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Abstract

Multiple criteria decision analysis (MCDA) techniques are developed to address
challenging classification problems arising in engineering management and else-
where. MCDA consists of a set of principles and tools to assist a decision maker
(DM) to solve a decision problem with a finite set of alternatives compared ac-
cording to two or more criteria, which are usually conflicting. The three types of
classification problems to which original research contributions are made are

(1) Screening: Reduce a large set of alternatives to a smaller set that most likely
contains the best choice.

(2) Sorting: Arrange the alternatives into a few groups in preference order, so
that the DM can manage them more effectively.

(3) Nominal classification: Assign alternatives to nominal groups structured by
the DM, so that the number of groups, and the characteristics of each group,
seem appropriate to the DM.

Research on screening is divided into two parts: the design of a sequential
screening procedure that is then applied to water resource planning in the Region of
Waterloo, Ontario, Canada; and the development of a case-based distance method
for screening that is then demonstrated using a numerical example.

Sorting problems are studied extensively under three headings. Case-based
distance sorting is carried out with Model I, which is optimized for use with cardinal
criteria only, and Model II, which is designed for both cardinal and ordinal criteria;
both sorting approaches are applied to a case study in Canadian municipal water
usage analysis. Sorting in inventory management is studied using a case-based
distance method designed for multiple criteria ABC analysis, and then applied to a
case study involving hospital inventory management. Finally sorting is applied to
bilateral negotiation using a case-based distance model to assist negotiators that is
then demonstrated on a negotiation regarding the supply of bicycle components.

A new kind of decision analysis problem, called multiple criteria nominal classi-
fication (MCNC), is addressed. Traditional classification methods in MCDA focus
on sorting alternatives into groups ordered by preference. MCNC is the classifi-
cation of alternatives into nominal groups, structured by the DM, who specifies
multiple characteristics for each group. The features, definitions and structures of
MCNC are presented, emphasizing criterion and alternative flexibility. An analysis
procedure is proposed to solve MCNC problems systematically and applied to a
water resources planning problem.
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Chapter 1

Motivation and Objectives

The study of decision making is part of many of disciplines, including psychology,
business, engineering, operations research, systems engineering, and management
science. As society becomes more complex, the need for decisions that balance
conflicting objectives (criteria) has grown. Government policy decisions, for exam-
ple, which regulate growth, employment, and general welfare, have always faced
this problem. Businesses encountering strategic decisions must consider multiple
objectives as well; although short-run profit is important, long-run factors such as
market position, product quality, and development of production capability often
conflict with it.

Decision has attracted the attention of many thinkers since ancient times. The
great philosophers Aristotle, Plato, and Thomas Aquinas, discussed the capacity
of humans to decide and claimed that contemplation is what distinguishes humans
from animals (Figueira et al., 2005). To illustrate some important aspects of deci-
sion, consider a quote a letter from Benjamin Franklin to Joseph Priestley which
has been taken from a paper by MacCrimmon (1973).

London, Sept 19, 1772
Dear Sir,
In the affair of so much importance to you, wherein you ask my advice, I cannot,
for what of sufficient premise, advise you want to determine, but if you please I
will tell you how. [· · · ] When I have thus columns; writing over the one Pro, and
over the other Con. [· · · ] When I have thus got them all together in one view, I
endeavor to estimate their respective weights; and where I find two, one on each
side, that seem equal, I strike them both out. If I find a reason pro equal to some
two reasons con, I strike out the three. If I judge some two reasons con, equal to
three reasons pro, I strike out the five; and thus proceeding I find at length where
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the balance lies; and if, after a day or two of further consideration, nothing new
that is of importance occurs on either side, I come to a determination accordingly.
[· · · ] I have found great advantage from this kind of equation, and what might be
called moral or prudential algebra. Wishing sincerely that you may determine for
the best, I am ever, my dear friend, yours most affectionately.
B. Franklin

What is of interest in the above quotation is the fact that decision is strongly
related to the comparison of different points of view, for which some are in favor
and some are against. During the last forty years, systematic methodologies to
look at such decision problems have caught the attention of many researchers. The
approach recommended by Franklin, which explicitly takes into account the pros
and the cons of different points of view, is the domain of multiple criteria decision
analysis (MCDA).

Similar terms for describing this type of decision assistance include “multiple
criteria decision aid” which comes from Europe (Roy, 1985; Vincke, 1992) and “mul-
tiple objective decision making” which is more widely used in the North America.
The field of MCDA refers to the wide variety of tools and methodologies devel-
oped for the purpose of helping a decision maker (DM) to select from finite sets of
alternatives according to two or more criteria, which are usually conflicting.

1.1 Motivation

The first and the most important step for studying a multiple criteria decision
problem is the identification of a problématique, which was first introduced into
MCDA by Roy (1985). The French word, “problématique” means fundamental
problems and been translated as problematics in English by some researchers.
The following was written by Roy (1996) as an explanation of problematics in
MCDA.

The analyst must now determine in what terms he will pose the problem. What
types of results does he envision and how does he see himself fitting into the de-
cision process to aid in arriving at these results? Towards what will he direct his
investigation? What form does he foresee his recommendation taking? ...We use
the word problematic to describe the analyst’s conception of the way he envisions
the aid he will supply in the problem at hand based on answers to these questions.

Furthermore, Roy (1985, p.57) proposed four different kinds of problems as
problématiques in MCDA — P. α, P. β, P. γ, P. δ.
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Definition 1. • P. α, choice. Choosing one alternative from a set of alternative,
A.

• P. β, sorting. Sorting alternatives in predefined homogenous groups which
are given in a preference order.

• P. γ, ranking. Ranking alternatives from best to worst.

• P. δ, description. Describing alternatives in terms of their major distin-
guishing features.

Figure 1.1 provides an intuitive example of problématiques in MCDA. In the
example, there are seven alternatives available for a particular multiple criteria
decision analysis. In ranking analysis, the whole ordering sequence of alternatives
A1 to A7, from most to least preferred, is listed as A2 ≻ A1 ≻ A6 ≻ A5 ≻ A4 ≻
A7 ≻ A3, where ≻ means preferred to. For choice analysis, the best alternative
is chosen as A2. Under the category of description, one can describe features of
alternatives. Within sorting analysis, one classifies all alternatives into two groups
in which Group 1 (A1, A2, A6) is preferred to Group 2 (A3, A4, A5, A7).

Three problématiques consisting of choice, sorting and ranking can lead to spe-
cific results implying regarding evaluations of alternatives. Some of these problématiques
have been widely studied during the last thirty years. For example, methods for
solving choice and ranking problems are so common that many researchers (for
example, Olson (1996) in the book Decision Aids for Selection Problems) assume
that they are the only problems of MCDA and do not distinguish problématiques
explicitly, while substantial research on the sorting problem has not been carried
out until recently.

Some new methods (Doumpos and Zopounidis, 1998; Slowinski and Zopounidis,
1995; Zopounidis and Doumpos, 2002) or revisions of well-known methods (Belacel,
2000; Yu, 1992) have recently been put forward to solve sorting problems. However,
a systematic analysis of classification problems including sorting has not been well
studied. For example, relationships among choice, sorting and ranking problems
have never been investigated. In this thesis, a general research scheme involving
classification problems in MCDA is systematically addressed and some practical
applications are studied to demonstrate the proposed methodologies. The key ob-
jectives are outlined in the next section.
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Figure 1.1: Problématiques in MCDA, adapted from Doumpos and Zopouidis
(2002)

1.2 Objectives

The overriding objectives of this research are to develop new and improved tools and
methodologies for classification problems in MCDA, multiple criteria classification
(MCC), with application to challenging decision problems arising in engineering
and other fields. In particular, the research topics described in the next three
subsections are investigated thoroughly within this thesis.

1.2.1 Screening Problems in MCDA

Screening techniques in MCDA are studied to address a problem related to both
choice and sorting. In practical applications of MCDA, it is common for a DM facing
complex choice problems to first identify those alternatives that do not appear to
warrant further attention (Bobbs and Meierm, 2000). A practical example can be
seen recently in the popular TV program, Bachelor. When choosing one girl among
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several, a young man solves it by sequential elimination (screening) of one girl from
further consideration. The choice is expressed by not assigning this girl a rose,
while the others each get one.

Screening techniques can be regarded as useful MCDA methods, leading to
a final choice. They apply when not enough information is available to reach a
final choice directly, or too many alternatives must be considered. The number of
alternatives to be taken into account further is dramatically reduced if screening is
carried out properly reducing the work load for the DM. Screening techniques are
designed to solve some sorting problems, and can help the DM simplify the final
choice problem.

During the past few decades several different methods have been separately
put forward to deal with screening problems. But there has been no systematic
exploration of this topic in the literature, and researchers on sorting have paid
little attention to it.

In summary, in this research topic the screening problem will be investigated
systemically. Feasible screening methods are summarized according to the infor-
mation provided by the DM, and are integrated into a unified framework, the
sequential screening procedure (Chen et al., 2005b). The efficacy of this structure
is demonstrated using a water resources planning problem. Also, a new and useful
method, the case-based distance model, is proposed to solve screening problems
and illustrated with a numerical example (Chen et al., 2005c).

1.2.2 Sorting Problems in MCDA

Practical applications of sorting include financial management such as business
credit risk assessment; marketing analysis, such as customer satisfaction measure-
ment; environmental and energy management, such as the analysis, measurement
and classification of environmental impacts of different policies (Zopounidis and
Doumpos, 2002). This rich range of potential real world applications has encour-
aged researchers to develop innovative methodologies for sorting. With the evolu-
tion of MCDA and the appearance of powerful new tools to deal with classifica-
tion, research on sorting in MCDA is now receiving more attention. For example
Doumpos and Zopouidis (2002) wrote the first book on sorting in MCDA. Kilgour
et al. (2003) studied the problem of screening (two-group sorting) alternatives in
subset selection problems. Zopounidis and Doumpos (2002) gave a comprehensive
literature review of sorting in MCDA.

Generally speaking, there are two kinds of sorting methods: direct judgment
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methods and case-based reasoning methods. In direct judgement methods, a par-
ticular decision model is employed and the DM directly provides enough information
to evaluate all preferential parameters in the model. In case-based reasoning meth-
ods, the DM furnishes decisions for selected cases, which determine preferential
parameters to calibrate a chosen procedure as consistently as possible.

Direct judgement methods include ELECTRE TRI (Yu, 1992) and N-TOMIC
(Massaglia and Ostanello, 1991). Both belong to the family of ELECTRE methods
initially introduced by Roy (1968), but feature some theoretical modifications to ad-
dress sorting. Case-based reasoning methods include UTADIS, MHDIS (Doumpos
and Zopouidis, 2002) and the rough set method (Slowinski, 2001). UTADIS and
MHDIS use the UTA (UTilités Additives) (Jacquet-Lagrèze and Siskos, 1982) tech-
nique to sort alternatives; the rough set method employs rough set theory, as de-
veloped by Slowinski (2001), for sorting.

In summary, within this research topic new techniques, case-based distance
methods for sorting, are developed to solve problems (Chen et al., 2005d, 2004).
The advantages of this method include (1) clear geometric meaning, so the DM can
easily understand the method; (2) expeditious and accurate elicitation of the DM’s
preferences, which is much more efficient than direct inquiry. Then the applica-
tions of this method in inventory management (Chen et al., 2005e), and bilateral
negotiation (Chen et al., 2005f) are investigated.

1.2.3 Multiple Criteria Nominal Classification

Current research on classification problems in MCDA mainly focuses on sorting,
in which alternatives are assigned to groups defined ordinally by the DM. Another
practical decision problem is to assign alternatives to homogeneous groups defined
nominally. For example, in human resources management, some job applicants
should be assigned to appropriate occupation groups according to their multiple
qualifications (criteria). This kind of problem is called Multiple Criteria Nominal
Classification (MCNC) to distinguish it from the sorting problem in MCDA.

To date, only a few papers are relevant to MCNC, such as those of Perny (1998),
Scarelli and Narula (2000), and Malakooti and Yang (2004). One reason may be
that distinctions between MCNC and other classification areas have not been clar-
ified. Note that similar multiple criteria (multidimensional) classification problems
(which can be termed multiple attribute classification, MAC) have been widely
studied in other research areas such as statistical learning and pattern recogni-
tion, medical diagnosis, handwriting and voice recognition (Zervakis et al., 2004).
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But there are great differences between sorting and MAC. As a decision analysis
method, sorting is a prescriptive approach to assist individuals to make wise classi-
fication decisions, while MAC is a descriptive approach to detect and characterize
general similarities within a large set of data. Sorting involves determining the
DM’s preferences in decision situations; MAC does not have this function.

Overall, this research area focuses on the theoretical extension of sorting prob-
lems (Chen et al., 2006), as follows: (1) the systematic modelling of the MCNC
problems is presented including their features, definition and structures; and (2)
the development of techniques to solve MCNC problems is addressed and a wa-
ter resources planning problem is studied to demonstrate the proposed analysis
procedure.

1.3 Overview of the Thesis

Figure 1.2 summarizes of the organization of the thesis. A detailed explanation
follows:

• Chapter 1 describes the motivation and objectives of this thesis, including
a discussion of problématiques in MCDA and the organization of the thesis.

• Chapter 2 is a background and literature review of MCDA, including the
following: MCDA and relevant research topics, analysis procedures in MCDA,
and a summary of MCDA methods.

• Chapter 3 addresses screening problems in MCDA, including general de-
scriptions of screening problem, a systematic sequential screening procedure,
and a case study of water resource planning in the Regional Municipality of
Waterloo.

• Chapter 4 introduces a case-based distance model for screening and a nu-
merical example to demonstrate the proposed procedure.

• Chapter 5 focuses on sorting problems in MCDA, including general descrip-
tions of the sorting problem, case-based distance model I for cardinal criteria,
case-base distance model II for both cardinal and ordinal criteria, and a case
study analyzing Canadian municipal water usage.
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Figure 1.2: Contents of This Thesis

• Chapter 6 contains a sorting problem application in inventory management,
including an introduction of multiple criteria ABC analysis (MCABC), a case-
based distance method for MCABC, and a case study of a hospital inventory
management problem.

• Chapter 7 is an extension of a sorting problem to negotiation, including
an introduction to multiple issue bilateral negotiation, a case-based distance
model for bilateral negotiation, and a case study in negotiation over the supply
of bicycle components.

• Chapter 8 proposes a new kind of decision analysis problem, multiple criteria
nominal classification (MCNC), which includes an introduction to MCNC,
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an MCNC analysis procedure, a linear additive value function approach to
MCNC, and a numerical example to demonstrate the procedure.

• Chapter 9 contains a summary of the main contributions of the research
and suggestions for future research.
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Chapter 2

Background and Literature
Review of Multiple Criteria
Decision Analysis

2.1 Introduction

In this chapter, a background and literature review of MCDA are presented to
provide a foundation for the research in this thesis. MCDA and relevant research
topics are first explained briefly, and then an analysis procedure is proposed that
provides a systematic framework for MCDA. This permits many approaches to
MCDA to be summarized and integrated into one system. This chapter is based
upon the research of Chen et al. (2004).

2.2 MCDA and Relevant Research Topics

Every decision situation exists within a context. This environment consists of a
set of circumstances and conditions that affect the manner in which the decision
making problem can be resolved. Radford (1989) and Hipel et al. (1993) suggested
four major factors that determine the context, namely:

1. Whether or not uncertainty is present,

2. Whether or not the benefits and costs resulting from the implementation of
potential courses of actions can be entirely assessed in quantitative terms,
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3. Whether one criterion or multiple criteria must be taken into account,

4. Whether the power to make the decision is under the control of one organi-
zation, individual or group, or whether two or more of the participants have
power to influence the decision.

Based on these factors, Radford (1989) and Hipel et al. (1993) focused on three
decision analysis scenarios: single participant-multiple criteria, multiple participant-
single criterion, and multiple participant-multiple criteria situations. Here, this
classification is extended and a systematic discussion of the relationship of MCDA
and its related research topics is presented.

Table 2.1: MCDA and Relevant Research Topics

Single Criterion Multiple Criteria

Single DM SDSC SDMC

Multiple DMs MDSC MDMC

Infinitely Many DMs IDSC IDMC

Finite Alternatives FASC FAMC

Infinitely Many Alternatives IASC IAMC

Table 2.1 presents the acronyms used for the various decision situations that
arise in practice. The characteristics or commonalities of these decision situations
are discussed below.

• SDSC and FASC: a single DM a single criterion, and finite alternatives
problem. SDSC and FASC are simple decision problems, in which a DM
solely considers one criterion to make decisions. SDSC related research top-
ics include cost-benefit analysis in engineering economics and traditional one
objective optimization based decision in operation research.

• SDMC and FAMC: a single DM with multiple criteria, and finite alterna-
tives problem. Here one categorizes SDMC and FAMC as the MCDA studied
in this thesis. The areas of SDMC and FAMC overlap with much of the
MCDA research presented in this thesis.

• MDSC and MDMC: a multiple DM with single criterion or multiple criteria
problem. MDSC and MDMC have a finite number of DMs who are involved in
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conflict over one or multiple issues. For example, companies that manufacture
television set, may be in competition to gain larger market share. Many
game theory related conflict analysis methods focus on MDSC and MDMC
problems. For instance, Howard (1971) developed metagame analysis with
option form for structuring and modelling MDSC problems; Fraser and Hipel
(1984) proposed conflict analysis to extend metagame analysis; Fang et al.
(1993) designed the graph model for conflict resolution to analyze MDSC
problems.

• IDSC and IDMC: an infinitely many DMs, single criterion or multiple cri-
teria problem. IDSC and IDMC involve an infinite number of DMs’ decisions
based mainly on a single criterion. IDSC and IDMC related research includes
statistical models and time series analysis for the estimation of aggregation
effects of customer purchase behaviours. One important branch of this re-
search, called discrete choice models, which was largely developed by Manski
and MaFedden (1981), Moshe and Lerman (1985), and Train (2003). Based
on the modeling of aggregation of individual behavior, discrete choice models
can analyze and predict the impacts of various infinite DMs decision sce-
narios such as forecasting the ridership on a metropolitan transit service or
predicting demand for a product under alternative pricing strategies.

• IASC and IAMC: an infinitely many alternative, single criterion or mul-
tiple criteria problem. IASC and IAMC related research includes single or
multiple objective optimization techniques widely studied in operations re-
search. IASC and IAMC focus on a a serial process of identifying decision
variables, defining objectives, modeling constraints, and finding optimal so-
lutions. For example Steuer (1986) discussed various approaches to generate
Pareto Optimal solutions to multiple objective optimization problems.

2.3 Analysis Procedures in MCDA

2.3.1 The Structure of MCDA Problems

Multiple criteria decision analysis begins with a serial process of defining objec-
tives, arranging them into criteria, identifying all possible alternatives, and then
measuring consequences. A consequence is a direct measurement of the success of
an alternative according to a criterion (e.g. cost in dollars, capacity in liters). Note
that a consequence is a physical measurement related to a criterion and does not
include preferential information.
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The process of structuring MCDA problems has received a great deal of atten-
tion. von Winterfeldt (1980) called problem structuring the most difficult part of
decision aid. Keeney (1992) and Hammond et al. (1999) proposed a systematic
analysis method, value-focused thinking, which provided an excellent approach
to this aspect of MCDA.

The basic structure of an MCDA problem established by carrying out the above
steps is shown in Figure 2.1. In this figure, A = {A1, A2, · · · , Ai, · · · , An} is the set
of alternatives, and Q = {1, 2, · · · , j, · · · , q} is the set of criteria. The consequence
on criterion j of alternative Ai is expressed as cj(A

i), which can be shortened to ci
j

when there is no possibility of confusion. Note that there are n alternatives and q
criteria altogether.

A1 A2 ... Ai ... An

2

...

...C
ri

te
ri

a

Alternatives

1

j

q

icj

Figure 2.1: The Structure of an MCDA Problem

Criterion Definition

Defining criteria refer to the selection and specification of criteria, shown as the
q criteria in Figure 2.1, to reflect multiple concerns or different objectives. For
example, Keeney et al. (1987) identified eight criteria for German energy planning,
including financial requirements, security of energy supplies and national economic
impacts.

Definitions of criteria are important. Keeney (1992) suggested that there are
three kinds of criteria, natural criteria, constructed criteria, and proxy criteria.
Natural criteria are commonly understood by everyone. An example of a natural
criterion for an objective of minimizing loss of pine forest would be the area of
pine forest lost. Constructed criteria are constructed for a specific decision context.
Keeney notes that the Dow Jones industrial average and the Richter scale started
out as built criteria, although they have become so commonly used that they now
are “natural criteria”. Sometimes it is difficult to identify natural or constructed
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criteria for particular objectives; then proxy criteria or indirect measures are used.
For instance, it is difficult to find a direct criterion for the objective minimize
damage to historic buildings from acid rain, but a useful proxy criterion could
be sulphur dioxide concentration in rain water (measured in parts per million).
Of course the selection of criteria must satisfy some requirements; for example,
Keeney and Raiffa (1976), Roy (1996) and Bobbs and Meierm (2000) have put
forward different approaches.

Alternative Identification

Alternative identification means finding suitable alternatives to be modelled, evalu-
ated and analyzed. The value-focused thinking approach of Keeney (1992) provides
several valuable suggestions which can lead to the identification of decision oppor-
tunities and the creation of better alternatives. The habitual domain theory of
Yu (1995) discusses the human decision mechanism from the psychology perspec-
tive, and proposed innovative ways to liberate thinking from the limitations of a
rigid habitual domain and to find creative alternatives.

Most DMs would like to limit the number of alternatives for analysis. The num-
ber that is reasonable may vary greatly according to the circumstances. “Twenty
may be too many, and two is likely to be too few” (Bobbs and Meierm, 2000). In
fact, the number of alternatives to be identified may depend on the Problématique.
For ranking and sorting problems, all possible alternatives within pre-specified
boundaries should be considered. For example, in water resources planning, each
lake within a specified area should be identified and classified. For choice problems,
it may not be necessary to give comprehensive evaluations of all possible alterna-
tives, because some inferior alternatives are not worth further consideration.

Consequence Measurement

Consequence measurement means measurement or estimation of the effect or con-
sequence ci

j of an alternative Ai on criterion j. Opinions or preferences of the DM
play no role in consequences. The first task of analysts is to collect these data
honestly and fairly, and not to evaluate immediately whether or not they are good
or bad.

Different kinds of consequence data include:

• Cardinal data: The most common format for consequences is as cardinal data,
for which ci

j is a real number. For example, in a nuclear dump site selection, cardinal
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criteria can be construction cost, expected lives lost, risk of catastrophe and civic
improvement (Olson, 1996). The consequence of construction cost can be expressed
in monetary units like millions of US dollars.

• Ordinal data: In the above example, if DMs feel it is hard to obtain cardinal
data or probabilistic data for civic improvement measurements, it may be measured
ordinally. For example, linguistic grades can be used by DMs to assess alternatives
for the criterion of civic improvement measurements.

• Interval data; • Probabilistic data; • Fuzzy data: Sometimes uncertainty
must be considered in consequence measurement; the data may then be expressed
as interval data, probabilistic data, fuzzy data or in some other suitable fashion
reflecting uncertainty. In the above example, the criterion number of lives lost can
be expressed probabilistically, since it is not easy to give precise data for mortality
in nuclear dump accidents.

2.3.2 Decision Maker’s Preference Expressions

An essential feature of decision problems is the DM’s preferences. Different ways
of expressing preferences may lead to different final results for the same MCDA
problem. Generally speaking, there are two kinds of preference expressions: value
data (preferences on consequence data) and weights (preferences on criteria).

Preferences on Consequence Data

A DM may have preferences based directly on consequence data, which can be
expressed in several ways. Among them, the most famous are utility theory-based
definitions (Fishburn, 1970; Keeney and Raiffa, 1976) and outranking-based def-
initions (Roy, 1968, 1985). Note that some MCDA methods do not distinguish
consequence data from preferences on consequence data. For example, Nijkamp et
al. (1983) gave criterion scores the same meaning as preferences on consequence
data and do not explicitly differentiate consequence data from preferences on them.
In fact, they used standardized methods for criterion scores, which were transfor-
mations from consequence data to preferences on that data. In this document, for
the sake of easier modelling of the preferences of the DM, definitions of values as
preferences on consequences are proposed.

Definition 2. The DM’s preference on consequence for criterion j and alternative
Ai is a value datum vj

(

cj(A
i)
)

= vj(A
i), written vi

j when no confusion can result.
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The DM’s preference on consequences over all criteria for alternative Ai is the value
vector v(Ai) =

(

v1(A
i), v2(A

i), ..., vq(A
i)
)

.

Values are refined data obtained by processing consequences according to the
needs and objectives of the DM. The relationship between consequences and values
can be expressed as

vi
j = fj(c

i
j) (2.1)

where vi
j and ci

j are a value and a consequence, respectively, and fj(·) is a mapping.

MCDA techniques may place different requirements on the preference informa-
tion provided by the DM. Specifically in some situations it may be necessary to
assume the following properties in order to be able to use certain MCDA methods:

• Preference availability: the DM can express which of two different consequence
data on a criterion is preferred.

• Preference independence: the DM’s preferences on one criterion have no rela-
tionship with preferences on any other criterion;

• Preference monotonicity: criterion j is a positive preference criterion iff
larger consequences are preferred, i.e., ∀Al and Am ∈ A, vj(A

l) ≥ vj(A
m)

for cj(A
l) > cj(A

m); it is a negative preference criterion iff smaller
consequences are preferred, i.e., ∀Al and Am ∈ A, vj(A

l) ≥ vj(A
m) for

cj(A
l) < cj(A

m); it is monotonic iff it is either positive or negative.

Many methods are available to obtain value transformation functions, such as
multiattribute utility theory (MAUT) (Keeney and Raiffa, 1976) and the analytic
hierarchy process (AHP) (Saaty, 1980). Two simple but frequently used transfor-
mation functions are linear normalization functions:

vi
j =

ci
j

max
l=1,2,...,n

{cl
j}

(2.2)

for a positive preference criterion; and

vi
j =

min
l=1,2,...,n

{cl
j}

ci
j

(2.3)

for a negative preference criterion. Both (2.2) and (2.3) assume that all conse-
quences are positive real numbers.
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Preferences on Criteria

Preferences on criteria refer to expressions of the relative importance of criteria.
They are generally called weights; the weight for criterion j ∈ Q is wj ∈ R. It is
usually assumed that wj > 0 for all criteria, j. Usually weights are normalized to
sum to 1,

∑

j∈Q wj = 1. Such normalization can help DMs to interpret the relative
importance of each criterion. A weight vector is denoted w = (w1, w2, ..., wj, ..., wq),
and the set of all possible weight vectors is denoted W ⊆ Rq. Other methods of
expressing preferences over criteria include ranking criteria (from most to least pre-
ferred, with ties allowed) and determining intervals for weights. Still more methods
based on probability or fuzzy sets, for example, are available if uncertainty is to be
considered.

Aggregation Models in MCDA

After the construction of a basic MCDA problem and the acquisition of preferences
from the DM, a global model to aggregate preferences and solve a specified problem
(choose, rank or sort) may be constructed. For all Ai ∈ A,

V (Ai) = F
(

v(Ai),w
)

(2.4)

where V (Ai) ∈ R is the evaluation of alternative Ai (V i when no confusion can
result), and F (·) is a real function mapping the value vector v(Ai) and the weight
vector w to the evaluation result. A typical example is the linear additive value
function, which can be expressed as

V (Ai) =
∑

j∈Q

wj · vj(A
i) (2.5)

This step has been called amalgamation (Janssen, 1992), and arithmetic multi-
criteria evaluation (Bobbs and Meierm, 2000). It is a necessary step for different
methodologies in MCDA.

Most aggregation methods in MCDA require three steps:

1. Obtain values and weights.

2. Aggregate values using weights.

3. Apply the aggregate values to carry out the specified task (choice, ranking,
or sorting).
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2.4 Summary of MCDA Methods

During the last thirty years, a multitude of aggregation models has been devel-
oped, including MAUT, AHP and Outranking. New methods or improvements on
existing methods continue to appear in international journals like the Journal of
Multi-Criteria Decision Analysis, European Journal of Operational Research, and
Computer and Operations Research. Olson (1996) provided a comprehensive bibli-
ography for these methods. The purpose of this section is to classify and summarize
popular MCDA methods, based on Chen et al. (2004).

2.4.1 Value Construction Methods

There are three common approaches to generating values based on consequences:
single alternative-based methods, binary alternative-based methods and linguistic
rule-based methods. These methods are elaborated in Figure 2.2.

Consequences

1. Utility function
2. Linear normalization function
3. Geometric ratio function
4. Aspiration-level function
5. Fuzzy membership function
6. Ordinal ranking with probability
   estimations function

Single alternative-
based methods

1. ELECTRE models
2. PROMETHEE models
3. Analytic Hierarchy Process

Binary alternatives-
based methods

1. Rough set theory
2. Elimination method

Linguistic rules-
based methods

Values

Figure 2.2: Different Approaches to Obtaining Values

Single alternative-based models focus on the expression of preference based only
on the consequence data for a particular alternative; the consequence data for
other alternatives is not considered. Models belonging to this class include utility
functions (Keeney and Raiffa, 1976), linear normalization functions (Hwang and
Yoon, 1981; Nijamp and Rietveld, 1990; Nijkamp et al., 1983), geometric ratio
functions (Lootsma, 1999), aspiration-level functions (Korhonen, 1988; Lotfi et
al., 1992) and fuzzy membership functions (Lootsma, 1997; Yager, 1977). These
methods are mostly designed to deal with cardinal consequence data. The methods
of ordinal ranking with probability estimation (Nijamp and Rietveld, 1990; Nijkamp
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et al., 1983) (since Nijkamp et al. (1983),and (Nijamp and Rietveld, 1990) did not
give a clear name for this method, in this document it is named according to its
most distinguishing feature) and data envelopment analysis (Cook and Kress, 1991)
apply to ordinal consequence data.

Most single alternative-based methods represent preferences using real numbers.
In some methods, such as fuzzy membership, an interval of real numbers is obtained
first, and then aggregation methods are applied to obtain a single real number as
representative of this interval.

Binary relation-based models focus on expressions of preferences on criteria
via comparisons of two alternatives. They include ELECTRE (Roy, 1968, 1985),
PROMETHEE (Brans et al., 1986; Brans and Vincke, 1985), and the Analytic
Hierarchy Process (AHP) (Saaty, 1980). In AHP, binary relationships between
alternatives are described by cardinal or ordinal numbers (usually relative scores
on a 1-9 scale), which represent the degree of preference between the alternatives,
while in Outranking methods (ELECTRE or PROMETHEE) binary relations of
alternatives are represented by concordance and discordance matrices. Of course,
difference exists between AHP and Outranking methods to obtain the final results.

Linguistic rules-based models focus on expressions of preferences on criteria via
some linguistic rules, mostly expressed as “If ..., then ...”. The advantage of this
kind of preference data is that people make decisions by searching for rules that
provide good justification of their choices. Rough set methods (Slowinski, 1992)
and the elimination method (MacCrimmon, 1973; Radford, 1989) are based on this
kind of preference representation.

2.4.2 Weighting Techniques

Belton and Stewart (2002) summarize two kinds of weights: tradeoff-based weights
and non-tradeoff-based weights. Tradeoff-based weights emphasize the “compen-
sation” of values across criteria, which permits preference data to be compared
as they are aggregated into a single representative evaluation. Non-tradeoff-based
weights do not permit direct tradeoffs across criteria; they are usually associated
with outranking methods.

Figure 2.3 summarizes some methods for weight assessment in MCDA. Among
the tradeoff-based weight methods, AHP and geometric ratio weighting are inte-
grated methods, which means they proceed from preference data and weight as-
sessments to aggregated preferences to final results. Some authors including von
Winterfeldt (1986), Bobbs and Meierm (2000), and Belton and Stewart (2002))
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Criteria

Tradeoff-based 
weights

Non-tradeoff-
based weights

1. AHP
2. Swing weights
3. Geometric ratio weighting
4. Ordinal ranking with    
   probability estimations
5. Data envelopment analysis

1. ELECTRE
2. PROMETHEE

Figure 2.3: Methods of Weight Construction

prefer swing weights to other methods for direct estimation of weights. Ordinal
ranking with probability estimation was introduced by Nijkamp et al. (1983) to ex-
press weights ordinally. Data envelopment analysis, proposed by Cook et al. (1996),
possesses the unique feature that the values of weights are determined by prefer-
ences to optimize the measure of each alternative. Note that Outranking methods
focus on the employment of weights and do not provide procedures to obtain weights
while other methods can generate the weight information.

2.4.3 Aggregation Methods

Figure 2.4 shows these procedures and the relationships among them. Within this
framework, the similarities and differences of methods for obtaining preferences and
aggregating them can be clearly displayed.

Methods that employ cardinal preference data and tradeoff-based weights in-
clude the aspiration-level interactive model (AIM) (Lotfi et al., 1992), Multiattribute
Utility Theory (MAUT) (Keeney and Raiffa, 1976), Simple Multi-Attribute Rating
Technique (SMART) (von Winterfeldt, 1986), Visual Interactive Method for Deci-
sion Analysis (VIMDA) (Korhonen, 1988), and Preference Cones (Koksalan et al.,
1984). Techniques that utilize binary preference data and tradeoff-based weights in-
clude Analytic Hierarchy Process (AHP) (Saaty, 1980), Geometric Mean Technique
(Barzilai et al., 1987; Barzilai and Golany, 1994; Lootsma et al., 1990). Finally,
methods that employ binary preference data and non-tradeoff-based weights include
ELECTRE (Roy, 1968, 1985) and PROMETHEE (Brans et al., 1986; Brans and
Vincke, 1985) which are Outranking Methods.

Linguistic aggregation methods use only linguistic preference data. Weights are
assigned to rules rather than criteria. These methods include Rough Set Method
(Slowinski, 1992) and Elimination Method (MacCrimmon, 1973; Radford, 1989).
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Greco et al. (2001) argue that “The rules explain the preferential attitude of the
decision maker and enable his/her understanding of the reasons of his/her prefer-
ences.”

2.5 Conclusions

In this chapter, the basic context of MCDA is explained as follows:

• MCDA and relevant research topics: MCDA and its related research are
discussed and summarized in detail.

• Analysis procedures in MCDA: An analysis procedure for MCDA, conse-
quence based preference aggregation, is explained in detail to establish a
general framework for MCDA.

• Summary of methods in MCDA: Based upon the aforementioned analysis pro-
cedure, many methods in MCDA are summarized and integrated into a sys-
tematic framework to demonstrate the essence of these different approaches.
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Chapter 3

Screening Problems in Multiple
Criteria Decision Analysis

3.1 Introduction

In this chapter, screening problems are systematically addressed. Firstly a gen-
eral description of screening problems is presented. Next, a sequential screening
procedure is proposed to solve screening problem and the properties of sequential
screening are discussed; then several popular MCDA methods are applied to screen-
ing by using only partial decision information. Finally, the systematic use of this
procedure is demonstrated in a case study of the Waterloo water supply planning
in Southern Ontario, Canada. This Chapter is based on earlier research by Chen
et al. (2005b).

3.2 General Description of Screening Problems

First a formal definition of screening for a decision problem in MCDA is presented.

Definition 3. A screening procedure is any procedure Scr that always selects a
non-empty subset of an alternative set A,

∅ 6= Scr(A) ⊂ A, (3.1)

where Scr denotes a screening procedure (sometimes subscripts are used to dis-
tinguish among different types of screening procedures), and Scr(A) denotes the
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screened set (the remaining alternatives) after the procedure Scr was applied to
the alternative set A.

Speaking more practically, screening is any process that reduces a larger set
of alternatives to a smaller set that (most likely) contains the best choice. An
illustration is shown in Figure 3.1.

Alternatives

A1, A2, A3, A4,

A5, A6, A7

A2

Group 1

A2; A1; A6

Group 2

A5; A4; A7; A3
More preferred 

group
Less preferred 

group

Choice

Screening

Figure 3.1: The Relationship among Screening, Sorting and Choice

Screening should accomplish the objective of reducing the number of alternatives
to be considered. As Bobbs and Meierm (2000) put it, screening “should eliminate
alternatives that are unlikely to be chosen, so that later effort can be focused on
the more attractive options.” With respect to problématiques in MCDA, we are
focusing on a choice problématique(α), but it should be noted that screening can
be interpreted as an application of the sorting problématique(β), since screening
means arranging all alternatives into two groups, one of which is “screened out”
from further consideration.

3.3 A Sequential Screening Procedure

First basic properties in the sequential screening procedure are defined as follows:

3.3.1 Basic Properties

Safety

A screening procedure for a choice problem, Scr, is safe iff whenever an alternative
b is a best choice in Scr(A), b is also a best alternative in A.
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Efficiency

If Scr1 and Scr2 are distinct screening procedures, then Scr1 is more efficient than
Scr2, or a refinement of Scr2, iff Scr1(A) ⊆ Scr2(A) is always true.

Information

In a screening procedure, information refers to preference information provided
by the DM. For example, some aspects of the DM’s preference may be confirmed
without providing complete information. Generally speaking, the more preference
information included in a screening procedure, the more alternatives it can screen
out. In the extreme case, information may be so strong that only one alternative
is left after screening.

Based on the description of consequences, values, weights and aggregation mod-
els in Chapter 2, there are four types of screening information as follows:

• I1: the validation of basic preference properties;

• I2: the application of preference information on consequences;

• I3: the application of preference information on criteria;

• I4: the integration of aggregation models.

It is assumed that if Scr1 is a refinement of Scr2, then Scr1 is based on more
information than Scr2.

3.3.2 Sequential Screening

The DM may not be satisfied with the result of an initial screening. If so, other
screening procedures may be applied to the screened set. Typically these follow-
up procedures are based on more detailed preference information. This process is
called sequential screening.

Definition 4. Sequential screening is the application of a series of screening pro-
cedures in sequence to an alternative set A,

Scrh,h−1,...,1(A) = Scrh

(

Scrh−1

(

· · ·
(

Scr1(A)
)

· · ·
)

)

, (3.2)
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where Scrk, k = 1, 2, ..., h are screening procedures. Scrh is the final screening
procedure in this sequential screening.

Theorem 1. Sequential screening Scrh,h−1,...,1 is safe iff Scrk is safe for k =
1, 2, · · · , h.

Proof: By hypothesis, Scr1 is safe. Now assume Scrk−1,k−2,...,1 is safe and consider
Scrk,k−1,...,1. Because Scrk is safe, a best alternative in Scrk,k−1,...,1(A) is a best
alternative in Scrk−1,k−2,...,1(A), which by assumption is a best alternative in A.
Therefore, Theorem 1 is true by induction. ¤

3.3.3 Decision Information Based Screening

As stated above, decision procedures using partial preference information can of-
ten be adapted for screening. Some popular MCDA methods can be modified for
screening; the general relationship among them, grouped by decision information
requirements, is shown in Figure 3.2.

Pareto optimality 
based screening Aspiration levels based 

screening techniques

Data envelopment analysis 
based screening

Non-tradeoff weights based 
screening techniques

Tradeoff weights based 
screening techniques

Basic information about 
preferences on consequences

Further information about preferences 
on both consequences and criteria

Figure 3.2: Screening Methods and Decision Information

As shown in Figure 3.2, Pareto optimality based screening is a basic screening
technique, and we will discuss it first. Other screening techniques based on trade-
off weights, non-tradeoff weights, aspiration levels, and data envelopment analysis
(DEA) can be carried out subsequent to Pareto optimality screening. Of course,
these methods require more decision information and, when used in sequence, pro-
duce refined screening.
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3.3.4 Pareto Optimality (PO) Based Screening

Pareto optimality is a famous concept put forward by Pareto (1909) and is widely
used in economics and elsewhere. It provides a very useful definition of optimality
in MCDA because it can be interpreted to take account of multiple aspects (criteria)
for overall optimality. Definitions of Pareto optimality in Multiple Objective Math-
ematical Programming (MOMP) (Steuer, 1986) do not explain well the relations
between consequence data and preference data and are not suitable as screening
techniques in MCDA. So we re-define the concept of Pareto optimality in MCDA.

Domination and Pareto Optimality

Domination is a relation that might or might not hold between two alternatives.

Definition 5. B ∈ A dominates A ∈ A, denoted B ≻ A, iff ∀j ∈ Q, vj(B) ≥ vj(A)
with at least one strict inequality.

Using domination, we define Pareto optimality.

Definition 6. A ∈ A is a Pareto Optimal (PO) alternative, also called an efficient
alternative, iff ∄ B ∈ A such that B ≻ A. The set of all Pareto optimal alternatives
in A is denoted PO(A).

Usually, the information provided by the DM during the screening phrase is
limited and the DM may prefer not to spend too much energy on comprehen-
sive preference expressions. Then the following theorem shows that by identifying
PO(A), we carry out PO based direct screening in MCDA based on consequences,
provided some properties of preference data hold.

Theorem 2. Assume the preference directions over criteria are available. A 6∈
PO(A) iff ∃ B ∈ A such that ∀j ∈ Q, cj(A) ≤ cj(B) when j is a positive preference
criterion and cj(A) ≥ cj(B) when j is a negative preference criterion, with at least
one strict inequality. For a choice problem, if A 6∈ PO(A), then A can be safely
screened out.

Proof : Suppose that A ∈ A and ∃ B ∈ A such that ∀j ∈ Q, either cj(A) ≤ cj(B)
and j is a positive preference criterion, or cj(A) ≥ cj(B) and j is negative preference
criterion, with at least one strict inequality for some j ∈ Q. Taking into account the
available information on preference directions over criteria, vj(A) ≤ vj(B) whenever
j is a positive preference criterion or a negative preference criterion. Therefore
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∃ B ∈ A such that vj(A) ≤ vj(B) ∀j ∈ Q with at least one strict inequality.
Therefore, according to Definition 5, B ≻ A and by Definition 6, A 6∈ PO(A). The
reverse implication is easy to verify directly.

As stated, the choice problem is to select the best alternative from A. If A /∈
PO(A), then ∃B ≻ A. It is unknown whether B is the best alternative, but A can
be safely screened out since B is better than A, so that A cannot be best. ¤

Theorem 2 clarifies both the relation between preference data and consequence
data for the determination of Pareto optimality and the relation between Pareto
optimality and screening for choice problems. We can safely use consequence data
to screen out alternatives that are not Pareto optimal, as long as we are sure the
basic preference properties are satisfied.

Although many researchers had assumed the idea of Theorem 2 (checking Pareto
optimality by consequence data), it is important to clarify the relation between
Pareto optimality in consequence data and preference data; otherwise improper
screening of alternatives may result.

PO Based Screening Procedure

• Identify preference direction (positive or negative) for each criterion;

• Compare alternatives based on their consequence data;

• Determine dominated alternatives based on Theorem 2;

• Remove dominated alternatives and retain non-dominated alternatives.

3.3.5 Tradeoff Weights (TW) Based Screening

PO based screening removes some alternatives. But DMs may not be satisfied
if many alternatives remain. Moreover, the power of PO based screening usually
decreases as the number of criteria increases. Further information is needed in order
that more efficient screening can be carried out.

TW based screening techniques are related to the research areas such as sensi-
tivity analysis (Insua, 1990; Insua and French, 1991) and dominance and potential
optimality (Athanassopoulos and Podinovski, 1997; Hazen, 1986). Although these
methods focused on different questions, they all screen alternatives in choice prob-
lems since they classify alternatives as either dominated (and therefore screened
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out) or non-dominated. Here, we summarize these methods and put forward a
systematic screening method, tradeoff weights (TW) based screening, that underlies
the existence of tradeoff weights.

Basic Concepts and Information Requirements

With TW based screening, the following further information from the DM is needed:

(1) The preference vector v(Ai) ∈ Rq, ∀Ai ∈ A.

(2) The final aggregation model.

Since most of these methods use a linear additive value function as the aggrega-
tion model, we also adopt it. The linear additive value function model, introduced
in (2.5), is given by

V (Ai) =
〈

v(Ai),w
〉

=
∑

j∈Q

wj · vj(A
i)

where V (Ai) is the evaluation of alternative Ai and w is the weight vector.

Potential Optimality (PotOp) and Screening

Based on the linear additive value model, we define potential optimality and consider
the relationship between potential optimality and screening.

Definition 7. An alternative Ai ∈ A is potentially optimal (PotOp) iff there exists
w such that

〈

v(Ai),w
〉

= max
Ak∈A

〈

v(Ak),w
〉

. The set of all PotOp alternatives is

denoted as ScrPotOp(A) = PotOp(A) ⊆ A.

Theorem 3. Suppose Ai ∈ PotOp(A) and w ∈ W. If
〈

v(Ai),w
〉

≥
〈

v(Ak),w
〉

for all Ak ∈ PotOp(A), then
〈

v(Ai),w
〉

≥
〈

v(Ak),w
〉

∀Ak ∈ A.

Proof : Assume that
〈

v(Ai),w
〉

≥
〈

v(Ak),w
〉

for all Ak ∈ PotOp(A). If the the-
orem fails, then there exists Aj /∈ PotOp(A) such that

〈

v(Aj),w
〉

>
〈

v(Ai),w
〉

.
Therefore, from Definition 7 there exists Ah ∈ PotOp(A) such that

〈

v(Ah),w
〉

≥
〈

v(Ak),w
〉

for all Ak ∈ A. In particular,
〈

v(Ah),w
〉

≥
〈

v(Aj),w
〉

, and
hence,

〈

v(Ah),w
〉

>
〈

v(Ai),w
〉

, contradicting the hypothesis that
〈

v(Ai),w
〉

≥
〈

v(Ak),w
〉

for all Ak ∈ PotOp(A), which proves the theorem. ¤

From this theorem, it follows that if Ai is best with respect to w in PotOp(A),
then Ai is best with respect to w in A. Therefore, PotOp screening is safe.
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The following mathematical program can be used to determine whether alter-
native Ai is potentially optimal (Geoffrion, 1968).

SCR.1(Ai) Minimize: δ

Subject to:
〈

w,
(

v(Ai) − v(B)
)

〉

+ δ ≥ 0, ∀ B ∈ A

w ∈ W
δ ≥ 0

The inputs of SCR.1(Ai) are v(Ai), v(B), and outputs are δ and w. If δ∗ = 0,
then Ai ∈ PotOp(A). If δ∗ > 0, then Ai is not potentially optimal. Unless
computational considerations intervene, ScrPotOp can be implemented using this
program as the fundamental step.

TW Based Screening Procedure

• Check the validity of the linear additive preference function (SMART) as-
sumption;

• Obtain the preference functions and get the preference data from the conse-
quence data;

• For each Ai ∈ A, apply SCR.1(Ai) to identify PotOp(A);

• Retain only the potential optimal alternatives.

3.3.6 Non-tradeoff Weights (NTW) Based Screening

Since non-tradeoff weights based techniques belong to the family of outranking
methods, they can also be called outranking based screening. Roy (1968) is con-
sidered to have originated these methods.

Definition 8. Vincke (1992, p.58) An outranking relation is a binary relation S
defined on A, with the interpretation that ASB if, given what is known about the
DM’s preferences and values, the alternatives and the nature of the problem, there
are enough arguments to decide that A is at least as good as B, while there is no
essential reason to refute that statement.

Many screening methods are based on an outranking relation.

Outranking methods are suitable for screening in MCDA, as Vincke (1992, p.57)
notes: “Considering a choice problem, for example: if it is known that some action
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(alternative) a is better than b and c, it becomes irrelevant to analyze preferences
between b and c. Those two actions can perfectly remain incomparable without
endangering the decision-aid procedure.”

The major families of outranking methods are the ELECTRE methods and the
PROME-THEE methods. ELECTRE I and PROMETHEE I are the best known
and most widely used methods within their respective families.

ELECTRE Technique for Screening

ELECTRE seeks to reduce the set of nondominated alternatives. The DM is asked
to provide a set of weights reflecting relative importance (but they are not for
tradeoffs purposes). Alternatives are eliminated if they are dominated by other al-
ternatives to a specified degree defined by the DM. The system uses a concordance
index to measure the relative advantage of an alternative over all other alterna-
tives and a discordance index to measure its relative disadvantage. These indices
determine a dominated set, which is then screened out.

PROMETHEE Technique for Screening

PROMETHEE is an offshoot of ELECTRE. PROMETHEE methods begin with a
valued outranking function, the outranking degree π(A,B), defined for each ordered
pair of alternatives (A, B ∈ A × A, A 6= B). Hence π(A,B) represents a measure
of how much better A is than B; 0 ≤ π(A,B) ≤ 1. For the details about the form
of π(A,B), see Vincke (1992).

The overall outranking degree for alternative A is defined by the values of two
functions: Φ+(A) (outgoing flow, which refers to the intensity of preference for
A over other alternatives) and Φ−(A) (incoming flow, the intensity of preference
for other alternatives relative to A). The definitions of Φ+(A) and Φ−(A) are as
follows:

Φ+(A) =
∑

B∈A

π(A,B), (3.3)

Φ−(A) =
∑

B∈A

π(B,A) (3.4)

The final step is the generation of the outranking relations over all alternatives.

Definition 9. AP+B iff Φ+(A) > Φ+(B); AP−B iff Φ−(A) < Φ−(B).

AI+B iff Φ+(A) = Φ+(B); AI−B iff Φ−(A) = Φ−(B).

31



A outranks B if 〈AP+B and AP−B〉 or 〈AP+B and AI−B〉 or 〈AI+B and AP−B〉.

All alternatives that are outranked by any alternative are then screened out.

3.3.7 Aspiration Levels (AL) Based Screening

Aspiration-level based screening techniques are techniques employing desired or ac-
ceptable consequence levels of criteria to identify better alternatives (these methods
are also called reference point approaches (Hanne, 2001), but we prefer the name as-
piration levels based screening, as proposed by Lotfi et al. (1992). Techniques such
as Goal Programming (Charnes and Cooper, 1961), Compromise Programming (Ze-
leny, 1982) and the Reference Point Approach (Wierzbicki, 1982) can be regarded
as the inspirations of aspiration-based screening. To introduce these methods, we
classify them into two categories, simple linguistic methods and distance-based mod-
els.

Simple Linguistic Screening

Simple linguistic screening techniques use linguistic expressions on criteria as con-
straints (standards), eliminating alternatives that do not satisfy these constraints.
The advantage of this method is that expressions are simple and there are fewer
model parameters to specify. We can further classify constraints into lexicographic
and conjunctive/disjunctive (Hwang and Yoon, 1981), or Elimination method (Mac-
Crimmon, 1973).

• Lexicographic Constraints: Criteria are ranked in order of the relative im-
portance. For each criterion, a constraint (goal) is set as a standard. Then all
alternatives are examined, one at a time, to assess whether the first criterion
is satisfied. All alternatives that fail are screened out. Then proceed to the
second criterion, etc.

• Disjunctive and Conjunctive Constraints: Disjunctive/conjunctive con-
straints express conditions involving more than one criterion. In conjunctive
form, characterized by “and”, all the constraints (goals) must be satisfied in
order for an alternative not to be screened. In disjunctive form, characterized
by “or”, any alternative can remain as long as it meets at least one of the
constraints. Conjunctive constraints are more powerful for screening since an
alternative must pass all the standards, so relatively few alternatives will suc-
ceed unless the standards are set at a low level. In the disjunctive form, only
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one standard must be met, so most alternatives will pass unless all standards
are set very high.

Distance-based Screening

Distance-based screening employs a measure of distance between an alternative
and some reference point (ideal alternative or aspiration level) as an index to screen
out the alternatives that are too far away. Here we briefly introduce the aspiration-
level interactive model (AIM) for screening, proposed by Lotfi et al. (1992).
Its main steps are listed below.

Problem Definition: Three attainment levels for consequences must be estab-
lished for each criterion j:

• The “want” level ASj expresses the aspiration level on each criterion;

• The “ideal” level (Ij) and “nadir” levels (Nj) express the largest and smallest
consequence data for each criterion.

Solution Process:

• Order the consequence data, {cj(A) : A ∈ A}, from least to most preferred
for each criterion j. Then inform the DM of the current aspiration level ASj

for each criterion, and the proportion of alternatives that achieve it;

• For every alternative, identify the “nearest nondominated alternative”, de-
fined to be the closest alternative according to a scalarizing function proposed
by Wierzbicki (1986) (see Lotfi et al. (1992) for more details) with the weight
on criterion j given by wj = (ASj − Nj)/(Ij − Nj). The weights are set
to reflect the increasing importance attached to criterion j as the aspiration
level is moved closer to the ideal. Notice that these weights serve only for
temporary rankings and not any other purpose.

Screening Process: To screen alternatives, two options are available to the DM.

• First, the DM can reset one or several aspiration levels. This is useful when
the DM is not sure about his aspiration level. Updated nearest nondominated
alternatives (perhaps the same, perhaps not) are obtained based on these
aspiration levels. Then only these nearest alternatives remain for further
consideration; all others are screened out.

33



• Second, if the DM prefers not to express aspiration levels, he or she can
request a set of “neighboring” alternatives based on single aspiration levels.
All alternatives other than these “neighboring” ones are then screened out.
Lotfi et al. (1992) propose the use of ELECTRE-based outranking to find the
neighbors of the nearest alternative.

3.3.8 Data Envelopment Analysis (DEA) Based Screening

Data Envelopment Analysis (DEA) is a technique used to measure the relative
efficiency of a number of similar units performing essentially the same task. DEA
was first put forward by Charnes et al. (1978) who proposed the basic DEA model,
called CCR.

Within the past few decades, research into the relation between DEA and
MCDA has carried out by authors including Belton and Vickers (1993), Stew-
art (1996), Cook and Kress (1991), and Cook et al. (1996). Stewart compared
and contrasted the goals of DEA and MCDA: DEA arises from situations where
the goal is to determine the productive efficiency of a system or ‘decision making
unit’ (DMU) by comparing how well the unit converts inputs into outputs, while
MCDA models have arisen from the need to analyze a set of alternatives according
to conflicting criteria. A ‘methodological connection’ between MCDA and DEA is
that if all criteria in an MCDA problem can be classified as either benefit criteria
(benefits or output) or cost criteria (costs or inputs), then DEA is equivalent to
MCDA using additive linear value functions (Stewart, 1996).

The basic function of DEA is to ascertain which units are efficient and which
are not; in MCDA, these can be regarded as non-dominated and dominated al-
ternatives, respectively. Cook and Kress (1991); Cook et al. (1996) applied some
DEA-based models to deal with MCDA problems with both cardinal and ordinal
criteria. All dominated alternatives identified by the DEA-based model can be
screened out.

DEA Software: Frontier Analyst

Frontier Analyst is commercial software based on DEA theory to measure and
improve the performance of organizations. Below, Frontier Analyst is employed for
executing DEA computations in an illustrative example.

34



DEA Based Screening Procedure

• Identify preference direction (positive or negative) for each criterion;

• Apply a DEA model (usually CCR) to identify dominated alternatives;

• Remove dominated alternatives.

3.3.9 Implementation of Sequential Screening

The information requirements for each screening method, and an estimate of its
efficiency, are summarized in Table 3.1. As stated before, I1 stands for the valida-
tion of basic preference properties, I2 is the application of preference information
on consequences, I3 is the application of information on criteria and I4 is the
integration of aggregation models.

Table 3.1: Information Requirements for Different Screening Methods

Screening Information Requirements Screening

Methods Consequence data I1 I2 I3 I4 Efficiency

Pareto optimality
√ √ × × × Low

Tradeoff weights
√ √ √ × √

Medium

Non-tradeoff weights
√ √ × √ √

Medium

Aspiration levels
√ √ √ √ √

High

DEA
√ √ × × √

Low

Some typical sequential screening processes are ScrTW

(

ScrPO(A)
)

,
ScrNTW

(

ScrPO(A)
)

, ScrAL

(

ScrPO(A)
)

, and ScrDEA

(

ScrPO(A)
)

. Note that Pareto
optimality (PO) based screening is used as a primary screening and combined with
another method to carry out a sequential screening.

A more sophisticated approach is ScrTW

(

ScrDEA

(

ScrPO(A)
)

)

. DEA based

screening and tradeoff weights (TW) based screening share the same aggregation
model assumption (linear additive value function), and TW based screening can be
applied after DEA screening. Combined with PO based screening, these screening
methods together constitute a powerful sequential screening technique. Note that
not all methods mentioned in Table 3.1 can be combined to carry out a sequential
screening.
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3.4 Case Study: Waterloo Water Supply Plan-

ning (WWSP)

The Regional Municipality of Waterloo, located in the southwestern part of On-
tario, Canada, comprises the three cities of Kitchener, Waterloo, and Cambridge,
plus adjacent rural municipalities. At present, the Waterloo region is one of the
largest communities in Canada to rely almost exclusively on groundwater for its
water supply. Due to increases in residential, industrial and commercial demand
and decreases in the reliability of groundwater resources, the Regional Government
developed over 1991-2000 a Long Term Water Strategy to the year 2041 (Rajabi,
1997; Waterloo Regional Council, 2000).

The overall purpose of this project was to design and implement the best water
resources plan for the Waterloo Region. In light of this purpose, seven criteria
were proposed to evaluate possible alternatives. The detailed meanings of the cri-
teria are as follows: INVEST: project investment cost (millions of dollars); OPER:
project operating cost (millions of dollars); INFRA: project negative infrastruc-
ture impact (0-100, greater values mean more negative impact); ENVIR: project
negative environmental impact (0-100, greater values mean more negative impact);
RISK: project implementation risk (0-100, greater values mean higher risk); SUP-
PLY: project supply capability (million imperial gallons per day, MIGD); QUAL:
the quality of the water the project will deliver (0-100, greater values mean higher
water quality). INFRA, ENVIR, RISK and QUAL are qualitative criteria; scores
were assessed by the authors based on a report by Associated Engineering (1994).

Twelve alternatives were identified. Table 3.2 shows the MCDA problem con-
stituted to represent the WWSP. The consequence data for water quality, envi-
ronmental impacts and risk were estimated according to a preliminary evaluation
by Associated Engineering (1994). SUPPLY and QUAL are identified as positive
preference criteria (indicated by “+” in Table 2); others are negative preference
criteria (indicated by “-” in Table 2).

Below is a brief explanation of each of the twelve alternatives.

• Groundwater, option 1 (GW1) - Develop additional groundwater sources in
the vicinity of Kitchener-Waterloo.

• Groundwater, option 2 (GW2) - Develop groundwater sources in new fields,
mainly in the south Woolwich area, the Roseville area, and the St. Agatha
area.
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Table 3.2: The Basic Structure of the WWSP

Criteria Alternatives

GW1 GW2 AQ1 AQ2 GR LF1 LF2 LF3 PL1 PL2 PL3 PL4

INVEST(-) 100 61 8.6 17 5 112 123.6 111.25 120.4 126 181 222

OPER(-) 4 2.4 5.9 8.8 2 6.2 6.6 6.7 4.2 3.4 2.3 2.5

INFRA(-) 30 30 40 50 30 60 60 60 60 65 60 60

ENVIR(-) 60 60 45 45 40 50 40 90 80 80 80 80

RISK(-) 80 80 50 50 80 60 70 70 30 30 30 30

SUPPLY(+) 29 20 40 40 5 50 80 80 80 80 80 80

QUAL(+) 50 50 70 70 30 60 60 60 70 70 80 70

• Aquifer Recharge, option 1 (AQ1) - Construct dual purpose recharge and
recovery wells at the Mannheim site, with capacity of 10 MIGD.

• Aquifer Recharge, option 2 (AQ2) - Construct dual purpose recharge and
recovery wells at the Mannheim site, with capacity of 20 MIGD.

• Grand River (GR) - Extract water from Grand River during times of peak
demand.

• Grand River Low Flow Augmentation (LF1) - Augment Grand River water
flow by implementing the West Montrose Dam project.

• Grand River Low Augment (LF2) - Augment Grand River water flow by
constructing a pipeline from Georgian Bay.

• Grand River Low Flow Augmentation (LF3) - Augment Grand River water
flow by constructing a pipeline from Lake Huron.

• Pipeline (PL1) - Transport water to the region via a high pressure pipeline
from Lake Ontario.

• Pipeline (PL2) - Transport water to the region via a high pressure pipeline
from Lake Erie, using the Nanticoke water treatment facility.

• Pipeline (PL3) - Transport water to the region via a high pressure pipeline
from Lake Huron at Goderich.

• Pipeline (PL4) - Transport water to the region via high pressure pipeline from
Georgian Bay via Thornbury.

37



3.4.1 Screening Procedure

First, each criterion was checked for reference availability, preference independence
and preference monotonicity. Then a sequential screening,

ScrTW

(

ScrDEA

(

ScrPO(A)
)

)

, was applied. The results are as follows.

1. Pareto optimality based screening:

AQ1≻AQ2 and PL3≻PL4, so alternatives AQ2 and PL4 can be screened out.
Ten alternatives remain.

2. Data envelopment analysis based screening

The software Frontier Analyst was used to analyze DEA efficiency based on
the CCR model (Charnes et al., 1978). The result is shown in Figure 3.3.
GW1 and LF3 are identified as inefficient and can be screened out. Eight
alternatives remain.

3. Tradeoff weights Based Screening

The linear normalization functions (2.2) and (2.3) are employed to generate
value data based upon consequence data and listed in Table 3.3.

Table 3.3: Value Data of Reduced WWSP

Criteria Alternatives

GW2 AQ1 GR LF1 LF2 PL1 PL2 PL3

INVEST(+) 0.082 0.581 1.000 0.045 0.040 0.042 0.040 0.028

OPER(+) 0.833 0.339 1.000 0.323 0.303 0.476 0.588 0.870

INFRA(+) 1.000 0.750 1.000 0.500 0.500 0.500 0.462 0.500

ENVIR(+) 0.667 0.889 1.000 0.800 1.000 0.500 0.500 0.500

RISK(+) 0.375 0.600 0.375 0.500 0.429 1.000 1.000 1.000

SUPPLY(+) 0.250 0.500 0.063 0.625 1.000 1.000 1.000 1.000

QUAL(+) 0.625 0.875 0.375 0.750 0.750 0.875 0.875 1.000

Based on SCR.1(Ai), the following program can be applied to assess alter-
native GW2:

SCR.1(GW2)
Minimize: δ
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Figure 3.3: Frontier Analyst Based DEA Screening

Subject to:
−0.499w1 + 0.494w2 + 0.25w3 − 0.222w4 − 0.225w5 − 0.25w6 − 0.25w7 + δ ≥ 0
−0.918w1 − 0.167w2 − 0.333w4 + 0.188w6 + 0.25w7 + δ ≥ 0
0.037w1 + 0.511w2 + 0.5w3 − 0.133w4 − 0.125w5 − 0.375w6 − 0.125w7 + δ ≥ 0
0.042w1 + 0.53w2 + 0.5w3 − 0.333w4 − 0.054w5 − 0.75w6 − 0.125w7 + δ ≥ 0
0.04w1 + 0.357w2 + 0.5w3 + 0.167w4 − 0.625w5 − 0.75w6 − 0.25w7 + δ ≥ 0
0.042w1 + 0.245w2 + 0.538w3 + 0.167w4 − 0.625w5 − 0.75w6 − 0.25w7 + δ ≥ 0
0.054w1 − 0.036w2 + 0.5w3 + 0.167w4 − 0.625w5 − 0.75w6 − 0.375w7 + δ ≥ 0
7

∑

j=1

wj = 1

δ ≥ 0
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wj > 0, j = 1, 2, 3, 4, 5, 6, 7.
where wj denotes the weight of each criteria in Table 3.2 sequentially (in
practical computations using LINGO, wj ≥ 0.01 is set).

Using the software Lingo (2005), we get δ∗GW2 = 0, so GW2 ∈ PotOp and
cannot be screened out. Other alternatives are checked similarly. The results,
shown in Table 3.4, are that alternatives GW2, AQ1, GR, PL1, PL2, PL3 are
retained for further consideration. The number of alternatives is decreased
by half as a result of the three screening methods applied sequentially.

Table 3.4: Tradeoff Weights Based Screening

Screening Alternatives

steps GW2 AQ1 GR LF1 LF2 PL1 PL2 PL3

δ∗Ai 0 0 0 0.861 0.103 0 0 0

PotOp
√ √ √ × × √ √ √

Screening out × × × √ √ × × ×

Figure 3.4 summarizes this application, and shows how each screening method
works to screen out alternatives and what preference information is required
from the DM.

3.4.2 Practical Implementation of WWSP

To ensure an adequate water supply to the region in the near future, Waterloo Re-
gional council approved three alternatives with different construction schedules, as
Waterloo’s long term water strategy on May 10, 2000 (Waterloo Regional Council,
2000).

• AQ1: The immediate construction of a 5 MIGD Aquifer Storage and Recovery
(ASR) facility, with an additional 5 MIGD ASR facility in 2007.

• GW2: 5 MIGD per day of additional groundwater facilities to be implemented
between the years 2018 and 2020.

• PL2/PL3: 95 MIGD per day through a pipeline to either Lake Huron or Lake
Erie by the year 2035.
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Alternatives

GW1, GW2, AQ1, AQ2, GR, LF1, 

LF2, LF3, PL1, PL2, PL3, PL4

RetainRemove 

 AQ2, 

PL4

GW1, GW2, AQ1, 
GR, LF1, LF2, LF3, 

PL1, PL2, PL3

 GW1, 

LF3

GW2, AQ1, GR, 
LF1, LF2, PL1, 

PL2, PL3

 LF1, 

LF2
GW2, AQ1, GR, 
PL1, PL2, PL3

Screening Methods and Information Available

I: Pareto Optimality Based Screening:
Basic criteria preference assumptions: 
preference availability, preference 
independence and preference monotonicity.

II: DEA Based Screening:

Basic criteria preference assumptions;

Additive linear value function assumption.

III: Tradeoff Weights Based Screening:

Basic criteria preference assumptions;

Additive linear value functions assumption;

Preference data for each alternative.

Remove

Remove

Retain

Retain

Figure 3.4: Screening Methods and Information Available

3.5 Conclusions

In this chapter, screening problems are discussed with respect to the following
topics:

• General descriptions of screening problems: A formal definition of screening
in MCDA is given and relationships among screening, sorting and choice are
discussed.

• A sequential screening procedure: A sequential screening procedure is pro-
posed to solve screening problems and several MCDA methods are systemat-
ically incorporated into this framework.

• Case study in water supply planning to the Region of Waterloo: The proposed
sequential screening procedure is applied to the case study of Waterloo water
supply planning problem.

41



Chapter 4

A Case-based Distance Method
for Screening

4.1 Introduction

A case-based distance method for screening is proposed to solve screening prob-
lems. Firstly, research underlying case-based reasoning in MCDA is summarized.
Then, the assumptions of the proposed case-based distance method are explained
in detail. Subsequently, a quadratic program is constructed to find the best de-
scriptive criterion weights and the screening thresholds. Based on this information,
a procedure for carrying out a distance-based method for screening is proposed and
a numerical example is utilized to demonstrate the proposed method. This chapter
constitutes an expanded version of the research of Chen et al. (2005c).

4.2 Case-based Reasoning

The main difficulty in the application of many MCDA methods lies in the acquisi-
tion of the DM’s preference information in the form of values or weights. Case-based
reasoning is an approach to obtain preferential information from the DM’s decisions
on selected cases, as for example in UTilités Additives (UTA) (Jacquet-Lagrèze and
Siskos, 1982) or rough set theory (Slowinski and Zopounidis, 1995). The test set of
cases may include:

• Past decisions taken by the DM;
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• Decisions taken for a limited set of fictitious but realistic alternatives;

• Decisions taken for a representative subset of the alternatives under consider-
ation, which are sufficiently familiar to the DM that they are easy to evaluate.

The advantages of case-based information include that “decision makers may
prefer to make exemplary decisions than to explain them in terms of specific func-
tional model parameters” (Doumpos and Zopouidis, 2002). Meanwhile, some as-
sumptions typical of functional models, for example preference monotonicity and
preference independence, can be relaxed, simplifying the process of criterion con-
struction. Here, we propose a case-based distance model for screening. Following
the general concept of the aggregation-disaggregation approach to MCDA (Jacquet-
Lagrèze and Siskos, 2001), we propose a specific case-based distance model for
screening.

4.3 Model Assumptions

4.3.1 Case Set Assumptions

Assume a test set of alternatives T. The alternatives in T may be, for example,
fabricated by the DM or obtained by having the DM modify historical records.
However all criteria in Q must apply and cj(A) must be measurable for all A ∈
T and all j ∈ Q. Suppose that the DM specifies that all alternatives in Z =
{z1, z2, ..., zr, ..., zm} ⊆ T are acceptable for a choice problem. Let | T |= t and
let T − Z = {zm+1, zm+2, ..., zp, ..., zt} denote the unacceptable cases.

The idea of our model is that based on the “right” distance concept, the cases
in Z should be close together, and the cases in T − Z should be “outside” Z in
some sense. We use T and Z to estimate criterion weights w, and a basic distance
threshold R ∈ R+, so that the distance of zr ∈ Z from the “center” of Z is less
or equal to R, and the distance of zp 6∈ Z from this “center” is greater than R.
Then we can apply w and S (S = kR, where k ∈ R+ is a controllable distance
threshold for the DM) to screen out all “extreme” alternatives in A, and thereby
obtain Scr(A). Figure 4.1 portrays this idea.

Given the acceptable case set Z, z, the centroid of Z is deemed to be a fictitious
alternative at the center of Z. By definition,

cj

(

z
)

=
1

m

m
∑

r=1

cj

(

zr
)

. (4.1)
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Figure 4.1: The Idea of Case-based Screening
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Recall that |Z| = m. Note that we assume that Z has the property that, for any
criterion j, not all values of cj(z

r) are equal.

4.3.2 Distance Assumptions

For j = 1, 2, ..., q, define dmax
j = max

r=1,2,...,m

(

cj(z
r) − cj(z)

)2
to be the normalization

factor for criterion j. The distance between zr ∈ Z and the centroid z on criterion
j is

dj(z
r, z) =

(

cj(z
r) − cj(z)

)2

dmax
j

. (4.2)

Similarly, the distance between alternative Ai ∈ A and the centroid z on criterion
j is

dj(A
i, z) =

(

ci
j − cj(z)

)2

dmax
j

. (4.3)

Note that (4.3) applies if Ai = zp ∈ {T−Z}, and 0 < dj(z
r, z) ≤ 1 for zr ∈ Z, but

dj(z
p, z) or dj(A

i, z) could be larger than 1.

Weighted Euclidean distance has a clear geometric meaning, which can be eas-
ily understood and accepted to represent a DM’s aggregated preference. Instead
of weighted Euclidean distances, we use their squares, because they are easier to
compute while preserving order.

The distance between alternative zr ∈ Z and the case set Z is therefore identified
with the distance between zr and z, which is

D(zr) = D(zr, z) =
∑

j∈Q

wj · dj(z
r, z),

where wj ∈ w is the weight (relative importance) of criterion j. The weight vector
w is to be determined. The weights must satisfy 0 < wj ≤ 1, and

∑

j∈Q

wj = 1.

The distance of alternative Ai from the case set Z is

D(Ai) = D(Ai, z) =
∑

j∈Q

wj · dj(A
i, z). (4.4)

Note that (4.4) applies if Ai = zp ∈ {T − Z}. The distance of an alternative
from the case set is thus defined to be the distance between the alternative and the
centroid of the case set. A similar idea has been widely used in cluster analysis:
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cluster membership of a datum is determined by evaluation of a pre-defined distance
between this datum and the cluster centroid. If the DM can further specify an
ideal alternative (the most preferred alternative), z∗ within Z, then z∗ can be used
instead of the centroid to measure the distances and generate w and R. This
modified procedure can be used for screening, exactly as carried out below. The
details are omitted.

In terms of the aggregation approach to MCDA discussed in Chapter 2, dj(A
i, z)

is analogous to vi
j in (2.1), and D(Ai) is analogous to V (Ai) in (2.4). It is assumed

that the closer Ai to z, the greater the DM’s preference. Therefore, smaller values
of D(Ai) indicate greater preference. The relative order of non-negative numbers
(distances) is the same as the relative order of their squares, so the “order of
elimination” of the screened set can be determined equally well using the squared
distances.

Figure 4.2 shows the relationships of distances and the case set defined above.
Taking z as the centroid, a compact ball (in q dimensions) with diameter R includes
every case zr ∈ Z, and any case zp 6∈ Z is (in principle) outside that ball. The DM
can choose S = kR, k ∈ R+, so that S > R, S = R, or S < R, to control the
screening process. If D(Ai) is less than S, Ai can be regarded as having high
preference and should be retained; if D(Ai) is larger than S, Ai should be screened
out.

4.4 Model Construction

For j ∈ Q, wj represents the DM’s relative importance for criterion j, and R
represents the threshold to distinguish cases in Z from cases in T−Z. Here we try
to obtain w = (w1, w2, ..., wq) and R by a case-based reasoning model based on T.

Each alternative in the case set Z is assessed by the DM to be an acceptable
alternative for a choice problem. So, based on induced preference between Scr(A)
and Scr(A) as defined above, these cases are more preferred than cases not in Z.
Therefore, the distance of zr ∈ Z from the centroid z is less than R, and distance
of zp 6∈ Z from z is greater than R, provided there are no inconsistent judgements.
Thus,

D(zr) + αr ≤ R,

or
∑

j∈Q

wj · dj(z
r, z) + αr ≤ R,
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Figure 4.2: Distances and the Case Set

for zr ∈ Z. Here −1 ≤ αr ≤ 0 is an error adjustment parameter for the DM’s
inconsistent judgements on zr. Also

D(zp) + αp ≥ R,

or
∑

j∈Q

wj · dj(z
p, z) + αp ≥ R,

for zp ∈ {T − Z}. Again 0 ≤ αp ≤ 1 is an error adjustment parameter for the
DM’s inconsistent judgements on zp. Therefore, the overall squared error in T can

be denoted as ERR =
m
∑

r=1

(αr)2 +
t

∑

p=m+1

(αp)2.

The following optimization model can be applied to find the most descriptive
weight set w and the appropriate distance threshold R.

SCR.2(α) Minimize: ERR =
m
∑

r=1

(αr)2 +
t

∑

p=m+1

(αp)2

Subject to:
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∑

j∈Q

wj · dj(z
r, z) + αr ≤ R, r = 1, 2, ...,m;

∑

j∈Q

wj · dj(z
p, z) + αp ≥ R, p = m + 1,m + 2, ..., t;

0 < R ≤ 1;

wj > 0, j = 1, 2, ..., q
∑

j∈Q

wj = 1;

−1 ≤ αr ≤ 0, r = 1, 2, ...,m;

0 ≤ αp ≤ 1, p = m + 1,m + 2, ..., t.

Note that optimization software such as Lingo (Lingo, 2005) automatically con-
verts strict inequalities in constraints, like wj > 0, to weak inequalities, like wj ≥ ǫ,
where ǫ is small positive number generated internally when optimization is carried
out as in SCR.2(α). Here, we retain zero in the constraints for easy understand-
ing of the program. Similar settings are applied to the other optimization models
addressed in the later chapters.

Theorem 4. SCR.2(α) has at least one optimal solution, w∗ and R∗.

Proof: The set of w satisfying the constraints in SCR.2(α) is bounded. The

objective function ERR =
m
∑

r=1

(αr)2 +
t

∑

p=m+1

(αp)2 is a quadratic function on this

set. Based on the extreme value theorem of advanced calculus (Fitzpatrick, 1995,
page 297), the function ERR is continuous and the set of all possible variables is
bounded, ERR attains its minimum at least once. ¤

Two threshold parameters can be set by the DM to evaluate the errors generated
by SCR.2(α):

• The acceptable distance threshold, ∆D: ∆D is the threshold below which
error generated by SCR.2(α) is acceptable to the DM (Note that ∆D should
be larger than ε∗). If ε∗ ≤ ERR∗ ≤ ∆D, the errors still are acceptable;
otherwise T should be reset. A suggested value of ∆D is 1

10t
, where |T| = t.

• The indifference threshold (see Vincke (1992) for detailed discussion of in-
difference thresholds in MCDA), ε: ε is the threshold below which errors
generated by SCR.2(α) can be ignored. When ERR∗ ≤ ε, the case set T
and Z are consistent; but when ERR∗ ≥ ε, the errors cannot be ignored and
there is some inconsistency in T. A value suggested for ε is 1

10n
, where n = |A|

is the number of alternatives in A. Of course,the DM can adjust the setting
to keep the balance between indifference threshold and acceptable threshold.
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When multiple optimal solutions appear in SCR.2(α), different values of w and
R can provide different screening abilities. Recall that Scr(A) in Chapter 3 denotes
the screened set (the remaining alternatives) after the procedure Scr is applied to
the alternative set A. When Scr(A) = A or Scr(A) = ∅, T is an unsatisfactory
test set. Even if ∅ ⊂ Scr(A) ⊂ A, the DM may not be fully satisfied with the
results. In this thesis, the DM can control the screening process, as explained below.

4.5 Distance-based Screening

Assuming ERR∗ ≤ ∆D, with w∗ = (w∗
1, w

∗
2, ..., w

∗
q), the maximum error in Z

is defined as αZ
max = max

r=1,2,...,m
{|αr|}, the maximum error in T − Z is defined as

αT−Z
max = max

p=m+1,m+2,...,t
{αp}. Different policies to set the distance threshold, S, can

be employed to carry out screening.

4.5.1 Different Screening Processes

Normal Screening

When ERR∗ ≤ ε∗, the errors can be ignored and S = R∗ is employed to screen
alternatives.

• If D(Ai) ≤ R∗, then Ai ∈ Scr(A) and Ai should be retained;

• If D(Ai) > R∗, then Ai 6∈ Scr(A) and Ai should be removed.

Conservative Screening

For ERR∗ ≥ ε∗, αZ
max is taken into account as error permission in T. A distance

threshold from z is defined as S = R∗ + αZ
max to include all cases in Z and applied

to screen alternatives.

• If D(Ai) ≤ (R∗ + αZ
max), then Ai ∈ Scr(A) and Ai should be retained;;

• If D(Ai) > (R∗ + αZ
max), then Ai 6∈ Scr(A) and Ai should be removed.
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Aggressive Screening

For ERR∗ ≥ ε∗, αT−Z
max is taken into account as error deduction in T and a

distance threshold from z is defined as S = R∗ − αT−Z
max , so that all cases in T − Z

are “outside” the screening ball circle.

• If D(Ai) ≤ (R∗ − αT−Z
max ), then Ai ∈ Scr(A) and Ai should be retained;

• If D(Ai) > (R∗ − αT−Z
max ), then Ai 6∈ Scr(A) and Ai should be removed.

It is easy to see that (R∗ − αT−Z
max ) ≤ R∗ ≤ (R∗ + αZ

max). When ERR∗ ≤
ε, R∗ − αT−Z

max = R∗ = R∗ + αZ
max. Generally speaking, it can screen out more

alternatives when a smaller value of distance threshold is applied to screening.

Controllable Screening

When the DM is not satisfied with the results generated by the above screening
procedures, and would like to have ability to control the screening results, the DM
could manually determine the distance threshold S = kR∗, k ∈ R+, to generate
Scr(A) instead of updating the the case set Z or T. Hence,

• If D(Ai) ≤ S, then Ai ∈ Scr(A) and Ai should be retained;

• If D(Ai) > S, then Ai 6∈ Scr(A) and Ai should be removed.

When Scr(A) is too large, the DM should reduce S; when Scr(A) is too small, the
DM should increase S.

4.5.2 The Framework of Screening

A systematic procedure to analyze case-based distance screening problems is shown
in Figure 4.3.

It includes the following steps:

1. Identify the test set T and Z: Identify the test set T and ask the DM to select
Z ⊂ T.

2. Compute the centroid of Z: Find z using (4.1).
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8. Scr(A)={Ai A: D(Ai) S }

1. Identify the 
test set T, Z

4. Construct the optimization 
model to obtain R*, w*

6. Compute the distance of Ai

from the centroid, D(Ai)

N

3. Measure the distance of all 
cases  in  T on each criterion

9. Is Scr(A)
satisfactory to the 

DM ?

7. Select the distance
    threshold S  to screen A

Y

10. Stop

5. ERR < D ?

Y

N

2. Compute the 
centroid of Z

Figure 4.3: Analysis Procedure for Case-based Distance Screening
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3. Measure the distance of all cases on each criterion: Compute dj(z
r, z) for

zr ∈ Z and dj(z
p, z) for zp ∈ {T − Z}, using (4.2) and (4.3).

4. Apply the optimization model: The program SCR.2(α) is used to obtain R∗

and w∗.

5. Check the error ERR: When ERR > △D, ask the DM to repeat Step 1; if
ERR ≤ △D, go to Step 6.

6. Compute the distance of Ai from the centroid, D(Ai): Based on w∗, obtain
the distance of Ai from the centroid, D(Ai) for Ai ∈ A, using (4.4).

7. Select the distance threshold S: Initially select S = R∗.

8. Screen using S: If D(Ai) is greater than S, then remove Ai; otherwise retain
Ai. The remaining alternatives are Scr(A).

9. Check the screening result, Scr(A): If Scr(A) is not satisfactory to the DM,
either ask the DM to repeat Step 8 for fine tuning, or ask the DM to repeat
Step 1 to re-assess the case set, etc.; otherwise stop the screening procedure.
For example, when Scr(A) is too large, the DM should first be asked to reduce
S in Step 8, alternatively ask the DM to repeat Step 1 to re-assess the case
set.

4.6 Numerical Example

4.6.1 Background

Similar to the WWSP problem described in Chapter 3, it assumed that twelve
feasible alternatives were designed as shown in Table 4.1, and based upon them the
best water resources project need to be identified and implemented for a region.
Seven similar criteria, INVEST, OPER, INFRA, ENVIR, RISK, SUPPLY and
QUAL, were proposed to evaluate possible alternatives.

4.6.2 Screening Procedure

The test set T = {z1, z2, z3, z4, z5, z6, z7} shown in Table 4.2 is presented to the
DM. Assume the DM chooses Z = {z1, z2, z3, z4} as acceptable cases and T− Z =
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Table 4.1: The Basic Information of Alternatives

Criteria Alternatives

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

INVEST 123.6 111.25 19.7 17.5 5 112 100 61 120.4 126 181 222

OPER 6.6 6.7 6.3 8.8 2 7.0 4 2.4 4.2 3.4 2.3 2.5

INFRA 60 60 40 50 30 60 30 30 60 65 60 60

ENVIR 40 90 45 45 40 50 60 60 80 80 80 80

RISK 70 70 50 50 80 75 80 80 30 30 30 30

SUPPLY 80 80 60 50 5 30 29 20 80 80 80 80

QUAL 60 60 73 70 30 50 50 50 70 70 80 70

{z5, z6, z7} as unacceptable cases. The acceptable distance error, △D is set as 1
|T|

= 1
7

and the indifference threshold, ε∗ is 1
kT

= 1
70

.

The computed centroid z is given in Table 4.2.

Table 4.2: The case set for screening

Criteria Z Centroid T - Z

z1 z2 z3 z4 z z5 z6 z7

INVEST 90 100 110 120 105 100 80 90

OPER 5 8 6 4 5.75 20 25 15

INFRA 40 45 60 35 45 60 40 55

ENVIR 80 63 65 52 65 70 60 75

RISK 65 58 45 55 55.75 70 75 80

SUPPLY 70 80 80 85 78.75 50 50 70

QUAL 70 75 80 90 78.75 60 55 68

The computation results of the distances zr and zp from the centroid on each
criterion are shown in Table 4.3.

The following quadratic program is applied to find R∗ and w∗.

SCR.2(α) Minimize: ERR = (α1)2+(α2)2+(α3)2+(α4)2+(α5)2+(α6)2+(α7)2

Subject to:
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Table 4.3: The Distances on Each Criterion in the Case Set

Criteria Distance between cases and centroid on each criterion

d(z1, z) d(z2, z) d(z3, z) d(z4, z) d(z5, z) d(z6, z) d(z7, z)

INVEST 1 0.1111 0.1111 1 0.1111 2.7778 1

OPER 0.1111 1 0.0123 0.6049 40.1111 73.1975 16.9012

INFRA 0.1111 0 1 0.4444 1 0.1111 0.4444

ENVIR 1 0.0178 0 0.7511 0.1111 0.1111 0.4444

RISK 0.7404 0.0438 1 0.0049 1.7572 3.2066 5.0887

SUPPLY 1 0.0204 0.0204 0.5102 10.7959 10.7959 1

QUAL 0.6049 0.1111 0.0123 1 2.7778 4.4568 0.9131

w1 + 0.1111w2 + 0.1111w3 + w4 + 0.7404w5 + w6 + 0.6049w7 + α1 ≤ R;

0.1111w1 + w2 + 0.0178w4 + 0.0438w5 + 0.0204w6 + 0.1111w7 + α2 ≤ R;

0.1111w1 + 0.0123w2 + w3 + w5 + 0.0204w6 + 0.0123w7 + α3 ≤ R;

w1 + 0.6049w2 + 0.4444w3 + 0.7511w4 + 0.0049w5 + 0.5102w6 + w7 + α4 ≤ R;

0.1111w1+40.1111w2+w3+0.1111w4+1.7572w5+10.7959w6+2.7778w7+α5 ≥
R;

2.7778w1+73.1975w2+0.1111w3+0.1111w4+3.2066w5+10.7959w6+4.4568w7+
α6 ≥ R;

w1 + 16.9012w2 + 0.4444w3 + 0.4444w4 + 5.0887w5 + w6 + 0.9131w7 + α7 ≥ R;

w1 + w2 + w3 + w4 + w5 + w6 + w7 = 1;

−1 ≤ α1 ≤ 0; −1 ≤ α2 ≤ 0; −1 ≤ α3 ≤ 0; −1 ≤ α4 ≤ 0;

0 ≤ α5 ≤ 1; 0 ≤ α6 ≤ 1; 0 ≤ α7 ≤ 1; 0 < R ≤ 1.

The optimal solution found using Lingo Lingo (2005) is ERR∗ = 0 < ε = 1
120

, w∗ =
(0.0935, 0.3199, 0.1316, 0.1022, 0.1370, 0.1138, 0.1020), and R∗ = 0.9029. There is
no inconsistent information in T.

Using (4.3), dj(A
i, z) can be computed to obtain the results listed in Table 4.4.

Then, based on w∗, the distance of each alternative from the centroid z can be
calculated to produce the findings in Table 4.5.

For normal screening, R∗ = 0.9029, and hence, the distances of GW1, GW2 and
PL1 are less than 0.9029. These three alternatives can be retained and the others
should be removed. Assuming that the DM would like to retain more alternatives
for further consideration, the screening threshold can be adjusted. For example, if
S = 4 three more alternatives are retained, as shown in Table 4.6.
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Table 4.4: Distances of Alternatives to the Centroid on Each Criterion

Alter- Criteria

native INVEST OPER INFRA ENVIR RISK SUPPLY QUAL

A1 0.1438 0.0457 0.1316 0.0521 0.0695 0.0023 0.2834

A2 0.0162 0.0570 0.1316 0.0521 0.0695 0.0023 0.2834

A3 3.0233 0.0191 0.0146 0.0334 0.0113 0.5225 0.0267

A4 3.1813 0.5878 0.0146 0.00334 0.0113 1.2284 0.0617

A5 4.1551 0.8886 0.1316 0.0521 0.2014 8.0831 1.9160

A6 0.0204 0.0987 0.1316 0.0188 0.1269 3.5319 0.6664

A7 0.0104 0.1935 0.1316 0.0021 0.2014 3.6782 0.6664

A8 0.8044 0.7091 0.1316 0.0021 0.2014 5.1294 0.6664

A9 0.0985 0.1518 0.1316 0.0188 0.2270 0.0023 0.0617

A10 0.1832 0.3490 0.2340 0.0188 0.2270 0.0023 0.0617

A11 2.4000 0.7521 0.1316 0.0188 0.2270 0.0023 0.0013

A12 5.6880 0.6674 0.1316 0.0188 0.2270 0.0023 0.0617

Table 4.5: Distances of Alternatives from the Centroid

Alternative D(Ai) Alternative D(Ai)

A1 0.7285 A2 0.6123

A3 3.6509 A4 5.1185

A5 15.4280 A6 4.5946

A7 4.8836 A8 7.6445

A9 0.6918 A10 1.0761

A11 3.5331 A12 6.7969

4.7 Conclusions

The following components for the case-based distance method for screening are
discussed in this chapter.

• Case-based reasoning: Key in case-based reasoning in MCDA is summarized.

• Model assumptions: The assumptions of the proposed case-based distance
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Table 4.6: Threshold Screening for Each Alternative

Alternative D(Ai)∗, S Status Alternative D(Ai)∗, S Status

A1 0.7285 < 4
√

A2 0.6123 < 4
√

A3 3.6509 < 4
√

A4 5.1185 > 4 ×
A5 15.4280 > 4 × A6 4.5946 > 4 ×
A7 4.8836 > 4 × A8 7.6445 > 4 ×
A9 0.6918 < 4

√
A10 1.0761 < 4

√

A11 3.5331 < 4
√

A12 6.7969 > 4 ×

screening method are explained in detail including the case set and distance
assumptions.

• Model construction: A quadratic program is constructed to find the most
descriptive information of criterion weights and the screening thresholds.

• Distance-based screening: Distance-based screening is employed to screen
alternatives in order to systematically explain how the screening procedure
works.

• Numerical example: A numerical example is utilized to demonstrate how the
screening method works in practice.
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Chapter 5

Sorting Problems in Multiple
Criteria Decision Analysis

5.1 Introduction

The case-based distance screening method is extended to solve sorting problems in
MCDA, in order to arrange a set of alternatives into a few predefined groups in
preference order so that the DM can manage them more efficiently and effectively.
Firstly, a general description of sorting problems is presented in detail including a
formal definition of a sorting procedure and a discussion of relationship between the
alternative set and the sorting group set. Based on weighted Euclidean distance,
two case-based distance models are developed for sorting using weights and group
thresholds obtained by the assessment of a case set provided by a decision maker.
Case-based sorting model I is designed for cardinal criteria; its extension, case-
based sorting model II, can handle both cardinal and ordinal criteria. Optimization
programs are employed to find the most descriptive weights and group thresholds.
Finally, a case study on analyzing Canadian municipal water usage is presented.
Earlier versions of the research contained in this chapter are provided by Chen et
al. (2005a); Chen et al. (2005d).

5.2 General Description of Sorting Problems

A formal definition of a sorting procedure in MCDA is as follows:
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Definition 10. A sorting procedure is any procedure that always produces a ranking
of a set A, S = (S1,S2, ...,Sg, ...,Sm), that satisfies the following conditions:

• ∅ 6= Sg ⊆ A ∀g,

• ∀ g 6= h,Sg ∩ Sh = ∅,

• S1 ∪ S2 ∪ ... ∪ Sg ∪ ... ∪ Sm = A,

where S denotes the sorting, Sg denotes the gth element (subset of A) in S for
g = 1, 2, ...,m. Note that m ≥ 2 is the number of sorting groups, which is pre-
determined by the DM.

The preference and indifference relationships induced by the sorting on A in-
clude the following:

• If Ak, Al ∈ Sg, then Ak ∼ Al (∼ means the DM “equally prefers” Ak and Al);

• If Ak ∈ Sg and Ak ∼ Al, then Al ∈ Sg;

• For Ak ∈ Sg, and Al ∈ Sh, Ak ≻ Al if 1 ≤ g < h ≤ m (≻ means the DM
“prefers to”);

Thus, we say that if g < h, the DM prefers any alternative in Sg to any one in Sh.

Figure 5.1 shows the relations between A and S. In the figure n alternatives are
sorted by the DM into m groups which are arranged from the most preferred group
S1 to the least preferred group Sm. Alternatives in the same group are equally
preferred, for example A4, A7 ∈ S2, so A4 ∼ A7; A2 ∈ S1 and A12 ∈ S2, then
A2 ≻ A12.

5.3 Case-based Distance Sorting Model I: Cardi-

nal Criteria

5.3.1 Case Set Assumptions

A sorting problem is to sort the alternatives in A (|A| = n) into a ranked partition
S (|S| = m), based on criteria set Q (|Q| = q). The goal of this research is to utilize
the DM’s views of the alternatives to create a good sorting and to do so as efficiently
as possible. Hence, we present the DM with a case set of alternatives T (|T| = t).
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Figure 5.1: Relationships Among A and S

The alternatives in T may, for example, be fabricated by the DM or obtained by
having the DM modify historical records. However, all criteria in Q must apply
and cj(A

i) must be measurable for all Ai ∈ T and all j ∈ Q. Suppose that the DM
can specify m non-empty subsets of T so that T1 ≻ T2 ≻ ... ≻ Tg ≻ ... ≻ Tm,
T1 ∪T2 ∪ ...∪Tg ∪ ...∪Tm = T and ∀ g 6= h, Tg ∩Th = ∅. To say that Tg ≻ Th

is to say that the DM consider any alternative of Tg to have higher priority than
any alternative of Th.

Thus T1 = {z1
1 , z

2
1 , ..., z

r
1, ..., z

t1
1 } is the most preferred group and Tg = {z1

g , z
2
g , ...,

zr
g , ..., z

tg
g } is the gth most preferred group. For g = 1, 2, ...,m, the number of alter-

natives in Tg is denoted tg > 0, so t1 + t2 + ... + tg + ... + tm = t.

Our case-based reasoning idea is that based on the “right” distance concept,
the cases in Tg should be approximately equally far from an “ideal” alterna-
tive, and closer to it than the alternatives in Th, when h > g. We use Tg,
g = 1, 2, ...,m to estimate criterion weight w, and a basic distance threshold vector
R = (R1, R2, ..., Rg, ..., Rm−1) ∈ Rm−1, so that the distance of zr

g ∈ Tg (g 6= 1 or m)
from a central point “o” (the ideal alternative) is less than or equal to Rg, and
greater than or equal to Rg−1. For g = 1, the distance of zr

1 ∈ T1 is less than or
equal to R1; for g = m, the distance of zr

m ∈ Tm is greater than or equal to Rm−1.
Then we can apply w and R to sort alternatives in A and thereby obtain S.

This idea is illustrated in Figure 5.2 for a four-group sorting problem. A case
set T is partitioned by the DM into four sub-case sets T1, T2, T3 and T4. Three
ellipses partition the alternatives into these four sub-case sets and represent pref-
erence sequences: ellipses closer to “o” represent more preferred groups. Then by
a properly designed transformation from the original consequence data space to a
weighted normalized consequence data space, ellipses can be transformed to circles,

59



permitting distance information to be applied to sort all alternatives in A.
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Figure 5.2: The Idea of Case-based Sorting
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5.3.2 Distance Assumptions

Given the most preferred alternatives in the case set T1, the centroid of T1, z+, is
chosen to be the fictitious “ideal” alternative, at the center of T1. By definition,

cj(z+) =
1

t1

t1
∑

r=1

cj(z
r
1). (5.1)

Similarly, for the case set Tm, a fictitious alternative, z−, the centroid of Tm, is
deemed to be a fictitious alternative at the center of Tm.

cj(z−) =
1

tm

tm
∑

r=1

cj(z
r
m). (5.2)

Note that an “ideal” point can also be based on T2, T3, ..., Tm−1, but we use only
the two extremes.

For j = 1, 2, ..., q, define dmax +
j =

m
max
g=1

tg
max
r=1

(

cj(z
r
g) − cj(z+)

)2
to be the normal-

ization factor for criterion j. For g = 1, 2, ..,m and r = 1, 2, ..., tg, the distance
between zr

g ∈ Tg and the centroid z+ on criterion j is

dj(z
r
g , z+) =

(

cj(z
r
g) − cj(z+)

)2

dmax +
j

. (5.3)

Similarly, the distance between alternative Ai ∈ A and the centroid z+ on criterion
j is

dj(A
i, z+) =

(

ci
j − cj(z+)

)2

dmax +
j

. (5.4)

Note that 0 ≤ dj(z
r
g , z+) ≤ 1. Also 0 < dj(A

i, z+), but dj(A
i, z+) could be larger

than 1.

Weighted Euclidean distance is employed since it has a clear geometric meaning,
which can be easily understood and accepted by the DM to represent his or her
aggregated preference. The relative order of non-negative numbers (distances) is
the same as the relative order of their squares. For this reason, instead of Euclidean
distances we use their squares, because they are easier to compute while preserving
order. The aggregated distance between alternatives zr

g ∈ Tg and z+ over the
criteria set Q is identified as

D(zr
g)+ = D(zr

g , z+) =
∑

j∈Q

wj · dj(z
r
g , z+),

61



where wj ∈ w is the weight (relative importance) of criterion j. The weight vector
w is to be determined subject to 0 < wj ≤ 1 and

∑

j∈Q

wj = 1. Similarly, the

aggregate distance from alternative Ai to z+ is

D(Ai)+ = D(Ai, z+) =
∑

j∈Q

wj · dj(A
i, z+). (5.5)

According to the above definition, the distance of an alternative from the cen-
troid z+ is used to identify its group membership. A similar idea has been widely
used in cluster analysis: cluster membership of a datum is determined by evaluation
of a pre-defined distance between this datum and the cluster centroid. If the DM
can in fact specify an ideal alternative (the most preferred alternative), z∗+ within
T1, then z∗+ can be used instead of z+ to measure the distances and generate w
and R. The modified procedure can be used for sorting exactly as outlined below;
the details are omitted.

Taking z+ as the centroid, a ball (in q dimensions) with radius Rg includes (in
principle) every case zr

h ∈ Th for h ≤ g while any case zr
h ∈ Th for h > g is in

principle outside the ball. Therefore, if Rg−1 ≤ D(Ai)+ ≤ Rg, Ai can be regarded
as having equal preference to zr

g ∈ Tg, and sorted into Sg. For example, in Figure
5.3, Ai is sorted into S3, because R2 < D(Ai)+ < R3.

Alternatively, it may be appropriate to have distance concepts between cases
on z− to sort alternatives. Then the closer Ai to z−, the less preferred for the DM.
Therefore, greater distance of Ai indicates greater preference. Since the procedure
is similar, the details are omitted. The z+ based model construction is explained
in detail next.

5.3.3 Model Construction

As explained above, wj refers to the DM’s preference on criterion j, for j ∈ Q, and
represents the relative importance of criterion j within the aggregated distance.
R represents thresholds to sort alternatives into different groups. Here, we obtain
w = (w1, w2, ..., wq) and R by a case-based reasoning model based on T.

Each alternative in the case set Tg is evaluated by the DM belonging to the gth

group for a sorting problem, so based on the preference relationships as described
above, these cases are more preferred than other cases in Tk when g < k, and
less preferred than other cases in Th, when h < g. Therefore, based on distance
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measurement from z+, it is assumed that (provided there are no inconsistent judge-
ments) (1) for 2 ≤ g ≤ m − 1, the distance of zr

g ∈ Tg to z+ is larger than Rg−1

and less than Rg; (2) the distance of zr
1 ∈ T1 to z+ is less than R1; (3) the distance

of zr
m ∈ Tm to z+ is larger than Rm−1. Thus, for g = 1, 2, ...,m − 1,

D(zr
g)+ + αr

g ≤ Rg, or
∑

j∈Q

wj · dj(z
r
g , z+) + αr

g ≤ Rg,

where zr
g ∈ Tg and −1 ≤ αr

g ≤ 0 is an upper-bound error adjustment parameter (so
that the distance of zr

g from z+ is less than the distance of any case in Tk for k > g),
accounting for the DM’s inconsistent judgement on zr

g . Also, for g = 2, 3, ...,m,

D(zr
g)+ + βr

g ≥ Rg−1, or
∑

j∈Q

wj · dj(z
r
g , z+) + βr

g ≥ Rg−1,

where zr
g ∈ Tg and 0 ≤ βr

g ≤ 1 is a lower-bound error adjustment parameter (so
that the distance of zr

g from z+ is larger than the distance of any case in Th for
h < g), accounting for the DM’s inconsistent judgements on zr

g .

Accordingly, the overall squared error in T is ERR =
m−1
∑

g=1

tg
∑

r=1

(

αr
g)

2+
m
∑

g=2

tg
∑

r=1

(βr
g)

2.
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Based on z+, the following optimization model can be used to find the most de-
scriptive weight vector w and the distance threshold vector R.

SOR.1(α, β) Minimize : ERR =
m−1
∑

g=1

tg
∑

r=1

(

αr
g)

2 +
m
∑

g=2

tg
∑

r=1

(βr
g)

2

Subject to:
∑

j∈Q

wj · dj(z
r
g , z+) + αr

g ≤ Rg,

r = 1, 2, ..., tg, g = 1, 2, ...,m − 1;
∑

j∈Q

wj · dj(z
r
g , z+) + βr

g ≥ Rg−1,

r = 1, 2, ..., tg, g = 2, 3, ...,m;

Rg−1 < Rg, g = 2, ...,m − 1;

−1 ≤ αr
g ≤ 0, g = 1, ...,m − 1;

0 ≤ βr
g ≤ 1, g = 2, ...,m;

wj > 0;
∑

j∈Q

wj = 1.

The optimal solutions of SOR.1(α, β) are denoted by w∗ and R∗, respectively, and
ERR∗ is the minimal value of ERR.

Theorem 5. SOR.1(α, β) has at least one optimal solution.

Proof: The constraints in SOR.1(α, β) constitute a convex set. The objec-

tive function ERR =
m−1
∑

g=1

tg
∑

r=1

(

αr
g)

2 +
m
∑

g=2

tg
∑

r=1

(βr
g)

2 is a quadratic function on this

set. Based on the extreme value theorem of advanced calculus (Fitzpatrick, 1995,
page 297), the function ERR is continuous and the set of all possible variables is
bounded, ERR attains its minimum at least once. ¤

Two threshold parameters can be set by the DM to evaluate the errors generated
by SOR.1(α, β) as follows:

(1) The acceptable distance error, ∆D: ∆D is the threshold below which the error
generated by SOR.1(α, β) is acceptable to the DM. If ERR∗ ≤ ∆D, the errors
are acceptable; otherwise T should be reset. A suggested value of ∆D is 1

10t
,

where t = |T|.
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(2) The indifference threshold (see Vincke (1992) for detailed discussion of indiffer-
ence threshold in MCDA) ε: ε is the threshold below which errors generated by
SOR.1(α, β) can be ignored. When ERR∗ ≤ ε, the case set T holds consistent
information; when ERR∗ ≥ ε, the errors cannot be ignored and there is some
inconsistency in T. A suggested value of ε is 1

10n
, where n = |A|. Usually 1

10n
is

small enough to affect (but not strongly) the balance between the indifference
threshold and acceptable error. Of course, in practice the DM should increase
or decrease ε as desired.

5.3.4 Distance-based Sorting

Assuming ERR∗ ≤ ∆D, with w∗ = (w∗
1, w

∗
2, ..., w

∗
q) obtained from SOR.1(α, β),

the maximum upper-bound error in Tg is denoted as αmax
g = max

r=1,2,...,tg
{|αr

g|} and the

maximum lower-bound error in Tg is denoted as βmax
g = max

r=1,2,...,tg
{βr

g}. Different

policies to set the sorting distance thresholds based on R can be employed to carry
out sorting.

(1) Normal Sorting : When ERR∗ ≤ ε, the errors can be ignored and R∗ =
(R∗

1, R
∗
2, ..., R

∗
g, ..., R

∗
m−1) is utilized to sort alternatives.

• If D(Ai)+ ≤ R∗
1, Ai ∈ S1;

• If R∗
1 < D(Ai)+ ≤ R∗

2, Ai ∈ S2;

· · · · · ·
• If R∗

g−1 < D(Ai)+ ≤ R∗
g, Ai ∈ Sg;

· · · · · ·
• If D(Ai)+ > R∗

m−1, Ai ∈ Sm.

(2) Conservative Sorting: For ERR∗ ≥ ε, αmax
g is taken into account as error

permission in T. The distance thresholds are defined as (R∗
1 + αmax

1 , R∗
2 +

αmax
2 , ..., R∗

g + αmax
g , ..., R∗

m−1 + αmax
m−1) and used to sort alternatives.

• If D(Ai)+ ≤ R∗
1 + αmax

1 , Ai ∈ S1;

• If R∗
1 + αmax

1 < D(Ai)+ ≤ R∗
2 + αmax

2 , Ai ∈ S2;

· · · · · ·
• If R∗

g−1 + αmax
g−1 < D(Ai)+ ≤ R∗

g + αmax
m , Ai ∈ Sg;

· · · · · ·
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• If D(Ai)+ > R∗
m−1 + αmax

m−1, Ai ∈ Sm.

(3) Aggressive Sorting: For ERR∗ ≥ ε, βmax
g is taken into account as error

reduction in T. The distance thresholds are defined as (R∗
1 − βmax

1 , R∗
2 −

βmax
2 , ..., R∗

g − βmax
g , ..., R∗

m−1 − βmax
m−1) and employed to sort alternatives (We

assume R∗
g − βmax

g > 0 for g = 1, 2, ...,m).

• If D(Ai)+ ≤ R∗
1 − βmax

1 , Ai ∈ S1;

• If R∗
1 − βmax

1 < D(Ai)+ ≤ R∗
2 − βmax

2 , Ai ∈ S2;

· · · · · ·
• If R∗

g−1 − βmax
g−1 < D(Ai)+ ≤ R∗

g − βmax
m , Ai ∈ Sg;

· · · · · ·
• If D(Ai)+ > R∗

m−1 − βmax
m−1, Ai ∈ Sm.

Note that based on the setting of the acceptable distance error, △D, αmax
g and

βmax
g are much smaller than any distance threshold, R∗

g. Hence, there is no reversing
the ordering of classes.

5.3.5 Sorting Consistency

Based on the z+ sorting method, the procedures explained above can be im-
plemented to obtain w∗ and R∗ and accordingly to generate a sorting S+ =
(S+

1 ,S+
2 , ...,S+

g , ...,S+
m) for A. Similar procedures can be carried out based on the z−

sorting method to obtain another sorting for A denoted as S− = (S−
1 ,S−

2 , ...,S−
g , ...,

S−
m). The following method is proposed to compare the z+ and z− sortings and

provide the DM with more information to evaluate the sorting results.

The proportion of alternatives in S+
g to alternatives in A is ρ+

g = 1
n
|S+

g | for g =
1, 2, ...,m, where n is the number of alternatives in A and . Similarly, ρ−

g = 1
n
|S−

g |
is the proportion of alternatives in S−

g to alternatives in A.

Let Φ+ represent the vector constituting of ρ+
1 , ρ+

2 , ..., ρ+
m, sorted into decreasing

order and similarly for Φ−. When Φ+ = Φ−, we say that the case set T gives a
roughly consistent sorting beginning with both the most preferred group T1

and the least preferred group Tm. Let Cg denote the core alternatives for sorting
group g, such that Cg = {S+

g ∩ S−
g } for g = 1, 2, ...,m. The degree of consistency

for T is defined as ρT = 1
n

∑m
g=1 |Cg|.
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5.4 Case-based Sorting Model II: Ordinal and

Cardinal Criteria

5.4.1 Ordinal Criteria in MCDA

MCDA problems may involve the evaluation of ordinal criteria, such as customer
satisfaction or priority. Consequence data cannot be naturally connected to ordinal
criteria. Many researchers have studied how to handle ordinal criteria in MCDA,
and some approaches are summarized next.

Many methods have been proposed to acquire directly a reasonable value datum
(vi

j) without measurement and transformation from a consequence (ci
j). In the

context of linear additive value (utility) functions, as in (2.5), Sage and White
(1984) propose an imprecisely specified multiattribute utility theory (ISMAUT)
model to handle ordinal criteria. Malakooti (2000) suggests a method to rank and
screen alternatives based on partial preference information. Ahn (2003) extends
Malakooti’s work to include preference strength and partial information.

Several fuzzy set theory methods have been proposed to handle ordinal criteria,
for example, Chen (1996); Herrera-Viedma et al. (2002). Most of them share a
similar idea; instead of directly expressing preferences on ordinal criteria for each
alternative, the DM asks experts to evaluate alternatives on each criterion using
a pre-defined linguistic grade set, such as poor, neutral, good, very good. Then
the DM assigns these ordinal statements fuzzy membership functions and employs
aggregation models to obtain final conclusions. Similarly, based on the Dempster
- Shafer theory of evidence, Yang and Xu (2002) develop an evidential reasoning
approach to handle qualitative (ordinal) criteria.

Instead of the methods described above, which may involve complicated math-
ematical computations, one simple but efficient approach to deal with ordinal cri-
teria is to ask a DM to consider whether there is cardinal information connected
to ordinal criteria in an MCDA problem. By careful thinking, the DM may find
proxy cardinal criteria representing ordinal criteria, permitting ordinal criteria to
be transformed to relevant cardinal criteria. The advantages of such methods are
that the DM’s objectives for a decision problem are clarified and the DM may
feel more confident of the final conclusions. Keeney (1992) proposes a systematic
analysis method, value-focused thinking, which is an analytic approach to identify
and define criteria properly. For example, Keeney recounts how it is difficult to
find a direct criterion to represent the damage to historic buildings from acid rain,
but a useful proxy criterion could be sulphur dioxide concentration in rain water.
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Another application of value-focused thinking in cell phone plan design is given in
Keeney (2004).

5.4.2 Ordinal Criteria Expressions

Sometimes the DM may not easily find suitable proxy cardinal criteria representing
ordinal criteria for an MCDA problem. The following method is developed to
incorporate ordinal criteria into our proposed case-based distance sorting model.

Recall that Q is the set of criteria. When ordinal criteria are involved, assume
that Q can be partitioned into QCRD and QORD, which represent the cardinal and
ordinal criteria sets, respectively. Obviously, Q = QCRD ∪ QORD, and QCRD ∩
QORD = ∅.

For each ordinal criterion j ∈ QORD, we arrange a linguistic grade set, such
as very good, good, fair, neutral, poor to directly evaluate the alternatives. The
linguistic grade set is L = (1, 2, ..., l, ..., L), where 1 is the best linguistic evaluation
and L is the worst. Then a value interval, vi

j, can be assigned to Ai to represent
its linguistic evaluation on each ordinal criterion. For example, with the z+ sorting
method, Ai ∈ A, if Ai is evaluated belonging to the best grade, then vi

j ∈ [0, 1
L
]. The

detailed relationships between linguistic evaluation grade and value interval for the
z+ sorting method are listed in Table 5.1. For z− sorting method, linguistic evalua-
tion grade and value interval have the opposite relationship. Note that without loss
of generality, we assume vi

j ∈ [ li
L
, li+1

L
]. When vi

j is applied to T, vj(z
r
g) ∈ [ lr

L
, lr+1

L
]

is used to represent the value interval of zr
g on the ordinal criterion j ∈ QORD.

Table 5.1: Linguistic Evaluation Grade and Value Interval for z+ Sorting Method

linguistic evaluations Value intervals

1 [0, 1
L
]

2 [ 1
L
, 2

L
]

3 [ 2
L
, 3

L
]

· · · [· · · , · · · ]
l [ l

L
, l+1

L
]

· · · [· · · , · · · ]
L [L−1

L
, 1]
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5.4.3 Case-based Sorting Model Incorporating Ordinal Cri-
teria

Assuming Q = QCRD ∪ QORD, with the z+ sorting method, the cardinal criteria
set, QCRD part of z+ can be calculated using (5.1). For the ordinal criteria set,
QORD, there is no consequence centroid, but the best linguistic grade can be re-
garded as an ideal point and used to measure the distance. Therefore, we assign
dj(z

r
g , z+) = (vj(z

r
g))

2 for j ∈ QORD. For QCRD, Equation (4.3) is still applicable to
obtain dj(z

r
g , z+). The aggregated distance of zr

g under both cardinal and ordinal
criteria is defined as

D(zr
g)+ =

∑

j∈QCRD

wj · dj(z
r
g , z+) +

∑

j∈QORD

wj · (vj(z
r
g))

2. (5.6)

Note that (5.6) can be applied to A.

Similarly, the following optimization model can be used to find the most descrip-
tive weight vector w and the distance threshold vector R for z+ sorting incorporated
ordinal criteria.

SOR.2(α, β) Minimize : ERR =
m−1
∑

g=1

tg
∑

r=1

(

αr
g)

2 +
m
∑

g=2

tg
∑

r=1

(βr
g)

2

Subject to:
∑

j∈QCRD

wj · dj(z
r
g , z+) +

∑

j∈QORD

wj · (vj(z
r
g))

2 + αr
g ≤ Rg,

r = 1, 2, ..., tg, g = 1, 2, ...,m − 1;
∑

j∈QCRD

wj · dj(z
r
g , z+) +

∑

j∈QORD

wj · (vj(z
r
g))

2 + βr
g ≥ Rg−1,

r = 1, 2, ..., tg, g = 2, 3, ...,m;

Rg−1 < Rg, g = 2, ...,m − 1;

−1 ≤ αr
g ≤ 0, g = 1, ...,m − 1;

0 ≤ βr
g ≤ 1, g = 2, ...,m;

wj > 0; wj > 0;
∑

j∈QCRD

wj +
∑

j∈QORD

wj = 1;

vj(z
r
g) ∈ [ lr

L
, lr+1

L
], r = 1, 2, ..., tg, g = 1, 2, 3, ...,m.

Similarly SOR.2(α, β) generates at least one optimal solution w∗ and R∗. The
suggested value of the indifference threshold, ε, and the acceptable distance error,
∆D remain the same as the ones described in Section 5.3.
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5.4.4 Distance-based Sorting

In Table 5.1, the value of Ai on ordinal criterion j ∈ QORD, vi
j is assigned an

interval data, [ li
L
, li+1

L
]. The following methods are designed to estimate a discrete

value for vi
j:

• The aggressive estimation when vi
j is estimated using li

L
;

• The normal estimation when vi
j is estimated using 2li+1

2L
;

• The conservative estimation when vi
j is estimated using li+1

L
.

Then, based on policies described in Section 5.3, normal, conservative or aggressive
sorting can be taken to carry out sorting depending on whether ERR∗ can be
ignored. Also z− sorting incorporated ordinal criteria can be designed similarly.
The details are omitted.

5.4.5 Analysis Procedure for Case-based Distance Sorting

To summarize all the contents addressed above, a systematic procedure to analyze
multiple criteria sorting problems based on the proposed case-based distance models
is shown in Figure 5.4. It includes the following steps:

• Identify the alternative set A: All possible alternatives within appropriate
boundaries should be considered.

• Construct the criteria set Q: Build a criteria set Q to reflect the DM’s con-
cerns and objectives.

• Check whether all criteria are cardinal: For each criterion, the DM must
identify whether it can be connected to cardinal consequence information.

• Sort alternatives using Case-based Sorting Model I: Case-based Sorting Model
I described in Section 5.3 is applied to sort alternatives when all criteria in
Q are cardinal.

• Sort alternatives using Case-based Sorting Model II: Case-based Sorting Model
II described in Section 5.4 is used to sort alternatives when both cardinal and
ordinal criteria are contained in Q.

• Check sorting consistency: Check the sorting consistency when both z+ and
z− sorting methods are carried out for sorting alternatives.
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Figure 5.4: Analysis Procedure for Case-based Distance Sorting

5.5 Case Study: Canadian Municipal Water Us-

age Analysis

MCDA has been widely employed to solve water resources management problems.
For example, Haimes et al. (1975) discussed multiple objective optimization tech-
niques in water resources systems; Hipel (1992) edited a special issue on multiple
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objective decision making in water resources. Bobbs and Meierm (2000) reviewed
the literature on MCDA methods and presented applications of MCDA to energy
and environment decisions in North America. In terms of case-based approaches to
water resources management, Greco et al. (1999) used rough set theory to solve a
problem of programming water supply systems for use in a rural area; neural net-
work techniques have been utilized to solve multiple objective optimization prob-
lems in water resources management - for example, Wen and Lee (1998) proposed
a neural network-based multiple objective optimization approach to address water
quality management for water pollution control and river basin planning. They
suggested that case-based methods could overcome the difficulty of acquiring DM’s
preferences and provide direct help to analysts in real applications. The application
of our proposed method to Canadian municipal water usage analysis is explained
next.

5.5.1 Background

Water problems are mounting worldwide, and even water-rich countries such as
Canada are not exempt. Increasing per capita consumption, population growth,
urbanization, and pollution all put increasing pressure on this finite resource and
result in both regional and global scarcities. With less than one percent of the
world’s population, Canada possesses almost 20 percent of global freshwater, so it
seems to be in an enviable position. However, much of Canada’s fresh water is found
in distant glaciers, ice caps and remote water bodies, and is not easily accessible to
a population concentrated in a relatively small number of urban areas. Therefore,
Canadian cities, like many around the world, are beginning to confront the strains
that growing water use places on the environment and on the financial capacity of
local governments (Brandes and Ferguson, 2003).

The average Canadian used a total of 4,400 liters water per day in 1999 which
took into account all uses of water: agriculture, manufacturing, mining and munic-
ipal uses. Municipal water use including residential and commercial uses is about
12% of all water withdrawals, the third among water use sectors in Canada. As a
critical component of urban life, municipal water uses are diverse: drinking, cook-
ing, bathing and sewerage. Residential use is the most significant part of municipal
water use, representing around 52% of the total volume (OECD, 1999).

Many factors influence the demands of municipal water use: (1) population
growth has significant impact on water resources - a decrease in per capita avail-
ability of water. It is predicted that population growth over the next 25 years will
reduce renewable water resources from 6,600 to 4,800 cubic metres per person in
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Canada; (2) pollution of surface and groundwater pose serious threats to fresh-
water quality and quantity; (3) the presence of meters and volume-based pricing
are negatively correlated with domestic per capita water use; (4) urban water uses
will have increasing impact on freshwater ecosystem, for example, industry and
agriculture are often concentrated in and around urban areas and affect local wa-
tercourses through withdrawals and pollution. These cumulative negative impacts
on urban watercourses are significant and could undermine water system function
and limit its ability to provide sustainable water supplies in the future (Brandes
and Ferguson, 2003).

To gain a better understanding of the overall situation of municipal water uses
in Canada, we apply our case-based models to analyze water usage in Canadian
cities. Some data are obtained from Environment Canada’s Municipal Water Use
Database (MUD), which provides basic data on municipal water systems. It cur-
rently contains water and sewage system information from 1285 Canadian mu-
nicipalities (Environment Canada, 2005). We employ 1999 data, the most recent
available.

In light of this purpose, six cardinal criteria from the MUD database and one
ordinal criterion are selected to evaluate the water use situations in cities. The
detailed descriptions of criteria with index numbers are listed as follows: 1. munic-
ipal population (POPU); 2. domestic per capita daily water use in litres (DWU);
3. total per capita daily water use in litres (TWU); 4. degree of domestic water
metering (DWM); 5. the number of years since 1970 in which the municipality
has experienced supply quantity problems (QUAN) ; 6. the number of years since
1970 in which the municipality has experienced supply quality problems (QUAL)
; 7. ecological impacts (ECO), an ordinal criterion that evaluates the ecological
negative impacts of urban water use.

Twelve representative Canadian cities (Table 5.2) are selected as the case set
T. Based on previous experience in water resources management, the authors place
them into three classes: High risk system T1, Low risk system T2 and Robust
system T3. The consequences of these alternatives over six cardinal criteria are
listed as Table 5.3. A linguistic evaluation grade set, which includes very low, low,
fair, high and very high is set to evaluate alternatives on the ordinal criterion, ECO.
The evaluation results are shown in Table 5.4. Then, case-based sorting model II
is employed.
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Table 5.2: Case Set for MWUA

Twelve Cities in Canada

Robust Low risk High risk

system T1 system T2 system T3

Fredericton (z1
1) Calgary (z1

2) Edmonton (z1
3)

Hamilton (z2
1) Ottawa (z2

2) St. John’s (z2
3)

Waterloo (z3
1) Victoria (z3

2) Vancouver (z3
3)

Whitehorse (z4
1) Yellowknife (z4

2) Winnipeg (z4
3)

Table 5.3: Consequences of Cardinal Criteria in the Case Set

Cases Cardinal criteria

POPU DWU TWU DWM QUAN QUAL

Fredericton 45000 278 505 0.98 1 0

Hamilton 322252 470 921 0.65 0 0

Waterloo 78000 215 359 1 0 0

Whitehorse 20000 519 775 0.5 0 0

Calgary 819334 339 566 0.57 2 0

Ottawa 336269 259 563 1 3 0

Victoria 86000 340 519 1 1 3

Yellowknife 17250 164 406 1 0 3

Edmonton 636000 195 406 1 20 22

St. John’s 106000 659 878 0 2 20

Vancouver 554000 357 650 0.01 22 23

Winnipeg 620000 190 403 1 1 12
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Table 5.4: Linguistic Evaluations in the Case Set

Cases Ordinal criterion, ECO

Linguistic evaluations Value intervals

Fredericton Very Low [0, 1
5
]

Hamilton Low [1
5
, 2

5
]

Waterloo Low [1
5
, 2

5
]

Whitehorse Very Low [0, 1
5
]

Calgary Low [1
5
, 2

5
]

Ottawa Fair [2
5
, 3

5
]

Victoria Fair [2
5
, 3

5
]

Yellowknife Low [1
5
, 2

5
]

Edmonton High [3
5
, 4

5
]

St. John’s High [3
5
, 4

5
]

Vancouver Very High [4
5
, 1]

Winnipeg High [3
5
, 4

5
]

5.5.2 Sorting Procedures

Firstly the centroid of T1, z+ and the centroid of T3, z− are calculated by Excel
using (5.1) and (5.2), and the results are shown in Table 5.5. The distance between
zr

g(g = 1, 2, 3; r = 1, 2, 3, 4) and z+ on each criterion are listed in Table 5.6.

Table 5.5: Centroid of the Case Set

Centroid Criteria

POPU DWU TWU DWM QUAN QUAL

z+ 116313 370.5 640 0.7825 0.25 0

z− 479000 350.25 584.25 0.5025 11.25 19.25

The program SOR.2(α, β) is now applied to find R∗ and w∗ for z+ sorting.
Note that w = (w1, ..., w7) is the weight vector of the criteria set, POPU, DWU,
TWU, DWU, QUAN, QUAL, ECO and R = (R1, R2) is the distance threshold
vector.
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Table 5.6: The Distances on Each Criterion

Cases Criteria

POPU DWU TWU DWM QUAN QUAL

Fredericton 0.0103 0.1028 0.2308 0.0637 0.0012 0

Hamilton 0.0858 0.1189 1.0000 0.0287 0.0001 0

Waterloo 0.0030 0.2905 1.0000 0.0773 0.0001 0

Whitehorse 0.0188 0.2649 0.2308 0.1303 0.0001 0

Calgary 1.0000 0.0119 0.0694 0.0737 0.0065 0

Ottawa 0.0979 0.1494 0.0751 0.0773 0.0160 0

Victoria 0.0019 0.0112 0.1854 0.0773 0.0012 0.0170

Yellowknife 0.0199 0.5123 0.6935 0.0773 0.0001 0.0170

Edmonton 0.5464 0.3701 0.6935 0.0773 0.8245 0.9149

St. John’s 0.0002 1.0000 0.7174 1.0000 0.0065 0.7561

Vancouver 0.3876 0.0022 0.0013 0.9746 1.0000 1.0000

Winnipeg 0.5133 0.3914 0.7114 0.0773 0.0012 0.2722

SOR.2(α, β) Minimize: ERR = (α1
1)

2 + (α2
1)

2 + (α3
1)

2 + (α4
1)

2 + (α1
2)

2 + (α2
2)

2 +
(α3

2)
2 + (α4

2)
2 + (β1

2)
2 + (β2

2)
2 + (β3

2)
2 + (β4

2)
2 + (β1

3)
2 + (β2

3)
2 + (β3

3)
2 + (β4

3)
2

Subject to:

0.0103w1 + 0.1028w2 + 0.2308w3 + 0.0637w4 + 0.0012w5 + (v7(z
1
1))

2w7 + α1
1 ≤ R1;

0.0858w1 + 0.1189w2 + w3 + 0.0287w4 + 0.0001w5 + (v7(z
2
1))

2w7 + α2
1 ≤ R1;

0.0030w1 + 0.2905w2 + w3 + 0.0773w4 + 0.0001w5 + (v7(z
3
1))

2w7 + α3
1 ≤ R1;

0.0188w1 + 0.2649w2 + 0.2308w3 + 0.1303w4 + 0.0001w5 + (v7(z
4
1))

2w7 + α4
1 ≤ R1;

w1 + 0.0119w2 + 0.0694w3 + 0.0737w4 + 0.0065w5 + (v7(z
1
2))

2w7 + α1
2 ≤ R2;

w1 + 0.0119w2 + 0.0694w3 + 0.0737w4 + 0.0065w5 + (v7(z
1
2))

2w7 + β1
2 ≥ R1;

0.0979w1 + 0.1494w2 + 0.0751w3 + 0.0773w4 + 0.0160w5 + (v7(z
2
2))

2w7 + α2
2 ≤ R2;

0.0979w1 + 0.1494w2 + 0.0751w3 + 0.0773w4 + 0.0160w5 + (v7(z
2
2))

2w7 + β2
2 ≥ R1;

0.0019w1 +0.0112w2 +0.1854w3 +0.0773w4 +0.0012w5 +0.0170w6 +(v7(z
3
2))

2w7 +
α3

2 ≤ R2;

0.0019w1 +0.0112w2 +0.1854w3 +0.0773w4 +0.0012w5 +0.0170w6 +(v7(z
3
2))

2w7 +
β3

2 ≥ R1;

76



0.0199w1 +0.5123w2 +0.6935w3 +0.0773w4 +0.0001w5 +0.0170w6 +(v7(z
4
2))

2w7 +
α4

2 ≤ R2;

0.0199w1 +0.5123w2 +0.6935w3 +0.0773w4 +0.0001w5 +0.0170w6 +(v7(z
4
2))

2w7 +
β4

2 ≥ R1;

0.5464w1 +0.3701w2 +0.6935w3 +0.0773w4 +0.8245w5 +0.9149w6 +(v7(z
1
3))

2w7 +
β1

3 ≥ R2;

0.0002w1 + w2 + 0.7174w3 + w4 + 0.0065w5 + 0.7561w6 + (v7(z
2
3))

2w7 + β2
3 ≥ R2;

0.3876w1 + 0.0022w2 + 0.0013w3 + 0.9746w4 + w5 + w6 + (v7(z
3
3))

2w7 + β3
3 ≥ R2;

0.5133w1 +0.3914w2 +0.7114w3 +0.0773w4 +0.0012w5 +0.2722w6 +(v7(z
4
3))

2w7 +
β4

3 ≥ R2;

0 < R1 < R2 < 1;

−1 ≤ α1
1 ≤ 0; −1 ≤ α2

1 ≤ 0; −1 ≤ α3
1 ≤ 0; −1 ≤ α4

1 ≤ 0;

−1 ≤ α1
2 ≤ 0; −1 ≤ α2

2 ≤ 0; −1 ≤ α3
2 ≤ 0; −1 ≤ α4

2 ≤ 0;

0 ≤ β1
2 ≤ 1; 0 ≤ β2

2 ≤ 1; 0 ≤ β3
2 ≤ 1; 0 ≤ β4

2 ≤ 1;

0 ≤ β1
3 ≤ 1; 0 ≤ β2

3 ≤ 1; 0 ≤ β3
3 ≤ 1; 0 ≤ β4

3 ≤ 1;

0 ≤ v7(z
1
1) ≤ 1

5
; 1

5
≤ v7(z

2
1) ≤ 2

5
;

1
5
≤ v7(z

3
1) ≤ 2

5
; 0 ≤ v7(z

4
1) ≤ 1

5
;

1
5
≤ v7(z

1
2) ≤ 2

5
; 2

5
≤ v7(z

2
2) ≤ 3

5
;

2
5
≤ v7(z

3
2) ≤ 3

5
; 1

5
≤ v7(z

4
2) ≤ 2

5
;

3
5
≤ v7(z

1
3) ≤ 4

5
; 3

5
≤ v7(z

2
3) ≤ 4

5
;

4
5
≤ v7(z

3
3) ≤ 1; 3

5
≤ v7(z

4
3) ≤ 4

5
;

w1 > 0; w2 > 0; w3 > 0; w4 > 0; w5 > 0; w6 > 0; w7 > 0;

w1 + w2 + w3 + w4 + w5 + w6 + w7 = 1;

Because of its ability to handle nonlinear programs, Lingo software was used to
find the optimal solution. The results are ERR∗ = 2.13×10−8, R∗ = (0.0263, 0.1138)
and w∗ = (0.036, 0.001, 0.001, 0.1928, 0.168, 0.3509, 0.2503). Since ERR∗ ≪ ε =

1
10×1285

, we assess the errors as small and can be ignored. Then the z+ normal
sorting procedure is adopted to check all 1285 cities in MUD and sort them into
three groups defined above. Note that for the ordinal criterion ECO, the aggressive
estimation method was employed to estimate the value for each alternative. Be-
cause of space limitations, we list the proportions of different groups in Figure 5.5.
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Low risk systems, 

895 (70%)

Robust systems, 

288 (22%)

High risk 

systems, 102 

(8%)

Figure 5.5: z+ Method Results

Based on the centroid of z−, similar computations can be carried out and the
optimal solution is ERR∗ = 7.9602 × 10−7, R∗ = (0.4658, 0.7847), and w∗ =
(0.1232, 0.0503, 0.1337, 0.0815, 0.0965, 0.3827, 0.1321). As before, errors can be ig-
nored. Based on this information, the sorting of 1285 Canadian cities was carried
out and the proportions in different groups shown in Figure 5.6. (Similarly the ag-
gressive estimation method is adopted to estimate the values for ordinal criterion,
ECO).

Low risk systems, 

778 (60%)

Robust systems, 

307 (24%)

High risk 

systems, 200 

(16%)

Figure 5.6: z− Method Results
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As seen in Figures 5.5 and 5.6, ρ1, ρ2, ρ3 for the z+ sorting method are 22%, 70%,
8% and ρ1, ρ2, ρ3 for z− sorting method are 24%, 60%, 16%, respectively. Therefore,
Φ+ = (ρ2, ρ1, ρ3) = Φ−, thus T provides roughly consistent results by both z+ and
z− sorting methods. We conclude that based on our current information (knowl-
edge), the water supply systems in most Canadian cities are robust or low risk,
so the overall situation is still acceptable. However, water use in Canadian cities
is typically twice as great as European cities, which suggests that great potential
exists to reduce the volume of water use by Canadian cities with minimal impacts
on quality of life standard. It has been argued that curbing the trend of increasing
water use can provide significant ecological, social and economic benefits (Brandes
and Ferguson, 2003).

5.6 Conclusions

Case-based distance methods are proposed in this chapter to solve sorting problems
in MCDA. The main components of the chapters are:

• General description of sorting problems: A formal definition of sorting prob-
lems is presented and the relationship between A, the alternative set, and S,
the sorting group, is discussed.

• Case-based sorting model I: The method is designed for sorting problems
having cardinal criteria.

• Case-based sorting model II: This method is an extension of case-based sorting
model I and can handle both cardinal and ordinal criteria.

• Case study: An application to municipal water usage in Canada is presented.
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Chapter 6

Sorting Problem Application in
Inventory Management

6.1 Introduction

In ABC analysis, a well-known inventory planning and control technique, stock-
keeping units (SKUs) are sorted into three categories. Traditionally, the sorting is
based solely on annual dollar usage. The aim of this chapter is to introduce a case-
based multiple criteria ABC analysis (MCABC) that improves on this approach
by accounting for additional criteria, such as lead time and criticality of SKUs,
thereby providing more managerial flexibility. Firstly, the motivation of MCABC
is explained briefly. Next, research on ABC analysis and its extension, MCABC
is explained in detail. Then, a case-based distance method is proposed to solve
MCABC problems. Finally, a case study is developed to illustrate how the proce-
dure can be applied; the results demonstrate that this approach is robust and can
produce sound classifications of SKUs when multiple criteria are to be considered.
The contents of this chapter is based on research by Chen et al. (2005e).

6.2 Motivation

Efficient and effective inventory management assumes increasing significance in
maintaining a firm’s competitive advantage with the acceleration of globalization
of businesses (Silver et al., 1998). Generally, the number of SKUs in a firm can
easily go up to tens of thousands or even more. Therefore, it is not economically
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feasible to design an inventory management policy for each individual SKU. In
addition, different SKUs may play quite different roles in contributing to the firm’s
business and, hence, necessitate different levels of management attention. In order
to implement any sound inventory control scheme, it becomes necessary to group
SKUs into a manageable and meaningful number of categories first, and then design
different policies for distinct groups according to the group’s levels of importance to
the firm (Chakravarty, 1981). In so doing, a generic set of inventory management
policies requiring certain level of effort and control from management is applied to
all members falling into this category. It is expected that this aggregation process
will dramatically reduce the number of SKUs that require extensive attention from
the management.

ABC analysis is the most frequently used approach to classifying SKUs into
groups. A traditional method of aggregating SKUs is solely based on their annual
dollar usage. The underlying principle of this approach is the fact that a small
proportion of SKUs accounts for a majority fraction of the dollar usage. Classical
ABC analysis roots from Pareto’s famous observations on the uneven distribution
of incomes (Pareto, 1971), and hence is sometimes referred to as Pareto analysis.
Because of its easy-to-implementation nature and remarkable effectiveness in many
inventory systems, this approach is still widely used in practice.

However, although the annual dollar usage is a crucial dimension to measure
the importance of SKUs in the inventory system, many other criteria may also
contribute to determining management’s attention for a particular SKU, and hence
affect the aggregation of SKUs. For instance, in the high technology industry, some
parts may become obsolete in a very short period, therefore, should be closely
monitored by inventory managers. In this case, the obsolescence becomes a critical
criterion to classifying SKUs. Other factors, such as length and variability of lead
time, substitutability, reparability, criticality, may also affect the management’s
decision (Flores and Whybark, 1986). Therefore, various multiple criteria ABC
analysis (MCABC) models have been developed to complement the classical ABC
analysis, including AHP (analytic hierarchy process) method (Flore et al., 1992;
Partovi and Hopton, 1994), statistical method Cohen and Ernst (1988), artificial
neural network approach (Partovi and Anadarajan, 2002) and genetic algorithm
method (Guvenir and Erel, 1998), to name a few.

The approach presented in this thesis is motivated by the work of (Flores and
Whybark, 1986), where the dollar usage is combined with another criterion that is
relevant to a firm’s inventory system. But their approach cannot handle situations
that three or more criteria have to be taken into account at the same time in order
to classify the inventory SKUs. Our research aims to lift this restriction and allow
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any finite number of criteria to be considered simultaneously.

6.3 Multiple Criteria ABC Analysis (MCABC)

Classical ABC analysis aggregates SKUs into different groups based solely on the
annual dollar usage. The most important SKUs in terms of dollar usage are placed
in group A, which demand the greatest effort and attention from the management;
the least important SKUs are aggregated into group C, which are given the minimal
control; other SKUs are categorized into group B, on which medium level of control
is exerted. The “80-20 (or 90-10) Rule” — 80% (or 90%) of the total annual usage
comes from 20% (or 10%) of SKUs — constitutes the basis of the classical ABC
analysis. The rule guarantees that the number of A SKUs is substantially smaller
than the total number of SKUs in the inventory system. Although the exact values
vary from industry to industry, the 80-20 rule can be applied to many real-world
situations. Figure 6.1 captures the essence of this rule. Note that A represents the
set of alternatives, {A1, A2, · · · , Ai, · · · , An}. Q = {1, 2, · · · , j, · · · , q} is the set of
criteria. The consequence on criterion j of alternative Ai is expressed as cj(A

i).

Cumulative 
percentage of 
dollar usage

Cumulative 
percentage 
of SKUs

80%

20%

Figure 6.1: Example of Dollar Usage Distribution Curve

The classification obtained from the ABC analysis is sometimes subject to fur-
ther adjustments, for example, some SKUs’ dollar usages may not be so significant,
but their stock-out cost can be unbearably high; while some other SKUs may have
high dollar usages, but their supply is sufficient and consistent. In these cases,
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SKUs may have to be switched among the three groups. The relevance of this re-
classification process is that some criteria, other than the dollar usage, may come
into play in determining how much attention should be paid for them.

Flores and Whybark (1986) proposed a multiple criteria framework to handle
ABC analysis, and applied it to a service organization and a manufacturing firm
(Flores and Whybark, 1987). This approach begins with selecting another critical
criterion, in addition to the dollar usage. This criterion depends on the nature of
industries. Some examples are obsolescence, lead times, substitutability, repara-
bility, criticality and commonality (Flores and Whybark, 1986). Next, the model
requires that SKUs be divided into three levels of importance, A, B, and C against
the two criteria, respectively. The model then reclassifies SKUs into three cate-
gories, AA, BB, and CC, which represent the three new groups, according to some
rules determined by the new criterion other than the dollar usage. The structure
of the model can be conveniently represented as a joint criteria matrix as shown
in Figure 6.2, adapted from Flores and Whybark (1986). A general guideline as
indicated by the arrows is to regroup AB and BA as AA, AC and CA as BB, and
BC and CB as CC.

Dollar 

Usage

Second Critical Criterion

AA

BB

CC

AA BB

AAAA

BBBB

CCCC

ABAB

CC

ACAC

BABA

CACA

BCBC

CBCB

Figure 6.2: The Joint Matrix for Two Criteria

6.4 A Case-based Distance Model for MCABC

6.4.1 Case Set Definitions for MCABC

MCABC can be regarded as a three-group sorting problem, which arranges SKUs
into group A, B or C with the preference order A ≻ B ≻ C, where ≻ denotes the
strict preference relation and all SKUs in a certain group are indifferent to the DM.

Assume a MCABC problem is to classify SKUs in A (|A| = n) into group A, B
and C based on the criteria set Q (|Q| = q). Several representative SKUs for the
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MCABC problem are available and they are partitioned into three categories TA,
TB, and TC which represent case sets for groups A, B, and C, respectively. The
number of SKUs in group g (g = A,B, C) is denoted ng and zr

g is a representative
SKU in Tg. The SKUs in case sets may, for example, be fabricated by the DM
or obtained by having the DM modify historical records and the case sets are
comprehensive representative for the DM. Note that all criteria in Q must apply and
cj(A

i) must be measurable for all SKUs in the case sets and all j ∈ Q. Preference
and indifference of SKUs are induced in the case sets. For two SKUs in the same
group, they are equally preferred by the DM. For example, zk

B, zl
B ∈ TB, zk

B ∼ zl
B

(∼ means the DM equally prefers zk
g and zl

g); any SKU in a more important group
is more preferred to the one in a less important group. For example, zk

A ∈ TA, and
zl
B ∈ TB, zk

A ≻ zl
B.

Our case-based reasoning idea is based on the “right” distance based preference
expression: the distances of cases to a pre-defined point in the same group should
be close together within a range and farther from the distances of cases in other
groups in some sense. We use Tg, g = A,B, C, to estimate criterion weight w,
and a distance threshold vector R, so that this information can be applied to
classify (sort) SKUs in A. Figure 6.3 demonstrates one situation of this idea. Two
ellipses partition the SKUs into three case sets and represent preference sequences:
ellipses closer to “o” represent more preferred groups. For zr

A ∈ TA, zr
B ∈ TB

and zr
C ∈ TC, zr

A ≻ zr
B ≻ zr

C. Then by a properly designed transformation from
the original consequence data space to a weighted normalized consequence data
space (preference space), ellipse-based distances can be transformed to circle-based
distances and accordingly this information can be applied to classify SKUs in A.
Notice that in Figure 6.3 the distance of zr

A from “o” is less than RA, the distance
of zr

B is greater than RA and less than RB, and the distance of zr
C is greater than

RB.

6.4.2 Distance Assumptions

Assuming the DM’s preferences over Q are monotonic and two kinds of criteria are
defined as follows: (1) benefit criteria, Q+, which mean the greater value (conse-
quences) the more important (preference) for the DM; (2) cost criteria, Q−, which
mean the less value (consequences) the more important (preference) for the DM.
Thus, Q = Q+ ∪Q−. For example, the manager in a manufacturing company may
set the criterion of dollar usage as Q+ while the criterion of lead time as Q−. Fur-
thermore, the DM can identify the maximum consequence on criterion j (j ∈ Q),
cmax
j ∈ R+ and the minimum consequence, cmin

j ∈ R+ , where cmax
j > cmin

j . Notice
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Figure 6.3: The Idea of Case-based Distance model

that cmax
j and cmin

j are extreme values for criterion j, so that the consequence of
any SKU, cj(A

i) satisfies cmin
j ≤ cj(A

i) ≤ cmax
j .

Two fictitious SKUs are set, the ideal SKU, A+ and the anti-ideal SKU, A−.
By definitions,

cj(A
+) =

{

cmax
j if j ∈ Q+;

cmin
j if j ∈ Q−.
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and

cj(A
−) =

{

cmin
j if j ∈ Q+;

cmax
j if j ∈ Q−.

For j = 1, 2, ..., q, define dmax
j =

(

cmax
j −cmin

j

)2
to be the normalization factor for

criterion j. For g = A,B, C and r = 1, 2, ..., ng, the normalized distance between
zr

g ∈ Tg and A+ on criterion j is

dj(z
r
g , A

+) = dj(z
r
g)

+ =

(

cj(z
r
g) − cj(A

+)
)2

dmax
j

. (6.1)

Note that (6.1) defines dj(A
i)+ if Ai = zr

g , Ai ∈ A. Similarly, the distance between
any SKU zr

g ∈ Tg and A− on criterion j is

dj(z
r
g , A

−) = dj(z
r
g)

− =

(

cj(z
r
g) − cj(A

−)
)2

dmax
j

. (6.2)

Note that (6.2) defines dj(A
i)− if if Ai = zr

g , Ai ∈ A. It is easy to verify that
dj(z

r
g)

+ ∈ [0, 1], dj(A
i)+ ∈ [0, 1], dj(z

r
g)

− ∈ [0, 1], and dj(A
i)− ∈ [0, 1].

The aggregated distance between zr
g ∈ Tg and A+ over the criteria set Q is

identified as
D(zr

g , A
+) = D(zr

g)
+ =

∑

j∈Q

w+
j · dj(z

r
g)

+, (6.3)

where w+
j ∈ w+ is the A+-based weight (relative importance) of criterion j. The

weight vector w+ is to be determined. It is assumed that 0 < w+
j ≤ 1 and

∑

j∈Q

w+
j =

1. Similarly, the aggregated distance from alternative zr
g to A− is

D(zr
g , A

−) = D(zr
g)

− =
∑

j∈Q

w−
j · dj(z

r
g)

−, (6.4)

where w−
j ∈ w− is the A−-based weight of criterion j. Note that (6.3) and (6.4)

define D(Ai)+ and D(Ai)−, respectively, if Ai = zr
g , Ai ∈ A.

6.4.3 Model Construction

Taking A+ as the original point “o”, A+MCABC analysis is explained as follows:
a compact ball (in q dimensions) with radius of R+

A ∈ R+ includes (in principle)
every case in TA and any case that is not in TA is (in principle) outside that ball.
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Similarly, a compact ball with radius of R+
B ∈ R+ includes every case in TA and

TB and any case in TC is outside. Therefore, R+
A and R+

B can be employed to
classify SKUs in A and Figure 6.4 demonstrates this idea. Similarly, A−MCABC
analysis can be developed taking A− as the original point in which a greater distance
indicates a greater preference. A ball with radius of R−

C includes zr
C ∈ TC, and a

ball with radius of R−
B includes zr

B ∈ TB and zr
C ∈ TC. The A+MCABC based

model construction is explained in detail next. Since the procedure of A−MCABC
is similar, the details are omitted.
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Figure 6.4: Relationships Among R+
A, R+

B and D(Ai)+

For j ∈ Q, wj refers to the DM’s preference on criterion j, and represents
the relative importance of criterion j within the aggregated distance. R+

A, R+
B

represent thresholds to classify SKUs into different groups. Here, we obtain w+ =
(w+

1 , w+
2 , ..., w+

q ), and R+
A, R+

B by a case-based reasoning model based on TA, TB

and TC.

For an MCABC problem SKUs in the case set TA (belonging to A) is assessed by
the DM, with the preference relationships described above, they are more preferred
than other cases in TB and TC. Therefore, based on distance measurement from
A+, the following constraints are set:

(1) The distance of zr
A ∈ TA to A+ is less than R+

A, provided that there are no
inconsistent judgements. Thus, for r = 1, 2, ..., nA,

D(zr
A)+ + αr

A ≤ R+
A, or

∑

j∈Q

w+
j · dj(z

r
A)+ + αr

A ≤ R+
A, (6.5)
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where −1 ≤ αr
A ≤ 0 is an upper-bound error adjustment parameter (keeping the

distance of zr
A less than R+

A).

(2) The distance of zr
B ∈ TB to A+ is larger than R+

A and less than R+
B provided

that there are no inconsistent judgements. Thus, for r = 1, 2, ..., nB,

D(zr
B)+ + αr

B ≤ R+
B , or

∑

j∈Q

w+
j · dj(z

r
B)+ + αr

B ≤ R+
B , (6.6)

D(zr
B)+ + βr

B ≥ R+
A, or

∑

j∈Q

w+
j · dj(z

r
B)+ + βr

B ≥ R+
A, (6.7)

where −1 ≤ αr
B ≤ 0 is an upper-bound error adjustment parameter (keeping the

distance of zr
B less than R+

B ) and 0 ≤ βr
B ≤ 1 is a lower-bound error adjustment

parameter (keeping the distance of zr
B larger than R+

A).

(3) The distance of zr
C ∈ TC to A+ is larger than R+

B provided that there are no
inconsistent judgements. Thus, for r = 1, 2, ..., nC,

D(zr
C)

+ + βr
C ≥ R+

B , or
∑

j∈Q

w+
j · dj(z

r
C)

+ + βr
C ≥ R+

B , (6.8)

where 0 ≤ βr
C ≤ 1 is a lower-bound error adjustment parameter (keeping the

distance of zr
C larger than R+

B ).

Accordingly, the overall squared error in all case sets is denoted as ERR =
nA
∑

r=1

(αr
A)2 +

nB
∑

r=1

[(αr
B)2 + βr

B)2] +
nC
∑

r=1

(βr
C)

2. Then the following optimization model

can be adopted to find the most descriptive weight vector w+, and the distance
thresholds R+

A and R+
B .

SOR.3(α, β) Minimize : ERR =
nA
∑

r=1

(αr
A)2 +

nB
∑

r=1

[(αr
B)2 + βr

B)2] +
nC
∑

r=1

(βr
C)

2

Subject to:
∑

j∈Q

w+
j · dj(z

r
A)+ + αr

A ≤ R+
A, r = 1, 2, ..., nA;

∑

j∈Q

w+
j · dj(z

r
B)+ + αr

B ≤ R+
B , r = 1, 2, ..., nB;

∑

j∈Q

w+
j · dj(z

r
B)+ + βr

B ≥ R+
A, r = 1, 2, ..., nB;

∑

j∈Q

w+
j · dj(z

r
C)

+ + βr
C ≥ R+

B , r = 1, 2, ..., nC;

0 < R+
A < 1, 0 < R+

B < 1, R+
A < R+

B ;
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−1 ≤ αr
g ≤ 0, g = A,B;

0 ≤ βr
g ≤ 1, g = B, C;

w+
j > 0,

∑

j∈Q

w+
j = 1;

Theorem 6. SOR.3(α, β) has at least one optimal solution.

Proof: The constraints in SOR.3(α, β) constitute a convex set. The objective
function ERR is a quadratic function on this set. Based on the extreme value
theorem of advanced calculus (Fitzpatrick, 1995, page 297), the function ERR
is continuous and the set of all possible variables is bounded, ERR attains its
minimum at least once. ¤

An indifference distance threshold, ε is set to evaluate the error, ERR, generated
by SOR.3(α, β): When ERR ≤ ε, the error is small and can be ignored, so the
information in the case sets provided by the DM is considered to be consistent;
when ERR > ε, the error cannot be ignored and there is some inconsistency in the
case sets. The DM should reconsider them. A suggested value of ε is 1

kn
, n = |A|,

where k ∈ R+ is the adjustment parameter. When the case set is large and the
likelihood of the error is high, then k < 1; when the case set is small and the
likelihood of the error is small, then k ≥ 1.

Furthermore, to make the optimal results more closely reflect a DM’s intrinsic
preferences, the DM could provide some rough information about weights and in-
corporate it into SOR.3(α, β). The imprecise preference expressions proposed by
Sage and White (1984), and Eum et al. (2001) can be used for this purpose. Some
imprecise weight preference expressions are listed below:

• Weak ranking: w1 ≥ w2 ≥ · · · ≥ wq > 0;

• Strict ranking: wj − wj+1 ≥ ǫj, j ∈ Q, where ǫj is a small positive value;

• Difference ranking: w1 − w2 ≥ · · · ≥ wq−1 − wq ≥ 0;

• Fixed bounds: Lj ≤ wj ≤ Uj, j ∈ Q, where Lj and Uj are lower and upper
bounds for wj, respectively;

The following imprecise weight preference expressions are proposed to align with
the MCABC scenario:

wd ≥ wk,∀ k ∈ Q, k 6= d (6.9)

Lj ≤ wj ≤ Uj, ∀ j ∈ Q (6.10)
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where wd represents the weight of annual dollar usage, and Lj and Uj are,
respectively, lower and upper bounds for wj. For simplicity, we could set Lj = L
and Uj = U for all criteria. (Setting 0 < L < U < 1 ensures that all specified
criteria count in the final classification—no criterion can be discarded. In particular,
the value of L should be set to some non-negligible amount to ensure that no
criterion is effectively dropped from the model.) If constraints (6.9) and (6.10)
can be incorporated directly into D(α, β), the program will still have at least one
optimal solution. Alternatively, when (6.9) and (6.10) are not included in D(α, β),
they can guide the DM in selecting the most suitable solutions when multiple
optimal results are identified in D(α, β), as will be explained in Section 6.4.5, Post-
optimality analyses.

6.4.4 Distance-based Sorting

Assuming ERR ≤ ε, and A+, B+, and C+ denote A+MCABC-based group A,
B and C, respectively. With w+ = (w+

1 , w+
2 , ..., w+

q ), R+
A and R+

B obtained from
D(α, β), A+MCABC can be carried out to classify SKUs in A as follows:

• If D(Ai)+ ≤ R+
A, Ai ∈ A+;

• If R+
A < D(Ai)+ ≤ R+

B , Ai ∈ B+;

• If D(Ai)+ > R+
B , Ai ∈ C+.

Employing similar procedures w− = (w−
1 , w−

2 , ..., w−
q ), R−

B and R−
C can be cal-

culated and A−MCABC is thus carried out to classify SKUs in A as follows:

• If D(Ai)− ≤ R−
C , Ai ∈ C−;

• If R−
C < D(Ai)− ≤ R−

B , Ai ∈ B−;

• If D(Ai)− > R−
B , Ai ∈ A−.

Note that A−, B− and C− denote A−MCABC-based groups A, B, and C, respec-
tively.

Next, a process similar to Flores and Whybark (1986) is designed to finalize the
classification of SKUs in A to different groups as shown in Figure 6.5.

Based on the classification results of A+MCABC and A−MCABC, nine combina-
tion groups, A−A+, A−B+, A−C+, B−A+, B−B+, B−C+, C−A+, C−B+ and C−C+,
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Figure 6.5: The Joint Matrix for Two MCABC Methods

are identified. Then these combination groups are reclassified into three categories,
A−A+, B−B+ and C−C+, which represent the most important, the medium-level
important and the least important groups, respectively. The guideline as indicated
by the arrows is to regroup A−B+ and B−A+ as A−A+, A−C+ and C−A+ as B−B+,
and B−C+ and C−B+ as C−C+.

6.4.5 Post-optimality Analyses

Because SOR.3(α, β) may have many sets of criterion weights and distance thresh-
olds that are optimal or near-optimal, we discuss how the robustness of each solution
can be examined using post-optimality analysis. There are several ways to assess
whether multiple or near-optimal solutions of SOR.3(α, β) exist.

• Programming-based Near-optimality Analyses

Assuming the optimal objective value of SOR.3(α, β) is ERR∗, some sugges-
tions of Jacquet-Lagrèze and Siskos (1982) can be adapted for use in post-
optimality analysis of wj (for each j ∈ Q) using the following programs:

SOR.3′(α, β, wj) Maximize : wj

Subject to:







ERR ≤ max {η, (1 + η)ERR∗} ,
all constraints of D(α, β),
constraints (6.9) and (6.10) as applicable,
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SOR.3′′(α, β, wj) Minimize : wj

Subject to:






ERR ≤ max {η, (1 + η)ERR∗} ,
all constraints of D(α, β),
constraints (6.9) and (6.10) as applicable,

In both programs, η is a small positive number.

These programs obtain maximum and minimum values for wj. Similarly,
the programs SOR.3′(α, β,R+

A), SOR.3′(α, β,R+
B ), SOR.3′′(α, β,R+

A) and
SOR.3′′(α, β,R+

B ) yield, respectively, maximum and minimum values for R+
A

and R+
B . The difference between the generated minimum and maximum values

for a criterion weight or distance threshold is a measure of the robustness of
the initial solution.

There are two ways to use this robustness information to determine a final
sorting.

1. Average Value Method: Based on the suggestions from Jacquet-Lagrèze
and Siskos (1982) and Siskos et al. (2005), the averages of the initial
solutions, and the maximum and minimum values for each criterion or
distance threshold generated from the above procedures may be consid-
ered as a more representative solution of D(α, β), and used to sort SKUs.

2. Percentage Value Method: Each of SOR.3(α, β), SOR.3′(α, β,R+
A),

SOR.3′(α, β,R+
B ), SOR.3′′(α, β,R+

A) and SOR.3′′(α, β,R+
B ) generates

a vector of solutions for all criterion weights and distance thresholds.
Each of these vectors implies a different sorting of the SKUs. For each
SKU, the frequency of sorting into A, B and C can be calculated. (A
sharply peaked distribution is another indicator of robustness.) Then
each SKU is assigned to the group where it appears most often, for both
A+MCABC and A−MCABC. Finally, the procedure explained in Figure
6.5 is applied to generate the final sorting result.

• Multiple Optimal Solution Identification and Selection

Another way to conduct the post-optimality analyses is to employ optimiza-
tion software packages, such as LINGO and Matlab, in which varying the
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initialization of the optimization algorithm can identify multiple optimal so-
lutions. When SOR.3(α, β) has multiple solutions, the DM could select a
solution which is in some sense “closest” to the imprecise weight information
he or she has supplied, as in (6.9) and (6.10). For example, solutions that do
not satisfy the constraint (6.9) can simply be screened out. Also, the mean
of the two parameters of (6.10), (L + U)/2, can be employed as a centroid—
in which case, the solution at minimum distance from the centroid should
be regarded as best. Notice that (6.9) and (6.10) are not incorporated into
SOR.3(α, β) as constraints.

• Transformation of the Objective Function

The sum of squared errors,
nA
∑

r=1

(αr
A)2 +

nB
∑

r=1

[(αr
B)2 + (βr

B)2] +
nC
∑

r=1

(βr
C)

2, the ob-

jective function in SOR.3(α, β), measures the overall error in representation
of the entire case set. Because it is similar to linear regression in statis-
tics, this representation may be easily understood by DMs. Nevertheless,
there are other ways to express the overall error. For instance, following
the example of Siskos and Yannacopoulos (1985) and Siskos et al. (2005),
nA
∑

r=1

(−αr
A)+

nB
∑

r=1

[(−αr
B)+βr

B]+
nC
∑

r=1

(βr
C) also measures the overall error. In other

words, this procedure transforms SOR.3(α, β) is transformed into a linear
rather than a quadratic program. The same procedures described by Siskos
et al. (2005) can then be employed to carry out post-optimality analyses. The
constraints (6.9) and (6.10) may be incorporated in SOR.3(α, β), depending
on the DM’s available information.

6.5 A Case Study in Hospital Inventory Manage-

ment

6.5.1 Background

A case study to demonstrate the proposed procedure is carried out based upon
data in Flore et al. (1992) on a hospital inventory management. In that example,
47 disposable SKUs used in a hospital-based respiratory therapy unit are classified
using the AHP (Saaty, 1980) based MCABC. Table 6.1 lists the 47 disposable SKUs
referred to as S1 through S47. Four criteria are defined for MCABC analysis: (1)
average unit cost ($), which ranges from a low $5.12 to a high of $210.00; (2) annual
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dollar usage ($), which ranges from $25.38 to a high of $5840.64; (3) critical factor,
1, 0.50, or 0.01 is assigned to the 47 disposable SKUs. A value of 1 indicates very
critical, a value of 0.50 indicates moderately critical and a value of 0.01 for non-
critical; (4) lead time (week) is the time it takes to receive replenishment after it is
ordered, ranging from 1 to 7 weeks.

6.5.2 Selection of Case Sets

In this case study, all criteria are assumed to be positive criteria, which means
the greater value of the consequence, the more important it is for the DM. Note
that for a product buyer, like hospitals, lead time is a positive criterion while for
a producer it may be a negative criterion. The settings of A+, A− are listed in
Table 6.2. It is assumed that the DM would like to provide the case information,
three representative SKUs for A, four for B, and four for C among those 47 SKUs.
We start with the most representative case set as shown in Table 6.2. Based on
this information, the normalized consequence data of case sets for A+MCABC and
A−MCABC are calculated using (6.1) and (6.2), and listed in Tables 6.3 and 6.4,
respectively.

Based on this information, the normalized consequence data of case sets for
A+MCABC and A−MCABC are calculated using (6.1) and (6.2), and listed in
Table 6.3, and 6.4, respectively.

6.5.3 Model Construction

First, SOR.3(α, β) is employed to find w+ = {w+
1 , w+

2 , w+
3 , w+

4 } as well as R+
A

and R+
B , which represent the weights for the average unit cost, the annual dollar

usage, the critical factor, the lead time, and the distance thresholds for A and B
in A+ABC, respectively. The imprecise weight information is assumed to be as
follows: for j = 1, 2, 3, 4, 0.01 ≤ w+

j ≤ 0.9; w+
2 ≥ w+

1 ; w+
2 ≥ w+

3 ; w+
2 ≥ w+

4 .
These two groups of constraints guarantee that each weight is positive and hence
that each criterion contributes to the classification, and that the dollar usage is the
most important criterion.

The results found using Lingo software (Lingo, 2005) are ERR = 1.1878×10−9;
w+ = (0.0915, 0.3118, 0.2987, 0.2980), R+

A = 0.2700 and R+
B = 0.6717. Assuming

ε = 1
n

= 1
47

, since ε ≪ ERR, the error can be ignored.

The optimization problem is:
Minimize : ERR = (α1

A)2 +(α2
A)2 +(α3

A)2 +(α1
B)2 +(α2

B)2 +(α3
B)2 +(α4

B)2 +(β1
B)2 +
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Table 6.1: Listing of SKUs with Multiple Criteria, adapted from Flore et al. (1992)

SKUs Criteria
Average unit cost ($) Annual dollar usage ($) Critical factor Lead time (week)

S1 49.92 5840.64 1 2
S2 210.00 5670.00 1 5
S3 23.76 5037.12 1 4
S4 27.73 4769.56 0.01 1
S5 57.98 3478.80 0.5 3
S6 31.24 2936.67 0.5 3
S7 28.20 2820.00 0.5 3
S8 55.00 2640.00 0.01 4
S9 73.44 2423.52 1 6
S10 160.50 2407.50 0.5 4
S11 5.12 1075.20 1 2
S12 20.87 1043.50 0.5 5
S13 86.50 1038.00 1 7
S14 110.40 883.20 0.5 5
S15 71.20 854.40 1 3
S16 45.00 810.00 0.5 3
S17 14.66 703.68 0.5 4
S18 49.50 594.00 0.5 6
S19 47.50 570.00 0.5 5
S20 58.45 467.60 0.5 4
S21 24.40 463.60 1 4
S22 65.00 455.00 0.5 4
S23 86.50 432.50 1 4
S24 33.20 398.40 1 3
S25 37.05 370.50 0.01 1
S26 33.84 338.40 0.01 3
S27 84.03 336.12 0.01 1
S28 78.40 313.60 0.01 6
S29 134.34 268.68 0.01 7
S30 56.00 224.00 0.01 1
S31 72.00 216.00 0.5 5
S32 53.02 212.08 1 2
S33 49.48 197.92 0.01 5
S34 7.07 190.89 0.01 7
S35 60.60 181.80 0.01 3
S36 40.82 163.28 1 3
S37 30.00 150.00 0.01 5
S38 67.40 134.80 0.5 3
S39 59.60 119.20 0.01 5
S40 51.68 103.36 0.01 6
S41 19.80 79.20 0.01 2
S42 37.70 75.40 0.01 2
S43 29.89 59.78 0.01 5
S44 48.30 48.30 0.01 3
S45 34.40 34.40 0.01 7
S46 28.80 28.80 0.01 3
S47 8.46 25.38 0.01 5
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Table 6.2: The Basic Information Settings

SKUs Criteria
Average unit cost ($) Annual dollar usage ($) Critical factor Lead time (week)

A+ 250.00 6000.00 1 7
A− 1.00 10.00 0 1
dmax

j 62001.00 35880100.00 1.00 36.00

S1 49.92 5840.64 1.00 2.00
TA S2 210.00 5670.00 1.00 5.00

S13 86.50 1038.00 1.00 7.00
S10 160.50 2407.50 0.50 4.00

TB S29 134.34 268.68 0.01 7.00
S36 40.82 163.28 1.00 3.00
S45 34.40 34.40 1.00 7.00
S4 27.73 4769.56 0.01 1.00

TC S25 37.50 370.50 0.01 1.00
S27 84.03 336.12 0.01 1.00
S34 7.07 190.89 0.01 7.00

Table 6.3: The Normalized Consequence Data of Case Sets for A+MCABC

SKUs Criteria

Average unit cost ($) Annual dollar usage ($) Critical factor Lead time (week)

S1 0.6457 0.0007 0.0000 0.6944

TA S2 0.0258 0.0030 0.0000 0.1111

S13 0.4312 0.6862 0.0000 0.0000

S10 0.1292 0.3597 0.2500 0.2500

TB S29 0.2158 0.9155 0.9801 0.0000

S36 0.7057 0.9495 0.0000 0.4444

S45 0.7497 0.9919 0.9801 0.0000

S4 0.7968 0.0422 0.9801 1.0000

TC S25 0.7314 0.8833 0.9801 1.0000

S27 0.4443 0.8941 0.9801 1.0000

S34 0.9518 0.9405 0.9801 0.0000
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Table 6.4: The Normalized Consequence Data of Case Sets for A−MCABC

SKUs Criteria

Average unit cost ($) Annual dollar usage ($) Critical factor Lead time (week)

S1 0.0386 0.9475 1.0000 0.0278

TA S2 0.7045 0.8929 1.0000 0.4444

S13 0.1179 0.0295 1.0000 1.0000

S10 0.4103 0.1602 0.2500 0.2500

S29 0.2868 0.0019 0.0001 1.0000

TB S36 0.0256 0.0007 1.0000 0.1111

S45 0.0180 0.0000 0.0001 1.0000

S4 0.0115 0.6314 0.0001 0.0000

TC S25 0.0210 0.0036 0.0001 0.0000

S27 0.1112 0.0030 0.0001 0.0000

S34 0.0006 0.0009 0.0001 1.0000

(β2
B)2 + (β3

B)2 + (β4
B)2 + (β1

C)
2 + (β2

C)
2 + (β3

C)
2 + (β4

C)
2

Subject to:
0.6457w+

1 + 0.0007w+
2 + 0.6944w+

4 + α1
A ≤ R+

A;
0.0258w+

1 + 0.0030w+
2 + 0.1111w+

4 + α2
A ≤ R+

A;
0.4312w+

1 + 0.6862w+
2 + α3

A ≤ R+
A;

0.1292w+
1 + 0.3597w+

2 + 0.2500w+
3 + 0.2500w+

4 + α1
B ≤ R+

B;
0.2158w+

1 + 0.9155w+
2 + 0.9801w+

3 + α2
B ≤ R+

B ;
0.7057w+

1 + 0.9495w+
2 + 0.4444w+

4 + α3
B ≤ R+

B ;
0.7497w+

1 + 0.9919w+
2 + 0.9801w+

3 + α4
B ≤ R+

B ;
0.1292w+

1 + 0.3597w+
2 + 0.2500w+

3 + 0.2500w+
4 + β1

B ≥ R+
A;

0.2158w+
1 + 0.9155w+

2 + 0.9801w+
3 + β2

B ≥ R+
A;

0.7057w+
1 + 0.9495w+

2 + 0.4444w+
4 + β3

B ≥ R+
A;

0.7497w+
1 + 0.9919w+

2 + 0.9801w+
3 + β4

B ≥ R+
A;

0.7968w+
1 + 0.0422w+

2 + 0.9801w+
3 + 1.0000w+

4 + β1
C ≥ R+

B ;
0.7314w+

1 + 0.8833w+
2 + 0.9801w+

3 + 1.0000w+
4 + β2

C ≥ R+
B ;

0.4443w+
1 + 0.8941w+

2 + 0.9801w+
3 + 1.0000w+

4 + β3
C ≥ R+

B ;
0.9518w+

1 + 0.9405w+
2 + 0.9801w+

3 + β4
C ≥ R+

B ;
0 ≤ R+

A ≤ 1, 0 ≤ R+
B ≤ 1, R+

A < R+
B ;

−1 ≤ α1
A ≤ 0, −1 ≤ α2

A ≤ 0, −1 ≤ α3
A ≤ 0;

−1 ≤ α1
B ≤ 0, −1 ≤ α2

B ≤ 0, −1 ≤ α3
B ≤ 0, −1 ≤ α4

B ≤ 0;
0 ≤ β1

B ≤ 1, 0 ≤ β2
B ≤ 1, 0 ≤ β3

B ≤ 1, 0 ≤ β4
B ≤ 1;

0 ≤ β1
C ≤ 1, 0 ≤ β2

C ≤ 1, 0 ≤ β3
C ≤ 1, 0 ≤ β4

C ≤ 1;
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0.01 ≤ w+
1 ≤ 0.9, 0.01 ≤ w+

2 ≤ 0.9, 0.01 ≤ w+
3 ≤ 0.9, 0.01 ≤ w+

4 ≤ 0.9;
w+

2 ≥ w+
1 ; w+

2 ≥ w+
3 ; w+

2 ≥ w+
4 ;

w+
1 + w+

2 + w+
3 + w+

4 = 1.

Similar procedures are carried out for A−MCABC. The details are omitted, and
the results obtained are listed as: ERR = 9.9018 × 10−10; w− = (0.2039, 0.3138,
0.2639, 0.2184); R−

C = 0.2205 and R−
B = 0.4502. As ε ≪ ERR, the error is ignored.

Then, both A+ABC and A−ABC methods are applied to classify the 47 SKUs into
A, B, and C. The re-classification procedures shown in Figure 6.5 are implemented
and the results are shown in Table 6.5.
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Table 6.5: The Results of A+ABC and A−ABC Classification
SKUs D(Ai)+ A+ABC results D(Ai)− A−ABC results Final results

S1 0.2662 A+ 0.5751 A− A
S2 0.0364 A+ 0.7848 A− A
S3 0.1581 A+ 0.5412 A− A
S4 0.6768 C+ 0.2005 C− C
S5 0.3168 B+ 0.2062 C− C
S6 0.3593 B+ 0.1682 C− C
S7 0.3676 B+ 0.1617 C− C
S8 0.5215 B+ 0.1247 C− C
S9 0.1654 A+ 0.4837 A− A
S10 0.2731 B+ 0.2545 B− B
S11 0.5062 B+ 0.2799 B− B
S12 0.3988 B+ 0.1737 C− C
S13 0.2534 A+ 0.5156 A− A
S14 0.3641 B+ 0.2091 C− C
S15 0.4097 B+ 0.3106 B− B
S16 0.5032 B+ 0.1022 C− C
S17 0.4747 B+ 0.1254 C− C
S18 0.3963 B+ 0.2284 B− B
S19 0.4245 B+ 0.1729 C− C
S20 0.4693 B+ 0.1333 C− C
S21 0.4160 B+ 0.3221 B− B
S22 0.4669 B+ 0.1358 C− C
S23 0.3833 B+ 0.3441 B− B
S24 0.4745 B+ 0.2929 B− B
S25 0.9331 C+ 0.0054 C− C
S26 0.7727 C+ 0.0288 C− C
S27 0.9102 C+ 0.0236 C− C
S28 0.6255 B+ 0.1722 C− C
S29 0.5980 B+ 0.2775 B− B
S30 0.9362 C+ 0.0104 C− C
S31 0.4453 B+ 0.1800 C− C
S32 0.5553 B+ 0.2792 B− B
S33 0.6778 C+ 0.1051 C− C
S34 0.6731 C+ 0.2188 C− C
S35 0.7723 C+ 0.0362 C− C
S36 0.4931 B+ 0.2936 B− B
S37 0.6947 C+ 0.1000 C− C
S38 0.5553 B+ 0.1049 C− C
S39 0.6799 C+ 0.1085 C− C
S40 0.6612 B+ 0.1602 C− C
S41 0.8825 C+ 0.0073 C− C
S42 0.8712 C+ 0.0106 C− C
S43 0.7040 C+ 0.0999 C− C
S44 0.7931 C+ 0.0317 C− C
S45 0.6706 B+ 0.2221 B− B
S46 0.8073 C+ 0.0268 C− C
S47 0.7222 C+ 0.0973 C− C
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6.5.4 Post-optimality Analyses

The percentage value method, one of the techniques described in Section 6.4.5, is
chosen to demonstrate post-optimality analysis.

• The post-optimality programs for A+MCABC, SOR.3′(α, β, wj) and
SOR.3′′(α, β, wj) are formulated for each criterion weight, wj, and distance
threshold, R+

A and R+
B . The minimum threshold η is fixed at 0.01. The results

are listed in Table 6.6.

Table 6.6: Post-optimality Analyses and Final Solutions for A+MCABC

Criterion weights Distance thresholds

w+

1 w+

2 w+

3 w+

4 R+

A
R+

B

1. Initial solution 0.0915 0.3118 0.2987 0.2980 0.2700 0.6717

2. max(w+

1 ) 0.1141 0.3022 0.3022 0.2816 0.2694 0.6814

3. min(w+

1 ) 0.0779 0.3074 0.3074 0.3074 0.2696 0.6645

4. max(w+

2 ) 0.0861 0.3395 0.2562 0.3183 0.2768 0.6523

5. min(w+

2 ) 0.0962 0.3013 0.3013 0.3013 0.2715 0.6681

6. max(w+

3 ) 0.0794 0.3134 0.3134 0.2938 0.2673 0.6775

7. min(w+

3 ) 0.0861 0.3394 0.2562 0.3183 0.2768 0.6523

8. max(w+

4 ) 0.0813 0.3206 0.2774 0.3206 0.2754 0.6509

9. min(w+

4 ) 0.1141 0.3022 0.3022 0.2816 0.2694 0.6814

10. max(R+

A
) 0.0861 0.3395 0.2561 0.3183 0.2769 0.6523

11. min(R+

A
) 0.0794 0.3134 0.3134 0.2938 0.2555 0.6775

12. max(R+

B
) 0.1083 0.3019 0.3019 0.2879 0.2701 0.6829

13. min(R+

B
) 0.0813 0.3206 0.2774 0.3206 0.2754 0.6509

Based on the information in Table 6.6, all 13 sortings of the 47 SKUs were
generated; for each SKU, the percentage of sortings into A, B and C are
shown in Table 6.7. Table 6.7 also shows the final sorting for the A+MCABC
method, based on the rule that the group with the largest percentage is used
to represent the sorting result for an SKU. Most of the sorting results are
quite robust; only S4 is ambiguous, in that the percentages in B and C are
close.

• The post-optimality programs for A−MCABC were solved similarly; the re-
sults are shown in Tables 6.8 and 6.9. In this case, only S5, S10 S18 and S45
do not produce robust sortings. In this case study, the A+MCABC method
is more robust than the A−MCABC method.
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Table 6.7: Percentage Value Method Based Post-optimality Analyses for A+ABC

SKUs A B C Final results
S1 100.00% 0.00% 0.00% A+

S2 100.00% 0.00% 0.00% A+

S3 100.00% 0.00% 0.00% A+

S4 0.00% 46.15% 53.85% C+

S5 0.00% 100.00% 0.00% B+

S6 0.00% 100.00% 0.00% B+

S7 0.00% 100.00% 0.00% B+

S8 0.00% 100.00% 0.00% B+

S9 100.00% 0.00% 0.00% A+

S10 38.46% 61.54% 0.00% B+

S11 0.00% 100.00% 0.00% B+

S12 0.00% 100.00% 0.00% B+

S13 92.31% 7.69% 0.00% A+

S14 0.00% 100.00% 0.00% B+

S15 0.00% 100.00% 0.00% B+

S16 0.00% 100.00% 0.00% B+

S17 0.00% 100.00% 0.00% B+

S18 0.00% 100.00% 0.00% B+

S19 0.00% 100.00% 0.00% B+

S20 0.00% 100.00% 0.00% B+

S21 0.00% 100.00% 0.00% B+

S22 0.00% 100.00% 0.00% B+

S23 0.00% 100.00% 0.00% B+

S24 0.00% 100.00% 0.00% B+

S25 0.00% 0.00% 100.00% C+

S26 0.00% 0.00% 100.00% C+

S27 0.00% 0.00% 100.00% C+

S28 0.00% 100.00% 0.00% B+

S29 0.00% 100.00% 0.00% B+

S30 0.00% 0.00% 100.00% C+

S31 0.00% 100.00% 0.00% B+

S32 0.00% 100.00% 0.00% B+

S33 0.00% 15.38% 84.62% C+

S34 0.00% 30.77% 69.23% C+

S35 0.00% 0.00% 100.00% C+

S36 0.00% 100.00% 0.00% B+

S37 0.00% 7.69% 92.31% C+

S38 0.00% 100.00% 0.00% B+

S39 0.00% 15.38% 84.62% C+

S40 0.00% 92.31% 7.69% B+

S41 0.00% 0.00% 100.00% C+

S42 0.00% 0.00% 100.00% C+

S43 0.00% 0.00% 100.00% C+

S44 0.00% 0.00% 100.00% C+

S45 0.00% 100.00% 0.00% B+

S46 0.00% 0.00% 100.00% C+

S47 0.00% 0.00% 100.00% C+
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Table 6.8: Post-optimality Analyses and Final Solutions for A−MCABC

Criterion weights Distance thresholds

w−

1 w−

2 w−

3 w−

4 R−

C
R−

B

Initial solution 0.2039 0.3138 0.2639 0.2184 0.2205 0.4502

max(w−

1 ) 0.3153 0.3153 0.1725 0.1970 0.2027 0.3786

min(w−

1 ) 0.0567 0.3584 0.3584 0.2266 0.2269 0.5208

max(w−

2 ) 0.1676 0.3813 0.2115 0.2396 0.2427 0.4308

min(w−

2 ) 0.2500 0.2500 0.2500 0.2500 0.2523 0.4445

max(w−

3 ) 0.0571 0.3585 0.3585 0.2259 0.2270 0.5206

min(w−

3 ) 0.3138 0.3138 0.1711 0.2013 0.2017 0.3806

max(w−

4 ) 0.2416 0.2646 0.2292 0.2646 0.2650 0.4415

min(w−

4 ) 0.2759 0.2759 0.2759 0.1723 0.1774 0.4305

max(R−

C
) 0.2463 0.2616 0.2305 0.2616 0.2661 0.4403

min(R−

C
) 0.2746 0.2746 0.2746 0.1761 0.1765 0.4316

max(R−

B
) 0.0567 0.3584 0.3584 0.2266 0.2269 0.6022

min(R−

B
) 0.2729 0.3005 0.2387 0.1879 0.1929 0.2667

• The final sorting, based on the re-arrangement procedure described in Figure
6.5, is shown in Table 6.10.
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Table 6.9: Percentage Value Method Based Post-optimality Analyses for A−ABC

SKUs A B C Final results
S1 100.00% 0.00% 0.00% A−

S2 100.00% 0.00% 0.00% A−

S3 100.00% 0.00% 0.00% A−

S4 0.00% 7.69% 92.31% C−

S5 0.00% 53.85% 46.15% B−

S6 0.00% 0.00% 100.00% C−

S7 0.00% 0.00% 100.00% C−

S8 0.00% 0.00% 100.00% C−

S9 84.62% 15.38% 0.00% A−

S10 0.00% 53.85% 46.15% B−

S11 0.00% 61.54% 38.46% B−

S12 0.00% 0.00% 100.00% C−

S13 100.00% 0.00% 0.00% A−

S14 0.00% 30.77% 69.23% C−

S15 7.69% 92.31% 0.00% B−

S16 0.00% 0.00% 100.00% C−

S17 0.00% 0.00% 100.00% C−

S18 0.00% 53.85% 46.15% B−

S19 0.00% 0.00% 100.00% C−

S20 0.00% 0.00% 100.00% C−

S21 7.69% 92.31% 0.00% B−

S22 0.00% 0.00% 100.00% C−

S23 7.69% 92.31% 0.00% B−

S24 0.00% 69.23% 30.77% B−

S25 0.00% 0.00% 100.00% C−

S26 0.00% 0.00% 100.00% C−

S27 0.00% 0.00% 100.00% C−

S28 0.00% 0.00% 100.00% C−

S29 0.00% 100.00% 0.00% B−

S30 0.00% 0.00% 100.00% C−

S31 0.00% 0.00% 100.00% C−

S32 0.00% 61.54% 38.46% B+

S33 0.00% 0.00% 100.00% C−

S34 0.00% 0.00% 100.00% C−

S35 0.00% 0.00% 100.00% C−

S36 0.00% 61.54% 38.46% B−

S37 0.00% 0.00% 100.00% C−

S38 0.00% 0.00% 100.00% C−

S39 0.00% 0.00% 100.00% C−

S40 0.00% 0.00% 100.00% C−

S41 0.00% 0.00% 100.00% C−

S42 0.00% 0.00% 100.00% C−

S43 0.00% 0.00% 100.00% C−

S44 0.00% 0.00% 100.00% C−

S45 0.00% 53.85% 46.15% B−

S46 0.00% 0.00% 100.00% C−

S47 0.00% 0.00% 100.00% C−
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Table 6.10: The Final Sorting Results for the Percentage Value Method

SKUs A+ABC A−ABC Final results
S1 A+ A− A
S2 A+ A− A
S3 A+ A− A
S4 C+ C− C
S5 B+ B− B
S6 B+ C− C
S7 B+ C− C
S8 B+ C− C
S9 A+ A− A
S10 B+ B− B
S11 B+ B− B
S12 B+ C− C
S13 A+ A− A
S14 B+ C− C
S15 B+ B− B
S16 B+ C− C
S17 B+ C− C
S18 B+ B− B
S19 B+ C− C
S20 B+ C− C
S21 B+ B− B
S22 B+ C− C
S23 B+ B− B
S24 B+ B− B
S25 C+ C− C
S26 C+ C− C
S27 C+ C− C
S28 B+ C− C
S29 B+ B− B
S30 C+ C− C
S31 B+ C− C
S32 B+ B+ B
S33 C+ C− C
S34 C+ C− C
S35 C+ C− C
S36 B+ B− B
S37 C+ C− C
S38 B+ C− C
S39 C+ C− C
S40 B+ C− C
S41 C+ C− C
S42 C+ C− C
S43 C+ C− C
S44 C+ C− C
S45 B+ B− B
S46 C+ C− C
S47 C+ C− C
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6.5.5 Comparisons and Explanation

Table 6.11: Comparison of Results with the Flores et al. Method (Flore et al.,
1992)

Case based

distance model

A B C Total

The A 5 5 0 10

AHP B 0 7 7 14

method C 0 0 23 23

Total 5 12 30 47

Table 6.11 shows a comparison of the classification outcomes in Table 6.10 with
the AHP findings of Flore et al. (1992). Some of the main results are explained
below:

• There are no inconsistent classifications in the most important group, A. In
the AHP method, there are ten SKUs in A while our method produces five
SKUs, which are all included in the top AHP group.

• There are five different classifications in group B and seven in group C. The
proportions of the number of SKUs in the two groups are 14/23 for the AHP
method and 12/30 for our method. Both methods contain roughly consis-
tent information: assign a larger number of SKUs to group C, similar to the
traditional ABC analysis.

• The weight generation mechanisms are different: the AHP method estimates
a weight set by subjective judgements to suit all situations, while our method
uses quadratic programming to estimate the weights. Based on the distance
to an ideal SKU and an anti-ideal SKU, different weights are obtained. In
our method, a weight for a criterion is connected with value (preference on
consequences) in that when the definitions of values change, the weight sets
are different. Because of its clear geometric meaning, our method can be
readily understood and may thereby be more easily accepted by a DM.

• It is worth mentioning that the classification results in Flore et al. (1992) do
not necessarily provide a benchmark to evaluate the merits or limitations of
other methods. Because the proportions of SKUs in groups A, B and C are
5/47, 12/47, and 30/47, respectively, which are close to the 80-20 rule that
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is observed in many practical inventory systems, our model provides a sound
classification result.

6.6 Conclusions

The classical ABC analysis is a straightforward approach that assists a DM in
achieving cost-effective inventory management by arranging SKUs according to
their annual dollar usages. However, in many situations, the DM should consider
other criteria, such as lead time and criticality, in addition to annual dollar usage.
MCABC procedures furnish an inventory manager with additional flexibility to
account for more factors in classifying SKUs. This chapter proposes a case-based
distance model to handle MCABC problems under the umbrella of MCDA theory.
A case study is developed to illustrate how the procedure can be applied; the results
demonstrate that this approach is robust and can produce sound classifications of
SKUs when multiple criteria are to be considered.
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Chapter 7

Sorting Problem Extension in
Negotiation

7.1 Introduction

A case-based distance model founded on multiple criteria decision analysis theory
is proposed for bilateral negotiations (BN) involving multiple issues. The unique
feature of this negotiation model is that weighted Euclidean distance is employed to
represent the negotiators’ preferences; a case-based distance algorithm then helps
negotiators express their preferences over different offers (alternatives) and suggests
how to find better outcomes. The procedure takes advantage of the easily under-
stood geometric meaning of Euclidean distance. The remainder of this chapter is
organized as follows. Section 2 provides a brief literature review of group negoti-
ation and decision. Next, Section 3 gives a basic background of multiple criteria
decision analysis and defines a BN problem. Section 4 proposes a case-based dis-
tance model to solve this problem, while Section 5 presents a case study of BN
in a business context. Finally, some conclusions are presented in Section 6. The
contributions of this chapter are based upon research by Chen et al. (Chen et al.,
2005f).

7.2 Motivation

Negotiation is an important research topic in many disciplines including social sci-
ences, economics, game theory, decision support systems, engineering, and multi-
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agent theory. In practice, people negotiate on a very broad range of subjects in-
cluding diplomatic issues, international conflicts, meeting schedules, production
plans and purchases. Within the few last decades, many methodologies have been
proposed to study negotiations. Some of them are summarized next.

Pruitt (1981) studies negotiations from the point of view of social psychology,
emphasizing cognitive processes. Many explanations are given for the motives, per-
ceptions, and other micro-processes driving a negotiator’s behavior, supported by
evidence from laboratory experiments. Raiffa’s influential book (Raiffa et al., 2002)
divides negotiations into several classes according to the number of negotiators and
the number of issues involved: two negotiators with one issue, two negotiators
with many issues, or many negotiators with many issues. Here we address a two-
negotiator multi-issue problem. Game theory provides a mathematical study of
rational behavior in conflicts: models of negotiation address whether an agreement
can be reached and how protocols that achieve Pareto optimal solutions should be
designed (Brams, 2003). For example, based on multiple attribute utility theory,
Ehtamo et al. (1999) design an interactive method to assist negotiators in mov-
ing from an initial inefficient point to an efficient solution. This method may be
applicable to negotiations on political issues. Some approaches in multiple criteria
decision analysis (MCDA) address group decision making and negotiations. For ex-
ample, using distance minimization (related to goral programming), Kersten (1985)
developed NEGO, a group decision support system, and Kersten and Szapiro (1986)
introduced a general approach for structuring and modelling negotiations based on
a concept of pressure.

Recently, with the development of internet-based electronic businesses, much
research has focused on the application of computers and the internet to sup-
port or even automate negotiation processes (Kersten, 2004). New computing
and communication technologies have introduced new opportunities for the de-
sign and deployment of software capable of supporting negotiations. Negotiations
conducted over the web are commonly called e-negotiations, have an important
role in e-marketplaces especially in personalizing and customizing processes. A
few implementations of e-negotiation systems are available on the internet; for
example, the special purpose system, Inspire, has been in operation since 1996
(http://interneg.org/inspire) (Kersten, 2004).

Most current e-negotiation systems employ simple additive value (utility) func-
tions to evaluate the preferences of negotiators. But in practice many factors influ-
ence the effectiveness of human negotiations. Vetschera (2004) checked the analysis
of about 4,700 multi-attribute utility functions elicited by Inspire systems and re-
ported that negotiators’ behavior during the negotiation process contradicted their
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imputed preferences in about 25% of all cases. He concluded that a simple additive
utility function is probably not an adequate method to evaluate the performance
of negotiators in such negotiations.

7.3 Multiple Issue Bilateral Negotiations

The bilateral negotiation model presented in this thesis is described in detail as
follows:

(1) There are two DMs, DM1 and DM2, who are jointly making a decision
(negotiation) in a decision problem with multiple criteria (issues), Q = {1, 2, ..., q},
such as price, quantity and delivery time.

(2) Consequences on every criterion j ∈ Q are unambiguously measurable.
Moreover, on each criterion j ∈ Q, an indifference threshold εj is agreed upon by
DM1 and DM2 (Vincke, 1992), such that differences in values of cj(A) less than εj

are not meaningful and can be ignored. For example, differences in delivery time
less than one day may not be meaningful because of the production cycle or, in the
purchase of a car, people might bargain over prices in $ 10 intervals (while, in the
purchase of a television, their threshold might equal $ 1).

(3) The maximum consequence on criterion j is cmax
j ∈ R+ and the minimum

consequence is cmin
j ∈ R+, where cmax

j and cmin
j are known to both DM1 and DM2,

and cmax
j > cmin

j . The interval [cmin
j , cmax

j ] is the consequence interval for criterion
j. For example, for the criterion of price, cmax

j and cmin
j might be a ceiling and floor

that are determined external to the negotiation. We assume that 1
εj

(cmax
j − cmin

j ) is

a positive integer for each criterion j ∈ Q.

It follows from (3) that, for each criterion j, j = 1, 2, ..., q, the number of possible
consequence values is nj = 1 + 1

εj
(cmax

j − cmin
j ). In fact, the consequence values on

criterion j (in increasing order) are cmin
j < cmin

j +εj < ... < cmin
j +(nj −2)εj < cmax

j .
Thus, the number of feasible alternatives for the BN problem is |A| = n = n1 · n2 ·
... · nq.
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7.4 A Case-based Distance Model for Bilateral

Negotiation

7.4.1 Case Set Assumptions

To assist DMs in providing a case set, we assume that a set of ordinally defined
linguistic grades, such as {excellent, very good, good, fair, bad} can be used to
assess alternatives. The linguistic grade set is denoted as L = {1, 2, ..., g, ..., L},
where 1 is the best grade and L is the worst grade. For A,B ∈ A, we say that
A ∼k B (DMk equally prefers A and B) whenever A and B are assigned the same
linguistic grade by DMk, and that A ≻k B (DMk prefers A to B) whenever A is
assigned a higher linguistic grade than B by DMk.

Within the alternative set A, suppose that DMk (k = 1, 2) specifies a repre-
sentative case set Zk = {Z1

k , Z
2
k , ..., Z

r
k , ..., Z

m
k } ⊂ A, in which each alternative is

assigned a linguistic grade. Let mk denote the number of alternatives in Zk. Sup-
pose that Gk : Zk → L is DMk’s assignment of grades, so that Gk(Z

r
k) = gr

k ∈ L is
the grade assigned by DMk to Zr

k . Furthermore, assume that at least one case is
assigned to the best grade, so that |{Zr

k : gr
k = 1}| = m1

k ≥ 1, for k = 1, 2. Assume
further (without loss of generality) that r < s implies Gk(Z

r
k) ≤ Gk(Z

s
k), i.e. that

Zk is listed in decreasing order of linguistic grade.

Our idea, from case-based reasoning, is that Zk should enable us to estimate
criterion weights for DMk, which would simplify the process of acquisition of precise
weights, enabling DMk to express his or her preferences more easily. Weighted
Euclidean distance is employed since it has a clear geometric meaning, which can
be easily understood and accepted by a DM to represent his or her aggregated
preference. The details are explained next.

7.4.2 Distance Assumptions

Given the representative case set Zk, Zk, the centroid of Zk is deemed to be a
fictitious alternative at the center of all cases assigned to the best grade. Thus,

cj

(

Zk

)

=
1

m1
k

m1
k

∑

r=1

cj

(

Zr
k

)

, (7.1)

For each j = 1, 2, ..., q, define dmax
j = max

r=1,2,...,mk

(

cj(Z
r
k) − cj(Zk)

)2
; then dmax

j is

the normalization factor for criterion j. For DMk (k = 1, 2) the distance between
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Ai ∈ A and Zk on criterion j is

dj(A
i, Zk) = dk

j (A
i) =

(

cj(A
i) − cj(Zk)

)2

dmax
j

. (7.2)

In particular, if Ai = Zr
k , then (7.2) defines dk

j (Z
r
k). For DMk (k = 1, 2) the

distance between alternatives Ai and Zk is then

Dk(A
i) = Dk(A

i, Zk) =

{

∑

j∈Q

wk
j · dk

j (A
i)

}1/2

, (7.3)

where wk = (wk
1 , w

k
2 , ..., w

k
q ) is a weight vector for DMk (later we will determine an

appropriate weight vector for DMk). Note that (7.3) defines Dk(Z
r
k) if Ai = Zr

k . It
is easy to verify that 0 ≤ Dk(A

i) ≤ 1 for k = 1, 2. Thus, the distances from Zk to
all alternatives are normalized for easy comparison.

In terms of the aggregation approach to MCDA discussed above, dk
j (A

i) is anal-
ogous to vi

j in (2.1), and Dk(A
i) is analogous to V (Ai) in (2.5) for DMk. It is

assumed that Zk is a good estimate of the ideal alternative (the most preferred al-
ternative) so that the closer Ai to Zk, the greater DMk’s preference; in other words,
smaller values of Dk(A

i) indicate greater preference. The distance of an alternative
is thus defined to be the distance between the alternative and the centroid of the
case set.

A similar idea has been used in cluster analysis: cluster membership of a datum
is determined by evaluation of a pre-defined distance between this datum and the
cluster centroid. If the DM can explicitly specify the ideal alternative, Z∗, then
Z∗ could be used instead of the centroid to measure the distances. Yet another
approach is to define the centroid of Zk to be the center of the cases assigned to
the worst grade, so that DMk’s preference increases with distance from Zk.

7.4.3 Distance Intervals for Linguistic Grades

Based on the distance definitions above and assuming a specific weight vector, a
distance interval can be assigned to Zr

k ∈ Zk based on its linguistic grade as assessed
by DMk. For example, if Zr

k is evaluated as belonging to the highest grade, i.e.
Gk(Z

r
k) = 1, then Dk(Z

r
k) ∈ [0, 1

L
]. More generally, if the linguistic grade for Zr

k

is gr
k, then Dk(Z

r
k) ∈ [

gr
k
−1

L
,

gr
k

L
] for r = 1, 2, ...,mk. Note that the gaps between

adjacent linguistic grades are represented by equal spacing. We believe this setting
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is easily understood by a DM. Of course, a DM can adjust it to fit in with his and
her instinctive preference; for example, the ordinal preference expressions discussed
in Cook and Kress (1991) could be employed for this purpose.

7.4.4 Weight Determination and Distance Construction

For j ∈ Q, the weight wk
j presents DMk’s relative importance for criterion j

compared with other criteria in the criteria set Q. Here we try to obtain wk =
(wk

1 , w
k
2 , ..., w

k
q ) by a case-based reasoning model based on the information Zk pro-

vided by DMk. The details are explained below.

Assuming that Zr
k ∈ Zk is assigned the linguistic grade Gk(Z

∗
k) = gr

k, the dis-

tance from Zk to Zr
k , Dk(Z

r
k), must satisfy Dk(Z

r
k) ∈ [

gr
k
−1

L
,

gr
k

L
], provided there are

no inconsistent judgements. So the following constraints are associated with Zr
k :

Dk(Z
r
k) + αr

k ≤ gr
k

L
; (7.4)

Dk(Z
r
k) + βr

k ≥ gr
k − 1

L
. (7.5)

where −1 ≤ αr
k ≤ 0 is an upper error bound for the DM’s inconsistent judgements

when Dk(Z
r
k) >

gr
k

L
and 0 ≤ βr

k ≤ 1 is a lower error bound for the DM’s inconsistent

judgements when Dk(Z
r
k) <

gr
k
−1

L
. Clearly, (7.4) and (7.5) are equivalent to

{

∑

j∈Q

wk
j d

k
j (Z

r
k)

}1/2

+ αr
k ≤ gr

k

L
; (7.6)

{

∑

j∈Q

wk
j d

k
j (Z

r
k)

}1/2

+ βr
k ≥ gr

k − 1

L
. (7.7)

Similarly, upper and lower error bounds exist for all alternatives in Zk, so that the

overall error in Zk can be measured as ERRk =
mk
∑

r=1

[

(−αr
k) + (βr

k)
]

.

Figure 7.1 shows the relationships between Zr
k and Zk when there are two criteria

(dimensions). The same settings are used in Figures 7.3 to 7.8. Note that in Figure
7.1, L = 4 and Zr

k is assessed at the 3rd linguistic grade (Gk(Z
r
k) = 3). Taking Zk as

the center, three concentric ellipses (depending on the weight vector, they must be
concentric circles) partition the alternative set A into four parts representing the
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Figure 7.1: Relationships Among Zr
k , A+

k and A−
k .

different linguistic grades.The broken lines continue an ellipse where the alternatives
are infeasible. As mentioned, the distances of all alternative lies between 0 and 1.
Hence, 2

4
≤ Dk(Z

r
k) ≤ 3

4
provided the judgement on Zr

k is consistent.

The following optimization model can be applied to find the most descriptive
weight vector wk for DMk.

SOR.4(α, β, k) Minimize : ERRk =
mk
∑

r=1

[

(−αr
k) + (βr

k)
]

Subject to:
{

∑

j∈Q

wk
j d

k
j (Z

r
k)

}1/2

+ αr
k ≤ gr

k

L
, −1 ≤ αr

k ≤ 0, r = 1, 2, ...,mk;

{

∑

j∈Q

wk
j d

k
j (Z

r
k)

}1/2

+ βr
k ≥ gr

k
−1

L
, 0 ≤ βr

k ≤ 1, r = 1, 2, ...,mk;

wk
j > 0,

∑

j∈Q

wk
j = 1;

Theorem 7. SOR.4(α, β, k) has at least one optimal solution.

Proof: The constraints in SOR.4(α, β, k) constitute a convex set. The objective
function ERRk is a linear additive function on this set. Based on the extreme
value theorem of advanced calculus (Fitzpatrick, 1995, page 297), the function
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ERR is continuous and the set of all possible variables is bounded, ERR attains
its minimum at least once. ¤

An indifference distance threshold, ε should be set to evaluate the error, ERRk,
generated by D(α, β, k): When ERRk ≤ ε, the error is small and can be ignored, so
the information in the case set Zk provided by DMk is considered to be consistent;
when ERRk > ε, the error cannot be ignored and there is some inconsistency in Zk.
If so, DMk should reconsider the case set Zk and the linguistic grades assigned to
it. Recall that εj is the indifference threshold on criterion j ∈ Q, which suggests an
overall indifference measure of

∑

j∈Q

1
dmax

j
(εj). However, a typical indifference distance

threshold is 1
10n

, where n is the number of alternatives in A. Therefore, a good
standard for the indifference distance threshold is ε = min{

∑

j∈Q

1
10dmax

j
(εj),

1
10n

}.

Similar to the discussion in Section 6.4.3, a DM may wish to provide information
to make the results reflect more accurately his or her intrinsic preferences, which
may be approximate, about weights for incorporation into SOR.4(α, β, k). The
imprecise preference expressions proposed by Sage and White (1984), and Eum et
al. (2001) fulfill this purpose. Some imprecise weight preference expressions are
listed below:

• Weak ranking:
w1 ≥ w2 ≥ · · · ≥ wq > 0; (7.8)

• Strict ranking:
wj − wj+1 ≥ ǫj, j ∈ Q, (7.9)

where ǫj is a small positive value;

• Difference ranking:

w1 − w2 ≥ · · · ≥ wq−1 − wq ≥ 0; (7.10)

• Fixed bounds:
Lj ≤ wj ≤ Uj, j ∈ Q, (7.11)

where Lj and Uj are lower and upper bounds for wj, respectively;

Obviously, when any of these constraints is incorporated into SOR.4(α, β, k),
the program still has at least one optimal solution.
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7.4.5 Post-optimality Analyses

Because SOR.4(α, β, k) may have multiple optimal solutions for criterion weights,
it is necessary to examine the robustness of the optimal solution via post-optimality
analyses. There are several ways to handle the existence of multiple or near optimal
solutions of SOR.4(α, β, k):

• Assuming the optimal objective value of SOR.4(α, β, k) is ERR∗, a post-
optimal analysis of wj can be carried out based on the suggestions of Jacquet-
Lagrèze and Siskos (1982) through the following programs:

SOR.4′(α, β, k, wj) Maximize : wj

Subject to:






ERR ≤ max{η, (1 + η)ERR∗},
all the constraints of SOR.4(α, β, k),
constraints (7.8) - (7.11) as applicable.

where η is a positive number.

SOR.4′′(α, β, k, wj) Minimize : wj

Subject to:






ERR ≤ max{η, (1 + η)ERR∗},
all the constraints of SOR.4(α, β, k),
constraints (7.8) - (7.11) as applicable.

Similar post-optimality analyses can be carried out for each j ∈ Q. Then the
average weight for each criterion from the procedures may be considered as
the final result This procedure is adapted from the suggestions of Jacquet-
Lagrèze and Siskos (1982).

• Another way to conduct post-optimality analysis is to employ different opti-
mization software packages, such as LINGO or Matlab, or to carry out the
optimization algorithms with different initializations to identify multiple op-
timal solutions, if any. When SOR.4(α, β, k) has multiple solutions, the DM
can select a solution which is in some way “closest” to his or her intuition —
for example, most consistent with any imprecise weight information given in
(7.8) - (7.11).
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7.4.6 Distance-based Bilateral Negotiation Support System

Based on the distance representation of preference developed above, a distance-
based negotiation support system is proposed to solve BN problems. It involves
three phases as shown in Figure 7.2: pre-negotiation, negotiation and adjustment.
In the pre-negotiation phase, the BN problem is constructed and parameters are
set as in Section 2.2. Then using the linguistic grade vector L, each DM selects a
case set Zk ∈ A (k = 1, 2) and assigns linguistic grades. During the negotiation
phase the system provides some suggested alternatives based on available preference
information from both sides. With the assistance of computer techniques, the DMs
can easily evaluate different alternatives based upon their distances, especially in
two-criterion consequence space. Interactive decision maps, developed by Lotov
et al. (2004) for MCDA, could be employed to carry out this procedure. Since
each DM’s preferences can be represented geometrically, the DMs can evaluate
alternatives (offers) and carry out negotiations.

The adjustment phase is used if the DMs appear to achieve an inefficient com-
promise; the system presents some efficient alternatives and invites the DMs to
continue the negotiation until an efficient compromise alternative is reached.

The detailed procedure follows:

(1) Construct the negotiation problem: DM1 and DM2 must determine unambigu-
ously the issue (criterion) set Q on which they are negotiating.

(2) Set the initial negotiation parameters. First DM1 and DM2 must select cmax
j ,

cmin
j and εj for each criterion j ∈ Q. Based on these settings, the alternative set,

A, can be identified and presented to DM1 and DM2. Then a set of linguistic
grades, L, to enable DMs to assess case sets, must be prepared.

(3) Acquire a case set Zk from DMk for k = 1, 2 with settings given by Gk : Zk → L.
Note that it is required that at least one case is assigned to the top grade.

(4) Compute Zk and dk
j (Z

r
k) for r = 1, 2, ...,mk and k = 1, 2 using (7.1) and (7.2).

Then for each k, apply SOR.4(α, β, k) to generate the weight vector wk and
present it to DMk privately. Check the error ERRk. If ERRk > ε, ask DMk

to repeat step (3); if ERRk ≤ ε, continue. Post-optimality analyses can also
be carried out to confirm the robustness of the results.

(5) Generate a suggested alternative set T ⊂ A and present it to DM1 and DM2

publicly. Initially, T is constructed as described in Section 7.4.7 using equal val-
ues of the acceptable distance thresholds (explained later) for both DMs. Then,

116



Phase II

Phase III

Phase IPre-negotiation

Negotiation

Adjustment

(1) Construct the negotiation 
problem

(2) Set the initial negotiation 
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alternative set T
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ERRk <    ?

(7) Check the efficiency of the 
compromise 

Figure 7.2: The Procedure of Negotiation Support System.

each DM is allowed to decrease or increase the acceptable distance threshold.
The system updates T accordingly.

(6) Represent preferences and negotiate using distances, as explained in Section
7.4.8.

(7) Check the efficiency of the compromise. If it appears to be an inefficient com-
promise, identify efficient alternatives and update T. DMs can share all weight
information, wk, for k = 1, 2, when they both agree. The negotiations may
continue until an efficient compromise alternative is found. The details are
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explained in Section 7.4.9.

7.4.7 Generating the Suggested Alternative Set

The Edgeworth box (Rudy, 2002) describes interactive trading of two individuals
trading two commodities. A procedure to generate a suggested alternative set based
on the Edgeworth box, is explained next.

Using the preferences generated from the case sets provided by DM1 and DM2,
a suggested alternative set T can be identified and presented to DM1 and DM2.
The purpose of T is to assist DM1 and DM2 to focus on reasonable alternatives,
rather than the entire alternative set A, and thereby negotiate more efficiently.
Let Ak denote an acceptable alternative set for DMk, k = 1, 2. Define the set
{Ai ∈ Ak : Dk(A

i) ≤ Yk}, where Yk is an acceptable distance threshold for DMk.
The suggested alternative set is T = A1 ∩ A2.

A natural principle of equality states that the negotiators should receive rewards
of equal value (Pruitt, 1981). Accordingly the distance of 0.5 is set as the initial
threshold for both DM1 and DM2: {Ah ∈ A1 : D1(A

h) ≤ 0.5} and {Ai ∈ A2 :
D2(A

i) ≤ 0.5}. A useful idea is that T should contain a few distinctive alternatives
for DMs to compare. We recommend that 8 ≤ |T| ≤ 10, based on Miller (1956)’s
famous observation that people can best handle comparisons around seven plus
or minus two items. The following procedure produces a suitable T based on
Y1 = Y2 = 0.5:

(1) When 8 ≤ |A1 ∩ A2| ≤ 10, |T| = A1 ∩ A2 as shown in Figure 7.3.

(2) When |A1 ∩A2| < 8, Y1 and Y2 are reset as Y1 = Y2 = p1 > 0.5, to increase
|A1 ∩ A2|, as shown in Figure 7.4.

(3) When |A1∩A2| > 10, Y1 and Y2 are reset as Y1 = Y2 = p2 < 0.5, to decrease
8 ≤ |A1 ∩ A2|, as shown in Figure 7.5.

7.4.8 Representing Preferences and Negotiating Using Dis-
tances

A DM’s preferences over alternatives are represented as distances from his or her
ideal point. This allows the DM to more easily evaluate the counter-offers and
adjust his or her offers as the negotiation proceeds, improving negotiation efficiency.
For example, at a deadlock in the negotiation, the system can identify all non-
dominated alternatives and present them to DMs, thereby helping them to break
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Figure 7.4: Obtaining Alternatives When |A1 ∩ A2| < 8.

the deadlock. Also, DMk can revise his or her acceptable alternative set, Ak,
individually by increasing or decreasing the acceptable distance threshold, Yk. The
system then updates the suggested alternative set, T and presents it to the DMs.
Because preferences are represented as geometric distances from ideal points, DMs
can more easily negotiate and reach a compromise. Figure 7.6 demonstrates this
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7.4.9 Checking the Efficiency of the Compromise

After a compromise alternative, A∗, is agreed upon by DM1 and DM2, the system
can check its efficiency. If A∗ is inefficient, the system can identify efficient alter-
natives and update T. The negotiation may continue until an efficient compromise
alternative is found. Let D∗

k denote the distance of A∗ for DMk (k = 1, 2). The
detailed procedure for checking the efficiency A∗ and updating T is as follows:

(1) When min{D1(A
h) : D2(A

h) ≤ D∗
2} ≥ D∗

1 and min{D2(A
i) : D1(A

h) ≤
D∗

1} ≥ D∗
2, A∗ is an efficient alternative, as shown in Figure 7.7.
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Figure 7.7: A∗ is An Efficient Alternative.

(2) When min{D1(A
h) : D2(A

h) ≤ D∗
2} < D∗

1 and min{D2(A
i) : D1(A

h) ≤
D∗

1} < D∗
2, A∗ is not efficient. Here, T can be reset as T = {Ah : D1(A

h) <
D∗

2} ∩ {Ai : D2(A
i) < D∗

1}, as shown in Figure 7.8. The updated T is presented to
the negotiators to assist them to reach an efficient alternative.

7.5 Case Study: A Bicycle Component Negotia-

tions

7.5.1 Background

A case study similar to the Itex-Cypress negotiation example in Inspire (Kersten,
2004) is designed to demonstrate the algorithms described above. Two decision
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Figure 7.8: A∗ is An Inefficient Alternative.

makers, DM1 and DM2, are negotiating the purchase of bicycle components. Both
sides agree to negotiate over four criteria: price (dollars), quantity, delivery (days),
and warranty (years).

7.5.2 Initial Parameter Settings

Assume that DM1 and DM2 agree upon the initial parameter settings as listed
in Table 7.1, which include the lowest and highest consequence values for each
criterion and the indifference threshold εj, for j = 1, 2, 3, 4, as shown in Table 7.1.

Table 7.1: Negotiation Initial Settings

cmin
j cmax

j εj

Price 10 16 2

Quantity 500 560 20

Delivery 20 40 10

Warranty 1 3 1

Based on this information, the number of consequence values on the first cri-
terion, price is n1 = 1 + 1

2
(16 − 10) = 4. Similarly, n2 = 4, n3 = 3, n4 = 3.

The total number of feasible alternatives is n = n1 · n2 · n3 · n4 = 144. The vector
(

c1(A), c2(A), c3(A), c4(A)
)

is used to represent alternative A ∈ A, where cj(A)
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for j = 1, 2, 3, 4 denotes the consequence value of A on criterion j. For example,
(10, 500, 20, 3) represents an alternative with price of $10, quantity of 500, delivery
of 20 days and warranty of 3 years.

7.5.3 Case Set Acquisition and Computations for DM1

A linguistic grade set L = {1, 2, 3}, representing {good, fair, poor}, is used to assist
DMs to evaluate alternatives in their case sets. Suppose that DM1 provides the
case set, Z1, provided in Table 7.2. Table 7.2 also shows the consequence values
defining Z1, the centroid of the top set.

Table 7.2: The Case Set Provided by DM1

Good Centroid Fair Poor

Z1 Z1
1 Z2

1 Z3
1 Z1 Z4

1 Z5
1 Z6

1 Z7
1

Price 10 12 12 11.3333 12 14 16 14

Quantity 540 520 500 520 520 540 540 540

Delivery 20 20 30 23.3333 40 30 30 40

Warranty 3 2 2 2.3333 1 2 1 2

Then the normalized distances are computed using (7.2) and the results are
listed in Table 7.3.

Table 7.3: Normalized Distances for DM1

Good Fair Poor

Z1 Z1
1 Z2

1 Z3
1 Z4

1 Z5
1 Z6

1 Z7
1

Price 0.0816 0.0204 0.0204 0.0204 0.3265 1.0000 0.3265

Quantity 0.2500 0.0000 0.2500 0.0000 0.2500 0.2500 0.2500

Delivery 0.0400 0.0400 0.1600 1.0000 0.1600 0.1600 1.0000

Warranty 0.2500 0.0625 0.0625 1.0000 0.0625 1.0000 0.0625

For illustration, suppose that DM1 provides the imprecise weight information
as follows: for j = 1, 2, 3, 4, 0.1 ≤ w1

j ≤ 0.9. These constraints guarantee that each
criterion has at least some relevance in the negotiation. The optimization program,
SOR.4(α, β, 1), is applied to find w1 for DM1.

Minimize : ERR1 = −(α1
1)− (α2

1)− (α3
1)− (α4

1)− (α5
1) + (β4

1) + (β5
1) + (β6

1) + (β7
1)
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Subject to:

{0.0816w1
1 + 0.2500w1

2 + 0.0400w1
3 + 0.2500w1

4}1/2 + α1
1 ≤ 1/3;

{0.0204w1
1 + 0.0400w1

3 + 0.0625w1
4}1/2 + α2

1 ≤ 1/3;

{0.0204w1
1 + 0.2500w1

2 + 0.1600w1
3 + 0.0625w1

4}1/2 + α3
1 ≤ 1/3;

{0.0204w1
1 + w1

3 + w1
4}1/2 + α4

1 ≤ 2/3;

{0.0204w1
1 + w1

3 + w1
4}1/2 + β4

1 ≥ 1/3;

{0.3265w1
1 + 0.2500w1

2 + 0.1600w1
3 + 0.0625w1

4}1/2 + α5
1 ≤ 2/3;

{0.3265w1
1 + 0.2500w1

2 + 0.1600w1
3 + 0.0625w1

4}1/2 + β5
1 ≥ 1/3;

{w1
1 + 0.2500w1

2 + 0.1600w1
3 + w1

4}1/2 + β6
1 ≥ 2/3;

{0.3265w1
1 + 0.2500w1

2 + w1
3 + 0.0625w1

4}1/2 + β7
1 ≥ 2/3;

−1 ≤ α1
1 ≤ 0; −1 ≤ α2

1 ≤ 0; −1 ≤ α3
1 ≤ 0; −1 ≤ α4

1 ≤ 0; −1 ≤ α5
1 ≤ 0;

0 ≤ β4
1 ≤ 1; 0 ≤ β5

1 ≤ 1; 0 ≤ β6
1 ≤ 1; 0 ≤ β7

1 ≤ 1;

0.1 ≤ w1
1 ≤ 0.9; 0.1 ≤ w1

2 ≤ 0.9; 0.1 ≤ w1
3 ≤ 0.9; 0.1 ≤ w1

4 ≤ 0.9;

w1
1 + w1

2 + w1
3 + w1

4 = 1;

The results of SOR.4(α, β, 1), are ERR1 = 0 and w1 = (0.5743, 0.1000, 0.2257,
0.1000), which were found using Lingo (2005). Note that the error can be ignored.

7.5.4 Post-optimality Analyses for DM1

Based upon the first method described in Section 3.4, post-optimality analysis for
DM1 was carried out according to the following steps:

• The post-optimality programs, SOR.4′(α, β, 1, wj) and SOR.4′′(α, β, 1, wj)
were formulated for each criterion weight, w1

j . The small positive number, η,
was set as 1

n
= 1

144
≈ 0.0069. The results are listed in Table 7.4.

• From Table 7.4, it is easy to see that the initial optimal solution (row 1)
and the average values of the post-optimality analyses (last row) are close,
though small variations exist. We conclude that there is no good reason to
doubt the results of the program SOR.4(α, β, 1). Based upon the average
values of weights, the distances of all 144 alternatives in A were determined.
To save space, we show in Figure 7.9 only the numbers and proportions of
alternatives in the three linguistic grades.
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Table 7.4: Post-optimality Analyses and Final Solutions DM1

Criterion weights

w1
1 w1

2 w1
3 w1

4

Initial solution 0.5743 0.1000 0.2257 0.1000

max(w1
1) 0.5879 0.1000 0.2121 0.1000

min(w1
1) 0.3855 0.1779 0.3366 0.1000

max(w1
2) 0.3977 0.1820 0.3203 0.1000

min(w1
2) 0.5860 0.1000 0.2126 0.1014

max(w1
3) 0.3937 0.1606 0.3457 0.1000

min(w1
3) 0.5879 0.1000 0.2121 0.1000

max(w1
4) 0.4650 0.1000 0.2663 0.1686

min(w1
4) 0.5863 0.1015 0.2123 0.1000

Average 0.5072 0.1247 0.2604 0.1078

Z1Z1 .

1/30 2/3 1

Good
20 (13.89%)

Fair
74 (51.39%)

Poor
50 (34.72%)

Figure 7.9: The Proportions of Different Alternatives for DM1.

7.5.5 Case Set Acquisition and Computations for DM2

Similar procedures are carried out for DM2, assuming that DM2 provides the case
set, Z2, listed in Table 7.5. The normalized distances are listed in Table 7.6.

Table 7.5: The Case Set Provided by DM2

Good Centroid Fair Poor

Z2 Z1
2 Z2

2 Z3
2 Z2 Z4

2 Z5
2 Z6

2 Z7
2

Price 14 16 16 15.3333 12 14 10 12

Quantity 540 560 540 546.6667 520 540 520 500

Delivery 40 40 30 36.6667 20 30 30 20

Warranty 2 1 2 1.6667 2 1 3 2

Similarly, imprecise weight information is assumed as follows: for j = 1, 2, 3, 4,
0.1 ≤ w2

j ≤ 0.9. The optimization program, SOR.4(α, β, 2), is applied to find w2
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Table 7.6: Normalized Distances for DM2

Good Fair Poor

Z2 Z1
2 Z2

2 Z3
2 Z4

2 Z5
2 Z6

2 Z7
2

Price 0.0625 0.0156 0.0156 0.3906 0.0625 1.0000 0.3906

Quantity 0.0204 0.0816 0.0204 0.3265 0.0204 0.3265 1.0000

Delivery 0.0400 0.0400 0.1600 1.0000 0.1600 0.1600 1.0000

Warranty 0.0625 0.2500 0.0625 0.0625 0.2500 1.0000 0.0625

for DM2.

Minimize : ERR2 = −(α1
2)− (α2

2)− (α3
2)− (α4

2)− (α5
2) + (β4

2) + (β5
2) + (β6

2) + (β7
2)

Subject to:

{0.0625w2
1 + 0.0204w2

2 + 0.0400w2
3 + 0.0625w2

4}1/2 + α1
2 ≤ 1/3;

{0.0156w2
1 + 0.0816w2

2 + 0.0400w2
3 + 0.2500w2

4}1/2 + α2
2 ≤ 1/3;

{0.0156w2
1 + 0.0204w2

2 + 0.1600w2
3 + 0.0625w2

4}1/2 + α3
2 ≤ 1/3;

{0.3906w2
1 + 0.3265w2

1 + w2
3 + 0.0625w2

4}1/2 + α4
2 ≤ 2/3;

{0.3906w2
1 + 0.3265w2

1 + w2
3 + 0.0625w2

4}1/2 + β4
2 ≥ 1/3;

{0.0625w2
1 + 0.0204w2

2 + 0.1600w2
3 + 0.2500w2

4}1/2 + α5
2 ≤ 2/3;

{0.0625w2
1 + 0.0204w2

2 + 0.1600w2
3 + 0.2500w2

4}1/2 + β5
2 ≥ 1/3;

{w2
1 + 0.3265w2

2 + 0.1600w2
3 + w2

4}1/2 + β6
2 ≥ 2/3;

{0.3906w2
1 + w2

2 + w2
3 + 0.0625w2

4}1/2 + β7
2 ≥ 2/3;

−1 ≤ α1
1 ≤ 0; −1 ≤ α2

1 ≤ 0; −1 ≤ α3
1 ≤ 0; −1 ≤ α4

1 ≤ 0; −1 ≤ α5
1 ≤ 0;

0 ≤ β4
1 ≤ 1; 0 ≤ β5

1 ≤ 1; 0 ≤ β6
1 ≤ 1; 0 ≤ β7

1 ≤ 1;

0.1 ≤ w1
1 ≤ 0.9; 0.1 ≤ w1

2 ≤ 0.9; 0.1 ≤ w1
3 ≤ 0.9; 0.1 ≤ w1

4 ≤ 0.9;

w1
1 + w1

2 + w1
3 + w1

4 = 1;

The results are ERR2 = 0 and w2 = (0.1000, 0.4489, 0.1898, 0.2613), and again
the error can be ignored. Similar post-optimality analyses were carried out and
the average values for the weights are obtained as: (0.2719, 0.2573, 0.1898, 0.2810).
The details are omitted. Based upon this information, the distances of all 144
alternatives in A for DM2 were generated and the numbers and proportions in
three linguistic grades were found to be as shown in Figure 7.10.
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Z2Z2 .

1/30 2/3 1

Good
12 (8.33%)

Fair
79 (54.86%)

Poor
53 (36.81%)

Figure 7.10: The Proportions of Different Alternatives for DM2.

7.5.6 Generating Suggested Alternative Set

A suggested alternative set T can be presented to DM1 and DM2 as worthwhile
alternatives for negotiation. When Y1 = Y2 = 0.5, |A1 ∩ A2| = 7, so Y1 = Y2 =
0.5555 was used, yielding |A1 ∩ A2| = 9 as shown in Table 7.7.

Table 7.7: Initial Suggested Alternative Set T

Price Quantity Delivery Warranty
T 1 12 520 30 1
T 2 12 520 30 2
T 3 12 540 30 1
T 4 12 540 30 2
T 5 12 560 30 2
T 6 14 520 30 2
T 7 14 540 20 2
T 8 14 540 30 2
T 9 14 560 20 2

7.5.7 Checking the Efficiency of the Compromise Alterna-
tive

Assume DM1 and DM2 find a compromise alternative, (12, 520, 30, 1), where the
distance for DM1 is 0.3997 and the distance for DM2 is 0.5393. Hence, DM1

seems to have more negotiation advantages than DM2. This compromise may not
be efficient, since some alternatives dominating it can be identified based on the
calculated distances. Accordingly, T is then updated as given in Table 7.8. The
negotiators are invited to negotiate within this suggested alternative set, where a
better compromise may be found.

DM1 and DM2 may finally reach an efficient compromise alternative (12, 540,
30, 2), where the distance for DM1 decreases from 0.3997 to 0.2999 and the distance
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Table 7.8: Updated Suggested Alternative Set T

Price Quantity Delivery Warranty
T 1 12 520 30 2
T 2 12 540 30 2

for DM2 decreases from 0.5393 to 0.3993. Notice that compared with the previous
compromise, the quantity increases from 520 to 540 and the warranty increases
from 1 year to 2 years. Both DMs benefit from this shift.

7.6 Conclusions

Bilateral negotiations are studied within the context of multiple criteria decision
analysis within this chapter. A case-based distance model is developed to assist
negotiators to reach an efficient compromise. Based on weighted Euclidean distance,
an optimization program is employed to generate descriptive criterion weights by
assessing case sets provided and rated by each individual. Then, a negotiator’s
preference for each alternative can be represented as the distance from an ideal
alternative. A negotiation support system using these distances is designed to
assist negotiators in eventually reaching an efficient compromise. A case study is
presented to illustrate how the proposed negotiation procedure can work in practice.
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Chapter 8

Multiple Criteria Nominal
Classification

8.1 Introduction

A new kind of MCDA problem, multiple criteria nominal classification (MCNC),
is studied in this chapter. Traditional classification methods in MCDA focus on
sorting alternatives into groups ordered by preference. MCNC is the classification
of alternatives into nominal groups, structured by the DM, who specifies multiple
characteristics for each group. Starting with illustrative examples, the features,
definition and structures of MCNC are presented, emphasizing criterion and alter-
native flexibility. Then, an analysis procedure is proposed to solve MCNC prob-
lems systematically. Assuming additive value functions, an optimization model
with constraints that incorporate various classification strategies is constructed to
solve MCNC problems. An application of MCNC in water resources planning is
carried out and some future extensions are suggested. The research contained in
this chapter is founded by the work of Chen et al. (2006).

8.2 Motivation

An important variant on screening or sorting problems is the classification of al-
ternatives into nominal groups, as opposed to groups ordered by preference. Such
an extension has both theoretical interest and practical applicability. For example,
in human resources management, job applicants must be assigned to appropri-
ate jobs, or rejected, according to their multiple qualifications (criteria). Further
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evaluations may refine an initial assignment. We call this problem Multiple Crite-
ria Nominal Classification (MCNC) to distinguish it from the standard (ordered)
sorting problem, Multiple Criteria Sorting. Other applications of MCNC include
business management, environmental management and resource allocation.

So far as we know, traditional MCDA methods do not address MCNC problems
efficiently and would not be suitable without modifications. Only a few published
papers, such as those by Malakooti and Yang (2004); Perny (1998); Scarelli and
Narula (2000) are relevant to MCNC. They apply outranking methods to solve
special types of MCNC problems, but give no systematic analysis. Many issues
remain to be investigated; for example, there has been no detailed discussion of the
relationship between alternatives and nominal groups. In this thesis, a systematical
analysis procedure is proposed to help the DM to better understand and solve
MCNC problems. Also, we believe our work will enrich research in the MCDA area
and inspire more research on multiple criteria nominal classification topics.

8.3 Features, Definition, Structures, and Proper-

ties of MCNC

8.3.1 Illustrative Examples of MCNC

It is easiest to explain MCNC using an example.

Example 1. An industrial company needs to recruit employees for positions in re-
search and development, and technical support. The Human Resources Department
received ten applications expressing interest in both positions. To improve his de-
cision making, the manager decides to assign the applicants to two groups, those
suitable for research development positions, and those suitable for technical sup-
port. He uses the following criteria to evaluate applicants for each group as shown
in Figure 8.1.

Based on the above criteria, the ten applicants, {A1, A2, ..., A10} are evaluated
and classified as shown in Figure 8.2, where A denotes the set of all applicants,
A1 the set of applicants suitable for research and development, and A2 the set of
applicants suitable for technical support. Note that the manager wants to screen out
less qualified applicants and may (temporarily) assign highly qualified applicants to
both positions. So A4 does not appear in either group, while A6 and A10 appear in
both.
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Research & 
Development

Background Personality Experience

(a) Criteria Set: Research and Development

Technical 
Support

Background Personality Communi-
cation Skills

(b) Criteria Set: Technical Support

Figure 8.1: Criteria Sets for the Two Groups

Alternatives
A: { A1, A2, A3, A4, A5,
A6, A7, A8, A9, A10 }

Research & Development
A1: {A2, A3, A6, A9, A10 }

Technical Support
A2: {A1, A5, A6, A7, A8 , A10}

Figure 8.2: The Classification of Ten Applicants

Example 2. In water resources management, three groups of rivers and lakes can be
defined for development planning: reserved for drinking water, reserved for wildlife
refuge, and reserved for tourism. Some rivers or lakes may be such important
resources that they are assigned to more than one group, while others may have
only one assignment, or none.

8.3.2 Features of MCNC

Unlike other problems in MCDA, MCNC has the following unique features:
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Criterion Flexibility for Groups

In traditional MCDA problems, all alternatives are evaluated according to the same
criteria. This is not necessarily the case for MCNC problems, where it may not
be appropriate to apply the same criteria set to different groups. In Example 1,
some criteria like Background and Personality apply to both groups, while others
like Experience and Communication Skills are special requirements for particular
groups. Thus, MCNC can be regarded as a multiple-MCDA problem in which a set
of alternatives is to be organized into groups; each group is its own MCDA problem,
with its own criteria. Of course, some criteria may be common across groups, while
others are unique to particular groups.

Alternative Flexibility for Groups

Unlike sorting problems in which each alternative belongs to only one group, in
MCNC problems some alternatives may be assigned to more than one group and
some may not be assigned to any group.

8.3.3 Preliminary Definitions

Let P = (pi
j)n×m be an n × m matrix. Denote the transpose of P by P T . Let the

row m-vector P i denote the ith row of P . Regarding P as a column of n (row) m-
vectors, we write P = (P 1, P 2, ..., P i, ..., P n)T . Let the column n-vector Pj indicate
the jth column of P. Similarly, P can be regarded as a row of m (column) n-vectors,
and can be written as P = (P1, P2, ..., Pj , ..., Pm). Let Im = (1, 1, ..., 1)T be the
identity column m-vector. For a row m-vector A = (a1, a2, ..., ai, ..., am), and a
column m-vector B = (b1, b2, ..., bi, ..., bm)T , 〈A,B〉 =

∑m
i=1 ai · bi denotes the dot

product (scalar product or inner product) of A and B. Finally, define eg as the row
m-vector with 1 in the gth position and 0 elsewhere.

8.3.4 Definition and Structures of MCNC

First a formal definition of MCNC is proposed.

Multiple Criteria Classification: Definition

Definition 11. Multiple Criteria Nominal Classification (MCNC) is the assign-
ment of a finite set of alternatives to nominally defined groups (subsets). Condi-
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tions for group membership are based on sets of criteria that may overlap. Any
alternative may be assigned to one, several, or no groups.

Alternatives

A:{A1, A2, ...,  Ai, ..., An}

Q1 QmQg... ...

... ... AmA1 Ag

Criteria for each group

Alternatives assigned to each group

Figure 8.3: The Structures of MCNC

Figure 8.3 shows the structure of MCNC with the following notation: A =
{A1, A2, ..., Ai, ..., An} denotes the alternative set, and |A| = n. Let Ag denote the
gth nominal group, 1 ≤ g ≤ m, where m is the total number of nominal groups.
We assume that n ≥ m, which fits most practical applications. Let Q denote the
set of criteria covering all groups, and |Q| = q. Let Qg denote the subset of criteria
for nominal group g, 1 ≤ g ≤ m. We assume that Q = Q1 ∪ Q2 ∪ ... ∪ Qm, which
means that all criteria not applicable to any group are discarded.

In Example 1, the alternative set A = {A1, A2, ..., A10} consists of the job can-
didates; A1 denotes the candidates for the research and development position, A2

denotes the candidates for the technical support position. In the typical solution,
A1 = {A2, A3, A6, A9, A10} and A2 = {A1, A5, A6, A7, A8, A10}. The criteria set is
Q = {B,P,E,C}, where B,P,E,C correspond to the criteria Background, Per-
sonality, Experience, and Communication Skills respectively. As shown in Figure
8.1, Q1 = {B,P,E} and Q2 = {B,P,C}.

MCNC Criterion Structure

For j = 1, 2, ..., q and g = 1, 2, ...,m, rj
g is an indicator variable indicating whether

criterion j applies to group Ag,

rj
g =

{

1, if j ∈ Qg;
0, if j 6∈ Qg.

(8.1)
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R =
(

rj
g

)

q×m
defines the MCNC criterion structure, and therefore represents the

MCNC problem. Note that the row index j = 1, 2, ..., q refers to criteria, and the
column index g = 1, 2, ...,m refers to groups. Rj, the jth row of R, indicates the
group affiliation of criterion j, i.e. the groups to which criterion j applies. Rg, the
gth column of R, indicates the criteria that apply to Ag. The number of criteria
associated with group Ag is denoted qg, g = 1, 2, ...,m. (Note that 0 < qg ≤ q,
since typically only a few criteria in Q may apply to any group.). In Example 1,

R =









1 1
1 1
1 0
0 1









, R1 =









1
1
1
0









, R2 =









1
1
0
1









,

R1 = (1, 1), R2 = (1, 1), R3 = (1, 0), R4 = (0, 1), q1 = q2 = 3, and q = 4.

MCNC Alternative Structure

For i = 1, 2, ..., n and g = 1, 2, ...,m, si
g is an indicator variable indicating whether

alternative Ai belongs to group Ag:

si
g =

{

1, if Ai ∈ Ag;
0, if Ai 6∈ Ag.

(8.2)

Thus, S =
(

si
g

)

n×m
is the solution of an MCNC problem with criterion structure

R. Note that the row index i = 1, 2, ..., n refers to alternatives and the column
index g = 1, 2, ...,m to groups.

Note that for a classification problem of n alternatives and m groups, the number
of mathematically possible solutions is 2mn (when there are no constraints). Si, the
ith row of S, indicates the group affiliations of alternative Ai, while Sg, the gth

column of S is the alternative structure for group Ag. The number of alternatives
in group Ag is denoted by ng, g = 1, 2, ...,m. (Note that 0 ≤ ng ≤ n, since typically
each group contains some but not all alternatives in A.)

In Example 1, S =

































0 1
1 0
1 0
0 0
0 1
1 1
0 1
0 1
1 0
1 1

































, S1 =

































0
1
1
0
0
1
0
0
1
1

































, S2 =

































1
0
0
0
1
1
1
1
0
1

































,
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S1 = (0, 1), S2 = (1, 0), S3 = (1, 0), S4 = (0, 0), S5 = (0, 1), S6 = (1, 1), S7 = (0, 1),
S8 = (0, 1), S9 = (1, 0), S10 = (1, 1), n1 = 5 and n2 = 6.

8.3.5 Properties of MCNC

Criterion Overlap Properties

The following definitions formalize the property of criterion flexibility.

(1) Criterion Overlap

In MCNC, R = (rj
g)q×m, is an overlapping criterion classification for criterion

j, where j = 1, 2, ..., q, iff 〈Rj, Im〉 > 1. If R is not overlapping for any j, it is a
non-overlapping criterion classification.

In Example 1, 〈R1, I2〉 = 2, 〈R2, I2〉 = 2, 〈R3, I2〉 = 1, 〈R4, I2〉 = 1, so criteria 1
and 2 are shared by both groups and criteria 3 and 4 apply uniquely to groups 1
and 2, respectively. Thus, Example 1 is an overlapping classification for criteria 1
and 2.

(2) Identity of Criteria

Groups g and h have identical classification criteria iff Rg = Rh 6= 0, where
g, h ∈ {1, 2, ...,m}, g 6= h, and 0 is the column vector of all 0’s. Clearly, if there are
two groups with identical classification criteria, the classification is an overlapping
criteria classification for at least one criterion j. An MCNC has completely identical
classification criteria iff Rg = Rh for all groups g and h. In Example 1, R1 6= R2,
so R does not have identical classification criteria for groups 1 and 2. Note that
two group with identical classification criteria are generally different in criterion
weights, in other words, the DM may have different weights for the same criterion
in different groups.

(3) Degree of Criterion Overlap

The degree of criterion overlap, do
r for an MCNC, R, is defined as follows:

do
r =

∑

g,h∈{1,2,...,m}; g 6=h

〈

RT
g , Rh

〉

q · m · (m − 1)
, (8.3)

where 0 ≤ do
r ≤ 1. If do

r = 0, then R = (rj
g)q×m, is a non-overlapping criterion

classification. If do
r > 0, then R is an overlapping criterion classification for at least

one criterion. If do
r = 1, then R has completely identical classification criteria.

135



In general, greater values of do
r indicate higher levels of overall criteria overlap.

In Example 1, do
r =

〈RT
1 , R2〉+〈RT

2 , R1〉

q·m·(m−1)
=

2
〈

(1,1,1,0), (1,1,0,1)T

〉

4·2·1
= 4

8
= 0.5, which implies

that half of the criteria are shared.

(4) Maximum Number of Groups for a Criterion

The maximum number of groups for a criterion in an MCNC, no
r is defined as

follows
no

r = max
j=1,2,...,q

〈Rj, Im〉. (8.4)

In Example 1, no
r = max

{

〈

(1, 1), (1, 1)T
〉

,
〈

(1, 1), (1, 1)T
〉

,
〈

(1, 0), (1, 1)T
〉

,
〈

(1, 0),

(1, 1)T
〉

}

= max{2, 2, 1, 1} = 2, so the maximum overlap is 2, achieved by criteria

1 and 2.

(5) Criterion Correlation Between Groups

The criterion correlation of groups g and h (g, h ∈ {1, 2, ...,m}, g 6= h) for an
MCNC is ρr

gh and defined as follows

ρr
gh =

〈RT
g , Rh〉

〈

(Rg − Rh)T , (Rg − Rh)
〉

+ 〈RT
g , Rh〉

. (8.5)

Clearly, ρr
gh = ρr

hg and 0 ≤ ρr
gh ≤ 1. If ρr

gh = 0, group g and h have no overlapping
criteria. If ρr

gh > 0, groups g and h have overlap on at least one criterion. If ρr
gh = 1,

groups g and h have the same criteria set.

The average criterion correlation for Q is defined as

ρr
Q =

∑

g,h=1,2,...,m; g 6=h

ρr
gh

m · (m − 1)
, (8.6)

where 0 ≤ ρr
Q ≤ 1. If ρr

Q = 0, then R is a non-overlapping criterion classification.
If ρr

Q > 0, R is an overlapping criterion classification for at least one criterion. If
ρr
Q = 1, R has completely identical classification criteria.

In general, greater values of ρr
Q indicate higher overall criterion overlap. In

Example 1, ρr
12 = ρr

21 =

〈

(1,1,1,0),(1,1,0,1)T

〉

〈(

(1,1,1,0)−(1,1,0,1)
)

,
(

(1,1,1,0)−(1,1,0,1)
)T〉

+
〈

(1,1,1,0),(1,1,0,1)T

〉 =

2
4

= 0.5. Since there are only two groups, do
r = ρr

gh = ρr
Q = 0.5.
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Alternative Overlap Properties

Similar definitions formalize the properties of alternative flexibility.

(1) Alternative Overlap

In MCNC, R is an overlapping alternative classification for alternative i ∈
{1, 2, ..., n} iff 〈Si, Im〉 > 1, where Si is ith row of S. If R is not overlapping
for any i, it is a non-overlapping alternative classification.

In Example 1, 〈S6, Im〉 = 〈S10, Im〉 =
〈

(1, 1), (1, 1)T
〉

= 2, so alternative 6 and
10 are assigned to both groups. Therefore, Example 1 is an overlapping alternative
classification for alternatives 6 and 10.

(2) Identity of Groups

Groups g and h are identical classifications iff Sg = Sh 6= 0, where g, h ∈
{1, 2, ...,m}, g 6= h and 0 is the column vector of all 0’s. Clearly, if there are
two groups with identical classification alternatives, R is an overlapping alternative
classification for at least one alternative. R is a completely identical classification
iff Sg = Sh for all groups g and h. In Example 1, S1 6= S2, so R does not exhibit
any identical classification.

(3) Average Degree of Alternative Overlap

The average degree of alternatives overlap, do
s, is defined as

do
s =

∑

g,h=1,2,...,m; g 6=h

〈

ST
g , Sh

〉

n · m · (m − 1)
, (8.7)

where 0 ≤ do
s ≤ 1. If do

s = 0, then R, is a non-overlapping alternative classification.
If do

s > 0, then R is an overlapping classification for some alternatives. If do
s = 1,

then R is a completely identical classification.

In general, greater values of do
s indicate high levels of alternative overlap. In

Example 1,

do
s =

〈ST
1 ,S2〉+〈ST

2 ,S1〉

n·m·(m−1)
=

2
〈

(0,1,1,0,0,1,0,0,1,1), (1,0,0,0,1,1,1,1,0,1)T

〉

10·2·1
= 0.2.

(4) Maximum Number of Groups for An Alternatives

The maximum number of groups for an alternative for an MCNC, no
s, is defined

as
no

s = max
i=1,2,...,n

〈Si, Im〉. (8.8)
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In Example 1, no
s = max

{

〈

(0, 1), (1, 1)T
〉

,
〈

(1, 0), (1, 1)T
〉

,
〈

(1, 0), (1, 1)T
〉

,
〈

(0, 0),

(1, 1)T
〉

,
〈

(0, 1), (1, 1)T
〉

,
〈

(1, 1), (1, 1)T
〉

,
〈

(0, 1), (1, 1)T
〉

,
〈

(0, 1), (1, 1)T
〉

,
〈

(1, 0),

(1, 1)T
〉

,
〈

(1, 1), (1, 1)T
〉

}

= max{1, 1, 1, 0, 1, 2, 1, 1, 1, 2} = 2, so the maximum over-

lap is 2, which is achieved by alternatives 6 and 10.

(5) Complete Classification of Alternatives

In MCNC, R is a complete classification of alternatives iff 〈Si, Im〉 ≥ 1, for all
alternatives i = 1, 2, ..., n. Otherwise, R is an incomplete classification of alterna-
tives. In Example 1, 〈S4, Im〉 = 0, so Example 1 is an incomplete classification of
alternatives.

(6) Alternative Deficiency Degree

First M i, i = 1, 2, ..., n, an indicator variable, is defined as

M i =

{

1, if Ai belongs to at least one group;
0, if Ai does not belong to any group.

(8.9)

Thus, M i = maxm
g=1 si

g.

Then the degree of alternative deficiency, dd
s, is defined as follows.

dd
s = 1 −

∑

i=1,2,...,n

M i

n
, (8.10)

where n is the size of the alternative set A. Here, 0 ≤ dd
s ≤ 1. If dd

s = 0, then
R is a complete classification of alternatives. If dd

s > 0, then R is an incomplete
classification of alternatives.

In general, greater values of dd
s indicate more unassigned alternatives. In Ex-

ample 1, M1 = M2 = M3 = M5 = M6 = M7 = M8 = M9 = M10 = 1, M4 = 0,

dd
s = 1 −

∑10
i=1 M i

10
= 0.1.

(7) Correlation of Alternatives Across Groups

In an MCNC, the correlation of alternatives of groups g and h (g, h ∈ {1, 2, ...,m},
g 6= h) is ρs

gh, and defined as follows

ρs
gh =

〈ST
g , Sh〉

〈

(Sg − Sh)T , (Sg − Sh)
〉

+ 〈ST
g , Sh〉

. (8.11)

Clearly, ρs
gh = ρs

hg and 0 ≤ ρs
gh ≤ 1. If ρs

gh = 0, groups g and h have no overlapping
alternatives. If ρs

gh > 0, groups g and h have at least one overlapping alternative.
If ρs

gh = 1, groups g and h are identical classifications.
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In general, greater values indicate higher overlap between two groups. Moreover,
the average alternative correlation within A is defined as

ρs
A =

∑

g,h=1,2,...,m; g 6=h

ρs
gh

m · (m − 1)
, (8.12)

where 0 ≤ ρs
A ≤ 1. If ρs

A = 0, R has no overlapping alternatives. If ρs
A > 0, R is an

overlapping alternatives classification for at least one alternative. If ρs
A = 1, then

R is a completely identical classification.

In general, greater values of ρs
A indicate higher overall alternative overlap. In

Example 1, ρs
12 = ρs

21 =
〈ST

1 ,S2〉
〈

(S1−S2)T , (S1−S2)
〉

+〈ST
1 ,S2〉

= 2
8+2

= 0.2. Since there are only

two groups, do
s = ρs

gh = ρs
A = 0.2.

8.3.6 Types of Classification

Based on alternative flexibility features, four types of multiple criteria classification
can be distinguished, as shown in Table 8.1.

Table 8.1: MCNC Problems Classification

NOVLP OVLP
CMPL MCNC1 MCNC2

INCMPL MCNC3 MCNC4

MCNC1 is an MCNC situation with non-overlapping alternatives classification
(NOVLP) and complete classification of alternatives (CMPL). In this type of clas-
sification, each alternative is assigned to one group only. For example, in a sport
competition each athlete may be constrained to participate in exactly one sport.

MCNC2 is an MCNC problem with overlapping alternatives classification (OVLP)
and CMPL. This type of classification requires each alternative to be assigned to
at least one group. For instance, each athlete on the team can take part in one or
more sports (so that excellent athletes may compete in more than one sport).

MCNC3 is an MCNC situation with NOVLP and incomplete classification of
alternatives (INCMPL). This type of classification refers to the assignment of each
alternative to at most one group. For example, there may be a regulation that an
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athlete can compete in only one sport, and some athletes may not be assigned to
any sport.

MCNC4 is an MCNC problem with OVLP and INCMPL. In this type of clas-
sification, one alternative to be assigned to more than one group, while another
alternative may not belong to any group. For example, good athletes may repre-
sent a team in more than one competition, and weak athletes in none.

8.4 MCNC Analysis Procedure

8.4.1 Analysis Procedure for MCNC

A systematic procedure to analyze MCNC problems is shown in Figure 8.4. It
includes the following steps.

• Identify the alternatives set A: The alternative set A must be identified at
the start.

• Construct the groups and their criteria sets: Find Q and R.

• Post-Criteria Assessment: Some indices, like the degree of criteria overlap
(do

r) and maximum number of groups for a criterion (no
r), can provide some

descriptive information about the criterion construction and help the DM to
assess the criterion construction. If the DM is not satisfied with these informa-
tion, then the group criterion construction needs to be modified. Otherwise
continue.

• Express the decision maker’s preferences: Determine the DM’s alternative
preferences (values) and preferences on criteria (weights) for each group.

• Optimize the alternative classification S: An optimization model must be ap-
plied to obtain an optimal classification S. The DM’s classification strategies,
such as the permission of alternative overlap and the maximum number of
alternatives for a group, can be incorporated into the optimization model as
constraints.

• Post-Optimization Assessment: After completing the optimization procedure,
the DM should assess the results. If the DM is not satisfied with the find-
ings, the DM’s classification strategies can be modified and new classification
results are presented, until the DM is satisfied with the results.
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Identify the 
alternatives set A

Express the decision 
maker’s preferences

Optimize the 
Alternative 

classifications S

Incorporate classification 
strategies

Post-Criteria
Assessment

Satisfied

Unsatisfied

Post-Optimization
Assessment

Final results

Satisfied

Unsatisfied

Construct the groups 
and their criteria sets

- Determine alternative values
   for different criteria;
- Determine criteria weights
   in different groups;

Figure 8.4: Analysis Procedure for MCNC Problems
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8.5 A Linear Additive Value Function Approach

to MCNC

8.5.1 Model Assumptions

The linear additive value function or SMART (Simple Multi-Attribute Rating Tech-
nique) is a well-known approach in MCDA. Stewart (1996) argues that additive
value functions can provide reasonable preference orderings. Hence, we propose a
SMART-based optimization model to solve MCNC problems. First, some notation
must be introduced, as follows:

For g = 1, 2, ...,m, wg = (wg
1, w

g
2, ..., w

g
j , ..., w

g
q ) is the weight vector for group g.

Note that if rj
g = 0, then wg

j = 0. The weights for the same criterion in different

groups may be the same (wg
j = wh

j ) or not (wg
j 6= wh

j ), depending on the DM’s
preferences. In Example 1, the manager may place different relative importance
on the criterion of Personality in two groups. w = (w1,w2, ...,wg, ...,wm)T is the
weight matrix covering all the groups.

For g = 1, 2, ...,m and i = 1, 2, ..., n, vi
g = (vi

1g, v
i
2g, ..., v

i
jg, ..., v

i
qg) is the value

vector of alternative Ai for group g. Note that if rj
g = 0, then vi

jg = 0. The
extension of value transformation function (2.1) for MCNC problem can be set as:

vi
jg = fjg(c

i
j) (8.13)

where fjg(·) is a mapping from consequences to values for criterion j in group g.
Note that for an alternative, the values of the same criterion in different groups may
be the same (vi

jg = vi
jh) or not (vi

jg 6= vi
jh), depending on how the DM constructs

the value transformation function (8.13). We allow for the same alternative to
have different values on the same criterion in different groups. For instance, the
criterion “abundance of aquatic species” can be applied to rivers; a high level of
consequence on this criterion is valuable in a recreation grouping, but a detriment
in a hydropower grouping.

For all alternatives, i = 1, 2, ..., n, all criteria j = 1, 2, ..., q, and all groups
g = 1, 2, ...,m,

∑

j∈Q

wg
j = 1, wg

j ≥ 0; (8.14)

0 ≤ vi
jg ≤ 1. (8.15)

Many methods are available to obtain weights and values. With the Analytic Hi-
erarchy Process (AHP) (Saaty, 1980), weights or values can be obtained by the cal-
culation of eigenvalues. Swing weights is a method for direct estimation of weights
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preferred by Belton and Stewart (2002); von Winterfeldt (1986). UTA (UTilités
Additives) is a regression method using case studies to estimate values (Jacquet-
Lagrèze and Siskos, 1982). In this thesis, we assume that weights and values can
be obtained for each group without uncertainty.

8.5.2 Objective Function

Based on the SMART model assumption, the following definitions are given.

The aggregation value of alternative Ai for group g can be expressed as

V i
g = 〈wg,vi

g

T 〉 =
∑

j∈Q

wg
j · vi

jg. (8.16)

The aggregation value vector for group g is denoted Vg = (V 1
g , V 2

g , ..., V i
g , ..., V n

g ).
The aggregation value matrix for all groups is denoted V = (V1,V2, ...,Vg, ...,Vm)T .

The DM’s whole value for the classification solution S is denoted VS. Since
groups are nominally defined, we assume that each group has equal importance for
the DM. Adding the aggregation values of all alternatives in all groups produces the
DM’s whole value VS. The computation is implemented by the following function

VS =
∑

g=1,2,...,m

eg · (V · S) · (eg)T . (8.17)

We take VS to be the objective function, so we find the best classification result
using

max
S∈S

{VS}, (8.18)

where S denotes the set of all possible solutions of an MCNC problem.

8.5.3 Constraints

Based on the type classification chosen and some more elaborate strategies made
by the DM, some constraints need to be set for the above objective function. The
detailed explanations are as follows.
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Constraints for Different MCNC Types

First recall that the meanings of the following formula: (1) 〈Si, Im〉 equals the

number of groups Ai belongs to; (2)
n
∑

i=1

M i equals the number of all alternatives have

been assigned to at least one group; (3)

∑

{g,h=1,2,...,n; g 6=h}

〈

ST
g ,Sh

〉

n·m·(m−1)
equals the average

degree of alternative overlap; and (4) 〈ST
g , Im〉 equals the number of alternatives

assigned to group g.

(1) MCNC1, the combination of NOVLP and CMPL, implies each alternative need
to be assigned to one group only and the following constraints are set:

for all i = 1, 2, ..., n, 〈Si, Im〉 = 1 (8.19)

(2) MCNC2, the combination of OVLP and CMPL, implies each alternative to be
assigned to at least one group and the following constraints are set:

for all i = 1, 2, ..., n, 〈Si, Im〉 ≥ 1, (8.20)

n
∑

i=1

M i = n. (8.21)

(3) MCNC3, the combination of NOVLP and INCMPL, implies each alternative
to be assigned to at most one group and some alternatives are not assigned to any
group. The following constraints are set:

for all i = 1, 2, ..., n, 0 ≤ 〈Si, Im〉 ≤ 1, (8.22)

0 <
n

∑

i=1

M i < n. (8.23)

(4) MCNC4, the combination of OVLP and INCMPL implies some alternatives
to be assigned to more than one group, while other alternatives may not belong to
any group. The following constraints are set:

0 <

n
∑

i=1

M i < n, (8.24)

∑

{g,h=1,2,...,n; g 6=h}

〈

ST
g , Sh

〉

n · m · (m − 1)
> 0. (8.25)
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Classification Strategies

Moreover, the DM can implement some classification strategies as constraints to
elaborate upon the classification.

(1) The maximum number of groups for an alternative, 1 ≤ no
s ≤ m, can be set

with the following constraints:

for all i = 1, 2, ..., n, 〈Si, Im〉 ≤ no
s. (8.26)

(2) The average degree of alternative overlap, 0 ≤ do
s ≤ 1, can be specified using

the following constraint:
∑

{g,h=1,2,...,m; g 6=h}

〈

ST
g , Sh

〉

n · m · (m − 1)
≤ do

s. (8.27)

(3) The minimum deficiency degree of alternatives, 0 ≤ dd
s ≤ 1, can be specified

using the following constraint:

n
∑

i=1

M i ≥ n(1 − dd
s). (8.28)

(4) The maximum number of alternatives for group g, ng can be specified as follows:

〈ST
g , Im〉 ≤ ng. (8.29)

8.6 Numerical Example: Water Supply Planning

8.6.1 Problem Descriptions

Due to increases in residential, industrial, and commercial demand for water and
decreases in the reliability of groundwater resources, a city needs to develop a long
term water supply planning. The following decision process was stipulated by the
Region Council to design and implement the best resources plan:

1. Near-future Project: an immediate construction project to be completed to
meet water demands in the near future.

2. Mid-term Project: another construction project to be built between the years
2018 and 2020 to meet water demands over the middle term.
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3. Long-term Project: a final construction project to be finished by the year
2035 to meet long-term demands.

This decision process can be regarded as a MCNC problem with three nominal
groups consisting of the near-future, mid-term and long-term projects. By the
application of the proposed MCNC model, we carry out the following decision
analysis.

First several criteria are proposed for measuring the effectiveness of possible
alternatives for each group as shown in Figure 8.5. The groups of near-future
projects, mid-term projects and long-term projects are named A1, A2 and A3,
respectively.

Near-future 
Project

INVEST RISK QUAL ENVIRSUPPLY

(a) The Criteria Set for Near-future Projects

Mid-term Project
Long-term Project

INVEST FLEX QUAL PUBLICSUPPLY

(b) The Criteria Set for Mid-term and Long-term Projects

Figure 8.5: The Criteria Set of WWSP

The detailed meanings of the criteria with the index numbers in the criteria set
Q are described as follows: 1. INVEST: the project investment cost (millions of
dollars); 2. RISK: the project implementation risk; 3. QUAL: the water quality of
the project; 4. SUPPLY: the project supply capability (million imperial gallons); 5.
ENVIR: the project environmental impacts; 6. FLEX: the project ability to react
to changes in demand; 7. PUBLIC: the community perception of the acceptability
of the project.

8.6.2 Post-criteria Assessment

The post-criteria analysis is carried out to provide some general criteria information.
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|A| = 10, and m = 3 for the set {A1,A2,A3}.
Q = {1, 2, ..., j, ..., 7}, |Q| = 7.

R =





















1 1 1
1 0 0
1 1 1
1 1 1
1 0 0
0 1 1
0 1 1





















, R1 =





















1
1
1
1
1
0
0





















, R2 =





















1
0
1
1
0
1
1





















, R3 =





















1
0
1
1
0
1
1





















.

R1 = ( 1 1 1 ), R2 = ( 1 0 0 ), R3 = ( 1 1 1 ), R4 = ( 1 1 1 ),
R5 = ( 1 0 0 ), R6 = ( 0 1 1 ), R7 = ( 0 1 1 ).

do
r =

2
(

〈RT
1 ,R2〉+〈RT

1 ,R3〉+〈RT
2 ,R3〉

)

7·3·2
= 11

21
= 52.4%.

no
r = max

(

〈R1, I3〉, 〈R2, I3〉, 〈R3, I3〉, 〈R4, I3〉, 〈R5, I3〉, 〈R6, I3〉, 〈R7, I3〉
)

= 3.

ρr
12 =

〈RT
1 ,R2〉

〈

(R1−R2)T , (R1−R2)
〉

+〈RT
1 ,R2〉

= 3
7

= 42.9% = ρr
13, ρr

23 = 100%.

ρr
Q =

∑

{g,h=1,2,...,7;g 6=h}

ρr
gh

m·(m−1)
=

2·[ 3
7
·2+1]

3·2
= 13

21
= 61.9%.

The criteria overlapping in this MCNC is high since do
r = 52.5%, ρr

Q = 61.9%,
and no

r = 3. The largest contribution of overlapping comes from Groups 2 and
3, since ρr

23 = 100% (they have identical classification criteria). Although there is
high overlapping, the criterion structure is reasonable, since we believe that such
criterion structure can represent most of the concerns of both local residents and
water resource management experts. Note that we will show later that the difference
between a mid-term project and long-term project is caused by different criterion
weights. Different weights assigned to the same criterion in these two projects
represents different concerns regarding the criteria.

8.6.3 Alternative Identification

Ten alternatives have been identified. Table 8.2 shows the consequences for the
MCDA problem. SUPPLY, QUAL, PUBLIC, and FLEX are identified as positive
preference criteria (the greater the consequence, the better, as indicated by “+”
in Table 8.2); others are negative preference criteria (the less the consequence, the
better, as indicated by “-” in Table 8.2).
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Table 8.2: The Basic Structure of the WWSP

Criteria Alternatives

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

INVEST(-) 100 55 8.6 5 112 123.6 111.25 120.4 126 181

RISK(-) 40 40 50 80 60 70 70 60 70 70

QUAL(+) 75 80 70 30 60 60 60 70 60 55

SUPPLY(+) 29 25 40 5 50 80 80 80 80 80

ENVIR(-) 40 40 45 40 50 40 90 80 80 80

FLEX(+) 70 85 50 70 60 60 65 70 80 90

PUBLIC(+) 60 70 60 60 70 65 80 80 85 85

8.6.4 Decision Maker’s Preferences

(1) Preference on Consequences

For the more (consequences) the better criterion, j ∈ Qg, equation (2.2) is
employed to estimate the values of each alternative for criterion j in all three groups.
Similarly, for the less (consequences) the better criterion, k ∈ Qg, equation (2.3) is
employed to obtain the values of each alternative for criterion k in all three groups.
As noted earlier, an alternative can have different values on the same criterion in
different groups. In this example, we assume they are the same. The values for the
ten alternatives are as listed in Table 8.3 and 8.4.

Table 8.3: The Values of Alternatives for Near-future project

Criteria Alternatives

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

INVEST(-) 0.050 0.091 0.581 1.000 0.045 0.040 0.045 0.042 0.040 0.028

RISK(-) 1.000 1.000 0.800 0.500 0.667 0.571 0.571 0.667 0.571 0.571

QUAL(+) 0.938 1.000 0.875 0.375 0.750 0.750 0.750 0.875 0.750 0.688

SUPPLY(+) 0.363 0.313 0.500 0.063 0.625 1.000 1.000 1.000 1.000 1.000

ENVIR(-) 1.000 1.000 0.889 1.000 0.800 1.000 0.444 0.500 0.5000 0.500

FLEX(+) 0 0 0 0 0 0 0 0 0 0

PUBLIC(+) 0 0 0 0 0 0 0 0 0 0

(2) Preferences on Criteria
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Table 8.4: The Values of Alternatives for Mid-term and Long-term project

Criteria Alternatives

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

INVEST(-) 0.050 0.091 0.581 1.000 0.045 0.040 0.045 0.042 0.040 0.028

RISK(-) 0 0 0 0 0 0 0 0 0 0

QUAL(+) 0.938 1.000 0.875 0.375 0.750 0.750 0.750 0.875 0.750 0.688

SUPPLY(+) 0.363 0.313 0.500 0.063 0.625 1.000 1.000 1.000 1.000 1.000

ENVIR(-) 0 0 0 0 0 0 0 0 0 0

FLEX(+) 0.824 1.000 0.588 0.824 0.706 0.706 0.765 0.824 0.941 0.941

PUBLIC(+) 0.706 0.824 0.706 0.706 0.824 0.765 0.941 0.941 1.000 1.000

Preferences on criteria are explained as weights, which reflect the relative impor-
tance of the criteria for all three groups. Based on previous experience in water re-
sources management, the authors estimate that the weight vector of all three groups
are w1 = (0.25, 0.15, 0.15, 0.25, 0.20, 0, 0), w2 = (0.20, 0, 0.30, 0.10, 0, 0.25, 0.15),
and w3 = (0.15, 0, 0.20, 0.30, 0, 0.15, 0.20). Then the weight matrix w = (w1,w2,w3)T

is

w =





0.25 0.15 0.15 0.25 0.20 0 0
0.20 0 0.30 0.10 0 0.25 0.15
0.15 0 0.2 0.30 0 0.15 0.2





By comparing w1, w2 and w3, it can be seen that the near-future project reflects
more concerns about the criteria of INVEST and SUPPLY, mid-term project about
the criteria of QUAL and FLEX, while long-term project about the criteria of
SUPPLY and PUBLIC.

(3) Aggregation Values of the Groups and Aggregation Value Matrix

Using (8.16), the DM’s aggregation value for each of the three groups is found
to be:
V1 =

(

〈w1,v1
1
T 〉, 〈w1,v2

1
T 〉, 〈w1,v3

1
T 〉, 〈w1,v4

1
T 〉, 〈w1,v5

1
T 〉, 〈w1,v6

1
T 〉, 〈w1,v7

1
T 〉,

〈w1,v8
1
T 〉, 〈w1,v9

1
T 〉, 〈w1,v10

1
T 〉

)

= (0.594, 0.601, 0.699, 0.597, 0.540, 0.658, 0.548,
0.592, 0.558, 0.546).
V2 = (0.639, 0.723, 0.682, 0.631, 0.596, 0.624, 0.666, 0.718, 0.718, 0.697), and
V3 = (0.568, 0.622, 0.642, 0.508, 0.615, 0.715, 0.760, 0.793, 0.797, 0.783).
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Therefore,





V1

V2

V3



 =





0.594 0.601 0.699 0.597 0.540 0.658 0.548 0.592 0.558 0.546
0.639 0.723 0.682 0.631 0.596 0.624 0.666 0.718 0.718 0.697
0.568 0.622 0.642 0.508 0.615 0.715 0.760 0.793 0.797 0.783





andV =





V1

V2

V3





V1, V2, and V3 capture the relative contribution of the ten alternatives to the
three groups. One can see, for example, that A3, A2, and A9 make the largest
contributions to group 1, group 2, and group 3 respectively. Therefore, the DM
may directly determine the best solution under simple constraints. Our proposed
model uses a systematic analysis to find the best solutions incorporating different
classification types and DM’s strategies.

8.6.5 Value Function

Using (8.18), the DM’s whole value function is established as

VS = (1, 0, 0) · (V ·S) ·





1
0
0



+(0, 1, 0) · (V ·S) ·





0
1
0



+(0, 0, 1) · (V ·S) ·





0
0
1



 ,

where S = (si
g), i = 1, 2, ..., 10 and g = 1, 2, 3, is an alternatives classification

solution, and si
g is a binary variable.

8.6.6 Classification Analysis

(1) MCNC1 Result Without the DM’s Strategy Information

The optimization model is set as follows:

Maximize : VS

Subject to: 〈Si, I3〉 = 1,∀ Si ∈ S

The following result is obtained.

150



V ∗
S = 7.14, S∗ =

































0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

































So A1, A2, A3, A4 are assigned to group 2; A5, A6, A7, A8, A9, A10 are assigned to
group 3. Likely, the DM will not be satisfied with this findings, since no alternative
is assigned to group 1. Hence, this MCNC1 problem requires further strategic
information and this is investigated next.

(2) MCNC1 Situation With the DM’s Strategy Information

The numbers of alternatives in groups 1 and 2, n1 and n2, are set to be 3 each.
The corresponding optimization model is as follows:

Maximize : VS

Subject to: 〈Si, I3〉 = 1,∀ Si ∈ S

〈ST
1 , I3〉 = 3

〈ST
2 , I3〉 = 3

for which the following result is obtained.

V ∗
S = 7.02, S∗ =

































0 1 0
0 1 0
1 0 0
1 0 0
0 1 0
1 0 0
0 0 1
0 0 1
0 0 1
0 0 1

































So A3, A4, A6 are assigned to group 1; A1, A2, A5 are assigned to group 2; A7, A8,
A9 and A10 are assigned to group 3.
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8.7 Conclusions

This research is concerned with investigating a new kind of MCDA problem, called
Multiple Criteria Nominal Classification. MCNC aims to assign alternatives to
nominal groups without preferences, based on sets of criteria that may be the same
or different. The definitions, features, and properties of MCNC are stated and
explained in detail. A systematic procedure is proposed to solve MCNC problems
and an optimization model is designed that takes into account the DM’s strategies
for the solution of MCNC problems. An application of MCNC in water supply
planning is presented.
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Chapter 9

Contributions and Future
Research

Several comprehensive and flexible procedures for classification problems in MCDA
have been defined and analyzed in this thesis and many practical applications have
been described. The main contributions of the thesis and suggestions for future
research are summarized in the next two subsections.

9.1 Main Contributions of the Thesis

The main contributions of this thesis are the following:

1. In Chapter 2, an analysis procedure, consequence-based preference aggrega-
tion, is proposed to provide a systematic framework of MCDA. Many ap-
proaches to MCDA are summarized and integrated into a meaningful struc-
ture.

2. In Chapter 3, screening problems are systematically addressed: a general
description of a screening problem is provided, and a sequential screening
procedure is designed to integrate several popular MCDA methods and adapt
them to solve screening problems. A case study in water supply planning
in the Regional Municipality of Waterloo is carried out to demonstrate the
proposed method.

3. In Chapter 4, a case-based distance method is proposed to solve screening
problems. Research on case-based reasoning in MCDA is summarized. Then,
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the assumptions of the proposed case-based distance method are explained in
detail. Next, a quadratic program is constructed to find the best descriptive
criterion weights and the screening thresholds. Based on this information, a
distance-based method is proposed for screening and a numerical example is
used to demonstrate how the proposed method works.

4. In Chapter 5, the case-based distance method is extended to solve sorting
problems in MCDA. A general description of sorting problems is given in
detail including a formal definition of sorting procedure and a relationship
discussion between the alternative set and the sorting group set. Based on
weighted Euclidean distance, two case-based distance methods are developed
for sorting using weights and group thresholds obtained by assessment of a
case set provided by a DM. Case-based sorting method I is designed for use
with cardinal criteria; its extension, case-based sorting method II, can handle
both cardinal and ordinal criteria. Optimization programs are employed to
find the most descriptive weights and group thresholds. Finally, a case study
on Canadian municipal water usage analysis is presented.

5. In Chapter 6, a case-based multiple criteria ABC analysis is proposed to
improve the traditional ABC analysis in inventory management and provide
more managerial flexibility by accounting for additional criteria, such as lead
time and criticality. A case study is developed to illustrate how the procedure
can be applied; the results demonstrate that this approach is robust and can
produce sound classifications when multiple criteria are considered.

6. In Chapter 7, a case-based distance model founded on multiple criteria de-
cision analysis theory is proposed for bilateral negotiations (BN) involving
multiple issues. The unique feature of this negotiation model is that weighted
Euclidean distance is employed to represent the negotiators’ preferences; a
case-based distance algorithm then helps negotiators express their preferences
over different offers (alternatives) and suggests how to find better outcomes.
The procedure takes advantage of the easily understood geometric meaning
of Euclidean distance.

7. In Chapter 8, a new kind of MCDA problem, multiple criteria nominal clas-
sification (MCNC), is studied. Traditional classification methods in MCDA
focus on sorting alternatives into groups ordered by preference. MCNC is
the classification of alternatives into nominal groups, structured by the DM,
who specifies multiple characteristics for each group. Starting with illustrative
examples, the features, definition and structures of MCNC are presented, em-
phasizing criterion and alternative flexibility. Then an analysis procedure is
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proposed to solve MCNC problems systematically. Assuming additive value
functions, an optimization model with constraints that incorporate various
classification strategies is constructed to solve MCNC problems. An appli-
cation of MCNC in water resources planning is carried out and some future
extensions are suggested.

As a result of both the theoretical developments and the real world applications,
it is believed that this thesis has laid down the foundation of a new methodology
for MCDA, namely, multiple criteria classification (MCC).

9.2 Suggestions for Future Research

The development of this thesis not only provides several approaches to modelling
and analyzing classification problems in MCDA, but it also opens up new avenues to
further research in MCDA. Below are some possible directions for future research.

1. Further research is required to refine the case-based distance approach to
MCDA. Following are some important topics:

(a) The problem of handling or avoiding inconsistencies in the case set, which
is of crucial importance to the final result;

(b) The classification abilities of the case-based distance method with other
techniques, such as proposals of Doumpos and Zopouidis (2002).

(c) The comparison of the significance of various distance definitions, such
as city block distance (L1) versus Euclidean distance (L2), particularly
in an experimental setting such as multiple-issue negotiations.

(d) The expansion of the case-based distance approach to accommodate a
multiple stakeholder scenario. For example, the case set sorting provided
by different stakeholders might be aggregated so that final results reflect
all stakeholders’ preferences.

2. In terms of the nominal classification problem, MCNC, procedures could be
designed to take into account the effects of uncertainty in weights and values.
Another research topic is the analysis of the DM’s strategies, since different
strategic requirements may be incompatible. The DM may require assistance
to define the problem and construct his or her strategies. Other methods, for
example, distance-based methods, may be designed to solve MCNC problems.
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3. A software-based decision support system (DSS) could help a DM implement
this approach easily and expeditiously. Hence, a computer-based DSS should
be developed to integrate the classification procedures discussed in the thesis
and assist in practical applications.
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