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Abstract  

Engineered structures are designed to resist all expected loadings without failure. However, structural 

failures do occasionally occur due to inadequate design and construction, especially for extreme and 

abnormal loads. This thesis concerns the progressive collapse of structures due to abnormal loading 

events, and develops a method of advanced analysis for predicting the progressive collapse behaviour 

of building structures in the plastic limit state.  

A new procedure for progressive-failure analysis is developed that computes structural responses 

accounting for geometric/material nonlinearities and axial/flexural/shear deformations. The nonlinear 

behaviour of materials is discussed in detail. Combined-stress failure states and stiffness degradation 

models are proposed to simulate plastic deformation of structural members. Elliptic force-

deformation relationships are employed to model the nonlinear material behaviour of members, and 

corresponding model parameters are determined from published experimental data.  

Having the proposed nonlinear model, a generic member stiffness matrix is derived taking into 

account elastic-plastic bending, shearing and axial deformations. A modified moment distribution 

method is employed to obtain the stiffness coefficients. A computer-based incremental-load nonlinear 

analysis procedure is developed that progressively updates member stiffness using reduction factors 

that simulate degraded stiffness behaviour. Studies are conducted to demonstrate the effectiveness of 

the proposed method in predicting the progressive failure of structures under abnormal loading. 

A general model of a compound element is proposed to consider the influence of semirigid 

connections on the progressive failure of steel frameworks. The stiffness degradation of semirigid 

connections is modeled by a moment-rotation relationship with four parameters. The stiffness 

degradation of a compound element resulting from the combined influence of member plasticity and 

nonlinear connection behaviour is modeled by a moment-rotation relationship with three parameters. 

The results from the proposed analysis method involving semirigid connection behaviour are 

compared with the results of other methods. 

The proposed progressive-failure analysis method is threat-independent, in the sense that it is 

initially assumed that some type of short-duration abnormal loading has caused local damage 

represented by the removal of one (or more) critical member(s). The degree of damage to connections 

due to member-end disengagement is accounted for by a so-called health index factor. Three types of 

localized damage modes are investigated to identify different damage scenarios for the structure. 

Account can be taken of the connection damage that occurs when members disengage from the 
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structure. Account is taken of any debris loading that occurs when disengaged structural components 

fall onto lower parts of the structure. The associated dynamic effect is taken into account for the 

quasi-static analysis by utilizing an impact amplification factor. Any progressive collapse occurring 

thereafter involves a series of failure events associated with topological changes.  

The progressive-failure analysis procedure is based on the alternate-load-path method suggested in 

the design and analysis guidelines of the General Services of Administration (GSA, 2003) and the 

Department of Defense (DoD, 2005). The residual load carrying capacity of the damaged framework 

is analyzed by incrementally applying prevailing long-term loads and impact debris loads. The 

deterioration of structural strength is progressively traced to the state at which either global stability is 

reached or progressive collapse to ground level occurs for part or all of the structure. The analysis 

procedure is extensively illustrated for several planar steel moment frames, including rigid and 

semirigid frames designed with and without consideration of seismic loading. The results obtained 

demonstrate that the proposed method is potentially an effective tool for the analysis of steel building 

structures under normal and abnormal loads.  

Finally, with a view to improve modeling, the failure of a member cross-section under combined 

bending moment, shearing force and axial force is modeled by an Euler-Lagrange energy functional 

defining the three-dimensional stress distribution at failure. A corresponding combined-stress failure 

surface is developed for bi-symmetrical cross-sections, and a related model is proposed to simulate 

stiffness degradation. The interactive influence of bending moment, shear force and axial force is 

investigated for rectangular and W-shape cross-sections, and the results are compared with test results 

to demonstrate the significance of strain hardening and the contribution of the flange to shear 

strength. In future extensions of the research work, it is envisioned that the 3-dimensional M-V-P 

failure criterion will replace the 2-dimensional M-V and M-P failure criteria employed herein for 

progressive-failure analysis.  
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J Initially specified incremental load factor for the Jth stage 

∆λi The ith increment load factor  

∆λJ Total increment load factor of the Jth stage 

∆λJi The ith increment load factor within the Jth stage 

λJ Total load factor at the end of the Jth stage 

µ Shape parameter of moment-axial force interaction locus 

µej, µsj Distribution factors in modified Hardy Cross method 

ν Poisson’s ratio 



  xix

Πi, Πe Internal (strain) energy, external energy/work 

θ Rotation at member end, or an angle 

θc Rotational angle of semirigid connection 

θj Rotational angle at member end j 

θM Flexural-failure domain due to M+P interaction 

θP Axial-failure domain due to M+P interaction 

θMP Combined flexural-axial failure domain due to M+P interaction 

θu Ultimate rotation of connections 

Θ Angle used to determine failure domain due to M+V interaction 

ΘM Flexural-failure domain due to M+V interaction 

θV Shear-failure domain due to M+V interaction 

θMV Combined flexural-shear failure domain due to M+V interaction 

ϑ Angle used to indicate loading path 

ρ Nondimensional size parameter 

ρe, ρs Ratio P/Pe, axial-shear influence factor 

σ Normal stress 

σr Residual normal stress 

σry Initial-yield normal stress accounting for residual stress 

σy Specified yield stress 

σu Ultimate stress 

τ Shear stress 

τy, τp Initial yield and full yield shear stresses 

τyr Initial-yield shear stress accounting for residual stress 

Ω Stiffness coefficient denominator 

ξ Exponent 

ψ Interactive stiffness parameter 

ζ Ratio of normal strain to shear strain 

ℵ An arbitrary normal stress distribution 
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Chapter 1 
Introduction 

For some time now, building structures have been designed to resist normal loads such as those due to 

self-weight, occupancy and climatic or seismic effects. However, since the 1968 chain-reaction 

failure of the Ronan Point Apartment Block in London, UK, triggered by a gas explosion, abnormal 

loading and progressive collapse have become increasingly recognized as important phenomena to be 

accounted for in engineering design practice worldwide. Indeed, the complete structural collapse of 

the twin towers of the World Trade Centre (WTC) in New York City on September 11, 2001, has 

significantly increased the concern for these phenomena. Motivated by such abnormal loading events, 

this research addresses the topic of progressive-failure analysis of building structures. 

1.1 Project Failure  

In the structural engineering community, engineers apply their knowledge to design and construct 

buildings and infrastructure to meet the requirements of our society. Structures are designed to resist 

normal loads such as those due to self-weight, occupancy, wind, earthquake and other loading 

scenarios stipulated in building codes (e.g., ASCE, 2002; NRCC, 1995). In principle, any failure must 

be precluded by the structural design. Sometimes, however, failure does occur in the process of 

construction and ongoing operations due to unanticipated factors. The definition of failure is difficult 

to precisely express because of the many different types and severity of damage that can occur in 

structural systems. It might be appropriate to employ the following definition by Leonards (1982): 

failure is an unacceptable difference between expected and observed performance, which is 

suggested by the Technical Council on Forensic Engineering of the American Society of Civil 

Engineers. This thesis focuses on catastrophic structural failure, including partial and complete 

structural collapse. 

1.1.1 Foreseen Project Failure  

Foreseen structural failure may be avoidable because the causes are known. Such failure can be 

eliminated in the process of design, as well as during construction or operation, by preventing 

mistakes. To achieve this goal, professionals in different specialized disciplines must learn from their 

mistakes, and those of others. Fortunately, practitioners in many countries are strictly governed by 

laws to protect the public’s welfare and safety. In Canada, for example, the practice of professional 

engineering is governed by local Professional Engineer Acts and other by-laws.  
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Flawed designs have contributed substantially to the failure of many structures. Avoidable 

problems include inappropriate site selection, misuse of structural systems, incompetence in selecting 

materials, ignorance of a load or a combination of loads, inaccurate analyses and computations, and 

unclear communication of the design and construction intent (Feld & Carper, 1996). For instance, the 

parking roof deck of a Save-On-Food store in Burnaby, British Columbia, Canada, on the opening 

day, April 23, 1988, partially fell into the store along with 20 cars, as illustrated in Figure 1.1. The 

collapse was primarily caused by design deficiencies, where the self-weight of the joists and beams 

supporting the roof were not accounted for, and excessive unbraced length of the beams over the 

collapsed area led to lateral-torsional buckling failure (Jones & Nathan, 1990; Essa & Kennedy, 

1994).  

Construction work can be a dangerous occupation, and structures can collapse during the process of 

erection. Construction errors include non-conformance to the design intent, excavation and equipment 

accidents, improper sequencing, inadequate temporary support, excessive construction loads, and 

premature removal of shoring or formwork (Feld & Carper, 1996). For example, a historic collapse is 

that of the University of Washington’s Husky Stadium, depicted in Figure 1.2, on February 25, 1987. 

During construction, six of the nine guylines used to temporarily support the structure were removed 

prematurely, causing 250 tons of steel framework to sway and eventually topple. 

Other causes, such as material deficiencies and operational errors, contribute to project failure. 

Designers should be able to rely on modern structural materials, but manufacturing or fabrication 

defects exist in the most reliable structural materials, including structural steel or mixed concrete. 

Such material defects might not be discovered and eliminated during the design or construction 

stages. Most problems with materials are the result of human error, inadequate understanding of the 

materials, or the use of incompatible materials. Regarding operational error, project failure can occur 

after a facility is occupied because of the owner/occupant’s misuse or inadequate maintenance.  

Case studies concerning project failures help professionals to recognize the nature of failure and, in 

turn, avoid making the same mistakes (Feld & Carper, 1996). Nevertheless, facilities can fail due to a 

myriad of errors in the process of design, construction, and operation. To protect facilities against 

such failures, in addition to educating engineers and other professionals about design requirements 

and construction regulations, innovative methods of design and analysis are required to address 

unforeseen problems so as to ensure the reliability and durability of engineered structures. 
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1.1.2 Unforeseen Project Failure  

Unforeseen structural failure may be inevitable because the causes are unknown. Such failure 

concerns projects built according to the design code, but some unexpected loads occur in the process 

of construction or during operation. Since the 1968 gas explosion-triggered chain-reaction collapse of 

the Ronan Point Apartment Block in London, UK, depicted in Fig. 1.3, engineers worldwide are 

required to design buildings to meet specified levels of safety for protection against progressive 

collapse under unexpected abnormal loading events (Grierson, 2003).  

Typically, structures are exposed to interior loading such as self-weight and occupancy weight, and 

to exterior loading such as wind and seismic loads. Foreseen or normal loads are directly or indirectly 

considered in the design process through existing codes and standards. Despite the potential for 

loading to lead to catastrophic progressive collapse, unforeseen or abnormal loads are presently not 

explicitly considered in general design codes, and they are rarely considered in design practice. 

Burnett (1975) identified three types of abnormal loading: pressure loading, impact loading, and other 

loading. Usually, pressure loading results from explosions of a service system (e.g., natural gas and 

steam), stored gas and liquid (butane, propane, oxygen, gasoline, etc.), hazardous material in transit, 

or bombing due to civil or criminal action. Sometimes, sonic booms lead to pressure loading on 

structures. In nature, pressure loading includes wind-induced localized effects such as a tornadoes and 

hurricanes. Impact loading may result from ground vehicle collisions, aircraft crashes, missile or 

military weapons, and failure of adjacent buildings or falling debris. Other loading may occur due to 

the malfunction of a water system or other service system, or debris from other incidents (e.g., 

flooding and tornado). Errors in design and construction can also result in structurally significant 

abnormal loadings (Fintel & Schultz, 1979). 

The Ronan Point accident (Griffiths et al., 1968) involved the partial collapse of a 22-storey 

building constructed of precast concrete panels, as pictured in Figure 1.3. A natural gas explosion in 

the kitchen of an apartment on the 18th floor blew out an exterior wall panel. The reduced support due 

to the ejected panel resulted in a chain reaction that led to a collapsed roof. The falling debris caused 

the floors to successively tumble, almost to ground level. The pressure loading was designated as 

being abnormal because its cause was an explosion, which is generally not considered in the 

structural design process. According to Breen and Siess (1979), progressive collapse and abnormal 

loading are closely related. However, although progressive collapse may be related to abnormal 

loading, such loading does not necessarily induce progressive collapse. 

Progressive collapse is characterized as a chain-reaction failure, due to abnormal loading 

(Ellingwood, 2006). According to Allen and Schriever (1973), Taylor (1975), and Eldukair and 
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Ayyub (1991), progressive collapse events comprise 16% of all the collapse incidents in Canada and 

the United State of America (USA). This low percentage suggests that local damage does not always 

induce progressive collapse. For the aforementioned collapse events, 52%, 40%, and 8% occurred 

during construction, service, and demolition, respectively. These results indicate that progressive 

collapse is a critical problem not only during construction but throughout the service life of a 

structure. Eldukair and Ayyub (1991) have presented similar results based on information published 

in the Engineering News Record from 1976 to 1986. 

In terms of abnormal loading, terrorist attacks elicit the most concern because buildings and other 

infrastructure are the most vulnerable to terrorists whose intent is deliberate destruction. The robust 

design of building structures and infrastructures to effectively prevent such progressive failure is 

difficult to achieve. Since the 1990s, car-bomb events have become the norm for terrorists to damage 

public and private structures. For example, two major vehicle bomb attacks occurred in the USA 

within a two-year period: the WTC building in New York in 1993 (Figure 1.4), and the Alfred P. 

Murrah Federal Building in Oklahoma in 1995 (Figure 1.5). Both events have been compared and 

analyzed to identify the capacity of building structures to resist progressive collapse against such 

attacks (Longinow & Mniszewski, 1996). 

Certainly, the collapse of the WTC twin towers has alerted the structural engineering community to 

the importance of preventing such catastrophic destruction in the future. After seven months of 

extensive investigation of the specific causes of the collapse, the United States Federal Emergency 

Management Agency (FEMA, 2002) has issued a report that attributes the collapse to three related 

but discrete loading events: (1) the Boeing aircraft crashed into the buildings and cut through their 

exterior superstructure, thereby causing substantial localized damage; (2) the subsequent fire, fed by 

the jet fuel and office furniture and material, weakened the damaged structures; and (3) the 

overwhelming falling debris caused by the progressive collapse itself. For event (1), the impact of the 

plane did not cause on immediate building collapse, because the structural systems were sufficiently 

redundant to offset the localized damage. According to the report (FEMA, 2002), most of the load 

supported by the damaged columns was transferred to the adjacent perimeter columns through the 

exterior wall frame, which served as an alternate loading path. The intense fire, event (2), relentlessly 

heated and weakened the structural systems, increasing the stress on the damaged structure. As the 

large mass of collapsing floors dropped, event (3), the floors below were directly impacted. The 

FEMA report stresses the need for further research on the progressive collapse of building structures, 

exposed to abnormal loading. 
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Natural disasters, including earthquakes, hurricanes, floods, tornadoes and fires, are usually much 

stronger than those associated with human activity. Figure 1.7 shows one of the severely damaged 

buildings resulting from Hurricane Katrina in New Orleans in 2005. According to Tapia (2001) and 

Hartwig (2004), the man-made disasters caused by the 1992 Los Angeles riots, the 1993 WTC 

bombing, the 1995 Oklahoma City bombing, and the 2001 WTC attack, resulted in $775 million, 

$510 million, $125 million, and $40 billion in losses, respectively. According to the Congressional 

Budget Office (CBO, 2002) and Holtz-Eakin (2005), the natural disasters due to the 1992 Hurricane 

Andrew, the 1994 Northridge earthquake, the 1995 Kobe earthquake, and the 2005 Hurricane Katrina, 

resulted in $34 billion, $43 billion, $110 billion, and $140 billion in losses, respectively. To mitigate 

the losses caused by earthquakes, FEMA has contracted out project ATC-58 to the Applied 

Technology Council (ATC) to develop the next generation of seismic performance-based design 

guidelines for buildings. Such philosophy of design and analysis can also be applied to man-made or 

natural hazards (Whittaker et al., 2005). 

1.2 Design Considerations for Unforeseen Failures 

General design strategies to counteract progressive collapse include three aspects: providing members 

to resist specific abnormal loading, adding vertical and horizontal ties to increase resiliency to local 

damage, and designing alternate loading paths to ensure an adequate residual load-carrying capacity 

of the damaged structure (Ellingwood & Leyendecker, 1978; Gross & McGuire, 1983; Zalka & 

Armer, 1992; ASCE, 2002). To implement the last two design strategies, alternate loading paths 

should be provided to transfer the loads from the damaged regions to the remaining structure, and 

progressive collapse analysis should be conducted for the structure. The September 11, 2001, photo of 

the Pentagon building collapse shown in Figure 1.8 is a vivid indication that the alternate loading path 

method is effective in practice. Even though the supporting columns were destroyed by abnormal 

loading, an alternate loading path was provided when the remaining upper reinforced-concrete frame 

with masonry-filled walls compensated for the column loss by acting as a transfer girder or vertical 

diaphragm (Mlakar et al., 2003). 

Current design codes deal with progressive collapse failure problems in various ways. For instance, 

Eurocode 1 provides a general analysis and design principle that invokes designers to prevent 

structural damage that is disproportionate to the localized damage due to abnormal loading events 

(CEN, 1994). The American ASCE 7-05 non-mandatory commentary offers several general 

approaches in design for progressive collapse (ASCE, 2005; Ellingwood, 2006). The Canadian code 

requires buildings to be designed with structural integrity so that they can effectively withstand 
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abnormal loading that can occur during the service life of a structure (NRCC, 1995). Some research 

work has been conducted to quantify abnormal loading and mitigate its effects. For example, 

Ellingwood and Dusenberry (2005) have summarized the information in technical design codes and 

research papers on progressive collapse under abnormal loading, and Ellingwood (2005) has proposed 

a probabilistic basis for establishing appropriate load combinations to facilitate the design of 

structures under extreme fire loading. Marjanishvili (2004) concluded that little detailed information 

was available to enable engineers to confidently perform a systematic progressive collapse analysis. 

Later, with the view to counteract this conclusion, Marjanishvili and Agnew (2006) provided clear 

conceptual descriptions of various procedures for progressive-collapse analyses based on step-by-step 

computer computation. The quasi-static nonlinear pushover analysis method, suggested in seismic 

engineering (FEMA, 1997), has been considered applicable for dealing with other extreme events 

such as blast loads and tornado winds (Hamburger et al., 2002). As well, a non-linear dynamic 

analysis method has been proposed for tracking the dynamic behaviour of progressive collapse 

(Kaewkulchai & Williamson, 2004), with account for impact loading (Kaewkulchai & Williamson, 

2006).  

Section 2.5 of the ASCE Standard-7 (ASCE, 2005) states that stability and strength should be 

checked to ensure that structures have the capacity to withstand the effects of abnormal loads. Both 

the USA Department of Defense (DoD, 2005) and General Services Administration (GSA, 2003) 

have promulgated analysis and design guidelines for dealing with progressive collapse hazards. These 

guidelines provide methods to protect existing or new facilities against potential progressive collapse 

under abnormal loading events. To satisfy requirements, the design methods suggested in the 

guidelines include: (1) structural integrity design, (2) local resistance specification, and (3) alternative 

loading path design, as described in the following. 

1.2.1 Structural Integrity Design 

Structural integrity design requires designers to add vertical and horizontal ties to increase load-path 

redundancy in the event of localized damage. This strategy comes from the lesson learned from the 

1968 progressive collapse of the Ronan Point apartment building, composed of large bearing-wall 

panels (Griffiths et al., 1968). Considerable research has been conducted concerning structural 

integrity and resistance to progressive collapse, such as that by Haseltine and Thomas (1969), 

Redland Bricks Ltd. (1971), Taylor (1975), and Fintel and Schultz (1979).  

The ASCE-7-05 (2005) guideline for the provision of general structural integrity requires designers 

to do the following: 
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• select proper plan layouts; for example,  to  reduce the spans of long wall sections; 

• add short returns on walls to enhance structural stability; 

• design strong joints to transfer the loads through alternate loading paths; 

• arrange two-way floor systems to supply alternate loading paths; 

• enhance interior partitions to redistribute the loads among other walls when a wall fails; 

• use catenary action to change a slab/beam into a catenary element 

• design walls as transfer beams with ability to span openings. 

If the previous requirements are satisfied, a designed building structure can sustain localized 

damage and still remain intact and stable. Thoughtful determination of minimum levels of strength, 

continuity and ductility during the design process can lead to structures that are able to resist 

progressive collapse. However, if minimum requirements (e.g., related to tie forces) are not 

specifically provided in design codes, a designer might overlook having concern for considering 

progressive collapse (Ellingwood & Leyendecker, 1978).  

The general integrity design strategy (DoD, 2005) is suitable both for normal and abnormal 

loading. Similar to current design practice concerning normal loads (e.g., where the requirements of 

structural integrity are considered for horizontal seismic and wind loads), general integrity design 

against progressive collapse caused by abnormal loading should focus on strengthening the 

transverse, longitudinal, vertical and peripheral connections of a building. 

1.2.2 Specifying Localized Resistance 

A localized resistance design strategy requires checking the strength of members subjected to specific 

abnormal loading (e.g., the 34 kN/m2 pressure load for gas related explosions specified in the United 

Kingdom).  

Based on the work of Galambos et al. (1982) and Ellingwood et al. (1982), Commentary C2.5 of 

ASCE Standard 7 provides load combination formulae for checking structural demands (ASCE, 

2005). Although some code authorities might specify abnormal loads (Burnett, 1975), limited data are 

available to determine the magnitude and distribution of such loads. To date, little information about 

localized resistant strength is provided in design codes to aid designers in designing buildings to resist 

abnormal loading events. A localized resistance strategy can lead to ‘hard spots’ within a structure in 

the areas where abnormal loading events are prone to occur (Ellingwood & Dusenberry, 2005). 

Designing a structure to only resist one specific abnormal load can be both costly and impractical 

(Taylor, 1975).  
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1.2.3 Alternate Load Paths  

The Alternate-load Path (AP) design strategy (DoD, 2005) is attractive in design practice. The 

principle feature of this strategy is the removal of critical member(s) to simulate the consequences of 

an abnormal loading event, without specifically identifying the nature of the loading. 

The AP design strategy requires a structure to be checked for its residual load-carrying capacity 

when one or more load-bearing member/s is/are notionally removed (DoD, 2005). This calls for an 

alternate path to be available in the structure to transfer the loads away from the damaged area to 

other parts of the structure so as to avoid a chain-reaction failure. For example, the damaged Pentagon 

building in Figure 1.8 illustrates how the damaged area was bridged by an alternate path, saving lives 

above the floor of destruction. This demonstrates that the AP strategy can be a practical and 

appropriate way to protect a structure from progressive collapse. Based on this strategy, a computer-

based plastic-hinge method has been developed to predict the plastic collapse of framed structures 

related to selectively removed member/s (Gross & McGuire, 1983). 

The AP strategy is treated as a principal method in design guidelines for protecting new and 

existing buildings from progressive collapse (GSA, 2003; DoD, 2005). If a vehicular collision or car-

bombing occurs at a building’s ground level, the localized damage caused by the abnormal loading 

event is assumed to be the removal of one of the following critical members: an exterior column near 

the middle of the long side of the building; an exterior column near the middle of the short side of the 

building; or a column located at the corner of the building. If the building has underground parking 

and/or uncontrolled public ground floor areas, a column in the perimeter column lines of each area is 

removed to begin the AP analysis. More detailed requirements for removing a member (column or 

wall) are provided in the DoD document (2005). 

Design guidelines provided by GSA (2003) and DoD (2005) for the prevention of progressive 

collapse of government and military facilities address the AP strategy. However, the strategy can be 

applied to any kind of building and infrastructure to mitigate against progressive collapse and thereby 

save lives and reduce property losses. In general, the AP strategy has been accepted as an effective 

means to estimate the robustness and redundancy of structures (Wada et al., 2006; Vlassis et al., 

2006). 

1.3 Structural Analysis for Abnormal Loading 

The current AP method involves conventional plastic limit analysis of a structure with one or more 

removed member(s). Little work has been conducted on developing rigorous analysis procedures to 

trace the complete process of progressive collapse under abnormal loads, primarily because the 
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modelling of corresponding structural damage patterns is very complicated. This subsection reviews 

static methods of structural analysis as a basis to investigate the progressive collapse of framed 

structures.  

1.3.1 Structural Analysis Methods 

The most common methods of analytical structural analysis have been presented and implemented for 

statically loaded frames (e.g., McGuire et al., 2000; Chen et al., 1996). There are four types of 

analytical methods: linear elastic analysis, elastic stability analysis, plastic collapse analysis, and 

nonlinear inelastic collapse analysis.  

Linear elastic analysis is a basic method that is effectively used in serviceability level design. In 

spite of some errors compared to nonlinear analysis, the simplicity of linear elastic analysis aids 

designers to quickly and conceptually grasp structural behaviour. Therefore, this method is still 

popular in structural analysis and design.  

Elastic stability analysis is adopted to calculate the critical load multiplier that corresponds to the 

elastic limit state of a structure. A common way of obtaining the load multiplier at the limit state 

bifurcation point is to conduct a generalized eigenvalue analysis based on an idealized structural 

model. An alternate way is to conduct a nonlinear elastic analysis. Although the same load multiplier 

is found for both analyses, a nonlinear analysis can be used to trace a nonlinear process and to predict 

nonlinear responses. 

Plastic collapse analysis is more complicated than linear elastic analysis due to material stiffness 

degradation and strength deterioration. Different methods of plastic limit analysis can be developed 

by using different material constitutive laws to characterize the degradation and deterioration. To this 

end, ‘plastic-hinge’ and ‘spread-of-plasticity’ methods are commonly applied in the plastic collapse 

analysis of framed structures. With the plastic-hinge approach, member plasticity is assumed to be 

concentrated in zero-length regions (e.g., plastic hinges form at member ends). Also, to account for 

stiffness degradation, it is assumed that the material property changes from pure elasticity to full 

plasticity once the corresponding moment reaches a level that satisfies the predefined yield criterion. 

(Orbison et al., 1982). By these assumptions, the load factor of a structure at the limit plastic state can 

be found by employing the static or kinematical theorem (Grierson, 2002). Alternatively, a computer-

based incremental-plastic method can be used to find the plastic load factor and the load-deflection 

responses. Because of the simplicity of the plastic-hinge method, it has been applied extensively in 

the plastic collapse analysis of framed structures (Chen et al., 1996). A FORTRAN-based program, 
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called PHINGE (Plastic HINGE), has been developed by Chen et al. (1996) to conduct nonlinear 

analysis of semi-rigid frameworks.  

However, some assumptions regarding the plastic-hinge method might not be realistic. For 

instance, the idealization of material behaviour that can abruptly change from perfect elasticity to 

perfect plasticity ignores the gradual stiffness degradation effect taking place from initial yield to full 

plasticity. Moreover, the evolution of plasticity along a member is not taken into account in the 

structural analysis. Consequently, the spread-of-plasticity approach has been introduced to address 

these shortcomings. The gradual stiffness degradation of materials from initial to full yield is 

accounted for in the nonlinear analysis, depending on the different degradation models. For instance, 

the spread of plasticity along a member can be modeled either by a tapered element attached to the 

member end (Acroyd, 1979), or by viewing the entire member as a collection of segments with 

variable flexural stiffness EI along the member’s length (Cook, 1983). Plasticity can also be gradually 

traced by including higher-order displacement fields in the member stiffness formulation (Espion, 

1986). More accurately, a fibre-element method can track the gradual spread of plasticity in discrete 

fibre elements along the length and through the cross-section depth of a member (Powell & Chen, 

1986). 

Nonlinear geometric effects were not addressed by the plastic collapse analysis methods discussed 

previously. In fact, a structural collapse can involve the combined actions of geometric and material 

nonlinearities. For this reason, nonlinear inelastic analysis simultaneously accounts for the interactive 

effect of geometric nonlinearity and material nonlinearity. When conventional plastic-hinge 

assumptions are made without accounting for gradual stiffness degradation behaviour, a second-order 

inelastic analysis can lead to an overestimate of structural strength (King et al., 1992). The spread-of-

plasticity approach has been introduced to address this shortcoming. For example, in the quasi-

plastic-hinge method, an integration technique is available to find the flexibility coefficients that 

permit the formation of an incremental member stiffness matrix that accounts for gradual plasticity 

evolution and the P-delta effect (Attalla et al., 1994). This method gives a reasonable description of 

the gradually degraded change in member stiffness. Another approach is to combine the plastic hinge 

and spread-of-plasticity methods by using an inelastic hinge to efficiently model the evolution of 

member plasticity through the use of gradually degraded plastic stiffness factors (Hasan et al., 2002; 

Gong 2003; Grierson et al., 2005; Xu et al., 2005).  

If the member stiffness matrix used in nonlinear inelastic analysis is expanded as a Taylor series 

with respect to the member axial force and the higher-order terms are omitted, a second-order 

inelastic analysis approach is achieved. By truncating the higher-order terms, however, the structural 
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responses are significantly affected when the framework approaches the buckling state. Consequently, 

so as to improve response prediction accuracy, this thesis focuses on nonlinear inelastic analysis 

without truncating higher-order terms. Specifically, the analysis method involves employing a more 

accurate structure stiffness matrix in the incremental-load procedure employed to identify plastic 

collapse limit states. 

1.3.2 Progressive Collapse Analysis  

Identifying all the possible abnormal loads for a structure is difficult. Providing adequate resistance to 

one abnormal loading condition does not necessarily ensure sufficient strength to resist other 

abnormal loading events. Also, the additional cost required to prevent failure against abnormal loads 

is often not justifiable because of the low probability of abnormal loading events. Since the principal 

dangers are fire, degradation, impact and explosion, and since the research on complex structural 

response to these events is sparse, specifying local resistance for a structure without dependable data 

is unproductive and potentially dangerous (Zalka & Armer, 1992). In many cases, the AP method is 

an appropriate basis for progressive collapse analysis (Ellingwood & Leyendecker, 1978).  

In the AP-based progressive-collapse analysis method proposed by Gross and McGuire (1983), the 

behaviour of a framed structure to plastic collapse is traced by the second-order plastic-hinge 

approach. In the analysis procedure, the abnormal loading is not explicitly considered. Rather, its 

effect is accounted for by removing selected member(s). In an analysis of the partial collapse of the 

Bankers Trust Building in the WTC complex (FEMA, 2002), the nonlinear analysis was performed 

using ANSYS software (ANSYS, 2005) to account for large-deflection geometric nonlinearities. The 

inelastic responses at the connections were simulated by nonlinear springs and localized inelastic 

material properties. Following the concept of AP design, the gravitational loading was applied first. 

The damaged or missing members were then removed sequentially to track the partial progressive 

collapse. The computed results demonstrated that the connections played an important role by 

enabling the beams to develop some membrane catenary action to hold the damaged structure in place 

so as to limit overall structural damage. 

Shear failure is another contributing factor in the progressive collapse of concrete and steel 

structures. Regarding the collapse of concrete flat plate structures, Hawkins and Mitchell (1979) have 

concluded that the most likely mechanism to trigger progressive collapse is punching-shear failure 

occurring at interior columns. They analyzed four possible defences against progressive collapse, and 

concluded that designing for high live loads is unsatisfactory, integral beam stirrup reinforcement is 

impractical, and continuous bottom reinforcement and tensile membrane action for slabs is beneficial. 
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Abrupt shear failure can result from short-duration dynamic load impact (Conrath et al., 1999). 

Evidently, then, shear failure due to impacting debris loads must be considered by any progressive 

collapse analysis.  

High-tension axial forces will appear in slabs or beams acting as catenary members as a result of 

the failure of columns or walls. The effect of axial force on the progressive collapse of truss structural 

systems has been extensively studied since the failure of the Hartford Coliseum space truss roof in 

1978 (Blandford, 1996). Axial failure can also be one of the crucial factors in the progressive collapse 

of flexural frameworks. However, the combined shear plus axial failure model is not included in the 

current nonlinear inelastic analysis methods for analyzing flexural framed structures. 

Probabilistic-based methods should be applied to help mitigate against progressive collapse due to 

abnormal loads. It is important to note that even though the occurrence of abnormal loading has low 

probability, the resulting consequences can be devastating (Ellingwood, 2006). Probabilistic risk 

analysis method can provide an efficient tool to quantify the uncertainty of abnormal loading for 

decision making (Ellingwood, 2005; Ellingwood & Wen, 2005; Ellingwood, 2001; Ellingwood, 

2000). Although this study focuses on the development of fundamental concepts for deterministic 

progressive-collapse analysis, it is also important to conduct work concerning reliability-based 

progressive-failure analyses (Ellingwood et al., 2004; Ellingwood & Tekie, 2001; Ellingwood, 2000).  

1.4 Objectives and Scope  

The primary objective of this thesis is to establish new fundamental and physical insights into the 

progressive-collapse behaviour of steel building structures under abnormal loads. An analysis tool is 

developed for identifying possible collapse mechanisms and for predicting progressive-collapse 

behaviour of framed structures under extreme loading events. The specific objectives of this thesis 

are:  

• Develop a multi-stage method of analysis to trace the process of progressive collapse of 

frameworks as characterized by the change of structural topology  

• Identify progressive-failure characteristics, including member plastic deformation, connection 

damage, local collapse mechanisms, and residual capacity of the damaged structure  

• Derive stiffness expressions for structural analysis involving geometric nonlinearities and 

member shear deformations  

• Introduce stiffness degradation factors to characterize the degree of damage to members and 

connections of a structure loaded into the post-elastic response range 
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• Develop a compound-element model that effectively simulates the interactive behavior of 

members and connections  

• Introduce an impact amplification factor to consider the dynamic effects of impact debris 

loading 

• Develop a health index to model connection damage conditions 

This scope of this research is the quasi-static progressive collapse analysis of planar steel frame 

structures subjected to event-independent abnormal loading and debris loading, to predict structural 

instability and corresponding failure states. 

1.5 Assumptions and Idealizations  

The investigation described in this thesis is based on the following assumptions and idealizations: 

• Structural steel materials are homogenous and isotropic; 

• The spread of plasticity along a member is modelled by inelastic springs, concentrated at 

member ends; 

• Compared to member lengths defined by centre-to-centre dimensions, the lengths of 

connection and inelastic spring elements are assumed to be negligible; 

• The effects of local buckling, lateral buckling, and panel-zone shear failure are assumed to be 

precluded by lateral bracings; 

• The damage caused by abnormal loads is simulated by the removal of critical members of the 

structure under consideration; 

• The dynamic effect of falling debris loads is accounted for through an impact amplification 

factor; and 

• After an abnormal loading event causing damage has happened, the damaged structure is 

analyzed under the prevailing gravity loads alone, and potential debris loads. 

1.6 Thesis Organization 

This thesis involves the development of an analytical tool for predicting the failure behaviour of steel 

building structures that are exposed to abnormal loading events. The thesis is organized into seven 

chapters, as follows:  

• Chapter 2 provides a discussion of geometric and material nonlinearity for structural 

members. Member force-deformation relationships are investigated to account for geometric 

nonlinearity and shear deformation in the elastic range. Stiffness coefficients are derived to 

serve as a basis for inelastic nonlinear analysis. Post-elastic moment-rotation, shear force-
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deflection, and axial force-deformation relationships are investigated to determine stiffness 

degradation factors. 

• Chapter 3 presents the derivation of a generalized stiffness matrix for a hybrid beam-column 

member accounting for geometric and material nonlinearities. A proposed nonlinear 

procedure is developed for the analysis of frameworks, and illustrated by two examples. 

• Chapter 4 describes an effective method for the inelastic analysis of semi-rigid planar steel 

frameworks. The nonlinear characteristics of a member with both inelastic material behaviour 

and semi-rigid connections are discussed. Three semi-rigid steel frameworks are analyzed by 

proposed nonlinear analysis method to illustrate the influence of semi-rigid connections on 

post-elastic structural response. The results are also compared with those obtained from 

experiments and applying other methods. 

• A progressive-failure analysis technique is developed in Chapter 5. Three types of localized 

failure models are developed to investigate member-end disengagement scenarios and 

subsequent impact debris loading. A health index is developed to account for connection 

damage due to the disengagement of members during progressive collapse. Semi-rigid 

connection behaviour is considered. A procedure based on the AP method for progressive-

failure analysis is investigated.  

• With a view to future improvement of the progressive-failure analysis method, Chapter 6 

models the post-elastic behaviour of member sections under combined bending moment, 

shearing force and axial force using an Euler-Lagrange energy functional to define the three-

dimensional stress distribution constituting the yield failure surface. The results predicted by 

the M-V-P failure model are compared with those obtained from experiments and other 

analytical methods.  

• Chapter 7 discusses conclusions drawn from the study, and identifies future research work 

concerning progressive collapse from the viewpoints of both analysis and design. 
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Figure 1.1 Save-on-Foods Grocery Store failure, Canada (Closkey, 1988) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Progressive collapse of Husky Stadium, USA (© John Stamets, 1987) 
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Figure 1.3 Progressive collapse of Ronan Point Flats, UK (Griffiths et al., 1968) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Local damage of World Trade Centre building, New York (Bureau of ATF, 1993) 
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Figure 1.5 Progressive collapse of Murrah Office Building, Oklahoma (Hinman, 1997) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Progressive collapse of World Trade Centre tower, New York (FEMA , 2002) 
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Figure 1.7 Damaged building due to Hurricane Katrina, New Orleans (CNN, 2005) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Walls as transfer girders compensating for column loss, Pentagon, USA (SEI, 2003) 
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Chapter 2 
Geometrical and Material Nonlinearity 

This chapter provides a discussion of geometric and material nonlinearity for structural members. 

Member stiffness coefficients are derived to account for geometrical nonlinearity and member shear 

deformation. Axial, shearing and bending force-deformation relationships are obtained from typical 

experimental results, and corresponding stiffness degradation factors are established to quantify the 

extent of member plasticity (Grierson et al., 2005; Xu et al., 2005). 

2.1 Geometrical Nonlinearity Associated with Shear Deformation 

The local force-deformation relationship of members is fundamental to the formulation of computer-

based structural analysis procedures for framed structures (McGuire et al., 2000). In geometrical 

nonlinear problems, even though the materials behave in a linear-elastic manner, the relationships 

between the external loads and structural responses are nonlinear. Although the effect of shear 

deformation is typically insignificant in the analysis of conventional framed structures, shear effects 

do contribute to nonlinear structure response in cases of heavy transverse loading. The effect of shear 

deformation on structural deflection has been previously studied (Timoshenko, 1955). For instance, 

consider a simply supported beam with a uniformly distributed transverse load. When shear 

deformation is taken into account, the maximum deflection increases by 9.5% when the member 

span-to-section depth ratio is 10. If the ratio decreases to 6, the deflection increases by 26.5%. In 

another example, investigation of a two-bay by two-storey frame supported by an elastic foundation 

beam (Aydogan, 1995) found that the maximum vertical deflection and bending moment for the 

foundation beam increase by 12.8% and 4.8%, respectively, when the shear deformation is accounted 

for. Timoshenko beam theory has been extensively investigated and applied in structural analysis 

(Wang, 1996). However, the combined action of shear deformation and P-delta effect associated with 

flexural deformation has been little studied.  

Two key areas of geometric nonlinearity related to the interaction between axial load and shear 

deformation have been investigated in the literature. The first concerns how shear deformation affects 

the elastic buckling of columns. For an example cantilever column, an expression for the elastic 

buckling load accounting for shear deformation has been given by Timoshenko and Gere (1961). 

Recently, more comprehensive solutions for elastic buckling loads of columns with different end 

constraints have been found that account for the effect of shear deformation (Aristizabal-Ochoa, 

2004). The second area concerns beams on elastic foundations, where the influence of shear 
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deformation is significant (Aydogan, 1995; Areiza-Hurtado et al., 2005). This chapter focuses on the 

interactive effect of shear deformation on geometrical nonlinear responses of structural systems in the 

elastic range.  

2.1.1 Governing Differential Equation 

Consider the prismatic planar beam-column member in Figure 2.1, where L = member length, E = 

material Young’s modulus, G = material shear modulus, I = cross-section moment of inertia, A = 

cross-sectional area, and As = equivalent cross-sectional shear area. The objective is to find end 

moments M1 and M2 when the member is subjected to constant axial force P1 and rotation θ1 imposed 

at member end 1. Once the moments are determined, the corresponding end shear reactions V1 and V2 

are found from the equilibrium conditions. For geometric nonlinear problems, equilibrium is 

established for the deformed profile of the member. Here, it is required that the differential equation 

of equilibrium that governs geometric nonlinearity includes shear deformation. It is assumed that the 

member cross-section area has biaxial x-y symmetry, where x and y define the horizontal and vertical 

neutral axes of the cross-section, respectively.  

The internal moment, shear and axial forces M, V and P are found by referring to the free body 

diagram in Figure 2.1(b), where the forces and associated deformations y and θ are presented in their 

positive directions. The forces at any position x along the member can be found from equilibrium to 

be, 

xVyPMM 111 −−=  (2.1.1) 

θ−θ−= sincos 11 PVV  (2.1.2) 

θ−θ= sincos 11 VPP  (2.1.3) 

where θ is a rotation due to flexural deformation. Equation (2.1.1) indicates that moment M relates 

linearly to end moment M1 and shear force V1, but nonlinearly to the product of axial force P1 and 

deflection y. 

When shear deformation is taken into account, deflection y in Eq. (2.1.1) includes the combined 

contribution of both the bending and the shearing deformations. It remains to determine deflection y 

in Figure 2.2(a) for a differential segment of the beam. Assume total deflection y is equal to the 

summation of deflection yb due to the bending deformation in Figure 2.2(b) and deflection ys due to 

the shear deformation in Figure 2.2(c), i.e., the total deflection is expressed as (Aydogan, 1995; 

Areiza-Hurtado et al., 2005) 

sb yyy +=  (2.1.4) 
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Note that Eqs. (2.1.1), (2.1.2), and (2.1.3) define only the member equilibrium conditions, whereas 

the equilibrium of a deformed differential segment of the member is governed by a differential 

equation involving deflections yb and ys. For the deformation model in Figure 2.2(b), it is well known 

that the bending moment-versus-deflection relationship is defined by the following differential 

equation (Hibbeler, 2004), 

2 2

2 1.5

/
[1 ( / ) ]

b

b

d y dx M
dy dx EI

=
+

 (2.1.5) 

which is the moment-curvature relationship for pure bending. As well, the shear force-versus- 

deflection relationship is defined by the following differential equation (Timoshenko, 1955),  

sfs s Vdy
dx GA

= γ =  (2.1.6) 

in which γ is the average shear strain, and ssf is a shearing shape factor that accounts for the non-

uniform shear stress distribution over the cross-section depth. For example, if the maximum shear 

strain is utilized to establish the shear deflection, then ssf = 1.5 for a rectangular section. However, the 

use of maximum shear strain to determine shear deflection might be too conservative. Another 

approach that is more reasonable requires a value for the factor ssf to be found by using the principle 

of virtual work. To this end, Appendix 2.A derives the following expression for the shearing shape 

factor, 

2

2 2sf
A

A Qs dA
I t

= ∫  (2.1.7) 

in which t is the width of the cross section at the point where the shear stress is measured, and Q is the 

first moment about the neutral axis of the portion of the section area defined by where γ is measured. 

For a rectangular section, for example, Eq. (2.1.7) determines the factor ssf = 1.2, a value closer to that 

obtained when warping is taken into account (Timoshenko, 1955). Typically, by using the ssf value 

from Eq. (2.1.7) in Eq. (2.1.6), smaller shear deflections are yielded than those found using the 

maximum shear strain criterion. For a W-shaped cross-section, the expression for the shear shape 

factor can be expressed as 

/ 2 / 22 2

2
0 / 2

3 5 2
2 1 2 1 2 1 2 2

3 2
2 2 1 1 1 2

2

3[8 15 (1 ) 30 (3 1) (15 83 128 )]     .
20 [1 (1 ) ] /(1 )

f

f

d t d

sf
w fd t

A Q Qs dy dy
I t b

c c c c c c c c
c c c c c c

−

−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦
+ − + − + − +

=
− − − +

∫ ∫
 (2.1.7a) 

where parameters c1 and c2 are:  
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dtc f /211 −=  (2.1.7b) 

fw btc /2 =  (2.1.7c) 

in which d = depth, bf = width of the flange, tf = thickness of the flange, and tw = thickness of the web. 

For W920X253 beam section with c1 = 0.9434 and c2 = 0.0541, the shearing shape factor ssf = 5.997 

from Eq. (2.1.7a). For W360X382 column section with c1 = 0.7692 and c2 = 0.0734, the factor ssf 

=5.645 from Eq. (2.1.7a). Thus, it can be assumed ssf ≈ 6 for practical W-sections. Finally, from Eq. 

(2.1.7a), note when c1 = 0 (tf = d/2) and c2 = 1 (tw = bf) that the factor ssf = 1.2 for rectangular cross 

sections. 

Once the shearing shape factor ssf is estimated by Eq. (2.1.7) for a specified cross-section, the shear 

deflection ys can be determined. To this end, differentiating Eq. (2.1.4) twice yields, from Eqs. (2.1.5) 

and (2.1.6), 

1.522 22

2 2 2 1 sfb s b sd y d y dyd y M dV
dx dx dx EI dx GA dx

⎡ ⎤⎛ ⎞= + = + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (2.1.8) 

which is the differential equation that relates total deflection y (accounting for combined bending and 

shearing deformations) to moment M and shear force V. The first derivative of the shear force in Eq. 

(2.1.8) is obtained by differentiating Eq. (2.1.2) once with respect to x, to obtain, 

1 1 1 1 1 1sin cos cos ( tan ) bdydV d d d MV P V P V P
dx dx dx dx EI dx

θ θ θ ⎛ ⎞= θ − θ = θ θ − = −⎜ ⎟
⎝ ⎠

 (2.1.9) 

where the following relationships are employed, 

EI
M

dx
d

=
θ

θcos   (2.1.10a) 

dx
dyb=θtan  (2.1.10b) 

By substituting Eq. (2.1.9) into (2.1.8), the general differential equilibrium equation involving the 

total deflection becomes 

1.522

1 12 1 sfb bsdy dyd y M V P
dx EI dx GA dx

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= + + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (2.1.11) 

If the shearing deformation can be ignored (i.e., 1/GA = 0 and y = yb), Eq. (2.1.11) reduces to the 

differential equation Eq. (2.1.5) that accounts for the bending deformation only.  
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Note that the differential equation Eq. (2.1.11) does not account for external transverse load 

distributed along the length of the member. In circumstances where distributed transverse loads are 

applied over the member span, the expression on the right-hand side of Eq. (2.1.11) needs to be 

modified. For instance, in the analysis of beams on elastic foundations, the shearing effect is 

considered by modifying the right-hand side of Eq. (2.1.11) to account for the reaction due to the 

elastic foundation (Aydogan, 1995). The effect of shear deformation due to transverse loads on fixed-

end reactions of a fix-fix member is investigated in Section 2.2.2.  

Typically, a direct analytical solution of Eq. (2.1.11) cannot be found due to the presence of 

geometric nonlinearities. Adopting the conventional assumption of small strain, the squared term of 

the first derivative of yb is dropped such that Eq. (2.1.11) is rewritten as, 

2
1

2
1 11

b

sf sf

dyMVEI d y M
Ps / GA dx GA / s P dx

= +
− −

 (2.1.12) 

Equation (2.1.12) still cannot be directly solved because the term dyb/dx remains unknown. 

However, it is possible to solve Eq. (2.1.12) for the flexibility coefficients associated with bending 

deformation alone. Then, the principle of virtual work can be utilized to find the corresponding 

member stiffness coefficients accounting for geometrical nonlinearity and member shear deformation, 

as discussed in the following. 

2.1.2 Derivation of Elastic Stiffness Coefficients 

2.1.2.1 Rotational Stiffness Coefficients 

Consider the simply supported member in Figure 2.3 (a), where moments M1 and M2, induced by 

rotation θ1 are to be determined. By employing the principle of virtual work (the unit-force method), 

the flexibility coefficients in Figures 2.3 (b) and (c) are expressed as, 

1 1 1 1
11 11 11 22

0 0

( ) ( ) ( ) ( )L L
v v

m s sf
m x m x v x v xf f f dx s dx f

EI GA
= + = + =∫ ∫  (2.1.13a) 

and 

1 2 1 2
21 21 21 12

0 0

( ) ( ) ( ) ( )L L
v v

m s sf
m x m x v x v xf f f dx s dx f

EI GA
= + = + =∫ ∫  (2.1.13b) 

where moment mj(x) and shear force vj(x) are induced by unit moment Mj = 1 (j = 1, 2) and axial force 

P1, whereas virtual moment mjv(x) and shear force vjv(x) are induced only by unit moment Mj = 1 (j = 

1, 2). From member equilibrium in Figures 2.3 (b) and 2.3 (c), it follows that, 
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1 1 1( ) 1 ( ) /m x P y x x L= − −  (2.1.14a) 

1 1 1( ) 1/ /v x L Pdy dx= +  (2.1.14b) 

2 1 2( ) ( ) /m x P y x x L= − −  (2.1.14c) 

2 1 2( ) 1/ /v x L Pdy dx= +  (2.1.14d) 

1 ( ) 1 /vm x x L= −  (2.1.14e) 

2 ( ) /vm x x L= −  (2.1.14f) 

1 2( ) ( ) 1/v vv x v x L= =  (2.1.14g) 

where y1(x) and y2(x) are the deflection curves of the primary structure due to the applied end 

moments M1 = 1 and M2 = 1, respectively, accounting for axial force P1 and shear deformation. The 

flexibility coefficients f11m and f21m in Eqs. (2.1.13) cannot be computed from the integrals because 

both y1(x) and y2(x) in Eqs. (2.1.14) remain unknown. Without consideration of shear deformation 

caused by shear force, however, coefficients f11m and f21m are the rotations at end 1 and end 2 due to 

imposing M1 = 1; i.e., these two coefficients are determined by Eq. (2.1.12) when the second term on 

the right-hand side involving shear force V1 is ignored. When moment M in Eq. (2.1.12) is replaced 

by moment m1 from Eq. (2.1.14a), coefficients f11m and f21m are found by solving the differential 

equation, to find (see Appendix 2.B), 

2
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2

(1 / ) 1            0   
tan

(1 / ) 1         0   
tanh

s
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f
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⎛ ⎞− ψ⎪ − >⎜ ⎟⎪ ψ ψ⎝ ⎠⎩

  (2.1.15a) 
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(1 / ) 1             0
sin

(1 / ) 1           0
sinh

s

m
s

P GA L P
EI

f
P GA L P
EI

⎧ ⎛ ⎞− ψ
− ≤⎪ ⎜ ⎟ψ ψ⎪ ⎝ ⎠= ⎨

⎛ ⎞− ψ⎪ − >⎜ ⎟⎪ ψ ψ⎝ ⎠⎩

   (2.1.15b) 

in which 

| | (1 / )sP P GAL
EI
−

ψ =  (2.1.15c) 

where As (= A/fsf) represents the equivalent shear cross-sectional area. Thus, the flexibility coefficients 

in Eqs. (2.1.13) related to moment have been determined.  

To consider the contribution of shear deformation due to shear force in Eqs. (2.1.13), the shear 

forces vj(x) and virtual shear forces vjv(x) (j = 1, 2) given in Eqs. (2.1.14) are substituted into the 

relevant terms in Eqs. (2.1.13), to yield the following flexibility coefficients, 
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1 1 1 1
11 12

0 0

1/ / 1L L
v

s s
s s s

v v L Pdy dxf f dx dx
GA LGA LGA

+
= = = =∫ ∫  (2.1.16) 

where boundary conditions y1(0) = y1(L) = 0 are applied to evaluate the integrals.  

Upon evaluating Eqs. (2.1.15a, b) and Eq. (2.1.16), flexibility coefficients fij (i, j = 1, 2) are found 

through Eqs. (2.1.13) to obtain the flexibility matrix for the primary structure in Figure 2.3 (a) 

accounting for the axial force and shearing deformation. The bending moment-rotation deformation 

compatibility conditions for the member are expressed in the following matrix form, 

11 12 1 1

21 22 2 0
f f M
f f M

θ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦ ⎩ ⎭

 (2.1.17) 

from which the relationships between the end moments and rotation are obtained as, 

1 1 1 33 1
gM kb k= η θ = θ   (2.1.18a) 

2 2 1 1 63 1 2 1
gM c kb k c M= η η θ = θ = η  (2.1.18b) 

where superscript g implies the involvement of geometric nonlinearity, and subscripts “33” and “63” 

correspond to the numbering system indicated in Figure 2.3(d) for the end displacements and forces 

for the member. The two stiffness coefficients in Eqs. (2.1.18) are given by,   

33 1
gk kb= η  (2.1.19) 

63 2 1
gk c kb= η η  (2.1.20) 

where coefficient k = EI/L. Parameters kbη1 and cη2 in Eqs. (2.1.18a) and (2.1.18b) define the 

modified rotation stiffness coefficient and carryover factor, respectively. Parameters b and c are 

defined by the following expressions (Chen et al., 1996), 

1 / tan        0
tan( / 2) /( / 2) 1

1 / tanh      0 
tanh( / 2) /( / 2) 1

P
b

P

−ψ ψ⎧ ≤⎪ ψ ψ −⎪= ⎨ −ψ ψ⎪ >
⎪ ψ ψ −⎩

 (2.1.21) 

sin                 0
sin cos

sinh            0 
sinh cosh

P
c

P

ψ − ψ⎧ ≤⎪ ψ −ψ ψ⎪= ⎨ ψ − ψ⎪ >
⎪ ψ −ψ ψ⎩

 (2.1.22) 

where the subscript of P1 has been dropped to simplify the notation, and the parameter ψ is defined in 

Eq. (2.1.15c). Equations (2.1.21) and (2.1.22) are referred to in the literature as stability functions 

(Chen et al., 1996), but should probably be called geometrical stiffness coefficients, since they are 

applied not only in stability analysis but also in any geometrical nonlinear analysis. Parameters ηi (i 
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=1, 2) in Eqs. (2.1.18) or (2.1.19) are referred to as geometrical shearing coefficients, and are 

expressed as, 

3 4
1

3 5

1
(1 / )(1 )sP GA

+ η η
η =

− + η η
 (2.1.23) 

3 6
2

3 4

1
1
+ η η

η =
+ η η

 (2.1.24) 

where parameters η3, η4, η5, and η6 are given by, 

3 2(1 / )s s

EI
P GA GA L

η =
−

 (2.1.25) 
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(1 / tan )                                      0
(1 / tanh )                                 0
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 (2.1.26a) 
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 (2.1.26b) 
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(1 / sin )                                     0
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P
P

⎧ψ −ψ ψ ≤⎪η = ⎨
−ψ −ψ ψ >⎪⎩

 (2.1.26c) 

2.1.2.2 Transverse Stiffness Coefficients 

Following the same procedure as that used to derive the rotational stiffness coefficients in the 

previous section, the transverse stiffness coefficients are readily found accounting for axial force and 

member shearing deformation. To that end, consider the deformed profile of the beam-column 

member in Figure 2.4 (a) due to deflection ∆1 imposed at end 1. When deflection ∆1 is imposed on the 

simply-supported primary beam in Figure 2.4 (b), the rotation at both ends is equivalently expressed 

as -∆1/L. The bending moment-rotation deformation compatibility condition Eq. (2.1.17) need only be 

changed on the right-hand side to establish the shear force-deflection deformation compatibility 

condition as,  

11 12 1 1

21 22 2

1
1

f f M
f f M L

⎡ ⎤ ⎧ ⎫ ⎧ ⎫∆
= −⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦ ⎩ ⎭
 (2.1.27) 

Upon solving Eq. (2.1.27), the relationship between the end moments and the deflection is found as,  

13212121 /)1( ∆=∆η+η== gkLckbMM  (2.1.28) 

By setting deflection ∆1 = 1 in Eq. (2.1.28), the stiffness coefficient is given by, 

32 1 2 62(1 ) /g gk kb c L k= + =η η  (2.1.29) 
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which is depicted in Figure 2.4 (c), where the subscripts “32” and “62” refer to the end 

force/deformation numbering scheme in Figure 2.3 (d). From Eq. (2.1.28) and the equilibrium 

conditions for the member, the transverse end reactions are found as 

122
2

112121 /)]/()1(2[ ∆=∆η+η+η=−= gkLkbPLckbVV  (2.1.30) 

By setting deflection ∆1 = 1 in Eq. (2.1.30), the stiffness coefficient is given by, 

2
22 1 2 1 52[2(1 ) /( )] /g gk kb c PL kb L kη η η= + + = −  (2.1.31) 

Similar to the discussion in the previous subsection, when deflection ∆1 is set to unity, Eqs. (2.1.28) 

and (2.1.30), respectively, represent the rotational and translational stiffness coefficients due to a unit 

end deflection. The same stiffness coefficient expressions as in Eqs. (2.1.29) and (2.1.31) are obtained 

if the deflection is imposed at end 2 rather than end 1 of the member in Figure 2.4 (a); i.e., kg
65 = kg

32 

and kg
55 = kg

22. The stiffness coefficients are applied for monotonic incremental-load analysis, where, 

for each increment, the structure is essentially treated as being linear elastic, for which Maxwell’s 

reciprocal theorem holds. Therefore, all stiffness coefficients kg
ij accounting for geometric 

nonlinearity and member shear deformation have been determined; i.e., kg
25 = kg

52, kg
23 = kg

32, kg
56 = 

kg
65 and kg

26 = kg
62.  

2.2 Effects of Shear Deformation on Structural Response  

This section investigates the effects of shear deformation on elastic stability and fixed-end reactions 

using the formulas derived in the previous section. To facilitate the discussion, the Euler buckling 

load, 

22 / LEIPe π=  (2.2.1) 

is introduced as a baseline reference. In addition, the ratio of axial force P to Euler buckling load Pe, 

and the ratio of Euler buckling load Pe to shearing stiffness GAs are represented by the following 

parameters, 

/e eP Pρ =  (2.2.2a) 
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P s

ss

e
s  (2.2.2b) 

where the parameter ρs is the so-called axial-shear influence factor that depends on the geometric and 

material properties of the member, in which the parameter rs is defined as, 

sfzsfsfss srAIsAIsAIr ==== ///  (2.2.3a) 
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where 

1.0sfs >  (2.2.3b) 

is a shearing shape factor, discussed in Appendix 2.A, and rs is the shear-radius of gyration modified 

from the conventional bending-radius of gyration rz. From Eqs. (2.2.1) and (2.2.2), the parameter ψ 

given in Eq. (2.1.15c) is rewritten as, 

)1(||/)/1(|| seees PGAPP ρρ−ρπ=−π=ψ  (2.2.4) 

When ρs = 0 and ρe < 0, Eq. (2.2.4) reduces to a parameter in elastic buckling analysis (Xu & Liu, 

2002). By using the parameters ρs and ρe from Eqs. (2.2.2), the parameter η3 in Eq. (2.1.25) is 

expressed as, 
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The effect of shear deformation on buckling stability and fixed-end reactions for a beam-column 

member is discussed in the following.  

2.2.1 Effect of Shear Deformation on Elastic Buckling 

The buckling of a beam-column member with the various boundary conditions in Figure 2.5 is 

discussed here to illustrate the effect of shear deformation on elastic stability. The notations in the 

figure are similar to those in Figure 2.1(a), except that rotational-constraining stiffnesses R1, R2 and 

translational-constraining stiffness R3 are introduced to reflect the different types of end constraints. 

Buckling is defined by an instability condition where the axial load reaches such an extent that the 

structure stiffness matrix becomes singular (i.e., the corresponding determinant of the matrix 

vanishes).  

Because tensile force has the tendency to increase the geometrical stiffness of a structural member, 

only a compressive axial force (assumed to be positive in this subsection) is here considered. Four 

types of end constraints are investigated: free-clamped cantilever column with R2 = R3 = 0 and R1 = ∞  

(free-fix); simply supported column with R1 = R2 = 0 and R3 = ∞  (pin-pin); pin-clamped supported 

column with R2 = 0 and R3 = R1 = ∞ (pin-fix); and clamped-clamped supported column with R1 = R2 = 

R3 = ∞ (fix-fix).  

Once a stability function is obtained with respect to axial-force parameter ρe, given in Eq. (2.2.2a), 

minimum root ρecr can be solved from the stability function so that critical load Pcr is given by 
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cr ecr eP P= ρ  (2.2.6) 

The cantilever column (free-fix) has been previously studied by a number of researchers 

(Timoshenko & Gere, 1961; Chugh, 1977; Aristizabal-Ochoa, 2004). From Eqs. (2.1.19), (2.1.29), 

and (2.1.31), the stability function obtained by zeroing the determinant of the geometric stiffness 

matrix for the cantilever column is expressed as, 
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 (2.2.7) 

Of all the possible solutions of Eq. (2.2.7) for parameter ρe, only the minimum solution value ρecr 

yields the elastic buckling load of the column, i.e., from Eq. (2.2.2a), Pcr = ρecrPe. 

To demonstrate the effect of member shear deformation on the elastic buckling load of a structural 

steel cantilever beam-column with E = 2×105 MPa, G = 77×103 MPa, and specified slenderness ratio 

L/rs = 20, the parameter ρs = 0.0641 from Eq. (2.2.2b), and parameters ψ and η3 are computed as, 

from Eqs. (2.2.4) and (2.2.5), 

(1 0.0641 )e eψ = π ρ + ρ  (2.2.8a) 

3 0.0065/(1 0.0641 )eη = + ρ  (2.2.8b) 

By substituting Eqs. (2.2.8) into the expressions for b, c, η1, and η2 in Eqs. (2.1.20) through 

(2.1.24), and then substituting b, c, η1, and η2 into Eq. (2.2.7), a complicated buckling function in 

terms of variable ρe results, for which it is difficult to solve for the minimum root ρecr. Alternatively, 

instead of obtaining the exact stability function, this study input all the expressions related to Eq. 

(2.2.7) into a Microsoft Excel spread sheet, and then used the Goal Seek tool (Microsoft, 2000) for 

solution. This approach determines the non-dimensional buckling load ρecr= 0.243, which corresponds 

to buckling load Pcr = 0.243Pe. 

The theoretical value of the buckling load for a cantilever column without considering shear 

deformation is Pcr0 = Pe/4. When shear deformation is taken into account, the relative difference is 

calculated as (Pcr/Pcr0 -1) = (0.243×4-1) = -0.028. This indicates that when L/rs = 20, the critical 

buckling load is decreased by 2.8% when shear deformation is accounted for. For the various 

slenderness ratios and end conditions with L/rs = 10, 20, 30, 40, 50, and 60, the relative differences 

between critical buckling loads found when shear deformation is and is not accounted for are 

summarized in Table 2.1. 

To demonstrate the effect of the shearing shape factor ssf, the relative differences between actual 

critical loads and those found neglecting shear deformation are plotted in Figure 2.6 for slenderness 
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ratios KL/rz = 50, 70 and 90. Parameter K is an effective-length factor that accounts for different end 

constraints. It is evident that for a given member with a specified KL/rz value, the shearing shape 

factor ssf decreases the critical buckling load as it increases in value.  

2.2.2 Effect of Shear Deformation on Fixed-End Reactions 

This section discusses how shear deformation affects the end reactions of beam-column members 

under transverse loads. The fixed-end reactions for a fix-fix beam with specified transverse loads are 

well established when the shearing effect is not accounted for (McGuire et al., 2000). In the 

following, these reactions are taken as the basis for expressing member-end reactions when shearing 

deformation is accounted for.  

For the fix-fix beam with arbitrary transverse load w(x) shown in Figure 2.7, the Force Method of 

analysis is utilized to obtain the fixed-end reactions. To this end, the primary structure is selected as 

the simply supported beam in Figure 2.3 (a). The deformation compatibility conditions taking into 

account shear deformation are expressed in compact matrix form as, 
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where θjl (j = 1, 2) are the member-end rotations caused by the transverse load w(x).  

It is well known that shear force does not contribute to member-end rotations of a simply supported 

beam subjected to transverse loads, i.e., for shear force V the rotation is, 

0 0

/ 0
L L

v
jlv

s s

VV dM dxdx dx
GA LGA

θ = = =∫ ∫  (2.1.10) 

where M is the member moment distribution having boundary conditions M(0) = M(L) = 0, and Vv = 

1/L is virtual shear force due to a unit moment applied at the member end. 

Solve Eq. (2.2.9) for the fixed-end moments to find, 
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 (2.2.11) 

where parameter ρs is defined in Eq. (2.2.2b) and k = EI/L. If shear deformation is neglected, i.e., ρs = 

0, the moment-rotation relationship in Eq. (2.2.11) reduces to the conventional expression, 
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where the subscript “0” denotes the fixed-end moments without account for shear deformation. Note 

that Eq. (2.2.12) can be inversely expressed as 
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Substitute Eq. (2.2.13) into Eq. (2.2.11) to find, 
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which transforms the conventional fixed-end moments M10 and M20 into moments M1 and M2  that 

account for shear deformation. From Eq. (2.2.14) and the equilibrium conditions for the member, the 

transverse end reactions found as 
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which transforms the conventional fixed-end reactions V10 and V20 into reactions V1 and V2 that 

account for shear deformation.  

It is interesting to observe from Eqs. (2.2.14) and (2.2.15) that if the external transverse load w(x) is 

applied symmetrically to cover the span of the member, the shear deformation does not affect the 

fixed-end reactions because, then, M20 = -M10 and the second term on the RHS of each of Eqs. 

(2.2.14) and (2.2.15) is zero valued. However, in such cases, the shear deformation does affect the 

member deflection.  

2.3 Stiffness Degradation 

The performance of any engineered structure under external loads depends not only on its geometric 

properties, but also, to a large extent, on the properties of the materials used to construct the structure. 

Although a slender framed structure can fail due to elastic buckling, most failures in commonly 

engineered structures are due to the advent of nonlinear material behaviour, referred to as post-elastic 

or plastic behaviour. Thus, structural failure or collapse generally involves both geometric and 

material nonlinearities. Material properties such as yield strength, ultimate strength, and ductility are 

crucial design indices that guide designers in their quest to ensure the safety of engineered structures. 

To facilitate the material-nonlinear analysis of a framed structure, the next Section introduces an 

appropriate model for the failure behaviour of a member cross-section.  
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2.3.1 Force-Deformation Model 

The variation of the post-elastic (bending, shearing or axial) stiffness of a member section can be 

uniquely characterized by a force-deformation (F−D) curve of the form in Figure 2.8. In this figure, 

Fy is the specified initial-yield (My, Vy or Py) capacity of the section and Fp is the corresponding full-

yield (Mp, Vp or Pp) capacity, with the consideration of both primary and residual stresses (Heyman & 

Dutton 1954; Huber & Beedle 1954; Beedle, 1958). Also, Dp is the known magnitude of plastic 

deformation (rotation φ, transverse deflection γ or axial displacement δ) beyond initial yielding at 

which the section fully yields. Finally, for force F = M, V or P, the quantity dF/dD = R, T or N is the 

post-elastic (bending, shearing or axial) stiffness of the section, respectively. For most section shapes 

commonly used in steel building frameworks, the continuous nonlinear portion of the F−D curve in 

Figure 2.8 can be reasonably modeled as an elliptical shape defined by the following function 

(Grierson et al., 2005; Xu et al., 2005), 
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where exponent e0 > 1 has different values, depending on whether force F = M, V or P. If F ≤ Fy the 

post-elastic deformation D = 0, whereas if Fy ≤ F ≤ Fp the post-elastic deformation is, from Eq. 

(2.3.1),  
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By differentiating Eq. (2.3.1) with respect to post-elastic deformation D, the post-elastic (bending, 

shearing or axial) stiffness is, 
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 (2.3.3) 

where, as shown in Figure 2.8, dF/dD = ∞ if post-elastic deformation D = 0 and dF/dD = 0 if D ≥ Dp . 

To identify the extent of the plasticity, so-called the stiffness degradation factors are defined by the 

ratio of the elastic deformation to the elastic-plus-plastic deformation at a member section. For a 

beam-column member with post-elastic bending, shearing, or axial stiffness R, T or N, respectively, 

the corresponding stiffness degradation factor sdf = r, t or n. As indicated in Figure 2.8, sdf = 1, if 

post-elastic stiffness dF/dD = ∞ (i.e., fully elastic behaviour), whereas sdf = 0, if post-elastic stiffness 
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dF/dD = 0 (i.e., idealized plastic behaviour). It is observed that when 0 < sdf < 1, the physical 

meaning of the value is a measure of the extent of the plasticity at a critical section. The 

determination of parameters Fy, Fp, Dp and e0 and stiffnesses R, T, N is discussed in Appendix 2.C 

through consideration of test results from bending, shearing and axial experiments presented in the 

literature (Kusuda & Thurlimann, 1958; Hall & Newmark, 1957; Huber & Beedle, 1954). The next 

section introduces so-called stiffness degradation factors as a means to account for the degradation of 

post-elastic R, T and N stiffness beyond first yield. 

2.3.2 Determination of Stiffness Degradation Factors 

Stiffness degradation factors are introduced to identify the influence of plasticity on member stiffness 

(Grierson et al., 2005; Xu et al., 2005). A stiffness degradation factor is characterized by the ratio of 

elastic deformation to elastic-plus-plastic deformation of a member section. For a beam-column 

member with post-elastic bending, shearing or axial stiffness R, T or N, respectively, the 

corresponding stiffness degradation factor sdf = r, t or n. As indicated in Figure 2.8, sdf = 1 if post-

elastic stiffness dF/dD = ∞ (i.e., fully elastic behavior), whereas sdf = 0 if post-elastic stiffness 

dF/dD = 0 (i.e., idealized plastic behaviour). It is observed that when 0 < sdf < 1, the physical 

meaning of the value is a measure of the extent of the plasticity at a critical section. In the following, 

the bending, shearing and axial stiffness degradation factors r, t and n, respectively, are derived 

assuming plastic deformation to be concentrated at a member section such that the elastic deformation 

of the immediately adjacent section occurs for the same magnitude of force M, V or P.  

2.3.2.1 Bending Stiffness Degradation Factor r 

Consider the simplified member model in Figure 2.9, which has a pin release at the right end and 

accounts for rotational bending deformation alone at the left end (i.e., no shear or axial deformation). 

Under the action of bending moment M applied at the left end, elastic bending deformation φe = 

ML/3EI and post-elastic bending deformation φ = M/R, and the bending stiffness degradation factor 

is, 
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From Figure 2.8 and Eq. (2.3.4), for idealized elastic behavior, R = ∞ and r = 1 (i.e., no bending 

stiffness degradation), whereas for idealized plastic behavior, R = 0 and r = 0 (i.e., complete bending 

stiffness degradation). 
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2.3.2.2 Shear Stiffness Degradation Factor t 

Consider the simplified member model in Figure 2.10, which has a pin release at the right end and 

accounts for transverse shear deformation alone at the left end (i.e., no bending or axial deformation). 

Under the action of shear force V applied at the left end, elastic shear deformation γe = VL3/3EI and 

post-elastic shear deformation γ = V/T, and the shear stiffness degradation factor is, 
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From Figure 2.8 and Eq. (2.3.5), for perfectly elastic behavior, T = ∞ and t = 1 (i.e., no shear 

stiffness degradation), whereas for perfectly plastic behavior, T = 0 and t = 0 (i.e., complete shear 

stiffness degradation). 

2.3.2.3 Axial Stiffness Degradation Factor n 

Consider the simplified member model in Figure 2.11, which accounts for normal axial deformation 

alone at the left end (i.e., no bending or shear deformation). Under the action of axial force P, elastic 

axial deformation δe = PL/EA and post-elastic axial deformation δ = P/N, and the axial stiffness 

degradation factor,  
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From Figure 2.8 and Eq. (2.3.6), for perfectly elastic behavior, N = ∞ and n = 1 (i.e., no axial 

stiffness degradation), whereas for perfectly plastic behavior, N = 0 and n = 0 (i.e., complete axial 

stiffness degradation). 

Appendix 2.A Derivation of Flexibility Coefficients  

This section derives the flexibility coefficients fm11 and fm21 for the simply supported beam in Figure 

2.12accounting for the contribution of bending moment M and axial force P (note the subscript of P1 

is dropped for simplicity). When the second term involving shear force V1 on the right-hand side of 

Eq. (2.1.12) is ignored (i.e., no shear force contribution), and the moment M is replaced by Py+x/L-1 

from Figure 2.14, the differential equation Eq. (2.1.12) becomes,  
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Coefficients fm11 and fm21 indicated in Figure 2.12are determined from the solution of Eq. (2.A.1), 

which depends on whether the value of axial force P is positive, negative or zero. Only the derivation 
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for case where P < 0 is detailed here (the results for the two other cases are similarly derived, but only 

the results are given here). When P < 0,  
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and Eq. (2.A.1) is rewritten as, 
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The particular solution of Eq. (2.A.3) is given by, 
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The general solution of Eq. (2.A.3) is, 

PLxxaxay /)/1()sin()cos( 21 −+ϑ+ϑ=  (2.A.5) 

where a1 and a2 are two arbitrary constants determined from the following two boundary conditions, 

(0) 0y =  (2.A.6a) 

( ) 0y L =  (2.A.6b) 

By applying the boundary condition Eq. (2.A.6a) in Eq. (2.A.5), the constant a1 is found as below, 

PaPay /1 0/1)0( 11 −=→=+=  (2.A.7) 

Similarly, apply the boundary condition Eq. (2.A.6a) to find a2 as below,  
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in which,  
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To find the slope of the deflection curve, differentiate Eq. (2.A.5) with respect to x to get, 
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dx

= − ϑ ϑ + ϑ ϑ −   

which, upon substituting for a1,  a2 and ψ from Eqs. (2.A.7), (2.A.8) and (2.A.9), becomes, 
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From Eq. (2.A.10), the rotational flexibility coefficient at end 1 is expressed as, 
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Similarly, the rotational flexibility coefficient at end 2 is given by, 
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In the same manner as for the previous case where P < 0, the rotational flexibility coefficients are 

also readily found when P ≥ 0. The complete set of flexibility coefficients f11m and f21m for axial force 

P less than, greater than or equal to zero are, 
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where,  
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Appendix 2.B Post-Elastic Stiffness Degradation 

The general force-deformation model in the post-elastic range has been discussed in Section 2.3.1. 

This section presents an approach to determine the degraded stiffness of member sections as a 

consequence of post-elastic flexural, shearing and axial deformations. Corresponding bending, 

shearing and axial force-deformation relationships M-φ, V-γ and P-δ, respectively, are based on 

related experimental results.  

2.B.1 Bending Stiffness Degradation  

To analyze structures with substantial plastic deformations, an inelastic bending moment-rotation 

relationship is required to assess the bending stiffness degradation. The force-deformation 

relationship can be derived from a point-failure criterion such as the von Mises yield condition, or 

from an empirical relationship calibrated by experimental results. This latter approach is adopted 
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herein to determine the parameters for the elliptic moment-rotation model defined in Section 2.3.1. 

Specifically, the test results for a stub beam (Kusuda & Thurlimann, 1958) are used to determine the 

moment-rotation relation for typical steel W-shaped cross-sections. The simply supported stub beam 

with a W10×29 cross-section with English units is portrayed in Figure 2.13, where the small open 

circles indicate pairs of the moment-rotation test values in the central pure bending segment of the 

beam span. The fully plastic moment capacity Mp from the experiment is 140.12 kN-m (1240 kips-

in). Plasticity theory defines the shape factor fs = Mp/My = 1.13 for the W10×29 cross-section. 

However, it is clear from the test results in Figure 2.13 that the initial-yield moment My = 80.6 kN-m 

≠ Mp/1.13 = 140.12 /1.13 = 124 kN-m. To correct this discrepancy, residual stress σr = 0.3σy is 

assumed present such that the initial-yield moment is calculated as My ≈ (1-0.3)×Mp /1.13 = 0.7 x 

140.12/1.13 = 86.8 kN-m. A curve-fitting procedure is applied to determine the M-φ solid-line curve 

drawn in Figure 2.13. This M-φ relationship is discussed in detail in the following.  

Upon excluding elastic deformation φ< φy in Figure 2.13, the M-φ relationship in the inelastic range 

between My and Mp can be modeled by the following nonlinear function that expresses post-elastic 

rotation as, 
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 (2.B.1) 

where parameters e0 and φp are, respectively, defined as the shape parameter and the full-yield 

rotation for the section. From the experimental data in Figure 2.13 for the W10X29 section, the 

rotation at initial-yield of the outer fiber of the beam is φy = 0.00017 radians per unit length, whereas 

the initial-yield moment taking into account residual stress is My = 86.8 kN-m (768 kips-in). From Eq. 

(2.B.1), the full-yield rotation φp is defined as the rotation level at which the idealized full-yield 

moment M= Mp is initially achieved. From the experimental results in Figure 2.13, the full-yield 

moment Mp can correspond to many different φp values because it remains almost constant for 

rotations ranging from 0.002 to 0.003 radians per unit length. It is assumed in this study that the full-

yield rotation is the average value φp = 0.0025 radians per unit length (Grierson et al., 2005; Xu & 

Liu, 2006). Based on the values of My, Mp and φp discussed in the foregoing, the exponent e0 = 4 is 

derived from the curve-fitting procedure. 

Finally, differentiate curvature φ in Eq. (2.B.1) with respect to moment M to find, 



  

  38

0
0 0

1/ 11

1

ee e

p y y

p y p y p y

M M M Md
dM M M M M M M
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 (2.B.2) 

from which post-elastic rotational stiffness Rp is found as, 

0
0 0

1 1/1

1  

ee e

p y y y
p y p

p p y p y

M M M M M MdMR M M M
d M M M M
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 (2.B.3) 

It is noted that Rp = ∞ when post-elastic deformation φ = 0, whereas Rp= 0 when  φ ≥ φp  

2.B.2 Shearing Stiffness Degradation 

The transverse shear stiffness of an inelastic segment can be found from the relationship between the 

shear force and the transverse deflection. Similar to the discussion for the moment-rotation 

relationship of section, the transverse force-deformation relationship is modeled by the following 

elliptic function, 

0
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1/

1 1          0  1 ;   1

ee

y y

p p y p p p

V V V V
V V V V

⎡ ⎤⎛ ⎞ ⎧ ⎫−γ γ⎪ ⎪⎢ ⎥= − − ≤ < ≤ <⎜ ⎟ ⎨ ⎬⎜ ⎟γ − γ⎢ ⎥ ⎪ ⎪⎝ ⎠ ⎩ ⎭⎣ ⎦
 (2.B.4) 

which is interpreted as the relationship between the shear force and the transverse deflection at a 

critical section in the post-elastic range (i.e., excluding the elastic deflection). In Eq. (2.B.4), shear 

deformation γ = inelastic deflection = the difference between the total and initial-yield transverse 

deflections, γp = the plastic limit deflection = the difference between the total plastic and initial-yield 

deflections, and Vy and Vp are the initial-yield shear force and plastic-limit shear force, respectively. 

The initial and full-yield shear forces Vy and Vp are determined by the properties of the cross-section, 

whereas the full-yield transverse deflection γp and shape parameter e0 are determined by the 

experimental results. This subsection illustrates how the parameters in Eq. (2.B.4) are determined 

from test results. Then, the transverse shear stiffness T is derived using the V-γ relationship Eq. 

(2.B.4). To this end, the following experimental-based shear stress-strain relationships (Hall & 

Newmark, 1957) are used,  
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where γ and τ are the shear strain and shear stress, respectively. Although Eqs. (2.B.5) are obtained 

from a limited number of specimens, these shear stress-strain relations have been long used for 

estimating the shear deflections of mild-steel, wide-flange sections (Hall & Newmark, 1957). It can 

be seen from Eqs. (2.B.5) that initial-yield stress τy = 113.685 MPa corresponds to shear strain γy = 

0.00143 mm/mm, and that the fully-plastic stress and strain are τp = 338.299 MPa and γp = 0.3 

mm/mm, respectively.  

For the effective shear area As = tw(d-tf), where tw = web thickness, d = beam depth, tf = flange 

thickness, the shear force on the cross-section can be expressed as V = τAs. The average transverse 

shear deflection can be evaluated as δs = γls, where ls is the length of the inelastic zone of the member. 

Hereinafter, the experiment-based Eqs. (2.B.5) are used to determine the exponent e0 in the elliptic 

model of Eq. (2.B.4). As a result, the non-dimensional V-δs expressions of Eqs. (2.B.5) are written as 

3.4

0.0142 ,            (0  0.00477, 0 0.336)

0.533 0.174,  (0.00477 0.067, 0.336 0.452)

,              (0.067 1, 0.452 1)

p p p

s

sp p p p p

p p p

V V
V V

V V
V V

V V
V V

⎧
γ⎪ ≤ < ≤ <⎪ γ⎪

⎪δ γ γ
= = − ≤ < ≤ <⎨

δ γ γ⎪
⎪
⎛ ⎞ γ⎪ ≤ < ≤ <⎜ ⎟⎪⎜ ⎟ γ⎝ ⎠⎩

 (2.B.6a, b, c) 

where shear force capacity Vp = τyAs. Equation (2.B.6a) represents the linear elastic V-γ relation, and 

Eq. (2.B.6c) represents the nonlinear inelastic V-γ relation, whereas Eq. (2.B.6b) is the linear 

transition between them. It can be seen from Eqs. (2.B.6) that both the elastic deflection limit γ/γp = 

0.00477 and transition limit = 0.067 are negligibly small, compared to the value of 1.0 at the plastic 

limit state. Based on the experimental results given in Eqs. (2.B.6), it is found that γp = 0.3-0.00143 ≈ 

0.3 and Vp ≈ 3Vy.  

The nonlinear regression analysis using the experiment-based datum pairs from Eqs. (2.B.6) as 

observations, determines for the curve defined by Eq. (2.B.4) that the exponent e0 ≈ 1.5. The non-

dimensional V-γ relationship Eq. (2.B.4) is plotted in Figure 2.14 as the solid curve. For the purpose 

of comparison, Eqs. (2.B.6) are graphically shown in the figure as the dashed curve. It is evident from 

Figure 2.14 that Eq. (2.B.4) is in good agreement with the experiment-based expression in Eqs. 

(2.B.6). As such, this study adopts Eq. (2.B.4) and the parameter values discussed in the foregoing to 

model the shear deflection V-γ relationship from the initial-yield state to the fully-plastic state.  
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In the range between the initial-yield and fully plastic states, the transverse shear stiffness T is 

derived by using the shear force-deflection relationship Eq. (2.B.4). To this end, upon differentiating 

Eq. (2.B.4) with respect to γ, the transverse shear stiffness T of a cross-section is found to be,  

0
0

1/

1

ee

p y p y p y

p y y

V V V V V VdVT
d V V V V

⎡ ⎤⎛ ⎞− − −⎢ ⎥= = − ⎜ ⎟⎜ ⎟⎢ ⎥γ γ − −⎝ ⎠⎣ ⎦
 (2.B.7) 

For exponent e0 = 1.5, Eq. (2.B.7) yields transverse shear stiffness values that match with preceding 

experiment-based results (Hall & Newmark, 1957). It can be seen from Eqs. (2.B.7) that the cross-

section of the member remains elastic (i.e., T = ∞) until the applied shear force reaches Vy, whereas 

the section becomes fully plastic and the shear stiffness degrades to zero (i.e., T = 0) when V = Vp.  

2.B.3 Axial Stiffness Degradation 

The axial stiffness of an inelastic segment is derived from the axial force-deformation relationship in 

the post-elastic range. As discussed in Section 2.B.1 and 2.B.2, the axial force-deformation 

relationship is modeled by the following elliptic function, 

0
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1/

1 1          0  1 ;   1

ee

y y

p p y p p p

P P P P
P P P P

⎡ ⎤⎛ ⎞ ⎧ ⎫−δ δ⎪ ⎪⎢ ⎥= − − ≤ < ≤ ≤⎜ ⎟ ⎨ ⎬⎜ ⎟δ − δ⎢ ⎥ ⎪ ⎪⎝ ⎠ ⎩ ⎭⎣ ⎦
 (2.B.8) 

where the axial force = P, initial yield axial force Py = (σy -σr)A (where σr is the axial residual stress), 

the full-yield axial force Pp = σy A, the post-elastic axial deformation δ = the difference between the 

inelastic and initial-yield axial deformations, and the plastic limit deformation δp = the difference 

between the limit plastic and initial-yield deformations. This section presents an approach to 

determine deformation δp and exponent e0 using on the experimental results. 

The experimental results for a stub column (Huber & Beedle, 1954) are employed to determine the 

parameters in the axial force-deformation model Eq. (2.B.8). The stub column has length of 83.82 cm 

(33″) and W8×31 section with yield-stress σy = 248 MPa (36 ksi), as shown in Figure 2.15, where the 

small open circles indicate the axial load-deformation test values. Initial yielding is observed at a 

strain of 0.0015, and local buckling of the flange occurs at a strain of 0.0047. From nonlinear 

regression analysis based on the data in the range between initial-yielding and full-yielding, the 

exponent value e0 = 2.5 is found for the normalized axial force-deformation relation Eq. (2.B.8). 

When elastic limit strain δy /33″ = 0.0015 and plastic limit strain δp /33″ = 0.0047, axial force-

displacement P-δ relation Eq. (2.B.8) is plotted in Figure 2.15 as the solid-line curve; it is clear from 

the figure that Eq. (2.B.8) is in good agreement with the experimental results. Equation (2.B.8) is 
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employed in this study to model the P-δ transition curve from initial-yield state to the full-plastic 

state.  

The axial stiffness N of a member is found by differentiating Eq. (2.B.8) with respect to δ to get, 

0
0

1/

1

ee

p y p y p y

p y y

P P P P P PdPN
d P P P P

⎡ ⎤⎛ ⎞− − −
⎢ ⎥= = − ⎜ ⎟⎜ ⎟δ δ − −⎢ ⎥⎝ ⎠⎣ ⎦

 (2.B.9) 

where δp and Py are determined from the experimental results. For example, δp = (0.0047-0.0015) 

(33×25.4 mm) = 0.2268 mm, and Py = 0.7 Pp are determined from the experimental results of Huber 

and Beedle (1954). Recall also that the exponent e0 = 2.5 has been previously determined from the 

experimental results. 
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Figure 2-1 Force-deformation due to end rotation 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Deformations of a differential segment 
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Figure 2-3 Flexibility coefficients and member-end numbering 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 Force-deformation due to end translation 
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Figure 2-5 Column with different end constraints 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6 Relative difference of critical load due to shear deformation 
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Figure 2-7 Fixed-end reactions and deflections due to transverse loading 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Force-deformation relationship in the post-elastic range 
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Figure 2-9 Bending member model 
 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 Shearing member model 
 

 

 

 

 

 

 

 

Figure 2-11 Axial member model 
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Figure 2-12 Flexibility coefficients due to unit end moment 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

Figure 2-13 Experimental-based moment-rotation curve (Kusuda & Thurlimann, 1958) 
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Figure 2-14 Experimental-based shear force-transverse deflection curve 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15 Experimental-based axial force-deformation curve (Huber & Beedle, 1954) 
 

 

 

Hall and Newmark 
(1957) 

Curve fitted 

Normalized deflection γ/γp 

N
or

m
al

iz
ed

 sh
ea

r f
or

ce
 V

/V
p 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 0.2 0.4 0.6 0.8 1



  

  49

 

 

Table 2.1 Effect of shear deformation on critical loads (%) 
 

L/rs Free-fix Pin-pin Pin-fix Fix-fix 

10 -9.92 -17.46 -29.43 -57.38 

20 -2.77 -5.71 -11.22 -28.52 

30 -1.26 -2.63 -5.50 -15.96 

40 -0.72 -1.55 -3.14 -9.93 

50 -0.46 -1.01 -1.97 -6.70 

60 -0.32 -0.70 -1.32 -4.79 
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Chapter 3 
Nonlinear Analysis of Steel Frameworks 

This chapter presents the derivation of a generalized member stiffness matrix for nonlinear analysis. 

Stiffness degradation under combined stress states is investigated using a nonlinear analysis 

procedure based on the Euler incremental method with a gradually decreasing step size. The nonlinear 

method of analysis is illustrated for two benchmark planar steel structures that have been studied in 

the literature (Driscoll & Beedle, 1957; Clarke, 1994; Attalla et al., 1994; Iffland & Birnstiel, 1982).  

3.1 Nonlinear Member Stiffness Matrix 

Consider a planar steel framework that is discretized as an assembly of beam-column members with 

compact sections, for which plastic deformation is not precluded by local buckling (AISC, 2001). The 

effect of the out-of-plane torsion of a member is ignored in the analysis. Plastic bending, shearing or 

axial deformation D (= φ, γ or δ) related to moment, shear or axial force F (= M, V or P) is assumed to 

be concentrated at member sections. From the conventional matrix Displacement Method of analysis 

(McGuire, 2000), the end force-displacement relationship for the hybrid beam-column member in 

Figure 3.1 is symbolically expressed as in compact matrix form as,  

kdf =  (3.1.1) 

where d = [d1 d2 d3 d4 d5 d6]T is the nodal displacement vector corresponding to end-force vector f = 

[f1 f2 f3 f4 f5 f6]T. The member stiffness matrix k is represented in general form as, 
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k  (3.1.2) 

In Figure 3.1, L = member length, E = material Young’s modulus, G = material shear modulus, I = 

cross-section moment of inertia, A = cross-section area, and As = equivalent shear area. Furthermore, 

from Chapter 2, Rj, Tj and Nj (j =1, 2) are the post-elastic rotational bending, transverse shearing and 

normal axial stiffnesses at the two member-end sections, respectively, while rj, tj and nj (j =1, 2) are 

the corresponding bending, shearing and axial stiffness degradation factors. 
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3.2 Derivation of Member Stiffness Coefficients 

The non-zero stiffness coefficients kij (i, j = 1, 2,…, 6) in Eq. (3.1.2) are derived in the following, with 

account for geometrical nonlinearity, shear deformation, and flexural, shear and axial stiffness 

degradation.  

3.2.1 Stiffness Coefficients due to End Rotations 

Figure 3.2 (a) indicates stiffness coefficients kij that account for the influence of axial load P along 

with rotational and transverse stiffness degradation due to plasticity. Rotational bending stiffness Rj 

and transverse shearing stiffness Tj (j = 1, 2), and corresponding flexural and shearing degradation 

factors rj and tj , are also shown in the figure. The Displacement Method is applied in the following to 

find the stiffness coefficients. 

Consider the primary structure in Figure 3.2 (b). Quantities (FES)j, (j = 1, 2) denote fixed-end 

shearing forces due to unit rotation d3 = 1 is imposed at end 1, and are given by  

rkFESFES 2321 )()( =−=  (3.2.1) 

where kr
23 is defined by Eq. (3.A.16) in Appendix 3.A. When the vertical unit deflection Y1 = 1 is 

imposed at joint 1 in Figure 3.2 (c), the transverse stiffness coefficients s11 and s21 are given by, 

12211 Tks r +=  (3.2.2a) 

rkss 221221 −==  (3.2.2b) 

where kr
22 is given by Eq. (3.A.20) in Appendix 3.A. Similarly, when Y2 = 1 is imposed at end 2 as 

shown in Figure 3.2(d), the stiffness coefficient s22 is given by, 

22222 Tks r +=  (3.2.3) 

Having Eqs. (3.2.1), (3.2.2) and (3.2.3), the equilibrium equations related to joint displacements Y1 

and Y2 in Figure 3.2(a) can be written as, 
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and solved to find the joint displacements, 
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 (3.2.5)  

Having Y1 and Y2, the stiffness coefficient k33 is given by, 
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which accounts for geometric and material nonlinearities associated with member shear deformation. 

It is noted that when there is no post-elastic transverse shear stiffness degradation (T1 = T2 = ∞), Eq. 

(3.2.6) reduces to the kr
33 coefficient given by Eq. (3.A.13) in Appendix 3.A.  

To further simplify Eq. (3.2.6), from Eqs. (3.A.13), (3.A.16) and (3.A.20) in Appendix 3.A it can 

be shown that, 
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where 

)2(4 212121

21
1 tttttt

tt
−+β+

=χ  (3.2.9) 

is a factor accounting for the effect of the degraded transverse shear stiffness. Parameter β is a 

modified deflection stiffness factor, introduced for the storey-based analysis of frameworks (Xu & 

Liu, 2002; Liu & Xu, 2005), and is defined as, 

rk
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L
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3

12
=β  (3.2.10) 

Other parameters are defined in Chapter 2 and Appendix 3.A. 

By substituting Eqs. (3.2.7) and (3.2.8) into Eq. (3.2.6), the stiffness coefficient k33 is concisely 

written as, 

23333 χ= rkk  (3.2.11) 
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 (3.2.12) 

is a modifying factor that accounts for the effect of shear stiffness degradation. It is noteworthy that 

χ2 = 1 when χ1 = 1, thereby indicating no shear stiffness degradation. 



  

  53

In a similar manner to the derivation of Eq. (3.2.11), the stiffness coefficient k63 at end 2 is found 

as,  

3632651626363 χ=++= rrrr kYkYkkk  (3.2.13) 

where kr
63 and kr

65 are given by Eqs. (3.A.19) and (3.A.18), and the parameter χ3 is given by,  
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 (3.2.14) 

which is a modification factor that accounts for the interaction between flexural bending and 

transverse shearing stiffness degradations.  

From transverse equilibrium at end 1 in Figure 3.2 (a), the transverse stiffness coefficients 

associated with end-rotation d3 = 1 are,  
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Having the stiffness coefficients associated with rotation d3 = 1 at end 1 of the member, the stiffness 

coefficients associated with rotation d6 =1 at end 2 are obtained analogically. From Eq. (3.2.11),  

46666 χ= rkk  (3.2.16) 

where kr
66 is defined by Eq. (3.A.17) in Appendix 3.A, and by exchanging subscripts 1 and 2 of the 

flexural degradation factors r in Eq. (3.2.12) the modification factor χ4 is given by, 
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 (3.2.17) 

Similar to that for Eq. (3.2.15), the transverse stiffness coefficients due to rotation d6 = 1 at end 2 

are given by, 

26 26 1 56
rk k k= χ = −  (3.2.18) 

3.2.2 Stiffness Coefficients due to End Translations 

When unit translation d2 = 1 is imposed at end 1 of the member as indicated in Figure 3.3 (a), the 

corresponding stiffness coefficients can be found by the Displacement Method of analysis. To this 

end, the corresponding primary structure with two unknown transverse displacements Y1 and Y2 is 

taken to be as shown in Figure 3.3 (b). The fixed-end transverse forces are written as, 

11)( TFES =  (3.2.19a) 
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0)( 2 =FES  (3.2.19b) 

where (FES)j (j = 1, 2) is the transverse reaction of end j due to unit displacement Y1, while T1 is the 

corresponding post-elastic shear stiffness of the spring. 

Note that the stiffness coefficients associated with unit translations Y1 = 1 and Y2 = 1 are the same as 

those in Figures 3.2 (c) and (d), respectively. Therefore, the equilibrium condition Eq. (3.2.4) can be 

directly applied upon replacing the right-hand side by Eqs. (3.2.19) to get, 
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which can then be solved to find the transverse deflections, 

⎭
⎬
⎫

⎩
⎨
⎧ +

++
=

⎭
⎬
⎫

⎩
⎨
⎧

222

222

22212

1

/
/1

1)/1/1(
1

Tk
Tk

kTTY
Y

r

r

r  (3.2.20) 

From Figures 3.2 (c, d) and 3.3 (b), the stiffness coefficient k22 is expressed as, 
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Similarly, it is shown that stiffness coefficient k52 = -k22. Also, from the Maxwell reciprocal theorem, 

k32 = k23 and k62 = k26 (all of which have been defined in the preceding section). Finally, the stiffness 

coefficients associated with unit translation d5 = 1 alone imposed at the beam right end in Figure 3.3 

are analogically determined. For example, k55 = k22 from Eq. (3.2.21) since T1 and T2 are in a 

symmetric position. The rest of the stiffness coefficients are readily determined through the Maxwell 

reciprocal theorem. 

3.2.3 Stiffness Coefficients due to Axial Displacement 

In the preceding sections, member stiffness coefficients have been derived accounting for the effects 

of flexural bending and transverse shearing stiffness degradations due to inelastic behaviour. As post-

elastic axial stiffness degradation can sometimes also be significant under heavy axial loading, the 

effect is taken into account in this section. 

The analytical member model is represented in Figure 3.4 (a), where Nj (j = 1, 2) are normal axial 

stiffness in the inelastic range, and nj (j = 1, 2) are corresponding axial-stiffness degradation factors. 

The problem under consideration is to find the axial stiffness coefficient (end reaction) k11 when end 1 

is displaced a unit distance along the member axis, as shown in Figure 3.4 (a). The Force Method of 
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analysis is employed to this end, for which the primary structure is selected as shown in Figure 3.4 

(b). Displacement f11 under unit force F = 1 is expressed as, 

11
1 2

1 1Lf
N EA N

= + +  (3.2.22a) 

where L/EA  is elastic deformation, and 1/Ni (i = 1, 2) are plastic deformations. From Eq. (2.3.6) in 

Chapter 2, Eq. (3.2.22a) can be rewritten as, 

 1 2 1 2
11

1 2

2 n n n n Lf
n n EA

+ − −
=  (3.2.22b) 

Therefore, from Eq. (3.2.22b), the axial stiffness at member end 1 is, 

11 0
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1 EAk
f L

= = χ  (3.2.23) 

where, 
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is referred to as an axial stiffness-reduction coefficient. If χ0 = 1 there is no axial stiffness reduction, 

while if χ0 = 0 the axial stiffness is reduced to zero. Due to symmetry, the same axial stiffness 

coefficient as in Eq. (3.2.23) is obtained when a unit displacement is alternatively imposed at end 2 of 

the beam in Figure 3.4.  

3.2.4 Summary of Stiffness Coefficients 

In the foregoing, all of the non-zero stiffness coefficients kij (i, j = 1, 2,…, 6) in the member stiffness 

matrix Eq. (3.1.2) have been derived accounting for geometrical nonlinearity, shear deformation, and 

flexural, shear and axial stiffness degradation;i.e., as given by Eqs. (3.2.11), (3.2.13), (3.2.15), 

(3.2.16), (3.2.18), (3.2.21), and (3.2.23). A summary listing of the coefficients is given in the 

following.  

11 11 0 44 14 41
ak k k k k= χ = = − = −  (3.2.25a) 

52255512222 kkkkk r −=−==χ=  (3.2.25b) 

53353212323 kkkkk r −=−==χ=  (3.2.25c) 

65566212626 kkkkk r −=−==χ=  (3.2.25d) 

23333 χ= rkk  (3.2.25e) 
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6333636 kkk r =χ=  (3.2.25f) 

46666 χ= rkk  (3.2.25g) 

where, 

k
a
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in which,  

1 / tan         0
tan( / 2) /( / 2) 1

1 / tanh      0 
tanh( / 2) /( / 2) 1

P
b

P

−ψ ψ⎧ ≤⎪ ψ ψ −⎪= ⎨ −ψ ψ⎪ >
⎪ ψ ψ −⎩

 (3.2.27a) 



  

  57
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3.3 Combined Stress States 

For the analysis model presented so far, a steel beam-column member that experiences post-elastic 

behaviour due to individual moment, shear or axial force effects has alone been examined. For a steel 

building frame, however, column members are often subjected to significant bending moment plus 

axial force effects, while beam members may experience significant moment and shear force effects. 

Accordingly, the proposed analysis model is extended in this section to account for post-elastic 

behaviour due to combined flexural + axial and flexural + shear stress states.  

3.3.1 Bending Moment plus Axial Force 

Under some combination of applied bending moment M and axial force P, the initial yielding of a 

member section is governed by the normalized initial-yield criterion, 
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M P
M P

+ =  (3.3.1) 

Residual stresses due to cooling, rolling, welding, punching, etc., can significantly affect the initial 

yield of materials. Specifically, residual stresses can cause member yielding at loads lower than those 

predicted by usual stress analysis. The stresses can also lower the ultimate capacity by inducing 

premature local or global buckling of compressive members (Huber & Beedle, 1954). Generally, 

residual stress σr is about 68.9 MPa (10 ksi) for a steel cross section. The yield stress σy for hot-rolled 

shapes considered in this study is in the range of 248 MPa (36ksi) to 345 MPa (50 ksi). Thus, residual 

stress σr = (68.9/248~68.9/345)σy = 20%~30%σy. In this study, residual stress σr is taken as 

approximately 30%σy. For compressive residual stress in the flanges of W-shaped sections, the 

LRFD-05 specification (AISC, 2005) requires σr = 68.9 MPa (10 ksi) for rolled shapes, and σr = 

113.7 MPa (16.5 ksi) for welded shapes. Following current code practices, this study assumes the 

residual normal stress is σr = 0.3σy, such that the initial-yield normal stress becomes σyr = σy−σr = 

0.7σy. Consequently, the initial-yield moment in Eq. (3.3.1) is My = 0.7σy Sz, where Sz is the elastic 

modulus of the cross-section, while the initial-yield axial force is Py = 0.7σy A in tension or 

compression, where A is the cross-section area. 

If the effect of strain hardening is neglected, residual stress does not affect the plastic limit capacity 

(Huber & Beedle, 1954). Thus, the moment and axial force full-yield capacities are Mp = σy Zz and Pp 

= σy A, respectively, where Zz is the plastic section modulus. 

Based on experimental and theoretical results, the full yielding of a cross-section is assumed to be 

governed by the following normalized full-yield criterion, 

1
P P

M P
M P

η
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

 (3.3.2) 

where the exponent η in Eq. (3.3.2) depends on the shape of the member section; for example, η = 

1.3 for a steel wide-flange section (Duan & Chen, 1990). The post-elastic response domain for the 

member section is indicated as the shaded area in Figure 3.5, bounded by Eq. (3.3.1) plotted as the 

linear initial-yield line, and by Eq. (3.3.2) plotted as the nonlinear full-yield line (for specified 

exponent η). It remains to establish the influence that combined bending moment M plus axial force P 

have on the post-elastic bending and axial stiffnesses of the member. To this end, the post-elastic 

response domain in Figure 3.5 is divided into the three regions defined in Figure 3.6 by the following 

three angles, 
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90MP M Pθ = − θ − θ  (3.3.3c) 

where, as indicated in Figure 3.6: the region defined by angle θM is assumed to correspond to 

combinations of M plus P that influence only post-elastic bending stiffness (since full yielding of the 

section in this region of the response domain occurs for M ≥ My  while P < Py); the region defined by 

angle θP  is assumed to correspond to combinations of M plus P that influence only post-elastic axial 

stiffness (since full yielding in this region occurs for P ≥ Py while M < My); finally, the region defined 

by angle θMP is assumed to correspond to combinations of M plus P that influence both post-elastic 

bending stiffness and post-elastic axial stiffness (since full yielding in this region occurs for M ≤ My 

and P ≤ Py).  

As seen in Figure 3.5, the region of influence in the post-elastic response domain for a particular 

combination of moment M plus axial force P is defined by the angle of inclination θ of the straight 

line that passes through origin point Oo , and points Oy and Op corresponding to the initial yield and 

full yield of the section, respectively. The straight line between initial-yield point Oy and full-yield 

point Op is used to approximately determine the parameters Mpr and Ppr in the stiffness degradation 

model. Figure 3.5 indicates that point Oy corresponds to the reduced initial-yield moment and axial 

force capacities Myr and Pyr, respectively. Whereas point Op corresponds to the reduced full-yield 

moment and axial force capacities Mpr and Ppr, respectively. The angle of inclination of line Oo-Oy-Op 

in Figure 3.5 is readily found as, 
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Depending on the value of angle θ from Eq. (3.3.4), and the values of angles θM , θP and θMP from 

Eqs. (3.3.3), the bending or/and axial stiffness degradation factor/s (see Appendix 3.A) for the 

member-end section is/are evaluated as follows: a) if 0 ≤ θ < θM , set F = M, Fy = Myr , Fp = Mpr , D = 

φ, Dp = φp and e0 = 2 in Eqs. (2.3.2)-(2.3.3) to find bending stiffness degradation factor sdf = r ≤ 1; b) 

if 90°– θP < θ ≤ 90°, set F = P, Fy = Pyr, Fp = Ppr, D = δ, Dp = δp, e0 = 2.5 in Eqs. (2.3.2)-(2.3.3) to find 

axial stiffness degradation factor sdf = n ≤ 1; and 3) if θM ≤ θ ≤ θM+θMP , proceed as in the foregoing 

to find both bending stiffness degradation factor sdf = r ≤ 1 and axial stiffness degradation factor sdf 
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= n ≤ 1. Finally, the calculated r or/and n value/s is/are substituted into the relevant stiffness 

coefficient expressions derived in the previous section, thereby modifying the member stiffness 

matrix k defined by Eq. (3.1.2) to account for the influence that the combination of bending moment 

M plus axial force P has on the post-elastic stiffness of the member. 

3.3.2 Bending Moment plus Shear Force 

Under some combination of applied bending moment M and shear force V, the initial-yielding of a 

member section is approximately governed by the normalized first-yield criterion, 

1
y y

M V
M V

+ =  (3.3.5) 

where the initial-yield moment My is the same as that for the case of moment-axial force interaction 

discussed in the previous section. It is assumed that the residual shear stress τr = 0.05τy, such that the 

initial-yield shear stress τry = 0.95τy. The full yielding of the cross section is considered to be 

governed by the normalized full-yield criterion (Heyman & Dutton 1954), 
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where the moment and shear force initial-yield and full-yield capacities (My, Vy) and (Mp, Vp), 

respectively, account for residual stresses. In Eq. (3.3.6), the coefficient C1=Aw/(2A – Aw) for a wide-

flange section with total area A and web area Aw (e.g., C1 = 0.2 when Aw= A/3). The post-elastic 

response domain for the member section is the shaded area in Figure 3.7, bounded by Eq. (3.3.5) 

plotted as the linear first-yield line, Eq. (3.3.6) plotted as the nonlinear full-yield line (for specified 

coefficient C1), and the linear full-yield in shear line V/Vp=1.  

It remains to establish the influence that combined bending moment M plus shear force V have on 

the post-elastic bending and shear stiffnesses of the member. To this end, the post-elastic response 

domain in Figure 3.7 is divided into the three regions defined in Figure 3.8 by the following three 

angles, 
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The region defined by angle ΘM is assumed to correspond to combinations of M plus V that influence 

only the post-elastic bending stiffness (since full yielding of the section in this region of the response 

domain occurs for M > My while V ≤ Vy); the region defined by angle ΘV  is assumed to correspond to 

combinations of M plus V that influence only the post-elastic shearing stiffness (since full yielding in 

this region occurs for V = Vp while M ≤ My); finally, the region defined by angle ΘMV is assumed to 

correspond to combinations of M plus V that influence both the post-elastic bending stiffness and the 

post-elastic shearing stiffness (since full yielding in this region occurs for M ≥ My and V ≥ Vy).  

As shown in Figure 3.7, the region of influence in the post-elastic response domain for a particular 

combination of moment M plus shear force V is defined by the angle of inclination Θ of the straight 

line that passes through origin point Oo, and points Oy and Op corresponding to initial yield and full 

yield of the section, respectively. Figure 3.7 indicates that point Oy corresponds to reduced initial-

yield moment and shear force capacities Myr and Vyr, respectively, and point Op corresponds to 

reduced full-yield moment and shear force capacities Mpr and Vpr, respectively. The angle of 

inclination of line Oo-Oy-Op in Figure 3.7 is found to be, 
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Depending on the value of angle Θ from Eq. (3.3.8), and the values of angles ΘM , ΘV and ΘMV from 

Eqs. (3.3.7), the bending or/and shearing stiffness degradation factor/s (see Appendix 3.A) for the 

member end-section is/are evaluated as follows: a) if 0 ≤ Θ< ΘM , set F = M, Fy = Myr , Fp = Mpr , D = 

φ, Dp = φp and e0 = 2 in Eqs. (2.3.2)-(2.3.3) to find bending stiffness degradation factor sdf = r ≤ 1; b) 

if 90°– ΘV < Θ ≤ 90°, set F = V, Fy = Vyr , Fp = Vpr , D = γ, Dp = γp and e0 = 1.5 in Eqs. (2.3.2) and 

(2.3.3) to find shearing stiffness degradation factor sdf = t ≤ 1; and c) if ΘM ≤ Θ ≤ ΘM + ΘMV, proceed 

as in the foregoing to find both bending stiffness degradation factor sdf = r ≤ 1 and shearing stiffness 

degradation factor sdf = t ≤ 1. Finally, the calculated r or/and t value/s is/are substituted into the 

corresponding stiffness coefficient expressions derived in the previous section, thereby modifying the 

member stiffness matrix k defined by Eq. (3.1.2) to account for the influence that the combination of 

bending moment M plus shear force V has on the post-elastic stiffness of the member. (Note that the 

smaller of the two r values calculated for the M+P and M+V combinations should be adopted so as to 

conservatively account for the maximum degradation of the member stiffness). 
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3.4 Nonlinear Analysis Procedure 

Having the local-axis stiffness matrix k for each framework member from Sections 3.1 and 3.2, the 

corresponding global member stiffness matrix is readily obtained using conventional matrix 

transformation techniques (McGuire et al., 2000). Then, the structural stiffness matrix K is assembled 

by direct summation of the global member stiffness matrices. The incremental (tangent-stiffness) 

equilibrium equation for any load increment of the nonlinear analysis procedure is expressed as, 

∆ = ∆K D F  (3.4.1) 

where K, ∆D and ∆F are the tangent stiffness matrix, incremental displacement vector and 

incremental equivalent-joint-load vector, respectively. The Euler incremental method is employed to 

solve Eqs. (3.4.1). 

The single-step Euler method is computationally simple and efficient, but a drift-off error may 

occur in the nonlinear analysis procedure. To reduce this error, a strategy for gradually reducing the 

increment-step size is adopted. A load-factor increment ∆λi is introduced to facilitate the formation of 

the equivalent joint load vector ∆Fi applied to the structure at the ith incremental-step of the analysis. 

A load-factor increment ∆λ is introduced to facilitate the identification of the load levels at which the 

plastic deformation of the members is initiated. While the single-step Euler method is 

computationally simple and efficient, a drift-off error may occur over the incremental load history. To 

reduce this error, a strategy for gradually reducing the increment-step size is adopted. The magnitude 

of the load-factor increment is decreased over the loading history whereby the initial step size is 

specified to be, 

*
1∆λ = ∆λ   (3.4.2a) 

while, thereafter, 

*
1(1 )i i−∆λ = ∆λ − ∆λ    (i = 2, 3 ...) (3.4.2b) 

where ∆λ* < 1 is an initially specified small value (say 0.05), selected to ensure first-order linear-

elastic behaviour of the structure for the first load increment. If the structure stiffness matrix Ki is 

non-singular for the ith load increment, Eq. (3.4.1) is solved for the incremental nodal displacements 

∆Di. Incremental member-end forces ∆fi for each member are then determined. Total nodal 

displacements Di at the end of the ith load increment are found as, 

iii DDD ∆+= −1  (3.4.3) 

while the corresponding internal member forces fi are, 

iii fff ∆+= −1  (3.4.4) 
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The initial-yield and full-yield conditions for each member-end section are checked to detect plastic 

behaviour and, if occurring, the corresponding bending, shearing and axial stiffness degradation 

factors (r, t, n) are found and applied to modify member stiffness matrices k and, consequently, the 

structure stiffness matrix Ki at loading level i for the analysis. 

The incremental load factor ∆λi is accumulatively recorded to identify the loading level λf for the 

corresponding total loads, i.e., 

...] )1...( )1()1([1 *2***

1
+λ∆−+λ∆−+λ∆−+λ∆=λ∆=λ ∑

=

i

i
if  (3.4.5) 

The incremental-load analysis procedure continues until either a specified load level λf is reached 

(i.e., final λf = Σ∆λi = 1) without structural collapse, or the structure stiffness matrix Ki, at some step 

becomes singular as a consequence of the failure of part or all the structure at a lower load level (i.e., 

λf = Σ∆λi < 1). Typically, the specified load level at λf = 1 is dictated by design code requirements. If 

the structure does not fail at load level λf = 1, and if required, the analysis can be continued to a 

higher load level (i.e., λf > 1) until failure of the structure occurs (see Examples in the next section). 

The nonlinear analysis procedure is illustrated by the flowchart in Figure 3.9. The analysis results 

include the values of bending, shearing and axial post-elastic stiffness degradation factors r, t and n, 

respectively, indicating the extent of plastic deformation of the members. Further computational 

details are provided by the analysis examples presented in the following section.  

3.5 Example Studies 

The incremental-load procedure of nonlinear analysis is illustrated in the following for two example 

structures consisting of steel beam-column members with wide-flange cross-sections. The first 

example is a two-span continuous beam, for which the analytical results found by using Timoshenko 

beam theory are compared with known experimental test results (Driscoll & Beedle, 1957) and other 

analytical results that are found by applying Euler-Bernoulli beam theory (McGuire et al., 2000). The 

second example is a low-rise steel building framework, the nonlinear analysis of which has been 

extensively studied in the literature (Clarke, 1994; Ziemian et al., 1992; Attalla et al., 1994). 

For both examples, the exponent in Eq. (2.4.1) is taken as e0 = 2, 1.5 or 2.5 when force F = M, V or 

P, respectively, values that were obtained by curve-fitting test results reported by several 

experimental investigations (Lay & Galambos, 1964; Kusuda & Thurlimann, 1958; Hall & Newmark, 

1957). Plastic deformation Dp in Eq. (2.4.1) is taken as φp= 0.0025 radians (Attalla et al., 1994; 

Kusuda & Thurlimann, 1958), parameter γp= 0.3 when force F = V (Hall & Newmark 1957), and 
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parameter δp= 0.0032 x member length when force F = P (Lay & Galambos, 1964). In Eq. (3.3.2) the 

exponent is taken as η =1.3 (Duan & Chen, 1990). The material normal-yield stress σy = 247.3 MPa 

(35.9 ksi) for the beam, as determined by experiments (Lay & Galambos 1964), and σy = 248 MPa 

(36 ksi) for the two-bay by two-storey frame, while the material shear-yield stress τy = 0.5σy (Tresca 

criterion). The residual stresses are taken as σrc = 0.3σy for compressive normal stress, σrt = 0.15σy 

for tensile normal stress (AISC, 2001; Huber & Beedle, 1954), and τr = 0.05τy for shear stress (See 

Appendix 6.B). 

The nonlinear analysis results include the values of the bending, shearing and axial post-elastic 

stiffness degradation factors r, t and n for the member sections at which plastic deformation occurs. If 

the plastic deformation is related to degraded bending, shearing or axial stiffness, the member section 

is designated by a circle, triangle or square symbol (Ο, ∇, or ), respectively. Otherwise, the section 

is designated by a circle inscribed in a triangle if the plasticity is associated with both degraded 

bending and shearing stiffness, or by a circle inscribed in a square if associated with degraded 

bending and axial stiffness. For a member section that experiences plastic deformation over its entire 

surface area, the designation symbol has a black infill to indicate that the section has reached a state 

of zero post-elastic stiffness (i.e., r = 0, and/or t = 0, and/or n = 0); for example, if r = 0 where t = n 

= 1, the section is designated by a black-infill circle (the classic representation of a plastic-hinge 

section). Contrarily, if a section has experienced only partial plasticity over its surface area, the 

designation symbol is left open with a number inscribed in it that indicates the percentage of plastic 

deformation, calculated as %Plasticity = 100 (1– r, t or n). For example, if r = t = 1, while n < 1, the 

section is designated by 100(1– n), inscribed in an open square (e.g., see Example 2).  

3.5.1 Two-Span Continuous Beam 

Consider the two-span continuous beam subjected to the pattern of concentrated point loading in 

Figure 3.10 (Driscoll & Beedle 1957). For the purpose of this illustration, the total target load is taken 

as W = 1000 kN. The steel beam has a wide-flange W12×36 section (NA traditional) with the 

following properties: section depth d = 312.42 mm (12.30 in), flange width bf = 168.275 mm (4.625 

in), flange thickness tf = 13.056 mm (0.514 in), web thickness tw = 8.560 mm (0.337 in), section area 

A = 6954.82 mm2 (10.78 in2), moment of inertia I = 117.42 × 106 mm4 (282.1 in4), plastic modulus Z 

= 848.69 × 103 mm3 (51.79 in3), and shape factor f = 1.13. The moment and shear capacities are Mp = 

Zσy = 210 MPa and Vp = Awσy/1.732 = 351 kN, respectively, and the axial force P = 0 for the beam. 

Plastic deformation can occur at each load point B, C, E and F, and at central support point D (i.e., the 
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beam is modeled by six elements). The results from the nonlinear analysis method are illustrated in 

Figure 3.11, and compared with the results of other studies in Figures 3.12 and 3.13. 

The nonlinear incremental-load analysis terminates when the beam fails at load factor level λf = 

0.996 (i.e., at total load level λf × W = 0.996×1000 = 996 kN). The analysis results are illustrated in 

Figure 3.11 where, in view of symmetry, the information for the right span of the symmetrical beam 

is alone shown. From the loading history up to failure, the beam develops two fully-plastic sections at 

points D and F (designated by the black infill symbols in Figure 3.11 (a)) at load-factor levels λ = 

0.992 and 0.996, respectively. The plastic deformation of plastic-hinge section D is associated with 

both fully degraded bending stiffness and fully degraded shear stiffness (i.e., r = t = 0 and n = 1), 

because the M-V stress state for the section (see Figures 3.11 (b) and (c)) lies in the region defined by 

angle ΘMV in Figure 3.8. The plastic deformation of plastic-hinge section F is associated with fully 

degraded bending stiffness alone (i.e., r = 0 and t = n = 1), because the M-V stress state for the 

section (see Figures 3.11 (b) and (c)) exists in the region defined by angle ΘM in Figure 3.8. As a 

consequence of the combined M-V influence on plastic behaviour at point F (see Eq.(3.3.6)), note 

from Figure 3.11 that a 100% fully-plastic flexural hinge forms to the right of point F where the larger 

shear force is, while a 93% partially-plastic flexural hinge forms to the left of the point (i.e., r = 0.07 

and t = n = 1). Note that section E also experiences two types of plastic behaviour as a result of the 

abrupt change in shear there; i.e., the M-V stress states to the right and left of point E lie in the regions 

defined by angles ΘM and ΘV in Figure 3.8, respectively, such that a 59% partially-plastic flexural 

hinge forms to the right (i.e., r = 0.41 and t = n = 1)  while a 77% partially-plastic shear hinge forms 

to the left (i.e., t = 0.23, and r = n = 1). As indicated in Figure 3.11(d), the vertical deflection of point 

F reaches a value of δF = 12.42 mm at the instance of incipient failure of the beam (i.e., the incipient 

formation of a classic rigid-body mechanism involving plastic hinges at sections D and F). 

The variation in the vertical deflection of point F of the beam during the incremental loading 

process is defined by the solid line in Figure 3.12. The beam remains stable until 99.6% of total load 

W =1000 kN is applied, at which point, δF begins to increase indefinitely without any further increase 

in load (numerically, this failure event is characterized by the beam stiffness matrix K becoming 

singular as the stiffness coefficient associated with vertical deflection of point F tends to zero at load-

factor level λf = 0.996). Also shown in Figure 3.12 are experimental test results found for the same 

beam by Driscoll and Beedle (1957). It is observed that vertical deflections δF predicted by the 

proposed analysis method over the loading history are in good agreement with those obtained from 

the experimental measurements. 
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The experimental tests conducted by Driscoll and Beedle (1957) determined that shear had a 

significant influence on both the elastic and plastic behaviour of the beam. They observed that beam 

deflections related to transverse shear deformations were of the same order of magnitude as those 

associated with flexural deformations. The experimentalists also reported that a shear yielding stress 

was observed near the centre support D at a load level which was less than that causing flexural 

yielding. Presented in the following are analytical results found by this study that demonstrate the 

influence that shear has on the behaviour of the beam. 

The analytical results in Figures 3.11 and 3.12 reflect the combined influence that bending and 

shearing have on plastic behaviour, and are found by using Timoshenko beam theory to account for 

the effect that shear deformation has on elastic behaviour. The corresponding results in Figure 3.12 

are reproduced in Figure 3.13 (i.e., the lowest curve). It is readily possible to conduct the same 

analysis according to Euler-Bernoulli beam theory by setting the beam shear stiffness GAs = ∞, 

thereby effectively eliminating the effect of shear deformation on elastic behaviour. The 

corresponding analytical results are shown in Figure 3.13, along with those found for the pure 

bending case which also ignores the influence that shear has on plastic behaviour. From Figure 3.13, 

it is observed that the predicted failure load level for the beam increases from 996 kN to 1036 kN 

when the influence of shear on elastic behaviour is ignored, and further increases to 1104 kN when 

the influence of shear on the plastic behaviour is also ignored. It is evident from Figure 3.12 that the 

experimentally determined failure load level is no more than 996 kN and, therefore, it can be 

concluded that ignoring shear effects leads to an over-estimation of load capacity (by as much as 

approximately 10% for this particular case). 

3.5.2 Low-Rise Steel Building Framework 

Consider the two-bay by two-storey steel framework subjected to uniformly distributed service-level 

design gravity loads shown in Figure 3.14. The structure is a building perimeter frame that supports a 

load intensity of 109.5 N/mm on floor members 4-5 and 5-6, and 51.1 N/mm on roof members 7-8 

and 8-9. All the members have W-shape sections (CISC, 2004) that are oriented such that their webs 

are in the plane of the framework, and are assumed to be fully restrained against out-of-plane 

behaviour. If plastic deformation occurs, it is assumed to be confined to the end sections of each of 

the six column members, and to the end and midspan sections of each of the four beam members (i.e., 

14 elements in all). The framework has 13 nodes and 33 degrees-of-freedom (dof) for nodal 

displacement (i.e., rotation dof at each of the three pin-support nodes 1-3, plus lateral and vertical 

translation and rotation dof at each of the ten free nodes 4-13).  
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The ultimate design (target) load level for the incremental-load analysis is 1.4 times that of the 

service gravity loads in Figure 3.14 (AISC, 2001). In fact, to facilitate a comparison with other 

published results for this example (Clarke, 1994; Ziemian et al., 1992; Attalla et al., 1994), the loads 

are increased beyond this load level until failure of the frame occurs. The analysis results found by 

this study are illustrated in Figure 3.15, and compared with the results of other studies in Figure 3.16.  

The incremental-load analysis terminates when the frame fails at load factor level λf = 1.08 (i.e., at 

108% of the specified ultimate design load level). Over the loading history up to failure, the frame 

develops five full-plastic sections (designated by the black infill symbols in Figure 3.15) that 

sequentially reach their full-yield capacities at load-factor levels λ = 0.827, 0.895, 0.902, 0.931 and 

1.058, respectively. Also, there are nine sections that become 2, 3, 8, 23, 28, 30, 32, 38, 40, 69 and 

88% partially plastic (designated by the open symbols in Figure 3.15) after reaching their initial-yield 

capacities at load-factor levels λ = 0.637, 0.567, 0.845, 1.043, 0.405, 0.571, 0.827, 0.441, 0.535, 

0.947 and 0.722, respectively, over the loading history. 

The plastic deformation of each of the first four fully-plastic sections is associated with fully 

degraded bending stiffness alone (i.e., each section behaves like a classic plastic hinge with stiffness 

degradation factors r = 0 and t = n = 1, because the M-V-P stress state for the section lies in the 

regions defined by angles θM and ΘM in Figures 3.6 and 3.8). The plastic deformation of the fifth 

fully-plastic section is related to fully degraded bending stiffness and fully degraded axial stiffness 

(i.e., r = n = 0 and t = 1, because the M-V-P stress state for the section exists in the regions defined 

by angles θMP and ΘM in Figures 3.6 and 3.8). For the seven sections for which bending stiffness 

alone is partially degraded by 2, 3, 8, 28, 30, 32, 38, 40, and 88% (i.e., the sections designated by the 

open circles in Figure 3.15), the stiffness degradation factors are t = n = 1, and r = 0.98, 0.97, 0.92, 

0.72, 0.70, 0.68, 0.62, 0.60 and 0.12, respectively (i.e., the M-V-P stress state for each section lies in 

the regions defined by angles θM and ΘM in Figures 3.6 and 3.8). Finally, for the two sections for 

which axial stiffness alone is partially degraded by 23% and 69% (i.e., the sections designated by the 

open squares in Figure 3.15), the stiffness degradation factors are r = t = 1, and n = 0.77 and 0.31, 

respectively (i.e., the M-V-P stress state for each section lies in the regions defined by angles θP and 

ΘM in Figures 3.6 and 3.8).  

The lateral translation of the top right corner (joint node 9) of the frame over the incremental 

loading history is defined by the solid line in Figure 3.16. It can be seen that the frame initially 

translates laterally to the left until approximately 90% of the factored gravity loads are applied, at 

which point the top storey begins to translate to the right, until it suddenly lurches to the left again as 

it loses its lateral stability at 108% of the specified ultimate design load level, due to a combination of 
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plastic deformation and nonlinear geometric effects. Numerically, this event is characterized by the 

structure stiffness matrix becoming singular as the stiffness coefficient associated with the lateral 

translation of node 9 tends to zero at load-factor level λf = 1.08. Note that the failure of the frame is 

due to system instability of the right bay in a lateral sway mode, and not the formation of a rigid-body 

plastic collapse mechanism.  

This example frame originally appeared in an America Institute of Steel Construction report on 

frame stability (Iffland & Birnstiel, 1982) and, since then, its nonlinear behaviour has been studied by 

a number of researchers from a variety of computational viewpoints. Ziemian et al. (1992) have 

conducted a plastic-hinge analysis (with 28 elements) and a plastic-zone analysis (with 540 elements 

having 80 fibers each). Clarke (1994) has also conducted a plastic-zone analysis of the frame (with 

240 elements having 256 fibers each). Attalla et al. (1994) have analyzed the frame by using a quasi-

plastic hinge approach (with 28 beam and column elements). The lateral displacement behaviour and 

failure load level λf found by these various analyses are depicted in Figure 3.16. It is evident that the 

results found by the method proposed herein are in good agreement with those reported for the other 

methods. The slight discrepancies between the results are likely due to the different ways in which 

residual stresses and strain hardening were considered. It is worth noting that the structural model for 

the proposed method has significantly fewer beam and column elements (14 in total) than the other 

methods. 

Appendix 3.A   Accounting for Bending Stiffness Degradation 

This Appendix uses the moment-rotation relationships derived in Chapter 2 to derive member 

stiffness coefficients accounting for post-elastic bending stiffness degradation, geometric nonlinearity 

and shear deformation. To this end, the moment distribution method (Cross, 1932) is extended to 

account for both geometric and material nonlinearities through modified distribution and carry-over 

factors.  

3.A.1 Modified Moment Distribution Method 

To obtain the modified rotational stiffness coefficient and carry-over factor, consider the beam-

column in Figure 3.17, at the right end of which there is an inelastic zone located between nodes e 

and 2. From Eq. (2.4.4) in Chapter 2, the relation between flexural-degradation factor r2 and rotational 

bending stiffness R2  at end 2 is given by, 
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In the conventional moment distribution method, the degradation factor r2 is equal to 1 or 0 for a 

fixed or pinned support, respectively. A modified method of moment distribution is developed in the 

following to account for r2 ranging from 0 to 1; specifically, the modified rotational stiffness 

distribution and carryover factors are derived from the moment-rotation relationships expressed in 

Eqs. (2.1.17) in Chapter 2; that is, end moments M1 and M2 caused by rotation θ1 are found by 

employing the moment distribution method for the beam in Figure 3.17. As a result, the member 1-2 

is divided into two elements at intermediate node e, where 1-e represents an elastic element, and e-2 

denotes a inelastic element associated with post-elastic rotational stiffness R2.  

First, determine the distribution factors for the member’s axial force and shear deformation. The 

member ends in Table 3.1 are defined in such a way that the first character represents the near end, 

and the second one identifies the far end. Only the rotation at node e is unknown. Following the 

principles of the moment-distribution method, the distribution factor at end e1 (or e2) is defined as the 

ratio of the member-end rotational stiffness to the total rotational stiffness of the joint. For instance, 

the stiffness distribution factor at end e1 of member 1-e is given by, 
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where the term kbη1 is defined for Eq. (2.1.18) in Chapter 2 and represents the rotational stiffness 

coefficient at end e of member 1-e, while R2 + kbη1 is the total rotational stiffness at joint e. Similarly, 

the distribution factor at end e of member e-2 is given by, 
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The distribution factors defined by Eqs. (3.A.2) and (3.A.3) are listed in Table 3.1. Note that for the 

member 1-e with axial load P in Figure 3.17, the carry-over factor is equal to cη2 defined by Eq. 

(2.1.17b) in Chapter 2.  

Secondly, determine the fixed-end moments due to rotation θ1 imposed at end 1. When node e is 

fixed by a virtual rotational constraint, the fixed-end moments for member 1-e are M1e = kbη1θ1 and 

Me1 = kcbη1η2θ1 from Eqs. (2.1.17a, b) in Chapter 2, as indicated in the 4th row of Table 3.1.  

Thirdly, distribute the unbalanced moment at node e and carry over the distributed moments to the 

corresponding far ends. Note that for the spring element modeling rotational inelasticity, the mutual 

carry-over factor = -1 since the length of the element is negligible and the moments at the two ends 

are equal in magnitude but opposite in sense. After the moment distribution operation based on the 
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modified distribution and carrying-over factors is completed, the distributed and carry-over moments 

are found to be those in the 5th and 6th rows of Table 3.1, respectively. 

Finally, find the final end-moments M1 and M2 by summing the fixed, distributed and carry-over 

moments in the corresponding column of Table 3.1, i.e., from the second column of the table,  

2 2
1 1 1 2 1 11 1(1 )eM b k c R= η −µ η θ = θ  (3.A.4) 

while from the last column of the table 3.1, 

2 1 2 2 1 21 1eM b k c R= η µ η θ = θ  (3.A.5)  

The modified rotational stiffness coefficient and carry-over factor accounting for the effects of both 

geometric and material nonlinearities can be defined through Eqs. (3.A.4) and (3.A.5). To that end, 

substitute the distribution factor µe1 from Eq. (3.A.2) into Eq. (3.A.4) to obtain the following 

expression for post-elastic rotational stiffness, 
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If r2 tends to unity, then Eq.(3.A.6) reduces to the rotational stiffness coefficient kbη1 involving 

both geometrical nonlinearity and shear deformation in the elastic range. If the shear deformation is 

ignored (i.e., η1 = 1), the term kb in Eq. (3.A.6) becomes the stiffness coefficient in elastic stability 

analysis. Furthermore, if geometrical nonlinearity is ignored the term kb = 4EI/L, the conventional 

stiffness coefficient in the moment distribution method (Cross, 1932). 

By substituting the distribution factors µe1 and µe2 from Eqs. (3.A.2) and (3.A.3) into Eqs. (3.A.4) 

and (3.A.5), respectively, the modified carryover factor is, 
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If the far end is fixed with r2 = 1 (i.e., end 2 remains in the elastic range), the carryover factor 

becomes C12 = cη2. If shear deformation is further ignored then the coefficient η2 = 1 and the 

carryover factor becomes C12 = c. If the geometrical nonlinearity is neglected as well, the parameter c 

= 0.5 so that the carryover factor C12 reduces to the well-known value of 0.5. Note that if r2 = 0 (i.e., 

the rotational stiffness has degraded to zero at end 2), the carryover factor becomes C12 = 0, which is 

the conventional case when the far end of the member is pin supported.  

By following the same procedure for deriving Eqs. (3.A.6) and (3.A.7), the modified rotational 

stiffness coefficient and carryover factor are readily found for the case where the unit rotation is  

imposed at end 2 and plasticity occurs at end 1 rather than at end 2. These results are directly obtained 
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by exchanging the subscripts 1 and 2 for the degradation factor r in Eqs. (3.A.6) and (3.A.7), to 

achieve the two corresponding expressions, 
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It is observed by  comparison of Eq. (3.A.6) with Eq. (3.A.8), and Eq. (3.A.7) with Eq. (3.A.9), that 

the modified rotational stiffness coefficients and carryover factors differ when the post-elastic 

degradation factors r1 and r2 have different values, which is unlike the case in the elastic range.  

3.A.2 Member Stiffness Coefficients 

To illustrate the modified moment distribution method developed in the previous section, the stiffness 

coefficients are derived for a member with flexural stiffness degradations at both ends. The 

calculation procedure is the same as that in the conventional moment distribution method. 

3.A.2.1 Stiffness Coefficients due to End Rotations 

As shown in Figure 3.18, assume the inelastic zones at the two member ends have flexural stiffness Rj 

(j = 1, 2) associated with stiffness degradation factors rj (j = 1, 2). The member is comprised of two 

parts: inelastic spring element 1-s and element s-2 that includes elastic member s-e and inelastic 

spring e-2. Since the modified rotational stiffness and carry-over factor element s-2 are known from 

the previous section, joint e is alone considered in the following. 

 The distribution factors at ends 1s and 2e are unity, as indicated in Table 3.2 and explained in the 

previous section. The distribution factor µs2 at end s2 of member s-2 is expressed by the use of the 

modified rotational stiffness of Eq. (3.A.6) as, 
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It is not necessary to find distribution factor µs1 because it is known that the moments at ends se and 

1s have the same value due to the negligible length of inelastic spring element 1-s. The carryover 

factor given by Eq. (3.A.7) can be directly applied because the moment-rotation relationship for 

member s-2 is the same as that discussed in the previous section for member 1-2 in Figure 3.17.  
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When node s is locked and rotation θ1 is imposed at end 1, the fixed-end moments at end 1 and end 

s of member 1-s are R1θ1 and -R1θ1, respectively (as given in Table 3.2). By employing the modified 

distribution factor to distribute the unbalanced moment R1θ1 at node s to ends s1 and se, the carry over 

of these moments to the corresponding far ends yields the results given in rows 5 and 6 of Table 3.2, 

respectively. From the last two columns in Table 3.2, the bending moments at ends 1 and 2 of the 

member 1-2 in Figure 3.18 are, 

1121 θµ= RM s  (3.A.11) 

112122 θµ= RCM s  (3.A.12) 

These two moment expressions can be used to find the relevant stiffness coefficients associated 

with unit rotation θ1. To that end, substitute Eq. (3.A.10) into Eq. (3.A.11) to find the rotational 

stiffness coefficient end 1, 
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The parameter Ω in Eq. (3.A.13) is given by, 
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When r1 = r2 = 1 in Eq. (3.A.14), Ω = 9 and the rotational stiffness coefficient kr
33 = kbη1 as in Eqs. 

(2.1.17) of Chapter 2. By substituting into Eq. (3.A.12) the carryover factor C12 defined by Eq. 

(3.A.7) and the distribution factor µs2 defined by Eq. (3.A.10), the rotational stiffness coefficient at 

end 2 is found as, 

63 2 1 1 2 1 2/ 9 /rk M kbc r r= θ = η η Ω  (3.A.15) 

After kr
33 and kr

36 are obtained, the transverse shear stiffness coefficient for the member is determined 

from the moment equilibrium condition about end 2 as, 
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From the transverse equilibrium condition, it is found that stiffness coefficient kr
53 = - kr

23.  

Following the same procedure as that used to find the stiffness coefficients when θ1 = 1, similar 

stiffness coefficient expressions are found when θ2 = 1 alone is imposed at end 2 of the beam in 

Figure 3.18. Thus, the rotational stiffness coefficient at End 2 is given by, 
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which can alternatively be found from Eq. (3.A.13) by simply exchanging the subscripts 1 and 2 of 

the rotational degradation factors rj (j = 1, 2). In the same way, the transverse stiffness coefficient can 

be found from Eq. (3.A.16) to be, 
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It can be demonstrated that the Maxwell reciprocal theorem is satisfied for the post-elastic stiffness 

coefficients when the inelasticity is assumed to be concentrated at the member ends. For instance, for 

θ2 = 1or θ1 = 1 it can be shown that the related rotational stiffness coefficients at end 1 or 2 are equal 

(see Eq. (3.A.15)), i.e., 

36 2 1 2 1 639 /r rk kbc r r k= η η Ω =  (3.A.19) 

The Maxwell reciprocal theorem can then be directly employed to obtain the stiffness coefficients kr
32 

= kr
23, kr

35 = kr
53, k

r
62 = kr

26, and kr
65 = kr

56. 

3.A.2.2 Stiffness Coefficients due to End Translations 

In principle, the modified moment distribution method in the preceding subsection can be utilized to 

find the stiffness coefficients associated with translation at any member end, e.g., d2 = 1 shown in 

Figure 3.19. However, it might be quite tedious to do so because two rounds of distributing and 

carrying over moments need to be conducted. Alternatively, the stiffness coefficients can be 

determined on the basis of the results found in the previous section by using the Maxwell reciprocal 

theorem. 

From the Maxwell reciprocal theorem, kr
32 = kr

23 and kr
62 = kr

26, where kr
23 and kr

26 are defined by 

Eqs. (3.A.16) and (3.A.18), respectively. Thus, the rotational stiffness coefficients are known at both 

ends of the member. The remaining work is to find transverse stiffness coefficients kr
22 and kr

52. To 

that end, from moment equilibrium about end 2 the transverse stiffness coefficient kr
22 is found as, 

2
2

22 1 2 1 2 1 2 1 2 1 23
2

3 (1 )[6 (1 )( 2 )]r f EI Lk b c r r b c r r r r P
d EIL

⎧ ⎫Ω⎪ ⎪= = η + η + η − η + − +⎨ ⎬
Ω ⎪ ⎪⎩ ⎭

 (3.A.20) 

where f2 is the transverse force induced by unit deflection d2. It is then readily found that kr
52 = −kr

22.  

It is observed from Eqs. (3.A.14) and (3.A.20) that degradation factors r1 and r2 are in symmetrical 

positions in the expression for kr
22. This implies that if a unit deflection is imposed at end 2 instead of 

end 1, the transverse stiffness coefficient found is kr
55 = kr

22. By the reciprocal theorem, kr
25 = −kr

55 

and kr
35 = kr

53 are readily found. 
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Figure 3.1 Hybrid beam-column member 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Stiffness coefficients due to rotation 
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Figure 3.3 Stiffness coefficients due to translation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 Axial force and deformation 
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Figure 3.5 M+P first-yield and full-yield capacities 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 M+P stiffness degradation 
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Figure 3.7 M+V first-yield and full-yield capacities 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 M+V stiffness degradation 
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Figure 3.9 Flow chart for nonlinear analysis 
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Figure 3.10 Two-span beam with point loading 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Example 1: Post-elastic behaviour at incipient beam failure 
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Figure 3.12 Example 1: Comparison of analytical and test results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Example 1: Analytical results for different beam models 
 
 

 

Vertical deflection δF at point F (mm)  

A
pp

lie
d 

lo
ad

 (k
N

)  

Tested (Driscoll & Beedle, 1957) 

 Predicted (proposed method) 

0 

200 

400 

600 

800 

1000 

1200 

0 10 20 30 40 50 60

Stiffness matrix K becomes singular  
( λfW = 996kN, δF =12.42mm) 

0 

200 

400 

600 

800 

1000 

1200 

0 10 20 30 40 50 60 

Vertical deflection δF  at point F (mm)  

A
pp

lie
d 

lo
ad

  (
kN

)  

Bending + shearing using Euler-
Bernoulli beam theory:  
(λf = 1.036, δF = 13.69 mm) 

      Pure bending using Euler-Bernoulli beam  
      theory: (λf = 1.104, δF = 9.27 mm) 

Bending + shearing using 
Timoshenko beam theory:  
(λf = 0.996, δF = 12.42 mm) 
 



  

  81

51.1 N/mm 

109.5 N/mm 

6096 mm 14630 mm 

60
96

 m
m

 
45

72
 m

m
 

W
36

0×
16

2 

W
36

0×
17

9 

W
20

0×
19

 

W
36

0×
17

9 W 920×253 

W
20

0×
22

 W 690×125 

W 530×66 W 690×152 

1 2 3

4 
10 5 11

6 

7 

W
36

0×
19

6 

8 13 9 12 

y 

x 

  % bending plasticity ρ 

i Fully-yielded bending plastic hinge (ith plastic hinge to form) 

5 Fully-yielded bending + axial plastic hinge (5th plastic hinge to form) 

3 

2 

4 

∆t 

5 

1 28 88 

40 

30 

38 32 3 

ρ % axial plasticity 

23 

69 8 
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Frame and service-level design gravity loading 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Plasticity at frame failure load-factor level λf = 1.08 
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Figure 3.16 Comparison with other analyses 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3.17 End moments due to rotation θ1 
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Figure 3.19 Stiffness coefficients due to deflection 
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Chapter 4 
Frameworks with Semi-rigid Connections 

This chapter describes an efficient method for the inelastic analysis of semi-rigid planar steel 

frameworks. A compound element, comprised of a plastic-hinge element and a semi-rigid connection 

element, is located at member ends that may undergo inelastic deformation. Nonlinear inelastic 

flexural behaviour of the member is modeled by an empirical relationship between moment and 

rotation, for which the parameters are available from experimental results. A four-parameter model is 

employed to simulate the nonlinear moment-rotation behaviour of the semi-rigid connections. The 

member stiffness matrix for the compound element is expressed in terms of stiffness degradation 

factors that vary according to the loading level. This permits direct account for the combined 

influence of member plasticity and semi-rigid connection behaviour on the structure stiffness. Three 

steel frameworks are analyzed to illustrate the proposed analysis method. The results are compared 

with those obtained from experiments and applying other methods. 

4.1 Introduction 

Many studies have been devoted to developing practical methods of nonlinear analysis of frameworks 

accounting for semi-rigid behaviour of the connections and/or plastic behaviour of the members 

(Chen et al., 1994; Chen et al., 1996; Faella et al., 2000; Chan & Zhou, 2004). However, little has 

been done to investigate the interaction between the behaviour of semi-rigid connections and that of 

member plasticity, as well as transverse-shear and axial stiffness degradations. This thesis focuses on 

such interaction by applying a planar-compound-element concept. A member plastic zone forms at 

the beam end due to internal forces (e.g., moment, shear force, and axial force). The characteristics of 

the interaction between a flexural semi-rigid connection and the flexural plastic zone of its connected 

member are discussed and illustrated in detail.  

Figure 4.1(a) exhibits a typical beam-to-column connection joint, where there is member plasticity 

due to bending. Typically, the connection is semi-rigid, and can include bolts, welds and angles. To 

facilitate a nonlinear analysis, the model in Figure 4.1(a) is replaced by the analytical model in Figure 

4.1(b). Here, one of the two springs represents the plasticity formed at the member end, while the 

other spring represents the semi-rigid connection. 

An incremental-load method of analysis has been recently developed to deal with material and 

geometric nonlinearities (Grierson et al., 2005; Xu et al., 2005). The goal of this chapter is to extend 

this method to account as well for semi-rigid connections. Each stage of the analysis accounts for 
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stiffness degradation due to semi-rigid connection behaviour combined with member plasticity, 

geometric nonlinearity and shear deformation when updating the corresponding tangent stiffness 

matrix for the structure. The incremental-load process ends when the specified external loads have 

been completely applied to the structure, or a limit failure loading state is reached.  

4.2 Rotational Compound Element 

This section employs an assembly of springs, connected in series, to develop a compound element 

representing the combined rotational stiffness behaviour of a semi-rigid connection and a member-

end plastic hinge. The determination of the stiffness of semi-rigid connections is discussed in detail, 

while that for member-end plasticity is adopted directly from previous research (Grierson et al., 2005; 

Xu et al., 2005). 

4.2.1 Series Element Model 

The series element model consists of a semi-rigid connection spring, an inelastic spring and an elastic 

member, all connected in series. Herein, an inelastic spring is defined as a spring that characterizes 

the inelastic behaviour of a cross section from initial yield to full yield. The nature of the compound 

element is indicated in Figure 4.2, where parameters Rc, Rp, and Re denote the rotational stiffnesses of 

the semi-rigid connection spring, the member plasticity spring and the elastic member end, 

respectively. Only end 1 of the member is considered (end 2 may or may not have the exact same 

nature as end 1). 

The case in Figure 4.2(a) is conventionally used in structural analysis, where a beam-to-column 

connection at node 1 is assumed as either a pinned connection (Rc = 0) or fixed connection (Rc = ∞). 

This assumption simplifies the analysis for both hand and computer-based analyses. However, if the 

effect of the actual connections on structural response is significant, the model including a semi-rigid 

connection represented by a spring symbol @ in Figure 4.2(b) should be accounted for in the analysis 

and design of the structure. Another model popular in rigid-plastic analysis assumes that a member 

plastic hinge abruptly forms, i.e., rather than gradually forming from initial yield to full yield. To 

improve the accuracy in this case, the inelastic-spring model in Figure 4.2(c) is suitable for simulating 

gradual stiffness degradation due to increasing extent of plastic behaviour. Finally, if both semi-rigid 

connection and plastic member behaviour occur at the same time, the series-element model shown in 

Figure 4.2(d) should be introduced in the analysis. Although Yau and Chan (1994) previously 

considered the latter model, the influences of member plasticity and semi-rigid connections were 

considered separately.  
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The rotational deformations of the semi-rigid connection and inelastic member end, indicated in 

Figure 4.2(d), are graphically represented in Figure 4.3(a). It is readily shown that the two series-

connected springs can be substituted for by the compound element in Figure 4.3(b) having only one 

spring. It remains to derive the expression for compound stiffness R representing the combined effect 

of stiffnesses Rc and Rp. To that end, for applied moment M in Figure 4.3(a), the  rotations θc and θp 

caused by semi-rigid connection behaviour member plastic behaviour, respectively, are found as, 

cc RM /=θ  (4.2.1a) 

pp RM /=θ  (4.2.1b) 

Then, the total rotation θ between the joint and the elastic member end is, from Eqs. (4.2.1), 

/ / /c p c pM R M R M Rθ = θ + θ = + =  (4.2.2) 

from which it is observed that the compound rotational stiffness accounting for semi-rigid connection 

and member plastic behaviour is,  

pc

pc

pc RR
RR

RR
R

+
=

+
=

/1/1
1

 (4.2.3) 

4.2.2 Determining Connection Stiffness Rc 

It remains to determine the stiffness of the compound element defined by Eq. (4.2.3). To that end, 

member plasticity stiffness Rp is directly given by Eq. (2.3.3) or (2.C.3) in Chapter 2, and semi-rigid 

connection stiffness Rc alone needs to be established in the following.  

Several semi-rigid connection models have been investigated by Xu (1994). A four-parameter 

power model, originally proposed for modeling post-elastic stress-strain behaviour (Richard & 

Abbott, 1975), has been commonly adopted in analysis. Recently, experimental data for extended-

end-plate and flush-end-plate connections has further confirmed this model to be effective and 

accurate for predicting the behaviour of end-plate connections (Kishi et al., 2004). The following 

four-parameter model is employed in this study to simulate the behaviour of semi-rigid connections, 

1/
0

( )
{1 [( ) / ] }

ce cp c
cp c

ce cp c

R R
M R

R R M γ γ

− θ
= + θ

+ − θ
 (4.2.4) 

In Eq. (4.2.4), θc denotes the rotation of the semi-rigid connection, and the four parameters Rce, Rcp, 

M0 and γ are the elastic rotation stiffness, strain-hardening/softening stiffness, reference moment and 

shape parameter for the connection, respectively. The elastic stiffness Rce= Mcy/θcy, where Mcy and θcy 

are the initial yield moment and corresponding rotation. The shape of the moment-rotation curve is 
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defined by the parameter γ, whose magnitude is related to the strain hardening and softening 

behaviour of the connection (the value γ used in the model is found by curve fitting experimental 

data). The four parameters in Eq. (4.2.4) can be found for different types of connections from an 

existing database of experimental results (Xu, 1994). The reference moment M0, strain-hardening or 

softening stiffness Rcp, and nominal rotation θn determine the nominal maximum moment or moment 

capacity of the connection to be, 

0n n cpM M R= + θ  (4.2.5) 

where θn depends on the connection type and is determined from published research results; e.g., 

Bjorhovde et al., (1990). It is noteworthy that when the moment-rotation response does not have a 

humped point, the nominal moment capacity is determined by the moment at which θn = 0.02, as 

suggested in the AISC(2005) design specifications. 

By differentiating Eq. (4.2.4) with respect to rotation θc, the tangent stiffness of the connection is 

given by (Richard & Abbott, 1975),  

1 1/
0{1 [( ) / ] }

ce cp
c cp

c ce cp c

R RdMR R
d R R M γ + γ

−
= = +

θ + − θ
 (4.2.6) 

where Rce is the elastic rotational stiffness at the initial condition θc = 0, and Rcp is the strain-

hardening and softening stiffness when rotation θc tends to infinity. For practical analysis of steel 

structures, the rotation θc is at most equal to the limiting nominal rotation value when connection 

fracture occurs (Bjorhovde et al., 1990). 

It is seen from Eqs. (4.2.4) and (4.2.6) that the four-parameter model reduces to a linear model with 

Rc = Rce when Rcp tends to Rce. A bi-linear model is realized when the shape parameter γ approaches 

infinity; i.e., when θc < M0/( Rce-Rcp), the term [( Rce-Rcp)θc/ M0]γ tends to zero and Eq. (4.2.6) reduces 

to Rc = Rce, while when θc > M0/( Rce-Rcp), the term [( Rce-Rcp)θc/ M0]γ tends to infinity and Eq. (4.2.6) 

reduces to Rc = Rcp. If Rcp is set to zero (i.e., strain-hardening and softening is ignored), Eq. (4.2.4) 

reduces to the following three-parameter model, suggested by Kishi and Chen (1987), 

1/
0[1 ( / ) ]

ce c

ce c

RM
R M γ γ

θ
=

+ θ
 (4.2.7) 

where reference moment M0 is equal to nominal moment capacity Mn. Note that rotation θc can be 

explicitly obtained from Eq. (4.2.7) as, 

1/
0[1 ( / ) ]c

ce

M
R M M γ γθ =

−
 (4.2.8a) 
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As given by Eq. (2.3.2) or (2.C.1) in Chapter 2 (Grierson et al. (2005) and Xu et al. (2005)), the 

post-elastic rotation of the connecting member is taken by this study to be, 

0
0

1/

1 1       1

ee
y y

p
p y p p

M M M M
M M M M

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥φ = φ − − ≤ ≤⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥−⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (4.2.8b) 

Therefore, from Eqs. (4.2.8a, b), the total rotation θ = θc + φ of the compound element can be 

explicitly expressed as, 

0
0

1/

1/ 1 1       1
[1 ( / ) ]

ee
y y

p
p y p pce u

M M MM M
M M M MR M M γ γ

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥θ = + φ − − ≤ ≤⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥−− ⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (4.2.9) 

which represents the moment-rotation relationship of the compound element. The benefit of using the 

three-parameter model Eq. (4.2.7) is that rotation θc of the connection is directly obtained from Eq. 

(4.2.8a) given moment M found by the non-linear analysis; the disadvantage is that the strain-

hardening or softening nature of the connection is omitted. In contrast, although strain hardening and 

softening is accounted for in the four-parameter model, an iterative procedure is needed to find the 

rotation θc of the connection. Both connection models are considered for the verification analysis 

presented in Section 4.5. 

4.2.3 Stiffness Degradation Factors 

The flexural stiffness degradation factor associated with semi-rigid stiffness Rc is given by 

(Monforton et al., 1963), 

1
1 3 /c

c
r

EI LR
=

+
 (4.2.10) 

where EI/L is the flexural stiffness of the elastic member. The factor rc is interpreted as the ratio of 

the end rotation of the elastic member to the combined rotation of the elastic member and the semi-

rigid connection due to unit end-moment (Xu 1994). Similarly, the stiffness degradation factor 

associated with the inelastic member stiffness Rp is given by (Grierson et al., 2005), 

1
1 3 /p

p
r

EI LR
=

+  (4.2.11) 

where the factor rp is interpreted as the ratio of the inelastic rotation M/Rp to the total elastic and 

inelastic rotation ML/3EI + M/Rp due to bending moment M applied at the end connected to the 

compound element, where the far end of the elastic member is simply supported (Xu et al., 2005).  
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To evaluate the combined stiffness effect, a stiffness degradation factor for the compound stiffness 

R defined by Eq. (4.2.3) is introduced and similarly expressed as, 

1
1 3 /

r
EI LR

=
+

 (4.2.12) 

which is Eq. (2.3.4) in Chapter 2. The factor r is the ratio of the rotation of the compound element to 

the sum total rotation of the compound element and the rotation of the elastic member, when it is 

simply supported at the far end. From Eqs. (4.2.3), (4.2.10), (4.2.11) and (4.2.12), the compound 

stiffness degradation factor is expressed as, 
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 (4.2.13) 

which maps R ∈ [0, ∞] to r ∈ [0, 1]. From Eq. (4.2.13), the stiffness degradation factor for the 

compound element is a function of the degradation factors of the semi-rigid connection and member 

inelasticity such that, if any of these factors degrades to zero, the stiffness of the compound element 

degrades to zero as well. 

4.3 Characteristics of Compound Rotational Element 

The behaviour of the compound rotational element is dependent upon the strength capacities of the 

connection and the connected beam members. For the current study, the effect of shear deformation 

of the panel zone on the behaviour of the beam-column connection is ignored. Connection strength is 

important in the inelastic analysis of frameworks. The strength behaviour of the compound element is 

analyzed in the following.   

If only the effect of the member plasticity is considered, the moment-rotation relation in the post-

elastic range is that shown in Figure 4.5 (a). Alternatively, if the effect of the semi-rigid connection is 

accounted for, the moment-rotation relationship is as shown in Figure 4.5 (b). In Figure 4.5, the 

nominal maximum moment Mn defined by Eq. (4.2.5) is the moment capacity of the connection, 

while My and Mp are the initial-yield and fully-plastic moment capacities of the connected member, 

respectively. Depending on the interaction between member inelasticity and semi-rigid connection 

behaviour, three types of connections are characterized by the compound element, as described in the 

following 

Under-Strength Connections: Mn ≤ My  

In this situation, the performance of the compound element is governed only by the semi-rigid 

connection, and no plasticity occurs in the vicinity of the member end. This can occur for Single 
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Web-Angle (SWA) connections with Mn = Mn
SWA. Since the member end does not undergo any 

plasticity, the nonlinear moment-rotation behaviour of the compound element is determined by the 

behaviour of the semi-rigid connection alone; i.e., the moment-rotation relationship defined by the 

lowest solid curve in Figure 4.6 is the same as that given in Figure 4.5(b) for a SWA connection. This 

kind of connection is referred to as under-strength connection, since the strength capacity of the 

compound element is less than the yield strength capacity of the connected member. If Mn is small 

enough, this type of connection is categorized as a conventional simple or pinned connection (AISC, 

2001; CISC, 2004). (Note that the definition of under-strength connections in this study is based on 

there being no plasticity at the member end, whereas the flexible connections defined in AISC-LRFD 

(AISC, 2001) are based on Mn ≤ 0.2Mp). 

Partial-Strength Connections: My < Mn < Mp  

In this second case, both semi-rigid connection behaviour and member inelasticity govern the 

behaviour of the compound element, but the limit strength is determined by the nature of the 

connection. In other words, the connected member does not reach its moment capacity Mp, while the 

compound element achieves nominal moment capacity Mn. Such behaviour for a Flush End-Plate 

(FEP) connection is illustrated by the middle solid curve in Figure 4.6 (the corresponding dotted 

curve refers to the middle solid curve in Figure 4.5(b)). Although this type of semi-rigid connection is 

here referred to as a partial-strength connection, it is somewhat different from the definition in the 

design codes (AISC, 2001), where the inelasticity of the member is not accounted for.  

Full-Strength Connections; Mn ≥ Mp  

Finally, when the nominal moment capacity of the connection Mn is equal or greater than the plastic 

moment capacity Mp of the connected member, the member inelasticity dominates the behaviour of 

the compound element (even though the connection influences the stiffness degradation of the 

compound element due to its non-linear behaviour). Such behaviour for an Extended End-Plate (EEP) 

connection is illustrated in Figures 4.5 and 4.6 (where the dotted moment-rotation curve refers to the 

EEP connection alone). It is evident in Figure 4.6 that the moment-rotation behaviour of the 

compound element (solid curve) is dominated by the plastic behaviour of the member. This kind of 

connection is referred to as a full-strength connection, which is defined the same way in the design 

codes (e.g., AISC, 2001).  

It can be concluded from the preceding discussions that when the nominal capacity of a connection 

is much lower than that of the connected member, the connection dominates the behaviour of the 

compound element; however, if the nominal capacity of a connection is much greater than the 

capacity of the connected member, the member plasticity dominates the compound element 
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behaviour. In practice, a flexible connection with low connection capacity (Mn << My) can be 

employed in the design of braced frames. In the design of moment-resisting frames, however, 

excessive deformation can occur if the connection capacity Mn is far less than the capacity Mp of the 

connected member (see Example 3 in this chapter). A satisfactory design is achieved if both the 

connection and the corresponding connected member have approximately the same strength capacity 

(i.e., Mp ≈ Mn). It is prudent to avoid over-strength connections (i.e., Mn >> Mp), since this results in 

over-costly construction because excess connection capacity is not utilized.  

Besides the strength of connections, connection stiffness is another important factor characterizing 

the behaviour of connections, especially in serviceability design concerning initial elastic stiffness 

Rce. According to Eurocode 3 (CEN, 2002; Jaspart, 2002), for example, a beam-to-column connection 

is assumed to be rigid if its elastic stiffness satisfies the following condition, 

25ceLR
EI

≥  (or rc ≥ 0.893 for an unbraced frame) (4.3.1) 

or 

8ceR L
EI

≥     (or rc ≥ 0.727 for a braced frame) (4.3.2) 

where the notations are the same as those defined in Eq. (4.2.10), except that Rc is replaced by elastic 

stiffness Rce. Conversely, a connection is assumed to be flexible if the following condition is satisfied, 

0.5ceR L
EI

≤   (or rc ≤ 0.143 for either a braced or an unbraced frame) (4.3.3) 

When elastic stiffness Rce or corresponding stiffness factor rc is located between the values defined 

by Eq. (4.3.1) or (4.3.2) and (4.3.3), a semi-rigid connection is attained. Note that the stiffness criteria 

defined in Eqs. (4.3.1) through (4.3.3) are related to member length L. If only the member length 

changes, the connection category changes according to the stiffness criteria. For instance, if RceL/EI = 

9 for a braced frame, then the connection is rigid; however, when member length L changes to 0.5L, 

the corresponding stiffness ratio becomes 0.5RceL/EI = 4.5, and the same connection becomes semi-

rigid. Such a paradox challenges the current classification systems for beam-to-column connections 

and further research is needed. For the time being, Eqs. (4.3.2) and (4.3.3) are used as the criteria in 

this study to characterize connection behaviour.  

Contrary to that for connection stiffness, connection strength criteria are based on member moment 

capacities My and Mp, as well as nominal connection capacity Mn, and are independent of any length 

variation of the connected member. It is noteworthy that conventional rigid connections are 

recognized as having full strength (Mn ≥ Mp) and rigid stiffness (Rce = ∞). So, if the behaviour of a 
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connection is considered according to the strength and stiffness classification criteria, a rigid 

connection with full strength is not equivalent to the conventional rigid connection because Rce 

satisfies Eq. (4.3.1) or (4.3.2) but is less than infinity. To distinguish from a conventional rigid 

connection, a full-strength connection with Rce < ∞ is referred to as a fullly-rigid connection in this 

study. 

The characteristics of stiffness degradation of a compound element are further examined in the 

following. The relationships between the compound degradation factor r and the connection and 

plasticity factors rc, rp, given in Eq. (4.2.13) are graphed in Figure 4.7. It is observed that for the 

common pinned-connection case when rc = 0, the compound element has zero rotational stiffness for 

any value of rp and the connected member exhibits no plasticity. For the other extreme case when rc = 

1, the compound element behaviour is governed by the plastic behaviour of the member (r = rp). For 

the two cases, it is evident from Figure 4.7 that when the plasticity factor is less than unity (e.g., rp = 

0.7), the r value of the compound element is approximately the value of rc. This means that even 

when the member end has undergone some degree of plasticity (e.g., 30% = 1.0 – 0.7), the stiffness of 

the compound element is dominated by that of the connection. In other words, the level of member 

plasticity has little effect on the stiffness degradation of the compound element.  

To numerically demonstrate the interaction between semi-rigid connections and member plasticity, 

an illustration is presented the following for a beam member with three different connections. As 

shown in Figure 4.8, the member has span length L = 4m and a W310×33 cross-section (with the 

following properties: elastic and plastic moduli S = 0.415×106 mm3 and Z = 0.48×106 mm3, moment of 

inertia I = 65×106 mm4, Young’s modulus E = 200000 MPa, yield stress σy = 248 MPa). The residual 

stress is assumed to be σr = 0.3σy, such that the initial and full-yield moments My = 0.7Sσy = 

0.7×0.415×10-3×248×103 = 72 kN-m and Mp= Zσy = 119 kN-m, respectively. The parameters for the 

three typical connections listed in Table 4.1 are taken from a published databank (Xu, 1994). 

Illustrated in Figure 4.8(b) are the moment-rotation curves found for the connections using the four-

parameter connection model defined by Eq. (4.2.4). It is seen from Figure 4.8(b) that the Double 

Web-Angle (DWA) is an under-strength connection, the Flush End-Plate (FEP) is a partial-strength 

connection, and the Extended End-Plate (EEP) is a full-strength connection. 

Since no plasticity occurs at the member end when the DWA connection is employed, only the 

stiffness degradation behaviour of the beams with FEP and EEP connections are investigated in the 

following. The variations of stiffnesses predicted by Eqs. (4.2.6) for EEP and FEP connections are 

plotted in Figure 4.9 versus applied moment M. The corresponding values of the stiffness of these two 

connections are listed in Tables 4.2 and 4.3.  It is seen from Figure 4.9 for both the EEP and FEP 
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connections that connection stiffness Rc and compound stiffness R are equal before member yielding 

takes place, and that compound stiffness R degrades to zero after member yielding occurs. The 

corresponding degradation factors rp, rc, and r in Tables 4.2 and 4.3 demonstrate that the member-

section plastic behaviour dominates the stiffness degradation of the compound element.  

4.4 Nonlinear Analysis of Frameworks with Semi-rigid Connections 

Once the stiffness degradation factor of a compound element is determined, as discussed in the 

previous sections, the structural analysis is conducted. This study focuses on planar semi-rigid steel 

frameworks comprised of beam-column members with compact sections, for which plastic 

deformation is not precluded by local buckling (AISC, 2001). Plastic bending, shearing or axial 

deformation (φ, γ or δ) of a member under the action of moment, shear or axial force M, V or P, 

respectively, is assumed concentrated at the member-end sections (Xu et al., 2005). Figure 4.10(a) 

represents a general member with Young’s modulus E, shear modulus G, member length L, cross-

section moment of inertia I, sectional area A, and equivalent shear area As. Parameters Rpj, Tpj and Npj 

are, respectively, the post-elastic rotational bending, transverse shearing and normal axial stiffness of 

the member at the two end sections j =1, 2, while Rcj, Tcj and Ncj are, respectively, the rotational 

bending, transverse shearing and normal axial stiffness of the connections at the two end sections. By 

adopting the compound element developed previously in this chapter, the simplified member model 

in Figure 4.10(b) is obtained, the corresponding parameters for which are discussed in the following. 

The evaluation of connection and member rotational stiffnesses Rcj and Rpj in Figure 4.10(a), and 

corresponding stiffness degradation factors rcj and rpj, have been discussed in detail in Section 4.2. 

The member transverse shear and normal axial stiffnesses Tpj and Npj have also been determined in 

previous research (Grierson et al., 2005; Xu et al., 2005), where corresponding stiffness degradation 

factors tpj and npj for member end j are given by, 

3
1

1 3 /pj
pj

t
EI L T

=
+   (4.4.1a) 

1
1 /pj

pj
n

EA LN
=

+  (4.4.1b) 

which map Tpj or Npj ∈ [0, ∞] into tpj or npj ∈ [0, 1]. Similarly, the transverse and normal stiffness 

degradation factors for the connection are expressed as, 

3
1

1 3 /cj
cj

t
EI L T

=
+  (4.4.2a) 
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1
1 /cj

cj
n

EA LN
=

+  (4.4.2b) 

where Tcj and Ncj are the transverse shear and normal axial stiffnesses of the connection.  

When the connection is in the elastic range, it is assumed that stiffness Tcj or Ncj is infinite and 

corresponding degradation factor tcj or ncj in Eqs. (4.4.2) is unity. Conversely, when the connection is 

in the plastic range, it is assumed that stiffness Tcj or Ncj is zero and corresponding degradation factor 

tcj or ncj is zero. Such idealized elastic-plastic models are depicted in Figure 4.11.  

For the general planar compound member in Figure 4.10 (b), the bending stiffness degradation 

factor rj is found through Eq. (4.2.13), while the shearing and axial stiffness degradation factors tj and 

nj are similarly found as, 

pjcjpjcj

pjcj
j tttt

tt
t

−+
=  (4.4.3a) 
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j nnnn

nn
n

−+
=  (4.4.3b) 

Also in Figure 4.10(b), fi and di (i =1, 2,..., 6) are respectively the local-axis joint forces and 

deformations corresponding to the local stiffness matrix k for the compound frame element, with 

account for the effects of shear deformation and geometrical nonlinearity. The local-axis stiffness 

matrices for all elements are transformed into the global coordinate system and then assembled as the 

structure stiffness matrix Ki , where subscript i refers to the ith stage of the incremental-load analysis 

procedure. If Ki is non-singular at the end of the ith load step, corresponding incremental nodal 

displacements ∆ui are solved for and incremental member-end forces ∆fi and deformations ∆di are 

found. As well, total nodal displacements ui = Σ∆ui, member-end forces fi = Σ∆fi and deformations di 

= Σ∆di accumulated over the loading history are found. The initial-yield and full-yield conditions for 

each member-end section are checked to detect plastic behaviour, and the corresponding bending, 

shearing and axial stiffness degradation factors are found. Degraded stiffnesses Rc, Tc and/or Nc are 

determined based on the moment, shear and axial forces found by the analysis at the current loading 

level. Degradation factors (rp, tp, np, rc, tc, and nc) are applied to modify each element stiffness 

matrices k and, hence, the structure stiffness matrix K before commencing the next load step. The 

incremental-load analysis procedure continues until either a specified load level F is reached or the 

structure stiffness matrix K becomes singular at a lower load level, as a consequence of failure of part 

or all of the structure. (If the structure has not failed at load level F, the analysis can be continued 

beyond that level until failure of the structure does occur.) 
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The final analysis results include the values of the bending, shearing and axial stiffness degradation 

factors r, t and n indicating the extent of the combined member plasticity and semi-rigid connection 

deformation in the beam-to-column connection regions of the compound element. Further 

computational details are provided through the analysis example presented in the following section. 

4.5 Example Studies 

Three examples of semi-rigid structural steel frameworks are selected to illustrate the analysis method 

proposed in the foregoing. The objective of the first example concerning a semi-rigid portal frame is 

to compare results obtained by this study with those obtained from experimental testing (Liew et al., 

1997). The second example illustrates a comparison study of a one-bay by two-storey semi-rigid 

frame designed by Chen et al. (1996). Finally, the two-bay by two-storey frame described in Chapter 

3 is revisited to investigate the influence of semi-rigid connections on the analysis results. In all 

analyses, Young’s modulus E = 200000 MPa and shear rigidity G = 77000 MPa. The residual stress 

for bending and axial behaviour is σr = 0.3σy, while for  shearing behaviour it is τr = 0.05τy, where σy 

and τy are respectively the normal yield stress and shearing yield stress of the steel material for each 

example. 

4.5.1 Example 1: Semi-rigid Portal Frame 

For the semi-rigid portal frame in Figure 4.12, for which experimental test results are available in the 

literature (Liew et al., 1997), the properties of the beam are: area A = 4740 mm2, moment of inertia I 

= 5547×104 mm4, plastic modulus Z = 485×103 mm3, normal yield stress σy = 345 MPa, and shear 

yield stress τy = 199 MPa (based on the von Mises criterion). The properties of the two columns are: 

area A = 7600 mm2, moment of inertia I = 6103×104 mm4, plastic modulus Z = 654×103 mm3, and 

yield stresses σy = 336 MPa and τy = 194 MPa.  

The semi-rigid connections are modeled by the four-parameter model in Figure 4.4 (Richard et al., 

1975), for which the parameter values are obtained from the following pilot-test results. The moment-

rotation test results for the beam-to-column connection C1 are traced in Figure 4.13(a) as the dotted 

curve. By applying a curve-fitting technique to the model parameters in Eq. (4.2.4), the four 

parameters are determined to be M0 = 79 kN-m, Rce = 7202 kN-m/rad, Rcp = 144 kN-m/rad and γ = 

0.57. Similarly, for the column-to-base connection C2, whose pilot-test results shown in Figure 4.13 

(b), the model parameters are determined to be M0 = 148 kN-m, Rce = 24721 kN-m/rad, Rcp = 151 kN-

m/rad and γ = 0.78.  
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To match the experimental test setup, the loads for the analysis procedure in this study are 

monotonically increased up to the collapse load level by incrementally changing the horizontal load 

H, while the vertical loads remain fixed at those shown in Figure 4.12. The beam is divided into three 

elements, and each column is taken as one element. The analysis results concerning the load-

deflection behaviour of joint 6 are given by the solid line in Figure 4.14(a). Also shown are the test 

results (Liew et al., 1997) and the computed results from a refined plastic hinge analysis method 

called PHINGE (Chen et al., 1996). It is obvious at lower loading levels (H < 35 kN) that the load-

deflection results found by this study (heavy-solid curve) and the PHINGE method (dashed curve) are 

in good agreement with each other and the test results (dotted curve). At higher loading levels (H > 40 

kN), the results of the current study are slightly less than those of the PHINGE method, most likely 

because the latter method does not account for the influence of elastic shear deformation.  

As is shown in the following, the behaviour of the portal frame is such that semi-rigid connection 

behaviour rather than member inelasticity dominates. The proposed method predicts that the structure 

collapses at load level Hf = 74 kN, which is close to the value of 77 kN as predicted by the PHINGE 

method, but both values are considerably less than the 99 kN value found as the limit state by the 

experimental test. It likely that this discrepancy between experimental and analytical results is as a 

consequence of the analysis methods using connection behaviour data which were determined by 

separate pilot experiments (Liew et al., 1997), but which differ from that for the behaviour of the 

connections in the actual frame itself. 

It is evident in Figure 4.14(b) that the development of plasticity at the member ends is not very 

significant. This occurs because connections C1 and C2 have nominal moment capacities Mn = 82 kN-

m and Mn = 151 kN-m, respectively, which are not much greater than yield moment capacities My = 

100 kN-m and My = 134 kN-m of the beam and columns, respectively. Upon referring to the regions 

defined in Figure 4.5 and discussed in Section 4.3, it is observed that connection C1 is an under-

strength connection (Mn < My) while C2 is a partial-strength connection (My < Mn< Mp). This is 

consistent with the plasticity distribution indicated in Figure 4.14 (b), where 6% and 3% plasticity 

occurs at joints 4 and 5 of the beam, respectively, and only 1% plasticity occurs at the bottom end of 

the right column.  

As summarized in Table 4.4, the C26 column base experiences rp = 100(1-0.994) = 0.6% (≈ 1%) of 

plasticity. However, the values of connection stiffness degradation factor rc at the bases of columns 

C13 and C26 reduce from their initial value of 0.671 to approximately 0.085; i.e., the degradation 

factors rc decrease by about 87% (0.085/0.671−1 = −0.87) compared with their initial values. For the 

beam-to-column connections, the factor rc varies from 0.168 to 0.012; i.e., a decrease of about 93% 
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(0.012/0.168−1 = −0.93). In essence, then, the stiffness degradation factors of the compound beam 

and column elements are the same as those of the connections, as shown in Table 4.4. These results 

indicate for a framework with low-strength semi-rigid connections that connection behaviour rather 

than member plasticity dominates the nonlinear response of the structure.  

Also shown in Figure 4.14(a) are two special cases where it is assumed for the portal frame that 

some or all of the connections are rigid. When both the beam-to-column and beam-to-base 

connections are rigid, it is observed from the corresponding load-deflection behaviour that the 

deflection at limit load level Hf = 143.3 kN is only about one-fifth of that for semi-rigid connections. 

When the beam-to-column connections are assumed to be rigid while the column-to-base connections 

are pinned, a conventional situation in design, the corresponding load-deflection behaviour is close to 

that when the connections are semi-rigid, with frame limit load capacity Hf = 82.4 kN. The plasticity 

behaviour of the frame members at the limit state for the two cases is exhibited in Figure 4.15. From 

Figure 4.15(a), the case of all rigid connections, four plastic hinges (i.e., 100% plasticity) form in the 

beam and right column, while the left column base undergoes 52% plasticity under combined axial 

force and bending moment. The formation of the fourth plastic hinge at node 4 occurs when the 

horizontal load Hf = 143.3 kN, at which point the frame fails due to inelastic instability signalled by 

the horizontal displacement of node 6 becoming infinitely large (i.e., the corresponding stiffness 

coefficient tends to zero and causes the structure stiffness matrix to become singular). From Figure 

4.15(b), the case of beam-to-column rigid connections and column-to-base pinned connections, the 

beam experiences more plastic deformation than the columns. The formation of the plastic hinge at 

the right end of the beam occurs when the horizontal load reaches H = 77.7 kN. At the limit load level 

Hf = 82.4 kN, the frame fails due to inelastic instability signalled by the horizontal displacement of 

node 6 becoming infinitely large (i.e., the same failure mode as for the rigid frame). Table 4.4 

indicates the different degrees of member-end stiffness degradation for the case where all connections 

are semi-rigid, and the two cases where all or some of the connections are rigid. 

4.5.2 Example 2: One-Bay Two-Storey Frame 

Consider the one-bay two-storey frame with semi-rigid connections in Figure 4.16. This frame has 

been analyzed and designed previously by Chen et al. (1996) for the loads, member sizes and 

connections shown in the figure. The least weight frame design was achieved for the following two 

combinations of dead loads (DL), live loads (LL) and wind loads (WL): 1.2DL + 1.6LL and 1.3WL + 

1.2DL + 0.5LL (AISC 2001). The latter load combination was found to govern the design (Chen et al. 

1996) and, as such, is alone considered here.  
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In order to account for the imperfect geometry of the frame, it is assumed that all columns are 

initially out-of-plumb by h/400, where h is the storey height. Connections C1 and C2 have top and 

seat angles with double web angles, and are represented by a three-parameter model (i.e., Rcp = 0) 

using the Mn, Rcp and γ parameters given in Table 4.5, which also reports the values of the plastic 

moment Mp and initial yield moment My of the corresponding connected beams. The normalized 

moment-rotation curves of the two connections are presented in Figure 4.17, where a connection 

classification system proposed by Bjorhovde et al. (1990) is sketched to demonstrate that both 

connections are in the semi-rigid category. The rotational demands imposed on the connections by the 

factored gravity loads are smaller than the corresponding rotational capacity indicated in Figure 4.17 

(Chen et al., 1996). That is, the connections have adequate ductility to allow for the full evolution of 

plasticity in the connection.. According to the discussion in Section 4.3 when the residual stress of a 

member section is ignored, and as shown in Figure 4.17, the non-dimensional yield stress my = 0.61 

and C2 is an -strength connection while C1 is a partial-strength connection. When the residual stress 

distribution in the member is taken into account as σr = 0.3σy , the initial-yield stress myr = 0.43 and 

C1 and C2 are both partial-strength connections. As a result, in the pure bending case, the roof beam-

ends at connections C2 and the floor member ends at connections C1 exhibit plasticity that depends 

on the residual stress levels. 

Upon applying the compound-element analysis method proposed by this study, the lateral load-

deflection relationship at node 8 of the frame up to load-factor level λf = 1.10 is found to be the solid-

line curve shown in Figure 4.18. Two fully-plastic hinges form at the midspan of the beams. The 

member-end plasticity ranges between 9% and 22% at the column ends, and between 1% and 11% at 

the beam ends. To further see the behaviour of the compound connection-beam elements, 

corresponding stiffness degradation factors rc, rp, and r are listed in Table 4.6, as well as initial 

connection stiffness factors rc0. From this table it is observed that that connection stiffness degrades 

significantly; e.g., the connection stiffness factor for end E5 of beam B45 drops 94% (0.045/0.766−

1=−0.94) from its initial value rc0 = 0.766 to its final value rc = 0.045 It is also observed from the 

fourth and sixth columns in Table 4.6 that although a beam end such as E5 undergoes 10.9% (rp = 

0.891) plasticity, the member stiffness degradation behaviour does not affect the stiffness degradation 

of the compound elements (i.e., rc = r). This confirms that semi-rigid connections dominate 

compound-element behaviour when the connection moment capacity Mn is significantly less than the 

moment capacity Mp of the connected member, as is the case for this framework (see Table 4.5). 

The formation of the second plastic hinge at node 7 in Figure 4.18 occurs when the load factor λ = 

1.04. When λf = 1.101, the frame fails due to inelastic instability instigated by the horizontal 
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displacement of node 8 becoming extremely large. For the purpose of comparison, the dashed-curve 

in Figure 4.18 is obtained by the PHINGE analysis method (Chen et al., 1996), which finds the load 

factor λf = 1.096. Obviously, the results from this study and PHINGE are in good agreement. 

To consider the difference between a semi-rigid connection design and a conventional rigid 

connection design, Figure 4.19 also includes the analysis results found by the method proposed in this 

study for the rigidly-connected frame. Note that the load factor λf at collapse increases 6.8% from 

1.10 for the frame with semi-rigid connections to 1.18 for the frame with rigid connections. As well, 

the plasticity formation in the rigid frame is much different than that in the semi-rigid frame. 

Specifically, five plastic hinges form at the column ends in the rigid connected frame. This 

demonstrates that the rigid connections transmit substantial bending moments to the columns. 

Moreover, plasticity increases from about 10% to 100% at the upper column ends, while the plastic 

hinge section at node 7 in the semi-rigid frame experiences only 73% plasticity in the rigid frame. 

Similar to that for the semi-rigid frame, the rigid frame fails due to inelastic instability signalled by 

the horizontal displacement of node 8 becoming extremely large. 

4.5.3 Example 3: Two-Bay Two-Storey Frame 

The third example illustrated in Figure 4.20 is a two-bay by two-storey frame with semi-rigid 

connections, which was previously analyzed in Section 3.5.2 with rigid connections. The loads shown 

in Figure 4.20 are at the design load level for the frame. The frame is investigated here to demonstrate 

the effect of semi-rigid connections on structural response up to failure. Two connection cases are 

analyzed: (1) under-strength semi-rigid connections, and (2) fully-rigid connections.  

In the first case, the two connection curves from Example 2 in Section 4.5.2 are applied to the 

frame in Figure 4.20. The connection model parameters for all floor beam-to-column connections C1 

and C2 assume the values in the second row of Table 4.5, while the parameters for all roof beam-to-

column connections C3 and C4 are those in the third row of Table 4.5. According to the member Mp 

moment values given in the second column of Table 4.7, and the connection Mn moment values given 

in the fourth column of Table 4.5, the frame has under-strength connections because Mn < My (= 0.7 

Mp/1.15, assuming residual stress 0.3σy and shape factor 1.15 for the W-section). From the stiffness 

criteria defined in Eqs. (4.3.1) and (4.3.3), and the rc0 values given in the third column of Table 4.8, 

all the connections are categorized as being semi-rigid because 0.143 < rc0 < 0.893. 

Upon applying the compound-element analysis method, the semi-rigid frame was found to collapse 

when the load factor reached λf = 0.688 (i.e., at 68.8% of the specified nominal design load level), as 

indicated by the heavy solid-line curve in Figure 4.21. To consider the difference between the semi-
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rigid connection design and conventional rigid connection design, the analysis results obtained by 

other methods for rigid connections are also indicated in Figure 4.21. It is seen from the figure that 

the collapse-load factor λf decreases by 36.3% from 1.08 for the rigid frame to 0.688 for the semi-

rigid frame, and that large lateral translation occurs for the semi-rigid frame. In addition to the 

significant changes in the loading capacity, the plasticity formation in Figure 4.22 for the semi-rigid 

frame varies substantially from that for the rigid frame (see Figure 3.15). Because of the under-

strength semi-rigid connections, all of the member ends at the connections do not undergo any 

plasticity, as indicated in the fifth column of Table 4.8. However, the connection stiffness factors 

associated with the beams in the right large-span bay drop almost to zero, as shown in column four of 

Table 4.8. The factors relevant to the left short-span bay drop by about 24~63% when the rc values in 

column four are compared with the r values in column six of Table 4.8, it is noted that the compound 

element behaviour is dominated by that of the under-strength connections. Similar to the failure mode 

of the frames in the previous two examples, the 2-bay by 2-storey frame fails at load factor level λf = 

0.688 due to inelastic instability signalled by the horizontal displacement of node 9 becoming 

extremely large. 

From the load-deflection response designated by the heavy solid-line curve in Figure 4.21, the 

flexibility of the frame increases considerably when the connections are semi-rigid. As such, 

serviceability design requirements might not be satisfied due to excessive deflections. To enhance the 

stiffness and strength of the frame, stiffer connections are now selected while maintaining all the 

same member properties. Specifically, the parameters of the moment-rotation connections in the last 

three columns of Table 4.7 are chosen for the structural analysis. (The four parameters for each 

connection in Table 4.7 are obtained from the research of Kishi et al. (2004) concerning extended 

end-plate connections). According to the member Mp and connection Mn values in the second and 

third columns of Table 4.7, the connections C1, C2, C3 and C4 are categorized as being full-strength. 

Also, from the rc0 values in column seven of Table 4.8, and the criteria in Eqs. (4.2.13), all of the 

connections are categorized as being fully-rigid. 

After conducting the non-linear analysis for the fully-rigid frame, the plasticity distribution for the 

members, the lateral load-deflection curve at joint 9, and the degradation factors corresponding to the 

connections, are found to be as given in Figure 4.23, Figure 4.21 and Table 4.8, respectively. These 

results reveal the following structural behaviour. First, the loading capacity of the fully-rigid frame is 

the same λf = 1.08 value as for the conventional rigid frame, as indicated in Figure 4.21. Secondly, 

the structural stiffness of the fully-rigid frame is considerably greater than that of the semi-rigid 

frame, and approaches the stiffness of the conventional rigid frame. From Figure 4.21, the heavy 
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dotted-line load-deflection curve at joint 9 of the fully-rigid frame almost coincides with the curve of 

the rigid frame when the load factor λ is below 0.6. Unlike the load-deflection behaviour of the 

conventional rigid frame, however, there is no sudden kink transition as the external loading 

approaches the limit state. Thirdly, the plasticity distribution of the fully-rigid frame is much different 

from that of the semi-rigid frame in Figure 4.22, but close to that of the conventional rigid frame. For 

the fully-rigid frame, plastic hinges appear at the top end of column C25, the top and bottom ends of 

column C69, and the midspan of beam B56, as indicated in Figure 4.23, while the three plastic hinges 

shown in Figure 4.22 for the semi-rigid frame no longer appear. More importantly, as indicated in 

Figure 4.23, plasticity now appears at the beam member ends linked to the stiffer fully-rigid 

connections. Upon comparing Figure 4.23 with Figure 3.15, it is observed that all the columns have 

similar plasticity behaviour except for the different order of the plastic hinge formation. However, a 

significant difference between the plasticity formation in these two figures is observed for the 

compound elements where plasticity occurs; more detailed information in this regard is shown by the 

rp and r values in the ninth and last columns of Table 4.8. For instance, end E5 of beam B45 has a 

considerable difference in stiffness factors, ranging from rp = 0.392 for the fully-rigid connection to r 

= 0.00 for the conventional rigid connection. Finally, after the formation of the fourth plastic hinge at 

the midspan of beam B56 occurs at load factor λf = 1.08, the frame fails due to inelastic instability 

without a sudden change of the force-deflection relation like that for the rigid frame in Figure 4.21. 

4.6 Final commentary 

The member-connection compound element developed in this chapter is used in Chapter 5 to 

investigate the influence that both damaged connections and semi-rigid connections have on the 

capacity of framework structures to resist progressive collapse failure under abnormal loading. 
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Figure 4.1 Semi-rigid connection and member-inelasticity model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Four types of member ends and connection models 
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Figure 4.3 Compound element replaces the elements in series  
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.4 Four-parameter model of semi-rigid connections 
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Figure 4.5 Stiffness degradation relationships at a member end 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Combined moment-rotation relationships for a compound element 
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Figure 4.7 Relationship between the degradation factors for a compound element 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Simple beam structure with semi-rigid connections 
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Figure 4.9 Stiffness degradation behaviour of different compound elements 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Compound model of beam-column member 
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Figure 4.11 Idealized force-displacement relations for transverse and axial connections 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Example 1: Portal frame (Liew et al., 1997) 
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Deflection at joint 6 (mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Example 1: Moment-rotation relations for connections 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14 Example 1: Load-deflection responses and plasticity formation 
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Figure 4.15 Plasticity behaviour of rigid frame with different supports 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Example 2: One-bay by two-storey frame (Chen et al., 1996) 
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Figure 4.17 Example 2: Categories of connections 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Example 2: Comparison with PHINGE (Liew at al. 1997) 
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Figure 4.19 Example 2: Comparison with rigid connection analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Example 3: Frame and service-level design gravity loading (Ziemian et al., 1992) 
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Figure 4.21 Example 3: Comparison with rigid-connection analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Example 3: Plasticity at failure load-factor level λf = 0.694 
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Figure 4.23 Example 3: Plasticity at failure load-factor level λf = 1.08 
 

 
 

 

 

 

 

 
 

Table 4.1 Parameters for specified connections 
 

Connection M0 (kN-m) Rce (kN-m/rad) Rcp (kN-m/rad) γ 

DWA 55.935 20114 69.608 0.964 

FEP 95.146 21470 468.95 1.45 

EEP 137.86 18984 1041.86 5.11 

 

 

 

 

 

 



  

  114

Table 4.2 Results for EEP connection 
 

M (kN) Rp (kN-m/rad) Rc (kN-m/rad) R (kN-m/rad) rp rc r 

0  18984 18984  0.661 0.661 

9  18984 18984  0.661 0.661 

19  18983 18983  0.661 0.661 

28  18979 18979  0.661 0.661 

38  18962 18962  0.660 0.660 

47  18915 18915  0.660 0.660 

57  18810 18810  0.659 0.659 

73 4732880719 18376 18375 1.000 0.653 0.653 

75 39559835 18249 18241 1.000 0.652 0.652 

84 838297 17683 17318 0.989 0.645 0.640 

93 167474 16857 15315 0.945 0.634 0.611 

101 57301 15745 12351 0.855 0.618 0.559 

109 22861 14366 8822 0.701 0.596 0.475 

116 7139 12786 4581 0.423 0.567 0.320 

119 0 11861 0 0.000 0.549 0.000 
 

 

Table 4.3 Results for FEP connection 
 

M (kN) Rp (kN-m/rad) Rc (kN-m/rad) R (kN-m/rad) rp rc r 

0  21470   0.688 0.688 

10  20094   0.673 0.673 

20  18026   0.649 0.649 

28  15873   0.619 0.619 

36  13853   0.587 0.587 

42  12050   0.553 0.553 

48  10483   0.518 0.518 

56  8323   0.461 0.461 

57  8000   0.451 0.451 

61  7033   0.419 0.419 

64  6214   0.389 0.389 

67  5518   0.361 0.361 

70  4926   0.336 0.336 
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72 Infinity 4420 4420 1.000 0.312 0.312 

90 274191 1524 1516 0.966 0.135 0.135 

95 125900 1082 1073 0.928 0.100 0.099 

100 68670 822 813 0.876 0.078 0.077 

105 38651 668 657 0.799 0.064 0.063 

110 20013 579 562 0.672 0.056 0.055 

115 9206 537 507 0.486 0.052 0.049 

116 7157 530 494 0.423 0.052 0.048 

117 5187 525 476 0.347 0.051 0.047 

118 3213 520 447 0.248 0.051 0.044 

119 0 514 0 0.000 0.050 0.000 
 

 

 

Table 4.4 Example 1: Stiffness degradation factors 
Semi-rigid Rigid 

Member End 
Initial: rc0 rc rp r Case 1: r Case 2: r 

C13 E1 0.671 0.085 0.998 0.085 0.482 - 

C26 E2 0.671 0.084 0.994 0.084 0.000 - 

B34 E3 0.168 0.019 1.000 0.019 1.000 0.572 

B56 E6 0.168 0.012 1.000 0.012 0.000 0.000 
 

 

 

 

 

Table 4.5 Example 2: Semi-rigid connection parameters (Chen et al., 1996) 
 

Connection Mp (kN-m) My (kN-m) Mn (kN-m) Rce (kN-m/rad) Rcp γ 

C1 270 164 200 107804 0 0.81 

C2 219 134 92 23269 0 1.27 
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Table 4.6 Example 2: Stiffness degradation factors 
 

Semi-rigid Rigid 
Beam End 

Initial rc0 rc rp r r 

B34 E3 0.766 0.055 0.901 0.054 0.798 

B45 E5 0.766 0.045 0.891 0.044 0.737 

B67 E6 0.490 0.005 0.991 0.005 0.982 

B78 E8 0.490 0.004 0.991 0.004 0.983 
 

 

Table 4.7 Example 3: Semi-rigid connection parameters (Kishi et al. 2004) 
 

Connection Mp (kN-m) Mn (kN-m) Rce (kN-m/rad) Rcp (kN-m/rad) γ 

C1 (CF6-U12x96) 995 1736 1240000 56900 1.39 

C2 (EP8 with shim) 2773 3252 15300000 81600 1.20 

C3 (CF5-U10x49) 387 867 893000 30300 1.18 

C4 (CF5-U10x68) 1240 1494 1020000 46100 1.69 
 

 

Table 4.8 Example 3: Stiffness degradation factors 
 

Semi-rigid Fully-rigid Rigid 
Beam End 

rc0 rc rp r rc0 rc rp r r 

B45 E4 0.315 0.131 1.000 0.131 0.914 0.837 1.000 0.837 1.000 

B45 E5 0.315 0.117 1.000 0.117 0.914 0.206 0.392 0.156 0.000 

B56 E5 0.231 0.002 1.000 0.002 0.988 0.200 0.752 0.188 0.847 

B56 E6 0.231 0.013 1.000 0.013 0.988 0.514 0.988 0.511 1.000 

B78 E7 0.252 0.134 1.000 0.134 0.963 0.834 1.000 0.834 1.000 

B78 E8 0.252 0.192 1.000 0.192 0.963 0.051 0.966 0.051 0.000 

B89 E8 0.158 0.001 1.000 0.001 0.943 0.197 0.792 0.187 0.891 

B89 E9 0.158 0.009 1.000 0.009 0.943 0.197 0.952 0.195 0.952 
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Chapter 5 
Progressive-Failure Analysis 

A method for progressive-failure analysis is presented in this chapter. The objective is to evaluate the 

performance of a building framework after it has been damaged by an abnormal loading event. These 

include an impact or blast load caused by a natural, accidental or deliberate event, or as a result of 

human errors in design and construction. To begin, it is assumed that some type of short-duration 

abnormal loading has already caused some form of local damage to the structure. The local damage is 

simulated by removing one or more critical member(s) as recommended by the Alternate-load Path 

(AP) analysis method suggested in published guidelines (GSA, 2003; DoD, 2005). The residual load-

carrying capacity of the remaining framework is then analyzed by incrementally applying the 

prevailing long-term loads and any impact debris loads. Specifically, the strength deterioration of the 

structure is progressively traced until either a globally stable state is reached or progressive collapse 

occurs for part or all of the structure. A constitutive model for structural steel is adopted to account 

for elastic-plastic behaviour due to single or combined stress states. The progressive-failure analysis 

procedure is illustrated for four planar steel moment frameworks subjected to abnormal loading. 

5.1 Local Failure Modes and Debris Loading 

For analysis under normal loading, the focus is on determining the loading capacity of the structure 

corresponding to plastic collapse or instability, and not on the structural failure modes themselves. 

However, under abnormal loading, knowledge of any localized failure modes is critical to the 

progressive collapse analysis of the structure. For example, if the failure mode is a local mechanism, 

the damaged structure may be able to further carry loads, including debris loading resulting from the 

damage. This section investigates local failure modes associated with member removal and the 

creation of debris loading. 

5.1.1 Failure Modes of Components 

As discussed in Chapter 1, project failures can be categorized as foreseen and unforeseen. Typically, 

the causes are classified in three categories: faulty considerations during design, incorrect procedures 

or misinterpretation of design intention during construction, and misuse or sabotage during operation 

conditions. Whatever the causes are, structural failure can be a ductile collapse involving excessive 

deformation, brittle fracture with insignificant deformation, fatigue under cyclical loading, or creep 

due to high-temperature fire. From the structural perspective, two categories of failure have been 
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defined: instability and plastic collapse. Usually, instability failure is related to the geometrical 

deterioration of a structural system for which the material behaviour is either elastic or plastic, 

whereas plastic collapse is related to the post-elastic strength deterioration of members of the 

structure such as to create a movable mechanism. This subsection addresses the failure modes of 

structural components, including connections and members. 

As described in Chapters 2 and 3, for this investigation the failure of a member at a critical section 

involves bending, shearing and axial stiffness degradation tracked along an elliptic curve from initial 

yield to full plasticity. Similar to section failure, and as described in Chapter 4, the rotational failure 

of a semi-rigid connection is modeled by a four-parameter model that accounts for strain hardening or 

softening.  

Figure 5.1 illustrates the failure of connections recovered from the WTC 5 building that partially 

collapsed on September 11, 2001 (FEMA, 2002). Figure 5.1(a) shows a failed connection from the 7th 

floor of the building. It is observed that the main failure feature is tear-out at the bolt locations in the 

web of the connected beam, and that substantial rotational, shearing and axial deformation occurs 

during the failure process. Figure 5.1(b) shows a second failed connection recovered from the 8th floor 

of the WTC 5 building. The failure mode is different from that in Figure 5.1(a), and is due to shearing 

fracture caused by tear-out of the bolts for the single-angle web connection plate. It is observed that 

the failure also involves significant axial deformation. These samples of failed connections indicate 

that the failure model for semi-rigid connections proposed in Chapter 4 is conceptually appropriate. 

Generally, connection or member section failure results in the formation of a local mechanism for a 

structural beam-column member. Three types of member failure modes are described in the 

following. The first local failure mode is the cantilever failure in Figure 5.2(a), where member-end 

section A undergoes ultimate rotation θu corresponding to the formation of a fully plastic hinge. 

Rigid-body displacement of the member occurs as the plastic hinge deforms. If member section A is 

perfectly ductile, the plastic hinge behaves like a common hinge and member AB does not separate 

from connection joint A. In this case, a point debris load may be generated when end B of the 

member impacts on the floor below. Even for a ductile structure, however, it is possible for fracture 

failure to occur when the rotational deformation becomes large to the point that the tension-side top 

fibers of the beam section are torn while the compression-side bottom fibres are crushed. When this 

occurs, member AB disengages from the structure at end A to create a distributed debris load that 

falls on the floor member immediately beneath it. (The dynamic effect of such debris loading is 

discussed later in this chapter).  
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When a member is separated from its connected joint, the disengagement condition depends on the 

ultimate rotation θu, which can be determined from the failure criteria for structural members adopted 

in design standards and guidelines (e.g., DoD, 2005; ASCE, 1997; TM5-1300, 1990). For instance, 

the document UFC-023-03 (DoD 2005) provides the deformation limits for structural steel given in 

Table 5.1. It is seen from the table, for example, that beams with seismic sections have ductility of 20 

(ratio of full-yield to initial-yield deformations) and rotation capacity of 12° for low level of 

protection (LLOP), and 10 and 6° for both medium level of protection (MLOP) and high level of 

protection (HLOP). In this study, it is assumed that a member section disengages from the structure 

when it reaches its deformation limit listed in Table 5.1. 

The second local failure mode considered by this study is the catenary failure shown in Figure 

5.2(b). After the formation of the three plastic hinges at the end-sections and midspan of the beam, a 

mechanism involving significant transverse deformation is developed. Such catenary deformation 

causes increased axial force in the member. The catenary load-transfer function of the member is 

achieved if its axial strength offers sufficient resistance to this increased load. However, if the axial 

strength is insufficient the member will disengage from one or both of its connections at ends A and 

B, either by tearing-out fracture of the connections or by rupture of the member. In this study, it is 

assumed that after a local plastic-collapse mechanism forms and the plastic rotations at both member 

ends reach their deformation limits given in Table 5.1, the whole member disengages from the 

structure and falls as debris loading on the member just below it. In the progressive-failure analysis, 

catenary action is accounted for through the interaction between axial force and displacement.   

The third local failure mode considered by this study is the shear failure shown in Figure 5.2(c). 

Punching shear failure is an important consideration in the design of concrete structures, while 

concern for shear failure in most steel structures is relatively unimportant. However, shear failure due 

to severe short-duration dynamic loads is recognized as a principle factor contributing to member 

collapse, regardless of the material type (Jones, 1995). Dynamic shear failure depends on the loading 

speed and intensity. It is important to consider dynamic shear failure as possible whenever there is 

blast or debris impact loading, because the corresponding shear force can be many times that for a 

member under static loading. It is assumed by this study that once the shear capacity at both ends of a 

member has been exceeded, the entire member disengages from its supports (as shown by the dashed 

line in Figure 5.2 (c)) and impacts as debris loading on the member beneath it.  
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5.1.2 Impact Debris Loading 

When local collapse occurs as discussed in the previous subsection, the disengaged portions fall as 

debris loads on the remaining structure. Experiments confirm that with the increase of strain rate or 

loading speed, the material yield stress increases and approaches the ultimate stress state (Manjoine, 

1944; ASCE, 1997). This implies that even a ductile material such as mild steel can experience brittle 

failure under high-velocity impact loading. Nonlinear dynamic analysis offers a reasonably accurate 

prediction of structural response under impact loading. However, a quasi-static analysis proves to be 

simpler and in good agreement with test results when the impact velocities do not exceed 12 m/s 

(Jones, 1995). In the current study, the impact velocities of the debris loads generally do not exceed 

this limit, and it is presumed reasonable to employ a quasi-static method of analysis to determine 

structural response under impact debris loading.  

To account for the impact effect of debris loads, a dynamic amplification factor is introduced into 

the structural analysis. Existing design guidelines for dealing with impact debris loads suggest several 

methods to estimate impact forces. For instance: FEMA-259 (1995) suggests designers employ an 

impulse-momentum method; the Australian highway bridge design specification (NAASRA, 1990) 

suggests a work-energy method; and the American LRFD-specifications for bridge design 

(AASHTO, 1998) suggests a contact-stiffness method. In the design of shelter structures, the FEMA-

361 (2000) guidelines include the effect of falling debris caused by extreme wind loads. Determining 

equivalent static design loads corresponding to free-falling debris is a complicated problem that is 

dependent on material properties, stiffness of impacted structure and impact angle between the debris 

and structure. 

The effect of falling debris loading on the progressive collapse of structures is yet to be discussed 

in either analysis or design guidelines. Determining the impact effect of debris loading is a 

complicated process involving an inelastic dynamic analysis of the structure, which is beyond the 

scope of this study. Instead, the approach taken herein is to determine the magnitude of the impact 

amplification factor for which progressive collapse occurs.  

5.2 Damage Degree due to Local Collapse 

Once any one of the three types of local collapse discussed in the previous section occurs, severe 

local damage of the structure ensues due to the disengagement of failed member(s). Although recent 

design/analysis guidelines (DoD, 2005; GSA, 2003) suggest such local damage to the structure can be 

ignored for simplicity, the disengagement of failed member(s) can significantly affect further 

structural behaviour. To investigate the influence of the localized damage, an analytical approach is 
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proposed in this study for modeling damaged portions of a structure that experience member removal 

and associated connection damage. 

To assess the residual strength of a structure damaged by excessive loading, test methods can be 

used to objectively identify the extent of damage. For instance, destructive and non-destructive test 

techniques are suggested in the FEMA-267 (1995) interim guidelines to evaluate moment-frame steel 

structures after extreme earthquakes. If there is no existing data regarding the material properties, 

sample elements taken from critical locations of the damaged structure should undergo laboratory 

testing to determine tensile/compressive strength, etc. Because such specimen extraction can 

conceivably further affect or even destroy the damaged structure, non-destructive test methods should 

be used if possible. For steel structures, the ultrasonic pulse velocity method is often adopted to 

determine the size, thickness, and material uniformity quickly and accurately (FEMA-267, 1995). The 

in-place Rockwell and Brinnell hardness testers can be utilized to identify tensile strength and grade 

of steel (Carden & Fanning, 2004). The radioactive method and the magnetic particle method can be 

used to inspect properties of the welds and connections (FEMA-267, 1995).  

To augment the data obtained from local test methods, structure-based test methods can also be 

applied to obtain information about the damaged structure. Such methods quantify the stiffness of the 

structural components by applying input and output dynamic signals defined by a dynamic structural 

analysis. Diagnostic analysis focuses on identifying what is wrong in the system under consideration, 

whereas prognostic analysis focuses on predicting what is going to happen in the future due to some 

damage factors. Some state-of-the-art aspects of such analyses have been presented in the technical 

literature. For instance, a method illustrated for a cantilever beam can predict real-time remaining life by 

using non-linear dynamic analysis to track the damage evolution (Nataraju et al., 2005). A method which 

uses correlating numerical models to measure the modal properties of undamaged and damaged 

components can effectively predict the behaviour of aerospace and offshore structures (Carden & 

Fanning, 2004). To classify the damage behaviour of a system, experiments for a three-storey building 

frame model have been carried out to identify the extent of damage to steel connections (Adams & Farrar 

2002). Much research in this area has focused on developing techniques for damage assessment 

through non-destructive evaluation of structural systems. A method of prognostics has been developed 

to predict the remaining useful life of a structure, with account for damage accumulation (Engel et al., 

2000).  

It should be pointed out that structural identification is an inverse problem that is quite complex in 

that both geometric and material nonlinearities must be taken into account. In this study, it is assumed 

that the initial stiffness degradation data for a locally damaged structure are known by using the 
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aforementioned diagnostics techniques, and that subsequent prognostics is investigated by 

progressive-failure analysis; that is, known information about the local damage state is utilized to 

estimate the remaining life or residual capacity of the damaged system. 

5.2.1 Connection damage 

Often, connection failures have been observed to trigger the progressive collapse of building 

structures (Griffiths et al., 1968; FEMA, 2002). That said, however, current analysis guidelines for 

conducting alternate-load path analysis (GSA 2003 and DoD 2005) assume that structural members 

fail without any damage to their end-joint connections. A more likely scenario is that a connection is 

also damaged when a member disengages from it, and that the connection damage influences the 

ensuing behaviour of the remaining structure. That being the case, a progressive-failure analysis 

should take connection damage into account if it is to reasonably predict the behaviour of structures 

subjected to abnormal loading. To that end, this study proposes in the following to employ connection 

stiffness as measure of connection damage. This is in keeping with conventional structural health 

monitoring, where the stiffness of a component is considered representative of its health condition 

(Wang & Haldar, 1997; Koh et al., 2003). Typically, a health condition index h equal to the ratio of 

damaged-to-undamaged stiffness is adopted as a measure of the severity of component damage (Kol 

et al., 2003); i.e., h = 1 signifies no damage, while at the other extreme h = 0 signifies complete 

damage. 

As a member is removed, the two joints connected to the failed member are likely to undergo some 

damage caused by the removal. In fact, all member-ends connected to the two joints of the remaining 

structure are likely to undergo local damage. To take such local damage into account, two cases of 

stiffness deduction are considered in this study. For a fully-rigid joint, the level of connection damage 

is assumed to modify the plastic degradation factor for each member-end at the joint as,  

1 3 /ph p
p

hr hr
EI R L

= =
+  (5.2.1) 

where rp is the member-plasticity degradation factor defined in Eq. (2.3.4). The parameter h in Eq. 

(5.2.1) is a health index that characterizes the degree of local damage. When health index h = 1 the 

member-end is perfectly healthy, while h = 0 indicates it is completely damaged (i.e., has no 

stiffness).  

In a similar manner, if a semi-rigid connection is at the joint relevant to the member removal, the 

health index h is assumed to modify the connection-stiffness degradation factor as,  
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 (5.2.2) 

where rc is the member-connection degradation factor defined in Eq. (4.2.10). As above, when h = 1 

the semi-rigid connection is perfectly healthy, while h = 0 indicates it is completely damaged.  

A parametric study of the health index h is presented in Example 1 of this chapter, where 

progressive-failure analysis of a frame structure is conducted for a range of h values to illustrate the 

influence that connection damage has on structural behaviour in the aftermath of an abnormal loading 

event. The study only considers damage that diminishes the rotational capacity of connections. 

However, by following similar reasoning as in the foregoing, it is readily possible to also account for 

diminished shear and axial connection capacity in the progressive-failure analysis. 

5.3 Progressive-Failure Analysis Procedure  

This section presents a computer-based procedure for progressive-failure analysis. The determination 

of the loading conditions is first considered. The nonlinear analysis procedure proposed in Chapter 3 

is then extended to the analysis of a structure that has been locally damaged by abnormal loading to 

the extent that part of the structure has disengaged from the main structure and impacted as debris 

loading on the remaining structure below.  

5.3.1 Load Combinations due to Abnormal Loading Events 

A structure exposed to a natural environment is subjected to dead gravity loads due to the structure 

self weight, live gravity loads, wind loads, earthquakes, and so on. All the loads within a structure’s 

lifetime may never achieve their maximum values at the same instant and, as such, the normal design 

loads applied to the structure are established by probabilistic analysis (Galambos et al., 1982). The 

specification of normal design loads is included in the design codes of many countries, but the 

stipulation of abnormal loads appears in only some specialized guidelines. For instance, after the 

progressive collapse of the Ronan Point Tower due to a gas explosion (Griffiths et al., 1968), a 

number of codes and standards in countries such as Canada, Western Europe, and the United States 

have implemented provisions to minimize the probability of progressive collapse. The Canadian Code 

(NRCC, 1995) requires structural designs to have sufficient structural redundancy and integrity 

against all abnormal effects within a building’s service life; specifically, the structure is to have the 

capability to absorb local failure without widespread collapse.  

In addition to the structural redundancy and integrity stipulations in the Canadian code, Eurocode-1 

(CEN, 1994) implements an alternative design strategy that explicitly accounts for abnormal loads. 
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For example, account for a loading intensity of 34 kPa by a natural gas explosion is required for 

structures where explosions have high probability of occurring. If abnormal or accidental loads Ak are 

specified, the following design load combinations are routinely incorporated in design (CEN, 1994), 

LkL LAD 5.0++  (5.3.1) 

LLkL LSAD 3.02.0 +++  (5.3.2) 

LLkL LWAD 3.05.0 +++  (5.3.3) 

where DL, LL, SL and WL are specified dead load, live load, snow load and wind load, respectively.  

In the United States, design requirements for progressive collapse were introduced in 1972 just 

after the 1968 Ronan Point event. In addition to the consideration of general structural integrity, a 

recent design code (ASCE-7, 2005) unofficially recommends that designers consider the following 

loading combination, 

)2.0or  5.0()2.1or  9.0( LLkL SLAD ++  (5.3.4) 

It is observed that the European and the American design codes adopt almost the same load 

combination style. Under the action of the combined loads of Eqs. (5.3.1) to (5.3.4), the loading 

capacities of certain key elements in a structural system are checked to meet the safety demands.  

For a design having concern for an abnormal action Ak, it is difficult for designers to specify the 

magnitude of Ak due to considerable uncertainties. Even if possible, a structure designed to account 

for one hazard might not provide reasonable resistance to other hazards. At the other extreme, 

designing many “hard” portions within the structure is uneconomical (Ellingwood & Dusenberry, 

2005). A more attractive approach may be to eliminate the hazard, or to control the consequence of 

local damage by providing alternate paths that safely transfer loads away from the damaged area 

(Breen & Siess, 1979).  

The alternate load-path strategy is to design a structure that can bridge local damage due to any 

abnormal loading event. To achieve this objective, the ASCE-7 design code (2005) requires applying 

the following load combination, 

LLLL WSLD 2.0)2.0or  5.0()2.1or  9.0( ++  (5.3.6) 

to check the residual capacity of a locally damaged structure to maintain its overall stability for a 

sufficient period of time to evacuate the building or take any necessary measures to remedy the 

damage. Based on the discretion of designers, local damage is simulated by removing critical load-

bearing component(s), and then the strength capacity of the damaged structure is checked under the 

load combination Eq. (5.3.6).  
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The foregoing procedure, however, creates a dilemma for designers since the local damage is not 

explicitly stipulated. In this regard, guidelines released by the General Services Administration of the 

United States (GSA 2003) address this issue for the design of new buildings or the assessment of 

existing office buildings subject to abnormal loading events. Specifically, to model the localized 

damage caused by abnormal loads, designers or assessors are required to remove the following 

critical members of the structure on the first floor: an exterior column near the centre of the short side 

of the structure, an exterior column close to the center of the long side of the structure, an exterior 

column at a corner, an interior column, an exterior bearing wall near the centre of the short side of the 

structure, an exterior bearing wall near the center of the long side of the structure, an exterior bearing 

wall that wraps around a corner, and an interior bearing wall. At the same time, to analyze each 

resulting damaged structure, the load combination, 

 )25.0(2 LL LD +  (5.3.7) 

is employed in a linear static elastic analysis, while the load combination, 

LL LD 25.0+  (5.3.8) 

is employed in a linear elastic dynamic analysis. By comparing Eq. (5.3.7) with Eq. (5.3.8), it is 

observed that a dynamic amplification factor of 2 is accounted for in the static analysis. Typical and 

atypical structures are distinguished in the GSA guidelines. Atypical structures have the following 

features: plan irregularities, vertical discontinuities, combinations of structural systems, variations in 

bay size, extreme bay sizes, and closely spaced columns. 

More recently, the Department of Defense of the United States has released the Unified Facilities 

Criteria (UFC) design guidelines to reduce the potential of progressive collapse for new and existing 

facilities (DoD, 2005). The guidance provides for an effective and uniform level of resistance to 

progressive collapse without expensive or radical changes to conventional design practice. As 

suggested in the GSA guidelines, the Alternate-load Path (AP) method is recommended for the static 

and dynamic analysis and design of structures, as follows: “The primary objective in a progressive 

collapse analysis is to check the structure for alternative load paths after some elements are 

potentially lost through some abnormal loading such as an explosive event. These alternative load 

paths will need to provide sufficient damage tolerance to minimize the loss of life that might 

otherwise occur and will allow the safe egress of occupants from the damaged structure.”  

The following load combination provided in the DoD guidelines for a static analysis is based on the 

ASCE-7 (2005) load formulation given in Eq. (5.3.6), and the GSA formulation given in Eqs. (5.3.7) 

and (5.3.8): 
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LLLL WSLD 2.0)]2.0or  5.0()2.1or  9.0[(2 ++  (5.3.9) 

where the coefficient of 2 is a dynamic amplification factor that is applied only to the loads at the 

bays just above the removed column (see DoD, 2005).  

This study assumes that the abnormal loading occurs jointly with the normal gravity loading for the 

building. Lateral loading is not considered because the probability of a simultaneous occurrence of an 

abnormal loading and a strong wind or seismic loading is considered negligible (Ellingwood & 

Leyendecker, 1978). If the structure and abnormal loading are symmetrical, the 0.2WL term in Eq. 

(5.3.9) is used to ensure that the lateral deflection of the frame is involved in the analysis. 

Following the published guidelines (GSA, 2003; DoD, 2005), this study models localized damage 

due to abnormal loading by removing one or more members to signify they abruptly break away from 

the structure. The analysis is quasi-dynamic in the sense that the gravity load on a failed member that 

has broken away is scaled by an impact factor, and applied as a debris load on the remaining structure 

immediately below. In view of the lack of research on the values of dynamic impact factors 

applicable for building structures, the objective of this study is to determine the magnitude of impact 

factors that initiate further debris loading and, if it happens, cause progressive collapse. 

5.3.2 Incremental-Load Analysis 

After the occurrence of local damage from an abnormal loading event, progressive-failure analysis 

traces the residual load carrying capacity of the remaining framework over a loading history 

involving proportionally applied increments of the prevailing gravity loads and any impact loads due 

to falling debris. The progressive collapse of a structure is divided into a series of failure stages. The 

first stage after the occurrence of abnormal loading is up to a local failure state signalled by the 

singularity of the structure stiffness matrix. To begin the second stage, the local failure mechanism is 

identified by the zero-valued stiffness coefficient(s) on the main diagonal of the stiffness matrix. The 

corresponding failed member(s) are removed from the structure, one-step elastic unloading analysis is 

conducted, and the internal forces and nodal displacements are upgraded accordingly. Debris loading 

from the failed member(s) is applied on the remaining structure, and the incremental-load procedure 

continues on to the next stage. The analysis procedure terminates either when progressive collapse 

occurs or the target design load level is reached, which happens first (see Example 1 in Section 5.4.1 

for illustrative details). 

Reaching each failure stage involves a number of load increments. After each such load increment, 

the stiffness matrix of each member is updated to account for bending, shear or axial stiffness 

degradation due to plastic behaviour under increasing applied loads. The computational model allows 
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the incremental analysis to proceed beyond loading levels at which structural instabilities occur, 

including members breaking away from the structure or the formation of local plastic collapse 

mechanisms. The analysis traces the behaviour of the building framework over the incremental load 

history, until either the full intensity of all gravity and debris loading is reached and the structure is 

still stable, or a structural instability occurs at a lower loading level that causes part or all of the 

structure to undergo progressive collapse to ground level.  

For a structure that has been initially damaged due to an abnormal loading event, the progressive-

failure analysis commences from the zero-load level identified by load factor λ0 = 0. Thereafter, it 

proceeds by incrementally increasing the loading level over a succession of failure stages. Each such 

stage corresponds to a local or global failure state; i.e., formation of a rigid-body collapse mechanism, 

member disengagement and associated debris loading, or, if it happens, progressive collapse of part or 

all of the structure. To accurately identify the loading levels corresponding to the various failure 

stages, the magnitude of the load-factor increment is decreased over the loading history as follows, 

)1(    ; *
1

*
1 JJiJiJJ λ∆−λ∆=λ∆λ∆=λ∆ −    (i =2, 3, …) (5.3.10) 

where ∆λ*
J < 1 is the specified increment for the first stage of the analysis (e.g., ∆λ*

J = 0.05). Assume 

the structure is subjected to applied load W0, as determined by either the GSA criterion Eq. (5.3.7) or 

the DoD criterion Eq. (5.3.9). The portion of the load applied at the end of stage J-1 is (1-λJ-1)W0, 

where λJ-1 is the total recorded load factor over J-1 stages. Thus, for the ith loading increment within 

stage J, the corresponding load increment is, 

1 0 (1 )Ji Ji JW W−∆ = ∆λ − λ    (i =1, 2, 3, …) (5.3.11) 

If the structure stiffness matrix is non-singular at the end of the incremental load step defined by Eq. 

(5.3.11), the corresponding incremental nodal displacements and member forces are solved for and 

added to the total displacements and forces accumulated to date. The initial-yield and full-yield 

conditions for each member-end section are then evaluated and, if plastic behaviour is detected, the 

appropriate bending, shearing and axial stiffness degradation factors r, t and n are calculated, and the 

member stiffness matrix is updated accordingly. The computation proceeds until the end of the Jth 

stage, when either the target load level W0 is reached or a further local/global failure state is detected. 

The total load applied on the damaged structure within the stage is, 

JJ
i

JiJ
i

JiJ WWWW λ∆λ−=λ∆λ−=∆=∆ −− ∑∑ 0101 )1( )1(  (5.3.12) 

where parameter ∆λJ is the sum load factor for the Jth stage. Thus, the total load factor for all J stages 

is 
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JJJ λ∆+λ=λ −1  (5.3.13) 

From Eqs. (5.3.12) and (5.3.13), the load remaining at the end of the Jth stage that is yet to be applied 

commencing in the next stage J+1 of the analysis is, 

1 1 0 0(1 )  (1 )J J J JW W W W+ −= − λ − ∆ = − λ  (5.3.14) 

where W0 – WJ+1 = λJW0 is the load magnitude already applied on the structure. The locally damaged 

structure does not experience further collapse. 

It is evident from Eq. (5.3.14) that WJ+1 = 0 when the load factor λJ = 1, which indicates the target 

load level W0 has been reached at the end of stage J. This means that the structure does not experience 

progressive collapse failure. On the other hand, if load factor λJ < 1 then a local/global failure state 

has been detected at the end of the Jth loading stage. This failure is characterized by the structural 

stiffness matrix becoming singular, which indicates that the structure has become unstable in either a 

local or global sense. The first is a global instability, corresponding to part or all of the structure 

undergoing progressive collapse to ground level; here, the analysis is terminated at λf = λJ < 1.  

In the case of local instability, the structure still has residual capacity to resist further loads. Before 

commencing the next stage of the analysis, it is assumed that the affected member or subassembly of 

members abruptly break(s) away from the supporting connections, based on the criteria in Table 5.1. 

The corresponding gravity loading then falls as debris loading with magnitude IafWfd on the remaining 

structure below, where Iaf is a specified impact amplification factor and Wfd denotes the weight of the 

falling debris. At the instant that the debris loading is created, the remaining structure experiences an 

abrupt unloading phenomenon as the moment, shear and axial restraining forces decrease to zero at 

the node(s) where the member or subassembly of members breaks away. The corresponding 

“unloaded” member forces and nodal displacements for the remaining structure are found by applying 

the incremental-load analysis procedure for the affected node(s) loaded by the reverse of the member-

end moment, shear and axial forces that existed immediately before the abrupt unloading occurs. The 

“unloaded” forces and displacements are then added to the member forces and nodal displacements 

that existed for the remaining structure just prior to the unloading event, to establish the starting basis 

for the next (J+1) stage of the analysis. 

To commence the (J+1) analysis stage, any falling debris loading is applied with the remainder 

loads defined by Eq. (5.3.14), such that the remainder loads for any member(s) impacted by falling 

debris become, 

1 0 (1 )J J af fdW W I W+ = − λ +  (5.3.15) 

The corresponding load increment within stage (J+1) is then given by, 
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( 1) ( 1) 1 ( 1) 0  [(1 ) ]J i J i J J i J af fdW W W I W+ + + +∆ = ∆λ = ∆λ − λ +     (i =1, 2, 3, …) (5.3.16) 

When the debris loading is included in the analysis process according to the loading scheme based on 

Eq. (5.3.16), the computer-based procedure becomes much more complicated. In current design-load-

based analysis, the external loading vector, relevant to the design W0, is taken as a reference in the 

entire progressive collapse process, whereas load factor λ characterizes the extent of which the 

structure carries the loading. The approach in the following is to deal with the debris loading without 

changing the loading basis that is used to identify the progressive collapse level of the structure. To 

this end, the increment load of Eq. (5.3.16) is rearranged as  

( 1) ( 1) 0 (1 )
1

af
J i J i J fd

J

I
W W W+ +

⎛ ⎞
∆ = ∆λ − λ +⎜ ⎟− λ⎝ ⎠

    (i =1, 2, 3, …) (5.3.17) 

Note from Eq. (5.3.17) that the weight Wfd of the falling debris is multiplied by the factor, 

1
af

J

I
α =

− λ
 (5.3.18) 

which is referred to herein an ‘equivalent impact amplification factor’. This scale factor ensures that 

the entire debris (displaced gravity) loading is accounted for in succeeding stage(s) of the incremental 

analysis after load level J. Therefore, from Eqs. (5.3.17) and (5.3.18), the load-increment within stage 

(J+1) of the analysis is, 

( 1) ( 1) 0 (1 )( )J i J i J fdW W W+ +∆ = ∆λ − λ + α    (i =1, 2, 3, …) (5.3.19) 

One benefit of this loading approach is that the original external load records (W0) maintain 

unchanged in the entire nonlinear analysis process except that only limited new record(s), related to 

debris load(s) is added. From Eq. (5.3.19), load factor ∆λJ+1 in stage (J+1) is expressed as 

1 ( 1) J J i
i

+ +∆λ = ∆λ∑   

which is similar to the expression in Eq. (5.3.12). As a result, load factor λJ+1 at the end of stage (J+1) 

is determined by Eq. (5.3.13) and the analysis continues until the progressive collapse halts. 

In the previous analysis procedure, the unloading is conducted before applying the debris load, 

caused by the member-end disengagement. The axial force, shear force, and bending moment 

released from each disengaged member end are reversely applied on the remaining structure. One-

step elastic analysis is carried out for the reversed loads alone and the internal forces and nodal 

displacements are added to the corresponding internal forces and nodal displacements existing just 

before the member disengaged. More detailed illustration of unloading is provided in the Example of 

Section 5.4.1. Then, after determining the scaled debris loads, the next stage of the progressive-failure 
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analysis is performed for the remaining structure under the specified incremental-loading scheme, 

defined in Eq. (5.3.19). The analysis continues from load level λJ +1, and accounts for the remainder 

loads, including the remaining yet prevailing service-level gravity loading and the previously created 

new debris loading. The process of the multi-stage incremental-load analysis continues until either the 

remaining structure is found to be still stable at loading level λf = 1, albeit in a deteriorated state, or a 

progressive collapse to ground level occurs for part or all of the remaining structure at a lower loading 

level λf < 1. The computational steps of the progressive-failure analysis procedure are illustrated in 

the flowchart in Figure 5.3. 

5.4 Example Case Studies 

The procedure of progressive-failure analysis is illustrated in the following for three building 

frameworks, consisting of steel beam-column members with W-shape sections. Example 1 illustrates 

the details and results of the analysis procedure for a low-rise steel building framework, including 

how the results are affected by connection damage and semi-rigid connection behaviour. Example 2 is 

a mid-rise steel framework taken from the Los Angeles Model Building (FEMA 355C, 2000), 

referred to as the Los Angeles frame hereinafter, and serves to illustrate both the creation of different 

types of debris loading and the vulnerability of such frameworks to progressive collapse due to 

interior explosion. With the same Los Angeles frame and loading condition as employed in Example 

2, Examples 3 and 4 investigate structural behaviour caused by car-bombing and aircraft crash events, 

respectively. Example 5 is a framework taken from the Boston Model Building (FEMA 355C, 2000), 

referred to as the Boston frame hereinafter, and serves to evaluate the progressive-collapse behaviour 

of a building in a non-seismic region.  

For Example 1, the normal yield stress of material σy = 36 ksi (248 MPa) for all members, and the 

section properties are defined in the CISC handbook (CISC, 2004); for Examples 2, 3 and 4, the yield 

stress σy = 49.2 ksi (339 MPa) and 57.6 ksi (397 MPa) for the beam and column members, 

respectively, and section properties are defined in the AISC-LRFD manual (2001). For all four 

examples 1, the exponent in Eq. (3.3.2) is taken as η = 1.37 for all the members; the shear yield stress 

of the material is taken as τy = 0.5σy  (Tresca criterion); residual stresses are taken as σrc = 0.3σy for 

the compressive normal stress, σrt = 0.15σy for tensile normal stress, and τr = 0.05τy for the shear 

stress. The initial load factor increment in Eq. (5.3.10) is taken as ∆λ*
J = 0.05.  

The progressive-failure analysis results include the values of the bending, shearing and axial post-

elastic stiffness degradation factors r, t and n, respectively, for member sections at which plastic 

deformation occurs. If the plastic deformation is related to degraded bending, shearing or axial 
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stiffness, the member section is designated by a circle, triangle or square symbol (Ο, ∇ or ), 

respectively. Otherwise, the section is designated by a circle inscribed in a triangle if the plasticity is 

associated with both degraded bending and shearing stiffness, or by a circle inscribed in a square if 

related to degraded bending and axial stiffness. For a member exhibiting plastic deformation over its 

entire cross-section area, the designation symbol has a black infill to indicate that the section has 

reached a state of zero post-elastic stiffness (i.e., r=0 and/or t=0 and/or n=0); for example, if r=0 

while t=n=1, the section is designated by a black-infill circle (the classic representation of a plastic-

hinge section). On the other hand, if a member has experienced only partial plasticity over its cross-

section area, the designation symbol is left open with a number inscribed in it that indicates the 

percentage of plastic deformation calculated as %Plasticity = 100 (1 – r, t or n); for example, if r = t 

= 1 while n < 1, the section is designated by the number 100(1 – n) inscribed in an open square (see 

Example 1). Primarily, the following is a presentation of the fundamental details of the proposed 

progressive-failure analysis procedure. A number of practical issues stemming from the four 

examples are subsequently commented upon and discussed at the end of the chapter. 

5.4.1 Example 1: Low-Rise Steel Frame 

Consider the two-bay by two-story steel framework subject to the uniformly distributed service-level 

design gravity loads in Figure 3.14 (Ziemian et al., 1992; Liu et al., 2003; Xu et al., 2005), or in 

Figure 4.20 with semirigid connections. The structure is a building perimeter frame that supports 

open-web-steel-joist floor and roof systems. The load intensity w45= w56 = 109.5 N/mm on floor 

members 4-5 and 5-6 is due to the member self-weight and tributary floor loading; the load intensity 

w78= w89 = 51.1 N/mm on roof members 7-8 and 8-9 is due to member self-weight and tributary roof 

loading. Here, all the applied loads are assumed to be determined according to the DoD (2005) 

guidelines. All the members are oriented with their webs in the plane of the framework, and are 

assumed to be fully restrained against out-of-plane behaviour. By virtue of the nature of the applied 

loading, plastic deformation can occur at the end sections of each of the six column members, and at 

the end and midspan sections of each of the four beam members. The framework has 13 nodes and 33 

degrees-of-freedom for nodal displacement (i.e., rotation at each of the three pin-support nodes 1-3, 

plus lateral and vertical translation, and rotation at each of the ten free nodes 4-13).  

As indicated in Figure 5.4, it is assumed that column C69 of the framework is initially subjected to 

an abnormal loading event that destroys the member, and causes it to be thrown outward from the 

structure so that the member does not impact as debris loading on the members below. The objective 

of the progressive-failure analysis conducted thereafter is to determine whether or not the remaining 
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part of the framework is capable of carrying the prevailing loads without progressive collapse 

occurring. Starting from the zero-load level defined by load factor λ0 = 0, the target loading level for 

the incremental-load analysis is defined by the service-level gravity loads shown in Figure 5.4, since 

they are the loads prevailing on the frame at the time of the abnormal loading event. The analysis 

results found for the frame are discussed in the following and illustrated in Figures 5.4, 5.5 and 5.6. 

As shown in Figure 5.4, the first stage of the progressive-failure analysis after column C69 is 

eliminated from the structure determines that four fully-plastic hinges (r = 0, t = n = 1) and three 

partially-plastic hinges (r < 1, t = n = 1) are developed over the incremental loading history up to 

load level λf1 = 0.227 times the service-level gravity loads. At this point, the structure stiffness matrix 

becomes singular because the stiffness coefficient associated with the vertical displacement of node 9 

tends to zero as a plastic hinge fully develops at the left end-section of cantilever beam B89; i.e., the 

loads can be incrementally increased to only 22.7% of the service-load gravity loads shown in Figure 

5.4 before beam B89 fails as a rigid-body cantilever collapse mechanism.  

As the local collapse mechanism deforms, the beam B89 rotates through an angle great enough to 

cause it to disconnect from the frame at node 8 (see Table 5.1). It is assumed that its entire gravity 

load weight impacts as debris loading on the lower floor beam B56. In addition, the structure also 

undergoes an unloading phenomenon as the moment and shear force restraining effects at node 8, 

related to beam B89, abruptly decrease to zero. Member forces (M, V, P) and nodal displacements (ux, 

uy, uz) for the remaining structure after the unloading takes place are found by applying the 

incremental-load analysis procedure for the loading shown in Figure 5.5, where the moment couple 

and vertical load applied at node 8 are equal to the bending moment and shear force that existed at the 

left end of member B89 immediately before breaking away from the frame at load level λf1= 0.227. 

The incremental-load ‘unloading’ analysis is conducted with account for geometric nonlinearity, but 

not material nonlinearity (i.e., a second-order elastic analysis). The starting basis for the ‘unloading’ 

analysis is the set of before-unloading member forces and nodal displacements previously found for 

the structure at load level λf1 = 0.227, that are given in columns 2 to 4 of Tables 5.2 and 5.3, 

respectively. The after-unloading member forces and nodal displacements found by the unloading 

analysis are given in columns 5 to 7 of Tables 5.2 and 5.3.  

As a progressive collapse to ground level has not yet occurred for any part of the structure, a 

second-stage progressive-failure analysis is conducted beginning from loading level λf1 = 0.227, with 

account for the service-level gravity loading on members B45, B56 and B78, and the added debris 

loading that has fallen on member B56 as a result of the failure of beam B89. The triangular 

distribution of debris loads on member 5-6 of the frame in Figure 5.6 (a) is due to tributary roof loads 
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that are presumed to be transferred to the beam by an open-web-steel-joist roof system. As the right 

end of beam B89 falls, and before the member disengages from the frame at its left end, it is assumed 

that the connections at the ends of the roof joists fail at their points of support on the beam. As a 

result, the tributary roof loads slide from left to right on beam B89, and are mainly deposited as debris 

on the right half of beam B56. 

As shown in Figure 5.6(a), and discussed above, the debris loading on beam B56 is a triangular 

pattern (the mirror-image of the rigid-body displacement of collapsed beam B89) with maximum 

intensity wd =2αw89 =2α(51.1) =102.2α N/mm at the right end of the beam. The load amplification 

factor α accounts for the dynamic load impact amplification factor Iaf of the debris load and the load 

level λJ at which the debris is created; i.e., from Eq. (5.3.18), for specified Iaf = 2 and λJ = λf1 = 

0.227, the factor α =2/(1-0.227) = 2.59. That is, from Figures 5.4 and 5.6 (a), the load intensity at the 

right end of beam 5-6 for the second-stage analysis is w56 + wd = 109.5 + (102.2)(2.59) = 374.2 

N/mm. The incremental member forces and nodal displacements found for each load increment of the 

second-stage analysis are added to the corresponding forces and nodal displacements accumulated 

over all previous load steps. 

As shown in Figure 5.6, the second stage of the progressive-failure analysis determines that three 

more fully-plastic hinges (r = 0, t = n = 1) and three more partially-plastic hinges (r< 1, t = n = 1) 

are developed over the incremental loading history from load level λf1 = 0.227 up to load level λf2 = 

0.904 (i.e., 90.4% of the gravity and debris loads). At this point, the framework becomes unstable as 

the horizontal and vertical displacements of both nodes 6 and 11 become excessively large (i.e., the 

corresponding stiffness coefficients tend to zero such that the structure stiffness matrix becomes 

singular). This is a global instability that indicates the lower-story right bay of the framework is 

undergoing progressive collapse to ground level at failure load level λf = λf2 = 0.904. The member-

end axial forces, shear forces and bending moments just before collapse are given in the last three 

columns of Table 5.2. 

5.4.1.1 Example 1: Accounting for connection damage 

It is important to note that the analysis results discussed in the foregoing are based on the assumption 

that connections remain perfectly healthy after members disengage from them. This coincides with 

current analysis guidelines when applying the AP strategy (GSA, 2003; DoD, 2005). However, such 

an assumption might not be realistic because a joint connection may experience severe damage due to 

member disengagement. Based on the discussion in Section 5.2.1 concerning the connection health 

condition index h, the rest of this Example 1 focuses on investigating structural behaviour when 
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connections are damaged such that their rotational capacity is diminished. Specifically, after the 

failure of column C69 due to the initial interior explosion, the ensuing structural behaviour is assessed 

when the connection at joint 6 is assigned a range of health index values h6 < 1. Similarly, after the 

disengagement of beam B89 at load level λf1 = 0.227, as shown in Figure 5.5, the influence of various 

health index values h8 for the connection at joint 8 is investigated. 

 To begin, the effect of damage to connection 6 on structural behaviour is alone investigated by 

assuming there is no damage to connection 8 throughout the progressive-failure analysis process (i.e., 

h8 = 1). For complete rotational damage at joint 6 (i.e., h6 = 0), the analysis results are as follows: the 

load factor at the first stage is λ1 = λf1 = 0.226, which is close to the value 0.227 found when the 

connection is perfectly healthy (Figure 5.4). This result demonstrates that the health condition of joint 

connection 6 does not significantly affect the frame capacity for the first loading stage. This is due to 

the fact that the load on beam B89 is mostly transmitted to the left-hand bay of the frame after the 

failure of column C69. However, for the second loading stage when h6 = 0, the analysis determines 

that the framework undergoes progressive collapse to ground level at load-capacity level λf = λf2 = 

0.726, which is almost 20% less than the load-capacity level λf = 0.904 when h6 = 1. The second row 

of Table 5.4 illustrates the variation in the load factor λf for values of h6 from zero to one. It is seen 

that when the health index h6 = 0.5 and 0.75, the failure load factor λf = 0.884 and 0.897, 

respectively. These values represent reductions of only 2.21% and 0.77%, respectively, compared to 

λf = 0.904 when h6 = 1, which indicates that the influence of the health of joint connection 6 is 

significant only when it experiences severe flexural damage represented by h6 ≤ 0.5. This example 

serves to illustrate the importance of accurately assessing the health of connections from which 

members have disengaged, so as to more accurately predict the structural behaviour that ensues 

thereafter.   

Results are similarly found when damage to joint connection 8 (i.e., h8 < 1) is accounted for after 

beam B89 disengages from the structure. Table 5.4 lists the λf levels found by the progressive-failure 

analysis when h8 = 0.05, 0.5 and 1, and h6 = 0.05, 0.1, 0.2, 0.5, 0.75 and 1.0. The important fact to be 

observed from these results is that the health of joint connection 8 has no effect on the load level λf at 

which progressive collapse occurs, regardless of the health of joint 6. 

 To the effect of rigid connection damage on load capacity, Table 5.5 gives the plasticity 

degradation factors r values , and the internal forces at the first and second stages, respectively, when 

health index h6 = h8 = h = 0.5. It is seen from Table 5.5 that at the end of stage 1, plasticity factor r = 
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0.5 for the end E6 of both beam B56 and column C36. In the second stage, the health index h8 = 0.5 is 

applied to the damaged end E8 for both column C58 and beam B78.  

5.4.1.2 Example 1: Accounting for semi-rigid connection behaviour 

The semirigid frame in Figure 4.20 is investigated in the following to illustrate the effect that 

semirigid connections have on progressive collapse. Two cases are investigated in this subsection: (1) 

connection damage is ignored in that the health indexes discussed in the previous section are all set at 

unity (i.e., h8 = h6 = 1); (2) connection damage is taken into account as h8 = h6 = 0.5. Parameters Mn, 

Rce, Rce, and γ for the four connections are selected from experimental results (Kishi et al., 2004) and 

shown in Table 5.6.  

In principle, the progressive-failure analysis procedure for semirigid frames is similar to that for 

rigid frames, except that the stiffness degradation factor r for a rigid frame is replaced by the 

compound degradation factor r presented in Chapter 4, and the health index h is imposed on damaged 

semirigid connections from Eq. (5.2.2). The compound factor r is calculated as described in the 

following. First, semirigid connection stiffness Rc is calculated by Eq. (4.2.6) for the four-parameter 

model described in Figure 4.4 and Eq. (4.2.4). Secondly, upon substituting the value of Rc and the 

properties of the connected member into Eq. (4.2.10), the stiffness degradation factor rc is found for 

the connection. Thirdly, the member plasticity factor rp is found by Eq. (2.3.4) in Section 2.3.2 or Eq. 

(4.2.11) in Section 4.2.3. Finally, the two factors rc and rp are substituted into Eq. (4.2.13) to find the 

compound stiffness degradation factor r.  

After column C69 is eliminated from the structure, the first stage of the progressive-failure analysis 

accounting for semi-rigid connection behaviour determines that member plasticity is developed in the 

semi-rigid frame, including three column-end plastic hinges and two beam-end plastic hinges as 

indicated in Table 5.7. Meanwhile, the connection stiffness degradation factors are changed from 

their initial rc0 values in column three of Table 5.7 to the rc values shown in column four of the table. 

It is observed that the beam B89 of the semi-rigid frame fails in a cantilever mode. at load level λf1 = 

0.226, which is close to the first-stage load capacity λf1 = 0.227 of the rigid frame shown in Figure 

5.4. Note that rc = 0.197 for the left-end of roof beam B89 is greater than rc = 0.046 for the right-end 

of roof beam B87 because of the different connection properties. After conducting unloading analysis 

to account for the abrupt disengagement of beam B89 from the structure, the second stage of the 

progressive-failure analysis determines that only end E6 of column C36 becomes a plastic hinge while 

68% plasticity is developed at end E5 of column C25. On the other hand, the values of connection 

stiffness degradation factors of beam B56 degrade over 77%. Similar to the failure mode of the rigid 
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frame in Figure 5.6, the semi-rigid frame fails due to inelastic instability at loading level λf1 = 0.863, 

which is 4.54% less than the collapse load factor 0.904 for the corresponding rigid frame.  

When the effect of connection damage is taken into account for the semi-rigid frame, the 

corresponding plastic degradation factor rp and connection stiffness degradation factor rc are modified 

using Eqs. (5.2.1) and (5.2.2), respectively. The results of progressive-failure analysis for the semi-

rigid frame with health index h6 = h8 = 0.5 are presented in Table 5.8. For the first stage of analysis, 

the significant changes of the results shown in Table 5.8 are the plastic degradation factor of E6 of 

column C36 and semi-rigid connection stiffness of E6 of beam B56. Although the loading capacity of 

the frame is the same value of 0.226 as obtained for the frame without accounting for connection 

damage, some member-end moments change significantly. For instance, the moment at E6 of column 

C36 is 150.9 kN-m, which reduced 27.6% from the value 208.4 kN-m in Table 5.7 when the effect of 

connection damage is ignored. For the second stage of analysis, all the degradation factors just before 

collapse of the frame are shown in Table 5.8. It is seen that only the semi-rigid stiffness degradation 

factor value of 0.083 at end E6 of beam B56 differs significantly from the corresponding value 0.157 

in Table 5.7, due to connection damage. When connection damage is taken into account, the loading 

capacity given in Table 5.8 is λf = 0.859, which is only 0.46% less than that obtained for the frame 

when not accounting for the effect of connection damage.  

5.4.2 Example 2: Internal Explosion in Medium-Rise (Los Angeles) Frame  

The steel moment-frame shown in Figure 5.7 has been previously explored for seismic loads (Gupta 

& Krawinkler, 1999; Hasan et al., 2002). The framework is a perimeter frame of a building located in 

Los Angeles that was designed in accordance with the earthquake provisions of the Uniform Building 

Code (UBC, 1994). The gravity load intensities indicated for the roof and floor beams include a 

tributary-area width of 15 feet. These design load intensities are taken as the target loading level for 

the incremental-load analysis. The dynamic load impact factor is taken as Iaf = 4 for both concentrated 

and distributed debris loads.  

The initial abnormal loading event is assumed to be an explosion that occurs in an interior bay on 

the eighth storey of the framework, as shown in Figure 5.7, such that beam B72 and columns C82 and 

C83 are destroyed. After the remaining structure is analyzed, the middle bay of the frame is found to 

undergo progressive collapse to ground level at failure load level λf = 0.997. The results of the 

progressive-failure analysis are summarized in Table 5.9 and illustrated in Figures 5.7 through 5.15. 

Although the overall analysis involves ten stages, the progressive collapse of the framework is 

essentially in progress after the second analysis stage at load level λf2 = 0.934. In the progressive-
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failure analysis, a similar assumption of triangular debris loading as in Example 1 in Section 5.4.1 is 

applied to the situations in Figures 5.9 to 5.15. On the other hand, the uniform distribution of the 

debris loads shown in Figure 5.15 indicates that both ends of the failed floor girders disconnect 

simultaneously such that their tributary floor loads fall directly downward as debris. 

5.4.3 Example 3: Car/Truck Collision with Medium-Rise (Los Angeles) Frame  

For the same Los Angeles frame as that in Figure 5.7, the abnormal loading is here taken to be a car-

bombing event at ground level, as shown in Figure 5.16. When columns C11 and C12 fail due to the car 

collision and bomb explosion, the progressive-failure analysis results indicate that the locally 

damaged structure still has the carrying capacity to resist the applied dead and live loads without any 

member of the damaged structure experiencing plasticity. That there is no further failure 

(strength/stiffness deterioration) is due to the fact the damaged framework has alternative paths for 

bridging the loads over the missing two columns, as shown in Figure 5.16. It is observed that in 

addition to shear forces (V) induced by the resulting cantilever behaviour, the upper beams experience 

tensile forces (TF) while the lower beams experience compressive forces (CF). Such cantilever action 

over the local damaged region allows the applied loads to be transferred to ground without further 

inelastic distress. To achieve this cantilever action, rigid connections between the members play an 

important role in accommodating the load redistribution. 

5.4.4 Example 4: Airplane Crash into Medium-Rise (Los Angeles) Frame 

Consider again the Los Angeles frame in Figure 5.7. The abnormal loading event is here taken to be 

an aircraft crashing into the 8th floor, as shown in Figure 5.17. The weight of the aircraft is not 

considered directly, but it may be included by the selected impact amplification factor. If only column 

C81 fails due to the impact, the results obtained using progressive-failure analysis of the damaged 

frame indicate that no further collapse occurs and the frame behaves elastically. If both columns C81 

and C82 fail, the upper portion of the frame above the two column locations acts as a cantilever and 

forms four fully-plastic hinges, as shown in Figure 5.17. A cantilever plastic collapse mechanism 

occurs when the fourth plastic hinge forms at loading level λ1 = 0.608 (i.e. after 60.8% of the gravity 

loads have been applied).  

A large downward deformation leads to the disengagement of the cantilever portion from the main 

structure at the locations of plastic hinges 1 and 2, which falls as debris loading on the lower floor 

beams B71 and B72, as depicted in Figure 5.18. The intensity of uniformly distributed debris load is 

evaluated as Ld = Iaf wu, where Iaf is the impact amplification factor and wu is the total weight density 
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of the falling portion. For Iaf = 3, the progressive-failure analysis indicates that the damaged structure 

can carry all loads (gravity plus debris) without developing further plasticity. For Iaf = 4, the results 

from the analysis indicate that the left end of beam B72,, and  right ends of beams B71 and B72 develop 

three bending plastic hinges, respectively. For Iaf = 10, local beam B71 fails and the beam disengages 

from its end joints at load factor level λf2 = 0.796, and falls as debris loading on beam B61 below. For 

the next stage, beam B72 also experiences bending failure and disengages at load level λf3 = 0.798, and 

falls as debris loading on beam B62 below. Thereafter, progressive collapse takes place like the 

cascading failure described in Example 2, beams progressively undergo bending plus shear failure 

until the collapse halts at ground level, as indicated in Figure 5.16, where the dashed column and 

members indicate that the entire left bay of the framework topples to the ground. 

5.4.5 Example 5: Internal Explosion in Medium-Rise (Boston) Frame 

Consider the frame in Figure 5.19, which was selected from the medium-rise Boston Model Building 

(FEMA 355C, 2000). Compared with the Los Angeles Model Building in Example 2 of Section 5.4.2, 

there are changes in the cross section sizes of beams and columns because the design of the Boston 

building is not controlled by seismic loading. The results of nonlinear analysis, based on the factored 

load 1.4 DL (dead load) adopted in Example 2 of Section 3.5.2, are shown in Figure 5.20. It is 

observed from Figure 5.20(a) that the frame remains elastic when the factored loading is completely 

applied. As the loading is monotonically increased, the frame reaches plastic collapse at loading level 

λf = 2.34 of the factored loads; the formation of plasticity is shown in Figure 5.20(b) for the half-

frame due to symmetry. It is seen that a local collapse mechanism occurs at the roof level because of 

the lower strength of the roof beam compared to that of the floor beams.  

To estimate the progressive-collapse behaviour of the non-seismic resistant Boston building, the 

initial abnormal loading event is assumed to be the same explosion as for the Los Angeles frame 

Example 2 of Section 5.4.2. In this Boston building example, the effect of connection damage is taken 

into account using a health index h. When h = 1.0 there is no connection damage and the frame 

undergoes collapse in the first loading stage at level λf1 = 0.598 after eight plastic hinges form, as 

shown in Figure 5.21(a). When h = 0.5 the connections are damaged to a certain extent, but the frame 

collapses in the first loading stage at almost the same level λf1 = 0.593, as shown in Figure 5.22(a). 

However, the maximum vertical deflection at joint J5 is 19.15″ when h = 0.5, which is 41% greater 

than that when h = 1.0. Furthermore, the corresponding moments shown in Figures 5.21(b) and 

5.22(b) for the two cases are significantly different. These results show, therefore, that the effect of 
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connection damage significantly affects the internal force and joint displacement response of the 

Boston building. 

  Results of the subsequent stages of the progressive-failure analysis for the Boston frame with 

account for connection damage are summarized in Table 5.10 and illustrated in Figures 5.23 through 

5.28. Compared to the progressive collapse results for the Los Angeles frame Example 2 in Section 

5.4.2, the local collapse in stages 3 through 6 are different for the two buildings. In Stage 3, beam B63 

fails due to the impact of beam B71 in the Boston frame; while beam B71 fails in the Los Angeles 

frame. In Stage 4, beam B71 fails due to local instability in the Boston frame; while beam B63 

similarly fails in the Los Angeles frame. Note that at the end of the second stage, the load factor for 

Boston frame is λf1 = 0.707, which is less than 24.3% of the value 0.934 for Los Angeles frame. This 

indicates that a seismic-resistant frame has more strength capacity to resist impact loading than a non-

seismic-resistant frame. Similar inverse responses for the two building frames are observed in Stages 

5 and 6 of the analysis. Note from Tables 5.9 and 5.10 that the final loading capacities for the Los 

Angeles and Boston frames differ by only 3.42%.  

5.5 Commentary and Discussion 

The proposed progressive-failure analysis procedure is developed to an almost fully-automated state. 

However, some user intervention is yet required when a local failure mechanism is identified by the 

singularity of the structure stiffness matrix. Specifically, the computer program provides information 

for the analyst to determine the failure mechanism or collapse mode, which member(s) should be 

removed, the corresponding loads, and which member(s) in the remaining structure should receive the 

debris loads.  

The incremental-load analysis is a tangent-stiffness procedure for which nodal unbalanced-force 

errors can occur after each load iteration. For all four examples presented, however, it was not found 

necessary to employ an unbalanced-force correction routine. This is because at load levels when 

plasticity began to develop in each structure, the loading increments defined by Eqs. (5.3.11) became 

smaller and smaller to the point that any unbalanced forces were insignificant. However, this 

occurrence was achieved at the expense of many load increments, requiring excessive computational 

effort. The use of an unbalanced-force correction routine would allow for larger load increments, 

hence smaller computational effort.   

As presented herein, the progressive-failure analysis is based on small deformation theory, for 

which equilibrium is referenced to the undeformed structure, and, at most, first- and second-order 

deformations are accounted for. A separate large-deformation analysis of the frame in Figure 5.4 
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reveals results that differ little from those reported for Example 1. However, this is not likely to be the 

case for larger structures such as that considered in Example 2. Here, to compensate for the influence 

of large displacements, the nodal coordinates of the structure should be updated after each 

incremental analysis. 

The progressive-failure analysis procedure can be readily applied to planar steel frames having 

members with sections other than W-shape. For a given section type, it only remains to adopt the 

appropriate interaction relations governing cross-sectional post-elastic behaviour under various 

combinations of member forces. Such interaction relations are available in the literature for a number 

of conventional steel sections and, in many cases, do not differ much in their general forms from 

those introduced in this study for W-sections. For example, the post-elastic interaction relations for 

steel hollow-box, angle, tee and channel sections are available from the work of Chen and Atsuta 

(1977). For other material types and sections, it is necessary to establish the required relations 

experimentally, analytically, or numerically (Grierson & Abdel-Baset, 1977).  

Although the proposed nonlinear analysis method assumes plasticity is confined to the critical 

sections of a member, the spread of plasticity along the member is somewhat accounted for by the 

fact that the stiffness degradation factors vary between unity (fully elastic) and zero (fully plastic).  

The impact load factor values Iaf, specified for the five examples were known from previous 

analyses to result in progressive collapse. For instance, the progressive collapse of the frame in Figure 

5.6 at load level λf = 0.904 was known a priori to occur for specified dynamic load impact factor Iaf = 

2. This is a relatively small impact factor, indicative of significant damping of the dynamic effect of 

the debris loading. When the impact factor is specified by larger values of Iaf = 5, 10 or 20, indicative 

of less dynamic damping, the incremental-load analysis determines that the progressive collapse of 

the frame occurs at the smaller load levels of λf = 0.669, 0.502 or 0.384, respectively. The overall 

conclusion from the analysis results for Example 1 is that any abnormal loading event that initially 

destroys column C69 is likely to trigger progressive collapse to ground level in the right bay of the 

frame, even if the dynamic impact factor for debris loads is small (e.g., Iaf = 2). This is primarily 

because low-rise steel frameworks such as this one have a low load-path redundancy (Khajehpour & 

Grierson, 2003).  

The dynamic load impact factor Iaf = 4 specified for Example 2 is the smallest impact factor for 

which progressive collapse occurs precisely at load level λf = 1.0. This is a relatively small impact 

factor, indicative of significant dynamic damping. Further analysis for larger values of Iaf
 determine 

that the progressive collapse of the frame occurs for smaller load levels λf < 1.0. When Iaf ≥ 4.0, it can 
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be concluded from the analysis of Example 2 that any abnormal loading event that initially destroys 

beam B72 and columns C82 and C83 will likely cause progressive collapse of the middle bay of the 

frame, characterized by cascading shear failure of the floor girders under falling debris loads. 

The results for Example 3 shown in Figure 5.16 indicate that even if severe local damage takes 

place due to a car/truck collision, no progressive collapse occurs for the damaged structure. This 

indicates that local column damage at ground level can be accommodated if a frame has rigid beam-

to-column connections. The results for Example 1 in Section 4.5.1 concerning semi-rigid connections 

suggest, however, that this might not be the case if the frame has flexible beam-to-column 

connections. 

Example 4 in Section 5.4.4 shows the results when an external crash occurs at the upper level of the 

Los Angeles frame. When exterior column C81 fails due to the impact of the aircraft, there is no 

progressive collapse. This indicates that the loss of one exterior column in a storey will not lead to 

progressive collapse. However, when both columns C81 and C82 fail, the portion above the two failed 

columns will fall down due to the lack of redundancy. The progressive collapse behaviour of the 

remaining frame under debris loading depends on the magnitude of impact amplification factor Iaf. If 

Iaf is less than 4, there is no progressive collapse. Otherwise, when Iaf = 6, partially progressive 

collapse occurs; while Iaf = 10, the progressive collapse takes place to the ground level. The results for 

both Examples 3 and 4 of Section 5.4 indicate that progressive collapse is sensitive to the redundancy 

of the damaged structure and the magnitude of impact debris loading. 

Comparison of the results for Example 2 with those for Example 5 in Section 5.4 indicates that the 

progressive collapse behaviour of a building frame significantly depends on whether or not its design 

accounts for seismic loading. The seismic-resistant Los Angeles frame and the non-seismic-resistant 

Boston frame have common configuration and loading parameters, but their beam and column cross-

sections are different. Under the same abnormal loading, from Figure 5.8, the load factor λf1= 0.906 

for the Los Angeles frame, which is 51% greater than the load factor λf1= 0.598 obtained for the 

Boston frame in Figure 5.21(a). The differences in load factors for the rest of the progressive collapse 

stages are also significant, as indicated in Tables 5.9 and 5.10. As well, unlike the Los Angeles frame, 

the Boston frame experiences local instability in Stage 4, as indicated in Figure 5.25 and Table 5.10. 

These results reveal that a building designed in a seismic region has a higher capacity against 

abnormal loading than a building with the same configuration but designed for a non-seismic region. 
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Figure 5.1 Connection failures from WTC 5 Building (Sept 11, 2001) 
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Figure 5.2 Local failure modes of members 
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Figure 5.3 Flowchart for progressive-failure analysis 
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Figure 5.4 Example 1: Immediate damage propagation after failure of column C69 due to an 
initial abnormal loading event 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Example 1: Unloading after fracture of beam B89 at node 8 
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Figure 5.6 Example 1: Progressive damage propagation after failure of beam 89  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.7 Example 2 (Los Angeles): Initial local damage due to interior explosion at 8th storey 
level (Stage 0) 
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Figure 5.8 Example 2 (Los Angeles): Immediate damage propagation after initial abnormal 
loading (Stage 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Example 2 (Los Angeles): Upper stories fall as debris loads and beam B73 fails (Stage 
2) 
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Figure 5.10 Example 2 (Los Angeles): Beam B73 falls as debris loading and fails beam B71 (Stage 
3) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.11 Example 2 ((Los Angeles): Beam B7 falls as debris loads and fails beam B63 (Stage 4) 
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Figure 5.12 Example 2 (Los Angeles): Beam B63 falls as debris loads and fails beam B53 (Stage 5) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Example 2 (Los Angeles): Beam B53 falls as debris loads and fails beam B62 (Stage 6) 
 

 

B61 B62

B53

wd5 = 1.434 α5 

Iaf = 4; α5= 133.33; λf5 = 0.984 

Bending plasticity index 
Shearing plasticity index ρ 

ρ 

33 51

20 

18

Sequence of bending plastic hinge formation 
Sequence of shear plastic hinge formation 

i
i 

18 19 32

B61 B62

B43

wd6 = 1.434 α6 

Iaf = 4; α6=250.0; λf6 = 0.989, h =1 

Bending plasticity index 
Shearing plasticity index ρ 

ρ 

49

5122 

19

Sequence of bending plastic hinge formation 
Sequence of shear plastic hinge formation 

i
i 

21
23 

68

24 15



  

  150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Example 2 (Los Angeles): Beam B62 falls as debris loads and fails beam B43 (Stage 7) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Example 2 (Los Angeles): Beams B33, B23 and B13 progressively fail and fall to 
ground level (Stages 8, 9, and 10) 
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Figure 5.16 Example 3 (Los Angeles): Vehicle collision with explosion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Example 4 (Los Angeles): Local damage after airplane impact 
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Figure 5.18 Example 4 (Los Angeles): Progressive collapse to ground level 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Example 5 (Boston): Cross sections of beams and columns for building (FEMA 
355c, 2000) 
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Figure 5.20 Example 5 (Boston): Results of nonlinear analysis of Boston building 
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Figure 5.21 Example 5 (Boston): Immediate damage propagation after initial abnormal loading 
without accounting for connection damage (Stage 1) 
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Figure 5.22 Example 5 (Boston): Immediate damage propagation after initial abnormal loading 
with accounting for connection damage (Stage 1) 
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Figure 5.23 Example 5 (Boston): Upper stories fall as debris loads and beam B73 fails (Stage 2) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 5.24 Example 5 (Boston): Beam B73 falls as debris loading and fails beam B63 (Stage 3) 
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Figure 5.25 Example 5 (Boston): Beam B63 falls as debris loading and local instability occurs 
(Stage 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 Example 5 ((Boston): Beam B71 falls as debris loading and beam B62 fails (Stage 5) 
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Figure 5.27 Example 5 (Boston): Beam B62 falls as debris loading and beam B53 fails (Stage 6) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28 Example 5 (Boston): Beams B33, B23 and B13 progressively fail and fall to ground 
level (Stages 7, 8, 9, and 10) 
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Table 5.1 Deformation limits for structural steel (DoD 2005) 
 

LLOP M LOP and HLOP 
Component 

Ductility Rotation(°) Ductility Rotation(°) 

Beams with seismic section 20 12 10 6 

Beams with compact section 5 - 3 - 

Beams with non-compact section 1.2 - 1 - 

Columns and beam-columns 3 - 2 - 

Rigid connections with a welded beam flange or 
cover plated - 2.0 - 1.5 

Rigid connections with reduced beam section - 2.6 - 2.0 

Semirigid connections with limit state governed 
by rivet shear or flexural yielding of plate, angle, 
or T-section 

- 2.0 - 1.5 

Semirigid connections with limit state governed 
by high strength bolt shear, tension failure of 
rivet or bolt, or tension failure of plate, angle, or 
T-section 

- 1.3 - 0.9 
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Table 5.2 Example 1: Member forces at load level λf = 0.227 and λf = 0.904 
 

Before unloading  
(Figure 5.4) 

After unloading  
(Figure 5.5) 

Just before collapse  
(Figure 5.6) Mem End P 

(kN) 
V 

(kN) 
M  

 (kN-m) 
P 

(kN) 
V 

(kN) 
M  

 (kN-m) 
P 

(kN) 
V 

(kN) 
M  

 (kN-m) 
C41 E4 41.30 -0.38 2.20 -95.26 -0.05 0.30 -311.2 3.40 58.66 

C52 E5 -594.9 36.67 -222.50 -314.90 22.68 -138.80 -1462. 72.87 -73.37 

C63 E6 -201.1 -32.18 196.50 -175.00 -22.61 137.60 -1216. -80.19 778.20 

C47 E4 -35.54 20.55 44.82 80.58 20.04 44.82 186.2 14.04 44.82 

C74 E7 35.54 -20.55 45.14 -80.58 -20.04 45.14 -186.2 -14.04 45.14 

C58 E5 275.6 -24.65 760.30 -9.96 -20.05 231.00 95.5 -13.98 271.80 

C85 E8 -275.6 24.65 -853.40 9.96 20.05 -321.20 -95.5 13.98 -321.2 

B45 E4 20.17 -5.76 -47.01 19.99 14.85 -45.03 17.43 125.20 -103.4 

B54 E5 -20.15 157.10 -449.30 -19.97 136.80 -326.80 -17.48 478.80 -974.5 

B56 E5 32.17 162.10 -88.42 22.60 188.60 235.00 76.37 888.40 776.5 

B65 E6 -32.18 201.10 -196.50 -22.61 175.40 -138.10 -80.19 1216.0
0 -778.6 

B78 E7 -20.55 -35.54 -45.14 -20.04 80.66 -45.10 -14.04 186.30 -45.1 

B87 E8 20.56 106.20 -386.80 20.05 -9.90 321.20 13.98 95.56 321.2 

B89 E8 4.09 169.50 1240.00 - - - - - - 
Sign convention of moment M, shear force V, and axial force P is consistent with the local numbering 
system in Figure 3.1. 

 

 

 

Table 5.3 Example 1: Nodal displacements at load level λf = 0.227 
 

Before unloading (Figure 5.4) After unloading (Figure 5.5) 
Joint 

ux (mm) uy (mm) uz (10-3) ux (mm) uy (mm) uz (10-3) 

J4 2.36 0.44 0.71 -0.27 -1.02 0.19 

J5 2.33 -0.73 -4.28 -0.31 -0.38 -2.37 

J6 2.25 -0.27 3.42 -0.36 -0.23 2.71 

J7 107.40 0.77 3.32 39.32 -1.76 -9.49 

J8 107.50 -1.00 -44.76 39.39 -0.37 -18.00 

J9 107.50 -927.50 -68.94 - - - 

Positive horizontal translation ux is to the right; positive vertical 
translation uy is upward; positive rotation uz is counterclockwise 
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Table 5.4 Example 1: Effect of connection damage on load capacity (λf) 
 

h8         h6 0.00 0.05 0.10 0.20 0.50 0.75 1.00 

1.00 0.726 0.747 0.773 0.835 0.884 0.897 0.904 

0.50 0.726 0.747 0.773 0.835 0.884 0.897 0.904 

0.05 0.726 0.747 0.773 0.835 0.884 0.897 0.904 
 

 

 

 

 

 

 

Table 5.5 Example 1: Degradation factors, internal forces, and load capacity (h = 0.5)  
 

First stage (λf1 = 0.226) Second stage (λf = 0.884)  
Member End 

 r P(kN) V(kN) M(kN-m) r P(kN) V(kN) M(kN-m)

C14 E4  1.000 46.82 -0.92 5.16 1.000 -309.8 -0.32 17.43 

C25 E5  1.000 -602.3 27.85 -165.80 0.898 -1461 111.30 -601.40 

C36 E6  0.500 -199.0 -22.84 140.40 0.000 -1147 -115.10 759.30 

C47 E4  0.000 35.98 20.66 44.97 0.000 -182.8 17.20 44.97 

C47 E7  0.000 35.98 -20.66 45.40 0.000 -182.8 -17.20 45.40 

C58 E5  0.773 -276.1 -24.73 758.2 0.773 -92.65 -17.14 249.10 

C58 E8  0.000 -276.1 24.73 -850.8 0.000 -92.65 17.14 -320.40 

B45 E4  1.000 -19.75 -10.85 -50.13 1.000 -16.88 127.10 -62.32 

B45 E5  1.000 -19.74 162.2 -477.2 0.000 -16.93 463.60 -963.30 

B56 E5  1.000 -22.83 164.1 -115.3 0.990 -111.1 905.70 1316.00 

B56 E6  0.500 -22.84 199.0 -140.4 0.500 -115.1 1148.00 -759.50 

B78 E7  1.000 20.66 -35.98 -45.40 1.000 17.20 182.90 -45.36 

B78 E8  0.000 20.67 106.6 -389.2 0.000 17.14 92.70 320.40 

B89 E8  0.000 -4.062 169.5 1240 - - - - 

Note: h = 0.5; sign convention of internal forces follows the definition in Figure 3.1. 
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Table 5.6 Parameters of the connections (Kishi et al., 2004) 
 

Connection Mp 
(kN-m) 

M0  
(kN-m) 

Rce  
(kN-m/rad) 

Rcp  
(kN-m/rad) γ 

C1 (CF5-U10x49) (Mazroi, 1984) 387 261 893000 30300 1.18 

C2 (CF6-U12x96) (Mazroi, 1984) 2773 598 1240000 56900 1.39 

C3 (Test 2) (Ioannides, 1978) 387 181 632000 3320 0.83 

C4 (CF5-U10x68) (Mazroi, 1984) 1240 261 893000 30300 1.18 
 

 

 

 

Table 5.7 Example 1: Stiffness degradation factors for semirigid frame 
 

First stage (λf1 = 0.226) Second stage (λf = 0.863)  
Beam End rc0 

rc rp r M rc rp r M 

C14 E4 1.000 1.000 1.000 1.000 -0.781 1.000 1.000 1.000 -8.943 

C25 E5 1.000 1.000 1.000 1.000 -246.2 1.000 0.680 0.680 -780.0 

C36 E6 1.000 1.000 1.000 1.000 208.4 1.000 0.000 0.000 785.6 

C47 E4 1.000 1.000 0.000 0.000 45.62 1.000 0.000 0.000 45.62 

C47 E7 1.000 1.000 0.000 0.000 45.58 1.000 0.000 0.000 45.58 

C58 E5 1.000 1.000 0.802 0.802 746.9 1.000 0.802 0.802 223.4 

C58 E8 1.000 1.000 0.000 0.000 -854.4 1.000 0.000 0.000 -308.8 

B45 E4 0.792 0.155 1.000 0.155 -44.83 0.155 1.000 0.155 -36.66 

B45 E5 0.792 0.136 1.000 0.136 -325.7 0.116 0.974 0.116 -521.1 

B56 E5 0.776 0.711 1.000 0.711 -175.0 0.140 0.993 0.140 1078 

B56 E6 0.776 0.701 1.000 0.701 -208.4 0.157 1.000 0.157 -785.9 

B78 E7 0.901 0.799 1.000 0.799 -45.58 0.799 1.000 0.799 -45.56 

B78 E8 0.901 0.046 0.000 0.000 -384.6 0.046 0.000 0.000 308.8 

B89 E8 0.878 0.197 0.000 0.000 1239 - - - - 

Note: h6 = h8 = 1.0, and M stands for end moment (kN-m) 
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Table 5.8 Example 1:  Accounting for connection damage and semi-rigid behaviour 
 

First stage (λf1 = 0.226) Second stage (λf = 0.859)  
Beam End rc0 

rc rp r M rc rp r M 

C14 E4 1.000 1.000 1.000 1.000 2.166 1.000 1.000 1.000 8.185 

C25 E5 1.000 1.000 1.000 1.000 -188.1 1.000 0.680 0.680 -628.5

C36 E6 1.000 1.000 0.500 0.500 150.9 1.000 0.000 0.000 744.8 

C47 E4 1.000 1.000 0.000 0.000 45.53 1.000 0.000 0.000 45.53 

C47 E7 1.000 1.000 0.000 0.000 45.78 1.000 0.000 0.000 45.78 

C58 E5 1.000 1.000 0.802 0.802 746.1 1.000 0.802 0.802 231.3 

C58 E8 1.000 1.000 0.000 0.000 -853.4 1.000 0.000 0.000 -309.0

B45 E4 0.792 0.152 1.000 0.152 -47.69 0.152 1.000 0.152 -53.70

B45 E5 0.792 0.131 1.000 0.131 -339.9 0.115 0.846 0.113 -677.8

B56 E5 0.776 0.686 1.000 0.686 -218.0 0.140 0.979 0.139 1075 

B56 E6 0.776 0.366 1.000 0.366 -150.9 0.083 1.000 0.083 -744.9

B78 E7 0.901 0.799 1.000 0.799 -45.78 0.799 1.000 0.799 -45.75

B78 E8 0.901 0.046 0.000 0.000 -385.6 0.023 0.000 0.000 309.0 

B89 E8 0.878 0.197 0.000 0.000 1239 - - - - 

Note: h6 = h8 = 0.5, and M stands for member end moment (kN-m) 
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Table 5.9 Example 2 (Los Angeles): Progressive-failure analysis of 5-bay 9-storey building 

frame 
Stage J Load λfJ Failure Event Debris Loading 

0 0.0 Initial abnormal loading destroys members 
B72, C82, & C83 [Figure 5.7]. 

Beam B72 falls on lower beam B62 as dynamic 
debris loading [Figure 5.8]. 

1 0.906 

Eight bending plastic hinges form and 
catenary action causes the upper stories of the 
three left bays to break away from the frame 
at column lines 1 and 4 [Figure 5.8]. 

The first and third bays of the upper stories 
impact on beams B71 & B73 as triangular 
distributed debris loading, while the second 
bay impacts on the 7th-story column lines 2 
and 3 as concentrated debris loads [Figure 
5.9]. 

2 0.934 

Beam B73 forms a bending plastic hinge at its 
right end and breaks away from the frame at 
its left end as a shear plastic hinge forms 
there. It then deforms as a rigid-body 
cantilever mechanism before also breaking 
away from the frame at its right end [Figure 
5.9]. 

Half of the second bay of the upper stories 
falls further as triangular distributed debris 
loading on lower beam B62. Beam B73 and its 
previous debris loads fall on lower beam B63 
as triangular distributed debris loading 
[Figure 5.10].   

3 0.969 

Beam B71 fails and breaks away from the 
frame in the same way that beam B73 does as 
in analysis stage 2 [Figure 5.10]. 

Beam B71 and its previous debris loads fall on 
lower beam B61 as triangular distributed 
debris loading, and the other half of the 
second bay of the upper stories further falls as 
triangular distributed debris loading on lower 
beam B62 [Figure 5.11].  

4 0.970 

Beam B63 forms a bending plastic hinge at its 
right end and breaks away from the frame at 
its left end as a shear plastic hinge and a 
bending plastic hinge form there. It then 
deforms as a rigid-body cantilever 
mechanism before breaking away completely 
from the frame [Figure 5.11]. 

Beam B63 and its previous debris loads fall on 
lower beam B53 as triangular distributed 
debris loading, [Figure 5.12].  

5 0.984 
Beam B53 fails and breaks away from the 
frame in the same way that beam B63 does as  
in analysis stage 4 [Figure 5.12].  

Beam B53 and its previous debris loads fall on 
lower beam B43 as triangular distributed 
debris loading [Figure 5.13].  

6 0.989 
Beam B62 fails and breaks away from the 
frame in the same way that beam B71 does as 
in analysis stage 3 [Figure 5.13]. 

Beam B62 and its previous debris loads fall on 
lower beam B51 as triangular distributed 
debris loading [Figure 5.14]. 

7 0.9892 
Beam B43 fails and breaks away from the 
frame in the same way that beam B53 does as 
in analysis stage 5 [Figure 5.14].  

Beam B43 and its previous debris loads fall on 
lower beam B33 as triangular distributed 
debris loading [Figure 5.15]. 

8 0.992 
Beam B33 fails and breaks away from the 
frame in the same way that beam B43 does as  
in analysis stage 7 [Figure 5.15]. 

Beam B33 and its previous debris loads fall on 
lower beam B23 as triangular distributed 
debris loading [Figure 5.15]. 

9 0.995 

Beam B23 breaks away from the frame at 
once as bending + shear plastic hinges form 
at its two ends almost simultaneously [Figure 
5.15]. 

Beam B23 and its previous debris loads fall on 
lower beam B13 as uniformly distributed 
debris loading [Figure 5.15]. 

10 0.997 

Beam B13 fails and breaks away from the 
frame in the same way as beam B33 does as in 
analysis stage 8. The progressive collapse 
ends [Figure 5.15]. 

Beam B13 and all the debris loading 
accumulated from above fall to ground level. 
The progressive-failure analysis of the frame 
is terminated [Figure 5.15].  
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Table 5.10 Example 5 (Boston): Progressive-failure analysis of 5-bay 9-storey building frame 
 

Stage J Load λfJ Failure Event Debris Loading 

0 0.0 
Same as in Example 2, initial abnormal 
loading destroys members B72, C82, & C83 
[Figure 5.7]. 

Same as in Example 2, beam B72 falls on 
lower beam B62 as dynamic debris loading 
[Figure 5.8]. 

1 0.598 

Eight bending plastic hinges form and 
catenary action causes the upper stories of the 
three left bays to break away from the frame 
at column lines 1 and 4 [Figure 5.22(a)]. 

The first and third bays of the upper stories 
impact on beams B71 & B73 as triangular 
distributed debris loading, while the second 
bay impacts on the 7th story column lines 2 
and 3 as concentrated debris loads [Figure 
5.23]. 

2 0.707 

Beam B73 forms a bending plastic hinge at its 
right end and breaks away from the frame at 
its left end as a shear plastic hinge forms 
there. It then deforms as a rigid-body 
cantilever mechanism before also breaking 
away from the frame at its right end [Figure 
5.23]. 

Half of the second bay of the upper stories 
falls further as triangular distributed debris 
loading on lower beam B62. Beam B73 and its 
previous debris loads fall on lower beam B63 
as triangular distributed debris loading 
[Figure 5.24].   

3 0.827 
Beam B63 fails and breaks away from the 
frame once the three bending hinges form 
[Figure 5.24]. 

Beam B63 and its previous debris loads fall on 
lower beam B53 as uniformly distributed 
debris loading, [Figure 5.25].  

4 0.834 

Portal frame, including beam B71 and 
columns C71 and C72, fails and breaks away 
due to local inelastic instability [Figure 5.25]. 

Portal frame (B71, C71, C72) and its previous 
debris loads fall on lower beams B61 and B62 
as triangular distributed debris loading, 
[Figure 5.26].  

5 0.888 
Beam B62 fails and breaks away from the 
frame in the same way that beam B73 does as 
in analysis stage 2 [Figure 5.26].  

Beam B62 and its previous debris loads fall on 
lower beam B42 as triangular distributed 
debris loading [Figure 5.27].  

6 0.900 
Beam B53 fails and breaks away from the 
frame in the same way that beam B62 does as 
in analysis stage 5 [Figure 5.27]. 

Beam B53 and its previous debris loads fall on 
lower beam B52 as triangular distributed 
debris loading [Figure 5.28]. 

7 0.927 
Beam B43 fails and breaks away from the 
frame in the same way that beam B53 does as 
in analysis stage 6 [Figure 5.28]. 

Beam B43 and its previous debris loads fall on 
lower beam B33 as triangular distributed 
debris loading [Figure 5.28]. 

8 0.942 
Beam B33 fails and breaks away from the 
frame in the same way that beam B43 does as  
in analysis stage 7 [Figure 5.28]. 

Beam B33 and its previous debris loads fall on 
lower beam B23 as triangular distributed 
debris loading [Figure 5.28]. 

9 0.954 
Beam B23 fails and breaks away from the 
frame in the same way that beam B13 does as  
in analysis stage 8 [Figure 5.28]. 

Beam B23 and its previous debris loads fall on 
lower beam B13 as uniformly distributed 
debris loading [Figure 5.28]. 

10 0.964 

Beam B13 fails and breaks away from the 
frame in the same way as beam B23 does as in 
analysis in the previous stage. The 
progressive collapse ends [Figure 5.28]. 

Beam B13 and all the debris loading 
accumulated from above fall to ground level. 
The progressive-failure analysis of the frame 
is terminated [Figure 5.28].  
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Chapter 6 
Combined M-V- P Failure Criterion (Future Research) 

With a view to future extension of the research work concerning progressive collapse, this chapter 

derives a failure criterion for a member section that is simultaneously under combined bending, 

shearing and axial forces at its plastic limit state. An energy functional is employed to develop the 

post-elastic force-deformation relationship for the cross-section. The relationship is then utilized to 

determine the plastic capacity of the cross-section by using the principle of maximum potential 

energy. From first variation and concavity principles, the energy functional is maximized to establish 

the three-dimensional yield surface defining the failure criterion. The results of a numerical study of 

the derived yield surface are compared with other results in the literature to check the validity of the 

proposed failure criterion. Lastly, the 3D yield surface is utilized in a numerical example to estimate 

the plastic failure behaviour of a structural component under impact debris loading.  

As a future extension of the research work at the University of Waterloo, it is intended that the 

theoretical M-V-P interaction criterion developed in this chapter will be implemented in the computer 

program developed by this thesis study, to investigate the effect of the 3D member failure criterion on 

the outcome of progressive-failure analysis of steel frameworks subjected to abnormal loading.  

6.1 Introduction 

The post-elastic interaction between bending moment and axial force (M+P) at the plastic limit has 

been long studied for beam-column components (e.g., Chen & Otsuta 1977; AISC, 2001; CISC, 

2004). The similar interaction between bending moment and shear force (M+V) has also been 

investigated (e.g., Drucker 1956; Hodge, 1957); however, only in some special cases is this latter 

interaction considered (AISC, 2001; CISC, 2004) because the effect of shear force on plastic failure 

for slender members is negligible (Hodge, 1957). The M+P and M+V interactions have been both 

investigated earlier by this study in Sections 3.3.1 and 3.3.2. This chapter investigates the influence of 

simultaneously combined bending, shearing and axial forces (M+V+P) on the plastic failure of a 

member section.  

For the influence of shear force, Drucker (1956) has conducted a thorough study of cantilever 

beams with rectangular cross-sections, and developed an empirical moment-shear plastic failure 

criterion. Various failure criteria and stress distributions across the member section are derived by 

assuming that only the web of a W-shaped cross section carries the shear force (Horne, 1951; 

Heyman & Dutton, 1954). Heyman and Dutton’s expression has proved to be in good agreement with 
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experimental results (Green & Hundy, 1957). By using plane stress slip-line field methods, the upper-

bound solutions of plastic collapse loads have been obtained for cantilever beams with rectangular 

cross- sections (Green, 1954; Ranshi et al., 1976; Chakrabarty, 2000). More general investigations of 

the post-elastic interaction of bending moment, shear force and axial force have also been conducted 

(Hodge, 1957; Ellyin & Deloin, 1972). 

In certain instances, the effect of shear force should be considered in analysis and design. Darwin 

(2000) has suggested a cubic interaction curve to evaluate the plastic moment and shear capacities for 

beams with web openings. Kasai and Popov (1986) have conducted research on the eccentrically 

braced frames used in seismic design, where the effect of the shear forces on the behaviour of steel 

shear links is known to be so significant that it cannot be ignored. An experimental study of a 

transversely loaded two-span continuous steel beam revealed that the effect of shear force was 

significant even when the depth-to-span ratio was as low as 0.1025 (Driscoll & Beedle, 1957). The 

nonlinear analysis presented in Chapter 3 has further confirmed this conclusion. Abnormal or blast 

inertia loading can cause significant shear force effects in structures (Krauthammer, 1984; ASCE, 

1997). The combined action of moment, axial force and shear force becomes significant when a 

critical column is removed, as dictated by the alternate-load-path method in design guidelines (DoD, 

2005). In general, the effect of shear forces on structural behaviour may become important in the 

analysis and design of structures subjected to abnormal loading. 

6.2  Energy Functional 

A post-elastic combined stress failure criterion can be established through global-member or local-

section equilibrium (Drucker, 1956). A global criterion for limit loading is based on a whole member 

(e.g., a cantilever), where the relationship between the external and the internal loadings are known. 

A local criterion for plastic limit loading, however, is for a very short length of beam between two 

neighbouring cross sections, where the internal forces (moments and shear forces) are assumed to be 

in the plastic limit state. Since internal member forces are unknown prior to the nonlinear analysis of 

indeterminate structures, the approach based on local-section equilibrium may be more appropriate. 

Using this approach, Hodge (1957) adopted a variational principle, along with the idea of convexity, 

to determine the interaction relationship between the moment and shear force for a beam member 

section. Ellyin and Deloin (1972) have extended Hodge’s approach to account for the effect of axial 

force as well. Their variational approach to determining the plastic yield surface of a cross-section 

involves finding the normal stress distribution σ that minimizes shear force V, when the values of 

axial force P and bending moment M are given. For the previously noted variational methods, 
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however, the equilibrium conditions at the top and bottom boundaries of the beam section are 

violated, as first noted by Drucker (1956). This chapter proposes a method that combines local criteria 

and variational principles to obtain an M-P-V plastic yield surface for a member section, for which all 

boundary equilibrium conditions are satisfied. 

Consider the member segment in Figure 6.1(a), that was originally adopted in Drucker’s (1956) 

local criterion approach. The segment has a cross-section with depth d and a plastic zone bounded by 

sections 1 and 2. The forces at both sections are shown on the segment, and the segment deformations 

are shown in Figures 6.1(b) and (c). The assumptions of constant section rotation θ and constant 

average axial deformation ε in Figure 6.1(b) are adopted from Drucker’s (1956) local criterion in the 

plastic range. But transverse shear deformation γ, however, is not assumed to be constant across the 

section; instead, γ varies linearly across the section in such a way that the shear strain is zero at both 

the top and bottom free boundaries, as depicted by the relationship γ=γ0(1-2|y|/d) in Figure 6.1(c). The 

distributions of normal and shear stresses σ and τ are a function of distance y, and the stress 

distributions in the plastic zone are found by solving a variational problem involving the 

minimization of an energy function established for the model in Figure 6.1. In the following, the 

energy function is derived first, and then the Euler-Lagrange differential equation is obtained by the 

Gâteaux variation method (Troutman, 1996). The normal stress is found by solving the differential 

equation, and the corresponding bending moment, axial force and shear force are found by integrating 

the relevant stresses. 

If the distributions of normal stress σ and shear stress τ within the plastic zone are known, the 

resultant bending moment M, axial force P and shear force V applied to a section in the plastic zone 

can be expressed in terms of the corresponding stresses as, 

∫∫σ=
A

dAP  (6.2.1a) 

∫∫σ=
A

ydAM  (6.2.1b) 

∫∫ τ=
A

dAV  (6.2.1c) 

where the relationship between normal stress σ and shear stress τ at a point in the plastic zone is 

defined by the following yield condition, 

2222
yσ=τκ+σ  (6.2.2) 
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in which σy is the normal material yield stress, and κ2 = 3 or 4 for the von Mises or Tresca criterion, 

respectively. The Tresca yield shear stress is τy = σy/κ, and therefore, τy = 0.577σy ≈ 0.6σy for the von 

Mises criterion (CISC, 2004). As shown in Figures 6.1(b) and (c), axial deformation ε and bending 

rotation θ are assumed to be constant, whereas the transverse shear deformation γ is assumed to be 

linearly distributed from maximal shear strain γ0 at the neutral axis to zero value on the upper and 

lower free boundaries of the section. 

In the plastic zone, the total energy Π of the segment in Figure 6.1 is expressed by the following 

energy functional, 

ie Π+Π=Π  (6.2.3) 

where Πe and Πi are the external work and internal potential energy, respectively. External work Πe is 

done by the forces applied to sections 1 and 2 in Figure 6.1(a) as they move through the 

corresponding average bending, axial, and shearing deformations θj, δnj and δtj, as given by (McGuire 

et al., 2000), 

∑
=

δ+δ+θ=Π
2

1
][

j
jtne VNM  (6.2.4a) 

in which forces Mj, Nj and Vj and corresponding deformations θj, δn j and δt j (j=1,2) are known from 

the results of structural analysis of the member at a given loading level. Note that all the terms on the 

right-hand side of Eq. (6.2.4a) are known quantities, and therefore external work Πe is a known 

constant. Internal potential energy Πi in Eq. (6.2.3) is expressed in terms of the stresses and their 

corresponding strains as (McGuire et al., 2000) 

( ) ( , )i
V A

y dV x y dAΠ = σθ + σε + τγ = ∆ Γ σ∫∫∫ ∫∫  (6.2.4b) 

where the integration is over all of the plastic zone. It is assumed, as in Drucker’s (1956) local 

criterion, that length ∆x of the plastic zone is small so that function Γ does not involve distance x (i.e., 

each cross- section within the plastic zone has the same stress distribution). Since ∆x is a constant 

term in the energy functional, setting ∆x to unity does not affect finding the maximum condition of 

Eq. (6.2.4b), where the integrand is an energy density function given by, 

2 20( , ) (1 2 | | / )yy y y dγ
Γ σ = σθ + σε + σ −σ −

κ
 (6.2.5) 

The stress-strain relationships are nonlinear relationships in the plastic limit state, and the 

determination of normal stress σ in terms of moment M, shear force V, and axial force P is a 

variational problem that can be mathematically stated as follows (Hodge, 1957; Ellyin & Deloin, 



  

  170

1972): “for a plastic zone having predefined deformations, find normal stress σ such that the energy 

functional reaches its maximum value.” In the following development, the principle of maximum 

energy is used first to determine normal stress σ, and then shear stress τ is determined through Eq. 

(6.2.2). 

6.3 Stress-Strain Relationship at Failure State 

This section mathematically proves that the energy functional defined by Eq. (6.2.3) is a strictly 

concave function, and therefore, that normal stress σ at a stationary point corresponds to a unique 

maximum value of the functional. To this end, zeroing the first variation of the energy functional Eq. 

(6.2.3) yields the extreme condition, i.e., the Euler-Lagrange equation. Then, it is then shown that the 

energy functional Eq. (6.2.3) is a concave function that ensures the normal stress σ distribution can be 

solved from the Euler-Lagrange equation to maximize the energy. 

6.3.1 Euler-Lagrange Function 

The Gâteaux variation method (Troutman, 1996) is employed here to find the extreme condition of 

the energy functional Eq. (6.2.3). In this method, variables σ and ℵ are selected to determine the first 

variation, where the variable normal stress distribution ℵ is an arbitrary function of y that is very 

close to σ. For small parametric variable ν, if the following partial derivative exists (Troutman, 

1996), 

00
|)()()(lim);( =ν→ν

ℵν+σΠ
ν∂
∂

=
ν

σΠ−ℵν+σΠ
=ℵσΠδ  (6.3.1) 

then a Gâteaux variation of function Π is defined at σ in the direction of ℵ. Similar to that for a 

normal function, an extreme value condition is reached if the first Gâteaux variation vanishes, i.e., 

0);( =ℵσΠδ  (6.3.2) 

where function ℵ is within the vicinity of the extreme point of σ. To determine the stationary 

condition Eq. (6.3.2) for the energy function Π given in Eq. (6.2.3), it is necessary to estimate the 

partial derivative of function Γ(y, σ+νℵ) as expressed by Eq. (6.2.5). To this end, partially 

differentiate the expression with respect to ν to find,  

( , )y
σ+νℵ

∂Γ σ + νℵ
= Γ ℵ

∂ν
 (6.3.3) 
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where subscript σ+νℵ represents the first partial derivative of function Γ with respect to that 

subscript (i.e., Γσ+νℵ = ∂Γ/∂(σ+νℵ)). Substitute Eq. (6.2.4) into Eq. (6.2.3) and then into the first 

partial derivative of Eq. (6.3.3) to find,  

/ 2

/ 2
( ) ( )

d

vA d
dA b y dyσ+νℵ σ+ ℵ−

∂Π
= Γ ℵ = Γ ℵ

∂ν ∫∫ ∫  (6.3.4) 

in which the cross-section width b(y) varies over the section depth. By substituting Eq. (6.3.4) into 

Eq. (6.3.1) and then Eq. (6.3.2), the Gâteaux variation of function Π becomes,  

/ 2

0 / 2
( ; ) ( ) | ( )

d

d
b y dyν= σ−

∂
δΠ σ ℵ = Π σ + νℵ = Γ ℵ

∂ν ∫  (6.3.5) 

which holds for the arbitrary function ℵ, and therefore, 

( ) 0b y σΓ =  (6.3.6) 

which is the so-called Euler-Lagrange differential equation. Assuming there are no web openings, the 

section width function b(y) cannot be zero, and Eq. (6.3.6) can be simplified to, 

0σ

∂Γ
Γ = =

∂σ
 (6.3.7) 

Substitute the energy density function expressed in Eq. (6.2.5) into Eq. (6.3.7), to find, 

0
2 2

(1 2 | | / )( , ) 0
y

y dy y γ − σ∂Γ σ
= θ + ε − =

∂σ κ σ −σ  (6.3.8) 

which is a function that defines the distribution of normal stress σ over the cross-section depth at the 

plastic limit state. It is noteworthy that Eq. (6.3.2) is a necessary condition, but not a sufficient 

condition for function Π to attain an extreme value, and, as such, the corresponding extreme point of 

σ from Eq. (6.3.8) may be relevant to a maximal, minimal or saddle point of the function. Thus, if Eq. 

(6.3.8) is a necessary and sufficient condition to maximize function Π, then Π must be concave.  

6.3.2 Concave Function 

If it can be shown that the energy functional given by Eq. (6.2.3) is concave, the stress distribution 

defined by Eq. (6.3.8) is the true failure stress at the plastic limit state. The function Π is concave 

over the interval [σb, σe], where subscripts b and e refer to the beginning and end points of the 

interval, if any line segment joining any two points on the graph of Π is never above the graph 

(Gradshteyn & Ryzhik, 2000). A concave function can be alternatively defined by a Gâteaux 

variation condition as follows: a function Π defined on interval [σb, σe] is said to be strictly concave 
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when, for any σ and ℵ belonging to the given domain, the following condition holds (Troutman, 

1996), 

);()()( ℵσΠδ≤σΠ−ℵ+σΠ  (6.3.9) 

which is an equality if and only if ℵ = O, where O denotes the null function. The following 

presentation demonstrates how Eq. (6.3.9) is satisfied in the current analysis of a plastic limit state.  

By substituting Γσ defined by Eq. (6.3.8) into Eq. (6.3.1), the first Gâteaux variation for the right-

hand side of Eq. (6.3.9) is, 

/ 2

/ 2

( ; ) ( ) 1 2
d

d A

b y dy dA In Inσ σ
−

δΠ σ ℵ = Γ ℵ = Γ ℵ = −∫ ∫∫  (6.3.10) 

where integral terms In1 and In2 have the following expressions, 

∫∫ ℵε+θ=
A

dAyIn )(1  (6.3.11) 

2 202 (1 2 | | / ) / y
A

In y d dAγ
= − σℵ σ −σ
κ ∫∫  (6.3.12) 

Based on Eqs. (6.2.3), (6.2.4) and (6.2.5), the difference in the left-hand side of Eq. (6.3.9) is 

expressed by the following, 

2 2 2 20 2 | |( ) ( ) 1 (1 ) ( )y y
A

yIn dA
d

γ ⎡ ⎤Π σ +ℵ −Π σ = − − σ −σ − σ − σ +ℵ
⎣ ⎦κ ∫∫  (6.3.13) 

in which the term in the square brackets can be rewritten as, 

2 2 2 2

2 2 2 2

2 (1 / )( )
( )

y y

y y

σℵ +ℵ σ
σ −σ − σ − σ +ℵ =

σ − σ +ℵ + σ −σ  (6.3.14) 

Note that interval [σb, σe] can be selected in such a way that both ℵ and σ have the same sign, so that 

ℵσ ≥ 0. If such a condition is satisfied, the following inequality holds, 

( )22 2 2 2/ 1 /y yσ +ℵ σ −σ ≤ σ −σ  (6.3.16) 

Thus, the term on the right-hand side of Eq. (6.3.14) is, 

2 2 2 2 2 2

2 (1 / )
( )y y y

σℵ +ℵ σ σℵ
≥

σ − σ +ℵ + σ −σ σ − σ  (6.3.16) 

It is also observed that for the bi-axially symmetrical cross-section in Figure 6.1(a), the expression 

2|y|/d ≤ 1 is satisfied over the entire section depth. Thus, the term (1-2|y|/d) in Eq. (6.3.13) is greater 
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than or equal to 0. Therefore, by substituting Eqs. (6.3.16) into Eq. (6.3.14), and then into the second 

term on the right-hand side of Eq. (6.3.13), we get, 

( )

2 2 2 20

2 20

2 | |1 ( )

1 2 | | / / 2.

y y
A

y
A

y dA
d

y d dA In

γ ⎛ ⎞ ⎡ ⎤− σ − σ − σ − σ +ℵ⎜ ⎟ ⎣ ⎦κ ⎝ ⎠
γ

≥ − σℵ σ −σ =
κ

∫∫

∫∫
 (6.3.17) 

By substituting Eq.(6.3.17) back into Eq. (6.3.13), we find, 

( ) ( ) 1 2In InΠ σ+ℵ −Π σ ≤ −  (6.3.18) 

If Eq. (6.3.18) is compared with Eq. (6.3.10), it is observed that Eq. (6.3.9) is indeed satisfied; that is, 

the energy functional Π is a concave function with respect to stress σ. This indicates that a normal 

stress σ that satisfies the Euler-Lagrangian Eq. (6.3.8) corresponds to function Π achieving its 

maximum value. In other words, the distribution of normal stress σ defined in Eq. (6.3.8) holds true 

for the plastic zone in Figure 6.1 at the plastic limit state.  

6.4 Failure Criterion Accounting for M-V-P Interaction 

Once the distribution of normal stress σ in the plastic limit state is determined by Eq. (6.3.8), axial 

force N and bending moment M can then be, respectively, found from Eqs. (6.2.1). As the distribution 

of shear stress τ is expressed in terms of σ by using the von Mises or Tresca yielding criterion, 

defined in Eq. (6.2.2), the shear force V can be subsequently determined from Eq. (6.2.1c). Since all 

three internal forces are found in the plastic limit state, a yield surface for the plastic zone is defined. 

A detailed expression of the yield surface, accounting for the interaction of bending moment, shear 

force and axial force in the fully plastic state, is derived in the following. The yield surfaces for three 

typical cross sections (rectangle, narrow-flange I-section, and wide-flange W-section) are derived and 

compared with corresponding results obtained from other methods (Ellyin & Deloin, 1972; Kusuda & 

Thurlimann, 1958; Kasai & Popov, 1986). 

6.4.1 Internal Forces 

To facilitate the following derivation, this study introduces the following two parameters relevant to 

plastic flexural, translational and axial deformations, 

00.5 /dϕ = κθ γ  (6.4.1a) 

0/ζ = ε γ  (6.4.1b) 
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where κ is defined in Eq. (6.2.2), and ϕ and ζ represent the flexural-to-shear and axial-to-shear 

deformation/strain ratios at the plastic limit state, respectively. Normal stress σ at the failure state, 

accounting for flexural, shearing and axial deformations, are the solved for from Eq. (6.3.8) and 

expressed as, 

2 2

( )

( ) (1 | |)
yϕρ + ζ σ

σ =
ϕρ + ζ + − ρ

 (6.4.2) 

where ρ = 2|y|/d. By incorporating the normal stress given by Eq. (6.4.2) into the failure criteria 

defined by Eq. (6.2.2), the following expression for the transverse shear stress at failure is obtained, 

2 2

(1 | |)

( ) (1 | |)
y− ρ τ

τ =
ϕρ + ζ + − ρ

 (6.4.3) 

This study adopts the conventional assumption that any stress along the z axis normal to the y axis is 

as indicated in Figure 6.2. By multiplying Eq. (6.4.2) by y, and then integrating over the depth of the 

section, the expression for the bending moment at failure of the section is found as, 

12

2 2
1

( ) ( )
4 ( ) (1 | |)

f
y

A

b ddM ydA
−

ρ ρ ϕρ + ζ ρ
= σ = σ

ϕρ + ζ + − ρ
∫∫ ∫  (6.4.4) 

in which the integral is dependant on the piecewise constant width function bf(ρ) for the cross-section: 

although conventional W-shape cross-sections are mainly illustrated in this study, the formulation 

derived can apply to other steel cross-section types as well; for example, the width function bf(ρ) can 

be for the wide-flange hollow-box section shown in Figure 6.2,  Even when the cross-section is bi-

axially symmetrical, the integrand of Eq. (6.4.4) is not symmetrical with respect to variable y or ρ due 

to the fact that the axial-to-shear strain ratio ζ ≠ 0. Therefore, the definite integral of Eq. (6.4.4) must 

be divided into four constant domains: (-1, -c1), (-c1, -0), (+0, c1), and (c1, 1), where the parameter c1 

=1-2tf/d. Note that finding the integral expression in Eq. (6.4.4) is a tedious process, and the 

expression is quite complicated. To simplify the following derivation, the anti-derivative 

corresponding to the integrand in Eq. (6.4.4) is presented in Appendix 6.A, where the software 

Mathematica-Version 3.0 (Wolfram, 1996) is employed in the derivation. Therefore, by directly using 

anti-derivative Eq. (6.A.8) in Appendix 6.A, the following expression can be found for the bending 

moment, 

)]0()()1()1([
4 212

2

mmmy
f IccIcI
db

M −−−σ=  (6.4.5) 
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where the parameter c2 = tw/bf . The detailed expression for Im(c1) is given in Eqs. (6.A.2) through 

(6.A.8) in Appendix 6.A. The expressions for Im(1) and Im(0) are determined by setting c1 = 1 and c1 = 

0 in expression Im(c1), to obtain, 

2 3 2 2

2 2

2 2 3 2

2 2.5

2 2 3 2

2 2.5

( )(2 4 ) | | [ ( 2) (4 )](1)
2(1 )

(2 2 3 4 ) ln[2( )(1 / 1 )]
2(1 )

(2 2 3 4 ) ln{2[| | ( ) / 1 )]}
2(1 )

mI ζ + ϕ ζ + ϕ− ζϕ + ϕ + ζ − ϕ ζ ϕ − + ϕ + ϕ
=

+ ϕ

ζ + ϕ− ζ ϕ− ζϕ − ϕ ζ + ϕ + ϕ + ϕ
+

+ ϕ

ζ − ϕ+ ζ ϕ− ζϕ + ϕ ζ − ϕ +ϕ ζ − ϕ + ϕ
+

+ ϕ

 (6.4.6) 

and 

2 2 3 2 2

2 2.5

2 2 3 2 2 2

2 2.5 2 2

(2 2 3 4 ) ln[2 1 2( 1) / 1 ]
(0)

2(1 )

(2 2 3 4 ) ln[2 1 2( 1) / 1 ] 3 1
2(1 ) (1 )

mI
ζ + ϕ − ζ ϕ − ζϕ −ϕ + ζ + ζϕ − + ϕ

=
+ ϕ

ζ − ϕ+ ζ ϕ− ζϕ + ϕ + ζ + ζϕ + + ϕ ϕ + ζ
+ +

+ ϕ + ϕ

 (6.4.7) 

By integrating Eq. (6.4.3) across the section, the expression for the resultant shear force is, 

1

2 2
1

( )(1 | |)
2 ( ) (1 | |)

f
y

A

b ddV dA
−

ρ − ρ ρ
= τ = τ

ϕρ + ζ + − ρ
∫∫ ∫  (6.4.8) 

Similar to the derivation of the moment, by applying the anti-derivative Eq. (6.A.12) derived in 

Appendix 6.A to Eq. (6.4.8), the shear force at failure is expressed as, 

)]0()()1()1([ 212 vvvyf IccIcIdbV −−−τ=  (6.4.9) 

where the subscript v indicates that the integral Iv refers to the shear force. The detailed expression of 

Iv(c1) is given in Appendix 6.A, from which the expressions Iv(1) and Iv(0) for c1 = 1 and 0 are found 

to be, 

2

2 2 1.5

2

2 1.5
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 (6.4.10) 
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 (6.4.11) 
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Similarly, the integration of Eq. (6.4.2) for the normal stress over the section yields the following 

expression for the axial force, 

1

2 2
1

( )( )
2 ( ) (1 | |)

f
y

A

b ddP dA
−

ρ ϕρ + ζ ρ
= σ = σ

ϕρ + ζ + − ρ
∫∫ ∫  (6.4.12) 

By using the anti-derivative Eq. (6.A.16) derived in Appendix 6.A, the axial force in Eq. (6.4.12) is 

expressed as, 

)]0()()1()1([ 212 pppy IccIcIbdP −−−σ=  (6.4.13) 

where the subscript p indicates that the integral Ip refers to the axial force. The detailed expression for 

Ip(c1) is given in Appendix 6.A, from which expressions Ip(1) and Ip(0) for c1 = 1 and 0 are found as, 
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2
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( ) ln[2( )(1 / 1 )]| |(1)
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 (6.4.14) 

and 

2 2
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ϕ− ζ + ζ + + ϕζ + ϕ

=
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 (6.4.15) 

Thus far, the bending moment, shear force and axial force at failure have been derived by applying 

variational principles, and expressed in Eqs. (6.4.4) through (6.4.15) in terms of the two parameters ζ 

and ϕ. The three expressions Eqs. (6.4.5), (6.4.9) and (6.4.13) define the yield/failure surface for a 

member section under the combined action of bending moment, shear force and axial force. 

6.4.2 Force-Deformation Relationships 

To observe the characteristics of the three-dimensional yield surface derived in the previous section, a 

typical wide-flange cross section, shown in Figure 6.2 with b1 = 0, is here considered to illustrate the 

corresponding force-deformation relationships. It is evident from Eqs. (6.4.1) that the parameter ϕ is 

the ratio of section rotation θ to transverse deformation γ0, while the parameter ζ is the ratio of axial 

deformation ε to transverse deformation γ0. As a result, the relationship between each of the three 

forces M, V, P and the two parameters ϕ, ζ represents the combined force-deformation relationship in 

the plastic limit state. Consider a W360X382 cross-section, and normalized axial force p= P/Pp, 
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bending moment m=M/Mp and shear force v=V/Vp, where the normalizing factors are the axial, 

bending and shear capacities, 

AP yp σ=  (6.4.16a) 

ZM yp σ=  (6.4.16b) 

AV yp τ=  (6.4.16c) 

Bending moment M, shear force V and axial force P are defined by Eqs. (6.4.5), (6.4.9) and (6.4.13), 

respectively. If ϕ is set to the values of 0, 0.5, 1, 2, and 3, while ζ assumes a value ranging from zero 

to four, the variations of the normalized bending moment, shear force and axial force and their 

corresponding deformation ratios are as shown in Figure 6.3. 

It is observed from Figure 6.3 (a) that when ϕ tends to zero, the bending moment vanishes (m = 0), 

which corresponds to either one of two extreme cases: the flexural curvature is zero, or the shear 

strain becomes infinitely large in accordance with Eqs. (6.4.1). This indicates that shear failure 

dominates the plastic zone. When a curvature-shear deformation/strain ratio is specified, say ϕ = 0.5, 

the moment is very sensitive to the variation of the axial deformation, and its value drops 

considerably from its maximum value at around ζ = 0.5, as shown in Figure 6.3(a). This indicates that 

the combined stress interaction is significant in the region close to ϕ = ζ = 0.5. When the ratio ϕ is 

increased to 3, the effect of the axial loading becomes insignificant up to approximately ζ = 2.5, as 

indicated in Figure 6.3(a), and flexural deformation dominates the failure state. Subsequently, beyond 

ζ = 2.5, the moment quickly drops to zero as the axial loading dominates the failure. These results 

demonstrate that while the bending moment level at the failure state is high in deformation/strain 

regions exhibiting small shear or axial deformation, in some other combined deformation/strain 

regions involving larger axial or shear deformation, the moment capacity decreases significantly.   

The relationship between the shear capacity and parameters ϕ and ζ is shown in Figure 6.3(b). It is 

evident from the figure that when parameters ϕ and ζ tend to zero, shear failure controls the limit 

state due to the extremely high level of shear force. When ζ = 0 (no axial strain), the shear capacity, 

in particular, drops quickly with an increase of the ϕ value. This demonstrates that for moment-shear 

interaction, the bending moment plays a more significant role. If there is no flexural effect (ϕ = 0), the 

shear capacity decreases monotonically with increase of the ζ value. It is interesting that with the 

presence of flexural bending  (say ϕ = 0.5), with the increase of the axial loading/deformation, the 

shear capacity increases to the maximum value (about 0.6) and further increase of axial 

loading/deformation results in the decrease of shear capacity. Furthermore, if the value of ϕ is 
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increased (such as setting ϕ to 1, 2, or 3), the similar humped feature shown in Figure 6.3(b) is also 

observed, but the peak value of v decreases and the flatter region, prior to the maximal shear force, 

continues to elongate. These results reveal that for specified ratio ϕ, a given shear loading level can 

correspond to two different ζ deformation ratios.  

The relationship between the axial force capacity and combined deformations is plotted in Figure 

6.3(c). It is observed that when ϕ = 0 (i.e., no bending moment effect), the axial capacity is quickly 

reached with the increase of ζ to about ζ = 1, and then the axial loading controls the failure limit state. 

With the increase of the ϕ value, say to ϕ = 1, the axial loading p increases with the increase of the ζ 

value. This is true when the parameter ζ reaches a certain level at which axial loading p jumps from a 

lower level to almost unity. For a given shear loading level, the lower the bending moment level, the 

faster the loading p approaches unity.   

It is also important to observe the cross-section failure at the plastic state resulting from the 

interaction between bending moment, shear force and axial force. Although flexural failure is 

generally considered a key factor that contributes to local section failure, the preceding discussions 

clearly indicate that three-dimensional combined stress interaction should be taken into account for 

some extreme loading cases. Particularly for a given shear and moment loading (deformation) level 

(say, ϕ = 1), the bending moment loading in the plastic limit state dramatically changes from its 

maximum value to its minimum value with the increase of parameter ζ , beginning from around ζ = 1, 

as shown in Figure 6.3(a); normalized axial force p quickly increases to unity from its minimum value 

shown in Figure 6.3(c), indicating that the bending moment no longer dominates the local section 

failure.  

6.4.3 M-V-P Yield-Failure Surface for Rectangular Sections  

Here, a rectangular section with depth d and width b is considered. By substituting c1 = 0 and c2 = 1 

into Eq. (6.4.5), and then normalizing by Eq. (6.4.16b), the following expression for normalized 

moment is found, 
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 (6.4.17) 
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which is a parametric function with respect to variables ϕ and ζ . Similarly, by substituting c1 = 0 and 

c2 = 1 into Eq. (6.4.9), and then normalizing by Eq. (6.4.16c), the following expression for 

normalized shear force is found, 
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 (6.4.18) 

Finally, by substituting c1 = 0 and c2 = 1 into Eq. (6.4.13), and then normalizing by Eq. (6.4.16a), 

the following expression for normalized axial force is found, 
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 (6.4.19) 

Equations (6.4.17) to (6.4.19) are the parametric functions (with respect to parameters ϕ and ζ) that 

define the yield-failure surface for a rectangular cross-section. The surface can be graphically 

determined by the following approach. For given values of v and p, solve the system of nonlinear 

equations Eqs. (6.4.18) and (6.4.19) to find the corresponding values of parameters ϕ and ζ. Then, 

substitute these two parameter values into Eq. (6.4.17) to find the corresponding value of m. This is 

repeated for various given values of v and p to obtain sets of data points that graphically define the 

yield surface accounting for moment, shear and axial force interaction. For instance, if the values of v 

are set to 0, 0.2, 0.4, 0.6, 0.8, 0.9 and 0.95, the corresponding normalized p-m curves are the yield 

surface contours plotted as solid lines in Figure 6.4.When v = 0, the heavy solid line represents the 

theoretical interaction curve derived from a two-dimensional m+p analysis of a rectangular cross-

section (Chen et al., 1977). When the shear loading level is low (say v = 0.2), neglecting the effect of 

the shear force is reasonable because the corresponding interaction curve almost coincides with that 

when v = 0. With an increase of the shear force (to v = 0.4 and beyond), the corresponding influence 

on the yield surface becomes much more significant. Such a shear stress effect should not be ignored, 

as this may lead to unsafe design in practice. This is especially true when the value of the ratio v is 

beyond 0.6, at which point the shear stresses affect the local plastic failure dramatically.  
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Note that the interaction surfaces shown as dashed lines in Figure 6.4 are derived by using the 

conventional assumption of constant shear strain across the section (Ellyin & Deloin, 1972). It is 

observed from the yield surfaces that for the values predicted by Ellyin and Deloin’s method, the 

cross-section strengths are generally overestimated when compared with the solid-line results derived 

in this study. Only when shear force v is less than 0.4, is the overestimation insignificant. When the 

value of v is greater than 0.4, the error becomes quite substantial. 

6.4.4 M-V-P Yield-Failure Surface for Wide-Flange Sections 

Structural beam and column members with wide-flange cross-sections are commonly used in steel 

frameworks. Two typical cross-sections are now considered. The first section type, often used for 

beams, is an I-section with flange width-to-depth ratio bf /d < 0.5. The second section type, often 

adopted for columns, is a W-section with bf /d > 0.5. 

The yield-surface contour is first investigated for a W920X253 section, for which the relevant 

properties are: depth d = 915 mm, flange width bf = 305 mm, flange thickness tf = 25.9 mm, web 

thickness tw = 16.5 mm, area A = 32300 mm2, and plastic modulus Z = 11×106 mm3 (CISC, 2004). It 

is observed that the ratio of width to depth is bf /d = 1/3< 0.5; therefore, this is a typical I-section used 

for beams. Unlike Eqs. (6.4.17), (6.4.18) and (6.4.19) for rectangular cross-sections, the m, v and p 

expressions for wide-flange cross-sections are considerably more complicated, because c1 ≠ 0 and c2 

≠ 1 in Eqs. (6.4.5), (6.4.9) and (6.4.13). By substituting parameters c1 = 1-2tf/d = 0.9434 and c2 = tw/bf 

= 0.0541 into these equations for the W920X253 section, and then normalizing them through Eqs. 

(6.4.1), the non-dimensional expressions for the m, v and p as functions of parameters ϕ and ζ are 

derived. Then, following the same procedure employed in Section 6.4.3 for rectangular sections, the 

corresponding m + p yield-surface contours for varying values of v from 0 to 0.95 are obtained, as 

shown in Figure 6.5. 

By comparing Figures 6.4 and 6.5, it is evident that the corresponding normalized yield surfaces for 

rectangular and W-flange sections differ negligibly. Similarly, when the W-section results of this 

study are compared to those obtained by Ellyin and Deloin (1972), as in Figure 6.5, if the shear level 

is lower than v = 0.2 then, as for rectangular sections, the effect of the shear force can be reasonably 

ignored in the case of wide-flange sections, . However, the influence of shear force on plastic failure 

becomes significant when ratio v= 0.4 and beyond, which implies that yield-failure for wide-flange 

sections is more sensitive to shear forces than it is for rectangular sections. 

The second example is a W360X382 section with the following properties: depth d = 416 mm, 

flange width bf = 406 mm, flange thickness tf = 48 mm, web thickness tw = 29.8 mm, area A = 48700 



  

  181

mm2, and plastic modulus Z = 7970×103 mm3 (CISC, 2004). The main feature of this section is that 

the flange width-to-depth ratio bf /d ≈ 1, which identifies a W-section typically used for columns 

because it has approximately equal strong-axis and weak-axial buckling capacity. For this cross-

section, the two parameters c1 = 1-2tf/d = 0.7692 and c2 = tw/bf = 0.0734. By substituting these two 

parameter values into Eqs. (6.4.5), (6.4.9) and (6.4.13), and then normalizing them through Eqs. 

(6.4.1) , the non-dimensional expressions for m, v, and p as functions of parameters ϕ and ζ are 

obtained. By using the same procedure as that for rectangular sections, the corresponding p + m 

yield-failure surfaces found for v values of 0, 0.4, 0.6, 0.8, 0.9, and 0.95 are as shown in Figure 6.6. It 

is observed from the figure that for values as high as v = 0.2, the results predicted for the W-section 

by both Ellyin and Deloin (1972) and the current study are in good agreement, but that Ellyin and 

Deloin’s results overestimate the yield-failure capacity of the section when v > 0.2.   

It should be pointed out that it can be quite complicated to derive yield-failure surfaces as described 

in the previous sections, because, for a given loading level, two of the three equations defining the 

normalized forces m, v, and p must first be solved to find the parameters ϕ and ζ. In the iterative 

process of solving these highly nonlinear equations to obtain the yield surface contours, the 

computation can be extremely unstable in some cases (this topic is currently under study). 

6.5 Comparisons with Experimental Results 

Failure phenomena at extreme loading levels are difficult to model theoretically, because the 

distributions of the stresses and corresponding deformations are highly nonlinear. The correctness of 

a solution is directly related to the assumptions used to derive it. To verify the accuracy of the yield-

failure surfaces derived in this study, the theoretical results are compared with those obtained from 

some experiments reported in the literature (Kusuda & Thurlimann, 1958; Kasai & Popov, 1986).  

In the experiments by Kusuda and Thurlimann (1958), three specimens of length 416.25 mm (18.5 

in) are designed as cantilever beams with a 10WF29 section having the following properties: depth d 

= 259.59 mm (10.22 in), flange width bf = 147.32 mm (6.8 in), flange thickness tf = 12.7 mm (0.5 in), 

web thickness tw = 7.341 mm (0.289 in), area A = 5503.22 mm2 (6.53 in2), and plastic modulus Z = 

568631 mm3 (34.7 in3). 

The short beams have a depth-to-length ratio = 0.624 to enhance the effect of the shear force in the 

experiments (typically, the ratio is about 0.1 for designed beams). Based on coupon tests taken from 

the flange and web of the cross-section, the static yield stress σy = 254.93 MPa (37 ksi). Accordingly, 

the plastic moment capacity Mp = σy Z = 144.96 kN-m, the axial plastic capacity Pp= σy A = 1402.94 
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kN, and the shear plastic capacity Vp= τyA = 809.98 kN. For the monotonic loading history adopted 

for the experiments, the normalized axial force were assigned values of p =P/Pp = 0.13, 0.19, and 0.37 

for the three specimens. As the corresponding recorded load-deflection curves displayed no distinct 

yield-load level, Kusuda and Thurlimann (1958) determined it to be at the intersection of the tangent 

lines to the elastic and strain-hardening portions of the experimental curves. With this approach, the 

yield loads for the three specimens are those listed in the second column of Table 6.1. The values of 

internal axial force P in the third column are computed by multiplying Pp with given values of 

normalized axial force p. Also in Table 6.1, the values of internal shear force V in the fourth column 

and internal bending moment M in the fifth column are determined from the static equilibrium 

conditions. The previously noted values for Pp, Vp and Mp are used to normalize the internal yield 

forces to obtain the values of p, v and m shown in the last three columns of Table 6.1.   

To compare the experimental results with those predicted by the method proposed in this study, the 

three pairs of points (m, p) in Table 6.1 from the test results are shown in Figure 6.7 as the three open 

circles. If normalized shear force v is selected to have values 0.26 and 0.31 listed in Table 6.1, then 

the two corresponding M-P interaction curves are plotted in Figure 6.7 by using the failure-surface 

defined by Eqs. (6.4.5), (6.4.9) and (6.4.13). Obviously, the three points from the experimental results 

are not located on the corresponding two predicted curves. The reason is that when v is normalized, 

the entire cross-section area A is used to determine Vp (= τyA = 809.98 kN) so that the shear capacities 

are overestimated. If the entire web area and only 52% (achieved after several trials) of the flange 

area are assumed to take shear force, the adjusted yield strength Vh becomes 542 kN. By using Vh 

instead of Vp to normalize the values of shear force V in Eq. (6.4.9), the non-dimensional values of vh 

become as listed in Table 6.2 for the three specimens. If vh = 0.46, the interaction curve is obtained as 

the dashed line in Figure 6.7. It can be seen from Table 6.2 and Figure 6.7 that the experimental 

results are quite close to those in the dashed line. For example, from column 5 of Table 6.2, the 

differences of the m values are 1.22%, 0%, and -2.82%, respectively, for the three specimens. This 

implies that approximately 50% of the flange area contributes to the shear loading.  

Note that the effect of the shear force on the plastic yield failure cannot be ignored. When the effect 

is neglected by setting v = 0, the predicted m values are those in column 6 of Table 6.2. The 

differences of the values of m in Figure 6.7 are 0.18, 0.14 and 0.08, for the first, second, and third 

specimens, respectively, as indicated in column 7 of Table 6.2; the corresponding relative differences 

of 18.6%, 15.1% and 10.5% are listed in column 8 of Table 6.2. It can be concluded that when the 

ratio of the section depth-to-member length for a beam is large enough for the axial force and shear 

force to be of the same order of magnitude as that at the yield-failure level, the three-dimensional 
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yield-failure criterion accounting for the interaction of bending, shearing and axial forces should be 

employed for progressive-failure analysis. 

As another example, the cyclical test results from an experimental investigation of the behaviour of 

shear links applied in seismic engineering (Kasai & Popov, 1986) are used to check the accuracy of 

the combined-stress failure surface derived by this study. Two link beam specimens with a W8X10 

cross section are tested under combined axial force, shear force and bending moment. The ratio of the 

shear force to the axial force is fixed at unity during the cyclically loading process (i.e., P = V). The 

properties of the cross-section are: depth d = 202.44 mm (7.97 in), flange width bf = 100.58 mm (3.96 

in), flange thickness tf = 5.28 mm (0.208 in), web thickness tw = 4.32 mm (0.17 in), and area A = 

1922.58 mm2 (2.98 in2). The two link beam lengths are 368.3 mm (14.5 in) and 444.5 mm (17.5 in), 

and the corresponding depth-to-length ratios are 0.55 and 0.46, respectively. 

The axial, shear and moment plastic strengths Pp = 743.6 kN (167.1 kips), Vp = 205.6 kN (46.2 

kips) and Mp = 56.3 kN-m (498 kips-in) for the W8X10 section were determined by cyclical dynamic 

tests (Kasai & Popov, 1986). To be consistent with the experimental results for the purpose of 

comparison, these three strength values are adopted for the model of interactive failure behaviour 

proposed by this study. To investigate such interaction behaviour using the failure surface defined by 

Eqs. (6.4.5), (6.4.9) and (6.4.13), one test data pair for the shear link from the Kasai and Popov (1986) 

experiments is illustrated here; specifically, for m = M/Mp = 0.842 and vk
 = V/Vp = 0.96, where the 

normalized shear force vk  is found using effective shear area Ase = tw(d-tf). If the entire cross-sectional 

area A is assumed to take the shear force, the non-dimensional shear force becomes, 

4.32(202.44 5.288)0.96 0.425
1922.58

se
p

y

AVv v
A A

−
= = = =
τ  (6.5.1) 

For P = V, from the experiments the normalized axial force is given by, 

0.425 0.245
3 3y y

P Vp
A A

= = = =
σ τ

 (6.5.2) 

where the von Mises yield criterion is applied. The data pair (p, m) = (0.245, 0.842) is shown in 

Figure 6.7 as the symbol ⊕. For the W8X10 (English unit) cross-section with normalized shear force 

v = 0.425 at failure, the interaction curve predicted by using Eqs. (6.4.5), (6.4.9) and (6.4.13) is 

plotted in Figure 6.7 as the heavy solid line. It is evident that the tested point is significantly outside 

the predicted curve. In fact, the shear force v predicted by the method in this study should be adjusted 

from 0.425 to approximately 0.31, so as to match with the experimental value. If shear force V from 

the experiment is considered constant, according to Eq. (6.5.1), increasing the value τy can alone 
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achieve such an adjustment because the full section area A has already been accounted for. This 

reveals that perhaps strain hardening behaviour should be taken into account in the method proposed 

in this study. For instance, if the hardening shear stress is assumed to be τh = 1.05τy  and 95% of the 

cross-sectional area (0.95A) takes the shear force, the normalized shear force from Eq. (6.5.1) at 

failure remains at about v = 0.425 because τh×(0.95A) ≈ τyA. After the strain-hardening is considered, 

the axial force in Eq. (6.5.2) becomes p = 0.245/1.05 = 0.233. By substituting v = 0.425 and p = 0.233 

into the corresponding normalized expressions of Eqs. (6.4.9) and (6.4.13), and then solving the two 

equations yields values of parameters ϕ and ζ, from which the value of m is found to be 0.801 from 

the normalized expression of Eqs. (6.4.5). The experimental point in the coordinate system then 

becomes (m, p) = (0.801, 0.233), shown by the black in-fill circle in Figure 6.7, which is closer to the 

predicted curve. This result implies that the effect of strain hardening on plastic-yield failure of 

member sections can be significant in cyclical loading situations.  

6.6 Combined Failure Model 

In Chapter 3, two two-dimensional models are proposed for yield-failure surfaces, involving either 

the interaction of bending moment and axial force, or of bending moment and shear force. To 

facilitate progressive-failure analysis while accounting for the simultaneous interaction of bending, 

shearing and axial forces, a corresponding three-dimensional model is developed in the following.  

6.6.1 Initial Yield 

The initial yield of a structural steel cross-section is dependent on the distribution of the residual 

stresses that remain in an unloaded component, after it has been formed into a finished product. 

Residual stresses generally develop during the cooling stage after the rolling, welding, punching or 

cambering operations. Within a loading process for a structure, residual stresses tend to initiate plastic 

yielding at load levels lower than those predicted by stress analysis that ignores such stresses. The 

effect of residual normal stress has been extensively investigated (Huber & Beedle, 1954). In practice, 

design codes suggest that residual normal stress σr should be equal to approximately 30% of the full-

yield stress σy (AISC, 2001). The effect of residual shear stress has not been extensively investigated. 

It is assumed that residual shear stress τr is about 5% of the full-yield stress τy (see Appendix 6.B). 

Once the initial-yield normal and shear stresses are determined, the normalized initial-yield 

strengths are given by my = M/My, vy = V/Vy and py= P/Py, where My, Vy and Py have been defined in 

Section 3.3. The initial-yield surface for a  section accounting the interaction of bending moment, 
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shear force and axial force is taken to be the shaded triangular plane defined by points my, vy and py in 

Figure 6.8 (i.e., in one quadrant of the stress space). The initial-yield plane is expressed as, 

1=++ yyy pvm  (6.6.1) 

6.6.2 Full Yield 

To determine the extent of stiffness degradation due to plastic behaviour, a seven-domain failure 

model is proposed to account for the interactive influence of the bending moment, shear force and 

axial force This failure model is an extension of the planar M-P or M-V failure model discussed in 

Chapter 3.  

After the initial-yield plane defined in Eq. (6.6.1) is determined, the three failure domains in each 

coordinate plane are defined by the corresponding six full-yield points P*
1 through P*

6 as shown in 

Figure 6.8. Points P*
1 and P*

2 are determined when m = my and by using m-p (v =0) and m-v (p = 0) 

yield loci, respectively. The remaining four points P*
3 to P*

6 can be similarly obtained by using the 

corresponding yield loci by setting v = vy and p = py, respectively. These six points serve as a base to 

define the full-yield failure behaviour within the domain bounded by the three coordinate planes. 

Based on the six points P*
1 through P*

6 , the three boundary curves on the yield surface in Figure 

6.9 can be determined so that the M-V-P yield surface is divided into seven-failure domains. The 

following approach is adopted to define the seven domains. Curve P3-P8-P9-P6 in Figure 6.9 is the 

intersection between the yield surface and the following plane, 

},max{ yvypy mmm =  (6.6.2) 

where myp and myv are the moment values at points P*
3 and P*

6 in Figure 6.8, respectively. Similarly, if 

vym, vyp , pym and pyv are respectively determined from points P*
2 , P*

5 , P*
1  and P*

4, the intersections 

between the yield surface and the two following planes, 

},max{ ymypy vvv =  (6.6.3) 

},max{ yvymy
ppp =  (6.6.4) 

determine the curve P1-P7-P8-P4 parallel to the pm-plane, and the curve P2-P7-P9-P5, parallel to the vm-

plane in Figure 6.9, respectively. Consequently, the seven failure domains are determined by the 

boundary curves in the figure. 

For the loading path OP in Figure 6.9, point P(mpr, vpr, ppr) on the yield surface is obtained by 

solving the intersection between the yield surface and the straight line OP, where subscript pr denotes 

the reduced strength due to the interaction of m, v and p. When shear force vpr ≤ vy, one of the 
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following three failures occurs: flexural failure in domain Dm if ppr ≤ py; axial failure in domain Dp if 

mpr < my; or bending plus axial failure in Dmp domain. 

When vpr > vy , one of the following four failures occur: a shear failure in Dv  if ppr ≤ py and mpr < 

my; a bending plus shear failure in Dmv domain if ppr ≤ py; a shear plus axial failure in Dvp domain if 

mpr < my; otherwise, bending plus shearing plus axial failure in Dmvp domain.  

In Figure 6.9, three types of failure domains are in the proposed seven-domain failure model. First, 

if any one of the three principal internal M, V or P forces is far more substantial than the other two, 

single-stress failure occurs, respectively, in the corresponding flexural, shearing or axial domain Dm, 

Dv or Dp defined by the hatched-grey surface in Figure 6.9. Secondly, if any two of the three internal 

forces are far more significant than the third force, a two-stress failure occurs in the corresponding 

Dmv, Dvp or Dmp domain defined by the solid-grey surface in Figure 6.9. Thirdly, if the three internal 

forces all possess the same significance, a three-stress failure occurs in the Dpvm domain defined by 

the blank surface in Figure 6.9.  

6.7 Example Application of M-V-P Failure Surface 

Debris loading due to local damage is a serious problem under abnormal loading events. Consider the 

structural portion with W-shape columns C1 and C2 that support W-shape beams B1 and B2 in Figure 

6.10(a). The beam-to-column connections at joint B, C and D are semirigid, while joint A is free to 

rotate and horizontally translate. As the abnormal loading occurs, beam B1 disengages from the main 

portion at joint E. The beam rotates about point D, and its right end falls down onto beam B2. This 

forms debris loading applied at a distance x from end B that has vertical and horizontal components W 

and λW, where λ is the ratio of the horizontal load to vertical load. 

Assume the two columns are adequate to support beam B2 with the debris loads. Only the 

behaviour of B2 is investigated using the yield surface derived in this study. For the model in Figure 

6.10 (b), reaction VB at support B can be readily found as, 

b

c

b

b
B L

M
W

L
xL

VV +
−

==  (6.7.1) 

where moment MB at support B is a function of load W, and V stands for the shear force at the right-

hand side of point C. If portion CB of the beam is taken as a free-body diagram, then the bending 

moment at point C is given by, 

cMxVM −=  (6.7.2) 

If end A can move freely in the horizontal direction at the failure state, the axial force becomes, 



  

  187

WP λ=  (6.7.3) 

Equations (6.7.1), (6.7.2) and (6.7.3) define the loading path during the increase of load W. Beam 

B2 fails when load W reaches such a level that MB attains the connection capacity Mc and the internal 

forces V, M, P at section C are on the yield surface governed by Eqs. (6.4.5), (6.4.9) and (6.4.13). If 

the moment of Eq. (6.7.2) is normalized as m = M/Mp, normalized shear force v from Eq. (6.7.1) is 

expressed in terms of m as, 
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mmv c −+
−−

+κ=  (6.7.4) 

where κ is a yield criteria parameter (e.g., κ2 = 3 for the von Mises criterion), dimension d is the 

section depth, parameters c1 and c2 for W-shape section have been discussed in section 6.4.4, and  mc 

= Mc/Mp is the normalized moment of the connection. By solving for load W from Eq. (6.7.1) and 

then substituting it into Eq. (6.7.3), the following normalized axial force is obtained, 
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To find the data pair of (m, v, p) at failure, the following procedure is adopted: (1) normalize the 

yield surface defined in Eq. (6.4.5), Eq. (6.4.9) and Eq. (6.4.13) to obtain m(ϕ, ζ), v(ϕ, ζ), and p(ϕ, ζ); 

(2) replace m, v and p in Eqs. (6.7.4) and (6.7.5) with m(ϕ, ζ), v(ϕ, ζ) and p(ϕ, ζ) to form two 

nonlinear equations with respect to ϕ and ζ;  (3) solve for ϕ and ζ from the two equations for given 

values of the parameters in the expressions; (4) compute the values for mf = m(ϕ, ζ), vf = v(ϕ, ζ) and 

pf = p(ϕ, ζ) from Eqs. (6.4.5), (6.7.4) and (6.7.5), respectively. 

For the beam with cross section W920×253, length Lb is found to be 14630 mm by the use of L2
b = 

(Lc –x)2+ L2
c with Lc = 4572 mm and x = 733 mm. The dimension parameters in Eqs. (6.5.4) and 

(6.5.5) are c1 = 1-2tf /d = 0.9393, c2 = tw /b = 0.0565, x/Lb = 0.0501, and d/x = 1.2537. Substitute all of 

the previous values with designated load ratio λ and connection moment mc into Eqs. (6.7.4) and 

(6.7.5), and solve them to obtain parameters ϕ and ζ , and in turn, intersection point (mf, vf, pf) at 

failure by following the preceding procedure. The computation results are shown in Figure 6.11 with 

mc set to 0, 0.25, 0.5 and 1, and the load factor λ ranging from zero to one.  

It is seen from Figure 6.11 that if load ratio λ increases from zero to unity, axial force pf increases 

significantly, but moment mf and shear force vf decrease slightly for a simply supported beam (mc = 

0). With the increase of connection strength mc from zero to unity, moment mf decreases and vf 

increases considerably for a given load ratio λ. For example, if the horizontal debris loading is 

ignored (λ = 0) and mc = 1, shear force vf increases by about 60%, whereas the bending moment mf 
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decreases by approximately 74% compared to that when mc = 0. Especially, when λ = 1 and mc = 1 

the bending moment no longer dominates the plastic failure of beam B2 in Figure 6.11. These results 

reveal that changes of both the load ratio and end connection strength of the beam can substantially 

affect the interactive behaviour of moment, shear and axial forces at failure. 

The loading capacities corresponding to the designated λ and mc values are given in Table 6.3, 

where non-dimensional loading capacity wf is the ratio of Wf to Pp. Here, Wf is the load P/λ at failure 

from Eq. (6.7.3), and Pp is the axial capacity defined in Eq. (6.4.16a). It is seen for load ratio λ  that 

when the connection capacity mc is increased, loading capacity wf increases considerably. For 

instance, when mc is set to 0.25, 0.5 and 1, and λ to 0, the load capacities of wf increase 17.49% 

(0.4266/0.3631-1 = 0.1749), 32.25% and 53.35%, respectively, compared with those if mc = 0. On the 

other hand, for given connection capacity mc, the load capacity wf decreases with the increase of 

vertical-to-horizontal loading ratio λ. For example, when mc = 0 the load capacity wf decreases by 

9.59% (0.3283/0.3631-1 = -0.0959) from 0.3631 (when λ = 0) to 0.3283 (when λ = 1). Similarly, 

when mc = 0.25, 0.5, and 1, the decreased percentages of wf are 10.99%, 12.12% and 19.77%, 

respectively.  

Appendix 6.A Anti-Derivatives for Evaluating Resultant Stresses 

Anti-derivatives presented in this appendix are used to evaluate the axial force, bending moment, and 

shear force of the member cross-sections in the plastic limit state. Parameters ϕ and ζ represent the 

parametric functions, and ρ is a non-dimensional variable. The derivations in this appendix are based 

on Mathematica software Version 3.0 (Wolfram, 1996), and the related intermediate expressions are 

not included in the subsequent text. The following integral is used to evaluate the bending moment at 

the plastic failure of a section, 

2 2
1 ( ) / ( ) (1 | |)I d= ρ ϕρ + ζ ϕρ + ζ + − ρ ρ∫  (6.A.1) 

When ρ = c1 ≥ 0, the following solution of Eq. (6.A.1) is derived, 

2 2 2 2 3
1 1 1 2

1 2 2.5

[ (2 ) (3 )] [2( ) 3 4 ]( )
2(1 )M

c c f fI c + +
+

ζ − ϕ + ϕ + + ϕ + ζ + ϕ − ϕζ − ζϕ − ϕ
=

+ ϕ
 (6.A.2) 

where subscript of IM+ denotes that the anti-derivative in Eq. (6.A.1) is employed to evaluate moment 

M, and subscript + denotes that variable ρ of the integrand in Eq. (6.A.1) is positive and is replaced 

by c1. Functions f1+ and f2+ in Eq. (6.A.2) are given by, 

2 2 2
1 1 1 1( ) 1 (1 ) ( )f c c c+ = + ϕ − + ζ + ϕ  (6.A.3) 
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and 

2 2
2 1 1 1( ) ln{2[ ( 1) 1 ]/ 1}pf c c f+ = ϕζ + ϕ + − + ϕ +  (6.A.4) 

When ρ is in the negative domain, term 1-|ρ| becomes 1+ρ. The following solution of Eq. (6.A.1) in 

the negative domain is derived, 

2 2 2 2 3
1 1 1 2

1 2 2.5

[ (2 ) (3 )] [2( ) 3 4 )]( )
2(1 )M

c c f fI c − −
−

ζ − ϕ −ϕ + + ϕ + ϕ− ζ − ζ ϕ+ ζϕ −ϕ
=

+ ϕ
 (6.A.5) 

where negative variable ρ is replaced by -c1 (c1 ≥ 0), and functions f1- and f2- in Eq. (6.A.5) are given 

by, 

2 2 2
1 1 1 1( ) 1 (1 ) ( )f c c c− = + ϕ − + ζ − ϕ  (6.A.6) 

2 2
2 1 1 1( ) ln{2[ ( 1) 1 ]/ 1}f c c f− −= ϕζ − ϕ + + + ϕ +  (6.A.7) 

where subscript – denotes that variable ρ of the integrand in Eq. (6.A.1) is in the negative domain. 

To evaluate the bending moment at the plastic failure of a rectangular or wide-flange section, the 

following integral expression is employed to evaluate the definite integral, 

1 1 1 1 1( ) ( ) ( )m p nI c I c I c= −  (6.A.8) 

where subscript m refers to moment. 

The integral used to evaluate shear force V at the plastic failure of a section is, 

2 20.5(1 | |) / ( ) (1 | |)VI d= − ρ ϕρ + ζ + − ρ ρ∫  (6.A.9) 

Similar to the discussion of the moment for positive and negative domains of variable ρ in Eq. 

(6.A.9), the expressions of the anti-derivatives are derived as, 

2 1.5
1 1 2( ) 0.5[ ( ) ]/(1 )VI c f f+ + += − + ϕ ϕ+ ζ + ϕ  (6.A.10) 

2 1.5
1 1 2( ) 0.5[ ( ) ]/(1 )VI c f f− − −= + ϕ ϕ− ζ + ϕ  (6.A.11) 

In evaluating the shear force at the plastic failure of a rectangular or wide-flange section, the 

expression is, 

1 2 1 2 1( ) ( ) ( )v p nI c I c I c= −  (6.A.12) 

where subscript v refers to the shear force.  

Finally, the following integral is used to evaluate axial force P at the plastic failure of a section, 

2 20.5(1 | |) / ( ) (1 | |)PI d= − ρ ϕρ + ζ + − ρ ρ∫  (6.A.13) 



  

  190

where subscript P indicates the anti-derivative in Eq. (6.A.13) and is applied for evaluating axial 

force P. For the positive and negative values of ρ, the corresponding solutions of Eq. (6.A.13) are, 

2 1.5
1 1 2( ) 0.5[ ( ) ]/(1 )PI c f f+ + += ϕ + ζ + ϕ + ϕ  (6.A.14) 

2 1.5
1 1 2( ) 0.5[ ( ) ]/(1 )PI c f f− − −= ϕ + ζ − ϕ + ϕ  (6.A.15) 

In evaluating the axial force at the plastic failure of a rectangular or wide-flange section, the 

following expression is used, 

)()()( 13131 cIcIcI npa −=  (6.A.16) 

where subscript p means the expression is applied to determine axial force P. 

Appendix 6.B Residual Shear Stress 

This appendix presents a method to derive the residual shear stress of structural steel W-sections for 

determining the initial yield shear stress in structural analysis. It is known that the residual normal 

stresses distribution across the web of a W-section can be simply represented by a bilinear 

distribution, as displayed in Figure 6.12 (a) (ECCS, 1984), where h is equal to half of the web depth. 

It can be inferred from the bilinear normal stress distribution that the residual shear stress distribution 

varies as shown in Figure 6.12 (b) based on the equilibrium conditions of resultant normal and shear 

stresses, where τs is the maximal residual shear stress (Hibbeler, 2004) The total shear stress, 

including the residual shear stress in Figure 6.12 (b) and the shear stress, induced by the external 

loads in Figure 6.12 (c), is expressed as, 

2 2[1 ( / ) ] ( ) /c sy h y h y hτ = τ − + τ −  (6.B.1) 

where τc is the maximum shear stress produced by external loading. To find the maximum stress for 

both the residual and external loading shear stresses, Eq. (6.B.1) is differentiated with respect to the 

depth variable y as, 

2 22 / ( 2 ) / 0c s
d y h h y h
dy
τ
= − τ + τ − =  (6.B.2) 

Thus, the location of the maximum shearing stress is determined by solving Eq. (6.B.2) for y, and 

given by, 

2
s

m
c s

hy τ
=

τ + τ
 (6.B.3) 

which is relevant to maximum stresses τs and τc and depth h. By substituting Eq. (6.B.3) for ym into 

Eq. (6.B.1), the maximum shear stress is, 
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2 2 2

max 2
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τ = τ + = τ +

τ + τ τ + τ
 (6.B.4) 

Obviously, during the loading process, maximum shear stress τmax in Eq. (6.B.4) achieves initial yield 

stress τy (i.e., τmax = τy). Therefore, from Eq. (6.B.4) the initial-yield shearing condition is determined 

as, 

20.25 0s
y c

c s

τ
τ − τ − =

τ + τ
 (6.B.5) 

Solve Eq. (6.B.5) for initial-yield shearing stress,  

1 1 2
2

y s s
cy

y y

⎛ ⎞τ τ τ
⎜ ⎟τ = − + +
⎜ ⎟τ τ⎝ ⎠

 (6.B.6) 

which is the initial-yield shear stress under the external loading after the residual shear stress has been 

accounted for. The numerical values in Table 6.4 demonstrate how the residual shearing stress affects 

the initial-yield shear stress τcy. It is observed in the table that when the residual shear stress is ignored 

(τr = 0), then τcy becomes conventional yield-stress τy. It is noted that if the maximal residual shear 

stress τs is as high as 50% of yield shear stress τy, the effect of the residual shear stress on the initial-

yield shear stress τcy is only about 4.29% of yield shear stress τy; also the location of the initial yield 

occurs at 0.17h. Therefore, for the design and analysis of structures, it can be reasonably and 

conservatively assumed that effective residual shear stress τr = 0.05τy; that is, 5% of yield shear stress 

τy.  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  192

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Plastic zone loadings and deformations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 6.2 Dimensions of idealized cross-section 
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Figure 6.3 Force-deformation relationships in plastic zone 
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Figure 6.4 Comparison of yield-surface contours for rectangular cross section 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Comparison of yield-surface contours for W920X253 section 
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Figure 6.6 Comparison of yield-surface contours for W360X382 section 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7 Comparison of predicted results with experimental measurements 
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Figure 6.8 Initial-yield plane and corresponding points on full-yield surface 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Seven-domain plastic failure model 
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Figure 6.10 Effect of debris loading on lower-floor beam 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Effects of load ratio and end-connection capacity on internal forces 
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Figure 6.12 Normal and shear residual stress distributions across W-shape web section 
 

 

 

 

Table 6.1 Test results accounting for M-V-P interaction (Kusuda & Thurlimann, 1958) 
 

Specimen Load (kN) P(kN) V(kN) M(kN-m) p v m 

No.1 312 182 253 119 0.13 0.31 0.82 

No.2 365 267 249 117 0.19 0.31 0.81 

No.3 561 519 212 100 0.37 0.26 0.69 
 

 

 

Table 6.2 Comparison of predicted results with test measurements (Kusuda et al., 1958) 
 

Specimen Tested m vh Predicted m Error(%) m(v=0) di Error(%) 

No.1 0.82 0.47 0.83 1.22 0.97 0.18 18.6 

No.2 0.81 0.46 0.81 0.00 0.93 0.14 15.1 

No.3 0.69 0.39 0.71 -2.82 0.76 0.08 10.5 
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Table 6.3 Collapse load wf = Wf/Pp for floor beam under debris loading 
 

λ mc = 0 mc = 0.25 mc = 0.5 mc = 1 
0.0 0.3631 0.4266 0.4802 0.5568 
0.1 0.3630 0.4260 0.4790 0.5560 
0.2 0.3615 0.4235 0.4765 0.5530 
0.3 0.3593 0.4197 0.4723 0.5463 
0.4 0.3565 0.4150 0.4668 0.5345 
0.5 0.3532 0.4100 0.4600 0.5216 
0.6 0.3493 0.4047 0.4528 0.5077 
0.7 0.3447 0.3990 0.4453 0.4931 
0.8 0.3396 0.3929 0.4376 0.4781 
0.9 0.3341 0.3864 0.4299 0.4626 
1.0 0.3283 0.3797 0.4220 0.4467 

 

 

 

 

Table 6.4 Effect of residual shear stress on initial-yield shear stress 
 

τs/τy 0 0.1 0.2 0.3 0.4 0.5 

τcy/τy 1 0.9977 0.9916 0.9825 0.9708 0.9571 

(1-τcy/τy)× 100 0 0.23 0.84 1.75 2.92 4.29 

ym/h 0 0.05 0.08 0.12 0.15 0.17 
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Chapter 7 
Conclusions 

Typically, structural failure involves progressive stiffness degradation and strength deterioration. 

During the failure process, structural materials can display elastic and plastic behaviour, external 

loads can change from being static to dynamic, and structural topology can possibly progressively 

change. To account for these failure phenomena, this thesis develops a progressive-failure analysis 

procedure to deal with the stiffness degradation and collapse performance of steel structures, due to 

both normal and abnormal loads. The nonlinear limit state analysis is in keeping with the 

requirements of current design codes (e.g., CISC, 2004; AISC, 2001). The progressive collapse 

analysis procedure itself is based on corresponding guidelines of GSA (2003) and DoD (2005). This 

chapter presents a summary and concluding remarks concerning the work completed, and suggests 

some research directions for future work. 

7.1 Summary  

Chapter 1 briefly reviewed the existing literature concerning progressive collapse under abnormal 

loading. A nonlinear analysis method was proposed and developed in Chapters 2 and 3 with account 

for geometric and material nonlinearities, and member shear deformation. The combined effects of 

semirigid connections and member plasticity on structural behaviour were explored in Chapter 4. A 

progressive-failure analysis method was developed in Chapter 5, and several example frameworks 

were analyzed with account for both member and connection damage. Finally, with a view to future 

extension of the research, Chapter 6 presented a three-dimensional failure model for member sections 

under simultaneous bending, shearing and axial forces.  

To account for the stiffness degradation behaviour of members, the force-deformation relationship 

at member ends was obtained with account for the effects of both second-order geometric 

nonlinearities and shear deformation. The failure behaviour of a member cross-section was studied 

under combined moment-axial force interaction, and combined moment-shear force interaction. 

A nonlinear structural analysis method based on the Euler incremental method was developed. The 

nonlinear analysis results for several steel frameworks were compared with those obtained from other 

methods to verify the accuracy of the proposed method. 

A hybrid member model was introduced to include the effects of both member plasticity and 

semirigid connections. A four-parameter model was employed to simulate the nonlinear moment-
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rotation relationship of semirigid connections. A compound stiffness degradation factor was 

developed as a function of semirigid connection and inelastic member stiffness degradation factors. 

The interactive effect of connection semi-rigidity and member inelasticity was illustrated for several 

semirigid frames. 

A health index was introduced to quantify the degree of damage to member-end connections due to 

the disengagement of members during the process of progressive collapse.  

The dynamic effect induced by impact debris loading during collapse was quantified by an impact 

amplification factor.  

A progressive-failure analysis procedure was developed to predict the behaviour of building 

frameworks that experience initial local damage due to an abnormal loading event. The removal of 

critical member(s) is taken to model the initial local damage. Dead, live and other loads are as 

specified by design codes (e.g., ASCE 7-02), and load combinations comply with design/analysis 

guidelines of GSA (2003) and DoD (2005). The computer-based method predicts the progressive 

failure phenomenon stage by stage, over a nonlinear loading history. Inelastic degradation factors 

identify the failure degree of members and connections, as well as member disengagement from the 

main structure. An unloading analysis procedure accounts for abrupt stress reversals that have 

occurred when members disengage from the structure.  

Several planar steel frameworks examples illustrated the progressive-failure analysis procedure. 

The incremental-load procedure was shown to proceed beyond loading levels at which members have 

broken away and/or other structural instabilities have occurred, and terminates when either a fully 

stable state has been reached or progressive collapse of all or part of the structure has occurred. 

7.2 Conclusions  

A number of specific conclusions can be drawn from the investigation described in this thesis: 

• This study has developed an effective tool for conducting progressive-failure analysis of steel 

building frameworks. The proposed multi-stage analysis method fully traces the progressive 

change of structural topology during the collapse process.  

• The proposed inelastic analysis procedure involving bending, shearing and axial stiffness 

degradation factors effectively simulates the inelastic behaviour of steel structures, including the 

nonlinear force-deformation behavior of framework members.  

• A compound-element model has been developed that effectively simulates the combined 

nonlinear behaviour of both members and their connections. 
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• The shear failure of beams caused by impact debris loads is a significant triggering mechanism 

for progressive collapse.  

• The damaged state of connections caused by disengaging members influences the progressive 

collapse of a structure. In Table 5.4, for example, a 20% difference in loading capacities is 

observed between that when the connection at joint 6 is not damaged (h6 =1) and when it is fully 

damaged (h6 = 0). As another example, upon comparing Table 5.5 (h=0.5) and Table 5.2 (h=1) it 

is observed that some internal forces have very significant differences even though the difference 

in loading capacities is not significant. Also, when comparing Figure 5.21 (h=1) and Figure 5.2 

(h=0.5) in the first loading stage for the Boston building, both the internal forces and deflections 

have significant differences. 

7.3 Future Work 

There are a number of areas where research and developments are required in future work concerning 

progressive-failure analysis 

• Progressive-Failure Analysis based on the M-V-P Failure Criterion 

The M-P failure criterion and the M-V failure criterion are separately applied in the progressive-

failure analysis in Chapter 5 to determine the failure of a cross-section. In future extensions of the 

analysis, the two failure criteria can be replaced by the M-V-P failure criterion derived in Chapter 6 in 

terms of implicit parametric functions. Before they can be implemented in the progressive-failure 

computer code, it is first necessary to establish expressions for the M-V-P failure criterion that are 

explicitly in terms of normalized moment m, shear force v and axial force p. 

• Spatial Structural Analysis 

The analysis and design of planar structures are important, but an actual progressive collapse is a 

three-dimensional failure phenomenon. The proposed analysis procedure should augmented to 

include lateral-torsional buckling and out-of-plane loading, so that a three-dimensional analysis may 

be conducted to achieve a realistic evaluation of progressive collapse under abnormal loading. Two 

challenging problems exist for such 3D analysis: 1) the development of an appropriate member 

stiffness degradation model; and 2) the establishment of a reasonable failure surface to account for 

each of the six internal loadings (three forces and three moments) at each member end.  

• Dynamic Analysis 

Nonlinear dynamic analysis is an important means to capture the dynamic characteristics of 

progressive collapse. The quasi-static method of analysis employed in this study can, with some 

effort, be extended to dynamic time-history analysis accounting for transient impact loading. How to 
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establish dynamic failure criteria and how to account for unloading due to load reversals are but two 

of the several challenging problems that must first be resolved to achieve this objective. 

• Experimental Verification Studies 

Verification studies for the proposed progressive-failure analysis procedure should be carried out 

through comparisons of predicted results with experimental results, obtained from specimens that 

range from components to structures, subjected to abnormal loads. These experimental results can be 

used to calibrate the plasticity and semirigid connection models to account for bending, shearing and 

axial stiffness degradations in the structural analysis. For example, the results of experimental tests of 

beam or slab specimens subjected to impact debris loading can be used to establish the loading model 

associated with impact amplification factors. As another example, a prototype two-bay by two-storey 

planar frame can be tested to investigate collapse behaviour when a column is suddenly removed. 

• Improvement of Analysis Techniques 

The nonlinear analysis of structures with stiffness degradation and topologic change is considerably 

more complicated than linear, geometrical nonlinear, or rigid-plastic analysis methods. The 

incremental-iterative technique should be expanded to include an unbalanced-force correction routine 

so that the analysis can proceed by using fewer load increments with larger step sizes to achieve the 

final collapse state. In addition, for both planar and spatial structures, a mechanism-based analytical 

technique should be developed to achieve full automation of the analysis process whenever a local 

collapse state is encountered during the multi-stage loading history.  

• Structures with Other Cross-Sections 

The member cross-sections considered in this study have bi-symmetric axes, such as W-shape 

sections. It is important to extend the failure criteria to account for the appropriate interaction 

relations governing post-elastic behaviour under various combinations of forces for a range of section 

types (e.g., T, hollow-box, etc.). 

• Effect of Shear Panel Zone  

This study demonstrates that shear failure plays an important role in progressive collapse. In addition, 

it is known that joint connection failure due to panel-zone shear is a significant concern in seismic 

design engineering. The panel-zone shear effect should also be accounted for in progressive-collapse 

analysis. A panel-zone model accounting for the effects of shear at a joint should be established and 

incorporated into the proposed analysis procedure.  

• Structures with Other Materials 
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This study focuses primarily on steel building structures, but the proposed analysis procedure is 

readily applied to the analysis of structures comprised of concrete, wood and masonry materials. For 

example, for reinforced concrete building structures, it remains to introduce suitable constitutive laws 

governing the moment-curvature and shear-deflection relationships, crack and yield criteria, and other 

sectional properties.  

• Risk and Reliability Analysis 

There are many unknown factors that might lead to progressive collapse of structures. These 

uncertain factors can appear anytime during a structure’s lifetime, from initial construction to final 

demolition. Abnormal loading events are random, albeit with generally low probability. Probabilistic 

methods of analysis should be employed to estimate structural failure probabilities, and establish 

acceptable risk levels in aid of the design decision-making process. 

• Other Potential Methods against Progressive Collapse 

Many methods developed in structural engineering can be employed to help prevent progressive 

collapse during a structure’s lifetime. Passive or active structural control measures are effective in 

reducing and even eliminating fatal structural failure. Innovative materials and robust structural 

construction can improve structural performance against abnormal loading events. All the available 

techniques can be combined with the proposed method in this study to develop a more robust tool to 

deal with progressive collapse under abnormal loads. 

• Design against Progressive Collapse 

The method of nonlinear analysis developed in this study is appropriate for the analysis of planar 

structures. However, to be effective as a tool in aid of design some particular requirements related to 

stipulations in design codes should be accounted for. For instance, checking local buckling and lateral 

torsional buckling should be added to the current analysis procedure so that the predicted results 

identify compliance or violation of corresponding design requirements. In design of structures against 

progressive collapse, the adequacy of tie forces can be checked at the end of the first stage analysis 

according to the published design criteria (e.g., DoD). Further research for design should take into 

account interaction between abnormal loading and other loadings, such as seismic loading. 
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