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ABSTRACT

Two methods for calculating notch tip stress and strain histories in elastic-plastic components
subjected to non-proportional cyclic loads are presented. The key elements of the proposed
methods are incremental relationships between elastic and elastic-plastic strain energy densities
and material constitutive relations. The material is assumed to strain harden and a kinematic

hardening model based on a multi-surface field of work hardening surfaces is employed.

Each method results in a set of seven independent algebraic equations. The equation sets can
easily be solved for the notch tip elastic-plastic stress-strain histories with the knowledge of the
materials uniaxial properties, the applied load, and the component geometry. Results of each
method are compared with finite element and experimental data for monotonic and cyclic non-
proportional loading sequences. The notch tip elastic-plastic strains found using each method
predict the general trend in, and quantitatively agree well with the experimental and finite

element data.
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1. CHAPTER ONE:

INTRODUCTION AND SCOPE

Engineering components frequently contain structural discontinuities such as fillets, holes, and
keyways. These discontinuities disturb the stress field in a manner such that, locally, the stresses
are higher than those in the net section. If the components are used in fatigue applications, these
stress raisers act as perfect sites for crack initiation. Thus, if they are overlooked or their effect on

the stress field is not minimized in all phases of design, the result is often premature component

failure.

Figure 1.1: Fatigue Crack at a Notch Root

As a simple example, consider the oil field component shown in Figure 1.1. During

manufacturing, the component was stamped to mark its size. The indentation in the component

1



2
caused by the stamp acted as a stress raiser in service. As can be seen, a fatigue crack started at
the top of the stamped seven (7), propagated through the material, and resulted in failure of the
component-. Since this mark was not associated with the function of the component, and the
depth of the stamp may have seemed insignificant relative to the diameter of the component, its
effects on the structural integrity of the design was most likely overlooked. To the designer, such
a detail mistakenly did not warrant the expenditure of a relatively complicated fatigue analysis.

In order to account for all stress raisers in design, but maintain a simple fatigue analysis,
designers often make the assumption that the local stresses remain below the yield limit of the
material. This, the stress-life method of fatigue analysis, is relatively simple and works well if
the component is designed to withstand low stresses and the resulting lives are long. However,
this method is limiting in low cycle applications, where the applied strains have a significant
plastic component. In such cases, the assumption is made that although the nominal stresses in
components should remain elastic, stresses in the vicinity of critical component locations may
exceed the yield limit of the material. In other words, localized plasticity at stress raisers is often
permitted in design. This philosophy is associated with the strain-life method of fatigue analysis,
which provides a tool for estimating the number of cycles the component can withstand before a

crack initiates at a notch root.

One of the preliminary steps in using the strain-life method of fatigue analysis is to determine the
elastic-plastic strain history at a component’s critical locations. The associated non-linear elastic-
plastic analysis has traditionally been avoided since it necessitates either experimental
investigations or numerical solution methods. These methods are time consuming and costly,
particularly when the components modelled are subjected to lengthy histories of multiaxial loads.

Thus, there has been a great effort in fatigue research to develop simplified analytical methods
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for modeling the elastic-plastic stress-strain history at notches in bodies subjected to multiaxial
loads. These methods generally use the results of an elastic notch tip analysis to predict the
elastic-plasﬁc notch tip strain field. Simplified methods have been developed for bodies
subjected to uniaxial loads, and more recently have been generalized to address bodies subjected
to multiaxial loads. The methods developed for multiaxial loading situations, however, have
been only accepted in theory in cases where the principal stresses remain fixed in direction and
ratio during a loading cycle. This assumption of proportional loading does not account for such
common occurrences as the presence of a mean stress or rotating principal stresses and, as such,

must often be relaxed in practice.

It is the intent of this work to develop and implement a simple and sufficiently accurate analytical
method for modeling the notch tip elastic-plastic stress-strain history in components subjected to
cyclic non-proportional loads. The research is divided into two parts:

(i) the development of an simplified incremental model for predicting elastic-plastic
parameters at the notch tip in bodies subjected to multiaxial non-proportional loading
sequences, and

(ii) the use of an appropriate material model in conjunction with the method developed in
(1) to define the elastic-plastic notch tip stress-strain response.

In Chapter Two, a more thorough description of the notch problem is presented along with a
comprehensive review of the simplified methods developed to date for estimating notch root
strain histories. The review encompasses uniaxial models, and multiaxial proportional and non-
proportional models. In Chapter Three, two simplified models are proposed that allow for the
determination of the notch tip elastic-plastic strain and total strain energy densities from an elastic
analysis. In Chapter Four, material constitutive behaviour is reviewed with specific reference to

modelling cyclic material behaviour. In Chapter Five, the two methods developed in Chapter
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Three are coupled with the cyclic plasticity model chosen in Chapter Four, and the methods are
then applied to both loading and unloading. The computer program developed for the application
of both sin;pliﬁed models and some details associated with the numerical solution procedure are
also presented. The results obtained using the proposed methods are compared with finite
element and experimental data in Chapter Six. Chapter Seven contains some concluding remarks

and recommendations for future research.



2. CHAPTER TWO:
BACKGROUND AND LITERATURE REVIEW

The presence of a notch or any other geometrical discontinuity acts to locally disturb the stress
field. Specifically, a non-uniform triaxial stress field arises in the plane of the notch, with the
highest stress concentration near the discontinuity. This type of stress field exists even when a
unidirectional tensile load is applied to an elastic body (F ig. 2.1). At the notch tip, there is a
constraint imposed on the local deformation in the direction transverse to the applied load by the
lower stressed bulk material away from the higher stressed material in the immediate region of

the notch. In response to this constraint, transverse stresses are induced at the notch tip.

As in any typical boundary value problem, the notch tip stress and strain components can be
found by locally satisfying the equations of equilibrium, the material constitutive relations, the
compatibility equations and the boundary conditions. However, in the case of a notched body,
closed form solutions to such an equation set are generally not available. Theoretically,
numerical techniques such as the finite element or the boundary element methods can be used to
simultaneously satisfy the field equations at the notch tip. These techniques often become
complex and impractical when the structures modeled are subjected to histories of multiaxial
loads. Researchers that have aimed at defining the notch tip stress-strain state have therefore
focused primarily on de_ﬁning an alternate, simplified set of equations that will approximate the

real behavior of the material.

The simplified set of relations generally consist of two key elements: the material constitutive
relations and the approximation formulas. The approximation formulas relate the local elastic-

plastic notch tip stress and strain components to those predicted in an elastic analysis. Since the

d



accepted constitutive relations are similar or the same, the differences in the simplified models

proposed in the literature generally lie in the approximation formulas.

The number and form of the approximation formulas required to form the complete set of
relations that will determine the notch tip stress-strain field is dependent on the stress state at the
notch tip. In general, the state of stress at the notch root (a traction free surface) is biaxial (Fig.
2.2c). Thus in the most general case, seven notch tip parameters need be defined: three stresses
and four strains. In the early development of simplified models, researchers made assumptions
about the state of stress in the body so as to reduce the corresponding number of required
equations. Uniaxial models were first considered and were governed by the assumption that the
notched body was either in a plane stress or a plane strain state. Developments have more
recently been made to account for notch root multiaxiality in bodies subjected to either uniaxial or

multiaxial nominal loads.

2.1 Uniaxial Models

2.1.1 Body in Plane Stress

Assume that the body dimensions and external loads in Figure 2.2 are such that the notched body
is in a state of plane stress. Because of the free surface and assumption of plane stress, the stress
state at the notch tip is uniaxial. Following the notation in Figure 2.2, the stress field at the notch

tip can be represented by

0 0
Gij = 0] G 0 N (21)
0 0



and the components of strain by

€ 0 0
€ = 0 €n 01 (2.2)
0 0 €33

Thus, in the case of a body in plane stress, there are generally four unknown notch tip parameters,
and four independent relations are required to define the local stress-strain field. The material
constitutive relations will provide three independent relations between the stresses and the strains,

and thus only one additional relation is required.

Prior to 1948, research pertaining to the analysis of stress in the vicinity of geometrical
discontinuities assumed elastic material behavior. The research focused primarily on determining
theoretical elastic stress concentration factors (K,) from either photoelastic analysis or classical
elasticity theory. The stress concentration factor is a relation between the elastic stress at the
point of highest stress concentration in the direction of the applied load, and the nominal stress.
Following the notation in Figure 2.2, a uniaxial tensile load will resuit in the following stress
concentration factor at the notch tip

e
G

Ko = —. (2.3)

cn.s.

Here, and throughout this thesis, the superscript “e” refers to the assumption of elastic material
behavior, and the subscript “n.s”. refers to the nominal net sectional stress, which references the
applied load and the body’s cross-sectional dimensions in the plane of the notch. The stress
concentration factor is a geometry and mode of loading dependent parameter and is independent
of the properties of the material, provided that the body remains elastic. One of the most

comprehensive compilations of theoretical stress concentration factors is given by Peterson [1].



In 1948, Griffith [2] tested large aluminum panels with central circular holes with the aim of
investigating the effect of plastic flow on the stress concentration factor. His results suggested
that after ttie onset of plastic flow at the hole tip, the stress concentration factor does not remain
constant, but decreases. Furthermore, he found that the strain concentration factor, defined as the
ratio of local strain to the net sectional strain, or

a

811
K. = —= 249

b
8nsA

increases at the onset of local plastic flow. Here, the superscript “a” refers to actual notch tip
strain, whether it be elastic or elastic-plastic. Griffith's experimental investigation prompted the
development of analytical models that accounted for local plastic flow which, similar to the
elastic stress concentration factor, related the boundary conditions on the far field to those at the

notch tip.

Hardrath and Ohman (3] tested large aluminum panels with edge notches and fillets and
compared their results to a generalization of Stowell's [4] model, which was originally proposed
for one specific notch geometry. The resulting expression, given in [3] as

- S, ( G") E (2.5)
C» K, o3 K, E’ L.

’Jﬂ

where G, is the actual notch tip stress and E, is the secant modulus, showed close agreement with

the experimental results.

The most frequently used approximation formula that relates notch tip elastic-plastic strain and
stress to nominal or applied values was originally proposed by Neuber [5]. In his study, Neuber
analyzed a semi-infinite prismatic non-linear body with an edge crack or sharp ended notch

subjected to an anti-plane pure shear loading (Fig. 2.3). It should be noted that, in the case of



9
pure shear loading, there are only two unknown parameters at the notch tip: one shear stress, and
one shear strain. Neuber observed that the shear stress distribution ahead of a notch is identical to
that ahead ;>f a crack provided that the root radii of the notch and crack are the same, and
furthermore that the product of stress and strain at the notch tip is not dependent on the material’s
non-linear parameters. Neuber proposed that the product of the stress and strain at the notch tip in
any arbitrary notched geometry in a prismatic body subjected to an anti-plane pure shear load can
be related to the material’s elastic parameters and the far field boundary conditions. The relation

developed, known as Neuber's rule, has recently [6] been written in the form

G55 = OBEN. (2.6)
for any body in plane stress. Here, and throughout this thesis, the superscript “N” refers to the
elastic-plastic notch tip values as estimated by Neuber's rule. Equation (2.6) states that the actual
total strain energy density (the sum of the strain energy density and the complementary strain
energy density) at the notch tip is equal to that which would be obtained if the material were to
remain elastic as the loads are applied. This additional energy relation can be used in conjunction
with a unijaxial constitutive relation to define both the local elastic-plastic strain and the local

stress components. A graphical representation of Neuber's rule is shown in Figure 2.4.

Papirno (7] compared the Hardrath-Ohman relation (eqn. 2.5) to Neuber's rule (eqn. 2.6) by
comparing results obtained using both theories to those obtained in an experimental investigation

of thin notched steel plates. In [7], Papimo concluded that Neuber's rule was more accurate.

Topper et al. [8] extended Neuber’s rule to address several notched geometries in members
subjected to cyclically applied uniaxial loads. Neuber's rule in its cyclic form was found to be in
good agreement with experimental results for notched aluminum alloy sheets where plane stress

conditions prevailed at the notch tip. Their results further suggested that smooth specimen
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fatigue data could be used to estimate the fatigue life of notched aluminum components.

Lies et al. [9], Conle and Nowack [10], and Guillot and Sharpe {11] experimentally examined the
applicability of Neuber’s rule in quantifying notch tip inelastic strains and stress in thin aluminum
and mild steel sheets for several loading sequences. Their results suggested that Neuber's rule

tends to overestimate the notch tip stresses and strains.

Motivated by a crack tip stress analysis performed by Hutchinson [12], Molski and Glinka [13]
postulated that. for a body in plane stress, the actual strain energy density at a notch tip is exactly
the same as that if the body were to remain elastic. This method, known as the equivalent strain
energy density (ESED) method., can be written in terms of stresses and strains as

€7

de Q.7

I3m
i3m

c

Q
2
3
m
30
M
i
© e tim

Here, and throughout this thesis, the superscript “E” refers to the elastic-plastic notch tip stresses
and strains as estimated by the ESED method. Equation (2.7) can be used in conjunction with the
uniaxial stress-strain relations to determine the notch tip stress-strain field. It was shown [14] that
the ESED method made it possible to calculate inelastic notch tip strains in several notched
bodies subjected to monotonic loads under plane stress conditions. Glinka [1 5] later extended the
ESED method to address bodies subjected to cyclically applied uniaxial loads and. furthermore,
improved the original model by the addition of a factor that accounted for the stress redistribution
due to local plastic yielding. It became apparent in [15] that the ESED method tends to
underestimate the inelastic notch tip strains and stresses. A graphical representation of the ESED

method is shown in Figure 2.5.
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2.1.2 Body in Plane Strain

Assume that the body dimensions and external loads shown in Figure 2.2 are such that the body is
in a state of plane strain. Because of the free surface, and the constraint imposed on the

transverse strain components by assuming the body to be in plane strain, the state of stress at the
notch tip is biaxial. Following the notation in Figure 2.2. the stress field at the notch tip can be

represented by

0 0 0]
Gj = |0 oxn 0} (2.8)
O 0 Oz
and the components of strain by
€ 0 0
Sij = O €1 0 . (2'9)
0 00

As in the case of plane stress, there are four unknown notch tip components, and thus four
equations are required to define the local stress-strain state. Since the material constitutive
relations will provide three, only one additional relation is required. Therefore, the case of plane
strain is considered to be a uniaxial model. However, the plane strain simplified models must
differ from the plane stress models since, in the case of plane strain, the existing transverse
component of stress is affected by the aforementioned notch tip constraint and must be considered

in the development.

In order to account for this constraint, Walker [16], Dowling et al. [17] and Gemma [18] assumed
that Neuber's rule could be used in its original form provided that the notch root constraint was

considered in the material constitutive relations.



12

Fuchs and Stephens [19] revised Neuber's rule itself with a factor that accounted for the notch
root constraint. However, in an experimental investigation of the method, Sharpe and Wang [20]
found little improvement over the original Neuber's rule when the notch tip strains became

plastic.

Following the approach proposed by Dowling et al. [17]. Glinka et al. [21] showed that the ESED
relation (2.7) could be used in conjunction with the modified uniaxial stress-strain curve defined
in [17] to solve for the stress and strain components in the direction of the applied load for any

material model.

Currently, either Neuber’s rule or the ESED method are being used in notch tip stress-strain
analysis. Sharpe et al. [22] compared Neuber’s rule and the ESED method with experimental
results on various notched geometries. The results of their study indicate that Neuber's relation
should be used when a body is in a plane stress state, and the ESED plane strain model when
there is a large constraint at the notch tip. Tipton [23] presented a review article on the

development and use of Neuber's rule for fatigue analysis.

2.2 General Body Stress State

In general, the state of stress near the notch tip is triaxial at the notch tip, biaxial due to the free
surface. With the reference axes chosen as in Figure 2.2, the biaxial stress field at the notch tip

can be represented by



0 0 o0
ci; = |0 on o1l 2.10)
0 o5 o
and the components of strain by
en 0 O
€ =1 0 €»n €3] 2.1D
0 €5 &5

Since equilibrium of the element at the notch tip is assumed, o, = G;», and €,; = €5,. Thus, there
are seven unknowns at the notch tip: three stresses and four strains. Therefore. a set of seven
independent equations are required to completely define the stress-strain state at the notch tip.
The material constitutive relations will provide four equations. so that three additional relations

are required.

The type of simplified equation set required to define the notch tip stress-strain state is dependent
on how the deviatoric stress tensor at the notch tip increases with the applied load. If it increases
proportionally, deformation plasticity can be used in the formulation and if not. the final notch tip
stress state is dependent on the loading path and the relations must be developed in an

incremental form.

2.2.1 Proportional Models

If either a uniaxial or multiaxial proportional loading system is applied to a notched body, it is
generally assumed that the deviatoric stresses at the notch tip remain in nearly fixed proportion

throughout the loading history.
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A generalization of Neuber’s rule proposed by Hoffrmann and Seeger [24,25] addresses multiaxial
proportionz;l loading sequences. In their study, Hoffmann and Seeger extend Neuber's rule by
replacing the uniaxial stress and strain with equivalent stress and strain, as

Ceq€eq = Oeq€lys (2.12)
where €.* and o’ are the notch tip elastic-plastic equivalent strain and stress respectively, and €,
and o’ are those which would be obtained in an elastic analysis. They define two additional
relations based on the assumptions that (i) the actual principal directions are identical to those that
would be obtained in an elastic analysis, and (ii) that the ratio of the minimum principal strain
components at the notch tip remain constant during loading. It should be noted that this
generalization neglects the hydrostatic component of stress and cannot be reduced to any of the

aforementioned plane strain models.

In a recent study, Moftakhar [6] analyzed the behavior of two identical notched geometries
subjected to the same traction boundary conditions. One body was made of an elastic-plastic
material while the other was made of an elastic material, having the same elastic constants as the
elastic-plastic body. In his analysis, he showed that if the notch tip deviatoric stress tensor
remains in fixed proportion throughout the loading history. and if the plasticity at the notch tip in
the elastic-plastic body is localized, then the total strain energy density (€°) at the notch tip in the

elastic body is always greater than that in the actual elastic-plastic body (), or.
Q =200, (2.13)
where (€¥°) and (Q2°) are defined as
Q° = oje; and Q' = ojel, (2.14)

and ij = 1,2,3 and summation is implied. Inequality (2.13) suggests that the total strain energy



density at the notch tip in an elastic-plastic body is less than the total strain energy density at the

notch tip if the body were to remain elastic.

In [6], it was concluded that inequality (2.13) is a generalized form of Neuber's rule for a notched
body subjected to a multiaxial proportional loading sequence. This conclusion was based on
three factors. Firstly, as in the unjaxial case, inequality (2.13) represents an elastic
approximation to the actual total strain energy density at the notch tip. Secondly, inequality (2.13)
reduces to Neuber's rule in its uniaxial form (eqn.2.6) when a plane stress or plane strain state is
assumed. Finally, inequality (2.13) suggests that the elastic approximation will yield an upper
limit on the total strain energy density at the notch tip. This is consistent with the aforementioned
numerical and experimental results for notched bodies subjected to uniaxial loads, which
conclude that Neuber's rule tends to overestimate the notch tip elastic-plastic strains and stresses.
The generalization of Neuber's rule in the form of eqn.(2.13) is also suggested by Lemaitre and

Chaboche [26].

Similarly, in [6], it was proven that for the case of proportional loading, the equivalent strain
energy density at the notch tip in the elastic body, W(g). is always less than that at the notch tip
in the actual elastic-plastic body, W*(g). or

Wi(e) < Wi(e), (2.15)
where W=(e) and W?(¢) are defined as

1 “
Wi(e) = Sofes . We) = [oidel. (2.16)
1]

Inequality (2.15) suggests that the strain energy density at the notch tip in an elastic-plastic body

is greater than the strain energy density at the notch tip if the body were to remain elastic.
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In [6] it is concluded that inequality (2.15) represents the generalized form of the ESED method
fora notche;d body subjected to a multiaxial proportional loading system. The justification for
this conclusion was similar to that given for the generalized form of Neuber's rule. That is,
inequality (2.15) represents an elastic approximation to the actual strain energy density at the
notch tip, it reduces to its uniaxial form (eqn. 2.7) when plane stress or plane strain is assumed,
and the inequality in (2.15) agrees with uniaxial numerical and experimental studies that conclude

that the ESED method tends to underestimate notch tip inelastic strains and stresses.

In [6], the two additional equations required to define all notch tip stress and strain components
were based on the assumption that the contribution of each stress-strain component to the total
strain energy density at the notch tip is the same in the elastic case as is in the elastic-plastic case.
They used the resulting two equations in conjunction with either energy model and Henky's total

deformation flow rule to define the complete elastic-plastic notch tip stress-strain state.

Numerical and experimental studies were conducted (Moftakhar and Glinka [27], Moftakhar et al.
[28]. Serbe and Harkegard [29]) and the results showed that generalized Neuber's rule (eqn.2.13)
will predict an upper bound. and the generalized ESED (eqn.2.15) a lower bound approximation

to the actual notch tip stresses and strains.

2.2.2 Non-Proportional Models

When an external loading system is applied to a notched body in a non-proportional manner, the
resulting notch tip stresses and strains do not behave proportionally, and simplified models must

be developed in an incremental form.
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Hoffmann et al. [30] presented a simplified model to estimate notch root elastic-plastic stresses
and strains m bodies subjected to non-proportional loading systems. In their model, the notch
root strain history is calculated for each mode of loading by following the same solution
procedure as in [24] and [25] for proportional loading. A compatibility iteration is subsequently
used to account for the interaction between the strain components that arises in non-proportional

loading. Their calculations compared well with finite element results.

More recently, Barkey et al. [31,32] presented a method for estimating elastic-plastic notch tip
strains in notched bars subjected to cyclic proportional and non-proportional loading sequences.
In their method, they incorporate the effect of the notch directly into the constitutive relations.
This is done by defining an anisotropic structural yield surface in nominal stress space. The
hardening parameter is found by using the uniaxial form of the ESED method to construct a
uniaxial nominal load-notch plastic strain curve. Their results compared well with experimental
non-proportional tension-torsion tests on a notched steel bar. However, the method does not
account for elastic coupling at the notch root between any two nominal stresses (for example, in

the case of combined bending and axial loading of a notched round bar).

Following the same approach as in [31] and [32], Kottgen et al. [33] incorporated the notch effect
into the constitutive relations. They did this by first obtaining a “pseudo” stress history by
assuming elastic material behavior. The yield criterion and multi-surface type flow rule were
written in terms of the elastic history, with the hardening parameter obtained using a pseudo
stress versus local plastic strain curve obtained using a uniaxial simplified rule. The resulting
elastic-plastic strain increments were subsequently fed back into the flow rule (written in terms of

true stresses) to obtain the notch tip stress history. They also proposed a similar method starting
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with a “pseudo” strain history, defined similar to the “pseudo” stress history.

Leeetal. [34] and Gu and Lee [35] proposed a similar approach as above for non-proportional
loading. The main difference between each approach is in the plasticity model used.
Specifically, in [34], a two surface kinematic and in [35], an endochronic plasticity model is

utilized.

In [36] and [37], Singh et al. proposed a method for estimating notch root strains in bodies
subjected to non-proportional monotonic loading sequences. The approach is an incremental
generalization of the ESED method and Neuber’s rule. The resulting set of algebraic equations
are relatively simple to solve, and the results compared well with those obtained in a finite

element analysis.

2.3 Conclusions of the Literature Review

The underlying premise of virtually all simplified models for predicting notch root stress-strain
behavior is that a relationship exists between the stress state at the notch tip predicted by elastic-
plastic theory and that predicted by linear elastic theory. This approach can be justified assuming
that the notch tip plastic zone is localized and highly controlled by the relatively large
surrounding elastic field. This localized plasticity assumption is consistent with the philosophy

of the strain-life method of fatigue analysis.

For the case when the notched body is in a state of either plane stress or plane strain, it is
generally accepted that either Neuber’s rule or the ESED method can be used in conjunction with

the material flow rule to approximate the complete notch tip elastic-plastic stress-strain behavior.
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Multiaxial notch tip stress states have only recently been addressed. For proportional loading
sequences, .the generalizations of Neuber's rule and the ESED method recently proposed in [6] are
superior to others since they predict a band between which the actual notch tip stresses and strains
will always fall. Specifically, it predicts that this band is bounded on the lower end by the notch
tip stress-strain state predicted by the generalized ESED method, and on the upper end by that
predicted by the generalized Neuber's rule.

Simplified models for multiaxial non-proportional loading sequences have only recently appeared
in the literature. Since no one model has been generally accepted. there continues to be a rigorous

effort by researchers to develop theory in this area.
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3. CHAPTER THREE:
PROPOSED MULTIAXIAL MODEL

The objective of the proposed research is to develop and implement a simple yet sufficiently
accurate method for determining the elastic-plastic strains and stresses at the notch tip of bodies
subjected to non-proportional cyclic loading sequences. In Chapter Two, it was shown that in
order to completely describe notch tip elastic-plastic behavior. a set of seven independent
equations is required. In this Chapter, the three equations based on the strain energy density
principles published in [36] and [37] are presented. The remaining four of these equations can be

found by applying an appropriate constitutive model, as will be detailed in Chapter Four.

All simplified models proposed to date have used an elastic notch tip stress-strain analysis to
predict actual elastic-plastic notch tip behavior. However, due to the differences between elastic
and elastic-plastic material behavior, it is impossible to derive exact relationships between stress-
strain fields obtained from a linear elastic analysis and those obtained from an elastic-plastic
analysis. Thus, two models are presented here to address notched bodies subjected to non-
proportional monotonic loading sequences. These models have their roots in the equivalent strain
energy density (ESED) method and Neuber's rule and will be categorized accordingly in the

following sections.

3.1 Incremental Equivalent Strain Energy Density (ESED) Relations

Consider two geometrically identical notched bodies subjected to the same traction boundary

conditions as shown in Figure 3.1. Let one body be made of an elastic-plastic material, and the

23
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other of an elastic material, both having the same elastic constants. In [13] it was shown that the
strain energy density at the notch tip in an elastic-plastic body can be approximated by that
obtained at.the notch tip in the elastic body if the external loads in the two bodies remain the

same throughout a uniaxial loading history.

In a body subjected to a non-proportional loading system, the strain state is dependent on the
applied loading path. Thus, equations that describe the behavior of the strain energy density at a
notch tip in an elastic-plastic body must be calculated at each instant of loading. In this section,
the ESED method will be developed in an incremental form such that the path dependent nature

of the material subjected to a non-proportional loading path is respected.

Assume that a notched body, such as either shown in Figure 3.1. has been loaded from zero to a
known reference state. If an increment of load is applied to the body, there will be a
corresponding increase in strain energy in the body. This increment in energy per unit volume on

any element of the body during straining can be written as

dW* = o} de? (G.1)

ij?

where W denotes the strain energy density in the element, and the superscript “a” refers to the

actual elemental values, whether they be elastic or elastic-plastic.

Consider now an element at the notch tip in the elastic-plastic body in Figure 3.1b. Assume that
(1) the nominal stresses are elastic and (ii) if the notch tip strains are plastic, the notch tip behavior
is largely controlled by that of the surrounding elastic field. Under these assumptions, it is

proposed that for a given increment in external load, the corresponding increment in the strain
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energy density at the notch tip in the elastic-plastic body can be approximated by that obtained if
the body were to remain elastic throughout the loading history (Fig. 3.1a). This proposal can be

expressed as

dW*® = dwWE
or X 3.2)
of dej = ofdss
In equation (3.2), the superscript “e” refers to hypothetical elastic behavior and the superscript

“E” refers to elastic or elastic-plastic values as approximated by the proposed energy method.

Equation (3.2) can be called a generalized incremental form of the equivalent strain energy
density method since it reduces to the original form of the ESED method (eqn.2.7) for uniaxial
notch tip stress states. Furthermore, it represents a statement of equality between the notch tip
strain energy density obtained from a linear elastic solution and that obtained from an elastic-

plastic analysis.

[t should be noted that eqn.(3.2) implies that, at the end of a load path. the sum of the increments
in the actual strain energy density is approximated by the sum of the increments in the load path
independent elastic strain energy density. As such, if eqn.(3.2) holds true for non-proportional
loading, then the assumption must be made that the strain energy density is insensitive to the
applied loading path. This can be primarily justified by the assumption of localized plasticity.
Furthermore, it has been shown numerically in [6] that, for a given proportional loading
sequence, the strain energy density is somewhat insensitive to the slight non-proportionality in

the notch tip deviatoric stresses.
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If the strain energy density is, in fact, truly insensitive to the applied load patk, it should follow
that the ine-quality developed in [6] (eqn.2.15) for notched bodies subjected to proportionally
applied loads should also hold at the end of a non-proportional loading path. That is, the sum of
the increments in the strain energy density over the loading path calculated using the ESED
method should form a lower bound elastic approximation to the actual strain energy density at the

end of the loading path.

The constitutive relations used in conjunction with the generalized ESED method will be
sufficient to describe only five of the seven unknown notch tip stress-strain increments.
Therefore, two more independent equations are required to completely define the notch tip stress-
strain state for a given increment in the applied load. For this purpose, it is proposed that the
contribution of each elastic-plastic stress-strain component to the increment in strain energy
density at the notch tip is the same as the contribution of each stress-strain component to the
increment in strain energy density at the notch tip given that the body were to remain elastic
during the loading history. This proposal can be expressed as

e e E E
craBdsaB caﬁdsaﬁ o
= (3.3)

e e = E E °
o-,.jd:»:ij Gy ds:ij

In eqn.(3.3), ij,a,p=1,2,3, and summation over i and j is tmplied. but not over o and B. It
should be noted that, although eqn.(3.3) implies three relations at the notch tip, only two are
independent. Equation (3.3) is also supported by Chu and Conle [38]. who presented preliminary
results comparing some proportional results of a similar “work path” equation to two other

hypothesized additional equations.
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If eqn.(3.3) is used in conjunction with eqn.(3.2), then eqns.(3.3) become

Cep dEgy = omdes, . (3.4)

A graphical representation of the three relations implied by eqn.(3.4) is shown in Figure 3.2a.

3.2 Incremental Neuber's Rule

Consider again the two notched bodies shown in Figure 3.1. Neuber's rule (eqn.2.6) is a
statement of equality between the total strain energy density at the notch tip in the elastic-plastic
body and at the notch tip in the elastic body, when the loads applied to both geometricaily
identical bodies remain the same and uniaxial. Neuber’s rule was later generalized [6] to address
notched bodies subjected to multiaxial proportional loading sequences. In order to account for
the path dependent nature of the notch tip strains when the external loads are applied in a non-

proportional manner, Neuber’s rule will be developed here in an incremental form.

If an increment in load is applied to a body, there will be a corresponding increment in the total
strain energy in the body. The total strain energy refers to the sum of the strain energy density (as
described above) and the complementary strain energy density. This increase in total strain

energy per unit volume on any element of the body during straining can be written as
dQ® = cjde; +&ido] . 3.5)

where Q denotes the total strain energy density in the element, and again, the superscript “a”

refers to the actual elemental values, whether they be elastic or elastic-plastic.
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Consider again an element at the notch tip in Figure 3.1b. Assume that the nominal stresses are
elastic and -that if the notch tip strains are plastic, the notch tip behavior is largely controlled by
that of the surrounding elastic field. Under these assumptions, it is proposed that for a given
increment in external load, the corresponding increment in the total strain energy density at the
notch tip in the elastic-plastic body (Fig 3.1b) can be approximated by that obtained if the body
were to remain elastic throughout the loading history (Fig 3.1a). Mathematically, this proposal
can be written as
4O = dov
or . (3.6)
cj dej + €f dojj = of de + €] do)
In eqn.(3.6), the superscript “e” refers to hypothetical elastic behavior and the superscript “N”

refers to elastic or elastic-plastic values as approximated by the proposed energy method.

Equation (3.6) can be called a generalized form of Neuber's rule since it reduces to Neuber's rule
in its original form (eqn.2.6) for uniaxial notch tip stress states. Furthermore, it represents a
statement of equality between the notch tip total strain energy density obtained from a linear

elastic solution and that obtained from an elastic-plastic analysis.

It should be noted that eqn.(3.6) implies that at the end of a load path, the sum of the increments
in the actual total strain energy density is approximated by the sum of the increments in the load
path independent elastic total strain energy density. As such, if eqn.(3.6) holds true for non-
proportional loading, then the assumption must be made that the total strain energy density is

insensitive to the applied loading path. Again, this assumption can be justified by the localized
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plasticity assumption and further that it has been shown numerically in [6] that for a given
proportional loading sequence, the total strain energy density is somewhat insensitive to the non-

proportionality in the notch tip deviatoric stresses.

If the total strain energy density is actually insensitive to the loading path, it should follow that
the inequality developed in [6] (eqn.2.13) should also hold at the end of a non-proportional
loading path. That is, the sum of the increments of the total strain energy density over the loading
path calculated using the incremental Neuber’s method, should form an upper bound elastic

approximation to the actual total strain energy density at the end of the loading path.

The constitutive relations used in conjunction with the generalized Neuber’s rule will only be
sufficient to describe five of the seven unknown notch tip stress-strain increments. Therefore,
two more independent equations are required to completely define the notch tip stress-strain state
for a given increment in the applied load. For this purpose, it is proposed that the contribution of
each elastic-plastic stress-strain component to the total strain energy density at the notch tip is the
same as the contribution of each stress-strain component to the total strain energy density at the
notch tip given that the body were to remain elastic during the loading history. This proposal can
be expressed as

copdely + &5 doly copdel, + expdoly

.
= N . Na N - (3.7)
of dei + € do} cjde; + &)do)

-

As in eqn.(3.3), in eqn.(3.7) ij,a.,p = 1, 2. 3, summation is implied over i and j but not over o and
B. Ifeqn.(3.7) is used in conjunction with the generalized Neuber's rule, then combining

eqns.(3.6) and (3.7) yields the following
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oap degy + € dog, = ogpdey, + exdol; . (3.8)

The three relations implied by eqn.(3.8) are illustrated in Figure 3.2b.

3.3 Comparison of Proposed Methods with Finite Element Data

In this section, the accuracy of the proposed generalized ESED method and Neuber's rule are
assessed by comparing various notch tip parameters obtained using the models to those obtained
using the finite element method (FEM). The FEM elastic-plastic results were obtained using the

ABAQUS [39] finite element package.

The geometry of the chosen model is that of the circumferentially notched bar shown in Figure
3.3. Loads applied to the bar were chosen to be tension and torsion, applied along various non-
proportional monotonic loading paths. Because of symmetry, only half of the bar was modeled
(Fig. 3.4). The torsional load was applied in terms of displacement boundary conditions on the

end nodes, and the tensile load in terms of pressure on the faces of the end elements. The

nominal torsional, T, , and tensile, o . stresses are defined as

P 2T
— g, = — (39)
(R -t) T(R -1t)

Cns. =

where P and T are the applied tensile and torsional loads respectively, R is the radius of the bar,
and t is the depth of the notch (Fig. 3.3). The elastic stress concentration factors of the notched
bar were determined by carrying out two elastic FEM analyses. In the first, an arbitrary tensile

load was applied to the bar and the axial and transverse stress concentrations were found to be
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0570, =3.31 and o5;%c,; =0.94, respectively. In the second analysis, an arbitrary torsional load
was applied to the bar and the shear concentration was found to be Ox/T,, =1.94. The directions

denoted are those shown in Figure 2.2.

Two analyses were carried out on the notched bar. The first analysis was designed to test the
hypothesis on which both the incremental ESED (eqn. 3.2) and Neuber's (eqn. 3.6) equations are
based: the energy densities are somewhat insensitive to the applied loading path. It was further
designed to test the corollary of this hypothesis. That is, for non-proportional loading, the ESED
method represents a lower bound elastic approximation to the actual notch tip energy density and
Neuber’s rule represents an upper bound elastic approximation to the actual notch tip total strain
energy density. The second analysis was designed to assess the hypothesis that the contributions
of each of the axial stress-strain components to the energy densities at the notch tip is the same in

the elastic and elastic-plastic bodies (ie. eqns.3.3 and 3.7).

3.3.1 Energy Density Sensitivity to Load Path

3.3.1.1 Material Model

The material of the bar was chosen to have a tri-linear stress-strain curve (Fig. 3.5), defined as



(3.10)
o = o, elsewhere

m|

= .009: % = .0058 ; o, = 550 MPa: &, = 600 MPa

It should be noted that the slope of the plastic portion of the uniaxial curve is very small. This
was chosen to highlight the numerical error in the proposed methods, since in this case, a small

increment in applied load will result in a large increment in the strains.

3.3.1.2 Method of Analysis and Results

The elastic-plastic FEM model was analyzed for the tension-torsion (Fig. 3.6a), torsion-tension
(Fig. 3.6b), and for comparison, the proportional (Fig. 3.6a.b) loading paths. In each case, the
strain energy density, W™ and the total strain energy density .Q™, at the end of loading paths
! through 12 were noted. The ESED (WF) and Neuber's (Q) elastic approximations to the
energy densities were calculated based on eqns. (3.2) and (3.6) respectively, and knowing the
elastic stress concentration factors and the applied loads. Between subsequent load paths, the
ratio of the final applied nominal tensile to torsional stresses was kept constant, but the final
magnitudes of each stress was increased. This procedure was repeated until the applied loads
were sufficient to cause general yielding in the net section at the end of the loading paths (path

12). Since tensile and torsional stresses have different contributions to plasticity (and hence



energy densities), three different ratios of tensile to torsional net section stress at the end of the

loading path were analyzed: o, %, f=0.32, 1.1, and 3.2.

The strain energy density (W™) and the total strain energy density (") determined from the
elastic-plastic FEM analyses, and the predictions of the ESED method (W¥) and Neuber’s rule
(Q") are plotted at the end of the loading paths. These are plotted against the normalized nominal

equivalent net sectional stress S_/c, defined as

S is + 3 I';:S
22 o NOns T OTs G.11)

Plots of the energy densities against S_/c, are shown in Figs. 3.7. 3.8 and 3.9 for the ratios of
G, 71, =0.32, 1.1, and 3.2 respectively. Since all figures have the same general trend, the
results pertaining to the sensitivity of the energy densities to loading path will first be discussed
followed by those pertaining to the applicability of the upper and lower bound energy elastic

approximations to the analyzed non-proportional loading sequences.

Sensitivity to Loading Path

In general, up until the point of yielding at the notch tip, the strain energy densities are the same
for both loading sequences. This is expected since the final stress-strain state is load-path
independent in the elastic range. Just after the final net sectional stresses sufficient to insure
notch tip plasticity, the energy densities for each loading path begin to diverge. The divergence

becomes more pronounced as the final equivalent net section stress ratio (S./c,) increases.

It is noted that the divergence of the energy plots between each loading sequence becomes more
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pronounced as the ratio of 5, /1, fincreases. Furthermore, it is observed that the total strain
energy density seems to be less sensitive to loading path than is the strain energy density. For
c.. 7t = 6.32, the differences in the energies between the loading paths is negligible up until
almost general yielding of the net section, but the difference is higher for the ratios of 1.1 and 3.2,
and is most pronounced in the strain energy density plots (Figs 3.8b, 3.9b). However, it should
be noted that for 5, /1,,"= 3.2, the difference in the strain energy density (Fig. 3.9b) between
each loading sequence for S, /o, ~ 1 (indicating general yielding of the net section) is only 10%.
This 10% divergence will result in a very small difference in notch tip stress and strain
components. Moreover, in reality, general yielding conditions in the net section need not be

analyzed using simplified models since the governing assumption of localized plasticity is

violated.

Figures 3.10 show the plots of the energy densities as the loads are increased from zero following

the tension-torsion and torsion-tension load paths 11 with a final ratio of 6%, /t!_=11. Inboth
Figures 3.10a and 3.10b, the energy densities for both loading sequences are different throughout
the loading history. These converge at the end of the loading paths. when the final magnitudes of
both tension and torsional net sectional stress are the same. These plots further highlight the

relative insensitivity of the final energy densities to loading sequence.

Applicability of Energy Band
In all figures, it is observed that up until the point of yielding, both generalized elastic solutions

are identical to the finite element results for both loading sequences. This is expected since the
stress and strain components are independent of loading path in the elastic range. After the onset

of plasticity at the notch tip, the actual results diverge from the approximate solutions.



Comparing the energy densities as the ratio o, /7, increases (as the amount of tension increases
relative to ihe torsion), it is observed that the equivalent normalized net section stress ratio
necessary to violate the generalized Neuber's elastic solution increases. This is expected since a
torsional stress will induce plasticity sooner than a tensile stress and this would occur even if

loads were being applied in a proportional manner.

For the ratio 6, "x,. = 1.1, the model was also analyzed for a proportionally applied load. In
Figure 3.8a, it can be seen that for the most part, the proportional results are virtually the same as
the non-proportional results. However, the non-proportionally applied loading sequence results
in the violation of the Neuber's solution at a lower S_/c, ratio than for the proportional resuits.
The strain energy densities (Fig. 3.8b) in the case of the proportional load are lower, and thus
better predicted by the ESED solution. than they are in the case of a non-proportionally applied
load. However, again the difference in the results between all loading paths is small until almost

general yielding of the net section.

In all plots, it is noted that the generalized Neuber’s rule forms the upper limit on the total strain
energy density, until virtually general yielding of the net section. Furthermore, it is observed that

the ESED method always predicts the lower limit of the actual strain energy densities at the notch

tip.



33.2 Axial Stress - Strain Contribution to the Energy Densities

3.3.2.1 Material Model

The material of the bar was chosen to have a cyclic stress-strain curve given by the Ramberg-
Osgood relationship,

a=%+(%)/"‘, G.12)

with parameters, E =202 GPa, v=0.3. 6, =202 MPa, n’ = 0.208. and K’ = 1258 MPa. The
material stress-strain curve was approximated by several linear segments in both the FEM and

simplified analyses (Fig. 3.11).

3.3.2.2 Method of Results and Analyses

The elastic-plastic FEM model was analyzed for the tension-torsion (F ig. 3.12a), torsion-tension
(Fig. 3.12b), and a torsion-combined tension, torsion (Fig. 3.12c) loading path. The applied load
levels were chosen for each loading path to be 50% higher than would be required to cause
yielding at the notch tip if each was applied alone. Specifically. in all cases, o, .*= 103 MPa, and
T,s. = 90 MPa. The final ratio of the net sectional stresses was then c,./t,.'=1.133. The
normalized nominal equivalent net sectional stress ratio at the end of the loading history was
then: S_/c, = 0.92, indicating almost general yielding conditions in the net section. After set
increments in the external load were applied to the body, the elastic-plastic notch tip stress and

strain components were recorded. From the recorded data, the contributions of each axial stress-
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strain component to the increments in energy densities at the notch tip were calculated based on
equations (3.3 ) and (3.7). The elastic contributions to the energy densities were calculated

similarly knowing the load increments, the stress concentration factors and the material’s elastic

properties.

Figures 3.13, 3.14. 3.15 show plots of the equivalent net sectional stress ratio (eqn. 3.11) verses
the energy ratios defined by equations (3.3) and (3.7) for the tension-torsion. torsion-tension, and
torston-combined torsion-tension load paths respectively. In the figures, the superscript “e-p”

denotes elastic-plastic, and superscript “‘¢” denotes elastic finite element data.

Assessment of Energy Ratio Equations
In all plots, it is noted that all ratios remain the same until the onset of plasticity and that the

divergence from unity increases when the mode of loading changes. The divergence from unity
appears to be most prevalent in the direction where the stresses are the lowest. That is, in the
direction transverse to the axis of the bar. In this direction, the strains are relatively low and thus
the numerical error is the highest. In the plots of the energy ratio equations for the tension-torsion
loading paths (Figs. 3.13a and b), the average of the largest divergence from unity (averaged in
the three directions) in the strain energy density (eqn.3.3) and total strain energy density (eqn.3.7)
equations are approximately 16% and 5%, respectively. In the plots for the torsion-tension
loading path (Figs, 3.14a and b), the average divergence from unity in the three directions is
approximately 12% and 18% for the strain energy density and total strain energy density
equations, respectively. In the case of the torsion-combined torsion - tension loading path
(Figs.3.15a and b), the largest average divergence is 7% and 13% for the strain energy density

ratio and the total strain energy density ratio equations, respectively. It should be noted that the



divergence from unity was generally calculated at the end of the loading path, where the
assumption of localized plasticity is violated. It should also be noted that, since energy is a
multiple of stress and strain, the divergence in the energy ratio equations will result in a smaller

error in the actual stress and strain values at the notch tip.

3.3.3 Summary of Numerical Assessment

In the first numerical analysis, the hypothesis that the energy densities are somewhat insensitive
to the load path was tested and the results imply that a generalization of the ESED method in the
form of eqn.(3.2), and a generalization of the Neuber's rule in eqn.(3.6), is justified. It was further
shown that for 2 non-proportional loading system, the generalized Neuber's rule predicts an upper
bound on the FEM results for the total strain energy density at the notch tip. The generalized
ESED method resulted in a lower bound on the FEM results for the strain energy density at the
notch tip. Additional numerical analysis and experimental investigation should be carried out to
examine this conclusion. However, the material model chosen was intended to highlight the error
in the numerical solutions and, furthermore, the loading paths chosen were highly non-
proportional. Therefore, it is fully expected that any further studies will support this conclusion.

It should be noted, however, that this conclusion cannot be made in the case of cyclic loading.

The second analysis was designed to assess the additional equations used in the incremental
ESED formulation (eqns.3.3) and in the incremental Neuber’s formulation (eqns.3.7). The

analysis showed that the equations work well almost up until general yielding of the net section.



Figure3.1: Two Notched Bodies Made of a) Elastic and b) Elastic-Plastic Material
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Figure 3.2:  a) Incremental Equivalent Strain Energy Density Method, b) Incremental
Neuber’s Rule
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Figure3.4: Finite Element Model of the Cylindrical Bar



42

0.00 0.02 0.04 0.06 0.08 0.10

Strain, €
Figure3.5:  Material Model Used in Energy Assessment.

Figure 3.6: Load Paths Used in Energy Assessment a) Tension-Torsion, Proportional, b)
Torsion-Tension, Proportional.
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Figure 3.14: Axial Energy Increments in Torsion-Tension Load Path, a) Strain Energy
Density, b) Total Strain Energy Density
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4. CHAPTER FOUR:

CONSTITUTIVE MODELLING

In Chapter Two, it was shown that a set of seven independent equations is required to fully
describe the notch tip stress and strain field in a body subjected to a non-proportional loading
sequence. In Chapter Three, two simplified methods, the incremental ESED and incremental
the Neuber’s methods, were presented. Each method provides three independent relations for
estimating notch tip elastic-plastic parameters. To complete each set of seven equations, four
additional equations are required and can be described by the constitutive behavior of the
material. Although constitutive theory is well known and can be found in references such as
[26], [40]-[42], its fundamental relations, expressed in notation used in the thesis, are presented
in this chapter. This enables a clear formulation of the complete set of relations necessary to
solve for the seven unknown increments at the notch tip when the body is subjected to a cyclic

load.

4.1 Elastic Constitutive Relations

When a body is said to be loaded elastically, it is assumed that the deformation process is
reversible. That is, when the load is removed from the body, the body returns to its original

state and the loading process has no effects on the behavior of the material upon subsequent

51
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loading. Elastic material behavior further implies a direct or one-to-one relationship between
stress and strain. For a linear elastic isotropic body, the relationship between stress and strain
at any point in the body can be represented by Hooke’s Law in the form

1+v v 5
i E G ‘Ecu ij*

(4.1)

where §; is the Kroneker delta. When loaded. most materials exhibit a range of deformation
that is reversible before the load is large enough to exceed the material’s yield limit and

permanent or plastic deformations occur.

4.2 Elastic-Plastic Constitutive Theory

When plastic deformation occurs in a body, the loading process becomes irreversible. That is,
permanent deformation remains in the body after the load is removed. Fundamental plasticity
theory states that the final stress-strain state is dependent on the applied loading path, unless
the loads are increased in a manner such that the deviatoric stresses increase in a constant ratio
throughout the loading history. In such a case, the final plastic strains are independent of the
loading path, and this is generally assured if the loads are applied in a proportional manner.
Thus, as in the elastic case, there is a one-to-one correspondence between stress and strain

when the loads are applied in a proportional manner.



However, in the case of a notched body subject to a proportionally applied loading system,
because of the effect of the stress concentration, it can not necessarily be assumed that the
deviatoric stresses at the notch tip also behave proportionally. Certainly if the notched body is
subjected to a non-proportional loading systera, the final notch tip stress-strain state will

depend on the applied loading path.

As such, relations that define the local stress-strain state in any notched body subjected to a
non-proportionally applied loading system must be developed in an incremental form. That is,
they must, for a given increment in the applied load, enable the stress and strain increments to
be determined. The stress-strain state after the load increment has been applied can then be

found by the addition of the previous stress-strain components and the stress-strain increments.

In order to model the incremental constitutive behavior of the material properly. three relations
are required. The first reiation is the yield criterion, which is a statement of the state of stress
in the material at yield. The second relation is the flow rule, which relates the stress tensor to
the strain tensor in the plastic range. The third relation is the hardening rule, which dictates

how the yielding criterion changes during the course of the loading.
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4.2.1 The Yield Criterion

In a simple tensile test, a uniaxial tensile load is applied to a body to determine the stress-strain
behavior of the material. When the load is first applied, the process is generally reversible or
elastic, and Hooke’s Law is applicable. This region of reversibility continues until the elastic
limit, or yield point is reached. Beyond the yield point, the stress is no longer proportionally
related to the strain. Thus, if a body is subjected to a uniaxial load, the point at which the
material starts to deform plastically can be determined from a simple tensile test. However, if
there are several stress components acting at a point in different directions, as is the case at the

notch tip, a criterion is required that will dictate the combination of the acting stresses at yield.

In the most general case, the yield criterion will depend on the complete state of stress at a
point in the body and, respecting the symmetry of the stress tensor, will be a function of six
independent components of stress. Since it is generally assumed that hydrostatic tension or
compression does not influence yielding, the yield function can be written in terms of
deviatoric components, S;;, as

f(S;) =K. (4.2)
where K is a known function, or,

F(S;) =0, 4.3)

and



W
W

1
S. = c; - Eckkﬁij. 4.4)

i
The functi;)n F in (4.3) is called a yield function and the surface in stress space that it describes
is called a yield surface. The yield surface represents a boundary between the region of elastic
and elastic-plastic stress states. Stress states that lie within the yield surface are a result of
elastic deformation, and those exterior to the yield surface can only be reached by plastic
deformation. Since plastic deformations must be consistent with the changes in the yield

surface, any stress state that resulted from a plastic deformation must lie on the vield surface.

Numerous criteria have been proposed for the yielding of materials of which the von Mises
criterion is used most commonly in cyclic applications. The von Mises yield criterion assumes
that yielding occurs when the distortion energy density at a point in a loaded body equals the
distortion energy density in a rod of the same material as the body at yield (c,) in tension. The

von Mises yield criterion can be written on the basis of eqn.(4.3) as

-

S;S; —o,” =0. 4.5)

iP5 ~ Yo

[N} VF)

F(Sij) = f(sij) "C"o2 =

The von Mises criterion described by eqn.(4.5) has an advantageous geometric representation
in stress space. Specifically, it can be represented as an ellipse in a two-dimensional principal
stress space (0,-05) as shown in Figure 4.1a. In three-dimensional principal stress space it can
be represented on its deviatoric stress plane, or the n plane, as a circle of radius V(2/3) o, as
shown in Figure 4.1b. For ductile materials, the von Mises yield criterion is generally

considered to fit experimental data better than other theories.
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4.2.2 The Flow Rule

The relationship between stress and strain in incremental plasticity is governed by the flow
rule. Plasticity theory assumes that the plastic strain increments, de;", are directly proportional

to the partial derivatives of a stress potential function. Q(oy). Thatis,

Q
P =) —=

3

de; (4.6)

where A is a positive scalar that indicates the magnitude of, and the potential function Q(c;)
indicates the direction of plastic flow. When the potential function is the same as the yield
function, F(c;;) (eqn.4.3), the resulting flow rule,

oF of
deijp = l——:)\,_, (4.7)

acij Jdo i

is called the associated flow rule. Equation (4.7) states that the plastic strain increment is

normal to the yield surface. The flow rule can be written in a more general form as

de.? =

1, .
i fp-nij(nk,dck,) . (4.8)

where fi; are the components of the unit normal to the yield surface and are defined as

oF

fi, = (4.9)

’ ( OF aFJ“””
3S, 3,
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and K, is the hardening modulus that can be obtained from a uniaxial tensile test. Equation
(4.8) can be applied to bodies that are loaded proportionally as well as non-proportionally and

is written independent of the hardening behavior of the body.

The total increment in strain at any point in a body can be found by adding the elastic and

plastic components as

de. =de  +de.”. (4.10)

4.2.3 The Hardening Rule

Consider the case where a body is subjected to a uniaxial tensile load that results in a stress o
that is greater than the initial yield limit o, of the material. If the body is then unloaded
elastically, and then reloaded, the material will not yield at the initial yield limit, but at the
higher stress level . This yielding behavior is inherent in work hardening materials. It

indicates that the yield surface must transform under subsequent loading.

4.2.3.1 Isotropic Hardening

[sotropic hardening is based on the assumption that an isotropic body remains isotropic under

piastic loading. Isotropic hardening was first proposed by Hill [40] and is shown in Figure 4.2
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for uniaxial loading. In Figure 4.2, the initial yield surface is shown to expand uniformly as
the material hardens from point a to point b, with its center remaining at the origin. If the load
is removed and reapplied in compression, the material will yield in compression at the stress o,
= - G, Isotropic hardening dictates a uniform increase in strength of the material in all

directions.

If the von Mises yield criterion is used in the isotropic hardening model, the yield criterion can

be stated as

2

SijSij —&m =0, 4.1

| w

F(Sij) =
where G, is the largest value of the equivalent stress attained during loading (o, in Fig. 4.2).

Substituting eqns. (4.1),(4.8), (4.9) and (4.11), into eqn. (4.10) vields

l+v | v 3S;Sydoy,
de; = E %% —Edckkaij ‘*'EW- 4.12)

Note that in eqn.(4.12), d; is the Kronecker delta

Isotropic hardening does not account for the anisotropy inherent in plastic deformations. In

other words, the Bauschinger effect is neglected in the isotropic hardening model.
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4.2.3.2 Kinematic Hardening

To account for the Baushinger effect, Prager [43] postulated that the initial yield surface
translates at the onset of plastic flow. The concept of kinematic hardening is illustrated for
uniaxial loading in Figure 4.3. In Figure 4.3, the initial yield surface moves with the stress
point as the material hardens from point a to b. Upon unloading and reloading in
compression, the material yields at ¢, where 6, <- 6, . In kinematic hardening, as indicated in
Figure 4.3, the yield surface retains its original shape during plastic deformation, as governed
by the initial yield stress G, but translates by the amount d&; for a given increment in the
deviatoric stress tensor. The tensor [£] represents the coordinates of the center of the yield
surface. If the von Mises yield criterion is used, then the equation that defines the yield surface

is
3 5 -
F(Sij’éij) = ;(Sij —iij)(sij —éij) -c, =0, (4.13)

where ;; are the deviatoric components of the back stress tensor [a], or

-

1
g =aij—§8ijakk. (4.14)
The associated flow rule can be obtained by substituting eqns.(4.13), (4.8), (4.9), and (4.1) into
eqn. (4.10) and is written as

I+v v
daij = E dcs'ij —-E—

(4.15)

38 —&;)Sy —&y)doy,
dckkSij +'2- Kpci .
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Most cyclic plasticity models are based on the concept of a translating yield surface. The
differences in the cyclic plasticity models presented in the literature generally lie in the
translation rule which governs the movement of the yield surface and thus the value of dg; in
Figure 4.3. Prager’s [43] translation rule assumes that the yield surface translates in the
direction of the exterior normal at the stress point, or,
dg; = nde,’. (4.16)
An alternate translation rule was proposed by Ziegler [44] as
dg; =du(s; -&;) . (4.17)
which states that the yield surface translates in the direction of the vector that connects the
center of the yield surface to the stress point. Although both the Prager and Ziegler rules do
account for the Bauschinger effect, they have been found to poorly predict the hardening

behavior of bodies subjected to non-proportional loads [45],[46].

To better model the load path dependent properties of materials, Mroz [47] generalized the
kinematic hardening model by introducing the concept of a field of ¢ initially concentric work

hardening surfaces and prescribing a translation rule for the surfaces moving with respect to

one another.

In the Mr6z model, each surface is defined by its center coordinates, £\ . a yield stress, o{",

and a plastic tangent modulus, E}”. The model assumes that each surface can be described



61
by the same relationship as the yield criterion. If the von Mises criterion is used, then each

surface is defined as

N L

F(’)(Sijsa.ij) = (Sij —éij(’))(sij _éij(’)) _cou)z =0. (4~18)

The initial surface in stress space is the initial yield surface. and the outer surfaces become
“active” at higher equivalent stress levels. The equivalent stress and the plastic tangent
modulus associated with each surface can be found by descretizing the uniaxial stress-strain

curve. This concept of a field of work hardening surfaces is illustrated in Figure 4.4,

The total strain increment can be obtained by substituting eqns. (4.18), (4.8) ,(4.9), and “.1),

into eqn. (4.10) and can be written as

1+v \Y 3 (S5 —E_ij(n))(skl —ikl(n))dckl
de; = E do; —-gdo-kkéij +3 K, o3 .

(4.19)
where the superscript “n” is used to denote the “active” yield surface and the hardening modulus

K, ™ is now associated with the “active” (nth) surface and can be determined from the uniaxial

tensile test.

The determination of the active surface is governed by prescribing a translation rule for
surfaces moving with respect to each other over distances given by the stress increments. Mroz
bases this translation rule on the concept of mutual tangency. Specifically, Mro6z assumes that,
upon elastic-plastic loading, the surfaces move within each other and they do not intersect. If,

however, they come into contact with one another, or become mutually tangent, they move
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together as one rigid body. The active surface is then determined by the largest hardening
surface tangent to the yield surface. Thus, if loading only in tension (see Fig. 4.4), the stress
point moves from zero until it hits the first yield surface F at a. The yield surface F® is then
the active surface and it translates along the o, axis with the stress point until it hits F® at b.
Upon subsequent loading, both surfaces F""” and F” move with the stress point (F® now being
the active surface) until F® is reached at point c. Upon unloading, the stress point moves
inside the first yield surface, F'", until it reaches the boundarv, where plastic loading again

begins with F" being the active surface.

Figure 4.5 illustrates the rule developed by Mrdz, based on the concept of mutual tangency,
that defines the translation d&;™ of one surface F™ with respect to the next F™". Assume that
the state of stress lies on the active surface F™ at point P. Mr6z proposed that the active

surface will translate along PR as
dgi =dp(sy" -SiM). (4.20)

where dy is the magnitude of the translation, and (8" —Si") governs the direction of

translation. Mréz defines the point R as the conjugate of point P on the immediate outer

surface F®™", or the point on F™" that has the same direction normal as F™ has at P, or
g =Aaf, (4.21)

J

where fi; is given by eqn.(4.9). If two surfaces F™ and F™ " are defined using the von Mises

yield criterion, then substituting eqn.(4.18) into eqn.(4.21) defines the point R as



(n+D
Sl =g ¢ (,,, (S —&My. (4.22)
Substituting eqn.(4.22) into eqn.(4.20) gives
(n) d (n) ¢ o(n+l) _ (n) (n) (nvl) r (n-1) (n) -
dg® = —-[si (o )= (G0 — g0 Ie ). (4.23)

0

The magnitude of the translation dp is found by imposing the condition that the stress point
must lie on the yield surface during plastic deformation (the consistency condition). That is,
after infinitesimal changes in do;; and de;; have occurred, the material must still satisfy eqn.
(4.18), or

dF‘"’(SU,éfj“’) =0. (4.24)

Expanding eqn.(4.24) using Taylors series vields

~F(n) aF(n) 1 aF(n)Z aF(n)l aF(n)z
dg; ™4 :dSy +2 —/——=-dS, ;d N d dE, H....=0
as ds + ai(n) {as as dsu kl +2 ~Sua§(n) ki aéu 2 E—u gkl +

(4.25)
Note here that the second order terms are included in this expansion since it has been found
that the first order approximation is not sufficiently accurate when descretized. Substituting

eqns. (4.18) and (4.20) into eqn. (4.25) yields the following quadratic in dp
dp’ [ g+ ngn))(si(jn-o-l) —Sfj"))]—Zdu[(Sfj"’” —ngn))((sfjn) _ *;:fjn))-‘-dsij)]

[ (st —gwm)ds, +ds,ds, ] 0. (4.26)



Note that the correct root of the equation will restrict du to: 0 < du < 1. If the second order
terms in eqn.(4.26) are neglected, it reduces to the more common form of the consistency
condition of

(s - g asem
SHESI CHeE N

dp = ( (4.27)

It should be noted that for each translation of the active surface, the surfaces interior to, and
thus tangent to, that active surface must also be translated such that they move together as a
rigid body with the stress point. Thus, the centers of each hardening surface interior to that
active must lie on a straight line connecting the coordinates of the center of the active vield
surface &;™ to the stress point S;. The center, £,"" of F™" for example can thus be described
by its position relative to F™ as

(n)

= (n O, - (n—
S; —ng ' = oD (Sij ‘ng I))s (4.28)

4]

where S; denotes the stress state after the body has gone through the plastic strain increment
dg;.
Thus in utilizing the multiple surface hardening rule proposed by Mr6z, the plastic strain
increment on the active surface can be found using equation (4.19). The translation of the
active surface can then be found using eqns. (4.22)-(4.26), and the translation of surfaces

interior to the active surface using (4.28).
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Several modifications of the Mréz model have been proposed in the literature. Garud [48], for
example, proposed an alternate translation rule that avoids the intersection of the ellipses that
could occur in some cases in the original Mréz model. Jiang and Sehitoglu [49] have presented

a good comparison between the Mrdz and the Garud models.

Chu [50] proposed a modification to the Mréz model that circumvents the often cited problem
with the Mr6z model. That is, the large computer storage requirement associated with the

necessity to store the location of each surface. Chu’s model retains the idea of a field of work-
hardening surfaces and utilizes an infinite number of surfaces and tracts only the movement of

the active surface, defined as the largest surface that passes through the yield surface.

An alternative model was also proposed by Kurath and Jiang {51]. The strength of this model

lies in its ability to model ratchetting effects.

The problem of excessive storage requirements in the Mréz model is also overcome by the use
of two surface plasticity models, originally proposed by Dafalias and Popov [52]. Two surface
models use the yield surface to differentiate between elastic and elastic-plastic behavior, and a
limit surface, which defines the point where the material becomes linear at large strains. In
order to properly define a two surface plasticity model, an appropriate translation rule must be
selected or defined, and a proper methodology must be adopted for calculating the plastic

modulus.
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43 Constitutive Behavior at the Notch Tip

In fatigue analysis of notched bodies subjected to uniaxial or multiaxial proportional loads, the
material constitutive behavior is generally described by the Masing [53] hypothesis. Masing’s
hypothesis is a kinematic hardening rule that states that the cyclic stress-strain material
response can be obtained by doubling the uniaxial cyclic stress-strain curve. In the case of
notched bodies subjected to non-proportional loads, a plasticity model must be adopted that

accounts for path dependent material constitutive behavior.

Although any constitutive model that incorporates path dependent material behavior can be

used in conjunction with the ESED or Neuber’s simplified equations, the Mr6z model is used
in this work. This is primarily justified by the ease of use and understanding of the model and
furthermore, the rapid advancements in computing technology has trivialized the argument of

its necessity of excessive storage space.
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Figure 4.1: von Mises Yield Criterion on the a) 5,-6, plane and b) = plane
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Figure 4.3: Kinematic Hardening
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Figure 4.4: Piecewise Linearization of the Material c—c Curve and the Corresponding
Hardening Surfaces
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Figure 4.5: The Mréz Translation Rule




S. CHAPTER FIVE:

NOTCH TIP STRESS-STRAIN DETERMINATION

The relationships presented in Chapters Three and Four can be used to solve for the material
stress-strain response while a body is undergoing plastic deformation. When a body is
subjected to cyclic load, at any point during the cycle the straining may be a result of elastic
loading, elastic unloading, or elastic-plastic loading. To fully model the elastic-plastic stress-
strain response to an applied loading cycle, equations that delineate each region, and for each
region of straining, must be developed. Traditionally, cyclic plasticity methods for
determining the response of a material when a cyclic load is applied are used to determine a
stress history knowing an elastic-plastic strain history or vise versa. However, in the simplified
analyses presented in Chapter Three, it is proposed that the only required knowledge is a notch
tip elastic stress history and the properties of the material. Therefore, the method of calculating
the notch tip behavior using the simplified equation sets does not follow the conventional
plasticity methodology. Specifically, the unloading criterion, the plasticity equations, and the
elastic unloading methodology must be written to respect the available input into the simplified

analyses.

In this chapter, the complete methodology for solving for the notch tip stress-strain
components at any point during a loading cycle using the simplified methods proposed in
Chapter Three is detailed. Specifically, the required initial data and calculations are presented

70
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followed by the procedure for describing the unloading criterion and elastic unloading. The
method used for describing elastic-plastic loading using either of the proposed incremental
equation sets in conjunction with the Mr6z multi-surface plasticity model is then presented.
Finally, the computer algorithms for implementing the models are described. When required
for clarity, the equations presented in Chapters Three and Four in index notation will be

expressed in component form following the conventions shown in Figure 2.2.

5.1 Notation

The two independent methods, the incremental Neuber’s and ESED methods, are each capable
of solving for the notch stress-strain history. To differentiate between methods, all elastic-
plastic quantities that refer to the incremental Neuber’s method of calculation will have a
superscript N, and those referring to the ESED method, a superscript E. Thus, in the most
general case, the notch tip elastic-plastic strain and stress tensors expanded on the element are

expressible as

o

E E
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when using the incremental ESED method, and
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0 0 0 g, O 0

N N N ) :
6; =|0 o» oyf.andef =0 ) &X], (5.2a,b)

; N N N

0 o5 o 0 &5 e

when using the incremental Neuber’s method.

5.2 Initial Requirements

In order to use either the incremental Neuber’s or ESED methodology, two sets of input data
are required. The first set describes the material properties, and the second, the elastic notch tip

stress history.

5.2.1 Material Properties/ Yield Surface Definition

It is assumed that the material is elastic-plastic and that the stabilized cyclic stress-strain curve
is defined. The use of the cyclic stress-strain curve assumes a cyclically stable response from
the initial loading. However, modeling the cyclic hardening or softening characteristics makes
the analyses unnecessarily complex since no significant effect has been found on life

predictions when this transient behavior is ignored.

To implement the Mréz multiple surface plasticity model, the uniaxial stress-strain curve must

be descretized into segments. Each segment is described by a plastic tangent modulus and an
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equivalent stress. Any uniaxial stress-strain curve can be descretized in such a manner and the

resulting strain at any point Q can be related to the stress as

g nol Glish _ G(i) O'(Q) - G'(a")

[+ co Q
e(Q) = E +§ E® + E:")

P

(3.3)

In the above equation, n denotes the current or “active” part of the uniaxial curve.

With the knowledge of the uniaxial stress-strain diagram, the hardening modulus K™ defined
in eqn (4.19) can be determined for each active surface. That is, if we specialize the flow rule

for uniaxial loading, we obtain

3(S,,-&")'do
def = - —— (5.9)
2 K; ‘oM
where from eqn.(4.18)
(n)2 _é S _z(m)y2 _e(nm)y2 _pin)y2 <z
G, =3 S, =&\ +(Sp —&5') +(S;; -€%)° |, (3.5)
and for uniaxial loading,
EX I 0 |
S,=| 0 -to 0 |, (56)
|0 0 -3o]
20 0 0 |
E;=1 0 —ta 0 (5.7
ij
B 0 0 —_%aJ

Substituting (5.6 ) and (5.7) into (5.5) and rearranging vields
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my 9 ()32 -
0'53 2 =Z(Sn &)’ (5-8)
Substituting (5.8) into (5.4) yields
2 do
m _ =499 <
K)' = 3de7 (5.9

If we differentiate the plastic part of eqn.(5.3) and substitute it into (5.9), then the plasticity

constant of the active surface can be defined as

K™ =3d6 =%
P 3de? 3

7 I (5.10)

E™ T E

It should be noted that the method of descretizing the uniaxial stress strain curve in the form of
eqn.(5.3) is not obvious. In general, stabilized cyclic stress strain curves are available for
materials in the form of the Ramberg-Osgood equation (3.12). The equation indicates that
plastic strains are present at the start of loading and thus it does not exhibit a clearly defined
yield limit. In the Mrdz model, however, the initial yield surface separates elastic from elastic-
plastic material behavior and therefore must be of a finite size. Thus, a yield limit must be
chosen for the Ramberg-Osgood curve. A poor choice of the vield limit leads to significant
errors in the stress-strain results. Methods for choosing an appropriate yield limit are given in

[32] and [54].
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Another consideration in descretizing the uniaxial curve is the proper choice of the number of
vield surfaces. Too few surfaces leads to errors in the results. If too many surfaces are used,
an excessive amount of storage space is required to store the back stress tensors of each
surface, and furthermore, the stress increments in the plastic region must be very small so that a
single increment does not result in skipping surfaces. Generally, it is advantageous to
descretize the stress-strain curve so as to result in more plasticity surfaces where the change in

the slope of the uniaxial stress-strain curve is the greatest.

5.2.2 Elastic Stress-Strain History

In order to utilize either of the simplified equation methodologies, the elastic stress history at
the notch tip is required. That is, the stress-strain history at the notch tip must be known
assuming the body under consideration behaves elastically throughout the loading cycle. The

elastic stress tensor defined on the notch tip element shown in Figure 2.2 is

0 0 0 'j
c;=|0 o} o (5.11)
0 o, o5

and can be determined from an elastic finite element analysis of the body or from stress

concentration factors available in closed form for certain geometries. The elastic strain tensor,
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e, 0 O
e;=| 0 &5, €5 (5.12)
0 &5, &5

can be found by applying Hooke’s Law.

5.3 Elastic Loading

At the beginning of an initial loading cycle, it is assumed that all strains are elastic. Thus

initially the notch tip stress-strain response is identical to the available elastic solution, or

oV =c¢f =5°. (5.13)
and

e¥ =gf=g°, (5.14)

The initial elastic region continues until the initial yield surface is reached. That is, (using
eqn.4.18) until

FO(5;.8,) = 5558; 03 =0, G.13)
since initially ;" = 0, and 6,/ = &,. Expanding this equation on the notch tip element gives
~65,05 +365° -l =0. (5.16)

G35 +03;
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5.4 Unloading Criterion

When the stress state lies on the yield surface, subsequent straining may be the result of elastic
unloading or elastic-plastic loading. Which mode of loading is taking place is governed by the

unloading criterion.

Plasticity theory dictates that elastic-plastic loading takes place when the stress increment is
moving out from the yield surface. If we consider a yield surface function F(S;) (Fig.5.1), then
the loading condition requires that the projection of the stress increment onto the normal of the

yield surface must be greater than zero for elastic-plastic loading to take place. or

oF
g.dsﬁ >0 for elastic-plastic loading. (5.17)
i

Thus, unloading takes place when the stress increment moves inward from the yield surface or

oF
S dS; <0 for elastic unloading. (5.18)
i

It should be noted that if the inequality in relation (5.18) is equal, then neutral loading is said to
occur. That is, the stress increment is tangential to the yield surface. Since computer
implementation of this unloading criterion makes it virtually impossible to identify neutral

loading, it is presented above as an unloading condition.
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In traditional plasticity algorithms, the above loading/unloading conditions are evaluated with
the knowledge of the current stress state S;- If the strain history is known. then the stress
increments dS;; are calculated from the strains using elastic stress-strain relations. Using the
simplified equation methodology, the increments in the stress and strains are known for the
case of an elastic body, that is dS; can be defined by the elastic increment dS;®. Substituting
the yield surface equation (4.18) for kinematic hardening into the unloading criterion, and

changing differentials to finite increments for numerical implementation gives
LP = (S5, -85 )act +(SE -5 )act, +2(Sk - 25 )acs,, (5.19)
for the ESED methodology and,

LP = (8% -2 )acs, +(S¥ &% )acs: +2(s -2} )acs,. (5.20)

33

if the incremental Neuber’s method is being used. In both cases, LP is the loading parameter

that dictates if elastic-plastic loading or if unloading takes place, as

>0 Elastic - Plastic Loading
LP . (5.21)
<0 Elastic Unloading

5.5 Elastic Unloading

If it has been determined that the external load will cause the body to unload elastically, it is

necessary to determine whether or not the body will begin to deform in an elastic-plastic
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manner during that load increment. For example, consider the case as shown in Figure 5.2

where the initial stress state as calculated by the incremental ESED method ( S§) or Neuber’s
(S;}') method lies on the inner most yield surface. If unloading is to occur during the step, the

stress path must follow that of the elastic solution. That is. during elastic unloading

AS,f = ASS (3.22)

G
and
AS} = AS;. (5.23)

If the stress increment AS{ intersects the yield surface at S or S{ then this new stress state is
found for the incremental Neuber’s and ESED equation sets respectively as

S =S +kaAS;, (5.24)

S; =S; +KkAS;. (5.25)
where K is a parameter greater than zero that denotes where and if the loading path intersects
the yield surface. That is:

(<1 elastic — plastic loading will occur

k {=1 new stress state lies on the yield surface . (5.26)

| >1 new stress state is elastic

The parameter k is determined by the condition that the new stress state Sf orS,;' "must lie on

the innermost yield surface. That is, for the incremental ESED solution set



[(55 +kas;)-g¢]-[(s5 +kass) -

or in the case of the incremental Neuber's solution set

[(55 +1easg) -2~ ]-[(s + kasg)-

-

eME|_ % _m2

Si |39, .
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The above two equations result in the following quadratic equations in terms of k:

[(as;-
] K +[(s

s;.)] k* +[2AS§j sy —gpw

for the ESED and Neuber’s solution sets, respectively. Each of the quadratics defined by

AS: ]k +[2AS (s& -&¢) ]k+[SE—F

()E
Sij

E (OE 2
)55 -27)-5o

e a)- ot -o.
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(5.27)

(5.28)

(5.29)

(5.30)

eqns.(5.29) and (5.30) will result in two values for k. The correct root will be the largest value

of k greater than zero. If the value of k is less than one, elastic-plastic loading will commence

at the stress state defined by eqns. (5.24) or (5.23).

5.6 Elastic-Plastic Loading

When an increment in external load results in plastic deformation at the notch tip, then either

the incremental Neuber’s or ESED equations can be used in conjunction with the constitutive

equations to solve for the notch tip stress and strain increments. In this section, both of the

proposed solution sets are presented.
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5.6.1 Local Versus Global Co-ordinate Systems

As previously discussed, in the analysis of smooth specimens under uniaxial cyclic loads,
Masing’s hypothesis is generally used to determine the relationship between stress and strain at
any point in the load cycle. In using Masing’s hypothesis. each cvcle is reduced to a series of
monotonic loading steps with boundaries at the point of each load reversal. At the end of each
step, the coordinate system for the next step on the stress-strain diagram is changed with its
origin being translated to the current stress and strain state. The relationship between stress
and strain in subsequent steps is obtained by doubling the stabilized cyclic stress-strain curve
and writing the resulting relation in terms of the local coordinate system. Thus, the Masing
hypothesis is a method for determining the cyclic stress-strain response and, although
mathematically more cumbersome, can be written on the fixed coordinate axis for each reversal

in the applied load.

In the case of notched specimens subjected to uniaxial loads, both the uniaxial Neuber’s and
ESED relations were extended to address unloading by comparing elastic and elastic-plastic
energies on the local coordinate frame. One of the more obvious reasons for doing so is the
mathematical simplicity in using the equations in conjunction with Masing’s hypothesis if
written in the local coordinate frame. One of the more subtle reasons, from the point of view

of the energy equations, is that it is necessary to work in the local frame to insure compatibility
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of the signs of the energy increments. To illustrate this point, consider a notched body
subjected to a uniaxial load and assume that a plane stress state exists at the notch tip. Suppose
the body has been loaded from zero to some nominal stress S, in tension as shown in F igure
5.3a. The stress and strain in the notch tip in the case of an elastic body are known as ,° and
g,°, respectively. Using, for example, the uniaxial ESED equations (2.7), the corresponding
elastic-plastic strain and stress are found to be ¢,® and o, (Fig. 5.3b). Now assume that the
nominal is reduced to S, where S, will result in vielding at the notch in the elastic-plastic
body. Before the elastic-plastic body yields at point p, the stress and strain increments are the
same in both bodies, but the stress in the elastic-plastic body is less after each increment than
in the elastic body (since 6,°< 5,%). Thus in the elastic-plastic body, yielding may occur at a
point p, where cp5<0. If the elastic-plastic response is required at point p’. then one would be
forced to compare a positive increment in energy in the elastic-plastic case. to a negative value
in the elastic case (Fig. 5.3b). If however, local coordinates are used, as shown in F ig. 5.3c,
then the signs of both elastic and elastic-plastic energy increments would be positive and a

valid comparison would be made.

In the case of non-proportional loading, the muiti-surface model used in this work does not
require a coordinate transformation. However, to insure compatibility in the signs of elastic
and elastic-plastic energy densities, it is proposed that the equations be solved in a local
coordinate frame. The direction and origin of the local coordinate frame is dependent on the

direction of the equivalent stress in the elastic solution.



It is proposed that the elastic equivalent stress be initially calculated at the end of the first and
at the beginning of the second loading step. If the direction of the equivalent stress changes,
the origin of the coordinate system to be used for energy density calculations in the second step
lies at the stress/strain state at the end of the first step. That is. at O,(c;™. &;™) in the elastic
solution and O,(c;*,&;%) or O4(c;™, £;™) in the elastic-plastic solution. If the direction of the
elastic equivalent stress does not change, then the origin for the second step remains at the
origin of the fixed or global frame. For subsequent steps. the elastic equivalent stresses are

calculated and compared in the new local coordinate frames.

5.6.2 Dividing Input into Increments for Numerical Integration

In the plastic range, the strain response is load path dependent. As such, the energy equations
must be evaluated at each instant of the applied load. For numerical purposes, the differentials
in the strains and stresses in the equation sets are changed to small increments and the elastic-
plastic incremental response to a small increment in the elastic history (which dictates the
loading path) is sought from the equations. In other words, knowing the current stress-strain
state (0" /c;".g;"/¢;"), the equations are used to find the elastic-plastic strain Ae;*/Ae;N and
stress Acijs /Ao'ijN increments in response to a small increment in the elastic history Ac;® Ag’.

The stress-strain state after the increment in load has been applied is then obtained by

summation.
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Since we are integrating strain (ESED) and total strain (Neuber’s) energy densities along the
loading path, it is proposed that a given step in the elastic history be divided into small
increments in the energy densities for numerical implementation. Since the equations are to be
solved in local coordinates, the increments in the elastic energy densities are taken with

reference to the local frame.

Assume that at step (i) in the elastic history, the stress/strain state is given by c,” and g;, and
at step (i+1) by ;" and £;"". Assume further that it has been determined that the origin of
the local coordinate frame for the step is given by Oi(c;".€;™). Then the local increments in

elastic strain energy density (if using the ESED relations) can be found as

AWS = (o._e_(i) _cm)(sc(iol) _e;m)_*_%(o_e(i-n _c;(i))(ecu-n —8‘“’)/N ] (.31

1} ij i ij ij ij ij ]
and in the total strain energy density (if using Neubers relations) as
AQ® =2AW*, (5.32)

In the above equations, N denotes the desired number of increments. The above two equations

hold regardless of the orientation of the local coordinate axis.
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5.6.3 Incremental Equivalent Strain Energy Density Solution Set

In order to model the elastic-plastic stress-strain response to an increment in the elastic stress
history using the ESED method, two calculations are required. The first calculation A)
consists of solving the equation set defined by the incremental constitutive relations (4.19) and
the incremental ESED equations (3.4) simultaneously for the increments in elastic-plastic
notch tip strains and stresses. The second calculation B) consists of updating the yield surface
configuration in accordance with the translation rule. and the stress and strain tensor for

subsequent elastic-plastic straining calculations.

A) Calculation of Elastic-Plastic Strain and Stress Increments

Constitutive Relations:

The constitutive relations utilized are given by eqn.(4.19) in Chapter 4. Expanded on the notch
tip element, with the differentials changed to small increments for numerical implementation,
the four relations between stress and strain increments are given as:

v 9y®™
ASF' = [ E 4Y(n)’ (S E.(lrl‘)s)(s &.’ E)JAG’E_"

v 9 (n) n n 9Y(n) »{n ={n
+ l: E 4o n)’ (S é( )E)(S E_(JJ)E)}AG!SES-*-[?c(n)z (SIEl —C—(II)E)(SZES —g(zs)E) Aclzgs’
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1 9'Y(n) n v 97(") v (n n
Aeh = [—+ mr 2 —83%)" Aok + -5+ wmy (SR - XSS ~£9'F) |ack,

E 4o,
y®
+ SgmT (Sn —&3'°)SE ~ERF) [Ack, (5.34)
E 1 9‘}'(") . (n)E e v g.y(n) e o En2 .
Aes = E 252 (S5 - Sz —&% %) |Ach + "Et 2e™? (S5;—-%23%37) [Aos
.y(n)
+| semT (85 -5 °)SE -E5'F) Ak, (5.35)

and

Agk = 97“” E _¢(n)E E _z(mE E 97“1, E (mE E _x(mE E
&5 = W(SB-QB JSn —8: ") |Aon + 4™ Sy =83 XS5 -&3% ) [Acs

I+v  9y™
+ E +70'("”

(SE -2y EfJAci-,, (5.36)

(n (

where v = - Note that in the above equations S}, Z{"*. v, and ¢! are known from

2
2 (n)
3K,
the stress state prior to the load increment and the unknowns in the above equations are Aof and

Acg.E.

Y

Incremental ESED Relations:
The incremental ESED equations are given by eqns.(3.4) in Chapter Three. Expanded on the

notch tip element, and changing differentials to increments, they are expressed as
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1 1
(o&—cZ)Ae§3+;Ao-§_oAa§2 = (65‘;—63’)A8§;+;A0‘§2As§2, (5.37)
e eo e 1 e e E Eo E 1 E E -
(0'33—0'33)A833+§A0’33A833 = (033-633)A833+;A0’33A€33, (5.38)

1
(o5 -o%)Aes+-Acs AL

I
5 (cf;—cai?)As§~,+;AG§3AezEs, (5.39)

where higher order terms have been added here for increased accuracy. The above equations
represent energy increments on the local coordinate frame with the origin for the step (i) being
at O;(0;&;™) in the elastic body and O,%(c;** £,*®) in the elastic-plastic body. All values in
stress and strain in the above equations, however, are written to reference the global or fixed

coordinate frame.

The set of seven algebraic equations given by eqns.(5.33 - 5.39) is sufficient to solve for the
seven unknown increments of stress and strain at the notch tip. Since the equation set is non-
linear, the solution to the equations requires an iterative approach. In the current analyses, the
equation sets are first solved ignoring the non-linear terms in the ESED equations. That is,
assuming that %Aca‘, Ae ;=0 in eqns.(5.37-5.39). By doing so, the equation set reduces to a
set of seven linear algebraic equations for which a closed form solution is easily attainable.
For increased accuracy, the set of seven non-linear equations is solved using the Newton-
Raphson method. The initial guesses for the stress-strain increments used in the Newton-

Raphson routine are those found from the linear solution.
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B) Translating the Yield Surface

After solving for the increments in the notch tip stresses, it is necessary to update the yield
surface configuration by employing the multi-surface hardening rule proposed by Mréz. The
first step in employing the hardening rule is to determine which surface is active after the notch
tip stresses have increased by an amount Ac;. Specifically. if F™ is the active plasticity
surface before the stress increment, it is necessary to determine whether the new stress state
remains on F®, or if it lies on F™". The active surface can be found by determining what
fraction, x, of the stress increment, Ac;, results in a stress state that lies on the outer hardening
surface, F"™". In other words, find the value of « such that the new stress state o+ xAc," lies

on the outer yield surface given by

[(S,f +|<AS§)— fj“"’E].[(Sﬁ +|<AS§)—;‘“"’E] =

Sy

WIN

ginh?, (5.40)

o

Equation (5.40) results in the following quadratic in

(a5 - asg)]* + [2888 (55 ~e %) +[(s§ —g0E) (3B —zgue) écg"*'”] =0.
(5.41)

The correct root of eqn. (5.41) will yield a value of x greater than zero. The value of k

determines the active yield surface as
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< 1 the new active surface is F™"
K . (5.42)
> 1 F"™ remains the active surface

If the value of k is less than one, then the updated stress state oifﬂcAcijE lies on the yield
surface F*". The increment in the strain energy density in the elastic body that brought the
stress state to the new yield surface must be divided into two increments. The first

increment, to bring the new elastic-plastic stress state to the new yield surface, and the second

for subsequent straining on the new yield surface F™".

To determine the portion of the elastic increment that brought the elastic-plastic strain and
stress increment to the new surface, the energy equation given by eqn.(3.2) is used, or
AWE = AW*, (5.43)

where the absence of subscripts implies the equation of energy density, rather than energy
density axial contributions. In this part of the increment. the elastic-plastic quantities are
known. That is, the stress increments are given by KAcijE and the strain increments can be

calculated from eqns.(5.33 - 5.36) on the active surface F™. Thus, on the notch tip element
+37A05Ae5, +TAGL A, + AcE At (5.44)

can be calculated from known quantities. The corresponding elastic energy increment, AW*®

can be determined by finding the elastic fraction x° of the total elastic stress increment Ac®
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that satisfies eqn.(5.43). Thus, for the elastic increment, the energy density can be written

using Hooke’s law and the value of x* can be determined from
Ak’ +Bx*+C=0. (5.45a,b.c,d)
where
A =(Ac%? + Acs® ~2vAcS,Acs, + 2405 (14 V),
B=2[(c% —o3)(a0% ~vacy)+ (o5 — o )(act, - vacs, )+ 2o% —oE )1+ v)acs,].
and,
C=-2EAWE.

The correct root of the quadratic will vield a value of k° between zero and one. Thus, the
portion of the elastic increment k°Ac;° results in the elastic-plastic strain state just on the new
active surface F".. The remainder of the increment ( 1-x%)Ac;° results in an elastic-plastic state
that moves with F™™. The equation set (5.33-5.39) must be recalculated for the remainder of

the increment, with the surface F®™" being active.

Whether or not the active yield surface changes, the yield surface configuration must be
updated at the end of each increment. According to the translation rule proposed by Mrdz, the
back stress tensor o; translates in accordance with eqn.(4.20) for a given increment in the notch

tip stresses. Changing the differentials in eqn.(4.20) to finite increments, and writing the
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equations in stress space, rather than in deviatoric space, gives the following equations for the
translation.of the active vield surface F®:

Aay™ = Ap (o5 ~ ),
Aai™ = Ap (65 ~6E). (5.46a,b,c)

1 E
Aai(n) = AP' (O,E(m- ) O'r) .

where,

(n+D)
oH™ =al™ + ~2- (o —ald).
0‘0
(n+1)
ox" =afi" + 2—(cf —al?). (5.47a.b.c)
G, ’
(n+1)
0'5-(“”) = O.(,?*l) (n)

[ E
+ '™ (0'33—(13-

Q

The parameter Au can be found by expanding the consistency condition (eqn.4.26) on the

notch tip element, or
AAp® +Bap +C=0. (5.482.b.c.d)
where
A=(oE""-0%) +(o5"" ~08) ~(c5"" ~ o5 ok — %)+ (05" oL,
B =-3{(S% - 5™ + ASE Yo 5™ — o5 ) +(SE - g5™ + aSE 0B — 6E)

+2(S5 - £5™ + ASE Yo & ~ o )}, and
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C=3{(S5 25" )ack, +(55 -£5®)act +2(s5 ~25")ack
+ Aoy’ + Acs? — Ak At +3A0E?.

Ac 8
Note that AS;; = Ac; - ——— are the deviatoric components of the stress increment tensor
3

Acy;. The correct root of eqn.(5.48) will set Ap as: 0 < Ap < 1.

Equations (5.46-5.48) enable the increments in the back stress tensor of the active surface to be
determined for an increment in the stress-strain state: Ac;®, Ag;". The new state, 6%, €,%, can

then be determined from

.k £ -
o; =0, +Acy, (5.49)

and

g; =€ +Ae;, (5.50)

b

and lies on the active yield surface F™ with central coordinates

afjn)E —a‘“’E +Aa‘“’E. (5.51)

After the active surface F™ has been translated, it is necessary to translate all surfaces interior
to the active surface so that they are tangent to the active surface at the stress point. The center

of the active surface F™" for example can be found using eqn.(4.28) as



5.6.4 Incremental Neuber’s Solution Set

Similar to the ESED solution set, the elastic-plastic stress strain response to an increment in the

elastic stress history using the Neuber’s method requires A) solving the equation set defined by

the incremental constitutive relations (4.19) and the incremental Neuber’s equations (3.8)

simultaneously for the increments in elastic-plastic notch tip strains and stresses, and B)

updating the yield surface configuration and the stress and strain tensor for subsequent elastic-

plastic straining calculations.

A) Calculation of the Elastic-Plastic Strain and Stress Increments

Incremental Constitutive Equations

Expanded on the notch tip element, the constitutive relations given by eqns.(4.19) in Chapter

Four are written for the Neuber’s solution set as

(n)

9
Agl = [-l+ Y

RIRTE (Sh —EWNYSE, -~ ‘"’“)}Acﬁ

9 (n) 9 (n)
+[-§+4gw(sf‘. (M) - éiﬁ’”)}A0§s+[2§<n)z(S?‘.- i CHE é‘“’")] o3

(5.53)
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1 9y™ " v 9y™ . .
Agd = [?46?,, (SY —E&Ny? }Ao{‘z + [—EUG?,Z (S3 —ESRMNSH -0y |acy

9Y(n)
* 2emr (Sp —EF™)SY -&%'™) Aok, (5.54)

33

I 9y™ v 9y® . :
N _ | e (n)N N n h —_ N n 2
Agz = ,:E "'40_?)2 (S5 — &% )(S5 — &S )N)] on + [" E '*'462::)2 (S5 -&%'™)* |Ack

9y ™ :
* 252 (S?:. \:(,:)N)(S 25N Aoy, (3.35)
and
gy (M gy tm ;
A% [4;“,, S% -2 )(S% - ‘"’”)JA o= [4 T (8% —ERNSY ~£9™) Ao
l+v  9y™ )
"'[ E *‘2;’("): (S:-,"E.QQ)N)'}AG?& (5.56)

where the only unknowns are the stress and strain increments Ac; Ag;™.

Incremental Neuber’s Equations

The incremental Neuber’s equations are given by eqn.(3.8) in Chapter Three. Expanded on the
notch tip element and changing differentials to increments yields

(oh-0%)acs + (eh-eB)Ack +Achacs= (ch-o¥)Ack + (sh-ei)ack+Ackask, (5.57)

(c§3—c§§)As§3 + (8§3—-s§‘3’)Ac§3 +Ac5Ag5= (0',3 —G'33 )Aa,a + (e~ —gl% )A0'33+Ac,3Ae3,, (5.58)
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(o5-08)Acs + (e5—eB)Ach +AchAck= (oX-oX)Aek + (eX-el)ach+AcNAcY,  (5.59)

where higher order terms have been added here for increased accuracy. It should be noted that
the above equations represent energy increments on the local coordinate frame with the origin
for the step i being at O(c;* ;™) in the elastic body and O,"(c," ;™) in the elastic-plastic

body.

The set of seven algebraic equations given by eqns (5.53-5.59) is sufficient to solve for the
seven unknown stress and strain increments at the notch tip. It should be noted that the
equation set is non-linear. As in the ESED method, it is proposed that equation sets first be
evaluated ignoring the non-linear terms in Neuber’s equations. That is, assuming that

Ac zAe,, =0 in eqns.(5.57-5.59). For increased accuracy, a non-linear routine such as the

Newton-Raphson method can be used to find the stress increments. with the initial guesses for

the non-linear routine being the linear solution.

B) Translating the Yield Surface

Following the same method as the ESED solution for determining the active surface after the

notch tip stresses have increased by Ao'ijN, the following equation is employed

omh2, (5.60)

o

W

[(55 +wasy)-ggov]-[(sy +xasy)-zpo¥] =

Y

Equation (5.60) results in the following quadratic in x
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[(AS;‘ AS:‘)] K2 +[2AS;‘ (S;‘ _éi(jm-l)N)]K +[(ng _éfjmnw).(sgz _ fjmm)—go‘f,"’”z:l 0.

(5.61)

where k must be greater than zero. The value of x determines the active vield surface as given
in (5.42). If the value of x is less than one, then the updated stress state cij”ﬂcAcﬁN lies on the
yield surface F*". As in the ESED solution set, the increment in the elastic total strain energy
density that brought the stress state to the new yield surface must be divided into two
increments. The first increment to bring the new elastic-plastic stress state to the new vield

surface, and the next increment for subsequent straining.

To determine the portion of the elastic increment that brought the elastic-plastic strain and

stress increment to the new surface, the energy equation given by eqn.(3.6) is used, or
AQY = AQ". (5.62)

where again the absence of subscripts implies the equation of total strain energy densities.
rather than total strain energy density axial contributions. In this part of the increment, the
elastic-plastic quantities are known. That is, the stress increments are given by kAo, and the
strain increments can be calculated from eqns.(5.56-5.53) on the active surface F™. Thus, on

the notch tip element

E N No N N Ni N N N N N No N
AQ" = (0'22 —Onxn )Aszz +(szz ‘ezzo)AGzz "'(5 —0’330)A833 '*‘(333 —€3; )A0'33 +
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2o, —c¥)as +2(s} —eX)ac) +tach aed +1aclael + AcLAeY,, (5.63)

can be calculated from known quantities. The corresponding elastic energy increment, AQ®,
can be determined by finding the elastic fraction .x*, of the total elastic stress increment, Aoy,

that satisfies eqn.(5.62). For this purpose eqn.(5.45a.b.c) can again be applied with the

constant C (5.45d) now being given by
C=-EAQ". (5.64)

Thus, the portion of the elastic increment, K°Ac;", results in the elastic-plastic strain state lying
just on the new active surface, F™". The remainder of the increment, (1-x)Ac;", results in an
elastic-plastic state that moves with F*". The equation set (5.53-5.59) must be recalculated

for the remainder of the increment, with the surface F*"" being active.

The translation of the active yield surface can be found by using eqn.(4.20). Expanding
eqn.(4.20) on the notch tip element, and changing differentials to finite increments gives the

following equations for the translation of the active yield surface F*™:

Aol = Ap (63" ~ad),
A" = Ap (™" —cl), (5.652,b.c)

Aa;‘;n) = A“. (O_N(n-»l) —0'7N~) ,

23 k3

where



N
0'7-7(“*') = ag;ﬂ) + 2 t‘_
o
(n+1)
N(n+I) - (n+l) —o_ N
SEY a5 + o (o5
c0
(n+1)
N(n+1 q
o™ =ad™ + —5-(o% -
S 23

98

(n)

), (5.66a,b,c)

al).

The parameter Ap can be found by expanding the consistency condition (eqn.4.26) on the

notch tip element, or

AAp® +BAp+C=0,

where:

,
- - N{(n«~i
A= (ci‘“‘”—c;) +(GT‘,‘“ N - ( tn=b)

N

B=-3{(SY —N® + aSY Yo - o) ) + (s

N (n«l
6”)(6 (e

(5.67a,b,c,d)

(£ N() N (n-1) N
3833 +AS )(0'.. 0'33)

(SN _ghm +AS,-)(0'N(M” 0’;)},

C=3[(S% ~&X™)ack +(s -

N )ac) +
33

- N
2} -2X™)ac]

2 3 - 2
+ A0y +Acy’ - AchAcy +3Ac)?,

where again the correct root yields a value of Ay between zero and one.

Equations (5.65-5.67) enable the increments in the back stress tensor of the active surface to be

determined for an increment in the stress-strain state, Ac.™ Aa

lj’

. The new state, .V, €.V, and the

lj 2 l_| k4

coordinates of the back stress tensor of the active yield surface F™ can be found by summation.
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Finally, it is necessary to translate all surfaces interior to that active so that they are tangent to
the active surface at the stress point. As in the ESED solution, the center of the active surface

F®" for example can be found using eqn.(4.28) as

D
N(n-b) _ N o N° _  N(ay <
ot =0 o™ (cij a; ) (5.68)
[+]

5.7 Computer Implementation

In order to implement the equations defined in this chapter for a notched body subjected to a
history of cyclic loads, two computer programs were written in Fortran; the first, for the
implementation of the incremental ESED equation set. and the second for the implementation
of the incremental Neuber’s equation set. The input to both programs is the descretized cyclic
uniaxial curve and steps in the elastic notch tip history. The output is the history of elastic-
plastic strains and stresses. The general algorithm for both programs is the same and the

computer flow chart is shown in Figure 5.4.

Initially, all the strains are assumed to be elastic and thus the centers of the yield surfaces are
concentric and centered at the origin (virgin loading). In this region, equations (5.13-5.16)
apply. As soon as the material yields, it is necessary in subsequent steps to determine whether

or not the stresses lie on the active surface. If they do, then the unloading criterion (5.19 or
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5.20) can be used to determine whether elastic-plastic loading (5.22 or 5.23), or elastic
unloading with the possibility of elastic-plastic loading (as governed by eqns.(5.29) or (5.30))
will take place during the step. If the stresses are not on the active surface, then they are elastic
and again there is the possibility of elastic unloading or elastic unloading followed by elastic-
plastic loading taking place during that step. It should also be mentioned that the origin and
direction of the local coordinate system is determined for both the elastic and elastic-plastic
solution at the beginning of each step. If the origin changes. then the coordinate system for the

elastic and elastic-plastic solution is the known stress-strain state at the beginning of the step.

The heart of each program is the plasticity routine. The computer flow chart for the plasticity
routine is shown in Figure 5.5. In each plasticity routine, the elastic step is divided into
increments in accordance with eqns.(5.31) or (5.32). The elastic-plastic strain and stress
increments are calculated using the linear terms in equation sets (5.33 - 5.39) or (5.53-5.59)
and the solution to the set of seven linear equations is subsequently used as an initial guess in a
non-linear solver. Ifit is found that the stresses exceed the outer surface, as governed by
equations (5.41) or (5.61), then the stresses are updated only to the point where the new stress
state lies on the new surface. The active surface is then translated in accordance with equations
(5.46-5.48) or (5.65-5.67). The surfaces, if any, that lie within the active surface are then
translated to be tangent to the active surface at the stress point (eqns.5.52 or 5.68). The active
surface number is then updated. Finally the elastic-plastic stress-strain calculation is repeated
for the portion of the elastic energy increment that is to travel with the surface F*". If the

stresses after the load increment has been applied remain on the current active yield surface,
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then the surface is translated, stresses are updated, and if any surfaces are on the interior to the
active surface, they are translated. As shown in Figure 3.5. the procedure is repeated until the

last increment in the elastic step has been reached.



102

Figure 5.1: Unloading Criterion
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Figure 5.2: Elastic-Plastic Loading During Elastic Unloading Increment
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Figure 5.3: Comparison of Energy Densities in Body under Uniaxial Loading: a)
Loading System, b) Fixed Coordinates, c) Local Coordinates
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6. CHAPTER SIX:

COMPARISON OF SIMPLIFIED METHODOLIGIES TO EXPERIMENTAL AND
FEM DATA

In this Chapter numerical results obtained on the basis of the incremental Equivalent Strain
Energy Density and Neuber’s solution sets, presented in Chapter Five, are compared with
various sets of finite element and experimental data. These results are obtained for

proportional and non-proportional monotonic loading, and for non-proportional cyclic loading.

6.1 Proportional Monotonic Loading

In [55], Hoffmann and Seeger examined the notch tip behavior in three types of notched steel
bars. The bars contained a mild surface notch (Fig.6.1a), a deep surface notch (Fig.6.1b), and a
sharp-deep surface notch (Fig. 6.1c). The stress concentration factors given for each notch are

listed in the table below and reference the directions shown in Figure 2.2.

Type 02/Cus | 05/0us. | O%/Tas
mild 1.40 0.25 1.22
sharp 3.32 0.89 2.19
sharp-deep 293 0.91 2.03
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Table 6.1: Stress Concentration Factors for Notched Bars in [S5]
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Each bar was subjected to a combined bending and torsional load applied in a proportional
manner. That is, the ratio of the nominal torsional stress (t, ) to the tensile stress (o,,) given
by eqn.(3.9) was kept constant and equal to 1, /o, = 0.5, during the application of the loads.

This proportional load path is shown in Figure 6.2.

The material of all bars followed the power law given as

c=¢cE for £ £0.000335,

Ee)"
5 =( 8) for 0.00035 <€ <0006,  (6.1)

Ee)”
c =( e) for £>0.006,

where E = 209 GPa, v=0.29, 5,, = 70 MPa, n, = 0.0463, 6, = 12.77 MPa, and n,=04.

For the application of the incremental ESED and Neuber's solution sets, the material stress-
strain curve given by eqn.(6.1) was descretized into piece-wise linear segments as shown in
Figure 6.3. The elastic history was generated with the knowledge of the elastic stress
concentration factors and the nominal stress ratio. The elastic-plastic approximations were

subsequently obtained by applying the ESED and Neuber’s equation sets from Chapter Five.
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Plots of the principal surface strains €, and &; measured in [55]. and estimated by the
incremental ESED and Neuber’s equations, are plotted against the equivalent net sectional
stress ratio (eqn.3.11) in Figures 6.4, 6.5, and 6.6 for the mild. sharp, and sharp-deep notched
bars, respectively. The results for all three notched bars indicate that the incremental Neuber’s
and ESED solution sets predict the general trend in the experimentally measured principal
surface strains. It is further noted that well beyond general yielding of the net section, the
solution sets form a band within which the measured notch tips strains fall. Specifically,
strains predicted by the incremental Neuber’s method are greater than, and those predicted by
the ESED method are less than the experimentally determined values. The band width is
generally small and thus each solution set gives a good prediction of the experimentally
determined strains. The results for the mild notch are of particular interest since it offers little
constraint to plastic flow relative to the sharper notches. As such, for the mild notch, the
assumption of localized plasticity is easily violated. Regardless, both of the simplified solution
sets give good predictions of the experimental data well beyond general yielding of the net

section.
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6.2 Non-Proportional Monotonic Loading

In this section, the elastic-plastic notch tip strains and stresses obtained from the FEM analysis
conducted on the bar shown in Figure 3.3 are presented. The material of the bar had a stress-
strain curve defined by eqn.(3.12) and was subjected to tensile and torsional stresses applied in
a non-proportional manner. These FEM results are compared to results obtained from the
incremental Neuber’s and ESED methods for the three load paths described in Figures 3.12. In

addition, a torsion-combined torsion-tension load path (Fig.6.10a) is analyzed.

The notch tip elastic stress histories for each load path were generated with the knowledge of
the load path, the material elastic properties, and the elastic stress concentration factors. The
elastic history was then used in the simplified solution sets to generate the approximate notch

tip elastic-plastic strains and stresses.

The largest strain components €,, and &,; and the stress components G,,, G,; and &3 found using
the generalized ESED solution set, the generalized Neuber's solution set, and the elastic-plastic
FEM model, are plotted together against the normalized equivalent net sectional stress ratio in
Figures 6.7a-e - 6.10a-f. In all plots, both proposed models and the FEM results are identical
in the elastic range. This is expected since in the elastic range, the final stress-strain state is

load-path independent. Just after the final net sectional stresses insure notch tip plasticity, the
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strain results predicted by each proposed model and the finite element results begin to diverge.
The divergence becomes more pronounced as the final equivalent net section stress ratio

(S./c,) increases.

In almost all plots, both simplified solutions predict the general trend of the elastic-plastic
finite element notch tip stress-strain histories. The exception to this is in F igures 6.7a and 6.8b
since the generalized ESED solution set predicts a constant strain for the duration of the
application of the second loading mode. This is attributed to the energy ratio equations used in
the ESED formulation. For example, during the application of the torsional load (second
loading mode) in load path 1, 6,,° = 65;° = constant. and therefore Ag,,® = Ae,;* = 0. Thus,
according to eqn.(5.37), 6y,° Aey," = 0. Since Ac,," cannot be zero, then it follows that &,,f =
constant during the application of the torsional load (Fig. 6.7a). The same problem arises
during the application of the tensile load (second loading mode) in load path 2, where the
energy ratio equations predict that €,;* = constant (Fig. 6.8b). Closer examination of the energy
equations shows that this inconsistency will only arise in the ESED approximated strain
components in the direction in which the elastic stress components are constant throughout the

loading duration.

In all strain plots it is noted that, as the load is increased, the generalized ESED solution set

predicts the finite element strains better than does the Neuber solution set. Specifically, the
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error in the ESED strain results at the end of the loading paths s in the range of 1% (Figs.6.9b,
6.10b) to 15% (Fig. 6.7a), whereas the error in the Neuber results at the end of the loading
paths is in the range of 10% (Figs.6.7b, 6.8a, 6.10b) to 30% (Fig.6.8b). In both the ESED and
the Neuber results, the errors are highest in those plots where the strain component is in the
same direction as the first loading mode. It is also noted that the errors in the strains in the first
loading mode direction are higher in load path 1 (Fig.6.7a) than in 3 (F 12.6.9a), and higher in
load path 2 (Fig.6.8b) than in 4 (Fig.6.9¢c). This is as expected since load paths 1 and 2
represent a higher degree of non-proportionality than load paths 3 and 4. However, the errors
in the strain predictions are quite low considering that they were calculated at the end of the
loading paths, where the assumption of localized plasticity is violated. In all plots of the notch
tip strain components, the generalized Neuber solution set predicts results to be higher than the
generalized ESED solution set. Specifically in the cases of the strain components, Neuber's
rule predicts an upper bound, and the generalized ESED method predicts a lower bound elastic

approximation to the notch tip strains calculated in the elastic-plastic FEM analysis.

In the plots of the notch tip stress components, it is noted that the generalized Neuber solution
set provides a better prediction of the FEM results than does the generalized ESED solution
set. The Neuber and the ESED solution methods predict the upper and lower bound
respectively on the stress components 6,;, and o;; for all loading paths. For the largest stress

component G,,, both solutions tend to be nonconservative. However, it is noted that the
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maximum percentage error in this case between the ESED solution and the finite element
results is approximately 25%. As in both the ESED and the Neuber strain results, the errors are
highest in those plots where the stress component is in the same direction as the first loading
mode. The degree of non-proportionality also effects the stress components, where errors tend

to be higher in the first two loading paths then they are in loading paths 3 and 4.

6.3 Non-Proportional Cyclic Loading

In [32], Barkey experimentally examined the notch tip behavior of an SAE 1070,
circumferentially notched shaft subjected to cyclic tensile and torsional loads applied along
various non-proportional loading paths. The experiments were conducted on Instron and MTS
tension-torsion biaxial test frames under conditions of load control. Three-element rectangular
rosette strain gauges were mounted to the notch root for strain measurement. Subsequent to the
tests, the rosette strain gage data was corrected for rosette misalignment and transformed to
specimen coordinates aligned in the axial direction of the shaft. The coordinates used here are

those shown in Figure 2.2.

The experimental results were compared to the results of a finite element model by Kottgen
[56], and the proposed simplified model discussed in Chapter Two. The finite element model

was analyzed using ABAQUS. To model the non-proportional material behavior, an



ABAQUS user material implementation of the Mroz work-hardening plasticity model was

used.

The stress concentration factors for the bars analyzed in this work are listed below with G,

and t,; being defined in eqn.(3.9).

Type 65/0.. | 6%/0,.. | ou/ta.
Experimental 1.42 0.30 1.15
Converged FEA 1.41 0.26 1.15

Table 6.2: Stress Concentration Factors for Notched Bar in [32]
Comparing the above stress concentration factors to those in Table 6.1 of Hoffmann and

Seeger [55] indicates that the notch is relatively mild.

The properties of SAE 1070 were given to follow the Ramberg-Osgood relationship (eqn.3.12)
with parameters E =210 GPa, v=0.3, K’ = 1736 MPa, and n" = 0.199. For implementation of
the Mréz plasticity model. the curve was descretized into several linear segments in the FEM
model and a yield limit of 250 MPa was used. The descretization of the material curve as used
in the FEM model and the ESED and Neuber’s simplified equation sets is shown in Figure

6.11.
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The incremental ESED and Neuber’s notch tip data was obtained following the methodology
detailed in Chapter Five with the knowledge of the elastic stress concentration factors, the
loading paths, and the material properties. From the elastic notch tip stress history, the
constant increments in the strain energy and total strain energy density were calculated using
equation (5.31). The number of increments (N) were initially chosen to reflect the relative
magnitude of the stress amplitude between steps in the history. The programs written for each
of the simplified methods were run and the results were plotted. The step size was then
reduced and the above procedure was repeated until there was no observable difference in the

stress and strain results between subsequent runs.

6.3.1 Comparison of Results

In this section, the results obtained using the incremental ESED and Neuber methods are
compared to the experimental and finite element results presented in [32] for various cyclic
tension-torsional loading paths. Only notch tip strain results were obtained in the experiments

and thus stress results are not presented here.
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Box Path

The box-shaped path analyzed is shown in nominal tension-torsion stress space in Figure 6.12
a. At the corners of the box, the equivalent net sectional stress ratio is: S/0, = 1.56, indicating
that the net section has yielded. The box path indicates a high degree of non-proportionality
and was designed to highlight regions where the axial and shear response is uncoupled (elastic
regions) and where they are coupled (elastic-plastic regions). Specifically, it is expected that
elastic unloading will occur at the corners of the box. and if loads are high enough, elastic-

plastic loading will follow to the next comner of the box.

The notch tip axial strain versus shear strain history obtained using the incremental ESED and
Neuber’s method are compared to experimental results in Figure 6.12b and to finite element
results in Figure 6.12c. The results are plotted for 10 cycles of loading. Both the incremental
Neuber’s and ESED methods predict elastic unloading at each corner of the box, followed by
elastic-plastic loading to the next corner. This is most prevalent in the incremental Neuber’s
response where the axial and shear strain are uncoupled (indicated by straight lines parallel to
the coordinate axes) at the corners of the box, and become coupled (indicated by curved lines)
to the next comner. The ESED solution, as shown in load paths 1 and 2 for the analyzed
monotonic non-proportional loading paths, predicts a constant strain in the direction in which

the elastic stress components remain constant. Although it may appear that the ESED method
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is generating an elastic solution, it is in fact giving an elastic-plastic response, as would be

apparent if the strains or stresses were plotted against the applied load.

As can be seen from both Figure 6.12b and 6.12c, the incremental ESED method predicts
lower strains than does the Neuber’s method up until point 4 shown in Figure 6.12a, where for
the last step in the cycle, the ESED method yields higher strains. This is expected for non-
proportional cyclic loading. Specifically, when unloading from a higher stress level on a
constant radii yield surface, the material may start to deform plastically before it would if
unloading were to start at a lower stress level. Thus, if strains are initially predicted higher
using the Neuber’s equations than predicted by the ESED equations, they may be predicted

lower upon reverse elastic-plastic loading.

Figure 6.12 shows that both the simplified methodologies give a fair prediction of the
experimental strain history. It should be noted, as indicated in [32], that the values of the
applied loads used in the experiments were slightly different than shown in the idealized load
path (Fig. 6.12a). This is because the sharp corners of the load path were not always obtained
in the experiment. The rounded corners in the loads applied to the bars are reflected in the

experimental strain response as rounded corners of the box in Figure 6.12b.

In Figure 6.12c, it can be seen that the simplified methods give a much better prediction of the

FEM results than of the experimental results. This is clearly seen in the incremental Neuber’s
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results where there is virtually no difference between the calculated values and the FEM

results.

Figure 6.13a shows the same box path as in Figure 6.12a. but with higher applied load levels at
the corners of the box where S_/c, = 1.79. Both of the simplified methods show the same
trend as in the previous case. The numerical values of the shear and axial strains calculated
using the simplified methods give a fair prediction of the experimental results (Fig 6.13a).

Again, the Neuber’s solution set predicts the finite element results very well (Fig. 6.13b).

Unequal Frequencies of Applied Load

In [32], several experiments were conducted on the bar in which unequal frequencies in the
torsional to tensile load were applied to the bar. Here. three of those paths were analyzed. In
the first (Fig 6.14a), two cycles of the tensile load were applied in the same time period as one
period of the torsional load. In the second (Fig. 6.15a), two cycles of torsional load were
applied for one cycle of tensile load, and in the third (Fig.6.16a). five cycles of the torsional
load for one cycle of tensile load. In all paths, the final applied loads correspond to the second

box shaped path in which S_/c, = 1.79.
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Plots of the shear versus axial strain history obtained by both simplified methods and the
experiments are plotted in Figures 6.14b, 6.15b and 6.16b for the tensile to torsional frequency
ratios of 2:1, 1:2, and 1:5 respectively. It should be noted that finite element data for these

paths were not presented in [32].

In all plots, it is noted that both methods predict the general trend in. and closely predict the

numerical values of the strain histories obtained in the experiments.

Non-Zero Mean Stress

To evaluate the effect of a non-zero mean load, the loading path shown in Figure 6.17a with a
maximum value of the equivalent net sectional stress ratio of S./0,=1.79, was analyzed.
Cycling about a non-zero mean load induces ratchetting, or the increasing in strain results even
though the nominal loading path stays at the same mean load value. Experimental results for

the load path were not given in [32].

The axial versus shear strain histories are calculated using the incremental ESED, Neuber’s and
finite element method for 50 cycles in Figures 6.17b, 6.17c and 6.1 7d, respectively. The plots
here were not superimposed for clarity in analyzing the results, but the scales on all three plots

are identical.
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It is noted that both the incremental ESED and Neuber’s method predict the general trend in
the notch tip strains calculated using the finite element method. At the outset, the strains
progressively get larger after each cycle and then tend towards a limiting value. This indicates
that the stress relaxes and this results in a decreased rate of strain accumulation. The Mroz
model, when used under non-proportional load or stress controlled conditions. generally yields
a constant rate of ratchetting. However, in the simplified models, the input is increments of
strain energy density and thus limiting values of strains are attainable. In the case of the
incremental Neuber's rule, the strain predictions are numerically almost the same as the FEM

results.
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Figure 6.7a: Axial Strain History for Tension-Torsion (Path 1).

Figure 6.7b: Shear Strain History for Tension-Torsion (Path 1).
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7. CHAPTER SEVEN:

CONCLUSIONS / RECOMMENDATIONS

Two simplified methods have been proposed that enable the estimation of notch root stress and
strain histories in bodies subjected to cyclic non-proportional loads. The first method, the
incremental Equivalent Strain Energy Density (ESED) method, is based on the assumption that
an increment in strain energy density at the notch tip in an elastic-plastic body can be
approximated by that increment obtained if the body were to only deform elastically. The
second method, the incremental Neuber’s method, is based on the assumption that an
increment in the total strain energy density at the notch tip in an elastic-plastic body can be
approximated by that obtained if the body were to only deform elastically. It was shown that,
in an elastic-plastic body, if the plastic zone is localized, both the strain energy density and the
total strain energy density are somewhat insensitive to the loading path. Utilizing elastic

approximations to these quantities is therefore reasonable.

To form complete sets of relations that enable the notch tip stress and strain tensors to be
determined, each simplified method was used in conjunction with material constitutive
relations. For this purpose, a background in plasticity was presented with specific emphasis on
modeling cyclic deformations. Although any constitutive model that incorporates path

dependent material behavior can be used in conjunction with the proposed simplified methods,
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the Mr6z multi-surface work hardening model was chosen for the purpose of this work. If
more transient effects such as mean stress relaxation or ratchetting are to be better modeled,

future research may focus on using an alternate translation rule such as that presented in [51].

A detailed description of the use of the incremental ESED and Neuber’s methods for notch tip
stress-strain estimation during a loading cycle was presented. This encompassed a description
of the regions of elastic loading, elastic-plastic loading, and elastic unloading. Methods that
delineate each region of loading were also presented. For the purposes of computer
implementation, a flow chart was given. The required input into the developed program is the

elastic notch tip stress history and the material stabilized uniaxial cyclic stress-strain curve.

In comparing the results of each method to experimental and finite element data for monotonic
loading, it was found that both methods predict the trend of the elastic-plastic FEM and
experimental results. However, it was found that the additional energy ratio equation used in
conjunction with the ESED method will restrict this solution set to predict a constant strain in
the direction where the elastic stresses are constant during the loading step. Furthermore it was
shown that as the degree of non-proportionality is reduced, so is the error in the solutions.
However, for all the loading paths analyzed, the differences in both the generalized Neuber's
solution set and the ESED solution set from the FEM results was found to be small well
beyond general yielding in the net section, when the localized plasticity assumption is violated.

Finally, it was shown for all loading paths that the ESED simplified solution set predicts a
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lower bound, and that Neuber's solution set predicts an upper bound to the notch tip strains

predicted in the elastic-plastic finite element analysis.

The results of the incremental ESED and Neuber’s method were also compared to limited finite
element and experimental data for the case when cyclic external loads are applied in a non-
proportional manner. It should be mentioned that the experimental data presented [32] and
used in this thesis for the simplified model assessment, is virtually the only reliable
experimental data set published for notched bodies subjected to non-proportional cyclic
loading histories. Although good results were obtained using the proposed methods for the
most severe non-proportional loading case (the box path), and the material stress-strain curve
used was relatively flat, it is felt that experiments on different notched geometries subjected to

alternate loading histories would provide further confidence in the proposed methods.

In all of the non-proportional cyclic load paths examined, both methods predicted the general
trend in the elastic-plastic stress-strain results. In non-proportional cyclic loading, the
statement that the Neuber’s rule forms the upper bound approximation, and the ESED method
forms the lower bound approximation to the actual notch-tip strains cannot be made. Instead,
each method independently gives a good prediction of the notch tip strain and stress histories.
In cases where the elastic notch tip stress tensor remains constant, the incremental Neuber’s
solution set be used. It is recommended that future research may focus on a procedure for

averaging the cyclic strains obtained by each method (since one method generally overpredicts
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when the other method is underpredicting the notch strains), and subsequently using a cyclic
plasticity model to determine the stresses. This procedure may yield results closer to the actual

vales than those results predicted independently by either the ESED or Neuber’s method.

Although the methods presented are, in general, applicable to any notched body subjected to
any arbitrary loading condition, there are a few exceptions for which the solution procedure, as
presented, needs refinement. The first exception is the case of the presence of a residual stress
at a notch tip before a loading history is applied. In such a case, the vield surface configuration
that resulted from the loads applied causing the residual stresses must be known before
applying the proposed simplified methods. For this purpose, it is recommended that a fictitious
stress history be applied to the notched member and the resulting strains and yield surface
configuration be calculated using a cyclic plasticity model. This would continue until the
stress state at the notch tip matched the given residual stresses. The mode of loading, if not
known. would depend on which components of residual stresses were present at the notch tip.
Once the yield surface configuration, and the notch tip strains and stresses are known, the
proposed methods. as presented, can be used to approximate the notch tip elastic-plastic strain
and stress history for subsequent loading histories. An alternative, and perhaps simpler,
method to account for residual stresses is to compute an elastic equivalent state of the known
elastic-plastic residual strain and stress state using either the incremental ESED or Neuber’s

energy density equations. The programs for each method could then be used with no
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modifications, with the first step starting from zero to the calculated elastic equivalent of the

residual stress distribution.

The second exception to the general applicability of the proposed methods is the case of a pipe
with an internal notch that has an internal pressure, and is further subjected to external non-
proportional loading histories. In such a case, the notch tip is no longer traction free and thus
the notch tip stress state is no longer biaxial. The expansion of Neuber’s method and the
ESED method on the notch tip element would thus have an added known internal pressure

term.

The final exception occurs in some variable amplitude loading paths. Specifically, in some
cases, even the accepted uniaxial forms of Neuber’s method and the ESED method induce
strain accumulation that does not occur in reality. This induced ratchetting occurs primarily in
variable amplitude loading where there is a small unloading and reloading cycle during a
relatively large cycle. This arises because of the method of choosing the origin of the local
coordinate frame. Specifically, when reloading in the smaller cycle, with the coordinate frame
being at the reversal point, the very small elastic region followed by a relatively flat portion of
the uniaxial tensile curve will result in large strain increments when comparing elastic-plastic
energy density increments to the to those calculated using the relatively steep elastic stress-
strain curve. In the case of uniaxial and multiaxial proportional loading, these large predicted

strain results are generally overcome by using rainflow counting, where by each cycle is
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analyzed separately. In effect, the rainflow counting procedure results in the stress path
starting at zero on the uniaxial stress-strain curve for each loading cycle. To overcome this
strain accumulation induced in the case of non-proportional loading, it is recommended that a
similar philosophy be incorporated into the incremental solution methods. One approach
would be to translate the origin of the local coordinate frame to the origin of the active surface

for such small loading cycles.

In conclusion, non-proportional loading is the most general form of cyclic loading and has
traditionally been analyzed using lengthy experimental or costly non-linear finite element
analysis. The simplified ESED and Neuber’s solution methods provide a practical alternative
to such analyses since only a linear elastic analysis is required. The methods can be used to
determine elastic-plastic cyclic non-proportional behavior at any geometrical discontinuity in
bodies subjected to any arbitrary loading cycles. There are a few exceptions to the general

applicability of the methods which can be overcome by small adjustments to the methods

presented.
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