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Abstract 

The overall objective of this research was to investigate the status of tumor necrosis factor-α (TNF-α), 

and molecules associated with its signaling, in the pathological state of hepatic steatosis. The effect of 

NSAID piroxicam, a cancer preventive agent also known to affect TNF-α signaling on hepatic 

steatosis, was also investigated. The biological state of the tissue was assessed by examining the 

expression of TNF-α signaling molecule in whole tissue, as well as in hepatic lipid raft. Lipid rafts are 

dynamic assemblies of cholesterol and sphingolipids, microdomains that form in the exoplasmic 

leaflet of the biological membranes shown to play a role in compartmentalization, modulation and 

integration of the cell signaling.  

In the present research, Zucker obese rats were used as a model of human obesity and insulin 

resistant state. These rats exhibit hepatic steatosis in adulthood similar to those noted in obese 

individuals.  Female Zucker obese and lean rats (5 weeks old) were fed a semisynthetic diet with or 

without piroxicam (150 ppm). Zucker lean counterparts served as control. After 8 weeks of feeding, 

rats were euthanized and liver from each animal was collected. Liver tissue from each animal was 

processed for histology and biochemical analysis which included lipids and proteins (COX-1 and 2, 

TNF-α, TNF-RI and RII, IKK-β, IκB-α and NF-κB). Liver histology and the level of total lipids 

confirmed that Zucker obese rats had hepatic steatosis, which was further augmented by piroxicam 

treatment. Whole tissue protein expression, using western blot, showed that the steatotic liver differed 

from non-steatotic livers by having lower levels of TNF-RII. TNF-RII showed a trend which was 

inversely proportional to the pathological state of the tissue. The obese-piroxicam liver had the lowest 

level of TNF-RII and lean livers had the highest (p<0.05). The total NF-κB level was higher in the 

obese and obese-piroxicam groups compared to the lean or lean-piroxicam groups (p<0.05). 

Piroxicam treatment lowered the level of NF-κB in obese and lean livers.  IκB-α was higher in obese 

livers than in lean livers. The nuclear level of NF-κB by western blot analysis showed the same 

pattern as noted in the whole tissue homogenate. However, the difference in the level between obese 

and lean was marked. The obese nuclei contained two to three fold higher levels of NF-κB protein 

than the lean liver nuclei. IκB-α level was significantly higher in the obese liver tissues and nuclei 

than their lean counterparts. While transcriptionally active NF-κB was higher (p<0.05) in the obese 

livers than in the lean livers, the difference between obese and lean groups was not as significant as 

that noted for the level of NF-κB assessed by western blot. This suggests that the proportion of active 

NF-κB present in the nuclear fraction is much higher in the lean than in the obese nuclei.  
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Lipid raft was extracted and identified successfully from obese and lean livers. The total 

caveolin and flotillin levels were significantly higher in the liver lipid rafts of the obese-piroxicam 

than that of the other groups. This is the group that also exhibited higher steatosis.  Piroxicam 

treatment significantly decreased the level of caveolin in the lean liver and significantly increased the 

level of flotillin in the obese liver. While COX-1 was not detectable, however, the level of COX-2 

and TNF-RII in lipid raft was opposite to the level noted in the whole tissue homogenate. TNFRII 

was highest in the obese-piroxicam lipid raft and lowest in the lean-piroxicam lipid raft.  TNF-RII, 

COX-2, IκB-α and NF-κB proteins were the molecules profoundly affected by the pathological state 

of the tissue and piroxicam treatment. This research is the first to report the presence of IκB-α in the 

nuclear compartment with a higher level in the nuclei and whole tissue in the obese liver than in the 

lean liver.  This research demonstrates that TNF-α to NF-κB axis is altered in steatotic liver, and 

analysis of lipid rafts in steatotic and non-steatotic liver demonstrates that lipid rafts play a distinct 

role in  modifying the biological availability of key proteins in the pathological state of liver steatosis.  
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Chapter 1 
 Introduction 

1.1 Hypothesis 

The transformation from a normal to a pathological state in an organ is accompanied by altered 

signaling leading to a compromised state. In the pathological state of obesity, oxidative stress and 

tissue pathology is a common occurrence. Zucker obese rats exhibit hepatic steatosis in adulthood. 

Furthermore, membrane structure has evolved from the concept of the lipid bilayer to a complex and 

dynamic system continuously changing in response to intra- and extra-cellular stimuli as well as 

changes in the physiology of the whole organism (Simons and Toomre, 2000). In keeping with this 

concept, a new functional domain in the membrane, known as a lipid raft, is receiving a great deal of 

attention. Lipid rafts have been implicated in controlling the concentration and activity of various 

important membrane bound receptors and enzymes. Based on the physiological state of the animal, 

liver steatosis is accompanied by disordered lipid metabolism, abnormality of cytokine, etc. 

Therefore, one could speculate that if lipid rafts are involved in the generation of signals leading to 

metabolic responses, significant changes in lipid raft structure pertaining to key functional 

components in a steatotic liver could be anticipated. 

It is generally understood that obese states differ significantly from non-obese states in 

responding to drugs as well as nutrients. This causes one to question whether all drugs and cancer 

preventive agents are equally effective and safe in obese states in comparision to normal states. In one 

preliminary study in our laboratory, it was observed that piroxicam, a known and safe cancer 

inhibitory agent in F344 rats (non-obese rats), was hepatotoxic to Zucker obese rats; the key 

observation was enlarged and fatty marbled appearance of the livers in comparison to the livers of 

lean rats. This observation prompted the investigation of the potential role of TNF-α in liver steatosis.  

  

Hypothesis: Hepatic steatosis noted in obese states with or without piroxicam treatment is associated 

with altered TNF alpha and NF-κB axis in whole tissue and in membrane lipid raft microdomains.  
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1.1.1 Specific Objectives of this Study 

Objective : The primary objective of this research is to explore the role of TNF-α signaling in hepatic 
steatosis 

 

Specific Aim 1: To examine the morphological and biochemical changes in whole steatotic and non- 
steatotic tissue with the following sub-aims: 

A. Examine the changes in liver histology of Zucker obese, lean and piroxicam treated obese rats 

B. Assess the changes in lipid composition between obese and lean rats 

C. Investigate the levels of COX-1 and COX-2 proteins between obese and piroxicam treated 
obese rats 

D. Evaluate the expression  of key molecules involved in TNF alpha mediated signaling pathway 

 

Specific Aim 2: To examine the TNF-α and associated molecules in steatotic and non steatotic hepatic 
lipid rafts with the following sub-aims: 

A. Extract lipid rafts from hepatic tissues of Zucker obese and lean rats with or without 
piroxicam treatment 

B. Confirm that the method of isolating lipid raft was satisfactory in analyzing the fractions for 
the following: 

I. Caveolin-1 and Flotillin-1 protein expression 

II. Cholesterol levels 

C. Investigate if altered lipid structure/composition is associated with liver steatosis and toxicity 
by conducting following: 

I. Comparison of lipid raft structure between obese (hepatosteatotic) and lean rats  

II. Comparison of lipid raft structure between obese (hepatosteatotic) and piroxicam 
treated obese rats 

III. Comparison of the expressions of  key molecules studied in whole homogenate with 
that of the lipid raft 

These specific aims were achieved by conducting one study. Specific aim 1 and its sub-aims were met 

by analysing the whole tissue (Section 3.1, 3.2, 3.3, 4.1.1). Specific aim 2 and its sub-aims were 

achieved by extracting lipid raft from the whole tissue (Section 3.3, 3.4, 4.1.2).   

To put this project in perspective, brief background information on hepatic steatosis, lipid raft 

and TNF-α pathway relevant to this thesis are provided. 
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1.2 Hepatic Steatosis 

1.2.1 The Liver 

The liver is the largest glandular organ and the central component of the body. It plays a 

major role in metabolism (anabolic and catabolic responses) including, drug detoxification, plasma 

protein synthesis, glucose and fat metabolism, hormone synthesis and urea production. The liver is 

also responsible for producing 80% of the body’s cholesterol. Some of these products are excreted 

into the bile and others are metabolized in the liver (Silverthorn, 1998). Since metabolites are 

constantly moving in and out, liver hepatocytes play an extensive role in membrane trafficking such 

as exocytosis and endocytosis.  

1.2.2 Characteristics of Hepatic Steatosis 

Hepatic Steatosis is the presence of significant amounts of triglyceride (TG) in hepatocytes. 

Fat accumulation in the liver results from four different processes: 1) increased delivery of free fatty 

acids to the liver, 2) increased de novo synthesis of free fatty acids in the liver, 3) decreased oxidation 

of free fatty acids, and 4) decreased synthesis of secretion of very low-density lipoprotein (VLDL) 

(Browning and Horton, 2004). Hepatic Steatosis was thought to be mainly a symptom of alcoholic 

liver disease (ALD), but in recent years, has been found in the absence of alcohol abuse which has led 

to the definition of a series of disorders ranging from non-alcoholic fatty liver (NAFL) to non-

alcoholic steatohepatitis (NASH). Hence, various factors are found to be associated with hepatic 

steatosis, including obesity, high alcohol consumption, type II diabetes, and hyperlipidaemia (Raman 

and Allard, 2006). Moreover, the pathogenesis of steatosis and cellular injury is thought to be related 

mostly to insulin resistance and oxidative stress. For example, non-alcoholic fatty liver disease 

(NAFLD) is 76% more likely to be found in an obese individual, and is almost universal within 

individuals who are morbidly obese and diabetic (Adams et al., 2005). Recently, the association 

between obesity and the development of NAFLD has been proposed by Day et al, as a ‘two hit’ 

model (1998). 

1.2.3 The ‘Two-Hit’ Model 

The primary abnormality or 'first hit' in patients with NAFLD is insulin resistance leading to hepatic 

steatosis. Accumulation of hepatic fat is closely linked to insulin resistance, which increases lipolysis 

of peripheral adipose tissue with a resultant increased fat influx into the liver in the form of free fatty 

http://en.wikipedia.org/wiki/Metabolism
http://www.mamashealth.com/cholest.asp
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acids. Furthermore, insulin resistance promotes de novo triglyceride synthesis within the liver and 

inhibits fatty acid oxidation thereby promoting triglyceride accumulation (Siebler and Galle, 2006; 

Adams et al., 2005). Thus, accumulation of lipids in hepatocytes is a pathologic hallmark of ALD and 

NAFLD. The “second hit” involves multiple proinflammatory cytokines resulting in non-alcoholic 

steatohepatitis (NASH) (Adams and Angulo, 2006). In NASH, as in alcoholic hepatitis, oxidative 

stress and lipid peroxidation have emerged as the most likely candidates. This “hit” occurs via 

increased mitochondrial beta-oxidation of the free fatty acids, production of reactive oxygen species 

and depletion of antioxidants glutathione and vitamin E. This depletion of anti-oxidants hampers 

reactive oxygen species inactivation and increases the deleterious effects on the mitochondria. 

Oxidative stress also results in abnormal cytokine production, especially TNF-α, through up-

regulation of nuclear translocation of transcription factor nuclear factor κB. This combination of lipid 

peroxidation and cytokine production results in hepatocyte death (Siebler and Galle, 2006). 

1.2.4 Development of Hepatic Steatosis in Insulin-Resistant State 

A series of molecular alterations resulting in accumulation of triglycerides in the liver occuring in 

insulin resistant state is summarized in figure 1.1 (Browning and Horton, 2004). In a normal 

physiologic state, a balance exits between the storage and release of free fatty acids (FFAs) and the 

metabolism of glucose in the adipose tissue, liver, striated muscle and  pancreas. One of the proposed 

mechanisms for the abnormal fat deposition suggests that insulin stimulates glucose uptake and free 

fatty acid esterification in adipocytes and hepatocytes and suppresses hormone-sensitive lipase (HSL) 

in the adipose tissue (Boer et al., 2004). Because HSL regulates the release of FFAs from the adipose 

tissue, the net effect of insulin on the adipose tissue is fat storage in the form of triglycerides. 

However, in the presence of insulin resistance, increased adipocyte mass and increased hydrolysis of 

triglycerides (lypolysis) through increased hormone-sensitive lipase activity contributes to elevated 

plasma levels of FFAs. The rate of hepatic FFA uptake is unregulated and, therefore, directly 

proportional to plasma FFA concentrations. FFAs taken up by the liver are metabolized by three 

pathways: oxidation to generate ATP for energy, esterification with glycerol to produce triglycerides 

for storage, and secretion in the form of VLDL. With less oxidation or mere esterification, or when 

VLDL secretion is defective, these pathways can lead to hepatic steatosis (Browning and Horton, 

2004). 

 

 



 

 5 

Figure 1.1: Metabolic alterations resulting in hepatic triglyceride accumulation in insulin-

resistant states. Insulin resistance is manifested by hyperinsulinemia, increased hepatic glucose 

production, and decreased glucose disposal. In adipocytes, insulin resistance increases hormone-

sensitive lipase (HSL) activity, resulting in elevated rates of triglyceride lipolysis and enhanced FFA 

flux to the liver. FFAs can either be oxidized in the mitochondria to form ATP or esterified to 

produce triglycerides for storage or incorporation into VLDL particles. In the liver, hyperinsulinemia 

induces SREBP-1c (Sterol regulatory element-binding protein 1c) expression, leading to the 

transcriptional activation of all lipogenic genes. Simultaneously, hyperglycemia activates ChREBP 

(carbohydrate response element binding protein), which transcriptionally activates L-PK (liver-type 

pyruvate kinase) and all lipogenic genes. The synergistic actions of SREBP-1c and ChREBP activate 

the enzymatic machinery necessary for the conversion of excess glucose to fatty acids. A 

consequence of increased fatty acid synthesis is increased production of malonyl-CoA, which inhibits 

CPT-1, the protein responsible for fatty acid transport into the mitochondria. Thus, in an insulin 

resistance state, FFAs entering the liver from the periphery, as well as those derived from de novo 

lipogenesis, will be preferentially esterified to triglycerides. ACL, ATP citrate lyase; CPT-1, carnitine 

palmitoyl transferase-1; FAS, fatty acid synthase; LCE, long-chain fatty acyl elongase (Browning and 

Horton, 2004). 
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1.3 Lipid Raft 

1.3.1 Isolation and Characterization of Lipid Raft 

In 1972, Singer and Nicolson suggested the classical fluid mosaic model of the cell 

membrane based on the finding that most physiological phospholipids exhibit low melting 

temperatures and, therefore, most likely exist in a liquid disordered phase. However, this model has 

since been transformed into a more complex system wherein proteins and lipid rafts float laterally 

within the two dimensional liquid (Simons et al., 2002). Lipid rafts are specialized membrane 

microdomains enriched in cholesterol and sphingolipids. For example, there is a three to five fold 

increase in cholesterol in lipid rafts when compared to total membrane content and sphingomyelin, 

this represents 10-15% of the total lipids in the rafts (Pike, 2004). The fatty acid chains of lipids 

within the rafts tend to be extended and more tightly packed, creating domains with higher order. Due 

to the tight packing of lipids, lipid rafts are resistant to solublization by non-ionic detergents such as 

Triton X-100 at low temperatures, allowing their isolation as an insoluble membrane fraction (Pike, 

2004). These liquid-ordered domains contain proteins that are involved in functions such as apoptosis, 

cell adhesion, signal transduction, endocytosis and cholesterol trafficking (Brown and London, 1998). 

Proteins with raft affinity include glycosylphosphatidylinositol (GPI)-anchored proteins and doubly 

acylated proteins such as the tyrosine kinases of the Src family (Simons and Toomre, 2000).  

In the phospholipids rich plasma membrane, proteins are recruited through protein-protein 

interactions. However, in rafts, (Figure 1) this process takes place through interactions between lipids 

within the rafts and the transmembrane domain of integral membrane proteins (lipid-protein 

interaction) or the lipid moiety of proteins attached to the membrane by a lipid modification (lipid-

lipid interaction). The recruitment of cytosolic proteins by protein-protein interactions can take place 

in both raft and non-raft membranes through modular domains (Src Homology domain 2 and 3) 

(Alonso et al., 2001).  Thus, lipid rafts may function to bring different proteins into proximity with 

each other and thus promote interactions between receptors and signaling proteins.  
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Figure 1.2: The structure and function of lipid rafts in the plasma membrane. (A) The 

specialized membrane microdomains highly enriched in sphingolipids (dark-brown-headed 

structures) and cholesterol (red bean-shaped structures) float in a phospholipid-rich (light-brown-

headed structures) environment. Glycolipids and sphingomyelin are restricted to the outer leaflet of 

the bilayer, whereas cholesterol and phospholipids are in both leaflets. Note that lipids in the rafts 

usually have long, saturated fatty acyl chains (red two-legged shapes), whereas those lipids excluded 

from these microdomains are shorter and unsaturated (green two-legged shapes). (B) In the model of 

recruitment of proteins in membrane lipid rafts, proteins excluded from rafts are in yellow, while 

proteins included in rafts are in blue (integral membrane proteins), light brown (GPI-anchored 

proteins) or pink (acylated, cytosolically-oriented, proteins such as Src family kinases, Ras and 

heterotrimeric G proteins) (Alonso et al., 2001). 
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1.3.2 Cholesterol and Lipid Raft  

Cholesterol plays an important role in the phase partitions between raft and non-raft membrane 

domains by having a higher affinity towards the raft sphingolipids than to unsaturated phospholipids. 

Sphingolipids in the lipid raft interact with each other via hydrophilic interactions between the 

sphingolipid headgroups. However, cholesterol acts as a spacer, stabilizing bulky sphingolipid 

interactions via hydrogen bonds and hydrophobic van der Waal’s interactions (Gulbins et al., 2006). It 

functions as the molecular glue that keeps the assembly together (Simons et al., 2002 and Alonso et 

al., 2001). However, lipid rafts can be easily modified with the simple approach of cholesterol 

depletion using methyl-β-cyclodextrin or through antibiotics such as filipin or nystatin or by 

inhibition of cholesterol biosynthesis with statins. β-Cyclodextrins remove cholesterol from the 

surface of cells and bind within their hydrophobic cavity. Hence, if cholesterol is depleted from 

membranes, lipid rafts are dissociated and previously associated proteins are no longer in the rafts 

(Dobrowsky, 2000). 

1.3.3 Caveolae, Caveolin-1 and Lipid Raft 

The morphologically identifiable raft-like domains called caveolae (CAV) were first discovered in the 

early 1950s using electron microscopy (Maguy, 2006). CAV are 50-100 nm flasked shaped non-

clathrin-coated invaginations of the plasma membrane. They have been implicated as playing a 

critical role in transcytosis and endocytosis, cholesterol homeostasis, communication between cell 

surface membrane receptors and intracellular signaling protein cascades such as apoptosis and 

tumorigenesis. CAV are found in all cell types but are abundant in muscle cells, endothelial cells, 

adipocytes, and fibroblasts. These invaginated membrane structures are enriched in cholesterol and 

sphingolipids, along with the small cholesterol-binding protein “caveolin” (Brown and London, 1998 

and Pike, 2004). Lipid rafts and CAV are controversial among researchers, as some researchers 

consider CAV to be a type of lipid raft that contains caveolin, whereas others consider the two 

microdomains to be completely separate entities (Brown and Waneck, 1992 and Smart et al., 1999). 

Caveolin is a protein with a molecular mass of 21 kDa and was first identified as a substrate 

for the v-src tyrosine kinases which, like several other kinases, phosphorylates caveolin on Tyr 14. In 

mammals, this protein family is comprised of three members, caveolin-1, caveolin-2 and caveolin-3, 

of which caveolin-1 is the principal structural protein. Caveolins contain a highly hydrophobic 33-

amino acid membrane-spanning core (Dobrowsky, 2000). The invaginated caveolar structure results 

from a core hairpin loop in caveolin (Quest et al., 2004). Besides the plasma cell membrane, 

http://www.sciencedirect.com.proxy.lib.uwaterloo.ca/science?_ob=ArticleURL&_udi=B6T1D-4GPVTBY-5&_coverDate=04%2F30%2F2005&_alid=395188221&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4888&_sort=d&view=c&_acct=C000051246&_version=1&_urlVersion=0&_userid=1067412&md5=cbae459e3e464cea575b0625fd70c4df#bbib3#bbib3
http://www.sciencedirect.com.proxy.lib.uwaterloo.ca/science?_ob=ArticleURL&_udi=B6T1D-4GPVTBY-5&_coverDate=04%2F30%2F2005&_alid=395188221&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4888&_sort=d&view=c&_acct=C000051246&_version=1&_urlVersion=0&_userid=1067412&md5=cbae459e3e464cea575b0625fd70c4df#bib42#bib42
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caveolins are also present in mitochondria, the endoplasmatic reticulum, the Golgi/trans-Golgi 

network, and secretory vesicles (Podar and Andersen, 2006).  

Caveolins act as scaffolding proteins to cluster and regulate signaling molecules targeted to 

the caveolae, such as Src-family tyrosine kinases, H-Ras, G protein α subunits, endothelial nitric 

oxide synthase, protein kinase C, and epidermal growth factor (EGF) receptor. Interestingly, altered 

caveolin expression has been implicated in a variety of human diseases like Alzheimer, cancer and 

diabetes (Engelman et al., 1998). Moreover, Cav-1 has been implicated as acting as a tumor 

suppressor gene and an oncogene depending on the tumor type and tumor stage (Li et al., 1995 and 

Cohen et al., 2004). It has been demonstrated that transcriptional inactivation of caveolin-1 in human 

colon cancer cell lines (HT-29 and DLD-1) leads to increased tumor growth in nude mice, suggesting 

a tumor suppressor function for the protein (Bender et al., 2000). By contrast, studies with tissues 

from human prostate, breast, and colon adenocarcinoma have shown over expression of caveolin-1, 

suggesting a potential role as an oncogene (Yang et al., 1998 and Fine et al., 2001). Hence, the role of 

caveolin-1 in tumorigenesis is controversial. 

1.3.4 Sphingolipid Signal Transduction and Lipid Raft 

Recent evidence suggests that rafts are involved in aggregation and clustering of receptors upon 

ligand binding which is facilitated by receptor localization (Simons and Toomre, 2000). 

Sphingomyelin (SM) is exclusively located in the outer leaflet of the biological membrane and is a 

major component of lipid rafts, functioning to enhance the efficiency of membrane receptor signaling 

through ceramide generation (Gulbins et al., 2006). Ceramides usually accumulate in the plasma 

membrane upon receiving death- or stress-stimuli, and subsequently activate their acidic or neutral 

sphingomyelinases (Bollinger et al., 2005). The best model that describes the ceramide mediated raft 

clustering is Fas (CD95) stimulation in Jurkat T cells. In these cells (figure 1.3), Fas clustering with 

FADD (Fas-associated death domain) and caspase-8,  occurs within seconds, translocating acid 

sphingomyelinase (aSMase) into membrane rafts where it hydrolyzes SM to ceramide and results in 

the formation of ceramide-enriched membrane platforms (Rotolo, 2005). Thus, it has been suggested 

that SM is important for Fas clustering through aggregation of lipid rafts, leading to Fas-mediated 

apoptosis. 

Ceramide-mediated raft clustering also mediates stress stimuli triggered cell death other than 

Fas induced apoptosis. The natural phytoalexin resveratrol, a polyphenol found in grape skin known 

for its chemopreventive and antitumor activities, has shown the synergistic toxicity of resveratrol and 
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Figure 1.3:  The proposed model of Fas mediated apoptosis in lipid rafts. The engagement by Fas 

ligand (FasL) leads to the binding of the Fas intracellular domain, called death domain (DD)  to the 

cytoplasmic adaptor protein, Fas-associated death domain (FADD), and causes reactive oxygen 

species-dependent ceramide generation. This in turn aggregates the death receptors in lipid rafts and 

results in Fas induced apoptosis (Scheel Toellner et al., 2004; Miyaji et al., 2005)  
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death receptor ligands in HT29 cells.  In the resveratrol treated cells, tumor necrosis factor (TNF), 

CD95 and  TNF-related apoptosis inducing ligand (TRAIL) binding death receptors (DR4 and DR5) 

is redistributed into the lipid raft  and activates the caspase dependent death pathway upon death 

receptor stimulation (Delmas et al., 2004). Hence, ceramide-mediated raft clustering into 

macrodomains appears to represent a generic mechanism for transmembrane signaling rather than a 

specific mechanism for apoptosis induction. 

1.3.5 Tyrosine Kinase Signal Transduction and Lipid Raft 

Tyrosine kinases were among the first signal transduction molecules to be identified within lipid 

rafts/caveolae. Many membrane-bound tyrosine kinase receptors including epidermal growth factor 

(EGF), platelet-derived growth factor (PDGF), insulin, insulin-like growth factor (IGF), etc. have 

been shown to be localized to lipid rafts (Pike, 2004).  

The insulin-like growth factor I receptor (IGF-IR) and the insulin receptor (IR) belong to the 

same subfamily of receptor tyrosine kinases, each with two extracellular alpha-subunits and two 

transmembrane beta-subunits. They share highly similar structure and play a major role in 

maintaining glucose homeostasis. Both receptors can stimulate glucose uptake in muscle and fat 

which in turn inhibits hepatic glucose production and serves as the primary regulator of blood glucose 

concentration (Saltiel and Kahn, 2001). Furthermore, the two receptors activate common intracellular 

pathways. Both receptors phosphorylate insulin receptor substrate (IRS) proteins on the same tyrosine 

residues. These IRS proteins then act as adaptor molecules to recruit and activate downstream 

signaling cascades such as the phosphatidylinositol 3-kinase and mitogen-activated protein kinase 

(MAPK) pathways (Entingh-Pearsall and Kahn, 2004). The insulin receptor-dependent tyrosine 

phosphorylation of both insulin receptor substrate IRS1 and IRS2 are critical in maintaining proper 

glucose homeostasis through their interaction with phosphatidylinositol-3-kinase (PI3K). Apart from 

activation of the PI3-kinase–dependent signaling pathway, compartmentalization of CAP/Cbl 

complex serves as a second signalling pathway required for insulin-stimulated glucose transport 

(Baumann et al., 2000).  

Insulin like growth factor (IGF) also plays an important role in cancer development and 

progression. Remacle-Bonnet et al. note that IGF-1 shows an antiapototic effect from TNF induced 

apoptosis as well as a proapoptotic effect through FasL and TRAIL. However, the IGF-I proapoptotic 

effect appears to be mediated via activation of the PI3-K/Akt pathway when IGF-I  
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Figure 1.4:  The suggested insulin pathway in glucose homeostasis. Two signaling pathways are 

required for the translocation of the glucose transporter Glut4 by insulin in fat and muscle cells. 

Tyrosine phosphorylation (Y-P) of the insulin receptor substrate (IRS) proteins after insulin 

stimulation leads to an interaction with and subsequent activation of the Src-homology 2 (SH2)-

domain-containing protein phosphatidylinositol 3-kinase (PI3-K), producing the 

polyphosphoinositide phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which in turn interacts with 

and localizes protein kinases such as phosphoinositide-dependent kinase 1 (PDK1). These kinases 

then initiate a cascade of phosphorylation events, resulting in the activation of Akt and/or atypical 

protein kinase C (PKC). A separate pool of the insulin receptor can also phosphorylate the substrates 

Cbl and APS. Upon insulin binding to its tyrosin receptor, substrate Cb1 (proto-oncogene product) 

gets phosphorylated  and interacts with the adaptor protein CAP which can then binds to the lipid raft 

protein flotillin (Baumann et al., 2000). This interaction recruits phosphorylated Cbl into the lipid 

raft, resulting in the recruitment of CrkII along with guanine nucleotide exchange factor C3G. Upon 

this translocation, C3G activates TC10. Activation of TC10 is specific for insulin, and disruption of 

its activation blocks insulin-stimulated glucose transport and Glut4 translocation (Kimura et al., 

2002). These events play crucial roles in the trafficking, docking and fusion of vesicles containing the 

insulin-responsive glucose transporter Glut4 at the plasma membrane (Saltiel and Pessin, 2002). 
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shows an antiapototic effect from TNF induced apoptosis as well as a proapoptotic effect through 

FasL and TRAIL. However, the IGF-I proapoptotic effect appears to be mediated through activation 

of the PI3-K/Akt pathway when IGF-I receptors (IGF-IR) were located in lipid rafts. Furthermore, 

disruption of rafts by acute cholesterol depletion shifted IGF-IR to non-raft domains and inhibited the 

IGF-I-mediated proapoptotic effect. In contrast, activation of Erk 1/2 and p38 MAPK seems to 

suggest that the IGF-I anti-apoptotic signaling occurs outside of rafts. Thus, it has been proposed that 

segregation of IGF-IR in and out of lipid rafts may dynamically regulate the pro- and anti-apoptotic 

effects of IGF-I on apoptosis (2005).  

1.4 TNF-α Pathway 

TNF-α is a pro-inflammatory cytokine produced mainly by activated macrophages. TNF-α elicits a 

broad spectrum of biologic responses which are mediated by binding to a cell surface receptor. Upon 

binding to its receptor, TNF-α intiates signaling cascades mediating both cell death and survival. The 

TNF alpha receptors are members of the TNF superfamily and are denoted as TNF receptor I (TNF-

RI) and TNF receptor II (TNF-RII), respectively. The two receptors have relatively conserved 

extracellular domains and have been found to self assemble via the extracellular pre-ligand assembly 

domain (PLAD).  

1.4.1  TNF-RI Pathway 

The schematic representation of TNF-RI pathway is presented in figure 1.5. Following the TNF-RI 

ligation, TNF Receptor associated death domain (TRADD), an adaptor molecule, is recruited by the 

death domains (DD) of TNF-RI to form the plasma membrane bound protein complex (Complex-1). 

TRADD then recruits the secondary adaptors like  receptor activating protein (RIP) and TNF 

Receptor Associated factor 2 (TRAF2) (Varfolomeev and Ashkenazi, 2004). This TRADD-RIP1-

TRAF2 complex has been implicated in the indirect activation of IκB kinase (IKK) complex, which 

consists of IKK α, β and γ. IKK phosphorylates IκB, and which leads to IκB degradation and allowing 

NF-κB to move to the nucleus to activate transcription. NF-κB activates the transcription of several 

survival genes, including antiapoptotic proteins c-FLIP (FLICE inhibitory protein), IAPs (inhibitor of 

apoptosis proteins), Bcl-XL, A1, TRAF1/2, etc. Moreover, the TRADD-RIP1-TRAF2 complex can 

also activate MAPK/JNK pathway (Ashkenazi and Dixit, 1998). 

Complex I then undergoes modification and ligand-dissociated internalization with formation 

of cytoplasmic Complex II, also known as the DISC (death-inducing signaling complex). Complex II 
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recruits FADD (Fas-associated death domain) via interactions between conserved death domains 

(DD) and activates procaspase 8 via interaction between death effector domains (DED). Active 

caspase 8 cleaves Bid to tBid, which translocates to mitochondria leading to mitochondrial 

permeabilization, dysfunction and apoptosis (Ashkenazi and Dixit, 1998; Micheau and Tschopp, 

2003). 

Hence, when NF-κB is activated by complex I, complex II harbors the caspase-8 inhibitor 

FLIP proteins and the cell survives. The secondary complex (complex II) initiates apoptosis, provided 

that the NF-κB signal from complex I fails to induce the expression of antiapoptotic proteins such as 

FLIP (Micheau and Tschopp, 2003). 

1.4.2 TNF-R2 Pathway 

In contrast to TNF-RI, TNF-RII does not contain a death domain (DD). Instead, TNF-RII directly 

binds to TNFR-associated factors (TRAFs) and, therefore, is able to activate NF-κB signaling 

directly. Although TNF-RII has shown instances of pro-apoptotic signaling, in most cellular 

interactions TNF-RII can be regarded as an anti-apoptotic signaling receptor through TRAF2 

degradation (Varfolomeev and Ashkenazi, 2004). 

1.4.3 TNF-α and Insulin Resistance 

The indications that inflammatory pathways are stimulated in insulin resistance are presented by 

many researchers. High plasma concentrations of TNF-α (Bird and Raju, 2006) and high TNF-α gene 

expression in adipocytes are documented in some of the studies (Hotamisligil et al., 1993; Hoffman et 

al., 1994). However, with further investigation, they established that elevated levels of TNF-α in an 

obese state contributes to insulin resistance (Samad et al., 1999), with chronic elevations of TNF-RI 

and TNF-RII observed in obese human and animal studies (Samad et al., 1999; Hotamisligil et al., 

1993). 

 In tissues obtained from Zucker fa/fa rats, which have steatosis, basal IκB kinase-β (IKK-β) 

activity was increased when compared with lean fa/fa+ controls. In such animal models, various 

strategies that inhibit IKK-β reverse insulin resistance. For example, insulin resistance is improved by 

treating obese rats with high doses of NSAID, aspirin, due to decreased expression of IKK-β (Yuan et 

al., 2001). Yang et al. (1997) showed that obese mice with severe steatosis have much more 

sensitivity to bacterial endotoxin than do lean ones. They also revealed that liver injury appeared to 

be mediated by both TNF-α and interferon gamma. Hepatic expression of TNF-α is also increased in 
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alcohol-induced fatty liver disease, which closely resembles obesity-related hepatic steatosis (Lin et 

al., 1998). Indeed, another group reported that TNF-RI deficient mice are completely protected from 

steatohepatitis induced by alcohol, demonstrating the importance of TNF-α during the inflammatory 

stage of fatty liver disease (Yin et al., 1999). 

1.5 Animal Models  

The use of animal models allows researchers to investigate progression of disease in a physiologically 

relevant state to humans. Moreover, they have been used to test targeted therapies, cancer vaccines, 

preventive agents and combinations of chemopreventive and/or therapeutic agents, allowing large 

scale clinical trials to be based upon the data generated from this model. However, such studies 

should always be assessed in regard to how well it resembles human conditions (Green and Hudson, 

2005).  

With worldwide rises of metabolic disease incidences, rodent models such as OLETF (Otsuka 

Long-Evans Tokushima Fatty) rats, GK (Goto-Kakizaki) rats, db/db mice, Zucker rats and ob/ob mice 

are most commonly used in drug discovery. OLETF rats closely simulate the metabolic abnormalities 

of the human syndrome, especially the diabetic nephropathy. While the GK rat appears to be a 

suitable model for non-obese diabetes, Zucker rats are generally applied to studies of diabetes with 

obesity and cardiovascular complications due to the dyslipidaemia background (Chen and Wang, 

2005). Moreover, genetically engineered mice have also been used for chemoprevention studies. For 

instance, ApcMin mice model is widely used for colon carcinogenesis (Green and Hudson, 2005).  

1.5.1 Obesity 

Obesity is a problem of epidemic proportions in North America. Obesity is a chronic disease 

consisting of an increase in body fat stores and contributes directly to morbidity and mortality 

(Formiguera and Canton, 2004). There is a strong correlation between obesity and diseases like 

cardiovascular and liver disorders, dyslipidemia, insulin resistance, type-2 diabetes, hypertension, 

metabolic syndrome X and certain types of cancers (Raju and Bird, 2006). 
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Figure 1.5: Simplified representation of TNF-RI pathway. Upon binding of TNF-α to TNF-RI, 

Complex 1 forms which initiates a cell survival pathway via NF-κB. Dissociation of Complex 1 leads 

to formation of Complex 2, which is conjugated with FasL recruited FADD. Complex 2 then activates 

pro-caspase 8. Active caspase 8 cleaves Bid, a BH3 only proapoptotic Bcl2 family member, to a 

truncated form, tBid. tBid translocates to mitochondria, causing mitochondrial permeabilization and 

release of mitochondrial effectors of apoptosis, such as cytochrome c (Malhi et al., 2006). 
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1.5.2 Zucker-Obese Model 

The Zucker obese rat is an excellent model most widely for the study of obesity. It has several 

characteristics in common with human obesity such as hyperphagia, hypertriacylglycerolemia, and 

hyperinsulinemia. All metabolic changes are present very early (three to five weeks of age) in the life 

of these animals. Zucker obese rats inherit obesity, as an autosomal Mendelian recessive trait (fa/fa, 

homozygous for nonfunctional leptin receptors) as compared with their lean (Fa/fa or Fa/Fa) 

counterparts (figure 1.6) (Zucker and Zucker, 1961). Leptin, the main hormone produced by adipose 

tissue which regulates body weight and fat metabolism by sending signals to the hypothalamus to 

suppress appetite (Moore and Dalley, 1999). 

1.6 Nonsteroidal Anti-Inflammatory Drug 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications in the 

world and are used to treat arthritis and other inflammatory conditions. NSAIDs work by blocking the 

activity of the enzyme cyclooxygenase, also known as COX. COX is responsible for the conversion 

of arachidonic acid to prostaglandins, which are short-lived substances that act as local hormones 

(autocoids) important in normal physiology and pathologic conditions. Research has revealed that 

there are two cyclooxygenase isoforms known as COX-1 and COX-2 (Meric et al., 2006). COX-1 is 

involved in the homeostasis of various physiologic functions, such as protection of the gastric mucosa 

and regulation of platelet aggregation, and is constitutively expressed in many tissues and is 

responsible for general prostaglandin synthesis. In contrast, COX-2 is undetectable in most normal 

tissues but is induced by various inflammatory and mitogenic stimuli (Meric et al., 2006). COX-2 is 

found to be highly expressed in inflammatory disease states, premalignant lesions, and colorectal 

tumors in both humans and animals (Levi et al., 2001). NSAIDs affect both COX isoforms. Initial 

NSAIDs, such as aspirin, are non-selective Cox-2 inhibitors and have been shown to reduce the risk 

of heart attack by 44%.  Second classes of COX inhibitors, which include Refecoxib, are selective for 

Cox-2 and have been shown to decrease renal injury in obese Zucker rats (Dey et al., 2004). In 

contrast to their therapeutic nature, NSAIDs have adverse effects such as gastrointestinal ulceration 

and bleeding, disturbance of platelet function, nephrotoxicity, hepatotoxicity and hypersensitivity 

reactions (Teoh and Farrell, 2003).  
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Figure 1.6: Zucker obese rat and its lean counterpart. Zucker obese rats are an excellent model of 

human obesity and provide an ideal opportunity to study hepatic steatosis in an altered physiological 

state. Zucker obese rats inherit obesity as an autosomal Mendelain recessive trait, fa/fa homozygous 

for nonfunctional leptin receptors, as compared with their lean (Fa/fa or Fa/Fa) counterparts.  
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1.6.1 Piroxicam 

The NSAID-Piroxicam, a non-selective COX inhibitor, is used to reduce the pain, inflammation, and 

stiffness caused by rheumatoid arthritis and osteoarthritis. Reddy et al., has shown, in one study, that 

colon tumor multiplicity (tumors/animal; tumors/tumor-bearing animal) was significantly inhibited in 

animals fed diets containing 25 to 150 ppm piroxicam starting 1 and 13 wks after AOM 

(azoxymethane)-carcinogen administration in male F344 rats. The number of colon tumors/animal 

was inhibited by about 80% to 84% in animals fed the 150 ppm piroxicam diet (1987). It has been 

also demonstrated that piroxicam suppress tumor formation in the small intestine of ApcMin mice 

(Corpet et al., 2003). On the other hand, treatment with 200 ppm piroxicam (~33mg/kg/day) in the 

ApcMin mice for six or more days resulted in gross intestinal ulceration in >90% of the animals (Levi 

et al., 2001). Prolonged periods of piroxicam use has been reported to result in hepatotoxicity 

(Sherman and Jones, 1992).  

http://www.drugs.com/MTM/piroxicam.html
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Chapter 2 
Methods and Materials 

2.1 Materials 

Unless otherwise stated, all chemicals and reagents were purchased from Sigma Chemical Co., 

Mississauga, Ontario.  

Antibodies:  Rabit polyclonal to TNF-RI, TNF-RII and NFκB p65 were ordered from Abcam 

Inc., Cambridge, MA, USA ( Cat.# ab19139, ab15563 and ab7970, respectively). Moreover, rabbit 

anti-IκB-α, anti-IR-β, anti-Caveolin-1 and anti-Flotillin-1 were ordered from Santa Cruz 

Biotechnologies, Santa Cruz, CA, USA (Cat.# sc-371, sc-711, sc-894 and sc-25506, respectively). 

Mouse anti-IKK-β came from USBiological, Swampscott, MA, USA (Cat.# I3000-26). Mouse 

monoclonal to COX-1 and rabbit affinity purified polyclonal to COX-2 were purchased from Cayman 

Chemical, Ann Arbor, MI, USA (Cat.# 160110 and 160126, respectively). Monoclonal anti-TNF-α 

antibody produced in mice was used from (Cat.# T3198). Secondary anti-rabbit IgG, HRP-linked 

antibody was ordered from Cell Signaling Technology, Inc., Danvers, MA, USA (Cat.# 7074), and 

anti-mouse IgG, peroxidase conjugated antibody came from Sigma-Aldrich Ltd., St. Louis, MO, USA 

(Cat.# A9044). 

2.2 Animal Care and Experimental Design 

2.2.1 Animals 

Five-week-old female Ob (fa/fa) rats (n=12) and their lean (Fa/Fa) counterparts (n=12) were obtained 

from Charles River Laboratories (Wilmington, MA, USA) and housed in suspended wire cages 

approximately 10cm above sawdust bedding trays with a 12-h light/12-h dark cycle, in the animal 

housing facility. Temperature and relative humidity were controlled at 22°C and 55%, respectively. 

All animals were acclimatized to the above conditions for one week with free access to standard 

laboratory rodent chow and ad libitum drinking water until initiation of the experiment. All animals 

were cared for according to the guidelines of the Canadian Council on Animal Care.  
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2.2.2 Diet, Body Weights and Termination 

The experimental design for this study is presented in figure 2.1. Briefly, the control and piroxicam 

supplemented experimental diets were based on a semesynthetic AIN-93G standard diet formula 

containing 5% corn oil by weight. The piroxicam supplemented diet contained 150 parts per million 

powdered piroxicam and the control diet contained no piroxicam and was substituted with corn 

starch. The dose was selected on the observation that inhibits colon cancer. Diets were prepared twice 

each week and were stored in the dark at 4°C until used. Food cups were replenished every alternate 

day with fresh diets, and body weight and food intake monitored routinely on a daily basis. The rats 

remained on their respective diets for eight weeks, after which they were fasted for 12 h overnight, 

weighed, and terminated by CO2 asphyxiation.  Following termination, gross anatomy was observed 

and any pathologic abnormalities were recorded as a general observation. Weights of liver, kidney, 

spleen, adipose tissues were recorded and the samples frozen for biochemical analysis. For 

histological observation, segments of the liver were fixed in buffered formalin for a period of 48 h 

and processed for serial sectioning for haematoxylin and eosin staining.  

2.3 Lipid Analysis 

2.3.1 Lipid Extraction from Liver Tissue 

Total lipids were extracted from liver samples using chloroform/methanol (2:1, vol/vol) with slight 

modification in Folch method (Folch et al., 1957). One gram of liver tissue was homogenized with 20 

ml of chloroform/methanol (2:1) with PT2100 Polytron homogenizer, followed by the addition of 

0.3% NaCl at a ratio of 0.2 times the volume of chloroform/methanol (2:1). In other words, 4 mL of 

0.3% NaCl was added, and the mixture was vortexed and allowed to separate overnight at 4°C into 

two phases. The subnatant (bottom phase) was extracted with pasteur pipette and placed into 

previously weighed glass vials with aluminium lids. The lipid extract was then evaporated to dryness 

in a sand bath at 37°C. The yellow colour lipid was extracted and weighed on a per gram basis.  

2.3.2 Separation of Phospholipids and Triglycerides by Thin Layer Chromatography 

The major lipid classes contained in the lipid extract were separated by thin layer chromatography 

performed on Silica Gel G precoated plates (Alltech Assoc., Deerfield, IL)) in a solvent system 

containing hexane/diethylether/acetic acid (60:40:3 by volume). The location of various lipid classes 

was determined by spotting standard samples on the plate before development of the plate in the  
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Figure 2.1: Schematic representation of the experimental protocol. After one week of 

acclimatization, Zucker obese (fa/fa) rats and lean (Fa/Fa) rats were randomly divided into two sub-

groups receiving either ad libitum (Ob or Ln) or 150 ppm piroxicam (Ob-Pirox or Ln-Pirox) diets. All 

groups were kept on the experimental diets for a period of eight weeks, after which all animals were 

fasted for 12 hrs and then euthanized by CO2 asphyxiation. 
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solvent system. Following development in the solvent system, the plates were removed, dried, and  
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solvent system, the plates were removed, dried and sprayed with  2', 7'- dichlorofluorescein (Sigma 

Chemical Co., Mississauga, Ontario). The location of the phospholipid and triglyceride bands was 

visualized under an ultraviolet lamp. 

2.3.3 Fatty Acid Analysis 

Bands representing phospholipids and triglycerides as visualized under an ultraviolet lamp were 

scraped into test tubes and methyl esters were prepared according to the method developed by 

Morrison and Smith (1964). One mL of boron triflouride in methanol (14% wt/vol; Alltech Assoc., 

Deerfield, IL) and 300 μL of hexane were added to each lipid sample. Each test tube containing this 

mixture was tightly capped and heated at 95°C for one hr in the presence of internal standard 17:0 

methyl esters. The samples were cooled to room temperature, one mL of distilled water was added to 

each test tube and the mixture was vortexed and then allowed to stand until the layers had separated. 

The hexane layer containing the fatty acid methyl esters was removed and dried under pure nitrogen 

and reconstituted in small volumes of hexane. The reconstituted fatty acid methyl esters were 

analyzed by capillary gas chromatography according to Salem et al. (1996) on a Shimadzu GC-17A 

gas chromatograph (Shimadzu, Columbia, MD) with a DB-FFAP 30m × 0.25 mm i.d. × 0.25 µm film 

thickness column (J&W Scientific from Agilent Technologies, Mississauga, ON). 

2.4 Sample Preparation 

2.4.1 Preparation of Whole Extract from Liver Tissue 

One gram of liver tissue stored at -80°C was chopped and mixed with 3 mL of ice-cold RIPA buffer 

(50 mM Tris-HCl, 1% NP-40, 0.25% Sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM 

NaF) with freshly added protease inhibitors (1 μg/mL of Aprotinin, Leupeptin, Trypsin Inhibitor, 

Sodium Orthovandate) and then homogenized in ice using PT2100 Polytron homogenizer. The 

mixture was transferred into the microcentrifuge tubes, and lipids and cell debris were removed by 

centrifugation at 15,000 rpm for 20 min at 4°C. The top lipid layer was removed and the supernatant 

(lysate) was collected and aliquoted in small amounts into pre-chilled eppendorf tubes and stored in -

80°C for further analysis. Equal amounts of protein were used for western blot analysis and 

enzymatic assays. 
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2.4.2 Preparation of Nuclear Extract from Liver Tissue 

Nuclear extraction was carried out using the stock solutions of 10X Buffer A (100 mM HEPES, pH 

7.9; 100 mM KCl; 100 mM EDTA) and 5X Buffer B (100 mM HEPES, pH 7.9; 2 M NaCl; 5 mM 

EDTA; 50% glycerol). Half a gram of liver tissue was weighed and collected in a pre-chilled tube 

with 1.2 mL of  Buffer A mix (1X Buffer A, 1 mM DTT, 0.4% IGEPAL, protease inhibitor cocktail) 

and then the tissue was homogenized in ice using PT2100 Polytron homogenizer. The homogenate 

was centrifuged at 9,600 rpm into the microcentrifuge tubes for 10 min at 4°C. The supernatant with 

the lipid layer was discarded and the pellet was homogenized again into 1 mL of Buffer A mix. Upon 

incubation on ice for 15 min, the homogenate was centrifuged at 15,000 rpm for 5 min at 4°C. The 

supernatant (cytosolic fraction) was aliquoted and stored at -80°C. The remaining pellet was 

resuspended in 150 μL of Buffer B mix (1X Buffer B, 1 mM DTT, protease inhibitor cocktail). The 

pellet was resuspended by vortexing at high speed for 10-15 sec, and then centrifuged for 5 min at 

15,000 rpm. The supernatant (nuclear fraction) was collected into pre-chilled tubes and stored at -

80°C for further analysis. Equal amounts of protein were used for western blot analysis. 

2.4.3 Isolation of Detergent Resistant Membranes from Liver Tissue 

To isolate the low-density membrane rafts, discontinuous sucrose gradient ultracentrifugation was 

performed. Breifly, 0.5 grams of Zucker rat liver was chopped and mixed with 1 mL of ice-cold MEB 

lysis buffer (as described earlier) and homogenized with PT2100 Polytron homogenizer.  The liver 

homogenates were transferred into ultracentrifuge tubes and mixed with 1 mL Triton X-100 free 

MEB buffer (250 mM NaCl, 20 mM Mes pH 6.5) containing 90% (w/v) sucrose. The lysates were 

sequentially overlaid by 6 mL Triton X-100 free MEB buffer containing 30% (w/v) sucrose and then 

with 4 mL Triton X-100 free MEB buffer containing 5% (w/v) sucrose, respectively. The 

discontinous sucrose gradients were centrifuged for 18 hours at 4°C in Beckmann SW40 Ti swinging 

rotor at 39,500 rpm. A light-scattering band was observed at the 5%-30% sucrose interface. 1-ml 

fractions were then collected from top to bottom for a total of 12 fractions and 60 μM η-octyl-β-D-

glucopyranoside (ODG) was added to each fraction. ODG is a gentle nonionic detergent that is very 

efficient in solubilizing proteins associated with rafts (Simons and Toomre, 2000). Equal volume 

from each fraction was used for western blot analysis and enzymatic assays. 
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Figure 2.2: Schematic representation of isolation of lipid raft from liver tissue.  0.5 grams of 

liver tissue was homogenized in lysis buffer and then sucrose density gradient was prepared. The 

tubes were then ultracentrifuged for 18-20 hours. After unltracentrifugation, a light-scattering band at 

the 5%-30% sucrose interface was observed. Total 12 fractions, 1 mL each was collected from top to 

bottom in an eppendorf tube.   
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2.5 Western Blot Analysis 

2.5.1 Protein Quantification 

A Bio-Rad protein assay, based on Bradford’s method, was used to determine the total protein content 

using bovine serum albumin as a standard. Protein solutions were assayed in duplicate in 96 well 

plates and the absorbance was measured using Bio-Rad 3550-UV Microplate Reader at a wavelength 

of 595 nm. 

2.5.2 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

The protein samples were subjected to 8%, 10% or 12% (depending on the molecular weight of 

protein of interest) SDS-PAGE using the Mini-Protean-BioRad II apparatus (Bio-Rad Laboratories 

Ltd, Canada). Samples were mixed with equal volumes of 2x SDS Laemmli buffer and boiled for 5 

min at 90°C.  The separating gel was made with 30% Acrylamide/Bis solution (Bio-Rad Laboratories 

Ltd, Canada), 1.5 M Tris-HCl (pH 8.8), 10% SDS, 10% Ammonium persulfate and 0.05% TEMED 

(Bio-Rad Laboratories Ltd, Canada). The 4% stacking gel was made of using all of the above except 

the Tris-HCl buffer was 1 M with pH 6.8. Equal amounts (50 μg) of liver protein or equal volumes (3 

μL or 6 μL) of lipid raft fractions were loaded and run through SDS-PAGE at 120V for 90 mins. The 

proteins from the gel were then transferred onto PVDF membranes in order to detect the bands with 

specific antibodies. 

2.5.3 Western Blot 
Following SDS-PAGE, proteins were transferred onto 15 min methanol soaked 0.45 μm PVDF 

membranes (Pall Corp. FI, USA) using the Trans-Blot Semi-Dry transfer cell (Bio-Rad Laboratories 

Ltd, Canada). Briefly, the protein gel was placed on the top of the thick sponge (Bio-Rad Laboratories 

Ltd, Canada) onto the anode platform of the Semi-Dry system. The PVDF membrane was placed 

directly onto the gel and another sponge was placed on the membrane. The whole sandwich was then 

transferred at 20V for 30 mins followed by rolling a test-tube onto the sandwich to remove of the 

bubbles. The membranes and gels were then stained with Ponceau-S and Coomassie Brilliant Blue for 

equal loading and proper transfer, respectively. After washing the blots briefly in TBS-T, they were 

next incubated with TBS-T containing 5% skim milk powder for 1 hour at room temperature to block 

the non-specific binding, then probed with respective primary antibodies for one hour at room 

temperature, followed by overnight incubation at 4°C.  The immunoblots were washed three times 

with TBS-T and then incubated with peroxidase conjugated secondary antibodies in a 1% blocking 
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solution for one hour. After the blots were washed  three times in TBS-T, they were incubated for 5 

mins with ECL Plus substrate (Amersham Biosciences Canada, GE Healthcare Bio-Sciences Inc., 

Quebec, Canada) and developed using X-ray film (Fisher Scientific Company, Ottawa, ON, Canada). 

A positive control was included in all the gels to minimize background and gel-to-gel variability. As 

well, equal loading of each gel was verified by comparison with the immunoblotting of beta-actin. 

Finally, densitometric analysis of protein bands was conducted using AlphaEaseFC software (Alpha 

Innotech Corporation, CA, USA). 

2.6 Enzymatic Assays 

2.6.1 Transcriptionally Active p65 NF-κB Colorimetric Assay 

NF-κB transcription factor activation was monitored using TransAM NF-κB p65 kit (Active motif, 

Carlsbad, CA) according to the manufacturer’s protocol. NF-κB DNA binding activity is detected in 

ELISA format, where a 96-well plate is coated with the oligonucleotide containing the NF-κB 

consensus site (5’ –GGGACTTTCC- 3’). The active form of NF-κB contained in the nuclear extract 

specifically binds to this oligonucleotide. The primary antibody used to detect NF-κB recognizes an 

epitope on p65 that is accessible only when NF-κB is activated and bound to its target DNA. An 

HRP-conjugated secondary antibody provides a sensitive colorimetric readout that is easily quantified 

by spectrophotometry. 

Briefly, microwells precoated with a double-stranded oligonucleotide containing the NF-κB 

consensus sequence were incubated with 2 μg of nuclear extracts for 1 hour at room temperature with 

mild agitation. The microwells were washed three times with a washing buffer to remove any 

unbound proteins. The captured active transcription factor bound to the consensus sequence was 

incubated for 1 hour with a specific primary antibody, then for an additional hour with a secondary 

horseradish peroxidase-conjugated antibody. After washing, the wells were exposed to a developing 

solution for 10 mins before adding stopping solution. The optical density of each well was determined 

at 450 nm using Asys UVM 340 spectrophotometer (Montreal Biotech, Montreal, QB, Canada).  

2.6.2 Cholesterol Assay 

The Amplex Red Cholesterol Assay Kit (Molecular Probes, Eugene, OR) provides a simple 

fluorometric method for the sensitive quantitation of cholesterol using a fluorescence microplate 

reader. In this enzymatic assay, cholesteryl esters are hydrolyzed by cholesterol esterase (CE) into 
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cholesterol, which is then oxidized by cholesterol oxidase (CO) to yield the corresponding ketone and 

hydrogen peroxide (H2O2) coproducts. Thus, the enzymatic methods for assaying cholesterol are 

based on the measurement of H2O2 by way of horseradish peroxidase (HRP)-coupled oxidation of 

H2O2-sensitive probes. In the presence of HRP, Amplex Red reagent reacts with H2O2 to produce 

highly fluorescent resorufin.  

To measure cholesterol, 6 μL of lipid raft fraction or 25 μg of liver homogenate was analyzed 

with the Amplex Red cholesterol fluorescence assay kit according to the manufacturer's instruction. In 

brief, the assay was conducted in a 96-well microplate using a total of 100 μl reaction volume per 

well. In addition to membrane fractions or liver homogenates, reaction mixtures contained 300 μM 

Amplex Red, 2 U/ml HRP, 2 U/mL cholesterol oxidase and 0.2 U/mL cholesterol esterase. The 

reaction mixtures were incubated at 37°C for 30 mins, and the fluorescence intensities were measured 

with a filter set for excitation and emission at 560±10 and 590±10 nm, respectively. 

2.6.3 Sphingomyelinase Assay 

The activity of neutral and acidic sphingomyelinase was measured using the Amplex Red 

Sphingomyelinase Assay Kit (Molecular Probes, Eugene, OR). In the first step, the enzymatic 

hydrolysis of sphingomyelin to ceramide and phosphorylcholine is carried out by sphingomyelinase. 

Then, with the action of alkaline phosphatase, phosphorylcholine is hydrolyzed to choline, which is 

then oxidized by choline oxidase to betaine and H2O2. Finally, H2O2 in the presence of horseradish 

peroxidase reacts with the Amplex Red reagent to generate highly fluorescent resorufin. 

The activity of neutral sphingomyelinase was analyzed using 20 μL of lipid raft fraction or 50 

μg of liver homogenate through a continuous sphingomyelinase assay method according to the 

manufacturer’s instruction. Briefly, 100 μL of sample was added to a 100 μL assay solution 

containing 100 μM Amplex Red, 2 U/ml HRP, 0.2 U/mL cholesterol oxidase, 8 U/mL alkaline 

phosphatase, 0.5 mM sphingomyelin (made in 2% Triton X-100) with 0.1 M Tris-HCl and 10 mM 

MgCl2, pH 7.4. After preincubation for 1 hr at 37° C, the fluorescence was measured using excitation 

at 560±10 nm and detection at 590±10 nm. The basal level of neutral sphingomyelinase was 

measured in the same way as described above except that the reaction mixture did not contain any 

sphingomyelin. 

The 20 μL of lipid raft fraction or 50 μg of liver homogenate (adjusted to pH 5.0) was 

assayed for acidic sphingomyelinase activity in a two-step reaction system. First, to generate 

phosphocholine and ceramide, 0.5 mM sphingomyelin was added to the 100 μL sample and incubated 
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for 60 min at 37 °C. The reaction was then placed on ice and the reaction mixture containing 100 μM 

Amplex Red, 2 U/ml HRP, 0.2 U/mL cholesterol oxidase, 8 U/mL alkaline phosphatase, with 100 

mM Tris-HCl, pH 8, was added and further incubated at 37° C for 1 hr to generate H2O2.  The 

fluorescence intensities were measured with a filter set for excitation and emission at 560±10 and 

590±10 nm, respectively. The basal level of acidic sphingomyelinase was measured in the same way 

as described above except that the 100 μL sample was incubated for 60 min at 37 °C without any 

sphingomyelin. 

2.7 Statistical Analysis 

Statistical analysis of the data was performed using SPSS statistical software (SPSS Inc., Chicago, IL, 

USA). A comparison between the groups of interest was performed and differences were determined 

using ANOVA in conjunction with LSD post-hoc analysis at a significance level of P < 0.05 and P < 

0.1. 
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Chapter 3 

Results 

3.1 Hepatic Steatosis and Hepatotoxicity in Obese Rats 

3.1.1  Body and Organ Weights of Zucker Rats 

Administration of piroxicam at the level of 150 ppm did not significantly affect the observed eating 

habits or behavior of obese or lean rats. Independent of piroxicam treatment, the body weights were 

significantly higher in Zucker obese rats than in their lean counterparts (table 3.1). Moreover, a great 

difference was observed in food intake, calculated as mean weight of food (g) per animal per day, 

between obese and lean rats. Piroxicam administration significantly elevated the mean body weight 

and mean liver weight only in obese rats as depicted in table 3.1.  

3.1.2 The Gross Pathological Changes Associated with Liver Steatosis 

In addition to the weight of the organs, any other visible changes were recorded. Obese animals 

generally had pale livers, and their kidneys frequently had a cystic and enlarged appearance. Gross 

appearance of the livers of obese rats treated with piroxicam revealed markedly yellowish marbled 

appearance. In the obese group three rats had cystic kidneys whereas in the piroxicam treated obese 

group seven out of eight rats had enlarged cystic kidneys. Piroxicam did not exert any overt toxicity 

assessed by gross examination of the organs in lean rats. Moreover, quantification of total lipid in 

hepatic tissue (table 3.1) revealed significantly higher amounts of lipid in obese compared to lean 

livers. Furthermore, piroxicam significantly increased the amount of lipid per gram of liver only in 

obese rats without any effect on the level of cholesterol. However, obese rats had significantly higher 

levels of cholesterol in the hepatic tissue compared to their lean counterparts (table 3.1). 
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Table 3.1: Body weight, liver weight and food intake of Zucker ratsa  

          

 Ob Ob-Pirox Ln Ln-Pirox 

          

     

Body Weight (g) 480.3 ± 8.8 x 564.2 ± 16.8 y 260.0 ± 10.2 z 247.3 ± 14.5 z 

     

Liver Weight (g) 37.6 ± 1.5 x 52.4 ± 4.5 y 8.9 ± 0.3 z 8.7 ± 0.6 z 

     

Lipid Weight (g) 0.20 ± 0.02 x 0.32 ± 0.01 y 0.08 ± 0.00 z 0.06 ± 0.03 z 

(per gram of liver)     

     

Cholesterol (mmol) 0.45 ± 0.08 x 0.36 ± 0.04 x 0.18 ± 0.04 y 0.33 ± 0.04 x 

     

Kidney Weight (g) 3.0 ± 0.1 x 3.9 ± 0.1 y 1.8 ± 0.05 z 1.8 ± 0.08 z 

     

Food intake  31.3 ± 0.3 x 34.5 ± 0.5 y 23.6 ± 0.8 z 23.8 ± 1.7 z 

(g/animal/day)     

          
 

aBody and organ weights collected from animals terminated at eight weeks are shown in this table, as 

is the table, as is the lipid that was extracted from one gram of liver by the folch method using 

chloroform/methanol (2:1, vol/vol) solvent system. Cholesterol was measured from the hepatic tissues 

of Zucker rats using the Amplex Red Fluorescence Assay Kit. Equal amounts of liver protein (25 μg) 

were used to detect cholesterol levels. The enzymatic assay was based on hydrolyzing cholesteryl 

esters into cholesterol, then oxidizing cholesterol into ketone and H2O2. In the presence of horseradish 

peroxidase (HRP)-coupled oxidation of H2O2, Amplex Red reagent reacts with H2O2 to produce 

highly fluorescent resorufin. All values are means ± s.e., n=8/dietary group. Values in a row without a 

common letter (x,y,z) differ significantly, P< 0.05, as determined by ANOVA in conjunction with LSD 

post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: 

Piroxicam supplemented Lean.  
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3.1.3 The Progression of Hepatic Steatosis to Hepatotoxicity  

Hepatic steatosis was observed in obese control as well as obese-piroxicam treated rats, with a 

significant increase in lipid accumulation and steatotic progression in the latter (figure 3.1). Well 

defined hepatocyte nuclei were evident in the normal lean liver while, the hepatocyte structure of 

obese livers was irregular and had marked lipid accumulation as indicated by the arrow in figure 3.1b. 

Overall, 60%-70% of the cells showed lipid accumulation with droplets of varying sizes scattered 

throughout the liver mass. This condition was exacerbated in piroxicam treated liver tissue (figure 

3.1c versus 3.1b) and lipid droplets were more abundant than hepatocyte nuclei and occupied 80% of 

liver mass. Many smaller lipid droplets appeared to fuse together forming larger droplets.  

3.2 Lipid Analysis 

3.2.1 Fatty Acid Composition of Total Triglycerides and Phospholipids in Liver 

The fatty acid composition of liver phospholipid and triglyceride fractions from obese and lean rats is 

presented in table 3.2. It should be noted that only pertinent fatty acids are presented in this table 

while the rest are shown in tables B1 and B2 (Appendix). Total phospholipid fractions of control 

obese rats were noted to contain significantly higher (p<0.05) percentages of saturated (except 18:0) 

fatty acids and significantly lower percentages (p<0.05) of 18:2 n-6 and 20:4 n-6 unsaturated fatty 

acids. Piroxicam supplementation caused a significant decrease (p<0.05) in the percentage of 16:0 

fatty acids and a significant increase in  20:4 n-6 fatty acid levels in obese rats, while having the 

opposite effect in lean rats. Triglyceride fractions of lean rats were observed to contain increased 

saturated and n-6 fatty acids as compared to obese rats. Piroxicam supplementation showed no 

changes in saturated fatty acid levels but increased significantly (p<0.05) the level of 20:4 n-6 in both 

obese and lean rats. Moreover, obese had significantly high concentration of total fatty acids in the 

triglyceride fractions compare to lean. Piroxicam further increased its level significantly in obese.  
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Figure 3.1: Haematoxylin and eosin stained liver histology of Zucker rats. After termination, the 

segment of liver was fixed in buffered fomalin and was sectioned for histological observation. 

Transverse sections (4 μm) were made and stained with heamatoxylin (stains nuclei black) and eosin 

(stains cytoplasm pink). (a) Zucker obese (Ob) rat liver tissue showing different sizes of lipid droplets 

in hepatocytes (arrow); (b) Zucker lean (Ln) rat liver tissue displaying normal liver architecture; (c) 

piroxicam fed Zucker obese rat (Ob-pirox) liver tissue showing deterioration of hepatocytes 

containing increased lipid accumulation. Magnification used x 100. 
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Table 3.2: Percent fatty acid composition of total phospholipids and triglycerides in livera  

 

 Ob Ob-Pirox Ln Ln-Pirox 

Phospholipid      

C14:0 0.49 ± 0.01x 0.24 ± 0.01y 0.15 ± 0.01z 0.27 ± 0.00y 

C16:0 20.47 ± 0.73x 16.43 ± 0.69y 13.44 ± 0.42z 17.08 ± 0.90y 

C18:0 22.55 ± 0.48x 28.57 ± 0.71y 32.69 ± 0.71z 26.81 ± 1.52y 

C18:1 n-9 13.92 ± 0.75x 5.98 ± 0.34y 2.16 ± 0.12z 6.41 ± 0.26y 

C18:2 n-6 4.60 ± 0.25x 3.68 ± 0.17x 7.90 ± 0.25y 11.31 ± 0.64z 

C20:4 n-6 20.60 ± 0.67x 28.86 ± 0.39y 25.71 ± 0.21z 22.43 ± 0.55w 

Total (mg/g) 17.38 ± 0.64x 12.13 ± 0.74y 17.30 ± 0.66x 15.71 ± 0.49x 

Triglyceride     

C14:0 1.32 ± 0.06x 1.46 ± 0.03x 0.97 ± 0.13y 0.86 ± 0.07y 

C16:0 34.97 ± 0.32x 33.11 ± 0.83x 35.59 ± 1.31x 35.00 ± 1.23x 

C18:0 2.92 ± 0.23x 3.17 ± 0.21x 5.36 ± 0.34y 3.27 ± 0.42x 

C18:1 n-9 34.93 ± 1.13x 38.20 ± 1.29x 23.57 ± 2.15y 27.26 ± 0.84y 

C18:2 n-6 4.31 ± 0.20x 3.65 ± 0.34x 16.00 ± 1.69y 22.33 ± 2.20z 

C20:4 n-6 0.28 ± 0.02x 0.40 ± 0.07y 1.06 ± 0.17z 1.72 ± 0.18w 

Total (mg/g) 185.93 ± 11.79x 231.32 ± 10.19y 9.28 ± 2.42z 33.54 ± 6.10z 

 
aTotal lipids were extracted from liver samples using a chloroform/methanol (2:1, vol/vol) solvent 

system. Phospholipids and triglycerides were separated by thin-layer chromatography. The 

corresponding phospholipid and triglyceride bands were transmethylated and converted to methyl 

esters. These fatty acid esters were analyzed by capillary gas chromatography. All values are means ± 

s.e., n=4/dietary group. Values in a row without a common letter (x,y,z) differ significantly, P< 0.05, as 

determined by ANOVA in conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam 

supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented Lean.  
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3.3 Protein Expression Patterns in Liver Tissue 

3.3.1 COX-1 and COX-2 Protein Expressions 

COX-1 protein (figure 3.2) levels were higher in obese rat livers compared to those of lean rats. 

Piroxicam treatment caused a significant (p<0.05) increase in the level of COX-1 protein only within 

lean rats. COX-2 protein levels (figure 3.2) were similar in both obese and lean rats. Piroxicam 

treated groups were observed to have significantly (p<0.05) lower hepatic COX-2 levels compared to 

the corresponding control rats.  

3.3.2 TNF-α, TNF-RI and TNF-RII Protein Expressions 

TNF-α specific antibody identified two major bands with 17 and 80 kDa as shown in figure 3.3. Both 

bands were quantified knowing that TNF-α could exist in the free and bound form. The soluble form 

at 17 kDa showed variability between obese and lean rats (p<0.1). In this context, obese livers were 

observed to have lower levels of the soluble 17 kDa form than lean livers. Piroxicam further 

decreased the level of TNF-α in lean rats but not in obese rats, significance (p<0.05). The membrane 

bound (higher molecular band) 80 kDa protein was more consistent within the group and it was 

observed that obese rats had higher levels of the protein than lean rats. Moreover, piroxicam 

consistently lowered the levels of TNF-α in both obese and lean rats.   

The anti-TNF-RI antibody also recognized two closely associated bands (55 and 57kD). The 

levels of TNF-RI protein (figure 3.3) in obese and lean livers were differed significantly, with lean rat 

livers having lower levels than obese. Piroxicam treatment affected the level of TNF-RI differently 

depending on the genotype of the animals. In the lean rats, piroxicam treatment resulted in a moderate 

but significant increase in TNF-RI levels compared to those noted in control livers (p<0.05). An 

opposite effect, however, was observed in piroxicam treated obese animals as the group had lower 

TNF-RI levels than the control obese group (p<0.1). 

TNF-RII levels were significantly lower (figure 3.3) in obese rat hepatic tissue compared to 

lean. A significant (p<0.05) increase in TNF-RII levels was noticed in lean piroxicam treated hepatic 

tissue compared to control hepatic tissue. An opposite effect of piroxicam was noted in the obese rats. 

Piroxicam treated obese animals had a reduced level of TNF-RII (p<0.08). 
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Figure 3.2: Western blot analysis of COX-1 and COX-2 protein expressions from liver 

homogenates of Zucker rats. Equal amounts of liver protein (50 μg) was separated by 8% SDS-

PAGE gel and transferred onto PVDF membranes. Following incubation with primary antibodies at a 

final dilution of 1:1000 and corresponding HRP-conjugated secondary antibodies at a final dilution of 

1:5000, the blots were developed on X-ray film using ECL Plus substrate.  The blots were first 

identified by immunoblotting with anti-rabbit affinity purified polyclonal COX-2 antobody. The same 

membranes were then reprobed with anti-mouse monoclonal COX-1 antibody. Equal loading of each 

gel was verified by comparison with the immunoblotting of beta-actin. (A) Representative western 

blots of COX-1, COX-2 and β-actin using 50 μg of liver protein from Zucker obese (Ob) and lean rats 

with or without piroxicam treatment. (B) Ponceau S staining of membranes containing 50 μg of liver 

homogenate from all four groups of Zucker rats. (C) Bar graphs represents levels of COX-1 and 

COX-2 protein. Densitometric values were corrected for gel-to-gel variability using equal amounts of 

a common liver homogenate as a positive control in each blot. All values are means ± s.e., 

n=4/dietary group. Bars without a common letter (x, y, z) differ significantly, p<0.05, as determined by 

ANOVA in conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented 

Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented Lean. 
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Figure 3.3: Western blot analysis of TNF-α protein expression from liver homogenates of 

Zucker rats. About 50 μg of liver protein was loaded into a 10% acrylamide gel and transferred to a 

PVDF membrane. The membrane was probed with primary TNF-α monoclonal antibody at a 

concentration of 1:1000. After washing, the membrane was probed with secondary anti-mouse 

antibody at 1:5000 concentration. The blots were developed on X-ray film using ECL Plus substrate. 

Equal loading of each gel was verified by comparison with the immunoblotting of beta-actin. (A) 

Representative western blots of TNF-α and β-actin using 50 μg of liver protein from Zucker obese 

(Ob) and lean rats with or without piroxicam treatment. (B) Ponceau S staining of membranes 

containing 50 μg of liver homogenate from all four groups of Zucker rats. (C) Bar graphs represents 

levels of TNF-α protein. Densitometric values were corrected for gel-to-gel variability using equal 

amounts of a common liver homogenate as a positive control in each blot. All values are means ± s.e., 

n=4/dietary group. Bars without a common letter (x, y, z) differ significantly, p<0.05 and p<0.1, as 

determined by ANOVA in conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam 

supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented Lean. 
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Figure 3.4: Western blot analysis of TNF-RI and TNF-RII protein expressions from liver 

homogenates of Zucker rats. Equal amounts of liver protein (50 μg) was separated by 8% SDS-

PAGE gel and transferred onto PVDF membranes. Following incubation with primary antibodies at a 

final dilution of 1:1000 and corresponding HRP-conjugated secondary antibodies at a final dilution of 

1:5000, the blots were developed on X-ray film using ECL Plus substrate.  The blots were first 

identified by immunoblotting with anti-rabbit polyclonal TNF-RI antibody. The same membranes 

were then reprobed with anti-rabbit polyclonal TNF-RII antibody. Equal loading of each gel was 

verified by comparison with the immunoblotting of beta-actin. (A) Representative western blots of 

TNF-RI, TNF-RII and β-actin using 50 μg of liver protein from Zucker obese (Ob) and lean rats with 

or without piroxicam treatment. (B) Ponceau S staining of membranes containing 50 μg of liver 

homogenate from all four groups of Zucker rats. (C) Bar graphs represents levels of TNF-RI and 

TNF-RII protein. Densitometric values were corrected for gel-to-gel variability using equal amounts 

of a common liver homogenate as a positive control in each blot. All values are means ± s.e., 

n=4/dietary group. Bars without a common letter (x, y, z) differ significantly, p<0.05, p<0.08 and 

p<0.1, as determined by ANOVA in conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: 

Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented Lean. 
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3.3.3 NF-κB Protein Expression 

Obese animals had significantly elevated levels of both whole homogenate (liver tissue) and nuclear 

NF-κB protein levels compared to their lean counterparts as shown in figure 3.5 and figure 3.7 

respectively. Moreover, a 5-6 fold difference of the p65 NF-κB protein level is observed in the 

nuclear fraction between obese and lean rats. Piroxicam treatment resulted in lowering the NF-κB 

level in the lean liver tissue only. Significant differences in NF-κB protein levels were not observed 

between piroxicam treated obese and obese control animals. Piroxicam treated obese animals, 

however, had a moderate but statistically significant elevation in nuclear NF-κB levels compared to 

the obese control animals. A significant trend was not observed between piroxicam treated lean and 

lean control animals in the nuclear rich fraction.  

To determine the level of transcriptionally active NF-κB in the nuclear fraction, the DNA 

binding activity was assessed through an ELISA kit (figure 3.8). No significant trend was observed 

between obese and lean rats. Increased active NF-κB was observed in piroxicam treated obese 

animals as compared to their obese control counterparts. However, the differences in abundance were 

not as large as those noted in the nuclear fraction by western blot analysis. A significant difference 

(p<0.05) in active NF-κB was not observed between piroxicam treated lean and lean control rats.  

3.3.4 IκB-α Protein Expression 

Western blots were performed to assess relative whole homogenate (liver tissue) and nuclear extract 

protein levels of IκB-α in all groups (figures 3.12 and 3.13). A significantly increased level of IκB-α 

protein was observed in obese compared to lean rat liver tissue. Piroxicam treated obese rats had 

lower levels of IκB-α protein than obese control rats. A significant trend (p<0.05) was not observed in 

piroxicam lean vs. lean control animals. Surprisingly, in the nuclear rich fraction IκB-α was present in 

significantly higher amounts in the livers of obese rats compared to those of lean ones. The effect of 

piroxicam in the nuclear extract was seen in the lean liver only. Similar levels of nuclear IκB-α 

protein were observed in both obese and obese piroxicam treated rats.  

3.3.5 IKK-β Protein Expression 

Obese livers had higher levels of IKK-β protein than lean livers. Increased levels of IKK-β protein 

were observed in lean piroxicam treated rats compared to lean control rats. No apparent differences in 

IKK-β protein levels were noticed between piroxicam treated obese rats and their obese control 

counterparts (figure 3.14).  
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Figure 3.5: Western blot analysis of NF-κB and IκB-α protein expression from liver 

homogenates of Zucker rats. Equal amounts of liver protein (50 μg) were separated by 8% SDS-

PAGE gel and transferred onto PVDF membranes. Following incubation with primary antibodies at a 

final dilution of 1:1000 and corresponding HRP-conjugated secondary antibodies at a final dilution of 

1:5000, the blots were developed on X-ray film using ECL Plus substrate.  The blots were first 

identified by immunoblotting with anti-rabbit polyclonal NF-κB antibody. The same membranes were 

then reprobed with anti-rabbit polyclonal IκB-α antibody. Equal loading of each gel was verified by 

comparison with the immunoblotting of beta-actin. (A) Representative western blots of NF-κB, IκB-α 

and β-actin using 50 μg of liver protein from Zucker obese (Ob) and lean rats with or without 

piroxicam treatment. (B) Ponceau S staining of membranes containing 50 μg of liver homogenate 

from all four groups of Zucker rats. (C) Bar graphs represents levels of NF-κB and IκB-α protein. 

Densitometric values were corrected for gel-to-gel variability using equal amounts of a common liver 

homogenate as a positive control in each blot. All values are means ± s.e., n=4/dietary group. Bars 

without a common letter (x, y, z) differ significantly, p<0.05, as determined by ANOVA in conjunction 

with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-

Pirox: Piroxicam supplemented Lean. 
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Figure 3.6: Western blot analysis of IKK-β protein expression from liver homogenates of 

Zucker rats. Equal amounts of liver protein (50 μg) were separated by 8% SDS-PAGE gel and 

transferred onto PVDF membranes. Following incubation with primary IKK-β antibody at a final 

dilution of 1:1000 and corresponding HRP-conjugated secondary anti-mouse antibody at a final 

dilution of 1:5000, the blots were developed on X-ray film using ECL Plus substrate. Equal loading of 

each gel was verified by comparison with the immunoblotting of beta-actin. (A) Representative 

western blots of IKK-β and β-actin using 50 μg of liver protein from Zucker obese (Ob) and lean rats 

with or without piroxicam treatment. (B) Ponceau S staining of membranes containing 50 μg of liver 

homogenate from all four groups of Zucker rats. (C) Bar graphs represents levels of IKK-β protein. 

Densitometric values were corrected for gel-to-gel variability using equal amounts of a common liver 

homogenate as a positive control in each blot. All values are means ± s.e., n=4/dietary group. Bars 

without a common letter (x, y, z) differ significantly, p<0.05, as determined by ANOVA in conjunction 

with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-

Pirox: Piroxicam supplemented Lean. 
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Figure 3.7: Western blot analysis of NF-κB and IκB-α protein expressions in nuclear rich 

extracts from liver of Zucker rats. Equal amounts of nuclear rich lysate (50 μg) were separated by 

8% SDS-PAGE gel and transferred onto PVDF membranes. Following incubation with primary 

antibodies at a final dilution of 1:1000 and corresponding HRP-conjugated secondary antibodies at a 

final dilution of 1:5000, the blots were developed on X-ray film using ECL Plus substrate.  The blots 

were first identified by immunoblotting with anti-rabbit polyclonal NF-κB antibody. The same 

membranes were then reprobed with anti-rabbit polyclonal IκB-α antibody. (A) Representative 

western blots of NF-κB, IκB-α and β-actin using 50 μg of nuclear protein from Zucker obese (Ob) 

and lean rats with or without piroxicam treatment. (B) Bar graphs represent levels of NF-κB and IκB-

α protein. Densitometric values were corrected for gel-to-gel variability using equal amounts of a 

common liver homogenate as a positive control in each blot. All values are means ± s.e., n=4/dietary 

group. Bars without a common letter (x, y, z) differ significantly, p<0.05, as determined by ANOVA in 

conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: 

Lean, Ln-Pirox: Piroxicam supplemented Lean. 
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Figure 3.8: Colorimetric measurement of transcriptionally active p65 NF-κB levels in nuclear 

rich extracts of liver from Zucker rats. Nuclear rich lysates were extracted from the livers of 

Zucker obese (Ob) and lean rats with or without piroxicam treatment. Active levels of p65 NF-κB 

were measured by a transcription factor ELISA (Active Motif) by loading nuclear rich extracts, 2 μg 

of nuclear protein per sample, in a 96 well plate coated with 5´-GGGACTTTCC-3´ oligonucleotide 

sequence. Incubation with primary antibody specific to the p65 NF-κB subunit was followed by 

exposure to HRP-conjugated secondary antibody and developing solution. Absorbance was read at 

450 nm along with a reference at 655 nm. Samples were tested with n=4/dietary group and expressed 

as a percentage of positive control (jurkat nuclear rich extract) provided with the kit. This was done to 

minimize inter-assay variation. All values are means ± s.e. Bars without a common letter (x, y, z) 

differ significantly, p<0.05, as determined by ANOVA in conjunction with LSD post-hoc analysis. 

Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented 

Lean. 
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3.4 Lipid Raft Isolation 

3.4.1 Cholesterol Detection in Lipid Raft 

The Amplex Red fluorescent cholesterol assay was used to quantify the level of cholesterol in all 

fractions. As shown in figure 3.9, it was apparent that lipid raft fractions 5, 6, and 7 contained the 

most significant amount of cholesterol compared to other fractions. Fractions 5, 6, and 7 contained 

more than 50% of the total cholesterol (present in all 12 fractions) and only ~ 25% of the total protein 

(figure 3.9A). On the other hand, the fractions 10, 11, and 12 contained more than 50% of the total 

protein and only ~ 20% of the total cholesterol. The lean and lean-piroxicam treated liver show a 

higher level of cholesterol compared to obese and obese-piroxicam , indicating the specificity for the 

lipid raft fraction (figure 3.9B).  

3.4.2 Detection of Lipid Raft Marker Proteins  

All 12 fractions obtained following sucrose gradient centrifugation were analyzed for raft marker 

proteins caveolin-1 and flotillin-1 (figure 3.10) through immunoblotting. As expected, caveolin-1 and 

flotillin-1 were present primarily in the lipid raft fractions 5, 6 and 7, the 6th fraction having the 

highest level. This confirmed that fractions 5, 6 and 7 contained lipid raft. The lipid raft marker 

proteins were expressed as per μg of protein (figure 3.10C). Lipid raft fractions from lean piroxicam 

treated animals contained significantly lower levels of caveolin-1 compared to all the other groups. 

No significant trend was observed between obese and lean or obese and piroxicam treated obese 

groups. Obese piroxicam (figure 3.10C) contained significantly higher levels of flotillin-1 compared 

to the other groups. No apparent trend was observed between obese and lean or obese and piroxicam 

treated obese rats.   
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Figure 3.9: Distribution of percent cholesterol and protein in 12 fractions of liver tissues from 

Zucker obese and lean rats with or without piroxicam treatment. The cholesterol assay was 

performed on all 12 fractions extracted by sucrose density gradient ultracentrifugation from the liver 

of Zucker rats. The assay was carried out according to the manufacturer’s instruction. In brief, 6 μL 

of equal volume was used from each fraction of all four groups in order to detect the cholesterol level. 

The enzymatic assay was based on hydrolyzing cholesteryl esters into cholesterol, then oxidizing 

cholesterol into ketone and H2O2. Thus, in the presence of horseradish peroxidase (HRP)-coupled 

oxidation of H2O2, Amplex Red reagent reacts with H2O2 to produce highly fluorescent resorufin. (A) 

% cholesterol and % protein in the lipid raft fractions of all four groups of Zucker rats. All values are 

means ± s.e., n=4/dietary group. (B) The change in % cholesterol level of fraction 6 of obese, lean, 

piroxicam treated obese and piroxicam treated lean rats. All values are means of n=4 per group. Ob: 

Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented 

Lean.  
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Figure 3.10: Western blot analysis of caveolin-1 and flotillin-1 in lipid raft fractions of Zucker 

rat livers. Lipid rafts from rat livers were isolated after discontinuous sucrose gradient 

ultracentrifugation. After ultracentrifugation, the sucrose gradient was fractionated from top to 

bottom. Equal volumes of 3 μL raft fraction proteins were separated on 12% SDS-PAGE gel and 

immunoblotted with rabbit anti-caveolin-1 and rabbit anti-flotillin-1 raft marker proteins. The primary 

antibodies were added at a final dilution of 1:1000; the secondary antibodies were added at a final 

dilution of 1:5000 and the blots were developed on X-ray film using ECL Plus substrate. (A) 

Representative western blots of caveolin-1 using 3 μL from lipid raft fractions of Zucker obese (Ob) 

and lean rats. (B) Representative western blots of caveolin-1 and flotillin-1 using 3 μL from lipid raft 

fractions of Zucker obese (Ob) and lean rats with or without piroxicam treatment.  (C) Levels of 

caveolin-1 and flotillin-1 in fraction 6 expressed as per μg of protein. All values are means ± s.e., 

n=4/dietary group. Bars without a common letter (x, y) differ significantly, p<0.05, as determined by 

ANOVA in conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented 

Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented Lean. 
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3.5 Protein Expression Patterns in Lipid Raft 

3.5.1 COX-2 Protein Expression 

Lipid raft fractions were analyzed by western blot to determine the level of COX-1 and COX-2 

proteins. COX-1 was undetectable with western blot in lipid raft fraction. Fraction 5, 6 and 7 showed 

the presence of COX-2 (figure 3.11A). When equal volume loaded western blots were quantified, 

fraction 6 and 7 contained almost the same level of COX-2 protein (Appendix; figure C5). The 

variation within the samples of the same group was large and hence the levels of COX-2 were 

calculated on per μg of protein. Fraction 6 was chosen as a representative lipid raft fraction. COX-2 

levels of lipid raft fraction 6 were similar in both obese and lean rats (figure 3.11B). Furthermore, 

piroxicam significantly (p<0.05) increased the level of COX-2 protein only in lean rats.  

3.5.2 TNF-RI and TNF-RII Protein Expressions 

TNF-RI specific antibody detected two closely associated bands (55 & 57 kDa) in the lipid raft 

fractions. It was noted that 55 kDa band (figure 3.12A) was more prominent than the 57 kDa band. 

Quantified levels of equal volume loaded western blots suggests that fraction 6 and 7 contained 

almost the same level of the 55 kDa band of TNF-RI, but the 57 kDa band is specific for lipid raft 

fraction 6 (Appendix; figure C6). Again, the variation within the samples of the same group was large 

and, hence, the levels of TNF-RI were calculated on per μg of protein. Fraction 6 was chosen as a 

representative lipid raft fraction. No significant (p<0.05) differences were found with the TNF-RI 

level (55 kDa) between control obese and lean rats.  Piroxicam treatment decreased the level of TNF-

RI (55 kDa) significantly in the lean rats. However, in the piroxicam treated groups, TNF-RI (57 kDa) 

levels of lipid raft fraction 6 were significantly (p<0.05) lower than corresponding control obese and 

lean rats. Therefore the difference in 55 and 57 kDa bands was noted. 

TNF-RII was also present in the lipid raft fraction 5, 6 and 7 as shown in figure 3.12A. When 

analyzed with equal amounts of protein (1 μg), as shown in figure 3.12B, obese piroxicam treated rats 

contained significantly higher levels of TNF-RII compared to all the other groups. No apparent trends 

were observed between obese and lean or obese and piroxicam treated obese rats.   
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Figure 3.11: Western blot analysis of COX-2 protein expression in lipid raft fractions of Zucker 

rat livers. After isolation of lipid raft through ultracentrifugation, the sucrose gradient was 

fractionated from top to bottom. Equal volumes (6 μL) of raft fraction proteins were loaded to an 8% 

acrylamide gel and transferred to a PVDF membrane. Later, the membrane was probed with a 

primary antibody at a concentration of 1:1000. After washing, the membrane was probed with a 

secondary antibody at 1:5000 concentration. The blots were developed on X-ray film using ECL Plus 

substrate. (A) Representative western blots of COX-2 using 6 μL from lipid raft fractions of Zucker 

obese (Ob) and lean rats with or without piroxicam treatment. (B) Levels of COX-2 in fraction 6 

expressed as per μg of protein. All values are means ± s.e., n=4/dietary group. Bars without a 

common letter (x, y, z) differ significantly, p<0.05, as determined by ANOVA in conjunction with LSD 

post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: 

Piroxicam supplemented Lean. 
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Figure 3.12: Western blot analysis of TNF-RI and TNF-RII protein expressions in lipid raft 

fractions of Zucker rat livers. Equal volumes (6 μL) of lipid raft fractions were subjected to 8% 

SDS-PAGE gel and were identified by immunoblotting first with rabbit anti-TNF-RI polyclonal 

antibody. The same membranes were then reprobed with anti-rabbit TNF-RII polyclonal antibody. 

The primary antibodies were added at a final dilution of 1:1000, the secondary antibodies were added 

at a final dilution of 1:5000, and the blots were developed on X-ray film using ECL Plus substrate. 

(A) Representative western blots of TNF-RI and TNF-RII using 6 μL from lipid raft fractions of 

Zucker obese (Ob) and lean rats with or without piroxicam treatment. (B) Levels of TNF-RI and 

TNF-RII in fraction 6 expressed as per μg of protein. All values are means ± s.e., n=4/dietary group. 

Bars without a common letter (x, y, z) differ significantly, p<0.05, as determined by ANOVA in 

conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: 

Lean, Ln-Pirox: Piroxicam supplemented Lean. 
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Chapter 4 
Discussion 

4.1 Liver Tissue and Lipid Raft 

4.1.1 Liver Tissue 

NSAIDs are commonly noted for their analgesic and anti-inflammatory properties, and are more 

recently being used as anti-cancerous agents, namely, to reduce the incidence and progression of pre-

cancerous lesions within the colon (Jalving et al., 2005; Reddy et al., 1987). The purported anti-

cancerous effects of specific NSAIDs or COX inhibitors such as piroxicam have been implicated as 

treatment options for obese and lean individuals alike. Given the correspondence between disease 

states such as obesity and heart disease or cancer, the pharmacological activities and physiological 

consequences of drugs such as NSAIDs must be studied under co-occuring pathological states. 

Although NSAID administration to obese individuals has been used to evaluate insulin re-sensitizing 

effects (Yuan et al., 2001), to our knowledge, no studies have documented the effects of NSAIDs, 

specifically piroxicam, on susceptibility to hepatotoxicity and hepatopathology. 

In the present study, we assessed whether the COX inhibitor piroxicam could be used safely 

as a cancer preventive agent in an animal model of obesity, a state known to be at higher risk for 

developing colon cancer than its lean counterpart. Obese animals are in a chronic state of 

inflammation and, as such, the use of a COX inhibitor was deemed appropriate. This study also 

investigated TNF-α signaling proteins in both obese and lean rat liver tissue and evaluated 

piroxicam’s affect on this pathway. The main findings of the study pertain to the differences between 

the obese steatotic and lean livers, as well the ability of piroxicam to alter the levels of specific 

proteins. The principle findings of this study are that: 1) obese rats responded to piroxicam more 

adversely than lean rats, elevating whole liver weights and the severity of hepatic steatosis; 2) COX-2 

protein (figure 3.2) levels were significantly lower in the piroxicam treated livers than their control 

counterparts; 3) the level of TNF-RII protein (figure 3.4) was significantly lower in obese rat liver 

tissue compared to lean rat liver tissue, and piroxicam further lowered the receptors abundance in 

obese but not in lean rat liver tissue; 4) IκB-α protein (figure 3.5) abundance was significantly higher 

in the obese compared to lean rat liver tissue, and piroxicam treatment lowered its abundance in obese  
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but not in lean rat liver tissue; 5) IκB-α (figure 3.7) was present in the nuclear rich fraction of hepatic 

tissue, and this nuclear IκB-α was significantly elevated in obese compared to lean rat hepatic tissue; 

6) IKK-β (figure 3.6) levels were higher in obese compared to lean rat livers, and piroxicam further 

increased the level of IKK protein in lean but not in obese rat liver tissue; 7) the nuclear fraction of 

obese rat  livers had 5-6 fold higher levels of NF-κB p65 protein than in the lean liver; and 8) active 

NF-κB (figure 3.8) was higher in obese compared to lean liver nuclei, however, the difference was 

not nearly as extreme as that observed between lean and obese in total nuclear NF-κB protein as 

assessed by western blot.  

Zucker obese rats exhibit hepatic steatosis. This abnormality is attributed to insulin 

resistance, increased levels of TNF alpha, increased lipogenesis and decreased mobilization of 

triacylglycerol from the liver, and possibly, increased uptake and retention of circulating lipids by 

hepatic tissue (Adams and Angulo, 2006; Yang et al., 1997).  Hepatic steatosis could also occur due 

to chemical toxicity or nutritional deficiency of choline and/or methionine (Bykov et al., 2006). In all 

cases, involvement of uncontrolled generation of reactive oxygen species has been suggested. 

Interestingly, Zucker obese rats are in a state of chronic inflammation and are often reported to have 

elevated levels of reactive oxygen species.  

Piroxicam treatment for eight weeks caused a conspicuous increase in macrovesicular lipid 

accumulation and peripheral translocation of hepatocyte nuclei (figure 3.1), as well as an increase in 

total liver weight and triglycerides (table 3.1); aberrations characteristic of steatosis. These 

observations parallel to those made by Bykov et al. (2006), wherein treatment with celecoxib, a 

selective COX-2 inhibitor, enhanced the hepatosteatotic effects induced by ethanol consumption. This 

suggests a possible common protective role for COX-2 against liver pathogenesis. The observed 

piroxicam-induced increase in lipid accumulation, a sign of augmented toxicity, is the result of many 

factors and interactions, some of which are outlined below. 

It was interesting to note that, overall, the proportion of 18:2 (table 3.2) was significantly 

lower in obese rat livers compared to those of lean rats suggesting a higher utilization of 18:2 by 

obese animals since all animals were on the same diet. What is happening with linoleic acid in obese 

rat livers remains an enigma. We have shown previously, that total phopholipid content of lipid is not 

altered in obese rats. One possibility for this is that because the pool of triglycerides is increased 

substantially, 18:2 is sequestered in triglyceride. Moreover, 20:4 n-6 fatty acid was accumulated in a 

significant amount in phospholipid fraction with piroxicam treated obese compared to control obese 
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rats. This increase suggests reduced mobilization of 20:4 for prostaglandin synthesis possibly due to 

reduced COX-1 and COX-2 activity. 

Even though the main objective was to explore TNF-α signaling molecule, a preliminary 

study was conducted to determine if sphingolipid signaling could also be involved. TNF ligand-

receptor binding can activate the sphingo-ceramide pathway leading to the production of ceramide via 

acidic sphingomyelinases present in cell endosomes (Schutze 1995). Ceramide may then induce NF-

κB activation via IκB degradation leading to apoptosis (Yang et al. 1993). In a preliminary study, we 

observed that the neutral and acidic sphingomyelinase activity (Appendix; figure C3) were 

significantly higher in obese compared to lean rats, suggesting that the role of sphingomyelinase 

should be considered in future studies while investigating the role of TNF-α.  

All the proteins discussed here are closely related, either metabolically, or through their 

constituent signaling function. TNF-α, TNF-RI and II, IκB-α, and IKK-β are involved in the 

generation of p65 NF-κB which, in turn, regulates either pro- or anti-apoptotic signaling by inducing 

several genes including TNF-α, IκB-α and IKK-β. One of the genes induced by active NF-κB is 

COX-2. Levels of active NF-κB and COX-2, among several other proteins, are elevated in colonic 

tumors and are implicated in tumor cell survival. Piroxicam lowered the level of COX-2, but not 

COX-1 (figure 3.2), suggesting a specific effect on the synthesis or turnover of this protein. 

Furthermore, a putative mechanism by which piroxicam inhibits colon tumorigenesis may be by 

reducing the COX-2 expression. One could propose that piroxicam may inhibit colon tumorigenesis 

by blocking the COX-2 and NF-κB pathways needed for tumor cell survival (Bykov et al., 2006). 

Despite the obvious importance of disrupting this pathway for restricting tumor growth, it exerts 

highly adverse effects on the already hepato-compromised obese state. 

In the two-hit model described by Day et al. (1998), the inciting event in the progression of 

non-alcoholic fatty liver disease (NAFLD) is directly related to apoptosis, rupture of steatotic 

hepatocytes, and the subsequent release of toxic fatty acids and triglycerides. We speculate that 

piroxicam treatment in this study acts as the ‘second hit’, affecting liver steatosis and cell death.  We 

further speculate that the consequences of the ‘second hit’ are related to piroxicam’s influence on 

TNF signaling, and the production of inflammatory molecules and ROS in hepatic tissue. 

Characteristically decreased IR-β levels (Appendix; figure C2) were observed in Zucker obese rats, 

compared to lean. Interestingly, piroxicam treatment significantly reduced IR levels in obese and lean 

animals alike. This result is inconsistent with previous studies that have shown an insulin re-
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sensitizing effect of NSAID treatment on obese (fa/fa) rats through a reduction of IKK-β levels but 

not through COX-1 or COX-2 levels (Reddy et al., 1987). 

In this study, our findings allude to the possibility that piroxicam is affecting TNF-α mediated 

signalling and, subsequently, the presence and effects of NF-κB in the process. It has been reported 

that obese rats have higher levels of plasma TNF-α (soluble form) than their lean counterparts, but 

obese rats exhibit lower levels of hepatic TNF-α (Raju and Bird, 2006). Our findings are consistent 

with these results as we observed lower levels of the 17 kDa soluble TNF-α protein (figure 3.3) in 

obese compared to lean hepatic tissues. However, the 80 kDa membrane bound TNF-α protein (figure 

3.3) was observed in higher abundance within obese rather than lean hepatic tissue. Nonetheless, 

piroxicam treatment decreased hepatic levels of membrane bound and soluble TNF-α protein in both 

obese and lean animals. The mechanism by which TNF-α forms regulate TNF receptors in steatotic as 

opposed to non-steatotic livers, however, remains to be elucidated.  

Within the cytoplasm, NF-κB is bound by an inhibitory molecule IκB-α, and is inactive. 

Upon receptor signaling, the kinase IKK cleaves the inactivating IκB-α from NF-κB allowing the 

active form of NF-κB to travel to the nucleus and act as a transcription factor (Ashkenazi and Dixit, 

1998). In this study, obese animals were found to have drastically elevated nuclear NF-κB protein 

levels (figure 3.7), possibly reflecting the existence of constant inflammation, characteristic to the 

obese state. In addition, obese piroxicam treated animals had elevated levels of nuclear NF-κB 

protein, as compared to their obese control counterparts. Coupled with the concomitant decrease in 

the repressive IκB-α protein in obese piroxicam treated animals, these results are suggestive of 

elevated NF-κB signaling within the obese-piroxicam state. The observed increase in hepatic NF-κB 

could be due to an increase in expression or alteration of protein turnover rate. The exact role of the 

observed aberrant increase in NF-κB signaling in the hepatic disease state, however, will require 

further investigation. Although it is difficult to directly correlate changes in the levels of specific 

proteins with NF-κB regulation, it is clear that TNF/NF-κB signaling is significantly involved in the 

hepatotoxicity observed in piroxicam treated animals. It is apparent that active NF-κB may be is 

exerting different effects in obese as opposed to lean livers. Based on the pathological state of the 

liver, it is speculated that proapoptotic activity of NF-κB is more dominant in obese than in lean rats. 

It was noted that the obese liver had significantly higher levels of total NF-κB protein in the 

nuclear fraction compared to lean nuclei. Only a moderate increase, however, was observed in 

transcriptionally active NF-κB (figure 3.8) within obese piroxicam treated animals when compared to 

their lean counterparts. These results strongly suggest that of the total NF-κB present in the tissue the 
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relative proportion of active form was significantly higher in the lean liver. The presence of higher 

levels of cytoplasmic IκB-α is consistent with the idea that an elevation in the abundance of this 

protein will interfere in the activation of NF-κB. Unexpectedly, piroxicam decreased the level of this 

protein only in the obese tissue. It is possible that piroxicam reduced the activity of NF-κB via an 

alternate mechanism which in turn resulted in lower expression of genes regulated by NF-κB, one of 

which being the IκB-α gene.  

The presence of IκB-α protein in the nuclear compartment was also unexpected.  It has been 

demonstrated that cytoplasmic  IκB-α could serve as a shuttle system to drive the nuclear NF-κB out 

of the nuclear compartment or to retain it in an inactive bound form, thus compromising its nuclear 

activity (Hayden and Ghosh, 2006). The obese state seems to predispose the cell to increased nuclear 

IκB-α levels and subsequently compromises NF-κB signaling. To our knowledge, this is the first 

demonstration that hepatic nuclear fractions contain IκB-α. Further investigation as to its biological 

significance is needed. Thus, we implicate piroxicam in compromising the pro-survival activity of 

NF-κB, allowing intracellular toxic constituents to be more effective in exerting hepatic toxicity, 

visualized by an augmented steatotic response in obese hepatic tissue. 

The other possibility not investigated in the present study, is the ability of piroxicam to 

increase pro-inflammatory responses mediated by the lipoxygenase (LOX) pathway (Bykov et al., 

2006). The primary pharmacological function of piroxicam, like other NSAIDs, is the inhibition of 

the COX enzyme. A reduction in the functional COX enzyme would shift the equilibrium toward an 

increase in the amount of arachadonic acid (AA) available to the LOX enzyme for processing into 

leukotrienes (LTs). The LOX enzyme functions to catalyze the production of LTs and, in so doing, 

commonly produces reactive oxygen intermediates (ROI) from AA (Heslin et al., 2005; Bonizzi et al., 

1999).  

In addition to increasing its activity, LOX, as any enzyme, exhibits a certain degree of 

saturation. Not all of the available AA will be metabolized into LTs, causing an accompanying 

increase in free AA. Free AA is able to stimulate sphingomyelinase, catalyzing the hydrolysis of 

sphingomeline to ceramide, which subsequently acts as an activating second messenger to many 

apoptotic pathways. Furthermore, it has been shown that AA can affect mitochondrial permeability, 

causing apoptosis through the release of cytochrome C (Bykov et al., 2006; Cao et al., 2000). 

Therefore, the increased LOX activity and increased free AA that could result from piroxicam 

induced COX inactivation represents a possible aberrant source of pro-apoptotic signaling.  
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When we look at the overall changes in protein levels involved in TNF-alpha mediated 

signaling, there are a number of salient observations which deserve special attention. From our study 

it is apparent that the steatotic liver differs from the non-steatotic liver with respect to a low 

abundance of TNF-RII and higher levels of total nuclear NF-κB and nuclear IκB-α. Piroxicam 

treatment lead to a lower level of COX-2 and TNF-RII in the obese rat liver, and higher levels of 

TNF-RII in the lean rat liver. Further studies are needed to explore whether and how several of these 

proteins are involved in integrating signaling that leads to hepatic steatosis and/or resisting any 

adverse effect of piroxicam. 

4.1.2  Lipid Raft 

Liquid-ordered microdomains enriched in cholesterol and sphingolipids form a distinct plasma 

membrane compartment. They have been termed ‘lipid rafts’ based on their ability to float in a 

discontinuous density gradient after lysis in non-ionic detergents (Pike, 2004). The proteins located in 

these microdomains are severely limited in their ability to freely diffuse over the plasma membrane, 

meaning that raft association tends to concentrate specific proteins within plasma membrane 

microdomains, and this could affect protein function (Simons and Toomre, 2000). It is known that the 

functional properties of lipid raft are determined by the levels of caveolins, cholesterol, proteins, 

phopholipids, sphingolipids and the amount and types of fatty acids. In the presence study, we only 

measured the level of cholesterol (figure 3.9) and caveolin-1 (figure 3.10). The cholesterol was lower 

in 5, 6 and 7 fractions in obese and obese-piroxicam rats compared to lean and lean-piroxicam. When 

caveolin-1 was quantified, only lean-piroxicam lowered the level of caveolin-1 compared to other 

groups. In contrast, the flotillin-1 level was increased only in obese-piroxicam. Because of the 

pathological state of the tissue, one would suggest the lowering of cholesterol in 5, 6 and 7 fractions 

was not a favorable effect. Moreover, it is possible that the ratio between caveolin and cholesterol in 

lipid raft fraction is critical.  

Many studies in recent years have indicated that lipid rafts are merged into large membrane 

domains upon sphingomyelinase dependent hydrolysis of sphingomyelin and generation of ceramide 

within rafts (figure 4.1). Sphingomyelinases are characterized by their pH optimum, and an acid, 

neutral, and alkaline sphingomyelinase were described. Clustering of plasma membrane rafts into 

ceramide-enriched platforms serves as an important transmembrane signaling mechanism for cell 

surface receptors. Ceramides have been also implicated in apoptosis, stress signaling cascades as well 

as ion channels (Bollinger et al., 2005). Experimental studies have demonstrated TNF-α signaling via 
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ceramide-rich membrane rafts; acid sphingomyelinase released ceramide is essential for TNF-α 

clustering as well as apoptosis induction. Moreover, raft destruction of surface ceramide prevented 

TNF-α clustering and apoptosis (Grassme et al., 2001). Since lipid rafts are enriched in 

sphingomyelin, the activity of neutral and acidic sphingomyelinase was also measured in the lipid raft 

using the Amplex Red fluorescent assay kit. Moreover, stimulated (addition of sphingomyelin) and 

basal (without addition of external sphingomyelin) levels of neutral and acidic sphingomyelinase 

were investigated (Appendix; figure C8). The basal level of neutral sphingomyelinase was higher in 

obese-piroxicam compared to obese rats, however, an opposite trend was observed with the lean and 

lean-piroxicam groups. Significant stimulation was noted only in the lean group suggesting that 

sphingomyelinase level exceeds the hydrolysable sphingomyelin. If basal sphingomyelinase reflects 

its activity on raft sphingomyelin, then one can say that obese-piroxicam has more sphingomyelin 

than obese whereas lean-piroxicam has significantly lower sphingomyelin compared to lean. The 

basal level of acidic sphingomyelinase was higher in lean compared to obese, obese-piroxicam and 

lean-piroxicam. Upon stimulation, obese-piroxicam showed a significant increase in acidic 

sphingomyelinase levels. However, lean showed hardly any change in level upon stimulation, 

suggesting that lean has overall higher sphingomyelin as a substrate for acidic sphingomyelinase. 

Some of these changes with acidic and neutral sphingomyelinase are worth noting, but it is difficult to 

explain these differences as they pertain to sphingomyelin or ceramide levels or the pathological state 

of the tissue. 

It has been proposed that lipid rafts serve as signaling platforms for antigen receptors such as 

BCR, TCR, and Fcε, bringing them into proximity with activating kinases that are constitutive 

residents of lipid rafts (Dykstra et al., 2003). Recent findings have also determined the roles for lipid 

rafts in TNF-RI signaling. However, discrepancies exist regarding the localization of TNF-RI within 

lipid rafts. For instance, in the human fibrosarcoma cell line HT1080, within two mins of TNF 

stimulation,  TNF-R1 translocates to lipid rafts, where RIP1 (receptor-interacting protein), TRADD 

(TNF receptor-associated death domain), and TRAF2 (TNF receptorassociated factor-2) are recruited 

(Legler et al., 2003). When lipid rafts are disrupted by cholesterol depletion, phosphorylation of IκBα 

in response to TNF is inhibited and apoptosis is induced (Legler et al., 2003). In the myeloid cell line 

U937, TNF-R1 was reported to localize to lipid rafts upon unstimulation of U937 cells. However, 

with the cholesterol depletion of U937 cells, TNF-RI surface expression and consequently TNF-α 

mediated apoptosis was reduced (Ko et al., 1999).  

http://www.sciencedirect.com.proxy.lib.uwaterloo.ca/science?_ob=ArticleURL&_udi=B6WSP-4DKBSRR-3&_coverDate=10%2F31%2F2004&_alid=517222143&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=7052&_sort=d&view=c&_acct=C000051246&_version=1&_urlVersion=0&_userid=1067412&md5=61018e129eb98374d2f8753a0c66f1e0#bib18#bib18
http://www.sciencedirect.com.proxy.lib.uwaterloo.ca/science?_ob=ArticleURL&_udi=B6WSP-4DKBSRR-3&_coverDate=10%2F31%2F2004&_alid=517222143&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=7052&_sort=d&view=c&_acct=C000051246&_version=1&_urlVersion=0&_userid=1067412&md5=61018e129eb98374d2f8753a0c66f1e0#bib18#bib18
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  In vitro studies have shown that lipid rafts also play a crucial role in signal transduction of 

death receptors, such as TNFR1 (Ko et al., 1999; Legler et al., 2003). Whether signals induced by 

TNFR family members in vivo, specifically in the compromised state of liver tissue, also depend on 

these specialized membrane microdomains, has not been analyzed to our knowledge. Our study tried 

to investigate the level of TNF-R1 and TNF-R2, two members of the TNFR superfamily implicated in 

pro- and anti-apoptotic events, in lipid raft fractions of steatotic and non-steatotic livers. It was 

anticipated that, if these proteins are involved in hepatic steatosis, then we will see changes in the 

lipid raft. 

 Lipid raft-containing fractions were confirmed by the enrichment of the cholesterol binding 

protein, caveolin-1, and the dendritic lipid raft marker, flotillin-1 (figure 3.10). We were able to detect 

TNF-RI and TNF-R2 in lipid raft fraction 6 of all four groups of Zucker rats (figure 3.12). Since 

similar levels of TNF-RI were noted in the lipid raft fraction of obese and lean, one can suggest that 

the physiological level of TNF-α may not directly affect the levels of TNF-RI in the lipid raft. 

Piroxicam treatment lowered the level of TNF-RI in both obese and lean rats. This effect suggest that 

either TNF-RI is migrated to other fractions, or that it is turning over in the lipid fraction much more 

rapidly in piroxicam treated rats compared to their controls. The presence of TNF-R2 in the lipid raft 

was consistent in all groups. This is the first time the presence of TNF-R2 is noted in vivo in the intact 

tissue lipid raft fractions. This may be because TNF-RI has received more attention in signal 

transduction than TNF-R2. It is interesting to note that TNF-R2 is higher in obese colonic tumors 

(previous study done in our lab, but unpublished) and also in the obese liver treated with anti-steatotic 

agent, alluding that TNF-R2 is involved in survival signal. However, our results show that TNF-R2 is 

higher in piroxicam obese rats (an inflammed state) in the lipid raft fraction compared to its level in 

intact tissue relative to other groups. It could be that TNF-R2 in lipid raft is less accessible and may 

represent an inactive state. Our results are contradictory to the observations by Lotocki et al (2006). 

They have shown that in the normal cerebral rat cortex, a portion of TNFR1 was present in lipid raft 

microdomains, where it was associated with the adaptor proteins TRADD, TRAF-2, the Ser/Thr 

kinase RIP, TRAF1, and cIAP-1 (cellular inhibitor of apoptosis protein-1), forming a survival 

signaling complex. They went on to show that moderate traumatic brain injury resulted in rapid 

recruitment of TNFR1, but not TNFR2, to lipid rafts and induced alterations in the composition of 

signaling intermediates. However, these findings may be tissue specific. Moreover, in the present 

research, a chronic exposure of liver tissue to piroxicam or TNF-α was carried out for several weeks 

and the changes in lipid raft or in tissue reflected alterations that reached a steady state level.  

http://www.sciencedirect.com.proxy.lib.uwaterloo.ca/science?_ob=ArticleURL&_udi=B6WSP-4DKBSRR-3&_coverDate=10%2F31%2F2004&_alid=517222143&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=7052&_sort=d&view=c&_acct=C000051246&_version=1&_urlVersion=0&_userid=1067412&md5=61018e129eb98374d2f8753a0c66f1e0#bib18#bib18
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 The NSAID piroxicam, a non-selective COX inhibitor, was used as a treatment group in our 

study. Therefore, it was of interest to investigate the presence of COX-1 and COX-2 in the lipid rafts 

of Zucker rat livers. The levels of COX-2 (figure 3.11) were not significantly different between 

obese, obese-piroxicam and the lean groups. Piroxicam treated lean rats showed higher levels of 

COX-2 compared to all other groups. However, COX-1 was undetectable through western blot in the 

lipid raft of Zuker rat livers. In 2001, Liou and coworkers reported that COX-2 was co-localized with 

Cav-1 in human fibroblasts. In addition, it has also been reported that COX-1 was also co-localized 

with Cav-1 and Cav-2 in human embryonic kidney (HEK 293) cells (Cha et al., 2004). In a recent 

study evidence has been presented to confidently argue for COX-2 association with Cav-3 in primary 

cultured rat chondrocytes (Kwak et al., 2006). Therefore, it is suggested that due to co-localization of 

caveolins with COX-1 and COX-2 in caveolae, caveolins may play an important role in regulating the 

function of COX-1 and COX-2. The co-localization experiments in the previous studies used 

immuno-precipitation and confocal microscopic techniques, while in our study, the western blot 

technique with commercially available COX-1 and COX-2 specific antibody was used. Moreover, it 

is important to know that we investigated just the levels of protein and not their activites. The 

presence of COX-2 in lipid raft suggests the movement and migration of the proteins from one 

fraction to another nevertheless could occur and affect its function.  

4.2 General Discussion 

The main objective of this research was to determine whether steatotic livers will exhibit differences 

in the level of TNF-α signaling molecules compared to their non-steatotic counterparts. The 

underlying hypothesis was that, in the obese state, increased plasma TNF-α is responsible for 

inducing liver steatosis, and that NF-κB plays an important role in mitigating TNF-α effects. TNF-α 

induces pro- or anti-apoptotic responses by interacting with its receptor TNF-RI and R2 which, in 

turn, could activate NF-κB. NF-κB, serving as a transcription factor, induces several genes leading to 

a specific biological outcome such as cell death or cell survival. Steatotic livers exhibit elevated 

levels of lipids and hepatocytes show signs of necrosis. In the present research we used piroxicam, a 

COX inhibitor and cancer preventive agent, to determine if this drug could be used safely in obese 

rats known to be at high risk for developing colon cancer. We observed that piroxicam was highly 

toxic and augmented liver steatosis. The assessment of the TNF-α signaling molecule carried out at 

the tissue level as well as in the membrane lipid rafts, known to be gate keeper of signaling events. 

The secondary objective was to determine if the findings from the whole tissue will reflect the 
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findings from the assessment of specific proteins such as TNF-RI and RII and COX-1 and COX-2 in 

lipid rafts. A summary of the key findings follows: 

 The main findings were that piroxicam treatment elevated the level of COX-1 protein only in 

the lean liver, otherwise COX-1 levels were similar in the livers of obese, obese-piroxicam and lean 

livers of Zucker rats. COX-2 levels were similar in obese and lean livers however; piroxicam 

treatment significantly lowered the level of this protein in both obese and lean rat livers. TNF-RII 

showed a trend which was inversely proportional to the pathological state of the tissue. The obese-

piroxicam liver had the lowest level of TNF-RII and the lean liver had the highest. The total NF-κB 

level was higher in the obese and obese-piroxicam groups compared to the lean or lean-piroxicam 

groups. It was interesting to observe that piroxicam treatment lowered the level of NF-κB in obese as 

well as lean livers. IκB-α was higher in obese than in lean livers. IκB-α did not show a distinct change 

which could be attributed to the pathological state of the tissue. 

 The nuclear level of NF-κB by western blot analysis showed the same pattern as noted in the 

whole tissue homogenate. However, the difference in the level was marked. The obese nuclei 

contained two to three fold higher levels of NF-κB protein than in the lean liver nuclei. In the case of 

IκB-α, the level was significantly higher in obese liver tissues and nuclei than their lean counterparts. 

NF-κB activity in the nuclear fraction was higher in the obese livers than in the lean livers, but the 

difference between the obese and lean groups was not as marked as was noted for the level of NF-κB 

assessed by western blot. This suggested that the proportion of active NF-κB present in the nuclear 

fraction was much higher in the lean than in the obese nuclei as discussed previously. 

 Lipid raft was extracted successfully from obese and lean livers and fractions 5, 6 and 7 were 

identified as lipid raft enriched fractions due to the concentration of lipid raft specific proteins, 

caveolin-1 and flotillin-1, and higher levels of cholesterol compared to other fractions. These findings 

corroborated the findings of previous studies. The novel finding our research generated, was the fact 

that, total caveolin as well as flotillin levels was significantly higher in the liver lipid rafts of the 

obese-piroxicam than that of the other groups. This is the group also exhibited higher steatosis. 

Piroxicam treatment significantly decreased the level of caveolin-1 in the lean liver and significantly 

increased the level of flotillin-1 in the obese liver. COX-1 was not detectable, however, the level of 

COX-2 in the lipid raft was opposite to the level noted in the whole tissue homogenate. There was an 

approximate two fold increase in the level of COX-2 in the lean-piroxicam group than in the lean or 

obese groups. Again TNF-RII levels were opposite to the levels noted in the whole tissue 

homogenate. TNF-RII was highest in the obese-piroxicam lipid raft and lowest in the lean-piroxicam 
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lipid raft. These findings demonstrate that TNF-α signaling molecules are altered in obese steatotic 

livers than in lean non-steatotic livers. TNF-RII, COX-2 and NF-κB proteins stand out as the 

molecules profoundly affected by the pathological state of the tissue and piroxicam treatment. The 

reason for an increased level of TNF-RII in the lipid raft compared to the lowest level in the same 

group at the whole tissue level, suggest that movement of this protein, from other sites to lipid raft 

occurred. Whether this movement is a protective response or lipid raft is sequestering this protein 

making the tissue more vulnerable to damage, remains to be investigated. A similar reason could be 

provided for the abundance of COX-2 in the lean lipid raft. Why these proteins are localized in lipid 

raft fractions is puzzling. 

 When we look at the over all changes in the protein level of hepatic tissue or in lipid raft, it is 

reasonable to suggest that TNF-RII plays an important role in the pathogenicity of steatosis. Possibly, 

this receptor is important in protecting the tissue, as suggested by others (Fontaine et al. 2002), and its 

lower level in the obese-piroxicam group renders the tissue more susceptible to piroxicam toxicity. 

The findings on the levels of COX-1 and COX-2 suggest that piroxicam affected the level of COX-2 

but not COX-1, suggesting that piroxicam is affecting the level of this protein by  inhibiting the 

expression of the COX-2 gene which, in turn, may be due to inhibition of NF-κB. Piroxicam may also 

be inhibiting NF-κB. COX-2 expression is associated with cell survival. It is interesting to note that 

the COX-1 level went up in piroxicam treated lean livers but not in obese livers suggesting that 

increased COX-1 levels in lean livers is possibly compensating for the reduced COX-2 which did not 

occur in the obese liver. COX metabolites are reported to be cytoprotective (Bykov et al., 2006). Even 

though the level of transcriptionally active NF-κB is higher in the obese groups, it may not be 

sufficient to counteract the toxic effect of piroxicam or proinflammatory molecules. One additional 

observation worth noting is the presence of IκB-α in the nuclear compartment of obese livers and a 

higher level in the nuclei and whole tissue. This is the first report of this type. However, it has been 

suggested that IκB-α could serve as a transport protein for NF-κB to the nucleus or from the nucleus 

to cytoplasm. It is also possible that higher levels of IκB-α in the nuclear compartment affect the NF-

κB’s transcriptional activity. It should be noted that NF-κB transcribes genes for TNF-α, TNF 

receptors, COX-2, IκB-α and IKK-β along with several anti- and proapoptotic genes. 

 The network of signaling involved in mitigating TNF- α and/or NF-κB mediated response is 

complex, but the straight forward mechanism by NF-κB is depicted in figure 4.1. This research has 

unraveled selected phenomena associated with the pathological state of steatosis. Whether the 

changes are a cause or an effect of the pathological state remains to be seen. Nevertheless, this 
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research has emphasized that compartmentalization of specific proteins in the cells and tissues occur, 

and further analysis of specific proteins and their activities at the sub-cellular level may provide a 

better understanding of their involvement in eliciting biological responses. 

4.3 Conclusion 

In conclusion, we demonstrate that TNF-α signaling is altered in steatotic liver and anlaysis of lipid 

raft provide an insight into the activity and movement of proteins in causation and prevention of 

pathological states.  

4.4 Future Directions 

For future studies, it would be important to evaluate the role of NSAID in affecting NF-κB activity. 

In particular, gene and protein expressions of certain proapoptotic molecules like caspases, p53, Fas 

and antiapoptotic molecules like Bcl-2, Bcl-XL, FLIP, IAP, TRAF1/2 known to be regulated by NF-

κB transcription must be evaluated in the pathological state of obesity. It would be important to 

investigate how the function and localization of these proteins are affected by exogenous, pro- and 

anti-growth stimuli in the whole tissue. 
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Figure 4.1: Possible mechanisms for apoptosis and survival mediated by NF-κB family 

members. NF-κB induces apoptosis by trancriptionally upregulating pro-apoptotic targets while 

repressing anti-apoptotic targets or vice-versa depending on equilibrium.  This scheme presents the 

view that NF-κB activation could lead to at least a main outcome at the cellular level. The balance 

between the survival and apoptotic pathways is crucial. Piroxicam, or the production of very high 

levels of ROS or pro-inflammatory molecules, may activate NF-κB; however the transcriptional 

activity may produce proteins which could be counterproductive. Piroxicam in the obese animals 

appear to distort the balance in favour of enhanced toxicity possibly by inhibiting the survival 

pathway and this could be the mode of action underlying cancer preventive effects of piroxicam.   
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Appendix A 
Abbreviations 

ACL    ATP citrate lyase 

ALD    alcoholic liver disease 

ANOVA   analysis of variance 

ASMASE   acidic sphingomyelinase 

CAV    caveolae 

Cav-1    caveolin-1 

Cav-2    caveolin-2 

Cav-3    caveolin-3 

COX-1    cyclooxygenase-1 

COX-2    cyclooxygenase-2 

CPT-1    carnitine palmitoyl transferase-1 

ChREBP   carbohydrate response element binding protein 

DD    death domain 

DED    death effector domain 

EGF    epidermal growth factor 

ELISA    enzyme linked immunosorbent assay 

FADD    Fas associated death domain 

FAS    fatty acid synthase 

FasL    Fas ligand 

FFA    free fatty acid    

FLIPL    FLICE inhibitory protein 

Flot-1    flotillin-1 

GPI    glycosyl phosphatidylinositol 

GK    Goto-Kakizaki 

H&E    hematoxylin and eosin 

HRP    horseradish peroxidase 

HSL    hormone sensitive lipase 

IAP    inhibitor of apoptosis proteins 

IFN    interferon 
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IGF-1    insulin like growth factor-1  

IGF-IRα   insulin like growth factor-I-receptor-α 

IκB    inhibitor of NF-κB 

IKK    IκB kinase 

iNOS    inducible nitric oxide synthase 

IR    insulin receptor 

IRS    insulin receptor substrate 

JNK    c-Jun amino-terminal kinase 

LCE    long-chain fatty acyl elongase 

L-PK    liver-type pyruvate kinase 

MAPK    mitogen activated protein kinase 

MW    Molecular weight marker 

NAFL    nonalcoholic fatty liver 

NAFLD   nonalcoholic fatty liver disease 

NASH    nonalcoholic steatohepatitis 

NF-κB    nuclear transcription factor-κB 

NSAID    Nonsteroidal Anti-Inflammatory Drug 

ODG    η-octyl-β-D-glucopyranoside 

OLETF    Otsuka Long-Evans Tokushima Fatty 

PARP    poly (ADP ribose) polymerase 

PDGF    platelet-derived growth factor 

PDK1    phosphoinositide-dependant kinase 1 

PI3K    phosphatidylinositol-3-kinase 

PKC    protein kinase C 

RIP    receptor interacting protein 

ROS    reactive oxygen species 

SDS-PAGE   Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SH2    src-homology 2 

SM    sphingomyelin 

S1P    sphingosine-1-phosphate 

SREBP-1c   sterol regulatory element binding protein 1c 

TG    triglyceride 
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TNF-α    tumor necrosis factor-α 

TNFR1    tumor necrosis factor receptor 1 

TNFR2    tumor necrosis factor receptor 2 

TRADD   TNF Receptor I associated death domain 

TRAF    TNF Receptor associated factor 

TRAIL    TNF-related apoptosis-inducing ligand 

TLC    thin layer chromatography 

Ob    Zucker obese rats 

Ob-Pirox   Zucker obese rats supplemented with piroxicam 

Ln                Zucker lean rats 

Ln-Pirox   Zucker lean rats supplemented with piroxicam 
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Appendix B 
Tables 

Table B 1: Percent fatty acid composition of total phospholipids in livera 

 

 Ob Ob-Pirox Ln Ln-Pirox 

     

C14:0 0.49 ± 0.01x 0.24 ± 0.01y 0.15 ± 0.01z 0.27 ± 0.00y 

C16:0 20.47 ± 0.73x 16.43 ± 0.69y 13.44 ± 0.42z 17.08 ± 0.90y 

C16:1 n-7 3.11 ± 0.19x 1.57 ± 0.05y 0.26 ± 0.02z 0.50 ± 0.01z 

C18:0 22.55 ± 0.48x 28.57 ± 0.71y 32.69 ± 0.71z 26.81 ± 1.52y 

C18:1 n-9 13.92 ± 0.75x 5.98 ± 0.34y 2.16 ± 0.12z 6.41 ± 0.26y 

C18:1 n-7 2.46 ± 0.07x 2.54 ± 0.09x 1.53 ± 0.06y 1.51 ± 0.06y 

C18:2 n-6 4.60 ± 0.25x 3.68 ± 0.17x 7.90 ± 0.25y 11.31 ± 0.64z 

C18:3 n-6 0.26 ± 0.02x 0.18 ± 0.01xy 0.15 ± 0.02y 0.47 ± 0.05z 

C18:3 n-3 0.01 ± 0.00x 0.00 ± 0.00y 0.01 ± 0.00xy 0.05 ± 0.01z 

C20:2 n-6 0.12 ± 0.00x 0.17 ± 0.03x 0.36 ± 0.02y 0.18 ± 0.03x 

C20:3 n-6 0.34 ± 0.03x 0.40 ± 0.01y 0.01 ± 0.01z 0.00 ± 0.00z 

C20:4 n-6 20.60 ± 0.67x 28.86 ± 0.39y 25.71 ± 0.21z 22.43 ± 0.55w 

C22:4 n-6 0.68 ± 0.03x 0.83 ± 0.03xy 0.61 ± 0.02xz 0.81 ± 0.14x 

C22:5 n-6 2.64 ± 0.17x 3.06 ± 0.25xz 4.88 ± 0.36y 3.69 ± 0.25z 

C22:5 n-3 0.30 ± 0.02x 0.27 ± 0.03x 0.13 ± 0.01y 0.26 ± 0.04x 

C22:6 n-3 4.22 ± 0.05x 3.79 ± 0.29xz 5.99 ± 0.27y 4.55 ± 0.19xw 

     

 
aAll values are means ± s.e., n=4/dietary group. Values in a row without a common letter (x,y,z) differ 

significantly, P< 0.05, as determined by ANOVA in conjunction with LSD post-hoc analysis. Ob: 

Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented 

Lean.  

 



 

 88 

 

 

Table B 2: Percent fatty acid composition of total triglycerides in livera 

 

 Ob Ob-Pirox Ln Ln-Pirox 

     

C14:0 1.32 ± 0.06x 1.46 ± 0.03x 0.97 ± 0.13y 0.86 ± 0.07y 

C16:0 34.97 ± 0.32x 33.11 ± 0.83x 35.59 ± 1.31x 35.00 ± 1.23x 

C16:1 n-7 7.64 ± 0.82x 8.49 ± 0.33x 1.92 ± 0.36y 1.69 ± 0.13y 

C18:0 2.92 ± 0.23x 3.17 ± 0.21x 5.36 ± 0.34y 3.27 ± 0.42x 

C18:1 n-9 34.93 ± 1.13x 38.20 ± 1.29x 23.57 ± 2.15y 27.26 ± 0.84y 

C18:1 n-7 3.59 ± 0.21x 4.14 ± 0.11z 1.70 ± 0.13y 1.94 ± 0.05y 

C18:2 n-6 4.31 ± 0.20x 3.65 ± 0.34x 16.00 ± 1.69y 22.33 ± 2.20z 

C18:3 n-6 0.23 ± 0.02x 0.25 ± 0.03x 0.23 ± 0.03x 0.75 ± 0.07z 

C18:3 n-3 0.03 ± 0.00x 0.02 ± 0.00x 0.09 ± 0.02y 0.12 ± 0.03y 

C20:2 n-6 0.04 ± 0.00x 0.06 ± 0.00x 0.11 ± 0.03x 0.11 ± 0.05x 

C20:3 n-6 0.02 ± 0.00x 0.02 ± 0.00x 0.12 ± 0.01x 0.13 ± 0.08x 

C20:4 n-6 0.28 ± 0.02x 0.40 ± 0.07y 1.06 ± 0.17z 1.72 ± 0.18w 

C22:4 n-6 0.10 ± 0.00x 0.03 ± 0.02x 0.32 ± 0.07xy 0.42 ± 0.20y 

C22:5 n-6 4.43 ± 0.44x 2.36 ± 0.09y 5.36 ± 1.19x 1.39 ± 0.27y 

C22:5 n-3 0.02 ± 0.00x 0.00 ± 0.00x 0.03 ± 0.01x 0.03 ± 0.02x 

C22:6 n-3 0.04 ± 0.00x 0.04 ± 0.01x 0.07 ± 0.01x 0.07 ± 0.04x 

     

 
aAll values are means ± s.e., n=4/dietary group. Values in a row without a common letter (x,y,z) differ 

significantly, P< 0.05, as determined by ANOVA in conjunction with LSD post-hoc analysis. Ob: 

Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented 

Lean. 
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Table B 3: Fatty acid concentration (mg/gm) of total triglycerides in liver 

 

 Ob Ob-Pirox Ln Ln-Pirox 

     

C14:0 2.57 3.50 0.10 0.29 

C16:0 68.14 79.73 3.49 11.93 

C16:1 n-7 15.01 20.52 0.21 0.57 

C18:0 5.67 7.59 0.53 1.08 

C18:1 n-9 68.30 91.63 2.44 9.37 

C18:1 n-7 7.06 9.96 0.17 0.67 

C18:2 n-6 8.42 8.86 1.60 7.87 

C18:3 n-6 0.44 0.60 0.02 0.26 

C18:3 n-3 0.05 0.04 0.01 0.04 

C20:2 n-6 0.08 0.13 0.01 0.04 

C20:3 n-6 0.05 0.05 0.01 0.05 

C20:4 n-6 0.54 0.98 0.09 0.60 

C22:4 n-6 0.20 0.17 0.03 0.16 

C22:5 n-6 8.48 5.65 0.45 0.43 

C22:5 n-3 0.03 0.01 0.02 0.00 

C22:6 n-3 0.07 0.06 0.01 0.04 
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Appendix C 
Figures 

Figure C 1: Coomassie stain of 10% gel showing equal loading and adequate separation of 

protein. 

 

   

                        
 

 

 

MW

MW
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Figure C 2: Western blot analysis of IR-β protein expression from liver homogenates of Zucker 

rats. Equal amounts of 50 μg of liver proteins were separated by 8% SDS-PAGE gel and transferred 

onto PVDF membranes. Following incubation with primary antibodies at a final dilution of 1:1000 

and corresponding HRP-conjugated secondary antibodies at a final dilution of 1:5000, the blots were 

developed on X-ray film using ECL Plus substrate.  (A) Representative western blots of IKK-β, IR-β 

and β-actin using 50 μg of liver proteins of Zucker obese (Ob) and lean rats with or without 

piroxicam treatment. (B) Bar graphs representing quantified levels of IKK-β and IR-β proteins after 

the densitometric values of equal amount loaded two western blots was corrected for gel-to-gel 

variability using equal amount of liver homogenate as a positive control in each blot. All values are 

means ± s.e., n=4/dietary group. Bars without a common letter (x, y, z) differ significantly, p<0.05, as 

determined by ANOVA in conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: Piroxicam 

supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented Lean. 
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Figure C 3: Detection of sphingomyelinase in the liver homogenates of Zucker rats using the 

Amplex Red reagent-based assay. The sphingomyelinase assay was performed at pH 7.4 and pH 5.0 

to determine the neutral and acidic sphingomyelinase activity, respectively. The assay was carried out 

by following the continuous sphingomyelinase assay protocol for neutral and two-step assay protocol 

for acidic according to the manufacturer’s instruction. Briefly, 50 μg of equal amount of liver protein 

was used in order to detect the sphingomyelinase activity. Moreover, the stimulated (with 

sphingomyelin) as well as basal (without sphingomyelin) level of neutral and acidic 

sphingomyelinase was measured. The assay was based on the enzymatic hydrolysis of sphingomyelin 

to ceramide and phosphorylcholine, then hydrolyzing phosphorylcholine to choline and finally 

oxidizing choline to betaine and H2O2. Thus, H2O2 in the presence of horseradish peroxidase reacts 

with the Amplex Red reagent to generate highly fluorescent resorufin. The bar graph represents the 

activity of neutral and acidic sphingomyelinase with or without the addition of sphingomyelin 

measured in the liver homogenates of obese, lean, piroxicam treated obese and piroxicam treated lean 

rats. All values are means ± s.e., n=4/dietary group. Bars without a common letter (x, y, z) or (a, b, c) 

differ significantly, p<0.05, as determined by ANOVA in conjunction with LSD post-hoc analysis. 

Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented 

Lean.  
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Figure C 4: Western blot picture of caveolin-1 in lipid raft fractions of Zucker rat livers. Lipid 

rafts from rat livers were isolated after discontinuous sucrose gradient ultracentrifugation. After 

ultracentrifugation, the sucrose gradient was fractionated from top to bottom. Equal volumes of 3 μL 

raft fraction proteins were separated on 12% SDS-PAGE gel and immunoblotted with rabbit anti-

caveolin-1 and rabbit anti-flotillin-1 raft marker proteins. The primary antibodies were added at a 

final dilution of 1:1000; the secondary antibodies were added at a final dilution of 1:5000 and the 

blots were developed on X-ray film using ECL Plus substrate. Western blot of caveolin-1 from all 

four trials using 3 μL from lipid raft fractions 5, 6, 7 of Zucker obese (Ob) and lean rats with or 

without piroxicam treatment.  Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-

Pirox: Piroxicam supplemented Lean. 
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Figure C 5: Quantified levels of caveolin-1 and flotillin-1 from lipid raft fractions of Zucker rat 

livers. Bar graphs representing (A) the average densitometric values of fractions 5, 6, 7 and (B) the 

summation of fractions 5, 6, 7 from four independent experiments using 3 μL from lipid raft fractions 

of Zucker obese (Ob) and lean rats with or without piroxicam treatment. The gel-to-gel variability 

between four different blots was corrected by using equal amounts of liver homogenate as a positive 

control in each blot. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: 

Piroxicam supplemented Lean 
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Figure C 6: Quantified levels of COX-2 from lipid raft fractions of Zucker rat livers. Bar graphs 

representing (A) the average densitometric values of fractions 5, 6, 7 and (B) the summation of 

fractions 5, 6, 7 from four independent experiments using 6 μL from lipid raft fractions of Zucker 

obese (Ob) and lean rats with or without piroxicam treatment. The gel-to-gel variability between the 

four different blots was corrected by using equal amounts of liver homogenate as a positive control in 

each blot. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam 

supplemented Lean 
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Figure C 7: Quantified levels of TNF-RI and TNF-RII from lipid raft fractions of Zucker rat 

livers. Bar graphs representing (A) the average densitometric values of fractions 5, 6, 7 and (B) the 

summation of fractions 5, 6, 7 from four independent experiments using 6 μL from lipid raft fractions 

of Zucker obese (Ob) and lean rats with or without piroxicam treatment. The gel-to-gel variability 

between the four different blots was corrected by using equal amounts of liver homogenate as a 

positive control in each blot. Ob: Obese, Ob-Pirox: Piroxicam supplemented Obese, Ln: Lean, Ln-

Pirox: Piroxicam supplemented Lean 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TNF-RI fraction 5,6,7 (55 kDa)

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox
0

5000

10000

15000

20000

25000

30000

35000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-R1 fraction 5,6,7 (57 kDa

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-RII fraction 5,6,7 (75 kDa)

TNF-RI fraction 5,6,7 (55 kDa)

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox
0

5000

10000

15000

20000

25000

30000

35000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-R1 fraction 5,6,7 (57 kDaTNF-RI fraction 5,6,7 (55 kDa)

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-RI fraction 5,6,7 (55 kDa)

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox
0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-PiroxOb Ob-Pirox Ln Ln-Pirox
0

5000

10000

15000

20000

25000

30000

35000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-R1 fraction 5,6,7 (57 kDa

0

5000

10000

15000

20000

25000

30000

35000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox
0

5000

10000

15000

20000

25000

30000

35000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

0

5000

10000

15000

20000

25000

30000

35000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-PiroxOb Ob-Pirox Ln Ln-Pirox

TNF-R1 fraction 5,6,7 (57 kDa

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-RII fraction 5,6,7 (75 kDa)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-PiroxOb Ob-Pirox Ln Ln-Pirox

TNF-RII fraction 5,6,7 (75 kDa)

 

A 

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-RI summation of fraction 5,6,7 (57 kDa)

TNF-RI summation of fraction 5,6,7 (55 kDa)

94000

96000

98000

100000

102000

104000

106000

108000

110000

112000

114000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

0

5000

10000

15000

20000

25000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

TNF-RII summation of fraction 5,6,7 (75 kDa)

Ob Ob-Pirox Ln Ln-Pirox

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-RI summation of fraction 5,6,7 (57 kDa)

0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox
0

10000

20000

30000

40000

50000

60000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-RI summation of fraction 5,6,7 (57 kDa)

TNF-RI summation of fraction 5,6,7 (55 kDa)

94000

96000

98000

100000

102000

104000

106000

108000

110000

112000

114000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

TNF-RI summation of fraction 5,6,7 (55 kDa)

94000

96000

98000

100000

102000

104000

106000

108000

110000

112000

114000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox
94000

96000

98000

100000

102000

104000

106000

108000

110000

112000

114000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

Ob Ob-Pirox Ln Ln-Pirox

0

5000

10000

15000

20000

25000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

TNF-RII summation of fraction 5,6,7 (75 kDa)

Ob Ob-Pirox Ln Ln-Pirox
0

5000

10000

15000

20000

25000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

TNF-RII summation of fraction 5,6,7 (75 kDa)

0

5000

10000

15000

20000

25000

1

Pi
xe

ls
 (a

rb
itr

ar
y 

un
its

)

TNF-RII summation of fraction 5,6,7 (75 kDa)

Ob Ob-Pirox Ln Ln-Pirox

 

B 



 103 

Figure C 8: Detection of sphingomyelinase in the lipid raft fractions using the Amplex Red 

reagent-based assay. The sphingomyelinase assay was performed at pH 7.4 and pH 5.0 to determine 

the neutral and acidic sphingomyelinase activity, respectively, on lipid raft fractions extracted by 

sucrose density gradient ultracentrifugation from the liver of Zucker rats. The assay was carried out 

by following the continuous sphingomyelinase assay protocol for neutral and two-step assay protocol 

for acidic according to the manufacturer’s instruction. In short, 20 μL of equal volume was used from 

each fraction of all four groups in order to detect the activity of sphingomyelinase. Moreover, the 

stimulated (with sphingomyelin) as well as basal (without sphingomyelin) level of neutral and acidic 

sphingomyelinase was measured. The assay was based on the enzymatic hydrolysis of sphingomyelin 

to ceramide and phosphorylcholine, then hydrolyzing phosphorylcholine to choline and finally 

oxidizing choline to betaine and H2O2. Thus, H2O2 in the presence of horseradish peroxidase reacts 

with the Amplex Red reagent to generate highly fluorescent resorufin. (A) Quantified levels of 

stimulated and basal levels of neutral sphingomyelinase in fraction 6 expressed on per μg of protein is 

presented in this graph. (B) Quantified levels of stimulated and basal levels of acidic 

sphingomyelinase in fraction 6 expressed on per μg of protein is presented in this graph. All values 

are means ± s.e., n=4/dietary group. Bars without a common letter (x, y, z) or (a, b, c) differ significantly, 

p<0.05, as determined by ANOVA in conjunction with LSD post-hoc analysis. Ob: Obese, Ob-Pirox: 

Piroxicam supplemented Obese, Ln: Lean, Ln-Pirox: Piroxicam supplemented lean. 
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