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Abstract

Grating-coupled surface-emitting lasers became an area of growing interest due to
their salient features. Emission from a broad area normal to the wafer surface,
makes them very well suited in high power applications and two-dimensional laser
arrays. These new possibilities have caused an interest in different geometries to
fully develop their potential. Among them, circular-grating lasers have the addi-
tional advantage of producing a narrow beam with a circular cross section. This
special feature makes them ideal for coupling to optical fibers. All existing theoret-
ical models dealing with circular-grating lasers only consider first-order gratings, or

second-order gratings, neglecting surface emission.

In this thesis, the emphasis is to develop accurate models describing the laser
performance by considering the radiation field. Toward this aim, and due to the im-
portance of the radiation modes in surface-emitting structures, a theoretical study
of these modes in multilayer planar structures has been domne in a rigorous and
systematic fashion. Problems like orthogonality of the radiation modes have been
treated very accurately. We have considered the inner product of radiation modes
using the distribution theory. Orthogonality of degenerate radiation modes is an
important issue. We have examined its validity using the transfer matrix method.
It has been shown that orthogonality of degenerate radiation modes in a very spe-
cial case leads to the Brewster theorem. In addition, simple analytical formulas
for the normalization of radiation modes have been derived. We have shown that

radiation modes can be handled in a much easier way than has been thought before.

A closed-form spectral dyadic Green’s function formulation of multilayer planar
structures has been developed. In this formulation, both rectangular and cylindrical

structures can be treated within the same mathematical framework. The Hankel
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transform of some auxiliary functions defined on a circular aperture has been used
to obtain the far-field pattern of the aperture. It has been shown that the far-field
patterns of all circular apertures except those with the first harmonic azimuthal

variation have a dark spot at their centers.

Threshold analysis of circular-grating lasers has been performed by considering
surface emission. In this study, we have assumed that the laser beam is circularly
symmetric. Based on the large argument approximation of the Hankel functions, we
have shown that the interaction between the amplitudes of the guided modes can be
described by coupled-mode equations containing coupling factors to the radiation
field. These factors have been obtained by using the Green’s function approach.

The transfer matrix method is essential in obtaining the Green’s function.

The relationship between the input current and the output power of circular-
grating lasers producing circularly symmetric beams has been derived by developing
suitable rate equations for the total number of photons and the phase of the optical
amplitude in the laser cavity. We have solved the rate equations above the threshold
under steady state conditions. Formulas for radiating power and far-field patterns

have also been presented.

The theoretical treatment of the radiation modes developed earlier makes it pos-
sible to include radiation modes in coupled-mode equations in cylindrical structures.
We have done so to pave the way for treating laser fields that are not circularly
symmetric. Among them, the laser fields that have the first harmonic azimuthal
variation are highly desirable due to the nonzero value of the radiation field on the

axis of the laser.
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Chapter 1

Introduction

1.1 Background

The advent of photonic technology constitutes a very important chapter in the
history of telecommunications. The arrival of low loss silica fibers in the early 1970s
emphasized the need for compact, low-cost, high-performance, and reliable optical
sources. As a result of improved material technology and extensive activities in the
past fifteen years, semiconductor laser technology has undergone rapid advances
such that today it is one of the principal constituents of optical communications.
In fact, the information age heavily relies upon two technological achievements:
(1) the production of low-loss optical fibers and (2) the practical realization of

semiconductor lasers operating at room temperature.

The laser technology has also attractive applications in areas other than com-
munications such as manufacturing, medicine, and biology. Compact optical disks

and optical interconnects between computers are very popular applications.

Undoubtedly the development of lasers and integrated optic technology will

1



CHAPTER 1. INTRODUCTION 2

continue over the next century. They promise novel applications and far-reaching
impact in the near future. The rapid pace of these technological advances shows
that one can expect the replacement of electrons by photons in many stages of data

processing.

1.2 Surface-Emitting Lasers

In edge-emitting laser structures, shown in Fig. 1.1, the emission of the lasing ra-
diation is parallel to the plane of the active layer. Surface-emitting lasers (SELs)
are distinguished from edge-emitting ones by emission of light normal to the sub-
strate plane. This salient feature causes the laser output to be easily accessed
without cleaving and dicing. Therefore, it is possible to integrate a SEL into an

optoelectronic integrated circuit without separating it from the rest of the chip.

SELs, depending on the mechanism of surface emission, are divided into three

basic types which are briefly described in the following sections.

1.2.1 Vertical Cavity SEL

A generic vertical cavity SEL (VCSEL) structure utilizes the feedback mechanism
in the direction normal to the surface of the wafer in the laser cavity. A Fabry-
Perot version of these types of lasers is shown in Fig 1.2 (a). Two mirrors parallel
to the wafer surface provide the feedback and cause the light to be emitted from
the broad surface area. In a distributed Bragg reflector version, the active region is
sandwiched between alternating low-index and high-index layers forming the Bragg

mirror.
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—

S |

Cleaved/coated crystal facet Active region Cleaved/coated crystal facet

(a)

Grating

e

f
|

Active region
(b)

Figure 1.1: Conventional edge-emitting lasers. (a) Fabry-Perot cavity type. (b)
Distributed feedback type.

The first VCSEL in 1977 [1] attracted little attention among the research com-
munity, due to its poor performance, e.g., high threshold current and no CW opera-
tion at room temperature. The research activity in this area was limited to a single
group led by Kenichi Iga at the Tokyo Institute of Technology [2]. However, as a
result of the contributions of many research groups in the past few years, today’s
state-of the-art VCSELs operate at threshold currents below 1mA [3]. Their small
sizes make it possible that a large number of them can be packed in a small area.

In high power applications an array of VCSELs also has been reported [4].
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Gain Ga.in
\ \ / / region “‘r“
Mirmrs<—‘— by T + Ké] lb/T

region
Grating Grating Beam deflectors

Vertical cavity SEL Grating-coupled SEL Beam deflector SEL

(a) (b) (c)

Figure 1.2: Three basic types of surface-emitting lasers. (a) Vertical cavity SEL.
(b) Grating-coupled SEL. (c) Folded cavity SEL.

1.2.2 Grating-Coupled SEL

These kinds of lasers use grating to provide both feedback for laser oscillation and
a converting mechanism to the surface emission. The schematic diagram of these
devices is illustrated in Fig. 1.2 (b). Historically, the invention of DFB dye lasers by
Kogelnik and Shank [5], [6] led many researchers to use Bragg scattering properties

of periodic corrugation as a feedback mechanism in semiconductor DFB lasers [7].

At wavelengths around 0.85 pm, fabrication difficulties required the use of dis-
tributed Bragg reflectors of second- and higher- orders rather than first-order. As
a result, constructive interference of the low-order diffraction of counter-running
waves led to radiation of the power from the surface of the grating. Therefore, the
demonstration of grating SELs took place simultaneously with the realization of
conventional edge-emitting DFB lasers [8]-[11]. However, the radiative output cou-
pling was referred to as radiation loss [12] and considered as a mode discrimination

mechanism for edge-emitting lasers.



CHAPTER 1. INTRODUCTION 5

In recent years, many research activities have been concentrated in the area of
grating-coupled SELs (GCSELs). This is mainly due to their potential advantages,
emission from a broad surface area and ease of being integrated monolithically in

an array or other planar photonic devices.

In comparison with VCSELs which offer small size and extremely large-scale
integration possibilities, GCSELs are desirable for high power applications, due to
their large emission area. They can also be fabricated on less demanding layer
structures [13]. In particular, by the diffraction mechanism, it is potentially possi-
ble to control the direction and the shape of the output beam by designing more

complex gratings.

1.2.3 Folded Cavity SEL

The performance of the third kind of SELs like GCSELs is based upon the charac-
teristics of conventional edge-emitting lasers. That is, a grating provides feedback
mechanism for laser oscillation. However, another approach is used for converting
the edge emission to the surface emission. As shown schematically in Fig. 1.2
(c), in a common version of this architecture, a deflecting integrated mirror is lo-
cated internal or external to the laser cavity for redirection of the laser beam. This
technique for fabrication of SELs is more recent than the other two and has been

developed extensively during the past few years [14].

These structures in comparison with GCSELs allow denser packing in a two-
dimensional laser array. Moreover, the feedback and redirection mechanism in these
structures, unlike GCSELs, are independent. This means that they can potentially
be used in two-dimensional arrays resulting in an overall performance equivalent to

conventional edge-emitting lasers. The design and fabrication of integrated deflec-
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tors is an important issue in these structures and faces technological challenges.

1.3 Applications and Future Prospects of Surface-

Emitting Lasers

Light emission from the broad surface area of surface-emitting lasers opens up
new applications which can exploit this unique property. In addition, SELs lend
themselves to be tested at the wafer level. This yields improved performance and
reliability and tremendous reduction in costs. More importantly, they can be easily
integrated with other photonic devices. The surface-emission property of SELs has
opened new possibilities of integrating them into two-dimensional arrays which have
wide range of potential applications. These exciting new devices have also poten-
tial applications in high power operations with controlled output beams for space
communication, data storage, laser printing, medicine, neural networks and optical
computing. Individual SELs may represent an alternative to existing cleaved-facet

lasers.

As a result of the growing interest in this area, surface-emitting lasers are in
a stage of dynamic development. The threshold current in these devices has been
decreased and further progress is possible by using current confining structures. An
important issue in high power applications is the development of thermal packaging
" of laser arrays. This is under investigation. The rapid pace of this progress shows
that in the near future coherent two-dimensional surface-emitting laser arrays with
good beam quality and with high output power will enter into major industrial and

commercial use.
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1.4 Research Progress in the Area of Circular-

Grating Surface-Emitting Lasers

By circular grating, we mean a perturbation in the electrical properties of a struc-
ture which appears as a periodic function of the distance p from the origin. We only
consider shallow radial corrugations at the dielectric interfaces of a multilayer pla-
nar structure. Such perturbations couple the inward propagating cylindrical mode
with the outward one. The result of such a performance is the establishment of a

standing wave. This is the characteristic behavior of a resonator.

The idea of using curved-line grating as reflectors and resonators in integrated
optics was first proposed by Tien [15]. Kerner et al. [16] were the first to investigate
the coupling between the guided waves in a circular grating. The quality factor
of circular grating resonators was discussed by Zheng and Lacroix [17] through
development of coupled-mode equations. Following Kogelnik’s approach [18], Wu
et al. [19] ,{20] developed a self-consistent coupled-wave theory for circular gratings

and discussed the cross coupling between TE and TM waves.

The two-dimensional nature of such resonators allows their use in a number
of practical applications which cannot apply straight gratings. Some applications
of these resonators are shown in Fig. 1.3 where the coupling mechanism between
the input and output is provided by implanting a taper-like structure into the
resonator {17]. In addition to the resonance property, these architectures can be
used to focus and collect a light beam into an optical detector {21]. Similar to
their one-dimensional straight grating counterparts, circular gratings can couple two

propagating modes with the radiation field by means of the diffraction mechanism.
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Figure 1.3: Schematic of circular-grating resonators. (a) Filter with aligned input
and output. (b) Filter with perpendicular input and output. (c) Optical star
coupler (After [17]).

Demonstration of the resonant behavior of circular gratings led Schimpe [22]
to patent the idea of using circular gratings in DFB lasers. Although the circular-
grating structure is an unusual scheme for edge-emitting lasers, it has potential
advantages for the realization of SELs. The output beam emitting from a large
circular aperture is an important feature which is not present in conventional
straight-grating surface-emitting lasers. This feature can be used effectively in
two-dimensional planar arrays. The output beam with a circular cross section
also allows efficient coupling to the fiber. However, the one dimensional nature of
straight gratings with output beams of unequal divergence angles in two different

directions causes the reduction of coupling efficiency.

The issued patent of Schimpe and the analytical approach of Toda [23] for
potential disk-shaped DFB lasers were brought to the attention of two research
groups in the United States and Canada. Their research activities were triggered
to challenge the realization of circular-grating surface-emitting lasers (CGSELs)
and place their analysis in a proper structural form. Erdogan and Hall [24] were
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the first to analyze the near-threshold behavior of a circularly symmetric first-order
DFB laser. They developed coupled-mode theory for all azimuthal modes of a scalar
field. This theoretical work further stimulated the interest in these structures. The
first practical demonstration of an optically-pumped CGSEL was presented by Wu
et al. [25]. The 1.283 pm double heterostructure GalnAsP/InP laser was tested
under pulsed conditions at room temperature. Only a short time later, Erdogan
et al. [26], [27] reported the observation of a 0.8175 um low divergence circularly
symmetric surface emission from a AlGaAs/GaAs quantum well semiconductor
laser. The laser was tested under pulsed conditions while mounted on a heat sink

held at ~ 77 K.

Wu et al. [28], [29] succeeded in presenting the lasing characteristics of the
first 1.3 pum electrically-pumped circular-grating surface-emitting DBR laser. The
GalnAs/InP heterostructure operated at room temperature under pulsed condi-
tions. The reported threshold current and the output power were 170 mA and 10

mW, respectively.

In addition to these experimental demonstrations, more accurate analytical for-
mulations have also been reported. Erdogan and Hall [30] derived coupled-mode
equations for radially outward and inward-going cylindrical modes in a first-order
circular grating. They carefully treated the vector orientation of the transverse
electric (TE) fields. The effect of ignoring the vector nature of the fields in the
coupled-mode equations can best be seen by comparing the asymptotic behavior of
these equations for large values of p with those obtained from their scalar approach.
The fundamental difference between these two approaches is the interchange of the
even and odd azimuthal modes in a DFB laser cavity. Makino and Wu [31] an-
alyzed threshold current for DFB and DBR lasers with circular symmetry. This
was followed by the threshold gain and threshold current analysis of the first-order
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circular-grating DFB and DBR laser [32].

One can predict from the periodic nature of the azimuthal direction in a CGSEL
that the lateral modes are in competition. This means that the laser field, in gen-
eral, is a linear combination of these modes. This multimode operation is an obvious
drawback in single-mode applications like satellite communications and nonlinear
optics. Gong et al. [33], [34] by the coupled-mode approach, treated effective
reflectivity and the threshold gain of all lateral modes in an electrically-pumped
surface-emitting DBR laser. They analyzed second-order gratings surrounding the
pumped region at the center. Their model predicts the suppression of unwanted
lateral modes of odd symmetry by introducing a small perturbation into the com-
plex dielectric constant of the active region. However, they ignored the coupling to

the radiation fields in their coupled-mode formalism.

As a closer step toward gaining high power and low threshold current, Fallahi
et al. [35] reported the fabrication of electrically-pumped circular-grating surface-
emitting DBR laser. The InGaAS/GaAs strained single-quantum-well laser was
tested under pulsed conditions with a threshold current below 85 mA, output power
more than 20 mW, and a divergence of less than 1° FWHM. In their recent exper-
imental work [36], as a result of advances in the material technology and especially
of improved electron-beam lithography techniques for producing circular gratings,
they have reported a low threshold CW operation circular-grating DBR laser . The
threshold current was reported as low as 26 mA at the operating wavelength 0.98
pm. All of the works on first-order circular gratings that have been reported until
the end of 1996 were restricted to the threshold analysis. Recently, Kasunic and
Fallahi [37] reported the above-threshold analysis of first-order circular gratings by

considering the gain and index saturation.

In addition to conventional structures, some novel ideas have also been reported
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in the fabrication of CGSELs. Wu et al. [38] reported a novel CGSEL with an
emission from the center. In this structure, a second-order circular grating is located
right at the center of the laser and the optical gain is obtained by injecting current
through the annular active region that surrounds the second-order grating at the
center. Optical feedback is provided by the first-order grating that encloses both
the annular region and the central region. Unlike the previous designs, since the
second-order circular grating is located at the center of the structure, the emission
surface is circular. This is the most obvious advantage of this device. Moreover,
each of these three regions has an independent effect on the laser performance.
This is ideal for the purpose of optimization. An additional advantage of this new
design is that the bonding wire is no longer in the way of the emitted light. Using
the same idea, recently another type of circular-grating laser has been fabricated
[39]. In this design, the conventional first-order circular-grating DBR laser with the
active region at the center is surrounded by a second-order grating to defocus the

light.

Radiation from circular gratings etched on the planar waveguides has been con-
sidered in non resonant cases [40],[41], and [42]. All of these considerations are

based on the azimuthally invariant field assumption.

To the best of our knowledge, the above review reflects the present status of the
reported research activities in the field of CGSELs. Although the pace of advances
in this area has been very rapid, the problem of considering the radiation field in
these structures is still an open problem and must be overcome. The main body of
this thesis is based oa this challenge. The more details of this matter are addressed

in the next section.
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1.5 Thesis Outline

As mentioned in the previous section, one of the challenging issues in the study of
CGSELs is the inclusion of the radiation effect in their analysis. Our primary goal
is to consider this effect. Specifically, obtaining the relationship between the output
power emitted from the surface of the laser and its excitation is highly desirable.
From this relationship, it is also possible to optimize the laser performance which
can be used in the design of the laser. In this dissertation, we are aiming at
developing some general frameworks based on the well-established models to analyze
circular-grating lasers. Moreover, tailoring some of these well-established models

to fit some particular situations is of paramount importance.

In surface-emitting structures the importance of the radiation modes of a multi-
layer planar structure comes into perspective. On the other hand, dealing with the
radiation modes in the open-boundary structures is not a straightforward matter.
Especially, in cylindrical structures, this situation is more complicated. Therefore,
developing a systematic approach to treat the radiation modes with mathematical
rigor is highly desirable. In this thesis, for the first time, we have achieved this im-
portant step. We have developed a general model to consider guided and radiation

modes on the same footing.

By introducing suitable scalar potential functions and the factorization method,
we have shown that the complicated electromagnetic problem in a multilayer planar
structure reduces to two independent scalar one-dimensional problems. The ele-
ments of this functional space are called form functions. Based on the assumption
that the waveguide structure is lossless, we have shown that theses form functions
are the solutions of a self-adjoint differential operator. Moreover , it has been shown

that the functional space of the form functions of the guided modes is real-valued.
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Whereas, that of the the radiation modes is complex-valued. We have also consid-
ered the possibility of constructing real functional space of the form functions of

the radiation modes.

Since the form functions are the solutions of a self-adjoint operator, it is possible
to define suitable inner products. In fact, we have considered two different inner
products in these functional spaces. In general, we have shown that the form
functions are orthogonal in the sense of these inner products. The orthogonality
of the form functions of the guided modes seems a trivial matter. However, due to
the oscillatory nature of the form functions of the radiation modes in the substrate

and the cover regions, their orthogonality needs more deliberation.

The unique feature in our study is using the distribution theory in the proof of
the orthogonality of the radiation modes. This idea can also be used to prove the
orthogonality of the kernel of the Fourier transform. More importantly, we have
shown that the form functions of the radiation modes can be used as the generalized
kernel of the Fourier transform. In addition, we have demonstrated that the suitable
form functions defined for the radiation modes are orthogonal for two degenerate
modes. Using the orthogonality relation of degenerate radiation modes, we have
introduced and proved the Brewster theorem. Of particular interest is the problem
of the normalization of the form functions of the radiation modes. Based on the
idea of power conservation, we have derived and proved very simple formulas for
constructing normalized basis functions. Finally, we have considered the problem
of orthogonality and normalization of the vector fields by using their simpler scalar
counterparts.

Since these subject matters are completely general and are treated in a self-

contained mathematically rigorous fashion, we have covered the complete details of

this particular study in Appendices A and B. However, this by no way means that
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the importance of these materials are less than the other parts of this thesis. The
systematic approach and its mathematical rigor are two of the main contributions

of this thesis.

Chapter 2 focuses on the spectral dyadic Green’s functions of multilayer pla-
nar structures and the circular aperture theory. It can be considered as a natural
extension of the materials covered in Appendix A. The purpose of this chap-
ter is to provide the same mathematical framework for treating rectangular and
cylindrical coordinate systems. This has been done by defining suitable auxiliary
functions based on two recursive identities of the Bessel functions. The transfer

matrix method (TMM) is fundamental in our formulation.

The TMM makes it possible to obtain the closed-form dyadic Green’s function.
Besides, some theoretical conclusions can also be explicitly drawn which are very
important in the numerical calculations. Among them is the nature of the poles of
the Green’s functions which are naturally the zeros of the characteristic equation
of the guided modes. Moreover, it can also be shown that the Green’s functions are
independent of the branch cut of the dispersion parameter in each layer of finite

thickness.

The main reason for introducing the Green’s functions is twofold. First, we have
used the Green’s functions in the spectral domain to obtain the general expression
for the far-field pattern of a circular aperture. From these expression, it has been
shown that only aperture fields with the first harmonic of azimuthal variation pro-
duces a nonzero far field pattern on the axis of the aperture. In fact, there will be
a dark spot at the center of the far-field pattern of circular-grating lasers, if the
azimuthal modes other than the first harmonic are excited. Second, we have used
the Green’s function approach in a perturbational manner to derive the far-field

pattern of circular-grating lasers.
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Threshold analysis of CGSELs is the subject of Chapter 3. The effect of the
radiation field on the amplitudes of the guided modes has been properly included.
This special feature, distinguishes Chapter 3 from previous works in the literature.
For the sake of mathematical simplicity, we have assumed that the laser beam
is circularly symmetric. The modal analysis based on this assumption provides
the fundamental background material for treating circular-grating lasers above the
threshold. In addition, we have shown that within the limits of the validity of
large argument approximation of the Hankel functions, the coupled-mode equations
describing the behavior of the guided modes reduce to those conventional equations

governing second-order DFB lasers with straight gratings.

We have used the Green’s function method to obtain the coupling factor to the
radiation field. Again, the TMM is the basic tool in the derivation of a suitable
Green’s function in a multilayer planar structure. It has been shown that this
factor as a function of the grating’s duty cycle in a rectangular grating is almost
symmetric about the 50% point. Moreover, in almost all practical cases the real
part of it is less than 10 cm™!. We have also shown that to increase the amount of

the radiation field, some feedback in the laser cavity must be sacrificed.

Chapter 4 covers the main body of this thesis. In this chapter we have formu-
lated the rate equations of second-order DF B lasers using the time domain standing
wave approach. Above-threshold analysis of second-order DFB lasers reported so
far is based on the traveling wave approach in the time domain or using the power
matrix method (PMM). Therefore, this formulation provides an alternative ap-
proach in treating second-order DFB lasers above the threshold. This method is
the modified version of the original formulation developed in the Optics Group at
the University of Waterloo. Based on this approach, we have derived rate equations

for the number of photons and the phase of the optical amplitude inside the laser
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cavity.

The formulation of the rate equations is two dimensional in nature, i.e, it is
assumed that the optical field is invariant with respect to one of the coordinate
variables. Therefore, it is very well suited in treating circularly symmetric beams
in circular-grating lasers. The formulation is such that nonlinear and spatial hole
burning effects can be treated properly. Moreover, it lends itself in small signal
and large signal analysis. However, for the purpose of this thesis and since circular-
grating lasers are in the early stages of experiments, we have only considered the
above-threshold static analysis. In Chapter 4 the relation between the excitation
and the output power has been obtained. Moreover, the far field-patterns of the

radiation field at different bias currents have also been derived.

The major part of this thesis is based on the assumption of a circularly sym-
metric laser beam. On the other hand, a circularly symmetric beam is not the
most desirable laser output. At least, the far-field pattern has a dark spot at its
center. However, the laser field with the azimuthal variation as cos¢ and sin¢ is the
only field which is nonzero on the laser’s axis in the far zone. Therefore, the next
step is to include the azimuthal variations in the study of circular-grating lasers.
To this end, in Chapter 5, we have developed generalized coupled-mode equations
governing cylindrical waveguides with circular grating in the presence of the radia-
tion modes. This work is a generalization of Erdogan’ method [30] in dealing with
circular-grating structures. Inclusion of the radiation modes in the coupled-mode
equations is the unique feature of this generalized method. Moreover, the theoreti-
cal concepts covered in Appendix A are the fundamental basis of this formulation.
Therefore, we claim that, this generalization is the original work that includes the

radiation fields in the governing coupled-mode equations of circular-gratings.

We have essentially used two different approaches. In the first approach, the
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so-called scalar approach, we ignore variations of the dielectric perturbation in
the radial direction. Whereas, in the vector formulation this effect is properly
included. We do not claim that this formulation is the only way to consider arbitrary
azimuthal variation in the laser’s performance. Therefore, we intend to find some
easier and more efficient ways to treat these cases. This may be reflected in our
future work. Finally, in Chapter 6 we give some guidelines for the future work in

the area of circular-grating lasers.

Throughout this thesis an attempt has been made to present the materials in a
continuous and inductive manner. In particular, many formulas have been derived
carefully. In order not to disrupt the continuity of the treatment, the derivation of

all formulas are relegated in the appendices.



Chapter 2

Spectral Dyadic Green’s Function
of Multilayer Planar Structures

and Theory of Circular Apertures

2.1 Introduction

This chapter is the natural extension of the subject matters treated in Appendix A.
In that appendix, we have exclusively considered the source-free electromagnetic
field in a multilayer planar structure (MPS). That investigation led to the intrinsic
features of a MPS. In this chapter, we focus on a MPS in the presence of a source.
This in turn calls for the Green’s functions in these structures. The main goal here
is to develop a mathematical tool that allows us to accurately predict the related

radiation field of a source in the presence of a MPS.

From a mathematical point of view, the solution of an inhomogeneous linear

differential equation can be obtained from the solution of the corresponding homo-

18
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geneous equation. Therefore, one might expect that many characteristic features
of the Green’s function can be related to the intrinsic properties of a MPS. Our
formulation is based on the potential approach. However, instead of obtaining a
nonhomogeneous differential equation satisfied by the potential functions, we con-
sider the source as a discontinuity condition imposed on the some field components.
These conditions in turn can be transformed to appropriate conditions on the po-

tential functions.

To use many results developed in Appendix A, we use integral transform tech-
niques, the so-called spectral domain method in the solution of our problem. As
will be illustrated, we discover why the method of separation of variables lies at
the heart of the integral transform technique. The complexity of the space domain
Green’s function is another reason behind using the spectral domain approach.
More importantly, by using the transfer matrix method, we will show that the

spectral domain Green’s function is mathematically more tractable.

In this chapter two formulation technique are described. First, the Green’s
function transformed in the Fourier domain will be considered. This is followed by
the Hankel transform method in the cylindrical coordinate system. However, before
stating the Green’s function formulation, in the next section we describe how an
integrated optic problem can be considered as an excitation of a MPS by a current

source. This is another motivation for using Green’s function approach.

2.2 Volume Current Method

Essentially, the volume current method (VCM) is based upon the scattering theorem
in the electromagnetic theory. This technique was originally formulated by Snyder

[43] to investigate the radiation loss due to unexpected variations of the radius
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along the length of a fiber. White [44] used a general form of the method to treat
the scattered field as the radiation field in bent structures. The applicability of this
method in the treatment of practical radiation loss dielectric structures was also
investigated by Kuznetsov and Haus [45]. Jordan and Hall [41] used this approach
to find the radiation field from a concentric-circle grating located at the film-cover

interface of a three layer planar optical waveguide.

Although the volume current method can be applied for an arbitrary structure,
for the purposes of this thesis, we illustrate this method by considering two multi-
layer geometries as illustrated in Fig. 2.1. By unperturbed structure, we mean that
the electrical properties of the structure is piecewise homogeneous in the direction
normal to the planar interfaces and there is no variation along the planes transverse
to the z axis. Let us assume that E* and H' ( called incident waves in scattering
terminology ) satisfy Maxwell’s equations in the unperturbed geometry shown in
Fig. 2.1 (a)

V x B = —jwp, p.(z) H
V x H' = jwe, ¢,(z) B

(2.1)

where a time dependence e’“* has been assumed. Introducing inhomogeneity in the
unperturbed structure in the otherwise piecewise homogeneous structure, as illus-
trated in Fig. 2.1 (b), modifies the incident fields by the amount of inhomogeneity-
induced scattered fields E* and H* such that

V x (E +E*) = —jwpo p.(2,y, z) (H' + H?)
V x (H' + H*) = jwe, &(2,y, z) (E' + B*)

(2.2)

Expanding (2.2) and using (2.1) leads to the following equations for E* and H*:

V x E* = —jwp,p.(z)H* — M
V x H* = jwe, e.(z2)E* +J

(2.3)
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Figure 2.1: Schematic illustration of the volume current method. (a) Unperturbed

geometry. (b) Perturbed geometry.

where

M(z,y,2) = jwpo [pe(2,¥,2) — p-(2) | (H' + H”) (2.4a)
I(z,y,2) = jwe, [&(z, Y, 2) — €.(2) | (B + E*) (2.4b)
M is the equivalent magnetic current source which accounts for inhomogeneity in

the magnetic properties. Similarly, J is the equivalent electric current source. This

current source excites the scattered fields due to the inhomogeneity in the electrical

properties.
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The volume current method is based on the equations in (2.3). According to
(2.3), solutions for the unknown scattered fields, E* and H?*, leads to the solution
of the unperturbed planar structure excited by J and M. However, these current
sources are field dependent. Especially, they depend on the unknown scattered
fields. Despite the fact that the equations in (2.3) are exact, however, the presence of
the dependent current sources in these equations makes the volume current method

an approximate approach in nature.

The approximation involved in this method depends on two factors: (1) esti-
mation of the equivalent current sources and (2) derivation of the scattered fields
from these sources. Therefore, the accuracy of this method can be improved by
(1) improving the estimation for the current sources, and (2) improving the meth-
ods for solving (2.3). In the literature, an estimation about the current sources
are made by ignoring the scattered fields inside the structure. This approximation
is reasonable for perturbational problems. Moreover, by taking advantage of the
small differences between the electrical properties of each layer in the unperturbed
geometry, the exact dyadic Green’s function is approximated by the Green’s func-
tion in the uniform space, e.g., [41]. As a step toward more accurate results, we

have developed an exact Green’s function formulation in this chapter.

After considering integrated optic problems as a current excitation of a MPS, in
the next section we turn to the formulation of the spectral domain dyadic Green’s

function in the rectangular coordinate system.
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2.3 Green’s Function in the Rectangular Coordi-

nate System: Fourier Transform

Spectral method has been used extensively in the study of the characteristics of
either single or multilayer planar structures. The so-called immittance approach
[46], [47] enables one to obtain the Green’s function by decomposing the fields into
LSE and LSM parts and using transmission line concepts. This method has also
been used to obtain the dyadic Green’s function under three-dimensional source
excitation inside a single-layer microstrip line [48]. Although the immittance ap-
proach is very sophisticated and insightful, the large number of layers makes the
formulation complicated. In this section an attempt has been made to formulate
the problem with the transfer matrix method which makes it very well suited for
arbitrary number of layers. Moreover, some field-theoretic concepts can be derived

from this formulation.

To illustrate the formulation process, let us consider a multilayer stack excited
by a volume current density inside as depicted in Fig. 2.2. Note that the current
excitation may be either in the substrate or in the cover. Therefore, we aim at

solving
V x E = —juwpop.(z)H

V x H = jwee(2)E+ J
for E(r) and H(r) in 2 MPS based on the e/ time variation. For the purposes of

(2.5)

this thesis and the sake of mathematical formulation, we only consider a volume

current density with components transverse to the z axis. That is,
J(z’ y,z) = Jz(z’yiz)i'*' Ju(zv y,z)jr (2.6)

In order to obtain the complete response to the volume excitation, one may apply

the principle of superposition and divide the volume current into planar slices.
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(a) (b)

Figure 2.2: Excitation of a multilayer planar structure by electric current source.

(a) Excitation by a volume current. (b) Excitation by a planar slice current.

Therefore, it is only necessary to consider the partial responses due to these planar
excitations as illustrated in Fig. 2.2-(b). The planar excitation of MPS makes it
possible to consider the whole stack as two semi-infinite piecewise homogeneous
regions without any sources. Therefore, the fields in each source free region can
be derived from the superposition of two types of the Hertzian scalar potential
functions as described in Appendix A. The unknown amplitudes of the potential
functions can be obtained by applying suitable boundary conditions at the source

position.

Let us illustrate the basic idea by considering a MPS shown in Fig. 2.2-(b). It
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is excited by a planar slice of the electric current located at z = z, inside. The

current excitation can be expressed by the following relation:
« " A
J(=, Y,z) = [Jz(za Y,2o)X + Jy("', y7z°)y] 6(z — z°) E (2.7)

where §(-) stands for the Dirac delta function. The electromagnetic field in each

homogeneous layer above and below z = z, can be derived from the two vector

potential functions

o (z,y,2) = 28" (2,9, 2) (2.8)

where ¥“* is the solution of the homogeneous scalar Helmholtz equation given by
(A.16). In Appendix A, it has been shown that the simplest form of the potential
functions in a source free MPS are factorable into the form functions and the
amplitude functions. This is possible only in the absence of a source. However, in
the presence of the source there is no such a possibility. Despite this fact, one may
take advantage of the linear property of the Helmholtz equation and express gl
as a superposition of these elemental solutions. This in turn leads to the idea of
using the integral transform techniques with the form function or the amplitude

function as its kernel.

For the electromagnetic problem in Fig. 2.2-(b) it is more appropriate to con-
sider an integral transform with amplitude functions as its kernel. More precisely,
gl (z,y,2)in (2.8) can be considered as a superposition of the elemental potential

functions
(e.h)

¥ (2,9, 2) = F (25 ke, by Je ket hrw) (2.9)

Therefore, one may write

w"‘“’(z,y,z)=/ / F (23 ke, ky)e et g, dk, (2.10)



CHAPTER 2. SPECTRAL DYADIC GREEN’S FUNCTION 26

where F*™(z; ke, k,) satisfies (A.28) with 8% = kZ + k2 and the same boundary
conditions for LSE and LSM modes in each source-free region. For the radiation
spectrum, however, the presence of the source at z = z, eliminates the need for the
incoming amplitude in the expression of F("h)(z; kz, k,) in the cover or the substrate
region. That is, there is no difference between the mathematical representation of
the form functions of substrate and cover modes. In fact, since the source of the
wave is located inside, the coefficients in the substrate and cover are of the scattered
type. Moreover, as will be illustrated later, the form functions in (2.10) depend on
the spectral variables k. and k,. Whereas, in a source-free MPS, except for the

type, the form functions depend on k2 + k2.

Equation (2.10) can be rewritten in a more appropriate form. To this end, if we

define the two dimensional Fourier transform of ‘Il(e'”(z:,y, z) as

(¢ h)

(kz, Ky, 2) / / TN (2, y, )kt g dy (2.11)
we obtain

¥(z,y,2) = /_ /_ TN (ky, by, 2)e i ke=tat) g dke, (2.12)
Comparing (2.12) with (2.10), we come up with
G (ko by, 2) = F" (25 ks, ky) (2.13)

That is, the two dimensional Fourier transform of the Hertzian scalar potential
functions play the same role as the form functions. Furthermore, in each source-
free region " are the solutions of the scalar Helmholtz equation. Therefore, in
each source-free region, substituting (2.12) into (A.16) leads to

L anat
0z2

(e.h)

— (8% — pel2)en(2) RAIE™ = 0 (2.14)
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Now it remains to to find the relation between the Fourier transforms of the
potential functions and the excitation. This in turn requires one to obtain the
field components in each homogeneous region by substituting (2.8) into (A.12)
and (A.13). To this end, we may proceed in two ways. We can either choose
the coordinate transformation that is usually used in the immittance approach or
proceed directly. However, as will be seen later, using the transfer matrix formu-
lation eliminates the need of coordinate transformation. Therefore, we choose the
second approach and proceed directly. If \Il("h)(z:,y,z) is replaced by its spectral

representation in (2.12), the electric field components an be obtained as

P "4 B ke, by )
Bz9,7) | = [ [ K(kah2)

} eI (kez+ieyy) dk, dlcy

-e Th(ks, ky, 2)
E.(z,y, z)
(2.15)
where A (kz, ky, z) is the dyadic operator given by
B — L5 —whohy
Ai(kasky,2) = | B2 wpk. (2.16)
k2 +k7 0

er(z)
Using (2.16) in (2.15), the Fourier transform of the electric field components may

be written as

Ez kza 12 — ke B —Wilo -

_( b2) w(or ~YH b T (k,, ky, z)

E (kzak!hz) S wokz ~ (217)
v er(z) 8z (2 ‘I’h(k ky z)

E.(kz,ky, 2) L o

For the electric current excitation without any z component, the electric field
components transverse to the z axis are continuous for all values of z. Therefore,

the Fourier transform of these components must also be continuous. The above
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statement means that for each value of z the following matrix equation is valid.

L 1 9(leeey,zt) _ 1 8¥(keky.zT)
[ sz W”’Okv } l: er(zt) 8z er(z™) oz :I = I: 0 ] (2.18)
0

—jk, wpok: ‘i"(k,_., ky,zt) — ‘i’h(k,, ky,z7)

Since the determinant of the coefficient matrix of the above equation is nonzero,

the only solutions are zero. That is, for each value of z, we have
1 0W(ksykyy2t) 1 89%(ky,ky,27)

e-(zt) 0z T e(z7) 0z
Th(ke, by, 2*) = U(kz, kyy 27) (2.19b)

(2.19a)

In a similar fashion, one may write the Fourier transform of the components of

the magnetic field as

~ " ;I_,e ko, ky, 2
Hy(kzyky,z) | = | —weok: _dky 8 _ (2, ky, 2)

wr(z) 92 ‘-I'h k )
H (k. ky, z) 0 K2k (ks Ky, 2

ue(2)

H(kz, ky, 2) weky — kel
[ } (2.20)

Since the electric current excitation has only z and y components, the magnetic

field components transverse to the z axis are only discontinuous at z = z,. That is,
z x [H(z,y,27) — H(z,v,2])] = J=(2,y, 2)% + Jy(2, ¥, 2.)¥ (2.21)

The above condition in the spectral domain can be written as
3 x [H(ke, by, 23) — H(ke, by, 27)] = Telkar by 26)% + Ty (Ray byp 20)y (2:22)

Substituting (2.20) into (2.22), one may obtain the boundary conditions for the

potential functions as follows

[ weoky —jk:H (e, by 22) = T (e, by 25) ]z[ T (kar ks 20) J

; TP (kg oy 2t A (L T
__weokz —]ky “,(lzj) (azk’ ) - ,,,(lz;) (azk’ ! —Jz(k._.,, kv(azz;?g)
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Therefore, at z = z,, we have

B (ke by 23) = B (s 25) Jz [weoky —jk:]"l[fy(kx,k,,zo)]

¥h z: ¥ ) :z; . T
syt Cgrze) o = weok:  jhy Jz(k.-,,ky,(zz.,)%)
Of course for z # z,, we have
‘i’e(k,,ky, zt) = lfe(kz,ky,z_) (2.25a)
1 UMk, ky,zt) 1 O0¥M(k.,ky,z7) (2.25)
pe(z%) 0z T ope(27) 0z )

Equations (2.19), (2.24) and (2.25) can be used in a meaningful comparison of
the behavior of the form functions F (e'h)(z; s) in Appendix A and of \-I;("h)(k,,, ky, z).
These two groups of functions with the same superscripts satisfy the same differ-
ential equation and the same boundary conditions, except at z = z,. The most
important feature of ‘il("“(k._.,, ky, z) is that they can also be treated independently
at all interfaces especially at the source location. This special feature is a conse-
quence of choosing the direction of the vector potentials normal to the interfaces.
The coupling between the LSE and LSM fields only enter into the formulation af-
ter applying the boundary conditions at z = z,. More importantly, the boundary
conditions at z = z,, as reflected in (2.24), are decoupled. From (2.24), it can be

easily seen that each spectral component

_jkyj:(kza kya ZO) + jkzjy(kza kya ZO)
k21 k2

excites the LSE field and the LSM field is excited by each spectral component

ke do(kzy Ky, 2o) 4 kydy(key ky,y 25)
weo(k2 + kf,) )

The same result is obtained from immittance approach with suitable coordinate

transformation in the z-y plane. This is due to the common feature between our
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approach and the immittance approach; that is, decomposition of the total field as
LSE and LSM fields. In the space domain approach, it has been shown that the
coupling between the LSE and LSM fields is imposed by the edge conditions [49].
Let us rewrite Egs. (2.19),(2.24), and (2.25) as follows

f k:-‘i; ke, ky,z0)+ f ke ky,zo z=z
e Iy € - weo(k2 +k32 — %o
¥ (k:m kvaz+) | (k::, ky7z ) = (e +hy)

9 0 z2# 2,

1 9V (keky,zt) 1 8 (kekyzT) _ 0
L er(zt) 8z e(z7) 8z - (2 26)

(T (ka, by, 2*) — Th(kay kyy2=) = 0

\ 1 OWi(kokyzt) 1 O%M(ksey2m) _

ue(zt) 9z pe(z27) 8z

k2+k3

0 z# 2z,
(2.27)

{ _jtadelkedy o) —keTy(keikyize) , _

Then, one may expect that the transfer matrix formulation with some modifications

can be used to find the dyadic Green’s function. In fact, we consider three cases

separately:

Case A:  z,>d,

Case B: die—1 < zo < di (k=1,...,N)
Case C: z2, <0

(2.28)

where the various layers of the multilayer structure are indicated in Fig. A.1. The
details of the derivation of \f("h)(kz,ky, z) in each of the above cases are given in

Appendices C.1, C.2, and C.3, respectively.

After obtaining ‘fi("h)(k,,ky,z), the components of the electric and magnetic
fields can be obtained from (2.17) and (2.20), respectively. This information can
be used directly, as will be explained later, or can be transformed into the space

domain by applying inverse transform. As mentioned before, some field-theoretic
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concepts can be derived directly using the transfer matrix method which are not
clear from other methods. The following statements reflects these concepts.

(I) The poles of the Green’s functions are zeros of the characteristic equations of
LSE and LSM modes. That is, the Greens functions of MPS have the so-called

surface wave pole.

(IT) It can be seen that the Green’s functions of a MPS are functions of v; =

\/k,z: + k2 — pr.60; k2 = /B — pe6 k2 (¢ = 1,...,N). From the transfer matrix

method it can be seen that the Green’s function of a MPS is independent of the

branch cut of ; (2 =1,...,N).

It is interesting to note that the magnetic current excitation can be dealt with
in a similar fashion, if one uses the concepts of duality. In the next section, we
focus on the spectral domain Green'’s function in the cylindrical coordinate system.

In the process of formulation we use the Hankel transform technique.

2.4 Green’s Function in the Cylindrical Coordi-

nate System: Hankel Transform

In this section, the full-wave analysis of the field excitation of a MPS by electric
current in cylindrical coordinate system will be presented. We follow the same
idea that has been used in the preceding section and use the integral transform
technique on the scalar potential functions. The kernel of this transform is the
amplitude function in the cylindrical coordinate system. Therefore, it is natural
to see how the Hankel transform come into play. The premises of the approach
we adopt are based on the method first used for predicting the characteristics of a

circular patch conductor printed on a grounded dielectric slab [50]. This method
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was originally applied to a surface current excitation of a single-layer structure. We

have extended it to a MPS excited by a volume current [52].

To illustrate the basic ideas, let the cylindrical coordinate system be oriented
as (p,¢,z). We place the same constraint on the excitation as before. That is, we
assume a volume current source without any z component. Moreover, we divide the
volume current into planar slices and consider the response to the planar excitation
at z = z,. That is,

3p6,2) = [losb, 20 + Julpr 8,208 Bz =) (] (229

The electromagnetic field in each homogeneous source-free region above and

below z = z, can be derived from two vector potential functions

(eh)

" (p,¢,2) = 29" (p, 4, 2) (2.30)

where the Hertzian scalar potential functions ‘I!("h)(p, @, z) are the solution of the

scalar Helmholtz equation in cylindrical coordinate system,; i.e.,

[32 19 1 82 0?2 ] ‘p(e.h) —0

o 19 o 2
507 + 2 5p + = 7 547 taz T & (2)p.(2)k; (2.31)

Since ¢! ,$, z) must be periodic functions of ¢ with period 2x, they can be
i \P

expressed in terms of the Fourier series

¥ o,0,2) = 3 UV (p,2)e™ (2.32)
Let us use the notation
Half(p)i al

to denote the nth order Hankel transform of f(p). By definition we have

Half(o)iol ¥ fe) = [ f(p)n(ap)odp (2.33)
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where J,(ap) is the nth order Bessel function of the first kind. The inversion
theorem of the Hankel transform states that H;! = M, [51]. This means that

flo) = [~ fla)In(ap)ade. (2.34)

If the same order Hankel transform with respect to p is applied to the Fourier

coefficients in (2.32), ¥ (p, z) may be related to their Hankel transforms by the

following relation

¥ " (a,2) = /ow T, (p, 2)Jn(ap)pdp. (2.35)
According to the inversion theorem, we may write

'I':'h)(p,z) = ./:o @:'h)(a, z)Jn(ap)ada. (2.36)

Spectral representation of ¥'“*(p, ¢, z) can be obtained by substituting (2.36) into
(2.32). Hence,
¥ M, 4,2)= T ™ /o T (a, 2)J.(ap)ada. (2.37)
Eq. (2.37) can be rewritten as
¥“p,0,2) = 3 /o T (a, 2)e™ J, (ap)a da (2.38)
As can be seen from the above relation, we have constructed the solution for
the potential functions by the Fourier-Bessel integrals. The kernel of this transform
is simply the amplitude function. In view of (2.38), the potential functions can be
considered as the superposition of the elemental solutions of a source free MPS.
This is due to the linear property of the differential operator in (2.31). Moreover,
@f’h)(a, z) can be interpreted as the form functions of these elemental solutions.

Since \fﬁf'h)(a, z) convey all spectral information of the field components, we try to
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find them. In Appendix C.4, we show that ¥'"*(a, z) satisfies the second-order

homogeneous differential equation

82 (e
(@ —[a* - ef(Z)#r(Z)kfl) ¥ " (a,2) =0 (2.39)
The above result is completely expected. This is because the method of the sepa-

ration of variables is the heart of the integral transform techniques.

To obtain the boundary conditions satisfied by @:’h)(a, z), one may invoke the
expression for the field components in terms of the potential functions. As expected,
like form functions, ‘3: 'M(a, z) satisfy the same boundary conditions at the source-
free interfaces. Now let us see how these boundary conditions must be modified
at the source location. To this end, we try to find the field components in the
spectral domain in terms of ‘i’ff""(a, z). This can be done by substituting spectral
representation of the potential function in each homogeneous source-free region into

(A.12) and (A.13).

In the cylindrical coordinate system the derivative of the kernel of the integral
transform with respect to p is not proportional to itself. Therefore, the spectral
domain formulation in the cylindrical coordinate system is not as straightforward
as the formulation in the rectangular coordinate system. To remove this difficulty,
as suggested in [50], we use the following identities which are valid for any Bessel

functions B,(ap).

d—:%:%) = % [Bn-1(@p) — Bnt1(ap)) (2.40a)
;n; (ap) = %[B —1(@p) + Bnt1(ap)] (2.40b)

Using the above identities and substituting the spectral representation of the po-

tential function into (A.12) the nonaxial electric field components can be obtained
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from ¥ (a, z) as follows:

Belpr$:2) | _ 2 s [ f ¥ (a, 2)
= ™ [ L(ap)| _ do (2.41
l: E¢(p, @, Z) ] n=z-:oo /(; ap I: ‘I’ﬁ(a, z) } a )

The dyadic operator E (e, p) is given by

jlJn-1(ap) + Jurr(@p) 5 a  J@Ho[Jn-1(@p) — Jnsi(ap)]

(2.42)

- ap)ldne w olVn-1{C n+1l
£ (anp) = %[ Un-1(ep) = Jnss(@p)l D52 whtoldu-s(ep) + Jnsa(ap)] }

In a dual manner, the components transverse to the z axis of the magnetic field

can be obtained from by the following relation

Hp(p1 ¢a z) ad ;. R o ‘i;(a,z)
= eI™® P (a,p)| _ ado (2.43)
H¢(P,¢, z) } Z /; g |: ‘pﬁ(as z) ]

n=-—00

where the dyadic operator P (a,p) is given by

a

—wéo|Jn-1( n+1( n-1(ap) = Jar1(ap)) 2=Z
ﬁ(a,p)zg[ [n-1(ap) + Jnsr(@p)]  [ncs(ap) - J, (p)]“,(z,a,]

—jwealJn-1(ap) = Jas1(@p)] j[Ta-1(ap) + Jnia(ap) 252
(2.44)

The expressions (2.41)—(2.44) clearly show that the Bessel functions of different
orders appear for the description of the nonaxial components of the electromagnetic
field. For the purpose of spectral representation it is highly desirable to have only
one type of the Bessel function. Hopefully, the form of equations in (2.41)—(2.44)
suggests that a linear combination of the nonaxial field may be represented by
only one type of the Bessel function. In fact, this idea is the basis of this out-
lined method. To illustrate the basic idea, let us define the auxiliary functions,
E*(p,¢,z), E~(p,¢,2), H*(p, ¢, 2), and H(p, $, z) by the following relations

Ei(l’: ?, z) = Ep(P) ¢, z) :tjEt#(p, @, z) (2-453-)
Hi(p$ é, z) = Ho(p’ b, z) in¢(P,¢, z) (2'45b)
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Using (2.41) and (2.42), we have

B*(pd,2)= Y & [ Bii(a2)nss(ap)ada (2.46)

n=-—oo

where

Ef (a,2)=a [ e,(lz) -ag-\Il‘(a z) + wp, ¥l (a, z) (2.47)

Note that (2.46) clearly shows that E%(p, ¢,z) do not satisfy the Helmholtz equa-
tion. This result is expected, due to the fact that neither E,(p, ¢, z) nor E4(p, ¢, z)
satisfy the scalar Helmholtz equation. In a similar fashion, from (2.43) and (2.44),

we have
[« -]

B (p,6,2)= 3 & [~ B, (2)Jusi(ap)ada (2.48)

n=—oo

where

9 — " (q,z) (2.49)

Fff a,z)=a [—weo@; a,z) F
:i:l( ) ( ) ﬂr(z)

We have defined the auxiliary functions as a linear combination of the nonaxial
components of the electric and the magnetic fields. Moreover, it has been assumed
that the MPS is excited by a planar slice of electric current with only transverse
components to the z axis. Therefore, it is natural to use the same idea and define

the auxiliary functions J%(p, ¢, z,) as follows

Ji(Pid’a 2,) = Jp(ps b5 2a) + jJs(py b, 2a) (2.50)

In order to obtain @‘"”(a, z) the exact behavior of these functions and their
normal derivatives at all interfaces especially at the source location must be de-
termined. On the other hand, from (2.47) and (2.49) it is obvious that %, (a, z)
and F,fﬂ(a,z) can be expressed in terms of these potential functions and their
derivatives with respect to z. Therefore, the required information can be extracted

from the behavior of these auxiliary functions at those specific values of z.
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To obtain the boundary conditions for E* we take advantage of the continuity
of E, and E, for all values of z. Since E* are obtained as two independent linear
combinations of E, and Ey, continuity of E, and Ey leads to the continuity of E*
and vice versa. Using (2.46) continuity of E* leads to the continuity of EZ,,(a, z).
This last statement requires that for each value of z, we have

1 3%%(a,z%) 1 8¥(a,z7)
e (z%) 0z &(z7) 0z
¥, z}) — T*(a,z;) = 0 (2.51b)

=0 (2.51a)

This is due to the fact that from (2.47), we have

1 8%(ast) 1 8¥g(azT)
er(zt) 8z e (z7) 9z

{I}ﬁ(a’ z¥) — {I;ﬁ(a7 z7)

E:-f-l(aa zt) — E:+1(a, z7)

E;—l(a, z"‘) - E:-l(av Z_)

=D } (2.52)

where

1 wp,

Similarly, at those interfaces where H, and H, are continuous, ﬁfil(a, z) are
also continuous. At z = z,, the nonaxial magnetic field components are discontin-

uous by the amount of the electric current. That is,

Jo(ps b, 20)p + Js(p, &, ZO)(% =%z X [H(p, é, z:) —H(p, ¢, zo_)]

The above boundary condition can be easily transformed in terms of the auxiliary

functions J* and H? as follows
T*(ps b, 2) = %] [H*(p, 6, 2F) — H*(p, 6, 2 )| (2.53)

Substituting (2.48) into (2.53), we obtain

oo

T 5oy $20) = 3 JZ(py20)e™ (2.54)

n=-—oo
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where

TEpiza) = [ TEa(@r 20)nss (ap) ade (2.55)

and
Jin(a,20) = +7 [, (p, 6, 2F) — B (py 6,27 )] (2.56)

Eq. (2.55) means that
Tra(aza) = [ TE(p, 20)Jnss(ap) pdp (2.57)

Using (2.49), the above conditions can be stated in terms of the potential functions

in the transformed domain. More precisely,

- - -1 -
¥:(a, z;") — U5 (a, z;) 1| —we -1 _jth{—l(a, 2,)
L 0¥Mesd) | 1 o¥esd) | a _ye ] 3T (@, )
(2.58)

ue(z3) 9z ue(z5) 8z

Of course for z # z,, we have

¥ (a, z*) — ¥ (a,z7) 0
=, = _ = (2.59)
1 0¥} a,zt) 1__ 8¥a(ezT) 0

ue(zt) 8z T wr(zo) 9z

Now the boundary conditions (2.51), (2.58) and (2.59) can be rewritten as follows

r - - L [TF (e, 2z0) — J_i(a, z, zZ=2z,
‘ye (a, Z+) _ \Il;(a, Z_) — 2°w¢°[ +1( ) 1( )]
4 z# z,
1 9% (a,zt) __1 8¥%z(a,z7) =0
L er(zt) 8z e (z7) 9z -
(2.60)
f Uh(a,z*) — h(a,z7) =0
g 1 8¥A(azt) 1 8¥A(az) _ ;’;—[J,',"_H(a, z) + Joz1(a, 2,)] 2= 2
wpr(zt) 8z ue(z™) 8z - 0 2 # ,
‘ (2.61)

The boundary conditions in (2.60) and (2.61) reveal that ¥'""'(a,z) can be

treated independently at all interfaces especially at the source located at z = z,.
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Again this special feature is a direct consequence of choosing the direction of the

vector potentials normal to the interfaces. The spectral component

st ) + Ty (2]

excites the LSE field and the LSM field is excited by

J 3 =
Qawe [J:+1(a, ZO) - Jn—l(aa ZO)]

For a circularly symmetric p-directed excitation, we have
J+(p, @, z) = J-(p, 45,2)

Consequently,

TH(a,z) = =J(a,2)

where we have used

J_\(ap) = —J,(ap) (2.62)

Therefore, this type of current can excite only a LSM field. Using the same argu-
ment one can easily see that a circularly symmetric ¢-directed current excitation
produces only LSE field. From the above consideration it can be seen that for a
circularly symmetric excitation, the p component of the current is responsible for
LSM field and LSE part of the field is excited by the ¢ component. The above

results are direct consequences of spectral domain approach.

The boundary conditions stated in (2.60) and (2.61) make it possible to take
advantage of the transfer matrix formulation. Specifically, the formulation that we
have done for three different cases A, B, and C in the rectangular coordinate system
can be used directly for the cylindrical coordinate system with minor modifications.

First, the unknown coefficients describing @:’” in each region must be considered
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as a function of (n, a) rather than (k.,k,). The spectral source excitation

{ Tolkar by, 20) }
jy(k:n ky1 ZO)

J, (e, 20)
[ fn-—l(a? z,) :l
Moreover, as can be obtained from (2.60) and (2.61), in the cylindrical coordinate
system the matrices A°(k,,k,) and AP(k,,k,) are replaced by

must be changed to

4 __J
Ae( a) = 2awe, 2awe,

0 0
and
0 0
vo-[ 0]
i N
2a 2a

respectively. Note that A" (a) are independent of the the order of the Hankel

transformation.

For the future references it is desirable to define a 2 x 2 dyadic Green’s function
Z (a) as an impedance matrix. It shows that E%, (a,d, or 0) can be related to

J%..(a, z,) by the matrix equation

l: E:+1(a1 dN or 0)

. (2.63)
Er:-l(av dN or 0)

j:+1(a, 2,)
Jn-—l(a, 7'0) .

] =7 (a,d,, or0|zo)[ A

where
Z**(a,dy or 0] 2z,) Z* (a,d, or0]z,)

(2.64)
Z *(a,dy or0|z,) Z (a,d, or0|z,)

E(a,dN or 0| z) = [

The most important feature of the impedance matrix is that its elements are in-

dependent of the angular index n. This is the direct consequence of stating these
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equations in the Hankel transform domain [50]. Furthermore, using the transfer
matrix formulation, it can be shown that the diagonal elements are equal to each
other and the same is true for the off diagonal elements. In fact, from (2.47), one
may show that

+)" x 1

() } .

Z& @ (a,d, | z,) = (:t)“vc[Ri(a,zo) Si(a,Zo)][ 0

[ R(a, z,) SMa, z,) ] [ (11 } (2.65)

where

Ye = \/cx2 — €7 k2

From (2.65), one may easily deduce that
Z " (a,dy | 20) = Z77 (e, d,, | 20)

72t (a,dy | z0) = Z7F(a,d,, | 2o)

Similarly,
Z(:t)e(:b)b(a’o 12) = (5 [ Re(a,z)) Se(a 2.) ] [ (:i:)0 x 1 ] N
0
[ R}(a,z,) S¥a,z) ] [ . ] (2.66)

where

Yo = \/a"’ — W, er, k2

Thus,
Z"(,0 ]| 20) = Z77(,0 | 2,)

2% (a,0 | zo) = Z"%(a,0 | Zo)



CHAPTER 2. SPECTRAL DYADIC GREEN’S FUNCTION 42

In the next section, we apply the formulation developed so far in this chapter
to obtain the electric field in the far zone. Especially, in the cylindrical coordinate
system, we will show that the far field pattern of the electric field can be obtained
directly from the Hankel transform of the the auxiliary functions defined earlier.
Therefore, it is not necessary to carry out time consuming inverse Hankel transform

by numerical methods.

2.5 Application to the Radiation Problem

In this section we investigate the radiation electric field in the cladding and the
substrate regions. To this end, we start with a general formula from which the
far field pattern due to an aperture can be obtained. Let us consider an aperture
parallel to the z-y plane. It is well-known that the far field pattern is the Fourier

transform of the tangential aperture field. More precisely, it is shown that [54], [55]
-jkl’ . _ -
E(r,0,4) = jk"27 (8 [Blker ky» 2a) cos + Ey(ker by, 2a) sing] +

) [E'y(k,, ky, z,) cose — Eq(ks, ky, z,) sin¢] cosa) (2.67)

where r, 4, and ¢ are the spherical coordinate variables and 6 is the polar angle
measured from the z axis. % is the wave number of the half space seen from
the aperture. Moreover, E,(k,,,ky,za) and E,(k.,k,,z,) are the two-dimensional

Fourier transform of E. and E, on the aperture at z = z,, respectively. That is,

Butbabid | 7 [ 0059 | s
Ey(kz, ky, 2,) me’-= | E(z,¥,2)
where
kz = k sinf cos¢ (2.68a)

k, = k sinf sing (2.68b)
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In the rectangular coordinate system, the Fourier transforms of the tangential
aperture field can be easily obtained from (2.17). In the cylindrical coordinate
system, the radiation field can be expressed in terms of the Hankel transform of the
aperture field. This is due to the relation which exists between the two-dimensional
Fourier transform and the Hankel transform. To establish the formula for the
radiation field in the cylindrical coordinate system, first we consider the following

transformation between the cylindrical and rectangular coordinate systems

E.(z,y,z) _ | cos¢ —sing E,(p, ¢, 2)
[ E, (z,y,2) ] - [ sing cosd E4(p, 9, 2) }
where
z = pcosd
{ y = psing

Now if one uses (2.452) to express E,(p, ¢, z) and Ey(p, ¢, z) in terms of E*(p, ¢, z),

one obtains

+ i® - -ié
Ez(z,y, Z) = E (p1¢7 Z)e -;E (p,¢,z)e (2.693.)

¢ _ - -
B, y,) = o) = B ps)en (2.690)

Using (2.46), one may write

e E:+1 (p, z)ej(nﬂ)d’ + Yo E._, (P, Z)ej(n—l)qs

E:(z1 Y, Z) = n=— 2 nE-x® (2.703.)
) + ej(n+l)¢ _ oo - j(n-1)¢
By(a,3,7) = D B0, 0T~ B (o 2)e (2.70b)
where
Ex(py2) = ./o E3yi(a, z)Jnz1(ap)ada (2.71)

Since E.(z,y, z) and E,(z,y, z) satisfy the Helmholtz equation, (2.70) and (2.71)
are completely expected. In Appendix C.5, the relation between the two dimen-

sional Fourier transform and the Hankel transform has been derived. According to
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this relation, if

@92 = 3 fuler ) (2:72)
then we have
Flkay by, 20) = _Z 215" fua)e™ (2.73)

where f,(c) is the nth order Hankel transform of fa(p) and the pair (a,v) is dual
of (p, ¢) in the spectral domain. That is,

(2.74)
ky, = asinv

{ kr = acosv

The expressions for E;(z,y, z) and E,(z,y, z) in (2.70) are similar to (2.72). There-
fore, according to (2.73), by changing the role of n to = + 1, we may write

_f: w1 EL (e, za)e 1 (2.75a)
Bykarkyzd) = —i 3 7™ B, (@, za)el 0 4
J _f: 7" ED_(a, z, )P (2.75b)
where from (2.71), we have used
/o“ Ens1(py 2a)Jnsr(ap) pdp = B3y (e, 2a) (2.76)

On the other hand, comparing (2.74) with (2.68) leads to the following expres-

sions for a and v

a = ksinf (2.77a)
v=2¢ (2.77b)
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The above relations means that (k sinf, @) is the dual of (p,#) in the spectral

domain. Let us rewrite (2.67) as

—ikr
E(r.6,¢) = f’“% (6 [E (ke bys 20)€7 + B (e by, za)e ™) +
& [TE (ker by, 22)e?® — GE* (ke by za)e ] cosh)  (2.78)

where

Ei(kz, ky, Za) — Ex(kz) k!l’ za) :;JEy(kz, ky, za)

= Y w1 B (a, z)ef M (2.79)

n=—o0

In deriving (2.79) we have used (2.75) for substitution of E, and E,. Substituting
(2.79) into (2.78) and noting that a and v are expressed by (2.77), the electric field

in the far-zone can be obtained according to the following relation

—jkr oo . . - .
E(r,6,4) = jk=—— ¥ [8E5(k sinf, 2.) + b cos E= (k sind, z,)] €™ (2.80)
where
_ - i+
By(a, ) = Zomt{®Ze) + Fan(@ ) (2.81a)
N - — B+
Bafe, ) = 2t te) = Banlen ) (2.81b)

As might be expected the radiation field has the same azimuthal variation as
the aperture field. Eq. (2.80) is the fundamental relation which gives the far-field
pattern in the cylindrical coordinate system due to an aperture in the z-y plane.
As explained before, the electric field in the far-zone can be expressed in terms of
the Hankel transform of the aperture field. More importantly, these expressions are
directly related to the Hankel transform of the auxiliary functions defined in the

preceding section. By the transfer matrix method, we have developed a systematic
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algebraic procedure to obtain EZX,,(a,z,) in terms of J%,(a,z,). Thus, the far
field pattern algebraically related to J,,(a, z,). This is one of the important con-
sequences of the spectral domain (Hankel transform) method. In fact, the electric
field in the far-zone can be obtained from suitable integrals of the current sources.
In this process there is no need to enter into the space domain. Therefore, carrying

out the time consuming inverse Hankel transform is eliminated.

In many applications of integrated optics, normal emission from a planar stack
is highly desirable. For example, surface emitting lasers are designed to behave
in this manner. In these cases the radiation efﬁcienc.y and the far field pattern
strongly depends on the aperture field distribution. Fortunately, (2.67) and (2.80)
provide the necessary background from which the characteristic dependence of the
radiation field on the aperture field can be derived. We address this important issue

in the next section.

2.5.1 Various Aperture Fields and Normal Emission

As mentioned earlier, many applications in integrated optics demand to have emis-
sion normal to the planar interfaces of a stack. Especially, in the highly directional
beam applications the behavior of the radiation field on the z axis is very impor-
tant. In this section, we investigate this matter by considering various types of
the aperture fields. To this end, first we define some concepts by the following
definitions.

DEFINITION 2.1 The field of a circular or an annular shaped aperture centered at
the origin in the z-y plane is called circularly symmetric if the field ezpressions

in the cylindrical coordinate system are independent of the azimuthal angle ¢.
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DEFINITION 2.2 Consider an aperture in the z-y plane. The aperture vector

field is called uniform if it is constant throughout the aperture. That is,
Ea(z7 y) =ukE, (2.82)

where U is a constant unit vector.

DEFINITION 2.3 By antisymmetric aperture field, we mean a field of a sym-

metric aperture in the z-y plane such that

Ei(—z,-y) = —Ea(z,y) (2.83)

Note that an antisymmetric aperture field can exist on those apertures which them-
selves are symmetric about the origin. Circularly symmetric aperture fields can be
obtained from the Hertzian scalar potential functions in (2.32) by considering only
the term with n = 0. For this special case, the electric field on the aperture of a

LSE mode has only a ¢ component and that of LSM mode has only a p component.

Let us consider the behavior of the radiation field on the z axis. All points along

the z axis correspond to § = 0. On the other hand, we have

0 = Xcoscosd + ¥ cosl sing — zsind (2.842)

-

¢ = —-xsing+ycosd (2.84b)
Therefore, at all points along z axis, we have

6 = xcos¢p + y sing (2.85)

Substituting (2.84b) and (2.85) into (2.67), the radiation field along the z axis can

be obtained from the following relation

—jkr - _
E(r,0,¢) = jk;? [XE.(0,0,2.) + 7 E, (0,0, z,)] (2.86)



CHAPTER 2. SPECTRAL DYADIC GREEN’S FUNCTION 48

where by noting that § = 0, we have used
kz = ky = 0.

Despite the fact that, the azimuthal angle on the z axis is ambiguous, (2.86)
clearly shows that the radiation field is independent of ¢. This result is completely
expected due to the fact that along each direction we approach to the z axis, the
same result for the electric field must be obtained. Note that (2.86) can be obtained
if we put ¢ = 0 in (2.67). Moreover, as can be seen from (2.86) the radiation
field along the z axis due to the aperture in the z-y does not have a component
along the z direction. This result is also completely expected. In fact, due to the
solenoidal character of the radiation field, the field in the far-zone does not have

any component in the direction of observation [55] .

From (2.86) and the theory of the Fourier transform, it can be seen that the
radiation field on the z axis is is directly related to the average values of E, and

E, on the aperture. That is,

—jkr - _
E(‘l‘, 0, ¢) = ]k e27l'1‘ Aa [iEz(zc) + yEy(Za)]
eI
= Jh5—AE(z,) (2.87)
where
_ 1 ® p®
Et(za.) = Z/_ [ [iEz(z’ y1 Za) + iEy(-’B, y’ Za)] dZdy (2‘88)

and A, is the area of the aperture. Therefore, nonzero average values of the electric
field on the aperture is a necessary and sufficient condition for nonvanishing of the
radiation field on the z axis. This important result can also be translated in the
cylindrical coordinate system. To this end, let us assume that in the cylindrical
coordinate system the aperture field is of the nth order azimuthal mode. That is,

E (p, &, 2a) = An(p,2,)e™® (2.89a)
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E4(p, #,2a) = Bu(p,za)e™® (2.89b)

Now from (2.69) and (2.45a), we have

E, = [An(p; 2a) + jBa(p, 22 )]’ 1)¢ 4 [An(p; 2a) — j Ba(p, z,)] (=108
o 2

[An(p; 2a) + 7 Ba(p, z,)]e? ("1 _ [An(p; za) = 7 Ba(p, zg)]el(n 1)
J2

(2.90a)

E, = (2.90b)

Substituting (2.90) into (2.88) and carrying out the resulting integral in the cylin-
drical coordinate system, it can be seen that for all values of n # +1, we have
E¢(z,) = 0. This result implies that, for a circular aperture centered at the origin
in the z-y plane all azimuthal order except n # +1 produce a null on the z axis in

the far-zone. For n = 1, we have
Et(za) = m(x + .75')/0‘ [4,(p,2) — 3B,(p) 2za)] pdp (2.91)
Whereas, for n = -1

Bulza) = (%~ 33) [ [A_,(p\2) + 3B_,(p, 2] pdp (2.92)

From (2.91) and (2.92), we see that in order to have a nonzero far field pattern on
the z axis, at least one of the integrals in (2.91) or (2.92) must be nonzero. The
above result can also be obtained directly from (2.80). In fact, along the z axis

a = 0 and we have

—jkr . L )
: 25" [OE,:(o,z.,)+¢E;(0,z,,)] g (2.93)

n=-1,1

E(r,6 =0,9¢) = jk

For all points along the z axis, from (2.84b) and (2.85), one may write

5o & - 7¥) e , (X ; 3¥) -5 (2.94a)
b= j(x ;JY) eI _ j(x ';JY) e=i® (2.94b)
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Substituting (2.94) into (2.93), using (2.81) and collecting nonvanishing terms, we

obtain
eIkt

E(Tae = 01¢) = jk or

(X =i 9)ES(0,20) + (x + i 9)E5(0,20)]  (2.95)

where

Ef0,7) = [ Ef(e,z)d,(ap)pdp

a=0
[ -

= /0 E¥(p,za) pdp (2-96)

In deriving (2.95) we have used
Jﬂil(o) =0 n # +1,

Efil(O,za) =0 n # +1.

Therefore, nonvanishing field on the z axis in the far-zone requires that at least one
of the above integrals be nonzero. This result is exactly the same as that we have

obtained before, if one notes that

Eg(py2za) = E:+1(p,z¢) =1 A_(pyza) + 7B_,(p; 2a) (2.97a)
Eq (pyza) = E;_1(ps 2a) =1 A,(p, za) — 7 B,(p, za) (2.97b)

It should be emphasized that due to the ambiguity of designating azimuthal angle
along the z axis, the far field pattern must be independent of ¢. Actually, (2.95) is
in the form as it should be.

From the above considerations, a nonzero radiation field on the z axis requires
a nonvanishing average value of the electric field on the aperture in the z-y plane.
Therefore, the far field pattern on the z axis due to a uniform aperture field in

the z-y plane is bright. For example, the intensity distribution of the Fraunhofer
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diffraction pattern of a circular aperture illuminated by a normally incident plane
wave follows the Airy pattern {57]. In fact, for a circular uniform aperture field
E=FE.x+ E,y, we have

E. —-jJE, . E.+4FE, _.

Ep(p, 45) _ —2—'7—"6”5 + —-;J__Ve o (2.983.)
E.—jE, ;5 .BE.+jE, _

Eo(p,¢) = j =T 2er — j== T v (2.98b)

As can be seen, a uniform aperture field is of the type of first-order azimuthal

mode which has a nonzero far field on the z axis.

From the above considerations, an antisymmetric aperture field produces a null
on the far field pattern along the z axis. Circularly symmetric aperture field is
a special case of antisymmetric aperture fields. Therefore, one might expect a
vanishing far field pattern on the z axis. In fact,
circularly symmetric beam can not have a nonzero far field pattern on its azis.
This behavior is unwanted in practical applications. For example, surface-emitting
lasers using circular aperture and producing circularly symmetric beam have a dark

spot at the center of the far-field pattern. We will turn to this point later.

In the next section as an example we consider a novel circular grating laser and

we obtain its far field pattern by using the volume current method.

2.6 Radiation Pattern of a Novel Circular Grat-

ing Laser

In this section we obtain some insight on the far field intensity pattern of a novel

circular-grating DFB laser at threshold by using volume current method. The laser
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Second-order grating

First-order grating Pumped region

Figure 2.3: Schematic view of a novel circular-grating surface-emitting DBR laser

structure to be analyzed is depicted in Fig. 2.3. This structure has been reported
by Wu et al. [38].

As illustrated in Fig. 2.3, the second-order circular-grating is located right
at the center of the laser, optical gain is obtained by injecting current through
the annular active region surrounding the second-order grating at the center. The
optical feedback is provided by the first-order grating that encloses both the annular
region and the central region. By ignoring the radiation field and using coupled-
mode theory [30], [32], we have analyzed a bulk DBR laser. Then, the central
second-order grating is considered as an equivalent electric current source which
excites the unperturbed waveguide. The physical parameters of this structure are

shown in Fig. 2.4. The reference wavelength ) is assumed to be 1.55 pm.

First, we assume that the laser beam is circularly symmetric. The grating
periods A; and A; are chosen such that the corresponding gratings be of first-order
and second-order resonant gratings, respectively. For this special geometry we have
A2 = 477 pm. The material loss is assumed to be 10 cm™! and we consider only

zero reflection coefficient at the outer edge of the laser. The radius of the central
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Figure 2.4: Cross-sectional view of a novel circular-grating surface-emitting DBR

laser

region is the only parameter that we play with. We express this parameter in terms
of the number of gratings N, in the radial direction. For N, = 80, the normalized
far field intensity pattern of the laser is shown in Fig. 2.5. As expected, there is
a dark spot at the center of the laser beam. Except for this dark spot, most of
the laser power is concentrated in the angular region 0.2° — 0.5° off the laser axis.
Obviously the laser is highly directional. For the purpose of comparison, the far
field intensity patterns of the laser beam in the cover and substrate are shown in
Fig. 2.6. The intensity pattern in the substrate is normalized to the maximum value
of the intensity in the cover. As illustrated, the intensity pattern in the substrate
is almost identical to that in the cover. This is due to the fact that the layers are

very low-contrast and thin.

To show the dependence of laser beam to the aperture area, the normalized far

field intensity patterns for three different values of N, is depicted in Fig. 2.7. Each
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Figure 2.5: Normalized intensity pattern of a circularly symmetric laser beam in

the cover region for N, = 80
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pattern is normalized to its own maximum value. As can be seen the larger the
aperture area the narrower the laser beam. In Fig. 2.8, it is assumed that the
laser field at the center of the second-order grating is the same for three different
values of N;. The far field intensity patterns for N, = 60,80 are normalized to the
maximum value of the field intensity for N, = 100. As expected, if we increase the
aperture radius more power will be emitted from the laser. Finally, in Fig. 2.9, the
intensity pattern of non-resonant grating is compared with that of resonant one.
It can be seen that the main lobe is shifted toward higher polar angles. Moreover,
the emitted power is much less than in the resonant case. This is due to the fact
that the spectral components of the equivalent current source responsible for the

radiation field are very weak compared to the resonant grating.

In the second part of this section, we investigate the far-field intensity pattern of
the laser field with azimuthal variation e*?¢. The laser structure is the same as
that depicted in Figs. 2.3 and 2.4. In this case as one might expect the far field
intensity pattern is a function of the azimuthal angle. The intensity pattern of
the laser structure with N, = 80 observed at ¢ = 0° is shown in Fig. 2.10. As
anticipated before, for this type of azimuthal variation a bright spot is observable
at the center of the laser beam. Moreover, the laser beamwidth is very narrow
and is less than 0.5°. Since the contrast between the different layers is very low
and the layers are very thin, one might expect approximately the same far field
intensity pattern in the substrate. This fact is clearly illustrated in Fig. 2.11. The
dependence of the laser beamwidth on the aperture radius is shown in Fig. 2.12.
The plots correspond to ¢ = 0°. The far-field intensity patterns due to different
apertures are normalized to their own maximum values. Asillustrated, the narrower

beams are due to the larger emitting areas.



CHAPTER 2. SPECTRAL DYADIC GREEN’S FUNCTION 56

1.2 T T T T T T T
-~ Ng= 100

-0 Ng=60

5

Normalized intensity
© e
' o

0.2

La

0 0.5 1 1.5 2 25 3 35 4

Polar angle [ degree |

Figure 2.7: Normalized intensity patterns of a circularly symmetric laser beam in

the cover region for three different values of N,.
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Figure 2.8: Normalized intensity patterns of a circularly symmetric laser beam in
the cover region for three different values of N,.
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Figure 2.9: Normalized intensity patterns of a circularly symmetric laser beam for

resonant and non-resonant second-order gratings
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Figure 2.10: Normalized intensity patterns of the first azimuthal harmonic laser

beam in the cover for N, = 80.



CHAPTER 2. SPECTRAL DYADIC GREEN’S FUNCTION 58

l.l T 1 T 1 ] Bl T LS L]

1 — Intensity pattern in the cover region .
0.9 |\ ---- Intensity pattern in the substrate region -

08| Ng=80 .
(%4 S

0.6
05
04|
03
02}
01
0

Normalized intensity

. Il A ] L

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Polar angle [ degree |

Figure 2.11: Normalized intensity patterns of the first azimuthal harmonic of the

laser beam in the cover and substrate regions for N, = 80.
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Figure 2.12: Normalized intensity patterns of the first azimuthal harmonic of the

laser beam in the cover region for three different values of N,.



CHAPTER 2. SPECTRAL DYADIC GREEN’S FUNCTION 59

Similar to the circularly symmetric beam, in Fig. 2.13 it is assumed that the
laser field at the center of the laser is the same for three different central radii. The
far field intensity pattern for N, = 60,80 are normalized to the maximum value of
the field intensity for N, = 100. All the plots correspond to ¢ = 0°. The behavior
shown in Fig. 2.13 is completely expectable. More power in a narrower beam is
emitted from larger apertures. In Fig. 2.14 the functional dependence of the laser
beam on the azimuthal angle is shown. The intensity pattern follows the same
behavior in every quadrant of ¢. Obviously, as shown before, the laser intensity on
the laser axis is independent of the azimuthal angle. In Fig. 2.15 three dimensional
far field intensity pattern in the cover is plotted for N, = 80.
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Figure 2.13: Normalized intensity patterns of the first azimuthal harmonic of the

laser beam in the cover region for three different values of N,.
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Figure 2.14: Normalized intensity patterns of the first azimuthal harmonic of the

laser beam in the cover for four different azimuthal angles.

Figure 2.15: Three dimensional intensity pattern of the laser beam in the cover for

N, = 80.
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2.7 Summary

In this chapter the volume current method (VCM) for multilayer planar structures
has been derived based on the induction theorem in the electromagnetic theory.
This has been followed by the closed-form Green’s function formulation of multi-
layer planar structures both in the rectangular and cylindrical coordinate systems.
The salient feature of the TMM has been demonstrated in the process of the formu-
lation. In the derivation of the Green’s function, we have assumed that the current
excitation does not have any components transverse to the planar interfaces. Then
volume current method and Green’s functions have been directly connected to the
radiation problem. It has been shown that circular apertures have a dark spot at
the center of their far-field patterns in the absence of the first azimuthal harmonic in
the aperture field. Finally, the far-field intensity pattern of a novel circular-grating
surface-emitting DBR laser for circularly symmetric beam and the beam with the

first harmonic of azimuthal variation have been illustrated.



Chapter 3

Two-Dimensional Threshold
Analysis of Circular-Grating

Surface-Emitting Lasers

3.1 Introduction

As is well-known, the operating principle of DFB lasers is based on the propagation
of the guided waves in active multilayer planar structures with periodic modulation
of the dielectric properties. The periodic modulation of the dielectric properties
can be realized either as straight or circular gratings. In DFB and DBR lasers,
the gratings are of the resonant type, i.e, the grating period A satisfies the Bragg

condition,

T
.Bo = NX (3.1)

where 3, is the propagation constant of light in the guide and N is called the
order of grating. The laser operation strongly depends on the value of N. This

62
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Figure 3.1: A typical resonant grating

dependence can be seen from the condition for the constructive interference at
resonance. Referring to Fig. 3.1 and by using the geometrical optic concepts,
constructive interference requires that the path difference between the rays be equal

to an integer multiple of the guide wavelength. More precisely,

27

A(l — cosf) = n— (3.2)
Bo
Substitution of (3.1) into (3.2) leads to
cosf =1 — 2Fn (3.3)

Real values of 8 can be obtained by choosing n = 0, 1,..., N. Regardless of
the value of IV, there are always two extreme values of n; that is,» = 1 and n = N.
These values of n correspond to § = 0 and 8 = =, respectively. This means that at
resonance two coherent contra-directional waves jointly interact with the grating.
These two partial waves provide the feedback mechanism for the laser oscillation.
More importantly, partial waves related to § = 0 and 6§ = 7 are trapped in the
laser cavity. In fact, these two waves are guided modes and of energy type. These
two modes are responsible for the stimulated emission in the laser cavity. In DFB

laser, which are self-oscillating devices, the fields are generated inside due to the
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spontaneous emission coupled to these coherent waves. The fields are built up as a

result of the exchange of energy between these two coherent oppositely-going waves.

Other possible values of n result in the radiation field. This radiation field is due
to the joint interaction of the guided modes with the grating. In fact, the grating
produces a mechanism that the two coherent waves radiate power. Therefore, with
radiation field, the laser characteristic operation changes. One important effect of
the radiation loss is the presence of asymmetrical longitudinal mode structure even

for symmetrical boundary conditions [12],{58], and [60].

Of particular importance is the second-order grating, where the only possible
values of n are 0, 1, and 2. In this case, the partial scattered wave arising from
n = 1 is the radiation field. This scattered wave is emitted normal or near-normal

to the surface of the grating.

From the above considerations, one can conclude that in resonance cases, surface
emission requires grating order of two or higher. This is the key idea for the

realization of grating coupled surface-emitting lasers.

In second- and higher-order gratings radiation fields provide another mecha-
nism for exchange of the energy between the two coherent oppositely-going waves.
Consequently, in an accurate treatment of this type of grating, the coupled-mode
equations describing the behavior of the amplitudes of the coherent waves must
be modified. For straight grating DFB lasers this modification has been reported
in three excellent papers [58],(59], and [60]. Streifer et al. [58] started from the
Floquet mode expansion of the electromagnetic field in the laser cavity to include
the effects of the radiation and other partial nonradiating fields in the coupled-
mode equations. Although this method is accurate, however, it is restricted to the

straight gratings. In [59] the improved coupled-mode theory is based on a set of
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coupled-mode equations for the guided and radiation modes. This approach is more
general than that of [58]. The only difficulty is the presence of the radiation modes
for expressing the radiation field. Kazarinov and Henry [60] derived explicit ex-
pressions for the radiation coupling factor by using Green’s function method. More
importantly, for shallow rectangular gratings they have obtained simple analytical

formulas for the radiation coupling coefficient.

Radiation from a circular grating etched on the planar waveguides has been
considered in non-resonant cases [40], [41], and [42]. In {40] and [42] the azimuthally
polarized radiation field emitted from the surface of a shallow, circular grating
has been described by using the field expansion method. This approach uses a
boundary perturbation method to obtain an integral expression correct to first-
order for the radiation field. In [41] the volume current method has been used to

find the circularly symmetric field radiated by a circular grating.

Radiation from a circular grating at resonance has not been considered so far.
For the first time, we have investigated azimuthally invariant radiation field from
a circular grating at resonance [61]. In this chapter, we consider the general for-
mulation of second-order circular gratings at threshold. As will be shown later,
this formulation gives general modal analysis of a circular grating which produces
circularly symmetric beam which can be exploited in the above threshold analysis.
Before presenting the general formulation, however, in the next section we present
a general comment on the type of the fundamental mode that can be supported by

cylindrical structures.
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3.2 Fundamental Mode in Cylindrical Structures
and Photon’s Ground State in Circular Aper-

tures

The purpose of this section is to consider general evidences to predict the shape of
the fundamental mode supported by a circular aperture. To this end, we use the
minimum energy principle. According to this principle, any physical system tries
to attain its minimum available energy state in any given set of circumstances.
This means that the wave function associated with the minimum state of energy
has smallest spatial variation. This property can be seen for a constraint particle.
In fact, according to the accepted principle of quantum mechanics, the energy
of a particle is the eigenvalue of the Hamiltonian operator. Since the Hamiltonian
operator is related to the spatial variation of the wave function, it is obvious that the
minimum energy corresponds to a wave function with minimum spatial variation.
The wave function of an electron in a potential well of either finite or infinite barrier

is a good evidence for this fact.

The same idea may be used when we consider the wave function associated with
a photon. In electromagnetic theory the fundamental mode of different structures
has very smooth spatial variation. For example, the electric field of the funda-
mental mode in a rectangular waveguide with perfect conducting boundaries varies
smoothly in the transverse plane. The same is true in a dielectric slab waveguide.
More importantly, ignoring the variation in one dimension directly leads to the

fundamental modes in rectangular structures.

Unfortunately, this is not the case in cylindrical structures. Despite the fact

that the mathematical description of azimuthally invariant electromagnetic field in
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Figure 3.2: Near field pattern of the electric field. (a) Azimuthally invariant mode.
(b) The mode with first-order azimuthal variation.

a cylindrical structure is very simple, however, the electric field vector does not
have necessarily very mild variation. This fact can be seen in Fig 3.2 (a). For
azimuthally invariant field the electric field has only ¢ component. Moreover, as
can be seen from Fig. 3.2 (a) the field is highly asymmetric whereas its intensity is

circularly symmetric.

On the other hand, consider the near field pattern of the first azimuthal order
in Fig. 3.2 (b). By first azimuthal order we mean the field components vary as
cos ¢ and sin ¢ with ¢. For this case, it can be seen that the field pattern is more
uniform than that of azimuthally invariant field. As illustrated, the field pattern is
almost linearly polarized in the y direction.

In the preceding chapter we have shown that the far field pattern on the z
axis due to an aperture field in the z-y plane is a measure of uniformity of the
field on the aperture. Since only aperture field of first azimuthal order produces

nonzero far field pattern on the aperture axis, one may consider this type of aperture
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field as the photon’s ground state. There are two electromagnetic examples which
confirm the above assertion. The fundamental mode of a circular waveguide with
perfect conducting boundary is TE;, which varies as first azimuthal order. The
fundamental HE,; mode in an optical fiber is another evidence that verifies the first

order azimuthal mode is the ground state for the photon in the circular apertures.

In the case of circular-grating lasers, it seems that by adjusting the grating
phase, the threshold gain of the fundamental circular mode does not have necessarily
the lowest value. That is, the fundamental circular mode is not necessarily the
fundamental mode of the laser. This fact is the result of the numerical simulations
of first-order circular-grating lasers in the limit of the validity of large argument
approximation of the Hankel functions [24], [30], and [32]. Similarly, Gong et al.
[34] have shown the same situation in treating second-order circular-grating DBR

lasers by ignoring the radiation fields.

From the above considerations, we strongly believe that the circularly symmetric
aperture field and the aperture field that varies as cos ¢ and sin ¢ with ¢ are the
fundamental modes of the laser among all other azimuthal orders. Despite the fact
that a circularly symmetric beam may not be the mostly desirable field pattern
due to presence of a dark spot on the far-field pattern, however, for the the sake of

mathematical simplicity, we assume that the laser field is azimuthally invariant.

3.3 Basic Formulation

In this section, we present a general approach in treating circular-grating DFB and
DBR lasers producing azimuthally invariant field. Let us consider the DFB and
DBR lasers shown in Fig. 3.3. We aim at deriving modified coupled-mode equations

such that the radiation coupling factor are properly included. To this end, starting
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Figure 3.3: Circular-grating surface-emitting lasers.

from Maxwell’s equations, we have
V xV xE —k2¢.(r)E =0 (3.4)

where k, is the wave number of free space. E is of TE, or LSE type field. It
should be noted that for azimuthally invariant LSE field the electric field has only

¢ component.

In DFB lasers using second-order gratings the electric field has three basic part.
Two of them are the guided waves which are responsible for feedback mechanism
and the stimulated emission. The third part is the radiation field which leaves the
laser cavity in the nearly normal direction. Let E® and E® be the guided fields which
travel radially outward and inward, respectively. Moreover, assume that E™*? is the
radiation part. The mutual interaction of these fields can be best described by the
volume current method ( see Sec. 2.2). In fact, as will be shown later, Eq. (3.4)

can be considered as three coupled equations

V x V x E® — k¥[e,.(2) + je(z) — j'(2)|E® = —jwpoT® (3.5a)
V x V x E® — k2[e,.(2) + jei(z) — j€"(2)|E® = —jwp.T® (3.5b)

V x V x E™ — E2[¢,.(2) + jei(z) — €' (2)|E™ = —jwp,I™¢ (3.5¢)
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Figure 3.4: The cross section of a circular-grating index-guided DFB laser

The meaning of each term in the above equations will be clear later. For example
J¢ is an equivalent current which accounts for the interaction of E® and E"*¢ with

the grating to produce E°.

Let us apply the general method described above in a special case of interest.
We construct the cylindrical coordinate system (p, @, z) such that the z axis passes
through the center of the laser cavity. We assume that the origin of the z axis is
fixed at the interface between the substrate and the first layer as shown in Fig. 3.4.
The field components of an arbitrary azimuthally invariant TE, mode are E,, H,,

and H,. Assuming that a%; = 0, rfeq-4.4) leads to

0*Ey 10E, 1 82E, ,
52 T oo, et 5z telpz)kEs=0 (3.6)

where
& (p,z) = &(2) + jel(2) — je,(2) + be(p, 2) (3.7)

ko is the wave number of the free space at a reference frequency and e.(z) is the
dielectric constant of the unperturbed lossless multilayer structure. €(z) and €/(z)

are the gain and loss profiles, respectively. Based on the assumption of et time
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variation, both gain and loss profiles must be positive in (3.7). §e.(p, z) is a periodic
function of p with zero average accounting for the grating and it is only nonzero

within grating layer; that is, di_; < z < d,.

Let é¢.(p, z) be expressed by its Fourier series expansion as

ber(pr2) = 3 Mm(z)e I a (om00) (3.8)

m#0

where A is the grating period and e™%% is a phase shifting factor making 7,,(z)
real. It should be noted that based on the above assumptions we only consider
index-guided lasers. Furthermore, let us assume that the grating be of second-

order; that is,
2

Bo =+ (3.9)

where f3, is the propagation constant of light in the guide. Therefore, the two
coherent guided-waves couple to each other in second-order Bragg diffraction and
they jointly interact with the nearly normal radiating field Er(p, z) in first-order
Bragg diffraction. More precisely, (3.6) allows us to write E4(p, z) as

Eg(p,z) = Alp)e™*H.” (Bop)F(z) — jB(p)e ™% H" (B,p) F(z) +
E™%(p,z) (3.10)

where Hf”(ﬂop) and Hfz)(ﬂ,,p) are the first-order Hankel functions of the first and
the second kind, respectively. A(p) and B(p) are slowly varying amplitudes of
outward- and inward-going guided modes, respectively. F‘(z) is the normalized
transverse profile of the guided modes satisfying the eigenvalue equation
i 2| & 25
|+ el | Py = 570 (3.11)

subject to the continuity of F(z) and its normal derivative at the interfaces of the
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unperturbed multilayer waveguide. By normalized, we mean that

/ F?(2)dz = 1 (3.12)
In fact, F(z) is the normalized form function of the fundamental TE, guided mode.
The choice of the coefficients in (3.10), especially introducing the j factor in front
of B(p) will be clear later. The characteristic feature of our formulation is the
inclusion of the radiation component resulting from first-order Bragg diffraction in

the electric field expression.

Substituting (3.10) into (3.6) and using (3.7), (3.8), and (3.11), the almost phase

matching condition requires that

I:f:z)(Paz) 0 ] l: j_‘: ] - [ P(:)(P,Z) q;”(P,Z) A(p)
0 fle2) || £ | ¢%(p2) 2(ps2) | | Blp)
n(022) | praa, 1) (3.13)
| ™. (p, 2)
0? 18 1 8 ~ . 2
5 2o 5t o] B™0?) = KR (@0 Alp
+jk2n,(2)F(z)e " H." (Bop) B(p)

(3.14)

Since the Hankel functions behave as a traveling wave for large arguments; i.e.,

lim " (z) = ‘/,ij""ej" (3.15a)
T—+00 n sz

Lim H'(:)(z) = E—j"e'j’ (3.15b)

the phase matching condition is not exact in deriving (3.13) and (3.14). Hence we
use the term almost phase matching condition. We will discuss the validity of the
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above approximation later. In fact, the guided modes around the center of the laser
cavity are not exactly coherent. However, as far as the laser operation is concerned,
(3.13) and (3.14) can be considered as the starting point in the threshold analysis.
Different terms appearing in (3.13) are defined as follows

L (Pa z) = _k: 7711(2) eFIhor (3°163')
a0 (p,2) = 5 M2 K2, (2) €500 gD (8,0) F(2) (3.16b)
1,2 d 1,2 =
£7p7) = =3 @ + B (B) P (2)
= 12[w° H' (B.p) — —H‘“’(ﬁo ) F(2) (3.16c)

pi“’(p,z)=j”w2—ﬂ3+Jk:e:(z) ike "(z)]H‘ "(Bop)F(z)  (3.16d)

In deriving (3.13), (3.14), and (3. 16) we have used slowly varying amplitude
approximation by neglectmg and . In addition, we have noted that for any

Bessel function B, of nth order, we ha.ve

dBn(Bor) _ Bo

dp [ n—l(ﬂoP) n+l(ﬂop)] (3.173.)
%Bn(ﬂop) = —°[Bn-1(ﬂop) + Bni1(Bop)] (3.17b)
df +2 d ) Bu(Bop) = —B; Ba(Bop) (3.17¢)

Moreover, in deriving (3.14) €, and € have been ignored in comparison with €,(z).

In order to derive the coupled-mode equations governing the amplitudes of the
guided modes, E™%(p,z) in (3.14) must be expressed in terms of A(p) and B(p).
Before doing that, it should be emphasized that (3.14) is not valid around the center
of the laser cavity, especially at p = 0. Since the total field must be finite at the
center of the laser cavity, the singularity of the Hankel functions must be removed.
This can be done by choosing

A(0)e?Pe = —jB(0)e=3hore (3.18)
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Thus, for any p, # 0, the right hand side of (3.14) is singular at the origin. Con-
sequently, (3.14) must be considered for sufficiently large values of p. However, if
Po = 0, one may consider the validity of (3.14) for all values of p. To solve (3.14)

we use two different approaches described as follows

First approach
In this approach we take advantage of the fact that E™*%(p,z) is a nearly normal
radiation field. By nearly normal, we mean that the form functions F.,(z) of the

spectrum of the radiation field satisfy the following equation

dfzfﬁ" +e(2) k2 Foy =0 (3.19)

Using (3.19) in (3.14), it is reasonable to assume that

@ 18 1

-~ el rad ~
(ap2+pap pz)E (pyz) =0

Consequently, (3.14) reduces to

2 frad z _ . .
0 Eazgpa ) + e (2)R2E™(p,z) = —kZn_(2)F(2)e®*H™ (B.p)A(p) +
ik3m, (2)F(2)e™#* H}" (B.p)B(p)
(3.20)

To solve (3.20), we use the Green’s function approach. Therefore, it is necessary
to find the Green’s function G(z; z’) satisfying

203 5. 5
TEZZ) | ek 6z ) = 8z - 2) (3.21)
in the unperturbed multilayer stack described by ¢.(z). The above equation also
has been used by Kazarinov and Henry in treating second-order DFB lasers with

straight gratings [60]. However, they solved it in a uniform space. We obtain the
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exact Green’s function using the transfer matrix method. The detailed derivation

is given in Appendix D.1. Thus, solving (3.20) leads to
E™(p,z) = h_,(2)e"* H (Bop) — jh,(2)e ™ H," (Bop) (3.22)

where

ha(e) = =K [ G 2) () F(2) a2 (3.23)

If one substitutes for E™4(p, z) in (3.13), one obtains

(pz) 0 L[ L | AR |
fo,2) | | £ 9 (p,z) t%)(p,2) | | B(p)
where
t (p,2) =8, (pr2) =57 ruu(py 2)he (2) PV (Bop)  (3.250)
9.0, 2) = 4. (pr2) — 5 ran (py 2)hy (2)€¥ P2 B (B,p) (3.25b)

The coupled-mode equations in (3.24) are obtained based on the almost phase
matching condition between slowly varying terms. They are exact in the limit of
the validity of large argument approximation for the Hankel functions. The z-
dependent part can be eliminated by multiplying both sides of the above system
of equations by f'(z) and integrating from —oo to co. This procedure reduces the
equations in (3.24) to a system of differential equations with variable coefficients.
Thus, they can not be solved analytically. However, they can be more tractable if
we substitute for the Hankel functions in (3.24) by their asymptotic functions given

in (3.15).

To see the range of p such that the asymptotic behavior is valid, it is necessary
to consider the Hankel functions in more detail. We have

H" (Bop)(z) = J,() + i N, (<) (3.26a)
H (Bop)(z) = J,(z) — jN,(z) (3.26b)
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Figure 3.5: J,(z) and its asymptotic function

where J,(z) and N,(z) are the first-order Bessel function of the first and second
kind, respectively. N,(z) is the so called Neumann function. For large values of z,
if one uses the asymptotic series expansion of J,(z) and N,(z), from the leading

terms one obtains [108] (p. 462)
lim J,(z) = ,/%sin(z - g) (3.27a)
lim N, (z) = —‘/—z—cos(z - g) (3.27b)

In Figs. 3.5 and 3.6, the exact values of the first-order Bessel functions is compared
with their asymptotic values. As illustrated, for those arguments larger than 6, the
first-order Hankel functions can be replaced by their asymptotic values without
loosing the accuracy. This means that in practical cases this replacement is valid
for p > 0.5 pm, i.e., only one grating period. Especially, this approximation is valid
for DBR lasers.

For circularly symmetric beam, the near field radiation field around the center

of the laser is negligible. This is so, because for circularly symmetric beam the field



CHAPTER 3. THRESHOLD ANALYSIS 7

0.5

-0.5

— N;(x)
-1y --- Asymptotic function -

|
-

-2 L

Figure 3.6: N,(z) and its asymptotic function

at the center of the laser vanishes due to the asymmetry of the field. In addition,
the guided modes can not interact properly with the grating to produce radiation
field. Therefore, as far as the laser operation and the radiation field are concerned,

one may substitute the Hankel functions in (3.24) by their asymptotic functions.

This substitution reduces the coupled-mode equations in (3.24) to a system of
differential equations with constant coefficients. The details of the derivation is
very straightforward. The p-dependent terms from both sides of each equation are
canceled, then the equations are multiplied by F (z) and integrated from —oo to
oo. In addition, if one defines the detuning factor é by

5=8-B. (3.28)

and substitutes 28,6 for B2 — B2, one obtains the final form of the coupled-mode

equations as follows

dA ; r r

& |_ |92~ j6+ ®i1-y Koy T 5 (3.29)
dB

dp

r
(-11)

[ A(p)

34 kK, —-gt+a+jd—-=« B(p)

(-1-1)
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where
2 *® ~
a= g2 [ () (3.30)
9= [ d@F ) (3.308)
Ksa =—J'2k§ / " naa()FA()dz (3.30c)
2 hat -~
S = g [ Maa(Dhaa(2)F(2)dz (3.30d)

The coupled-mode equations in (3.29) with the coefficients defined in (3.30)
are exactly those equations which appear in treating the conventional second-order
DFB lasers. This is the direct consequence of the asymptotic behavior of the Hankel
functions and special form of the coefficients chosen in (3.10). An interesting feature
of the coupled-mode equations in (3.29) is the modification of the coupling factors
by introducing first-order Bragg diffraction effects & ,, «1)- These factors account

for coupling to the radiation field.

Symmetrical and asymmetrical grating structures are defined such that n_.,(z) =
Nm(2) and 7_m(z) = —7m(2), respectively. For either symmetrical and asymmetri-
cal gratings the diagonal elements of the first-order coupling factors are equal. This
can be easily seen from (3.23) and (3.30d). In fact, irrespective of the shape of the

symmetrical or asymmetrical grating, we always have

K =K (3.31a)

(1.-1) (—-141)

K =& (3.31b)

(x1) — T(=1,-1)

Eq. (3.31a) guarantees that for symmetrical and asymmetrical gratings the eigen-

values of the coefficient matrix in (3.29) are negative of each other; that is,

Y2 T :t‘y = :h\/(g —a —]6 + n(x,_l))z - (K'(l,x) + "2)(“(1_;) + IC_,) (332)
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Therefore, according to the theory of the system of linear differential equations [62],

the solution of (3.29) can be written as

[ Ay | _ [ Kito—pa) Lito=s) ] [ A(pe) ] 133
B(p) L_(p—pa) K-(p—pa) | | Blpa)
where p, is an arbitrary reference radius and

La(p = pe) = £y + ) L P) (3.342)

~
. shy(p — pa)

Ki(p—pa) =chy(p—ps) £(g—a—jé+ K(l,-l,)——jy—— (3.34b)

Solution in the form of (3.33) and (3.34) have two advantages: first, they are

not sensitive to the sign of 4. The sign ambiguity in the exponential form of the

solutions must be solved. Second, the characteristic equation for laser cavity can

be easily found by applying suitable boundary conditions on the mode amplitudes.
In particular, it is very well suited in dealing with DBR lasers.

Second approach
In this approach, in order to solve (3.14) for E™¥(p, z), we write E™%(p,z) as a
superposition of radiation modes. That is,

Ed(p,z)= 3 / Ri(p; s') Fi(z; ') ds' (3.35)

i=s,c” 0

where 7 = s, ¢ stand for the substrate and cover modes, respectively. F;(z;s) is the
normalized form function of the radiation mode in the unperturbed waveguide and
satisfies the following differential equation (see Appendix A.6 )

d?Fy(z;s) +

1,2 le-(2)kZ — BE(s)|Fi(z38) =0 i=s,c (3.36)

where

Bi = /e k2 — s? i=3s,c (3.37)
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Moreover,
/ Fo(z;8)F(28') dz = 0 (3.38a)
/ Fi(z;8)F(z;8')dz = §(s - 8') (3.38b)
Substituting (3.35) into (3.14), multiplying both sides of the resulting equation
by F?(z;s) and integrating from z = —oo to oo result in the following equation for
Ri(p;s)
g 19 1 2 ; 2
Z oL 7= A ne = R® (@ ; -
(3 + 32— )| Rpis) = B (Bop) Al
FhO(s)R (Bop)B(p)  i=s,c
(3.39)
where
3 2 4 A e
WQs) = K [ m(2)P()Fi(z39) d (3.40)
R (Bop) = P H™ (B.p) (3.41a)
€3 —3Bop g1
K (Bup) = P2 B (B,0) (3.41b)

Equation (3.39) can be solved by the Green’s function approach. The Green’s

function G(r,p’; s) satisfies the following differential equation

2 16 1 NS P
5t 2= 5+ 86| Gloustio) = 2ot - ) (3.42)

In Chapter 5, we will explain about more general Green’s function in the radial
direction. From this general expression, it can be seen that the Green’s function

satisfying (3.42) can be represented by the following expressions

(a) For B%(s) # 0

Glp, p's )i (—3y/~Bs)e " B, (~5\/=B%(s)p") (3.43)
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where p° and p” denote the smaller and the larger values of p and p’, respectively.
(b) For B%(s) =0
<

lp
G(p,p'ss) = 357 (3.44)

Therefore,

. L Z o L
Ri(p; s) = kY)(s) /a Gpr s )R, (Bop') Alp')p'dp’ ~ RSN (s) /a k. (Bop")B(p')p'dp’
(3.45)

where a is chosen such that for p > a the almost phase matching condition is valid.

L is the length of the laser cavity.

Eq. (3.45) states that R;(p;s) can be obtained in terms of A(p) and B(p).
Consequently, using (3.35), £7%¢(p, z) can be expressed in terms of A(p) and B(p).
Now, one may use the perturbation approach used by Yamamoto et al. [59] to
obtain the coupled-mode equations between the amplitudes of the guided modes.
That is, by ignoring the coupling between the guided and the radiation modes
the amplitudes of the guided modes can be obtained first. Then these amplitude
functions can be used to calculate the radiation field. From the calculated radiation
field, the coupled-mode equation for the amplitudes of the guided modes can be
modified. In order to improve the accuracy, the improved coupled-mode equations
can be solved to obtain a better estimation of the radiation field. Continuing this

procedure a self-consistent solution can be obtained.

Before concluding this section, we mention that there is still an other possibility
in dealing with the circular-grating lasers. To this end, it is more convenient to

write (3.6) in the following form

0*Ey, 10E 1 O*E,
¢, 202 lp 9%

3t T p Op  p 52 (2 KBy = —Ae(p 2)kIE, (3.46)
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The solution for E4(p, z) can be written as

Eup,2) = UGG + T [ Rilpio)Fi(zis) ds (3.47)

i=s,c

where F(z) is the normalized form function of the fundamental guided modes sat-
isfying the eigenvalue problem (3.11). Moreover, Fi(z;s) is the normalized form
function of the cover and substrate radiation modes which is the solution of (3.36).
The differential operator on the left hand side of (3.46) is of the type of Laplacian
operator. Since this operator is separable, the solutions for U(p) and R:(p;s) can
be obtained by Green’s function method. This in turn leads to the infinite set of
the coupled-mode equations between the amplitudes of the guided and radiation
modes. Since (3.46) is a special type of the more general equations treated in

Chapter 5, more detailed discussion about this method is given in that chapter.

3.4 Threshold Analysis of Circular-Grating DBR

Lasers

In this section, we apply the formulation developed in the preceding section in the
investigation of the threshold gain and threshold current of circular-grating surface-
emitting DBR lasers. The cross sectional view of this structure is illustrated in Fig.
3.7. The central uniform active region of radius p, is surrounded by the grating

region, p, < p < p,. In the central region we assume that
Ey(p2) = A(0)H,” (B,p)F, () — iB,(p)H,” (B,p) F\ () (3.48)

where F,(z) is the form function of the guided modes in the central unperturbed

waveguide with eigenvalue 8,. Moreover, in this region we have Ky = Ke2 =
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Figure 3.7: The cross section of a circular-grating DBR laser

6 = 0. Therefore, from (3.33) and (3.34), it can be easily seen that

[ A,(p)

elor == )e=re) 0 A (p.)
B, (p)

0<p,p. <p,
Bl(po)

0 e_(g1 —a, )(P-Pc)

(3.49)
with A,(0) = —jB,(0). In the region p, < p < p2, E4(p, z) can be written as

Ey(p,2) = [0 F(z) + &P°h_,(2)|A(p)H. (Bop) -
jle™#e0= F(z) + ek, (2)| B(p) H," (Bup) (3.50)

where all the parameters have been defined in Section 3.3. Moreover, A(p) and

B(p) can be obtained from (3.33) and (3.34) with g = 0.

To obtain the characteristic equation of the laser, it is necessary to describe the
interface between the active and the passive region at p = p,. This can be done by
matching the boundary conditions at p = p,. More precisely, continuity of the tan-
gential components of the electric and the magnetic field requires that both E4; and

% be continuous at p = p,. In the course of matching the boundary conditions,
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however, we ignore the radiation the radiation field in the grating section. There-
fore, the boundary conditions are matched based on the assumption of existence
of the guided modes in each region only. This assumption allows us to introduce
the coupling factor between the guided modes in each region [32]. The presence of
the radiation field causes a negligible reduction of the coupling factor. Moreover,
the radiation field in the grating section is produced by the guided modes in that
region and it is not independent of those modes. This fact makes our assumption
quite reasonable. Therefore, by introducing the power coupling factor efficiency C

between the central active region and the grating section as [32]

4.Boﬂ1 = 4 N ?
C= G ay ( /_ Fl(z)F(z)dz) (3.51)
we have
—3(B, ~Bo+ 5282,
Ap) | _ | VORI 0 AP | 5
- (B, —B,+ 222 :
B(p,) 0 /BP0 || B (p,)

Note that for real values of 3, and ,, we have

(Bo+B,)* > 48,8, (3.53)

Moreover, according to the Schwarz’ inequality for real functions [63], we have

( /_ : F(2)F(2) dz)2 < /_ : FY(z)dz /_ : F(z)dz =1 (3.54)

Consequently, (3.53) and (3.54) guarantee that C < 1.

Finally, let the facet at p = p, be described by the reflection coefficient factor
I such that

— je™#%2 B(p,)H,” (Bop,) = e A(p,) H,” (Bop) (3.55)
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On substituting of large argument formulas for Hankel functions, (3.55) can be

rewritten as

=0 (3.56)
B(p,)

Now by successive application of the defined transfer matrices and the boundary

[ [e-32Belp3—r0)  _1 ] [ A(p2)

condition at the center of the active region, we obtain

1
[ De=i28e(o3-p0) 1 ] TKT,

} A,(0)=0 (3.57)
J

where T is the 2 x 2 matrix defined in (3.34) and (3.35) with p = p, and p, = p,. K
and T, are also 2 x 2 matrices defined in (3.52) and (3.49), respectively. It should
be noted that T; can be obtained from (3.49) by substituting p — po = p;. The
nontrivial solution of (3.57) requires that the coefficient of A4,(0) be zero. In fact,
the coefficient of A4,(0) is the characteristic equation of the circular-grating DBR
laser. The unknowns g, and § are the solutions of the characteristic equation. Each

(g,,6) corresponds to a laser mode.

To obtain the threshold current density, it is necessary to consider the dynamics
of the carrier density. In the absence of carrier diffusion and transport effects, the
carrier rate equation is as follows [78] (pp. 35-36)

ON(r,t)  J(t)
8t  ed

[AN(r,t) + B, N*(r,t) + C., N(r,t)] — R.S(r,t) (3.58)

where J(t) is the injection current density, d is the active layer thickness, and e

is the magnitude of the electron charge. A, B

sy and C_  are the non-radiative,

effective bimolecular and effective Auger recombination coefficients, respectively
The last term in (3.58) is due to stimulated recombination of carriers with intra-
cavity photon density S(r,t) and stimulated emission rate R,. Under steady state
conditions, the left hand side of (3.58) is zero. Moreover, at near-threshold, light is
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mainly due to the spontaneous emission and the term B, N*(r,t) has a dominant

effect in carrier recombination. Therefore, at threshold we have
Jin = edB,, Nj, (3.59)

where N, is the carrier density at threshold.

In view of (3.59), we need N, to obtain Jy;. To this end, we assume that the

peak gain varies linearly with carrier density N. That is,
g(N)=T,a(N — N) (3.60)

where g(N) is the field gain, a is the differential gain coefficient and N,. is the
injected carrier density required to make the gain medium transparent. Iy is the
confinement factor accounting for spreading of optical field beyond the active region.

Now from (3.59) and (3.60), we have
Jn=edB,, (IEL“ + N,,)? (3.61)
ga

where g,, = g(N,,). Finally, using I, = Wprth yields

In = wpled B, ( g"*a + N )? (3.62)
g

r

After obtaining the relation for the threshold current for the laser, in the next

section, we investigate an illustrative example.

3.4.1 Numerical results

As an example, we study a particular circular-grating DBR bulk laser shown in
Fig. 3.8. As illustrated the grating shape is rectangular. It should be noted that

a rectangular-shaped grating is a symmetrical grating. Therefore, we have k™ =
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05 um n=3.34
<
r~
n=3.17 Gain region
Figure 3.8: A circular-grating DBR bulk laser
K7 For this particular geometry, the dependence of the real and imaginary

(£1,21)°

parts of K" on grating the grating duty cycle { are shown in Fig. 3.9. The reference
wavelength is assumed to be A = 1.55 pm. As illustrated, the real part of k" is
negative for all values of £. This result is completely expected due to the radiation
loss. For the purpose of the comparison, the dependence of the radiation coupling
factor ™ and the imaginary part of the second-order Bragg diffraction coefficient
K., on the grating duty cycle are depicted in Fig. 3.10. To increase the radiation
power, the first-order Bragg coupling coefficient must be increased. This coefficient
reaches its maximum value around § = 0.5. For this value of £, however, the
second-order Bragg diffraction coefficient «_, is very small. This in turn leads
to higher values for the threshold gain. Therefore, optimization is a matter of

compromise between the radiation field and the threshold gain.

The threshold gain and threshold current of the laser geometry shown in Fig.
3.8 are studied as a function of the reflection coefficient I’ of the facet at p,. The
results are obtained for two values of the grating duty cycle. The parameters used

for the numerical calculations are listed in Table 3.1.
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Figure 3.10: Radiation coupling factor and second-order Bragg diffraction coeffi-
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PARAMETERS VALUES

Effective bimolecular Carrier recombination coefficient (B.ss) | 1.0 x 1071 cm?3 s~

Gain coefficient (a) 2.5 x 1078 ¢m?
Transparency carrier density (Nr) 1.5 x 10 cm 3
Absorption and scattering loss of the central region («,) 10 cm™!
Absorption and scattering loss of the Bragg reflector (a) 5cm™!

Table 3.1: Parameters used in the analysis of the circular-grating DBR laser

The threshold gain and threshold current as a function of the reflection coeffi-
cient for § = 0.7 are plotted in Figs. 3.11 and 3.12, respectively. The dotted lines
correspond to the threshold gain and threshold current of the laser if one ignores
the first-order Bragg coupling coefficients. As is expected, coupling to the radiation
field causes additional loss and increases the threshold gain and threshold current.
Furthermore, the above threshold parameters decrease as the reflection coefficient
[ of the facet increases. Although in some cases it is not a general trend, how-
ever, in this case since the DBR section is passive, the larger values of I' result in
less power coupling to the outside of the laser cavity through the facet, hence less
threshold gain and threshold current. Note that, in general, this trend is not true.
The same curves are plotted for £ = 0.4 in Figs. 3.13 and 3.14, respectively. As
illustrated, for this case, the corresponding threshold parameters are higher than
those for § = 0.7. Referring to Fig. 3.10, in this case the radiation coupling factor

is larger than that for £ = 0.7. However, increasing of the threshold parameters is

mostly due the change of the sign of the second-order Bragg diffraction coefficient.
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3.5 Summary

In this chapter, for the first time, we have developed a general formalism to con-
sider the effect of the radiation field in the performance of circular-grating surface-
emitting lasers. For the sake of mathematical simplicity, we have assumed that the
laser field is azimuthally invariant. Therefore, this formalism is two dimensional in

nature.

Based on the large argument approximation for the Hankel functions, we have
derived the coupled-mode equations governing the behavior of the amplitudes of the
guided modes. Especially, the first-order Bragg diffraction coefficient which is the
result of the joint interaction of the guided modes with the grating has been derived
using the Green’s function formulation. The Green’s function has been derived by
the transfer matrix method. In general, the radiation coupling coefficient depends
on the depth and the duty cycle of the grating. It has been shown that there is a
trade off between the radiation power and the laser feedback. Moreover, in almost
all cases, the real and imaginary parts of the radiation coupling are not larger
than 10 cm~!. We have used this new formalism to obtain the threshold gain and

threshold current of a circular-grating DBR laser.



Chapter 4

Rate Equations of Second-Order
Distributed Feedback Lasers

4.1 Introduction

In the previous chapter the modal analysis of circular-grating lasers has been
treated. This type of analysis is based on a linear model. In fact, we have ob-
tained the eigenvalues and eigenvectors of a linear operator. This linear analysis is
valid only in the threshold region. Essentially, lasers like any other oscillators are
nonlinear in nature. Especially, this behavior manifest itself in the above-threshold
region. Moreover, in the modeling of the DFB lasers several unique distinctive
features must be taken into account. Among them are: (1) the spatial dependence
of the photon density causes nonuniform carrier density and gain; (2) the coupling
of the spontaneous emission into the lasing modes is affected significantly by the
distributed feedback. Furthermore, as in other types of semiconductor lasers the

carriers undergo complex diffusion and transport processes, which also lead to spa-

93
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tially nonuniform carrier density and thus inhomogeneous complex index profile.
All these factors need to be taken into account in the modeling and analysis of the

semiconductor lasers.

To model the static behavior, almost all existing DFB laser models use either
the coupled-wave theory (CWT) [65], [66] or the transfer matrix method (TMM)
(67], [68], which are practically equivalent. For the dynamic analyses, there are
essentially two approaches: the traveling wave approach and the standing-wave ap-
proach. The former treats interaction between the contra-directional propagating
waves along the laser cavity in time and frequency domain. Vankwikelberge et al.
[69] develop a coupled-wave formulation in time domain. The governing equations
for the optical fields are partial differential equations for the forward and the back-
ward propagating wave as function of z and t. Static, small signal dynamic, and

noise characteristics of diode lasers with distributed feedback are analyzed.

A similar method is presented by Zhang and Carrol [70] and Zhang et al. [71]
who solve the coupled-wave equations by the power matrix method (PMM) which
is a mixed time/frequency domain model and the finite-difference (FD) method,
respectively. A good comparison between these two methods is made by Tsang et al.
[72]. Static and small/large signal dynamic behavior is simulated by these methods.
Another method of this category is the transmission-line model (TLM) developed by
Lowery et al. [73]. The TLM divides a DFB laser into a series of sections and then
describes the interactions between the contra-directional propagating optical fields
and the carriers within each section by using an equivalent circuit. Comparison
among the different approaches appear to be in fairly good agreement [72], [74],
and [75].

Standing-wave approach, on the other hand, utilizes the fact that the optical

fields in a DFB laser manifest themselves as cavity modes with distinct resonance
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frequencies. In this model, the conventional rate equations are a set of coupled
ordinary differential equations that describe the optical field, carriers (both elec-
trons and holes) and their interactions [76]-[80]. These rate equations are, however,
derived based on the assumption that the optical field may be represented by a

linear combination of the normal modes in a closed and passive cavity.

In the case of semiconductor DFB lasers, this assumption is not valid. This is
because the laser cavity is open, especially for the DFB lasers with low loss L.
Moreover, the field within the cavity changes dramatically as a function of injection
current due to spatial and spectral hole burning. Therefore, improved rate equations
based on more realistic models are needed to reflect the characteristics of the DFB
semiconductor lasers. Furthermore, an underlying assumption in the conventional
rate equations is that both the carrier and the photon densities are uniform over the
entire laser cavity and therefore they are functions of time only. This approximation
is acceptable for many practical semiconductor lasers, but becomes questionable for

DFB semiconductor lasers.

To treat nonuniformities in the carrier and photon distributions that occur in
a wide range of semiconductor lasers, a variety of modifications of the conven-
tional rate equations have been made [81], {82]. Many of these modifications are
phenomenological and lack solid theoretical basis. Tromborg and co-workers devel-
oped a rigorous rate equation formulation by using the Green’s function method in

frequency domain [83], [84], an approach originally introduced by Henry [85].

Recently, an alternative approach to the optical rate equations by using a
standing-wave in time domain, similar to that employed in the laser theory [77]-
[80], has been presented [86]-[89]. Different from the conventional theory for the
semiconductor lasers in which the optical fields are expressed in terms of the normal

modes of a closed and passive cavity, the fields are represented by the normal modes
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of an open and active cavity, which are adiabatic functions of the injection current.
In comparison with the Green’s function approach which starts in the frequency
domain, the modal approach appears to be more straightforward and physically

more intuitive.

In all the modified standing-wave time domain approaches reported so far {86]-
[89], only DFB lasers with first-order gratings have been considered. In this chapter
we apply this method on DFB lasers with second-order gratings. Two dimensional

DFB lasers with straight and circular-gratings are treated on the same framework.

4.2 Time Domain Standing-Wave Approach

We start from the fundamental governing equation for the envelope of the laser

field in its most general form (see Appendix E.1)
j2w, OE

—_e —
vz 75t

V x V x E — k¥(e,, + x)E + = pow?P* (4.1)

where E and P* are the slowly-varying envelopes of the electric field and the po-

larization associated with the spontaneous emission source, respectively. That is,
E(r,t) = Re {E(r,t) e} (4.2)

P* = Re {P*(r,t) ™t} (4-3)

w, is a reference frequency, v, = —\/ﬁ, &r, is the Fourier transform of the dielectric

constant at w = w,, x is the susceptibility of the lasing medium, and ¢, is the group

dielectric constant given by

1 | Be,
€v=€~+§[a—w] wr
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As can be seen the spontaneous emission is the main source for initiating the
laser oscillation. Therefore, as one might expect, the envelope of the electric field
is a random process. The statistics of E(r,t) heavily rely on that of P*(r,t).
The solution of the above equation in its most general form is a challenging issue.
However, for the two dimensional problems in which either 5y = 0 or % =0, it can

be solved by using either the traveling wave or the standing wave approach.

The essence of the standing wave approach in solving (4.1) is based on the as-
sumption that essentially two processes happen during the lasing oscillation. First,
the cavity modes form as the adiabatic functions of the injection current. Then the
amplitudes of the cavity modes fluctuate as a result of variation of the injection
current. Based on this assumption it is natural to assume that

N
E(r,t) = )_ C: A:(t)El(r) (4.4)

i=1
Eq. (4.4) implies that the random function E(r,t) is expressed by a complete set
of deterministic basis functions of the the spatial variables only. The amplitudes
of these basis functions are complex-valued function of time which are not deter-
ministic. The constants C;’s are chosen such that the total number of the photons

inside the laser cavity, S(¢), can be expressed by
N

5(t) = ; |A(e)[? (4.5)
The spatial-dependent basis functions are the solutions of the following set of

equations

V x E* = —jwu ,H" (4.6)

V x H" = jwe, (e, + X — &)EP (4.7)
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where y is the susceptibility of the lasing medium under the constant bias and is

defined by the following relation
x(r,t) = x(r) + Ax(r,t) (4.8)

&: is a constant resulting from the separation of the temporal and spatial variables.
Physically, this parameter is related to the steady-state net gain and frequency shift
of the lasing mode. From (4.7) and (4.8), it can be seen that E* is the solution of

the following eigenvalue problem
V x V x E* — kX(er, + X)E* = —k2 & ED (4.9)

Substituting (4.4) into (4.1) and using (4.9), we obtain

k? Z CiAi(t)(er, +X+Ax— E,)E'"(r)+ eg(r) Z C; %fE"‘(r) Eow?P* (4.10)
i=1 v
In order to obtain the equations for the amplitudes A;(¢), one may define suit-
able inner product and obtain adjoint eigenmodes of E*(r) and H™(r). Then,
taking inner product of the adjoint eigenmodes with (4.10), we may obtain a set of
coupled first-order ordinary differential equations for the amplitude functions. This
approach is very similar to the moment method in the electromagnetic theory [90].
These are the basic premises of the time domain standing-wave approach in dealing
with the multimode lasers. However, we do not go further in treating multimode

lasers. Instead, we follow the above approach to develop suitable rate equations in

the investigation of second-order DFB lasers under single-mode operation.
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4.3 Derivation of the Rate Equations

4.3.1 Field rate equations

In general, a normal mode of a DFB laser is a combination of the modes of the
unperturbed cold cavity of the laser. By unperturbed we mean that no corrugation
in the boundary, gain, or loss present in the cavity. Any mode of semiconductor
lasers either of Fabry-Perot or DFB type consists of the fundamental guided modes
traveling in the opposite longitudinal directions. These guided modes are of energy
type. They are responsible for the total number of photons inside the laser cavity
due to the stimulated emission and the spontaneous emission coupled to the laser
mode. Different mechanisms of the loss, gain, and perturbation from the ideal
geometry manifest their effects on the mutual interaction between the amplitudes
of the guided modes. In fact, the exact behavior of these amplitudes strongly

depends on the nature of the laser mode.

In a second- and higher-order DFB laser, the mutual interaction of the guided
modes with the grating excites the radiation modes of the unperturbed waveguides.
The inclusion of these modes in the description of the laser mode is necessary.
However, these modes are of the power type fields and are party responsible for the
escape of the photons from the laser cavity. Therefore, this loss mechanism changes

the interaction between the fundamental guided modes.

Let us assume that a second-order DFB laser is single-mode and lases in the
fundamental LSE or TE mode. For a two dimensional problem, the electric field
has only one component. In the rectangular coordinate system, Eq. (4.1) reduces
to

j2w, OFE, .
v—zeg Bty = —p,,way (4.11)

v:zEy + k:(e"r + X)Ey -
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where
8 82
V::z = 35 ryry
O0z? + 0z
In the rectangular coordinate system, we assume that the transverse direction is
along the z axis. In the cylindrical coordinate system with the z axis normal to
the laser junction, we have
]2w,. 6E¢
BEs + k(e + x)Eg — 2 S99, ot ~HoW, rP¢ (4.12)

where

0 10 1 8°
=3¢ p0p 5 0o

To illustrate the basic ideas, we assume a second-order DFB laser with straight
grating. The circular grating can be treated in a similar manner. To obtain the
laser field satisfying (4.11), we assume that the slowly-varying amplitude of the

electric field can be written as
E,(z,z,t,I) = CLA(t)¥(z,z,N) (4.13)

where we have considered E(z, z,¢,I) as a function of the injected current. ¥(z, z, N)
is the carrier dependent mode function of the pumped laser cavity. C, is a normal-
ization constant to be determined such that A(t) can be related to the total number
of photons inside the cavity. It should be emphasized that the photon number is
used only as a convenient measure of the optical energy and power inside the cavity.
Later we will show that how the radiating power from the facets and the grating

can be related to the photon number.

In this section, we obtain the rate equation for A(¢). To this end, we substitute
(4.13) into (4.11). Thus

Z‘P 2 2
A(t) (9— + %-11’2-) + K2 (e, + x)A(£)¥ — ’2& ‘IJ% = Bt (a14)
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Let us assume that ¥(z, z, N) be the eigenvector of the following eigenvalue problem

O+ T k(e + %) = KN (115)
where {(N) is a carrier dependent constant resulting from the separation of the
temporal and spatial variables. Recall that this parameter is related to the steady
state net gain and frequency shift of the lasing mode. x.(z, z) is the static part of

the susceptibility of the lasing medium. That is, we assume that
x(z, z;t) = xo(z,2) + Ax(z, z;t) (4.16)
Substituting (4.15) and (4.16) into (4.14), we have

2
M = K+ AU A0 + B% P )

'Zv—z‘;seg(z, 2)¥(z, z)

Eq. (4.17) is the fundamental equation for the slowly-varying complex ampli-
tude function of the laser based on the two-dimensional model. So far, no assump-
tion has been made regarding the type of the laser. It can be used for Fabry-Perot,
DFB, and DBR laser. The laser type comes into the picture through the eigen-
value problem in (4.15) and the slowly-varying of the spatial amplitudes in the
longitudinal direction. Eq. (4.15) is very similar to the eigenvalue problem that
we have used in the threshold analysis of the semiconductor laser. However, the
main difference between (4.15) and that one used in the threshold analysis is that
the eigenvector of the former is carrier dependent. That is, stimulated emission
has the central role in the formation of the cavity mode. This in turn necessitates
consideration of a nonlinear gain model. Moreover, due to the stimulated recom-
bination, the nonuniform intensity distribution gives rise to the nonuniform carrier
distribution. Therefore, nonuniform gain profile resulting from spatial hole burning

must be taken into account.
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Let us use (4.17) to obtain the equation for the amplitude of the mode of a
second-order DFB laser. The starting point is to assume a general form for the
eigenvector of the associated eigenvalue problem in (4.15). To this end, first we

assume that the grating period is A and
€, = e:u(z) - Jeg(z) + ée(z, 2) (4.18)

€.,(z) is the dielectric constant of the unperturbed geometry, i.e., the multilayer
structure in the absence of the grating. € (z) accounts for the dielectric losses.
é¢(z, z) is deviation of the dielectric profile from the unperturbed structure due to
the presence of the grating. It can be expressed by the following Fourier series
be(z,2) = D Nm(z)eImPelz=20) (4.19)
m#0
where z, is a fixed point accounting for the phase shift of the grating and

_m

Bo = A (4.20)

Having defined the above parameters, we write the eigenvector ¥(z,z, N) as
¥(z,z,N) = ¥9(z,z) + ¥z, 2) (4.21)

¥9 is the combination of fundamental coherent guided modes traveling in the oppo-
site directions. These two coherent modes are produced by the stimulated recom-
bination. In addition, each guided mode interacts with the grating in first-order
diffraction. This joint interaction provides a mechanism that causes photons to
escape from the laser cavity. This loss mechanism can be considered by including
the radiation field, ¥™(z, z), in the laser eigenvector. Following the conventional

method in treating second-order DFB lasers [60], we write

U9(z,z) = Ay(z) e Pl==2) F(z) + Ay(z) ePo(>~%) F(z) (4.22)
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where F(z) is the normalized form function (transverse profile) of the guided modes

satisfying the eigenvalue equation

[ﬁ + eiu(:c)kf] F(z) = B*F(z) (4.23)

dz?
subject to the continuity of ' and its normal derivative at the interfaces of the

unperturbed multilayer waveguide. By normalized we mean that

/ " FY(z)dz = 1 (4.24)

The interaction between the laser field and the laser medium can be considered
by mutual interaction between the slowly-varying amplitudes of the guided waves.
This interaction is partly due to the presence of the radiation field. The ultimate
goal is to obtain this interaction in the presence of the radiation field. To this
end, we substitute (4.21) and (4.22) into (4.15) and make use of the slowly-varying
amplitude approximation. By collecting slowly-varying terms with respect to z it

can be shown that
az‘I,rad
oz?

where we have considered that €, xo, and ¢ are negligible in comparison with ¢,..

+ &uky U = — k[ Af(2)n-1(2) F(2) + As(2)m(z)F(2)] (4.25)

Eq. (4.25) clearly shows that the the guided modes are the source for the radiation
field. That is, radiation field is not independent of the guided modes. That is why
we have used the same time varying amplitude for the radiation field. Eq. (4.25)

can be solved by obtaining the Green'’s function satisfying
3*G(z;z’)
O0z?

The Green’s function satisfying the above equation can be obtained easily by using

+ e, (2)k2G(z;2') = 6(z — ) (4.26)

the transfer matrix method as described in Appendix D.1. Thus solving Eq. (4.25)
for Em*9 leads to

E"(z,z) = Ag(z)h-1(z) + As(2)ha(2) (4.27)
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where

hai(z) = —K? / Z G(z; 2') nas () F(2')dz" (4.28)

Radiation field expressed by (4.27) in turn interacts with guided modes via the
first-order diffraction. Considering these mutual interactions leads to the following

modified coupled-mode equations for the slowly-varying amplitudes of the guided

modes.
F| _ | e i+ +iag)g+E +xy KT + 2
dd, Koy + K a+jé—(1+jay)g —& — g,
Ag
X (4.29)
Ay

where we have assumed that
Xo = (—ay + 5)x: (4.30)

a,, is the so-called linewidth enhancement factor which is also known as the Henry
factor. The carrier-induced refractive index changes of the active medium is con-

sidered by the «,, factor. Furthermore,

§=8—5, (4.31a)

¢ = ;Zié (4.31b)

a= 2’;30 /_ _ (@) FY(=)de (4.31c)
9= 134 / x. F¥(z)dz (4.31d)

ki = 2;:3 / : nea(2) F¥(z)dz (4.31¢)
K= ﬂ’zz /_ _n(2)h_,(2)F(e)de (4.31f)
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= o [ n@h @@ (4.31¢)
Ky, = ;’ﬂ’? /_ : 1_(2)h_, (z)F(z)dz (4.31h)
Kgp = —2]ﬂI:° ./:: 7_.(2)h,(z)F(z)dz (4.311)

After describing the general characteristics of the laser modes in a second-order
DFB laser, we return to (4.17). We will shortly show that it can be reduced to a

more tractable form. If we substitute for ¥(z, z) into (4.17), we obtain

12% —eg(z, 2)[ ¥ (2, 2) + Tz, z)]— = K2(€ + Ax)[¥%(z, z) + T A(t) + “Zj‘:c P*

(4.32)
The above equation should be valid for all spatial variables. However, due to the

O

different behavior in the transverse direction, the guided mode must be separated

from the radiation field. More precisely, one may write

J2w° —¢,(z, 2) P9z, z) = k(€ + Ax)¥9(z, 2) A(t) + 'ué—wa' (4.33)

0

It is interesting to note that (4.33) can be considered as the fundamental gov-
erning equation for the amplitude of the laser mode. At first glance, it might be
thought that the radiation field has been ignored in deriving (4.33). However, it
should be emphasized that the effect of the radiation field has been considered in a
self consistent fashion in the eigenvalue of the laser. Moreover, the radiation field
is not independent of the guided modes. It is the direct consequence of the lasing
action. Therefore, it does not provide additional information for predicting the

amplitude function.

As mentioned earlier, the laser operation heavily relies on the behavior of the
guided modes which are of energy type fields. Photon density inside the laser cavity
can be obtained from these fields. The coupled-mode equations in (4.29) completely
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reflect such a behavior. In fact, the effect of the radiation field is included in a self
consistent manner in the laser operation by considering it as a loss mechanism. This
means that as far as the laser operation is concerned, one may ignore the radiation
field in the analysis of second-order DFB laser provided that one includes the cou-
pling factor to the radiation field in the coupled-mode equations. Furthermore, the
spontaneous emission directly coupled to the radiation field couples to the guided
mode through first-order diffraction. This part of the indirect mechanism of noise
coupling is reflected through the modified longitudinal eigenmodes as will be de-
scribed later. More importantly, the use of standing wave approach is based on the
evolution of the laser mode which means that the cavity mode is considered in the
presence of the radiation field. Following the same reasoning, it can be shown that
(4.33) is not valid only for first- and second-order gratings. It is also valid for DFB
laser with higher-order grating.

It is more convenient to write (4.33) in terms of the refractive indices. Therefore,

let
€ (2,2) = n}(z, 2) (4.34)

Then, (4.33) can be rewritten as

; 2
? i‘;"n(z,z)ng(z,z)\pg(z,z)% = K€ + M)W (=, 2)A() + 2P (4.35)

where

ng(z, z) = n(z, z) + [%] w, (4.36)

In order to obtain the equation for the amplitude function, the spatial-dependent
part must be eliminated. To this end, we use a procedure which is very similar to
that used in the electromagnetic theory, the so-called moment method. However,
before that we define some terms. From now on by a laser eigenmode we mean the

longitudinal dependence part of the laser mode which is described by the guided
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mode. These eigenmodes are the eigenvectors of an open resonator operator which is
non-Hermitian or non-self-adjoint operator. Therefore, they are not energy orthog-
onal (with complex conjugation) [91]. However, the laser eigenmodes are biorthog-
onal (without complex conjugation) to a set of adjoint eigenmodes. The adjoint
eigenmodes correspond physically to the modes traveling in the reverse direction in
the same resonators [91], [92]. We will return to this point later. However, for the
time being, we use the concept of the adjoint modes to reduce (4.35) to a function

of time only.

First, it is natural to multiply both sides of (4.35) by the normalized transverse
profile (z) and integrate from —oo to co. After that we integrate the resulting

equation in the lateral direction. Thus,

ji‘:'wﬁ(z)ﬁa(z)'l’:(z)i—f = Ewle + To(2) Ax(2)E(2)40) + B2 (=) (437)

where w is the width of the laser in the lateral direction. We have also assumed that
Ax(z, z) is constant along the transverse direction and replace the overlap integral
of Ax(z,z) with the optical field by I';(z)Ax(z). Note that, for gain-guided lasers,
Iy changes along the longitudinal direction. However, for second-order gratings we
consider it fixed along this direction. ¥,(z) is the longitudinal eigenmode. #(z) and

fig(z) are defined such that

/_N n(z, z) ny(z, 2) F¥(z)dz = #i(z)R,(z) (4.38)

It is natural to choose #(z) and i (z) as the average values of n(z, z) and n,y(z, z),

respectively. Moreover,

= v / : P*F(z)dzdy (4.39)

Multiplying both sides of (4.37) by \If:(z), the adjoint eigenmode of ¥,(z), and
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integrating along the laser cavity leads to

dA _ e [f:[u Lo()AX(NI(E, (2)dz]
dt 2 foL ﬁ(z)ﬁg(z)'ll,(z)‘lf:(z)dz
wr g O (2)f(,t)dz

(4.40)

T 26,Cuw [Ei(2)7y(2) ¥, (2) ¥ (2)dz
where we have used
2 1
Vs =
Ho€o

Eq. (4.40) is the final governing rate equation for the amplitude function. This

equation and the coupled-mode equations in (4.29) along with the boundary con-
ditions at the laser facets are the fundamental equations predicting the dynamics
of the second-order DFB lasers. It should be, however, noted that the eigenvalue
§ and the normalization constant C, are yet to be determined. At first glance, it
seems that the only unknown in (4.29) is the complex number & which is related
to the eigenvalue £ through (4.31b). In fact, this is not the case. As mentioned
earlier, due to the spatial hole burning effect, the carrier density is affected by the
optical field and the photon density inside the cavity which are not uniform along
the cavity. Therefore, the spatial dependence of the laser gain must be considered
in the coupled-mode equations. To this end, we write (4.40) in a more convenient

form. We address this issue in the next section.

4.3.2 Rate Equations for the Photon Numbers and Phases

In the preceding section we have pointed out that the gain of the laser medium
depends on the photon density. Therefore, in treating the laser above the threshold,
it is usually more convenient to express the laser field in terms of the intensity and

the phase of the optical field. The stored energy in the laser cavity is proportional to
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the number of photons inside the cavity and is also proportional to the square of the
modulus of the field amplitude. Therefore, it is possible to choose the normalization
constant such that the complex amplitude A(£) can be related to the total number

of photons inside the cavity through the following relation

A(t) = 1/S(t)e?*®) (4.41)

where S(t) is the total number of photons of the laser mode inside the cavity.

From (4.41), one may write

dA 1 d¢
—= =3 A°(t)E+ IS A) (4.42)

Now

dA ..\ _1dS

At =5 +Jdt S(t) (4.43)

where we have used

S(t) = A(t)A*(t)

From (4.43) one may easily find that

ifl—f = 2Re { a4 A‘(t)} (4.44)
dgp 1 dA ,,
Fralrt { A (t)} (4.45)

If we multiply both sides of Eq. (4.40) by A*(t) and use (4.44) and (4.45), we obtain

s _ . { I+ To(2)Ax(2)]¥,(2)¥,(2)dz
dt Jo' #(2)q(2)¥,(2) ¥, (2)dz

} S(t) + Re{p(t)A*(t)} (4.46)

48wy [ I+ To=AXAE ()W (2)ds .
it 2R{ JE(2)ng(2)¥,(2) ¥ (2)dz } S(t)Im{p(t)A (t)} (4.47)

where
w, JE 'I’:(z)f'(z,t)dz

p(t) =~ 2¢,CaW [ 7(2)iig(2)¥,(2) T (2)dz (4.48)
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On the other hand, it can be shown [77] (pp. 306-307) that

1
< p(t)A*(t) >= §R" (4.49)
where < ... > denotes the ensemble average. R, is the ensemble average of the rate
of the spontaneously emitted photons into the lasing mode and will be determined

later. Since p(t)A*(t) is a complex random process, from (4.49), one may write

par(e) = Z2 T L inse (450)

with
< F,(t) >=< Fy(t) >=0 (4.51)
Carrying (4.50) into (4.46) and (4.47), we get

s _ Im{foL[E + Tp(2)Ax(2)]¥,(2)¥,(2)dz
dt i foL ﬁ(z)ﬁg(z)‘P,(z)\P:(z)dz

} S(t) + Rip + Fu(t)  (4.52)

dp _ _wep {f:[e + To(2)Ax(2)]¥(2)¥,(2)dz
dt 2 fy A(2)7g(2) ¥ (2) ¥} (2)dz

} + Fy(t) (4.53)

Egs. (4.52) and (4.53) are of the form of Langevin rate equations in the fluctu-
ation theory [93]. F,(t) and Fy(t) are the Langevin intensity and the phase noise
sources due to the spontaneous emission which cause fluctuation in the optical in-
tensities (or photon numbers) and phases of the lasing modes. It should be noted
that, in the presence of Langevin noises, S(t) and ¢(t) become stochastic processes.
Fluctuation in the phase of the laser field is the main source of the broadening of the
laser line. On the other hand, the change in the intensity also leads to the change
of the phase of the laser field [94]. Therefore, to calculate the line broadening due
to the spontaneous emission, the combined effect of the fluctuations in the intensity
and the phase of the optical field must be considered. This in turn calls for the

statistics of S(t) and ¢(¢). Since the Langevin forces are the random sources of the



CHAPTER 4. RATE EQUATIONS 111

field intensity and phase, the statistics of S(¢) and ¢(t) can be obtained in terms of
the statistics of the Langevin forces. In choosing F,(t) and Fy(t), it is commonly
assumed that the system is markoffian with zero mean. This assumption can be
completely justified in the semiconductor laser for which the spontaneous emission
is the major source of the fluctuations. In fact, the spontaneous emission is only a
correlated process for a carrier scattering time of order 10713 s, which is negligibly

short time [95].

In addition to (4.51), the Langevin forces satisfy the following general relation
[94]
< Fo(t)Fy(t') >= 2Dqp6(t — t') a,b=Sor ¢ (4.54)

where the so called diffusion coefficients D, satisfy

2Dss =2R,,S (4.55)

2Dgy =0 (4.56)
1R,p

2Dyy = 27S (4.57)

From the diffusion coefficients only the mean square fluctuation can be calculated.
To calculate the spectral linewidth it is assumed that the Langevin forces have
Gaussian amplitude distributions [95]. Since in this thesis we do not plan to do
noise analysis of the laser, we do not go into the details in treating the Langevin
forces. However, the ensemble average of the spontaneous emission, R,,, coupled

to the laser mode is very important in the laser operation.

To obtain R,,, we invoke the cross-correlation product of the noise polarization
P*(r,t) [96]
8 hnp(r) na(r) G(r) v, €, 5

wy

< P*(r,t) P (¢, t') >= (r—r')é(t —t¢) (4.58)
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where n, is the refractive index of the active medium. n,, is the inversion factor de-
scribing the degree of inversion [97]. This parameter is a measure of the incomplete
population inversion associated with the unoccupied levels of the lasing transition.
It is always larger than 1 and decreases with an increase of the pumping level.
For complete inversion n,, approaches unity. Under typical lasing conditions, it is
in the range of 1.5, ..., 2.5. G(z,z) is the intensity gain coefficient and % is the
reduced Planck constant. v, is the velocity of light in vacuum. Using (4.39) and
(4.58), one may write

>= BWhTy(2)na(2) 7a(2) G(2) voto

We

< f(z,t) f(,¢t) (z=2"(t—¢t") (4.59)

where n,,(z, z), n(z, z), and G(z, z) are considered constant along the transverse
direction. Thus the overlap of the product of these three terms with the optical
field is replaced by I';(2z)n,p(2) n(z) G(z). Now from (4.48) and (4.59), we obtain

2hw,v, o' T(2)nep(2)0a(2)G(2)| ¥, (2)[Pd2
CIw | foL ﬁ(z)ﬁg(z)\ll,(z)\II:(z)dzlz

< p(t)p"(t) >= S(t—t)  (4.60)

On the other hand, R,, is equal to the diffusion coefficient of the Langevin force
responsible for the fluctuation of A(t) [97]. That is,

< p(t) p°(t) >= Rupb(t — t') (4.61)

On comparison of (4.60) and (4.61), it can be easily seen that

2w, Jo To(2)nap(2)na(2)G(2)| ¥ (2)[2d2

B = 0w [ [E2(e)n(2) ¥ (2) ¥ (2)daP (4.62)

To complete the expression for R,,, we need to calculate normalization constant
Ca- As mentioned earlier, we choose C,, such that the total number of photons inside

the laser cavity is equal to A(t)A*(t). To this end, we need to obtain the stored



CHAPTER 4. RATE EQUATIONS 113

energy inside the cavity. Using the energy density function in dispersive media [98],

the average stored energy inside the cavity can be obtained as
W(t) = = / Y dy / “ iz / " n(z, 2)ny(2,2)C2 < A(t) A%(t) > FY(2)|¥,(z)de
2 o o 0 e b} g ? n t
L
- -;—eOC':w <A@) A°) > [ A=)yl ()P (4.63)

where we have used (4.38). On the other hand, the stored energy must be propor-

tional to the number of photons inside the cavity. That is,
W(t) =< A(t) A*(¢) > hw, (4.64)

Comparing (4.63) and (4.64) leads to the following expression for C,

2hw,
€W

Cc? =

L -1
( Ji ﬁ(z)ﬁg(z)pp,(z)wz) (4.65)
Substituting for C? in (4.62), we obtain

v fy’ #(2)7g(2)|¥(2)2dz Jy’ Ty(2)nep(2)ma(2)G(2)| ¥, (2)Pd2

| [E 7(2)ig(2)¥, () ¥ (2)dz]? (4.66)

R,, =

Let R,pon be the spontaneous emission rate coupled to the lasing mode obtained
according to the usual Einstein relation [99]. According to this relation, the rate
of spontaneous emission per laser mode is equal to the stimulated emission rate
per laser photon number. Using r,5,(r) as the local rate of spontaneous emission
according to Einstein relation, we have

R — fv T spon (T)1a(T)ng(r)| ¥ (r)|2dv
S O EN G T OT

(4.67)

where V is the volume of the laser cavity. r,p0on(r) for a semiconductor laser is given
by [99]
Papon(F) = () up(F)G(r) (4.68)
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For a two dimensional case, based on the conditions we have set forth on Typy Mg,

and G, we obtain

R = B LU ) ) g () O B ()P
b J7 1(2)7g(2)| ¥ (2)[2dz
Comparing (4.66) with (4.69) and noting that v,(z) = ity and [T/ = |¥,[2, we
have
R,, = K_R,pon (4.70)
where s .
= [ fO ﬁ(z)ﬁg(z)l‘ll,(z)lzdz (4.71)
T e (2)Rg(2) T, (2) ¥ (2)dz|
If one examines (4.71) and notes that
¥,(2)¥)(2) = ¥2(2) (4.72)
one finds that
K, >1 (4.73)

According to the accepted principle of the quantum-noise theory, the rate of
the spontaneous emission into any resonant mode of a cavity must be exactly equal
to the stimulated emission rate that would be produced by one extra photon in
the same electromagnetic mode [100]. In other words, the spontaneous emission
per laser mode is equal to the stimulated emission rate per laser photon. However,
(4.70), (4.71) and (4.73) state that a second-order DFB laser is subject to an ezcess-
spontaneous-emission. This behavior is a direct consequence of the non-self-adjoint
nature of the longitudinal eigenmodes. In fact, due to non energy orthogonal prop-
erty of longitudinal eigenmodes the spontaneous emission coupled to the different
modes are correlated and one might expect larger amount of the spontaneous emis-
sion coupled to a laser mode. Therefore, DFB lasers like all open-sided optical

resonator are subject to the excess-spontaneous-emission.
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Since the spontaneous emission is completely uncorrelated with the coherent
stimulated emission, it plays an important role in determining the static, dynamic,
and the spectral characteristic of the semiconductor laser. As an example, we
consider the adverse behavior of the spontaneous emission on the laser linewidth.
Following Henry [94], the linewidth of a single-mode semiconductor laser is given

by

_Rp(1+c?) _ Rpm(1+ a?)
AV —_— _41;'5_ —_— KPTS— (4.74)

where § is the number of photons in the laser cavity. Therefore, the linewidth of

the laser is enhanced by the factor K.

For the first time, Petermann calculated the excess-spontaneous-emission in
stripe gain-guided lasers [101]. Thus, the K, factor is usually referred as Peter-
mann’s factor or Petermann’s excess noise factor in the literature. Egs. (4.70) with
(4.69) and (4.71) are completely general. If the longitudinal variations of n(z) and
ng(z) are slow, the K, factor reduces to the expressions by Petermann [77] (pp.

41-44).

So far, we have obtained the rate equations for the total number of photons
and the phase of the optical amplitude inside the laser cavity. These rate equations
and the eigenvalue problem in (4.29) must be solved simultaneously. However, to
complete the formulation, we need the dynamics of the carriers upon which the
interaction between the carriers and the optical field is described. This matter will

be investigated in the next section.

4.3.3 Carrier Rate Equation

In this section, we complete the rate equations of second-order DFB lasers by

including the carrier dynamics. However, before that, let us see what we have done
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so far. We have started from the guided mode of a second-order DFB laser which

is of the form
¥¥(z,2) = ¥,(2) F(z) (4.75)

where F(z) is defined via (4.23) and (4.24). ¥,(z) is the longitudinal eigenmode
given by
U (2) = Ag(z)e Pelzmz0) 1 Ay(z)eiPelz20) (4.76)

It satisfies the following eigenvalue problem

%1 _ -—a—j6+(1+jaH)g+£'+n'}f Ky + K2
e Ky + Kz a+3j6—(1+ja,)g~¢ —«f

x [A’ } (4.77)
Ay

subject to the boundary conditions at the laser facets. The total number of photons
inside the cavity and the phase of the optical amplitude are the solutions of the
following rate equations

as _ {fo"[é + Ty (2)Ax(2)|¥,()¥)(2)d
= I W), () ¥, (2) ¥} ()dz

} S(t) + R, + Fu(t)  (4.78)

d$ _ _wrp { IlE+ To(2)Ax(2)]9(2)¥,(2)dz
dt 2

B JE 7@(z)7g(2) ¥ (2) ¥} (2)dz

where all parameters have been defined in the previous sections. ¢’ is related to the

} + Fy(t) (4.79)

eigenvalue ¢ via (4.31b). For those cases where n(z) and n,(z) can be considered
constant along the longitudinal direction, from (4.78) and (4.79), it can be seen
that the imaginary part of { is related to the steady-state net gain shift and its real
part is a measure of the frequency shift. Eqs. (4.78) and (4.79) indicate that the
longitudinal eigenmode of the laser and the corresponding eigenvalue are necessary

in the investigation of the dynamics of the laser.
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To solve the eigenvalue problem in (4.77), additional information must be pro-
vided. That is, one must consider the relation between the input current and the
gain and also the interaction between the carriers and the optical field. This can
be done by including the carrier rate equation in the set of equations listed in this

section. We use the conventional rate equations for the carrier density [70]
= =T, (4.80)

The first term on the right represent the injection of the electrons. J is the current
density of the driving current, e is the electron charge, and d is the thickness of the

active layer. 7. is the carrier lifetime and is a function of N such that

L _A+BN+CON (4.81)

Te
where A, B, and C are the non-radiative, radiative and Auger recombination coef-
ficients, respectively. a is the differential gain coefficient, N, is the carrier density
at transparency, € is the nonlinear gain suppression factor, v, is the group velocity
and p is the photon density. We assume that the carrier density is uniform over
the transverse cross section of the active region. For simplicity, the carrier diffusion

and transport effects have been neglected. From the field amplitude, we have

P = S CHAW [ (e, 2)ng(a, )| B, FA(e)ie
_ A(2)g (2,
~ N GG P )

where dosf = % is the the effective length of the transversal photon distribution
and d is the thickness of the active layer. Finally, the material gain which includes
the saturation effect at large photon density, is given by

_a(N - N,)

G =" ire) (4.83)
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Eq. (4.80) along with (4.77) and (4.78) are the complete system of equations
describing the dynamics of second-order DFB lasers. These equations can be used
in the investigation of the above-threshold static, dynamic small signal, and dy-
namic large signal analysis. For the purpose of this thesis, we only consider the
above-threshold static analysis. However, before dealing with this issue, we obtain
expressions for the output radiating power from the facets and the grating section.

The details of the derivations are given in the next section.

4.3.4 Output Power

To calculate the output power from the facets and the grating, we use the concept
of the photon flux density traveling in the longitudinal direction. This idea makes
use of considering the standing wave pattern of the longitudinal eigenmode as the
superposition of two contra-directional traveling waves. The power density of each
wave passing through a plane transverse to the longitudinal direction is simply
equal to the energy flux density times the group velocity of the photons at that
plane. Thus, the power passing through the plane z = z, can be obtained according

to the following relation

w o0 -
P, = vg(zl)62—°C:|A(t)|2/0‘ dy/- n(z:,zl)ng(:c,zl)lA,Ib(zl)|2F2(z)dz

(z,)|4,,(2 )I?
JE 7(2)7g(2)| ¥ (2)|2dz

where f and b refers to forward and backward traveling waves. Moreover, we have

(4.84)

= vohw,S(t)

used ny(z, )v,(z,) = v2. Eq. (4.84) is the fundamental equation from which the
output radiating power from the facets and the grating can be obtained. The

power radiating from the facet at z = L is equal to the difference between the
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Figure 4.1: Cross sectional view of a second-order DFB laser

power carried by each traveling wave at z = L. More precisely, we have

vohw, §(t)i(z = L)

Jy 7(2)7g(2)|¥,(2)|2d=
vohw, S(t)A(z = L)

Iy 7(2)7g(2)| ¥ ,(2)[2dz
where R, is the amplitude reflectivity of the facet at z = L. Note how the output

P, (|A#(L)1? - |As(L)|?)

|[A¢(L)I*(1 — R2) (4.85)

power is related to the total number of photons inside the laser cavity. Using the

same reasoning, one may find the radiating power from the facet at z = 0.

The situation for calculating radiating power from the grating is more com-
plicated than the previous case. In this case, it is more convenient to calculate
the power density going into the cover and the substrate per unit length in the
longitudinal direction. Referring to Fig. 4.1 the amount of the power due to the
forward traveling wave which enters the region of the length Az in the longitudinal

direction is

Ph = v(z)2CHWIAW®) (2, )(2,)|Ag(2)I —
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vy(z, + Az) ZCWIAWM) (2, + Az)iig(z, + Az)lAg(z, + Az)P
(4.86)

The power due to the backward traveling wave which enters this region is

P = vz, + A2)TCIWIAW) (2, + A)ia(z, + Az)g(z, + Az)|As(z, + Acz)P
~y(2,) 5 CwlA(8)Pog(2 (2, g (2,)| sl 2, )P (4.87)

In addition to the power budget in (4.86) and (4.87), in this region we must also
consider the stimulated power, the radiating power from the gratings and the power
absorption due to the material loss. Let us assume that p,, p, and pgs are the powers
per unit length in the longitudinal direction of the stimulated emission, radiation
from the grating and absorption, respectively. Then optical power conservation
requires that

Pz +pl, + 1, = pyAz + papAz (4.88)

where we have assumed that Az is vanishingly small. Before proceeding further,
we assume that the variations of the refractive index and the group index is much
smaller than that of |A¢|> and [A|®. Considering this assumption and substituting
(4.86) and (4.87) into (4.88), and after dividing by Az, we get

Pr = 2y — Pab = (2) SO A PR(g() o (1440 — 147 (4.89)

where the derivative is calculated at z = z,.

In order to obtain the derivatives in (4.89), we invoke the coupled-mode equa-
tions in (4.77). Without lose of generality, we consider two types of gratings; i.e,
symmetric and asymmetric gratings. By symmetric grating we mean those types

of gratings such that
1-m(2) = 7m(z) (4.90)
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where 7, (z) are the coefficients of the Fourier expansion of the grating perturbation.
Asymmetric gratings are such that the coefficients of the Fourier expansion have

odd symmetry. That is,
1-m(z) = —1m(2) (4.91)
For a symmetric grating we have
K2 = K_2 (4.92a)
Kpp = Ky = Kpe = Ky (4.92b)
Applying the coupled-mode equations in (4.77) for symmetric gratings, we have
;l‘iz (145 - |4?) = [—2a+ 29 +2Re{€'} — 2Re{x,}] (|45(2)* + | 4s(2)?) +
2Re{k]}Af(z) + Ab(2)* + 2Re{x, }|As(2) + As(2)[®

(4.93)
where

Ky =Ky = K_2 (4.94a)
K, = K}, =Ky = K, = Ky, (4.94b)

Using (4.93) in (4.89) and substitution for C2 and |A(t)|?, we obtain

(29 + 2Re{¢'HA(2) (|A£(2)1> + |4s(2)[*)
s = Vohiw, S 9
P N TR EN TR (4.99)
2Re{r;}71(2)|41(2) + 4s(2)[?

\ = —vohw,S 4.96
P N FE e (4:%9)
Pab = vohwrs(t)za(lAf(z)P + |4s(2)1?) (4.97)

Iy 2(2)7g(2)|¥,(2)|2d2
It should be noted that for index-guided lasers k, is purely imaginary. Using (4.96),

one may obtain the total power radiating via grating as

- vk or oy do A2 As(2) + Ay(2)[*dz
Py - oﬁ ,.S(t)2R { :} .[;L ﬁ(z)ﬁg(Z)I‘I"(Z)lde

(4.98)
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The above result is completely expected. More precisely, for symmetric gratings
(4.28) leads to
h(z) = h_,(z) (4.99)

Thus, using (4.27), we have
E™(z,z) = [A4(z) + As(2)] h_,(2) (4.100)
For asymmetric grating, we have

2 (14 - 147) = (=20 + 20 + 2Re{€'} ~ 2mlrad] (147)P + 1A4s()F) +
2Re{x]}As(z) — As(2)]?> + 2Im{k, }|As(2) + j As(2)[?

(4.101)

where
Ke =Kz = —K_3 (4.1022)
K,: = n;f = —[g}b = —K;f = K,b.b (4.102b)

For the index-guided DFB lasers, &, is purely real. More importantly, following the
same line as we have used in the case of symmetric gratings, for asymmetric gratings

the total radiation power from the grating can be obtained from the following

relation

Jy 7(2)|A5(z) — As(z)[?dz
Iy 2(2)Rg(2)|¥,(2)[2dz
Again, the validity of the above result can be verified by noting that for asymmetric

P, = —vhiw.S(t)2Re{k]} (4.103)

gratings (4.28) yields
h(z)=—-k_,(z) (4.104)

Consequently, from (4.27), we have

E™Y(z,z) = [A4(z) — As(2)] h_,(2) (4.105)
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It should be emphasized that (4.98) and (4.103) refer to the total power radiating
from the grating into the cover and the substrate. Needless to say, the minus sign
in (4.98) and (4.103) is necessary due to the fact that «, and &7 have negative real
parts. As mentioned earlier, we can see how the total power radiating from the
grating is proportional to the total number of photons inside the laser cavity. This
is the direct consequence of the fact that the total number of photons inside the

laser cavity is directly proportional to the optical energy.

Having completed the analysis of second-order DFB lasers with straight grating,
in the next section we turn to the circular gratings. As will be shown, only minor
modifications are needed and based on the large argument approximation of the

Hankel functions the formulation is essentially the same.

4.4 Circular-Grating DFB Lasers

In this section we show that essentially the same equations that we have obtained
for ordinary second-order DFB lasers can be used in the case of circular-grating
DFB lasers. To this end, first we set up the cylindrical coordinate system as we
adopted in Chapter 3. We choose the z axis to coincide with the axis of the laser.

Let us assume that

Acr(pr2) = X (=) ImBloms0) (4.106)
m#£0

where 3, is given by (4.20). According to (4.106), we use the following expression
for the fundamental guided mode of the laser

¥(p, z) = ¥,(p) F(2) (4.107)
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where F(z) is defined through (4.23) and (4.24) by changing the role of z to z.
¥, (p) is the radial eigenmode which is of the form

@, (p) = As(p)e®* H (Bop) — j As(p)e™P%* H™ (B.p) (4.108)

Based on the large argument approximation of the Hankel functions, the radial
eigenmode ¥ (p) satisfies the same eigenvalue problem in (4.78). For the sake of
simplicity, we use the same coupling factor defined in (4.32) in the coupled-mode

equations. The boundary condition at the center; that is,
Af(0)e?Pore = —jA,(0)ePero (4.109)

and appropriate facet reflection must be considered in solving the eigenvalue prob-
lem. Eq. (4.35) remains the same with changing (z,z) to (p, z). If we multiply the
new version of (4.35) by F(z) and integrate from —oo to oo and then we integrate
the resulting equation in the azimuthal direction, we obtain (4.37) where z and
w are replaced by p and 2w, respectively. In order to obtain the final equation,
we replace the spatial delta function in the cross-correlation product of the noise
polarization by
8(x = ') = 580 = #) 5(8 - §)8(z - )

Multiplying by the radial eigenmode and integrating in the radial direction must

be weighted by p. Therefore, (4.52) and (4.53) reduce to

S _ im { I+ To(p)Ax(p)1¥.(p)¥, (p)pdp
dt 7 Jo 7#(p)ng(p)¥,(p)¥! (p)pdp

dd _ _wep. {fo"[e + Ty(p)Ax(p)]¥,(p) ¥} (p)pdp
d 2 I3 #(p)ag(p) ¥, (p)¥! (p)pdp

} S(t) + R.p + Fu(t)  (4.110)

} + Fy(t) (4.111)

where

_ 28w, fy' To(p)nen(p)na(p)G(p) ¥, () Ppdp
TwmeCl | [y 7(p)Rg(p) ¥, (0)¥! (p)pdpl?

(4.112)
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and
2hw,
C? = — (4.113)
2re, Jy 7(p)iig(p)| ¥, (0)[20dp
The photon density in (4.82) is replaced by
=0 \= 2
) — StV (o) 11

2xd,,, J5’ 75(p)ng(p)|¥ (0)[2pdp
Finally, by using the asymptotic values for the Hankel functions, the radiation
power from the symmetric grating can be obtained by the following relation

L7 #(p)Rg(P)| As(p) + As(p)[*dp (4.115)

e e e D) A (o) + 1 As(o) o

In the next section we consider the static behavior of the two dimensional

second-order DFB lasers above the threshold.

4.5 Static Analysis and Steady State Character-
istics

In this section, we only consider the static behavior of second-order DFB lasers. If
the injection current is constant, the photons and the carriers reach steady state
and are invariant with time. In this case, Ax = 0 and the rate equations in (4.78),
(4.79) and (4.80) reduce to

s = —lu £ Jo ¥, (2)¥,(2)dz -
R N

= _éR,p (4.116)

dp _ _wep. { €S8 0 (2) V! (2)dz
I (z)g(2)¥,(2)¥,(2)dz

o 5 } =2rAf (4.117)
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o o Ao T Ter) vgp =0, (4.118)

respectively. G in (4.116) is the steady-state net longitudinal modal gain and Af
is the steady-state net frequency shift. Therefore, to calculate S,, Af, and N,,
one needs to consider the eigenvalue problem in (4.77) with appropriate boundary

conditions simultaneously with (4.116)-(4.118) at a given bias current density.

The eigenvalue problem in (4.77) may be solved by taking into account the
longitudinal variations of the photon and carrier densities and effective index dis-
tributions. To this end, the laser cavity is divided into a number of segments such
that for the k-th segment of length I, we have A <« [, <« L. Within each segment,
the above parameters are assumed to be constant. However, they are allowed to
vary from segment to segment. Each segment can be described by the so called
transfer matrix in the longitudinal direction as described in Chapter 3. That is,

Af(zk+1)
A (Zk+1)

Af(zk)
Ab(zk)

=T, (4.119)

where for gratings of either symmetric or asymmetric

ch(yeli) + (o 22lle) ~ L) (k7 + &, ) Rle)

Tk

k —
[ —(K'Zf + n-:)ﬂ.‘:_fm Ch('Yklk) - (‘kﬂ".(”_"lﬁl ]

Tk

(4.120)

where

Qe = —a—j8+ (1 —jag)ge + & + ki
Note that for gratings of either symmetric or asymmetric type, we have

Koy = K (4.121a)
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The overall transfer matrix relating A¢(z) and A,(z) at two ends can be ob-

tained by cascading the transfer matrices corresponding to each segment. Therefore,

4,(1)) =T 4,0) ] (4.122)
A,(L) A,(0))
where
T = f[ T (4.123)
k=M

Applying the boundary conditions at z = 0 and z = L leads to the lasing oscillation

condition. More precisely, at z = 0, we have

4,0 ] [ R(0)

4,(0)

A,(0) (4.124)
1

At z = L , one may write

[R(L) -1 ] [ 4,0) =0 (4.125)

A,(L)

Using (4.124) and (4.125) in (4.122) yields the characteristic equation for the lasing

condition

| R) -1 ]iLTk [ R(lo)] =0 (4.126)

The laser eigenvalue £ is the solution of the above equation.
In a similar fashion, the carrier rate equation may also be discretized by assum-
ing that the carrier density N, is constant within each segment. That is,

T T e =0 (4.127)

where N = N,(z), k=1,2,... M and

A zi )Ty (2) |, (2i) 2
Wdess fo 72(2)7g(2)| ¥ (2)[2dz

pi = S(t) (4.128)
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In order to obtain a self-consistent solution we use an iterative approach. First, we
assume uniform gain throughout the laser cavity. The eigenvalue ¢ and eigenvec-
tor ¥(z) obtained from this assumption is used to obtain R,, and S, in (4.116).
Substituting these values into (4.127) leads to M simultaneous equations for the
unknowns Ni. Using the solutions for N in the gain model of each segment leads
to the modification of (4.126). We use the new value of £ and ¥(z) to improve
the carrier density. After reaching convergence, the steady state photon number
Se, the frequency shift Af, as well as the carrier and photon densities along the
laser cavity can be obtained as a function of the injection current density J,. This
completes the static analysis of second-order DFB lasers. It should be emphasized
that the same ideas can be used in the case of circular gratings. In the next section

we present the expressions for the far-field patterns.

4.5.1 Far-Field Pattern

To calculate the far-field pattern, we need to calculate the Fourier transform of
the near-field pattern of the radiation field on the aperture. For symmetric and

asymmetric gratings, we have
E;"d(z € aperture) ~ Ay(z) + Ap(2) (4.129)

Thus using the relation for the far-field pattern in (2.67) with suitable coordinate
transformation one may easily obtain the far-field pattern. More precisely, if we
consider the z axis as the polar axis, and the azimuthal angle is measured from the

y axis, we have

E(8,4) ~ 0 [A;(ksindcosg) + Ay(k sinf cosd)| cosd —
® [E,(k sinf cosp) + Ay(k sinb cos¢)] singcosd  (4.130)
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where A;(a) and Ay(a) are the Fourier transforms of A¢(z) and Ay(z), respectively.

Finally, in order to obtain the far-field pattern of circular-grating laser, we use
the aperture field due to the radiation component. As illustrated in Chapter 3,
within the limits of the validity of large argument approximation for the Hankel

functions, using (3.22) one may write

Ej*¥(p € aperture) ~ Af(p)e’* H,” (Bop) F j As(p)e™#**H," (Bop) (p > 0.5 pm)

(4.131)
Moreover, since the laser field is azimuthally invariant, it vanishes at the center
of the laser. Consequently, it is reasonable to ignore the the radiation part of the
aperture field around the center of the laser. Having determined the aperture field,

one may construct the auxiliary functions E*(p), as described in Chapter 2, on the

aperture. For circularly symmetric beam, we have E*(p) = —E~(p). Now using
E*(a) = [ B*(p)Jsa(ap)odp (4.132)
we have
Et(a) = E~(a) (4.133)

Now using (2.80), we have

E(6,¢) ~ ¢ cosE*(k sind) (4.134)

In the next section, we consider a typical circular-grating DFB laser and present

some numerical results.

4.6 Numerical Results

This section is devoted to an illustrative example. We consider a typical circular-

grating bulk DFB laser with second-order grating as depicted in Fig. 4.2. The
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Figure 4.2: The cross sectional view of a typical circular-grating bulk DFB laser

fixed parameters used in the numerical calculations are listed in Table 4.1. In all
calculations, we have ignored the spatial hole burning. In the first example, we
assume that the radius of the laser is 100 pm and the facet reflectivity at the laser
edge I is equal to 0.3. In addition, let the the duty cycle of the grating % be 0.6.
With these parameters, the calculated surface-emission power of the first mode
versus injected current is shown in Fig. 4.3. The side mode suppression ratio of
the surface emission as a function of the injected current is shown in Fig. 4.4. As

illustrated, the second mode is effectively suppressed above the threshold.

This fact is verified by referring to Fig. 4.5 where the total number of photons
of the first and the second mode are plotted. It can be easily seen that above the
threshold, the number of photons of the first mode is three orders of magnitude
larger than that of the second mode. Hence, the large side mode suppression ratio.
It should be noted that since the number of photons are proportional to the energy

and power, we have

Number of photons in dB = 10 log;o(Number of photons)
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Non-radiative recombination coefficient (A) 2.5 x 108 s
Bimolecular Carrier recombination coefficient (B) 1.0 x 10710 ¢m3 5!
Auger carrier recombination coefficient (C) 3.0x 107 cm® s—!
Nonlinear gain coefficient (€) 2.0 x 107 cm®
Differential gain (a) 3.0 x 10718 cm?
Transparency carrier density (Ner) 1.0 x 108 em—3
Absorption and scattering loss of the central region () | 25 cm™!

Linewidth enhancement factor («, ) 3.5

Reference wavelength (A) 1.55 pm

Table 4.1: Parameters used in the analysis of the circular-grating bulk DFB laser

The lasing wavelengths of the first and the second mode are plotted in Fig. 4.6.
As illustrated, the lasing wavelength is very stable in the above-threshold region.
Moreover, the first or dominant lasing mode is on the shorter wavelength of the
stop band. In Fig. 4.7, the normalized intensity of the first modes inside the laser
cavity is illustrated. The sampling current is 25 mA. We have considered the value
of |A,(p)*> + |A,(p)I* as the normalized intensity. For sufficiently large distances
from the laser center, this value is proportional to the number of photons inside an
annular region. Therefore, most of the photons are accumulated near the edge of
the laser.

The near-field intensity pattern which is proportional to |4,(p) + A,(p)|? is
illustrated in Fig. 4.8. The near-field profile shows the destructive interference
around p = 40 pm. This is the characteristic feature of the first mode in a second-

order DFB laser [60], [104]. In fact, since the first mode has smaller radiation loss,

it is favored.

The normalized far-field pattern of the first mode is illustrated in Fig. 4.9.
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It can be seen that the laser beamwidth is less than 0.5° and the laser is highly
directional. However, as anticipated before, there is a dark spot at the center of the
far-field pattern. Moreover, the far-field patterns at different bias currents; e.g., I=
30, 35 mA are the same as that shown in Fig. 4.9. Moreover, the far-field patterns
at different bias currents, e.g., I= 30, 35 mA, are the same as that shown in Fig.

4.9.

For the purpose of comparison, the surface-emitted power and the total output
power from the laser facet of the first mode as a function of injected current are
plotted in Fig. 4.10. Because of the split near-field distribution, the power from
the surface is about one-third of that from the facet. The surface-emitted power
versus injected current of the first mode for four different reflection coefficients are
plotted in Fig. 4.11. For this range of reflection coefficient the threshold current
decreases with increasing reflection coeflicient. However, for the same bias current

the output power increases with increasing reflection coefficient.

The normalized far-field intensity pattern as a function of the facet reflectivity
is shown in Fig. 4.12. The surface-emitted power from two lasers with different
radii are plotted in Fig. 4.13. As one might expect, the laser beam emitted from
the larger aperture is narrower. This fact is clearly shown in Fig. 4.14. In Fig.
4.15, the relative intensity spectra of the power from the facet are plotted for two

different radii.
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Figure 4.3: Power-current characteristic of the surface emission
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Figure 4.5: Photon numbers of the first and second mode.
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Figure 4.6: Lasing wavelengths of the first and second mode
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Figure 4.8: Near-field intensity pattern of the first mode inside the laser cavity
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Figure 4.11: Surface-emitted power versus the current and the facet reflectivity
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4.7 Summary

In this chapter, we have developed a method for treating second-order DFB lasers
in the above-threshold region. The rate equations for the total number of photons
and the phase of the optical amplitude inside the laser cavity are derived from
Maxwell’s equations. Our approach is an alternative one to the existing models
which are based on the traveling wave formulation. This approach is based on the
generalization of the time domain standing-wave method used for treating first-
order DFB lasers. This formulation is basically two-dimensional in nature, that
is, the lateral or azimuthal variations are ignored. As an illustrative example, the
rate equations for a typical circular grating surface have been solved in the above-

threshold region under static condition.



Chapter 5

Generalized Coupled-Mode
Equations for Planar Dielectric

Waveguides with Circular Grating

5.1 Introduction

So far, in the study of circular-grating surface-emitting lasers, we have assumed
that the laser beam is circularly symmetric. This assumption extremely simplifies
the exact mathematical formulation. However, a circularly-symmetric beam causes
the laser to suffer from a dark spot at the center of its far-field pattern. On the
other hand, only first harmonic azimuthal variation can produce a nonzero far-field
pattern on the laser axis. Consequently, depending on the applications, this laser
mode may be the mostly desirable one and must be favored. Although the general
methods of treating first-order circular gratings reported in the literature (30}, [32]

combined with the Green’s function approach described in Chapter 2 can be used in

140
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a perturbational fashion to obtain the radiation field, this method is a noncoherent
approach in nature. That is, the direct influence of the radiation field on the laser
performance is neglected. It should be noted that including azimuthal variation
increases the complexity of the problem and the p component of the electric field
comes into the picture. Therefore, more general formulation is needed to model

circular-grating lasers.

The coupling between the guided modes of corrugated optical disk waveguides
was first investigated by Kerner et al. [16]. Zheng and Lacroix [17] considered the
coupling between the guided modes in the analysis of finger print (circular-grating)
resonators. As one step toward more general formulation, Wu et al. considered TE-
TM coupling. In all other coupled-mode equations formulated for circular gratings
[23], [24], [30], and [19] coupling to the radiation modes has been ignored. In this
chapter, for the first time, we present a generalized coupled-mode equations for
planar dielectric waveguides using circular gratings. The characteristic feature that
distinguishes it from other formulations is the inclusion of the radiation modes. In
this formulation, the background materials treated in Appendix A are fundamental.
Moreover, the method is essentially based on the Erdogan’s approach [30] in dealing
with first-order circular-grating DFB lasers. However, to generalize this approach,
we need some modifications at the very beginning of the formulation. Moreover,
we use the ideal mode expansion. The details of this method will be described in

the next section.

5.2 Basic Formulation

This section focuses on the derivation of the fundamental equation on which the

generalized coupled-mode equations are based. To this end, we start from Maxwell’s
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equations

V xE=—jwuH
{ s (5.1)

V x H = jwee(p, 2)E
where we have assumed that €.(r) is independent of ¢. Instead of eliminating H,
we eliminate E from the above equations. This leads to the following equation for
the H field
V x V x H — &.(p, 2)k?H = jw,e, Ve, (p,z) x E (5.2)

where k2 = w?p,e,. In non-magnetic materials which is of our interest, we have
V -H = 0. Consequently,
VV-H=0 (5.3)

Subtracting (5.3) from (5.2) leads to the following equation for the H field
VxVxH-VV-H-¢(p,2z)klH = jw,e,Ve,(p,z) x E (5.4)

Expanding the above equation for TE, mode in cylindrical coordinate system leads

to the following equations

1 2 0H, Oe,
Vsz - ;Hp 2 3¢¢ + &(p, z )k2H = Jweo-a—E',,s (5.5a)
1 2 3H Oe,
V?H, — ;Hqs 2 08 2)k2Hy = —jwe,— 32 E, (5.5b)
V2H, + €.(p, 2)k2H, = —jweog—jE,,, (5-5¢)

where
2 10 18 o
57 " 000 T og T

and we have assumed that ‘-98—3'- =0and E, =0.

V2

It is important to note that for TE, mode, since all field components can be

obtained from the axial component of the magnetic field, it is only necessary to
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consider (5.5¢) as the fundamental equation governing T E, mode in an azimuthally
invariant circular grating. Eq. (5.5¢) can be written in a more convenient form, if

one substitute ¢.(p, z) by
e,.(p,z) = 5?(2) + Ae,(p, z) (56)

As a result, (5.5¢) reduces to the following form

OAe,

ViH, + e.(2)k2H, = —k*Ae.(p,z)H, —jweo—ap—E¢ (5.7)

Equation (5.7) is the fundamental governing equation for TE, mode which is exact
for the azimuthally invariant circular gratings. At this stage, one may choose two

different approaches.

In the first approach, one may ignore %; on the right hand side of (5.7). This

assumption leads to

V.E=0 (5.8)
Eq. (5.8) directly follows from
V.E= _l-aﬁ’-E,, (5.9)
e Op

which is valid for TE, mode and azimuthally invariant perturbation of the dielectric.
Since scalar approaches are based on the assumption of solenoidal electric field, the

first approach is referred as the scalar approach.

In the second approach, it is assumed that %‘f is nonzero. Therefore, the exact
nature of the vector field is unchanged. We refer to this approach as the vector
approach. Due to the presence of the additional term on the right hand side of (5.7),
the vector approach is more complicated than the scalar one. Therefore, in order

to illustrate the basic ideas, in the next section we start from the scalar approach.
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5.3 Scalar Approach

In this approach, to derive the coupled-mode equations describing the interaction
between the guided and the radiation modes, we use the following equation

0*H,

527 + €& (2)k2H, = —kXAe.(p,z)H, (5.10)

Vit
where we have used
52
0z2
The above equation is similar to Eq. (7) in [24] where the role of ¥ has been
changed to H.. However, ¥ in [24] is the scalar potential from which a TE, mode

\v& Vp¢+

can be constructed. Referring to Appendix A, it is obvious that ¥ is proportional

to H,. Let us write
B.=Ulp,)F(z)+ [ R(p,d10)R(z0,)da, (5.11)

where F(z) is the normalized form function of the fundamental guided modes sat-

isfying the eigenvalue equation

ff + e (2)k2F = B2F (5.12)
In our formulation, we only consider the fundamental guided modes. This is the
case for circular-grating lasers. The second term on the right hand side of (5.11)
represents the radiation component of the magnetic field. This term distinguishes
our formulation from that used by Erdogan [24]. Note that as described in Section
A 8.4, we have used the generalized Fourier kernel R(z; «) which is the combination

of the substrate and the cover modes. R(z;a) satisfies the following differential

equation
R

522 + [e(2)k2 - B¥(a)| R =10 (5.13)
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where

k2 — a? >0
Ba)={ T ¢ (5.14)
& ki-a®2 a<0

and ¢, and ¢,  are the dielectric constants of the substrate and the cover, respec-
tively. It should be emphasized that (5.14) implies that ®(z;a) for negative values
of @ corresponds to the substrate radiation modes. In addition, we assume that
R(z; a) is normalized. That is,

/ R(z;a)R*(z; 2, )dz = §(a — o) (5.15)

—00

Substituting (5.11) into (5.10) and using (5.12) and (5.13), we get
(Voo + B2) Ulp, ¢)F(2) +/: [Vie + B2 ()| R(p, 65 2, )R(2; 0, )da, =

K0, ) Ulp, )F() ~ K2 [ Aerp,2)Blpr b5, R(z:0,)der,  (5.16)

In order to obtain the equations for U(p, ¢) and R(p, ¢, a), one may take advantage
of the orthogonality of the form functions appearing in (5.16). More precisely,
multiplying both sides of (5.16) by F(z) and integrating from —oo to co, we obtain

(Voo +B2)U(p,8) = K(p)U(p, ¢) + /_ : Ks(pi a,)R(p, 432, )da, (5.17)
where

K(p) = —k? / : Ae(p, 2)F?(2)dz (5.18a)

Ko(p; ) = —k? / " Ae(p, 2)R(z; ) F(2)dz (5.18b)

In a similar fashion, by multiplying both sides of (5.16) by R*(z; a) and integrating

from —oo to oo, one may write

[V24 + B%(@)] Rizi) = Kanlpi )00, 8) + [ Kun(pi s, e, 51, ),
(5.19)
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where

K (p;a) = —K? /: Ae(p, 2)F(z)R*(z; a)dz (5.202)

Kan(pia,a,) = —K2 / Ae,(p, 2)R(z; o, )R (23 @)dz (5.20b)

On the other hand, we know that U(p, #) and I-Z(p, @; a) are periodic functions

of ¢. Consequently, one may express them by the following Fourier series

Ulp,#)= 3 Un(p)e™ (5.21a)
R(p,¢;a) = -f: Rn(p; @)™ (5.21b)

Substituting (5.21a) into (5.16) and (5.21b) into (5.19) and using orthogonality of

e’ we have

(Bn + B2)Un(p) = @nlp) (5.222)

[Ba + B*(a)] Balpi@) = Pa(pie) (5.22b)
where \ \
_ 0 186 =

Sl TR P (5:28)

Qnlo) = K(p)Unle) + [ Kulpie,)Bn(pia,)de, (5.24)

Palpi) = Kan(pi@)Un(e) + | Kun(pi ) Ralpi ), (5.25)

Equations (5.22)-(5.25) show the mutual interactions of the guided and radiation
modes with nth harmonic of azimuthal variation. In order to obtain the explicit
form of these interactions (5.22a) and (5.22b) must be solved. To this end, we use
the Green’s function approach. Therefore, first, we obtain the Green’s function

Gn(p, p'; a) satisfying the following differential equation

(B2 + 8] Gl i) = 580 - #) (5.26)
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The differential operator acting on G(p, p’; ) is the Bessel differential operator.
Therefore, one may expect the Green’s function can be expressed in terms of the
Bessel functions. Depending on the values of 3%(«) three different cases may hap-
pen. That is, 8%(a) > 0, B%(a) = 0 and B%(a) < 0. However, the case 8%(a) < 0
need not be treated separately. It can be directly obtained from the Green’s func-
tion obtained for B%(a) > 0 simply by changing B(a) to —j \/-T@. In Appendix
F.1 the outlines of the derivation of the Green’s function are described. Accord-

ingly, we have

Golp.p') =In(p>);  Bla)=0 (5.272)
Gulpr?) = o (;’;—) . Bla)=0 (5.27b)
Galp, s @) = Ju[B(a)p<] H,, [B(a)p®];  Bla)>0 (5.27c)

where p< and p> denote smaller and the larger values of p and p’, respectively.
Having obtained the Green’s function, one may solve (5.22a) and (5.22b) for U,(p)
and R,(p), respectively. Solution for Un(p) is as follows

Un(p) = [ [ 5u(8.)Qule') o] EE(8,0) +
[’7" [ H‘:’(ﬂxp')czn(p')p'dp'] J(8.p) (5.28)

where we have assumed that the grating extends from p = a to p = L. Eq. (5.28)

can be written in a more convenient form, if one uses the following identity

Tn(Bip) = 5 [B(8.0) + B (8,p)] (5:29)

More precisely, substituting (5.29) into (5.28), we obtain

Un(p) = An(p)H, (B,p) + Ba(p)H, (B,p) (5.30)
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where

An(p) = [/ 27,(8,0")Q@n(0") p'dp’ + / H?(B,6)Qn(e) Fdp’|  (5.31a)
Bn(p)=’;” / B (8,0)Qu(¢') p'dp’ (5.31b)

From (5.31a) and (5.31b), we obtain

dA,. 1_12 (1) '
5 -4 n(p)H, (B,p') (5.322)
%‘ 1220 (0)E (B,4) (5.32b)

where we have used (5.29).

In order to obtain the solution for R.(p;a), we consider those spectra of the
radiation modes such that 82(a) > 0. The other cases can be treated in the same

way. Following the same procedure as we have used for U,(p), we have

Ru(pi @) = Ma(p; @)H, [B(c)p] + Nu(p; ) HS [B(a)p] (5.33)

where

M.(p;a) = %r [/: 2J.[B(a)p|Palp’) p'dp" + / ’ H,'[B(a)p'|Pa(p’) p'dp’ | (5.34)

Na(pia) = X / H,"[B(a)p)Pa(p') o' dp’ (5.34b)

Therefore,
= SR (B [Bla)e (5.35a)
T = - E B (5.35b)

Egs. (5.32) and (5.35) are the desired coupled-mode equations. This fact can be
seen by substituting (5.30) and (5.33) into (5.24) and (5.25). That is,

Qnlp) = K(p) [An(0)H,’ (B,p) + Ba(p)H. (B,0)] +
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[ Kolosx) (Ml S [8(e o] + Nos ) B [B(e, )l de,
(5.36)

Pu(pia) = Kua(p;a)[Aa(p)H. (B,p) + Ba(p)H, (B.p)] +
[ Kaalpioa,) (Ma(ps ) B2 [B(2)p] + Nalps ) By [B(a, )] dex,
(5.37)

In the next section we use the similar procedure to obtain the coupled-mode equa-

tions from (5.7) in the presence of the second term on its right hand side.

5.4 Vector Approach

To derive the coupled-mode equations from (5.7), it is necessary to substitute for
E4 on the right hand side. To this end, we use the ideal mode expansion approach.
According to (A.20), for TE, mode, we have

H, = Bk (5.38)

I‘r(z)
where ¥” is the Hertzian scalar potential function. On the other hand, (A.19)

states that

. ouhk
E¢ = ]wy.o?p— (539)
Comparing (5.38) with (5.39) leads to
Jwp, 0H,
Ey = 3 8p (5.40)

where we have assumed that y,(z) = 1. By ideal mode expansion, we mean that if
one assumes the expression in (5.11) for H,, the corresponding electric field is

Oa (-]
Es= ’;“ aUF( )+/ BJ‘E”‘ )‘:’;Rsa( ) de, (5.41)
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This assumption is the main difference between our approach and that was used by
Erdogan [30]. However, the approximation used by Erdogan reduces his formulation

to ours when it is used only for the guided modes.

Let us substitute (5.11) and (5.41) into (5.7) and follow the same procedure
described in the preceding section. That is, using the Fourier series in (5.21) and
taking advantage of the orthogonality of the form functions. With this procedure,
we end up with (5.22a) and (5.22b). However, the main difference in the vector
approach is the modification of Qn(p) and P,(p;a). In fact, Q.(p) and P.(p;a)
reduce to

1 dK dU,
Qn(p) = K(p)Un(p) - Fdpdp T

= = > 1 8Ky,dR,
/_ _ Ku(pi oy ) Bn(p; @ )dex, ~ /_ F(a) 8p Op da, (5.42)
1 0Kus dU
Po(pia) = Kor(pia)Ua(p) — 5 o ot
1 OKgx OR
[ Kealpisa)Rulpie)do, ~ [ P s e

(5.43)

After solving (5.22a) and (5.22b) by Green’s function method, it can be seen
that the expressions for U,(p) and Ra(p;a) in (5.30) and (5.33) are still valid.
Specifically, the coupled-mode equations in (5.32) and (5.35) are applicable in the
vector approach. However, it should be noted that O,.(p) and P,(p) are modified
according to (5.42) and (5.43), respectively. This means that the derivatives of the
amplitude functions; i.e., djp , %, %n, and % appear on the right hand sides of

the corresponding equations. For example, by considering (5.33), we have

H(’) dH(l)

dU, _dA, q® dB, +B

B = g B (Bip) + "L (Bp) + An(p)=

(5.44)
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When only the guided modes are concerned, Erdogan [30] simply by solving
a system of two linear equations showed that the derivatives of the amplitude
functions on the right hand side can be ignored. In this case we have a system of an
infinite number of linear equations. However, as far as numerical considerations are
concerned, one may ignore the derivatives of the amplitude functions on the right
hand sides of the associated equations. In practice, by discretizing the integrals,
one ends up with a system of finite number of equations. By transferring the
derivative of the amplitude functions to the left hand side of the equations, the
coefficient matrix is not the identity matrix anymore. However, it can be seen that

the coefficient matrix is of the form
C=I+B (5.45)

where I is an 2n x 2n identity matrix. The general form of B is given by

r .
12 2,12 12 12
—a,a,b —ab —a,a.b . 1 T
2,12 12 12 12
a b, a,a,b, a,ab; ... ala,nbu_l'h
34 34 34 34
—a.a,b, —-a,a,b, —a,a,b .. - —aab
34 34 34 34
2
B- a,a,b, a,a,b, ald,, coe e ayab
b:n-l.ln b:n—l.:u b?n—l,)u 2 2n—-1,2n
—a'Znal 12 _aznaz 12 azﬂas 34 ot —azn 2n—~-1,2n
bzn-l.Zn b!n—l.)n b?n—l,zu b2n-l,2n
L a’?n-lal 12 a?n-—l az 12 a2n—l a& 34 ¢ a!u—lalu n—1,2n

(5.46)

A careful look at B reveals that if one starts from the first row or the first
column, one realizes that its two consecutive rows and columns are dependent.
This special feature can be used to obtain the determinant of the coefficient matrix

C. To see this fact, suppose that we do an elementary row operation such that the
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first row of B vanishes. This operation reduces the matrix C to
C,=A +B, (5.47)

The elements of B, are exactly the same as the elements of B except for the first
row which is identically zero. Note that the determinant of C, is equal to the
determinant of C. In the next step, we do an elementary column operation such

that the second column of B, vanishes. As a result, C, reduces to
C,=I+B, (5.48)

The elements of B, are exactly the same as those of B, except for its first row and
second column which are identically zero. Now the whole idea is clear. One needs
to continue the elementary row and column operation to eliminate the successive
odd rows and even columns of B,. It should be emphasized that after each step,

the determinant of C; remains unchanged. After 2n step, one ends up with
C,.=I+B,, (5.49)

where I is the identity matrix and B,_ is a matrix such that its odd rows and
even columns are identically zero. All its nonzero elements are the corresponding

elements of B. From the above considerations, C,, can be written as

[ 1 0 0 0 ...0]
afb:: 1 a‘a.,b:: 0o ...0
0 0 1 0...0
C.= (5.50)
| 23,., @, b::-l'zn 0 Ay 12y b::—mn 0o .. .1 i

It is a trivial matter to show that the determinant of C,_ is equal to 1. Consequently,

the determinant of C is also equal to 1.
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On the other hand, the right hand side of the system of equations is of the form

a, L

3412
—-a, Ln
a, Lu

—a,L
D= Ay Liyy (5.51)

L

a

n T iIn=12n

L

~8ma L1 3n ]

Now if we use Cramer’s rule to obtain the :th unknown; that is, the derivative of

the ith amplitude, the numerator is the determinant of the matrix
C'=I+B (5-52)

where the elements of I are the elements of the identity matrix, except for the
tith element which is identically zero. Moreover, B’ can be obtained from B by
replacing its ith column by the column vector D in (5.51). Matrix B’ has almost
the same property as B; that is, starting from the first row every two consecutive
rows are dependent. Similarly, starting from the first column every two consecutive
columns are dependent except for the ith column and one of its neighbors. In this
case by the elementary row and column operation it is possible to show that the

determinant of C’ is equal to the ith element of the column vector D.

We have already shown that the determinant in the denominator is equal to 1.
This means that the derivative of the ith amplitude in the system of coupled-mode
equations is simply equal to the right hand side of the ith equation without the
derivative of the corresponding amplitude. In other words, in vector approach, one

may use the coupled-mode equations in (5.32) and (5.35) with Q.(p) and P,.(p, )
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given by (5.42) and (5.43), respectively. However, one may ignore the derivatives
of the amplitudes appear on the right hand sides. This completes the derivation of

coupled-mode equation using vector approach.

In the next section, we briefly describe how to use the coupled-mode equations

that we have derived in the threshold analysis of circular-grating lasers.

5.5 Application to Circular-Grating Lasers

The coupled-mode equations derived in Sections 5.3 and 5.4 can be used for a
DFB laser near the threshold. However, due to the complexity of the equations,
especially the presence of the radiation modes these equations must be solved by a
perturbational approach. First, we expand the dielectric perturbation in a Fourier
series and discard improper terms due to the phase mismatch. For example, first-
order interaction of the guided modes with the grating results in the whole spectrum
of the radiation modes. For the sake of simplicity, we ignore the mutual interactions
of the radiation modes with each other. Moreover, as far as the laser operation is
concerned, one needs to consider radiation modes in the visible range only. That

is, those radiation modes with positive value of 8%(a).

With the above considerations, by ignoring the radiation modes, one may obtain
an initial guess for the guided modes. We can obtain the amplitudes of the radiation
modes using the amplitudes of the guided modes in the coupled-mode equations.
Substituting the amplitudes of the radiation modes in the coupled-mode equations
describing the guided modes, results in the modified coupled-mode equations such

that the radiation coupling factor comes into the picture.

As suggested by [59] in treating DFB lasers with straight gratings, more accurate
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calculation of the radiation modes is possible, if one solves the modified coupled-
mode equations to obtain a better approximation of the amplitude of the guided
modes. These amplitudes in turn can be used to obtain a better approximation
for the radiation modes. This procedure can be continued until it converges to a
self-consistent solution. From the final coupled-mode equation, one may obtain the

radiation coupling factor.

5.6 Summary

In this chapter we have developed a generalized coupled-mode equation for planar
dielectric waveguides with circularly-symmetric gratings. The special feature in
our formulation is the inclusion of the radiation modes. This feature distinguishes
it from the previous works reported in the literature. We have considered two
different approaches. The scalar approach is based on the ignorance of % in the
fundamental governing equation. However, in the vector approach, the coupled-

mode equations are derived by considering BB—A;.



Chapter 6

Conclusions and Direction for

Future Research

This concluding chapter provides a survey of the materjals covered in the entire the-
sis and the scientific contributions resulting from this Ph.D. research work. More-

over, some guidelines for conducting the future research are presented.

In this thesis, the emphasis has been to consider the radiation field in the model-
ing of CGSELs. This special feature distinguishes it from previous works. Moreover,
including the radiation field in the model enables one to obtain better criteria for the
design of these lasers. With this aim in mind, the following original contributions

have been achieved.

e Developing the mathematical theory of radiation modes in a multilayer planar
structure
For the first time, a systematic and mathematically rigorous approach has
been used in the study of lossless multilayer planar structures. The central

focus in this study are the radiation modes. This formulation makes it easy

156



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 157

to treat the radiation modes in a multilayer planar structure. By introducing
the form functions and considering their inner products as distribution, the
orthogonality of the radiation modes has been placed in a proper structural
form. This is the most important contribution of this study. We have also
proved the orthogonality of the degenerate radiation modes. As a consequence
of this theorem, we have introduced another theorem called the Brewster
theorem in honor of Brewster and the famous angle he introduced. For the
first time, we have presented the mathematical proof of the simple analytical
formulas for the normalization of the radiation modes. In addition, we have
shown that the form functions of the radiation modes can be considered as
a kernel of a generalized Fourier transform. Finally, we have presented a
systematic approach for constructing real-valued form functions. All of these

materials are covered in Appendix A.

o Deriving closed-form spectral dyadic Green’s function of multilayer planar
structures
Using the transfer matrix technique, we have derived a closed-form spectral
domain dyadic Green'’s function of a multilayer planar structure. Therefore, it
is very well suited for numerical implementation. The importance of this work
stems from the fact that both rectangular and cylindrical coordinate systems
are treated in the same mathematical framework. Introducing auxiliary func-
tions in the cylindrical coordinate system brings about such a possibility. The
formulation explicitly shows that the Green’s function is independent of the
branch cut of the dispersion parameter of each layer having finite thickness.
This formulation has been used in the investigation of the far-field pattern of a
novel circular-grating laser at threshold. Chapter 2 is devoted to considering

these materials.
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o Including the radiation effects in the threshold analysis of second-order CGSELs
Inclusion of the radiation field in the threshold analysis of circular-grating
lasers is another original contribution of this dissertation. The formulation is
based on the azimuthally invariant electric field. Based on this assumption,
for the first time, we have obtained the coupling factor to the radiation field in
describing the mutual interaction of two guided modes in a cylindrical laser.
The derivation of the radiation coupling factor has been done by using the
Green’s function method. Moreover, by using the TMM we have obtained

the exact Green’s function.

e Developing the rate equations of second-order CGSELs
The above-threshold analysis of circular-grating lasers is the heart of this
thesis. For the first time, we have developed a model based on the time
domain standing wave approach for treating second-order DFB lasers. This
formulation is an alternative approach to the existing ones using the traveling
wave method. In this model, starting from Maxwell’s equations, we have
derived the rate equations for the total number of photons inside the laser
cavity and the phase of the optical amplitude. The effect of the radiation
field has been properly and accurately included in the model. Although small
signal and large signal analysis can be done from the rate equations, we
have only considered the above-threshold static analysis of CGSELs. As a
result, we have succeeded in obtaining the relationship between the injected
current and the radiated output power. It is interesting to note that from
this relationship it is possible to obtain some guidelines for the design of
these kinds of lasers. Again, an azimuthally invariant electric field is the

basic assumption in our formulation.
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e Developing generalized coupled-mode equations of planar waveguides with cir-
cular grating
As far as the effect of the radiation field in circular-grating lasers is concerned,
our modeling is mostly based on the circularly symmetric beam assumption.
On the other hand, the electric fields that have the first harmonic of az-
imuthal variation are the only aperture fields that can produce a nonzero
far-field pattern on the laser axis. Therefore, the next step in the modeling
of circular-grating lasers is to consider this type of variation. To this end,
we have developed generalized coupled-mode equations in planar waveguides
with circular gratings. The original contribution to this development is the
inclusion of the radiation modes in the derivation of the coupled-mode equa-
tions. Qur theoretical study of radiation modes is the core of this generalized
formulation. We have derived the coupled-mode equations based on the scalar

and vector approaches.

The above is the scope of the main contributions of this research work in the study
of circular-grating lasers. However, to make such lasers commercially available,
there is still a long way to go. There are important theoretical and technological
difficulties that must be faced in order to use these lasers in optical communication

systems. We address some of these challenges in the next section.

6.1 Suggestions for Future Research

o Discriminating of different azimuthal modes
One of the most important issues in the study and fabrication of circular-

grating lasers is the mode control mechanism. The theoretical formulation of
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first-order circular-gratings reveals that the modes with different azimuthal
orders are in competition. At least, within the limits of the validity of the large
argument approximation of the Hankel functions, all even order azimuthal
modes lase simultaneously and the same is true for azimuthal modes of odd
order. The discrimination between even and odd orders can be done through
phase control of the grating. Even if different orders of the Hankel functions do
not behave in the same fashion, however, the mode competition in first-order
circular-grating lasers is very high. In second-order circular-grating lasers,
due to the presence of the complex coupling factor, it is not clear whether
the mode competition is as high as in the case of first-order grating. To
investigate this problem, it is necessary to obtain an accurate model to predict
the behavior of the laser modes with different azimuthal orders. Although we
have developed generalized coupled-mode equations for different azimuthal
modes in the presence of the radiation modes, however, we do not recommend

using this approach as a first attempt towards this end.

An immediate next step in the study of circular-grating lasers is to consider
the laser mode with the first-order azimuthal variation. Since this type of
field is almost linearly polarized, the easiest way to analyze this mode may
be by the modification of the LP mode technique in the study of optical
fibers. Armed with the analysis of this type of mode, one may assess different
ways of discriminating between the circularly symmetric beam and the beam
with the first-order azimuthal variation. In fact, the suppression of unwanted
azimuthal modes is the most challenging issue in the study of circular-grating

lasers.

e Suppressing the radiation field in the substrate
In general, the radiation field propagates both in the substrate and the cover
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regions. This feature may be undesirable in many applications. Therefore,
another challenging issue for future research is the suppression of the radiation

field in the substrate.

e Considering small signal and large signal analysis
Needless to say, using these architectures in optical communication systems
necessitate considering their modulation responses. Therefore, small signal

and large signal analysis is another approach for future work.

e Considering different architectures
There are still other possibilities for designing circular-grating lasers. For
example, one may design a laser with a passive second-order grating at the
center enclosed by a first-order DFB laser, or, the other way around. That
is, a first-order DFB laser at the center enclosed by a passive second-order
grating. It is also possible to apply some other existing techniques used for
improving the performance of surface-emitting lasers with straight gratings.
For example, using a two-section DFB/DBR with a continuous second-order
grating and central pumped region [105], [106]. Finally, first-order circular-
grating DFB lasers can be used in folded cavity lasers. That is, by using
an integrated mirror suited internally or externally to the laser cavity, the

edge-emitting power is redirected in the normal direction.

In summary, surface-emitting lasers using circular gratings are in the early stages
of development. There are many opportunities for research. Much more theoretical
and experimental work is required to make t'iem commercially available. Many
problems are still open and can be the subject of other Ph.D. theses. However, those

who are interested in entering into this area should be aware of many difficulties



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 162

in their way and the number of challenges ahead. Working in this area requires

persistence. Insight and inspiration will follow.



Appendix A

Mathematical Theory of

Multilayer Planar Structures

A.1 Introduction

The study of integrated optics starts with the stack theory of planar structures.
Moreover, many important properties of most of the state-of-the art semiconductor
lasers are based on the engineering of multilayer planar structures (MPSs). For this
reason, we have devoted an appendix on the theoretical study of these geometries.
In fact, this appendix provides the necessary background material upon which the

entire thesis is based.

Although the core of the subject matter treated in this appendix is normally
covered in the literature, however, we treat MPSs in a systematic and self-contained
fashion. We use the potential approach in the study of MPSs which is a departure
from customary practice of dealing with the components of the vector fields. We
tackle a full vectorial problem by defining two suitable scalar potential functions.

163
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These scalar generating functions enjoy interesting properties among which the

characteristic behavior of the electromagnetic fields in MPSs can be obtained.

One of the main purposes of this appendix is to introduce suitable basis functions
for treating radiation modes. We believe that the analytical method employed
in the literature to prove the orthogonality relation of the radiation modes only
satisfies credulous readers and can not be accepted by more scrupulous readers.
In this appendix an attempt has been made to achieve mathematical rigor of this
issue using the distribution theory. In this study some simplifying assumptions
in treating of MPSs, e.g. symmetric geometries or limited number of layers have
been relaxed. Especially, by using the transfer matrix method we treat arbitrary
number of layers and prove the orthogonality of degenerate radiation modes. More
importantly, simple analytical formulas have been derived for the normalization of

radiation modes. This is the central focus of this appendix.

A.2 Basic Formulation

Let us consider the geometry shown in Fig. A.l. By a multilayer planar structure,
we mean a stack of N homogeneous dielectric films which make a stratified medium
sandwiched between two semi-infinite homogeneous dielectric mediums. The upper
and lower semi-infinite mediums are called the cover and substrate, respectively.
To make the formulation completely general, we also assume different homogeneous
linear magnetic properties for each film or medium. For the sake of simplicity and
for the purposes of this thesis, we assume no gain or loss in our model, i.e., we

consider only lossless MPSs.

The above description of the structure permits us to write Maxwell’s equation
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Figure A.1: The cross section of a multilayer medium consisting of N dielectric

planar films

in the ith source-free region as
V x E; = —jwgopu., H; (A.1)

V x H; = jwee,, E; (A.2)

where e/t time variation has been assumed. ¢, and g, are permittivity and perme-
ability of vacuum, respectively. The subscript i denotes the associated layer number
which can also be c or s standing for the cover and substrate, respectively. By an ar-
bitrary electromagnetic field we mean any electromagnetic field satisfies Maxwell’s
equation in each region subject to the boundary conditions at the interface and the

radiation conditions at infinity.
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In view of the solenoidal character of E; in the ith region, we can express the
electric field in terms of the curl of the so-called magnetic type of Hertzian vector

potential IT? [107] (pp. 30-34) as
E; = —jwp,V x II? (A.3)

Substituting (A.3) into (A.1) leads to

H; = lvxvx . (A.4)

where V - II? is as yet arbitrary. By imposing the Lorentz condition on IT? [107]
(pp- 30-34), the equation for IT* becomes the vector Helmholtz equation

V2P + e, pe k2IIF = 0 (A.5)

where k, = w,/lL,€, is the free space wave number. Note that the Hertzian vector
potential defined in (A.3) is slightly different than that defined in [107] (pp. 30-34).
In fact, the Hertzian vector potential in (A.3) is the multiple of the corresponding
potential function defined in [107] (pp. 30-34). The reason of this fact will be

explained later.

In a dual manner, we let
H; = jwe,V x IIZ (A.6)

where I is the electric Hertzian vector potential. Following the same line as before,

we find that I satisfies the following equation

V2IIE + e, k2 TIS = 0, (A.7)

and the electric field is given by

Ei= ~V xV xIIt (A.8)
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In principle, an arbitrary electromagnetic field in each homogeneous source-free
region can be expressed in terms of either IT? or IIg, i.e., a single vector potential
function. For example, one may start from the general form of the solution of the
vector wave equation (A.5) in each region and match the boundary conditions by
using (A.3) and (A.4). However, this is a difficult task in practice. This problem
can be solved by taking advantage of the special form of the field description in
terms of vector potential functions in (A.3) and (A.6). More precisely, let us assume

that @ is an arbitrary fixed unit vector. By choosing the particular form of II? as
ot = avw? (A.9)

and using (A.3), one obtains
E; = jwp,a x V! (A.10)

As can be seen the corresponding electric field is perpendicular to the unit vector
u. Thus, the associated electric field due to the particular choice of IT? in (A.9) is
transverse to i; the so-called TE, field. In a similar fashion, the particular choice
of I as

II; = a¥; (A.11)

results in a transverse magnetic field with respect to the direction of a.

In general the associated fields due to the above choices of IT? or II¢ only satisfy
Maxwell’s equations in the zth region and do not satisfy the boundary conditions
at the interfaces. Moreover, an arbitrary electromagnetic field is neither TE, nor
TMuy. Thus, these particular choices of IT? and II¢ are only useful if one employ
the principle of superposition and express part of the field in terms of II* defined
in (A.9). Therefore, the remaining part of the field which is of TM, type can be
expressed by IIf in (A.11). In fact, an arbitrary electromagnetic field in each layer
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can be decomposed into TE, and TM,, parts. Now we express the electromagnetic

field in each layer as

1
E; = —jwp,V x II?* + —V x V x IIg, (A.12)

i

H; = jwe,V x II + -1—V x V x IT* (A.13)

where IT? and II¢ are directed in the @ direction as expressed by (A.9) and (A.11),
respectively. Thus the TE, part of the field can be derived from ¥’ and ¥ generates
the TM, part. Using the identity

(e.k) (e.k)

VxVxIL™=vv.m™ - v,

and noting that II and IT} are the solutions of (A.5) and (A.7), we obtain
o%s

E; = jwp,i x VI + -—V(

Ts

) + €, k2 Usa (A.14)

a h

H; = —jwe,it x VI + + p. k20N (A.15)

where u is the variable along the 0 directlon a.nd ‘Ilf‘ and ¥¢ are the solutions of

scalar Helmholtz equation

(e

V2O ¢ K2 =0 (A.16)

We shall find it possible to choose ¥$ and ¥* sufficiently general to express an
arbitrary electromagnetic field by (A.14) and (A.15). Thus, an arbitrary electro-
magnetic field in each source-free homogeneous layer can be expressed by the two

types of scalar potential functions ¥* and ¥¢.

A.3 LSM and LSE Fields

In the preceding section a general method for constructing an arbitrary electro-

magnetic field in a source-free MPS has been described. This method is completely
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general and can be applied to an arbitrary piecewise homogeneous and source-free
region. It has been shown that in general two types of scalar potential functions
completely determine an arbitrary electromagnetic field in a source-free MPS. In
Chapter 2, we have used Green’s function approach to study MPSs in the presence
of the source. In that case, by using the principle of superposition, we have shown
that the source-free constraint can be relaxed and even in the presence of the source
the electromagnetic fields can be obtained from the two types of scalar potential

functions. In this appendix we stick on the source-free constraint.

As far as engineering is concerned, we are interested in constructing of electro-
magnetic field in their simplest form. More importantly, these simplest forms of
solutions can be considered as the building blocks of more general solutions. There-
fore, the question may be raised at this point is that
How to construct the simple forms of the solutions of the Maxwell’s equations in a

MPS?

To answer the above question we have to specify what we mean by the simple
form of the solutions. Let us consider the simple forms of the solutions as those
kinds of solutions that can be obtained from one type of scalar potential function.
In this context, the above question can be answered by a careful study of (A.14)
and (A.15). It should be mentioned that the direction of i in (A.14) and (A.15) is
completely arbitrary. For planar structures it is natural to choose i either parallel

or perpendicular to the planar interfaces. We now consider each case separately.

Case A: 1 is parallel to the planar interfaces

In this case any attempt to construct an electromagnetic field from one type
of the potential functions without any restriction on the potential function leads
to a complete failure. For example, suppose that we want to construct an elec-

tromagnetic field from ¥}’s. With this goal in mind, from (A.14) and (A.15) we
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get
E; = jwp,a x VI (A.17)
.3
H; = LV(%%) +e6 k2Tt (A.18)

Now (A.17) requires that €., ¥*’s be continuous at each interface whereas (A.18)
results in the continuity of “-lji‘llf-"s. A dual reasoning can also be applied to show
that in general a potential function of the electric type only is not sufficient to
support an electromagnetic field. However, a suitable condition on the potential

functions makes it possible to construct an electromagnetic field from one type of

the potential function only.

Let us assume that ¥*’s are independent of the coordinate normal to @ in
the planar interfaces. In this case, the electromagnetic fields constructed from
(A.17) and (A.18) have only three components and completely fulfill the boundary
conditions at all interfaces. The only requirements are the continuity of ?a—{;f- and
;1—"% (%‘[’5) at all interfaces. By %, we mean the directional derivative with respect
to the normal to the interfaces. Moreover, it can be shown that %ﬁ is the solution
of the following partial differential equation

9® 8Ttk % ovh

anz( on + auz( on 0.

ovh
2 T
) + &nipnik, on

As will be shown later, the above conditions are completely self-consistent. Impos-

ing similar conditions on ¥$’s bring the possibility of constructing an electromag-

netic field from ¥{’s only.

It is always possible to rotate the coordinate axes parallel to the planar interfaces
in such away that the dependence of the potential function on one variable vanishes.
Therefore, in principle, choosing a suitable direction parallel to the interfaces of a

MPS makes it possible to generate an electromagnetic field from only one type of
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the potential function. However, each simple form is associated with a different

direction. This is the main drawback of choosing 1 parallel to the interfaces.

Case B: 1 is perpendicular to the planar interfaces
With this choice of i, (A.14) and (A.15) reveal the possibility of single-potential
construction without any restrictive condition on the potential functions. In this

case, the boundary conditions require that

VO lemd; = Vo y, i=0,1,2,...N

1 ovh 1 ovh
v w1y g = —V 2 =q; 1=0,1,2,...N
P e( Fu Mz=d; Fore e( Fu MNe=a; 2

where the indices 0 and N+1 correspond to the substrate and cover layers, re-
spectively. Therefore, continuity of ¥*’s and the normal derivatives of f‘_‘IJ?’s at
each interface are sufficient to meet the above requirements in constructing TE,
field. Whereas construction of TM, requires that ¥$’s and the normal derivatives
of i'lff’s be continuous. Furthermore, this choice of @ direction is useful not only
in the rectangular coordinate system. It is also advantageous to choose 4 in the
axial direction of the cylindrical coordinate system which is usually set' up in the

direction perpendicular to the planar interfaces.

In this case, since the electric field of the so-called TE, field does not have any
component transverse to the interfaces and completely lies in the planar interfaces,
the field is also called the longitudinal-section electric (LSE) field. These types
of fields first were introduced in the investigation of closed-boundary waveguides
[107] (Chap. 6.). Therefore, the word ‘longitudinal’ is more appropriate for closed-
boundary waveguides rather than MPSs. However, we use the same terminology
in the investigation of MPSs. By the same token, the TM, field generated by
the electric Hertzian potential function is referred to as the longitudinal-section

magnetic (LSM) field.
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As illustrated in Fig. A.l, the coordinate axes are set up in such a way that
the z axis is normal to the interfaces. As will be shown later, this choice of the z
axis makes it possible to use the same footing in the investigation of MPSs in the
rectangular and cylindrical coordinate systems. Now the LSE and LSM modes in

a coordinate-free system can be described as

LSE mode:
E} = jwp,z x VI¥} (A.19)
h
HY = 200 + o k2002 (A.20)
v z
subject to the continuity of ¥? and “%af:; at all interfaces.
LSM mode:
H; = —jwe,z x V¥§ (A.21)
Bf = 2 V() + K82 (422
€r, 0z

subject to the continuity of ¥ and ;l—éﬁ at all interfaces. ¥:" are the solutions

y. Oz
of the (A.16).

The special forms of the Hertzian potential functions defined in (A.3) and (A.6)
result in the continuity of the potential functions and the discontinuity of their
normal derivatives at all interfaces. However, those defined in [107] (pp. 30-34)
require that the normal derivatives be continuous and the potentials themselves
be discontinuous at each interface. This behavior is the result of the continuity of
appropriate field components at the interfaces. Since all the normal derivatives must
be considered as one-sided derivatives, it is not a problem at all. However, we are
interested in the continuity of the potential functions rather than their derivatives.
For this reason, we use (A.3) and (A.6) as the definition of the Hertzian potential

functions.
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Equations (A.19)-(A.22) are the starting point in the study of MPSs in a
coordinate-free system. In the absence of the current source, the LSE and LSM
fields are decoupled and can exist independently. Since the fields are obtained from
the scalar potential functions, one might expect these generating scalar fields com-
pletely reflect the properties of the electromagnetic fields in MPS. Therefore, it is
natural to focus on the potential functions rather that the vector fields. This is the

topic of the following section.

A.4 Characterization of the Potential Functions

So far, we have shown that how a vector field problem in a MPS can be reduced to
a scalar one. This problem can be further simplified if one tries to find the simplest
form of the potential functions. We turn now to a systematic treatment of this
matter. To this end, we return to (A.16), the basis for constructing the potential

functions. According to (A.16), ¥."" are the solutions of the scalar Helmholtz

equation
2

(V2 + g + erain K =0 (A-23

where V2 is the Laplacian operator in the transverse plane to the z axis. Since the

Helmholtz equation is separable, it is possible to find the solutions of the form
O = A, w) B () (A-24)
where (u, ,u,) are suitable transverse coordinates to the z axis, i.e., (z,y) and (p, ¢)

in the rectangular and cylindrical coordinate systems, respectively.

The special factorization form in (A.24) follows from Marcuvitz [109] in the

treatment of the closed-boundary waveguides. To explain the basic idea, let us
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Perfect electric conductor

Figure A.2: The cross section of a closed-boundary waveguide

consider a general closed-boundary waveguide with an arbitrary cross section trans-
verse to the propagation direction as illustrated in Fig. A.2. According to Marcu-
vitz [109], the electric and magnetic field components of each mode of the closed-
boundary waveguide are factorable into the form functions, depending only on the
cross-sectional coordinates transverse to the propagation direction, and into the am-
plitude functions, depending only on the coordinate in the propagation direction.
That is,

E“™" (u,v,2) = a("h)(z) e(e'“(u,1 yUy) (A.25)

H(c'h)(u, v,2) = a(e'h)(z) h(c'h)(u1 U, ) (A.26)

where (u,,u,) are suitable coordinates transverse to the propagation direction. The
characteristic equation of the waveguide can be obtained by applying the boundary

conditions on the waveguide cross section.

Using the Marcuvitz terminology in the factorization of the potential functions
in (A.24), the form functions of a MPS depend only on the z variable (cross-sectional
coordinate) and the amplitude functions are dependent on u and v coordinates (di-

rection of propagation) transverse to the z axis. The mathematical representations
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of the amplitude functions defined by Marcuvitz for closed-boundary waveguides
are the same for waveguides with different cross sections and the form functions
depend on the geometry of the cross section of the waveguide. However, in the
case of MPSs, the form functions have the same mathematical representation and
the amplitude functions are geometry-dependent. In both cases by applying suit-
able boundary conditions on the form function, the characteristic equations of the
waveguide can be obtained. In order to satisfy the boundary conditions at all in-
terfaces, the dependence of the potential functions on « and v in each layer must
be the same. For this reason, the amplitude functions in (A.24) do not depend on

the layer index.

Using the method of separation of variables, the amplitude functions in the
rectangular coordinate system can be written as

e .rp (€R) (e.h)
AN (z,y) = i et (A.27)

With a suitable coordinate transformation, that is, by rotating the planar coordi-
nates in the z-y plane, the amplitude functions can be rewritten as

. a(€h)

A 6) = e

where
e,h)]12 (e,h)72 (e.k)]2
B = [T + 8]
Consequently, if one substitutes (A.24) and (A.27) into (A.16), one finds that

FM( z) are the solutions of the following differential equation

d2 '(c'h) [ 4 €
Tt (et — BV B < 0 (A.28)

Now the boundary conditions for the the LSE field require that

Fli(d)=FMd:)  i=0,1,2,...N (A.29)
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Briyy dz a Br; dz

The form functions F{(z) of the LSM field satisfy the following boundary conditions

la; i=0,1,2,...N (A.30)

1 dFf, 1 dF¥ .
— iy = —— |4 =0,1,2,...N A.32
el dz la; e dz |, i=0 (A.32)

Note that the continuity of the form functions is the direct consequence of choosing

the Hertzian potential function as defined in (A.3) and (A.6).
Using the same technique in the cylindrical coordinate system, the amplitude
functions can be written as

A™(p,¢) = €™ B8] (A.33)

where B, [,B("h)p] are suitable Bessel functions satisfying

d*B, 1dB, (k)2 n?
1dB, _™\B, - A.34
e i (18] 0 (4.34)

2
On substitution of (A.24) and (A.33) into (A.16) and using (A.34), it can be easily
seen that F"*(z) satisfy the same differential equation in (A.28) with the same

boundary conditions.

The important implication of the above considerations is that the investigation
of MPSs in the rectangular and cylindrical coordinate systems leads to the same
characteristic behavior of the form functions. This makes it possible to treat these
structures on the same footing. Since the form functions completely determine the
nature of the electromagnetic field supported by the MPS, we entirely focus on

these functions.
As will be shown later, the solutions of (A.28) fall into two basic categories. The

first type of the solutions for the form functions leads to those kinds of electromag-

netic fields that are tightly bound to the stack and can not reach very far inside
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the cover or the substrate. These types of fields are called surface waves or guided
modes. The surface waves are peculiar to MPSs and in order to be supported at
least two barriers are needed to trap the wave. Solutions of these types lead to an

eigenvalue problem with a discrete set of eigenvalues.

There are still other types of the form functions that lead to the so-called ra-
diation fields. These types of form functions have an oscillatory behavior in the
substrate and cover or in the substrate only. Since the resulting electromagnetic
field is no longer tightly bound to the stack, it is sometimes referred to as an un-
bound state in analogy with the hydrogen atom. These states are necessary to
describe the scattering phenomena in MPSs. More detailed study of the radiation
modes will be done later in this appendix.

From the above considerations, the form functions are central to the investiga-
tion of MPSs. Since these functions satisfy the differential equation (A.28) subject
to the boundary conditions (A.29) and (A.30) or (A.31) and (A.32), it is worth seek-
ing a systematic approach to tackle (A.28) in MPSs. To this end, we have shown
that (A.28) and the corresponding boundary conditions can be replaced with suit-
able matrix equations. Since this thesis heavily relies on this method, in Appendix
B.1 this technique is described in more details.

A.5 Surface Waves

Multilayer planar structures have the potential of guiding electromagnetic waves.
This characteristic feature enables MPSs to support an electromagnetic field that
is tightly bound to the stack with an exponential amplitude decay both in the
substrate and cover regions. Therefore, MPSs are sometimes referred to as open-

boundary or surface waveguides. The mechanism of guidance in a MPS is based
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on the trapping of the wave between at least two barriers. This phenomena is only

possible if there exist at least one layer with index [ such that its refractive index

VBri€r ko is larger than max(,/k. € ko, \/Ei-, €, ko).

The study of surface waves or the so-called guided waves in MPSs is very similar
to the study of an electron trapped in multiple quantum wells. Each eigenvalue of
Schrodinger equation correspond to an allowed energy state of the electron. In
a similar fashion, surface waves are the eigenvalue solutions of the characteristic

equation of a MPS.

Since form functions reflect the characteristic behavior of the electromagnetic
wave in a MPS, it can be easily seen that a MPS can support a surface wave with

a form function defined in the entire space as

af:'h)e""ie'h)("d" ) z>dy
(<.h) e, e, e, €,
F* (2) = Ai- h)ch[‘yi “(z —di)] + B,f h)sh['yé h)(z —di1)] di1 <z<d;
b eme 2<0
(A.35)

where ch(-) and sh(-) stand for cosh(-) and sinh(-), respectively. Moreover,

(c Y \/['B(‘ "')]2 e":#"c o ? (A'36a‘)
71(.¢ . J[ﬂ(c h)]z - e'u#rlko ? (A'36b)
7 = VBV — e pir, k2 (A.36c)

ﬂ(""’ is as yet unknown and to be determined in such a way that F (..:.)(Z) meet all

required boundary conditions.

In Appendix B.1 we have discussed how the boundary conditions can be reduced

to a matrix equation. More precisely, the boundary conditions at each interface
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z=d; ,1=1...N — 1, leads to a matrix equation
Ay wn | A
=T, : (A.37)
(ek) (eh) t+1s (€:8) o (e.h)
[ Yit1 Bita 7 B;

where Ti;:); is a transfer matrix between two adjacent layers z and 1+ 1. Its elements

are derived in Appendix B.1. In a similar fashion, the boundary conditions at z =0

requires that

AT (eh) 1 (e
(-.h)l (e:h) =T1-°h (en | Os Y (A.38)
71 Bl ‘7:
where
1 0
(e.A)
To = (ek) (A.39)
0 p

with p® = z—:‘L, = :—:’: Finally, applying the boundary conditions at z = dy leads

A(‘"‘)
N ] (A.40)

1
(e.h) (eh)
l: () a. - TN+1.N (eh) B(c.h)
- In N

(4

Different approaches use the so-called matrix formalism for obtaining the char-
acteristic equations of a multilayer stack [110]-[112]. The essence of this method is
based on the three matrix equations in (A.37)-(A.40). By successive elimination of
the amplitude coefficients of the form functions in each region, we end up with a

system of two homogeneous linear equations in two unknowns

1 . . 1
af: h) T( WA)
(e.h) (eh)
—Ye Ys

1]
T = [] Tk (A.42)

bt =0 (A.41)

s

where
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Note that from (B.14), we have

m@ﬂ=ﬁm@m
:=°N e

_ H Cit1
= (e8]
i=N &
(e.A)

cC
= (A.43)

Cs

where c: = ., and ¢; = ¢,,. Multiplying both sides of the matrix equation (A.41)
by the row matrix [7."" 1] leads to the cancelation of ar™™ . Nontrivial solution

requires that the resulting coefficient of 5{°*) be equal to 0. That is,

¢ (e.h)
L

S HTW[ 1]:& (A.44)

The two different equations in (A.44) are the characteristic equations of the
normal LSE and LSM fields of the MPS shown in Fig.A.1. The roots of these
equations are the eigenvalues of the surface waves, the so-called normal mode prop-
agation constants. A careful look at (A.44) reveals that the characteristic equations
are the determinants of coefficient matrices in (A.41). As shown in Appendix B.1,
for a lossless MPS the elements of the transfer matrices are real. Therefore, from
(A.36a), (A.36¢c), and (A.44) the characteristic equation of a lossless MPS is a real

function of ", if

(«.h)
B > max(/ir € Koy /P, &, Ko)

In fact, the real roots of the characteristic equations (A.44) in the range of

max(\/tr € Koy /ir, €, ko) < B < max(/Lr; €r; ko) 1=1,2,...N (A.45)

correspond to the eigenvalues of the surface waves that can be supported by the
MPS. The largest root gives the fundamental mode.
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Multiplying both sides of (A.41) by (T“*)™" leads to

(e.h)\ —1 1 (e.h) 1 (e.h)
(") [ M)]ac -[ (w]b, =0 (A.46)

e s

(eh)

If one multiplies both sides of the above equation by the row matrix [—~, 1]
and uses the same arguments, one obtains the characteristic equations of LSM and

LSE modes in the form

[ ()™ [ 1(",‘) } =0 (A.47)

(-4

At first glance, the two types of the characteristic equations in (A.44) and
(A.47) seems to be different. However, except within a multiplicative factor, these
two equations have the same mathematical representations. More precisely, we
have

() -1 1 a
[_7:. 1] (T(c.h.)) [ ] _ E(",T) 9 (_[‘Y‘(:.h) l]T(e.h)

(eh)

(e.k)
— c .

c

) (A.48)

Therefore, (A.44) and (A.47) have the same roots.

The characteristic equations of the MPS can still be written in a different form.
For example, by changing the variable z to u = d,, — z, the characteristic equations

reduce to either

SLONE E ] = (A.49)
or
(eh) + (eh)) —1 1
[_7c " 1] (T ) { _ (e.h) ] = 0 (A'su)
where
s (e/h) N (e
T =T » (A.51)

1=0
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01 = 0 oM (A.52)
(e.h) h(r M bigr)
= (e,h) Ch(7i+1 ti+1) ie k)
T., = k) Titt y (A.53)
t,3+1 ':(e A) (e.h) (&) (e.h)
ey R Yit1 h(7i+1 ti+1) (¢ y) Ch('7z+1 tiva )
l-(-l !+1

¢ = ‘;"M, and ¢* = ‘;—'} In this case even if the mathematical forms of (A.44) and
(A.49) are totally different, however, physical considerations require that these two
different characteristic equations have the same set of solutions. The same is true

for (A.47) and (A.50).

Since the form functions are the solutions of a homogeneous differential equation
with homogeneous boundary conditions, they can be obtained within a multiplica-
tive constant. Therefore, one of the coefficients can be chosen arbitrarily. If, for
example, 5" is chosen as a real number, from matrix equations in (A.37)-(A.40)
and noting that the eigenvalues of the surface waves are within the range specified

in (A.45), it can be shown that the form functions are real valued.

Further interesting properties of the form functions associated with the surface

waves may be obtained by using the following definition.

DEFINITION A.1 Let F-*"(z) and F,f"h)(z) be two entire form functions corre-
sponding to two surface waves supported by a lossless MPS. The notation

(eh) (e '*)

<F,",F,

denotes the symmetric inner product of F***(z) and F{*"(z) and is defined by

< BN RM 5 / W™ (2)F (2) B (2)dz (A.54)

where w®(z) = ‘,(:) and wh(z) = The notation

uv(z)

(e h)

< F" gt
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denotes the Hermitian inner product of F'"*(z) and F{*™(2) which is defined as
< FM FEY = / WM (2)F ) FSM (2)] dz (A.55)
where * means complez conjugate.

An important property of the form functions is the orthogonality relation which is

stated in the following theorem.

THEOREM A.1 Let Fy'h)(z) and F,f"”(z) be two different form functions of a
lossless MPS corresponding to two different eigenvalues ﬂf:'h) and ﬂ,‘,"h), respectively.
Then

< FEY FEY s=0 (A.56)

and

< FSY Y >=0 (A.57)

The proof of the above theorem is given in Appendix B.2. Note that (A.57) is not
valid for a lossy MPS. Moreover, there is no cross orthogonality between F° and
F*h,

By a symmetric MPS, we mean a MPS such that

€ = e’N+1—i

Hri = Frapri

The form functions of surface waves in a symmetric MPS enjoy an interesting
property. They are either symmetric or asymmetric. More precisely, a MPS can
not support a surface wave with a form function which is neither symmetric nor

asymmetric. This important property is stated as follows.
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Perpendicular Polarization Parallel Polarization
Figure A.3: Two different polarization states

THEOREM A.2 The form functions of surface waves supported by a symmetric
MPS are either symmetric or asymmetric about the plane of the symmetry of the

MPS.

We have proved Theorem A.2 in Appendix B.3. When we introduce radiation
modes of MPS, it will be seen that the above theorem is not necessarily valid for

the radiation modes.

In the next section the other possible solutions for the form functions, the so-
called radiation modes, will be discussed. Since our approach is based on the plane
wave concepts, it is also insightful to relate the wave guiding mechanism of MPSs
to plane waves . As noted earlier, the solutions of the characteristic equations of a
MPS are within the range specified by (A.45). Therefore, at least in the I-th layer
with the highest value of the refractive index /- €;,, we have

\/ ll'flef‘ ko > ﬂ

Using (A.35) and (A.36b), the above condition means that the electromagnetic

(e,h)

field within the [-th layer can be considered as a superposition of an upward and

downward propagating plane wave. With the plane wave concepts, as illustrated in
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Fig. A.3, the LSE and LSM modes correspond to perpendicular and parallel polar-
ization [113], respectively. Moreover, no matter whether or not the electromagnetic
field within other layers can be expressed as a superposition of plane waves, there
is no possibility of the waves escaping from the boundaries at z = 0 and z = d,,.
Therefore, in the z direction, the MPS can be considered as a one-dimensional

transmission line resonator.

The resonance condition, referred to as transverse resonance condition [114],
leads to the characteristic equations in (A.44) or (A.47). Such a behavior is the
physical basis of wave guiding property of MPSs. Moreover, with this physical

picture in mind, we see that why there is no possibility to have surface waves with

eigenvalues larger than max(,/i:,€,, ko).

A.6 Radiation Modes

As mentioned earlier, there is still other possibility to construct an electromagnetic
field in a MPS such that the field reaches undiminished to infinite distances in the
substrate or cover regions. Due to this property, these types of modes are called
radiation modes. In the literature, it is common practice to study the radiation
modes of MPSs after investigating the guided modes. However, in principle, these
types of modes are introduced much sooner than that. In fact, radiation modes are
considered as the simplest examples of the solutions of Maxwell’s equations in the

elementary courses of electromagnetics.

The concepts such as plane waves, normal and oblique incidence of plane waves
on a dielectric or several dielectrics are nothing but the radiation modes. Therefore,
one may expect that these modes are not peculiar to MPSs. More precisely, there

is no need to have any barriers for supporting the radiation modes. For example,
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free space can support its own radiation modes. In fact, all modes of free space
are radiation modes. Two semi-infinite dielectric materials separated at a barrier,
or even a dielectric film sandwiched between two other dielectric regions of higher
refractive indices can support radiation modes. Whereas, it is not possible to have
guided modes in these structures. This fact is a distinctive feature of radiation

modes in comparison with the guided modes.

The form functions of the radiation modes of a MPS and the study of a free
electron incident on the several potential barriers are dual problems. It is well-
known that there is no restriction on the electron’s energy. Therefore, radiation
modes can be considered as an eigenvalue problem with a continuous spectrum.
Mathematically, radiation modes are not square integrable functions. Therefore,
no physical process can excite a single radiation mode. This is another difference
between the radiation modes and the guided modes. Superposition of radiation
modes, however, within a range of their spectra leads to a physical system. This
idea is very similar to the so-called wave packet concept in quantum mechanics. In
fact, the wave function of a localized particle can be considered as a superposition of
the wave functions of a free particle which is a non-physical system. In the theory
of Fourier transforms we have a similar situation. That is, even if the Fourier
kernels are not square integrable, however, every square integrable functions can

be considered as a superposition of them.

Like guided modes, radiations modes are orthogonal among themselves. How-
ever, the orthogonality is not in the ordinary sense. In fact, as will be explained
later, radiation modes are orthogonal in the distribution sense. Radiation modes
are also orthogonal to each guided modes in the ordinary sense. In view of the
orthogonality of the radiation modes, constructing an orthonormal set of these

modes is highly desirable. However, since these modes are not bound, this task
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does not seem to be quite straightforward as in the case of guided modes. Detailed

investigation of these important issues are addressed in this section.

After this introduction we turn now to the way of constructing of the basis func-
tions of the radiation field in a MPS. In the preceding section, the mechanism of
waveguidance of MPSs has been described in terms of the excitation of plane waves
inside the stack which suffer total internal reflection at some boundaries. The ques-
tion may be raised at this point is that whether it is possible that a traveling wave

exists inside the cover or substrate regions with such mechanism. It should be noted

that such a behavior necessitate that either 3" < max(/fr €, Koy \/Iir, €. ) ko) oI
ﬂ(e'” be purely imaginary number. A non trivial field of this type results in the de-
terminantal equations of the form (A.44). However, within the range shown above,
there is no value of B such that the resulting field exhibits such a characteristic
behavior. Physically, it is impossible to obtain steady power from a finite amount
of energy. This is why the determinantal equations do not have any solutions in

this range. This fact provides us other possibilities for constructing the solution.

With a proper discontinuity of the appropriate field components in a finite range,
it is possible to have a purely traveling wave in the cover or in the substrate. Such
fields, however, are not the solutions of homogeneous Maxwell’s equations. In fact,
they are responses to some kinds of excitations. This is the topic Chapter 2 in
dealing with the Green’s functions in the spectral domain. If this discontinuity
recedes to z = +oo, the problem reduces to the excitation of the MPS with a plane
wave which is still a homogeneous problem. It should be noted that, however,
solutions of these types have standing waves nature at least in the cover or in the

substrate.

Let us excite the MPS shown in Fig. A.4 with a plane wave incident from the
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Figure A.4: Cover radiation modes

top in the cover. Moreover, assume that

Vv ”"-ern > \Y4 #"ce"c

188

(A.58)

It is not difficult to show that the entire form functions F:e'h)(z; s) are of the form

bcej‘(z_dN) + a::'h) (3) e"j‘(z‘dN)
(e.k)

Z>dN

F,. " (z78) = § AS™(s) chlyi(z — dic1)] + B (s) shimi(z — dis1)] dioy < z < d;

b (s) e

where

s =/tr&r k2= B2 >0

Y =/ B% — pri€r; K3

Te = \/I‘nef. k2 — B?

z<0
(A.59)

(A.60a)
(A.60Db)
(A.60c)
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In our terminology, the radiation modes with the above form functions are
called cover radiation modes or cover modes for short. As will be explained later,
this terminology is slightly different than the conventional one usually used in the
literature. For the cover radiation modes it is usually more convenient to consider
the real variable s, called radiation parameter, as an independent variable and

express the dispersion parameters defined in (A.60) in terms of it. Therefore,

Lr € k2 — 82 (A.6la)
% = V/(fre€r, = piriri JBZ — 87 (A.61b)
Te = J(#faef- - #fce":)kz + 32 (A.61C)

Note that the value of s is not restricted to some discrete values. It covers the
complete range of positive real numbers. Now some important results can be derived
from (A.61). As can be seen from (A.6la) within the range 0 < s < /i, € k., S
is real and 0 < 8 < /fr € k,. All cover modes with radiation parameter in this
range are called visible or propagating cover modes. The term propagating means
propagation in the direction transverse to the z axis. These modes are associated
with real values of 3. On the other hand, for s > |/p. € k., B is purely imaginary.
We call these types of radiation modes, with imaginary values of 8, invisible or
decaying cover modes. For the sake of mathematical completeness, invisible modes
are necessary to describe an arbitrary discontinuity in the amplitude functions at

the junction of two different waveguides.

From (A.58) and (A.61c), one may find that 7, > s > 0. Thus, if the refractive
index of the substrate is larger than that of the cover, the field of the cover mode
in the substrate region is of traveling type irrespective of the radiation parameter.
Of course, this field in the cover region is a standing wave. Since the amplitude

b is related to the incident plane wave, we call it incident amplitude. Incident
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(a) (b)

Figure A.5: Substrate radiation modes: (a) Type L. (b) Type II.

amplitude can be chosen arbitrarily. All other amplitudes are called scattered

amplitudes. Scattered amplitudes can be uniquely determined in terms of the
incident amplitude.
There is still other possibility to construct radiation modes. Let the MPS be

excited by a plane wave incident from the bottom in the substrate as depicted in

Fig. A.5. In this case the entire form functions F***(z; s) can be described by the

following expression

a(cc.h)(s) e—‘y‘(z—dN) z> dN
F(e-h) oY (ek) (k)
2 (z8) = ACY (s) chl(z — dia)] + BEY(s) shivilz — disa)] dicy < z < ds
a,e~9% 4 BN (s) e z2<0

(A.62)
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where s > 0 is the radiation parameter and

#'"oe"'- kg - 32 ’ (A'63a')
%= \/(F‘r.er. — Hri€r)k2 — 8%, (A.63b)
Ye = V(ftrs&r, — pirer JK2 — 52 . (A.63c)

The radiation fields with the form functions in (A.62) are called substrate radi-
ation modes or substrate modes for short. Again our terminology, using substrate
modes as a class of radiation modes, is different than that in the literature. Note
also how the role of radiation parameter has been changed. For these modes a, is
called incident amplitude and all other amplitudes are called scattered amplitudes.
Radiation parameters in the interval 0 < s < |/K., &, k, correspond to the visible or
propagating substrate modes and those larger than /i, €., k, are associated with

the invisible or decaying modes.

From (A.58) and those values of s such that 0 < s < \/i,.&,, — f,.€,. ko, 7 is
real. This means that the wave can only tunnel the barrier at z = d,, and has a
decaying character in the cover. These types of radiation modes are called substrate
modes of type I. For these modes S is within the range \/k, €.k, < 8 < VEr. € k.

Substrate radiation modes of type II are those substrate modes that are obtained

for s > +/p,, €, — pir_€r. ko. These modes have traveling wave character in the
cover. Therefore, substrate modes are either decaying or traveling wave in the
cover. These modes are standing wave in the substrate. It should be noted that 8
in the above consideration is doubled-valued. We have only considered positive or

positive-imaginary values of 3.
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A.7 LSEM Fields

So far, we have categorized the electromagnetic fields supported by a MPS as LSE
and LSM fields. In either type of fields we have one component transverse to the
planar interfaces. However, when radiation modes come into the picture there is
possible to have an electromagnetic field that completely lies in the transverse plane
to the z axis. Therefore, in order to be consistent with our terminology, we call

these types of fields longitudinal section electric and magnetic (LSEM) fields.

In order to see how these fields can exist in a MPS, let us start from a LSE
radiation mode. The field components can be derived from (A.19) and (A.20).

Especially, we have
2gh
gt = L% L g (A.64)

z = #_r'—a? ri Vo £ 4§
In order that H : be zero, it is necessary to have
Zq,h

e+ e KU =0 (A.65)

On the other hand ¥? is the solution of (A.16). Substituting (A.65) into (A.16),
we have

vzt =0 (A.66)

Now, if we write ¥* as a product of the form function and amplitude function as

shown in (A.24), the conditions in (A.65) and (A.66) necessitate that

d*F}
dz; T Hri€r; sz}h =0 (A.67)
ViAt(u,,u,) =0 (A.68)

The amplitude function of the LSEM field is the solution of Laplace equation.

This means that we do not have wave propagation in the plane transverse to the
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z axis. This can also be seen from (A.67). Comparing (A.67) with (A.28), we see
that B = 0. This value of B is permissible for the radiation modes. As a matter
of fact, visible and invisible radiation modes meet each other at 8 = 0. It should
be stressed that F* satisfies the same boundary conditions as before. If, instead of

LSE field, we start with LSM field, by using the same argument, we have
d*Ft

! ¢, k2FS = .
dzz + #”te 1 OFI 0 (A 69)
ViA*(u,,u,) =0 (A.70)

The LSEM field corresponds to normal incidence of plane wave on single or
several dielectrics. This type of field plays an important role in the theory of
second-order DFB lasers. This matter will be described in Chapter 3.

A.8 Characteristic Features of the Form Func-

tions of the Radiation Modes

As mentioned earlier, like surface waves, the form functions of the radiation modes
are orthogonal to each other. However, this orthogonality must be considered in
the distribution sense. This fact will be explained later. The orthogonality of the
form functions in turn leads to the question of how to set up an orthonormal set
of form functions. This is one of the most challenging problems when one deals
with the radiation modes. Consulting with some good references [115]-[118], even
in the simplest cases, shows that it may be an overwhelming task. Fortunately,
this is not the case. Due to some interesting relationship between the amplitudes
of the form functions normalization of radiation modes is much easier than has

been thought before. It is even easier than the normalization of the guided modes.
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These relationships are based on the some physical considerations. Based on these
considerations and without any explanations, simple expressions for the normalized
radiation modes of a lossless MPS are given in [59]. These relations are described

in the following theorems.

THEOREM A.3 Let F,_f"”(z) in (A.59) be the form function of the cover mode of
a lossless MPS such that (A.58) holds. Then for all values of s > 0, we have

(e,h)

C. Ts
[be]* = lac(s)I* + <o, 1B(8)® (A.71)

e — —_—
where ) = Eren) and c:‘m) = e

In general, the proof of the above theorem is not easy. For example, with the
expressions given for the normalized radiation modes in [59], it is difficult to prove
the above theorem. However, with the transfer matrix formulation that we have
developed, this theorem can be proved very easily. The details of the proof of this
theorem are given in Appendix B.4

THEOREM A.4 Let F,("h)(z) in (A.62) be the form function of the substrate mode
of a lossless MPS such that (A.58) holds. Then for the substrate mode of type I,

we have
la.? = 16, (s)? (A.72)

and for the substrate mode of type II, the following relationship between the ampli-

tudes holds.
(e,h)
TC (e.k)

~ lac (s)]? (A.73)

la.f? = 55" (s)? +

c‘
(k)
cC

We have proved the above theorem in Appendix B.5.
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The relationships between the amplitudes of the form functions of the radiation
modes stated in the Theorems A.3 and A.4 rely on some physical basis. In fact,
they are another statement of the power conservation. In Appendix B.6, using the

plane wave concepts, the physical interpretation of Theorems A.3 and A .4 is given.

A.8.1 Orthogonality of the Radiation Modes

In Section A.3, we have shown that the form functions of the surface modes are
orthogonal. This is due to the fact that the entire form functions and their weighted
derivatives are continuous at each interface. Moreover, they have decaying character
in the substrate and in the cover regions, such that both the form functions and their
derivatives vanish at z = +oo. Radiation modes like surface modes are orthogonal
among themselves. However, due to the oscillatory nature of the fields in the
substrate and cover, the conventional reasoning in the proof of the orthogonality of

bound modes is not valid in this case.

So far, orthogonality of the radiation modes has not been treated carefully in
the literature and has been overcome by ad hoc construction. This problem can,
however, be dealt with in a rigorous manner by using the concept of generalized
functions and the distribution theory [119]. More precisely, let us consider the
inner products of the form functions defined in Section A.5 in the distribution
sense. That is, we consider them as linear forms or functionals that are defined on
the class of the so-called test functions which are continuous and satisfy, at least
for our purposes, very mild conditions. Under these conditions all the limits must
be considered as the generalized limits.

As will be presently shown, the term e*(***)* appears in the inner products

of the form functions of the radiation modes. Considering the inner product as a
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distribution, orthogonality of the form functions requires that

lim ej(c:!:c')z =0

z—too
where the limit must be considered as a generalized limit. In fact, this is the case

as stated in the following theorem.

THEOREM A.5 Let us consider e?** as a distribution which is a process that

acts on a test function ¢(s) with bounded derivative through the following integral

297 @ ¢(s) = / T et g(s)ds (A.74)

Then, for s # 0 and in a generalized sense, we have
lim,peet?® =0 (A.75)

that 1is,
lims—so / ¥ etisg(s)ds = 0 (A.76)

The proof of the above theorem which is based on the Riemann-Lebesgue Lemma
is given in [120]. Note that the distribution defined in (A.74) assigns to a test
function ¢(s) its Fourier transform 4-5¢(z). One of the important implication of
Theorem A.5 is that the Fourier transform of not necessarily square integrable
functions approach zero for large values of the Fourier argument. Note that from

the above theorem, for s # 0, we also have

lim, .400c08 8z = lim,_1o8tnsz =10 (A.T7)

One of the applications of Theorem A.5 is in the calculation of the distribution
which is defined by the following integral

Ou(s) = /0 ~ etisgy (A.78)
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Integrals of the above type are very useful for normalization of the radiation modes.
In Appendix B.7, using the residue calculus, it is shown that

o . +i 0
[etimaz =4 T ° * (A.79)
0 w6(s) 0- <s< 0

where §(-) is the Dirac delta function.

Once we have established Theorem A.5, we may prove the orthogonality relation

between the form functions of the radiation modes which is stated in the following

theorems.

THEOREM A.6 Consider a lossless MPS. Let F\*™(z; s,) and Fc("h)(z;s,) be the
form functions of the cover modes associated with two different radiation parameters

s, and s,, respectively. Then, in the distribution sense, we have

< Fc("h)(z;sl),F:M)(z; s,)>=0 (A.80)
& F™(z18,), F™(2;5,) >=10 (A.81)

where < -,- > and K -,- > are defined in (A.54) and (A.55), respectively.

THEOREM A.7 Consider a lossless MPS. Let F,("h)(z;sx) and F*"(z;s,) be the
form functions of the substrate modes associated with two different radiation pa-

rameters s, and s,, respectively. Then, in the distribution sense, we have

< F,("h)(z; s,),F,("h)(z;sz) >=10 (A.82)
& Fi(2;8,), F™(2;8,) =10 (A.83)

Note that according to the Theorem A.7 substrate modes of the same or different

types are orthogonal to each other.
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THEOREM A.8 Let FI**(z;s,) and F"(z;s,) be the form functions of the sub-
strate and cover modes of a lossless MPS, respectively. Moreover, assume that the
two modes are nondegenerate, that is, each mode corresponds to different values of

B. This condition ts equivalent to

s, # (&, — & )k2 + 82 (A.84)

Then, in the distribution sense, we have

< F*%zs,), Fr M (238,) >=0 (A.85)
L Fz;s,), Fi M (238,) >=0 (A.86)

The above theorems are based on the nondegenerate mode assumption. Their
proof are similar to each other. Therefore, only the proof of Theorem A.8 is given
in Appendix B.8.

A.8.2 Degenerate Radiation Modes

By definition, two modes with the same value of B are called degenerate modes.
Degeneracy for surface waves may happen only within a multiplicative constant.
This property has been exploited in the proof of Theorem A.1. However, this is not
the case for the radiation modes. For example, two plane waves travel in opposite
directions with the same propagation constants are degenerate modes of free space
whereas they are mathematically independent. In the case of a MPS, two cover

and substrate modes with the following form functions are degenerate modes.

b)) et > dn
F ™ (zi8) = { AS(s) chlv(z — dicy)] + B (5) shlvi(z — di-1)] dio1<z<d;
BN (s) e z<0

(A.87)
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af_.""’(-r.) e-is(z-dn) z>dy
Fizr,) = AV () chlvi(z — dicy)] + Bi™M (1) shlvi(z — diy)] di1 <z <d;
a,e=m® 4 BN (1,) eime z<0
(A.88)
with

7o = (&, — & K2 + 57

In the functional space of the form functions of either surface or radiating wave
type, we have defined symmetric and Hermitian inner products as appeared in
(A.54) and (A.55), respectively. In a real space there is no differences between
these two types of inner products. As stated before, for a lossless MPS, it is always
possible to construct a real-valued form function for surface waves. Therefore, there
is no superiority between the inner products for the surface waves. However, this

is not the case for the radiation modes.

The cover and substrate modes defined according to our terminology are complex-
valued functions. Mathematically, it is more convenient to define Hermitian inner
product (HIP) in a complex linear space. HIP brings the possibility to define norm
of a complex vector. That is why linear spaces with HIP are called normed linear
spaces. In an electromagnetic system the concept of norm can be related to the
power which is the fundamental physical quantity. Furthermore, in comparison
with the HIP, symmetric inner product (SIP) has two disadvantages. In some com-
plex linear spaces such that the SIP defined as a generalized function, a vector may
happen to be orthogonal to itself! For example, consider a plane wave in free space

with the form function

F(c'h)(z;s) = e
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We now may write

e, e, oo 1 —
—-oo C

1 e_jz,z z=co
- cte™ [—j2s]

=0 -

where we have used Theorem A.5.

As will be explained later, for the purposes of normalization and continuous
spectrum representation of radiation modes, it is desirable that the degenerate
radiation modes defined in (A.87) and (A.88) be orthogonal. This property avoids
the Gram-Schmidt process in constructing an orthogonal set which is not an easy
task if the inner products are defined in a generalized sense. In the SIP sense, the
form functions of two degenerate radiation modes are not orthogonal. This can be
seen in the plane wave example stated above. In this case, the two plane waves

with the form functions

F,("h)(z; s)= eI

and
F(‘-h)

[

(2;8) = &**

are degenerate modes. Whereas,
(e.h) (eh) 2
< F.l (Z;S),Fe (Z;S) >= c(c.h.) 6(3) # 0

However, the HIP of the form functions of this two degenerate radiation modes is
zero. Therefore, if we only consider the HIP, the non-degenerate condition in the
Theorem A.8 can be relaxed and we have the following theorem. theorem is stated

as
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THEOREM A.9 Let F**"(z;s,) and F{*"(2; s) be the form functions of the cover
and substrate modes of a lossless MPS, respectively. Then, in the generalized sense,
we have

(e.h)

< F™(2;8,), F&™(238) >=10 (A.89)

The above theorem in the case of two degenerate modes is called Reciprocity The-
orem. The general method used in the proof of Theorem A.6—A.8 is not applicable
for this theorem. To prove it, we need to calculate the HIP directly. The proof
of the above theorem which in turn necessitates the use of the following lemma is

given in Appendix B.10.

LEMMA A.1 Let f(z) be a monotonic function of z. Then

1
|f'(a)l

8[f(z) - f(a)]l = &(z — a) (A.90)

We prove this lemma in Appendix B.9

An immediate consequence of the reciprocity theorem is the Brewster theorem

which is stated as follows.

THEOREM A.10 BREWSTER THEOREM. Let a MPS be transparent to a
substrate mode, then it is also transparent to the corresponding degenerate cover

mode and vice versa.

The proof of this theorem which is based on the Theorem A.9 is given in Appendix
B.11.

Finally, as will be discussed in the next section, the HIP of the form function of
radiation modes allows us to obtain simple analytical formulas for the normalization

of the form functions. This is another advantage of HIP in comparison with SIP.
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A.8.3 Normalization of the Radiation Modes

So far, we have shown that the introduced set of radiation modes are orthogonal.
An interesting problem is how to construct an orthonormal set of radiation modes.
That is, how to normalize the radiation modes. This task looks a challenging issue
in the literature for many reasons. The most important one is that the norm of
the form function of a radiation mode is not finite. In fact, due to the oscillatory
nature of the radiation field in the substrate or the cover region, a delta function
appears in the norm of the form function. Therefore, the first important challenge
in this issue is the recognition of the delta function. This is the main source of the
difficulty in the process of the normalization of the radiation modes. Due to this
reason, normalization of the radiation modes seems an overwhelming task in the

literature.

As we have mentioned before, the type of the radiation modes we have intro-
duced enjoy interesting properties. This makes their normalization problem much
simpler than has been thought before. Moreover, as will be explained later, the
type of radiation modes introduced in the literature are linear combination of these
fundamental basis functions. According to the Theorem A.9, since there is no cross-
coupling between these modes, the principle of superposition of the square of the
norms can be used in the normalization of those radiation modes in the literature.
However, before that, in the following two theorems we investigate the interesting

problem of the normalization of the cover and substrate modes.

THEOREM A.11 Let F:"h)(z;sl) and F:"h)(z;s) be the form functions of two

cover modes with radiation parameters s, and s, respectively. Then

c

€y €, 2
€ F 0 (z0,), F (z8) = o bolé(s - s,) (A.91)
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where b, is the incident amplitude of each cover mode.

THEOREM A.12 Let F,("”(z;sl) and F\*"(z; s) be the form functions of two sub-

strate modes with radiation parameters s, and s, respectively. Then

(e.h)

e 2
L F, (z;sl),F( “(z;s) >= -c(t%la,lzé'(s —s,) (A.92)

where a, is the incident amplitude of each substrate mode.

According to the Theorems A.11 and A.12, we have
1

<K F(238,), F " (258) »= / ey [belFe T =% dz (A.93)
€y e, b 1 .
SEP(Ea) BN »= [ glaleia e (a9

Eq. (A.93) implies that the HIP of the form functions of the cover modes of a
MPS is exactly the same as the HIP of the form functions of uniform plane waves
propagate in a homogeneous medium with exactly the same properties as the cover
region. Eq. (A.94) shows that the same argument may be applied for the substrate

modes.

With the necessary background we have provided in the preceding section, the
proofs of the above theorems are very straightforward. In Appendix B.12, we prove
Theorem A.12 which is more general than Theorem A.11.

At this point the study of radiation modes is completed. Radiation modes
have been systematically treated in our approach. For lossless MPSs, this study
is completely general and no further development is required. In the rest of this
appendix we will only discuss about some applications of our formulation for the

radiation modes.
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A.8.4 Form Functions of Radiation Modes as a Kernel of

an Integral Transform

The purpose of this section is to link the radiation modes with the idea of in-
tegral transform. More precisely, let us assume that the space of the functions
gl (u,v, z), excluding bound functions in the z direction, satisfy the scalar Helmholtz
equation in a MPS. Moreover, assume that all the functions in this space satisfy
LSE or LSM type boundary conditions. That is,

(e.k) (e.h)

V& - =V ey i=0,1,2,...N
1 ag™ 1 agt-™ _
cge.h) Vt( 5z )Iz:d..— = c:'::) vt( 9z )'z:d;." t=0,1,2,...N

We will show that in this functional space it is possible to define an integral trans-

form by the kernel which is the form functions of either substrate or cover modes.

To illustrate the basic idea, we will first show that how the ordinary Fourier
transform can be connected to the modal analysis in a homogeneous space. Let
¥“*(u,v,z) be the Hertzian scalar potential functions in a homogeneous space.

These functions can be related to their Fourier transforms as follows

(eh) L . .
‘Il(hh)(u,‘v,z) = v c21r / T 'h)(u,v,a)e"‘"da

) —(e (e,h) .
= / g ""(u,v,a)( °2 e""“) da (A.95)

™

where ¢ = ¢, and c* = p, are introduced for the purpose of normalization as will

be described shortly. If we define the HIP in the space of the kernel of the above

transform, we have

(e,h) (e,h) oo (e,k) (e,h) *
c . c . 1 c . c .
1/ -jaz ‘/ —ja, z — ~jaz =iz | g4
< or = o7 > ./:“, er) ( 27 € ) ( 27 € ) z

= §a-a,) (A.96)
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Thus, taking the HIP of both sides of (A.95) with V ‘%—e"hl‘ leads to

(e.n) (e.h)
(e.h) € .- A c —iaz
< ¥ (1,0,2),/ st > = /., (uva)( e,

Ao
oy e 7N > | da (A.97)

Using (A.96) in (A.97), we obtain

oo (e.h)
gl gl c ja, z
(u,v,a,) = /_,. =" (u,v, )(\/ e’ )dz (A.98)

The above relation is the inverse Fourier transform of (A.95).

Let us look at (A.95) from another point of view. By a simple change of variable,

(A.95) can be rewritten as

(¢ h)
A h)(u v,z) = / ' h)(u v, —s) (w ") ds
(e.h)
P~ (e.h) c o-isz
+ A T (u, v, 5) ( —~ ) ds (A.99)

Now in this homogeneous space, we define the cover modes with the normalized

(¢ 5 clem)
(z38) = .2 (A.100)

By a cover mode, we mean a plane wave incident from z = co. We note that since

form functions as

the medium is homogeneous there is no reflected wave in the cover mode. Similarly,
it is possible to define the substrate modes with the normalized form functions as

c(¢ k)

F(z8) = et (A.101)

By a substrate mode, we mean a plane wave incident from z = —oco. Eq. (A.99)

can be interpreted as expressing "' (u, v, z) in terms of a continuous spectrum of
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the cover and substrate modes. Therefore,

(‘h)(u v,z) = / A(‘”( u,v,$ )F (z sds+/ A ( u,v,s )F (z s)ds

(A.102)

where
ACY (uyv,5) = T (u, v, —s) (s > 0) (A.103)
A (w,0,8) = Y (u,u,5) (s> 0) (A.104)

According to our theory, substrate and cover modes are orthogonal. That is,

(e.h) = (e.,h) *® 1 c(‘-’l) . c(t.h) . .
<K Fc (Z;S), F' (Z; 31) >> - / m 21r 8z 21r e"'l" dZ

1
= i(s+s, )z
2ﬂ_/ e\ iidy
=0 (A.105)

Moreover, we have
<K F':e'h)(z;s),ﬁ':e'h)(z;sl) >=<K F',‘e'h)(z;s),ﬁ',("h)(z; 5,) >=46(s—s,) (A.106)

Therefore, using (A.105) and (A.106), from (A.102), one may obtain

AT (wy0,8,) =< T (u,v,z),Fc‘"“’(z;sl)» (A.107)

A (w0 ,8,) =< ¥ (u,v ,2), (2 8,)> (A.108)

Now let us consider a MPS. An arbitrary scalar Hertzian potential in this struc-
ture can be represented by a continuous spectrum of the cover and substrate modes
as in (A.102). In this case I:",_f"h)(z;s) and F‘f"”(z;s) must be interpreted as the
form functions of the cover and substrate modes, respectively. Eq. (A.102) can be

rewritten as

(eh)(u v,z) = / A('h)(u,v, az)F(¢ )( —a)da+/ A('h)(u, v, )F (z a)da
(A.109)
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Let us define an integral transform defined by the equation
‘Il("h)(u,v,z) = / \’I}(c'”(u,v,a)ﬁ(e'h)(z; a)da

where

Fi*™(z;a) a>0
F™(z; —a) a<0

R(c'h)(z; a) = {

With the above choice of the kernel, the inverse transform is

AN, v,a,) a, >0

A (u,v, —a,) a, <0

‘i(.'h) (u, ‘U, al) = {

It is also possible to choose the kernel as

R (2 ) = EfM(z;0) a>0
F&¥(z;—a) a<0
For this choice, we have
- A, v, ) a, >0
‘D(t'h)(u,v,al) — (4 Rt B § 1
A (u,v, —a,) a, <0

In either case, the inverse transform is

‘i’“'“(u,v, o) =<K ‘Il(c'h)(u,v, z), ﬁ(e'h)(u,v, a,) >

207

(A.110)

(A.111)

(A.112)

(A.113)

(A.114)

(A.115)

A.8.5 Radiation Modes With Real-Valued Form Functions

The form functions of the radiation modes defined in the preceding sections are the

simplest and the most appropriate basis functions that span the z-dependent part

of the radiation field. As illustrated before, these basis functions are orthogonal

and enjoy interesting properties which make their normalization a trivial matter.



APPENDIX A. MULTILAYER PLANAR STRUCTURES 208

Therefore, constructing an orthonormal set of basis functions for a typical lossless
MPS is not a big deal. In the preceding section, we have shown that how to

construct more general solutions from these building blocks.

We have introduced these basis functions from the complex-valued solutions
of the differential equation in (A.28). It is also possible to start from the real-
valued solutions. This approach is used in the literature. If we consider it as the
starting point, we encounter some difficulty in constructing orthonormal complete
basis functions. This makes their study a challenging issue. However, an attempt to
construct these real-valued solutions by superposing the complex-valued degenerate

solutions leads to very interesting results and more insight in their development.

For substrate modes of type I, degeneracy happens only within a multiplicative
constant. On the other hand, there must be real-valued solutions for this type
of modes. Therefore, one might expect the possibility of obtaining real-valued
solutions from complex exponential solutions. In fact, this is the case. To show
this matter, let us consider a substrate mode of type I with the form function of

unit incident amplitude as follows

Tn(s)(e‘h)(s) e_%(z_dN) z> dN
F 7% (zi8) = AC™(s) chlmi(z — dic)] + B (s) shiv(z = dicy)] dicy < z < di
e™3* + R (s) e z<0
(A.116)

where R(,;'h)(s) and T,,(s)""" (s) are called the reflection and transmission functions
of the substrate mode of type I. R(:I'h) (s) can be obtained from (B.47) in Appendix
B.5. It can be seen that for the substrate mode of type I, we have

(e.h) _ [D(e'h) (3)] )
=)

I

(A.117)
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Let
F, M (238) = —ja,Fy " (2;6) (A.118)
If one chooses
a,=D""(s) (A.119)
one obtains
5" (s) = Ry}" (s)a, = —a; (A.120)

where b‘:'“(s) is the coefficient of e’** in the substrate. With this choice, it can be

easily seen that

(e.k)

a e + 5, (s) e = [a, +b,"(s)|cos(sz) + j[~a, + b, (5)]sin(s2)

= j2Im{a,}cos(sz) — j2Re{a,}sin(sz) (A.121)

where Re{-} and Im{.} stand for the real and imaginary parts of a complex number,
respectively. Therefore, according to (A.118) the form function in the substrate is
real. Since this is the case, by using the transfer matrix method it can be shown
that the form function in the cover and in the other layers is also real. Now if one

starts from the real solution, one obtains

a.f:"')(s) e—e(z=dn) z>dy
Fo P (z58) = AT (s) chlvi(z — dic)] + Bi™ (s) shivi(z — dicy)] dicy < z < d;
AN (s)cos(sz) + B (s)sin(sz2) z<0
(A.122)

In the literature, radiation modes with the form functions in (A.122) are called
substrate radiation modes. The reason for this terminology is the oscillatory be-
havior of the electromagnetic fields in the substrate as illustrated in Fig. A.6.
Comparing (A.122) with (A.121) leads to

ATV =0, [1+ BV (s)] (A.123a)

8

B, (s) = ja, [-1+ B (5)] (A.123b)
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(a) (b)

Figure A.6: Radiation modes: (a) Substrate modes. (b) Substrate-cover modes.

Therefore, substrate modes correspond to the substrate modes of the first type
according to (A.123). In substrate modes of the first type there is only one degree
of freedom, that is, a, can be chosen arbitrarily. Thus, for substrate modes there

is also one degree of freedom.

If we choose A" arbitrarily, Bf"h)(s) can be obtained from A" via the fol-

lowing relation
(e.h)
_LRT(S) =1 (em

(eh)
Bl (8) - JR(:.A)(S) + 1 f ]

(A.124)

Note also that B,""(s) can be obtained from A'™ by using the following matrix



APPENDIX A. MULTILAYER PLANAR STRUCTURES 211

equation

(e.h)
]

T (s) A (A.125)

’ } B (s) - [ 1 ] £ (s) = ~T(s) [ :
s ~Ye 0

Since the coefficient matrix in (A.125) is real B:""(s) should be real if A s

chosen real. This consideration leads to the fact that the coefficient of A" in

(A.124) must be real for substrate modes of the first type. From (A.123), substrate
modes in the literature are substrate modes of the first type, according to our

terminology, with
ek . eh
A 4 BE)
- 2

(A.126)

Qs
Therefore, these modes are orthogonal.
Orthogonality of the substrate modes can be proved directly, if one uses (A.77).
Since substrate modes are real-valued function, we have
<FE () F (o) >=< FU 6, F () > (A.127)

Moreover,

<FM),FEN) > = lals-9)

= %(lA‘,"“’(sP+|B"'“’(s|2) (s —s) (A.128)

Note that (A.128) can be obtained from the integral formulas given in Appendix
B.15.

It is also possible to combine two degenerate cover and substrate modes such
that the form function of the resulting mode be real. This leads to the concept of

conjugate modes which is defined as follows.

DEFINITION A.2 Two degenerate cover and substrate modes are called conjugate

modes, if the form function of their superposition is real.
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As we have seen before, in a symmetric MPS the cover and substrate modes
that have been introduced according to our terminology are not symmetric. This
is due to the fact that the degeneracy of the radiation modes does not happen
within a multiplicative factor. However, by proper linear combinations of the cover
and substrate modes, it is possible to make symmetric or asymmetric modes in a
symmetric MPS. Now let us see how to construct conjugate modes. To this end,
consider two degenerate cover and substrate modes with the form functions of unit

incident amplitudes as follows

eir(z=dn) 4 R(c""’(s) e—Js(z—dn) z>dn
Fi ™ (zi0) = { AP (s) chln(z — dic)] + B (s) shivi(z — dica)] diy < 2 < ds
TN (5) e7* z<0
(A.129)
Ty (s,) e3#(==dn) z>d,
F)(z8,) = | A(s,) chlvdz — dioa)] + B (s,) shlw(z — dicy)] disy < 2 < d
e~z 4 R‘:'h)(s,)ej‘zz z2<0
(A.130)

Rf:'h)(s) and R‘:’”(s,) are called the reflection functions of the cover and substrate
modes, respectively. T'""'(s) and T¢**(s,) are called the transmission functions of
the cover and substrate modes, respectively. Let F. - =" (2; ) be the form function a

linear combination of these two modes. That is,
FiM(z;s) “z3s,) + b F M (235) (A.131)

Therefore,

ASM (s)cos [s(z — dyy)] + BE™(s) sin [s(z — d,)] z>dn
Fill(zi8) = U™ (s)chlmi(z — dioy)] + ViV () shlvilz = dicy)] diy < 2 < ds

AN (s) cos (s,2) + B (s) sin (s, 2) z<0
(A.132)
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where
(uu)( =T ('”(s,)a, [1+R‘"”(s)] b, (A.133a)
B:"(s) = =T, (s,)a, + [1 - BSV(s)] be (A.133b)
A (s) = [R‘(c,h)(s ) + 1] ay + T ()b, (A.133¢)
(.:.)( )= j [R (e, h)(sz) _ 1] a, +JT("”( )be (A.133d)

Moreover,

U(s) = a0 A (s,) + b A5 (s) (A.134)
V™ (s) = a, B (s,) + b B (s) (A.134b)

Note that s and s, are not independent. They are related to each other through

5, = \/(e,_,u,, — €r pir k2 + s2 (A.135)

Radiation modes with the form functions as expressed in (A.132) are called
substrate-cover modes. As shown in Fig. A.6(b), the oscillatory nature of the field
in the substrate and the cover calls for this terminology which is adopted in the
literature. The fields both in the substrate and in the cover are of the standing
wave type. Note that we consider s, the corresponding radiation parameter of the
cover mode, as the radiation parameter of substrate-cove mode. In constructing
of substrate-cover modes there are two degrees of freedom, that is, a, and b, can
be chosen arbitrarily. Each pair of a, and b, uniquely determines a substrate-cover
mode. Therefore, in order to catch this pair, one might expect that in constructing
these modes by using (A.132), any two coefficient can be chosen arbitrarily. In
fact, this is the case as can be seen from (A.133). a, and b, are uniquely defined in
terms of any pairs of coefficients on the left hand sides of (A.133). It is also possible
to choose any pair of coefficients defined in (A.134) as an independent variables.

However, it is useful to choose a pair of coefficients in (A.133) arbitrarily.
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Let A7 and B{™" be chosen arbitrarily. Thus from (A.133c) and (A.133d),

we have
a, = %A‘,""’ + %Bﬁ""’ (A.136a)
1- R(‘M(s ) (e 1+ R(t'h)(s ) et
be= —5—2A - j——2 2 p" A.136b
TN(s) T T e (A-136b)

If one uses (A.136a) and (A.136b) to substitute for a, and b. in (A.133a) and
(A.133b), one may write

A T V()T (s,) + [+ BEV ()] [1 - BV (s,)] Ao

(s) = ST 3)
(e,h) (e.h) (e.h) (e.h)
P CiC )—[11:5(3)( ML+ B pen (p 157
o) 1= BV 6)] [1 = B (5,)] = TEM ()TN (s,) e
B, " (s)=7 2T(eh)(3) A,
1 - BRIV ()] [1+ BV (s,)] + TEM ()T (s,) B
+ 2Ts) (A.137b)

Note also that A(:'M(s) and Bf_."h)(s) can be obtained from A™" and B!""(s) by
using the following matrix equation

[:}-} (¢n)()+[ B‘(:.n)() (eh)()([ ] (eh)+ 0] (u.)) (A138)

If real values are chosen for A" and B, AL™M(s) and B&™(s) should be real.
This is due to the fact that the coefficient matrices in (A.138) are real-valued
matrices. Therefore, the coefficient of A" and B!*" in (A. 137a) and (A.137b)

must be real.

For conjugate modes the amplitudes on the left hand sides of equations in
(A.133) are real. This means that the amplitudes of the total response in cover

or substrate region are complex conjugates of the amplitudes of excitation in the
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respective regions. That is why we use the conjugate mode terminology. For ex-
ample, from (A.133a) and (A.133b) one may argue that T' "' (s, )a, + R (s)b, is

the complex conjugate of b..

Orthogonality of substrate-cover modes can be proved directly by using (A.77).
This result can also be obtained from the fact that they are superposition of
two degenerate cover and substrate modes. Moreover, since the form functions

of substrate-cover modes are real-valued functions, we have
.7:““(2 Sa), .F:_c (z;8) >= <<.7":_c (23 8a), .F‘_c (z;88) > (A.139)
Let

.7-'“ ™ (z;8) = bch(¢ )(z s) +a,F, (z s,) (A.140a)

(s—c)1
Feha(z8) = by F™ (2;5) + a0 F (23 8,) (A.140b)

(e.h)

then, we have

K Fih(z58), Ftho(z80) > = <<qu“""(z;s),bc,ﬁ“""u-s,)>>+

< a0 F;™M(518,),a0, Fi (2502,) >
21I'b¢ b. 21|—a.l :
= (.7.,':’ 6(s — Sa) _(#6(3: s2.)
21r .
= (e &) (bcl bc: s al; a2 )5(8 a) (A-l4l)

where we have used Lemma A.1. From (A.133a) and (A.133b), we obtain

(e.h) 1 (e.k)

b= .
) A 5 B. (A.142)

Therefore, using (A.136a) and (A.142) in (A.141), we have
< -7'—((::)1(2; s), f((:f:)z(z; 8g) >= P(' ”6(3 — 8a) (A.143)
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where
Pl(:.;.) - 2;‘_”.)[ ta (A(z ) (ch) B(eh)B(c u)) +A(¢ h)A(c o B(. k) (u.)] (A.144)

Note that since the LHS of (A.143) is real, the coefficient of the delta function in
(A.143) must also be real. Therefore, when this coefficient is expressed in terms of
A’s and B’s the imaginary parts must vanish. It should be emphasized that (A.143)
and (A.144) can also be derived from the integral formulas in Appendix B.15.

Let us see how to construct an arbitrary Hertzian scalar potential function of
the radiation field in terms of the substrate and substrate-cover modes. To this

end, (A.102) can be rewritten as

N uyv,2) = [T A w0, ) Bz )ds + [ AT (w,0,5,)F0 0 (53, )ds,
0 0
(A.145)
where F*"(z;s) and F ,("M(z;s,) are the normalized form functions of the cover

and substrate modes, respectively. Let
s, =Va%+s? (A.146)

where
a’z = (#75 €. — ;‘f:efc)k:

Using (A.146) in (A.145), we obtain
¥,z = [ [A‘:""(u,v,s)F:""’(z;s)+ 2 A (4,0, 0,) B (23, ds
+ [ AT 0,0 (25 8,)ds, (A.147)

Now

(¢h) (.n)
FM(z s,)—‘/— etz $)=ig (,h,( o f“"’( ;s,) (A.148)
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Thus, F,‘: ™(z;s,) can be expressed in terms of the substrate modes.

For each value of s, it is also possible to express Fi"”(z;s) and I:’,("h)(z;s,)
in terms of the substrate-cover modes. More precisely, it is possible to extract
F*"(2;5) and F***(z;s,) from two independent substrate-cover modes. By inde-

pendent, we mean that two modes do not differ within a multiplicative constant.

an b || FV(zs) | _ | Flu(ze)
@ b || EV(z0) Filn(z9)
In order to obtain F‘¢ (25 ) an F(e " (z;s,) in terms of .Fé._c)l(z s) and .7-'((, c)z(z; s)

(A.149)

the determinant of the coefficient matrix in (A.149) must be nonzero. This in turn

means that
Fitin(zi8) # KF( (2 9) (A.150)
Eq. (A.150) implies that
A(‘ k) B(¢ a)
A(rh) # B(ch) (A.151)

Therefore, if (A.151) holds, from (A.149), we have

F™(z;,) _ 1 bey  —be ‘F((:fl)l(z;s) (A.152)
Fc(e.h)(z; 8) a,lbc, - agzbcl —a,, a, fé‘-") (2;8)

1 s—c)2
where
. 1 (e .
a, = 5.4‘,_ " 2B‘ M (i=1,2) (A.153a)
1 .
be, = 2,4; M B‘ M (1=1,2) (A.153b)

Thus, for each value of s, we may obtain F<"*(z;s,) and F**(z;s) from two
independent substrate-cover modes through (A.152) and (A.153).

In constructing substrate-cover modes there are two degrees of freedom, e.g.,

A(¢ * and B(¢ . If condition (A.151) holds, the two substrate-cover modes are
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independent. However, we can put additional constraint on A,’s and B,’s. These
constraints are just only a matter of convenience. It is highly desirable that the two
substrate-cover modes be orthogonal. To this end, referring to (A.141) or (A.143)
and (A.144), the condition for orthogonality is

b, b, + . a.l a;, =0 (A.154)
or equivalently,
Ai:.h)A(c:.h) + B::.h) B:.h) _(A(c W) (¢ It) B(¢ &) B(¢ h)) 0 (A_155)

Consequently, orthogonal substrate-cover modes can be constructed by imposing

(A.155).

After choosing A( ”, B(e'h), A(,:'”, B(e'“ these modes can be normalized

5n
according to (A.143) and (A.144). Assume that .F;‘_c)l(z s) and .7-'((, c)z(z;s) be
two normalized orthogonal substrate-cover modes. Substituting back into (A.152),

let
F ™ (z;8,)

FE™ (59)

Now if we use

(A.156)

K$M(s) KGN (s) ] [ FEM(z5s) ]
K5V (s) KGM(s) | | Filha(zss)

(‘v’l)
By (z502) = 2—F " (316,) (A.157a)

(e,h)
F0(z19) = |5 F o) (A.157b)

then substituting (A.148) into (A.147) leads to the construction of an arbitrary
Hertzian scalar potential function of the radiation field with substrate and substrate-
cover modes. Note how this idea is closely related to the Fourier transform of sine

and cosine type.
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In a symmetric MPS, as one might expect that there is no substrate mode.
However, we may think of the possibility of symmetric and asymmetric substrate-
cover modes as two orthogonal modes. As we will show shortly, there is such a
possibility. However, before that we define a class of MPSs more general than

symmetric ones, the so-called quasi-symmetric MPSs.

DEFINITION A.3 A MPS is called quasi-symmetric if the cover and substrate
are identical. That 1is,

SR Lo (A.158)

c [

THEOREM A.13 In a lossless quasi-symmetric MPS we have

T (s) = T (s) (A.159)
IR (s)] = |BS™M (s)] (A.159b)
(A.159c¢)

Note that the above theorem does not require the layers in the stack be symmetric.

The details of the proof are given in Appendix B.13.

THEOREM A.14 Let the T(e'h)(s) be the transfer matriz of a lossless symmetric

MPS such that
t(c,h) (s) t(e.h) (8)
(e.h) 11 12
T (3)=[ n At (A.160)
ty (8) t, ()

21 22

Then we have

£ (s) = £ (s) (A.161)

22

To prove the above theorem, we take advantage of an interesting property of sym-

metric MPSs. For complete proof of this theorem see Appendix B.14.
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After stating the above theorems we explain how to construct symmetric and
asymmetric substrate-cover modes in a symmetric MPS. First, we note that for a

symmetric MPS, we have

T("“( ) = (eh)( )=1T (e")( ) (A.162a)

[

R("")( )= (ch)( )= R (,,.,( ) (A.162b)

Now a symmetric form function results if the MPS is excited symmetrically, that
is, if
a, = b, (A.163)

Now under symmetric excitation, the equations (A.133) reduce to

A (5) = 1+T('h)( )+ BN (s ]a. (A.164a)
B“M(s) = j 1_ TN (s) — BN )] a, (A.164b)
(eh)( )= 1+T(¢h)( )-{-R(‘ )(s)] a, (A.164c)

B (s) = _J TN (s) — B (s )] a, (A.164d)

As can be seen from the above set of equations in constructing of symmetric
modes there is only one degree of freedom, that is, the choice of a,. Equivalently,

A‘:'“(s) can be chosen arbitrarily. Moreover, for a symmetric mode we have

AN (s) = AN (s) (A.165a)

(4

(c h) (e,k)

(s)=—B," (s) (A.165b)

In order to obtain all other amplitudes it is also necessary to obtain B'"*(s). How-
ever, in this case B'""(s) linearly depends on A" (s). To obtain the constant of
proportionality, we use (A.165) in the matrix equation given by (A.138). Therefore,
after rearrangement, for a symmetric mode, we have

1-— t(c h)( ) (¢ :.)( ) A(:'h)(s) )
—t,"(s) [1+t“"’( ) | [ By | ’ (A-166)

21
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Since the above matrix equation has a non-trivial solution, the determinants of
the coefficient matrix must be zero. In fact, this is the case. If one expands the
determinant of the coefficient matrix in (A.166), uses Theorem A.14 and the fact
(e.h) (eh), y,(eh) (e:h)

and ¢ ()t (s) -

(c h) (e.h) (e\h) .
t, (s)t, (s)= f(,—,,—)- = 1, one can easily
show that the determma.nt of the coefficient matrix in (A.166) is zero. Therefore,

that c =c,

B,"(s) _t3"(s) =1 _ ") (A.167)
ATN(s) T st P(s) s [L+e5Y(s)]
Note also that from (A.164c) and (A. 164d), one may write
B,"(s) _ _.1=T""(s) - B*"(s) (A.168)
A(s) T T TN () + B (s)
Therefore, in a symmetric MPS the RHS of (A.168) must be real.
To construct an asymmetric mode, we need
b = —a, (A.169)
In this case, from (A.133), we have
A" () = = [1+ B (s) = TV ()] a, (A.170a)
B (s) = = [L = B*"(s) + T (s)] a. (A.170b)
A7 (s) = L+ B () = T°"(5)] a, (A.170c)
B"(s) = —j [L - B (s) + T°"(5)] a, (A.170d)
Consequently,
A () = -4 (s) (A.171a)
B"(s) = B**(s) (A.171b)

For an asymmetric mode, A(:'h)(s) and B:"h)(s) satisfy the following matrix equa-

A7)
() }=0
B, (s)

tion
st (s)
s [1 - t;; h)(s)]

1+£5%(s)

e :.)( ) (A.172)
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Thus .
B{™M(s)  1+£5%(s) £ (s) (A.173)
ATN(s) T st(s) s [N (s) - 1] '

22

Note also that from (A.164c) and (A.164d), one may write

ByM(s) 1= R“V(s)+T""(s)
ATP(s) T T R (s) = T(s)

(A.174)

Therefore, in a symmetric MPS the RHS of (A.174) must be real. It should be
noted that the symmetric and asymmetric radiation modes in a symmetric MPS

are orthogonal. In fact, (A.155) is valid, if (A.165) and (A.171) hold.

A.9 General Hertzian Potential Functions and Vec-
tor Fields

So far, we have entirely focused on the form functions. We have obtained inter-
esting properties of these functions as a part of the potential functions in a MPS.
The modal electromagnetic fields and the potential functions themselves satisfy
some useful orthogonality properties, the so-called modal orthogonality. We have
used the form function orthogonality and the modal orthogonality interchangeably.
Although in many cases the modal orthogonality can be obtained from the orthog-
onality of the form functions. However, the concept of modal orthogonality is more

general than the orthogonality of the form functions.

As a matter of fact, in constructing the potential functions, in addition to
the form functions, we have one more choice. That is, the amplitude functions.
Amplitude functions are not unique to the form functions. Many different amplitude

functions can be associated with a fixed form function such that the resulting
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potential function is still a valid one. In the rectangular coordinate system any

double-exponent function

A(z,y) = e~ Ilkez+bsv) (A.175)

such that k2 + k2 = 32 can be considered as an amplitude function associated with
the form function with eigenvalue 3. Moreover, on a line y = y, in the z-y plane,

we have

/ - g i (keztkyy; ) gilkezthyy ) g7 — 9 e—I(ky—kyln §(k. — k') (A.176)

In the cylindrical coordinate system any function of the form
Alp,®) = €™B(Bp)  (n=...,-1,0,1,...) (A.177)

where B,(8p) is an arbitrary Bessel function and is a valid amplitude function for
a form function with eigenvalue 3. Furthermore, on a circle of radius p, centered

at the origin in the z-y plane, we have

[ ™ Bu(Bp,) [ Ba(B0,)] p,d6 = 26mnBn(Bp,)Bi(Bp)  (A178)

where §,., is the Kronecker delta symbol, which is nonzero only if m = n. The
orthogonality relations of the form functions in the z direction and the amplitude
functions on a line parallel to, say, the y-axis or on a circle in the z-y plane suggest to
define some general inner products. These general inner products are defined in the
literature, e.g, [121],[19]. We review some of them and show that how they can be
easily derived from the formulation developed without resorting to any complicated

mathematical procedure.

Consider a lossless MPS and let S be the z-z plane in the rectangular coordinate
system or a cylindrical surface of a fixed but arbitrary radius p, extending from
z = —oo to z = 0o. Of course, the axis of this cylindrical surface coincides with the
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z axis. Moreover, assume that ‘I’f:‘h) and ‘I»'z"“ be different Hertzian scalar potential
functions in this structure. By different, we mean that the potential functions differ
at least by the form functions or the amplitude functions. It is also possible the
potential functions differ by both the form functions and the amplitude functions.

With the above assumptions, we have

/A_ c(,i',,,wf,""’ (2] ds = 0 (A.179)

The above orthogonality relation is proved in [122] by using the coupled-power
theorem. The relation in (A.179) can be easily verified, if we substitute for the
potential functions in terms of the form functions and the amplitude functions. In

fact,
//s T [wi™] ds = / FeV [REV) / ASY (A7) pide (A.180)
[

For two different modes, at least one of the integrals on the RHS of (A.180) vanishes.
Therefore, (A.179) is valid. Note also that by using the normalization relations for
the form functions and the amplitude functions, the integrals on the LHS of (A.180)
can be easily evaluated.

We can also derive some useful orthogonality relations between the vector fields.
Let us consider the vector space of paired 3-D complex vectors (A,B) in the rectan-
gular coordinate system. In this space, we may define two different inner products
as follows

Inner product of the first type

(A1,B)A(A2,Ba) = [[ [A1 x Bj + A; x Byl - 7ds (A.181)

Inner product of the second type

(A1,B1)V(As,B,) = / /s [A; x B — A3 x By] - §dS (A.182)
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Let (Eq, H,) and (E;, H;) be two independent modal solutions of Maxwell’s equa-
tion in a lossless MPS. Then, from Maxwell’s equations, it can be shown that [121]

(Ea, Ho)A(Es, Hy) = (Eq, H,)V(Es, Hp) = 0 (A.183)

Therefore,
//S E. x H - dS = 0 (A.184)

Now consider the vector space of paired 3-D complex vectors (A,B) in the
cylindrical coordinate system. Let us define an inner product in this linear space

as follows
(A1,B1) 0 (A,,By) = //s (A, x B} + A; x By] - pdS (A.185)
In this case, it can be argued that [122], [19]
(Ea, Hi) o (Ey,Hy) = C (A.186)

where C is a constant number independent of the radius of the cylindrical surface.
The relation in (A.186) is called the coupled- power theorem. Using the fact that

C is constant, it can be shown that

_/ /s E, x H} - pdS = 0 (A.187)

We may combine the orthogonality relations in (A.184) and (A.187) together and
write

//S E. x H} - idS = 0 (A.188)

Note that the only requirement for satisfaction of (A.188) is that the corre-
sponding fields be the modal solutions of MPS. Therefore, as one might expect,
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there is no restriction on the type of the fields. More precisely, we have the follow-

ing orthogonality relations

/ /s E! x [HE] - dds = 0 (A.189a)
/ /s E* x [HZ]" - 2dS = 0 (A.189b)
/SE; < [EHE]" - &ds = 0 (A.189¢)
/ /s ES x [H{|" - AdS = 0 (A.189d)

To show (A.189a), according to (A.19) and (A.20), we substitute for E* and H}

in terms of the ¥? and ¥}, respectively. Therefore,

-

//s E: x [H}] - ads = //s [jwnot x V. 2] x Frtz) [v,(aa'i: ) +ﬂ,3\1::z] - AdS
(A.190)

where the subscript ¢ means transverse to the z axis. Moreover, we have used

o*uh
0z2

+ pr(2)en(2) K2UE = G2 (A.191)
Using the vector identity
Ax(BxC)=(A-C)B-(A-B)C (A.192)
it can be easily seen that
/ /s E: x [Hi] -8dS = jwp.B / / wp’*vt [#4]" - ads

- quoﬁ,,/ () Fiz) [F}] dz x
/I Ay, )V, [Ab(u,,u,)] -Adl (A.193)

For two different modes at least one of the integrals on the RHS of (A.193) vanishes.
This shows the validity of (A.189a). Note how the integral in (A.189a) can be
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evaluated with the formulas developed so far. The same argument can be used for
the proof of (A.189d). To prove (A.189b), we write

/ /s E" x [HI]" - adS = / /S [fonet x VO] x jwet x V, [E5] dds  (A.194)

successive application of (A.192) and noting that z - i = 0 leads to the conclusion

that (A.189b) is identically zero. The proof of (A.189c) using the potential approach

is not straightforward.

A.10 Summary

Throughout this appendix, the theory of surface waves and radiation modes of a
lossless MPS has been treated rigorously. For the first time, the radiation modes
have been investigated in a complete and self-contained rigorous fashion. Many
interesting properties of the radiation modes have been stated in terms of theorems.
The transfer matrix method is fundamental in the proof of all these theorems.
Without using this techniques it is almost impossible to show the validity of the

theorems. This fact shows the beauty and importance of this method.

As we have seen before, the complete set of solutions for the physical field

consists of one or more surface waves and a continuous spectrum of the radia-

tion fields. The surface waves correspond to max(,/ir &, ko, \/Bir,Er, ko) < B <
max( /€, ko) and the spectrum of the radiation fields is divided into two parts.

The spectrum of visible or propagating radiation field is in the range of 0 <

B < max(,/fr &, kos \/kir, €, ko). The invisible or evanescent radiation fields with
B = jaand 0 < a < oo is the second part of the radiation spectrum. In general,
the field radiated by an arbitrary source can be expressed in terms of the above

types of fields.
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The characteristic equations of MPS in (A.44) leading to the eigenvalues of
the surface waves have an infinite number of solutions with complex roots. One
may also correspond modes to these complex roots. However, these modes do not
satisfy the radiation conditions at infinity and have a growing character deep into
the substrate or the cover. Since these types of solutions correspond to the power
leakage from the MPS surface, they are referred as leaky modes. Due to the non
physical character of these types of the solutions, they do not belong to the proper
eigenvalue spectrum. Despite this fact, in many cases it is possible to deform
the contour integral representing the radiation field of a source into the steepest
descent path such that some of these non physical poles be captured. Therefore,
it is possible to utilize these modes to partially represent the radiated fields. As
one might expect, the leaky modes like surface waves contribute to the near field
pattern. They are not significant in the far-zone field. The mathematical theory of
MPS will be complete if one adds the concept of leaky modes. However, since these
modes are only a mathematical tool, the meaningful discussion of them is difficult
without considering the excitation of MPS. Therefore, we do not follow this concept

here.



Appendix B

B.1 Transfer Matrix Method

In this appendix, a systematic method for replacing (A.28) and the correspond-
ing boundary conditions in (A.29)—(A.32) with suitable matrix equations will be

discussed. In each layer one may write

Fyi(e,h)(z) — Ai.c.h) U:c.h)(z) + Bf‘-"») V(‘-")(z) (B.l)

1 3

where U;"(z) and V"' (z) are any two independent solutions of

sz}("h) eh) (e,h)
— 5 ~ M EEY = (B.2)

with v{"" = [8()]2—¢, u,.k2. Now applying the boundary conditions in (A.29)—( A.32)

leads to
cen | Ui (@) V(@) | | A5 | _ e | V(&) V(@) || AV
L ae) i@ || oges | T | aftN@) @i e || g

dz dz i+l dz dz e

(B.3)

where
C; 1o B
=1y o (B.4)
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and
N 10
Ch = (B.5)
0 X
Hr;
From (B.3), one may write
Ai-"h) ] A::'h)
[ o | = Q| (B.6)
B B;
where
-1
(e/h) Ut(-l—':) I/t(-l- lh) (e.h)\ — 1 (eih) Uf"h) I/i(e'h)
Quvrs = | giem  gtem (ciy) ™ (™) D gyt (B.7)
dz dz dz dz

The matrix equation in (B.6) shows that the amplitudes in each layer can be ex-

pressed in terms of the amplitudes of the layer immediately above or below it.

Eq. (B.2) is the simplest form of the Sturm-Liouville equation of the form

[P(E) ] + [g(&) + Aa(€)](€) =0 (B.8)
with
p€)=0() =1
q(§)=0

(e:k)

A=~y ]z

A useful property of the Sturm-Liouville equation is that the product of p(¢) and
the Wronskian determinant W(£) is constant. Using this property, let us assume

that ) U(¢ »
dv; i (2) V(c h)( )d (z) — 77('¢.:;) (B.9)

3

U (2)

Moreover, let

¢V (2) = U™ (2) (B.10)
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(‘ ) (c A)
h( )= (c Ve (2) (B.11)
Substituting (B.10) and (B.11) into (B.1) and following the same procedure, one
may write
(e.A) (e.h)
. ' Ai
(et: (e,h) = Ti_*_:)“[ (k) m(eh) (Bl2)
Mi+1 Bigi n;  B;
where

1
(e.h) (e.h) (e,h) (e.n)
T(c,h) cx+1 S,+1 C(,'h) -1 C(e.h) Ci Si (B 13)
i+1ld — (eih) (e.h) ( i+1 ) ( i ) (e.h) (e.h) .
i dCiyy Sy o ' dc; ds;
dz dz
From the above considerations it can be easily seen that

(e/h)
(e.h) C;
oo (2522) = S B9

i
where ¢; = p,. and c; = ¢,. This means that det (TS_’;),) is independent of the
Wronskian determinant. This fact greatly simplifies transfer matrix technique. Let

(e.h)

U: " (2) = chlx;

(e.)

(z — di1)) (B.15)

V" (2) = skl (z — disy))] (B.16)

1

With the above choice of the solutions, we have

(eh) _ (k)

i i

Therefore, (B.12) reduces to

(e.h) (eh)
Ai+1 (e,h) Ai
= Ti 1
(e k) B(¢ vh) Lt (e.k) B(e.u)
Yis1 i+1 Y t

where from (B.15), we have

(e.h)
(e,h) h
- ch(viMt:) '—“hrl

Tii=| (o M pp o) (oo, (B.18)
1*% sh(7t) T*—r ch(y; )

(B.17)
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For a lossless MPS, the elements of the above transfer matrices are real and

are insensitive to the sign of 7,5""). Moreover, these elements are well-behaved as

,!"h) — 0. These important properties are very useful in the numerical calculations
and are the direct consequences of introducing the transfer matrices as defined in

(B.12).

B.2 Proof of Theorem A.1

To prove Theorem A.l, we follow the same approach that is used in the proof of
the orthogonality of the Sturm-Liouville eigenfunctions. It is known that Fi"h)( z)
and F\" ”(z) in the region d;_; < z < d; are the solutions of (A.28) which can be

rewritten as

2FEY (z &) (eh)yo (e A)
— 5 ekl =[8."I°F, (B.19)
&2 l::h) 2 leh) (eh) 2 (e )

+ enprk; Fyy ' =By °F (B.20)

dz?
e — : - . (e.h) (e.h)
Let ¢t = ¢, and ¢! = p,,. Multiplying the equation for F,;" by (, i Fy: and

(B.20) by —(#TF::"‘), subtracting gives

FL dFSY 1 _emdES™M

(eh) (e.h) eh) (eh)

dz[ (eh) dz c{e.h)F dz ] = ([ﬂa ]2 ) ]2) demte F( * Fy

' ' (B.21)
Integrating (B.21) from z = d;_; to z = d; gives
d;
(e.h) (e:h) ~(e.h) 1 («.h) dF(¢ ) 1 (e.h) dF(¢ )
[ﬂdzf ]2/-1 i’eh)F sz d = (ch) Fb; dZ C?'h) ai dz

di—y

(B.22)

where
(eh) (¢ h) ( A)q 9
[Bay I = P-B?
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Let

(e.4)

./;eo (e h)( )F(e h)( )Fb ( )dz — I_oo " IN " Ico (B.23)

where

0 1 em F
z_m=/m‘:(.—,qFa“() M(2)dz

B> [ B @R )

i=0 '&i-1 C;

_ 1 (. h) (¢ x)
lo= [ mmFa (@R ()
e,h)

Using (B.22) and the fact that F((:':)) and 57— are continuous at z = d;_; and
d;y,:=0,1,... N, from (B.23), we get

(e.h) () ]
(ek)yq (e.h) (e.h) (c k) _ 1 (enydF, ek dF _
A Ol A OL A OL = I e
1 'F(..,., dF™ _ pemd™ dFS™ ]
e 5 dz @ dz _
=0 (B.24)

The above result is due to the fact that form functions and their derivative expo-
nentially decay in the substrate and the cover regions. If F( “* and F,f"h) correspond

to different eigenvalues, [,3;:; "2 # 0. Therefore, (A.56) follows from (B.24).

F{*™]* and the com-

To prove (A.57), we only need to multiply (B.19) by 'FTT[
plex conjugate of (B.20) by ‘(HTF(. ™. The remaining steps are the same. More-
over, we use the fact that c N are real which means that [Flf‘ )] in addition to

eh).,
ﬁﬂ",_] are continuous at z =d;_; and z=d;. O
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B.3 Proof of Theorem A.2

To prove Theorem A.2, all we need is to show that

(e.k)

F*Y(z,) = £F*"(d, - z,) (B.25)

where 2, is an arbitrary number. To this end, we know that F"'h)(z) is the solution

of
2™
dz?

The above differential equation is valid for each value of z. Especially if we apply

+e(2)pe(2)RL F0 = BV R (B.26)

(B.26) at z = d,, — z,, we have

WA
sz(t ) (e.k)

|‘=du‘z° +e(dy — zo)pte(dy — zo)k: F(d,—z)= [‘B(t.h)]ZF(G.h)(dN —z,)

dz?
(B.27)
Let us define a new variable u such that
u=d, —z (B.28)
Then, we have
d? d?
il (B.29)
Using (B.29) in (B.27) leads to
sz(e'h) € < €
s+ (o) (wo )RS F (o) = [8°7PF T (u,) (B.30)

where u, = d,, — z,. The above differential equation is valid for an arbitrary value

of u,. Therefore, F*** as a function of u satisfies the following differential equation

&2FY
du?

+ e ()] P = [P FY (B.31)
Since the MPS is symmetric, we have

&(z=a)=¢(u=a)
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pr(z = @) = p.(u = a)

Thus, (B.26) and (B.31) are identical differential equations. Moreover, the
boundary conditions are the same. Therefore, (B.26) and (B.31) are identical
eigenvalue problems. That is, F*“*'(z) and F*“*(u) are two eigenfunctions cor-
responding to the same eigenvalues ﬂ("”. However, for surface waves, since the
form functions in the substrate and cover regions are described by one amplitude,
the eigenfunction degeneracy happens within a multiplicative constant. This is so
because we have only one degree of freedom. This is not necessarily the case for
the radiation modes. Therefore,

(e.h)

(z) = KF“"(u)
= KF“"(d, - 2) (B.32)

F

The above equation is valid for each z. At z = z,, we have

F*"(z,) = KF*"(d, - z,) (B.33)
If we use (B.32) at z = d,, — z,, we get
F(d, — z,) = KF*""(z,) (B.34)

Using (B.34) in (B.33), we get

(e.b)

F*"(zo) = K*F“"(z,)

which requires that
K*=1
or

K=+1

Substituting the value of K into (B.32) leads to (B.25) which in turn completes the

proof. O
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B.4 Proof of Theorem A.3

To prove this theorem, we need to find the relationship between b., a. and b,.
To this end, by applying the boundary condition on F,f"“(z) at each interface

and successive elimination of the coefficients, we end up with the following matrix

equation
1 1 e e 1 €,
b + o™ (s) = TV (s) b (s) (B.35)
js —7s I
where
TV (s) = I] TEN(o),
i=N
Note that
(e.h) C("h)
det [T“"(s)] = = (B.36)
where ¢¢ =, and &*® = L

(c.s) (<c.8) (c.0) (c.5) .

Eq. (B.35) can be rewritten as

T(‘M(S)[l' }b‘."“’(s)—[l_ }a‘!'"’(s)=[1. ]bc (B.37)
JTe —Js I8

Solving for b(:'”(s) and a\"*(s) in terms of the incident amplitude b,, leads to

L

(e,h)
b, (3) = D(c,h)(s) c (B.38)
ey
ek J8
a™(s) = 59 (3) be (B.39)

where

D)= [ s 1] T )[1. ] (B-40)

JTs
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f)("”(s) - _ [ _in 1 ] [T(c.h)(s)] -1 [ l_js ] (B.4la)
= (:((‘:—::D("”(s) (B.41b)
We also have
1 c(c'h) eh
BT IR 1
78 ¢ JTs

Using (B.41a) and (B.42) in (B.39), we have

-5 1 | ) [ ]l_f. }

™M (s) = O (B.43)
Let
(e,h) (e.h)
T“"(s) = [tii,h,(s) t(‘f.,(s)] (B44)
t, (s) t, (s)

Now, the rest of the steps is just a trivial matter. We need only to expand the
numerators and denominators in (B.38) and (B.43). To simplify the resulting ex-
pression, it should be noted that for a lossless MPS the transfer matrix elements

are real valued, therefore, all parameters in (B.44) are real. Moreover, we have

(e,k) (e.h) (e.h) (e.k) (e,)
det [T""(s)] = £ "(s)tis™ (s) — £ (st (s) (B.45a)
(e,h)
cc

Following the above considerations leads to (A.71). This completes the proof of
Theorem A.3. O
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B.5 Proof of Theorem A.4

To prove this theorem, we follow the same line as we have used in the proof of
Theorem A.3. In this case, the scattered amplitudes in the cover and the substrate

are related to the incident amplitude through the following matrix equation

T“'“’(s)[l_ Jb‘,‘*’(s)—[l ]ai""’(s)=—T“'“’(s)[l, J (B.46)
s ~Ye s

J =J

Solving the above equation for 5" (s) and ai"™(s), leads to

"[7..- 1]’1‘"""(3) 1 , }

b(:'h)(s) = = 7 a, (B.47)
1
[‘yc 1 ]T"""(S) , }
L Js
_5;:—::;-[—]'3 l]l:l ] ]
(e.h) _ ‘ —J]s
a, (s)= a, (B.48)
[‘7: I]T“""(S) [1 }
js
where we have used
_ (eh) R
L e[|l e

For substrate mode of type I, 4. is a real number. Thus, as can be seen from
(B.47), since all other parameters are real, the numerator is the negative of the

complex conjugate of the denominator. This means that
(e.h)
16, " (s)| = la|

which proves the first part of Theorem A .4.
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The second part of the theorem can be proved by noting that 7. is a purely
imaginary number, that is,
Ve = JTe-
Next, we need to follow the same reasoning to as we have used in Theorem A.3

which is not repeated here. O

B.6 Physical Interpretation of Theorems A.3 and
A4

In this appendix we use the plane wave concepts to prove Theorems 2.3 and 2.4. To
this end, suppose that we have a substrate radiation mode of LSE type. As men-
tioned earlier, it is always possible to rotate the z-y axis such that the dependence
of the fields on 7 in (7,€) coordinates system vanishes. Note that this coordinate
transformation does not affect the form function. Thus, let the Hertzian scalar

potential function of magnetic type in (7, ¢, z) coordinate system be
U (n,¢,2) = e BEF,(2) (B.49)
where we have assumed that the amplitude function is
AM(n,€) = e79¢
In the substrate region, we have
Uh(n,€,2) = e P[a,e™3* + b,(s)e’™] (B.50)
This potential function can be considered as a superposition of

Uh(n, ¢, z) = a,e”3BE+e) (B.51)
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which generates an incident plane wave with perpendicular polarization, and
T (m,€,2) = bl(s)e™7FE~"2) (B.52)

the potential function due to the reflected plane wave as shown in Fig. A.5. The
incident plane wave propagates in the direction v; which is specified by the unit
vector
A EPSRT
Ny ARy
&4 2
VEr. &, ko N/

The propagation direction of the reflected wave is v, which is specified by the unit

S
S

(B.53)

vector v, such that

. B 2 -s .
v, = + VA B.54
N/ koe VEr &, ko (B.54)

For substrate mode of type II, there is a transmitted plane wave in the cover

region with the potential function
Vo (m,€, 2) = ag(s)e 7EC™) (B.55)

The transmitted plane wave propagates in the direction v, with the unit vector

. B ;5 T,

Ve = + < z B.56
‘ v Er CEr. k°€ Vv Hr. e"c ko ( )

From (A.19), the incident electric field in the substrate is
EY, = —jwpoBa,e B+ (B.57)

Thus
IE%] = wpoBla,l (B.58)
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Using the plane wave concepts, the Poynting vector of the incident wave is

Eh_ 2 [_—‘
170 ”"c

& 2 (d 2 p P
R o

where we have used (B.53). Furthermore, 7, = /% is the free space wave impedance.
Let P? and P? be the Poynting vectors of the reflected wave in the substrate and

transmitted wave in the cover, respectively. In a similar fashion, one may argue

that
2iah 2
P - (w”:,ﬂ,),,ll)é(s)l (B - s) (B.60)
P* = (“”‘"nﬁ Lzlcﬁ(s)lz(ﬂé +7.3) (B.61)

It can be easily shown that the total power carried in the z direction is the
sum of the powers carried by the incident and reflected waves in that direction.
Note that this statement is not true for the power carried in the ¢ direction. In
view of lossless character of the MPS is, this means that transferred power in the
z direction must be equal to the differences of the incident and reflected powers in
that direction. Therefore, in terms of the Poynting vectors in (B.59), (B.60), and
(B.61), we have

z.P*=3. (P! + P}

from which one may obtain

(W#oﬂ)zla?(fi)lzr _ (wﬂoﬂ)zlaalzs _ (w,u,ﬂ)zlbf(s)lzs
Nobbr Ko Nolir. Ko Toktr, Ko

Consequently,
2 h EraTe) he y[2
JE=1b Frs ¢
aul? = B3(s)| + £72 (a2 )

€
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For substrate mode of type I, since there is no power transfer in the z direction

the incident and reflected power in that direction must be equal. That is,
lau[* = [6}(s)I>

In the case of LSM mode, we may follow the same reasoning in a dual manner.

In this case, from (A.20), the incident magnetic field in the substrate is

HS, = —jwe,Ba,e 7 BE+s2) (B.62)

T

Thus
IH [ = we.Bla.] (B.63)

The Poynting vector of the incident wave is

P; = uH:,-n*no,/"" 2
€r,

w 2012 .
770( :ﬂk)ol cl (ﬂe_l_sﬁ) (864)

Similarly, P{ and P§ can be obtained from the following relations

P = ﬂo(weoﬂ)zlb:(s)lz(ﬂé _ Si)

r €r, ko

pe _ To(weoB)?laz(s)?
¢ k.
€r Ko

(BE + .2)

Using the conservation of power in the z direction, we have

e e"a Tec e
|0., 2= Iba(‘s)l2 + 6,.—-8— a’c:('s)l2

The same argument can be used for the cover modes.
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B.7 Derivation of Equation (A.79)

For s # 0, we have

Tu(s) = /o°°ef'=dz

s#0 (B.65)

where we have used (A.75). The integral in (A.78) can be considered as the Fourier

transform of the unit step function. Therefore, using the inverse Fourier transform,

we have
1 z>0
i/ Uy(s)e#2ds={ L z=0 (B.66)
21[’ —c0 2
0 z<0

Eq. (B.66) can be rewritten as

1 z>0
1 0— _ iz o+ . s o . i
L ([ e [ as [Oera) -1} oo
0 z2<0
(B.67)
On the other hand, using the residue theory, it can be shown that
0 .i-. z2>0
1 T - . o .
_ —jsz —jsz _ _
oy (/;oo Us(s)e™**ds + /o+ U(s)e d.s) ={ 0 z2=0 (B.68)
—% z2<0

More precisely, let us calculate the contour integral

1 J —jsz
= /C Leireds (B.69)
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lIms
g
- P ot > Re s
< N
C

Figure B.1: Contour for the complex integral in (A.55)

on the contour C in the s plane as illustrated in Fig B.1. If z > 0, we may close the
contour by a semicircle of large (eventually infinite) radius in the lower half plane.
Since in the lower half plane Im s < 0, the contribution along the large semicircle

vanishes. Therefore, according to the theory of Cauchy integral, we have

1 - —— - i
Le-isrgs = 1 (/ Lemiszgg +/ L=z g + / le_"‘ds)
¢, 8 0+

27 cS 2 \J- s s
1 je iz
= % [—Res( s )]
=1 (B.70)

The minus sign in front of Res(.) accounts for the clockwise direction of the contour.
Again, using the residue theory, the contribution of the semicircle cs of infinitesimal

radius to the contour integral is

1 J 1 1 je e

— [ =e*¥ds = — |—-=R

27r/;‘ P y 27r[ 2 es( s )
1

= (B.71)

(S

Using (B.70) and (B.71), leads to (B.68) for z > 0.

For z < 0, we may close the contour by a semicircle of large (eventually infinite)

radius in the upper half plane. In the upper half plane Im s > 0, therefore, the
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contribution along the large semicircle vanishes. However, in this case the contour

does not capture any poles. This means that for z < 0, we have

- — - o i
L/ le-itzgs = L (/ le""ds-%-/ le"“ds+/ 'le""‘ds)
2w Jo s 2r \J-x s ¢ S ot s

=0 (B.72)

Thus, (B.68) can be derived for z < 0, if one uses (B.71) and (B.72).

For z = 0, the contour can be closed by a semicircle of large radius either in the
upper or lower half plane. Suppose that we close the contour by a semicircle Cg
in the upper half plane. Let us assume that the radius of the large semicircle be R

and that of ¢5 be §. If we substitute

s = §e%°
on ¢s and

s = Re®

on Cp, it can be easily seen that their contributions to the contour integral cancel

each other. Therefore, since no pole is captured, we obtain (B.68) for z = 0.

Having established (B.68), one may derive
1 pot .

1
ﬂ/; U(s)ds = 3 (B.73)

if one uses (B.68) in (B.67). From (B.73), we obtain
Us(s) = x6(s) 0- <s<0* (B.74)

This final result proves that

/o°° e dz = { i s#0 (B.75)

ré(s) 0~ <s<Ot
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We follow the same reasoning to prove (A.79) with minus sign in front of j. In

this case we need to show that

3 z>0
1 o~ —] j8z ® _j j8z — _
— (/ )i azs+/0+ Lo ds)— 0 z=0  (B.76)

-0 8

z<0

O Je=t

This can be done by calculating the contour integral

1 _j jsz
/C & ds (B.77)

2 g s

on the contour C shown in Fig. B.1. In this case, for z > 0, we may close the
contour by a semicircle of large (eventually infinite) radius in the upper half plane

and vice versa for z < 0.

B.8 Proof of Theorem A.8

To prove this theorem we follow the same line in the proof of Theorem A.1. All
steps in the proof of Theorem A.1 up to (B.24) can be used in the process of proving

Theorem A.8. Therefore, we may write

(e.h)

B2, < F*M z;8 ), F*"(2:8,)> = B2 = WM () F z; s, FY z;8,)dz
dif s 1 c 2 dif oo s c

L e dF™ e FiM
I Gl dz ¢ dz ~

1 Fle) dF ,(t'h) _ e ch(e'h)
€ dz g dz |

(B.78)

where

ﬂi‘f = 32(31) - ﬁz(sz) #0 (B.79)
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However,

¢ dz . dz

[F(c.h) dF'(t.h) _ F(c.h) Fc(c'h)

Z=00

A [al™ (s )a (s, el e o)

zZ=00

(B.80)

where

Ai = Ye :tjsz

Ye = V(fr,€r, — prer JBE = 2
For substrate modes of type I, 7. is real. Therefore, the above expression is
zero in the ordinary sense. Substrate radiation modes of type II result in imaginary
values for 7.. Since it has been assumed that the two modes are not degenerate,
according to the Theorem A.5, (B.80) is zero as a generalized limit. The same
argument can be used to show that

A W)
F(c.h) dF.(‘ ) (e:h) Fy
¢ dz : dz

=0 (B.81)

Z=—00

if we consider the limit as a generalized limit. Using (B.80) and (B.81) in (B.78),

in the distribution sense, we have

eh)

B2, < F' (z;sl),F:"h)(z;s,) >=0 (B.82)
dif s

Since B7;; # 0, (A.85) can be derived from (B.82).

We may use the same argument to prove (A.86). O
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B.9 Proof of Lemma A.1

To prove this lemma, we need to show that for each test function ¥(z), we have

[ 8f(e) - f@)(ale = o) (8.8
To this end, let
y = f(z) (B.84a)
Y% = f(a) (B.84b)
z = f(v) (B.84c)

Note that since it has been assumed that f(z) is monotonic, it is possible to define

its inverse function. Furthermore, f (z) # 0. We now consider two cases separately.

First we assume that f(z) is monotically increasing. Then, substituting (B.84)

into (B.83), we obtain

-1

/_:5[f(z)—f(a)]¢(z)dz = / 8y — vo)olf~ (y)](df \dy

d -1
= ¥[f (yo)][f;y] (B.85)
On the other hand,
[£ _ [zii )
dy V=vo ~ ldez z=f""(vo)
1
= F@ (B.56)

Therefore,
[ dlfe) - f@ta)ds = Far@ (B-87)

where we have used the fact that f'(a) = |f (a)]. This proves the lemma for

monotically increasing function.
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For monotically decreasing function, we have

-1

[_ @ - f@de = [ 8-l )y

1
= -m)-z,[;(a) (B.88)
In this case, we have
f'(a) = =If (a)i (B-89)

Using (B.89) in (B.88) completes the proof of the lemma for monotically decreasing

function. O

B.10 Proof of Theorem A.9

Let us consider the form function of a cover mode with a fixed radiation parameter

8l as
beedn (z=dn) 4 gl*M (5 ) e=iti(z=dn) z>dn
F(z38,) = AS(s,) chly(z — di)] + BE(s,) shlv(z — dist)] dicy < z < ds
b (s,) et z<0
(B.90)
where
83 = \/(r.€r, — pr e )2 + 57 (B.91)

The scattered amplitudes in the cover and substrate are related to the incident

amplitude via the following matrix equation

e 1 . 1
T (s,) 6" (s,) -
jsz _jsl

(c h) (eh)
H T:l—l I
=N

a(:'h)(sl) = [ 1 ] be (B.92)

J

where
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Moreover, consider the substrate modes with variable radiation parameter s and

the form functions as

a(:.u) (s) o34, (-dn) z>d,
F(z58) = § AL (o) chl(z — dioa)] + B (s) shlbw(z — dioa)] dioa < 2 < d
a,e=i 4 b(:'h)(s) eIz z<0
(B.93)
where
s) = \/3? = (ir.6r, — pr 6 )R2 (B.94)

Note that the coeflicients in the cover and substrate modes are distinguished by
their arguments. For the substrate modes the scattered amplitudes in the cover

and substrate regions are related to the incident amplitude via

_T(en)( )[1 ] (ch)( )+ ,: g Jaf:.h)( ) (ch)( )[ ' Ja’ (B.95)
js —J1s, I8

Now, let

H,(s) = <<F““’( 15,), FeM(z;8) > (B.962)
I_(s,,s) = / (,,.,() F{ " (z58,) [Fr(259)] dz (B.96b)
I(s,y8) = / (,,.,( R @) [V d: (B 96e)
I(s,,s) / (,,,,( ) F{ ) (258,) [Fi (z59)] dz (B.96d)
Thus,
H, (s)=I__(s,,8) + Iy(s,,8) + I.(s,,5) (B.97)

According to Theorem A.8, we have

H, (s)=0 (s #s,) (B.98)
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Substituting for F™"'(z;s,) and F**)(z;5), we may write

Lo(ss) = [ (Lh, b, (s,) [asee = 4 (b7 (5)] €712 dz

- (elh) (ea)( ) [Ta + [b"h)(s =s,)]*(s —s,)} (s; <s< s:‘)

2 (B.99)

where we have used (A.79) and

1] oo
/ etizd; = / etI*3dz
-0 0

In a similar fashion, we have

oo 1 . - . N e, . ’ _
I (s,,s)= /d e [ “Mis=s )] [bcel('x""x)(z—du)-{..af__ M (s, )i a—a ) m] dz
N ¢
(B.100)

Note that
s =3, (s=3s,) (B.101)

Therefore, using (A.79), we obtain

I(oi8) = gy s = )] [—b+ P(e )6 - 5)| (57 <5< sF)

(B.102)
Let
s, = f(s) (B.103)
where f(s) defined by (B.94). Then,
si -8 = f(s) - f(sz) (B'104)

According to Lemma A.l, we may write

Il

5(s; —s,) },(Ls-)-cf(s —s,)

= :_15(3 —s,) (B.105)
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Eq. (B.105) can be easily memorized if we write it in a more convenient form as

follows
1
sia(s; ~s) = —8(s~s,) (B.106)
1 2
From (B.97)—(B.99), (B.102), and (B.105), we may write
H, (s) = 0 . . 78 (B.107)
A )(51,32)5(3 —s,)+ K )(sl,s,) s; <s<s}
where
(e.h) 1 (em) (eh) . 1 8, (e (eh) .
A s s) = m { ab V() [ (s = 2)] T+ o e (s o (s = )
[ ] (4 2
(B.108)
(e, -3 e, . j (e b
K (s0,0,) = —mts ™ (8,)al 4 Ly(s,,5,) + s—Tmpbe [V (s = 5,)] (B.109)
2" 17s

Since the inner products of the radiation modes must be considered as generalized
functions, they are meaningful only if they appear under an integral sign with
respect to the radiation parameter. Therefore, as far as the orthogonality of the
radiation modes are concerned, the finite value K “* is not important. Only the

coefficient of delta function in (B.107) matters. However, as will be presently shown
A"M(s,,5,)=0 (B.110)

To prove (B.110), we invoke the matrix equations in (B.92) and (B.95). According
to the reasoning we have used in the proof of Theorems A.3 and A.4, the solutions

of (B.92) are

ol
b (s,) = i b (B.111)
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[ ~js; 1 ] [’1‘(",‘)]-1 (s,) [11_81 ] b

PR

The complex conjugate of (B.95) at s = s, can be written as

(s )[ _ ][““( D) —[ ][ cMs)] = T )[ ]
—718, .731 ]52

(B.113)

(¢ k)

. (B.112)

(s,) =

where we have used the fact that the transfer matrices of a lossless MPS are real-
valued. It should also be emphasized that since two degenerate modes correspond

to the same value of 8, we have
T (s = s5,) = T"(s,) (B.114)

Solving (B.113) for [6""(s,)]" and [a{™(s,)]", yields

_ [ _js. 1 ] T (s,) [ '

6" (s,)] = el (B.115)

. [ Cje 1 ] T (s,) [ 1_

38, |
1
s 1] [
e, 4 s
[e"(s))] = 2 al (B.116)
leh)

;(—r[—Js 1]’1‘““’(3) Ny ] |

3

where we have used

o et [ e,

73,
(B.117)
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Substituting (B.111), (B.112), (B.115), and (B.116) into (B.108), leads to

AMs,,8) = GV ([ —js, 1]T“""(s,)[1. }

J$2

(e.h)

+ Z%,:[ -js; 1 ] [T“""(sl)]_1 [,13 D (B.118)

where
j2s,

M DN (5,) [D (s,

G(‘-") =

b.a

D" (s,) = [ js, 1 ] T"(s,) [ 1 ]

IS,

However,

1 (e.h) -1 1
. (e.h) cc . eh)
[-.731 l]T h(sl) . =-’(T.ﬁ[—132 IJ[T( h(sl)] .
R Cs 18,
(B.119)
Using (B.119) in (B.118 leads to (B.110). This completes the proof. O

AN ALTERNATIVE APPROACH
Multiplying (B.92) by the row matrix [ —js, 1 ] leads to

6 (s,) = 2 “V(s)  (B1)

[—J's1 I]T"""(sx)[l, ]

J$;

In a similar fashion, from (B.113), one may get

e, |

—j2s,

()] = as)]  (Ba21)



APPENDIX B. 255

Multiplying both sides of (B.120) and (B.121), noting that (B.114) holds and

[ ie 1 ] [T("h)(s,)] -1 [ 1 J — _%[ -js, 1 ]T("”)(Sx) [;83 :l

J$,
(B.122)
we obtain (k)
6D B )] = e [V (B
(4 2

Comparing (B.123) with (B.108) leads to (B.110). O

B.11 Proof of the Brewster Theorem

As stated before, this theorem is an immediate consequence of the reciprocity the-

orem. To prove the theorem, let the MPS be transparent to a substrate mode for

some value of si"h). This means that

(e.h)

B (s M)y =0 (B.124)

Since the corresponding degenerate cover mode is orthogonal to the substrate mode,

we have

(eh) , (eh) (eih)
A (s, s,

)=0 (B.125)

where A" (s,,s,) is defined in (B.108). On substitution of (B.124) into (B.125)
and noting that according to (B.116)

a;" (s, # 0
we end up with the following result

a(e'h)(s(e'h)) =0 (B.126)

c 1

Eq. (B.126) means that the reflected wave in the cover mode is zero.
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It can also be seen that the numerators in (B.112) and (B.115) are proportional.
Therefore, vanishing of 5" (s, ) results in the vanishing of a-"*'(s, ) and vice versa.
This fact can also be seen from another view. If b(:'”(s,) = 0, then the numerator
in (B.121) must be zero. According to (B.122), the denominator of (B.120) must
also be zero. This is only possible if a,(:'h)(sl) = 0. Thus, the first part of the
proof has been completed. Similar reasoning can be used to prove b M (s,) =0, if

a ™ (s,)=0. 0

B.12 Proof of Theorem A.12

Let us consider the form function of the substrate mode with the radiation param-

eter s as follows

af:"")(s)e""‘(“d") z>d,
F™(z8) = A5 (s) chlvi(z — dica)] + B (s) shlvlz — dict)] dicy < 2 <
a,e™i*" + b (s) e z<0
(B.127)
where
Ye = Vtr,6r, — tir €e )h2 — 52 (B.128)

Following the proof of Theorem A.9, let

H, (s) = <<F,("”(z;sl),F,("h)(z;s)>> (B.129a)
0 .
I_.(s,,8) = /_ ﬁ;F,‘"”(z;sl)[F,("“(z;s)] dz  (B.129b)

L(ons) = [ g E (e [0 ds (B290)

c*M(z)

I (s,,8) = /‘.: c(,',‘le,(c'h)(z;sl) [F,(c'h)(z;s)]. dz (B.129d)
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Therefore,

B, (s) = Io(5,,3) + Lu(s,,9) + L (s,9) (B.130)
According to Theorem A.7, we have

H, (s)=0 (s #s,) (B.131)
Moreover,
Laons) = [ g (e o i (0)] et
+ b(e ")( )a'e’('l +3) + b(‘ ")( ) [ (¢ ")( )] ej(a1 —l)) dz

J e (eh)
= gemleal8(s = 8,) + 5= (o "] -

(s,)a)
+ ;T,Ib-(sl)lzﬁ(s —s,) (sy <s<s]) (B.132)

where we have used (A.79) and

] oo
/ etizdy = / e¥i*2dz
-0 1]

To calculate I_(s,,s), we consider substrate modes of type I and II separately.

More precisely, let us assume that

I_(s,,s,I if F,(e'h) s,) is of type I
L(ss)= | =00s]) M)( ) s of typ (B.133)
I_(s,,s,II) if F,""(s,) is of type II
© 1 oM (e. e )(2—
L(sis5,]) = /dN geed " (s,) oM )] elraimemtng
.. 1
(¢h)| ( ")( ),227 (s7 <s < st) (B.134)

where

= J(#fnefc - #Tc efc)kg - 33

Te = /8 = (br,6r, — proer )R (B.135)
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Note that for substrate mode of type I, we have
ITe = =Y (s7 <s<sf)
On the other hand,

o 1 (e h)

Lo D) = /d e % (s,) [a""(s)] " i mele=dn)g,

N Cc
(e.h) _
= (e.h) Iac (sl)lzs(rc - Tcl) (81 <s< s:’)
Ce
™ (e.h) Te
= Tl (s ;)|28—‘5(3 -s,) (B.136)
(3 1

where we have used Lemma A.1 and (B.135). Using (B.129)—(B.134), and (B.136),

we may write

0 s#s,
H, (s) = (B.137)
1 (eh) (eh) - +
A[}(( 1)6(8—81)+K111( l) 31 <3<31
where
AN, = T o la|? + (,,,,lb('”( P (B.138)
e, j ' eh) - 1 e, 1
K™ (s,) = 2—(.,.7(«1. B (6] = 6 (s1)as) + aplad (s ) 5= - (B.139)
A7) = gmlel + gt () + o Hal M) (B.140)
(c } (ch) (e,h)
(s )———(.—..,(.[ (s )] -5, (s,)az) (B.141)

However, according to Theorem A .4, if one uses (A.72) and (A.73) in (B.138) and
(B.140), one obtains

(e A) 2

(‘h)( ) =4 (s,) = (.u) lanlz (B.142)

On substitution of (B.142) into (B.137), we may write

H, (s) =

= . (B.143)
' { (c mla.|?6(s —s,) + Ki,:)( 2) 5T <s<st
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As emphasized before, the inner product of the radiation modes are meaningful
only if they appear under the integral sign. Therefore, (B.143) is equivalent to

H, (s) = 2—'1;)|a,[25(3 ~s,) (B.144)

c(,¢

which is the statement of Theorem A.12. O

B.13 Proof of Theorem A.13

For substrate modes we have

T“'“’(s)[l, ]b‘.""(s)—[l, Jai"“’(s)=—T“'“’(s)[1, ] (B-145)
js =78 A

Therefore,

T(e.h)(s) déf af:'h)(S) _ j23
s -1/ 1
~[ s 1] [ [ . }
o j2s
c(:.h.) . 1
[ js 1 ]T"' '(s)
js
= 328 (B.146)
1
Lis 1]T0s)
Js
where we have used )

]

For cover modes we have

T("”(s)[l. }b‘,"“’(s)— [1_ }a‘:'“’(s)= []1 ]bc (B-147)
78 v $
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Consequently,

(s) def b‘:'h)(s) _ j2s
b.
[js 1 ]T“""(s) [ 1 ]

J]s

T(tvh)

[

(B.148)

Comparing (B.146) with (B.148), we have

(e.4)

T,""(s) = T.™"(s)

c

To prove (A.159), first from (B.145), we get

. (e.h) 1
b(e.h) B [ J$ 1 ] T (8) [ ; }
R("")(s) é_e__f s (3) = -
‘ a, DM (s)

where D'“*(s) is the denominator in (B.146).

In a similar fashion, if we use (B.147), we obtain

- - . _ [ 1
—js 1| [T

(eh), + def a("h)(s) g ' js
R (s) 4 2 22) -

) be 1 1 (eh) -1 Fl
= -ds 1[[T"()] }

o) [ ! }
js

DM (s)

I
|
.
®
[

(B.150)

Comparing (B.149) with (B.150), we see that the denominators are the same. How-

ever, the numerators are complex conjugates of each other. Consequently,

(eh)

|R" (s)] = RS ()]

Therefore, the proof of the theorem is completed. O
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B.14 Proof of Theorem A.14

To establish the proof of Theorem A.14, we take advantage of an interesting prop-
erty of a symmetric MPS. Based on the physical considerations or by changing the
variable z to d,, — 7, it can be argued that

BSM(s) = BEM(s) (B.151)

Now comparing (B.149) with (B.150), we have

[js 1 ] TN (s) [ 1 y } — [ —js 1 ]T(e.,.)(s) [ l—js } (B.152)

=J
Since the LHS of (B.152) is the complex conjugate of its RHS, the imaginary part

of each side must vanish. Using this condition and after matrix multiplication in

(B.152), we obtain (A.161). O

B.15 Some Useful Integral Formulas

The following useful integral formulas can be easily obtained by substituting trigono-

metric functions with their complex exponential representations and using (A.79).

/ooo cos(sz)cos(s,z)dz = %/ cos(sz)cos(s,z)dz = g—b‘(.g —s,) (B.153)

/om sin(sz) sin(s,z)dz = %/ sin(sz)sin(s,z)dz = gﬁ(s —s,) (B.154)

/w cos(s — 8, )zdz = l/- cos(s —s,)zdz = wé(s — s,) (B.155)
0 2 -0
w 1fi 1 s
/ sin(sz) cos(s,z)dz = { *? ['+'1 "'1] 7 (B.156)
0 ﬁ s=s,
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- if 1 s#s,
/ cos(sz) sin(s, 2)dz = { ? ['+" h ] * (B.157)
0 i s=s,
%
- L s,
/ sin(s —s,)zdz = { " (B.158)
0 0 s =38,

Of course, as it may be expected, since the integrands in (B.156)— (B.158) are odd
functions of z, all the integrals in (B.156)— (B.158) vanish if the lower limit of the

integrals change to —oo.
If one directly calculates the integral (B.155), one obtains

/o°° cos(s — s, )zdz = [M] 2=o00

$ = sl z=0
= im SET sz (B.159)
w0 g —g,
Comparing (B.159) with (B.155) leads to the following familiar formula
Toia ) L VR (B.160)

% x(s—3)
The above formula is usually used for the normalization of the radiation modes in

the literature.



Appendix C

C.1 Derivation of \i(e'h)(kz, ky,z) for z, > d,

Let
T=2,—-d,>0 (C.1)

In this case W\ (k,, k,, z) can be written as

' af.-e'h)(km ky)ev(==dn) z2> 2,
A (Bey by )ehlre(z — dy )] + BE™ (key by)shlve(z — dy )]
= (eb) d, <z< 2z
T (ker by 2) = (eh) (e.h)
Ai . (kz’ ky)Ch[‘Y,(Z - di—l)] + Bi (k::, ky)-Sh[‘y‘(Z - di-l)]
diy <z<d;
| 65" (key Ry Je 2<0
(C.2)

where

Ye =[R2+ k2 — prreer K2 = \/B? — pir.er, K2 (C-3a)

% = k2 + k2 — pr iri€r B2 = \/B2 — pir 0 K2 (C-3b)
T = \/ki + k2 —p.,6, k2 = \/ﬂz — fr, &, k2 (C.3¢)

263
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As will be shown later, the spectral approach requires that each coefficient be a
function of (k., k,) which is reflected in (C.2).

LSM excitation
The boundary conditions (2.26) at z = 2, result in

At(k., j, k., k,, 2,
[ : ]az(kz,ky)e-w—n(%;r) oUher ) =A=(k=,ky)[ e s )]
—Ye | Ve BS (k) Ky) Ju(kzy ky, 2o)
(C.4)
where _
ch(~.t —(—l'h""
Dirir) = | ) ] (C.5)
7c3h(7c7') Ch('ycr)
F c
Alha, ) = | D “"°(’"*""] (C.6)
0 0

It can be easily seen that (C.4) can be rewritten as

1 Al(key ky) Tz(kzy kys 20)
D( c;T) az(k:m ) - = Ae(kz, -
b ([ —Ye ] ky [ Ye BZ (kz, ky) ) ky) [ Jy(kz’ ky, Zo) }

(C7)
1 1
) 2]
—Ye —Ye

Now, since there is no current source at z = d; (¢ = 0,1,...N), the boundary

where we have used

conditions in (2.26) lead to

Ay (ke k) A (ker k)
i1 B (ke ky) %V B (ke k)
where T§,, ;(8), (¢ # 0) have exactly the same mathematical form as T, ; in

(B.18). Moreover,

(C-8)

= Tf+1.i(ﬂ) [

0 s

€r,

Tio(B) = [ Lo ] (C.9)
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By successive application of the boundary conditionsat z =d; (i =0,1,...N),

(C.7) can be rewritten as

1
._—Yc

where

fe(kza ky, z,)

- ] (C.10)
Jy(kzy by, 2o)

a; — T°(8) [ ' ] b = D7 (7e; 7) A% (ks ky) [

Vs

T(8) = ] T%,1.8) (C.11)

=N
Moreover, the dependence of at and b¢ on (k:, ky) is tacitly assumed to make the

expression in (C.10) simple. Eq. (C.10) can be solved for af and b:. Following the

same procedures as in Appendix B we have

-z kz, ky, 2o
-z 1][T‘(ﬂ)]'lD"(‘rc;f)A°(k=,kv)[J( - )J

e, T (kar by 2o
- Ml b
B e e
b(ke, ky) = 5 - n- (C.13)
where
D(8) = [ = 1]T°(ﬂ)[ 1] (.19
s

Once af(k, k) and b(k:, k,) have been determined all other coefficients in (C.2)
can be obtained by successive application of the transfer matrix method. It should
be emphasized the above expressions for af and ¢ are still valid if 7 = 0, that is,
z, = d,. It is also interesting to note that the denominators in (C.12) and (C.13)
have the same mathematical form as the characteristic equation of a MPS for a
LSM mode has. That is why the poles of the Green’s functions are referred to as

surface wave poles. This is the natural consequence of using the spectral domain
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approach which is closely linked to the method of the separation of variables. The
fact that the poles of the spectral Green’s functions of a MPS are the surface waves
propagating in the corresponding MPS can only be shown explicitly by using the
transfer matrix method. This is another reason for the power and beauty of this

method in comparison with other ones.

LSE excitation

In this case, starting with the boundary conditions in (2.27) and following the same

line as before, one may obtain

1 1 fz kz’ ) “~o
a; — T*(B) by = D7 (1e; T)pe ARz, k) -( o %) (C.15)
e Vs Jy(kz, ky, 2,)
where
Ak k)= | ) C.16
(bek)= | o (C.16)
k+ky  ki+ky
0
Th(ﬁ) = H T?-f-l,i(ﬁ) (C.17)
=N
The mathematical representation of T?,, ;(8), (i # 0)is given in (B.18). Fori = 0,
we have
A 1 0
Tio(B) = (C.18)
0 £
He,

al(kz, k) and bt(k., ky) can be obtained by similar expressions for af(k.,k,) and
bS(kz, ky) in (C.12) and (C.13), respectively. That is,

Hr,

fz(kz’ kya 20) ]

~t |y, 1| [TMB)] T D (e ) AR (ke By |
[ - 1][m®)] T T AN k”[J,,(k,,ky,z,)

h =
a‘c(k=7 kv) - Dh(ﬂ)
(C.19)
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- [ Y 1 ]D_l(‘Yc;T)l‘rgAh(kzaky) [ ?E:”:’ :°: ]
b2 (ke ky) = ) i A (C.20)
where
M) = | . 1]T"(ﬂ)[ 1 ] (C21)
s

The same comments for LSM excitation can be applied for this case. Especially,

the above expressions for a”(k., k,) and b*(k., k,) are valid for 7 = 0, that is, when

2, =d,.

C.2 Derivation of \-I;(e’h)(kz, ky, z) for di_; < z, < di

Assume that

Zy — dk—l =T, O<r<ty (C22)

For this case, one may write the following expressions for ‘-I;("h)(kz, k,, z)

( a,f:'h)(kz, ky)e——yc(z—dN) z>0

AT (R ey )eh[yi(z — dict)] + B (e, by )shlvi(z — diy)]
dii1<z< d{, ) # k
Bk by 2y = § U (koo k)eRII(z = dict)] + V™ (ke ey )shln(z = dey)]

2o < z< dg
A" (ke Ry )ehlme(z = dia)] + B (ke By )shl(z — diy)]

dr-1 < z< 2z,
b(:.u)(kmkv)e-y,z z2<0

(C.23)
where 7., v;, and «, are given in (C.3).
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LSM excitation
Applying the boundary conditions reflected in (2.26), we have

€ ik,_., fz ) 120
D(-,,,,T)( HOWS _[ (ker ) )=A=(k,,kv)[_(’°=’°" )]
'7kae(k=1ky) 7kBIi(k=1kv) Jy(kraky,ZO)

(C.24)
where D(v:,7) is given in (C.5) with -, substituted by v,. A*(k., k,) is expressed by

(C.6). By successive application of the boundary conditions at z = di, dx41,---,d,,

% (k= ky) and v VS (kz, ky) can be evaluated in terms of a(k., k,) as follows
Ug(kz, ky) N -1 1
=11 [T00 ailhark,)  (C25)
Ve Vi (kz, ky) } g‘[ ] [ e } &

Similarly, successive application of the boundary conditions at z = di_1,...,do(=

0) yields
(=, ky) ° 1
= T§+1.i(/3)
[ Ve Bi(kz, ky) } i=1111 [ Vs

Substitution of (C.25) and (C.26) into (C.24) leads to the following system of in-

b5 (k= ky) (C.26)

homogeneous linear equations in af(k:,k,) and b2(k., k)

k
[ ' a; — T°(B) [ ' J b, = [.H Tf+1,i(5)] D™k, 7)A% (k2 ky) X
—Ye Ys i=N
[ J}(kza k‘y,zo) J (0.27)
Jy(kzy Ky, 25)

where T¢(B) is given by (C.11). Solving (C.27) for af(k., k,) and bS(k.,k,), we get

€ry

Ta(kay by 20) ]

—ze [ 1] ME B0 AT ) [ Tifher by 2)
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where D¢(8) is given by (C.14) and

k-1

1(8) = 1 [Tiau8)] (C-29)
jz k:n 1 %0
~[ 1] NBID AT ) { e ;}
b5 (ke k) = 5 — =22 (Ca30)
where .
Z(.B) = LIV T§+1,i(ﬂ) (C-31)

Once af(k:,ky,) and b%(k.,k,) have been determined, all other coefficients can
be obtained by using the transfer matrix method. Therefore, according to (C.22),
¥e(k,, k,,z) can be obtained. Note that the above derivation of Ue(k,, ky, z) is
based on the assumption that 0 < T < #;. It can be shown that the above results
are still valid for r = 0. That is, z, = dxe—; (k=1,...,N).

LSE excitation
Following the same reasoning for LSE excitation, the boundary conditions in (2.27)

require that
1 1 k
[ } a: - Th(ﬂ) [ } bf = [H T?+1,i(ﬁ)] D-l('Yk,T)l‘rgbfAh(kz’ ky) x
_.‘yc 7‘ i=N

[ Tokar by 20)

e | o
Jy(kzy ky, 20)

where A*(k;,k,) is given in (C.16). The above system of equations can be easily
solved for al(k.,k,) and b%(k.,k,) as before. That is, by changing the superscript
e to h and € to p., the expressions in (C.28) and (C.30) multiplied by g,, can be
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used to obtain the solutions for for a®(k.,k,) and b?(k:,k,). Hence

Tulkar ks 22) ]
jy(kt7 ky7 zo)

I

[ -y, 1 ] M,l:-l(ﬂ)D-l('Yk;T)l‘rsAh(kz’ kv) [
h —
a(kz, ky) = D*(B)

(C.33)
where D*() is defined by (C.21). The expression for M}_;(8) can be obtained
from (C.29) by changing the superscript e to h.

J; k2, ky, z,
- [ Y 1 ] Nt(ﬂ)D—l(‘yk;T)#ﬂ.Ah(kt’ kv) [ fEk Z ; }
(ke by) = 20 SRS (C3e)

N%(B) can also be obtained from (C.31) by changing the superscript e to k. It is
also possible to apply the above results when 7 = 0. That is, the expressions for
the solutions are valid when z, = dp—; (k=1,...,N).

C.3 Derivation of \?(e'h)(kz, ky,2) for z, < 0

As can be seen, the present case is very similar to the case when z, > d,. In this
case, we start from the expression for ’I'("h)(k,,,ky,z). Due to the present of the

source at z = z,, one might expect that

(0™ (ke by Jem (=) z>d,
AL (ke by )ehlyi(z — dica)] + Bi™ (kz, by )shlvi(z — dizy )]
di-1 <z<d;

\i'("h)(kz, ky,z) = .
ATV (ke ky)eh(1a2) + By (e, by )sh(7,2)

2, <z<0

n b(:'h)(kﬂ ky)e™ z2< 2
(C.35)




APPENDIX C. 271

where 7., 7i, and 7, are defined in Appendix C.1 via (C.3). As before, we consider
the LSM and LSE excitations separately.

LSM excitation
Application of the boundary conditions (2.26) at z = z, requires that

A:(kza kv) 1 e e jz(km ky’ Zo)
D(‘Y:; zo) ( - b,(kzr ky)) =A (kza kv) -
7:B:(kz’ ky) Ys Jy(kza ky’ zo)
(C.36)
where
ch(,z,)  hreze)
D(7s: 20) = 7' (C.37)
i Yesh(7s25) ch(7,20)
Application of the boundary conditions at z = 0 leads to
Alkeky) | Ax(kas k)
= T1,0(8) (C.38)
7. B (k=, ky) 72 B; (k=) ky)
with
. 1 0
T5e(B) = . (C.39)
0 ok
Therefore, successive application of the boundary conditions at z = d; (i =
1,...,N) leads to the following matrix equation
1 e . 1 e . _ jz(k:n 3 zo)
£-TB) | |5 = T D ) A ) |
~Ye Vs Jy(kzy Ry, 2,)
(C.40)

Solutions for af(k.,k,) and b%(k:, k) are

T (ke by 20)

jykz’ y %o ]
ag(kz, ky) = D(3) (ker by 20) (C.41)

€r,

—f= [ -7 1 ]D‘l(‘r.;zo)A‘(kz”‘v) [
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Te(kzy ky, 2o

- [ Ye 1 ]T‘(ﬂ)D‘l('y,;zo)A‘(kz, ky) [ b Ek :: , ;

b (ks by) = G i (X
where D°(8) is given by (C.14).

LSE excitation

Following the same argument, we have

j;: kzeyky, 2o
: al — T%(B) ' o =T"(ﬂ)D"(—y,,z,)p,,A"(k,,ky)[ -( ) J
—Ye Vs Jy(km kw zo)
(C.43)
The above system of linear equations can be solved for a®(k., k) and b*(k.,%,) as
follows
L kz, ky, zo
—f‘:‘ [ —Ys 1 ] D—l('Y:;zo)l‘r.Ah(k::, k‘y) [ jgk l]:: ; ]
a(ke, ky) = () < (C.a44)
Ja(kzy ky, 2o
- [ Ye 1 ] THB)D ™ (Vs; 2o )ttr, A (kz, ky) [ fikz :: ; ]
b5(keky) = 20 L (C.45)

where A"*(k.,k,) and D*(B) are given by (C.16) and (C.21), respectively.

C.4 Proof of Equation (2.39)

In this appendix, we show that ¥(c*)(a, z) satisfies the second-order homogeneous
differential equation (2.39). To this end, substitution of (2.32) into (2.31), leads to

the homogeneous differential equation

2 -
[Bn - u,(z)ef(z)kz] P (p,2) = 0 (C.46)
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where B, is the Bessel differential operator

6? 18 n?
B. Y — +-—--— C.47
dp*  pdp p? (C.47)

It is shown that [53]
Ha (Balf(p))i @) = —a’ (o) (C-48)

If we apply the Hankel transform on both sides of the differential equation (C.46)
and use (C.48), we end up with (2.39).

C.5 Connection Between the Two-Dimensional

Fourier Transform and the Hankel Transform

To establish the relationship between the Hankel transform and the two-dimensional

Fourier transform, consider the double Fourier transform of the function f(z,y) as

follows
Flheiky) = [ [ f(z,g)e®==+Mdzdy (C-49)
According to the inversion theorem, we have
1 oo o .
- —— —F(kez+kyy)
fe) = gy [ [ Fhesk)e dk. dk, (C-50)

Let us introduce two pairs of variables (p, ¢) and (a, ) such that

(C.51)

z = pcos¢ k. = acosv
y = psing ky, = asinv

Note that (a,v) is the dual pair of (p, ) in the spectral domain. Moreover,

k:+k:=az
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With such variable transformation, one may write

@)= 5 falp)e™ (C.52a)
Flhok) = 3 Fa(@)e™ (C.52b)

Substituting (C.52a) into (C.49), changing the order of summation and inte-
gration, and using the coordinate transformation in (C.51), we get
Fleak) = 3 [T o)t s pagdy  (C.53)
The above expression can be rewritten as
Flbok) = 3 o [ fulood [ merotomiay (C.54)
Let us consider the generating-function relation for Bessel functions [56]

e =) = 3" ) (2) (C.55)

n=—w

Writing ¢ = €’® on both sides of (C.55), we obtain
2l = N @™ n(2) (C.56)
If we change the variable 6 to § + 6 in the above identity, we get

g = Y "™ (2) (C.57)

Using the above identity in (C.54) leads to the following result
Flharky) =20 35 &™57(=1)" [ fule)u(ap)pdp

where we have used

Jon(z) = (=1)"Ja(2)
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Consequently,
Flhayky) = Y 275" fu(a)e™ (C.58)

where f,(a) denotes the Hankel transform of f,(p). Comparing (C.58) with (C.52b)
yields
fa(@) = 275" fu(a) (C.59)

Note that one may start with substituting (C.52b) into (C.50). Then, using the
identity
e-—jzco:d = Z (_J-)meijJm(z)

m=-0

and comparing the final result with (C.52a) leads to

1
27"

fala) = /: fal@)Jn(ap)ada (C.60)

The above relation states that f,(a) is the Hankel transform of 275" f.(p). In
other words, applying the Hankel transform on both sides of (C.60), we end up
with (C.59).



Appendix D

D.1 Green’s Function of Multilayer Planar Struc-

tures

In this appendix, we obtain the exact Green’s function satisfying (3.21) by using
the transfer matrix method. We use two seemingly different approaches. However,
it can be shown that these two approaches are the same. Let the grating section
extend from z = d,_, to z = d, as shown in Fig. 3.4. Therefore, z’ may be anywhere
between d, , and d, in the unperturbed waveguide, thatis, d,_, < z' < d,. In

both approaches, we take advantage of the fact that G(z;2’) is the solution of the

following differential equation

- 0 > 2
LEEL) | i Gz = 0> (0.1
dz 0 z2< 2

subject to the continuity of G(z; z') and ﬁ&—‘zﬂ for all values of z except z # 2'. At

. . dG(z:2') = q- .
z = 2/, G(z; 2') is continuous. However, —g(;‘:—‘l is discontinuous such that

dG(z; 2') dG(z; 2') _
dz Iz:z'+ - dz |z=z'- =1 (D.2)

276
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First approach

Since G(z; 2') satisfies (D.1), one may write

4

ac(z’)e“j"'=(“dN) z>dy
Ai(2')cosTi(z — dioy) + Bi(2')sinti(z —di1) t# kand di; <z < d;
G(2;2') = { Ur(2')cosmi(z — dpy) + Visinti(z —diy) 2/ <z < z

Ap(2')cosTi(z — di-1) + Brsintie(z —diy) ze-1 <z < 2

b,(2')ei ™= z2<0
(D.3)

where

Tes = /€re., Ko (D.4a)

T, = /& ko (D.4b)
Continuity of G(z; z’) and its first derivative at all interfaces z; > z; leads to
A2 1
| oo ) i>k (D.5)
T,'B,'(Z') —j‘rc
where
cos T;t; ﬂf"ﬁ
T; = ' (D.6)
- sinTit; cosTit;

and ¢; is the thickness of the ith layer. In a similar fashion, continuity of G(z;z')

and its first derivative at all interface z; < z,_; yields

[ Ai()
~Bi(2)

1
=T{_1...T1 [

JTe

Applying the boundary conditions at z = 2/, we get

N AR R N
‘rka(z') TkBk(z') 1
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where

sin 1’5! z'-z,,_, )
™ (D.9)

—Tr $in (2 — zp—1) cos T(2' — zk-1)

c0s Ti(2' — zk-1)

D(Z' - zk_l) = [

Using (D.5) and (D.7) in (D.9), we have

0
] b,(z') = D72’ — z1) [ .
(D.10)

] a,_.(z’) - Tk—l cee T1

1
T;‘...T;,‘[

—JTe ITs
Now it an easy task to obtain a.(z’) and b,(2') from the above equation. The

procedure is very similar to that one given in Appendix C.2. After obtaining a.(2')

and b,(2') all other coefficients can be obtained by using the transfer matrices.

Second approach

In this approach, we start from a general formula for the Green’s function of the
second-order differential equation. According to the theory of second-order differ-
ential equations [64], the Green’s function satisfying (3.21) can be obtained as

_ Z()Z (2)U(z - 2')+ Z (2")Z,(2)U(2' - z)

N VA E REACVAE) (-1

where U(-) is the unit step function. Z_ (z) is any solution of the homogeneous
equation in (D.1) for z > 2z’ subject to the continuity of Z (z) and its normal
derivatives at each interface d, > 2’. The same is true for Z,(z) with respect to the
corresponding continuity conditions at the interfaces d, < z’. It should be noted
that derivation of (D.11) is based on (D.2). The above considerations allows us to

explicitly write Z_(z) and Z,(z) as

a e~ iT(z=dy) z2>d,
Z (z)=4 A¥costi(z—d,_ )+ B¥sinti(z—d,_,) d_ <z<d,i>k
cost(z —d, )+ Besinm(z—-d,_,) Z<z<d,
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A, cosmi(z—d, )+ Bisinmi(z—d,_,) d_ <z<Z
Z(z) =< Alcosti(z—d,_,)+ Blsinti(z—d._,) d_,<z<d,i<k
b,eie* z<0
(D.13)

where 7., = /& [k, and T, = /€,  k,. Since Z (z) and Z,(z) are the solutions
of the homogeneous differential equation, a. and b, can be considered as arbitrary
numbers. However, (A¥, B?) and (A}, B!) are uniquely determined in terms of
a. and b., respectively. More precisely, successive application of the boundary

conditions at d, > 2/, requires that

At a1 .
=T; ...Tx a. 1>k (D.14)
;B¢ —JTe
where T; is given by (3.6). Similarly, we have
Al
P l=T,...T, b, i<k (D.15)
;B! T

If one calculates the denominator of the Green’s function in (D.11), one can easily
prove that
AR ACIPAC)
A A

_ A | | 4 det
‘rkB'le TkB;: TkBi TkB;:

1] I
= Tk—1°'-T1 . b, = Tk ...TR, a.
JTs i —ch

[ 1
= [ ch 1 ] TN---TI ] acb. (D'16)

Therefore, (D.11)-(D.16) provide us the closed form solution of the Green’s func-
tion satisfying (3.21). It can be easily seen that the product of the two arbitrary



APPENDIX D. 280

constants is common in the numerator and denominator of (D.11) as might be

expected. Consequently, one may set them equal to 1.



Appendix E

E.1 Fundamental Governing Equation of Slowly-
Varying Optical Fields

In this appendix we derive the governing equation of slowly-varying optical fields
from Maxwell’s equations in the time domain. These equations are the starting
point for both traveling wave and standing wave approaches. The distinctive feature
of this derivation is the inclusion of the spontaneous emission noise at the very
beginning. This is different from the conventional heuristic approach of considering

the spontaneous emission at the very end of the formulation of the rate equations.

We start from Maxwell’s equations

VXE=—po—— (E.1)

VxH=— (E.2)

where

D=D,+P +P (E.3)
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D, is related to £ by

D,(r,t) = / &€ (r,t') E(r, t — t') dt (E.4)

0
with
& (r,t) =1+ x (r,t)

X.(r,t) is the susceptibility of the unpumped lasing medium. P’ and P* are the
polarization associated with the lasing medium and spontaneous emission source,
respectively. P* acts as a random source of the optical field in the laser structure.
In the presence of this random source the laser field must be considered as a random
field. Note that we have assumed linear polarization model with memory for the

cold cavity, i.e., the laser cavity in the absence of the injection. On substitution of

(E.3) into (E.1) and (E.2), we obtain

VxVxE&E +yo%z,—° = —u.,a;—:l- —po% (E.5)
Let
E(r,t) = Re {E(r,t) &t} (E.6a)
D,(r,t) = Re {Do(r,t) et} (E.6b)
P'(r,t) = Re {P!(r,t) et} (E.6c)
P*(r,t) = Re {P*(r,t) ™t} (E.6d)

where w, is a reference frequency. E(r,t), D,(r,t), P!(r,t), and P*(r,t) are slowly
varying amplitudes with respect to time. On substitution of (E.6) into (E.5), we
get

V xV xE+ p,T°D, = —p,T?*P! — 44, T?P*

where

a .
T: 5-{-]&1‘,
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By neglecting terms that are of second-order derivatives of D,(r,t) and of first-order

or higher for P! and P*, one derives

V xV x E - w?u,D, + 2w, pto aat" = pow?P! + p,w?P* (E.7)

Let us define the Fourier transform by the kernel e=3¢t. That is,

fe,0)= [ fe e

With the above definition, if one applies the Fourier transform to both sides of
(E.7), one obtains

V xV x E —w?u,D, - 2w, po(D, = How?P' + pow?P* (E.8)

On the other hand, using (E.6) in (E.4), one may obtain the relationship between

the Fourier transform of D,(r,t) and E(r,¢). More precisely, we have
D, (r, t)eirt = /o ” el () E(r, t — #)edurlt—t) gy (E.9)
Applying the Fourier transform on (E.9), we obtain
D.(r,¢ — w.) = e (r,{) B(r, ¢ —w,) (E.10)
By changing the variable, one may obtain the following relation from (E.10)
D,(r,¢) = & (r,w, + ¢) E(r, () (E.11)

Since ﬁ,(r, ¢) and E(r, () are narrowband functions, they vanish for sufficiently
small values of ¢. In this range of small values of (, &(r,w, + ) can be expressed

in terms of a Taylor series expansion

(0 + O = Elm0) + oo ¢ (E.12)
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Substituting (E.12) into (E.11), the nonzero values of D,(r,¢) and E(r,() satisfy

the following relation
— e, -
D,(r,{) = ¢ &.(r) + a—wlu=u'-c E(r, ¢) (E.13)

where ¢, (r) = &(r,w,). Substituting (E.13) into (E.8) and utilizing the constitutive

relation

P!(r,t) = e, x(r,t) E(r,t) (E.14)

where x(r,t) is the carrier-dependent susceptibility of the lasing medium, one ob-

tains
- 2 - .= j2w,. lagr - aa‘ 2| 2PDs
VxVxE-Ek(e, +xx)E+ o [(e,., + Ea—w-w,.)]('E +]5;C E| = pow’P
(E.15)
where
2_ Wi
k: = @
w2 = —
Ho€o

and * means convolution in the Fourier spectral domain.

Applying the inverse Fourier transform on both sides of (E.15) and noting that

FHEr A = (=S,

we obtain

] - a2
V9 - e 48+ 2 [T

w2 |93t bw o

] = p,wiP* (E.16)

where ¢, is the effective group dielectric constant and is given by

1 0e,
E Y W
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Based on the slowly-varying amplitude assumption, we neglect second-order deriva-

tive with respect to time. Therefore, from (E.16), one may derive

V x V x E - E}(e,, + X)E + ]f::r e,%—? = pow?P* (E.17)

Eq. (E.17) is the fundamental governing equation for the envelope of the laser field

in its most general form.



Appendix F

F.1 Green’s Function Satisfying (5.26)

In this appendix we attempt to find the Green’s function satisfying (5.26). Basically,
it is possible to find the Green’s function by two different approaches. In the first
approach, we write the Green’s function as a linear combination of the solutions of
the homogeneous equation. The unknown coefficients can be obtained by applying
the continuity condition on the Green’s function and the discontinuity condition on

its first derivative.

The second approach is based on the integral transform technique. The kernel of
the integral transform satisfies the homogeneous differential equation. The Green’s
function can be obtained from the inverse transform by using contour integration
and the residue theory. In fact, the second approach is based on the eigenfunction
expansion of the Green’s function. Although the second approach is more elegant
than the first one, it is not as simple as the former. Therefore, we focus only on

the first approach.

In the first approach, as mentioned above, it is necessary to obtain the suitable

condition on the derivative of the Green’s function at the source location. To this
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end, it is more convenient to write the differential operator acting on G(p, p'; @) as
10
pOp
If one multiplies the above equation by p and integrate the resulting equation from

2 (p 2 )Glo, ) + [ﬂz(a)——] Glopia) =28 (F)

p = p'~ to p = p't, continuity of G(p, p’; ) at p = p’ results in

ac1”~"" 1
[‘aﬂ =2 (F-2)

Eq. (F.2) along with the continuity of G(p, p’; @) at p = p’ are the fundamentals in
deriving the Green’s function. We consider four cases separately.

(1) n =0 and B(a) =

In this case, the two independent solutions of the homogeneous equation in (F.1)

are constant function and In(p), respectively. Thus,

A p<p
Bln(p) p>p
Continuity of G(p,p';a) at p = p’ and (F.2) leads to (5.27a).

G(p,psa) = { (F.3)

(2) n # 0 and B(a) =0
In this case, the two independent solutions of the homogeneous equation in (F.1)

are p" and p~", respectively. Consequently,

A n < (4
Glp,p5a) =19 ° rr (F.4)
Bp™ p>p
Following the same procedure as before, one ends up with (5.27b).
(3) B*a) >0
In this case, one may write
A J.[B(a)p] p<p
Glpptia) =1 """, (F-5)
B H,'[B(a)p] p>p
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where
H () = Ju(-) = iNa(")

Following the same line as before, i.e, using the continuity of G(p, p’; @) at p = p'
and (F.2), one needs the Wronskian of the Bessel’s functions [108] (p. 463)

dN.(Bp) dJ.(Bp) _ 2
Jn - N, = — F.6
Cerdgey "oy = (F:6)
Using (F.6), we have
dH (Bp) @, , dJa(Bp) j2
T.(Bp) o \BP) _ g S L F.7
O (F.17)
Therefore, after some algebraic manipulations, we obtain (5.27c).
(4) B(a) <0
Let us assume that 82 = —u?, u? > 0. In this case, one may write

Al (up) p<p
B K, (up) p>p

G(p,p'sa) = { (F.8)

where I,,(-) and K,(-) are the modified Bessel functions of the first and the second
kind, respectively. These functions are defined as [108] (p. 463)

L(up) = j™Ju(~jup) (F.9a)
Kn(up) = 2 (=)™ Hy (~jup) (F.9b)

The Wronskian of the modified Bessel functions is

dK,(up) dI,(up) 1

In(uP)W - K, (UP)W - (F.10)

From (F.10) and the procedure described earlier, we have

— Kn(up')In(up) p<p
—In(up')Kn(up) p>p

G(p,p'sa) = { (F.11)
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Using (F.9), (F.11), and u = {/—B%(a), one may write
' EH, [-jy/-B)pVal—iy/-B*(a)] p<p
Glosfia)={ 2o N ORIV (Fa2)
Inl—3\/—B*a)p’|H, [—17+/—B*(a)p] p>p
A careful look at (F.12) reveals that the Green’s function G(p, p’; @) for 8%(a) < 0
can be obtained from those expressions valid for 82(a) > 0 simply by substituting

—7y/—B*(a) for f(a)-
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