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Abstract

A lexical analogy is two pairs of words (w1, w2) and (w3, w4) such that the relation

between w1 and w2 is identical or similar to the relation between w3 and w4. For example,

(abbreviation, word) forms a lexical analogy with (abstract, report), because in both

cases the former is a shortened version of the latter. Lexical analogies are of theoretic

interest because they represent a second order similarity measure: relational similarity.

Lexical analogies are also of practical importance in many applications, including text-

understanding and learning ontological relations.

This thesis presents a novel system that generates lexical analogies from a corpus

of text documents. The system is motivated by a well-established theory of analogy-

making, and views lexical analogy generation as a series of three processes: identifying

pairs of words that are semantically related, finding clues to characterize their relations,

and generating lexical analogies by matching pairs of words with similar relations. The

system uses a dependency grammar to characterize semantic relations, and applies ma-

chine learning techniques to determine their similarities. Empirical evaluation shows that

the system performs remarkably well, generating lexical analogies at a precision of over

90%.
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Chapter 1

Introduction

1.1 Analogies Everywhere

After a few trips with his mother to the local dried food store, Little Joshua quickly

learned to use colour to associate dried food with its original form. Purple raisins come

from purple grapes, and yellow plantain chips are made from yellow bananas. As Joshua

and his mother visited the store again one day, they came across a bucket of black prunes.

Joshua’s eyes widened as he pointed to the bucket and proclaimed excitedly: “Look Mom,

chocolate apricots!”

This true story of my three-year-old nephew demonstrates how analogy plays a cen-

tral role in the way we reason, learn, and describe the world. The analogy-making mind

of Joshua recognizes the colour relation between grapes and raisins and between bananas

and plantain chips, transfers this colour relation into the domain of chocolate and apri-

cots, verifies that this transferring does not conflict with his existing knowledge base, and

finally forms a new conclusion using this transferred relation. His verbal expression of his

new discovery also involves an analogy. In this case, it is the transferring of the language

construct from the likes of “toy car” and “strawberry cake” to form the new compound

noun “chocolate apricots”. Similar analogy-making processes occur in almost everything

we do. Analogy allows us to reason that green apples are just as edible as red apples,

to learn roller-blading by using what we know about skating , and to describe an atom

concisely as a miniature solar system. In fact, analogy is such an integral component

of our cognitive experience that it has been argued as indispensable to reasoning and

learning [1].

The study of analogy spans a multitude of disciplines that include psychology, ed-
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ucation, linguistics, cognitive science, and artificial intelligence. Within the artificial

intelligence community, active analogy research exists in at least the following areas:

computational models of analogy-making, analogical reasoning, and analogy discovery.

Computational models of analogy-making are computer implementations of cognitive

theories that explain and model the complex process of analogy-making. Analogical rea-

soning explores analogy as a reasoning and learning mechanism. For example, case-based

reasoning is an especially well-studied branch of analogical reasoning. Lastly, analogy

discovery involves the practical problems of identifying, extracting, comparing, and gen-

erating analogies automatically from real-world data.

In this thesis, we consider a particular problem in analogy discovery: lexical analogy

generation from text.

1.2 Lexical Analogies

Lexical analogies, also called verbal analogies, are analogies between pairs of words, or

word-pairs. A lexical analogy between word-pairs (w1, w2) and (w3, w4) signifies that the

two word-pairs are relationally similar. In other words, the relations between w1 and w2

and those between w3 and w4 are identical or similar in some way. In this case, (w1, w2) is

called a lexical analogue of (w3, w4), and vice versa. For a word-pair (w1, w2), the relations

between w1 and w2 are called the word-pair’s underlying relations. For example, one of

the underlying relations of (planet, star) is revolves-around, which makes the word-pair

a lexical analogue of (electron, nucleus). Lexical analogies are denoted either by simply

listing the two word-pairs, or by using the specialized notation w1:w2::w3:w4, which is

read “w1 is to w2 as w3 is to w4”. Table 1.1 lists some lexical analogies, along with their

underlying relations.

As shown in Table 1.1, the set of relations underlying lexical analogies is extremely

large and varied. Same-as, is-a, part-of, founder-of, plays-in, loves, produces, shortened-

version-of, improves-function-of, and revolves-around are but a small number of possibil-

ities. In fact, lexical analogies can occur even with non-semantic relations. For example,

given write:written::bite::?, any competent speaker of English can complete the analogy

with bitten. The underlying relation in this case, however, is merely morphological. In

the case of pick:up::put:down, the underlying relation is syntactical. Even more extreme

examples such as net:ten::top:pot and a:aaa::b:bbb show that lexical analogies can occur

even on word form alone. Indeed, despite the fact that lexical analogies are almost al-
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Lexical Analogy Relation
big:large::small:little synonymy
car:vehicle::sword:weapon is-a
finger:hand::toe:foot part-of
gates:microsoft::jobs:apple founder-of
pitcher:baseball::striker:soccer plays-in
romeo:juliet::oliver:jenny loves
composer:music::poet:poem produces
abbreviation:word::abstract:report shortened-version-of
amplifier:ear::telescope:eye improves-function-of
electron:nucleus::planet:star revolves-around

Table 1.1: Examples of Lexical Analogies

ways associated with semantic relations, they are a peculiar phenomenon that can occur

across all levels of linguistics. In this thesis, however, only lexical analogies with semantic

relations are considered.

Lexical analogies are used extensively in both formal writing and everyday dialogue.

Explicit analogies such as “the laser beam cuts through metal like a hot knife through

butter” allow complex situations to be described clearly, concisely, and creatively. Even

more common are implicit analogies, in which some component words are implied instead

of explicitly specified. For example, “the printer died” contains the implicit analogy

person:death::printer:malfunction, and “your words seem hollow” makes use of the im-

plicit analogy object:hollowness::word:meaninglessness. The second example comes from

Lakoff and Johnson [2], who discuss in detail implicit analogies in the form of linguistic

metaphors. Turney and Littman [3] elaborate further on Lakoff and Johnson’s analysis

in their work on lexical analogy comparison.

1.3 Lexical Analogy Generation

The problem of lexical analogy generation can be broadly stated as follows:

Given a text resource such as a linguistic ontology or a corpus of text docu-

ments, return a list of lexical analogies that are explicitly or implicitly con-

tained in the resource.

Lexical analogy generation is closely related to another problem in analogy discovery,

namely lexical analogy comparison, which determines the degree of relational similarity

3



between two given word-pairs. Indeed, the ultimate goal of lexical analogy generation is

to construct a dictionary of word-pairs that have a high degree of relational similarity.

Lexical analogy generation is a difficult problem because it essentially requires the

software agent to identify all possible relations between any two words. Such relations

depend not only on the meaning of each word individually, but also on their interactions in

different contexts. For example, considering their meanings alone, there is little similarity

between air and sound. However, within the context of conductivity, the fact that air

conducts sound waves means the two words can be used together to form lexical analogies

such as air:sound::metal:electricity. Such sophisticated and creative relations are simply

not supported by current natural language computing systems and resources. Existing

linguistic ontologies such as WordNet [4], for example, are typically limited to a few

classical relations such as is-a and part-of. For the purpose of lexical analogy generation,

however, all possible relations must be considered [5].

Despite the difficulty, lexical analogy generation is an important research area because

of its tremendous potential in many artificial intelligence applications. For example, text-

understanding systems must be able to recognize lexical analogies to correctly interpret

figurative sentences such as “Leafs killed Senators in Game 7”. Text generation systems,

as well, can use lexical analogies to generate more varied and creative text. Turney and

Littman [3] further point out the importance of lexical analogies in language evolution,

machine translation, and information retrieval. Finally, as Sections 1.4 and 6.3 will

illustrate, lexical analogies can also serve as a key component in an emerging research

area: automated acquisition of ontological relations from text.

1.4 Research Contributions

The product of our research is GELATI, a system for GEnerating Lexical Analogies

from Text Information. GELATI is a fully-automated system that generates lexical

analogies from a given corpus of unannotated text documents. In this section we discuss

some key contributions of our research.

The most important contribution of our research stems from the fact that, contrary to

most existing research on lexical analogy generation, GELATI generates lexical analogies

by discovering word relations directly from a corpus of unannotated natural language

text, instead of relying on the relations defined in a linguistic ontology such as WordNet

[4] or HowNet [6]. This independence from linguistic ontologies allows GELATI to gen-
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erate lexical analogies using a much larger and richer set of relations than is available

in linguistic ontologies. For example, GELATI is able to generate the lexical analogy

hostage:release::troops:withdrawal, which is not possible for systems relying on WordNet

as hostage and troops are two completely unrelated entities in WordNet. Even more im-

portantly, the independence from standard linguistic ontologies means that GELATI can

facilitate the automatic construction and enrichment of these ontologies. Current ontolo-

gies are largely constructed manually by human domain experts, which is both extremely

time-consuming and expensive. As a consequence, current ontologies in general cannot

afford to capture anything more than a few of the more common relations. For example,

while almost all ontologies contain the is-a relation, very few, if any, capture relations

such as revolves-around or shortened-version-of. This deficiency in representing relations

is exactly where GELATI can help — the rich set of relations it discovers directly from

corpus data can be used to expand an ontology’s set of relations automatically. Section

6.3 will discuss this tremendously useful application of GELATI in detail.

The second key contribution of our research is GELATI’s flexible and extensible ar-

chitecture. Motivated by a well-established theory of analogy-making, GELATI divides

the complex process of lexical analogy generation into a series of intuitive and manage-

able components. The componential nature of GELATI allows it to be extended with

additional functionalities or adopted into new problem domains simply by changing some

component implementations. In this regard, GELATI acts as a framework for analogy

generation in general. Chapter 6 explores some possible extensions to GELATI.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews existing research in

the artificial intelligence community on analogy, particularly lexical analogy comparison

and generation. Chapter 3 discusses the theoretical motivations and intuitions behind

GELATI. Chapter 4 describes GELATI and each of its components in detail. Chapter

5 demonstrates the performance of GELATI through an empirical evaluation. Finally,

Chapter 6 concludes this thesis with a brief summary and a list of future directions.
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Chapter 2

Related Work

In this chapter we review key related research on analogy within the field of artificial

intelligence. Section 2.1 describes the most significant cognitive and computational mod-

els of analogy-making. Sections 2.2 and 2.3 survey previous research on lexical analogy

comparison and generation, respectively.

2.1 Computational Models of Analogy-Making

Modern computer implementations of analogy-making began to appear in the early 1960s.

Hall [7] provides an in-depth comparison of analogy-making models and programs up to

around 1989, and French [8] offers a more recent but brief survey of over 40 computational

analogy-making models.

Structure-Mapping Models

ANALOGY (Evans [9]), developed in 1968, was one of the first programs for analogy-

making. ANALOGY solves simple geometric analogy questions: given three geometric

figures A, B, and C, where B is obtained by simple transformation of A, select from a

list of geometric figures the best match for C using the same or analogous transforma-

tion. Each geometric figure is described by some propositional sentences using a set of

pre-defined predicates such as ABOVE and INSIDE. ANALOGY translates the trans-

formation from A to B into a set of transformation rules by mapping each description

sentence of A to one in B, then selects the answer by looking for a match of C that best

preserves the transformation rules.
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Despite its simplicity, the basic intuition behind ANALOGY, that analogy-making

is a process of mapping relations, is a far-reaching insight that eventually led to the

most influential theory of analogy-making: the Structure-Mapping Theory (Gentner [10]).

Gentner’s theory formalizes analogy-making as the process of mapping the structure of

an object from one domain to another, where an object’s structure is defined by its

relations to other objects as well as the relations of its internal components. Gentner

emphasizes that the mapping is structural, and not attributional. For example, although

an atom is drastically different from the solar system in terms of size, shape, colour, and

other attributes, they are nevertheless analogous because their internal structures are

similar — a number of small bodies revolving around a central large body. Gentner also

specifies a set of hard and soft rules for determining analogies that are satisfying, such

as the preference of higher order relations over lower order ones. Lastly, Gentner justifies

his theory with empirical support from a number of cognitive experiments. Falkenhainer

et al. [11] turned Gentner’s theory into a computer implementation called the Structure-

Mapping Engine. To date, the Structure-Mapping Theory is still the basis of many, if

not most, computational models of analogy-making.

Taxonomic Abstraction Models

In addition to structure-mapping, another popular approach to analogy-making is tax-

onomic abstraction. The taxonomic-abstraction view of analogy-making can be traced

back to as early as 350 BC, when Aristotle offered an explanation of analogy-making and

metaphor-making in his Poetics (excerpt from S.H. Butcher’s translation [12]):

Metaphor is the application of an alien name by transference either from

genus to species, or from species to genus, or from species to species, or by

analogy, that is, proportion.

In the taxonomic-abstraction point of view, an analogy is a match between two objects

that share a similar path structure to a common ancestor in a taxonomy. In WordNet

[4], for example, an analogy can be drawn between Zeus and Varuna as Zeus is a child of

Greek deity and Varuna is a child of Hindu deity, and both Greek deity and Hindu deity

are children of deity. In a way, taxonomic abstraction can be regarded as a highly spe-

cialized version of structure mapping in which the structure is entirely specified by the

taxonomy. A recent analogy-making model based on the taxonomic-abstraction perspec-

tive is KNOW-BEST by Veale [13], which is described in the next section.
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Connectionist Models

A completely different approach to implementing analogy-making is the connectionist

approach, in which analogy-making is achieved by training a neural network or other

similar connectionist structure. Compared to structure-mapping and taxonomic abstrac-

tion, connectionist models offer little explanation about the process of analogy-making —

the network hides the actual mechanism that determines analogies. Blank’s Analogator

[14] is one of the most recent connectionist implementations of analogy-making.

Limitation of Computational Models

A common limitation of most of these computational models is that, in order to be

general and applicable across a wide variety of problem domains, they typically assume

the input data is already in some structured and formal format where analogies can be

readily and precisely drawn — many, for example, use input in some form of predicate

logic. Unfortunately, real-world data such as natural language text is anything but

structured and formal. Drawing analogies from real-world data requires sophisticated

and detailed mechanisms to deal with noise and uncertainty, which are beyond the scope

of these models.

2.2 Lexical Analogy Comparison

Turney et al. [15] [3] [16] use a corpus-based, statistical approach to lexical analogy

comparison. The actual problem that they try to solve is the verbal analogy question

in the Scholastic Aptitude Test (SAT). Specifically, an SAT verbal analogy question

consists of a word-pair, called the stem, and five other word-pairs, called the candidates,

and the problem is to identify the candidate that forms the best verbal analogy with the

stem. Clearly the SAT verbal analogy question is a direct application of lexical analogy

comparison — compare the stem with each candidate and select the highest scoring

candidate. Table 2.1 illustrates an example of an SAT verbal analogy question. In this

example, the correct answer is (a), since opaque:transparent and gaunt:rotund are both

related by the opposite-of relation.

The experimental data for this research is a set of 374 SAT verbal analogy questions,

and the evaluation metrics include skipping (number of skipped questions), precision

(number of correct answers ÷ number of questions answered), recall (number of cor-

8



Stem: opaque:transparent
(a) gaunt:rotund
(b) wary:angry
(c) thin:elongated
(d) proud:arrogant
(e) libel:free

Table 2.1: Example of SAT Verbal Analogy Question

rect answers ÷ total number of questions), and F-measure ((2 × precision × recall) ÷
(precision + recall)).

Turney: Ensemble Method

Turney et al.’s first approach [15] is an ensemble method that combines the results of 13

expert modules to form the final answer. The expert modules include a phrase vector

module, a thesaurus path module, nine lexical relations modules, and two similarity mod-

ules. Given two word-pairs (A, B) and (C, D), each module operates as follows. The

phrase vector module compares (A, B) and (C, D) by computing a signature vector for

each word-pair, then uses the cosine angle between the signature vectors as the score. The

signature vector for each (X, Y ) is computed by counting the number of occurrences of

X and Y in short phrases such as “X of Y ”, “Y in the X ”, and “X * very Y ”, across all

web documents indexed by AltaVista. A total of 128 hand-crafted short phrases are used,

resulting in 128 dimensions in the signature vectors. The thesaurus path module uses

WordNet, and compares the edges of the shortest path from A to B against those of the

shortest path from C to D. The lexical relation modules again use WordNet. Each lexical

relation module checks if A and B are related by a particular lexical relation defined in

WordNet such as synonym, and if so, checks if C and D are related by the same rela-

tion. The nine lexical relations checked by the lexical relation modules are synonym,

antonym, hypernym, hyponym, meronym:substance, meronym:part, meronym:member,

holonym:substance, and holonym:member. Finally, each similarity module uses a dic-

tionary to compute a similarity score between A and C and one between B and D,

then sum the two scores to get the final score. One of the two similarity modules uses

Dictionary.com as its dictionary, while the other uses Wordsmyth.net1.

1Both www.dictionary.com and www.wordsmyth.net are online lexical references that contain infor-
mation from several dictionaries and thesauri.
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As the merging rules used to combine the results require training, the experimental

data is divided into a training set of 274 questions and a test set of 100 questions. The

ensemble method achieves a precision of 45.0% on the test data under the best merging

rule. The phrase vector module has by far the greatest contribution, scoring 38.2% on

its own.

Turney: Vector Space Model

The success of the phrase vector module in the ensemble method leads to a more thorough

exploration in which the module is cast as an application of the Vector Space Model

(VSM) [3]. The VSM algorithm in essence operates identically to the phrase vector

module in the ensemble method, but incorporates a mechanism to trade off precision

for recall and vice versa. Specifically, the algorithm calculates a confidence over the

answer it selects, then uses the confidence as a threshold to decide whether or not to

answer the question. A high threshold results in the algorithm being more conservative,

hence increasing precision while decreasing recall. Similarly, a low threshold results in

increased recall but decreased precision. The performance of the VSM algorithm over

the entire experiment data set ranges from about 35% precision / 62% recall, to about

60% precision / 11% recall. The highest F-measure occurs at 47% precision / 47% recall.

In addition to using the algorithm to perform lexical analogy comparison, Turney et al.

also show the same algorithm can be applied to classifying noun-modifier relations [3].

Turney: Latent Relational Analysis

Turney’s most recent work on lexical analogy comparison is an algorithm called Latent

Relational Analysis (LRA) [16]. The basic intuition behind LRA is inherited from the

VSM algorithm, but the actual computation is substantially different. LRA’s main im-

provements over the VSM algorithm are in four areas. First, for a word-pair (A, B),

LRA considers not only (A, B), but also the most significant alternatives formed by

the synonyms of A and the synonyms of B, as indicated by a thesaurus. Furthermore,

instead of considering the stem word-pair and each candidate word-pair separately, LRA

considers the stem word-pair, the candidate word-pairs, as well as their synonym alter-

natives all at the same time. This means that instead of forming two signature vectors,

LRA forms a signature matrix that combines the signature vectors of all word-pairs in

consideration. Second, LRA looks for actual phrases in which the word-pairs participate
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in a large corpus, and use those phrases instead of the hand-crafted short phrases in the

VSM algorithm. Third, LRA favours phrases that are most differentiating – in other

words, phrases whose counts are most different between word-pairs – by giving them

higher weights. Finally, before computing the cosine angle, LRA applies singular value

decomposition to the signature matrix to reduce its dimension as well as compressing the

differences, a process inspired by Latent Semantic Analysis [17].

The precision of LRA on the entire experiment data set is a remarkable 56.1%, with

only four questions skipped due to insufficient data. This result is on par with the average

score of high-school students writing the SAT. However, due to the heavy computational

requirement of singular value decomposition, LRA requires over nine days to run through

the experiment data set on a 2.4 gigahertz processor.

Veale: KNOW-BEST

Veale [13] takes an entirely different approach to lexical analogy comparison. The algo-

rithm here, called KNOW-BEST, is a knowledge-based method that depends heavily on

WordNet. The problem that Veale considers is again the SAT verbal analogy problem.

In fact, Veale uses the same experiment data set provided by Turney et al [15]. Given

two word-pairs (A, B) and (C, D), KNOW-BEST computes a score for (A, C ) and one

for (B, D), then linearly combines them to form the final score. The score for each

(X, Y ) is computed from their relative positions in the WordNet taxonomy, as well as

the position of their lowest common ancestor. In addition, KNOW-BEST augments the

score in the following ways. First, the definition of common ancestor is relaxed to include

ancestors who are not the same node but share a common lexical root or modifier. For

example, in WordNet, the only common ancestor between {seed} and {egg} is the root

node {entity, something}. However, the parent of {seed} is {reproductive structure} and

the parent of {egg} is {reproductive cell}. As the two parents share a common lexical

modifier reproductive, KNOW-BEST considers both nodes to be valid common ancestors

of (egg, seed), and hence selects whichever is lower in the hierarchy as the lowest common

ancestor. Secondly, KNOW-BEST augments each score with a count of the number of

overlapping adjectival terms in the glosses of X and Y. For example, from the WordNet

hierarchy alone, (abbreviation, abridgement) has a very low score as the two words are

very far apart. However, as both words share shortened in their glosses, their score is

increased to reflect this similarity.

As with LRA, KNOW-BEST solves an SAT verbal analogy question by comparing
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the stem with each candidate then selecting the highest scoring candidate as the answer.

In addition, KNOW-BEST implements some filtering mechanisms to eliminate less likely

candidates. For example, if in the stem (A, B), A is a direct ancestor of B, then all

candidates that do not have this property are eliminated.

KNOW-BEST achieves a precision of 42% over the entire experiment data set, with

no skipped questions. If KNOW-BEST is limited to only providing an answer when both

words in the stem fall under {entity} in WordNet, it achieves a higher precision of 53%

at the expense of skipping 76% of the questions.

2.3 Lexical Analogy Generation

Veale: Analogical Thesaurus

Veale [18] considers the problem of constructing an analogical thesaurus. A traditional

thesaurus takes a word and returns a list of near-synonyms. An analogical thesaurus,

on the other hand, takes two words W and D, and returns the analogical equivalents

of W in the domain of D. For example, given Bible and Muslim, an analogical the-

saurus would return Koran since the Koran is the analogical equivalent of the Bible

in the Muslim domain. Clearly, lexical analogy is at the heart of an analogical the-

saurus. The example above, for example, is derived directly from the lexical analogy

Bible:Christian::Koran:Muslim. Indeed, constructing an analogical thesaurus is a re-

stricted form of lexical analogy generation, in which only analogues within the specified

domain are allowed to be generated.

Veale’s approach makes use of the rich semantic information contained in WordNet [4],

both in its formal taxonomy, and in the informal textual glosses that WordNet includes

for each entry. The basic algorithm proceeds as follows. Given a source word W and

a target domain D, the algorithm first retrieves the set of entities S in WordNet whose

textual glosses contain D. S is considered the set of all domain elements of D. The

algorithm then proceeds to select the best match of W in S, by computing the relative

distance between W and each element of S in the WordNet taxonomy.

The basic algorithm has two important limitations, both of which Veale also addresses.

The first limitation is due to the informal nature of the textual glosses. Matching D to

the glosses often fails due to the glosses using synonyms of D instead of D itself. The

gloss for {Koran}, for example, is “sacred writings of Islam”, which would not match

the domain Muslim. To counter this problem, Veale introduces an extended notion of
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synonymy called symmetric association, and uses it to expand the search space to include

not only exact matches of D but also all entities related to D.

The second issue is that the WordNet taxonomy is often not sufficiently discriminating

to support the selection process. For example, given Zeus and Hindu, the correct analogy

to return is Varuna as both Zeus and Varuna are the supreme deity of their respective

religion. Using just the WordNet taxonomy, however, it is impossible to select between

Varuna and, for example, Ganesh (the Hindu deity of wisdom) as both {Varuna} and

{Ganesh} are direct hyponyms of {Hindu deity}. Even worse, there may be other entities

in the set of candidates that are not even deities, but are nonetheless close to {Zeus} in

the taxonomy.

The solution that Veale presents involves two mechanisms which are elaborated in

the following subsections. First, candidates in S are filtered according to the taxonomic

branches in which they are located. Second, new taxonomic relations are dynamically

created to support fine-grained selection. Continuing the example of Zeus and Hindu, the

algorithm would first filter out all candidates that are not direct or indirect hyponyms

of {deity}. Then, both {Zeus} and {Varuna} would be made children of a new entity

{supreme deity}, allowing the algorithm to trivially select Varuna instead of another

Hindu deity.

Analogical Pivot

In order to support the first mechanism, Veale introduces the notion of an analogical

pivot. In essence, given W and D, the analogical pivot is the lowest node in the tax-

onomy that explicitly separates the domain of W and the domain specified by D. For

example, the analogical pivot of Zeus and Hindu is {deity}, because {deity} is the node

at which {Greek deity} and {Hindu deity} are separated. The analogical pivot is there-

fore the junction point at which the analogy shifts from the source domain into the target

domain. More importantly, the analogical pivot acts as a strong filter, as all candidates

that are not descendants of the pivot can be eliminated. To compute the analogical

pivot, the algorithm determines the domain of W by looking at its ancestors, finds its

counterpart in D by using morphological rules, then assigns the lowest common parent of

the two as the analogical pivot. In the case of Zeus and Hindu, the algorithm determines

that the domain of {Zeus} is its direct hypernym {Greek deity}, builds its counter-

part {Hindu deity} in the Hindu domain by morphologically combining Greek deity and

Hindu, and finally takes their common parent, {deity}, to be the analogical pivot.
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Dynamic Type

To support the second mechanism, Veale once again makes use of WordNet’s textual

glosses. Each content word in all glosses is analyzed to determine its differentiating

potential — how suitable can the word act as a differentiator between two or more entities.

For example, the word “supreme” is a good differentiator between ({Varuna}, {Zeus})
and ({Ganeth}, {Athena}), as “supreme” appears in the glosses of the first group but not

the glosses of the second group. All words with high differentiating potential are turned

into new nodes, called dynamic types. For each new node, a hyponymy link is added

between the new node and each entity whose gloss contains it. Dynamic types allow fine-

grained selection to be made. Given the dynamic type {supreme}, for example, {Varuna}
would be differentiated from {Ganeth} because the former is now a child of {supreme}
whereas the latter is not. Moreover, dynamic types often lead to new analogical pivots.

For example, in WordNet, all letters from all alphabets are direct hyponyms of {letter}.
Therefore, there is only one domain under {letter}, and hence the node cannot act as

an analogical pivot. However, if dynamic types of {Greek letter} and {Hebrew letter}
are established, {letter} would then become an analogical pivot between, for example,

{alpha} in {Greek letter} and {aleph} in {Hebrew letter}.
Veale’s [18] experimental evaluation uses WordNet 1.6. In total, 9,822 new dynamic

types are created, and 28,998 new hyponymy relations are added. The quality of these

new additions is demonstrated by comparing the analogy-making power of WordNet by

itself against its augmented form. In the domain of alphabetical letters, for example,

mapping from a Greek letter to the corresponding Hebrew letter yields a precision of 4%

in WordNet alone as all letters are direct hyponyms of {letter}, while it improves to 96%

in the augmented WordNet.

Veale: Analogy Generation Using HowNet

Veale [19] [20] continues to elaborate and refine this system of analogical pivots and

dynamic types. His latest work on lexical analogy generation [21] again follows the same

intuition, but foregoes WordNet in favour of a more formal bilingual lexical ontology

called HowNet [6]. Similar to WordNet, HowNet is a lexical ontology with a taxonomic

structure. Unlike WordNet, however, HowNet does not associate each word with a gloss,

but instead a formal predicate-based definition. For example, the definition in HowNet

for {surgeon}, ignoring the bilingual component, is “surgeon = {human : HostOf =
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{Occupation}, domain = {medical}, {doctor : agent = {∼}}}”, where the ∼ serves as a

self-reference. The verbal interpretation of the above definition is “a surgeon is a human

with an occupation in the medical domain who acts as the agent of a doctoring activity”

[13]. Veale’s [21] primary contribution in this case is to demonstrate that HowNet is able

to support analogy-making using both a taxonomic approach similar to the dynamic

types, as well as a structure-mapping approach that matches the relational structures

between entities to facilitate analogy-making. The formal definitions that HowNet offers

are crucial, as they allow word relations to be determined precisely.
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Chapter 3

GELATI - Theory and Intuitions

In this chapter we present the theory and intuitions behind GELATI, our system for

GEnerating Lexical Analogies from Text Information. Section 3.1 grounds GELATI to

the well-established Structure-Mapping Theory of analogy-making, and Sections 3.2 to

3.4 describe the necessary extensions to the theory in order to apply it to the problem of

lexical analogy generation.

3.1 Theoretical Grounding

On a conceptual level, GELATI follows Gentner’s [10] Structure-Mapping Theory (see

Section 2.1) and views an analogy as a mapping between two objects sharing an identical

or similar structure. However, SMT by itself is insufficient for the purpose of lexical

analogy generation. There are two main limitations. First, as a general theory that is

application-independent, SMT leaves open the necessary details for specific applications.

For example, in SMT, the basic unit from which analogies are drawn are collectively re-

ferred to as objects. But what exactly are objects? Are they physical items or ontological

concepts? Are all objects suitable for analogy-making? What corresponds to objects in

the context of lexical analogy generation, and what are their structures? The second

limitation is that SMT is explanatory in nature rather than constructive. SMT offers an

explanation about why two objects form an analogy, but does not provide a procedure

on how analogies can be generated in the first place.

Clearly, in order to apply SMT to the problem of lexical analogy generation, it must

be augmented with extensions specialized for lexical analogies. In the following sections,

we propose three key extensions. We will refer to these extensions collectively as the
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Structure-Mapping Theory for Lexical Analogies, or SMT-LA.

3.2 Objects: Semantically-Related Word-Pairs

The first extension in SMT-LA deals with the notion of objects in SMT. Given that

lexical analogies are mappings between word-pairs sharing identical or similar underlying

relations, it is not difficult to conclude that objects in the context of lexical analogy

generation are word-pairs. However, not all word-pairs are suitable for the purpose of

lexical analogies. Consider, for example, the word-pair (mushroom, engagement): what

lexical analogies can it form? Obviously, the answer is none, because the word-pair itself

lacks a meaningful underlying relation. In the framework of SMT, such a word-pair

would correspond to an object with no structure at all, and hence cannot be structurally

mapped to another object. Similarly, a word-pair with a singular underlying relation not

shared by any other word-pair also cannot be used to form lexical analogies. Lastly, as

the focus of this research is semantic lexical analogies, a word-pair with a non-semantic

underlying relation such as (ten, net) is also not suitable.

Even if a word-pair does have a clear and non-singular semantic underlying relation,

it is still not necessarily a good candidate for lexical analogies. In general, good lexical

analogies are derived from relations that are precise and specific. Word-pairs such as

(company, right) or (pencil, entity) are difficult to form good lexical analogies with be-

cause their underlying relations (has or entitled-to for the former, and is-a for the latter)

are either ambiguous or overly general.

In light of this vagueness surrounding the notion of objects in SMT, our first extension

in SMT-LA is to give a precise definition of an object in the context of lexical analogy

generation. Specifically, we propose that an object is a word-pair with at least one clearly

identifiable underlying relation R that satisfies the following criteria:

1. R must be semantic in nature.

2. R must be shared by at least one other word-pair.

3. R must be reasonably precise, which means it must have a clear and unambiguous

semantic interpretation.

4. R must be reasonably specific, which means it is not shared by too many other

word-pairs.
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3.3 Structure: Word-Pair Features

The second extension involves the notion of structure in SMT. SMT defines an object’s

structure as its external relations with other objects, and its internal relations between

its components. Clearly, the internal relations of a word-pair are exactly its underlying

relations. What are the external relations of a word-pair? In general, there are none —

most word-pairs are not meaningfully related. Moreover, when two word-pairs are re-

lated, the relation is almost always due to a correspondence in their underlying relations.

For example, (generosity, kindness) and (greediness, rudeness) appear to be related, but

the relation really stems from their having opposite underlying relations. As such, we

propose that the structure of a word-pair is equivalent to its set of underlying relations.

Unfortunately, defining a word-pair’s structure by its underlying relations gives rise

to a practical problem: it is very difficult to precisely define a word-pair’s underlying

relations especially when no semantic knowledge about the words of the word-pair is

given. This is exactly the case in lexical analogy generation from text in which the input,

a corpus of text documents, contains a large amount of syntactic information between

words but no semantic information about each word. The only reason that a person

can conclude the underlying relation of (poet, poem) is produces is because she or he

actually knows the meanings of poet and poem. Even when semantic knowledge about

the words is available, assigning a precise label to the underlying relation is still difficult.

A precise label for the underlying relation of (poet, poem), for example, would need to

take into account that the production is artistic and professional in nature, so as to

distinguish it from the underlying relation of (cow, milk). Therefore, instead of defining

a word-pair’s structure by its underlying relations, we propose to define a word-pair’s

structure loosely by the syntactic, semantic, and pragmatic clues that give hints about

its underlying relations. These clues can include phrases in which the word-pair most

frequently appear, words with which the word-pair co-occurs, and so on. We refer to all

clues collectively as the word-pair’s features.

Based on the above intuition, our second extension in SMT-LA is as follows. The

structure of a word-pair is defined either by its underlying relations if available, or by the

features that characterize these underlying relations if the relations cannot be explicitly

inferred.
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3.4 Analogy: Feature Matching

The last extension in SMT-LA deals with the actual generation of lexical analogies.

SMT states that an analogy is a mapping between two objects with a similar structure.

A trivial algorithm for analogy generation, therefore, is to simply compare every pair of

objects and select the ones whose structures match. However, when an object’s structure

is not precisely defined, as is the case with a word-pair and its features, what constitutes

a structural match becomes difficult to interpret. Should two word-pairs sharing one

common feature out of a hundred be considered a valid match? What about two word-

pairs sharing no common features, but all of their features are in fact semantically similar?

To resolve these issues, we propose to view the validity of the mapping between two

word-pairs not as a binary dichotomy but as a continuum. The term analogousness is

used to refer to the quality of a mapping between two word-pairs — in other words, their

degree of relational similarity. Word-pairs with high analogousness form good lexical

analogies, while those with low analogousness form poor or even invalid lexical analogies.

Clearly the actual measure for analogousness depends on the intended use of the resulting

lexical analogies. In general, however, the analogousness between two word-pairs should

correspond to how much overlapping there is between their features.

Summing up, the following definition is the final extension in SMT-LA: A lexical

analogy is two word-pairs whose analogousness is higher than some threshold Kthreshold,

where analogousness is determined by an application-specific function that is proportional

to the amount of overlap between the two word-pairs’ set of features.
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Chapter 4

GELATI - Implementation

In this chapter we present the implementation details of GELATI. We begin by de-

scribing an important linguistic formalism used throughout GELATI’s implementation,

dependency grammar, in Section 4.1. We then proceed to give an overview of GELATI

in Section 4.2, followed by detailed discussions of each component in Sections 4.3 to 4.8.

4.1 Dependency Grammar

A key structure behind GELATI’s implementation is that of a dependency grammar [22].

Dependency grammar is a linguistic formalism that describes the syntactic structure of

a sentence much like the familiar phrase-structure grammar. Unlike phrase-structure

grammars, which associate each word of a sentence to the syntactic phrase in which

the word is contained, a dependency grammar associates each word to its syntactic

superordinate as determined by a set of rules. Consider, for example, the sentence “the

council approved the new budget”. In this sentence, the first word, “the”, is a determiner

for the second word, “council”. As such, the syntactic function of “the” is only meaningful

in the context of “council”. Dependency grammar hence dictates that “the” depends on

“council”. Similarly, “council” depends on “approved”, “new” depends on “budget”, and

so on. Each pair of depending words is called a dependency. Within a dependency, the

word being depended on is called the governor, and the word depending on the governor

is called the dependent. Each dependency is also labelled with the syntactic relation

between the governor and the dependent. For example, the dependency (the, council)

from the example above would be labelled determiner. Dependency grammars require

that each word of a sentence have exactly one governor, except for one word called the
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head word that has no governor at all. The dependency structure of a sentence can be

concisely represented by a dependency tree, in which each word becomes a node, each

dependent becomes a child of its governor, and the head word becomes the root. A

dependency path is an undirected path through a dependency tree, and a dependency

pattern is a dependency path with both ends replaced by slots [23]. Figure 4.1 illustrates

various dependency structures of the sentence “the council approved the new budget”.

Figure 4.1: Dependency Structures of “the council approved the new budget”

Proposition Collapsing

An important advantage of using dependency grammar over phrase-structure grammar is

that dependencies allow directly related words to be linked together even if they are not

adjacent in a sentence. Unfortunately, this advantage does not hold for phrases involving

propositions. Consider the phrase “rice from China”, for example. In this phrase, clearly

there is a direct relation between “rice” and “China”. However, the dependency structure

of this phrase contains two dependencies, one linking “rice” to “from” and one linking

“from” to “China”, instead of a single dependency linking “rice” to “China”. To resolve

this issue, Lin and Pantel [23] propose a simple transformation that collapses propositions.

Specifically, the transformation involves merging two dependencies of the form (word 1,

proposition) and (proposition, word 2 ) into a single dependency (word 1, word 2 ), then

setting “proposition” as the relation label of the new dependency. Figure 4.2 illustrates

an example of proposition collapsing of the phrase “rice from China”.
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Figure 4.2: Proposition Collapsing of “rice from China”

4.2 GELATI Overview

GELATI is a componential system arranged in a pipeline architecture, as depicted in

Figure 4.3. The core of GELATI is a series of three components corresponding to the

three extensions discussed in Chapter 3. The word-pair extractor extracts semantically

related word-pairs from the input corpus; the feature extractor extracts the word-pairs’

syntactic features; and the analogy generator maps word-pairs with similar features to

form lexical analogies. In addition to these core components, GELATI also includes a

preprocessor at the beginning of the pipeline, and various filters throughout the system.

4.3 Preprocessor

The preprocessor is the first component in GELATI’s pipeline. It is responsible for con-

verting the raw input data into a list of dependency trees. Specifically, the preprocessor

involves the following tasks:

Text Extraction

Most documents available in large text corpora are not stored as straight text files, but

in structured formats such as Standard Generalized Markup Language (SGML). Often

each document also includes some additional information on top of its content, such as its

publication date and keywords. The first task that the preprocessor performs, therefore,

is to extract the actual text content of each document and strip away all unnecessary

additional data. Moreover, some formats such as SGML encode special characters into

entity strings — for example, SGML uses &amp; to represent the & character. The

preprocessor therefore must also convert these strings back to the characters they rep-

resent. Naturally, as both text extraction and character conversion are format-specific,
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Figure 4.3: Architectural Overview of GELATI
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the preprocessor needs to implement different extraction modules to handle different for-

mats. Currently the preprocessor is able to handle SGML, Hypertext Markup Language

(HTML), and plain text documents.

Sentence Segmentation

The next task that the preprocessor performs is to segment the text data into individual

sentences. Although segmentation may appear trivial at first, it is actually quite complex

due to the fact that sentence termination punctuations are also frequently used for other

purposes. For example, in English, the period denotes both sentence termination and

word abbreviation. A segmenter that relies solely on periods, therefore, would erroneously

split the single sentence “Mr. Smith arrived at the U.S. on Jan. 2005.” into five sentences.

To properly perform sentence segmentation, the preprocessor uses MxTerminator [24], an

accurate and efficient sentence segmenter that detects sentence boundaries statistically.

Dependency Parsing

The last task that the preprocessor performs is to parse each sentence into a dependency

tree. For this task, the preprocessor uses a dependency parser called MINIPAR [25].

MINIPAR is a broad-coverage English parser based on an efficient distributed chart-

passing algorithm. MINIPAR has excellent accuracy, showing a precision of close to 90%

[26] on the SUSANNE corpus [27]. More importantly, MINIPAR is very fast, averaging

close to 10,000 characters per second on our test system with a 2.5 gigahertz processor.

For each sentence, MINIPAR generates a list of dependency relations between words,

which the preprocessor organizes into a dependency tree. MINIPAR also additionally

performs part-of-speech tagging, word stemming, simple compound noun recognition,

dependency relation labelling, and proposition collapsing, all of which the preprocessor

also incorporates into the dependency trees.

4.4 Word-Pair Extractor

The word-pair extractor is the first of the three core components of GELATI. As the name

implies, the word-pair extractor is responsible for extracting a list of word-pairs from the

input corpus that will act as the basic building blocks from which lexical analogies are

formed. As discussed in Section 3.2, not all word-pairs are suitable for the purpose of
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lexical analogy. In particular, only word-pairs with a clear, precise, and specific semantic

underlying relation should be extracted.

In order to determine what words are semantically related, we make use of the follow-

ing hypothesis: highly syntactically related words also tend to be semantically related.

This hypothesis allows a sentence’s syntactic dependency structure to approximate the

semantic relations between its words. Therefore, two words are assumed to be semanti-

cally related if they are syntactically related by some dependency relations — in other

words, related through a dependency path. As such, to extract a list of semantically

related word-pairs, the word-pair extractor simply takes the dependency trees from the

preprocessor then generates all possible dependency paths. Each dependency path re-

sults in a syntactically related, and hence semantically related, word-pair, defined by the

two words at the ends of the path.

Obviously, this list of word-pairs is extremely large — every pair of words occurring

in a same sentence would be extracted! Moreover, many of these word-pairs are very

weakly related, if at all. In order to keep only the most relevant word-pairs, the word-

pair extractor applies two filters on the list: a set of constraints on the dependency paths,

and a list of stop words on the end words.

Dependency Path Constraints

The first filter that the word-pair extractor uses is a set of constraints on the dependency

paths. Each dependency path is tested against these constraints, and only those that

pass through all constraints are actually extracted. The constraints are:

1. The dependency path must contain exactly three words.

2. Both ends of the dependency path must be nouns.

3. The intermediate word must be a verb.

The first constraint places a restriction on the length of the dependency paths to

extract. It is obvious that each dependency path must be of length at least two, or else

it would not be possible to extract a pair of words from the path. It is also obvious

why shorter dependency paths are preferred — a shorter dependency path means it goes

through fewer dependency relations, and hence the relation between its end words is more

direct and stronger. On the other hand, it is perhaps surprising that dependency paths of

length three are actually more appropriate than dependency paths of length two. The end
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words of a dependency path of length two are directly related by a dependency relation,

which generally means they are also semantically related. However, the semantic relation

between such words is often very general. For example, consider a sentence’s subject,

which is usually a direct dependent of the sentences’s main verb. The semantic relation

between them, however, is simply that the subject is-able-to-perform the action specified

by the verb, a very general relation. On the other hand, a dependency path of length

three forces a more specific semantic relation, because the relation has to at least conform

to the middle word. In essence, the middle word acts as a specifier that describes the

semantic relation between the end words. For these reasons, only dependency paths of

length three are extracted.

The last two constraints are inspired by the fact that the noun-verb-noun pattern is

the most common and direct construct to relate two nouns in English, and by a similar

set of constraints in Lin’s [23] work on inference rules. These constraints therefore help

the word-pair extractor to pinpoint strongly related nouns, at the expense of neglecting

semantically related adjectives, adverbs, and verbs. We justify this decision by acknowl-

edging that the majority of our lexical analogies are indeed based on nouns as in general

nouns have the most inter-relations. Nevertheless, one of our immediate future directions

is to relax these constraints to allow non-noun words to be extracted. These constraints

also highlight an important advantage of performing pattern extraction on dependency

trees rather than on the original unparsed sentences — words that are involved in the

pattern do not necessarily have to be adjacent to each other. In “the council approved

the new budget”, for example, council-approve-budget would be a path to extract even

though approve and budget are separated by two other words.

Stop Words

In addition to the constraints on the dependency paths, the word-pair extractor also

filters out any word-pair containing words from a list of 37 stop words as listed in Table

4.1.

The stop words in group one are due to noise in the input data. The word ’n is espe-

cially common, sometimes as an abbreviation for and (such as rock’n’roll) and sometimes

simply as a typo when writing contractions involving not. Group 2 stop words are mostly

caused by parser error, as MINIPAR sometimes mistakenly tags these words as nouns

when they should be adverbs or pronouns. On the other hand, there are rare circum-

stances when these words really are used as nouns. In those cases, however, these words
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Group Stop Words
1 ’n, ’t
2 no, yes, now, there, here, many, few,

more, less, higher, lower, these, those,
something, nothing, someone, no one, last

3 first, second, third, hundred, thousand,
million, year, week, month, day, time, date

4 man, woman, part, parts, way

Table 4.1: List of Stop Words

merely act as referring expressions and do not contain any meaning themselves. For ex-

ample, in the sentence “eagles tend to nest on the higher”, the word “higher” really refers

to a higher platform, a higher tree, or a higher something else. The semantic relation is

therefore between eagle and that something, and not between eagle and higher. Group

3 stop words are similar to Group 2, with the exception that they are actually used as

meaningful entities in some situations. In the sentence “a million is a large number”,

for example, there is indeed a semantic relation between million and number. Such uses,

however, occur rarely and hence these words are still filtered out. The last group of stop

words are filtered out because their uses are extremely broad and general, especially in

non–domain-specific documents such as newspaper articles. Word-pairs involving these

words, therefore, rarely have clear and precise underlying relations, and are therefore not

very useful for lexical analogies.

Most of the stop words, especially those in Group 1 and 4, are tailored specifically

for the input corpus used in our experimental evaluation (see Chapter 5). If a different

corpus is to be used, the list of stop words will also likely need to be updated.

4.5 Feature Extractor

The feature extractor is the second core component of GELATI and corresponds to

the second extension discussed in Section 3.3. The feature extractor is responsible for

extracting a set of features — syntactic, semantic, and pragmatic clues — about the

underlying relations of each word-pair extracted by the word-pair extractor.

To determine which features to extract, we again turn to dependency grammar. Re-

call that each word-pair extracted by the word-pair extractor comes from a dependency

path of the form: noun-verb-noun. This path, and specifically the middle verb, is pre-
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cisely something that describes the semantic relation between the two nouns — in other

words, a feature. Therefore, for each word-pair extracted by the word-pair extractor, the

feature extractor simply extracts the dependency pattern derived from the word-pair’s

originating dependency path, and sets the dependency pattern as a feature of the word-

pair. In addition, the feature extractor utilizes the same set of filters as the word-pair

extractor. As an example, consider again the sentence “the council approved the new

budget”. The word-pair extractor would extract the word-pair (council, budget), while

the feature extractor would extract the dependency pattern “
subj← approve

obj→ ”

and set it as a feature of (council, budget).

Dependency patterns have previously been shown to be effective at characterizing

lexico-syntactic relations [23] [28]. As Chapter 5 demonstrates, they are also surprisingly

capable of characterizing word-pairs’ underlying relations. As such, currently dependency

patterns are the only features that GELATI extracts. However, there are many other

possible features that may benefit GELATI’s performance. We explore some of these

possibilities for future work in Chapter 6.

The final output of the feature extractor is the same list of word-pairs received from

the word-pair extractor, but with each word-pair’s features appended to the word-pair’s

entry.

4.6 Extraction Filter

In addition to the local filters used in the word-pair and the feature extractors, GELATI

also employees a set of global extraction filters after both extractors complete. The

reason that global filters are required in addition to local filters is because some useful

information for filtering do not become available until all extractions are finished. For

example, the number of word-pairs sharing a feature is a good indicator of the generality

of that feature. In the extreme case, if all word-pairs share a feature, the feature is

obviously much too general to be useful and therefore should be filtered out. Such

information, however, does not become available until the features of all word-pairs have

been extracted. GELATI uses four global extraction filters as described below:

Occurrence Filters

The first global extraction filter counts the number of occurrences of each word-pair in

the entire corpus, and eliminates those that occur less than Kfilter1 times. This filter is
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based on the assumption that, as long as the input corpus is sufficiently large, strongly

related word-pairs tend to occur repeatedly. This simple yet effective filter therefore

weeds out weakly related word-pairs. Table 4.2 lists the first six word-pairs that occur

once, twice, five times, and 25 times in a corpus of about two hundred megabytes. As

the table shows, word-pairs that occur more frequently indeed tend to be more strongly

related.

Occurrences Sample Word-Pairs
1 (report, ex), (gratitude, treatment),

(authority, war criminal), (prisoner, war criminal),
(number, publicity), (total, camp)

2 (officer, camp), (camp, amnesty),
(delegation, ceremony), (citizen, society),
(ground, poll), (effect, battle)

5 (gratitude, government), (prisoner, charge),
(jail, death), (decision, speech),
(pledge, tax increase), (department, evidence)

25 (support, people), (ratification, treaty),
(group, activity), (demand, release),
(union, employee), (dollar, europe)

Table 4.2: Word-Pair Frequency Samples

The second global extraction filter is the dual of the first — it counts the number of

occurrences of each feature and eliminates those occurring less than Kfilter2 times.

Unique Occurrence Filters

The third global filter considers the number of distinct features for each word-pair. A

word-pair that has many features means that there are many different ways to charac-

terize its underlying relations, and hence the relations are most likely overly general. On

the other hand, a word-pair that has very few features is difficult to match to another

word-pair — there just is not enough material to make meaningful comparisons. The

filter, therefore, eliminates all word-pairs that have more than Kfilter3 or less than Kfilter4

features.

The last global extraction filter is the dual of the third — it considers the number of

distinct word-pairs for each feature, and eliminates those that are associated with more

than Kfilter5 or less than Kfilter6 word-pairs.
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4.7 Analogy Generator

The analogy generator is the last of GELATI’s three core components and corresponds

to the last extension discussed in Section 3.4. The purpose of the analogy generator is to

generate lexical analogies, by computing the analogousness between every pair of word-

pairs and output the ones scoring higher than some threshold Kthreshold. As discussed

in Section 3.4, the analogousness between two word-pairs is largely determined by how

many features they share — the more features they have in common, the higher their

analogousness. However, computing analogousness solely by shared features does not

yield an optimal result. The problem stems from the fact that features that are different

are not necessarily semantically distinct. Many ‘different’ features may end up being

mere surface variants of the same semantic content. As such, two word-pairs that have

few features in common may still be highly relationally similar if a large number of their

non-shared features are semantically identical or similar. In order to properly generate

lexical analogies, therefore, the analogy generator must compensate for features that are

only superficially different.

GELATI implements two analogy generators that use two fundamentally different

approaches to solve this problem. The first generator operates within the framework of a

Vector Space Model (VSM) [29], and is therefore called the VSM generator. The second

generator involves collecting evidence about word-pairs’ shared features, and is therefore

called the Evidence Counting or EC generator. The following subsections describe each

generator in detail.

Vector Space Model Generator

The VSM generator considers analogy generation as an application of the Vector Space

Model (VSM), and uses familiar VSM similarity measures to compute analogousness.

Specifically, for each word-pair, the generator creates a vector of dimensions equal to

the total number of features extracted. Each dimension of the vector corresponds to a

feature, and is set to one if that feature is a feature of the word-pair, or zero otherwise.

As such, the vector concisely summarizes the feature structure of the word-pair, and in

effect becomes a signature for the word-pair. These signature vectors provide the basis

from which analogousness can be computed — the analogousness between two word-pairs

is simply the degree of similarity between their signature vectors, with respect to some

vector similarity measure.
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The VSM generator uses one of the most common vector similarity measures: the

cosine measure. Mathematically, the cosine measure CS between vectors v1 and v2 is

defined as:

CS(v1, v2) =
v1 · v2

‖v1‖2 + ‖v2‖2
(4.1)

Geometrically, the cosine measure corresponds to the cosine of the angle between the

two vectors, as Figure 4.4 depicts.

Figure 4.4: Graphical View of the Cosine Measure

Clearly, the cosine measure by itself does not compensate for superficial feature dif-

ferences. To solve the problem, the VSM generator turns to a popular technique in

Information Retrieval (IR): Latent Semantic Analysis (LSA) [17]. LSA attempts to solve

a very similar problem in IR, namely, the relevancy between two documents cannot be

entirely determined by the words they have in common because different words may be

semantically equivalent. The solution that LSA proposes is to compress the feature space

in such a way that the compressed space retains the most differentiating dimensions from

the original feature space while merging less differentiating ones. The authors of LSA

claim that this compressed space represents a semantic space in which surface differences

are minimized. While the validity of this claim may be debatable, there is no doubt that

LSA indeed performs remarkably well in solving the IR problem.

The success of LSA prompts the VSM generator to adopt the same approach. The

mechanism that LSA uses to reduce the feature space’s dimension is Singular Value

Decomposition (SVD) [30], which is also what the VSM generator uses. SVD is a matrix

operation that decomposes an m-by-n matrix M into a product of three matrices: an

m-by-m unitary matrix U , an m-by-n diagonal matrix Σ that contains the singular values
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of M in its diagonal, and an n-by-n unitary matrix V . The remarkable property about

SVD is that if Σ is rearranged in non-increasing order of singular values, and all three

matrices are truncated to a smaller dimension t, then the resulting product M ′ is a rank

t matrix that is the best approximation of M among all rank t matrices; in other words,

optimal dimension reduction.

Putting this all together yields the following steps that the VSM generator takes to

generate lexical analogies:

1. Compute the signature vectors of all word-pairs.

2. Concatenate all signature vectors to form a matrix representing the feature space.

3. Reduce the dimension of the feature space to Kdim using SVD.

4. Use the reduced vectors to compute pair-wise cosine measures.

5. Output all pairs scoring higher than a threshold Kthreshold as lexical analogies.

Evidence Counting Generator

The EC generator centres around the concept of evidence features. An evidence feature of

two word-pairs is a feature that suggests the two word-pairs may be relationally similar.

For example, a feature shared by both word-pairs is certainly an evidence feature. The

EC generator computes the analogousness between two word-pairs by counting their

evidence features and producing a score proportional to the count.

Precisely what features are considered evidence features? As mentioned, common

features shared by two word-pairs certainly qualify. Using just the common features,

however, causes the EC generator to be vulnerable to superficial feature differences. To

avoid the problem, we consider a much larger set of features than just the common

features, by taking advantage of transitivity. Consider, for example, two word-pairs wp1

and wp2 that are known to be relationally similar. Suppose wp2 has a lexical analogue,

wp3. Then by way of transitivity, wp3 is also likely a lexical analogue of wp1 even if

they do not share many features. Similarly, suppose f is a feature of wp2. Then f is

also likely a valid feature of wp1 even if wp1 never occurs with f in the input corpus.

By using transitivity, f becomes an indirect feature of wp1 that can be included in the

computation of wp1’s analogousness.

The following definitions formalize the above intuition.
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j-neighbour For a word-pair wp1, the 0-neighbour is the word-pair wp1 itself, a 1-

neighbour, or simply neighbour, is a word-pair that shares some features with wp1,

and a j-neighbour, j ≥ 2, is a neighbour of a (j − 1)-neighbour of wp1.

j-feature For a word-pair wp1, a level j feature, or simply j-feature, j ≥ 0, is a feature

of a j-neighbour of wp1.

j-evidence A level j evidence feature of two word-pairs wp1 and wp2 is a feature of wp1

and a j-feature of wp2. The set of all level j evidence features of wp1 and wp2 are

collectively referred to as the j-evidence of the two word-pairs.

∞-evidence Given a maximum level Klevels to consider, the ∞-evidence of two word-

pairs wp1 and wp2 is the set of features of wp1 that are not j-features of wp2 for

all j ≤ Klevels.

Feature level captures the intuition that, in addition to direct features, a word-pair

also has indirect features through transitivity. Evidence level captures the intuition that

these indirect features can also contribute to the word-pair’s relational similarity. Clearly,

the 0-evidence of two word-pairs is precisely their set of common features. The rest of

the definitions are best illustrated through an example. Consider the scenario depicted in

Figure 4.5. In this example, there are five word-pairs labelled Word-Pair 1 to Word-Pair

5, as well as four features labelled Feature 1 to Feature 4. Word-Pair 1 occurs with

Feature 1, Word Pair 2 with Feature 1 and Feature 2, Word-Pair 3 with Feature 2 and

Feature 3, Word-Pair 4 with Feature 3, and Word-Pair 5 with Feature 4.

Figure 4.5: Example for Evidence Counting Generator

Some observations from the example:

1. Each word-pair is a 0-neighbour of itself.

2. Word-Pair 1 is a 1-neighbour of Word-Pair 2, as they both share Feature 1.
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3. Similarly, Word-Pair 2 is a 1-neighbour of Word-Pair 3 due to Feature 2.

4. Combining the above means that Word-Pair 3 is a 2-neighbour of Word-Pair 1.

5. Feature 1 is a 0-feature of Word-Pair 1.

6. Feature 2 is a 1-feature of Word-Pair 1, due to Word-Pair 2 being a 1-neighbour

of Word-Pair 1.

7. Feature 1 is a level 0 evidence feature of Word-Pair 1 and Word-Pair 2, a level 1

evidence feature of Word-Pair 1 and Word-Pair 3, and a level 2 evidence feature

of Word-Pair 1 and Word-Pair 4.

8. Feature 1 is also an element of the ∞-evidence between Word-Pair 1 and Word-

Pair 5.

To merge the contributions of all evidence features, the EC generator linearly com-

bines them by levels. Let E(wp1, wp2, j) be the number of level j evidence features of

wp1 and wp2, Klevels be the highest evidence level to consider, and c1, . . . , cKlevels
, c∞ be

a set of weights. Then the analogousness AEC between two word-pairs wp1 and wp2 with

respect to the EC generator is:

AEC(wp1, wp2) = c0 · E(wp1, wp2, 0) + . . . +

cKlevels
· E(wp1, wp2, Klevels) + c∞ · E(wp1, wp2,∞)

(4.2)

The weights are learned by training on a set of hand-labelled samples. In practice,

the training set can be quite small due to the fact that typically only the first few levels

of evidence are relevant, leaving only a few weights to learn. There is a wide variety

of supervised machine learning techniques that can be used to learn the weights. The

EC generator uses linear least-squares regression (LLR), mostly due to LLR’s simplicity

and generally good performance. LLR computes the weights by minimizing their square

error when applied to the training set. Specifically, let T = {t1, . . . , tk} be the training

set, in which each ti is composed of two word-pairs wp1ti
and wp2ti

. Let B = {b1, . . . , bk}
be a set of values, with bi = 1 if ti’s two word-pairs form a valid lexical analogy, and 0

otherwise. Let ~c be a vector corresponding to the weights c1, . . . , cKlevels
, c∞, and let ~b be

a vector corresponding to B. Define a matrix A as follows:
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A =



E(wp1t1
, wp2t1

, 0) . . . E(wp1t1
, wp2t1

, Klevels) E(wp1t1
, wp2t1

,∞)

E(wp1t2
, wp2t2

, 0) . . . E(wp1t2
, wp2t2

, Klevels) E(wp1t2
, wp2t2

,∞)
...
...

E(wp1tk
, wp2tk

, 0) . . . E(wp1tk
, wp2tk

, Klevels) E(wp1tk
, wp2tk

,∞)


Then, the goal of LLR is to determine the value of ~c that minimizes the following:

∥∥∥A~c−~b
∥∥∥
2

It turns out that the optimal value of ~c can be computed by the following 1:

~c = (AT A)−1AT~b (4.3)

where AT is the transpose of A. Using LLR, therefore, reduces the computation of

optimal weights to a few simple matrix operations.

The analogousness measure as defined in Equation 4.2 properly compensates for su-

perficial feature differences. However, it suffers from another limitation: the function

gives an unfair advantage to word-pairs having many features. To solve this problem,

the EC generator replaces the count of evidence features with the ratio between the

number of evidence features and the number of total features. Obviously, using the ratio

gives a slight advantage to word-pairs having very few features. Fortunately, the global

extraction filters discussed in Section 4.6 ensure that this will not be a problem, as all

word-pairs will have at least Kfilter3 features. Reflecting this change, the analogousness

measure now becomes:

AEC(wp1, wp2) = c0 · E(wp1,wp2,0)
d

+ . . . +

cKlevels
· E(wp1,wp2,Klevels)

d
+ c∞ · E(wp1,wp2,∞)

d

(4.4)

where d is the number of features of wp1.

As AEC depends on the number of features of wp1, it is no longer symmetric: the

analogousness of (wp1, wp2) is different from the analogousness of (wp2, wp1) unless the

two word-pairs have the same number of features. The EC generator’s solution is to

1See http://en.wikipedia.org/wiki/Linear least squares for an example of the derivation.
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maintain a canonical parameter ordering by reversing the parameters if the second word-

pair has more features than the first word-pair. Taking this last change into account, the

final analogousness measure with respect to the EC generator is as follows:

AEC(wp1, wp2) =

 ÂEC(wp2, wp1) if wp2 has more features than wp1

ÂEC(wp1, wp2) otherwise

 (4.5)

ÂEC(wp1, wp2) = c0 · E(wp1,wp2,0)
d

+ . . . +

cKlevels
· E(wp1,wp2,Klevels)

d
+ c∞ · E(wp1,wp2,∞)

d

(4.6)

4.8 Analogy Filter

The last component in GELATI’s pipeline is the analogy filter, which filters out inap-

propriate lexical analogies generated by the analogy generator. The filter specifically

performs the following.

1. Eliminate all lexical analogies of the form A:B::A:C or B:A::C:A. For example, one

such lexical analogy is rain:snow::rain:frost. These lexical analogies, while generally

valid, really capture the near-synonymy relation between B and C more than the

analogy between (A, B) and (A, C ).

2. Eliminate all but one permutations of each lexical analogy. A lexical analogy can

appear as four different permutations of its constituent words: A:B::C:D, B:A::D:C,

C:D::A:B, D:C::B:A. Obviously, all four permutations describe the same lexical

analogy, hence only one needs to be kept. The filter does not enforce a canonical

permutation, so whichever is generated first is the one that will be kept.
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Chapter 5

Experimental Evaluation

In this chapter we present the results of an experimental evaluation of GELATI. Section

5.1 describes the experimental setup and evaluation protocol. Section 5.2 summarizes the

results. Lastly, Section 5.3 discusses some interesting observations as well as key issues

of GELATI as revealed by the experiment.

5.1 Experimental Setup

The experimental evaluation of GELATI consisted of the following five steps:

1. Collect a large corpus of text documents to be used as the input data.

2. Set GELATI’s parameters to appropriate values.

3. Run GELATI on the corpus using the VSM generator.

4. Run GELATI on the corpus using the EC generator.

5. Evaluate the validity and quality of the generated lexical analogies.

Corpus

The input for the experiment was composed of a subset of the text corpus used by the

Text REtrieval Conference (TREC)1. TREC is a conference and competition on various

aspects of text retrieval sponsored by the United States government. The corpus that

TREC uses originates from two sources: the Linguistic Data Consortium2, and the NIST

1http://trec.nist.gov/
2http://www.ldc.upenn.edu/
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Standard Reference Data3. The corpus contains a variety of general news articles as well

as domain-specific documents, organized into collections based on the publication source

of each document. All documents are encoded in SGML, and all contain various meta-

data in addition to the actual text content. For the experiment, the following collections

were selected: AP Newswire 1988–1990, LA Times 1989–1990, and San Jose Mercury

1991. Table 5.1 lists the size of each collection, both in its original SGML format and

after extracting text content.

Track SGML Size Extracted Size
AP Newswire 728 MB 627 MB
LA Times 475 MB 359 MB
San Jose Mercury 286 MB 210 MB
Total 1489 MB 1196 MB

Table 5.1: Experiment Corpus Statistics

Parameter Values

The parameter values of GELATI were determined largely through trial-and-error on

smaller corpora. The filter parameter values were additionally influenced by the need

to restrict the number of word-pairs and features in order to allow the computationally

intense analogy generators to complete within a reasonable time. The maximum evidence

level of the EC generator was set to one, simply because most features turned out to be

either in 0-evidence or 1-evidence. The final parameter values for the experiment are

summarized in Table 5.2.

Evaluation Protocol

Unfortunately, devising an objective measure to evaluate GELATI is very difficult due to

the lack of a reference dictionary of lexical analogies and that lexical analogies are, by def-

inition, subjective. As such, we elected to use a subjective measure to evaluate GELATI’s

output — asking human judges to grade the lexical analogies GELATI generated. The

evaluation process involved three human participants, all of whom are proficient English

speakers with at least a Master’s degree in Arts, and none of whom had any connection

to this research prior to the experiment. Each participant was given a survey containing

3http://www.nist.gov/srd/index.html
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Parameter VSM Gen EC Gen Explanation
Kfilter1 50 50 filter: min word-pair occurrences
Kfilter2 50 50 filter: min feature occurrences
Kfilter3 40 40 filter: min word-pair unique occurrences
Kfilter4 ∞ ∞ filter: max word-pair unique occurrences
Kfilter5 10 10 filter: min feature unique occurrences
Kfilter6 100 100 filter: max feature unique occurrences
Kdim 400 N/A VSM generator: reduced dimension
Klevels N/A 1 EC generator: maximum evidence level
Kthreshold 0.53 0.47 analogousness threshold for output

Table 5.2: Experiment Parameter Values

a list of lexical analogies, and was asked to grade each lexical analogy with a score from

zero to 10, with zero denoting an invalid lexical analogy and 10 denoting a perfect lexical

analogy. To ensure at least a rudimentary level of consistency, each participant was also

given detailed instructions as well as examples of lexical analogies. The exact instructions

given to each participant are listed in Appendix A.

Each survey was unique to the participant to whom the survey was given, and was

generated using the following procedure:

1. All lexical analogies generated by the VSM generator were ranked by their analo-

gousness score and divided into 10 partitions.

2. Similarly, all lexical analogies generated by the EC generator were ranked and

divided into 10 partitions.

3. Four lexical analogies were randomly drawn from each of the 20 partitions, resulting

in 80 lexical analogies which were included in the survey in random order.

In addition, 10 lexical analogies drawn from real or practice SAT verbal analogy

questions were randomly inserted into each survey. These SAT lexical analogies, which

are listed in Table 5.3, acted as a control set of the best manually generated lexical

analogies. Each survey therefore contained 90 lexical analogies in total.

After all the surveys were completed, the results were analyzed using the following

two metrics:

1. Precision: the percentage of valid lexical analogies among all that were graded,

where valid means a score greater than zero.
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(mason, stone) and (carpenter, wood)
(amplifier, ear) and (telescope, eye)
(devotion, obsession) and (confidence,conceit)
(swarm, bee) and (school, fish)
(body guard, person) and (soldier, country)
(archeology, science) and (chair, furniture)
(dalmatian, dog) and (oriole, bird)
(cub, bear) and (puppy, dog)
(saw, carpenter) and (scissors, tailor)
(census, population) and (inventory, merchandise)

Table 5.3: Lexical Analogies in SAT Control Set

2. Quality : the average score of all graded lexical analogies.

An important metric that was not included in our analysis is recall : the number of

valid lexical analogies generated divided by the number of all valid lexical analogies that

could potentially be generated from the corpus. Recall was omitted because there is no

simple method to even estimate the number of lexical analogies that could potentially be

generated — the corpus is much too large to be analyzed manually.

5.2 Experimental Results

The experiment resulted in 6,916 word-pairs and 9,010 features after filtering. The VSM

generator generated 2,097 lexical analogies, while the EC generator generated 2,207 lexi-

cal analogies. The EC generator was trained using 20 hand-labelled samples, 10 positive

and 10 negative. The trained weights are shown in Table 5.4. These values, however, are

slightly misleading. 1-evidence is much more influencing than the weight suggests, due

to the fact that there are far more level 1 evidence features than other levels. Similarly,

∞-evidence is not nearly as influencing as it appears to be. In the end, 0-evidence has

the highest influence, followed by 1-evidence then ∞-evidence.

Performance

Table 5.5 lists the running times of the major processes of GELATI, based on a Java

implementation running on a 2.5 gigahertz processor. For this experiment, the SVD
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Weight Value
c0 2.88708
c1 0.09236
c∞ -3.75070

Table 5.4: EC Generator Weights After Training

computation was conducted externally in MATLAB4 on an Intel Itanium2 processor.

Unfortunately, as MATLAB does not natively support Itanium2, it was forced to run

in emulation mode which was very slow. Furthermore, a large portion of the compu-

tation time was actually spent in the importation and exportation of the data matrix.

The reported running time therefore does not truly reflect the performance of the VSM

generator. Nevertheless, even without SVD the VSM generator is slightly slower than

the EC generator. Clearly, by far the most expensive operation in GELATI is parsing

in the preprocessor. A faster dependency parser would significantly improve GELATI’s

performance.

Process VSM Gen EC Gen
Preprocessor: Text Extraction 37 min
Preprocessor: Segmentation 20 min
Preprocessor: Parsing 2232 min
Extraction 126 min
SVD Computation 208 min N/A
Analogy Generation 88 min 83 min

Table 5.5: GELATI Running Times

Precision Analysis

Table 5.6 lists the average precision scores of the VSM generator, the EC generator, and

the SAT control set. Figure 5.1 compares these scores graphically.

GELATI performs remarkably well with respect to precision, approaching the level

of the SAT control set which unsurprisingly has a precision of 1.00. The high precision

scores mean that most of the lexical analogies that GELATI generates are valid. The

VSM generator performs slightly better than the EC generator, but the difference is not

4http://www.mathworks.co.uk/products/matlab/
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Source Precision Score
VSM Generator 0.93
EC Generator 0.92
SAT Control 1.00

Table 5.6: Precision Scores

Figure 5.1: Precision Scores Chart
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large enough to be statistically significant. Table 5.7 breaks down the precision scores to

individual partitions, and Figure 5.2 compares them graphically.

Partition VSM Gen EC Gen
1 1.00 1.00
2 1.00 0.92
3 1.00 0.83
4 0.92 0.83
5 0.83 1.00
6 0.83 0.92
7 0.92 0.83
8 1.00 0.92
9 0.92 0.92
10 0.92 1.00

Table 5.7: Partition-wise Precision Scores

As Table 5.7 shows, the precision score does not appear to decline toward higher

partitions. There are a few possible explanations. First, the analogousness measures may

be too coarse to support ranking. In other words, while a high analogousness score is a

good indication of validity, a slightly higher analogousness score is not a good indication

of better relational similarity. Second, the selected threshold values may be too high. As

a result, the precision has not yet started to decline before the threshold value is reached.

Finally, there may be sampling errors due to the small number of samples used.

Quality Analysis

The quality scores of the VSM generator, the EC generator, and the SAT control set are

listed in Table 5.8 and illustrated in Figure 5.3.

Source Quality Score
VSM Generator 6.18
EC Generator 6.23
SAT Control 9.33

Table 5.8: Quality Scores

Unlike the precision scores, the quality scores of GELATI’s lexical analogies are re-

spectable but significantly lower than that of the SAT control set. The EC generator
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Figure 5.2: Partition-wise Precision Scores Chart

appears to perform slightly better than the VSM generator, however the difference is

again too small to be statistically significant. Table 5.9 breaks down the quality scores to

individual partitions, and Figure 5.4 compares them graphically. As with the precision

scores, quality scores do not appear to decline toward higher partitions.

Partition VSM Gen EC Gen
1 7.25 7.00
2 6.58 5.83
3 5.75 5.75
4 6.50 5.75
5 6.42 6.50
6 4.75 6.58
7 5.75 4.33
8 6.67 7.00
9 6.17 5.75
10 5.92 7.75

Table 5.9: Partition-wise Quality Scores
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Figure 5.3: Quality Scores Chart
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Figure 5.4: Partition-wise Quality Scores Chart

Sample Output

Table 5.10 lists the top 30 lexical analogies generated by the VSM generator, while Table

5.11 lists the top 30 by the EC generator. The tables are exactly what GELATI produced

without any editing. The format of each lexical analogy is as follows: rank of the analogy,

identification number of the first word-pair, the first word-pair, identification number of

the second word-pair, the second word-pair, the analogousness score. In addition, Table

5.12 shows a manually selected list of some of the best and most creative lexical analogies

generated by GELATI. The shared relations shown in the table are manually labelled.

5.3 Discussions

Noise

Despite the rather high precision score, the moderate quality score means that GELATI

still produced a fair amount of completely invalid or very poor lexical analogies, which are

collectively referred to as noise. Noise is contributed by almost every part of GELATI,

starting from the input corpus. The input data is surprisingly noisy, containing many

fragmented sentences, isolated words, and other language errors. The corpus is also noisy
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1 : 2393 (stock market,trading) AND 4092 (price,session) — 0.9109935656865431
2 : 2451 (stocks,trading) AND 4092 (price,session) — 0.9039325577308122
3 : 4093 (session,price) AND 5645 (trading,stock) — 0.8877049519788612
4 : 1999 (dollar,trading) AND 4092 (price,session) — 0.8817705036576743
5 : 338 (soldier,palestinian) AND 5496 (troops,people) — 0.8487917204466584
6 : 984 (apartment,police) AND 3464 (home,officer) — 0.8457190323552611
7 : 2182 (force,withdrawal) AND 3045 (hostage,release) — 0.8454509782234105
8 : 1867 (bill,legislature) AND 3016 (legislation,house) — 0.8452682765360523
9 : 1494 (u.s.,judge) AND 3325 (attorney,general) — 0.8425441590865859
10 : 310 (increase,rise) AND 4596 (decline,drop) — 0.8376257126089509
11 : 1777 (inflation,rate) AND 6578 (sales,level) — 0.8360240039988636
12 : 3016 (legislation,house) AND 3132 (bill,assembly) — 0.8274124593118469
13 : 2708 (house,police) AND 3464 (home,officer) — 0.8263104003140124
14 : 576 (newspaper,article) AND 1498 (magazine,story) — 0.8254199555013249
15 : 2069 (senate,measure) AND 3015 (house,legislation) — 0.8186809947338843
16 : 1715 (legislation,congress) AND 1867 (bill,legislature) — 0.8169632812325749
17 : 338 (soldier,palestinian) AND 3064 (police,worker) — 0.8162788761713085
18 : 2038 (senate,legislation) AND 3028 (house,measure) — 0.8156125414678665
19 : 310 (increase,rise) AND 4597 (drop,decline) — 0.8153169661545098
20 : 4142 (moscow,gorbachev) AND 4225 (washington,bush) — 0.8116149384985234
21 : 1867 (bill,legislature) AND 2674 (measure,congress) — 0.8084539172519039
22 : 184 (house,resolution) AND 2038 (senate,legislation) — 0.8076013194220543
23 : 984 (apartment,police) AND 3141 (house,officer) — 0.8073661078829227
24 : 984 (apartment,police) AND 6150 (home,agent) — 0.8068929753013839
25 : 1570 (interest rate,market) AND 5644 (stock,trading) — 0.8038515556945531
26 : 338 (soldier,palestinian) AND 704 (police,student) — 0.8037038701966855
27 : 338 (soldier,palestinian) AND 703 (police,protester) — 0.8015985866695314
28 : 3028 (house,measure) AND 3133 (assembly,bill) — 0.7995749039521474
29 : 1777 (inflation,rate) AND 2348 (price,level) — 0.7994595492145963
30 : 1284 (trading,price) AND 1571 (market,interest rate) — 0.7991148497556326

Table 5.10: Top-30 Lexical Analogies using the VSM Generator
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1 : 2393 (stock market,trading) AND 4092 (price,session) — 1.4588876478294364
2 : 1999 (dollar,trading) AND 4092 (price,session) — 1.2467015623798323
3 : 2069 (senate,measure) AND 3015 (house,legislation) — 1.2330627119313111
4 : 2037 (legislation,senate) AND 3027 (measure,house) — 1.2200546855067245
5 : 576 (newspaper,article) AND 1498 (magazine,story) — 1.1683151677963508
6 : 2262 (president,ceremony) AND 6350 (bush,session) — 1.1403805236561322
7 : 302 (shareholder,stock) AND 6641 (investor,share) — 1.1219941786136878
8 : 1867 (bill,legislature) AND 3016 (legislation,house) — 1.11899232636186
9 : 3097 (court of appeals,ruling) AND 3241 (appeals court,decision) —

1.1086222913100916
10 : 3097 (court of appeals,ruling) AND 4583 (u.s. supreme court,decision) —

1.0984596569593588
11 : 4141 (gorbachev,moscow) AND 4224 (bush,washington) — 1.0984596569593588
12 : 310 (increase,rise) AND 4596 (decline,drop) — 1.0644369245677747
13 : 91 (attorney,lawsuit) AND 5000 (company,suit) — 1.056056941220094
14 : 2866 (people,fighting) AND 4422 (palestinian,uprising) — 1.0239336717206506
15 : 1867 (bill,legislature) AND 2037 (legislation,senate) — 1.0217306177575771
16 : 2069 (senate,measure) AND 3133 (assembly,bill) — 1.0049219407924088
17 : 3015 (house,legislation) AND 3133 (assembly,bill) — 1.0049219407924088
18 : 983 (police,apartment) AND 3140 (officer,house) — 0.996534412441714
19 : 983 (police,apartment) AND 3463 (officer,home) — 0.996534412441714
20 : 665 (official,hearing) AND 3101 (president,news conference) —

0.9938828712211717
21 : 2220 (satellite,orbit) AND 2908 (fund,account) — 0.9866706791012968
22 : 3111 (supreme court,ruling) AND 4583 (u.s. supreme court,decision) —

0.9707008251215736
23 : 5000 (company,suit) AND 6777 (city,lawsuit) — 0.9657102457529101
24 : 183 (resolution,house) AND 3132 (bill,assembly) — 0.9463024370969966
25 : 310 (increase,rise) AND 4597 (drop,decline) — 0.9429271660264029
26 : 667 (law,legislature) AND 5471 (ordinance,city council) —

0.9392450521312099
27 : 1272 (effort,economy) AND 6627 (plan,system) — 0.9360492551655706
28 : 3027 (measure,house) AND 3132 (bill,assembly) — 0.9258731648276138
29 : 1570 (interest rate,market) AND 4092 (price,session) — 0.9143366346049038
30 : 1867 (bill,legislature) AND 3607 (law,parliament) — 0.910326986905547

Table 5.11: Top-30 Lexical Analogies from EC Generator
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Lexical Analogy Shared Relation
(force, withdrawal) and (hostage, release) safely-returns
(increase, rise) and (decline, drop) synonymy
(moscow, gorbachev) and (washington, bush) led-by
(satellite, orbit) and (fund, account) resides-in
(law, legislature) and (ordinance, council) approved-by
(approval, agreement) and (passage, bill) legitimizes
(investigation, arrest) and (debate, vote) leads-to
(newspaper, article) and (magazine, story) publishes

Table 5.12: Examples of Good Lexical Analogies Generated by GELATI

in the sense that it contains tables and figures represented in text form, which ordinary

parsers such as MINIPAR are unable to handle. MINIPAR itself is also far from perfect.

Our experience shows that MINIPAR has a precision of between 80–90% on general news

articles. However, MINIPAR’s performance significantly degrades for sentences that are

either very long or contain complex subclauses. The extraction filters also contribute

to noise due to the fact that they use rather coarse measures to estimate word-pair

and feature relevancy. As a result, some word-pairs with rather weak relations such as

(officer, house) still manage to pass through the filters. Last but definitely not least,

ultimately dependency patterns are syntactic constructs and really only approximate

semantic relations. Two word-pairs sharing many dependency patterns are guaranteed

to be syntactically similar, but they are only likely to be semantically similar. This

approximation inevitably leads to some errors, which eventually become noise.

Polysemic Words

Many words in GELATI’s output involve multiple meanings, some of which are very

specific to the context in which they occur. As a result, many lexical analogies produced

by GELATI are difficult to interpret unless they are considered in very specific contexts.

Consider the lexical analogy legislation:senate::measure:house, for example. This lexical

analogy appears to be completely invalid if each word is interpreted as its most common

sense. However, these words actually come from political articles on law-making. In that

context, measure actually refers to a measure of law, and house actually refers to the

House of Commons, hence the lexical analogy is in fact valid.

There are at least three areas that need to be extended in order to properly resolve
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this issue. First, obviously, word-sense disambiguation must be performed on the input.

Secondly, referring expressions must be resolved, so that GELATI is able to recognize,

for example, that “the House” actually refers to “the House of Commons”. Lastly, all

processing throughout GELATI’s pipeline must be performed on sense-pairs instead of

word-pairs, and the final output must be represented in a format that shows word senses

instead of words.

Granularity

GELATI’s dependency on syntactic features results in another limitation. The problem is

that GELATI cannot differentiate between concepts at different granularities. Consider

the lexical analogy country:relation::united states:ties for example. This lexical analogy

is valid because a country has relations with other countries just as the United States

has ties with other countries. On the other hand, it is not very satisfying because the

two word-pairs are at two different levels of granularity. The first word-pair involves

countries in general, while the second word-pair involves a specific country, namely the

United States. GELATI fails to distinguish this difference because in most cases both

word-pairs participate in similar syntactic constructs.

Analogy Clusters

A manual scan of the lexical analogies generated by GELATI revealed another obser-

vation: the output often contains what we refer to as analogy clusters. Essentially, an

analogy cluster involves multiple lexical analogies that all share similar words. Usually

they are caused by different combinations of two sets of synonyms. For example, con-

sider the sets {senate, assembly, legislature} and {bill, measure, legislation}. The first

set describes law-making bodies, and the second set describes laws. Taking a word from

the first set and another from the second set, there is a total of nine possible word-pairs

that can be formed. Using those nine word-pairs, there are
(

9
2

)
= 36 lexical analogies

that can be formed, all sharing the same underlying relation and similar words, yet all

distinct.
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Chapter 6

Conclusion

6.1 Summary

In this thesis we have presented GELATI, a system that generates lexical analogies from

a corpus of text documents. GELATI divides the task of lexical analogy generation

into three main processes: identify semantically related word-pairs, extract features to

characterize their underlying relations, and match word-pairs with similar features to

generate lexical analogies. GELATI uses dependency structures to identify semantically

related word-pairs and to characterize their underlying relations, and machine learning

techniques to compute their relational similarity. Experimental evaluation shows that

over 90% of the lexical analogies GELATI generates are valid, although their quality is

not as satisfying as the best lexical analogies generated by humans.

Going forward, there are a number of possible future directions for improvement and

extension, as discussed in the following sections.

6.2 Future Directions

Alternative Corpus

The corpus we used for the experimental evaluation consisted entirely of news articles,

which may not be ideal for the purpose of lexical analogy generation. A future direction,

therefore, is to experiment with different genres of text. In particular, poems, novels,

and other creative writings may be good candidates as they tend to use metaphors and

analogies more freely and more creatively than other genres.
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Additional Features

In addition to dependency patterns, there are many other syntactic and semantic features

that could assist GELATI in characterizing underlying relations. The following is a list

of some possibilities. For a word-pair (w1, w2):

1. Words that commonly occur in sentences involving both w1 and w2, subject to a

list of stop words such as determiners.

2. Common words in the definitions of w1 and w2 in an electronic lexical resource,

again subject to a list of stop words. Two particular resources that may be useful

are WordNet [4] and Wikipedia1.

3. Patterns based on frames, semantic role labels, or other semantic structures in sen-

tences involving both w1 and w2. These features would be very similar to depen-

dency patterns, except they operate at the semantic level rather than the syntactic

level. An unfortunate limitation of these features is that they are difficult to obtain

— current semantic parsers are nowhere near as accurate and efficient as current

syntactic parsers.

Semantic features are particularly useful, as they allow underlying relations to be

differentiated at a finer level. Note that because the analogy generator does not depend

on the type of features used, all of these features, as well as dependency patterns, could

be used together in a heterogeneous feature set.

Clustering Algorithms for Analogy Generation

The VSM and the EC generators illustrate two possible approaches to generating lex-

ical analogies from word-pairs and features. Certainly, there are other possibilities. A

particularly interesting class of algorithms is clustering algorithms. In essence, relational

similarity is no different from attributional similarity, except different features are used.

As such, algorithms that have been shown to be successful for attributional similarity,

such as clustering algorithms, are logical candidates for relational similarity. Clustering

algorithms also make sense on a theoretical level: after all, lexical analogies are really

nothing more than clusters of word-pairs sharing similar features.

1www.wikipedia.com
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1. repeat

2. pick a random subset S of E with |S| ≥ 2
3. for each element in S, obtain its set of analogues from A
4. take the intersection T of all the above sets

5. add all elements in T to E
6. until all possible subsets have been tried

Table 6.1: Algorithm for Learning Ontological Relations

6.3 Learning Ontological Relations

An exciting application of GELATI, and in fact what originally inspired this research,

is to use the lexical analogies generated by GELATI to learn ontological relations. As

briefly discussed in Section 1.4, manually constructing ontologies is an expensive process,

so there is a growing need for methods to automate the process. Ontological relations

present a particularly difficult challenge due to the sheer number and variety of relations

that can, and need, to be captured. Most ontologies contain only what Morris and

Hirst [5] call classical relations : WordNet relations such as synonymy and hyponomy.

However, the majority of relations in real-world data are non-classical — for example,

positive-qualities (humbleness and kindness), cause-of (alcohol and drunk), and founder-

of (Gate and Microsoft) [5]. Methods are needed to automatically enrich ontologies with

both classical and non-classical relations.

We propose that GELATI could be a key component in facilitating the process of

learning ontological relations. The main observation that justifies this proposal is that, to

a large extent, the underlying relations that GELATI learns are precisely the ontological

relations that ontologies need to acquire. Although GELATI does not explicitly learn

what these underlying relations are, it does offer a method to identify when they are

similar. This identification of similarity can be a valuable resource for relation learning.

As an example, Table 6.1 illustrates an algorithm that uses GELATI’s output to learn

instances of a given ontological relation.

The algorithm takes two inputs: a dictionary A of many lexical analogies generated by

GELATI, and a small sample set E of instances of the ontological relation of interest. For

example, to use the algorithm to learn instances of the produces relation, one would give

as input (poet, poem), (composer, music), (painter. painting), and so on. The algorithm

works on the very simple principle that if (w1, w2) and (w3, w4) form a lexical analogy,

and w1 and w2 are related by some relation r, then likely w3 and w4 are related by
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the same relation r. Using this principle, the algorithm bootstraps from a small sample

set, and increasingly adds to the sample set by looking for lexical analogues in A that

are common to at least two samples. In essence, the algorithm uses lexical analogies as

bridges through which the relation from the samples are spread to other word-pairs.

Clearly, this algorithm is only a prototype and lacks some necessary details. For

example, the algorithm does not provide a method to map words to and from ontological

concepts, which is non-trivial, as a word can map to multiple concepts (polysemy) and

a concept can map to multiple words (synonymy). The algorithm also does not specify

how the initial sample set can be generated. Nevertheless, the algorithm clearly shows

that lexical analogies, and hence GELATI, can indeed act as an important component

in learning ontological relations.
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Appendix A

Instructions for Human Judges

Background, Definitions, and Notations

We define the semantic relations between two words to be the relations that link their

meanings. For example, a semantic relation between doctor and hospital is works-in (i.e.

a doctor works in a hospital), and a semantic relation between poet and poem is writes

(i.e. a poet writes poems). Often there are multiple semantic relations between two

words. Using poet and poem again, the two words are also related by produces, enjoys,

studies, understands, earns-money-with, and so on. We call a pair of word a word-pair,

and we call the semantic relations between the two words the word-pair’s underlying

relations. For example, the underlying relations of (poet, poem) are writes, produces,

enjoys, etc.

A lexical analogy is formed by two word-pairs that share one or more underlying

relations. In other words, if (A, B) and (C, D) form a lexical analogy, there is a common

semantic relation between (A, B), and between (C, D). For example, (poet, poem) and

(painter, k) form a lexical analogy because a poet produces poems just as a painter

produces paintings. Similarly, (abbreviation, word) and (abstract, report) form a lexical

analogy because in both word-pairs, the former is a shortened version of the later. Other

examples of lexical analogies include (cub, bear) and (puppy, dog), (newspaper, article)

and (magazine, story), and (increase, rise) and (decrease, drop).

Some lexical analogies are “better” than others. Broadly speaking, lexical analogies

that involve clear and specific underlying relations are more satisfying than those that

involve obscure or overly general underlying relations. For example, (abbreviation, word)

and (abstract, report) form a good lexical analogy because the common underlying re-
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lation (shortened-version-of ) is clear and specific. On the other hand, (company, right)

and (city, property) form a poor lexical analogy because the common underlying relation

(has or entitled-to) is very general. Of course, many word-pairs do not form lexical analo-

gies at all. For example, (interest rate, market) and (people, police) do not form a lexical

analogy because they do not share any meaningful underlying relations. We sometimes

use the term invalid to refer to two word-pairs that do not form a lexical analogy at all.

What You Need To Do

In the following pages, you will be presented with a survey containing ninety entries. Each

entry consists of two word-pairs. Your job is to determine if the two word-pairs form a

lexical analogy, and if so, how good of a lexical analogy it is. You are to score each entry

with a score between 0 and 10, where 0 denotes that the two word-pairs do not form a

lexical analogy at all, and 10 denotes that they form a perfect lexical analogy. Obviously,

the scoring is subjective, which is ok as long as you remain consistent throughout the

survey. Note that lexical analogies are not always immediately obvious — sometimes it

takes some creative thinking to arrive at the common underlying relation. Please take

the time to consider each entry carefully and thoroughly before scoring it. As the process

of scoring may become tedious and monotonic, we strongly recommend that you do not

fill out the entire survey at once. Instead, score a few entries at a time and take necessary

breaks. In total, we expect the survey to last no more than two hours, including the time

to read these instructions.

Notes about Scoring

1. When a word-pair involves a polysemic word (i.e. a word with multiple meanings),

choose the meaning that makes the best possible lexical analogy. For example, the

word-pairs (bill, legislature) and (legislation, house) do not form a lexical analogy

at all if bill is taken to mean a dollar bill and house is taken to mean a physical

building. However, they form a good lexical analogy if bill is taken to mean a bill

of law and house is taken to mean the House of Commons. Please make sure you

consider all possibilities.

2. Best lexical analogies happen between word-pairs at the same granularity. For

example, (country, relation) forms a valid lexical analogy with (united states, tie),

because a country has relations with other counties just like the United States has
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ties with other countries. However, this lexical analogy is not very good because

of the fact that the first word-pair is at a higher level of granularity (country in

general) than the second word-pair (a particular country).

3. The order of the two words in a word-pair matters! Most underlying relations only

go in one way. For example, while writes is an underlying relation of (poet, poem),

it certainly is NOT an underlying relation of (poem, poet). As such, (poet, poem)

and (painter, painting) form a lexical analogy, but not (poem, poet) and (painter,

painting). Having said this, some relations, such as synonymy (same-as), do work

both ways, in which case the order does not matter.

4. Please feel free to consult a dictionary for words you are not familiar with. However,

please do not consult another person.

5. Again, please do not rush through the survey. Please consider each entry carefully

and thoroughly, and take necessary breaks instead of filling up the entire survey at

once. It is best if you take several days to complete the survey.

Logistics

1. Only the aggregated result from all participants of this experiment will be used in

publications. Your personal information will be kept to the strictest confidence and

will never be revealed in any way whatsoever.

2. Please feel free to email Andy at any time should you have any questions or con-

cerns.

3. Please email the completed survey to Andy no later than Tue, Oct 3rd,

2006.

Thank you very much for your participation!
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