
Issues in Implementation of
Public Key Cryptosystems

by

Jaewook Chung

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2006

c©Jaewook Chung 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Jaewook Chung

ii

Abstract

A new class of moduli called the low-weight polynomial form integers (LWPFIs) is intro-

duced. LWPFIs are expressed in a low-weight, monic polynomial form, p = f(t). While the

generalized Mersenne numbers (GMNs) proposed by Solinas allow only powers of two for

t, LWPFIs allow any positive integers. In our first proposal of LWPFIs, we limit the coeffi-

cients of f(t) to be 0 and ±1, but later we extend LWPFIs to allow any integer of magnitude

less than t for the coefficients of f(t). Modular multiplication using LWPFIs is performed in

two phases: 1) polynomial multiplication in Z[t]/f(t) and 2) coefficient reduction. We present

an efficient coefficient reduction algorithm based on a division algorithm derived from the

Barrett reduction algorithm. We also show a coefficient reduction algorithm based on the

Montgomery reduction algorithm. We give analysis and experimental results on modular

multiplication using LWPFIs.

New three, four and five-way squaring formulae based on the Toom-Cook multiplication

algorithm are presented. All previously known squaring algorithms are symmetric in the

sense that the point-wise multiplication step involves only squarings. However, our squar-

ing algorithms are asymmetric and use at least one multiplication in the point-wise multi-

plication step. Since squaring can be performed faster than multiplication, our asymmetric

squaring algorithms are not expected to be faster than other symmetric squaring algorithms

for large operand sizes. However, our algorithms have much less overhead and do not re-

quire any nontrivial divisions. Hence, for moderately small and medium size operands, our

algorithms can potentially be faster than other squaring algorithms. Experimental results

confirm that one of our three-way squaring algorithms outperforms the squaring function

in GNU multiprecision library (GMP) v4.2.1 for certain range of input size. Moreover, for

degree-two squaring in Z[x], our algorithms are much faster than any other squaring algo-

rithms for small operands.

We present a side channel attack on XTR cryptosystems. We analyze the statistical

behavior of simultaneous XTR double exponentiation algorithm and determine what infor-

mation to gather to reconstruct the two input exponents. Our analysis and experimental

results show that it takes U1.25 tries, where U = max(a, b) on average to find the correct

exponent pair (a, b). Using this result, we conclude that an adversary is expected to make

U0.625 tries on average until he/she finds the correct secret key used in XTR single exponenti-

ation algorithm, which is based on the simultaneous XTR double exponentiation algorithm.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor Professor M. Anwar Hasan

for his immense support, encouragement and guidance. I am also very grateful to the com-

mittee members – Professor Gordon Agnew, Professor Guang Gong and Professor Alfred

Menezes – for taking their valuable time to review this thesis.

I would like to thank Jean Claude Bajard of the Laboratoire d’Informatique, de Robo-

tique et de Microélectronique de Montpellier (LIRMM) for kindly accepting to be an external

examiner. The recent research work [5, 6] by him, Laurent Imbert and Thomas Plantard

has inspired me to do the work presented in Chapter 5.

iv

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.1.1 Low-Weight Polynomial Form Integers . 1

1.1.2 Coefficient Reduction Based on the Montgomery Reduction Algortihm . 2

1.1.3 Asymmetric Squaring Formulae . 2

1.1.4 Side Channel Attack on XTR Cryptosystems 3

1.2 Thesis Outline . 4

1.3 Research Contributions . 5

2 Review of Multiplication and Modular Reduction Algorithms 6

2.1 Review of Multiplication Algorithms . 6

2.1.1 Zimmermann’s 3-Term Toom-Cook Multiplication 9

2.2 Review of Modular Reduction Algorithms . 9

2.2.1 Classical Division Algorithm . 11

2.2.2 Montgomery Reduction Algorithm . 11

2.2.3 Barrett’s Reduction Algorithm . 13

3 Review of XTR Cryptosystems 17

3.1 Mathematical Preliminaries on XTR Cryptosystems 17

3.1.1 Basic Ideas . 17

3.1.2 Efficient Arithmetic Operations in GF (p2) 19

3.1.3 Trace Representations and Properties of Sequence cn 21

3.2 Review of XTR Exponentiation Algorithms . 23

3.2.1 XTR Single Exponentiation . 23

v

3.2.2 XTR Double Exponentiation . 24

3.2.3 XTR Single Exponentiation Revisited . 26

4 Low-Weight Polynomial Form Integers for Efficient Modular Multiplication 28

4.1 Modular Multiplication Using Low-Weight Polynomial Form Integers 28

4.1.1 POLY-MULT-REDC: Multiplication in Z[t]/f(t) 30

4.1.2 COEFF-REDC: Coefficient Reduction . 31

4.2 Optimization of POLY-MULT-REDC Step . 33

4.2.1 Case 1: l = 2 . 34

4.2.2 Case 2: l = 3 . 35

4.3 Analysis of LWPFI Modular Multiplication . 37

4.3.1 POLY-MULT-REDC step . 37

4.3.2 COEFF-REDC step . 39

4.3.3 Putting It All Together . 41

4.3.4 Comments . 43

4.4 Implementation Results and Practical Considerations 43

4.4.1 Our Platform and Software Routines . 43

4.4.2 Component-wise Breakdown of Timing 44

4.4.3 Overall Timing Results and Comparisons 47

4.4.4 Practical Considerations . 47

4.5 Enhancing the LWPFI Modular Multiplication 50

4.5.1 Using Pseudo-Mersenne Numbers for t (t = 2n − c) 50

4.5.2 Using LWPFI for t . 51

4.6 Conclusions . 52

5 Coefficient Reduction Using Montgomery Reduction Algorithm 54

5.1 Low-Weight Polynomial Form Integers Redefined 54

5.2 Modular Multiplication Using LWPFI moduli 55

5.2.1 COEFF-REDC based on Montgomery Reduction Algorithm 57

5.2.2 Construction of F and Analysis of Algorithm 5.2 60

5.2.3 Conversions to and from the Montgomery Domain 64

5.2.4 Interesting Implementation Options . 64

5.3 Modular Multiplication Stability . 65

vi

5.3.1 Montgomery Reduction with Final Subtractions 65

5.3.2 Montgomery Reduction without Final Subtractions 66

5.4 Additions and Subtractions . 68

5.4.1 Case I: t/2 + ξ + 1 ≤ ψ ≤ t− (ξ + 1) . 70

5.4.2 Case II: t+ 2(ξ + 1) ≤ ψ ≤ 2t− 2(ξ + 1) . 72

5.5 Comparisons . 74

5.6 Applications of LWPFI Modular Multiplications 75

5.7 Application to Modular Number Systems? . 75

5.8 Conclusions . 77

6 Asymmetric Squaring Formulae 79

6.1 Further Details on the Toom-Cook Multiplication Algorithm 79

6.2 New Squaring Formulae . 85

6.2.1 Our Approach . 86

6.2.2 New 3-way Squaring . 89

6.3 Analysis . 92

6.4 Implementation Results . 95

6.4.1 Application to Large Integer Squaring . 95

6.4.2 Application to Polynomial Squaring in Z[x] 99

6.5 4-way and 5-way Squaring Formulae . 100

6.5.1 New 4-Way Squaring . 100

6.5.2 New 5-term Squaring Method . 101

6.6 Conclusions . 104

7 Side Channel Attack on XTR Cryptosystems 105

7.1 Identifying Elementary XTR Operations . 105

7.2 Simple Side Channel Attack . 108

7.2.1 Markov Chain Model . 109

7.2.2 Statistical Behavior of Algorithm 3.3 . 115

7.2.3 Determining f2, f3 and Sub-step Sequence 117

7.2.4 Determining d at Line 17 of Algorithm 3.3 120

7.2.5 Determining Boundaries Between Steps 125

7.3 Effectiveness of Markov Chain Method . 126

vii

7.4 Extension to Single Exponentiation Algorithms 128

7.5 Other Researchers’ Results . 129

7.6 Conclusions . 130

8 Conclusions and Future Work 131

8.1 Conclusions . 131

8.2 Future Work . 133

Bibliography 134

A Source Codes 143

A.1 Source Code for SQR3 . 144

A.2 Source Code for Improved Zimmermann’s 3-way Toom-Cook Squaring Algorithm147

viii

List of Tables

3.1 Updating Formulae for Line 10 of Algorithm 3.3 26

3.2 Updating Formulae for Line 13 of Algorithm 3.3 26

4.1 Modular Multiplication and Squaring Cost in Z[t]/f(t) for All Irreducible f(t)’s

of degree-2 . 39

4.2 Functions Used for Implementing LWPFI Modular Multiplications 44

4.3 Detailed Analysis of LWPFI Modular Multiplication (n = ⌈log2 (p+ 1)⌉) 45

5.1 Comparison of Algorithm 2.4 and Algorithm 5.2 74

6.1 List of Candidate Vectors . 90

6.2 Analysis Results of Various Squaring Algorithms 94

6.3 Conditions for Which SQRi’s Are Faster Than Other 3-way Algorithms 94

6.4 Timing Results of Polynomial Squaring on Pentium IV 3.2GHz (unit= µs.) . . . 99

7.1 Update Rules for Algorithm 3.3 . 108

7.2 Sub-step Probabilities . 116

7.3 Impossible Sub-step Sequences . 117

7.4 Expected Number of Choices at a Sub-step . 119

ix

List of Figures

4.1 Coefficient Reduction . 40

4.2 Timing Results for POLY-MULT-REDC Step on Pentium 4 @ 3.2GHz 46

4.3 Timing Results for COEFF-REDC Step on Pentium 4 @ 3.2GHz 46

4.4 Modular Multiplication Algorithms on Pentium 4 @ 3.2GHz 48

4.5 Modular Squaring Algorithms on Pentium 4 @ 3.2GHz 48

5.1 Range of Transfer Digit ti+1 (µ = ξ + 1) . 71

5.2 Range of Transfer Digit ti+1 (µ = 2(ξ + 1)) . 73

6.1 Timing Ratio of mpn_divexact_by3() to mpz_mul() 84

6.2 Timing Results of mpz_mul() (multiplication) and mpz_mul() (squaring) . . . 86

6.3 Timing Results of Squaring Algorithms (Pentium IV 3.2GHz) 97

6.4 Timing Ratio of SQR3 vs. Other Algorithms on Pentium IV 3.2GHz 97

6.5 Timing Ratio of SQR3 vs. mpz_mul() (Pentium II MMX 350MHz) 98

6.6 Timing Ratio of SQR3 vs. mpz_mul() (Pentium III M 1.13GHz) 98

6.7 Timing Ratio of mpz_mul() (multiplication) and mpz_mul() (squaring) 104

7.1 State Transition Diagram of Sub-steps . 118

7.2 The Average Number of Tries Required and the Size of Search Space 120

7.3 Comparison Between Actual Values and (7.19) 124

7.4 Error Between Actual Values and (7.19) . 125

7.5 Number of Tries . 128

x

Chapter 1

Introduction

1.1 Motivation and Scope

1.1.1 Low-Weight Polynomial Form Integers

In 1644, Mersenne conjectured that the numbers of the form p = 2k − 1 are prime numbers

for a certain set of integers k ≤ 257. Although his conjecture turned out to be not entirely

correct, the numbers of the form p = 2k − 1 are now known as the Mersenne numbers. It is

very easy to perform modular reduction using these numbers. However, these numbers are

not attractive for cryptographic applications since there are very few Mersenne primes (e.g.,

if k is composite, Mersenne numbers are never primes) that are practically useful.

The moduli of the form p = 2k − c, where c is a small integer, are known as pseudo-

Mersenne numbers. An efficient modular reduction algorithm using pseudo-Mersenne num-

bers is patented by Crandall [19]. Modular reduction using a pseudo-Mersenne number

is also very efficient. However, because of security threats, these numbers are not recom-

mended for cryptosystems that are based on the difficulty of integer factorization or discrete

logarithm problem [49, 50, 75, 73].

In 1999, Solinas proposed generalized Mersenne numbers (GMNs). GMNs are expressed

in polynomial form p = f(t), where t is a power of 2 and the coefficients of low-degree poly-

nomial f(t) are very small compared to t. If the modulus is a GMN, the modular reduction

requires simple integer additions and subtractions only. It is well-known that all prime-

field based elliptic curves recommended by National Institute of Standards and Technology

1

CHAPTER 1. INTRODUCTION 2

(NIST) use GMNs [64, 66]. However, two significant shortcomings of GMNs are that there

are not many useful GMNs and that each GMN requires dedicated implementation. Hence

the use of GMN is currently limited to elliptic and hyperelliptic curve cryptosystems.

We introduce a new family of integers, called the low-weight polynomial form integers

(LWPFIs). LWPFIs are similar to GMNs. However, for LWPFIs, t does not have to be a

power of 2, and the coefficients of f(t) are either 0 or ±1. Unlike GMNs, LWPFIs do not

require a dedicated implementation, since one implementation can be used to perform mod-

ular multiplication for many LWPFIs by varying the value of t. We present an efficient

modular multiplication method based on LWPFI moduli. Our analysis and implementa-

tion results show that modular multiplication based on LWPFIs is asymptotically faster

than any reduction algorithms for general moduli. For software implementation, our new

modular multiplication based on LWPFI moduli can be implemented without using divi-

sion instructions of the target processor. This feature is advantageous for processors whose

division instruction is much slower than its multiplication instruction.

1.1.2 Coefficient Reduction Based on the Montgomery Reduction Algor-

tihm

In modular multiplication using LWPFI moduli, the coefficient reduction algorithm is based

on a division algorithm derived from the Barrett reduction algorithm. In our subsequent

work, we generalize LWPFIs by removing the restriction on fi’s and we present a new coef-

ficient reduction algorithm based on the Montgomery reduction algorithm. We show condi-

tions on parameters for which our new coefficient reduction algorithm can perform without

final subtractions. We analyze the performance of the new coefficient reduction algorithm

using this general framework. As a side result, we present methods for additions and sub-

tractions modulo an LWPFI in its generalized form.

1.1.3 Asymmetric Squaring Formulae

Multiplication is one of the most frequently used arithmetic operations in public key cryp-

tography and the performance of a cryptosystem often depends mostly on the efficiency of a

multiplication operation. Squaring is a special case of multiplication when two operands are

identical and it is usually faster than multiplication, but not more than a constant factor.

CHAPTER 1. INTRODUCTION 3

Over the past four decades, many algorithms have been proposed to perform multiplica-

tion operation efficiently. Since Karatsuba discovered the first sub-quadratic multiplication

algorithm [41], several innovations have been made on multiplication algorithms [79, 17,

87, 74]. Unfortunately, none of these sub-quadratic multiplication algorithms has been con-

siderably specialized for squaring. In this work, we attempt to fill this gap in the literature.

It is perhaps not possible to have a squaring algorithm that is asymptotically better than

the fastest multiplication algorithm in a ring whose characteristic is greater than 2. How-

ever, there are possibilities of some optimization by exploiting the fact that two operands

are identical. We present three 3-way squaring formulae that are based on the Toom-Cook

multiplication algorithm. Detailed methods for obtaining such formulae are presented. Ex-

perimental results show that our algorithms are faster than other 3-way multiplication

algorithms for certain range of operand sizes. We also present efficient 4-way and 5-way

squaring formulae that are potentially useful in practice.

1.1.4 Side Channel Attack on XTR Cryptosystems

Due to the index calculus method, traditional cryptosystems based on the hardness of dis-

crete logarithm problem must use large representation size, which is usually at least 1024

bits, even though they are based on a subgroup of order only about 2160. Such a long rep-

resentation size renders traditional cryptosystems disadvantageous both in bandwidth and

computational efficiency.

In 2000, XTR cryptosystem was proposed by Lenstra and Verheul [53]. XTR stands for

‘ECSTR’ which is an abbreviation for ‘Efficient and Compact Subgroup Trace Representa-

tion’. The security of XTR is based on the hardness of traditional subgroup discrete loga-

rithm problem in prime order q subgroup of GF (p6), where q|p2 − p + 1 and p6 ≈ 21024. XTR

uses trace representation over GF (p2) which is about 1/3 of the traditional representation.

Such a compact representation allows efficient computations and bandwidth saving. Strong

evidence that 1/3 is the best compression ratio achievable is presented in [12].

XTR is believed to be as fast as elliptic curve cryptosystems (ECC) [35, 44, 58] and signif-

icantly faster than RSA [71]. ECC is based on hard mathematics and its parameter selection

is not simple. RSA is the most popular cryptosystem and it is easily understood, but it is

not so efficient both in terms of bandwidth and computational requirements. XTR does not

suffer from such disadvantages found in ECC and RSA, but it uses twice longer public key

CHAPTER 1. INTRODUCTION 4

size than ECC (with point compression). However, for a properly chosen private key, there

is a method to reduce the public key size for XTR [51]. Hence, XTR is considered to be a

good compromise between ECC and RSA at a similar security level.

Since the work of Kocher et al. [45, 46], side channel attacks have become the most

devastating attack on many implementations of cryptosystems. No matter how hard the

underlying mathematical problem is, cryptosystems often succumb to side channel attacks

if they are not implemented properly. There have been many articles on the side channel

attacks on various cryptosystems on various hardware [45, 46, 56, 57]. There also have been

many countermeasures to side channel attacks [18, 33, 40, 68, 81, 37]. We present a side

channel attack on XTR cryptosystem.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we review well-known multiplication

and modular reduction algorithms. Then we review some background materials on XTR

cryptosystems in Chapter 3. The main research contributions of this thesis are presented

in Chapters 4, 5, 6, and 7.

In Chapter 4, we introduce a new class of moduli called the low-weight polynomial form

integers. We present an efficient modular reduction scheme using LWPFI moduli. We show

analysis results of our modular multiplication scheme and present experimental results.

We also present ideas to enhance modular multiplication algorithm based on LWPFIs and

discuss practical issues.

In Chapter 5, we present an improved coefficient reduction algorithm for use in modular

multiplication using LWPFI moduli. In Chapter 4, our coefficient reduction algorithm is

based on a division algorithm derived from the Barrett reduction algorithm. The new coef-

ficient reduction algorithm in Chapter 5 is based on the Montgomery reduction algorithm.

Since the Montgomery reduction algorithm usually performs better than any other modular

reduction algorithms for general moduli, our new coefficient reduction algorithm is likely to

be better than the previous one.

In Chapter 6, we present new 3, 4, 5-way squaring algorithms based on the Toom-Cook

multiplication algorithm. We present how our squaring algorithms have been derived by

explicitly showing details on our approach. We show experimental results of our 3-way

squaring formulae.

CHAPTER 1. INTRODUCTION 5

In Chapter 7, we present a side channel attack on XTR cryptosystems. First, we show

how one can identify individual XTR operations under a simple assumption that multi-

plication and modular reduction can be distinguished by looking at the power trace. The

statistical behavior of XTR double exponentiation algorithm is analyzed. Then we show

analysis and experimental results of our attack.

Conclusions and future research directions are given in Chapter 8.

1.3 Research Contributions

The main contributions of this thesis are listed below:

• Low-weight polynomial form integers (LWPFIs) are introduced and efficient modular

multiplication algorithms based on LWPFI moduli are developed.

• Modular multiplication using LWPFI moduli are improved by using the Montgomery

reduction algorithm for coefficient reduction.

• The first 3, 4, 5-way asymmetric squaring algorithms are developed. The new squaring

algorithms can be used to improve the polynomial squaring used in modular multipli-

cation algorithm using LWPFI moduli.

• Attempted a side channel attack on XTR cryptosystems.

Chapter 2

Review of Multiplication and

Modular Reduction Algorithms

2.1 Review of Multiplication Algorithms

Multiplication is one of the most important basic arithmetic operations in popular public

key cryptosystems. In this section, we briefly review some well-known multiplication algo-

rithms. Since cryptographic computations must be exact and efficient, we focus only on the

algorithms that compute such results using only integer arithmetic. Let A(x) =
∑n−1

i=0 aix
i

and B(x) =
∑n−1

i=0 bix
i be in Z[x]. The product of A(x) and B(x) is computed as follows:

C(x) =

2n−2∑

i=0

cix
i = A(x) · B(x), (2.1)

where ci =
∑i

j=0 ajbi−j for 0 ≤ i ≤ 2n − 2 and aj = 0 and bj = 0 for j ≥ n and j < 0. Let

L(·) denote the set of all integral combinations of the coefficients of a polynomial. We call

a computation of form “a · b”, where a ∈ L(A) and b ∈ L(B), a coefficient multiplication.

The performance of multiplication algorithms are often analyzed in terms of the number

of coefficient multiplications required to compute (2.1). The rest of the computational cost

including the cost for computing the linear combinations a ∈ L(A) and b ∈ L(B) necessary

to compute (2.1) is referred to as overhead. The multiplication a · b can be slower than

computing ai · bj, due to the carries occurring when computing the linear combinations a

6

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 7

and b. We count the cost difference of two computations (a ·b and ai ·bj) toward the overhead.

In order to compute (2.1) using paper and pencil, n2 coefficient multiplications are re-

quired. Such a method is called the schoolbook multiplication method. When A(x) = B(x),

only n(n+ 1)/2 coefficient multiplications are required, since off-diagonal products (i.e., aibj

where i 6= j) always occur twice and need to be computed only once. We call this squaring

method the schoolbook squaring method.

The first multiplication algorithm that has sub-quadratic complexity was developed by

Karatsuba in 1963. The Karatsuba algorithm (KA) performs the multiplication of two 2-

term polynomials using only three coefficient multiplications as follows [41]:

C(x) = a1b1x
2 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)x+ a0b0. (2.2)

The time complexity of O(nlog2 3) can be achieved by recursively applying (2.2). The KA

is asymptotically better than the schoolbook method since log2 3 ≈ 1.58 < 2. However, in

real world applications, KA is faster than the schoolbook method only when n is sufficiently

large, due to the fact that a larger amount of overhead is required in the KA than in the

schoolbook method. The crossover between KA and the schoolbook method is highly depen-

dent on the machine characteristic, programmer’s skill, programming language and compil-

ers, etc. In practice, for integer multiplications, KA is faster than the schoolbook method if

the operand is about 500–1000 bits long.

There is a well-known 3-term multiplication method which is shown below [4].

(a2x
2 + a1x+ a0)(b2x

2 + b1x+ b0)

= D2x
4 + (D5 −D2 −D1)x

3

+ (D4 −D0 −D2 +D1)x
2

+ (D3 −D0 −D1)x+D0,

(2.3)

where
D0 = a0b0, D3 = (a0 − a1)(b0 − b1),
D1 = a1b1, D4 = (a0 − a2)(b0 − b2),
D2 = a2b2, D5 = (a1 − a2)(b1 − b2).

This formula requires 6 coefficient multiplications. In [61], Montgomery shows a family of

3-way multiplication algorithms requiring 6 coefficient multiplications. The method in (2.3)

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 8

Algorithm 2.1 Toom-Cook Multiplication Algorithm

Require: Degree n− 1 polynomials A(x) and B(x).
Ensure: C(x) = A(x) · B(x).

1: (Evaluation) ui = A(xi) and vi = B(xi) for i = 1, . . . , 2n − 1, where xi’s are all distinct.

2: (Point-Wise Multiplication) C(xi) = uivi for i = 1, . . . 2n − 1.

3: (Interpolation) given C(xi)’s, uniquely determine cj ’s for j = 0, . . . , 2n − 2, where C(x) =
∑2n−2

j=0 cjx
j.

is a special case. Recursive use of (2.3) results in O(nlog3 6) time complexity. This method

is less efficient than KA in an asymptotic sense, since log3 6 ≈ 1.63 < log2 3. However, (2.3)

is efficient when the input size is small and the input can be equally separated into three

parts. We call (2.3) as 3-way KA-like formula.

In 1963, Toom developed an elegant idea to perform multiplication of two degree-(n − 1)

polynomials using only (2n−1) coefficient multiplications [79]. He showed that it is possible

to construct a multiplication scheme that has O(nc
√

logn) operations and O(c
√

logn) delay. In

1966, Cook improved Toom’s idea [17]. The multiplication method they developed is now

called the Toom-Cook algorithm. The latter is based on a well-known result from linear

algebra: any degree-n polynomial can be uniquely determined by its evaluation at (n +

1) distinct points. Algorithm 2.1 shows a general idea how the Toom-Cook multiplication

algorithm works.

Interestingly, many fast multiplication algorithms having sub-quadratic complexity are

related to the Toom-Cook multiplication algorithm. In particular, KA can be considered as

a special case of the Toom-Cook multiplication algorithm for the evaluation points {0, 1,∞},
where evaluation at∞means computing limx→∞A(x)/xn−1 [87]. The Winograd algorithm [87]

is very similar to Algorithm 2.1. The difference is that the Winograd algorithm considers

not only integers, but also imaginary numbers for evaluation points. Multiplication methods

based on number theoretic transform (NTT) can be viewed also as special cases of the Toom-

Cook algorithm. NTT based multiplication algorithms [74] use xi = γi mod p for 1 ≤ i ≤ N ,

where γ is a primitive N -th root of unity modulo some prime p ≥ N , where p is greater than

or equal to the largest coefficient of the resulting polynomial, N ≥ 2n − 1 and N |(p − 1). In

this case, some changes are required in Algorithm 2.1. Steps 1 and 2 must run through i = 1

to N , which may be greater than 2n − 1. Moreover, the computations must be performed in

Zp. NTT based algorithms are asymptotically faster, since steps 1 and 3 can enjoy fast al-

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 9

gorithms that requires O(N logN) operations in Zp by choosing N having only small prime

factors, or ideally a power of 2.

There are other efficient multiplication algorithms that cannot be derived from Algo-

rithm 2.1. The 3-way KA-like formula shown in (2.3) and Montgomery’s Karatsuba-like

formulae [61] do not appear to be a special case of the Toom-Cook algorithm. Montgomery’s

formulae use 13, 17 and 22 coefficient multiplications for 5, 6 and 7-way polynomial multi-

plications, respectively.

For more comprehensive survey on multiplication algorithm, we refer the readers to

Daniel Bernstein’s paper [8].

2.1.1 Zimmermann’s 3-Term Toom-Cook Multiplication

This method has been developed by Zimmermann and implemented in GMP library as sub-

routines of mpz_mul(). Zimmermann uses {0, 1,−1, 2,∞} for the set of evaluation points.

Let A(x) = a2x
2+a1x+a0, B(x) = b2x

2+b1x+b0 andC(x) = A(x)B(x) = c4x
4+c3x

3+c2x
2+

c1x+ c0. Evaluation of A(x) and B(x) at xi ∈ {0, 1,−1, 2,∞} and point-wise multiplication of

A(xi)’s and B(xi)’s result in the following system of equations:











S1

S2

S3

S4

S5











=











a0b0

(a2 + a1 + a0)(b2 + b1 + b0)

(4a2 + 2a1 + a0)(4b2 + 2b1 + b0)

(a2 − a1 + a0)(b2 − b1 + b0)

a2b2











=











0 0 0 0 1

1 1 1 1 1

16 8 4 2 1

1 −1 1 −1 1

1 0 0 0 0





















c4

c3

c2

c1

c0











. (2.4)

Then the above linear system can be solved very efficiently using row operations as shown in

Algorithm 2.2. The latter requires 8 additions/subtractions, 4 shifts, 1 division by 3. To the

best of our knowledge this is by far the best method for performing the 3-term Toom-Cook

multiplication.

2.2 Review of Modular Reduction Algorithms

Many algorithms have been proposed for implementing efficient modular multiplication.

These algorithms can be classified into the following three categories:

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 10

Algorithm 2.2 Zimmermann’s 3-Way Interpolation

Require: (S1, S2, S3, S4, S5) as in (2.4).

Ensure: C(x) = A(x) · B(x).
1: T1 ← 2S4 + S3. (= 18c4 + 6c3 + 6c2 + 3c0)
2: T1 ← T1/3. (= 6c4 + 2c3 + 2c2 + c0)
3: T1 ← S1 + T1. (= 6c4 + 2c3 + 2c2 + 2c0)
4: T1 ← T1/2. (= 3c4 + c3 + c2 + c0)
5: T1 ← T1 − 2S5. (= c4 + c3 + c2 + c0)
6: T2 ← (S2 + S4)/2. (= c4 + c2 + c0)
7: S2 ← S2 − T1. (= c1)
8: S3 ← T2 − S1 − S5. (= c2)
9: S4 ← T1 − T2. (= c3)

10: return C(x) = S5x
4 + S4x

3 + S32x
2 + S2x+ S1.

1. Algorithms for general moduli: the classical algorithm [43], the Barrett algorithm [7]

and the Montgomery algorithm [60].

2. Algorithms for special moduli: modular reduction methods based on pseudo-Mersenne

numbers [19] and generalized Mersenne numbers [76].

3. Look-up table methods: Kawamura, Takabayashi and Shimbo’s method [42]; Hong,

Oh and Yoon’s method [34]; and Lim, Hwang and Lee’s method [54].

Look-up table methods are normally faster than the generalized ones, but require a large

amount of memory. The Barrett algorithm and the Montgomery algorithm requires small

amount of pre-computation. The algorithms using pre-computation are only suitable when

some parameters are fixed. In this section, we briefly review modular reduction algorithms

for general moduli: the classical division algorithm, and the Montgomery algorithm. Then

we present generalization of the Barrett algorithm for modular reduction. Unlike the orig-

inal Barrett algorithm, the generalized one does not have a limitation on the input size

and can perform a multiple precision division for a fixed divisor. In describing the above

mentioned algorithms, we use the following notations:

• b ≥ 2 is a radix for integer representation. In software implementation, b = 2w, where

w is the word length in bits of the processor used.

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 11

• (xn−1 · · · x1x0)b = xn−1b
n−1 + · · ·+ x1b+ x0. In general, xi’s can be signed digits in this

notation. However, in this section, we use only radix-b representation with unsigned

digits, i.e., 0 ≤ xi < b for 0 ≤ i < n.

2.2.1 Classical Division Algorithm

One straightforward method to perform modular reduction is to use the classical division

algorithm, which gives both remainder and quotient as output. A good description and

analysis of the classical algorithm for integer division (CAID) can be found in [55]; we have

slightly modified this algorithm so that it accepts only normalized input, i.e., the most sig-

nificant digit mk−1 of the divisor satisfies mk−1 ≥ ⌊b/2⌋. The resulting pseudo code is given

in Algorithm 2.3.

The input condition mk−1 ≥ ⌊b/2⌋ guarantees that line 16 is repeated at most twice [43].

This condition can be met by left shifting x and m by a suitable number of bits. To obtain

a correct result, we only need to shift the remainder r to the right by the same number of

bits. After the while loop in lines 15-17, qi−k is at most one larger than the true value of

quotient digit. The probability of r < 0 at line 19 is approximately 2/b. Note that the values

qi−kmk−1 and qi−kmk−2 in line 15 can be reused in line 18. Hence Algorithm 2.3 requires

k(n− k) single-precision multiplications and at most (n− k) single-precision divisions.

2.2.2 Montgomery Reduction Algorithm

The Montgomery algorithm performs modular reduction without using any division instruc-

tion of the underlying processor [60]. Let m be a modulus, and T be a positive integer which

is to be reduced. We choose an integer R such that R > m, gcd(m,R) = 1 and 0 ≤ T < mR.

Algorithm 2.4 computes T · b−q mod m, given an integer 0 ≤ T < mR, where R = bq. In

each iteration of Algorithm 2.4, a multiple of the modulus M is added to Ti such that the

least significant digit becomes zero. Then, the division of Ti+1 by b can be performed simply

by shifting all digits of T by one place to the right. If q is chosen to be the digit length of

T , then it can be easily shown that Tq ∈ [0, 2m). Therefore, one final subtraction by m may

be required to output an integer within [0,m). Some researchers have proposed ways to

eliminate this final subtraction to avoid timing attacks [45, 72, 85]. Walter proposed using

q such that 2m < bq−1 [83]. Hachez and Quisquater improved this condition to m < bq−1 for

b = 2 [29]. Walter improved this condition again to 4m < bq [84]. Line 3 of MAIR requires

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 12

Algorithm 2.3 Classical Algorithm for Integer Division (CAID)

Require: Integers x = (xn−1 · · · x1x0)b and m = (mk−1 · · ·m1m0)b with n ≥ k ≥ 1 and

mk−1 ≥ ⌊b/2⌋.
Ensure: The quotient q = (qn−k · · · q1q0)b and the remainder r = (rk−1 · · · r1r0)b such that

x = qm+ r, 0 ≤ r < m.

1: for j from 0 to (n− k) do

2: qj ← 0.

3: end for

4: if x > mbn−k then

5: qn−k ← qn−k + 1, r ← x−mbn−k;
6: else

7: r ← x.

8: end if

9: for i from n− 1 down to k do

10: if ri = mk−1 then

11: qi−k ← b− 1;

12: else

13: qi−k ← ⌊(rib+ ri−1)/mk−1⌋.
14: end if

15: while qi−kmk−2 > (rib+ ri−1 − qi−kmk−1)b+ ri−2 do

16: qi−k ← qi−k − 1.

17: end while

18: r ← r − qi−kmbi−k.
19: if r < 0 then

20: r ← r +mbi−k and qi−k ← qi−k − 1.

21: end if

22: end for

23: return q and r.

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 13

Algorithm 2.4 Montgomery Algorithm for Integers Reduction (MAIR)

Require: integers T and m = (mk−1 · · ·m1m0)b, such that R = bq, 0 ≤ T < mR and

gcd(b,m) = 1.

Ensure: T · b−q mod m.

1: T0 ← T .

2: for i from 0 to q − 1 do

3: ui ← −m−1 · Ti mod b.
4: Ti+1 ← (Ti + ui ·m)/b.
5: end for

6: if Tq ≥ m then

7: Tq ← Tq −m.

8: end if

9: return Tq.

one single-precision multiplication and line 4 requires k single-precision multiplications,

where k is the digit length of m. Therefore, MAIR requires a total of q(k+1) single-precision

multiplications.

2.2.3 Barrett’s Reduction Algorithm

The Barrett algorithm [7, 21] is advantageous for applications in which a fixed modulus is

used. It does not use any division instructions of the underlying processor, but it uses a small

amount of pre-computation of size similar to that of the modulus. The description given in

Algorithm 2.5 is a generalized version of the Barrett algorithm. We refer to it as GBAID

(the generalized Barrett algorithm for integer division) since it has been modified such that

a quotient is also computed. The original Barrett algorithm can reduce integers that are at

most twice as long as a modulus. However, GBAID does not have such a limitation. Note

that, Algorithm 2.5 becomes the original Barrett algorithm for integer reduction if we let

u = 2v, remove “q ← q + 1” in line 7, and change line 9 to “return r”.

The computation of q in line 1 of Algorithm 2.5 is not exact, but it is quite accurate.

Let q′ =
⌊
⌊x/bv−1⌋µ/bu−v+1

⌋
. Then q computed in line 1 is an approximation of q′. The

approximation error q′ − q is at most 1 when u− v ≤ b [55, 63].

Proposition 1. Computation of q in line 1 of Algorithm 2.5 is not exact. The error in q is at

most 1, if b ≥ u− v.

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 14

Algorithm 2.5 The Generalized Barrett Algorithm for Integer Division (GBAID)

Require: Positive integers x = (xu−1 · · · x1x0)b, m = (mv−1 · · ·m1m0)b with mv−1 6= 0, u ≥ v
and a pre-computed value µ = (µu−v · · ·µ1µ0)b = ⌊bu/m⌋.

Ensure: Integers q and r such that x = qm+ r, where r < m.

1: q ←
⌊
∑

u−v−1≤i+j xi+v−1µjb
i+j−u+v+1/b2

⌋ (
≈

⌊
⌊x/bv−1⌋µ/bu−v+1

⌋)
.

2: r1 ← x mod bv+1, r2 ←
∑

i+j<v+1 qimjb
i+j mod bv+1(= q ·m mod bv+1), r← r1 − r2.

3: if r < 0 then

4: r ← r + bv+1.

5: end if

6: while r ≥ m do

7: r ← r −m and q ← q + 1.

8: end while

9: return q and r.

Proof. For simplicity, we let k = u− v, γ = (γk · · · γ1γ0)b = (xu−1 · · · xvxv−1)b = ⌊x/bv−1⌋. Note

that µ is also at most k+1 = u− v+1 words long, since µ = ⌊bu/m⌋ where m is v words long.

Let q′ = ⌊γµ/bu−v+1⌋ be the value computed by the following full multiplication:

q′ =
⌊γ · µ
bk+1

⌋

=

⌊∑

i+j γiµjb
i+j

bk+1

⌋

.

The computation of q in line 1 of Algorithm 2.5 is done by the following partial multipli-

cation:

q =

⌊∑

k−1≤i+j γiµjb
i+j−k+1

b2

⌋

.

Observe that q′ and q have a common part:

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 15

q′ =

⌊∑

i+j≤k γiµjb
i+j +

∑

k+1≤i+j γiµjb
i+j

bk+1

⌋

=
∑

k+1≤i+j
γiµjb

i+j−k−1 +

⌊∑

i+j≤k γiµjb
i+j

bk+1

⌋

,

q =

⌊∑

k−1≤i+j≤k γiµjb
i+j−k+1 +

∑

k+1≤i+j γiµjb
i+j−k+1

b2

⌋

=
∑

k+1≤i+j
γiµjb

i+j−k−1 +

⌊∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

.

Let ǫ be the difference between q′ and q, i.e., ǫ = q′ − q.

ǫ =

⌊∑

i+j≤k γiµjb
i+j

bk+1

⌋

−
⌊∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

=

⌊∑

k−1≤i+j≤k γiµjb
i+j +

∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

−
⌊∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

=

⌊∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2
+

∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

−
⌊∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

≤
⌊∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

+ 1.

(∵ ⌊A+B⌋ ≤ ⌊A⌋+ ⌊B⌋+ 1.)

Since γi, µj < b,

⌊∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

<

⌊∑

i+j≤k−2 b
i+j

bk−1

⌋

.

Then we can see that for b ≥ k,

∑

i+j≤k−2

bi+j = (k − 1)bk−2 + (k − 2)bk−3 + · · · + 2b+ 1 < bk−1.

CHAPTER 2. REVIEW OF MULTIPLICATION AND MODULAR REDUCTION 16

Therefore,

⌊∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

= 0,

and

ǫ ≤ 1.

Let Q denote ⌊x/m⌋. Then it can be easily shown that Q− 2 ≤ q′ = ⌊⌊x/bv−1⌋µ/bu−v+1⌋ ≤
Q.

q′ >
1

bu−v+1
·
(
bu

m
− 1

)

·
(x

bv−1
− 1

)

− 1

=
x

m
− bv−1

m
− x

bu
+

1

bu−v+1
− 1

> Q− 3.

Trivially, q′ ≤ Q.

Let k = u − v for simplicity of description; then both µ and ⌊x/bv−1⌋ are at most (k + 1)

words long. It can be easily seen that line 1 requires at most (k2 + 5k+ 2)/2 single-precision

multiplications. Note that q computed in step 1 is also at most (k + 1) words long. One

can easily verify that the number of single-precision multiplications required in line 2 is at

most (k + 1)v − k(k − 1)/2 if k ≤ v, and (v2 + 3v)/2 otherwise; therefore, the total number of

single-precision multiplications required in Algorithm 2.5 is uv + 3u − v2 − 2v + 1 if u ≤ 2v,

or (u2 + 5u)/2 − uv + v2 − v + 1 if u > 2v.

Chapter 3

Review of XTR Cryptosystems

3.1 Mathematical Preliminaries on XTR Cryptosystems

3.1.1 Basic Ideas

Due to the index calculus method, traditional cryptosystems based on the hardness of dis-

crete logarithm problem must use large representation size, which is usually at least 1024

bits, even though they are based on a subfield of order only about 2160. Such a long rep-

resentation size renders traditional cryptosystems disadvantageous both in bandwidth and

computational efficiency.

The prime subgroup of size q must be chosen carefully in GF (pt) case. If q is chosen

carelessly, the DLP could be easily broken even though it is a prime number large enough

to resist square-root type attacks. If q divides ps − 1 where s < t and s|t, the index calculus

method can be applied in some proper subgroup of GF (pt). The running time of the index

calculus method depends on the size of group representation. Therefore, if s is small enough,

the DLP can be easily broken. Hence, Lenstra proposed the method to select q which does

not divide the group order of proper subgroup of GF (pt)∗ [48].

Theorem 1 ([48]). Let Φt(x) be a t-th cyclotomic polynomial. Suppose that q > t be a prime

factor of Φt(p). Then q does not divide Φd(p) for all d such that d < t and d|t.

This idea of choosing q is also used in XTR cryptosystem. In XTR cryptosystem, t is fixed

to 6 and q is chosen such that q|Φ6(p) = p2− p+ 1 and q > 6. Therefore, no subgroup of order

q can be embedded in any of GF (p)∗, GF (p2)∗ and GF (p3)∗.

17

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 18

Definition 1 (XTR-supergroup and XTR-subgroup [52]). Suppose p ≡ 2 (mod 3) is an odd

prime number and there exists a prime q > 6 that divides p2 − p+ 1.

• XTR-supergroup: order p2 − p+ 1 subgroup of GF (p6)∗.

• XTR-(sub)group: order q > 6 subgroup of XTR-supergroup.

Theorem 2. XTR-subgroup is not contained in any of GF (p)∗, GF (p2)∗ and GF (p3)∗.

Proof. Due to Theorem 1, the order q of XTR-subgroup does not divide any of Φ1(p) = p− 1,

Φ2(p) = p+ 1 and Φ3(p) = p2 + p+ 1. Therefore, XTR-subgroup * GF (p)∗, GF (p2)∗, GF (p3)∗.

It follows that, to solve the DLP in XTR-group with index calculus method, we have to

apply it to the full group GF (p6)∗. The Pohlig-Hellman attack does not work if the group

order q is a large enough prime number [70]. In fact, it is shown that the DLP in XTR-

subgroup is polynomial time equivalent to that in GF (p6)∗ [53]. Moreover, it is proven that

the DLP in XTR-subgroup is at least harder than the DLP in supersingular elliptic curves

of the same order [80].

The use of the XTR-supergroup allows a very compact representation of its elements

using elements of GF (p2). This allows us to represent XTR-supergroup elements with only

one third of the bits that are required in traditional representation. Moreover, computa-

tions take place in GF (p2) instead of the GF (p6). This results in much less storage and

bandwidth requirement as well as much faster performance than was previously possible

with traditional representations.

For example, a prime p must be chosen such that p6 is large enough to resist the index

calculus method. Hence, p6 ≈ 21024 or p ≈ 2170 to achieve the security level equivalent to

1024-bit RSA and approximately equivalent to 170-bit ECC [77]. Since XTR operations are

done in GF (p2), arithmetic operations deal with numbers of only 2×170 = 340 bits long. The

group size q only needs to be large enough to withstand square-root type attacks on DLP,

i.e., q ≈ 2160. The details on how elements in XTR-supergroup (thereby XTR-subgroup also)

are represented with the elements of GF (p2) are explained in the following.

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 19

3.1.2 Efficient Arithmetic Operations in GF (p2)

Before we review the trace representations used in XTR cryptosystems, we analyze the cost

required for arithmetic operations in GF (p2). Let p > 3 be a prime number. If p mod 3 = 2,

then 2 is primitive in Z3. Therefore, if p ≡ 2 (mod 3), it follows that (x3−1)/(x−1) = x2+x+1

is an irreducible polynomial overGF (p) and its roots α and αp (= α2) form an optimal normal

basis for GF (p2) over GF (p).

GF (p2) ∼= {x1α+ x2α
2 : α2 + α+ 1 = 0 and x1, x2 ∈ GF (p)}.

We now discuss the computational costs for some arithmetic operations that are used in

XTR cryptosystems. The following are the methods for performing arithmetic operations in

GF (p2) required in XTR cryptosystems [77].

1. xp: free!

xp = (x1α+ x2α
2)p = (x2α+ x1α

2).

2. x2: two multiplications in GF (p)

x2 = (x1α+ x2α
2)2

= (x2
1α

2 + 2x1x2α
3 + x2

2α
4)

= (x2
1α

2 + 2x1x2(−α− α2) + x2
2α)

= (x2
2 − 2x1x2)α+ (x2

1 − 2x1x2)α
2

= x2(x2 − 2x1)α+ x1(x1 − 2x2)α
2.

3. x · y: three multiplications in GF (p)

By using the KA,

A = x1y1, B = x2y2, C = (x1 + x2)(y1 + y2)−A−B,

x · y = (B − C)α+ (A− C)α.

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 20

4. x · z − y · zp: four multiplications in GF (p)

x · z − y · zp =(z1(y1 − x2 − y2) + z2(x2 − x1 + y2))α+

(z1(x1 − x2 + y1) + z2(y2 − x1 − y1))α
2.

Note that one multiplication in GF (p) is composed of 1 multiplication in Z and one reduction

modulo p. However, as noted in [77], we can do better by separating the “multiplication in

Z” step and “reduction modulo p” step in computing the multiplication in GF (p). Speeding

up the arithmetic operations in GF (p) is achieved by delaying the reduction steps. In ad-

dition, the use of Montgomery algorithm [60] is also proposed in [77]. On the assumption

that a multiplication and a Montgomery reduction have similar computational costs, the fol-

lowing results can be obtained [77]. Note that for the typical size of operands used in XTR

cryptosystems, the classical multiplication algorithm is the most efficient one. The timing

difference between the classical multiplication and the Montgomery reduction is quite small

for operands of small sizes.

Lemma 1. Let x, y, z ∈ GF (p2) with p ≡ 2 (mod 3). Let us define,

• T1 : time required to compute multiplication in Z

• T2 : time required to compute reduction using Montgomery’s algorithm

• T3 : time required to compute the multiplication in GF (p) using Montgomery’s algo-

rithm

Then T3 = T1 + T2 where T1 ≈ T2.

1. xp : free

2. x2 : 2 multiplications in GF (p) (2T1 + 2 · T2 = 2T3)

3. x · y : 2.5 multiplications in GF (p) (3T1 + 2 · T2 ≈ 2.5T3)

4. x · z − y · zp : 3 multiplications in GF (p) (4T1 + 2T2 ≈ 3T3)

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 21

3.1.3 Trace Representations and Properties of Sequence cn

Definition 2 (Conjugate and Trace over GF (p2)). Let h ∈ GF (p6). Then conjugates of h

over GF (p2) are h, hp
2

and hp
4

. The trace over GF (p2), denoted by Tr(·), of h is the sum of

conjugates of h over GF (p2), i.e., Tr(h) = h+ hp
2

+ hp
4 ∈ GF (p2).

Let g be an element in XTR-supergroup. The heart of XTR cryptosystem, which allows

efficient and compact representation, is that g and its conjugates gp
2

and gp
4

are completely

characterized by a single element Tr(g) ∈ GF (p2). Let us observe that

Theorem 3. Let g ∈ XTR-supergroup. The conjugates of g are completely determined by its

trace, Tr(g).

Proof. Clearly, ord(g)|(p2 − p + 1). The roots of X3 + Tr(g)X2 + Tr(g)pX − 1 = 0 are the

conjugates of g, since

(X − g)(X − gp−1)(X − g−p)
= X3 − (g + gp−1 + g−p)X2 + (ggp−1 + gg−p + gp−1g−p)X − ggp−1g−p

= X3 − (g + gp−1 + g−p)X2 + (gp + g1−p + g−1)X − 1

= X3 − Tr(g)X2 + Tr(g)pX − 1.

(3.1)

By Theorem 3, we have a compact representation of XTR-supergroup. We can represent

any element of XTR-supergroup with its trace over GF (p2) which requires only one third

of bits that are originally required. However, since Tr(·) is not an injection, we lose the

distinction among g and its conjugates.

Similar discussion can be made for Tr(gn): Tr(gn) fully characterizes the conjugates of

gn. Therefore, Tr(gn) is a compact representation of gn (and its conjugates). This is proven in

Lemma 3.2. In traditional DLP based cryptosystems, exponentiation operation, i.e., comput-

ing gn from g, is well-studied and there are many efficient algorithms available. However,

with the compact representation using traces, computing Tr(gn) from Tr(g) (without using

representation in GF (p6)) is not straightforward, since Tr(gn) 6= Tr(g)n in general. In ad-

dition, the fact that it is not straightforward to compute Tr(ga+b) from Tr(ga) and Tr(gb),

makes things more complicated. We discuss this issue in Section 3.2.

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 22

Definition 3 (F (c,X) and cn). F (c,X) = X3− cX2 + cpX−1 ∈ GF (p2)[X], where c ∈ GF (p2).

Let us denote the three roots of F (c,X) as h0, h1, h2 ∈ GF (p6). Then cn is defined as cn =

hn0 + hn1 + hn2 .

Let cn denote Tr(gn). The notation cn makes more sense than Tr(gn), since, in XTR

cryptosystems, the explicit value of g or gn, which are in GF (p6), are not used at all.

Lemma 2 ([53]). Let c ∈ GF (p2) and let h1, h2 and h3 be the three roots of F (c,X).

1. c = c1.

2. h0 · h1 · h2 = 1.

3. c−n = hn0 · hn1 + hn0 · hn2 + hn1 · hn2 , ∀n ∈ Z.

4. If h ∈ GF (p6) is a root of F (c,X) then h−p is also a root.

5. c−n = cnp = cpn for n ∈ Z.

6. Either ord(hj)|(p2 − p+ 1) and ord(hj) > 3 for j = 0, 1, 2 or hj ∈ GF (p2) for j = 0, 1, 2.

7. cn ∈ GF (p2) for n ∈ Z.

Due to Lemma 2.6, we have the following theorem.

Theorem 4 ([53]). F (c,X) ∈ GF (p2)[X] is irreducible if and only if its roots have order

dividing p2 − p+ 1 and > 3.

Proof. It is easy to see that if F (c,X) ∈ GF (p2)[X] is reducible, it must have at least one

root in GF (p2). By Lemma 2.6, we see that all the roots must be in GF (p2).

The reverse direction is straightforward.

Lemma 3 ([53]). Let h0, h1 and h2 be the roots of F (c,X).

1. cu+v = cu · cv − cpv · cu−v + cu−2v for u, v ∈ Z.

2. F (cn, h
n
j) = 0 for j = 0, 1, 2 and n ∈ Z.

3. F (c,X) is reducible over GF (p2) if and only if cp+1 ∈ GF (p).

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 23

Now we have the following formulae that are useful in computing cn from c.

Lemma 4. Let c, cn−1, cn and cn+1 are available. Then we can compute the followings:

1. c2n = c2n − 2cpn : 2 multiplications in GF (p).

2. c3n = c3n − 3cp+1
n + 3 : 4.5 multiplications in GF (p).

3. cn+2 = c · cn+1 − cp · cn + cn−1 : 3 multiplications in GF (p).

4. c2n−1 = cn−1 · cn − cp · cpn + cpn+1 : 3 multiplications in GF (p).

5. c2n+1 = cn+1 · cn − c · cpn + cpn−1 : 3 multiplications in GF (p).

6. If c̃1 = cn, then c̃v = cnv (re-indexing).

3.2 Review of XTR Exponentiation Algorithms

In this section, we review various exponentiation algorithms for XTR cryptosystem. The

computation of cn given c = c1 is referred to as XTR single exponentiation. The computation

of cau+bv given cu, cv (u and v not necessarily known) and two exponents a and b is referred

to as XTR double exponentiation. XTR Double exponentiations are required for signature

verification in XTR versions [52] of well-known digital signature schemes based on Digital

Signature Algorithm[66], ElGamal signature scheme [23] and Nyberg-Rueppel signature

scheme [65]. All exponentiation algorithms reviewed in this section have been proposed

in [53, 77].

3.2.1 XTR Single Exponentiation

Let Sn(c) = (cn−1, cn, cn+1) ∈ GF (p2)3. Algorithm 3.1 presented below computes S2v+1(c)

given c, S1(c) = (3, c, c2 − 2cp) and v. Note that the values y and e are not needed in actual

implementations. In each iteration of the algorithm, S2n−1(c) and S2n+1(c) are computed

from Sn depending on the exponent bit.

Lines 5 and 9 in Algorithm 3.1 require seven multiplications each. Hence, Algorithm 3.1

requires 7 log2 v multiplications in GF (p). Note that the required computational cost and

sequence of computation in each iteration does not depend on the exponent bits. This makes

the timing attacks and simple power analysis attacks difficult.

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 24

Algorithm 3.1 XTR Single Exponentiation (helper function)

Require: c ∈ GF (p2), S1(c) and v =
∑r−1

i=0 vi2
i ∈ Z≥0, where vr−1 = 1.

Ensure: S2v+1(c).
1: y ← 1, e← 0 (y = 2e+ 1).
2: for i = r − 1 down to 0 do

3: (Loop Invariant: y = 2e+ 1)

4: if vi = 0 then

5: Sy(c)← S2y−1(c). (7 muls)

6: y ← 2y − 1, e← 2e.
7: end if

8: if vi = 1 then

9: Sy(c)← S2y+1(c). (7 muls)

10: y ← 2y + 1, e← 2e+ 1.

11: end if

12: end for

13: return Sy(c) = S2v+1(c).

Note that Algorithm 3.1 does not compute Sn(c) given an arbitrary n and S1(c), but it

can only compute S2n+1(c). Algorithm 3.2 computes Sn(c), given S1(c) and n, with the help

of Algorithm 3.1.

Note that, in line 4 of Algorithm 3.2, Sn(c) can be computed given Sn−1(c) and c using

three multiplications in GF (p). Line 1 and 5 of Algorithm 3.2 each requires one execu-

tion of Algorithm 3.1 which takes 7 log2 v multiplications in GF (p). Therefore, on average,

Algorithm 3.2 requires 7 log2 v + 1.5 multiplications in GF (p).

3.2.2 XTR Double Exponentiation

In [77], Stam and Lenstra proposed an XTR double exponentiation algorithm based on Lu-

cas sequence computation using the continued fraction method [59] and it is presented in

Algorithm 3.3. Note that Algorithm 3.3 is a much improved version over the one presented

in [53]. The algorithm computes cbk+al, given ck, cl, ck−l, ck−2l, a and b, where k and l are not

necessarily known. Initially, we let u = k, v = l, d = b and e = a, so ud+ ve = bk + al. Then

we update u and v while decreasing d and e. At some point of algorithm d = e = gcd(u, v).

Toward the end of algorithm, cu+v and d such that d(u + v) = bk + al are computed. Given

cu+v and d, we can compute cd(u+v) using Algorithm 3.2.

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 25

Algorithm 3.2 XTR Single Exponentiation I

Require: c ∈ GF (p2), S1(c) and n =
∑r

i=0 ni2
i ∈ Z≥0.

Ensure: Sn(c).
1: if n0 = 0 then

2: v ← n/2− 1,

3: Compute S2v+1 (= Sn−1) using Algorithm 3.1.

4: Compute Sn from Sn−1. (3 muls)

5: else

6: v = (n − 1)/2.

7: Compute S2v+1 (= Sn) using Algorithm 3.1.

8: end if

9: return Sn.

Algorithm 3.3 XTR Double Exponentiation I

Require: a, b, ck, cl, ck−l and ck−2l, where 0 < a, b < q.
Ensure: cbk+al.

1: d← b, e← a, cu ← ck, cv ← cl, cu−v ← ck−l, cu−2v ← ck−2l, f2 = 0 and f3 = 0.

2: if both d and e are even then

3: (d, e)← (d/2, e/2) , f2 ← f2 + 1.

4: end if

5: if both d and e are divisible by 3 then

6: (d, e)← (d/3, e/3), f3 ← f3 + 1.

7: end if

8: while d 6= e do

9: if d > e then

10: Update (d, e, cu, cv, cu−v , cu−2v) according to Table 3.1.

11: end if

12: if e > d then

13: Update (d, e, cu, cv, cu−v , cu−2v) according to Table 3.2.

14: end if

15: end while

16: Compute cu+v, given cu, cv, cu−v and cu−2v. Let c̃1 ← cu+v. (3 muls)

17: Using Algorithm 3.2 with S̃1 = (3, c̃1, c̃1 + 2c̃p1), c̃1 and d, compute c̃d = cd(u+v). Or use

Algorithm 3.4 to compute c̃d = cd(u+v) based on c̃1 (Note that this leads to recursive calls

to this algorithm).

18: Compute c2f2d(u+v) based on cd(u+v) by applying Lemma 4.1.

19: Compute c3f32f2d(u+v) based on c2f2d(u+v) by applying Lemma 4.2.

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 26

Table 3.1: Updating Formulae for Line 10 of Algorithm 3.3

Condition Update (d, e, cu, cv, cu−v , cu−2v) Costs

i. If d ≤ 4e (e, d − e, cu+v , cu, cv , cv−u) 3 muls

ii. Else if d is even (d2 , e, c2u, cv , c2u−v , c2(u−v)) 7 muls

iii. Else if e is odd (d−e2 , e, c2u, cu+v, cu−v, c−2v) 7 muls

iv. Else (e is even) (e2 , d, c2v , cu, c2v−u, c2(v−u)) 4 muls

Table 3.2: Updating Formulae for Line 13 of Algorithm 3.3

Condition Update (d, e, cu, cv , cu−v, cu−2v) Costs

i. If e ≤ 4d (d, e − d, cu+v, cv , cu, cu−v) 3 muls

ii. Else if e is even (e2 , d, c2v , cu, c2v−u, c2(v−u)) 4 muls

iii. Else if d is odd (e−d2 , d, c2v , cu+v, cv−u, c−2u) 7 muls

iv. Else (d is even) (d2 , e, c2u, cv , c2u−v, c2(u−v)) 7 muls

The exact analysis of Algorithm 3.3 seems difficult. The statistical behavior based on

actual experiments of the algorithm is presented in [77].

Conjecture 1 ([77]). Given a and b such that 0 < a, b < q, and trace values ck, cl, ck−l
and ck−2l, where k and l are not known explicitly, the trace value cbk+al can be computed on

average in about 6 log2 (max(a, b)) multiplications in GF (p) using Algorithm 3.3.

3.2.3 XTR Single Exponentiation Revisited

In [77], an efficient single exponentiation algorithm based on Algorithm 3.3 is proposed. It

is easily seen that running Algorithm 3.3 with any integers a, b such that u = a+b, and k = 1

and l = 1, will result in a desired output, cu = ca+b. Note that we have much freedom of

choice of a and b. They observed that a and b can be chosen in such a way that Algorithm 3.3

favors the ‘cheap’ step, while quickly decreasing d and e.

The least expensive steps in Algorithm 3.3 are steps 10.i and 13.i. It is possible to choose

a and b such that step 10.i is favored and u = a+ b. A good way to split u into the sum of a

and b,

a =

⌊

3−
√

5

2
u

⌋

,

b = u− a.

CHAPTER 3. REVIEW OF XTR CRYPTOSYSTEMS 27

Algorithm 3.4 XTR Single Exponentiation

Require: 0 < u < q and c1.

Ensure: cu.

1: a← ⌊3−
√

5
2 u⌋ and b← u− a.

2: Run Algorithm 3.3 with input, ck = cl = c1, ck−l = c0 = 3 and ck−2l = c−1 = cp1, resulting

in ca+b = cu.

In such a case, a and b are chosen such that b/a is close to the golden ratio φ = 1+
√

5
2 .

Algorithm 3.3 sets d = b and e = a initially in line 1. Lines 3 and 6 do not affect the ratio

of d/e = φ. The step 10.i do not break the golden ratio either. For example, suppose that

d/e = φ, so d = 1+
√

5
2 e. After step 10.i, the ratio between new d and e is also φ. This feature

is called the ‘Fibonacci step back’ behavior. Furthermore, the sum of d and e is reduced by

the factor φ ≈ 1.62 after step 10.i is applied.

Combining all those observations leads to Algorithm 3.4.

To analyze Algorithm 3.4, we divide iterations in Algorithm 3.3 into two phases:

1. Phase 1: for the first a few iterations, only step 10.i will be executed.

2. Phase 2: due to the small error resulting from the rounding (a = ⌊3−
√

5
2 u⌋), the Fi-

bonacci behavior will be lost at some point of the algorithm.

Proposition 2 ([77]). In Algorithm 3.4, Phase 1 takes about logφ
√
u iterations. Furthermore,

after Phase 1, d and e are reduced to half their original sizes.

Corollary 1. Given an integer u with 0 < u < q and a trace value c1, the trace value cu can

on average be computed in about 5.2 log2 u multiplications in GF (p) using Algorithm 3.4.

Proof. We divide the running of Algorithm 3.3 in Algorithm 3.4, into two phases.

1. Phase 1: step 10.i requires 3 multiplications and there are logφ
√
u iterations in Phase

1, 3 logφ
√
u ≈ 2.2 log2 u multiplications in GF (p) are required for Phase 1.

2. Phase 2: Fibonacci behavior is lost. The remaining d and e are assumed to be random

integers of about the same order of magnitude as
√
u. So it takes 6 log2

√
u = 3 log2 u

multiplications in GF (p).

Therefore Algorithm 3.4 is expected to require about 5.2 log2 u multiplications in GF (p).

Chapter 4

Low-Weight Polynomial Form

Integers for Efficient Modular

Multiplication

In this chapter, we introduce a new class of moduli called the low-weight polynomial form

integers (LWPFIs). LWPFIs are expressed in a monic, low-weight polynomial form, f(t) =

tl − fl−1t
l−1 − · · · − f0, where t is a positive integer and fi ∈ {0,±1}. We present a modular

multiplication scheme based on LWPFI moduli and show analysis and experimental results.

The work presented in this chapter appeared in [13] and in our forthcoming paper in IEEE

Transactions on Computers [15].

4.1 Modular Multiplication Using Low-Weight Polynomial Form

Integers

In [76], Solinas has proposed generalized Mersenne numbers (GMNs) for efficient modular

multiplication. A GMN is expressed as a low-weight polynomial f(t), where t is a power of 2

and f(t) is a small-degree polynomial. An LWPFI is also expressed as a polynomial f(t), but

t is not necessarily restricted to a power of 2, and the coefficients of f(t) are limited to 0 and

±1. Even though allowing only 0 and ±1 for the coefficients of f(t) leaves only 3l possible

choices for f(t), allowing any integer for t gives far more choices of integers than does GMN.

28

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 29

Definition 4 (LWPFI). For a positive integer t, let f(t) = tl−fl−1t
l−1−fl−2t

l−2−· · ·−f1t−f0 be

a monic polynomial of degree l. We call a positive integer p = f(t) a low-weight polynomial

form integer (LWPFI) if fi ∈ {−1, 0, 1}, l ≥ 2 and t > 2(22l+1 − 1)(2l − 1) ≈ 23l+2.

In Definition 4, the value l = 1 is excluded so that LWPFIs are different from the usual

form of integers. The reason for having the condition t > 2(22l+1 − 1)(2l − 1) is explained

in Section 4.1.2. In practice, the condition t > 2(22l+1 − 1)(2l − 1) is easily satisfied. For

cryptographically useful values of p = f(t), the degree l of f(t) is a very small integer (l =

2, 3, 4, . . .) and t is a large integer (at least t > 2w, where w is the processor’s word length in

bits). For an n-bit integer t, it can be proven that an LWPFI is at least ((n−1)l+1) bits long

and at most nl bits long.

When computing modular arithmetic using LWPFI moduli, operands are to be expressed

in a signed-digit representation. For an integer x ∈ Zp=f(t), we use the following redundant

signed-digit representation,

x ≡ xl−1t
l−1 + · · ·+ x1t+ x0 (mod p = f(t)), (4.1)

such that |xi| ≤ ψ = (t+ 2l+1 − 2).

Equation (4.1) can be written as x(t) = (xl−1 · · · x1x0)t, since the former can be viewed

as a degree-(l − 1) polynomial in Z[t]. For simplicity, we say a representation x(t) of an

integer x is in SD-(t, ψ) form, and write it as (xl−1 · · · x1x0)SD−(t,ψ) if it satisfies the above

conditions. Such a representation exists for any x ∈ Zp, if ψ > (tl+1 − 1)/(2tl − 2) and this

condition is easily satisfied with ψ = t+ 2l+1 − 2. Note that we have chosen a slightly wider

range |xi| ≤ (t + 2l+1 − 2) than |xi| < t, which is used in traditional redundant signed-digit

representation [3]. The use of this wider range makes it possible to simplify our modular

multiplication method using LWPFI moduli described later in this section. Given two input

values in SD-(t, ψ) form, our modular multiplication method computes an output also in

SD-(t, ψ) form.

Converting an integer in Zf(t) into an SD-(t, ψ) form requires no more than (l−1) integer

divisions by t, where l = deg f(t). Usually this requirement is not an issue in cryptographic

applications since, when the modular multiplication algorithm based on LWPFI moduli is

used in exponentiation, conversions between the usual representation and an SD-(t, ψ) form

is not significant compared to the entire exponentiation. To convert an integer in usual form

to SD-(t, ψ) form, one needs to perform at most (l− 1) divisions by t, where each time the bit

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 30

Algorithm 4.1 Polynomial Multiplication & Reduction (POLY-MULT-REDC)

Require: ẑ(t) = x(t) · y(t) mod f(t).
Ensure: x(t) and y(t) in SD-(t, ψ) form.

1: ẑ(t) = ẑ2l−2t
2l−2 + · · · ẑ1t+ ẑ0 ← x(t) · y(t).

2: for For i from 2l − 2 down to l do

3: ẑ(t)← ẑ(t)− ẑi · f(t) · ti−l.
4: end for

5: return ẑ(t).

length of the dividend is decreased by approximately the bit length of t. Conversion from SD-

(t, ψ) form can be performed by Horner’s rule and it requires at most (l− 1) multiplications,

where each time the bit length of the multiplicand increases approximately by that of t.

Let x, y ∈ Zp=f(t) be represented in SD-(t, ψ) form as follows:

x(t) = (xl−1 · · · x1x0)SD−(t,ψ),

y(t) = (yl−1 · · · y1y0)SD−(t,ψ).

In the following, we show an efficient way to perform modular multiplication of these

two integers modulo an LWPFI p = f(t). We call the proposed scheme the LWPFI modular

multiplication.

The LWPFI modular multiplication is performed in two steps:

1. POLY-MULT-REDC: compute ẑ(t) = x(t) · y(t) mod f(t) in Z[t]/f(t).

2. COEFF-REDC: reduce coefficients of ẑ(t), such that the resulting polynomial has coef-

ficients that are at most ψ in magnitude.

4.1.1 POLY-MULT-REDC: Multiplication in Z[t]/f(t)

Algorithm 4.1 is a simple and general way to perform the POLY-MULT-REDC step.

Line 1 is a multiplication of two l-term polynomials and can be computed in different ways,

requiring different amounts of computation as discussed in Section 4.3.1. Lines 2-4 perform

a polynomial reduction of a degree-(2l − 2) polynomial by f(t). Note that it is only a general

polynomial reduction method that works for any f(t). For specific f(t)’s, one may find better

ways to do this step.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 31

Algorithm 4.2 Coefficient Reduction (COEFF-REDC)

Require: ẑ(t) = (ẑl−1 · · · ẑ1ẑ0)t, where |ẑi| ≤ (2l − 1)ψ2 for all i = 0, . . . , l − 1.

Ensure: z′(t) = (z′l−1 · · · z′1z′0)SD−(t,ψ).

1: z′(t) = (z′l · · · z′1z′0)t ← ẑ(t). (note: z′l = 0)

2: z′l ← ⌊z′l−1/t⌉, z′l−1 ← z′l−1 rem t.
3: z′(t)← z′(t)− z′l · f(t).
4: for i from 0 to l − 1 do

5: Ci ← ⌊z′i/t⌉ and z′i ← z′i rem t.
6: z′i+1 ← z′i+1 + Ci.

7: end for

8: z′(t)← z′(t)− z′l · f(t).
9: return z′(t).

Even though polynomial multiplication and polynomial reduction are separated in Algo-

rithm 4.1, one can choose to combine them for better performance. In Section 4.2, we show

how Algorithm 4.1 can be optimized by combining polynomial multiplication and polynomial

reduction for l = 2 and 3.

Proposition 3. Suppose that the magnitudes of the coefficients in x(t) and y(t) are bounded

by a positive integer ψ. Then the coefficients of ẑ(t) computed by Algorithm 4.1 are at most

(2l − 1)ψ2 in magnitude.

Proof. Let z(t) = x(t) · y(t). It is easily seen that |zi| ≤ (i + 1)ψ2 for i = 0, . . . , l − 1 and

|zi| ≤ (2l − 1 − i)ψ2 for i = l, . . . , 2l − 2. The magnitudes of the coefficients in ẑ(t) = z(t)

mod f(t) are maximum when all the coefficients fi’s of f(t) are either 1 or −1. In both cases,

the maximum value of |ẑi| is computed as (2l − 2l−i−1)ψ2. Therefore, |ẑi| ≤ (2l − 1)ψ2 for all

i = 0, . . . , l − 1.

4.1.2 COEFF-REDC: Coefficient Reduction

After POLY-MULT-REDC is completed, we obtain a degree-(l−1) polynomial ẑ(t). As shown

in Proposition 3, the bit lengths of ẑi’s could be more than twice as long as that of t. The

coefficients ẑi’s must be reduced so that the result can be used as input to subsequent mod-

ular multiplications. Algorithm 4.2 shows an efficient way to reduce the coefficients of ẑ(t),

where we used ⌊·⌉ to denote truncation toward zero, and u rem v to denote u− v · ⌊u/v⌉.
Below we show that Algorithm 4.2 results in SD-(t, ψ) form output.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 32

Proposition 4. Suppose that the coefficients of ẑ(t) satisfy |ẑi| ≤ (2l − 1)ψ2, where ψ =

t + 2l+1 − 2. Given this input ẑ(t), Algorithm 4.2 outputs z′(t), whose coefficients are no

greater than ψ in magnitude.

Proof. Let θ = 2l+1 − 2. Then it follows that

(2l − 1)(θ2 + 4θ + 2) = 2(2l − 1)(22l+1 − 1) < t, (4.2)

due to Definition 4. We use (4.2) throughout this proof.

In line 2, since |z′l−1| ≤ (2l − 1)(t+ θ)2, it is easy to see that

|z′l| ≤ ⌊(2l − 1)(t+ θ)2/t⌉ = (2l − 1)(t+ 2θ), (∵ (2l − 1)θ2 < t)

where ⌊·⌉ is a truncation toward zero. After line 3,

|z′i| ≤ (2l − 1)[(t+ θ)2 + t+ 2θ] for i = 0, . . . , l − 2,

|z′l−1| ≤ (2l − 1)(t+ 2θ) + t− 1.

In the first iteration of lines 4-6,

|C0| ≤
∣
∣
∣
∣

⌊
(2l − 1)[(t + θ)2 + t+ 2θ]

t

⌉∣
∣
∣
∣
≤ (2l − 1)(t+ 2θ + 1),

since (2l − 1)(θ2 + 2θ) < t. To determine the maximum value of |Cl−1|, we consider three

cases where l = 2, l = 3 and l > 3.

1. Case 1: if l = 2,

|C1| =

∣
∣
∣
∣

⌊
z′1 + C0

t

⌉∣
∣
∣
∣

≤
⌊

(2l − 1)(t+ 2θ + t+ 2θ + 1) + t− 1

t

⌉

.

(∵ (2l − 1)(4θ + 1)− 1 < t)

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 33

2. Case 2: if l = 3,

|C1| ≤
∣
∣
∣
∣

⌊
(2l − 1)[(t+ θ)2 + t+ 2θ + t+ 2θ + 1]

t

⌉∣
∣
∣
∣
≤ (2l − 1)(t+ 2θ + 2),

|C2| ≤
∣
∣
∣
∣

⌊
(2l − 1)(t+ 2θ + t+ 2θ + 2) + t− 1

t

⌉∣
∣
∣
∣
≤ (2l+1 − 1).

3. Case 3: if l > 3,

|C1| ≤
∣
∣
∣
∣

⌊
(2l − 1)[(t+ θ)2 + t+ 2θ + t+ 2θ + 1]

t

⌉∣
∣
∣
∣
≤ (2l − 1)(t+ 2θ + 2),

|C2| ≤
∣
∣
∣
∣

⌊
(2l − 1)[(t+ θ)2 + t+ 2θ + t+ 2θ + 2]

t

⌉∣
∣
∣
∣
≤ (2l − 1)(t+ 2θ + 2),

...

|Cl−1| ≤
∣
∣
∣
∣

⌊
(2l − 1)(t+ 2θ + t+ 2θ + 2) + t− 1

t

⌉∣
∣
∣
∣
≤ (2l+1 − 1).

Since z′l = 0 after line 3, it follows that z′l = Cl−1 after line 7. Hence, |z′l| ≤ (2l+1 − 1) after

line 7 for all l ≥ 2. Since |z′i| ≤ t− 1 for i = 0, . . . , l− 1 after line 7, the magnitudes of |z′i|’s for

0 ≤ i < l will be no greater than ψ = t+ 2l+1 − 2 after the execution of line 8. Therefore, the

output of Algorithm 4.2 is in SD-(t, ψ) form.

Algorithm 4.2 is much like the modular reduction algorithm using pseudo-Mersenne

numbers [55]. However, Algorithm 4.2 is quite different from it, since Algorithm 4.2 does

not require a “while” loop, the reason being that the output of Algorithm 4.2 is reduced only

to the point where the output meets the conditions for SD-(t, ψ) form. This feature makes

Algorithm 4.2 behave in a completely deterministic way.

4.2 Optimization of POLY-MULT-REDC Step

In this section, we show that the POLY-MULT-REDC step can be implemented efficiently

for some specific f(t)’s by combining polynomial multiplication and polynomial reduction

by f(t). We provide optimal f(t)’s for implementing the POLY-MULT-REDC step for l = 2

and 3. It will be shown in Section 4.3 that larger values of l lead to a better asymptotic

bound; however, they introduce more overheads. We consider only small-degree f(t)’s that

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 34

are useful in practice. It is straightforward however to extend this idea to larger degrees of

f(t).

The combining methods shown in this section are more efficient than the multiply-then-

reduce method described in Algorithm 4.1. For l = 2, the combining method’s performance

is almost as good as that of polynomial multiplication only. Moreover, polynomial squaring

in Z[t]/f(t) for l = 2 is asymptotically faster than polynomial multiplication for some f(t)’s.

For l = 3, some f(t)’s make it possible that combined polynomial multiplication and poly-

nomial reduction can be performed using the same number of operations as for polynomial

multiplication only.

The methods shown in this section are to optimize Algorithm 4.1 for l = 2 and 3. The

resulting output of the following methods will be identical to that of Algorithm 4.1 for the

same input. Thus, the polynomials computed by the following methods will meet the input

condition of Algorithm 4.2 too, provided that the input x(t) and y(t) are also in SD-(t, ψ) form.

However, computations in Algorithm 4.1 and the methods in this section do not depend on

the fact that the input is in SD-(t, ψ).

We only consider irreducible f(t)’s. Reducible f(t)’s are guaranteed to generate compos-

ite numbers that are, in most cases, not useful for cryptography. When f(t) is reducible

there are better ways to perform polynomial multiplications in Z[t]/f(t). In particular, for

f(t) =
∏k
i=1 fi(t), where fi(t)’s are irreducible factors of f(t), the minimum number of mul-

tiplications required to compute a polynomial multiplication in Z[t]/f(t) is 2 · deg f(t) − k

[87].

4.2.1 Case 1: l = 2

We use the Karatsuba algorithm [41] (KA) for 2-term polynomial multiplication. For two

degree-2 polynomials x(t) and y(t), KA computes x(t) · y(t) using only three multiplications.

x(t) · y(t) = x1y1t
2 + ((x0 + x1)(y0 + y1)− x1y1 − x0y0)t+ x0y0. (4.3)

After polynomial reduction by f(t), we have the following formula for polynomial multi-

plication and squaring in Z[t]/f(t).

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 35

x(t) · y(t) ≡ ((x0 + x1)(y0 + y1) + (f1 − 1)x1y1 − x0y0)t

+f0x1y1 + x0y0 (mod f(t)). (4.4)

x(t)2 ≡ ((x0 + x1)
2 + (f1 − 1)x2

1 − x2
0)t+ f0x

2
1 + x2

0 (mod f(t)). (4.5)

Or, we can obtain alternative formulae by using the following version of KA due to

Knuth [43]:

x(t) · y(t) = x1y1t
2 + (x1y1 + x0y0 − (x0 − x1)(y0 − y1))t+ x0y0. (4.6)

The following formulae are obtained by taking modulo f(t) of (4.6).

x(t) · y(t) ≡ ((f1 + 1)x1y1 + x0y0 − (x0 − x1)(y0 − y1))t

+f0x1y1 + x0y0 (mod f(t)). (4.7)

x(t)2 ≡ ((f1 + 1)x2
1 + x2

0 − (x0 − x1)
2)t+ f0x

2
1 + x2

0 (mod f(t)). (4.8)

Note that (4.4) and (4.5) are good when f1 = 1 and (4.7) and (4.8) are good when f1 = −1.

Interestingly, when f0 = −1, we can simplify (4.5) and (4.8) as follows:

x(t)2 ≡ x1(f1x1 + 2x0)t+ (x0 − x1)(x0 + x1) (mod f(t)). (4.9)

Formula (4.9) needs only two multiplications. Long integer squaring is usually faster

than long integer multiplication. As long as integer squaring takes approximately no less

than 2/3 of multiplication time, (4.9) is faster than (4.5) and (4.8), since (4.9) requires two

multiplications and (4.5) and (4.8) both require three squarings.

We find that f(t) = t2 ± t + 1 and f(t) = t2 + 1 are the most attractive choices for l = 2.

We present detailed analysis results in Section 4.3.1.

4.2.2 Case 2: l = 3

For 3-term polynomials, the following 3-way method requires six multiplications [86]:

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 36

x(t) =D2 · t4

+ (D2 +D1 −D5) · t3

+ (D2 +D1 +D0 −D4) · t2

+ (D1 +D0 −D3) · t
+D0,

(4.10)

where

D0 = x0y0, D3 = (x0 − x1)(y0 − y1),

D1 = x1y1, D4 = (x0 − x2)(y0 − y2),

D2 = x2y2, D5 = (x1 − x2)(y1 − y2).

After polynomial reduction by f(t), we have the following result:

x(t) · y(t) (mod f(t))

≡ ([f2(f2 + 1) + (f1 + 1)] ·D2 + (f2 + 1) ·D1 +D0 − f2 ·D5 −D4) · t2

+ ([f1(f2 + 1) + f0] ·D2 + (f1 + 1) ·D1 +D0 − f1 ·D5 −D3) · t
+ (f0(f2 + 1) ·D2 + f0 ·D1 +D0 − f0 ·D5).

(4.11)

Among all combinations of (f2, f1, f0) that make f(t) irreducible, (f2, f1, f0) = (−1,−1, 1)

and (0,−1, 1) put (4.11) into the simplest form.

For f(t) = t3 + t2 + t− 1,

x(t) · y(t) (mod f(t))

≡ (D0 −D4 +D5) · t2 + (D0 +D2 −D3 +D5) · t+ (D0 +D1 −D5).
(4.12)

For f(t) = t3 + t− 1,

x(t) · y(t) (mod f(t))

≡ (D0 +D1 −D4) · t2 + (D0 −D3 +D5) · t+ (D0 +D1 +D2 −D5).
(4.13)

It is interesting to observe that the computational cost of each of (4.12) and (4.13) is

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 37

almost the same as that of (4.10).

4.3 Analysis of LWPFI Modular Multiplication

In this section, the performance of LWPFI modular multiplication described in Section 4.1

is analyzed. In our analysis, we use n to denote the bit length used for t + 2l+2 − 2; that

is, t + 2l+2 − 2 < 2n. In practice, t will be quite larger than 2l+2 − 2, hence both t and

ψ = t+ 2l+1− 2 are almost always n-bit integers. We use τ to denote the number of non-zero

fi’s in f(t). The following notations are used in our analysis of Algorithms 4.1 and 4.2.

• Tm(u): time needed for multiplying two u-bit integers.

• Ta(u): time needed for adding/subtracting u-bit integers.

• Td(u, v): time needed for dividing a u-bit integer by a v-bit integer.

We will use an assumption that adding a u-bit integer to a v-bit integer takes Ta(min(u, v))

time. This is a reasonable assumption for most software implementations. A carry at the

top most bit position of the shorter integer may occur when adding two integers and it may

increase the computation time slightly. However, the carry occurs with probability ≈ 1/2

when adding two random integers and the probability that the carry will propagate more

than one word is only 1/2w, where w is the bit size of a computer word.

4.3.1 POLY-MULT-REDC step

POLY-MULT-REDC takes two polynomials in SD-(t, ψ) form as input; that is, the coefficients

of the two input polynomials are at most ψ (< t+ 2l+2 − 2 < 2n) in magnitude.

There are different ways to perform POLY-MULT-REDC step. Algorithm 4.1 is the most

straightforward and general approach. If the schoolbook method is used for polynomial

multiplication in line 1, l2 multiplications and (l−1)2 additions are required. The polynomial

reduction, lines 2-4, requires τ(l − 1) additions.

Clearly, the multiplications among coefficients are all n-bit wide. For integer additions,

the bit lengths of operands are not the same. However, regardless of the method used for

polynomial multiplication and polynomial reduction, the output ẑ(t) of Algorithm 4.1 will

have coefficients that are at most (2l−1)ψ2 in magnitude, which is at most (2n+ l) bits long.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 38

Hence, for simplicity, we assume that all the integer additions are (2n + l) bits wide. As a

result, we have the upper bound for the running time of Algorithm 4.1 as follows:

T (POLY-MULT-REDC) ≤ l2 · Tm(n) + (l + τ − 1)(l − 1) · Ta(2n + l). (4.14)

Instead of the schoolbook method, other methods can be used for the multiplication of

two degree-l polynomials in POLY-MULT-REDC step. For example, at the expense of some

overheads, KA [41] or KA-like formulae [61] can reduce the factor l2 associated with Tm(n)

in (4.14) to M(l), where M(l)’s for some small l’s are given as follows:

M(2) = 3, M(3) = 6, M(5) = 13, M(6) = 17, M(7) = 22.

Alternatively, one can use the Toom-Cook multiplication method [79, 17, 90] which re-

quires only (2l+1) multiplications at the expense of much higher overheads, including exact

divisions by fixed integers.

The number of additions and subtractions in (4.14) can be reduced by combining polyno-

mial multiplication and polynomial reduction as shown in Section 4.2. There are only five

irreducible f(t)’s for l = 2 and we list all of them in Table 4.1. The table also shows required

cost for polynomial multiplication and squaring in Z[t]/f(t), where the notations Mu,v, Su,

A, a and h respectively mean u-bit × v-bit multiplication, u-bit squaring, (2n + l)-bit addi-

tion, n-bit addition and bit shift. We have assumed that 2x1x0, which occurs when squaring

(x1t+x0)
2 mod (t2 +1), is computed by computing x1x0 (Mn,n) first and then shifting (2n)-bit

result to the left by one bit (2h). For l = 3, there are twelve irreducible f(t)’s. The best

performance is obtained when f(t) = t3 + t2 + t − 1 or f(t) = t3 + t − 1 is used. In these

cases, the running time of the POLY-MULT-REDC step is 6Tm(n)+6Ta(n)+6Ta(2n+ l). This

computational cost is almost the same as that for performing one 3-way multiplication as

shown in (4.10).

In terms of the number of single-precision multiplications, there is little difference be-

tween multiplying two ln-bit long integers and multiplying two degree-(l − 1) polynomi-

als whose coefficients are n bits long. In fact, polynomial multiplication has a little less

overhead since coefficients do not have to overlap, unlike the long integer multiplication.

However, in software implementations, polynomial multiplication could be slower because

microprocessors can deal only with units of data called words. For example, a 160-bit inte-

ger needs five words on a 32-bit architecture, while the same integer in SD-(t, ψ) form with

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 39

Table 4.1: Modular Multiplication and Squaring Cost in Z[t]/f(t) for All Irreducible f(t)’s of

degree-2

f(t) Multiplication modulo f(t) Squaring modulo f(t)

t2 + 1 3Mn,n + 3A+ 2a Mn,n +Mn,n+1 + 2a+ 2h

t2 + t+ 1 3Mn,n + 2A+ 2a 2Mn,n+1 + 3a+ h

t2 − t+ 1 2Mn,n +Mn+1,n+1 + 2A+ 2a Mn,n+2 +Mn,n+1 + 3a+ h

t2 + t− 1 3Mn,n + 2A+ 2a 3Sn + 2A+ a

t2 − t− 1 2Mn,n +Mn+1,n+1 + 2A+ 2a 2Sn + Sn+1 + 2A+ a

l = 2 needs three 2-word coefficients, each filled with 80 bits, assuming t + 2l+1 − 2 < 280.

Multiplying two 160-bit integers require only 15 multiplications using 2-way and 3-way KA.

However, multiplying two integers in SD-(t, ψ) form requires 18 multiplications using the

same KA methods.

4.3.2 COEFF-REDC step

Figure 4.1 shows how Algorithm 4.2, i.e. COEFF-REDC step, is performed; some input and

intermediate values are labeled with circled numbers. We first determine the maximum

possible bit lengths of these values. Note that Algorithm 4.1 results in a degree-(l − 1)

polynomial ẑ(t) = (ẑl−1 · · · ẑ0)t such that |ẑi| ≤ (2l − 1)ψ2 for i = 0, . . . , l − 1.

① It is clear that ẑi’s are at most (2n+ l) bits long.

② |z′l| ≤ (2l − 1)(t + 2l+2 − 4) is at most (n+ l) bits long.

③ |z′l−1| < (2l− 1)(t+2l+2− 4)+ t− 1 is at most (n+ l) bits long, since |z′l−1| < (2l− 1)(2n−
1) + 2n − 1 < 2n+l.

④ |z′i| ≤ (2l−1)((t+2l+1−2)2 + t+2l+2−4), for i < l−1, are at most (2n+ l) bits long. Note

that t+2l+1−2 < 2n and t+2l+2−4 < 2n. It follows that |z′i| < (2l−1)((2n−1)2+2n−1) =

(2l − 1)(22n − 2n) < 22n+l.

⑤ |Ci| ≤ (2l − 1)(t+ 2l+2 − 2), for 0 ≤ i < l − 1, is at most (n+ l) bits long.

⑥ |z′l| ≤ (2l+1 − 1) is at most (l + 1) bits long.

⑦ |z′i| ≤ (t+ 2l+1 − 2), for 0 ≤ i < l, is at most n bits long.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 40

Q R

R R R

· · ·

· · ·

· · ·

· · ·

ẑ2 ẑ1 ẑ0

fl−1 f2 f1 f0

z′

l−1 z′

2 z′

1 z′

0

Q

fl−1 f2 f1 f0

z′

l−1 z′

2 z′

1 z′

0

Q Q

z′

l−1

z′

1z′

2 z′

0

①

②

③

④

⑤

⑥

Q

R

: (2n + l)/(n)-bit division

: (n + l)/(n)-bit division

: addition/subtraction

: multiplication

: quotient

: remainder

⑦

R

Q

① ① ①

④ ④

⑦ ⑦ ⑦

⑤ ⑤

ẑl−1

z′

l

z′

l

z′

l−1

Figure 4.1: Coefficient Reduction

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 41

Note that we used the detailed calculations that have been already done in the proof of

Proposition 4. Now it is easy to analyze Algorithm 4.2 using the above results.

• Line 2: one integer division for dividing a (2n + l)-bit integer by an n-bit integer is

needed; that is, Td(2n+ l, n).

• Line 3: τ additions of (2n + l)-bit integers and (n + l)-bit integers; that is, τ · Ta(n+ l).

• Line 5: for i = 0, . . . , l − 2, a total of (l − 1) integer divisions for dividing (2n + l)-bit

integer by an n-bit integer are required. For i = l − 1, The division can be done by at

most (l + 1) subtractions of up to (n + l)-bit integers from an (n + l)-bit integer. Thus,

for line 5, the required cost is (l − 1) · Td(2n+ l, n) + (l + 1) · Ta(n+ l).

• Line 6: for i = 0, . . . l − 3, a total of (l − 2) additions of (2n + l)-bit and (n + l)-bit

integers are required. For i = l− 2, an addition of two (n+ l)-bit integers is performed.

For i = l − 1, no computation is required since z′l = 0. Thus, the cost of step 6 is

(l − 1) · Ta(n+ l).

• Line 8: τ additions of an (l + 1)-bit integer to n-bit integers are performed; that is,

τ · Ta(l + 1).

In total, Algorithm 4.2 requires the following amount of time for reducing coefficients:

T (COEFF-REDC) = l · Td(2n + l, n) + (2l + τ) · Ta(n+ l) + τ · Ta(l + 1). (4.15)

With regard to the time complexity related to the long integer division in (4.15), i.e.,

l · Td(2n + l, n), note that the division algorithms, CAID and GBAID, shown in Section 2.2

take O(n2) time for one division, where n is the modulus size in bits. Hence, l executions of

such algorithms for n-bit modulus take O(ln2) time. The overhead terms in (4.15), (2l + τ) ·
Ta(n+ l) + τ · Ta(l + 1), take O(ln) time.

4.3.3 Putting It All Together

The main computational cost of an LWPFI modular multiplication is due to the following

three, where L1 and L2 are performed in POLY-MULT-REDC step and L3 is in COEFF-

REDC step.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 42

• L1: polynomial multiplication (e.g., using KA)

• L2: polynomial reduction

• L3: coefficient reduction (e.g., using GBAID)

On the other hand, the main computational cost of a usual modular multiplication is due to

the following two:

• U1: integer multiplication (e.g., using KA)

• U2: modular reduction (e.g., using MAIR)

If L1 and U1 use the same algorithm (e.g., KA), then they incur a similar amount of compu-

tation.

For an (ln)-bit modulus, assuming that GBAID is used for L3, the combined cost of L2

and L3 is

τ(l − 1) · Ta(2n + l) + l · Td(2n + l, n) + (2l + τ) · Ta(n + l) + τ · Ta(l + 1),

which is O(ln2) time. On the other hand, U2 using MAIR requires O(l2n2) time. Therefore,

the LWPFI modular multiplication has better asymptotic behavior than the usual modular

multiplication. For example, the number of multiplication instructions required in GBAID

for (2n + l)-bit dividend and n-bit divisor is expressed as follows:

#MGBAID =







uv + 3u− v2 − 2v + 1 if u ≤ 2v,

(u2 + 5u)/2 − uv + v2 − v + 1 if u > 2v,

where u = ⌈(2n + l)/w⌉, v = ⌈n/w⌉, and w is the word length of a target architecture in

bits. For n = 512 and l = 2, the COEFF-REDC step requires only 680 = 2 · 340 multipli-

cation instructions, whereas MAIR for a similar size (i.e., 1024-bit) modulus requires 1056

multiplications.

Based on the above discussion, we see that the main advantage of LWPFI modular mul-

tiplication compared to usual modular multiplication is not due to the POLY-MULT-REDC

step. Rather, the main performance gain for using LWPFI modular multiplication comes

from the reduced complexity in the COEFF-REDC step.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 43

4.3.4 Comments

The reduced complexity of LWPFI modular multiplication does not come for free. In fact,

LWPFI modular multiplication introduces overhead mainly resulting from additions and

subtractions. Such overhead due to additions and subtractions needs to be carefully con-

sidered. On some microprocessors, the time difference between multiplication and addi-

tion/subtraction is relatively not that significant. For example, on Pentium 4 3.2GHz pro-

cessor (Family 7, Model 4), the latency of multiplication instruction mul is 11 clock cycles,

and that of add-with-carry adc and subtract-with-borrow sbb instructions, the most fre-

quently used ones for long integer additions and subtractions, is 10 clock cycles [28]. On the

other hand, on Freescale ColdFire 5307, timing ratio of multiplication to addition is 5 when

operands are in registers, and the ratio is only 2 when the operands are in memory [25].

In addition, overheads may result from factors pertaining to the implementation envi-

ronment, and can potentially affect the performance of the modular multiplication algo-

rithms. For example, for software implementation using general purpose processors, these

factors would include the size and the number of the registers, cache size and speed, features

of the data-path including pipe-lining, multiple execution units, etc. A detailed analysis of

the effect of such factors on the performance of the modular multiplication algorithms is not

simple. However, to give a good indication on how the LWPFI based algorithm compares

with its counterparts we will consider timing results based on actual implementations. This

is presented in the following section.

4.4 Implementation Results and Practical Considerations

In this section, first we present timing results of modular multiplications. Then we discuss

some general practical considerations for LWPFIs.

4.4.1 Our Platform and Software Routines

We have implemented LWPFI modular multiplications based on f(t) = t2 + 1 and f(t) =

t3 + t − 1, and an LWPFI modular squaring based on f(t) = t2 + 1. Our implementation

uses GNU multiple precision (GMP) library v4.1.4 (http://www.swox.com/gmp). We im-

plemented GBAID, which is not provided in GMP, using the C programming language. Since

our implementation of GBAID uses only the C programming language, we have disabled all

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 44

Table 4.2: Functions Used for Implementing LWPFI Modular Multiplications

Long integer operation GMP

Multiplication mpz_mul()
Addition mpz_add()

Subtraction mpz_sub()
Bit Shift mpz_mul_2exp()

assembly routines in GMP library. We used Microsoft Visual Studio 2005 to compile all pro-

grams, and performed timing measurements on Intel Pentium 4 3.20GHz (Family 7, Model

4). To compile GMP with Visual Studio, we used Visual Studio project file for GMP v4.1.4

downloaded from http://fp.gladman.plus.com/computing/gmp4win.htm.

Our implementation of LWPFI modular multiplication is based on high level functions of

GMP library. Table 4.2 lists GMP functions that we used for implementing LWPFI modular

multiplications. We used our GBAID routine for divisions in COEFF-REDC step, since

our GBAID routine is much faster than the division function in GMP (mpz_tdiv_r()).

The timing results shown in this section could be improved by using low level functions

(mpn_*() functions) that have less redundancy than high level functions.

Our GBAID routine turned out to be faster than MAIR routines in GMP. Thus, we have

written our own MAIR routine using the same coding style and optimization that we used

when writing GBAID. Our MAIR performs better than our GBAID for all input lengths.

The timing results in the following subsection are based on our own Montgomery reduction

routine, not on redc() in GMP library.

4.4.2 Component-wise Breakdown of Timing

Table 4.3 shows detailed analyses of LWPFI modular multiplication methods for the two

f(t)’s that we used in our implementation. The notations Tm(n), Ta(n) and TB(u, v) re-

spectively refer to the running time for long integer multiplication of two n-bit integers,

long integer addition of two n-bit integers and GBAID for u-bit dividend and v-bit divisor.

T (POLY-MULT-REDC) and T (COEFF-REDC) refer to the time required for POLY-MULT-

REDC and COEFF-REDC steps, respectively.

We experimentally measured T1, T2, T3 and T4, as defined in Table 4.3, for varying bit

sizes of p and plotted the results in Figures 4.2 and 4.3. In the figures, we use Ti(l) to

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 45

Table 4.3: Detailed Analysis of LWPFI Modular Multiplication (n = ⌈log2 (p+ 1)⌉)
T (POLY-MULT-REDC) = T1 + T2

f(t) T1 T2

f(t) = t2 + 1 3 · Tm(n/2) 2 · Ta(n + 2) + 2 · Ta(n/2)
f(t) = t3 + t− 1 6 · Tm(n/3) 6 · Ta(2n/3 + 2) + 6 · Ta(n/3)

T (COEFF-REDC) = T3 + T4

f(t) T3 T4

f(t) = t2 + 1 2 · TB(n+ 2, n) 5 · Ta(n/2 + 2) + Ta(3)

f(t) = t3 + t− 1 3 · TB(2n/3 + 3, n) 8 · Ta(n/3 + 3) + 2 · Ta(4)

denote Ti for the l-th degree f(t) in Table 4.3. In Figure 4.3, TM (u, v) denotes the timing

for Montgomery reduction when the input integer is u bits long and the modulus is v bits

long. In Figure 4.3, we present TB(2n, n) to show how much time COEFF-REDC saves by

breaking up a full (2ln)-bit by (ln)-bit division into l short divisions for (2n + l)-bit dividend

and n-bit divisor plus some overheads. The TM (u, v) is shown as a reference timing of the

best modular reduction algorithm considered in this chapter.

In Figures 4.2 and 4.3, we see that the overheads resulting from additions/subtractions

(T2’s and T4’s) are not significant in both POLY-MULT-REDC and COEFF-REDC steps. Es-

pecially in Figure 4.3, the overhead timings, T4(i) for i = 2 and 3, are very small compared to

the reduction timings and they both are plotted close to the x-axis of the graph. The figures

confirm our analytical conclusion in Section 4.3 that the efficient modular multiplication

using LWPFI moduli is not due to the POLY-MULT-REDC step where KA has been used,

but due to the COEFF-REDC step.

Note that GMP’s mpz_mul() routine switches from the classical algorithm to KA when

the operand size is more than 32 words long (i.e., 1024 bits for w = 32). This explains the

sudden changes in Tm(n) whenever ⌈log2 (p + 1)⌉ = 1024 · 2i for i ≥ 0. The performance

of POLY-MULT-REDC for l = 2 is very close to that of mpz_mul() (Tm(n) in Figure 4.2)

for ⌈log2 (p + 1)⌉ ≥ 1024, since they both have the same asymptotic speed-up due to KA.

However, the timing results of POLY-MULT-REDC for l = 3 shows sudden changes in timing

whenever ⌈log2 (p+ 1)⌉ = 3 · 1024 · 2i for i ≥ 0, but it does not become similar to Tm(n), since

the 3-way KA presented in (4.10) does not lead to the same asymptotic speed-up as the

original 2-way KA.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 46

T2(3)
T2(2)

T1(3) + T2(3)
T1(2) + T2(2)

Tm(n)

⌈log2 (p+ 1)⌉

T
im

e
in
µ
s

40003500300025002000150010005000

120

100

80

60

40

20

0

Figure 4.2: Timing Results for POLY-MULT-REDC Step on Pentium 4 @ 3.2GHz

TM (2n, n)
TB(2n, n)

T4(3)
T4(2)

T3(3) + T4(3)
T3(2) + T4(2)

⌈log2 (p+ 1)⌉

T
im

e
in
µ
s

40003500300025002000150010005000

100

80

60

40

20

0

Figure 4.3: Timing Results for COEFF-REDC Step on Pentium 4 @ 3.2GHz

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 47

4.4.3 Overall Timing Results and Comparisons

Figure 4.4 shows timing results of our implementations of the following three modular mul-

tiplication methods:

1. “LWPFI mul.” where KA is used for polynomial multiplication and GBAID is used for

COEFF-REDC (as discussed in this chapter). For this method, we show three plots

corresponding to f(t) = t2 + 1, f(t) = t3 + t− 1 and f(t) = t4 − t2 − 1.

2. “Mul. + MAIR” where KA is used for long integer multiplications and MAIR is for

modular reduction.

3. “Mul. + GBAID” where KA is used for long integer multiplications and GBAID is for

modular reduction.

In method 3), instead of GBAID, one can use the original Barrett reduction algorithm, which

does not generate a quotient as output, However, the difference between the computational

costs of these two schemes is negligible. Also note that in method 3), the divisor of GBAID

is the modulus (say (ln) bits long). On the other hand, for the same size moduli, the size

of the divisor in the GBAID used in method 1) is n bits only. However, in method 1), the

GBAID routine is used l times, whereas in method 3), the GBAID is used only once for each

modular multiplication.

Figure 4.5 shows timing results for modular squaring operations using the same three

methods shown above. In the case of LWPFI modular squaring, only the timing result for

l = 2 is shown.

We clearly observe in the figures that LWPFI modular multiplications become more effi-

cient than GBAID and MAIR based modular multiplications as the modulus size increases.

We also observe that the asymptotic behavior of LWPFI modular multiplication improves

as l increases, and that the LWPFI modular squaring for l = 2 indeed performs better than

modular squaring methods using GBAID and MAIR.

4.4.4 Practical Considerations

• General implementation is possible using LWPFI proposed in this work. For a given bit

length, we can find many useful moduli by varying the value of t, even for a fixed f(t).

On the other hand, the most limiting part of GMNs proposed in [76] is that there can be

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 48

Mul. + GBAID
Mul. + MAIR

LWPFI mul. (f(t) = t4 − t2 − 1)
LWPFI mul. (f(t) = t3 + t− 1)

LWPFI mul. (f(t) = t2 + 1)

⌈log2 (p+ 1)⌉

T
im

e
in
µ
s

40003500300025002000150010005000

200

150

100

50

0

Figure 4.4: Modular Multiplication Algorithms on Pentium 4 @ 3.2GHz

Sqr. + GBAID
Sqr. + MAIR

LWPFI sqr. (f(t) = t2 + 1)

⌈log2 (p+ 1)⌉

T
im

e
in
µ
s

40003500300025002000150010005000

200

150

100

50

0

Figure 4.5: Modular Squaring Algorithms on Pentium 4 @ 3.2GHz

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 49

only one GMN for a given bit length and a polynomial f(t). This fact makes generalized

implementation infeasible, and each GMN requires a dedicated implementation. This

is not a problem in ECC and HECC, since it is the usual practice to set up domain

parameters for use by many users in such cryptosystems. There are even pre-defined

sets of recommended parameters for ECC [64, 66]. However, in RSA cryptosystems,

every user has to generate his or her own parameters, and in XTR cryptosystems [53],

every user is advised to do so. Hence, these cryptosystems do not benefit from the fast

modular multiplication that GMNs provide.

• In RSA, private key operations (e.g., decryption and signature generation) can be per-

formed faster by using LWPFI for both prime factors. In such a case, the degree of

f(t) must be sufficiently small for a fixed modulus size so that it is infeasible to find a

prime factor using exhaustive search.

• LWPFI can be used in cryptosystems based on the hardness of integer discrete log-

arithm problem. In such cryptosystems, one has to generate a large prime modu-

lus p such that p − 1 has a prime factor q. Such an integer is easily constructed by

first choosing a large enough prime q and then randomly trying k until p = qk + 1

is also a prime number. Using LWPFI, one can choose a prime integer t and f(t) =

t(tl−1 + fl−1t
l−2 + · · · + f1) + 1 such that they are both prime integers. For instance,

to generate a 1020-bit prime modulus, one needs to try randomly 170-bit prime t until

f(t) = t6 + f5t
5 + · · ·+ f1t+ 1 is also a prime integer.

• LWPFI modular multiplication makes it easy for parallel implementation. In POLY-

MULT-REDC, KA involves several multiple-precision multiplications. These multipli-

cations are independent of each other and they can be computed in a parallel manner.

For example, if l = deg (f(t)) is 3, then six multiplications (D0 through D5 in (4.10))

can be computed by two, three or six processors or multipliers simultaneously. Even

though it is not explicitly shown here, it is not hard to modify Algorithm 4.2 so that l

divisions by t are parallelized.

• Cryptographic computations usually require operations using large operands. How-

ever, implementing operations which deal with very long operand sizes is challenging

in restricted environments, such as smart cards and certain embedded systems. LW-

PFI modular multiplication makes it possible to reduce the operand sizes by about 1/l,

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 50

where l = deg (f(t)).

• There are security concerns when moduli take a special form. Mersenne numbers are

avoided in RSA cryptosystems, since they are easier to be factored using the special

number field sieve (SNFS) [49, 50]. A similar technique known as special function

field sieve (SFFS) can be used for solving discrete logarithm problems based on special

form of moduli [75, 73]. However, SNFS and SFFS are applicable only to integers

having very low Hamming weight (e.g., Fermat’s numbers, Mersenne numbers, etc.).

SNFS and SFFS are not applicable to LWPFI, since LWPFI moduli are not in such a

form i.e., p = tl − (fl−1t
l−1 + · · · + f0) in which t and (fl−1t

l−1 + · · · + f0) are both very

large. However, currently there is no guarantee that cryptographic applications are

secure when LWPFI is used. It is an open question whether LWPFI makes factoring

or discrete logarithm easier.

4.5 Enhancing the LWPFI Modular Multiplication

In this section, we show methods for enhancing LWPFI modular multiplication.

4.5.1 Using Pseudo-Mersenne Numbers for t (t = 2n − c)

If t is chosen to be a pseudo-Mersenne number, such that t = 2n − c for some n and small

c, the performance of the LWPFI modular multiplication can be further improved. For a

pseudo-Mersenne number t, there exists an efficient modular reduction algorithm due to

Crandall [19]. The original Crandall algorithm is used only for computing the remainder.

Algorithm 4.3 shows the modified Crandall algorithm which also computes the quotient.

The correctness of Algorithm 4.3 can be easily derived from the one shown in [55] for the

original Crandall algorithm. The main difference between the original Crandall algorithm

and Algorithm 4.3 is that the former accumulates only ri’s, while the latter accumulates qi’s

also.

In LWPFI modular multiplication, divisions of (2n + l)-bit integers by an n-bit integer t

are required. By observing the fact that qi+1 is always at least (n−g) bits shorter than qi for

a g-bit c, we can see that, for (2n + l)-bit input, Algorithm 4.3 requires at most s iterations

of lines 3-7 if c < 2((s−1)n−l)/s.

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 51

Algorithm 4.3 Modified Crandall Algorithm

Require: positive integers x ≥ t and t = 2n − c.
Ensure: q and r, such that x = q · t+ r and 0 ≤ r < t.

1: q0 ← ⌊x/2n⌋, r0 ← x mod 2n.

2: q ← q0, r ← r0, i← 0.

3: while qi > 0 do

4: (Loop invariant: x = qt+ r + qic.)
5: qi+1 ← ⌊qi · c/2n⌋, ri+1 ← qi · c mod 2n.

6: q ← q + qi+1, r← r + ri+1, i← i+ 1.

7: end while

8: while r ≥ t do

9: r ← r − t, q ← q + 1.

10: end while

11: return q and r.

4.5.2 Using LWPFI for t

When LWPFIs are used for t, coefficient reduction could be done trivially. We show that

dividing an integer in SD-(t, ψ) form by an LWPFI can be done very efficiently. Suppose f(t)

is a monic polynomial of degree l:

f(t) = tl − fl−1t
l−1 − · · · − f1t− f0.

Let x(t) be a degree-(2l − 2) polynomial:

x(t) = x2l−2t
2l−2 + · · ·+ x1t+ x0.

Define a polynomial q(t) of degree-(l − 2) such that

q(t) = ql−2t
l−2 + · · ·+ q1t+ q0,

qi = xl+i +
l−2∑

j=i+1

qjfj+1.

Then it follows that q(t) satisfies the following:

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 52

x(t) = q(t)f(t) + r(t) (deg (r(t)) < deg (f(t))).

Therefore, we have a formula for the quotient polynomial q(t). Since the quotient polyno-

mial q(t) can be obtained while computing the remainder polynomial r(t), the above method

requires at most τ(l − 1) additions/subtractions, where τ is the number of non-zero fi’s in

f(t).

4.6 Conclusions

In this chapter, a new family of integers called the low-weight polynomial form integers

(LWPFIs) have been introduced. LWPFIs are expressed in polynomial form f(t), and they

further extend GMNs by allowing any positive integer integer for t. However, LWPFIs allow

only 0 and ±1 for the coefficients of f(t). A modular multiplication scheme using LWPFIs

have been presented. Detailed analysis and experimental results on our modular multiplica-

tion scheme have been presented. Our analysis shows that LWPFI modular multiplication

has better asymptotic behavior than other general modular reduction methods. Our im-

plementation results show that LWPFI modular multiplication is faster than Montgomery

reduction for moduli of large sizes. GMN or pseudo-Mersenne number based modular mul-

tiplication would be faster than LWPFI based one, however there are not that many GMNs

and pseudo-Mersenne numbers. LWPFI has its advantage that the implementation does

not have to be specific to a single modulus and that LWPFI provides a considerably larger

choice of moduli than GMN.

Since the publication of a preliminary version of this work at SAC 2003 [13], Bajard, Im-

bert and Plantard have proposed two number systems called the adaptive modular number

system (AMNS) [5] and the polynomial modular number systems (PMNS) [6]. These mod-

ular number systems have some similarities with LWPFIs in the sense that they use low-

weight polynomial form moduli for efficient arithmetic and that numbers are represented

in polynomial form. However, the representation of numbers and modular arithmetic in

modular number systems are quite different from those in our modular multiplication us-

ing LWPFI moduli. In the modular number systems, an integer x ∈ Zp is represented as a

vector (x0, x1, . . . , xn−1), where x =
∑n−1

i=0 xiγ
i mod p, 1 < γ < p and xi ∈ {0, . . . , ρ − 1}. The

arithmetic operations in the modular number systems are efficient, if the parameters γ, ρ

CHAPTER 4. LOW-WEIGHT POLYNOMIAL FORM INTEGERS 53

and p are carefully chosen. Analysis in [5] shows that the modular multiplication in AMNS

is more efficient than the usual modular multiplication of integers using the Montgomery

reduction algorithm. However, the drawbacks of modular number systems are that the

number of moduli for AMNS of practical use appears to be quite limited and that modular

multiplications in PMNS require a large look-up table.

Chapter 5

Coefficient Reduction Using

Montgomery Reduction Algorithm

In Chapter 4, we have presented a coefficient reduction algorithm based on the Barrett re-

duction algorithm. In this chapter, we present an improved coefficient reduction algorithm

based on the Montgomery reduction algorithm. We show detailed analysis and discuss con-

ditions on parameters to perform the new coefficient reduction method without final sub-

tractions. As a side result, we present methods for modular additions and subtractions

modulo an LWPFI.

5.1 Low-Weight Polynomial Form Integers Redefined

As in Chapter 4, LWPFIs are defined as integers expressed in low-weight, monic polynomial

form: p = f(t) = tl+fl−1t
l−1+· · ·+f1t+f0, where l ≥ 2, fi ∈ {0,±1} and t > 2(22l+1−1)(2l−1).

Here we loosen the restriction on fi’s so that |fi| ≤ ξ for some small positive integer

ξ < t. The condition t > 2(22l+1 − 1)(2l − 1) ≈ 23l+2 is applied in Chapter 4 due to the

use of coefficient reduction based on a division algorithm. However, such a condition is

not needed in our improved coefficient reduction presented here. In this chapter, we work

in this general framework and narrow down conditions on parameters that allow efficient

implementation of modular arithmetic modulo an LWPFI.

Definition 5 (LWPFI Redefined). For a degree-l, monic polynomial f(t) = tl+fl−1t
l−1 + · · ·+

54

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 55

f1t+f0, where t is a positive integer and |fi| ≤ ξ for some small positive integer ξ < t, p = f(t)

is a low-weight polynomial form integer.

In modular arithmetic based on LWPFI moduli, we express elements of Zp as polynomi-

als in Z[t]/f(t). Such a representation always exists for any element in Zp using coefficients

at most (t+ ξ)/2 in magnitude.

Proposition 5. For any integer x ∈ Zp, there exists a degree-(l − 1) polynomial x(t) =
∑l−1

i=0 xit
i such that x ≡ x(t) (mod p) and |xi| ≤ ψ, if ψ ≥ (t+ ξ)/2.

Proof. Let pmax = tl + ξtl−1 + · · · + ξt+ ξ. Then pmax is the maximum possible LWPFI of the

form f(t) = tl+
∑l−1

i=0 fit
i, where |fi| ≤ ξ. Let x(t) =

∑l−1
i=0 xit

i. If max (x(t))−min (x(t)) ≥ pmax

holds, then x(t) can represent any element in Zf(t). It is straightforward that

max (x(t)) =

l−1∑

i=0

ψti = −min (x(t)). (5.1)

It follows that

max (x(t)) −min (x(t)) ≥ pmax

⇐⇒ (2ψ − ξ) · t
l − 1

t− 1
≥ tl.

(5.2)

It is easy to see that 2ψ− ξ = t− 1 does not satisfy the above inequality, but 2ψ− ξ ≥ t does.

Therefore ψ ≥ (t+ ξ)/2.

We let ψmin = (t + ξ)/2. However, in practice, the magnitudes of the coefficients do not

have to be limited to ψmin. To find a polynomial that corresponds to a given integer, Algo-

rithm 5.1 can be used. The resulting polynomial has coefficients that are at most (t/2 + ξ)

in magnitude. Since t/2 + ξ > ψmin, Algorithm 5.1 results in a slightly redundant represen-

tation.

5.2 Modular Multiplication Using LWPFI moduli

In this section, we present an efficient modular multiplication scheme using LWPFI moduli.

The modular multiplication using LWPFI moduli is performed in the following steps.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 56

Algorithm 5.1 Conversion to Polynomial Form

Require: an integer 0 ≤ x < p, where p = f(t) = tl + fl−1t
l−1 + · · ·+ f1t+ f0.

Ensure: a polynomial x(t) =
∑l−1

i=0 xit
i, such that x ≡ x(t) (mod p), where |xi| ≤ t/2 + ξ.

1: c−1 ← x.

2: for i from 0 to l − 1 do

3: Find ci and xi such that ci−1 = cit+ xi, where −t/2 ≤ xi < t/2.

4: end for

5: for i from 0 to l − 1 do

6: xi ← xi − fi · cl−1. (Note: |cl−1| ≤ 1)

7: end for

8: return x(t) =
∑l−1

i=0 xit
i.

1. POLY-MULT: ẑ(t) = x(t) · y(t).

2. POLY-REDC: z′(t) = ẑ(t) mod f(t).

3. COEFF-REDC: coefficient reduction of z′(t).

The above modular multiplication scheme is called the LWPFI modular multiplication.

POLY-MULT step can be performed by at most l2 multiplications of coefficients using the

schoolbook method. Sub-quadratic multiplication algorithms may be applied to achieve bet-

ter performance [41, 79, 17, 61]. POLY-REDC step requires at most (l − 1)τ constant multi-

plications by integers at most ξ in magnitude, where τ is the number of non-zero fi’s. The

range of fi we use here is larger than that in Chapter 4. Note that, due to this extended

range for fi’s, our POLY-REDC step is potentially slower than that in Chapter 4. How-

ever, we will not go over the details on POLY-REDC and focus only on the establishment of

a new coefficient reduction algorithm based on the Montgomery reduction algorithm. For

fixed f(t), one may consider combining POLY-MULT and POLY-REDC steps for better per-

formance as we propose in Chapter 4.

Suppose that the coefficients of x(t) and y(t) are at most ψ in magnitude. It easily follows

that the result of POLY-REDC has coefficients that are at most ψ2((ξ+1)l−1)/ξ in magnitude

as shown in Proposition 6. Throughout this chapter, we will use λ to denote ((ξ + 1)l − 1)/ξ.

Proposition 6. |z′i| ≤ λψ2.

Proof. Let x(t) and y(t) be the polynomials whose coefficients are at most ψ in magnitude.

Let ẑ(t) = (ẑ2l−2, . . . , ẑ1, ẑ0) = x(t) · y(t). It follows that |ẑi| ≤ (i+ 1)ψ2 for i = 0, . . . , l − 1 and

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 57

|ẑi| ≤ (2l− 1− i)ψ2 for i = l, . . . , 2l− 2. The magnitudes of coefficients in z′(t) = ẑ(t) mod f(t)

are maximum when f(t) = tl ± ξ∑l−1
i=0 t

i. In both cases, max (|z′i|) = ((ξ + 1)l−1 + (ξ + 1)l−2 +

· · ·+ 1) · ψ2. Therefore |z′i| ≤ ((ξ + 1)l − 1)/ξ · ψ2.

In Section 5.3, we discuss how the value ψ is related to other parameters, t, ξ and l. In

Chapter 4, ψ = t+2l+2−2 is fixed and a division algorithm derived from the Barrett reduction

algorithm is used to perform COEFF-REDC step. In this work, we apply the Montgomery

reduction algorithm to perform COEFF-REDC step and determine appropriate value ψ.

Note that the output of our COEFF-REDC based on the Montgomery reduction algo-

rithm (MONT-COEFF-REDC) is different from the output from Algorithm 4.2 in Chapter 4.

In Chapter 4, Algorithm 4.2 computes z(t) such that z(t) ≡ x(t) · y(t) (mod p). However, the

MONT-COEFF-REDC presented here outputs z(t) ≡ x(t) · y(t) · b−q (mod p), where b is the

radix used to represent coefficients of polynomials in Z[t]/f(t) and q is a positive integer.

Consider two integers x̄(t) ≡ x(t) · bq (mod p) and ȳ(t) ≡ y(t) · bq (mod p). These are the

transformation of x(t) and y(t) to the so-called the Montgomery domain. The direct product

of x̄(t) and ȳ(t) in Z[t]/f(t) results in x̄(t)ȳ(t) ≡ x(t)y(t) · b2q (mod p). Applying our new co-

efficient reduction algorithm results in z̄(t) ≡ x(t)y(t) · bq (mod p), whose coefficients are at

most ψ. Note that the result is the transformation of x(t)y(t) to the Montgomery domain. We

discuss the relationship between the value q and other parameters of LWPFI in Section 5.3.

5.2.1 COEFF-REDC based on Montgomery Reduction Algorithm

Here, we construct a new coefficient reduction algorithm which is similar to Algorithm 2.4.

Given an input polynomial z′(t) of degree (l − 1), our new algorithm computes a polynomial

whose evaluation at t is congruent to z′(t) · b−q mod p.

Before, we begin the description of a new coefficient reduction algorithm, we clarify no-

tations that we use in this chapter. Let ~u and ~v be the column vectors in Zl such that the

following condition is satisfied:

[tl−1, . . . , t, 1] · ~u ≡ [tl−1, . . . , t, 1] · ~v (mod p). (5.3)

Then we say ~u is congruent to ~v modulo p and write as ~u ∼=p ~v. We slightly abuse this notation

and write as ~u ∼=b v for some integer v satisfying [tl−1, . . . , t, 1] · ~u ≡ v (mod b). We also say

~u is congruent to v modulo b, if ~u ∼=b v. We use ‘≡’, to express element-wise congruence

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 58

relation, i.e., ~u ≡ ~v (mod b). In “~u mod b”, modulo operation applies to each element of ~u.

Let x(t) = (xl−1, . . . , x1, x0)t be the result of POLY-REDC step and b be the radix used

for representing xi’s. When performing multiplication in GF (p)[t]/f(t), we can apply Al-

gorithm 2.4 individually to each coefficient to reduce them modulo p. However, individual

reduction of coefficients is not possible with arithmetic in Z[t]/f(t). To reduce coefficients in

Z[t]/f(t), we must apply the Montgomery reduction algorithm to all coefficients simultane-

ously.

The coefficient reduction is closely related to the closest vector problem from lattice the-

ory. A lattice L is a discrete subgroup of Rl. Let ~V = {~v1, . . . , ~vd−1, ~vd} be a set of linearly

independent vectors in Rl. The lattice L = L(~V) is a set of all integral combination of ~vi’s.

The set ~V is called the basis of the lattice L(~V). If d = l, L is called a full-rank lattice. If

~vi ∈ Zl for all i, then L is called an integral lattice. For our purpose, we assume that L is a

full-rank, integral lattice.

Suppose ~vi ∼=p 0 (mod p) for all i = 1, . . . , l. Then all the lattice points in L represent 0

modulo p. Let ~x be a vector whose elements are the coefficients of x(t). Suppose ~y ∈ L(~V)

is the closest lattice point (with respect to L∞ norm) to ~x, then ~z = ~x − ~y belongs to the

fundamental domain of L. The coordinate values of ~z forms a polynomial z(t) such that

z(t) ≡ x(t) (mod p) and it has only reasonably small coefficients. However, closest vector

problem is believed to be an NP-hard problem. There are polynomial time algorithms that

give approximate solutions [1], but they require arithmetic using floating point or rational

numbers and are too cumbersome to use for our purposes.

Rather than solving the closest vector problem, we search for ~z′ such that ~x ∼=p
~z′ · bq

(mod p) and the elements of ~z′ are reasonably small. Below we show how to find such a

vector ~z′ using a method similar to the Montgomery reduction algorithm. This approach re-

quires only simple integer arithmetic and enjoys good features of the Montgomery reduction

algorithm for integers.

Algorithm 5.2 shows our Montgomery reduction algorithm adapted to perform COEFF-

REDC step. Note that we have used ~x
(i)
q to denote the element of ~xq at the i-th row in

Algorithm 5.2. Moreover, F is an l × l integral matrix such that the following holds for any

column vectors ~x and ~u ∈ Zl:

~x+ F · ~u ∼=p ~x. (5.4)

A non-trivial matrix F that satisfies (5.4) can be constructed by collecting l column vec-

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 59

Algorithm 5.2 MONT-COEFF-REDC

Require: x(t) = (xl−1, . . . , x1, x0)t, a matrix F and F ′ = −F−1 mod b, where detF 6= 0 and

gcd(detF, b) = 1.

Ensure: z(t) ≡ x(t) · b−q (mod p).
1: ~x0 ← [xl−1, xl−2, . . . , x0]

T .

2: for i from 0 to q − 1 do

3: ~ui ← F ′ · ~xi mod b.
4: ~xi+1 ← (~xi + F · ~ui)/b.
5: end for

6: Perform final subtractions if necessary.

7: return z(t) =
∑l−1

i=0 zit
i, where zi = ~x

(i)
q .

tors that are congruent to 0 modulo p. Such a matrix F must be invertible modulo b, since

we need F ′ = −F−1 mod b in line 3 of Algorithm 5.2. The invertibility of F modulo b can

be verified by checking if detF 6= 0 and the determinant has no common factor with b, i.e.,

gcd(detF, b) = 1.

Theorem 5. Algorithm 5.2 returns z(t) ≡ x(t) · b−q (mod p).

Proof. It is easily seen that each iteration of Algorithm 5.2 computes the following:

~xi+1 ←
~xi + F · (−F−1 · ~xi mod b)

b
. (5.5)

Since F is a collection of column vectors that are congruent to 0 modulo p, adding any

integral linear combination of the column vectors in F to ~xi does not change its value in Zp.

Hence, ~xi+1
∼=p (~xi+F ·(−F−1 ·~xi mod b)) ·b−1. The division by b in (5.5) is exact and requires

no division, since

~x+ F · ~u = ~x+ F · (−F−1 · ~x mod b)

≡ [0, . . . , 0, 0]T (mod b).
(5.6)

Therefore, ~xi+1
∼=p ~xi ·b−1. In Algorithm 5.2, the process (5.5) is performed iteratively q times

starting with ~x0 = ~x resulting in ~xq ≡ ~x · b−q (mod p). This is quite similar to the original

Montgomery reduction algorithm. The only difference is that Algorithm 5.2 uses vectors

and matrix, while the original Montgomery reduction algorithm deals with integers.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 60

At this point, a number of questions arise: what are the conditions for q such that ~xq

are sufficiently reduced, so that the result can be used as input to the subsequent LWPFI

modular multiplications? How do we construct the matrix F ? Is Algorithm 5.2 efficient? We

answer these questions in the following.

5.2.2 Construction of F and Analysis of Algorithm 5.2

For p = f(t) = tl + fl−1t
l−1 + · · · f1t+ f0, where |fi| ≤ ξ, consider the following l× l matrix F :

F =














1 0 · · · 0 0 −t− fl−1

−t 1 · · · 0 0 −fl−2

0 −t · · · 0 0 −fl−3

...
...

...
. . .

...
...

0 0 · · · −t 1 −f1

0 0 · · · 0 −t −f0














. (5.7)

We have constructed the matrix F such that the column vectors of F are congruent to 0

modulo p, i.e., F ∼=p [0, . . . , 0, 0]. It remains to verify whether F has its inverse modulo b. The

invertibility of F modulo b can be easily checked as shown in Proposition 7.

Proposition 7. The l × l matrix F as shown in (5.7) is invertible modulo b if and only if

gcd(p = f(t), b) = 1 and f(t) 6= 0.

Proof. We perform some elementary row operations on both sides of Il · F = F , where Il is

an l × l identity matrix, to obtain














1 0 · · · 0 0 0

t 1 · · · 0 0 0

t2 t · · · 0 0 0
...

...
...

. . .
...

...

tl−2 tl−3 · · · t 1 0

tl−1 tl−2 · · · t2 t 1














· F =














1 0 · · · 0 0 −Cl−1

0 1 · · · 0 0 −Cl−2

0 0 · · · 0 0 −Cl−3

...
...

. . .
...

...
...

0 0 · · · 0 1 −C1

0 0 · · · 0 0 −C0














, (5.8)

where Ci = (tl +
∑l−1

j=i fjt
j)/ti. Using the fact that the determinant of a triangular matrix

is the product of all diagonal entries, we easily obtain that det (F) = −C0 = −f(t) and F

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 61

is invertible modulo b if and only if gcd(f(t), b) = 1 and f(t) 6= 0. We remark that this

invertibility condition of F modulo b is always satisfied when p = f(t) is an odd number, for

an even radix b.

We analyze the performance of Algorithm 5.2 in terms of the number of single-precision

multiplications and single-precision additions/subtractions. The overhead caused by addi-

tions and subtractions shall not be ignored. Additions and subtractions are ignored in many

literature, however, the difference between addition/subtraction and multiplication is not

significant in many modern microprocessors. The latency of add and sub instructions is

only one clock cycle on Intel Pentium 4 Family 4 processors. However, when long integer

addition operation is performed, they are used only when adding or subtracting the least

significant digits. The rest of the digits are added or subtracted with slow adc (add with

carry) and sbb (subtract with borrow) instructions, whose latency is 10 clock cycles. These

instructions are only 9% faster than mul instruction, whose latency is 11 clock cycles [28].

For convenience, we use Intel x86 instructions mul, add and adc to denote the following

operations:

• mul: single-precision multiplication,

• add: addition/subtraction without carry/borrow,

• adc: addition/subtraction with carry/borrow.

When multiplying n-digit integer with a single-digit integer, it is clear that n mul instruc-

tions are required. The numbers of required add and adc instructions are 1 and (n − 1),

respectively. When adding i-digit and j-digit integers, the required number of add and

adc instructions are one and min (i, j), respectively, assuming that carry does not propagate

more than one digit place above the most significant digit of the shorter operand. The proba-

bility of having carry above the most significant digit place of the shorter integer is 1/2. The

probability that the carry will propagate one more digit place is only 1/b. Similar argument

holds for subtracting two long integers.

Straightforward computation of ~ui = −F−1 · ~xi mod b requires l2 mul and (l2 − l) add

instructions. However, exploiting the special structure of F , we can compute ~ui using only

(2l − 1) mul and 2(l − 1) add instructions, provided that we are allowed to have l-digit pre-

computed values that depend on the coefficients of f(t) and the value t.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 62

Theorem 6. The computation ~ui = −F−1 · ~xi mod b can be performed using only (2l − 1)

mul and 2(l− 1) add instructions, using l-digit pre-computed values that depend only on the

coefficients of f(t) and the value t.

Proof. Further row operations from (5.8) easily reveals the exact form of F ′ = −F−1 as

follows:

F ′ =
−1

C0














C0 − Cl−1t
l−1 −Cl−1t

l−2 · · · −Cl−1t
2 −Cl−1t −Cl−1

tC0 − Cl−2t
l−1 C0 − Cl−2t

l−2 · · · −Cl−2t
2 −Cl−2t

1 −Cl−2

t2C0 − Cl−3t
l−1 tC0 − Cl−3t

l−2 · · · −Cl−3t
2 −Cl−3t

1 −Cl−3

...
...

. . .
...

...
...

tl−2C0 − C1t
l−1 tl−3C0 − C1t

l−2 · · · tC0 − C1t
2 C0 − C1t −C1

−tl−1 −tl−2 · · · −t2 −t −1














, (5.9)

where Ci = (tl +
∑l−1

j=i fjt
j)/ti. Now, we can express F ′ as follows,

F ′ = F ′
1 − F ′

2, (5.10)

where,

F ′
1 =














Cl−1

C0
~v

Cl−2

C0
~v

Cl−3

C0
~v

...
C1

C0
~v

1
C0
~v














, F ′
2 =














1 0 · · · 0 0 0

t 1 · · · 0 0 0

t2 t · · · 0 0 0
...

...
. . .

...
...

...

tl−2 tl−3 · · · t 1 0

0 0 · · · 0 0 0














, ~v = [tl−1, . . . , t1, t, 1]. (5.11)

The matrix-vector product F ′
2 ·~xi mod b can be computed using Horner’s rule, and it requires

only (l− 2) single-precision multiplications and (l− 2) single-precision additions. The vector

product ~v ·~xi can be computed by multiplying (t mod b) to the (l− 1)-th entry of F ′
2 ·~xi mod b,

and then adding (f0 mod b) to the result. Assuming that 1/C0 mod b and Ci/C0 mod b for

i = 1, . . . , l − 1 are precomputed, computing F ′
1 · ~xi mod b requires only l single-precision

multiplications. It only remains to compute F ′ · ~xi = F ′
1 · ~xi − F ′

2 · ~xi using l single-precision

subtractions.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 63

Algorithm 5.3 Computing F ′ · ~x mod b

Require: f(t) = tl + fl−1t
l−1 + · · · f1t + f0, ~x = [xl−1, . . . , x1, x0] and pre-computed values

Ci/C0 mod b for i = 1, . . . , l − 1 and 1/C0 mod b, where Ci = (tl +
∑l−1

j=i fjt
j)/ti.

Ensure: F ′ · ~xT = [ul−1, . . . , u1, u0]
T .

1: vl ← 0.

2: for i from 0 to l − 1 do

3: vl−1−i ← vl−i · t+ xl−1−i mod b (l − 1 mul, l − 1 add)
4: end for

5: for i from 1 to l − 1 do

6: ui ← v0 · Ci/C0 mod b. (l − 1 mul)
7: end for

8: u0 ← v0/C0 mod b. (1 mul)
9: for i from 1 to l − 1 do

10: ui ← ui − vi mod b. (l − 1 add)
11: end for

12: return [ul−1, . . . , u1, u0]
T .

Algorithm 5.3 explicitly shows how ~ui is computed using (2l − 1) mul and 2(l − 1) add

instructions. Since l ≥ 2, Algorithm 5.3 always performs better than the straightforward

matrix-vector product, which requires l2 mul and (l2 − l) add instructions.

We analyze the line 4 of Algorithm 5.2. Since each row of F contains only one t and fi, the

matrix-vector product F · ~ui requires l multiplications of t and fi’s by a 1-digit integer, and

some additions/subtractions. Let n and k (≤ n) be the digit length of t and fi, respectively

and let τ be the number of non-zero fi’s in f(t). Then the number of mul required in line 4

is (ln + τk). If fi’s are small powers of 2 or integers with very small Hamming weight,

multiplications by fi’s can be efficiently computed, replacing τk multiplications with τ bit

shifts.

We now count the numbers of add and adc instructions in line 4. There are l multi-

plications of t with single-digit integers from ~ui, and the total numbers of add and adc

instructions required in this computation are l and l(n − 1), respectively. There are τ mul-

tiplications of fi with one digit integer from ~ui, and the total numbers of add and adc in-

structions are τ and τ(k − 1), respectively. The matrix vector product F · ~ui involves (l − 1)

additions/subtractions of (n+1)-digit integer and a single digit integer. This can be computed

with (l − 1) add and adc instructions. There are τ additions/subtractions of an (n+ 1)-digit

integer with a (k + 1)-digit integer. Since k ≤ n by definition, this computation requires τ

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 64

add and τ(k + 1) adc instructions. So far, the numbers of add and adc instructions in F · ~ui
have been counted. It only remains to add F · ~ui to ~xi. This computation requires l add and

l(n + 1) adc instructions. In total, the numbers of add and adc instructions required in

line 4 are 3l + 2τ − 1 and l(2n + 1) + 2τk − 1, respectively.

The total number of mul, add and adc instructions required in Algorithm 5.2, not con-

sidering the final subtraction step, is summarized as follows:

#mul = q(l(n+ 2) + τk − 1),

#add = q(5l + 2τ − 3),

#adc = q(l(2n + 1) + 2τk − 1).

5.2.3 Conversions to and from the Montgomery Domain

To perform modular multiplication using Algorithm 5.2 as a coefficient reduction algorithm,

we must transform operands to the Montgomery domain. For x(t) ∈ Z[t]/f(t), we compute

x(t) ≡ x(t) · bq (mod p). This computation can be easily achieved by multiplying two poly-

nomials x(t) and y(t) ≡ b2q mod p, and then reduce coefficients using Algorithm 5.2. The

result will be x(t) ≡ x(t) · bq mod p, as desired. It is convenient to have y(t) ≡ b2q mod p

pre-computed for each p. Conversion from the Montgomery domain can be performed by

directly applying Algorithm 5.2 on x(t). The result is x(t) · b−q ≡ x(t) · bq · b−q ≡ x(t) (mod p),

as desired.

5.2.4 Interesting Implementation Options

We consider some special cases for which Algorithm 5.2 can speed up.

• Special Case I: t ≡ 0 (mod b).

In such a case, it can be shown that

F ′ = −F−1 =














−1 0 0 · · · 0 fl−1/f0

0 −1 0 · · · 0 fl−2/f0

0 0 −1 · · · 0 fl−3/f0

...
...

...
. . .

...
...

0 0 0 · · · −1 f1/f0

0 0 0 · · · 0 1/f0














mod b.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 65

Note that F is invertible if and only if f0 6= 0 and gcd(f0, b) = 1. Then, ~ui = F ′ ·~xi mod b

can be computed with only τ mul and (l−1) add instructions, provided that fi/f0 mod b

for i = 1, . . . , l − 1 and 1/f0 mod b are pre-computed. Hence, compared to the general

case, we save (2l − τ − 1) mul and (l − 1) add instructions in line 3 of Algorithm 5.2.

When computing F · ~ui, we can save l mul instructions and one adc instruction, since

the least significant digit of t is zero. The total number of saved instructions is given

as follows:

#mulsave = q(3l − τ − 1),

#addsave = q(l − 1),

#adcsave = q.

• Special Case II: fi’s are powers of 2.

In such a case, multiplication by fi’s can be simply performed by bit shifts. In line 3,

there is no speed up. The number of instructions we can save in line 4 is given below.

#mulsave = qτk,

#addsave = qτ,

#adcsave = qτ(k − 1).

Note that Algorithm 5.2 requires ql bit shift instructions in exchange for the above

saved instructions.

5.3 Modular Multiplication Stability

In this section, we carefully analyze the bounds on the input and output of Algorithm 5.2.

The conditions on the parameters for which we can eliminate the final subtractions in Algo-

rithm 5.2 are determined.

5.3.1 Montgomery Reduction with Final Subtractions

Suppose that the number of iterations q in Algorithm 5.2 is the same as the digit size of t,

i.e., q = n. Suppose that ||~x0||∞ ≤ λψ2, where || · ||∞ is the maximum norm of ~x defined as

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 66

||[xl − 1, . . . , x1, x0]||∞ = max(|xl−1|, . . . , |x1|, |x0|). This is the case when the coefficients of

input polynomial to the LWPFI modular multiplication are at most ψ in magnitude. Since

ψ = t−1 leads to a maximally redundant signed-digit representation, we assume that ψ < t.

The bound on the output of Algorithm 5.2 is determined as follows:

||~xn||∞ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

~x0 + F · (∑n−1
i=0 ~uib

i)

bn

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

<
λt2 + bn · (t+ ξ)

bn

< (λ+ 1)t+ ξ.

We used the fact that the magnitude of the sum of elements in each row of F is maximum

at the l-th row and it is (t + ξ). Since the magnitude of the output coefficients may be

greater than ψ, we must perform final subtractions to reduce the coefficients. To perform

final subtractions we find integers hi and si such that xi = hit + si, where −t/2 ≤ si < t/2,

for each coefficient xi. Then compute xi ← si + hi−1 − hl · fi for i = 0, . . . , l− 1. Then the new

coefficients are at most t/2 + (λ+ 2)(ξ + 1) in magnitude. This method is fast when λ is very

small. In such a case, hi and si can be obtained by additions and subtractions. However it

may require long integer division if λ is large.

5.3.2 Montgomery Reduction without Final Subtractions

Under some conditions with a q ≥ n, we show that it is possible to avoid the final subtrac-

tions. We use an approach similar to [84]. Suppose that ||~x0||∞ ≤ λΨ2 in magnitude, where

Ψ is a positive integer. This is the case when the coefficients of the input polynomials to

the LWPFI modular multiplication are at most Ψ in magnitude. To maintain input/output

stability, we have to ensure that

||~xq||∞ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

~x0 + F · (∑q−1
i=0 ~uib

i)

bq

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞
<
λΨ2

bq
+ t+ ξ ≤ Ψ. (5.12)

Solving (5.12) for Ψ, we obtain

bq −
√

b2q − 4λ(t+ ξ)bq

2λ
≤ Ψ ≤ bq +

√

b2q − 4λ(t+ ξ)bq

2λ
. (5.13)

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 67

The above solution has real roots when t ≤ bq/(4λ)− ξ. However, this condition only assures

that there exist a real solution for Ψ, whereas Ψ must be an integral value. A sufficient

condition for the existence of at least one integral value of Ψ is given as follows:

√

b2q − 4λ(t+ ξ)bq ≥ λ. (5.14)

It follows that

t ≤ b2q − λ2

4λbq
− ξ =

bq

4λ
− λ

4bq
− ξ. (5.15)

For t satisfying (5.15), there exists at least one integral value for Ψ. Since the width of the

interval (5.13) is at least one, the choice Ψ = ⌊bq/(4λ)⌉, where ⌊x⌉ denotes the nearest integer

from x, is always within the interval. For this value of Ψ, it always holds that t+ ξ ≤ Ψ.

Suppose that t + ξ is an n′-bit integer, i.e., 2n
′−1 ≤ t + ξ < 2n

′

, It can be easily verified

that an n′-bit integer t+ ξ satisfies (5.15) if

λ <
bq

4 · 2n′
. (5.16)

Note that λ = ((ξ + 1)l − 1)/ξ ≥ 3, since ξ ≥ 1 and l ≥ 2. Let w be the bit length of a digit,

i.e., b = 2w. It follows that ξ and q must be chosen such that the following holds:

3 ≤ ((ξ + 1)l − 1)/ξ < 2qw−n
′−2. (5.17)

For efficient implementation, the number of iterations q must be as small as possible,

but not smaller than n. For instance, q = n or q = n+ 1, where n is the digit length of t+ ξ,

would be the most interesting cases for implementation. If n′ = nw − ρ, where 4 ≤ ρ < w,

and ξ is chosen such that 3 ≤ λ < 2ρ−2, then q = n satisfies (5.16). If n′ = nw − ρ, where

0 ≤ ρ < w, and ξ is chosen such that 3 ≤ λ < 2w+ρ−2, then q = n+ 1 satisfies (5.16).

One may consider using f(t) such that only f0 and f1 are non-zero, but fi = 0 for 2 ≤
i ≤ l − 1. In such a case, it can be proven that the coefficients of the output of POLY-

REDC step are at most (l − 1)(|f0| + |f1|)Ψ2. Then we can choose l, f0 and f1 such that

(l − 1)(|f0|+ |f1|) < 2qw−n
′−2. Using this method, we can choose larger coefficients f0 and f1

than we can with the condition (5.17). Note that such an f(t) is also used in [6].

To convert x(t) = x(t) · bq from Montgomery domain to the usual domain, we can simply

apply Algorithm 5.2 on x(t). In such a case, coefficients of the input are bounded by Ψ. The

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 68

output ~xq of Algorithm 5.2 is bounded as follows:

|| ~xq||∞ ≤
Ψ + (bq − 1)(t + ξ)

bq
≤ Ψ + (bq − 1)Ψ

bq
= Ψ. (5.18)

Therefore, the final subtractions are not required even after the final conversion.

Another interesting stability condition is to make the output bounded by bq−1. This may

be useful to prevent any potential side channel threat that may exploit the probability on

the digit length of the output. Considering that the magnitude of input to Algorithm 5.2 is

bounded by λb2q−2, we obtain the following stability condition:

||Xq||∞ <
λb2q−2

bq
+ t+ ξ ≤ bq−1. (5.19)

It follows that t ≤ bq−2(b− λ)− ξ. Of course, we must ensure that b > λ, since otherwise we

will have a negative t. It is easily seen that any t < bq−1. If t is chosen as above, the output

of Algorithm 5.2 will be strictly within bq−1 bound. When converting back to usual domain,

we have that

||Xq||∞ <
bq−1 + (bq − 1)(t+ ξ)

bq
≤ t+ ξ. (5.20)

5.4 Additions and Subtractions

In this section, we study additions and subtractions modulo an LWPFI. It is well-known that

redundant signed-digit representation allows carry/borrow free additions/subtractions [3].

Here we derive similar methods for additions and subtractions modulo an LWPFI.

To perform an addition or a subtraction of two numbers x(t) and y(t), we first compute

coefficient-wise additions and subtractions as follows:

z(t) = x(t)± y(t) =
l−1∑

i=0

(xi ± yi)ti,

where x(t) and y(t) are polynomials of degree (l − 1) and the coefficients are at most ψ in

magnitude. The coefficients of z(t) will be at most 2ψ in magnitude. Algorithm 5.4 efficiently

reduces the coefficients of z(t) so that the coefficients of the resulting polynomial are at most

ψ in magnitude. We call it the short coefficient reduction.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 69

Algorithm 5.4 Short Coefficient Reduction

Require: a(t) = (al−1, . . . , a1, a0)t.
Ensure: c = (cl−1, . . . , c1, c0)t ≡ a(t) (mod p), where ci ≤ ψ.

1: t0 ← 0.

2: for i from 0 to l − 1 do

3: (Transfer Digit) ti+1 ← C(ai).
4: (Reduction) wi ← ai − ti+1 · t.
5: (Sum) si ← wi + ti.
6: end for

7: for i from 0 to l − 1 do

8: (Reduction modulo f(t)) ci = si − tl · fi.
9: end for

10: return c = (cl−1, . . . , c1, c0)t.

Algorithm 5.4 is based mostly on the carry-free addition or borrow-free subtraction al-

gorithm widely used in redundant signed-digit arithmetic [3]. The only difference is the

inclusion of reduction modulo f(t). The reduction modulo f(t) is necessary, since the result

must be represented with (l−1) coefficients. The function C(·), depending on the value of its

input, outputs an integer in [−tmax, tmax] for some positive integer tmax, We will determine

the exact behavior of C(·) in the following.

Note that the ci’s computed in Algorithm 5.4 must satisfy the condition, −ψ ≤ ci ≤ ψ.

Since −tmax ≤ C(ai) ≤ tmax for some positive integer tmax and |fi| ≤ ξ, wi + ti’s at line 5 must

satisfy

−ψ + tmax · ξ ≤ wi + ti ≤ ψ − tmax · ξ. (5.21)

Substituting wi = ai − ti+1 · t into (5.21) results in

ai − (ψ − tmax · ξ − ti)
t

≤ ti+1 ≤
ai + (ψ − tmax · ξ + ti)

t
.

Suppose that −µ+ tmax · ξ ≤ ti ≤ µ− tmax · ξ, where µ = (ξ + 1) · tmax. In the worst case, the

range of ti+1 is restricted by the following inequality:

ai − (ψ − µ)

t
≤ ti+1 ≤

ai + (ψ − µ)

t
.

We consider two interesting cases.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 70

• Case I: t/2 + ξ + 1 ≤ ψ ≤ t− (ξ + 1).

• Case II: t+ 2(ξ + 1) ≤ ψ ≤ 2t− 2(ξ + 1).

5.4.1 Case I: t/2 + ξ + 1 ≤ ψ ≤ t− (ξ + 1)

We assume that ψ satisfies the following:

t

2
+ ξ + 1 ≤ ψ ≤ t− (ξ + 1). (5.22)

We plot a graph of ti+1 versus ai in Figure 5.1. Note that ti+1 ∈ Z must be chosen within

the parallelogram ABCD. It is easy to show that there always exists an integral value of

a transfer digit ti+1 for all ai in [−2ψ, 2ψ], since the following inequalities are immediate

from (5.22).

1. 1 ≥ (ψ + µ)/t: this is the reason why we can choose tmax = 1.

2. ψ − µ ≥ t− (ψ − µ).

Now we can define C(·) as follows:

C(x) =







−1 (if ≤ x < −C),
0 (if − C ≤ x < C),
1 (if C ≤ x),

(5.23)

where C is any positive integer in the range [t− (ψ − µ), ψ − µ].

Even though any ψ > t/2 + ξ can be used to represent any element in Zp as shown in

Proposition 5, only ψ that satisfies (5.22) allows carry/borrow free addition/subtraction. If

ψ is chosen in the range (5.22), one can use Algorithm 5.4 to perform final subtractions

required at the end of Algorithm 5.2. In Section 5.3.1, we have observed that || ~xn||∞ <

(λ + 1)t + ξ. Therefore, at most ⌊((λ + 1)t + ξ)/ψ⌋ executions of Algorithm 5.4 are required

to reduce the result to [−ψ,ψ]. It is advantageous to choose ψ = t − (ξ + 1), to reduce the

number of executions of Algorithm 5.4.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 71

(ψ − µ)

t− (ψ − µ)

−t+ (ψ − µ)

ti+1 = (ψ − µ)/t

ai

ti+1

−(ψ − µ)

-1

1

I

II

ti+1 = (ψ + µ)/t

D

A

C

B

ai = −2ψ ai = 2ψ

ti+1 = −(ψ + µ)/t
ti+1 = −(ψ − µ)/t

Figure 5.1: Range of Transfer Digit ti+1 (µ = ξ + 1)

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 72

5.4.2 Case II: t+ 2(ξ + 1) ≤ ψ ≤ 2t− 2(ξ + 1)

The conditions required to perform Algorithm 5.2 without final subtractions that we have

discussed in Section 5.3.2 result in t + ξ ≤ Ψ. Hence, this condition results in an overly re-

dundant signed-digit representation. For completeness, we study the conditions to perform

carry/borrow free additions/subtractions in overly redundant signed-digit representation.

Suppose ψ = Ψ is an integer such that the following holds:

t+ 2(ξ + 1) ≤ Ψ ≤ 2t− 2(ξ + 1). (5.24)

We plot a graph of ti+1 versus ai in Figure 5.2. Note that ti+1 ∈ Z must be chosen within

the parallelogram ABCD. It is easy to show that there always exists an integral value of

a transfer digit ti+1 for all ai in [−2Ψ, 2Ψ], since the following inequalities are immediate

from (5.24).

1. (Ψ + µ)/t ≤ 2.

2. 1 ≤ (Ψ− µ)/t: due to this, tmax = 1 cannot be chosen.

3. Ψ− µ ≥ t.

4. 2t− (Ψ− µ) ≤ t.

5. −t+ (Ψ− µ) ≥ 0.

Since it is better to have smaller set of digits for C(·), we have chosen tmax = 2. Observe

that t is always within the range 2t− (Ψ− µ) ≤ t ≤ Ψ− µ. Therefore, C(·) can be defined as

follows:

C(x) =







−2 (if x < −t),
0 (if − t ≤ x < t),

2 (if t ≤ x).

(5.25)

Note that C(·) defined in (5.25) does not require a pre-determined constant, unlike (5.23)

which uses a constant C. Moreover, C(·) does not output ±1. Hence, computing C(·) as

shown in (5.25) is as fast as computing C(·) as in (5.23).

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 73

1
−t− (Ψ − µ)

A

−t+ (Ψ − µ)

t− (Ψ − µ)

ai

ti+1

ai = 2Ψ

−(Ψ − µ)

ti+1 = (Ψ − µ)/t
ti+1 = (Ψ + µ)/t

ti+1 = −(Ψ − µ)/t
ti+1 = −(Ψ + µ)/t

−1

ti+1 = 2

ti+1 = −2

ai = −2Ψ

(Ψ − µ)
t+ (Ψ − µ)

2t− (Ψ − µ)

−2t+ (Ψ − µ)

D

B

C

Figure 5.2: Range of Transfer Digit ti+1 (µ = 2(ξ + 1))

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 74

Table 5.1: Comparison of Algorithm 2.4 and Algorithm 5.2

Instruction Algorithm 2.4 Algorithm 5.2

mul (nl + 1)2 ln2 + (τk + 3l − 1)n + 2l + τk − 1
add 2(nl + 1) (n+ 1)(5l + 2τ − 3)
adc 2n2l2 + 2nl 2ln2 + (2τk + 3l − 1)n + 2τk + l − 1

5.5 Comparisons

In this section, we compare our new coefficient reduction algorithm with Algorithm 2.4. For

fairness of comparison, we let the modulus m used in Algorithm 2.4 be an nl-digit integer.

Note that a degree-l polynomial f(t) with n-digit t generates an nl-digit LWPFI.

We use the same technique that we use in Section 5.2.2 to analyze Algorithm 2.4. In

line 3, only one mul is required. In line 4, the computation of ui ·m requires nl mul, 1 add

and (nl−1) adc instructions. Adding ui ·m, which is at most (nl+1) digits long, to Ti requires

1 add and (nl+1) adc instructions. Therefore, Algorithm 2.4 requires the following number

of instructions, not considering the final subtraction:

#mul = q(nl + 1),

#add = 2q,

#adc = 2qnl.

Note that q in Algorithm 2.4 is not the same as the one used in Algorithm 5.2. Final sub-

tractions in Algorithm 2.4 can be avoided in the case b ≥ 4 by simply letting q = nl + 1. In

Algorithm 5.2, we suppose q = n + 1 eliminates the necessity of final subtractions. Note

that such a value for q can be chosen if ξ is reasonably small. The details on this have been

discussed at the end of Section 5.3.2.

In Table 5.1, we clearly observe that Algorithm 2.4 requires O(n2l2) operations, whereas

Algorithm 5.2 requires O(ln2) operations. Hence, Algorithm 5.2 does have better asymptotic

behavior than Algorithm 2.4. However, this does not mean that Algorithm 5.2 is always

faster than Algorithm 2.4. If actual values for parameters n, l, τ and k are substituted in

Table 5.1, the required number of operations for Algorithm 5.2 may be larger. However, it is

clear that the larger n and l, the better Algorithm 5.2 will perform.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 75

5.6 Applications of LWPFI Modular Multiplications

Many cryptosystems rely on the ability to perform modular arithmetic modulo large inte-

gers. Among the modular arithmetic, modular multiplication is the most frequently used

operation. In most cases, the modulus has to be a prime number. One can randomly try

t until f(t) is a prime to use it in cryptosystems requiring modular multiplications. One

may find t such that f(t) has a large enough prime factor suitable for certain cryptosystems.

We denote such a factor p′. In this case, we can embed any modular arithmetic modulo p′

in slightly larger ring Zf(t), where we can use efficient modular multiplications using LW-

PFI moduli. Note, however, this method is faster only if the modular multiplication using

LWPFI is faster than the modular multiplication modulo p′ using usual integer arithmetic.

After all computations have been performed, the result must be converted to the usual rep-

resentation of integers and be taken modulo p′.

The idea of embedding arithmetic into a larger ring, where computations are easy, is not

at all new. The similar technique is used for efficient multiplication in finite fields [88] [22].

5.7 Application to Modular Number Systems?

In this section, we investigate if Algorithm 5.2 can be applied also in modular number sys-

tems (MNS) proposed in [5, 6] by Bajard et. al.

Definition 6 (Modular Number System). A Modular Number System (MNS) B, is a quadru-

ple (p, l, γ, ρ), such that all positive integers 0 ≤ x < p satisfy

x =

l−1∑

i=0

xiγ
i mod p, with γ > 1 and |xi| < ρ (5.26)

The MNS has some similarities with LWPFIs. For instance, numbers are represented in

polynomials and the steps for modular multiplications are quite similar: multiplication is

first performed in Z[t]/f(t) and then the coefficients are reduced by a coefficient reduction

algorithm. However, the coefficient reduction method used in MNS is different from the one

used in LWPFI modular multiplication. The difference is mainly due to the fact that γ can

lie in much wider range than t. In particular, 0 ≤ γ < p, while the size of t used in LWPFI is

approximately that of p1/l.

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 76

As a special case of MNS, adapted modular number system (AMNS) is proposed in [5].

AMNS is an MNS where γl mod p = c for some small integer c. Each iteration of the co-

efficient reduction algorithm (Algorithm CR in [5]) reduces ⌈3s/2⌉ bits to s + 1 bits. Some

repetition of CR produces polynomial whose coefficients are at most s + 1 bits long. Mod-

ular multiplication in AMNS is very efficient, however, it appears that the suitable sets of

parameters that allows efficient computation in AMNS are quite difficult to find and are

scarce.

In a recent paper [6], Bajard et. al. have proposed another special case of MNS called

the polynomial modular number system (PMNS).

Theorem 7 (Fundamental theorem of an MNS). Let p, l > 1. Also defineE(X) = X l+αX+β,

with α, β ∈ Z, such that E(γ) ≡ 0 (mod p), and E irreducible in Z[X]. Then, we can define a

modular number system B = MNS(p, l, γ, ρ) provided that

ρ ≥ (|α| + |β|)p1/l. (5.27)

Definition 7. An MNS, B = MNS(p, l, γ, ρ), which satisfies the conditions of Theorem 7 is

called a Polynomial Modular Number System (PMNS).

The coefficient reduction algorithms presented in [6] reduces one bit at a time in each

iteration using a look-up table.

To perform the Montgomery reduction algorithm for MNS , we need an l×lmatrix having

similar properties as the matrix F used in Algorithm 5.2. However, we have not been able

to find such a matrix for MNS. We have considered two candidate matrices, but they do not

lead to satisfactory results.

Consider a matrix A as follows.

A =














1 0 · · · 0 0 0

−γ 1 · · · 0 0 0

0 −γ · · · 0 0 0
...

...
. . .

...
... 0

0 0 · · · −γ 1 0

0 0 · · · 0 −γ p














(5.28)

The matrix A is constructed similarly as (5.7) except for the last column. The column vectors

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 77

in A are all congruent to 0 modulo p and A has inverse modulo b if and only if gcd(p, b) = 1

and p 6= 0. Hence, the matrix A is a good candidate for the matrix F in Algorithm 5.2, to

compute x(t) · b−q mod p. Unfortunately, the entries in A are too large (0 ≤ γ < p) to compute

line 4 of Algorithm 5.2 efficiently. Due to the same reason, it is clear that Algorithm 5.2 will

not reduce the coefficients of input polynomial if F is given as (5.28), regardless of the choice

of q.

Let L(A) denote the lattice generated by the column vectors of A. Let v be a vector in

L(A) such that ||~v||∞ ≤ p1/l. Note that there is always a vector ~v such that ||~v||∞ ≤ l
√

detA

in any lattice L(A). We construct another lattice L(B) generated by B, where

B =












vl−1 vl−2 · · · (v0 − αvl−1)
...

...
...

...

v2 v1 · · · (−βv3 − αv2)
v1 v0 − αvl−1 · · · (−βv2 − αv1)
v0 −βvl−1 · · · −βv1












. (5.29)

Let ~bi denote the i-th column vector of B. Then, ~bi = γi~v mod (γl + αγ + β). It is easily

seen that max(||~bi||∞) ≤ (|α| + |β|)p1/l. Clearly, L(B) ⊆ L(F). Therefore, the matrix B is a

good candidate for the matrix F in Algorithm 5.2. If F = B in Algorithm 5.2, the algorithm

will reduce the output to a certain extent. However, efficient coefficient reduction is still not

achievable since computingB · ~ui (at line 4 of Algorithm 5.2) is not any faster than computing

general matrix-vector product.

5.8 Conclusions

In this chapter, we have extended LWPFIs presented in Chapter 4, and have proposed a

new coefficient reduction reduction based on Algorithm 2.4. Our new coefficient reduction

algorithm have been analyzed using the extended definition of LWPFIs. Performance have

been analyzed in terms of the number of digit-level multiplications, additions/subtractions

and additions/subtractions with carry. Bounds on input and output of the new coefficient

reduction algorithm have been carefully analyzed to eliminate the final subtractions in the

new coefficient reduction algorithm. As a side result, we have presented methods for per-

forming additions and subtractions modulo an LWPFI in a carry/borrow-free manner. We

CHAPTER 5. COEFFICIENT REDUCTION USING MAIR 78

have also considered applying our coefficient reduction algorithm to modular number sys-

tems proposed by Bajard et. al. but have not been successful in finding a good F that can

lead to efficient coefficient reduction.

Chapter 6

Asymmetric Squaring Formulae

In this chapter, we present new 3, 4 and 5-way squaring formulae based on the Toom-

Cook multiplication algorithm. To the best of our knowledge, previously known squaring

algorithms use multiplication algorithms with two identical inputs. Such algorithms are

symmetric in the sense that they use only squaring for multiplying coefficients. However,

our squaring formulae are asymmetric and use at least one multiplication. Our squaring

algorithms are not advantageous for large operand sizes, but have much less overhead than

any other squaring algorithms. In most practical cases, the schoolbook method performs

the best for small operands. Therefore, medium size operands, our squaring algorithm is

likely to be faster than other algorithms. Our experimental results show that one of our 3-

way squaring algorithms outperforms the squaring function in GNU multiprecision library

v4.2.1 for some ranges of input sizes.

6.1 Further Details on the Toom-Cook Multiplication Algo-

rithm

In Section 2, we have reviewed various multiplication algorithms including the Toom-Cook

multiplication algorithm. In this section, we look into details on the Toom-Cook algorithm,

especially on its interpolation step. The interpolation step can be easily performed by using

79

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 80

the Lagrange interpolation polynomial.

C(x) =

2n−1∑

j=1

Cj(x),

where

Cj(x) = C(xj)
∏

1≤k≤2n−1,k 6=j

x− xk
xj − xk

.

Alternatively, the Chinese remainder theorem (CRT) can be used. We can view the evalu-

ation of a polynomial at point xi as computing modulo a linear polynomial (x − xi), since

computing C(x) = A(x)B(x) mod (x− xi) for i = 1, . . . , 2n − 1 is equivalent to computing

C(xi)’s. The CRT can combine the (2n − 1) distinct equivalence relations to compute the

unique polynomial C(x).

C(x) =
2n−1∑

i=1

C(xi)MiM
′
i ,

where,

M =
2n−1∏

i=1

(x− xi),

Mi = M/(x− xi),

M ′
i = M−1

i mod (x− xi) =
1

∏

1≤j≤2n−1,i6=j (xi − xj)
.

(6.1)

Even though the description of the CRT method looks quite different from the Lagrange

interpolation method, the actual computation of the former is exactly the same as that of

the latter, since
∏

1≤k≤2n−1,k 6=j
x−xk

xj−xk
= MiM

′
i . Note that, in (6.1), Mi’s and M ′

i ’s can be

pre-computed, for fixed xi’s.

By noticing that the interpolation step in Algorithm 2.1 solves a system of (2n−1) linear

equations with (2n − 1) unknown values (the coefficients of C(x)), we can construct the

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 81

following linear system:









1 x1 · · · x2n−2
1

1 x2 · · · x2n−2
2

...
...

. . .
...

1 x2n−1 · · · x2n−2
2n−1

















c0

c1
...

c2n−2









=









C(x1)

C(x2)
...

C(x2n−1)









. (6.2)

The (2n−1)×(2n−1) matrix on the left hand side of (6.2) is called the Vandermonde matrix.

We denote it by V . A Vandermonde matrix has a known determinant, D =
∏

1≤j<i≤2n−1(xi−
xj). The system (6.2) is uniquely solvable, since xi’s are all distinct in Algorithm 2.1. Com-

puting the inverse matrix can be pre-computed for a fixed set of xi’s. Therefore, the coeffi-

cients ci’s can be easily obtained by multiplying the inverse matrix to the both sides of (6.2).

Zuras uses this approach for 3, 4 and 5-way Toom-Cook multiplication algorithms [90]. How-

ever, this interpolation method is hardly useful in practice. It requires at most n2 constant

multiplications and at most n constant divisions for matrix-vector product. Among such

constant divisions, at least one divisor must have an odd, nontrivial factor if n > 2.

Theorem 8. There is no set of distinct integers {x1, . . . , xs}’s such that D = detV is a power

of 2; D =
∏

1≤j<i≤s(xi − xj) = ±2k for some positive integer k, if s > 3.

Proof. We need to show that there exists at least one pair (xi, xj), where i 6= j, such that

|xi − xj | is not a power of 2, if s > 3. We prove this by contradiction. We suppose we have a

set of s ≥ 4 distinct integers {x1, . . . , xs} such that D is a power of 2. Then, without loss of

generality, x2, x3 and x4 can be expressed as follows:

x2 = x1 + (−1)u12v1 ,

x3 = x1 + (−1)u22v2 ,

x4 = x1 + (−1)u32v3 ,

where ui’s are 0 or 1 and vi ∈ N ∪ {0}. If ui = uj , then vi 6= vj . There are two cases:

1. All ui’s are the same: u1 = u2 = u3.

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 82

It follows that

|x2 − x3| = |2v1 − 2v2 |,
|x3 − x4| = |2v2 − 2v3 |,
|x4 − x2| = |2v3 − 2v1 |.

Note that vi’s must be distinct, since otherwise xi’s are not distinct. The value |2v1−2v2 |
can be a power of 2 if and only if |v1 − v2| ≤ 1. But v1 6= v2. Therefore, v1 = v2 ± 1.

Without loss of generality, we can let v1 = v2 +1. Then there is no such v3 that satisfies

both |v3− v2| = ±1 and |v3− v2− 1| = ±1. If v3− v2 = 1, then |v3− v1| = |v3− v2− 1| = 0.

If v3 − v2 = −1, then |v3 − v1| = 2.

2. One of ui’s is different.

Without loss of generality, we can let u1 = u2 6= u3. It follows that

|x2 − x3| = |2v1 − 2v2 |,
|x3 − x4| = |2v2 + 2v3 |,
|x4 − x2| = |2v3 + 2v1 |.

Note that v1 6= v2 and v3 may be equal to either one of v1 or v2. It is easily seen that the

value |x3 − x4| is a power of 2 if and only if v2 = v3. Suppose v2 = v3. However, |x4 − x2| can

not be a power of 2, since v3 must be different from v1.

Theorem 9. In the Toom-Cook multiplication algorithm, at least one nontrivial constant

division must occur for n > 2.

Proof. The (2n− 1)-th row vector of V −1 is (L1, L1, . . . , L2n−1), where

Li =
∏

1≤j≤2n−1,j 6=i

1

xi − xj
.

Hence, the inverse matrix V −1 must have entries whose denominators are factors of D.

Moreover, Li’s have all the factors of D, since D2 = |∏2n−1
i=1 Li|. Due to Theorem 8, the odd,

nontrivial factor of D must divide at least one of 1/Li’s. Therefore, the Toom-Cook multi-

plication algorithm must have at least one nontrivial constant division in the interpolation

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 83

step, for n > 2.

There are heuristic approaches for small n to reduce the number of constant divisions

and its sizes as much as possible. Such methods perform elementary row operations on

both sides of (6.2) until the system is solved, rather than multiplying the inverse matrix

of V . For instance, Paul Zimmermann’s implementation in GNU multiple precision library

(GMP) v4.2.1 uses only one constant division by 3 for the 3-way Toom-Cook multiplication

algorithm as shown in Section 2.1.1. We believe Zimmermann’s method is by far the best

3-way Toom-Cook multiplication algorithm.

Even though there exist methods for fast exact division by a constant [38], [47], divi-

sions by constants are very time consuming operation. Figure 6.1 shows the timing ratio

of GMP’s exact division by 3 to the fastest available large integer squaring. In GMP, exact

division by 3 is implemented in the function mpn_divexact_by3() and mpz_mul() calls

a squaring subroutine when it is called with equal operands. When timing mpz_mul() and

mpn_divexact_by3(), we used 3u-bit and (2u+ 6)-bit operands, respectively. Note that, if

the input size is 3u-bit for the 3-way Toom-Cook multiplication algorithm, Algorithm 2.2 re-

quires one exact division by 3 of at most (2u+6)-bit operand. We can easily observe that the

exact division by 3 is very slow compared to the entire squaring operation for small operand

sizes.

The choice of evaluation points is very important for Algorithm 2.1, since it significantly

affects the performance of the Toom-Cook multiplication algorithm. Toom and Cook pro-

posed xi ∈ {−n + 1, . . . ,−1, 0, 1, . . . , n − 1} and xi ∈ {0, 1, 2, . . . , 2n − 2}, respectively. Knuth

proposed the use of powers of 2 and their negatives [43], [8]. Winograd proposed ∞ as

one of the evaluation points [87]. Winograd also noted that xi’s can be fractions, e.g.,

xi = p/q, where evaluation at a rational point p/q means computing qn−1A(p/q). Note

that it can be proven that the inclusion of ∞ and rational numbers for evaluation points

does not change the fact that the determinant of the matrix in (6.2) must have factors

other than 2 for n > 2. In 1994, Zuras proposed the use of reciprocally symmetric set,

e.g., xi ∈ {1,∞, 0, 2, 1/2,−2,−1/2, . . .} [90]. Harley used the same evaluation points as Zuras

({1,∞, 0, 2, 1/2}) in implementing the Toom-Cook multiplication routine in GNU multiple

precision (GMP) arithmetic library version 4.1.4 [26]. He used simple row operations to

solve the system (6.2) instead of multiplying an inverse matrix. He performed interpola-

tion by using only one exact division by 3 for n = 3. Paul Zimmermann recently improved

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 84

mpn_divexact_by3()
mpz_mul() (squaring)

Bit-length

T
im

in
g

ra
ti

o

800070006000500040003000200010000

0.25

0.2

0.15

0.1

0.05

0

Figure 6.1: Timing Ratio of mpn_divexact_by3() to mpz_mul()

Harley’s method using a simpler set: xi = {0, 1,−1, 2,∞}. This algorithm has been imple-

mented in GMP 4.2.1 [26].

In [87], Winograd proves that Algorithm 2.1 uses the least possible number of coefficient

multiplications. Unfortunately, the cost involved in evaluation and interpolation steps can-

not be ignored even for small n. In fact, the evaluation and interpolation cost overwhelms

the entire computation time for multiplying polynomials having only small coefficients. To

reduce the amount of overhead, Winograd proposes the use of remainder arithmetic by mod-

ulo cyclotomic polynomials, whose zeros are on unit circle in complex domain. For example,

he proposed using x, (x − 1), (x + 1) and (x2 + 1) for 3-way multiplications. The Winograd

algorithm can be viewed as the Toom-Cook algorithm for xi = {0, 1,−1, j,−j}. However,

this method needs one more coefficient multiplication than the Toom-Cook algorithm, since

A(x) ·B(x) mod (x2 +1) requires three coefficient multiplications. However, it has an advan-

tage that there is no constant division during the interpolation step.

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 85

6.2 New Squaring Formulae

To the best of our knowledge, no sub-quadratic multiplication algorithms reviewed in Sec-

tion 2 have been considerably specialized for squaring. We attempt to fill in this gap in the

literature. Of course, there is no squaring algorithm which is asymptotically faster than the

fastest multiplication algorithm [90] and it is not a goal of this work to find such squaring

algorithms.

In Section 6.1, we have seen that nontrivial constant divisions in the Toom-Cook al-

gorithm are unavoidable. There are multiplication algorithms not requiring the constant

division, but they use more than (2n− 1) coefficient multiplications. Winograd shows meth-

ods for avoiding such constant divisions and reducing overhead in interpolation, but it is

always at the sacrifice of an increased number of coefficient multiplications [87]. NTT based

multiplication algorithms do not require nontrivial constant divisions if N is a power of 2,

but this means that N must be greater than 2n− 1.

However, squaring can be performed without the nontrivial constant division using ex-

actly (2n − 1) multiplications, at least for n = 3, 4 and 5. In this section, we present three

potentially useful explicit formulae for 3-way squaring that do not require a nontrivial con-

stant division. Our new squaring algorithms are similar to the Toom-Cook multiplication

algorithm, but we use different approach for constructing a linear system on ci’s to achieve

faster evaluation and interpolation. This new approach allows us to find squaring formulae

that do not require any nontrivial constant divisions. Our squaring formulae require only

the theoretic minimum number of coefficient multiplications, which is five for 3-way mul-

tiplication. We present only one explicit formula for each of 4-way and 5-way squaring in

Section 6.5.

All sub-quadratic multiplication algorithms we have reviewed in Section 2 are symmetric

algorithms in the sense that all point-wise multiplications are squarings when A(x) = B(x).

On the other hand, our new squaring formulae are asymmetric algorithms, since they in-

volve at least one point-wise multiplication of two different values.

Compared to the Toom-Cook multiplication algorithm, our algorithms are not advanta-

geous for squaring very large size operands, since squaring operation is usually faster than

multiplication operation for all ranges of operand sizes in practice. The schoolbook squar-

ing algorithm performs better than the schoolbook multiplication algorithm. Similarly, the

same holds true for symmetric sub-quadratic algorithms, since most implementations of

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 86

mpz_mul() (squaring)
mpz_mul() (multiplication)

Bit length

T
im

e
in
µ
s

800070006000500040003000200010000

70

60

50

40

30

20

10

0

Figure 6.2: Timing Results of mpz_mul() (multiplication) and mpz_mul() (squaring)

sub-quadratic algorithms use the schoolbook methods for the base case. Figure 6.2 shows

the timing results of multiplication and squaring routines (both are called from mpz_mul())

in GMP.

The timing difference between multiplication and squaring is not significant for small

operands, but the difference becomes larger as operand size grows. Hence, it easily follows

that symmetric squaring algorithms are more advantageous for squaring very large size

operands. However, there is a possibility that the proposed asymmetric algorithms are

advantageous for squaring relatively small operand sizes, for which the effect of reduced

overhead in evaluation and interpolation steps is greater than that of the lost efficiency in

asymmetric point-wise multiplication step. In fact, our experimental results in Section 6.4,

show that one of our squaring formulae performs better than the long integer squaring

function in GMP for a certain range of operand sizes.

6.2.1 Our Approach

In Section 6.1, we have shown that the Toom-Cook multiplication algorithm requires (2n−1)

distinct evaluation points for constructing a system of (2n−1) linear equations having (2n−

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 87

1) unknown values (the coefficients of C(x) = A(x) · B(x)). As shown in Theorems 8 and 9,

such a construction method always introduces at least one nontrivial constant division in

the interpolation step. For n = 3, even the best known 3-way Toom-Cook multiplication

method, shown in Section 2.1.1, requires one constant division by 3 during interpolation

step.

To completely eliminate the constant divisions, we take a different approach for con-

structing a linear system. Below we give detailed methods for obtaining linear equations

on ci’s that cannot be derived by directly evaluating C(x) = A(x)2. Our approach allows us

to find linear equations of ci’s such that the corresponding linear system does not involve a

Vandermonde matrix.

1. Taking modulo (x2 + ux + v2), where u and v are some integers: By taking modulo

(x2 + ux+ v2) on both sides of C(x) = A(x)2, we obtain

c′1x+ c′0 ≡ (a′1x+ a′0)
2 (mod (x2 + ux+ v2)), (6.3)

where a′1x+a′0 = A(x) mod (x2 + ux+ v2) and c′1x+c′0 = C(x) mod (x2 + ux+ v2). Then

it follows that

c′1x+ c′0 ≡ a′1(2′a′0 − ua′1)x+ (a′0 − va′1)(a′0 + va′1) (mod (x2 + ux+ v2)). (6.4)

It is interesting to see that computing both c′0 and c′1 requires only two coefficient

multiplications. Hence, we obtain two useful linear equations for c′is as follows:

c′1 = a′1(2
′a′0 − ua′1),

c′0 = (a′0 − va′1)(a′0 + va′1). (6.5)

Therefore, by choosing some small integers u and v, we can obtain useful linear equa-

tions on ci’s. Such equations cannot be obtained by simply evaluating C(x) = A(x)2.

For example, suppose that A(x) is a degree-2 polynomial, A(x) = a2x
2 + a1x + a0. Let

u = 0 and v = 1. We take modulo (x2 + 1) on both sides of C(x) = A(x)2 and obtain

c4 − c2 + c0 = (a0 − a2)
2 − a2

1 = (a0 − a2 + a1)(a0 − a2 − a1),

c1 − c3 = 2a1(a0 − a2).
(6.6)

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 88

This method is different from the Winograd algorithm. In the Winograd algorithm, af-

ter taking modulo a second degree polynomial, c′0 and c′1 are simultaneously computed

using KA which requires three coefficient multiplications [87]. However, the computa-

tion of c′0 is independent from that of c′1 in (6.6). Hence, we can select only one of the

two linear equations in (6.6) without sacrificing the efficiency.

We remark that a special case of this idea is known for efficient implementation of

finite field squaring in Zp2[x]/f(x) where f(x) = x2 + x+ 1 [77].

2. Hermite interpolation: Interpolation using the evaluations of derivatives is known

as the Hermite interpolation. Interestingly, for squaring, each evaluation of the first

derivative of C(x) requires only one coefficient multiplication, since C ′(x) = 2A(x) ·
A′(x).

Evaluating the first derivative of C(x) gives linear relations, some of which may not

be obtained by evaluating C(x) = A(x)2. For example, when A(x) is a degree-2 polyno-

mial, the first derivative of C(x) = A(x)2 results in the following:

4c4x
3 + 3c3x

2 + 2c2x+ c1 = 2(a2x
2 + a1x+ a0)(2a2x+ a1). (6.7)

Some interesting evaluations of (6.7) are given below.

(a) x = 0: c1 = 2a0a1.

(b) x =∞: c4 = a2
2. (The same result can be obtained also by evaluating C(x) = A(x)2

at x =∞.)

(c) x = 1: 4c4 + 3c3 + 2c2 + c1 = 2(a2 + a1 + a0)(2a2 + a1).

(d) x = −1: −4c4 + 3c3 − 2c2 + c1 = 2(a2 − a1 + a0)(−2a2 + a1).

All of the above linear equations are reasonably simple and requires only one coeffi-

cient multiplication for each evaluation point.

3. A(xi)
2 −A(xj)

2 = (A(xi) +A(xj)) · (A(xi)−A(xj)) for xi 6= xj.

Using this method, we can combine two distinct evaluations of A(x) into one.

4. Duality: any function computing ci can be used to compute c2n−1−i with no changes. In

other words, if ci = f(a0, . . . , an−2, an−1), then c2n−1−i = f(an−1, . . . , a1, a0) [78].

Hence, we can safely substitute ci to c2n−1−i and aj to an−1−j for all 0 ≤ i ≤ 2n − 1

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 89

and 0 ≤ j ≤ n − 1 in any linear equations on ci’s. For example, c3 = 2a2a1 is a dual of

c1 = 2a0a1. This is a well-known fact and a similar argument holds for multiplications.

6.2.2 New 3-way Squaring

Let ~C = (c4, c3, c2, c1, c0). To construct a 3-way squaring algorithm computing C(x) = A(x)2

that requires only five coefficient multiplications, we need to find a five-tuple (i0, i1, i2, i3, i4),

where ij ’s are all distinct, such that

• There exists a uij , which is a product of two elements (not necessarily distinct) from

L(A), for each vector ~Lij such that ~Lij ◦ ~C = uij , where ◦ is a dot product.

• The set of vectors {~Li0 , . . . , ~Li3 , ~Li4} forms a basis in Z5.

Let M = (~Li4 , . . . ,
~Li1 ,

~Li0)
T . If we can find a five-tuple (i0, . . . , i3, i4) which makes detM a

power of 2, we get a squaring algorithm that require only 5 coefficient multiplications and

no nontrivial constant divisions.

We have identified 20 potentially useful ~Li’s and ui’s by directly evaluating C(x) = A(x)2

and by using our new construction methods given above, and show them in Table 6.1. Note

that ~L9–~L29 have been obtained using the methods given above and they cannot be obtained

by simply evaluating C(x) = A(x)2.

There are a total of 42504 possible combinations of (i0, i1, i2, i3, i4) and 34268 of them make

{~Li0 , . . . , ~Li3 , ~Li4} a linearly independent set. We divide these 34268 combinations into the

following three sets:

Set I: there are three or more ij ’s such that ij ≥ 9.

Set II: there are only two ij ’s such that ij ≥ 9.

Set III: there is only one ij such that ij ≥ 9.

Sets I, II and III have 13584, 5946 and 1012 combinations, respectively. In Set I, it is

easily seen that combinations (1, 2, 9, 10, 15), (1, 2, 9, 10, 17), (1, 2, 9, 10, 18), (1, 2, 9, 10, 19) and

(1, 2, 9, 10, 20) lead to the simplest interpolation step. Note that ~L1, ~L2, ~L9, ~L10 immediately

give the coefficients c0, c1, c3 and c4 of C(x). The remaining coefficient c2 can be obtained

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 90

Table 6.1: List of Candidate Vectors
i ~Li ui = ~Li ◦ ~C Comment

1 (0, 0, 0, 0, 1) a2
0 C(0)

2 (1, 0, 0, 0, 0) a2
2 C(∞)

3 (1, 1, 1, 1, 1) (a2 + a1 + a0)
2 C(1)

4 (1,−1, 1,−1, 1) (a2 − a1 + a0)
2 C(−1)

5 (16, 8, 4, 2, 1) (4a2 + 2a1 + a0)
2 C(2)

6 (16,−8, 4,−2, 1) (4a2 − 2a1 + a0)
2 C(−2)

7 (1, 2, 4, 8, 16) (a2 + 2a1 + 4a0)
2 24 · C(1/2)

8 (1,−2, 4,−8, 16) (a2 − 2a1 + 4a0)
2 24 · C(−1/2)

9 (0, 0, 0, 1, 0) 2a0a1 C′(0)
10 (0, 1, 0, 0, 0) 2a1a2 Dual of 9

11 (4, 3, 2, 1, 0) 2(a2 + a1 + a0)(2a2 + a1) C′(1)
12 (−4, 3,−2, 1, 0) 2(a2 − a1 + a0)(−2a2 + a1) C′(−1)
13 (0, 1, 2, 3, 4) 2(a2 + a1 + a0)(2a0 + a1) Dual of 11

14 (0, 1,−2, 3,−4) 2(a2 − a1 + a0)(a1 − 2a0) Dual of 12

15 (1, 0,−1, 0, 1) (a0 − a2 + a1)(a0 − a2 − a1) Constant term of C(x) mod (t2 + 1)
16 (0,−1, 0, 1, 0) 2a1(a0 − a2) t’s coefficient of C(x) mod (t2 + 1)
17 (−1, 0, 1, 1, 0) (a1 − a2 + 2a0)(a1 + a2) t’s coefficient of C(x) mod (t2 − t+ 1)
18 (0,−1,−1, 0, 1) (a0 − a1 − 2a2)(a0 + a1) Constant term of C(x) mod (t2 − t+ 1)
19 (1, 0,−1, 1, 0) (a2 + a1 − 2a2)(a2 − a1) t’s coefficient of C(x) mod (t2 + t+ 1)
20 (0, 1,−1, 0, 1) (a0 + a1 − 2a2)(a0 − a1) Constant term of C(x) mod (t2 + t+ 1)
21 (1, 0, 0, 0,−1) (a0 + a2)(a0 − a2) A(0)2 −A(∞)2

22 (0, 1, 0, 1, 0) 2a1(a2 + a0) (A(1)2 −A(−1)2)/2
23 (0, 4, 0, 1, 0) 2a1(4a2 + a0) (A(2)2 −A(−2)2)/4
24 (0, 1, 0, 4, 0) 2a1(4a0 + a2) 4(A(1/2)2 −A(−1/2)2)

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 91

by at most two additions/subtractions. Among the five contenders, (1, 2, 9, 10, 15) is the best

choice, since computing u15 is easier than computing u17, u18, u19 and u20.

In Set II, there are 124 combinations of (i0, . . . , i3, i4) such that |detM | = 1. To narrow

down our search, we have considered only the combinations that lead to M such that the

entries of M−1 are relatively small. Combinations (1, 2, 3, 9, 10), (1, 2, 4, 9, 10), (1, 2, 4, 9, 22)

and (1, 2, 4, 10, 22) are the best, and they lead to the simplest form of M−1. Combination

(1, 2, 4, 9, 10) is more advantageous than (1, 2, 3, 9, 10), since computing u4 is more efficient

than computing u3. Note that (a2 + a1 + a0) could be at most 1 bit longer than (a2 − a1 + a0).

Moreover, (1, 2, 4, 9, 10) is better than (1, 2, 4, 9, 22) and (1, 2, 4, 10, 22) since computing u9 and

u10 is faster than computing u9 and u22 or computing u10 and u22. We have also considered

combinations that results in |detM | = 2, 4, 8 and 16, but could not find a better combination

than (1, 2, 3, 4, 9) and (1, 2, 3, 4, 10).

In Set III, there is no combination that makes |detM | = 1, but there are 26 combina-

tions that makes |detM | = 2. Among these 26 combinations, (1, 2, 3, 4, 9) and (1, 2, 3, 4, 10)

lead to the most efficient squaring algorithm. We have also considered combinations that

result in |detM | = 4, 8 and 16, but could not find a better combination than (1, 2, 3, 4, 9) and

(1, 2, 3, 4, 10).

We have derived three new squaring methods from Set I, II and III.

1. Squaring Method 1 (SQR1)











1 0 0 0 0

0 1 0 0 0

1 0 −1 0 1

0 0 0 1 0

0 0 0 0 1





















c4

c3

c2

c1

c0











=











a2
2

2a1a2

(a0 − a2 + a1)(a0 − a2 − a1)

2a1a0

a2
0











=











S4

S3

S2

S1

S0











(6.8)

The computation of Si’s requires 3 coefficient multiplications and 2 coefficient squar-

ings. The determinant of the 5× 5 matrix in (6.8) is −1, meaning the interpolation can

be performed without bit shift or constant division. In fact, the coefficients c0, c1, c3

and c4 are already given. The coefficients c2 can be computed with one addition and

one subtraction: c2 = S0 + S4 − S2.

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 92

2. Squaring Method 2 (SQR2)











1 0 0 0 0

0 1 0 0 0

1 −1 1 −1 1

0 0 0 1 0

0 0 0 0 1





















c4

c3

c2

c1

c0











=











a2
2

2a1a2

(a2 − a1 + a0)
2

2a1a0

a2
0











=











S4

S3

S2

S1

S0











(6.9)

This algorithm requires 2 coefficient multiplications and 3 coefficient squarings. The

coefficients c0, c1, c3 and c4 are already given. The remaining coefficient c2 can be

obtained using only 4 additions/subtractions: c2 = S2 + S1 + S3 − S0 − S4.

3. Squaring Method 3 (SQR3)











1 0 0 0 0

0 1 0 0 0

1 −1 1 −1 1

1 1 1 1 1

0 0 0 0 1





















c4

c3

c2

c1

c0











=











a2
2

2a1a2

(a2 − a1 + a0)
2

(a2 + a1 + a0)
2

a2
0











=











S4

S3

S2

S1

S0











(6.10)

This algorithm requires 1 coefficient multiplication and 4 coefficient squarings. The

coefficients c0, c3 and c4 are already given. The coefficients c1 and c2 are computed

using only 5 additions/subtractions and 1 bit shift.

T1 = (S1 + S2)/2,

c1 = S1 − T1 − S3,

c2 = T1 − S4 − S0.

(6.11)

6.3 Analysis

In this section, we analyze the squaring algorithms SQR1, SQR2 and SQR3 presented in

Section 6.2. The analysis may differ depending on how the various squaring algorithms are

used in specific applications (e.g., long integer squaring, squaring in extension field GF (pm),

polynomial squaring in Z[x],. . .). In this section, we assume that our squaring formulae are

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 93

applied to the arithmetic in Z[x]. However, the results shown in this section are relevant

to other applications. For applications in GF (pm), after the polynomial squaring has been

completed, one needs to perform reduction by an irreducible polynomial for GF (pm) and

then reduce each coefficient modulo p. These reduction operations are not dependent on the

algorithm used for the polynomial squaring. For long integer squaring, an integer is inter-

preted as a polynomial and a polynomial squaring is performed. Then, one needs to overlap

the coefficients and perform carry propagations. The overlapping and carry propagation is

also not related to the algorithm used for the polynomial squaring.

We compare our algorithms with other known 3-way squaring algorithms: schoolbook

squaring algorithm, 3-way KA-like formula and Zimmermann’s 3-way Toom-Cook algo-

rithms.

We denote the digit size of the representation by b. Addition or subtraction of two u-digit

integers requires A(u) time. Multiplication and squaring of two u-digit integers require

M(u) and S(u) times, respectively. Bit shift of u digit integers require B(u) time. During

evaluation and interpolation step, there are cases when the operands to addition/subtraction

and shift are a few bits larger than u or 2u digits, where the coefficients of A(x) are at most u

digits long. For simplicity, we ignore this overhead caused by carries and borrows. However,

we do not ignore the overhead involved in multiplying two integers that are slightly longer

than u digits. For example, an integer s and t are only 1-bit longer than u digits. Then we

can write s = shb + sl and t = thb + tl, where |sh|, |th| ≤ 1 and 0 ≤ sl, tl < bu. The time

required to compute s · t is at most M(u) + 2A(u). For simplicity, we ignore the cost for

multiplying carries, i.e., sh and th.1 The time required to compute s2 is S(u) + B(u) + A(u)

in the worst case. When computing a product 2aiaj , we always compute aiaj first and then

perform the bit shift later. It is reasonable to assume that A(·) and B(·) are linear functions;

A(fu+ gv) = fA(u) + gA(v) and B(fu+ gv) = fB(u) + gB(v). The exact division by 3 of an

u-digit integer used in the 3-way Toom-Cook algorithm shown in Section 2.1.1 is denoted by

D3(u).

We assume that A(x) = a2x
2 + a1x + a0 is the input, where ai’s are u digits long. Ta-

ble 6.2 shows our analysis results. Table 6.3 shows the conditions for which our squaring

1Note, however, that the 3-way Toom-Cook multiplication algorithm in GMP v4.2.1 stores carries and borrows

in the most significant digit place instead of handling them separately with extra variables. This method has

a trade-off. Using extra digit reduces the number of additions and subtractions, but coefficient multiplications

and squarings becomes slower. We have tested both methods and found that it is better to use extra variables

for carries and borrows on architectures on which we have performed our experiments.

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 94

Table 6.2: Analysis Results of Various Squaring Algorithms

Algorithm S&M Overhead

3-way Toom-Cook 5S(u) 14B(u) + 25A(u) +D3(2u)
Schoolbook sqr. 3S(u) + 3M(u) 6B(u) + 2A(u)
3-way KA-like 6S(u) 3B(u) + 20A(u)

SQR1 2S(u) + 3M(u) 5B(u) + 9A(u)
SQR2 3S(u) + 2M(u) 5B(u) + 11A(u)
SQR3 4S(u) + 1M(u) 6B(u) + 15A(u)

Table 6.3: Conditions for Which SQRi’s Are Faster Than Other 3-way Algorithms

i SQRi vs. 3-way Toom-Cook

1 3M(u) < 3S(u) + 9B(u) + 16A(u) +D3(2u)
2 2M(u) < 2S(u) + 9B(u) + 14A(u) +D3(2u)
3 M(u) < S(u) + 8B(u) + 10A(u) +D3(2u)

i SQRi vs. Schoolbook sqr.

1 7A(u) < S(u) + B(u)
2 9A(u) <M(u) + B(u)
3 S(u) + 13A(u) < 2M(u)

i SQRi vs. 3-way KA-like

1 3M(u) + 2B(u) < 4S(u) + 11A(u)
2 2M(u) + 2B(u) < 3S(u) + 9A(u)
3 M(u) + 3B(u) < 2S(u) + 5A(u)

algorithms are superior to the other algorithms.

Table 6.3 shows that there is apparently no single algorithm that is absolutely superior

to the others. Without considering the actual values S(u), M(u), B(u), A(u) and D3(2u),

which are very application specific, it is not easy to decide which algorithm is faster than

the rest. However, one thing that is clear from Table 6.3 is that the 3-way Toom-Cook

algorithm becomes the best for squaring polynomials as u increases. The timings B(u),

A(u) and D3(2u) grow linearly with u, but timings of multiplication (M(u)) and squaring

(S(u)) grow quadratically or sub-quadratically depending on the methods used for point-

wise multiplications. It is obvious that, for large u, the effect of reduced overhead in our

algorithms will be offset by the timing difference in multiplication and squaring.

However, SQRi’s have very little amount of overhead compared to the 3-way Toom-Cook

multiplication algorithm. Hence, it is possible that, for some small u, the timing difference

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 95

of multiplication and squaring is small enough that some of the conditions in Table 6.3 will

be satisfied. In fact, our implementation results given in Section 6.4 confirm that there is a

range of u where some conditions of Table 6.3 are satisfied.

6.4 Implementation Results

To verify the practical usefulness of our algorithms, we have implemented in software the

functions for large integer squaring, and the functions for degree-2 polynomial squaring

in Z[x] using SQR1, SQR2 and SQR3 presented in Section 6.2. Our experiments have been

performed on Linux (kernel version 2.6.15.26) running on Intel Pentium IV Prescott 3.2GHz,

Pentium II MMX 300MHz, Pentium III Mobile 1.13GHz. We have used GCC 4.0.3 to compile

all programs. We have compiled GMP library v4.2.1 in two passes. Between the first and the

second passes of compilations, we have performed GMP’s tuneup program (with an option

‘-p 100000000’ for better precision than default) so that GMP uses the optimal threshold

values between multiplication algorithms. We compiled all our source codes using the same

compiler options used for compiling GMP library. We have ensured that our program does

not link with the shared library of GMP, since shared libraries have a performance penalty

due to the runtime address resolution2. The testing program has been run at the highest

priority to minimize the risk of interference by other running processes.

6.4.1 Application to Large Integer Squaring

We have compared our implementation of SQRi’s with GMP’s squaring function. For fair

comparison, our algorithms have been written so that it can replace mpn_toom3_sqr_n()

function in GMP. Note that mpn_toom3_sqr_n() is a low level implementation of the algo-

rithm shown in Section 2.1.1 for squaring case.3

Our squaring algorithms have been written using the same coding style that Harley used

for implementing mpn_toom3_sqr_n() in GMP 4.1.4. Note that Zimmermann’s algorithm

is theoretically better than Harley’s, but the implementations of the two algorithms in GMP

v4.1.4 and v4.2.1 use different coding styles. Harley stores the carries in separate variables

in GMP 4.1.4, but Zimmermann stores them in the most significant digit place in GMP

2I thank Augusto Jun Devegili letting me know about the runtime address resolution.
3Even though the 3-way Toom-Cook squaring is separately implemented, it uses the same 3-way Toom-Cook

multiplication algorithm given in Section 2.1.1.

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 96

4.2.1. Zimmermann’s method increases the digit length of input to coefficient multiplica-

tions, additions and subtractions. However, such a method reduces the number of functions

calls to additions and subtractions. Since it is not fair to compare two different algorithms

written in different coding style, we have implemented Zimmermann’s algorithm presented

in Section 2.1.1 using Harley’s coding style. Our implementation ourperformed Zimmer-

mann’s impelemtation in GMP v4.2.1 on Pentium II MMX 350MHz, III Mobile 1.13GHz,

IV 3.2GHz. We have also implemented SQR1, SQR2 and SQR3 in both ways and found

that Harley’s coding style is always better. Therefore, our implementation results and com-

parisons in the following are based on Zimmermann’s 3-way Toom-Cook squaring and our

new squaring algorithms both written in Harley’s style. We provide the source code of our

improved Zimmermann’s 3-way Toom-Cook squaring in Appendix A.

We have not used any optimization tricks or special functions other than those used in

mpn_toom3_sqr_n(). We have ensured that our implementations produce correct results

for varying bit lengths of input. We provide the source code for SQR3 in Appendix A.

When timing our squaring algorithms we have replaced mpn_toom3_sqr_n()with our

functions and called from the top level function mpz_mul(). To prevent mpz_mul() from

using the schoolbook squaring algorithm and KA, we have modified mpn_sqr_n(), which

chooses the best one among various squaring algorithms depending on the input size, so

that only our algorithms are called for all ranges of input sizes. For timing the 3-way Toom-

Cook multiplication algorithm, we have forced mpn_sqr_n() to choose only the original

mpn_toom3_sqr_n().

Figure 6.3 shows the timing results of SQR3, mpz_mul() and the 3-way Toom-Cook

multiplication algorithm. Figure 6.4 shows the timing ratio of mpz_mul() and the 3-way

Toom-Cook multiplication algorithm to SQR3. On Pentium IV 3.2GHz, mpz_mul() uses

the schoolbook squaring algorithm for small operands, KA for input longer than 1984 bits,

the 3-way Toom-Cook algorithm for input longer than 3744 bits. In our experiments, we

have found that SQR1 and SQR2 are slower than mpz_mul() for all sizes of input. Thus,

we have not included their timing results. Our experiments show that SQR3 outperforms

mul_mul() for operands that are about 2300–6900 bits long. Relative performance improve-

ments of SQR3 over mpz_mul() near 10000 bit input is observed in Figure 6.4. It is due to

the fact that our SQR3 recurses into itself, which is faster than mpz_mul() with operands

of size approximately 3300 bits.

We have also performed the same experiments on Pentium II MMX 350MHz and Pen-

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 97

3-way Toom-Cook
SQR3

mpz_mul

log2 p

T
im

e
in
µ

s

1600014000120001000080006000400020000

120

100

80

60

40

20

0

Figure 6.3: Timing Results of Squaring Algorithms (Pentium IV 3.2GHz)

1
3-way Toom-Cook/SQR3

mpz_mul/SQR3

log2 p

R
a

ti
o

1600014000120001000080006000400020000

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6.4: Timing Ratio of SQR3 vs. Other Algorithms on Pentium IV 3.2GHz

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 98

1
3-way Toom-Cook/SQR3

mpz_mul/SQR3

log2 p

R
a

ti
o

1600014000120001000080006000400020000

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6.5: Timing Ratio of SQR3 vs. mpz_mul() (Pentium II MMX 350MHz)

1
3-way Toom-Cook/SQR3

mpz_mul/SQR3

log2 p

R
a

ti
o

1600014000120001000080006000400020000

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6.6: Timing Ratio of SQR3 vs. mpz_mul() (Pentium III M 1.13GHz)

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 99

Table 6.4: Timing Results of Polynomial Squaring on Pentium IV 3.2GHz (unit= µs.)
Bit length SQR1 SQR2 SQR3 3-way Toom-Cook 3-way KA-like Schoolbook sqr.

32 0.23 0.32 0.37 0.58 0.43 0.25
256 1.12 1.42 1.33 1.68 1.80 1.26

576 3.43 3.96 3.59 4.09 4.79 4.15
608 3.89 4.25 3.85 4.42 5.25 4.42

768 6.09 6.41 5.44 5.87 7.29 6.99

1024 8.37 9.65 8.17 8.47 11.12 10.72
1216 11.28 12.67 10.73 10.83 14.17 14.38

1248 12.84 14.11 11.51 11.17 15.21 16.29

1502 17.15 18.94 15.42 14.90 19.85 22.02
1536 19.37 19.52 15.55 15.21 20.40 22.31

tium III Mobile 1.13GHz. We have plotted the results in Figures 6.5 and 6.6. On Pentium

II MMX 350MHz processors, SQR3 performed better than mpz_mul() for about 2000–3300-

bit operands by up to 3-4%. On Pentium III Mobile 1.13GHz processors, SQR3 performed

better than mpz_mul() for about 1900–3500-bit operands by up to 4-5%. The GMP tuneup

program has determined that the crossover between the classical multiplication and the KA

is 48 words (1536 bits) and the crossover between the KA and 3-way Toom-Cook multiplica-

tion algorithm is 83 words (2656 bits) on both Pentium II MMX 350MHz and Pentium III

Mobile 1.13GHz.

6.4.2 Application to Polynomial Squaring in Z[x]

We have applied our squaring algorithm for performing polynomial multiplication in Z[x].

We have implemented functions for squaring degree-2 polynomials in Z[x]. The implemen-

tation uses the functions from GMP library. The timing results on Pentium IV 3.2GHz are

shown in Table 6.4. The first column in Table 6.4 shows the sizes of coefficients in bits. In

the table, the best timing for each bit length is indicated in bold. SQR1 is the most efficient

squaring algorithm for squaring polynomials having small coefficients of up to 576 bits. For

polynomials with coefficients up to 1216 bits, SQR3 is the most efficient. However, the 3-

way Toom-Cook algorithm becomes the fastest algorithm for squaring degree-2 polynomials

whose coefficients are at least 1216 bits long.

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 100

6.5 4-way and 5-way Squaring Formulae

We have constructed 4-way and 5-way squaring formulae that do not require any nontrivial

constant divisions. We have used the same technique that we applied to construct 3-way

formulae. We have chosen the algorithms that have the simplest interpolation among the

many candidates we have considered so far. The results shown in this section are to illus-

trate that the technique we have developed in Section 6.2 can also be applied to construct

n-way squaring formulae for n > 3. Note that 5-way is not the limit where nontrivial divi-

sions in interpolation step can be eliminated. Future research will show further results on

4, 5, 6, 7-way squaring formulae.

6.5.1 New 4-Way Squaring

Let A(x) = a3x
3 + a2x

2 + a1x + a0. To compute C(x) =
∑6

i=0 cix
i = A(x)2, we first compute

Si’s as shown below:
















S1

S2

S3

S4

S5

S6

S7
















=
















0 0 0 0 0 0 1

0 0 0 0 0 1 0

−1 0 1 0 −1 0 1

1 1 1 1 1 1 1

0 1 0 −1 0 1 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0































c6

c5

c4

c3

c2

c1

c0
















=
















a2
0

2a0a1

(a0 + a1 − a2 − a3)(a0 − a1 − a2 + a3)

(a0 + a1 + a2 + a3)
2

2(a0 − a2)(a1 − a3)

2a3a2

a2
3
















. (6.12)

The linear combinations of ai’s in (6.12) can be computed using the following:

T1 = a0 − a2

T2 = a1 − a3

T3 = T1 + T2

T4 = T1 − T2

T5 = a0 + a1 + a2 + a3.

(6.13)

The determinant of the 7× 7 matrix in (6.12) is 2. This method uses 3 coefficient squar-

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 101

Algorithm 6.1 New 4-Way Toom-Cook Interpolation for Squaring

Require: (S1, S2, S3, S4, S5, S6, S7) as in (6.12).

Ensure: C(x) = A(x) · B(x).
1: T1 ← S3 + S4. (= c5 + 2c4 + c3 + c1 + 2c0)
2: T2 ← (T1 + S5)/2. (= c5 + c4 + c1 + c0)
3: T3 ← S2 + S6. (= c5 + c1)
4: T4 ← T2 − T3. (= c4 + c0)
5: T5 ← T3 − S5. (= c3)
6: T6 ← T4 − S3. (= c6 + c2)
7: T7 ← T4 − S1. (= c4)
8: T8 ← T6 − S7. (= c2)
9: return C(x) = S7x

6 + S6x
5 + T7x

4 + T5x
3 + T8x

2 + S2x+ S1.

ings and 4 coefficient multiplications. Note that KA requires 9 coefficient squarings for

squaring a polynomial using 4-way split. Interpolation method is given in Algorithm 6.1.

Algorithm 6.1 requires only 8 additions/subtractions and 1 bit shift.

Using the same analysis methods in 6.3, we obtain that our 4-way squaring algorithm

requires 3S(u) + 4M(u) + 28A(u) + 13B(u).

6.5.2 New 5-term Squaring Method

Let A(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0. To compute C(x) =

∑8
i=0 cix

i = A(x)2, we first

compute Si’s as shown below:

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 102





















S1

S2

S3

S4

S5

S6

S7

S8

S9





















=





















0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1 1

0 −1 0 1 0 −1 0 1 0

1 0 −1 0 1 0 −1 0 1

1 1 0 −1 −1 0 1 1 0

0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0









































c8

c7

c6

c5

c4

c3

c2

c1

c0





















=





















a2
0

a2
4

(a0 + a1 + a2 + a3 + a4)
2

(a0 − a1 + a2 − a3 + a4)
2

2(a0 − a2 + a4)(a1 − a3)

(a0 + a1 − a2 − a3 + a4)(a0 − a1 − a2 + a3 + a4)

(a1 + a2 − a4)(a1 − a2 − a4 + 2(a0 − a3))

2a0a1

2a3a4





















.

(6.14)

The above system needs 4 squarings and 5 multiplications. The linear combinations of

ai’s can be computed as follows using 14 additions or subtractions and 1 shift:

T1 = a0 + a4, T8 = T5 − T2 = a0 − a1 + a2 − a3 + a4,

T2 = a1 + a3, T9 = T6 + T4 = a0 + a1 − a2 − a3 + a4,

T3 = a1 − a4, T10 = T6 − T4 = a0 − a1 − a2 + a3 + a4,

T4 = a1 − a3, T11 = T3 + a2 = a1 + a2 − a4,

T5 = T1 + a2 = a0 + a2 + a4, T12 = T3 − a2 = a1 − a2 − a4,

T6 = T1 − a2 = a0 − a2 + a4, T13 = T12 − 2(a0 − a3) = a1 − a2 − a4 − 2(a0 − a3)

T7 = T5 + T2 = a0 + a1 + a2 + a3 + a4.

Interpolation can be performed by Algorithm 6.2. The algorithm requires 18 additions

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 103

Algorithm 6.2 New 5-Way Toom-Cook Interpolation for Squaring

Require: (S1, S2, S3, S4, S5, S6, S7, S8, S9) as in (6.14).

Ensure: C(x) = A(x) · B(x).
1: T1 ← S1 + 2 · S2 − S7 + 2 · S8 + S9 (= c8 + c5 + c4 − c2 + c1 + c0)
2: T2 ← S3 − S4 (= 2c7 + 2c5 + 2c3 + 2c1)
3: T3 ← 2 · S5 (= −2c7 + 2c5 − 2c3 + 2c1)
4: T4 ← T2 + T3 (= 4c5 + 4c1)
5: T5 ← T2 − T3 (= 4c7 + 4c3)
6: T6 ← T4/4 (= c5 + c1)
7: T7 ← T5/4− S9 (= c3)
8: T8 ← T1 − T6 − S6 (= c6)
9: T9 ← T6 − S8 (= c5)

10: T10 ← S3 + S6 (= 2c8 + c7 + c5 + 2c4 + c3 + c1 + 2c0)
11: T11 ← (T10 + S4 + S6)/4 (= c8 + c4 + c0)
12: T12 ← T11 − T1 − T2 (= c4)
13: T13 ← (T10 + S5)/2 (= c8 + c5 + c4 + c1 + c0)
14: T14 ← T13 − T1 (= c2)
15: return C(x) = S2t

8 + S9t7 + T8t
6 + T9t

5 + T11t
4 + T7t3 + T13t

2 + S8t+ S1.

and subtractions, 7 shifts and no divisions by constants.

Note that Montgomery’s 5-way formulae requires 13 squarings. Hence, if the ratio of

squaring to multiplication is greater than 5.6, there is a very good possibility that our algo-

rithm is superior to Montgomery’s 5-way formula.

Using the same analysis technique and assuming that each coefficient ai is u-digit inte-

ger, we obtain that our 5-way squaring algorithm requires at most 4S(u)+5M(u)+60A(u)+

26B(u). Montgomery’s 5-way algorithm requires at most 13S(u)+65A(u)+10B(u) when two

operands are identical. Therefore, if 5M(u) + 16B(u) < 9S(u) + 5A(u), then our algorithm

is superior. Ignoring the overhead terms (A and B), our algorithm is superior if squar-

ing/multiplication ratio is more than 5/9 ≈ 0.56. This condition appears to be easily satis-

fied in practice. Figure 6.7 shows the timing ratio of squaring and multiplication routines

in GMP library. In the figure, the GMP’s squaring/multiplication timing ratio is between

0.6–0.8 for operand sizes larger than 500-bits on Pentium 4 Prescott 3.2GHz.

Usually, additions and subtractions are slower than bit shifts by a small factor. If the

bit shift is more than 3.2 times faster than additions/subtractions, then our 5-way squaring

algorithm is clearly faster than Montgomery’s 5-way algorithm for all ranges of input sizes.

CHAPTER 6. ASYMMETRIC SQUARING FORMULAE 104

mpz_mul() (squaring)
mpz_mul() (multiplication)

Bit-length

T
im

in
g

ra
ti

o

800070006000500040003000200010000

1

0.8

0.6

0.4

0.2

0

Figure 6.7: Timing Ratio of mpz_mul() (multiplication) and mpz_mul() (squaring)

6.6 Conclusions

In this chapter, we have presented new 3, 4 and 5-way polynomial squaring formulae. Our

new formulae are based on the Toom-Cook multiplication algorithm and they require the

same number of coefficient multiplications used in the Toom-Cook multiplication algorithm.

However, our approach eliminates the need for nontrivial constant divisions always required

in the n-way Toom-Cook multiplication algorithms for n ≥ 3. Our experimental results con-

firm that one of our 3-way formulae is slightly faster than GMP’s squaring routine for squar-

ing integers of size about 2300–6900 bits on Pentium IV 3.2GHz. Moreover, according to our

implementation results, our squaring formulae are the best for squaring degree-2 polyno-

mials whose coefficients are shorter than about 1200 bits on the same processor. However,

symmetric squaring algorithms are advantageous for squaring very large size operands,

since our asymmetric squaring algorithms use at least one point-wise multiplication that

cannot be computed by squaring.

Chapter 7

Side Channel Attack on XTR

Cryptosystems

In this chapter, we attempt to attack the XTR double exponentiation algorithm using a

simple side channel attack. We analyze the statistical behavior of the XTR double expo-

nentiation algorithm and use the result in our attack. Our experimental results show that,

in order to determine the correct exponent pair (a, b), one would require U1.25 tries where

U = max(a, b). This result immediately shows that an adversary needs to make U0.625 tries

on average to determine the correct secret key used in the XTR single exponentiation algo-

rithm based on the XTR double exponentiation algorithm.

7.1 Identifying Elementary XTR Operations

Our side channel attack on Algorithm 3.3 is based on the following simple assumptions.

1. It is possible to distinguish long integer multiplications and modular reductions (or

Montgomery reductions) using side channel information.

2. An adversary can somehow verify whether any given integer is the correct key or not.

The first assumption is reasonable, since long integer multiplication and modular reduction

are quite different operations. We believe this assumption remains reasonable, even if the

Montgomery arithmetic is used. The Montgomery reduction can be distinguished from long

105

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 106

integer multiplication, since the former uses an additional single precision multiplication

(Line 3 of Algorithm 2.4) for each loop.

In XTR exponentiation algorithms, operations such as cu+v, c2u, c3u, cu+2, c2u−1 and c2u+1

are used. However, we observe that only three operations among them are sufficient to

implement XTR exponentiations. Let w, x, y, z ∈ GF (p2). The elementary XTR operations

are:

1. A(w, x, y, z) = w · x− xp · y + z.

2. D(x) = x2 − 2xp.

3. T (x) = x3 − 3xp+1 + 3.

It is easy to verify that all nontrivial trace operations used in XTR cryptosystems are derived

from elementary XTR operations as shown below. Computing the p-th power operation does

not involve any computation, i.e., xp = x2α + x1α
2 where x = x1α + x2α

2, x1, x2 ∈ GF (p),

p mod 3 ≡ 2 and α2 + α+ 1 = 0.

cu+v = A(cu, cv, cu−v, cu−2v) , c2u+1 = A(cu+1, cu, c1, c
p
u−1) ,

cu+2 = A(cu+1, c1, cu, cu−1) , c2u−1 = A(cu−1, cu, c
p
1, c

p
u+1) ,

c2u = D(cu) , c3u = T (cu) .

Let m(·) denote a long integer multiplication and r(·) a modular reduction by p (or a

Montgomery reduction). According to the improvedGF (p2) arithmetic shown in [77], GF (p2)

operations are implemented as follows.

M(x, y) = x · y = r(t− u)α+ r(s− u)α2,

s = m(x1, y1) , t = m(x2, y2),

u = m(x1 + x2, y1 + y2)− s− t,
S(x) = x2 = r(m(x2, x2 − 2x1))α + r(m(x1, x1 − 2x2))α

2,

X(x, y, z) = x · z − y · zp

= r(m(z1, y1 − x2 − y2) +m(z2, x2 − x1 + y2))α

+ r(m(z1, x1 − x2 + y1) +m(z2, y2 − x1 − y1))α
2,

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 107

where x = x1α + x2α
2, y = y1α + y2α

2 and z = z1α + z2α
2 are in GF (p2), and α2 + α + 1 =

0. We only consider long integer multiplications and modular reductions (or Montgomery

reductions), since additions and subtractions are performed in very short time and much

harder to be detected by side channel attacks. The integer operation sequence for each

GF (p2) operation may vary depending on implementations. However, GF (p2) operations

can be clearly identified if an adversary can distinguish integer multiplications and modular

reductions (or Montgomery reductions). The following shows all possible integer operation

sequences for M , S and X.

• M : mmmrr

• S : mrmr or mmrr

• X : mmrmmr, mmmmrr or mmmrmr

From above, we clearly see that GF (p2) operations can be identified by identifying integer

operation sequences. We rewrite elementary XTR operations in terms of M , S and X as

follows.

A(w, x, y, z) = X(w, y, x) + z,

D(x) = S(x)− 2xp,

T (x) = M(x, S(x)− 3xp) + 3.

This clearly shows that operations A,D and T are also distinguishable by identifying integer

operation sequences.

Here we give a short example on how to determine the elementary XTR operation se-

quence from GF (p) operation sequence. We assume that the operations M , S and X are

implemented as mmrr, mmmrr and mmmmrr, respectively.

Suppose that an adversary observes the sequence of GF (p) operations as follows:

mmmmrrmmrrmmrrmmmmrrmmrrmmrrmmrrmmmrrmmmmrrmmmmrr.

Then he/she can determine the GF (p2) operation sequence from the observed GF (p) opera-

tion sequence as follows.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 108

Table 7.1: Update Rules for Algorithm 3.3

Notation Condition Update (d, e, cu, cv, cu−v , cu−2v) XTR Seq. # Muls.

If d > e

S0 i. If d ≤ 4e (e, d − e, cu+v, cu, cv , cv−u) A 3

S1 ii. Else if d is even (d2 , e, c2u, cv , c2u−v, c2(u−v)) ADD 7

S2 iii. Else if e is odd (d−e2 , e, c2u, cu+v, cu−v, c−2v) ADD 7

S3 v. Else (e is even) (e2 , d, c2v, cu, c2v−u, c2(v−u)) DD 4

If d < e

S4 i. If e ≤ 4d (d, e − d, cu+v, cv , cu, cu−v) A 3

S5 ii. Else if e is even (e2 , d, c2v, cu, c2v−u, c2(v−u)) DD 4

S6 iii. Else if d is odd (e−d2 , d, c2v, cu+v, cv−u, c−2u) ADD 7

S7 vi. Else (d is even) (d2 , e, c2u, cv , c2u−v, c2(u−v)) ADD 7

mmmmr
︸ ︷︷ ︸

X

mmrr
︸ ︷︷ ︸

S

mmrr
︸ ︷︷ ︸

S

mmmmrr
︸ ︷︷ ︸

X

mmrr
︸ ︷︷ ︸

S

mmrr
︸ ︷︷ ︸

S

mmrr
︸ ︷︷ ︸

S

mmmrr
︸ ︷︷ ︸

M

mmmmrr
︸ ︷︷ ︸

X

mmmmrr
︸ ︷︷ ︸

X

The adversary has the sequence of GF (p2) operations, “XSSXSSSMXX”. Using this

result, the adversary successfully determines the sequence of elementary XTR operations,

“ADDADDTAA”.

Table 7.1 shows the update rules used in lines 10 and 13 of Algorithm 3.3. The first

column of Table 7.1 lists the short notation for each sub-step. The second last column of

Table 7.1 lists the corresponding elementary XTR operation sequence for each sub-step.

Note that the elementary XTR operation sequences for sub-steps S1, S2, S6 and S7 may vary

depending on implementations. However, we will assume that they are implemented in the

way specified in Table 7.1. This makes the sub-steps S1, S2, S6, S7, S0S3, S0S5, S4S3 and S4S5

indistinguishable, and it may prevent easy detection of some sub-steps.

7.2 Simple Side Channel Attack

In this section, we first state our observations on the statistical behavior of Algorithm 3.3.

Then we discuss how to obtain useful information for recovering the two exponents used in

Algorithm 3.3 by using the simple side channel attack.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 109

In exponentiation algorithms used in other cryptosystems, one can determine the expo-

nent bit one at a time by observing which part of an algorithm is executed in each iteration.

In Algorithm 3.3, the knowledge of execution path within each iteration of the algorithm

does not lead to a discovery of a single key bit. The whole exponent can be reconstructed only

after all necessary information is assessed. Note that lines 10 and 13 have four sub-steps

each. To reconstruct a secret exponent, one need to know the sequence of these sub-steps,

along with f2, f3 and d value in line 17 of Algorithm 3.3. Then he/she can recover two input

exponents a and b.

According to Table 7.1, each sub-step Si, (d, e)-pair is linearly transformed by matrix Ti,

where transformation matrices Ti’s are defined as follows.

T0 =

[

0 1

1 −1

]

, T1 =

[

1/2 0

0 1

]

, T2 =

[

1/2 −1/2

0 1

]

, T3 =

[

0 1/2

1 0

]

,

T4 =

[

1 0

−1 1

]

, T5 =

[

0 1/2

1 0

]

, T6 =

[

−1/2 1/2

1 0

]

, T7 =

[

1/2 0

0 1

]

.

(7.1)

Let us define two more matrices, F2 and F3,

F2 =

[

1/2 0

0 1/2

]

, F3 =

[

1/3 0

0 1/3

]

. (7.2)

Suppose that an adversary knows the sub-step sequence, Sl1Sl1 . . . Sln , where li ∈ [0, 7]. Then

he/she can solve (7.3) to recover the input exponents a and b:

[

d

d

]

= TlnTln−1
· · ·Tl1 · F f33 · F

f2
2 ·

[

b

a

]

. (7.3)

Since the matrices Ti’s for i = 0 . . . 7, F2 and F3 are all invertible, the unique solution (b, a)T

exists.

7.2.1 Markov Chain Model

We have made some important observations on the statistical behavior of Algorithm 3.3. We

use Markov Chain model to analyze the statistical behavior of Algorithm 3.3. This method

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 110

is based on the ideas proposed in [82, 67] for attacking MIST and ECC.

We have found that some sub-steps in lines 10 and 13 are used more frequently than the

others. Moreover, some sub-steps cannot be even reached from other sub-steps. To prove

that all sub-steps are not equally probable, we will use a Markov chain model. We first

compute the conditional probabilities Pr(Sj|Si) for i, j = 0, . . . 7, where Pr(Sj|Si) represents

the probability that the next sub-step is Sj given current state Si. Then the steady-state

vector π will be determined from state transition matrix. In the following, we let Sa =

{S0, S1, S2, S3} and Sb = {S4, S5, S6, S7}.

Transition from S0

Suppose that (d1, e1) are the values of (d, e) before entering S0. Then (d1, e1) must meet the

condition, e1 < d1 ≤ 4e1. After executing sub-step S0, (d, e)-pair is updated to (d2, e2), where

d2 = e1, 0 < e2 ≤ 3e1. Then it is easy to see that,

−2e1 ≤ d2 − e2 < e1.

Hence the next sub-step is in Sa = {S0, S1, S2, S3} with the probability 1/3 and it will be

in Sb = {S4, S5, S6, S7} with the probability 2/3. Suppose the algorithm enters one of Sa.

Then,

−e1 < 4e2 − d2 ≤ 11e1.

Hence the next step is again S0 with the probability 11/12.

Pr(S0|S0) =
1

3

11

12
=

11

36
,

Since d2 = e1 is even with the probability 1/2, the next step is S1 with the probability,

Pr(S1|S0) =
1

3
· 1

12
· 1
2

=
1

72
.

Similarly,

Pr(S2|S0) =
1

3
· 1

12
· 1
2
· 1
2

=
1

144
.

It is clear that,

Pr(S3|S0) = Pr(S2|S0) =
1

144
.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 111

Suppose the algorithm enters the second half, Sb. Then,

0 < e1 ≤ 4d2 − e2 < 4e1.

Therefore, the next step must be S4. Hence,

Pr(S4|S0) =
2

3
,

P r(S5|S0) = 0,

P r(S6|S0) = 0,

P r(S7|S0) = 0.

This shows that some sub-steps are not reachable from some sub-steps as well as some

sub-steps are preferred than the others. In above example, S0 and S4 are executed after S0

with dominating probability.

Transition from S1

Suppose that (d1, e1) are the values of (d, e) before entering S1. Then (d1, e1) must meet

the condition, 4e1 < d1 and d1 is even. After executing sub-step S1, (d, e)-pair is updated to

(d2, e2), where d2 = d1/2 and e2 = e1. Then it must be the case that,

0 < e1 < d2 − e2.

Hence the next sub-step must be in Sa. However, the upper bound of d1 is not defined. Thus,

we cannot compute Pr(S0|S1). Say,

Pr(S0|S1) = s1,

where 0 ≤ s1 ≤ 1. Suppose 4e2 < d2. Then the next sub-step must be either S1 or S2. Note

that S3 cannot occur since d1 and e1 cannot have 2 as a common factor due to lines 2-4 of

Algorithm 3.3. Since d2 is even with the probability 1/2,

Pr(S1|S1) = Pr(S2|S2) =
1− s1

2
.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 112

Transition from S2

Suppose that (d1, e1) are the values of (d, e) before entering S2. Then (d1, e1) must meet the

condition, 4e1 < d1 and both d1 and e1 are odd. After executing sub-step S2, (d, e)-pair is

updated to (d2, e2), where d2 = (d1 − e1)/2 and e2 = e1. Then it must be the case that,

0 <
e1
2
< d2 − e2.

Hence the next sub-step must be in Sa. Since we do not know the upper bound of d1, we

cannot compute Pr(S0|S2). Say,

Pr(S0|S2) = s2,

where 0 ≤ s2 ≤ 1. Suppose 4e2 < d2. Then the next sub-step must be either S1 or S2.

Therefore,

Pr(S1|S2) = Pr(S2|S2) =
1− s2

2
.

Transition from S3

Suppose that (d1, e1) are the values of (d, e) before entering S3. Then (d1, e1) must meet the

condition, 4e1 < d1, where d1 is odd and e1 is even. After executing sub-step S3, (d, e)-pair is

updated to (d2, e2), where d2 = e1/2 and e2 = d1. Then it must be the case that,

d2 − d2 < −
7

2
e1 < 0.

Hence, the next sub-step must be in Sb. Since,

4d2 − e2 < −2e1 < 0,

the next sub-step cannot be S4. S5 cannot occur since e2 = d1 is odd. The remaining sub-

steps S6 and S7 occur with equal probabilities, 1/2.

Pr(S6|S3) = Pr(S7|S3) = 0.5.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 113

Transition from S4

Suppose that (d1, e1) are the values of (d, e) before entering S4. Then (d1, e1) must meet the

condition, d1 ≤ e1 ≤ 4d1. After executing sub-step S4, (d, e)-pair is updated to (d2, e2), where

d2 = d1 and e2 = e1 − d1. Then it must be the case that,

−2d1 ≤ d2 − e2 ≤ d1.

Hence, the next sub-step belongs to Sa with the probability 1/3 and Sb with the probability

2/3. Suppose that the next sub-step is in Sa. Since

−d1 ≤ 4e2 − d2 ≤ 11d1,

the next sub-step is S0 with the probability,

Pr(S0|S4) =
1

3
· 11
12

=
11

36
.

The probability that d2 is even is 1/2. Thus,

Pr(S1|S4) =
1

3
· 1

12
· 1
2

=
1

72
.

The probability that e2 is odd is 1/2. Therefore,

Pr(S2|S4) = Pr(S3|S4) =
1

3
· 1

12
· 1
2
· 1
2

=
1

144
.

Suppose that the next sub-step is in Sb. Since

0 < d1 ≤ 4d2 − e2 ≤ 4d1,

the next sub-step must be S4. Therefore,

Pr(S4|S4) =
2

3
.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 114

Transition from S5

Suppose that (d1, e1) are the values of (d, e) before entering S5. Then (d1, e1) must meet

the condition, 4d1 < e1 and e1 is even. After executing sub-step S5, (d, e)-pair is updated to

(d2, e2), where d2 = e1/2 and e2 = d1. Then it must be the case that,

0 < d1 < d2 − e2.

Hence the next sub-step must be in Sa. However, we cannot compute Pr(S0|S5), since we do

not know the upper bound of e1. Say,

Pr(S0|S5) = s5,

where 0 ≤ s5 ≤ 1. Suppose 4e2 < d2. Then the next sub-step must be either S1 or S2, since

entering S3 requires that e1 and d1 be both even. Therefore,

Pr(S1|S5) = Pr(S2|S5) =
1− s5

2
.

Transition from S6

Suppose that (d1, e1) are the values of (d, e) before entering S6. Then (d1, e1) must meet the

condition, 4d1 < e1 and both d1 and e1 are odd. After executing sub-step S6, (d, e)-pair is

updated to (d2, e2), where d2 = (e1 − d1)/2 and e2 = d1. Then it must be the case that,

0 <
d1

2
< d2 − e2.

Hence, the next sub-step must be in Sa. Since there is no upper limit for e1, we cannot

compute Pr(S0|S6). Say,

Pr(S0|S6) = s6,

where 0 ≤ s6 ≤ 1. Suppose 4e2 < d2. Then the next sub-step must be either S1 or S2, since

entering S3 would mean that d1 is even, which contradicts the assumption. Therefore,

Pr(S1|S6) = Pr(S2|S6) =
1− s6

2
.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 115

Transition from S7

Suppose that (d1, e1) are the values of (d, e) before entering S7. Then (d1, e1) must meet

the condition, 4d1 < e1, e1 is odd and d1 is even. After executing sub-step S7, (d, e)-pair is

updated to (d2, e2), where d2 = d1/2 and e2 = e1. Then it must be the case that,

d2 − e2 < −
7

2
d1 < 0.

Hence, the next sub-step must be in Sb. Since,

4d2 − e2 < −2d1 < 0,

the next sub-step cannot be S0. Moreover S5 cannot occur since e2 = e1 is odd. It is straight-

forward that the remaining sub-steps S6 and S7 occur with equal probabilities, 1/2.

Pr(S6|S7) = Pr(S7|S7) = 0.5.

7.2.2 Statistical Behavior of Algorithm 3.3

By the arguments above, the transition matrix B = [b(i, j)], where b(i, j) = P (Sj|Si) for i, j ∈
[0, 7], is computed as follows,

B =



















0.30056 0.01389 0.00694 0.00694 0.66667 0 0 0

s1
1−s1

2
1−s1

2 0 0 0 0 0

s2
1−s2

2
1−s2

2 0 0 0 0 0

0 0 0 0 0 0 0.5 0.5

0.30056 0.01389 0.00694 0.00694 0.66667 0 0 0

s5
1−s5

2
1−s5

2 0 0 0 0 0

s6
1−s6

2
1−s6

2 0 0 0 0 0

0 0 0 0 0 0 0.5 0.5



















,

for some s1, s2, s5, s6 where 0 ≤ s1, s2, s5, s6 ≤ 1. It is clearly seen that some steps cannot

be reached from other steps. For example, step S5, S6 and S7 cannot follow the step S0.

Note that the above analysis may give imprecise results, since we made some assump-

tions that may be invalid. For example, in our analysis, we assumed that d1 takes on a value

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 116

Table 7.2: Sub-step Probabilities

Sub-step Probabilities

P (S0) = 0.361 P (S1) = 0.129 P (S2) = 0.132 P (S3) = 0.042
P (S4) = 0.251 P (S5) = 0.000 P (S6) = 0.043 P (S7) = 0.042

in range (e1, 4e1] with uniform probability at the beginning of step S0. Similar assumption

was applied to the step S4. In fact, initially d ≈ e. Therefore, our analysis is not precise for

the first and the fourth row of B.

We have performed an experiment to determine the values of P (Si|Sj) for all combina-

tions of i, j ∈ [0, 7]. The following sub-step transition matrix B = [b(i, j)] shows our experi-

mental results,

B =



















0.336 0.062 0.038 0.056 0.507 0.0 0.0 0.0

0.394 0.302 0.304 0.0 0.0 0.0 0.0 0.0

0.453 0.273 0.274 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.503 0.497

0.505 0.043 0.090 0.087 0.274 0.0 0.0 0.0

0.499 0.248 0.253 0.0 0.0 0.0 0.0 0.0

0.054 0.470 0.473 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.503 0.497



















. (7.4)

Note that more than half of the elements in matrix B are zeros. This implies that some

combinations of sub-step sequences never occur. Even though there does not appear to be

an easy way to prove all the probabilities in matrix B, all of the zero entries can be easily

proven. The zero occurrences in B are important. No matter how small the probability is.

It will be shown in Section 7.3 that the exact values of probability are not important.

Table 7.2 shows probabilities of each sub-step. The results in Table 7.2 can be obtained

by computing the steady state vector usingB. Note that the probability P (S5) is shown to be

zero in Table 7.2, but it is not exactly zero. This is because the sub-step S5 can appear only

once at the beginning and it does if only if the input exponents a and b satisfy the condition,

a > 4b. We observe from the matrix B that no sub-step can be followed by S5. Hence S5 must

appear only once at the beginning of sub-step sequence.

We have determined P (Q1Q2 · · ·Qn) up to n = 4 to identify impossible sub-step se-

quences, and we list them in Table 7.3. Only the sub-step sequences that are not obvious

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 117

Table 7.3: Impossible Sub-step Sequences

Impossible sub-step sequences

S0S4S4S4 S4S4S4S4

S1S0S0, S1S0S1 S5S0S0, S5S0S1

S1S0S2, S1S0S3, S1S0S4S1 S5S0S2, S5S0S3, S5S0S4S1

S2S0S1, S2S0S2, S2S0S3 S6S0S1, S6S0S2, S6S0S3

S2S0S0S2, S2S0S0S4, S2S0S4S1 S6S0S0S2, S6S0S0S4, S6S0S4S1

S3S6S0S0, S3S7S6S0 S7S6S0S0, S7S7S6S0

from the matrix B are listed in Table 7.3.

Graphical representation of our Markov chain model is given in Figure 7.1. Notice that

there is no path leading to S5. Thus, our Markov chain model is not irreducible. For our

purpose, we can simply ignore S5, since it can only occur once in the beginning of the algo-

rithm.

7.2.3 Determining f2, f3 and Sub-step Sequence

Determining f2 and f3 is quite simple. In lines 18 and 19, the algorithm uses f2 times of D

and f3 times of T . Hence, we only need to count these operations to determine the values of

f2 and f3. Alternatively, we can determine them at lines 3 and 6 by counting the number of

bit shifts and divisions by 3, though this seems to be harder.

Apparently, there seems to be no easy way to analyze the expected number of tries until

the correct key pair is found. Moreover the fact that there are many impossible sub-step

sequences listed in 7.3 makes things even more complicated. Nevertheless, if we take into

account only the impossible sub-step sequences S1S0S3, S2S0S3, S5S0S3, S6S0S3, we can com-

pute the expected number of possible exponent pairs for a randomly given elementary XTR

operation sequence. For example, let S1 be the current sub-step and the next elementary

XTR sequence to be processed is ADD, then there are only 2 possible choices for determin-

ing the next sub-step: S1 or S2. The sub-step sequence S0S3 also leads to ADD but S1S0S3

is an impossible sequence.

We give all the detailed calculations in Table 7.4. The third column of Table 7.4 lists

P (q|Si)’s, the probabilities of observing elementary XTR operation sequence q after sub-step

Si, for i = 0, . . . 7 and q = A(A) (an A which is not directly followed by DD), ADD (which

comes from a single sub-step or two consecutive sub-steps) and DD. The fourth column lists

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 118

(ADD)

S5

(DD)

S6

S0
(A) (A)

S4

S7

(ADD)

S1

(ADD)

S2

(ADD)

S3

(DD)

Figure 7.1: State Transition Diagram of Sub-steps

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 119

Table 7.4: Expected Number of Choices at a Sub-step

Si q P (q|Si) # Choices E(# Choices|Si) E(# Choices|Si) · P (Si)

S0 A(A) 0.780 2

ADD 0.163 4 2.269 0.819

DD 0.057 1

S1 A(A) 0.394 1 1.606 0.207

ADD 0.606 2

S2 A(A) 0.450 1 1.550 0.205

ADD 0.550 2

S3 ADD 1.000 2 2.000 0.084

S4 A(A) 0.700 2

ADD 0.212 4 2.337 0.587

DD 0.088 1

S5 A(A) 0.501 1 1.499 0.000

ADD 0.499 2

S6 A(A) 0.054 1 1.946 0.084

ADD 0.946 2

S7 ADD 1.000 2 2.000 0.084

Expected # of choices for each sub-step 2.069

the number of possible choices for the next sub-step given a current sub-step Si and one of

A(A), ADD or DD, the next elementary XTR operation sub-sequence.

Now, using the sub-step probabilities in Table 7.2 and the number of multiplications for

sub-steps in Tables 3.1 and 3.2, the average number of multiplications required for each

sub-step is easily calculated to be 4.426. Since the average number of multiplication re-

quired for Algorithm 3.3 is conjectured to be 6 log2 max(a, b) as in Conjecture 1, the aver-

age number of sub-steps required in one double exponentiation is 6 log2 max(a, b)/4.426 =

1.356 log2 max(a, b). The expected size of search space is 2.0691.356 log2 U = U1.422 for a ran-

domly given sub-step sequence. If we utilize more impossible cases from Table 7.3, the

search space will be reduced significantly.

We have experimentally determined the average number of tries required for a randomly

given XTR operation sequence. Figure 7.2 shows the results. The slope of the line, for which

only four impossible cases are considered, is determined to be about 1.418 showing that our

calculation is quite close to the correct value. The slope of the other line, for which we used

all impossible cases in Table 7.3, is determined to be about 1.25. Even though the range of

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 120

All impossible cases used
Only 4 impossible cases used

n = log2 U

lo
g

2
(#

T
ri

e
s)

181614121086420

25

20

15

10

5

0

Figure 7.2: The Average Number of Tries Required and the Size of Search Space

n is limited to 18 only, the graph looks straight enough to believe that it takes about U1.25

tries until the correct key pair is found for longer size exponents.

7.2.4 Determining d at Line 17 of Algorithm 3.3

Let us denote d at line 17 of Algorithm 3.3 by g. Suppose an adversary somehow knows

that g = 1, then he/she will just ignore Line 17 since no computation occurs there. However

if g 6= 1 he/she has to determine the exact value of it by attacking Algorithm 3.2, or attack

Algorithm 3.3. This could be an obstacle especially if g is large. However we have found that

g is very small in most cases. In fact, our rigorous calculation shows that g = 1 occurs about

91.2% of the time and the expected value is only 34.14 assuming 160-bit input exponents.

Let us denote d at line 17 of Algorithm 3.3 by g and (d, e) after line 8 by (d′, e′). Then it is

not difficult to see that g = gcd(d′, e′). In the following subsections, we rigorously calculate

Pr(gcd(d′, e′) = 1) and the expected value of gcd(d′, e′). In our computations, we assume

that 1 ≤ d′, e′ ≤ n, unless otherwise specified.

Suppose that we pick two integers a and b independently and randomly from interval

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 121

[1, n]. Then, for large n, it is easily seen that the probability that p divides gcd(a, b) is,

P (p| gcd(a, b)) = P (p|a)P (p|b) =

(⌊n/p⌋
n

)2

≈ 1

p2
, (7.5)

where p ∈ [1, n]. We define pi to be the i-th prime number, i.e., p1 = 2, p2 = 3, etc. Then,

P (g = 1) =

s∏

i=3

P (pi ∤ gcd(a, b)) ≈
s∏

i=3

(

1− 1

p2
i

)

, (7.6)

where ps is the largest prime number in [1, n]. Note that the product in (7.6) begins from

i = 3, since there is no common factor of 2 or 3 between d′ and e′.

It is well-known that the probability of choosing two co-primes from infinite interval is

[ζ(2)]−1 = 6/π2, where ζ(z) is the Riemann zeta function. For large n,

P (gcd(a, b) = 1) ≈
s∏

i=1

(

1− 1

p2
i

)

≈ 6

π2
. (7.7)

Therefore,

P (g = 1) ≈ P (gcd(a, b) = 1)

(1− 1/p2
1)(1 − 1/p2

2)

≈ 6/π2

(1− 1/22)(1 − 1/32)
≈ 9

π2
= 0.91189.

(7.8)

Now, we compute the expected value of gcd(a, b). Let E(x) denote the expected value of

x. Then,

E(g) =
n∑

x=1

x · P (g = x)

=
∑

p
k3

3
p

k4

4
···pks

s ≤n

pk33 p
k4
4 · · · pks

s P (g = pk33 p
k4
4 · · · pks

s),
(7.9)

where 0 ≤ ki ≤ ⌊logpi
n⌋ for i = 3, . . . , s. Since having pki

i as a common factor and p
kj

j as a

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 122

common factor are independent events if i 6= j,

P (g = pk33 p
k4
4 · · · pks

s) =
s∏

l=3

P (pkl

l |g ∩ pk
l+1
l ∤ g)

≈
s∏

l=3

(
1

p2
l

)kl

·
(

1− 1

p2
l

)

.

(7.10)

Substitute (7.10) in (7.9) to get,

E(g) ≈
∑

p
k3

3
p

k4

4
···pks

s ≤n

s∏

l=3

1

pkl

l

·
(

1− 1

p2
l

)

≈ 9

π2
·

∑

p
k3

3
p

k4

4
···pks

s ≤n

1

pk33 p
k4
4 · · · pks

s

≈ 9

π2
· Zn,

(7.11)

where,

Zn =

⌊(n−1)/6⌋
∑

i=0

1

6i+ 1
+

⌊(n−5)/6⌋
∑

i=0

1

6i+ 5
. (7.12)

Let Hn be the n-th harmonic number, Hn =
∑n

i=1 1/i and let H ′
n be defined as,

H ′
n =

n∑

i=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · · . (7.13)

It is well-known that H ′
n = ln 2 + (−1)n[H(n−1)/2 −Hn/2] ≈ ln 2 for large n. Then it is not too

hard to prove that,

Zn ≈
Hn

2
−
Hn/3

6
+

ln 2

3
. (7.14)

Since Hn ≈ lnn+ γ + 1/2n, where γ is Euler-Mascheroni constant,

Zn ≈
ln(12n2)

6
+
γ

3
. (7.15)

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 123

The numerical value of γ is,

γ ≈ 0.577215664901532860606512090082402431042 . . .

However, since Zn is a partial sum of harmonic series, error may accumulate due to the

approximation in (7.5). If we use exact probability P (p|a) = ⌊n/p⌋/n, we have better approx-

imation for Zn, which we denote Z ′
n.

Z ′
n ≈

∑

p
k3

3
p

k4

4
···pks

s ≤n

s∏

i=3

⌊n/pi⌋ki

nki

= 1 +
⌊n/5⌋
n

+
⌊n/7⌋
n

+
⌊n/11⌋
n

+
⌊n/13⌋
n

+
⌊n/17⌋
n

+
⌊n/19⌋
n

+
⌊n/23⌋
n

+
⌊n/5⌋2
n2

+
⌊n/29⌋
n

+
⌊n/31⌋
n

+
⌊n/5⌋ · ⌊n/7⌋

n2
+ · · ·

= 1 +
⌊n/5⌋
n

+
⌊n/7⌋
n

+
⌊n/11⌋
n

+
⌊n/13⌋
n

+
⌊n/17⌋
n

+
⌊n/19⌋
n

+
⌊n/23⌋
n

+
⌊n/25⌋
n

+
⌊n/29⌋
n

+
⌊n/31⌋
n

+
⌊n/35⌋
n

=
1

n





⌊(n−1)/6⌋
∑

i=0

⌊
n

6i+ 1

⌋

+

⌊(n−5)/6⌋
∑

i=0

⌊
n

6i+ 5

⌋


 .

(7.16)

Then the difference between Zn and Z ′
n is,

En = Zn − Z ′
n

≈ 1

n

(
n mod 5

5
+
n mod 7

7
+
n mod 11

11
+
n mod 13

13
+ · · ·

)

.
(7.17)

Due to de la Vallée Poussin [20],

γ = lim
n→∞

1

n
·
n∑

i=1

(⌊n

i

⌋

− n

i

)

. (7.18)

Using this fact, it is not too hard to prove that En ≈ (1− γ)/3. Therefore,

E(g) ≈ 9

π2
· Z ′

n =
3

π2

(
ln(12n2)

2
+ 2γ − 1

)

. (7.19)

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 124

Hence, for n = 2160, E(g) ≈ 34.135.

We have tried to validate these results experimentally. We picked 106 set of randomly

integers a and b from interval [1, 2160], where a and b do not have 2 and 3 as common factors.

Then we counted the number of occurrences of gcd(a, b) = 1. The estimated probability was

consistently about 0.9119.

For the validation of the expected valueE(g), we tried to average the GCD’s from the first

experiment, but it turned out that the number of experiment, 106, is too small compared to

n = 2160. As a result we could only get unstable average values between 3 and 4. So, we used

a small value of n. Figure 7.3 compares the actual average values of gcd(d′, e′) and expected

values computed from (7.19) for n ≤ 10000.

Expected
Actual

n

E
(g

cd
(d

′
,e

′
))

100009000800070006000500040003000200010000

3.4

3.2

3

2.8

2.6

2.4

2.2

2

1.8

Figure 7.3: Comparison Between Actual Values and (7.19)

We observe from Figure 7.3 the small, but noticeable difference between actual values

and expected values computed from (7.19). However, the error is very small. According to

Figure 7.4 we can see that ǫ converges to a constant value between 0.035 and 0.040.

Suppose that Algorithm 3.2 is used at line 17. It is easy enough to see from the de-

scription of Algorithm 3.2 that an adversary can determine the bit length and the least

significant bit of g. Note that to make Algorithm 3.1 resistant against side channel attack,

the elementary XTR operation sequences for the two cases in lines 5 and 9 should be identi-

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 125

Error

n

E
x
p

e
ct

e
d

V
a

lu
e

-
A

ct
u

a
l

V
a

lu
e

100009000800070006000500040003000200010000

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

Figure 7.4: Error Between Actual Values and (7.19)

cal [53]. The bit length of g can be obtained by counting the number of repetitions of ADD,

DAD or DDA during the execution of Algorithm 3.1. If Algorithm 3.2 is used at line 17, an

adversary has to attack Algorithm 3.3 recursively.

7.2.5 Determining Boundaries Between Steps

We now discuss whether it is possible to determine the exact boundaries between steps in

Algorithm 3.3 by observing an elementary XTR operation sequence.

• When d = 1 at line 17

If d = 1, no elementary XTR operation is performed. The elementary XTR operation

sequence from line 16 to the end of the algorithm will then look like:

ADD · · ·D
︸ ︷︷ ︸

f2

TT · · ·T
︸ ︷︷ ︸

f3

.

Since operation T can only occur at line 19, it can be clearly identified. Whether f2 = 0

or not, one needs to look for the last A. Then it must be from line 16. Operation D’s

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 126

between A and T are from line 18. Since d = 1 happens about 91.2% of the time,

boundaries between steps can be found easily in most cases.

• d 6= 1 and Algorithm 3.2 is used at line 17

Suppose lines 5 and 9 in Algorithm 3.1 leave elementary XTR operation sequence

ADD (DAD and DDA are also possible but they all lead to the same result). Then the

elementary XTR operation sequence from line 16 to the end of the algorithm will look

like:

ADADDADD · · ·ADD
︸ ︷︷ ︸

⌊log2 (d)⌋

DD · · ·D
︸ ︷︷ ︸

f2

TT · · ·T
︸ ︷︷ ︸

f3

.

Note that the first D occurs when constructing S1(cu+v) from cu+v. An adversary can

clearly determine that d 6= 1, if he/she observes the sequence AD followed by A. Note

that the operation A from line 4 of Algorithm 3.1 never occurs, since d at line 17 cannot

be a multiple of 2.

• d 6= 1 and Algorithm 3.4 is used at line 17

In this case, there appears to be no easy way to locate the boundaries between steps

and an exhaustive search is needed for the value of d by trying from the smallest

possible one. Note that the adversary only has to try values that are not multiple of 2

or 3.

Therefore we conclude that boundaries between steps are exactly identified if Algorithm 3.2

is used. If Algorithm 3.2 is used for line 17, it is not clear how to determine the boundaries.

In that case, exhaustive search has to be done. Note that this does not seriously harm the

effectiveness of the attack. Using the fact that d = 1 occurs 91.2% of the time and that

the probability significantly decreases as d increases, it is expected that an attacker should

guess the exact d by trying only a few values.

7.3 Effectiveness of Markov Chain Method

In [67], Oswald shows how the Markov chain method can help enhancing simple power

analysis attacks on elliptic curve point multiplication algorithms. However such a method

is not very useful for the attack described here.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 127

In [67], it was possible to partition an elliptic curve operation sequence into several

partitions of small lengths such that only 3-bit patterns are possible for each partition.

Using this weakness, Oswald could prune significant number of spurious keys. However,

apparently there is no such a weakness found in Algorithm 3.3.

In fact, we have found that the Markov method itself may not be so effective in practice as

it is claimed. According to [67], an elliptic curve operation sequence resulted from the point

multiplication algorithm [62] are broken into length-l partitions, where for each partition

only 3-bit patterns are possible. Hence, an adversary has to try all 33n/2l keys in the worst

case, where n is the bit length of the key. According to [67], one of the 3 bit patterns occurs

with probability 1/2 and the others 1/4 each. However, it has been reported in [67] that,

when an adversary takes into account the probabilities for the 3-bit patterns, the expected

number of tries is 23n/2l, which appears to be incorrect.

Suppose that there are k partitions. We assume that an adversary always tries from the

highest probable keys to the least probable one. When k = 1, the expected number of tries in

this case is 1 = 1·1/2+2·1/4 (If the first two tries fail, the third one must be the correct key).

Now, suppose that there are two partitions, i.e., k = 2. Note carefully that an adversary can

only test complete keys but not partial key bits, since it is assumed that the adversary only

knows a plaintext/ciphertext pair. The expected number of tries in this case is calculated as

3.3125 = (1/2)2 + (2 + 3 + 4 + 5) · (1/2)(1/4) + (6 + 7 + 8) · (1/4)2.

Since it is difficult to generalize this calculation for any k, we used computer program to

do this calculation up to k = 50 partitions and Figure 7.5 shows the result.

We easily see from Figure 7.5 that the difference between the average and the worst

cases is not very significant and our calculation is far from that of [67]. For l = 16 and

n = 163, the number of partitions is 15.28. In such a case, the expected number of tries is

about 222 as shown in Figure 7.5. However in [67], it has been reported that the expected

number of tries is 215.28, which does not match with our result.

Nevertheless, Figure 7.5 shows an evidence that the Markov method does result in a

significant exponential improvement for cases such as one pattern occurs with very high

probability, but the others very small probability. In such a case, as seen from Figure 7.5,

the Markov method significantly saves the number of tries. The result implies that the

Markov method is useful only when the probabilities are significantly ‘skewed’.

The Markov method may not be useful for the attack described here, as the probabilities

for sub-steps (see Table 7.2 and the matrix B in section 7.2) do not appear to be skewed

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 128

p1 = 0.9, p2 = p3 = 0.05
Oswald’s Claim (2k)

Worst Case (3k)
Average Case

k (#Partitions)

lo
g
2

(#
T

ri
e
s)

50454035302520151050

80

70

60

50

40

30

20

10

0

Figure 7.5: Number of Tries

enough. Moreover it would be infeasible to sort all the exponential number of spurious keys

according to their probabilities.

7.4 Extension to Single Exponentiation Algorithms

Our cryptanalysis result can be directly applied to Algorithm 4.2 in [77] and Algorithm 3.4.

Note that the side channel attack is meaningful only if it is applied to single exponentia-

tion algorithms, but not the double exponentiation algorithms. Since double exponentiation

algorithms are usually used in signature verification [66, 23, 65], all the input values to a

double exponentiation algorithm are public information. However, Algorithm 3.3 is used for

the efficient implementation of single XTR exponentiation algorithms.

• Algorithm 4.2 in [77]

Suppose the input exponent U is n bits long. Then the exponent is split into two n/2-

bit integers. These two integers are the input exponents to Algorithm 3.3. Therefore

our cryptanalysis is expected to take
√
U

1.25
= U0.625 tries until the correct exponent is

found.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 129

• Algorithm 3.4

Suppose the input exponent U is n bits long. Exponent is split into two integers a

and b at step 1, but they have almost the same bit length as U . However, according

to Proposition 2, for the first logΦ

√
U iterations, where Φ = (3 −

√
5)/2, only S0 is

executed and the values of d and e reduce to about
√
U after first logΦ

√
U iterations.

This means one only needs to attack the second half of the algorithm. Therefore it

takes about U0.625 tries until the correct exponent is found.

7.5 Other Researchers’ Results

Since the availability of this work [14] in public domain, other researchers have also tried

to attack XTR cryptosystems in various ways.

In [31], Han et. al. show that Algorithm 3.2 is vulnerable to SPA, data-bit DPA [18],

address-bit DPA [36] and doubling attack [24]. They also propose countermeasures for these

attacks. The field isomorphism method is proposed to thwart data-bit DPA and doubling

attack, but it slows down the performance about 129 times for 170-bit p. In [30], Han et.

al. apply the refined power analysis attack [27] and the zero-value attack [2] to attack

Algorithm 3.2. They propose random exponent splitting method as a countermeasure, but

it nearly doubles the computation time. However, in [9], Bevan shows that all of the input

values used in [30] in attacking Algorithm 3.2 are not valid. Moreover, Bevan shows that

Algorithm 3.2 becomes a finite state machine for the input values that are used in [30].

In [69], the authors use the same approach as ours, but have obtained a better results.

According to their experiments, it takes on average U1.09 tries to find correct exponent pairs

(d, e). For single exponentiation, U0.55 tries are required on average. Unfortunately, no

details are given on how their experiments have been conducted. They propose several SPA

and DPA counter measures for Algorithms 3.2 and 3.3.

In [16], fault analysis attacks [10, 11, 39, 89] on Algorithm 3.2 are discussed. They

consider four plausible situations where fault may harm the security of XTR cryptosystems;

1) random bit-fault on a random Sk(c), 2) random faults on a chosen ci, 3) erasing faults on

a coordinate of ck+1 of a random Sk(c), 4) random bit-faults on the secret exponent.

In [32], the authors use simple side channel attack on Algorithm 3.3. They use additional

assumption that adversaries can detect whether the operands are equal in twoD operations.

They conclude that about 240 tries are required to break Algorithm 3.3 for 160-bit exponents.

CHAPTER 7. SIDE CHANNEL ATTACK ON XTR CRYPTOSYSTEMS 130

7.6 Conclusions

In this chapter, we have analyzed the XTR double exponentiation algorithm against a side

channel attack using an assumption that an adversary has the ability to distinguish be-

tween multiplication and modular reduction (or Montgomery reduction). We have applied

the Markov chain model used in [67] to obtain statistical behavior of Algorithm 3.3. Our

analysis shows that U1.25 tries on average where U = max(a, b) are needed to find the cor-

rect exponent pair (a, b) for Algorithm 3.3. It immediately follows that an adversary is

expected to make U0.625 tries on average until he/she finds the correct input exponent to

Algorithm 4.2 in [77] and Algorithm 3.4. We also remark that the Markov chain model

presented in [67] may not be useful in the attack described here.

We remark that the side channel attack shown in this chapter is not computationally

better than well-known square-root type algorithms (baby step giant step or Pollard’s Rho

algorithms). Such square-root algorithms require only O(
√
U) efforts. However, our results

are obtained under a very simple assumption. More sophisticated attackers may be able

to extract more information from side channel leakages, and further research has yet to be

done.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, low-weight polynomial form integers (LWPFIs) have been introduced to devise

an efficient modular multiplication method. In addition, new squaring formulae based on

the Toom-Cook multiplication algorithm and a side channel attack on XTR cryptosystems

have been presented.

In Chapter 4, LWPFI are defined as a family of integers expressed in polynomial form

p = f(t), where t is a positive integer and f(t) is a monic polynomial whose coefficients are

limited to 0 and ±1. Our analysis shows that LWPFI modular multiplication has better

asymptotic behavior than other general modular reduction methods. Our implementation

results show that LWPFI modular multiplication is faster than Montgomery reduction for

moduli of large sizes. We have shown techniques that can speed up LWPFI modular multi-

plication.

In Chapter 5, we have slightly extended the low-weight polynomial form integers. Im-

proved coefficient reduction algorithm based on the Montgomery reduction algorithm and

its analysis results have been presented. The bound on the input and output has been an-

alyzed and the conditions for eliminating the final subtractions have been determined. We

have also presented methods for performing additions and subtractions modulo an LWPFI

in a carry/borrow-free manner. We have also considered applying our coefficient reduction

algorithm to modular number systems proposed by Bajard et. al. but have not been able to

find a good F for efficient coefficient reduction.

131

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 132

GMN or pseudo-Mersenne number based modular multiplication would be faster than

LWPFI based one, however there are not that many GMNs and pseudo-Mersenne numbers.

LWPFI has its advantage that the implementation does not have to be specific to a single

modulus and that LWPFI provides a considerably larger choice of moduli than GMN. Hence,

one may consider LWPFI as a trade-off between general integer and other special type of

moduli such as GMNs and pseudo-Mersenne numbers.

In Chapter 6, we have presented new 3-way polynomial squaring formulae. Our squar-

ing squaring formulae enhance modular squaring modulo an LWPFI, since the first step of

modular multiplication using an LWPFI moduli is a multiplication in Z[x]/f(t). Our squar-

ing formulae are based on the Toom-Cook multiplication algorithm and they require the

same number of coefficient multiplications used in the Toom-Cook multiplication algorithm.

However, our 3-way formulae have less amount of overhead than the best known 3-way

Toom-Cook multiplication algorithm. Moreover, our formulae do not require any nontrivial

constant divisions which always occur in all n-way Toom-Cook multiplication algorithms

for n ≥ 3. Our experimental results confirm that one of our 3-way formulae is superior to

GMP’s squaring routine for squaring integers of size 2300–6900 bits on Pentium IV 3.2GHz.

Moreover, according to our implementation results, our squaring formulae are the best for

squaring degree-2 polynomials in Z[x] whose coefficients are shorter than 1216 bits on the

same processor. However, symmetric squaring algorithms are advantageous for squaring

very large size operands, since our asymmetric squaring algorithms use at least one point-

wise multiplication that cannot be computed by squaring.

In Chapter 7, we have attempted a side channel attack on XTR exponentiation algo-

rithms under the assumption that an adversary has the ability to distinguish between mul-

tiplication and modular reduction (or Montgomery reduction). We have shown that an ad-

versary is expected to make about U1.25 tries on average where U = max(a, b) to find the

correct exponent pair (a, b) for Algorithm 3.3. It immediately follows that an adversary is

expected to make U0.625 tries on average until he/she finds the correct input exponent to Al-

gorithm 3.4 and Algorithm 4.2 in [69]. We remark that the Markov chain model presented

in [67] may not be useful in the attack described here.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 133

8.2 Future Work

• In this thesis, methods for modular addition, subtraction and multiplication (squaring)

have been presented. We have not yet developed a method to perform modular inver-

sion using LWPFI moduli. It appears that modular inverse computation can hardly

take advantage of the special form moduli. However, it would be interesting to have a

modular inversion algorithm which works on integers represented in polynomial form

in t.

• The security aspect of using LWPFI in cryptography needs to be thoroughly investi-

gated. For instance, it is not known whether LWPFI can be used in RSA cryptosystems

without degrading its security. It is also not known whether LWPFI can be used in the

cryptosystems based on the hardness of the discrete logarithm problem. In [73], it

is conjectured that discrete logarithm problem based on integer moduli having low

Hamming weight is significantly easier than the number field sieve on general mod-

uli. However, this result does not apply to discrete logarithm problem based on LWPFI

moduli, since LWPFIs do not have low Hamming weight.

• There are a number of tricks and enhancement methods for the Montgomery reduction

algorithm. For instance, pipelining of sub-steps in a loop significantly improves the

critical path delay for hardware implementation. We have not thoroughly considered

all techniques with regard to their effective usability in Algorithm 5.2 presented in

Chapter 5.

• Throughout this thesis, only software implementation has been considered. It would

be very interesting to devise hardware architectures for modular multiplication us-

ing LWPFI moduli and integer/polynomial squaring using our asymmetric squaring

formulae.

• It would be very interesting to find a formulae for cubing of a polynomial (or integer)

which can perform faster than multiply-then-square approach.

Bibliography

[1] Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger. Closest point

search in lattices. IEEE Transactions on Information Theory, 48(8):2201–2214, August

2002.

[2] T. Akishita and T. Takagi. Zero-value point attacks on elliptic curve cryptosystem.

In Information Security Conference - ISC 2003, LNCS 2851, pages 218–233. Springer-

Verlag, 2003.

[3] A. Avizienis. Signed-digit number representation for fast parallel arithmetic. IRE

Transaction on Computers, EC-10:389–400, 1961.

[4] Daniel V. Bailey and Christof Paar. Efficient arithmetic in finite field extensions with

application in elliptic curve cryptography. Journal of Cryptology, 14(3):153–176, 2001.

[5] Jean-Claude Bajard, Laurent Imbert, and Thomas Plantard. Modular number sys-

tems: Beyond the Mersenne family. In Selected Areas in Cryptography 2004, LNCS

3357, pages 159–169. Springer-Verlag, 2004.

[6] Jean-Claude Bajard, Laurent Imbert, and Thomas Plantard. Arithmetic operations in

the polynomial modular number system. In Proceedings of the 17th IEEE Symposium

on Computer Arithmetic, ARITH’05, pages 206–213, 2005.

[7] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption

algorithm on a standard digital signal processor. In Advances in Cryptology - CRYPTO

’86, LNCS 263, pages 311–323. Springer-Verlag, 1987.

[8] Daniel Bernstein. Multidigit multiplication for mathematicians, 1991. Available at

http://cr.yp.to/papers/m3.pdf.

134

BIBLIOGRAPHY 135

[9] Régis Bevan. Improved zero value attack on XTR. In ACISP 2005, LNCS 3574, pages

207–217. Springer-Verlag, 2005.

[10] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In

Advances in Cryptology - CRYPTO ’97, LNCS 1294, pages 513–525. Springer-Verlag,

1997.

[11] D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryptographic

protocols for faults. In Advances in Cryptology - EUROCRYPT ’97, LNCS 1233, pages

37–51. Springer-Verlag, 1997.

[12] Wieb Bosma, James Hutton, and Eric R. Verheul. Looking beyond XTR. In Advances

in Cryptology - ASIACRYPT 2002, LNCS 2501, pages 46–63. Springer-Verlag, 2002.

[13] Jaewook Chung and Anwar Hasan. More generalized Mersenne numbers. In Selected

Areas in Cryptography - SAC 2003, LNCS 3006, pages 335–347. Springer-Verlag, 2003.

[14] Jaewook Chung and Anwar Hasan. Security analysis of XTR exponentiation algo-

rithms against simple power analysis attack, 2004. Available at http://www.cacr.

math.uwaterloo.ca/techreports/2004/cacr2004-05.pdf.

[15] Jaewook Chung and M. Anwar Hasan. Low-weight polynomial form integers

for efficient modular multiplication, 2006. To appear in IEEE Transactions

on Computers. Available at http://vlsi.uwaterloo.ca/~ahasan/web_papers/

technical_reports/web_lwpfi.pdf.

[16] Mathieu Ciet and Christophe Giraud. Transient fault induction attacks on XTR. In

ICICS 2004, LNCS 3269, pages 440–451. Springer-Verlag, 2004.

[17] S. A. Cook. On the Minimum Computation Time of Functions. PhD thesis, Harvard

University, May 1966.

[18] J. Coron. Resistance against differential power analysis for elliptic curve cryptosys-

tems. In Cryptographic Hardware and Embedded Systems - CHES ’99, LNCS 1717,

pages 292–302. Springer-Verlag, 1999.

[19] Richard E. Crandall. Method and apparatus for public key exchange in a cryptographic

system (oct. 27, 1992). U.S. Patent # 5,159,632.

BIBLIOGRAPHY 136

[20] C. J. de la Vallée Poussin. Untitled communication. Annales de la Soc. Sci. Bruxelles,

22:84–90, 1898.

[21] Jean-François Dhem. Efficient modular reduction algorithm in Fq[x] and its applica-

tion to “left to right” modular multiplication in F2[x]. In Cryptographic Hardware and

Embedded Systems - CHES 2003, LNCS 2779, pages 203–213, 2003.

[22] Germain Drolet. A new representation of elements of finite fields GF (2m) yielding

small complexity arithmetic circuits. IEEE Transactions on Computers, 47(9), 1998.

[23] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[24] P. A. Fouque and F. Valette. The doubling attack: why upwards is better than down-

wards. In Workshop on cryptographic hardware and embedded systems - CHES 2003,

LNCS 2779, pages 269–280. Springer-Verlag, 2003.

[25] Freescale Semiconductor, Inc. MCF5307 ColdFire, integrated microprocessor user’s

manual, 2005. Available at http://www.freescale.com/files/soft_dev_

tools/doc/ref_manual/MCF5307BUM.pdf.

[26] GNU. GNU multiple precision arithmetic library, 2005. Available at http://www.

swox.com/gmp.

[27] L. Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In Public

Key Cryptography - PKC 2003, LNCS 2567, pages 199–211. Springer-Verlag, 2003.

[28] Torbjörn Granlund. Instruction latencies and throughput for AMD and Intel x86 pro-

cessors, 2005. Available at http://swox.com/doc/x86-timing.pdf.

[29] Gaël Hachez and Jean-Jacques Quisquater. Montgomery exponentiation with no final

subtractions: Improved results. In Cryptographic Hardware and Embedded Systems -

CHES 2000, LNCS 1965, pages 293–301. Springer-Verlag, 2000.

[30] Dong-Guk Han, Tetsuya Izu, Jongin Lim, and Kouichi Sakurai. Modified power-

analysis attacks on XTR and an efficient countermeasure. In ICICS 2004, LNCS 3269,

pages 305–317. Springer-Verlag, 2004.

BIBLIOGRAPHY 137

[31] Dong-Guk Han, Jongin Lim, and Kouichi Sakurai. On security of XTR public key

cryptosystems against side channel attacks. In ACISP 2004, LNCS 3108, pages 454–

465. Springer-Verlag, 2004.

[32] Dong-Guk Han, Tsuyoshi Takagi, Tae Hyun Kim, Ho Won Kim, and Kyo Il Chung.

Collision attack on XTR and a countermeasure with a fixed pattern. In The First In-

ternational Workshop on Security in Ubiquitous Computing Systems - SecUbiq 2005,

LNCS 3823, pages 864–873. Springer-Verlag, 2005.

[33] M. Hasan. Power analysis attacks and algorithmic approaches to their countermea-

sures for Koblitz curve cryptosystems. In Cryptographic Hardware and Embedded

Systems - CHES 2000, LNCS 1965, pages 93–108. Springer-Verlag, 2000.

[34] Seong-Min Hong, Sang-Yeop Oh, and Hyunsoo Yoon. New modular multiplication algo-

rithms for fast modular exponentiation. In Lecture Notes in Computer Science, LNCS

1070, pages 166–177. Springer-Verlag, 1996.

[35] IEEE. P1363: Standard Specification for Public Key Cryptography. Institute of Elec-

trical and Electronics Engineers, 2000.

[36] K. Itoh, T. Izu, and M. Takenaka. Address-bit differential power analysis of crypto-

graphic schemes OK-ECDH and OK-ECDSA. In Workshop on cryptographic hardware

and embedded systems - CHES 2002, LNCS 2523, pages 129–143. Springer-Verlag,

2002.

[37] T. Izu and T. Takagi. A fast parallel elliptic curve multiplication resistant against side

channel attacks. In Public Key Cryptography - PKC 2002, LNCS 2274, pages 280–296.

Springer-Verlag, 2002.

[38] Tudor Jebelean. An algorithm for exact division. Journal of Symbolic Computation,

15:169–180, 1993. Research report version available at ftp://ftp.risc.uni-linz.

ac.at/pub/techreports/1992/92-35.ps.gz.

[39] M. Joye, A. Lenstra, and J. Quisquater. Chinese remaindering based cryptosystems in

the presence of faults. Journal of Cryptology, 12:241–245, 1999.

BIBLIOGRAPHY 138

[40] M. Joye and C. Tymen. Protections against differential analysis for elliptic curve

cryptography-an algebraic approach. In Cryptographic Hardware and Embedded Sys-

tems - CHES 2001, LNCS 2162, pages 377–390. Springer-Verlag, 2001.

[41] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet

Physics Doklady (English translation), 7(7):595–596, 1963.

[42] S. Kawamura, K. Takabayashi, and A. Shimbo. A fast modular exponentiation algo-

rithm. IEICE Transactions, E-74(8):2136–2142, August 1991.

[43] D.E. Knuth. The Art of Comuter Programming, Vol. 2, Seminumerical Algorithms.

Addison-Wesley, 2nd edition edition, 1981.

[44] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203–209, January 1987.

[45] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and

other systems. In Advances in Cryptology - CRYPTO ’96, LNCS 1109, pages 104–113.

Springer-Verlag, 1996.

[46] P. Kocher, J. Jeffe, and B. Jun. Differential power analysis. In Advances in Cryptology

- CRYPTO ’99, LNCS 1666, pages 388–397. Springer-Verlag, 1999.

[47] Werner Krandick and Tudor Jebelean. Bidirectional exact integer division. Journal of

Symbolic Computation, 21:441–455, 1996. Early technical report version available at

ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz.

[48] Arjen K. Lenstra. Using cyclotomic polynomials to construct efficient discrete loga-

rithm cryptosystems over finite fields. In Proceedings of Australian Conference on In-

formation Security and Privacy, pages 127–138. Springer-Verlag, 1997.

[49] Arjen K. Lenstra and H.W. Lenstra Jr. The development of the number field sieve. In

Lecture Notes in Mathematics, 1554, pages 11–42, 1993.

[50] Arjen K. Lenstra, H.W. Lenstra Jr, M.S. Manasse, and J.M. Pollard. The factorization

of the ninth Fermat number. Mathematics of Computation, 61(203):319–349, 1993.

[51] Arjen K. Lenstra and Eric R. Verheul. Key improvements to XTR. In Advances in

Cryptology - ASIACRYPT 2000, LNCS 1976, pages 220–233. Springer-Verlag, 2000.

BIBLIOGRAPHY 139

[52] Arjen K. Lenstra and Eric R. Verheul. An overview of the XTR public key system. In

The Proceedings of the Public Key Cryptography and Computational Number Theory

Conference, 2000.

[53] Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In Advances in

Cryptology - CRYPTO 2000, LNCS 1880, pages 1–19. Springer-Verlag, 2000.

[54] Chae Hoon Lim, Hyo Sun Hwang, and Pil Joong Lee. Fast modular reduction with pre-

computation. In Proceedings of Korea-Japan Joint Workshop on Information Security

and Cryptology (JWISC ’97), pages 65–79, Seoul, 1997.

[55] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

[56] T. Messerges. Using second-order power analysis to attack DPA resistant software.

In Cryptographic Hardware and Embedded Systems - CHES 2000, LNCS 1965, pages

238–251. Springer-Verlag, 2000.

[57] T. Messerges, E. Dabbish, and R. Sloan. Examining smart-card security under the

threat of power analysis attacks. IEEE Transactions on Computers, 51:541–552, 2002.

[58] V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology - CRYPTO

’85, LNCS 218, pages 417–426. Springer-Verlag, 1986.

[59] P. L. Montgomery. Evaluation recurrences of form xm+n = f(xm, xn, xm−n) via Lucas

chains, Jan. 1992. Available at ftp://ftp.cwi.nl/pub/pmontgom/Lucas.pz.gz.

[60] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519–521, 1985.

[61] Peter L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE Trans-

action on Computers, 54(3):362–369, 2005.

[62] F. Morain and J. Olivos. Speeding up the computation on an elliptic curve using

addition-subtraction chains. RAIRO: R. A. I. R. O. Informatique Theorique et Appli-

cations/Theoretical Informatics and Applications, 24:119–129, 1990.

[63] D. Naccache and H. M’Silti. A new modulo computation algorithm. Recherche Opéra-

tionnelle - Operations Research (RAIRO-OR), 24:307–313, 1990.

BIBLIOGRAPHY 140

[64] National Institute of Standards and Technology. Recommended elliptic curves for fed-

eral government use, July, 1999.

[65] K. Nyberg and R. Rueppel. A new signature scheme based on the DSA giving message

recovery. In Proceedings of the First ACM Conference on Computer and Communica-

tions Security (ACM CCS 1993), pages 58–61. ACM Press, 1993.

[66] National Institute of Standards and Technology. Digital signature standard (DSS).

FIPS Publication 186-2, January, 2000.

[67] Elisabeth Oswald. Enhancing simple power-analysis attacks on elliptic curve cryp-

tosystems. In Cryptographic Hardware and Embedded Systems - CHES 2002, LNCS

2523, pages 82–97. Springer-Verlag, 2002.

[68] Elisabeth Oswald and Mangred Aigner. Randomized addition subtractions chains as

a countermeasure against power attacks. In Cryptographic Hardware and Embedded

Systems - CHES 2001, LNCS 2162, pages 39–50. Springer-Verlag, 2001.

[69] Daniel Page and Martijn Stam. On XTR and side-channel analysis. In Selected Areas

in Cryptography - SAC 2004, LNCS 3357, pages 54–68. Springer-Verlag, 2005.

[70] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms over

GF (p) and its cryptographic significance. IEEE Transactions on Information Theory,

24:106–110, 1978.

[71] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[72] Werner Schindler. A timing attack against RSA with the Chinese remainder theorem.

In Cryptographic Hardware and Embedded Systems - CHES 2000, LNCS 1965, pages

109–124. Springer-Verlag, 2000.

[73] Oliver Schirokauer. The number field sieve for integers of low weight. Technical report,

2006. IACR ePrint Archive 2006/107.

[74] Arnold Schönhage and Volker Strassen. Schnelle mutiplikation grosser zahlen. Com-

puting, 7:281–292, 1971.

BIBLIOGRAPHY 141

[75] Oliver Shirokauer. The special function field sieve. SIAM Journal on Discrete Mathe-

matics, 16(1):81–98, 2002.

[76] Jerome A. Solinas. Generalized Mersenne numbers. Technical Report CORR 99-39,

Centre for Applied Cryptographic Research, University of Waterloo, 1999. Available at

http://cacr.uwaterloo.ca/techreports/1999/corr99-39.ps.

[77] Martijn Stam and Arjen K. Lenstra. Speeding up XTR. In Advances in Cryptology -

ASIACRYPT 2001, LNCS 2248, pages 125–143. Springer-Verlag, 2001.

[78] Berk Sunar. A generalized method for constructing subquadratic complexity GF (2k)

multipliers. IEEE Transactions on Computers, 53:1097–1105, 2004.

[79] A. L. Toom. The complexity of a scheme of functional elements realizing the multipli-

cation of integers. Soviet Math, 3:714–716, 1963.

[80] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve

cryptosystems. In Advances in Cryptology - EUROCRYPT 2001, LNCS 2045, pages

195–210. Springer-Verlag, 2001.

[81] C. D. Walter. Sliding windows succumbs to Big Mac attack. In Cryptographic Hardware

and Embedded Systems - CHES 2001, LNCS 2162, pages 286–299. Springer-Verlag,

2001.

[82] C. D. Walter. Some security aspects of the MIST randomized exponentiation algorithm.

In Cryptographic Hardware and Embedded Systems - CHES 2002, LNCS 2523, pages

276–290. Springer-Verlag, 2002.

[83] Colin D. Walter. Montgomery exponentiation needs no final subtractions. Electronics

Letters, 35(21):1831–1832, 1999.

[84] Colin D. Walter. Precise bounds for Montgomery modular multiplication and some

potentially insecure RSA moduli. In Topics in Cryptology - CT-RSA 2002, LNCS 2271,

pages 30–39. Springer-Verlag, 2002.

[85] Colin D. Walter and Susan Thompson. Distinguishing exponent digits by observing

modular subtractions. In Progress in Cryptology - CT-RSA 2001, LNCS 2020, pages

192–207. Springer-Verlag, 2001.

BIBLIOGRAPHY 142

[86] André Weimerskirch and Christof Paar. Generalization of the Karatsuba algo-

rithm for efficient implementations. Technical report, Ruhr-Universität Bochum,

Gemany, 2003. Available at http://www.crypto.ruhr-uni-bochum.de/en_

publications.html.

[87] Shmuel Winograd. Arithmetic Complexity of Computations. CBMS-NSF Regional Con-

ference Series in Applied Mathematics 33. Society for Industrial and Applied Mathe-

matics, 1980.

[88] Huapeng Wu, M. Anwar Hasan, Ian F. Blake, and Shuhong Gao. Finite field multiplier

using redundant representation. IEEE Transactions on Computers, 51(11):1306– 1316,

2002.

[89] S. M. Yen and M. Joye. Checking before output may not be enough against fault-based

cryptanalysis. IEEE Transactions on Computers, 49:967–970, 2000.

[90] Dan Zuras. More on squaring and multiplying large integers. IEEE Transactions on

Computers, 43(8):899–908, August 1994.

Appendix A

Source Codes for SQR3 and

Improved Zimmermann’s 3-way

Toom-Cook Squaring Algorithm

We show the source codes that we used to obtain the experimental results presented in

Section 6.4. The functions mpn_sqr_asymmetric3_n() and mpn_sqr_zimmermann3_n()

have the same interface as the Toom-Cook squaring routine (mpn_sqr_toom3_n()) in GMP.

Since we have referenced Harley’s Toom-Cook squaring routine in GMP 4.1.4 to implement

SQR3, there are some common parts with Harley’s code in the beginning (variable declara-

tion and variable setup) and at the end (overlapping and carry adding up). We store carries

in separate variables (carryA, carryB, carryC, carryD, carryW and tempC) as Harley

did in the Toom-Cook multiplication and squaring routines in GMP 4.1.4.

The argument a is the pointer to the operand of length n ≥ 5. The argument p is a

pointer to memory where result is stored. There must be at least 2n words allocated to p.

The argument ws is a pointer to a working space having at least 6 · ⌈n/3⌉ words.

One can easily replicate the results presented in Section 6.4 by replacing the existing

mpn_sqr_3_n() function in GMP libary with the following codes. Since the following func-

tions become faster than KA for shorter operands than does the 3-way Toom-Cook multipli-

cation in GMP, one needs to change the threshold value (SQR_TOOM3_THRESHOLD) in the file

gmp-mparam.h between KA and 3-way Toom-Cook squaring algorithm to obtain the opti-

mal results. The threshold varies significantly depending on the architecture used and can

143

APPENDIX A. SOURCE CODES 144

be estimated experimentally.

A.1 Source Code for SQR3

#define MSB 1<<(BITS_PER_MP_LIMB-1)

void mpn_asymmetric3_n (mp_ptr p, mp_srcptr a, mp_size_t n, mp_ptr ws)

{

mp_limb_signed_t carryB, carryC, carryD, carryW, tempC;

mp_limb_t *A,*B,*C,*D,*E,*W;

mp_size_t l,l2,l3,l4,l5,ls;

ASSERT (n>=5);

/* Break n words into chunks of size l, l and ls.

* n = 3*k => l = k, ls = k

* n = 3*k+1 => l = k+1, ls = k-1

* n = 3*k+2 => l = k+1, ls = k

*/

{

mp_limb_t m;

l = ls = n / 3;

m = n - l * 3;

if (m != 0)

++l;

if (m == 1)

--ls;

l2 = l * 2;

l3 = l * 3;

l4 = l * 4;

l5 = l * 5;

A = p;

B = ws;

C = p + l2;

D = ws + l2;

E = p + l4;

W = ws + l4;

APPENDIX A. SOURCE CODES 145

}

/* ws = | W | D | B |

p = | E | C | A | */

/* [A] = a_0^2 = S0*/

TOOM3_SQR_REC (A, a, l, W);

/* [E] = a_2^2 = S4 */

TOOM3_SQR_REC (E, a+l2, ls, W);

/* [carryB:B] = a_0 + a_2 */

carryB = mpn_add_n(B, a, a+l2, ls);

if(ls!=l) carryB = mpn_add_1(B+ls, a+ls, l-ls, carryB);

/* [carryD:D] = a_0 + a_1 + a_2, carryD=0,1 or 2 */

carryD = carryB + mpn_add_n(D, B, a+l, l);

/* [carryB:B] = a_0 - a_1 + a_2, carryB= -1, 0 or 1 */

carryB = carryB - mpn_sub_n(B, B, a+l, l);

/* [carryW:W] = (a_0 + a_1 + a_2)^2 = S1, 0 <= carryW <= 6 */

TOOM3_SQR_REC (W, D, l, C);

carryW = carryD*carryD;

if(carryD==1)

{

carryW +=mpn_lshift(C, D, l, 1);

carryW +=mpn_add_n(W+l, W+l, C, l);

}

else if (carryD==2)

{

carryW +=mpn_lshift(C, D, l, 2);

carryW +=mpn_add_n(W+l, W+l, C, l);

}

/* [carryD:D] = (a_0 - a_1 + a_2)^2 = S2, 0 <= carryD <= 3 */

TOOM3_SQR_REC (D, B, l, C);

carryD = carryB*carryB;

APPENDIX A. SOURCE CODES 146

if(carryB>0)

{

carryD += mpn_lshift(C, B, l, 1);

carryD += mpn_add_n(D+l, D+l, C, l);

}

else if (carryB<0)

{

carryD -= mpn_lshift(C, B, l, 1);

carryD -= mpn_sub_n(D+l, D+l, C, l);

}

/* [carryC:C] = T1 = (S1+S2)/2 */

carryC= carryW+carryD+mpn_add_n(C, W, D, l2);

mpn_rshift(C, C, l2, 1);

if(carryC&1) C[l2-1]|=MSB;

carryC>>=1;

/* [carryD:D] = S1 - T1 */

carryD=carryW-(carryC+mpn_sub_n(D, W, C, l2));

/* [carryC:C] = T1 - S4 - S0 */

carryC-= mpn_sub_n(C, C, A, l2);

if(ls!=l)

{

tempC = mpn_sub_n(C, C, E, ls<<1);

carryC-=mpn_sub_1(C+(ls<<1), C+(ls<<1), l2-(ls<<1), tempC);

}

else

{

carryC-= mpn_sub_n(C, C, E, l2);

}

/* [B] = a_0 * a_1 */

TOOM3_MUL_REC (B, a, a+l, l, W);

/* [carryB:B] = S3 */

carryB = mpn_lshift(B, B, l2, 1);

APPENDIX A. SOURCE CODES 147

/* [carryD:D] = S1-T1-S3 */

carryD-=(carryB+mpn_sub_n(D, D, B, l2));

/* overlapping */

carryB+=mpn_add_n(p+l, p+l, B, l2);

carryD+=mpn_add_n(p+l3, p+l3, D, l2);

/* adding up carries */

MPN_INCR_U (p + l3, 2 * n - l3, (mp_limb_t)carryB);

MPN_INCR_U (p + l4, 2 * n - l4, (mp_limb_t)carryC);

MPN_INCR_U (p + l5, 2 * n - l5, (mp_limb_t)carryD);

}

A.2 Source Code for Improved Zimmermann’s 3-way Toom-

Cook Squaring Algorithm

void mpn_zimmermann3_sqr_n (mp_ptr p, mp_srcptr a, mp_size_t n, mp_ptr ws)

{

mp_limb_signed_t carryA, carryB, carryC, carryD, carryW;

mp_limb_t *A,*B,*C,*D,*E, *W;

mp_size_t l,l2,l3,l4,l5,ls;

ASSERT (n>=5);

/* Break n words into chunks of size l, l and ls.

* n = 3*k => l = k, ls = k

* n = 3*k+1 => l = k+1, ls = k-1

* n = 3*k+2 => l = k+1, ls = k

*/

{

mp_limb_t m;

l = ls = n / 3;

m = n - l * 3;

if (m != 0)

++l;

APPENDIX A. SOURCE CODES 148

if (m == 1)

--ls;

l2 = l * 2;

l3 = l * 3;

l4 = l * 4;

l5 = l * 5;

A = p;

B = ws;

C = p + l2;

D = ws + l2;

E = p + l4;

W = ws + l4;

}

/* ws = | W | D | B |

p = | E | C | A | */

/* [carryB:B] = a_0 + a_2 */

carryB = mpn_add_n(B, a, a+l2, ls);

if(ls!=l) carryB = mpn_add_1(B+ls, a+ls, l-ls, carryB);

/* [carryD:D] = a_0 + a_1 + a_2, carryD = 0, 1 or 2 */

carryD = carryB + mpn_add_n(D, B, a+l, l);

/* [carryB:B] = a_0 - a_1 + a_2, carryB = -1, 0, or 1 */

carryB -= mpn_sub_n(B, B, a+l, l);

/* [carryC:C] = (a_0 - a_1 + a_2)^2 = c_4 - c_3 + c_2 + c_1 + c_0 */

TOOM3_SQR_REC (C, B, l, W);

carryC = carryB*carryB;

if(carryB>0)

{

carryC +=mpn_lshift(W, B, l, 1);

carryC +=mpn_add_n(C+l, C+l, W, l);

}

else if (carryB<0)

APPENDIX A. SOURCE CODES 149

{

carryC -=mpn_lshift(W, B, l, 1);

carryC -=mpn_sub_n(C+l, C+l, W, l);

}

/* [carryB:B] = (a_0 + a_1 + a_2)^2 = c_4 + c_3 + c_2 + c_1 + c_0 */

TOOM3_SQR_REC (B, D, l, W);

carryB = carryD*carryD;

if(carryD!=0)

{

carryB += mpn_lshift(W, D, l, carryD);

carryB += mpn_add_n(B+l, B+l, W, l);

}

/* [carryD:D] = (4a_2 + 2a_1 + a_0), 0<=carryD<=6 */

carryD=mpn_lshift(D, a+l, l, 1);

carryD+=mpn_add_n(D, D, a, l);

carryW=mpn_lshift(W, a+l2, ls, 2);

if(l!=ls)

{

carryW+=mpn_add_n(D, D, W, ls);

carryD+=mpn_add_1(D+ls, D+ls, l-ls, carryW);

}

else

{

carryD+=(carryW+mpn_add_n(D, D, W, l));

}

/* [carryA:A] = (4a_2 + 2a_1 + a_0)^2 = 16c_4 + 8c_3 + 4c_2 + 2c_1 + c_0 */

carryA=carryD*carryD;

TOOM3_SQR_REC (A, D, l, W);

if(carryD==1)

{

carryW = mpn_lshift(W, D, l, 1);

carryA += (carryW+mpn_add_n (A+l, A+l, W, l));

}

APPENDIX A. SOURCE CODES 150

if (carryD==2)

{

carryW = mpn_lshift(W, D, l, 2);

carryA += (carryW+mpn_add_n(A+l, A+l, W, l));

}

if (carryD==4)

{

carryW = mpn_lshift(W, D, l, 3);

carryA += (carryW+mpn_add_n(A+l, A+l, W, l));

}

if(carryD!=0)

{

carryA += mpn_addmul_1(A+l, D, l, carryD<<1);

}

/* [carryD:D] = 2(c_4 - c_3 + c_2 - c_1 + c_0) */

carryD=(carryC<<1)+mpn_lshift(D, C, l2, 1);

/* [carryD:D] = 18c_4 + 6c_3 + 6c_2 + 3c_0 */

carryD+=(carryA+mpn_add_n(D, D, A, l2));

/* [carryD:D] = 6c_4 + 2c_3 + 2c_2 + c_0 */

carryD = ((carryD - mpn_divexact_by3 (D, D, l2))

* MODLIMB_INVERSE_3) & GMP_NUMB_MASK;

/* [A] = a_0^2 = c_0 */

TOOM3_SQR_REC (A, a, l, W);

/* [carryD:D] = 3c_4 + c_3 + c_2 + c_0 */

carryD+=mpn_add_n(D, D, A, l2);

mpn_rshift(D, D, l2, 1);

if(carryD&1)

{

D[l2-1]|=MSB;

}

carryD>>=1;

APPENDIX A. SOURCE CODES 151

/* [E] = a_2^2 = c_4 */

TOOM3_SQR_REC (E, a+l2, ls, W);

/* [carryW:W] = 2c_4 */

carryW=mpn_lshift(W, E, ls<<1, 1);

/* [carryD:D] = c_4 + c_3 + c_2 + c_0 */

if(l!=ls)

{

carryW+=mpn_sub_n(D, D, W, ls<<1);

carryD-=mpn_sub_1(D+(ls<<1), D+(ls<<1), l2-(ls<<1), carryW);

}

else

{

carryD-=(carryW+mpn_sub_n(D, D, W, l2));

}

/* [carryC:C] = c_4 + c_2 + c_0 */

carryC+=(carryB+mpn_add_n(C, C, B, l2));

mpn_rshift(C, C, l2, 1);

if(carryC&1)

{

C[l2-1]|=MSB;

}

carryC>>=1;

/* [carryB:B] = c_1 */

carryB-=(carryD+mpn_sub_n(B, B, D, l2));

/* [carryD:D] = c_3 */

carryD-=(carryC+mpn_sub_n(D, D, C, l2));

/* [carryC:C] = c_2 */

carryC-=mpn_sub_n(C, C, A, l2);

if(l!=ls)

{

carryW=mpn_sub_n(C, C, E, ls<<1);

APPENDIX A. SOURCE CODES 152

carryC-=mpn_sub_1(C+(ls<<1), C+(ls<<1), l2-(ls<<1), carryW);

}

else

{

carryC-=mpn_sub_n(C, C, E, l2);

}

/* overlapping */

carryB+=mpn_add_n(p+l, p+l, B, l2);

carryD+=mpn_add_n(p+l3, p+l3, D, l2);

/** Final stage: add up the coefficients. **/

MPN_INCR_U (p + l3, 2 * n - l3, (mp_limb_t)carryB);

MPN_INCR_U (p + l4, 2 * n - l4, (mp_limb_t)carryC);

MPN_INCR_U (p + l5, 2 * n - l5, (mp_limb_t)carryD);

}

