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Abstract

In this report we give an overview of some of the major results concerning the multiplicities
of linear recurrence sequences. We first investigate binary recurrence sequences where we
exhibit a result due to Beukers and a result due to Brindza, Pintér and Schmidt. We then
investigate ternary recurrences and exhibit a result due to Beukers building on work of
Beukers and Tijdeman. The last two chapters deal with a very important result due to
Schmidt in which we bound the zero-multiplicity of a linear recurrence sequence of order ¢
by a function involving ¢ alone. Moreover we improve on Schmidt’s bound by making some
minor changes to his argument.
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Chapter 1

Introduction

1.1 Definitions and zero-multiplicity

A sequence of complex numbers {u, },ecz is called a linear recurrence sequence if there exists
a positive integer ¢t and ¢q,...,¢; € C, with ¢; # 0, such that

Up = ClUp_1 + = + CplUp_t (1.1)

for all n € Z. The recurrence sequence is said to be of order t if it satisfies (1.1) but no
such relation with fewer than ¢ summands. We say that the zero sequence, i.e. u, = 0 for
all n € Z, has order 0 and it is the only recurrence sequence with order 0. We claim that if
a recurrence sequence {uy, }nez is of order ¢t > 0 then its recurrence relation (1.1) is unique.
Indeed suppose {uy, }nez satisfies (1.1) as well as

Up = dlunfl + -+ dtunft

for some dy,...,d; € C with d; # 0 and some ¢; # d;, 1 < i <t. Let r = min{i : ¢; # d;}.
If r =t then we have c;u,_; = dyu,_; for all n € Z, hence u,,_; = 0 for all n € Z which is a
contradiction since we assumed ¢t > 0. Assume r < t, then we have

Cp—r—1 — dn—r—l Cn—t — dn—t
— un—r—1+"'+—

n—t
dn—r — Cp—r dn—r — Cp—r

Up—r

for all n € Z. This is a relation with fewer than ¢ summands, which is contradiction.

A recurrence is called algebraic if the sequence as well as the recurrence coefficients
C1y...,¢ 1n (1.1) are algebraic. Rational and integral recurrences are defined similarly. Note
that a sequence of algebraic, rational or integral numbers may satisfy a recurrence relation



that is not algebraic, rational or integral, respectively. For example the sequence {1},¢z
satisfies the recurrence relation u, = mu,_1 + (1 — 7)u,_». Note however that this is not the
minimal recurrence relation for this sequence. It can be shown that if a recurrence sequence
belongs to a field K then its minimal recurrence relation has coefficients belonging to K.
Let {uy,}nez € K be a recurrence sequence with minimal recurrence relation

Up = ClUp—1 F =+ + ClUp—¢

for all n € Z, where ¢y, ..., ¢ belong to some field which contains K. Consider the system
of t linear equations in t variables x1, ..., z;,
Uy = TiUg—1 + -+ Tl
(1.2)
Ugt—1 = TiUge—2 + -+ TylUi—1.
It is not hard to show, by induction, that any solution, x1, ..., z;, to (1.2) will satisfy

Up = T1Up—1 + *+ + TiUp_y

for all n € Z. Since our sequence is of order ¢ there is a unique solution to this system of
equations and thus the determinant of the coefficient matrix of (1.2) cannot vanish. We can
then apply Cramer’s rule and express the x; in terms of ug, ..., uy_1.

For a recurrence sequence satisfying (1.1) its companion polynomial is defined as

Plz)=2'—c1ztt— o — ¢ (1.3)

Say (1.3) has distinct roots ag, . .., ax, each with multiplicity ¢;, 1 < i <k, i.e.

k

Plz) =[] (z — ). (1.4)

i=1

We call these «; the roots of the recurrence. Note that they are all nonzero since ¢; # 0.
If each «; is a simple root we say that the recurrence is simple. The following result is
fundamental to the theory of linear recurrences.

Theorem 1.1. Let {u,}nez be a recurrence relation satisfying (1.1) with companion poly-
nomial that factors as (1.4). Then, for 1 <i <k, there exists polynomials P;(z) € Clz]| with
deg P; < t;, such that for alln € Z,

wn = Pi(n)of + -+ Pe(n)af. (15)
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Moreover if {uy, }nez is of ordert than deg P, =t; — 1 for each 1 < i < k.

Conversely, suppose a, . . ., oy are distinct nonzero complex numbers and Py(x), ..., Py(x)
are nonzero polynomials in Clz]. For 1 < i < k, let t; be an integer strictly greater than
deg P, t =11 + -+ + ty and define ¢1,...,¢; by (1.4) and (1.3). Then the sequence {u, }nez
defined by (1.5) satisfies the recurrence relation (1.1). Moreover if t; = deg P; + 1 then
{tuntnez is of ordert.

Proof. Consider the vector space, V', consisting of all sequences {uy, }nez with u, € C for all
n € Z. Let P(z) € C|z] be the polynomial given by (1.3) and (1.4). Let P act on V' by

P({tntnez) = {vn}nez

where, for each n € Z,
Up = Up — CQUp—1 — = CtlUp—t-

Let W be the kernel of this map. This is the subspace of V' consisting of all sequences
satisfying (1.1). Clearly dim W = ¢ and we claim that W is spanned by the sequences

{n' o} ez (1.6)

forl1 <i:<kand0<j<t;—1. We have t vectors and they are clearly linearly independent,
hence it remains to show that each does belong to W, i.e. that

nlal —ci(n—1)7a ™ - —c(n—t)al " =0 (1.7)

foreach 1 <i<k,0<j<t;—1and all n € Z. The left hand side of (1.7) is equal to

A () )

~
J times

, (1.8)

z=q;

which is to be interpreted as o' "P(«;) if j = 0. Since, for each 1 < i < k, o; has multiplicity
t; and j < t; we see that (1.8) vanishes, establishing (1.7). Since the sequences (1.6) are
a basis for W we see that every recurrence sequence satisfying (1.1) is given by (1.5). If
{tn}nez is given by (1.5) such that some P; has deg P, < t; — 1, we say deg0 = —1, then
we see that Po({un}nez) = {0}, where Py(2) = P(2)(z — ai;)~'. Hence if our sequence is of
order t then we must have deg P, =t; — 1 for each 1 <17 < k.

The converse is also established, since any sequence satisfying (1.5) will be in the subspace
W of V consisting of all sequences that vanish under P. Thus it must satisfy a recurrence
relation with companion polynomial (1.3), i.e. the recurrence relation (1.1). O



Note that the proof of Theorem 1.1 establishes another subtle fact, i.e. if a recurrence
sequence satisfies (1.1) with companion polynomial P then the companion polynomial of its
minimal recurrence relation divides P.

For a recurrence sequence {u, ez € C and w € C, the w-multiplicity of the recurrence
is the number of n € Z such that u,, = w.

Theorem 1.2. (Skolem-Mahler-Lech) Let {u,}nez € C be a recurrence sequence and let
Z denote the set of n € Z such that u, = 0. Then Z is the union of finitely many single
numbers and arithmetic progressions.

Where, by arithmetic progression, we mean a set
A={ar+b: 2 € Z}
for fixed a,b € Z with a > 0. We call a, sometimes denoted a(A), the modulus of A.

Proof. See [13]. O

Corollary 1.3. Let {u,}nez be a linear recurrence sequence of order t whose companion
polynomial has the distinct roots o, ..., ag. If there is some 1 < iy < k such that o,/ is
not a root of unity for any j # iy then the zero multiplicity of {un}nez is finite.

Proof. By Theorem 1.1 we know that there exists polynomials Pi,..., P, € Cl[z] with
deg P, = t; — 1, where t; is the multiplicity of «; in the companion polynomial to {u,}nez,
such that

u, = Pi(n)al 4+ -« + Py(n)ag.

We group together summands P;(n)aj and Pj(n)aj with a;/a; a root of unity. We now
write, uniquely up to ordering,

un = fi(n) + -+ fi(n)

where, for 1 <17 <'s,
filn) = Paagy + -+ + Py,

with ky +---+ ks =k and, for 1 < j <Fk; and 1 <1 < ky, cy;/a is a root of unity if and
only if i = 7.

Say u, = 0 for every n in the arithmetic progression A = {ax + b : z € Z} with fixed
a,b € Z, a > 0. Take positive integer m so that (a;;/a;;))™ = 1 for every 1 < i < s and
1 < 4,1 < k;. The progression A is a finite union of arithmetic progressions of the form



A" ={amx +V : v € Z}. Take some such progression A’. When n = amz + bV € A, we
have o}, = oY Lag™, hence

fi(n) = Qi(x)a™,
for 1 <1 < s with Q;(z) = Z;i L ab P,j(amz +b'). Thus

Q1(z)af!™ + -+ + Q)™ =0 (1.9)

for all « € Z. Since a;1 /i is not a root of unity for ¢ # i/, clearly o™ /a@7* is not a root
of unity for i # . But then {2'a%™®},cz, for 1 <i <'s and [ >0, are hnearly independent
recurrence sequences. Thus (1.9) can vanish for every z € Z only if @ = --- = Qs = 0. So
for every n € A" we have

filn) == fi(n) =0. (1.10)

This will hold for any one of these progressions A’ above, hence (1.10) holds for every n € A.

Let Z={n € Z : u, = 0}. If there is some «;, satisfying the conditions of the corollary
then f; (n) = P, (n)aj and can have at most ¢; zeros. Hence, by (1.10), Z cannot contain
any arithmetic progressions. Theorem 1.2 then implies that |Z] is finite. ]

We call a recurrence sequence with companion polynomial (1.4) non-degenerate if i # j
implies «;/a; is not a root of unity. By Corollary 1.3 we see that non-degenerate sequences
have finite zero-multiplicity. Moreover Corollary 1.3 also implies that if {u,},cz is a nonde-
generate recurrence and w € C then the w-multiplicity is finite. If & = 1 the result is clear
so we may assume k > 1. Say {uy}nez is given by (1.5). The w-multiplicity of {u,}nez is
the zero multiplicity of the recurrence given by

Pi(n)al + -+ Py(n)og, — wl”. (1.11)

Since {uy, }nez is non-degenerate there exists 1 < iy < k such that oy, is not a root of unity.
Then, setting oy41 = 1, we have that «;, /o is not a root of unity for any 1 < j < k41 with
i # j. Thus the 0-multiplicity of (1.11) and hence the w-multiplicity of {u,},ecz is finite.

1.2 Valuations and height functions

Let K be a field and say ||, and | |, are absolute values on K. We say that ||, and | |,
are equivalent if they generate the same topology on K. It can be shown that two absolute
values are equivalent if and only if there exists A € R with A > 0 such that for all z € K

A
’f’:‘l = ‘wb (1.12)



Note however that if | | is an absolute value and A € R, A > 0, then | |* need not be an
absolute value on K as it may violate the triangle inequality. For example if | | is the usual
absolute value on C and A\ = 2 then we may not have |z +y|* < |z + |y|>. If || is a
multiplicative function from K to the non-negative reals such that |z| = 0 implies z = 0 we
call it a valuation if it is equivalent to some absolute value on K via the relation (1.12). We
denote by My the set of equivalence classes of valuations on K, which are called places.
Say K is a number field and Ok is the integral closure of Z in K. Let a be an ideal in
Ok. Then there are unique prime ideals py, ..., p, and positive integers ey, ..., e, such that

a = pitpi (1.13)

For any 1 <i < n we say that p; divides a and write p;|a. In particular if L is a subfield of
K with ring of integers Oy, and a is a prime ideal of Oy, then a has a decomposition (1.13)
in terms of primes ideals of Q. In this case e; is called the ramification indez of p; over a
and we say that p, ramifies to order e; over a, 1 < i < n. If for each 1 < i < n we set

fi =[Ok /p; : Or/al,

then we have .

=1

The number f; is called the residue degree of p; over a. Moreover if K/L is Galois with Galois

group G then G acts transitively on the set {p1,...,p,} and we have that e; = --- = e, and
fi =+ = f,. Inparticular, letting these common values be denoted by e and f respectively,
we have

ef|[K : L.

For nonzero © € Ok and p a prime ideal in Ok, we define ord,(z) to be the unique
nonnegative integer n such that
vep", v g pth

We then extend this to all of K* by

ord, (E) = ordy(z) — ord,(y)
Y
for any non-zero x,y € Og. For any 0 < ¢ < 1 we define an absolute value on K by

@) if g £ ()
|z], = { 0 fo0 (1.14)



Note that different choices of 0 < ¢ < 1 will generate equivalent absolute values by (1.12).
However if p # p’ then | |, is not equivalent to | [,

Let | | denote the usual absolute value on C. If K is a number field and o : K — C is
an embedding of K into C then we define an absolute value on K by

2], = lo ()] (1.15)

for all x € K. Note that conjugate embeddings will yield equivalent absolute values since
|z| = [7]. However if 01 and oy are distinct embeddings and are not conjugate then | | will
not be equivalent to | [, . It can be shown that every valuation on K is equivalent to one of
the form (1.14) or (1.15).

For v € My we say that v is finite if it is the set of valuations equivalent to (1.14) for some
prime ideal p of Ok and we say that p lies above v, where p is the rational prime such that
p|(p). Moreover if the ramification index of p over (p) is e we say that v has ramification
index e. If v is not finite then we say that v is infinite. If v € M is an infinite place
that contains a valuation arising from a real embedding it is called real and if it contains a
valuation arising from a pair of conjugate complex embeddings it is called complex.

Let v € Mk be a finite place such that ||, € v for a prime ideal p in O and p the
rational prime above v. We define the valuation | |, by (1.14) where the constant ¢ is chosen
such that

pl, = p~ /",

where d = [K : Q] and d, = [K, : Qp], and where K, and Q, are the completions of K and
Q, respectively, with respect to the topology generated by | |p. It can be shown that d, = ef,
where e and f are the ramification index and the residue degree of p over (p), respectively.
Note that K, and Q, do not depend on the choice of constant 0 < ¢ < 1 in (1.14) since
equivalent absolute values will generate equivalent topologies. If v € Mk is an infinite place
containing the valuation | | as in (1.15), for an embedding o of K in C, then we define the

valuation | |, by
1/d

2], = lz| /¢ if v is real
Y |:13|§/ 4 if v is complex
for x € K, where d = [K : Q. With these choices for valuations we have the product formula

IT =l =1.

veEMK

for any x € K*.



It must be noted however that these normalisations may not yield absolute values, they
are merely valuations. However if we define r(v) by

1 if v is finite
r(v) = 2Y4 if vis real
22/ if y is complex

Then we have
[z +yl, < r(v)max{|z|,,[y],},

for all z,y € K. Note also that [[,c,, 7(v) = 2. Let a be a non-zero algebraic number and
K any field that contains «. It can be shown that the number

H(o) = [] max{1,|al,} (1.16)

is independent of the choice of K containing a. We call H(«) the absolute height of a. The
absolute height satisfies the following useful identities

H
=
L L

a)” for any integer n > 0,

H(a) =1< ais aroot of unity.

The absolute logarithmic height, denoted by h(«), is given by

h(a) =log H(«) = Z max{0, log o], }.

vEME

The absolute height and the absolute logarithmic height will be vital in the proofs of many
of the theorems in this report. With the exception of §2.2 anytime we refer to height we
will mean either the absolute height or the absolute logarithmic height, depending on the
context.

1.3 Main results

For a linear recurrence sequence {u,},ez € C and w € C we let u(w) denote the w-
multiplicity of the recurrence. The purpose of this report is to exhibit some important
results on such multiplicities of linear recurrence sequences.
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In Chapter 2 we will investigate linear recurrences of order two, which are called binary
recurrence sequences. We first show a result due to Beukers, that for any non-degenerate
rational binary recurrence with integral recurrence relation and w € Q we have u(w) +
u(—w) < 3 with finitely many exceptions that are explicitly given. In the second part of
Chapter 2 we will establish criteria, due to Brindza, Pinter and Schmidt, for recurrences of
algebraic integers so that u(w) = 1 for non-zero w.

In Chapter 3 we will investigate ternary recurrences, i.e. recurrences of order three. The
main result of this chapter is due to Beukers, building on work of Beukers and Tidjeman.
It shows that a non-degenerate rational ternary recurrence has zero-multiplicity at most six,
which is best possible.

Chapter 4 does not directly concern linear recurrence sequences. Chapter 4 contains
arguments due to Schmidt on the denominators of rational numbers, which is necessary for
the result in Chapter 5.

Chapter 5 will prove the following result due to Schmidt: for any linear recurrence
sequence, {uy, tnez, of order t, if Z is the set of subscripts such that u,, = 0 for any n € Z,
then Z is the union of at most ¢(¢) numbers and arithmetic progressions, where c(t) is a
function depending on ¢ alone. The importance of this result lies in the dependence of the
bound on t alone. No previous result had been able to avoid dependence on the degree of
the number field in which the sequence belongs or the height of the numbers involved.



Chapter 2

Binary Recurrence Sequences

2.1 Rational binary recurrence sequences

In this section we will be investigating non-degenerate rational linear recurrences of order
two. Let {u,},ez be a non-degenerate linear recurrence satisfying

Up = ClUy—1 + Collp—2, (2.1)

for all n € Z, with ¢;,co € Z. For w € Q, let u(w) denote the number of n € Z such that
u, = w. By the results of §1.1 we know that for any w € Q, u(w) is finite. For w € Q, if
u(w) > 0 then let ng = min{n € Z : u,, = fw}. The sequence given by u!, = u,_,, satisfies

u, =w = n>0.

Hence we may consider sequences indexed by non-negative integers opposed to all of Z.
Moreover we may assume that ug = fw so in order to bound u(w) + u(—w) it suffices to
bound the size of the set {n > 0: u, = *ug}. If s € Z is the least common denominator of u
and wy, then {su,},>0 C Z and the w-multiplicity of {u, },>0 is equal to the sw-multiplicity
of {suy}n>0. Thus we may further assume that our recurrence is integral. Also note that
ged(ug, up)|uy, for all n > 0 so we may assume ged(ug, u1) = 1 and that ug > 0 by multiplying
the entire sequence by —1 if necessary. Lastly we may assume c¢; > 0 since the sequence
given by u!, = (—1)"u,, for each n > 0, satisfies the recurrence u, = (—c;)un—1 + cotty_o for
eachn >2and {n>0:u,=2u} ={n>0:u, =tu,}.

In the late 1930s, Ward conjectured that u(w) < 5 for all w € Q. This conjecture
was proved by Kubota [10]. Later in [11] he improved the result by showing that in fact
u(w) < 4. In [2], Beukers showed that if the companion polynomial is irreducible over Q
then u(w) + u(—w) < 3 except in finitely many cases which he gave explicitly. Moreover
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this bound is achieved infinitely often. If ¢; = 1, ¢y is arbitrary, up = 1 and u; = —1
then ug = —1. In this section we show that this result holds for all nondegenerate binary
recurrence sequences with integral recurrence relation. It can be shown, see for instance
[20] pg. 36-37, that this includes all recurrence sequences {u, }nez With {u,}nez C Z. We
essentially reproduce the argument in [2] but add a few extra details in order to deal with
the case when the companion polynomial has rational roots. This result is divided into two
theorems, Theorem 2.1 treats the case ¢? + 4c; < 0 and Theorem 2.2 the case ¢ + 4c¢y > 0.
We begin with a simple Lemma, akin to Theorem 1.1.

Lemma 2.1. Let {u,}n>0 € Z be a nondegenerate linear recurrence sequence satisfying
recurrence relation (2.1) with ¢y, ¢y € Z. Say oy and «y are the roots of 2> — c1z — ¢y and set
Al = U — UgQug, Ay = Uy — uga;. Then, for alln >0,
Aa} — Aol
u, = S22
a1 — Q2
Proof. This is an easy exercise in induction. O]

We wish to bound the size of the set {n > 0 : u,, = +up}, which by Lemma 2.1 is given

by
{nZO:/\la?_)\QO[g:j:)\l_)\z},

a1 — Qg a1 — Qg

Thus it suffices to bound the size of the set
{n Z 0: )\10&? - )\20&3 = :l:()\l - )\2)} (22)

Also, we may assume that the algebraic integers \; and Ay do not have any common rational
integer factors in the ring of integers of Q(a, as). If ug = 0 then A; = Ay and (2.2) reduces
to

al —ay =0,
which has no solutions n # 0 since a;/ay is not a root of unity. Hence we will assume
throughout that uy # 0.

In the following Lemmas we will assume that the companion polynomial to our recurrence
has negative discriminant, i.e. that cf + 4cy < 0. This implies that a; and \; are algebraic
integers in an imaginary quadratic field and that o, = @; and Ay = A;. In this case we write
« and A instead of a and ;.

Lemma 2.2. Let A\ and « be algebraic integers in an imaginary quadratic number field K
with ring of integers O . Suppose X and X have no common rational integer factor in O.
If \a™ — Xa" = §(A — \), for some § € {—1,1} and positive rational integer n, then there is
a rational integer a such that a™ = 6 + a.

11



Proof. Since A(a" — §) = A(@" — §) we see that A\(a” — &), which we will denote by d, is a
rational integer. Now d\ = A\(a” — §), so if A\ t d we must have a prime factor p of A\
which divides X in Ok. But then we must have p|A, which is a contradiction as A and A
have no rational integer factors in common. Thus A\|d and there exists a € Z such that

a® — 0 = al. O]

By replacing (2.2) by its complex conjugate, if necessary, and replacing o with —a and A
with —\, we may assume that 0 < argar < 7/2 and 0 < arg A < 7. Since « is the root of an
irreducible polynomial and «/@ is not a root of unity we have 0 < arga < 7/2. Moreover
we can assume 0 < arg A < 7 since ug # 0.

Lemma 2.3. Let K be an imaginary quadratic field with ring of integers Ok . Let v,n € Ok
and let t € Z, t # 0. Consider the equation

YA+ )" =AA+ )" =v—7 (2.3)
in the positive integer n.

1. Suppose that yn —n # 0 and let 8 € Ok, 3 # 0, divide yn' — 7' for alll > 0. There
are no solutions n > 0 if one of the following conditions is satisfied:

(a) t=0 (mod 2) and%f W%ﬁ,
(b) t #0 (mod 2) and t1 W%ﬁ

2. Suppose that yn —m =0 and yn # 0. Let § € Ok, B # 0, dividen —7. Thenn =1
1s the only solution in if any of the following conditions are satisfied:
(a) t =0 (mod 3) and £ 1 1,
(b) t=0 (mod 3), t¢ ? and ”2?2 =0 (mod 3),
(c) t#0 (mod3) and tf "3,

Proof. Assume that equation (2.3) has a solution n > 0. It can be rewritten as

- n n\ . S -
YT+ (j.)tj(wz] —77) =7 -7,
j=1
which yields

Z (")et =) o (2.4

12



In both part 1 and part 2 of the Lemma we have 3 # 0 hence we can multiply (2.4) by 371
Similarly, since n > 0 and ¢ # 0 we can multiply (2.4) by n~! and ¢~!. Then, noting that
(") = 2("_}), we obtain

J J\j—1
n

- o
Zt]—.(@_l)uzo. (2.5)
= J -1 G
Assume we are in the situation of part 1 of the Lemma, in particular that yn —7m # 0.
Suppose t = 0 (mod 2) and ¢/2 { (yn —7m)/B. If j = 2 then t#7!'/j = 0 (mod t/2)
and if j > 3 then #/~!'/j = 0 (mod ¢). Thus ¢/2 must divide the first term of (2.5), i.e.
(t/2)|(yn —7m)/B, a contradiction. Suppose ¢t #Z 0 (mod 2) and t 1 (yn —77)/B. Then we
have /71/j = 0 (mod t) for all j > 2 thus ¢|(yn — 77)/3, which is a contradiction. So, in
either case there is no solution in the positive integers.

Now assume we are in the situation of part 2 and that n > 2. Then equation (2.5)

reduces to
n

7t n—1 -t
j=2

Then applying (’;:11) = ’;T_ll(?:g) and multiplying by ﬁ, since t # 0 and n > 2, we have

n

2172 n— 2\t =t _
()

=2

Suppose t = 0 (mod 3). If j = 3 we have 2t/72/j(j —1) =0 (mod ¢/3) and 2t72/j(j — 1) =
0 (modt) if j > 4. Thus t/3 divides the first term of (2.6), hence there are no solutions
n>2ift/3t(n—mn)/8. If (n—7)/8 =0 (mod 3) then ¢ divides the j = 3 term and so it
must also divide the first term as well. So if ¢t ¥ (n —7)/8 then there is no solution n > 2.
Now suppose that ¢t # 0 (mod 3) and ¢ 1 (n—7)/8. Then we have 26/72/j(j—1) =0 (mod ¢)
for all ¢ > 3, thus ¢ divides the first term of (2.6), which is a contradiction. O

Lemma 2.4. Let A and « be algebraic integers in an imaginary quadratic field K with ring
of integers Ok such that 0 < arg\ < 7, 0 < arga < 7/2 and /@ is not a root of unity.
Assume there exist positive integers k and | with k < I such that o* = §+aX and o} = §'+ad'),
for some a,d’ € Z with |a] > 1 and 6,0" € {—1,1}. Write l = gk +r with 0 < r <. Then
A" — @ = 869\ — ).

Proof. If | = k then we have r = 0, a = d/, § = ¢’ and so the result is trivial. Assume that
[ > k. Observe that

SN =X) = Xa! = @ = Aa"(0 4+ a\)? — X\a" (6 + a))’.
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Hence

— 2.
a a\ (27)

— — _ 1 AN —1 1 a_1
515/ (A — X) = A" — X" + adN <of( TN =1 (14 0ad) ) .
If k = 1 then r = 0 then the term between the brackets in (2.7) is divisible by a(\ — A).
Hence a?AN(A — ) divides (A— ) — 28’ (A— X). Since |a| > 1 this is only possible if §7§' = 1
and our Lemma is established in this case.
Now assume k > 2. Let d be a positive square-free integer such that K = Q(v/—d). If
= —1 (mod 4) then the term between the brackets in (2.7) is divisible by v/—d in Ok and
we set C(d) = v/d, otherwise this term is divisible by 2v/—d and we set C(d) = 2v/d. Then
(2.7) implies B B B
iC(d)ad\|(Aa” = a" — §90" (A — N)).
Suppose that Aa” — Aa” # 696’(A — X). Then
C(d) [adX] < |Aa” = Xa@" — 6%" (A — X)) .
Using o = § + aX and the triangle inequality, we have
N C(d)(la* — 1) < C(d) A |[ef = 8| < C(d) [adX] < 2| (Ja|” + 1),
hence
2 14+2/C(d)
< + A
o C(d) &
Since « is an algebraic integer in Q(v/—d) and 0 < arga < 7/2 we have |a| > v/1 + d. Now
if d # —1 (mod 4) and d > 2 then

2 14+2/C(d 1 14+1/v/d 1 1+1/v2
++/k()§ ++/\/_§_++/\/_<
la[ C(d) lal Vitdvd  1+d V6 3

If d=—1 (mod 4) and d > 11, then

2 1+2/C(d 4 4+8/vd 2 44+ 8/v/11
L L2 LATENV 2 448/VIT
|| C(d) o Vitdvd  1+d T V33 12

We see that any solution of (2.8) must have d = 1,3,7. After some calculations it can be
shown that these solutions are given by a = (1++/=7)/2,1+4,1+v/=3,(3++/-3)/2, (1 +
v/=3)/2. Every solution except the first has a/@ a root of unity and can be ignored. Say
a = (1++/=7)/2. Then (2.8) implies that k& < 3. Then the condition o* = § + a), with
a € Z and |a| > 1, implies that ((1 + +/=7)/2)* — § is divisible by a rational integer of
absolute value at least 2, which is impossible if £ < 3. Thus Aa™ — A\a” = §'09(A — \). O

1

(2.8)

1.

1.
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Lemma 2.5. Let a be an algebraic integer in an imaginary quadratic field with 0 < arga <
/2 and a/&@ not a root of unity. Let k,m be positive integers with k <.

(a) If ol £ af = 2 for some choice of the & signs then (k,l,a) = (1,3, (1 ++/=T7)/2) or
(1,2, (1+v—7)/2).

(b) If o' + 2a* = £3 for some choice of the & signs then (k,l,a) = (1,3, (1 +/—11)/2)
or (1,2,1+ v/—2).

(c) If o £ 30k € {£2,44} for some choice of the & signs then (k,l,a) = (2,4, (1 +
V=1)/2), (1,4, 1+ V=7)/2),(1,2, 34+ V=7)/2) or (1,3,(1+/—15)/2)

Proof. (a) If a satisfies o' +aF = +2 then of|2 and k < 2. Moreover |a|' < |o|"+2 < |a*+2,
hence | < 4. If k = 2 and | = 4 then we have a quadratic equation in o?. Solving, yields
« = =i, ++/—2 which can be ignored, since these solutions yield a/@ a root of unity. If k = 2
and [ = 3 we can consider o® + a? — 2 = 0 by replacing o with —a. If this equation has a
solution in quadratic integers then it must also have a solution in Z. This happens in the
case a® + a? — 2 = 0 and we get o = 1, —1 £ 4, which can all be ignored. We treat the case
k =1 and [ = 3 similarly and obtain a = (&1 £ +/=7)/2. If | = 4 and k = 1 then we get
la|* < |a| + 2, contradicting |o| > v/2. If I = 2 and k = 1 then we get a = (£1 £ /—7)/2.
In either case the condition 0 < arga < 7 yields a = (1 +/=7)/2.

(b) If a is such that o!£20% = 43, then o*|3 and k < 2. Also, |a|' < 2|a|"+3 < 2|a|*+3,
and so we must have [ < 4 since \a\2 > 3. Solving the equation o' & 2a* = +3 in a similar
way as in (a) we obtain the solutions as stated above.

(c) If « satisfies ! + 3a* € {42, +4} then o4 and k < 4. If |4, 0 < arga < 7/2 and
a /@ is not a root of unity then o € {(1++/=7)/2, (3+v/=7)/2, 1+/=T7, (1++/—15)/2}. With
these choices *|4 implies that k < 2. If k = 2 then o?|4 and we must have a = (1++/—7)/2.
Then o — 2 +3 € {+4/a? £2/a} and we get | = 4. Now assume k = 1. We consider
al =143 € {+4/a,+2/a} for a = (1+/=7)/2,(3++/=T7)/2,1++/—7, (14++/—15)/2 and we
get the solutions (k, 1, o) = (1,4, (1++/=7)/2), (1,2, (3++v=T7)/2 or (1,3, (1++/—15)/2). O

Lemma 2.6. Let « be a complex quadratic integer such that o/@ is not a root of unit and
0 < argar < /2. Suppose there exists positwe rational integers I, k, with | > k, and a
quadratic integer \ such that o* = § + aX and o = §' + '\ for some 6,08’ € {—1,1} and
a,a’ € Z. Then |a| < |d|.

Proof. Suppose |a| > |d/|. Since |o* — §| = |aA| and |a! — &'| = |a’A|, we get (|a’| —|a]) |A| =
la! = 6] = |of — &'| > la|' — |a|" — 2. Hence |of' — |a|f —2 < |o/| — |a] < —1, which yields
lal* (jo' ™" = 1) < 1. Since |a| > /2 we get [ = k + 1. Moreover we must have |o| = v/2

and k = 2, hence a = (1 +v/=7)/2. Now (1 ++/~=7)/2 =05+ a) for § € {-1,1} and a € Z
yields @ = +1. Then |d’| < |a| gives a’ = 0 contradicting ((1 +v/=7)/2)?> =& + da'\. O
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Lemma 2.7. Let o and A be integers in an imaginary quadratic field K, with 0 < arga <
/2, 0 < arg\ < m and a/& not a root of unity. Suppose_ozk = 0 + aX for some positive
integer k, § € {—1,1} and a € Z with |a] > 3. Then A\a™ — A\a™ = £(A — \) has no solutions
n>k.

Proof. Suppose B B
Ao = a" =0 (A — ) (2.9)

for some 0’ € {—1,1} and n > k. Say n = gk + 1 for ¢,r € Z with ¢ > 0 and 0 <r < k. By
Lemma 2.4 we get Aa” — Aa” = §'d9(\ — A) and then (2.9) can be written as

A" (0 4+ a\)? =A@ (6 + aX)? = §7(\a” — \a")

hence

A" (14 d0aN)? — Aa" (1 +dal)? = Aa”" — \a".
If " —@" = 0 then we must have 7 = 0 since « /a_is not a root of unity. We can then apply
part 2 of Lemma 2.3 withy =X\, n =X, 8 =X—Xand t = da. Then (n—7)/F = —1. Since
la| > 3 the conditions of part 2 in Lemma 2.3 are fulfilled, yielding ¢ = 1. B
Suppose o’ —@" # 0. Since A\a” —Aa@” = §'67(A—\), Lemma 2.2 implies that o" = 6" +a’\

for some o’ € Z and 6" € {—1,1}. Now we apply part 1 of Lemma 2.3 with v = Aa", n = A,
B =A(Aa" — X@") and t = da. Now

m—=an M(a" —a") B a(X—\)

5 MAar —xa”) 8N =)

This implies that 3|(yn' —7m') for all [ > 1. Now part 1 of Lemma 2.3 implies that either
g = 0, which contradicts our assumption that ¢ > 0, or that ala’ if @ = 1 (mod 2) and
(a/2)]a’ if a = 0 (mod 2). By Lemma 2.6 we have |a'| < |a| thus |a| = |d/| or |a| = 2]d/|.
Suppose |a| = |a’|. Then, since o = § £ a’A and o” = §" 4 a’\, we have o + " = +£2 or
0. Since a/@ is not a root of unity we must have af + o” = £2, thus o”|2 and |a| < V2.
This contradicts a” = 0" + a’\ because |a/| = |a| > 3. If |a| = 2|d|, then of = § & 2a'\
and o = §" + a’X. So of +2a" = +1,43. Since a is not a root of unity we must have
¥ £ 20" = £3. By Lemma 2.5 we get (r,k,a) = (1,3,(1 +/—11)/2) or (1,2,1 + v/=2).
Since a” = §” 4 a’A, with |a’| > 2 it follows that one of the numbers +1 4 (1 +/—11)/2 as
well as one of the numbers 1+ 1 4 /=2 is divisible in O by a rational integer of absolute
value greater than 1, which is a contradiction. Thus there are no solutions n withn > k. [

=-4"d".

Lemma 2.8. For each of the given a, A, we determine all solutions to the equation Aa™ —
Aa" =+(A=A) inn>0.
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L (a,\) = ((1+V=7)/2,(1++/~=7)/2) thenn =0,1,2,4,12
2. (a,\) = (14++v-2,v/-2) thenn=10,1,2,5

3. (a,\) = ((14+v/=11)/2, (1 + /=11)/2) then n = 0,1,4
4. (a,\) = (1 +/=11)/2, (=3 + /—=11)/2) then n =0, 1,3
5. (a,\) = (1 +v/=15)/2, (=3 + v/—=15)/2) then n =0, 1,3
6. (a,\) = ((1++v/=19)/2, (1 + v/=19)/2) then n = 0,1,6.

Proof. Part 1,2, 3 and 6 can be established by Lemma 2.7 since

(1+V=7)/2)" = =1 = 45(1 = V=T7)/2,
(1+vV=2)°=1-11V/-2,

(1++v—=11)/2)* = 1+ 5(1 — V/—11)/2,
(14 +v—=19/2)° =1 —56(1 — v/—19)/2.

Thus in these cases all solutions satisfy n < 12, n < 5, n < 4 and n < 6 respectively. This
small set of possibilities in each may be checked by considering the corresponding recurrence
sequences, yielding the set of solutions stated above.

In part 4 we notice that o* = 1 + 5a. Write n = 4q¢ + r, with 0 < r < 4. We are then
looking for solutions to

A" (1 +5@)7 — Aa" (1 +5a)7 = £(\ — \).

If 1 < r < 3 then, since a@ = 3, the above yields Aa" — = (A — A) (mod 15). Now
|Aa” — Na"| < 15 since r < 3, so we have A" — Xa” = £(\ — X). Note that this holds
trivially if » = 0. Thus

A" (1+5a)7 — Aa" (14 5a)? = Aa” — \a".

Now we can apply part 1 of Lemma 2.3 with v = Aa", n =@, f = +/—11 and t = 5, which
yields ¢ = 0. So any solution must satisfy n < 3 and we can check that the solutions are
n=20,1,3.

In part 5 we notice that a® = —1 4+ 3\. Write n = 3¢ +r with 0 < r < 2 and
suppose that Aa”™ — M@ = 6(\ — A) for some § € {—1,1}. If n > 3 then, by Lemma 2.4,
A" — Aa" = (—1)96(\ — )), yielding

A (1 —3N)7 =A@ (1 —3))7=Xa" — \a".
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If » = 0 we can apply part 2(b) of Lemma 2.3 withy =Xa" =\, =X, 3=XA— )\, t=—3
and we get ¢ < 1. If  # 0 then we apply part 1 of Lemma 2.3 with v = \a", n = ),
0 = 64/—15 and t = —3, and we see that there are no solutions with ¢ > 1. Thus we must
have n < 3 and we can check that the solutions are n = 0,1, 3. O

Theorem 2.1. Suppose that {u,}n>0 is a nondegenerate binary recurrence sequence of ratio-
nal integers with companion polynomial 2* — c1z2 — ¢y € Z[x] such that ug > 0, ged(ug, uy) =
1, ¢4 > 0 and c% + 4cy < 0. If u, = Fug has more than three solutions then one of the
following holds:

ca=1,c=-2 uy=u =1 which has solutionsn = 0,1,2,4,12
c1=1,c=-2, ug=1, uy = —1 which has solutionsn =0,1,3,11
c1=3,c=—4 up=u; =1 which has solutionsm =0,1,2,6
c1=2,c=-3, up=u; =1 which has solutionsn = 0,1,2,5.

Proof. By Lemma 2.1 the sequence is given by

A — \a”
Up = —————,
a—a
for each n > 0, where « is a root of 22 — ¢;2 — ¢y and X\ = u; — upat. We let a be the root
with positive imaginary part. Since a« +a@ = ¢; > 0 and «/@ is not a root of unity we see
that 0 < argar < w/2. Since ug > 0, A ¢ Rso 0 < arg A < w. The equation u,, = +ug can be
rewritten as

A =@ = £\ - \). (2.10)

We may assume that A and A have no common integer factor in Og(a)

Suppose that (2.10) has at least four solution, denoted by n = 0, k,l,m with 0 < k <[ <
m. By Lemma 2.2 there are rational integers a, @’ such that o = §+a and o = § +a'X for
9,0 € {—1,1}. Since there is a larger solution m we have, by Lemma 2.6 and Lemma 2.7,
that |a| < |a’| < 3.

Assume |a] = |a/|. Then o' £ af € {—2,0,2}. Since « is not a root of unit we have
al £ af = £2. By Lemma 2.5 we must have (k,1,o) = (1,2,(1 + v/=7)/2) or (1,3, (1 +
vV—=T7)/2). Then a* = £1 + aX and of = +1 £ a) for A a quadratic integer in Q(\/_) with
0 <arg\ <7 yields A = (1++/=7)/2if [ =2 and A = (=3 +/=7)/2if | = 3.

Assume |d/| = 3 and |a| = 2. Then 2a! 4+ 3a* € {—5,—1,1,5} and since « is not a root
of unity we must have 2o/ 4+ 3a* = +5. Thus o¥|5, so |a|® = v/5 or 5 and k < 2. Also
la|' < 3/2]al" +5/2 < 10 which gives | < 2. Solving 202 + 3a = =£5 yields no relevant
solutions.
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Assume |a/| = 3 and |a] = 1. Then o £ 3a* € {—4,-2,2,4}. By Lemma 2.5 we
have (kL) = (14, (14 V=1)/2), (24,1 + V=1)/2), (12,6 +V=T)/2) or (L3, (1+
v/—15)/2). The equations a* = £1+a) and o! = +1+a'\ then yield A = (1++/=7)/2, (1+
V=17)/2, (=1 +/=7)/2 or (=3 + v/—15)/2 respectively.

Assume |a/| = 2 and |a| = 1. Then o' + o* € {-3,-1,1,3} and since « is not a
root of unity we have o! & o* = +£3. Lemma 2.5 then gives (k,l,a) = (1,2,1 4+ /=2) or
(1,3,(1 + /—11)/2). Then o* = +1 + a) and o/ = £1 + a’X imply that A\ = /=2 or

(—3 4+ +/—11)/2 respectively.
Thus if equation (2.10) has at least four solutions then (A, «) is given by one of the

following;:

(L+V=7)/2,(1+V=T7)/2),
(1+\/_)/2,(3+\/—_7)/2),
(=3 \/_)/2,(1+\/—_7)/2),

+v-11)/2
+v—15)/2,

(14 v=11)/2),
(14++/—15)/2),
(V=2,1+v=2).
In the first case it follows from Lemma 2.8 that (2.10) has the solutions n = 0,1,2,4,12. In
the second case, since (3 —/=7)/2 = —((1 + v/=7)/2)? we have the equation

1 +2\/—_7 (1 —2\/—_7)% = —2\/—_7 (1+2\/__7>2n =+v-7,

(
(
(=3
(=3

which has the solutions n = 0,1, 2,6, corresponding to the even solutions in our first case.
In the third case we notice that (3—+/=7)/2 = ((1++/—7)/2)? and so we have the equation

_1+2\/—_7(1+£/—_7)”“+1—;/—_7<1—2\/—_7)”“_i\/__77

which has the solutions n = 0,1, 3,11, corresponding to the last four solutions in the first
case. In the fourth, fifth and sixth cases the solutions are given by Lemma 2.8 and only in the
last case do we have more than three, namely n = 0,1,2,5. For these pairs (), «) for which
(2.10) has more than three solutions we get the recurrences as stated in the Theorem. [

Theorem 2.2. Let {u,},>0 be are non-degenerate recurrence sequence of rational integers
with companion polynomial 2* — c12 — ¢y € Z[z] such that ug > 0, ged(ug,uy) = 1, ¢; > 0
and ¢3 + 4cy > 0. The equation u, = Fug has at most three solutions in n, unless ¢; = 1,
co =1, ug =1 and uy = —1, in which case the solutions are n = 0,1, 3, 4.
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Proof. As in the proof of Theorem 2.1 we consider the equation (2.10), where, in this case,
A1 and ap are integers in a real number field K of degree at most two over Q. Let d be
the positive squarefree integer such that K = Q(v/d), we take d = 1 if ¢? + 4¢, = 0. Since
c1 > 0 we may assume oy > |as|. Moreover ay /as # £1 implies ¢; = a3 + s > 1 and since
(o — ag)/\/c_l € Z, we have a; — g > 1. We conclude oy > |as| + 1. First assume that
agy = 1. Then (2.2) becomes

A
all € {1,1—2—1}, (2.11)
A2
which has at most one solution since as = 1 implies «; is not a root of unity. If ap = —1

then by considering even and odd solutions separately we get two equations similar to (2.11)
each can have at most one solution. Thus we can assume that «y # +1. Note that this also
implies o # +1 since a; > |ag| + 1.

Suppose we have four solutions n = 0, k, [, m. If we eliminate A\; and s from the equations

)\10&1{: — )\20615 = :I:()q — )\2)
)\10él1 — )\20[12 = :t()\l — >\2)
)\10/171 - /\20[1271 = :l:(/\l - AQ),

we obtain
o/f—(S_o/l—(;’_ozT—é”_)\l (2.12)
ok —6 ahb—6&  af -6 N\ '
for some §, ¢, 0" € {—1,1}. We note that two of these deltas must be equal and we treat the
cases corresponding to —1 and +1 separately. First suppose that [ > k and

k l

= ) 2.13
ak—1 ah—1 (2.13)

If ay > 0 then note that for any positive integer x

-1

af —1||attt —1 | a1 a+a2—1
as — 1] |ag*T -1 RE AR | R
L 1
— |
ap | 2 i 1
1
< —(Jao| +1) < 1.
g

Thus |(of —1)/(af — 1)| is strictly increasing in « and (2.13) cannot hold. So we must have
as < 0. We distinguish three subcases.
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If k and [ are both even then we may consider (2.13) with a3 instead of a;. Since a3 > 0

we see, by above, that this cannot occur.
If k£ is odd then

a’f—l B
o |” + 1

k

k

all—l‘ al —1
ay =1 7 ag|' +1

But we see that (af —1)/(|Jas|” + 1) is strictly increasing in x > 1, since

af —1 aitt —1 71: of —1 Jag/tt +1
o] 41 ] a1 Jag" 41

< 1 (| |+ 1—|Oé2|>
a7 2 |O./2| —f-]_

(lao] +1) < 1.

||

1
< _—
i
And so (2.13) cannot hold when ay < 0 and k is odd.

If k is even and [ is odd then by comparing the signs in (2.13) we see that —1 < ay < 0.

Then oy and ay are conjugate real quadratic integers and since oy > 0 and oy > —1 we have
(oy +1)(ag + 1) > 1. Hence

o/f—l_ 1 ab —1
af—1] as+1l|aft—ab?+. —1
1 ab-1
_a2+1|@2’+1
ak—1
<(041+1)|O;|+1
We also have
al —1 a; —1
ab—1 2

These two inequalities combined with (2.13) imply

! ar+1, 4
—1<2— —1). 2.14
al |042|—|—1(a1 ) ( )

From (2.14) we have o} — 20" — ok +-a; +1 < 0, so if [ > k + 3 we must have o) < 2.
The only real, positive, non-rational quadratic integer oy such that a;/as # +1 and g < 2
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is (1 4+ v/5)/2 which does not satisfy (2.14). Hence we must have [ = k + 1. However there
is a third solution m and we have

at =" ok -1

am —§"  ak—1

If 9 = 1 then we must have that m > k and m is odd since the other possibilities were
shown to be impossible. But then we have

a—1 ol -1

o —1 ab—1
with m and [ odd, which was shown to be impossible. But we also cannot take §" = —1
since (o' +1)/(a5* + 1) and (af — 1)/(ak — 1) have opposite signs. We conclude that in

(2.12) we can have at most one delta equal +1.
We now suppose that [ > k and

o/f+1_all+1

= 2.15
afk+1 ab+1 (2.15)

Note that (af + 1)/(ad + 1) is a strictly increasing function in > 1 if s > 0. Hence we
must have ap < 0. We distinguish four subcases.

If k and [ are both even the this is equivalent to considering (2.15) with o? instead of a;
and this is impossible.

If k£ is even and [ is odd then by consideration of the signs in (2.15) we must have
—1 < as < 0. Hence
of +1  of +1
ab+1  ab+1

of +1> >al +1,

which is impossible since a; > 1.
If k and [ are both odd then (2.15) can be written as
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Since

a%x—l +1 a%x-‘rl +1 -1 B a%x—l +1 10@\2”1 1
(’a2|2:p+1 . 1) - a%erl +1 |a2‘2x71 1
o1 + 1 |062|3 —1
T+ 1 |ag] —1
oo+ Jag| + 1
- +1
|aa|® + || + 1
< =1
(laz| +1)% — |o]

|Oé2|2x71 -1

(2.16)

Y

The sequence (@2* ™1 +1)/(Jao|/** " — 1) increases with 2 > 1. Moreover we have equality in
(2.16) if and only if x = 1 and oy = 1 — g, thus k = 1, [ = 3 and as = 1 — ;. Note there
is a third solution m and we have

af' =o'  ar+1

Oégn — " g + 1 '

Suppose that a; > 2. Since we have assumed as = 1 — a; and a3 # —1 we have ay < —1,
oy > 2 and m must be odd. Now

af —1 at — 5" o' =0  ap4+1  og+1

< =— =— -
(g =1 +1 7 (g — 1)m + " ay — o as+1  ag—2

which implies 2a5 —5a] +5a? —6a;+2 < 0. We can check that this implies a; < (1++/13)/2.
However there is no real quadratic integer such that 2 < a; < (1++1/13)/2, so we must have
oy < 2. This then implies that a; = (1 +v/5)/2. It then follows that

m

m 1

m "

al—i—l’ 4
:Oél7
O[2+1

a7

hence m < 5. Checking (af* — ") /(o' — ") = (a1 + 1)/(aa + 1) for m < 5 then yields
0"=—-1and m=1,3,4.
If k is odd and [ is even then comparing the signs in (2.15) implies —1 < ay < 0 and we
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have
ok 41 1
as + 114 Jag| + -+ Jao|*"

(a1 +1)(ef +1) >

Q
—

+

—_

Q Q
=N

o O
_— o~
+ +
—_ =

>

2
And that implies o +1 < 2(ay+1)(af+1). Ifl > k+3 then oy < 11/5, hence a; = (1++/5)/2.
Since ajay = —1 we get (ol +1)/(ab + 1) = o} and (2.15) implies
k k
o+l _ar+l o,y
a aE i1 antl ai(of + 1),

which yields £ = 1 and [ = 4. Suppose now that [ = k+ 1 or that £ =1 and [ = 4. There is
a third solution m and

af =& ab+1

af — 0" ab+1
If " = 1 then the terms have opposite sign, so we must have §” = —1. Note that we cannot
have m > [ since [ is even and we have shown that the smaller of two solutions cannot be
even. Som < [ and is odd, thus we have (k,1,m) = (1,4,3) or (3,4,1) and a; = (1++/5)/2.
By (2.12) we see that

2

4
A ozll+1 I <1+\/5>
:alz

which gives A\; = (3 — v/5)/2. These values for a; and ); yield the recurrence sequence as
stated. O

2.2 Algebraic binary recurrence sequences

The purpose of this section is to study certain algebraic binary recurrences. It will be
necessary to introduce a different height function than was defined in §1.2. For a € Q let
anz" + -+ -+ ag be the unique irreducible polynomial in Z[z] for which « is a root such that
ged(ag, ..., a,) = 1. Then the usual height of «, denoted Hy(«) is given by

Ho(a) = max{|ag|, ..., |an|}
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Throughout this section and only in this section whenever we talk of the height of an algebraic
number we will mean the usual height. Note that Hy(a) = Hop(1/a). It can be shown, see
for example Chapter 1 of Shorey and Tijdeman [20], that if o and [ are algebraic numbers
of degree at most d then there exists a constant ¢(d) depending only on d such that

log Hy(af) < ¢(d) max{log Hy(c),log Hy(5)} (2.17)

If K is a number field of degree d and oy, ..., 04 denote the embeddings K — C then for

a € K we set
[a] = max{lo1(@)] . .., [oa(@)]}.
It is not hard to show that if « is an algebraic number of degree d then we have
W S dH()(OZ)
Furthermore if « is an algebraic integer then it can be shown that
Ho(a) < (2[a])” (2.18)

Let K be a number field of degree d and {u,},>0 C Ok be a non-degenerate binary re-
currence sequence with companion polynomial f(z) € Z[z]. Note that we are again indexing
our recurrence with n > 0 as opposed to Z. We let a and (3 be the roots of f(z) and for
w € K we let u(w) denote the w-multiplicity of {u,},>0. We know that the u(w) is finite for
every w € K. A natural question to ask is for what sequences {uy,},>0 and values w € K do
we have |u(w)| small? We will prove a theorem, due to Brindza, Pinter and Schmidt, which
establish criteria that implies u(w) < 1. We follow the methods in [5].

Theorem 2.3. Say w € K*. There exists an effectively computable constant c(d, f,w) such
that if min{|a|, |3|} > 1 and max{Hq(uo), Ho(u1)} > c(d, f,w) then u(w) < 1.

Before proceeding with the proof of Theorem 2.3 we will need a few Lemmas.

Lemma 2.9. Let aq, ..., «a, be non-zero algebraic numbers with splitting field L of degree g.
Let Ay, ..., A, denote upper bounds for the respective heights of aq, ..., a,, such that A; > 2
for each 1 <i<n. Set

= H logA; and Q=QlogA,.

Let by, ..., b, be rational integers and set B = max{|b1|,...,|ba|,2}. If

A:‘aﬁl---az"—l‘%o,
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then
A > exp(—c(n, g)Qlog Q' log B),

where c(n, g) is an effectively computable constant depending only on g and n.
Proof. See [19]. O

As in the previous section it is easily shown that for all n > 0
(8 — a)un = A" + pf",
where A = uo — uy and p = u; — upa. Thus it suffices to consider the equation
Ao 4 pft =y, (2.19)
where v = ( — a)w.

Lemma 2.10. Suppose o, B, \, u € K, with |al, |5 > 1, a/F not a root of unity and Ay # 0.
There is an effectively computable constant co = co(d, v, 3) such that there is at most one
integer n > 0 with

0 < [Aa™ + pf"| < max{[A[, |p|} (2 + log Ho(A/p)) ™™ . (2.20)

Proof. ci,cs, ... will be effectively computable constants depending on «, § and d. We may
suppose that |A| < |u| and we set h = 2 + log Hy(A\/p). Now (2.20) may be rewritten as

0 < |(=A/u) (e/B)" = 1| < |BI7" ™ < |B|™". (2.21)
If n > 2 then we can apply Lemma 2.9 with Q' = log H(a/3), Q2 = Q' log H(A/p), and B =n
to get
|(=A/) (o) B)" — 1| > exp(—cy log H(A/p) logn) > exp(—cihlogn).

Comparison with (2.21) and taking logarithms yields —c;hlogn < —nlog ||, thus
n < cohlogn < cohlog(cahlogn) < cshlog h. (2.22)

If n < 2 then (2.22) will still hold by ensuring ¢3 > 1.
Let 0 < n; < ng be two solutions to (2.20), hence to (2.21). When ¢y > 2 we have
h~=% < 1/4 and then, since |§]™™ < 1, (2.21) yields

A< (=A/p)(e/B)™ =1 < 1/4
415 < (=p/A)(B/a)™ < 4/3.

26



And so

a no—ni
(5) !

26) I G) )= 6) )
< 50817 o (2.23)
< 4h™.

Since /3 is not a root of unity the left hand side of (2.23) is not zero. Hence we can apply
Lemma 2.9 with B = max{ns — ny,2} and we see that the left hand side of (2.23) is

> exp(—cy log B). (2.24)

If ng —ny = 1 then combining (2.23) and (2.24) yields h® < 2%72 hence 2% < 2°%2 which
is impossible if ¢y > ¢4 + 2. If ng — ny > 1 then (2.22) gives

calog(ng — ny) < cqlog(ng) < cqlog(cshlogh) < cslogh,

hence (2.24) is bounded below by h~%. Comparison with (2.23) yields h®~% < 4, hence
2007% < 4, which is impossible if ¢y > ¢5 + 2. Then taking ¢y = max{c4, c5} + 2 establishes
the Lemma. O

Lemma 2.11. Let v € K* and \,u € Ok. Let 0y, ...,04 denote the distinct embeddings of
K into C. Suppose

nin {min{|oi(a)], |o:(B)]}} > 1 (2.25)
and
max{m, m} > c(d, o, 3,7), (2.26)

where cg(d, o, B,7) is an effectively computable constant depending only on «, 3,y and d.
Then (2.19) has at most one solution n > 0.

Proof. Set m = max{[A|, [u|}. We know that there exists a constant c7(d), depending only
on d, such that

log Ho(A/p) < ¢7(d) max{log Ho(A),log Ho(p)}

< der(d) max{log(2[A)), log(2[])} (2.27)
= cg(d) logm.
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Take cg(d, o, 3,7) to be such that m > ¢g implies

<2+%Mﬂ%wwo>ﬁw (2.28)

We may suppose that W < m Moreover, by applying an appropriate embedding, we may
assume that [p| = |u, so that m = max{|A|,|u|}. Then (2.19) combined with (2.27) and
(2.28) yield

mo_ max{lALlul)
2+ cg(d)logm) = (2+log Hy(N/ )

MM+MW=MSW<(

The result then follows from Lemma 2.10. O]
We are now in a position in which we can complete the proof of Theorem 2.3.

Proof. Since a and 3 are the roots of f(z) € Z|[z] they are either rational integers or conjugate
quadratic integers, hence our assumption min{|«/|,|5|} > 1 establishes (2.25). Now

u_)\+u
O_Oé—ﬂ

Ada+pup
="

and  u

Since A\, € Ok we get

Ho(uo) < max{Ho(c — B8), Ho(A + 1) }*@
< ¢po(d, v, B)Ho( A + 1)
< c10(2[N + )%
< er1(d, v, B) (max{[A], [u]}) >,

where cg, c1o are constants that depend on d only and ¢y, ¢1; are constants that depend on
a, 3,d only. Similarly we can show that

Ho(uy) < c13(d, o, B)(max{[A], m}cl‘*(d).

And so there exists a constant c(a, 3,d,v), depending only on «, 3,y and d, such that
max{Ho(uo), Ho(u1)} > c(a, §,d, ) implies (2.26). O
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Chapter 3

Ternary Recurrence Sequences

In Chapter 2 we investigated binary recurrence sequences. A natural next step is to look at
ternary recurrence sequences. In this chapter we investigate the zero-multiplicity of nonde-
generate rational ternary recurrence sequences. In 1957 Ward [22] conjectured that the zero
multiplicity is at most five. However Berstel [1] constructed a counterexample given by

U/n+3 = 2un+2 — 4un+1 -+ 4’U,n’

with ug = u; = 0 and us = 1, which has ug = u; = uy = ug = w1z = use = 0. It is
generally expected that this is the only exception to Ward’s conjecture. In this chapter
we prove a result of Beukers [3], building on work of Beukers and Tijdeman [4], that every
nondegenerate rational ternary recurrence sequence has zero-multiplicity at most six. We
follow their methods except that in [3] it is assumed that the companion polynomial has
three distinct roots and so we add Lemma 3.13 to include the nonsimple case.

3.1 Hypergeometric Polynomials

We first need to develop some lemmas concerning hypergeometric polynomials. In this
section we follow [4].
For a, b, c € Z we define the hypergeometric function, denoted F(a,b, ¢, z), by

a+]—1)b (b+j5-1)
(c+j—1)5!

J

F(a,b,c, 2) —1—1-2
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Lemma 3.1. Fiz a positive integer c. For any positive integers a,b with a,b < ¢ we have

b b
(az )F(—a,—b—c,—a—b,z)— (az )(1—2)CF(c—a,—b,—a—b,z)

b
:(—1)“( or >z““’“F(b+1,a—c+1,a+b+2,z).

c—a—1
Proof. Note that F(—a,—b—c,—a —b,2), (1 — 2)°F(c — a,—b, —a — b, 2) and 2?1 F (b +
l,a—c+1,a+ b+ 2,z) are polynomials and they each satisfy the differential equation
2

z(z—1)%f+((1—a—b—c)z—f—a—l—b)%f—ka(b—i—c)f:0.

Hence there is a linear relationship between them. The coefficients of this linear relationship
can be found by considering the constant term and the coefficient of the highest power of
z. [

Lemma 3.2. For a,b,c as in Lemma 3.1, define

fap = (azb>F(—a,—b—c, —a—b,2) (3.1)
Gab = (azb)F(c—a, —b,—a—b,2) (3.2)
hab:<C_C;rf1)F(b+1,a—c+1,a+b+2,z). (3.3)

Then fap, gap and hqy are polynomials in Z[z] of degree a,b and ¢ —a — 1 respectively.

Proof. We have

Jul2) = (“”) (—a,—b—c.—a—b,2)

_ (a+b) (a-bkb>( a)- --((—_aa+ —jb;~1~)'((_—ba_—clz.+“j(:b1)_j ATERIN

a

- a+b> al (40 (atb—j)
_; altl  jlla— ) (b+c—35) (a+Db)! (=2)

20

Jj=0
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which establishes the result for f,,. In an analogous way we obtain
b . .
a+b—j\(c—a+j—1\ .
g“b(z):Z( y )< J )Zj
7=0
and

) = Cfl <b j j) (a + ;:l; + 1) (=)

.

[
Lemma 3.3. Let fuy, gap, hap be as in Lemma 3.2. Then
fale) = O [ = e - - 2, 3.4
gap(2) = c —(ccztbl))!!a!b! /01(1 —2)%2 (1 — 2 + zx)bde, (3.5)
hap(2) = ¢ —(thl))!!a!b! /01(1 —z)%2b(1 — zz)“* 'da. (3.6)

Proof. These can be checked by writing down the binomial expansion of (1 —z — 2)%, (1 —
r + 2zx)” and (1 — 22)°7%"! and then performing the integration directly where we use the
identity

n!m!

1
1_ m,..n -
/0( z) 2" de (n+m+1)V

for any positive integers n, m. O

Lemma 3.4. For f., gap, hap as in Lemma 3.2 and any x # 0 we have
fao(®)gap-1(x) = fap-1(7)gap(x) # 0.
Proof. By Lemma 3.1 and 3.2,
fan(2) = (1= 2)°gap(2) = (=1)72" """ hay(2)

and
fa,b—l(z) - (1 - Z)Cga,b—1<z) = (_1)aza+bha,b—1(z)'

Upon eliminating (1 — 2)¢ from the above two equations we have that
fab(z)ga,b—l(z) - fa,b—l(z)gab(z) = Za+bp(z) (37)
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for some polynomial p(z). But the left hand side of (3.7) is a polynomial of degree a+ b with
a non-zero leading coefficient ag, so we must have

fab(z)ga,bfl(z) - fa,bfl(z)gab(z) == aOZa+b>

from which our Lemma follows. O]

Lemma 3.5. For positive integer n,

(3n)! 7
—_— < 27",
(n —1)Inin! <25 ’

Proof. This is obvious if n = 1. If n > 2 we have

Bn)! Gﬁ 3j(3j —1)(3j — 2)

(n—1)nln! (j —1)52

i 22

=2

n

< 6(27)" L exp (Z gj(jl_ 1)>

j=2

< 6(27)" ' exp(2/9)
< (7/25)(27)".

]

For a number field K denote by Mg the set of places of K. For v € Mg we recall the
definition of | |, and r(v) given in §1.2.

Lemma 3.6. Take a positive integer a and let v,n be non-zero algebraic numbers in some
number field K. There exist polynomials P(z),Q(2), R(z) € Z|z] of degree at most a such
that

P(z) — (1 — 2)*Q(z) = 2"R(2), (3.8)
P(y) =nQ(y) #0 (3.9)

and
max{|P(€)], ,|Q(€)], , [R(E)],} < (6v/3)" 55" max{1, [¢[*} (3.10)

for any £ € K and v € Mk.
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Proof. We define the polynomials f.., gua; haa as in the previous Lemmas with ¢ = 2a. If

faa(7) = n9aa(7) # 0 then set P(2) = fuu(2),Q(2) = gaa(2) and R(2) = (—1)2hqa(2).
Then (3.9) is automatically satisfied and we know that (3.8) is satisfied by Lemma 3.1. If

Jaa(7) = Ngaa(y) = 0 then by Lemma 3.4 we must have f, o—1(7) — 79aa—1(7) # 0. In this
case we set P(2) = foa-1(2), Q(2) = Gaa—1(2) and R(z) = (—1)%hgq-1(2). Again (3.9) is
automatically satisfied and (3.8) follows from Lemma 3.1.

It remains to show (3.10). First note that if v € M is finite then

|P()], < max{1, [¢[,}

for any £ € K, since P(z) € Z[z| and deg P(z) < a, and similarly for Q(z) and R(z). Thus
(3.10) holds for v finite. Assume v is infinite. If b = a — 1 or b = a then, since g, (z) has
positive coefficients and f,;, hep have alternating coefficients, we have

| fa(@)] < fap(—1) max{1, \cha},
|90 ()] < gap(1) max{1, "},
s ()] < hap(—1) max{1, [a[** 77},
for any x € C, where | | is the usual absolute value on C. Then is suffices to show that

fab<_1)7 gab(l)a hab(_l) < (6\/§)a

Consider fu,(—1). By Lemma 3.3 we have

faa(_l) - ﬂ/o' (1 - ZE)afL’a_l(Q — x)ad:r.

(a —1)lala!
For 0 < x < 1 we have |z(1 — 2)(2 — z)| < 2/(3v/3). This together with Lemma 3.5 yields

7ol 2\ [ .
faa<_1) < 2_5(27) (ﬁ) /0 (1 — .1')(2 — $)dl’ < (6\/§) .

The verifications for f, ,—1(—1), gaa(1), ga,a—1(1), haa(—1) and hyq—1(—1) are similar. O

3.2 The equation \a" + uf" =1

Let K be a number field and let «, 3, \, 4 € K be non-zero. We are interested in solutions

to the equation
Ao 4+ ppt =1, (3.11)
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in x € Z. The hypergeometric polynomials will be used in Lemma 3.7 to bound the larger
solutions of (3.11) while Lemmas 3.8 to 3.10 will create gaps between consecutive solutions.
We will suppose throughout this section that (3.11) has solutions z = 0, k,,m with 0 < k <
I < m. We will also assume throughout this section that none of «, 3, a/3 is a root of unity.
For an algebraic number ~ recall the definition of the absolute height of ~, denoted H(7),
given in §1.2. In the proof of the following Lemma we follow [4].

Lemma 3.7. Suppose that m > 10l. Let H = max{H («), H(3), H(a/3)} and suppose

H > 1. Then o2 0
0g

1<2 —k.
- 710gHjL 3

Proof. First note that if H = H(«/[3) then instead of (3.11) we may consider

(=M w)(/B)" + (=1/p)(1/5)" = L.

Hence, without loss of generality, we may assume H = H(«).
Take g € Z, ¢ > 0, and 6 € R with 0 < § < 2 so that m = 2lg + 6l. By Lemma 3.6 we
have polynomials P(z),Q(z), R(z) € Z|z] of degree at most ¢ with

P(Aa)) — (ufH)?1Q(Mad) = (M) R(Na). (3.12)
Now define A by
A = P(\a!) — 271370 Q(Nad). (3.13)
Then using (3.12) together with the facts that m = 2lg + 6l and puS™ =1 — Aa™, we have
A= o' (70 - (47 () @0 (3.14)
= (A o )\ 3 a')|. :

Take v € Mg. If |Aa!| <1 then by (3.14) we have

Aot |’
]t}

2q—1+06
1
v O™y,

ogr(v) 1 1
S ‘)\O{l|iq r(v)2q+5(6\/§)ql E)gZ max {17 |/\|2q——1+5} max {17 W} .

v

Al < ‘)\al|iqr(v)(6\/§)qloi;(zv) max {1, ’%

2q—146
v

og (v 1 —
< ‘)\al|jq7’(v)(6\/§)ql 555 max {1, 'T)\
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If ‘)\O/L) > 1 then by (3.13) we have

A, < r(0)(6V3)7 T2 | Aad|" maxc{1, |2 | u| )

1
T’(U)2q+5(6\/_ qllgog(Q) })\al| max{l ’)\|2q 1+5}max{1,—}~

o,
Since [[,ear, [Al, =1 and [],cpr 7(v) =2, (3.15) and (3.16) yield

| < 924+ (6\/_)qH( ) (2q— 1+5)H( ﬁz)a
H(\al) T
Now H(up') = H(1 — Xa!) < 2H(1)H(Mo!) = 2H(Aa!) and so

1<

H(\od) (6v/3)7H (X)) H (Ao’

Using H(A\a!) > H(a')/H(\) we have
H(al>q—§ < 4q+5<6\/§)qH(/\)5q—2+5.
From A+ =1 and Ao® + pB*¥ = 1 it follows that A = (3% — 1)/(8* — o), hence

1— "
HO)=H (1 (o))

Substituting this into (3.17) yields

) < H(1— B H(1L - (a/B)") < 4H(a)*

H(al)q—é < 46q_2+26(6\/§)qH(Oz)2(5q_2+6)k.
Then, since 0 < § < 2 and m > 10 implies ¢ > 5, we obtain
H(Oé)l < 432/3(6\/5)5/3H(a)50k/3 < 227]_](@)5%/37

from which our Lemma follows.

(3.16)

(3.17)

O

For the rest of this chapter we will follow [3] with the exception of Lemma 3.13. The
next series of Lemmas establish criteria in order to create large gaps between the solutions

of (3.11).

Lemma 3.8. Suppose there exists finite v € My such that |a|, < 1 and |3, =

there is a positive integer d such that
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1.d>1,d|(m—1) and d|(l — k).
2. If there is a solution x =n of (3.11) with 0 < n < k then d > 4.

3.0 o |8 —1], < |p|1/p Y where p is the rational prime that lies above v, then
((m = D/dl, < lal, " and |(1 — k) /d], = 1.

Proof. If A\a® + u3* = 1 then, since A + = 1, we have % — 1 = A\(A — 1)7!(a® — 1), hence
|38 1|, = |#" — 1], = |8™ — 1],. We will denote this value by B. Note that since |8, =1
we have B < |§ —1],. After eliminating A and p from (3.11) with = = 0, &, we have

ﬁl—ﬁk:(ﬁl—l)ak—(ﬁk—l)al

Hence
6" = B*[, = lal; |8' = 1], = lal; B,
and since |3], = 1, we have
|8"7* =1, = lal; B.

In the same way we obtain
6" =1, = lal, B <|al; B.

We take d to be the smallest positive integer such that |3% — 1| < |a|§ B. We must have d > 1
since d = 1 implies |3 — 1| < |a|* B < |3 — 1], a contradiction. Also if [3* — 1|, < |a|" B
then we must have d|z, in particular d|(l — k) and d|(m — [). This establishes part 1. We
further note that |5"~% — l‘v = |oz|1]f B implies |#? — 1| = |oz|1]f B.

Suppose we have another solution x = n to (3.11) with 0 < n < k. Take e to be the
smallest positive integer such that |3¢ — 1|, < |a|} B. We have, as above, that e > 1 and
6° = 1], = |al; B. Now |g? — 1| = la|¥ B < |a|” B, hence we have e|d and e # d, so d > 4.

Put v = #% — 1 and assume |a|* |3 — 1|, < \p|1/(p b,
|p|1/p Y. Let t = (m —1)/d, then

t t—1 Y t—1 ’}/tl
m—I t 2 t

Note in particular that |y|, <

Now
t . . i 1
t—1\~i1 J—1 p'-1 p—1]*
§ ( 1)7‘ < max |— SmaX{|v|v, T <max < [v], 1 <1,
=\ I i>2 | g |, T it ) i>1 p |,
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since |y, < |p|11}/(p71). Then
|t’}/|v = |6m_l — ]_} = |O[|i] B,

hence
-1 l -k
|t|'u = |,y|v |a|v B = |a|v ?

as asserted. If we had |(I — k)/d|, < 1 then we would have |#'~* — 1‘1) < |- 1}1], which is
not the case. Hence |(I —k)/d|, = 1. O

Lemma 3.9. Let 0 < 27 < x5 be two solutions to \a® + uB* = 1, with A\ua # 0. Suppose
there exists a positive integer d such that 1 + d and x4 + d are also solutions. Then o and
0B are roots of unity.

Proof. We have (a®1 4 —a® )\ + (%19 — 3%1) = 0 and (a7 —a®2)\+ (%274 — 3%2) 1 = 0.
Thus the determinant of the matrix

aac1+d _ Oéml ﬁml-f—d _ ﬁml
axg—l—d — o2 6:{:2+d o ﬁ:cg

must vanish. Hence 37 a® (a? — 1)(8¢ — 1)((8/a)® * — 1) = 0. First assume « is a dth
root of unity. Then we have \a® + pB3% = Aa® + B4, which yields p3* (8¢ — 1) = 0.
Similarly if § is a dth root of unity then so is a. If §/a is a (x9 — x1)th root of unity the we
have 1 = Aa®™? + pf% = (Aa™ + pf*) 72" = f72~%1. Hence [3 is a root of unity and then,
by above, so is a. O]

Note that this Lemma essentially states that a given difference between two solutions of
(3.11) can occur at most once. It is worth noting in particular, that if z1 < zo < -+ < x,

are solutions, then z,, — x; > (72‘)

Lemma 3.10. Assume again that (3.11) has solutions x = 0 < k <l < m. Further suppose
that B =a and pu = A. Then we have the following:

1. If |a| > 4/3, k> 50 and 107* < arg(a/a) < 7 — 1074, then m — k > |a|*.
2. If || > 2.1 and k > 2, then m — k > 2|a]".
Proof. Using the equations Aa* +  \&® = 1 with z = 0, k, [, m we eliminate A and A to obtain

a"—-1 o -1 a"-1
ok —1 al—1 am—1'
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These quotients cannot equal one since we have assumed that @/« is not a root of unity. Let
ab—1
ak —1

Note that n # 0 and |n| < 2. For x = k, [, m we have

a® —1 a\’
@2
a® —1 a o

(7)1 ()
(3) =@ ()

It can be checked that the assumptions made in either of the cases in the statement of the
Lemma will ensure the right hand sides of (3.18) are smaller than one in absolute value. If
w € C satisfies |1 +w| =1 and |w| < 1 then |w| < |arg(1l 4+ w)| < (7/3) |w|. Applying this
to the right hand sides of (3.18) we have

1.

77:

Hence

(3.18)

(I — k)arg(a/a) + 27r = arg (1 +7 (%)k (% — é)) =0 % — 5 |,
(3.19)
(m —1)arg(a/a) + 2ns = arg <1+7] <%)l (é - aim)) =9 é— aim nl,

for some r,s € Z and 6,¢ € R with 1 < ||, |¢| < 7/3. Define E by

1 1
nl = (- k)¢ o o

1 1

By (3.19) we must have either £ = 0 or |E| > 27. First assume E = 0, then since n # 0 we
have
(m=08la"" =1 =l -k)p[1—a'™.

Thus
‘al—k o 1‘ B ‘1 o al—m‘

-k m —1

Y

¢
6

which yields
la) " —1 1+ la| "

T S -1 3 (3.20)

38



Suppose we are in the situation of case 1. Since |a| > 4/3 and k > 50 we see that the right
hand sides of (3.19) are less than 107°. Since 107 < arga/a < m — 107* then (3.19) implies
min{l — k,m — [} > 3. Also by Lemma 3.9 we cannot have m — [ = [ — k = 3. If either
l—k>3andm—10>4orl—k>4and m—1[2> 3 then (3.20) cannot hold. If we are in the
situation of case 2 then by Lemma 3.9 we cannot have | — k =m — [. With either | —k > 1
and m—[0>2orl—k>2and m—12>1,(3.20) cannot hold since |a| > 2.1. We conclude
that E # 0.
Since E # 0 we have

w1 1 w1 1
o< (m-nE|4 2 I—wl|2 - —
() Ly TR R
2 _ _
< (m—K)Z-(1+lal ) o™,
Thus m — k > 3(1 + || ™)~ |a|¥, from which our Lemma follows. O

Lemma 3.11. Let a € Q be such that |a| > 4 and H(a) > 23, Then for A € C the
equation _
Ao+ at =1
has at most six solutions x € Z.
Proof. Suppose the equation has seven solutions, which we may assume to be 0 < 1 < x5 <

r3 < 14 < 15 < Tg. By Lemma 3.10 we have g — x4 > 2 |a|™. By Lemma 3.9, x4 > 10, so
xg > 2|a|™ + x4 implies zg > 10z4. Thus we can apply Lemma 3.7 to get

log2 50 50
08 L =814 2y

27 ————
T log2!/3 3 3

Appealing to case 2 of Lemma 3.10 we find x4 > 25 + 2 |a|™, which yields
50
To + 2 |a|x2 < 81+ Eibl.

This implies x; + 2 - 471 < 80 + (50/3)x1, hence 1 = 1. But then we have x5 > 3, thus
3+ 2-43% <81 +50/3. This is a contradiction and our result follows. ]

Lemma 3.12. Let A\, i, and 3 be non-zero algebraic numbers in a number field K such
that max{H (), H(3), H(a/B)} > 2Y/5. Let v € My be a finite place such that |a, < 1 and
|8, = 1. Let p be the rational prime above v and say v has ramification index at most 2.
Then (3.11) has at most siz solutions.
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Proof. Suppose that (3.11) has seven solutions, which we may assume to be 0 < 1 < x5 <
T3 < 14 < 5 < xg. Lemma 3.9 implies x5 > 3 and since v has ramification index at most
two we have |o|” < |af? < |p|, < [p|}/?"". Then by applying Lemma 3.8 we obtain

T4 — I3
d

< Jaff

v Y
v

for some d > 4. Since v has ramification index < 2 we then have
Ty — x5 > d-pl@T)/2 > 4. 9lwamw2)/2 (3.21)

Similarly,
x5 — x4 >4-2077)2 and pg — x5 > 4. 20@T)/2, (3.22)

By Lemma 3.8 we also know that d|(z3 — ), hence 3 —xo > 4. Again applying Lemma 3.8,
but this time with k = 9,1 = x5, m = x4, We see that

Tg — Tg = Tg — Ty + Ty — To Z 4- 2(15—m2)/2 + x5 — T2 Z ].0(1’5 - JIQ),

since r5 — Ty > (;1) = 10. Then applying Lemma 3.7 with H > 2'/6 to the equation
(Aa™™2)a” + (uB~"2) % =1 yields

log 2 50 50
log 21/6 + §(x3 —x9) = 162 + g(xs — T9). (3.23)

T5 — T9 S 27
Combining (3.21) and (3.22) we have
Ts — Tog > Ty — Tg > 4. 2(I4—$3)/2 > 4. 22-2~(173—12)/2 _ 41—}-333—3:2'

But, since x3 — x5 > 4, this violates (3.23). O

3.3 Rational ternary recurrence sequences

We now consider the zero-multiplicity of non-degenerate rational recurrence sequences of
order three. We know by §1.1 that this will be finite and we will show that it is at most six,
which is best possible. The case when our recurrence is not simple is dispensed with easily.

Lemma 3.13. If {u,}nez is a non-degenerate rational ternary recurrence sequence with
zero-multiplicity greater than four then {u, }nez is simple.
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Proof. Let P(z) = 2% — ¢12® — ¢z — ¢3 be the companion polynomial to the recurrence
sequence {uynez. If P(2) has only one distinct root, say «, then there is a degree two
polynomial P(z) € C[z] such that

u, = P(n)a”.

Thus u, = 0 implies P(n) = 0 and so {u,},ez has zero multiplicity at most two. Say
P(z) has two distinct roots, say a; and ay. Then there is a degree one polynomial P(z) =
a1z + ag € C[z] and a number az € C* such that
un, = P(n)af + azas.
Since P(z) € Q[z] has a double root, a;, we must have a; € Q and hence ay € Q. It is then
clear that P(z) € R[z] and a3 € R. For any a,b,c € R, with a # 0 and ¢ > 0 the equation
(ax + b)c® — 1

1
logc

(—ﬂx - @) (ﬂ) = 1. (3.24)
as as (6]

If o/ is positive then (3.24) can have at most two solutions x € Z. If ay/ay is negative
then we split (3.24) into the two equations

() ) -
as as (0%

. Hence it is zero at most twice. We

Q|

in z € R has at most one max/min, at z = —
are interested in the equation

and 2\ *
a1 a,x Ao «Q
<_2 1 1x_( o a )) (_) .
asg asQo az (e %
each of which has at most two solutions z € Z. Our Lemma follows. O]

Henceforth we will assume our recurrence is simple. Let {u,}.cz be a non-degenerate
rational ternary recurrence with companion polynomial P(z). Say P(z) has distinct roots
a1, and as. Then there exists ay, as, a3 € C* such that

Uy, = @10 + a1 + asas.
Note that ug, uq, us are not all zero and, by Lemma 3.9, the matrix

1 1 1

Q1 Qg Q3

2 2 2
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has non-zero determinant. Hence applying Cramer’s Rule to

1 1 1 aq Uo
a1 Qg Qg 5] ur |,
al ai a2 as U

we see that ay,as and as are in the splitting field of P(z). Thus we are interested in the
equation
ajof + asay + azas =0, (3.25)

in © € Z, where ay, ay, ag are non-zero roots of some cubic polynomial P(z) € Q[z] and
ay, G2, a3 S Q(ala Qg, 053)-

Lemma 3.14. Let K be the splitting field of a cubic polynomial, P(z) € 7Z|z|, with roots
a1, o, a3 and say K is not real. If v € My is finite and has ramification index > 3 then
lai], = |as|, = |as|,. Conversely if v € M is finite, |on]|, = ||, = |as|, # 1 and ay, ag, as
have no common rational integer factor in O then v has ramification index > 3.

Proof. Let v € Mg be a finite place with ramification index e > 3, p be the prime ideal in
Ok associated to v and p be the rational prime above v. Let G be the Galois group of K
over Q. First assume that pOg = p¢. We know that G acts transitively on the prime ideals
in Ok that divide p, hence for any o € G we have op = p. Let oy, as, a3 be the roots of
P(z). Say o € G is such that ca; = as. Then

|a2|p = |0a1|p = |a1|g—1p = |a1|p7

hence |oy|, = |az|,. Similarly we have ||, = |ag|,. Now assume pOg # p°. Then since
e|][K : Q] we must have e = 3 and [K : Q] = 6. Since G acts transitively on the prime ideals
that divide p we have that pOx = p3p”® and moreover if o € G is such that op = p’ then o
is of order two, hence p’ = p. This implies that if ¢ € G has order three then op = p. Now
since [K : Q] has degree six we must have one of oy, s, a3 in R, say «y. Then we can find
0,0’ € G, each of order three, such that ca; = ay and 0’ay = az. Then

|a2|p = |O-a/1|p = |a1|a—1p = |a1|p :
hence ||, = ||, Similarly we have ||, = |as],.

Now assume that v € My is a finite place such that |ay|, = |as|, = |as|, # 1. Let p
denote the rational prime above v and say

POk =Ppi- P
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for some positive integers k and e such that ke|[K : Q]. We may assume that p; is the
prime ideal associated to v. Again let G denote the Galois group of K over Q. Since G acts
transitively on {py,...,px}, there is a o; € G, for each 1 < i < k, such that o;p; = p;. Then
since |aq ], = |awl, = |as|,, we have

], = |,y = |0_1aj‘p1 = loyl,,,

op1

for each 1 < j < 3 and 1 < ¢ < k. This then implies that ordy,a; is the same for each
1 <j<3and 1 <i<kand we denote this number by a. Since P(z) € Z[z] we know that
a is a nonnegative integer and since ]aj]pl # 1, for 1 < 5 < 3 by assumption, we have a > 1.
If e = 1 then we have

ar, g, a3 € pr---pp = pOk,

hence p divides aq, as and a3 in Ok, which is a contradiction. If e = 2 then since ajazas € Z
we must have 2|ordy, (ayazas). But ordy, (ajasas) = 3a, hence 2|a. This implies that

Qaq, g, O3 € p% : pi :pOK7
which, as in the e = 1 case, is a contradiction. Thus we must have e > 3. O

Lemma 3.15. Let {u,}n,ez be a non-degenerate rational ternary recurrence sequence with
companion polynomial P(z) = 23 — c12? — coz — c3 that has distinct roots ay, g, az. Suppose
that ug = 0 and that we can find a,b € Q*, positive integers ¢ and d and a prime p such that

1. o =a+ba¢ for eachi=1,2,3,
2. [0, <1/4, |es], = lal, =1 and |u,|, <1 for alln € Z,
3. |unl, <1 and 0 <n < d+ 2c implies u, = 0.

Then u, = 0 implies either 0 < n < d or that n = d + r for some 0 < r < d and
Up = Upge = O

Proof. Suppose u, = 0 and put n = gd + r with ¢ and r positive integers and 0 < r < d.
If ¢ = 0 then n = r < d and we are done, so we will assume ¢ > 0. By assumption 1 and

(3.25) we have
3 b\
Zai <1 + —ozf) a; = 0.
a

i=1
Using binomial expansions we get

" z () (LY (z ) 7
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jf' j a J ’ )

Since |ur+jclp <1 and ’2‘10 < 1, (3.26) implies that |u,[, < 1. So, by condition 3, we have

u, = 0, hence
q J
q b
- riie = 0. 3.27
2 (J) (a) o 327

j=1
If ¢ =1 then (¢b/a)u,,. = 0, hence we have n = d +r with 0 <r < d, u, = 0 and u,4. = 0.
We now assume ¢ > 2 and will derive a contradiction. Dividing (3.27) by ¢b/a we have

qg—1 b i1
Up o + Z g Upijo = 0. (3.28)

Since [b|, < 1/4 and [a|, = 1, we have

%(g)j_l‘ < 1 for all j > 2, hence u,,, < 1.
p

Then by condition 3 we have u,;. = 0. If ¢ = 2 then (3.28) then gives u, 5. = 0. But
Up = Upre = Upypoe = 0 violates Lemma 3.9 since our sequence is non-degenerate. Assume

q > 3. Dividing
q j—1
mHO
> Urtje = 0
(1,

j
by (¢ — 1)b/a yields

g—1 1 b\’
Ur42¢ + Z (] o 1) ]—_1) < > UH_]'C = O (329)

j(jl—n (E)H‘ < 1 for every j > 3.
p

Then (3.29) implies |u,42.] < 1. Condition 3 then implies u, 9. = 0. But u, = w4, =
Upr9. = 0 contradicts Lemma 3.9. Thus we have either 0 < n < d or n = d + r with
0<r<dandu, =ur.=0. O

Similar to above, since [b[, < 1/4 and |a[, = 1, we have

Theorem 3.1. Let {u,}nez be a non-degenerate rational ternary recurrence sequence. Then
the zero-multiplicity of {u, }nez is at most siz.

Proof. By Lemma 3.13 we may assume that {u, },cz is a simple recurrence. Let aq, ay and
as be the roots of the companion polynomial to {u, }nez. Then there exists ay, aq, a3 € K*,
where K = Q(av, as, asz), such that

n n n
Uy = A1 + 10 + azQy.
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We consider equation (3.25) in the unknown z € Z.
First assume ay, g, a3 € R. We rewrite equation (3.25) as

aq <%> ‘f‘CLQ (%) +a3 = 0
Qg a3

If we have at least five solutions then there must be at most three of the same parity. But

the equations
a?\* AN
a3 a3

2\ T 2\ T
m— | =) +a— (=) +as=0

have at most one max/min. This is a contradiction, hence (3.25) has at most four solutions
when aq, as, a3 € R.

Henceforth we may assume that we have one real root and two complex conjugate roots.
Take a finite v € M. For any v,n € Mg we have

and

v +nl, < max{|y|,, |nl,},

moreover if |y|, # ||, then
v+, = max{ly], . [n],}-

So if equation (3.25) holds for some = € Z then we must have

: (3.30)

|aiaf], = |a;af],

for some i # j. If there is a finite v € My such that |aq],, |as|, , ||, are all distinct then,
by (3.30) we can have at most three solutions to (3.25).

Now assume that there is a finite valuation v € M such that |oy|, = |as|, # |as|,. Then
by Lemma 3.14 v has ramification < 2. We can then apply Lemma 3.12 to the equation

(6 () -

if |oy|, < |asl,, or to the equation

a as\” a as\”
() ()6 -
ai 851 ai ai
if ||, > |es],, which yields at most six solutions.
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We are left with the case when ||, = ||, = |as|, for all finite v € Mg. Let oy be
the real root of P(z). If ay € Q then K is an imaginary quadratic field. In this case there
is only one infinite place v € My and it satisfies |as|, = |as|,. But then |as/as], = 1 for
all v € Mg which implies that as /a3 is a root of unity. So we must have that «; ¢ Q and
(K : Q] =6.

Note that if (3.25) has the solution # € Z then if we replace each a; by a; ' our new
equation has the solution —z and so the corresponding recurrence sequences will have the
same zero-multiplicity. By making this substitution, if necessary, we may assume |a;| < |aa|.
Further we may multiply oy, ais, ag by the same rational number so that a; > 0 and aq, as, ag
are algebraic integers with no common rational integer factor in O.

Since K ¢ R if |ag/aq] > 4 there is an infinite complex place v € My such that
lag/ay|, > 4%6 = 413 In particular this implies H(aa/ay) > 23, We can then apply
Lemma 3.11 with A = —as/a; and o = g /1. We may thus assume that |ay/a;| < 4. The
set of polynomials in Z[z] with roots satisfying this as well as the conditions of the above
two paragraphs is finite and is given in Table 3.1 of the following section. Note that for each
of the entries in the table we have |ay/a;| > 4/3 and 107 < |arg(as/aq)| < 7 — 1074

Suppose that (3.25) has seven solutions, 0 < x; < Ty < 73 < T4 < T35 < xg. First suppose
that x9 > 50. Applying part 1 of Lemma 3.10 with m = xg, | = x5, k = 24 and a = az/m
to obtain zg — x4 > |aa/ay|™ > (4/3)™. Since x4 > 50 we clearly have g > 1024 and we
can apply Lemma 3.7 which yields

50

since H (/) > (4/3)%/% = (4/3)Y/3. But applying part 1 of Lemma 3.10 we have z, — x4 >
| /1| > (4/3)*2. This contradicts (3.31) since x5 > 50. Thus we may assume x5 < 50.
For every entry in Table 3.1 there is a recurrence relation given by the ¢y, co, c5. We have
determined all the initial values wug, u1, us such that ug = 0 and u,, = 0 has at least three
solutions in n with 0 < n < 250. These recurrences are listed in Table 3.2 of the following
section. In particular the recurrences that we have not yet ruled out will be in this list.
If x4 > 50 then inequality (3.31) still holds. From Table 3.2 we see that z; < 2 with one
exception, and (3.31) then yields x4 < 250. The one exception corresponds to ¢; = —2,
¢y = 0 and c3 = 2. In this case we have |ay/a1| > 1.6, hence H(ay/ay) > (1.8)Y/3. From
this the 196 in (3.31) can be improved to 100 and again we get x4 < 250 since z; = 4. So
we may assume that z; < 250. We then are left with the following recurrences
c1=2,c=—4,¢c4=4,uy =0, uy =0 and uy, = 1 with solutions n =0, 1,4, 6, 13,52
c1=2,c0=—4,c3=4, up =0, u; =1 and uy = 2 with solutions n = 0,3,5,12,51
c1=—1,c=0,c3=1,ug=0, u; =1 and uy = 0 with solutions n =0, 2,3,7,16
c1=—-2,c=0,c3=4, ug=0, u; =1 and uy = 0 with solutions n = 0, 2, 3, 8, 24.
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We don’t need to consider the second as it is a subsequence of the first. We apply Lemma 3.15
to each in order to show that there are no solutions w,, = 0 with n greater than the ones
listed. For the first recurrence we take a = —206 - 23*, b = 159 - 23 ¢ =1, d = 52 and
p = 53. For the third sequence we take a =4, b= -7, ¢c=2,d =16 and p = 7. For the last
sequence we take a = 26 -2, b= —-23-2" c=1,d =22 and p = 23. O

3.4 Tables 3.1 and 3.2

Let P(z) € Z[2] be given by P(z) = 23 — ¢;2% — ¢z — ¢3 with splitting field K. Suppose that
P(z) is irreducible with roots a1, ag, ag such that a3 € R and s, a3 are complex conjugate
roots. In Table 3.1 we list all ¢1, ¢z, ¢35 such that a; > 0, |as/aq| < 4, |oy|, = |ag], = |as],
for all finite places v € Mk and aq, as, a3 have no common rational integer factor in Ok.

We compile the table by first noting that Lemma 3.14 implies that for any finite place v
we have either |a;| = 1, for i = 1,2, 3, or v ramifies to order e > 3. Since K is Galois over Q
we see that e = 3 or 6. Let p be the prime ideal in Ok associated to v. Since the «a; are of
degree three over Q, if ||, # 1 we have either v ramifies to order 3 or it ramifies to order
6 and «; € p2. This implies that we can find conjugate units 1y, 12,73 € O and a positive
integer a such that o = an; for each i = 1,2,3. Now |ay/a;| < 4 implies that |ny/n;| < 64
and noting that mymons = 1 we have that || < 1 and 1 < || = |n3| < 4. Using these
bounds we can compute all the polynomials that have roots 7y, 19,13 satisfying the above
conditions. The discriminants of these polynomials give the possible primes in Q that will
ramify to order 3 or 6 in Q(71,72,73) which then yields the possibilities for a.

The sequences in Table 3.2 are all of those satisfying a recurrence relation from Table 3.1
such that ug = 0 and u,, = 0 has at least three solutions with 0 < n < 250. If {u,},>0 is
listed then we do not list its multiples or its shifted versions {uyx}n>0 for any k € Z.

The table is compiled as follows. For each recurrence relation in Table 3.1 and each
0 < m < 250 we determine u; and wuy so that u,, = 0. This is done in the following way.
If m = 1 then we set uys = 1. Note that we may take us = 1 because us will be a linear
combination of us and uy = 0 and u; = 0, hence will be divisible by uy. Then uy will be a
linear combination of ug, us and 0, hence will be divisible by wuy. Continuing in this manner
we see that all of the terms of the recurrence sequence will be divisible by u, and we may
take it to be 1. If m > 2 then using the recurrence relation we have

0 = clUp_1 + Colly_o + C3Up_3 = - -+ = cuq + dus, (3.32)

for some integers ¢ and d not both zero. If ¢ = 0 then we set u; =1 and up =0, if d =0 we
set u; = 0 and up = 1 and if both ¢ and d are non-zero we take u; and uy to be the unique
pair satisfying (3.32) so that u; > 0 and ged(ug,us) = 1. We then check our recurrence for
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Table 3.1: Possible recurrences

ci o ¢ Jagfar| e e e Jagfan| e e cs |ag/ag
6 0 36 1961 | 0 -12 -12 3847 | 0 -1 1 1.774
-5 0 25 1.905 0 -11 11 3.713 1 -2 1 2.325
-3 0 9 1.762 0 -10 10 3.574 2 -4 2 2769
2 4 4 3528 |0 -9 9 3428 | 2 -4 4 1.356
92 2 2 326 |0 -7 7 3115 | 2 -3 1 3.545
92 1 1 3148 |0 6 6 2944 | 3 -9 9 1961
-2 0 2 1.839 0 -5 5 2.761 3 -6 3 3104
2 0 4 1664 | 0 -4 4 2562 | 4 -8 4 3.383
-1 -1 1 2494 0o -3 3 2.342 5 -25 25 3.677
-1 0 1 1.525 0 -2 1 3.276 5 -10 5 3.627
0 -13 13 3977 0o -2 2 2.089 6 -18 18 1.961

all solutions w,, = 0 with 0 < n < 250 and record only the recurrences with at least two
solutions other than wy.
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Table 3.2: Recurrences with at least three small solutions

o e e ug UL U Sglutlons n
with 0 < n < 250

3 0 9 0 1 0 0239

2 0 2 0 1 0 023,26

2 0 2 0 2 -1 04712

2 0 4 0 1 0 023824

-1 -1 1 0 0 1 014,17

-1 0 1 0 1 0 023,716

O 6 6 0 1 0 071,312

o -3 3 0 0 1 01,310

o -1 1 0 0 1 0138

2 4 2 0 0 1 0,14,12

2 4 4 0 0 1 01,46,12,52

3 -9 9 0 0 1 0149
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Chapter 4

Denominators of Rational Numbers

The results of this chapter do not directly concern linear recurrence sequences but they are
vital to the proof of our main theorem in the next chapter. It will become important to deal
with equations of the form

biBy + -+ b0, =0, (4.1)
in x € Z, where (3;/f3; is a root of unity for each 1 <i,j < n. If we fix 1 < j <n and rewrite

this equation as
bl ﬂl * bn ﬂn :B_
() (3) e () () -

we see that the order of the ;/6;, 1 <1i < n, become important in determining the solutions
x € Z. For distinct i, j, k, the size of the group G(f; : §; : Bx) generated by 5;/5; and 3;/ By
will play a key role. In particular we will need to show that there exist equations of the form
(4.1), with f,..., 5, in some given set, such that the size of the groups G(5; : §; : B) are
sufficiently large for our purposes. Since (3;/; is a root of unity for each 1 <4, j < n we see
that there exist real numbers b and py, ..., p, such that

. 2mip;
6] = be J?

for each 1 < 5 < n. Moreover we see that p; — p; € Q, hence if we let r;; be the denominator
of p; — p; then

|G(ﬁl . ﬁ] . ﬁk‘)| - lcm(rij77“ik:)7

and so our problem becomes one of determining least common multiples of denominators
of rational numbers. In particular if we can give an upper bound on the number of times
lem(7;, %) is small then we can find 3y, . .., 3,, provided the set from which they belong is
large enough, such that that the groups G(8; : 5; : (i) are not too small.
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The results in this Chapter are due to Schmidt and in particular §4.1 follows [17] and
§4.2 follows [18].

4.1 Denominators of rational numbers and ¢-bad [-tuples

Let R = {p1,...,pn} be a set of real numbers such that p;, — p; € Q for each 1 < i,5 <n
and p; — p; ¢ Z if i # j. For the remainder of this chapter we will call such a set of reals a
denominator system. In this chapter we will usually refer to a denominator system as simply
a system for brevity. Let r;; be the smallest positive integer such that r;;(p; —p;) € Z, we call
ri; the denominator of p; — p;. Let N(eg) be the number of triples 4, j, k with 1 <, 5,k <n
such that

lem(r5, 1) < en. (4.2)

In [17] Schmidt conjectures that there is a function d(g), independent of n and R, which
tends to zero as ¢ tends to zero, such that

N(e) < o(e)n? (4.3)

In light of this conjecture it is natural to ask if there is a function 6(e) as above such that
the number of pairs 4,j with 1 < 4,5 < n and r;; < en is bounded by d(¢)n?. This is not
the case. Consider R = {0,1/n,...,(n —1)/n} and let Ny(¢) be the number of such pairs.
We have Ny(e) = nN/(e) where N/(e) is the number of integers i, 1 < i < n, such that
gcd(i,n) > 1/e. We have that N)(e) = n — NJ(¢) where NJ(¢) is the number of integers i,
1 <i < n, with ged(i,n) < 1/e. We have

Ny <n JT1=p)

pln
p>1/e

If we set n to be the product of all the primes in the interval [1/e, m| then since, for s > 1,

[Ta-p" =)

pln
p>1/e

as n — oo and ((s) — oo as s — 1 we can take m large enough to ensure NJ(¢) < n/2,
hence Nj(g) > n/2 and Ny(e) > n?/2.

For our purposes we will not need to assume Schmidt’s conjecture in it’s full generality,
it will suffice to prove it in special cases. For a system R = {p1,...,pn}, 1 < i < n and
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T € Z, we let uZR(x) denote the number of 1 < 7 < n such that
’T‘ij|fL'

We will call a system homogeneous if uf(x) does not depend on 4, in which case we simply
write uf(x). For example R = {0,1/n,...,(n — 1)/n} is homogenous. For positive integer
q the set of numbers i/q such that 1 < i < ¢ and ged(i,q) = 1 is another example. If the
system R is understood we will sometimes write u(z).

Theorem 4.1. If R is a homogeneous system and 0 < x < 1 then
N) < (2 —)n’ (4.4)

So in (4.3) we may take d(e) = ((2 — x)eX. To prove Theorem 4.1 we will actually prove
something slightly stronger. For homogeneous systems R and S we say that R and S are
isomorphic, denoted R = S, if for each x € Z we have uf'(z) = u%(z). Note that R = S
necessarily implies that they are of the same cardinality by taking x so that u®(z) = |R]
and u”(z) =|9|.

Theorem 4.2. Let R={p1,...,pn}, S ={o01,...,0,} andT = {7, ..., 7,} be homogeneous
and isomorphic to each other. Suppose that for each 1 <14, j,k < n we have p; —0j, pi — T €
Q. Let a;; and by, be the denominators of p; — o; and p; — 73, respectively. If N(e) is the
number of triples 1 <1, 7,k < n with

lem(az;, bix) < en (4.5)
then (4.4) holds for 0 < xy < 1.

Theorem 4.2 will be proven via a series of Lemmas. Let R = {p1,...,p,} be a homoge-
neous system. For z € Z and 1 < 4,5 < n we write p; ~ p; if z(p; — p;) € Z. It is easy to
see that ~ defines an equivalence relation on R. Since R is homogeneous, each equivalence
class will consist of u(x) elements, hence R splits into n/u(x) equivalence classes, which we
will denote by v(z).

For R = {p1,....pn}, S ={01,...,0,} and © € Z, we write R = S if z(p; — 0;) € Z
for each 1 < 4,5 < m. The relation = for systems is symmetric and transitive but is not
necessarily reflexive. However if R = S then R = R since R = S = R. Note that if R = R
then p; = p1 + a;/x with a; € Z, but if i # j then p; — p; = (a; — a;)/x ¢ Z, hence a; # a;
(mod z) and thus |R| < x.

IS
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Lemma 4.1. Let R be homogeneous, x a positive integer and let Ry, ..., R, be the equivalence
classes of R with respect to ~. Then for each 1 < r,s < v we have R, = R, but R, ;é R

when r # s. The systems Ry, ..., R, are all homogeneous and isomorphic to each other.
When R = R and x|m then v < m/x. Furthermore, if S is homogeneous and isomorphic to
R with equivalence classes Sy,...,S5, then R =2 --- =2 R, =25 =2---2§5,. Gwenl <r<w

there is at most one 1 < s <wv with R, = S,.

Proof. If p;, p; € R, then x(p; — p;) € Z, thus R, = R,. However if p; € R, and p; € R,,
for i # j, then z(p; — p;) ¢ Z so R, ;% R,. Now suppose that p;, p; € R,. Then p; £ pj

when r;;|y. Since 7;;|z we have p; & p; precisely when r;;|d where d = ged(z, ). Conversely
if p; € R,, p; € R and r;;|d then r;;|y and 7|z, hence p; € R,. So we have

u (y) = u(d) = uR(d) = u(d)
Thus R, is homogeneous with u® (y) = uf(y). It follows that Ry =, ... .~ R,. f R= R
then for each 1 < i < n we have p; = p1 + a;/m for a; € Z. Now if p; € R, and p; € R;,
with r # s, then z(p; — p;) = z(a; — a;)/m ¢ Z, so that a; # a; (mod m/z). Thus we must
have v < m/x.

When S is homogeneous with R = S, each equivalence class Sy, ....S, is homogeneous
and, for each 1 < s < v, u%(y) = u¥(d) = uf(d). Hence R, & ... 2 R, &~ 5, = ...~ S,
Lastly we see that if R, = S, and R, = S; then S, = S, giving s = t.

L]

For any prime p set c(x, p) = (1 — p*2)~! and for m > 1,
c(x,m) = [ etx.p),
plm
where, again, 0 < y < 1. We set ¢(x, 1) = 1.

Lemma 4.2. Suppose that systems R,S,T are as in Theorem 4.2 and that there is some
m € Z such that
R=S=T. (4.6)

Then
N(e) < c(x, m)eXn®.

Note that for any systems R, S, T as in Theorem 4.2 there is an m € Z satisfying (4.6) and
that ¢(x,m) < {(2 — x). Thus Lemma 4.2 implies Theorem 4.2.
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Proof. If m =1 we have p; — p; € Z for 1 <i,j <n and p; — p; ¢ Z when ¢ # j, and so
n = 1. Then (4.5) cannot hold unless € > 1. In this case N(g) =1 < eX = ¢(x, 1)eX13.
Thus it will suffice to prove the lemma for

m = plmg

where p is a prime with p fmg, [ > 0, assuming the Lemma is true for my.
Applying a common translation to R, S,T we may assume that all of their elements are
in m™17Z. Set, for 0 < ¢ <1,
Ty = mop' 1 = mp Y.

Let Ry,..., R, be the equivalence classes of R with respect to 2, where v = v(zy). We
see that each R,, for 1 < r < vy, has u(xz1) = n/v; elements. By Lemma 4.1 we have

vy < m/xy = p. Given a class R,, we split it into subclasses R, 1,..., R.,, with respect
to 2. Since R, 2 R, we have vy < z1/x9 = p. Moreover, since R, = R,,, the number

Vo is independent of the choice of 1 < r < vy, by Lemma 4.1. Now we have that R splits
into the classes R, ,,, 1 < r < v and 1 < ry < vy, with respect to Z and these V109
systems are isomorphic to each other. We continue in this manner and, for 0 < g < [, we
construct sets R,, ., with 1 < r; < v;, where v; is the number of equivalence classes of
any R,, ., , under 2 These equivalence classes are all isomorphic to each other and they
contain n/v(xy) = n/(vi---v,) elements. When g = 0 the notation R, ., denotes R.

Likewise we construct systems Sy, . and T, . ; , where 1 < s; <wv; and 1 <; < vy, for
1 <1 < g, with the numbers vy, ..., v, the same as above by Lemma 4.1. Also by Lemma 4.1,
since R S =T, we have

er,...,rq = Ssl,...,sq = Ttl,...,tq

for any rq,...,t, as above.
If we have
Tq Lq

RTL..-,Tq = 9, sq = T, tq (4.7)

for some 1 < ¢ <!l andry,...,1%, then
Tq—1 Tg—1
Rm,---ﬂ“qq = SS1,---7Sq71 = Tt1,---7tq71 (4'8)

When ¢ = 1 (4.8) denotes R 2 S 2 T, which is true by (4.6) since £p = m. On the other
hand, when (4.8) holds, then by Lemma 4.1 the number of triples r,, s,, t, with (4.7) is < v,,
since there are at most v, choices for r,. Denote by w; the number of triples ry, s1,¢; such
that (4.7) holds for ¢ = 1, in particular w; < wv;. Suppose that wy,..., w,—1 have been
defined such that the number of 3(¢ —1)-tuples 74, ..., t,_; with (4.8) equals w; - - - wy_1. Let
w, be a number such that the number of 3¢-tuples rq,..., ¢, with (4.7) equals w; - - -w,. In
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particular, when wy - - - w,—1 = 0, then (4.8) never holds, hence (4.7) never holds, and we set
wy = 0. In this way w, is uniquely defined for each 1 < ¢ <, and 0 < w, < v.

We will write r = (ry,...,717), 8 = (81,...,5), t = (t1,...,t;). There are (vy---v;)?
triples r,s,t. For 0 < ¢ < [, let C, be the set of triples r,s,t such that ¢ is the largest
integer in 0 < ¢ < [ for which (4.7) holds. In particular, Cy consists of the triples where (4.7)
does not hold for ¢ = 1. The number of 3¢g-tuples rq, ..., ¢, with (4.7) is w; - - - w,. Thus

|Ol’ = Wy wW. (49)

When ¢ < [, the number of 3(¢ + 1)-tuples 71, ...,t,41 with (4.7) equals wy - - ~qu§’+1. On
the other hand, the number of such 3(¢ + 1) tuples where (4.7) holds with ¢ + 1 in place of
qis wy - - - wywyt1. Thus the number of 3(¢ + 1)-tuples where (4.7) holds, but not with ¢+ 1
in place of ¢, is wy - - -wq(vg’ﬂ — wgt1). Given such a 3(¢ + 1)-tuple, the number of choices
for ryqay .o Ty tgry ooyt 18 (Vgyo - - vp)3, which is to be interpreted as 1 when ¢ = [ —1.
Thus

Cyl = wy -+ wq(vg-s-l — Wqt1)(Vgy2 *- 'Ul)3 (4.10)

for 0 < g < I, where the right hand side is to be interpreted as (v — wy)(vy - - - v;)® when
q=0and wy---w_1(v} —w;) when ¢ =1— 1.

Givenr,s, t, let N(r,s, t;e) be the number of triples 4, j, k with p; € R,, 0; € S5, 7 € T}
having (4.5). In order to finish the proof of Lemma 4.2 we require a sublemma.

Lemma 4.3. Suppose that r,s,t belong to C,. Then
N(r,s,t;e) < c(x, mo)eXn®pld= DX (vy - - yy)X 3 (4.11)

Proof. Numbers ¢ € m™1'Z may be uniquely written as

z
é-:i_i__l:é—/_'_é-//
mo P
with y,2 € Z and 0 < z < pl. For p; € R,, write p; = p} + pl as above. Now my = x;,
S0 p; N p; for each p;, p; € Ry, hence p! is the same for every p; € R,. Using the same
argument for Sg and Ty we have

pi=p;tp, oj=o0;+0", m=n+7"
for p; € Ry, 0j € Ss, and 73, € Ty. Sincer,s, t € C,, we have z,(p;—0;) = mp' "4 (p;—0;) € Z,

hence p'~9(p” — ¢”) € Z and similarly p'~%(p” — ") € Z. However, when ¢ < [, then (4.7)
does not hold with ¢ + 1 in place of ¢, so that not both x,1(p; — 0;), zg1(pi — 71) lie in
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Z, hence not both of p!=471(p" — o”), p=971(p" — 7") are in Z. Thus if ¢ and V" are the
denominators of p” — ¢” and p” — 7" respectively, we have

lem(a”,b") = p'™1 (4.12)

Let R, be the homogeneous system consisting of the p, where p; € R, and define S,
and T{ similarly. Clearly R, = R,, S, = Ss and T} = Ty, hence R, = S, = T{. Moreover
mo mo

R, = S, = Ti. For (p},0},1,) € Ry x Sg X T, let a;
p; — 75, respectively. Then a;; = aj;a” and by, = b, b". Since p fa;;b

, by, be the denominators of p; — o} and
/
157

lem(aij, bix) = plfqlcm(a;ja )

by (4.12). Thus (4.5) becomes

!/ / n

157 Yik

lem(a ) <eptln = eptluy -y . (4.13)
Ul .. .Ul

We supposed Lemma 4.2 to be true for myg, thus we can apply it to R., S., T, with
ep? vy -y in place of . Now each of these three systems has cardinality n/(v; ---v;).

Thus

3
n
N(I‘, s, t7 5) < C(X> mO)(gpq_lvl T UZ)X < )
vl o« . . vl

= c(x, mo)eXn3p DX (v - - )X 73,

O
We can now continue with the proof of Lemma 4.2. Note that
N(e) = ZZZN(r,s,t;e)
r s t
so, by Lemma 4.3,
l
N(e) < e(x, mo)e¥n® vy - o)XY 7 |Cylpl=x. (4.14)
q=0

We see, by (4.9) and (4.10), that, for 1 < ¢ < [, |Cy_4],...,|Ci| depend on w,. As w,
increases |C,_1| decreases, unless it is zero, while |Cy|, ..., |C;| will increase, unless they are

zero, but the sum |C,_;| + --- + |G| is constant. Since the coefficient p@=1=0x of |C, ;|
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is smaller than the coefficients of |C,|,...,|C)|, the sum in (4.14) can only increase as w,
increases. Since 0 < w, < v, the sum in (4.14) is bounded by

(0f = v1)(vg -~ 0)*pX 01 (05 — 0g) (g - - 0y) *p~ TN
e (v vl (0P —v)p X e
Then we can conclude
N(e) < e(x,mo)eXn®f(1,v1,...,0) < c(x, mo)eXn’f(vy,v1,...,v)

where v = ¢(x,p) = (1 — p*2)~! and

B vi—-1 vi, -1 v2—1
FOvv, o) = (or- - 0)* <)\+ lpx + ;2x Of 4+ 1plx (U2"'Uz)2) :
In order to finish the proof of Lemma 4.2, and hence Theorem 4.2, it remains to show
that, for 1 < ¢ <[, when 1 < v, < p we have

f('}/,vl,'--,vl) Sfy:C(X>p)7 (415)
since c(x, p)e(x; mo) = c(x,pmo) < c(x,p'mo) = c(x,m). We will establish (4.15) by in-
duction on [. When [ = 1 or when [ > 1 and vy,...,v,_1 are given, f(v,vy,...,v;) has the
form

Av) + By} ?

with A, B > 0. This equation is first decreasing and then increasing in v; > 0, thus its
maximum on any closed interval of positive reals occurs at an end point. For [ = 1 we have

fon 1) =7,
frp)=14+w 2 —p? <l+p? =y
establishing (4.15) for [ = 1. Now assume (4.15) for [ — 1, where [ > 1. We have, by

induction,

f(y,v1, .09, 1)

v, —1 21
— (Ul . 'Ul—1>x_2 (ry + lil_ . vl

oo cod ik
S f(’%vlu"wvl—l) S e

f(/%,Ulv'--avl—hp)
v, —1 v —1
— (/Ul .. Ul—l)x_2 (1 + ,ypx—2 _p_2 + ll— + . + 1 (Ul e vl_1)2)

pX p(lfl)X
< f(IYlea cee 7Ul—1) < v
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since 1 + ypX¥~2 — p~2 < ~, establishing our result. O

We will now state a Corollary to Theorem 4.1 that will be necessary in establishing the
main result in this report. For R a system as above, we say that a triple of integers ¢, 7, k
is e-bad if (4.2) holds. It is easy to check that this property is independent of the ordering.
Let [ > 3 and consider [-tuples of integers u,...,u; in 1 < uq,...,u; < n. We call such an
l-tuple e-bad if some triple u;, u;, v, with distinct 4, j, k is e-bad.

Corollary 4.1. Suppose that R = {p1,...,pn} is homogeneous. Then for any | > 3, the
number of e-bad [-tuples uy, ..., u; s

< eV2p3pt,

Proof. By taking x = 1/2 in Theorem 4.1, the number of e-bad triples is
(3) 1/2, 3 1/2, 3
<C 3 e’ n’ < 3 n’.

Hence given a triple ¢,7,k with 1 <17 < 7 < k < [, the number of [-tuples wuq,...,u; for
which u;, uj, u; is e-bad is < 3e/2n3nl=3 = 3¢/2n!. The number of distinct triples i, j, k in
1<4,5,k<lis (é), so the number of e-bad I-tuples is

< 3(;) el2pt < 1213k,

O

4.2 Denominators of rational numbers and s-unpleasant
[-tuples

Take positive integer ¢ and let R be the system of numbers u/q with 1 < u < ¢ and
ged(u,q) = 1. This system has n = ¢(q) elements, say R = {p1,...,pn}. As in the last
section, for 1 <4, j <n, r;; will denote the denominator of p; — p;.

In this section we will be concerned with the number of triples 1 < 4,5,k < n, for this
particular system R and ¢ > 0, such that

lem(r;;, ri) < egq, (4.16)

which will be denoted M (¢).
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Theorem 4.3. For 0 < k < 1, there is a constant, c(k), depending only on k such that
M(g) < c(k)e™n®. (4.17)

And, in particular, when k = 1/2 we may take c¢(k) = 11.

Proof. First note that when e > 1/2, we have &® > 1/2, so trivially M(g) < n® < 2&"n3.

Hence we may assume 0 < £ < 1/2.

For 1 < w,v,w < ¢ with ged(u,q) = ged(v,q) = ged(w,q) = 1, the least common
denominator of u/q — v/q and u/q — w/q is q/d, where d = ged(u — v,u — w,q). So if S
denotes the set of numbers z in 1 < z < ¢ with ged(z,q) = 1, then M (¢) is the number of
triples u, v, w € S with

ged(u —v,u —w,q) > 1/e. (4.18)

When ged(r,q) = 1, the left hand side of (4.18) is unchanged if u,v,w are replaced by
numbers congruent to ru,rv,rw (mod ¢). It follows that M(e) = nM;(e), where M () is
the number of pairs v, w € S with

ged(l —v,1 —w,q) > 1/e
Given positive integer h, let My(h) be the number of pairs v,w € S such that

hlged(1l —v,1 —w,q). (4.19)
Then
Mi(e) < Y My(h) = > My(h).
h>1/e hlq
h>1/e

It is not too difficult to show that, for 0 < k < 1, the Euler totient function satisfies
d(h) > c1 (k)R H9/2 where ¢ (k) is a constant depending on , see for instance [9] pg. 267-
268. In particular if we take x = 1/2 we may take ¢;(1/2) = (2/27)(/4. To see this first
write h = p{' - - - p¢, where p; are the distinct prime factors of h and each e; > 1, then

o(h) =n][1—p™)
=1
B (R B s (N VP
b1 Ps

14 31/4
J2hastta g,
=2 3

4
— 3 Y h3/4
27 .
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Suppose h|g and let A’ ¢ denote their respective square free parts. Note that ¢(q)/q
o(¢')/q and ¢(h)/h = ¢(h')/]'. Define t,t' by ¢ = ht and ¢ = h't’, so that ¢(¢') = ¢(h') (¢
This yields

).
(61 (afh) = (a6 1 /1)
(

(o(q)
= ¢(a)/p(h) (4.20)

Now (4.19) yields v = 1 + hx, for some positive integer x. Moreover since v € S we must
have 0 < = < g/h and ged(1 + hz,q) = 1. Now ged(1+ hx,q) = 1 implies ged(1 4+ hx,t') = 1
and since ged(h,t’) = 1, we can have at most ¢(t') values for x in an interval of length ¢/,
hence (¢(t')/t')(¢/h) values for z in 0 < & < ¢/h. This is the number of possibilities for v,
and similarly for w. Thus

Ma(h) = ((&(t')/')(a/h))” < e1(w) *nh™' 7"
by (4.20), which then yields

M (g) < ei(k)?n? Z hotor, (4.21)

h>1/e

Since 0 < € < 1/2 the sum in (4.21) may be estimated by an integral from 1/e — 1 to oo,
and since 1/e — 1 > 1/(2¢), we have

/ h=1=rdh < / hRdh = kY (2e)",
1/e—1 1/(2¢)

which yields
M(g) = nM(g) < e1(k) 2k~ 12%"n?

When x = 1/2, the value of ¢;(1/2) given above yields
Mi(e) < (27/2) /221121203 < 11120,
[

For our particular system R we will call a triple 7,7,k in 1 < 4,7,k < n e-unpleasant if
(4.16) holds. When [ > 3 and uy, ..., u; is an [-tuple of integers with 1 < wuy,...,u; < n, we
call this [-tuple e-unpleasant if some triple u;, u;, uy, with distinct ¢, j, k, is e-unpleasant.
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Corollary 4.4. The number of such e-unpleasant l-tuples is

< 2213l
Proof. By the case k = 1/2 of Theorem 4.3, the number of e-unpleasant triples is < 11¢'/2n?.
Thus given ¢, j, k with 1 <17 < j < k </, the number of [-tuples uy, ..., u; for which u;, u;, uy

is e-unpleasant is < 11e'/2n3n!=3 = 11£'/2n!. The number of such triples i, j, k is (é), hence
the number of e-unpleasant [-tuples is

l
< 11(3) el2pt < 221213k,
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Chapter 5

Recurrences of Order t

In this chapter we investigate linear recurrence sequences or arbitrary order. In §5.1 we give
a bound for rational recurrence sequences depending only on the order of the recurrence
sequence. The remainder of the chapter will then be devoted to proving that any linear
recurrence sequence has zero multiplicity bounded by a constant depending only on its
order. With the exception of Theorem 5.1 and Lemma 5.7 we follow Schmidt’s papers [17]
and [18].

5.1 Rational recurrences

Our main problem in dealing with arbitrary linear recurrences of order ¢ is that, in the
algebraic case, the logarithmic heights of the numbers involved can be arbitrarily small. If
we assume that our recurrence sequence is rational then we do not have this problem and
we have the following.

Theorem 5.1. Let {u,}nez be a rational linear recurrence sequence of order t and let Z =
{n € Z : u, =0}. Then the set Z can be written as the union of fewer than

3

single numbers and arithmetic progressions.

Proof. We know, by Theorem 1.1, that if the companion polynomial to our recurrence factors
as



then there are polynomials P;(z) € C[z], with deg P; = t; — 1, such that
u, = Pi(n)al + -+ + P(n)ay,
for all n € Z. Hence we will be interested in the equation
P(x)ai + -+ Py(x)ag =0 (5.1)

in x € Z. Now all numbers involved lie in the splitting field, K, of a polynomial of degree ¢
with rational coefficients. Hence d = [K : Q] < t! < t'. We define t = t(FPy,. .., F) by

k
t(Pr,...,P,) =) (degP; +1).

i=1

First assume {u, }necz is nondegenerate. Note that this implies | Z| is finite. If ¢ < 2 then
there will be at most one solution so we may assume ¢ > 3. In this case we can apply a
result of Schlickewei and Schmidt [16] and, in particular, by Theorem 2.1 of [16] we have

|Z| < (Zt)35t2d6t2 < (Zt)35t2t6t3 < t25t3'

Now assume that there is some ¢ # j such that o; /o is a root of unity. If ¢ = 2 again the
result is trivial as Z will consist of a single arithmetic progression of modulus ord(ay/as).
Here and throughout this chapter we denote by ord(¢) the smallest positive integer g such
that (¢ = 1, for root of unity (. We will proceed by induction on ¢t > 3. Without loss
of generality we may assume ai/ag_; is a root of unity. Let ¢ = ord(ax/ax_1), since
[Q(av, ;) : Q] < t(t — 1) we see that ¢ < t*. We divide Z into the arithmetic progressions
A(gq,b), with 0 < b < ¢q. Hence a solution = of (5.5) has the form = = qy + b for some
y €Z and 0 < b < q. We then set &; = of, for 1 <i <k —1, ]%(y) = a?Pi(qy + b), for

1<i<k—2 and Po_1(y) = o2, Pu_1(qy + b) + ol Py(qy + b). We have the equation
Pi(y)ad + -+ + Py (y)ay_, = 0. (5.2)

Now t(Py,...,Pu_1) < t(Py,..., ) so by induction the solutions of (5.2) are the union of
at most
(t . 1)25(t—1)3

single numbers and arithmetic progressions. Summing over 0 < b < ¢ we see that Z can be
written as the union of fewer than

t2(t _ 1)25(15—1)3 < t25t3

single numbers and arithmetic progressions. O]
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5.2 Main results

In this chapter we deal with linear recurrences of order ¢, where t is an arbitrary positive
integer. A long standing problem, arguably the most important one in the theory of linear
recurrence sequences was whether or not the zero-multiplicity of an arbitrary linear recur-
rence sequence of complex numbers could be bounded by a function depending on t alone.
In [15] Schlickewei showed that if {u,},ez is a non-degenerate algebraic linear recurrence
sequence of order t contained in a number field K of degree d then its zero-multiplicity is
bounded by a function depending only on ¢ and d. In [8] Evertse, Schlickewei and Schmidt
show that the zero multiplicity of any simple non-degenerate linear recurrence sequence is
bounded by a function depending only on its order. In [17] Schmidt was able to remove
the condition that the recurrence has to be simple. Schmidt [18] then generalised this, in a
suitable manner, to all linear recurrence sequences. The remainder of this chapter will be
devoted to establishing this result. It is important to note that the main result in [8] is vital
in what follows and it in turn relies heavily on a quantitative version of Schmidt’s subspace
theorem due to Evertse and Schlickewei in [7]. Our main result is the following.

Theorem 5.2. Let {u,}nez C C be a linear recurrence sequence of ordert and let Z = {n €
Z :u, =0}. The set Z can be taken to be the union of not more than

exp exp exp(3v/tlogt) (5.3)

single numbers and arithmetic progressions. Also if the companion polynomial to {un,}nez
has k distinct roots, each with multiplicity not exceeding s then (5.3) can be replaced by

exp exp(10sk®log k). (5.4)

In particular if a4, ..., ap are the distinct roots of the companion polynomial and there
is some 1 < iy < k with «;,/a; not a root of unity for every 1 < j < k with j # 4, then we
know by Corollary 1.3 that |Z| is finite and thus is bounded above by (5.3) and (5.4).

Here we have improved Schmidt’s result in [18] by lowering the constant from 30 to 10
in (5.4) and by replacing 20t with 3v/¢logt in (5.3). The key change in our argument is
an improvement of Lemma 5.7 in which we show that for a certain collection of vectors the
number of tuples of linearly independent vectors is bounded by t‘/ﬂ, where in [18] Schmidt
provided a bound of e'?.

It will be useful to introduce the notation a ~ 3, for a, € C*, if a/3 is a root of unity.
This is obviously an equivalence relation on C*. Throughout this chapter we will use h(J3)
to denote the absolute logarithmic height of an algebraic number (3, as defined in §1.2.
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Let P(z) € C[z] be the companion polynomial to the recurrence sequence {u,},cz C C

of order t. Say
k

P(2) =]z — e,
i=1
for ay,..., a4 distinct. Then, by Theorem 1.1, there exists polynomials P;(z) € C[z], with
deg P, =t; — 1, such that
u, = Pi(n)al + -+ P(n)ag,

for all n € Z. Throughout this chapter we investigate the solutions of
Pi(@)at + - + Py(a)at = 0 (5.5)

inx e Z.
If Z C Z can be written as a finite union of single numbers and arithmetic progression
then we set

v(Z) = min{u + v : Z can be written as the union of u numbers and v progressions},

otherwise we set v(Z) = co. Thus the goal of this chapter is to show that if Z is the set of
integers satisfying (5.5) then v(Z) is bounded by (5.3) and (5.4).

In order to work with (5.5) we first prove a specialisation argument that allows us to
assume the a; and the coefficients of the P; are all algebraic. The first main step in our proof
is Lemma 5.6, which gives us an avenue for induction provided that there is a real number
h* > 0and 1 <i,j < k with h(e;/cj) > h*. This Lemma however introduces a constant
that depends not only on ¢ but on A*. Clearly it is impossible to find one such A* to apply
to all linear recurrence sequences {u, }nez C Q.

To get around this we first write

Py(z) = an + - 4 aja* .

We then define the linear forms Ny (X),..., Ny(X), in X = (X1,..., X), by

N(X) = Cllel R o Clijk.

J

Then (5.5) may be rewritten as

S

ZNj(agf,...,ai)xj_l = 0. (5.6)

J=1
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If the o; and a;; are in a number field K of degree D then we consider the D embeddings
K < C. We let 3(9) denote the image of 3 € K under the embedding o : K — C and
NJ(U)(X) — ag‘;)Xl 4+t a;‘;)Xk.

Then applying o to (5.6) we see that

SN (@7, a2 =0,
j=1

Then for any embeddings oy, ..., 0, the determinant of the s X s matrix with entries
N (af7)" o797} must vanish, i.e
j 1 9 e 00y k 9 . .

;7 (07 el il = 0. (5.7)
We prove a proposition stating that all solutions x € Z of (5.7) can be divided up into a finite
number of classes, depending only on 7' = min{k?*, t‘@}, and in each of these classes there
is a positive integer m such that any two solutions in the class are congruent modulo m and
there are i # j with either h(aj*/aj*) > h* or a; ~ o and ord(af*/af") < (h*)~", where h*
depends only on T'. By looking at the solutions in a given class we can replace the «; in (5.5)
with " and apply an induction argument, the case of a; ~ «; being straightforward while
the case a; ¢ a; requiring the aforementioned Lemma. Since all of the constants involved
depend only on 7" or on ¢t < T we can get a bound depending only on 7', which will yield
(5.3) and (5.4).

The hard part, as it turns out, is in proving this proposition mentioned above and most
of this chapter is devoted to doing just that. Moreover it is for this result that we need
Corollaries 4.1 and 4.4 of Chapter 4.

5.3 Specialisation

For a,b € Z with a > 0 we denote the arithmetic progression {ax + b : x € Z} by A(a,b).
It is important to note that Z C Z’ does not in general imply v(2Z) < v(Z’). Tt is for this
reason that we require the following lemma.

Lemma 5.1. Suppose v(Z2) is finite. Then there exists a finite, possibly empty, set T C Z
with ZN'T =0 such that every set Z2' 2 Z with Z’NT =0 has v(Z2') > v(Z2).
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Proof. Suppose that v(Z) = u+ v and Z = Z, U Z5 with |Z;| = u and Z5 the union of
v arithmetic progressions. Since u + v is minimum for Z we have that Z;, N Z, = () and
v(Zy) = .

Say Z1 = {n1,...,ny}. When u=0o0r u =1 we set 7; = (. When u > 1 and n; < n;
we note that A(n; — n;,n;) € Z, since if it was then we would have A(n; — n;,n;) C 2.
In particular this would imply n;,n; € Z; and we could remove n;, n; from Z; contradicting
the minimality of v(Z). Hence, for each n; < n;, with 1 < i,j < u, we can take some
tij € A(n; — n;,n;) such that ¢;; € Z. Set T, = U{t;;}. We now remark that any arithmetic
progression A with AN 7; = () contains at most one element of Z;. Thus when v = 0 the
lemma holds with 7 = 7.

Now assume v > 0 and let Z5 be the union of arithmetic progressions A(a;, b;), 1 <i < v.
Set ¢ = lem(ay, ..., a,). Note that whenever n € Z, then A(q,n) C Z,, we call ¢ the period
of A. Let | = qv and, if necessary, translate Z so that [1,ql] N Z; = 0. Define 73 by

To={ne(l,ql]:n¢Z}.

Suppose A is an arithmetic progression of modulus a < [. Consider the elements b,b +
a,...,b+(q—1)a € Awith 1 <b < a. If each of these is in Z, then, since Z has period ¢,
we have A C Z5. If we have A Z Z, then at least one of b,b+a,...,b+ (¢ — 1)a is in Ts.
Hence every arithmetic progression A with modulus a < [ such that AN7; = () is contained
in ZQ.

Set 7 = 7, U7T,. Suppose that 2’ O Z with 2/ N7 is the union of «' numbers and v’
arithmetic progressions. Say Z' = Z]UZ! with | Z]| = v’ and Z} is the union of the arithmetic
progressions A, = Al(a},b,), for 1 <i <v'. Note that Z C Z’ implies Z, C AjU---UA,.
Our goal is to show

u+tov<u+0. (5.8)

If v" > u + v then we are done, and so we will assume henceforth that v < u + v. If some
A’ is disjoint from Z, then its intersection with Z is empty or contains a single element of
Zy. In the first case we remove A from Z’ and in the second we replace it by this single
element. We then have a set Z2” O Z with Z2’U7 =0 and v(Z2") < (' +1)+ (v' —1) = 2.
Hence in order to establish (5.8) we may replace Z’ with Z”. Continuing in this manner we
may assume that each A intersects Z,.

Say A}, ..., A, have modulus < land A, ..., A, have modulus > [, where 1 <w < v'.
For each 1 < i < w, since A, = Al(a},b}) has a; <l and A, N7T = () we have that A, C Z,.
Since ajx + b, € Z, for every x € Z and 25 has period ¢, we have ajx 4+, + qy € Z, for every
x,y € Z. Soif weset a] = ged(al, q), the progression A(a,b;) C Z5. Since Z, C AjU---UA!,

this union will be unchanged if we replace A} with A” for each 1 < i < w. Hence we may
suppose that a}|q for each 1 <1i < w.
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We claim that Aj U---UAl = Z5. If a set X' is the union of finitely many numbers and

arithmetic progressions we define the density of X, denoted by d(&X'), by
xnio
d(x) = tim 2010
n—o0 n
Note that the density of an arithmetic progression is simply the reciprocal of its modulus.
Say Z, has r elements per period of length ¢ and A} U---U A/ has s elements per period of
length ¢. Hence Z5 and A} U---UA! have density r/q and s/q respectively. Note that since
AiU---UA, C 2, we must have s < r. The sequences A/, ,,..., Al each have density
< 1/l. Thus
dAU---UAL) < (s/q) + (V'/1).
Since v' < v(2)
s v(Z) s+1
d(Z2") =d(2) < -+ = :
g a(2) g

Now Z C Z’ implies d(Z) < d(Z'), i.e r/q < s/q. But then s <r < s+ 1, hence s = r and
our claim is established.

This implies that w > v. Also, we must have 2, C Z{ U A, U---UA!,. Since each A;
contains at most one element of Z; we have (v —w) + |Z]| > | 2], i.e. vV —w+u' > u. We
then have u +v <u+w < u +v'. O

Consider equation (5.5) and say, for 1 <i <k,
B(Z) = Cjo + -+ CidiZdi.

By Theorem 1.2 the set Z of z € Z satisfying (5.5) has finite v(Z). Construct the set 7 as
in Lemma 5.1.

For any fixed = € Z, equation (5.5) defines an algebraic set, i.e. a set closed in the Zariski
topology, V'(x) in the points (e, ¢), where & = (avy, ..., ) and ¢ = (cy9, - . -, Cka,, ). Now our
particular (e, c) lies in the algebraic set

V(Z2)=[)V(n).

nez

Let Wy be the hypersurface given by o - - - ayciq, - - - Cra, = 0 and set

twﬂ:<va>Umy

neT

Since ZN7 = ) we have (a,¢c) € V(Z)\ W(T).
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It is well known that since V(Z)\ W(7) # () there exists a point (&, ¢) € V(Z)\ W(T)
with coordinates in Q. To see this first note that since V(Z) and W (7) are defined by
polynomials with coefficients in @ then the ideals I and J in Clzy,..., 2k, Y10, - - - ; Yrd,] OF
polynomials that vanish at all the points of V(Z) and W (7), respectively, are generated by
a finite number of polynomials with coefficients in Q. Say I is generated by fi,..., f, and J
is generated by ¢1,...,¢9s. Let I’ and J’ be the ideals generated by f1,..., f, and g1, ..., g, in
Q[1,- -, Tk, Y10, - - - > Y, ), respectively. Now V(Z) € W(T) implies J € I. Since [ = CR 1"
and J = C® J' we then have J' € I’. Let V' and W’ be the algebraic sets in Q space
associated to the ideals I” and J’. Then J' € I’ implies V! & W'. Since V' is defined by
the polynomials f1,..., f, and W’ is defined by the polynomials ¢y, ..., g, this implies that
there is a point (&, ¢), with coordinates in Q, such that f;(&,¢) = --- = f.(&,¢) = 0 but
there is some g;, 1 < i < s, with g;(&,¢) # 0. Hence (&,¢) € V(Z)\ W(7). This point
gives rise to an equation

Py(2)af + - + P(x)df = 0, (5.9)

with, for each 1 <i <k, a; # 0 and deg ]5z = deg P;. Let Z’ be the set of solutions in z € Z
to (5.9). Since (&, ¢) € V(Z) we see that 2’ O Z, but (&,¢) € W(T),sonon € 7T is a
solution to (5.9). This implies that Z'N7 = () and Lemma 5.1 implies v(Z’) > v(Z).

Hence it suffices to prove Theorem 5.2 under the assumption that the «; and the coeffi-
cients of the P; are all algebraic. We will henceforth assume that all these quantities lie in
some number field K.

5.4 Some known results

In this section we give an overview of some known results necessary for the proof of our
theorem.

Lemma 5.2. Let oy, ..., a4, a1,...,a, € C* and suppose ay ~ --- ~ «a,. There are

B(q) = ¢*"
vectors ¢; = (a1, ..., cyq), 1 <1< B(q), such that if x € Z satisfies

aray + -+ aga, =0, (5.10)

x

q) 18 proportional to some

but no proper subsum of (5.10) vanishes, then the vector (af, ..., «
C;.
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Proof. Clearly we may suppose ¢ > 1. Set n = ¢ — 1, ; = of /a; and b; = —a;/a, for each
1 <i < n. Then (5.10) becomes

where (i, ..., (, are roots of unity. By a result of Evertse [6], (5.11) has at most B(n+ 1) =
B(q) solutions in roots of unity such that no subsum vanishes. If (,...,(, is one such
solution we see that (a,...,q,) is proportional to ({1, ..., (. 1). ]

Lemma 5.3. Let I be a finitely generated subgroup of (C*)? of rank r and let ay, . .., a, € C*.
Up to a factor of proportionality the equation

a1y + -+ agry =0 (5.12)

has at most
Clg,7) = exp((r +1)(6¢)*)

solutions x = (x1,...,x,) € I', such that no subsum of (5.12) vanishes.
Proof. Set n=q — 1, b; = —a;/a, and y; = x;/x, for 1 <i <n. Then (5.12) becomes
blyl +oe bnyn =1, (513)

where (y1,...,¥y,) is in a group I" of rank < r. Evertse, Schlickewei and Schmidt [8] have
shown that (5.13), and hence equation (5.12), has at most

exp((r +1)(6n)™") < exp((r + 1)(6¢)™)

solutions such that no proper subsum vanishes. It is worth noting that their result relies
heavily on the quantitative version of the subspace theorem due to Evertse and Schlickewei
[7]. O

We extend our definition of absolute logarithmic height to include vectors in both affine
and projective space. For x = (z1 : -+ : 2,,41) € P", where we are over the field Q, we define
the absolute logarithmic height of x, denoted hpn(x), by

hen(x) = Y log(max{|z1], ..., |74, }),
vEMK

where K is any field containing 1, ..., 2, and Mg is the set of places of K. Note that this

is well defined on P* due to the product formula. For a vector x = (x1,...,7,) € Q" we
define the absolute logarithmic height of x, denoted h,,(x), by
hp(x) = hpn(zy 2+ 22y 0 1).

Note that for o € Q we have h(a) = hpn(a : 1) = hy(a).
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Lemma 5.4. Let ¢ > 1 and T be a finitely generated group of (Q*)? of rank r. The solutions

of
Zl_|_...+zq:0, (514)
with z; = x;y;, where x = (z1,...,24) €T andy = (y1,...,y,) € (Q*)? and
1
h/]qul(y) S @h]qul(x), (515)

are contained in the union of not more than C(q,r) proper subspaces of the (q—1)-dimensional
space defined by (5.14).

Proof. Set n = ¢ — 1 and consider solutions of the equation

Zl+"'+zn:17 (516)
where z;, = wv;, with u = (uy,...,u,) € IV, I" a subgroup of (Q*)" of rank < r, and
v =(v1,...,0,) € (Q°)" with

1

If we can show that all such solutions of (5.16) are contained in the union of not more
than C(n,r) proper subspaces of Q" then our Lemma follows by setting u; = z;/z, and
v; = —Yi/y,, for 1 <i <mn.

This inhomogenous version is a variation of Proposition A in [16]. First assume that
hp(u) > 2nlogn. It was shown by Schlickewei and Schmidt [16] that these solutions lie in

the union of fewer than
23077 (21n?)" (5.18)

proper subspaces.

Now assume h,(u) < 2nlogn. Then, by (5.17) we have h,(v) < (2nlogn)/(4n?) < log 2.
This implies that for each 1 < i < n we have h(v;) < log2, and since y; € Q* we have
v; = £1. Equation (5.16) now becomes

oy £+, =1 (5.19)

The group 2 generated by I' and the points (£1,...,=+1) is finitely generated with rank
equal to that of TV. By Theorem 2.1 of [8], due to Evertse, Schilickewei and Schmidt, the
solutions of (5.19) with (fus,...,tu,) € Q are contained in the union of not more than

exp((r + 1)(5n)*") (5.20)

proper subspaces of Q".
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Combining the estimates (5.18) and (5.20) we have fewer than
230 (21n2)" + exp((r 4+ 1)(5n)*") < C(n,r)
proper subspaces of Q™. O

Lemma 5.5. For a, 3 € Q% there is a y € Z such that

h(aB*™) = < |z h(B),

A~ =

for every x € 7Z.

This follows directly from a result of Schlickewei and Schmidt, in particular it is the
r =mn = 1 case of Lemma 15.1 of [16]. We include the proof of this special case for the
convenience of the reader.

Proof. We may suppose that h(3) > 0. Let K = Q(«, ) and let M denote the set of places
of K. By the product formula we see that for any v € K*

1
h(y) = ), max{0,log|y|,} == > [log|l,|.
UEMK UEMK

Hence, for = € Z,

1
hap®) =5 3 lloglal, +zlog]d,|.

vEME

For (¢, &) € R?, we define the function
1
$(6.6) =5 Y ICloglal, +&loglAl,|.
UEMK

Note that we have the equalities

¢(L,x) = h(aB”) and  4(0,§) = [¢[h(B). (5.21)

The function ¢ is continuous and satisfies ¢¥((+¢’,£+¢&') < (¢, &)+ (¢, &) and (A, NE) =
A (¢, €) for A € R. Thus, the set ¥ C R? containing points (¢, £) such that (¢, &) < 1 is
closed, convex, symmetric about the origin and contains the origin in its interior. However,
¥ may not be bounded.
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First assume V¥ is unbounded. Consider the function f(6) = ¢ (sinf, cosé) on 0 € [0, 27].
Since [0, 27| is compact f has a minimum, say 1. By the definition of f we know that n > 0.
Conversely, since ¥ is unbounded and, for (¢, &) # (0,0),

(¢, €) = V¢ +€21(0)

for some 6 € [0,2r], we cannot have n > 0. In particular we can find some ((y, &) #
(0,0) such that ¥ ((p,&) = 0. Since ©(0,1) = h(B) > 0, we have that (5 # 0. Then, by
homogeneity, there is some & such that ¥ (1,&;) = 0. If ¥ is bounded it is compact and we
may take ((p, &) with maximum (y. Writing & as & = (p&; we have (pi0(1,&) < 1.

Take arbitrary ((,€) € R%. When ¥ is unbounded, v¥({, (&) = [¢]¥(1,&) = 0 < ¥((,€6).
When V¥ is bounded, ¥(¢, (&) = |¢|¥(1,&) < [C] /¢ < ¥((, &), where the last inequality
follows from homogeneity and the fact that the maximality of (y implies ¥((o, £ %0) > 1. We

now have, by (5.21),
€ = C&l h(B) = (0,€ = (&) < P(CE) +¥(=¢ —C&) < 2¢(C, ).
Setting ¢ = 1 and replacing & by = € Z, we obtain, by (5.21),
M) = (1,2) > o Jo — & A(5).
We take y € Z such that & = —y + p with |u| < 1/2. Then

MaB) > L Jr — ul h(B) > § lal h(3).

N | —

5.5 An important Lemma

We define the degree of the zero polynomial to be —1. For a k-tuple P = (Py,..., P;) of
polynomials we set
t(P)=((degP,+ 1)+ -+ (deg P, + 1))

and
s(P) =1+ max{deg P,...,deg Py}

The key point of the following lemma lies in the inequalities (5.24) as they give a poten-
tial avenue for solving our main problem by performing induction on ¢(P). The difficulty,
however, lies in satisfying (5.23).
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Lemma 5.6. Consider the equation
P(x)af + -+ Py(z)ay =0, (5.22)

where o, ..., € Q% and each P, is a non-zero polynomial with coefficients in Q. Set
P=(P,...,P), t=t(P) and s = s(P). Suppose that t > 3 and that

max h (3) > b, (5.23)

1<ij<k \ @
for some 0 < h* < 1. Set
E = 16t’s/h* and F = exp(3(6t)*") +5Flog E.
Then there are k-tuples of polynomials
P®@ = (P, ..., P"),
1 <w< F, at least one P,L.W) not identically zero, with
deg Pi(w) < deg P; for each 1 <i < k and deg P,f,w) < deg P, (5.24)
such that every solution x € Z of (5.22) satisfies
P z)ab + -+ P (z)ad = 0 (5.25)
for some 1 <w < F.
Proof. For u € Z let y = x 4+ u. Then (5.22) may be rewritten as
Py —uw)arted + -+ Py — u)ag "ol = 0.
Setting Qi(y) = Pi(y — u)a; “, for each 1 <i <k, (5.22) becomes
Qi(y)af + -+ + Qi(y)aj = 0. (5.26)

If our assertion is true for (5.26), with polynomial k-tuples Q) = (ng), - ,(;“")), 1<w<

F' then every solution y € Z of (5.26) will satisfy

QI W)ad + -+ Q7 y)at =0

for some 1 < w < F and the corresponding solutions z = y — u of (5.22) will satisfy (5.25)
with P\ (z) = Q") (2 +u)a®, for 1 < i < k. Thus we may consider (5.26) instead of (5.22).
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We pick u € Z as follows. Write

Pi(x) = ajo + - -+ + ajq,x™,

where d; = deg P,. We may suppose that h(a;/as) > h*. By Lemma 5.5 we can take u so

that
v 1 1
h(ﬂﬁ(ﬂ) )z—wm(ﬂ)z—WMt
A2dy \ 002 4 Qo 4
for every y € Z. Then, writing
Qi(y) = bio + - + big,y™,

for 1 <i <k, we have b1g, = a1g,07 " and by, = agq,5 " and so

bld OézlJ 1
hl——|>-|ylh*
(deQOég — 4 |y| )

for every y € Z.
The equation (5.26) is of the form

(byo+ -+ bldlydl)a?{ + oot (bpo+ -+ bkdkyd’“)ai =0.
Omitting any zero coefficients we rewrite this as
(Bl + -« + brgyy™ ) + -+ (By™ + - -+ + bra,y™ ) = 0.
Let ¢ be the total number of coefficients in (5.28) and consider the vectors

—_ (K Y Y roY Y
X. — (b10a17 . e ,b1d1a17. . ,kaOék,. . .7bkdkak>,
— d dp
Y = (yUo, ..y, gty )

in ¢-dimensional space. Equation (5.26) then becomes

Zl+"'+Zq:07

(5.27)

(5.28)

(5.29)

where Z; = X;Y;, X; and Y; the ith components of X and Y respectively. Now X lies the

group I' of rank < 2 generated by (b}¢, ..., b1dys -+, Vs - -5 bra,, ) and (aq, ..., g, . ..

Moreover y
bldl Oél

1
hpaor (X) > h > 2yl h*,
(X 2 1 ({420) > T
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by (5.27). Also we have Y € Q?and Y € (Q*)? when y # 0. Since y € Z we have log |y[, <0
for all finite p and since d; < s for each 1 <7 < k, we have

hpa-1(Y) < slog|y| . (5.31)
Assume that
ly| > 2Elog E. (5.32)

Since E > 16 we see that log(2Elog E) < 2log E. This combined with the fact that
ly| — E'log |y| is increasing for |y| > E yields

16¢%s
ly| > Elog |y| > o log |yl ,

since ¢ < t. Combining this with (5.30) and (5.31) we have

h* 11 1
= ——|y|h* < —hp-1(X).

hpa-1(Y) < slog |y| < 1

By Lemma 5.4, every such y is contained in the union of at most
C(4,2) = exp(3(69)*) < exp(3(61)%) (5.33)

proper subspaces of the space defined by (5.29). Consider such a subspace, given by ¢17; +
-+-+c¢,Z, = 0. Taking a linear combination of this and (5.29) we obtain a nontrivial relation

A\Z1+ -+ ¢ 1 Zg1 = 0. This implies that y satisfies a nontrivial equation

Q1(y)ad + -+ + Qily)af =0, (5.34)

with . 3
degQ; < d; for 1 <i < k and deg @y, < d. (5.35)

Clearly there are fewer than 5F log E values of y that do not satisfy (5.32). For fixed y, since
t > 3, we can construct polynomials @, ..., Qg, not all zero, satisfying (5.34) and (5.35).
The total number of such polynomials is thus less than

exp(3(6t)*") + 5Elog E = F.
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5.6 A proposition that implies the Theorem

We now state a proposition from which Theorem 5.2 will be deduced.

Proposition. Let M;(X) = a; X7 + -+ + ap; X, 1 < j < n, be linear forms which are
linearly independent over Q and have coefficients in Q. Write a; = (a;1, . .., a;n) and assume
that each a; is nontrivial. For each 1 < i < n define t; to be the integer such that a; =
(@i1y ...,y ai,0,...,0) with ay, #0. Sett =1t + - + tx,

T = min{k", tV?'},
bt = e 31",

For nonzero algebraic numbers aq, ..., ay, the x € Z for which
Mi(af,...,a%),...,My(af, ... aF)
are Q-linearly dependent fall into at most
H(T) = exp(4(6T)%7) (5.36)
classes with the following property. For each class C' there is a positive integer m such that
(a) solutions x and ' in C satisfy x = 2’ (mod m),

(b) there are i # j such that either a; # a; and h(af*/af') > h*, or a; ~ a; and
ord(af" /) < (h*)~1.

Proof of Theorem 5.2. For a k-tuple of polynomials P = (Py,..., Py), set t; = ;(P) =
l+degP,for 1 <i<k,t=t(P)=1t+ -+t and s = s(P) = max;<;<x t;. Suppose that
Py, ..., P, have algebraic coefficients and take aq, ..., a; € Q. We will prove by induction
on t that the set of solutions Z of

Pi(z)af 4+ -+ Py(z)ay =0 (5.37)
satisfies v(Z) < Z(t,T) where we define Z(t,T) to be
exp((2" — 1)(8T)*), (5.38)

and T = min{k*, ¢V}
We may assume that £ > 2, t > 3 and that Py, ..., P, are non-zero. Write, for 1 <1 < k,

Py(z) =375 aia’~". For 1 < j < s we define the linear forms
N.

J

(X) = Nj(Xq, .., Xi) = a3 X0 + -+ + ag Xy
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Then, letting a; = (a;1,...,a;) for 1 < i < k, we have that each a; is nontrivial and
a; = (aj,...,a4,,0,...,0) with a;, # 0. The linear forms Ny, ..., Ny are not necessarily
Q-linearly independent. Let My, ..., M, be a maximal Q-linearly independent subset. Note
that replacing Ny,...,Ns with M,,..., M, will not cause the numbers t,,...,t; or t to
increase.

Equation (5.37) can be rewritten as

> Nj(af,....af)2’ "t =0. (5.39)
j=1

For each 1 < j < s, there are ¢j1, ..., ¢j, € Q such that N;(X) = ¢;1 My (X)+- - - +¢j, M, (X).
We can then rewrite (5.39) as

Z (Z cjrxj_1> M, (af,...,a5) =0. (5.40)
1 \j=1

r—=

There are fewer than s numbers z € Z such that each polynomial ¢, +- - -+cga®™t 1 <r <n,
vanishes. For any other solution of (5.40), the numbers M;(of,...,af),..., My(af, ..., af)
are Q-linearly dependent and, by the proposition, lie in at most H(T") classes, since n < s.

Fix a class C' and let Z¢ denote the set of solutions of (5.37) in C. The solutions in Z¢
are of the form x = x + my, with y € Z. Setting &; = o and P;(y) = o™ P,(z¢ + my), for
1 <1 <k, equation (5.37) becomes

A

Pi(y)a! + - + Pu(y)a! = 0. (5.41)

Assume first that there is some i # j with a; ~ a; and ord(&;/&;) = ord(af"/af') <
(h*)~'. We may suppose that i = k and j = k — 1. Set ¢ = ord(ax/dx_1). Divide Z
up into the ¢ arithmetic progressions A(q,b), 0 < b < ¢. For a solution y of (5.41) in
one such arithmetic progression A(g,b) we have that y = ¢z + b for some z € Z. We
then set af = @, for 1 < i < k—1, P*(z) = &’P(qz +b), for 1 < i < k — 2, and
P (2) = a8, Pe_1(qz + b) + &2 P(qz + b). Then (5.41) becomes

P(z)or” + -+ + By (2)eg”, = 0. (5.42)

Now t(Py, ..., Pf ;) < t(P) so, by induction, the zeros of (5.42) lie in the union of at most
Z(t — 1,T) single numbers and arithmetic progressions. Summing over 0 < b < g < (h*)™!

we see that Zo satisfies
v(Z0) < exp(3T")Z(t — 1,T). (5.43)
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Now assume that there is i # j with o; # «; and h(aj*/aj') > h*. Then considering
equation (5.41), we have h(q;/a;) > h* and we can apply Lemma 5.6. So we have, for

1 < w < F, polynomial k-tuples P® = (P .. P £ (0,...,0) with s(P®) < s and
t(P™)) < t such that every solution of (5.41) satisfies

PP (y)ad + - + P (y)al = 0, (5.44)
for some w. Now
F = exp(3(6t)*) + 5FElog E with E = 16t*s/h*.

Since t < T and s < T we get E < 1672 exp(6T%) < exp(7T?), hence Elog E < exp(87%)
and
F < exp(3(6T)%T) + 5exp(8T*) < exp(4(6T)3T). (5.45)

By induction on ¢, the solutions of (5.44), for each 1 < w < F, lie in the union of at
most Z(t — 1,T) single numbers and arithmetic progressions. We must be careful here as
the solutions of (5.41) may be properly contained in these progressions since we do not in
general have that every solution of (5.44) will be a solution of (5.41).

Consider one such progression A(a,b). Writing y = az + b, (5.44) becomes

P (2)d5 + -+ P(2)af = 0, (5.46)

with @; = a¢ and P (2) = a*P"(az +b), for 1 < i < k. If Gy,...,c were all distinct
then, since (5.46) holds for every z € Z, we must have each ]%(w) = 0, hence each PZ-W) =0,
which is not the case. Thus ay,..., &, are not all distinct. Say ax_1 = ax. Then (5.41)
becomes

Py (2)&% 4 -+ Po_1(2)ai_, = 0, (5.47)
with P;(z) = &' Py(az+b), for 1 <i < k—2, and Pp_1(2) = &%_, Pi_1(az+b) + a2 Pp(az +b).
Since t(P,. .., Pe_1) < t, the solutions to (5.47) are the union of at most Z(t — 1, T) single
numbers and arithmetic progressions. So, for our class C', we have

V(Z0) < FZ(t—1,T)* < exp(4(6T)* 1) Z(t — 1,T)?, (5.48)

by (5.45).
Considering the possible fewer than s solutions mentioned at the beginning, comparing
(5.43) and (5.48) and summing over the classes C', we obtain

v(Z) < s+ H(T)exp(4(6T)*T)Z(t — 1,T)*
< T+ exp(8(67)*") exp((2" — 2)(8T)*")
<exp((2' = (™) = Z(t, T),
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establishing (5.38).
Since t < T, we have
v(Z) < exp(27(8T)*").

Let T} = tV2t Since T <Tj and t > 3, we have
v(Z) < exp(2"(877)*")
< exp((8T1)4T1)
— exp exp(4tV* (log 8 + V2t log t))

< exp exp(tB‘/z).

Let T5 = k*. Since T' <15 and 15 > ks >t > 3, we have
V(Z) < exp(2(ST2)"™)

< exp(Ty""?) O
= exp exp(10sk®log k).

The remainder of this chapter will be devoted to proving the Proposition.

5.7 A lemma on linear independence

The following lemma improves on Lemma 2 of [18] by replacing the bound e!? with V2.
This is the key ingredient in our improvement of Schmidt’s main result in [18]. If K is a
number field and ¢ is an embedding K — C we denote by n(?) the image of € K under o.
If v=(v,...,u,) € K" we set

v = (UEU), )

n

Lemma 5.7. Let K be a field and ay, ..., a; vectors in K". Fiz n not necessarily distinct
embeddings oy, ...,0, of K into C. For 1 < i <k write

ai:(ai17-"7aiti707"'70)7

where either t; =0, hence a; =0, ort; >0 and a;, # 0. Sett =t;+...+tx. Then there are
at most tY2 ordered n-tuples (i1, yin), with 1 < iy,... i, < k, such that agfl), o ,ag:")
are linearly independent.
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Proof. Note first that the result is trivial if £ < n so we may assume k£ > n. Also note that
the embedding o;, for any 1 < j < n, will not have any affect on the numbers ¢, ..., t;. If
a; = 0 then a; doesn’t contribute at all to the number of n-tuples that we are counting and
t; doesn’t contribute to t. Hence we may assume a; # 0 for each 1 < ¢ < k. In particular

we may assume t > k. Suppose ag‘:l), ...,a'" are linearly independent. Then at most one

in
t; equals 1. If there exists a; such that ¢; = 1 then there is at most one a; such that t; = 2

and so on. Hence if there exist any n-tuples (i1, ..., 4,) such that al a'”") are linearly
independent then we must have

7;1 g e ey /Ln

" nn+1
t2232%7
j=1

hence n < v/2t. Clearly there are at most k™ such n-tuples and we have
k< V2
O

With the exception of the constant v/2 the above result is best possible. Say k = n,
o1 = --- = 0, and we have n linearly independent vectors aj,...,a,. Then the number of
such n-tuples is n!. Stirling’s Approximation yields

nl > \/2rntt/2e—nt1/(12n41) o | /o n(logn—1)

Hence for any constant ¢ and any 6 > 0 we have, since t < kn = n?,

eeVillog )1 =0 _ o(n!).

5.8 Splitting of the exponential equation
For ay,...,aq,a1,...,04 € Q* we consider the function
f(x) =aai + -+ agy. (5.49)

Group together summands with a; ~ «;. After relabelling we may write, uniquely up to
ordering,

@) = @)+ + fy(a), (5.50)
where, for each 1 < i < g,
fi(z) = apnaj) + -+ aiqzafqi
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with ¢; +--- 4+ ¢, = ¢ and

a;; ~a;, when 1<i<g 1<ik<g
ajj oy, when 1<i#d<g 1<5j<¢l<k<g.

If a solution = € Z of f(x) = 0 satisfies

file) == fy(x) =0 (5.51)
we say that f(x) = 0 splits into the g equations (5.51).

Lemma 5.8. All but at most
G(q) = exp(3(6)™)
solutions of f(x) = 0 split into the g equations (5.51).

Proof. This lemma is trivial if ¢ = 1, hence we may assume that g > 2, hence ¢ > 2. We
will proceed by induction on ¢. If ¢ = 2 and g = 2 then we have f(x) = a1, + an o, with
ajraz; # 0 and agq % ag;. There can then be at most one x € Z with f(z) = 0.

We now assume ¢ > 3. Note that (af,...,qy) lies in a group I' of rank < 1 generated
by (a1,...,a,). Thus by Lemma 5.3 there are at most C(g,1) = exp(2(6¢)>?) vectors
c = (cgr), .. ,cff)), 1 <r < (g, 1), such that for every nondegenerate solution = € Z
of f(z) =0 we have (of,...,a?) = Ac™"), for some non-zero constant A and 1 < r < C(q,1).
This implies that the quotients (o;/a;)* depend only on r. Since g > 2, there is some o/
that is not a root of unity, thus there can be at most one solution z € Z for any given
1<r<C(g1).

When = € Z is a degenerate solution of f(z) = 0, there is a nontrivial partition of
{1,...,q} into subsets {i1,...,i,} and {ji,...,Jm}, with n 4+ m = ¢, such that

apof +--+a,a; =0 and  ajaf +---+ay,a; =0.

There are < 297! such partitions. Each partition yields nonzero f* and f** with f = f*+ f**,
each f* and f** having fewer summands than does f and

(@) = £ (@) = 0. (5.52)
Write

/(@)
S ()

fi(z) +- 4 [y (@),
@)+ S (),
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where f and f/* are linear combinations of afj, ..., af

1q;
2G(q — 1) solutions of (5.52) have

file) == f(x) = [i"(x) = --- = [5"(x) = 0,

which then implies (5.51). The number of exceptions to (5.51) is then

By induction, all but at most

< exp(2(6¢)3) + 21G(q — 1)
< exp(2(6¢)%9) + exp(3(6¢)%3)
< exp(3(69)%?) = G(q).

We call a summand a;af of (5.49) a singleton if a; o o for any j #i, 1 < j <gq.

Corollary 5.9. Let f be given by (5.49). If f contains a singleton then f(x) = 0 has at
most G(q) zeros x € 7.

T

Proof. 1f f contains a singleton then f;(z) = a;af. for some 1 < ¢ < g and has no zero,

hence our equation cannot split. O]

Given a solution z of f;(z) = 0 we may have a subsum of f;(x) that vanishes. We will
refer to such a situation as subsplitting. The results of Chapter 4 are vital in dealing with this
extra complication. A solution z of f;(x) is called nondegenerate if no subsplitting occurs.

5.9 Algebraic numbers, c-bad and s-unpleasant [-tuples

Lemma 5.10. Let 3 be algebraic of degree d over Q and let S = {8, ..., B4} be its set of
conjugates. Let Si,...,S,, denote the equivalence classes of S under ~. Then d = mn for
somen € Z and

Sl = = |Sul = n.

Proof. Let G denote the Galois group of K = Q(sM, ..., 8l4). For n,y € Q* with  ~ v and
o an embedding of Q(n, ) into C we clearly have o(n) ~ o(v) since o(n)/o(y) = a(n/7).

Hence we see that G permutes the sets Sy,...,S,,. Moreover, since G acts transitively on S,
G acts transitively on {Si,...,S,,}. Thus |Si| = --- = |S,,| = n for some n € Z. If follows
that d = mn. O]
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For a positive integer a let logta = max{1,loga}. By a result of Voutier [21] we know
that for an algebraic number 3 £ 1 of degree d over Q we have

1 [log™logtd ’
hig)> —(——) .
(8) 2 4d ( log*d

It will suffice for our purposes to use the slightly weaker version

1

h(B) = m-

(5.53)

Lemma 5.11. Let 3 be as in Lemma 5.10, and suppose (3 is not a root of unity. Then

1

h(g) > og (5.54)

Proof. We keep the same notation as in Lemma 5.10 and suppose that 3 € S;. For each

1<i<m,let
Vi = H 5[3‘]_
gliles;

Then G permutes ¥4, . .., Vn. Hence every conjugate of v is in the set {v1,...,7,} and this
implies that the degree of v, is < m. Moreover v, cannot be a root of unity, since

B ~ H BUl =~
Bliles,
and (3 is not a root of unity. Hence
1
h
) 2 4m(logtm)3
But
hy) < Y h(BY) = nh(B),
sliles,
which implies
h 1
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Henceforth we will use the notation n(3) to denote the number n for 4 as in Lemma 5.10.
Suppose K is a number field of degree D with 3 € K. Let ), 1 < ¢ < D, denote the
images of 7 € K under the D embeddings K — C. We let ng(f3) denote the number of
elements in the set {31, ..., 3P} that are ~ to 3. Since each gV, 1 < j < d, occurs D/d
times in {30, ..., B} we have that

ni () = —n(F).

This implies that D = mng (). Hence we have the following corollary to Lemma 5.11.

Corollary 5.12. For 3 as in Lemma 5.10

1
h(B) = :
4d(log™(D/nk(B)))*
Suppose that S; = {81, ... A"} Then, since p!/3V! is a root of unity for every
1 <4,j < n, the elements g1, ... A" all must have a common absolute value, say . We
then write, for each 1 < j < n, ‘ .
Bl = \e?mies (5.55)

with 0 < p; < 1. Note that p; — p; € Q for each 1 < i,j < n since 8l1/80l ~ 1, but that
pi — pj & Z since Bl £ BUl for i £ j. Thus R = {py,...,pn} is a denominator system as
defined in §4.1. We let r;; denote the smallest positive integer such that r;;(p; — p;) € Z.
For x a positive integer we let u;(z) denote the number of 1 < j < n such that 7;;|x. Recall
that in §4.1 we said that R is homogeneous if uq(z) = -+ = u,(x) for every x.

Lemma 5.13. Let {81, ..., 8"} be as above and define pi,...,p, by (5.55). Then R =
{p1,-..,pn} is homogeneous.

Proof. For x a positive integer we will denote by v;(z), 1 < i < n, the number of 1 < j <mn
such that v;(x) = ry;. Since u;(z) = >_,, vi(y) it suffices to check that vi(z) = -+ = v,(x)
for every x. For each 1 < 4,7 < n there is a positive integer s;; with ged(ry;, s;;) = 1 such
that pl1/30] = e2misii/mii . This implies that ri; = x precisely when (3 il /8U] is a primitive xth
root of unity.

Fix 1 <1i < n and set v = v;(z). Then there are distinct numbers 1 < hy,... h, <n
such that /3 is a primitive zth root of unity for each 1 < k < v.

Let G’ be the subgroup of the Galois group G of Q(5Y, ..., 89) that permutes g1, ..., 3",
Since G acts transitively on S and permutes St, ..., S,, we see that G’ acts transitively on Sj.
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Fix 1 < j < n and take 0 € G’ such that o(811) = Ul There are distinct 1 < h/,... b, <n
such that o(8"]) = gl for 1 < k < v. Then

BV 3l
gl = ¢ ( g[hkl)
is a primitive xth root of unity for each 1 < k < v. Thus v;(z) > v = v;(x). By symmetry

we have v;(x) > v;(x) and the result follows. O

For a, 3,7 € Q* denote by G(a : 3 : ) the subgroup of Q* generated by o/ and a/7.
Clearly G(« : 3 : 7y) is finite if and only if a ~ 3 ~ 7.

Let K be a number field of degree D with 8 € K and let 31, ..., 3(P) be the images of
B under the D embeddings K — C. Let M C {1,..., D} be such that {3 : 0 € M} is
an equivalence class under ~. For [ > 3 and € > 0 we call an [-tuple oy,...,0, € M e-bad
if there are distinct 4,7,k in 1 <4, 5,k <[ such that

‘G(ﬁ(oi) . 3lo3) 5(ak))| < en(p).
Lemma 5.14. The number of e-bad [-tuples is less than
eV2Bng (B).

Proof. We may assume that for every o € M we have 3(0) € {pl1, ... BI"} where n = n(f).
Write 8l as in (5.55) and let R = {p1,...,p,}. We see that

|G(ﬁ[i] . 5[]'} :5[k])| <en

happens precisely when
lem(r5, m41) < en,

where 7;; is as above. By Corollary 4.1 we know that the number of [-tuples uy,...,u; in
1 <u < n with distinct 4, j, k satisfying lem(ry,y,, Tuyu,) < €n is less than

e 213nt,

For each 1 < u < n there are D/d numbers 0 € M with ﬁ(") = ﬁ[“], where d is the degree
of 3. Hence the number of e-bad [-tuples is less than

e PPl (D/d) = e Png(B)"
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Now suppose that 3 is a primitive g-th root of unity, so that ¢(q) = d. Note that in this
case n() = d. For [ > 3 and € > 0 we call an [-tuple of integers o1,...,00in 1 <o < D
e-unpleasant if there are distinct 4,7,k in 1 <4, 5,k <[ with

GE) 5 g < eg.
Lemma 5.15. The number of e-unpleasant l-tuples is less than
26213 D
Proof. Again, write g1, ... B4 as in (5.55). We have that
G870 g < eq

precisely when
lem(r5, 1) < £q.

By Corollary 4.4 we know that the number of [-tuples uy,...,u; in 1 < u < d with distinct
i, J, k satisfying lem(7y,u;, Tupu, ) < €¢ is less than

21213

For each v in 1 < u < d there are D/d numbers in {1,...,D} with 3) = gl hence the
number of e-unpleasant [-tuples is bounded by

2e1213dY(D/d)! = 2212 D',

5.10 Two easy Lemmas

Let K be a number field of degree D and denote by n'®), 1 < ¢ < D, the image of n € K
under the D embeddings K — C. For a = (ay, ..., a,) € K" we set a®) = (a\”, ..., a!").

Lemma 5.16. Let a € K". Then a®), ... a®) span a rational subspace of K™.

Proof. 1f a = (0,...,0) then the result is trivial so we may assume otherwise. Write a =
(ay,...,a,) and let, for each 1 < i < n, b; = aEl) + -+ az(»D). Note that by,...,b, € Q

and since a is nontrivial we must have at least one b; # 0. Partition {1,...,n} into iy,...,4
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and ji,...,Jm, [ +m = n, such that b, =---=0b;, =0 and b;,,...,b;, are nonzero. Let V
consist of all vectors (Xi,...,X,) € K" satisfying

X, =0 for 1<r<lI,
berjs = bjszr for 1 S r,Ss S m.
Clearly V is a rational subspace of K. Also, we see that any (X3,...,X,) € V is a multiple
of the vector (by,...,b,), hence is a linear combination of a®), ... aP). O
Lemma 5.17. Ifa € K" buta & V', for V some proper subspace of C", then there are at
least D /n integers o in 1 < o < D such that al@) gV.

Proof. This Lemma is trivial if D < 2n and so we will suppose that D > 2n. First suppose
that aq,...,a, are Q-linearly independent. If the Lemma were false for a then there would
be a set of more than D — D/n vectors al?) in V. Since V is a proper subspace of C" it will
suffice to show that any set of more than D — D/n vectors a”) spans C".

Take X C {1,...,D} such that |X| > (1 —1/n)D. Let Y = {1,...,D}\X, so that
V| < D/n. Since ay,...,a, are Q-linearly independent the matrix with columns a(®),
1 < o < D, will have rank n. Thus a®™, ... a® span C*. Without loss of generality we
may suppose that al), ... a™ are linearly independent. Suppose that K = Q(n) for some
algebraic number 7 and let G be the Galois group of its normal closure Q(n™, ... n®)).
For g € G we have g(n'®)) = nl®) where 1,,..., D, is a permutation of 1,...,D. Given
1 < 0,7 < D there are |G| /D elements g € G such that o, = 7. So for any given o the
number of g € G with o, € Y is |G||Y|/D. The number of g € G such that at least one of
ly,...,ngisin YV is < (|G||Y|/D)n < |G|. Hence there is a g € G such that 1,,...,n, € X.

Since a™, ... a™ are linearly independent and, for each 1 < i < n, g(a®”) = als) with
1y, ...,ny € X we have that {a(®) : 0 € X} does indeed span C".

Now assume that aq,...,a, are Q-linearly dependent. Let aq,...,a, be a maximal Q-
linearly independent subset. Then for » < j < n there are rational cy,...,c,; such that

a; = Z Cij Q.
i=1
Since a ¢ V| there are vy, ...,7, € C such that 121+ +~vy,z, =0 for all (zy,...,2,) €V
but yia; + -+ + Ypa, # 0. Setting v = v + >0, cijv;, for 1 <i <, we have
Va1 + -+ 0, # 0.

Let V' C C" be the subspace defined by vjzy + -+ + .z, = 0. Now a = (ay,...,a,) € V'
and, by the case of the Lemma already shown, there are at least D/r > D /n integers o with

al?) ¢ V' so that ylaga) + -+ %a,(f) #£ 0, and hence al®) ¢ V. O
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5.11 The cases k=1 and n = 1 of the Proposition

If £k =1 then M;(X) = b;X for 1 < j < n with by,...,b, Q-linearly independent. Then

biaf, ..., byal are Q-linearly independent for every x € Z.
If n = 1 then we have M;(X) = a1 X+ - -+ a; X} with nonzero coefficients. The number
M(af,...,af) is linearly dependent over Q precisely when it is zero and so we are looking

for solutions to the equation
aray + -+ agay = 0.
If € Z is a solution to this equation then there is a subset S(x) C {1,...,k} such that
1 € S(x) and
> aaf =0, (5.56)
ieS()

but no subsum of (5.56) vanishes. By Lemma 5.8, for all but at most
G(k) = exp(3(6k)*")

solutions x the set S(z) has the property that o; ~ o for any i, j € S(z). Each exceptional
solution is put in a class by itself where we take m to be any positive integer large enough
to satisfy condition (b) of the proposition.

Now let S C {1,...,k} be a nonempty set such that a; ~ o for i, j € S. We consider
solutions z of (5.56) having S(z) = S. We may suppose that S = {1,...,h}, so (5.56)
becomes

aaf + -+ apay = 0. (5.57)
Clearly we must have h > 0. Since no subsum of (5.57) vanishes Lemma 5.2 yields
B(h) — h3h2 S k?)k:z
vectors c®) = (cgw), . ,cglw)), 1 < w < B(h), such that (of,...,af) is proportional to
some ¢, Consider solutions with fixed w. For two such solutions z and 2’ we see that
(a1/0)* = (a1 /ag)® = " /e§”), so that

(Oél/OQ)r_I/ =1.

When m is the order of a;/ay we have z = 2/ (mod m), and ord(af"/af") = 1.
The number of sets S is less than 2% and so we obtain 283" classes. The total number
of classes is then

< exp(3(6k)**) + 2Pk < exp(4(6k)*F) = exp(4(6T)*T) = H(T),

since n = 1 yields T = k.
We may assume henceforth that £ > 2 and n > 2.
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5.12 Nonvanishing of determinants

For 1 < j <n write M;(X) = a1;X;1 + - - - + a3j Xi. Let K be a field of degree D containing
ai,...,op and the a;;, 1 <7 <k and 1 < j < n. As before we denote by n9, 1<o <D,
the images of n € K under the D embeddings K — C. We will write a; = (a;1, ..., a;,) for
1<i<k Forl<o<D Set M](U)(X) = ag(;)Xl —I—---+a,(;;.)Xk for each 1 < j < m and

al? = (agf), . ,agg)) for each 1 < i < k. For x € Z say there are c,...,c, € Q, not all

K3
zero, such that

aMi(af,...;af)+ -+ caMy(af, ... af) =0.

Then for any 1 < o < D we have
cle”)(aga)””, o ,04,(:)%) +oe chy)(ag")w, L, alT) =0,
Then the matrix with rows

(Ml(a)(ozgg)m, o ,a,(:)x), . ,M}f%a?”, o ,a,(:)x)) ,

1 <o < D, has rank < n. Let D(oy,...,0,;x) be the determinant formed from the rows
01,...,0, of this matrix. Then
D(oy,...,on;2) = 0. (5.58)
We now introduce some notation. For 1 < oy,...,0, < D and 1 < 4q,...,7, < k we
denote by

A(m%)
11,...,1p
(01) (om
PR §

A(ql’ cee ,(Tn) _ al(;n) . ”O[(O'n).

(2
1,...,0p "

the determinant of the matrix with columns a ) and we set

Lemma 5.18. For1 <oy,...,0, <D andx €7

k k

i1, ... .1
=1 in—1 Lyeeestn
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(o) (0)x

Proof. Since M;U)(ago)x, Lol = ay; on”" 4 - o, we have
agtil) gm)x NI agﬁl)oz,(fl)x o agn 1) §01)x ot agm )O-/](ggl)x
D(Ula y On; .flf) : ..
agl )agon)m +oeeet a}(gn)al(:n)x L agn )agon)m bt a}(m )Oé,(:n)x
- 25” (@700 4+ o) “(agﬂ))aggn) o a o),

where 7 runs through the permutations of 1, ...

,n and e, is the sign of 7. Then we have

(UI (Un (571 ‘Tn)
S Y0 S AIBRY ) D SV AT
i1=1 in=1
—Z ZA(O—I’“ Un)xA(al7"‘ Un)
=1 - R 2% 11y...,1pn
O]
Lemma 5.19. When M, ..., M, are linearly independent over Q there are certain oy, ...,0,
ml<o<Dandiy,..., i, inl1 <1<k such that
01y, 0p
A( ! . ) £ 0.
11,451
Proof. By Lemma 5.16, we known that for any vector v € K" the vectors v, ... v(?) span

a rational subspace of C".
vector a;. Say that Vi +
not all zero, such that ¢; X7 + - --
1 <4 < k we have that cja;; + - -
Ml, ..
by a(
cn, Wthh gives

such that
T1 }

A(
U,y ...

-+ 4V}, is a proper subspace of C". Then there are ¢y, ...
+ ¢, X,, = 0 holds on V; +
+ cpa;, = 0 for each 1 < ¢ < k. But this implies that

., My, are Q-linearly dependent. Hence we have Vi +
for1 <7< kand1 <o <D. Then there are certain vectors a; "', ...

A(O.'l,...
115

By Lemma 5.19 there are n-tuples u, ...

For each 1 < i < k let V; denote this rational subspace for the

,cn € Q,
-+ + V4. Since a; € V; for each

C", i.e. C" is spanned

(1)’ , aZ(:") spanning

V=

Un) 40,
7Zn

Jup in 1 <u < kand 7, ...

O
T,inl <7< D

77-71

™ 4o
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The n-tuple uy,...,u, will be fixed from now on After relabelling embeddings we may
assume that 71 = 1. By (5.60), we know that a™ does not lie in the subspace spanned by

all) a™ . al™. By Lemma 5.17, there is a subset Sy of {1,..., D} with |Ss| > D/n such
that aq(g) does not lie in this subspace when o € S,, in particular

A( 170-77-37"'77-71 )7&0
Uy, Uz, U3, ..., Up
whenever o € S,.

Let 09 € &5 be given. Then au3 does not lie in the subspace spanned by the vectors
al al a™ .. al™. By Lemma 5.17 there is a set S3(09) of {1,..., D} with |S3(02)| >

D/n such that
1,09,03,T4,...,7,
A( , 02,03, 14, sy In ) 7£0
Uy, Uz, U3, Ug, - - ., Up
whenever o3 € S3(03) for gy € Ss.

Continuing in this way we inductively construct sets Sy, S3(02), ..., Sy (09, ..., 0,_1) each
of cardinality at least D/n such that S;(o2,...,0,-1) is defined when

o9 € 82, 03 € 83(0'2), sy, 0521 € Sj_1<0'2, - ,O’j_g),
and such that .
A( 7027"'7Jn> 7&0
U, U2y -+ -y Unp
whenever
09 € 82, 03 € 83(0'2), s, Op € Sn(Ul, R ,O’n_l). (561)

5.13 Selection of exponential equations

For the n-tuple o = (01,...,0,) in 1 <o < D we set
b k o o o
11y...451pn
i1=1 in=1
Then (5.58) becomes
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Let ¢ be the number of nonzero summands in (5.62). Clearly ¢ < k™. For each 1 <i < k
write a; = (ai,...,a4,0,...,0) with either a;, = (0,...,0), in which case we set ¢; = 0, or
a;; 7 0 and t; > 0. Then, for t =¢; + - -- + t;, we see that, by Lemma 5.7,

g <tV

So we have ¢ < T where
T = min{k", t@}.

The equation fg is of the type f considered in §5.8. According to Lemma 5.8, (5.63) will
split with at most G(T') exceptions. In order to avoid dependence on the degree of K we
will select a small set of n-tuples o for which we will study equation (5.63). Recall that we
are assuming that £ > 2 and n > 2. Moreover we may assume that ¢ > 2 since ¢t = 1 implies
that we have only one summand and this case is trivial. In particular we have T' > k, T' > n,
T>tand T > 4.

Let S be the set of n-tuples o = (04, ...,0,) with o1 = 1 and 09, . . ., 0, satisfying (5.61).

When o € § we have
A(O—b”"o—n)?ﬁO?
Uty ...y Up

so not all coefficients of fo will vanish. From now on we will restrict ourselves to o € S.
This set S, however, is still too large.
As in (5.50), we may write fg = fo1 + -+ fogo). We may suppose that fg1 contains

the summand
A(O‘l,...,Un)A<O'1,...,0n)z‘ (564)
Uty .oy Uy Ury ..oy Up
Let Z(o) be the set of n-tuples (iy,...,1,) such that
A(ql,...,qn)#o - A<q1,...,qn)NA(al,...,an)_ 5.5
11y...,1p 11y...51n Uy oo oy Up
Now (uy,...,u,) € I(o) and
f0'1: Z A(Ulaaan>A(Ulaaan>x
. . 2y---51n 2y---51n
(31,...,in ) EZ(O)

First assume that |Z(o)| = 1. Then fg; equals (5.64) thus fo contains a singleton. In
this case it suffices to study (5.63) with this particular o and, by Corollary 5.9, we have at
most

G(T) < H(T)

93



solutions x € Z. In this case we put each solution into a class by itself choosing m large
enough to satisfy condition (b) of the proposition.

We may henceforth assume that |Z(o)| > 1 for each o € S. Since there are at most
k™ n-tuples (i1,...,i,) and Z(o) is a set of at most T" of them, the number of possibilities
for Z(o) is < k"I, Say we have o1,...,0, 1 with 01 = 1 and 0, ...,0,_ satisfying (5.61).
Then for some o,, € S, (09, ...,0,_1) we set

(o1, .. y0n_1) =Z(01,...,00)

and

S (02,...,0n1) ={0), € Sp(oa,...,001) : L(02,...,00_1,0,) =ZL(02,...,0,)}
Note that regardless of our choice of o, we have (uy,...,u,) € Z(01,...,0,_1) and that
S!(09,...,0,_1) is nonempty since it contains o,,. Also note that

|Sn(0'2, e 7Un—1)| S |S;L(O'2, e ,0'”_1>|]€nT,

since there are at most k™! possibilities for Z(o). Hence, given oy,...,0,_1 with o = 1
and oy, ...,0, 1 satisfying (5.61), there is a set Z(oy,...,0,_1) such that Z(oy,...,0,-1) =
Z(o1,...,0n-1,0,) whenever o, is in the subset S/ (o1,...,0,-1) of S,(01,...,0,_1) of car-
dinality

> k)8, (09, . .. on_1)| = k7T (D/n) > DT > D/TTOTE
since 1" > 4.

Givenoy,...,0, o withoy = 1 and 09, ..., 0, o satisfying (5.61) thereisaset Z(oy,...,0,_2)
such that Z(o4,...,0,-2) =Z(01,...,04-2,0,-1) Whenever g,,_; isin asubset S}, _,(09,...,0,-2)
of Su_1(09,...,04_2) of cardinality > D/T(7/16)7*,

After carrying out n — 1 such steps we obtain a set Z of n-tuples (i1, ...,1,) and sets

L SY(02), s S(0m ), (5.66)
where Si(0y,...,0;1) is defined for
09 € Sé, 03 € 83(02), ceey 051 € Sjl'_l<0'2, c. ,Ujfg).

Each of the sets (5.66) has cardinality

D

> T(7/16)T%

(5.67)
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and when S’ consists of o with o; = 1 and
09 € Sé, 03 € 83(0'2), s, Op € 87/1((72, R ,O’n_l),

then
I(o) =7 when o €S

For 2 < j < n, let 7; be the set of numbers i; # u; in 1 < ¢; < k such that
(il,...,ij,Uj+1,...7Un) el (568)
for certain iy, ...,%;_1, where when j = n (5.68) becomes (i1, ...,i;) € L.

Lemma 5.20. Ifi; € 7; and oy, # u, then

h—2)> !
Oéuj 4T7 deg(aij /O{u]) .
Proof. By (5.65) we have that

A 01y+++3,04,0541,--.,0n A 01y...,0n
. . ~ )
Uy ey, Ujy v oy Up Uty .oy Uy

(o1) (@5)  (0j+1) (on) (o1) (on)
ai1 PN ai]' OéUj+1 N aun ~ au1 . o aun ,

for any o € §’. Thus

which yields

N\ (o9) (1) (95-1)
;. u Qi
< ) N(O‘1> (_ > | (5.69)
Oéuj Oéil Oéi]._l
This holds when oy = 1, 03 € S5, ..., 05 € Sj(02,...,0;-1). Fix such oy,...,0;_; and let
oj range through Sj(oa,...,05-1). The right hand side of (5.69) remains fixed so that the
number of (o, /v, )@, for 1 < o < D, that are ~ to each other is at least |S}(03, . .., 0j_1)| >
D/TW1OT* by (5.67). In the notation of §5.9,
Oéij D
Then, by Corollary 5.9
ij 1 1
h > > ,
(Oéu].) 4((17/16>T2 ]'Og T>3 deg(aij /O{u]) 4T7 deg(aij /Oéuj)
since T' > 4. 0
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For 2 < j < n,let T = {a; /v, : i € T;}. Say T = {p,...,3:}. Since i; # u; we
have that r < k and it is possible that r = 0 and 7;* = (. We know, by Lemma 5.20 and
(5.70), that for each 1 < s <r

1

nk(Bs) > % and h(fFs) > 177 dea (7)) (5.71)
Recall the definition of G(a: 3 : ) in §5.9.
Lemma 5.21. Set [ = 3T and suppose that
D> e, (5.72)
Take 2 < j <n and oy,...,05 4 withoy =1, 0, €Sy, ..., 051 €S} _(02,...,052). Say

T = {b,...,B:}. There is a subset S(0a,...,0;1) of Si(02,...,05.1) of cardinality
such that for any triple of distinct numbers ¢,,w € 8]’-’(02, co05m1) and 1 < s <r,

T-8T° deg B,  when B, £ 1,

T8 ord3,  when Bs ~ 1. (5.73)

GB = B2 5] > {
Proof. For ease of notation set S = Sj(02,...,05-1). When r = 0 condition (5.73) is

vacuous. Since |S}| > D/TUT/19T* > 37 = [, by (5.67) and (5.72), we can find a subset of
size [.
Suppose that » > 0. Set

e=T"" (5.74)
Note that, since T' > 4,
1087 23T T/1OT 10874 /19T 1 (5.75)
and
PTTIOTA  18TAT° 42 « 2T < D). (5.76)

Take B, € 7,7 and assume [, % 1. We know that the numbers ﬁé”) with o € S} are all

~ to each other. Let M be the set of all 0 in 1 < ¢ < D for which ﬁé") are ~ to these
numbers. By Lemma 5.14 the number of e-bad [-tuples p1, .. ., in M is less than /23 D*.
In particular the number of e-bad I-tuples p,...,pu, € S is less than 2Dt On the
other hand if B, ~ 1 then by Lemma 5.15 the number of e-unpleasant [-tuples is less than
2e213D!. Summing over 1 < s < r we see that the number of [-tuples which are e-bad or
e-unpleasant for some [, is

1 D\
1/213 0yl __ 1/23 0yl
< 2re °D' = H4re T°D" < 5 <W) s
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by (5.75). The number of [-tuples for which at least two elements are equal is

N _ ppyn 1 D :
< (2>D <D< o \ T(7/16)T% | >

by (5.76). Since |Sj| > D/TW/19T* the number of all possible I-tuples is > (D/T/19T%)L,
Thus there is an [-tuple of distinct numbers g, . ..,y € 8§ which is not e-bad or e-unpleasant
for any /i, ..., .. By definition of e-bad and e-unpleasant, for any distinct i, 5, k if G5 ¢ 1
we have

IG(B%¥) : gWs) ;. BUR))| > en(B,) = e(deg Bs)nk (By)/D > £(deg B,) /TI/OT* > 78T deg 3,

by (5.71) and (5.74), and if B5; ~ 1 we have

|G(5(M) :ﬁgﬂj) . ﬁéﬂk)” > cordf, > T_8T30rdﬁ8.

S

Setting 87 (02, ..., 05-1) = {1, ..., u} we have (5.73) for any ¢, ¥,w € S (09,...,051). O

Condition (5.72) can always be achieved by enlarging the field K if necessary. We will

assume from now on that (5.72) holds. Define §” to be the set of n-tuples o = (0y,...,0,)
withoy =1, 00€ 8, ..., 0, € S/(09,...,0,-1). We will investigate equations (5.63) with

o € 8”. Note that
|S”| = 1" < (3T)".

5.14 Conclusion

Now each equation (5.63) splits with at most G(q) < G(T') exceptions. If we carry this out
for each o € §” we have

< |S"IG(T) < (3T)" exp(3(6T)T) (5.77)

exceptions. We place each such solution in a class by itself and take m large enough to
satisfy condition (b) of the proposition.
For nonexceptional z, each equation (5.63) with o € §” splits, so that x satisfies

f0'1(5U) =0,
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for every o € 8”, which can be written as

3 A()A():o (579

21y...,12 21y...,12
(i1,0iin) € 1 sy In 1 y bn

Recall that each summand of (5.78) satisfies (5.65) and one of the summands has (iy, ... ,7,) =
(u1,...,u,). We must be careful because  might be a degenerate solution of (5.78).

Given o € 8" and a solution x € Z of (5.78), there will be a subset Z(o, z) C Z containing
(u1,...,u,) such that

. . [AERERENZ 2y ln
(i1yeeeyin ) EZ(O ,x)
but that splits no further. Since
A(al,...,an) 40
Uy ..., Uy
we must have |Z(o,z)| > 1. Since |Z| < T there are fewer than T n-tuples (iq,...,4,) #
(u,...,u,) in Z. Hence, given o4, ...,0,_1, there will be an n-tuple

i(og,...,0n-1,2) # (u1,...,uy)

such that i(o9,...,0,-1,7) € Z(o, x) for at least {/T of the numbers o, € S/ (09, ...,0,-1).

Since | = 3T we can take S (09, ...,0,-1,%) to consist of three such numbers. Now, given
01,...,0,_9, there will be an n-tuple

i(O’g, .y Op_92, x)
such that i(og,...,0,_2,2) = i(09,...,0,_2,0,_1,2) for at least three of the numbers o,,_;.

Continuing in this manner we have the n-tuples
i(x), i(og, ), ..., i(09,...,00_1,7)
and three-element sets
Sy(x), 8§ (o2,x), ..., Si(o9,. .., 0n_1,T).
Now let S*(x) consist of & = (01, ...,0,) with

or=1,00€85(x), ..., 0, €S:(02y...,0n_1,7).
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Then for any o € §*(z) we have
i(x) € (o, x).

Let A be a system of three-element sets S5, S5(02),...,8%(09,...,0,-1), where the set
Si(02,...,05-1) is defined when o, € &3, ..., 0.1 € 8 4(02,...,0;2), and where, for
2<j<mn Sog...,051) C S/(02,...,05-1). The number of possible choices for S; is

< 3. For fixed oo € S the number of possible choices for Si(o9) is < I3, so carrying this
out for each oy € 8§ we have < [? choices for 8}(oy). Carrying on in this manner we see
that the number of possibilities for a system A is

<BP. P <P

When i is an n-tuple and A is a system as above, let C'(i,A) be the class of solutions
x € Z with i(z) =1 and

8;(5(:) = S;, S;(OQ,I) = S;(O'Q), ceey S:;(O'Q, R ,O'nfl,I) = S;:(O'Q, . ,O'nfl)

whenever
09 € S;, 03 € S;(O-Q), .., Op € S:;(O'Q, R ,O'n_l). (580)

The number of classes is less than
TP < T(3T)*". (5.81)

We now study solutions in a given class C'(i,A). Let j = j(i) be the number 1 < j <n
such that

i:(z’l,...,ij,ujﬂ,...,un)

and i; # u;. We now restrict o satisfying (5.80) even further. We fix 0y =1, 05 € S5, ...,
0j-1 €S} 4(02,...,0j_3). Then given a choice of the three values ¢,%,0 € S;(09,...,0;1)
we fix 0j41,...,0, so that (5.80) holds. We now have three n-tuples, which we will denote
by o4, 0y,00. We will study (5.79) for these three choices of o.

Since each Z(o g, x),Z(oy, x),I(0p, x) are in Z, which has cardinality < 7', the number
of possibilities for each of Z(oy, z),Z(0y,x),Z(0p, x) is < 27. We then subdivide the class
C(i, A) into

23T (5.82)

subclasses C'(i, A, Z,,Z,,Zy) such that Z(oy,x) = Iy, Z(oy,x) = Ly and I(op,x) = Iy in
our subclass. Let ¢y, qy, o denote the number of nonzero summands in (5.79) with o =
04,0y,0¢, respectively. Note that each of these numbers is < 7.
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Fix o, for the moment. Since no subsum of (5.79) vanishes we can apply Lemma 5.2.
Let Ag(x) be the vector in ¢, dimensional space with components

01y...,0pn
A ’
(T)
where (iy,...,4,) € Zy. By Lemma 5.2, there are vectors c(a“.’), with 1 < w < B(gyp), such
that Ag () is proportional to some cﬁ;”) for every solution . We subdivide C(i, A, Zy, Zy, Zp)
according to the cg-”), 1 < w < B(gy), to which Ag () is proportional. Doing this for o,

and oy as well, we obtain
< B(4s)B(gy)B(a0) < B(T)*

subclasses. Combining this with (5.81) and (5.82) we see that the total number of subclasses,
which we will call ”classes” from now on, is

< T(3T) 2°TB(T)? < 27T°7° (37)*" < exp(5T° + 37T). (5.83)

Consider the solutions in one such class. For o = o, consider the components of Ag(2)
corresponding to i = (iy,...,4,) and (uq,...,u,), where i is as above. There is a fixed

constant ¢y such that
A(O,-h ce aan>x _ C¢A<O-1’ s 70-71)1«
11y...4,1lpn Uty .o oy Up
for every solution z in our class. By our definition of 7 = j(i), this yields

(@l ol — oy (alo)) L o) g (9

1 15—1 14 Uj—1 Uj

for o = o 4. Rewriting we have

<(Oéij >(¢)>x ((au1)(01) (auj_l)(aj—ﬁ)x
= C¢ oo —_—
Qry Qy, Qi

An analogous relation holds when o = o, or o = 0. Taking quotients we obtain

(Oéij/QUj)(¢) _ o and (Oéij/Oéuj)(¢) _ o
(aij/auj)(w) Cy (aij /auj)(e) Co '

Now ay; / Qy; 18 one of the numbers in g, € ’];-*, so we have

o)\ * o)\ ”*
BTN o (27) L
ﬁgw) Cy ﬁg@) co
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Hence if  and 2’ are two solutions in our class, then

§¢) I—.T/ /8§¢) CU—ZE/

So if |G(5§¢) g ﬁs(a))| = m, then z = 2’ (mod m) for any two solutions z and z’ in our
class. Further, by Lemma 5.21, we have

T3 deg B, if B # 1,
"= { T8 ordB, i B, ~ 1.

When G # 1, we have, by (5.71),

h(B") = mh(B,) > T~ J(8T7) > =31 = K(T).
When [, ~ 1, we note that m|ordfs, so

ord(8™) = m~tordfB, < T8 < &*T° = p(T) .

Now s = «;/a; for some 1 < i,j < k with ¢ # j, and so for each of our classes we have
satisfied conditions (a) and (b) of the proposition.

It only remains to show that the total number of classes is at most H (7). By (5.77) and
(5.83) the number of classes is bounded above by

(37" exp(3(6T)*) + exp(5T° + 3'T) < exp(4(6T)*") = H(T).
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