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Abstract 

IFSM, Wavelets and Fractal-Wavelets: 

Three Methods of Approximation 

This thesis deals with representations and approximations of functions using iterated 

function systems (IF'S), wavelets and fract al-wavelets. 

IFS use self-similarity to approximate a function by contracted and translated copies of 

itself. Results covered include the Banach Contraction Mapping Principle, the complete- 

ness of IF'S space and the Collage Theorem. IF'S on grey-level maps (IFSM) are defined to 

generalize IFS to real-valued functions. 

Wavelets are discussed, using multiresolution analysis. Stronger convergence results are 

shown to hold for wavelet expansions than for Fourier expansions. An application of the 

Mallat algorithm to compression is given. 

Fractal-wavelets use the fact that given an orthonormal basis of L*(W), the mapping 

which sends a function in L2(R) to its sequence of basis coefficients is an isometry. An 

identification is made between IFSM and operators on coefficients. Local IF'S on wavelet 

coefficients are defined and shown to induce IFSM-type operators. 
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Introduction 

From the beginning, mathematicians have been interested in nature. Indeed, it has been 

nature in many instances which either inspired or provided ideas for such fields as algebra, 

geometry, and more recently fractal geometry [9, 10, 331. 

Since the discovery of the Cantor set over a century ago, mathematicians have been 

working with fractals. It is the invention of the computer, in the mid twentieth century, 

which has enabled us to calculate the fractal objects which wouid have required years of 

human computation time previously. However, this same machine has demanded constant 

input &om mathematicians in terms of new theory and algorithms. One such example is 

the focus of this thesis. 

Each day, vast quantities of data are generated by the millions of computers worldwide, 

data which could never have been generated before the advent of the computer. The need 

to store this information is critical and has required mathematicians to develop methods 

of compression. The goal of this thesis is to present three methods of mathematics which 

have allowed compression of the data representing signals and images. The three topics 

presented are fractals, wavelets and fractal-wavelets. 

Chapter 1 describes iterated function systems (IFS) . This method utilizes the inherent 

self-similarity of an object (set, signal, image) to define maps on it, which in turn allow 



the reconstruction of the object. For compression, it is the maps that are stored rather 

than the original object. 

The first section of Chapter 1 introduces basic definitions and theorems of metric spaces, 

including the pivotal Banach Contraction Mapping Principle (BCMP) for complete spaces, 

upon which rests the entire theory of IFS. Sections 1.2 and 1.3 define the concept of IF'S 

and the space X ( X )  where IF'S live. This space is shown to be complete, which allows the 

application of the BCMP. The following section contains examples of some attractors of 

IFS. 

From IFS we move to IFS with grey-level maps (IFSM) . This results fkom the realization 

that, from a nature perspective, IFS act on black and white images and are inadequate to 

model the real world. In Section 1.6, IFSM are made more concrete and conditions are 

given under which they are contractive. Section 1.7 presents a formal solution of the Inverse 

Problem for IF'SM and illustrates an example where IFSM fail to give good approximations. 

This leads to Section 1.8 where the theory of local IFSM (LIFSM) is presented. It is shown 

that LIFSM resolve the problems encountered with the initial IFSM method. 

The second chapter deals with wavelets. In this thesis, they are considered, for sim- 

plicity, to be special types of Hilbert space bases of L2(R). Basic notions from Hilbert 

space theory aie given in Section 2.1. In Section 2.2 the concept of a muitiresolution 

analysis (MRA) associated with a scaling function is dehed, with a couple of example 

wavelet bases being presented. Sections 2.3 and 2.4 motivate the study of wavelets given 

the large amount of theory which has been developed in Fourier analysis [43, 55, 561. It is 

shown that wavelet series oRen converge in better ways and much more rapidly than their 

trigonometric counterparts. 



Section 2.5 describes the M d a t  algorithm for the decomposition and reconstruction of 

scaling and wavelet coefficients between levels of a MRA. It is then shown in Section 2.6 

how this algorithm can be viewed as a pair of quadrature mirror filters for implementation 

in digital circuitry. The chapter concludes with some applications of the algorithm in signal 

compression. 

The final chapter combines the ideas of IFS and wavelets, creating fractal-wavelets. 

Section 3.1 describes the relation between IFSM and wavelets. This leads to local IFS on 

wavelet coefficients (LIFSW) which are defined in Section 3.2. The following section gives 

a few examples of LIFSW. The inverse problem for LIFSW is discussed in Section 3.4 with 

an application to compression being given there. 

Appendix A describes a normalized version of the IFSM operator, which is the the- 

oretical generalization of the IFS operator, but which is more difticult to implement in 

compression met hods. 

A glossary of notation, list of common abbreviations and index are provided at the end 

of the thesis. A definition or major reference to a term is indicated by a bold page number. 

The source code for the applications used in this thesis are available for downloading at 



Chapter 1 

Fractal Transforms 

In order to understand the idea behind fractal image compression, we study the subject of 

iterated function systems. 

1.1 Topological Background 

We begin with some basic notation and definitions from metric spaces. Other topics not 

covered here may be found in [28, 541. 

Notation 1.1.1 We will use the following notation to denote certain classical sets: 

PI = {0,1,2, ...}; 
w+ = {1, 2 , .  - .}; 
Z = the integers; 

R = the set of real numbers- 

Notation 1.1.2 Throughout the text, (X, d) will denote a metric space where X is the set 

and d is the metric. Special properties, such as completeness, will be specified as needed. 
We will denote a sequence in X by ( x , ) , ~ ~ ,  where A c N. A sequence will be written 

as (2,) if the range of the subscripts is clear from the context. If (xn) converges to I, we 

write (x,) t x. 
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Other notation will be defined as needed. 

Definition 1.1.3 A metric space (X,d) is totally bounded i f  for each a > 0, there is a 

finite set F, (called an €-net) of X such that 

where N(x;  e) P the open ball of radius r centered at z. 

Definition 1.1.4 A metric space (X, d )  is complete if and only if every Cauchy sequence 

converges in X with respect to the metric d.  

Definition 1.1.5 A function f : X + X is said to be Lipschitz if and only if there exists 

an s E [0, oo) such that Vx, y E X we have 

We call s a Lipschitz constant o f f .  If there exists such an s < 1, we say f is contractive 
or is a contraction and call s a contractivity factor o f f .  In this case we say that f has 

contmctivity at least s. We denote the set of all Lipschitz functions on ( X ,  d )  by L(X,  d)  
and write Con(X, d )  to mean the set of all contractive maps f : X + X. X = R, write 

simply Lip(lR) . 

Proposition 1.1.6 I f f  E L(X7 d ) ,  then f is vnifonnly continuous. 

Proof Let e > 0. We can assume f is not constant, hence let s > 0 be a contractivity 
factor of f .  I f  we let 6 = f, then Vx, y E X, 

Proposition 1.1.7 Let f E Cm(X,  d ) .  Define cf by 

ct = inf{s : s is a contmctivity factor of f ) .  



CHAPTER 1. FRACTAL TRANSFORMS 6 

Then cf is a contmctzvity factor of f .  

Proof Let x, y E X and let S be the set of contractivity factors of f .  Then, for each 

s E S, d(f (x), f (y)) 5 sd(x, y). Hence, 

Notation 1.1.8 We call cf  the contractivity of f .  We note that cf = 0 if and only i f f  is 

constant. 

Example 1.1.9 Consider the function f : R -t W by f (x) = f s + ) Vx E E Then for 

W E %  

Therefore, f is contractive with contractivity 4. 
Notation 1.1.10 For x E X, we define the n-fold composition of a function f at x recur- 
sively by 

We c d  f ""(2) the n-th itemte off at x. 

Definition 1.1.11 We say that y E X is the attractor of f : X + X if and only if 
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Example 1.1.12 Consider the function f fkom Example 1.1.9. Then for any x E R, we 
have 

1 1  
f (x) = 5" + 5; 

and for a general n > 1, 

Hence, lim f m ( x )  = 1 Vx E B and x = 1 is the attractor of f .  
n304 

Definition 1.1.13 Let f : X -t X. If for some x E X, f(x) = x, we call x a fixed point 

o f f .  

Example 1.1.14 Consider the function f horn Example 1.1.9. Then 

Hence x = 1 is a fked point of f .  

This is not a coincidence, as the next proposition shows. 

Proposition 1.1.15 If a continuous function f : X -t X has an attractor x E X, then x 

is a fized point off. 

Proof Suppose x E X is the attractor of f .  Then, since f is continuous, 
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We now prove the result upon which the entire theory of iterated function systems is 

founded. It is the Banach ContmctiMI Mapping Principle, or BCMP for short [54]. 

Theorem 1.1.16 (Banach Contraction Mapping Principle) Suppose (X, d )  is a 

complete metric space and let f E Con(X, d )  with contmctivity factor s. Then f has 

a unique fized point Zf E X. Furthermore, is the attmctor off. 

Proof Let x  E X and set z, = fm(x)  for n E W. We will first show (x,) is a Cauchy 

sequence. Let m > n E N+. Then 

and inductively, 

Now, for k E Nf , 

5 d ( z ,  f ( x ) )  + sd(x, f (z)) + . - . + sk - ld (x l  f (5))  

Thus, by Equation (1.1), 

sn 
d(xn1 xm) I ---d(x, l - s  f (4)- 
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Since s < 1, d(x,,, x,) -t 0 as n, m + m. Hence (z,) is a Cauchy sequence- Therefore. by 
the completeness of X, let f E X with (z,) + f f .  Hence, lim Pn(x) = i+ 

n400 

Now, suppose f has another fixed point y E X. Then 

However, s < 1 hence d ( ~ , y )  = 0- Therefore zf is the unique fixed point, and by 

Proposition 1.1.15, the unique attractor of f. . 
If f is contractive, we write ff to denote its fixed point. 

We will now define a metric on Con(X, d) and show that fixed points vary continuously 

with respect to contractive maps. The following discussion is a variation of [13]. 

Proposition 1.1.17 Define z( f ,  g) : C a ( X ,  d )  -t [O, -1 by 

and let 

Then &( f, g )  is cr metric on Con(X, d ) .  Furthermore, if (X, d )  is compact, d 6 a metric 

on C m ( X ,  d )  . 

Pmof The only problem with d is that the distance between certain functions might be 

infinite, a problem which is eliminated if (X, d) is compact. Let f ,  g, h E Con(X, d ) .  Then 

iii) To prove the triangle inequality for ti,,,, it is enough to consider the case when 

(f , g) + C ( g ,  h) < 1 since &, (f, g )  is always 1. Therefore suppose & (f, g) + 
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&(g, h) < 1. Then as d satisfies the triangle inequality, we have 

Hence, 

since both @ f, g )  and d(g, h) are less than 1. . 
Theorem 1.1.18 (Continuity of Fixed Points) Define F: C m ( X ,  d )  -t X by F( f ) = 

Et for each f E Con(X,d). Then F is continuous with respect to &. If X is compact, F 
is continuous with respect to d 

Proof Let c > 0 and let f ,  g  E Con(X,  d). Without loss of generality, we assume 

c = cg 5 cf - Suppose & (f, g) < rnin(e(1- c) ,  1). Then 

By the hypothesis on 4(f, g), we have z(g, f) < 1 and qg7 f)  < e(1- c). Hence, 
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Therefore, by Equation (1.2), 

Corollary 1.1.19 If (X ,  d )  C a compact metric space and f, g E Con(X, d )  , then 

where c = min(cf, 4. 

Intuitively, if the given maps f and g are close to each other, then their respective fixed- 

points ef and 2g are also. This is the fundamental principle behind the fractal-based 

methods of approximation. 

Now, suppose we are given x E X. Is it always possible to construct f E Con(X,  d) 
such that x = er? In simple cases we might guess at such a function (as in Example 1.1.9). 

One might indeed think to take the constant function f (y) = x for all y E X. The goal 

however is to approximate x using a function which is easy to describe, and this constant 

function would most often necessitate the complete description of x! However, suppose we 

would be satisfied to find an f with a fixed point close to x? If this is the case, how would 

we proceed to find f ?  We can reformulate this problem as follows: 

Question 1.1.20 Given (Y, dy)  a metric space, y E Y and e > 0, can we find f E 
Con(Y, dv) such that d&, jjf) < E ? 

This problem is called the Inverse Problem of Approximation by Fixed Points of Contrac- 

tion Maps, or the Inverse Problem for short. Detailed discussions can be found in [21] 

and [49]. Indeed, whether such an f can be constructed, or whether it even exists is un- 

certain at this stage. The question raised might be "Is {z, : f E Con(Y, du) )  dense in 

Y"? We will attempt to address this question shortly. In practice, Y could be any one of a 
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large number of relevant spaces: compact subsets of [O,1In; probability measures on [O. 11; 

U (R) ; fuzzy set functions. 

For the moment, consider the proof of Theorem 1.1-18 and ask: "Given y E Y, f E 

Con(Y, du), how close is y to gfn? The following proposition lends an answer: 

Proposition 1.1.21 Let y7 Y and f be as a h e .  Then 

Proof We have 

This is often called the Collage Theorem. In the light of this new proposition, we see that 

if f (y) is close to y, then gf is also close to y. Of course, if cf  c 1, the right hand side 

of Equation (1.3) might not be very small. This thus gives some insight into hding our 

desired function. We should find an f E Con(Y, dv) which takes y  close to itself. We 

remember from the BCMP that jjf is the attractor of f if Y is complete. Hence we can 

iterate f to retrieve gf and get the desired approximation to y. Therefore, we can restate 

the Inverse Problem as 

Question 1.1.22 (Inverse Problem) Let (Y, dy)  be a complete metric space, and let 

y E Y .  Given c > 0, can we find f E Con(Y, dv) such that du(y, f ( y ) )  < E ?  
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1.2 Iterated Function Systems: The Idea 

The concept we wish to develop in this chapter is that of iterated Function systems (IFS) 

which were fist developed by Hutchinson [26]. They were independently discovered by 

Barnsley and Demko [6] who gave them their name. To motivate their development, we 

must enter the realm of fractals. We begin with the famous construction of the Cantor 

"middle-thirds" set [23, pp. 114-1 161. 

We construct the Cantor set by induction. Let la = I = [0,1] c R. Let Il = I.\($, $1, 

that is, the interval [0, 11 with the open middle-third removed. 

10 11 
I i & - - 
0 1 0 3 3 1 1 - 2 - 

Construct I' from Il by removing the open middle-thirds born the two remaining closed 

intervals. 

Inductively, construct I& by removing the open middle-thirds from the 2" closed intervals 

of I,. We define the Cantor set to be e= nr, I,. 

Suppose that you were asked to describe e. At this point, it might be diflicult without 

giving the argument for its construction. Returning to the ideas presented at the end of 

Section 1.1, we would like to find a function f ,  on some appropriate space, for which e is 
the attractor. This function could then be iterated to find e- 

To understand what we wish to do in general, let us look at two characteristics of C. 

By construction, C! is compact. A second characteristic is the seK-similarity we 6nd within 
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it. This is one of the reasons e is called a fractal. A general definition of self-similarity has 

been given in [30]. 

Definition 1.2.1 Let ( X ,  d )  be a complete metric space and A be a compact topological 
space. If A is finite, it is assumed to have the discrete topology. Suppose that for each 
A E A, there is a contmction w l  on X. Assume that not all the w~ are constant and that 
each has contraction factor s .  Define the map w : A x X + X by 

Define 51 to be the ordered triple ( ( X ,  d ) ,  w, A) and Fa= {wA : X E A}. Then R is called a 

contraction system. 

A set A is self-similar under Fa if it is a non-empty compact subset of X such that 

A = U{W*(A) : X E A). 

Definition 1.2.2 Let ( X ,  d )  be a complete metric space. Then A c X is called self-similar 

if there is a contraction system 51 such that A is self-similar under Fn. 

To see the self-similarity in e, let el = e n [O, 51 and let C2 = e n [$, I]. Intuitively, if 

we were to "zoom in" on el or e2, we could not distinguish either fiom e. Mathematically, 

we see that the maps wl : e + el defined by x H and w2 : C -t e2 defined by x - St f 
are metric equivalences under the induced topology of B Indeed, C is the disjoint union 

of two metrically equivalent subsets: 

We wish C to be the fixed point of a certain function. We motivate the following 

definition by the fact that e is a subset of I. 
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Definition 1.2.3 Let X and Y be sets and f : X + Y. We define the set mapping 

where P(X) denotes the power set of X. 

We see that el = & (e) and e2 = &(e). Therefore, 

Hence, e can be written as a union of contracted copies of itself. This is what we wish 

to do in general. Given a set A, try to write A as a union of contracted copies of itself. 

Defmition 1.2.4 Let X and Y be sets and fA : X + Y, X E A, where A is some indexing 

set. Let f= (A). We define f= uAcajx, that is for A c X ,  we have 

If we now set w = {wl, w2), we see by Equation (U), that e is the fixed point of w. 

Now, for this w to be useful, we would need e to be its attractor in some appropriate 

space. Intuitively we might think this is true since I,+1 = w(1,), for each n E PI. Hence, 

in a way, w is an exact description of e. In general, the desired approximations would be 

obtained by iterating maps of the form given in Definition 1.2.4. This is the concept of a n  

iterated function system, or IFS [S]. 

Definition 1.2.5 An iterated function system, or  IFS, consists of a complete metric 
space ( X , d )  together with a finite set of contraction mappings w,: X + X with re- 
spective contmctiuity factors G, n = 1 ,2 , .  . . , N .  ' Such an IFS? denoted by  w, where 

This definition can be &ended to an infinite number of maps [30]. 
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Figure 1.1: Closeness of sets. 

w= {w,, : n = 1,2, . . . , N), is called an N-map IFS. The IFS is said to have contractivity 

c = max(c, : n = 1,2, . . . , N). 

The meaning of the contractivity of an IFS will be made clear in the following section. 

For this it will be necessary to  define an appropriate complete space, the elements of which 

are to be approximated. 

1.3 A Complete Space for IFS 

We will use the example of C c R to motivate the search for a space consisting of subsets 

of a complete metric space. Given a complete space (X, d), the goal is to h d  a complete 

space (Y, d y )  with Y c P ( X ) .  We will first construct a distance function dv on P(X) and 

use the conditions needed for it to be a metric to help us determine Y. To begin, consider 

the three pairs of sets in t pictured in Figure 1.1. 

Each case consists of two sets, one bounded by the solid line and one by the dashed 

line. In which case do the two sets seem "closest"? Probably not in (a). In (b) , the dashed 

set certainly seems close to the solid one; it is part of the solid set. However, many points 



CHAPTER 1. FRACTAL TRANSFORMS 17 

of the solid set seem distant fiom the dashed set. Case (c) seems intuitively right. Most 

points of the solid are close to the dashed, and vice-versa. More precisely, each set overlaps 

the other set rather well. We use these ideas to begin to construct our metric. 

Unless othenvise specified, (X, d )  will denote a metric space with no other properties. 

Notation 1.3.1 Let x E X, B c X. Defme the distance &om z to B by 

Hence, if z E B, d(x, B)= 0. 

Notation 1.3.2 Let A, B C X. Define the distance from A to B by 

d(A, B) = sup d(a, B). 
aEA 

This seems reasonable since if A C B, A should be close to B and by this definition 

we would have d(A,  B)= 0. Unfortunately, this function is not a metric. For example, 

d([O, $1, [i, 11) = 5 but ti([$, 11, [0, $1) = $. Symmetry is lacking, which motivates the 

following construction [5, 17, 261: 

Definition 1.3.3 Let A, B c X. Define the HausdorfF distance between A and B 6y 

h(A, B)  = d(A, B)  v d(B, A), 

where x V y = max{x, y). 

This is the function dv we seek. It satisfies the intuitive notion of two sets being close, 

which was found in (c) on page 16. The function h is almost a metric; we use the following 

table to help rule out certain sets fiom P ( X ) :  
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Problem: h(0, [O,l]) =? Solution: Only consider non-0 sets. 

Problem: h([0, I), [O, 11) = 0 Solution: Only consider closed sets. 

Problem: h([0, I], [O, m)) = os Solution: The closed sets must be compact. 

Notation 1.3.4 Define K(X) to be the set of all non-empty, compact subsets of X. 

Theorem 1.3.5 Let (X, d )  be a metric space. Then (X(X), h) is a metric space. 

Proof The proof will generally follow the one in [5]. Let A, B, C E 3C(X). As the sets in 

question are compact, we can change sup to max in the definition of d. We see that 

If A # B, then without loss of generalits' let a E A\B. Therefore, 

h(A, B) 2 d(A, B) definition of h(A, B) 

zd(a ,B)  defhitionofd(A,B) 

> 0 definition of d(a, B) . 

By definition, h is symmetric and we are Left to verify the triangle inequality. For a E A 

we have 

d(a, B) = min{d (a, b) : b E B )  

5 min{d(a, c) + d(c, b) : b E B) Vc E C 

= d(a, c) + min{d(c, b) : b E B )  Vc E C. 

Therefore, 

d(a, B) 5 min(d(u, c) : c E C) + max(min{d(c, b) : b E B) : c E C) 

= d(a, C) + d(C, B). 
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Hence, 

max{d(aT B) : a E A) 5 max{d(a, C) : a E A) + d(C, B) 

d(A, B) 5 d(A, C) + d(C, B). 

By an argument symmetric in A and B, d(B, A) d(B, C) + d(C, A). Thus we obtain 

We are almost at our goal. We have the metric space ( X ( X ) ,  h); all that remains is to 

show it is complete. For this, we follow the development in [5]. 

Notation 1.3.6 Let S C X and let t 2 0. Then let S +r= {x E X : d(xT s) 5 r for some 

s E S). We call S + T  the dilatation of S by a ball of radius I.. 

Lemma 1.3.7 Let A, B E K(X) and let c > 0. Then 

Proof This is the idea of overlapping as seen in c)  on page 16. We will show d(A, B) 5 
E A c B + E .  

( )  Suppose d(A, B) 5 e. Then max{d(a, B) : a E A) 5 e. Therefore, by definition of 

B + e , a ~ B + r v a ~ A .  H e n c e , A c B + ~ .  

(r) Suppose A C B + c. For each a E AT 36 E B such that d(aT b) $ r. Hence, Va /a AT 
d(a, B) < E and thus d(A, B) 5 s. 
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Therefore, by definition of h, 

The goal is to show the completeness of (YC(X), h) when (X, d) is complete. The complete- 

ness of X is essential, as the following example demonstrates: 

Example 1.3.8 Let X = [0, 1) with the usual Euclidean metric. Then ((1 - i)) -t (1) $ 
K(X). Hence !K(X) is not complete. 

It wil l  be necessary to consider the convergence of Cauchy sequences in (K(X): h). If 

(A,) is a Cauchy sequence in (X(X), h), then by Lemma 1.3.7, given c > 0, EIN such that 

V m ,  n 2 N, A, C An + e and A, C A, + e. As the completeness of ( X ( X ) ,  h) relies 

upon that of (X, d ) ,  we need the following lemma which allows the eztenszon of a Cauchy 

subsequence (xnj E Anj )  to a Cauchy sequence (2, E &). 

Lemma 1.3.9 (The Extension Lemma) Suppose (A,) k a Cauchy sequence in 
(3C(X), h) and let (nj) be an infinite, strictly incnming, sequence of positive natural num- 
bers. Suppose that (xnj  E A,,.) is a Cauchy sequence in ( X ,  d )  - Then there @ts a Cauchy 
sequence (& E 4) such that Znj = xnj V j  E K 

Proof Construct the sequence (f E A,). For each 1 5 n 5 nl, pick Zn E (I E An : 
d (znl, I) = d(xnl ,  4)). Such a point exists, since each An is compact. Proceed in a similar 

fashion for nj + 1 5 n 5 nj+l V j  = 1,2, . . . . That is, choose Zn E {X E A, : d(xnj  , X )  = 

d ( x n j ,  A,)). The claim is that (i-,) is a Cauchy sequence in X. 
To see this, let e > 0. Since (xn j )  is a Cauchy sequence, let M E N such that Vnk, nj 2 

M, d(z,,, znj) 5 5.  Then, choose N 2 M such that Vm, n 2 N, d(A,, An) 5 5.  Let 

m, n 2 N. Pick nj-1 < m 5 nj, and nk-1 < n 5 nb. Since h(&, A,) < 5 ,  there is a 
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y E A, n ({x,, ) + f), thus d(Zm, xnj ) 5 f . Similarly d(xnk, &) ( 5-  Therefore 

The main result now follows: 

Theorem 1.3.10 If (X,d) is  complete, then (H(X), h) is also. Moreover, if (A,,) is a 

Cavchy sequence in 3((X), then A = Lim A, E K ( X )  is given by 
n-+do 

A = { X  E X : 3 a Cuuchy sequence (z,, E An) that converges to x). 

Proof The proof will follow the one given in [5]. Let (A,) be a Cauchy sequence in K(X) 
and let A be as in the statement of the theorem. We break the proof up into five parts: 

b) A is closed, hence complete since X is complete; 

d) A is totally bounded, hence by b) is compact; 

e )  LimA, = A .  
n-mo 

Proof of a): We use the Extension Lemma to find a Cauchy sequence (ai E Ai) in X. 
Then lim% = o E A by definition of A. Therefore A # 0. 

Since (&) is a Cauchy sequence, get a strictly increasing sequence (Ni) such that 
h(&, A,) < $ Vm,n > Ni. Let X N ~  E ANl- Given that h(AN,, AN2) I i, get x~~ € AAN, 
such that d(xN1, X N ~ )  5 ). Suppose (xNi E is a sequence such that d(zNi- ,  , s ~ ~ )  5 
1 - 2.-L - Then, since  AN,, A P J ~ + ~ )  s&, choose IN,+, E  AN^+, such that d ( x ~ , ~  X N ~ + J  5 &. 
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The claim is that (xN) is a Cauchy sequence in X. To see this, let c > 0 and choose N 
such that ZEN < e. Then for rn > n 2 N, 

Now, by the Extension Lemma, let (e E A-) be a Cauchy sequence such that a ~ ,  = XN,. 

By the completeness of X, lim exists. Hence A # 0. 
Proof of b): Suppose (% E A) -+ a. For i E N+, get a sequence (xiln E 4) with 

lim xi,, = a;, by definition of A. Since (G) + a, let (Ni) be an increasing sequence of 
n-mo 

positive integers such that d(aNi, a) < t. Then let (mi) E Z such that d(xNi,rni , aNi ) 5 4- 
Therefore d ( x N i , ~ ,  a) 5 ). Now let y, = X N ~ ~ ~ .  Then by dehition of znri,,, , y, E R, 
V i  and -limy, = a. By the Extension Lemma, let (G E &) be a sequence such that 

t-00 

zmi = ym with (G) + a. Hence A is closed, and by the completeness of X, is itself 
complete. 

Proof of c): Let E > 0. Choose Nl such that Vm, n >_ N19 h(&, Am) < E. Let n > Nl. 
By Lemma 1.3.7, Vm 2 n, Am C A, + E .  Now let a E A and suppose there is a sequence 

(ai E Ai) + a. Choose N 2 Nl such that Vm 2 N, d ( h ,  a) < B .  Then a, E A, + E ,  since 

A, C A, + c As A, is compact, A, + E is closed. Hence as e, E A, + E Vm 2 N, the 
limit a E A, + E. Since a was arbitrary, A c A, + E .  

Proof of d)  : Suppose A is not totally bounded. Then by definition of total boundedness, 

for some E > 0, there does not exist a finite €-net of A. Thus, choose (xi) c A such that 

d ( ~ i ,  x j )  2 c Vi  # j .  By c) ,  get n such that A c & + i. Then, Vxi1 pick yi E An such that 

d(xi1 yi)  5 f. Since A, is compact, some (y,) c (yi) converges. Therefore, let ni # nj 
such that d(yni, y,,.) < f .  But then, 



CHAPTER 1- FRACTAL TRANSFORMS 23 

This contradicts the hypothesis on (xi) ,  hence A is totally bounded, and by b) is compact. 
Therefore by a), A E K(X). 

Proof of e): As A E X ( X ) ,  by c)  and Lemma 1.3.7, the result will be proven if for 
~ > 0 , 3 N s u c h  that V n L  N , A , c A + a .  

Let E > 0. Choose N  such that Vm, n 2 N, h(&, A) 5 f. Then, for rn, n 2 N, A, c 
A, + C. Let 1 2 N. We claim At C A + c. Let y E At and choose an increasing sequence 
(4) c N S U C ~  that 1 < Nl < N2 < ... and such that Vm,n > Nj7& c An + +. 

By the choice of I ,  At C ANI + f. Since y E At, get X N ~  E AN1 such that d(y,  xN,)  < i. 
As xw E  AN^ we get, by compactness of ANlt an x h  E AN? with d(xNl,xnr,) 5 9- By 

induction, choose E ANj such that d(xNj, xNj+J < h- Hence 

For j 2 i, 

Therefore, (xNi)  is a Cauchy sequence. By construction, ANj c An + f . Suppose ( x N j )  -t x. 
Since An + : is closed, this implies x E A, + i, and since d(y,  xNj)  < r V j  E W, we have 

d(y ,  x) < E. Thus & C A + r Vn 2 N. Combining this with c), Iim A,, = A and hence 
n-oo 

( K ( X ) ,  h) is complete. . 
We will now prove a few properties about the HausdorfT metric which will enable us to 
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justify the contractivity of an iterated function system as seen in Definition 1.2.5. Again, 
let (X, d )  be a metric space. 

Notation 1.3.11 Let C m ( X ,  d, s) denote the set of a l l  contractive maps with contractiv- 
ity at least s. 

Lemma 1.3.12 Let w E Con(X, d,  s ) ,  then lire C o n ( K ( X ) ,  h, s). 

Proof Since w is continuous, it takes compact sets to compact sets. Hence 6.i : H(X) -+ 
K(X). Let B, C E X ( X )  . Then 

By a symmetric argument, d(G (G),  6(B)) 5 sd(C, B) . Therefore 

h(ta(B), c(C)) = d(G(B), &(C)) V d(G(C),  zir(B)) 

r (4% C ) )  v (MG B ) )  

= s(d(B, C )  v d(C, B ) )  

=sh(B,C) .  

The following lemmas have proofs similar to the above. 

Lemma 1.3.13 Let B , C  E X(X). Then B C C * d(x ,C)  5 d(x, B )  Vx E X. 

Lemma 1.3.14 Let (X, d )  be complete. If A, B,  C E !J€(X), and B C C ,  then 

Lemma 1.3.15 Let A, B ,  C be as above. Then d(A u B, C )  = d(A, C )  v d(B,  C ) .  

Lemma 1.3.16 Let A, B , C ,  D E 3S(X). Then h(AU B , C U  D) < h(A,C)  v h(B ,D) .  
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Hence, we may prove the following result: 

Proposition 1.3.17 Let (X, d )  be a metric space and let 

Then w E Con(K(X), h, c) ,  where c = max{c, : n = 1 , 2 , .  . . , N). 

Proof The proof is by induction on N, the case N = 1 having been done in Lemma 1.3.12. 
k 

Suppose for 2 5 N 5 k, h ( w ( B ) ,  w(C)) < sh(B, C). Let wk = u 9 and s = max{c, : 
n=l 

n = 1,2 , .  . . , k). Then 

h(w(B)  , w(G)) = h(wk (B)  u Gk+l (B) ,  wk(C) u Z ~ ~ + ~ ( C ) )  by definition of wk 

5 h ( w k ( B ) ,  w k ( C ) )  v h(Grcl(B),  TG~+~(C))  by Lemma 1.3.16 

5 sh(B, C) v ck+lh(B, C) by hypothesis on wk 

5 ch(B, C ) .  II 

Proposition 1.3.17 implies a crucial result for IFS. 

Theorem 1.3.18 (BCMP for IFS) Let w be an N-mop IFS with contractivity c. Then 
w E Con(X(X) ,  h, c ) .  Furthermore 8 has a unique jbed point A& K(X) which is also 

its attractor. 

Proof This follows directly from Proposition 1.3.17 and Theorem 1-1-16. . 
Definition 1.3.19 The b e d  point of w is culled the attractor of 8. 

This yields the following version of Proposition 1.1.21 for iterated function systems [5]:  

Theorem 1.3.20 (The Collage Theorem) Let w be an N-map IFS with contmctivity 

0 5 c < 1 .  Suppose L E X(X) and e > 0 are such that h(L, B(L)) 5 E .  Then 

h(L,  A*) I *- 
The distance h(L, w ( L ) )  is often cdled the collage distance. 
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Proof See the proof of Proposition 1.1.21. . 
The Collage Theorem is important for the Inverse Problem of approximating sets seen 

in Section 1.1. By the Collage Theorem, one could try to construct an IFS w which takes 

L close to itself, The attractor of w would then be close to L- 

It is possible that C = 1 which, in tum, implies that the constant r/ ( l  - C) can be 

large. Thus there is no guarantee that the collage distance is small and the approximation 

may be quite poor. To make c = 0, one can use maps with small contractivity factors. 

However, this might increase the number of maps needed to describe the approximation 

(hence reducing the compression). This fact is relevant when compression is a principal 

factor. 

In order to calculate fractal images using the theoretical machinery that has been 

developed, one can use the following algorithm, a consequence of Theorem 1.3.18 [5]: 

Corollary 1.3.21 (The Deterministic Algorithm) Let w be an N-map IFS with w = 
n 

{ : j = 1 2  . . , N Let Aa E H ( X ) .  Compute A, = 80n(A) by An+1 = &(A) for 
3=1 

n = 1,2,  . . . . Then the sequence (A,,) c K ( X )  converges to the attractor of the IFS in 

W X ) .  

1.4 Examples of IFS Attractors 

In practice, afhe  IF'S contraction maps are used to simplify calculations. Let M,(R) 

denote the set of all n x n matrices on R, where R is the usual Euclidean n-space. 
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Dewtion 1.4.1 Let X C lR? , n E N+ . A map w : X + W" is culled an a f k e  transfor- 
mation if 3A E M,(R) and b E PC such that 

In general, given vector spaces X and Y, an aihe transformation f : X + Y is a map of 
the form 

where A is a linear tmnsfonnation from X to Y and b E Y. 

Example 1.4.2 Let X = [O, 11 and let w~(x) = Q(x + 2i), i = 0 , l .  Then A* = e. 

Example 1.4.3 Let X = [O, 11'. Define the following maps: 

and 

To find the attractor of 8, we use the Deterministic Algorithm. We are allowed to make 
any choice of Ao. Therefore, let A. be the following triangle: 

Then, using the algorithm, we obtain the following sequence of sets: 



This sequence converges to the Sierpins ki gasket [33]. 

An afine IFS w = {wi)  is an IFS where each wi is h e .  Often, f i e  IFS in @ will 

be written in a table to facilitate their description. Consider an IFS consisting of the maps 

Instead of writing them as above, they are written in a table such as: 

We now recall the definition of a similitude. 

Definition 1.4.4 A transfornation u, : R2 -+ R2 is called a similitude if it is an aBne 
transformation of the form 

where (e, f) E R2, T # 0, B E [O, 2 4 .  The constant r is called the scaling of w or its scale 

factor and 0 is called its angle of rotation. 
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Proposition 1.4.5 If w(x) = Ax + 6, A E M2, b, x E R2 is a similitude in 3, then its 

contractivity factor is IdetAl. 

Proof This is simply a matter of calculating 

for the points (zl, yl) , (x2, yz) and using the definition of detA in M2. U 

Notation 1.4.6 Define the following three sets: 

Conl(X, d)=(w E Con(X, d) : w is 1-1); 

Sim(X, d) =(w : w is a similitude on X); 

Siml(X, d)=Sim(X, d) n Conl(X, d ) .  

Corollary 1.4.7 If w : R2 -+ R2 is a similitude as above and IdetAl < 1, then w E 

C a ( X ,  d) . 

Proof Use Proposition 1.4.5. . 
We now wish to apply this theory to images, i.e. computer images. One can think of an 

image as being a compact subset of R". One can model a computer screen by X = [O, I]* 

and define an image on the screen to be a set A in X, with points being screen pixels. If 

x E A, the associated pixel is plotted white. Ifx $ A, leave the pixel black. Hence a white 

screen represents A = [O, I]*. 

Suppose an IF'S acts on the screen. When the IFS is iterated, the points of A move 

about the screen. Looking at w(A), we see that x E w(A)  if 3i E 1,2,  . . . , N such that 

x = wi(y) for some y E A. Hence, after one iteration of 8, a pixel is plotted white if there 
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is a white pixel mapped to it by the IFS. We can therefore think of IFS as mapping black 

and white images to  black and white images. 

Unfortunately, as they say, the world is not black and white. What is needed is an 

IF'S-type method which dows  for, say, greys?! We might want maps which move pixels 

around and then scale their grey-levels. These thoughts lead to IFSM [20]. 

1.5 From IFS to IFSM 

The idea of applying IFS methods to grey-level (grey-scale) images was developed by Forte 

and Vrscay [19, 20, 211. They formulated an IFS-type method which d o w s  the creation 

of grey-scale images. Let us consider a compact subset A of E2 to stimulate some ideas. 

It is necessary to formulate a definition of A being a grey-scale image. One possible way 

to do this is to think of the image as a function, rather than a set. What might work is 

to formulate an IFS method on Eunctions, functions from sets to grey-levels. The question 

remaining is how? 

Following [49], we first formulate this idea for the IF'S case. In this case, one finds a 

simple association to functions. Here, points in images can take on two values: black and 

white. Therefore, the function associated with a set A is XA, the chamcteristic function 

on A, where 

The sets considered for IFS are compact, hence it would be natural to consider functions 

which are characteristic functions of compact sets [49]. Once again, let (X, d) be a metric 
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space. 

Notation 1.5.1 Let f be a function tiom a set A to R Then inv(f) is defined as 

in.(f) = f-'(1). 

Notation 1.5.2 Let FBw(X)= { f  : X -t {0,1)1 inv(f) E X(X)), be the black and white 

functions on X. 

We write "BW" to emphasize the fact that we are considering functions which take only 

two values, 0 (black) and 1 (white). 

Recall, for an IFS w = {wi : i = l,2, . . . , N), the map w : !K(X) -t K(X) is given by 

N 

*(S) = U*(S) VS E %(X). 
;=1 

It might therefore be of interest to consider for & E X(X),i = 1 ,2 , .  . . , N, and 

w E C a ( X ,  d ) ,  

N 
i) X, in terms of X,,, . . . , XAN where A = U A-, and 

;=1 

ii) X,(,) in terms 

Proposition 1.5.3 

of X,. 

N 
Le tX  bease t  a n d A i c X  for i=1 ,2  ,... ,N. Then i f A =  -uAi ,  

a d  

Proof If x E A, choose i such that x E A+ Hence RHS=LHS. If x 4 A, then Vi ,  x g! Ai 

and XAi (2) = 0. This implies that maxi,l,a... ,w XAi (2) = 0. Hence RHS=LHS. . 
Proposition 1.5.4 Let A C X and w : A + X be 1-1. Then 
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Proof Let x E 4(X). Then 

and 

Proposition 1.5.5 Let A c X and w = {wl, w*, . - - , wN), with wi being 1-1 for all 

1 i 5 N. Then X,(,)(z) = - - x~(w;'(x)) Vx E EX. The notation mad indicates 
that only subscripts i, where x E wi (X) ,  are consideted, wing the convention max 0 = 0. 

Proof The proof follows born Propositions 1.5.3 and 1.5.4. . 
Therefore, given an IF'S w = {wl, wz, . . . , wN), there is an associated operator T t W :  

FBw(X)  -t FBw(X) defined on f E FBw(X) by 

The goal is to develop a "black and white" IF'S theoy on FBw(X) ,  hence a complete 

metric must be defined on this space. For insight, consider the next proposition. 

Proposition 1.5.6 Let (X, d )  be complete, wl, w2,. . . , w~ E Ccml(Xl d )  and u E 

F B w ( X ) .  Then 

inv(~:~u) = w(inv(u)), 

N 
where w(A) = U &(A) for A E K(X) . 

i=l 
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Proof Given u E FBw(X), 

It is therefore natural to define the following metric on FBw(X):  

Definition 1.5.7 Let dBW(u,v)= h(inv(u),inv(v)) V U ~ U  E FBw(X).  

Theorem 1.5.8 If (X, d )  is complete, then (yBw(X),dBw) is also. 

Proof We first show daw is a metric. Let u, v E FBW(X)- Then 

dBw(u,v) = 0 invu = invv 

(Vx,u(x) = 1 @ v(x) = 1)- 

Since u and v only take on values of 0 or 1, this happens if and only if u = v. The symmetry 
property and the triangle inequality follow since h is a metric. Therefore dsw is a metric. 

Now, let (un) be a Cauchy sequence in FBw(X) .  By definition of dBw, (inv(un)) is a 
Cauchy sequence in K(X). Hence by completeness of K(X), A = lim inv(un) E K(X). 

n 3 m  
Let u = X,. Then u E yBw(X) since A is compact. Given E > 0, choose N such that 

Vn 2 N ,  h(inv(u), inv(u,,)) < E. Thus dBw(u, un) < E, which implies (un) -t u in dBw. 
Hence (FBw(X) ,  dBw) is complete. . 

This leads to the next theorem. 

Theorem 1.5.9 Let wi E Conl(X, d )  for i = 1,2,. . . , N .  Then TzW is contractive on 

( F B W ( ~ ) , ~ B W )  and *$w = 
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Proof For u, v E FBW(X),  

by Proposition 1.5.6. Therefore, as u and v were arbitrary, TzW is contractive and, by the 
l a s t e q u a I i t y , ~ , ~ ~ = c +  W 

Corollary 1.5.10 Let wi E Conl(X, d) for i = 1,2,. . . , N. Then T , B ~  has a unique, 

attracting, fied point *,BW E FBw(X). Furthennore w(inv(eew)) = i n ~ ( * ~ w ) .  

We are now in a position to extend this work to grey-level maps; that is, functions 

u : X -+ R We write 3 ( X )  for the set of grey-level maps on X. Hence, Letting u E 3 ( X ) ,  

and using our previous work, we could define an operator T by 

This was h e  in the IFS case since u only took on two values. In a sense, an IFS changes 

u only in physical space. We wish to &OW this new operator to modify the grey-level values 

when the function is displaced physically. For this, a grey-level component is added [20]. 

Definition 1.5.11 Let (X, d) be a metric space. Let w = (wk)t==, where wk E C a l ( X ,  d )  

for k = 1,2, .  . . , N .  Then, let @= {+r)%, where q5k : R 4 B for k = 1,2 , .  . . , N. The 
pair (w, a) will be called an iterated function system with grey-level maps, or IFSM for 

short. 

Define the IFSM operator yw5): F(X) + F(X), on u E 3(X), by 

Now, when u is displaced in space, its grey-level values are also modified. When viewing 

IFS as IFSM, this definition reduces to the case when 4i = idR Vi  = 1,2,. . . , N .  
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Since the grey-level function u will be allowed to assume values between 0 and 1, we 

note the following: I .  the IFS case, if x E wi(X)  n w j ( X )  for some 1 i # j 5 N, 

i.e. when there is overlapping, then yw?&u(z) = 1, since both + i ( ~ ( ~ ; ' ( x ) ) )  = 1 and 

j ( ( ~ T 1 ( ~ ) ) )  = 1 This was fine since the function u assumed only values of O or 1. 

In the IFSM case, where yw$)u(z) can assume values between 0 and 1, the grey-level 

mappings & and #j could be more general. 

Suitable operators for both non-overlapping and overlapping cases have been stud- 

ied [20, 211. We will focus our attention here on the more general and probable situation 

where the sets wi(X)  do overlap. One way to accommodate the problem of overlap is to 

consider taking a linear combination of the qjk 0 u o w;'. We therefore define the operator 

T(,,*) OR u E F ( X )  by: 

where C' indicates that the sum runs over the indices k with x E wk(X) .  We use the 

convention that an empty sum has a value of 0. 

It should be noted that qw,*) is not an exact generalization of T t W .  It has been chosen 

in this way since it will allow us to find a nice solution the Inverse Problem. We refer the 

reader to Appendix A for a discussion on the generalization of TtW for the IFSM case. The 

following section will focus on T(=,*) as defined in Equation (1.5). Further generalizations 

may be found in [22]. 
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1.6 IFSM on LP(X,p)  

Let (w, @) be an IFSM on a complete metric space (X, d)  where w = {wl, w2,. . . , toN),  

wt E Conl(X) and O = {&, &, . - - q5N}l #k : B -+ R When it is understood that 

a specific IFSM is being considered, write T for T(,#), to denote the associated IFSM 

operator. 

The theory of IFSM was developed for P(XT p)  by Forte and Vrscay in [20]. We present 

a few of their results here. 

Proposition 1.6.1 Let (w,@) be an N-map IF'SM and let T be the associated IFSM 
operator. Suppose: 

i) vu 'u E ( X ~ ~ ) ~ U O W ; '  E L P ( X , ~ ) , ~  5 k 5 N and 

N 
hence by i2) & ouo w;' E LP(X, p)-  Therefore q,?*)u = ' h o u o w ~ '  E P ( X ,  p) .  . 

k=l 

We now show contractivity of T(w,i) under certain conditions. Let M ( X )  denote the 

set of finite measures on B ( X ) ,  the Bore1 sets of X. 

Proposition 1.6.2 Let (w, a) be an N-map IFSM such that k(t) = ak E B for all t E W 
and 1 5 k 5 N .  Then V p  E [I, oo) and p E M ( X ) ,  the associated IFSM operator T is 

contractive on P ( X ,  p) ,  with contmctivity factor c~ = 0. Furthermore, its fized point cT 
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Proof Let u, v E LP (X ,  p)  . Then 

Therefore, 

Proposition 1.6.3 Let X c RD, D E N+, and let p = m(D) be the Lebesgue measure on 

RD and d be the usual Euclidean metric. Let (w, B )  be an N-map IFSM such that, for 

I S k l N ,  

i) wk E Siml ( X ,  d )  with contractivity factor ck and 

ii) $c E Lip@), with Lipschitz constant Kk. 

Then for p E [l, oo) and u, v E LP(X, p) ,  we have 

N 
where C ( D , p )  = C C ~ ' P K ~ -  

k=L 
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Proof Let u, v E P ( X ,  p). Then 

point. It is not necessary that all IFS maps be contractive (in the base space X) for T to 

be contractive. The contractivity of the & (in the grey-level range) can contribute in this 

aspect [20]. 

Example 1.6.4 Let X = [O, 11 and p be the Lebesgue measure on X. Let w ~ ( x )  = 

$(x + i  - l),i = 1,2,3. Let #l(t) = $t,+2(t) = $,#3(t) = i t  + 4, for t E R The bed 
point of this LFSM is the Devil's staircase, which is continuous almost everywhere on X 
and differentiable on X\e. The attractor is shown in Figure 1.2. 

Given two N-map IFSM (w, Oi),  i = 1,2, where 4 = 4i2, . . . , &N), define the 

distance between the grey-level components by 

3This function will be a metric when X is compact. 
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Figure 1.2: The Devil's staircase. This is also the distribution function F ( x )  = J," dp of 
the Cantor-Lebesgue measure p. 

The following result &om [20] establishes the continuity of fixed points for IFSM (c-f. 

Theorem 1.1.18). 

Proposition 1.6.5 Let (w , be an N-map IFSM with Jized point 4 E LP(X, p) . T h e n  

given E > 0, 36 > 0 such that for all N-map IFSM (w, a2) d$(!Dl, a2) < 6, then 

lliit - ii2 / l p  < e, where is the jbxd point of (w, 4). 

Proof Let Y = LP(X, p) and 4 be the IF'SM operators of (w, Oi) ,  i = 1,2 with contrac- 
tivity factors Q. Then 
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The result then follows by setting b = 4 1  - c ) / M ,  where c = min(q, c2) and using 
Corollary 1.1.19 on page 11. . 
1.7 Inverse Problem Using IFSM 

In this section we present a formal solution to the Inverse Problem for IFSM. Consider the 

following formulation: 

Question 1.7.1 For u E P ( X ,  p)  and E > 0, can we find an IFSM (w, Q )  with associated 

operator T such that 1 lu - Tall, < E ?  

A formal solution was obtained in [20] by constructing sequences of N-map IFSM 

(wN, QN), N = 1,2,3 , .  . . where wN is chosen from a b e d  set W of contraction maps. 

Definition 1.7.2 Let W = {wl, w*, . . . ) be an i n e t e  set of contmction maps on X .  Then 
W generates a p-dense and non-overlapping, or p-d-n, family of subsets of X if Ve > 0 
and V B  c X ,  there exists a finite set of integers ik 2 1, 1 5 k 5 N such that 

ii) p(B\A) < E and 

iii) p(wik (X) n wi, (X)) = 0 whenever k # I .  
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Figure 1.3: The set B is the &.ion of the solid lines on the vertical axis. The set A is the 
union of the lines (projected onto the vertical axis). 

Example 1.7.3 Let X = [O, 11 with Lebesgue measure. Let wij(x) = 2-'(x + j - I), 

i = 1 2 - ,  1 j 2 For each i 2 1, the set of maps {wij ,I  5 j 5 2') is a set of 2' 
contractions of [O,1] which tile [0, I]. Then W = {wi j )  is p-d-n. Figure 1.3 illustrates the 
idea. 

Now, suppose W = {w i ly  with wi E Conl(X, d), generates a p-d-n family of subsets of 

X. Let 

denote the N-map truncations of W. Assume that for each k E W, qjc E Lip(R) is the 

associated grey-level map of wc and let 
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Let TN : P ( X ,  p)  + LP(X, p) be the associated IFSM operator of (wN, aN). Then the 

following result holds: 

Theorem 1.7.4 Let v E P ( X ,  p),  1 < p < oo and W as above. Then 

Proof A proof can be found in [20]. . 
Using this result and Example 1.7.3, we are now in a position to develop an algorithm 

for the construction of IFSM approximations of target functions u E P ( X ,  p). Then, 

given an N-map IFSM (w, a) on (X, d) with associated operator T, we have the squared 

L2 distance 

= L  (g k -  d m -  ) * 
With the formal solution in mind, we assume the LFS maps wk are fixed and search 

for grey-level maps 4& which minimize A2 for the given target u. This is the key idea for 

IFSM [20]. 

For computational simplicity, assume the maps wk and & are f i e .  The pair (w, a) 
will be called an afine IFSM. Assuming that #k(t) = att + Pk W E $, k = 1 ,2 , .  . . , N, 

then 
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If X c RD, then by Proposition 1.6.3 on page 37, Vu, v E LP(X, p),  

Example 1.7.5 If pc = 0 for 1 5 k 5 N, then  ti^ = 0. 

Example 1.7.6 If X = [O, 11, wk(x)  = a&x + bk, 1 5 k 5 N, and T is contractive with 
fixed point @, then by Equation (1.7), 

Therefore, fiT is a linear combination of piecewise constant functions #k, and functions 
&, which are dilations and translations of f i ~ .  This idea is reminiscent of the wavelets 

relations and will be discussed in Chapter 2. 

By the following theorem, it is suBcient in practical situations to study the subclass of 

affine IFSM [20]. 

Theorem 1.7.7 Let X = I tD and let p E M ( X ) .  Given p 2 1, let L:(X,p)  c LP(X,p) 
be the set of fixed points of contmctive N-map afine IFSM on X. Then L%(X, p) is dense 

in LJ'(X,p). 

Proof For simplicity, we prove the result for D = 1. Let S be the set of step functions 

on X. Then, given 4 E S, get N, with 1 _< N < oo, a set of numbers & E R and intervals 

41f f : B + then given a E $ f (a-) is called a dilation of f and f (- - a) is called a translatia of f. 
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Jk = [ak7 41 c (0, 11, k = 1, 2, . . . , N such that 

Then, 4 is the attractor of the N-map a f h e  IFSM (w, O) with 

Thus, S c LP,(X, p).  But, since S is dense in P ( X ,  p),  the result follows. The argument in 
higher dimensions follows in a similar manner, by replacing the intervals Jc by appropriate 

rectangles in RD - 

Now, suppose (w, O) is an N-map a f b e  IFSM with 

i) wk E C m l ( X )  with contractivity factors c k  > 0 for 1 5 k < N ;  

ii) u,N_, wk ( X )  = X7 and 

iii) #k:B+R,  where dc(t)  = a k t + a 7  t € R ,  1s k s N .  

Then, going back to Equation (1.6), 

where $k = v 0 w;' and X ,  = X,k(xv Then A2 can be written as a quadratic form in the 

parameters ak and a as 
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. -  . .  
where xT = (a1, . . . , ON, a, . . . , &) E - ndmmmng A* is a quadratic programming 

(QP) problem in the a k  and a. A detailed discussion is given in [20, 491. 

We end this section with a few examples of approximations which demonstrate the 

application of IFSM. The second example reveals a problem with this method. 

Example 1.7.8 Let u(z) = sin(x) and X = [0, 11. The approximations of u are given in 

Figure 1.4. The maps wc map X to evenly divided subinteds .  For example, in the case 

of 2 maps, wl(z) = x/2 and wz(x) = x/2 + 112. The following table gives the L2 distance 

between u and the approximations. 

Number of maps Distance File size (bytes) Computation time (sec.) 

u 0.0 30878 n-a. 
2 0.0199362 42 1.17 

4 0.0191687 82 1- 17 
16 0.0188445 320 1.17 

In this case, the results are quite nice. This happens since the parts of the function on the 

subintervals are similar to the entire function. 

Example 1.7.9 Let u(x) = sin(~x) and X = [O, 11. Consider the approximations in 

Figures 1.5. The following table gives the L2 distance between u and the approximations. 

Number of maps Distance File size (bytes) Computation time (sec) 

Here, it is difficult to get a good approximation since the best fits are given by piecewise 
const ant functions. 
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Figure 1.4: IFSM approximations of u (x) = sin(%). 
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Figure 1.5: IF'SM approximation of u(x) = sin(nx) with 2, 4 and 16 range blocks. 
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The problem described above arises in most situations, when the smaller portions of 

an image are not similar to the entire image. However, this situation can be remedied by 

considering local IFSM. 

1.8 LIFSM 

A method, which in general yields better approximations than IFSM, is the method of 

local IE'SM (LIFSM) [20]. 

Definition 1.8.1 Let X C RD and p = dD). Let Jk C X, k = 1,2,  . . . , N ,  such that 

i) u%, ~k = X (covering condition) and 

ii) p( Jj n Jk) = 0 when j # k (p-non-overlapping condition). 

Suppose aho that tf&, 31j(k) C X with an associated map W j ( k ) ~  E Con(X, d )  with con- 

tractivity factor cj(k),k such that 

The set Jk is called the range block of the domain block ij(k)- For each w j ( k ) * ,  let 

qjk : R + B be an associated grey-level map. Then define 

The pair (wr,,8) is called an N-map local IFSM, or LIFSM. The associated operator 

Tloc (w,*) - F(X) + 3 ( X )  is defined by 

m e n ,  one calls the domain blocks "parent" blocks and the mnge blocks "child" blocks. 
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A result similar to Proposition 1.6.3 can then be obtained: 

Proposition 1.8.2 Let X c R? and p = m(D). Let (w~,, O) be a LIFSM as above with 

q5k E Lip(R) for 1 5 k 5 N and let Tfm be the ussociuted LIFSM operator. men, for 

21, v E WX, 4, 

Proof The proof is similar to that of Proposition 1.6.3 on page 37 and is omitted. 

NOW, suppose X = [0, 1ID, f i  = m(D) and v E L2(X, p) .  Then, given an N-map LIFSM 

as above, the squared collage distance is given by 

= C j  [4k(v(w;:),&))) - 4412dx 
k s l  Jk 

It is therefore sufiicient to minimize the A:,),, individually for each range block Jk. In 

the case where the maps #k are h e ,  this becomes a QP problem [20]. 

To apply this idea to the Inverse Problem, consider the following: 

i) X c R*, p = dD), d usual Euclidean metric; 

ii) wk E Siml(X, d ) ,  with X = UF=~X&, where Xk = wr (X) (covering condition); 

iii) p(Xi n X j )  = 0 when i # j (p-non-overlapping condition) and 
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iv) bk : B -F W are &e with 6k(t) = akt + a, t E B 

Then 

As before, with the formal solution of the Inverse Problem in mind, assume that the wh 

are fixed, and hence for each k ,  Ak can be viewed as a quadratic form in the parameters 

C Y ~  and pk: 

The problem can be viewed as a least squares minimization of Ak with respect to  ab 

and ,Bk. Set 

Then 
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Then, if 4 E llvllf - llvllf # 0,  the solutions are given by 

for 1 < k 5 N. 

When considering images, the condition that 4& : IR? -t lRC would be needed. This 

forces a h ,  p* 2 0. It is not guaranteed that the ak and given by the above method d l  

be nonnegative. However, if we consider an image to be a function defined on a compact 

subset A of R, the condition on the ak and Dk could be relaxed, with #k(v(z)) still being 

nonnegative on A. 

Hence, given v E L2(X, p),  fix Nj range blocks Jk, 1 5 k 5 NJ, and NI domain blocks 

I j ,  1 < j 5 Nr. For each range block Jk, minimize the distance A;,,, for each domain 

block I j ,  1 5 j 5 ATr- Then, let Ij(k) be the domain block for which Aj(k),k is minimized 

over the domains. The values of l&), and the associated parameters ah and Dk, are then 

stored, for 1 5 k 5 NJ. These values are called an IFSM approximation of v .  

Example 1.8.3 Consider the function u(x)  = sin(nx) for x E X = [o, 11. Some approxi- 

mations to u using the LIFSM method are shown in Figure 1.6. The following table gives 

the L2 distance between u and the approximations. 

Domains Ranges Distance File size (bytes) Computation time (sec) 

u ma. 0.0 30768 n-a. 

2 4 0.0266135 82 1.16 

2 8 0.0144324 162 1.18 

2 16 0.00762873 322 1.18 

4 16 0.00131272 324 1.24 
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Figure 1.6: LIF'SM approximation of sin(rx) with block ratio (D:R) Born left to right, top 
to bottom, 2:4, 2:8, 2:16 and 4:16. 

Comparing these results with the IFSM case shown in Example 1.7.9, the strength of 

LIFSM is revealed. 



Chapter 2 

Wavelets 

This chapter will deal with function approximation in a different way, using wavelets (c.f. 

Example 1.7.6). Our general goal is the representation or approximation of arbitrary target 

functions by functions which we know. An often used method is through bases. 

2.1 Hilbert Space Background 

Notation 2.1.1 Let (H, < -, >) denote a Hilbert space over W with inner product < -, - >. 
The norm of f E H is 11 f 1 1  = d7f;f->. The distance between f, g E H is d( f ,  g) = 

Ilf - 911. 

For simplicity, the Hilbert space of focus in this thesis will be L2(R), the square inte- 

grable functions on I& with the usual inner product. 

Definition 2.1.2 Two elements f, g E H are orthogonal if < f, g >= 0. Write f l g  to 
denote this fnct. An element is called normalized i f  it has norm 1. A set {h,) c H is 
orthogonal if all pairs of distinct elements a= orthogonal. It will be called orthonormal i/ 
it is orthogonal and all its elements are normalized. 

Example 2.1.3 Let H = L2(0,r ) .  For n E N, let L ( x )  = sin(nx) for x E (0,~)- Then 
{k )  is an orthogonal set. 
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Example 2.1.4 Let H = L2[0,00). For n E Y let h, = XI,,n+,). Then {hn)  is an 
orthonormal set. 

Definition 2.1.5 If M is a subspace of H ,  define M I ,  the orthogonal complement of M, 
as 

Proposition 2.1.6 If M is a subspace of H ,  then ML is a subspace of H and i f  M is 
closed, H = M @ MA, the direct s u m  of M and ML.  

Recall the definition of a projection: 

- 
Definition 2.1.7 Let (ha)  be an orthonormal set in H and let M = (h,), where (ha) 
denotes the linear span of the set (h,)  and denotes the closvre of the set A. Then, the 
iunction PM: H -t M defined by 

is called the orthogonal projection of H onto M .  

The following proposition Lists a few basic facts about PM: 

Proposition 2.1.8 The function PM b well-defined, linear, continuous and idempotent 
with respect to composition. In addition, PMf = f f E M and PMf  = 0 f E 

M I .  

Recall the following important theorems from Hilbert space theory. Standard proofs 
can be found in [4, 8, 441. 

Theorem 2.1.9 (Pythagorean Theorem) I/ f, g E H and f lg, then 

Ilf + 9112 = llf 1 1 2  + 11g112 - 
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Theorem 2.1.10 (Bessel's inequality) Suppose (&) is an orthononnal sequence in H 

Corollary 2.1.11 If {ha) is orthononnal and f E H ,  then C, < f, ha >ha converges. In 
addition, if f = C, cab,, then c, =< f, h, >. 

Definition 2.1.12 A basis of H is a maximal orthononnal set in H .  That is, {ha) c H 
is a basis if no element f E H ,  f # 0, is orthogonal to each of the ha. A basis is also 
called a complete orthonormal set- 

Theorem 2.1.13 (Parsed's equality) Suppose {h) is a complete orthononnal set 

and f, g E H .  Then 

where c, =< f, h, > and d, =< g ,  h, >. Therefore, 

Example 2.1.14 The trigonometric system {$e'"f)n,z is a complete orthonormal set on 

L2 (-7r, T ) .  

Theorem 2.1.15 Every Hilbert space has a basis {ha) and H = (ha) . 

Definition 2.1.16 If {ha)  is a set such that 

but is not orthonormal then {ha) is called complete. 

The next example will be important in motivating the definition of a large class of bases 

for L2 (R) ). This example is the Haar basis [5 11. 
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Example 2.1.17 (The Haar Wavelets) Let H = L2(R) and let 4 = XI,,,). We wish to 
use 4 to construct a basis of L2(B). For each nonzero n E Z, &(t - n)ld( t ) .  This is trivial 

since the supports of the two functions are disjoint. The set {$(t - n)) is not a basis of 

L2(R) since the set 

consists of piecewise constant functions with jumps only on Z. 

Consider the dilated and tmnslated versions of +(t) 

4(2T  - n), rn, n E Z. 

Given rn E Z, the set {2m124(%t - n) : n E Z) is orthonormal, since the supports of any 

t;wo distinct functions in it are disjoint. For m E 25, let V, 

Then, the space V = umezVm consists of piecewise constant functions with jumps at dyadic 

rationals. As these functions are dense in L2(R), we have that V = L2 (R). 

D e h e  $,,,(t) = 2m12q5(2mt - n) for m,n E Z. Then (4m,n} is complete in L2(R)). 

However, < (p,, 910 >= a, therefore, {q5m,,) is not orthonormal. To solve this problem, 

let $(t) = q@t) - $(2t - 1). Then {$(t - n)) is orthonormal and @(2t - k)l$(t  - n) 

Vn, k E Z. Therefore, we obtain the following theorem: 

Theorem 2.1.18 Let &,,(t) = 2"/*+(2"t - n) for m, n E 2. Then {$m,J is a complete 

orthonormal system in L2 (R) . 

Proof The proof for general functions of this type wi l l  be given later (see Proposi- 

tion 2.2.11). . 
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Figure 2.1: The mother wavelet $(t) of the Baar system. 

The set {$m,,) is called the set of Haar wavelets. The function @ is called the mother 

wavelet and is shown in Figure 2.1. We see that Vm = ($k,n : k, n E Z, k $ m - 1)- The 

standard approximation of a function f E L2(R) is 

Therefore, f, E V,. By Parseval's equaiity, we have 

Hence, f, = Pv, f ,  that is 
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We therefore obtain a strong result on the convergence of the approximations. 

Proposition 2.1.19 Let f 6e continuous on R with compact support; then f, -t f uni- 

formly. 

Proof Since f has compact support, it is uniformly continuous. Therefore, YE > 0 we can 
find an m such that 

I f  (z) - f (y)I < E when 1% - yl 2-m- 

Now, for each n E Z and x E [nZern, (n + 1)2-m) we have 

by definition of 4m,n. Then, by the Mean Value Theorem, 

for some c E [712-~, (n + 1) 2-m). Since Ix - cl 5 2-", 1 fm (x) - f (x) 1 < e, required. . 
The Haar system is an example of a wavelet basis of L2 (R) . 

2.2 Mult iresolut ion Analysis 

A wavelet has been defmed by Meyer [38] as an integrable function J, whose integral is 

zero such that 

for all # 0 where 4 is the Fourier transform of $. Recall the following definitions: 
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Definition 2.2.1 The (infinite) Fourier transform of the function f E L1(R) is 

If the transform is in L1(R), then the inverse is given by 

For f E L2(R)), Parseval's equality yields the following two relations: 

Example 2.2.2 The Fourier transform of the Haar mother wavelet given in Section 2.1 is 

A complex parametric plot is given in Figure 2.2. 

One way to obtain wavelet bases like the Haar basis is though multiresolution analysis. 

Begin by considering regular functions [51]. 

Definition 2.2.3 Let S be the space of all Cw(R) functions 8 such that 

where 6(k) denotes the k-th derivative of 0 ,  with convergence given by the semi-norms 

The space S is called the space of rapidly decreasing or regular Coo(R) functions on R. ' 
This is sometimes called the Schwartz class. 
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Figure 2.2: The Fourier transform of +, the mother wavelet of the Haar system. 
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In S, 8, + 0 whenever 

uniformly in t Vp, k E N as v -t oo. Here, D is the derivative operator. 

Example 2.2.4 Hermite functions on R, defined by 

and (I - D ) L ( x )  = d%PZhn+l(x), n E N, x E R, are in S. Therefore, since these 
functions form an orthonormal basis in LZ(R), S = L2(R) [4]- 

Example 2.2.5 AU Coo@) bctions of compact support are regular. 

The Haar scaling function does not satisfy Equation (2.1), but satisfies a less restrictive 

condition. 

Definition 2.2.6 For r E N, let S, be the space of all 0 E CT(R) satisfying Equation (2.1) 

for all k 5 r and for all p E N, with the topology restricted by k < r .  Functions in S, are 

called r-regular. 

Example 2.2.7 The function 4 of the Haar system is in So. 

We now define the concept of a multiresolution analysis, or MRA of L2(R). This 

will allow us to construct more wavelet bases. More general definitions can be found 

in [7, 32, 35, 381. 

Definition 2.2.8 Let 4 E ST. The function 4 defines a multiresolution analysis, or MRA, 
of L2(R), and is called a scaling function, if there is a nested sequence of closed subspaces 

{V,),,z satisfying the following conditions: 
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iv) and u V, = L~ (R) . 
m€Z 

The map T : KI + fi defined by f H fif (2.) is an isometric isomorphism from to 

Vl, hence {fi4(2t - n)) is a orthonormal basis for Vl. Therefore, since $ E Vl, 

where {hc)  E 4?(2). Equation (2.2) is called the dilation equation and the coefficients { h k )  

are called the dilation coeficients of 4. 

Usually, the condition that 

is included in the definition. It was shown in [31] that this property follows from the 

definition given above. 

By what was shown earlier, the Haar system satisfies this definition for r = 0. Another 

example is the Shannon system. 

Example 2.2.9 (The Shannon Wavelets) Let q5 be the Fourier transform of a function 
resembling the scaling function of the Haar system. That is 

1 i f - ? r s w S r  

0 otherwise. 
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Then 

Then for 0 # n  E Z, 

Notation 2.2.10 Let f be a function from a set A to B Then the support off ,  supp( f), 
is defined as 

Let f E L2 (R) with supp f c [-T, lr]. Then 



CHAPTER 2- WAVELETS 64 

where c, = & J'" f^(w)e-&& = f (-n) by the Fourier integral theorem. By the same 

theorem, 

The last equality is often referred to as the Shannon Sampling Theorem. Hence = 
( d ( t  - n) : n E 2) is the set of all such functions. Therefore is a closed subspace of 

L2(R) and i) of Definition 2.2.8 is satisfied. 

Now consider g(x) = f ( 2 4 ,  where 22 = t. Let Vi be the space of all functions g 

such that f E &. These functions have Fourier transforms vanishing outside of [-2r, 27r]. 

In this manner, construct an increasing sequence of spaces V, = {&f ( 20 )  : f E Vm-l)- 

Functions f E Vm have Fourier transforms which vanish outside [-2mn, 2m7r]. Similarly, 

by letting z = t /2,  we can construct a decreasing sequence of spaces V, for rn < 0. These 

spaces will contain functions with Fourier transforms vanishing outside [ - ~ / ( 2 m ) ,  rl(2m)l. 

Hence properties ii) and iii) of Definition 2.2.8 are satisfied. We obtain condition iv) since 

the supports of the Fourier transforms expand to B as rn -+ oo. 
In a similar fashion to the Haar system, we can construct the function 11. in Vl which 

is orthogonal to # (  - n) for all n E Z by letting +(t) = 29(2t)  - #(t) .  Figure 2.3 shows 

the graphs of 9 and $. These form the Shannon system. 

Three general approaches have been used to construct MRA [51]: 
- - 

2A smoothed version of the Shannon wavelets are the Meyff wavelets and are given in [38, p.661. 
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Figure 2.3: The Shannon scaling hc t ion  4 and a mother wavelet 111. 
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i) Begin with an existing MRA (V,},Ez then try to find an orthonormal basis. For 

example, let be defined by a Riesz basis of translates of a fixed function {B(t - n) }. 

Then use the orthogonalization procedure of Lemari6 and Meyer to find an orthogonal 

system {#(t - n) )  [29]. 

ii) Choose dilation coefficients (hk) such that all the requirements of a MRA are satis- 

fied [51, pp.32-331. 

iii) Choose the Fourier transform of 4(t) such that it has compact support and the 

transformed versions of i)-iu) and of the dilation equation are satisfied [51, pp.30- 

321. 

Once a scaling function $ ( t )  has been found, we wish to use it to construct a mother 

mvelet, $ ( t ) .  We want $(t) to satisfy the property that {+(t - n)) is an orthonormal 

basis of Wo = eV1, where A L ~  denotes the orthogonal complement of A in B. Then 

= Vo @ Wo, hence we want the functions 

to form an orthonormal basis of W, = vLVrn+' rn . The following property is therefore satis- 

fied: 

Proposition 2.2.11 @ W, = L2(R). 
mEZ 

Proof We have for rn E Z, 
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Since u V, is dense in L2 (R), then 
mf 2 

v, e ( W*) = L*(R). 
m=O 

Taking the limit as k --t oo, an recalling that n V, = {O), V-k -t (0). Therefore 
m€Z 

Hence the following corollary is obtained: 

Corollary 2.2.12 The set {$m,n)mpqZ is an orthononnal basis of L2(R). 

As in the case of 4(t), there are two methods for constructing a mother wavelet @(t).  

The first is similar to the construction of the Ftanklin scaling function [51, p.34351. The 

second is to note that 

satisfies the necessary orthogonality conditions [15, p.1351. 

2.3 Convergence of Wavelet Expansions 

Before going further in our study of wavelets, we must see whether they are indeed worth 

our attention. In view of out goal of approximating functions, we would like to have 

nice results for the convergence of wavelet expansions. Recall the large amount of work 
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necessary to get nice convergence results for trigonometric series. Even then, one finds 

examples such as the following: 

i) There is a continuous function f : [-r, ?r] + B such that its Fourier series S ( f ) =  
00 

C %ei- is pointwise divergent at a dense set of points [55, p.300j. 
n=-00 

ii) Even with summability methods, convergence for smooth functions is not much more 

rapid than for other continuous functions [55, p.1221. 

Proposition 2.1.19 on page 58 suggests that wavelet expansions might have much nicer 

convergence properties than those of trigonometric series. We will demonstrate some 

of these in this section. Much of classical approximation theory is based on delta se- 

quences [51, p.116]. For convenience, we make the following dehition: 

Definition 2.3.1 A tempered distribution is an element of S*, the dual of S .  

Example 2.3.2 Let f be a locally integrable function of polynomial growth. Then we can 

view f E S* by defining, for 0 E S, 

Another example is the delta function. 

Example 2.3.3 The delta function, or more correctly delta distribution, d,, a E R is the 

element of S* satisfying 

Denote & by 6. 

Definition 2.3.4 A delta sequence is a sequence (b, (*, y) ) C S* such that 6, ( 0 ,  Y) + 6, 
in S*. 
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Example 2.3.5 The Dirichlet kernel Dm(-, y ) : 

We consider a subclass of such sequences, namely quasi-positive delta sequences, and 

derive some interesting convergence results. 

Definition 2.3.6 A quasi-positive delta sequence, or QPDS, is a sequence (6,(-, y)) c 
L' (q, y E a such that 

i) 3C > 0 such that 

ii) 3c > 0 such that 

unzfomly on compact subsets ofB as m -t w. 

izi) ' d ~  > 0, 

Example 2.3.7 Let F& y) be the Fejir kernel. That is 

In fact, the Fejer kernel satisfies the stronger conditions of a positive delta sequence [51, 

p.1321. It will be shown later that the Dirichlet kernel is not a QPDS. 
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The following result indicates that QPDS may be useful for approximations: 

Proposition 2.3.8 Let (64 ,y ) )  be a QPDS and f E L1(R) be c o n t h u o ~ ~  on (a, b)  - Then 

as rn -t m uniformly on c o ~ c t  subsets of (a, 6) .  

Proof A proof may be found in [51, p.118-1191. . 
To see the relevance of these sequences for wavelets, consider for m E Z the approxi- 

mation fm to f E L2(R): 

Let q,(x, y) = 2m En $(2"2 - r ~ ) # ( 2 ~ y  - n). If f E Vm then f, = f- This implies that 

each of the spaces V, is a reproducing kernel Hilbert space. For a more detailed discussion 

see (2, 521. The reproducing kernel, or RK,  of is 

By Equation (2.4), the RK of Vm is 
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Similarly W, has RK 

P&, t )  = 2 m C 7 , b ( ~ ~ z  - n)$(2mt - n). 
n 

By the regularity of 4, the series defining q(x, t), and its derivatives with respect to t of 

order 5 r ,  converge uniformly for s E R 

Example 2.3.9 For the Haar system, # = Xp,,), so 

(1  otherwise, that is x- [t] E [0, I), 

where [t] is the greatest integer 5 t. Therefore q(x, t) = #(x - [t]) for x, t E R 

It will be shown that (q, (- , y) ) is a QPDS. In this aim, consider the following result [5 11 : 

Theorem 2.3.10 Let $ E S, generate a MRA { V , )  and q,(x, t )  be the reproducing kernel 

of V,. Let 6,, denote the Kronecker delta. If &o) 2 0, then 

ii) &rk) = Jot, k E Z; 
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Proof Proof of i): Let rn E N and j ( w )  = XLo,ll(w). Then 

Let 
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Hence, by Parseval's equality, 

However, since 

equality to get 

Then, since 6 is 

{e-"2-mw/ J2-} is orthononnal on [-zrn7r, 2"7r], we use Parseval's 

bounded and continuous, 

Hence, as &0) 2 0,  &I) = 1, and 
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Proof of ii): By the orthonormality of {4(t - n)) ,  we have 

Let 14; (w) l2 = xk l&w + 2rk) 12. Then Equation (2.5) gives the Fourier coefficients of 

~ & ( w ) l ~ .  Hence 

and therefore 

Since &o) = 1, then J(2nk)  = 0 Vk # 0. Therefore ii) is proved. 
Proof of iii): Consider the Fourier series of 
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Then 

ce C, q5(x - n) = 1. 
Proof of iv): This follows immediately from i) and iii) since 

Lemma 2.3.11 Let 4 E S,, then Qm E N, 3Cm E IR such that 
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Proof Let a, P, m E N with 0 5 a, P 5 r.  Then 

where denotes the a-th partial derivative with respect to z. The last sum is uniformly 
bounded hence we can get C, > 0 such that 

It now follows that (qm ( 0 ,  y)) is a QPDS: 

Proposition 2.3.12 Suppose 4 E S, generates a MRA and let qm be the RK of Vm. Then 
(qrn ( - ,  Y)) a QPDS- 

Proof Use the previous lemma and Theorem 2.3.10. 

i) We have 
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zi) Let c > 0, then for y E R, 

Now 

t-2rnc as m + oo. A similar argument shows that J-= q(x,  t )dx -t 0 as m -t m. 

izi) Let 7 > 0, then for I ,  y E R with lx - yl 2 7, 

An immediate corollary follows: 

Corollary 23-15 Let f E L1(R) n L2(R) be continuous on (a, b) and let f, = Pv, f - 
Then 
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as rn + w, unzfumZy on compact subsets of (a, b) .  

Proof It was shown on page 70 that 

The result now follows immediately born Propositions 2.3.8 and 2.3.12. . 
It is of interest to compare this result with the following from Fourier analysis: 

Theorem 2.3.14 Let f satisfy a uniform Lipschitz condition of order a > 0 in (a, b) .  

Then the Fourier series S, + f unifomly in any svbinterval [c, d] C (a, b) .  

Proof See [51, p.531. . 
Recall that the partial sums of the Fourier series of f are given by 

where Dm (I, y) is the Dirichlet kernel given in Example 2.3.5 and that f satisfies a Lzpschitz 

conda'tion of order a, a > 0 at x if there exists C > 0 such that 

in some neighbourhood of x. The function f satisfies a uniform Lipschitz condition if the 

condition holds with the same C for all x. 

The Lipschitz condition cannot be relaxed since there are many continuous functions 

with Fourier series converging everywhere, but not uniformly, and also some with divergent 

Fourier series [55, p.2981. This leads to the investigation of summability methods like 

3The name Lipschitz is often replaced by Hdlder. 
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Ceskro summability and Abel summability. These methods yield kernels which are QPDS. 

and even positive delta sequences, which is a stronger condition [12, 511. For the moment 

then, it still seems that Fourier analysis yields the same type of convergence results as does 

wavelet analysis. Our next goal will be to study the rate of convergence of the expansions 

f,. It is here that we will see a major advantage of wavelets. 

2.4 Rate of Convergence 

We will need to introduce the Zak transform [25] and the concept of Sobolev spaces in 

order to study the rate of convergence of the wavelet approximations. 

Definition 2.4.1 Let 4 E SF. The Zak transform Zqi of 9 is defined by 

Z4(t, W )  = CtP"$(t - n), 

Given 4 E ST, it follows that Z4(t, 9 )  E Cm(W) W E R By part iii) of Theorem 2.3.10, 

@(t, 0) = 1, thus 

In some cases, &w) = 1 in a neighbowhood of w = 0, and J(w) = 1 + O(lw 1") for A 

arbitrarily large. The same holds for 24. Thus for some h 2 1, the following definition is 

satisfied: 

Definition 2.4.2 Let 4 E S, be a scaling function. Then q5 satisfies property ZA if 

i) &I) = 1 + O((w1" a23 as w 0; 
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ii) Zt$(t, W )  = e-'Y'(l + 0 (lw 1") uniformly as w -+ 0. 

In fact, it can be shown that if 4 E Sr then 4 satisfies ZA if r 2 X - 1 and &*)(o) = 0, 

k = l , 2  ,... , A - 1  [51]. 

The rate of convergence of the expansions f, to f will be studied using Sobolev norms. 

Definition 2.4.3 Let cr E B The Sobolev space Ha consists of all jbnctions f E S* such 

that 

Example 2.4.4 For a = 0, Ho = L2(R). 

Example 2.4.5 Let a E N+, then Ha consists of functions in L2(R) which are (a - 1) 

times differentiable and whose a-th derivative is in L*(R) [I]. 

The inner product of f, g E Ha is defined by 

The space Ha is complete with respect to this inner product, and is therefore a Hilbert 

Space. We write 11 - 11, to denote the Sobolev norm on Ha. The dual of Ha is H-". For a 

more detailed discussion of Sobolev Spaces, see [44, 451. 

We now come to our first convergence result [51]. 

Theorem 2.4.6 Let # E S, be a scaling function satisfying property ZA for some X > 0. 
If q,,,(x, t )  is the reproducing kernel of V,, then 

uniformly for y E R, when a > X + 8. 
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Proof The proof uses the following two lemmas [51]: 

Lemma 2.4.7 Let $ E S,, with {$rn,,(~) = 2m1299(2mx - n) ) an orthonormal system in 
L2(R).  Then the k-th moment ' of ~,6, 

Proof Proceed by induction on k. For k = 0, let N be a dyadic rational such that 
$(N) # 0. This is possible since + is continuous and since dyadics are dense in R Choose 

rn > 1 sufficiently large such that 2mN E Z. Then, by the orthogonality of the &,*, 

Since $J E ST, + ( 2 - T  + N )  is uniformly bounded, hence the integrand is dominated by a 

multiple of ( t )  1. Therefore, by the Lebesgue Dominated Convergence Theorem, 

Thus the case k = 0 is proved. 
Assume the theorem holds for k < n 5 r. Choose N such that (N) # 0. Then, by 

Taylor's Theorem, 

Moments are wed in many fields including branches of Etnctal theory [24, 48J 
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where r,(x) is uniformly bounded and h,nr ~ ~ ( 2 )  (z - N)" = 0. Then by substituting 

into Equation (2.6), we have 

Now, multiplying both sides by 2mnn! and letting m -t os, 

Lemma 2.4.8 For n = 0, 1, . . . , r ,  

Proof By Lemma 2-43, for k E Z and 0 5 n 5 r ,  

Therefore 

where r(x, y) is the reproducing kernel of $. Since = Y @ Wo, the RK of Vl is also 
given by 
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Therefore, 

hence Jg qm(27 y) yndy does not change with m. 

Now, consider x E B with 1x1 5 1. Let B E S, with 0 2 B(y) < 1 for all y E B and 
B(y) = 1 when lyl 5 2. Then 

yn8(y) E SF, hence by Proposition 2.3.8, 

The remaining integral becomes 

Examining the second part gives 

Therefore, 
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uniformly for lzl 5 1. The other integral can be bounded similarly. Thus, by changing the 

scale, the condition 1x1 5 1 can be removed, and hence 

as m -t oo, for all x E B and 0 # n 5 r.  By Equation (W), since the integral does not 
change with m, the result follows. . 
Proof of Theorem 2.4.6: Note that 

Therefore 

2m6(2mx - 2my) = 6(x - y). 

NOW, define E ( X ,  y )  = q(x, y )  - b(x - Y) and let 

( I ,  y) = 2 m € ( 2 m ~ 9  2my) * 

- y). Therefore, 

I-a = ll%(-,~)ll-a. 
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Now, consider I  I h  (- , y) 1 15,: 

Since 

and since 4 satisfies 4, 

d(w3 Y) = e-%(l+ ~ ( I W I * ) ) ?  

then 

Hence 
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For the second integral, we have 

Since a > X + $, 

thus 1 I2 1 = 0 (2-m(2a-1)). Therefore, 

The following corollary is immediate: 
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Corollary 2.4.9 Let f E Ha, # E S, satisfy ZA for some X > 0,  and let a > A + f .  Then 
the projections f, o f f  onto Vm satisfy 

Proof By the Sobolev inequality, if f E Ha and g E H-O then 

Since Ha c HP for p 5 a, fm E H-*. Therefore, given y E R, 

We can compare this to a similar result for Fourier series. Let H!! be the space of all 

periodic f E S' such that 

where c, are the Fourier coefficients of f. 

Proposition 2.4.10 Let f E H!! , 0 > 6 ,  then the Fouriw series o f f  converges to f 
uniformly at a rate of ~ ( n - B + i ) .  

Proof See [51, p.541. . 
Even with summability methods (using the Abel or Fej& kernels), this rate of conver- 

gence cannot be improved in general, even if f is smooth [55, p.1221. 
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2.5 The Mallat Algorithm 

We now construct an algorithm, developed by Mdat [32], which relates coefficients at 

different scales in a MR,A. Let 4 E ST generate a MRA {V,). Then f E can be written 

in two forms 

since Vz = & @ Wo. 

By the dilation equations 

and 

Making the choice g k  = ( - ~ ) ~ h & ~  from Equation (2.3) on page 67, 
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By the orthogonality conditions, for n Z, 

This relation can be derived at each scale in an analogous way, hence 

The coefficients a: and b: can be found in terms of the a; as follows: 

and similarly 
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Therefore, 

and 

The above algorithm is called the MaNat algorithm. We can interpret these results by 

viewing the MRA as a sequence of vatying resolutions of L2(R). Given f E h, f = fi = 

fo + eo, where eo is the projection of f onto Wo. One can think of fo as a coarser version of 

f, and eo as the error in the approximation; that is, {V,) contains approximations of L2(R) 

functions and {W,) contains the error in their approximations. Therefore, the first part 

of the algorithm consists of the decomposition of f into its scaling coefficients (a:) and its 

wavelet coefficients ( b r )  at  a selected level m < 1. The function can then be reconstructed 

by applying the second part. Figure 2.4 shows the two parts of the algorithm. This is a fast 

algorithm in practical applications, being of complexity 0 (N) as opposed to 0 (N log N) 

for the Fast Fourier Transform [7, pp.80-811. 

2.6 Filters 

The Mallat algorithm is a useful tool for approxinating 

shown that it acts Like a pair of quadrature mirror filters 

discretetime signals. It will be 

(QMF). Recall kom Section 2.2 
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Figure 2.4: Above: decomposition algorithm. Below: reconstruction algorithm. 

on page 64 that for f E L2(E) with supp f C [-r, T], we have 

Such a function f is called a bandlimited function [15, p.201. We can therefore consider a 

sequence (G) E Q(Z) as a sequence of sampled values of a function f E L2(R) with 

Consider a function g defined by 
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where R(w) =N(w) = C, he-'= is 2%-periodic. Then 

and 

In the case of a discrete signal (x,) E P(Z), the convolution becomes 

hence the Fourier series of (y,) is 

Definition 2.6.1 The above operation is called a continuous l inear system. The function 

H ( w )  is called the system transfer function and h(t) is called the impulse response. If 
H ( w )  = 0, lwl 2 wo then H is called a low-pass filter. If H(w)  = 0, lwl j wl then H is 
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called a high-pass fiher. I f N ( u )  = 0, wo 5 lwl 5 w l  then H is culled a band-pass filter. 

Consider the Mallat algorithm. For the decomposition algorithm we have 

This can be decomposed into a filter 

followed by decimation 

For the wavelet coefficients, let 

with decimation 

4 = f;** 

Let E (w)  = En ezebn. Then 
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hence the filter has an impulse response (h,) with system transfer function H ( w )  = 

The dilation equation for 4 may be written in terms of Fourier transforms as 

thus H ( w )  = m o ( w ) / f i .  

For the Meyer wavelets [38, p.661, mo (:) = x, J(w+4rk).  On the i n t e ~ d  w E [-n, r], 

the support of H(w)  is iw 1 < y, for some r > 0. That is, H(w) is a low-pass ater (511. 

For the bk, let 



CHAPTER 2. WAVELETS 

Then 

Therefore, for w E [-a, lr], G(w) = 0, for [wl < 7 and some e > 0. Hence (gk) = 

((-l)khl-b) is the impulse response of a high-pass filter. 

In a similar way, we can consider the reconstruction algorithm as a pair of filters. Recall 

If (c:) is a sequence, define ( ~ 2 ~ )  to be the sequence obtained &om (c:) by interlacing 

zeros; that is, let 

c t  if n is even 

(0 ifnisodd. 

Then, let 
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and 

Hence, bf, = e r  + f:'. The Fourier series of (e: ) and (f 9') are, respectively, 

E* (w )  = C ejl'ek 
n 

0 0  iwn 
= C C k-ka;  e 

n k  C iwl Caye&" = hle 
I k 

= H*(w)A*(w) 

and 
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Therefore, H8(w) is a low-pass filter, and 

hence is a high-pass filter. The filters H* and G* are called the conjugate filters of H and 

G respectively. The Mallat algorithm can be represented schematically by Figure 2.5. 

2.7 Applications 

The goal now is to use the Mallat algorithm to approximate functions. First, consider the 

following result of Daubecbies [15, pp.202-2041: 

Theorem 2.7.1 Suppose 4 has compact support. Iff is continuous on B then Vx ~z R, 

I f f  is uni/omly continuow then the convergence is uniform. Iff is Lipschitz continuous 

with ezponent a, then 
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Figure 2.5: The Mallat algorithm. The left half denotes the decomposition and the right 
denotes the reconstruction. The symbols 2 and 2 /* represent decimation and inter- 
leaving by zeros respectively. 
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Proof Let m E N, then 

where supp 4 c [-Kt K]. Since j is continuous, we can find M such that Vm 2 M, the 
right hand side is arbitrarily small. If f is uniformly continuous, then the choice of M can 
be made independent of x ,  hence the convergence is uniform. If f is Lipschitz continuous, 
Equation (2.10) follows immediately. 

Hence, we have a way of computing 4. Suppose 4 is continuous, or Lipschitz continuous 

with exponent a. Let x = 2-MN, M,  N E K Then, by Theorem 2.7.1, 

In addition, we can find Mo such that Vm > Mo, 

where C and Mo depend on M or N. 

Assuming (#or) are orthononnal, then 4 is the unique function f satisfying 
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We can use this, along with the filtering scheme in Section 2.6, to compute 4 given a set of 

filter coefficients (k). For each n E Z, let a! = ba, be the low-pass sequence and at each 

level m, let 6: = 0 be the high-pass sequence. Then 

Therefore, for each m, a: =< 4, +,, >. By Equation (2.11) the algorithm converges 

to the values of # at the dyadics. Defining fk(2-"n) = 2m/2 < qjrnYn >, with fk being 
piecewise constant on [2-"(n - 1/2), 2-m(n + 1/2)), for n E Z, we have the following: 

Proposition 2.7.2 If 4 is Lipschitz continuous with exponent a, then there &sts a C > 0 
and Mo E N such that Vm > Mo, 

Proof A proof can be found in [15, p.2051. m 

Therefore, to compute approximate values of $(I) we have the cascade algorithm [15, 

p.2051. 

i) Start with a sequence (fo(n))  with fo(n) = &,,. 

ii) Compute fm(2dmn), n E Z using a? = xk h,,-2kap-1. At every step, the number of 

values doubles: values at "even points", Zwrn (2n) by 
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and "odd points", 2-m(2n + 1) by 

fm(2-'"(2n + 1)) = C h2(,-r1+lfm-1 (2-*k)- 
E 

iii) Interpolate the fm(2"n) to get f,(z) for non-dyadic z. 

Similarly, we could calculate $ by starting with the lowpass sequence a: = 0 and high- 

pass sequence bj: = &,, or moreover, calculate 4 * ,  or &,n, by choosing the appropriate 

initial sequences. Figure 2 -6 shows the Daubechies-4 scaling function and mot her wavelet. 

They are given by the filter coefficients 

Finally, the Mallat algorithm can be used for compression. Start with a function f 

which, by Theorem 2.7.1, can be approximated by assuming, for large enough rn, that 

m/2 m = 2  a,,. 

Then, use the decomposition algorithm to compute the wavelet coefficients of f .  

For finite sequences, suppose we start with a signal f consisting of 2M samples on [O,1] 

at the dyadics x = 2-Mn, 0 < n < 2M. By Theorem 2.7.1 we assume these values are the 
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Figure 2.6: Daubechies-4 scaling function and mother wavelet. 

scaling coefficients off, that is 

We then periodize f by assuming it has period one. This means that we assume f = f* ,  

where 

For simplicity in coding, we adopt a new notation for the coefficients, letting 

By the first application of the decomposition algorithm, we obtain M / 2  wavelet co- 

efficients (bm-l,n) and M / 2  scaling coefficients (h-17,). Continuing in this manner, we 

obtain 2M - 1 wavelet coefficients (b,,J, m = 0,1, . . . M, 0 5 n 5 2" - 1 and one scaling 

coefficient ao.0. The set of wavelet coefficients and the scaling coefficient is called the Fast 
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Figure 2.7: The wavelet tree of a function. The horizontal axis indicates a displacement 
in time, or location, whereas the vertical axis is a change in frequency. 

Wavelet Transform of f. The coefficients can be arranged in a meaningfuI structure; called 

the wavelet tree, as shown in Figure 2.7. 

This technique can be used to plot both periodized wavelets and scaling functions. 

Figure 2.8 shows the Daubechies-4 periodized scaling functions. Figure 2.9 shows some of 

the periodized Daubechies-4 wavelets. Recall from Theorem 2.3.10 that 

Hence, the periodized scaling function @(t)  = 1, W E I& for any given M M -  

One method of compression consists of pruning branches of the tree by assuming that  if 

a wavelet coefficient has absolute value below some threshold, the coefficients below it can 

be pruned (set to zero). Figure 2.10 shows a sequence of approximations of u(x)  = sin(x) 

with varying threshold values for the wavelet coefficients. The Coifman-6 wavelets are 

determined by the following filter coefficients: 
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Figure 2.8: Daubechies-4 periodized scaling functions. The functions g;,, and 4il form an 
orthonormal basis of V,' [51, p.1061. 
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Figure 2.9: Daubechies-4 peiiodized wavelets, ?,&, . 

From Figure 2.10, it is evident that the majority of the information about u is contained 

in the lower frequency coefficients. This method, called the zero-tree method, is similar 

to the method of JPEG compression [7, 27,411. The second method consists of using the 

fiactal methods developed in Chapter 1. 
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Figure 2.10: Fast Wavelet Tkansform approximation of u(x)  = sin(m) (topleft) using 
Coifman-6 wavelets with thresholds from .5 to .0001. The original function is at the top 
left. 



Chapter 3 

Fractal Wavelet Compression 

3.1 Relations 

We have seen in Chapter 1 the method of IFSM which allows the construction of functions 

through an iterative process. Given an N-map IFSM (w, a), the associated operator T 

was defined by 

for all u E L2(R) (see Equation (1.5) on page 35). Under certain conditions, T was 

contractive and had a unique fixed point e, which was also the attractor of T. In the 

light of the results of Chapter 2, one might consider an operator M, associated to T, which 

acts on wavelet coefficients of functions [19, 371. 

Let (qn) be an orthonormal basis of L* (R) . Then a function u E L2 (R) can be writ ten 
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where u, =< u, q, >. 

Let F : L2(R) + @(Z) be the transform Fu = (%). By Plancherel's Theorem, F is an 

isometry. Its inverse is F-'(&) = C, ~ q , , ,  (G) E P(Z). h general, write u = Fu. Now 

define the operator M given by the commutative diagram 

Theorem 3.1.1 Let (q,) be an orthonormal basis of L2(R) and F be its associated trans- 
form as given above. Then T is a contractive operator on L2(R) with jixed point i i ~  if and 

only if the opemtor M = F 0 T o F-' is contractive on p(Z) with f ied  point tiM, where 

aM = F*. 

Proof Let u, v E L2(R) with basis coefficient sequences u and v respectively- By Parseval's 

equality, 1 lull = Ilull, hence 

Hence T is contractive M is contractive. F'urthermore, 

therefore by the BCMP, FtiT = tiM. . 
Consider the case when T is the associated IFSM operator of an N-map affine IFSM 
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on X = R. Then given u E L~(R), if v = Tu, 

where 

=< Tu, q, > 

Therefore, by Equation (3.1) on page 107, 

where 4, = Cak < qn qm > and = CPc < x,, qm >. 
k=l k l  

By Equation (M), we get the following result (191: 

Proposition 3.1.2 Let (qn) be an orthonormal basis of L2(R) with associated transform 
F .  If T is an afine IFSM on L2(R), then M = F o T o  F-I is an a 6 n e  IFS on coeficients 

(IFSC) on P(Z) and has the form M u  = Au+e, where A = (kn) and e = (e,), rn, n E Z 
are given above. 

In general, the matrix A is not sparse, for example with the Discrete Cosine Transform [37]. 

However, due to the localization properties of wavelets, many of these elements will vanish. 
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Example 3.1.3 Let X = [O, I] and T be the operator defined by 

This is the IFSM operator of the a f h e  IFSM given by wl (x) = $2, w2(x) = $ ( x  + 1) and 
#l ( t )  = #*(t) = it. The fixed point of T is fbp G 0. Consider the operator M given when 
(q,) is chosen to be the Haar basis on L2[0, 11. We assign the following ordering to the 

basis elements: 

Then the operator A is 
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For the moment at least, the above proposition only works one way. The question 

remaining is, given an a f h e  IFSC M on p(Z), is the operator T an f i e  IFSM. ' The 

question is therefore: 

Question 3.1.4 Given an afine IFSC M on d?(Z), defined by Mu = Au + e with A = 

(amn) and e = (ek), does there d t  an N-map IFSM (w, a), for some orthonoma1 basis 

(qn) of LZ(R), such that 

and 

for m,n E z? 

A case where this question has been solved is for LIFSW. 

LIFSW 

We present the general method of the 1-dimensional case of local IFS on wavelet coefficients 

(LIFSW) presented in [19, 371- The 2-dimensional extension can be found in [47]. 

Let q5 be a scaling function with MRA (V,) and 11 be the standard associated mother 

wavelet (see Equation (2.3) on page 67). We focus our attention on functions f E L2(R) 
- - -  - - 

'By an IFSC, we mean an operator which acts on sequences in some "IFSn-type manner. 
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which have expansions 

where a00 =< f ,  4 > and bid =< f, $id >. Assume qb has compact support on W The 

expansion coefficients can be written in a meaningful way in the form 

where Bi,j represents the branch of coefficients with node bij7 and is called the block B i j .  

We say that the coefficients bid are on level i, and asp is at level -1. The above diagram is 

called the wavelet (coefficient) tree of f and is denoted by Bf. 

Definition 3.2.1 Consider the operator W defined on wavelet trees as follows: * Suppose 

there is a k 2 0, k* > k, aj, lajl < z("~*)/*, 0 5 j 5 2'' - 1 such that given a wavelet tree 

Ba.0, w(Bo,o) = B&,, where the coeficients of Biv0 are given by 

Then W will be called a local IFS on wavelet coefficients, or LIFSW. The blocks Bcj ,  0 5 
< 2k - 1 are called the domain blocks. The blocks B& j, 0 5 j 5 2k' - 1 are called the j - 

range blocks. The pammeters ai are called the scaling factors of W. 

*The condition on the aj guomntew that W : e(Z) _i P(Z). These aj will correspond to grey-level 
maps $ j ( t )  = 2(k'-k)'2aj(t). 
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Figure 3.1: Action of W on a wavelet tree. 

Definition 3.2.2 Given f E L2(R), with wavelet expansion 

define the junction fk ,p ,  for p 2 0, by 

The action of W on the tree Bf is given in Figure 3.1. Consider the function v; = 

(T f )k*,l- By the definition of W ,  all its wavelet coefficients are equal to 0 except that 

However, notice that 
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and that 

We can thus use the scaling and dilation relations between the $i3 to write v; as a multiple 

of fk j(l)o~;' for some appropriate function wl- The function wi can be calculated as follows: 

Equating the arguments of 11 we have 

and hence by Equations (3.3) and (3.4), 

Therefore T is a recurrent vector IFSM with condensation (c.f. [ll]). By this we mean 

that T acts between orthogonal components of the wavelet tree and has condensation 

function 

A useful space, over which T is contractive, was constructed in [19] . Let u E L2(R) and 
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let W be as above. Let 

Consider the metric &, on Cw by 

where 

where 6' and bd refer to the wavelet coefficients of c and d respectively. Note that since 

k 2 0, d& (c, d )  is always independent of ao,o. By the completeness of t2 (2) it follows that 

Proposition 3.2.3 The metric space (C,(u, k'), &) is complete. 

In addition 

Proposition 3.2.4 For c, d E C,(u, k*), 

Therefore, the BCMP yields the following result: 

Corollary 3.2.5 If c, < 1, these exists a unique ii E C,(u,k*) such that W ~ I  = ii. 

Corollary 3.2.6 Let E > 0 and c E C,(u, k*). Suppose there exists an LIFSW, with 
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associated tmnsfonnatzon W ,  such that &(c, Wc) < c. Then 

where Wti = ti. 

Proof The result follows directly born Proposition 1.1.21 on page 12. . 
3.3 Examples of LIFSW 

We present here a few examples of LIFSW and their attractors [3?, 471. 

Example 3.3.1 

Also, f = fo ,  hence 

In general, for k = 0, T is an IFSM with condensation (see [5] for a discussion on IFS 
with condensation). The attractors of T, using the Coifman-6, Daubechies-4 and Haar 
wavelets, are shown in Figure 3.2, where = 0, boVo = 1, crl = 0.2 and a2 = 0.3. Note 
the dependence of the attractor on the basis chosen. However, the attractor of W is basis 
independent. 
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Figure 3.2: The LIF'SW attracton of T in Example 3.3.1 using Coifman-6, Daubechies-4 
and Haar wavelets. 

Example 3.3.2 

I boo I 

We have k = 1, k* = 2, j ( 0 )  = j ( 2 )  = 0, j(1) = j ( 3 )  = 1. Therefore 

where 

and 

The attractors of T are given in Figure 3.3, where ao,~ = 0, 60.0 = h , o  = 1, 4.1 = 0- 1 and 

ai = 0.5, for i = 0,1,2,3. 
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Figure 3.3: The attractors of T in Example 3.3.2 using, from left to right, Coifinan-6. 
Daubechies-4 and Haar wavelets. 

Example 3.3.3 

In this case 

where 

and 

The LWSW attractors of T are given in Figure 3.4 with the same parameters as in Exam- 
ple 3.3:2 above. 
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Figure 3.4: The attractors of T using, from left to right, Coifman-6, Daubechies-4 and 
Haar wavelets. 

3.4 Inverse Problem and Compression 

Given a target function v E L2(R), we can use Corollary 3.2.6 to construct an LIFSW on 

its coefficient tree [19]. The squared L2 distance associated with each range block B&,l 

and domain block Bk ,j is given by 

The optimal scaling factor Q given by the least square minimization is 

where 

The minimized collage distance is then 
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Thus, as with LIFSM, for each range block B;. ,, choose the domain block Bkj([)  for which 

A$~) is minimized. Then, iterate the associated operator W on any initial c E C, (v ,  k* ) . 

For simplicity, one can let c be the sequence with eij = 0 for all i 2 k*. The function ii 

associated to the fixed point ti of W is then given by 

To apply this method to compression, assume we are given a discrete signal f consisting 

of 2M samples on [O, 11 at the dyadics z = 2-Mn, 0 5 n < zM. By Theorem 2.7.1 we assume 

these values are the scaling coefficients of f , that is 

Then assume f has period one as in Section 2.7, page 102 and generate the wavelet coef- 

ficients (b,,,) for m = 0,1, . . . , M, 0 5 n 5 2" - 1. Choose a level k in the tree for the 

domain blocks, and k* for the range blocks. For each range block, calculate the distances 

AfPj" for each 0 5 j 5 zk - 1. Choose j(1) to be the index of the domain block for which 

A e  is minimized over 0 < j 5 2k - 1. The LIFSW approximation to the target will then 

consist of the set of coefficients (ao,o, bijl 0 5 i 5 k* - 1,O 5 j < 2' - I), and the set of 

pairs {(al,  j(1)) 1 0 5 1 2'' - 1). These two sets are called the fractal Wavelet Transj'orm 

o f f .  

To obtain the approximation to the original signal, iterate W on any initial tree, such 

as c given above. Use the reconstruction algorithm of the MaIlat algorithm to construct 

the scaling coefficients (ah,,), 0 5 n 5 2M - 1. Finally, use these coefficients as the values 
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of the approximation f' by 

Example 3.4.1 Let u(x)  = sin(nx) on X = [0, 11. Figure 3.5 shows successive approxi- 
mations of u using the LIFSW method with M = 10, hence 1024 samples. The following 
table gives the L2 error in the approximations. In each case, the computation time involved 
was approximately 1 second. The original file for u was 18335 bytes. 

Domain level (k) 
0 

0 

0 

0 

Range level (k*) 
1 

2 
3 

4 

Error 
0.07836540 

0 .03548420 

0.01179280 

0 .00401203 

0 

1 

1 

2 

File size (bytes) 

42 
88 

188 

396 

0100140071 

0.00972692 

0.00102580 

0 .00024186 

5 

2 

4 

5 

845 

84 

374 

788 
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Figure 3.5: LIFSW approximation of u(x) = sin(rx) (topleft) using Coifman-6 wavelets 
going between levels (k, k*). 



Appendix A 

BW A. 1 Generalization of Tw 

Given an N-map IFSM (w, a), the IFSM operator T(,,*) was defined by 

This is a useN form since it permits a simple formulation and solution to the inverse 

problem. Unfortunately, this is not a generalization of TtW. This can be seen by noting 

that, given an N-map IFS w, we may obtain an IFSM (w', Y) by defining w: = wi 

Vi = 1,2 ,... , N and setting & = idR tJi = l , 2  ,... , N. Then, for u E FBW(X) ,  V i  = 

1 . 2 , .  . . , N, #i 0 ou 0 wi-' = u 0 w ~ '  E &w(X). However 4w~,*q(u) and T t W ( u )  are 

not necessarily the same. Indeed, T(wt,u) (u) may take on values other than 0 or 1. It 

would therefore be reasonable to introduce a normalized version of T(w,*), T&y*), such that 

Tc*) YBw(X) = ew. With this in mind, we return to the introduction of T:*. The 

reasoning behind its construction was that 

Instead, consider XAUB(x) with TK*, in mind, as a weighted sum. 
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N 
Proposition A.l . l  Let X be a set and c X, i = 1,2,. . . , N. Let A = u A+ Define 

k l  
N 

using the convention that 0 - w = 0. 

Given that the numerator and denominator are equal, this result is rather trivial. We 

are simply dividing the s u m  by uA (2) , the number of sets Ai which contain x. This number 

is precisely the numerator. However, we can also interpret the numerator as a sum of grey- 

level values. 

Recalling Proposition 1.5.3 and Proposition 1.5 -4, we obtain the following result: 

Proposition A.1.2 Let ( X ,  d )  be a metric space and wi E Conl(X, d ) ,  i = 1,2,. . . , N .  
Then letting a(%) = a*(a) (x), for x E X ,  we have 

Proof The proof follows directly from Proposition 1.5.3 and Proposition 1.5.4. 

Iv 
Hence, we can associate with the IFS w, defined by w(A) = U @ ( A ) ,  the operator 

i=1 

T,Bw : Y B W ( ~ )  -f ~ B W ( X )  by 

where f (x) = X,(x). 
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This new operator is the same as the one previously defined on FBw(X), simply written 

in a different form. As such, it can be directly extended to an IFSM operator as follows: 

Definition A.1.3 Let ( X , d )  be wmplete, wt E Conl(X,d) and dk : R -t W for k = 
1,2,. . . , N. Let (w, O) be the ossociated IFSM- We define the operator T<*l on a function 

u : X - t W b y  

where the x' indicates that the sum is taken over indices k for which w;'(x) exists. The 
convention is that an empty sum has value zero and that 0 - oo = 0. 

We c d  TiW:#) the IFSM operator associated with (w, a). 

A.2 IFSM on LP(X, p) 

We will show that Tg*) has the same properties as the operator T(w,rl defined in Sec- 

tion 1.5 on page 35. Note that ~ w ~ c P )  = T(,,*) when the set Xi are non-overlapping. 

Let (w, O) denote the IFSM, on the complete metric space (X, d), associated to w = 

{wI W2, . - - WN), Wi E Cml (XI d) and 8 = (41, 421 - - . , #N), $i : W + The important 

step is to show its associated operator Ti:*) : P ( X ,  p)  + P ( X ,  p). Hence, for u E 

LP (X, p)  , we must show TE*) u is still measurable and integrable. To accomplish this, we 

make the following definition: 

Definition A.2.1 Given an IFS w = {wl, wz, . . . , wN), let 

Al = X\wl(X) and let A2 = wl(X). 
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Recursively, for 2 5 n 5 N - 1, let 

AiLh ..j. l=AiLi* ... in \wn+l ( X )  

and let 

for ij = 1,2  and j = 1,2 , .  . . , n. We define 

Finally, set A, = AN. We mil A, the w-cover of X. 

Proposition A.2.2 A, is a collection of disjoint sets. 

Proof We proceed by induction on n, with n=l being clear. For n > 1, assume (AiLi2.-.i, : 

ij = 1 .2 ; j  = 1,2 ,..- ,n) is a disjoint collection. Let A = Aili2.-i,i,,+L and let B = 

j l j 2 . . . j j + l  € 1 -  By definition, Ak1k2..&km+, C A ~ ~ r t ~ . . . ~ ,  hence if for some 1 < m 5 
n, i, # j,, then by the induction hypothesis, Aili2...i,, f~ Ajlj2...jn = I, and A fl B = 0. 
Otherwise, # j,+l and A and B are disjoint by construction. Therefore, by induction, 

JL, is a disjoint collection and the result follows. B 

We note certain characteristics of 4,. 

a) Some members of A, may be empty. 

c )  If (X, p)  is a measure space with cr-algebra generated by open sets, and the wb are 

bi-continuous, then each member of A, is measurable. 
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We therefore obtain a version of Proposition 1.6.1. 

Proposition A.2.3 Let (w, a) be an N-map IFSM on ( X ,  d )  and let T be its associated 
normalized IFSM operator. Suppose: 

Then for 1 < p 5 oo, T : U ( X ,  p) + P ( X ,  p) . 

Proof Let 1 5 p 5 eo and let u E P(X, p).  Let 1 k 5 N .  B y  i), u 0 wc' P ( X ,  p ) ,  
N 

hence by ii), t$jk u 0 w;' E LP(X, p). Therefore C '& o a o w;' E P ( X ,  p).  By b) and 
k l  

C) above, T u I A ~ ~ ~ ~ . . - ~ ~  is measurable for each ij = l , 2  and j = 1,2,. - . , N .  Hence, Tu is 
measurable. 

Suppose 1 < p < oo. Then, by c) and d), 

N 
The last integrals exist since o u 0 w ~ '  E LP(X, 1) and since each Aili2---iN is mea- 

k l  
suable. Hence, Tu E U ( X ,  p)  - 

N 
Suppose p = co. By ii), C 0 u 0 w;L E Lm(X,p), 1 5 k < N. Hence by 

k=L 

b), T z L ( ~ .  i112 . ..AM . E Lm (X, p).  Therefore, since Tu is a finite s u m  of Lm(X, p) functions, 

Proposition A.2.4 Let (w, 8) be an N-map IFSM such that q5k(t) = ck E IP, 1 5 k 5 N .  
Then V p  lp [I, oo) and p E M(X), the associated opemtor T is  contractive on LP(X, p) ,  

with contmctivity factor = 0. Furthermore, its &ed point f i ~  is 
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Proof Let u, v E LP(X, p) - Then 

= 0 as in Proposition 1.6.2. 

Also, Vu E E ( X ,  x,) and E X, 

Proposition A.2.5 Let X c RD, D E N+, and let p = m(D). Suppose (w, 8) is an 

N-map IFSM such that 

i) wk E Siml ( X ,  d )  wzth contmctzvity factors c k ,  and 

ii) q5k E Lip(R)), Lipschitz constants Kk, for 1 5 k < N. 

N 
where C(D,p) = CC:'*K~. 

k l  

Proof Let u,v E Lp(X,p) .  Use the fact that a ( x )  2 1 and the proof f o h ~  as in 

Proposition 1.6.3 on page 37. . 
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Hence, if C(D, p) < 1, T is contractive on LP(X, p) and has a unique, attracting fixed 

point. In addition, if there is a lot of overlapping in the wi, for example if each z E w(X) 

is in at least two wk(X) ,  then o(s) > 1. In this case, the new operator T will be more 

contractive than the previous one, leading to faster convergence to its fixed point. 
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Abbreviations 

BCMP 
Banach Contraction Mapping Princi- 

ple, 8 

ms 
iterated function system, 15 

IFSC 
IF'S on coefficients, 109 

IFSM 
IF'S with grey-level maps, 34 

LIFSM 
local IFSM, 48 

LZFSW 
local IF'S on wavelet coefficients, 111 

MRA 
multiresolution analysis , 6 1 

p-d-n 
p-dense and non-overlapping, 40 

QMF 
quadrature mirror filters, 90 

QP 
quadratic programming, 45 

QPDS 
quasi-positive delta sequence, 69 

RK 
reproducing kernel, 70 
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IF'S, 28 
IFSM, 42 
transformation, 27 

angle of rotation, 28 
approximation, 11 

classical, 68 
IFSM, 42,51 
LIFSM, 51 
LIFSW, 120 
mother wavelet, 101 
periodized wavelet, 103 
scaling function, 101 
standard in Vm, 57 
wavelet, 90, 103 

attractor, 6, 25 
Cantor set, 15 
IF'S, 25, 27 
IFSM, 107 
LIFSW, 116 
Sierpinski gasket, 28 
uniqueness, 8 
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BCMP, 2, 8, 115 

A IFS, 25 
LIFSW, 108 

Bessel's inequalits', 55 
black and white 

function, 31 
image, 30 

block, 112 
domain, 48, 112 
range, 48, 49, 112, 119 

Cantor set, 13 
cascade algorithm, 100 
Cauchy 

extension of a subsequence, 20 
sequence, 5 

closure, 54 

bandlimited, 91 
basis, 55 

coefficient 
dilation, 62 
expansion, 1 12 
scaling, 90 
wavelet, 90 

collage distance, 25, 49 
minimized, 42, 119 

Collage Theorem, 12, 25 
compact, 9 
complete, 55, 115 

metric space, 5 



orthonormal set, 55 
composition, 6 
compression, 26, 101, 120 
computer, 1 

screen, 29 
condensation, 114 
continuity 

of fixed points, 10 
uniform, 5 

continuous hear system, 92 
contraction, 5, 15 

infinite set of maps, 40 
system, 14 

contractive, 5 
maps, 24 

contractivity, 6, 16 
factor, 5, 29, 36, 128 

convergent 
sequence, 4 
uniformly, 58, 78 

covering condition, 48, 49 

decomposition algorithm, 93, 98 
delta 

distribution, 68 
function, 68 
Kronecker, 71 
sequence, 68 

positive, 69, 79 
quasi-positive, 69 

Deterministic Algorithm, 26 
Devil's staircase, 38 
dilatation of a set by a ball, 19 
dilated, 56 
dilation, 43 

coefficient, 62 
equation, 62 

relation, 114 
direct sum, 54 
Discrete Cosine Tkansform, 109 
discrete signal, 90, 92, 120 
dud  

Ha, 80 
ST 68 

€-net, 5, 22 
Extension Lemma, 20 
extension of a Cauchy subsequence, 20 

Fast Wavelet Transform, 103 
filter 

band-pass, 93 
coefficient, 100 
conjugate, 97 
Fourier transform, 94 
high-pass, 93, 95 
low-pass, 92, 94 
Mallat algorithm, 93 

fixed point, 7, 25, 107 
unique, 8 

Fourier 
fast transform, 90 
integral theorem, 64 
series, 68 
transform, 59 

inverse, 59 
fractal, 13, 14, 26 
E'ractal Wavelet Transform, 120 
function 

r-regular, 61 
bandlimited, 9 1 
black and white, 31 
characteristic, 30 



condensation, 114 
distribution, 39 
grey-level, 34 
locally integrable, 68 
piecewise constant, 45 
rapidly decreasing, 59 
regular, 59 
scaling, 61 
square integrable, 53 
system transfer, 92 

grey-level, 124 
function, 34 
image, 30 
maps, 112 

grey-scale, see grey-level 

Holder, 78 
Haar 

mother wavelet, 56 
scaling function, 56 
system, 56, 58 
wavelets, 55, 57 

HausdorfE metric, 17, 23 
Hermite functions, 61 
Hilbert space, 53 

IFS, 15, 124 
N-map, 16 
afhe ,  28 
attractor, 25 
Collage Theorem, 25 

IFSC, 109 
IFSM, 34, 123 

attractor, 107 

generalization, 123 
non-overlapping, 35, 125 
overlapping, 35 
recurrent vector, 114 
with condensation, 116 

image, 26, 29, 5 1  
black and white, 30 
grey-level, 30 

impulse response, 92, 94, 95 
inner product, 53 

Sobolev, 80 
Inverse Problem, 11, 12, 35,49 

WS, 26 
IFSM, 40 
LIFSW, 119 

isometry, 62, 108 
iteration, 6 

JPEG, 105 

kernel 
Dirichlet, 69 
FejBr, 69 
reproducing Hilbert space, 70 

least squares, 50 
Lebesgue Dominated Convergence Theo- 

rem, 81 
level, 120 
LIFSM, 48, 120 
LIFSW, 3, 111, 112 

BCMP, 108 
Mallat algorithm, 120 

linear span, 54 
Lipschitz, 5 



condition of order a, 78 
c011stant, 5 
uniform, 78 

Mallat algorithm, 90, 93, 98, 101 
Mean Value Theorem, 58 
measure 

Cantor-Lebesgue, 39 
finite, 36 
Lebesgue, 37 
space, 126 

metric, 4 
Hausdorff, 17, 23 
space, 4 

moment, 81 
mother wavelet, 57, 67 
MRA, 2,61 
p-d-n, 40 
p-non-overlapping condition, 48, 49 

n-th iterate, 6 
N-map truncations, 41 
non-overlapping, 35 
norm, 53 

semi, 59 
Sobolev, 80 

normalized, 53 

LWSW, 112 
orthogonal, 53 

complement, 54, 66 
projection, 54 
set, 53 

orthonormal, 53 
set, 53 

overlapping, 35 

Parseval's equality, 55, 59, 73, 108 
pixel, 29 
Plancherel's Theorem, 108 
propem ZA, 79 
Pythagorean Theorem, 54 

QW 3,90 
QP, 45, 49 
QPDS, 69 
quadratic 

form, 44, 50 

r-regular, 61 
rapidly decreasing, 59 
reconstruction algorithm, 95, 98, 120 
regular, 59 
RK, 70, 82 

open ball, 5 
operator 

WS, 32,124 
FSC, 107 
WSM, 35, 36, 40, 48 

non-overlapping, 34 
normalized, 125 

samples, 120 
scale factor, 28 
scaling, 28 

coefficient, 90, 120 
factor, 112 

optimal, 119 



function, 2, 61, 111 
Franklin, 67 

relation, 114 
Schwartz class, 59 
seIf-similar, 13, 14 

under FQ, 14 
sequence 

high-pass, 100 
low-pass, 100 

Shannon 
Sampling Theorem, 64 
system, 62, 64 

Sierpinski gasket, 28 
similitude, 28 
Sobolev, 80 

inequality, 87 
space, 80 

subspace, 54 
summability, see kernel 

Abel, 79 
Cesiuo , 79 
methods, 68 

support, 63 
system transfer function, 92 

Taylor's Theorem, 81 
tempered distribution, 68 
threshold, 103 
totally bounded, 5, 21 
translated, 56 
translation, 43 

expansion, 112 
fractal transform, 120 
Ham, 55,57, 116 
Meyer, 64 
mother, 57, 66, 67, 111 
periodized, 103 
transform, 103 
tree, 103, 112, 119 

level, 112 
w-cover, 126 

Zak transform, 79 
zero-tree, 105 

wavelet, 43, 58 
coefficient, 3, 90, 115, 120 
Coifman-6, 103, 116 
Daubechies-4, 101, 116 




