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Abstract

In this report we give an overview of some of the major results concerning the multiplicities
of linear recurrence sequences. We first investigate binary recurrence sequences where we
exhibit a result due to Beukers and a result due to Brindza, Pintér and Schmidt. We then
investigate ternary recurrences and exhibit a result due to Beukers building on work of
Beukers and Tijdeman. The last two chapters deal with a very important result due to
Schmidt in which we bound the zero-multiplicity of a linear recurrence sequence of order t
by a function involving t alone. Moreover we improve on Schmidt’s bound by making some
minor changes to his argument.
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Chapter 1

Introduction

1.1 Definitions and zero-multiplicity

A sequence of complex numbers {un}n∈Z is called a linear recurrence sequence if there exists
a positive integer t and c1, . . . , ct ∈ C, with ct 6= 0, such that

un = c1un−1 + · · ·+ ctun−t (1.1)

for all n ∈ Z. The recurrence sequence is said to be of order t if it satisfies (1.1) but no
such relation with fewer than t summands. We say that the zero sequence, i.e. un = 0 for
all n ∈ Z, has order 0 and it is the only recurrence sequence with order 0. We claim that if
a recurrence sequence {un}n∈Z is of order t > 0 then its recurrence relation (1.1) is unique.
Indeed suppose {un}n∈Z satisfies (1.1) as well as

un = d1un−1 + · · ·+ dtun−t

for some d1, . . . , dt ∈ C with dt 6= 0 and some ci 6= di, 1 ≤ i ≤ t. Let r = min{i : ci 6= di}.
If r = t then we have ctun−t = dtun−t for all n ∈ Z, hence un−t = 0 for all n ∈ Z which is a
contradiction since we assumed t > 0. Assume r < t, then we have

un−r =
cn−r−1 − dn−r−1

dn−r − cn−r
un−r−1 + · · ·+ cn−t − dn−t

dn−r − cn−r
un−t

for all n ∈ Z. This is a relation with fewer than t summands, which is contradiction.
A recurrence is called algebraic if the sequence as well as the recurrence coefficients

c1, . . . , ct in (1.1) are algebraic. Rational and integral recurrences are defined similarly. Note
that a sequence of algebraic, rational or integral numbers may satisfy a recurrence relation
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that is not algebraic, rational or integral, respectively. For example the sequence {1}n∈Z
satisfies the recurrence relation un = πun−1 + (1− π)un−2. Note however that this is not the
minimal recurrence relation for this sequence. It can be shown that if a recurrence sequence
belongs to a field K then its minimal recurrence relation has coefficients belonging to K.
Let {un}n∈Z ⊆ K be a recurrence sequence with minimal recurrence relation

un = c1un−1 + · · ·+ ctun−t

for all n ∈ Z, where c1, . . . , ct belong to some field which contains K. Consider the system
of t linear equations in t variables x1, . . . , xt,

ut = x1ut−1 + · · ·+ xtu0

... (1.2)

u2t−1 = x1u2t−2 + · · ·+ xtut−1.

It is not hard to show, by induction, that any solution, x1, . . . , xt, to (1.2) will satisfy

un = x1un−1 + · · ·+ xtun−t

for all n ∈ Z. Since our sequence is of order t there is a unique solution to this system of
equations and thus the determinant of the coefficient matrix of (1.2) cannot vanish. We can
then apply Cramer’s rule and express the xi in terms of u0, . . . , u2t−1.

For a recurrence sequence satisfying (1.1) its companion polynomial is defined as

P(z) = zt − c1z
t−1 − · · · − ct. (1.3)

Say (1.3) has distinct roots α1, . . . , αk, each with multiplicity ti, 1 ≤ i ≤ k, i.e.

P(z) =
k∏
i=1

(z − αi)
ti . (1.4)

We call these αi the roots of the recurrence. Note that they are all nonzero since ct 6= 0.
If each αi is a simple root we say that the recurrence is simple. The following result is
fundamental to the theory of linear recurrences.

Theorem 1.1. Let {un}n∈Z be a recurrence relation satisfying (1.1) with companion poly-
nomial that factors as (1.4). Then, for 1 ≤ i ≤ k, there exists polynomials Pi(x) ∈ C[x] with
degPi < ti, such that for all n ∈ Z,

un = P1(n)αn1 + · · ·+ Pk(n)αnk . (1.5)
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Moreover if {un}n∈Z is of order t than degPi = ti − 1 for each 1 ≤ i ≤ k.
Conversely, suppose α1, . . . , αk are distinct nonzero complex numbers and P1(x), . . . , Pk(x)

are nonzero polynomials in C[x]. For 1 ≤ i ≤ k, let ti be an integer strictly greater than
degPi, t = t1 + · · ·+ tk and define c1, . . . , ct by (1.4) and (1.3). Then the sequence {un}n∈Z
defined by (1.5) satisfies the recurrence relation (1.1). Moreover if ti = degPi + 1 then
{un}n∈Z is of order t.

Proof. Consider the vector space, V , consisting of all sequences {un}n∈Z with un ∈ C for all
n ∈ Z. Let P(z) ∈ C[z] be the polynomial given by (1.3) and (1.4). Let P act on V by

P({un}n∈Z) = {vn}n∈Z

where, for each n ∈ Z,
vn = un − c1un−1 − · · · − ctun−t.

Let W be the kernel of this map. This is the subspace of V consisting of all sequences
satisfying (1.1). Clearly dimW = t and we claim that W is spanned by the sequences

{njαni }n∈Z (1.6)

for 1 ≤ i ≤ k and 0 ≤ j ≤ ti−1. We have t vectors and they are clearly linearly independent,
hence it remains to show that each does belong to W , i.e. that

njαni − c1(n− 1)jαn−1
i − · · · − ct(n− t)jαn−ti = 0 (1.7)

for each 1 ≤ i ≤ k, 0 ≤ j ≤ ti − 1 and all n ∈ Z. The left hand side of (1.7) is equal to

z
d

dz

(
· · ·
(
z

d

dz︸ ︷︷ ︸
j times

zn−tP(z)

)
· · ·
)∣∣∣∣

z=αi

, (1.8)

which is to be interpreted as αn−ti P(αi) if j = 0. Since, for each 1 ≤ i ≤ k, αi has multiplicity
ti and j < ti we see that (1.8) vanishes, establishing (1.7). Since the sequences (1.6) are
a basis for W we see that every recurrence sequence satisfying (1.1) is given by (1.5). If
{un}n∈Z is given by (1.5) such that some Pi has degPi < ti − 1, we say deg 0 = −1, then
we see that P0({un}n∈Z) = {0}, where P0(z) = P(z)(z − αi)

−1. Hence if our sequence is of
order t then we must have degPi = ti − 1 for each 1 ≤ i ≤ k.

The converse is also established, since any sequence satisfying (1.5) will be in the subspace
W of V consisting of all sequences that vanish under P . Thus it must satisfy a recurrence
relation with companion polynomial (1.3), i.e. the recurrence relation (1.1).
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Note that the proof of Theorem 1.1 establishes another subtle fact, i.e. if a recurrence
sequence satisfies (1.1) with companion polynomial P then the companion polynomial of its
minimal recurrence relation divides P .

For a recurrence sequence {un}n∈Z ⊆ C and ω ∈ C, the ω-multiplicity of the recurrence
is the number of n ∈ Z such that un = ω.

Theorem 1.2. (Skolem-Mahler-Lech) Let {un}n∈Z ⊆ C be a recurrence sequence and let
Z denote the set of n ∈ Z such that un = 0. Then Z is the union of finitely many single
numbers and arithmetic progressions.

Where, by arithmetic progression, we mean a set

A = {ax+ b : x ∈ Z}

for fixed a, b ∈ Z with a > 0. We call a, sometimes denoted a(A), the modulus of A.

Proof. See [13].

Corollary 1.3. Let {un}n∈Z be a linear recurrence sequence of order t whose companion
polynomial has the distinct roots α1, . . . , αk. If there is some 1 ≤ i0 ≤ k such that αi0/αj is
not a root of unity for any j 6= i0 then the zero multiplicity of {un}n∈Z is finite.

Proof. By Theorem 1.1 we know that there exists polynomials P1, . . . , Pk ∈ C[z] with
degPi = ti − 1, where ti is the multiplicity of αi in the companion polynomial to {un}n∈Z,
such that

un = P1(n)αn1 + · · ·+ Pk(n)αnk .

We group together summands Pi(n)αni and Pj(n)αnj with αi/αj a root of unity. We now
write, uniquely up to ordering,

un = f1(n) + · · ·+ fs(n)

where, for 1 ≤ i ≤ s,
fi(n) = Pi1α

n
i1 + · · ·+ Piki

αniki
,

with k1 + · · · + ks = k and, for 1 ≤ j ≤ ki and 1 ≤ l ≤ ki′ , αij/αi′l is a root of unity if and
only if i = i′.

Say un = 0 for every n in the arithmetic progression A = {ax + b : x ∈ Z} with fixed
a, b ∈ Z, a > 0. Take positive integer m so that (αi,j/αi,l)

m = 1 for every 1 ≤ i ≤ s and
1 ≤ j, l ≤ ki. The progression A is a finite union of arithmetic progressions of the form
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A′ = {amx + b′ : x ∈ Z}. Take some such progression A′. When n = amx + b′ ∈ A′, we
have αnij = αb

′
ijα

amx
i1 , hence

fi(n) = Qi(x)α
amx
i1 ,

for 1 ≤ i ≤ s with Qi(x) =
∑ki

j=1 α
b′
ijPij(amx+ b′). Thus

Q1(x)α
amx
11 + · · ·+Qs(x)α

amx
s1 = 0 (1.9)

for all x ∈ Z. Since αi1/αi′1 is not a root of unity for i 6= i′, clearly αamxi1 /αamxi′1 is not a root
of unity for i 6= i′. But then {xlαamxi1 }x∈Z, for 1 ≤ i ≤ s and l ≥ 0, are linearly independent
recurrence sequences. Thus (1.9) can vanish for every x ∈ Z only if Q1 = · · · = Qs = 0. So
for every n ∈ A′ we have

f1(n) = · · · = fs(n) = 0. (1.10)

This will hold for any one of these progressions A′ above, hence (1.10) holds for every n ∈ A.
Let Z = {n ∈ Z : un = 0}. If there is some αi0 satisfying the conditions of the corollary

then fi0(n) = Pi0(n)αni0 and can have at most ti zeros. Hence, by (1.10), Z cannot contain
any arithmetic progressions. Theorem 1.2 then implies that |Z| is finite.

We call a recurrence sequence with companion polynomial (1.4) non-degenerate if i 6= j
implies αi/αj is not a root of unity. By Corollary 1.3 we see that non-degenerate sequences
have finite zero-multiplicity. Moreover Corollary 1.3 also implies that if {un}n∈Z is a nonde-
generate recurrence and ω ∈ C then the ω-multiplicity is finite. If k = 1 the result is clear
so we may assume k ≥ 1. Say {un}n∈Z is given by (1.5). The ω-multiplicity of {un}n∈Z is
the zero multiplicity of the recurrence given by

P1(n)αn1 + · · ·+ Pk(n)αnk − ω1n. (1.11)

Since {un}n∈Z is non-degenerate there exists 1 ≤ i0 ≤ k such that αi0 is not a root of unity.
Then, setting αk+1 = 1, we have that αi0/αj is not a root of unity for any 1 ≤ j ≤ k+1 with
i 6= j. Thus the 0-multiplicity of (1.11) and hence the ω-multiplicity of {un}n∈Z is finite.

1.2 Valuations and height functions

Let K be a field and say | |1 and | |2 are absolute values on K. We say that | |1 and | |2
are equivalent if they generate the same topology on K. It can be shown that two absolute
values are equivalent if and only if there exists λ ∈ R with λ > 0 such that for all x ∈ K

|x|λ1 = |x|2 . (1.12)
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Note however that if | | is an absolute value and λ ∈ R, λ > 0, then | |λ need not be an
absolute value on K as it may violate the triangle inequality. For example if | | is the usual
absolute value on C and λ = 2 then we may not have |x+ y|2 ≤ |x|2 + |y|2. If | | is a
multiplicative function from K to the non-negative reals such that |x| = 0 implies x = 0 we
call it a valuation if it is equivalent to some absolute value on K via the relation (1.12). We
denote by MK the set of equivalence classes of valuations on K, which are called places.

Say K is a number field and OK is the integral closure of Z in K. Let a be an ideal in
OK . Then there are unique prime ideals p1, . . . , pn and positive integers e1, . . . , en such that

a = pe11 · · · pen
n . (1.13)

For any 1 ≤ i ≤ n we say that pi divides a and write pi|a. In particular if L is a subfield of
K with ring of integers OL and a is a prime ideal of OL then a has a decomposition (1.13)
in terms of primes ideals of OK . In this case ei is called the ramification index of pi over a

and we say that pi ramifies to order ei over a, 1 ≤ i ≤ n. If for each 1 ≤ i ≤ n we set

fi = [OK/pi : OL/a],

then we have

[K : L] =
n∑
i=1

eifi.

The number fi is called the residue degree of pi over a. Moreover if K/L is Galois with Galois
group G then G acts transitively on the set {p1, . . . , pn} and we have that e1 = · · · = en and
f1 = · · · = fn. In particular, letting these common values be denoted by e and f respectively,
we have

ef |[K : L].

For nonzero x ∈ OK and p a prime ideal in OK , we define ordp(x) to be the unique
nonnegative integer n such that

x ∈ pn, x 6∈ pn+1.

We then extend this to all of K× by

ordp

(
x

y

)
= ordp(x)− ordp(y)

for any non-zero x, y ∈ OK . For any 0 < c < 1 we define an absolute value on K by

|x|p =

{
cordp(x) if x 6= 0
0 if x = 0

. (1.14)
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Note that different choices of 0 < c < 1 will generate equivalent absolute values by (1.12).
However if p 6= p′ then | |p is not equivalent to | |p′ .

Let | | denote the usual absolute value on C. If K is a number field and σ : K ↪→ C is
an embedding of K into C then we define an absolute value on K by

|x|σ = |σ(x)| (1.15)

for all x ∈ K. Note that conjugate embeddings will yield equivalent absolute values since
|x| = |x|. However if σ1 and σ2 are distinct embeddings and are not conjugate then | |σ1

will
not be equivalent to | |σ2

. It can be shown that every valuation on K is equivalent to one of
the form (1.14) or (1.15).

For v ∈MK we say that v is finite if it is the set of valuations equivalent to (1.14) for some
prime ideal p of OK and we say that p lies above v, where p is the rational prime such that
p|(p). Moreover if the ramification index of p over (p) is e we say that v has ramification
index e. If v is not finite then we say that v is infinite. If v ∈ MK is an infinite place
that contains a valuation arising from a real embedding it is called real and if it contains a
valuation arising from a pair of conjugate complex embeddings it is called complex.

Let v ∈ MK be a finite place such that | |p ∈ v for a prime ideal p in OK and p the
rational prime above v. We define the valuation | |v by (1.14) where the constant c is chosen
such that

|p|v = p−dp/d,

where d = [K : Q] and dp = [Kp : Qp], and where Kp and Qp are the completions of K and
Q, respectively, with respect to the topology generated by | |p. It can be shown that dv = ef ,
where e and f are the ramification index and the residue degree of p over (p), respectively.
Note that Kp and Qp do not depend on the choice of constant 0 < c < 1 in (1.14) since
equivalent absolute values will generate equivalent topologies. If v ∈MK is an infinite place
containing the valuation | |σ as in (1.15), for an embedding σ of K in C, then we define the
valuation | |v by

|x|v =

{
|x|1/dσ if v is real

|x|2/dσ if v is complex

for x ∈ K, where d = [K : Q]. With these choices for valuations we have the product formula∏
v∈MK

|x|v = 1,

for any x ∈ K×.
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It must be noted however that these normalisations may not yield absolute values, they
are merely valuations. However if we define r(v) by

r(v) =


1 if v is finite
21/d if v is real
22/d if v is complex

.

Then we have
|x+ y|v ≤ r(v) max{|x|v , |y|v},

for all x, y ∈ K. Note also that
∏

v∈MK
r(v) = 2. Let α be a non-zero algebraic number and

K any field that contains α. It can be shown that the number

H(α) =
∏
v∈MK

max{1, |α|v} (1.16)

is independent of the choice of K containing α. We call H(α) the absolute height of α. The
absolute height satisfies the following useful identities

H(αβ) ≤ H(α)H(β),

H(α+ β) ≤ 2H(α)H(β),

H(1/α) = H(α),

H(αn) = H(α)n for any integer n ≥ 0,

H(α) = 1 ⇔ α is a root of unity.

The absolute logarithmic height, denoted by h(α), is given by

h(α) = logH(α) =
∑
v∈MK

max{0, log |α|v}.

The absolute height and the absolute logarithmic height will be vital in the proofs of many
of the theorems in this report. With the exception of §2.2 anytime we refer to height we
will mean either the absolute height or the absolute logarithmic height, depending on the
context.

1.3 Main results

For a linear recurrence sequence {un}n∈Z ⊆ C and ω ∈ C we let u(ω) denote the ω-
multiplicity of the recurrence. The purpose of this report is to exhibit some important
results on such multiplicities of linear recurrence sequences.
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In Chapter 2 we will investigate linear recurrences of order two, which are called binary
recurrence sequences. We first show a result due to Beukers, that for any non-degenerate
rational binary recurrence with integral recurrence relation and ω ∈ Q we have u(ω) +
u(−ω) ≤ 3 with finitely many exceptions that are explicitly given. In the second part of
Chapter 2 we will establish criteria, due to Brindza, Pinter and Schmidt, for recurrences of
algebraic integers so that u(ω) = 1 for non-zero ω.

In Chapter 3 we will investigate ternary recurrences, i.e. recurrences of order three. The
main result of this chapter is due to Beukers, building on work of Beukers and Tidjeman.
It shows that a non-degenerate rational ternary recurrence has zero-multiplicity at most six,
which is best possible.

Chapter 4 does not directly concern linear recurrence sequences. Chapter 4 contains
arguments due to Schmidt on the denominators of rational numbers, which is necessary for
the result in Chapter 5.

Chapter 5 will prove the following result due to Schmidt: for any linear recurrence
sequence, {un}n∈Z, of order t, if Z is the set of subscripts such that un = 0 for any n ∈ Z,
then Z is the union of at most c(t) numbers and arithmetic progressions, where c(t) is a
function depending on t alone. The importance of this result lies in the dependence of the
bound on t alone. No previous result had been able to avoid dependence on the degree of
the number field in which the sequence belongs or the height of the numbers involved.

9



Chapter 2

Binary Recurrence Sequences

2.1 Rational binary recurrence sequences

In this section we will be investigating non-degenerate rational linear recurrences of order
two. Let {un}n∈Z be a non-degenerate linear recurrence satisfying

un = c1un−1 + c2un−2, (2.1)

for all n ∈ Z, with c1, c2 ∈ Z. For ω ∈ Q, let u(ω) denote the number of n ∈ Z such that
un = ω. By the results of §1.1 we know that for any ω ∈ Q, u(ω) is finite. For ω ∈ Q, if
u(ω) > 0 then let n0 = min{n ∈ Z : un = ±ω}. The sequence given by u′n = un−n0 satisfies

u′n = ω ⇒ n ≥ 0.

Hence we may consider sequences indexed by non-negative integers opposed to all of Z.
Moreover we may assume that u0 = ±ω so in order to bound u(ω) + u(−ω) it suffices to
bound the size of the set {n ≥ 0 : un = ±u0}. If s ∈ Z is the least common denominator of u0

and u1, then {sun}n≥0 ⊆ Z and the ω-multiplicity of {un}n≥0 is equal to the sω-multiplicity
of {sun}n≥0. Thus we may further assume that our recurrence is integral. Also note that
gcd(u0, u1)|un for all n ≥ 0 so we may assume gcd(u0, u1) = 1 and that u0 ≥ 0 by multiplying
the entire sequence by −1 if necessary. Lastly we may assume c1 ≥ 0 since the sequence
given by u′n = (−1)nun, for each n ≥ 0, satisfies the recurrence u′n = (−c1)un−1 + c2un−2 for
each n ≥ 2 and {n ≥ 0 : un = ±u0} = {n ≥ 0 : u′n = ±u′0}.

In the late 1930s, Ward conjectured that u(ω) ≤ 5 for all ω ∈ Q. This conjecture
was proved by Kubota [10]. Later in [11] he improved the result by showing that in fact
u(ω) ≤ 4. In [2], Beukers showed that if the companion polynomial is irreducible over Q
then u(ω) + u(−ω) ≤ 3 except in finitely many cases which he gave explicitly. Moreover
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this bound is achieved infinitely often. If c1 = 1, c2 is arbitrary, u0 = 1 and u1 = −1
then u3 = −1. In this section we show that this result holds for all nondegenerate binary
recurrence sequences with integral recurrence relation. It can be shown, see for instance
[20] pg. 36-37, that this includes all recurrence sequences {un}n∈Z with {un}n∈Z ⊂ Z. We
essentially reproduce the argument in [2] but add a few extra details in order to deal with
the case when the companion polynomial has rational roots. This result is divided into two
theorems, Theorem 2.1 treats the case c21 + 4c2 < 0 and Theorem 2.2 the case c21 + 4c2 ≥ 0.

We begin with a simple Lemma, akin to Theorem 1.1.

Lemma 2.1. Let {un}n≥0 ⊆ Z be a nondegenerate linear recurrence sequence satisfying
recurrence relation (2.1) with c1, c2 ∈ Z. Say α1 and α2 are the roots of z2− c1z− c2 and set
λ1 = u1 − u0α2, λ2 = u1 − u0α1. Then, for all n ≥ 0,

un =
λ1α

n
1 − λ2α

n
2

α1 − α2

.

Proof. This is an easy exercise in induction.

We wish to bound the size of the set {n ≥ 0 : un = ±u0}, which by Lemma 2.1 is given
by {

n ≥ 0 :
λ1α

n
1 − λ2α

n
2

α1 − α2

= ±λ1 − λ2

α1 − α2

}
.

Thus it suffices to bound the size of the set

{n ≥ 0 : λ1α
n
1 − λ2α

n
2 = ±(λ1 − λ2)} (2.2)

Also, we may assume that the algebraic integers λ1 and λ2 do not have any common rational
integer factors in the ring of integers of Q(α1, α2). If u0 = 0 then λ1 = λ2 and (2.2) reduces
to

αn1 − αn2 = 0,

which has no solutions n 6= 0 since α1/α2 is not a root of unity. Hence we will assume
throughout that u0 6= 0.

In the following Lemmas we will assume that the companion polynomial to our recurrence
has negative discriminant, i.e. that c21 + 4c2 < 0. This implies that α1 and λ1 are algebraic
integers in an imaginary quadratic field and that α2 = α1 and λ2 = λ1. In this case we write
α and λ instead of α1 and λ1.

Lemma 2.2. Let λ and α be algebraic integers in an imaginary quadratic number field K
with ring of integers OK. Suppose λ and λ have no common rational integer factor in OK.
If λαn − λαn = δ(λ− λ), for some δ ∈ {−1, 1} and positive rational integer n, then there is
a rational integer a such that αn = δ + aλ.

11



Proof. Since λ(αn − δ) = λ(αn − δ) we see that λ(αn − δ), which we will denote by d, is a
rational integer. Now dλ = λλ(αn − δ), so if λλ - d we must have a prime factor p of λλ
which divides λ in OK . But then we must have p|λ, which is a contradiction as λ and λ
have no rational integer factors in common. Thus λλ|d and there exists a ∈ Z such that
αn − δ = aλ.

By replacing (2.2) by its complex conjugate, if necessary, and replacing α with −α and λ
with −λ, we may assume that 0 ≤ argα ≤ π/2 and 0 ≤ arg λ ≤ π. Since α is the root of an
irreducible polynomial and α/α is not a root of unity we have 0 < argα < π/2. Moreover
we can assume 0 < arg λ < π since u0 6= 0.

Lemma 2.3. Let K be an imaginary quadratic field with ring of integers OK. Let γ, η ∈ OK

and let t ∈ Z, t 6= 0. Consider the equation

γ(1 + tη)n − γ(1 + tη)n = γ − γ (2.3)

in the positive integer n.

1. Suppose that γη− γη 6= 0 and let β ∈ OK, β 6= 0, divide γηl − γηl for all l > 0. There
are no solutions n > 0 if one of the following conditions is satisfied:

(a) t ≡ 0 (mod 2) and t
2

- γη−γη
β

,

(b) t 6≡ 0 (mod 2) and t - γη−γη
β

.

2. Suppose that γη − γη = 0 and γη 6= 0. Let β ∈ OK, β 6= 0, divide η − η. Then n = 1
is the only solution in if any of the following conditions are satisfied:

(a) t ≡ 0 (mod 3) and t
3

- η−η
β
,

(b) t ≡ 0 (mod 3), t - η−η
β

and η2−η2

β
≡ 0 (mod 3),

(c) t 6≡ 0 (mod 3) and t - η−η
β
.

Proof. Assume that equation (2.3) has a solution n > 0. It can be rewritten as

γ − γ +
n∑
j=1

(
n

j

)
tj(γηj − γηj) = γ − γ,

which yields
n∑
j=1

(
n

j

)
tj(γηj − γηj) = 0. (2.4)

12



In both part 1 and part 2 of the Lemma we have β 6= 0 hence we can multiply (2.4) by β−1.
Similarly, since n > 0 and t 6= 0 we can multiply (2.4) by n−1 and t−1. Then, noting that(
n
j

)
= n

j

(
n−1
j−1

)
, we obtain

n∑
j=1

tj−1

j

(
n− 1

j − 1

)
γηj − γηj

β
= 0. (2.5)

Assume we are in the situation of part 1 of the Lemma, in particular that γη − γη 6= 0.
Suppose t ≡ 0 (mod 2) and t/2 - (γη − γη)/β. If j = 2 then tj−1/j ≡ 0 (mod t/2)
and if j ≥ 3 then tj−1/j ≡ 0 (mod t). Thus t/2 must divide the first term of (2.5), i.e.
(t/2)|(γη − γη)/β, a contradiction. Suppose t 6≡ 0 (mod 2) and t - (γη − γη)/β. Then we
have tj−1/j ≡ 0 (mod t) for all j ≥ 2 thus t|(γη − γη)/β, which is a contradiction. So, in
either case there is no solution in the positive integers.

Now assume we are in the situation of part 2 and that n ≥ 2. Then equation (2.5)
reduces to

n∑
j=2

tj−1

j

(
n− 1

j − 1

)
γη
ηj−1 − ηj−1

β
= 0.

Then applying
(
n−1
j−1

)
= n−1

j−1

(
n−2
j−2

)
and multiplying by 2

t(n−1)
, since t 6= 0 and n ≥ 2, we have

n∑
j=2

2tj−2

j(j − 1)

(
n− 2

j − 2

)
ηj−1 − ηj−1

β
= 0. (2.6)

Suppose t ≡ 0 (mod 3). If j = 3 we have 2tj−2/j(j− 1) ≡ 0 (mod t/3) and 2tj−2/j(j− 1) ≡
0 (mod t) if j ≥ 4. Thus t/3 divides the first term of (2.6), hence there are no solutions
n ≥ 2 if t/3 - (η − η)/β. If (η − η)/β ≡ 0 (mod 3) then t divides the j = 3 term and so it
must also divide the first term as well. So if t - (η − η)/β then there is no solution n ≥ 2.
Now suppose that t 6≡ 0 (mod 3) and t - (η−η)/β. Then we have 2tj−2/j(j−1) ≡ 0 (mod t)
for all t ≥ 3, thus t divides the first term of (2.6), which is a contradiction.

Lemma 2.4. Let λ and α be algebraic integers in an imaginary quadratic field K with ring
of integers OK such that 0 < arg λ < π, 0 < argα < π/2 and α/α is not a root of unity.
Assume there exist positive integers k and l with k ≤ l such that αk = δ+aλ and αl = δ′+a′λ,
for some a, a′ ∈ Z with |a| > 1 and δ, δ′ ∈ {−1, 1}. Write l = qk + r with 0 ≤ r < l. Then
λαr − λαr = δ′δq(λ− λ).

Proof. If l = k then we have r = 0, a = a′, δ = δ′ and so the result is trivial. Assume that
l > k. Observe that

δ′(λ− λ) = λαl − λαl = λαr(δ + aλ)q − λαr(δ + aλ)q.

13



Hence

δqδ′(λ− λ) = λαr − λαr + aλλ

(
αr

(1 + δaλ)q − 1

aλ
− αr

(1 + δaλ)q − 1

aλ

)
. (2.7)

If k = 1 then r = 0 then the term between the brackets in (2.7) is divisible by a(λ − λ).
Hence a2λλ(λ−λ) divides (λ−λ)− δqδ′(λ−λ). Since |a| > 1 this is only possible if δqδ′ = 1
and our Lemma is established in this case.

Now assume k ≥ 2. Let d be a positive square-free integer such that K = Q(
√
−d). If

d ≡ −1 (mod 4) then the term between the brackets in (2.7) is divisible by
√
−d in OK and

we set C(d) =
√
d, otherwise this term is divisible by 2

√
−d and we set C(d) = 2

√
d. Then

(2.7) implies
iC(d)aλλ|(λαr − λαr − δqδ′(λ− λ)).

Suppose that λαr − λαr 6= δqδ′(λ− λ). Then

C(d)
∣∣aλλ∣∣ ≤ ∣∣λαr − λαr − δqδ′(λ− λ)

∣∣ .
Using αk = δ + aλ and the triangle inequality, we have

|λ|C(d)(|α|k − 1) ≤ C(d) |λ|
∣∣αk − δ

∣∣ < C(d)
∣∣aλλ∣∣ ≤ 2 |λ| (|α|r + 1),

hence

1 <
2

|α|C(d)
+

1 + 2/C(d)

|α|k
. (2.8)

Since α is an algebraic integer in Q(
√
−d) and 0 < argα < π/2 we have |α| ≥

√
1 + d. Now

if d 6≡ −1 (mod 4) and d ≥ 2 then

2

|α|C(d)
+

1 + 2/C(d)

|α|k
≤ 1
√

1 + d
√
d

+
1 + 1/

√
d

1 + d
≤ 1√

6
+

1 + 1/
√

2

3
< 1.

If d ≡ −1 (mod 4) and d ≥ 11, then

2

|α|C(d)
+

1 + 2/C(d)

|α|k
≤ 4
√

1 + d
√
d

+
4 + 8/

√
d

1 + d
≤ 2√

33
+

4 + 8/
√

11

12
< 1.

We see that any solution of (2.8) must have d = 1, 3, 7. After some calculations it can be
shown that these solutions are given by α = (1 +

√
−7)/2, 1 + i, 1 +

√
−3, (3 +

√
−3)/2, (1 +√

−3)/2. Every solution except the first has α/α a root of unity and can be ignored. Say
α = (1 +

√
−7)/2. Then (2.8) implies that k ≤ 3. Then the condition αk = δ + aλ, with

a ∈ Z and |a| > 1, implies that ((1 +
√
−7)/2)k − δ is divisible by a rational integer of

absolute value at least 2, which is impossible if k ≤ 3. Thus λαr − λαr = δ′δq(λ− λ).
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Lemma 2.5. Let α be an algebraic integer in an imaginary quadratic field with 0 < argα <
π/2 and α/α not a root of unity. Let k,m be positive integers with k < l.

(a) If αl ± αk = ±2 for some choice of the ± signs then (k, l, α) = (1, 3, (1 +
√
−7)/2) or

(1, 2, (1 +
√
−7)/2).

(b) If αl ± 2αk = ±3 for some choice of the ± signs then (k, l, α) = (1, 3, (1 +
√
−11)/2)

or (1, 2, 1 +
√
−2).

(c) If αl ± 3αk ∈ {±2,±4} for some choice of the ± signs then (k, l, α) = (2, 4, (1 +√
−7)/2), (1, 4, (1 +

√
−7)/2), (1, 2, (3 +

√
−7)/2) or (1, 3, (1 +

√
−15)/2)

Proof. (a) If α satisfies αl±αk = ±2 then αk|2 and k ≤ 2. Moreover |α|l ≤ |α|k+2 ≤ |α|2+2,
hence l ≤ 4. If k = 2 and l = 4 then we have a quadratic equation in α2. Solving, yields
α = ±i,±

√
−2 which can be ignored, since these solutions yield α/α a root of unity. If k = 2

and l = 3 we can consider α3 ± α2 − 2 = 0 by replacing α with −α. If this equation has a
solution in quadratic integers then it must also have a solution in Z. This happens in the
case α3 + α2 − 2 = 0 and we get α = 1,−1± i, which can all be ignored. We treat the case
k = 1 and l = 3 similarly and obtain α = (±1 ±

√
−7)/2. If l = 4 and k = 1 then we get

|α|4 ≤ |α| + 2, contradicting |α| ≥
√

2. If l = 2 and k = 1 then we get α = (±1±
√
−7)/2.

In either case the condition 0 < argα < π yields α = (1 +
√
−7)/2.

(b) If α is such that αl±2αk = ±3, then αk|3 and k ≤ 2. Also, |α|l ≤ 2 |α|k+3 ≤ 2 |α|2+3,
and so we must have l ≤ 4 since |α|2 ≥ 3. Solving the equation αl ± 2αk = ±3 in a similar
way as in (a) we obtain the solutions as stated above.

(c) If α satisfies αl ± 3αk ∈ {±2,±4} then αk|4 and k ≤ 4. If α|4, 0 < argα < π/2 and
α/α is not a root of unity then α ∈ {(1+

√
−7)/2, (3+

√
−7)/2, 1+

√
−7, (1+

√
−15)/2}. With

these choices αk|4 implies that k ≤ 2. If k = 2 then α2|4 and we must have α = (1+
√
−7)/2.

Then αl − 2 ± 3 ∈ {±4/α2,±2/α2} and we get l = 4. Now assume k = 1. We consider
αl−1±3 ∈ {±4/α,±2/α} for α = (1+

√
−7)/2, (3+

√
−7)/2, 1+

√
−7, (1+

√
−15)/2 and we

get the solutions (k, l, α) = (1, 4, (1+
√
−7)/2), (1, 2, (3+

√
−7)/2 or (1, 3, (1+

√
−15)/2).

Lemma 2.6. Let α be a complex quadratic integer such that α/α is not a root of unit and
0 < argα < π/2. Suppose there exists positive rational integers l, k, with l > k, and a
quadratic integer λ such that αk = δ + aλ and αl = δ′ + a′λ for some δ, δ′ ∈ {−1, 1} and
a, a′ ∈ Z. Then |a| ≤ |a′|.
Proof. Suppose |a| > |a′|. Since

∣∣αk − δ
∣∣ =

∣∣aλ∣∣ and
∣∣αl − δ′

∣∣ =
∣∣a′λ∣∣, we get (|a′|−|a|)

∣∣λ∣∣ =∣∣αl − δ
∣∣ − ∣∣αk − δ′

∣∣ ≥ |α|l − |α|k − 2. Hence |α|l − |α|k − 2 ≤ |a′| − |a| ≤ −1, which yields

|α|k (|α|l−k − 1) ≤ 1. Since |α| ≥
√

2 we get l = k + 1. Moreover we must have |α| =
√

2
and k = 2, hence α = (1 +

√
−7)/2. Now (1 +

√
−7)/2 = δ + aλ for δ ∈ {−1, 1} and a ∈ Z

yields a = ±1. Then |a′| < |a| gives a′ = 0 contradicting ((1 +
√
−7)/2)2 = δ′ + a′λ.
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Lemma 2.7. Let α and λ be integers in an imaginary quadratic field K, with 0 < argα <
π/2, 0 < arg λ < π and α/α not a root of unity. Suppose αk = δ + aλ for some positive
integer k, δ ∈ {−1, 1} and a ∈ Z with |a| > 3. Then λαn−λαn = ±(λ−λ) has no solutions
n > k.

Proof. Suppose
λαn − λαn = δ′(λ− λ) (2.9)

for some δ′ ∈ {−1, 1} and n ≥ k. Say n = qk + r for q, r ∈ Z with q > 0 and 0 ≤ r < k. By
Lemma 2.4 we get λαr − λαr = δ′δq(λ− λ) and then (2.9) can be written as

λαr(δ + aλ)q − λαr(δ + aλ)q = δq(λαr − λαr)

hence

λαr(1 + δaλ)q − λαr(1 + δaλ)q = λαr − λαr.

If αr − αr = 0 then we must have r = 0 since α/α is not a root of unity. We can then apply
part 2 of Lemma 2.3 with γ = λ, η = λ, β = λ− λ and t = δa. Then (η− η)/β = −1. Since
|a| > 3 the conditions of part 2 in Lemma 2.3 are fulfilled, yielding q = 1.

Suppose αr−αr 6= 0. Since λαr−λαr = δ′δq(λ−λ), Lemma 2.2 implies that αr = δ′′+a′λ
for some a′ ∈ Z and δ′′ ∈ {−1, 1}. Now we apply part 1 of Lemma 2.3 with γ = λαr, η = λ,
β = λλ(λαr − λαr) and t = δa. Now

γη − γη

β
=

λλ(αr − αr)

λλ(λαr − λαr)
=
a′(λ− λ)

δ′′(λ− λ)
= −δ′′a′.

This implies that β|(γηl − γηl) for all l ≥ 1. Now part 1 of Lemma 2.3 implies that either
q = 0, which contradicts our assumption that q > 0, or that a|a′ if a ≡ 1 (mod 2) and
(a/2)|a′ if a ≡ 0 (mod 2). By Lemma 2.6 we have |a′| ≤ |a| thus |a| = |a′| or |a| = 2 |a′|.
Suppose |a| = |a′|. Then, since αk = δ ± a′λ and αr = δ′′ + a′λ, we have αk ± αr = ±2 or
0. Since α/α is not a root of unity we must have αk ± αr = ±2, thus αr|2 and |α| ≤

√
2.

This contradicts αr = δ′′ + a′λ because |a′| = |a| > 3. If |a| = 2 |a′|, then αk = δ ± 2a′λ
and αr = δ′′ + a′λ. So αk ± 2αr = ±1,±3. Since α is not a root of unity we must have
αk ± 2αr = ±3. By Lemma 2.5 we get (r, k, α) = (1, 3, (1 +

√
−11)/2) or (1, 2, 1 +

√
−2).

Since αr = δ′′ + a′λ, with |a′| ≥ 2 it follows that one of the numbers ±1 + (1 +
√
−11)/2 as

well as one of the numbers ±1 + 1 +
√
−2 is divisible in OK by a rational integer of absolute

value greater than 1, which is a contradiction. Thus there are no solutions n with n > k.

Lemma 2.8. For each of the given α, λ, we determine all solutions to the equation λαn −
λαn = ±(λ− λ) in n ≥ 0.
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1. (α, λ) = ((1 +
√
−7)/2, (1 +

√
−7)/2) then n = 0, 1, 2, 4, 12

2. (α, λ) = (1 +
√
−2,

√
−2) then n = 0, 1, 2, 5

3. (α, λ) = ((1 +
√
−11)/2, (1 +

√
−11)/2) then n = 0, 1, 4

4. (α, λ) = ((1 +
√
−11)/2, (−3 +

√
−11)/2) then n = 0, 1, 3

5. (α, λ) = ((1 +
√
−15)/2, (−3 +

√
−15)/2) then n = 0, 1, 3

6. (α, λ) = ((1 +
√
−19)/2, (1 +

√
−19)/2) then n = 0, 1, 6.

Proof. Part 1, 2, 3 and 6 can be established by Lemma 2.7 since

((1 +
√
−7)/2)12 = −1− 45(1−

√
−7)/2,

(1 +
√
−2)5 = 1− 11

√
−2,

((1 +
√
−11)/2)4 = 1 + 5(1−

√
−11)/2,

((1 +
√
−19/2)6 = 1− 56(1−

√
−19)/2.

Thus in these cases all solutions satisfy n ≤ 12, n ≤ 5, n ≤ 4 and n ≤ 6 respectively. This
small set of possibilities in each may be checked by considering the corresponding recurrence
sequences, yielding the set of solutions stated above.

In part 4 we notice that α4 = 1 + 5α. Write n = 4q + r, with 0 ≤ r < 4. We are then
looking for solutions to

λαr(1 + 5α)q − λαr(1 + 5α)q = ±(λ− λ).

If 1 ≤ r ≤ 3 then, since αα = 3, the above yields λαr − λαr ≡ ±(λ − λ) (mod 15). Now∣∣λαr − λαr
∣∣ < 15 since r ≤ 3, so we have λαr − λαr = ±(λ − λ). Note that this holds

trivially if r = 0. Thus

λαr(1 + 5α)q − λαr(1 + 5α)q = λαr − λαr.

Now we can apply part 1 of Lemma 2.3 with γ = λαr, η = α, β =
√
−11 and t = 5, which

yields q = 0. So any solution must satisfy n ≤ 3 and we can check that the solutions are
n = 0, 1, 3.

In part 5 we notice that α3 = −1 + 3λ. Write n = 3q + r with 0 ≤ r ≤ 2 and
suppose that λαn − λαn = δ(λ − λ) for some δ ∈ {−1, 1}. If n ≥ 3 then, by Lemma 2.4,
λαr − λαr = (−1)qδ(λ− λ), yielding

λαr(1− 3λ)q − λαr(1− 3λ)q = λαr − λαr.
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If r = 0 we can apply part 2(b) of Lemma 2.3 with γ = λαr = λ, η = λ, β = λ− λ, t = −3
and we get q ≤ 1. If r 6= 0 then we apply part 1 of Lemma 2.3 with γ = λαr, η = λ,
β = 6

√
−15 and t = −3, and we see that there are no solutions with q ≥ 1. Thus we must

have n ≤ 3 and we can check that the solutions are n = 0, 1, 3.

Theorem 2.1. Suppose that {un}n≥0 is a nondegenerate binary recurrence sequence of ratio-
nal integers with companion polynomial z2 − c1z − c2 ∈ Z[x] such that u0 > 0, gcd(u0, u1) =
1, c1 ≥ 0 and c21 + 4c2 < 0. If un = ±u0 has more than three solutions then one of the
following holds:

c1 = 1, c2 = −2, u0 = u1 = 1 which has solutions n = 0, 1, 2, 4, 12
c1 = 1, c2 = −2, u0 = 1, u1 = −1 which has solutions n = 0, 1, 3, 11
c1 = 3, c2 = −4, u0 = u1 = 1 which has solutions n = 0, 1, 2, 6
c1 = 2, c2 = −3, u0 = u1 = 1 which has solutions n = 0, 1, 2, 5.

Proof. By Lemma 2.1 the sequence is given by

un =
λαn − λαn

α− α
,

for each n ≥ 0, where α is a root of z2 − c1z − c2 and λ = u1 − u0α. We let α be the root
with positive imaginary part. Since α + α = c1 ≥ 0 and α/α is not a root of unity we see
that 0 < argα < π/2. Since u0 > 0, λ /∈ R so 0 < arg λ < π. The equation un = ±u0 can be
rewritten as

λαn − λαn = ±(λ− λ). (2.10)

We may assume that λ and λ have no common integer factor in OQ(α).
Suppose that (2.10) has at least four solution, denoted by n = 0, k, l,m with 0 < k < l <

m. By Lemma 2.2 there are rational integers a, a′ such that αk = δ+aλ and αl = δ′+a′λ for
δ, δ′ ∈ {−1, 1}. Since there is a larger solution m we have, by Lemma 2.6 and Lemma 2.7,
that |a| ≤ |a′| ≤ 3.

Assume |a| = |a′|. Then αl ± αk ∈ {−2, 0, 2}. Since α is not a root of unit we have
αl ± αk = ±2. By Lemma 2.5 we must have (k, l, α) = (1, 2, (1 +

√
−7)/2) or (1, 3, (1 +√

−7)/2). Then αk = ±1 + aλ and αl = ±1± aλ for λ a quadratic integer in Q(
√
−7) with

0 < arg λ < π yields λ = (1 +
√
−7)/2 if l = 2 and λ = (−3 +

√
−7)/2 if l = 3.

Assume |a′| = 3 and |a| = 2. Then 2αl ± 3αk ∈ {−5,−1, 1, 5} and since α is not a root
of unity we must have 2αl ± 3αk = ±5. Thus αk|5, so |α|k =

√
5 or 5 and k ≤ 2. Also

|α|l ≤ 3/2 |α|k + 5/2 ≤ 10 which gives l ≤ 2. Solving 2α2 ± 3α = ±5 yields no relevant
solutions.
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Assume |a′| = 3 and |a| = 1. Then αl ± 3αk ∈ {−4,−2, 2, 4}. By Lemma 2.5 we
have (k, l, α) = (1, 4, (1 +

√
−7)/2), (2, 4, (1 +

√
−7)/2), (1, 2, (3 +

√
−7)/2) or (1, 3, (1 +√

−15)/2). The equations αk = ±1+aλ and αl = ±1+a′λ then yield λ = (1+
√
−7)/2, (1+√

−7)/2, (−1 +
√
−7)/2 or (−3 +

√
−15)/2 respectively.

Assume |a′| = 2 and |a| = 1. Then αl ± αk ∈ {−3,−1, 1, 3} and since α is not a
root of unity we have αl ± αk = ±3. Lemma 2.5 then gives (k, l, α) = (1, 2, 1 +

√
−2) or

(1, 3, (1 +
√
−11)/2). Then αk = ±1 + aλ and αl = ±1 + a′λ imply that λ =

√
−2 or

(−3 +
√
−11)/2 respectively.

Thus if equation (2.10) has at least four solutions then (λ, α) is given by one of the
following:

((1 +
√
−7)/2, (1 +

√
−7)/2),

((−1 +
√
−7)/2, (3 +

√
−7)/2),

((−3 +
√
−7)/2, (1 +

√
−7)/2),

((−3 +
√
−11)/2, (1 +

√
−11)/2),

((−3 +
√
−15)/2, (1 +

√
−15)/2),

(
√
−2, 1 +

√
−2).

In the first case it follows from Lemma 2.8 that (2.10) has the solutions n = 0, 1, 2, 4, 12. In
the second case, since (3−

√
−7)/2 = −((1 +

√
−7)/2)2 we have the equation

−1 +
√
−7

2

(
1−

√
−7

2

)2n

− −1−
√
−7

2

(
1 +

√
−7

2

)2n

= ±
√
−7,

which has the solutions n = 0, 1, 2, 6, corresponding to the even solutions in our first case.
In the third case we notice that (3−

√
−7)/2 = ((1+

√
−7)/2)2 and so we have the equation

−1 +
√
−7

2

(
1 +

√
−7

2

)n+1

+
1−

√
−7

2

(
1−

√
−7

2

)n+1

= ±
√
−7,

which has the solutions n = 0, 1, 3, 11, corresponding to the last four solutions in the first
case. In the fourth, fifth and sixth cases the solutions are given by Lemma 2.8 and only in the
last case do we have more than three, namely n = 0, 1, 2, 5. For these pairs (λ, α) for which
(2.10) has more than three solutions we get the recurrences as stated in the Theorem.

Theorem 2.2. Let {un}n≥0 be are non-degenerate recurrence sequence of rational integers
with companion polynomial z2 − c1z − c2 ∈ Z[z] such that u0 > 0, gcd(u0, u1) = 1, c1 ≥ 0
and c21 + 4c2 ≥ 0. The equation un = ±u0 has at most three solutions in n, unless c1 = 1,
c2 = 1, u0 = 1 and u1 = −1, in which case the solutions are n = 0, 1, 3, 4.
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Proof. As in the proof of Theorem 2.1 we consider the equation (2.10), where, in this case,
λ1 and α1 are integers in a real number field K of degree at most two over Q. Let d be
the positive squarefree integer such that K = Q(

√
d), we take d = 1 if c21 + 4c2 = 0. Since

c1 ≥ 0 we may assume α1 ≥ |α2|. Moreover α1/α2 6= ±1 implies c1 = α1 + α2 ≥ 1 and since
(α1 − α2)/

√
d ∈ Z, we have α1 − α2 ≥ 1. We conclude α1 ≥ |α2| + 1. First assume that

α2 = 1. Then (2.2) becomes

αn1 ∈
{

1, 1− 2
λ1

λ2

}
, (2.11)

which has at most one solution since α2 = 1 implies α1 is not a root of unity. If α2 = −1
then by considering even and odd solutions separately we get two equations similar to (2.11)
each can have at most one solution. Thus we can assume that α2 6= ±1. Note that this also
implies α1 6= ±1 since α1 ≥ |α2|+ 1.

Suppose we have four solutions n = 0, k, l,m. If we eliminate λ1 and λ2 from the equations

λ1α
k
1 − λ2α

k
2 = ±(λ1 − λ2)

λ1α
l
1 − λ2α

l
2 = ±(λ1 − λ2)

λ1α
m
1 − λ2α

m
2 = ±(λ1 − λ2),

we obtain
αk1 − δ

αk2 − δ
=
αl1 − δ′

αl2 − δ′
=
αm1 − δ′′

αm2 − δ′′
=
λ1

λ2

, (2.12)

for some δ, δ′, δ′′ ∈ {−1, 1}. We note that two of these deltas must be equal and we treat the
cases corresponding to −1 and +1 separately. First suppose that l > k and

αk1 − 1

αk2 − 1
=
αl1 − 1

αl2 − 1
. (2.13)

If α2 > 0 then note that for any positive integer x∣∣∣∣αx1 − 1

αx2 − 1

∣∣∣∣ ∣∣∣∣αx+1
1 − 1

αx+1
2 − 1

∣∣∣∣−1

=

∣∣∣∣ αx1 − 1

αx+1
1 − 1

∣∣∣∣ ∣∣∣∣α2 +
α2 − 1

αx2 − 1

∣∣∣∣
<

1

α1

∣∣∣∣α2 +
1

αx−1
2 + · · ·+ 1

∣∣∣∣
<

1

α1

(|α2|+ 1) ≤ 1.

Thus |(αx1 − 1)/(αx2 − 1)| is strictly increasing in x and (2.13) cannot hold. So we must have
α2 < 0. We distinguish three subcases.
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If k and l are both even then we may consider (2.13) with α2
1 instead of α1. Since α2

2 > 0
we see, by above, that this cannot occur.

If k is odd then

αk1 − 1

|α2|k + 1
=

∣∣∣∣αk1 − 1

αk2 − 1

∣∣∣∣ =

∣∣∣∣αl1 − 1

αl2 − 1

∣∣∣∣ ≥ αl1 − 1

|α2|l + 1
.

But we see that (αx1 − 1)/(|α2|x + 1) is strictly increasing in x ≥ 1, since

αx1 − 1

|α2|x + 1

(
αx+1

1 − 1

|α2|x+1 + 1

)−1

=
αx1 − 1

αx+1
1 − 1

|α2|x+1 + 1

|α2|x + 1

<
1

α1

(
|α2|+

1− |α2|
|α2|x + 1

)
<

1

α1

(|α2|+ 1) ≤ 1.

And so (2.13) cannot hold when α2 < 0 and k is odd.
If k is even and l is odd then by comparing the signs in (2.13) we see that −1 < α2 < 0.

Then α1 and α2 are conjugate real quadratic integers and since α1 > 0 and α2 > −1 we have
(α1 + 1)(α2 + 1) ≥ 1. Hence∣∣∣∣αk1 − 1

αk2 − 1

∣∣∣∣ =
1

α2 + 1

αk1 − 1∣∣αk−1
2 − αk−2

2 + · · · − 1
∣∣

≤ 1

α2 + 1

αk1 − 1

|α2|+ 1

≤ (α1 + 1)
αk1 − 1

|α2|+ 1
.

We also have ∣∣∣∣αl1 − 1

αl2 − 1

∣∣∣∣ > αl1 − 1

2
.

These two inequalities combined with (2.13) imply

αl1 − 1 < 2
α1 + 1

|α2|+ 1
(αk1 − 1). (2.14)

From (2.14) we have αl1 − 2αk+1
1 − αk1 + α1 + 1 < 0, so if l ≥ k + 3 we must have α1 < 2.

The only real, positive, non-rational quadratic integer α1 such that α1/α2 6= ±1 and α1 < 2

21



is (1 +
√

5)/2 which does not satisfy (2.14). Hence we must have l = k + 1. However there
is a third solution m and we have

αm1 − δ′′

αm2 − δ′′
=
αk1 − 1

αk2 − 1
.

If δ′′ = 1 then we must have that m > k and m is odd since the other possibilities were
shown to be impossible. But then we have

αm1 − 1

αm2 − 1
=
αl1 − 1

αl2 − 1
,

with m and l odd, which was shown to be impossible. But we also cannot take δ′′ = −1
since (αm1 + 1)/(αm2 + 1) and (αk1 − 1)/(αk2 − 1) have opposite signs. We conclude that in
(2.12) we can have at most one delta equal +1.

We now suppose that l > k and

αk1 + 1

αk2 + 1
=
αl1 + 1

αl2 + 1
(2.15)

Note that (αx1 + 1)/(αx2 + 1) is a strictly increasing function in x ≥ 1 if α2 > 0. Hence we
must have α2 < 0. We distinguish four subcases.

If k and l are both even the this is equivalent to considering (2.15) with α2
1 instead of α1

and this is impossible.
If k is even and l is odd then by consideration of the signs in (2.15) we must have

−1 < α2 < 0. Hence

αk1 + 1 >
αk1 + 1

αk2 + 1
=
αl1 + 1

αl2 + 1
> αl1 + 1,

which is impossible since α1 > 1.
If k and l are both odd then (2.15) can be written as

αk1 + 1

|α2|k − 1
=

αl1 + 1

|α2|l − 1
.

22



Since

α2x−1
1 + 1

|α2|2x−1 − 1

(
α2x+1

1 + 1

|α2|2x+1 − 1

)−1

=
α2x−1

1 + 1

α2x+1
1 + 1

|α2|2x+1 − 1

|α2|2x−1 − 1

≤ α1 + 1

α3
1 + 1

|α2|3 − 1

|α2| − 1

=
|α2|2 + |α2|+ 1

α2
1 − α1 + 1

(2.16)

≤ |α2|2 + |α2|+ 1

(|α2|+ 1)2 − |α2|
= 1,

The sequence (α2x−1
1 + 1)/(|α2|2x−1 − 1) increases with x ≥ 1. Moreover we have equality in

(2.16) if and only if x = 1 and α1 = 1− α2, thus k = 1, l = 3 and α2 = 1− α1. Note there
is a third solution m and we have

αm1 − δ′′

αm2 − δ′′
=
α1 + 1

α2 + 1
.

Suppose that α1 ≥ 2. Since we have assumed α2 = 1 − α1 and α1 6= −1 we have α2 < −1,
α1 > 2 and m must be odd. Now

α5
1 − 1

(α1 − 1)5 + 1
≤ αm1 − δ′′

(α1 − 1)m + δ′′
= −α

m
1 − δ′′

αm2 − δ′′
= −α1 + 1

α2 + 1
=
α1 + 1

α1 − 2
,

which implies 2α5
1−5α4

1+5α2
1−6α1+2 ≤ 0. We can check that this implies α1 < (1+

√
13)/2.

However there is no real quadratic integer such that 2 < α1 < (1+
√

13)/2, so we must have
α1 < 2. This then implies that α1 = (1 +

√
5)/2. It then follows that

αm1 − 1

α1

≤
∣∣∣∣αm1 − δ′′

αm2 − δ′′

∣∣∣∣ =

∣∣∣∣α1 + 1

α2 + 1

∣∣∣∣ = α4
1,

hence m ≤ 5. Checking (αm1 − δ′′)/(αm2 − δ′′) = (α1 + 1)/(α2 + 1) for m ≤ 5 then yields
δ′′ = −1 and m = 1, 3, 4.

If k is odd and l is even then comparing the signs in (2.15) implies −1 < α2 < 0 and we
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have

(α1 + 1)(αk1 + 1) ≥ αk1 + 1

α2 + 1

1

1 + |α2|+ · · ·+ |α2|k−1

=
αk1 + 1

αk2 + 1

=
αl1 + 1

αl2 + 1

>
αl1 + 1

2
.

And that implies αl1+1 < 2(α1+1)(αk1+1). If l ≥ k+3 then α1 < 11/5, hence α1 = (1+
√

5)/2.
Since α1α2 = −1 we get (αl1 + 1)/(αl2 + 1) = αl1 and (2.15) implies

αl1 =
αk1 + 1

αk2 + 1
≤ αk1 + 1

α2 + 1
= α2

1(α
k
1 + 1),

which yields k = 1 and l = 4. Suppose now that l = k + 1 or that k = 1 and l = 4. There is
a third solution m and

αm1 − δ′′

αm2 − δ′′
=
αl1 + 1

αl2 + 1
.

If δ′′ = 1 then the terms have opposite sign, so we must have δ′′ = −1. Note that we cannot
have m > l since l is even and we have shown that the smaller of two solutions cannot be
even. So m < l and is odd, thus we have (k, l,m) = (1, 4, 3) or (3, 4, 1) and α1 = (1+

√
5)/2.

By (2.12) we see that

λ1

λ2

=
αl1 + 1

αl2 + 1
= αl1 =

(
1 +

√
5

2

)4

which gives λ1 = ±(3−
√

5)/2. These values for α1 and λ1 yield the recurrence sequence as
stated.

2.2 Algebraic binary recurrence sequences

The purpose of this section is to study certain algebraic binary recurrences. It will be
necessary to introduce a different height function than was defined in §1.2. For α ∈ Q let
anz

n + · · ·+ a0 be the unique irreducible polynomial in Z[z] for which α is a root such that
gcd(a0, . . . , an) = 1. Then the usual height of α, denoted H0(α) is given by

H0(α) = max{|a0| , . . . , |an|}.
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Throughout this section and only in this section whenever we talk of the height of an algebraic
number we will mean the usual height. Note that H0(α) = H0(1/α). It can be shown, see
for example Chapter 1 of Shorey and Tijdeman [20], that if α and β are algebraic numbers
of degree at most d then there exists a constant c(d) depending only on d such that

logH0(αβ) ≤ c(d) max{logH0(α), logH0(β)} (2.17)

If K is a number field of degree d and σ1, . . . , σd denote the embeddings K ↪→ C then for
α ∈ K we set

α = max{|σ1(α)| , . . . , |σd(α)|}.
It is not hard to show that if α is an algebraic number of degree d then we have

α ≤ dH0(α).

Furthermore if α is an algebraic integer then it can be shown that

H0(α) ≤ (2 α )d. (2.18)

Let K be a number field of degree d and {un}n≥0 ⊂ OK be a non-degenerate binary re-
currence sequence with companion polynomial f(z) ∈ Z[z]. Note that we are again indexing
our recurrence with n ≥ 0 as opposed to Z. We let α and β be the roots of f(z) and for
ω ∈ K we let u(ω) denote the ω-multiplicity of {un}n≥0. We know that the u(ω) is finite for
every ω ∈ K. A natural question to ask is for what sequences {un}n≥0 and values ω ∈ K do
we have |u(ω)| small? We will prove a theorem, due to Brindza, Pinter and Schmidt, which
establish criteria that implies u(ω) ≤ 1. We follow the methods in [5].

Theorem 2.3. Say ω ∈ K×. There exists an effectively computable constant c(d, f, w) such
that if min{|α| , |β|} > 1 and max{H0(u0), H0(u1)} > c(d, f, ω) then u(ω) ≤ 1.

Before proceeding with the proof of Theorem 2.3 we will need a few Lemmas.

Lemma 2.9. Let α1, . . . , αn be non-zero algebraic numbers with splitting field L of degree g.
Let A1, . . . , An denote upper bounds for the respective heights of α1, . . . , αn, such that Ai ≥ 2
for each 1 ≤ i ≤ n. Set

Ω′ =
n−1∏
i=1

logAi and Ω = Ω′ logAn.

Let b1, . . . , bn be rational integers and set B = max{|b1| , . . . , |bn| , 2}. If

Λ =
∣∣αb11 · · ·αbnn − 1

∣∣ 6= 0,
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then
Λ > exp(−c(n, g)Ω log Ω′ logB),

where c(n, g) is an effectively computable constant depending only on g and n.

Proof. See [19].

As in the previous section it is easily shown that for all n ≥ 0

(β − α)un = λαn + µβn,

where λ = u0β − u1 and µ = u1 − u0α. Thus it suffices to consider the equation

λαn + µβn = γ, (2.19)

where γ = (β − α)ω.

Lemma 2.10. Suppose α, β, λ, µ ∈ K, with |α| , |β| > 1, α/β not a root of unity and λµ 6= 0.
There is an effectively computable constant c0 = c0(d, α, β) such that there is at most one
integer n ≥ 0 with

0 < |λαn + µβn| < max{|λ| , |µ|} (2 + logH0(λ/µ))−c0 . (2.20)

Proof. c1, c2, . . . will be effectively computable constants depending on α, β and d. We may
suppose that |λ| ≤ |µ| and we set h = 2 + logH0(λ/µ). Now (2.20) may be rewritten as

0 <
∣∣(−λ/µ)1(α/β)n − 1

∣∣ < |β|−n h−c0 < |β|−n . (2.21)

If n ≥ 2 then we can apply Lemma 2.9 with Ω′ = logH(α/β), Ω = Ω′ logH(λ/µ), and B = n
to get ∣∣(−λ/µ)1(α/β)n − 1

∣∣ > exp(−c1 logH(λ/µ) log n) > exp(−c1h log n).

Comparison with (2.21) and taking logarithms yields −c1h log n < −n log |β|, thus

n < c2h log n < c2h log(c2h logn) < c3h log h. (2.22)

If n < 2 then (2.22) will still hold by ensuring c3 ≥ 1.
Let 0 ≤ n1 < n2 be two solutions to (2.20), hence to (2.21). When c0 ≥ 2 we have

h−c0 ≤ 1/4 and then, since |β|−n1 ≤ 1, (2.21) yields

−1/4 ≤ (−λ/µ)(α/β)n1 − 1 ≤ 1/4
4/5 ≤ (−µ/λ)(β/α)n1 ≤ 4/3.
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And so∣∣∣∣∣
(
α

β

)n2−n1

− 1

∣∣∣∣∣ =

∣∣∣∣∣µλ
(
α

β

)−n1

∣∣∣∣∣
∣∣∣∣((−λµ

)(
α

β

)n2

− 1

)
−
((

−λ
µ

)(
α

β

)n1

− 1

)∣∣∣∣
<

4

3
(|β|−n2 + |β|−n1)h−c0 (2.23)

< 4h−c0 .

Since α/β is not a root of unity the left hand side of (2.23) is not zero. Hence we can apply
Lemma 2.9 with B = max{n2 − n1, 2} and we see that the left hand side of (2.23) is

> exp(−c4 logB). (2.24)

If n2 − n1 = 1 then combining (2.23) and (2.24) yields hc0 < 2c4+2, hence 2c0 < 2c4+2, which
is impossible if c0 ≥ c4 + 2. If n2 − n1 > 1 then (2.22) gives

c4 log(n2 − n1) ≤ c4 log(n2) < c4 log(c3h log h) < c5 log h,

hence (2.24) is bounded below by h−c5 . Comparison with (2.23) yields hc0−c5 < 4, hence
2c0−c5 < 4, which is impossible if c0 ≥ c5 + 2. Then taking c0 = max{c4, c5} + 2 establishes
the Lemma.

Lemma 2.11. Let γ ∈ K× and λ, µ ∈ OK. Let σ1, . . . , σd denote the distinct embeddings of
K into C. Suppose

min
1≤i≤d

{min{|σi(α)| , |σi(β)|}} > 1 (2.25)

and
max{ λ , µ } > c6(d, α, β, γ), (2.26)

where c6(d, α, β, γ) is an effectively computable constant depending only on α, β, γ and d.
Then (2.19) has at most one solution n ≥ 0.

Proof. Set m = max{ λ , µ }. We know that there exists a constant c7(d), depending only
on d, such that

logH0(λ/µ) ≤ c7(d) max{logH0(λ), logH0(µ)}
≤ dc7(d) max{log(2 λ ), log(2 µ )} (2.27)

= c8(d) logm.
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Take c6(d, α, β, γ) to be such that m > c6 implies

m

(2 + c8(d) logm)c0
> γ . (2.28)

We may suppose that λ ≤ µ . Moreover, by applying an appropriate embedding, we may

assume that µ = |µ|, so that m = max{|λ| , |µ|}. Then (2.19) combined with (2.27) and
(2.28) yield

|λαn + µβn| = |γ| ≤ γ <
m

(2 + c8(d) logm)c0
≤ max{|λ| , |µ|}

(2 + logH0(λ/µ))c0
.

The result then follows from Lemma 2.10.

We are now in a position in which we can complete the proof of Theorem 2.3.

Proof. Since α and β are the roots of f(z) ∈ Z[z] they are either rational integers or conjugate
quadratic integers, hence our assumption min{|α| , |β|} > 1 establishes (2.25). Now

u0 =
λ+ µ

α− β
and u1 =

λα+ µβ

α− β
.

Since λ, µ ∈ OK we get

H0(u0) ≤ max{H0(α− β), H0(λ+ µ)}c9(d)

≤ c10(d, α, β)H0(λ+ µ)c9

≤ c10(2 λ+ µ )dc9

≤ c11(d, α, β)(max{ λ , µ })c12(d),

where c9, c12 are constants that depend on d only and c10, c11 are constants that depend on
α, β, d only. Similarly we can show that

H0(u1) ≤ c13(d, α, β)(max{ λ , µ }c14(d).

And so there exists a constant c(α, β, d, γ), depending only on α, β, γ and d, such that
max{H0(u0), H0(u1)} > c(α, β, d, γ) implies (2.26).
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Chapter 3

Ternary Recurrence Sequences

In Chapter 2 we investigated binary recurrence sequences. A natural next step is to look at
ternary recurrence sequences. In this chapter we investigate the zero-multiplicity of nonde-
generate rational ternary recurrence sequences. In 1957 Ward [22] conjectured that the zero
multiplicity is at most five. However Berstel [1] constructed a counterexample given by

un+3 = 2un+2 − 4un+1 + 4un,

with u0 = u1 = 0 and u2 = 1, which has u0 = u1 = u4 = u6 = u13 = u52 = 0. It is
generally expected that this is the only exception to Ward’s conjecture. In this chapter
we prove a result of Beukers [3], building on work of Beukers and Tijdeman [4], that every
nondegenerate rational ternary recurrence sequence has zero-multiplicity at most six. We
follow their methods except that in [3] it is assumed that the companion polynomial has
three distinct roots and so we add Lemma 3.13 to include the nonsimple case.

3.1 Hypergeometric Polynomials

We first need to develop some lemmas concerning hypergeometric polynomials. In this
section we follow [4].

For a, b, c ∈ Z we define the hypergeometric function, denoted F (a, b, c, z), by

F (a, b, c, z) = 1 +
∞∑
j=1

a · · · (a+ j − 1)b · · · (b+ j − 1)

c · · · (c+ j − 1)j!
zj.
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Lemma 3.1. Fix a positive integer c. For any positive integers a, b with a, b < c we have(
a+ b

b

)
F (−a,−b− c,−a− b, z)−

(
a+ b

b

)
(1− z)cF (c− a,−b,−a− b, z)

= (−1)a
(

c+ b

c− a− 1

)
za+b+1F (b+ 1, a− c+ 1, a+ b+ 2, z).

Proof. Note that F (−a,−b− c,−a− b, z), (1− z)cF (c− a,−b,−a− b, z) and za+b+1F (b +
1, a− c+ 1, a+ b+ 2, z) are polynomials and they each satisfy the differential equation

z(z − 1)
d2

dz2
f + ((1− a− b− c)z + a+ b)

d

dz
f + a(b+ c)f = 0.

Hence there is a linear relationship between them. The coefficients of this linear relationship
can be found by considering the constant term and the coefficient of the highest power of
z.

Lemma 3.2. For a, b, c as in Lemma 3.1, define

fab =

(
a+ b

b

)
F (−a,−b− c,−a− b, z) (3.1)

gab =

(
a+ b

b

)
F (c− a,−b,−a− b, z) (3.2)

hab =

(
c+ b

c− a− 1

)
F (b+ 1, a− c+ 1, a+ b+ 2, z). (3.3)

Then fab, gab and hab are polynomials in Z[z] of degree a, b and c− a− 1 respectively.

Proof. We have

fab(z) =

(
a+ b

b

)
F (−a,−b− c,−a− b, z)

=

(
a+ b

b

)
+

∞∑
j=1

(
a+ b

b

)
(−a) · · · (−a+ j − 1)(−b− c) · · · (−b− c+ j − 1)

(−a− b) · · · (−a− b+ j − 1)j!
zj

=
a∑
j=0

(a+ b)!

a!b!

a!

j!(a− j)!

(b+ c)!

(b+ c− j)!

(a+ b− j)!

(a+ b)!
(−z)j

=
a∑
j=0

(
a+ b− j

b

)(
b+ c

j

)
(−z)j,
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which establishes the result for fab. In an analogous way we obtain

gab(z) =
b∑

j=0

(
a+ b− j

a

)(
c− a+ j − 1

j

)
zj

and

hab(z) =
c−a−1∑
j=0

(
b+ j

j

)(
c+ b

a+ b+ j + 1

)
(−z)j.

Lemma 3.3. Let fab, gab, hab be as in Lemma 3.2. Then

fab(z) =
(c+ b)!

(c− a− 1)!a!b!

∫ 1

0

(1− x)bxc−a−1(1− x− z)adx, (3.4)

gab(z) =
(c+ b)!

(c− a− 1)!a!b!

∫ 1

0

(1− x)axc−a−1(1− x+ zx)bdx, (3.5)

hab(z) =
(c+ b)!

(c− a− 1)!a!b!

∫ 1

0

(1− x)axb(1− zx)c−a−1dx. (3.6)

Proof. These can be checked by writing down the binomial expansion of (1− x− z)a, (1−
x + zx)b and (1 − zx)c−a−1 and then performing the integration directly where we use the
identity ∫ 1

0

(1− x)mxndx =
n!m!

(n+m+ 1)!
,

for any positive integers n,m.

Lemma 3.4. For fab, gab, hab as in Lemma 3.2 and any x 6= 0 we have

fab(x)ga,b−1(x)− fa,b−1(x)gab(x) 6= 0.

Proof. By Lemma 3.1 and 3.2,

fab(z)− (1− z)cgab(z) = (−1)aza+b+1hab(z)

and
fa,b−1(z)− (1− z)cga,b−1(z) = (−1)aza+bha,b−1(z).

Upon eliminating (1− z)c from the above two equations we have that

fab(z)ga,b−1(z)− fa,b−1(z)gab(z) = za+bp(z) (3.7)
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for some polynomial p(z). But the left hand side of (3.7) is a polynomial of degree a+ b with
a non-zero leading coefficient a0, so we must have

fab(z)ga,b−1(z)− fa,b−1(z)gab(z) = a0z
a+b,

from which our Lemma follows.

Lemma 3.5. For positive integer n,

(3n)!

(n− 1)!n!n!
<

7

25
27n.

Proof. This is obvious if n = 1. If n ≥ 2 we have

(3n)!

(n− 1)!n!n!
= 6

n∏
j=2

3j(3j − 1)(3j − 2)

(j − 1)j2

= 6(27)n−1

n∏
j=2

(
1 +

2/9

j(j − 1)

)

< 6(27)n−1 exp

(
n∑
j=2

2

9

1

j(j − 1)

)
< 6(27)n−1 exp(2/9)

< (7/25)(27)n.

For a number field K denote by MK the set of places of K. For v ∈ MK we recall the
definition of | |v and r(v) given in §1.2.

Lemma 3.6. Take a positive integer a and let γ, η be non-zero algebraic numbers in some
number field K. There exist polynomials P (z), Q(z), R(z) ∈ Z[z] of degree at most a such
that

P (z)− (1− z)2aQ(z) = z2aR(z), (3.8)

P (γ)− ηQ(γ) 6= 0 (3.9)

and
max{|P (ξ)|v , |Q(ξ)|v , |R(ξ)|v} ≤ (6

√
3)a

log r(v)
log 2 max{1, |ξ|av} (3.10)

for any ξ ∈ K and v ∈MK.
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Proof. We define the polynomials faa, gaa, haa as in the previous Lemmas with c = 2a. If
faa(γ) − ηgaa(γ) 6= 0 then set P (z) = faa(z), Q(z) = gaa(z) and R(z) = (−1)azhaa(z).
Then (3.9) is automatically satisfied and we know that (3.8) is satisfied by Lemma 3.1. If
faa(γ) − ηgaa(γ) = 0 then by Lemma 3.4 we must have fa,a−1(γ) − ηga,a−1(γ) 6= 0. In this
case we set P (z) = fa,a−1(z), Q(z) = ga,a−1(z) and R(z) = (−1)aha,a−1(z). Again (3.9) is
automatically satisfied and (3.8) follows from Lemma 3.1.

It remains to show (3.10). First note that if v ∈MK is finite then

|P (ξ)|v ≤ max{1, |ξ|av}

for any ξ ∈ K, since P (z) ∈ Z[x] and degP (z) ≤ a, and similarly for Q(z) and R(z). Thus
(3.10) holds for v finite. Assume v is infinite. If b = a − 1 or b = a then, since gab(z) has
positive coefficients and fab, hab have alternating coefficients, we have

|fab(x)| ≤ fab(−1) max{1, |x|a},
|gab(x)| ≤ gab(1) max{1, |x|b},
|hab(x)| ≤ hab(−1) max{1, |x|2a−b−1},

for any x ∈ C, where | | is the usual absolute value on C. Then is suffices to show that

fab(−1), gab(1), hab(−1) < (6
√

3)a.

Consider faa(−1). By Lemma 3.3 we have

faa(−1) =
(3a)!

(a− 1)!a!a!

∫ 1

0

(1− x)axa−1(2− x)adx.

For 0 ≤ x ≤ 1 we have |x(1− x)(2− x)| ≤ 2/(3
√

3). This together with Lemma 3.5 yields

faa(−1) <
7

25
(27)a

(
2

3
√

3

)a−1 ∫ 1

0

(1− x)(2− x)dx < (6
√

3)a.

The verifications for fa,a−1(−1), gaa(1), ga,a−1(1), haa(−1) and ha,a−1(−1) are similar.

3.2 The equation λαn + µβn = 1

Let K be a number field and let α, β, λ, µ ∈ K be non-zero. We are interested in solutions
to the equation

λαx + µβx = 1, (3.11)
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in x ∈ Z. The hypergeometric polynomials will be used in Lemma 3.7 to bound the larger
solutions of (3.11) while Lemmas 3.8 to 3.10 will create gaps between consecutive solutions.
We will suppose throughout this section that (3.11) has solutions x = 0, k, l,m with 0 < k <
l < m. We will also assume throughout this section that none of α, β, α/β is a root of unity.
For an algebraic number γ recall the definition of the absolute height of γ, denoted H(γ),
given in §1.2. In the proof of the following Lemma we follow [4].

Lemma 3.7. Suppose that m ≥ 10l. Let H = max{H(α), H(β), H(α/β)} and suppose
H > 1. Then

l ≤ 27
log 2

logH
+

50

3
k.

Proof. First note that if H = H(α/β) then instead of (3.11) we may consider

(−λ/µ)(α/β)x + (−1/µ)(1/β)x = 1.

Hence, without loss of generality, we may assume H = H(α).
Take q ∈ Z, q > 0, and δ ∈ R with 0 ≤ δ < 2 so that m = 2lq + δl. By Lemma 3.6 we

have polynomials P (z), Q(z), R(z) ∈ Z[z] of degree at most q with

P (λαl)− (µβl)2qQ(λαl) = (λαl)2qR(λαl). (3.12)

Now define ∆ by
∆ = P (λαl)− µ2q−1β−δlQ(λαl). (3.13)

Then using (3.12) together with the facts that m = 2lq + δl and µβm = 1− λαm, we have

∆ = (λαl)2q

(
R(λαl)−

(µ
λ

)2q−1
(
α

β

)δl
Q(λαl)

)
. (3.14)

Take v ∈MK . If
∣∣λαl∣∣

v
< 1 then by (3.14) we have

|∆|v ≤
∣∣λαl∣∣2q

v
r(v)(6

√
3)q

log r(v)
log 2 max

{
1,
∣∣∣µ
λ

∣∣∣2q−1+δ

v

∣∣∣∣λαlµβl

∣∣∣∣δ
v

∣∣λαl∣∣q}

≤
∣∣λαl∣∣2q

v
r(v)(6

√
3)q

log r(v)
log 2 max

{
1,

∣∣∣∣1− λ

λ

∣∣∣∣2q−1+δ

v

}
max

{
1,

1

|µβl|δv

}
(3.15)

≤
∣∣λαl∣∣2q

v
r(v)2q+δ(6

√
3)q

log r(v)
log 2 max

{
1,

1

|λ|2q−1+δ
v

}
max

{
1,

1

|µβl|δv

}
.
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If
∣∣λαl∣∣

v
≥ 1 then by (3.13) we have

|∆|v ≤ r(v)(6
√

3)q
log r(v)
log 2

∣∣λαl∣∣q
v
max{1, |µ|2q−1+δ

v

∣∣µβl∣∣−δ
v
}

≤ r(v)2q+δ(6
√

3)q
log r(v)
log 2

∣∣λαl∣∣q
v
max{1, |λ|2q−1+δ

v }max

{
1,

1

|µβl|δv

}
. (3.16)

Since
∏

v∈MK
|∆|v = 1 and

∏
v∈MK

r(v) = 2, (3.15) and (3.16) yield

1 ≤ 22q+δ

H(λαl)q
(6
√

3)qH(λ)2(2q−1+δ)H(µβl)δ.

Now H(µβl) = H(1− λαl) ≤ 2H(1)H(λαl) = 2H(λαl) and so

1 ≤ 4q+δ

H(λαl)q
(6
√

3)qH(λ)2(2q−1+δ)H(λαl)δ.

Using H(λαl) ≥ H(αl)/H(λ) we have

H(αl)q−δ ≤ 4q+δ(6
√

3)qH(λ)5q−2+δ. (3.17)

From λ+ µ = 1 and λαk + µβk = 1 it follows that λ = (βk − 1)/(βk − αk), hence

H(λ) = H

(
1− β−k

1− (α/β)k

)
≤ H(1− β−k)H(1− (α/β)k) ≤ 4H(α)2k.

Substituting this into (3.17) yields

H(αl)q−δ ≤ 46q−2+2δ(6
√

3)qH(α)2(5q−2+δ)k.

Then, since 0 ≤ δ < 2 and m ≥ 10l implies q ≥ 5, we obtain

H(α)l ≤ 432/3(6
√

3)5/3H(α)50k/3 ≤ 227H(α)50k/3,

from which our Lemma follows.

For the rest of this chapter we will follow [3] with the exception of Lemma 3.13. The
next series of Lemmas establish criteria in order to create large gaps between the solutions
of (3.11).

Lemma 3.8. Suppose there exists finite v ∈ MK such that |α|v < 1 and |β|v = 1. Then
there is a positive integer d such that
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1. d > 1, d|(m− l) and d|(l − k).

2. If there is a solution x = n of (3.11) with 0 < n < k then d ≥ 4.

3. If |α|kv |β − 1|v < |p|1/(p−1)
v , where p is the rational prime that lies above v, then

|(m− l)/d|v ≤ |α|
l−k
v and |(l − k)/d|v = 1.

Proof. If λαx + µβx = 1 then, since λ+ µ = 1, we have βx − 1 = λ(λ− 1)−1(αx − 1), hence∣∣βk − 1
∣∣
v

=
∣∣βl − 1

∣∣
v

= |βm − 1|v. We will denote this value by B. Note that since |β|v = 1
we have B ≤ |β − 1|v. After eliminating λ and µ from (3.11) with x = 0, k, l we have

βl − βk = (βl − 1)αk − (βk − 1)αl.

Hence ∣∣βl − βk
∣∣
v

= |α|kv
∣∣βl − 1

∣∣
v

= |α|kv B,

and since |β|v = 1, we have ∣∣βl−k − 1
∣∣
v

= |α|kv B.

In the same way we obtain ∣∣βm−l − 1
∣∣
v

= |α|lv B < |α|kv B.

We take d to be the smallest positive integer such that
∣∣βd − 1

∣∣ ≤ |α|kv B. We must have d > 1

since d = 1 implies |β − 1| ≤ |α|kv B < |β − 1|v, a contradiction. Also if |βx − 1|v ≤ |α|kv B
then we must have d|x, in particular d|(l − k) and d|(m − l). This establishes part 1. We
further note that

∣∣βl−k − 1
∣∣
v

= |α|kv B implies
∣∣βd − 1

∣∣ = |α|kv B.
Suppose we have another solution x = n to (3.11) with 0 < n < k. Take e to be the

smallest positive integer such that |βe − 1|v ≤ |α|nv B. We have, as above, that e > 1 and

|βe − 1|v = |α|nv B. Now
∣∣βd − 1

∣∣
v

= |α|kv B < |α|nv B, hence we have e|d and e 6= d, so d ≥ 4.

Put γ = βd − 1 and assume |α|kv |β − 1|v < |p|1/(p−1)
v . Note in particular that |γ|v <

|p|1/(p−1)
v . Let t = (m− l)/d, then

βm−l−1 = (1+γ)t−1 = tγ+

(
t

2

)
γ2 + · · ·+γt = tγ+ tγ

((
t− 1

1

)
γ

2
+ · · ·+

(
t− 1

t− 1

)
γt−1

t

)
.

Now∣∣∣∣∣
t∑

j=2

(
t− 1

j − 1

)
γj−1

j

∣∣∣∣∣
v

≤ max
j≥2

∣∣∣∣γj−1

j

∣∣∣∣
v

≤ max
i≥1

{
|γ|v ,

∣∣∣∣∣γp
i−1

pi

∣∣∣∣∣
v

}
≤ max

i≥1

{
|γ|v ,

∣∣∣∣γp−1

p

∣∣∣∣i
v

}
< 1,
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since |γ|v < |p|
1/(p−1)
v . Then

|tγ|v =
∣∣βm−l − 1

∣∣ = |α|lv B,

hence
|t|v = |γ|−1

v |α|lv B = |α|l−kv ,

as asserted. If we had |(l − k)/d|v < 1 then we would have
∣∣βl−k − 1

∣∣
v
<
∣∣βd − 1

∣∣
v
, which is

not the case. Hence |(l − k)/d|v = 1.

Lemma 3.9. Let 0 ≤ x1 < x2 be two solutions to λαx + µβx = 1, with λµαβ 6= 0. Suppose
there exists a positive integer d such that x1 + d and x2 + d are also solutions. Then α and
β are roots of unity.

Proof. We have (αx1+d−αx1)λ+(βx1+d−βx1)µ = 0 and (αx2+d−αx2)λ+(βx2+d−βx2)µ = 0.
Thus the determinant of the matrix[

αx1+d − αx1 βx1+d − βx1

αx2+d − αx2 βx2+d − βx2

]
must vanish. Hence βx1αx1(αd − 1)(βd − 1)((β/α)x2−x1 − 1) = 0. First assume α is a dth
root of unity. Then we have λαx1 + µβx1 = λαx1 + µβx1+d, which yields µβx1(βd − 1) = 0.
Similarly if β is a dth root of unity then so is α. If β/α is a (x2− x1)th root of unity the we
have 1 = λαx2 + µβx2 = (λαx1 + µβx1)βx2−x1 = βx2−x1 . Hence β is a root of unity and then,
by above, so is α.

Note that this Lemma essentially states that a given difference between two solutions of
(3.11) can occur at most once. It is worth noting in particular, that if x1 < x2 < · · · < xn
are solutions, then xn − x1 ≥

(
n
2

)
.

Lemma 3.10. Assume again that (3.11) has solutions x = 0 < k < l < m. Further suppose
that β = α and µ = λ. Then we have the following:

1. If |α| ≥ 4/3, k > 50 and 10−4 < arg(α/α) < π − 10−4, then m− k ≥ |α|k.

2. If |α| ≥ 2.1 and k ≥ 2, then m− k > 2 |α|k.

Proof. Using the equations λαx+λαx = 1 with x = 0, k, l,m we eliminate λ and λ to obtain

αk − 1

αk − 1
=
αl − 1

αl − 1
=
αm − 1

αm − 1
.
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These quotients cannot equal one since we have assumed that α/α is not a root of unity. Let

η =
αk − 1

αk − 1
− 1.

Note that η 6= 0 and |η| ≤ 2. For x = k, l,m we have

αx − 1

αx − 1
=

(
α

α

)x
+

η

αx
.

Hence (
α

α

)l−k
− 1 = η

(α
α

)k ( 1

αk
− 1

αl

)
(
α

α

)m−l
− 1 = η

(α
α

)l( 1

αl
− 1

αm

)
.

(3.18)

It can be checked that the assumptions made in either of the cases in the statement of the
Lemma will ensure the right hand sides of (3.18) are smaller than one in absolute value. If
w ∈ C satisfies |1 + w| = 1 and |w| ≤ 1 then |w| ≤ |arg(1 + w)| ≤ (π/3) |w|. Applying this
to the right hand sides of (3.18) we have

(l − k) arg(α/α) + 2πr = arg

(
1 + η

(α
α

)k ( 1

αk
− 1

αl

))
= θ

∣∣∣∣ 1

αk
− 1

αl

∣∣∣∣ |η| ,
(m− l) arg(α/α) + 2πs = arg

(
1 + η

(α
α

)l( 1

αl
− 1

αm

))
= φ

∣∣∣∣ 1

αl
− 1

αm

∣∣∣∣ |η| , (3.19)

for some r, s ∈ Z and θ, φ ∈ R with 1 ≤ |θ| , |φ| < π/3. Define E by

E = (m− l)θ

∣∣∣∣ 1

αk
− 1

αl

∣∣∣∣ |η| − (l − k)φ

∣∣∣∣ 1

αl
− 1

αm

∣∣∣∣ |η| .
By (3.19) we must have either E = 0 or |E| ≥ 2π. First assume E = 0, then since η 6= 0 we
have

(m− l)θ
∣∣αl−k − 1

∣∣ = (l − k)φ
∣∣1− αl−m

∣∣ .
Thus ∣∣αl−k − 1

∣∣
l − k

=

∣∣1− αl−m
∣∣

m− l

∣∣∣∣φθ
∣∣∣∣ ,

which yields
|α|l−k − 1

l − k
≤ 1 + |α|l−m

m− l

π

3
. (3.20)
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Suppose we are in the situation of case 1. Since |α| ≥ 4/3 and k > 50 we see that the right
hand sides of (3.19) are less than 10−5. Since 10−4 < argα/α < π− 10−4 then (3.19) implies
min{l − k,m − l} ≥ 3. Also by Lemma 3.9 we cannot have m − l = l − k = 3. If either
l− k ≥ 3 and m− l ≥ 4 or l− k ≥ 4 and m− l ≥ 3 then (3.20) cannot hold. If we are in the
situation of case 2 then by Lemma 3.9 we cannot have l− k = m− l. With either l− k ≥ 1
and m− l ≥ 2 or l − k ≥ 2 and m− l ≥ 1, (3.20) cannot hold since |α| ≥ 2.1. We conclude
that E 6= 0.

Since E 6= 0 we have

2π ≤ (m− l)
π

3

∣∣∣∣ 1

αk
− 1

αl

∣∣∣∣ |η|+ (l − k)
π

3

∣∣∣∣ 1

αl
− 1

αm

∣∣∣∣ |η|
≤ (m− k)

2π

3
(1 + |α|−1) |α|−k .

Thus m− k ≥ 3(1 + |α|−1)−1 |α|k, from which our Lemma follows.

Lemma 3.11. Let α ∈ Q be such that |α| ≥ 4 and H(α) ≥ 21/3. Then for λ ∈ C the
equation

λαx + λαx = 1

has at most six solutions x ∈ Z.

Proof. Suppose the equation has seven solutions, which we may assume to be 0 < x1 < x2 <
x3 < x4 < x5 < x6. By Lemma 3.10 we have x6 − x4 > 2 |α|x4 . By Lemma 3.9, x4 ≥ 10, so
x6 > 2 |α|x4 + x4 implies x6 ≥ 10x4. Thus we can apply Lemma 3.7 to get

x4 < 27
log 2

log 21/3
+

50

3
x1 = 81 +

50

3
x1.

Appealing to case 2 of Lemma 3.10 we find x4 ≥ x2 + 2 |α|x2 , which yields

x2 + 2 |α|x2 < 81 +
50

3
x1.

This implies x1 + 2 · 4x1+1 < 80 + (50/3)x1, hence x1 = 1. But then we have x2 ≥ 3, thus
3 + 2 · 43 < 81 + 50/3. This is a contradiction and our result follows.

Lemma 3.12. Let λ, µ, α and β be non-zero algebraic numbers in a number field K such
that max{H(α), H(β), H(α/β)} ≥ 21/6. Let v ∈MK be a finite place such that |α|v < 1 and
|β|v = 1. Let p be the rational prime above v and say v has ramification index at most 2.
Then (3.11) has at most six solutions.
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Proof. Suppose that (3.11) has seven solutions, which we may assume to be 0 < x1 < x2 <
x3 < x4 < x5 < x6. Lemma 3.9 implies x2 ≥ 3 and since v has ramification index at most
two we have |α|x2

v ≤ |α|3v < |p|v ≤ |p|
1/(p−1)
v . Then by applying Lemma 3.8 we obtain∣∣∣∣x4 − x3

d

∣∣∣∣
v

≤ |α|x3−x2

v ,

for some d ≥ 4. Since v has ramification index ≤ 2 we then have

x4 − x3 ≥ d · p(x3−x2)/2 ≥ 4 · 2(x3−x2)/2. (3.21)

Similarly,
x5 − x4 ≥ 4 · 2(x4−x3)/2 and x6 − x5 ≥ 4 · 2(x5−x4)/2. (3.22)

By Lemma 3.8 we also know that d|(x3−x2), hence x3−x2 ≥ 4. Again applying Lemma 3.8,
but this time with k = x2, l = x5,m = x6, we see that

x6 − x2 = x6 − x5 + x5 − x2 ≥ 4 · 2(x5−x2)/2 + x5 − x2 ≥ 10(x5 − x2),

since x5 − x2 ≥
(
4
2

)
= 10. Then applying Lemma 3.7 with H ≥ 21/6 to the equation

(λα−x2)αx + (µβ−x2)βx = 1 yields

x5 − x2 ≤ 27
log 2

log 21/6
+

50

3
(x3 − x2) = 162 +

50

3
(x3 − x2). (3.23)

Combining (3.21) and (3.22) we have

x5 − x2 > x5 − x4 ≥ 4 · 2(x4−x3)/2 ≥ 4 · 22·2·(x3−x2)/2 = 41+x3−x2 .

But, since x3 − x2 ≥ 4, this violates (3.23).

3.3 Rational ternary recurrence sequences

We now consider the zero-multiplicity of non-degenerate rational recurrence sequences of
order three. We know by §1.1 that this will be finite and we will show that it is at most six,
which is best possible. The case when our recurrence is not simple is dispensed with easily.

Lemma 3.13. If {un}n∈Z is a non-degenerate rational ternary recurrence sequence with
zero-multiplicity greater than four then {un}n∈Z is simple.

40



Proof. Let P(z) = z3 − c1z
2 − c2z − c3 be the companion polynomial to the recurrence

sequence {un}n∈Z. If P(z) has only one distinct root, say α, then there is a degree two
polynomial P (z) ∈ C[z] such that

un = P (n)αn.

Thus un = 0 implies P (n) = 0 and so {un}n∈Z has zero multiplicity at most two. Say
P(z) has two distinct roots, say α1 and α2. Then there is a degree one polynomial P (z) =
a1z + a2 ∈ C[z] and a number a3 ∈ C× such that

un = P (n)αn1 + a3α
n
2 .

Since P(z) ∈ Q[z] has a double root, α1, we must have α1 ∈ Q and hence α2 ∈ Q. It is then
clear that P (z) ∈ R[z] and a3 ∈ R. For any a, b, c ∈ R, with a 6= 0 and c > 0 the equation

(ax+ b)cx − 1

in x ∈ R has at most one max/min, at x = − 1
log c

− b
a
. Hence it is zero at most twice. We

are interested in the equation (
−a1

a3

x− a2

a3

)(
α1

α2

)x
= 1. (3.24)

If α1/α2 is positive then (3.24) can have at most two solutions x ∈ Z. If α1/α2 is negative
then we split (3.24) into the two equations(

−2
a1

a3

x− a2

a3

)(
α2

1

α2
2

)x
= 1

and (
−2

a1α1

a3α2

x−
(
a1α1

a3α2

+
a2α1

a3α2

))(
α2

1

α2
2

)x
= 1,

each of which has at most two solutions x ∈ Z. Our Lemma follows.

Henceforth we will assume our recurrence is simple. Let {un}n∈Z be a non-degenerate
rational ternary recurrence with companion polynomial P(z). Say P(z) has distinct roots
α1, α2 and α3. Then there exists a1, a2, a3 ∈ C× such that

un = a1α
n
1 + a1α

n
2 + a3α

n
3 .

Note that u0, u1, u2 are not all zero and, by Lemma 3.9, the matrix 1 1 1
α1 α2 α3

α2
1 α2

2 α2
3
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has non-zero determinant. Hence applying Cramer’s Rule to 1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

 a1

a2

a3

 u0

u1

u2

 ,
we see that a1, a2 and a3 are in the splitting field of P(z). Thus we are interested in the
equation

a1α
x
1 + a2α

x
2 + a3α

x
3 = 0, (3.25)

in x ∈ Z, where α1, α2, α3 are non-zero roots of some cubic polynomial P(z) ∈ Q[z] and
a1, a2, a3 ∈ Q(α1, α2, α3).

Lemma 3.14. Let K be the splitting field of a cubic polynomial, P (z) ∈ Z[z], with roots
α1, α2, α3 and say K is not real. If v ∈ MK is finite and has ramification index ≥ 3 then
|α1|v = |α2|v = |α3|v. Conversely if v ∈MK is finite, |α1|v = |α2|v = |α3|v 6= 1 and α1, α2, α3

have no common rational integer factor in OK then v has ramification index ≥ 3.

Proof. Let v ∈ MK be a finite place with ramification index e ≥ 3, p be the prime ideal in
OK associated to v and p be the rational prime above v. Let G be the Galois group of K
over Q. First assume that pOK = pe. We know that G acts transitively on the prime ideals
in OK that divide p, hence for any σ ∈ G we have σp = p. Let α1, α2, α3 be the roots of
P (z). Say σ ∈ G is such that σα1 = α2. Then

|α2|p = |σα1|p = |α1|σ−1p = |α1|p ,

hence |α1|v = |α2|v. Similarly we have |α1|v = |α3|v. Now assume pOK 6= pe. Then since
e|[K : Q] we must have e = 3 and [K : Q] = 6. Since G acts transitively on the prime ideals
that divide p we have that pOK = p3p′3 and moreover if σ ∈ G is such that σp = p′ then σ
is of order two, hence p′ = p. This implies that if σ ∈ G has order three then σp = p. Now
since [K : Q] has degree six we must have one of α1, α2, α3 in R, say α1. Then we can find
σ, σ′ ∈ G, each of order three, such that σα1 = α2 and σ′α1 = α3. Then

|α2|p = |σα1|p = |α1|σ−1p = |α1|p .

hence |α1|v = |α2|v. Similarly we have |α1|v = |α3|v.
Now assume that v ∈ MK is a finite place such that |α1|v = |α2|v = |α3|v 6= 1. Let p

denote the rational prime above v and say

pOK = pe1 · · · pek,
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for some positive integers k and e such that ke|[K : Q]. We may assume that p1 is the
prime ideal associated to v. Again let G denote the Galois group of K over Q. Since G acts
transitively on {p1, . . . , pk}, there is a σi ∈ G, for each 1 ≤ i ≤ k, such that σip1 = pi. Then
since |α1|p1

= |α2|p1
= |α3|p3

we have

|αj|pi
= |αj|σp1

=
∣∣σ−1αj

∣∣
p1

= |αj|p1
,

for each 1 ≤ j ≤ 3 and 1 ≤ i ≤ k. This then implies that ordpi
αj is the same for each

1 ≤ j ≤ 3 and 1 ≤ i ≤ k and we denote this number by a. Since P (z) ∈ Z[z] we know that
a is a nonnegative integer and since |αj|p1

6= 1, for 1 ≤ j ≤ 3 by assumption, we have a ≥ 1.
If e = 1 then we have

α1, α2, α3 ∈ p1 · · · pk = pOK ,

hence p divides α1, α2 and α3 in OK , which is a contradiction. If e = 2 then since α1α3α3 ∈ Z
we must have 2|ordp1(α1α2α3). But ordp1(α1α2α3) = 3a, hence 2|a. This implies that

α1, α2, α3 ∈ p2
1 · · · p2

k = pOK ,

which, as in the e = 1 case, is a contradiction. Thus we must have e ≥ 3.

Lemma 3.15. Let {un}n∈Z be a non-degenerate rational ternary recurrence sequence with
companion polynomial P(z) = z3− c1z2− c2z− c3 that has distinct roots α1, α2, α3. Suppose
that u0 = 0 and that we can find a, b ∈ Q×, positive integers c and d and a prime p such that

1. αdi = a+ bαci for each i = 1, 2, 3,

2. |b|p ≤ 1/4, |c3|p = |a|p = 1 and |un|p ≤ 1 for all n ∈ Z,

3. |un|p < 1 and 0 ≤ n ≤ d+ 2c implies un = 0.

Then un = 0 implies either 0 ≤ n < d or that n = d + r for some 0 ≤ r < d and
ur = ur+c = 0.

Proof. Suppose un = 0 and put n = qd + r with q and r positive integers and 0 ≤ r < d.
If q = 0 then n = r < d and we are done, so we will assume q > 0. By assumption 1 and
(3.25) we have

3∑
i=1

ai

(
1 +

b

a
αci

)q
αrj = 0.

Using binomial expansions we get

ur +

q∑
j=1

(
q

j

)(
b

a

)j ( 3∑
i=1

aiα
r+jc
i

)
,

43



hence

ur +

q∑
j=1

(
q

j

)(
b

a

)j
ur+jc = 0. (3.26)

Since |ur+jc|p ≤ 1 and
∣∣ b
a

∣∣
p
< 1, (3.26) implies that |ur|p < 1. So, by condition 3, we have

ur = 0, hence
q∑
j=1

(
q

j

)(
b

a

)j
ur+jc = 0. (3.27)

If q = 1 then (qb/a)ur+c = 0, hence we have n = d+ r with 0 ≤ r < d, ur = 0 and ur+c = 0.
We now assume q ≥ 2 and will derive a contradiction. Dividing (3.27) by qb/a we have

ur+c +

q∑
j=2

(
q − 1

t− 1

)
1

j

(
b

a

)j−1

ur+jc = 0. (3.28)

Since |b|p ≤ 1/4 and |a|p = 1, we have
∣∣∣1j ( ba)j−1

∣∣∣
p
< 1 for all j ≥ 2, hence ur+c < 1.

Then by condition 3 we have ur+c = 0. If q = 2 then (3.28) then gives ur+2c = 0. But
ur = ur+c = ur+2c = 0 violates Lemma 3.9 since our sequence is non-degenerate. Assume
q ≥ 3. Dividing

q∑
j=2

(
q − 1

t− 1

)
1

j

(
b

a

)j−1

ur+jc = 0

by (q − 1)b/a yields

ur+2c +

q∑
j=3

(
q − 1

j − 1

)
1

j(j − 1)

(
b

a

)j−2

ur+jc = 0. (3.29)

Similar to above, since |b|p ≤ 1/4 and |a|p = 1, we have
∣∣∣ 1
j(j−1)

(
b
a

)t−2
∣∣∣
p
< 1 for every j ≥ 3.

Then (3.29) implies |ur+2c| < 1. Condition 3 then implies ur+2c = 0. But ur = ur+c =
ur+2c = 0 contradicts Lemma 3.9. Thus we have either 0 ≤ n < d or n = d + r with
0 ≤ r < d and ur = ur+c = 0.

Theorem 3.1. Let {un}n∈Z be a non-degenerate rational ternary recurrence sequence. Then
the zero-multiplicity of {un}n∈Z is at most six.

Proof. By Lemma 3.13 we may assume that {un}n∈Z is a simple recurrence. Let α1, α2 and
α3 be the roots of the companion polynomial to {un}n∈Z. Then there exists a1, a2, a3 ∈ K×,
where K = Q(α1, α2, α3), such that

un = a1α
n
1 + a1α

n
2 + a3α

n
3 .
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We consider equation (3.25) in the unknown x ∈ Z.
First assume α1, α2, α3 ∈ R. We rewrite equation (3.25) as

a1

(
α1

α3

)x
+ a2

(
α2

α3

)x
+ a3 = 0.

If we have at least five solutions then there must be at most three of the same parity. But
the equations

a1

(
α2

1

α2
3

)x
+ a2

(
α2

2

α2
3

)x
+ a3 = 0

and

a1
α1

α3

(
α2

1

α2
3

)x
+ a2

α1

α3

(
α2

2

α2
3

)x
+ a3 = 0

have at most one max/min. This is a contradiction, hence (3.25) has at most four solutions
when α1, α2, α3 ∈ R.

Henceforth we may assume that we have one real root and two complex conjugate roots.
Take a finite v ∈MK . For any γ, η ∈MK we have

|γ + η|v ≤ max{|γ|v , |η|v},

moreover if |γ|v 6= |η|v then
|γ + η|v = max{|γ|v , |η|v}.

So if equation (3.25) holds for some x ∈ Z then we must have

|aiαxi |v =
∣∣ajαxj ∣∣v , (3.30)

for some i 6= j. If there is a finite v ∈ MK such that |α1|v , |α2|v , |α3|v are all distinct then,
by (3.30) we can have at most three solutions to (3.25).

Now assume that there is a finite valuation v ∈MK such that |α1|v = |α2|v 6= |α3|v. Then
by Lemma 3.14 v has ramification ≤ 2. We can then apply Lemma 3.12 to the equation(

−a1

a3

)(
α1

α3

)x
+

(
−a2

a3

)(
α2

α3

)x
= 1,

if |α1|v < |α3|v, or to the equation(
−a3

a1

)(
α3

α1

)x
+

(
−a2

a1

)(
α2

α1

)x
= 1,

if |α1|v > |α3|v, which yields at most six solutions.

45



We are left with the case when |α1|v = |α2|v = |α3|v for all finite v ∈ MK . Let α1 be
the real root of P(z). If α1 ∈ Q then K is an imaginary quadratic field. In this case there
is only one infinite place v ∈ MK and it satisfies |α2|v = |α3|v. But then |α2/α3|v = 1 for
all v ∈ MK which implies that α2/α3 is a root of unity. So we must have that α1 6∈ Q and
[K : Q] = 6.

Note that if (3.25) has the solution x ∈ Z then if we replace each αi by α−1
i our new

equation has the solution −x and so the corresponding recurrence sequences will have the
same zero-multiplicity. By making this substitution, if necessary, we may assume |α1| ≤ |α2|.
Further we may multiply α1, α2, α3 by the same rational number so that α1 > 0 and α1, α2, α3

are algebraic integers with no common rational integer factor in OK .
Since K 6⊆ R if |α2/α1| ≥ 4 there is an infinite complex place v ∈ MK such that

|α2/α1|v ≥ 42/6 = 41/3. In particular this implies H(α2/α1) > 21/3. We can then apply
Lemma 3.11 with λ = −a2/a1 and α = α2/α1. We may thus assume that |α2/α1| < 4. The
set of polynomials in Z[z] with roots satisfying this as well as the conditions of the above
two paragraphs is finite and is given in Table 3.1 of the following section. Note that for each
of the entries in the table we have |α2/α1| > 4/3 and 10−4 < |arg(α2/α1)| < π − 10−4.

Suppose that (3.25) has seven solutions, 0 < x1 < x2 < x3 < x4 < x5 < x6. First suppose
that x2 > 50. Applying part 1 of Lemma 3.10 with m = x6, l = x5, k = x4 and α = α2/α1

to obtain x6 − x4 > |α2/α1|x4 > (4/3)x4 . Since x4 > 50 we clearly have x6 > 10x4 and we
can apply Lemma 3.7 which yields

x4 < 196 +
50

3
x1, (3.31)

since H(α2/α1) ≥ (4/3)2/6 = (4/3)1/3. But applying part 1 of Lemma 3.10 we have x4−x2 >
|α2/α1|x2 > (4/3)x2 . This contradicts (3.31) since x2 > 50. Thus we may assume x2 ≤ 50.
For every entry in Table 3.1 there is a recurrence relation given by the c1, c2, c3. We have
determined all the initial values u0, u1, u2 such that u0 = 0 and un = 0 has at least three
solutions in n with 0 ≤ n ≤ 250. These recurrences are listed in Table 3.2 of the following
section. In particular the recurrences that we have not yet ruled out will be in this list.
If x4 > 50 then inequality (3.31) still holds. From Table 3.2 we see that x1 ≤ 2 with one
exception, and (3.31) then yields x4 < 250. The one exception corresponds to c1 = −2,
c2 = 0 and c3 = 2. In this case we have |α2/α1| > 1.6, hence H(α2/α1) > (1.8)1/3. From
this the 196 in (3.31) can be improved to 100 and again we get x4 < 250 since x1 = 4. So
we may assume that x4 < 250. We then are left with the following recurrences

c1 = 2, c2 = −4, c4 = 4, u0 = 0, u1 = 0 and u2 = 1 with solutions n = 0, 1, 4, 6, 13, 52
c1 = 2, c2 = −4, c3 = 4, u0 = 0, u1 = 1 and u2 = 2 with solutions n = 0, 3, 5, 12, 51
c1 = −1, c2 = 0, c3 = 1, u0 = 0, u1 = 1 and u2 = 0 with solutions n = 0, 2, 3, 7, 16
c1 = −2, c2 = 0, c3 = 4, u0 = 0, u1 = 1 and u2 = 0 with solutions n = 0, 2, 3, 8, 24.
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We don’t need to consider the second as it is a subsequence of the first. We apply Lemma 3.15
to each in order to show that there are no solutions un = 0 with n greater than the ones
listed. For the first recurrence we take a = −206 · 234, b = 159 · 234, c = 1, d = 52 and
p = 53. For the third sequence we take a = 4, b = −7, c = 2, d = 16 and p = 7. For the last
sequence we take a = 26 · 214, b = −23 · 214, c = 1, d = 22 and p = 23.

3.4 Tables 3.1 and 3.2

Let P(z) ∈ Z[z] be given by P(z) = z3− c1z2− c2z− c3 with splitting field K. Suppose that
P(z) is irreducible with roots α1, α2, α3 such that α1 ∈ R and α2, α3 are complex conjugate
roots. In Table 3.1 we list all c1, c2, c3 such that α1 > 0, |α2/α1| < 4, |α1|v = |α2|v = |α3|v
for all finite places v ∈MK and α1, α2, α3 have no common rational integer factor in OK .

We compile the table by first noting that Lemma 3.14 implies that for any finite place v
we have either |αi| = 1, for i = 1, 2, 3, or v ramifies to order e ≥ 3. Since K is Galois over Q
we see that e = 3 or 6. Let p be the prime ideal in OK associated to v. Since the αi are of
degree three over Q, if |αi|v 6= 1 we have either v ramifies to order 3 or it ramifies to order
6 and αi ∈ p2. This implies that we can find conjugate units η1, η2, η3 ∈ OK and a positive
integer a such that α3

i = aηi for each i = 1, 2, 3. Now |α2/α1| < 4 implies that |η2/η1| < 64
and noting that η1η2η3 = 1 we have that |η1| < 1 and 1 < |η2| = |η3| < 4. Using these
bounds we can compute all the polynomials that have roots η1, η2, η3 satisfying the above
conditions. The discriminants of these polynomials give the possible primes in Q that will
ramify to order 3 or 6 in Q(η1, η2, η3) which then yields the possibilities for a.

The sequences in Table 3.2 are all of those satisfying a recurrence relation from Table 3.1
such that u0 = 0 and un = 0 has at least three solutions with 0 ≤ n < 250. If {un}n≥0 is
listed then we do not list its multiples or its shifted versions {un+k}n≥0 for any k ∈ Z.

The table is compiled as follows. For each recurrence relation in Table 3.1 and each
0 < m < 250 we determine u1 and u2 so that um = 0. This is done in the following way.
If m = 1 then we set u2 = 1. Note that we may take u2 = 1 because u3 will be a linear
combination of u2 and u0 = 0 and u1 = 0, hence will be divisible by u2. Then u4 will be a
linear combination of u3, u2 and 0, hence will be divisible by u2. Continuing in this manner
we see that all of the terms of the recurrence sequence will be divisible by u2 and we may
take it to be 1. If m ≥ 2 then using the recurrence relation we have

0 = c1un−1 + c2un−2 + c3un−3 = · · · = cu1 + du2, (3.32)

for some integers c and d not both zero. If c = 0 then we set u1 = 1 and u2 = 0, if d = 0 we
set u1 = 0 and u2 = 1 and if both c and d are non-zero we take u1 and u2 to be the unique
pair satisfying (3.32) so that u1 > 0 and gcd(u1, u2) = 1. We then check our recurrence for
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Table 3.1: Possible recurrences

c1 c1 c3 |α2/α1| c1 c2 c3 |α2/α1| c1 c2 c3 |α2/α1|
-6 0 36 1.961 0 -12 -12 3.847 0 -1 1 1.774
-5 0 25 1.905 0 -11 11 3.713 1 -2 1 2.325
-3 0 9 1.762 0 -10 10 3.574 2 -4 2 2.769
-2 -4 4 3.528 0 -9 9 3.428 2 -4 4 1.356
-2 -2 2 3.246 0 -7 7 3.115 2 -3 1 3.545
-2 -1 1 3.148 0 -6 6 2.944 3 -9 9 1.961
-2 0 2 1.839 0 -5 5 2.761 3 -6 3 3.104
-2 0 4 1.664 0 -4 4 2.562 4 -8 4 3.383
-1 -1 1 2.494 0 -3 3 2.342 5 -25 25 3.677
-1 0 1 1.525 0 -2 1 3.276 5 -10 5 3.627
0 -13 13 3.977 0 -2 2 2.089 6 -18 18 1.961

all solutions un = 0 with 0 < n < 250 and record only the recurrences with at least two
solutions other than u0.
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Table 3.2: Recurrences with at least three small solutions

Solutions n
c1 c2 c3 u0 u1 u2 with 0 ≤ n < 250
-3 0 9 0 1 0 0,2,3,9
-2 0 2 0 1 0 0,2,3,26
-2 0 2 0 2 -1 0,4,12
-2 0 4 0 1 0 0,2,3,8,24
-1 -1 1 0 0 1 0,1,4,17
-1 0 1 0 1 0 0,2,3,7,16
0 -6 6 0 1 0 0,1,3,12
0 -3 3 0 0 1 0,1,3,10
0 -1 1 0 0 1 0,1,3,8
2 -4 2 0 0 1 0,1,4,12
2 -4 4 0 0 1 0,1,4,6,12,52
3 -9 9 0 0 1 0,1,4,9
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Chapter 4

Denominators of Rational Numbers

The results of this chapter do not directly concern linear recurrence sequences but they are
vital to the proof of our main theorem in the next chapter. It will become important to deal
with equations of the form

b1β
x
1 + · · ·+ bnβ

x
n = 0, (4.1)

in x ∈ Z, where βi/βj is a root of unity for each 1 ≤ i, j ≤ n. If we fix 1 ≤ j ≤ n and rewrite
this equation as (

−b1
bj

)(
β1

βj

)x
+ · · ·+

(
−bn
bj

)(
βn
βj

)x
= 1,

we see that the order of the βi/βj, 1 ≤ i ≤ n, become important in determining the solutions
x ∈ Z. For distinct i, j, k, the size of the group G(βi : βj : βk) generated by βi/βj and βi/βk
will play a key role. In particular we will need to show that there exist equations of the form
(4.1), with β1, . . . , βn in some given set, such that the size of the groups G(βi : βj : βk) are
sufficiently large for our purposes. Since βi/βj is a root of unity for each 1 ≤ i, j ≤ n we see
that there exist real numbers b and ρ1, . . . , ρn such that

βj = be2πiρj ,

for each 1 ≤ j ≤ n. Moreover we see that ρi−ρj ∈ Q, hence if we let rij be the denominator
of ρi − ρj then

|G(βi : βj : βk)| = lcm(rij, rik),

and so our problem becomes one of determining least common multiples of denominators
of rational numbers. In particular if we can give an upper bound on the number of times
lcm(rij, rik) is small then we can find β1, . . . , βn, provided the set from which they belong is
large enough, such that that the groups G(βi : βj : βk) are not too small.
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The results in this Chapter are due to Schmidt and in particular §4.1 follows [17] and
§4.2 follows [18].

4.1 Denominators of rational numbers and ε-bad l-tuples

Let R = {ρ1, . . . , ρn} be a set of real numbers such that ρi − ρj ∈ Q for each 1 ≤ i, j ≤ n
and ρi − ρj /∈ Z if i 6= j. For the remainder of this chapter we will call such a set of reals a
denominator system. In this chapter we will usually refer to a denominator system as simply
a system for brevity. Let rij be the smallest positive integer such that rij(ρi−ρj) ∈ Z, we call
rij the denominator of ρi − ρj. Let N(ε) be the number of triples i, j, k with 1 ≤ i, j, k ≤ n
such that

lcm(rij, rik) ≤ εn. (4.2)

In [17] Schmidt conjectures that there is a function δ(ε), independent of n and R, which
tends to zero as ε tends to zero, such that

N(ε) ≤ δ(ε)n3 (4.3)

In light of this conjecture it is natural to ask if there is a function δ(ε) as above such that
the number of pairs i, j with 1 ≤ i, j ≤ n and rij ≤ εn is bounded by δ(ε)n2. This is not
the case. Consider R = {0, 1/n, . . . , (n − 1)/n} and let N0(ε) be the number of such pairs.
We have N0(ε) = nN ′

0(ε) where N ′
0(ε) is the number of integers i, 1 ≤ i ≤ n, such that

gcd(i, n) ≥ 1/ε. We have that N ′
0(ε) = n −N ′′

0 (ε) where N ′′
0 (ε) is the number of integers i,

1 ≤ i ≤ n, with gcd(i, n) < 1/ε. We have

N ′′
0 (ε) ≤ n

∏
p|n

p≥1/ε

(1− p−1)

If we set n to be the product of all the primes in the interval [1/ε,m] then since, for s > 1,∏
p|n

p≥1/ε

(1− p−s)−1 → ζ(s)

as n → ∞ and ζ(s) → ∞ as s → 1 we can take m large enough to ensure N ′′
0 (ε) < n/2,

hence N ′
0(ε) > n/2 and N0(ε) > n2/2.

For our purposes we will not need to assume Schmidt’s conjecture in it’s full generality,
it will suffice to prove it in special cases. For a system R = {ρ1, . . . , ρn}, 1 ≤ i ≤ n and
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x ∈ Z, we let uRi (x) denote the number of 1 ≤ j ≤ n such that

rij|x

We will call a system homogeneous if uRi (x) does not depend on i, in which case we simply
write uR(x). For example R = {0, 1/n, . . . , (n − 1)/n} is homogenous. For positive integer
q the set of numbers i/q such that 1 ≤ i ≤ q and gcd(i, q) = 1 is another example. If the
system R is understood we will sometimes write u(x).

Theorem 4.1. If R is a homogeneous system and 0 < χ < 1 then

N(ε) ≤ ζ(2− χ)εχn3 (4.4)

So in (4.3) we may take δ(ε) = ζ(2 − χ)εχ. To prove Theorem 4.1 we will actually prove
something slightly stronger. For homogeneous systems R and S we say that R and S are
isomorphic, denoted R ∼= S, if for each x ∈ Z we have uR(x) = uS(x). Note that R ∼= S
necessarily implies that they are of the same cardinality by taking x so that uR(x) = |R|
and uS(x) = |S|.

Theorem 4.2. Let R = {ρ1, . . . , ρn}, S = {σ1, . . . , σn} and T = {τ1, . . . , τn} be homogeneous
and isomorphic to each other. Suppose that for each 1 ≤ i, j, k ≤ n we have ρi−σj, ρi− τk ∈
Q. Let aij and bik be the denominators of ρi − σj and ρi − τk respectively. If N(ε) is the
number of triples 1 ≤ i, j, k ≤ n with

lcm(aij, bik) ≤ εn (4.5)

then (4.4) holds for 0 < χ < 1.

Theorem 4.2 will be proven via a series of Lemmas. Let R = {ρ1, . . . , ρn} be a homoge-
neous system. For x ∈ Z and 1 ≤ i, j ≤ n we write ρi

x∼ ρj if x(ρi − ρj) ∈ Z. It is easy to

see that
x∼ defines an equivalence relation on R. Since R is homogeneous, each equivalence

class will consist of u(x) elements, hence R splits into n/u(x) equivalence classes, which we
will denote by v(x).

For R = {ρ1, . . . , ρn}, S = {σ1, . . . , σn} and x ∈ Z, we write R
x≡ S if x(ρi − σj) ∈ Z

for each 1 ≤ i, j ≤ n. The relation
x≡ for systems is symmetric and transitive but is not

necessarily reflexive. However if R
x≡ S then R

x≡ R since R
x≡ S

x≡ R. Note that if R
x≡ R

then ρi = ρ1 + ai/x with ai ∈ Z, but if i 6= j then ρi − ρj = (ai − aj)/x /∈ Z, hence ai 6≡ aj
(mod x) and thus |R| ≤ x.
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Lemma 4.1. Let R be homogeneous, x a positive integer and let R1, . . . , Rv be the equivalence

classes of R with respect to
x∼. Then for each 1 ≤ r, s ≤ v we have Rr

x≡ Rr but Rr 6
x≡ Rs

when r 6= s. The systems R1, . . . , Rv are all homogeneous and isomorphic to each other.

When R
m≡ R and x|m then v ≤ m/x. Furthermore, if S is homogeneous and isomorphic to

R with equivalence classes S1, . . . , Sv then R1
∼= · · · ∼= Rv

∼= S1
∼= · · · ∼= Sv. Given 1 ≤ r ≤ v

there is at most one 1 ≤ s ≤ v with Rr
x≡ Ss.

Proof. If ρi, ρj ∈ Rr then x(ρi − ρj) ∈ Z, thus Rr
x≡ Rr. However if ρj ∈ Rr and ρj ∈ Rs,

for i 6= j, then x(ρi − ρj) /∈ Z so Rr 6
x≡ Rs. Now suppose that ρi, ρj ∈ Rr. Then ρi

y∼ ρj
when rij|y. Since rij|x we have ρi

y∼ ρj precisely when rij|d where d = gcd(x, y). Conversely
if ρi ∈ Rr, ρj ∈ R and rij|d then rij|y and rij|x, hence ρj ∈ Rr. So we have

uRr
i (y) = uRr

i (d) = uRi (d) = uR(d)

Thus Rr is homogeneous with uRr(y) = uR(y). It follows that R1
∼=, . . . ,∼= Rv. If R

m≡ R
then for each 1 ≤ i ≤ n we have ρi = ρ1 + ai/m for ai ∈ Z. Now if ρi ∈ Rr and ρj ∈ Rs,
with r 6= s, then x(ρi − ρj) = x(ai − aj)/m /∈ Z, so that ai 6≡ aj (mod m/x). Thus we must
have v ≤ m/x.

When S is homogeneous with R ∼= S, each equivalence class S1, . . . Sv is homogeneous
and, for each 1 ≤ s ≤ v, uSs(y) = uS(d) = uR(d). Hence R1

∼= . . . ∼= Rv
∼= S1

∼= . . . ∼= Sv.

Lastly we see that if Rr
x≡ Ss and Rr

x≡ St then Sr
x≡ St, giving s = t.

For any prime p set c(χ, p) = (1− pχ−2)−1 and for m > 1,

c(χ,m) =
∏
p|m

c(χ, p),

where, again, 0 < χ < 1. We set c(χ, 1) = 1.

Lemma 4.2. Suppose that systems R,S, T are as in Theorem 4.2 and that there is some
m ∈ Z such that

R
m≡ S

m≡ T. (4.6)

Then
N(ε) ≤ c(χ,m)εχn3.

Note that for any systems R,S, T as in Theorem 4.2 there is an m ∈ Z satisfying (4.6) and
that c(χ,m) < ζ(2− χ). Thus Lemma 4.2 implies Theorem 4.2.

53



Proof. If m = 1 we have ρi − ρj ∈ Z for 1 ≤ i, j ≤ n and ρi − ρj /∈ Z when i 6= j, and so
n = 1. Then (4.5) cannot hold unless ε ≥ 1. In this case N(ε) = 1 ≤ εχ = c(χ, 1)εχ13.
Thus it will suffice to prove the lemma for

m = plm0

where p is a prime with p 6 |m0, l > 0, assuming the Lemma is true for m0.
Applying a common translation to R,S, T we may assume that all of their elements are

in m−1Z. Set, for 0 ≤ q ≤ l,
xq = m0p

l−q = mp−q.

Let R1, . . . , Rv1 be the equivalence classes of R with respect to
x1≡, where v1 = v(x1). We

see that each Rr, for 1 ≤ r ≤ v1, has u(x1) = n/v1 elements. By Lemma 4.1 we have
v1 ≤ m/x1 = p. Given a class Rr, we split it into subclasses Rr,1, . . . , Rr,v2 with respect

to
x2≡. Since Rr

x1≡ Rr we have v2 ≤ x1/x2 = p. Moreover, since Rr
∼= Rr′ , the number

v2 is independent of the choice of 1 ≤ r ≤ v1, by Lemma 4.1. Now we have that R splits

into the classes Rr1,r2 , 1 ≤ r1 ≤ v1 and 1 ≤ r2 ≤ v2, with respect to
x2≡ and these v1v2

systems are isomorphic to each other. We continue in this manner and, for 0 < q ≤ l, we
construct sets Rr1,...,rq with 1 ≤ ri ≤ vi, where vi is the number of equivalence classes of

any Rr1,...,ri−1
under

xi≡. These equivalence classes are all isomorphic to each other and they
contain n/v(xq) = n/(v1 · · · vq) elements. When q = 0 the notation Rr1,...,rq denotes R.

Likewise we construct systems Ss1,...,sq and Tt1,...,tq , where 1 ≤ si ≤ vi and 1 ≤ ti ≤ vi, for
1 ≤ i ≤ q, with the numbers v1, . . . , vq the same as above by Lemma 4.1. Also by Lemma 4.1,
since R ∼= S ∼= T , we have

Rr1,...,rq
∼= Ss1,...,sq

∼= Tt1,...,tq

for any r1, . . . , tq as above.
If we have

Rr1,...,rq

xq≡ Ss1,...,sq

xq≡ Tt1,...,tq (4.7)

for some 1 ≤ q ≤ l and r1, . . . , tq, then

Rr1,...,rq−1

xq−1≡ Ss1,...,sq−1

xq−1≡ Tt1,...,tq−1 (4.8)

When q = 1 (4.8) denotes R
x0≡ S

x0≡ T , which is true by (4.6) since x0 = m. On the other
hand, when (4.8) holds, then by Lemma 4.1 the number of triples rq, sq, tq with (4.7) is ≤ vq,
since there are at most vq choices for rq. Denote by w1 the number of triples r1, s1, t1 such
that (4.7) holds for q = 1, in particular w1 ≤ v1. Suppose that w1, . . . , wq−1 have been
defined such that the number of 3(q−1)-tuples r1, . . . , tq−1 with (4.8) equals w1 · · ·wq−1. Let
wq be a number such that the number of 3q-tuples r1, . . . , tq with (4.7) equals w1 · · ·wq. In
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particular, when w1 · · ·wq−1 = 0, then (4.8) never holds, hence (4.7) never holds, and we set
wq = 0. In this way wq is uniquely defined for each 1 ≤ q ≤ l, and 0 ≤ wq ≤ vq.

We will write r = (r1, . . . , rl), s = (s1, . . . , sl), t = (t1, . . . , tl). There are (v1 · · · vl)3

triples r, s, t. For 0 ≤ q ≤ l, let Cq be the set of triples r, s, t such that q is the largest
integer in 0 ≤ q ≤ l for which (4.7) holds. In particular, C0 consists of the triples where (4.7)
does not hold for q = 1. The number of 3q-tuples r1, . . . , tq with (4.7) is w1 · · ·wq. Thus

|Cl| = w1 · · ·wl. (4.9)

When q < l, the number of 3(q + 1)-tuples r1, . . . , tq+1 with (4.7) equals w1 · · ·wqv3
q+1. On

the other hand, the number of such 3(q + 1) tuples where (4.7) holds with q + 1 in place of
q is w1 · · ·wqwq+1. Thus the number of 3(q+ 1)-tuples where (4.7) holds, but not with q+ 1
in place of q, is w1 · · ·wq(v3

q+1 − wq+1). Given such a 3(q + 1)-tuple, the number of choices
for rq+2, . . . , rl, . . . , tq+2, . . . , tl is (vq+2 · · · vl)3, which is to be interpreted as 1 when q = l−1.
Thus

|Cq| = w1 · · ·wq(v3
q+1 − wq+1)(vq+2 · · · vl)3 (4.10)

for 0 ≤ q < l, where the right hand side is to be interpreted as (v3
1 − w1)(v1 · · · vl)3 when

q = 0 and w1 · · ·wl−1(v
3
l − wl) when q = l − 1.

Given r, s, t, let N(r, s, t; ε) be the number of triples i, j, k with ρi ∈ Rr, σj ∈ Ss, τk ∈ Tt

having (4.5). In order to finish the proof of Lemma 4.2 we require a sublemma.

Lemma 4.3. Suppose that r, s, t belong to Cq. Then

N(r, s, t; ε) ≤ c(χ,m0)ε
χn3p(q−1)χ(v1 · · · vl)χ−3 (4.11)

Proof. Numbers ξ ∈ m−1Z may be uniquely written as

ξ =
y

m0

+
z

pl
= ξ′ + ξ′′

with y, z ∈ Z and 0 ≤ z < pl. For ρi ∈ Rr, write ρi = ρ′i + ρ′′i as above. Now m0 = xl,
so ρi

m0∼ ρj for each ρi, ρj ∈ Rr, hence ρ′′i is the same for every ρi ∈ Rr. Using the same
argument for Ss and Tt we have

ρi = ρ′i + ρ′′, σj = σ′j + σ′′, τk = τ ′k + τ ′′

for ρi ∈ Rr, σj ∈ Ss, and τk ∈ Tt. Since r, s, t ∈ Cq, we have xq(ρi−σj) = mop
l−q(ρi−σj) ∈ Z,

hence pl−q(ρ′′ − σ′′) ∈ Z and similarly pl−q(ρ′′ − τ ′′) ∈ Z. However, when q < l, then (4.7)
does not hold with q + 1 in place of q, so that not both xq+1(ρi − σj), xq+1(ρi − τk) lie in
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Z, hence not both of pl−q−1(ρ′′ − σ′′), pl−q−1(ρ′′ − τ ′′) are in Z. Thus if a′′ and b′′ are the
denominators of ρ′′ − σ′′ and ρ′′ − τ ′′ respectively, we have

lcm(a′′, b′′) = pl−q (4.12)

Let R′
r be the homogeneous system consisting of the ρ′i where ρi ∈ Rr and define S ′s

and T ′t similarly. Clearly R′
r
∼= Rr, S

′
s
∼= Ss and T ′t

∼= Tt, hence R′
r
∼= S ′s

∼= T ′t. Moreover

R′
r

m0≡ S ′s
m0≡ T ′t. For (ρ′i, σ

′
j, τ

′
k) ∈ R′

r× S ′s× T ′t, let a′ij, b
′
ik be the denominators of ρ′i− σ′j and

ρ′i − τ ′k respectively. Then aij = a′ija
′′ and bik = b′ikb

′′. Since p 6 |a′ijb′ij,

lcm(aij, bik) = pl−qlcm(a′ij, b
′
ik)

by (4.12). Thus (4.5) becomes

lcm(a′ij, b
′
ik) ≤ εpq−ln = εpq−lv1 · · · vl

n

v1 · · · vl
. (4.13)

We supposed Lemma 4.2 to be true for m0, thus we can apply it to R′
r, S

′
s, T

′
t with

εpq−lv1 · · · vl in place of ε. Now each of these three systems has cardinality n/(v1 · · · vl).
Thus

N(r, s, t; ε) ≤ c(χ,m0)(εp
q−lv1 · · · vl)χ

(
n

v1 · · · vl

)3

= c(χ,m0)ε
χn3p(q−l)χ(v1 · · · vl)χ−3.

We can now continue with the proof of Lemma 4.2. Note that

N(ε) =
∑

r

∑
s

∑
t

N(r, s, t; ε)

so, by Lemma 4.3,

N(ε) ≤ c(χ,m0)ε
χn3(v1 · · · vl)χ−3

l∑
q=0

|Cq|p(q−l)χ. (4.14)

We see, by (4.9) and (4.10), that, for 1 ≤ q ≤ l, |Cq−1|, . . . , |Cl| depend on wq. As wq
increases |Cq−1| decreases, unless it is zero, while |Cq|, . . . , |Cl| will increase, unless they are
zero, but the sum |Cq−1| + · · · + |Cl| is constant. Since the coefficient p(q−1−l)χ of |Cq−1|
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is smaller than the coefficients of |Cq|, . . . , |Cl|, the sum in (4.14) can only increase as wq
increases. Since 0 ≤ wq ≤ vq the sum in (4.14) is bounded by

(v3
1 − v1)(v2 · · · vl)3p−lχ + v1(v

3
2 − v2)(v3 · · · vl)3p−(l−1)χ

+ · · ·+ (v1 · · · vl−1)(v
3
l − vl)p

−χ + vl · · · vl.
Then we can conclude

N(ε) ≤ c(χ,m0)ε
χn3f(1, v1, . . . , vl) ≤ c(χ,m0)ε

χn3f(γ, v1, . . . , vl)

where γ = c(χ, p) = (1− pχ−2)−1 and

f(λ, v1, . . . , vl) = (v1 · · · vl)χ−2

(
λ+

v2
l − 1

pχ
+
v2
l−1 − 1

p2χ
v2
l + · · ·+ v2

1 − 1

plχ
(v2 · · · vl)2

)
.

In order to finish the proof of Lemma 4.2, and hence Theorem 4.2, it remains to show
that, for 1 ≤ q ≤ l, when 1 ≤ vq ≤ p we have

f(γ, v1, . . . , vl) ≤ γ = c(χ, p), (4.15)

since c(χ, p)c(χ,m0) = c(χ, pm0) ≤ c(χ, plm0) = c(χ,m). We will establish (4.15) by in-
duction on l. When l = 1 or when l > 1 and v1, . . . , vl−1 are given, f(γ, v1, . . . , vl) has the
form

Avχl +Bvχ−2
l

with A,B > 0. This equation is first decreasing and then increasing in vl > 0, thus its
maximum on any closed interval of positive reals occurs at an end point. For l = 1 we have

f(γ, 1) = γ,

f(γ, p) = 1 + γpχ−2 − p−2 < 1 + γpχ−2 = γ

establishing (4.15) for l = 1. Now assume (4.15) for l − 1, where l > 1. We have, by
induction,

f(γ, v1, . . . , vl−1, 1)

= (v1 · · · vl−1)
χ−2

(
γ +

v2
l−1 − 1

p2χ
+ · · ·+ v2

1 − 1

plχ
(v1 · · · vl−1)

2

)
≤ f(γ, v1, . . . , vl−1) ≤ γ,

f(γ, v1, . . . , vl−1, p)

= (v1 · · · vl−1)
χ−2

(
1 + γpχ−2 − p−2 +

v2
l−1 − 1

pχ
+ · · ·+ v2

1 − 1

p(l−1)χ
(v1 · · · vl−1)

2

)
≤ f(γ, v1, . . . , vl−1) ≤ γ,
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since 1 + γpχ−2 − p−2 < γ, establishing our result.

We will now state a Corollary to Theorem 4.1 that will be necessary in establishing the
main result in this report. For R a system as above, we say that a triple of integers i, j, k
is ε-bad if (4.2) holds. It is easy to check that this property is independent of the ordering.
Let l ≥ 3 and consider l-tuples of integers u1, . . . , ul in 1 ≤ u1, . . . , ul ≤ n. We call such an
l-tuple ε-bad if some triple ui, uj, uk with distinct i, j, k is ε-bad.

Corollary 4.1. Suppose that R = {ρ1, . . . , ρn} is homogeneous. Then for any l ≥ 3, the
number of ε-bad l-tuples u1, . . . , ul is

< ε1/2l3nl.

Proof. By taking χ = 1/2 in Theorem 4.1, the number of ε-bad triples is

≤ ζ

(
3

2

)
ε1/2n3 < 3ε1/2n3.

Hence given a triple i, j, k with 1 ≤ i < j < k ≤ l, the number of l-tuples u1, . . . , ul for
which ui, uj, uk is ε-bad is < 3ε1/2n3nl−3 = 3ε1/2nl. The number of distinct triples i, j, k in
1 ≤ i, j, k ≤ l is

(
l
3

)
, so the number of ε-bad l-tuples is

≤ 3

(
l

3

)
ε1/2nl < ε1/2l3nl.

4.2 Denominators of rational numbers and ε-unpleasant

l-tuples

Take positive integer q and let R be the system of numbers u/q with 1 ≤ u ≤ q and
gcd(u, q) = 1. This system has n = φ(q) elements, say R = {ρ1, . . . , ρn}. As in the last
section, for 1 ≤ i, j ≤ n, rij will denote the denominator of ρi − ρj.

In this section we will be concerned with the number of triples 1 ≤ i, j, k ≤ n, for this
particular system R and ε > 0, such that

lcm(rij, rik) ≤ εq, (4.16)

which will be denoted M(ε).
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Theorem 4.3. For 0 < κ < 1, there is a constant, c(κ), depending only on κ such that

M(ε) ≤ c(κ)εκn3. (4.17)

And, in particular, when κ = 1/2 we may take c(κ) = 11.

Proof. First note that when ε ≥ 1/2, we have εκ > 1/2, so trivially M(ε) ≤ n3 < 2εκn3.
Hence we may assume 0 < ε < 1/2.

For 1 ≤ u, v, w ≤ q with gcd(u, q) = gcd(v, q) = gcd(w, q) = 1, the least common
denominator of u/q − v/q and u/q − w/q is q/d, where d = gcd(u − v, u − w, q). So if S
denotes the set of numbers z in 1 ≤ z ≤ q with gcd(z, q) = 1, then M(ε) is the number of
triples u, v, w ∈ S with

gcd(u− v, u− w, q) ≥ 1/ε. (4.18)

When gcd(r, q) = 1, the left hand side of (4.18) is unchanged if u, v, w are replaced by
numbers congruent to ru, rv, rw (mod q). It follows that M(ε) = nM1(ε), where M1(ε) is
the number of pairs v, w ∈ S with

gcd(1− v, 1− w, q) ≥ 1/ε

Given positive integer h, let M2(h) be the number of pairs v, w ∈ S such that

h| gcd(1− v, 1− w, q). (4.19)

Then
M1(ε) ≤

∑
h≥1/ε

M2(h) =
∑
h|q

h≥1/ε

M2(h).

It is not too difficult to show that, for 0 < κ < 1, the Euler totient function satisfies
φ(h) ≥ c1(κ)h

(1+κ)/2, where c1(κ) is a constant depending on κ, see for instance [9] pg. 267-
268. In particular if we take κ = 1/2 we may take c1(1/2) = (2/27)(1/4). To see this first
write h = pe11 · · · pes

s , where pi are the distinct prime factors of h and each ei ≥ 1, then

φ(h) = h

s∏
i=1

(1− p−1)

=
p
e1/4
1 (p1 − 1)

p1

· · · p
es/4
s (ps − 1)

ps
h3/4

≥ 21/4 · 1
2

31/4 · 2
3

h3/4

=

(
2

27

)1/4

h3/4.
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Suppose h|q and let h′, q′ denote their respective square free parts. Note that φ(q)/q =
φ(q′)/q′ and φ(h)/h = φ(h′)/h′. Define t, t′ by q = ht and q′ = h′t′, so that φ(q′) = φ(h′)φ(t′).
This yields

(φ(t′)/t′)(q/h) = (φ(q′)/φ(h′))(t/t′)

= (φ(q)/φ(h))(q′/q)(h/h′)(t/t′)

= φ(q)/φ(h) (4.20)

≤ c1(κ)
−1φ(q)h−(1+κ)/2

= c1(κ)
−1nh−(1+κ)/2.

Now (4.19) yields v = 1 + hx, for some positive integer x. Moreover since v ∈ S we must
have 0 ≤ x < q/h and gcd(1+hx, q) = 1. Now gcd(1+hx, q) = 1 implies gcd(1+hx, t′) = 1
and since gcd(h, t′) = 1, we can have at most φ(t′) values for x in an interval of length t′,
hence (φ(t′)/t′)(q/h) values for x in 0 ≤ x < q/h. This is the number of possibilities for v,
and similarly for w. Thus

M2(h) = ((φ(t′)/t′)(q/h))
2 ≤ c1(κ)

−2n2h−1−κ

by (4.20), which then yields

M1(ε) ≤ c1(κ)
−2n2

∑
h≥1/ε

h−1−κ. (4.21)

Since 0 < ε < 1/2 the sum in (4.21) may be estimated by an integral from 1/ε − 1 to ∞,
and since 1/ε− 1 ≥ 1/(2ε), we have∫ ∞

1/ε−1

h−1−κdh ≤
∫ ∞

1/(2ε)

h−1−κdh = κ−1(2ε)κ,

which yields
M(ε) = nM1(ε) ≤ c1(κ)

−2κ−12κεκn3.

When κ = 1/2, the value of c1(1/2) given above yields

M1(ε) ≤ (27/2)1/221+1/2ε1/2n3 < 11ε1/2n3.

For our particular system R we will call a triple i, j, k in 1 ≤ i, j, k ≤ n ε-unpleasant if
(4.16) holds. When l ≥ 3 and u1, . . . , ul is an l-tuple of integers with 1 ≤ u1, . . . , ul ≤ n, we
call this l-tuple ε-unpleasant if some triple ui, uj, uk, with distinct i, j, k, is ε-unpleasant.
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Corollary 4.4. The number of such ε-unpleasant l-tuples is

< 2ε1/2l3nl.

Proof. By the case κ = 1/2 of Theorem 4.3, the number of ε-unpleasant triples is < 11ε1/2n3.
Thus given i, j, k with 1 ≤ i < j < k ≤ l, the number of l-tuples u1, . . . , ul for which ui, uj, uk
is ε-unpleasant is < 11ε1/2n3nl−3 = 11ε1/2nl. The number of such triples i, j, k is

(
l
3

)
, hence

the number of ε-unpleasant l-tuples is

< 11

(
l

3

)
ε1/2nl < 2ε1/2l3nl.
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Chapter 5

Recurrences of Order t

In this chapter we investigate linear recurrence sequences or arbitrary order. In §5.1 we give
a bound for rational recurrence sequences depending only on the order of the recurrence
sequence. The remainder of the chapter will then be devoted to proving that any linear
recurrence sequence has zero multiplicity bounded by a constant depending only on its
order. With the exception of Theorem 5.1 and Lemma 5.7 we follow Schmidt’s papers [17]
and [18].

5.1 Rational recurrences

Our main problem in dealing with arbitrary linear recurrences of order t is that, in the
algebraic case, the logarithmic heights of the numbers involved can be arbitrarily small. If
we assume that our recurrence sequence is rational then we do not have this problem and
we have the following.

Theorem 5.1. Let {un}n∈Z be a rational linear recurrence sequence of order t and let Z =
{n ∈ Z : un = 0}. Then the set Z can be written as the union of fewer than

t25t
3

single numbers and arithmetic progressions.

Proof. We know, by Theorem 1.1, that if the companion polynomial to our recurrence factors
as

k∏
i=1

(z − αi)
ti ,

62



then there are polynomials Pi(z) ∈ C[z], with degPi = ti − 1, such that

un = P1(n)αn1 + · · ·+ Pk(n)αnk ,

for all n ∈ Z. Hence we will be interested in the equation

P1(x)α
x
1 + · · ·+ Pk(x)α

x
k = 0 (5.1)

in x ∈ Z. Now all numbers involved lie in the splitting field, K, of a polynomial of degree t
with rational coefficients. Hence d = [K : Q] ≤ t! < tt. We define t = t(P1, . . . , Pk) by

t(P1, . . . , Pn) =
k∑
i=1

(degPi + 1).

First assume {un}n∈Z is nondegenerate. Note that this implies |Z| is finite. If t ≤ 2 then
there will be at most one solution so we may assume t ≥ 3. In this case we can apply a
result of Schlickewei and Schmidt [16] and, in particular, by Theorem 2.1 of [16] we have

|Z| < (2t)35t2d6t2 < (2t)35t2t6t
3

< t25t
3

.

Now assume that there is some i 6= j such that αi/αj is a root of unity. If t = 2 again the
result is trivial as Z will consist of a single arithmetic progression of modulus ord(α1/α2).
Here and throughout this chapter we denote by ord(ζ) the smallest positive integer q such
that ζq = 1, for root of unity ζ. We will proceed by induction on t ≥ 3. Without loss
of generality we may assume αk/αk−1 is a root of unity. Let q = ord(αk/αk−1), since
[Q(αi, αj) : Q] ≤ t(t − 1) we see that q < t2. We divide Z into the arithmetic progressions
A(q, b), with 0 ≤ b < q. Hence a solution x of (5.5) has the form x = qy + b for some
y ∈ Z and 0 ≤ b < q. We then set α̂i = αqi , for 1 ≤ i ≤ k − 1, P̂i(y) = αbiPi(qy + b), for
1 ≤ i ≤ k − 2, and P̂k−1(y) = αbk−1Pk−1(qy + b) + αbkPk(qy + b). We have the equation

P̂1(y)α̂
y
1 + · · ·+ P̂k−1(y)α̂

y
k−1 = 0. (5.2)

Now t(P̂1, . . . , P̂k−1) < t(P1, . . . , Pk) so by induction the solutions of (5.2) are the union of
at most

(t− 1)25(t−1)3

single numbers and arithmetic progressions. Summing over 0 ≤ b < q we see that Z can be
written as the union of fewer than

t2(t− 1)25(t−1)3 < t25t
3

single numbers and arithmetic progressions.
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5.2 Main results

In this chapter we deal with linear recurrences of order t, where t is an arbitrary positive
integer. A long standing problem, arguably the most important one in the theory of linear
recurrence sequences was whether or not the zero-multiplicity of an arbitrary linear recur-
rence sequence of complex numbers could be bounded by a function depending on t alone.
In [15] Schlickewei showed that if {un}n∈Z is a non-degenerate algebraic linear recurrence
sequence of order t contained in a number field K of degree d then its zero-multiplicity is
bounded by a function depending only on t and d. In [8] Evertse, Schlickewei and Schmidt
show that the zero multiplicity of any simple non-degenerate linear recurrence sequence is
bounded by a function depending only on its order. In [17] Schmidt was able to remove
the condition that the recurrence has to be simple. Schmidt [18] then generalised this, in a
suitable manner, to all linear recurrence sequences. The remainder of this chapter will be
devoted to establishing this result. It is important to note that the main result in [8] is vital
in what follows and it in turn relies heavily on a quantitative version of Schmidt’s subspace
theorem due to Evertse and Schlickewei in [7]. Our main result is the following.

Theorem 5.2. Let {un}n∈Z ⊂ C be a linear recurrence sequence of order t and let Z = {n ∈
Z : un = 0}. The set Z can be taken to be the union of not more than

exp exp exp(3
√
t log t) (5.3)

single numbers and arithmetic progressions. Also if the companion polynomial to {un}n∈Z
has k distinct roots, each with multiplicity not exceeding s then (5.3) can be replaced by

exp exp(10sks log k). (5.4)

In particular if α1, . . . , αk are the distinct roots of the companion polynomial and there
is some 1 ≤ i0 ≤ k with αi0/αj not a root of unity for every 1 ≤ j ≤ k with j 6= i0 then we
know by Corollary 1.3 that |Z| is finite and thus is bounded above by (5.3) and (5.4).

Here we have improved Schmidt’s result in [18] by lowering the constant from 30 to 10
in (5.4) and by replacing 20t with 3

√
t log t in (5.3). The key change in our argument is

an improvement of Lemma 5.7 in which we show that for a certain collection of vectors the
number of tuples of linearly independent vectors is bounded by t

√
2t, where in [18] Schmidt

provided a bound of e12t.
It will be useful to introduce the notation α ∼ β, for α, β ∈ C×, if α/β is a root of unity.

This is obviously an equivalence relation on C×. Throughout this chapter we will use h(β)
to denote the absolute logarithmic height of an algebraic number β, as defined in §1.2.
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Let P(z) ∈ C[z] be the companion polynomial to the recurrence sequence {un}n∈Z ⊂ C
of order t. Say

P(z) =
k∏
i=1

(z − αi)
ti ,

for α1, . . . , αk distinct. Then, by Theorem 1.1, there exists polynomials Pi(z) ∈ C[z], with
degPi = ti − 1, such that

un = P1(n)αn1 + · · ·+ Pk(n)αnk ,

for all n ∈ Z. Throughout this chapter we investigate the solutions of

P1(x)α
x
1 + · · ·+ Pk(x)α

x
k = 0 (5.5)

in x ∈ Z.
If Z ⊂ Z can be written as a finite union of single numbers and arithmetic progression

then we set

ν(Z) = min{u+ v : Z can be written as the union of u numbers and v progressions},

otherwise we set ν(Z) = ∞. Thus the goal of this chapter is to show that if Z is the set of
integers satisfying (5.5) then ν(Z) is bounded by (5.3) and (5.4).

In order to work with (5.5) we first prove a specialisation argument that allows us to
assume the αi and the coefficients of the Pi are all algebraic. The first main step in our proof
is Lemma 5.6, which gives us an avenue for induction provided that there is a real number
h∗ > 0 and 1 ≤ i, j ≤ k with h(αi/αj) > h∗. This Lemma however introduces a constant
that depends not only on t but on h∗. Clearly it is impossible to find one such h∗ to apply
to all linear recurrence sequences {un}n∈Z ⊂ Q.

To get around this we first write

Pi(x) = ai1 + · · ·+ aisx
s−1.

We then define the linear forms N1(X), . . . , Ns(X), in X = (X1, . . . , Xk), by

Nj(X) = a1jX1 + · · ·+ akjXk.

Then (5.5) may be rewritten as

s∑
j=1

Nj(α
x
1 , . . . , α

x
k)x

j−1 = 0. (5.6)
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If the αi and aij are in a number field K of degree D then we consider the D embeddings
K ↪→ C. We let β(σ) denote the image of β ∈ K under the embedding σ : K ↪→ C and

N
(σ)
j (X) = a

(σ)
1j X1 + · · ·+ a

(σ)
kj Xk.

Then applying σ to (5.6) we see that

s∑
j=1

N
(σ)
j (α

(σ)x
1 , . . . , α

(σ)x
k )xj−1 = 0.

Then for any embeddings σ1, . . . , σs the determinant of the s× s matrix with entries
N

(σi)
j (α

(σi)x
1 , . . . , α

(σi)x
k ) must vanish, i.e.

|[N (σi)
j (α

(σi)x
1 , . . . , α

(σi)x
k )]1≤i,j≤s| = 0. (5.7)

We prove a proposition stating that all solutions x ∈ Z of (5.7) can be divided up into a finite

number of classes, depending only on T = min{ks, t
√

2t}, and in each of these classes there
is a positive integer m such that any two solutions in the class are congruent modulo m and
there are i 6= j with either h(αmi /α

m
j ) > h∗ or αi ∼ αj and ord(αmi /α

m
j ) ≤ (h∗)−1, where h∗

depends only on T . By looking at the solutions in a given class we can replace the αi in (5.5)
with αmi and apply an induction argument, the case of αi ∼ αj being straightforward while
the case αi 6∼ αj requiring the aforementioned Lemma. Since all of the constants involved
depend only on T or on t < T we can get a bound depending only on T , which will yield
(5.3) and (5.4).

The hard part, as it turns out, is in proving this proposition mentioned above and most
of this chapter is devoted to doing just that. Moreover it is for this result that we need
Corollaries 4.1 and 4.4 of Chapter 4.

5.3 Specialisation

For a, b ∈ Z with a > 0 we denote the arithmetic progression {ax + b : x ∈ Z} by A(a, b).
It is important to note that Z ⊆ Z ′ does not in general imply ν(Z) ≤ ν(Z ′). It is for this
reason that we require the following lemma.

Lemma 5.1. Suppose ν(Z) is finite. Then there exists a finite, possibly empty, set T ⊂ Z
with Z ∩ T = ∅ such that every set Z ′ ⊇ Z with Z ′ ∩ T = ∅ has ν(Z ′) ≥ ν(Z).
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Proof. Suppose that ν(Z) = u + v and Z = Z1 ∪ Z2 with |Z1| = u and Z2 the union of
v arithmetic progressions. Since u + v is minimum for Z we have that Z1 ∩ Z2 = ∅ and
ν(Z2) = v.

Say Z1 = {n1, . . . , nu}. When u = 0 or u = 1 we set T1 = ∅. When u > 1 and ni < nj
we note that A(nj − ni, ni) 6⊆ Z, since if it was then we would have A(nj − ni, ni) ⊆ Z2.
In particular this would imply ni, nj ∈ Z2 and we could remove ni, nj from Z1 contradicting
the minimality of ν(Z). Hence, for each ni < nj, with 1 ≤ i, j ≤ u, we can take some
tij ∈ A(nj − ni, ni) such that tij 6∈ Z. Set T1 = ∪{tij}. We now remark that any arithmetic
progression A with A ∩ T1 = ∅ contains at most one element of Z1. Thus when v = 0 the
lemma holds with T = T1.

Now assume v > 0 and let Z2 be the union of arithmetic progressions A(ai, bi), 1 ≤ i ≤ v.
Set q = lcm(a1, . . . , av). Note that whenever n ∈ Z2 then A(q, n) ⊆ Z2, we call q the period
of A. Let l = qv and, if necessary, translate Z so that [1, ql] ∩ Z1 = ∅. Define T2 by

T2 = {n ∈ [1, ql] : n /∈ Z}.

Suppose A is an arithmetic progression of modulus a ≤ l. Consider the elements b, b +
a, . . . , b+ (q − 1)a ∈ A with 1 ≤ b ≤ a. If each of these is in Z2 then, since Z has period q,
we have A ⊆ Z2. If we have A 6⊆ Z2 then at least one of b, b + a, . . . , b + (q − 1)a is in T2.
Hence every arithmetic progression A with modulus a ≤ l such that A∩T2 = ∅ is contained
in Z2.

Set T = T1 ∪ T2. Suppose that Z ′ ⊇ Z with Z ′ ∩ T is the union of u′ numbers and v′

arithmetic progressions. Say Z ′ = Z ′
1∪Z ′

2 with |Z ′
1| = u′ and Z ′

2 is the union of the arithmetic
progressions A′

i = A′
i(a

′
i, b

′
i), for 1 ≤ i ≤ v′. Note that Z ⊆ Z ′ implies Z2 ⊆ A′

1 ∪ · · · ∪ A′
v′ .

Our goal is to show
u+ v ≤ u′ + v′. (5.8)

If v′ ≥ u + v then we are done, and so we will assume henceforth that v′ < u + v. If some
A′
i is disjoint from Z2 then its intersection with Z is empty or contains a single element of

Z1. In the first case we remove A′
i from Z ′ and in the second we replace it by this single

element. We then have a set Z ′′ ⊇ Z with Z ′′ ∪T = ∅ and ν(Z ′′) ≤ (u′ + 1) + (v′− 1) = Z ′.
Hence in order to establish (5.8) we may replace Z ′ with Z ′′. Continuing in this manner we
may assume that each A′

i intersects Z2.
SayA′

1, . . . ,A′
w have modulus≤ l andA′

w+1, . . . ,A′
v′ have modulus> l, where 1 ≤ w ≤ v′.

For each 1 ≤ i ≤ w, since A′
i = A′

i(a
′
i, b

′
i) has a′i ≤ l and A′

i ∩ T = ∅ we have that A′
i ⊆ Z2.

Since a′ix+ b′i ∈ Z2 for every x ∈ Z and Z2 has period q, we have a′ix+ b′i+ qy ∈ Z2 for every
x, y ∈ Z. So if we set a′′i = gcd(a′i, q), the progressionA(a′′i , b

′
i) ⊆ Z2. Since Z2 ⊆ A′

1∪· · ·∪A′
v′

this union will be unchanged if we replace A′
i with A′′

i for each 1 ≤ i ≤ w. Hence we may
suppose that a′i|q for each 1 ≤ i ≤ w.
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We claim that A′
1 ∪ · · · ∪A′

w = Z2. If a set X is the union of finitely many numbers and
arithmetic progressions we define the density of X , denoted by d(X ), by

d(X ) = lim
n→∞

X ∩ [0, n]

n
.

Note that the density of an arithmetic progression is simply the reciprocal of its modulus.
Say Z2 has r elements per period of length q and A′

1 ∪ · · · ∪A′
w has s elements per period of

length q. Hence Z2 and A′
1∪ · · ·∪A′

w have density r/q and s/q respectively. Note that since
A′

1 ∪ · · · ∪ A′
w ⊆ Z2 we must have s ≤ r. The sequences A′

w+1, . . . ,A′
v′ each have density

< 1/l. Thus
d(A′

1 ∪ · · · ∪ A′
v′) < (s/q) + (v′/l).

Since v′ < ν(Z)

d(Z ′) = d(Z ′
2) <

s

q
+

ν(Z)

qν(Z)
=
s+ 1

q
.

Now Z ⊆ Z ′ implies d(Z) ≤ d(Z ′), i.e r/q ≤ s/q. But then s ≤ r < s+ 1, hence s = r and
our claim is established.

This implies that w ≥ v. Also, we must have Z1 ⊆ Z ′
1 ∪A′

w+1 ∪ · · · ∪ A′
v′ . Since each A′

i

contains at most one element of Z1 we have (v′ −w) + |Z ′
1| ≥ |Z1|, i.e. v′ −w + u′ ≥ u. We

then have u+ v ≤ u+ w ≤ u′ + v′.

Consider equation (5.5) and say, for 1 ≤ i ≤ k,

Pi(z) = ci0 + · · ·+ cidi
zdi .

By Theorem 1.2 the set Z of x ∈ Z satisfying (5.5) has finite ν(Z). Construct the set T as
in Lemma 5.1.

For any fixed x ∈ Z, equation (5.5) defines an algebraic set, i.e. a set closed in the Zariski
topology, V (x) in the points (α, c), where α = (α1, . . . , αk) and c = (c10, . . . , ckdk

). Now our
particular (α, c) lies in the algebraic set

V (Z) =
⋂
n∈Z

V (n).

Let W0 be the hypersurface given by α1 · · ·αkc1d1 · · · ckdk
= 0 and set

W (T ) =

(⋃
n∈T

V (n)

)⋃
W0.

Since Z ∩ T = ∅ we have (α, c) ∈ V (Z) \W (T ).
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It is well known that since V (Z) \W (T ) 6= ∅ there exists a point (α̂, ĉ) ∈ V (Z) \W (T )
with coordinates in Q. To see this first note that since V (Z) and W (T ) are defined by
polynomials with coefficients in Q then the ideals I and J in C[x1, . . . , xk, y10, . . . , ykdk

] of
polynomials that vanish at all the points of V (Z) and W (T ), respectively, are generated by
a finite number of polynomials with coefficients in Q. Say I is generated by f1, . . . , fr and J
is generated by g1, . . . , gs. Let I ′ and J ′ be the ideals generated by f1, . . . , fr and g1, . . . , gs in
Q[x1, . . . , xk, y10, . . . , ykdk

], respectively. Now V (Z) 6⊆ W (T ) implies J 6⊆ I. Since I = C⊗I ′
and J = C ⊗ J ′ we then have J ′ 6⊆ I ′. Let V ′ and W ′ be the algebraic sets in Q space
associated to the ideals I ′ and J ′. Then J ′ 6⊆ I ′ implies V ′ 6⊆ W ′. Since V ′ is defined by
the polynomials f1, . . . , fr and W ′ is defined by the polynomials g1, . . . , gs this implies that
there is a point (α̂, ĉ), with coordinates in Q, such that f1(α̂, ĉ) = · · · = fr(α̂, ĉ) = 0 but
there is some gi, 1 ≤ i ≤ s, with gi(α̂, ĉ) 6= 0. Hence (α̂, ĉ) ∈ V (Z) \W (T ). This point
gives rise to an equation

P̂1(x)α̂
x
1 + · · ·+ P̂k(x)α̂

x
k = 0, (5.9)

with, for each 1 ≤ i ≤ k, αi 6= 0 and deg P̂i = degPi. Let Z ′ be the set of solutions in x ∈ Z
to (5.9). Since (α̂, ĉ) ∈ V (Z) we see that Z ′ ⊇ Z, but (α̂, ĉ) 6∈ W (T ), so no n ∈ T is a
solution to (5.9). This implies that Z ′ ∩ T = ∅ and Lemma 5.1 implies ν(Z ′) ≥ ν(Z).

Hence it suffices to prove Theorem 5.2 under the assumption that the αi and the coeffi-
cients of the Pi are all algebraic. We will henceforth assume that all these quantities lie in
some number field K.

5.4 Some known results

In this section we give an overview of some known results necessary for the proof of our
theorem.

Lemma 5.2. Let α1, . . . , αq, a1, . . . , aq ∈ C× and suppose α1 ∼ · · · ∼ αq. There are

B(q) = q3q2

vectors cl = (cl1, . . . , clq), 1 ≤ l ≤ B(q), such that if x ∈ Z satisfies

a1α
x
1 + · · ·+ aqα

x
q = 0, (5.10)

but no proper subsum of (5.10) vanishes, then the vector (αx1 , . . . , α
x
q ) is proportional to some

cl.
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Proof. Clearly we may suppose q > 1. Set n = q − 1, ζi = αxi /α
x
q and bi = −ai/aq for each

1 ≤ i ≤ n. Then (5.10) becomes

b1ζ1 + · · ·+ bnζn = 1, (5.11)

where ζ1, . . . , ζn are roots of unity. By a result of Evertse [6], (5.11) has at most B(n+ 1) =
B(q) solutions in roots of unity such that no subsum vanishes. If ζ1, . . . , ζn is one such
solution we see that (α1, . . . , αq) is proportional to (ζ1, . . . , ζn, 1).

Lemma 5.3. Let Γ be a finitely generated subgroup of (C×)q of rank r and let a1, . . . , aq ∈ C×.
Up to a factor of proportionality the equation

a1x1 + · · ·+ aqxq = 0 (5.12)

has at most
C(q, r) = exp((r + 1)(6q)3q)

solutions x = (x1, . . . , xq) ∈ Γ, such that no subsum of (5.12) vanishes.

Proof. Set n = q − 1, bi = −ai/aq and yi = xi/xq for 1 ≤ i ≤ n. Then (5.12) becomes

b1y1 + · · ·+ bnyn = 1, (5.13)

where (y1, . . . , yn) is in a group Γ′ of rank ≤ r. Evertse, Schlickewei and Schmidt [8] have
shown that (5.13), and hence equation (5.12), has at most

exp((r + 1)(6n)3n) < exp((r + 1)(6q)3q)

solutions such that no proper subsum vanishes. It is worth noting that their result relies
heavily on the quantitative version of the subspace theorem due to Evertse and Schlickewei
[7].

We extend our definition of absolute logarithmic height to include vectors in both affine
and projective space. For x = (x1 : · · · : xn+1) ∈ Pn, where we are over the field Q, we define
the absolute logarithmic height of x, denoted hPn(x), by

hPn(x) =
∑
v∈MK

log(max{|x1|v , . . . , |xq|v}),

where K is any field containing x1, . . . , xq and MK is the set of places of K. Note that this
is well defined on Pn due to the product formula. For a vector x = (x1, . . . , xn) ∈ Qn we
define the absolute logarithmic height of x, denoted hn(x), by

hn(x) = hPn(x1 : · · · : xn : 1).

Note that for α ∈ Q we have h(α) = hPn(α : 1) = hn(α).
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Lemma 5.4. Let q > 1 and Γ be a finitely generated group of (Q×)q of rank r. The solutions
of

z1 + · · ·+ zq = 0, (5.14)

with zi = xiyi, where x = (x1, . . . , xq) ∈ Γ and y = (y1, . . . , yq) ∈ (Q×)q and

hPq−1(y) ≤ 1

4q2
hPq−1(x), (5.15)

are contained in the union of not more than C(q, r) proper subspaces of the (q−1)-dimensional
space defined by (5.14).

Proof. Set n = q − 1 and consider solutions of the equation

z1 + · · ·+ zn = 1, (5.16)

where zi = uivi, with u = (u1, . . . , un) ∈ Γ′, Γ′ a subgroup of (Q×)n of rank ≤ r, and
v = (v1, . . . , vn) ∈ (Q×)n with

hn(v) ≤ 1

4n2
hn(u). (5.17)

If we can show that all such solutions of (5.16) are contained in the union of not more
than C(n, r) proper subspaces of Qn then our Lemma follows by setting ui = xi/xq and
vi = −yi/yq, for 1 ≤ i ≤ n.

This inhomogenous version is a variation of Proposition A in [16]. First assume that
hn(u) > 2n log n. It was shown by Schlickewei and Schmidt [16] that these solutions lie in
the union of fewer than

230n2

(21n2)r (5.18)

proper subspaces.
Now assume hn(u) ≤ 2n log n. Then, by (5.17) we have hn(v) ≤ (2n log n)/(4n2) < log 2.

This implies that for each 1 ≤ i ≤ n we have h(vi) < log 2, and since yi ∈ Q× we have
vi = ±1. Equation (5.16) now becomes

±u1 ± · · · ± un = 1. (5.19)

The group Ω generated by Γ′ and the points (±1, . . . ,±1) is finitely generated with rank
equal to that of Γ′. By Theorem 2.1 of [8], due to Evertse, Schilickewei and Schmidt, the
solutions of (5.19) with (±u1, . . . ,±un) ∈ Ω are contained in the union of not more than

exp((r + 1)(5n)3n) (5.20)

proper subspaces of Qn.
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Combining the estimates (5.18) and (5.20) we have fewer than

230n2

(21n2)r + exp((r + 1)(5n)3n) < C(n, r)

proper subspaces of Qn.

Lemma 5.5. For α, β ∈ Q× there is a y ∈ Z such that

h(αβx−y) ≥ 1

4
|x|h(β),

for every x ∈ Z.

This follows directly from a result of Schlickewei and Schmidt, in particular it is the
r = n = 1 case of Lemma 15.1 of [16]. We include the proof of this special case for the
convenience of the reader.

Proof. We may suppose that h(β) > 0. Let K = Q(α, β) and let MK denote the set of places
of K. By the product formula we see that for any γ ∈ K×

h(γ) =
∑
v∈MK

max{0, log |γ|v} =
1

2

∑
v∈MK

|log |γ|v| .

Hence, for x ∈ Z,

h(αβx) =
1

2

∑
v∈MK

|log |α|v + x log |β|v| .

For (ζ, ξ) ∈ R2, we define the function

ψ(ζ, ξ) =
1

2

∑
v∈MK

|ζ log |α|v + ξ log |β|v| .

Note that we have the equalities

ψ(1, x) = h(αβx) and ψ(0, ξ) = |ξ|h(β). (5.21)

The function ψ is continuous and satisfies ψ(ζ+ζ ′, ξ+ξ′) ≤ ψ(ζ, ξ)+ψ(ζ ′, ξ′) and ψ(λζ, λξ) =
|λ|ψ(ζ, ξ) for λ ∈ R. Thus, the set Ψ ⊆ R2 containing points (ζ, ξ) such that ψ(ζ, ξ) ≤ 1 is
closed, convex, symmetric about the origin and contains the origin in its interior. However,
Ψ may not be bounded.
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First assume Ψ is unbounded. Consider the function f(θ) = ψ(sin θ, cos θ) on θ ∈ [0, 2π].
Since [0, 2π] is compact f has a minimum, say η. By the definition of f we know that η ≥ 0.
Conversely, since Ψ is unbounded and, for (ζ, ξ) 6= (0, 0),

ψ(ζ, ξ) =
√
ζ2 + ξ2f(θ)

for some θ ∈ [0, 2π], we cannot have η > 0. In particular we can find some (ζ0, ξ0) 6=
(0, 0) such that ψ(ζ0, ξ0) = 0. Since ψ(0, 1) = h(β) > 0, we have that ζ0 6= 0. Then, by
homogeneity, there is some ξ1 such that ψ(1, ξ1) = 0. If Ψ is bounded it is compact and we
may take (ζ0, ξ0) with maximum ζ0. Writing ξ0 as ξ0 = ζ0ξ1 we have ζ0ψ(1, ξ1) ≤ 1.

Take arbitrary (ζ, ξ) ∈ R2. When Ψ is unbounded, ψ(ζ, ζξ1) = |ζ|ψ(1, ξ1) = 0 ≤ ψ(ζ, ξ).
When Ψ is bounded, ψ(ζ, ζξ1) = |ζ|ψ(1, ξ1) ≤ |ζ| /ζ0 ≤ ψ(ζ, ξ), where the last inequality
follows from homogeneity and the fact that the maximality of ζ0 implies ψ(ζ0, ξ

ζ0
ζ
) ≥ 1. We

now have, by (5.21),

|ξ − ζξ1|h(β) = ψ(0, ξ − ζξ1) ≤ ψ(ζ, ξ) + ψ(−ζ,−ζξ1) ≤ 2ψ(ζ, ξ).

Setting ζ = 1 and replacing ξ by x ∈ Z, we obtain, by (5.21),

h(αβx) = ψ(1, x) ≥ 1

2
|x− ξ1|h(β).

We take y ∈ Z such that ξ1 = −y + µ with |µ| ≤ 1/2. Then

h(αβx−y) ≥ 1

2
|x− µ|h(β) ≥ 1

4
|x|h(β).

5.5 An important Lemma

We define the degree of the zero polynomial to be −1. For a k-tuple P = (P1, . . . , Pk) of
polynomials we set

t(P) = ((degP1 + 1) + · · ·+ (degPk + 1))

and
s(P) = 1 + max{degP1, . . . , degPk}.

The key point of the following lemma lies in the inequalities (5.24) as they give a poten-
tial avenue for solving our main problem by performing induction on t(P). The difficulty,
however, lies in satisfying (5.23).
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Lemma 5.6. Consider the equation

P1(x)α
x
1 + · · ·+ Pk(x)α

x
k = 0, (5.22)

where α1, . . . , αk ∈ Q× and each Pi is a non-zero polynomial with coefficients in Q. Set
P = (P1, . . . , Pk), t = t(P) and s = s(P). Suppose that t ≥ 3 and that

max
1≤i,j≤k

h

(
αi
αj

)
≥ h∗, (5.23)

for some 0 < h∗ ≤ 1. Set

E = 16t2s/h∗ and F = exp(3(6t)3t) + 5E logE.

Then there are k-tuples of polynomials

P(w) = (P
(w)
1 , . . . , P

(w)
k ),

1 ≤ w < F , at least one P
(w)
i not identically zero, with

degP
(w)
i ≤ degPi for each 1 ≤ i < k and degP

(w)
k < degPk (5.24)

such that every solution x ∈ Z of (5.22) satisfies

P
(w)
1 (x)αx1 + · · ·+ P

(w)
k (x)αxk = 0 (5.25)

for some 1 ≤ w < F .

Proof. For u ∈ Z let y = x+ u. Then (5.22) may be rewritten as

P1(y − u)α−u1 αy1 + · · ·+ Pk(y − u)α−uk αyk = 0.

Setting Qi(y) = Pi(y − u)α−ui , for each 1 ≤ i ≤ k, (5.22) becomes

Q1(y)α
y
1 + · · ·+Qk(y)α

y
k = 0. (5.26)

If our assertion is true for (5.26), with polynomial k-tuples Q(w) = (Q
(w)
1 , . . . , Q

(w)
k ), 1 ≤ w ≤

F then every solution y ∈ Z of (5.26) will satisfy

Q
(w)
1 (y)αy1 + · · ·+Q

(w)
k (y)αyk = 0

for some 1 ≤ w < F and the corresponding solutions x = y − u of (5.22) will satisfy (5.25)

with P
(w)
i (x) = Q

(w)
i (x+u)αui , for 1 ≤ i ≤ k. Thus we may consider (5.26) instead of (5.22).
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We pick u ∈ Z as follows. Write

Pi(x) = ai0 + · · ·+ aidi
xdi ,

where di = degPi. We may suppose that h(α1/α2) ≥ h∗. By Lemma 5.5 we can take u so
that

h

(
a1d1

a2d2

(
α1

α2

)y−u)
≥ 1

4
|y|h

(
α1

α2

)
≥ 1

4
|y|h∗,

for every y ∈ Z. Then, writing

Qi(y) = bi0 + · · ·+ bidi
ydi ,

for 1 ≤ i ≤ k, we have b1d1 = a1d1α
−u
1 and b2t2 = a2d2α

−u
2 and so

h

(
b1d1α

y
1

b2d2α
y
2

)
≥ 1

4
|y|h∗, (5.27)

for every y ∈ Z.
The equation (5.26) is of the form

(b10 + · · ·+ b1d1y
d1)αy1 + · · ·+ (bk0 + · · ·+ bkdk

ydk)αyk = 0.

Omitting any zero coefficients we rewrite this as

(b′10y
v10 + · · ·+ b1d1y

d1)αy1 + · · ·+ (b′k0y
vk0 + · · ·+ bkdk

ydk)αyk = 0. (5.28)

Let q be the total number of coefficients in (5.28) and consider the vectors

X = (b′10α
y
1, . . . , b1d1α

y
1, . . . , b

′
k0α

y
k, . . . , bkdk

αyk),
Y = (yv10 , . . . , yd1 , . . . , yvk0 , . . . , ydk)

in q-dimensional space. Equation (5.26) then becomes

Z1 + · · ·+ Zq = 0, (5.29)

where Zi = XiYi, Xi and Yi the ith components of X and Y respectively. Now X lies the
group Γ of rank≤ 2 generated by (b′10, . . . , b1d1 , . . . , b

′
k0, . . . , bkdk

) and (α1, . . . , α1, . . . , αk, . . . , αk).
Moreover

hPq−1(X) ≥ h

(
b1d1α

y
1

b2d2α
y
2

)
≥ 1

4
|y|h∗, (5.30)
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by (5.27). Also we have Y ∈ Qq and Y ∈ (Q×)q when y 6= 0. Since y ∈ Z we have log |y|p ≤ 0
for all finite p and since di < s for each 1 ≤ i ≤ k, we have

hPq−1(Y) ≤ s log |y| . (5.31)

Assume that
|y| ≥ 2E logE. (5.32)

Since E ≥ 16 we see that log(2E logE) < 2 logE. This combined with the fact that
|y| − E log |y| is increasing for |y| ≥ E yields

|y| > E log |y| ≥ 16q2s

h∗
log |y| ,

since q ≤ t. Combining this with (5.30) and (5.31) we have

hPq−1(Y) ≤ s log |y| < h∗

16q2
|y| = 1

4q2

1

4
|y|h∗ < 1

4q2
hPq−1(X).

By Lemma 5.4, every such y is contained in the union of at most

C(q, 2) = exp(3(6q)3q) ≤ exp(3(6t)3t) (5.33)

proper subspaces of the space defined by (5.29). Consider such a subspace, given by c1Z1 +
· · ·+ cqZq = 0. Taking a linear combination of this and (5.29) we obtain a nontrivial relation
c′1Z1 + · · ·+ c′q−1Zq−1 = 0. This implies that y satisfies a nontrivial equation

Q̃1(y)α
y
1 + · · ·+ Q̃k(y)α

y
k = 0, (5.34)

with
deg Q̃i ≤ di for 1 ≤ i < k and deg Q̃k < dk. (5.35)

Clearly there are fewer than 5E logE values of y that do not satisfy (5.32). For fixed y, since
t ≥ 3, we can construct polynomials Q̃1, . . . , Q̃k, not all zero, satisfying (5.34) and (5.35).
The total number of such polynomials is thus less than

exp(3(6t)3t) + 5E logE = F.
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5.6 A proposition that implies the Theorem

We now state a proposition from which Theorem 5.2 will be deduced.

Proposition. Let Mj(X) = a1jX1 + · · · + akjXk, 1 ≤ j ≤ n, be linear forms which are
linearly independent over Q and have coefficients in Q. Write ai = (ai1, . . . , ain) and assume
that each ai is nontrivial. For each 1 ≤ i ≤ n define ti to be the integer such that ai =
(ai1, . . . , aiti , 0, . . . , 0) with aiti 6= 0. Set t = t1 + · · ·+ tk,

T = min{kn, t
√

2t},
h∗ = e−3T 4

.

For nonzero algebraic numbers α1, . . . , αk, the x ∈ Z for which

M1(α
x
1 , . . . , α

x
k), . . . ,Mn(α

x
1 , . . . , α

x
k)

are Q-linearly dependent fall into at most

H(T ) = exp(4(6T )3T ) (5.36)

classes with the following property. For each class C there is a positive integer m such that

(a) solutions x and x′ in C satisfy x ≡ x′ (mod m),

(b) there are i 6= j such that either αi 6∼ αj and h(αmi /α
m
j ) ≥ h∗, or αi ∼ αj and

ord(αmi /α
m
j ) ≤ (h∗)−1.

Proof of Theorem 5.2. For a k-tuple of polynomials P = (P1, . . . , Pk), set ti = ti(P) =
1 + degPi, for 1 ≤ i ≤ k, t = t(P) = t1 + · · ·+ tk and s = s(P) = max1≤i≤k ti. Suppose that
P1, . . . , Pk have algebraic coefficients and take α1, . . . , αk ∈ Q×. We will prove by induction
on t that the set of solutions Z of

P1(x)α
x
1 + · · ·+ Pk(x)α

x
k = 0 (5.37)

satisfies ν(Z) ≤ Z(t, T ) where we define Z(t, T ) to be

exp((2t − 1)(8T )3T ), (5.38)

and T = min{ks, t
√

2t}.
We may assume that k ≥ 2, t ≥ 3 and that P1, . . . , Pk are non-zero. Write, for 1 ≤ i ≤ k,

Pi(x) =
∑s

j=1 aijx
j−1. For 1 ≤ j ≤ s we define the linear forms

Nj(X) = Nj(X1, . . . , Xk) = a1jX1 + · · ·+ akjXk.
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Then, letting ai = (ai1, . . . , ais) for 1 ≤ i ≤ k, we have that each ai is nontrivial and
ai = (ai1, . . . , aiti , 0, . . . , 0) with aiti 6= 0. The linear forms N1, . . . , Ns are not necessarily
Q-linearly independent. Let M1, . . . ,Mn be a maximal Q-linearly independent subset. Note
that replacing N1, . . . , Ns with M1, . . . ,Mn will not cause the numbers t1, . . . , tk or t to
increase.

Equation (5.37) can be rewritten as

s∑
j=1

Nj(α
x
1 , . . . , α

x
k)x

j−1 = 0. (5.39)

For each 1 ≤ j ≤ s, there are cj1, . . . , cjn ∈ Q such that Nj(X) = cj1M1(X)+· · ·+cjnMn(X).
We can then rewrite (5.39) as

n∑
r=1

(
s∑
j=1

cjrx
j−1

)
Mr(α

x
1 , . . . , α

x
k) = 0. (5.40)

There are fewer than s numbers x ∈ Z such that each polynomial c1r+· · ·+csrxs−1, 1 ≤ r ≤ n,
vanishes. For any other solution of (5.40), the numbers M1(α

x
1 , . . . , α

x
k), . . . ,Mn(α

x
1 , . . . , α

x
k)

are Q-linearly dependent and, by the proposition, lie in at most H(T ) classes, since n ≤ s.
Fix a class C and let ZC denote the set of solutions of (5.37) in C. The solutions in ZC

are of the form x = x0 +my, with y ∈ Z. Setting α̂i = αmi and P̂i(y) = αx0
i Pi(x0 +my), for

1 ≤ i ≤ k, equation (5.37) becomes

P̂1(y)α̂
y
1 + · · ·+ P̂k(y)α̂

y
k = 0. (5.41)

Assume first that there is some i 6= j with αi ∼ αj and ord(α̂i/α̂j) = ord(αmi /α
m
j ) ≤

(h∗)−1. We may suppose that i = k and j = k − 1. Set q = ord(α̂k/α̂k−1). Divide Z
up into the q arithmetic progressions A(q, b), 0 ≤ b < q. For a solution y of (5.41) in
one such arithmetic progression A(q, b) we have that y = qz + b for some z ∈ Z. We
then set α∗i = α̂qi , for 1 ≤ i ≤ k − 1, P ∗

i (z) = α̂bi P̂i(qz + b), for 1 ≤ i ≤ k − 2, and
P ∗
k−1(z) = α̂bk−1P̂k−1(qz + b) + α̂bkP̂k(qz + b). Then (5.41) becomes

P ∗
1 (z)α∗z1 + · · ·+ P ∗

k−1(z)α
∗z
k−1 = 0. (5.42)

Now t(P ∗
1 , . . . , P

∗
k−1) < t(P) so, by induction, the zeros of (5.42) lie in the union of at most

Z(t − 1, T ) single numbers and arithmetic progressions. Summing over 0 ≤ b < q ≤ (h∗)−1

we see that ZC satisfies
ν(ZC) < exp(3T 4)Z(t− 1, T ). (5.43)
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Now assume that there is i 6= j with αi 6∼ αj and h(αmi /α
m
j ) ≥ h∗. Then considering

equation (5.41), we have h(α̂i/α̂j) ≥ h∗ and we can apply Lemma 5.6. So we have, for

1 ≤ w < F , polynomial k-tuples P(w) = (P
(w)
1 , . . . , P

(w)
K ) 6= (0, . . . , 0) with s(P(w)) ≤ s and

t(P(w)) < t such that every solution of (5.41) satisfies

P
(w)
1 (y)α̂y1 + · · ·+ P

(w)
k (y)α̂yk = 0, (5.44)

for some w. Now

F = exp(3(6t)3t) + 5E logE with E = 16t2s/h∗.

Since t ≤ T and s ≤ T we get E ≤ 16T 3 exp(6T 4) < exp(7T 4), hence E logE < exp(8T 4)
and

F < exp(3(6T )3T ) + 5 exp(8T 4) < exp(4(6T )3T ). (5.45)

By induction on t, the solutions of (5.44), for each 1 ≤ w < F , lie in the union of at
most Z(t − 1, T ) single numbers and arithmetic progressions. We must be careful here as
the solutions of (5.41) may be properly contained in these progressions since we do not in
general have that every solution of (5.44) will be a solution of (5.41).

Consider one such progression A(a, b). Writing y = az + b, (5.44) becomes

P̂
(w)
1 (z)α̂z1 + · · ·+ P̂

(w)
k (z)α̂xk = 0, (5.46)

with α̃i = α̂ai and P̃
(w)
i (z) = α̂biP

(w)
i (az + b), for 1 ≤ i ≤ k. If α̃1, . . . , α̃k were all distinct

then, since (5.46) holds for every z ∈ Z, we must have each P̃
(w)
i = 0, hence each P

(w)
i = 0,

which is not the case. Thus α̃1, . . . , α̃k are not all distinct. Say α̃k−1 = α̃k. Then (5.41)
becomes

P̃1(z)α̃
z
1 + · · ·+ P̃k−1(z)α̃

z
k−1 = 0, (5.47)

with P̃i(z) = α̂bi P̂i(az+ b), for 1 ≤ i ≤ k−2, and P̃k−1(z) = α̂bk−1P̂k−1(az+ b)+ α̂bkP̂k(az+ b).

Since t(P̃1, . . . , P̃k−1) < t, the solutions to (5.47) are the union of at most Z(t− 1, T ) single
numbers and arithmetic progressions. So, for our class C, we have

ν(ZC) ≤ FZ(t− 1, T )2 < exp(4(6T )3T )Z(t− 1, T )2, (5.48)

by (5.45).
Considering the possible fewer than s solutions mentioned at the beginning, comparing

(5.43) and (5.48) and summing over the classes C, we obtain

ν(Z) < s+H(T ) exp(4(6T )3T )Z(t− 1, T )2

≤ T + exp(8(6T )3T ) exp((2t − 2)(8T )3T )

< exp((2t − 1)(8T )3T ) = Z(t, T ),
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establishing (5.38).
Since t ≤ T , we have

ν(Z) < exp(2T (8T )3T ).

Let T1 = t
√

2t. Since T ≤ T1 and t ≥ 3, we have

ν(Z) < exp(2T1(8T1)
3T1)

< exp((8T1)
4T1)

= exp exp(4t
√

2t(log 8 +
√

2t log t))

< exp exp(t3
√
t).

Let T2 = ks. Since T ≤ T2 and T2 ≥ ks ≥ t ≥ 3, we have

ν(Z) < exp(2T2(8T2)
3T2)

< exp(T 10T2
2 )

= exp exp(10sks log k).

The remainder of this chapter will be devoted to proving the Proposition.

5.7 A lemma on linear independence

The following lemma improves on Lemma 2 of [18] by replacing the bound e12t with t
√

2t.
This is the key ingredient in our improvement of Schmidt’s main result in [18]. If K is a
number field and σ is an embedding K ↪→ C we denote by η(σ) the image of η ∈ K under σ.
If v = (v1, . . . , vn) ∈ Kn we set

v(σ) = (v
(σ)
1 , . . . , v(σ)

n ).

Lemma 5.7. Let K be a field and a1, . . . , ak vectors in Kn. Fix n not necessarily distinct
embeddings σ1, . . . , σn of K into C. For 1 ≤ i ≤ k write

ai = (ai1, . . . , aiti , 0, . . . , 0) ,

where either ti = 0, hence ai = 0, or ti > 0 and ati 6= 0. Set t = t1 + . . .+ tk. Then there are

at most t
√

2t ordered n-tuples (i1, . . . , in), with 1 ≤ i1, . . . , in ≤ k, such that a
(σ1)
i1

, . . . , a
(σn)
in

are linearly independent.

80



Proof. Note first that the result is trivial if k < n so we may assume k ≥ n. Also note that
the embedding σj, for any 1 ≤ j ≤ n, will not have any affect on the numbers t1, . . . , tk. If
ai = 0 then ai doesn’t contribute at all to the number of n-tuples that we are counting and
ti doesn’t contribute to t. Hence we may assume ai 6= 0 for each 1 ≤ i ≤ k. In particular
we may assume t ≥ k. Suppose a

(σ1)
i1

, . . . , a
(σn)
in

are linearly independent. Then at most one
ti equals 1. If there exists ai such that ti = 1 then there is at most one ai such that ti = 2
and so on. Hence if there exist any n-tuples (i1, . . . , in) such that a

(σ1)
i1

, . . . , a
(σn)
in

are linearly
independent then we must have

t ≥
n∑
j=1

j =
n(n+ 1)

2
,

hence n <
√

2t. Clearly there are at most kn such n-tuples and we have

kn < t
√

2t.

With the exception of the constant
√

2 the above result is best possible. Say k = n,
σ1 = · · · = σn and we have n linearly independent vectors a1, . . . , an. Then the number of
such n-tuples is n!. Stirling’s Approximation yields

n! >
√

2πnn+1/2e−n+1/(12n+1) >
√

2πen(logn−1)

Hence for any constant c and any δ > 0 we have, since t ≤ kn = n2,

ec
√
t(log t)1−δ

= o(n!) .

5.8 Splitting of the exponential equation

For a1, . . . , aq, α1, . . . , αq ∈ Q× we consider the function

f(x) = a1α
x
1 + · · ·+ aqα

x
q . (5.49)

Group together summands with αi ∼ αj. After relabelling we may write, uniquely up to
ordering,

f(x) = f1(x) + · · ·+ fg(x), (5.50)

where, for each 1 ≤ i ≤ g,
fi(x) = ai1α

x
i1 + · · ·+ aiqiα

x
iqi
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with q1 + · · ·+ qg = q and

αij ∼ αik when 1 ≤ i ≤ g, 1 ≤ i, k ≤ qi
αij 6∼ αi′k when 1 ≤ i 6= i′ ≤ g, 1 ≤ j ≤ qi 1 ≤ k ≤ qi′ .

If a solution x ∈ Z of f(x) = 0 satisfies

f1(x) = · · · = fg(x) = 0 (5.51)

we say that f(x) = 0 splits into the g equations (5.51).

Lemma 5.8. All but at most
G(q) = exp(3(6q)3q)

solutions of f(x) = 0 split into the g equations (5.51).

Proof. This lemma is trivial if g = 1, hence we may assume that g ≥ 2, hence q ≥ 2. We
will proceed by induction on q. If q = 2 and g = 2 then we have f(x) = a11α

x
11 + a21α

x
21 with

a11a21 6= 0 and α11 6∼ α21. There can then be at most one x ∈ Z with f(x) = 0.
We now assume q ≥ 3. Note that (αx1 , . . . , α

x
q ) lies in a group Γ of rank ≤ 1 generated

by (α1, . . . , αq). Thus by Lemma 5.3 there are at most C(q, 1) = exp(2(6q)3q) vectors

c(r) = (c
(r)
1 , . . . , c

(r)
q ), 1 ≤ r ≤ C(q, 1), such that for every nondegenerate solution x ∈ Z

of f(x) = 0 we have (αx1 , . . . , α
x
q ) = λc(r), for some non-zero constant λ and 1 ≤ r ≤ C(q, 1).

This implies that the quotients (αi/αj)
x depend only on r. Since g ≥ 2, there is some αi/αj

that is not a root of unity, thus there can be at most one solution x ∈ Z for any given
1 ≤ r ≤ C(q, 1).

When x ∈ Z is a degenerate solution of f(x) = 0, there is a nontrivial partition of
{1, . . . , q} into subsets {i1, . . . , in} and {j1, . . . , jm}, with n+m = q, such that

ai1α
x
i1

+ · · ·+ ainα
x
in = 0 and aj1α

x
j1

+ · · ·+ ajmα
x
jm = 0.

There are < 2q−1 such partitions. Each partition yields nonzero f ∗ and f ∗∗ with f = f ∗+f ∗∗,
each f ∗ and f ∗∗ having fewer summands than does f and

f ∗(x) = f ∗∗(x) = 0. (5.52)

Write

f ∗(x) = f ∗1 (x) + · · ·+ f ∗g (x),

f ∗∗(x) = f ∗∗1 (x) + · · ·+ f ∗∗g (x),
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where f ∗i and f ∗∗i are linear combinations of αxi1, . . . , α
x
iqi

. By induction, all but at most
2G(q − 1) solutions of (5.52) have

f ∗1 (x) = · · · = f ∗g (x) = f ∗∗1 (x) = · · · = f ∗∗g (x) = 0,

which then implies (5.51). The number of exceptions to (5.51) is then

< exp(2(6q)3q) + 2qG(q − 1)
< exp(2(6q)3q) + exp(3(6q)3q−3)
< exp(3(6q)3q) = G(q).

We call a summand aiα
x
i of (5.49) a singleton if αi 6∼ αj for any j 6= i, 1 ≤ j ≤ q.

Corollary 5.9. Let f be given by (5.49). If f contains a singleton then f(x) = 0 has at
most G(q) zeros x ∈ Z.

Proof. If f contains a singleton then fi(x) = aiα
x
i . for some 1 ≤ i ≤ g and has no zero,

hence our equation cannot split.

Given a solution x of fi(x) = 0 we may have a subsum of fi(x) that vanishes. We will
refer to such a situation as subsplitting. The results of Chapter 4 are vital in dealing with this
extra complication. A solution x of fi(x) is called nondegenerate if no subsplitting occurs.

5.9 Algebraic numbers, ε-bad and ε-unpleasant l-tuples

Lemma 5.10. Let β be algebraic of degree d over Q and let S = {β[1], . . . , β[d]} be its set of
conjugates. Let S1, . . . , Sm denote the equivalence classes of S under ∼. Then d = mn for
some n ∈ Z and

|S1| = · · · = |Sm| = n.

Proof. Let G denote the Galois group of K = Q(β[1], . . . , β[d]). For η, γ ∈ Q× with η ∼ γ and
σ an embedding of Q(η, γ) into C we clearly have σ(η) ∼ σ(γ) since σ(η)/σ(γ) = σ(η/γ).
Hence we see that G permutes the sets S1, . . . , Sm. Moreover, since G acts transitively on S,
G acts transitively on {S1, . . . , Sm}. Thus |S1| = · · · = |Sm| = n for some n ∈ Z. If follows
that d = mn.
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For a positive integer a let log+a = max{1, log a}. By a result of Voutier [21] we know
that for an algebraic number β 6∼ 1 of degree d over Q we have

h(β) ≥ 1

4d

(
log+log+d

log+d

)3

.

It will suffice for our purposes to use the slightly weaker version

h(β) ≥ 1

4d(log+d)3
. (5.53)

Lemma 5.11. Let β be as in Lemma 5.10, and suppose β is not a root of unity. Then

h(β) ≥ 1

4d(log+m)3
. (5.54)

Proof. We keep the same notation as in Lemma 5.10 and suppose that β ∈ S1. For each
1 ≤ i ≤ m, let

γi =
∏

β[j]∈Si

β[j].

Then G permutes γ1, . . . , γm. Hence every conjugate of γ1 is in the set {γ1, . . . , γm} and this
implies that the degree of γ1 is ≤ m. Moreover γ1 cannot be a root of unity, since

βn ∼
∏

β[j]∈S1

β[j] = γ1,

and β is not a root of unity. Hence

h(γ1) ≥
1

4m(log+m)3
.

But
h(γ1) ≤

∑
β[j]∈S1

h(β[j]) = nh(β),

which implies

h(β) ≥ h(γ1)

n
≥ 1

4d(log+m)3
.
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Henceforth we will use the notation n(β) to denote the number n for β as in Lemma 5.10.
Suppose K is a number field of degree D with β ∈ K. Let η(σ), 1 ≤ σ ≤ D, denote the
images of η ∈ K under the D embeddings K ↪→ C. We let nK(β) denote the number of
elements in the set {β(1), . . . , β(D)} that are ∼ to β. Since each β[j], 1 ≤ j ≤ d, occurs D/d
times in {β(1), . . . , β(D)} we have that

nK(β) =
D

d
n(β).

This implies that D = mnK(β). Hence we have the following corollary to Lemma 5.11.

Corollary 5.12. For β as in Lemma 5.10

h(β) ≥ 1

4d(log+(D/nK(β)))3
.

Suppose that S1 = {β[1], . . . , β[n]}. Then, since β[i]/β[j] is a root of unity for every
1 ≤ i, j ≤ n, the elements β[1], . . . , β[n] all must have a common absolute value, say λ. We
then write, for each 1 ≤ j ≤ n,

β[j] = λe2πiρj , (5.55)

with 0 ≤ ρj < 1. Note that ρi − ρj ∈ Q for each 1 ≤ i, j ≤ n since β[i]/β[j] ∼ 1, but that
ρi − ρj 6∈ Z since β[i] 6= β[j] for i 6= j. Thus R = {ρ1, . . . , ρn} is a denominator system as
defined in §4.1. We let rij denote the smallest positive integer such that rij(ρi − ρj) ∈ Z.
For x a positive integer we let ui(x) denote the number of 1 ≤ j ≤ n such that rij|x. Recall
that in §4.1 we said that R is homogeneous if u1(x) = · · · = un(x) for every x.

Lemma 5.13. Let {β[1], . . . , β[n]} be as above and define ρ1, . . . , ρn by (5.55). Then R =
{ρ1, . . . , ρn} is homogeneous.

Proof. For x a positive integer we will denote by vi(x), 1 ≤ i ≤ n, the number of 1 ≤ j ≤ n
such that vi(x) = rij. Since ui(x) =

∑
y|x vi(y) it suffices to check that v1(x) = · · · = vn(x)

for every x. For each 1 ≤ i, j ≤ n there is a positive integer sij with gcd(rij, sij) = 1 such
that β[i]/β[j] = e2πisij/rij . This implies that rij = x precisely when β[i]/β[j] is a primitive xth
root of unity.

Fix 1 ≤ i ≤ n and set v = vi(x). Then there are distinct numbers 1 ≤ h1, . . . , hv ≤ n
such that β[i]/β[hk] is a primitive xth root of unity for each 1 ≤ k ≤ v.

LetG′ be the subgroup of the Galois groupG of Q(β[1], . . . , β[d]) that permutes β[1], . . . , β[n].
Since G acts transitively on S and permutes S1, . . . , Sm we see that G′ acts transitively on S1.
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Fix 1 ≤ j ≤ n and take σ ∈ G′ such that σ(β[i]) = β[j]. There are distinct 1 ≤ h′1, . . . , h
′
v ≤ n

such that σ(β[hk]) = β[h′k], for 1 ≤ k ≤ v. Then

β[j]

β[h′k]
= σ

(
β[i]

β[hk]

)
is a primitive xth root of unity for each 1 ≤ k ≤ v. Thus vj(x) ≥ v = vi(x). By symmetry
we have vi(x) ≥ vj(x) and the result follows.

For α, β, γ ∈ Q× denote by G(α : β : γ) the subgroup of Q× generated by α/β and α/γ.
Clearly G(α : β : γ) is finite if and only if α ∼ β ∼ γ.

Let K be a number field of degree D with β ∈ K and let β(1), . . . , β(D) be the images of
β under the D embeddings K ↪→ C. Let M ⊆ {1, . . . , D} be such that {β(σ) : σ ∈ M} is
an equivalence class under ∼. For l ≥ 3 and ε > 0 we call an l-tuple σ1, . . . , σl ∈ M ε-bad
if there are distinct i, j, k in 1 ≤ i, j, k ≤ l such that

|G(β(σi) : β(σj) : β(σk))| ≤ εn(β).

Lemma 5.14. The number of ε-bad l-tuples is less than

ε1/2l3nK(β)l.

Proof. We may assume that for every σ ∈M we have β(σ) ∈ {β[1], . . . , β[n]}, where n = n(β).
Write β[i] as in (5.55) and let R = {ρ1, . . . , ρn}. We see that

|G(β[i] : β[j] : β[k])| ≤ εn

happens precisely when
lcm(rij, rik) ≤ εn,

where rij is as above. By Corollary 4.1 we know that the number of l-tuples u1, . . . , ul in
1 ≤ u ≤ n with distinct i, j, k satisfying lcm(ruiuj

, ruiuk
) ≤ εn is less than

ε1/2l3nl.

For each 1 ≤ u ≤ n there are D/d numbers σ ∈ M with β(σ) = β[u], where d is the degree
of β. Hence the number of ε-bad l-tuples is less than

ε1/2l3nl(D/d)l = ε1/2l2nK(β)l.
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Now suppose that β is a primitive q-th root of unity, so that φ(q) = d. Note that in this
case n(β) = d. For l ≥ 3 and ε > 0 we call an l-tuple of integers σ1, . . . , σl in 1 ≤ σ ≤ D
ε-unpleasant if there are distinct i, j, k in 1 ≤ i, j, k ≤ l with

|G(β(σi) : β(σj) : β(σk))| ≤ εq.

Lemma 5.15. The number of ε-unpleasant l-tuples is less than

2ε1/2l3Dl.

Proof. Again, write β[1], . . . , β[d] as in (5.55). We have that

|G(β[i] : β[j] : β[k])| ≤ εq

precisely when
lcm(rij, rik) ≤ εq.

By Corollary 4.4 we know that the number of l-tuples u1, . . . , ul in 1 ≤ u ≤ d with distinct
i, j, k satisfying lcm(ruiuj

, ruiuk
) ≤ εq is less than

2ε1/2l3dl.

For each u in 1 ≤ u ≤ d there are D/d numbers in {1, . . . , D} with β(σ) = β[u], hence the
number of ε-unpleasant l-tuples is bounded by

2ε1/2l3dl(D/d)l = 2ε1/2l3Dl.

5.10 Two easy Lemmas

Let K be a number field of degree D and denote by η(σ), 1 ≤ σ ≤ D, the image of η ∈ K
under the D embeddings K ↪→ C. For a = (a1, . . . , an) ∈ Kn we set a(σ) = (a

(σ)
1 , . . . , a

(σ)
n ).

Lemma 5.16. Let a ∈ Kn. Then a(1), . . . , a(D) span a rational subspace of Kn.

Proof. If a = (0, . . . , 0) then the result is trivial so we may assume otherwise. Write a =

(a1, . . . , an) and let, for each 1 ≤ i ≤ n, bi = a
(1)
i + · · · + a

(D)
i . Note that b1, . . . , bn ∈ Q

and since a is nontrivial we must have at least one bi 6= 0. Partition {1, . . . , n} into i1, . . . , il
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and j1, . . . , jm, l +m = n, such that bi1 = · · · = bil = 0 and bj1 , . . . , bjm are nonzero. Let V
consist of all vectors (X1, . . . , Xn) ∈ Kn satisfying

Xir = 0 for 1 ≤ r ≤ l,
bjrXjs = bjsXjr for 1 ≤ r, s ≤ m.

Clearly V is a rational subspace of Kn. Also, we see that any (X1, . . . , Xn) ∈ V is a multiple
of the vector (b1, . . . , bn), hence is a linear combination of a(1), . . . , a(D).

Lemma 5.17. If a ∈ Kn but a 6∈ V , for V some proper subspace of Cn, then there are at
least D/n integers σ in 1 ≤ σ ≤ D such that a(σ) 6∈ V .

Proof. This Lemma is trivial if D < 2n and so we will suppose that D ≥ 2n. First suppose
that a1, . . . , an are Q-linearly independent. If the Lemma were false for a then there would
be a set of more than D−D/n vectors a(σ) in V . Since V is a proper subspace of Cn it will
suffice to show that any set of more than D −D/n vectors a(σ) spans Cn.

Take X ⊂ {1, . . . , D} such that |X | > (1 − 1/n)D. Let Y = {1, . . . , D}\X , so that
|Y| < D/n. Since a1, . . . , an are Q-linearly independent the matrix with columns a(σ),
1 ≤ σ ≤ D, will have rank n. Thus a(1), . . . , a(D) span Cn. Without loss of generality we
may suppose that a(1), . . . , a(n) are linearly independent. Suppose that K = Q(η) for some
algebraic number η and let G be the Galois group of its normal closure Q(η(1), . . . , η(D)).
For g ∈ G we have g(η(σ)) = η(σg), where 1g, . . . , Dg is a permutation of 1, . . . , D. Given
1 ≤ σ, τ ≤ D there are |G| /D elements g ∈ G such that σg = τ . So for any given σ the
number of g ∈ G with σg ∈ Y is |G| |Y| /D. The number of g ∈ G such that at least one of
1g, . . . , ng is in Y is ≤ (|G| |Y| /D)n < |G|. Hence there is a g ∈ G such that 1g, . . . , ng ∈ X .
Since a(1), . . . , a(n) are linearly independent and, for each 1 ≤ i ≤ n, g(a(i)) = a(ig) with
1g, . . . , ng ∈ X we have that {a(σ) : σ ∈ X} does indeed span Cn.

Now assume that a1, . . . , an are Q-linearly dependent. Let a1, . . . , ar be a maximal Q-
linearly independent subset. Then for r < j ≤ n there are rational c1j, . . . , crj such that

aj =
r∑
i=1

cijai.

Since a 6∈ V , there are γ1, . . . , γn ∈ C such that γ1x1 + · · ·+γnxn = 0 for all (x1, . . . , xn) ∈ V
but γ1a1 + · · ·+ γnan 6= 0. Setting γ′i = γi +

∑n
j=r+1 cijγj, for 1 ≤ i ≤ r, we have

γ′1a1 + · · ·+ γ′rar 6= 0.

Let V ′ ⊂ Cr be the subspace defined by γ′1x1 + · · · + γ′rxr = 0. Now â = (a1, . . . , ar) 6∈ V ′

and, by the case of the Lemma already shown, there are at least D/r ≥ D/n integers σ with

â(σ) 6∈ V ′, so that γ1a
(σ)
1 + · · ·+ γna

(σ)
n 6= 0, and hence a(σ) 6∈ V .
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5.11 The cases k = 1 and n = 1 of the Proposition

If k = 1 then Mj(X) = bjX for 1 ≤ j ≤ n with b1, . . . , bn Q-linearly independent. Then
b1α

x
1 , . . . , bnα

x
n are Q-linearly independent for every x ∈ Z.

If n = 1 then we have M1(X) = a1X1 + · · ·+akXk with nonzero coefficients. The number
M(αx1 , . . . , α

x
k) is linearly dependent over Q precisely when it is zero and so we are looking

for solutions to the equation
a1α

x
1 + · · ·+ akα

x
k = 0.

If x ∈ Z is a solution to this equation then there is a subset S(x) ⊆ {1, . . . , k} such that
1 ∈ S(x) and ∑

i∈S(x)

aiα
x
i = 0, (5.56)

but no subsum of (5.56) vanishes. By Lemma 5.8, for all but at most

G(k) = exp(3(6k)3k)

solutions x the set S(x) has the property that αi ∼ αj for any i, j ∈ S(x). Each exceptional
solution is put in a class by itself where we take m to be any positive integer large enough
to satisfy condition (b) of the proposition.

Now let S ⊆ {1, . . . , k} be a nonempty set such that αi ∼ αj for i, j ∈ S. We consider
solutions x of (5.56) having S(x) = S. We may suppose that S = {1, . . . , h}, so (5.56)
becomes

a1α
x
1 + · · ·+ ahα

x
h = 0. (5.57)

Clearly we must have h ≥ 0. Since no subsum of (5.57) vanishes Lemma 5.2 yields

B(h) = h3h2 ≤ k3k2

vectors c(w) = (c
(w)
1 , . . . , c

(w)
h ), 1 ≤ w ≤ B(h), such that (αx1 , . . . , α

x
h) is proportional to

some c(w). Consider solutions with fixed w. For two such solutions x and x′ we see that
(α1/α2)

x = (α1/α2)
x′ = c

(w)
1 /c

(w)
2 , so that

(α1/α2)
x−x′ = 1.

When m is the order of α1/α2 we have x ≡ x′ (mod m), and ord(αm1 /α
m
2 ) = 1.

The number of sets S is less than 2k and so we obtain 2kk3k2
classes. The total number

of classes is then

< exp(3(6k)3k) + 2kk3k2

< exp(4(6k)3k) = exp(4(6T )3T ) = H(T ),

since n = 1 yields T = k.
We may assume henceforth that k ≥ 2 and n ≥ 2.
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5.12 Nonvanishing of determinants

For 1 ≤ j ≤ n write Mj(X) = a1jX1 + · · ·+ akjXk. Let K be a field of degree D containing
α1, . . . , αk and the aij, 1 ≤ i ≤ k and 1 ≤ j ≤ n. As before we denote by η(σ), 1 ≤ σ ≤ D,
the images of η ∈ K under the D embeddings K ↪→ C. We will write ai = (ai1, . . . , ain) for

1 ≤ i ≤ k. For 1 ≤ σ ≤ D Set M
(σ)
j (X) = a

(σ)
1j X1 + · · · + a

(σ)
kj Xk for each 1 ≤ j ≤ n and

a
(σ)
i = (a

(σ)
i1 , . . . , a

(σ)
in ) for each 1 ≤ i ≤ k. For x ∈ Z say there are c1, . . . , cn ∈ Q, not all

zero, such that
c1M1(α

x
1 , . . . , α

x
k) + · · ·+ cnMn(α

x
1 , . . . , α

x
k) = 0.

Then for any 1 ≤ σ ≤ D we have

c1M
(σ)
1 (α

(σ)x
1 , . . . , α

(σ)x
k ) + · · ·+ cnM

(σ)
n (α

(σ)x
1 , . . . , α(σ)x

n ) = 0.

Then the matrix with rows(
M

(σ)
1 (α

(σ)x
1 , . . . , α

(σ)x
k ), . . . ,M (σ)

n (α
(σ)x
1 , . . . , α

(σ)x
k )

)
,

1 ≤ σ ≤ D, has rank < n. Let D(σ1, . . . , σn;x) be the determinant formed from the rows
σ1, . . . , σn of this matrix. Then

D(σ1, . . . , σn;x) = 0. (5.58)

We now introduce some notation. For 1 ≤ σ1, . . . , σn ≤ D and 1 ≤ i1, . . . , in ≤ k we
denote by

∆

(
σ1, . . . σn
i1, . . . , in

)
the determinant of the matrix with columns a

(σ1)
i1

, . . . , a
(σn)
in

and we set

A
(
σ1, . . . , σn
i1, . . . , in

)
= α

(σ1)
i1

· · ·α(σn)
in

.

Lemma 5.18. For 1 ≤ σ1, . . . , σn ≤ D and x ∈ Z

D(σ1, . . . , σn;x) =
k∑

i1=1

· · ·
k∑

in=1

∆

(
σ1, . . . , σn
i1, . . . , in

)
A
(
σ1, . . . , σn
i1, . . . , in

)
x. (5.59)
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Proof. Since M
(σ)
j (α

(σ)x
1 , . . . , α

(σ)x
k ) = a

(σ)
1j α

(σ)x
1 + · · ·+ a

(σ)
kj α

(σ)x
k , we have

D(σ1, . . . , σn;x) =

∣∣∣∣∣∣∣
a

(σ1)
11 α

(σ1)x
1 + · · ·+ a

(σ1)
k1 α

(σ1)x
k · · · a

(σ1)
1n α

(σ1)x
1 + · · ·+ a

(σ1)
kn α

(σ1)x
k

...
. . .

...

a
(σn)
11 α

(σn)x
1 + · · ·+ a

(σn)
k1 α

(σn)x
k · · · a

(σn)
1n α

(σn)x
1 + · · ·+ a

(σn)
kn α

(σn)x
k

∣∣∣∣∣∣∣
=
∑
π

επ(a
(σ1)
1π(1)α

(σ1)x
1 + · · ·+ a

(σ1)
kπ(1)α

(σ1)x
k ) · · · (a(σn)

1π(n)α
(σn)x
1 + · · ·+ a

(σn)
kπ(n)α

(σn)x
k ),

where π runs through the permutations of 1, . . . , n and επ is the sign of π. Then we have

D(σ1, . . . , σn;x) =
k∑

i1=1

· · ·
k∑

in=1

(
α

(σ1)
i1

· · ·α(σn)
in

)x∑
π

επa
(σ1)
i1π(1) · · · a

(σn)
inπ(n)

=
k∑

i1=1

· · ·
k∑

in=1

A
(
σ1, . . . , σn
i1, . . . , in

)
x∆

(
σ1, . . . , σn
i1, . . . , in

)
.

Lemma 5.19. When M1, . . . ,Mn are linearly independent over Q there are certain σ1, . . . , σn
in 1 ≤ σ ≤ D and i1, . . . , in in 1 ≤ i ≤ k such that

∆

(
σ1, . . . , σn
i1, . . . , in

)
6= 0.

Proof. By Lemma 5.16, we known that for any vector v ∈ Kn the vectors v(1), . . . ,v(D) span
a rational subspace of Cn. For each 1 ≤ i ≤ k let Vi denote this rational subspace for the
vector ai. Say that V1 + · · ·+ Vk is a proper subspace of Cn. Then there are c1, . . . , cn ∈ Q,
not all zero, such that c1X1 + · · ·+ cnXn = 0 holds on V1 + · · ·+ Vk. Since ai ∈ Vi for each
1 ≤ i ≤ k we have that c1ai1 + · · · + ckain = 0 for each 1 ≤ i ≤ k. But this implies that
M1, . . . ,Mk are Q-linearly dependent. Hence we have V1 + · · ·+ Vk = Cn, i.e. Cn is spanned
by a

(σ)
i for 1 ≤ i ≤ k and 1 ≤ σ ≤ D. Then there are certain vectors a

(σ1)
i1

, . . . , a
(σn)
in

spanning
Cn, which gives

∆

(
σ1, . . . , σn
i1, . . . , in

)
6= 0.

By Lemma 5.19 there are n-tuples u1, . . . , un in 1 ≤ u ≤ k and τ1, . . . , τn in 1 ≤ τ ≤ D
such that

∆

(
τ1, . . . , τn
u1, . . . , un

)
6= 0. (5.60)
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The n-tuple u1, . . . , un will be fixed from now on. After relabelling embeddings we may
assume that τ1 = 1. By (5.60), we know that a

(τ2)
u2 does not lie in the subspace spanned by

a
(1)
u1 , a

(τ3)
u3 , . . . , a

(τn)
un . By Lemma 5.17, there is a subset S2 of {1, . . . , D} with |S2| ≥ D/n such

that a
(σ)
u2 does not lie in this subspace when σ ∈ S2, in particular

∆

(
1, σ, τ3, . . . , τn
u1, u2, u3, . . . , un

)
6= 0

whenever σ ∈ S2.
Let σ2 ∈ S2 be given. Then a

(τ3)
u3 does not lie in the subspace spanned by the vectors

a
(1)
u1 , a

(σ2)
u2 , a

(τ4)
u4 , . . . , a

(τn)
un . By Lemma 5.17 there is a set S3(σ2) of {1, . . . , D} with |S3(σ2)| ≥

D/n such that

∆

(
1, σ2, σ3, τ4, . . . , τn
u1, u2, u3, u4, . . . , un

)
6= 0

whenever σ3 ∈ S3(σ2) for σ2 ∈ S2.
Continuing in this way we inductively construct sets S2,S3(σ2), . . . ,Sn(σ2, . . . , σn−1) each

of cardinality at least D/n such that Sj(σ2, . . . , σj−1) is defined when

σ2 ∈ S2, σ3 ∈ S3(σ2), . . . , σj−1 ∈ Sj−1(σ2, . . . , σj−2),

and such that

∆

(
1, σ2, . . . , σn
u1, u2, . . . , un

)
6= 0

whenever
σ2 ∈ S2, σ3 ∈ S3(σ2), . . . , σn ∈ Sn(σ1, . . . , σn−1). (5.61)

5.13 Selection of exponential equations

For the n-tuple σ = (σ1, . . . , σn) in 1 ≤ σ ≤ D we set

fσ(x) =
k∑

i1=1

· · ·
k∑

in=1

∆

(
σ1, . . . , σn
i1, . . . , in

)
A
(
σ1, . . . , σn
i1, . . . , in

)
x. (5.62)

Then (5.58) becomes
fσ(x) = 0. (5.63)
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Let q be the number of nonzero summands in (5.62). Clearly q ≤ kn. For each 1 ≤ i ≤ k
write ai = (a1, . . . , ati , 0, . . . , 0) with either ai = (0, . . . , 0), in which case we set ti = 0, or
ati 6= 0 and ti > 0. Then, for t = t1 + · · ·+ tk we see that, by Lemma 5.7,

q ≤ t
√

2t.

So we have q ≤ T where

T = min{kn, t
√

2t}.

The equation fσ is of the type f considered in §5.8. According to Lemma 5.8, (5.63) will
split with at most G(T ) exceptions. In order to avoid dependence on the degree of K we
will select a small set of n-tuples σ for which we will study equation (5.63). Recall that we
are assuming that k ≥ 2 and n ≥ 2. Moreover we may assume that t ≥ 2 since t = 1 implies
that we have only one summand and this case is trivial. In particular we have T > k, T > n,
T > t and T ≥ 4.

Let S be the set of n-tuples σ = (σ1, . . . , σn) with σ1 = 1 and σ2, . . . , σn satisfying (5.61).
When σ ∈ S we have

∆

(
σ1, . . . , σn
u1, . . . , un

)
6= 0,

so not all coefficients of fσ will vanish. From now on we will restrict ourselves to σ ∈ S.
This set S, however, is still too large.

As in (5.50), we may write fσ = fσ1 + · · ·+ fσg(σ). We may suppose that fσ1 contains
the summand

∆

(
σ1, . . . , σn
u1, . . . , un

)
A
(
σ1, . . . , σn
u1, . . . , un

)
x. (5.64)

Let I(σ) be the set of n-tuples (i1, . . . , in) such that

∆

(
σ1, . . . , σn
i1, . . . , in

)
6= 0 and A

(
σ1, . . . , σn
i1, . . . , in

)
∼ A

(
σ1, . . . , σn
u1, . . . , un

)
. (5.65)

Now (u1, . . . , un) ∈ I(σ) and

fσ1 =
∑

(i1,...,in)∈I(σ)

∆

(
σ1, . . . , σn
i1, . . . , in

)
A
(
σ1, . . . , σn
i1, . . . , in

)
x.

First assume that |I(σ)| = 1. Then fσ1 equals (5.64) thus fσ contains a singleton. In
this case it suffices to study (5.63) with this particular σ and, by Corollary 5.9, we have at
most

G(T ) < H(T )
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solutions x ∈ Z. In this case we put each solution into a class by itself choosing m large
enough to satisfy condition (b) of the proposition.

We may henceforth assume that |I(σ)| > 1 for each σ ∈ S. Since there are at most
kn n-tuples (i1, . . . , in) and I(σ) is a set of at most T of them, the number of possibilities
for I(σ) is ≤ knT . Say we have σ1, . . . , σn−1 with σ1 = 1 and σ1, . . . , σn−1 satisfying (5.61).
Then for some σn ∈ Sn(σ2, . . . , σn−1) we set

I(σ1, . . . , σn−1) = I(σ1, . . . , σn)

and

S ′n(σ2, . . . , σn−1) = {σ′n ∈ Sn(σ2, . . . , σn−1) : I(σ2, . . . , σn−1, σ
′
n) = I(σ2, . . . , σn)}.

Note that regardless of our choice of σn we have (u1, . . . , un) ∈ I(σ1, . . . , σn−1) and that
S ′n(σ2, . . . , σn−1) is nonempty since it contains σn. Also note that

|Sn(σ2, . . . , σn−1)| ≤ |S ′n(σ2, . . . , σn−1)|knT ,

since there are at most knT possibilities for I(σ). Hence, given σ1, . . . , σn−1 with σ1 = 1
and σ2, . . . , σn−1 satisfying (5.61), there is a set I(σ1, . . . , σn−1) such that I(σ1, . . . , σn−1) =
I(σ1, . . . , σn−1, σn) whenever σn is in the subset S ′n(σ1, . . . , σn−1) of Sn(σ1, . . . , σn−1) of car-
dinality

≥ k−nT |Sn(σ2, . . . , σn−1)| ≥ k−nT (D/n) > D/T 1+T 2 ≥ D/T (17/16)T 2

,

since T ≥ 4.
Given σ1, . . . , σn−2 with σ1 = 1 and σ2, . . . , σn−2 satisfying (5.61) there is a set I(σ1, . . . , σn−2)

such that I(σ1, . . . , σn−2) = I(σ1, . . . , σn−2, σn−1) whenever σn−1 is in a subset S ′n−1(σ2, . . . , σn−2)

of Sn−1(σ2, . . . , σn−2) of cardinality > D/T (17/16)T 2
.

After carrying out n− 1 such steps we obtain a set I of n-tuples (i1, . . . , in) and sets

S ′2, S ′3(σ2), . . . , S ′n(σ2, . . . , σn−1), (5.66)

where S ′j(σ2, . . . , σj−1) is defined for

σ2 ∈ S ′2, σ3 ∈ S3(σ2), . . . , σj−1 ∈ S ′j−1(σ2, . . . , σj−2).

Each of the sets (5.66) has cardinality

>
D

T (17/16)T 2 , (5.67)
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and when S ′ consists of σ with σ1 = 1 and

σ2 ∈ S ′2, σ3 ∈ S3(σ2), . . . , σn ∈ S ′n(σ2, . . . , σn−1),

then
I(σ) = I when σ ∈ S ′.

For 2 ≤ j ≤ n, let Tj be the set of numbers ij 6= uj in 1 ≤ ij ≤ k such that

(i1, . . . , ij, uj+1, . . . , un) ∈ I (5.68)

for certain i1, . . . , ij−1, where when j = n (5.68) becomes (i1, . . . , ij) ∈ I.

Lemma 5.20. If ij ∈ Tj and αij 6∼ αuj
then

h

(
αij
αuj

)
>

1

4T 7 deg(αij/αuj
)
.

Proof. By (5.65) we have that

A
(
σ1, . . . , σj, σj+1, . . . , σn
i1, . . . , ij, uj, . . . , un

)
∼ A

(
σ1, . . . , σn
u1, . . . , un

)
,

for any σ ∈ S ′. Thus

α
(σ1)
i1

· · ·α(σj)
ij

α(σj+1)
uj+1

· · ·α(σn)
un

∼ α(σ1)
u1

· · ·α(σn)
un

,

which yields (
αij
αuj

)(σj)

∼
(
αu1

αi1

)(σ1)

· · ·
(
αuj−1

αij−1

)(σj−1)

. (5.69)

This holds when σ1 = 1, σ2 ∈ S ′2, . . . , σj ∈ S ′j(σ2, . . . , σj−1). Fix such σ2, . . . , σj−1 and let
σj range through S ′j(σ2, . . . , σj−1). The right hand side of (5.69) remains fixed so that the

number of (αij/αuj
)(σ), for 1 ≤ σ ≤ D, that are∼ to each other is at least |S ′j(σ2, . . . , σj−1)| >

D/T (17/16)T 2
, by (5.67). In the notation of §5.9,

nK

(
αij
αuj

)
>

D

T (17/16)T 2 . (5.70)

Then, by Corollary 5.9

h

(
αij
αuj

)
>

1

4((17/16)T 2 log T )3 deg(αij/αuj
)
>

1

4T 7 deg(αij/αuj
)
,

since T ≥ 4.
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For 2 ≤ j ≤ n, let T ∗
j = {αij/αuj

: ij ∈ Tj}. Say T ∗
j = {β1, . . . , βr}. Since ij 6= uj we

have that r < k and it is possible that r = 0 and T ∗
j = ∅. We know, by Lemma 5.20 and

(5.70), that for each 1 ≤ s ≤ r

nK(βs) >
D

T (17/16)T 2 and h(βs) >
1

4T 7 deg(βs)
. (5.71)

Recall the definition of G(α : β : γ) in §5.9.

Lemma 5.21. Set l = 3T and suppose that

D > e2T 4

. (5.72)

Take 2 ≤ j ≤ n and σ1, . . . , σj−1 with σ1 = 1, σ2 ∈ S ′2, . . ., σj−1 ∈ S ′j−1(σ2, . . . , σj−2). Say
T ∗
j = {β1, . . . , βr}. There is a subset S ′′j (σ2, . . . , σj−1) of S ′j(σ2, . . . , σj−1) of cardinality l

such that for any triple of distinct numbers φ, ψ, ω ∈ S ′′j (σ2, . . . , σj−1) and 1 ≤ s ≤ r,

|G(β(φ)
s : β(ψ)

s : β(ω)
s )| >

{
T−8T 3

deg βs when βs 6∼ 1,

T−8T 3
ordβs when βs ∼ 1.

(5.73)

Proof. For ease of notation set S ′j = S ′j(σ2, . . . , σj−1). When r = 0 condition (5.73) is

vacuous. Since |S ′j| > D/T (17/16)T 2
> 3T = l, by (5.67) and (5.72), we can find a subset of

size l.
Suppose that r > 0. Set

ε = T−7T 3

. (5.74)

Note that, since T ≥ 4,

108rε1/2T 3T (17/16)T 2l < 108T 4−(5/16)T 3

< 1 (5.75)

and
2l2T (17/16)T 2l < 18T 4T 3+2 < e2T 4

< D. (5.76)

Take βs ∈ T ∗
j and assume βs 6∼ 1. We know that the numbers β

(σ)
s with σ ∈ S ′j are all

∼ to each other. Let M be the set of all σ in 1 ≤ σ ≤ D for which β
(σ)
s are ∼ to these

numbers. By Lemma 5.14 the number of ε-bad l-tuples µ1, . . . , µl in M is less than ε1/2l3Dl.
In particular the number of ε-bad l-tuples µ1, . . . , µn ∈ S ′j is less than ε1/2llDl. On the
other hand if βs ∼ 1 then by Lemma 5.15 the number of ε-unpleasant l-tuples is less than
2ε1/2l3Dl. Summing over 1 ≤ s ≤ r we see that the number of l-tuples which are ε-bad or
ε-unpleasant for some βs is

< 2rε1/2l3Dl = 54rε1/2T 3Dl <
1

2

(
D

T (17/16)T 2

)l
,
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by (5.75). The number of l-tuples for which at least two elements are equal is

≤
(
l

2

)
Dl−1 < l2Dl−1 <

1

2

(
D

T (17/16)T 2

)l
,

by (5.76). Since |S ′j| ≥ D/T (17/16)T 2
, the number of all possible l-tuples is ≥ (D/T (17/16)T 2

)l.
Thus there is an l-tuple of distinct numbers µ1, . . . , µl ∈ S ′j which is not ε-bad or ε-unpleasant
for any β1, . . . , βr. By definition of ε-bad and ε-unpleasant, for any distinct i, j, k if βs 6∼ 1
we have

|G(β(µi)
s : β(µj)

s : β(µk)
s )| > εn(βs) = ε(deg βs)nK(βs)/D > ε(deg βs)/T

(17/16)T 2

> T−8T 2

deg βs,

by (5.71) and (5.74), and if βs ∼ 1 we have

|G(β(µi)
s : β(µj)

s : β(µk)
s )| > εordβs > T−8T 3

ordβs.

Setting S ′′j (σ2, . . . , σj−1) = {µ1, . . . , µl} we have (5.73) for any φ, ψ, ω ∈ S ′′j (σ2, . . . , σj−1).

Condition (5.72) can always be achieved by enlarging the field K if necessary. We will
assume from now on that (5.72) holds. Define S ′′ to be the set of n-tuples σ = (σ1, . . . , σn)
with σ1 = 1, σ2 ∈ S ′′2 , . . . , σn ∈ S ′′n(σ2, . . . , σn−1). We will investigate equations (5.63) with
σ ∈ S ′′. Note that

|S ′′| = ln−1 < (3T )n.

5.14 Conclusion

Now each equation (5.63) splits with at most G(q) ≤ G(T ) exceptions. If we carry this out
for each σ ∈ S ′′ we have

≤ |S ′′|G(T ) < (3T )T exp(3(6T )3T ) (5.77)

exceptions. We place each such solution in a class by itself and take m large enough to
satisfy condition (b) of the proposition.

For nonexceptional x, each equation (5.63) with σ ∈ S ′′ splits, so that x satisfies

fσ1(x) = 0,
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for every σ ∈ S ′′, which can be written as∑
(i1,...,in)∈I

∆

(
σ1, . . . , σn
i1, . . . , in

)
A
(
σ1, . . . , σn
i1, . . . , in

)
x = 0. (5.78)

Recall that each summand of (5.78) satisfies (5.65) and one of the summands has (i1, . . . , in) =
(u1, . . . , un). We must be careful because x might be a degenerate solution of (5.78).

Given σ ∈ S ′′ and a solution x ∈ Z of (5.78), there will be a subset I(σ, x) ⊆ I containing
(u1, . . . , un) such that ∑

(i1,...,in)∈I(σ,x)

∆

(
σ1, . . . , σn
i1, . . . , in

)
A
(
σ1, . . . , σn
i1, . . . , in

)
x = 0, (5.79)

but that splits no further. Since

∆

(
σ1, . . . , σn
u1, . . . , un

)
6= 0

we must have |I(σ, x)| > 1. Since |I| ≤ T there are fewer than T n-tuples (i1, . . . , in) 6=
(u1, . . . , un) in I. Hence, given σ1, . . . , σn−1, there will be an n-tuple

i(σ2, . . . , σn−1, x) 6= (u1, . . . , un)

such that i(σ2, . . . , σn−1, x) ∈ I(σ, x) for at least l/T of the numbers σn ∈ S ′′n(σ2, . . . , σn−1).
Since l = 3T we can take S∗n(σ2, . . . , σn−1, x) to consist of three such numbers. Now, given
σ1, . . . , σn−2, there will be an n-tuple

i(σ2, . . . , σn−2, x)

such that i(σ2, . . . , σn−2, x) = i(σ2, . . . , σn−2, σn−1, x) for at least three of the numbers σn−1.
Continuing in this manner we have the n-tuples

i(x), i(σ2, x), . . . , i(σ2, . . . , σn−1, x)

and three-element sets

S∗2 (x), S∗2 (σ2, x), . . . , S∗n(σ2, . . . , σn−1, x).

Now let S∗(x) consist of σ = (σ1, . . . , σn) with

σ1 = 1, σ2 ∈ S∗2 (x), . . . , σn ∈ S∗n(σ2, . . . , σn−1, x).
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Then for any σ ∈ S∗(x) we have
i(x) ∈ I(σ, x).

Let Λ be a system of three-element sets S∗2 ,S∗3 (σ2), . . . ,S∗n(σ2, . . . , σn−1), where the set
S∗j (σ2, . . . , σj−1) is defined when σ2 ∈ S∗2 , . . . , σj−1 ∈ S∗j−1(σ2, . . . , σj−2), and where, for
2 < j ≤ n, S∗j (σ2, . . . , σj−1) ⊂ S ′′j (σ2, . . . , σj−1). The number of possible choices for S∗2 is
≤ l3. For fixed σ2 ∈ S∗2 the number of possible choices for S∗3 (σ2) is ≤ l3, so carrying this
out for each σ2 ∈ S∗2 we have ≤ l9 choices for S∗3 (σ2). Carrying on in this manner we see
that the number of possibilities for a system Λ is

≤ l3l9 · · · l3n−1

< l3
n

.

When i is an n-tuple and Λ is a system as above, let C(i,Λ) be the class of solutions
x ∈ Z with i(x) = i and

S∗2 (x) = S∗2 , S∗3 (σ2, x) = S∗3 (σ2), . . . , S∗n(σ2, . . . , σn−1, x) = S∗n(σ2, . . . , σn−1)

whenever
σ2 ∈ S∗2 , σ3 ∈ S∗3 (σ2), . . . , σn ∈ S∗n(σ2, . . . , σn−1). (5.80)

The number of classes is less than

T l3
n

< T (3T )3T

. (5.81)

We now study solutions in a given class C(i,Λ). Let j = j(i) be the number 1 ≤ j ≤ n
such that

i = (i1, . . . , ij, uj+1, . . . , un)

and ij 6= uj. We now restrict σ satisfying (5.80) even further. We fix σ1 = 1, σ2 ∈ S∗2 , . . . ,
σj−1 ∈ S∗j−1(σ2, . . . , σj−2). Then given a choice of the three values φ, ψ, θ ∈ S∗j (σ2, . . . , σj−1)
we fix σj+1, . . . , σn so that (5.80) holds. We now have three n-tuples, which we will denote
by σφ,σψ,σθ. We will study (5.79) for these three choices of σ.

Since each I(σφ, x), I(σψ, x), I(σθ, x) are in I, which has cardinality ≤ T , the number
of possibilities for each of I(σφ, x), I(σψ, x), I(σθ, x) is ≤ 2T . We then subdivide the class
C(i,Λ) into

23T (5.82)

subclasses C(i,Λ, Iφ, Iψ, Iθ) such that I(σφ, x) = Iφ, I(σψ, x) = Iψ and I(σθ, x) = Iθ in
our subclass. Let qφ, qψ, qθ denote the number of nonzero summands in (5.79) with σ =
σφ,σψ,σθ, respectively. Note that each of these numbers is ≤ T .
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Fix σφ for the moment. Since no subsum of (5.79) vanishes we can apply Lemma 5.2.
Let Aσ(x) be the vector in qφ dimensional space with components

A
(
σ1, . . . , σn
i1, . . . , in

)
x,

where (i1, . . . , in) ∈ Iφ. By Lemma 5.2, there are vectors c
(w)
σ , with 1 ≤ w ≤ B(qφ), such

that Aσ(x) is proportional to some c
(w)
σ for every solution x. We subdivide C(i,Λ, Iφ, Iψ, Iθ)

according to the c
(w)
σ , 1 ≤ w ≤ B(qφ), to which Aσ(x) is proportional. Doing this for σψ

and σθ as well, we obtain
≤ B(qφ)B(qψ)B(qθ) ≤ B(T )3

subclasses. Combining this with (5.81) and (5.82) we see that the total number of subclasses,
which we will call ”classes” from now on, is

≤ T (3T )3n

23TB(T )3 < 24TT 9T 2

(3T )3T

< exp(5T 3 + 3TT ). (5.83)

Consider the solutions in one such class. For σ = σφ consider the components of Aσ(x)
corresponding to i = (i1, . . . , in) and (u1, . . . , un), where i is as above. There is a fixed
constant cφ such that

A
(
σ1, . . . , σn
i1, . . . , in

)
x = cφA

(
σ1, . . . , σn
u1, . . . , un

)
x

for every solution x in our class. By our definition of j = j(i), this yields

(α
(σ1)
i1

· · ·α(σj−1)
ij−1

α
(φ)
ij

)x = cφ(α
(σ1)
u1

· · ·α(σj−1)
uj−1

α(φ)
uj

)x

for σ = σφ. Rewriting we have((
αij
αuj

)(φ)
)x

= cφ

((
αu1

αi1

)(σ1)

· · ·
(
αuj−1

αij−1

)(σj−1)
)x

.

An analogous relation holds when σ = σψ or σ = σθ. Taking quotients we obtain(
(αij/αuj

)(φ)

(αij/αuj
)(ψ)

)x

=
cφ
cψ

and

(
(αij/αuj

)(φ)

(αij/αuj
)(θ)

)x

=
cφ
cθ
.

Now αij/αuj
is one of the numbers in βs ∈ T ∗

j , so we have(
β

(φ)
s

β
(ψ)
s

)x

=
cφ
cψ

and

(
β

(φ)
s

β
(θ)
s

)x

=
cφ
cθ
.
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Hence if x and x′ are two solutions in our class, then(
β

(φ)
s

β
(ψ)
s

)x−x′

=

(
β

(φ)
s

β
(θ)
s

)x−x′

= 1.

So if |G(β
(φ)
s : β

(ψ)
s : β

(θ)
s )| = m, then x ≡ x′ (mod m) for any two solutions x and x′ in our

class. Further, by Lemma 5.21, we have

m >

{
T−8T 3

deg βs if βs 6∼ 1,

T−8T 3
ordβs if βs ∼ 1.

When βs 6∼ 1, we have, by (5.71),

h(βms ) = mh(βs) > T−8T 3

/(8T 7) > e−3T 3

= ~(T ).

When βs ∼ 1, we note that m|ordβs, so

ord(βms ) = m−1ordβs < T−8T 2

< e3T 3

= ~(T )−1.

Now βs = αi/αj for some 1 ≤ i, j ≤ k with i 6= j, and so for each of our classes we have
satisfied conditions (a) and (b) of the proposition.

It only remains to show that the total number of classes is at most H(T ). By (5.77) and
(5.83) the number of classes is bounded above by

(3T )T exp(3(6T )3T ) + exp(5T 3 + 3TT ) < exp(4(6T )3T ) = H(T ).
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