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Abstract

A video sequence consists of a series of frames. In order to compress the video for

efficient storage and transmission, the temporal redundancy among adjacent frames

must be exploited. A frame is selected as reference frame and subsequent frames

are predicted from the reference frame using a technique known as motion estima-

tion. Real videos contain a mixture of motions with slow and fast contents. Among

block matching motion estimation algorithms, the full search algorithm is known for

its superiority in the performance over other matching techniques. However, this

method is computationally very extensive. Several fast block matching algorithms

(FBMAs) have been proposed in the literature with the aim to reduce computa-

tional costs while maintaining desired quality performance, but all these methods

are considered to be sub-optimal. No fixed fast block matching algorithm can effi-

ciently remove temporal redundancy of video sequences with wide motion contents.

Adaptive fast block matching algorithm, called classification based adaptive search

(CBAS) has been proposed. A Bayes classifier is applied to classify the motions

into slow and fast categories. Accordingly, appropriate search strategy is applied

for each class. The algorithm switches between different search patterns according

to the content of motions within video frames. The proposed technique outper-

forms conventional stand-alone fast block matching methods in terms of both peak

signal to noise ratio (PSNR) and computational complexity. In addition, a new hi-

erarchical method for detecting and classifying shot boundaries in video sequences

is proposed which is based on information theoretic classification (ITC). ITC relies

on likelihood of class label transmission of a data point to the data points in its

vicinity. ITC focuses on maximizing the global transmission of true class labels and

classify the frames into classes of cuts and non-cuts. Applying the same rule, the

non-cut frames are also classified into two categories of arbitrary shot frames and

iii



gradual transition frames. CBAS is applied on the proposed shot detection method

to handle camera or object motions. Experimental evidence demonstrates that our

method can detect shot breaks with high accuracy.
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Chapter 1

Introduction

Video has huge redundant information which must be exploited to be stored and

transmitted efficiently. The common technique to achieve this goal is known as

motion estimation. In this technique, the current frame is predicted from a previous

frame known as reference frame by using motion vectors. With the increasing

demand of multimedia applications, considerable efforts are needed for efficient

video compressing and encoding algorithms. Motion estimation has proven to be

an effective technique for exploiting the temporal redundancy in video sequences

and is therefore an essential part of MPEG and H.263 compression standards. Since

motion estimation is the most computationally intensive portion of video encoding,

efficient fast motion estimation algorithms are highly desired for video compressors

subject to diverse requirement on bit rate, video sequence characteristics and delay.

Knowledge of the motion is not available from a video data and must be deduced

using computationally intensive algorithms. For efficient handling of motions with

variety of contents, the need for adaptive motion estimation methods is inevitable.

Generally, the optimal full search (FS) block matching algorithm results in the
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best performance with respect to the quality of decoded video sequences, however,

it is computationally very intensive. Due to the huge demand of the computa-

tional requirement several fast search algorithms have been developed and intro-

duced in recent years including the three step search (TSS), the new three step

search (NTSS), the four step search (FSS), the block based gradient descent search

(BBGDS), the diamond search(DS), and the hexagon-based search (HEXBS). Since

videos exist with variety of contents, no stand-alone fast block matching algorithm

(FBMA) can efficiently remove the redundant data.

In this thesis, a new adaptive method based on bayesian classification technique

is proposed. This method classifies predicted motion of each block within each im-

age frame either in slow (Cslow) or fast category (Cfast). In order to apply bayesian

classifier, conditional probability distribution functions (PDFs), P (x|Cslow) and

P (x|Cfast), are estimated where x is the length of blocks motion vector. Parzen

window method with gaussian kernel is used to estimate required PDFs. After es-

timating the motion class, appropriate search pattern is employed to find the best

matching block within the frame.

Our main contribution has the following aspects, namely: 1) Applying Bayes

Classifier and nonparametric Parzen window probability density function estima-

tion of length of the motion vectors contained in each frame for development of an

adaptive video motion estimation algorithm. However, to the best of our knowl-

edge, there is no adaptive motion estimation method which applies Bayes classifier

for classifying the content of motions in video frames and accordingly developing

adaptive motion estimation algorithm. 2) The simulation results reveal that the

proposed algorithm is able to maintain high and constant quality of performance

in terms of peak signal to noise ratio (PSNR) and computational complexity. It

outperforms conventional stand-alone fast block matching algorithms and shows
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1.1. THESIS ORGANIZATION

competitive results compared to other adaptive motion estimation algorithms.

In addition to compensation of motions in video encoder, motion estimation

has important role in other video processing algorithms. For example, video shot

detection algorithms can benefit from motion compensation to make themselves

more robust for handling camera and object motions. As a study case, we apply our

adaptive motion estimation method on a hierarchical classification based method

for video shot detection. This application shows an improved performance of the

shot detection, as illustrated by several simulations.

1.1 Thesis Organization

Chapter 2 provides some background on video motion compensation. It introduces

the problem of video motion estimation for general problems in computer vision and

video compression. This is followed by discussion on different fast block matching

motion estimation methods and their advantages and drawbacks.

Chapter 3 presents a classification-based approach for designing adaptive video

motion estimation. It starts by a review of recent proposed adaptive methods. A set

of preliminary concepts in pattern classification are introduced. This is followed

by a detailed discussion on design criteria and reasoning for selection of specific

classifier and search schemes for the proposed motion estimation algorithm.

Chapter 4 presents detailed experimental results of the proposed algorithm in

comparison to standard algorithms on various videos with different characteristics.

We discuss the results with respect to the observations from experiments.

Chapter 5 presents a new hieratical classification based video shot segmentation

algorithm. The temporal segmentation problem is transformed to multi-class cate-
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1.1. THESIS ORGANIZATION

gorization problem. We applied classification based adaptive motion compensation

method, introduced in chapter 3, to cope with camera and object movements. The

proposed shot detection method is based on information theoretic classification

(ITC) rule. K-mean clustering is applied to cluster different types of gradual shot

transitions. Finally, experimental results on different videos are provided to illus-

trate the performance of the proposed algorithm in terms of precision and recall.

Chapter 6 concludes the thesis and suggests some future research directions.
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Chapter 2

Background on Video Motion

Compensation

2.1 Motion Estimation

Image compression techniques rely on two principles: reduction of statistical redun-

dancies in data and characteristics of human visual perception [1]. In video coding

framework, statistical redundancies are grouped into spatial and temporal cate-

gories. Compression techniques which reduce temporal redundancies, are referred

to as interframe techniques while those reducing spatial redundancies are referred

to as intraframe techniques. Motion estimation (ME) algorithms have been applied

for the reduction of temporal redundancies [1, 2, 3].

ME algorithms are originally developed for applications such as computer vi-

sion, image sequence analysis and video coding [1]. They can be categorized in the

following main groups: gradient techniques [4, 5], pel-recursive techniques [9, 10],

block matching techniques [19]–[31], and frequency-domain techniques [5]. From the
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2.1. MOTION ESTIMATION

perspective of video coding, ME methods are used to reduce bandwidth correspond-

ing to motion difference information and motion overhead. These requirements can

be in contradiction to each other since on the one hand, motion estimation algo-

rithms should provide suitable prediction information, while on the other hand,

they should have low overhead information.

We first introduce the notation used in the following sections. Let I(x, y, t) be

the image intensity at time instant t at location r = (x, y) and d = (dx, dy) is

displacement during time interval ∆t. All techniques rely on the assumption that

change in image intensity is only due to the displacement d [4], i.e.

I(r, t) = I(r − d, t−∆t) (2.1)

1. Gradient Techniques

The first assumption in gradient techniques is that image luminance is in-

variant during motions. Taylor’s series expansion of right hand side of (2.1)

would give

I(r−d, t−∆t) = I(r, t)−d ·∇I(r, t)−∆t
∂I(r, t)

∂t
+higher order terms (2.2)

where∇ = [(∂/∂x), (∂/∂y)] is the gradient operator and by assuming ∆t → 0,

neglecting higher order terms, and defining the motion vector as v = (vx, vy) =

d/∆t we obtain [4]

v · ∇I(r, t) +
∂I(r, t)

∂t
= 0 (2.3)

6



2.1. MOTION ESTIMATION

which is known as spatio temporal constraint. Since the motion vector has two

components, the motion field can be solved only by introducing an additional

constraint. Additional constraint known as smoothing constraint is introduced

in [4] that minimizes optical flow gradient magnitude. The motion field is

obtained by minimizing the following error term defined as [1]

∫ ∫
{(v · ∇I +

∂I

∂t
)2+

α2

[(
∂vx

∂x

)2

+

(
∂vx

∂y

)2

+

(
∂vy

∂x

)2

+

(
∂vy

∂y

)2
]
}

(2.4)

where α2 is a minimization factor. This optimization problem can be solved by

variational calculus. Many variations of the above algorithm are proposed in

literature [6, 7, 8]. From coding perspective, these motion estimation methods

suffer from two main drawbacks. First, the prediction error has high energy

due to smoothness constraint, and second, the motion field requires high

motion overhead.

2. Pel-Recursive Techniques

These methods rely on recursive reduction of predictive error or DFD de-

fined in (2.5). The displacement frame difference (DFD) or frame dissimilarity

measure is denoted by

DFD(r, t, d) = I(r, t)− I(r − d, t−∆t) (2.5)

These methods are among the very first algorithms designed for video coding
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2.1. MOTION ESTIMATION

with the goal of having low hardware complexity. The first pel-recursive

algorithm was proposed in [2] , which minimizes DFD2 by applying steepest

descent technique. The displacement d at (k + 1) iteration is given by [1]:

d(k+1) = d(k) − ε

2
∇dDFD2(r, t, d(k)) (2.6)

where ε is a constant gain, k is the iteration index, and ∇d is the gradient

vector with respect to the displacement d. Substituting DFD, i.e. (2.5), in

above formula, we obtain

∇dDFD2(r, t, d(k)) = 2DFD(r, t, d(k)) · ∇dI(r − d(k), t−∆t) (2.7)

By substituting (2.7) into (2.6), the displacement field update is obtained as

follows

d(k+1) = d(k) − εDFD(r, t, d(k)) · ∇dI(r − d(k), t−∆t) (2.8)

The performance of pel-recursive algorithms strongly depends on the way for

computing update term in (2.8). Various research works in literature have

focused on proposing efficient methods for computation of above formula [9,

10]. Casuality constraints reduces the predictive capability of these algorithms

comparing to non-casual methods. High computational complexity is another

drawback of pel-recursive algorithms. Furthermore, the error function to be

minimized has generally many local minima. These algorithms are also very

sensitive to noise and large displacements and discontinuities in the motion

field which can not be efficiently handled.
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2.1. MOTION ESTIMATION

3. Block Matching Techniques

Block matching is widely used for stereo vision, vision tracking, and video

compression. Video coding standards such as MPEG-1, MPEG-2, MPEG-4,

H.261, H.263 and H.264 use block based motion estimation algorithms due

to their effectiveness and simplicity for hardware implementation. The main

idea behind block matching estimation is the partitioning of the target (pre-

dicted) frame into square blocks of pixels and finding the best match for these

blocks in a current (anchor) frame. To find the best match, a search inside

a previously coded frame is performed and the matching criterion is utilized

on the candidate matching blocks. The displacement between the block in

the predictor frame and the best match in the anchor frame defines a motion

vector. In the encoder, it is only necessary to send the motion vector and

a residue block, defined as the difference between the current block and the

predictor block.

The matching criterion is typically the mean of absolute errors (MAE) or the

mean of square errors(MSE), given respectively by:

MAE =
1

N2

N−1∑
i=0

N−1∑
j=0

|Cij −Rij| (2.9)

MSE =
1

N2

N−1∑
i=0

N−1∑
j=0

(Cij −Rij)
2 (2.10)

where N ×N is the size of each block, Cij and Rij are respectively the pixel

values in the current block and the reference block. Peak signal to noise ratio

(PSNR) characterizes the motion compensated image created by predicted
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2.1. MOTION ESTIMATION

motion vectors and blocks from the reference frame.

PSNR = 10 log10

[
(peak to peak value of the original signal)2

MSE

]
= 10 log10

[
255× 255

MSE

] (2.11)

Block matching algorithms have been originally designed for prediction of

displacements with one pixel accuracy, however, it is possible to achieve sub-

pixel accuracy by interpolating the image intensity at factorial pixel locations.

This is done in practice by means of post processing after one pixel accuracy

motion vectors have been computed. However, the post processing increases

computational complexity. To reduce the computational complexity and to

consider multi scale characteristic of motion in a scene, hierarchical methods

[11, 12] have been proposed.

In standard block matching algorithms, motions were restricted to transla-

tional displacements. However, block matching algorithms that investigate

affine translations have been investigated to reduce this limitation [12]. In

[13], a generalized block matching algorithm is proposed by considering com-

plex motion models such as rotation and nonlinear deformation.

In spite of their intensive applications, block matching algorithms also have

some serious drawbacks such as unreliable motion fields in the scene of true

motion, block artifacts, and poor motion prediction along block edges.

2.1.1 Comparison of Motion Estimation Techniques

Experiments haven been performed in [1] to asses the performance of several motion

estimation techniques. Best known algorithms are selected for comparison, namely

10



2.2. FAST BLOCK MATCHING ALGORITHMS

Horn-Schunck gradient technique [4], and Netravali-Robbins pel-recursive technique

[2], and full-search block matching technique. In general smooth motion fields are

more desired in coding in order to prevent artificial discontinuity. It should be

emphasized that performance of pel-recursive algorithm is highly dependent on

the way the recursive term is computed. Results clearly show that the pel-recursive

algorithm is significantly less efficient than the other two techniques especially when

dealing with large displacements and discontinuities. As gradient methods provide

more dense motion field compared to block matching technique (one vector per pixel

compared to one vector per block), the gradient method is expected to outperform

block matching technique. However, the performance results are very similar to

each other. Hence, the Horn-Schunck gradient technique does not result in enhanced

capability, while it highly increases the overhead information. The method is more

interesting from analysis point of view rather than application in coding.

The block matching technique relies on simple motion model which leads to

precise motion estimation with low overhead information. Therefore, it achieves

appropriate allocation of bandwidth between DFD and motion parameters. Due to

this considerations, block matching methods are the most widely used techniques

in video coding applications.

2.2 Fast Block Matching Algorithms

In the following sections, an overview of several standard fast block matching motion

estimation algorithms (FBMAs) is presented. Among them, the diamond search

(DS) algorithm is accepted by MPEG-4 verification model [30], and it is considered

the state-of-the-art search scheme.
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2.2.1 Full Search

The best predicted representative of the current block is searched by computing

the matching criterion between the current block and all blocks in the search area.

If the algorithm applies MSE as matching criterion, then for checking each point

with block size of 16× 16, it requires 256 subtractions, 256 multiplications and 255

additions to calculate the MSE. The size of the search area is given by

Search Area = (2p + 1)× (2p + 1) (2.12)

where p is the search parameter . The illustration of search area is shown in

Figure 2.1 When p = 7, the size of the search area will be 225 and hence 225

points must be checked in full search (FS) algorithm which is very intensive from

computational standpoint. Given a frame of size M×M and a block size of N×N ,

the number of operations for each block is

Nb = (2p + 1)2N2 (2.13)

and the number of operations for each frame is

Nf = (2p + 1)2M2 (2.14)

For N = 16, p = 7 and M = 256, we have

Nb = 57600 (2.15)

Nf = 14745600 (2.16)
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Figure 2.1: Block Matching a macro block of size 16 × 16 pixels and a search
parameter p of size 7 pixels.

which illustrates that FS is computationally very intensive.

In [19], an alternative one dimensional full search (1DFS) algorithm for 2-D full

search has been proposed. The 1DFS is hardware-oriented algorithm. Instead of

direct searching for 2-D motion vector, 1FDS first utilizes full search method to find

the location with minimum distortion along horizontal direction. The algorithm

then tries to find the minimum distortion along the vertical direction.

2.2.2 Three Step Search

Three step search (TSS) starts with a search location at the center of the search

area and searches in search window with sides of 4 for a usual search area (p = 7) as

shown in Figure 2.2. Nine points are checked including one point at the center and

eight points on the borders of the search window. The search center is moved next

to the place of the best match found. In the second step, it searches in the search

13
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Figure 2.2: Three step search

window with sides equal to one half of the sides of the window in the first step.

Eight points on the borders of the search window are checked. In the third step,

the window with sides equal to one half of the size of the second step is considered

around the best matched point found in pervious step and again eight points on

the border of the window will be checked to find the best match. Consequently, the

total number of the checking points for TSS [20] is 25.

2.2.3 New Three Step Search

The new three step search (NTSS) algorithm [21] utilizes additional checking points

and two half stop conditions to improve the performance of TSS. In the first step,

additional eight neighbors of the center are checked. If the best match is found

on this small window, then additional three or five points are checked and the

algorithm will stop. This is the second stop condition as shown in Figure 2.3. If
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Second-step stop

First-step stop

Second-step stop

Figure 2.3: New three step search

the best matching point in the first step found on the boundary of the outside

window (similar to three TSS), then the second and third steps of the algorithm

are the same as those of TSS. The main difference between TSS and NTSS is that

TSS utilized uniformly distributed search points in its first step. NTSS employs

center based checking pattern in first step and half way stop technique is applied

to reduce computational costs. Compared to TSS, NTSS is much more robust and

produces smaller compensation error.

2.2.4 Four Step Search

Four step search (FSS) employs the center biased property of the motion vectors

(MVs) similar to NTSS. First, the search center is located at MV (0, 0) and the

search step size is set to 2 as shown in Figure 2.4. Nine points are checked in the

search window. If the best match occurs at the center of the widow, the neighbor

15



2.2. FAST BLOCK MATCHING ALGORITHMS

Edge point

Corner point

Corner point

Figure 2.4: Four step search

search window with step size reduced to one with eight checking points on the sides

will be checked and the best match is the best predicted motion vector. If the

best match in the first step occurs on the edges or corners of the search window,

additional three or five points will be checked in the second step, respectively. If

the current minimum occurs on the center of the search window, the step size will

reduce to one. the algorithm stops while all the neighboring points are checked.

With respect to the computations, the best case requires 17 checking points and

the worst case requires 32 checking points [22]. Simulation results have shown that

FSS generally performs better than TSS in terms of motion compensation error.

Compared to NTSS, FSS reduces worst case computations from 33 to 27 search

points and average computations from 21 to 19 search points.
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2.2.5 Diamond Search

This algorithm is Based on the observation that 50% to 80% of the MVs are located

in the circular area of radius 2 and centered on the position of zero motion vector

[23]. The diamond search (DS) is introduced and accepted by MPEG-4 verification

model. As shown in Figure 2.5, the algorithm employs two search patterns: small

diamond search pattern (SDSP) and large diamond search pattern (LDSP). The

LDSP pattern will be employed repeatedly until the best match occurs at the center

of the LDSP. Based on the location of the best match in each step, the additional

three or five points will be checked respectively if the minimum occurs on the sides or

corners of the diamond. Next, the algorithm starts searching SDSP pattern centered

at the bast matched point found in pervious LDSP search. Simulation results show

that DS outperforms TSS and has close performance to NTSS from compensation

error point of view while reducing computational cost by approximately 20 to 25

percent.
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LDSP

SDSP

Figure 2.5: Diamond search

2.2.6 Cross Search

The basic idea is to use logarithmic step search with some alternations which results

in fewer search point computations [26]. The main difference between cross search

(CR) and other methods that use logarithmic step search is that at each iteration 4

search points which are end of a cross (X). At the final stage, the search points can

be either the end points of (X) or (+) crosses. For maximum motion displacement

of w pel/frame, this algorithm only needs (5 + 4log2w) computations to find the

best match. For maximum motion displacement of 8 pel/frame, this algorithm is

0.25 to 0.27 bit/pel inferior to the full search method, however, its computational

complexity is lower by 17 times.
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2.2.7 Block-Based Gradient Descent Search

Square blocks of size 3 × 3 are checked in this method [27]. The search starts by

initializing the checking block so that its center point is at origin. The dissimilarity

measure is computed for all 9 points within the block. If the minimum occurs at

center then search terminates, otherwise updates the checking block so that its

center is the winning pixel. Block-based gradient descent search (BBGDS) moves

the search in the direction of optimal gradient descent and this is the direction

where we expect the dissimilarity measure acquires its minimum value. Mean square

error (MSE) and computational complexity performance of several block matching

algorithms are illustrated in Table 2.1 and Table 2.2.

FBMA Foreman Salesman Miss-America Car Phone

FS 26.82 6.52 4.99 21.17
BBGDS 28.80 6.66 5.05 22.34

TSS 34.23 6.97 5.50 24.80
NTSS 28.63 6.62 5.04 22.11

Table 2.1: MSE performance for BBGDS compared to some other FBMAs with
search range ±7 pixels for different video sequences [27]

FBMA Foreman Salesman Miss-America Car Phone average complexity

FS 100 100 100 100 100
BBGDS 5.4 4.22 5.08 5.40 5.03

TSS 11.43 11.36 11.39 11.40 11.40
NTSS 3.75 2.96 3.71 3.75 3.54

Table 2.2: Computational complexity performance (%) for BBGDS compared to
other FBMAs with search range ±7 pixels for different video sequences [27]
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Although FS introduces best MSE performance, it is computationally very in-

tensive. For sequences with wide variety of motions like foreman, condensed pat-

terns such as BBGDS or NTSS show lower MSE performance. In sequences with

small motions, these algorithms, have close performance to FS. In general, fast

block matching algorithms, are based on the assumption that motion estimation

matching error decreases monotonically as the search moves toward the point of

global minimum distortion [30]. The uni-modal error surface with global minimum

error point is shown in Figure 2.6. The optimum motion vector is searched among

the points in a fixed search pattern.

Figure 2.6: Uni-modal error surface with global minimum error point [30]
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2.3 Computation Reduction

Motion estimation is one of the most important parts for computational complex-

ity reduction in video encoders. Computation reduction techniques for low bit rate

video coders have been developed [15, 16]. In addition to motion estimation, video

encoder requires Discrete cosine transform (DCT) and inverse discrete cosine trans-

form (IDCT), motion compensation and entropy encoder. Many fast algorithms for

computation of DCT and IDCT have been emerged. In [15], by jointly considering

DCT and quantization, the computational reduction techniques for DCT have been

proposed with prediction of zero block [17, 18]. All zero and zero motion detection

are designed to terminate unnecessary search points in motion estimation algo-

rithms. The average search points and PSNR of different FBMAs in comparison to

the case where all-zero detection is applied on the algorithms are provided in Table

2.3 and Table 2.4.

PPMB Jrene Miss-am Akiyo Claire Carphone
FS 787.88 787.88 787.88 787.88 787.88

FSZ? 282.72 196.82 355.82 255.81 448.35
TMN8 17.07 18.25 13.91 18.78 21.11
TMN8Z 7.89 5.10 6.05 5.05 13.36

TSS 28.91 28.91 28.89 28.90 29.16
TSSZ 11.25 9.33 13.24 10.15 18.77
DS 13.98 13.18 12.14 12.50 16.42
DSZ 6.72 4.79 5.97 4.83 10.88

BBGDS 14.93 13.92 12.55 12.92 17.86
BBGDSZ 7.41 5.26 6.03 4.99 12.31

DS1 7.01 6.10 5.01 5.29 9.27
DS1Z 4.37 3.00 2.80 2.63 7.29

? Z denotes the algorithm using all-zero block detection

Table 2.3: Average search points for various search algorithms at 9600 bit/sec [17].
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PPMB Jrene Miss-am Akiyo Claire Carphone
FS 29.13 35.50 33.33 34.24 27.88

FSZ? 29.05 35.06 33.39 34.23 27.73
TMN8 29.18 35.56 33.32 34.22 27.78
TMN8Z 29.06 35.25 33.27 34.22 27.68

TSS 29.07 35.09 33.31 34.16 27.75
TSSZ 29.07 34.81 33.33 34.15 27.65
DS 29.17 35.60 33.31 34.28 27.80
DSZ 29.06 34.72 33.28 34.17 27.66

BBGDS 29.12 35.44 33.32 34.28 27.81
BBGDSZ 29.10 34.83 33.32 34.18 27.77

DS1 29.15 35.44 33.32 34.24 27.77
DS1Z 29.09 34.76 33.32 34.15 27.67

? Z denotes the algorithm using all-zero block detection

Table 2.4: Average PSNR achieved for various search algorithms at 9600 bit/sec
[17].

2.4 Motion Estimation for MPEG-4

In the standardized video coding schemes [14], the distortion criteria is computed

for all pels regardless of being in foreground or background. This causes the resulted

motion vector not truly reflecting the movement of object pels. In MPEG-4, the

object shape description is called α plane. This α plane of a video object can be

represented by semi-automatic segmentation of video sequences. The α plane refers

to the pel of the current video object at time instance k and contains information

that the pixels form the object (α > 0) and which of the pixels are not inside the

object. The binary α plane is restricted to 0 and 1. At the encoder the shape

information helps reduce the ME error by restricting the error to pixels inside the

object.

In VLSI design of MPEG-4 encoder, a suitable block matching algorithm related

to particular application must be employed. Silicon area, I/O requirement, image

22



2.4. MOTION ESTIMATION FOR MPEG-4

quality arrays structure and effect of different sizes of the on-chip memory are

among the most important parameters. VLSI architecture for the high speed full

search ME is shown is Figure 2.7.

Relative performance in chip area and I/O bandwidth between various algo-

rithms are strongly dependent on picture size and search range [28]. For small

pictures and slow motion (small search range), all BMAs are almost equivalent.

However, for larger picture sizes (CCIR-601) and fast motion, certain fast search

algorithms have the advantage of a significantly smaller chip area. For a specific al-

gorithm, a designer may alter the implementation due to economical considerations.

Comprehensive study on estimating the complexity of various motion estimation

algorithms, their chip area, data bandwidth, and image quality has been provided

in [28].
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Figure 2.7: VLSI architecture for the high speed full search ME [28]
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Chapter 3

Classification-Based Adaptive

Motion Estimation

3.1 Related Work

A novel and simple fast block matching algorithm, called adaptive rood pattern

search (ARPS) consists of two sequential search steps [30]. The initial search is

utilized to locate a good starting point. In this way, the chance for being trapped

by local minima is highly reduced and unnecessary intermediate search points can

be skipped. For initial search, as shown by Figure 3.1, rood pattern has been utilized

while size of the rood is dependent on the motion vectors of neighbor blocks which

are called region of support (ROS).

The speed and accuracy of the rood pattern based search algorithm is highly

related to the size of the pattern. First step of the proposed method permits the

algorithm to adapt itself to the content of motion. In most cases, adjacent blocks

belong to the same moving object have similar motions. Therefore, it is reasonable
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Pattern

Size

Predicted MV

Figure 3.1: Adaptive rood pattern search

to predict the motion of current blocks from motion vectors of adjacent blocks. In

order to obtain accurate prediction for MV of current block, the choice of ROS is

of importance. In spatial domain, since blocks of each video frame are processed in

a raster-scan order, the candidate blocks for prediction of motion in current block

are immediate left, above, above left and above right to the current block as shown

in Figure 3.2. Calculating the statistical average of MVs in the ROS is a common

approach for prediction of motion vector in current block. In [30], the median

criterion has been tested in addition to the mean. Experimental results show that

four possible choice of ROS shown in Figure 3.2 and two types of prediction criteria,

the mean and median, fairly yield similar results in terms of PSNR. Therefore, the

simplest ROS, i.e. immediate left block has been adapted in ARPS and since only

one block is used for prediction there would be no need to utilize any prediction

criteria which also reduces hardware complexity.
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Figure 3.2: Four types of ROS indicated by shaded blocks, the block with ◦ inside
is current block [30]

The shape of adaptive rood in initial search is symmetrical, with four points at

the end points of the rood. The choice of rood shape, is based on observation of

motion feature in real-world sequences. It has been noticed that most of the motions

occur in horizontal and vertical directions, since most of the camera movements are

in these directions. Finally, ARPS symmetry in shape not only benefits hardware

implementation, but also increases robustness.

The adaptive rood search pattern leads to the new search center directly to

the most promising area which is around the global minimum. Hence, instead of

performing full search, a compact and small search pattern can be utilized to locate

the global minimum. When a minimum point is located, this point can be the center

for next iteration until the minimum occurs at the center of search pattern.

The number of static motion blocks per frame could be as high as 70% for most

video sequences . Therefore, zero-motion prejudgement [15] can be also employed

to reduce the computations. Zero motion pre-judgment reduces the the number of

searches by predicting that if the block motion in next frame is zero and therefore

it can skip the search for that block.

Another fast block matching algorithm [29] has been proposed recently which

switches between different search patterns according to the content of data. The
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Figure 3.3: Example to illustrate predicted profit list [29]

algorithm uses a predicted profit list to switch between the search patterns. Based

on this concept, it proposes an adaptive ME with 3 zones: initial zone, adaptive

zone and cleanup zone. We first describe the idea of predicted profit list: The

estimation of MV is a searching procedure that locate the point with minimum

distortion. The initial point is typically selected at the beginning and its MSE is

taken as initial value. Then, the searching algorithm aims at minimizing the MSE

as much as possible by considering another candidate block. This improvement in

reducing the distortion is referred to as profit. As example to illustrate the predicted

profit list is shown in Figure 3.3. The cumulative distribution of profits in third

frame of football sequence is shown in Figure 3.4. The so-called predicted profit list

is a stored list of these blocks in descending order. The acquired profit list has some

characteristics. First, the distribution of profits is not uniform. Second, the blocks

in the predicted profit list usually include several various motion contents which no

stand-alone FBMA can solve them perfectly. Third, the MVs in neighbor blocks

are highly correlated. Fourth, the MV is very likely to be zero near the end of the

list. The size of the MV of the arbitrary frame (34th frame) of football sequence is

shown in Figure 3.5

28



3.1. RELATED WORK

Figure 3.4: Cumulative distribution of profits in the third frame of football sequence
[29]

Figure 3.5: MV of 34th frame in football sequence [29]
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Based on above observations, the adaptive TSS/DS/BBGDS algorithm or in

short (A-TDB) algorithm has been proposed [29]. The A-TDB algorithm adaptively

utilizes fast block matching techniques among TSS, DS and BBGDS respectively for

slow, moderate and fast motions. After the predicted profit list is created, candidate

blocks corresponding to the selected FBMAs can be determined. The list can be

divided into three zones. The top of the list is initial zone. This zone is critical

to final MSE results. The second and third characteristics of the predicted profit

list imply that it may be assembled by multiple successive motion content. Hence,

adaptively three fast block matching motion estimation algorithms are employed

in adaptive zone, namely TSS, DS and BBGDS. The cleanup zone is refereing to

the forth characteristic of the list. The blocks in cleanup zone must be skipped

to reduce computations. The simulation results show that A-TDB significantly

outperforms single FBMAs.

Adaptivity for motion estimation have been studied from other perspectives. In

H.264 encoder, the most time consuming part is variable block size. To reduce this

complexity, an early termination method has been proposed [31]. In this technique,

the best motion vector is predicted by examining only one search point and some

of the search points can be skipped early.

The technique is composed of seven inter prediction modes with different block

sizes varying from 16 × 16 to 4 × 4. Zero motion detection (ZMD) is applied to

skip unnecessary search points. In ZMD, if distortion or a cost function, J , of a

block is less than a predefined threshold, the block can be regarded as zero motion

block (ZMB). An example of a cost function is defined in [31]. The threshold THZi

for i = 1, 2, ...7 for seven modes are defined. During ME, the MV (0, 0) is first

examined. If the cost function satisfies
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Ji < THZi for i = 1, 2...7 (3.1)

then MV (0, 0) is the best prediction and the remaining blocks can be skipped. It

is obvious that if we choose larger threshold, more ZMBs are detected which could

result in quality loss. Therefore, there is a trade off between quality of video frames

and computational complexity. In practice, improving the video quality is more

important than minor increase in computations. Detection accuracy is selected

as a guide for identifying the thresholds. Further research directions may include

making threshold adaptive to quantization level and motion level and employing

early termination methods for sub-pixel ME [31].

Several adaptive motion estimation methods have been also proposed for MPEG-

4 standard. An algorithm is proposed in [32] which first estimates initial motion

vector using motion vector information in the previous frame. Based on SAE of

initial MV, an appropriate motion estimation scheme is selected. A novel ME al-

gorithm called adaptive motion estimation algorithm is proposed in [33] based on

statistical sum of absolute differences (AMESSAD). The algorithm adaptively finds

motion search widow size based on short-term and long-term statistical distribution

of motions.

Finally, based on evolution strategies (ESs) with correlated mutations, an adap-

tively correlated ES motion estimation (ACESME) is proposed in [34]. In this al-

gorithm, the (µ, λ)− ES algorithm with correlated mutations is adopted to block

motion estimation.
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3.2 Preliminaries

3.2.1 Image and Video Features

A feature is defined as a descriptive parameter in image or video which can be used

for processing tasks such as classification, segmentation, etc. Features in visual

data can be basically divided into the following categories [42, 43].

1. Statistical features: These are extracted from video without concern about

content and driven from algorithms such as camera motion flow, video struc-

ture, image difference or scene change.

2. Compressed domain features: A feature that is extracted from a compressed

image or video without regard to the content of visual data.

3. Content-based features: A feature that is extracted for purpose of describing

the actual content of data.

Image difference measures amount of similarity between pair of images. There

are different fundamental image difference methods. Absolute difference, color

histogram difference, difference in information theoretic frame work can be cited

among other methods.

Patterns are random vectors in an n dimensional space usually called feature

space. To classify an object, we make measurements and then extract features

which are desired to reflect the defining attributes [39, 40]. Given a set of features,

we design a classifier based on distance or probability measures of similarity or

discriminant functions.
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3.2.2 The Bayesian Classifier

For development of classifiers, we have to consider two main aspects: The basic

assumptions that a classifier makes about the data and the optimization procedure

to fit the model to the sample data. It is possible to design a very complex classifier,

but without sufficient data, this classifier is not useful [38]. The Bayesian classifier is

introduced here since it is applied in our method for classifying the motion vectors.

Bayesian decision theory is a fundamental statistical tool in pattern classification

problems. The approach is based on probability of events and cost functions that

will accompany decisions on selection of each class. In short, the decision is based

on tradeoff between cost function and likelihood of events [41].

To illustrate the method, consider a two-category classification problem. We

have two class, ω1 and ω2 and we are interested in determining weather a new sample

x belongs to either class ω1 or ω2. A hypothetical class conditional probability

density functions for two classes is shown in Figure 3.6. Suppose that we know

both the priori probabilities p(ωj) and the conditional probabilities p(x|ωj) for

j = 1, 2. Using the famous Bayes formula from probability theory

p(ωj|x) =
p(x|ωj)p(ωj)

p(x)
(3.2)

where in the case of two-category problem

p(x) =
2∑

j=1

p(x|ωj)p(ωj) (3.3)

Bayes formula shows that by observing value of x we can convert priori proba-

bility p(ωj) to a posteriori probability p(ωj|x) which is the probability of being in
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Figure 3.6: Hypothetical class conditional probability density functions for two
classes [79]

class ωj given that value x is observed.

Naturally, if we have observation from x for which p(ω1|x) is greater than

p(ω2|x), then we can decide on class ω1 and vice versa if p(ω2|x) is greater than

p(ω1|x). Let us consider the probability of error if a decision on a specific class is

made. The probability of error is [79]

p(e|x) =

 p(ω1|x), if we decide ω2

p(ω2|x), if we decide ω1

(3.4)

and consequently the average probability of error is given by

P (e) =

∫ +∞

−∞
p(e, x)dx =

∫ +∞

−∞
p(e|x)p(x)dx (3.5)

If the probability of error is small for each decision that is made, then the
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integral must be small as well. Thus we have justified the following Bayes decision

rule for minimizing the probability of error:

Decide ω1 if p(x|ω1)p(ω1) > p(x|ω2)p(ω2); otherwise decide ω2 (3.6)

3.2.3 Non-Parametric Density Estimation

Generally, there are two approaches to probability density estimation, parametric

and non-parametric. In parametric approach, specific form for the distribution

function is assumed and next the required parameters of the selected distribution

must be estimated by means of some techniques such as Maximum Likelihood (ML),

Bayes estimation, etc. The potential problems with parametric approaches are that

in practice we usually are not able to determine a specific form of the distribution.

Therefore, nonparametric approaches are more useful for our purposes.

The probability of vector x falling in region R is given by

p(x ∈ R) =

∫
R

p(x′)dx′ ≈ P (3.7)

Thus, P represents an averaged or smoothed version of the density p(x). Assuming

reasonably that p(x) is constant over R, to estimate p(x) we could first estimate P .

The probability of k out of n samples fall into R is given by binomial distribution.

p(k out of n vectors ∈ R) =

(
n

k

)
pk(1− p)n−k (3.8)

This analysis indicates that p(k out of n vectors ∈ R) is large when k ≡ np and
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it is small otherwise. On this basis, it can be assumed that it is likely that the

number of observed vectors falling in R is the mean which is P = kobs/n. Assuming

p(x) is constant over R, we can estimate (3.7) as

p(x ∈ R) =

∫
R

p(x′)dx′ ≈ p(x)V (3.9)

where x ∈ R and define density volume

V =

∫
R

dx′ (3.10)

Using pervious results, we obtain

p(x) =
k/n

V
(3.11)

The estimates converges to true value as n →∞ [36].

Parzen Windowing

As mentioned previously, nonparametric approaches estimate the pdf without any

priori assumption on the form of distribution. The most fundamental techniques

rely on the fact that the probability P that a vector x will fall in region R is given

by

P =

∫
R

p(x′)dx′ (3.12)

where P is smoothed version of p(x) and we can estimate this smoothed prob-

ability by estimating the probability P .
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Parzen-window approach can be introduced by assuming that region R is a d-

dimensional hypercube. Let hn be the length of an edge of the nth hypercube. Also

define a window function:

ϕ(uj) =

 1, |uj| ≤ 1/2 ; j = 1, ..., d

0, otherwise.
(3.13)

where d is the total number of dimensions. Hence, ϕ((x− xi)/hn) is equal to unity

if xi falls within the hypercube. It follows that the number of samples falling in the

nth hypercube is given by

kn =
n∑

i=1

ϕ

(
x− xi

hn

)
(3.14)

With respect to the fact that integrative sum of probabilities must equal to one

we can deduce

pn(x) =
1

n

n∑
i=1

1

Vn

ϕ

(
x− xi

hn

)
(3.15)

where Vn is the volume of each region [79, 35, 36]. An illustration of Parzen window

method is illustrated in Figure 3.7.

Figure 3.7: Parzen window illustration (taken from Wikipedia) [54]
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Figure 3.8: Histogram density estimation

Histogram Estimation

Consider an interval R = [a, b]; if p(x) is constant over this interval, we can write

p(x ∈ R) =

∫ b

a

p(x)dx = p(a) · (b− a) (3.16)

Applying binomial distribution as described before, we see that the maximum

likelihood estimation of the PDF is given by

p(x) =
k/n

b− a
=

k

n · |R|
(3.17)

where |R| is the size of the region R, and this is exactly what is called a histogram.

Given a set of bins Ri, we sort the Mi samples in each bin, and plot the approxi-

mating PDF as

p̂(x) =
Mi

n · |Ri|
(3.18)
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Figure 3.9: True density contours (left) vs KNN density estimate contours
(right)[53]

It is important to note that these derivations are based on the assumption that

the PDF is constant over each bin which may not be the case in most problems.

However, if the size of each region can be taken infinitely small, then the approxi-

mation could converge to true PDF [79]. Histogram density estimation is shown in

Figure 3.8.

KN -Nearest-Neighbor Estimation

In Parzen window and Histogram estimation method, respectively, the width of the

window function and region size are fixed. This explicitly controls the resolution

along x axis and PDF resolution is data dependent.

In KNN method [36, 79, 37], we fix the number of samples k in each region and

then determine the required size for each region to enclose this many samples. This
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means that in this case we explicitly control the PDF resolution and resolution

along x axis becomes data dependent. An example of KNN density estimation

contours compared to true density contours are shown in Figure 3.9

To compute p(x) at each point x, an interval [x− α, x + α], centered around x

is considered. We increase the factor α until k samples lie within the interval. The

density estimate at x is

p(x) =
k

n · |R(x)|
=

k

n · 2α
(3.19)

where R(x) is the smallest possible region, centered at x and contains k samples.

k =
√

n is conventionally selected. If the sample density is high, |R(x)| and the

estimate has high resolution where is needed and if the sample density is low, the

region size |R(x)| is large and density resolution will be lower which is acceptable in

sparsely populated regions. The method avoids to have zero value for the n regions

that no sample appears and in this way it estimates a realistic non-zero estimation

proportional to 1/|R(x)|. The main drawback of this method is that it is highly

peaked and non normalized.
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3.3. OVERVIEW OF THE PROPOSED METHOD

3.3 Overview of the Proposed Method

Real videos contain a mixture of motions with slow and fast contents. No fixed fast

block matching algorithm can efficiently remove temporal redundancy of video se-

quences with wide motion contents. In this thesis, an adaptive fast block matching

algorithm, called classification based adaptive search (CBAS) has been proposed.

A Bayes classifier is applied to classify the motions into slow and fast categories.

Accordingly, appropriate search strategy is applied for each class. The algorithm

switches between different search patterns according to the content of motions

within video frames. Experimental results show the proposed technique outper-

forms conventional stand-alone fast block matching methods in terms of both peak

signal to noise ratio (PSNR) and computational complexity.

We have formulated the design of adaptive scheme as a two-category classifica-

tion problem. The motion length of each macro block is predicted from neighbor

blocks. Then, a Bayes classifier is applied to label the motion as slow or fast. Fi-

nally, appropriate search pattern is applied with respect to the label of motion to

find the best matching block within the image frame. Adaptive rood pattern, pro-

posed in [30], is selected for fast motion estimation and diamond pattern is selected

for slow motions due to reasons given in subsection 3.4.1.

3.4 Estimation and Learning

In classification problems, Bayes classifier achieves the minimum probability of error

[79]. Therefore, it is a suitable classifier for problems with known class conditional

probability density function (PDF), p(x|ci). If the density functions are not known

apriori, it is still possible to estimate an approximation for density functions from
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labeled sample data, as discussed before . Since the functional form of class prob-

ability density functions are not known, the non-parametric estimation is applied.

Different non-parametric estimation approaches are available: Histogram Estima-

tion, k-Nearest-Neighbor (KNN) Estimation and Parzen widowing which employs

Kernel smoothing functions to estimate the PDF. The Parzen windowing method

can be summarized as follows: Given a sample X1, .., Xn with a continues, univari-

ate density f , the Parzen density estimation is

f̂(x, h) =
1

nh

n∑
i=1

K(
x−Xi

h
) (3.20)

where K is the Kernel and h is the bandwidth. Under mild conditions (h must

decrease when n increases), the probability estimation converges to true proba-

bility. The histogram method introduces a tradeoff: for good resolution along x,

small-sized regions are required. In KNN methods, the resolution along the PDF

axis is data dependent, i.e. the resolution along the x-axis is explicitly controlled.

The principal virtue of the KNN scheme is that it avoids setting p(x) identically

to zero in regions which happen not to have any samples, rather it results in a

more realistic non-zero probability. The principal drawback of the KNN method is

that the estimated PDF is highly peaked and non-normalized. In addition, KNN

methods are usually time-consuming and complex which might be undesirable in

practical implementations with online access and limited storage space. We apply

Parzen windowing with gaussian smoothing function to estimate the conditional

PDF from sample labeled data. The main advantages of Parzen window method

are its simplicity and fast implementation.

The selected feature for classification is length of motion vectors (MVs). For the

first image frame, since there is no pervious data to be used for PDF estimation,
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the algorithm follows a rigid thresholding approach which is comparing the length

of motions to a predefined threshold and classify the vectors in two groups of slow

and fast motions. After motion classification for each macroblock, appropriate

searching scheme is employed for that macroblock. After computation of all the

motion vectors and their class label, they can be utilized by parzen window method

to estimate class conditional PDFs. Starting from second frame, motion vector of

each macroblock, x, within the image is predicted by motion vector of immediate left

macroblock. Then using class conditional PDFs that are estimated from pervious

frame, Baysian classifier is applied to classify x as either slow or fast and accordingly

apply relevant search scheme.

Knowing the class probability density functions, p(x|Cfast) and P (x|Cslow), the

bayes classifier can be expressed as follows:

The motion is classified as fast motion, if:

P (CFast|x) > P (CSlow|x) (3.21)

From the bayes formula we have,

P (Ci|x) =
P (x|Ci)P (Ci)

P (x)
(3.22)

substituting (3.22) into (3.21) we obtain

P (x|CFast)P (CFast)

P (x)
>

P (x|CSlow)P (CSlow)

P (x)
(3.23)

or

P (x|CFast)P (CFast) > P (x|CSlow)P (CSlow) (3.24)
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Moreover, if the probabilities of having image frames with rapid or slow motion

content are assumed to be equal, the classification criterion can be simplified as

follows:

P (x|CFast) > P (x|CSlow) (3.25)

An important point for consideration is an appropriate selection of region of

support (ROS) which is defined as neighboring blocks whose MVs are used to

predict the motion vectors in the current block and the algorithm used to compute

the predicted motion vectors for each class. Exhaustive experiments on considering

different sets of immediate left, above-left, above and above-right to the current

block and two types of prediction criteria–mean and median operation on lengths

of motions in ROS, have been performed in [30]. The experiments show that the

results have fairly similar performance in terms of PSNR. Hence, we apply the

least complex choice, i.e., using the immediate left block for predicting the motion

vector of current block. After computing all the motion vectors of current frame,

we can update the PDFs to be used for motion classification in next frame. The

procedure is repeated for subsequent frames. This technique is able to adapt itself

to the contents of motions and establish higher performance quality compared to

stand-alone fast block matching algorithms. Simulation results provided in section

4.2 are provided in support of our proposed algorithm.

3.4.1 Selection of Search Patterns

A series of experiments on standard block matching techniques have been con-

ducted on selected video sequences containing variety of motion contents. The

performance parameters for each of the algorithms in each video sequences are

recorded and compared to each other. The peak signal to noise ratio (PSNR) and
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computational complexity have been employed to evaluate performance of the al-

gorithms on sequences with different motion contents. Observations show that for

small motions (less than 3 blocks), the algorithms with compactly spaced points

result in more accurate approximations of motion vectors. Among the tested search

patterns, DS shows superior results for sequences with small motions. Prohibitive

nature of DS, i.e. prevention from being trapped into local minima, in addition

to appropriate accuracy, led us to select this algorithm for block matching search

when the motion is classified as slow. In addition, DS is successful for prediction

of motions with moderate lengths (3 to 4 blocks). As we mentioned before, both

small and moderate motion vectors have been classified under Slow category and

same searching algorithm, i.e. DS, is employed for prediction of motions in this

class.

For fast motion, the proposed method uses a rood pattern method suitable for

this class. In [30], a rood pattern with one point at center and four search points lo-

cated at the four vertices has been proposed. The main structure has a symmetrical

rood shape, and its size refers to distance between vertices and the center point of

the rood. The choice of rood shape is based on the observations on real-world video

sequences. The MV distribution in the vertical and horizontal directions are higher

than that in other directions since most of the camera movements occur in these

directions [30]. The size of the rood is adaptive with respect to predicted length

of the current block’s motion vector. The prediction of target MV, is obtained

through MVs of neighbor blocks’ vectors. The flexible size of the rood, prevents

the search to be trapped in local minima which is of importance when searching for

blocks with fast motions. The rood search will be followed by small diamond search

pattern (SDSP) steps until the best match occurs at the center of the pattern.

Simulation results, given in Chapter 4, demonstrate that the proposed technique
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outperforms conventional fast block matching methods in terms of higher PSNR

and less computational complexity. In summary, an intelligent encoder should apply

adaptive motion estimation techniques instead of relying on fixed patterns. The

ideas of machine learning and pattern recognition can be applied for the design of

adaptive intelligent motion estimation techniques.
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Chapter 4

Simulation Results

4.1 Definitions and Assumptions

Simulations are based on the encoding platform under MPEG-4 test conditions

where each sequence contains 100 frames (except claire sequence with 30 frames)

and has QCIF (Quarter Common Intermediate Format) or CIF (Common Inter-

mediate Format) formats. For comparison, the average peak to peak signal to

noise ratio of our classification based adaptive search (CBAS) has been computed

for various video sequences and compared to other standard block matching mo-

tion estimation methods including FS, DS, TSS, NTSS and FSS. Computational

complexity is measured by computing average number of checking points per MV

generation which is also related to speed of match finding where computational gain

is defined as the ratio of the search speed of full search (FS) or exhaustive search

(ES) to that of our algorithm.
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4.2 Characteristics of Video Sequences and Sim-

ulation Results

Claire sequence (Figure 4.1), contains relatively slow motions within the frames.

The PSNR performance results (Figure 4.2) show that all algorithms have close

performance. The similarity of PSNR performance is that this video sequence

contains very small motions between any consecutive frames. FBMAs introduce

much less computations compared to FS (Figure 4.3). Our algorithm CBAS has

the best performance in terms of computations and also best performance in PSNR

among FBMAs.

Diskus sequence (Figure 4.4) contains high movement of camera during the

frame sequence. Panning, zooming, and change of shot are characteristics of this

sequence. Around frame number 20 to 40 in Figure. 4.5, there is gradual decrease

in PSNR performance for all the tested algorithms. This is because camera zooming

during these frames results in less accurate motion vectors and as a result, lower

quality of compensated frames. Although this sequence is a mixture of wide variety

of motions from slow to fast, our method stands in second order after FS and on

the top of all FBMAs, while it also introduces the least computations (Figure 4.6).

Flower garden (Figure 4.7) is an example of video with rapid movement of cam-

era in one direction while new objects appear as camera moves forward and some

objects disappear. This results in rapid increase and decrease in PSNR performance

(Figure 4.8). CBAS is the most efficient methods for handseling this sequence and

shows best performance in terms of computations (Figure 4.9).

Mother and daughter (Figure 4.10) is a video sequence similar to claire sequence

with slightly faster movements. Results of this sequence are very similar to clair
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sequence, since both contain very slow motions. PSNR and computation results

have been shown respectively in Figure 4.11 and Figure 4.12.

Osu sequence (Figure 4.13) is a selected sequence because it has a wide range

of motions, starting with small movements to gradual but rapid change of shot

continuing with fast displacement of camera. Although it is composed of small

motions and all the algorithms have very similar performance in terms of PSNR

(Figure 4.14), there is a shot change from frame 55 to 60 which results in decrease in

PSNR values. Again, CBAS is the most efficient in terms of computations (Figure

4.15).

Table tennis sequence (Figure 4.16) has been used in verification of MPEG video

standard and contains slow, moderate and fast movement and abrupt change of

shot during the sequence. Compared to our algorithm, NTSS and TSS have better

performance in terms of PSNR (Figure 4.17), while in terms of computations CBAS

has the best performance (Figure 4.18). There is a shot change around frame 88

which results in abrupt decrease of PSNR value for all the algorithms.

All comparison results for Diskus and flower garden sequences in terms of PSNR

performance and computational complexity are provided in Table 4.1 and Table

4.2. The results shows that CBAS, introduces the best performance in terms of

computations for all sequences. In terms of PSNR, it stands the second after FS

and on top of all FBMAs, expect for Table tennis sequence which TSS and NTSS

have better performance. The reason could be related to the nature of video in this

sequence.

We also provided the comparison results of our algorithm with A-TDB which

is another adaptive motion estimation algorithm. Table 4.3 and Table 4.4 show

the PSNR and computation performance, respectively. A-TDB shows better PSNR

49



4.2. CHARACTERISTICS OF VIDEO SEQUENCES AND SIMULATION
RESULTS

performance for different sequences, while in average CBAS has better computation

performance.

In all the figures in simulation results, SESTSS is equivalent to three step search

(TSS) and SS4 is equivalent to four step search (FSS).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Claire sequence of frames
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Figure 4.2: PSNR performance over sequence of frames (PSNR performance of stan-
dard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in comparision to classification-
based adaptive search (CBAS))
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Figure 4.3: Computational complexity over sequence of frames (number of compu-
tations per block for standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in
comparison to classification- based adaptive search (CBAS))

53



4.2. CHARACTERISTICS OF VIDEO SEQUENCES AND SIMULATION
RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Diskus sequence of frames
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Figure 4.5: PSNR performance over sequence of frames (PSNR performance of stan-
dard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in comparison to classification-
based adaptive search (CBAS))
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Figure 4.6: Computational complexity over sequence of frames (number of com-
putations per block for standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown
compared to classification- based adaptive search (CBAS))

56



4.2. CHARACTERISTICS OF VIDEO SEQUENCES AND SIMULATION
RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Flower garden sequence of frames
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Figure 4.8: PSNR performance over sequence of frames (PSNR performance of stan-
dard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in comparison to classification-
based adaptive search (CBAS))
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Figure 4.9: Computational complexity over sequence of frames (number of compu-
tations per block for standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in
comparison to classification- based adaptive search (CBAS))
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Mom & Daughter sequence of frames
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Figure 4.11: PSNR performance over sequence of frames (PSNR performance
of standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in comparison to
classification- based adaptive search (CBAS))
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Figure 4.12: Computational complexity over sequence of frames (number of com-
putations per block for standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in
comparison to classification- based adaptive search (CBAS))
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(a) (b)

(c) (d)

(e) PSNR (f)

Figure 4.13: Osu sequence of Frames
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Figure 4.14: PSNR performance over sequence of frames (PSNR performance
of standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in comparison to
classification- based adaptive search (CBAS))
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Figure 4.15: Computational complexity over sequence of frames (number of com-
putations per block for standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in
comparison to classification- based adaptive search (CBAS))
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Table tennis sequence of frames
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Figure 4.17: PSNR performance over sequence of frames (PSNR performance
of standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in comparison to
classification- based adaptive search (CBAS))
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Figure 4.18: Computational complexity over sequence of frames (number of com-
putations per block for standard FBMAs (ES, DS, TSS, NTSS, FSS) are shown in
comparison to classification- based adaptive search (CBAS))
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Algorithm Claire Diskus Flower-Garden Mom-daughter Osu Table Tennis
ES 35.4233 29.14 20.093 32.7653 25.2609 23.6390

CBAS 35.1604 28.7336 19.7496 32.6472 25.0965 22.4553
DS 35.2414 28.0300 18.9325 32.6567 24.9953 22.3714
TSS 35.0276 28.1621 19.3349 32.5886 25.1002 22.6962

NTSS 35.248 28.0983 19.5930 32.6980 25.0882 22.7974
FSS 35.0631 27.9853 19.0849 32.5896 24.9918 22.496

Table 4.1: Average PSNR for standard FBMAs comparing to classification-based
adaptive search (CBAS)

Algorithm Claire Diskus Flower-Garden Mom-daughter Osu Table Tennis
ES 191.1033 204.2828 202.048 199.986 199.988 202.0485

CBAS 6.9177 11.2040 10.1481 8.2159 10.5208 9.9573
DS 13.4506 20.5541 19.7864 15.2746 19.725 18.3302
TSS 21.9751 23.5653 23.383 22.824 23.1156 23.2860

NTSS 17.6404 24.6127 25.818 19.883 23.8546 23.4972
FSS 16.1209 20.9394 20.343 17.512 19.9850 19.7360

Table 4.2: Average number of computations per block for standard FBMAs com-
paring to classification-based adaptive search (CBAS)

Algorithm Flower-Garden Mom-daughter Table Tennis
A-TDB 23.5995 39.6489 26.7633
CBAS 19.7496 32.6472 22.4553

Table 4.3: Comparison of PSNR between CBAS and another adaptive video motion
estimation algorithm (A-TDB)
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Algorithm Flower-Garden Mom-daughter Table Tennis

A-TDB 16.51 3.55 10.28
CBAS 10.1481 8.2159 9.9573

Table 4.4: Comparison of computational complexity between CBAS and another
adaptive video motion estimation algorithm (A-TDB)

4.3 Summary

The PSNR and computation performance results illustrate that CBAS has better

PSNR performance and less computation than other algorithms, including state-

of-the-art DS algorithm while also introduces less computations. In comparison

with ES, our algorithm greatly improves the search speed. CBAS is almost 12.75

times faster than ES while the PSNR level closely follows that of the ES with slight

degradation (less than 0.10 − 0.13 dB). The algorithm is able to maintain rather

consistent PSNR performance. The efficiency of our algorithm largely dependent

on the precision of estimated probability functions and selection of suitable search

scheme for each class.

70



Chapter 5

Hierarchical Classification-Based

Video Shot Detection

5.1 Introduction

Video shot detection refers to the process of detecting transition occurring between

scenes in a digital video stream. It can provide disjoint contiguous video segments

that can be utilized as basic units to be indexed, annotated and browsed. The de-

tection of shot cut involves detecting a significant change in visual content between

two frames or gradual change within number of frames. The development of video

shot boundary detection techniques have the longest and richest history in the area

of content-based video analysis and retrieval [60, 62]. The importance of video shot

detection algorithms initiates from the necessity for almost all video abstraction

and high level video processing. The detection of Scene breaks and partitioning of

video into short homogenous temporal segments is the first step toward annotation

of digital video sequences. We may be able to replace fast forward button on video
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browsers by a button that searches for next scene break [74]. Shot segmentation is

also important for other applications such as motion-based compression algorithms

such as MPEG in the way that they can achieve higher compression ratio without

sacrificing the quality of data if the locations of scene breaks are known [74]. For

example, in the process of coloring black and white movies, information about lo-

cation of shot boundaries can provide time stamps for switching between different

gray-to-color look-up tables [60].

A shot is defined as an unbroken sequence of frames taken by one camera.

Using motion picture terminology, shot change can belong to one of the following

categories [61]:

• Cut: This is an abrupt change between two consecutive frames where one

frame belongs to the disappearing shot and the other belongs to an appearing

shot.

• Fade: Either the intensity of disappearing shot changes from normal into

black frame (fade out), or intensity of the black frame changes into appearing

shot (fade in).

• Dissolve: In this case, few frames of disappearing shot overlap with few ap-

pearing frames of appearing shot. The intensity of disappearing shot decreases

to zero (fade out) while intensity of appearing shot increases from zero (fade

in).

• Wipe: Here, the appearing and disappearing shots coexist in different spatial

regions of the intermediate video frames, and the region occupied by former

grows until it gradually replaces the latter.
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The first step in shot detection algorithm is to extract one or more features

from video frame or subset of it called region of interest (ROI). The algorithm can

then use different techniques to detect shot changes and classify type of changes.

Among various existing measurement techniques, information theoretic measures

provide better results because it exploits the inter-frame information in a more

compact way than frame subtraction. In attempt for designing threshold free shot

segmentation algorithms, some existing works in literature consider the problem

from a different perspective. For example, transforming the temporal segmentation

problem into a multi-class categorization issue. The work in [64], is an example

of supervised classification methods for video shot segmentation. Computer vision

techniques allow content-based processing of video frames. Various methods for

detection and classification of scene breaks have been proposed. Different features

of the video data have been used in video shot detection. Some of these features

are

1. Average intensity measurement: The average of the intensity values for each

component (YUV, RGB, etc.) in each frame is computed and compared to

the successive frame.

2. Euclidian distance: The frame is divided into series of blocks and then Dis-

crete Cosine Transform (DCT) is performed on each block. In [56], the Eu-

clidian distance between mean of DC values of blocks has been utilized as a

degree of dissimilarity between frames.

3. Histogram comparison: It is based on subtracting the histograms, e.g., gray

level histograms of subsequent image frames.

4. Likelihood ratio: Generating the measure of likelihood that two corresponding

regions are similar. Each region is represented by a second order statistics
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under the assumption that this property is constant over the region. For

example we can divide the frames into blocks and then compute the likelihood

ratio calculation over the blocks.

5. Motion estimation vectors: We estimate the next frame in a video sequence

based on information acquired from estimating the motion vectors. Then the

absolute difference between the reconstructed frame and the original frame is

calculated and summed.

6. Edges: Edges are very informative. The number of edge pixels and their

locations can be computed in any successive frames. If the edges are appearing

or disappearing far from the edges in pervious frame, we can recognize that

a scene break has occurred.

A typical shot boundary detection system is shown in Figure 5.1. Most of the

shot detection methods rely directly on intensity data and have difficulty with

dissolves and motions within scenes. In the first step of shot break detection,

feature extraction is employed. Then a metric is selected to compute the value of

dissimilarity between frames with respect to the selected feature or features. This

dissimilarity value serves as input to shot cut detector and it is compared against

a threshold. If the threshold is exceeded then shot cut between frames is detected.

Despite various techniques proposed by researchers, we can relate the following

major criteria addressed in [60] to rank the degree of success of an algorithm.

1. Excellent performance in detection for all types of shot changes (instantaneous

and gradual boundaries)

2. Constant quality of performance for all types of videos with minimal need to

fine tuning of detection parameters.
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Figure 5.1: A typical shot boundary detection system [60]

If the detection performance is poor, significant involvement of operator is re-

quired in order to correct wrong decisions. In addition, if the parameters of shot

detection algorithm are highly sequence dependant, it would be hard for the oper-

ator to find the optimal parameters for each sequence. Bad detection performance

may negatively affect the performance of high level video analysis. In this intro-

ductory background, we address the issues that must be taken into consideration

when designing the video shot detection algorithm specially in light of the criteria

addressed before. It can be realistically assumed that changes in visual contents of

frames are mainly caused by camera motions or lighting changes. The best way to

tackle the problem that might occur according to these changes, is to select features

and metric measures which are least sensitive to these variations. However, the in-

fluence of strong and abrupt lighting changes on detection performance can not be

easily reduced. In addition, further improvement to the detection performance can

be accomplished if a priori information about distribution of shot boundaries is

available [60].
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5.2 Review of Shot Segmentation Methods

Comprehensive overview on existing methods in video shot segmentation both on

uncompressed and compressed data can be found in [60], [61], [63], [77].

For uncompressed domain, most of the algorithms are based on suitable thresh-

olding of differences between successive frames. However these thresholds are highly

sensitive to the type of video. A supervised classification method by transforming

the temporal segmentation problem to a multi-class categorization issue is proposed

in [64]. The paper in [65] views the problem as a 2-class clustering problem and

uses k-means to cluster frame differences. From computer vision approaches, the

paper in [66] applies graph cuts to find the globally optimal segmentation of the

N-dimensional image.

Several information theoretic approaches have been proposed by researchers

to overcome the problem. The paper in [67] uses mutual information (MI) and

affine image registration. The MI measures statistical difference between frames

while affine registration compensates for camera movements, panning and zooming.

Another paper in [68] introduces information theoretic metrics for detecting cuts,

fade-ins and fade-outs which rely on MI and joint entropy (JE).

Application of color information is used in [69] to partition the video into dy-

namically homogeneous segments using the criterion inspired by compact coding

theory. They have performed information-based segmentation using the Minimum

Message Length (MML) criterion and minimization by Dynamic Programming Al-

gorithm (DPA). This method is capable of detecting all types of transmission in a

generic manner.

A shot cut detection technique is presented in [70] which applies combination

of multiple experts by exploiting the complementarity of expert knowledge, i.e. the
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fact that various experts calculate different features of the video sequences. This

method significantly gives better results compared to those experts alone.

In [58], the detection of scene breaks is improved by the use of threshold that

adapts itself to the statistics of the sequence. A single statistic is generated for each

pair of frames which quantify the degree of dissimilarity between the two frames.

It has been assumed that dissimilarity measures come from two stationary distri-

butions: one for shot boundary and one for a non-shot boundary. We assume that

the cost of false positives and true negatives are the same, then simple hypothesis

testing approach yields the value of optimal threshold which will result in smallest

error probability. Another approach for adaptive shot detection scheme proposed

in [59] suggests the use of three different features and then combine the results

of shot detection from all three measures to decide for the best location of shot

boundary. The proposed algorithm can be divided into two stages. First extracting

all the needed features which in their case are fast fourier transform (FFT), YUV

and gray histogram. The second part is to decide whether the shot cut has occurred

with respect to each of these features independently by considering the difference

between two consecutive frames compared to a threshold which can be determined

explicitly or adaptively. Then, combining the results to form the final list of shot

boundaries. To determine the adaptive threshold, they defined it as a percentage

value of the maximum difference. According to the change of maximum dissimilar-

ity, the amount of threshold changes with content of data. Finally, for each feature,

shot boundaries belonging to the same shot are merged. Another similar strat-

egy which combines multiple experts knowledge for classifying video sequences has

been suggested in [70]. In [60] a statistical detector that is based on minimization

of average detector error probability has been proposed. The problem of video shot

detection has also been explored in frequency domain. The work reported in [55]
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calculates the normalized correlation field in frequency domain instead of spatial

domain.

As pioneered by the above methods, classification methods show promising re-

sults for this task. However, most existing shot detection algorithms use ad hoc

frame classification with arbitrary thresholding rule [64]. To illustrate these algo-

rithms, two approaches are described in the following two subsections. First an

information theoretic approach is described. Subsequently a feature based method

for scene change detection is described.

5.2.1 Information Theoretic Approaches to Shot Detection

With respect to the use of information theory in our classification based shot de-

tection method, we briefly review some of the existing work in literature that also

benefit from information theory.

In [67], mutual information (MI) and affine image registration are used to solve

this problem. The advantages of this approach is high robustness to illumination

changes within a shot and easy parallelization. To define MI, let us consider X and

Y to be two random variables with marginal probability distribution p(x) and p(y)

and joint probability distribution p(x, y). The MI between X and Y is

I(X; Y ) = H(Y )−H(Y |X) = −
∑
x,y

p(x, y) · log(
p(x, y)

p(x) · p(y)
) (5.1)

While joint entropy is defined as

H(X,Y ) = −
∑
x,y

PXY (x, y) · logPXY (x, y) (5.2)
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where H(.) is Shannon entropy. In other words, MI contains information that one

random variable contains about other random variable which bears the context

that it can be used as a measure of similarity among two random variables. A large

MI between two adjacent images, implies large dependance of image frames with

respect to the selected features. Another work which also uses mutual information

as a measure of similarity between adjacent frames has been done in [57]. Mutual

information is used for detecting the abrupt cutes when a large difference occurs

in color content of frames. A large difference in color content, results in small

value of mutual information. MI and joint entropy between two successive frames

are calculated separately for each of the RGB components. Let us consider that

gray levels vary between 0 to N − 1. Then we obtain three N × N matrices

CR
t,t+1, C

G
t,t+1, C

B
t,t+1 that carry information between successive frames ft and ft+1.

Following the definition of MI in equation (5.1), we obtain [57]

IR
t,t+1 = −

N−1∑
i=0

N−1∑
j=0

CR
t,t+1(i, j) log

CR
t,t+1(i, j)

CR
t,t+1(j)

(5.3)

and total mutual information is given by

It,t+1 = IR
t,t+1 + IG

t,t+1 + IB
t,t+1 (5.4)

Similarly, the joint entropy for each component can be computed as follows

HR
t,t+1 = −

N−1∑
i=0

N−1∑
j=0

CR
t,t+1(i, j) logCR

t,t+1(i, j) (5.5)

and the total joint entropy is obtained by:
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Ht,t+1 = HR
t,t+1 + HG

t,t+1 + HB
t,t+1 (5.6)

In [57], an adaptive threshold is applied in order to detect the outliers. The

average of MI between successive frames over a window W of size NW is obtained

at each time instance and is trimmed at the current window center:

Ītc = E[It,t+1], t ∈ W, t 6= tc (5.7)

The value Ītc/Itc,tc+1 is then compared to the threshold εc. If this value exceeds

the threshold, a shot cut is detected.

Fade detection: In order to have high performance in detection of fades and

distinguish them from abrupt cuts, the joint entropy can be applied which is the

average amount of information carried within a number of frames. Its value de-

creases during fades where weak amount of information is present. Only values

of Ht,t+1 below a threshold T are examined. The end of fade out, te, is the place

where joint entropy presents local minima. To search for the start of fade out, ts,

the criteria presented below is applied [57]

Hts,ts+1 −Hts−1,ts

Hts−1,ts −Hts−2,ts−1

≥ εf (5.8)

where εf is a predefined threshold. A similar procedure is applied for detecting fade

ins.

Another interesting work is performed in [69]. The novel characteristics of the

algorithm is that it does not use predefined threshold and it is parameter free.

The Jeffery divergence (Appendix C) is used to measure the distance between color
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histograms. If Hi and Hj are histograms containing N beams, the Jeffery divergence

between two histograms is defined by:

Dcol(i, j) =
N∑

k=1

[
(Hi(k)

(
Hi(k)

m(k)

)
+ Hj(k)log

(
Hj(k)

m(k)

)
)

]
(5.9)

where m(k) =
Hi(k)+Hj(k)

2
. Partitioning of video is defined as finding the partitioning

that best describes the data assuming a model yθ
m(t) with different parameters

θ = (a0, a1, σ) in each segment. If we assume that variations from frame to frame is

constant and evolution of colors is homogenous then the model can be defined as:

yθ
m(t) = a1t + a0 + et (5.10)

where et is an additive error term. a0 and a1 take into account static and dynamic

characteristics of data respectively.

5.2.2 A Feature Based Algorithm for Shot Detection

In this subsection we review a successful approach suggested by R. Zabih et al [74].

This approach applies edges as a selected feature for solving the problem of shot

boundary detection.

The algorithm takes two consecutive images I and I ′ and performs edge detec-

tion on images resulting in two binary images E and E ′. Let ρin and ρout denote

the number of edges that appear and disappear respectively in E ′ more than a fixed

distance r from closest edges in E. ρin should be a high value during fade in and

ρout should be a high value during fade out. The basic measure of dissimilarity

which is called fraction of edge changes is defined as
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ρ = max(ρin, ρout) (5.11)

Motion Compensation

We can apply motion compensation methods to handle the false positives that may

occur because of motions within shots. The estimation algorithm must be efficient

and robust in presence of multiple motions.

Computation of edge change fraction

Basically, edges are referred to the collection of pixels in an image which lie on the

boundary between two regions [44].

Canny edge detection (Appendix A) is among the best edge detection algorithms

available for images [45]. Therefore, it is employed in our proposed shot detection

scheme. The images are first smoothed by a Gaussian filter of width σ. Next the

gradient magnitude is computed which indicates that how fast the local intensities

are changing. This magnitudes are compared with a predefined threshold of value τ

to detect edges. Next step is dilation. Let Ē and Ē ′ be the dilated copies of E and

E ′ which are created by replacing each edge pixel by a diamond whose height and

width are 2r + 1 pixels in length. To use the Manhattan distance between edges,

dilatation with diamond is more suitable [74]. If we want to use Euclidian distance

between edges, dilatation by a circle is more favorable.

Consider ρin which is a fraction of pixels in E ′ which are farther than distance r

away from the edges in E. A black pixel E ′[x, y] exists when E[x, y] is not a black

pixel(since the black pixels in Ē are exactly those pixels within distance r of an

edge in E [74].
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ρin = 1−
∑

x,y Ē[x + δx, y + δy]E ′[x, y]∑
x,y E[x + δx, y + δy]

(5.12)

Similarly, ρout is the fraction of edges in E which are farther than distance r

away from edge pixels in E. The equation ρout is calculated by

ρout = 1−
∑

x,y E[x + δx, y + δy]Ē ′[x, y]∑
x,y E[x, y]

(5.13)

The edge change fraction illustrated in equation (5.11) is the maximum of ρin

and ρout.

5.3 Hierarchical Classification-Based Video Shot

Detection Method

5.3.1 Overview of the Proposed Method

We propose a hierarchical classification scheme for detection and clustering the

type of shot boundaries. The fraction of change in edge pixels between any two

consecutive frames is computed and treated as a feature vector. Classification

Based Adaptive search (CBAS) for motion compensation, described in chapter 3

is applied to handle camera or object motions. First, each frame is classified into

two classes of Cut and Non-cut using information theoretic classification rule on

computed feature vectors described in section (5.3.3). Second step uses the same

classification technique to classify the non-cut frames into two classes of Normal

shot frame or Gradual transition frame. K-nearest neighbor exchange algorithm

is recalled to optimize the information theoretic classification rule. In third step
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Figure 5.2: Schematic diagram of the proposed shot segmentation algorithm
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of hierarchy, Fuzzy k-means clustering is applied on gradual transition frames to

categorize them into four groups of Fade in, Fade out, Dissolves and Wipes. The

schematic diagram of the proposed method is shown in Figure 5.2.

5.3.2 Computing the Edge Change Fraction

Edges are very informative. Amount of edge pixels and relative location of edges in

any consecutive frames in video sequence can be related to the change in frame’s

visual content. As a result, high amount of change in location of edges informs us

about significant change in frame’s content or shot change. For computing the edge

fraction, we follow the method proposed in [74]. The first step is extracting the

edges from each image frame. Canny edge detection is applied for this purpose. Let

δx and δy, computed by one of the motion estimation methods, be the translation

necessary to align image frames I and I ′. Let E and E ′ denote the edge frames.

Next copies of E and E ′ are dilated by replacing each edge pixel by a diamond with

radius r. The dilated images are denoted by Ē and Ē ′.

Consider ρout, the fraction of edge pixels in E which are farther r away from

an edge pixel in E ′. A black pixel E[x, y] is an exiting pixel when Ē ′[x, y] is not a

black pixel. The equation for ρout is

ρout = 1−
∑

x,y E[x + δx, y + δy]Ē ′[x, y]∑
x,y E[x, y]

(5.14)

Similarly, ρin, the fraction of edge pixels that are entering the frame, can be

computed by

ρin = 1−
∑

x,y Ē[x + δx, y + δy]E ′[x, y]∑
x,y E[x + δx, y + δy]

(5.15)
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Therefore, the fraction of changed pixels can be represented by ρ which is defined

as

ρ = max(ρin, ρout) (5.16)

Scene breaks or shot cuts are equivalent to the peaks in the edge change fraction

ρ.

5.3.3 Classification Learning Rule

In this section we follow the information theoretic classification proposed in [73].

Consider ρ ∈ Ωρ as a selected feature vector where Ωρ is the space of feature vectors.

Let us define the likelihood function:

L(ρ|C, C ′) = p(ρ|C) · p(ρ|C ′) (5.17)

where C ∈ ΩC is the true class label and C ′ ∈ ΩC is estimated class label where

Ωc denotes the space of class labels. In other words, this formula represents the

likelihood of having ρ knowing that its true class label is C and estimated label

is C ′. This approach can be extended by defining the global transmission of class

labels as the likelihood of transmitting the class label C to the estimated class label

C ′ over the entire feature domain Ωρ [73]:

T (C, C ′) =

∫
Ωρ

∑
C∈ΩC

∑
C′∈ΩC

D(C, C ′)

· L(ρ|C, C ′)p(C)p(C ′)dρ

(5.18)
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where p(C) and p(C ′) are the prior true class probability and the estimated class

probability distributions, respectively. The function D is dissimilarity function and

can be defined with respect to the application. Our strategy in classification is to

minimize the error transmission, or maximize the true class label transmissions. For

the sake of simplicity, we can neglect class-dependent similarities, i.e., we assume

D(C, C ′) is equal to 1 when C = C ′ and 0 otherwise.

Both conditional probability density functions (PDFs) appearing in (5.17), can

be estimated using nonparametric parzen window estimator [75]. It consists of

placing a kernel function such as the well known Gaussian with width σ on each

data sample. We use the Gaussian kernel because it provides simplification in the

analysis which will be discussed later in this section. Therefore, the estimated

conditional probability density functions can be expressed by:

p̂(ρ|C) =
1

|SC |
∑

ρi∈SC

N(ρ− ρi, σ
2
i ) (5.19)

p̂(ρ|C ′) =
1

|SC′|
∑

ρj∈SC

N(ρ− ρj, σ
2
j ) (5.20)

where the Gaussian kernels are defined by:

N(ρ−m, σ2) =
1

(2πσ2)d/2
exp [−‖ρ−m‖2

2σ2
] (5.21)

and sets Sc and SC′ contain data samples with class labels C and C ′ respectively,

and |Sc| and |SC′| are their size. Let M be the number of prototype data samples.

Substituting estimated conditional probabilities into (5.18) and replacing p(C) and

p(C ′) by |SC |
M

and
|SC′ |
M

respectively, we have
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T (C, C ′) =

∫
Ωρ

∑
C∈ΩC

∑
C′∈ΩC

D(C, C ′)

· 1

M

∑
ρi∈SC

N(ρ− ρi, σ
2
i )

· 1

M

∑
ρj∈SC

N(ρ− ρj, σ
2
j )dρ

(5.22)

We simplify above formula by using the fact that integration of two Gaussian

random variable has still Gaussian distribution with a mean equal to the difference

of means and a variance equal to summation of variances of the original Gaussian

functions [76], i.e.

∫ +∞

−∞

1

M
N(x− xi,σ

2
i ) ·

1

M
N(x− xj, σ

2
j )dx

=
1

M2
N(xi − xj, σ

2
i + σ2

j )

(5.23)

Applying this property in (5.22), we have the following information theoretic

learning rule

Ĉ ′ = arg max
C′

∑
C∈ΩC

∑
C′∈ΩC

D(C, C ′)V (SC , SC′) (5.24)

where V (SC , SC′) is defined as the information potential (IP) [71], which is closely

related to Renyi’s quadratic entropy [76], i.e.

V (SC , SC′) =
1

M2

∑
ρi∈SC

∑
ρj∈SC′

N(ρi − ρj, σ
2
i + σ2

j ) (5.25)
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IP is a positive decreasing function of distance between samples ρi and ρj, similar

to the potential energy of physical particles [76].

To illustrate the relevancy of this concept to Renyi’s entropy, consider the gen-

eral Renyi’s entropy formula [76]:

Hα(y) =
1

1− α
log

∫
f(y)αdy (5.26)

where f(y) is the PDF of an event random variable y. If we set α = 2 then

Renyi’s quadratic entropy is given by

H2(y) = − log(V ) (5.27)

where V =
∫

f(y)2dy. The expression presented in (5.25) is Parzen window estima-

tion of information potential. Appendix B provides more details about the concept

of IP.

5.3.4 Optimization of the Learning Rule

The learning rule (5.24) can be optimized by applying k-nearest neighbor exchange

technique. This technique escapes from local minima and saves computations by

labeling data groups instead of individual data samples [73]. The optimization

method can be summarized by the following steps:

1. Assign a random class label for each of the learning data samples ρMl
l=1 and

select the initial group size K = K0.

2. Create Ml groups by searching for the first K data samples in the vicinity of

each data samples.
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3. Omit repeated groups, resulting in pl groups.

4. Repeat the following steps until there is no further improvement

• For each group, change its label and report the improvement if any.

• If there is any improvement, randomly permute the group indices.

5. If K > 1, divide K by 2 and go back to step 2.

6. End

5.4 Categorization of Gradual Transitions

Once a gradual transition is detected, the next problem is to label it as fade ins,

fade outs, dissolves and wipes. During the fade in, since the frame is turning from

black to a frame with some visual content, the number of edges that are entering

the frame, i.e. ρin, is much higher than exiting edge pixels, ρout. On the other

hand, during the fade out ρout is much higher than ρin. While in dissolve, there

is an initial peak in ρin followed by a peak in ρout, hence, in some frame between

these two peak frames, since ρin is decreasing and ρout is increasing, these two value

cross each other. We define the following fraction as feature to cluster the data.

α = ρin/ρout (5.28)

We use Fuzzy k-mean clustering to cluster different gradual transitions[79], [80].

The Fuzzy k-means clustering seeks the minimum of heuristic global cost function

[80].

Jfuz(M, C) =
k∑

i=1

n∑
j=1

mφ
ij‖αj − µi‖2 (5.29)
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subject to:
k∑

j=1

mij = 1 i = 1, 2, ..., n (5.30)

and
n∑

i=1

mij > 1 j = 1, 2, ..., k (5.31)

where mij ∈ [0 1] denotes the elements of membership matrix, M and µi is centroid

of set of clusters denoted by C. The known number of patterns is denoted by n

and desired number of clusters by k. φ is a free parameter chosen to adjust the

blending of different clusters. For φ > 1, the criterion allows each pattern to belong

to multiple clusters. If φ is set to zero Jfuz is a sum of square differences criterion.

Fuzziness performance index (FPI) estimates the degree of fuzziness generated by

a specified number of classes and is defined as [81]

FPI = 1− kF − 1

k − 1
(5.32)

where F is the partition coefficient:

F =
1

n

n∑
i=1

k∑
j=1

m2
ij (5.33)

The normalized classification entropy (NCE) which is also called the modified

partition entropy (MPE) estimates the degree of disorganization created by a spec-

ified number of classes and is defined by [81]

NCE =
H

log k
(5.34)

where H is the entropy function [81]
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Figure 5.3: Key frames from NASA documentary video sequence. The first row of
images shows a dissolve occurring between two shots.

H = − 1

n

n∑
i=1

k∑
j=1

mij log(mij) (5.35)

5.5 Experimental Results

The results of the algorithm on TREC 2001 video archive which includes NASA’s

documentary video are provided in terms of precision and recall. The results are

summarized in Table 5.1 and Table 5.2.
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5.5.1 Experimental Data

We use the data in TREC-2001 video track [78], provided by national institute of

standards and technology (NIST), which allows consistent comparison and evalua-

tion between results of our proposed method and other systems. The video collec-

tions are mostly of documentary style videos and widely varying in age, production

style and quality. The sequences contain a large variety of different boundaries.

Figure 5.3 shows key frames from the video track.

5.5.2 Performance Evaluation

e use precision/recall score to evaluate our algorithm in our experiments. Recall,

indicates that among all the transitions (cut or gradual) how many are detected

by the system. Precision indicates that among all the transitions (cuts or gradual)

detected by system, how many are true transitions.

Table 5.1: Performance analysis of proposed method in terms of recall, precision
and F1

Recall Precision F1

Cut 0.82 0.94 0.91

Gradual 0.78 0.63 0.69

Table 5.2: Validation results of Fuzzy K-mean Clustering on gradual shot changes

φ = 1.5 2 2.5 3 3.5

FPI 0.141 0.330 0.520 0.633 0.725

NCE 0.134 0.348 0.520 0.647 0.738
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A good detector must have both high precision and recall. The commonly used

metric, F1, combines both precision and recall to evaluate the performance of the

shot detection algorithm [64]. F1 is high when both precision and recall are high.

F1 =
2× Precision× Recall

Precision + Recall
(5.36)
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Chapter 6

Conclusions and Recommendation

for Future Research

In this thesis, a statistical pattern classification scheme for the design of adaptive

motion estimation algorithm (CBAS) has been proposed. Simulation results demon-

strate that the proposed technique outperforms conventional fast block matching

methods in terms of higher PSNR and less computational complexity. In summary,

an intelligent encoder should apply adaptive motion estimation techniques instead

of relying on fixed patterns. The ideas of machine learning and pattern recognition

can be applied for the design of adaptive intelligent motion estimation techniques.

The PSNR and computation gain performance results illustrate that CBAS has

better PSNR performance and less computation than other algorithms, including

the state-of-the-art DS algorithm. The CBAS algorithm is almost 12.75 times faster

than ES while the PSNR level closely follows that of the ES with slight degradation

less than 0.10− 0.13 dB. The algorithm is able to maintain rather constant PSNR

performance.
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In addition, the application of this algorithm was examined on our proposed

hierarchical video shot boundary detection method. The method uses classification

based adaptive search (CBAS) to cope with camera and object movements within

shots in order to reduce the rate of false detection of shot boundaries. Infrastructure

of shot detection algorithm is based on information theoretic classification (ITC)

rule. ITC was used with the goal of improving the classification results because

second order statistics are not sufficient to distinguish nonlinearly separable classes.

Fuzzy K-means clustering is applied in order to categorize gradual shot transitions

into different groups. Experiments show that the method can be improved by

applying CBAS method for compensation of motions. The algorithm has excellent

performance in terms of precision and recall on TREC 2001 video track.

The main focus of this thesis which is based on using Bayesian classification for

adaptive video motion estimation. It is possible to improve the algorithm. Bayesian

classifier applies Parzen window to estimate conditional probability functions. If

the kernel widths are not chosen properly, we might easily overfit the data, resulting

in a classification scheme not representative of the true classes. The focus can be

put on designing adaptive kernel size scheme with respect to a suitable criterion,

for example the average energy of error in compensated image compared to a true

frame.

Video shot segmentation method suggested in chapter 5 has promising opportu-

nity to be extended. We conclude our investigations by introducing major problems

that can be investigated in video shot segmentation. They are

1. Sensitivity to illumination: Significant change in illumination from a frame of

similar shot have caused some algorithms to handel poorly these situations.

Appropriate selection of feature can fairly solve the problem. Histogram and
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information theoretic approaches show high robustness to illumination within

shots.

2. Sensitivity to motions within a shot: Large and sudden changes in frames

of one shot can also fool the algorithm to erroneously detect a shot break.

Motion estimation vectors are suitable features to handel this problem.

3. Fixed Threshold: High fixed threshold may skip many true shot breaks. on

the other hand, very low threshold may cause false positives. The solution

could be to eliminate the threshold. Clustering of shots with regard to a

predefined dissimilarity measure could be a solution.

In fact, the proposed method allows multiple features to be used simulatively

to improve the performance of the algorithm. Possible extension of the algorithm

can also include audio features in order to improve performance.
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Appendix A

Canny Edge Detection

The Canny edge detection is known to be an optimal edge detection technique

[45]. First, Canny edge detector smooths the image to eliminate noise. A Gaussian

filter is used exclusively in the Canny algorithm for noise filtering because it can

be computed using a simple mask. The larger the width of the mask, the less

sensitive is the Gaussian mask to noise. The error in localization of edges increases

as Gaussian width is increased. A sample Gaussian filter is given below

Then, to find regions that have more probability for existence of edges, it com-

putes the gradient over pixel intensities to find regions with high spatial derivatives.

The gradient of on image f(x, y) at location (x, y) is defined as the vector

∇f =

Gx

Gy

 =


∂f
∂x

∂f
∂y

 (A.1)

2-D spatial gradient measurement can be done by Sobel operator [45]. The

Sobel operator uses a pair of 3x3 convolution masks, one estimating the gradient
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in the x-direction and the other in the y-direction. The approximate absolute

gradient magnitude which is called edge strength at each point can be found using

the following relation

|G| = |Gx|+ |Gy| (A.2)

The next step is to find the direction of edges applying a simple formula

θ = arctan(
Gy

Gx

) (A.3)

After this stage, the edge direction can be traced on image. Looking at a single

pixel in image, there are only four possibilities for directions on the surrounding

pixels: 0 degrees (in the horizontal direction), 45 degrees (along the positive diag-

onal), 90 degrees (in the vertical direction), and 135 degrees (along the negative

diagonal). So, the edge orientation has to be resolved into one of these four direc-

tions depending on which direction it is closest to approximate value computed by

(A.3). The algorithm then searches along the edge directions and suppresses the

pixels that are not at the maximum (non-maximum suppression) which results in

thin edges.

In the final step the method uses two thresholds, T1 and T2, to detect strong and

weak edges, and includes the weak edges in the output only if they are connected

to strong edges. Using two thresholds causes the algorithm to be less sensitive to

noise since the intensity value of edge pixels can fall bellow threshold due to noise.
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Appendix B

Information Potential

Information theory is a powerful tool which provides a basis for designing optimum

and reliable communication systems. However, applying information theory, de-

mands a priori knowledge about the distribution of data and the mapping which

produces the outputs of the system.

In fact, learning is related to the extraction of information from data [46].

Shannon’s entropy is not easy to implement for learning from examples, however,

Reneyi’s entropy definition can be generally integrated with probability estimation

methods such as Parzen windowing to provide learning scheme which can be applied

in many applications. The concept of information potential (IP) which is described

in this section is related to the degree of interaction between information particles

extracted from the data. IP can be very well illustrated by refereing to one of its

applications in research works [76], which investigates error-entropy minimization

in adaptive system training. The method is described in the following paragraphs.

Mean square error (MSE) is a popular criterion for training adaptive systems

including artificial neural networks; mainly because of its analytical tractability
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B.1. ERROR ENTROPY MINIMIZATION AND PROBABILITY DENSITY
MATCHING

and the fact that real life random phenomena can be modeled sufficiently by second

order statistics. It has become evident that linearity and Gaussianity assumptions

may not be appropriate when dealing with nonlinear systems [76]. The entropy

criterion can serve as an alternative for MSE in supervised adaptation [49] while it

is particularly suitable for dynamic modeling [50]. The goal of dynamic modeling is

to acquire a nonlinear dynamic system which can produce the given input-output

mapping.

Estimation of the probability distribution function (pdf) of a random variable,

is necessary for the evaluation of the entropy. Nonparametric methods such as

Parzen windowing do not assume any particular format for distribution function

and introduce more generality which is desirable characteristic of nonparametric

methods. In Parzen windowing, the pdf is approximated by the sum of shifted

versions of a kerenl function such as Gaussian or Laplacian among others. In [48],

it has been proved that error entropy minimization is equivalent to minimizing the

error in pdf matching between the actual and desired output of a system.

B.1 Error Entropy Minimization and Probability

Density Matching

Let x be the input of the system, d and y are respectively the desired and actual

outputs of the system. Then the error between desired and actual output would be

e = d− y. Hence the pdf of error can be written [48], [49]

fε,ω(e) = fy|x,ω(d− e|x) (B.1)
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B.1. ERROR ENTROPY MINIMIZATION AND PROBABILITY DENSITY
MATCHING

where the subscript ω indicates dependence on the weights of the adaptive system.

Minimizing Renyi’s error entropy with respect to the parameter ω is given by

min
ω

1

1− α
log

∫
fα

ε,ω(e)de

=
1

1− α
log

∫
fα

y|x,ω(d− e|x)de

=
1

1− α
log

∫
−fα

y|x,ω(y|x)dy

(B.2)

Since multiplying the cost function by a factor which is independent of the

weights of the adaptive system will not make a change to the optimization problem,

the integral of the power-α of the pdf of the input can be introduced to obtain an

equivalent optimization problem

≡
∫
ω

fα
y|x,ω(y|x)dy ·

∫
fα

x (x)dx

=

∫ ∫
fα

xy,ω(x, y)dxdy

≡
∫ ∫

fα
xy,ω(x, y)dxdy ·

∫ ∫
f 1−α

xd (x, y)dxdy

=

∫
ω

∫
fxy,ω(x, y)

(
fxd(x, y)

fxy,ω(x, y)

)1−α

dxdy

(B.3)

which can be recognized as the Csiszar distance with convex chosen to be (.)1−α.

In general the Csiszar distance between two densities p(x) and q(x) is given by [51]

DC(p; q) =

∫
q(x)f

(
p(x)

q(x)

)
dx (B.4)
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B.1. ERROR ENTROPY MINIMIZATION AND PROBABILITY DENSITY
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where f is convex. For Shannon’s entropy, the distance measure in (B.3) reduces

to the Kullback-Leibler divergence [49]

lim
α→1

1

α− 1
log

∫ ∫
fxy,ω(x, y)

(
fxy,ω(x, y)

fxd(x, y)

)1−α

dxdy

=

∫ ∫
fxy,ω(x, y)log

(
fxy(x, y)

fx,ω(x, y)

)1−α

dxdy

(B.5)

In practice the probability distribution function of the random process which

describes our input data is usually unknown a priori [46][47]. Parzen windowing

estimation with Gaussian kernel provides a number of advantages. The Gaussian

function is continuously differentiable [48]. The Gaussian function also provides a

computational simplification in the learning algorithm design. In [48], it is proven

that the global minimum of the entropy is still a minimum of the nonparametric

estimated entropy for both Shannon’s and Renyi’s definition when Parzen window-

ing estimation method is applied. The Parzen estimator of the error pdf is given

by

f̂e(ξ) =
1

N

N∑
i=1

κ(ξ − ei, σ
2) (B.6)

where κ denotes the Gaussian kernel and σ2 is the variance for simplicity. We

investigate a much simpler case which is the nonparametric estimation of Renyi’s

quadratic entropy (α = 2). Using Renyi’s quadratic definition and Parzen window-

ing estimator with Gaussian kernels we obtain

H2 = −log

∫ (
1

N

N∑
i=1

κ(ξ − ei, σ
2)

)2

dξ = −logV (e) (B.7)
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where V (e) is called information potential [48] which illustrates the relation between

information potential of a given set of sample errors for an arbitrary kernel size.

For the case of Gaussian kernels, it can be computed as

V (e) =
1

N2

N∑
j

N∑
i

κ(ej − ei, 2σ
2) (B.8)
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Appendix C

Non-Parametric Measures

The kullback-Leibler divergence (KL) is defined as a measure of extent to which

two PDFs, p(x) and p̃(x) agree. It is defined as [52]

L = −
∫

p(x)ln
p̃(x)

p(x)
dx (C.1)

It can be shown that L ≥ 0. For two discrete distribution, the integration be-

comes the summation over all the bins. The Jeffery divergence (JD) is a symmetric

version of KL with repected to p(x) and p̃(x), given by

JD =

∫
p(x)ln

p̃(x)

p(x)
dx +

∫
p̃(x)ln

p(x)

p̃(x)
dx (C.2)
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