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Abstract

In laser cladding, a material, usually in the form of powder, is deposited on a substrate.

Powder particles are intermingled with inert gas and fed by a powder feeder system on

the substrate. Laser is employed to melt the additive material and a small layer of surface

of the substrate simultaneously. While the powder is being deposited, the laser melts

the powder particles and the melted powder particles join the melt pool on the substrate

beneath the laser beam. Generating relative motion between the laser focal point and the

substrate will result in moving melt pool on the substrate. This will lead to addition of

a desired material to the substrate with desired thickness and good bonding as well as

minimum dilution. In addition, by producing clads beside and on the top of each other a

functional component can be built in a layer by layer fashion.

Despite many advantages of laser cladding, it is highly sensitive to internal and exter-

nal disturbances. This makes a closed-loop control system for laser cladding inevitable.

Utilizing a closed-loop control system in laser cladding makes the system insensitive to

external and internal disturbances. Having a closed-loop control system for laser cladding

would contribute to substantial improvement in clad quality and cost reduction. Feedback

sensor is an essential part in a closed-loop control system. Among di�erent parameters

that can be used as feedback signals in a closed-loop control of laser cladding, melt pool

geometry and in particular clad height is of great importance speci�cally for the purpose

of rapid prototyping.

This thesis presents novel algorithms for real-time detection of clad height in laser

cladding. This is accomplished by the following:

Tackling the issues pertinent to image acquisition in the presence of harsh and intensive

light is scrutinized. Important parameters of digital cameras related to selection of proper

type of CCD cameras in order to overcome the existent harsh condition are presented.

Also, the existent light in laser cladding arisen from di�erent sources is analyzed and

based upon that proper bandpass �lters and neutral �lters are selected. All these lead to

capture relatively sharp and clear images of the melt pool. Capturing good quality pictures

potentially would provide valuable information about the process. This information could

include, but is not limited to, melt pool geometry (i.e., melt pool height, width, melt
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pool pro�le, and wet angle), angle of solidi�cation, melt pool temperature, and melt pool

temperature distribution. Furthermore, the issues regarding path dependency of the melt

pool image are addressed by using a trinocular cameras con�guration. By utilizing this,

always two cameras monitor the front end of the melt pool regardless of the direction of

the clad.

Image analysis of the grabbed images is also discussed. Image thresholding is one of

the most formidable tasks in image processing and this di�culty is intensi�ed due to char-

acteristics of the grabbed images of the melt pool (e.g., surrounding hazy area around

the melt pool). Applying hard partitioning thresholding method did not lead to detec-

tion of the melt pool accurately. As a result, fuzzy thresholding by minimizing of the

measure of fuzziness is developed and its performance is investigated. The e�ect of three

important membership functions, triangular, Gaussian, and generalized Bell on the perfor-

mance of the thresholding method is investigated. Also, Image thresholding by utilizing

fuzzy c-means clustering is developed. Applying the developed thresholding methods show

promising results. Among the developed thresholding methods, fuzzy thresholding with

minimizing the measure of fuzziness with Gaussian membership function is selected for the

implementation in the algorithm.

Finally, Image feature tracking module is presented. The detected borders of the melt

pool images are transformed from image plane to the world plane by using a perspective

transformation. Four features of the elliptical features of the projected melt pool borders

are selected. These four features along with the angle of tangential path vector with

respect to the corresponding right hand side camera's axis are fed into an Elman recurrent

neural network. The proposed algorithms and the trained neural network are utilized in

the process resulting in acceptable detection of the clad height in deposition of straight

clads for a speci�c direction. It is concluded that the system can detect the clad height

with about ±0.15 mm maximum error.
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Chapter 1

Introduction

1.1 Laser

The invention of the laser, which stands for light ampli�cation by stimulated emission of

radiation, in 1958 with the publication of the scienti�c paper, Infrared and Optical Masers,

by Arthur L. Schawlow and Charles H. Townes opened a new door to science. Lasers have

multibillion markets and are vastly used in di�erent applications such as Manufacturing,

Measurement Techniques, Tra�c, Education and Entertainment, Energy and Environment,

Communication, Trade and Industry and Medicine. Our modern life does not seem feasible

without lasers nowadays. Introduction of lasers has created many applications as shown

in Figure 1.1 [1].

In manufacturing, huge amount of e�ort has taken place in order to integrate lasers.

Nowadays lasers are used in welding, cutting, drilling and various surface treatments of

metals and alloys, plastics, ceramics, composites, wood, glass and rubber. Aerospace, auto-

motive, marine, rail are only a few examples that laser largely is being used. Utilizing lasers

in manufacturing leads to production of components with better dimensional accuracy and

surface quality compare to those which have been produced with conventional methods.

Exploiting of laser as a manufacturing method has many advantages over conventional

manufacturing methods [1]:

• Lasers can be employed as a high precision machine tool for cutting, welding surface
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Figure 1.1: Some laser applications [1]
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treatment and host of other material processing applications.

• Complex component shapes can be treated.

• Remote non-contact processing is usually possible.

• It does not have to work in a vacuum area, unlike electron beam heaters, Physical

Vapour Deposition (PVD), ion implantation or plating.

• Treatment can be localised to a small area.

• Treatment of inaccessible areas of components by �bres or mirrors.

• Treatments are rapid.

Among the applications, lasers have shown promising results in the area of laser material

processing. One of the techniques which has been widely used by industry is laser cladding

which receives bene�ts from unique features of the emitted laser light.

1.2 Laser Cladding

In laser cladding, a material usually in form of powder is deposited on a substrate. Powder

particles are intermingled with inert gas and fed by a powder feeder system on the substrate.

Laser is employed to melt the additive material and a small layer of surface of the substrate

simultaneously. While the powder is being deposited, the laser heats the powder particles

and the heated powder particles join the melt pool on the substrate beneath the laser beam.

Generating relative motion between the laser focal point and the substrate will result in

moving melt pool on the substrate. This will lead to addition of a desired material to the

substrate with desired thickness and good bonding and the same time with the minimum

dilution. In addition, by producing clads beside and on the top of each other a functional

component can be made in a layer by layer fashion. Figure 1.2 shows schematic view of

laser cladding. Thickness of a clad is ranging from 0.1 to 2 mm.

Additive material will be deposited by various approaches. The method (laser cladding

by powder injection) which was elucidated earlier is more common and in this thesis laser

3
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cladding refers to this method unless otherwise stated. The additive material can be

deposited in form of paste (Laser cladding by Paste) or in form of wire (laser cladding

by wire feeding). In the other approach which usually named two-step laser cladding the

material powder is preplaced on the substrate and then laser is utilized to melt the additive

material and the surface of the substrate.

In laser cladding, one part can be made from 3D CAD model. Hence, laser cladding

is considered as an e�ective way of Rapid Prototyping. A 3D CAD model created by one

of various CAD soft wares is exploited to build a part layer by layer. Production of a

mechanical component in a layer-by-layer fashion allows industry to fabricate a part with

features that may be unique to the laser cladding technique. These features include a

homogeneous structure, enhanced mechanical properties, deposition of multiple materials,

making heterogeneous materials and production of complex geometries. Due to having

these features, the technology has been considered to be one of the potential manufacturing

techniques in 21st century.

Laser cladding is a versatile technology which has been exploited in manufacturing, part

repair, rapid prototyping of functional components (RP), rapid tooling (RT), and coating

for a decade [2]. This is just the tip of the iceberg and this technology is permeating

into vast range of applications. Laser cladding has been employed for coating which leads

to conserve expensive materials by coating surface of bulk materials with enhanced wear

or corrosion resistant materials such as superalloys, tool steel, Ni-base alloys and Co-

base alloys. This will increase lifespan of a component by several times only by covering

exterior surface which is subject to hostile conditions. Exploiting TIG welding or plasma

spaying instead, would distort the component because of excessive heat. Moreover cooling

rate during laser cladding is more rapid and this enhances mechanical properties of the

component. In part repair, laser cladding has many applications such as repair of turbine

blades [1]. Turbine blades are produced of superalloys which are expensive. Repairing

these parts by conventional methods (e.g., by welding) is subject to thermal distortion

and residual stress accumulation. Employing of laser cladding for this task will result

in decrease the dependency of process on expert manpower, lessen of post processing and

enhance the mechanical properties by improving microstructure. All these factors in return

5



Table 1.1: TIG versus Laser Cladding [1]
TIG Laser

Dillution Rate Approx. 10-40% Less than 5%
Use of Filler Material More and non-uniform

deposition
Less and uniform

deposition
Hardness Value Relatively low Relatively high

Heat e�ected zone Large and wide Low and narrow
Finish Rough surface, less durable Good surface, long life

Pre and Post Treatment Many Few
Dendritic Structure Course Fine

Automation Di�cult, low production
rate hence costly

Easy, high production rate,
cost e�ective

will lead to save in cost and time drastically.

Laser cladding has many advantages over conventional techniques in its applications.

Table 1.1 compares laser cladding to TIG welding as an example [1].

As it is apparent in Table 1.1, laser cladding o�ers enhancing mechanical properties and

microstructure of component due to high and controllable cooling rate, low and narrow

heat e�ected zone and low dilution.

1.3 Laser Cladding Con�guration

Laser cladding process comprises, laser, computer-aided design (CAD), robotics, sensors,

control, and powder metallurgy. The central processing unit communicate with all involved

elements in order to make the system fully automated. Various con�gurations have been

arranged for laser cladding process based on these features:

Laser: Among di�erent types of lasers CO2 , lamp-pumped Nd:YAG, diode-pumped Nd:YAG,

and high power diode lasers (HPDL) are widely utilized in laser cladding process.

Table 1.2 shows speci�cations of these lasers [2]. Selecting the proper type of laser

highly depends upon the type of the application. Pulsed and continuous wave lasers

are applicable in laser cladding, although for pulsed lasers, the peak power of each

6



pulse should not surpass a speci�c value otherwise it results in vaporization of the

powder particles before reaching the process zone.

Powder feeder: There are several di�erent powder feeders utilized in laser cladding by

powder injection process. The powder feeders used in laser cladding, can be catego-

rized into: �uidized-bed, gravity-based, and wheel-based metering feeder.

Powder nozzle: Some con�gurations employ lateral nozzles as opposed to others which

they exploit co-axial nozzle. Coaxial nozzle has the advantage of being independent of

direction of motion, however wasted powder which means the powder is not absorbed

to the melt pool is higher than lateral nozzle.

Motion: Various con�gurations have been designed for generation of relative motion be-

tween the substrate and the laser head. In some con�gurations the laser head is

stationary and the substrate moves by a multi-axis CNC machine. In others, the

substrate is stationary and the laser head and powder feeder system is moving by a

robot with several degrees of freedom. There are cases in which both the laser head

and the substrate move. Figure 1.3 illustrate a system in which both substrate and

laser head move. The laser head which is integrated in a coaxial nozzle moves by

a robot and the substrate rotates by a motor. Many algorithms exist for providing

appropriate relative velocity and acceleration.

1.4 Laser Cladding Parameters

There are many parameters involved in laser cladding making laser cladding a complex

process. The output of laser cladding is composed of many factors such as microstructure,

hardness, clad geometry including clad height, width, angle of wetting, and cross sectional

pro�le, cracks, pores, residual stresses and dilution [2]. The way that these input parame-

ters a�ect the output parameters is not comprehensively known although e�orts have been

performed to investigate these e�ects by modeling and analysis of the process. The input

parameters can be categorized into 5 groups [2]:
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Table 1.2: Types of lasers utilized in laser cladding and their speci�cation [2]

Characteristics CO2

Nd:YAG
lamp-
pumped

Nd:YAG
diode-
pumped

HPDL

Wavelength [µm] 10.06 1.06 1.06 0.65− 0.94
E�ciency [%] 5− 10 1− 4 10− 12 30− 50

Maximum power
[kW ]

45 4 5 6

Average power
density [W/cm2]

106−8 105−7 106−9 103−5

Service period [hour] 1000− 2000 200 5000− 10000 5000− 10000
Beam Parameter
Product (BPP)
[mm×mrad]

12 25− 45 12 100− 1000

Fiber coupling No Yes Yes Yes

Laser: Average power, spot size, wavelength, pulsed or continuous wave, beam pro�le,

and laser pulse shaping.

Motion device: relative velocity, relative acceleration, and system accuracy.

Material: substrate geometry, composition, metallurgical, thermo physical and optical

properties, powder size, and surface tension.

Powder feeder: powder feed-rate, inert gas �ow rate, nozzle speci�cation, and powder

stream pro�le.

Ambient properties: preheating, shield gas velocity, and type of shield gas.

In addition, many physical phenomena are involved during the process including [2]:

absorption, conduction, di�usion, melt pool dynamics, �uid convection, gas/melt pool

interaction, laser attenuation by powder and solidi�cation. Small change in any of input

parameters would result in output parameters variation. Moreover, sometimes without any

change in input parameters, the result is di�erent. This arises probably from these factors:
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Figure 1.4: Clad geometry

• Lack of observation on several input and output parameters,

• External disturbances such as change in humidity of the environment or amount of

Oxygen in the process zone,

• Temperature dependency of thermo-physical and optical parameters.

As a result, the designation of proper input parameters for obtaining desired output param-

eters is very challenging. In an automated fashion, the system should �gure out changes in

the output parameters and in real-time, change the input parameters in order to maintain

the output parameters constant. In addition, in many processes adaptively altering pro-

cess parameters is imperative in order to make complex parts. This makes a closed-loop

control system for laser cladding inevitable for these processes. Utilizing a closed-loop

control system in laser cladding makes the system less sensitive to external and internal

disturbances. Having a closed-loop control system for laser cladding would contribute to

huge improvement in clad quality and reduction in cost. Any closed-loop control system

consists of feedback, and feedback comes through sensors. Hence, a feedback sensor is an

essential device in a closed-loop control system. Candidates for feedback parameters are

powder feed-rate, melt pool temperature, melt pool geometry, and rate of solidi�cation.

Figure 1.4 depicts the clad geometry characterization which can be used as a feedback

signal. In this �gure, b shows the depth of the clad penetration into the substrate.
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The measurement of these parameters can directly or indirectly indicate the clad quality.

A controller can be designed to close the control loop, when the correlations of the feedback

signals with the input parameters are identi�ed. Among di�erent input parameters, laser

power, leaser beam diameter, powder mass �ow rate and relative velocity of melt pool seem

to have major e�ect on the outcome; therefore, mostly they are considered as the control

variable.

1.5 Objective Statement

As mentioned before, a closed-loop control system can contribute drastically to the progress

of laser cladding. The clad height is one of the output parameters which can be used as a

feedback signal in closed-loop control of the process. The clad height is of great importance

especially when laser cladding is utilized in fabrication of parts in layer by layer fashion

(e.g., RP). Having control over the clad height leads to a more accurate geometry. The

measurement of the clad height in real-time in non contact fashion can be done in several

ways which will be discussed in Chapter 2. Utilizing CCD cameras in order to measure the

clad height in the real-time fashion has several advantages over other methods, including

low cost integration, high resolution, high accuracy, and providing additional information

which could be used for identi�cation of other important geometrical parameters such as

the clad width and the angle of solidi�cation. In this thesis, the measurement of the clad

height in real-time by using CCD cameras will be described. The major objective of this

thesis is to develop image-based feature tracking algorithms to be used in real-time clad

height detection in laser cladding.

1.6 Looking Ahead

The rest of this thesis is arranged in the following order: In Chapter 2, a literature survey

and background on using several output parameters as feedback in closed-loop control of

laser cladding will be represented. Experimental set up and data acquisition associated

matters will be provided in Chapter 3. Image processing of the melt pool images in order
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to extract the border of the melt pool can be found in Chapter 4. Chapter 5 describes

image feature tracking algorithms and experimental results. Chapter 6 o�ers conclusion

and recommendations.
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Chapter 2

Literature Review and Background

This chapter represents background of laser cladding technology with particular focus on

sensing, monitoring and real-time control of the process.

2.1 Laser Cladding

Laser cladding has been introduced in the mid 70's [3, 4]. Steen and Courtney [5] and

Weerasinghe and Steen [6] depicted the process in early 80's. Rolls Royce c© reported utiliz-

ing the process in production in 1981 [7, 8]. Since then many research groups participated

in the research, development and improvement of the process. Some of these research

groups from which, most of the available literature comes, along with the name they are

employing for laser cladding and the country of origin are:

• Albrecht Roders Gmbh & Co KG, GERMANY, Controlled Metal Buildup (CMB),

• Electrolux Rapid Development, FINLAND, Direct Metal Laser Sintering (DMLS),

• Fraunhofer Institute for Production Technology, GERMANY, Controlled Metal Build-

up (CMB),

• Los Alamos National Laboratory, USA, Direct Light Fabrication,
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• National Research Center (A�liated company:Accufusion), CANADA, Freeform Laser

Consolidation (FLC),

• Penn State University (A�liated company: AeroMet), USA, Laser Additive Manu-

facturing (LAM),

• Raja Ramanna Center For Advanced Technology, INDIA, Laser Rapid Manufacturing

(LRM),

• Sandia National Laboratory (A�liated company: Optomec Design Company), USA,

Laser Engineering Net ShapingTM (LENS), Direct Metal Deposition SystemsTM

(DMDS),

• University of Illinois, USA, Center for Laser Assisted Material Processing (CLAMP),

• University of Liverpool, ENGLAND, Laser Cladding and Direct Fabrication, Direct

Laser Fabrication (DLF),

• University of Manchester, ENGLAND, laser direct metal deposition, laser additive

manufacture,

• University of Michigan (A�liated company: Precision Optical Manufacturing), USA,

Direct Metal DepositionTM (DMD),

• University of Purdue, USA, Laser Cladding,

• University of Waterloo (A�liated company: Smart Fabrication), CANADA, Laser

Cladding, Laser Powder Deposition, Laser Freeform Fabrication.

2.2 Control of Laser Cladding

Control of laser cladding has a great impact on the improvement of the produced clad

and, in turn, of the �nal part. Several research pursuits have been conducted in order

to integrate the laser cladding process in a closed-loop feedback control system, however,
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little progress has been reported. As mentioned before, this arises from the fact that

the process is vastly complex and numerous input and output parameters are involved.

Furthermore, quite a few of them are coupled. Besides, the process is extremely sensitive

to small changes in the operational conditions. Additionally, some of the parameters are

not inherently measurable or the measurement is not practical. One of the factors that

matters greatly in the control of laser cladding, is selecting of a proper parameter as the

feedback signal. The following criteria can help to choose the right parameter:

• The parameter should be practically measurable with high frequency,

• The measured value for the parameter should be an indicator of the features of the

produced clad,

• The measurement of the parameter should not disturb the process or put any obstacle

in the way of the process,

• The measurement of the parameter should be cost e�ective.

Di�erent research groups have used di�erent parameters as the feedback signal such as,

powder feed-rate, melt pool size, and melt pool temperature.

2.2.1 Powder Feed-Rate as a Feedback Signal

Some researchers utilized powder feed-rate as a feedback signal. Closed-loop control of

powder feed-rate leads to supply the melt pool with a constant powder feed-rate which,

in turn, provide consistent melt pool size while other parameters remain unchanged. This

improves laser cladding process and specially is important for producing functionally graded

materials in which several powder feeders are employed to supply the melt pool with

di�erent kinds of powder materials. The available powder feeder in the market use sensors

to continuously monitor the remained powder weight inside the hopper as a signal to control

the powder feed rate by changing the rotational speed of a feed screw [9]. In general, the

time delay between sampling and obtaining desired feed-rate is long. Furthermore, these

powder feeders are not capable of supplying low feed-rates required in laser cladding.
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Figure 2.1: Schematic view of developed sensor for powder feed rate adapted from Hu and
Kovacevic [9]

Several attempts have been conducted in order to develop sensors and powder feeders

which can produce stable and low powder feed-rate in high frequency.

Hu and Kovacevic [9, 10] developed a sensor to measure the powder feed-rate. They

placed one photo diode in front of a light source (i.e., laser diode). The laser diode emanates

a red light within a wavelength of 600-700 nm and a power less than 500 mW. The powder

and carrier gas stream pass a glass window that has been placed between the two. The

emitted light from laser is detected by the photo diode and converted to voltage signal.

Figure 2.1 depicts schematic view of the sensor [9].

The absorbed energy by the photo diode depends upon the powder particles that are

in the pass of laser light at the moment. An increase in the powder feed-rate yields to

decrease in the absorbed energy. The sensor obtains data at frequency of 10 Hz. The

authors reported that the sensor can measure the powder feed-rate in the range of 3 to 22

g/min. However, in many applications, the powder feed-rate should be less than 3 g/min.

Meriaudeau et. al. [11, 12, 13, 14, 15] employed CCD camera in order to detect powder

stream distribution. Prior to turning on the laser, the CCD camera captures images from

the powder stream continuously in order to detect the powder particle velocity which helps
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the operator to choose proper carrier gas �ow rate. In other words, the CCD camera is

exploited for calibration process. Subsequent to turning on the laser, the CCD camera is

employed to identify powder stream distribution. The diameter of the powder stream is

measured at the closest point to the melt pool.

Doubenskaia et. al. [16, 17] and Bertrand et. al. [18] used a non intensi�ed CCD

camera to visualize powder particles inside the powder stream in laser cladding. The CCD

camera (SonyTM ExviewTM HADTM CCD) has high quantum e�ciency1 in near infra

red region. Development of a software to study particles velocity and size statistically was

reported. Also, the average size and velocity of the particles were presented. The visualized

powder stream and acquired values for velocity and size were employed to optimize the

process by the help of an expert manpower. In fact, no attempt was made at integration

of closed-loop control for the process.

2.2.2 Melt Pool Temperature as a Feedback

Measuring melt pool temperature is of great importance in laser cladding. It can be an

indicator of clad quality, dilution, microstructure properties, mechanical properties, mass

�ow, and energy absorption to name a few. An infrared camera can be a convenient device

for temperature monitoring of the process zone in laser cladding, however high cost of

infrared camera put an obstacle in the way of utilizing it in laser cladding.

Doubenskaia et. al. [16, 19, 17] used non-contact pyrometry to monitor the melt

pool temperature in Nd:YAG laser cladding. In order to protect the pyrometer from laser

irradiation (λ = 1064 nm) a set of notch �lters were utilized in the system. They used 2D

monochromatic (0.860 µm wavelength, 2.5×2.5 mm2 vision zone, 1.7ms acquisition time)

pyrometer to acquire 2D temperature mapping of the process zone. They investigated the

e�ect of altering powder feed-rate and laser power parameters on temperature distribution

of the process zone. Also they showed temperature deviation in the process zone caused by

applying pulsed laser with rectangular shape pulse as well as 2D steady state temperature

distributions as a result of applying continuous wave laser. In addition, they employed

1The de�nition of the parameters related to CCD camera and their e�ects on the captured images will

be discussed in Chapter 3.

17



1-spot multi-wavelength (12 wavelengths in the spectral range 1.0 − 1.573 µm, 800 µm

vision zone, 50 µs acquisition time) pyrometer in order to measure the true temperature

of the process zone.

Meriaudeau et. al. [20, 14, 21, 22, 23] and Legrand et. al. [24] used a CCD camera to

measure the process zone temperature distribution. The work is based upon Planck's law of

black body radiation which de�nes the relationship between temperature of a black body

and the spectral intensity of electromagnetic radiation for di�erent wavelengths. They

showed the grey level value in captured images by the CCD can be approximated by linear

relationship with black body temperature. It has been claimed that the system possessed a

thermal resolution around 5oC which is promising. They utilized the system to monitor the

surface temperature in the process zone during the cladding. However, their results were

not compared to the real temperature of the process zone measured by other measuring

devices. In fact, the results su�er from the lack of veri�cation.

2.2.3 Melt Pool Geometry as a Feedback

Hu et. al. [9, 25, 26, 27, 28] developed a system to measure melt pool size in laser

cladding. They used an infrared camera with high frame rate (up to 800 frames/sec) on

the top of the melt pool and the laser delivery system. The emanated light passes through

the laser delivery system and reaches the camera. The camera captures top view of the

melt pool in grey scale format with a 128×128 pixels resolution. An Nd:YAG laser blocker

(1060 nm1060), an iris and an infrared �lter (> 700nm) were installed before the CCD

sensor of the camera. As a result, the camera receives light with wavelength of 700 to

1060 nm. Figure 2.2 [9] shows a schematic view of the setup used in the study. In order to

�nd the gray level value corresponding to the liquid-solid transient edge of the melt pool

in the infrared image, they located an ultra high shutter speed camera next to the infrared

camera. A pulsed nitrogen laser was employed in order to light up the melt pool area. A

notch �lter with the wavelength of 337 nm has been installed before the ultra high shutter

speed camera in order to let only the light with the wave length of around 337 nm (which

is the wavelength of the emanated light from the nitrogen laser) reaches the ultra high

shutter speed camera. One set of experiments was conducted while both cameras were
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Figure 2.2: Schematic view of developed sensor for melt pool size [9]

capturing images simultaneously. Canny edge detection method was applied to acquired

images by the ultra high shutter speed camera. Then the detected edges projected on the

images taken by the infrared camera. In this way, the grey level value representing the

liquid-solid transient edge acquired which reported 70 in 256 grey scale value. Then the

high shutter speed camera was dismantled and the acquired number was considered as a

threshold value.

A few experiments were conducted using mild steel as the substrate and H13 tool steel

with 25 to50 micron mesh size as the powder. Images were captured in real time by the

infrared camera with frequency of 15 Hz. The images were thresholded and area of the

melt pool was calculated. The area of the melt pool was utilized as a feedback signal for a

simple PID controller. Applying the controller showed an improvement in the performance

of the process. However, they did not mention the location of the ultra shutter speed

camera in their report which is very important. Due to existence of the infrared camera,
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the ultra high shutter speed camera cannot be located on the top view of the melt pool, and

as a result the location of the latter should be somewhere next to the infrared camera as

they reported in their report. Thus, the camera axis is not perpendicular to the melt pool

and the e�ect of image projection should be considered. Furthermore, the edge detected

by Canny method was considered as the boundary of the melt pool, which can be just an

estimation of the actual size of the melt pool since they did not evaluate the acquired size

with the real size of the melt pool and, in fact, this is a very di�cult task. For example

if they apply an edge detection method other than Canny method, the result would be

di�erent. However for the interest of the controller, the calculated melt pool may be a

good control variable.

Triangulation sensor has been employed for distance measurement in industry for

decades [29]. This sensor works based on triangulation concept as illustrated in Figure

2.3. The light source emanates a beam light, which passes through one lens. The lens

could be collimated lens or focusing lens depending upon the application. The laser rays

are focused or are made parallel by the help of the lens. Then the light strikes the ob-

ject and the re�ected light passes one imaging lens and strikes a light detector. The light

detector can be a linear position sensitive opto-electronic detector (PSD) or a Charge Cou-

pled Device (CCD) camera depending on applications. PSD produces electrical current

on its both ends which are connected to two electrodes (A and B). These currents are

proportional to the distance of spot light from center of PSD [29]:IA = I0
RD−Rx

RD

IB = I0
Rx

RD

(2.1)

where,

IA is the output current at A,

IB is the output current at B,

I0 is the current produced by beam light,

RD is the resistance between A and B,

Rx is the resistance between incident point and B.

Since the resistances are proportional to the distances:
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IA = I0
D−x

D

IB = I0
x
D

(2.2)

if we assume P = IA

IB
then:

P =
IA

IB

=
D

x
− 1 =⇒ x =

D

P + 1
(2.3)

from geometrical relation in Figure 2.3,

d = f
h

x
(2.4)

by substituting x of Equation (2.3) into Equation (2.4):

d = f
h

D
(P + 1) (2.5)

Hence, the sensor can measure the distance of the object with respect to the sensor.

Using PSD as a light detector has several advantages such as fast processing speed. It can

process data up to 200 kHz [30] or even faster as opposed to CCD camera which hardly can

go beyond 50Hz. Furthermore, its spectral response is from 320 to 1100 [29], which is wider

than that of a regular CCD camera, which is around 400 to 1000 nm. However, the only

information that PSD can provide is the distance, while the CCD camera can o�er a gray

scale image which can be used to extract more information about the object. In general

the beam of light should be as thin as possible and therefore always laser, mostly solid

state diode laser, is utilized as the light source. Emanated light by solid state laser are in

a narrow spectral wave length (e.g., 800nm). Laser Measurement International (LMI) has

reported utilization of this sensor in arc welding [30]. Existence of extreme light intensity

in arc welding places an obstacle in the way of utilizing this sensor. LMI overcame this

obstacle by applying this technique. A solid state pulsating laser was employed as a source

of light. The emitted light is in a narrow band spectral wavelength and also in a narrow

band of frequency. Utilizing a narrow band pass optical �lter before the light detector

yields to restrict the receiving light to the light detector to wavelength range around that
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of laser. A PSD was used as a light detector. The output of the PSD using an electrical

lock-in ampli�er was �ltered to the frequency range of pulsating laser. As a result, the

�nal output is representative of wavelength and frequency range of the pulsing laser. In

other words, LMI developed a sensor which can measure the height of weld in real time and

with high frequency using this technique. However, the o�ered information by the sensor

is limited to only the height of weld, and the sensor can not provide any other information.

As a result, although having the height of weld is bene�cial for the closed-loop control of

the system, more information about the process zone is needed. Utilizing �structured light�

instead of one single laser beam and a 2D CCD based sensor being able to detect light in

several points inside a frame result in surface contour mapping [30]. The author could not

�nd any report on utilizing triangulation sensor in laser cladding; however, it seems that

implementing the same technique for laser cladding is feasible.

Beersiek et. al. [31, 32, 33, 34] utilized a CMOS Camera on the top of the laser beam in

di�erent types of laser material processing as seen in Figure 2.4. Employing CMOS camera

has the advantages of higher fast frame rate and cheaper price as opposed to CCD camera.

While frame rate of regular CCD camera is about 50 Hz, CMOS camera is capable of

capturing images with the frame rate up to 1 kHz. The applications in which the scanning

speed of the laser beam is high such as laser welding, CCD camera could not be a choice

due to its low image capturing speed. On the other hand, there are distinctive regions

in the processing zone of laser processing, particularly in laser welding that have di�erent

characteristics. As Figure 2.4 presents three regions in the processing zone of a typical

laser material processing (e.g., laser welding):

Keyhole: When laser strikes and focuses on the substrate, keyhole is generated. Evap-

oration of the molten metal yields to stable keyhole inside the molten metal.

This metal vapor emits acoustic waves [35, 36, 37, 38] and emanates light which

is in the visible and infrared spectral range.

Plasma: Further interaction between the laser beam and the vapor metal results in

formation of plasma. Plasma emanates light in visible and ultraviolet spectral

range [39].
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Figure 2.4: Utilizing CMOS camera for monitoring of processing zone in laser beam welding
adapted from [31, 32, 33, 34]

Melt-pool: Melt pool radiates light base upon black body radiation. As a result, wave-

length of emitted light by the melt pool can be determined based on the tem-

perature of melt pool. (This feature will be investigated in depth in succeeding

discussions)

The spectral response of a CCD camera cannot cover the spectral range of keyhole and

melt pool together. However, a CMOS camera has a wider spectral response which makes

it capable of detecting both signals. The dynamic range of a CMOS camera is 120 dB

light density (The conversion of light density to voltage in CMOS camera is logarithmic)

while for a CCD camera, it is 60 dB. The di�erence between light density of melt pool and

keyhole is less than 120 dB, hence CMOS camera can detect both region. However, the

resolution of CMOS camera is much lower compare to CCD camera.

For increasing the frame capturing speed, only a part of image which is of interest

was considered in the images. A few regions in each image were detected and base upon

those, for each application a few distinctive features which are representative of speci�c

characteristics of the weld were considered. As an example, the intensity of the emitted

light of keyhole region was considered as indication of penetration depth. The capturing
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and processing of images with the frequency rate of about 1 kHz were reported in the

articles. The work o�ers valuable information about the parameters of weld, however it

does not provide the exact weld geometry.

Haferkamp et. al. [40] developed a new visual system for recognition of dynamic be-

haviour of the melt pool, and melting and solidi�cation front velocity in the melt pool of

aluminium alloys. A pulse Nd:YAG solid state laser (λ = 1064nm) with pulsing period in

the range of micro second and high pulse peak power was utilized to remelt the aluminium

alloy. A frequency doubled Q-switched Nd:YAG laser system with λ = 532nm and pulse

duration of 10 ns was exploited as a frequency selective lightning. Image processing was

applied to acquired images in order to extract variation in re�ection and Electromagnetic

wave backscattering properties of the material surface. Extracted information is represen-

tative of transient development of the solid and the liquid isotherm, phase transitions and

melting and solidi�cation front velocity within the processing zone. The author could not

�nd type of the image acquisition device. Haferkamp et. al. [41] employed a micro focus

radioscopy and a high shutter speed video camera to monitor the mass �ow inside the melt

pool.

Voelkel and Mazumder [42, 43] developed a novel system for capturing quality pictures

of the melt pool in CO2 laser welding as shown in Figure 2.5. A 1 kW CW CO2, TEM00

utilized to generate the melt pool. A 3.5 W argon-ion laser with the wavelength of 488

nm produced illumination light which by passing through a lens shines at the melt pool

region. Some portion of the argon-ion laser passes through two di�user plates in order to

be scattered as shown in Figure 2.5. The two di�user plates were constituted from opal

to glass. The �rst one which was smaller reduces the impact of �ecks on the image by

vibration. The solid angle between the melt pool and the illuminated part of the di�user

plate was enlarged by the second di�user plate. The second di�user was 4 × 7 cm and

was 5 cm apart from the melt pool. A CCD video camera monitored the melt pool. A

narrow band pass interference �lter with the wavelength of 488 nm was placed in front of

camera and a thin metal sheet with the 4 mm diameter hole was placed in front of the

�lter in order to protect the �lter from contamination. Thus, light only through the 4 mm

protective plane and in the narrow band width of around 488 nm can reach the camera.
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Figure 2.5: Melt pool visualization in laser welding adapted from [42]

One spacer with the length of 18 cm was placed between the lens and the CCD sensor.

The distance from metal sheet to the melt pool was set to 7 cm. They surveyed the e�ect

of illumination laser and di�users over the quality of the acquired images. For example,

existence of di�used laser has great impact on enhancing the quality of images. They could

obtain promising images by utilizing simultaneously focus light and scattering light.

2.3 Conclusion

Measuring clad geometry is of great importance in laser cladding and can be a good control

variable especially for the purpose of RP. As mentioned, most of the e�orts were limited

to approximating the melt pool perimeter. For the height measurement, most of the works

concentrate on keeping the height constant at a prede�ned value or to measure the deviation

of the height as opposed to measuring the actual height. As seen in the literature review,

researchers attempted to measure height �uctuation and use it to optimize the process by

changing the input parameters. Changing the input parameters is accomplished either by
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an expert manpower or by a closed-loop control system. For validation of the developed

algorithms, visual comparison between the produced clad with and without the algorithms

was taken place which only shows progress of the process, and not the accuracy of the

measurement of the height deviations. Besides, to the best of the author's knowledge, the

measurement of the actual height has not been investigated yet.

Furthermore, most of the published papers su�er from not providing details of the

height approximation algorithms. Especially when optical detectors were utilized as data

acquisition devices, image processing algorithms, locations of cameras, issues related to

the direction of clad with respect to the cameras, and the developed algorithms of height

approximation were not discussed in detail. Moreover, a few research e�orts have been

conducted to capture informative images from the melt pool; however, little progress has

been reported. All these make this research agenda far from complete.

Based on the aforementioned shortcomings, in this study, the utilization of CCD cam-

eras and issues associated with obtaining high quality images of the melt pool will be

discussed. Capturing quality pictures potentially would provide much valuable informa-

tion about the process. This information could include, but is not limited to, melt pool

geometry (i.e., melt pool height, width, melt pool pro�le, and wet angle), angle of solidi�-

cation, melt pool temperature, and melt pool temperature distribution. The better quality

picture, the more information could be extracted. The issues regarding path dependency

of the melt pool image will be addressed. The analysis of the acquired images will be

described in detail. The development of algorithms to measure clad height in real-time

will be explained. Comparison between the predicted height and actual height measured

o�ine will be presented.
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Chapter 3

Experimental Setup

3.1 Introduction

As mentioned in Chapter 1, an automated laser cladding system comprises several elements

such as high power laser, powder feeder, multi axes CNC machine or a robot with several

degrees of freedom, nozzle and intelligent central controller. In this chapter, the laser

cladding con�guration in Automated Laser Fabrication (Alfa) at the University of Waterloo

will be introduced. Furthermore, tackling the issues pertinent to image acquisition in the

presence of harsh and intensive light will be investigated.

3.2 Experimental Setup

A schematic view of the entire system has been illustrated in Figure 3.1.The elements of

this con�guration will be explained brie�y in the following:

Laser source: A LASAG FLS 1042N Nd:YAG pulsed laser with a maximum power of

1000-watt is utilized as a source of energy. The wavelength of this solid-state laser is 1064

nm. Pulsation frequency, peak energy per pulse and laser pulse width is adjustable.

Powder feeder: A 9MP-CL Sulzer Metco powder feeder is used for which the powder

feed rate (mass rate) and the carrying gas are adjustable. They are controlled by integrated

closed-loop system inside the powder feeder. The powder feeder is able to provide any
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Figure 3.2: UW Powder feeder

powder feed-rate larger than 0.5 g/min with acceptable �uctuations. However, the amount

of �uctuation increases with the decrease in the powder feedrate. To enable a low powder

feedrate (less than 1 g/min) with low �uctuation rate, a new powder feeder was designed

and built at the University of Waterloo. The powder feeder works based on gravity and

mechanical wheel principals. The feeder was designed with a low footprint to allow multiple

feeders to be placed side by side. With the appropriate nozzle, di�erent powders could be

loaded in each feeder and super alloys could be created. Figure 3.2 shows the UW powder

feeder.

CNC table: A 4 axes CNC table is exploited in order to generate relative motion

between the laser head and the substrate. Figure 3.3 shows the CNC table.

Nozzles: A lateral nozzle is employed as a powder spraying device. Furthermore, a

coaxial nozzle was developed to enable a path independent deposition.provide more options

for the powder delivery system. Three powder inlets were included on the coaxial nozzle to

allow mixing of various powders. Several enhancements were made to the nozzle including

shaping gas �ne tuning and water cooling. The nozzle was designed to hold the optical

head resulting in easy integration. Figure 3.4 shows lateral nozzle and the laser head.
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Figure 3.3: 4 axes CNC table used in the laser cladding

Figure 3.5a shows coaxial nozzle and Figure 3.5b shows powder stream in exit of coaxial

nozzle.

Real-time operating systems: Two real time operating systems, QNX platform and

NI real time platform (Labview) were installed on the system; As a result, the system can

be operated by one of the two system separately. QNX bene�ts from higher processing

speed as opposed to Labview; however, Labview is very user friendly. Thus, Labview was

employed in this research and development.

3.3 Image Acquisition Device

Capturing high quality images of the melt pool in which melt pool can clearly be recognized

from the surrounding area is a formidable task. As mentioned in Chapter 2 a few research

e�orts have been conducted to capture informative images from the melt pool; however,

little progress has been reported. Capturing quality pictures potentially would provide

us with much valuable information about the process. This information could include,
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Figure 3.4: Lateral nozzle and laser head

(a) (b)

Figure 3.5: a) Coaxial nozzle designed at UW b) Powder stream from the coaxial nozzle
when the carrying gas is at 5 SCFH, powder feedrate is 1.5 g/min, and 3 SCFH shaping
gas

32



but is not limited to, melt pool geometry (i.e. melt pool height, width, melt pool pro�le,

and wet angle), angle of solidi�cation, melt pool temperature, and melt pool temperature

distribution. The better quality picture, the more information could be extracted. The

process intrinsically put obstacles on the way of capturing images, because:

• The presence of harsh and intensive light in the process zone arises from di�erent

sources such as high power laser irradiation, black body radiation, specular surface

re�ection and other kinds of re�ections.

• The presence of various sources of noise such as �ares and light re�ections.

• Hostile environment around the process zone impedes to locate the imaging device

close to the melt pool.

• Moving part by a multiple axes CNC machine restricts the location of the camera.

As a result, choosing proper locations for cameras is challenging.

There are four kinds of regular digital camera in industry based upon the type of the sensor

integrated in them [44, 45]:

• Charge Coupled Device (CCD),

• Complementary Metal Oxide Semiconductor (CMOS),

• Electron Multiplying Charge Coupled Device (EMCCD),

• Image Intensi�ed CCD Camera (ICCD).

Charge Coupled Device (CCD) camera is the most common camera in industry and was

chosen as the imaging device in our system. This selection was based upon availability,

price and good resolution of the CCD camera. EMCCD and ICCD cameras are much more

expensive than CCD camera and on the other hand, their high sensitivity put an obstacle

on employing them for the laser cladding. EMCCD camera has higher frame rates and

more sensitivity than CCD camera [44, 45]. ICCD camera employed for applications that

short exposure time is needed. CMOS camera is cheaper and has higher frame rates than
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CCD camera, however, at the expense of lower sensitivity and lower resolution [44, 45].

CCD sensor which is a light sensitive semiconductor chip comprises of many (nowadays in

order of millions) tiny photo detectors (pixels). Utilizing CCD camera has some advantages

and some drawbacks. CCD cameras are inexpensive which results in cost reduction in the

integration of closed-loop control system in the laser cladding. In addition, it collects the

data without being in contact with process zone or causing any disturbance to the process.

Furthermore it bene�ts from high resolution (in order of millions pixels) which can lead to

sharp and clear images.

There are two major drawbacks associated with CCD cameras: low frame rate and

camera over exposition or saturation. Both of the two arise from the way a CCD camera

works. When light strikes the CCD through the lens, each pixel gathers photons current

and converts it to the electrical charge. The electrical charge is accumulated which is

called �pixel's accumulated charge� [44, 45]. In fact, each pixel performs as a capacitor.

The generated electrical charge is proportional to the light intensity received by the pixel.

The accumulated electrical charge is measured after speci�c amount of time; subsequently

the electrical charge should be discharged to make pixels ready for next read out. The

amount of time is dependent upon the light intensity. As a result, the frame rate in CCD

camera is low (around 60 Hz). The �rst issue does not apply to laser cladding as the

scanning velocity is in order of millimeters per second. Hence, having frame rate of 60 Hz

seems acceptable.

The second issue is the camera saturation. The maximum charge a pixel can hold

is limited which is called �full well capacity� or �saturation level� [44, 45]. Surpassing

this saturation level leads to degradation of the signal and the charge over�ows to adjacent

pixels which is called �blooming�. The linear response of camera strays and makes camera's

response unreliable accordingly. The structure of CCD sensor is in a way that usually tends

to let less charge over�ow to horizontal pixels and more to that of vertical. Thus, a �ash is

observed more in vertical direction as a result of blooming. Lasting of the saturation for a

considerable period of time results in the permanent damage of the CCD sensor. Full well

capacity is a function of the pixel size in the CCD sensor, employment of multi-pinned-

phase (MPP) mode, and the operating voltage of CCD. Size of pixel has the major role on
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a b

Figure 3.6: a) An image of the melt pool, b) An image of the melt pool when the CCD
sensor saturated

determination of full well capacity. Larger pixels have higher full well capacity; however,

an increase in the size of a pixel results in a decrease in spatial resolution [44, 45].

The e�ect of saturation is intensi�ed when the image is of high dynamic range meaning

that when it comprises low light signal and bright light signal simultaneously, which is

exactly the case in laser cladding. The saturation problem has been frequently observed

in laser cladding during the course of the experiments. Figure 3.6 shows a clear image of

the melt pool and a saturated image. As seen, in saturated image, a �ash obscured the

entire process zone. The saturated image does not o�er any useful information. It should

be noted that when saturation happens, it does not occur in only one image; it may occurs

in a several consecutive images periodically. In fact, when saturation arises, the entire set

of images related to that experiment is useless, and the sensor could not provide any useful

information. Part of this issue could be addressed through proper selection of the CCD

camera; however, major part of the problem should be tackled by proper selection of �lters

which will be discussed in detail in Section 3.4.
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Table 3.1: Speci�cation of exploited cameras

Camera type

Image device 1/3� Progressive CCD imager 1/3� Hyper HAD CCD imager
Picture elements 659× 494 pixels 510× 492 pixels

Pixel size 7.4µm× 7.4µm 7.4µm× 7.4µm
Frame rate 60Hz Not provided

SNR < 58dB 45dB
Minimum illumination 0.2 lux 0.6 lux

Before showing the speci�cation of the employed CCD cameras, it is bene�cial to explain

two important factors of a CCD sensor [44, 45]:

• Dynamic range: is the ratio of full well capacity to the camera noise and describes

camera's ability to detect very low light signals and very bright signals simultaneously.

It is usually measured in dB by

DR = 20 log
Cf

N
(3.1)

where, DR is dynamic range and is measured in dB, Cf is full well capacity and is

unitless, N is camera noise and is unitless.

• Signal to Noise ratio (SNR): is the ratio of measured signal to the overall noise

in each pixel. It describes the quality of light measurement and a higher SNR leads

to more precise light measurement.

Two types of CCD cameras were selected with speci�cation listed in Table 3.1. The selec-

tion made based upon the price and accessibility.
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3.4 Filter Selection

Exposing the CCD sensor directly to the harsh and intensive light arising from laser pro-

cessing zone leads to an entire white image or damage of the CCD sensor as mentioned

in the previous section. The present light in the process arise by several sources including

laser radiation, black body radiation, the environment light and the re�ection. These lights

are in di�erent wavelength range. The radiated light from the laser source is in the wave-

length of 1064 nm. The wavelength of radiated light from the black body radiation source

is not exactly known and should be scrutinized in order to calculate the wavelength range.

The other important aspect of this investigation is the spectral response of the camera. In

the following, each of these factors will be investigated in depth.

3.4.1 Spectral Response (Quantum E�ciency)

Photons are converted into electric charges in the CCD sensor. The ability of the photons

to be absorbed in the depletion region of the detector depends upon the wavelength of the

light. It is only the depletion region that photons are converted into electronic charges and

subsequently can be held by the electric �elds. The charge held in the depletion region is

then transferred and measured. Photons striking on the CCD must �rst pass the region

which is dominated by the gate electrodes by which the applied clocking voltages create the

electric �elds that form the boundary of the depletion region and transfer charge through

the CCD. The gate structure can absorb or re�ect photons based upon the wavelength

of the light. As a result, there would not be one electron charge per one photon. The

shorter wavelengths (blue light) are particularly absorbing, and below ∼ 350 nm, they

absorb all the photons before they can be detected in the depletion region. Photon with

longer wavelengths (i.e., red photons) have a low probability of absorption by the silicon

and can pass through the depletion region without being detected, and as a result reduce

the red sensitivity of the CCD. Photons with wavelengths larger than 1100 nm do not

have enough energy to create a free electron charge and they can not be detected by CCD.

These factors govern the spectral response of the CCD [44, 45]. The spectral response is

presented in a quantum e�ciency which shows the probability of detection of a photon of
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Figure 3.7: Spectral response of UNIQ UP-600CL extracted from manufacturer's manual

a speci�c wavelength. For example, when the probability is 0.1 or 10 percent means one

out of ten photons is detected. Figure 3.7 shows the spectral response of the UNIQ UP-

600CL extracted from manufacturer's manual. The typical spectral response of the SONY

CCD camera is similar to that of UNIQ camera , in fact there is not considerable di�erence

between spectral response of the two CCD cameras.

3.4.2 Black Body Radiation

Planck's law of black body radiation de�nes the relationship between temperature of a black

body and the spectral intensity of electromagnetic radiation for di�erent wavelengths as:
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E(λ, T ) =
2πhc2

λ5(ehc/λkT − 1)
(3.2)

where,

λ is the wavelength [m],

T is the temperature [k],

h is Planck's constant [J.s],

c = 3× 108 is the speed of light [m/s],

k = 1.381× 10−23 [J/K].

Figure 3.8 shows graphical presentation of the Planck's law for the possible temperature

range existing in the laser cladding process. Asselin [46] based on the Planck's law and

camera's spectral response showed that adding a bandpass �lter centered at 700nm results

in capturing of maximum amount of light irradiated from the melt pool due to black body

radiation. As a result, 700 nm band pass �lter was added to the camera's hardware in

order to overcome the existence of harsh and intensive light, and to capture only the light

originated from melt pool black body radiation.

3.5 Trinocular cameras

It is desired to acquire an image revealing full view of the melt pool. Since the melt pool is

a three dimensions object, showing all the three dimensions in one image is not practical.

On the other hand, the system inherently put some obstacle on the way of locating the

camera at a desired position. First of all, there is a relative motion between the laser

beam and the substrate; the substrate moves by multi axes CNC machine and in turn

has multiple degrees of freedom motion. Hence the camera should not obstruct this path.

Furthermore the space around the process zone is limited due to existence of the laser

head, nozzle, substrate, and CNC table. Relative motion between the laser beam and the

substrate yields to change in direction of tangential path vector to the generated track.

Figure 3.9 shows a few directions of the tangential path vector to sinusoidal clad tracks. As

seen, the tangential path vector can have all the angles between 00 and 3600 with respect
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Figure 3.9: Tangential path vector's direction changes during a sinusoidal path and it
places in di�erent regions generated by trinocular cameras

to the positive direction of x axis. Based upon this angle, the position of the melt pool

with respect to one stationary camera would be di�erent, and in turn, the image of the

melt pool would be completely di�erent. For instance, when the clad moves on the camera

axis and toward the camera (which means the substrate is moving away form the camera),

the camera captures the front view of the melt pool which is the region of the interest.

However, when the clad moves on the same axis but in opposite direction, the camera

captures an image which based upon the angle of camera to the horizontal axis could be

the back end of the melt pool or could not even capture any part of the melt pool due to

blockage by the solidi�ed clad.

In order to address these issues, a trinocular cameras con�guration was designed. This

con�guration was patented by Toyserkani et. al. [47] at the University of Waterloo. In

this arrangement, three CCD cameras are placed on an imaginary circle separated by equal

angle (1200 apart of each other). Each camera is located under the horizontal line and the

camera axis has a 150 angle with the horizontal line as illustrated schematically in Figure

3.1 and by a picture in Figure 3.10. All the three cameras are focused on the process zone

which is located under the process zone. At any moment, the tangential path vector places

in one of the three regions between the cameras (see Figure 3.9); the two cameras next to

the region monitor the front end of the melt pool and the other one monitors the back end
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Figure 3.10: Trinocular cameras installed on the system

of the melt pool which is not of great importance. Hence the images from the cameras

next to the region are saved for further analysis and the third image is not saved for the

sake of increasing the processing speed.
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Chapter 4

Image Processing

4.1 Introduction

The grabbed melt pool images by the cameras are in grey scale format. The images include

two main regions, the dark region which represents the background or the surrounding

of the melt pool and the bright area, which represents the melt pool. It is desired to

separate the area which accurately presents the melt pool from its surrounding. In fact,

precise determination of the melt pool is the fundamental of the algorithm, and improper

determination of the melt pool leads to huge perturbation in the output of the algorithm.

The algorithm needs the border of the melt pool for further analysis. Two approaches

can be adopted in order to acquire the border of the melt pool. In the �rst approach,

the image should be converted to the binary format (black and white) by applying a

proper thresholding method, and then the border of the melt pool should be detected

by exploiting a suitable edge detection technique. In the second approach the border of

the melt pool can be detected using an appropriate edge detection technique. These two

approaches involve two important image processing tasks namely �image thresholding� and

�edge detection�. In this chapter, image thresholding technique and edge detection method

will be discussed and the results of utilization of the developed techniques in obtained

images in laser cladding will be presented.
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4.2 Image Thresholding

Image segmentation is one of the most formidable tasks in image processing. Image seg-

mentation divides a digital image into recognizable parts. In image thresholding, as a

particular case of image segmentation, an image is segmented into two parts: foreground

or object and background. Each pixel in grey level images has a grey value between 0 and

L− 1 which corresponds to totally black (0) and totally white (L− 1) respectively.

Suppose [48, 49]:

P = [Imn]M×N represents the image in which Imn is a pixel located at (m, n) and has a

discrete grey value such that

Imn ∈ {0, 1, ..., L− 1} (4.1)

thresholding is determination of a threshold value such as T which segments the image

into two regions: object (O) and background (B) such that:

O = {(m,n)|Imn ≥ T} (4.2)

B = {(m, n)|Imn < T} (4.3)

then Imn becomes 1 for the object and 0 for the background or vice versa.

Choosing an optimal threshold value in each image depends upon many factors such

as the image itself, the desired region, de�nition of the object, and applications. For

example in one image the area of interest or the object for one speci�c application could

be completely di�erent from that of another application. For that reason there are many

thresholding methods with speci�c applications. In other words, there is not a unique

thresholding method for all applications.

When there is considerable di�erence between the grey level values of pixels in the

border of object and the pixels belonging to the background the image thresholding is

a straightforward task; however, when the border is composed of a hazy area which is

frequently the case in obtained images in the laser cladding process, the thresholding

is a complicated task. As mentioned earlier, several thresholding algorithms have been
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developed in order to overcome the inherent complexity in real life images. Researchers

categorized images based upon several criteria in order to develop proper thresholding

algorithm for each criterion. Image histogram which presents frequency distribution of

each grey value in an image or a region reveals important properties of an image and many

thresholding algorithms exploit the information extracted from the histogram. It is quite

bene�cial to examine a few typical images from the process, their corresponding surface

plot, and histogram. (see Figures 4.1, 4.2, and 4.3).

Figure 4.1a and 4.1b provide two typical images of the melt pool. Both images include

a very bright melt pool, a relatively black background and hazy area around the melt pool.

The surface plot of both images which are shown in Figure 4.1c and 4.1d illustrate the

hazy area around the melt pool clearly as those lines which connect the peak value plane

of the cylindrical area to the minimum grey value plane that are not perpendicular to the

later. Divergence of the lines from the perpendicular lines indicates that there is not a

distinctive boundary between the melt pool and the back ground. The histogram (the

grey area shows the logarithmic histogram) of both images as shown in Figure 4.1e and

4.1f. It is observed that there is not a valley in the histograms. In fact, between the two

peaks of histogram (at grey value of 20 and grey value of 255), the frequency smoothly

decreases and in some regions the frequency is almost constant. Both images have large

standard deviations which indicates large amount of dispersal from the mean value. Two

more typical images have been provided in Figure 4.2a and 4.2b. Figure 4.2a comprises

a large black area as the background, a white area as the melt pool, some re�ections and

blurred area, and relatively solidi�ed clad at the back end of the melt pool. The histogram

has two peaks, one at the very low grey values and the other at very high grey values

(255). There is a distinctive valley between the two peaks and standard deviation is much

less (36.89) as opposed to two previous images (around 90). Another image is shown in

Figure 4.2b. This image is composed of a large black area as the background, an area

that the grey value is increasing slowly which is the melt pool, and very little re�ection.

The histogram has a major di�erence from the previous ones which is existence of only

one peak in the histogram. The maximum grey value in the image unlike the others is

236 instead of 255. The standard deviation is 17.326 which is the minimum value among
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Figure 4.1: Typical types of images taken from the melt pool (part 1). a) & b) melt
pool images. c) & d) corresponding surface plots of the images. e) & f) corresponding
histograms along with the related statistical data of the images
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the four investigated images which again is due to existence of only one peak. Figure 4.3a

shows one more typical image of the melt pool. This image consists of almost only two

regions, a consistent black region as the background and a white area as the melt pool.

The deviation of grey values in the melt pool area is small. This fact clearly is illustrated

in the surface plot of the image; the surface plot is �at plane at zero and a cylinder with

the height of 255. The histogram includes a wide valley between the two peaks at both

ends. The last image of these typical images of the melt pool is shown in Figure 4.3b.

The image comprises a black area as the background, a white area as the melt pool, some

re�ection, a grey area which represents not completely solidi�ed clad around the melt pool

at the bottom and the back and a dusty area which seems is the vapor arising from the

melt pool. The histogram includes two peaks at both ends, a narrow valley near the value

of 255, and an area in which the frequency decreases with a slight slope along the increase

in grey value.

The aforementioned description indicates that characteristics of these images vary from

one to another. In fact, there are major di�erences between the histograms. Furthermore,

for some of them the thresholding is a challenging task even if all images are considered

to be the same. For example, in the image of Figure 4.1a and 4.1b, the hazy area around

the melt pool could make the thresholding algorithm complicated due to the fact that the

thresholding algorithm should be able to distinguish between the melt pool and the hazy

area. As a result, exploiting of proper thresholding algorithm is a challenging task.

As mentioned earlier many thresholding algorithms have been developed by researchers

over years. An exposition survey over image thresholding techniques can be found in [50,

51, 52, 53, 54, 55]. In these articles authors attempted to classify the current thresholding

methods based upon several criteria such as the employed information. For example, Sezgin

and Sankur classi�ed the thresholding algorithms based upon the employed information

into six groups [50]: �

1. histogram shape-based methods, where, for example, the peaks, valleys and curva-

tures of the smoothed histogram are analyzed

2. clustering-based methods, where the gray-level samples are clustered in two parts as
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background and foreground (object), or alternately are modeled as a mixture of two

Gaussians

3. entropy-based methods result in algorithms that use the entropy of the foreground

and background regions, the cross-entropy between the original and binarized image,

etc.

4. object attribute-based methods search a measure of similarity between the gray-level

and the binarized images, such as fuzzy shape similarity, edge coincidence, etc.

5. the spatial methods use higher-order probability distribution and/or correlation be-

tween pixels

6. local methods adapt the threshold value on each pixel to the local image characteristics.�[50]

Haralick and Shapiro categorized the thresholding algorithms into 6 groups [55]: �

1. measurement space guided spatial clustering,

2. single linkage region growing schemes,

3. hybrid linkage regiong rowing schemes,

4. centroid linkage region growing schemes,

5. spatial clustering schemes,

6. split and merge schemes.�[55]

The most common algorithm among these various selections of algorithms which has shown

relatively good result for a wide range of image types is Otsu thresholding technique [56].

Otsu thresholding which is a statistical based thresholding technique was applied to several

obtained images in laser cladding. Figure 4.4 illustrates one of the images and the binary

image acquired by applying the Otsu thresholding. As shown Otsu fails to detect the melt

at the presence of a �are. Several other thresholding methods also were applied to the

images; however none of them were able to detect the melt pool properly.
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Figure 4.4: Thresholded image by applying Otsu method : Only the �are has been detected,
and the melt pool completely eliminated.

The reason for this could be the fact that most of these algorithms are based on hard

partitioning of the pixels into the object and background. As a result, it has been observed

that performance of these algorithm is promising when the images meet the criteria on

which these algorithms structured; however, when the images do not meet the criteria, the

performance of the algorithms is downgraded. For instance when a thresholding method

is constructed based on a speci�c characteristic of the histogram (e.g., geometrical distri-

bution such as existence of valley between the peaks), the thresholding method mostly has

a promising performance when applied to such characteristics. In fact, these thresholding

methods are not able to respond properly to the structural features inherent in the grey

distribution of images or they are not adaptive thresholding techniques. Therefore, these

algorithms are called �ad hoc� algorithms. Hence, utilizing the thresholding techniques

based upon the fuzzy set theory is recommended. In the following, development of two

fuzzy based thresholding techniques will be investigated and the result of application of

these algorithms on the obtained images will be presented.
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4.3 Application of Fuzzy Set Theory to Image Thresh-

olding

A fuzzy set A is de�ned by a membership function such that:

µA(x) ∈ [0, 1] (4.4)

where, A is a fuzzy set, x belongs to A with the degree of µ, µA(x) is the degree of

attachment of x to A.

This is unlike the crisp set theory in which x either belongs to A or not. In other words,

crisp set theory is a special case of fuzzy set theory in which, µA(x) ∈ {0, 1}.
Fuzzy set can be applied to the image thresholding by dividing the image to two fuzzy

sets, object O and background B. Pixels are associated by membership distribution µO and

µB to O and B; respectively, which means µO(Imn) ∈ [0, 1] and µB(Imn) ∈ [0, 1]. Several

algorithms were developed by researchers in order to �nd optimal threshold value T . One

can �nd a survey of thresholding techniques exploiting fuzzy set theory in [48, 49]. A

number of researchers employed the measure of fuzziness of the image space to determine

optimal T and in turn to partition the image to object and background. The measure

of fuzziness acquired by using di�erent terms- entropy, index of fuzziness, index of non

fuzziness, to name a few. Some others employed soft partitioning or fuzzy clustering to

�nd the optimal threshold. Among these algorithms, one based upon measure of fuzziness

and one based upon fuzzy clustering are scrutinized in the following. The result of applying

these algorithms to the acquired images also will be presented.

4.4 Determination of Optimal Threshold by Minimizing

the Measure of Fuzziness

In this method, two fuzzy sets should be de�ned, then by minimizing the measure of

fuzziness of the fuzzy sets, the optimal threshold should be acquired. Fuzzy sets can be

52



acquired by using the relationship between each pixel grey value and average grey value of

selected region [57].

Suppose [57]:

P = [Imn]M×N represents the image in which Imn is a pixel located at (m, n) and has a

discrete grey value such that: Imn ∈ {0, 1, 2, ..., L − 1}. P can be expressed in fuzzy sets

by:

P = {(Imn, µA(Imn))} (4.5)

Assume that the frequency of grey value of g is h(g). By selecting an arbitrary threshold

value of t, the image is divided to two arbitrary regions, object and background. The

average grey value of object (go) and background (gb) is calculated by:

go =

t∑
g=0

gh(g)

t∑
g=0

h(g)

(4.6)

gb =

L−1∑
g=t+1

gh(g)

L−1∑
g=t+1

h(g)

(4.7)

These values are utilized in order to de�ne membership distribution of each pixel in these

regions. By assuming triangular membership distributions, the membership distribution

of the object is evaluated as:

µo(Imn) =



1

1 + |Imn − go|/ν
if Imn > t

0 if Imn ≤ t

(4.8)

where ν is an arbitrary number in order to keep µ(Imn) between 1/2 and 1 and is considered
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as L in this study. Membership distribution of the background is calculated similarly:

µb(Imn) =



0 if Imn > t

1

1 + |Imn − gb|/ν
if Imn ≤ t

(4.9)

As seen, µb(Imn) in object region is zero, likewise the µo(Imn) is zero in the background

region. In fact, there is no overlap between the two selected fuzzy set. As a result, ν is

selected as L to maintain the membership greater or equal to 1/2.

4.4.1 Entropy

As mentioned earlier, many measures can be used for minimizing the measure of fuzziness.

One of these proposed measures is entropy. Entropy can be de�ned by several functions.

De Luca and Termini [58] used Shannon function to identify the entropy of a fuzzy set A:

E(A) =
1

n ln 2

n∑
i=1

S(µA(xi)) (4.10)

where S is the Shannon function with de�nition of:

S(y) = −y ln y − (1− y) ln(1− y) (4.11)

Huang and Wang [57] extended this de�nition to the fuzzy sets de�ned in the image

by:

E(P ) =
1

M ×N ln 2

M−1∑
m

N−1∑
n

S(µA(Imn)) (4.12)

or by considering h(g):

E(P ) =
1

M ×N ln 2

∑
g

S(µA(g))h(g) (4.13)
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Figure 4.5: Membership distribution in typical image using triangular membership

It should be noted that Shannon function is a decreasing function between 0.5 and 1.

Since 0.5 ≤ µ(Imn) ≤ 1 , hence E(P ) is a decreasing function. As a result, the maximum of

E(P ) happens at µ(Imn) = 0.5. This occurs when the di�erences between Imn and g are at

maximum. In other words, the generated regions by t have large standard deviations. On

the contrary, the minimum of E(P ) happens at µ(Imn) = 1, which means the di�erences

between Imn and g is 0. In this case, the generated regions by t have the minimum

standard deviations. As an example suppose that the image consists of one object which

only consists of one grey value, and also one background which consists of only one grey

value. In that case, standard deviation of both regions would be zero. µ(Imn) would be

one for both regions and E will be at its minimum value zero. As a result, the crispier

generated regions by t would result in smaller value for E. In order to �nd the optimal

threshold T , t is increased from 0 to 255 in increment of one, the t which make E(P )

minimum is selected as optimal threshold. In fact:

T = {t|min
t

E(P )} (4.14)

The membership distribution of the generated fuzzy sets in a typical histogram has
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Figure 4.6: Applying minimizing the measure of fuzziness with triangular membership
function to an image

shown in Figure 4.5. The algorithm was applied to the same image as Figure 4.4 which the

result has shown in Figure 4.6. The �gure clearly illustrate that the fuzzy method with

triangular membership detected the melt pool whereas the Otsu method completely failed

to detect the melt pool. Further discussion will be presented in the results and discussion

section.

4.4.2 Membership Distribution Using Gaussian Membership Func-

tion

Gaussian membership function is employed instead of triangular membership in order to

investigate the e�ect of chosen membership function on the algorithm. Gaussian member-

ship function is de�ned as follows:
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Figure 4.7: Membership distribution in a typical histogram using Gaussian membership

µo(Imn) =


exp(

−(Imn − go)
2

2σ2
) if Imn > t

0 if Imn ≤ t

(4.15)

µb(Imn) =



0 if Imn > t

exp(
−(Imn − gb)

2

2σ2
) if Imn ≤ t

(4.16)

where σ is a number which makes the membership function wide or narrow and considered

as 0.3× L in this study.

Figure 4.7 graphically illustrates how the above thresholding is implemented in the

histogram region. The algorithm with Guassian membership function was employed for

melt pool detection of the same image shown in Figure 4.4 and 4.6. The result is shown in
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Figure 4.8: Applying minimizing the measure of fuzziness with Gaussian membership
function to an image

Figure 4.8. The result of the algorithm with Gaussian membership function seems better

than the algorithm with triangular membership function. Further discussions will be given

in the results and discussion section.

4.4.3 Membership Distribution Using Generalized Bell Member-

ship Function

Generalized Bell membership function is also applied to further investigate the e�ect of

the membership function type. Generalized bell is an extension to the Cauchy probability

distribution. The Cauchy probability distribution C : R → [0, 1] is de�ned as:

C(x) =
1

1 +
‖x− α‖β

γ

(4.17)

where α ∈ R, β ≥ 0, γ > 0. α is the center of curve, γ makes the curve wide or narrow,
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and β de�nes the smoothness of function. In fact γ and β determine the fuzziness of the

membership function. Generalized Bell membership function was applied to de�ne the

membership distribution of object and background as:

µo(Imn) =



1

(1 + |Imn − go

256
|)2B

if Imn > t

0 if Imn ≤ t

(4.18)

µb(Imn) =



0 if Imn > t

1

(1 + |Imn − gb

256
|)2B

if Imn ≤ t

(4.19)

where, B ≥ 0 determines the grade of fuzziness of the membership function. In this study,

B is considered as 1.5. Figure 4.9 shows a typical histogram with generalized bell curve

membership function as membership distributions. As it is seen, the area around the

average of each region is almost a straight line and by getting far from the average the

curve is going down with a slight slope. By having a look at triangular, Guassian, and bell,

it reveals that, from triangular to bell, curves get wider and the slope is decreasing, in fact

the area under the curves becomes larger. In other words, the generalized bell function

has greatest fuzziness among the three, and triangular has the minimum.

The algorithm with generalized bell membership function was applied to the same image

as Figure 4.4, 4.6, and 4.8. The result has been presented in Figure 4.10. More results will

be presented in the results and discussion section.
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Figure 4.9: Membership distribution using generalized bell curve membership function
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Figure 4.10: Applying minimizing the measure of fuzziness with generalized bell member-
ship function to an image
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4.4.4 Employment of Look Up Table

The above-mentioned algorithm has been used for di�erent melt pool images. In spite

of the good results, the algorithm is slow. Fuzzy thresholding technique using Gaussian

membership function is about 19 times slower that Otsu method. The algorithm is very

crucial to be fast, considering the fact that it is ultimately intended to be implemented in

the laser cladding process in order to detect the melt pool in a real-time fashion. In order

to address this issue, the following modi�cation has been made to lessen the computation

time of the algorithm.

Without a�ecting the performance of algorithm it can be assumed:

go = int[

t∑
g=0

gh(g)

t∑
g=0

h(g)

] (4.20)

gb = int[

L−1∑
g=t+1

gh(g)

L−1∑
g=t+1

h(g)

] (4.21)

As a result, go and gb are assigned integer numbers between 0 and 255. On the other

hand, Imn is an integer number between 0 and 255, hence Imn−g is an integer number and

we have 0 ≤ Imn − g ≤ 255 .Therefore, for the di�erent values of Imn − g a look up table

has been constructed o�ine in which Imn − g, µ(g), and S(µ(g)) were stored respectively.

In other words, the membership functions and Shannon function are calculated o�ine

and recalled from the look up table during the online process. These modi�cations made

the fuzzy threshold with Gaussian membership function about 20 times faster than before

or 5 percent faster than Otsu method which is quite promising.
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4.5 Determination of Optimal Threshold by Fuzzy C-

Means Clustering

Data clustering can be de�ned as partitioning of a group of data points into a number of

subgroups (clusters) based upon closeness and similarity between members of each cluster,

in fact clustering is grouping n data points into k clusters. In order to have a scale to

measure degree of closeness or similarity a distance function is exploited, in other words

distance function reveals the degree of closeness between members of a subgroup. There

are several distance functions which consider di�erent features as the measure of closeness

and in turn measure the degree of closeness from di�erent point of views such as Euclidean

and Hamming function.

Several data clustering methods were developed during the past decades. These meth-

ods may be divided into two major categories:

• Hierarchical

• Objective function based clustering

In Hierarchical clustering, �rst each data point is considered as a cluster, and then in

each iteration two closest clusters are joined and this continues until a threshold value is

reached. Hierarchical clustering is common due to its simplicity, however because of its

iterative character it is time consuming.

In the Objective function based clustering, data points are divided into a number of

subgroups and then minimization of an objective function is sought to determine one

con�guration among all the possible partitions. Among di�erent objective function based

clustering, C-Means clustering (HCM) has drawn much attention and arisen in a multitude

of applications. In C-Means clustering minimization of a cost function by �nding center of

each cluster is sought as follows [59]:

Q =
k∑

i=1

qi =
k∑

i=1

n∑
j=1

uijd(xj, ci)
2 (4.22)
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where,

qi is the cost function in group i,

ci is the center for cluster i,

d(xj, ci) = ‖xj − ci‖ is a the distance function between each vector (data point) and center

of the cluster,

U = [uij]k×n is the similarity, partition or membership matrix.

uij is 1 when xj belongs to cluster i and is 0 when it does not. A data point belongs to

the cluster which its center has minimum distance to it among all centers. In fact:

uij =

{
1 if ‖xj − ci‖2 = min

i
(‖xj − ci‖2)

0
(4.23)

It should be noted that each data point only belongs to one cluster and as a result:

k∑
i=1

uij = 1 ∀j = 1, ..., n (4.24)

k∑
i=1

n∑
j=1

uij = n (4.25)

C-Means clustering algorithm can be described as:

Step 1: Choose k data points randomly as cluster centroid.

Step 2: Calculate partition matrix by and assign n− k remained data points to k chosen

clusters.

Step 3: Calculate the cost function from 4.22. Stop if the cost function is below a thresh-

old value or if the di�erence between the current cost function and the one from the

previous iteration is below a threshold value.

Step 4: calculate new cluster centers and go to step 2.
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4.5.1 Fuzzy C-Means Clustering (FCM)

Fuzzy C-Means Clustering (FCM) is generalized form of Hard C-Means Clustering (HCM)

in a fuzzy fashion. The main di�erence between HCM and FCM is in HCM, each data

point only belongs to one cluster, whereas in FCM each data point can be associated with

several clusters with di�erent degree of membership between 0 and 1. As a result, uij

(membership degree of data point j with respect to cluster i) has these properties [48, 59]:

uij ∈ [0, 1] (4.26)

0 <
n∑

j=1

uij < n ∀i = 1, ..., k (4.27)

k∑
i=1

uij = 1 ∀j = 1, ..., n (4.28)

The objective function is:

Q =
k∑

i=1

n∑
j=1

um
ij d(xj, ci)

2 (4.29)

where,

ci is the center of fuzzy cluster i,

d(xj, ci) = ‖xj − ci‖ is Euclidean distance between data point j and center of group i,

m = [1,∞) is the weighting parameter.

m controls the amount of fuzziness. When m = 1 the formula becomes equivalent to the

hard C-Means clustering. m is usually considered between 2 and 7. In order to minimize

Q of Equation (4.29), ci and uij should satisfy these equations [60]:

ci =

n∑
j=1

um
ij xj

n∑
j=1

um
ij

∀i = 1, ..., k (4.30)
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uij =
1

k∑
p=1

(
dij

dpj

)

2

m− 1

∀i = 1, ..., k ∀j = 1, ..., n (4.31)

where dij = d(xj, ci) = ‖xj − ci‖.
The algorithm can be described as:

Step 1: Choose membership matrix randomly in such a way that Equations (4.26), (4.27),

and (4.28) are satis�ed.

Step 2: Calculate fuzzy cluster centers ci, i = 1, ..., k by Equation (4.30).

Step 3: Calculate the cost function by Equation (4.29). Stop if the cost function is below

a threshold value or if the di�erence between the current cost function and the one

from the previous iteration is below a threshold value.

Step 4: Update the membership matrix, U , by Equation (4.31) and go to step 2.

It should be noted that the algorithm can also be processed by �rst initialization of

cluster centers.

4.5.2 Computation of Optimal Threshold by FCM

Image segmentation can be considered as a special case of clustering in which the clustering

is performed in the domain of image. The grey value of each pixel can be considered as a

one dimensional data point. Suppose P = [Imn]M×N represents the image in which Imn is

a pixel located at (m, n) and has a discrete grey value such that: Imn ∈ {0, 1, 2, ..., L− 1}.
Also let (g, h(g)) be the histogram of image. Number of clusters, k, is considered as 2

corresponding to object and background. Since uij is membership degree of data point j

to cluster i , it can be shown by: uij = µi(g) then the Equation (4.29) becomes [48]:

Q =
2∑

i=1

L−1∑
g=0

h(g)µi(g)md(g, ci)
2 (4.32)
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Also, Equation (4.30) becomes:

ci =

L−1∑
g=0

h(g)µi(g)mg

L−1∑
g=0

h(g)µi(g)m

∀i = 1, 2 (4.33)

where c1 and c2 correspond to center of the fuzzy cluster representing the background cb

and center or the fuzzy cluster representing the object co, respectively.

Membership distribution by Equation (4.31) becomes:

uij = µi(g) =
1

2∑
p=1

(
dig

dpg

)
2

m−1

∀i = 1, 2 ∀g = 0, 1, ..., L− 1 (4.34)

since i = 2 corresponds to object cluster:

µo(g) =
1

2∑
p=1

(
d2g

dpg

)
2

m−1

=
1

(
d(g, c2)

d(g, c1)
)

2
m−1 + (

d(g, c2)

d(g, c2)
)

2
m−1

∀g = 0, 1, ..., L− 1 (4.35)

then:

µo(g) =
1

(
d(g, co)

d(g, cb)
)

2
m−1 + 1

∀g = 0, 1, ..., L− 1 (4.36)

considering Equation (4.27) and since there are 2 clusters:

µb(g) = 1− µo(g) ∀g = 0, 1, ..., L− 1 (4.37)

As a result, the algorithm can be described as:

Step 1: Choose membership distributions µo(g) and µb(g) randomly in such a way that

Equations (4.26), (4.27), and (4.28) are satis�ed.

Step 2: Calculate fuzzy cluster centers cb and co by Equation (4.33).
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Step 3: Calculate the cost function by Equation (4.32). Stop if the cost function is below

a threshold value or if the di�erence between the current cost function and the one

from the previous iteration is below a threshold value.

Step 4: Update the membership distributions µo(g) and µb(g) by Equations (4.36) and

(4.37) and go to step 2.

co and cb computed by the algorithm are employed to calculate the optimal threshold.

Jawahar et. al. [48] showed that for a unique point between co and cb, µb(g) and µo(g) are

equal, and this point has the same distance to cb and co. As a result:

T =
cb + co

2
(4.38)

In this study m was considered as 2. Figure 4.11 graphically illustrates how the above

algorithm is implemented in the histogram for m = 2. As seen in the �gure, T is equidistant

from co and cb, also we have: µb(T ) = µo(T ) = 0.5.

The algorithm was applied to the same image as Figures 4.4, 4.6, 4.8, and 4.10. The re-

sult is presented in Figure 4.12. More results will be presented in the results and discussion

section.

4.6 Results and Discussion

To investigate the performance of the aforementioned algorithms, several experiments were

conducted using the apparatus shown in Figure 3.10. Two cameras of the proposed trinoc-

ular CCD-based optical detectors were installed into the processing head with 120odegrees

apart from each other, as explained in Chapter 3. Images of the melt pool were captured

by UNIQ UP-600CL digital cameras at a rate of 10Hz on a QNX 6.3 platform (Pentium

4, 2.6 GHz processor). A Band pass �lter centered at 700 nm and a number 4 neutral in-

tensity �lter were added to each camera. During the course of the experiments, all process

parameters except the velocity were kept constant as the laser frequency was set to 90 Hz,

laser pulse duration to 3.0 ms , and laser pulse energy to 4 J/pulse. Stainless steel powder
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Figure 4.11: Membership distributions in a histogram by applying FCM method
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Figure 4.12: Application of FCM thresholding to one image
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Figure 4.13: A comparison of threshold levels obtained through the aforementioned algo-
rithms for 100 of the aquired images during the experiments

(303L) was fed at a rate of 2 g/min through the powder feeder's lateral nozzle. The process

scanning speed was being changed between 0.5 mm/sec to 3 mm/sec.

The algorithms, fuzzy thresholding with triangular membership function, fuzzy thresh-

olding with Gaussian membership function, fuzzy thresholding with generalized bell mem-

bership function, and fuzzy c-means thresholding were applied to the captured images

of the melt pool during the course of the experiments. Figure 4.13 presents the acquired

threshold values through each algorithm for 100 images. It can be observed that the results

of these algorithms in most cases are close; however in some cases the results are drasti-

cally di�erent. This can be observed, where for the �rst 65 frames, in most of the cases
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the threshold values are between 0.05 and 0.15, while the di�erences between the threshold

values for the last 35 frames are much larger. However, it should be noted that small

change in the threshold value may lead to considerable changes in the binarized image.

Many obtained images through the course of experiments were scrutinized by comparing

the results of the algorithms. The results can be summarized as follows:

The results can be summarized as follows:

• Unlike Otsu thresholding techniques, fuzzy thresholding with di�erent membership

functions and FCM thresholding, are able to reasonably detect the melt pool;

• In most cases, the results of fuzzy thresholding and FCM thresholding are relatively

identical;

• Depending on the case, di�erent algorithms will provide the best result, in other

words one algorithm doesn't provide the best result for all cases;

• Among di�erent membership functions of fuzzy thresholding, Gaussian membership

function o�ers the best results, almost in all cases;

• The results of fuzzy thresholding with Gaussian membership and FCM in the most

cases are almost identical. However in some cases fuzzy thresholding with Gaussian

provides better results and in some FCM. Overall, the results of FCM are slightly

better;

• For the interest of processing speed, FCM su�ers from lower processing speed compare

to fuzzy thresholding (di�erent membership functions) with implementation of look-

up table. The fuzzy thresholding with Gaussian membership with implantation of

look-up table is about 23 times faster than FCM thresholding;

• Fuzzy thresholding with Gaussian membership function due to good results and high

speed processing can be considered for implementing in controller.

A few of the images along with the corresponding detected melt pool resulted by these

algorithms are illustrated in Figures 4.14 and 4.15. In Figures 4.14 and 4.15, the �rst row
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Figure 4.14: Obtained thresholded images through the aforementioned algorithms for 5
images selected through many images as a sample (�rst part). Circled results show the
better outputs among the four results.
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Figure 4.15: Obtained thresholded images through the aforementioned algorithms for 5
images selected through many images as a sample (second part). Circled results show the
better outputs among the four results.
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is the original images, the second row is the detected melt pools by fuzzy thresholding

through triangular membership function, the third row is the detected melt pools by fuzzy

thresholding through Gaussian membership function, the forth row is the detected melt

pools by fuzzy thresholding through generalized bell membership function, and the �fth

row is the detected melt pool through fuzzy c-means thresholding. It should be noted

that, these images were selected among many images to show that one algorithm always

is not able to provide the best result. The best result of the four algorithms is marked by

a circle around it, and where two or more algorithms provide the best results, all of them

are circled.

73



Chapter 5

Feature Tracking Algorithms

In this chapter, extraction of features from the detected borders of the melt pool images

and prediction of the clad height using these features will be discussed. Also, experimental

veri�cation in order to evaluate the validity of the developed model will be presented and

discussed.

5.1 Image Transformation

As mentioned earlier, there is a relative motion between the cameras and the clad trajec-

tories. As a result, any analysis of two images obtained from the two cameras is subject to

the angle of cameras with respect to the horizontal plane. As a result, the images are �rst

projected on a reference plane in order to be analyzed. In order to project the images on

a reference plane, a perspective transform estimation approach is used [61, 62, 63]. This

technique maps a quadrilateral from a plane coordinate system to another (see Figure

5.1) by the use of a perspective transformation. The perspective transformation can be

represented by the matrix equation P = Hq, where, q represents the coordinates in the

image plane, P represents the coordinates in the work plane, and H is a homogeneous

transformation from the image plane to the work plane. This equation can be manipulated

to represent the nonlinearities involved in the perspective projection such that it becomes:
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where, H, the homogeneous transformation matrix, is represented by the constants a to h.

Also, W is given by the following equation:

W = gx + hy + 1 (5.2)

Arranging into a matrix form, one can obtain a linear equation for the unknown pa-

rameters of the homogeneous transformation in the form of Aλ = B, where

A =

[
x y 1 0 0 0 −Xx −Xy

0 0 0 x y 1 −Y x Y y

]
(5.3)
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λ =
[

a b c d e f g h
]T

(5.4)

B =

[
X

Y

]
(5.5)

This equation can be solved by a least squares optimization method. With eight un-

known parameters in λ, one requires 8 data points, or 4 pairs of coordinates, for an exact

solution. It should be noted that for each new pair of coordinates, the A and B matrices

are increased by two rows, following the convention of Equations 5.3 to 5.5. The resulting

linear equation may be solved using of the pseudo-inverse approach as:

λ = (AT A)−1AT B (5.6)

In order to obtain the transformation matrices, four pairs of coordinates on the image

plane are mapped to their corresponding points on the work plane as shown in Figure 5.1.

These matrices were then used for the projection of images on the work plane in which

merging and analysis of the images can be directly performed.

As an example, Figure 5.2a depicts two typical images grabbed by two cameras (i.e., 1

and 2). These two images are �rst converted to binary (Figure 5.2b) and then the borders

of the segmented melt pool are detected (Figure 5.2c). The projected detected borders are

depicted in Figure 5.2d. As seen in Figure 5.2d, the front edge of the projected border,

which is faced toward the cameras are real and the other side of the border is faked as

a�ected by the shadow generated by the clad height. This fact is shown in Figure 5.3, in

which the shadowing length is a function of the clad height and the clad cross section pro�le.

Since the shape of the clad's cross section pro�le, shown in Figure 5.3, is unknown and

varies over the process, calculating the clad height is not analytically applicable. Therefore,

this fact requires us to use a soft computing technique (i.e., neural network) to be trained

through the collected data presenting the features of the images. As a result, the following

feature tracking module is proposed to not only obtain rich data from the projected borders

but also reduce the number of inputs to the neural network.
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Figure 5.2: Typical projected images on the reference plane: a) Typical images from
camera 1 and 2, b) Binarized images, c) Detected border of the melt in each image, d)The
projected melt pool border images on the work plane
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5.2 Image Feature Tracking Module

Minimization of the number of inputs and the reduction of the computational time call for

tracking special features in the projected images. As seen in Figure 5.2d, the projected

borders of the melt pool have an elliptical form. Hence, each projected image can be

parameterized in terms of ellipse's major and minor axes (A and B), and the angle between

the major diameter and a datum line (i.e., α) as shown in Figure 5.4.

5.2.1 Extracting the ellipse major and minor diameters and α from

the projected borders

In order to extract A, B, and α, it is needed to �t an ellipse to the border of each projected

image. This �tting can be carried out by Fitzgibbon's approach, which is based on least

squares minimization technique [64]. In general, an ellipse can be written by an implicit

second order polynomial as

F (x, y) = a1x
2 + a2xy + a3y

2 + a4x + a5y + a6 = 0 (5.7)
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Figure 5.4: Selected features in the images after �tting ellipses

where a1 to a6 are coe�cients of the ellipse and (x, y) are coordinates of points which form

the ellipse. These coe�cients can be presented by the following vectors

a =
[

a1 a2 a3 a4 a5 a6

]
(5.8)

x =
[

x2 xy y2 x y 1
]

(5.9)

As a result, Equation (5.7) can be expressed as

Fa(x) = axT (5.10)

The geometrical ellipse constraint associated with
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4a1a3 − a2
2 = 1 (5.11)

In order to �nd the associated coe�cients, a least square minimization on N points

(xi, yi), i = 1, ..., N will be carried out. This minimization can be presented by the

following equation

min
N∑

i=1

F (xi, yi)
2 = min

N∑
i=1

(xia)2 (5.12)

Equation (5.12) can be solved directly by the standards least squares method along with

the constraint presented by Equation (5.11). The output of this minimization will be the

ellipse coe�cients presented by Equation (5.7).

The major and minor axes and α can then be derived by the following equations:

α =
1

2
tan−1(

a2

a1 − a3

) (5.13)

M = −a6+
(a4 cos α− a5 sin α)2

4
(
a1 cos2 α + a2 cos α sin α + a3 sin2 α

)+
(a5 cos α− a4 sin α)2

4
(
a1 sin2 α− a2 cos α sin α + a3 cos2 α

)
(5.14)

a′ =

(
abs

(
M

a1 cos2 α + a2 cos α sin α + a3 sin2 α

))0.5

(5.15)

b′ =

(
abs

(
M

a1 sin2 α− a2 cos α sin α + a3 cos2 α

))0.5

(5.16)

where M, a′, and b′ are dummy variables. The major and minor diameters can then be

expressed by

A = 2max(a′, b′) (5.17)
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B = 2min(a′, b′) (5.18)

These values are then collected to be used in training of the proposed neural network

as will be described below.

5.2.2 Features Selection

The collected data from images should be rich enough to present the dynamic behavior of

the system accurately. Moreover, there should be a strong correlation between the selected

features and the clad height deviation. On the other hand, the collected data should be fed

into a neural network structure whose convergence is a function of the selected features.

In order to address the above mentioned issues, 4 features from the projected image are

selected: A, B, A′, B′. These parameters, as shown in Figure 5.4, represent the nature of

two ellipses �tted into the projected melt pool's images which were grabbed by cameras 1

and 2. These four parameters are strongly correlated with the clad height.

As mentioned in Chapter 3, direction of the tangential path vector, êt, varies by chang-

ing the orientation of the clad (see Figure 3.9). Depending on the orientation of the track

tangential vector, êt, with respect to the reference line, the size of the projected border

varies, and in turn, corresponding elliptical features alter. This unit vector makes a varied

angle, θ, with respect to a reference line. This reference line is considered to be the cor-

responding right hand side camera's axis (the line between the right hand side camera of

the unit vector and the center of the workspace). Hence, θ should also be considered as

one of the correlated features to the clad height.

Figure 5.5 shows typical projected melt pool's borders at di�erent θs (i.e., 0o, 30o, 60o).

As seen, θ has a signi�cant impact on the shape of the projected image. As a result, this

angle is used as the 5th input for the proposed neural network and angle θ associated with

each elapsed time was collected through the trajectories . Selection of these parameters is

also based on observation from the melt pool deviations during the actual laser cladding

process. Inherent in the selection is the fact that these features are sensitive enough for

various clad height range. This arrangement can minimize the computational time which,
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in turn, increases the suitability of the algorithm for the prediction of clad height in real-

time.

In summary, the selected neural network consists of 5 inputs and one output as shown

in Figure 5.6. The actual height measured in o�-line is considered as the target for the

training of the model.

5.3 Recurrent Neural Network

A recurrent neural network (RNN) is a particular form of neural network model that has a

feedback signal in the network architecture. The universal approximation capabilities of the

recurrent multilayer perceptron make it a popular choice for modelling nonlinear dynamic

systems and implementing general-purpose nonlinear controllers. There are di�erent forms

of recurrent neural networks such as Elman and Hop�eld networks.

An Elman RNN is considered for this study due to its supervised structure. Elman

network, as shown in Figure 5.7, contains of an internal feedback loop, which makes it

capable of detecting temporary and sudden patterns in the images [65]. Due to this feature,

it can indirectly resolve the in�uence of noise in the prediction of the clad height. As

explained before, the images might be a�ected by undesired noise generated by plasma

formation, �are and re�ected light. The dynamic nature of the selected RNN can e�ectively

detect any dynamic disturbances in the network inputs generated by the noise. In fact,
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any temporary and sudden patterns in the images which are re�ected in our inputs can be

detected and eliminated in the clad height prediction if the networks well-trained so that

it can distinguish these temporary patterns are generated due to undesired noise.

In Figure 5.7, u and y are the input and output matrices, respectively, IW are the

network's weights, LW is the feedback weight, D is the delay and b is the bias matrix.

The only requirement is that the hidden layer must have a suitable number of neurons.

Although more hidden neurons are needed as the complexity of the function being �t

increases, increasing the number of hidden neurons causes noise identi�cation instead of

process identi�cation in a noisy environment. In this study trial and error procedure were

performed to obtain the RNN proper parameters. As a result, the delay D was selected as

2 samples due to the observed delay between the input signal and the real process response.

The number of neurons was 10 and 1 for hidden and output layers, respectively.

5.4 Experimental Veri�cation

To investigate the performance of the aforementioned algorithms, several experiments were

conducted using the apparatus shown in Figure 3.10. Two cameras of the proposed trinoc-

ular CCD-based optical detectors were installed into the processing head with 120odegrees

apart from each other, as explained in Chapter 3. Images of the melt pool were captured
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Figure 5.8: Top view of direction of conducted tests for collecting data

by UNIQ UP-600CL digital cameras at a rate of 10Hz on a QNX 6.3 platform (Pentium

4, 2.6 GHz processor). A Band pass �lter centered at 700 nm and a number 4 neutral

intensity �lter were added to each camera. During the course of the experiments, all pro-

cess parameters except the velocity were kept constant as the laser frequency was set to

90 Hz, laser pulse duration to 3.0 ms , and laser pulse energy to 4 J/pulse. Stainless steel

powder (303L) was fed at a rate of 2 g/min through the powder feeder's lateral nozzle

on a mild steel substrate. The velocity of the substrate was being changed between 0.5

mm/sec to 3 mm/sec in order to get di�erent clad height. The ground truth comes from

the process constraints related to mechanical and metallurgical properties of clad. In fact,

the proposed ranges of the process parameters lead to high quality clad in terms of physical

properties.

In order to obtain rich data, 9 clad tracks with 15o incremental angle were generated

in order to cover 120o degrees between each two cameras as shown in Figure 5.8. Table 5.1

shows the speci�cation of these clad tracks. One of the generated tracks is shown in Figure

5.9. Using the proposed algorithm and procedures, 2284 sets of data were extracted from

images. Figure 20 shows deviation of each of four parameters for test 3.
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Table 5.1: Speci�cation of the conducted tests
Test number θ Number of frames

Test 1 0o 180
Test 2 15o 180
Test 3 30o 180
Test 4 45o 180
Test 5 60o 493
Test 6 75o 256
Test 7 90o 270
Test 8 105o 273
Test 9 120o 272

Figure 5.9: O�ine picture of the clad track of test 7
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Figure 5.10: Deviation of elliptical features during the test 3
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5.4.1 Training and Simulation of RNN

To train the network, backpropagation through the time technique [66, 67] with 2284 sets

of extracted data from previous step was used. As mentioned earlier for each test, θ was

constant; hence there were 9 various θ among our data sets. For the target, the real height

corresponding to each frame was extracted o�ine. The training was performed and the

model converged with the error of less than 0.0001.

5.4.2 Veri�cation of RNN and Discussion

For veri�cation, one clad with the same angle of test 5 generated (i.e., θ = 60o), which

was not used in the training. Figure 5.11 shows the comparison between the network and

the actual height. As seen in the �gure, network can reasonably predict the clad height,

in which the precision of data is about ±0.15 mm translated to an average error of l2%.

The �gure indicates that the developed algorithm can e�ectively predict the clad height

at various amplitudes and frequencies. The algorithm properly works at a wide range of

clad amplitude (i.e., 1 to 2.5 mm). There are several sources of error such as discrepancies

between the detected and the actual melt pool image originated from thresholding or light

dissipation/re�ection, lens distortion, nonlinear e�ects in projection approach and �nally

possible shrinkage in the produced clads after being cooled down.

It was evaluated that the developed algorithm is not computationally intensive with

the used hardware and software (i.e., IPPL library over the C++ code). Since the rate of

simultaneous frame grabbing through the cameras was 10Hz, the required computational

time did not alter the above mentioned frequency. This computation timing is an ideal

platform for the use of this system for real-time detection of the clad height independent

of the path.
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Chapter 6

Conclusion and Recommendations

6.1 Conclusion

This thesis presented novel algorithms for real-time detection of clad height in laser cladding.

Figure 6.1 illustrates a summary of the developed algorithms in order to measure the clad

height in real-time. This was accomplished by the following:

Tackling the issues pertinent to image acquisition in the presence of harsh and intensive

light was scrutinized in Chapter 3. Important parameters of digital cameras related to

selection of proper type of CCD cameras in order to overcome the existent harsh condition

were presented. Also, the existent light in laser cladding arisen from di�erent sources was

analyzed and based upon that proper bandpass �lters and neutral �lters were selected. All

these lead to capture relatively sharp and clear images of the melt pool. Capturing good

quality pictures potentially would provide valuable information about the process. This

information could include, but is not limited to, melt pool geometry (i.e., melt pool height,

width, melt pool pro�le, and wet angle), angle of solidi�cation, melt pool temperature, and

melt pool temperature distribution. Furthermore, the issues regarding path dependency

of the melt pool image were addressed by using a trinocular cameras con�guration. By

utilizing this, always two cameras monitor the front end of the melt pool regardless of the

direction of the clad.

Image analysis of the grabbed images was discussed in Chapter 4. Image thresholding
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is one of the most formidable tasks in image processing and this di�culty is intensi�ed

due to characteristics of the grabbed images of the melt pool (e.g., surrounding hazy area

around the melt pool). Applying hard partitioning thresholding methods did not lead to

the accurate detection of the melt pool. Therefore, a method based on fuzzy thresholding

by minimizing of the measure of fuzziness was developed and its performance was inves-

tigated. The e�ect of three important membership functions, triangular, Gaussian, and

generalized Bell on the performance of the thresholding method was investigated. Also, an

image thresholding method by utilizing fuzzy c-means clustering was developed. Apply-

ing the developed thresholding methods shows promising results. Among the developed

thresholding methods, fuzzy thresholding with minimizing the measure of fuzziness with

Gaussian membership function was selected for the implementation in the algorithm due

to its good results and its fast processing speed.

In Chapter 5, Image feature tracking module was presented. The detected borders of

the melt pool images are transformed from image plane to the world plane by using a

perspective transformation. Four features of the elliptical features of the projected melt

pool borders are selected. These four features along with the angle of tangential path

vector with respect to the corresponding right hand side camera's axis are fed into an

Elman recurrent neural network. The proposed algorithms and the trained neural network

were utilized in the process resulting in acceptable detection of the clad height in deposition

of straight clads for a speci�c direction. It is concluded that the system can detect the

clad height with about ±0.15mm maximum error. The processing speed of the algorithms

made them a good platform for the use in the system for real-time detection of clad height.

However, the promising results are limited to the direction of a straight line equidistant

to the both camera's axis (i.e., θ = 60o). By moving the direction of the straight line

toward each camera's axis the results of the model are downgraded. The average error

for direction of each camera's axis (i.e., θ = 60o or θ = 120o) reaches up to 40 percent.

Furthermore, the performance of the model is demoted when the height of clad becomes

less than 1 mm. In fact the algorithm does not provide reliable results for the height of

less than 0.5 mm.

These increasing errors could arise from many sources such as:
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• Image thresholding does not lead to extract the exact melt pool shape in some cases

which conduces to some errors.

• The algorithm works based on the measuring of the perimeter of the area which

is white in the binary image which is not always representing the existence of clad

height, For example when laser just by itself radiates on the substrate, a shiny spot

is formed on the substrate which the algorithm considers it as a clad with a small

height, however there is no real clad in this case. In other words a threshold value

should be considered which beyond that value the output of the algorithm is more

reliable and below that less reliable. This conduces to greater error in thin clad

compare to thick clad.

• Sometimes the area around the melt pool is being lit due to light dissipation and

re�ection.

• Algorithm by itself like other algorithms gives some percentage of error.

6.2 Recommendations

It is desired to have a vision system which is independent of the kind of material in

laser cladding. However, the current �ltering system is dependent upon the black body

radiation which may di�er drastically from one material to another. In addition, when

a mixture of a few kinds of materials is used, determination of the proper set of �ltering

system is di�cult. On the other hand, the performed light analysis in Chapter 3, su�ers

from many assumptions and estimations which might have resulted in capturing the melt

pool improperly. In order to address these issues, use of an illumination light with a

speci�c wavelength along with using the proper bandpass �lter in front of the camera

is recommended. As a result, light only in the narrow band width of illumination light

wavelenght can reach the camera, which in turn, leads to disposal of harsh and intensive

light in the process. Also, use of non intensi�ed CCD cameras with high quantum e�ciency

in near infrared region is recommended. This may result in capturing images with higher

quality and less noise.
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Furthermore, more experiments should be conducted to collect more data to be used in

the training of RNN and enhancing the performace of the algorithm for angles other than

θ = 60o, and curvature trajectories.
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