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Abstract

The measurement of thermal conductivity is a powerful probe that can be used for

identifying the nature of heat and charge carriers and structure of the gap in the

superconducting compounds. At low temperature when the effect of phonons in

transporting heat becomes smaller, one can obtain information about the quasipar-

ticle distribution and the superconducting gap structure.

In order to do a sensitive thermal conductivity measurement, we designed and

built a thermal conductivity mount. The charge conductivity was measured through

the same leads that we used for making the thermal conductivity measurements.

To test the mount, we measured the heat and charge conductivity of a silver wire

and determined the accuracy with which we could satisfy the Wiedemann–Franz

law within 5 %.

We will report the measurements of thermal and electrical conductivities of

two filled skutterudite superconducting compounds, PrRu4Sb12 and PrOs4Sb12 at

1.1–35 K temperature range. The differences and similarities between the transport

properties of these compounds in the superconducting and normal states along with

the results of investigation of the Wiedemann–Franz law will be discussed in the

following chapters.
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Chapter 1

Introduction

The word ”Skutterudite” is derived from a town in Norway where minerals with this

structure such as CoAs3 were first discovered. Compounds with filled skutterudite

structure were discovered by Jeitschko and Braun in 1977 and have the general

formula RM4X12. The primitive cell of these compounds has a cubic structure with

34 atoms in the unit cell. This structure consists of a square planar ring of four type

”X” atoms with the rings oriented along (100), (010) or (001) directions. The Type

”M” atoms form a simple cubic sublattice and the ”R” atoms are positioned in the

two remaining holes in the unit cell. This structure reduces the thermal conductivity

of skutterudite compounds and it gives rise to an increase in thermoelectric power

which is defined as Z = S2/κρ where S is the thermopower and ρ is the electrical

resistivity and κ is the thermal conductivity [1].

We worked on two Pr–based skutterudite compounds PrRu4Sb12 and PrOs4Sb12

which have an unusual low temperature properties. By measuring the charge and

thermal conductivities of these compounds one can provide a lot of information on

the structure of superconducting gap and the type of carriers of heat.

In order to measure the transport properties we designed and built a thermal

1



CHAPTER 1. INTRODUCTION 2

conductivity mount which could be used for measuring both electrical and thermal

conductivities. In order to do accurate measurements we identified and tried to

eliminate possible sources of noise that could affect the experiments. In order to

test the veracity of our thermal conductivity data, we used Wiedemann–Franz law

which defines a relation between heat and charge conductivities.

Our experiments show that the electrical resistivity of both of these compounds

decrease with reducing the temperature which is the typical behavior of the electri-

cal resistivity of metallic compounds. The features in electrical resistivity of both

of them can be explained based on electric field of Pr+3 ions on electrons of f shells.

The thermal conductivity measurements of PrRu4Sb12 shows that at very low

temperatures electrons are the main carriers of heat and impurities play the role of

the dominant scattering mechanism. The coupling in the superconducting state of

PrRu4Sb12 is most probably weak coupling mediated by phonons.

The analysis of thermal conductivity of PrOs4Sb12 however is more complex

from the point of view that some of the features observed in the heat transport

depend drastically on the purity level of samples. Although the total picture can be

explained based on a combination of electron and phonon effects through different

ways, a complete model has not yet been proposed.



Chapter 2

Review of theory

2.1 Thermal conductivity

In an isotropic solid, thermal conductivity is defined as the coefficient of propor-

tionality between the heat flow vector jq and the temperature gradient
−→∇T across

a solid [2]

jq = −κ
−→∇T, (2.1)

jq is the thermal current density which is a vector parallel to the direction of heat

flow whose magnitude gives the thermal energy per unit time crossing a unit area

perpendicular to the flow. The negative sign is because the heat flow is from the

hotter points towards the colder points.

There are at least two distinct mechanisms for transporting heat in metals,

through electrons and phonons. The thermal conductivity due to each mechanism

may be calculated separately and the sum of them will give the total conductivity

of a metallic system.

κ = κe + κg. (2.2)

3



CHAPTER 2. REVIEW OF THEORY 4

where both κe and κg will be limited by some scattering mechanisms. In the

following sections we will discuss the mathematical forms of electronic and lattice

thermal conductivities and the scattering mechanisms which affect them.

2.1.1 Electronic thermal conductivity and Wiedemann-Franz

law

The electron gas in a solid is a quantum gas and the electronic states can be indexed

by their band number n and their momentum vector k. The distribution of electrons

can be described by the f(r,k, t) function which is the same as Dirac-Fermi function

in the equilibrium state,

f 0(εn(k))
dk

4π3
=

dk/4π3

e(εn(k)−µ)/kBT + 1
. (2.3)

The distribution function can be affected by temperature gradients, external fields

and scattering mechanisms. In the presence of the weak external fields, one can

neglect interband transitions in 2.3 and let the index n be implicit. In a steady

state situation all these effects are balanced against each other. The Boltzmann

equation is usually used to describe the steady state distribution,

∂f

∂t
+

F

h̄

−→∇kf + vk.
−→∇rf = (

∂f

∂t
)collision, (2.4)

where vk = 1
h̄

−→∇kεk and F are the velocity of carriers and external forces respec-

tively. The Boltzmann equation basically expresses that any change in electronic

distribution function, ∂f
∂t

could be due to external fields, −F
h̄

−→∇kf or diffusion,

−vk.
−→∇rf or scattering of heat carriers by other particles in the system, (∂f

∂t
)collision.

The Boltzmann equation is valid provided that the duration of a collision is much

smaller than the time between two collisions, (τc << τ). The form of the collision

integral (∂f
∂t

)collision, depends on the scattering mechanism, however using relaxation
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time approximation [2], one can estimate it as

(
∂f

∂t
)collision = −fk − f 0

τk

, (2.5)

where τk is the collision time. Therefore one can assume that the effect of collisions

is the exponential evolution of the f towards f 0 with a relaxation time of the order

of the collision time τ . In the case of isotropic impurity scattering and spatially

uniform temperature gradient and electromagnetic fields, f would not depend on r

and if the Fermi surface is isotropic, τ depends only on k. The thermal current

density under those conditions can be written as

jq =

∫
dk

4π3
εkvk(fk − f 0), (2.6)

where εk is the energy of the state k. Using relaxation time approximation, equation

2.5, and in the absence of electromagnetic forces, Boltzmann equation in the steady

state regime (∂f
∂t

= 0) can be written as

−fk − f 0

τk

= vk.
−→∇rfk (2.7)

which can be rewritten as

fk − f 0 = −τkvk.
−→∇rf

0 = −τkvk.
−→∇T

∂f 0

∂T
= τk

εk

T

∂f 0

∂εk

vk.
−→∇T (2.8)

and substituting this value for f − f 0 in 2.6 one can obtain

jq =
1

T

∫
dk

4π3
ε2
k

∂f0

∂εk

τkv
2
k cos(θ)

−→∇T, (2.9)

where θ is the angle with respect to the temperature gradient axis and by replacing

the integral over k with an integration over energy

jq = v2
F τ

1

3T

∫
ε2∂f 0

∂ε
N(ε)dε

−→∇T. (2.10)

Knowing that the specific heat can be written as

cv =
d

dT

∫
εN(ε)f 0(ε)dε = − 1

T

∫
ε2N(ε)

∂f 0

∂ε
dε, (2.11)
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comparing 2.10 to 2.1 and using 2.11 one can see that

κe =
1

3
cvv

2
F τ. (2.12)

which is called the kinetic formula and relates the electronic heat transport to heat

capacity. The electrical current density can be written as [2]

j = −e

∫
dk

4π3
vk(fk − f 0), (2.13)

and knowing that the electrical current density is defined as the proportionality

coefficient between the electrical current and electrical field, j = σE and doing the

same kind of derivation one finds

σ =
ne2τ

m
. (2.14)

Assuming the same scattering time for both thermal and electrical relaxation pro-

cesses and by dividing 2.10 by 2.14 one can obtain

κe

σT
=

π2k2
B

3e2
= L0. (2.15)

which is called the Wiedemann-Franz (WF) law and the ratio L0 =
π2k2

B

3e2 is called

the Sommerfeld value of Lorenz number and equals to 2.44× 10−8WΩK2.

One should notice that we used two assumptions in our calculations in this

section, the crystal is isotropic and the scattering is elastic. As long as the crystal is

isotropic, equation 1.1 is true and WF law is valid only when scattering mechanisms

have the same effect on both charge and heat transport and τ stays the same for

both of them which is only true in the case of elastic scattering.

2.1.2 Thermal conductivity of phonons

By using the Boltzmann equation for phonons along with the relaxation time ap-

proximation and making the Debye approximation which is letting phonon disper-

sion relation be ω = ck for all three acoustic branches and assuming a cut–off
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frequency for phonon’s spectrum, one can obtain

κg =
kB

2π2vg

(
kB

h̄
)3T 3

∫ Θ/T

0

τ(x)
x4exdx

(ex − 1)2
, (2.16)

where Θ is the Debye temperature and vg is the average phonon velocity and x =

h̄ω
kBT

. The average phonon velocity is given by vl
(2s2+1)
2s3+1

, where s is the ratio of

longitudinal to transverse phonon velocity, vl

vt
[3]. Using Debye theory one can

write phonon specific heat as :

Cg(x)dx =
3kB

2π2v3
(
kB

h̄
)3T 3 x4exdx

(ex − 1)2
, (2.17)

Knowing that τ(x) = l(x)
v(x)

, the lattice thermal conductivity can be written as :

κg =
1

3
v

∫
l(x)Cg(x)dx. (2.18)

the kinetic equation again.

2.2 Scattering of electrons

The mean free path of electrons can be affected by the interaction of electrons with

static defects, phonons and other electrons. Assuming that one scattering process

is not influenced by the others which are occurring at the same time, one can

separately calculate the thermal resistivity due to each scattering mechanism and

then add them up to get the total thermal resistivity. This is called Matthiessen’s

rule. In the following section we will introduce some of the scattering mechanisms

and try to find the temperature dependence of them.

Thermal resistivity due to static defects scattering

The static defects in a metallic compound that includes impurity atoms, vacan-

cies and dislocations will introduce a thermal resistivity which is analogous to the
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Figure 2.1: Fermi surface and the vertical and horizontal processes

residual electrical resistivity. These defects give rise to a mean free path, l, which

is temperature independent. Using kinetic formula, κ = cvvl/3 and the fact that

electronic specific heat is a linear function of temperature at low temperatures, one

can obtain :

κ0 = αT. (2.19)

where α is a constant. The Wiedemann–Franz law is valid at this temperature

range.

Thermal resistivity due to phonon scattering

The scattering of electrons by phonons can happen through two processes which are

called the vertical and the horizontal processes. In a thermal conduction experiment

there is no net flux of electrons and so no net flux of charge. The heat current exists

because hot electrons travel one way and cold electrons travel the opposite way. So

one can describe it as electrons condensing above the Fermi surface and those below

the Fermi surface. If a phonon has enough energy it can reverse the direction of

electron’s velocity, so the electron can move from the right side of the Fermi surface
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Figure 2.2: Thermal resistivity due to interactions of electrons with impurities and

phonons [6]

to the left side. This scattering process is elastic and called the horizontal process

and affects both heat and charge conductivity in the same way. In the vertical

process which is inelastic, a hot electron loses all its extra energy and falls down

below the Fermi level. Such a process has little effect on charge conductivity but

affects the thermal conductivity. At low temperatures most of the interactions

are inelastic, as the temperature increases, the horizontal process becomes more

important since the population of high wave length phonons increases 2.1. At low

temperatures when an electron interacts with a phonon, energy of the order of kBT

is either emitted or absorbed by the electron. This energy is enough to transfer

the electron from inside of the Fermi surface to the outside and vice versa [5]. The

number of phonons present at any temperature is proportional to T 3 and so the

mean free path of electrons will be proportional to T−3. Using the kinetic formula

together with the assumption that electronic specific heat, Cv, is proportional to T

and the velocity is constant [6], one can find

κe−g = βT−2. (2.20)
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At higher temperatures the horizontal process affects the heat and charge conduc-

tivity in the same way so that one can anticipate the validity of Wiedemann-Franz

law. Since at these temperatures, charge conductivity is proportional to T−1 using

the Wiedemann-Franz law, the electronic heat conductivity will be independent of

temperature. Fig.2.2 shows the effect of theses two scattering processes on elec-

tronic heat conductivity.

2.3 Scattering of phonons

In this section we will review the main sources of scattering of phonons. At very

low temperatures boundaries and point defects are the main sources of thermal

resistivity against phonons and as the temperature goes up, other phonons and

electrons will take their place.

Thermal resistivity due to lattice boundaries

At low temperatures the phonon mean free path becomes large enough to be com-

parable to the crystal size. Therefore one can estimate it as the smallest crystal

dimensions. Using the kinetic formula κg = 1
3
Cvlv and assuming a constant velocity

for phonons, the lattice thermal conductivity will be proportional to the phonon’s

specific heat κg ∼ T 3 when the conductance is limited by boundary scattering.

Thermal resistivity due to conduction electrons

Scattering of phonons by electrons is the dominant scattering mechanism against

lattice thermal conductivity in metals. The temperature dependence can be derived

by a simple argument. The mean free path of phonons will be proportional to the

number of electrons with which they can interact and the only electrons with which
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this is possible are those whose energy lies within kBT of the Fermi energy. The

proportion of these electrons to the total number of electrons is kBT
εF

, so the mean

free path of electrons will change as T−1. If one assumes that the velocity of

phonons is constant and that Cv is proportional to T 3, then from the kinetic theory

κg−e ∼ T 2.

Thermal resistivity due to phonon–phonon collision

As the temperature goes up phonon–phonon interactions become more important.

In order to find the temperature dependence of phonon thermal conductivity, one

can use kinetic formula, κ = 1
3
Cvλ. At high temperatures, one may suppose that

C ∼ 3NkB and the phonon’s velocity is the same as the velocity of sound, s. It is

shown in [4] that the mean free path can be expressed as λ ∼ Ds2

NkBT
a
γ2 , where D and

N are the density and number of phonons, a is a length of the order of the lattice

constant and γ is a constant. Thermal conductivity of lattice can be expressed as :

κ ∼ Ds3

γ2T
a, (2.21)

So lattice conductivity depends on the inverse of the absolute temperature. An

inelastic scattering process which is called the Umklapp process or U–process rules

the interaction between phonons at intermediate temperature range. In this type

of interaction the total momentum of the lattice will not stay reserved, so the heat

current associated with the total momentum of the crystal will become dissipated.

Thermal conductivity results from Umklapp process can be written as [4]:

κ ∼ T n exp(
βθD

T
). (2.22)

where n is an exponent that depends on the detail of the model. One can see that

as the temperature is reduced, the resistance due to the U–process decreases very

rapidly to zero.
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2.4 Thermal conductivity of conventional super-

conductors

Superconductors are called conventional when they satisfy the following conditions:

1) The attractive interaction between electrons happens through the exchange

of phonons which are called ”virtual phonons” and have a short life time.

2) The attraction potential is of the form :

V (q) = V (k− k′) =
4πe2

q2 + k2
s

, (2.23)

where 1
ks

is the screening length which is a result of dielectric function of the

medium. The potential has no angular dependence and this implies that the gap

is a s–wave symmetric gap [8].

One of the first theories to explain the thermal conductivity of conventional

superconductors is the two fluid model which was developed by Gorter and Casimir.

According to this theory below the transition temperature a certain fraction of

electrons, 1−x, which are called normal electrons occupy the states above the Fermi

surface and the rest of electrons, x, which are superconducting electrons occupy the

states below the Fermi level. The superconducting fluid has two properties :

1) It carries no entropy

2) The electrons in this fluid are not scattered by phonons and impurities

As the specific heat of the superconducting fluid is zero they can not contribute

to the heat transport, therefore as the temperature is reduced below Tc fewer elec-

trons can carry the heat and so the thermal conductivity decreases. The relative

change in the thermal conductivity due to entering to the superconducting state is

larger than the relative change of that in the field induced normal state below Tc.
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One can have a nice qualitative picture of the heat transport in the superconducting

state based on the two fluid model, although this model is not sufficient to explain

all the details. One of the puzzles that this model was unable to solve is the differ-

ence in the slope of κs

κn
as a function of normalized temperature when the dominant

scattering mechanism against electrons is either phonons or impurities. Based on

experimental facts this slope is zero when the dominant scattering mechanism is

impurities and is 5 when phonons are the most important scattering mechanism.

In order to have a more quantitative picture of what happens below Tc one can use

the theory developed by Bardeen, Cooper and Schrieffer and usually refers to as

the BCS theory.

The basic idea in the BCS theory is that even a weak attraction can bind pairs

of electrons into a bound state. The bound state is a configuration of electrons in

which states of electrons of equal but opposite momentum and spin, (k ↑,−k ↓) are

both either occupied or unoccupied. The instability of the Fermi sea against the

formation of these pairs causes a gap of order of kBTc in the excitation spectrum

E(k) = (ε(k)2 + ∆(k)2)0.5 where ε(k) is the energy of an electron of wave vector

k in the normal state. Cooper pairs have the properties of a superconducting fluid

in two fluid model; they carry no entropy and do not scatter phonons. The first

statement says that the electronic thermal conductivity decreases upon entering

into the superconducting state. Since κe ∼ nvle and n changes exponentially with

temperature below Tc, one can see κe ∼ exp(− ∆
kBT

) at low temperatures. Provided

that the mean free path of phonons is limited by electron–phonon scattering, the

second condition implies that the thermal conductivity of phonons will increase

upon entering the superconducting state, so a competition between decreasing κe

and increasing κg will determine the overall dependence of thermal conductivity on

temperature. In a vast majority of conventional superconductors, thermal conduc-

tivity decreases as the material goes superconducting. The theory of heat transport

in conventional superconductors has been discussed in [9]. In the following section
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we will discuss it briefly.

2.4.1 Electronic thermal conductivity in BCS superconduc-

tors

When the electron–impurity scattering is the dominant scattering mechanism, the

velocity, vk, and scattering time, τs, of quasiparticles can be expressed in terms of

the same variables of the normal state using the following equation:

vk = | εk

Ek

|vF , (2.24)

and

τs = |Ek

εk

|τN . (2.25)

where Ek and εk are the energy of carriers in the superconducting and normal states

and τN is the relaxation time in the normal state. Therefore at the Fermi level when

k → kF and εk → 0 the velocity of quasiparticles will go to zero and the scattering

time diverges which means that the impurity ions have very little influence on low

energy quasiparticles. One can see that the mean free path of quasiparticles does

not change comparing to that of normal electrons. Using 2.24 and 2.25 it is shown

in [9] that the electronic thermal conductivity in the superconducting state can be

expressed as :

κe,s =
2F1(−y) + 2yln(1 + e−y) + y2/(1 + ey)

2F1(0)
, (2.26)

where

y = ε0/kBT, (2.27)

and

Fn(−y) =

∫ ∞

0

zndz

1 + ex+y
. (2.28)
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Figure 2.3: Electronic thermal conductivity predicted by Bardeen et. al comparing

to the results of Heisenberg–Koppe model which is in agreement with the experi-

ment [9]
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A plot of the electronic thermal conductivity, dominated by electron–impurity

scattering, predicted by this theory and the prediction of the Heisenberg and Koppe

model which is a modification of the two fluid model has been displayed in fig.2.3.

The results of Heisenberg–Koppe model is also in agreement with the experimental

data [9]. This results is valid for non–magnetic impurities. The magnetic impurities

which break the time reversal symmetry can lead to a strong depression of Tc and a

modification of the BCS density of states so that it becomes gapless for a finite range

of concentration below a critical value which destroys superconductivity entirely [8].

If the dominant scattering mechanism for electrons in the superconducting state

is electron–phonon interactions, then the thermal resistivity due to this mechanism

can be written as:

κe =
π2n

3m
k2

BT (Γ + vF /l)−1, (2.29)

where Γ ∼ T 3 results from the phonon absorption and emission and vF /l is inde-

pendent of temperature. In general, the ratio of electronic thermal conductivity in

the superconducting state to that of normal state is a universal function of T
Tc

when

one scattering mechanism dominates,

κe,s

κe,N

=

∫∞
∆(T )

dEE2(− ∂f
∂E

)∫∞
0

dεε2

∂f

∂ε
. (2.30)

2.4.2 Thermal conductivity of the lattice

By solving the Boltzmann equation for phonons in the superconducting state one

can find the following formula for lattice thermal conductivity:

κgs = D(T/Θ)2

∫ ∞

0

u3du

(eu − 1)(1− e−u)g(u)
, (2.31)

where D is a constant independent of temperature and

g(u) =
1− e−u

u

∫
dE|EE ′

εε′
|(1− ε2

0

EE ′ )f(E)f(−E ′). (2.32)
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All the energies are measured in units of kBT . One can compare it to the lattice

thermal conductivity in the normal state when the dominant scattering mechanism

is electron–phonon interactions,

κg−e = D((T/Θ)2)

∫ ∞

0

u3du

(eu − 1)(1− eu)
= 7.2D(T/Θ)2. (2.33)

In conclusion, we defined the conventional superconductors as the compounds in

which electron–phonon interactions give rise to a weak coupling between electrons.

This coupling gives rise to an isotropic s–wave energy gap. We saw that lattice

conductivity is not affected too much by the transition from the normal state to

the superconducting state. However since the superconducting electrons do not

carry heat, the phase transition can give rise to a decrease in the electronic heat

transport.

2.5 Thermal conductivity of unconventional su-

perconductors

The difference between the conventional and unconventional superconductors can

be in the gap symmetry and type of interactions which give rise to the formation

of Cooper pairs. The symmetry of the order parameter in unconventional super-

conductors comparing to BCS superconductors is reduced so that there might be

gapless excitations even for the pure specimens. Such superconducting states have

been observed both in heavy fermions, cuprates and some biomaterial compounds.

The nodal structure on the Fermi surface of unconventional superconductors can be

a series of line nodes or point nodes. The theory of electronic thermal conductivity

in unconventional superconductors with line nodes has been discussed in [10]. For

a clean superconductor with an order parameter that vanishes along a line on the

Fermi surface, the density of states is a linear function of the excitation energy,
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N(ε) = NF
ε

∆0
for ε < ∆0. Because of impurity atoms, the density of states is

approximately constant and non zero below an energy level, γ. For an order pa-

rameter with a line of nodes, the bandwidth, γ, and the density of bound states at

zero energy, N(0), are finite for any finite concentration of impurities. The elec-

tronic conductivity for an unconventional superconductor with an order parameter

that vanishes along a line of nodes when the frequency of the voltage decreases to

zero has been shown to have a universal limiting value, σ0 = σ(T = 0) ' e2NF v2
F τ∆

where τ∆ ' h̄
π∆0

is a universal transport time [11].

The universal limit is most easily realized in the strong scattering limit. There is

considerable evidence that some of the heavy fermion superconductors have an order

parameter with a line of zeros on the Fermi surface. It has been discussed in [10]

that the component of the electronic thermal conductivity tensor corresponding to

quasiparticles in the vicinity of line nodes are determined by the same scattering

rate as the electrical conductivity and are universal in the limit T → 0. Therefore

WF law is obeyed for the ratio of the universal electrical and thermal conductivities

in the limit kBT ¿ γ. The thermal conductivity in this vicinity can be expressed

as :

κ ∼ NF (γ/∆0)k
2
BTv2

F (h̄/γ) ∼ NF v2
F k2

BT (h̄/∆0). (2.34)

The ratio of universal thermal to electrical conductivities gives the Sommerfeld

value for Lorenz ratio, L0 = 2.44 × 10−8. For temperatures above the crossover

energy kBT ≥ γ, the Lorenz ratio L(T ) deviates significantly from the Sommerfeld

value. For very clean superconductors L(T ) is larger than L0 but for higher impurity

levels L(T ) will be smaller than L0.

For lattice contribution to thermal conductivity at sufficiently low temperatures

one can expect the boundaries of the lattice be still the main reason for scattering

phonons so κg ∼ T 3 can be used in the superconducting regime of unconventional

superconductors. It has been discussed in [12] that the lattice conductivity in the
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case that quasiparticles dominate the scattering of phonons can be expressed as

κg(T ) = A(
T

Tc

)

∫ ∞

0

dx
x4ex

(ex − 1)2
× [1 + αx4T 4

T 4
c

+ βx2T 4

T 4
c

+ δx
T

Tc

+ γx
T

Tc

g(x, y)]−1.

where x = h̄ω/kBT is the reduced phonon energy and y = ∆(T )
kBT

is the parameter

containing the energy gap.

In conclusion in this chapter the different mechanisms that participate in con-

ducting heat in normal metals and BCS and unconventional superconductors have

been investigated. Along with these mechanisms the most important interactions

that give rise to scattering the heat carriers at different temperature ranges have

been discussed. In the following chapters those results will be used to estimate

the contributions of electrons and phonons in heat and charge transport of two

skutterudite compounds.



Chapter 3

Experimental Details

In this chapter I will introduce the instrumentation which we used for making

our thermal conductivity and resistivity measurements. I will briefly review the

definition of thermal conductivity, the steady state technique that we used for

doing the heat transport measurements and the modification which we did for

making more accurate measurements.

3.1 4He Cryostat

The thermal conductivity and resistivity measurements presented in this thesis were

performed using a 4He cryostat which was insertable into a liquid helium dewar.

In order to go down to temperatures below 4 K we pumped on a small storage of

liquid 4He.

3.1.1 Wiring

Fig.3.1 shows a diagram of a 4He cryostat that is very similar to what that was used

in our measurements. The part that goes into the 4He bath, consists of a small

20
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Figure 3.1: Schematic picture of a 4He cryostat from [13]
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helium storage volume which is called the 1K pot and is inside the vacuum can

in which sample holder, heaters and sensors of the temperature controlling system

are located. At the other end of this instrument are the valves used to control the

pressure inside the vacuum can and 1K pot. The 1K pot is in direct contact with

a brass and a copper block that sample holder is connected to. The wiring that

was used for performing measurements was inside teflon tubing located between

the sample holder at one end and the temperature controller at the other end of

the cryostat. The wires were chosen to give the minimum heat leak through the

wiring setup. One could use either copper wires with a relatively high thermal and

electrical conductivity, or constantan wires which have a low thermal and electrical

conductivity comparing to copper. Using either of them has its own advantages

and disadvantages. In the case of copper wires, one could pass relatively greater

currents through the wires without worrying too much about the heat generated

inside the wiring setup, since the heat generated by this current is proportional to

resistance of the wire. However because of their high thermal conductivity, a lot of

heat might be conducted across them into the cryostat. In the case of constantan,

this reasoning is reversed. As a result of high electrical resistivity, one can not

pass a current as high as that of copper through them, although having a low

thermal conductivity helps them not to conduct a significant amount of heat into

the instrument. We noticed that the optimal case was to use a combination of

both constantan and copper wires. A combination of 4 copper wires with diameter

50 µm and 8 constantan wires with diameter 120 µm and 120 cm long were used.

Table 2.1 exhibits the thermal conductivity and conductance of these wires at room

temperature and 4 K. Since the temperature along this wiring changes between 4

K at one end and room temperature at the other end, in order to calculate thermal

conductivity, one needs to consider the average conductivity of them. According to

table 1, the average value of thermal conductance of constantan is 0.18 W (cmK)−1

and that of copper is 5.7 W (cmK)−1. The maximum heat is transferred through
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κ(4K) κ(300K) κ(Avg) Conductance(µW/K)

Copper 3 4 5.7 0.93

Constantan 0.0022 0.1307 0.18 0.17

Table 3.1: Thermal conductivity (W/cmK) and the average conductance of the

wires passing through the cryostat [15]

the wiring when one end of the cryostat is at 4 K and the other end is at room

temperature. In this case the heat conducted via the constantan wires would be 51

µW and 280 µW through copper wires. Therefore the heat conduction of copper

wires is about 5.5 times larger than that of constantan wires. Comparing the

electrical resistance of the constantan wires to that of copper wires, the ratio of

heat generated inside the constantan wires to that generated into copper wires as

a result of passing equal electric currents through them will be 4. So at the same

time that copper transports a heat 5.5 time bigger comparing to that transported

by constantan, the heat generated inside constantan wires as a result of passing

current through them would be 4 time larger than that of copper wires.

3.1.2 Heater and thermometry system

The temperature was controlled by a model 331 LakeShore temperature controller.

A calibrated Cernox resistance temperature sensor and a heater were set up with

the temperature controller. The temperature sensor was mounted in a brass block

between the 1K pot and the block where the sample holder is mounted. Since the

cooling power of 1K pot and the output of the heater might affect the thermal

conductivity measurements, the brass plate makes a weak thermal link between

the mount and the temperature controlling setup. The controller balances the

amount of heater power against the cooling power available at 1K pot to provide
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a stable temperature. In order to control the heater output we needed to set three

parameters on the temperature controller which we would call P–I–D setting. The

complete table of these parameters is listed in a separate report [16]. To improve

our thermometry ability, we mounted a calibrated Cernox thermometer close to the

sample holder. The issues related to this reference thermometer will be discussed

in section 2.6.

3.1.3 Vacuum can

A tapered grease seal is used to hold the vacuum can in place. We used a turbo

pump to make a vacuum below 10−4 mbar in the vacuum can. In order to minimize

the heat loss through convection the vacuum for making thermal conductivity mea-

surements should be less than 10−4 mbar. One should notice that at liquid helium

temperature the vacuum is much higher because all the non–helium gas molecules

are cryopumped to the side of the vacuum can.

3.1.4 Cooling procedure

In order to obtain temperatures below 4 K, one needs to pump on a liquid helium

bath to remove the more energetic molecules. This is not very efficient, because

about 40 % of the liquid 4He has to be evaporated to cool it from 4.2 K to 1.3 K,

due to the large magnitude of the specific heat and latent heat in this temperature

range. On the other hand, the specific heat of solids is rather small, in comparison

to the liquid 4He, at this temperature range [13], so to cool them from 4.2 K to

1.3 K, we have to evaporate only a small fraction of liquid 4He. It is therefore

much more efficient to leave the main part of the liquid at its normal boiling point

and just pump on a small fraction of it in a separate container to reach the lower

temperatures for the experiment. Fig.3.2 shows a schematic picture of the 1K pot
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Figure 3.2: Schematic picture of 1K pot and the cooling and heating configuration

from [13]

inside the 4He bath. Inside the cryostat tubing is attached to the pot which is

connected to a tee at room temperature that is controlled by two valves, one of

them is attached to the pump, for pumping on liquid helium inside the pot and

the other one is used for flushing the tube with helium right after moving the

cryostat into the helium dewar. A rotary pump was used for pumping on the 1K

pot. Continuous refill of the pot is provided by a thin capillary attached to the

pot and is controlled by a needle valve. In order to make a balance between the

cooling power and the heat generated by the heater of the temperature controller,

we used a needle valve which adjusts the opening of the pot. Although this refill

facility seems very simple in principle, it took a few weeks before getting it to work

properly. One of the main problems in running the system was the blocking of

the opening of the pot due to air getting trapped and frozen at 77 K, the freezing

point of liquid nitrogen. Ice at the opening of the pot would not let the needle

valve be adjusted properly. To resolve this problem we would flush the capillary

tube connected to 1K pot with helium gas before cooling the system down. To

operate continuously below 3.5 K, we need to let the liquid helium into the 1K
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pot continuously by adjusting the needle valve. Careful adjustment of the needle

valve is required, since having the helium enter the pot too quickly would not let

the temperature come down, because the liquid coming into the pot is at 4 K. One

could also pump on helium gas in order to stabilize the system at 4 K and above.

3.2 Thermal Conductivity Measurements

3.2.1 Description

We used a 4–probe method for doing our thermal conductivity measurements. In

this method the sample must be connected to a cold bath at one end and a heater

at the other end and two thermometers in between for measuring the temperature

gradient. To measure thermal conductivity we used the longitudinal steady-state

method. For every temperature step, the temperature of the sample is stabilized

at some temperature T0, and then by using a heater connected to one end of the

sample, we applied a constant heat to one end of the sample. At equilibrium the

temperature gradient across the sample is measured by two thermal sensors. Then

the thermal conductivity is given by

κ =
Q̇× α

∆T
. (3.1)

where Q̇, α and ∆T are the heat flow through the sample, the geometric factor and

the temperature gradient along the sample respectively. For making an accurate

measurement of thermal conductivity, all the heat dissipated by the heater has to

go through the sample. Thus, the setup is designed to limit heat losses through the

wires connecting to the thermometers and heaters.
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3.2.2 Thermal conductivity mount

A copper thermal conductivity mount was used for doing the measurements. Cop-

per is a relatively good conductor of heat and has a small heat capacity. Both of

these properties help to produce negligible temperature gradient across the frame

and between different components of the circuit. The κ–mount is a 2.5×3.5 cm

copper frame that we could screw into a copper block connected to the 1K pot

and temperature controlling plate, located inside the vacuum can. Thermometers

and heater must be thermally and electrically isolated from the copper block and

were suspended on kapton ribbons. The low thermal conductance of kapton rib-

bons makes a perfect thermal isolation for thermometers and heaters. In order to

have an accurate reading for the temperature of each end of samples, there must

be good thermal links between the temperature sensors and samples. We used 50

µm silver wires to connect the sample to the heaters, sensors and the ground. The

conductance of these thermal links was 400 µWK−1 which was high comparing to

the conductance of samples we used. The resistances of temperature sensors and

heaters were measured through the coils made from a 25 µm insulated constantan

wire. the thermal conductivity and conductance values of these wires are given in

table 2.2. As mentioned before, constantan has a small thermal conductivity which

helps to keep the sensors thermally isolated. Fig.3.3 and 3.4 display a real and

schematic picture of κ–mount we used in our measurements.

Thermometers

The temperature sensors that we used for doing our measurements were Cernox

CX–1050–BG from LakeShore. They are semiconducting resistors with a surface

area of 1.5×1.5 mm2 and are sensitive above 1 K. The Cernox thermometers had

a gold substrate that we used for soldering an attachment to it. This attachment

consists of a 25 µm insolated silver wire wrapped around a 100 µm bare silver
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Figure 3.3: Thermal conductivity mount that we used in our experiments, a piece

of silver wire as the sample is mounted between the heater and the ground

Thermometer

Heater

Figure 3.4: Diagram of the thermal conductivity mount, the heater and two ther-

mometers suspended on kapton ribbons along with constantan coils used for mak-

ing resistivity measurements are shown in the diagram. A schematic picture of the

mount and the heat flows are shown in fig.3.7
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Figure 3.5: Thermometry setup that we used to measure the temperature of the

sample

wire that is thermally attached to the sample. Wrapping the insulated wire around

the bare silver wires maximizes the thermal contact between the sample and the

sensors. Fig.3.5 shows the thermometry setup we used in our measurements. The

problem that usually happened here is that the insulation layer of the wrapped

silver wire would crack and make a short between the wires. To avoid this problem,

we put some GE varnish on the coils to make an extra insulation layer on them.

The other ends of coils were soldered to the constantan insulated coils mentioned

in the last section. The room temperature resistance of the thermometers was 60

Ω and increased to about 20000 Ω at 4 K.

Heaters

The heaters were transducer-glass strain gauges resistors from Vishay Micro-measurements

company. They were 5 kΩ resistors and we used two of them in series. Their resis-

tances have a weak temperature dependence, so that by reducing the temperature

from room temperature to 4 K their resistance changed by a factor 1 %. In order

to have a good thermal contact between them, we glued a piece of copper sheet

between them. A DAQ output of the Lock–In Amplifier was used as a voltage
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Figure 3.6: The heaters are strain gauges resistors with 2.3× 3.9mm dimensions

source for the heaters.

3.2.3 Sample preparation and mounting

In order to be consistent on the geometric factor used for calculating the thermal

conductivity and electrical resistivity of our samples we used the same contact for all

the samples, so the error in the Wiedemann-Franz law due to the geometric factor

would be zero. A four wire method was used for measuring electrical resistance of

the samples. An electric current was passed through the samples from the contacts

at both their ends, and the voltage drop was measured between two different points

on the samples. The advantage of this method is that it avoids the resistance of

contacts in the sample resistance measurement. The current contacts were silver

wires of 50 µm diameter and voltage ones were silver wire of 25 µm diameter

soldered on the sample by indium solder. Soldering the contacts on the skutterudite

samples was done by Rob Hill. In order to avoid touching the sample directly by the
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soldering iron, silver wires were heated up so that indium solder on them became

melted and then we put the hot wires on the sample.

In order to measure the geometric factor of the samples, we took pictures of the

samples under a microscope and then by scaling the dimensions of samples against a

piece of fine silver wire with 50 µm diameter, made an estimation of the dimensions

of the samples. It is obvious that the accuracy of measurements is confined to the

quality of the pictures and how well we could scale the measurements against the

dimensions of the silver wire.

3.3 Electrical Resistivity Measurements

For measuring the resistance of the thermometers and the sample, we used an AC

resistance bridge, LR–700 from Linear research Inc. The bridge uses a signal with

16 Hertz frequency for measuring the resistance and inductance.

In order to read the resistance of a temperature sensor, one needs to measure the

voltage across the sensor due to a current flowing through it. The level of noise in

the circuit is inversely proportional to the voltage used for making the measurement

and the heat generated into the system is proportional to the square of this voltage,

P = V 2

Rheater
. The main challenge in reading the resistance of thermometers cames

up at very low temperatures. At low temperatures when the resistance of sensors

is large, one needs to use a small current to avoid generating too much heat in the

system and at the same time the current should not be too small to give rise to an

inaccurate measurements.

The resistance of the samples we used was smaller than sensor’s by a factor

of 107. So the excitation current needed for samples could be larger than that of

sensors. however since the samples were thermally connected to the sensors, one

needs to consider the issue of generating unwanted heat very carefully. Further



CHAPTER 3. EXPERIMENTAL DETAILS 32

Silver Constantan Kapton

Conductivity(4K) 10 0.0022 116.622E-6

Conductance(4k) 78.5 0.004 2.04E-6

Conductance(300K) 33.8 0.257 140.04E-6

Table 3.2: Thermal conductivity (W/cmK) and conductance (µW/K) of the ther-

mometry setup at 4 K and room temperature

discussion has been made on unwanted heat, in the section on self heating issue.

3.4 Heat Losses channels

Heat losses is a crucial consideration one needs to keep in mind while measuring

thermal conductivity. This comes from the question of knowing how much heat is

traveling through the sample. There are three potential sources of heat loss: via

conduction, radiation or convection. Conduction will happen mostly through the

measurement wires, secondly through photons and the least through the remaining

gas in the experimental chamber.

3.4.1 Losses through conduction

Fig.3.7 is a schematic of the Kappa mount that is showing the possible paths for

heat to flow. In the ideal case all of the applied heat generated by the heater

flows through the sample and goes to the copper frame at the end of path 1. In

the real case it can follow two parallel thermal paths as shown in fig.3.7 The first

is through the sample (path 1) and the second is through the measuring wires of

the heater (path 2). Two more paths are in the way of heat current as it flows

through the sample, the measuring wires of the thermometers (paths 3,4). Since



CHAPTER 3. EXPERIMENTAL DETAILS 33

Figure 3.7: The heat stems from the heater will flow paths 1 to 4. Avoiding heat

losses is obtained by having most of the heat go through path 1

the thermometers are suspended on Kapton ribbons, they could be a potential way

for the heat to go through. The Kapton ribbons have not been labeled in fig.3.7

and will be considered as parts of path 3 and 4 in the following calculations. In

order to have most of the heat through the sample, the last three paths must have

a much smaller thermal conductivity comparing to that of the sample.

The constantan coils were 10 cm long and had a 25 µm diameter and the silver

wires used for having the sample connected to the sensors were 0.5 cm long and

had a 25 µm diameter. The kapton ribbons were type HN of 0.007 mm2 cross

section and about 2 cm long and their thermal conductivity can be expressed as

κ = 30T 0.9794µW/cmK in 4 K–300 K [14]. The thermal conductance of different

components of these four paths has been gathered in Table 2.2. By considering

the fact that thermal conductance of the samples we used was of the order of 10

µWK−1 at 4 K one can see that path 1 has the least thermal resistivity.
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3.4.2 Losses through radiation

The Stephan–Boltzmann law of radiation states the power dissipated by a black

body is proportional to T 4. So the radiation problem becomes more important at

higher temperatures. For two parallel plane surfaces of emissivities ε1 and ε2 at

temperatures T1 and T2, the heat transferred by radiation from a surface area of A

per unit time is [15]:

Q̇ = σA[T2
4 − T1

4]× ε1ε2

ε1 + ε2 − ε1ε2

. (3.2)

where σ = 5.67 × 10−8Wm2K4 is the Stephan–Boltzmann constant. Emissivities

have a maximum value equal to 1 for a perfect black body. For a thermal conduc-

tivity setup each component will radiate a certain amount of heat while no heat

current is applied. They will then radiate an additional amount of heat when the

heat current is passing through them. Therefore the losses due to radiation mainly

come from all parts of the setup (including the sample) which has a higher temper-

ature when a heat current is applied. The main component will be the heater which

has the highest temperature, but the sample and thermometers also contribute.

3.4.3 Losses through convection

In order to achieve thermal isolation through a vacuum the vacuum should be

significantly better than 10−3 mbar. Below that pressure the thermal conductance

of the residual gas in the vacuum will be approximately proportional to its pressure.

Since the pressure in the sample chamber is typically much less than 10−4 mbar,

the mean free path of the gas molecule, λ, is larger than the dimensions of the can;

λ =
1√

2πd2n
. (3.3)

where d is the diameter of a molecule and n is the number of molecules per unit

volume. In that case the power lost by convection through the residual gas is given
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by the following relation [15]:

Qconvection =
constant√

T
× a0p(T2 − T1).Wm−2 (3.4)

where p is the pressure of the gas, T1 and T2 are the temperatures of the two

points between which heat is exchanged, and a0, the accommodation coefficient

which is always smaller than 1. For conduction in air, constant/
√

T ≈ 0.12 at

4 K. There would be a small heat exchange between the sample holder at 1.5 K

and the wall of the can at 4 K. When the heater is on, the temperature of sample

holder increases to 2 K and so ∆T = 2K, the heater surface area is 7.7 mm2 and

thus Qconvection = 1.52nW from the surface area of the heaters. This is negligible

comparing to the heat applied to the sample which is about 200 µW .

3.5 Self heating issues

In order to make an accurate thermal conductivity measurement, we need to know

the amount of heat that is flowing via the sample and other components of the

circuit. Since the heat capacity of most materials is lower at lower temperatures, a

small amount of heat can warm up the setup more at lower temperatures. Therefore

the effect of self heating is more noticeable at low temperatures. Self heating issue

can comes up in two different ways :

1) Self heating that affects accurate thermometry in either thermal conductiv-

ity or electrical resistivity measurements. This occurs when the current used to

measure the resistance of the sensor generates a lot of heat in the sensor itself and

therefore makes it hotter than it would be if the measuring current were not applied.

2) Self heating of the sample due to excess current when measuring its resistance.

This means that the sample gets warm and the thermometers are not necessarily

at the same temperature as the sample. This kind of self heating is rarely due to
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Figure 3.8: The effect of setting three different excitation voltages on the resistance

of one of the thermometers

the sample resistance as it is usually very small and is mostly due to the contacts

which can have a large resistance relative to the sample or the constantan coils

which are attached to the sample. In order to cure these problems one can consider

the following solutions :

1) In a thermal conductivity measurement, in order to have the least self heat-

ing effect when reading the resistance of thermal sensors, we would set the lowest

possible excitation voltage for sensors, without losing the precision of our resistance

reading. In our experiment the two thermal sensors are read first, followed by read-

ing the resistance of a reference sensor. As the reference sensor is connected to the

copper block and is not in direct connection with the other two sensors, self heating

issue in these sensors can not affect the reference significantly. Therefore, one could
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set the optimal excitation voltage for these sensors independent of the effect that it

might have on the reference thermometer. In order to find the optimal voltage, one

could start with a random value and then if by decreasing the voltage the average

of the resistance of the sensors goes up, it means that there is some self heating

in the system, so one could pick up a lower voltage and this algorithm continues.

However if by setting a lower voltage, the average reading of the resistance does not

change and the only difference is that reading becomes noisier then, this would be

a sign of having the optimal excitation voltage. Fig.3.8 shows the result of setting

three different voltages for one of the thermal sensors.

2) In order to see if the resistance of the contacts on the sample is too high

comparing to sample itself, one can monitor the resistance of the hot sensor simul-

taneously when the excitation voltage which is used for reading the resistance of

the sample is being changed. Normally the resistance of the sensor is very small

and should not change by changing the measuring voltage. Therefore if by changing

the voltage, the resistance of the hot sensor changes, one can understand it as an

effect of the resistance of the contacts.

3.6 Thermometry issues

One of the most important issues in measuring thermal conductivity at very low

temperatures is the accuracy of thermometry. On the cryostat used in our mea-

surements, the 1K pot which provides the cooling power is in thermal contact with

a brass block through a 0.5 cm long stainless steel tube and the thermometer and

heater of the temperature controller are mounted inside the brass block. Attached

to the brass block is a copper piece where current and voltage leads are mounted

in and is in direct thermal contact with the sample holder and reference sensor.

Fig.3.9 is a close–up of this part of the cryostat.
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Figure 3.9: A close–up of sample holder along with 1K pot
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One of the very first problems in measuring the temperature of the sample holder

was the existence of a distinct difference in temperature between the mount and the

temperature control sensor mounted on the 1K pot. Furthermore the temperature

gradient between these two points varied as a function of helium level in the 1K

pot. Although we do not know the exact origin of this problem, we speculate that

it might be due to the proximity of the temperature sensor in regard to the heater.

To solve the problem we introduced a second calibrated sensor that we call the

reference thermometer and was located directly on the thermal conductivity mount

and connected to the same point as the sample. Since this reference thermometer

was used to directly measure the temperature of the sample, it avoids the variable

temperature gradient problem and the temperature control sensor was simply used

to maintain a stable temperature at approximately the temperature at which the

measurement was to be made.

Another problem was the sensitivity of our thermometry to the vibration. As

mentioned for reducing the temperature one needs to pump on 4He and the pump-

ing line which was a series of flexible pipes, would transfer a significant level of

vibration to the cryostat. This vibration would affect the thermal sensors which

were suspended on the kapton ribbons more than the reference thermometer which

was mounted to the copper frame. The effect of vibration on the readings of resis-

tance could be seen by using an oscilloscope connected to the preamplifier output

of the resistance bridge. In order to damp the vibration along the pumping line,

we put a heavy lead block on the pipes in between the pump and the valves on the

cryostat. This would reduce the vibration very effectively and the level of noise on

the oscilloscope showed a remarkable decrease.

In order to obtain a low noise temperature reading, one needs to average several

data points. The process of averaging the collected data points was done twice, once

by the resistance bridge we used for reading the resistance of temperature sensors

and a second time by the LabView program which acted as an interface between the
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Figure 3.10: Having different calibration curve can be a result of a bad thermal

joints

bridge and computer. The averaging process done by the resistance bridge could

be controlled by a digital filter option. By setting the bridge with a specific digital

filter, the bridge would spend that time to collect data and the output of the bridge

was the average of those data points. ”N” of these data points were collected by the

LabView program and averaged to make the final data recorded by the program.

One could change the level of noise in the data recorded by setting different digital

filters or enforcing different values of ”N”. Therefore one of the challenges we faced

for doing and accurate thermometry was to find the optimal values for the digital

filter and number of data points to be collected. Usually the longer it takes to

collet the data, the more accurate they are, but the measurements can become

cumbersome. A final challenge to having accurate thermometry is to have good
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Figure 3.11: Resistance of hot and cold sensors as a function of time, during heat

off and on periods

thermal contacts between the sample and the temperature sensors, so that one

could get the least temperature gradient between the sample and each sensor. For

the same reasoning that was explained in the self heating section, having a bad

thermal contact can give rise to getting different calibration curves for a sensor at

the same temperature range. Fig.3.10 displays three different calibration curves for

one of the temperature sensors as results of having a bad joints between that sensor

and the sample. The best curve would be the one that has the highest resistance

at a particular temperature.
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3.7 Experimental procedure

The experiment is directed by an interactive program written with the ”LabVIEW”

software. For each point, once the temperature of the kappa mount is adjusted by

the temperature controller, we waited to reach equilibrium in all three sensors

and the sample. The setup is considered to be in the thermal equilibrium, when

Rmax−Rmin

Ravg
, where Rmax, Rmin and Ravg are the maximum and minimum and average

values of the N last data points, of both thermal sensors and the reference sensor ,

is below a value that could be called the tolerance for making an accurate measure-

ment. The tolerance and N are enforced by the user and stored in the program.

At this stage the temperature of the controller thermometer and the resistance of

both thermal and reference sensors Rhot(Q̇ = 0), Rcold(Q̇ = 0) and Rref (Q̇ = 0),

are averaged and then recorded. Q̇ stands for the power of the heater which at

this point is off. This data is needed to calibrate the thermometers. Then the heat

is applied to the sample. Q̇ must be set in a way that the temperature gradient

across the sample stays less than 10 % and more than 5 % of the temperature that

the set up is at. The reason is that we used the assumption of having a linear

temperature gradient across the sample. However unless the sample has constant

thermal conductivity with temperature this will not be true and is therefore only

an approximation which is close to the real situation for small variations in temper-

ature across the sample and hence small variations in conductivity. The reason of

keeping this ratio above 5 % is to make sure that the noise is not significant relative

to the measured signal. So it is crucial to keep the ∆T
T

< 0.1 condition valid while

measuring thermal conductivity. By assuming the thermal conductivity will be lin-

ear at low temperatures, one can find the output power of the heater and knowing

Q̇ = V 2

Rheater
, the appropriate voltage needed to be applied to the heater can be

found. After the system reaches to thermal equilibrium by satisfying the value set

by the tolerance numbers, the program records the voltage applied by the heater,
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Figure 3.12: Since the longer the temperature range is the less accurate the fit would

be, fitting was done in a small temperature range, above is a 5th order polynomial

fitting, the inset displays the residual of this fit

the new values of thermometers’ resistances, Rhot(Q̇), Rcold(Q̇) and Rref (Q̇) and

the temperature of the controller thermometer is checked to see that it has not in-

creased appreciably comparing to the temperature gradient across the sample when

the heater is on. By plotting log(Rhot) and log(Rcold) as a function of log(Rref ),

when the heat is off, and fitting a polynomial to it, we find the calibration function

of the uncalibrated thermal sensors and deduce the temperature of sensors when

the heaters are on. Fig.3.11 displays the resistance of the cold and hot sensors as

a function of time. The sensor that is affected more by the heat is the hot sensor

which is closer to the heater and the other one, the cold sensor is at a distance

further away from the heater. By having the geometric factor of the sample, and
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measuring the temperature gradient across the known length it one can calculate

the thermal conductivity of the sample by using the following relation :

κ(T ) =
Q̇

(Thot − Tcold)
× l

A
. (3.5)

where l and A are the length and the cross section area of the sample and T , Thot

and Tcold are the average temperature and temperature of the hot and cold ends

of the sample respectively. Fig.3.12 displays the calibration plot and fit function

of one of the sensors as a function of temperature. In order to see how well the fit

function is, one can look at the residual of the function which shows the difference

between the fit function and the data points. The residuals of a good fit function

should have a random distribution around zero (inset of fig.3.12).

3.8 Test on the silver sample

In order to test our experimental setup, we measured the electrical resistance and

the thermal conductance of 1 cm long silver wires of 25 and 50 µm diameters and

of 99.99% purity. The Sommerfeld value divided by the resistivity of the sample,

thermal conductivity and Lorenz ratio are plotted in figs.3.13 and 3.14 as a function

of temperature. One finds the characteristic features of the transport properties of

normal metals at low and intermediate temperatures in these plots as the following

:

Below 10 K, electrical resistivity is determined by the effect of the scattering of

conduction electrons by impurity ions and since the impurity distribution does not

depend on the temperature, the resistivity does not depend on temperature either.

At this range and for this level of purity of silver, the electrons have the dominant

contribution to thermal conductivity, κ(T ) ∼ κe and Wiedemann-Franz law holds,

so κeρ
T

= L0 where L0 = 2.44 × 10−8. The thermal conductivity will have a linear
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temperature dependence and κ(T )/T , resistivity and Lorenz ratio will display a

plateau below 10 K.

Above 10 K as the thermal vibration of the lattice increases, phonons start to

take a role in transporting heat and scattering electrons. Two factors will affect

thermal conductivity at this point. The number of phonon carriers of heat increases

as the temperature increased. This would increase κ(T ) if the mean free path of

phonons stayed constant. In reality since the phonon contribution is very small

compared to the electronic conduction, the increase in number of phonons results

in the increase in electron–phonon scattering which suppresses κ(T ). So above
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10 K κ(T ) and κ(T )/T will exhibit a decrease with increasing temperature. The

Wiedemann-Franz law does not hold at this temperature range and as fig.3.14

displays the L/L0 ratio will decrease with temperature.

At higher temperatures one expects L/L0 to become close to 1 again as the result

of the scattering of electrons by high energy phonons. In that range the thermal

conductivity will become a constant in temperature and the electrical resistivity

increases linearly with temperature and the Lorenz number will be constant.

In conclusion, we recovered the Sommerfeld value of the Lorenz number in the

low temperature limit to within 5 %. This is the only region in which we could

directly verify the thermal conductivity value we measured. Based on this accuracy,

we assume the results are equally accurate up to temperatures of at least 30 K. This

verifies the reliability of our measurement setup and the method we used for doing

our measurements.



Chapter 4

Experimental review

The filled skutterudite compounds are known with the general formula ReTr4Pn12,

where Re is a rare earth ion, (Pr, La, Ce), Tr is a transition metal ion, (Fe, Ru, Os)

and Pn is a pnictogen atom, (P, As, Sb). The primitive cell has a body centered

cubic (BCC) form in which each RE ion is surrounded by twelve Pn atoms and eight

Tr ions. The packed BCC structure can give rise to strong hybridization between

electrons of f shells of the RE atoms and conduction electrons. Fig.4.1 shows the

crystal structure of the filled skutterudites.

4.1 Sample growth

In this chapter we will review the properties of two Pr–based skutterudite com-

pounds, PrRu4Sb12 and PrOs4Sb12. Single crystals of these compounds were grown

by Brian Maple in UC San Diego, using an Sb flux method. The elements (Ames

99.999% Pr, Colonial Metals 99.95% Os and Ru and Alfa Aesar 99.9999% Sb) were

sealed under 150 Torr Ar in a carbon coated quartz tube in the ratio 1:4–4x:4x:20,

heated to 1050 C at 50 C/h, then cooled at 2 C/h to 700 C. The samples were

48
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Figure 4.1: Cubic Structure of skutterudite compounds [27]

then removed from the furnace and the excess Sb was spun off in a centrifuge.

the crystals were removed from the leftover flux by etching with dilute aqua regia

(HCl : HNO3 : H3O = 1 : 3 : 3) [17].

4.2 PrRu4Sb12

PrRu4Sb12 is a metallic compound that become superconducting below Tc = 1.1

K. The lattice constant of this compound is reported 9.27 Å which is the smallest

value in compounds with general formula Pr(Os1−xRux)4Sb12 [17]. In the normal

state the transport properties of this compound is very similar to that of regular

metallic compounds.

The electrical resistivity shows no anomalies and decreases with decreasing tem-

perature.

The magnetic susceptibility follows a Curie–Weiss law down to 50 K and be-

comes constant at lower temperatures. The effective paramagnetic moment was
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Figure 4.2: Temperature dependence of specific heat of PrRu4Sb12 [20]

reported µeff ∼ 3.58µB which is close to 3.44µB of free Pr3+ ions. The absence of

any magnetic transition at lower temperatures implies that PrRu4Sb12 is a para-

magnet with a singlet ground state [20]. The measurements of transport and mag-

netic properties also imply the absence of hybridizations between the conduction a

f electrons [18–20].

The specific heat decreases with reducing the temperature and displays a jump

at Tc. Fig.4.2 displays the superconducting transition in specific heat of PrRu4Sb12

reported in [20]. The specific heat measurements shows a jump at Tc with an

electronic coefficient of about γ = 59 mJ/mol.K2 [20, 21]. The γ value and the

jump of specific heat at Tc gives the ratio ∆C/γTc to be 1.49 which is very close

to 1.43 for conventional superconductors and suggests a weak coupling between

the electrons that is mediated by phonons which could give rise to an isotropic

superconducting gap. Besides the Specific heat measurements, measuring superfluid

density exhibits exponential behavior at low temperatures and an energy gap of the

order of 2∆ = 3kBT [22].
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4.3 PrOs4Sb12

PrOs4Sb12 is the first Pr–based skutterudite showing properties of a heavy fermion

state in the normal state with an effective mass of the order of 50me. It has

the largest lattice constant, ∼ 9.30 Å among compounds with general formula

Pr(Os1−xRux)4Sb12 [17].

The resistivity of this compound decreases with reducing the temperature and

goes to zero at about 1.81 K. The ”roll–off” feature observed about 8 K can be

explained based on crystalline electric field effects. It will be discussed later that the

crystalline electric field Hamiltonian can be made based on both magnetic exchange

and aspherical coulomb scattering. Fermi liquid behavior in resistivity can be seen

above 8 K. Under large enough magnetic fields the Fermi liquid behavior can be

observed below 8 K with a large A coefficient of about 1.4 µΩcm/K2 [27].

The thermal conductivity measurements in zero magnetic field display a decrease

and an increase below Tc [23, 34]. The angle resolved magneto-thermal conductiv-

ity measurements show two distinct superconducting states with different nodal

structures. Fig.4.3 shows the evolution of the nodal structure with magnetic field

reported in [23]. Fig.5.10 in chapter 5 exhibits the phase diagram proposed in [23].

In contrast to the angle resolved magneto-thermal conductivity measurements that

bring up the possibility of nodes on the energy gap, experiments on muon spin

rotation and a T 2 temperature dependent penetration depth is consistent with the

assumption of an isotropic superconducting gap [27].

The specific heat measurements of this compound which so far has been very

sample dependent exhibit a double jump at and below Tc. Some measurements show

the absence of the second jump which occurs below Tc [25]. The jump of specific

heat at Tc is reported ∆C/Tc ∼ 500 mJ/mol.K2. The value of electronic specific

heat coefficient from the weak coupling BCS prediction ∆C/γTc = 1.43 is γ ∼ 350

mJ/mol.K2, where from experiments γ ∼ 750 mJ/mol.K2 is obtained [19], which
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Figure 4.3: The field dependent evolution of phase structure of PrOs4Sb12 [23]

suggests the strong coupling between electrons. The presence of a double jump in

specific heat at Tc and right below Tc has also strengthened the assumption of a

double phase superconducting state like the one observed in UPt3.

An ordered phase has been observed under magnetic fields > 4.5 T and temper-

atures < 1.5 K. This ordered phase might have either a magnetic or a quadrupolar

origin suggesting that the superconductivity might occur in the vicinity of a quan-

tum critical point [27].

In the following chapters we will discuss the results of measurements on trans-

port properties of single crystals of PrRu4Sb12 and PrOs4Sb12, and investigate the

effect of crystalline electric field on these compounds.



Chapter 5

Transport properties of PrOs4Sb12

We did thermal and charge conductivity measurements on two single crystal sam-

ples of PrOs4Sb12. The direction of thermal current in all cases was in the same

direction as one of the main axes of crystals which have cubic symmetry. The su-

perconducting transition temperature of both samples was measured to be 1.81 K.

All measurements were done in zero magnetic field and in a 4He cryostat. Since we

used an AC current for measuring the electrical resistivity of this compound, any

possible thermal current that was generated in the sample, would average to zero.

Thus the thermo-electric properties, that are known to be large in this material,

do not affect the results of the measurements of the electrical resistance. In this

chapter the results of heat and charge conductivities of two PrOs4Sb12 samples will

be discussed.

5.1 Electrical resistivity of PrOs4Sb12

Resistivity of the PrOs4Sb12 samples were measured between room temperature

and 1.45 K for the sample A and 1.1 K for sample B. We were able to extend the

53
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Figure 5.1: First sample of PrOs4Sb12. Geometric factor, l/A used for sample A

was 7630

Figure 5.2: Second sample of PrOs4Sb12. Geometric factor, l/A used for sample B

was 40323
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temperature range of the measurement on sample B by extending the calibration

range of our temperature controlling sensor. Therefore the lowest temperature at

which the electrical resistance of sample B was measured, was 1.1 K. Dimensions of

sample A were 785× 200× 330µm and those of sample B were 1080× 185× 100µm

where in both cases the direction of the thermal and electrical currents were in the

direction of the longest dimension. Fig.5.3 compares the resistivity of the samples

of our experiments and the resistivity data published in [28] as a function of tem-

perature. A good agreement was observed in qualitative temperature dependence

of all three sets of data. Although the plots are quantitatively a bit different in

the whole range which might be an indication of different purity levels, the super-

conducting transition occurs exactly at the same temperature for all samples. The

width of transition is ∆ = 0.28K and Tc is defined as the midpoint of the drop

in the resistivity. The resistivity of sample B at room temperature (293K) was

found to be 150µΩcm and the resistivity slightly above Tc was 4.6 µΩcm, there-

fore the residual resistivity ratio, RRR, which is defined as ρ(293K)
ρ(2K)

, will be about

33 compared to 30 and 40 reported in [28] and [29] respectively. Since the room

temperature resistivity is determined mainly by thermal vibrational scattering and

the low temperature resistivity is affected by impurity scattering, the high RRR

value can be an indication of the high purity level of a sample. The impurities

are associated with excess Sb due to the Sb flux method in which the crystals are

grown. This type of impurities are believed to be nonmagnetic and so does not

have any kind of magnetic interactions with the conduction electrons.

We observed a qualitative metallic behavior in electrical resistivity which is a

decrease in resistivity as the temperature is reduced. Although one could notice an

exotic feature in resistivity of PrOs4Sb12 that is manifested as a ”roll-off” at 8K. It

has been shown that this feature can be explained based on both magnetic exchange

and aspherical coloumb scattering. This change in the curvature, from negative to

positive is consistent with a decrease in the scattering of the conduction electrons
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Figure 5.3: Temperature dependence of the electrical resistivity of both PrOs4Sb12

samples compared with the data reported in [28], the upper inset shows the low

temperature behavior, where one notices that the samples have the same Tc’s and

the lower inset is the temperature dependence of R(T )
R(245K)
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by Pr3+ ions due to a decrease in the population of the first excited state of the

crystal electric field spectrum (CEF) separated from the ground state by about 7

K [26]. The total contribution of CEF effects to the resistivity can be expressed as,

ρCEF = ρ0[rTr(PQM) + (1− r)Tr(PQA)], (5.1)

where r is the coefficient representing the ratio of the magnetic exchange term to

the coloumb scattering term [28]. Pij is the temperature dependent matrix and its

elements can be expressed as,

Pij =
exp (−βEi)∑

k

exp (−βEk)

β(Ei − Ej)

1− exp (β(Ei − Ej))
, (5.2)

where Ei’s are the eigenvalues of the CEF eigenstates and β = 1/kBT . The CEF

Hamiltonian is given by,

H = W (x(O4/60) + (1− |x|)(O6/1260)), (5.3)

where W and x are the parameters that can be chosen in accordance with the LLW

formalism [32] and O4 and O6 are given by the following relations,

O4 = 35J4
z − (30J(J + 1)− 25)J2

z − 6J(J + 1)

+ 3J2(J + 1)2 +
5

2
(J4

+ + J4
−),

O6 = 231J6
z − 105(3J(J + 1)− 7)J4

z

+ (105J2(J + 1)2 − 525J(J + 1) + 294)J2
z

− 5J3(J + 1)3 + 40J2(J + 1)2 − 60J(J + 1)

− 21

4
(11J2

z − J(J + 1)− 38)(J4
+ + J4

−)

+
1

4
(J4

+ + J4
−)(11J2

z − J(J + 1)− 38).

The QM and QA represent magnetic exchange scattering and coloumb scattering

due to the quadrupolar charge distribution of Pr3+ ions and their elements are
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Figure 5.4: Electrical resistivity versus temperature between 1 and 40 K of sample

B along with the CEF contribution to the resistivity for which W = −2.78, x =

−0.720, ρ = 0.378µΩcm and r = 0.25 [28]

given by [30], [31] :

QM
ij = |〈i|Jz|j〉|2 +

1

2
|〈i|J+|j〉|2 +

1

2
|〈i|J−|j〉|2, (5.4)

QA
ij =

2∑
m=−2

|〈i|ym
2 |j〉|. (5.5)

where |i〉’s are the CEF eigenstates and ym
2 are the operator equivalents of the

spherical harmonics for L = 2 that can be found in [33].

The Qij–matrices are normalized to each other, such that
n∑

i,j=0

Qij = 180 for

both interactions. Using MATLAB we calculated the CEF contribution to the

total resistivity. Fig.5.4 shows the CEF contribution to the resistivity of a cubic
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Figure 5.5: Electrical resistivity of PrOs4Sb12 at 8–40 K fits very well with a Fermi

liquid expression of the form α + βT 2

crystal. According to Matthieson’s rule, the electrical resistivity can be separated

into the scattering of electrons by impurities, other electrons, the lattice vibration

and the contribution of CEF effects.

ρ(T ) = ρimp + ρe−e + ρCEF + ρe−g. (5.6)

Having a look at fig.5.4, one could notice that above 25 K when the CEF

effect saturates, the resistivity still has a temperature dependence which implies

there must be another scattering mechanism affecting the conduction electrons.

After subtracting the CEF contribution from the total resistivity, the temperature

dependence of the remaining part fits very well with a ρimp + βT 2 function. The
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electrical resistivity rising up by e–e scattering has also a T 2 form, so that part

of resistivity that is not coming from CEF effect, could be the effect of electron–

electron scattering. Fig.5.5 displays the fit function done on the resistivity of sample

B. The coefficient of the second order term is 0.006 µΩcmK−2 which is close to

0.009 µΩcmK2 reported in [28]. This type of behavior is consistent with the Fermi

liquid behavior. The kink at 35 K in the plot might be the result of attaching two

different sets of data. The highest temperature at which we took the resistivity in

a temperature controlling way is 32 K and the resistivity at higher temperatures is

taken from the cooling down curves which were not temperature controlled. Above

40 K, the resistivity due to the scattering of electrons by phonons, ρe−g, is believed

to be the dominant term.

Having set these results, we showed that the change in the curvature of the

resistivity at 8 K can be explained based on the crystalline electric field’s effect,

and the Fermi liquid behavior can be observed in 8–40 K range. The effect of

phonons on scattering electrons is believed to be remarkable above 40 K.

5.2 Thermal conductivity of PrOs4Sb12

Temperature dependence of the thermal conductivity of PrOs4Sb12 samples was

measured in 1.1K–40K range. Fig.5.6 displays temperature dependence of thermal

conductivity divided by temperature, κ(T )/T for both samples. Both samples show

similar features and as the temperature is reduced, κ(T )/T increases to make a

maximum at 14 K. At 4–14 K range it comes down monotonically to take a minimum

at 4 K which is 0.9 of the maximum at 14 K for sample A and 0.83 of the maximum

value at 14 K for sample B. Upon entering the superconducting state κ(T )/T is

suppressed again to take a minimum at 1.6 K followed by another maximum at 0.8

K which has the highest value comparing to the other two maximums.
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Figure 5.6: Thermal conductivity of two PrOs4Sb12 samples as a function of tem-

perature

We believe both electrons and phonons play a role in determining the unusual

temperature dependence that is observed in the thermal conductivity of this com-

pound. In the following sections we try to explain these extremums and their

origins.

5.2.1 Thermal conductivity in the normal state, T = 1.81−
−40K

It was observed in κ(T ) of silver that as the temperature is reduced below 50

K, thermal conductivity increases. Since the number of phonons and the lattice

thermal conductivity decrease with reducing the temperature one can see that the
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Figure 5.7: Temperature dependence of κ(T ) and κ(T )/T of sample B. The ex-

periment below 1 K was performed by Rob Hill with a dilution refrigerator in the

department of Physics, University of Sherbrooke [40]

electronic contribution to the heat transport will become more pronounced at this

temperature range. The increase in κ(T ) which is due to the decrease in electron–

phonon scattering would be suppressed by electron–impurity scattering that is the

dominant scattering mechanism at very low temperature. Therefore the resultant

maximum in κ(T ) below 20 K has electronic nature. Fig.5.7 exhibits the thermal

conductivity κ(T ) and κ(T )/T of sample B versus temperature. Contrary to the

thermal conductivity of the silver, κ(T ) of PrOs4Sb12 is decreasing in the whole

measurements range. The maximum and the minimum at 14 K and 4 K on κ(T )/T

occur at the same temperature range that κ(T ) has a steep slope. In the follow-

ing section we will consider the possible phononic and electronic origins for these



CHAPTER 5. TRANSPORT PROPERTIES OF PROS4SB12 63

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30

k/T
L0/Resistivity

k/
T

 , 
L

0/R
es

is
ti

vi
ty

 (
W

K
-2

m
-1

)

T (K)

Figure 5.8: κ/T and L0/ρ of sample B of PrOs4Sb12 as a function of tempera-

ture, The ”roll-up” feature happens at a similar temperature that the minimum in

κ(T )/T comes up

extremums and provide a qualitative description of the data based on reasonable

expectations for the temperature dependence.

Lattice thermal conductivity

One way to make an estimation of the lattice thermal conductivity is to find an

approximation of the electronic thermal conductivity and subtract it from the total

thermal conductivity. One can use WF law to make a rough approximation of the

electronic part. We will assume that WF law is valid above 10 K and this assump-

tion seems consistent with what is reported in [34]. Fig.5.8 exhibits the temperature
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Figure 5.9: Peak at 14 K can still be observed in the minimum contribution of the

lattice to the heat transport, the fitting is done with MATLAB

dependence of L0/ρ(T ) which can be considered as the maximum electronic contri-

bution to the heat transport. By having an estimation of the maximum electronic

conductivity, the minimum thermal conductivity of the lattice is κtotal/T−L0/ρ(T ).

Fig.5.9 displays the temperature dependence of this minimum lattice conductivity

and one can see that this function takes a maximum at the same temperature that

the total measured thermal conductivity has a maximum.

On the other hand, in order to have a more quantitative description of this

maximum one can see that this maximum can be generated just by taking the

phononic thermal conductivity into account. As mentioned in the chapter on the

theoretical review, the conductivity of the lattice can be affected by Umklapp pro-

cess at intermediate and high temperatures and scattering by conduction electrons
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and boundaries of the specimen at lower temperatures. The temperature depen-

dence of the umklapp process can be expressed as: κu = aT 2 exp(ΘD/bT ), where

a, b are constants and ΘD is the Debye temperature which is reported 165 K for

PrOs4Sb12 [26].

One can see that as the temperature is reduced, the effect of umklapp process

becomes weaker, so κu increases with decreasing the temperature. However at

lower temperatures, scattering of phonons by conduction electrons takes the place of

umklapp process and suppresses the lattice conductivity. The thermal conductivity

of phonons scattered by conduction electrons can be written as κg−e = cT 2, where

c is a constant. By using a combination of these two processes and finding the

appropriate constants we could simulate the peak at 14 K.

κg = (5180
exp(−82

T
)

T
+

170.1

T
)−1. (5.7)

On the other hand one can test the idea of an electronic origin for the max-

imum at 14 K. The most important mechanisms for scattering electrons at low

temperatures are phonons and impurities. The electronic heat conductivity due to

scattering of electrons by phonons can be expressed as T−2 which increases as the

temperature is reduced and in case the scattering mechanism is impurities, it has a

linear temperature dependence. A combination of these terms can not be sufficient

for explaining the behavior of κ(T )/T around 14 K. As it is seen on fig.5.8 there is

no features in L0/ρ(T ) which is an estimation of the electronic heat conductivity

about 14 K. However the existence of the first minimum on κ(T )/T at 4 K, can

be linked to the electrons. The ”roll-off” feature in resistivity which appears as a

”roll-up” in L0/ρ(T ) happens at a similar temperature range that κ(T )/T takes

its minimum. Even though the Lorenz number may be temperature dependent, if

charge conductivity is increasing due to a decrease in scattering of conduction elec-

trons by the Pr3+ ions as mentioned in electrical resistivity section, the electronic

thermal conductivity would have an increase due to the same reason.
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5.2.2 Thermal conductivity in the superconducting state

(T < 1.81K)

At 1.81 K, upon entering to the superconducting state, κ(T )/T decreases down to

1.6 K where it turns up to make a maximum at 0.8 K which has the highest value

0.38 WK−2m−1, comparing to the other two maximums, 0.29 WK−2m−1 and 0.32

WK−2m−1 at 13 K and Tc respectively, (the data below 1 K is provided just for

sample B). In order to find the origin of the extremums in the superconducting

state, we will make an estimation of the lattice thermal conductivity and compare

it to the total conductivity.

5.2.3 Lattice thermal conductivity

The phonon conductivity in the superconducting state can be estimated in the

boundary scattering limit, which provides an upper bound for the phonon thermal

conductivity. By using the kinetic formula κg = 1
3
Cgvl, where Cg is the phonon

specific heat, v = 2000m/s [35] and l are the average sound velocity and phonon

mean free path respectively and are temperature independent. Cg has a tempera-

ture dependence of the form 3.95T 3mJmol−1K−4 [26] and l can be considered as

the longest dimension of the crystal, so the phonon thermal conductivity could be

expressed as κg/T = 8T 2mWK−2m−1 below 2 K, which is negligible comparing to

the total κ/T . It might suggest that electrons has the dominant contribution to

the heat transport in the superconducting state.

5.2.4 Electronic thermal conductivity

The extremums of κ(T )/T below 1.8 K can be explained based on the decrease in the

population of normal electrons which are the main heat carriers at this temperature
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Figure 5.10: Phase diagram of the superconducting gap symmetry proposed by

Izawa et. al. in [23]

range and a decrease in the number of electron–electron interactions at the same

time. As the temperature is reduced below 1.8 K, when more electrons go to the

superconducting state, the electronic thermal conductivity decreases at first which

makes a minimum at 1.6 K, by reducing the temperature below 1.6 K, assuming

the electron–electron collision is the main scattering mechanism against electron,

the increase in the mean free path of the normal electrons will increase κ(T )/T

until it is limited at about 0.8 K by impurity scattering. Below this temperature,

the decrease in the number of electrons as they continue to condense will reduce

κ(T )/T .

To explain the minimum at 1.6 K, one could also consider the possibility of a

multiphase superconductivity for PrOs4Sb12. Two distinct observations give rise

to the considering the assumption of a multiphase state in this compound.

The first set of experiments was making thermal conductivity measurements in
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Figure 5.11: Temperature dependence of κ(T )/T of sample B and C(T )/T of a

PrOs4Sb12 sample from [26] in zero magnetic field

magnetic field which displayed two superconducting phases for PrOs4Sb12, one of

them which exists at temperatures above 1.5 K and low magnetic fields has a two

fold symmetry and the other one which has a four fold symmetry exists at high

magnetic fields and below 1.5 K [23]. Although it is not the only phase diagram

proposed for this compound, the general feature of that is in agreement with the

other phase diagram suggested in [36].

The second observation was a two level jump observed in the specific heat versus

temperature. In zero magnetic field, there is a second order transition in specific

heat of the superconducting systems, which is manifested as a jump at Tc. For

the multiphase superconducting compounds, there would be a multi–level jump.

Fig.5.11 shows κ(T )/T of sample B and the specific heat divided by the tem-
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perature taken from [26]. One could notice that both the maximum of thermal

conductivity and the first jump in specific heat occur at 1.8 K, but the minimum of

thermal conductivity and the second jump of specific heat are at slightly different

temperatures. This might be related to this fact that the specific heat and the ther-

mal conductivity measurements have been done on different samples. By using this

fact that the second jump could be related to entering to a new superconducting

phase [37], one possibility for explaining the increase in the thermal conductivity

below 1.6 K is a transition to a new superconducting state. The change in the

gap symmetry could be a way to increase the number of normal electrons and as

a result gives rise to an increase in κ(T )/T . However in order to assure this idea,

one needs to do both the specific heat and thermal conductivity measurements on

the same sample.

5.2.5 Effect of impurities on the thermal conductivity

A discussion has been brought up for explaining the maximum in κ(T )/T below

Tc in [29], [25] which questions the intrinsic nature of the maximum below 1 K

in κ(T )/T . In this section we will compare the κ(T )/T of samples with different

purity levels and investigate the effect of the purity of the sample on the extremums

in the thermal conductivity.

Using WF law one could say that the more pure the sample is the larger κ(T )/T

at temperatures slightly above Tc will be. Fig.5.12 displays the comparison between

κ(T )/T of sample B of the current measurements and sample A and B of [29], where

sample B in [29] is reported to be more pure than sample A. κ(T )/T of sample B

of our measurements is clearly bigger than the other two at temperatures slightly

above Tc, which is an indication of higher purity level of our sample, which is also

approved by comparing the RRR values of these three samples. One could see that

even though sample B of our measurements is highly pure, the peak below 1 K is
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Figure 5.12: Comparison of κ(T )/T of three different samples of PrOs4Sb12 with

different purity levels and Y Ba2Cu3O7−δ as a function of temperature

still sharp and clear. This might be an evidence for the intrinsic origin of the peak.

In both samples in [29], the peak below Tc is clearly smaller than the peak at Tc,

which is reversed for our sample. From fig.5.12, it is obvious that sample Bs have

a different temperature dependence below 600 mK to that of sample A for which

we do not have any explanation at this point.

In order to have a better understanding of the nature of the maximum at 0.8

K, one could make a comparison between PrOs4Sb12 and the high temperature

unconventional superconductor Y Ba2Cu3O7−δ. Below its transition temperature
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90.5 K, κ(T )/T of Y Ba2Cu3O7−δ takes a maximum which was shown that has

electronic origin. It has been discussed broadly in [38,39] that though upon entering

the superconducting state the mean free path of phonons increases, as a result of

decreasing the number of quasiparticles, but at the same time mean free path of

the normal electrons would increase as well. In their discussion they show that the

phonon thermal conductivity saturates below Tc and any feature in κ(T )/T is a

result of changes in the electronic thermal conductivity. Since the Superconducting

state in PrOs4Sb12 occurs at much lower temperature where the the lattice thermal

conductivity becomes very small, taking into account the correlated nature of both

PrOs4Sb12 and Y Ba2Cu3O7−δ, one can expect a similar behavior in the electronic

thermal conductivity of these compounds.

5.2.6 Nodal structure in the energy gap of PrOs4Sb12

The measurements of thermal conductivity done in the magnetic field show that

the field dependence of thermal conductivity is in contrast to that of conventional

superconductors [34, 40]. In fact, about 40% of κ is restored already at H ≈
0.07Hc2. For conventional superconductors, small magnetic fields hardly affect

thermal conductivity in the low temperature range, in contrast to unconventional

superconductors in which small magnetic fields can generate excitations which are

big enough for overcoming the energy gap around the nodes. It has been discussed

in [34] that the rapid restore of κ(T )/T in small magnetic field could be explained by

an assumption of a conventional multiband superconducting state, the same thing

that occurs in the thermal conductivity of MgB2. Making a comparison between

PrOs4Sb12 and some other unconventional superconductors can be useful in having

a better understanding of the superconducting state of PrOs4Sb12.

κ(T )/T of unconventional superconductors below Tc as a function of temper-

ature behaves in two different ways; it either increases or decreases. In fig.5.13
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Figure 5.13: Normalized thermal conductivity of Sr2RuO4, PrOs4Sb12, CeCoIn5

and UPt3 as a function of temperature

κ(T )/T of sample B of PrOs4Sb12 along with unconventional superconductors

Sr2RuO4 [41], CeCoIn5 [42] and UPt3 [35] with Tc’s 1.5 K, 2.15 K and 0.5 K

respectively have been shown. In case of Sr2RuO4, the linear temperature term in

the thermal conductivity decreases below Tc and for the heavy fermion compounds,

UPt3 and CeCoIn5, it increases. In the case of PrOs4Sb12 which is also a heavy

fermion compound both of these scenarios happen. One could recognize similar

behavior in the normalized κ(T )/T of these compounds below Tc.

It has been discussed broadly that the conductivity of the lattice is negligible



CHAPTER 5. TRANSPORT PROPERTIES OF PROS4SB12 73

below the transition temperatures of the first three compounds and the electronic

part which has a T 3 temperature dependence has the dominant contribution. Al-

though further measurements need to be done, in order to know that, this is the

right scenario for PrOs4Sb12.

In conclusion, in this section we made an estimation of the electronic and the lat-

tice thermal conductivity of PrOs4Sb12 in the superconducting and normal states.

Although further measurements need to be done, the present data shows a small

contribution of phonons in the thermal conductivity of the superconducting state

while they seem to make the features in the normal state.



Chapter 6

Transport properties of PrRu4Sb12

In this chapter we report thermal and charge conductivity results of two single crys-

tal samples of the filled skutterudite compound, PrRu4Sb12. In all thermal conduc-

tivity measurements, the direction of thermal current was in the same direction as

one of the main axes of crystals which have cubic symmetry. The Wiedemann–Franz

(WF) law was investigated in the normal states of the samples. The investigation

of transport properties of PrRu4Sb12 samples shows that, this compound behaves

like regular metallic compounds in the normal state and WF law is valid at very

low temperature range.

6.1 Electrical resistivity of PrRu4Sb12

The electrical resistivity of PrRu4Sb12 samples were measured between room tem-

perature and 1.5 K. The dimensions of the samples which are labeled A and B

were 1250 × 290 × 90µm and 2500 × 188 × 380µm respectively. Sample B had a

well–defined cubic shape in contrast to sample A which had a trapezoidal cross

section that made the calculation of geometric factor difficult. We used an aver-

age value for the thickness of sample A. Fig.6.3 displays the resistivity curves of

74
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Figure 6.1: Big solder joints in the first sample of PrRu4Sb12 is the biggest error

source

Figure 6.2: Second sample of PrRu4Sb12
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Figure 6.3: Electrical resistivity of our PrRu4Sb12 samples together with Frederick’s

and Abe’s resistivity data. The inset in fig.3 shows the normalized resistivities of

sample A and B to room temperature values and since they become quantitatively

similar after normalizing, the difference in the actual values before normalizing

might be related to the inaccuracy in geometric factors. The geometric factor ( l
A
)

of sample A and B were 20768 m−1 and 29955 m−1 respectively
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Figure 6.4: Temperature dependence of electrical resistivity of PrRu4Sb12 and

LaRu4Sb12, the inset shows the magnetic part of the electrical resistivity estimated

by subtracting the phonon contribution from the total resistivity. All data are

quoted from [18]
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both samples along with two more resistivity curves from [17] and [18]. The Tc

was reported 1.08 K at the middle of the superconducting transition in the elec-

trical resistivity measurements [17]. One could see that both samples display the

same qualitative behavior versus temperature. As the temperature is reduced, the

resistivity decreases which is the typical behavior observed for the metallic com-

pounds. Below 8 K, where a plateau comes up impurities play the dominant role

for scattering the electrons. Sample A and B behaves quantitatively very similar

to Abe’s data. Although they are qualitatively similar to the Frederick’s data–set,

there is a slight quantitative difference between them. The residual and room tem-

perature resistivities were measured 4.9 µΩcm and 127 µΩcm for sample A and

2.9 µΩcm and 215 µΩcm for sample B. The residual resistivity ratio are 26 and

74 for sample A and B respectively which are comparable to 25 reported in [17]

and 100 reported in [18]. At low temperature range, the main contribution to the

electrical resistivity belongs to electron–impurity interactions which is elastic and

sample dependent and at high temperatures, the lattice vibrations which is sample

independent has the largest effect on scattering the electrons, so the high RRR can

be a sign of high purity level of a sample. It has been mentioned in [17] that the

residual resistivity ratio of the sample used in their measurements is unusually low

and is not completely understood.

The magnetic resistivity of PrRu4Sb12, estimated by subtracting the phonon

contribution from total resistivity, increases sharply with increasing temperature

and makes a ”roll–off” feature at 80 K [18]. This temperature dependence can be

related to the increase of the magnetic scattering of the conduction electron by mag-

netic moment of Pr+3 ions which is associated with crystalline electric field (CEF)

effects. This feature in magnetic resistivity of PrRu4Sb12 is similar to the ”roll-off”

feature in the resistivity of PrOs4Sb12 that is discussed in the chapter on electrical

resistivity of PrOs4Sb12. The difference is that the effect of the CEF on scattering

conduction electrons for PrOs4Sb12 happens at about 10 K and for PrRu4Sb12
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about 80 K. This difference might be the result of the difference between the size

of Ru and Os atoms. Since the Ru atoms are smaller the hybridization between

the conduction and f electrons happens in a smaller scale in comparison with what

happens in PrOs4Sb12. Fig.6.4 shows the electrical resistivity of PrRu4Sb12 and

LaRu4Sb12 and the CEF contribution which can be taken off by subtracting the

lattice contribution from the total resistivity. Above 100 K, since the CEF contribu-

tion to the the electrical resistivity saturates, scattering of conduction electrons by

the lattice vibrations is expected to make the dominant contribution to resistivity.

So one can model the resistivity of PrRu4Sb12 as,

ρ(T ) = ρimp + ρCEF + ρe−g, (6.1)

where ρimp occurs at very low range and ρCEF and ρe−ph in the middle and high

temperature range. Comparing to PrOs4Sb12 one can notice the absence of ρe−e

term which is the resistivity due to the electron–electron interaction. In order to

have an estimation of the electron–electron scattering one can look at the Kadowaki-

woods ratio which is defined as A
γ2 [27], where A is defined in ρe−e = AT 2 and γ is the

coefficient of the electronic specific heat. The Kadowaki-Woods ratio is a universal

constant as the physics that gives rise to both of them is the same. Assuming it is

almost the same for both PrRu4Sb12 and PrOs4Sb12 one can look at the following

fractions,

A(PrOs4Sb12)

A(PrRu4Sb12)
∼ γ2(PrRu4Sb12)

γ2(PrOs4Sb12)
. (6.2)

Since γ(PrRu4Sb12) = 59 mJ/mol.K2 [20], γ(PrOs4Sb12) = 421 mJ/mol.K2 [21]

and A(PrOs4Sb12) = 0.009 µΩcmK2 [28] one can see that A(PrRu4Sb12) ∼
1.77E − 4 µΩcmK2 which is not measurable. So the electron–electron interaction

is being hidden by scattering of conduction electrons by The CEF and lattice.
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6.2 Thermal conductivity measurements of

PrRu4Sb12

Fig.6.5 shows the temperature dependence of κ(T )/T of both samples up to 30 K.

One can recognize features similar to that of silver sample in κ(T )/T of PrRu4Sb12.

The linear temperature term in thermal conductivity increases by reducing the tem-

perature and ends up to a plateau below 5 K. The existence of the same qualitative

features like those that were observed in the thermal conductivity of the silver

could lead us to a similar scenario here. As the temperature comes down, scat-

tering of conduction electrons by lattice vibrations decreases and the decrease in

electron–phonon interaction which is the most remarkable scattering mechanism

against the heat conductivity of electrons, at this temperature range, gives rise to

an an increase in electronic thermal conductivity which depends on temperature

as T−2. As a result the electronic thermal conductivity increases until it reaches

a maximum and saturates there. It is scattering by impurity ions which confines

the electronic heat transport at very low temperatures. As displayed in fig.6.5,

thermal conductivity of both samples shows the same qualitative features versus

temperature. Fig.6.6 shows both the charge and heat conductivities of sample B

as a function of temperature. It can be seen that the plateau in κ(T )/T comes

up below 5 K, where the residual resistivity shows up. One can notice that the

different limiting low temperature values of κ(T )/T are caused by the same differ-

ences in the residual resistivity and hence one can see that the WF law is satisfied

in the sense that one obtains the Sommerfeld value of the Lorenz number in both

cases. Fig.6.7 displays the temperature dependence of Lorenz ratio of both sample

A and B. Below 5 K where we have elastic collisions of electrons to impurity ions,

thermal conductivity is a linear function of temperature and electrical resistivity

is a constant, WF law holds and κρ/T = L0, where κ = κe. As the tempera-

ture goes up and thermal vibration of lattice increases, phonons start to take a
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role in both thermal conductivity and scattering of conduction electrons and the

electron–phonon scattering becomes the most dominant scattering mechanism. At

this point κ(T ) = κe + κg and κρ/T = L(T ) where L(T) is smaller that L0. As one

can notice there is an offset between two curves of fig.6.7 which changes slightly

with temperature and takes its maximum when the Lorenz ratio is minimum. It

is also know about metallic compounds that the more pure the specimen is, the

deeper the minimum of Lorenz ratio will be. One might relate the deeper minimum

of sample B to the higher purity level of this sample comparing to sample A.

It is also useful to make a comparison between the temperature dependence of

Lorenz ratio of PrRu4Sb12 and PrOs4Sb12. Fig.6.8 displays the the Lorenz ratio

of sample B of PrRu4Sb12 and that which was reported for PrOs4Sb12 in [34].

The data of PrRu4Sb12 is taken above the superconducting temperature and below
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Figure 6.8: The temperature dependence of Lorenz ratio of sample B of PrRu4Sb12

and that reported in [29] for PrOs4Sb12

transition temperature for PrOs4Sb12. One can see the same qualitative features

in both of them. One can discuss the temperature dependence of L
L0

in terms of

the temperature this minim occurs at.

The plateau in L
L0

shows the predominance of elastic scattering and starts to

deviate from 1 as soon as an inelastic mechanism starts scattering electrons. It

happens for PrOs4Sb12 at about 0.3 K and for PrRu4Sb12 at about 4 K. This

inelastic scattering mechanism can be either phonons or other electrons or Pr+3

ions in this case.

−If the minimum is the effect of phonons, it should reflects Debye temperatures

which are 232 K and 186 K for PrRu4Sb12 and PrOs4Sb12 respectively.
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−The strong electron–electron scattering might be the case in PrOs4Sb12, though

if it is true, then it should happen at the same temperature range that the elec-

tronic specific heat takes its high value. It can not be true in case of PrRu4Sb12

as there is no evidence for strong electron–electron interaction at this temperature

range for PrRu4Sb12.

−The scattering of electrons by Pr+3 ions happens in both systems and the

”roll–off” temperature differs by a factor of ∼ 10 between them. However whether

the scattering starts at the appropriate temperatures (0.3 K for PrOs4Sb12 and 4

K for PrRu4Sb12) is difficult to determine, since the resistivity curves show where

the ”roll–off” start but not where they end. This needs further calculations.

In conclusion, thermal conductivity of PrRu4Sb12 shows no anomalies in the

normal state up to 30 K. Although the resistivity plots reported on different samples

with different purity levels show the same qualitative features, but we still do not

have any explanation in the difference between room temperature resistivities of

samples of this measurements and those reported elsewhere.



Chapter 7

Conclusion

In this study we have presented and compared the heat and charge conductions

of single crystals of PrRu4Sb12 and PrOs4Sb12. The Wiedemann-Franz law was

investigated for both of these compounds in 1.1–35 K range.

−The measurement of electrical resistivity of PrRu4Sb12 above Tc = 1.1K shows

that this compounds behaves similarly to regular metallic compounds where the

resistivity decreases with reducing the temperature. The resistivity was shown to

be qualitatively like previous data in the literature and part of the quantitative

difference could be due to the differences in purity levels.

−The thermal conductivity of PrRu4Sb12 also behaves like regular metallic

compounds (like silver) and decreases with decreasing the temperature. Impurities

were shown to be the dominant scattering mechanism against electrons at low

temperatures.

−The resistivity data on PrOs4Sb12 is quantitatively and qualitatively in agree-

ment with previous published data and decreases with decreasing the temperature.

The Fermi liquid behavior was observed in 8–45 K range. The effect of crystalline

electric field on resistivity was discussed in terms of the ”roll-off” feature which was

86
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observed at about 8 K.

−The measurements on thermal conductivity of PrOs4Sb12 were done in 1.1–35

K and the feature in thermal conductivity were discussed in terms of contributions

of both electrons and phonons. The highest temperature peak which occurs around

13 K fits very well with a change in the phononic contribution to the heat transport.

The peak at Tc can be due to a decrease in number of normal electrons and the

peak at 0.8 K could also have an electronic origin in terms of an increase in the

quasiparticle mean free path due to a decrease in electron–electron scattering. Since

some specific heat and angle resolved magneto-thermal conductivity measurement

measurements shows a double jump below Tc = 1.81K, the lowest temperature

peak might also be related to entering to a new superconducting phase. To identify

the origin of this the extremums below Tc one needs to do more measurements as

the reports in the literature indicates sample dependence.
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