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Abstract 

Steroid sulfatase (STS) catalyzes the desulfation of sulfated steroids such as estrone sulfate to 

the corresponding steroid such as estrone.  Inhibitors of STS are believed to have potential for 

treating estrogen-dependent breast cancer. 

A new class of potential irreversible suicide inhibitors of STS, based on aryl sulfates bearing a 

monofluoromethyl or difluoromethyl group ortho to the sulfate group, was synthesized. Key to the 

success of these syntheses was the use of new sulfation methodology recently developed in the Taylor 

group.  A new and efficient route to 4-formyl estrone, a time-dependent, irreversible STS inhibitor, is 

also reported.  

Several new classes of potential, reversible STS inhibitors were synthesized.  These 

compounds are analogs of known STS substrates in which the sulfate group is replaced with an 

α, α-difluoromethylenesulfonamide group, a boronic acid group or a sulfinic acid group.  We also 

report the synthesis of estrone sulfate analogs that bear a carboxylate moiety at the 17-position and a 

sulfate surrogate at the 3-position.  It is anticipated that these compounds will inhibit STS by 

interacting with Arg98 which lies at the periphery of the active site. Key to the success of this 

synthesis was the use of the t-butyl group as a protecting group for the 2-position of estrone.  

Finally, our preliminary investigations into the synthesis of a new class of chiral electrophilic 

fluorinating agents are presented.  These reagents are based on a chiral binaphthyl sulfonimide 

scaffold and are expected to be capable of performing enantioselective electrophilic fluorinations. 

Such reagents may be useful in synthesizing organofluorines of biological significance including STS 

inhibitors.  
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Chapter 1 

Inhibitors of Steroid Sulfatase 

1.1 Steroid sulfatase and breast cancer 

Steroids and steroid analogs have been used as drugs for many years.1 Perhaps the best 

known steroidal drug is norethindrone (Figure 1.1), also known as “the pill” a female oral 

contraceptive.  Norethindrone, as well as most other steroid-based drugs used today, are not naturally 

occurring but instead are synthetic in that they are prepared in a laboratory by organic chemists in 

pharmaceutical companies. Consequently, new methods for constructing steroids and modifying 

existing steroids are very important.  This thesis deals mainly with the synthesis of analogs of two 

very important natural human steroids, estrone (also known as E1) and estradiol (also known as E2) 

(Figure 1.1). 
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Figure 1.1. Structures of Norethindrone, estrone and estradiol 

Our interest in synthesizing E1 and E2 analogs is a result of our interest in developing 

inhibitors of the enzyme steroid sulfatase (STS).2 STS catalyzes the hydrolysis of the sulfate group 

from sulfated steroids, such as estrone sulfate (E1S), to give the corresponding desulfated steroids, 

such as E1 (Scheme 1.1).  The sulfated steroids, such as E1S, are believed to be the storage forms of 

the corresponding steroids.  
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Scheme 1.1.  A reaction catalyzed by STS 

A high proportion (40%) of breast cancers in post-menopausal women are estrogen- 

dependent.  In other words, the cancer cells require estrogens, especially E2, for survival. In the 

cell, E2 is obtained by reduction of the 17-keto group in E1 by 17β-hydroxysteroid dehydrogenase. 

E2 then binds to the estrogen receptor on the nuclear membrane where it, along with the receptor itself, 

becomes encapsulated and brought into the nucleus.  Once in the nucleus, this complex (other 

proteins are believed to be involved) then binds to specific regions of DNA and acts as a transcription 

factor, controlling the expression of certain genes that are important for cell growth. Not surprisingly, 

significant STS activity have been detected in the majority of breast tumors.3 Recently, a study 

correlated a poor prognosis for estrogen-dependent breast cancer in pre- and post-menopausal patients 

if a high expression of STS mRNA in their tumors was detected.3 

Due to the important role of STS in the biosynthesis of E2, considerable interest has arisen in 

the last decade in developing inhibitors of STS in the expectation that such inhibitors could be used as 

therapeutics for treating estrogen-dependent breast cancer.4 

1.2 Steroid sulfatase – structure and mechanism 

STS is one of a class of enzymes known as aryl sulfatases (ARS’s).  Only STS is capable of 

catalyzing the hydrolysis of sulfated steroids efficiently.  Most other ARS’s act upon sulfated 

carbohydrates.5 All ARS’s undergo a unique enzymatic post-translational modification which 
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converts a cysteine (eukarytotes) or serine (prokaryotes) residue into an active site formyl glycine 

(fGly).  Addition of water to the aldehyde yields a stable formylglycine hydrate.6,7 The structure of 

STS8 and several other ARS’s9 have been elucidated by x-ray crystallography.  There is a very high 

degree of sequence and structural homology at the active site such that their active sites are almost 

superimposable hence it is believed that all ARS’s function by a similar mechanism.  Several 

mechanisms have been proposed for aryl sulfatases.5 On the basis of crystal structures of another 

known ARS called aryl sulfatase A (ARSA) as well as on kinetic studies on the wild type and specific 

mutants of ARSA, a mechanism has been proposed by von Figura and coworkers that is now the most 

widely accepted mechanism for ARS’s (Scheme 1.2).10,11 One of the hydroxyls of the formylglycine 

hydrate attacks the sulfur atom of the substrate resulting in cleavage of the S-O bond, release of the 

hydroxyl or phenolic portion of the substrate and formation of a sulfated hydrate.  The sulfate group 

is then eliminated from the hydrate to give inorganic sulfate and formyl glycine which is then  
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Scheme 1.2.  Proposed mechanism for aryl sulfatases 
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rehydrated.  Several other active site residues, including two conserved histidines, are believed to 

function as general acids and bases during the reaction.  

Dr. Debashis Ghosh, at the Hauptmann-Woodward Institute in Buffalo, New York, reported 

the crystal structure of STS in 2003.8 The enzyme is mushroom shaped.  It has a hydrophobic 

domain which is comprised of two hydrophobic α-helices which make up the stem of the mushroom 

and are believed to anchor STS into the membrane of the endoplasmic reticulum (Figure 1.2).  

 

Figure 1.2. Ribbon structure of STS (courtesy of D. Ghosh) 

The active site is buried in a polar globular domain (the head of the mushroom) that lies close 

to the lumenal side of the membrane (Figure 1.3).  The fGly hydrate is residue 75.  STS crystallized 

with the fGly hydrate sulfated.  Whether this is the resting state of the enzyme in solution or if it is an 

artifact of the crystallization process due to the presence of sulfate in the crystallization buffer is still 

unknown.  The active site contains a Ca2+ ion which is required for catalytic activity.12 The side 

chains of Asp35, Asp136, Asp342, Gln343 and the sulfated fGly hydrate act as ligands to the Ca2+ 
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atom (Figure 1.3). Lys134, Lys368 and Arg79 are also believed to interact with the carboxylic side 

chains of the Asp residues. The amino groups of Lys134 and Lys368 side chains are also believed to 

interact, possible by salt bridges, with two of the sulfate oxygen atoms of the sulfated fGly hydrate. 

The imidazole of His136 is involved in a hydrogen-bond with the hydroxyl group of the hydrate while 

the Nε of His290 is 2.6 Å away from one of the sulfate oxygens of the sulfated hydrate. His136 and 

His290 are believed to act as general bases and general acids (see scheme 1.2) during the reaction. 

His346 side chain contacts Lys368 and Thr291 side chains through a bridging water molecule (not 

shown).  

 

Figure 1.3.  Active site of STS.  The calcium ion is shown in purple.  The sulfur 

of the sulfated fGly hydrate is in yellow (courtesy of D. Ghosh). 

1.3 Inhibitors of STS  

In general, STS inhibitors can be divided into two classes:  Irreversible aryl sulfamate 

inhibitors and reversible non-sulfamate inhibitors.2,4 The former category constitutes the vast majority  
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Figure 1.4. Structures of sulfamate inhibitors 1.1-1.4 

of STS inhibitors reported to date.  Irreversible aryl sulfamate inhibitors are suicide inhibitors of STS in 

that the S-O bond is first hydrolyzed by the enzyme resulting in the release of the phenolic portion of 

theinhibitor and sulfamic acid which then irreversibly inhibits STS by a yet unknown mechanism.2,4 

The earliest examples of this class is EMATE (1.1, Figure 1.4).13 It has been reported to have a Ki of 

670 nM using crude microsomal preparations of STS at an unspecified pH.13 However, EMATE is 

estrogenic due to the release of E1 during the inhibition process, and, consequently, cannot be used as a 

therapeutic.14 Nevertheless, many studies have successfully addressed the estrogenicity issue and a 

considerable number of very potent aryl sulfamate-based, nonestrogenic STS inhibitors have been 

developed such as coumarins 1.2 (also known as COUMATE)15 and 1.3 (also known as 

667-COUMATE),16 and chromenone 1.4,17 to name but a few.4 All of these compounds are also very 

effective STS inhibitors in cellular assays. Although 667-COUMATE has successfully completed 

phase I clinical trials for treating breast cancer,18 concerns have been raised about their poor stability in 

aqueous solution and potential side effects of sulfamate-based drugs when used over the long term.4  

A variety of reversible, non-sulfamate STS inhibitors have been developed.  Only the most 

relevant and/or potent ones will be discussed here.  Early studies focused on replacing the sulfate group 

of estrone or estradiol with O-, N-, or S-linked sulfate surrogates though compounds of this type have 

not yet been shown to be potent STS inhibitors.4 This class of STS inhibitors will be discussed in 
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greater detail in chapter 3. In addition to steroids bearing sulfate surrogates, other steroidal compounds 

have been examined as reversible STS inhibitors.4  A variety of marketed drugs in the form of 

progestins have been examined for STS inhibition in intact breast tumor cells using labeled E1S.4 In 

some instances, decreases in the levels of E1 and E2 were found.  However, progestin acts upon a 

variety of cellular targets and therefore these results must be interpreted with caution.  In the majority 

of these studies, it was never ascertained whether this decrease was due to STS inhibition or a decrease 

in levels of active STS.  Poirier reported that certain 17α-benzyl- substituted estradiol derivatives, such 

as compounds 1.5 and 1.6 (Figure 1.5), are reversible inhibitors of STS and are the most potent 

reversible inhibitors to date some with Ki’s in the low nM region.19,20 Compounds that are highly 

hydrophobic are easily removed from the blood supply by absorption into fatty tissues which can lead to 

a variety of problems.  Thus, the highly hydrophobic nature of these compounds raises serious concerns 

as to their potential for drug development. 
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Figure 1.5.  Structures of reversible inhibitors 1.5-1.9 
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Potent, non-steroidal, non-sulfamate, reversible small molecule inhibitors of STS are very rare. 

High throughput screening (HTS) of compound libraries has been the most successful approach to this 

class of compounds to date.  By screening a library of derivatives of the natural product 

madurahydroxylactone, Jutten et al. discovered thiosemicarbazones derivatives, such as compound 1.7 

(Ki = 350 nM), were non-competitive STS inhibitors (Figure 1.5).21  However, the relatively high 

molecular weight of this class of compounds, as well as the fact that this class of compounds acts upon a 

wide range of biological targets suggests that it is unlikely that it will be an effective scaffold on which 

to construct therapeutically useful STS inhibitors.  HTS followed by SAR studies on an initial hit by 

researchers at Novartis yielded compound 1.8 as a reversible, competitive STS inhibitor with a IC50 of 

84 nM with pure STS.22 However, this compound was not very effective when tested in a CHO 

(Chinese Hamster Ovary) cell line overexpressing STS. HTS by researchers at Bayer yielded 

compound 1.9 as an STS inhibitor with an IC50 of 48 nM under cell-free conditions though only 914 nM 

in a cellular assay.23  The modality of inhibition was not reported.  No models have been proposed that 

rationalizes the binding modes of any of the above compounds.  

1.4 Objective and overview 

In this thesis we present several new avenues to the design of both irreversible and reversible 

STS inhibitors.  These proposed inhibitors are mainly E1 and E2 analogs modified at the 2-, 3-, 4- 

and 17-positions.  Other compounds include bicyclic and tricyclic coumarin and chromenone 

derivatives which are considered to be analogs of the A, B and/or C rings of the steroid scaffold. The 

main objective of the work presented in this thesis is to synthesize the proposed inhibitors.  Although 

this thesis is concerned mainly with the synthesis of the proposed inhibitors, the global or long term 
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objectives are to develop potent STS inhibitors that could be used as therapeutics for treating breast 

cancer.  

In chapter 2 we propose a new class of STS suicide inhibitors based on aryl sulfates which 

bear a monofluoromethyl or difluoromethyl group ortho to the sulfate group.  These compounds were 

prepared using new sulfation methodology that was recently developed in the Taylor group. 

Inhibition studies on these compounds, by Vanessa Ahmed, a graduate student in the Taylor group, led 

to the discovery of an entirely new class of irreversible STS inhibitor and part of the work in this 

chapter is devoted to devising an efficient route to this new class of STS inhibitors. 

In chapter 3, several new classes of potential reversible STS inhibitors are constructed. 

These compounds are analogs of known STS substrates in which the sulfate group is replaced with 

hydrolytically stable functional groups that may interact with specific residues in the active site by 

both reversible covalent and non-covalent interactions.  Inhibition studies on these compounds, again 

by Vanessa Ahmed, allowed us to predict the presence of a second steroid binding site.  In 

collaboration with Dr. Debashis Ghosh, a second steroid binding site was found by obtaining the 

structure of one of our inhibitors complexed with STS.  

The work presented in chapter 4 is not directly related to the stated objective of this thesis, 

which is to construct inhibitors of STS. Of specific interest in the Taylor group is the synthesis of 

organofluorines by electrophilic fluorination (EF).  These organofluorines are often designed to be 

inhibitors of therapeutically significant enzymes including STS. In chapter 4 we present our 

preliminary investigations into the synthesis of a new class of chiral electrophilic fluorinating agent. 

These new reagents are expected to be capable of performing enantioselective EF’s.  Such a reagent 
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may be useful in synthesizing organofluorines of biological significance including STS inhibitors.  
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Chapter 2  

Irreversible Inhibitors of STS: Synthesis of Estrogens Modified at the 

2- and 4-Positions. 

2.1  Introduction 

Irreversible inhibitors are often used as probes and tools for studying the biological function 

of enzymes and even some drugs are irreversible inhibitors.1  We have already presented one class of 

irreversible suicide inhibitors of STS in the form of sulfamate-based inhibitors (section 1.3).  We also 

wished to develop irreversible STS inhibitors but using a very different tactic to the sulfamate-based 

inhibitors.  Our general approach is outlined in Scheme 2.1.  Compounds of type 2.1, bearing a 

mono- or difluoromethyl group ortho to the sulfate group of an aryl sulfate will be prepared (a 

monofluoromethyl compound is shown in Scheme 2.1 as an example).  If these compounds are 

substrates for STS, the S-O bond will be cleaved forming estrone derivatives of type 2.2. 

Compounds of type 2.2 are unstable and undergo elimination of fluoride ion and form quinone 

methides of type 2.3.  Quinone methides are very unstable and would rapidly react with any 

nucleophilic residues on STS thus forming a covalent linkage with STS. We knew from the crystal 

structure of STS that several residues in the active site, such as the formyl glycine hydrate, histidines 

136, 296 and 346, lysines 368 and 134, aspartates 35 and 36, and arginine 79 could potentially react 

with the quinone methide. If this reaction occurs with a residue important for catalysis then activity 

will be irretrievably lost or diminished.  This approach has been used by others for obtaining 

inhibitors of phosphatases,2 proteases3 and glycosidases.4 
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Scheme 2.1. Proposed mechanism for inhibition of STS by compounds of type 2.1  
B stands for amino acid basic residue and Nuc stands for nucleophilic residue 

 The specific suicide inhibitors that we wished to construct are compounds 2.4-2.11 (Figure 

2.1). Four are steroid derivatives and four are coumarin derivatives.  We chose to also prepare the 

coumarin derivatives since potent sulfamate-based STS inhibitors have been prepared based on this 

scaffold (see section 1.3). 

O-O3SO

R

R'
O

2.4, R = H, R' = CF2H
2.5, R = CF2H, R' = H
2.6, R = H, R' = CFH2
2.7, R = CFH2, R' = H

O

-O3SO

R

R'

2.8, R = H, R' = CF2H
2.9, R = CF2H, R' = H
2.10, R = H, R' = CFH2
2.11, R = CFH2, R' = H  

Figure 2.1.  Proposed suicide inhibitors of STS. 

The synthesis of these compounds presented a certain challenge. The most common 
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approach to the construction of aryl sulfates is to sulfate the phenolic hydroxyl group at the end of the 

synthesis using sulfur trioxide-amine complexes or chlorosulfuric acid (Scheme 2.2).  This step is 

performed as the last step in the synthesis due to the difficulties in purifying and carrying out further 

synthetic manipulations with compounds bearing anionic sulfates. However, this approach to aryl  

OH

R

OSO3
-

R

SO3-pyridine

 

Scheme 2.2.  The traditional approach to aryl sulfate synthesis 

sulfate synthesis cannot be used for the construction of compounds 2.4-2.11 since ortho mono- or 

difluoromethylphenols and their derivatives (such as compounds of type 2.2) are highly unstable. 

Therefore, a route to the potential suicide inhibitors was envisioned where the sulfate group would be 

introduced at an early stage in the synthesis as a protected sulfate diester. A retrosynthesis of the 

suicide inhibitors is outlined in Scheme 2.3.  An ester of chlorosulfuric acid is reacted with the 

hydroxyl group of the ortho-formylated arene (ie. 2- or 4-formyl estrone).  Conversion of the formyl 

group to the mono- or difluoromethyl group followed by removal of the sulfate protecting group would 

yield the desired product.  The main difficulty with this approach was finding a protecting group that is 
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Scheme 2.3. Retrosynthesis of compounds 2.4-2.11 
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compatible with aryl sulfate ester chemistry.  Acid-labile protecting groups cannot be used due to the 

well-known instability of aryl sulfate monoesters to acids. Protecting groups removed by 

hydrogenolysis or photolysis are usually benzyl type moieties and benzylic sulfate diesters are highly 

unstable.  The two protecting groups that have been reported for sulfate esters were developed for alkyl 

sulfates, namely carbohydrate sulfates, and are removed by base. Perlin and Penney protected 

carbohydrate sulfates as phenyl sulfate esters.  Deprotection was achieved by hydrogenation of the 

phenyl group to a cyclohexyl group followed by treatment with base.5. Proud et al. used the 

2,2,2-trifluoroethyl protecting group.  Deprotection was achieved using strong base.6.  These 

deprotection conditions are incompatible with aryl sulfate esters. The 2,2,2-trichloroethyl (TCE) moiety 

has been used extensively as a protecting group for carbon and phosphorus acids.  It had never been 

seriously explored as a protecting group for sulfuric acid monoesters probably because it is usually 

removed using Zn/HOAc, which is not compatible with aryl sulfate monoesters.  Nevertheless, Scott 

Ruttgaizer, a graduate student in the Taylor group found that TCE-protected aryl sulfates can be 

prepared in high yield by reacting phenolic derivatives with reagent 2.12 (Scheme 2.4) in the presence of 

triethylamine and DMAP in THF at rt.  Most importantly, the TCE group was easily removed under 

almost neutral conditions using Pd/C or zinc in the presence of HCO2NH4 in MeOH. This represents the 

first protecting group ever developed for aryl sulfates.  Although this was a potential route to the  

OH
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O
O

Cl
Cl

Cl

R

O S
O

O
O

Cl
Cl

Cl

R

O S
O

O
O-NH4

+Pd or Zn
NH4HCO22.12

 

Scheme 2.4. Synthesis of aryl sulfates using reagent 2.12 
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synthesis of compounds 2.4-2.11, it had only been used for preparing very simple aryl sulfates such as 

phenyl sulfate.  This route had not yet been examined as a viable route to more complex sulfate esters 

such as 2.4-2.11.  The original objective of our work on the synthesis of STS suicide inhibitors was to 

develop straightforward syntheses of compounds 2.4-2.11 using the TCE protecting group strategy. As 

we will see, inhibition studies on these compounds led to the discovery of a new irreversible STS 

inhibitor in the form of 4-formyl estrone (2.13, Figure 2.2).  4-Formyl estrone is a known compound. 

However, its synthesis, as well as the synthesis of other estrone or estradiol derivatives modified at the 

4-position, are challenging compounds to prepare.  Consequently, an additional objective of the work 

presented in this chapter is to develop a method for synthesizing 4-formyl estrone and its derivatives.  

O

HO

OH

2.13  

Figure 2.2.  Structure of 4-formylestrone 

2.2 Results and discussion 

2.2.1  Synthesis of 2-formyl estrone 

It can be seen from Scheme 2.3 that the synthesis of steroid derivatives 2.4-2.7 begins with 

the construction of 2-formyl estrone (2.14) and 4-formyl estrone (2.13). Steroid 2.14 as well as 

2-formyl estradiol (2.15) were first reported in the patent literature by researchers at Organon.7 

Organon reported the preparation of these two steroids as well as 2.14 and 4-formyl estradiol (2.16) by 

reacting E1 or E2 with 1.5 M NaOH, CHCl3 and EtOH (Reimer-Tiemann reaction, Scheme 2.5).  The 
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reaction gave mixtures of the 2- and 4-isomeric aldehydes.  No yields were reported. 

X

HO

NaOH
CHCl3
EtOH

X

HO

R1

R2

2.14, R1 = CHO, R2 = H, X = C=O
2.15, R1 = CHO, R2 = H, X = CHOH
2.16, R1 = H, R2 = CHO, X = CHOH

estrone (E1, X = C=O)
or estradiol (E2, X = CHOH)

 

Scheme 2.5.  Organon’s approach to the synthesis of formylated estrogens 

Later, Pert and Ridley reported that they were only able to obtain a 9% yield of 2.13 and 2.14, 

using this procedure and E1 as substrate and were unable to obtain any 2.15 and 2.16 using E2 as 

substrate.8 These workers attempted many other variations on the Reimer-Tiemann reaction but none 

were successful.  These results prompted Pert and Ridley to examine alternative routes to these 

compounds.  They reported that Vilsmeyer formylation of E1 using DMF/POCl3 was unsuccessful. 

Another approach involving regiospecific lithiation of bis-MOM-protected E2 (2.17) at the 2-position 

and then reacting the lithiated species with dry DMF was attempted (Scheme 2.6).  

HO

OHC

OH

MOMO

OMOM

MOMO

OHC

OMOM

HCl

1.  sBuLi
2.  DMF

THF/H2O

2.17 2.18

2.15 (75% from 2.17)  

Scheme 2.6. Pert and Ridley’s synthesis of 2.15 
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Although this gave the desired 2-formyl product 2.18 they found the compound to be unstable 

and could not purify it.  However, reaction of crude 2.18 with THF-HCl gave 2.15 in a yield of 75% 

from the bis ether 2.17.  Later, Lovely et al. made minor modifications to this procedure and 

succeeded in preparing 2.15 in an overall yield of 83% starting from estradiol.9  Although this was a 

potential route to 2-FE1 simply by oxidizing the hydroxyl group at the 17-position, we decided to 

determine if we could prepare 2-FE1 by direct formylation of estrone. 

There are several reports in the primary scientific literature on the direct formylation of E2.  

Most involve subjecting E2 to TFA/HMT (hexamethylenetetramine) giving mixtures of the 2- and 

4-isomers. Typical yields range from 13-25% for 2.15 and 4-13% for 2.16 (Scheme 2.7).10,11 

HO

OH

HMT
TFA

HO

OHC

OH

HO

OH

CHO

+
reflux

2.15 (13-25%) 2.16 (4-13%)  

Scheme 2.7.  Synthesis of formylated estradiol using HMT-TFA 

In 1991, Spyriounis et al. reported a one pot synthesis of 2.15 by reacting E2 with ethyl 

magnesium bromide, paraformaldehyde, triethylamine and HMPA.12 They reported that this reaction 

produced a mixture of 2.15 (68%) and 2-formyl-estradiol-17β-formate (2.19, 27%).  After basic 

hydrolysis of 2.19 the total yield of 2.15 was 94%.  Peters et al also reported a 94% yield of 2.15 

using this procedure.13  These workers also reported that they were able to selectively oxidize the 

hydroxyl group at the 17-position using Jones reagent to give 2.14 in a 62% yield from 2.15 or in an 

overall yield of 58% from E2. We performed this reaction and found that the 4-isomer, 2.16, was also 

formed in this reaction.  However it could be removed by careful chromatography (very tough 
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separation) and 2.15 was obtained in a 75% yield.  Even with the formation of the 4-isomer in this 

reaction, this is still a reasonable route to 2.15 and, therefore, to 2.14.  Nevertheless, we believed 

2.14 could be prepared by direct formylation of E2.  

HO

OH

HO

OHC

OH

HO

OHC

O

HO

OHC

OCHO
 EtMgBr, (CH2O)n
 HMPA, THF

MeOH, NaOH

2.15 (68% from E2
 or 94% from E2 and 
2.19)

2.19 (27%)

Jones reagent

2.14 (62%)

+

 

Scheme 2.8.  Spyriounis et al.’s synthesis of 2.15 and Peters et al.’s synthesis of 2.14 

In 1999, Hofsløkken and Skattebøl reported a convenient method for selective ortho 

formylation of phenols in good yield using 1.5 equiv MgCl2, 6.5 equiv paraformaldehyde and 3.75 

equiv triethylamine in refluxing acetonitrile or THF (Scheme 2.9).14 

OH

R

OH

CHOR

MgCl2, (CH2O)n
Et3N, CH3CN

reflux

R = H, alkyl  

Scheme 2.9. Hofsløkken and Skattebøl’s approach to the ortho-formylation of phenols 

The proposed mechanism of this reaction is shown in Scheme 2.10.  At least two equivalents 

of paraformaldehyde are required.  The good ortho selectivity was attributed to the formation of 

6-member ring complex.  Paraformaldehyde acts as both electrophile (first step) and oxidant (last 
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step).  

We applied this procedure to the formylation of E1 (1 mmol) using 2.6 equiv of MgCl2, 7.0 

equiv of triethylamine and 10 equiv of paraformaldehyde in acetonitrile at 80 oC (oil bath) for 15 h.  

To our delight, a mixture of 2.14 and 2.13 was obtained in about 60% yield in a ratio of 5:1. We  
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Scheme 2.10.  Proposed mechanism for the formylation of phenols using MgCl2, 

Et3N and paraformaldehyde 

attempted to try and increase the yield of the reaction and most importantly, improve upon the 

2.14:2.13 ratio. Varying the amounts of MgCl2, triethylamine and paraformaldehyde while 

maintaining the temperature at 80 oC, resulted in yields of 2.13 and 2.14 from 60-75%.   However, 

the ratio of 2.14:2.13 did not change much from 5:1.  Therefore, subsequent studies were performed 

using the amounts mentioned above. Decreasing the temperature to 42 oC and running the reaction 

for 2 days with or without HMPA (2.3 equiv) made little difference in yield and selectivity (entries 2 

and 3 in Table 2.1).  Performing the reaction in refluxing CH3CN resulted in a decrease in yield 

(49%), however, the ratio of 2.14:2.13 changed to 13:1 (entry 4). Performing the reaction in THF at 

65 oC gave similar results though decreasing the temperature to 40 oC using this solvent resulted in a 

decrease in yield (entries 5 and 6). The more favorable ratio was obtained at high temperature;  
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Table 2.1.  Synthesis of 2.14 by direct formylation of E1 

HO

O

HO

O

OHC

HO

O

CHO

+(CH2O)n

2.14 2.13  

entrya solvent base additive T (oC), time (h) Yield/%b Ratioc 

1 CH3CN Et3N --- 80, 15  60-75 5:1 

2 CH3CNc Et3N --- 42, 48 70 6:1 

3 CH3CN Et3N HMPAe 42, 48 78 5:1 

4 CH3CN Et3N --- 125, 18 49 13:1 

5 THF Et3N --- 65, 24 65 6:1 

6 THF Et3N --- 42, 48 52 5:1 

7 CH3CNd Bu3N --- 125, 18 66 14:1 

8 CH3CNd Bu3N HMPAe 125, 18 66 7:1 

9 THFd Bu3N --- 100, 18 71 10:1 

10 toluene Bu3N --- 120, 6 0  

11 DMF Bu3N --- 60, 6 0  
aAll reactions were performed using 2.5 equiv MgCl2, 10 equiv paraformaldehyde and 3 equiv base. bPurified 

yield (mixture of 2.13 and 2.14) after column chromatography.  cRatio of 2.14 to 2.13 was determined by 
1H-NMR after column chromatography.  dPerformed in glass bomb e2.3 equiv. 

however, the yield was lower.  We reasoned that perhaps the yield was decreasing at the higher 

temperature due breakdown of the paraformaldehyde to volatile formaldehyde which then accumulates 

as solid paraformaldehyde along the walls of the condenser (a white solid is clearly evident on the 

walls of the condenser) or even escapes as formaldehyde through the condenser.  We also reasoned 

that the ratio might be improved by increasing the steric bulk of the base since the 4-position of 

estrone is more sterically hindered.  Therefore, we performed the reaction in a sealed glass bomb at 



 22

125 oC in CH3CN using tributyl- amine (4.6 equiv) as base for 18 h.  This gave 2.14 and 2.13 in a 

respectable yield of 66% in a 14:1 ratio (entry 7). Employing HMPA (2.3 equiv) as additive or by 

performing the reaction in a bomb using THF at a lower temperature resulted in similar yields but 

lower selectivity (entries 8 and 9). No reaction took place in toluene or DMF using tributylamine 

and no bomb (entries 10 and entry 11). 

Using the best conditions from Table 2.1 (entry 7) we performed the formylation on 5.4 g (20 

mmol) of E1 and obtained a 52% yield of 2.14 after chromatography.  We believe that this is the best 

method to prepare 2.14.  It only requires one step starting from estrone, no toxic additives or 

expensive reagents are required and it is very easy to scale up and has a simple purification.  

The preparation of 4-formyl estrone, 2.13, is much more challenging than that of 2.14 due to 

the increased steric hindrance at the 4-position. Pert and Ridley attempted the synthesis of 4-formyl 

estradiol (2.16) by ortho lithiation of TMS derivative 2.20 (Scheme 2.11) followed by the addition of 

DMF.8  However, no reaction occurred even when TMEDA was used as co-solvent.  Quenching 

the reaction with D2O did not result in the incorporation of deuterium.  The authors attributed this to 

the MOM group having a preferred conformation that partially blocks C-4 which prevents lithiation 

even when using small bases such as MeLi.  

MOMO

OMOM

TMS X
MOMO

OMOM

CHO

TMS
 1. n-BuLi, - 78 oC
      THF

2. DMF

2.212.20
 

Scheme 2.11. Attempted ortholithiation and formylation of 2.20 by Pert and Ridley 

To obtain the desired lithated compound the authors turned their attention to a procedure 
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employing lithium-halogen exchange as the key step (Scheme 2.12).  Compound 2.23 was prepared 

by reaction of 4-bromoestradiol (2.22) with MOMCl.  However, the purification of 2.23 was very 

difficult and only 40-60% yields were obtained. However, the MEM derivative 2.24 was easily 

obtained in a 70-75% yield using MEMCl. Lithium-bromine exchange with n-BuLi followed by 

reaction with N-methylformanilide gave 4-formyl derivative 2.25 from 2.24 in 40-45% yield. 

Removal of the MEM group using BBr3 gave 2.16 in 61% yield or in a 19% yield starting from 2.22. 

Compound 2.22 was prepared by bromination of E2 though no yield was reported for this step and 

HO

OH

Br

R-Cl

RO

OR

Br

BBr3

MEMO

OH

CHO

HO

OH

CHO

2.23, R = MOM
2.24, R = MEM (75%)

2.22

THF, NaOH

2.25 (40-45%)

1. n-BuLi, THF, - 78 oC
2. N-methylformanilide

2.16 (61%)  

Scheme 2.12. Pert and Ridley’s synthesis of 2.16. 

so we could not calculate the overall yield of 2.16 from E2. These workers also prepared 2.16 by 

reacting 2.22 with cuprous cyanide to give cyano compound 2.26 and then reaction of 2.26 with 

Raney Ni-formic acid (Scheme 2.13).  However, the best yield that they were able to obtain for the 

reduction was only 2% (or 9% based on consumed 2.26). These workers also report that other 

common formylation procedures on E2, such as the Vilsmeier reaction, were unsuccessful. 
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HO

OH

Br
HO

OH

CN
HO

OH

CHO

2.22

CuCN, DMF

2.26 (60%)

Raney Ni
formic acid

2.16 (2% (or 9% based 
on consumed 2.26))  

Scheme 2.13.  Pert and Ridley’s synthesis of 2.16 by reduction of cyano derivative 2.26. 

For the synthesis of 2.6 and 2.7 we decided not to devise a new synthesis of 2.13 or use Pert 

and Ridley’s approach followed by oxidation of the ketone group. We mentioned earlier that 2.13 

was obtained as a minor byproduct from the direct formylation of estrone using MgCl2, 

paraformaldehyde and tributyl- or triethylamine in acetonitrile (Table 2.1).  As a result of our 

optimization studies on this reaction, we were able to accumulate enough 2.13 to tackle the syntheses 

of compounds 2.6 and 2.7. However, we will see later that 2.13 turns out to be an important 

compound for our inhibition studies and we will be revisiting the synthesis of this compound in 

section 2.2.3. 

2.2.2 Synthesis of compounds 2.4-2.11 

The synthesis of difluoromethyl derivatives 2.4 and 2.5 were begun by reacting 2.13 and 2.14 

with TCEOSO2Cl (2.12) in the presence of 1 equiv of DMAP and 2 equiv of Et3N (Scheme 2.14). 

This gave sulfate diesters 2.27 and 2.28 in 99% and 97% yields, respectively. These formylated 

species were converted into the difluoromethyl derivatives 2.29 and 2.30 in 91% and 83% yield 

respectively using 3.0 equiv of diethylaminosulfur trifluoride (DAST).  No competing fluorination 

occurred at the 17-position nor did any loss of the TCE protecting group occur. Catalytic transfer 

hydrogenolysis of 2.29 and 2.30 using 10% Pd/C and ammonium formate gave compounds 2.4 and 
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2.5 in 86% and 85% yields, respectively. 
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2.27, X = H, Y = CHO (99%)
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2.29, X = H, Y = CF2H (83%)
2.30, X = CF2H, Y = H (91%)
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O

X

2.4,  X = H, Y = CF2H (85%)
2.5,  X = CF2H, Y = H (86%)

Y YNH4

 

Scheme 2.14.  Synthesis of compounds 2.4 and 2.5 

To obtain the monofluoromethyl derivatives 2.6 and 2.7, we had to selectively reduce the 

aldehyde groups in compounds 2.27 and 2.28 to the corresponding hydroxymethyl derivatives without 

reducing the keto group at the 17-position.  Reaction of these aldehydes with NaBH4 resulted in the 

reduction of both the aldehyde and keto group.  Lorca et al have reported that aldehydes can be  
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toluene, 
30 min
or 3.5 h

BINOL (1.0 eq)
Zr(OiPr)4-iPrOH

15-20 wt% 
10%Pd/C
6 eq HCO2NH4
MeOH, 24 h

5 wt% Pd black
5 eq HCO2NH4
MeOH, 24 h (for 2.7)

2.31, X = H, Y = CH2OH (70%)
2.32, X = CH2OH, Y = H (95%)

2.33, X = H, Y = CFH2 (92%)
2.34, X = CFH2, Y = H (90%)

2.6,  X = H, Y = CFH2 (86%)
2.7,  X = CFH2, Y = H (75%)

2.27, X = H, Y = CHO 
2.28, X = CHO, Y = H

 

Scheme 2.15.  Synthesis of compounds 2.6 and 2.7. 
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selectively reduced over ketones using (±)-BINOL-Zr(OiPr)4-iPrOH complex.15 Subjecting 2-formyl 

derivative 2.28 to 1.0 equiv complex for 30 min resulted in a highly selective reduction of the 

aldehyde moiety and hydroxyl methyl derivative 2.32 was obtained in a 95% yield (Scheme 2.15). 

No concurrent reduction of the carbonyl at the 17-position was detected. However, subjecting 

4-formyl derivative 2.27 with 1.0 equiv of this complex for 30 min resulted in partial reduction of the 

ketone moiety and a mixture of the desired compound 2.31, the diol resulting from reduction of the 

aldehyde and ketone moiety and the monoalcohol resulting from reduction of just the ketone was 

obtained. Selectivity was lower with the 4-derivative due to the lower reactivity of the formyl group 

at the 4-position compared to the one at the 2-position.  The mixture of the mono alcohols could not 

be separated.  However, since the reduction of aldehyde was much faster than that of the keto group, 

use of a longer reaction time (3.5 h) provided desired alcohol 2.31 in 70% yield and the diol byproduct 

could be easily removed by chromatography.  Monofluoromethyl compounds 2.33 and 2.34 were 

obtained in 92% and 90% yields, respectively, by subjecting 2.31 and 2.32 to 3 equiv of DAST.  

Removal of the TCE group from 2.34 using 15 wt. % of 10% Pd/C and 6 equiv ammonium formate 

proceeded well giving 2.6 in 86% yield. Surprisingly, removal of the TCE group in 2.5 using 20 wt 

% of 10% Pd/C and ammonium formate proceeded very slowly and, after 24 h, was far from complete.  

However, it was found that compound 2.7 could be obtained in a 75% yield by adding in 5 wt % of 

palladium black and stirring for an additional 24 h.  Later we found that using Zn/HCO2NH4 in 

MeOH/THF (solubility in MeOH was so poor that THF had to be used as a co-solvent) the 

deprotected sulfate 2.7 could be obtained in 98% yield and the reaction was done in less than 15 min. 

The synthesis of compounds 2.8-2.11 began with the synthesis of formyl coumarins 2.36 and 
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2.37.16  To prepare 2.36 and 2.37 we first tried reacting coumarin 2.3517 with HMT (2 equiv) in 

refluxing TFA. This gave 8-formylcoumarin 2.36 in a 65% yield and 6-formylcoumarin 2.37 in a 20% 

yield (Scheme 2.16). These two isomers could be separated by chromatography. Other methods were 

examined.  We tried the formylation reaction using MgCl2, Et3N and para-formaldehyde; however, 

OHO OOHO O
CHO

OHO O

2 eq HMT
+

2.37 (20%)2.36 (65%)

TFA
reflux 6 h

2.35

OHC

 

Scheme 2.16.  Synthesis of compounds 2.36 and 2.37 using HMT-TFA 

the yields of both isomers were lower than with HMT-TFA. Coumarin 2.35 is prepared by 

condensing resorcinol with 2-methoxycarbonylcycloheptanone in the presence of an acid catalyst 

(Pechmann condensation).17 Therefore we thought that 2.37 could be obtained by condensing 

4-fomylresorsinol (2.38) with 2-methoxycarbonyl cycloheptanone (2.39) (Scheme 2.17).  However, 

this reaction was unsuccessful. Rather than spend more time trying to develop a method for 

preparing 2.37 in high yield, we decided to just stick with HMT-TFA approach.  Even though the 

yield of 2.37 was low, the starting material, compound 2.35, was inexpensive and easy to prepare and 

we were able to obtain quantities of 2.37 that were sufficient for our purposes.  

OHHO

O

H

O O

OMe X
OHO O

O

2.372.38

+

acid 
catalyst

2.39  

Scheme 2.17. Attempted synthesis of 2.37 by a Pechmann condensation with 2.38 

Coumarins 2.8 and 2.9 were prepared as outlined in Scheme 2.18. The 4-formyl derivative 
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2.36 was sulfated to give sulfate ester 2.40 in a 95% yield using reagent 2.12. Treatment of 2.40 with 

DAST and then removal of the TCE group using CTH gave the difluoromethyl compound 2.8 in 56% 

yield (2 steps). The 2-difluoromethyl compound 2.9 was prepared in good overall yield (48% over 3 

steps) using the same approach employed for compounds 2.8. Deprotection using Zn (2 

equiv)/HCO2NH4 (6 equiv) in MeOH/THF gave 2.9 in a higher yield (94%) in 30 min and the overall 

yield (over 3 steps) for 2.9 went up to 69%. 

S
O

O
OTCE

OO

X

Y
O

OHO

X

Y
O

S
O

O
OTCE

OO

X

Y
O S

O
O

O-NH4
+

OO

X

Y
O

1 eq DMAP
THF, 4 h

3.0 eq DAST
CH2Cl2
0 oC, 1 h,
rt, 3 h

15 wt% 10% Pd/C
6 eq HCO2NH4
MeOH, 24 h for 
2.8 and 2.9

2 eq TCEOSO2Cl
2 eq Et3N

2.40, X = H, Y = CHO (95%)
2.41, X = CHO, Y = H (95%)

2.42, X = H, Y = CF2H (80%)
2.43, X = CF2H, Y = H (77%)
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Scheme 2.18. Synthesis of compounds 2.8 and 2.9 

To prepare the 4-monofluoro compound 2.10, the aldehyde moiety in 2.40 had to be reduced 

to an alcohol.  We first tried NaBH4.  Although this reaction appeared to go well by TLC, the 

product was very hard to purify by column chromatography and recrystallization.  Therefore, we 

tried (±)-BINOL-Zr(OiPr)4-iPrOH complex and it turned out to be an excellent reducing reagent at 35 

oC giving the alcohol 2.44 in 90% yield.  Treatment of 2.44 with DAST and then removal of the TCE 

group using CTH gave the difluoromethyl compound 2.10 in 49% yield (2 steps).  4-Monofluoro 

compound 2.11 was prepared in 63% overall yield (3 steps) using the same approach employed for 
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compounds 2.10.  It is interesting to note that deprotection of monofluoro derivative 2.47 using CTH 

(10% Pd/C, HCO2NH4) gave only defluorinated byproduct.  Of all of the compounds prepared, this 

was the only one where defluorination was a serious problem.  We do not have an explanation for 

this.  Nevertheless, the deprotection was achieved using zinc (2 equiv) and ammonium formate (6 

equiv) in MeOH/THF to give 2.11 in a 92% yield.  No defluorinated products were detected using 

this procedure (Scheme 2.19). 
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Scheme 2.19. Synthesis of compounds 2.10 and 2.11 

We have shown that the TCE protecting group strategy can be used for synthesizing 

compounds 2.4-2.11 and that using this strategy the synthesis of these compounds was relatively 

straightforward.  These compounds were given to Vanessa Ahmed, a graduate student in the Taylor 

group, who then examined them as irreversible inhibitors of STS. A brief discussion of the results of 

these inhibition studies is necessary since these results had an important bearing on how we were to 

approach the design and synthesis of a new class of irreversible inhibitors of STS. 

Of the eight compounds studied, compounds 2.4, 2.7 and 2.11 exhibited irreversible, 
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time-dependent inhibition of STS. When STS was subjected to inhibitors 2.7 and 2.11, a linear loss 

of STS activity occurred with time and the rate of inactivation was proportional to the concentration of 

inhibitor. We believe that these two compounds act as suicide inhibitors as outlined in Scheme 2.1. 

However, when STS was subjected to inhibitor 2.4, loss of STS activity occurred in a nonlinear 

fashion and there was a significant lag phase at the beginning.  Again, the rate of inactivation was 

proportional to the concentration of inhibitor.  This suggested to us that an intermediate is being 

released from the active site, which then undergoes a non-enzymatic transformation and the resulting 
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Scheme 2.20. Proposed mechanism for the formation of 2.13 from 2.4 
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species then irreversible binds to STS.  Difluoromethyl phenols (such as compound 2.48 in Scheme 

2.20) are more stable than monofluoromethyl phenols.  Elimination of fluoride ion is slower in the 

difluoromethyl phenols and this is probably due to the build up of a slight positive charge on the 

carbon bearing the fluorine(s) at the transition state.18 The additional fluorine destabilizes this positive 

charge and so elimination occurs more slowly.  We reasoned that the difluoromethyl intermediate 

2.48 is able to diffuse out of the active site into solution where it eliminates fluorine to form the 

quinone methide which reacts with water to give 2.13.  We reasoned that perhaps 2.13 is capable of 

binding in the STS active site and irreversibly inhibit STS. Indeed, subjecting STS to a 10 µM solution 

of 2.13 resulted in almost complete irreversible inactivation of STS within 60 minutes!  So 2.13 is a 

potent, irreversible and time-dependent inhibitor of STS.  Moreover, the 2-formyl isomer, 2.14, was a 

much weaker irreversible inhibitor.  We also prepared aldehyde 2.50 (Scheme 2.21) by PCC 

oxidation of 2.4919 (Scheme 2.21). Studies by Vanessa Ahmed in the Taylor group revealed that this 

was a much weaker irreversible STS inhibitor than 2.13.  So the inhibition with formylated estrones 

is greatest with the aldehyde group at the 4-position. 

O

HO

PCC

CH2Cl2

O

O

2.50 (95%)2.49  

Scheme 2.21.  Preparation of aldehyde 2.50 

How 2.13 is inhibiting STS is not yet known.  One possibility is that it is forming a Schiff 

base with an active site lysine or arginine.  Schiff base formation is usually reversible in water. 

However, perhaps water is excluded from the active site when the inhibitor is bound and so imine 
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formation is irreversible.  In any case, these results are highly significant in that a new class of 

irreversible STS inhibitor was discovered.  We wished to use this compound as a lead structure for 

the development of yet more potent STS inhibitors.  However, as mentioned earlier, compound 2.13 

is difficult to prepare in good yield.  It was clear to us that if we wanted to use this as a lead structure 

then a much better synthesis of 2.13 and its derivatives would have to be devised.  The majority of 

the remainder of this chapter focuses upon this issue.  

2.2.3 New approaches to the synthesis of 2.13 

We initiated our studies focusing on the reduction of 4-cyanoestrone, an approach attempted 

by Pert and Ridley8 for the synthesis of 2.16 (Scheme 2.13), since this appeared to be a fairly 

straightforward route to 2.13.  Although Pert and Ridley did not have much success with this 

approach, we anticipated that better yields for the cyano group reduction could be obtained by 

optimizing the Raney Ni reaction or by using reducing agents other than Raney Ni.  The synthesis 

begins with 4-bromoestrone (2.51). Utne et al. reported that reaction of E1 with N-bromoacetamide 

(NBA) in EtOH gave 2.51 in an 83% yield after recrystallization.20  In our hands, this reaction 

provided compound 2.51 in a 72-81% yield (Scheme 2.22). This level of selectivity is unusual for an 

electrophilic aromatic substitution (EAS) on E1.  All other EAS reactions on E1 (not just 

bromination) always give mixtures of the 2- and 4- isomeric products (plus di-substituted product) and 

the 2-isomer usually dominates.  Interestingly, for the bromination of E1, using a variety of 

brominating agents, the 4-isomer tends to predominate though not to the extent when NBA is used as 

brominating agent.  For example, bromination of E1 with N-bromosuccinimide in DMF gives 

mixtures of 2.51, 2-bromoestrone and the yield of 2.51 after purification is around 39%.21  The high  
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Scheme 2.22. Synthesis of compound 2.52 

selectivity reported with NBA has not yet been explained.  There are two major factors that affect the 

regioselectivity of an EAS reaction on E1.  One is steric which clearly favors the 2-position.  The 

other one is electronic which favors the 4-position.  Perhaps the smaller size of NBA makes it less 

susceptible to steric factors and so the 4-isomer dominates.  Compound 2.51 was then converted to 

corresponding cyano compound 2.52 in 89% yield using CuCN (2.5 equiv) in refluxing DMF for 6.5 

h.22 We initially attempted the reduction of the nitrile by heating it in formic acid/H2O in the 

Table 2.2. Synthesis of 2.13 by reduction of the nitrile group in compound 2.52 using 

Raney Ni. 

HO

O

CN
HO

O

CHO

Raney Ni
aq. HCO2H

2.52 2.13

∆

 

entry % aq. HCO2H Temp/oC Time/h Yield 2.13 Recovered 2.52 

1 80% 140 24 18% 32% 

2 75% 150-155 40 10% 32% 

3 42% 150-155 24 12% 20% 

4 60% 150-155 48 8% 0 

5 60% 140 48 20% 32% 

6 60% 130 36 12% 18% 
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presence of Raney Ni, conditions similar to those used by Pert and Ridley.  Different temperatures 

and amounts of formic acid were examined.  The reaction was very slow and at higher temperatures a 

considerable amount of decomposition products were formed.  The best yield we obtained was only 

20% (entry 5, Table 2.2) which means that the overall yield of 2.13 was only 12% starting from E1.  

We also examined other reducing agents, such as DIBAL, PtO2 in refluxing formic acid23 and 

(MeNHCH2CH2NHMe)-LiAlH4 complex.24 However, these were even less successful in that only 

trace amounts of the aldehyde product was obtained.  In most instances, the keto group at the 

17-position was reduced to the alcohol though this was not considered to be a problem since it could 

be oxidized back to the ketone.13 We also prepared 3-methoxy-4-cyanoestrone (2.53) and subjected it 

to DIBAL.  However, only the ketone group was reduced.  

MeO

O

CN

1. NaH

2.  MeI
HO

O

CN

2.53 (79%)2.52  

Scheme 2.23. Methylation of 2.52 

Reduction of 2.52 with LiAlH4 in refluxing THF gave the corresponding primary amine 2.54 

(Scheme 2.24) in 59% yield or in a 33% overall yield over 3 steps starting from E1.  Although amine 

2.54 is not our target compound, this synthesis of 2.54 is a considerable improvement over the 

literature synthesis which was accomplished in an 21% yield over 6 steps starting from estradiol.25  

Direct oxidation 2.54 using refluxing HMT26 in HOAc failed to give the aldehyde. 
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Scheme 2.24. Reduction of 2.52 with LiAlH4 

Nitrile 2.52 proved to be remarkably inert. Acidic hydrolysis in 70% sulfuric acid at 100 oC 

didn’t go at all.  Basic hydrolysis to acid 2.55 was achieved in about a 42% yield using NaOH in 

ethylene glycol at 170 oC (Scheme 2.25) though we were never able to completely purify the acid. 

Moreover, reduction of this impure acid to alcohol 2.56 using LiAlH4 was very sluggish and only 

about a 35% yield of impure triol 2.56 was obtained. 

HO

O

CN
HO

O

CO2H

LiAlH4

HO
CH2OH

OH
NaOH
ethylene
glycol

170 oC

2.55 (42% impure) 2.56 (35% impure)2.52  

Scheme 2.25. Attempted synthesis of 2.56 

Since bromo compound 2.51 was readily obtained, we envisioned preparing 2.13 by 

converting 2.51 to a vinyl derivative followed by ozonolysis (Scheme 2.26).  Stille coupling of 2.51 

with 1.1 equiv of tributylvinyltin in degassed DMF in the presence of 5.7 mol% of Pd(PPh3)4 at 

165-170 oC for 24 h gave 4-vinylestrone (2.57) in 73% yield.  

Although ozonolysis of 2.57 afforded 2.13 the reaction was very messy (by 1H NMR) and 

even after multiple columns an unidentified contaminant was present and the yield was low (35% 

impure). We also tried to prepare 2.13 by subjecting 2.57 to cat. OsO4/NaIO4 (Scheme 2.26).  
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Scheme 2.26.  Attempted synthesis of 2.13 from alkene 2.57 

Interestingly, quinone compound 2.58 was isolated in a 26% yield and only of trace amounts of 

desired product 2.13.  The proposed mechanism for the formation of 2.58 is shown in Scheme 2.27. 
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Scheme 2.27. Proposed mechanism for the formation of 2.58 

To avoid the problems with direct transformation of alkene to aldehyde, our next approach was 
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to protect or block the 2-position first, formylate or hydroxymethylate the 4-position and then 

deprotect the 2-position (Scheme 2.28). The obvious difficulty with this approach is the selective 
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Scheme 2.28.  Proposed synthesis of 2.13 by protection of the 2-position 

introduction of an easily removed protecting group at the 2-position.  We started with iodine since 

reports have appeared describing high yields of regioselective iodination of estrogens at the 2-position 

and iodine can be easily removed from aryl rings in high yield by hydrogenolysis. Even if the formyl 

group at the 4-position was reduced to the alcohol during the removal of the iodine, we knew that it 

could be selectively reoxidized to the aldehyde in good yield using Jones reagent.13 In 1953, 

Hillmann-Elies et al. reported that 2-iodoestrone can be obtained in a 96% yield by reacting estrone 

with iodine and Hg(OAc)2 in AcOH.27  However, other groups have reported that they were unable to 

obtain this yield and degree of selectivity using this procedure and instead reported that isomeric 

mixtures were obtained and yields of 40-60% for 2-iodoestrone were achieved.28 Horiuchi and Satoh 

reported that if Cu(OAc)2 is used instead of Hg(OAc)2 then the 17-enol acetate of 2-iodoestrone can 

be obtained in a 90% yield.29 The enol acetate was reduced with NaBH4 to 2-iodoestradiol in a 95% 

yield.  Finally Page et al. reported that reaction of 3-acetoxyestrone with thallic trifluoroacetate in 
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TFA followed by treatment with copper iodide gave the 17-enol acetate of 2-iodoestrone.30. Hydrolysis 

of the enol acetate with potassium carbonate in methanol gave 2-iodoestrone in 87% yield starting 

from 3-acetoxyestrone. 

We wished to avoid the use of thallium salts due to their toxicity and it was clear from reports 

by other workers that the route using Hg(OAc)2 was difficult to reproduce.  Therefore we focused 

upon the route developed by Horiuchi and Satoh using 1.5 equiv of I2 and 1.5 equiv of Cu(OAc)2.  In 

our hands we obtained only a 45% yield of 2-iodoestrone (2.59) using this procedure (Scheme 2.29). 

Moreover, we obtained 2.59 directly and none of the enol acetate was observed.  
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Scheme 2.29.  Synthesis of 2.60 

Although the yield of 2.59 was disappointing, we subjected 2.59 to MgCl2 (3.1 equiv), 

paraformaldehyde (13.2 equiv) and triethylamine (5.7 equiv) in acetonitrile at rt for 3 days which gave 
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an easily separable mixture 4-formyl-2-iodoestrone (2.60, 24%) and 4-hydroxymethyl- 2-iodoestrone 

(2.61, 40%) and, surprisingly, 2.14 (Scheme 2.29). At higher temperature (50 oC, 5 h), no alcohol 

product was isolated and only 2.14 (20%) and the desired product 2.60 (40%) were obtained. To our 

knowledge, this is the first example of the substitution of an iodine for a formyl group mediated by the 

salt of a divalent metal.  Several possible mechanisms for the formation of 2.14 are shown in Scheme 

2.30 though we do not know which one (if any) is taking place.   
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Scheme 2.30.  Possible mechanisms for the formation of 2.13 from 2.59 

The selective reduction of an aryl bromide in the presence of a formyl group has been 

accomplished using Zn-Ag, NaI, NaHCO3 in DMSO.31 However, subjecting 2.60 to these conditions 

did not result in any reaction.  We then examined a variety of conditions (Pd/C or Pd black and H2 
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with or without triethylamine in various solvents, AIBN/tin hydride) to remove the iodine; however, 

all of these reactions produced a complex mixture of products. 1H NMR of some of these crude 

reaction mixtures suggested that polymerization was taking place. 
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Scheme 2.31.  Synthesis of 2.13 from 2.59 

We also performed a hydroxymethylation of 2-iodoestrone hoping that this would go in better 

yield than the formylation reaction (Scheme 2.31).  After some experimentation it was found that a 

50% yield of 4-hydroxymethyl-2-iodoestrone (2.61) could be obtained using 0.66 equiv of 

paraformaldehyde and 0.22 equiv NaOH in dioxane.  A surprising byproduct of this reaction was 

2,4-diiodoestone (2.62) which was formed in a 14% yield.  Once again, removal of the iodine by 

hydrogenolysis proved to be difficult.  

However, after considerable experimentation it was found that it could be removed using Pd 

black in the presence of Na2HPO4 which gave 4-hydroxymethylestrone 2.63 in 59% yield.  Oxidation 

with MnO2 in CH2Cl2 gave desired 2.13 in a 100% yield.  The overall yield of 2.13 starting from 
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estrone was 12%.  

Formation of diiodo compound 2.62 during the hydroxymethylation of 2.59 was quite 

unexpected.  A possible mechanism for its formation is shown in Scheme 2.32.  Compound 2.59 

reacts with formaldehyde at the 2-position to form intermediate 2.64 and another molecule of 

2-iodoestrone attacks the iodine atom in 2.64 to give diiodoestrone.  We believe that 

2-hydroxyestrone decomposes under the reaction conditions via a quinone methide type intermediate 

and so it not detected. 
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Scheme 2.32.  Proposed mechanism for the formation of 2.62 during the 

hydroxymethylation of 2.59. 

We also performed the iodination reaction on estradiol (E2) using the Cu(OAc)2 procedure in 

the anticipation that this might give a better yield of the 2-isomer than the reaction with E1. 

Unfortunately, this gave 2-iodoestradiol (2.65) in only a 40% yield (Scheme 2.33).  

Hydroxymethylation of 2-iodoestradiol at 4-position with paraformaldehyde and NaOH gave 

corresponding triol 2.66 in a 40% yield.  We were surprised to find that the iodine could be removed 

in 2.66 using 10% Pd/C and H2 to give 4-hydromethylestradiol (2.56) in quantitative yield. 

Oxidation to 2-formyl estradiol (2.16) was achieved in quantitative yield using excess activated MnO2 
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in CH2Cl2.  The overall yield of 4-formylestradiol was 16% in 4 steps starting from estradiol.  

Oxidation of the alcohol at the 17-position in 2.16 was not performed since it was clear that this was 

not going to be an efficient route to 2.13. 
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Scheme 2.33.  Synthesis of 2.16 from E2 

We decided to try the same approach to 2.13 except the iodine was replaced with bromine 

(Scheme 2.34).  Bromination of estrone was performed using tetrabutylammonium tribromide 

(TBATB), a bulky brominating agent that we anticipated would preferably yield the 2-isomer. Using 

this reagent only 2-bromo- (2.67) and 4-bromoestrone (2.51) are formed and almost no estrone 

remained and no dibromide formed when 1.1 equiv of TBATB was used (when 1 equiv of TBABA 

was used, 10% of E1 was remained).  Although the yield of the two isomers was almost quantitative, 

the ratio of 4-isomer 2.51 to 2-isomer 2.67 isomer was only about 1.2:1. These two isomers are not 

readily separated so we used the crude mixture to do the formylation reaction. Formylation was 

carried with using 2.6 equiv of MgCl2, 12 equiv of paraformadehyde and 2.85 equiv of triethylamine 

in acetonitrile.  A mixture of 2-bromo-4-formyl- estrone (2.68), 4-bromo-2-formylestrone (2.69) and 
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2.14 were obtained.  The desired isomer 2.68 could be easily separated from the mixture; however 

the yield of 2.68 was only 25% yield starting from estrone.  

It was clear that using an iodo or bromo group as a protecting group for the 2-position was not 

going to work.  Bromination or iodination of E1 was not selective enough for the 2-position and the 

yields of the subsequent formylations or hydroxymethylations were too low.  Ideally what we needed 

was a protecting group that could be introduced into the 2-positon in better yield, was stable to the 

formylation or hydroxymethylation conditions and could be removed in high yield. 
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+

+
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Scheme 2.34.  Synthesis of 2.68 from E1 

The t-butyl group has been used as a protecting group for the ortho position of substituted 

phenols for over 50 years.32 It is usually introduced into phenols using a Friedel-Crafts (F-C) reaction 

and removed using Lewis acids such as AlCl3 in an acceptor solvent such as benzene, toluene or 

nitromethane.  2-t-Butylestrone (2.70) is a known compound. It was first synthesized in 1968 by 

Lunn and Farkas by passing a slow stream of BF3 over a solution of E1 and 6 equiv t-butyl alcohol in 
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n-pentane.33 What was particularly significant about this was that the yield of the reaction was 89% 

and, due to the large size of the t-butyl group, no reaction occurred at the 4-position or the phenolic 

oxygen.  Later, Goendoes et al. reported that 2.70 could be prepared in an 81% yield using 

Friedel-Crafts chemistry (t-butyl chloride as solvent and reactant, FeCl3).34  The high selectivity and 

yields of these reactions, coupled with the knowledge that the t-butyl group can be removed from 

phenolic derivatives in high yield using Lewis acids suggested to us that it could be used as a 

protecting group during the synthesis of 2.13.  

Although the reaction with BF3/t-butyl alcohol gave higher yields of 2.70 we decided to use 

the F-C chemistry since we did not wish to work with gaseous BF3 and all of the reagents for the F-C 

chemistry were already in the Taylor lab. We modified the reaction conditions of Goendoes et al. in 

that 30 equiv instead of 100 equiv of t-butyl chloride was used and methylene chloride instead of 

t-butyl chloride was used as solvent.  Using these conditions, a 73% yield of 2.70 was obtained 

(Scheme 2.35).  

O

HO

O

HO
CH2Cl2

FeCl3, tBuCl

2.70 (73%)  

Scheme 2.35.  Synthesis of 2.70 using an F-C reaction 

Our first attempt to formylate 2.70, using 2.5 equiv MgCl2, 12 equiv paraformaldehyde, 2.4 

equiv Et3N in THF (glass bomb, 70 oC, 3 h), gave aldehyde 2.71 and hydroxymethyl ether derivative 

2.72, which were surprisingly difficult to separate, in a yield of about 30% (Scheme 2.36).  However, 

when we tried this reaction again, no reaction took place even after we played around with different  
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Scheme 2.36. Products resulting from the formylation of 2.70  

conditions such as temperature, ratio of reagents etc.  This was initially very puzzling.  However, 

we realized that when we performed this reaction the first time and got a modest yield of 2.71 and 

2.72, the compound 2.70 that we used had been purified only by chromatography.  In the subsequent 

unsuccessful attempts, compound 2.70 had been further purified by recrystallization after 

chromatography.  Clearly, there was an impurity in the non-recrystallized 2.70 that was promoting 

the reaction.  We reasoned that this might be trace amounts of FeCl3.  To test this hypothesis, we 

took the recrystallized 2.70 and performed the formylation reaction in the presence of 50 mol% of 

anhydrous ferric chloride.  This time, compounds 2.71 and 2.72 were obtained in a 40% yield in a 

ratio of 3:2 (Table 2.3, entry 1). It is possible that FeCl3 enhances the electrophilic ability of 

carbonyl group of formaldehyde by coordination.  With 10% ferric chloride and 3.3 equiv 

paraformaldehyde, the yield of 2.71 and 2.72 improved to 51% and the ratio of 2.71 to 2.72 increased 

to 5:1 (entry 2).  However, a byproduct, which was identified as dimer 2.73, was formed in a 

significant quantity (37%). Dimer formation has been noted before by Aldred et al. during the 

formylation of magnesium phenoxide with paraformaldehyde.35 This was explained by the 

formation of a quinone methide 2.75 from loss of water of diol 2.74, followed by nucleophilic attack 
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from another molecule of phenoxide (estrone).  A similar mechanism can be invoked for the 

formation of dimer 2.73 (Scheme 2.37). 
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Scheme 2.37.  Proposed mechanism for the formation of dimer 2.73 

Since ferric chloride is a strong, hygroscopic Lewis acid and difficult to handle especially in 

small amounts, we tried 10 mol% ferric acetate (non-hydroscopic) instead.  To our delight, 

compound 2.71 was formed, however, once again compounds 2.72 and 2.73 were also obtained in 

significant quantities (Table 3, entry 3).  We then attempted to optimize the yield of 2.71 using 

different amounts of catalyst, paraformaldehyde, reaction times and temperature.  Performing the 

reaction with just 0.4 mol% catalyst at 50 oC resulted in an increase in the yield of 2.71 and 2.72 (69%) 

and the 2.71 to 2.72 ratio (11:1) and a decrease in the amount of dimer 2.73 (Table 3, entry 4). Using 

the same conditions and performing the react at rt for 72 h resulted in very poor conversion (entry 5). 

Performing the reaction with 0.4 mol% catalyst at 40 oC for 5.5 h resulted in a further increase in the 

yield of 2.71 and 2.72 (73%) and the 2.71 to 2.72 ratio (14:1) and a further decrease in the amount of 

dimer 2.73 (18%) (Table 3, entry 6). We could even reduce the amount of catalyst to 0.04% and 

react for 5.5 h at 40 oC and obtain a 67% yield of 2.71 and 2.72 in a 10:1 ratio and a 22% yield of 

dimer.  Performing the reaction using a catalyst loading of 0.14 mol %, and 10 equiv 
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paraformaldehyde at 40 oC for 14 h gave a 91% yield of 2.71 and 2.72 in a ratio of 5:3 and no dimer 

was present.  

Table 2.3. Formylation of 2.70 under different conditions. 

 
entrya 

 
Mol % catalyst 

Equiv 
(HCHO)n 

Temp
(oC) 

Time 
(h) 

% yield 2.71 + 
2.72 (ratio)b 

% yield 
2.73 

1 50 mol% FeCl3 12 70 3 40 (3:2) - 

2 10 mol% FeCl3 3.3 70 3 51 (5:1) 37 

3 10 mol% Fe(OAc)3 3.3 70 3 55 (3.5:1) 31 

4 0.4 mol% Fe(OAc)3 3 50 3 69 (11:1) 25 

5 0.4 mol% Fe(OAc)3 3 rt 72 <10%  - 

6 0.4 mol% Fe(OAc)3 3 40 5.5 73 (14:1 ) 18 

7 0.04 mol% Fe(OAc)3 3 40 5.5 67 (10: 1) 22 

8 0.14 mol% Fe(OAc)3 10 40 14h 91 (5:3) - 
a All reactions were performed using using 2.5 equiv MgCl2 and 2.4 equiv Et3N in THF. bRatio of 2.71 to 2.72 

determined by 1H NMR and after chromatography. 

It appears that when a considerable excess of paraformaldehyde is used, dimer formation is 

suppressed.  The reaction of 2.70 with formaldehyde might be faster than dimer formation and so in 

the presence of large quantities of paraformaldehyde all of 2.70 has reacted with paraformaldehyde 

before any free 2.70 can react with quinone methide. However, when excess paraformaldehyde, long 

reaction times and/or high catalyst loading are used the amount of methoxymethyl derivative 2.72 

increases. This might be due to formation of methoxide which may attack quinone methide 2.75 

(Scheme 2.38).  
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Scheme 2.38. Proposed mechanism for the formation of 2.72. 

Compounds 2.71 and 2.72 are difficult to separate.  Therefore, we took the mixture (ratio 

14:1) resulting from the reaction performed under the conditions in entry 6 in Table 2.3 (0.4 mol% 

Fe(OAc)3, 3 equiv paraformaldehyde, 2.5 equiv MgCl2, 2.4 equiv triethylamine, 5.5 h, 40 oC, sealed 

tube) and attempted a deprotection of this material using 2.5 equiv anhydrous aluminum chloride and 

23 equiv nitromethane in CH2Cl2.  The use of methylene chloride as co-solvent was necessary due to 

the poor solubility of the starting material in nitromethane. After stirring at rt for just 5 h, aldehyde 

2.13 was the only material that was detected by TLC (Scheme 2.39).  No 4-hydroxymethyl estrone 

was seen suggesting that this material somehow decomposed (most likely) or was converted into the 

aldehyde (unlikely) during the reaction.  Typical yields (two steps involving formylation with 0.4 

mol% Fe(OAc)3, 3 equiv paraformaldehyde, 2.5 equiv MgCl2, 2.4 equiv triethylamine, 5.5 h, 40 oC, 

sealed tube followed by deprotection) ranged from 45-51%.  Thus, starting from E1, compound 2.13 

was obtained in three steps in a respectable 35% yield. 

O

HO
CHO

O

HO
CH2OH

2.5 eq AlCl3
23 eq MeNO2

O

HO
CHO

2.71 2.72

+

2.13 (45-51% from 2.70)

CH2Cl2, rt

 

Scheme 2.39.  De-tert-butylation of 2.71 and 2.72. 



 49

A possible mechanism of the removal of the tert-butyl group is shown in Scheme 2.40.  

Nucleophilic attack of phenolate 2.76 to HCl, followed by loss of isobutene or 2,2-dimethyl- 

1-chloropropane, gives 2.13 as desired product. 
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Scheme 2.40.  Proposed mechanism for the de-tert-butylation reaction 

To try and further improve upon the overall yield of 2.13 we turned our attention back to the 

t-butylation reaction. Lunn and Farkas obtained 2.70 in an 89% yield using BF3 and t-butyl alcohol. 

We reasoned that easy-to-handle BF3(OEt)2 could used instead of BF3.  It was found that by 

subjecting E1 to 3.0 equiv BF3(OEt)2, 2.0 equiv t-butyl alcohol in CH2Cl2 for 3 h, a 95% yield of 2.70 

could be obtained.  This brings the overall yield of 2.13 to 46% starting from E1.  Further attempts 

to improve the yield of 2.13 are still in progress in the Taylor group. For example, we have shown 

that when performing the formylation reaction using 0.14% Fe(OAc)3, 3 equiv paraformaldehyde, 2.5 

equiv MgCl2, 2.4 equiv triethylamine, 5.5 h, 40 oC, a 91% yield of 2.71 and 2.72 could be obtained in 

a ratio of 5:3 (entry 8, Table 2.3).  Oxidation of the hydroxymethyl group in 2.72 to 2.71 in high yield 

should be feasible.  This should enable us to obtain an even better overall yield of 2.13.  
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Scheme 2.41. Synthesis of 2.16 from 2.71 

We also investigated the preparation of 4-formylestradiol (2.16) using our t-butyl protecting 

group approach (Scheme 2.41).  Compound 2.70 was reduced to 2-tert-butylestradiol (2.77) in 100% 

yield by using NaBH4 in EtOH/THF.  This reaction was very clean and no further purification was 

performed beyond a simple aqueous workup.  Formylation using 3.67 equiv MgCl2/0.04 mol% 

Fe(OAc)3/3.5 equiv Et3N/4.5 equiv (HCHO)n, at 45 oC for 4 h followed by basic hydrolysis of the 

formate ester of the 17-hydroxyl group gave the corresponding aldehyde 2.78 and methyl ether 2.79 as 

an inseparable mixture in a 5:3 ratio in a 66% yield and dimer 2.80 in 25% yield. The t-butyl was 

removed using 3.0 equiv anhydrous AlCl3 and 23 equiv nitromethane in CH2Cl2 at rt for 4.5 h which 

gave 2.16 in a 32% yield over 3 steps starting from 2.70 or 30% yield starting from E1.  Again the 
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last step (deprotection) was very clean by TLC. Optimization of the formylation reaction is still in 

progress in the Taylor group. 

2.2.4 Synthesis of other A-ring modified E1 and E2 derivatives. 

Our syntheses of 2.13 and 2.14 could be used for the rapid entry into other A-ring-modified 

estrone and estradiol derivatives. First we examined the synthesis of 4-hydroxymethyl estrone (2.63) 

and 2-hydroxymethyl estrone (2.81) from aldehydes 2.13 and 2.14.  We tried the selective reduction 

of the formyl group using (±)-BINOL-Zr(OiPr)4-iPrOH complex but no reaction occurred.  In order 

for this reaction to work, it must form a 6-membered ring intermediate so that hydride can be 

delivered from the isopropyl group to carbonyl group (Scheme 2.42).  When there is a hydroxyl 

group at the ortho position of an aryl aldehyde, the zirconium most likely forms another 6-membered 

ring with both carbonyl and phenol which prevents the reaction from proceeding.  NaBH4 gave a 

complex mixture which was hard to separate. 

O

O

O
ZrL
LL

H

Zr
O

H
L

LL

O

H
Ar

 

Scheme 2.42. Mechanism for the reduction of an aldehyde using 

(±)-BINOL-Zr(OiPr)4-iPrOH complex 

There are many literature procedures for the selective reduction of aldehydes over ketones, 

but not many for salicylic aldehyde type compounds. Bu3SnH in refluxing methanol has been used 

to achieve this transformation.36  When 2.13 was treated with Bu3SnH (1.5 equiv) in refluxing 

methanol for 5 h the desired alcohol 2.63 was obtained in a 42% yield (Scheme 2.43). Similarly, 
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2.81 can be prepared from 2.14 in a 52% yield (Scheme 2.43). Although the selectivity was 

excellent in that the 17-position ketone remained intact the yields were disappointing. 
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1.5 eq. Bu3SnH 
MeOH, reflux 5 hX

Y
2.13, X = H, Y = CHO
2.14, X = CHO, Y = H

2.63, X = H, Y = CH2OH (42%)
2.81, X = CH2OH, Y = H (52%)

Y

 

Scheme 2.43. Reduction of the formyl group in 2.13 and 2.14 using Bu3SnH 

Later we found that aldehydes 2.13 and 2.14 could be reduced to 2.63 and 2.81 in higher 

yields by hydrogenation using 25 wt.% Pd black/H2 (balloon pressure) in EtOAc.  The 4-isomer 2.63 

was obtained in a 100% yield while the 2-isomer 2.81 was obtained in 65% yield (Scheme 

2.44). Compounds 2.63 and 2.81 have been prepared by Singh et al. by hydroxymethylation of estrone 

protected at the 17-position with a 1,3-dioxolane ketal followed by removal of the ketal protecting 

group.  The hydroxymethylation gave a 35% yield of the 2- and 4-isomers in a 5 to 1 ratio which 

could not be separated.  Removal of the ketal protecting group was achieved in a 90% yield using 1 

M HCl.  This translates into an overall 6 % yield of 2.63 and a 25% yield of 2.81 from E1.  We have 

prepared the same compounds in yields of 46% (for 2.63) and 34% (for 2.81) from E1. 

O

HO

X

O

HO

X

Y
2.13, X = H, Y = CHO
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Scheme 2.44.  Reduction of the formyl group in 2.13 and 2.14 using Pd black/H2 

The behavior of 2.13 and 2.14 to H2/Pd black in EtOAc is very different to that of 
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3-hydroxymethylestrone (2.49) which we found was easily reduced to 3-methylestrone (2.82) in 

quantitative yield using H2/Pd black in MeOH (Scheme 2.45).  We did not detect any 2- or 

4-methylestrone during the reduction of 2.13 and 2.14.  This may be due to the intramolecular 

hydrogen bonding in 2.63 and 2.81 which somehow decreases their susceptibility to further reduction. 

This could also be due to a solvent effect; however, further studies will be necessary to determine this. 
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2.49 2.82 (100%)

25 wt.% Pd black

H2, MeOH, 3 h
HO

 

Scheme 2.45.  Synthesis of 2.82 by reduction of 2.49 using Pd black/H2 

Reduction of 2.13 and 2.14 to the triols 2.56 and 2.83 was easily achieved using NaBH4 in 

EtOH at 0 oC for 30 min followed by workup with 1 M HCl (Scheme 2.46). The 4-isomer, 2.56, has 

been prepared by Lovely et al in 5 steps starting from E2 in an overall yield of 13%.25  We have 

achieved its synthesis in 4 steps starting from E1 in 33% yield. Lovely et al. have also prepared the 

2-isomer, 2.83, by reduction of 2.15 which was prepared by the route outlined in Scheme 2.6.9  This 

was a four step synthesis starting from E2 and gave 2.83 in an overall yield of 59%.  We have 

achieved its synthesis in two steps starting from E1; however, the overall yield is 39%. 

2.  1 N HCl, 0 oC

1.  4 eq NaBH4 
     EtOH, 0 oC, 30 min

HO
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Scheme 2.46. Synthesis of triols 2.56 and 2.83 by reduction of 2.13 and 2.14 
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Now that we have an efficient synthesis of 2.13, we can now easily prepare 2.13 derivatives 

modified at the 2-position. For example, we subjected 2.13 to HNO3 in AcOH and obtained nitro 

derivative 2.84 in a 97% yield (Scheme 2.47). Additional modifications (halogenation, acylation, 

alkylation etc.) at the 2-position of 2.13 are in progress in the Taylor group.  

O

HO
CHO

O

HO
CHO

O2Nconc. HNO3

HOAc

2.70 2.84 (97%)  

Scheme 2.47. Synthesis of 2.84 

Our route to 2.13 can also be used for preparing other estrone derivatives modified at the 

4-position. Although this has no connection to STS inhibitors, this is still important since (as we 

have shown throughout this chapter) the synthesis of estrone analogs bearing groups at the 4-position 

is challenging.  This work has only just begun in the Taylor group.  So far we have prepared 4-iodo- 

(2.85) and 4-bromo-2-tert-butylestrone (2.86) in 62% and 88% yields (neither optimized) (Scheme 

2.48).  Deprotections of these species are in progress. The synthesis of other estrone derivatives 

modified at the 4-position (NO2, F, Cl, acyl, alkyl etc.) is in progress in the Taylor group. 
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Scheme 2.48. Iodination and bromination of 2.71. 

 The 2-formyl isomer 2.14 did exhibit some inhibition with STS albeit considerably less than 
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that of 2.13.  Therefore we reasoned that it might be possible to increase the potency of 2.13 by 

incorporating an additional aldehyde moiety at the 2-position (compound 2.87, Figure 2.3). 

O

HO
CHO

OHC

2.87  

Figure 2.3. Structure of 2,4-diformyl estrone (2.87) 

The synthesis of compound 2.87 was not easily accomplished and we have not yet succeeded 

in developing a good synthesis of this compound.  Attempts to prepare 2.87 by direct bisformylation 

of E1 or by formylation of 2.13 using MgCl2/paraformaldehyde was not successful.  We also 

attempted a hydroxymethylation of 2.13 with paraformaldehyde and NaOH but this was also 

unsuccessful. Another route to 2.87 is by dihydroxymethylation of E1 followed by oxidation 

(Scheme 2.49).  Dihydroxymethylation of E1 using paraformaldehyde and NaOH would not go to 

completion and the triol product 2.88 could not be purified by silica gel column chromatography even 

in the presence of triethylamine since it decomposed very quickly on the column.  So crude 2.88 was 

subjected to MnO2 in CH2Cl2; however, we could only isolate compound 2.87 in an 8% yield starting 

from estrone.  We also tried E2 as substrate. Unfortunately, the overall yield of the bis-formylated 

product 2.90 was only slightly improved to 15% for the two steps. The inhibitory potency of 

dialdehydes 2.87 and 2.90 towards STS is currently under investigation. 
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Scheme 2.49. Synthesis of 2.87 and 2.90. 

We have also attempted to prepare 4-formylestrone sulfate (2.91) (Scheme 2.50) by 

deprotection of the sulfate in 2.27.  This is a particularly interesting compound since it could act 

either as a suicide inhibitor, an irreversible competitive inhibitor or a reversible competitive inhibitor.  

However, compound 2.91 was not stable.  We even had to avoid heating when removing the solvent 

by rotary evaporation during workup.  1H NMR and 13C NMR of the reaction product revealed that it 

exists as an equilibrium mixture of aldehyde 2.91 and the hemiacetal 2.92. Inhibition studies with 

this mixture and STS are in progress in the Taylor group. 
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Scheme 2.50.  Synthesis of 2.91 and 2.92 

2.3 Summary and Future work 

A series of compound (2.4-2.11) that were designed to act as suicide inhibitors of STS were 

synthesized.  Some of these compounds (2.6, 2.7, 2.10 and 2.11) could not be prepared by traditional 

sulfation chemistry.  Therefore, a new approach to the synthesis of aryl sulfates, recently developed 

in the Taylor group, was used.  In this approach, the sulfate groups were introduced at the beginning 
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of syntheses as TCE-protected sulfodiesters using reagent 2.12. Inhibition studies by Vanessa Ahmed 

in the Taylor group revealed that compounds 2.4, 2.7 and 2.11 were indeed suicide inhibitors of STS. 

However, 2.4 was found to inhibit in a completely different manner from 2.7 and 2.11 in that 4-formyl 

estrone (2.13) a product resulting from the hydrolysis of an intermediate, was found to be the inhibitor. 

This result is highly significant since a new class of irreversible STS inhibitor was discovered.  We 

wished to prepare analogs of 2.13 to see if we could improve upon its potency.  However compound 

2.13 is difficult to prepare in good yield using literature procedures.  Therefore, a new, efficient 

synthesis of 2.13 compound was devised by formylating 2-tert-butyl estrone (2.70) followed by 

removal of the t-butyl group. In addition to being a route to 2.13, this tactic of using a t-butyl 

protecting group at the 2-position has the potential of being a general method for the preparation of 

4-substituted estrones and estradiols which are often very difficult to prepare.  

The work described in this chapter is only the beginning of our work on the design of 

irreversible STS inhibitors.  Studies to determine what amino acid residues are being modified by our 

inhibitors are in progress in the Taylor group by Vanessa Ahmed.  It is known that STS can tolerate 

certain groups at the 2-position of estrone or estradiol derivatives which sometimes enhances their 

inhibitory potency and other biological properties. Consequently, future synthetic work will focus on 

the preparation of 2-substituted 4-formyl estrone derivatives.  We anticipate that more potent STS 

inhibitors will be obtained from this series of compounds.  Additional optimization studies of the 

formylation of 2.70 are in progress. We are aware that aldehyde-based inhibitors are often 

metabolically unstable in that aldehyde groups are readily oxidized to carboxylic acids in vivo.  Thus, 

should highly potent inhibitors be obtained from these studies, they will be converted into acylal 
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prodrugs of type 2.93 for cellular studies.  These prodrugs are designed to be activated by esterases38 

to release the aldehyde-bearing inhibitor (Scheme 2.51).  Finally, as we have already mentioned, our 

tactic of using a t-butyl protecting group at the 2-position of E1 has the potential of being a general 

method for the preparation of 4-substituted estrones and estradiols.  This is currently being examined 

in the Taylor group.  
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O O

R

O
R'

O
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esterase
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O

H O

R inhibition of STS

 

Scheme 2.51.  Prodrug approach 

2.4 Experimental 

2.4.1 General 

All starting materials and reagents were obtained from Aldrich Chemical Company. 

Dichloromethane, acetonitrile and triethylamine were distilled from calcium hydride. DMF was 

distilled from calcium hydride under reduce pressure. Tetrahydrofuran (THF) and toluene were 

distilled from sodium/benzophenone.  MnO2 was activated by heating at 250 oC under high vacuum 

for 2 h.  MOMCl (chloromethyl methyl ether) was prepared according to literature.39 BuLi was 

titrated according to literature.40. Silica-gel chromatography was performed using silica gel 60 Å 

(230-400 mesh) obtained from Silicycle (Laval, Quebec, Canada).  1H, 13C and 19F NMR spectra 

were recorded on a Bruker Avance 300 spectrometer in CDCl3 or CD3OD at 300 MHz, 75 MHz and 

282 MHz, respectively.  NMR spectra are reported in parts per million (ppm) relative to internal 
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standards or solvent peaks. For NMR spectra run in CDCl3, chemical shifts (δ) for 1H NMR spectra 

are reported relative to internal Me4Si (δ 0.0 ppm), chemical shifts (δ)for 13C NMR spectra are relative 

to the solvent peak (δ 77.0 ppm, central peak), 19F NMR relative to an external CFCl3 (δ 0.0 ppm).  

For NMR spectra run in DMSO-d6, chemical shifts (δ) for 1H NMR spectra are reported relative to the 

residual solvent peak (δ 2.49 ppm), chemical shifts (δ) for 13C NMR spectra are relative to the solvent 

peak (δ 39.5 ppm, central peak), 19F NMR relative to an external CFCl3 (δ 0.0 ppm). For NMR spectra 

run in CD3OD, chemical shifts (δ) for 1H NMR spectra are reported relative to the residual solvent 

peak (δ 3.31 ppm), chemical shifts (δ) for 13C NMR spectra are relative to the solvent peak (δ 49.0 

ppm, central peak), 19F NMR relative to an external CFCl3 (δ 0.0 ppm).  Low-resolution (LRMS) and 

high-resolution (HRMS) electron impact (EI) mass spectra were recorded on a JEOL HX 110 double 

focusing mass spectrometer.  Electrospray (ESI) mass spectra were obtained with a 

Waters/Micromass QTOF Ultima Global mass spectrometer. Melting points were determined on a 

Fisher-Johns melting point apparatus and uncorrected.  

2.4.2 Syntheses 

O

-O3SO
CF2H

2.4

NH4

 

 Ammonium 4-difluoromethyl-3-(sulfonatooxy)estra-1,3,5(10)-triene-17-one (2.4). To a 

solution of ester 2.29 (265 mg, 0.500 mmol) in HPLC grade MeOH (12 mL) was added ammonium 

formate (400 mg, 6.35 mmol, 12.7 equiv) and 10% Pd/C (53 mg of 20 wt%).  The reaction mixture 
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was stirred for 36 h.  The Pd catalyst was removed by filtration and the solution was concentrated in 

vacuo to give a white residue.  The residue was chromatographed on silica (CH2Cl2/MeOH/NH4OH, 

10:2:0.5) as eluent.  The residue was dissolved in water and lyophilized (three times) to afford 2.4 as 

a fluffy white powder (176 mg, 85%). 1H NMR (CD3OD, 300 MHz) δ 7.41 (d, J = 8.6 Hz, 1H, H-1), 

7.25 (d, J = 8.9 Hz, 1H, H-2), 7.22 (t, J = 58.5 Hz, 1H, CHF2), 3.30-3.19 (m, 1H, H-6), 3.10-2.98 (m, 

1H, H-6), 2.52-1.99 (m, 6H), 1.89 (d, J = 9.2 Hz, 1H), 1.69-1.35 (m, 6H), 0.90 (s, 3H, CH3, H-18); 13C 

NMR (CD3OD, 75 MHz) δ 222.4 (C=O), 149.3 (t, J = 6.9 Hz, C-3), 138.2 (C-5), 137.5 (C-6), 128.4 

(C-1), 124.2 (t, J = 21.5 Hz, C-4), 119.9 (C-2), 113.6 (t, J = 233 Hz, CF2), 50.3 (C-14), 47.9 (C-13), 

44.2 (C-7), 37.5 (C-8), 35.4 (C-16), 31.4 (CH2), 25.8 (CH2), 25.7 (CH2), 21.9 (CH2), 12.9 (CH3, C-18); 

19F NMR (CD3OD, 282 MHz, coupled) δ –114.51 (dd, Jgem = 311 Hz, JH-F = 53.6 Hz), -116.16 (dd, 

Jgem = 311 Hz, JH-F. = 53.6 Hz); LRMS (ESI) m/z (%) 399.1 (100); HRMS (ESI) calcd for 

C19H21F2O5S- 399.1083; found 399.1083. 

NH4

O

-O3SO

HF2C

2.5  

Ammonium 2-difluoromethyl-3-(sulfonatooxy)estra-1,3,5(10)-triene-17-one (2.5). 

Prepared using the procedure described for 2.4 using ester 2.30 (498 mg, 0.94 mmol), ammonium 

formate (370 mg, 5.87 mmol, 6 equiv) and Pd/C (75 mg of 15 wt. %) in MeOH (12 mL) and stirred 

for 24 h. 2.5 was obtained as a fluffy white powder (337 mg, 86%) after chromatography using 

(CH2Cl2/MeOH/NH4OH, 10:2:0.5) and lyophilization.  1H NMR (CD3OD, 300 MHz) δ 7.47 (s, 1H, 

H-1), 7.20 (s, 1H, H-4), 7.03 (t, J = 56 Hz, 1H, CHF2), 4.86 (s, 4H, NH4), 3.00-2.90 (m, 2H), 
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2.55-1.20 (m, 13H), 0.88 (s, 3H, CH3, H-18); 13C NMR (CD3OD, 75 MHz) δ 222.5 (C=O), 148.0 (t, J 

= 7 Hz, C-3), 140.8 (t, J = 2 Hz, C-5), 137.2 (C-10), 124.5 (t, J = 23 Hz, C-2), 122.3 (t, J = 5 Hz, C-1), 

122.2 (C-4), 112.0 (t, J = 233 Hz, CF2), 50.2 (C-14), 47.9 (C-13), 43.9 (C-9), 38.0 (C-8), 35.4 (C-16), 

31.3 (CH2), 29.1(CH2), 25.9(CH2), 25.6(CH2), 21.2(CH2), 12.9(CH3, C-18);  19F NMR (CD3OD, 282 

MHz, coupled) δ -113.8 (d, J = 55.6 Hz);  HRMS (ESI) calcd. for C19H21F2O5S 399.1083, found 

399.1096. 

O

-O3SO
CFH2

2.6

NH4

 

 Ammonium 4-fluoromethyl-3-(sulfonatooxy)estra-1,3,5(10)-triene-17-one (2.6). 

Prepared using the procedure for 2.4 using TCE sulfate 2.33 (393 mg, 0.765 mmol), HCO2NH4 (600 

mg, 9.52 mmol, 12.4 equiv), 10% Pd/C (80 mg, 20 wt%), MeOH (50 mL) and stirring for 24 h.  2.6 

was obtained as a fluffy white powder (265 mg, 86%) after chromatography using 

(CH2Cl2/MeOH/NH4OH, 10:2:0.5) and lyophilization:  1H NMR (CD3OD, 300 MHz) δ 7.34 (d, J = 

8.6 Hz, 1H, H-1), 7.25 (d, J = 8.7 Hz, 1H, H-2), 5.63 (d, J = 48.2 Hz, 2H, CH2F), 3.10 (dd, J = 17.4 

Hz, J = 5.1 Hz, 1H, H-6), 2.98-2.87 (m, 1H, H-6), 2.52-2.00 (m, 6H), 1.88 (d, 1H, J = 10.0 Hz), 

1.70-1.36 (m, 6H), 0.90 (s, 3H, CH3); 13C NMR (CD3OD, 75 MHz) δ 222.3 (C=O), 149.2 (d, J = 4.8 

Hz, C-3), 138.3 (d, J = 2.0 Hz, C-10), 137.2 (d, J = 3.2 Hz, C-5), 126.9 (d, J = 4.0 Hz, C-1), 126.6 (d, 

J = 14.2 Hz, C-4), 119.4 (d, J = 2.6 Hz, C-2), 77.12 (d, J = 158.6 Hz, CH2F), 50.2 (C-14), 47.8 (C-13), 

44.3 (C-9), 37.5 (C-8), 35.4 (C-16), 31.4 (CH2), 26.0 (CH2), 25.8 (CH2), 21.1 (CH2), 12.8 (CH3, C-18); 

19F NMR (CD3OD, 282 MHz, coupled) δ –134.0 (t, JH-F = 47.9 Hz); LRMS (ESI) m/z (%) 381.0960 
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(100);  HRMS (EI) calcd for C19H22FO5S 388.1172; found 388.1174. 

NH4

O

-O3SO

H2FC

2.7  

Ammonium 2-fluoromethyl-3-(sulfonatooxy)estra-1,3,5(10)-triene-17-one (2.7). Method 

A (CTH): To a solution of the ester 2.34 (395 mg, 0.77 mmol) in HPLC grade MeOH (20 mL) was 

added ammonium formate (291 mg, 4.62 mmol, 6 equiv) and 80 mg (20 wt. %) of 10% Pd/C.  The 

reaction mixture was stirred for 24 h. After filtration and removal of MeOH by rotary evaporation, the 

residue was charged with ammonium formate (260 mg, 4.13 mmol), 20 mg of Pd black and MeOH (8 

mL).  The reaction mixture was stirred for 24 h.  The Pd catalyst was removed by filtration and the 

filtrate was concentrated in vacuo to give a white residue.  The residue was chromatographed on 

silica (CH2Cl2/MeOH/NH4OH, 10:2:0.5).  The residue was dissolved in water and lyophilized (three 

times) to afford the sulfate 2.7 as a fluffy powder (230 mg, 75 %). Method B (Zn/HCO2NH4): To a 

solution of ester 2.34 (400 mg, 0.779 mmol) in THF/MeOH (1:3, 16 mL) was added HCO2NH4 (300 

mg, 4.76 mmol, 6 equiv) and Zn powder (102 mg, 1.57 mmol, 2 equiv) and stirred for 15 min. The 

reaction was filtered and the filtrate concentrated in vacuo to give a white residue. The residue was 

chromatographed on silica (CH2Cl2/MeOH/NH4OH, 10:2:0.5). The residue was dissolved in water 

and lyophilized (three times) to afford 2.7 as a fluffy white powder (305 mg, 98%). 1H NMR 

(CD3OD, 300 MHz) δ 7.34 (s, 1H, H-1), 7.16 (s, 1H, H-4), 5.46 (d, J = 48 Hz, 2H, CH2F), 4.87 (s, 4H, 

NH4), 2.92-1.84 (m, 2H), 2.53-2.38 (m, 2H), 2.30-1.85 (m, 5H), 1.70-1.35 (m, 6H), 0.90 (s, 3H, CH3, 

H-18); 13C NMR (CD3OD, 75 MHz) δ 222.5 (C=O), 148.0 (d, J = 5 Hz, C-3), 138.4 (d, J = 3 Hz, C-5), 



 63

136.9 (d, J = 2 Hz, C-10), 126.6 (d, J = 17 Hz, C-2), 126.0 (d, J = 7 Hz, C-1), 121.9 (d, J = 1 Hz, C-4), 

80.0 (d, J = 159 Hz, CH2F), 50.2 (C-14), 47.9 (C-13), 44.0 (C-9), 38.1 (C-8), 35.5 (C-16), 31.4 (CH2), 

29.0 (CH2), 26.1 (CH2), 25.6 (CH2), 21.2 (CH2), 13.0 (CH3, C-18); 19F NMR (CD3OD, 282 MHz, 

coupled) δ -134 (t, J = 52 Hz); HRMS (ESI) calcd. for C19H22O5FS 381.1177, found 381.1186; calcd. 

for C19H23O6S (F is hydrolysed to OH) 379.1220, found 379.1226; calcd. for C19H23O3 (F is 

hydrolysed to OH, followed by loss of SO3) 299.1652, found 299.1649. 

NH4 O-O3SO O

2.8
CHF2

 

Ammonium 4-difluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c] chromen-3-yl 

sulfate (2.8). Prepared using the procedure for 2.4 using TCE sulfate 2.42 which gave ammonium 

sulfate 2.8 as fluffy white solid (70%) after chromatography (CH2Cl2/MeOH/NH4OH = 10:2:0.5) and 

lyophilization. 1H NMR (CD3OD, 300 MHz) δ 7.95 (d, J = 9.1 Hz, 1H, H-1), 7.53 (d, J = 9.0 Hz, 1H, 

H-2), 7.22 (t, J = 53.3 Hz, 1H, CHF2), 3.02 (t, J = 5.3 Hz, 2H), 2.88 (t, J = 5.4 Hz, 2H), 1.92 (quint, J 

= 5.8 Hz, 2H), 1.72-1.55 (m, 4H); 13C NMR (CD3OD, 75 MHz) δ 162.3 (C=O), 155.7 (CAr), 154.2 

(CAr), 152.3 (CAr), 128.9 (CAr), 128.7 (CAr), 119.5 (CAr), 118.2 (CAr), 115.2 (t, J = 22.7 Hz, C-4), 112.5 

(t, J = 235 Hz, CHF2), 32.9 (CH2), 28.9 (CH2), 27.5 (CH2), 26.6 (CH2), 26.1 (CH2); 19F NMR (CD3OD, 

282 MHz, coupled) δ -115.6 (t, J = 53 Hz); LRMS (ESI) m/z (%) 359 (100); HRMS (ESI) calcd. for 

C15H13FO6S 359.0406, found 359.0393.  
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NH4 O-O3SO

HF2C

O

2.9  

Ammonium 2-difluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c] chromen-3-yl 

sulfate (2.9).  Method A (CTH): Prepared using the procedure for 2.4 using TCE sulfate 2.43 gave 

ammonium sulfate 2.9 as fluffy white solid (65%) after flash chromatography using 

(CH2Cl2/MeOH/NH4OH, 10:2:0.5) and lyophilization. Method B (Zn/HCO2NH4): Prepared using 

the same procedure for 2.7 using 2.43 (32 mg, 0.065 mmol), Zn (9.0 mg, 0.14 mmol, 2 equiv) and 

HCO2NH4 (25 mg, 0.40 mmol, 6 equiv) in THF (1 mL)/MeOH (3 ML) for 30 min. 2.9 (23 mg, 94%) 

was obtained as a white solid after flash chromatography.  1H NMR (CD3OD, 300 MHz) δ 7.98 (s, 

1H, H-1), 7.52 (s, 1H, H-4), 7.28 (t, J = 55.2 Hz, 2H, CH2F), 3.04 (t, 2H, J = 5.2 Hz), 2.88 (t, J = 5.4 

Hz, 2H), 1.93 (quint, J = 5.6 Hz, 2H), 1.70 (quint, J = 5.0 Hz, 2H), 1.59 (quint, J = 4.9 Hz, 2H); 13C 

NMR (CD3OD, 75 MHz) δ 161.9 (C=O, C-6), 154.1 (CAr, C-4a and C-11a overlapping), 152.3 (t, C-3), 

127.6 (C-4), 123.3 (t, J = 21.8 Hz, C-2), 121.8 (t, J = 5.7 Hz, C-1), 116.3 (C-6a), 111.2 (t, J = 234 Hz, 

CHF2), 109.2 (C-1a), 31.6 (CH2), 27.6 (CH2), 26.2 (CH2), 25.2 (CH2), 24.7 (CH2); 19F NMR (CD3OD, 

282 MHz, coupled) δ -114.8 (d, J = 55 Hz); LRMS (ESI) m/z (%) 359 (100); HRMS (ESI) calcd. for 

C15H13FO6S 359.0406, found 359.0393.  

NH4 O-O3SO O
CH2F

2.10  
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Ammonium 4-fluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c] chromen-3-yl 

sulfate (2.10). Prepared using the procedure for 2.4 using TCE sulfate 2.46 gave ammonium sulfate 

2.8 (68%) as fluffy white solid after chromatography (CH2Cl2/MeOH/NH4OH, 10:2:0.5) and 

lyophilization.  1H NMR (CD3OD, 300 MHz) δ 7.85 (d, J = 8.8 Hz, 1H, H-1), 7.53 (d, J = 8.9 Hz, 

1H, H-2), 5.69 (d, J = 47.8 Hz, 2H,  CH2F), 3.01-2.95 (m, 2H), 2.88-2.82 (m, 2H), 1.90 (pseudo s, 

2H), 1.70-1.50 (m, 4H); 13C NMR (CD3OD, 75 MHz) δ 163.4 (C=O), 156.3 (CAr), 154.8 (CAr), 153.2 

(CAr), 128.1 (CAr), 127.4 (d, J = 3.6 Hz, C-1), 119.1 (CAr), 117.9 (CAr), 117.6 (d, J = 15.3 Hz, C-4), 

74.2 (d, J = 163 Hz, CH2F), 33.0 (CH2), 29.0 (CH2), 27.5 (CH2), 26.7 (CH2), 26.1 (CH2); 19F NMR 

(CD3OD, 282 MHz, coupled) δ -133.3 (t, J = 48 Hz); LRMS (ESI) m/z (%) 359 (51), 341 (100); 

HRMS (ESI) calcd. for C15H14FO6S 341.0500, found 341.0508. 

NH4 O-O3SO

H2FC

O

2.11  

Ammonium 2-fluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c] chromen-3-yl 

sulfate (2.11). To a stirred solution of 2.47 (195 mg, 0.412 mmol) in THF (3 mL) was added MeOH 

(9 mL), followed by ammonium formate (156 mg, 2.48 mmol, 6 equiv).  Once the reaction mixture 

went clear, zinc dust (54 mg, 0.83 mmol, 2 equiv) was added slowly and stirring was continued for 20 

min.  The reaction was filtered and the filtrate concentrated and the residue chromatographed 

(CH2Cl2/MeOH/NH4OH,10:2:0.5). The chromatographed material was dissolved in water and 

lyophilized (three times) to afford 2.11 as a fluffy white powder (136 mg, 92%). 1H NMR (CD3OD, 

300 MHz) δ 7.81 (s, 1H, H-1), 7.46 (s, 1H, H-4), 5.52 (d, J = 47.7 Hz, 2H, CH2F), 3.00-2.97 (m, 2H), 
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2.85-2.82 (m, 2H), 1.93-1.85 (m, 2H), 1.70-1.50 (m, 4H); 13C NMR (CD3OD, 75 MHz) δ 162.3 

(C=O), 154.5 (C-11a), 152.9 (CAr), 152.2 (d, J = 3.8 Hz, C-3), 126.9 (CAr), 126.7 (d, J = 17.1 Hz, C-2), 

124.6 (d, J = 8.0 Hz, C-1), 116.2 (C-6a), 108.7 (C-4), 79.2 (d, J = 164 Hz, CH2F), 31.6 (CH2), 27.5 

(CH2), 26.1 (CH2), 25.3 (CH2), 24.7 (CH2); 19F NMR (CD3OD, 282 MHz, coupled) δ -136.4 (t, JH-F 

= 47.7 Hz); LRMS (ESI) m/z (%) 341.0495 (100); HRMS (ESI) calcd for C15H14FO6S 341.0495; 

found 341.0490. 

O

HO
CHO

2.13  

4-Formylestra-1,3,5(10)-triene-17-one (2.13).  Method A (reduction of nitrile 2.52 using 

Raney-Nickel): To a mixture of 2.52 (50 mg, 0.17 mmol) in 60% HCO2H was added excess 

Raney-nickel (1.60 g).  The resulting mixture was heated at 140 oC for 2 days.  After cooling to rt, 

the mixture was treated with 10% HCl and extracted with EtOAc.  The combined extracts were dried 

(Na2SO4) and concentrated.  The residue was subjected to chromatography (ethyl acetate/hexane, 1:2 

to 100% ethyl acetate) to give pure 2.13 (10 mg, 20%) and unreacted 2.52 (16 mg, 32%). Method B 

(oxidation of diol 2.63 using MnO2): To a solution of 2.63 (10.0 mg, 0.033 mmol) in CH2Cl2/MeOH 

(12 mL, 5:1) was added MnO2 (180 mg, 2.07mmol, 62 equiv).  The resulting mixture was stirred for 

24 h at rt.  After filtration and concentration, the residue was purified by flash chromatography (ethyl 

acetate/hexane 1:2) to give 2.13 as light yellow solid (9.9 mg, 100%).  Method C (de-t-butyl of 2.78):  

To a solution of 2.78 and 2.79 (14:1, 0.698 g, app. 2.14 mmol) in CH2Cl2 (10 mL) was added 
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nitromethane (2.5 mL, app. 23 equiv). The resulting mixture was cooled to 0 oC and anhydrous AlCl3 

(700 mg, 5.24 mmol, app. 2.5 equiv) was added.  After stirring 4 h at rt the reaction was quenched 

with ice water and 1N HCl.  The mixture was extracted with CH2Cl2/EtOAc/Ether (3:5:5) and the 

combined extracts were washed with H2O and brine then dried (Na2SO4) and concentrated.  

Purification of the residue by chromatography (methylene chloride) gave 2.13 as yellow crystalline 

solid (454 mg, 51% yield over 2 steps from 2.70). 1H NMR was identical to that reported in the 

literature.11 1H NMR (CDCl3, 300 MHz) δ 11.96 (s, 1H, OH), 10.34 (s, 1H, CHO), 7.44 (d, J = 8.9 

Hz, 1H, H-1), 6.76 (d, J = 9.0 Hz, 1H, H-2), 3.34 (dd, J = 17.1 Hz, J = 5.7 Hz, 1H, H-6), 3.19-3.07 (m, 

1H), 2.48 (dd, J = 18.9 Hz, J = 9.3 Hz, 1H), 2.36-1.90 (m, 6H), 1.67-1.35 (m, 6H), 0.89 (s, 3H, CH3, 

H-18); 13C NMR (CDCl3, 75 MHz) δ 220.4 (C=O), 195.5 (CHO), 161.5 (C-3), 139.3 (C-5), 135.4 

(C-1), 131.0 (C-10), 117.4 (C-1), 115.8 (C-2), 50.7 (C-14), 47.8 (C-13), 43.8 (C-9), 37.4 (C-4), 35.8 

(C-16), 31.5 (C-12), 26.1 (CH2), 26.0 (CH2), 25.4 (CH2), 21.4 (CH2), 13.8 (CH3, C-18). 

O

HO

OHC

2.14  

 2-Formylestra-1,3,5(10)-triene-17-one (2.14). To a mixture of E1 (1.35 g, 5.0 mmol), 

paraformaldehyde (1.50 g, 50.0 mmol, 10 equiv) and anhydrous magnesium chloride (1.25 g, 13.0 

mmol, 2.6 equiv) in glass bomb was added acetonitrile (20 mL), followed by tributylamine (5.5 mL, 

23 mmol, 4.6 equiv) at room temperature.  After stirring 2 minutes, the tube was sealed and heated at 

125 °C for 18 h. After cooling to rt, 6N HCl (15 mL) was added slowly and the resulting mixture 

was extracted with diethyl ether.  The extracts were combined, washed with H2O and brine then dried 
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(Na2SO4) filtered and concentrated.  Column chromatography (ethyl acetate/hexane, 1:2) gave 2.14 

as a colorless solid (768 mg, 52% yield).  When this reaction was performed using 5.4 g of E1 an 

identical yield was obtained. The 1H NMR was identical to that reported in the literature.11  1H NMR 

(CDCl3, 300 MHz) δ 10.65 (s, 1H, OH), 9.65 (s, 1H, CHO), 7.29 (s, 1H, H-1), 6.53 (s, 1H, H-4), 

2.85-2.75 (m, 2H), 2.22-1.80 (m, 7H), 1.60-1.25 (m, 6H), 0.80 (s, 3H, CH3, H-18).  

HO

2.16

OH

OH

 

4-Formyl-17β-hydroxylestra-1,3,5(10)-triene (2.16). Method A (by oxidation of triol 2.66 

using MnO2): To a solution of 2.66 (8 mg, 0.027mmol) in and CH2Cl2/MeOH (12 mL, 5:1) was added 

MnO2 (180 mg, 2.07 mmol, 78 equiv).  After stirring 24 h at rt, the insoluble solid was removed by 

filtration. The filtrate was washed with H2O and brine then dried (Na2SO4), filtered and concentrated.  

The residue was purified by flash chromatography (ethyl acetate/hexane 1:2) to give of 2.16 as light 

yellow solid (8 mg, 100%). Method B (by de-t-butylation of 2.78 using AlCl3):  To a solution of the 

inseparable mixture of 2.78 and 2.79 (701 mg, app. 2.14 mmol) in CH2Cl2 (10 mL) at 0 oC was added 

nitromethane (2.5 mL, app. 23 equiv), followed by anhydrous AlCl3 (850 mg, 6.37 mmol, 3 equiv).  

The resulting mixture was stirred for 4.5 h at rt before quenching with ice and 1 M HCl.  30 mL of 

CH2Cl2 was added and the mixture was extracted with ethyl acetate. The combined extracts were 

washed with H2O and brine then dried (Na2SO4), filtered and concentrated.  Purification of the 

residue by flash chromatography (CH2Cl2) gave pure 2.16 as light yellow solid (290 mg, 32% over 3 
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steps from 2.70).  1H NMR was identical to that reported in the literature.11  1H NMR (CDCl3, 300 

MHz) δ 11.94 (s, 1H, ArOH), 10.32 (s, 1H, CHO), 7.44 (d, J = 8.9 Hz, 1H, H-1), 6.74 (d, J = 8.8 Hz, 

1H, H-2), 3.70 (t, J = 8.4 Hz, 1H), 3.18-2.98 (m, 2H), 2.28-1.15 (m, 13H), 0.75 (s, 3H, CH3, H-18); 

13C NMR (CDCl3, 75 MHz) δ 195.7 (CHO), 161.4 (C-3), 139.6 (C-5), 135.5 (C-1), 131.7 (C-10), 

117.5 (C-4), 115.6 (C-2), 81.7 (C-17), 49.7 (C-14), 43.8 (C-9), 43.1 (C-13), 38.0 (C-8), 36.6 (CH2), 

30.5 (CH2), 26.7 (CH2), 26.5 (CH2), 25.5 (CH2), 23.0 (CH2), 11.1 (CH3, C-18). 

O

TCEO3SO

2.27
CHO

 

4-Formylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.27). To a 

solution of 2.13 (405 mg, 1.36 mmol), and DMAP (168 mg, 1.38 mmol, 1 equiv) in dry THF (40 mL) 

was added triethylamine (0.42 mL, 3 mmol, 2.2 equiv) followed by reagent 2.12 (0.40 mL, 3 mmol, 

2.2 equiv).  The mixture was then stirred overnight (14 h) at rt.  The mixture was diluted with ethyl 

acetate and H2O.  After separation, the aqueous phase was extracted with ethyl acetate.  The 

combined organics were washed with 0.5 N HCl, water, and brine, then dried (Na2SO4), filtered and 

concentrated.  Column chromatography of the residue (ethyl acetate/hexane, 1:3 to 1:2.25) yielded 

pure 2.27 as a light yellow solid (690 mg, 99%). Mp: 104-105 oC; 1H NMR (CDCl3, 300 MHz) δ 

10.40 (s, 1H, CHO), 7.53 (d, J = 8.8 Hz, 1H,  H-1), 7.24 (d, J = 8.7 Hz, 1H, H-2), 4.83 (s, 2H, 

OCH2CCl3), 3.23 (dd, J = 18.9 Hz, J = 5.1 Hz, 1H, H-6), 3.11-2.99 (m, 1H), 2.44-2.20 (m, 3H), 

2.09-1.93 (m, 3H), 1.86 (d, J = 12.4 Hz, 1H), 1.59-1.27 (m, 6H), 0.80 (s, 3H, CH3, H-18); 13C NMR 

(CDCl3, 75 MHz) δ 220.2 (C=O), 189.8 (CHO), 150.0 (C-3), 141.6 (C-5), 141.4 (C-10), 132.1 (C-1), 
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126.0 (C-4), 119.2 (C-2), 92.4 (CCl3), 80.7 (OCH2CCl3), 50.2 (C-14), 47.7 (C-13), 44.4 (C-9), 36.7 

(C-8), 35.8 (C-16), 31.5 (CH2), 27.5 (CH2), 26.0 (CH2), 26.0 (CH2), 21.5 (CH2), 13.8 (CH3, C-18); 

LRMS (ESI) m/z (%) 528 (M+2+NH4
+), 526 (M+NH4

+), 511 (M+2+H+), 509 (M+H+); HRMS (EI) 

calcd for [C21H24Cl3O6S+H]+ 509.0363; found 509.0353. 

O

TCEO3SO

OHC

2.28  

 2-Formylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.28). Prepared 

using the procedure described for 2.27 using 2.14 (1.38 g, 4.63 mmol), DMAP (534 mg, 4.45 mmol), 

triethylamine (1.3 mL, 9.3 mmol, 2 equiv) and reagent 2.12 (1.2 mL, 9.0 mmol, 1.9 equiv) in THF (50 

mL) and stirring for 14 h.  Column chromatography of the residue (ethyl acetate/hexane, 1:2) yielded 

2.28 as colorless oil (2.28 g, 97%) that solidified on standing. Mp:138-139 oC; 1H NMR (CDCl3, 300 

MHz) δ 10.21 (s, 1H, OH), 7.85 (s, 1H, H-1), 7.24 (s, 1H, H-4), 4.92 (s, 2H, CH2), 3.05-2.90 (m, 2H), 

1.55-1.95 (m, 7H), 1.70-1.40 (m, 6H), 0.90 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.2 

(C=O), 187.4 (CHO), 148.4 (C-3), 146.4 (C-5), 140.7 (C-10), 128.1 (C-1), 125.8 (C-2), 122.4 (C-4), 

92.4 (CCl3), 80.7 (OCH2CCl3), 50.3 (C-14), 47.8 (C-13), 43.9 (C-9), 37.6 (C-8), 35.8 (C-16), 31.4 

(CH2), 29.9 (CH2), 25.8 (CH2), 25.7 (CH2), 21.6 (CH2), 13.8 (CH3, C-18); LRMS (EI) m/z (%) 510 

(M+2, 93), 508 (M+, 94), 466 (74), 464 (70), 451 (44), 361 (56), 298 (100), 241 (89); HRMS (EI) 

calcd. for C21H23Cl3O6S 508.0281, found 508.0291. 
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O

TCEO3SO
CF2H

2.29  

4-Difluoromethylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.29).  To 

a solution of 2.27 (259 mg, 0.508 mmol) in dry methylene chloride (10 mL) at 0°C was added DAST 

(diethylaminosulfur trifluoride, 0.2 mL, 1.51 mmol, 3 equiv) via syringe.  The pale orange mixture 

was stirred for 1 h at that temperature, then 12 h at room temperature.  After quenching with 

saturated NaHCO3, the reaction mixture was stirred for additional 10 min and extracted with ethyl 

acetate.  The combined organic extracts were washed with water and brine then dried (Na2SO4) 

filtered and concentrated.  Column chromatography of the residue (ethyl acetate/hexane, 1:3 to 

1:1.25) yielded pure 2.29 as a white foam (225 mg, 83%). 1H NMR (CDCl3, 300 MHz) δ 7.45 (d, J 

= 8.7 Hz, 1H, H-1), 7.25 (d, J = 8.6 Hz, 1H, H-2), 7.01 (t, J = 53.4 Hz, 1H, CHF2), 4.82 (s, 2H, 

OCH2CCl3), 3.24-2.97 (m, 2H), 2.50-1.90 (m, 7H), 1.63-1.35 (m, 6H), 0.86 (s, 3H, CH3, H-18); 13C 

NMR (CDCl3, 75 MHz) δ 220.3 (C=O), 146.6 (t, J = 5.2 Hz, C-3), 141.5 (C-5), 139.3 (C-10), 129.7 

(C-1), 123.5 (t, J = 44.0 Hz, C-4), 118.6 (C-2), 111.9 (t, J = 273.5 Hz, CHF2), 92.4 (CCl3), 80.8 

(OCH2CCl3), 50.4 (C-14), 47.8 (C-13), 44.3 (C-9), 37.0 (C-8), 35.9 (C-16), 31.5 (CH2), 25.9 (CH2), 

25.8 (CH2), 21.6 (CH2), 13.9 (CH3, C-18); 19F NMR (CDCl3, 282 MHz, coupled) δ -112.83 (dd, Jgem 

= 316 Hz, JH-F = 53.6 Hz), -113.87 (dd, Jgem =316 Hz, JH-F = 53.6 Hz); LRMS (EI) m/z (%) 534 

(M+4, 39), 532 (M+2, 100), 530 (M+, 97), 490 (32), 488 (79), 486 (77), 475 (57), 473 (55), 301 (62), 

275 (37), 263 (97), 97 (86);  HRMS (EI) calcd for C21H23Cl3F2O5S 530.0299; found 530.0303. 
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O

TCEO3SO

HF2C

2.30  

 2-Difluoromethylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.30).  

Prepared using the procedure described for 2.29 using 2.28 (385 mg, 0.756 mmol), methylene chloride 

(10 mL) and DAST (diethylaminosulfur trifluoride, 0.300 mL, 2.27 mmol, 3 equiv). Column 

chromatography of the residue (ethyl acetate/hexane, 2:5) yielded 2.30 as a white foam (367 mg, 91%).  

1H NMR (CDCl3, 300 MHz) δ 7.52 (s, 1H, H-1), 7.20 (s, 1H, H-4), 6.82 (t, J = 55 Hz, 1H, CHF2), 

4.82 (s, 2H, CH2), 2.95-2.85 (m, 2H), 2.50-1.90 (m, 7H), 1.65-1.35 (m, 6H), 0.84 (s, 3H); 13C NMR 

(CDCl3, 75 MHz) δ 220.3 (C=O), 145.4 (t, J = 5 Hz, C-3), 142.3 (t, J = 2 Hz, C-5), 140.3 (C-10), 

124.5 (t, J = 6 Hz, C-1), 123.6 (t, J = 23 Hz, C-2), 121.3 (C-4), 111.3 (t, J = 237 Hz, CF2), 92.4 (CCl3), 

80.6 (OCH2CCl3), 50.3 (C-14), 47.8 (C-13), 44.0 (C-9), 37.6 (C-8), 35.8 (C-16), 31.4 (CH2), 29.5 

(CH2), 25.9 (CH2), 25.7 (CH2), 21.6 (CH2), 13.8 (CH3, C-18); 19F NMR (CDCl3, 282 MHz, decoupled) 

δ -112.2 (d, Jgem = 313 Hz), -112.4 (d, Jgem = 313 Hz); LRMS (EI) m/z (%) 532 (M+2, 60), 530 (M+, 

60), 488 (46), 486 (44), 475 (34), 473 (30), 301 (47), 263 (66), 97 (100); HRMS (EI) calcd. for 

C21H23Cl3F2O5S 530.0300, found 530.0308.  

O

TCEO3SO
CH2OH

2.31  

4-Hydroxymethylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.31). A 
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mixture of Zr(OiPr)4⋅
iPrOH (194 mg, 0.500 mmol, 1.1 equiv) and (±)-BINOL (142 mg, 0.500 mmol, 

1.1 equiv) in toluene (1 mL) was heated at 60 °C for 65 min.  After cooling to room temperature, a 

solution of 2.27 (230 mg, 0.450 mmol, 1 equiv) in toluene (10 mL) was added.  The reaction mixture 

was stirred for 3.5 h at room temperature.  The reaction was quenched with saturated NaHCO3 and 

extracted with ethyl acetate.  The combined organic extracts were washed with water and brine then 

dried (Na2SO4), filtered and concentrated.  Column chromatography of the residue (ethyl 

acetate/hexane, 1:2 to 1:1.5) yielded pure 2.31 as a white foam (161 mg, 70%). 1H NMR (CDCl3, 

300 MHz) δ 7.31 (d, J = 8.8 Hz, 1H,  H-1), 7.16 (d, J = 8.7 Hz, 1H, H-2), 4.86 (s, 2H, OCH2CCl3), 

4.71 (t, J = 12.6 Hz, 2H, ArCH2OH), 3.17 (dd, J = 17.4 Hz, 5.1 Hz, 1H, H-6), 3.02-2.90 (m, 1H, H-6), 

2.52-2.00 (m, 6H), 1.93 (d, J = 8.5 Hz, 1H), 1.64-1.36 (m, 6H), 0.86 (s, 3H, CH3, H-18); 13C NMR 

(CDCl3, 75 MHz) δ 220.8 (C=O), 146.7 (C-3), 140.8 (C-5), 139.5 (C-10), 130.7 (C-4), 126.9 (C-1), 

118.4 (C-2), 92.5 (CCl3), 80.6 (OCH2CCl3), 56.0 (ArCH2OH), 50.4 (C-14), 47.9 (C-13), 44.5 (C-9), 

37.2 (C-8), 35.9 (C-16), 31.6 (CH2), 26.2 (CH2), 26.1 (CH2), 26.0 (CH2), 21.6 (CH2), 13.8 (CH3, C-18); 

LRMS (EI) m/z (%) 512 (M+2, 1), 510 (M+, 2), 496 (25), 494 (62), 492 (60), 363 (23), 282 (47), 281 

(100), 185 (36), 97 (67);  HRMS (EI) calcd for C21H23Cl3O5S (M-H2O) 492.0335; found 492.0332. 

O

TCEO3SO

HOH2C

2.32  

2-Hydroxymethylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.32). 

Prepared using the procedure described for 2.31 using Zr(OiPr)4⋅
iPrOH (1.34 g, 3.46 mmol) and 

(±)-BINOL (981 mg, 3.43 mmol, 1 equiv) in toluene (12 mL) and 2.28 (1.81 g, 3.55 mmol, 1 equiv) in 
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toluene (5 mL) and stirring for 30 min.  Column chromatography of the residue (ethyl acetate/hexane, 

2:3) yielded pure 2.32 as a white foam (1.72 g, 95%).  1H NMR (CDCl3, 300 MHz) δ 7.44 (s, 1H, 

H-1), 7.12 (s. 1H, H-4), 4.88 (s, 2H, CH2), 4.72 (s, 2H, CH2), 2.95-2.85 (m, 2H), 2.75-1.95 (m, 7H), 

1.70-1.40 (m, 6H), 0.90 (3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 221.5 (C=O), 145.6 (C-3), 

139.6 (CAr), 138.1 (CAr), 130.5 (C-1), 127.0 (C-2), 120.9 (C-4), 92.6 (CCl3), 80.4 (OCH2CCl3), 59.4 

(ArCH2O), 50.3 (C-14), 48.0 (C-13), 44.2 (C-9), 37.8 (C-8), 35.9 (C-16), 31.5 (CH2), 29.2 (CH2), 26.2 

(CH2), 25.7 (CH2), 21.6 (CH2), 13.8 (CH3, C-18); LRMS (EI) m/z (%) 512  (M+2, 89), 510 (M+, 85), 

495 (22), 493 (22), 468 (23), 466 (23), 455 (22), 453 (23), 363 (55), 299 (95), 282 (100), 226 (55), 159 

(57), 97 (71); HRMS (EI) calcd. for C21H25Cl3O6S 510.0437, found 510.0440.  

O

TCEO3SO
CH2F

2.33  

4-Fluoromethylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.33).  This 

was prepared from 2.31 (130 mg, 0.254 mmol) and DAST (0.1 mL, 0.757 mmol, 3 equiv) using the 

procedure described for 2.29 except the reaction was stirred for 1 h at 0 oC and 4 h at room 

temperature.  Column chromatography (ethyl acetate/hexane, 4:11) yielded pure 2.34 as a pale 

yellow oil (122 mg, 92%).  1H NMR (CDCl3, 300 MHz) δ 7.41 (d, J = 8.8 Hz, 1H, H-1), 7.26 (d, J = 

10.1 Hz, 1H, H-2), 5.52 (d, J = 47.7 Hz, 2H, CH2F), 4.83 (s, 2H, OCH2CCl3), 3.15-2.90 (m, 2H, H-6), 

2.63-2.24 (m, 3H), 2.18-2.01 (m, 3H), 1.95 (d, 1H, J = 9.4 Hz), 1.65-1.40 (m, 6H), 0.88 (s, 3H, CH3, 

H-18); 13C NMR (CDCl3, 75 MHz) δ 220.4 (C=O), 147.3 (d, J = 4.5 Hz, C-3), 140.6 (d, J = 2.8 Hz, 
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C-5), 140.0 (d, J = 1.8 Hz, C-10), 128.5 (d, J = 3.8 Hz, C-1), 125.7 (d, J = 14.9 Hz, C-4), 118.3 (d, J = 

2.2 Hz, C-2), 92.5 (CCl3), 75.7 (d, J = 165 Hz, one peak was hidden under CDCl3, CH2F), 80.6 

(OCH2CCl3), 50.4 (C-14), 47.8 (C-13), 44.4 (C-9), 37.2 (C-8), 35.9 (C-16), 31.5 (CH2), 26.2 (CH2), 

26.1 (CH2), 26.0 (CH2), 21.6 (CH2), 13.8 (CH3); 19F NMR (CDCl3, 282 MHz , coupled) δ -132.9 (t, 

JH-F = 47.7 Hz); LRMS (EI) m/z (%) 516 (M+4, 38), 514 (M+2, 100), 512 (M+, 98), 472 (18), 470 

(47), 468 (43), 457 (34), 455 (38), 395 (26), 283 (56), 245 (80), 97(93);  HRMS (EI) calcd for 

C21H24Cl3FO5S 512.0394; found 512.0391. 

O

TCEO3SO

FH2C

2.34  

  

2-Fluoromethylestra-1,3,5(10)-triene-17-one-3-(2,2,2-trichloroethyl) sulfate (2.34). This 

was prepared from 2.32 (257 mg, 0.50 mmol) and DAST (0.20 mL, 1.5 mmol, 3 equiv) using the 

procedure described for 2.29 except the reaction was stirred for 1 h at 0 oC and 4 h at room 

temperature.  Column chromatography (ethyl acetate/hexane, 4:9) yielded pure 2.34 as a white foam 

(231 mg, 90%).  1H NMR (CDCl3, 300 MHz) δ 7.39 (s, 1H, H-1), 7.18 (s, 1H, H-4), 5.43 (d, J = 48 

Hz, 2H, CH2F), 4.98 (s, 2H, OCH2CCl3), 3.00-2.85 (m, 2H), 2.55-1.90 (m, 7H), 1.65-1.35 (m, 6H), 

0.88 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.5 (C=O), 146.0 (d, J = 6 Hz, C-3), 140.1 

(C-10), 140.1 (d, J = 1 Hz, C-5), 127.8 (d, J = 6 Hz, C-1), 125.6 (d, J = 14 Hz, C-2), 121.2 (d, J = 2 

Hz, C-4), 92.5 (CCl3), 80.5 (d, J = 2 Hz, OCH2CCl3), 79.6 (d, J = 167 Hz, CH2F), 50.4 (C-14), 47.9 

(C-13), 44.1 (C-9), 37.8 (C-8), 35.9 (C-16), 31.5 (CH2), 29.4 (CH2), 26.1 (CH2), 25.8 (CH2), 21.6 
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(CH2), 13.9 (CH3, C-18); 19F NMR (CDCl3, 282 MHz, coupled) δ -132 (t, J = 47 Hz); LRMS (EI) m/z 

(%) 514 (M+2, 100), 512 (M+, 98), 470 (42), 468 (37), 457 (35), 455 (38), 395 (30), 283 (58), 245 

(93), 97 (85); HRMS (EI) calcd. for C21H24FCl3O5S 512.0394, found 512.0396.  

O OHO

2.35  

3-Hydroxy-6-oxo-8,9,10,11-tetrahydro-7H-cylohepta-[c][1]benzopyran or 3-hydroxy- 

8,9,10,11-tetrahydrocyclohepta[c]chromen-6(7H)-one (2.35). This was prepared according to the 

procedure of Woo et al.17 A mixture of resorcinol (4.84 g, 44 mmol, 1.1 equiv) and 

2-(methoxycarbonyl)cycloheptane (6.88 g, 40 mmol) was gently heated until the solution was clear.  

To this viscous solution at 0 oC was added TFA/conc. H2SO4 (6.80 mL/8.80 mL, premixed) dropwise 

over 1 h. The resulting mixture was stirred overnight before quenching with ice water.  After stirring 

an additional 45 min, the precipitate was collected and washed thoroughly with H2O then dried under 

high vacuum.  This material was redissolved in acetone and purified by flash chromatography 

(acetone/hexane, 1:2 to 1:1) to give of coumarin 3.62 as white solid (8.76 g, 95%). 1H NMR was 

identical to that reported in the literature.17 1H NMR (CDCl3, 300 MHz) δ 8.06 (brs, 1H, OH), 7.54 (d, 

J = 8.8 Hz, 1H, H-1), 7.12 (d, J = 1.6 Hz, 1H, H-4), 6.87 (dd, J = 8.8 Hz, J = 1.6 Hz, 1H, H-2), 

2.95-2.85 (m, 4H), 1.88 (quint, J = 5.6 Hz, 2H), 1.70-1.50 (m, 4H). 

OHO

OHC

O
OHO O

CHO

2.36 2.37  
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3-Hydroxy-4-formyl-8,9,10,11-tetrahydrocyclohepta[c]chromen-6(7H)-one (2.36) and 

3-Hydroxy-2-formyl-8,9,10,11-tetrahydrocyclohepta[c]chromen -6(7H)-one (2.37). TFA (4.0 mL) 

was added to coumarin 2.35 (2.23 g, 9.7 mmol) at 0 oC.  The resulting mixture was stirred until all of 

the coumarin was dissolved. HMT (2.73g, 19.4 mmol, 2 equiv) was added slowly. After addition 

the solution was heated under argon for 4 h at 88 oC.  After cooling to rt, deionized water (2 mL) was 

added slowly then the mixture was heated at 88 oC for 2 h.  After cooling, 2 M HCl (4 mL) was 

added and the mixture was extracted with Et2O.  The combined extracts were washed with H2O and 

brine then dried (Na2SO4), filtered and concentrated.  Chromatography of the residue (ethyl 

acetate/hexane, 1:3 to 3:7) gave pure 2.36 as a light yellow solid (1.45 g, 65%) and 2.37 as an 

off-white solid (0.45 g, 20%).  Characterization data for 2.36: mp: 218-219 oC; 1H NMR (CDCl3, 300 

MHz) δ 12.10 (s, 1H, ArOH), 10.62 (s, 1H, CHO), 7.79 (d, J = 9.1 Hz, 1H, H-1), 6.86 (d, J = 9.1 Hz, 

1H, H-2), 2.92-2.85 (m, 4H), 1.90 (quint, J = 5.7 Hz, 2H), 1.70-1.58 (m, 4H); 13C NMR (CDCl3, 75 

MHz) δ 193.0 (CHO), 163.8 (C=O), 160.1 (CAr), 154.5 (CAr), 153.6 (CAr), 132.3 (CAr), 125.4 (CAr), 

113.5 (CAr), 111.5 (CAr), 108.2 (CAr), 31.5 (CH2), 27.9 (CH2), 26.3 (CH2), 25.3 (CH2), 24.6 (CH2); 

LRMS (EI) m/z (%) 258 (M+, 100), 243 (19), 230 (M-CO, 46), 215 (8), 202 (22), 201 (18); HRMS (EI) 

calcd for C15H14O4 258.0886; found 258.0892. Characterization data for 2.37:  mp: 123-124 oC; 1H 

NMR (CDCl3, 300 MHz) δ 11.26 (s, 1H, ArOH), 9.92 (s, 1H, CHO), 7.85 (s, 1H, H-1), 6.83 (s, 1H, 

H-4), 2.94-2.84 (m, 4H), 1.90 (quint, J = 5.8 Hz, 2H), 1.68 (quint, J = 5.3 Hz, 2H), 1.59 (quint, J = 5.4 

Hz, 2H); 13C NMR (CDCl3, 75 MHz) δ 195.3 (CHO), 163.4 (C=O), 161.1 (CAr), 158.5 (CAr), 152.8 

(CAr), 131.1 (CAr), 126.7 (CAr), 118.0 (CAr), 113.8 (CAr), 105.0 (CAr), 31.9 (CH2), 28.2 (CH2), 26.7 

(CH2), 25.5 (CH2), 25.0 (CH2); LRMS (EI) m/z (%) 258 (M+, 100), 243 (63), 230 (M-CO, 44), 229 
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(46), 215 (8), 201 (22); HRMS (EI) calcd for C15H14O4 258.0892; found 258.0892. 

OTCEO3SO O

2.40
CHO

 

4-Formyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-tri-chloroethyl  

sulfate (2.40). Prepared using the procedure described for 2.27 using 2.36 (100 mg, 0.39 mmol), 

DMAP (47 mg, 0.39 mmol, 1 equiv), triethylamine (0.11 mL, 0.77 mmol, 2 equiv) and reagent 2.12 

(0.11 mL, 0.77 mmol, 2 equiv) in THF (10 mL) and stirring for 4 h.  Column chromatography of the 

residue (ethyl acetate/hexane, 3:7) yielded 2.40 (0.95 g, 95%) as colorless solid. Mp: 108-110 oC; 1H 

NMR (CDCl3, 300 MHz) δ 10.71 (s, 1H, CHO), 7.93 (d, J = 9.1 Hz, 1H, H-1), 7.48 (d, J = 9.2 Hz, 1H, 

H-2), 5.10 (s, 2H, CH2CCl3), 2.98-2.91 (m, 4H), 1.93 (quint, J = 5.9 Hz, 2H), 1.73-1.60 (m, 4H); 13C 

NMR (CDCl3, 75 MHz) δ 185.7 (CHO), 159.4 (C=O), 154.5, 152.4, 148.0, 130.1, 129.8, 119.9, 117.9, 

116.0, 92.3 (CCl3), 80.8 (OCH2CCl3), 31.5 (CH2), 28.2 (CH2), 26.8 (CH2), 25.1 (CH2), 24.5 (CH2); 

LRMS (EI) m/z (%) 472 (M+4, 6), 470 (M+2, 17), 468 (M+, 17), 435 (5), 433 (7), 321 (15), 258 (69), 

257 (100), 230 (41), 229 (28); HRMS (EI) calcd for C17H15Cl3O7S 467.9604; found 467.9615. 

OTCEO3SO

OHC

O

2.41  

 2-Formyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-trichloroethyl 

sulfate (2.41). Prepared using the procedure described for 2.27 using 2.37 (0.390 g, 1.51 mmol), 

DMAP (0.190 g, 1.56 mmol, 1 equiv), triethylamine (0.44 mL, 3.1 mmol, 2 equiv) and reagent 2.12 
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(0.40 mL, 3 mmol, 2 equiv) in THF (50 mL) and stirring for 6 h.  Column chromatography of the 

residue (ethyl acetate/hexane, 1:4 to 1:2) yielded 2.41 as a colorless oil that solidified on standing 

(0.774 g, 100%).  This contained a small amount of reagent 2.12 that could not be removed so this 

material was carried on to the next step. On a smaller scale, we obtained pure 2.12 (95%).  1H NMR 

(CDCl3, 300 MHz) δ 10.31 (s, 1H, CHO), 8.29 (s, 1H, H-1), 7.47 (s, 1H, H-4), 4.94 (s, 2H, CH2CCl3), 

3.01-2.89 (m, 4H), 1.92 (quint, J = 5.2 Hz, 2H), 1.72-1.59 (m, 4H); 13C NMR (CDCl3, 75 MHz) δ 

185.6 (CHO), 159.9 (C=O), 156.3 (CAr), 152.3 (CAr), 151.0 (CAr), 130.4 (CAr), 126.6 (CAr), 124.1 (CAr), 

119.6 (CAr), 110.6 (CAr), 91.9 (CCl3), 80.8 (OCH2CCl3), 31.5 (CH2), 28.1 (CH2), 26.8 (CH2), 25.0 

(CH2), 24.5 (CH2); LRMS (EI) m/z (%) 472 (M+4, 15), 470 (M+2, 39), 468 (M+, 41), 435 (5), 433 

(M-Cl, 7), 321 (19), 269 (21), 258 (100), 257 (76), 230 (43), 229 (47); HRMS (EI) calcd for 

C17H15Cl3O7S 467.9604; found 467.9608. 

OTCEO3SO O
CHF2

2.42  

4-Difluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-tri- 

chloroethyl sulfate (2.42). This was prepared using the procedure described for 2.29 using 2.40 (100 

mg, 0.210 mmol), methylene chloride (20 mL) and DAST (diethylaminosulfur trifluoride, 0.084 mL, 

0.64 mmol, 3 equiv), 0 oC, 1 h, then rt 3 h. Column chromatography of the residue (ethyl 

acetate/hexane, 1:3) yielded 2.42 as a white solid (80 mg, 80%).  Mp: 81-83 oC; 1H NMR (CDCl3, 

300 MHz) δ 7.85 (d, J = 9.0 Hz, 1H, H-1), 7.54 (d, J = 9.3 Hz, 1H, H-2), 7.35 (t, J = 52.9 Hz, 1H), 

4.93 (s, 2H, CH2CCl3), 2.96-2.89 (m, 4H), 1.91 (quint, J = 5.7 Hz, 2H), 1.71-1.61 (m, 4H); 13C NMR 
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(CDCl3, 75 MHz) δ 159.6 (C=O), 152.5 (CAr), 150.8 (CAr), 148.7 (CAr), 129.7 (CAr), 127.8 (CAr), 119.2 

(CAr), 116.5 (CAr), 113.7 (t, J = 23.1 Hz, C-4), 109.2 (t, J = 238 Hz, CHF2), 92.0 (CCl3), 80.7 

(OCH2CCl3), 31.5 (CH2), 28.1 (CH2), 26.7 (CH2), 25.1 (CH2), 24.5 (CH2); 19F NMR (CDCl3, 282 

MHz, coupled) δ -114.0 (d, JH-F = 53 Hz); LRMS (ESI) m/z (%) 359 (100); HRMS (ESI) calcd for 

C15H13F2O6S 359.0406; found 359.0393. 

OTCEO3SO

HF2C

O

2.43  

2-Difluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-tri- 

chloroethyl sulfate (2.43). This was prepared using the procedure described for 2.29 using 2.41 (100 

mg, 0.21 mmol), methylene chloride (20 mL) and DAST (diethylaminosulfur trifluoride, 0.084 mL, 

0.64 mmol, 3 equiv), 0 oC, 1 h, then rt for 3 h. Column chromatography of the residue (ethyl 

acetate/hexane, 1:3) yielded 2.42 as an off-white solid (80 mg, 80%).  Mp: 84-86 oC; 1H NMR 

(CDCl3, 300 MHz) δ 7.96 (s, 1H, H-1), 7.52 (s, 1H, H-4), 6.96 (t, J = 54.7 Hz, 1H, CH2F), 4.89 (s, 2H, 

OCH2CCl3), 2.97 (t, J = 5.0 Hz, 2H), 2.91 (t, J = 5.2 Hz, 2H), 1.97-1.85 (m, 2H), 1.75-1.55 (m, 4H); 

13C NMR (CDCl3, 75 MHz) δ 160.6 (C=O), 154.2 (CAr), 152.2 (CAr), 148.0 (CAr), 130.4 (CAr), 123.3 (t, 

J = 6.4 Hz, C-1), 122.3 (t, J = 23.3 Hz, C-2), 119.3 (CAr), 110.4 (t, J = 239 Hz, CHF2), 109.9 (C-4), 

91.9 (CCl3), 80.9 (CH2CCl3), 31.7 (CH2), 28.2 (CH2), 26.9 (CH2), 25.2 (CH2), 24.7 (CH2); 19F NMR 

(CDCl3, 282 MHz, coupled) δ -113.2 (d, JH-F = 54 Hz); LRMS (EI) m/z (%) 494 (M+4, 27), 492 (M+2, 

66), 490 (M+, 62), 479 (2), 477 (4), 475 (4), 466 (2), 464 (5), 462 (5), 439 (3), 437 (8), 435 (11), 373 

(7), 360 (48), 345 (12), 332 (7), 280 (61), 279 (100), 265 (23), 251 (38); HRMS (EI) calcd for 
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C17H15Cl3F2O6S 489.9623; found 489.9629. 

OTCEO3SO O
CH2OH

2.44  

4-Hydroxymethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-tri- 

chloroethyl sulfate (2.44).  Prepared using the procedure used for 2.31 using Zr(OiPr)4-iPrOH (98 

mg, 0.26 mmol, 1.2 equiv) and (±)BINOL (80 mg, 0.26 mmol, 1.2 equiv) in toluene (5 mL) and 2.40 

(100 mg, 0.210 mmol) in toluene (2 mL), and stirring for 1 h at 35 oC.  Column chromatography of 

the residue (acetone/hexane, 1:4 to 1:1) yielded pure 2.45 as a white solid (90 mg, 90%). Mp: 146-147 

oC; 1H NMR (CDCl3, 300 MHz) δ 7.70 (d, J = 9.0 Hz, 1H, H-1), 7.42 (d, J = 9.0 Hz, 1H, H-2), 4.98 (s, 

2H, CH2), 4.95 (s, 2H, CH2), 2.96-2.89 (m, 4H), 2.67 (brs, 1H, OH), 1.91 (quint, J = 5.8 Hz, 2H), 

1.67-1.61 (m, 4H, overlapping with H2O); 13C NMR (CDCl3, 75 MHz) δ 161.1 (C=O), 153.2 (CAr), 

151.6 (CAr), 149.0 (CAr), 129.1 (CAr), 124.8 (CAr), 121.4 (CAr), 116.6 (CAr), 92.2 (CCl3), 80.7 

(OCH2CCl3), 53.3 (ArCH2O), 31.7 (CH2), 28.2 (CH2), 26.7 (CH2), 25.3 (CH2), 24.7 (CH2); LRMS (EI) 

m/z (%) 474 (M+4, 6), 472 (M+2, 16), 470 (M+, 16), 323 (25), 259 (9), 243 (18), 242 (66), 241 (100), 

231 (10), 214 (32); HRMS (EI) calcd for C17H17Cl3O7S 469.9761; found 469.9757. 

OTCEO3SO

HOH2C

O

2.45  

2-Hydroxymethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-tri- 

chloroethyl sulfate (2.45). Prepared using the procedure used for 2.31 using Zr(OiPr)4-iPrOH (700 
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mg, 1.81 mmol, 1.1 equiv) and (±)BINOL (570 mg, 1.99 mmol, 1.2 equiv) in toluene (5 mL) and 2.41 

(774 mg, 1.65 mmol) in toluene (40 mL), and stirring for 1 h at 35 oC.  Column chromatography of 

the residue (ethyl acetate/hexane, 1:3 to 1:1) yielded pure 2.45 as a white solid (0.605g, 85% over two 

steps). Mp: 118-119 oC; 1H NMR (CDCl3, 300 MHz) δ 7.88 (s, 1H, H-1), 7.40 (s, 1H, H-4), 1.90 (s, 

2H), 4.85 (s, 2H), 2.97 (t, J = 5.2 Hz, 2H), 2.90 (t, J = 5.3 Hz, 2H), 1.91 (quint, J = 5.7 Hz, 2H), 

1.71-1.56 (m, 4H); 13C NMR (CDCl3, 75 MHz) δ 161.4 (CAr), 153.0 (CAr), 151.8 (CAr), 129.4 (CAr), 

129.4 (CAr), 125.0 (CAr), 119.3 (CAr), 109.5 (CAr), 92.1 (CCl3), 80.7 (OCH2CCl3), 59.1 (ArCH2O), 

31.7 (CH2), 28.1 (CH2), 26.8 (CH2), 25.3 (CH2), 24.7 (CH2); LRMS (EI) m/z (%) 474 (M+4, 23), 

472 (M+2, 52), 470 (M+, 53), 444 (3), 442 (3), 323 (23), 260 (50), 259 (77), 243 (32), 242 (100), 231 

(31), 214 (18);  HRMS (EI) calcd for C17H17Cl3O7S 469.9761; found 469.9756. 

OTCEO3SO O
CH2F

2.46  

 

4-Fluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-tri- 

chloroethyl sulfate (2.46).  Prepared from 2.44 using the procedure described for 2.29 using 2.44 

(100 mg, 0.21 equiv), DAST (0.084 mL, 0.64 mmol, 3 equiv), 0 oC, 1h, then rt for 3 h.  Column 

chromatography (ethyl acetate/hexane, 1:3) yielded pure 2.46 as an off-white solid (80 mg, 80%).  

Mp: 91-93 oC; 1H NMR (CDCl3, 300 MHz) δ 7.79 (dd, J = 9.0 Hz, JH-F = 1.8 Hz, 1H, H-1), 7.48 (d, J 

= 9.0 Hz, 1H, H-2), 5.75 (d, J = 47.3 Hz, 2H, CH2F), 4.90 (s, 2H, CH2CCl3), 2.96-2.90 (m, 4H), 1.91 

(quint, 2H, J = 5.7 Hz), 1.69-1.55 (m, 4H); 13C NMR (CDCl3, 75 MHz) δ 160.2 (C=O), 152.6 (CAr), 
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151.6 (CAr), 149.8 (CAr), 129.4 (CAr), 126.5 (d, J = 2.8 Hz), 119.3 (CAr), 116.2 (CAr), 116.1 (CAr), 92.0 

(CCl3), 80.6 (OCH2CCl3), 72.4 (d, J = 167 Hz, CH2F), 31.6 (CH2), 28.0 (CH2), 26.7 (CH2), 25.2 (CH2), 

24.6 (CH2); 19F NMR (CDCl3, 282 MHz, coupled) δ -133.0 (t, JH-F = 47 Hz); LRMS (EI) m/z (%) 476 

(M+4, 17), 474 (M+2, 47), 472 (M+, 43), 448 (1), 446 (3), 44 (3), 419 (3), 417 (5), 355 (23), 342 (33), 

323 (13), 286 (9), 262 (52), 261 (100), 242 (71), 241 (54), 233 (27), 214 (28), 213 (25); HRMS (EI) 

calcd for C17H16Cl3FO6S 471.9717; found 471.9714. 

OTCEO3SO

H2FC

O

2.47  

2-Fluoromethyl-6-oxo-6,7,8,9,10,11-hexahydrocyclohepta[c]chromen-3-yl 2,2,2-tri- 

chloroethyl sulfate (2.47). Prepared using the procedure described for 2.29 using 2.45 (380 mg, 

0.806 mmol) and DAST (0.40 mL, 3.0 mmol, 3.7 equiv) in CH2Cl2 (30 mL), stir for 1 h at 0 oC and 3 

h at rt.  Flash chromatography of the residue (ethyl acetate/hexane 1:5 to 1:3) yielded 2.47 as pale 

yellow solid (0.30 g, 80%).  Mp: 84-86 oC; 1H NMR (CDCl3, 300 MHz) δ 7.78 (s, 1H, H-1), 7.42 (s, 

1H, H-4), 5.51 (t, J = 47.2 Hz, 2H, CH2F), 4.87 (s, 2H, CH2CCl3), 2.94-2.85 (m, 4H), 1.90-1.83 (m, 

2H), 1.70-1.50 (m, 4H); 13C NMR (CDCl3, 75 MHz) δ 160.9 (C=O), 153.0 (d, J = 2.2 Hz, CAr), 

152.4 (C-11a), 148.2 (d, J = 3.7 Hz, C-3), 130.0 (CAr), 125.7 (d, J = 7.6 Hz, C-1), 124.6 (d, J = 17.9 

Hz, C-2), 119.4 (C-6a), 109.8 (C-4), 92.1 (CCl3), 80.8 (OCH2CCl3), 79.0 (d, J = 168 Hz, CH2F), 31.8 

(CH2), 28.2 (CH2), 26.9 (CH2), 25.3 (CH2), 24.8 (CH2); 19F NMR (CDCl3, 282 MHz, coupled) δ 

-134.5 (t, JH-F = 47.1 Hz); LRMS (EI) m/z (%) 476 (M+4, 16), 474 (M+2, 43), 472 (M+, 41), 419 (4), 

417 (6), 355 (14), 342 (43), 327 (13), 262 (49), 261 (100), 247 (13), 233 (35); HRMS (EI) calcd for 
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C17H16Cl3FO6S 471.9717; found 471.9718. 

O

2.50

O

H
 

Estra-1,3,5(10)-triene-17-one-3-carbaldehyde (2.50). To a solution of 3-hydroxymethyl- 

estrone19 (400 mg, 1.41 mmol) in CH2Cl2 (30 mL) at rt was added pyridinium chlorochromate (PCC, 

600 mg, 2.80 mmol, 2 equiv).  The reaction was stirred for 100 min then filtered through Celite. 

The filtrate was washed with H2O and brine, then dried (Na2SO4), filtered and concentrated to give a 

brown solid.  Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:5, then 

ethyl acetate/hexane/CH2Cl2,1:5:3, then ethyl acetate/hexane, 1:1) gave pure 2.50 as a white solid (377 

mg, 95%).  Mp: 183-185 oC; 1H NMR (CDCl3, 300 MHz) δ 9.93 (s, 1H, CHO), 7.63 (d, J = 8.1 Hz, 

1H, H-2), 7.59 (s, 1H, H-4), 7.44 (d, J = 8.0 Hz, 1H, H-1), 3.00-2.95 (m, 2H), 2.55-2.31 (m, 3H), 

2.20-1.95 (m, 4H), 1.69-1.44 (m, 6H), 0.91 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.3 

(C=O), 192.1 (CHO), 147.0 (C-10), 137.4 (CAr), 134.2 (CAr), 130.1 (C-4), 127.1 (CHAr), 126.0 (CHAr), 

50.4 (C-14), 47.7 (C-13), 44.8 (C-9), 37.6 (C-8), 35.7 (C-16), 31.4 (CH2), 29.1 (CH2), 26.1 (CH2), 

25.5 (CH2), 21.5 (CH2), 13.7 (CH3, C-18); LRMS (EI) m/z (%) 282 (M+, 100), 264 (11), 253 (7), 238 

(45), 225 (24);  HRMS (EI) calcd for C19H22O2 282.1620; found 282.1618. 

O

HO

2.51
Br

 

4-Bromoestra-1,3,5(10)-triene-17-one (2.51). Prepared according to the procedure of Utne 
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et al.20  To a suspension of E1 (8.00 g, 29.6 mmol) in EtOH (1.0 L) (gentle heating of the suspension 

resulted in dissolution of E1, however, upon cooling to rt some E1 precipitated out of solution) was 

added N-bromoacetamide (NBA, 4.10 g, 2.97 mmol, 1.0 equiv) in portions.  After addition, the 

resulting mixture was stirred for 24 h at rt.  The reaction was filtered and the filtrate concentrated. 

The solid residue from the concentrated filtrate and the collected precipitate were combined and 

recrystallized from ethanol to give of 2.51 as a white solid (8.32 g, 81%). 1H NMR was identical to 

that reported in the literature.41  1H NMR (DMSO-d6, 300 MHz) δ 9.82 (s, OH), 7.08 (d, J = 8.5 Hz, 

1H, H-1), 6.73 (d, J = 8.4 Hz, 1H, H-2), 2.90-1.20 (m, 15H), 0.76 (s, 3H, CH3, H-18). 

O

HO

2.52
CN

 

4-Cyanoestra-1,3,5(10)-triene-17-one (2.52). This was prepared according to the 

procedure of Labrie et al. with slight modifications.22  A mixture of 2.51 (500 mg, 1.44 mmol) and 

CuCN (300 mg. 3.33 mmol, 2.3 equiv) in DMF (12 mL) was refluxed for 6.5 h. After cooling to rt, 

FeCl3 (1 g) and conc. HCl (1 mL) were added and the mixture was heated at 55 oC for 30 min, cooled 

to rt and treated with H2O (20 mL). The mixture was extracted with ethyl acetate and combined 

extracts were washed with H2O and brine then dried (Na2SO4) filtered and concentrated.  The residue 

was purified by flash chromatography (ethyl acetate/hexane 1:2 to 1:1.5) to give 2.52 as white solid 

(375 mg, 89%).  1H NMR and 13C NMR were identical to that reported in the literature.22  1H NMR 

(DMSO-d6, 300 MHz) δ 10.68 (s, 1H, OH), 7.34 (d, J = 8.7 Hz, 1H, H-1), 6.74 (d, J = 8.6 Hz, 1H, 

H-2), 2.92-2.70 (m, 2H), 2.39 (dd, J = 18.6 Hz, J = 8.1 Hz, 1H), 2.27-2.25 (m, 1H), 2.13-1.85 (m, 4H), 
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1.69 (d, 1H, J = 8.4 Hz), 1.54-1.25 (m, 6H), 0.76 (s, 3H, CH3, H-18). 

O

MeO
CN

2.53  

4-Cyanoestra-1,3,5(10)-triene-17-one-3-yl methylether (2.53).42  To a solution of 

4-cyanoestrone (200 mg, 0.68 mmol) in THF/DMF (50 mL/1 mL) at 0 oC was added NaH (60% 

dispersed in mineral oil, 40 mg, 1.5 equiv).  After stirring for 15 min at rt, it was cooled to 0 oC and 

MeI (0.085 mL, 1.36 mmol, 2 equiv) was added.  Reaction was stirred overnight before quenching 

with H2O (10 mL) and extracted with ethyl acetate.  The combined extracts were washed with brine 

the dried (Na2SO4), filtered and concentrated.  The residue was subjected to chromatography (ethyl 

acetate/hexane, 1:2) to give light yellow solid.  Treating the solid with hexane and then decanting off 

the hexane gave pure 2.53 as a white solid (163 mg, 79%). 1H NMR (CDCl3, 300 MHz) δ 7.41 (d, J 

= 8.8 Hz, 1H, H-1), 6.74 (d, J = 8.8 Hz, 1H, H-4), 3.87 (s, 3H, OCH3), 3.12 (dd, J = 17.8 Hz, J = 5.8 

Hz, 1H, H-10), 2.92 (ddd, J = 18.0 Hz, J = 11.5 Hz, J = 6.8 Hz, 1H, H-7), 2.49 (dd, J = 18.8 Hz, J = 

9.2 Hz, 1H, H-6), 2.40-1.90 (m, 6H), 1.70-1.40 (m, 6H), 0.88 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 

75 MHz) δ 220.4 (C=O), 159.9 (C-3), 141.9 (C-5), 132.9 (C-10), 130.9 (C-1), 115.6 (CN), 108.4 (C-2), 

101.7 (C-4), 56.0 (OCH3), 50.2 (C-14), 47.9 (C-13), 43.6 (C-9), 37.7 (C-8), 35.8 (C-16), 31.4 (CH2), 

28.4 (CH2), 25.9 (2CH2 overlapping), 21.5 (CH2), 13.8 (CH3, C-18).  
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HO
CH2NH2

2.54

OH

 

4-(Aminomethyl)-17β-hydroxylestra-1,3,5(10)-triene (2.54). To a suspension of LiAlH4 

(300 mg, 8.82 mmol, 13 equiv) in THF (20 mL) at 0 oC was added a solution of 2.52 (200 mg, 0.678 

mmol) in THF (20 mL).  After addition, the resulting mixture was stirred for 20 min at rt, then 

refluxed overnight (oil bath temp. 70 oC).  The mixture was cooled to rt and poured onto ice water 

and the mixture was filtered through a pad of Celite.  The filtrate was extracted with Et2O and the 

combined extracts were washed with brine then dried (Na2SO4), filtered and concentrated. The 

residue was subjected to chromatography (ethyl acetate/methanol, 2:1) to give pure 2.54 as a yellow 

solid (120 mg, 59%). 1H NMR and 13C NMR were identical to that reported in the literature.25  1H 

NMR (DMSO-d6, 300 MHz) δ 6.94 (d, 1H, H-1), 6.43 (d, 1H, H-2), 5.00 (brs, 4H, NH2 and 2 OH), 

3.79 (s, 2H, ArCH2N), 3.47 (s, 1H), 2.70-2.45 (m, 2H), 2.20-1.10 (m, 13H), 0.61 (s, 3H, CH3, H-18);  

13C NMR (DMSO-d6, 75 MHz) δ 156.6 (C-3), 134.5 (C-5), 130.4 (C-10), 124.7 (C-1), 123.3 (C-4), 

113.9 (C-2), 80.5 (C-17), 50.0 (C-14), 44.4 (C-9), 43.1 (C-13), 39.6 (ArCH2N), 39.1 (C-8), 37.1 (CH2), 

30.4 (CH2), 27.6 (CH2), 26.9 (CH2), 26.7 (CH2), 23.2 (CH2), 11.7 (CH3, C-18). 

HO

OH

2.56
OH

 

17β-hydroxyl-4-(hydroxy methyl)estra-1,3,5(10)-triene (2.56).  Method A (reduction of 
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2.13 using NaBH4): To a solution of 2.13 (100 mg, 0.336 mmol) in EtOH/THF (30 mL, 2:1, heated to 

make a solution then cooled) at 0 oC was added NaBH4 (51 mg, 1.34 mmol, 4.0 equiv).  The reaction 

was stirred 30 min at 0 oC.  The solvent was removed in vacuo at 30 oC (water bath) and the residue 

was acidified with 1 N HCl at 0 oC and extracted with ethyl acetate.  The combined extracts were 

washed with H2O and brine then dried (Na2SO4), filtered and concentrated.  The residue was purified 

by flash chromatography (ethyl acetate/hexane, 1:2 to 1:1) to give 2.56 as a white solid (72 mg, 72%).  

Method B (reduction of 2.66 using Pd/C and H2): To a solution of 2.66 (12 mg, 0.028 mmol) in ethyl 

acetate (10 mL) was added 10% Pd/C (3 mg).  The reaction mixture was evacuated, filled with H2 

and repeated this process 4 times, then stirred overnight.  The reaction was filtered and concentrated 

and the residue purified by flash chromatography (ethyl acetate/hexane 1:2) to give of 2.56 as white 

solid (8 mg, 98%). The 1H NMR was identical to that reported in the literature.25   1H NMR 

(CD3OD, 300 MHz) δ 7.05 (d, J = 8.4 Hz, 1H, H-1), 6.58 (d, J = 8.5 Hz, 1H, H-2), 4.58 (s, 2H, 

ArCH2OH), 3.63 (t, J = 8.5 Hz, 1H, H-17), 3.00-2.93 (m, 1H, H-6), 3.00-2.72 (m, 1H), 2.28-1.10 (m, 

13H), 0.74 (s, 3H, CH3, H-18). 

HO

2.57

O

 

4-Vinylestra-1,3,5(10)-triene-17-one (2.57). To a solution of 2.51 (2.10 g, 6.05 mmol) and 

tributyl vinyltin (2.0 mL, 6.8 mmol, 1.1 equiv) in DMF (40 mL) was added Pd(PPh3)4 (400 mg, 0.347 

mmol, 5.7 mol%).  The resulting mixture was degassed 7 times using liquid nitrogen and high 

vacuum before heating at 165-170 oC for 24 h.  After cooling to rt, the mixture was diluted with H2O 



 89

and extracted with ethyl acetate.  The combined extracts were washed with H2O, brine then dried 

(Na2SO4), filtered and concentrated.  The residue was subjected to chromatography (ethyl 

acetate/hexane, 1:3 to 1:2.5) to give 2.57 as a white solid (1.31 g, 73%).  Mp: 188-189 oC; 1H NMR 

(CDCl3, 300 MHz) δ 7.14 (dd, J = 8.7 Hz, J = 3.0 Hz, 1H, H-1), 6.79 (dd, J = 8.7 Hz, J = 3.3 Hz, 1H, 

H-2), 6.62 (ddd, 1H, J = 18.3 Hz, J = 12.7 Hz, J = 3.0 Hz, CH=CH2), 5.70 (dd, J = 11.4 Hz, J = 1.8 Hz, 

1H, CH=CHHcis), 5.53 (t, J = 3.0 Hz, 1H, ArOH), 5.52 (dd, J = 18.0 Hz, J = 1.8 Hz, 1H, CH=CHtransH, 

overlapping with ArOH), 2.82-2.59 (m, 2H), 2.54-2.33 (m, 2H), 2.30-1.89 (m, 5H), 1.66-1.32 (m, 6H), 

0.67 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 221.2 (C=O), 150.8 (C-3), 135.3 (C-5), 

132.4 (C-1), 131.5 (C-10) 125.6 (CH=CH2), 123.4 (C-4), 120.5 (CH=CH2), 113.0 (C-2), 50.4 (C-14), 

47.9 (C-13), 44.2 (C-9), 37.7 (C-8), 35.9 (C-16), 31.6 (C-12), 27.9 (CH2), 26.6 (CH2), 26.1 (CH2), 

21.6 (CH2), 12.8 (CH3, C-18); LRMS (EI) m/z (%) 296 (M+, 100), 281 (2), 239 (8), 211 (12), 172 

(10); HRMS (EI) calcd for C20H24O2 296.1776; found 296.1780. 

O

CHO

O

O

2.58  

4-Formylestra-1,5(10)-diene-2,3,17-trione (2.58). To a solution of 2.57 (55 mg, 0.19 mmol) 

in dioxane/H2O (6 mL, 5:1) at 55 oC was added OsO4 solution (20 mg in 5 mL H2O, 0.079 mmol, 0.42 

equiv), then NaIO4 (86 mg, 0.25 mmol, 1.3 equiv). The resulting mixture was stirred overnight at 55 

oC then cooled to rt. 2 N HCl was added and extracted with ethyl acetate. The combined extracts were 

washed with H2O then dried (Na2SO4) and concentrated.  The residue was purified by 

chromatography (ethyl acetate/hexane, 1:2) to give a mixture of 2.58 and trace 2.13 as yellow crystals 
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(15 mg, 26%). 1H NMR (CDCl3, 300 MHz) δ 10.23 (s, 1H, CHO), 7.91 (s, 1H, 1-H), 3.38-3.11 (m, 

2H), 2.55-1.35 (m, 13H), 0.90 (s, 3H, CH3, H-18).  

HO

2.59

O

I

 

2-Iodoestra-1,3,5(10)-triene-17-one (2.59). 2.59 was prepared using a modified version of 

the procedure of Horiuchi et al.29 A mixture of estrone (0.54 g, 2.0 mmol), Cu(OAc)2•H2O (0.60 g, 60 

mmol, 1.5 equiv) and iodine (0.76 g, 60 mmol, 1.5 equiv) in HOAc (60 mL) was heated at 58 oC for 

24 h.  The reaction was cooled to rt and concentrated.  5% Na2S2O3 was added and the mixture was 

stirred for 10 min at rt before extracting with ethyl acetate.  The combined extracts were dried 

(Na2SO4) filtered and concentrated. The residue was subjected to flash chromatography (ethyl 

acetate/hexane, 1:2.5) to give of 2.59 as a white solid (358 g, 45%). 1H and 13C NMR are identical to 

that reported in the literature.43 1H NMR (DMSO-d6, 300 MHz) δ 9.87 (s, 1H, ArOH), 7.43 (s, 1H, 

H-1), 6.55 (s, 1H, H-4), 2.75-2.65 (m, 2H), 2.39 (dd, J = 19.3 Hz, J = 8.6 Hz, 1H), 2.27-1.20 (m, 12H), 

0.77 (s, 3H, CH3, H-18). 

HO

2.60

O

I

OH

 

4-Formyl-2-iodoestra-1,3,5(10)-triene-17-one (2.60). To a solution of 2.59 (100 mg, 0.25 

mmol) in acetonitrile (10 mL) was added paraformaldehyde (100 mg, 3.33 mmol, 13.2 equiv), 

magnesium chloride (75 mg, 0.79 mmol, 3.1 equiv) and triethylamine (0.2 mL, 1.43 mmol, 5.7 equiv). 
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After addition, the reaction mixture was heated at 50 oC for 5 h.  After cooling, the mixture was 

acidified with 2N HCl till clear. The mixture was extracted with ethyl acetate, washed with H2O, 5% 

NaHCO3 and brine then dried (Na2SO4) and concentrated. Purification by flash chromatography (ethyl 

acetate/hexane, 1:3 to 1:2.5) gave 2.14 as a light yellow solid (15 mg, 20%) and 2.60 as a yellow solid 

(43 mg, 40%).  Characterization data for 2.60: mp: 208-210 oC; 1H NMR (CDCl3, 300 MHz) δ 11.74 

(s, 1H, OH), 9.67 (s, 1H, CHO), 7.44 (s, 1H, H-1), 3.01 (dd, J = 18.9 Hz, J = 5.7 Hz, 1H, H-6), 

2.80-2.65 (m, 1H), 2.65-1.93 (m, 7H), 1.70-1.33 (m, 6H), 0.88 (m, 3H, CH3, H-18); 13C NMR 

(CDCl3, 75 MHz) δ 220.2 (C=O), 195.5 (CHO), 158.3 (C-3), 149.6 (CAr), 133.9 (CAr), 130.5 (C-1), 

118.3 (CAr), 94.0 (C-2), 50.2 (C-14), 47.4 (C-13), 43.8 (C-9), 37.7 (C-8), 37.4 (CH2), 35.8 (CH2), 31.3 

(CH2), 27.0 (CH2), 26.1 (CH2), 21.5 (CH2), 13.7 (CH3, C-18); LRMS (EI) m/z (%) 424 (M+, 100), 

380 (8), 367 (12), 326 (8), 298 (10); HRMS (EI) calcd for C19H21IO3 424.0535; found 424.0544. 

HO

2.61

O

I

2.62

HO

O

I

OH I

 

4-(Hydroxymethyl)-2-iodoestra-1,3,5(10)-triene-17-one (2.61) and 2,4-Diiodoestra- 

1,3,5(10)-triene-17-one (2.62). To a mixture of 2.59 (180 mg, 0.455 mmol), paraformaldehyde (6.0 

mg, 0.20 mmol, 0.44 equiv) in dioxane (3 mL) was added powderized NaOH (4.0 mg, 0.10 mmol, 

0.22 equiv).  The resulting mixture was heated in glass bomb at 50 oC for 4 h.  The mixture was 

cooled and paraformaldehyde (3.0 mg, 0.10 mmol, 0.22 equiv) was added and heating was continued 

for an additional 2 h. After cooling to rt, it was acidified with 1 N HCl slowly and the extracted with 
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ethyl acetate, washed with H2O and brine then dried  (Na2SO4) and concentrated.  The residue was 

subjected to flash chromatography (ethyl acetate/hexane 1:2 to 1:1) to give of 2.61 as a white solid (97 

mg, 50%), 2.62 as a white solid (35 mg, 14%) and unreacted starting material (31 mg, 17%). 

Characterization data for 2.61: mp 156-158 oC; 1H NMR (DMSO-d6, 300 MHz) δ 8.94 (s, 1H, ArOH), 

7.16 (s, 1H, H-1), 5.41 (brs, 1H, ArCH2OH), 4.53 (s, 2H, ArCH2OH), 2.74 (dd, J = 17.4 Hz, J = 5.1 

Hz, 1H, H-6), 2.65-2.23 (m, 3H), 2.23-1.85 (m, 4H), 1.80-1.63 (m, 1H), 1.60-1.18 (m, 6H), 0.76 (s, 

3H, CH3, H-18). 13C NMR (DMSO-d6, 75 MHz) δ 220.0 (C=O), 152.0 (C-3), 137.9 (CAr), 133.2 (CAr), 

126.3 (CAr), 125.1 (C-1), 96.5 (C-2), 60.7 (ArCH2O), 49.9 (C-14), 47.7 (C-13), 44.2 (C-9), 37.6 (C-8), 

37.0 (CH2), 35.8 (CH2), 31.7 (CH2), 27.4 (CH2), 26.3 (CH2), 21.5 (CH2), 13.9 (CH3, C-18); LRMS 

(EI) m/z (%) 426 (M+, 35), 408 (100), 326 (7), 298 (8), 281 (10); HRMS (EI) calcd for C19H23O3I 

426.0692; found 426.0690. Characterization data for 2.62: 1H NMR was identical to that reported 

in the literature.44  1H NMR (CDCl3, 300 MHz) δ 7.61 (s, 1H, H-1), 5.76 (s, 1H, OH), 2.84 (dd, J = 

17.7 Hz, J = 6.3 Hz, 1H, H-10), 2.71-2.59 (m, 1H, H-7), 2.49 (dd, J = 18.3 Hz, J = 9.0 Hz, 1H, H-6), 

2.40-1.90 (m, 6H), 1.70-1.35 (m, 6H), 0.88 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.4 

(C=O), 151.5 (C-3), 140.6 (C-5), 135.9 (C-6), 135.8 (C-1), 92.0 (C-4), 78.4 (C-2), 50.1 (C-14), 47.8 

(C-13), 43.8 (C-9), 37.3 (C-8), 35.8 (C-16), 31.4 (CH2), 27.2 (CH2), 26.2 (CH2), 21.5 (CH2), 13.7 

(CH3, C-18); LRMS (EI) m/z (%) 522 (M+, 100), 465 (7), 424 (4), 412 (4). 

HO

2.63

O

OH
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4-(Hydroxymethyl)estra-1,3,5(10)-triene-17-one (2.63). Method A (reduction of 2.61 

using Pd black and H2): To a solution of 2.61 (80 mg, 0.19 mmol) in ethyl acetate (50 mL) was added 

4Å MS (50 mg), Na2HPO4 (30 mg) and the mixture was stirred for 30 min before Pd black (20 mg) 

was added. The reaction mixture was evacuated, filled with H2 and this process was repeated 4 times.  

After stirring 2 days, the solids were removed by filtration.  The filtrate was concentrated and the 

residue purified by flash chromatography (ethyl acetate/hexane, 1:2.5) to give of 2.63 as a white solid 

(33 mg, 59%).  Method B (reduction of 2.13 using Bu3SnH): To a suspension of 2.13 (298 mg, 1.0 

mmol) in MeOH (40 mL) was added Bu3SnH (438 mg, 1.50 mmol, 1.5 equiv).  The mixture was 

refluxed for 7 h under argon during which the reaction mixture became clear.  The mixture was 

concentrated and the residue was redissolved in CH2Cl2 by heating and purified by flash 

chromatography (ethyl acetate/hexane, 1:2, then CH2Cl2) to give 2.63 as a white solid (124 mg, 42%). 

Method C (hydrogenation of 2.13 using Pd black): To a solution of 2.13 (10.6 mg) in ethyl acetate (10 

mL, dried from 4Å MS) was added Pd black (2.5 mg).  The reaction mixture was evacuated, filled 

with H2 and this process was repeated 4 times.  After stirring 3 h, the catalyst was removed by 

filtration and the filtrate was concentrated to give 2.63 as a white solid (10.6 mg, 100%). Mp: 

201-202 oC; 1H NMR (DMSO-d6, 300 MHz) δ 9.03 (s, 1H, ArOH), 6.98 (d, J = 7.2 Hz, 1H, H-1), 6.50 

(d, J = 7.2 Hz, 1H, H-2), 4.64 (s, 1H, ArCH2OH), 4.48 (s, 2H, ArCH2OH), 2.99-2.70 (m, 2H), 

2.47-1.92 (m, 6H), 1.73-1.70 (m, 1H), 1.55-1.27 (m, 6H), 0.78 (s, 3H, CH3, H-18); 13C NMR 

(DMSO-d6, 75 MHz) δ 220.2 (C=O), 153.8 (C-3), 137.1 (CAr), 130.7 (CAr), 125.4 (C-1), 125.1 (C-4), 

113.3 (C-2), 55.0 (ArCH2OH), 50.8 (C-14), 47.7 (C-13), 44.3 (C-9), 37.8 (C-8), 35.9 (C-16), 31.9 

(CH2), 26.6 (CH2), 26.3 (CH2), 26.0 (CH2), 21.6 (CH2), 13.9 (CH3, C-18); LRMS (EI) m/z (%) 300 
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(M+, 63), 299 (43), 282 (M-H2O, 100), 240 (14), 225 (18).  

HO
2.65

OH

I

 

17β-Hydroxyl-2-iodoestra-1,3,5(10)-triene (2.65). Method A (direct iodination of E2): 

This was prepared using a modified version of the procedure of Horiuchi et al.29   To a suspension of 

estradiol (1.0 g, 3.7 mmol) in acetic acid (120 mL) was added iodine (1.40 g, 5.5 mmol, 1.5 equiv) and 

Cu(OAc)2 monohydrate (1.10 g, 5.50 mmol, 1.5 equiv).  The resulting mixture was heated at 58 oC 

for 21 h.  After cooling to rt, the insoluble solid was removed by filtration.  The filtrate was 

concentrated in vacuo at 35 oC and the residue was treated with H2O (50 mL) and extracted with ethyl 

acetate.  The combined extracts were washed with H2O and brine then dried (Na2SO4), filtered and 

concentrated.  Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:2) gave 

2.65 as a white solid (580 mg, 40%) Method B: Reduction of 2.59 using NaBH4 gave 2.65 in 

quantitative yield.  1H NMR was identical to that reported in the literature.45  1H NMR (CDCl3, 300 

MHz) δ 7.50 (s, 1H, H-1), 6.70 (s, 1H, H-4), 5.06 (brs, 1H, ArOH), 3.71 (t, J = 8.4 Hz, 1H, H-17), 

2.79-2.74 (m, 2H), 2.26-1.10 (m, 13H), 0.75 (s, 3H, CH3, H-18); 13C NMR (DMSO-d6, 75 MHz) δ 

154.5 (C-3), 138.2 (CAr), 135.7 (C-1), 133.8 (CAr), 115.3 (C-4), 81.7 (C-2), 80.4 (C-17), 49.9 (C-14), 

43.5 (C-9), 43.2 (C-13), 38.8 (C-8), 36.9 (CH2), 30.3 (CH2), 29.2 (CH2), 27.1 (CH2), 26.5 (CH2), 23.2 

(CH2), 11.7 (CH3, C-18). 
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HO

2.66

OH

I

OH

 

17β-Hydroxyl-4-(hydroxymethyl)-2-iodoestra-1,3,5(10)-triene (2.66). A mixture of 2.65 

(180 mg, 0.455 mmol), paraformaldehyde (27 mg, 0.90 mmol, 2 equiv) and powderized NaOH (18 mg, 

0.45 mmol, 1 equiv) in dioxane (3 mL) was heated at 52-55 oC for 3h before cooling to rt.  After 

acidifying with 1 M HCl and treating with ice at 0 oC, the mixture was extracted with ethyl acetate.  

The combined extracts were washed with H2O, brine then dried (Na2SO4), filtered and concentrated.  

The residue was purified by flash chromatography (ethyl acetate/hexane 1:2 to 1:1) to give 2.66 as 

white solid (79 mg, 41 %).  Mp: 182 oC (dec.); 1H NMR (DMSO-d6, 300 MHz) δ 9.59 (s, 1H, 

ArOH), 7.44 (s, 1H, H-1), 5.70 (s, OH, ArCH2OH), 4.61 (s, 2H, ArCH2OH), 4.45 (s, 1H, OH, CHOH), 

3.47 (t, 1H, J = 7.7 Hz, H-17), 2.75-2.55 (m, 2H, H-10), 2.20-1.78 (m, 4H), 1.60-1.50 (m, 1H), 

1.39-1.00 (m, 7H), 0.60 (s, CH3, H-18); 13C NMR (DMSO-d6, 75 MHz) δ 153.3 (C-3), 136.3 (CAr), 

134.6 (C-1), 134.6 (CAr), 125.2 (CAr), 84.5 (C-17), 80.4 (C-2), 58.3 (ArCH2OH), 49.9 (C-14), 43.9 

(C-9), 43.1 (C-13), 38.1 (C-8), 36.9 (CH2), 30.4 (CH2), 27.2 (CH2), 26.8 (CH2), 26.0 (CH2), 23.2 

(CH2), 11.6 (CH3, C-18); LRMS (EI) m/z (%) 428 (M+, 22), 410 (100, M-H2O), 396 (6);  HRMS 

(EI) calcd for C19H25IO3 428.0848; found 428.0840. 
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HO

2.68
OH

Br

O

 

2-Bromo-4-formylestra-1,3,5(10)-triene-17-one (2.68). To a solution of E1 (270 mg, 1.00 

mmol) in CHCl3 (50 mL) was added a solution of tetrabutyl ammonium tribromide (TBATB, 540 mg, 

1.1 mmol, 1.1 equiv) in CHCl3 (10 mL) dropwise over 2 h. The resulting mixture was then stirred 

overnight. After washing with H2O and brine, it was dried (Na2SO4) and concentrated (360 mg).  

To the crude residue was added MgCl2 (250 mg, 2.6 mmol, 2.6 equiv), paraformaldhyde (360 mg, 120 

mmol, 12 equiv), CH3CN (15 mL), followed by triethylamine (0.40 mL, 2.9 mmol, 2.9 equiv). The 

resulting mixture was heated at 60 oC for 18 h. It was then cooled to rt, acidified with 2 M HCl till 

clear and extracted with ethyl acetate.  The combined extracts were washed with H2O and brine then 

dried (Na2SO4) and concentrated. The residue was purified by flash chromatography (ethyl 

acetate/hexane, 1:2) to give an inseparable mixture (15:1) of 2.69 and 2.14 as light yellow solid (156 

mg) and 2.68 as yellow solid (93 mg, 25%). Characterization data for 2.68: 1H NMR (CDCl3, 300 

MHz) δ 12.49 (s, 1H, CHO), 10.24 (s, 1H, OH), 7.64 (s, 1H, H-1), 3.35-3.00 (m, 2H), 2.45-1.40 (m, 

13H), 0.84 (s, 3H, CH3, H-18).  13C NMR (CDCl3, 300 MHz) δ 220.1 (C=O), 195.2 (CHO), 157.8 

(C-3), 139.1 (C-5), 138.2 (C-1), 132.8 (C-10), 118.1 (C-4), 109.1 (C-2), 50.2 (C-14), 47.7 (C-13), 44.1 

(C-9), 37.3 (C-8), 34.7 (CH2), 31.4 (CH2), 26.1 (CH2), 25.8 (CH2), 25.2 (CH2), 21.5 (CH2), 14.1 (CH3, 

C-18);  LRMS (EI) m/z (%) 378 (M+2, 99), 376 (M+, 100); HRMS (EI) calcd for C19H21BrO3 

376.0674; found 376.0670. 
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HO

2.70

O

 

2-tert-Butylestra-1,3,5(10)-triene-17-one (2.70). Method A (FeCl3 and t-butyl chloride): 

This was prepared using a procedure adapted from Goendoes et al.34.  To a vigorously stirred solution 

of E1 (10.8 g, 40.0 mmol) in CH2Cl2 (200 mL) was added tert-butyl chloride (100 mL) and anhydrous 

ferric chloride (6.50 g, 40.0 mmol, 1 equiv).  After addition, the reaction mixture was stirred 2 days 

at rt before quenching with H2O and 5% NaHCO3.  After separation and extraction of the aqueous 

layer with CH2Cl2, the combined organic extracts were washed with brine then dried (Na2SO4) and 

concentrated.  Purification of the residue by flash chromatography (methylene chloride) followed by 

treating the resulting solid with hexane gave of 2.70 as white solid (9.52 g, 73%) which could be 

recrystallized from chloroform. Method B (using BF3(OEt)2 and t-butyl alcohol):  To a solution of 

estrone (7.00 g, 25.9 mmol) and t-butyl alcohol (4.95 mL, 51.8 mmol, 2.0 equiv) in dry methylene 

chloride (300 mL) was added BF3(OEt)2 (9.80 mL, 77.3 mmol, 3.0 equiv) over a period of one hour by 

syringe pump.  After stirring for 2 h the reaction was quenched with sat. aq. NaHCO3 and the layers 

separated.  The organic layer was washed with water and brine then dried (Na2SO4) and concentrated. 

The residue was purified by flash chromatography (methylene chloride) to give 2.70 as a white solid 

(8.1 g, 96%). 1H NMR was identical to that reported in the literature.34 1H NMR (CDCl3, 300 MHz) 

δ 7.19 (s, 1H, H-1), 6.44 (s, 1H, H-4), 5.09 (s, 1H, OH), 2.87-2.75 (m, 2H), 2.53-2.40 (m, 2H), 

2.30-1.90 (m, 5H), 1.70-1.40 (m, 15H; 6H and C(CH3)3, s, 9H), 0.91 (s, 3H, CH3, H-18); 13C NMR 

(CDCl3, 75 MHz) δ 221.5 (C=O), 152.2 (C-3), 135.1 (CAr), 133.6 (CAr), 131.2 (CAr), 124.0 (C-1), 
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116.6 (C-4), 50.4 (C-14), 48.1 (C-13), 44.3 (C-9), 38.5 (C-8), 35.9 (C-16), 34.5 (C(CH3)3), 31.6 (C-12), 

29.7 (3C, C(CH3)3), 28.8 (CH2), 26.5 (CH2), 26.0 (CH2), 21.6 (CH2), 13.9 (CH3, C-18). 

HO

2.71

O

OH

HO

2.72

O

CH2OMe

O

HO

O

HO

2.73  

 

2-tert-Butyl-4-formylestra-1,3,5(10)-triene-17-one (2.71), 2-tert-Butyl-4-(methoxymethyl) 

estra-1,3,5(10)-triene-17-one (2.72) and Bis(2-tert-butylestra-1,3,5(10)–triene-17-one)-3-ylmeth- 

ane (2.73). To a mixture of 2-tert-butylestrone (984 mg, 3.00 mmol), para- formaldehyde (270 mg, 

9.00 mmol, 3.0 equiv), MgCl2 (700 mg, 7.37 mmol, 2.5 equiv) and Fe(OAc)3 (2.7 mg, 0.4 mol%) in a 

glass bomb was added THF (50 mL), followed by triethylamine (1.0 mL, 7.20 mmol, 2.4 equiv).  

After purging with argon, the resulting mixture was heated at 40 oC for 5.5 h.  It was then cooled to rt, 

diluted with ethyl acetate and acidified with 1N HCl and the resulting mixture was stirred 2 min and 

extracted with ethyl acetate. The combined extracts were washed with H2O and brine then dried 

(Na2SO4), filtered and concentrated.  Purification of the residue by flash chromatography (ethyl 

acetate/hexane 1:3) gave 2.71 and 2.72 as an inseparable yellow solid mixture (749 mg, 73%), and 

dimer 2.73 as yellow solid (177 mg, 18%). Characteristic 1H NMR assignments for 2.71: (CDCl3, 

300 MHz) δ 12.80 (s, 1H, ArOH), 10.34 (s, 1H, CHO), 7.47 (s, 1H, H-1).  Characteristic 1H NMR 

assignments for 2.72:  (CDCl3, 300 MHz) δ 8.16 (s, 1H, ArOH, exchangeable with D2O), 7.20 (s, 1H, 



 99

H-1), 4.73 (d, J = 12.4 Hz, 1H, ArCHHOMe), 4.65 (d, J = 12.4 Hz, 1H, ArCHHOMe), 3.45 (s, 3H, 

OCH3). Characterization data for 2.73: 1H NMR (CDCl3, 300 MHz) δ 7.24 (s, 2H, H-1 x 2), 5.40 (s, 

2H, ArOH x 2), 4.02 (s, 2H, ArCH2Ar), 3.04 (dd, J = 16.8 Hz, J = 4.8 Hz, 2H, H-10 x 2), 2.90-2.79 (m, 

2H), 2.55-2.29 (m, 6H), 2.21-1.97 (m, 8H), 1.67-1.23 (m, 12H, overlapping with s, 18H), 0.93 (s, 6H, 

CH3 x 2); 13C NMR (CDCl3, 75 MHz) δ 220.9 (2C=O), 152.8 (2C, C-3), 134.7 (2C, CAr), 133.5 (2C, 

CAr), 132.2 (2C, CAr), 123.4 (2C, C-1), 121.6 (2C, C-4), 50.5 (2C, C-14), 47.9 (2C, C-13), 44.7 (2C, 

C-9), 37.6 (2C, C-8), 35.9 (2C, C-16), 34.8 (2C(CH3)3), 31.7 (2CH2), 29.7 (2C(CH3)3), 27.6 (2CH2) , 

27.0 (2CH2), 26.9 (2CH2), 25.2 (ArCH2Ar), 21.6 (2CH2), 13.9 (2CH3, C-18); LRMS (EI) m/z (%) 

664 (M+, 38), 339 (57), 326 (100), 311 (50); HRMS (EI) calcd for C45H60O4 664.4492; found 

664.4498 

HO
2.77

OH

 

2-tert-Butyl-17β-hydroxyestra-1,3,5(10)-triene (2.77). To a solution of 2.70 (984 mg, 3.00 

mmol) in ethanol/THF (36 mL, 5:1) at 0 oC was added NaBH4 (228 mg, 6 mmol, 2 equiv).  The 

resulting mixture was stirred for 1 h at 0 oC before quenching with 1 M HCl.  After extracting with 

ethyl acetate, the combined extracts were washed with H2O and brine then dried (Na2SO4), filtered and 

concentrated. Purification of the residue by flash chromatography (ethyl acetate/hexane 1:2.5) gave 

2.77 as a semi-solid (1.02 g, 100%). 1H NMR was identical to that reported in the literature.46  1H 

NMR (CDCl3, 300 MHz) δ 6.55 (s, 2H, H-1 and H-4), 3.90 (t, J = 8.2 Hz, 1H, H-17), 2.95-1.30 (m, 

24H; m, 15 H and s, 9H, C(CH3)3 at 1.55 ppm), 0.92 (s, 3H, CH3, H-18). 
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HO

2.78

OH

OH

HO

2.79

OH

CH2OMe

OH

HO

OH

HO

2.80  

2-tert-Butyl-4-formyl-17β-hydroxyestra-1,3,5(10)-triene (2.78), 2-tert-Butyl-17β- 

hydroxy-4-(methoxymethyl)estra-1,3,5(10)-triene(2.79) and Bis(17β-hydroxy-2-tert-Butylestra- 

1,3,5(10)-trien)-3-yl methane (2.80). To a mixture of 2.77 (1.02 g, 3.00 mmol), para-formaldehyde 

(405 mg, 13.5 mmol, 4.5 equiv), MgCl2 (1.05 g, 11.0 mmol, 3.67 equiv) and Fe(OAc)3 (0.3 mg, 0.04 

mol%) in a glass bomb was added THF (40 mL), followed by triethylamine (1.50 mL, 10.7 mmol, 

3.5 equiv). After purging with argon, the resulting mixture was heated at 45 oC for 4 h.  After 

cooling to rt, it was diluted with ethyl acetate and acidified with 1 M HCl until it went clear.  The 

mixture was extracted with ethyl acetate and washed with H2O and brine, then dried (Na2SO4) 

filtered and concentrated.  The residue obtained was dissolved in methanol (40 mL) and 1 M KOH 

(4 mL) was added to this solution.  After stirring 5 min, it was extracted with ethyl acetate and 

combined extracts were washed with H2O and brine then dried (Na2SO4) filtered and concentrated.  

Purification of the residue by flash chromatography (ethyl acetate/hexane 1:2.5) gave an inseparable 

mixture of 2.78 and 2.79 (701 mg, 66%, ratio 5:3) and dimer 2.80 as a yellow solid (280 mg, 28%) 

which can be recrystallized from CHCl3/hexane. Characteristic 1H NMR assignments for 2.78: 

(CDCl3, 300 MHz) δ 12.84 (s, 1H, ArOH), 10.29 (s, 1H, CHO), 7.52 (s, 1H, H-1).  Characteristic 1H 

NMR assignments for 2.79: (CDCl3, 300 MHz) δ 8.11 (s, 1H, ArOH), 7.24 (s, 1H, H-1), 4.73 (d, J 
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= 12.6 Hz, 1H, ArCHHO), 4.65 (d, J = 12.6 Hz, 1H, ArCHHO), 3.46 (s, 3H, OCH3). 

Characterization data for 2.80:  mp: 206-208 oC; 1H NMR (CDCl3, 300 MHz) δ 7.22 (s, 2H, H-1), 

5.26 (s, 2H, ArOH, exchangeable with D2O), 3.96 (s, 2H, ArCH2Ar), 3.73 (t, J = 8.2 Hz, 2H, H-17 x 

2), 2.97 (dd, J = 17.1 Hz , J = 5.1 Hz, 2H), 2.83-2.72 (m, 2H), 2.37-1.94 (m, 10H), 1.75-1.66 (m, 2H), 

1.59-1.14 (m, 32H, C(CH3)3 9H is overlapping in it)), 0.79 (s, 6H, CH3 x 2); 13C NMR (CDCl3, 75 

MHz) δ 152.7 (2C, C-3), 134.5 (2C, CAr), 133.6 (2C, CAr), 132.7 (2C, CAr), 123.5 (2C, C-1), 121.3 

(2C, C-4), 81.9 (2C, C-17), 50.1 (2C, C-14), 44.6 (2C, C-9), 43.2 (2C, C-13), 38.0 (2C, C-8), 36.8 

(2CH2), 34.7 (2C(CH3)3), 30.7 (2CH2), 29.7 (2C(CH3)3), 27.8 (2CH2), 26.6 (2CH2), 25.1 (ArCH2Ar), 

23.1 (2CH2), 11.1 (2CH3, C-18); LRMS (EI) m/z (%) 668 (M+, 44), 341 (43), 328 (100), 314 (47); 

HRMS (EI) calcd for C45H64O4 668.4805; found 668.4810. 

  
HO

O

2.81

OH

 

2-(Hydroxymethyl)estra-1,3,5(10)-triene-17-one (2.81). Method A (reduction of 2.14 

using Bu3SnH): Prepared using the procedure described above for 2.63 (method B) using 2.14 (596 

mg, 2.00 mmol) and Bu3SnH (873 mg, 3.00 mmol, 1.5 equiv) in MeOH (20 mL).  Flash 

chromatography (ethyl acetate/hexane 1:2, then CH2Cl2, then ethyl acetate/hexane/CH2Cl2, 1:1:0.5) 

gave 2.81 as a white solid (311 mg, 52%). Method B (hydrogenation of 2.14 using Pd black): 

Prepared using the procedure described above for 2.63 (method C) using 2.14 (30 mg, 0.10 mmol) in 

ethyl acetate (10 mL) and Pd black (7.5 mg) and stirring 24 h followed by another portion of Pd black 

(2.5 mg) and stirred for 14 h.  Flash chromatography (ethyl acetate/hexanes, 1:2 to 1:1.5) gave 2.81 
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as a white solid (19 mg, 63%).  Mp: 192 oC; 1H NMR (DMSO-d6, 300 MHz) δ 8.90 (s, 1H, ArOH), 

7.13 (s, 1H, H-1), 6.42 (s, 1H, H-4), 4.77 (s, 1H, ArCH2OH), 4.39 (s, 2H, ArCH2OH), 2.70-2.28 (m, 

2H), 2.08-1.89 (m, 4H), 1.72 (d, J = 6.3 Hz, 1H), 1.50-1.27 (m, 6H), 0.78 (s, 3H, CH3, H-18); 13C 

NMR (DMSO-d6, 75 MHz) δ 220.1 (C=O), 152.5 (C-3), 135.4 (CAr), 130.0 (CAr), 126.1 (C-2), 124.9 

(C-1), 114.9 (C-4), 58.9 (ArCH2OH), 50.1 (C-14), 47.8 (C-13), 44.0 (C-9), 38.5 (C-8), 35.8 (C-16), 

31.8 (CH2), 29.2 (CH2), 26.7 (CH2), 26.2 (CH2), 21.6 (CH2), 14.0 (CH3, C-18); LRMS (EI) m/z (%) 

300 (M+, 67), 282 (M-H2O, 100), 225 (11), 186 (13); HRMS (EI) calcd for C19H24O3 300.1725; 

found 300.1715. 

H3C

O

2.82  

3-Methylestra-1,3,5(10)-triene-17-one (2.82). To a solution of 3-(hydroxymeth- 

yl)estrone19. (142 mg, 0.500 mmol) in MeOH (15 mL) was added palladium black (7 mg).  The 

resulting mixture was stirred under H2 (balloon pressure) overnight.  After filtration, the filtrate was 

concentrated and purified by flash chromatography (ethyl acetate/hexane, 1:4) to give 2.83 as a white 

solid (136 mg, 93%). 1H NMR was identical to that reported in the literature.47 1H NMR (CDCl3, 

300 MHz) δ 7.19 (d, J = 7.5 Hz, H-1), 6.98 (d, J = 8.0 Hz, H-2), 6.94 (s, H-4), 3.00-2.85 (m, 2H), 

2.55-1.95 (10H; m, 7H and s, 3H, CH3 at 2.30 ppm, overlapping), 1.75-1.35 (m, 6H), 0.91 (s, 3H); 13C 

NMR (CDCl3, 300 MHz) δ 220.9 (C=O), 136.7 (CAr), 136.3 (CAr), 135.3 (CAr), 129.7 (CHAr), 126.6 

(CHAr), 125.3 (CHAr), 50.5 (C-14), 48.0 (C-13), 44.3 (C-9), 38.3 (C-8), 35.9 (CH2), 31.6 (CH2), 29.4 

(CH2), 26.6 (CH2), 25.8 (CH2), 21.6 (CH2), 20.9 (ArCH3), 13.9 (CH3, C-18). 
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HO

OH

HO

2.83  

17β-Hydroxyl-2-(hydroxymethyl)estra-1,3,5(10)-triene (2.83). Prepared using the 

procedure described for the reduction of 2.13 to give 2.56 using 2.14 (100 mg, 0.336 mmol) and 

NaBH4 (51 mg, 1.3 mmol, 4 equiv) in EtOH (20 mL). 2.83 was obtained as a white solid (75 mg, 

75%).  1H NMR was identical to that reported in the literature.48  1H NMR (CD3OD, 300 MHz) δ 

7.12 (s, 1H, H-1), 6.44 (s, 1H, H-4), 4.57 (s, 2H, ArCH2O), 3.61 (t, J = 8.5 Hz, 1H, H-17), 2.76-2.64 

(m, 2H), 2.26-2.07 (m, 1H), 2.03-1.10 (m, 12H), 0.73 (s, 3H, CH3, H-18); 13C NMR (CD3OD, 75 MHz) 

δ 152.5 (C-3), 136.5 (CAr), 131.0 (CAr), 125.1 (C-1), 124.3 (C-2), 114.6 (C-4), 81.1 (C-17), 59.9 

(ArCH2O), 49.9 (C-14), 44.0 (C-9), 43.0 (C-13), 39.1 (C-8), 36.6 (CH2), 29.3 (CH2), 27.1 (CH2), 26.2 

(CH2), 22.6 (CH2), 10.3 (CH3, C-18). 

HO

O

2.84
OH

O2N

 

4-Formyl-2-nitroestra-1,3,5(10)-triene-17-one (2.84). To a solution of 2.13 (90 mg, 0.30 

mmol) in acetic acid (30 mL) at 45 oC was added conc. HNO3 (0.20 mL, 2.8 mmol, 9.3 equiv).  The 

reaction mixture was stirred overnight at rt.  After removal of acetic acid in vacuo, the residue was 

purified by flash chromatography (ethyl acetate/hexane, 1:1) to give of 2.84 as a yellow solid (100 mg, 

97%). Mp: 184-186 oC; 1H NMR (CDCl3, 300 MHz) δ 11.99 (brs, 1H, OH), 10.52 (s, 1H, CHO), 8.15 

(s, 1H, H-1), 3.40 (dd, J = 18.6 Hz, J = 5.4 Hz, 1H), 3.16 (ddd, J = 18.3 Hz, J = 11.1 Hz, J = 6.9 Hz, 
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1H), 2.53-1.90 (m, 5H), 1.65-1.30 (m, 6H), 0.87 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 

220.0 (C=O), 192.7 (CHO), 156.1 (C-3), 149.8 (C-5), 133.4 (C-2), 132.9 (C-10), 128.2 (C-1), 121.3 

(C-4), 50.1 (C-14), 47.6 (C-13), 43.6 (C-9), 36.7 (C-8), 35.7 (C-16), 31.2 (CH2), 27.4 (CH2), 26.0 

(CH2), 25.6 (CH2), 24.7 (CH2), 21.4 (CH2), 13.7 (CH3, C-18); LRMS (EI) m/z (%) 343 (M+, 75), 325 

(M-CO, 100), 308 (7), 367 (10), 115 (11), 97 (12);  HRMS (EI) calcd for C19H21NO2 343.1420; 

found 343.1419. 

HO

O

2.85
I

 

2-tert-Butyl-4-iodoestra-1,3,5(10)-triene-17-one (2.85). To a solution of 2.70 (100 mg, 

0.307 mmol) in MeOH (10 mL) was added conc. NH4OH (1 mL).  The mixture turned yellow and 

was stirred 5 min before iodine (94 mg, 0.37 mmol, 1.2 equiv) was added.  After stirring overnight, 

some starting material remained.  Iodine (16 mg, 0.063 mmol, 0.2 equiv) was added and stirring was 

continued for 10 min before quenching with 10% Na2S2O3.  The ethanol was removed by rotatory 

evaporator and the resulting aqueous solution was extracted with CH2Cl2. The combined extracts 

were dried (Na2SO4) and concentrated. The residue was purified by flash chromatography (ethyl 

acetate/hexane, 1:6) to give 2.85 as a yellow oil (75 mg, 60%) which solidified upon standing.  Mp: 

157-158 oC; 1H NMR (CDCl3, 300 MHz) δ 7.22 (s, 1H, H-1), 5.65 (brs, 1H, ArOH), 2.81 (dd, J = 17.4 

Hz, J = 6.0 Hz, 1H), 2.71-1.93 (m, 9H), 1.65-1.42 (m, 5H), 1.38 (m, 9H, C(CH3)3), 0.88 (s, 3H, CH3, 

H-18); 13C NMR (CDCl3, 75 MHz) δ 220.7(C=O), 150.6 (C-3), 136.7 (CAr), 133.6 (CAr), 132.8 (CAr), 
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124.4 (C-1), 99.0 (C-4), 50.2 (C-14), 47.9 (C-13), 44.5 (C-9), 37.8 (C-8), 37.0 (C-16), 35.4 (C(CH3)3), 

31.6 (C-12), 29.5 (C(CH3)3), 27.5 (CH2), 26.3 (CH2), 21.6 (CH2), 13.8 (CH3, C-18); LRMS (EI) m/z 

(%) 452 (M+, 66), 437 (M-CH3, 100);  HRMS (EI) calcd for C22H29IO2 452.1212; found 452.1208. 

HO

O

2.86
Br

 

2-tert-Butyl-4-bromoestra-1,3,5(10)-triene-17-one (2.86). To a suspension of 2.70 (200 

mg, 0.614 mmol) in absolute ethanol (10 mL) was added NBA (93 mg, 0.68 mmol, 1.1 equiv) and the 

reaction was stirred for 8 h.  After a few hours of stirring the reaction became clear but then became 

cloudy again after the 8 h stirring period.  Methylene chloride (20 mL) was added followed by a 5% 

aq. solution of Na2S2O3 (20 mL) and the mixture was stirred for 20 min.  The layers were separated 

and the aq. layer extracted with methylene chloride.  The combined organics were dried (Na2SO4) 

and concentrated. The residue was purified by flash chromatography (methylene chloride) to give 

2.86 as a white foam (219 mg, 88%). 1H NMR (CDCl3, 300 MHz) δ 7.21 (s, 1H, H-1), 5.86 (brs, 1H, 

ArOH), 2.92 (dd, J = 17.0 Hz, J = 7.0 Hz, 1H), 2.70 (m, 1H), 2.51 (dd, J = 19.0 Hz, J = 9.2 Hz, 1H), 

2.43 (m, 1H), 2.28 (m, 1H), 2.13 (m, 3H), 1.97 (d, J = 7.3 Hz, 1H), 1.57 (m, 4H), 1.40 (s, 9H, 

C(CH3)3), 0.91 (s, 3H, CH3); 13C NMR (CDCl3, 75 MHz) δ 148.4 (C-3), 134.1 (CAr), 133.6 (CAr), 

132.4 (CAr), 123.0 (C-1), 115.9 (C-4), 50.3 (C-14), 47.9 (C-13), 44.4 (C-9), 37.8 (C-8), 35.9 (C-16), 

35.4 (C(CH3)3), 31.6 (C-12), 29.5 (C(CH3)3), 26.7 (CH2), 26.2 (CH2), 21.6 (CH2), 13.9 (CH3, C-18); 

LRMS (EI) m/z (%) 406 (M+2, 51), 404 (M+, 51), 391 (M+2-Me, 100), 389 (M-Me, 99); HRMS (EI) 
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calcd for C22H29BrO2 404.1351; found 404.1360. 

HO

O

2.87
CHO

OHC

 

2,4-Diformylestra-1,3,5(10)-triene-17-one (2.87). A suspension of E1 (1.08, 4.00 mmol), 

paraformaldehyde (300 mg, 10.0 mmol, 2.5 equiv) and NaOH (fine powder, 100 mg, 2.50 mmol, 

0.625 equiv) in dioxane (3 mL) was heated at 55 oC for 4.5 h before cooling to rt.  After diluting with 

H2O, the reaction mixture was acidified with 0.5 M HCl and then stirred for 2 min.  The precipitate 

was collected by suction filtration and washed thoroughly with H2O then dried under high vacuum to 

give 1.01 g of crude triol 2.87 as white solid.  To a solution of 2.87 (1.0 g) in CHCl3 (50 mL) was 

added activated MnO2 (4.80 g, 55.2 mmol, 13.8 equiv) and the resulting mixture was stirred for 2 days 

at rt.  After passing through a Celite pad, the filter cake was rinsed with CHCl3 and the filtrate was 

washed with H2O and brine then dried (Na2SO4), filtered and concentrated.  The residue was purified 

by flash chromatography (ethyl acetate/hexane, 1:3 to 1:2.5 to 1:2) to give 2.87 as a yellow solid (88 

mg, 7% over 2 steps starting from estrone).  Mp: 212-213 oC; 1H NMR (CDCl3, 300 MHz) δ 12.27 (s, 

1H, OH), 10.44 (s, 1H, CHO), 10.21 (s, 1H, CHO), 7.88 (s, 1H, H-1), 3.40 (dd, J = 18.3 Hz, J = 5.4 

Hz, 1H, H-6), 3.22-3.10 (m, 1H), 2.61-2.37 (m, 2H), 2.25-1.89 (m, 5H), 1.63-1.38 (m, 6H), 0.87 (s, 

3H, CH3); 13C NMR (CDCl3, 75 MHz) δ 220.0 (C=O), 194.3 (CHO), 190.3 (br, CHO), 163.6 (C-3), 

148.4 (C-5), 134.1 (C-1), 132.2 (C-10), 121.5 (CAr), 119.1 (CAr), 50.1 (C-14), 47.7 (C-13), 43.6 (C-9), 

37.0 (C-4), 35.7 (C-16), 31.3 (C-12), 26.7 (CH2), 26.0 (CH2), 25.7 (CH2), 21.4 (CH2), 13.7 (CH3, 
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C-18); LRMS (EI) m/z (%) 326 (M+, 100), 298 (99), HRMS (EI) calcd for C20H22O4 326.1518; found 

326.1516. 

HO

OH

CHO

OHC

2.90  

2,4-Diformyl-17β-hydroxyestra-1,3,5(10)-triene (2.90). Same procedure as for 2.87 using 

E2 (1.0 g, 3.7 mmol), paraformaldehyde (300 mg, 10.0 mmol, 2.7 equiv), NaOH (fine powder, 100 mg, 

2.50 mmol, 0.68 equiv) in dioxane (3 mL) heated at 50 oC for 7 h. 1.0 g of crude 2.89 was obtained as 

a white solid.  Crude 2.89 (100 mg) was oxidized using activated MnO2 (1.0 g, 11.5 mmol, 3.1 equiv) 

in CH2Cl2-MeOH (55 mL, 10:1), for 1 day at rt.  Flash chromatography of the crude residue (ethyl 

acetate/hexane, 1:2.5) gave 2.90 as a yellow solid (17 mg, 15% over 2 steps starting from estradiol). 

Mp: 94-96 oC; 1H NMR (CDCl3, 300 MHz) δ 12.33 (s, 1H, OH), 10.46 (s, 1H, CHO), 10.28 (s, 1H, 

CHO), 7.94 (s, 1H, H-1), 3.72 (t, 1H, J = 8.4 Hz, H-17), 3.39 (dd, J = 18.8 Hz, J = 4.9 Hz, 1H), 

3.20-3.05 (m, 1H), 2.40-2.30 (m, 1H), 2.20-1.65 (m, 6H), 1.55-1.15 (m, 7H), 0.76 (s, 3H, CH3); 13C 

NMR (CDCl3, 75 MHz) δ 194.5 (CHO), 190.1 (CHO), 163.6 (C-3), 148.6 (C-5), 134.1 (C-1), 132.8 

(C-10), 121.5 (CAr), 119.0 (CAr), 81.6 (C-17), 49.8 (C-14), 43.6 (C-9), 43.1 (C-13), 37.6 (C-8), 36.4 

(CH2), 30.5 (CH2), 26.8 (CH2), 26.4 (2C, CH2 x 2), 23.0 (CH2), 11.0 (CH3, C-18); LRMS (EI) m/z (%) 

328 (M+, 100), 300 (83); HRMS (EI) calcd for C20H24O4 328.1675; found 328.1674. 
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NH4 O

2.91
H O

S
O

O
O

O

O

O O-NH4
+

O

2.92

SO

O

 

Ammonium 4-formyl-3-(sulfonatooxy)estra-1,3,5(10)-triene-17-one (2.91) and its cyclic 

tautomer (2.92).  To a solution of 2.27 (165 mg, 0.324 mmol) in THF (5 mL) was added HCO2NH4 

(122 mg, 1.94 mmol, 6 equiv).  The mixture was stirred till the HCO2NH4 dissolved.  The mixture 

was cooled to 0 oC and Zn dust (42 mg, 0.65 mmol, 2 equiv) was added slowly.  After stirring for 1 h, 

another portion of Zn dust (21 mg, 0.33 mmol, 1 equiv) was added and stirring was continued for 3 h.  

After removal of solvents, the residue was purified by chromatography (CH2Cl2/MeOH/NH4OH, 

10:2:0.5) to give a mixture of two tautomers 2.91 and 2.92 (acylic:cylic 2:3) as slightly yellow solids 

(75 mg, 59%).  Characterization data for 2.91 (selected peaks):  1H NMR (CD3OD, 300 MHz) δ 

10.32 (s, 1H), 7.57 (d, J = 8.7 Hz, 1H, H-1), 7.32 (d, J = 8.7 Hz, 1H, H-2), 0.88 (s, 3H, H-18); 13C 

NMR (CD3OD, 75 MHz) δ 193 (CHO), 131.5 (C-1), 120.4 (C-2); Characterization data for 2.92 

(selected peaks):  1H NMR (CD3OD, 300 MHz) δ 7.24 (s, 2H, H-1 and H-2), 5.84 (s, 1H, CHO (O)), 

0.88 (s, 3H, H-18). 13C NMR (CD3OD, 75 MHz) δ 125.8 (C-1), 118.7 (C-2), 103.0 (CHO(O)). 
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Chapter 3 

Synthesis of steroidal and non-steroidal compounds bearing sulfate surrogates 

3.1 Introduction 

3.1.1 Reversible inhibitors of STS bearing sulfate surrogates  

Although most STS inhibitors are irreversible sulfamate inhibitors many reversible STS 

inhibitors have been reported.  What has appeared in the literature on this class of inhibitors is 

Table 3.1. STS inhibitors in which the sulfate group of estrone sulfate is replaced with an O-, 

N-, or S-linked sulfate surrogate. 

O

R  

Cpd. R Inhibition assay Ref. 
3.1 -SO2Cl 65% at 60 µM Placental microsomes 2 
3.2 -SO3

-K+ Ki = 40 µM at pH 7 Purified STS 3 
3.3 -SO2NH2 Ki = 140 µM at pH 7 Purified STS 3 
3.4 -SO2F Ki = 35 µM at pH 7 Purified STS 3 
3.5 -SO2CH3 Ki = 130 µM at pH 7. Purified STS 3 
3.6 -SH 10% at 10 µM Placental microsomes 4 
3.7 -SSO2NH2 12% at 50 µM Placental microsomes 5 
3.8 -SSO2N(CH3)2 0% at 100 µM Placental microsomes 5 
3.9 -SCON(CH3)2 4% at 50 µM Placental microsomes 5 

3.10 -NHSO2NH2 53% at 50 µM Placental microsomes 5 
3.11 -NHSO2CF3 IC50 = 10 µM Placental microsomes 6 
3.12 -N(SO2CF3)2 IC50 = 15 µM Placental microsomes 6 
3.13 -NHCOCF3 IC50 = 9 µM Placental microsomes 6 
3.14 -NHCONH2 IC50 = 13 µM Placental microsomes 6 
3.15 -NH2 15% at 10 µM Placental microsomes 4 
3.16 -OPO3

-2- Ki = 5 µM at pH 7.0 Partially pure STS 7 
3.17 -OPO2F Ki = 14 µM at pH 7.0 Partially pure STS 7 
3.18 -OSO2NHCH3 93% at 10 µM Intact MCF-7 cells 8 
3.19 -OSO2N(CH3)2 90% at 10 µM Intact MCF-7 cells 8 
3.20 -OSO2CH3 Ki = 23 µM Purified STS 9 
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summarized in Table 3.1. The vast majority of these were never examined with pure enzyme and the 

modality of inhibition was not determined which makes it difficult to compare their potency with one 

another.  Nevertheless, as can be seen from the Table, these have not proven to be highly effective 

inhibitors.  

One the objectives of our work on STS inhibitors is to develop reversible STS inhibitors by 

replacing the sulfate group of known STS substrates with hydrolytically stable functional groups that 

may interact with specific residues in the active site by both reversible covalent and non-covalent 

interactions.  Below we propose several such moieties. 

3.1.2 The α,α-difluoromethylenesulfonamide group as a sulfate surrogate 

Unlike sulfamates, primary sulfonamides have not been extensively examined as STS 

inhibitors. Sulfonamide 3.3 is a reversible STS inhibitor and exhibits a Ki of 140 µM when using 

35S-dehydroepiandosterone sulfate as substrate at pH 7.0.3 This Ki is approximately 3.5 times greater 

than that of sulfonate 3.2 (40 µM) and both have Ki’s that are much greater than that of E1S (0.9 µM) 

under the same conditions.3 On the basis of these studies and on studies with other sulfonate analogs, it 

was concluded that an oxygen atom or an electronically similar link between the aryl moiety and the 

sulfur atom is essential for high affinity binding.3 

O

O
SO
R

O

1.1,  X = O, R = NH2 (EMATE)
E1S, X = O, R = O-

O

X
SO
O-

O

3.21, X = CF2
3.22, X = CH2  

Figure 3.1. Structures of EMATE, estrone sulfate (E1S) and selected analogs 
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In chapter 1, we discussed EMATE (compound 1.1, section 1.3) as the prototypical sulfamate 

irreversible STS inhibitor. The S-O bond must be hydrolyzed by STS for irreversible inhibition to 

occur.  Indeed, the S-O bond of EMATE is readily cleaved by STS, even though EMATE is an 

apparently neutral compound at physiological pH and the enzyme’s natural substrate is an anionic 

sulfate ester.  To account for STS’s ability to readily bind and hydrolyze EMATE, as well as other 

sulfamates, it has been suggested that it is the conjugate base of EMATE, which is isoelectronic and 

isosteric to estrone sulfate (E1S, section 1.1), that binds to STS, even though the conjugate base is the 

minor species at physiological pH with the N-proton of EMATE having a pKa of 9.5 in 70% aqueous 

methanol.11-13 Nevertheless, such a hypothesis is consistent with the active site architecture of STS.14  

The active site contains a calcium ion as well as other cationic residues such as Lys134, Lys368, 

His290 and His136 some of which are probably involved in interacting with the anion of the sulfate 

substrate.14 

We recently demonstrated that the CF2 group can be used as a stable replacement for the 

bridging oxygen in estrone sulfate in that compound 3.21 is a competitive STS inhibitor (Ki = 57 µM, 

pH 7.4, 0.1% Triton X-100) and was approximately 10-fold more potent than its non-fluorinated 

analogue 3.22.15,16 Since both 3.21 and 3.22 have pKa’s that are far below the pH at which the 

studies were performed (pH 7.4), we reasoned that their difference in potency was due to the fluorines 

interacting with residues in the active site perhaps by fluorine H-bonding with His290 which is 

believed to act as a general acid during the cleavage of the S-O bond.14,16 

 On the basis of our studies with compound 3.21, and the possibility that it is the conjugate 

base of EMATE that binds to STS, we suggest that the α, α-difluoromethylenesulfonamide (DFMS, 
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R-CF2SO2NH2) group might be an effective sulfate surrogate for obtaining STS inhibitors.  The pKa 

of the DFMS group should be approximately three pKa units less than that of a primary 

non-fluorinated sulfonamide (pKa ~10-11).17 Therefore, a significant proportion of the conjugate 

base of DFMS-bearing compounds should be present at physiological pH and the fluorines will also 

be available for interacting with residues in the active site. 

3.1.3 Boronic acids as STS inhibitors  

 Boronic acids have been used as inhibitors and probes of enzymes and proteins, such as serine 

proteases, for many years and recently, a highly potent and selective protease inhibitor in the form of a 

peptidyl boronic acid has recently been approved by the FDA for treatment of relapsed and refractory 

multiple myeloma.18  

O
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HO

HN N+ B-
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HN N
RB

HO

HO

 

Scheme 3.1. Mechanism for the inhibition of serine protease with boronic acids 

These inhibitors, some of which have Ki’s in the subnanomolar range, function by forming reversible 

covalent adducts with active site residues, such as the crucial serine residue or an active site histidine 

residue as shown in Scheme 3.1.18 As mentioned in Chapter 1, STS does not have an active site 

serine residue when in their catalytically active form.  Instead, it has an active site formyl glycine 

hydrate which is a result of a post-translational enzymatic modification of a cysteine or serine residue. 

Addition of water to the aldehyde yields the stable formylglycine hydrate.19,20 The hydrate attacks 
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the sulfur atom of the substrate resulting in cleavage of the S-O bond, release of the hydroxyl or 

phenolic portion of the substrate and formation of a sulfated hydrate (see Chapter 1, section 1.2, 

Scheme 1.2).  The sulfate group is then eliminated from the hydrate to give inorganic sulfate and 

formyl glycine which is then rehydrated.  Several other active site residues, including two conserved 

histidines (His136 and His290), are believed to function as general acids and bases during the 

reaction.21 In light of this proposed mechanism, we reasoned that boronic acids might act as potent 

inhibitors of STS by forming reversible covalent adducts with the active site formyl glycine hydrate 

and/or histidine residues in a manner similar to serine proteases. 

3.1.4 Sulfinic acids as STS Inhibitors  

Sulfinic acids are known to react with aldehydes and the resulting covalent adducts 

(α-hydroxy sulfones) are relatively stable.22 This prompted us to examine sulfinic acids as potential 

STS inhibitors.  We anticipated that should the formylglycine hydrate be in equilibrium with its 

aldehyde form, then a sulfinic acid or its conjugate base might be able to form a covalent adduct with 

the aldehyde and inhibit STS (Scheme 3.2). 
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Scheme 3.2. Possible reaction of sulfinic acids with STS 
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3.1.5 Enhancing the potency of STS inhibitors by introducing anionic groups at the 

17-position   

In addition to the above mentioned approaches to STS inhibitors, the Taylor group has 

recently entered into a collaboration with the Ghosh group to develop rationally designed inhibitors of 

STS.  The Ghosh group has modeled estrone into the active site of STS.  Beyond the sulfate binding 

site, and moving towards the 17-position of STS, the vast majority of residues that are within van der 

Waals contact distance with rings B, C and D are (not surprisingly) hydrophobic residues, such as 

phenylalanine, leucine and valine.  However, in relatively close proximity (about 5 Å) to the oxygen 

of the carbonyl at the 17-position is an arginine residue (Arg98).  Modeling studies performed in the 

Ghosh group on estrone modified at the 17-position with a phosphate or carboxylate group suggest 

that such moieties might be capable of interacting with Arg98 by electrostatic or H-bonding 

interactions (Figure 3.2).  These studies have prompted us to construct steroid derivatives bearing 

these anionic groups at the 17-position anticipating that this might be a means of increasing the 

potency of STS inhibitors.  

STS N
H

NH2

NH2
estrone

O

O

NH

H2N NH2

O

HO

STS

Arginine residue 
    (Arg98)5-7 Å

estrone with COOH
at 17-position  

Figure 3.2.  A potential approach to rationally designed STS inhibitors 
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3.1.6 Objectives  

 The objective of the work presented in this chapter is to synthesize steroidal and non-steroidal 

compounds bearing the α, α-difluoromethylenesulfonamide group, the boronic acid group and the 

sulfinic acid group.  It is anticipated that these compounds will be good competitive inhibitors of 

STS and so will be useful as lead structures for the development of highly potent STS inhibitors. 

Another objective is to modify known steroidal STS inhibitors such that they bear an anionic moiety, 

such as a carboxylate or phosphate group, at the 17-position.  We anticipate that by adding such a 

group at this position that the resulting compounds will exhibit increased potency compared to their 

unmodified precursors.  

3.2 Results and Discussion 

3.2.1 Synthesis of α, α-difluoromethylenesulfonamides 

To examine the DFMS group as a sulfate surrogate we decided to prepare compounds 3.23 

and 3.24.  These compounds are the DFMS analogs of EMATE and Coumate which are potent 

irreversible suicide inhibitors of STS and are very good STS substrates (see Chapter 1, section 1.3).  

O

SO O
NH2

F
F O

SO O
NH2

F
F O

3.23 3.24  

Figure 3.3. Structures of target sulfonamides 

Bryan Hill, a post-doc in the Taylor group, had recently shown that α, α-difluorosulfonamides 

can be prepared by electrophilic fluorination of α-carbanions of protected sulfonamides using 
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N-fluorobenzenesulfonimide (NFSi).23 To our knowledge, this is the only route to this class of 

compounds.  Therefore, our general approach to compounds 3.23 and 3.24 was to prepare the 

sulfonamides of type 3.26 from sulfonyl chlorides of type 3.25 and then subject these to electrophilic 

fluorination followed by deprotection of the sulfonamide moiety (Scheme 3.3).   
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Scheme 3.3. Proposed route to difluoromethylenesulfonamides 

The synthesis of the protected estrone sulfonamide is outlined in Scheme 3.4.  We first 

prepared benzyl bromide 3.33 using a slightly modified version of the procedure of Li et al.9.  Thus, 

estrone was converted to its triflate 3.29 in 96% yield by treating estrone with triflic anhydride, cat. 

DMAP in the presence of 2,6-lutidine. Use of triethylamine as base instead afforded a mixture of the 

desired triflate, ditriflate and unreacted estrone.  Palladium catalyzed carboxylation of estrone trilfate 

3.29 using Pd(OAc)2/dppp gave the corresponding methyl ester 3.30 in 85% yield.  The ketone at the 

17-position was protected as ketal 3.31 using PTSA/ ethylene glycol in refluxing benzene.  This 

reaction was subjected to an aqueous workup but the crude ketal was not chromatographed. 

Reduction of the ester moiety in 3.31 to the alcohol with LiAlH4 followed by acidic hydrolysis of the 

ketal group at the 17-position gave alcohol 3.32.  Again, no chromatography of 3.32 was necessary. 

The crude alcohol 3.32 was brominated using triphenylphosphine and carbon tetrabromide to give 

bromide 3.33. The overall yield from ester 3.30 to bromide 3.33 was 84% over 4 steps and only one 

column purification was required.  Bromide 3.33 was converted to thioacetate 3.34 in 98% yield by  
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Scheme 3.4. Synthesis of sulfonamides 3.38 and 3.36 

treating 3.33 with potassium thioacetate (1.4 equiv) in DMF.  Oxidative chlorination of 3.34 with Cl2 

in H2O/CH2Cl2 gave the crude sulfonyl chloride 3.35.  Since it would be useful to compare the 

inhibitory potency of 3.23 with is non-fluorinated analogue (3.36), we prepared 3.36 in 62% yield by 

reacting crude sulfonyl chloride 3.35 with an excess amount of ammonium hydroxide.  To prepare 

the fluorinated analog of 3.36, we had to prepare 3.36 with the sulfonamide moiety protected.  The 

Taylor group had recently developed a new protecting group for sulfonamides in the form of the 

bis(2,4-dimethoxybenzyl) (DMB) moiety.23 This group is stable to a wide variety of conditions yet is 

removed using TFA in CH2Cl2.  Reaction of crude 3.35 with bis(2,4-dimethoxybenzyl) amine 
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((DMB)2NH) gave DMB-protected sulfonamide 3.37 in 46% yield.  No additional base such as 

triethylamine was required for the reaction with (DMB)2NH; otherwise a much lower yield or none of 

the desired product was obtained.  The ketone at the 17-position was then protected as ketal 3.38 in 

79% yield using PTSA (0.2 equiv) and ethylene glycol in refluxing benzene.  

We then attempted the electrophilic fluorination reaction on sulfonamide 3.38 (Scheme 3.5). 

However, no product was formed and only starting material remaining.  A variety of different 

conditions (different bases, temperatures, reaction times etc.) were tried; however, no reaction 

occurred. We also tried to methylate the benzylic position using MeI but still no reaction occurred.  

Quenching the reaction with D2O or MeOD did not result in the incorporation of any deuterium at the 

α-position.  The α-position may be too sterically hindered due to the large size of DMB group and 

the estrone backbone.  We reasoned that perhaps this reaction would proceed if a smaller protecting 

group was used. 
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O O
DMB

DMB
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2) NFSi or MeI

3.38

X
 

Scheme 3.5. Attempted fluorination of 3.38 

Only a small number of protecting groups have been developed for sulfonamides.  Bryan 

Hill in the Taylor group had previously demonstrated that two of them, the benzyl and 

4-methoxybenzyl groups, were very difficult to remove from α, α-difluorosulfonamides and so these 

groups were not considered as possible replacements for the DMB group in 3.38.23 The 

dimethylpyrrole group has been used as a protecting group for sulfonamides.24  However, this group 
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is removed under harsh conditions (refluxing concentrated TFA in H2O) and we expected that the 

presence of fluorines would make this group even more difficult to remove as was the case with the 

4-methoxybenzyl group.23 Therefore, we turned to the allyl group which has been used extensively 

for the protection of amines and esters.  Although diallyl sulfonamides are known compounds, the 

allyl group has never been used as a sulfonamide protecting group.  Nevertheless, we anticipated that 

its relatively small size would enable us to fluorinate the corresponding steroidal sulfonamide and that 

it could be removed under conditions that have been developed for its removal from amines and 

esters. 

Before we tried allyl deprotection, we tried a model fluorination reaction on benzene 

derivative 3.39 which was readily obtained by reacting α-toluenesulfonyl chloride with diallyl amine 

(Scheme 3.6). Electrophilic fluorination of 3.39 using NaHMDS/NFSi in THF at -78 oC gave 

difluorosulfonamide 3.41 in 86% yield. However, attempts to deprotect sulfonamide 3.41 using 

conditions commonly used to remove allyl groups from amines (TolSO2Na, dimedone or 

2-thiobenzoic acid as allyl scavengers in the presence of Rh or Pd catalysts)25 were unsuccessful or 

proceeded very slowly giving low yields of monodeprotected products after prolonged reaction times. 

Garro-Helion et al. have reported that allyl groups can be removed from amines using 

1,3-dimethylbarbituric acid as the allyl scavenger and Pd(PPh3)4 in CH2Cl2 at 30 oC.26 These 

conditions resulted in a very slow monodeprotection of 3.41.  However, by performing the reaction in 

refluxing CH3CN, the deprotected product 3.42 was obtained in 93 % yield.  Worthy of note is that 

its non-fluoro analog 3.39 did not undergo similar allyl deprotection to give 3.40 which may explain 

why this group has never been used as a protecting group for sulfonamides. 



 123

SO2Cl

S
NH2

OO

FF

N N

O

O O
S

N

OO

FF

S
N

OO
S

NH2

OO

3.40

    10 eq 1,3-dimethyl barbituric acid
    15.6 mol % Pd(PPh3)4, CH3CN
    vigorous reflux 16 h

2.5 eq NaHMDS
2.4 eq NFSi
THF, -78 oC, 2.5 h

3.41 (86%)

2.4 eq (allyl)2NH
THF, 0 oC, 4 h

1,3-dimethyl 
barbituric acid

    10 eq 1,3-dimethyl barbituric acid
    15.6 mol % Pd(PPh3)4, CH3CN
    vigorous reflux 16 h

3.42 (93%)

3.39 (96%)

X
 

Scheme 3.6.  Fluorination of 3.39 and deprotection of 3.41 

These results prompted us to apply allyl protection to the synthesis of 3.23 (Scheme 3.7). 

Oxidative chlorination of 3.35 followed by reaction of the sulfonyl chloride with diallylamine gave  
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Scheme 3.7. Synthesis of 3.23 using allyl protection 
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sulfonamide 3.43 in 63% yield. The ketone was protected as a ketal in 90% yield and the resulting 

compound, 3.44, was subjected to NaHMDS/NFSi.  This gave the fluorinated sulfonamide 3.45 in 

83% yield which supported our hypothesis that steric factors played a key role in preventing the 

electrophilic fluorination of sulfonamide 3.38. The allyl protecting groups in sulfonamide 3.45 were 

readily removed using 1,3-dimethylbarbituric acid in the presence of cat. Pd(PPh3)4 in refluxing 

CH3CN.  Treating the resulting deprotected product with dilute HCl in THF gave compound 3.23 in 

an outstanding 92% yield (two steps).  The overall yield of compound 3.23 starting from estrone was 

29% over 13 steps. 

The synthesis of coumarin 3.24 is outlined in Scheme 3.8. 4,7-Dimethyl coumarin 3.46 was 

prepared from m-cresol and ethyl acetoacetate via a Pechmann condensation.27 The brominated 

compound 3.47 was obtained in 89% yield by treating 3.46 with 1.05 equiv of NBS in refluxing 

benzene in the presence of 1 mol% of benzoyl peroxide.28 It is interesting to note that this 

bromination occurs exclusively at the methyl group at the 7-position and no bromination occurs on the 

methyl group at the 4-position.  The regiochemistry was confirmed by comparing the chemical shifts 

of 4- and 7-methyls on brominated product 3.47 and its precursor 3.46 from 13C NMR (DMSO-d6). In 

compound 3.46, δC-4' = 18.4 ppm, δC-7' = 21.4 ppm.27  In compound 3.47, δC-4' = 18.5 ppm, δC-7' = 33.3 

ppm.  Reaction of bromide 3.47 with sodium sulfite (Na2SO3) in refluxing EtOH/H2O (1:1) for 5 h 

gave sulfonate 3.48 in 81% yield after recrystallization from water.  Treatment of sulfonate 3.48 with 

POCl3 in refluxing CH3CN did not result in any reaction, while the use of SOCl2 and catalytic amount 

of DMF gave the desired sulfonyl chloride 3.49. It was essential to remove all of the sodium 

bromide that resulted from the sulfonation reaction before performing the chlorination reaction.  If  
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Scheme 3.8.  Synthesis of compound 3.24 and 3.52 

sulfonate 3.48 is contaminated with sodium bromide during the chlorination reaction a significant 

amount of benzylic bromide forms possibly by nucleophilic attack of bromide ion on the benzylic 

carbon to release SO2 and chloride.  So repeated recystallization of 3.48 was required to remove 

NaBr.  The crude sulfonyl chloride 3.49 was reacted with bis(2,4-dimethoxybenzyl)amine to give 

sulfonamide 3.50 in 62% yield over 2 steps.  Electrophilic fluorination of 3.50 using NaHMDS (2.5 

equiv) and NFSi (2.5 equiv) at -78 oC for 2.75 h gave desired difluorosulfonamide 3.51 in 53% yield. 

This reaction was slow to go to completion probably due to the resonance structure of its enolate 

which stabilizes the anion formed and lowers its reactivity.  We also found that best yields were 

obtained when performing the reaction under relatively dilute conditions (1.0 mM) as higher 

concentrations gave lower yields.  Deprotection of sulfonamide 3.51 went smoothly to give 3.24 in 
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68% yield using TFA/CH2Cl2.  The overall yield of sulfonamide 3.24 from coumarin 3.46 was 16% 

(6 steps)  

Since it would be useful to compare the inhibitory potency of difluorosulfonamide 3.24 with 

its non-fluorinated analog 3.52, we attempted to prepare 3.52 by reacting sulfonyl chloride 3.49 with 

conc. ammonium hydroxide or ammonia in ethanol; however, none of the desired product was 

obtained even when heating in a glass bomb.  Therefore, we attempted to prepare it by deprotection 

of 3.50. Interestingly, when the deprotection was performed using TFA/THF only monodeprotected 

product was obtained.  However, when we used TFA/CH2Cl2, it went to completion.  This reaction 

was relatively clean from TLC.  However, purifying the compound by silica gel chromatography was 

very difficult due to the very poor solubility of 3.52 in most organic solvents.  Nevertheless, we 

found that we could purify this compound by first adding ether to the crude product and filtering.  A 

non polar impurity was soluble in this solvent while 3.52 was not.  This material contained what 

appeared to be an insoluble polymer of some type (pink colored impurity).  Dissolving the filtered 

material in hot ethanol resulted in solublization of 3.52 but not the polymer which could be removed 

by filtration.  Using this procedure, pure sulfonamide 3.52 was obtained in an 81% yield. 

3.2.2 Synthesis of boronic acids 

To examine the boronic acid group as a sulfate surrogate we decided to prepare compounds 

3.53-3.56. Compounds 3.53, 3.55 and 3.56 were chosen since they are the boronic acid analogs of 

EMATE (1.1), 667-Coumate (1.3) and chromenone sulfamate inhibitor 1.4 (see Chapter 1, section 1.3) 

all of which are known to be readily hydrolyzed by STS.  Compound 3.54 is the boronic acid analog 

compound 1.5, a potent reversible inhibitor of STS (see Chapter 1, section 1.3).  We anticipated that 



 127

the addition of a boronic acid group to 1.5 would further increase its potency. 
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Figure 3.4. Structures of target boronic acids 

We began with the synthesis of steroid derivative 3.53 (Scheme 3.9).  Recently, Masuda and 

co-workers reported palladium-catalyzed borylation of aryl triflates with dialkoxyborolanes.29  

Following their procedure with slight modification (higher temp,  more borolane, Et3N and longer 

reaction time), estrone triflate 3.29 was converted to its corresponding boronate 3.57 in 94% yield 

using 4,4,5,5-tetramethyl-1,3,2-dioxaborolane in dioxane at 95-100 oC in the presence of 

Pd(dppf)Cl2-CH2Cl2 catalyst (5 mol%) and triethylamine.  Simple acid or base hydrolysis of boronate 

3.57 to the boronic acid yielded many byproducts and we were unable to obtain pure boronic acid.  

We also tried transesterifcation using HCl and phenyl boronic acid.30 Although this reaction did go 

cleanly the product was hard to purify.  We then tried a procedure developed by Yu et al. which 

involved subjecting 3.57 to NaIO4 (4 equiv)/NH4OAc (4 equiv) in acetone/H2O. Although the 

reaction was slow and took 10 days to go to completion, it proceeded very cleanly and estrone boronic 

acid 3.53 was isolated in a 92% yield.  

O

TfO

O

O
BH

4 eq NaIO4, 
4 eq 
NH4OAc

O

B
O

O

O

B
OH

HOacetone/H2O
rt, 10 days

3.57 (94%)

3 eq

5 mol %
PdCl2(dppf)-CH2Cl2

6 eq Et3N
1,4-dioxane, 
95-100 oC, 7 h

3.53 (92%)3.29
 

Scheme 3.9.  Synthesis of compound 3.53 
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To prepare compound 3.54, we first tried a Grignard reaction using benzyl magnesium bromide on 

boronates 3.57 and 3.53 but this was unsuccessful.  Therefore, we had to do the Grignard addition 

first and then install the boronate ester (Scheme 3.10).  17α-benzylestradiol 3.58 was prepared in 

73% yield by Grignard addition of benzyl maganesium bromide to estrone according to Ciobanu et 

al.’s procedure.32 To facilitate the separation of 3.58 from unreacted estrone, the mixture was 

subjected to NaBH4 which reduced the ketone in estrone to give estradiol which could be easily 

separated from 3.58. We attempted a Pd-catalyzed coupling of 4,4,5,5-tetramethyl-1,3,2- 

dioxaborolane on the triflate of 3.58 but this gave a hard-to-identify product that was clearly not the 

desired product.  Therefore, we decided to protect the 17-OH.  Ciobanu et al. reported that the 

17-position of an estradiol derivative can be protected with the trifluoroacetyl (TFAc) group using 

trifluoroacetic anhydride (TFAA) though they reported that the ester formed was quite labile and 

partially hydrolyzed during hydrogenation and silica gel column conditions.33.  We anticipated that 

we should be able to selectively protect the 17-position of 3.58 with a TFAc group by simply 

subjecting it to excess trifluoroacetic anhydride (TFAA), which would give the TFAc esters of both the 

phenolic OH and the 17-OH, and then hydrolyzing the more hydrolytically labile phenolic ester. 

Reaction of 3.58 with excess TFAA in the presence of DMAP gave a mixture of diacetate and 

monoacetates. The TFAc group at the phenolic position was very labile as TLC always showed two 

spots (around 1:1 ratio of diacetate and monoacetate and starting material was gone).  We were 

unable to drive this reaction to completion.  Therefore, the resulting mixture was treated with 1N HCl 

to give the 17-TFAc ester together with some starting material.  Since this TFAc ester was not 

particularly stable, the crude mixture was directly converted to its corresponding phenolic triflate 3.59 
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by using triflic anhydride and DMAP.  Overall yield of triflate 3.59 was a respectable 67% over 3 

steps starting from 17α-benzylestradiol.  4,4,5,5-tetramethyl-1,3,2-dioxaborolane was coupled to 

triflate 3.59 to give boronate ester 3.60 in 62% yield.  During this reaction the TFAc ester moiety 

remained intact.  Hydrolysis of the TFAc ester in 3.60 was accomplished by adding excess 0.8 N 

NaOH dropwise to a solution of 3.60 in THF which gave compound 3.61 in an 84% yield.  Boronate 

3.61 was readily deprotected by transesterification using phenylboronic acid and 2 N HCl which gave 

3.54 in 67% yield and no difficulties were encountered in its purification.  We do not yet have an 

explanation for their difference in reactivity under these conditions.  
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B

HO

O

O
B
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HO
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B
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2N HCl
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O
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B
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O
TfO

O
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O
1. 2.4 eq.  TFAA, 
    2.5 eq. DMAP, 
    CH2Cl2
2.  1N HCl
     EtOAc/MeOH

3.  1.1 eq. Tf2O,
     1.3 eq. DMAP
     CH2Cl2, 0 oC,
     1 h

5 mol % Pd(dppf)Cl2-

CH2Cl2, 9 eq. Et3N, 
dioxane, 93 oC

0.8N NaOH
THF, rt, 10 min

THF/MeOH

3.59 (67%)

3.54 (67%)

3.60 (62%)

3.61 (84%)
1.05 eq.

rt, O/N  

Scheme 3.10. Synthesis of compound 3.54 

To obtain coumarin boronic acid 3.55, we started by converting coumarin 2.3534 to its triflate 

3.62 in 97% yield using triflic andydride (Scheme 3.11).  For the conversion from triflate to boronate 

3.63, we first tried 4,4,5,5-tetramethyl-1,3,2-dioxaborolane.  To our surprise, the only isolated 

byproduct was the reduced product 3.64 where the triflate was replaced by hydrogen. There are some 

literature precedents for this type of reductive byproduct.29,35  However in these instances, they were 
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just minor byproducts, while in our case, it was predominant.  We hypothesized that the hydrogen 

source may have been pinacolborane.  Therefore, we tried pinacol diborolane instead and obtained 

the desired coumarin boronate 3.63 in 83% yield. Deprotection of boronate 3.63 with 

NaIO4/NH4OAc afforded the desired boronic acid 3.55 in 67% yield.  The faster rate may be due to 

its better solubility in acetone/H2O than estrone boronate 3.57.  

OHO O OTfO O
2.35 3.62 (97%)

O

O
B B

O

O OB OO

O

OB OHO

OH

4.0 eq. NaIO4

4.0 eq. NH4OAc

O O

3.64

1.5 eq. KOAc, dioxane
3 mol% Pd(dppf)Cl2-CH2Cl2
85 oC, O/N

1.2 eq. Tf2O
0.25 eq. DMAP
2 eq. 2,6-lutidine

CH2Cl2, 0 oC
1 h 1.1 eq.

acetone/H2O
rt, O/N

3.55 (67%)

3.63 (83%)

byproduct

 

Scheme 3.11. Synthesis of coumarin boronic acid 3.55 

 Chromenone boronic acid 3.56 was synthesized in a similar manner to 3.55 (Scheme 3.12).  

The triflation of chromenone 3.6536 didn’t go to completion and only a 50% yield of triflate 3.66 was 

obtained together with 16% recovered starting material.  The reaction was not optimized further.  

Again, coupling reaction of 3.66 with 4,4,5,5-tetramethyl-1,3,2-dioxaborolane didn’t give the desired 

boronate.  However, the desired product chromenone boronate 3.67 was obtained in 70% yield by 

coupling with the diborolane.  Cleavage of pinacol moiety using NaIO4/NH4OAc gave chromenone 

boronic acid 3.56 in 77% yield. 
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Scheme 3.12. Synthesis of chromenone boronic acid 3.56 

The coumarin and chromenone boronic acids can easily form boronic anhydrides (Scheme 

3.13) and so sometimes the 1H NMR will show another set of peaks in addition to the desired product 

though the compounds will show up as a single spot by TLC.  The ratio of boronic acid to anhydride 

depends on how dry the NMR solvent is.  For example, different DMSO-d6 ampules have different 

amounts of water present and so the ratio changes from one ampule to another.  In order to avoid 

this complexity, a drop of D2O was added to the DMSO-d6 every time an NMR was run.  This 

resulted in the break down of the boronic anhydride to the free boronic acid.  
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Scheme 3.13.  Formation of boronic anhydrides 

In Chapter 2 we found that 4-formyl estrone (2.13) is a good irreversible inhibitor of STS. 

We hypothesized that it inhibited STS by forming a Schiff base with an active site arginine or lysine. 

Since boronic acids can form adducts with lysines and arginines we thought that estrone or estradiol 

with a boronic acid group at the 4-postion (compound 3.70, Scheme 3.14) might also be a good STS 
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inhibitor. Reaction of 4-bromoestradiol (2.22)37 with MOMCl gave the desired diMOM protected 

steroid 3.68 in 91% yield (Scheme 3.14).  Lithium-halogen exchange, followed by treating with 

trimethyl borate, gave boronic acid 3.69 in 55% yield along with debrominated byproduct (30%) and 

another byproduct (6%) where bromine was replaced by OH.  Unfortunately, removal of the MOM  

OMOM

MOMO
Br

OMOM

MOMO
B

HO OH

OH

HO
Br

OH

HO
B

HO OH

1.  2.88 eq BuLi,  -78 oC, 1 h; 
     then rt, 5 min
2.  -78 oC, 10.8 eq B(OMe)3, 5 min;
     then rt, 5 min
3.  H3O+

9.2 eq MOMCl
7.7 eq iPr2NEt

THF, reflux 15 h

many 
conditions

3.68 (91%)

3.69 (55%)3.70

2.22

 

Scheme 3.14.  Attempted synthesis of boronic acid 3.70 

group was very difficult. Several methods were tried such as BBr3 in CH2Cl2 at -78 oC, conc. HCl in 

THF at rt, 1 M HCl at rt to reflux in THF/MeOH, amberlyst-15 in refluxing THF; however, none of 

the desired product was isolated.  Deprotection of MOM using weak acid PPTS in refluxing 

methanol gave estradiol as the major product and the 17-MOM derivative as a minor product. A 

possible mechanism that accounts for the loss of the boronic acid moiety is shown in Scheme 3.15.  
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HO OH
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Scheme 3.15. Proposed mechanism for loss of the boronic acid moiety. 
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The synthesis of compound 3.70 is still in progress in the Taylor group but using a slightly 

different approach (Scheme 3.16).  Removing the MOM group requires conditions that are too harsh. 

Therefore, we will use 4-bromoestrone protected at the 3-position with a tetrahydropyranyl (THP) 

group and the 17-position protected with a cyclic ketal (3.71). Ketal 3.71 will be treated with THP in 

the presence of PPTS to form acetal 3.72.  Compound 3.70 will be obtained by treating 3.72 with 

BuLi followed by boronation and treatment with mild acid. Another route using a Pd-catalyzed 

cross-coupling reaction with 4-bromoestrone or 3-THP protected 4-bromoestrone and pinacolboronane 

is also being investigated. 
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CH2Cl2
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O

3.71 3.72 3.70

O
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B
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Scheme 3.16. Alternative route to boronic acid 3.70 

3.2.3 Synthesis of Sulfinic Acids 

To examine the sulfinic acid group as a sulfate surrogate we decided to prepare compounds 

3.73 and 3.74 both of which can be considered the sulfinic acid analogs of estrone sulfate.  

O

S

3.73

-O

O

O

3.74

S
O

-O

 

Figure 3.5.  Structures of target sulfinic acids 

The syntheses of 3.73 and 3.74 were straightforward.  For the synthesis of 3.73 we decided 

to use Binisti et al.’s route to phenyl sulfinic acids which involves heating a sulfonyl chloride with 
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Na2SO3 and NaHCO3 (3 equiv) in H2O at 90 oC.38 Synthesis of estra-3-sulfonyl chloride 3.77 has 

been reported by Li et al. in 25% yield over 5 steps starting from estrone.2 Reaction of estrone with 

N,N-dimethyl thiocarbamoyl chloride gave crude O-aryl thiocarbamate 3.75 (Scheme 3.17). Crude 

3.75 underwent a Newman-Kwart rearrangement to S-aryl thiocarbamate 3.76 when heated to 280-285 

oC for 1 h in a glass bomb.  The yield for these two steps was 64% after recrystallization.  Li et al. 

cleaved 3.76 to the mercaptan and then protected the mercaptan with a benzyl group.  This benzyl 

thioether was then converted into the sulfonyl chloride 3.77 by oxidative chlorination.  However, we 

anticipated that 3.76 could be converted into the acid chloride directly by oxidative chlorination. 

Indeed, subjecting 3.76 to chlorine gas in HOAc/H2O afforded desired chloride 3.77 in 77% yield after 

chromatography.  The overall yield of estrone sulfonyl chloride 3.77 was 49% over 3 steps, a 

significant improvement over the literature procedure.  Reduction of 3.77 with Na2SO3 and NaHCO3 

in H2O at 90 oC. for 3 h gave aryl sulfinic acid 3.73 in 73% yield as its ammonium salt after 

chromatography using CH2Cl2/MeOH/NH4OH (10:2:0.5).  
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Scheme 3.17.  Synthesis of compound 3.73 
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The preparation of estra-3-methylsufinic acid (3.74) began with 3-(bromomethyl) estrone 

3.33 (Scheme 3.18).  Reaction of 3.33 with thiol 3.78 gave sulfide 3.79 in 90% yield. Oxidation of 

3.79 with mCPBA (m-chloroperoxybenzoic acid) resulted in oxidation of the sulfide and a 

Bayer-Villiger reaction on the ketone at the 17-position to form the corresponding lactone.  However, 

we found that the selective oxidation of sulfide 3.79 to the corresponding sulfone 3.80 could be 

achieved in 68% yield by using 1.2 equiv KMnO4 in HOAc at rt.  Sulfone 3.80 was reduced to 

sulfinic acid 3.74 using NaOEt in refluxing EtOH.39  Chromatography of this material using 

CH2Cl2/MeOH/NH4OH (10:2:0.5) gave the ammonium salt in 83% yield. 

O

Br

N

O

O

SH

O

S
N

O

O

O

S
N

O

O

O O

O

S
O

O

NH4

1.8 eq NaOEt

EtOH     
90 oC, 3 h

2 eq K2CO3

DMF, rt, 4.5 h
+

1.2 eq KMnO4
HOAc
rt, 7 h

3.33 3.78
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Scheme 3.18.  Synthesis of sulfinic acid 3.74 

The mechanism for the reduction of the sulfone to the sulfinic acid is shown in Scheme 3.19.  

The pKa’s of phthalimide and phenyl sulfinic acid in H2O is 8.3 and 2.1, respectively.  Thus, the 

benzylic sulfinic acid has a much lower pKa value than phthalimide and so the carbon-sulfur bond 

instead of carbon-nitrogen bond breaks to form the sulfinic acid. 
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Scheme 3.19.  Proposed mechanism for the formation of sulfinic acid 3.74 from  
sulfone 3.80 

Compound 3.74 is not very stable. Attempts to convert it from the ammonium salt to the 

sodium salt by ion-exchange chromatography resulted in complete decomposition.  It decomposed 

quickly in DMSO or methanol and broke down slowly in D2O.  This is in contrast to sulfinate 3.73 

which showed no significant decomposition after 3 days in D2O at rt. 

3.2.4 Synthesis of steroids modified at the 17-position with a carboxylic acid group 

To examine whether the presence of an anionic moiety at the 17-position can increase the 

potency of both reversible and irreversible STS inhibitors we have designed compounds 3.81-3.83 as 

our initial targets.  These compounds bear a carboxylate group at the 17-position which we anticipate 

will interact with Arg146.  Compounds 3.81 and 3.82 bear a phosphate and a methanesulfonate 

group at the 3-position. Estrone-3-phosphate (3.16, Table 3.1) is a competitive STS inhibitor and at 

pH 7.0 exhibits a Ki of 5 µM.7 Estrone-3-methanesulfonate (3.20, Table 3.1) has been reported to be 

a competitive STS inhibitor with a Ki of 23 µM at pH 7.0.9 Therefore, we anticipate that compounds 

3.81 and 3.82 will be reversible STS inhibitors.  Compound 3.83 is EMATE with a carboxylate at the 

17-position and should be an irreversible STS inhibitor. 
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RO

CO2-

3.81, R = PO3
2-

3.82, R = SO2CH3

3.83,  R = SO2NH2  

Figure 3.6.  Structures of target steroids modified at the 17-position 

Our general route to the 17-COOH derivatives is outlined in Scheme 3.20. α,β-Unsaturated 

carboxylic acids 3.84-3.86 will be prepared starting from estrone.  Hydrogenolysis of these species 

would yield the desired products. 

CO2H

RO RO

CO2Bn

HO

O

3.81, R = PO3
2-

3.82, R = SO2CH3
3.83,  R = SO2NH2

3.84, R = PO3
2-

3.85, R = SO2CH3
3.86,  R = SO2NH2  

Scheme 3.20. Retrosynthesis of compounds 3.18-3.83 

The synthesis of compounds 3.81-3.83 began with the construction of nitrile 3.87 using a 

literature procedure (Scheme 3.21).40  Thus, estrone was treated with MsCl and pyridine to give 

mesylate 3.20 in quantitative yield.  Mesylate 3.20 was treated with trimethylsilyl cyanide (TMSCN) 

and catalytic zinc iodide in dichloromethane followed by acidic workup (heating in conc. HCl).  The 

resulting cyanohydrin was dehydrated with phosphorus oxychloride (POCl3) and dry pyridine to 

HO

O

MsO

CNO

MsO

2.4 eq MsCl, 
Py, 0 oC, 1h;
then rt, O/N

1.  1.8 eq.TMSCN, 
     4 mol % ZnI2, 
     CH2Cl2, reflux 35 min

2.  POCl3, dry Py,
    reflux O/N

3.20 (quantitative yield) 3.87 (77% over two steps)  

Scheme 3.21. Synthesis of nitrile 3.87 
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afford unsaturated cyanide 3.87 in 77% yield over two steps.  

Hydrolysis of nitrile 3.87 with excess solid sodium hydroxide in ethylene glycol at 205 oC for 

6 h gave carboxylic acid 3.88 in 84% yield (Scheme 3.22).  In a large scale, we got a 58% yield of 

acid 3.88 over 3 steps starting from mesylate 3.20 with a single column purification required at the last 

step.  Benzylation of acid 3.88 was first performed by refluxing acid 3.88 with benzyl bromide in 

THF in the presence of one equivalent of weak base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene).  

However, this conversion rate was low even after refluxing overnight.  A two-step procedure was 

then investigated which involved selective deprotonation of 3.88 with 1 equiv of tetrabutylammonium 

hydroxide (Bu4NOH, 40% aqueous solution) followed by treatment of the resulting ammonium salt  

HO

CO2H

31 eq NaOH
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CO2Bn

H2, 46 psi

MsO

CN

CO2H

HO
3.88 (84%)

ethylene glycol
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Pd black, 40 h

1.  1 eq 40% Bu4NOH, 
      70 oC, 5 h
2.   DMF, 1.1 eq BnBr, rt, 20 h

10% Pd/C
H2, O/N

3.87 3.91 (95%)

3.89 (88% over two steps)3.90 (100%)  

Scheme 3.22.  Synthesis of compounds 3.89-3.90. 

with benzyl bromide in DMF.  This worked well and gave the desired benzyl ester 3.89 in 81% yield. 

Before we attempted any modifications at the 3-position we first worked out conditions for 

hydrogenolysis of the double bond using 3.88 as a model compound.  To our surprise, subjecting 

3.88 to 10% Pd/C and H2 did not result in hydrogenation of the double bond even under 45 psi of H2, 

while the double bond in nitrile 3.87 was easily hydrogenated using 10% Pd/C under balloon pressure 
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H2 to give 3.90 in quantitative yield.  However, when this reaction was performed with Pd black 

under 45 psi H2 the desired carboxylic acid 3.91 was obtained in high yield.  

Hydrogenation of 3.88 resulted in the exclusive formation of the β-isomer of 3.91 (COOH is 

coming out of the plane).  As shown in Scheme 3.23, hydrogen can only attack from the backside of 

the methyl at 16-position due to steric hinderance, thus producing the β–carboxylic acid.   
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H
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HRO
RO

 

Scheme 3.23.  Formation of the β-isomer from hydrogenation of 3.88 

With the conditions for the hydrogenation worked out we then modified the 3-position of 3.89 

(Scheme 3.24). The phosphorylation reaction was accomplished by reacting compound 3.89 with 

dibenzyldiisopropylphosphoramidite (iPr2NP(OBn)2) in the presence of 1H-tetrazole followed by in 

situ oxidation of the phosphite intermediate with mCPBA (meta- chloroperoxybenzoic acid) to provide 

the phosphate 3.84 in 60 % yield.  We anticipated that we could convert 3.84 to 3.81 in a single step 

by hydrogenolysis of the benzyl esters and hydrogenation of the double bond.  Hydrogenation over 

Pd black resulted in reduction of double bond and global deprotection of benzyl groups to give 

phosphoric acid 3.81 in 94% yield.  Mesylation of 3.89 with methanesulfonyl chloride in the 

presence of pyridine gave desired mesylate 3.85 in 94% yield. Hydrogenation of the double bond 

and hydrogenolysis of the benzyl group gave the desired product 3.82 in 95% yield. Similarly, 

sulfamate 3.86 was obtained in 82% yield by reacting 3.89 with sulfamoyl chloride in DMF.  

Hydrogenation of 3.86 over Pd black under 50 psi H2 gave desired product 3.83 in 92% yield.  
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Scheme 3.24.  Synthesis of compounds 3.81-3.83 

3.2.5 Preliminary Results from Inhibition Studies. 

 This chapter would not be complete without a brief discussion of the results from inhibition 

studies with these compounds. Boronic acids 3.53-3.56 and sulfonamides 3.23 and 3.24 have been 

examined as STS inhibitors by Vanessa Ahmed, a graduate student in the Taylor group. Studies with 

the steroids modified at the 17-position (compounds 3.81-3.83) as well as the sulfinic acids 

(compounds 3.74 and 3.74) are still in progress. 

 Inhibition studies with the boronic acids were carried out using purified STS in 0.1 M Tris 

buffer containing 5% DMSO with 4-methylumbelliferyl-6-O-sulfate (MUS) as substrate. 

Estrone-3-boronic acid (3.53) is a reversible, competitive STS inhibitor with a Ki of 2.8 µM at pH 7.0. 

Comparing the potency of 3.53 with the many other estrone derivatives bearing sulfate surrogates that 

have appeared in the literature is difficult since very few have been examined with pure enzyme and 

the modality of inhibition was rarely determined.  Nevertheless, a comparison of 3.53 with other 
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estrone derivatives bearing sulfate surrogates using pure enzyme or placental microsomes (Table 3.1) 

reveals that compound 3.53 is one of the most potent inhibitors of this class.  Estrone itself is a 

non-competitive STS inhibitor with a competitive Ki (the Ki for binding to free STS) of 63 µM and an 

αKi (the Ki for binding to the STS-substrate complex) of 111 µM.  Thus, replacing the 3-OH of 

estrone with a boronic acid moiety resulted in about 23-fold increase in potency and changes the 

modality of inhibition from noncompetitive to competitive  Ms. Ahmed’s inhibition studies did not 

allow us to determine whether a reversible covalent adduct is formed between 3.53 and STS. 

However, she was able to determine that 3.53 is not a slow-binding inhibitor which is a phenomenon 

often associated with boronic acid inhibitors of serine proteases. 

Compound 3.54 is a 10-fold more potent inhibitor than compound 3.53 but is a 

non-competitive inhibitor with a Ki of 252 nM and an αKi of 300 nM. Surprisingly, compound 3.54, 

which is identical to 1.5 (3.54 but with an OH at the 3-position instead of a boronic acid group) was 

also a noncompetitive inhibitor and exhibited an almost identical Ki and αKi to that of 3.54 and so 

both inhibitors exhibit similar affinities for both the free and substrate bound form of the enzyme. 

These results suggest that both 3.54 and 1.5 preferably bind in a region outside the active site. 

Indeed our results with these compounds, as well as the fact that estrone is a non-competitive inhibitor, 

suggest the presence of a second steroid binding site. If 3.54 and 1.5 bind to STS in a similar manner 

then the boronic acid moiety in 3.54 may not be contributing very much to its affinity for STS. 

 IC50’s were determined for coumarin and chromenone boronic acids 3.55 and 3.56 at pH 7.0. 

Both of these compounds were relatively poor STS inhibitors with the coumarin having an IC50 of 171 

µM and the chromenone having an IC50 of 86 µM.  
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 At pH 8.8, compound 3.53 was a competitive inhibitor with a Ki of 6.8 µM.  STS is 

crystallized at pH 8.614 so we were pleased to see that compound 3.53 exhibited a good affinity for 

STS even at basic pH. Compounds 3.53 and 3.54 were sent to Dr. Debashis Ghosh for 

crystallographic studies and so far we have obtained the structure of the STS-3.53 complex (Figure 3.7, 

unpublished results).  Compound 3.53 was found to bind noncovalently in a hydrophobic site (site 2) 

at the top of the two α-helices and at the entrance to a tunnel that leads into the active site. The 

boronic acid group interacts with the side chain of Asn241 and with the side chain of Gln583 by a 

water-mediated H-bond.  The steroid skeleton forms hydrophobic interactions with a variety of 

hydrophobic residues. Binding of 3.53 at site 2 blocks the entrance to the tunnel but does not occupy 

any part of the active site.  

 
Figure 3.7. Crystal structure of compound 3.53 bound to STS.  The inhibitor is 
shown in red (courtesy of D. Ghosh, unpublished) 

The fGly hydrate is sulfated in the STS-3.53 complex.  We believe that hydrate sulfation 

prevents the binding of 3.53 in the active site, and so it occupies site 2 in the crystal structure but 

occupies the active site when STS is in solution where the hydrate is only transiently sulfated. 

Nevertheless, we believe that some inhibitors that we and others have prepared bind in site 2 in solution. 
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For example, compound 3.54 which is a noncompetitive inhibitor which indicates that it is binding in a 

site outside the active site.  We suspect that this compound binds in the second site where the benzyl 

group would be able to project down into a channel between the hydrophobic helices.  Compound 3.54 

was based on Boivin et al’s report that estradiol derivatives bearing benzylic groups at the 17-position, 

such as 1.5, are potent inhibitors of STS.41 We have found that 1.5 is a noncompetitive inhibitor of the 

pure enzyme with a Ki identical to 3.54 and we believe that 1.5 and similar compounds41,42 bind in site 2. 

 Inhibition studies with the steroid sulfonamides were carried out using purified STS in tris 

buffer containing 10 % DMSO with 4-methylumbelliferyl-6-O-sulfate (MUS) as substrate at 25 oC. 

We were unable to do inhibition studies with the coumarin sulfonamide 3.24 due to its poor solubility 

in the assay mix. The fluorinated sulfonamide 3.23 exhibited mixed inhibition with STS with a 

competitive Ki of 82 µM at pH 7.0.  Its nonfluorinated analog, 3.36, also exhibited mixed inhibition 

with a competitive Ki of 350 µM.  So the presence of the fluorines increases the potency by 

approximately 4.3-fold. At pH 8.8, compound 3.23 exhibited mixed inhibition with STS with a 

competitive Ki of 28 µM while compound 3.36 had a Ki of 503 µM, an 18-fold difference.  

 Professor Scott Taylor determined the pKa of compound 3.23 to be 8.0 in 0.1 M bis-tris 

propane, 10% DMSO at 25 oC.  Thus, at pH 7.0 10% of sulfonamide 3.23 exists as the conjugate 

base.  The pKa of sulfonamide 3.40 in aqueous solution has recently been determined by 

potentiometric titration to be 10.5.43 Thus, under our conditions, the pKa of sulfonamide 3.36 is 

probably about 10.5.  Therefore, at pH 7.0, less than 0.02% of 3.36 exists as the conjugate base. At 

pH 7.0, the sulfonamide 3.23 has an approximately 4.3-fold greater affinity for STS than compound 

3.36, a modest difference considering the concentration of the conjugate base of inhibitor 3.23 at 
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physiological pH is at least 500 times greater than that of inhibitor 3.36.  This would suggest that, at 

pH 7.0, STS does not have a strong preference for binding to the conjugate base of 3.23 and has a 

modest affinity for the neutral form of 3.23.  The 4.3-fold difference could be due to a variety of 

factors such as the fluorines interacting with residues in the active site.  The Ki for 3.23 does indeed 

decrease as the pH increases from 7.0 to 8.8 which is what one would expect if the anion exhibited a 

greater affinity for the enzyme.  However, the decrease is not as large (3-fold) as one would expect 

based solely on the difference in the concentrations of the neutral and anionic forms of 3.23 (63-fold 

higher at pH 8.8 compared to pH 7.0) and if STS did not bind or had an extremely poor affinity for the 

neutral form.  However, our studies with the nonfluorinated sulfonamide 3.36 indicate that STS will 

bind neutral sulfonamides though not very well.  Thus, STS may have just a modest preference for 

binding the conjugate base of sulfonamides over their neutral form.  The 18-fold difference in Ki’s 

between compounds 3.23 and 3.36 at pH 8.8 could be due to differences in the concentrations of their 

respective conjugate bases as well as other factors such as the fluorines in 3.23 interacting with 

residues in the active site.  

Although it appears that the ionization state of 3.23 is not a major factor in the binding of 3.23 

to STS, this may not necessarily be the case with EMATE.  The Ki of EMATE has been determined 

to be 670 nM using a radiometric assay and crude microsomal preparations of STS at an unspecified 

pH and so appears to have a considerably greater affinity for STS than compound 3.23.25 Although 

the pKa of EMATE in purely aqueous solution is probably lower than that reported in 70% aqueous 

methanol (9.5), its pKa is certainly greater than that of inhibitor 3.23.  If it is the conjugate base of 

EMATE that interacts with STS, then this would suggest that the anionic sulfamoyl group binds with 
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an affinity that is dramatically greater than the conjugate base of 3.23. It is possible that the 

difluoromethylene linkage in 3.23 actually hinders the anionic nitrogen from interacting optimally 

with active site residues while this may not a problem with EMATE.  However, comparing Ki’s of 

irreversible inhibitors to Ki’s of reversible inhibitors should be approached with caution due to the 

possibility that the inactivation step by the irreversible inhibitor is completely or partly rate limiting. 

Nevertheless, our results intimate that the possibility that EMATE may bind to STS as the neutral 

species cannot be entirely discounted. 

3.2.6 Future work 

 Although an effective route to the synthesis of DFMS’s was developed, the results for the 

inhibition studies with compound 3.23 reveals that the substitution of the sulfate group in estrone 

sulfate with a DFMS group did not yield a particularly effective inhibitor.  Indeed, compound 3.23 

exhibits a potency that is about the same as estrone at pH 7.0.  This is in contrast to boronic acid 

inhibitor 3.53 which is a good competitive inhibitor of STS and is 23-fold more potent than estrone. 

Nevertheless, even compound 3.53 does not display a submicromolar potency.  Perhaps the most 

significant result from the series of compounds synthesized in this chapter so far is the discovery of an 

alternative steroid binding site since this opens up a new paradigm for inhibitor design.  We will use 

this structure as a starting point for the design of noncompetitive inhibitors.  This will be a purely 

rational approach relying heavily on molecular modeling.  It will be interesting to see if compound 

3.54 binds in the second site as we have predicted.  The Ghosh group has obtained diffraction quality 

crystals of the STS-3.54 complex and we should have the STS-3.54 complex structure soon.  We are 

aware that should 3.54 be shown to occupy the same site as 3.53 in the crystal structure that this would 
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not necessarily mean that this is how it binds to STS in solution.  However, the fact that 3.54 is a 

purely noncompetitive inhibitor clearly indicates that it is binding in a region outside the active site 

and that it would be very reasonable assumption that if it is binding to site 2 in the crystal structure 

then this would also be the case in solution.  

MsO

CN

3.90
HO

CN

3.92 (β-isomer)
HO

CN

3.92 (α-isomer)

+
base

 

Scheme 3.25.  Epimerization of compound 3.90  

 The steroids that were modified with a carboxylic acid group at the 17-position have yet to be 

examined as STS inhibitors.  Even if these compounds prove to be poor STS inhibitors, more work 

will be done on this class of compounds.  So far, we have prepared only the β-isomers.  We will 

attempt to prepare the α-isomers by subjecting 3.90 to base which we anticipate will epimerize the 

17-position (Scheme 3.25).  We may even be able to epimerize and convert the cyano group to the 

carboxylic acid group in a single step.  The resulting epimers will be separated either at this stage or 

at a later stage of the synthesis which will proceed using an approach similar to that in Scheme 3.22.  
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Scheme 3.26.  Synthesis of compound 3.95 
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The 17-phosphate analogs of 3.81-3.83 (α- and β-isomers) will also be prepared and we  

have already made some progress on this class of compounds.  For example, compound 3.94 has 

been prepared using the straightforward process outlined in Scheme 26.  Hydrogenolysis will yield 

compound 3.95.  A similar approach will be used to obtain the 3-sulfamate analog of 3.95.  

We have also prepared diphosphate 3.96 as shown in Scheme 3.27, however, we are still in 

the process of purifying this compound.  Hydrogenation of 3.96 will yield the desired diphosphate 

3.97. 

HO

OH

3.96
(BnO)2OPO

OPO(OBn)2

3.97
(HO)2OPO

OPO(OH)21.  I2, P(OBn)3
2.  py, CH2Cl2
    -30 oC, 2 h

 

Scheme 3.27.  Route to diphosphate 3.97 

The α,β-unsaturated carboxylic acids of type 3.99 will also be synthesized (Scheme 3.28) 

from the silyl protected acid 3.98, which we have recently prepared. 

CO2H

HO

CO2TBS

HO
3.99

CO2
-

RO

R = PO3
-2, SO2CH3, SO2NH2

3.88 3.98 (59%)

1.45 eq. TBDMSCl

THF

1.15 eq. Et3N

 

Scheme 3.28.  Proposed synthesis of compounds of type 3.99 

 As far as the sulfinic acid inhibitors are concerned, we will have to wait for the results for the 

inhibition studies before any future work on this class of compounds can proceed further.  
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3.3 Experimental 

3.3.1 General 

THF, ether, 1,4-dioxane and benzene were distilled from sodium/benzophenone.  Methylene 

chloride, triethyalmine, acetonitrile and 2,6-lutidine were distilled from CaH2. Pyridine was distilled 

from KOH. DMF (N,N-dimethylformamide) and NMP (N-methylpyrrolidone) were distilled from 

CaH2 under reduced pressure.  POCl3 and triethyl phosphite (P(OEt)3) were distilled prior to use. 

Formic acid was distilled from phthalic anhydride. N,N-Dimethylthiocarbamoyl chloride was purified 

by vacuum distillation.  NFSi was recrystallized from methanol prior to use.  Potassium acetate was 

sublimed under vacuum and kept in a desiccator.  Methanol was HPLC grade. Potassium thioacetate 

(KOAc) was prepared from thioacetic acid.  Choromethyl methyl ether (MOMCl) was prepared 

according to literature.44 Silica gel chromatography was performed using silica gel 60Å (230-400 

mesh) obtained from Silicycle (Laval, Quebec, Canada). 1H, 19F, 31P, 11B and 13C NMR spectra were 

recorded on a Bruker Avance 300 spectrometer. Chemical shifts (δ) for 1H NMR spectra run in 

CDCl3, DMSO-d6, CD3OD, acetone-d6, D2O are reported in ppm relative to the internal standard 

tetramethylsilane (TMS). For 13C NMR spectra run in CDCl3, chemical shifts are reported in ppm 

relative to the CDCl3 (δ = 77.0 for central peak), DMSO-d6 (δ = 39.5 for central peak), CD3OD (δ = 

49.0 for central peak), acetone (δ = 77.0 for central peak), D2O (δ 0.0 for external standard TMS). For 

the 19F NMR spectra chemicals shifts are reported relative to an external CFCl3 standard (δ 0.0 ppm).  

For the 31P NMR spectra chemicals shifts are reported relative to an external 85% phosphoric acid 

standard (δ 0.0 ppm). For the 11B NMR spectra chemicals shifts are reported relative to an external 

B(OMe)3 standard (δ 0.0 ppm). Low-resolution (LRMS) and high-resolution (HRMS) electron impact 
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(EI) mass spectra were recorded on a JEOL HX 110 double focusing mass spectrometer. Electrospray 

(ESI) mass spectra were obtained with a Waters/Micromass QTOF Ultima Global mass spectrometer. 

Melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected. 

3.3.1 Syntheses 

OH

HO
Br

2.22  

4-Bromo-17β-hydroxyestra-1,3,5(10)-triene (2.22). This was prepared according to the 

procedure of Lovely et al.37 using NBA instead of NBS. A suspension of estradiol (8.00 g, 29.4 mmol) 

in ethanol (600 mL) was heated to make a clear solution then cooled to 0 oC before N-bromoacetamide 

(NBA, 4.10 g, 29.7 mmol) was added.  The resulting mixture was stirred 2 h at 0 oC, then overnight 

at rt.  After removal of solvent, the residue was recrystallized from ethanol to give 6.69 g (65%) of 

4-bromoestradiol 2.22 as colorless crystals. 1H NMR (DMSO-d6, 300 MHz) δ 9.78 (s, 1H, ArOH), 

7.07 (d, J = 8.5 Hz, 1H, H-1), 6.71 (d, J = 8.4 Hz, 1H, H-2), 3.38 (t, J = 5.7 Hz, H-17), 2.90-1.20 (m, 

15H), 0.61 (s, 3H, CH3, H-18).  

3.20

O
S

H3C

O

O

O

 

Estra-1,3,5(10)-trien-17-one-3-yl methanesulfonamide or 3-[(methanesulfonyl)oxy] 

estra-1,3,5-(10)-triene-17-one (3.20). This was prepared according to the procedure of Baldwin et 

al.45 To a solution of estrone (10 g, 37 mmol) in pyridine (50 mL) at 0 oC was added methanesulfonyl 
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chloride (7.0 mL, 90 mmol, 2.4 equiv) slowly over 40 min. After addition, it was maintained at 0 oC 

for 1 h, and then stirred overnight at rt.  The reaction mixture was cooled to 0 oC and 400 mL of 2 M 

HCl was added slowly.  The mixture was stirred for 30 min and then filtered.  The filter cake was 

washed with water and dried over high vacuum to give estrone mesylate 3.20 as yellow solid which 

was recrystallized from methanol to give light yellow or yellow prism (12.90 g, 100%). 1H NMR 

was identical to that previously reported.45 1H NMR (CDCl3, 300 MHz) δ 7.29 (d, J = 8.3 Hz, 1H, 

H-1), 7.04-7.00 (s and d overlapping, 2H, H-2 and H-4), 3.11 (s, 3H, CH3SO3), 2.95-2.85 (m, 2H, H-6), 

2.52-1.91 (m, 7H), 1.75-1.40 (m, 6H), 0.89 (s, 3H, CH3, H-18). 

3.23

S
H2N

O O

F F

O

 

Difluoro [estra-1,3,5(10)-trien-17-one]-3-methanesulfonamide (3.23). Pd(PPh3)4 (240 

mg,  0.071 mmol, 6.6 mol %) was added to a solution of 3.45 (540 mg, 1.07 mmol) and 1,3- 

dimethylbarbituric acid (2.00 g, 14.1 mmol, 13 equiv) in dry CH3CN (15 mL).  The mixture was 

heated under reflux under an atmosphere of argon for 18 h, after which it was cooled and diluted with 

water (50 mL).  The mixture was extracted with ether and the combined extracts washed with H2O 

then dried (Na2SO4) and concentrated to leave a yellow oil. 6 M HCl (15 mL) was added to a solution 

of the residue in THF (50 mL).  The mixture was stirred for 1 h at rt, after which it was diluted with 

of H2O (50 mL) and extracted with ethyl acetate.  The combined extracts were washed with H2O and 

brine then dried (Na2SO4) and concentrated.  Purification of the residue by flash chromatography 
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(ethyl acetate/hexane, 2:5) gave difluorosulfonamide 3.23 as a pale yellow solid which was 

recrystallized from CH2Cl2-hexane to give pure 3.23 as white crystalline solid (372 mg, 92%).  Mp 

165-167 °C; 1H NMR (CDCl3, 300 MHz) δ 7.46-7.34 (m, 3H, H-1, H-2 and H-4), 5.27 (s, 2H,  NH2), 

3.00-2.85 (m, 2H), 2.05-1.90 (m, 7H), 1.65-1.35 (m, 6H), 0.88 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 

75 MHz) δ 221.5 (C=O), 144.4 (C-6), 137.3 (C-5), 127.8 (t, J = 5.7 Hz, C-4), 125.8 (C-1), 125.1 (t, J 

= 25 Hz, C-3), 124.6 (t, J = 6.3 Hz, C-2), 120.7 (t, J = 281 Hz, CF2), 50.5 (C-14), 48.1 (C-13), 44.5 

(C-7), 37.8 (C-8), 35.9 (C-16), 31.5 (CH2), 29.3 (CH2), 26.2 (CH2), 25.6 (CH2), 21.7 (CH2), 13.9 (CH3, 

C-18); 19F NMR (CDCl3, 282 MHz) δ –102; LRMS (EI) m/z (%) 383 (M+, 1), 303 (100); HRMS (EI) 

calcd for C19H23F2NO3S 383.1367; found 383.1373. 

3.24

O
S OO
NH2

O
F

F

 

7-(4-methylcoumarin) difluoromethanesulfonamide (3.24). To a solution of 3.51 (311 mg, 

0.530 mmol) in CH2Cl2 (12.5 mL) at rt was added TFA (5 mL) over 10 min. After stirring for 2 h at rt, 

the reaction was concentrated to give a pink residue. Acetone (40 mL) was added and the mixture 

was stirred for 15 min.  After filtration and rinsing with acetone, the filtrate was subjected to flash 

column chromatography (acetone/hexane, 1:4 to 1:2) to afford 3.24 as a pale white solid (105 mg, 

69%). 1H NMR (acetone-d6, 300 MHz) δ 7.94 (d, J = 8.3 Hz, 1H, H-5), 7.61 (d, J = 8.1 Hz, 1H, H-6), 

7.55 (s, 1H, H-8), 7.38 (s, 2H, NH2), 6.44 (s, 1H, H-3, vinyl), 2.52 (s, 3H, CH3); 13C NMR (acetone-d6, 

75 MHz) δ 158.9, 153.0, 151.9, 132.2 (t, J = 23 Hz, C-7), 125.7, 122.6 (t, J = 6 Hz), 119.8 (t, J = 279 

Hz, CF2), 116.6, 115.6 (t, J = 6 Hz), 17.6 (CH3); 19F NMR (acetone-d6, 282 MHz) δ –103.9; LRMS 
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(EI) m/z (%) 289 (M+, 6), 209 (100), 181 (12); HRMS (EI) calcd for C11H9F2NO4S 289.0220, found 

289.0210.  

3.29
TfO

O

 

Estra-1,3,5(10)-trien-17-one-3-trifluoromethanesulfonate (3.29).  Prepared according to 

the procedure of Li et al.9 To a solution of estrone (10.0 g, 37.0 mmol), DMAP (1.13 g, 9.20 mmol, 

0.25 equiv) and 2,6-lutidine (9.2 mL, 8.0 mmol, 2.1 equiv) in CH2Cl2 (300 mL) at 0 oC was added 

triflic anhydride (7.45 mL, 44.3 mmol, 1.2 equiv) slowly.  After addition, the reaction mixture was 

stirred for 70 min at 0 oC before quenching with 2 M HCl (100 mL) at 0 oC.  The organic layer was 

separated and washed with 2N HCl, 7.5% NaHCO3 and brine then dried (Na2SO4) and concentrated. 

Flash chromatography of the residue (ethyl acetate/hexane, 1:8 to 1:5) gave 3.29 as a white solid, 

which was recrystallized from hexane to give estrone triflate 3.29 as white crystals (13.3 g, 90%). 

On a 30 g scale, a yield of 96% was obtained.  1H NMR was identical to that reported in the 

literature.9 1H NMR (CDCl3, 300 MHz) δ 7.32 (d, J = 7.5 Hz, 1H, H-1), 7.01 (d, J = 8.7 Hz, 1H, H-2), 

6.98 (s, 1H, H-4), 2.93 (dd, J = 8.7 Hz, J = 4.2 Hz, 2H), 2.56-1.92 (m, 7H), 1.68-1.40 (m, 6H), 0.90 (s, 

3H, CH3, H-18); 19F NMR (CDCl3, 282 MHz) δ -72.7. 

3.30
MeO2C

O

 

3-Methoxycarbonylestra-1,3,5(10)-trien-17-one (3.30). Prepared according to according 
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to the procedure of Li et al. except less Pd catalyst was used.9 .To a mixture of estrone triflate 3.29 

(8.45 g, 27.1 mol), Pd(OAc)2 (300 mg, mmol, 5.0 mol%) and 1,3-bis(diphenyl- phosphino) propane 

(DPPP, 485 mg, 1.18 mmol, 4.4 mol%) in a 250 mL round bottom flask under argon was added DMF 

(35 mL), MeOH (20 mL) and Et3N (9.00 mL, 64.6 mmol, 2.4 equiv) successively.  After purging 

with CO, the reaction mixture was heated at 70 oC under CO (balloon) overnight (16 h) and then 

cooled to rt.  The mixture was diluted with brine and extracted with ether.  The combined extracts 

were washed with 2 M HCl, sat. NaHCO3, and brine then dried (Na2SO4) and concentrated.  Flash 

chromatography of the residue (ethyl acetate/hexane, 1:5 to 1:3) gave pure ester 3.30 as a white solid 

(5.55 g, 85%). 1H NMR was identical to that reported in the literature.9  1H NMR (CDCl3, 300 

MHz) δ 7.77 (d, J = 8.9 Hz, 1H, H-2), 7.76 (s, 1H, H-4), 7.33 (d, J = 8.0 Hz, 1H, H-1), 3.87 (s, 3H, 

CO2CH3), 3.00-2.85 (m, 2H), 2.55-1.95 (m, 7H), 1.70-1.40 (m, 6H), 0.90 (s, 3H, CH3, H-18). 

3.31
MeO2C

O
O

 

3-Methoxycarbonyl-17,17-ethylenedioxyestra-1,3,5(10)-triene (3.31). Prepared according 

to the procedure of Li et al.9 A mixture of ester 3.30 (6.00 g, 19.3 mmol), para-toluene sulfonic acid 

(PTSA, 300 mg, 2.30 mmol, 0.12 equiv) and ethylene glycol (20 mL) in benzene (250 mL) was heated 

to reflux for 6 h using a Dean-Stark trap.  The mixture was cooled to rt and the organic layer was 

separated and washed with H2O and brine then dried (Na2SO4) and concentrated.  After removal of 

solvent, ketal 3.31 was obtained as white solid (6.90 g, crude 100%). 1H NMR was identical to that 

reported in the literature.9 1H NMR (CDCl3, 300 MHz) δ 7.76 (d, J = 8.3 Hz, 1H, H-2), 7.73 (s, 1H, 
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H-4), 7.32 (d, J = 8.1 Hz, 1H, H-1), 4.00-3.80 (m, 7H, OCH2CH2O and CO2CH3 overlapping), 

3.00-2.85 (m, 2H), 2.42-2.20 (m, 2H)，2.05-1.27 (m, 11H), 0.87 (s, 3H, CH3, H-18). 

3.32

O

HO

 

3-Hydroxymethylestra-1,3,5(10)-trien-17-one (3.32).  Prepared according to the procedure 

of Li et al.9 with some modifications.  To a solution of crude 3.31 (6.90 g, about 19.3 mmol) in THF 

(150 mL) at 0 oC was added a suspension of LiAlH4 (2.00 g, 59.0 mmol, 3 equiv) in THF (150 mL) 

and stirred 24 h at rt.  The reaction mixture was quenched by the slow addition of ice.  6 M HCl 

(150 mL) was added and the mixture was stirred for 30 min at rt before extracting with Et2O.  The 

combined extracts were washed with H2O and brine then dried (Na2SO4) and concentrated to give 

alcohol 3.32 as a white solid (5.47 g, crude 100%).  1H NMR was identical to that reported in the 

literature.9 1H NMR (CDCl3, 300 MHz) δ 7.28 (d, J = 7.8 Hz, 1H, H-1), 7.18-7.07 (m, 2H, H-2 and 

H-4), 4.62 (s, 2H, ArCH2O), 3.00-2.85 (m, 2H), 2.55-1.90 (m, 7H), 1.70-1.40 (m, 6H), 0.89 (s, 3H, 

CH3, H-18). 

3.33

Br

O

 

3-Bromomethylestra-1,3,5(10)-trien-17-one (3.33).9 To a solution of crude 3.32 (5.47 g, 

19.3 mmol) and triphenylphosphine (7.57 g, 28.9 mmol, 1.5 equiv) in CH2Cl2 (200 mL) at 0 oC was 

added carbon tetrabromide (10.6 g, 31.8 mmol, 1.65 equiv).  After stirring at rt for 30 min, the 
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reaction was concentrated and the resulting residue was loaded onto a silica column and purified by 

flash chromatography (ethyl acetate/hexane/methylene chloride, 1:4:0.5 to 1:3:0.4) to give pure 3.33 

as a white solid (5.70 g, 84% starting from ester 3.30). 1H NMR (CDCl3, 300 MHz) δ 7.25 (d, J = 

8.4 Hz, 1H, H-1), 7.16 (d, J = 8.4 Hz, 1H, H-2), 7.12 (s, 1H, H-4), 4.44 (s, 2H, CH2Br), 2.89 (dd, J = 

8.7 Hz, J = 4.2 Hz, 2H), 2.54-1.93 (m, 7H), 1.65-1.35 (m, 6H), 0.89 (s, 3H, CH3, H-18); 13C NMR 

(CDCl3, 75 MHz) δ 220.7 (C=O), 140.3 (CAr), 137.0 (CAr), 135.2 (CAr), 129.6 (CHAr), 126.4 (CHAr), 

125.9 (CHAr), 50.5 (C-14), 47.9 (C-13), 44.4 (C-9), 38.0 (C-8), 35.8 (CH2), 33.7 (CH2), 35.7 (CH2), 

31.6 (CH2), 29.3 (CH2), 26.4 (CH2), 25.7 (CH2), 21.6 (CH2), 13.8 (CH3, C-18).  

3.34

S

O

O

 

Thioacetic acid [3-methylestra-1,3,5(10)-trien-17-one] ester (3.34).  Potassium thioacetate 

(3.80 g, 33.3 mmol, 1.4 equiv) was added to a solution of bromide 3.33 (8.30 g, 23.9 mmol) in DMF 

(250 mL) and the resulting mixture was stirred for 16 h. After removal of DMF, the residue was 

diluted with H2O (80 mL) and EtOAc (120 mL).  The layers were separated and the aqueous layer 

extracted with EtOAc. The combined extracts were washed with H2O and brine then dried (Na2SO4) 

and concentrated.  Flash chromatography of the residue (ethyl acetate/hexane, 1:4) gave pure 

thioacetate 3.34 as a white solid (8.00 g, 98%). Mp: 78-79 °C; 1H NMR (CDCl3, 300 MHz) δ 7.20 (d, 

J = 8.0 Hz, 1H, H-1), 7.05 (d, J = 8.1 Hz, 1H, H-2), 7.00 (s, 1H, H-4), 4.04 (2H, s, ArCH2S), 2.87 (dd, 

J = 8.4 Hz, J = 3.6 Hz, 2H), 2.53-1.92 (m, 7H and s, 3H, CH3C(=O), overlapping), 1.65-1.33 (m, 6H), 

0.89 (3H, s, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.9 (C=O), 195.3 (CH3(C=O)), 139.0 (CAr), 
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136.9 (CAr), 135.1 (CAr), 129.4 (CAr), 126.3 (CAr), 125.8 (CAr), 50.5 (C-14), 48.0 (C-13), 44.4 (C-7), 

38.1 (C-8), 35.9 (C-16), 33.1 (ArCH2S), 31.6 (CH2), 30.5 (CH3(C=O)), 29.4 (CH2), 26.5 (CH2), 25.8 

(CH2), 21.7 (CH2), 13.9 (CH3, C-18); LRMS (EI) m/z (%) 342 (M+, 20), 299 (9), 267 (100); HRMS 

(EI) calcd for C21H26O2S 342.1654; found 342.1657. 

3.36

S
H2N

O O

O

 

Estra-1,3,5(10)-trien-17-one-3-methanesulfonamide (3.36). Concentrated NH4OH (10 

mL) was added over 10 min to a solution of crude 3.35 (prepared from thioacetate 3.34, 600 mg, 1.64 

mmol) in THF (100 mL) at 0 °C and the reaction was stirred overnight.  H2O (80 mL) was added and 

the mixture was extracted with CH2Cl2.  The organic layer was washed with brine then dried 

(Na2SO4) and concentrated.  Flash chromatography of the residue (ethyl acetate/hexane, 2:3) gave 

pure sulfonamide 3.36 as a white solid (353 mg, 62%). Mp: 189-191 °C; 1H NMR (CDCl3, 300 MHz) 

δ 7.26 (d, J = 7.4 Hz, 1H, H-1), 7.16 (d, J = 6.4 Hz, 1H, H-2), 7.11 (s, 1H, H-4), 6.02 (s, 2H, NH2) 

4.22 (s, 2H, ArCH2SO2), 2.90-2.78 (m, 2H), 2.50-2.30 (m, 3H), 2.10-1.95 (m, 3H), 1.85-1.75 (m, 1H), 

1.70-1.35 (m, 6H), 0.87 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 218.6 (C=O), 139.8 (CAr), 

136.5 (CAr), 131.4 (CAr), 128.2 (CAr), 125.4 (CAr), 60.2 (ArCH2SO2), 50.3 (C-14), 47.6 (C-13), 44.4 

(C-7), 38.2 (C-8), 35.2 (C-16), 31.8 (CH2), 29.1 (CH2), 26.4 (CH2), 25.6 (CH2), 21.3 (CH2), 13.3 (CH3, 

C-18); LRMS (EI) m/z (%) 347 (M+, 11), 342 (<1), 284 (1), 267 (100), 105 (10); HRMS (EI) calcd for 

C19H25O3NS 347.1555; found 347.1556. 



 157

3.37
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N,N-Bis-(2,4-dimethoxybenzyl)-[estra-1,3,5(10)-trien-17-one]-3-methanesulfonamide 

(3.37).  H2O (18 mL) was added to a solution of 3.34 (1.20 g, 3.51 mmol) in CH2Cl2 (40 mL).  The 

mixture was cooled using an ice bath and Cl2 was bubbled through the solution slowly.  When TLC 

showed the reaction was complete, the solution was purged with N2 for 10 min, then cold CH2Cl2 (50 

mL) was added.  After separation of the organic layer, the aqueous layer was extracted with cold 

CH2Cl2.  The combined organic layers were dried (Na2SO4) and evaporated to give 1.30 g (crude 

which may contain sulfinyl chloride as a side product) of 3.35 as a white foam. 1H NMR (CDCl3) δ 

7.34 (d, J = 8.1 Hz, 1H, H-1), 7.22 (d or dd, J = 9.2 Hz, 1H, H-2), 7.18 (1H, s, H-4), 4.80 (2H, s, 

CH2S), 2.93 (dd, J = 8.7 Hz, J = 4.2 Hz, 2H), 2.54-1.93 (m, 7H), 1.70-1.60 (m, 6H), 0.89 (3H, s, CH3, 

H-18). A solution of bis(2,4-dimethoxybenzyl)amine (1.50 g, 4.73 mmol, 1.88 equiv) in THF (10 

mL) was added slowly to a solution of the crude sulfonyl chloride 3.35 (920 mg, 2.51 mmol) in THF 

(100 mL) at 0 °C.  The mixture was stirred 0.5 h at rt then concentrated.  The residue was purified 

by flash chromatography (ethyl acetate-hexane, 1:1) to give pure sulfonamide 3.37 as a white foam 

(751 mg, 46%).  1H NMR (CDCl3, 300 MHz) δ 7.20 (d, J = 8.7 Hz, 1H, ArH), 7.12 (d, J = 8.0 Hz, 

1H, ArH), 6.76 (s, 1H, ArH), 6.35 (2s overlapping, 2H, ArH), 4.16 (s, 4H, CH2N x 2), 3.96 (s, 2H, 

ArCH2SO2), 3.70 (s, 12H, OCH3), 2.80-2.68 (m, 2H), 2.45-1.80 (m, 7H), 1.60-1.25 (m, 6H), 0.79 (s, 

3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.5 (C=O), 160.6 (2C), 158.4 (2C), 139.9 (CAr), 



 158

136.6 (CAr), 131.4 (CAr), 131.2 (2C), 128.1 (CAr), 127.0 (CAr), 125.5 (CAr), 117.2 (2C), 104.3 (2C), 

98.3 (2C), 58.6 (ArCH2SO2), 55.4 (2C), 55.2 (2C), 50.4 (C-14), 47.9 (C-13), 45.3 (C-7), 38.0 (C-8), 

35.8 (C-16), 31.6 (CH2), 29.3 (CH2), 26.4 (CH2), 25.7 (CH2), 21.6 (CH2), 13.8 (CH3, C-18); LRMS 

(EI) m/z (%) 647 (M+, 16), 582 (1), 497 (4), 432 (10), 404 (4), 316 (39), 267 (28), 178 (39), 151 (100); 

HRMS (EI) calcd for C37H45O7NS 647.2917; found 647.2917. 

3.38

S
N

O O

OMe

MeO

OMe

MeO

O
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N,N-Bis (2,4-dimethoxybenzyl) 17,17-ethylenedioxyestra-1,3,5(10)-trien-3-methane- 

sulfonamide (3.38).  Ethylene glycol (3 mL) and PTSA (30 mg, 0.17 mmol, 0.2 equiv) was added to 

a solution of 3.37 (560 mg, 0.870 mmol) in benzene (60 mL). The mixture was heated under reflux for 

4 h using a Dean-Stark trap.  The reaction was allowed to cool and then extracted with Et2O. The 

extract was washed with H2O and brine then dried (Na2SO4) and concentrated.  Flash 

chromatography of the residue (ethyl acetate/hexane, 9:11) gave pure 3.38 as a white foam (472 mg, 

79%). 1H NMR (CDCl3, 300 MHz) δ 7.22 (d, J = 8.4 Hz, 2H, ArH), 7.19 (d, J = 8.4 Hz, 1H, ArH), 

6.93 (d, J = 7.8 Hz, 1H, ArH), 6.77 (1H, s, ArH), 6.47-6.41 (d and s overlapping, 4H, ArH), 4.20 (s, 

4H, CH2N), 4.01 (s, 2H, ArCH2SO2), 3.96-3.84 (m, 4H, OCH2CH2O), 3.78 (s, 6H, OCH3), 3.75 (s, 6H, 

OCH3), 2.80-2.70 (m, 2H), 2.35-2.17 (m, 2H), 2.05-1.25 (m, 11H), 0.86 (s, 3H, CH3, H-18); 13C NMR 

(CDCl3, 75 MHz) δ 160.6, 158.4, 140.6, 136.9, 131.3, 127.9, 126.6, 125.6, 119.4, 117.4, 104.2, 93.4, 

65.7 (OCH2CH2O), 65.3 (OCH2CH2O), 58.8 (ArCH2SO2), 55.5 (2C, OCH3), 55.2 (2C, OCH3), 49.5 
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46.2, 45.4, 44.1, 38.8 (C-8), 34.3 (CH2), 30.8 (CH2), 29.4 (CH2), 27.0 (CH2), 26.0 (CH2), 22.5 (CH2), 

14.4 (CH3, C-18); LRMS (EI) m/z (%) 691 (M+, 1), 476 (7), 316 (56), 151 (100), 99 (29); HRMS (EI) 

calcd for C39H49O8NS 691.3179; found 691.3176. 

3.41

S
N

OO

FF

 

N,N-diallyl-1,1-difluoro-1-phenylmethanesulfonamide (3.41). To a solution of 

diallylamine (1.50 mL, 12.2 mmol, 2.4 equiv) in THF (50 mL) at 0 oC was added a solution of 

α-toluenesulfonyl chloride (953 mg, 5 mmol) in THF (10 mL) over 10 min. After addition, it was 

stirred 4 h at 0 oC before quenching with H2O (100 mL). The reaction mixture was extracted with 

ethyl acetate and combined extracts were washed with H2O and brine then dried (Na2SO4) and 

concentrated.  Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:3 to 1:2) 

gave 1.207 g (96%) of sulfonamide 3.39 as colorless oil.  1H NMR (CDCl3, 300 MHz) δ 7.37-7.31 

(m, 5H, HAr), 5.66-5.52 (m, 2H, CH=CH2 x 2), 5.15 (d, J = 9.8 Hz, 2H, CH=CHcisH x 2), 5.13 (d, J = 

16.5 Hz, 2H, CH=CHHtrans x 2), 4.19 (s, 2H, PhCH2SO2), 3.61 (d, J = 6.4 Hz, 4H, NCH2CH= x 2); 

13C NMR (CDCl3, 75 MHz) δ 133.1 (2C, CH=CH2 x 2), 130.7 (CHAr, 2C), 129.2 (CAr), 128.7 (CHAr, 

2C), 128.7 (CHAr), 119.1 (2C, CH=CH2 x 2), 59.1 (PhCH2S), 49.6 (2C, NCH2 x 2). NaHMDS (1.0 

M in THF, 20 mL, 20 mmol, 2.5 equiv) was added over 1 h to a solution of 3.39 (2.01 g, 8.00 mmol) 

and NFSi (6.00 g, 19.2 mmol, 2.4 equiv) in THF (30 m) at –78 °C. The mixture was stirred for 2.5 h 

at –78 °C, after which it was quenched with sat. NH4Cl (10 mL) and extracted with EtOAc.  The 

combined extracts were washed with H2O and brine (30 mL) then dried (Na2SO4) and concentrated.  
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Purification of the residue by flash chromatography (ethyl acetate-hexane, 1:5) gave pure 3.41 as a 

colorless liquid (1.97 g, 86%).  1H NMR (CDCl3, 300 MHz) δ 7.66 (d, J = 7.4 Hz, 2H, H-3 and H-5); 

7.43-7.57 (m, 3H, H-2, H-4 and H-6), 5.70-5.86 (m, 2H, CH=CH2), 5.27 (d, J = 8.8 Hz, 2H, 

CH=CHcisH), 5.23 (d, J = 15.7 Hz, 2H, CH=CHHtrans), 3.93 (d, J = 6.5 Hz, 4H, NCH2); 13C NMR 

(CDCl3, 75 MHz) δ 132.5 (2C, CH=CH2), 132.0 (C-4), 129.1 (t, J = 22 Hz, C-1), 128.6 (2C, C-3 and 

C-5), 127.2 (t, J = 6.3 Hz, C-2 and C-6), 122.0 (t, J = 280 Hz, CF2), 119.9 (2C, CH=CH2), 50.0 (2C, 

NCH2); 19F NMR (CDCl3, 282 MHz) δ –101; LRMS (EI) m/z (%) 287 (M+, 1), 208 (7), 196 (7), 194 

(8), 127 (100); HRMS (EI) calcd for C13H15O2NF2S 287.0792; found 287.0800. 

3.42

S
NH2

OO

FF

 

Difluoro(phenyl)methanesulfonamide (3.42). Pd(PPh3)4 (184 mg, 0.156 mmol, 15.6 mol 

%) and 1,3-dimethylbarbituric acid (1.42 g, 10.0 mmol, 10 equiv) were added to a solution of 3.41 

(287 mg, 1.00 mmol) in dry CH3CN (20 mL).  The mixture was heated under vigorous reflux under 

an atmosphere of argon for 16 h, after which it was cooled and diluted with water (50 mL).  The 

mixture was extracted with ether and the combined extracts were washed with H2O then dried 

(Na2SO4) and concentrated.  Purification of the residue by flash chromatography (ethyl 

acetate/hexane, 1:3) gave pure difluorosulfonamide 3.42 as a white solid (194 mg, 93%). 1H and 19F 

NMR spectra were identical to that previously reported.23. 1H NMR (CDCl3, 300 MHz) δ 7.67 (d, J = 

7.4 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 5.34 (brs, 2H, NH2); 19F NMR (CDCl3, 

282 MHz) δ -102. 
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3.43
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N,N-Diallyl-[estra-1,3,5(10)-trien-17-one]-3-methanesulfonamide (3.43). A solution of 

3.35 (prepared from thioacetate 3.34, 1.50 g, 4.39 mmol) in THF (50 mL) was added over 20 min to a 

solution of diallylamine (2.0 mL, 17 mmol, 3.7 equiv) in THF (120 mL) at 0 °C.  The mixture was 

stirred 1.5 h at rt, after which it was quenched with H2O (100 mL) and extracted with EtOAc. The 

combined extracts were washed with H2O and brine then (Na2SO4) and concentrated.  Purification of 

the residue by flash chromatography (ethyl acetate/hexane, 1:3) gave pure sulfonamide 3.43 as a 

colorless oil (1.18 g, 63% from estrone thioaceate 3.34). 1H NMR (CDCl3, 300 MHz) δ 7.18 (d, J = 

7.9 Hz, 1H, H-1), 7.10-7.00 (d and s overlapping, 2H, H-2 and H-4), 5.64-5.47 (m, 2H, CH=CH2), 

5.12 (s, 2H, CH=CHH), 5.07 (s, 2H, CH=CHH), 4.05 (s, 2H, ArCH2SO2), 3.59 (d, J = 6.1 Hz, 4H, 

CH2N), 2.85-2.77 (m, 2H), 2.45-1.80 (m, 7H), 1.60-1.30 (m, 6H), 0.80 (s, 3H, CH3, H-18); 13C NMR 

(CDCl3, 75 MHz) δ 220.5 (C=O), 140.3 (CAr), 136.9 (CAr), 133.2 (2C, CH=CH2), 131.3 (CAr), 128.1 

(CAr), 126.6 (CAr), 119.1 (2C, CH=CH2), 125.7 (CAr), 58.6 (ArCH2SO2), 50.4 (C-14), 49.6 (2C, NCH2), 

47.9 (C-13), 44.3 (C-7), 38.0 (C-8), 35.9 (C-16), 31.6 (CH2), 29.3 (CH2), 26.4 (CH2), 25.7 (CH2), 21.6 

(CH2), 13.9 (CH3, C-18); LRMS (EI) m/z (%) 427 (M+, 1), 336 (6), 322 (3), 267 (100); HRMS (EI) 

calcd for C25H33O3NS 427.2181; found 427.2177. 
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3.44
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N,N-Diallyl 17,17-ethylenedioxyestra-1,3,5(10)-trien-3-methanesulfonamide (3.44). 

Ethylene glycol (5 mL) and PTSA (280 mg, 1.47 mmol, 0.59 equiv) were added to a solution of 3.43 

(1.18 mg, 2.50 mmol) in benzene (60 mL).  The mixture was heated under reflux for 4h using a 

Dean-Stark trap.  After cooling, the benzene layer was washed with H2O and brine then dried 

(Na2SO4) and concentrated.  The colorless oil residue was purified by flash chromatography (ethyl 

acetate/hexane, 1:3) to give pure 3.44 as a colorless oil (1.17 g, 90%). 1H NMR (CDCl3, 300 MHz) δ 

7.22 (d, J = 8.0 Hz, 1H, H-1), 7.07 (d, J = 8.0 Hz, 1H, H-2), 7.03 (s, 1H, H-3), 5.67-5.50 (m, 2H, 

CH=CH2), 5.13 (d, J = 11.7 Hz, 2H, CH=CHtransH), 5.12 (d, J = 15.0 Hz, 2H, CH=CHHcis), 4.08 (s, 

2H, ArCH2SO2), 3.92-3.77 (m, 4H, OCH2CH2O), 3.62 (d, J = 6.1 Hz, 4H, NCH2 x 2), 2.86 (pseudo s, 

2H), 2.30-2.15 (m, 2H), 2.00-1.20 (m, 11H), 0.82 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 

141.0 (CAr), 137.2 (CAr), 133.2 (2C, CH=CH2), 131.3 (CAr), 127.9 (CAr), 126.2 (CAr), 125.7 (CAr), 

119.3 (C-17), 119.1 (2C, CH=CH2), 65.3 (OCH2CH2O), 64.6 (OCH2CH2O), 58.7 (ArCH2SO2), 49.6, 

49.5 (2C, NCH2), 46.1, 44.0, 38.8 (C-8), 34.3 (CH2), 30.7 (CH2), 29.5 (CH2), 26.9 (CH2), 26.0 (CH2), 

22.4 (CH2), 14.4 (CH3, C-18); LRMS (EI) m/z (%) (M+, 13), 406 (6), 380 (2), 311 (100), 99 (88); 

HRMS (EI) calcd for C27H37O4NS 471.2443; found 471.2448. 
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N,N-Diallyl difluoro [17,17-ethylenedioxyestra-1,3,5(10)-trien]-3-methanesulfonamide 

(3.45). NaHMDS (1.0 M in THF, 4.8 mL, 4.8 mmol, 2.6 equiv) was added over 30 min to a solution 

of 3.44 (940 mg, 1.85 mmol) and NFSi (1.60 g, 5.08 mmol, 2.75 equiv) in THF (30 mL) at -78 oC.  

The mixture was stirred 2 h at -78 °C, after which it was quenched with sat. NH4Cl (8 mL), diluted 

with H2O (40 mL) and extracted with EtOAc. The combined extracts were washed with H2O and 

brine then dried (Na2SO4) and concentrated.  Purification of the residue by flash chromatography 

(ethyl acetate-hexane, 1:3) gave pure difluorosulfonamide 3.45 as white solid (844 mg, 83%).  Mp: 

109-110 °C; 1H NMR (CDCl3, 300 MHz) δ 7.42-7.32 (m, 3H, H-1, H-2 and H-4), 5.84-5.69 (m, 2H, 

CH=CH2), 5.23 (d, J = 9.8 Hz, 2H, CH=CHcisH), 5.21 (d, J = 17.6 Hz, 2H, CH=CHHtrans), 3.92 (d, J = 

6.2 Hz, 4H, CH2N), 3.89-3.77 (4H, m, OCH2CH2O), 2.86 (pseudo s, 2H), 2.35-2.20 (m, 2H), 

2.05-1.25 (m, 11H), 0.84 (3H, s, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 144.7 (C-6), 137.3 (C-5), 

132.7 (2C, CH=CH2), 127.6 (t, J = 6.3 Hz, C-4), 126.0 (t, J = 23 Hz, C-3), 125.7 (C-1), 124.3 (t, J = 

5.7 Hz, C-2), 122.3 (t, J = 281 Hz, CF2), 119.9 (C-17), 119.2 (2C, CH=CH2), 65.3 (OCH2CH2O), 64.6 

(OCH2CH2O), 49.9, 49.5, 46.1 (2C, NCH2), 44.3, 38.5 (C-8), 34.2 (CH2), 30.7 (CH2), 29.5 (CH2), 26.8 

(CH2), 25.9 (CH2), 22.4 (CH2), 14.4 (CH3, C-18); 19F NMR (CDCl3, 282 MHz) δ –101; LRMS (EI) 

m/z (%) 507 (M+, 4), 433 (6), 381 (5), 347 (100), 99 (38); HRMS (EI) calcd for C27H35O4NF2S 

507.2255; found 507.2249. 
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4,7-Dimethylcoumarin (3.46). This was prepared according to the procedure of Osborne.27 

To a stirred mixture of m-cresol (85 mL, 0.81 mol) and 75 % H2SO4 (120 mL) at 70 oC was added 

ethyl acetoacetate (104 g, 0.800 mol) dropwise over 1 h. Heating was continued for another hour 

before it was cooled down and poured onto ice water.  The resulting slurry precipitate was collected 

by suction filtration and washed with 1 M NaOH and H2O.  Crystallization from acetone gave 

coumarin 3.46 as colorless prisms (37.3 g, 27 %). 1H NMR was identical to that reported in the 

literature.27 1H NMR (DMSO-d6, 300 MHz) δ 7.53 (d, J = 8.5 Hz, 1H, H-5), 7.09 (d, J = 6.6 Hz, 1H, 

H-6), 7.08 (s, 1H, H-8), 6.22 (s, 1H, H-3), 2.34 (s, 3H, CH3, H-7′), 2.32 (d, J = 0.9 Hz, 3H, CH3, H-4′); 

13C NMR (DMSO-d6, 75 MHz) δ 160.3 (C-2), 153.5 (C-4), 153.4 (C-9), 143.1 (C-7), 125.7 (C-6), 

125.3 (C-5), 117.6 (C-10), 116.8 (C-8), 113.7 (C-3), 21.4 (C-7′, CH3), 18.4 (C-4′, CH3). 

3.47

O
Br

O

 

7-Bromomethyl-4-methylcoumarin (3.47). To a stirred suspension of 4,7-dimethyl 

coumarin 3.46 (8.70 g, 50.0 mmol) in 100 mL of dry benzene was N-bromosuccinimide (NBS, 9.35 g, 

52.5 mmol) and benzoyl peroxide (115 mg, 0.500 mmol).  The resulting mixture was heated to reflux 

overnight (16 h), cooled to room temperature, and filtered.  Concentration of the filtrate provided a 

pale yellow solid, which was washed thoroughly with water. Recrystallization from ethanol gave  

3.47 as white crystals (11.3 g, 89%).  Mp: 205-206 oC; 1H NMR (CDCl3, 300 MHz) δ 7.56 (d, J = 8.0 
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Hz, 1H, H-5), 7.32 (s, 1H, H-8), 7.31 (d, J = 8.3 Hz, 1H, H-6), 6.28 (s, 1H, H-3, vinyl), 4.50 (s, 2H, 

BrCH2), 2.41 (s, 3H, CH3). 13C NMR (DMSO-d6, 75 MHz) δ 160.1 (C-2), 153.3 (C-4), 153.2 (C-9), 

142.8 (C-7), 126.3 (C-6), 125.8 (C-5), 119.9 (C-10), 117.3 (C-8), 115.1 (C-3), 33.3 (ArCH2Br), 18.5 

(C-4′, CH3); LRMS (EI), m/z (relative intensity), 254 (M+2, 14), 252 (M+, 14), 173 (M-Br, 100), 145 

(19), 115 (11); HRMS (EI) calcd for C11H9BrO2 251.9786; found 251.9782. 

3.48

O
S OO
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Sodium 7-(4-methylcoumarin) methane sulfonate (3.48). To a suspension of bromide 

3.47 (6.075 g, 24 mmol) in 135 mL of ethanol was added a solution of Na2SO3 (3.600 g, 28.6 mmol) 

in H2O (135 mL).  The resulting mixture was refluxed for 5 h, cooled to room temperature and 

concentrated.  The residue was recrystallized from water to afford 3.48 as colorless crystals (5.05 g, 

76%). 1H NMR (DMSO-d6, 300 MHz) δ 7.56 (s, 1H, H-5), 7.24 (s, 2H, H-6 and H-8), 6.24 (s, 1H, H-3, 

vinyl), 3.89 (s, 2H, ArCH2SO3), 2.32 (s, 3H, CH3); 13C NMR (DMSO-d6, 75 MHz) δ 160.6 (C=O), 

153.8, 152.9, 140.2, 127.2, 125.0, 118.4, 118.2, 114.0, 57.4 (ArCH2SO3), 18.6 (CH3); HRMS (ESI) 

calcd for C11H9O5S 253.0176; found 253.0188.  

3.50

O O
S

N
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N,N-Bis(2,4-dimethoxybenzyl) 7-(4-methylcoumarin)methane sulfonamide(3.50). To a 
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suspension of 3.48 (3.00 g, 10.9 mmol) in dry benzene (120 mL) was added DMF (0.40 mL) and 

thionyl chloride (5 mL).  The resulting mixture was heated at 86 °C (oil bath temperature) for 5 h, 

cooled to room temperature and concentrated. The residue was washed with ice cold water (50 mL) 

and then transferred to a 250 mL of round bottom flask.  Acetone was added to remove the water and 

the flask was dried under high vacuum for 1 h to give crude 3.49 as a light yellow solid.   Dry THF 

(100 mL), DMAP (1.20 g, 10.0 mmol, 0.92 equiv), (DMB)2NH (3.0 g, 9.5 mmol, 0.87 equiv) were 

added.  The resulting mixture was heated to reflux overnight then cooled to room temperature and 

concentrated.  The residue was redissolved in 200 mL of CH2Cl2, washed with water, 10% citric acid, 

water again and brine then dried (Na2SO4) and concentrated. Flash chromatography of the residue 

(EtOAc/hexane, 1:1) gave 3.50 as a white solid (3.95 g, 66% over two steps from 3.48) which could 

be recrystallized from ethyl acetate/hexane to give colorless needles.  Mp: 107-108 oC; 1H NMR 

(CDCl3, 300 MHz) δ 7.47 (d, J = 8.1 Hz, 1H), 7.27-7.17 (m, 3H), 6.88 (s, 1H),  6.43-6.40 (m, 4H), 

6.23 (s, 1H, H-3, vinyl), 4.20 (s, 4H, ArCH2N x 2), 4.06 (s, 2H, ArCH2SO2), 3.77 (s, 6H, OCH3 x 2), 

3.77 (s, 6H, OCH3 x 2), 2.36 (s, 3H, CH3); 13C NMR (CDCl3, 75 MHz) δ 160.8, 160.7, 158.5, 153.2, 

152.3, 133.9, 131.5, 126.8, 124.7, 119.8, 119.2, 117.0, 115.3, 104.3, 98.4, 58.8 (ArCH2SO2), 55.5 (2C, 

OCH3 x 2), 55.3 (2C, OCH3 x 2), 45.9 (ArCH2N), 18.7 (CH3); LRMS (EI), m/z (relative intensity), 

553 (M+, 20), 338 (10), 316 (25), 178 (75), 151 (100), 121 (34); HRMS (EI) calcd for C29H31NO8S 

553.1770; found 553.1769. 
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3.51

O O
S

N

O O

F F
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MeO OMe

 

N,N-Bis(2,4-dimethoxybenzyl) 7-(4-methylcoumarin)difluoromethane sulfonamide 

(3.51). To a solution of 3.50 (553 mg, 1.00 mmol) and NFSi (788 mg, 2.50 mmol, 2.5 equiv) in 60 

mL of THF at -78 °C was added NaHMDS (1.0 M in THF, 2.5 mL, 2.5 mmol, 2.5 equiv) via a syringe 

pump over 50 min.  After stirring 2.75 h at that temperature, the reaction was quenched with 5 mL of 

saturated aq. NH4Cl at -78 °C.  EtOAc (60 mL) and H2O (20 mL) were added.  The layers were 

separated and the aqueous layer was extracted with EtOAc.  The combined organics were washed 

with H2O and brine then dried (Na2SO4) and concentrated. The residue was subjected to flash 

column chromatography (EtOAc/hexane, 1:2.5 to 1:1) which gave pure 3.51 as a white foam (311 mg, 

53%).  1H NMR (CDCl3, 300 MHz) δ 7.60 (d, J = 8.1 Hz, 1H, H-5), 7.52 (d, 1H, overlapping, H-6), 

7.50 (s, 1H, H-8), 7.10 (d, J = 8.4 Hz, 2H), 6.31 (dd, J = 8.4 Hz, J = 1.8 Hz, 2H), 6.28 (s, 1H, H-3, 

vinyl), 6.24 (s, 2H), 4.46 (s, 4H, ArCH2N), 3.70 (s, 6H, OCH3 x 2), 3.61 (s, 6H, OCH3 x 2), 2.35 (s, 

3H, CH3); 13C NMR (CDCl3, 75 MHz) δ 160.5, 159.8, 158.2, 152.9, 151.5, 132.9 (t, J = 22 Hz), 130.5, 

125.0, 122.8 (t, J = 5 Hz), 122.4, 121.4 (t, J = 282 Hz), 116.9, 116.4, 116.1 (t, J = 6 Hz), 104.0, 97.8, 

55.3 (2C, OCH3 x 2), 55.0(2C, OCH3 x 2), 46.9 (ArCH2N), 18.6 (CH3); 19F NMR (CDCl3, 282 MHz) 

δ –100.9; LRMS (EI), m/z (relative intensity), 589 (M+, 38), 316 (12), 209 (40), 178 (72), 151 (100), 

121 (30); HRMS (EI) calcd for C29H29F2NO8S 589.1582; found 589.1591.  
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3.52

O
S OO
NH2
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7-(4-Methylcoumarin) methane sulfonamide (3.52). To a solution of 3.50 (250 mg, 0.452 

mmol) in CH2Cl2 (10 mL) at rt. was added TFA (1 mL) via syringe slowly. After addition, it was 

stirred for 70 min at rt then concentrated (without using a water bath) and a pink residue was obtained.  

The residue was dried over high vacuum.  To this pink residue was added 15 mL of ether, stirred 5 

min, and then filtered.  The filter cake was transferred to an Erlenmeyer flask containing 75 mL of 

ethanol.  The mixture was heated to reflux for 2 min, then filtered.  The filtrate was concentrated to 

give 3.52 as a slightly yellow crystalline solid (93 mg, 81 %).  Mp: 250-252 oC; 1H NMR (DMSO-d6, 

300 MHz) δ 7.74 (d, J = 4.9 Hz, 1H, H-5), 7.35 (s, 2H, H-6 and H-8), 6.87 (s, 2H, NH2), 4.38 (s, 2H, 

ArCH2SO2), 2.40 (s, 3H, C-4′); 13C NMR (DMSO-d6, 75 MHz) δ 160.1 (C-2), 153.5 (C-4), 153.1 

(C-9), 135.7 (C-7), 127.4 (C-6), 125.7 (C-5), 119.6 (C-10), 118.9 (C-8), 114.8 (C-3), 60 (ArCH2SO2), 

18.5 (C-4′, CH3); LRMS (EI), m/z (relative intensity), 253 (M+, 20), 173 (100), 145 (14), 115 (10), 91 

(4); HRMS (EI) calcd for C11H11NO4S 253.0409; found 253.0406.  

3.53

O

BHO

OH

 

Estra-1,3,5(10)-trien-17-one-3-boronic acid (3.53). To a mixture of estrone boronate 3.57 

(1.14 g, 3.00 mmol) in acetone (450 mL) was added a solution of ammonium acetate (924 mg, 12.0 

mmol, 4 equiv) and sodium periodate (2.57 g, 12.0 mmol, 4 equiv) in H2O (360 mL).  The reaction 



 169

mixture was stirred for 10 days at room temperature.  After removing the acetone by rotary 

evaporation the remaining aqueous solution was extracted with ethyl acetate.  The combined extracts 

were dried (Na2SO4) and concentrated.  Purification of the residue by flash chromatography 

(acetone/hexane, 1:3) gave boronic acid 3.53 as a white solid (839 mg, 84%).  Mp: 181-182 oC ; 1H 

NMR (DMSO-d6, 300 MHz) δ 7.77 (s, 2H, B(OH)2), 7.48 (d, J = 7.5 Hz, 1H, H-2), 7.45 (s, 1H, H-4), 

7.18 (d, J = 7.5 Hz, 1H, H-1), 2.80 (br, s, 2H), 2.40-1.85 (m, 6H), 1.74 (br, s, 1H), 1.65-1.20 (m, 6H), 

0.78 (s, 3H, CH3, H-18); 13C NMR (DMSO-d6, 75 MHz) δ 220.0 (C=O), 141.9 (CAr), 135.4 (CAr), 

135.3 (CAr), 131.2 (CAr), 124.6 (CAr), 50.2 (C-14), 47.7 (C-13), 44.5 (C-7), 38.1 (C-8), 35.8 (C-16), 

31.8 (CH2), 29.3 (CH2), 26.5 (CH2), 25.7 (CH2), 21.6 (CH2), 13.9 (CH3, C-18); LRMS (ESI) m/z (%) 

299 (M+1, 100), 298 (M+, 25), 281 (27), 231 (82); HRMS (ESI) calcd for C18H24BO3 298.1855; found 

298.1862. 

3.54

B

HO

OH

HO

 

17α-Benzyl-17β-hydroxyestra-1,3,5(10)-trien-3-boronic acid (3.54). To a solution of 3.61 

(47 mg, 0.1 mmol) and phenylboronic acid (13.0 mg, 0.105 mmmol, 1.05 equiv) in THF (8 

mL)/MeOH (3 mL) was added 2 M HCl (2 mL).  The resulting mixture was stirred overnight and 

then quenched with water. The mixture was extracted with ethyl acetate and the combined extracts 

were washed with water and brine then dried (Na2SO4) and concentrated.  Purification of the residue 

by flash chromatography (acetone/hexane, 1:4 to 1:2) gave 3.54 as a white solid (26 mg, 67%). Mp: 



 170

216-218 oC ; 1H NMR (DMSO-d6 with 1 drop of D2O, 300 MHz) δ 7.46 (d, J = 7.4 Hz, 1H, H-2), 7.41 

(s, 1H, H-1), 7.20-7.05 (m, 6H), 3.10 (s, 2H, B(OH)2), 2.80-2.75 (m, 3H), 2.54 (d, J = 13.2 Hz, 1H), 

2.35-2.25 (m, 1H), 2.25-2.15 (m, 1H), 1.85-1.75 (m, 1H), 1.70-1.20 (m, 10H), 0.78 (s, 3H, CH3, H-18); 

13C NMR (DMSO-d6 with 1 drop of D2O, 75 MHz) δ 142.6 (CAr), 139.9 (CAr), 135.5 (CAr), 135.3 

(CAr), 131.8 (CAr), 131.6 (CAr), 131.0 (br, C-3), 127.8 (CAr), 126.0 (CAr), 124.7 (CAr), 82.6 (C-17), 49.5, 

47.2, 44.4 (C-7), 42.4 (PhCH2), 39.7 (C-8), 32.2 (CH2), 31.3 (CH2), 29.5 (CH2), 27.6 (CH2), 26.2 

(CH2), 23.3 (CH3, C-18); LRMS (ESI, +LiOAc) m/z (%) 787 (2M+Li, 100), 397 (M+Li, 47); HRMS 

(ESI) calcd for C25H31LiBO3 396.2563; found 396.2549. 

3.55

O OBHO

OH

 

6-Oxo-8,9,10,11-tetrahydro-7H-cylohepta-[c][1]benzopyran-3-boronic acid (3.55) To a 

mixture of coumarin boronate 3.64 (342 mg, 1.00 mmol) in acetone (150 mL) was added a solution of 

ammonium acetate (308 mg, 4.00 mmol, 4 equiv) and sodium periodate (856 mg, 4.00 mmol, 4 equiv) 

in H2O (120 mL).  The reaction mixture was stirred overnight at room temperature.  After removal 

of acetone by rotary evaporation, the residue was extracted with ethyl acetate and then concentrated. 

Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:1 to 100% ethyl acetate) 

gave coumarin boronic acid 3.55 as a white solid (172 mg, 67%). Mp: >260 oC (dec.);  1H NMR 

(DMSO-d6 with 1 drop of D2O, 75 MHz) δ 8.32 (s, 2H, B(OH)2), 7.82 (d, J = 7.7 Hz, 1H), 7.70-7.60 

(m, 2H), 3.00 (m, 2H), 2.78 (m, 2H), 1.80 (m, 2H), 1.56 (m, 2H), 1.47 (m, 4H); 13C NMR (DMSO-d6 

with 1 drop of D2O, 75 MHz) δ 161.4, 153.9, 151.8, 130.0, 128.8, 123.9, 121.9, 120.9, 31.7, 27.5, 
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26.6, 25.5, 25.0; 11B NMR (DMSO-d6 with 1 drop of D2O, 96 MHz) δ 30.3; LRMS (ESI) m/z (%) 259 

(M+1, 100), 258 (M+, 29); HRMS (ESI) calcd for C14H15BO4 258.1178; found 258.1177. 

3.56

O

BHO

OH O

 

2-tert-Butyl-4H-1-benzopyran-4-one-6-boronic acid (3.56). To a mixture of chromenone 

boronate 3.67 (328 mg, 1.00 mmol) in acetone (150 mL) was added a solution of ammonium acetate 

(308 mg, 4.00 mmol) and sodium periodate (856 mg, 4.00 mmol) in H2O (120 mL).  The reaction 

mixture was stirred overnight at room temperature. After removal of acetone by rotary evaporation, 

the resulting aqueous solution was extracted with ethyl acetate and then concentrated.  Purification of 

the residue by flash chromatography (ethyl acetate/hexane, 1:1 to 100% ethyl acetate) gave 

chromenone boronic acid 3.56 as a white solid (189 mg, 77%).  Mp: 176-178 oC; 1H NMR 

(DMSO-d6 with 1 drop of D2O, 300 MHz) δ 8.47 (s, 1H), 8.28 (s, 2H, partially exchanged with D2O, 

B(OH)2), 8.09 (d, J = 8.2 Hz, 1H), 7.53 (d, J = 8.3 Hz, 1H), 6.07 (s, 1H), 1.27 (s, 9H); 13C NMR 

(DMSO-d6 with 1 drop of D2O, 75 MHz) δ 178.0, 176.0, 157.6, 140.0, 131.8, 122.3, 117.4, 106.7, 36.5, 

27.8; 11B NMR (DMSO-d6 with 1 drop of D2O, 96 MHz) δ 28.6; LRMS (ESI) m/z (%) 248 (M+1, 12), 

247 (M+, 100); HRMS (ESI) calcd for C13H15BO4 246.1178; found 246.1185. 

3.57

O

B
O

O

 

3-Pinacolatoboroestra-1,3,5(10)-trien-17-one (3.57). To a mixture of estrone triflate 3.29 



 172

(404 mg, 1.00 mmol) and Pd(dppf)Cl2-CH2Cl2 (44 mg, 0.050 mmol, 5 mol %) in dioxane (8 mL) 

under argon was added Et3N (0.84 mL, 6.0 mmol, 6 equiv) and 4,4,5,5-tetramethyl-1,3,2-dioxa- 

borolane (0.44 mL, 3.0 mmol, 3 equiv).  The reaction mixture was heated at 95-100 oC for 7 h.  The 

reaction was cooled to room temperature and concentrated. Purification of the residue by flash 

chromatography (ethyl acetate/hexane, 1:3) gave 3.57 as a white solid (356 mg, 94%).  Mp: 193-194 

oC; 1H NMR (CDCl3, 300 MHz) δ 7.58 (d, J = 8.0 Hz, 1H, H-2), 7.55 (s, 1H, H-4), 7.29 (d, J = 7.8 Hz, 

1H, H-1), 2.95-2.88 (m, 2H), 2.65-2.40 (m, 2H), 2.40-2.25 (m, 1H), 2.20-1.90 (m, 4H), 1.70-1.35 (m, 

6H), 1.32 (s, 12 H), 0.89 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.6 (C=O), 143.1, 135.8, 

135.6, 132.2, 124.7, 83.6 (OC(CH3)2), 50.6 (C-14), 47.9 (C-13), 44.7 (C-7), 38.0 (C-8), 35.8 (C-16), 

31.6 (CH2), 29.1 (CH2), 26.5 (CH2), 25.6 (CH2), 24.8(OC(CH3)2), 21.6 (CH2), 13.8 (CH3, C-18); 

LRMS (EI) m/z (%) 381 (M+1, 25), 380 (M+, 100), 379 (24), 323 (13), 294 (30), 281 (24); HRMS (EI) 

calcd for C24H33BO3 380.2523; found 380.2531.  

3.58
HO

HO

 

17α-benzyl-17β-hydroxyestra-1,3,5(10)-triene (3.58). This is prepared according to the 

procedure of Ciobanu et al. with slight modifications.32 Magnesium (22.0 g, 0.917 mol, 3.2 equiv) 

was activated by heating under argon and then suspended in Et2O (250 mL).  To this mixture was 

added benzyl bromide (34.0 mL, 48.9 g, 0.286 mol, 1 equiv) slowly over 3 h (syringe pump). The 

BnMgBr formed was added slowly to a solution of estrone (8.00 g, 29.6 mmol) in THF (800 mL) over 

50 min. The resulting mixture was stirred overnight and quenched with sat. NH4Cl.  After removal of 
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ether and THF in vacuo, ethyl acetate (300 mL) was added and the mixture was filtered to remove 

insoluble material.  The filtrate was extracted with EtOAc and the combined extracts were dried 

(Na2SO4) and concentrated.  The residue was redissolved in MeOH (500 mL).  To this solution at 0 

oC was added NaBH4 (2.24 g) and the reaction was stirred 1 h at 0 oC.  The reaction was concentrated 

and the residue diluted with water and extracted with ethyl acetate.  The combined extracts were 

dried (Na2SO4) and concentrated.  The residue was subjected to flash chromatography (ethyl 

acetate/hexane, 1:4) and the resulting material recrystallized from ethyl acetate/hexane to give diol 

3.58 as colorless crystals (7.14 g, 67%). 1H NMR and 13C NMR are identical to that reported in 

literature.32 1H NMR (acetone-d6, 300 MHz) δ 7.90 (s, 1H, ArOH), 7.33 (d, J = 7.4 Hz, 2H), 7.23 (t, J 

= 7.2 Hz, 2H), 7.18-7.13 (m, 1H), 7.08 (d, J = 8.4 Hz, 1H, H-1), 6.59 (dd, J = 8.3 Hz, J = 2.5 Hz, 1H, 

H-2), 6.52 (d, J = 2.3 Hz, 1H, H-4), 3.16 (s, 1H, OH), 2.90 (d, J = 13.3 Hz, 1H, PhCHH), 2.77-2.66 (m, 

3H (1H from PhCHH)), 2.40-2.28 (m, 1H), 2.25-2.10 (m, 1H), 1.90-1.30 (m, 11H), 0.95 (s, 3H, CH3, 

H-18). 

3.59
TfO

O CF3

O

 

3-O-[(Trifluromethylsulfonyl)oxy]- 17α-benzyl-17β-trifluroacetyloxyestra-1,3,5(10)- 

triene (3.59). To a solution of estradiol 3.58 (2.89 g, 8.00 mmol) and DMAP (2.44 g, 20.0 mmol, 2.5 

equiv) in dry CH2Cl2 (120 mL) at 0 oC was added trifluroacetic anhydride (TFAA, 2.70 mL, 19.4 

mmol, 2.4 equiv) over 30 min.  The mixture was stirred for 7 h at room temperature before 

quenching with water.  The layers were separated and the aqueous phase was extracted with 
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methylene chloride and the combined organics were dried over Na2SO4.  After removal of solvent, 

the residue was redissloved in ethyl acetate (150 mL) and methanol (30 mL).  1 M HCl (40 mL) was 

added and the resulting mixture was stirred 1 h at room temperature. Reaction was diluted with water 

and extracted with ethyl acetate.  The combined extracts were dried (Na2SO4) and concentrated. 

Flash chromatography of the residue (ethyl acetate/hexane, 1:8 to 1:6) afforded crude 17-trifluoro- 

acetoxyestrone as a white foam. This material was redissolved in methylene chloride (120 mL) and 

DMAP (1.22 g, 1.0 mmol, 1.25 equiv) was added.  The resulting mixture was cooled to 0 oC and 

triflic anhydride (1.5 mL, 8.9 mmol, 1.1 equiv) was added over 10 min.  After stirring for 1 h at 0 oC, 

the reaction was quenched with ice-cold water and extracted with methylene chloride.  The combined 

extracts were washed with water and brine then dried (Na2SO4) and concentrated.  Purification of the 

residue by flash chromatography (ethyl acetate/hexane, 1:8) gave compound 3.59 as a white solid 

(3.13 g, 67%).  Mp: 112-113 oC ;  1H NMR (CDCl3, 300 MHz) δ 7.35-7.24 (m, 4H), 7.11 (d, J = 7.1 

Hz, 2H), 7.02 (d, J = 8.8 Hz, 1H, H-2), 6.97 (s, 1H, H-4), 3.90 (d, J = 14.6 Hz, 1H, PhCHH), 

2.96-2.85 (m, 2H), 2.77 (d, J = 14.6 Hz, 1H, PhCHH), 2.40-2.20 (m, 4H), 2.00-1.70 (m, 4H), 

1.70-1.35 (m, 5H), 0.92 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 156.8 (q, J = 38 Hz, 

CF3C=O), 147.6 (C-3), 140.3 (CAr), 139.2 (CAr), 135.8 (CAr), 130.4 (CAr), 128.4 (CAr), 127.2 (CAr), 

126.9 (CAr), 121.2 (CAr), 118.8 (q, J = 333 Hz, CF3), 118.2 (CAr), 114.6 (q, J = 285 Hz, CF3), 99.9 

(C-17), 50.5 (C-14), 48.2 (C-13), 43.6 (C-9), 38.9, 37.8, 33.0 (CH2), 32.7 (CH2), 29.4 (CH2), 26.9 

(CH2), 26.1 (CH2), 23.0 (CH2), 14.2 (CH3, C-18); 19F NMR (CDCl3, 282 MHz) δ -72.7, -75.1; LRMS 

(CI) m/z (%) 608 (M+18, 25), 494 (40), 477 (87), 476 (100), 461 (29), 385 (70), 329 (41); HRMS (ESI) 

calcd for [C28H28F6O5S+NH4]+  608.1905; found 608.1927. 
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3.60

B

O CF3

O

O

O

 

3-O-Pinacolatoboro-17α-benzyl-17β-trifluroacetyloxyestra-1,3,5(10)-triene (3.60).  To 

a mixture of triflate 3.59 (1.60 g, 2.71 mmol) and Pd(dppf)Cl2-CH2Cl2 (110 mg, 0.135 mol 5 mmol %) 

in dioxane (15 mL) under argon was added Et3N (3.4 mL, 24 mmol, 9 equiv) and 4,4,5,5-tetramethyl- 

1,3,2-dioxaborolane (1.7 mL, 11.7 mmol, 4.3 equiv).  The reaction mixture was heated at 92-96 oC 

for 3 h, cooled to room temperature, diluted with water and extracted with ethyl acetate.  The 

combined extracts were dried (Na2SO4) and concentrated.  Purification of the residue by flash 

chromatography (ethyl acetate/hexane, 1:10) gave compound 3.60 as a white solid (952 mg, 62%). 

Mp: 143-144 oC ; 1H NMR (CDCl3, 300 MHz) δ 7.59 (d, J = 7.8 Hz, 1H, H-2), 7.54 (s, 1H, H-1), 

7.36-7.27 (m, 4H), 7.11 (d, J = 6.5 Hz, 2H), 3.87 (d, J = 14.7 Hz, 1H, PhCHH), 2.92-2.88 (m, 2H), 

2.78 (d, J = 14.7 Hz, 1H, PhCHH), 2.55-2.20 (m, 4H), 2.00-1.75 (m, 4H), 1.70-1.40 (m, 5H), 1.32 (s, 

12H, C(CH3)2), 0.90 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 156.7 (q, J = 41 Hz, C=O), 

143.2, 136.0, 135.7, 135.7, 132.3, 130.5, 128.4, 126.9, 126.2 (br, C-3), 124.8, 114.8 (q, J = 286 Hz, 

CF3), 100.1 (C-17), 83.6 (OC(CH3)2), 50.7, 48.3, 44.2, 39.2, 38.0, 33.2, 32.8, 29.3, 27.4, 26.1, 24.9, 

23.0, 14.3 (CH3, C-18); 19F NMR (CDCl3, 282 MHz) δ -75.1; 11B NMR (CDCl3, 96 MHz) δ 33.2; 

LRMS (EI) m/z (%) 568 (M+, 8), 478 (9), 454 (100), 439 (28), 363 (62), 267 (32); HRMS (EI) calcd 

for C33H40BF3O4 568.2972; found 568.2972. 
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3.61

B

HO

O

O

 

3-O-Pinacolatoboro-17α-benzyl-17β-hydroxyestra-1,3,5(10)-triene (3.61). To a solution 

of 3.60 (480 mg, 0.845 mmol) in THF (240 mL) at room temperature was added 0.8 M NaOH (24 mL) 

slowly over 10 min.  After stirring for 10 min, water (60 mL) was added and the mixture was 

extracted with Et2O.  The combined extracts were washed with water and brine then dried (Na2SO4) 

and concentrated.  Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:6 to 

1:5) gave 3.61 as a white solid (335 mg, 84%).  Mp: 211-213 oC ; 1H NMR (CDCl3, 300 MHz) δ 7.63 

(d, J = 7.7 Hz, 1H, H-2), 7.59 (s, 1H, H-1), 7.37-7.24 (m, 6H), 3.00-2.90 (m, 3H), 2.95 (d, J = 12.8 Hz, 

1H), 2.71-2.66 (m, 1H), 2.30-2.20 (m, 1H), 2.05-1.91 (m, 2H), 1.80-1.50 (m, 7H), 1.50-1.25 (m, 2H, 

overlapping), 1.36 (s, 12H, overlapping, C(CH3)2), 0.97 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 

MHz) δ 143.8, 138.5, 136.0, 135.7, 132.2, 131.1, 128.4, 126.3, 126.0 (br,C-3), 124.8, 83.6, 83.0, 49.8, 

46.9, 44.7, 42.5, 39.4, 33.7, 31.5, 29.4, 27.6, 26.1, 25.0, 23.4, 14.6 (CH3, C-18); 11B NMR (CDCl3, 96 

MHz) δ 33.7; LRMS (EI) m/z (%) 472 (M+, 8), 454 (7), 381 (96), 380 (100), 363 (79), 323 (18), 237 

(22); HRMS (EI) calcd for C31H41BO3 472.3149; found 472.3151.  

3.62
O OTfO

 

3-[(Trifluromethylsufonyl)oxy]-6-oxo-8,9,10,11-tetrahydro-7H-cylohepta-[c][1]benzopyr

an (3.62). To a solution of coumarin 2.35 (3.00 g, 13.0 mmol) and DMAP, (400 mg, 3.28 mmol, 
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0.25 equiv) in methylene chloride (100 mL) at 0 oC was added 2,6-lutidine (3.05 mL, 26.0 mmol, 2 

equiv) then triflic anhydride (2.65 mL, 15.6 mmol, 1.2 equiv) over 10 min.  The reaction was stirred 

for 1 h at 0 oC then quenched with ice and 0.5 M HCl (30 mL).  The layers were separated and the 

aqueous phase was extracted with methylene chloride.  The combined organics were washed with 0.5 

M HCl and 5% NaHCO3 then dried (Na2SO4) and concentrated.  Purification of the residue by flash 

chromatography (ethyl acetate/hexane, 1:4) gave triflate 3.62 as a white solid (4.56 g, 97%).  Mp: 

86-87 oC; 1H NMR (CDCl3, 300 MHz) δ 7.73 (d, J = 8.9 Hz, 1H), 7.21 (d, J = 2.0 Hz,1H), 7.18 (dd, J 

= 8.9 Hz, 2.0 Hz, 1H), 2.95-2.87 (m, 4H), 1.94-1.85 (m, 2H), 1.70-1.55 (m, 4H); 13C NMR (CDCl3, 75 

MHz) δ 160.9, 152.9, 152.4, 149.8, 129.8, 125.8, 119.9, 118.6 (q, J = 315 Hz, CF3), 117.0, 110.1, 31.7, 

28.1, 26.8, 25.3, 24.7; 19F NMR (CDCl3, 282 MHz) δ -72.3; LRMS (EI) m/z (%) 362 (M+, 60), 347 (7), 

230 (15), 229 (100), 201 (18); HRMS (EI) calcd for C15H13F3O5S 362.0436; found 362.0438.  

3.63

O OB
O

O

 

3-Pinacolatoboro-6-oxo-8,9,10,11-tetrahydro-7H-cylohepta-[c][1]benzopyran (3.63). To 

a mixture of coumarin triflate 3.62 (1.81 g, 5.00 mmol), bis(pinacolato)diboron (1.44 g, 5.65 mmol, 

1.1 equiv), Pd(dppf)Cl2-CH2Cl2 (123 mg, 0.150 mmol, 3 mol %) and dry KOAc (735 mg, 7.50 mmol, 

1.5 equiv) under argon was added dioxane (30 mL).  The resulting mixture was heated at 85-90 oC 

overnight. After cooling to room temperature, the reaction mixture was loaded directly onto a silica 

column and purified by flash chromatography (hexane then ethyl acetate/hexane, 1:4) to give boronate 

3.63 as a white solid (1.41 g, 83 %). Mp: 119-120 oC;  1H NMR (CDCl3, 300 MHz) δ 7.63 (s, 1H), 



 178

7.59 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 2.90-2.82 (m, 4H), 1.83 (quint, J = 5.5 Hz, 2H), 

1.62-1.49 (m, 4H); 13C NMR (CDCl3, 75 MHz) δ 161.8, 153.1, 151.9, 129.8, 129.7, 123.0, 122.8, 

121.8, 84.2, 31.9, 27.8, 26.8, 25.5, 24.9, 24.8; 11B NMR (CDCl3, 96 MHz) δ 30.4; LRMS (EI) m/z (%) 

340 (M+, 100), 339 (30), 325 (19), 312 (17), 254 (10), 241 (18); HRMS (EI) calcd for C20H25BO4 

340.1846; found 340.1838. 

3.66

O

TfO
O

 

2-tert-Butyl-6-[(trifluromethylsulfonyl)oxy]-4H-1-benzopyran-4-one or 2-tert-butyl-4- 

oxo-4H-chromen-6-yl trifluoromethanesulfonate (3.66). To a solution of chromenone 3.6536 (2.16 

g, 10.0 mmol) and DMAP (305 mg, 2.50 mmol, 0.25 equiv) in methylene chloride (80 mL) at 0 oC 

was added 2,6-lutidine (2.33 mL, 20.0 mmol, 2 equiv) then triflic anhydride (2.02 mL, 12.0 mmol, 1.2 

equiv) over 10 min.  After addition, the reaction mixture was stirred 1.5 h at 0 oC then quenched with 

ice and 0.5 M HCl (30 mL). The layers were separated and the aqueous phase was extracted with 

methylene chloride.  The combined organics were washed with 0.5 M HCl and 5% NaHCO3 then 

dried (Na2SO4) and concentrated.  Purification of the residue by flash chromatography (ethyl 

acetate/hexane, 1:2 to 1:1) gave chromenone triflate 3.66 as a white solid (1.76 g, 50 %).  Mp: 88-89 

oC;  1H NMR (CDCl3, 300 MHz) δ 7.98 (s, 1H), 7.52 (t, J = 9.3 Hz, 2H), 6.24 (s, 1H), 1.29 (s, 9H); 

13C NMR (CDCl3, 75 MHz) δ 177.2, 176.8, 155.5, 145.8, 126.7, 124.5, 120.5, 118.6 (q, J = 315 Hz, 

CF3), 117.9, 106.5, 36.5, 27.7; 19F NMR (CDCl3, 282 MHz) δ -72.5; MS (EI) m/z (%) 350 (M+, 65), 

217 (100); HRMS (EI) calcd for C14H13F3O5S 350.0436; found 350.0442.  
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3.67

O

O
B

O

O

 

2-tert-Butyl-6-pinacolatoboro-4H-1-benzopyran-4-one (3.67). To a mixture of 

chromenone triflate 3.66 (1.04 g, 3.00 mmol), bis(pinacolato)diboron (861 g, 3.39 mmol, 1.1 equiv), 

Pd(dppf)Cl2-CH2Cl2 (74 mg, 0.090 mmol, 3 mol %) and dry potassium acetate (441 mg, 4.50 mmol, 

1.5 equiv) under argon was added dioxane (18 mL).  The resulting mixture was heated at 85-90 oC 

for 16 h.  After cooling to room temperature the reaction mixture was loaded onto a silica column 

and purified by flash chromatography (100% hexane, then ethyl acetate/hexane, 1:4) to give 

chromenone boronate 3.67 as a light yellow solid (725 mg, 75 %).  Mp: 135-136 oC; 1H NMR 

(CDCl3, 300 MHz) δ 8.61 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 6.22 (s, 1H), 1.29 

(s, 21H); 13C NMR (CDCl3, 75 MHz) δ 178.7, 175.8, 158.3, 139.1, 133.2, 122.6, 117.0, 107.0, 84.0, 

36.4, 27.8, 24.8; 11B NMR (CDCl3, 96 MHz) δ 30.4; MS (EI) m/z (%) 328 (M, 100), 327 (95), 313 

(75), 285(48), 271 (39), 229 (75); HRMS (EI) calcd for C19H25BO4 328.1846; found 328.1852. 

3.68

OMOM

MOMO
Br

 

4-Bromo-3,17β-bis(methoxymethoxy)estra-1,3,5(10)-triene (3.68).  This was prepared 

according to the procedure of Lovely et al.37 To a solution of 4-bromoestradiol 2.22 (3.40 g, 9.7 mmol) 

in dry THF (100 mL) was added iPr2NEt (21.3 mL, 89.3 mmol, 9.2 equiv).  The resulting mixture 

was cooled to 0 oC, before MOMCl (5.7 mL, 75 mmol, 7.7 equiv) was added dropwise over 10 min.  
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After addition, the reaction was warmed up to rt and stirred for 10 min at rt, then refluxed overnight 

(15 h, oil bath temp 86 oC).  After cooling to rt and quenching with sat. NH4Cl (50 mL), it was 

extracted with ethyl acetate. The combined extracts were washed with H2O and brine then dried 

(Na2SO4) and concentrated.  Purification of the residue by flash chromatography (ethyl 

acetate/hexane 1:8) gave 3.68 as a white solid (3.85 g, 91%). 1H NMR and 13C NMR are identical to 

those reported in the literature.37 1H NMR (CDCl3, 300 MHz) δ  7.19 (d, J = 8.7 Hz, 1H, H-1), 6.94 

(d, J = 8.7 Hz, H-2), 5.20 (s, 2H, ArOCH2O), 4.65 (d, J = 6.6 Hz, 1H, C17OCHHO), 4.62 (d, J = 6.6 

Hz, 1H, C17OCHHO), 3.59 (t, J = 8.5 Hz, 1H, H-17), 3.50 (s, 3H, OCH3), 3.35 (s, 3H, OCH3), 2.97 

(dd, J = 18.3 Hz, J = 6.0 Hz, 1H), 3.25-3.10 (m, 1H), 2.30-1.90 (m, 5H), 1.75-1.10 (m, 12H; m, 6H 

and s, 6H, CH3 x 2 at 1.56 ppm), 0.78 (s, 3H, CH3, H-18). 

3.69

OMOM

MOMO
B

HO OH

 

4-Bromo-3,17β-bis(methoxymethoxy)estra-1,3,5(10)-trien-4-boronic acid (3.69). To a 

solution of 3.68 (219 mg, 0.500 mmol) in dry THF (10 mL) at -78 oC was added nBuLi (1.6 M in 

hexane, 0.90 mL, 1.4 mmol, 2.9 equiv) dropwise over 3 min. After stirring 1 h at -78 oC, the cold bath 

was removed and reaction allowed to warm to rt gradually and stirred for 5 min at rt. The mixture 

was cooled back to -78 oC and trimethyl borate (0.60 mL, 5.4 mmol, 11 equiv) was added.  The 

resulting mixture was stirred for 5 min at -78 oC and warmed up to rt and stirred 5 min at that 

temperature before cooling back to -78 oC.  1 M HCl (2 mL) was added slowly and the mixture 
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allowed to warm up to rt.  The mixture was diluted with H2O and extracted with ethyl acetate.  The 

combined extracts were washed with H2O and brine then dried (Na2SO4) and concentrated.  

Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:3 to 1:1) gave boronic 

acid 3.69 as a white solid (110 mg, 54%).  Mp: 127-129 oC; 1H NMR (CD3OD, 300 MHz) δ 7.16 (d, 

J = 8.5 Hz, 1H, H-1), 6.81 (d, J = 8.3 Hz, 1H, H-2), 5.08 (s, 2H, OCH2OCH3), 4.59 (s, 2H, 

OCH2OCH3), 3.56 (t, J = 8.1 Hz, 1H, H-17), 3.40 (s, 3H, OCH2OCH3), 3.31 (s, 3H, OCH2OCH3), 

2.80-2.60 (m, 2H), 2.30-1.15 (m, 13H), 0,77 (s, 3H, CH3, H-18); 13C NMR (CD3OD, 75 MHz) δ 156.5 

(C-3), 139.3 (C-5), 133.4 (C-6), 126.5 (C-1), 110.5 (C-2), 95.7 (OCH2OCH3), 94.1 (OCH2OCH3), 86.7 

(C-17), 54.8 (OCH2OCH3), 54.1 (OCH2OCH3), 49.8 (C-14), 44.0 (C-9), 42.7 (C-13), 38.5 (C-8), 37.1 

(CH2), 29.2 (CH2), 27.7 (CH2), 27.1 (CH2), 26.2 (CH2), 22.7 (CH2), 10.9 (CH3, C-18); LRMS (ESI) 

m/z (%) 826 (2M+NH4, 30), 422 (M+NH4, 90), 387 (100); HRMS (ESI) calcd for [C28H29NO3+NH4]+ 

422.2714; found 422.2687. 

3.73

S

O

O

O NH4

 

Ammonium estra-1,3,5(10)-trien-17-one-3-sulfinate (3.73). A mixture of estrone sulfonyl 

chloride 3.77 (380 mg, 1.08 mmol), NaHCO3 (344 mg, 4.00 mmol, 4 equiv) and Na2SO3 (400 mg, 

3.18 mmol, 3 equiv) in H2O (20 mL) was heated at 90 oC for 3 h.  The reaction was concentrated and 

the residue was purified by flash chromatography (CH2Cl2/MeOH/NH4OH, 10:2:0.5 to 16:4:1) to give 

sulfinate 3.73 as a white solid (264 mg, 73%).  Mp: > 300 oC (dec.);  1H NMR (CD3OD, 300 MHz) 

δ 7.45-7.30 (m, 3H), 3.00-2.90 (m, 2H), 2.55-1.85 (m, 7H), 1.75-1.40 (m, 6H), 0.90 (s, 3H, CH3, 



 182

H-18); 13C NMR (CD3OD, 75 MHz) δ 225.3 (C=O), 152.0 (CAr), 141.5 (CAr), 137.0 (CAr), 125.4 

(CHAr), 124.2 (CHAr), 121.1 (CHAr), 50.2 (C-14), 48.4 (C-13), 44.2 (C-9), 37.9 (C-8), 35.7 (C-16), 

31.2 (CH2), 29.0 (CH2), 26.1 (CH2), 25.4 (CH2), 21.1 (CH2), 13.0 (CH3, C-18); LRMS (ESI) m/z (%) 

317 (M+, 100); HRMS (ESI) calcd for C18H21O3S 317.1211; found 317.1216. 

3.74

O

S
ONH4

O

 

Ammonium estra-1,3,5(10)-trien-17-one-3-methanesulfinate (3.74). Sodium (15 mg, 

0.65 mmol, 1.8 equiv) was added to dry EtOH (10 mL) and the resulting mixture was stirred at rt for 

30 min to make a clear solution.  This was added to a suspension of sulfone 3.80 (175 mg, 0.356 

mmol) in EtOH (5 mL) and the mixture was refluxed at 90 oC for 3 h.  After removal of solvent 

(water bath at 30 oC) the residue was purified by flash chromatography (methylene 

chloride/methanol/amommium hydroxide, 10:1:0.2 to 10:2:0.25 to 10:2.5:0.35) to give sulfinate 3.74 

as a white solid (103 mg, 83%).  Mp: 137 oC (dec.); 1H NMR (D2O, 300 MHz) δ 7.22 (d, J = 7.6 Hz, 

1H, H-1), 7.04 (d, J = 8.8 Hz, 1H, H-2), 7.02 (s, 1H, H-4), 4.06 (CH2SO2), 2.80-2.70 (m, 2H), 

2.50-1.25 (m, 13H), 0.77 (s, 3H, CH3, H-18); 13C NMR (D2O, 75 MHz) δ 228.4 (C=O), 138.8, 137.0, 

130.4, 129.6, 127.3, 125.5, 67.8 (ArCH2S), 49.7 (C-14), 48.5 (C-13), 43.5 (C-9), 37.6 (C-8), 35.9 

(CH2), 30.9 (CH2), 28.7 (CH2), 25.9 (CH2), 21.1 (CH2), 13.3 (CH3, C-18); LRMS (ESI) m/z (%) 331 

(100). 
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3.76

S

O

N

O

 

Estra-1,3,5(10)-trien-17-one-3-dimethylcarbamothioate (3.76). This was prepared 

according to the procedure of Li et al.2 with some modifications. To a solution of estrone (15.0 g, 

5.56 mmol) in DMF (225 mL) at 0 oC was added a suspension of NaH (60% dispersed in mineral oil, 

2.64 g, 6.60 mmol, 1.2 equiv) in DMF (22 mL).  After this addition, the resulting mixture was stirred 

1 h at rt, then cooled to 0 oC before N,N-dimethylthiocarbamoyl chloride (10.6 g, 8.58 mmol, 1.5 

equiv) was added.  Subsequently, the reaction was heated at 80-85 oC for 1 h, and then it was cooled 

to rt and poured onto ice water (about 400 mL). Suction filtration followed by drying over high 

vacuum gave 21.76 g of crude O-aryl thiocarbamate 3.75 as pale yellow solid which was used directly 

for next step.  Compound 3.75 (20.86 g) was added to a glass bomb and purged with argon then 

heated at 280-285 oC for 1 h before cooling to rt.  The residue was dissolved in CH2Cl2 and purified 

by flash chromatography (ethyl acetate/hexane, 1:2 to 1:3) and the material from the column was 

recrystallized from ethyl acetate/hexane to give 3.76 as light yellow crystals (12.71 g, 64% over 2 

steps).  1H NMR was identical to that reported in literature.2 1H NMR (CDCl3, 300 MHz) δ 

7.28-7.19 (m, 3H), 3.01 (brs, 6H, N(CH3)2), 2.88 (dd, J = 8.7 Hz, J = 4.2 Hz, 2H), 2.46 (dd, J = 18.9 

Hz, J = 9.0 Hz, 1H), 2.39-2.34 (m, 1H), 2.26 (dt, J = 4.2 Hz, J = 9.6 Hz, 1H), 2.15-1.90 (m, 4H), 

1.63-1.36 (m, 6H), 0.86 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.7 (C=O), 167.2 

(C(=O)S), 141.1 (CAr), 137.3, (CAr) 136.2 (CHAr), 133.0 (CHAr), 126.1 (CHAr), 125.5 (CAr), 50.4 

(C-14), 47.9 (C-13), 44.3 (C-9), 37.8 (C-8), 36.8 (2C, N(CH3)2), 35.8 (C-16), 31.5 (CH2), 29.2 (CH2), 
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26.3 (CH2), 25.5 (CH2), 21.5 (CH2), 13.8 (CH3, C-18). 

3.77

S

O

Cl

O O

 

Estra-1,3,5(10)-trien-17-one-3-sulfonyl chloride (3.77).2 To a solution of 3.76 (1.00 g, 

3.70 mmol) in acetic acid (50 mL) was added H2O (10 mL) and cooled to 0 oC.  Chlorine gas was 

bubbled through the solution until a white precipitate formed.  Bubbling was continued for an 

additional 2 min.  The reaction was purged with nitrogen, diluted with ice-cold H2O (50 mL) and 

extracted with ethyl acetate.  The combined extracts were dried (Na2SO4) and concentrated keeping 

the rotary evaporator bath at 35 oC.  The residue was dissolved in CH2Cl2 and purified by flash 

chromatography (ethyl acetate/hexane, 1:3 to 1:2) to give chloride 3.77 as a white solid (760 mg, 

77%). 1H NMR was identical to that reported in literature.2  1H NMR (CDCl3, 300 MHz) δ 7.80-7.70 

(s and d overlapping, 2H), 7.50 (d, J = 7.5 Hz, 1H, H-1), 3.10-2.90 (m, 2H), 2.60-2.35 (m, 3H), 

2.25-1.95 (m, 4H), 1.75-1.45 (m, 6H), 0.91 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.0 

(C=O), 148.4 (CAr), 141.6(CAr), 138.9(CAr), 127.1(CHAr), 126.8(CHAr), 124.1 (CHAr), 50.4(C-14), 

47.7(C-13), 44.7(C-9), 37.4(C-8), 35.7 (CH2), 31.4 (CH2), 29.3 (CH2), 25.8 (CH2), 25.5 (CH2), 21.5 

(CH2), 13.8 (CH3, C-18). 

3.78

N

O

O

SH

 

N-Mecaptomethyl Phthalimide (3.78).  This was prepared according to the procedure of 
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Forsch et al.46 To a solution of thioacetic acid (2.30 mL, 32.0 mmol) and Et3N (4.5 mL, 32 mmol, 1 

equiv) in THF (100 mL) at 0 oC was added a solution of N-bromomethyl phthalimide (7.7 g, 32 mmol) 

in THF (90 mL) dropwise over 1 h.  The resulting mixture was left in a fridge for 2 days.  After 

removal of solvent, it was partitioned between ethyl acetate (150 mL) and H2O (100 mL).  The 

organic layer was separated and washed with 1% citric acid and brine then dried (Na2SO4) and 

concentrated.  To the residue was added MeOH (240 mL) and then conc. HCl (90 mL) was added 

dropwise at 0 oC over 1.5 h.  After stirring 17 h at rt, the precipitate was collected by suction 

filtration and washed with H2O to give 3.78 as a crystalline white solid (4.64 g, 75% over 2 steps).  

1H NMR was identical to that reported in literature.46 1H NMR (CDCl3, 300 MHz) δ 7.86 (dd, J = 5.1 

Hz, J = 3.3 Hz, 2H), 7.72 (dd, J = 5.1 Hz, J = 3.0 Hz, 2H), 4.74 (d, J = 9.1 Hz, 2H, NCH2S), 2.63 (t, J 

= 9.1 Hz, 1H, SH).  

3.79

O

S
N

O

O

c
b

a
c

b

a

 

3-(Phthalimidyl methylthiomethyl) estra-1,3,5(10)-trien-17-one (3.79). To a solution of 

3-bromomethyl estrone 3.33 (1.74 g, 5.00 mmol) and thiol 3.78 (1.00 g, 5.08 mmol, 1.01 equiv) in 

DMF (100 mL) was added potassium carbonate (1.38 g, 10.0 mmol, 2 equiv).  The reaction mixture 

was stirred 4.5 h at rt.  The reaction was concentrated and H2O was added and the mixture was 

extracted with ethyl acetate.  The combined extracts were washed with H2O and brine then dried 

(Na2SO4) and concentrated.  The residue was purified by flash chromatography (ethyl acetate/hexane, 
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1:2 to 1:1) to give sulfide 3.79 as a white foam (2.07 g, 90%).  1H NMR (CDCl3, 300 MHz) δ 

7.80-7.55 (m, 4H, H-b and H-c), 7.10-6.90 (m, 3H, H-1, H-2 and H-4), 4.63 (s, 2H, NCH2S), 4.00 (s, 

2H, ArCH2S), 2.85-2.65 (m, 2H), 2.50-1.85 (m, 7H), 1.70-1.30 (m, 6H), 0.82 (s, 3H, CH3, H-18); 13C 

NMR (CDCl3, 75 MHz) δ 220.5 (C=O), 167.4 (2C, (CO)2N), 138.4 (C-6), 136.5 (C-5), 135.2 (C-3), 

134.0 (2CH, C-c), 131.9 (2C, C-a), 129.4 (C-4), 126.4 (C-1), 125.4 (C-2), 123.3 (2CH, C-b), 50.4 

(C-14), 47.9 (C-13), 44.2 (C-9), 38.9 (NCH2S), 38.0 (C-8), 36.2 (ArCH2S), 35.8 (C-16), 31.6 (CH2), 

29.2 (CH2), 26.4 (CH2), 25.6 (CH2), 21.6 (CH2), 13.8 (CH3, H-18); LRMS (EI) m/z (%) 459 (M+, 9), 

299 (100), 267 (10), 160 (21); HRMS (EI) calcd for C28H29NO3 459.1868; found 459.1876. 

3.80

O

S
N

O

O

c
b

a
c

b

a O O

 

3-(Phthalimidy methylsulfonylmethyl) estra-1,3,5(10)-trien-17-one (3.80). To a solution 

of sulfide 3.79 (1.52 g, 3.31 mmol) in acetic acid (15 mL) was added KMnO4 (grounded fine powder, 

628 mg, 3.98 mmol, 1.2 equiv) slowly over 1 min (exothermic). The reaction mixture was stirred for 7 

h before quenching with H2O (150 mL) and extracting with ethyl acetate/Et2O (1:1) then Et2O.  The 

combined extracts were washed with H2O and brine then dried (Na2SO4) and concentrated  The 

residue was subjected to flash chromatography (ethyl acetate/hexane, 1:1 to 2:1) which gave pure 

sulfone 3.80 as a white solid (1.10 g, 68%).  Mp: 207-209 oC; 1H NMR (CDCl3, 300 MHz) δ 

7.92-7.86 (m, 2H, H-b), 7.80-7.75 (m, 2H, H-c), 7.33-7.25 (m, 3H, H-1, H-2 and H-4), 4.86 (s, 2H, 

NCH2SO2), 4.29 (s, 2H, ArCH2SO2), 2.93-2.87 (m, 2H), 2.51-1.90 (m, 7H), 1.67-1.33 (m, 6H), 0.87 (s, 



 187

3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 220.8 (C=O), 166.6 (2C, (CO)2N), 141.1, 137.4, 135.0 

(2C, C-c), 131.8, 131.5 (2C, C-a), 128.5, 126.1, 124.3, 124.3 (2C, C-b), 60.4 (NCH2SO2), 54.2 

(ArCH2S), 50.5 (C-14), 48.0 (C-13), 44.4 (C-9), 38.0 (C-8), 35.9 (C-16), 31.6 (CH2), 29.3 (CH2), 26.4 

(CH2), 25.7 (CH2), 21.7 (CH2), 13.9 (CH3, C-18); LRMS (EI) m/z (%) 427 (M-SO2, 40), 280 (100), 

267 (78), 160 (76), 105 (21). 

3.81

OPHO
O

OH

CO2H

 

3-(Phosphonooxy)estra-1,3,5(10)-trien-17β-carboxylic acid (3.81). To a solution of 3.84 

(324 mg, 0.5 mmol) in methanol was added Pd black (30 mg).  It was then hydrogenated over 50 psi 

of H2 for 18 h.  After filtration and concentration of the filtrate, the residue was treated with ethyl 

acetate/hexane (1:5) to remove less polar impurities and acid 3.81 was obtained as a white solid (180 

mg, 94 %).  Mp: 211-213 oC; 1H NMR (DMSO-d6, 300 MHz) δ 7.16 (d, J = 7.7 Hz, 1H, H-1), 6.83 

(d, 1H, H-2, overlapping with s at 6.81), 6.81 (s, 1H, H-4), 0.61 (s, 3H); 13C NMR (DMSO-d6, 75 

MHz) δ 175.2 (C=O), 149.8 (d, J = 6.5 Hz, C-3), 137.9 (C-5), 135.8 (C-10), 126.6 (C-1), 120.2 (d, J = 

4.5 Hz, C-4), 117.8 (d, J = 4.5 Hz, C-2), 55.1 (C-17), 54.7 (C-14), 43.8 (C-13), 43.8 (C-9), 38.8 (C-8), 

38.3 (C-12), 29.5 (CH2), 27.6 (CH2), 26.5 (CH2), 24.2 (CH2), 23.7 (CH2), 13.6 (CH3, C-18); 31P NMR 

(DMSO-d6, 121 MHz) δ -4.7; LRMS (ESI) m/z (%) 380 (M+, 12), 379 (M-1, 50), 299 (100); HRMS 

(ESI) calcd for C19H24O6P (M-1) 379.1311; found 379.1321. 
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3.82

OSH3C
O

O

CO2H

 

3-[(Methanesulfonyl)oxy]estra-1,3,5(10)-trien-17β-carboxylic acid (3.82). To a solution 

of mesylate 3.85 (520 mg, 1.12 mmol) in methanol (150 mL) was added Pd black (50 mg).  It was 

then hydrogenated over 50 psi of H2 for 20 h. The reaction was filtered and the filtrate was 

concentrated.  The residue was subjected to flash chromatography (ethyl acetate/hexane, 1:5 to 1:1) 

to give pure carboxylic acid 3.82 as a white solid (332 mg, 77%).  Mp: 183-185 oC; 1H NMR 

(DMSO-d6, 300 MHz) δ 11.92 (s, CO2H), 7.32 (d, J = 8.5 Hz, 1H, H-1), 7.03 (d, J = 8.6 Hz, 1H, H-2), 

6.99 (s, 1H, H-4), 3.29 (s, 3H, CH3SO2, overlapping with H2O peak), 2.80 (s, 2H), 2.40-1.65 (m, 8H), 

1.55-1.10 (m, 6H), 0.62 (s, 3H, CH3, H-18); 13C NMR (DMSO-d6, 75 MHz) δ 175.1 (C=O), 147.4 

(C-3), 139.6 (C-5), 139.0 (C-10), 127.3 (C-1), 122.3 (C-4), 119.6 (C-2), 55.1 (C-17), 54.7 (C-14), 43.8 

(C-9), 43.8 (C-13), 38.6 (C-8), 38.3 (C-12), 37.7 (CH3SO2), 29.4 (CH2), 27.3 (CH2), 26.3 (CH2), 24.2 

(CH2), 23.7 (CH2), 13.6 (CH3, C-18); LRMS (ESI) m/z (%) 377 (M-1, 100); HRMS (ESI) calcd for 

C20H25O5S 377.1428; found 377.1418. 

3.83

OSH2N
O

O

CO2H

 

3-[(Aminosulfonyl)oxy]estra-1,3,5(10)-trien-17β-carboxylic acid (3.83). To a solution of 

3.86 (430 mg, 0.921 mmol) in methanol (50 mL) was added Pd black (30 mg).  The mixture was 

hydrogenated over 50 psi of H2 for 18 h. The reaction was filtered and the filtrate concentrated. 
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The residue was subjected to flash chromatography (acetone/hexane, 1:2.5 to 1:1) to give pure 

sulfamate 3.83 as a white solid (323 mg, 93%).  Mp: > 250 oC (dec.); 1H NMR (DMSO-d6, 300 

MHz) δ 11.92 (s, CO2H), 7.84 (s, 2H, NH2), 7.30 (d, J = 8.5 Hz, 1H,  H-1), 6.98 (d, J = 8.5 Hz, 1H, 

H-2), 6.93 (s, 1H, H-4), 2.80 (s, 2H), 2.35-1.73 (m, 8H), 1.55-1.15 (m, 6H), 0.62 (s, 3H, CH3, H-18); 

13C NMR (DMSO-d6, 75 MHz) δ 175.1 (C=O), 148.4 (C-3), 138.7 (C-5), 138.4 (C-10), 127.0 (C-1), 

122.3 (C-4), 119.7 (C-2), 55.1 (C-17), 54.7 (C-14), 43.9 (C-9), 43.8 (C-13), 38.6 (C-8), 38.3 (C-12), 

29.5 (CH2), 27.4 (CH2), 26.4 (CH2), 24.2 (CH2), 23.7 (CH2), 13.6 (CH3, C-18); LRMS (ESI) m/z (%) 

378 (M-1, 100); HRMS (ESI) calcd for C19H24NO5S 378.1380; found 378.1390. 

3.84
O

P
BnO

O

CO2Bn

BnO

 

3-[(Dibenzylphosphoryl)oxy]estra-1,3,5(10),16-tetraen-17-carboxylic acid benzylester 

(3.84). To a solution of 3.89 (610 mg, 1.57 mmol) and dibenzyl N,N-diisopropyl phosphoramidite 

(0.55 mL, 1.64 mmol, 1.05 equiv) in THF was added 1H-tetrazole (346 mg, 4.94 mmol, 3.15 equiv) in 

one portion.  After stirring for 20 min at rt, it was cooled to -40 oC (acetonitrile in dry ice) and a 

solution of mCPBA (367 mg, 2.13 mmol, 1.35 equiv) in CH2Cl2 (5 mL) was added slowly over 20 min. 

It was stirred for 5 min at that temperature and then warmed to rt and stirred for 20 min.  Ether (150 

mL) and 10% aq. Na2S2O5 (10 mL) were added.  After separation, the organic phase was washed 

with 10% aq Na2S2O5, 5% NaHCO3, 0.5 M HCl, H2O, and brine then dried (Na2SO4) and concentrated. 

Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:3) gave compound 3.84 as 

a white solid (608 mg, 60%).  Mp: 93-94 oC; 1H NMR (CDCl3, 300 MHz) δ 7.40-7.25 (m, 15H), 7.18 
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(d, J = 8.5 Hz, 1H, H-1), 6.92 (d, J = 8.3 Hz, 1H, H-2), 6.86 (s, 2H, H-4 overlapping with =CHCH2), 

5.20 (s, 2H, PhCH2OC), 5.12 (d, J = 8.2 Hz, 4H,  PhCH2OP), 2.85-2.70 (m, 2H), 2.45-1.40 (m, 11H), 

0.97 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 164.7 (C=O), 148.4 (d, J = 7.1 Hz, C-3), 146.8 

(C=CH, C-17), 144.0 (C=CH, C-16), 138.3 (2C, P(OCH2C6H5)2), 137.3 (C-5), 136.4 (C, 

CO2CH2C6H5), 135.6 (d, J = 6.8 Hz, C-10), 128.6 (6CH, 3Ph), 128.0 (3CH, 3Ph), 128.0 (6CH, 3Ph), 

126.3 (C-1), 120.0 (d, J = 4.6 Hz, C-4), 117.2  (d, J = 4.7 Hz, C-2), 69.8 (d, J = 5.8 Hz, 2CH2, 

P(OCH2C6H5)2)), 65.7 (CO2CH2C6H5), 55.8 (C-14), 46.2 (C-13), 44.3 (C-9), 36.8 (C-8), 34.8 (CH2), 

31.7 (CH2), 29.3 (CH2), 27.5 (CH2), 26.3 (CH2), 16.2 (CH3, C-18); 31P NMR(CDCl3, 121 MHz) δ -4.7; 

LRMS (EI) m/z (%) 648 (M+, 71), 557 (45), 91 (100); HRMS (EI) calcd for C40H41O6P 648.2641; 

found 648.2645. 

3.85
O

S
Me

O O

CO2Bn

 

3-[(Methanesulfonyl)oxy]estra-1,3,5(10),16-tetraen-17-carboxylic acid benzylester (3.85). 

To a solution of phenol 3.89 (500 mg, 1.29 mmol) in pyridine (6 mL) at 0 oC was added 

methanesulfonyl chloride (0.30 mL, 3.9 mmol, 3 equiv) via syringe over 5 min.  The reaction was 

stirred for 24 h (during which the ice was allowed to melt). The brown mixture was poured onto ice 

water and extracted with ethyl acetate.  The combined extracts were washed with water, 10% citric 

acid and water, then dried (Na2SO4) and concentrated.  Purification of the residue by flash 

chromatography (ethyl acetate/hexane, 1:3) gave mesylate 3.85 as a white foam (522 mg, 87%).  1H 

NMR (CDCl3, 300 MHz) δ 7.40-7.20 (m, 6H, C6H5 and H-1), 7.10-6.95 (d, s overlapping, 2H, H-2 
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and H-4), 6.86 (s, 1H, C=CH, H-16), 5.20 (s, 2H, OCH2C6H5), 3.10 (s, 3H, CH3SO3), 2.95-2.80 (m, 

2H), 2.50-1.35 (m, 13H), 0.96 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 164.5 (C=O), 147.2 

(C-3), 146.7 (C=CH, C-17), 144.0 (C=CH, C-16), 139.8 (C-5), 138.9 (C-10), 136.4 (C, CH2C6H5), 

128.6 (2CH, CH2C6H5), 128.1 (CH, CH2C6H5), 128.0 (2CH, CH2C6H5), 126.7 (C-1), 121.9 (C-4), 

118.9 (C-2), 65.7 (OCH2C6H5), 55.8 (C-14), 46.1 (C-13), 44.4 (C-9), 37.3 (CH3SO3), 36.6 (C-8), 34.8 

(CH2), 31.7 (CH2), 29.3 (CH2), 27.3 (CH2), 26.3 (CH2), 16.2 (CH3, C-18); LRMS (EI) m/z (%) 466 

(M+, 100), 451 (20), 375 (50), 331 (35), 235 (28), 91 (100); HRMS (EI) calcd for C27H30O5S 466.1814; 

found 466.1815. 

3.86
O

S
H2N

O O

CO2Bn

 

3-[(Aminosulfonyl)oxy]estra-1,3,5(10),16-tetraen-17-carboxylic acid benzylester (3.86). 

To a solution of 3.89 (500 mg, 1.29 mmol) in DMF (10 mL) was at 0 oC was added sulfamoyl chloride 

(750 mg, 6.49 mmol, 5 equiv).  The mixture was stirred for 24 h at room temperature.  The reaction 

was cooled to 0 oC and 10 mL of water was added and the reaction mixture was stirred for 30 min at 0 

oC.  More water was added and the mixture extracted with ethyl acetate.  The combined extracts 

were washed with water and brine then dried (Na2SO4) and concentrated.  The residue was purified 

by flash chromatography (ethyl acetate/hexane, 1:3 to 1:2) to give sulfamate 3.86 as a white foam (493 

mg, 82%).  1H NMR (CDCl3, 300 MHz) δ 7.45-7.28 (m, 5H, C6H5), 7.26 (d, J = 8.7 Hz, 1H, H-1), 

7.06 (d, J = 8.6 Hz, 1H, H-2), 7.02 (s, 1H, H-4), 6.86 (s, 1H, C=CH, H-16), 5.25 (s, 2H, NH2), 5.18 (s, 

2H, OCH2C6H5), 2.95-2.80 (m, 2H), 2.45-1.98 (m, 6H), 1.95-1.80 (m, 1H), 1.70-1.25 (m, 6H), 0.93 (s, 
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3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 164.9 (C=O), 147.9 (C-3), 146.6 (C=CH, C-17), 

144.3(C=CH, C-16), 139.7 (C-5), 138.7 (C-10), 136.2 (C, CH2C6H5), 128.6 (2CH, CH2C6H5), 128.1 

(CH, CH2C6H5), 128.0 (2CH, CH2C6H5), 126.5 (C-1), 122.0 (C-4), 119.0 (C-2), 65.8 (OCH2C6H5), 

55.8 (C-14), 46.1 (C-13), 44.4 (C-9), 36.6 (C-8), 34.8 (CH2), 31.7 (CH2), 29.3 (CH2), 27.3 (CH2), 26.3 

(CH2), 16.2 (CH3, C-18); LRMS (EI) m/z (%) 467 (M+, 21), 452 (10), 388 (59), 376 (20), 297 (27), 

159 (30), 91 (100); HRMS (EI) calcd for C26H29NO5S 467.1766; found 467.1764. 

3.87
O

S
H3C

O

CN

O

 

17-Cyano-3-hydroxyestra-1,3,5(10),16-tetraen-3-methanesulfonate (3.87). This was 

prepared according to the procedure of Baldwin et al.45,40b To a mixture of estrone mesylate 3.20 (1.75 

g, 5.00 mmol) and ZnI2 (60 mg, 0.19 mmol, 4 mol%) in CH2Cl2 (12 mL) was added TMSCN (1.2 mL, 

9.0 mmol, 1.8 equiv) via syringe over 15 min.  After addition, the resulting mixture was refluxed 35 

min and then cooled to rt and stirred 2.5 h.  After adding conc. HCl (3 mL) to the reaction mixture, it 

was refluxed for 30 min. CH2Cl2 (6 mL) and H2O (3 mL) were added and the mix was refluxed 10 

min and cooled to rt.  The layers were separated and the aqueous layer was extracted with CH2Cl2 

and the combined extracts were dried (Na2SO4) and concentrated and the residue dried over high 

vacuum for several hours. The resulting foam was dissolved in pyridine (9 mL) and POCl3 (3 mL) 

was added dropwise.  The reaction mixture was refluxed overnight.  After cooling, it was poured 

slowly onto ice-cold 6N HCl (30 mL).  The mixture was extracted with ethyl acetate and the 

combined extracts were washed with water and brine then dried (Na2SO4) and concentrated.  
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Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:3) gave compound 3.87 as 

a white solid (1.38 g, 77%).  1H NMR was identical to that reported in literature.45  1H NMR (CDCl3, 

300 MHz) δ 7.28 (d, J = 8.5 Hz, 1H, H-1), 7.02 (d, J = 8.7 Hz, 1H, H-2), 7.00 (s, 1H, H-4), 6.65 (s, 1H, 

C=CH, H-16), 3.11 (s, 3H, CH3SO3), 3.00-2.85 (m, 2H, H-6), 2.50-1.92 (m, 6H), 1.85-1.30 (m, 5H), 

0.94 (s, 3H, CH3, H-18). 

3.88
HO

CO2H

 

3-Hydroxyestra-1,3,5(10),16-tetraen-17-carboxylic acid (3.88). A suspension of 3.87 

(1.00 g, 2.80 mmol) and NaOH (3.50 g, 87.5 mmol, 31 equiv) in ethylene glycol (20 mL) was refluxed 

for 6h.  The mixture was cooled to rt and diluted and 75 mL of water and 35 mL of ether were added.  

The organic phase was discarded and the aq. phase was acidified with conc. HCl to a pH of about 1.5 

and extracted with ethyl acetate.  The combined organic extracts were washed with brine then dried 

(Na2SO4) and concentrated.  Purification of the residue by flash chromatography (ethyl 

acetate/hexane, 1:1) gave carboxylic acid 3.88 as a white solid 702 mg (84%).  Mp: 251-253 oC; 1H 

NMR (DMSO-d6, 300 MHz) δ 11.99 (brs, 1H, CO2H), 8.97 (brs, 1H, ArOH), 6.98 (d, J = 8.2 Hz, 1H, 

H-1), 6.64 (s, 1H, =CHCH2, H-16), 6.47 (d, J = 7.8 Hz, 1H, H-2), 6.41 (s, 1H, H-4), 2.80-2.60 (m, 2H), 

2.45-1.20 (m, 11H), 0.83 (s, 3H, CH3, H-18); 13C NMR (DMSO-d6, 75 MHz) δ 166.1 (C=O), 155.4 

(C-3), 147.7 (C-17), 143.1 (C-16), 137.5 (C-5), 130.9 (C-10), 126.2 (C-1), 115.4 (C-4), 113.2 (C-2), 

55.8 (C-14), 45.9 (C-9), 44.1 (C-13), 37.3 (C-8), 35.0 (CH2), 31.5 (CH2), 29.4 (CH2), 27.7 (CH2), 26.6 

(CH2), 16.4 (CH3, C-18); LRMS (EI) m/z (%) 298 (M+, 100), 283 (14), 272 (20), 253 (10), 159 (31), 
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146 (23); HRMS (EI) calcd for C19H22O3 298.1569; found 298.1563. 

3.89
HO

CO2Bn

 

3-Hydroxyestra-1,3,5(10),16-tetraen-17-carboxylic acid benzylester (3.89). A mixture of 

acid 3.88 (2.96 g, 9.93 mmol) and Bu4NOH (40% wt., 6.50 g, 10.0 mmol, 1 equiv) in H20 (2 mL) was 

heated at 70 oC for 5h.  The water was removed by rotary evaporation (water bath at 60 oC) and the 

residue was dried under high vacuum. The residue was dissolved in dry DMF (45 mL) and benzyl 

bromide (1.30 mL, 11.0 mmol, 1.1 equiv) was added dropwise.  The resulting mixture was stirred for 

20 h at rt.  The reaction was diluted with H2O and extracted with ethyl acetate.  The combined 

organics were washed with water and brine then dried (Na2SO4) and concentrated.  Purification of 

the residue by flash chromatography (ethyl acetate/hexane, 1:5 to 1:3) gave benzyl ester 3.89 as a light 

yellow solid (3.38 g, 88%).  Mp: 116-118 oC; 1H NMR (CDCl3, 300 MHz) δ 7.49-7.29 (m, 5H, 

CH2C6H5), 7.14 (d, J = 8.3 Hz, 1H, H-1), 6.91 (s, 1H, =CHCH2, H-16), 6..66 (d, J = 8.2 Hz, 1H, H-2), 

6.60 (s, 1H, H-4), 5.66 (s, 1H, ArOH), 5.23 (s, 2H, OCH2Ph), 3.00-2.85 (m, 2H), 2.50-1.35 (m, 11H), 

0.98 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 165.3 (C=O), 153.6 (C-3), 146.8 (C=CH, 

C-17), 144.7 (C=CH, C-16), 138.0 (C-5), 136.2 (C, CO2C6H5), 132.6 (C-10), 128.6 (2CH, CH2C6H5), 

128.1 (CH, CH2C6H5), 128.1 (2CH, CH2C6H5), 126.2 (C-1), 115.4 (C-4), 112.8 (C-2), 65.9 (OCH2Ph), 

55.8 (C-14), 46.2 (C-13), 44.2 (C-9), 37.1 (C-8), 34.9 (CH2), 31.8 (CH2), 29.5 (CH2), 27.7 (CH2), 26.5 

(CH2), 16.2 (CH3, C-18); LRMS (EI) m/z (%) 388 (M+, 100), 373 (19), 297 (35), 281 (15), 159 (33), 

91 (91); HRMS (EI) calcd for C26H28O3 388.2038; found 388.2039. 
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3.90

CN

O
S

Me

O O

 

17β-Cyano-3-hydroxyestra-1,3,5(10)-trien-3-methanesulfonate (3.90). This was 

prepared according to the procedure of McGuire et al.40b
 using different solvent. A solution of 3.87 

(320 mg, 0.896 mmol) in ethyl acetate (20 ml) and acetic acid (1.4 mL) was charged with 10% Pd/C 

(50 mg).  The resulting mixture was hydrogenated under a balloon pressure of H2 for 2 h.  After 

filtration and concentration of the filtrate compound 3.90 was obtained as white crystals (321 mg, 

100%). 1H NMR was identical to that reported in literature.45 1H NMR (CDCl3, 300 MHz) δ 7.28 (d, 

J = 8.5 Hz, 1H, H-1), 7.02 (d, J = 8.6 Hz, 1H, H-2), 6.98 (s, 1H, H-4), 3.10 (s, 3H, CH3SO3), 2.90-2.80 

(m, 2H), 2.40-1.82 (m, 8H), 1.60-1.16 (m, 6H), 0.84 (s, 3H, CH3, H-18). 

3.91
HO

CO2H

 

3-Hydroxyestra-1,3,5(10)-trien-17β-carboxylic acid (3.91). To a solution of 3.88 (100 mg, 

0.336 mmol) in MeOH (20 mL) was added Pd black (30 mg) and the mixture was subject to 46 psi H2 

for 40 h.  The reaction was filtered and the filtrate concentrated to give acid 3.91 as a white solid (95 

mg, 95%).  Mp: 281-282 oC; 1H NMR (DMSO-d6, 300 MHz) δ 11.70 (brs, 1H, CO2H), 8.95 (brs, 

1H, ArOH), 6.99 (d, J = 8.1 Hz, 1H, H-1), 6.46 (d, J = 8.0 Hz, 1H, H-2), 6.39 (s, 1H, H-4), 2.75-2.55 

(m, 2H), 2.40-1.15 (m, 14H), 0.60 (s, 3H, CH3, H-18); 13C NMR (DMSO-d6, 75 MHz) δ 175.2 (C=O), 

155.4 (C-3), 137.5 (C-5), 130.7 (C-10), 126.4 (C-1), 115.4 (C-4), 113.2 (C-2), 55.2 (C-17), 54.7 
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(C-13), 43.9 (C-13), 43.7 (C-9), 39.1 (C-8), 38.4 (C-12), 29.6 (CH2), 27.8 (CH2), 26.6 (CH2), 24.2 

(CH2), 23.7 (CH2), 13.7 (CH3, C-18); LRMS (EI) m/z (%) 300 (M+, 100), 272 (5), 213 (10), 185 (24), 

159 (17); HRMS (EI) calcd for C19H24O3 300.1725; found 300.1721. 

3.93
CH3SO2O

OH

 

17β-Hydroxy-3-[(Methanesulfonyl)oxy]estra-1,3,5(10)-triene (3.93). To a solution of 

mesylate 3.20 (2.50 g, 7.18 mmol) in ethanol (120 mL) at 0 oC was added NaBH4 (1.0 g, 26 mmol, 3.7 

equiv).  The reaction was stirred overnight at rt.  EtOH was removed by rotary evaporation and the 

residue with treated with 2N HCl (60 ml) at 0 oC.  After extraction with ethyl acetate, the combined 

extracts were washed with H2O then dried (Na2SO4) and concentrated.  Short column flash 

chromatography (acetate/hexane, 1:2) gave 3.93 as a white solid (2.5 g, 100%).  Mp: 83-84 oC; 1H 

NMR (CDCl3, 300 MHz) δ 7.28 (d, J = 8.4 Hz, 1H, H-1), 7.00 (d, J = 8.4 Hz, 1H, H-2), 6.96 (s, 1H, 

H-4), 3.70 (t, J = 8.3 Hz, 1H, H-17), 3.09 (s, 3H, CH3SO2), 2.92-2.80 (m, 2H, H-6), 2.30-1.15 (m, 

13H), 0.75 (s, 3H, CH3, H-18); 13C NMR (CDCl3, 75 MHz) δ 147.0 (C-3), 139.8 (C-5), 139.1 (C-10), 

126.9 (C-1), 121.8 (C-4), 118.8 (C-2), 81.7 (C-17), 50.0 (C-14), 44.1 (C-9), 43.1 (C-13), 38.3 (C-8), 

37.2 (CH3SO2), 36.6 (CH2), 30.5 (CH2), 29.5 (CH2), 26.8 (CH2), 26.1 (CH2), 23.1 (CH2), 11.0 (CH3, 

C-18); LRMS (EI) m/z (%) 350 (M+, 100), 306 (5), 291 (52), 253 (13), 238 (21), 159 (13); HRMS (EI) 

calcd for C19H26O4S 350.1552; found 350.1557. 
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3.94
CH3SO2O

O P
O

OBn
OBn

 

17β-(Dibenzylphosporyl)oxy-3-[(methanesulfonyl)oxy]estra-1,3,5(10)-triene (3.94). To a 

solution of tribenzyl phosphite (865 mg, 2.45 mmol, 4.3 equiv) in CH2Cl2 (10 mL) at 0 oC was added 

iodine (600 mg, 2.36 mmol, 4.1 equiv) in one portion.  The mixture was stirred for 8 min at 0 oC 

before warming up to rt.  The reaction turned brown.  To this solution was added a solution of 3.93 

(200 mg, 0.570 mmol) and pyridine (0.30 mL, 3.7 mmol, 6.5 equiv) in CH2Cl2 (10 mL) at -30 oC 

slowly and the resulting mixture was stirred for 2 h at that temperature.  Ether was added and the 

mixture was washed with 0.3 M KHSO4, sat. NaHCO3, and brine then dried (Na2SO4) and 

concentrated.  The residue was purified by flash chromatography (acetone/hexane, 1:2.5 to 1:2) to 

give 3.94 as a colorless oil (162 mg, 46%). 1H NMR (CDCl3, 300 MHz) δ 7.35-7.24 (m, 11H), 7.00 

(d, J = 8.4 Hz, 1H, H-2), 6.96 (s, 1H, H-4), 5.02 (t, J = 5.70 Hz, 4H, OCH2Ph x 2), 3.05 (s, 3H, 

CH3SO2), 2.88-2.76 (m or pseudo s, 2H, H-6), 2.25-1.80 (m, 7H), 1.58-1.10 (m, 6H), 0.77 (s, 3H, CH3, 

H-18); 13C NMR (CDCl3, 75 MHz) δ 147.1 (C-3), 139.5 (C-5), 138.9 (C-10), 136.0 (d, 2C, J = 7.0 Hz), 

128.5 (4CH), 128.4 (2CH), 127.8 (4CH), 126.9 (C-1), 121.9 (C-4), 118.9 (C-2), 86.7 (d, J = 6.6 Hz, 

C-17), 69.1 (d, J = 2.0 Hz, OCH2), 69.1 (d, J = 2.0 Hz, OCH2), 49.1 (C-14), 43.8 (C-(), 43.3 (d, J = 5.7 

Hz, C-13), 38.1 (C-8), 37.2 (CH3SO2), 36.3 (CH2), 29.4 (CH2), 28.4 (d, J = 2.2 Hz, C-16), 26.7 (CH2), 

25.9 (CH2), 23.0 (CH2), 11.5 (CH3, C-18); 31P NMR (CDCl3, 121 MHz) δ -1.1; LRMS (EI) m/z (%) 

610 (M+, 10), 519 (32), 421 (19), 331 (70), 187 (72), 91 (100); HRMS (EI) calcd for C33H39O7PS 

610.2154; found 610.2147. 
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3.98
HO

O
O

Si

 

3-Hydroxyestra-1,3,5(10),16-tetraen-17-carboxylic acid tert-buty(dimethyl) silylester 

(3.98). To a mixture of 3.88 (136 mg, 0.456 mmol) and triethylamine (53 mg, 0.53 mmol, 1.2 equiv) 

was added THF (4 mL).  The resulting mixture was stirred for 5 min before TBDMSCl (76 mg, 0.661 

mmol, 1.45 equiv) was added.  After stirring 1 h, the reaction was quenched with H2O then extracted 

with EtOAc.  The combined extracts were washed with H2O and brine then dried (Na2SO4) and 

concentrated.  Purification of the residue by flash chromatography (ethyl acetate/hexane, 1:2) gave 

silyl ester 3.98 as a white solid (110 mg, 59%).  Mp: 204-206 oC;  1H NMR (CDCl3, 300 MHz) δ 

7.13 (d, 1H, J = 8.4 Hz, H-1), 6.79 (s, 1H, C=CH, H-16), 6.61 (d, J = 8.4 Hz, 1H, H-2), 6.56 (s, 1H, 

H-4), 5.10 (brs, 1H, ArOH), 2.90-2.80 (m, 2H, H-6), 2.35-1.30 (m, 11H), 0.95 (s, 9H, C(CH3)3), 0.92 

(s, 3H, CH3, H-18), 0.30 (s, 6H, Si(CH3)3); 13C NMR (CDCl3, 75 MHz) δ 165.1 (C=O), 153.4 (C-3), 

148.5 (C-17), 144.6 (C-16), 138.0 (C-5), 132.7 (C-10), 126.2 (C-1), 115.2 (C-4), 112.6 (C-2), 55.8 

(C-14), 45.8 (C-9), 44.2 (C-13), 37.1 (C-8), 34.8 (CH2), 31.5 (CH2), 29.4 (CH2), 27.6 (CH2), 26.4 

(CH2), 25.7 (3C, (CH3)3C), 17.8 (SiC(CH3)3), 16.0 (CH3, C-18), -4.7 (2C, Si(CH3)2); LRMS (EI) m/z 

(%) 412 (M+, 6), 397 (3), 356 (30), 355 (100), 298 (2); HRMS (EI) calcd for C25H36O3Si 412.2434; 

found 412.2425. 
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Chapter 4 

Towards the Synthesis of a Chiral Electrophilic Fluorinating Agent 

4.1 Introduction and background 

4.1.1 Enantioselective fluorination 

As can be seen from the previous two chapters of this thesis, some of the compounds that we 

examined as STS inhibitors contained fluorine. Indeed, the Taylor group has been conducting 

research on the synthesis of organofluorines and their application as enzyme inhibitors for almost a 

decade. Of specific interest in the Taylor group is the synthesis of organofluorines by electrophilic 

fluorination (EF) and we have already shown how EF can be used to prepare inhibitors of STS 

(Chapter 3, section 2, compound 3.23). 

Due to the asymmetric nature of their binding/active sites, enzymes and other proteins are 

capable of discriminating between enantiomeric ligands. For example, the Taylor group has shown 

that the enzyme protein tyrosine phosphatase 1B (PTP1B) can distinguish between inhibitors 4.1 and 

4.2 in that compound 4.1 is a 10-fold more potent inhibitor than its enantiomer 4.2.1 Compounds 4.1 

and 4.2 (and similar compounds) were prepared by diastereoselective EF of diastereomeric 

phosphoramidate precursors which contained (-) ephedrine as a chiral auxiliary.1 Although this was 

F H

P
O

-O O-

4.1

H F

P
O

-O O-

4.2  

Figure 4.1. Structures of chiral monofluoromethylenephosphonic acids 4.1 and 4.2 

an effective route to this class of compounds, we would prefer a more direct approach and one that we 

could apply to the construction of other classes of chiral α-fluorinated compounds, such as chiral 
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α-monofluoromethylenesulfonic acids and α-monofluoromethylene- sulfonamides which we would 

like to examine as inhibitors of STS and other enzymes. One approach that is potentially more direct 

and general than diastereoselective EF is enantioselective EF. Recently, there has been considerable 

interest in developing methods for achieving enantioselective EF’s.2 This is not surprising 

considering that the occurrence of a fluorine substituent in commercial pharmaceutical compounds has 

increased from 2% in 1970 to estimates of more that 18% at present.3   

In general, there are three tactics that have been employed for performing enantioselective 

EF’s.2 These involve the use of either 1) chiral N-fluoro reagents; 2) chiral transition-metal catalysts 

or 3) chiral organocatalysts. 

4.1.2 Enantioselective fluorination using chiral electrophilic fluorinating agents. 

Differding and Lang were the first to attempt this approach to chiral organofluorines.4 In 

their pioneering study, camphor-derived N-fluoro sultam 4.3 was used to α-fluorinate a variety of 

enolates. For example, reaction of the sodium enolate of β-ketoester 4.4 with reagent 4.3 gave a 60% 

yield of 4.5 in 70% ee which represented the highest ee obtained in this study (Scheme 4.1).  

S
O2

N F

O

CO2Et ∗

O

CO2Et

F

4.4 4.34.5 (60%, 70% ee)

1.  NaH, 0 oC

2. 1.5 eq 4.5

 
Scheme 4.1. Synthesis of 4.5 using Differding’s chiral electrophilic fluorinating 
agent 4.3 

Later, Davis and coworkers prepared several derivatives of 4.3 (compounds of type 4.6, 

Figure 4.2) and examined these as chiral electrophilic fluorinating agents using enolate 4.4 and 

enolates of similar carbonyl compounds as substrates.  However, the ee’s were not much better than 
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those obtained by Differding.5 Takeuchi et al. later prepared a variety of chiral N-F compounds 

(4.7-4.12, Figure 4.2) and examined these as chiral electrophilic fluorinating agents using enolates of 

mainly cyclic ketones as substrates.6  However, the ee’s were generally quite poor. 

S
O2

N F

R2

R2

R1

Ts
N

OAc

F

Ph
Ts

N Me
F

Ph
Ms

N Me
F

Ph

N
S

F

Me

O O

N
S

O O
F

t-Bu

O2N N
S

O O
FO2N

4.7 4.8 4.9

4.10 4.11 4.12

4.6, R1 = H or CH3

R2 = H or Cl or OMe

 

Figure 4.2.  Chiral N-F reagents prepared by Davis et al and Takeuchi and coworkers 

A major development in the area of asymmetric fluorination was the introduction of chiral 

N-fluoro ammonium salts of type 4.13 based on cinchona alkaloids (CA) as chiral electrophilic  

N

N

H

H
R2O

R1O

N
N

Cl

F  2 BF4-

4.14
N

H

H
R2O

R1O
F

N

4.13

BF4-
CH3CN, rt

R1 = H, OMe
R2 = HO, ether, ester

(Selectfluor)

 

Scheme 4.2. Synthesis of chiral Electrophilic fluorinating agents of type 4.13 

fluorinating agents.7 These are readily prepared by reacting CA’s of type 4.14 with Selectfluor, a 

commercially available electrophilic fluorinating agent (Scheme 4.2).  These reagents were tested as 

chiral electrophilic fluorinating agents using mainly cyclic ketones, β-ketoesters, β-cyano esters and 
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cyclic benzylic amides as substrates. The yield of fluorinated product was moderate to very good 

and the ee’s were highly variable though in some instances, for example with compound 4.15 and 

reagent 4.16, ee’s up to 94% could be obtained (Scheme 4.3).  

NO ON

CN

O O

4.15

N

CN

O O

F

N

H

H

MeO
F

N

MeO

4.16

BF4-

1. LiHMDS, THF

2. 4.16, - 78 oC

56% yield
94% ee

 

Scheme 4.3. Enantioselective EF of 4.15 using reagent 4.16 

4.1.3 Enantioselective fluorination using transition-metal catalysts 

Table 4.1. Enantioselective EF of β-keto esters using Selectfluor and catalyst 4.17 

O O
R

R
O

O
Ti

R

R
Cl

Cl
NCMeMeCN

R1 OR3

O O

R2
F

OR3

O O

R2

R1

4.18
4.17

R =
5 mol% 4.17

CH3CN, rt
Selectfluor

 

entry product yield %ee entry product yield %ee 

1 
Ph OEt

O O

Me F  

≥80 62 5 
O

O O

Me F
1-Napth

 

≥80 68 

2 
Ph OCHPh2

O O

Me F  

≥80 82 6 
Et O

O O

Me F

iPr

IPrPri  

89 90 

3 
Et OCHPh2

O O

Me F  

≥80 81 7 
Ph OEt

O O

Cl F  

53 33 

4 
Et OBn

O O

Me F  

82 71 8 
Et OBn

O O

Cl F  

57 60 
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Enantioselective EF has been reported using chiral transition metal catalysts.  So far this 

approach has been limited to the fluorination of readily enolizable substrates such as β-keto esters. 

The first enantioselctive fluorination using transition metal catalysis was developed by 

Hintermann et al.8 Using chiral titanium taddolate 4.17 and Selectfluor they achieved efficient 

fluorination of β-ketoesters of type 4.18.  The ee’s were variable though in some instances ee’s as 

great as 90% were obtained (Table 4.1). 

Hamashima et al. developed dicationic palladium complexes, such as 4.19 (Scheme 4.4), for 

the efficient fluorination of β-ketoesters, β-ketophosphonates and oxindoles using NFSi.  The 

highest ee obtained, 94%, was with cyclic substrate 4.20 (Scheme 4.4).9  

O O

OtBu

O O

OtBu

F

4.19

2BF4
-

P

P
Pd+O

O
Pd+

P

P

Ar Ar

Ar Ar

Ar Ar

Ar Ar

Ar = 3,5-dimethylphenyl

2.5 mol% 4.19
NFSi, EtOH

90% yield
94% ee4.20

 
Scheme 4.4. An example of an enantioselective EF using NFSi and chiral Pd 
catalyst 4.19 

 Cahard and coworkers have reported the enantioselective EF of β-ketoesters using NFSi and a 

chiral bis(oxazoline)-copper complex derived from ligand 4.21 and Cu(OTf)2 (Scheme 4.5).10 The 

ee’s ranged from 35-85%.  

R1

R2

O O

OR3

HFIP

R1

O O

OR3

R2 F

O

N N

O

Ph Ph56-96% yields
ee's of 35-85%

1 mol% Cu(OTf)2/4.21

NFSi, Et2O, 20 oC

4.21
 

Scheme 4.5.  Enantioselective EF using NFSi and a chiral copper catalyst 
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In 2005, the Shibata and Toru groups disclosed highly enantioselective catalytic fluorinations 

(ee’s from 83-99%) of β-ketoesters and cyclic benzylic tertiary amides using NFSi and catalytic 

amounts of Ni(ClO4)2-6H2O/ligand 4.22 (Figure 4.3) in CH2Cl2.11 

O
O

N N
O

Ph Ph

Ni
H2O

2ClO4
-

2+

4.22  

Figure 4.3. Structure of ligand 4.22 

4.1.4 Enantioselective fluorination using chiral organocatalysts 

Several reports12 have appeared on the use of chiral organocatalysts to achieve 

enantioselective fluorinations of aldehydes and, to a much lesser extent, ketones.  These reactions 

proceed via formation of a chiral enamine which then undergoes EF with either NFSi or Selectfluor. 
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Cl2CHCO2H
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Conditions: 
catalyst 4.23 (1 mol%)
MTBE, rt
8 linear aldehydes
55-95% yield
91-97% ee (S)

Conditions: 
catalyst 4.26 (30-100 mol%)
DMF, 4 deg.
6 linear aldehydes
40-90% yield
86-96% ee (S)

Conditions: 
catalyst 4.27 (20 mol%)
THF/iPrOH, -10 deg.
9 linear aldehydes
54-96% yield
91-99% ee (R)

Jorgensen Barbas MacMillan

 
Scheme 4.6. Enantioselective α-fluorination of aldehydes using chiral organocatalysts 
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The first direct enantioselective fluorination using this approach was achieved using 

Selectfluor and (S)-proline as the chiral organocatalyst.12a However, the enantioselectivities were 

low.  A much more efficient system was described by Jøgensen and co-workers (Scheme 4.6).12b  

The silylated prolinol derivative 4.23, acting as a catalyst through an enamine mechanism, 

showed high activity and selectivity for the fluorination of aldehydes. The obtained α-fluoro 

aldehydes 4.24 were reduced to more stable and less volatile fluoroalcohols 4.25. Imidazolidinones 

4.26 were used by Barbas and co-workers12c as organocatalysts for the enantioselective fluorination of 

branched aldehydes with moderate enantioselectivities or as stoichiometric chiral promoters for the 

fluorination of straight-chain aldehydes (up to 96% ee, Scheme 4.6).  MacMillan et al. exploited the 

imidazolidinone catalyst 4.27 in the electrophilic fluorination of a range of aldehydes (Scheme 4.6).12d 

In most cases alcohols 4.25 were obtained in excellent enantioselectivities (up to 99% ee).  These 

mild organocatalytic fluorination methods allow preparation of not only stable quaternary fluorinated 

carbon atoms in the form of α-fluoro, α-substituted carbonyl compounds but also much less stable 

α-fluoro aldehydes containing a tertiary C-F center.  

4.1.5 Chiral halogenating agents based on chiral binaphthyl scaffolds 

 All of the above mentioned approaches to enantioselective EF have limitations. 

Enantioselective EF’s using the cinchona alkaloid-based reagents exhibit highly variable ee’s and the 

reactions must be done in acetone or acetonitrile (for solubility reasons) and low temperatures are 

required for obtaining good ee’s. The transition metal catalysts only work well on highly enolizable 

compounds (ie. β-keto esters) and the organocatalysts only work on aldehydes and a few ketones. 

Ideally, we wished to develop a chiral electrophilic fluorinating agent that could be used to achieve  



 209

S

S

O O

O
O
N

4.28

F

 

Figure 4.4.  Structure of chiral N-F reagent 4.28 

highly enantioselective fluorinations in high yield on a wide variety of substrates including sulfonates 

and sulfonamides.  Towards this end, we designed chiral binaphthyl N-fluorosulfonimide 4.28 as a 

chiral electrophilic fluorinating agent (Figure 4.4).  This compound has a binaphthyl scaffold, which 

has been widely employed as a platform for reagents and catalysts in highly enantioselective 

transformations.  The arylsulfonimide structure ensures that their fluorine transfer potential should be 

very high and exhibit electrophilic reactivity patterns, and be capable of fluorinating a variety of 

substrates including highly basic carbanions.13 Dr. Rick Strickler and Dr. Chenguo Jia, two 

post-doctoral fellows in the Taylor group, designed a highly efficient synthesis of chiral sulfonimide 

4.29, the precursor to compound 4.28 (unpublished results, Scheme 4.7).  A Newman-Kwart 
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Scheme 4.7. Synthesis of 4.29 
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rearrangement (NKR) of O-aryl thiocarbamate 4.31 was used to construct S-aryl thiocarbamate 4.32. 

Oxidative chlorination of 4.32 and cyclization of the resulting disulfonyl chloride 4.33 using ammonia 

in ethanol and benzene gave cyclic sulfonimide 4.29. 

Subjecting sulfonimide 4.29 to a stream of fluorine gas in acetonitrile at -40 oC gave N-F 

compound 4.28 in about a 40% yield although we were unable to remove small amounts of byproducts 

resulting from ring fluorination (Scheme 4.8). It was also found that the N-chloro devivative 4.34 

could be very easily prepared in 75 % yield by reacting 4.29 with t-butyl hypochlorite in methanol 

(Scheme 4.8).  

S
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O O

O
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N F CH3CN S

S

O O

O
O
NH

4.294.28 (40%) 4.34 (75%)

S

S

O O

O
O
N Cl

2 eq tBuOCl

MeOH, 0 oC

10% F2 in Ar

 -40 oC

 

Scheme 4.8.  Synthesis of 4.28 and 4.34 

Since the N-chloro derivative 4.34 was much easier (and safer) to obtain in pure form and in 

good yield than the N-F derivative, 4.34 was used to ascertain the potential of this chiral sulfonimide 

scaffold to affect enantioselective transformations.Although 4.34 was a good chlorinating agent 

(Scheme 4.9) in that the α-chlorination of compounds 4.35-4.37 preceded in good yield, the best ee’s 

we could obtain for these transformations ranged from 5-10%.  We anticipated that similar results 

would be obtained with the N-F analog 4.28.  

It was clear that reagents 4.28 and 4.34 were going to have to be modified if we wished to 

obtain highly enantioselective fluorinating or chlorinating agents.  One potential approach to 

achieving this is to modify the naphthyl rings at the 3 and 3′ positions.  This is a common approach  
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Scheme 4.9.  Chlorination of 4.35-4.37 with reagent 4.34 

to increasing the ee’s of enantioselective tranformations when using chiral reagents or catalysts based 

on the binaphthyl platform.  For example, Uraguchi et al.14a as well as Akiyama et al.14b 

recentlyreported chiral Brønsted acid-catalyzed Mannich reactions via electrophilic activation using 

chiral BINOL based phosphoric acids of type 4.38 (Table 4.2).12a,b  It is worthy of note is that the ee’s 

of these transformations increased dramatically as the size of the aryl group at the 3 and 3′ positions 

increased.  An ee of only 12% was obtained when the using 3,3′-unsubstituted compound 4.38a  

Table 4.2.  An enantioselective Mannich reaction catalyzed by chiral Brønsted 
acids 4.38a-d 

N
Boc

Ph H

R1

R1

O

O
P

O

OH

4.38

HN
∗

Boc

Ph
Ac

Ac

2 mol% catalyst
1.1 eq acac

CH2Cl2, rt, 1h

 

catalyst R1 Yield (%) Ee (%) 

4.38a H 92 12 

4.38b Ph 95 56 

4.38c 4-biph 88 90 

4.38d 4-(β-naphth)-C6H4 99 95 
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while an ee of 95% was obtained when the 3 and 3′ position were modified with 4-(β-naphth)C6H4 

(compound 4.38d, table 4.2).  It was hypothesized that the aryl group as at the 3 and 3′ position 

shielded the phosphate moiety which led to efficient asymmetric induction.14b 

4.1.6 Objectives 

The objective of this project is to develop an efficient synthesis of fluorinating and 

chlorinating agents of type 4.40 and 4.41 and to ascertain their ability to perform enantioselective 

fluorinations and chlorinations. Key to the success of this work is the development of an efficient 

synthesis of cyclic sulfonimide precursors of type 4.39.  The work presented in this chapter 

represents our preliminary studies on the synthesis of these cyclic sulfonimides. 
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Figure 4.5.  Structures of compounds of type 4.40 and 4.41. 

4.2 Results and discussion 

Our initial targets were compounds 4.42 and 4.43 which bear CF3 groups at the 3 and 3′ 

positions (Figure 4.6).  We anticipated that the electron withdrawing CF3 groups would lower the 

electron density on the aromatic ring which would help prevent perfluorination of the naphthyl rings. 

Moreover, we were anticipating that its size, which is similar to an isopropyl group, would provide the 

necessary steric shielding to provide the desired enantioselectivity for the electrophilic halogenation 

reactions.  
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Figure 4.6.  Structures of compounds 4.42 and 4.43 

We first prepared the bis-CF3 BINOL derivative 4.47 using literature procedures (Scheme 

4.10).  We used racemic BINOL to work out the conditions before attempting the chiral version.  

MOM protection of BINOL using MOMCl is usually performed using large amounts of THF as 

solvent.15 To reduce the amount of THF we used DMF as a co-solvent and this worked well giving 

product MOM-protected BINOL 4.44 in 92% yield. Lithiation followed by treating with iodine gave 

3,3′-diiodo MOM protected BINOL 4.45 in 70% yield after column and recrystallization.15 Reaction  
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      Et2O
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Scheme 4.10. Synthesis of compound 4.47 
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of iodo compound 4.45 with FSO2CF2CO2Me, HMPA and CuI in DMF at 85 oC for 7 h gave crude 

CF3 substituted product 4.46.16 Crude 4.46 was treated with amberlyst-15 in THF/MeOH to give 

4.47 in 87% yield over 2 steps from 4.45.16 
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Scheme 4.11.  Synthesis and attempted cyclization of compound 4.50  

The CF3 substitued BINOL 4.47 was then converted to corresponding O-aryl thiocarbamate 

4.48 in 97% yield by reacting with NaH, N,N-dimethylthiocarbamoyl chloride in DMF at 85 oC for 3 h 

(Scheme 4.11).  The NKR was carried out neat in a glass bomb at about 265 oC for 50 min to give 

desired S-aryl thiocarbamate 4.49 in 83% yield.  The solid starting material has to melt first in order 

to have the reaction go.  Once it melted the reaction proceeded quickly at 265 oC.  The temperature 

is very important for this reaction.  At temperatures lower than 265 oC the reaction was slow and the 

conversion rate was low.  At higher temperature (280 oC) a considerable amount of cyclic sulfide 

byproduct 4.54 (Figure 4.7) was obtained. A similar byproduct was also found to form during the 

rearrangement of 4.31 to 4.32. During the reaction, some solid starting material accumulates on the 
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side of the glass bomb due to stirring.  So we did the reaction at about 265 oC for 45 min, cooled it to 

rt, then scratched down the solid unreacted starting material on the sides and then heated it at 265 oC 

for another 5 min. Rearranged S-aryl thiocarbamate 4.49 underwent oxidative chlorination using 

chlorine in HOAc/H2O (3:1) to give sulfonyl chloride 4.50 in 51 % yield.  

CF3

CF3

S

4.54  

Figure 4.7.  Structure of byproduct 4.54 

The last step was the reaction of 4.50 with alcoholic ammonia to cyclize the disulfonyl groups 

of 4.50 to form sulfonamide 4.53.  Use of benzene as solvent gave a very messy mixture as 

ascertained by 19F NMR.  Then we tried THF as solvent; however, only byproducts 4.51 (18%) and 

disulfonamide 4.52 (19%) were formed but no cyclized sufonimide 4.53 was isolated.  When we 

used CH2Cl2 and 2% DMF as co-solvent and added ammonia/EtOH slowly at 0 oC, more 

disulfonamide 4.52 (34%) was obtained.  Reaction of 4.50 with allylamine only gave corresponding 

disulfonamide.  We thought that perhaps the CF3 group is too bulky so that the two naphthyl rings 

couldn’t approach close enough to cyclize.  

CF3
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CF3

O O

O
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NPG

X

S

S

X

O O

O
O
NPG

4.55, X = Br or I 4.56  

Scheme 4.12. Alternative route to CF3 sulfonimide 4.56 

Due to the difficulty in cyclizing 4.50, we then attempted to prepare dibromo or diiodo 
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sulfonimides of type 4.55 first and then install the CF3 groups (Scheme 4.12).  

We treated 3,3′-dibromo BINOL, 4.5716 with N,N-dimethyl thiocarbamoyl chloride to give 

O-aryl thiocarbamate 4.58 (Scheme 4.13).  We attempted an NKR of 4.58 by heating neat 4.58 at 265 

oC; however, this gave a black tar instead of the desired product 4.59.  Compound 4.58 did not appear 

to be stable under these conditions.  We also attempted this with the 3,3′-diiodo analogue of 4.58 but 

obtained a similar result.  

Br

Br
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OH
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Kwart
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NMe2 X
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3 eq Cl(C=S)NMe2
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Scheme 4.13. Attempted NKR of compound 4.58. 

Due to the difficulties in cyclizing compound 4.50 we decided to see if this cyclization 

problem was a general phenomenon and would even be an issue with smaller substituents at the 3 and 

3′ positions, such as methyl and phenyl. Racemic S-aryl thiocarbamate 4.60 (Figure 4.8) has been 

prepared by Cossu et al. starting from racemic BINOL and via an NKR of the corresponding O-aryl 

thiocarbamate.  

CH3

S

S

CH3

C

C

O

O

NMe2

NMe2

4.60  

Figure 4.8.  Racemic S-aryl thiocarbamate 4.60 

We constructed the (S)-enantiomer of 4.60 by a similar route (Scheme 4.14). Ortho lithiation 
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of (S)-4.44 followed by methylation with MeI17 and removal of the MOM protecting group using 

Amberlyst-15 resin16 gave 3,3′-dimethyl substituted BINOL (S)-4.62 in 97% yield (two steps). 

Compound (S)-4.62 was reacted with thiocarbamyl chloride to give to O-aryl thiocarbamate which 

was rearranged to its S-aryl thiocarbamate isomer (S)-4.60 by an NKR. Due to the complex 1H NMR  
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2 steps from (S)-4.60)

HOAc/H2O
(10:3)
0 oC, 35 min

 

Scheme 4.14.  Synthesis of (S)-4.64 

and hard purification of O-aryl thiocarbamate, these two steps were done together to give S-aryl 

thiocarbamate (S)-4.60 in 49% yield.18 Oxidative chlorination of (S)-4.60 in HOAc/H2O at 0 oC gave 

disulfonyl chloride (S)-4.63 which could be purified by flash chromatography.  However, some 

decomposition occurred on the column and a much lower yield was obtained so crude (S)-4.63 was 

used for next step.  Cyclization of (S)-4.63 with excess NH3/EtOH in benzene gave desired 

sulfonamide (S)-4.64 in 32% yield over 2 steps from S-aryl thiocarbamate (S)-4.64. 1H NMR 

indicated that the oxidative chlorination reaction proceeded very well and quite cleanly which 

suggested that the low yield for these two steps was the cyclization reaction.  The overall yield of 
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(S)-4.64 from BINOL was 15%.  We have assumed that no racemization had taken place during this 

synthesis, however, this has yet to be confirmed.  
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Scheme 4.15.  Synthesis of (S)-4.70 

(S)-3,3′-diphenyl BINOL ((S)-4.67) was prepared according to the procedure of Cox et al. 

(Scheme 4.15).15 Ortholithiation of (S)-4.44 followed by bromination gave (S)-4.65 in 85% yield.17 

Suzuki coupling between dibromide (S)-4.65 and phenyl boronic acid in the presence of 1.3 mol% 

Pd(PPh3)4 gave phenyl substituted BINOL derivative 4.66 in 73 % yield.15 Deprotection of (S)-4.66 

using amberlyst-15 resin gave (S)-4.67 in 95% yield.16 Reaction of (S)-4.67 with thiocarbamoyl 

chloride, followed by an NKR gave (S)-4.68 in a 58% yield over 2 steps. Oxidative chlorination of 



 219

(S)-4.68 was done at 0 oC in HOAc/H2O (3.75:1). 1H NMR revealed that this reaction proceeds quite 

cleanly, however, we could not obtain (S)-4.69 in pure form due to its instability.  Therefore, crude 

(S)-4.69 was cyclized using XS ammonia in EtOH and benzene to give (S)-4.70 in 34% yield over 2 

steps.  Again, the low yield appeared to be due to the cyclization reaction.  The overall yield of 

(S)-4.70 from compound (S)-4.44 was 12%. We have again assumed that no racemization had taken 

place during this synthesis, however, this has yet to be confirmed.  

The overall low yields that we obtained for (S)-4.64 and (S)-4.70 prompted us to reevaluate 

this approach to the synthesis of this class of compounds.  The main difficulty is the low yields 

obtained for the cyclization reactions. Ideally the route outlined in Scheme 4.12 would be best where 

the bromo or iodo derivatives of type 4.55 are prepared and then the alkyl or aryl subtituents at the 3 

and 3′ positions are installed (for example by a Suzuki reaction) after cyclization.  However, the 

NKR of the bromo and iodo precursors such as 4.58 did not work.  An alternative is to introduce the 

bromine or iodine by ortholithiaton of S-aryl thiocarbamate 4.32. However, when we subjected 4.32 to 

sec-BuLi in the absence or presence of TMEDA followed by the addition of electrophiles at -78 oC, 

compound 4.71 was obtained (Scheme 4.16).  TLC analysis of the reaction mixture revealed that 

4.71 was formed before the addition of the electrophile.  
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Scheme 4.16. Ortholithiation of compound 4.32  

 



 220

4.3 Summary and future work 

We have shown that CF3 substituted BINOL sulfonimide 4.50 is difficult to cyclize. 

However, two chiral (S)-sulfonimides, methyl and phenyl substituted at the 3 and 3’ positions, could 

be prepared via the cyclization of their disulfonyl chloride precursors. However, their overall yields 

were quite low. A more efficient route to sulfonimides of type 4.39 are required if this approach to 

enantioselective fluorination is to have some practical utility. The chlorination and fluorination of 

(S)-4.64 and (S)-4.70 and their evaluation as chiral fluorinating and chlorinating agents is in progress 

in the Taylor group. 

4.73 (98%)4.72

O

S

N

Br

NMP, 280 oC

S

O

N

Br

 

Scheme 4.17. NKR of 4.72 

Very recently, Moseley et al have reported a detailed study of the NKR using simple 

substituted O-aryl thiocarbamates.19 Several interesting results were obtained for these studies.  First, 

they reported that compound 4.72 underwent an NKR to give S-aryl thiocarbamate 4.73 in 98% yield 

when the reaction was performed in 10 volumes of N-methylpyrrolidinone at 280 oC for 20 minutes 

(Scheme 4.17). No decomposition of the starting material or product occurred. They also found, 

using compound 4.74 as a model substrate (Scheme 4.18), that the NKR reaction proceeded much 

faster when performed in 10 volumes of formic acid in a sealed tube at 140 oC.  
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4.75 (78% when done in formic acid,
23% when done in NMP)  

Scheme 4.18. NKR of 4.74 in NMP and formic acid 

For example, in NMP after 30 minutes at 140 oC, only 23% conversion of 4.74 to 4.75 occurred 

(Scheme 4.18).  However, they achieved 78% conversion when the reaction was performed in formic 

acid at 140 oC for 30 minutes. This solvent effect is believed to be due to the stabilization of the 

proposed polar 4-center transition state which resembles intermediate 4.76 for NKR’s (Figure 4.9).20 

We are optimistic that these conditions will allow us to obtain S-aryl thiocarbamate 4.59 via NKR of 

compound O-aryl thiocarbamate 4.58.  

S

O N+

4.76  

Figure 4.9.  Structure of the proposed four-center transition state/intermediate for 
the NKR 

4.4 Experimental  

4.4.1 General 

All starting materials and reagents were obtained from Aldrich Chemical Company. 

Dichloromethane, acetonitrile and triethylamine were distilled from calcium hydride. DMF and 

HMPA were distilled from calcium hydride under reduce pressure. Tetrahydrofuran (THF) and 

benzene were distilled from sodium/benzophenone. Pentane was dried over Na2SO4 prior to use. 

N,N-dimethyl thiocarbamoyl chloride was distilled. Ethanol was distilled from phthalic anhydride. 
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Ammonia/EtOH solution was prepared by bubbling ammonia (cylinder tank) through dry ethanol.  

MOMCl (chloromethyl methyl ether) was prepared according to literature.21 BuLi was titrated 

according to literature.22  Silica-gel chromatography was performed using silica gel 60 Å (230-400 

mesh) obtained from Silicycle (Laval, Quebec, Canada). 1H, 13C and 19F NMR spectra were recorded 

on a Bruker Avance 300 spectrometer in CDCl3 or CD3OD at 300 MHz, 75 MHz and 282 MHz, 

respectively.  NMR spectra are reported in parts per million (ppm) relative to internal standards or 

solvent peaks. For NMR spectra run in CDCl3, chemical shifts (δ) for 1H NMR spectra are reported 

relative to internal Me4Si (δ 0.0 ppm), chemical shifts (δ) for 13C NMR spectra are relative to the 

solvent peak (δ 77.0 ppm, central peak), 19F NMR relative to an external CFCl3 (δ 0.0 ppm). For NMR 

spectra run in DMSO-d6, chemical shifts (δ) for 1H NMR spectra are reported relative to the residual 

solvent peak (δ 2.49 ppm), chemical shifts (δ)for 13C NMR spectra are relative to the solvent peak (δ 

39.5 ppm, central peak), 19F NMR relative to an external CFCl3 (δ 0.0 ppm). For NMR spectra run in 

CD3OD, chemical shifts (δ) for 1H NMR spectra are reported relative to the residual solvent peak (δ 

3.31 ppm), chemical shifts (δ) for 13C NMR spectra are relative to the solvent peak (δ 49.0 ppm, 

central peak), 19F NMR relative to an external CFCl3 (δ 0.0 ppm). Low-resolution (LRMS) and 

high-resolution (HRMS) electron impact (EI) mass spectra were recorded on a JEOL HX 110 double 

focusing mass spectrometer. Electrospray (ESI) mass spectra were obtained with a Waters/Micromass 

QTOF Ultima Global mass spectrometer. Melting points were determined on a Fisher-Johns melting 

point apparatus and are uncorrected.  
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4.4.2 Syntheses 

4.44

OMOM

OMOM

 

2,2′-Bis(methoxymethoxy)-1,1′-binaphthalene (4.44).  This was prepared according to the 

procedure of Cox et al.15 Racemic: BINOL (49.7 g, 0.174 mol) was dissolved in DMF (150 ml) by 

heating and THF (50 ml) was then added.  To a suspension of NaH (60% dispersed in mineral oil, 30 

g, 0.75 mol, 4 equiv) in THF (200 ml) at 0 oC was added the BINOL solution over a period of one 

hour.  The ice bath was removed and the reaction stirred for 20 min.  The mixture was cooled to 0 

oC and MOMCl (30 ml) was added and the mixture stirring overnight.  The reaction was quenched 

with ice then poured onto ice/H2O (500 ml) and extracted with ethyl acetate.  The combined extracts 

were washed with H2O and brine then dried (Na2SO4) and concentrated. Triturating the oily residue 

with CH2Cl2 followed by filtration gave 29.6 g of 4.44 as pale yellow crystals.  The filtrate was 

concentrated in vacuo and CH2Cl2 was added.  This gave an additional 30.3 g of 4.44 (total = 59.9 g, 

92%).  Chiral ((S)-4.44):  Prepared as a white solid in 96% yield using the same procedure except 

(S)-BINOL was used. 1H NMR was identical to that reported in the literature.16 1H NMR (CDCl3, 

300 MHz) δ 7.94 (d, J = 9.0 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 9.0 Hz, 2H), 7.22 (d, J = 

11.3 Hz, 2H), 7.15 (t, J = 9.0 Hz, 2H), 5.07 (d, J = 6.8 Hz, 2H, OCHHO x 2), 4.96 (d, J = 6.7 Hz, 2H, 

OCHHO x 2), 3.13 (s, 6H, CH3 x 2). 
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4.45

I

OMOM

OMOM

I

 

2,2′-Bis(methoxymethoxy)-3,3′-diiodo-1,1′-binaphthalene (4.45)  This is prepared 

according to the procedure of Cox et al.15 To a stirred solution of MOM-BINOL 4.44 (14.96 g, 40 

mmol) in Et2O (680 ml) at rt was added BuLi (1.6 M in hexane, 80.0 ml, 128 mmol, 3.2 equiv) over 

30 min.  After stirring 30 min at rt, it was cooled to 0 oC before THF (400 ml) was added.  After 

stirring 1 h at 0 oC, iodine (32 g, 126 mmol, 3.15 equiv) was added and the resulting mixture was 

stirred 10 min at 0 oC and then the ice bath was removed and stirring was continued for 1h.  Reaction 

was quenched with 10% Na2S2O3 (300 ml) at 0 oC and stirred 10 min.  After separation and 

extraction with Et2O the combined extracts were washed with 10% Na2S2O3 and brine (60 ml) then 

dried (Na2SO4) and concentrated.  Flash chromatography of the residue (ethyl acetate/hexane, 1:10) 

gave 14.46 g of 4.45 as pale yellow crystals which were recrystallized from CH2Cl2/hexane.  The 

filtrate was subjected to flash chromatography (elution with ethyl acetate/hexane1:10) to give 

additional 3.02 g of 4.45 as yellow solid which was recrystallized to give pale yellow crystals (total = 

17.48 g, 70%). 1H NMR was identical to that reported in the literature.16  1H NMR (CDCl3, 300 MHz) 

δ 8.52 (s, 2H, H-4 and H-4′), 7.76 (d, J = 8.1 Hz, 2H), 7.41 (t, J = 7.1 Hz, 2H), 7.28 (t, J = 7.6 Hz, 2H), 

7.16 (d, J = 8.5 Hz, 2H), 4.79 (d, J = 5.6 Hz, 2H, OCHHO x 2), 4.68 (d, J = 5.6 Hz, 2H, OCHHO x 2), 

2.59 (s, 6H, CH3 x 2). 
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4.46

CF3

OMOM

OMOM

CF3

 

2,2′-Bis(methoxymethoxy)-3,3′-bis(trifluoromethyl)-1,1′- binaphthalene (4.46)  This was 

prepared according to the procedure of Wu et al.16. with slight modifications.  To a mixture of 4.45 

(8.56 g, 13.7 mmol) and CuI (6.75 g, 35.3 mmol, 2.6 equiv) in DMF (120 ml) was added HMPA (10 

ml) and FSO2CF2CO2Me (8.1 ml 63.5 mmol, 4.6 equiv).  The resulting mixture was heated at 85 oC 

for 7 h before cooling to rt and diluting with Et2O (150 ml). H2O (200 mL) was added, the layers were 

separated and the aq. layer was extracted with Et2O.  The combined extracts were washed with H2O 

and brine then dried (Na2SO4) and concentrated to give crude 4.46 as an oil.  This material was used 

for the next step.  An analytic sample of 4.46 was obtained by flash chromatography of the residue 

(ethyl acetate/hexane, 1:8).  1H, 13C and 19F NMR were identical to those reported in the literature.16 

1H NMR (CDCl3, 300 MHz) δ 8.37 (s, 2H, H-4 and H-4′), 8.00 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.4 Hz, 

2H), 7.43 (t, J = 7.3 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 4.79 (dd, J = 5.4 Hz, J = 2.6 Hz, 2H), 4.55 (dd, 

J = 5.4 Hz, J = 2.6 Hz, 2H), 2.73 (s, 6H); 19F NMR (CDCl3, 282 MHz) δ -60.5. 

4.47

CF3

OH

OH

CF3

 

3,3′-Bis(trifluoromethyl)-1,1′-binaphthyl-2,2′-diol (4.47) This is prepared according to 

the procedure of Wu et al.16 To crude 4.46 was added THF (170ml), MeOH (170 ml) and 

Amberlyst-15 (6.0 g).  The resulting mixture was refluxed for 15 h.  After filtration and 
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concentration, the residue was subjected to flash chromatography (ethyl acetate/hexane, 1:6) and the 

4.47 obtained for the column was  recrystallized from ethyl acetate/hexane to give 4.47 as colorless 

crystals (5.22 g, 87% from 4.45).  1H and 13C NMR were identical to that reported in the literature.16  

1H NMR (acetone-d6, 300 MHz) δ 8.77 (s, 2H, OH x 2), 8.44 (s, 2H, H-4 and H-4′), 8.12 (d, J = 7.4 

Hz, 2H), 7.47-7.35 (m, 4H), 7.02 (d, J = 8.3 Hz, 2H). 

4.48

CF3

O

O

CF3

C

C

S

S

NMe2

NMe2

 

2,2′-Bis(N,N-dimethylthiocarbamoyloxy)-3,3′-bis(trifluoromethyl)-1,1′-binaphthalene 

(4.48) To a solution of CF3-BINOL 4.47 (2.00 g, 4.74 mmol) in DMF (20 ml) at 0 oC was added 

NaH (60% dispersed in mineral oil, 760 mg, 19.0 mmol, 4 equiv) in one portion.  The reaction 

mixture was stirred 20 min at 0 oC, before thiocarbamoyl chloride (2.34 g, 21.0 mmol, 4.4 equiv) was 

added and then heated at 85 oC for 3 h.  After cooling to rt, the mixture was poured into cold 1 M 

NaOH (80 ml) slowly.  The resulting precipitate was collected and washed with cold H2O and cold 

hexane then redissolved in CH2Cl2 and washed with brine then dried (Na2SO4) and concentrated. 

The residue was purified by flash chromatography (ethyl acetate/hexane/methylene chloride, 2:2:1) to 

give O-aryl thiocarbamate 4.48 as a white solid (2.74 g, 97%).  Mp: 260-262 oC;  1H NMR (CDCl3, 

300 MHz) δ 8.33 (s, 2H, H-4 and H-4′), 7.95 (d, J = 8.0 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H, overlapping 

with d at 7.49), 7.49 (d, J = 9.4 Hz, 2H, overlapping with t at 7.51), 7.35 (t, J = 8.0 Hz, 2H), 3.17 (s, 

6H, CH3 x 2), 2.97 (s, 6H, CH3 x 2); 13C NMR (CDCl3, 75 MHz) δ 185.5 (C=S), 145.7 (C-2 and C-2′), 

134.6 (CAr), 130.3 (CAr), 129.2 (q, J = 4.0 Hz, C-4 and C-4′), 128.7 (CAr), 128.7 (CAr), 128.2 (CAr), 
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127.1 (CAr), 127.0 (CAr), 123.2 (q, J = 271 Hz, CF3), 121.9 (q, J = 31.1 Hz, C-3 and C-3′), 43.1 (CH3), 

38.1 (CH3); 19F NMR (CDCl3, 282 MHz) δ -60.3; LRMS (EI) m/z (%) 596 (M+, 42), 577 (M-19, 7), 

524 (9), 492 (4), 420 (33), 176 (21), 88 (100); HRMS (EI) calcd for C28H22F6N2O2S2 596.1027; found 

596.1025. 

4.49

CF3

S

S

CF3

C

C

O

O

NMe2

NMe2

 

2,2′-Bis(N,N-dimethylcarbamoylthio)-3,3′-bis(trifluoromethyl)-1,1′-binaphthalene (4.49). 

O-Aryl thiocarbamate 4.48 (1.20 g, 2.01 mmol) in a glass bomb was purged with argon and heated at 

260-268 oC for 45 min.  After cooling to rt and scratching down some solids on the sides of the glass 

bomb, it was heated at 265 oC for another 5 min.  Purification by flash chromatography (ethyl 

acetate/hexane, 1:4 to 1:2 to 1:1) gave S-aryl thiocarbamate 4.49 as a white solid (999 mg, 83%).  Mp: 

245 oC; 1H NMR (CDCl3, 300 MHz) δ 8.43 (s, 2H, H-4 and H-4′), 7.98 (d, J = 8.0 Hz, 2H), 7.56 (t, J 

= 7.3 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.24-7.20 (m, 1H), 2.55 (s, 12H, CH3 x 4); 13C NMR (CDCl3, 

75 MHz) δ 165.0 (m, C=O x 2), 146.7 (C-2 and C-2′), 134.1, 132.2, 130.9 (q, J = 29.3 Hz, C-3 and 

C-3′), 128.6 (CAr), 128.5 (CAr), 128.4 (CAr), 128.3 (CAr), 124.5 (CAr), 123.3 (q, J = 272 Hz, CF3), 36.6 

(m); 19F NMR (CDCl3, 282 MHz) δ -59.3; LRMS (EI) m/z (%) 596 (M+, 8), 577 (M-19, 7), 524 (4), 

420 (78), 351 (22), 350 (25), 176 (57), 72 (100); HRMS (EI) calcd for C28H22F6N2O2S2 596.1027; 

found 596.1025. 
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4.50

CF3

S

S

CF3

O O

O
O
Cl
Cl

 

2,2′-Bis(chlorosulfonyl)-3,3′-bis(trifluoromethyl)-1,1′-binaphthalene (4.50).  To a 

solution of 4.49 (500 mg, 0.839 mmol) in acetic acid (40ml) was added H2O (20 ml).  Cl2 was 

bubbled through (2 bubbles per sec) at rt for 25 min before purging with N2 for 5 min.  After 

filtration, 482 mg of a pale yellow solid was obtained. 1H NMR of this crude material showed 

mainly the desired product 4.50.  This crude material was used for the next step.  An analytically 

pure sample was obtained by short column flash chromatography (CH2Cl2) to give 4.50 as a white 

solid (253 mg, 51%).  Mp: > 265 oC (dec.); 1H NMR (CDCl3, 300 MHz) δ 8.70 (s, 2H, H-4 and H-4′), 

8.15 (d, J = 7.5 Hz, 2H), 7.81 (t, J = 7.2 Hz, 2H), 7.54 (t, J = 7.8 Hz, 2H), 7.06 (d, J = 9.3 Hz, 2H); 13C 

NMR (DMSO-d6, 75 MHz) δ 139.3 (CAr), 137.1 (CAr), 134.8 (CAr), 131.6 (CAr), 129.6 (t, J = 7.3 Hz, 

C-4 and C-4′), 129.2 (CHAr), 129.1 (CHAr), 128.2 (CHAr), 128.1 (CHAr), 124.8 (t, J = 30.9 Hz, C-3 and 

C-3′), 124.5 (t, J = 272 Hz, CF3); 19F NMR (CDCl3, 282 MHz) δ -54.6; LRMS (EI) m/z (%) 589 (M+4, 

2), 587 (M+2, 10), 585 (M+, 12), 538 (6), 536 (8), 487 (60), 452 (53), 440 (51), 404 (95), 389 (90), 

388 (100), 350 (50), 320 (61); HRMS (EI) calcd for C22H10Cl2F6O4S2 585.9302; found 585.9304.  

CF3

S

S

CF3

O O

O
O
OEt
NH2

CF3

S

S

CF3

O O

O
O
NH2

NH2

4.51 4.52  

2-Ethoxysulfonyl-2′-sulfamoyl-3,3′-bis(trifluoromethyl)-1,1′-binaphthalene (4.51) and 

2,2′-Bis(sulfamoyl)-3,3′-bis(trifluoromethyl)-1,1′-binaphthalene (4.52). To a solution of 4.50 



 229

(850 mg, 1.45 mmol) in THF (40 ml) was added NH3/EtOH solution (2.6 M, 30 ml, 78 mmol, 54 

equiv) via syringe in 2 min at rt.  After addition, the resulting mixture was stirred for 1.5 h t rt.  The 

reaction was concentrated and the residue was purified by flash chromatography (CH2Cl2 to 

CH2Cl2/EtOAc 1:10 to 1:1) to give 4.51 as a pale yellow solid (145 mg, 18%) and 4.52 as a white 

solid (150 mg, 19%).  Characterization data for 4.51:  1H NMR (CDCl3, 300 MHz) δ 8.62 (s, 1H), 

8.57 (s, 1H), 8.05 (t, J = 6.9 Hz, 2H), 7.70-7.60 (m, 2H), 7.48-7.38 (m, 2H), 6.98 (d, J = 8.7 Hz, 1H), 

6.89 (d, J = 8.4 Hz, 1H), 5.45 (s, 2H, NH2), 3.99 (q, J = 6.9 Hz, 2H, OCH2CH3), 1.13 (t, J = 7.0 Hz, 

3H, OCH2CH3); 19F NMR (CDCl3, 282 MHz) δ -55.16, -55.22; LRMS (EI) m/z (%) 577 (M+, 5), 497 

(15), 468 (95), 449 (100), 385 (64). Characterization data for 4.52: mp: 248-250 oC; 1H NMR 

(DMSO-d6, 300 MHz) δ 8.79 (s, 2H, H-4 and H-4′), 8.25 (d, J = 7.9 Hz, 2H), 7.66 (t, J = 7.3 Hz, 2H), 

7.44 (t, J = 7.5 Hz, 2H), 7.16 (s, 4H, NH2 x 2), 6.72 (d, J = 8.5 Hz, 2H); 13C NMR (DMSO-d6, 75 

MHz) δ 139.4 (CAr), 135.9 (CAr), 134.4 (CAr), 132.2 (CAr), 131.3 (q, J = 7.1 Hz, C-4 and C-4′), 130.6 

(CAr), 129.7 (CAr), 127.4 (CAr), 124.2 (q, J = 269 Hz, CF3), 123.6 (q, J = 31.1 Hz, C-3 and C-3′); 19F 

NMR (DMSO-d6, 282 MHz) δ -52.9; LRMS (EI) m/z (%) 548 (M+, 3), 468 (100), 450 (10), 404 (20), 

384 (12); HRMS (EI) calcd for C22H14F6N2O4S2 548.0299; found 548.0313. 

O

O C
S

NMe2

C
S

NMe2

Br

Br
4.58  

2,2′-Bis(N,N-dimethylthiocarbamoyloxy)-3,3′-bis(trifluoromethyl)-1,1′-binaphthalene 

(4.58).  4.58 was prepared using the same procedure for the preparation of 4.48 using 4.5717 (2.22 g, 

5 mmol), DMF (45 ml), NaH (60% in mineral oil, 600 mg, 15 mmol, 3 equiv), 
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N,N-dimethylthiocarbamoyl chloride (1.853 g, 15 mmol, 3 equiv), 85 oC, 4 h. Flash chromatography 

(EtOAc/CH2Cl2/hexane, 1:1:10) followed by recrystallization from EtOH gave 4.58 as colorless 

crystals (1.25 g, 40%).  1H NMR (DMSO-d6,, 300 MHz) δ 8.46 (s, 2H), 7.94 (d, J = 8.1 Hz, 2H), 

7.46 (t, J = 7.2 Hz, 2H), 7.26 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 3.13 (s, 6H), 2.96 (s, 6H); 

13C NMR (DMSO-d6, 75 MHz) δ 184.4 (C=S x 2), 146.6 (CAr), 133.1 (CAr), 132.3 (CAr), 131.8 (CAr), 

127.9 (CAr), 127.6 (CAr), 127.1 (CAr), 126.9 (CAr), 126.5 (CAr), 116.6 (CAr), 43.0 (CH3 x 2), 38.5 (CH3 

x 2). 

(S)-4.61

OMOM

OMOM

CH3

CH3

 

(S)-2,2′-Bis(N,N-dimethylthiocarbamoyloxy)-3,3′-dimethyl-1,1′-binaphthalene ((S)-4.61).  

This is prepared according to the procedure of Ooi et al.17 and Cox et al.15 To a solution of (S)-4.44 

(11.2 g, 30.0 mmol), in THF (60 ml) at -78 oC was added nBuLi (1.0 M in hexane, 72 ml, 72 mmol, 

2.4 equiv) dropwise over 5 min.  After addition, the resulting mixture was stirred for 1 h at 0 oC, 

before cooling to -78 oC again.  Iodomethane (6.0 ml, 118 mmol, 3.9 equiv) was added over 10 min 

and reaction mixture was stirred overnight and quenched with sat. NH4Cl (30 ml) and H2O (10 ml).  

The mixture was extracted with ethyl acetate and the combined extracts were dried (Na2SO4) and 

concentrated.  The residue was purified by flash chromatography (ethyl acetate/hexane, 1:2) to give 

(S)-4.61 as white solid (11.72 g, 97%). 1H NMR and 13C NMR were identical to that reported in the 

literature.16 1H NMR (CDCl3, 300 MHz) δ 7.83 (s, 2H, overlapping with d at 7.83), 7.82 (d, J = 5.8 

Hz, 2H, overlapping with s at 7.83), 7.38 (ddd, J = 10.4 Hz, J = 5.0 Hz, J = 2.6 Hz, 2H), 7.24-7.18 (m, 
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4H), 4.64 (dd, J = 5.8 Hz, J = 2.8 Hz, 2H, OCHHO x 2), 4.52 (dd, J = 5.8 Hz, J = 2.8 Hz, 2H, 

OCHHO x 2), 2.87 (s, 6H, CH3), 2.62 (s, 6H, CH3). 

(S)-4.62

CH3

OH

OH

CH3

 

(S)-3,3′-Dimethyl-1,1′-binaphthyl-2,2′-diol ((S)-4.62). This is prepared according to the 

procedure of Cox et al.15 A solution of (S)-4.61 (6.06 g, 15 mmol), and Amberlyst-15 (2.50 g) in 

MeOH-THF (1:1, 240 mL) was refluxed for 16 h.  The solution was cooled, filtered and concentrated 

to give (S)-4.62 as a white solid (4.81 g, 100%). 1H NMR was identical to that reported in the 

literature.16 1H NMR (CDCl3, 300 MHz) δ 7.80 (d, 2H, J = 7.1 Hz, overlapping with s at 7.79), 7.79 

(s, 2H, overlapping with d at 7.80), 7.32 (t, J = 7.4 Hz, 2H), 7.21 (t, J = 7.4 Hz, 2H), 7.06 (d, J = 8.3 

Hz, 2H), 5.08 (s, 2H, OH x 2), 2.49 (s, 6H, CH3 x 2).  

(S)-4.60

CH3

S

S

CH3

C

C

O

O

NMe2

NMe2

 

(S)-2,2′-Bis(N,N-dimethylcarbamoylthio)-3,3′-dimethyl-1,1′-binaphthalene ((S)-4.60).18   

This was prepared using the same procedure for the preparation of 4.48 and 4.49. Compound 

(S)-4.62 (3.10 g, 9.9 mmol), in DMF (40 ml), NaH (60% dispersion in mineral oil, 1.2g 30 mmol, 3.0 

equiv), N,N-dimethylthiocarbamoyl chloride (3.71 g, 30.0 mmol, 3 equiv), 85 oC, 3 h, gave 4.09 g of 

crude O-aryl thiocarbamate as white solid.  The crude O-aryl thiocarbamate was then heated in glass 

bomb at 270 oC for 25 min and the residue was purified flash chromatography (CH2Cl2/hexane, 1:1 
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then ethyl acetate/hexane, 1:1) to give S-aryl thiocarbamate (S)-4.60 as a white solid (2.35 g, 49% over 

2 steps). Mp: 178-179 oC;  1H NMR (CDCl3, 300 MHz) δ 7.86 (s, 2H, H-4 and H-4′), 7.78 (d, J = 

8.1 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.11 (t, J = 7.6 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 2.66 (s, 12H, 

CH3 x 4); 13C NMR (CDCl3, 75 MHz) δ 165.8 (C=S x 2), 144.3 (C-2 and C-2′), 139.7 (CAr), 133.9 

(CAr), 132.1 (CAr), 128.7 (CAr), 128.5 (CAr), 127.5 (CAr), 126.9 (CAr), 126.8 (CAr), 125.2 (CAr), 36.8 

(4C, m, N(CH3)2 x 2), 22.1 (2C, ArCH3 x 2). LRMS (EI) m/z (%) 488 (M+, 28), 416 (2), 384 (5), 383 

(5), 312 (100), 296 (15), 282 (5), 72 (41); HRMS (EI) calcd for C28H28N2O2S2 488.1592; found 

488.1588. 

(S)-4.63

CH3

S

S

CH3

O O

O
O

Cl
Cl

 

(S)-2,2′-Bis(chlorosulfonyl)-3,3′-dimethyl-1,1′-binaphthalene ((S)-4.63).  To a solution of 

(S)-4.60 (1.30 g, 26.6 mmol) in acetic acid (100 ml) was added H2O (30 ml) slowly by pipette.  The 

resulting mixture was cooled to 0 oC before Cl2 was bubbled through (2 bubbles per sec).  When 

bubbling ceased, the flow rate of Cl2 was adjusted to 1 bubble per 3-5 sec.  The Cl2 was stopped 

when the flow rate increased (35 min in total).  After purging with N2 for 3 min, it was filtered by 

suction filtration (ice in filter flask) to give 660 mg of crude (S)-4.63 as yellow powder.  The filtrate 

was extracted with CH2Cl2 and the combined extracts were dried (Na2SO4) and concentrated.  The 

water bath in the rotary evaporators (low vacuum was used to remove CH2Cl2 while high vacuum was 

used to remove HOAc) was maintained at 30 oC.  The residue was passed thru a short silica pad 

using CH2Cl2 as eluent to give additional 52 mg of (S)-4.63 (total: 712 mg).  This crude material was 
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used directly for the next step.  An analytically pure sample of (S)-4.63 was obtained as a white solid 

by flash chromatography (CH2Cl2).  1H NMR (CDCl3, 300 MHz) δ 8.02 (s, 2H, H-4 and H-4′), 7.89 

(d, J = 8.0 Hz, 2H), 7.60 (t, J = 7.4 Hz, 2H), 7.28 (t, J = 7.7 Hz, 2H), 6.91 (d, J = 8.2 Hz, 2H), 3.07 (s, 

6H, CH3 x 2); 13C NMR (CDCl3, 75 MHz) δ 140.2 (CAr), 137.5 (CAr), 135.1 (CAr), 133.4 (CAr), 132.7 

(CAr), 131.0 (CAr), 130.2 (CAr), 127.8 (CAr), 127.6 (CAr), 127.5 (CAr), 22.3 (CH3 x 2); LRMS (EI) m/z 

(%) 482 (M+2, 9), 480 (M+2, 39), 478 (M+, 50), 344 (42), 312 (15), 296 (100), 280 (41); HRMS (EI) 

calcd for C22H16Cl2O4S2 477.9867; found 477.9858. 

(S)-4.64

CH3

S

S

CH3

O O

O
O

N NH4

 

(S)-Ammonium 3,3′-dimethyl-1,1′-binaphthyl-2,2′-disulfonimide ((S)-4.64).  To a 

solution of crude disulfonyl chloride (S)-4.63 (710 mg) in benzene (60 ml) at 0 oC was added 

NH3/EtOH (2.6 M, 15 ml) via syringe pump over 1.5 h.  After addition, the resulting mixture was 

stirred for 4 h at 0 oC, then O/N (13 h) at rt.  The mixture was filtered and filter cake was rinsed with 

dry benzene. The filtrate was concentrated and the residue was purified by flash chromatography 

(CH2Cl2/MeOH/NH4OH, 10:2:0.5) to give (S)-4.64 as a white solid (370 mg, 32% over 2 steps from 

(S)-4.60).  Mp: 216-218 oC;  1H NMR (DMSO-d6, 300 MHz) δ 7.87 (d, J = 8.5 Hz, 2H), 7.85 (s, 

2H), 7.42 (t, J = 7.3 Hz, 2H), 7.09 (t, J = 7.4 Hz, 2H, overlapping), 7.09 (brs, 4H, NH4, overlapping), 

6.63 (d, J = 8.0 Hz, 2H), 2.78 (s, 6H, CH3 x 2); 13C NMR (DMSO-d6, 75 MHz) δ 139.6 (CAr), 136.8 

(CAr), 133.6 (CAr), 131.8 (CAr, 4C), 128.0 (CHAr), 127.6 (CHAr), 127.4 (CHAr), 126.1 (CHAr), 22.8 

(CH3 x 2); LRMS (ESI) 422.1111 (100); HRMS (ESI) calcd for C22H16NO4S2 422.0521; found 
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422.0511. 

(S)-4.65

OMOM

OMOM

Br

Br

 

(S)-2,2′-Bis(methoxymethoxy)-3,3′-dibromo-1,1′-binaphthalene ((S)-4.65). This is 

prepared according to the procedure of Ooi et al.17  To a solution (S)-4.44 (14.98 g, 40 mmol) in THF 

(120 ml) at -78 oC was added BuLi (1.6 M in hexane, 60 ml, 96 mmol, 2.4 equiv) via syringe pump 

over 20 min.  After stirring 1 h at 0 oC, it was cooled to -78 oC before a solution of Br2 (6.15 ml, 19.2 

g, 120 mmol, 3 equiv) in dry pentane (30 ml) was added over 30 min. The resulting mixture was 

stirred O/N, poured on to sat. Na2SO3 (150 ml) and stirred 15 min before extracting with EtOAc.  

Removal of solvent gave a yellow oil, which was purified flash chromatography (ethyl 

acetate/CH2Cl2/hexane, 1:1:15) which gave (S)-4.65 as pale yellow oil (18.0 g, 85%) which solidified 

upon standing.  1H NMR was identical to that reported in the literature.17 1H NMR (CDCl3, 300 

MHz) δ 8.39 (s, 2H, H-4 and H-4′), 7.78 (d, J = 8.1 Hz, 2H), 7.42 (t, J = 8.8 Hz, 2H), 7.28 (t, J = 7.6 

Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 4.80 (t, J = 6.5 Hz, 4H, OCH2O x 2), 2.54 (s, 6H, CH3 x 2).  

(S)-4.66

OMOM

OMOM

Ph

Ph

 

(S)-2,2′-Bis(methoxymethoxy)-3,3′-diphenyl-1,1′-binaphthalene ((S)-4.66).  This was 

prepared according to the procedure of Cox et al.15 with some modifications. To a solution (S)-4.65 

(18.02 g, 33.75 mmol) in dimethoxyethane (DME, 210 ml) under argon was added Pd(PPh3)4 (500 mg, 
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0.43 mmol, 1.3 mol %) and the resulting mixture was stirred 10 min before phenyl boronic acid (14.4 

g, 118 mmol, 3.5 equiv) and 2 M aq. Na2CO3 (90 ml, 180 mmol, 5.3 equiv) were added successively.  

The mixture was heated at 105 oC for 34 h then cooled to rt.  Insoluble solids were removed by 

suction filtration.  The filtrate was concentrated to remove the organic solvent and the residue was 

extracted with CH2Cl2.  The combined extracts were washed with sat. NH4Cl and brine then dried 

(Na2SO4) and concentrated.  The residue was purified by flash chromatography (ethyl acetate/hexane, 

1:20 to 1:10) to give (S)-4.66 as a white solid (12.79 g, 73%). 1H NMR and 13C NMR was identical 

to that reported in the literature.16  1H NMR (CDCl3, 300 MHz) δ 7.94 (s, 2H, H-4 and H-4′), 7.87 (d, 

J = 8.1 Hz, 2H), 7.74 (d, J = 7.2 Hz, 4H), 7.48-7.25 (m, 6H), 4.39 (d, J = 5.7 Hz, 2H, OCHHO x 2), 

4.35 (d, J = 5.7 Hz, 2H, OCHHO x 2), 2.33 (s, 6H, CH3 x 2). 

(S)-4.67

OH

OH

Ph

Ph

 

(S)-3,3′-Diphenyl-1,1′-binaphthyl-2,2′-diol ((S)-4.67).  This was prepared according to the 

procedure of Wu et al.16 To a solution of (S)-4.66 (12.5 g, 23.95 mmol) in MeOH (150 mL) and THF 

(170 mL) was added Amberlyst-15 (10 g).  The resulting mixture was refluxed for 16 h.  The cooled 

solution was filtered and the filtrate concentrated. The residue was subjected to flash 

chromatography (ethyl acetate/hexane 1:10) to give (S)-4.67 as a yellow solid which was 

recrystallized from ethyl acetate/hexane to give (S)-4.67 as a white solid (9.88 g, 95%). 1H and 13C 

NMR was identical to that reported in the literature.16 1H NMR (CDCl3, 300 MHz) δ 8.04 (s, 2H, 

H-4 and H-4′), 7.94 (d, J = 7.9 Hz, 2H), 7.76 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.4 Hz, 4H), 7.45-7.31 
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(m, 6H), 7.26 (d, J = 9.4 Hz, 2H), 5.37 (s, 2H, OH x 2). 

Ph

S

S

Ph

C

C

O

O

NMe2

NMe2

(S)-4.68  

2,2′-Bis(N,N-dimethylcarbamoylthio)-3,3′-diphenyl-1,1′-binaphthalene ((S)-4.68).  This 

was prepared using the same procedure used for the preparation of 4.48 and 4.49.  Compound 

(S)-4.67 (8.68 g, 19.8 mmol), DMF (20 ml), NaH (60% dispersion in mineral oil, 2.4 g, 60 mmol, 3 

equiv), N,N-dimethylthiocarbamoyl chloride (7.42 g, 60 mmol, 3 equiv), 85-90 oC, 2 h.  This gave 

13.5 g of crude O-aryl thiocarbamate as a white solid.  Crude O-aryl thiocarbamate (13.5 g), glass 

bomb, 270 oC, 30 min. S-aryl thiocarbamate (S)-4.68 was obtained as a white solid after 

chromatography (7.08 g, 58%).  Mp: 244-245 oC; 1H NMR (CDCl3, 300 MHz) δ 7.95 (s, 2H, H-4 

and H-4′), 7.87 (d, J = 9.0 Hz, 2H), 7.61 (d, J = 7.3 Hz, 2H), 7.47-7.21 (m, 6H), 2.40 (s, 12H, CH3 x 4); 

13C NMR (CDCl3, 75 MHz) δ 165.5 (C=S x 2), 144.4 (C-2 and C-2′), 144.2 (CAr), 142.0 (CAr), 133.5 

(CAr), 132.4 (CAr), 130.3 (CAr), 129.4 (CAr), 128.1 (CAr), 128.0 (CAr), 127.6 (CAr), 127.2 (CAr), 127.1 

(CAr), 126.8 (CAr), 126.2 (CAr), 36.7 (m, CH3 x 4); LRMS (EI) m/z (%) 612 (M+, 18), 596 (1), 540 (2), 

508 (7), 436 (100), 358 (7), 83 (41), 72 (29); HRMS (EI) calcd for C38H32N2O2S2 612.1905; found 

612.1921. 

NH4

Ph

S

S

Ph

O O

O
O

N

(S)-4.70  

Ammonium 3,3′-diphenyl-1,1′-binaphthyl-2,2′-disulfonimide ((S)-4.70). (S)-4.68 (1.00 g, 
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1.63 mmol) was dissolved in HOAc (75 ml) by heating.  The solution was cooled to rt and H2O (20 

ml) was added. Cl2 was bubbled thru at 2-3 bubbles per second for 20 min.  After purging with N2, 

the solid was collected by filtration to give crude (S)-4.69 as a light yellow solid (714 mg). LRMS (EI) 

m/z (%) 606 (M+4, 20), 604 (M+2, 66), 602 (M+, 85), 504 (28), 468 (92), 436 (38), 420 (94), 404 

(100), 403 (59), 326 (31); HRMS (EI) calcd for C32H20Cl2O4S2 602.0180; found 602.0174. This 

material was used for the next step without any further purification.  

(S)-4.70 was prepared using the same procedure described for the preparation of (S)-4.64. Crude 

(S)-4.69 (490 mg), benzene (100 ml), NH3/EtOH (2.6M, 10 ml), O/N at rt. Additional NH3/EtOH 

(2.6M, 10 ml), then 6 h at rt Flash chromatography (CH2Cl2/MeOH/NH4OH, 10:2:0.5) gave (S)-4.70 

as a white solid (215 mg, 34% over 2 steps from (S)-4.68).  Mp: 309-311 oC; 1H NMR (DMSO-d6, 

300 MHz) δ 8.04-7.89 (m, 4H), 7.55-6.89 (m, 20H, 16 HAr and NH4); 13C NMR (DMSO-d6, 75 MHz) 

δ 142.2 (CAr), 138.9 (CAr), 136.1 (CAr), 133.1 (CAr), 132.3 (CAr), 132.1 (CHAr), 128.6 (CHAr), 128.0 

(CHAr), 127.9 (CHAr), 127.2 (CHAr), 126.8 (CHAr); LRMS (ESI) m/z (%) 546.1510 (100); HRMS (ESI) 

calcd for C32H20NO4S2 546.0834; found 546.0751. 

4.71

SH

S C
O

NMe2

 

2-(N,N-Dimethylcarbamoylthio)-2′-thio-1,1′-binaphthalene (4.71). To a solution of 

4.3218 (115 mg, 0.250 mmol) and TMEDA (0.18 ml) in dry THF (12 ml) at -78 oC was added sec-BuLi 

(0.85 ml, 1.3 M in hexane, 1.1 mmol, 4.4 equiv) slowly over 15 min.  After stirring for 1 h at -78 oC, 

TMSCl (0.5 ml) was added and reaction was stirred for 1 h at -78 oC, then 1 h at rt before quenching 
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with sat. NH4Cl.  The mixture was extracted with ethyl acetate, dried (Na2SO4) and concentrated. 

The residue was purified by flash chromatography (EtOAc/hexane, 1:2) to give 4.71 as a white solid 

(70 mg, 72%).  Mp: 168-170 oC; 1H NMR (CDCl3, 300 MHz) δ 8.01 (d, J = 8.7 Hz, 1H), 7.03 (d, J 

= 8.1 Hz, 1H), 7.84-7.81 (m, 3H), 7.52 (d, J = 8.7 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.4 Hz, 

1H), 7.26 (t, J = 7.9 Hz, 1H), 7.21 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.99 (d, J = 8.4 Hz, 

1H), 3.42 (s, 1H, SH), 2.76 (s, 3H, CH3), 2.62 (s, 3H, CH3); LRMS (EI) m/z (%) 389 (M+, 10), 316 (4), 

284 (100), 282 (38), 72 (26); HRMS (EI) calcd for C23H19NOS2 389.0908; found 389.0904. 
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