1 1
18 2 Bevtets ., +8 P Bovtexth g
— 2 a1 +3 T o+ _ 27D Doyt T agtB
Qaz2—aq L 1 9 ! dg a2—Qj B2 1 g 2 dg

Evaluating the first integral gives:

1
) Bai1tas+B 20y
Bai1+s g cths dg
1

2 %(1_%4) .
Boi+s T Beaitax+s ats) — 1|, if 2a9 7& o1+ ﬂ

= T aptp
2
I8 1 .
0‘1—4'33<m2+5+a1+(112+6 (1—a21a+25)> _ MBﬁ if 200 # g + 3
= a1+B-2az ) a1+8—2as ) 2 1
1 I3 . i
mB 1+8 lOg B, if 2@2 =oq + ﬁ
3(a1+8) 2
_oatp 18 (a1 tagtd _ _ 1tpB 58 :
— { a1+572a2§( ety a1+572a2B 1+, if 20 7é o1 + ﬁ
1 Sas . .
w2, D2 log B, if 200 = a1 + 3
a1+ # . a1+ % .
— a1+ﬁ’%02B 1re2ts a1+572a2B e, if 20 7é oy + ﬁ
ﬁBglogB, if 200 = a1 + 3

Similarly, the second integral gives us:

1
) Bai1tag+B ooy
Boats g 28 dg

1

{ _os48  parverts _ _0t8 _BmIE if 90y £ ap + f

a2+ﬁf%a1 az+fF—2a1
ﬁBalogB, if 200 =y + 3
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Now we substitute into our original equation and add in the term for g=1. If
209 # a1 + [ and 2aq # ap + 3, then the number of points with height less than B
is:

3(a1+6) (a2 +p) —3 209 —2 201 2
ajtag+f — 222 Paj+p — 221 PRoag+p
(a1+[3—2a2)(a2+6—2a1)B a1+B—2a2 B ag+B—2a1 B

which 1is

O(Ba7279),  if 245 < a; + § and 20y < as + 3
2
O( Bmax(55) ), otherwise

Note that 2as = a7 + 6 and 2a; = ag + [ are both true only when oy = an = f3,
which is not possible since we’re assuming a; # as.

Assume 2as = aq + 4. Then we cannot have 3 = «; since then we would have

a1 = ag = 3. The number of points with height less than B is:

azt+f Boé2 log B — (a2+6 BD‘2 + 3(a2+ﬁ)2 BD‘2+5

3ag(aa—ar) 3(az—a1) (az—a1)?

which is

O(Bc%z logB), ifay>ao
O(Bﬁ)7 if Qg < O

If 2a; = g + (8 then the number of points with height less than B is:

2041(041+,6)ch + wBaﬁ-ﬁ —

3(az—aq)? 3(az—a1)? 3(a2 a1

Ba log B

which is )
O(B?l 10gB), if ap > an
2
O(Baﬁ-ﬁ)’ if a1 < ap

4.1.2 a1 = (9

Consider the case oy = ay. Set o = oy = e for ease of notation. Then

pl—l dp/

/(B/g2a+ﬁ)ﬁ

1
— a+g log (B/gQOH—B)

= a+ﬁ log B — 2°‘+’3 logg
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Returning to our main term, we get:

(B/g2eth)ats (B/g*+0) a8 gs'
4/ / / / 1dtds dqdp’
0

= 2Bmg atp (mlogB - 2;1*; 10gg)

Now we sum over the possible values for g. Note that g goes from 1 to B 7078,

If g = 1, then we have this many points (plus an error term which we will calculate
later) with height less than B:

1 1 ot

BotB p/ Boa+t P a+
4/ / /
1 0 0

2
QLJFBB o+ log B

/ 1 dtds' dqdp’
0

1
Now we sum over g from 2 to Beitez2+5,

B8 2 2
2/1 Bath g ats (a—}rﬁlogB - QSL? logg) dg
, B2a+8 B2a+B )
%BB?W ]og B/l g a+ﬁ dg io-:;ﬁ)BCHB /1 gfm logg dg
Now assume a # (. Evaluating the first integral gives us:

B2(¥1Jr,8
_ 2«
/ g a+p dg
1

= (Bza+z3( 2%%) — 1)

12a_+5

Then we look at the second integral:

BIaTs .
/ g =3 loggdyg
1

= = 2782&4’,@( 2a+6)20ﬁ+ﬁ log B — (ﬁ) BZaquﬁ<172a7+B) + <#>

a+p

— ofb ars (12233 +8 grars (1-2a35) 4 atf
= g:<2a+532 +ﬁ( +ﬂ)logB aaB2 +B( +@)+g >



Substituting back into the original equation, we get:

B#7 log B (Bm%(l‘?aaTd _ 1)

P 2250)
(Zazﬁ)gaw (_zaiﬂgﬁ(lﬁﬁiﬂ) log B — %Bﬁ(l—%ﬁ) + g%ﬁ)
= 2 (Bﬁ log B — Ba7 log B)
52 (B o - 52D 1 207
— __2 paip (2a+5)(a+5) 25 _ 2Qap8)(e+B) pats
= —g B log B+ 25520 B 2 Goa)r DB
Now when we add in the number of points with g = 1, we get:
2(2048)(a+B) prarp _ 2204B)(ath) pis
G BT log B+ HEAG B oy B
which is .
O(B%5), it 3> a
O(B+log B), iff<a
If a = (3, we get:
1
B 11 3
2/ Baag™ (—logB—Elogg) dg
1
= L Ba(log B)? — & B« (log B)?
= L, Ba(log B)?
Thus the total number of points we get if a = 3 is:
L Ba(log B)* + LBalog B
which is )
O(B= (log B)?)
4.1.3 Error term
Now to calculate the error terms. We've ignored the cases where [p'| =1, |¢| =0

or [t| = 0.
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If |p'| = 1, then our points look like ([g : ¢|, [9¢" : t]) and Ho([g : q],[gs" : t]) < B
means that we must have goiteztf|s/|2+hf < B,
For a fixed g, the number of points with height less than or equal to B is:

1 _ajtag+pB

g pBe2TPg o2 B g
4 / / / 1dtds' dg
o Jo 0

1 a1 tag+p
a9+

Ba2+597
= 4g2/ s’ ds'
0

2(aj+ag+p0)
(27 }12+2g )

= 2B 0422+Bg
2aq

Note that if 2a; = ap+ 3, then % = —1. First look at the case when 2a; # as+f.

If we sum over the g’s, the number of points of the form ([g : ¢|, [gs" : t]) with
height less than B is:

1
) Ba1+&2+3 2oy
2Ba2+ﬂ g ag+3 dg
0

2 1 20
1—
,22a1 Bt artagrs (17575
a9+

2(02+8) parTesTH
_ame THe) 1+ag+0
az+B—2a1 B

which is: .
O(B a1tag+B )

Now look at the case 2a; = as + . Then the number of points of the form
([g : ql, g : t]) with height less than B is:

1 Bﬁ 1
2B°1 / g tdg+2Ba1
1

%Ba log B+2B~

which is )
O(Be1 log B)

Now we count the number of points with |¢| = 0, or |[t| = 0. We will start with
the case |¢| = 0. Then our points look like ([1: 0], [s : ¢]) and Ho([1:0],[s : t]) < B
means that we must have |s|*2*# < B.
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The number of such points is given by:

Ba21+ﬂ s
/ / 1dtds
0 0
1

Be2th

:/ s ds
0

frmnd %B 0422“'[1
Similarly, the number of points with |t| = 0 is:
1pme

Thus our error term is:

O(Bmax{ a1+i2+ﬁ’a12+ﬁ’a22+ﬁ}), if 200 £y + 3

O(B‘%l log B), if 2a; = as + [ and a; > as
2

O(Bai75), if 200 = g + B and oy < ap

Compare this to our main term, which we calculated to be:

When oy # ag, 201 # as + (3, and 2 # o + [

2

NV\Z(C, B) — O(Bmax{a1+22+ﬂ’a12--6’a2+;3})

When oy # as, 200 # as + (, and 209 = oy + [

O(B# log B), if as >

Nz (C, B) = :
(G 5) {owww% if ap < o

When aq # as, 200 = as + 3, and 2ay # a1 + 3:

O(Bchl log B), if a3 > ay

NMnz(C,B) = 2
V\Z( ) { O<BW)7 if o) < Qo

When «a := a1 = as and a # (-
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O(B=), if 8> a

N C,B) = 2
nal ) { O(B=+slogB), iff<a

And finally, when a := a; = ay = (-

Ni\z(C, B) = O(Bx (log B)?)

In each case, the error term is no larger than the main term, as desired.
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4.2 |p[ <lq| and [s| <[]

Recall that ged(p, q) = ged(s,t) =1, g = ged(p, s) and p = gp’ and s = gs’. Then
if |p| < |q| and |s[ < [¢], we have

Hellp:al s 1) = max{lpl, oy mac{|s|, 1} (mac{lgsl, pt], psl}/9)°
masc{|gp'| [} masc{|gs'| [} macx{ '], It |ow's |}
|| [t]2 max{qs'], [p't]}”

So we have two (symmetric) cases to consider: |¢s'| < |p't], |qs’| > |p't].

Assume |gs'| < [p't|. Then
He([p - ), [s 1)) = la|* /| ]t *+*7

Note we get two upper bounds for |s'|: one from the inequality |¢s’| < |pt| and

the other from the inequality |gs’| < |t|. Since

£ = 2] if and only if || = |gp]
which is one of our assumptions, we have that "%‘ is the better upper bound for
our integral. |s| has a lower bound of 0.

For |t|, we get an upper bound from the inequality |q|*![p’|?[t|]*>*® < B and a
lower bound from the inequality |¢s’| < [p't], letting |s'| = 1 (We’ll ignore the case
|s'| = 0 for now and calculate it later as part of the error term). This means that

1
we also must have (W) 2> |1%| or, equivalently, B|p'|* > |g|*1 20,

For |p'|, we get an upper bound from the inequality |gp/| < |g|. Note that

| has a lower bound from the inequality Blp/|*> > |¢[****2*7. Note that %' -
(M)é implies B > g°|q|**7.

For |q|, we get an upper bound from the inequality B > ¢°2|q|**#. |q| has a
lower bound of g.

Thus, to count the number of points with height less than B, we will evaluate
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the following integral and add in some error terms later:
_1
% (p’ﬁ?;al )a2+ﬁ e
/<qa1+oc2+3>0‘12 [] /0' 1 dS dt dp dq
B Iy

)2 +[3 /

9 ( /5 &3 t
’ N P dy dg
<qa1+a2+6) a2 [gq q
B

I’

4/(9“5'2)(”%/3 o ( B )a;ﬂ? 7 i d
= 1 - p' dq
g <qa1+§2+3>a2 2 \ \p g™ (p)?

_1

q
/g (Ba2+,6p (1 ajiﬁ)q(_l_az-‘rlﬂ) q( ) > dp dq

a1 tag+p
B

Y .
(Bt ()0
2

T ag+B g

1 28
2 (2-5535) 204
_Baars 125 <qa1+g2+6> ag az+pB q(_l_a2+,5)
2—

(log; — log (Lw> = )) dq
1

<g‘%>aw3 200 (q_Aq+B)y
- / <a2+ﬁB&z+"g w1 ) 4 2t g log g
9

+ (2logg — a%logB— %ﬁ)q) dq

Now we must consider two cases: a; # ap and a; = Qs.

When a; # ay , we get

1 B\ et (o +5)
2 @ [e% 2(aq+
a2+ﬁBa2+ﬁg azfﬁ 1 2 B g(Q—ﬁ)
9 _ 2(c1+0) g2
az+p3

2 1 2
B\ e1+8 B \ a1t+8 B\ e1+8
a1+ 1 2 1.2
e <(g—) oc ()" -4 () —aosa )
B a1+8
1 as+8 2
+ <10g9—a—210gB——22a2) <(g°‘2) —9>




Simplifying, we get that the total number of points with height less than B given

g when a; # as is
2a 2 2aq
(@1408)° _ paris g mts — (@t0)’ BaiE Tayis

20c2(042—041)Ba1 g = 2a2(a2—a1)B Yy

_a1+0?422+692 logg + O%Q(log B)g2 + oc1+a2+2ﬁg2

209

And when oy = ay , we get

a2

1
e a1+p6
%BBQQQ‘FB g_ a22+2ﬁ (log (E) v _ log g)

1

2 2
o B a1 +8 B a1 +8 1 B a1 +8 9 1 92
e () ()T () e
2
a B a1+p6
+ (logg — Llog B — —22;;5> <<_g°‘2) — 92>

Simplifying for the case a3 = as (say a@ = a3 = «ay for ease of notation) gives
us:

1Bw+5 (log B)g a7 — 240 Bais g~ a4 log g
— 9B B et — 2240 2 Jog g 1 L(log B)g? + @t g2

Now we sum over the possible values for g. Note that since we're assuming
Ip| < ¢l and |s| < |t| and we’ve noted already that

He(lp:ql,[s : t]) = |g[*[p|°[t]*>
we get

He(lp = q),[s 2 t]) > g | [p|°1gs’| 210 = [pf | FF) s/ |02 FP| g | Foeth

Thus if Ho([p: ql,[s : t]) < B, there are no more than Barayes possible values for
g.

We will look at the two cases separately:
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4.2.1 (03] 7é (0)

Assuming aq # an, we first calculate the number of points when g = 1:

(@+0)” parrs _ _(+8)’ paris + Liog B 4 utoat2s
as

200 (a2 —a1) 209 (g —a1) 2000

Before we calculate the next integral, note that since we're assuming a; # as,
we cannot have both 2as = ay + 3 and 2a; = as + . Otherwise, subtracting the
second equation from the first, we would have 2as — 21 = a3 — an, which implies
a1 = Qa.

First assume 25 # a1 + 3 and 2aq # as + . Then

200 (a—avt) 200 (aa—ar)

Bai1taz+s 205 20,
/ ( (a148)? Ba1+ﬂg a5 (a+pB)? Ba2+ﬁg o218
1

a1+a2+ﬁg2 logg+ (log B)g + a1+20;22+25 2> dg
_ (a1+8)%(a1+0) R (=222 (a1 48)2(atB) =3
= Joa(er—a(m 18200 D 7 Barea (o Bar(on—an)(oa 182 B L
(a2+P)® Ba2+ﬁBa1+a2+5( a2+5)+ (a2+0)° B%%ﬁ

_Qag(ag al)(ozz—i—ﬁ 2001)

__Ba1+a2+ﬁ 1ogB _|_ MBalJraerﬁ — M
9ao

2002 (g —a ) (a2 +8—2a1)

+E(10g B)(Ba1+a2+a —1)+ M(BW —1)

6ao
(02+0)3 =7 _ (c1+B)*(c1+8) 23
2artar— a7 2o P 27 T Sar(os—aner 120 D
(0146)*(a1+5) TFeaTE _ (22+0)° aTTeaTh
+2a2(a2 —a1)(o1+p6— QaQ)B pheats 2a2(a2—a1)(a2+ﬁ—2a1)B 1reath
+5(a1i—86;22+25)Bm _ 12 IOgB . 5(a11§§z+ﬂ)

So the total number of points with height less than B is:

(01+8)? Ba%g __(o24p)? Ba2+5 + L logB+a1+a2+2ﬁ

202 (a2 —an) 20 (g —y) o
—i_20‘2(O‘Q_(2‘612)—~(_‘3ﬁ¢2)j‘ﬂ—QOé1)BCQ*Ha o 2a2(a2—(311)—i(_aﬁ1)iﬂ—2a2)3ﬁ
+2a2(a2 (zll)Tfl)j-g 2a2)Bal+§W ~ 5o (2[12)—’(—52):3_20[1)BW
1 2ontart?) prgess o1 jog B — Hoitortd)
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Combining like terms gives us:

a1(az+p8)? ﬁ N (a1+8)? %H,
az(az—a1)(az+B— 2a1)B : (az—a1)(an+B- 2a2)B '
+8(a1+a2) +208(a1+0a2)?+278% (a1 +a2)+18a; 41033 BW
18042(051+ﬁ 20@)(042—1-5 2041)

9o

which is s
O(Baitezt8) if 209 < ap + F and 201 < g + 8
2
O(Bmax(m)), otherwise

Now assume 2ay = a1 + § and 2a; # as + 5. Then

Ba1+a2+ﬁ 2 2a2 2 2aq
/ ( (a1 +p3) Boi+8 a1+5 g T8 —(a2+ﬁ) Baxt+s a2+ﬁg ag+03
1

2002 (a2 —ar1) 2002 (a2 —arq)

Oé1+042+ﬁ 210gg+ (logB)g + a1taz+208 2) dg

200

2(2a9—0)

B3a2
_ 2 ag (248)® pasip ~a
= /1 <5“§23 0 e B

—34° logg+ (logB)g +3a2+5 2) dg

2 o o (B—a)
fr 3(ﬂ30é2)Ba2 logB — %BO@"P[} (BQQ(QQJ,-B) _ 1)
1 1

_iB@ log B+ 3B — 5 + %(logB)(BOTQ 1)+ 3%24;5(Ba2 ~1)
_ 2 a _ (a2tB)? pd (@248 o=
o 3(5*0‘2)B : IOgB 6042(25 2)? B 2+ 60{2(2 2)? B 2+B

1 S5a0+8 pg 5az+
_%lOgB—i_(fTB 2 — 637

Now add in g = 1 terms:

200 Ra; _ (a2+ﬁ) Ba2+5 +L 1 logB+ 3as+0

(B—a2) 2042( 200
n (21+8)° pa (c2+8)° pais
+3(6 B ; 1OgB ~ bas (2/3—a2)ZB ; + 6042(26—042)2B 2+
S5ar +[3 a S5ag+
3a2 log B + 2 B 2 — —632

Combining like terms gives us:

2 o (02+0)%(202—0) P 0s(a2+38) pas 2 2024
3(,@—a2)B 2 log B + gaz( a;)g Boats e 32(62a2) B logB—l— 3";2
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which is ,
O(B=277), if ap >3
O(BezlogB), ifay<p

Finally, assume 2as # aq + 6 and 2a; = as + 5. Then

207

Baitas+s 20y
/ ( (Otl+/8) Ba1+gg a1+8 (012+/8) Ba2+gg ag+p3
1

209 (a2 —a1) 209 (a2 —a1)

20

a1+a2+ﬁ 210gg+ (logB)g + o1+az+206 2) dg

2(2a1-B)

B3ar ( 52 ) 2(en)?
_ ot SR e 2 pat o1
B /1 (2(2a1—ﬂ)(a1—ﬁ)B g T - G A mem BT

—(log B)g* + 52259 ) dg

3aq

5oz g*log g + 55

= _ﬁf} w (B0 1) ) S B log B
20461”6( Bar logB+1Bal—1)+3(2a Bal log B — 3(2a—1—6)
+63(’31—jg)(3a1 —-1)
= —%Bi + s e BT — s ey B log B
— 52 (3B — 1) — gt log B+ 248 (Bar — 1)
Now add in g = 1 terms:
e BT~ G B+ ammp 08 B + gy
0 t5° _ pay 4 (casd’ Bﬁ — 2B log B

T 6(2a1—f) (a1 — ﬂ)
(487 ~1) -

(2a1 B)(a1—p)? 3(2c1—p)(c1—p)

1
log B + 6%311“2)(3% —1)

T3

2a1 15}

Simplifying gives us:

2 o% (o +/B) @
3(2041—,3)1(ﬁ—a1)B ! lOgB + 3(ﬁ1 ay ) B 1+B

_a1((a1)2+a1ﬂ+2ﬂ2) P
slonProubi200) par +

9(a1)2—11a15—262
6(201—p)(a1-B)

3G D) 1ogB+

which is )
O(B~1+8), if ay > f3
1
O(BetlogB), ifay<f
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4.2.2 a1 — (9

Set @« = a1 = ay. Note that if @« = 3, then —a—fﬁ = —1. So we evaluate the

following integral, first assuming a # (3 and then assuming a = 5.

First we will count the number of point when g = 1:
éBagTﬁ log B — %Bﬁ +Llog B+ aaﬂ
Now counting the number of points for g > 1:
B2ots 2 2 2 2
/ (iBm(logB)g_aTﬁ — 2l parsgTais log g
1

— eI B e — 2 2 0g g+ L(log B)g® + ‘”%2) dg

ati)BmeogB)(Bﬁ“—m) 1)

a(p

~met et (it B oy b - (52) B3

2 o
~ 2t gty () - e pats (B (7H) — 1) 4 L (log B)(B= — 1)

a+p % 2a+0
+W<B2 = 1) T <3(20¢+5)

2
atB pais 2048 ( atp 525 20+8 (atp 2
— a0 Q)B +8 1OgB+T<ﬁTa) Bz +B_T<6_a> Bo+B

_atBpyas | otBpats 1 50448 paas  5at4f
67 B ots + « Ba+6 3a lOgB+ 9o B s 9o

_3
Bz log B — §B% + 1)

So the total number of points is:
LBa+i log B — &2 Ba+i 4 Llog B 4 252

2 2
__a+B BO%*‘/B log B + 202-5 (ﬂg) Bﬁ _ @ (0‘_"‘5> BTiﬁ

a(f—a) B— B—a
3 _2 544 3 5a+4
~esrpala 4 estpsty  Llog B+ il — s

Simplifying gives us:

2 2 1403 +48as8+4203°+458° 13-
_B +5 log B + 9a2(ﬁ )? B2a+8 -H3

_ (2048)(a+B)? BO‘"'B + IOgB + 40t+5ﬁ

a(f—a)?
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which is ,
O(B=+slog B), ifa>pf
O(B=), if o < 3

When o = (3, we get:
Bﬁ 2 2 2 2
/ (éBm(logB)g_m — @Bmg—m log g
1

— IRt g~ wts — 2 2109 g 4+ L(log B)g® + %392) dg

1
B3a
= / (éBé(log B)g~! - BBég’1 log g
1
—2B§g_1 —3¢%log g+ é(log B)g* + 292> dg
= L Ba(logB)? — 2Balog B+ B+ — -log B — 1

6a2
Adding in the points when g = 1 we get:
1 pt 2, 1 pt L, 2
szBe(log B)" + 5-Belog B — B+ + z-log B + 1

602
which is )
O(B=(log B)?)

4.2.3 Error term

«@ « i
Note that we need to calculate the number of points with |¢| = g, (W)“
Iq‘a1+a2+5 1

Ip'| < (T—F5— )a2+1,and%§t<%+l

N

So we count the number of points with |¢| = ¢, |p/| = 1,t = %.

<

Set |g| = g. Then |p'| = 1 and our constraints become g|s’| < t and g |t|*2*F <

B. Thus we calculate:

t

(B/gal)"’;TB 5
4/ / 1ds’ dt
g—1 0

(Bg1) TP
_ / L
g—1 g

= 2(B S et 2

= 2(Beffg @2 — g7 +29— 1)
2 q_ 209 2

— 2Ba2+ﬁg a2+5—29+4_5
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2
When g = 1, we have 2B 2% points. For ¢ > 1, we evaluate the following integral:

Bo1taz+B ) 201
/ (2Bm¥Pg ' "aats — 29 44— 2) dg
1

— 2Bm®

— (B~ <a1+a2+ﬁ‘><a2+ﬁ —-1) - (BMW —1)

a2+/3

t4(Bareat — 1) — log B

a+a +6

2
= O‘i_JlrﬂBangB - WBaﬁraerﬁ + 4Bo¢1+a2+ﬁ - o +a R logB 3
Thus the total number of points in this case is
9 2
2artoatd g gy rkertd B 4 4BwEts — 2 log B — 3
which is ,
O(B=2+8)
aqtag+8
When [p| = (M)% > 1, the constraints become g < |q|, B|s'|** <

lg|*1+A¢|*2, and |q,m+ﬁ|t|0‘2 < B. Thus we must have |¢/| < 1.

If |s'| = 0, then |¢| = 1 and so our final constraints are 1 < |g| and |¢|**™* < B.
The number of such points is:
Ba1TP
4/ 1 dq
0

_ ABars

If |s'| = 1, then |q|***P|t|*? = B and so our final constraints are g < |q| and
ga2|q|a1+ﬁ < B.

(B/go2)"1 77
4 / 1 dq
g

—1
— 4BmThg 1P —4g 4

When g = 1, we have 4BT1+5 points. For g > 1, we evaluate the following integral
and assume g # a1 + 3:

BW L s
/ (43@@@ —4g+4) dg
1

= 4Ba o (B mads) _ 1) _ g(BmEFeats - 1) 4 4(BaFeats — 1)
a1+ﬁ
- 4a10jr1[;rﬂaz (Ba1+a2+5 - Ballﬂg) _ QBwTeTs + AR Td _ 2
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which is )
O(B=177), if g > a1+
O(Baitezt8) ifag <oy + 0

Now if we assume as = a; + 3, we get:

ol
/ (43%*1 _4g+ 4) dg
1
= 4B% ;L log B —2(B% — 1) + 4(B%s — 1)
2 B log B — 2B +4B%3 — 2

which is )
O(Be2 log B)

Set [t| = |%|. Then |s'| < 1 and our constraints become |gp'| < |g| and
‘q’a1+a2+ﬁ < |p/|OézB

()77 8
g /
4/ / gearn, 2 W4
g (t—=5
()7 st
9"z q o guTeTriL
1 @ ) dg
9 9 5

2 1 a1 +68
_ a1 18 1 _L ap8 (2t =4, ) 9p o1t
- 291(<¢%) 1 _92>_42+—a1+ﬁB N ((%) e
a2

_ 2ath) pats o) da -1 (e+eth)
= GmtapB g T =294 o g B gt

1

When g = 1 we get: 2040 pais 94 o _p=a
9= 8V et +B 2as+a1+3
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For g > 1, we get:

1
Bo1taz+p 5

+8
21+8) pars . (lmaits) _ daz —ay (2HTLF)
/1 <2a2+a1+ﬁBal 9 o 2g+ 2&2+a1+ﬂB 29 "
2a

2Au+B) pas (B wiFestsaits — 1) — Barreats 4 1

2aia+a1+0 _ 200
a1 +B8
1 1 1 (g, 0148
4ag _al ata (3+ « ) —
+20¢2+a1+,@B 2 3+ a1+0 <B phezts 2 1)
a2
(@+8)?  pas (+B)?  parra aTe
042(2042+011+ﬁ)B = 062(2042+041+ﬁ)B et — Berteats + 1
b(o? e -
+(2a2+a1+ﬁ)(3a2+a1+ﬂ)B preats (2a2+a1+ﬁ)(3a2+a1+ﬁ)B :

So the total number of points is:

2 2 2
utB paiss d(az) a1tagth
a2 B + (2a2+a1+5)(3a2+a1+6)B
__ (atB)? a+i+,3_ a+i+ﬁ 4oy pas
a2(2a2+a1+ﬁ)B e Bevteats + 3a2+a1+ﬁB 2 1

which is ,
O(B~1+8)

Thus our error term is: , ,
O(B™™ e+ am+t)

Compare this to our main term, which we calculated to be:

When a1 # ag, 207 # as + (3, and 209 # aq + [

2

NV\Z(C, B) — O(Bmax{a1+22+ﬁ’a12--ﬁ’a2+g})

When a; # as, 201 # as + 3, and 2ap = ay + 3:

O(Ba% log B), ifay>a

Nz (C, B) = :
(G, 5) {O(BW), if ap < o

When a; # as, 200 = as + 3, and 2ay # a1 + 3:

O(Ba logB), if a1 > as

Ny z(C, B) = :
V\Z< ) {O(Bal-!—ﬁ), if g <
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When o := a1 = ay and a # (:

O(B=), if 8> a

N C,B) = 2
vzl ) { O(B=+slogB), iff <«

And finally, when « := a; = ap = [:

1
N\ z(C, B) = O(B=(log B)?)
Thus we see the error term is no larger than the main term, as desired. Also

note that the main term is the same in the case |p| < |¢| and |s| < |¢| as it was in
the case |p| > |q| and |s| > |¢].
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4.3 El,EQ, and F

Now we calculate the number of points on Ey, Es, E' with height less than or equal
to B.

Note that since F,, Fs, E are all isomorphic to P!, we can use Schanuel’s theorem
to get approximations for Ng,, Ng,, Ng. Recalling that an ample divisor C' on
P! x P! has the form C = o, F| + s Fy + 3(Fy + F» — E) and that we can write I} =
Ei+FE and Fy, = Ey+ E, we calculate the intersection multiplicities C.Ey, C.Ey, C.E
to get:

C.E1 = Q9
C.E2 = 1
CE = 3

Thus by Schanuel’s theorem we get:

N, ~ Bw
Np, ~ B
Ny ~ B?

The next section will relate these quantities to the counting function on V'\ (E'U
E, U Es), which we computed in the previous sections.
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4.4 Total number of points of bounded height

2 2 2

Let Z = Ey+ Ey+E. We saw in the last section that Nz (C, B) = O(Bmax{al vag BT,
Now we compare Nz(C, B) to Ny z(C, B).

Adding together all the terms calculated above (including error terms) we get:

When a7 # an, 2aq # ag + 3, and 25 # aq + 3, we have:

2

+B})

ﬁJV\Z((7,13) ::()(fgnmx{a1+i2+@’&;iﬁ’az

When aq # as, 201 # as + 3, and 2as = a1 + 3, we have:

O(B<712 logB), ifas>ay

Noz(C, B) = :
nz(G. ) {O(Bazw), if s <

When oy # ag, 200 = ap + 3, and 2 # aq + 3, we have:

O(B(%l log B), if a; > as

N C,B) = 2
V\Z< ) { O(Bm)7 if ) < g

When « := a1 = ay and «a # (3, we have:

O(B75), if 3> a

Ny (C. B) = )
nz(C,B) {O(BWlogB), it B < a

And finally, when « := a; = ap = 3, we have:

Ni\z(C, B) = O(Bx (log B)?)

It is obvious that Ba177 and B® are O(B%). Now we'll show that Barvests
2 2 2
is O(B™*ara2'5). First note that for {7,792, 73} = {1, a0, B}, if —2— > 2

3 A ! N m+y2+73 K
then ~; > 27, + 273. But then T < FaEs T s <

Since the primary exponents in all of the other cases are the same as those in
this case, we see that Ny\z(C, B) is O(N(C, B)).

Finally, we note that although this chapter only calculated an upper bound for
Ny (C, B), the upper bound is very close to the actual growth rate. See [2] for
further details.
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