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Abstract

The traditional approach to FPGA clustering andCLB-level placement has been shown to yield

significantly worse overall placement quality than approaches which allowBLEs to move during

placement. In practice, however, modern FPGA architectures require computationally-expensive

Design Rule Checks (DRC) which renderBLE-level placement impractical.

This thesis research addresses this problem by proposing a novel clustering framework that

producesbetter initial clustersthat help to reduce the dependence onBLE-level placement. The

work described in this dissertation includes: (1) a comparison of various clustering algorithms

used for FPGAs, (2) the introduction of a novel hybridized clustering framework for timing-driven

FPGA clustering, (3) the addition of physical information to make better clusters, (4) a comparison

of the implemented approaches to known clustering tools, and (5) the implementation and

evaluation of cluster improvement heuristics. The proposed techniques are quantified across

accepted benchmarks and show that the implementedDPack produces results with 16% less wire

length, 19% smaller minimum channel widths, and 8% less critical delay, on average, than known

academic tools. The hybridized approach,HDPack, is found to achieve 21% less wire length, 24%

smaller minimum channel widths, and 6% less critical delay,on average.
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Chapter 1

Introduction

The Field Programmable Gate Array (FPGA) has become very popular in the last 25 years, and can

be found in a variety of applications. However, the performance of the FPGA is highly dependent

on the quality of the Computer-Aided Design (CAD) tool used. Asthe FPGA becomes more and

more powerful due to advances in process technology and architecture research, better tools are

needed to take full advantage of its capabilities. Therefore, it is of utmost importance to improve

the quality of the design tools used.

1.1 Overview of FPGAs

There are two primary platforms that hardware designs can beimplemented upon: ASICs, and

FPGAs. The Application-Specific Integrated Circuit (ASIC) isa specially designed, custom

manufactured chip. In comparison, the Field Programmable Gate Array (FPGA) has a regular

structure, with a standard set of elements that can be programmed to function as any digital

circuit. There are several advantages of using FPGAs over ASICs. First and foremost, the

FPGA is programmable, whereas the ASIC is not. The programmability of the FPGA allows

easy modification of its programmed application. In contrast, the ASIC cannot be modified once

manufactured. If a different function is required of the chip, then a new ASIC must be made.

This can pose as a significant problem during the developmental stage of hardware designs. If
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Introduction

a bug is found in the design, new chips must be remanufacturedwith the old ones discarded.

However, if the hardware design was based on FPGAs, then the design can be altered easily by

simply reconfiguring the FPGA. For this reason, FPGAs are very popular for prototyping designs.

FPGAs also have an advantage over traditional ASICs in terms of time-to-market, as the chip

manufacturing process can take months, whereas FPGAs are available off the shelf. However,

even though there are many advantages to adopting the FPGA for development, FPGAs are not

without drawbacks. Because of their programmability, FPGAs are usually much larger in area than

an equivalent ASIC, leading to higher silicon costs and powerconsumption. They also tend to be

slower than their ASIC counterpart. Therefore, for applications that require high performance and

have stringent power requirements, such as cell phone applications, ASICs are still the preferred

choice.

A popular FPGA architecture that is manufactured today is the island-style cluster-based

FPGA. An example of this type of architecture is shown in Figure 1.1. The key characteristic

of this architecture is the organization of logic blocks andwires. In this architecture, groups of

logic, called Configurable Logic Blocks (CLBs) are arranged in a grid-like pattern, separated by

routing channels. These channels contain many parallel segments of wires that can be programmed

to form connections betweenCLBs. A more detailed view of the FPGA architecture is shown in

Figure 1.2, where the building blocks of the FPGA is labelled. FPGAs interact with off-chip

devices through the use of Input/Output (I /O) blocks, located along the periphery of the chip. The

square blocks in the interior of the chip areCLBs with routing channels separating them. At the

intersection of horizontal and vertical channels, routingswitch blocks, such as the one shown in

Figure 1.3, control which horizontal and vertical wires areconnected. In Figure 1.3, 17 wires can

be seen in every horizontal and vertical channel. The routing switch block performs the actual

connection of wires, thus allowing horizontal wires to be connected to vertical wires as necessary.

The switch shown allows a wire to be connected to one specific wire in every channel to which it

is adjacent.

It should be noted that the architecture shown in Figure 1.1 is a very simplified layout of a

2
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CLB

CLB CLB

CLB CLB

CLB

CLB CLB CLB

I/O
Blocks

Routing
Wires

Routing
Channel

Figure 1.1: Sample Island-Style FPGA Architecture

FPGA. Modern FPGAs, such as the Cyclone II [1] and Stratix III [2] families manufactured by

Altera, have many other types of blocks other than logic on the FPGA. These additional hard com-

ponents further extend the capabilities of the FPGA, by incorporating memory components such as

Random Access Memory (RAM) blocks, multiplier blocks such as Digital Signal Processing (DSP)

units, and Phase-Locked Loops (PLLs) in the FPGA fabric.

The basic building block of logic in a FPGA is the Basic Logic Element (BLE). A simplified

architecture for aBLE is shown in Figure 1.4. TheBLE is made up of a Look-Up Table (LUT)

for combinational logic, and a register, also referred to asa flip-flop, to store state. Ak-LUT

is essentially a memory component withk input pins, and one output pin. Depending on the

combination of the input pin values, the row in thek-LUT will be addressed and the output

set accordingly. There are a few different configurations that theBLE can take. As seen from

3
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Figure 1.2: Detailed Placed-and-Routed FPGA Design

Figure 1.4, the output of theBLE may either be the output of theLUT, or the output of the register.

Again, this diagram is very simplistic, and does not show several control signals (e.g., sets/presets),

or other enhancements such as high-speed arithmetic logic (e.g., carry-chains).

The second hierarchical logic structure of the FPGA is the Configurable Logic Block (CLB). A

CLB is a collection ofBLEs. Several salient features of aCLB are shown in Figure 1.5. It can be

seen that the outputs of theBLEs contained in theCLB can be connected to the input of allBLEs

within theCLB. These are also referred to as local, or intra-cluster, connections of aCLB. It should

be noted that the number of input pins of theCLB is typically less than the sum of the number of

input pins of the containedBLEs. Therefore, if theBLEs within theCLB are to be fully utilized,

some of theBLEs will need to share inputs. Also, if one of the inputs of aBLE is driven by another

4
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Figure 1.3: FPGA Routing Switch Block

BLE located within theCLB, the output signal can directly feed thisBLE without having to be routed

outside theCLB. To take advantage of this unique characteristic of theCLB, it is preferable to group

togetherBLEs that have many interconnections. In this FPGA architecture, the wires within the

CLB are much shorter than wires betweenCLBs. Therefore, the delay of intra-cluster connections

are much less than inter-cluster connections since it is unnecessary to use routing resources. In

Figure 1.5, the number ofBLEs contained in theCLB is 3. Although the inputs are depicted to

come from the left side of theCLB in this figure, in practice, inputs are generally distributed along

the top, left, and bottom sides of theCLB, with the outputs leaving the right side.

There are many parameters and constraints present in the FPGA architecture. Many of these

parameters cannot be controlled by the user. For example, parameters such as the number of

BLEs perCLB, the number of inputs perCLB, and the number of wires in the routing channel are

predetermined by the manufacturer, and consistent throughout the chip. Therefore, it is up to the

user of the FPGA to take advantage of the architecture to achieve the best possible performance.

5
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RegisterLook-Up Table
(LUT)

BLEclock

Logic
Inputs

Output

Figure 1.4: A Basic Logic Element (BLE)

However, it is unreasonable to expect all users of the FPGA tofully understand the complete inner

workings of the FPGA. This would create a very steep learningcurve, and discourage designers

from using the FPGA as their primary method of development. Fortunately, tools have been

developed to make FPGAs much easier to use, and to help the user maximize the performance

of their designs on the FPGA.

1.2 The FPGA CAD Flow

The purpose of the Computer-Aided Design (CAD) flow is to bridgethe gap between the hardware

designer and the hardware implementation of their design onthe FPGA. The CAD tool takes the

circuit design, written in Hardware Description Languages(HDL) such as VHDL and Verilog or as

schematics, as input. It then executes a number of steps to output a format that can be used directly

to configure the circuit onto the FPGA. The overall FPGA CAD flowis shown in Figure 1.6. The

main steps of the FPGA CAD flow includeLogic Synthesis, Technology Mapping, Clustering,

Placement, andRouting.

The first step isLogic Synthesiswhich, in itself, consists of high-level synthesis and technology-

independent logic optimization. High-level synthesis works to convert the HDL of a design into

Register Transfer Level (RTL) logic (i.e., registers, logic equations and macro blocks such as

6
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BLE
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BLE

CLB

OutputsInputs

Figure 1.5: A Configurable Logic Block (CLB)

RAM, DSP and arithmetric). Technology independent logic optimization subsequently performs

additional optimizations such as the removal of redundant logic, register retiming, and so forth.

The most well-known academic synthesis tools includeSIS [3], MVSIS [4] and ABC [5]. Then,

during Technology Mapping, the design is converted into a set of primitive blocks that exist in

the FPGA, connected by nets. For the cluster-based FPGA, these primitive blocks areLUTs and

registers. Some popular technology mappers includeChortle [6], FlowMap [7], CutMap [8],

DART [9], FAST [10], IMap [11] andDAOmap [12]. Then, in theClusteringstage, these primitive

blocks are grouped into larger blocks that exist on the FPGA.In the case of the island-style FPGA

described previously, theLUTs and registers are first grouped intoBLEs in an intermediate step

called register packing. Then, from the resulting set ofBLEs, a set ofCLBs are made using

various clustering algorithms.VPack[13], T-VPack [13], iRAC [14] andRPack [15] are examples

of academic clustering tools.
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Logic Synthesis

Technology Mapping

Clustering

Placement

Routing

HDL Code

Placed and Routed Design

Figure 1.6: FPGA CAD Flow

At this point, a clustered netlist consisting ofCLBs and nets that connect theCLBs together is

generated. This netlist is then fed into thePlacementstep, whereCLBs are moved around on a grid

representing the FPGA chip to determine the best location for eachCLB in the clustered netlist.

Academic placers vary widely in the algorithm used, rangingfrom algorithms such as simulated

annealing inVPR [13, 16], to partitioning algorithms [17–20]. After the placement step has been

completed, everyCLB is assigned to anx andy coordinate representing its final placement location.

This is also referred to as the physical location of aCLB.

Finally, after the physical locations of allCLBs are found and set, the nets that connectCLBs are

assigned to specific wires in the routing channels during theRoutingstage. Routing can be split

up into two stages: global, and detailed routing. During global routing, the channel is selected

for every net, but the specific wire in the channel is not chosen. Then, during detailed routing,

8



Introduction

each net is assigned to a specific wire in the channel. Routerstypically perform the two step

either sequentially, known as 2-step routing, or simultaneously, where both the channel and wire

are chosen at the same time. One notable detailed routing algorithms isSEGA [21, 22]. The most

widely used routing algorithm is the Pathfinder [23] algorithm, which is based on the A* search

algorithm. There have been extensive studies on routing [24, 25]. VPR [13, 16] also functions as a

router in addition to serving as a placement tool.

As the design progresses through each step of the CAD flow, it becomes more and more fixed.

Decisions made early in the flow have a dramatically greater impact on subsequent steps of the

flow. For example, at thePlacementstage, the contents ofCLBs have been determined, and usually

cannot be changed. Therefore, if clustering was performed poorly, the placement problem also

becomes more difficult. For example, if a large number ofCLBs was made during clustering, the

number of blocks that the placer needs to deal with also increases. This can affect the quality of

the final placement, as well as increase the runtime of subsequent stages of the flow. Thus, it is

important to optimize each step of the CAD flow, and more importantly, steps that occur early on

in the flow.

1.3 Definitions of Key Terms

Throughout this thesis, aclusterrefers to aCLB. Clusteringis the process of groupingBLEs into

CLBs such that they are design rule correct. Thearchitectureof an FPGA refers to the maximum

number ofBLEs that can be put into oneCLB. A netlist is the description of a hardware circuit,

denoted by blocks of logic, or nodes, connected byedgesor nets.

1.4 Statement of Thesis

There are three main objectives in the research documented in this dissertation. The primary

objective is to provide a thorough analysis of theClusteringstep of the FPGA CAD flow, and how

it can be enhanced. To achieve this, several clustering algorithms have been implemented within

9
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the same framework to evaluate and compare the performance of each algorithm. The second

objective is to further improve upon the performance of the implemented algorithms through the

addition of some preliminary physical information. The augmented algorithms have been evaluated

to determine whether an improvement can be achieved. These results have been compared to data

from other known clustering tools. Then, it is the goal of thethesis to determine how accurate

physical information needs to be before a positive impact onclustering can be witnessed. Finally,

several cluster improvement strategies have been implemented to study whether post-clustering

optimizations can lead to improvements in the final placement.

This dissertation is organized as follows. Chapter 2 provides an overview of clustering

algorithms found in the literature, and discusses relevantpapers. Chapter 3 describes the

implemented clustering algorithms in detail, as well as theenhancements made to these algorithms

via the addition of physical information. Two cluster improvement heuristics are described in

Chapter 4, which seeks to improve upon any initial set of clusters made by other tools. In Chapter 5,

results from the implemented algorithms and heuristics arecollected and compared. Finally, the

findings are summarized in Chapter 6 with future directions outlined in Chapter 7.

10



Chapter 2

Background

Clustering serves many crucial functions in the FPGA CAD flow. First, it makes the placement

problem smaller. By clusteringBLEs intoCLBs, the number of blocks that the placement tool needs

to deal with decreases substantially. This tends to translate into reduced CPU requirements. The

second advantage of performing clustering is that it eliminates Design Rule Checks (DRC) during

placement. While makingCLBs for a given FPGA architecture, the constraints ofCLBs are strictly

observed. Therefore, during placement,CLBs can be moved around without the need to worry

that the move will result in an infeasible placement. For placement algorithms such as simulated

annealing, where thousands ofCLB moves are made while placing the circuit, the elimination of

DRC checks can significantly speed up the placement process.Lastly, but most importantly, the

main objective of clustering is to absorb signals and/or critical connections intoCLBs. Critical

connections are those connections that are important to theperformance of the circuit. The

absorption of critical signals intoCLBs tends to improve the overall timing performance of the

circuit since critical connections do not need to be routed betweenCLBs. The absorption of

signals in general, whether critical or not, tends to reducethe number of signals that require routing

betweenCLBs. This also has a great impact on the overall routability of the circuit.

Clustering can be broken up into two stages: register packing, and clustering. During register

packing, theLUTs and registers of the primary netlist are packed intoBLEs. In the second step,

11
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theBLEs are clustered to formCLBs. The focus of clustering optimizations is on the second stage,

since register packing is fairly straightforward.

The clustering problem is inherently different between FPGAs and ASICs . In ASICs, the

main purpose of clustering is to group together standard cells so that the placer will have fewer

aggregates to deal with. However, in FPGAs, because of theirmany architectural features and

constraints, the primary objective is to create architecturally legal blocks of logic, rather than to

reduce the size of the placement problem. Clustering algorithms can generally be grouped into

two categories: seed-based, and depth-optimal methods. Seed-based algorithms work by forming

oneCLB at a time using an objective function. Depth-optimal methods tend to focus on improving

the timing aspect of the circuit, and seek to optimize its performance by duplicating timing-critical

logic during clustering.

This chapter seeks to provide an overview of the basic clustering algorithms, and a survey of

existing literature. There have been substantial investigations conducted on the optimization of

the clustering step. In Section 2.1, the algorithm used during register packing is briefly described.

Section 2.2 discusses seed-based clustering algorithms. Depth-optimal techniques, such as logic

duplication, are shown in Section 2.3. A brief survey of ASICclustering algorithms can be found

in Section 2.4. There has been some recent work that involvescombining the clustering step with

the placement step, and these are discussed in Section 2.5. Finally, the connection of the literature

discussed to the work presented in this dissertation is shown in Section 2.6.

2.1 Register Packing

The first stage in clustering is the formulation ofBLEs from theLUTs and registers in the

netlist. A BLE can contain at most aLUT node and a register node, and will have only one output.

Therefore, a register can only be packed with aLUT node if one of the outputs is not needed outside

the BLE. This can occur in two situations, as illustrated in Figure 2.1. The first situation occurs

when the output of theLUT goes only to the input of a register, and is not required by anyother

node in the netlist. The second situation occurs when the output of a register is only used as an
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a) LUT before FF b) LUT after FF

Figure 2.1: PossibleBLE Configurations

input to a singleLUT node. In this case, theLUT and register can be packed together as long as it

does not violate the input constraints of theBLE. In Figure 2.1a, the absorbed net exists between

the output of theLUT and the input of the register. However, in Figure 2.1b, the absorbed net is

between the output of the register, and the input of theLUT.

The basic register packing algorithm is shown in Figure 2.2.For every register, its input and

output nets are examined. If the net only has two terminals, and the terminal is aLUT, then this

register is grouped with theLUT to form a BLE. At the end of register packing, all unclustered

nodes are placed into separateBLEs.

2.2 Seed-Based Approaches

Seed-based methods are among the most established techniques for clusteringBLEs in FPGAs. In

such methods,CLBs are made greedily one at a time until everyBLE has been clustered into a

CLB. Seed-based approaches typically aim to minimize the number of CLBs formed, but can also

be modified to take into account other objectives such as timing and power constraints.

One of the most widely known academic seed-based clusteringtools isVPack and its timing-

driven versionT-VPack [26, 27]. In addition to trying to packCLBs to capacity,T-VPack also

accounts for the timing performance of the circuit by attempting to absorb netlist connections that
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Procedure: REGISTERPACKING

Inputs: A primary netlist to be packed,N
Returns: A packedBLE-level netlist,N′

for each registeri ∈ N do1

clus← new Cluster;2

clus.add(i);3

for eachedgee∈ i and i is unclustereddo4

if e is an input edge toi and getNumTerminals(e) == 2then5

driverNode← get the driver of edgee;6

if driverNode is aLUT then7

clus.add(driverNode);8

continue ;9

fi10

fi11

if e is an output edge ofi and getNumTerminals(e) == 2then12

sinkNode← get the sink of edgee;13

if sinkNode is aLUT and sinkNode and i can be added in the same clusterthen14

clus.add(sinkNode);15

continue ;16

fi17

fi18

od19

od20

// At this point, all unclustered blocks go into their ownBLE21

for eachunclustered blocki ∈ N do22

clus← new Cluster;23

clus.add(i);24

od25

return N′;26

Figure 2.2: Pseudocode for Register Packing.
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are deemed to be timing critical. The packing algorithm ofVPack andT-VPack starts with the

selection of a seedBLE. TheBLE with the most fully utilized inputs is usually selected as the seed

BLE for a CLB. When timing is of importance, the most timing criticalBLE is used as the seed of

a CLB. Additional BLEs are added to theCLB until no moreBLEs can be added without exceeding

CLB constraints, such as number ofBLEs perCLB or the number of pins available on theCLB.

To choose whichBLEs to add to theCLB, a gain value is calculated for everyBLE that shares an

edge with the currentCLB, using a cost function. The gain is a function of the number ofshared

edges between theBLE and theCLB, and the criticalities of shared edges.T-VPack has been used

extensively in academic research as the clustering tool to which all other clustering algorithms are

compared against.

Two algorithms of note are present inT-VPack: hill climbing, and unrelated logic clustering.

Hill climbing is an addition to the basic flow whereBLEs are continually added to theCLB even

after the number of inputs has been exceeded. This is done in the hope that an additionalBLE will

actually reduce the number of inputs needed for theCLB. This can occur when the output of aBLE

is needed within theCLB as shown in Figure 2.3 [16]. The thirdBLE in the diagram generates the

signal that is needed as an input in the first group ofBLEs. By adding thisBLE to theCLB, the input

count can actually be reduced by 1, since the signalc can be generated locally without needing to

route it from external sources. However, in general, this isshown to have limited benefits, with at

most 1−2% improvement in logic utilization [16]. The second algorithm allows unrelated logic

to be packed together if someCLBs are not full. In this case,BLEs that do not share any inputs or

outputs with the currentCLB is still added, as long as noCLB constraints are exceeded. This allows

T-VPack to pack as tightly as possible.

Although T-VPack can achieve very good results, it does not always give the most optimal

answer. It is possible that the unrelated logic packed in this stage is best grouped elsewhere where

a greater gain in edge reduction or critical delay is possible. Also, if a group of highly connected

BLEs span more than oneCLB, it is possible that by rearrangingBLEs within the larger group, the

edges connecting theCLBs can be reduced.
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Figure 2.3: Hill Climbing Example from [16]

RPack is proposed in [15]. LikeVPack andT-VPack, RPack also packsBLEs one at a time

starting with a seedBLE. However,RPack extendsVPack by integrating routability into the

clustering step to reduce the number of wires required in therouting channel [15]. This is

performed by adding a term to the cost function. This extra term accounts for routability by

calculating the number of shared input and output pins between an unclusteredBLE and the current

CLB. This routability term also penalizesBLEs that do not share anything with the currentCLB, to

deter this algorithm from putting them together. Compared toVPack (non-timing-drivenT-VPack),

previous research [15] show thatRPack can significantly improve circuit routability. However, this

research [15] focused only on routability—no performance numbers were presented to indicate the

impact of packing for routability on the final quality of the result in terms of timing. Additional

research [14] provides numerical results that show that while RPack outperformsVPack, it only

produces results that are comparable toT-VPack.

In iRAC [14], another routability-driven packing algorithm is described. This algorithm is also

seed-based and packsCLBs one at a time. However, the selection of a seedBLE is different from

the method employed byT-VPack. iRAC selects seedBLEs based on its connectivity factorc. This

is calculated via Equation 2.1, where the separation of aBLE is the sum of the number of terminals

on nets connected to theBLE, and the degree is the number of nets directly connected to the BLE.
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c =
separation

degree2
(2.1)

This connectivity factor increases the importance ofBLEs that have more low-fanout nets.

By starting withBLEs that have low-fanout nets, it increases the likelihood that additions to the

CLB will result in nets being absorbed in their entirety. Thus, these nets can be removed from

the resulting clustered netlist. Since the router will havefewer edges to route, this makes the

routing step easier. Another key idea presented iniRAC is the use of Rent’s Rule during clustering.

iRAC limits the the number of pins that are usable on anyCLB to match the Rent parameter of the

architecture. By reducing the number of usable pins onCLBs, the demand on the routing channel is

also reduced. Numerical results [14] indicate that the improved selection of the seedBLE coupled

with the use of the Rent parameter can reduce the number of inter-CLB edges by roughly 30%

compared toRPack andT-VPack for the case of 8BLEs perCLB architecture. However, the number

of usedCLBs increased substantially by 5% to 6%. This may become a problem in a highly utilized

device. Although edge reduction results are encouraging, the effect on performance is unknown

since no performance numbers were presented in this paper.

2.3 Depth-Optimal Methods

While capable of achieving very tight packings, seed-based approaches are localized, greedy

algorithms that may become trapped in local minima. Anotherset of methods, called depth-optimal

or depth-relaxed methods, seeks to optimize the performance of the circuit by duplicating

timing-critical logic during clustering. Through the process of node duplication, a set ofCLBs

with optimal depth can be obtained through the use of a variety of post-processing, bin-packing

methods. TLC [28], MLC [29] andRCP [30] are all examples of depth-optimal clustering tools.

These three methods are all multi-level clustering algorithms, with an emphasis on producing

timing-optimal designs. The advantage of these methods is that they enable a more global view of
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the circuit to be taken. Although most often used for hierarchical FPGAs in whichCLBs are futher

grouped together (e.g., the Altera APEX20K [31]), they workjust as well in architectures with only

1 level of hierarchy. Therefore, these methods still apply to the island-style FPGAs considered in

this thesis, where the only hierarchy is that in whichBLEs are grouped intoCLBs.

In depth-optimal algorithms, three phases are performed: alabeling phase, a clustering phase

and a packing phase. In the labeling phase, each node in the circuit is labeled with its depth-optimal

delay from the primary inputs of the network. This is performed by traversing the netlist from

primary inputs to primary outputs. This generally results in a large number of highly underutilized

CLBs. Then, in the clustering phase, the network is traversed from primary outputs backwards to

the primary inputs, and a subset ofCLBs are selected such that the entire network can be covered.

However, there is usually still a large number ofCLBs. Therefore, a third phase is needed to pack

theCLBs tighter to reduce the number ofCLBs needed.

An example of how typical depth optimal methods work is shownin Figure 2.4 and Figure 2.5.

These figures, found in [32], describe the process of logic duplication used in conjuction with

a depth-optimal algorithm to reduce timing delays. The labelling phase is shown in Figure 2.4.

Figure 2.4a depicts a graph that represents a circuit witha, b, c, d, ande as primary input nodes,

and j andk as primary output nodes. The delay of each node is shown in thegraph by a number

next to the node, with all inter-cluster delays set to be 3. The architecture of this example is 3

BLEs perCLB. The labels are computed by traversing the graph from primary inputs, to assign

the maximum delay encountered at each node. Thus, it can be seen in Figure 2.4b thatf has a

delay of 3. Then, as we propagate the delays forward fromf to h, we consider the entire subgraph

based ath, shown in Figure 2.4c, and calculate accordingly. If the cluster is performed as circled

in Figure 2.4c, then there will not be any inter-cluster delay betweenf andh, and its label is only

increased by its internal delay.

After labels have been computed for the entire circuit, the clustering phase of the algorithm

is executed, propagating backwards from the primary outputs, to form the optimal set of clusters

shown in Figure 2.5. As evident from the clusters shown, nodes b and f have been duplicated.
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Figure 2.4: Depth-Optimal Example: The Labelling Phase [32]. (a) Circuit graph (b) Labels of
nodesb, c, andf (c) Computing the label ofh

The strength of depth-optimal algorithms is in that they candramatically shorten timing-critical

paths by absorbing them within theCLB. However, in the process of such reductions, logic must

be duplicated to provide maximum benefits. Logic duplication can therefore get out of hand very

quickly. Although effective at reducing critical path delay, previous experimental results indicate

that the process of logic duplication can be hard to control,leading to large increases in area. Also,

minimizing logic depth does not mean a reduction in wire length in modern designs. Although

the use of timing information during clustering can lead to abetter set of clusters, recent research

indicates that timing estimates made during clustering maynot be accurate when compared to the

final placement [33].

2.4 ASIC Clustering Algorithms

It is worth mentioning that a substantial set of literature exists on ASIC clustering techniques [34–

37]. The main difference between the ASIC and the FPGA clustering problem is that there are no

CLBs in ASICs. Therefore, there are noCLB constraints that need to be taken into account. The

main objective of ASIC clustering algorithms is to create larger aggregates of highly connected

nodes so as to speed up placement. In contrast to theBLEs andCLBs for FPGAs, the netlist for
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Figure 2.5: Depth-Optimal Example: Optimal Clustering of Figure 2.4a from [32]

ASICs includes macro blocks, and standard cells or nodes.

ASIC clustering methods are usually affinity-based, and work on many clusters simultaneously.

Examples of affinity-based algorithms used in the ASIC CAD flowinclude Best Choice [38], First

Choice [39], and Hybrid First Choice (HFCC) [40, 41]. At the beginning of clustering,HFCC [41, 42]

computes the affinity of every possible pair of nodes. After sorting the calculated affinities, it starts

to make pairings between nodes to form clusters by pairing nodes with the highest affinities to each

other. If the nodes in question are already clustered, then the possibility of merging this additional

node into the existing cluster is investigated. This process of pairing is continued until no more

merging of blocks can be made without violating cluster constraints.

One of the advantages of affinity-based methods is that, unlike seed-based methods, affinity-

based methods work on multiple clusters at the same time. Therefore, it is not concerned with the

minimization of cluster count. Because of the greedy natureof seed-based algorithms, clusters are

packed as tightly as possible. Although this is benefical in terms of area reduction, it is possible

that blocks may be added early on that are better off clustered with other, still unclustered, blocks.

This problem does not exist in ASIC clustering, since there aree noCLB constraints to take into

consideration. This means that the algorithm is always making the best possible decision. Since

it is not limited by dense packing, affinity-based methods ensure that good decisions are always
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made. However, the side effect of this method is that affinity-based methods produce a much higher

number of clusters than seed-based algorithms, which may beproblematic if applied to FPGAs.

As described later in Chapter 3, an attempt was made to adapt these methods mentioned here to

FPGAs with mixed results.

2.5 Simultaneous Clustering and Placement

In the traditional FPGA CAD flow, the clustering step is completed before placement is performed.

Normally, placement tools such asVPR perform placement on the netlist ofCLBs, and make moves

by swappingCLBs between locations on the FPGA grid. However, in recent years, an alternative

has been investigated such thatBLEs are allowed to move betweenCLBs during the placement

step. This in turn restructuresCLBs that were previously formed in the clustering stage. The

advantage of performingBLE-level moves during placement is that physical information, as well

as more accurate timing information, can be used to make better CLBs. An example of this can

be found inSCPlace [43]. SCPlace implements a simulated annealing-based placement method

that is capable of moving bothCLBs andBLEs. SCPlace usesT-VPack to generate an initial set

of CLBs which are feasible for the architecture (i.e., an initial packing must still be performed).

Then, during placement, bothCLB-level andBLE-level moves are performed. It is fairly easy to

make aCLB-level move. However, whenBLEs are moved betweenCLBs, CLB constraints must be

observed before the benefit of the move can be evaluated.

SCPlace also implements the net weighting algorithm proposed by Kong [44] to improve its

performance. Through experimentation, substantial reductions in wire length of up to 36% and

critical path improvement of up to 31% can be found, when compared toVPR (which performs

no reclustering and only movesCLBs). It was found that the combination ofCLB- andBLE- level

moves produce the best results. By performing only 10% of thenumber ofCLB moves thatVPR

performs,SCPlace was able to compensate for the time it uses to doBLE moves. The significance

of SCPlace is that it demonstrates the importance of physical information in correctly predicting

wire length and delay information.
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However,BLE moves are expensive to make. In modern FPGA architectures, there are many

more constraints, such as carry chains, to consider in aCLB. Therefore, each time aBLE move

is considered, the legality of the proposed move must be verified. Since there are many such

constraints in commercial FPGAs, this DRC check can take a much larger proportion of runtime

execution if used in a commercial setting. Hence, if similarresults can be achieved by altering

the clustering stage with physical information, the need for BLE moves during placement can be

eliminated. This should also improve overall runtime of theFPGA CAD flow.

Finally, reclustering can also occur at the end of placement. It is here that physical opti-

mizations can be made, often by exploiting physical information obtainable at this point [45].

Logic replication can also be found at the placement level for FPGAs [46]. Critical paths can

be straightenedwhenever possible by means of duplicating logic. An exampleis shown in

Figure 2.6 [46].

In Figure 2.6a, there are 4 paths going through nodec, between fixed output nodes ofa and

e, and input nodes ofb, andd. If no logic duplication is allowed, then nodec would have to be

placed in the center to minimize the maximum path delay of allpaths. However, if nodec can be

duplicated to create a copyc′, then it may be possible to place nodesc andc′ in the arrangement

shown in Figure 2.6b. In this case, the paths have been straightened, and it can be seen that the

length of all paths have effectively been cut in half. By straightening the path, the impact of routing

delays on the critical paths can be minimized. However, these physical optimizations do require

reclustering and relegalization of the design, and are beyond the scope of this thesis.

2.6 Relation of Past Literature to Current Research

The goal of this work is to develop a new clustering algorithmthat can outperform the clustering

algorithms mentioned. By extracting the positive characteristics from the existing approaches,

it is hoped that a better clustering approach can be found. The investigation carried out in this

thesis research is essentially a hybridization of ASIC techniques and seed-based approaches. The

key idea is to perform partitioning, such as algorithms normally occurring during placement, to
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Figure 2.6: Logic Duplication Example [46]

obtain the approximate physical location ofBLEs. Then, a seed-based clustering algorithm can be

performed while utilizing the additional information. It is hoped that through the use of physical

information, the advantages of both approaches can be realized. Therefore, physical information

is incorporated into the seed-based clustering algorithm from T-VPack. By clustering with some

physical information, potentially better clusters can be made, which may lead to better performance

of the final placement.

In this thesis research, two packing algorithms—calledDPack andHDPack—are introduced.

These three algorithms producebetter initial packings, which in turn reduce the dependence on

computationally-expensiveBLE-level placement.DPack andHDPack incorporate the concept of

“physical clustering” [41] within a novel hybrid frameworkfor timing-driven FPGA packing.

These techniques employ a quick min-cut, partitioning-based global placer to determineapproxi-

mateBLE locations. By using this information, these tools are capable of making more informed

decisions which, in turn, can lead to reduced wire lengths and critical path delays.
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Chapter 3

Clustering Algorithms

From Chapter 2, it can be seen that seed-based and depth-optimal algorithms have been widely used

and adapted for FPGAs. Both types of clustering algorithms generally have very fast runtimes and

provide good solutions. However, the depth-optimal methods generally provide better performance

than seed-based algorithms. Since depth-optimal methods are allowed to duplicate timing-critical

nodes, the critical path delay of circuits can generally be shortened. Although these methods give

good performance gains, an area increase is inevitable and can sometimes be quite substantial.

Simultaneous clustering and placement methods also show promise by allowing the contents of

clusters to change during placement. However, since each change in cluster content must be

preceded by a DRC check, the runtime of such algorithms is greater than clustering algorithms

alone. Therefore, the focus of the research here is to improve upon the most widely used

seed-based clustering algorithms, and attempt to achieve equivalent, or better, results found in the

existing literature without the use of node duplication orBLE-level moves in placement. Although

BLE-level placement algorithms will likely remain a necessityin commercial FPGA placement,

it is the premise of this work toreducethe reliance on this step by producing betterCLBs in the

first place. The idea is to create a better set of clusters, anda better final placement, without

incurring area or runtime penalties. To this end, several known algorithms have been implemented

and modified to see whether the results can be improved in waysother than node duplication and
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BLE-level placement algorithms.

Two clustering algorithms are implemented as part of this thesis research. First, the primary

algorithm, calledDPack, is discussed in Section 3.1. Section 3.2 describes a secondalgorithm,

calledHDPack, which is an extension toDPack by hybridizing it with an affinity-based algorithm.

The process of augmenting both algorithms with physical information is presented in Section 3.3.

3.1 Greedy Packing (DPack)

In pursuit of better clusters, a seed-based packing algorithm, similar toT-VPack, was developed.

The pseudocode for this clusterer,DPack, is shown in Figure 3.1. LikeT-VPack, a seedBLE

is selected as the most critical, unpacked block. Kong’s path counting algorithm [44] was

implemented as a tie-breaking mechanism during seed selection, with the block that has the highest

path count selected as the seed. It should be noted that logicdepth is also used as a secondary

mechanism to break ties [16]. After the seedBLE has been chosen, a cost function is computed for

all blocks that are connected to thisBLE. This cost function is given by

Costi j = λ×Ei j +(1−λ)×Criti j (3.1)

where

Ei j = ∑
e∈Eh | i, j∈e

1
|e|−1

and Criti j = ∑
e∈Eh | i, j∈e

Criticality(e).

Here, Eh represents all nets in the netlist,Ei j models connectivity, and Criticality(e) is the

estimated timing criticality of nete. From this equation, it can be seen that each net is weighted

by the number of terminals on it, similar to [47]. This increases the importance of nets that have

fewer fanouts, and increases the likelihood that they will be absorbed. In Equation 3.1,λ varies

between 0 and 1 and controls the preference between edge absorption and timing criticality. The

BLE with the highest computed cost is added to theCLB. This is continued until either theCLB is
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full, or other constraints, such as the number of pins available on theCLB, are exceeded. Then, a

new seedBLE is chosen to start a newCLB, and the process is repeated until the circuit has been

packed.

DPack also incorporates the hill-climbing and unrelated logic packing algorithms from [16].

When the pin constraints of aCLB have been reached, but theCLB is not full, the clusterer enters

a hill-climbing phase;BLEs are continuously added to theCLB even if the number of pins on

the resultingCLB exceed what is feasible. This is done in the hopes that, by adding moreBLEs

to the CLB, the number of pins can be reduced as more edges are absorbed.If, after reaching

the maximum number ofBLEs per CLB, the pin constraints are still violated, the last feasible

arrangement is restored. If aCLB is not full, then additionalBLEs that have no direct connection

(i.e., unrelated logic) with theBLEs in theCLB may be added provided that theCLB constraints are

not violated.

3.2 Hybridized Packing (HDPack)

The second clustering algorithm is built onDPack. For this approach, an affinity-based algorithm

was incorporated into the clustering flow. This affinity-based algorithm, called Hybrid First

Choice clustering (HFCC), has been successfully used in ASIC clustering. SinceHFCC has been

applied successfully to large-scale placement, it seems worthwhile to explore the usefulness of this

algorithm in the context of FPGA placement. First, Section 3.2.1 describes theHFCC algorithm,

and Section 3.2.2 provides the details of the hybridizationof HFCC andDPack.

3.2.1 Affinity-Based Packing (HFCC)

In HFCC, objects are initially placed onto a “free” list which contains the set of objects which have

not been paired. Theaffinity for pairing any two objects is calculated using Equation 3.1[41].

Then, starting with the highest affinity value, pairings aremade between the specified blocks,

which may be unclusteredBLEs or clusters, as long as noCLB constraints are violated. The
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Procedure: DPACK

Inputs: A netlist to be packed,N
Returns: A packed netlist,N′

Perform timing analysis on the circuit;1

Compute block criticalities via Kong path counting;2

Sort block criticality from highest to lowest;3

seedBLE←most critical unclustered node;4

while seedBLE > 0 do5

clus← new Cluster;6

clus.add(seedBLE);7

while clus.getNumBLEs()< maxNumBLEsPerCLB do8

for eachBLE that shares an edge withclus do9

Calculate the cost according the equation;10

if BLE can be added (passes DRC)then11

costVector.add(BLE, cost);12

fi13

od14

BLEtoAdd← getHighestCostBLE(costVector);15

if BLEtoAdd is not validthen16

BLEtoAdd← get best unrelated BLE to add;17

fi18

if BLEtoAdd is valid then19

clus.add(BLEtoAdd);20

else21

break ;22

fi23

od24

Add clus into N′;25

seedBLE←most critical unclustered node;26

od27

return N′;28

Figure 3.1: Pseudocode forDPack.
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algorithm repeatedly removes the object with the highest affinity from the free list, and pairs it

with the object that (originally) yielded this high affinity, even if that object had already been

paired. Once an object has been paired, it is said to have formed a “cluster”. Pairings are made

continuously, until no more pairings can be made without exceedingCLB constraints. The basic

pseudocode for the affinity clustering algorithm is found inFigure 3.2.

HFCC has the advantage of makingCLBs simultaneously, without the worry of packing clusters

to the fullest. However, the algorithm can terminate with a large number ofCLBs. This is due to the

fact that ASIC clusters do not have constraints such as in FPGAs. ASIC clusters are not required to

pack for a minimum number of clusters, and hence there is no need to pack unrelated logic. This

is not a deficiency in ASIC clustering algorithms; rather, this is only seen as a deficiency when

these algorithms are applied to FPGAs. However, this makes it difficult to compare results fairly

to other clusterers that pack for minimum area. Also, this artificial bloat in the number of clusters

wastes FPGA area, and affects the performance of the circuitdesign. This large set of clusters can

be difficult to pack together in later stages of the algorithmdue to pin constraints and a lack of

a hill-climbing phase. Consequently,HFCC packings typically contain several percentmoreCLBs

thanDPack or T-VPack; for highly-utilized devices, this can be a significant drawback.

In practice, this algorithm is followed by several post-processing steps to reduce the number

of clusters. These steps include the merging of singleBLEs into CLBs when possible, and the

merging of half-filled blocks. However, these post-processing routines are inherently greedy, and

the only optimization goal during this phase is to minimize the number of clusters. This is similar

to depth-optimal methods (without duplication) in which the bin-packing applied after the initial

clustering cannot effectively group clusters together to reduce theCLB count. This may have a

detrimental effect on the quality of clusters, both in termsof wire length and critical path delay.

3.2.2 Formulation ofHDPack

BothDPack andHFCC have numerous associated advantages.HFCC is noted to be very effective at

making good pairwise packings and in minimizing the number of external nets in the clustered
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Procedure:HFCC
Inputs: A netlist to be packed,N, StoppingCost
Returns: A packed netlist,N′

// Do affinity clustering ...1

for eachedgee∈ N do2

for eachcell i, j ∈ edo3

Costi j ← compute affinity cost for pairingi, j;4

od5

od6

Sort all affinity Costi j from largest cost to lowest;7

StoppingCost← predetermined Costi j value at which to stop;8

for eachCosti j do9

Attempt to pack celli and j together;10

if DRC was not successfulthen11

continue ;12

fi13

if Costi j < StoppingCost then14

break ;15

fi16

od17

18

return N′;19

Figure 3.2: Pseudocode forHFCC.
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netlist. However, it often creates a large number ofCLBs, and the employed post-processing

routines have a negative impact on the quality of clusters made. In contrast,DPack is known

to achieve good critical delay reduction while being able topack for a minimum number ofCLBs.

Thus, it is proposed to combine the two approaches in order totake advantage of the benefits of

bothDPack andHFCC. It is hoped that this hybridized flow,HDPack, can yield the same high net

absorption offered byHFCC, while still preserving the critical delay reduction fromDPack. The

pseudocode forHDPack is shown in Figure 3.3.

In this combined approach,HFCC is used as apre-packingstep beforeDPack is called to perform

clustering. First,HFCC is used to make initial pairings; when the affinity values of the pairings in the

HFCC packer fall below a certain threshold,HFCC packing is stopped. At this point, a large number

of CLBs is generally required. However, unlikeHFCC, none of the original post-processing routines

are used. Instead, this list of “intermediate” clusters is fed toDPack to complete the clustering

process. In this stage,DPack looks at this set of clusters, and computes costs using Equation 3.1.

Then, it starts to fillCLBs, starting with theCLB that has the highest number of containedBLEs,

highest number of used pins, and highest criticality. TheBLE with the highest computed cost is

then added to theCLB until the CLB becomes full. However, unlikeDPack, it is possible that the

BLE has already been packed into anotherCLB by HFCC. In this case, theBLE will be removed from

its current cluster and added to thisCLB only if its original CLB wasnot full.

The effectiveness ofHDPack has a strong dependency on the handoff point betweenHFCC and

DPack. If HFCC performs too few affinity-based matches, the true benefit of the hybridization may

not be visible. On the other hand, ifHFCC almost finishes off all the possible pairings,DPack

may not have enough room to achieve a minimum set of clusters without significantly messing up

the decisionsHFCC made. Therefore, this handoff point, or threshold, must be clearly analyzed,

parameterized, and the possible values swept to determine the best configuration. This point is

calculated according to Equation 3.2, whereA f fmax andA f fmin are the maximum and minimum

affinities found, respectively. The hybrid cutoff value,β, is a parameter that is then swept from 0

to 1 to see which value provides the best wire length and critical delay improvement. If the affinity
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values fall below the calculated threshold,HFCC terminates, lettingDPack finish packing the rest

of the blocks. In practice, it was found that this hybrid flow produces very good improvements in

wire length and critical path delays over traditional methods.

A f fthres= (A f fmax−A f fmin)×β+A f fmin (3.2)

3.3 Incorporating Physical Information

The concept of “physical clustering” has been employed successfully in ASIC placement for some

time [41]. In these approaches, an initial placement for cells in the unclustered netlist is determined

via a quick global placement operation. During this global placement, cells are allowed to overlap,

since circuit legality is not a concern. The clustering method leverages the inter-cell distances

from this approximate placement to make more informed “tie-breaking” decisions, and to make

better clustering decisions when packing unrelated logic.The core of this research is to determine

whether the same approach can be used in FPGAs with positive outcomes by incorporating

physical information into the clustering algorithms described previously.

Before physical information was incorporated intoDPack andHDPack, a simplistic, top-down,

min-cut partitioning-based global placer was first developed. This placer useshMetis [40, 48] to

recursively bi-partition and place the primitive netlist.A sample figure illustrating how min-cut

partitioning is typically performed is shown in Figure 3.4.First, all the nodes are placed onto the

chip, with positions set in the centre as shown in Figure 3.4a. Then, these nodes are divided into

two groups, or partitions, as shown in Figure 3.4b. This division between the nodes is called a

cut. The objective of this cut selection is to minimize the number of nets that connect between the

two sections. Thus, the algorithm encourages highly-connected nodes to remain within a common

partition. After the nodes have been divided, each resulting region is then partitioned further,

independently of the other partition. The nodes are then further distributed as shown in Figure 3.4c.
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Procedure: HDPACK

Inputs: A netlist to be packed,N
Returns: A packed netlist,N′

Call HFCC to perform affinity-based clustering(N, StoppingCost);1

// Finish off using greedy ...2

Put each unclustered BLE into its own cluster;3

Collect statistics (num pins, etc.) for each cluster;4

Sort the list of clusters first (num BLEs contained, num pins, criticality);5

seedClus← cluster with highest # BLEs, highest # pins, highest criticality;6

while seedClus is validdo7

for eachBLE B that shares an edge withclus (not in full cluster)do8

Calculate the cost of puttingB in seedClus;9

if B can be added toseedClus without violating DRCthen10

costVector.add(B, cost);11

fi12

od13

BLEtoAdd← getHighestCostBLE(costVector);14

if BLEtoAdd is not validthen15

BLEtoAdd← get best unrelated BLE to add;16

fi17

if BLEtoAdd is in another cluster alreadythen18

RemoveBLEtoAdd from its original cluster;19

fi20

if BLEtoAdd is valid then21

seedClus.add(BLEtoAdd);22

else23

break ;24

fi25

if seedClus.getNumBLEs()= numBLEsPerCLB then26

Mark seedClus as full, and therefore cannot be modified anymore;27

fi28

seedClus←most fully used, yet still incomplete cluster;29

od30

return N′;31

Figure 3.3: Pseudocode forHDPack.
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a) Before Partitioning b) Cut 1 (vertical) c) Cut 2 (horizontal)

Figure 3.4: Min-Cut Partitioning Algorithm

This is performed recursively until some stopping criterion has been reached. During placement,

this may occur when all nodes are suitably spread throughoutthe chip area, and physical locations

can be assigned.

It should be noted that the technique used in this research does not employ placement

feedback, or branch-and-bound partitioning, as in [49]. These methods are used to fine-tune

the accuracy of a partitioner, and are not used since only a basic partitioner is required for our

purposes. Placement feedback [50] is a method to make accurate terminal propagation during

partitioning by using the concept of feedback from control system applications. Branch-and-bound

partitioning [51] essentially enumerates partitioning solutions, and uses bounds to discourage

unnecessary exploration.

Since accurate information is not necessary, the partitioning algorithm does not need to run

to the point where every block has a unique location. Instead, this min-cut partitioning placer is

augmented with a stopping criterion that depends on the number of nodes in the current partition.

hMetis will then be recursively called until one of two conditions is reached. Once the number of

nodes in a partition is either (a) less than a predetermined amountor (b) the depth of the partitioning

tree has exceeded a threshold, the partitioning algorithm stops. TheBLEs within the partition are

then assigned the samex andy grid locations. It should be noted that this is perfectly acceptable

since it is not the intention of this fast partitioning to generate legal placements, but rather, to

33



Clustering Algorithms

provide a rough idea of whichBLEs may end up close together. Then, a clustering algorithm such

asDPack or HDPack is executed.

To account for physical information, the cost function in Equation 3.1 is augmented with an

additional cost term; the new cost function is given by Equation 3.3

Costi j = λ×Ei j + γ×Criti j − (1−λ− γ)×Disti j (3.3)

where

Disti j =
|xi−x j |

GridSizex
+
|yi−y j |

GridSizey

whereEi j and Criti j are the same as in Equation 3.1. In this formulation,λ and γ control the

preference between edge absorption and timing, respectively. The Disti j term is a calculation of

the Manhattan distance between the currentCLB and the potentialBLE, normalized by the grid

size. As a consequence of this formulation, this costpenalizesobjects that are far apart. Although

several other formulations of the cost function were also considered and tested, this formulation

was found to yield the best performance.

Another modification toDPack andHDPack was made in the way unrelated logic clustering is

performed. In the original algorithm, anyBLE that could fully utilize the remaining available

inputs of aCLB was added. In practice, there can be many blocks with the samenumber of

inputs. To break ties, we use the physical distance between the potentialBLEs and the current

CLB. Consequently, theBLE that is closest to the currentCLB is added to theCLB.
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Cluster Improvement Algorithms

Since clustering is an important algorithm in the overall FPGA CAD flow, additional time spent

on improving the quality of the resultingCLBs should be reflected in the final overall quality

of placements. In addition to the clustering algorithms proposed in Chapter 3, two cluster

improvement algorithms were implemented and investigated. These improvement algorithms

are complementary to any of the aforementioned clustering algorithms. That is, the algorithms

introduced in this chapter are not intended to produce an initial set ofCLBs, but rather, tofurther

improveon an existing set ofCLBs. When used with a placement method such asSCPlace, these

algorithms are still valid. If these cluster improvement techniques can be performed quickly, a

better initial packing may be made. This better initial set of clusters would likely translate into

both a better initial placement and a potential reduction inruntime due to the need to perform

fewer placement perturbations to obtain a high quality finalresult.

Given an initial clustering ofBLEs intoCLBs, two heuristics are implemented to further improve

upon the clusters. Both of the described heuristics work as follows. A number of improvement

attempts are performed. In each attempt, a pair ofCLBs is selected. This selection can be random

or require that the selected pair ofCLBs share some common connections. This requirement that

CLBs share common connections makes sense; it is likely that to improve the absorption of edges

— either for routability or for timing — a selected pair ofCLBs must have some common edges
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which can potentially be absorbed.

This chapter starts with the general outline of the improvement algorithms in Section 4.1. Then,

in Section 4.2, a greedy improvement scheme is described that performs swaps and moves to

improve the quality of clusters. Section 4.3 shows a branch-and-bound scheme that takes a different

approach to improve clusters.

4.1 Overall Flow

Both cluster improvement algorithms take placeafter an initial set ofCLBs has been created and

works as follows; for a given set ofCLBs, the algorithm selects pairs ofCLBs — either random

pairs of CLBs or pairs ofCLBs that share common edges — and attempt to rearrange these two

BLEs through either of the improvement heuristics described below. This rearrangement is then

evaluated to see if an “improved” pair ofCLBs can be obtained. The pseudocode for this overall

flow is presented in Figure 4.1.

The two proposed heuristics differ in how they selectBLEs to move. In Swaps and Moves,

randomBLEs are selected from eachCLB and are either swapped (when twoBLEs are selected to

be switched) or moved (when oneBLE is selected to move to an empty spot in the otherCLB). The

two CLBs are then evaluated to see if the quality, in terms of timing or wire length, has improved.

The second heuristic is based on branch-and-bound, and enumerates all possible packings ofBLEs

into the pair of selectedCLBs to find an improved packing ofBLEs intoCLBs.

4.2 Swaps and Moves

The first proposed heuristic involves the simple greedy swapping of BLEs betweenCLBs. This

heuristic is similar to that originally proposed for ASIC clustering [47] in which the objective

was to absorb as many edges as possible into clusters. Pairs of connected clusters were randomly

selected and a cell (pair of cells) was moved (swapped) between the two chosen clusters. In
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Procedure: IMPROVECLUSTERPAIRS

Inputs: A packed netlist,N
Returns: An improved packed netlist,N′

pass← 1;1

while pass < max pass do2

Select two connectedCLBs i and j;3

ImproveCLBs(i, j);4

od5

return N′;6

Figure 4.1: Outer Loop of Improvement Heuristics.

performing the swap, edges were weighted according to Equation 4.1

wi =
1

pi−1
(4.1)

wherewi andpi represent the weight and number of pins on edgei, respectively. This weighting

scheme tends to give priority to low fan-out edges which are easier to absorb completely into a

cluster. Upon performing either a move or swap of cells between clusters, the total absorption of

edges into the pair of clusters is computed. If the absorption of edges is improved, then the move

(swap) is retained, otherwise it is discarded. In [47], the moves and swaps are performed using

annealing such that it is likely some worsening swaps are chosen during the improvement heuristic.

However, since only improving moves are allowed here, this implementation is greedy.

Several additions to the algorithm in [47] were necessary toadapt it for the FPGA. The above

algorithm is purely driven by edge absorption. This usuallyhas the effect of reducing wire length in

the final routed circuit. However, for FPGAs, the critical path delay is also an important parameter

to optimize for. To account for timing, a “unit-delay” timing analysis is performed and a slack for

each connectioni in the circuit is computed. The slack is used to compute a criticality for each

connection given by Equation 4.2

Criticality(i) = 1−
slack(i)

MaxSlack
(4.2)
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whereMaxSlackis equal to the largest slack found in all the connections in the circuit. This

criticality is then squared so that critical connections appear more critical, while relatively non-

critical connections are ignored. The cost of aCLB is calculated by summing up the number of

edges absorbed (as in [47])and by summing up the absorption of critical circuit connections. If

both edge absorption and criticality absorption are improved after either a move or swap, then the

new arrangement ofBLEs toCLBs is accepted. Otherwise, the original assignment ofBLEs toCLBs

is restored.

4.3 Branch and Bound

Although random greedy moves and swaps do improve clusters,this scheme may be somewhat

limited in its ability to improveCLBs. For instance, it might be the situation that many attempts

are made that do not meet the architectural constraints of the CLB. Furthermore, it might be

necessary thatmore than twoBLEs should changeCLBs in order to obtain an improvement. To

overcome the potential limitations of simple moves and swaps, anenumerativeheuristic, which

is based on branch-and-bound, is proposed to improve pairs of CLBs. Since the number ofBLEs

perCLB is limited to a fairly small number in modern architectures,branch-and-bound is practical.

Furthermore, because of the enumerated nature of branch-and-bound, if a better packing ofBLEs

into CLBs exists, it will be found. Complex packing constraints such as limited inputs, outputs and

control signal constraints are handled seamlessly by branch-and-bound.

This technique essentially performs a constraint-aware bin packing between twoCLBs. The

algorithm initially begins with no assignment ofBLEs to eitherCLB. It then attempts to assign

eachBLE to the firstCLB and then to the secondCLB in a subsequent pass. When assigning aBLE

to a particularCLB, the architectural constraints need to be obeyed. It shouldbe noted that some

computations must be performed carefully. For instance, toensure that the input limits on aCLB

are not violated, input counts cannot be simply be “incremented“ when aBLE is assigned to aCLB.

This assignment needs to bedeferreduntil the location of the sourceBLE of an edge is known. If

the sourceBLE of an edge is in the sameCLB as thisBLE, the edge is absorbed, and thus will not
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add to the input count of theCLB.

The general outline of the algorithm is very similar to the end-case partitioner introduced

in [51], and is provided in Figure 4.2. The method begins by assigning everyBLE in the 2CLBs to

either one or the other, and checks for feasibility. If it is afeasible solution, then its cost is found

and the method checks to see if the solution can be bound. Appropriate information is kept during

the enumeration to improve both the absorption of edges as well as the absorption of connections

deemed to be timing critical; various stacks are kept in order to be able to track the current edge

absorption and criticality absorption.
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Procedure: BRANCHANDBOUND

Inputs: Two CLBsclusi andclusj

Returns: Two potentially better CLBsclus′i andclus′j

Compute the current cost of clustersi and j1

bestSoln = empty;2

assignmentStack.add(clusi .nodes() andclusj .nodes());3

for eachk of 0 and 1do4

currentNode← last node inassignmentStack;5

if k = 0 then6

assigncurrentNode to clus′i7

else8

assigncurrentNode to clus′j9

fi10

if arrangement is feasiblethen11

check if it is boundable12

if boundablethen13

popcurrentNode from assignmentStack14

if assignmentStack.empty()and k = 0 then15

break16

fi17

else if all nodes have been assignedthen18

a complete solution that is the best one found so far19

bestSoln← current assignment20

fi21

else22

the arrangement is infeasible, and is bound23

fi24

od25

return clb′i andclb′j ;26

Figure 4.2: Pseudocode for Branch and Bound.
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Chapter 5

Numerical Results

To measure the effectiveness of the algorithms implementedas per Chapter 3 and 4, several

experiments were conducted. This chapter documents the many investigations carried out using

the implemented clusterers, and is organized as follows. InSection 5.1, the method through which

the algorithms are evaluated is described. This section also defines several key metrics that are

used during comparison. Section 5.2 comparesDPack andHDPack both with and without the use

of physical information. In Section 5.3, the impact of the accuracy of physical information has on

the quality of the routed designs is investigated. Then,DPack andHDPack are compared with other

existing tools in Section 5.4. In Section 5.5, several concepts from other tools were integrated into

these algorithms to see if any additional improvement can beachieved. Section 5.6 presents the

results from the use of cluster improvement heuristics fromChapter 4.

5.1 Experimental Setup

To make a fair comparison between the implemented tools and other existing clustering algorithms,

the twenty largest designs from theMCNC benchmark set were used [52]. The circuits in this set

vary in size and circuit structure. The benchmark set has been used widely in academic research

for FPGAs, and facilitates direct comparisons to be made to other known clustering tools.
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5.1.1 General Experimental Flow

Before any comparisons can be made, a baseline must first be established. In the comparisons

that follow, the baseline flow usesT-VPack, followed byVPR for placement and routing. Then,

to compare the clustering algorithms outlined in Chapter 3,DPack andHDPack were employed to

perform packing. The resultant netlists are then placed androuted byVPR. The three constructed

flows can be summarized as follows: (1) the baseline flow ofT-VPack+ VPR, (2)DPack + VPR, and

(3) HDPack + VPR.

A good clustering algorithm should be able to perform well under a variety of situations and

constraints. Therefore, the implemented clustering algorithms were tested on a set of FPGA

architectures. The range of architectural sizes used corresponds toN = {2,4,8,12} BLEs perCLB.

By using both large and smallCLB sizes, it becomes possible to determine whether a particular

clustering algorithm can perform well in all cases. For eacharchitecture, the number ofCLB inputs

is calculated asI = 2N+2. This was shown to yield good area efficiency by achieving anaverage

of 98% logic utilization [26]. The grid size is set to the smallest square grid that can accommodate

a particular design.

The results obtained from placement tools often vary from one run to another. In particular, the

placement generated fromVPR can change drastically in quality depending on the random number,

or seed, used in the particular compilation. Sometimes, a 20% variance in the critical path delay

can be observed. Therefore, to reduce this wide variance in results, each design is run 5 times

using the same architecture and tool configurations with randomly generated values as the seeds

used for placement and routing. The results obtained from these 5 runs are then averaged before

they are compared to other flows.

One of the advantages ofVPR is its flexibility, achieved by a long list of variable parameter

settings. Of note,VPR’s “timing tradeoff” was set to 0.5 for all tests. This indicates that while

placing the design, the impact of changes on both wire lengthand timing are both considered as

equally important. All wire length and critical path delaysreported are obtained after routing.

Segment 1 routing architecture was used for all designs; this indicates that in the routing channel,
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all wires have lengths of 1 and can only form connections between neighboringCLBs.

In the rest of the chapter, the quality of placements are quantified and compared through the

measure of several metrics. Thewire lengthof a design refers to the total number of wire segments

that the final routed design requires. Generally, the lower the wire length, the better, since less

resources are needed.External netsrefers to the number of nets that exist in the clustered netlist.

Fewer external nets is preferred, since less inter-CLB wires are needed for the design. The area

efficiency of a clustering algorithm is often measured by thenumber ofCLBs in the clustered

netlist. In this case, the fewer the number ofCLBs, the better the algorithm. However, a reduction

in one metric can sometimes mean an increase in another. Therefore, relevant metrics must be

compared side-by-side to obtain the entire picture of whether or not an algorithm is beneficial.

5.1.2 Low-Stress Routing Setup

In FPGA research, there are generally 2 levels of routing test setups: low-stress, and high-stress.

The purpose of low-stress routing experiments is to mimic a fixed architecture, and to evaluate the

performance of benchmark designs in terms of wire length andtiming.

To form a fair comparison, the minimum channel width for eachdesign is found for a given

grid size. Since the minimum channel width found for a particular design can vary depending

on the random seed used, the search for the minimum channel width is performed 5 times and

then averaged. The design is then routed again, with a channel width that is 20% greater than the

minimum channel width found. Since the number of wires in therouting channel is much greater,

the router needs to do less work to route the design. The router is then free to choose different

wires and channels to optimize for wire length and critical delay. Thus, a fair comparison can be

made by comparing the performance of designs routed at the same channel width and same grid

size.
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5.1.3 High-Stress Routing Setup

High-stress routing tests typically are used for architecture evaluation and they are particularly

important during the process of designing an FPGA. During these tests, in addition to optimizing

for timing and wire length, the tool also aims to optimize area. To minimize area, high-stress

routing tests route for the smallest channel width possible. Since the routing resources on an

FPGA take up a substantial portion of the chip, high-stress routing conditions involve trying to

reduce the number of wires required per routing channel. Therefore, minimum channel widths can

often be used as a metric of comparison between clustering tools.

5.2 Results for Implemented Algorithms

This section presents data comparisons betweenDPack andHDPack and the baseline ofT-VPack

in both low-stress and high-stress routing conditions.

5.2.1 Low-Stress Routing

The first set of experiments comparesDPack and HDPack to T-VPack in low-stress routing

conditions [16]. In the first experiment, physical information is not used in the cost function

formulation. Since only edge absorption and timing information are employed, there is only one

trade-off parameter in the cost functions of the packing tools. ForDPack, a λ of 0.8 was found

to yield the best results in terms of wire length and criticalpath delay. ForHDPack, the best

results were obtained using aλ of 0.9. The number of external nets after packing, and the final

routed wire lengths and critical delays are shown in Table 5.1. The presented data is calculated

by first normalizing the collected statistic against the baseline flow (T-VPack), and then averaged

geometrically across all designs for the given architecture.

As shown in Table 5.1, both algorithms result in significantly better net absorption and wire

length reduction than the baseline flow. A consistent reduction can be seen in the final wire lengths

with a greater variability in critical delay reduction. ForDPack, the wire length reduction ranges
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from 6.9% to 10.8%. However, the critical delay improvement does not seem tobe very substantial,

ranging from 0% to 3.7% reduction. It also appears that implementation of the Kong path counting

algorithm during clustering did not improve critical delaysignificantly. ForHDPack, the wire

length reduction varies from 12.6% to 17.5%, with an average of 15% across all architectures.

There is also no significant reduction in critical delay.

A clear difference betweenDPack and HDPack can be seen in terms of the wire length

improvement. DPack achieves an average of 9% improvement in wire length, whereas HDPack

is capable of 15% improvement. This can be directly attributed to theHFCC algorithm present in

HDPack. Since theHFCC method employed inHDPack pairsBLEs that share the highest affinities,

it is able to make the best decisions early on, and is “unconcerned” with packingCLBs fully. In

contrast,DPack is limited in the sense that it must complete oneCLB before moving on to another.

It is possible that in this process, someBLEs that are packed may have been better off packed with

other, still unpacked,BLEs.

Another important observation that can be made from Table 5.1 is the trend in wire length

reduction. There is no visible trend inDPack. This is expected, sinceDPack is very similar to

T-VPack. However,HDPack show an increase in wire length reduction as the architecture size

increases. This illustrates the key benefit of the affinity-basedHFCC algorithm. As the architecture

size increases,DPack may be forced to packBLEs that have a much lower gain with the current

cluster while packing for minimum area. Therefore, the gap in wire length reduction between the

HFCC and the other flows is expected to increase as the architecture size is increased.

Table 5.1: Packing without physical information.

DPack HDPack
N # CLB Ext Nets WL Crit # CLB Ext Nets WL Crit
2 1.003 0.966 0.902 0.963 1.020 0.948 0.873 0.937
4 0.997 0.928 0.892 0.985 1.000 0.858 0.874 1.007
8 0.998 0.911 0.900 0.999 0.998 0.832 0.847 0.984
12 1.002 0.937 0.931 0.986 0.998 0.844 0.825 1.013

Geomean 1.00 0.94 0.91 0.98 1.00 0.87 0.85 0.98
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In the second experiment, physical information was used during packing. As described in

Chapter 3, an additional weighting factor in the cost function was added to control the importance

of physical information during packing. Since there are nowtwo independent weighting factors

(c.f., Section 3.3), a two-dimensional sweep was performedto find the best configuration. For

DPack, the best results were obtained usingλ = 0.2 andγ = 0.4, leaving the physical information

weight to be 0.4. For HDPack, the best configuration was found withλ = 0.2, γ = 0.2, and a

physical weight of 0.6.

Results using physical information are shown in Table 5.2. With physical information,DPack

was able to achieve significant reductions in wire length andcritical path delay, with an average

improvement of 16% and 8%, respectively. This represents animprovement of up to 10% in

wire length and up to 8% in critical path delay compared toDPack without physical information.

Significant improvements forHDPack are also evident, with an average improvement of 21% and

6% for wire length and critical delay, respectively. Contrasted with Table 5.1, improvements up to

8% in wire length and up to 5% in critical delay can be seen whencompared toHDPack without

physical information.

The average run-times were computed for all five runs ofT-VPack-based clustering, placement,

and routing for all twenty design runs for each architecture, and similarly forDPack andHDPack.

The run-time ratios of theDPack-based andHDPack-based flows were computed and compared to

T-VPack. These results, both with and without physical information, are summarized in Table 5.3.

Generally, the use of physical information incurred negligible run-time penalties in the context of

Table 5.2: Packing with physical information.

DPack HDPack
N # CLB Ext Nets WL Crit # CLB Ext Nets WL Crit
2 1.012 0.962 0.862 0.900 1.034 0.966 0.846 0.915
4 1.006 0.937 0.834 0.920 1.017 0.900 0.804 0.960
8 1.007 0.908 0.823 0.922 1.012 0.873 0.768 0.939
12 1.012 0.942 0.834 0.937 1.022 0.864 0.763 0.963

Geomean 1.01 0.94 0.84 0.92 1.02 0.90 0.79 0.94
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the entire place-and-route run-time for most architectures. However, for the case ofN = 12, the

MCNC benchmarks that were considered were clustered into such small netlists that placement and

routing time approached that of the packing time. Consequently, these results tend to show more

variability, which may not be indicative of performance on much larger, real-world designs.

5.2.2 High-Stress Routing

A high-stress routing test was conducted to determine the minimum channel widths required for

each design. The search for minimum channel width was performed 5 times for each design for

all architectures under consideration. The average channel width was computed for each case and

then normalized to the minimum channel width found by the baseline flow. Physical information

was enabled during these tests. The channel width improvement relative toT-VPack is shown

in Table 5.4. BothDPack andHDPack were extremely successful in reducing minimum channel

widths, with 19% and 24% improvement on averaged, when compared againstT-VPack.

5.3 How Much Physical Information is Enough?

Even though partitioning algorithms are fast, they still incur some penalty in terms of run-time.

However, it is possible that after some point in the initial partitioning, further partitioning would not

give much wire length and critical delay reductions. If thispoint can be quantified and found, there

would be no need to incur the additional run-time penalty. Since the physical information obtained

Table 5.3: Run-time comparison vs. baseline.

DPack HDPack
N No Physical Physical No Physical Physical
2 0.959 0.965 0.991 0.985
4 0.974 0.985 0.990 0.985
8 1.070 1.074 1.027 1.024
12 1.288 1.255 1.150 1.130

Geomean 1.065 1.064 1.038 1.029
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Table 5.4: Improvement in minimum channel widths.

N DPack HDPack
2 0.805 0.764
4 0.808 0.776
8 0.760 0.755
12 0.854 0.756

Geomean 0.81 0.76

in the clustering algorithms in this work is obtained through performing recursive partitioning, it is

easy to control how far to partition the design. Therefore, atest was set up to determine the optimal

tree depth of recursive partitioning that leads to the best wire length and delay trade-offs.

The initial partitioning algorithm was set as follows; the algorithm terminates when either (a)

all end partitions were of a specified partition depthor (b) when partitions contained less than

a set number of cells in the primitive netlist. The partitiondepth was varied from 0 (where no

partitioning is performed at all) to 14, for each of the 20 designs in the benchmark suite. This test

was conducted across four architecture sizes ofN = 2,4,8,12. Wire length improvement results

are shown in Figure 5.1 and critical delay reductions are shown in Figure 5.2.

From the two graphs, a dramatic initial reduction in both circuit metrics as partition depth is

increased can be seen. Wire length improvement is greatest at a partition depth of 5, beyond which

the average wire length reduction increases only slightly before flattening out. The trend for critical

delay reduction is less apparent. The best critical delay improvement occurs with partition depth

of 2 or 5. Even though the result for the partition depth of 2 isslightly greater, the wire length

reduction at this point is not ideal. For almost all architectures, a partition depth of 5 yields the

best overall wire length and critical delay reduction. Additional partitioning is unnecessary, and

may even be detrimental to the quality of results.
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Figure 5.1: Wire Length Reduction vs. Partition Depth.

5.4 Comparison to Other Methods

To see how the implemented algorithms compare to other existing tools, cluster statistics were

compared againstT-VPack, RPack, and iRAC. It should be noted thatRPack and iRAC were

primarily geared toward addressing routability; neither of these tools dealt with timing (as the

implemented algorithms do), which skews results against the algorithms outlined in this thesis.

5.4.1 Low-Stress Routing Tests

To compare the performance of all algorithms under low-stress routing conditions, the number

of CLBs, number of nets in theCLB-level netlist, and the average number of pins used perCLB

for the N = 8 case were obtained for each tool, and are shown in Table 5.5.It should be noted

that comparisons with other architecture sizes are omittedsince results are only available for

comparison withiRAC andRPack at N = 8. All results are normalized with respect toT-VPack.

Since a lower number of nets and lower pin usage are properties usually associated with less

wire length used and better routability of the clustered design, iRAC was found to give the best
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Figure 5.2: Critical Delay Reduction vs. Partition Depth.

packing results, with the lowest number of nets and average used-pins-per-cluster. However, this

was achieved at the cost of significantly moreCLBs. The next best clustering results were found to

be fromHDPack.

It is important to make the comparison since from [53], it canbe seen that depopulating clusters

help routing at the expense of increase in area. Therefore, it is critical to make sure that the

improvement seen from the use of physical information is nota manifestation of depopulation of

clusters. From the results presented in Table 5.5, the improvement seen from the use of physical

information isnot a manifestation of depopulatedCLBs. Table 5.5 indicates that there isvery little

increase in the number of clusters made byDPack or HDPack. AlthoughiRAC was able to achieve

24% reduction in the number of nets, it came at a cost of a 8% increase in cluster count. In contrast,

DPack achieved 9% reduction in nets without impacting the number of clusters made. Although an

increase of 2.5% was observed in the average number of pins used perCLB in DPack, which may

lead to more difficulty in routing [54], this was not found to be a significant issue during testing.

Results from Table 5.5 are also plotted in Figure 5.3 to compare the 5 clustering tools in a
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graphical manner. For each of the 5 tools compared, the average pin usage is plotted against the

external net improvement. A lower number of nets and lower pin usage are characteristics usually

associated with less wire length used and better routability of the clustered design. Therefore,

the clustering tool that is closest to the lower left corner of the graph is expected to have the best

performance. From Figure 5.3,iRAC is found to give the best clustering results, with the lowest

number of nets and average used pins per cluster. However, this is achieved with the consequence

of an increase in the number of clusters made. The next best clustering results are found with

HDPack.

5.4.2 High-Stress Routing Tests

For high-stress routing tests, the minimum channel width improvements ofDPack andHDPack are

compared to several known clustering tools. The improvement in minimum channel widths were

compared toRPack [15] as follows. For theN = 8 architecture,RPack cites a 16.5% improvement

in minimum channel width versusVPack (c.f., [15], Table 3). In [14], however, it is shown that

RPack does not provide any improvement versusT-VPack (c.f., [14], Table 2), where it is also

pointed out thatT-VPack provides better results than its non-timing-driven counterpart VPack.

Given that, forN = 8, DPack andHDPack yield improvements of 24% and 24.5%, respectively,

compared toT-VPack as seen from Table 5.4. It was concluded that these results here outperform

RPack even though minimum channel widths were not considered as anobjective in the clustering

algorithm.

Table 5.5: Comparison between known tools,N = 8, I = 18.

Packer # CLB Ext Nets Pins Used
T-VPack 1.000 1.000 1.000
R-Pack 1.009 1.071 0.954
iRAC 1.078 0.757 0.870
DPack 1.007 0.908 1.025
HDPack 1.014 0.870 0.961
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Comparison of Known Clustering Tools
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Figure 5.3: Effect of Depopulation: N=8

BothRPack andiRAC report results for architectures of sizeN = 8. The grid sizes used in the

results presented in Table 5.4 are the same as those reportedbyRPack [15]; therefore, the minimum

channel widths found forN = 8 can be compared directly to those in Table 3 of [15], where a 16.5%

improvement (overT-VPack) is reported, compared toHDPack’s 24.5% improvement. It should be

noted thatHDPack’s improvement was obtained using the timing-driven flow without specifically

attempting to optimize for wire length, congestion, or minimum channel widths.

The performance ofDPack andHDPack are also compared to other tools such asiRAC [14].

However, a comparison withiRAC [14] is harder to make than the comparison toT-VPack. Since

iRAC produces moreCLBs compared to other packing methods, the results in [14] use adifferent

grid size andVPR “ IO RAT” value, a parameter that dictates the number ofIO blocks that fit in

the width of aCLB. Although an attempt was made to reproduce theT-VPack results presented

in [14], it was unsuccessful. Furthermore, the results presented in [14] for minimum channel width
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experiments were also obtained in combination with a modified version ofVPR—callediRAP—that

includes a congestion term in the placement algorithm’s objective function. It is reasonable to

expect that the modified placement algorithmalsoserved to reduce channel widths. Nevertheless,

the results of 24% and 24.5% reduction in channel widths forDPack andHDPack, respectively,

compare favorably to the 38% reduction obtained byiRAC+iRAP algorithm. It is possible that if

this test was performed using a congestion-driven placer, the gap may be reduced even further.

5.5 Integration of RPackand iRAC

Although numerical results thus far indicate thatDPack andHDPack outperform the baseline, it

is desirable to find additional concepts that would improve upon the results. Therefore, several

concepts fromRPack andiRAC were integrated intoDPack in an effort to assess their potential

benefits (similar results were found forHDPack). The incorporation ofRPack was straightforward

since it consisted of adding a new term to the cost function. To determine the optimal balance

between the newRPack term, theRPack term was multiplied byζ, with the cost calculated as per

Equation 3.3 multiplied by 1− ζ. The wire length and critical delay improvements asζ is varied

are shown in Figure 5.4. The best value forζ is approximately 0.20. At this point, the inclusion of

RPack improved the critical delay and wire length by 1% and 2%, respectively. However, this may

not be statistically meaningful. Asζ tends to 1.0 andRPack dominates the packing objective, both

wire length and critical path improvements suffer. In addition, a high-stress test was performed

with the inclusion of theRPack term, but the minimum channel width did not benefit, as the

improvement overT-VPack decreased by 1% to 2%.

The incorporation ofiRAC algorithms into the tools was less successful, and did not improve

upon the current best results.iRAC depopulates by limiting the number of pins used perCLB,

as well as by trying to absorb low-fanout nets. A test was conducted to establish the effect that

a decrease in the number of edges and in pin utilization has onthe resulting packing statistics.

As shown in Figure 5.5, as the number of pins used perCLB is decreased, the number ofCLBs

generated increases. At the same time, the number of external nets also decreases. However, the
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Figure 5.4: Incorporation of RPack Sweep: N=8

wire length and critical delay do not exhibit a similar trendin that they remain fairly consistent

(even increasing slightly as the pin counts are reduced). This indicates that, even though a packing

algorithm can show good results from apackingpoint of view (i.e., good external net and pin

count reduction), the impact on the final wire length and critical delay may not show the same

trend. Since performance of the placed design is the ultimate objective, it may not be sufficient to

merely compare packing statistics.

5.6 Effectiveness of Improvement Algorithms

This section seeks to determine the effectiveness of the improvement heuristics proposed in

Chapter 4. To do so,T-VPack, DPack andHDPack are executed in conjunction with the proposed

improvement algorithms. Four different flows were constructed for each clusterer: (1) the baseline

flow of T-VPack+VPR, (2)T-VPack+greedy swapping+VPR, (3)T-VPack+branch-and-bound+VPR,

and (4) a combined flow in which both greedy swapping and branch-and-bound are used; i.e.,

T-VPack+greedy swapping+branch-and-bound+VPR. The same setup is then used by substituting
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Figure 5.5: Effect of Reducing Pin Count: N=8

DPack or HDPack for T-VPack. The results forT-VPack are collected from all architectures and are

tabulated in Table 5.6. For each architecture and design, the collected data was normalized with

respect to the baseline. The geometric average was then computed across all designs for the given

architecture. Results forDPack andHDPack are shown in Tables 5.7 and 5.8, respectively. These

improvement heuristics did not appear to affect the number of CLBs significantly, and therefore

this metric is left out of these tables for the sake of clarity.

From Table 5.6, both the Greedy and B&B algorithms were successful in reducing the number

of external nets and wire length forT-VPack. Using both algorithms appears to be slightly more

successful. This reduction ranged from 1.5% for the Greedy flow, 1.6% for the B&B flow, and

2.5% on average in the combined flow. It can be seen that the B&B flow is slightly more effective

at reducing the number of edges than the Greedy flow, but the inclusion of the greedy swapping

algorithm is still beneficial. In terms of wire length, the B&B flow provides greater reduction than

the greedy heuristic. It should be noted that the improvements from the two heuristics are not

cumulative.
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When both heuristics are performed, up to a 4.9% reduction in wire length can be seen.

However, this reduction seems to decrease as the cluster size is increased. It was found that

although there was no significant reduction in the number of clusters, there is a consistent reduction

across most circuits when packed for a cluster size of 2. Intuitively this makes sense, since it is

much easier to empty out a cluster of 2, than it is to be able to relocate all usedBLEs inside a much

bigger cluster. Due to this reduction in number of clusters,a significant reduction in wire length

was seen. However, although the algorithms were able to reduce the number of inter-CLB edges

and wire length (to a small extent), critical paths were not significantly affected (i.e., it was not

significantly reduced or increased) on average.

Table 5.7 shows the results obtained from using the improvement heuristics afterDPack. From

the data presented, the number of external nets shows a significant drop of 3% when both heuristics

are used. Although this is good news, the final routed wire length didnot decrease, as one might

have expected. Generally speaking, fewer nets in the circuit netlist usually translate into a reduction

in wire length. However, this is not witnessed in this case. While the number of external nets

dropped by 3%, the overall wire length actuallyincreasedby an average of 5.3%, with the critical

delay worsening by 3%. This same observation can be made in the case ofHDPack, from Table 5.8.

In the case ofHDPack, external nets decreased by an average of 3.7% when both improvement

heuristics are used. However, wire lengths also increased in this case by 2.5%. There may be a

few explanations for this phenomenon. First, as proved fromprevious sections,DPack andHDPack

perform better clustering thanT-VPack. Therefore, it can be argued that the set of initial clusters

Table 5.6: Effect of Improvement Algorithms onT-VPack.

Arch Greedy B&B Both
N Ext Net WL Crit Ext Net WL Crit Ext Net WL Crit
2 0.980 0.971 0.985 0.986 0.979 0.956 0.973 0.951 0.987
4 0.983 0.996 0.987 0.978 0.977 0.997 0.966 0.975 0.977
8 0.989 1.007 1.017 0.982 0.985 0.997 0.975 0.996 1.009
12 0.988 0.993 1.003 0.990 0.990 0.998 0.980 0.982 1.031

Geomean 0.985 0.992 0.998 0.984 0.982 0.987 0.974 0.975 1.000
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provided byDPack andHDPack are already very good, and further manipulation of the cluster set

would likely lead to a worse set of clusters. Secondly, the improvement heuristic operates only

on connectivity and criticality, whereas bothDPack andHDPack uses physical information while

clustering. Since the improvement heuristics are unaware of physical information, it may make

some decisions that is counter to the actions made during initial clustering. The data presented

here is a perfect example of why examination and comparison of cluster statistics is not enough;

to make a fair judgement, the final routed wire lengths and critical delays must be compared.

In this case, if only cluster statistics are compared, it would seem that the improvement heuristics

provide significant benefit since up to 5% reduction in the number of external nets can be witnessed.

However, the comparison of the final wire lengths lead to the conclusion that it is best not to use

the cluster improvement heuristics in conjunction withDPack andHDPack; that is, improvement

heuristics are most likely going to worsen the quality of thefinal placement.

There is a number of possible explanations why the proposed cluster improvement heuristics

did not have as significant a benefit. First, theMCNC benchmark designs are very small compared

to actual industrial designs. Therefore, it is possible that a more significant improvement may be

visible on a benchmark set of larger designs. Also, some of the comparisons differ in only a few

percentage points, and may be attributed to noise. Thus, further investigation should be performed

to see if these algorithms may be enhanced further.
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Table 5.7: Effect of Improvement Algorithms onDPack

Arch Greedy B&B Both
N Ext Net WL Crit Ext Net WL Crit Ext Net WL Crit
2 0.986 1.046 1.032 0.992 1.010 1.026 0.982 1.034 1.031
4 0.979 1.066 1.035 0.974 1.042 1.025 0.962 1.065 1.046
8 0.983 1.050 1.004 0.974 1.020 1.003 0.964 1.061 1.022
12 0.984 1.037 1.019 0.980 1.025 1.024 0.971 1.050 1.021

Geomean 0.983 1.050 1.023 0.980 1.024 1.019 0.970 1.053 1.030

Table 5.8: Effect of Improvement Algorithms onHDPack

Arch Greedy B&B Both
N Ext Net WL Crit Ext Net WL Crit Ext Net WL Crit
2 0.976 1.025 1.019 0.984 1.010 0.996 0.969 1.018 1.033
4 0.970 1.039 0.991 0.966 1.016 0.990 0.950 1.037 1.003
8 0.981 1.028 0.998 0.971 1.014 1.005 0.962 1.036 1.004
12 0.985 1.009 0.987 0.983 0.999 0.999 0.973 1.009 0.999

Geomean 0.978 1.025 0.999 0.976 1.010 0.998 0.963 1.025 1.009
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Chapter 6

Conclusions

In this thesis, the clustering phase of the FPGA CAD flow was explored in detail. First, several

clustering algorithms were implemented within a common framework to facilitate comparisons.

Then, physical information was added to these clustering algorithms to see if better clusters could

be made. To obtain physical information prior to clustering, a min-cut partitioning algorithm

was performed such that approximate physical locations could be generated forBLEs. Then, the

obtained physical information was incorporated into two types of clustering algorithms to evaluate

the advantage(s) of the additional circuit information. The focus was not to obtain architecturally

correct placements, but rather to obtain reasonable physical information with little effort.

The flow described employs top-down min-cut partitioning-based placement prior to clustering

to generate rough physical locations forBLEs. This physical information was then incorporated

into two clustering algorithms ofDPack and HDPack. DPack is a seed-based algorithm that is

similar toT-VPack. It was implemented with a few modifications made to it from previous work.

HDPackwas then created by using ASIC methods along withDPack. Both tools were then enhanced

with physical information. By using the approximate physical locations and relative positions of

BLEs, it is hoped that better clusters can be made, and a better final placement can be achieved.

From the results presented in Chapter 5,DPack yielded an average reduction of 16% in wire

length, and 8% in critical path delay compared toT-VPack. Similarly, HDPack resulted in an
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average improvement of 21% in wire length and 6% in critical delay compared toT-VPack.

Under high-stress conditions, significant improvements were seen in the minimum channel widths

required by the benchmark set, ranging from 19% to 24% reduction. NeitherDPack nor HDPack

required a significant increase in the number ofCLBs. Although an increase in the average number

of used pins perCLB was observed, it did not appear to impact routability in the tests. Therefore,

it was concluded that the use of physical information duringFPGA packing can improve the final

quality of results and reduce the need forBLE-level placement. Although a slight increase in the

average number of used pins perCLB was observed, it did not impact routability in the testing

process.

As a part of the study, several experiments were conducted inorder to determine how accurate

the generated physical information needs to be before it hasa positive impact on the quality of

routed designs. It was found that the wire length and critical delay of routed designs decrease very

quickly as the number of partitions increases, but levels off, and slightly increases as the circuits

are partitioned more finely. A good partition depth to stop atis found to be 5. By partitioning to a

depth of 5, the greatest improvements in wire length and critical delay can be achieved. Therefore,

although physical information does aid in better clusters,it does not need to be very accurate.

Hence, only approximate locations are necessary for producing betterCLBs. Furthermore, more

accurate locations may be detrimental to the quality of results.

Several comparisons were made between the implemented algorithms and existing tools such

as T-VPack, RPack, andiRAC. It was found thatDPack and HDPack outperformT-VPack and

RPack, but do not improve upon the results obtained fromiRAC. However, it should be noted

thatiRAC was able to achieve better external net absorption at the expense of a higher number of

clusters. Therefore, it is less area-efficient when compared toDPack andHDPack. Some key ideas

in RPack andiRAC were added toDPack to determine whether they can improve the current best

results. It was found that the addition of a routability term, found inRPack, did result in 1−2%

improvement in the key metrics; however, no such improvement was found wheniRAC concepts

were added.
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In addition to the proposed clustering algorithms, two cluster improvement heuristics were

explored in this thesis. The Swaps and Moves algorithm randomly swapsBLEs between twoCLBs

and accepts the rearrangement if both absorption and criticality costs improve. The Branch-and-

Bound algorithm uses enumeration with the hope that more complicated rearrangements (i.e., more

than just moves or swaps ofBLEs) can lead to a greater improvement inCLBs.

From the results presented in Chapter 5, the improvement heuristics demonstrated a reasonable

reduction (on the order of a few percent) in the number of inter-CLB edges. This reduction is

visible despite the fact that no depopulation was used and the number ofCLBs remained mostly

the same. This might be useful in highly utilized designs in which increasing theCLB count is not

possible. The decrease in inter-CLB edges results in a small decrease in wire length in the case of

T-Pack. Unfortunately, the critical paths remain largely unaffected on average. However, although

the number of external nets did indeed reduce, the final routed wire lengths and critical delay were

found to beworsefor bothDPack andHDPack. Hence, it is concluded that the heuristics employed

were able to improve upon clusters made byT-VPack, but not on the cluster set generated byDPack

andHDPack.
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Future Work

From the obtained results, substantial gains can be found interms of reduction in wire length, but

the reduction in critical delay is less significant. Future work may be to integrate concepts from

depth-optimal methods intoDPack andHDPack to see if these methods can further improve the

quality of results. It is also possible that in conjunction with a congestion placer, the results can be

further improved upon.

In each clustering algorithm presented, a clustered netlist is generated after clustering is

performed with physical information. EachCLB in the clustered netlist has anx andy location

computed from averaging the locations for allBLEs it contains. It is possible to generate a

placement based on this information, using legalization techniques [55]. This initial placement

may in turn help the placement process, and may be a better start to the placement step of the

FPGA flow than a random placement. This has the potential of leading to a better quality of final

placements, or the ability to achieve the same quality in a shorter timeframe.
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Glossary of Terms

ASIC Applicaton-Specific Integrated Circuit.

BLE Basic Logic Element.

Channel Width The number of wires in the routing channel between CLBs.

CLB Configurable Logic Block.

Critical Path The longest path in a circuit, which determines the maximum operating frequency.

FPGA Field Programmable Gate Array.

IO Input/Output.

VPR Versatile Place and Route, a placement and routing tool for research in FPGAs, and can be

obtained athttp://www.eecg.toronto.edu/vaughn/vpr/vpr.html.

Wire Length The sum of wire segments needed to route a circuit.
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