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Abstract

This thesis discusses several modelling approaches for the analysis of correlated binary
data, as motivated by the results of a longitudinal school-based smoking prevention trial.
In this study, WSPP3 - the third in a series called the Waterloo Smoking Prevention
Projects, longitudinal observations were collected on a cohort of students, randomized to
various study conditions in clusters defined by schools.

An extension to the logistic-normal empirical Bayes random effects model is proposed,
termed quasi empirical Bayes (QEB), which allows for the estimation of fixed effect model
parameters, adjusting simultaneously for the effects of extraneous school-to-school variabi-
lity as well as intra-individual correlation. A method of generating data with a composite
correlation structure similar to that of the Smoking Prevention Projects data is develo-
ped; this is subsequently implemented in a simulation study to examine the properties of
parameter estimates from the QEB model.

We then move into a discussion of the relationship between marginal or population-
averaged models and cluster-specific models, and show that a straightforward modification
of cluster-specific random effects models can be used to approximate a marginal correlation
structure. With this approach one could for example determine easily whether or not
the intra-school correlation in the WSPP3 data depends on school size. Our discussion
focusses on the logistic-normal model in particular, with estimation in this case proceeding
by maximum likelihood. Power considerations and the effects of model misspecification
are addressed.

Finally, we consider a general approach for testing the fit of models for correlated data.
The emphasis here is on assessing how well a particular model captures the covariance
structure of the data, assuming the mean is correctly specified. Some analytic results are

given, as well as ones based on simulation.
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Chapter 1

Introduction

1.1 Correlated Data

Correlated data arise whenever the mechanism which produces a set of observations causes
these observations to be dependent on one another. This is a fairly common phenome-
non which occurs in various settings. For instance data from a time series, a split-plot
experimental design or a longitudinal study all display some form of correlation.

This work focusses on methods for the analysis of clustered data. A set of data is
said to be clustered if it can be logically divided into a number of groups such that it
is reasonable to assume that observations are correlated within, but not between, these
groups or clusters. Note that we assume here that only a single such grouping of the data
is possible; if there is more than one sense in which the data are clustered, a more general
definition must be adopted. (This problem is addressed in Chapter 4).

Clustering in data, typically leading to overdispersion (or, in the case of binary re-
sponses, extra-binomial variation), can occur for a variety of reasons. Sometimes one or
more outlying observations are responsible for introducing extraneous variance into the

data, which is eliminated once these points are removed, downweighted, or otherwise ex-
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plained in the analysis. A set of data may also appear overdispersed if certain important
cluster-level covariates have been omitted in an analysis. Often these covariates constitute
unknown factors, which, if they were available and accounted for, would remove the appa-
rent cluster effect. This situation is quite common and may be resolved with the use of a
random effects model (see section 3.3.3). Random effects may be thought of as a means
of adjusting an analysis for all the ‘missing’ covariates which would be necessary to allow
a reasonably accurate modelling of the response. Finally, correlation within a cluster is
frequently due to some common factor shared by and influencing all respondents within
that cluster. Examples of such factors include litter effects in epidemiological studies invol-
ving laboratory animals, where the clusters are litters of rat pups, say, and correlation of
responses within a litter is due to the fact that each pup in the litter comes from the same
mother; environmental factors might play a similar role in studies where groups of subjects
are randomized and studied as units; finally, in longitudinal studies repeated observations
are made over time on each of many individuals, in which case individuals themselves
yield clusters of observations, which are correlated since they come from the same person.
Conditional models (section 3.3.2) or marginal models (section 3.3.1) are best equipped to
handle intra-cluster correlation of this type.

The last example in the preceding paragraph illustrates the generality of the notion
of a ‘cluster’. There are at least two subjectively different senses in which this term can
be applied. The first refers to groups of individuals which by virtue of some factor can
be considered a more or less cohesive unit. The term cross-sectional clusters will often
be used to describe such groups. In contrast, studies carried out over a period of time
give rise to longitudinal clusters; in this case a cluster corresponds to all the observations
taken on a single individual over time. It seems apparent that observations within such

a longitudinal cluster should be correlated, whereas the clusters (individuals) themselves

might be assumed to be independent.
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1.2 Overview and Scope

This thesis focusses primarily on the development of new methods for analyzing correla-
ted binary data, and also on an approach for assessing the goodness-of-fit of models for
such data. The Waterloo Smoking Prevention Project, Phase 3 (WSPP3), a school-based
smoking prevention trial, will be used to motivate the necessity for these methods and also
to demonstrate their application. Chapter 2 gives a description of this study. Broadly
speaking, interest is focussed on examining factors associated with the onset of smoking in
adolescent children, and on related issues, such as appropriately reflecting the correlation
structure in the data. Some specific questions are outlined in section 2.2.

Numerous methods have been proposed for the analysis of clustered data, both for con-
tinuous and discrete responses. An overview of these is given in Chapter 3. We begin with
a general discussion of the interpretation of regression coefficients in population-averaged
versus cluster-specific models, and describe three different model types for correlated data.
There follows a discussion of several methods for dealing with overdispersed binary data,
including generalized estimating equations (GEEs) and random effects models.

Existing methods, however, do not adequately address the problem of modelling data
in which there is both longitudinal correlation as well as cross-sectional clustering. This is
witnessed in the WSPP3, wherein observations are collected over time on each of a cohort
of students attending, at any given time point, a variety of schools. Clearly one should
anticipate that the smoking status of a particular student at one time point is related to
his or her response at the previous time point(s), hence repeated observations on the same
student will be correlated. At the same time the fact that all students in a given school are
subject to the same environment will likely cause additional correlation among observations
from the same school. Chapter 4 describes an approach for dealing with such a composite
dependence structure, using a combination of empirical Bayes and GEE methodology. The

proposed model is described in section 4.2 and simulation results to assess the properties
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of estimators are given in section 4.5.

In Chapter 5 we consider cross-sectionally clustered binary data more carefully, and
examine extensions of standard random effects models which can be used to approximate
a marginal correlation structure. This more general class of random effects models can
incorporate covariate information thought to be associated with the correlation structure
in a straightforward and natural way. A parameter v is specified and estimated, which
determines a relationship between covariate(s) and the covariance struture of the data in
much the same way as the fixed effects parameters establish a connection between covaria-
tes and the mean response. Furthermore, in contrast to GEE, this modelling framework
admits likelihood-based analyses. The connection between cluster-specific and population-
averaged models is of direct relevance here, and is discussed in section 5.3. The following
section deals with issues related to the choice of particular model formulations. In section
5.5 we discuss the results of simulations carried out to address questions concerning the
power of tests of hypotheses, specifically tests of Hg: vy =0 vs Hy : 4 > 0, and the effects
of model misspecification in this context.

We address the problem of assessing the goodness-of-fit of models for correlated data in
Chapter 6. Interest here is focussed on how well the estimated covariance structure from
a given model fit reflects the empirical covariance structure of the data. To this end, we
propose standardized measures for assessing model fit based on the a priori assumption that
the mean response function of the model has been correctly specified. The performance of
this approach is illustrated in section 6.3, using some of the simulated data from Chapter 5.
Section 6.4 provides an example illustrating the usefulness of the goodness-of-fit measures
described in analyzing real data.

Chapter 7 is devoted to some illustrations of the methods presented in this thesis, using

the WSPP3 data. Concluding remarks are given in the final chapter.



Chapter 2

The Waterloo Smoking Prevention

Projects Data

2.1 Overview

The methods discussed in this thesis will be illustrated using primarily data from the
Waterloo Smoking Prevention Project 3 (WSPP3), the third in a series of randomized,
controlled smoking prevention trials, designed to develop, evaluate and disseminate an
effective school-based social influences smoking prevention program (see Best et al. (1995)
and Brown and Cameron (1997)).

This study consisted of an elementary as well as a highschool component, enrolling a
total of approximately 6000 students. Initially 100 elementary schools from seven school
boards were ranked high, medium or low, according to their smoking-associated risk. This
ranking was based on smoking rates of older students within each school. Stratifying
on both risk score and school board, the schools were randomized to one of five study
conditions. Four of these were treatment conditions, corresponding to the 4 combinations

of the type of provider who administered the intervention curriculum (nurse or teacher)
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and the type of training the provider received (workshop or mediated training through
printed material). The fifth was a control condition; students enrolled in schools in this
category received only their school’s existing health education program. Starting in grade
6, students were exposed each year until grade 8 to the smoking prevention curriculum,
after which they moved on into secondary schools. Two variables of particular interest
that were collected during the delivery of the curriculum were scores of content and style.
These were designed to measure respectively the proportion of the planned curriculum
which was actually covered in class, and the style in which it was delivered. A baseline
measure of smoking status was taken prior to any intervention at the beginning of grade 6,
and subsequently smoking status was measured on the same students at the end of grades
7 and 8.

As part of the highschool component of this study, the students of the WSPP3 elemen-
tary cohort were followed to the end of grade 12, and their smoking status measured on
an annual basis in grades 9 through 12. In addition, 30 schools, each of which enrolled
30 or more students from the original cohort, were matched in pairs according to location
(urban versus rural), size, and the proportion of cohort students from elementary school
intervention conditions. The schools in each pair were then randomized to either an inter-
vention or a control condition. The highschool intervention program covered the period to
the end of grade 10 for the cohort, and consisted of a school mobilization effort to involve
students in activities supportive of non-smoking. Systematic attempts were initiated by a
selected staff member in each school to maximize such student participation in promoting

the smoke-free cause (Brown and Cameron (1997)).

2.2 Some Questions of Interest

There are a number of questions one might wish to investigate using the WSPP3 data.

Each of these address one or more of three fundamental queries, which we list below:
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1. Is the intervention effective?
2. Can assertions be made regarding the onset of smoking?
3. How does the intervention mediate or relate to smoking onset?

The sccond of these questions is concerned more with the incidence of smoking or the rate
at which students begin smoking, than with smoking prevalence, i.e. the proportion of
smokers at a given time. The third question investigates the difference in the effect of the
intervention among subgroups of the study population. Various modelling approaches are
suitable for addressing these issues, a number of which are described in the subsequent
chapters.

In the WSPP3 study a categorical variable was used to classify a student’s smoking
status. The values 1 through 5 were assigned respectively to the categories ‘never smoked’,
‘smoked once’, ‘quit’, ‘experimental smoker’ and ‘regular smoker’. Quitters were defined to
be individuals who had smoked more than once but who considered themselves as having
‘quit’; experimental smokers were those currently smoking less frequently than once a week
and regular smokers those smoking once a week or more. Many questions of interest can be
addressed by dichotomizing this 5-point scale, the cut-point being determined by the nature
of the inquiry. For example classifying students with responses 1, 2 or 3 as non-smokers
and those with responses 4 or 5 as smokers is appropriate when focussing on smoking status
at a given point in time. In contrast, if one is interested in making assertions about the
time to smoking onset (time until the first smoking experience), one would group students
on the basis of response values of 1 versus 2 or greater.

Initially one might consider fitting cross-sectional models, modelling the responses of
students separately at each grade. Marginal response models (see section 3.3.1), which
regress the (unconditional) outcome variable on a series of predictor variables, are ap-

propriate for this purpose. These models are useful if one is interested in examining, at
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a particular point in time, the population-averaged effect of predictor variables on the
response (see also section 3.2).

Alternatively, one might wish to carry out a longitudinal survival-type analysis and
model, as indicated above, time to first smoking, using a survival model of the type des-
cribed in section 3.5.3. In this case data from several grades are concatenated as follows:
begin by considering non-smokers only at the initial time point (grade 6), and at each
subsequent time point (grade) retain only those observations in the analysis corresponding
to non-smokers in the previous grade. Since smoking prevention is one of the primary goals
of the Waterloo Smoking Prevention Projects, such an analysis is relevant and meaningful.

Conditional or more specifically transition models as discussed in sections 3.3.2 and 3.5.4
are useful if one is interested in describing transitions from one state to another, such
as non-smoking to smoking and vice versa. Such models have an important place since
smoking status at time point ¢ — 1 is highly predictive of the response at time #; it is
therefore sensible to model the response at time ¢ conditional on the response at previous
time point(s). One can distinguish a variety of specific models which fall into this context.
A Markov model, for instance, would be appropriate if a student’s response at a given
time depended on his/her behaviour at the previous time point, but were independent of
earlier responses. (Interestingly, there is evidence in the WSPP3 data to suggest that in
fact smoking status is strongly influenced by the observations made at the previous two
time points). When dealing with a small number of repeated responses over time, it is
actually feasible to estimate the full joint distribution of the repeated observations, by
using a fully conditional model which expresses the joint distribution in terms of a product
of conditionals.

Evaluating the effectiveness of a smoking prevention program such as that implemented
in WSPP3 is not a straightforward task, since there are many perspectives from which one
can view the problem. One must first be clear about the specific questions one wishes

to Investigate about the ‘treatment’, using this term in a generic sense, before one can
g g g
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make any conclusions about a treatment effect. For example, an analysis which examines
not only smoking rates, but conditional on these also investigates the amount smoked,
might discover that the rates are largely the same in both treated and untreated groups,
but that individuals in the treated group smoke less on average. In this case one could
still argue in favour of a positive treatment effect. One might also find that a certain
treatment combination helps to reduce smoking rates in students, but only for a subgroup
of the original cohort. For example, the intervention program may have a positive effect on
students in high-risk groups (defined by family or school environment), but not on other
students. Differential treatment effects might appear in different clusters, or in subgroups
defined by additional covariates under consideration.

As indicated in Chapter 1 the study design of WSPP3 gives rise to repeated observations
on individual students, which are also correlated cross-sectionally, with clusters defined by
schools. One goal is to facilitate marginal longitudinal analyses, incorporating random
school effects to capture the overdispersion due to the disparity in smoking rates between
schools. The impact of school environment is largely considered a nuisance here, but the
random school effects in such models enable us to obtain asymptotically correct standard
errors for regression parameters (see Chapter 3) and to identify outliers, in the sense of
schools with extreme smoking rates (low or high), having adjusted for relevant covariates.

Finally, in some cases we might wish to examine behaviour patterns among students
more carefully in order to better understand the smoking phenomenon as it pertains to
classes or schools as a whole. It is well known that students sampled within a given
school tend to exhibit similar smoking behaviour, as compared to a sample of students
from different schools. One might however be interested in assessing in addition whether
or not intra-school correlation, or equivalently school-to-school variability, is a function
of school size. A plausible and likely explanation as to why this might be the case is a
theory attributing the correlation between observations in the same school to the very

strong behavioural similarity among students in small peer groups within a given school.
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The larger the school, the more such subgroups one would have and hence the weaker the
overall intra-school correlation (see section 7.1.2). On the level of the individual it would be
of intcrest to assess whether anything can be said about the similarity between the smoking
behaviours of two students, based on gender or the environment each has been a part of.
Questions such as these can be addressed by models which allow covariate information to
be incorporated into the specification of the correlation structure. Chapter 5 will present
a useful framework for this purpose, and examples are discussed in Chapter 7.



Chapter 3

Models and Methods of Analysis for
Correlated Binary Data

3.1 Introduction

Most standard methods of analysis applied to a set of data rely on the statistical assump-
tion that the observations comprising the data are independent. However as the previous
discussion has pointed out, common study designs often violate this assumption, and hence
methods are required which sytematically take account of the special correlation structure
which might be present in a given set of data. Standard methods applied to clustered
data will typically lead to incorrect inferences; this point is made clear when considering
the estimates of variability obtained for the regression coefficients from a model fit. When
a model is fit to clustered data under the assumption that all observations are indepen-
dent, variance estimates are usually underestimated, leading to inflated test statistics and
hence possible conclusions which are not warranted (see for example McCullagh and Nelder
(1989) and Liang and Zeger (1986); section 3.4.1 also provides a discussion of this point

with reference to extra-binomial variation). To illustrate, consider a logistic model for the

11
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grade 8 smoking rates observed from the WSPP3 cohort. Describing the probability of
smoking as a function of a content score (indicating how much of the grade 8 prevention
curriculum was actually covered), an indicator for type of training received by the curricu-
lum provider (1 = trained through a workshop, 0 = trained via mediated material), and an
indicator of previous (grade 7) smoking status, yields an estimated regression coefficient
of -0.186 for the training indicator, with associated standard error of 0.113. Hence there
is weak evidence to suggest that workshop-trained providers effect lower smoking rates
than those trained through mediated material, having adjusted for the other terms in the
model. However, fitting the same logistic model but also accounting for the correlation
expected between students in the same school, using GEE (see section 3.5), results in a
point estimate of -0.149 with standard error 0.170. Therefore the training variable is no
longer a significant term in the model, having adjusted for the intra-cluster correlation.
Methods for correlated data incorporate the dependence structure of the data into the
analysis for either or both of the following reasons: the dependence structure may be of
scientific interest in itself, and accounting for it in an appropriate manner will help ensure
that valid standard errors and conclusions will be obtained. When the response variable
is approximately Gaussian, a wide range of methods for the analysis of longitudinal or
otherwise clustered data is available. Laird and Ware (1982) for example give a very lucid
description of random-effects models for longitudinal data, and Ware (1985) presents an
overview of linear models for normally distributed longitudinal data. Our focus however
is on discrete outcomes, in particular binary responses. Hence the proposed methodology
will combine the theory underlying generalized linear models (GLMs) and quasi-likelihood
(Nelder and Wedderburn (1972), Wedderburn (1974), McCullagh (1983), McCullagh and
Nelder (1989)) with some form of modelling of the correlation structure in the data.
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3.2 Interpretation of Regression Coefficients

Neuhaus et al. (1991) point out that most of the approaches which have been developed
for the analysis of clustered binary data can be categorized into two groups, exemplifying
either a cluster-specific (CS) or a population-averaged (PA) approach. Suppose our data
consist of observations from K clusters, with n; responses observed in the kth cluster. Let
Y;; denote the response of the jth individual in cluster ¢, j = 1,...,n; and ¢ = 1,..., K,
and associate with each Y;; a single covariate z;;. (Extending the following discussion to
vector valued z;; is straightforward). As described in Neuhaus et al. (1991), in the cluster-
specific approach, the response Y;; is modelled as a function of the covariate z;; as well
as parameters a; specific to each cluster. Hence the regression parameter 8., from such a
model measures a cluster-specific effect of the covariates z;; on Y;;. Consider for example

a mixed-effects logistic model for the binary response Y;;, having the form
logit P(Y;; = 1|au, zi5) = & + BesZij. (3.2.1)

In this model 8., measures the change in the log odds of the probability of response
with a unit change in the covariate z;;, but only conditional on the cluster-specific effect
a;. In contrast, under the population-averaged approach, the marginal expectation of ¥;;
(averaged over the population) is modelled as a function of the covariate z;; only. Thus a
model of this type might take the form

logit P(Y;; = 1|zi5) = a + Bpazij, (3.2.2)

where ,, now measures the change in the log odds of P(Y;; = 1) with the covariate z;;,
unconditionally for all subjects. That is, Bp, measures a population-averaged effect.

In the mixed-effects model (3.2.1) the clustered nature of the data is reflected in the
model through the cluster-specific parameters a;. Model (3.2.2) on the other hand accounts
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for the intra-cluster correlation through the specification of some working covariance struc-
ture for Y; = (Yi, ..., Yin;)T; hence this is an example of a GEE model (see Liang and Zeger
(1986) and section 3.5).

Although cluster-specific and population-averaged parameters have different interpre-
tations, a simple approximate relationship exists between them. In equation (3.2.1) it is
assumed that the terms a; vary between clusters according to a distribution with density
g(@). Hence taking the expectation of P(Y;; = 1|, z;;) with respect to a yields a unique

marginal model as in equation (3.2.2), since

E(P(Y; = llas,25) = [(1+e =) g(a)da
= P(K, = llz,-j). (3.2.3)
Omitting subscripts and referring to equation (3.2.2), it is easily shown that

_ P(Y=1z+1)/P(Y =0|z + 1)
Boa = log{—p 12)/P(Y =0jz) }

(3.2.4)

which does not depend on z. From (3.2.3) and (3.2.4) we see that 8., and B, are related
through the equation

E[(1 + e7e Pal=+D) UE[(1 + extPerz)~
ﬂm(z) = log{E[(1 + ea+ﬂe.(z+1))-1]E[(1 + e—a—ﬂe.z))—ll}

(3.2.5)

which does depend on z. It turns out however that a linear Taylor series approximation of
(3.2.5), taken about B., = 0, is independent of z: let f(B.,) denote the right-hand side of
equation (3.2.5). Then for small 8,

Bpa(z) = £(Bes) = £(0) + £'(0)Bess (3.2.6)

where the dash represents differentiation with respect to B.,. Now f(0) = 0, and some
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straightforward algebra shows that

£ (Ba)| _ (z+1)E(pq)E(q) — zE(pg)E(p) + (= + 1)E(pq)E(p) — zE(pq)E(q)
o (rq)E( (rg)E(p) PR
E(pq)E(q) + E(pq)E
E@)E() (3:2.7)

where p = e*/(1 + %) and ¢ = 1 — p, which is independent of z. Simplifying (3.2.7) and

substituting the result into (3.2.6) yields the approximation

Bra(z) = ur{1 - % . (3.238)

Since p > 0 and Var(p) < E(p)[1 — E(p)] = E(p)E(q), it follows that
0 < Var(p)/E(p)E(g) < 1; (see also section 3.4.1). This suggests that at least for small
parameter values, fp, is smaller in magnitude than f,,. Neuhaus et al. (1989) show
analytically that this is true in general. Furthermore, if Var(p) = 0, or equivalently if « is
not a random effect, but fixed, then B,; = B., as one would expect.

Whether one should use a population-averaged or a cluster-specific model in any given
circumstance will largely depend on the application. This question is essentially equivalent
to that of deciding between a marginal and a conditional model, and in many cases conside-
rable debate persists as to which analysis is more appropriate (see for example Lindsey and
Lambert (1997) and the discussion in the next section). Adding to the difficulty is the fact
that some analyses cannot be classified as purely population-averaged or cluster-specific,
but rather incorporate features of both approaches; this is especially true when more than
one form of clustering is present in the data. Examples include for instance the survival
models discussed in section 3.5.3 or the transition models in section 3.5.4, and certainly
the composite modelling approach introduced in Chapter 4. Generally, however, if a model
for the marginal probability of response is of primary interest, and the clustering inherent

in the data can be regarded as a nuisance, it is appropriate to use a population-averaged
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approach. On the other hand, in longitudinal studies for example, in which multiple ob-
servations are made over a period of time on each of several subjects, so that subjects form
clusters, it may also be of interest to obtain estimates of changes within individuals over
time. These can only be obtained from a cluster-specific model. At the same time however,
one should note that effective use of cluster-specific models is limited by the amount of
information available per subject (cluster). If only a few observations are made on each
subject it may not be possible to accurately estimate the cluster-specific parameters o;

see Zeger et al. (1988).

3.3 Model Types

Virtually all modelling approaches can be categorized as belonging to at least one of three
classes: the marginal, conditional or random effects models. The distinctive features of

each are summarized below.

3.3.1 Marginal Models

Much of the literature discussing marginal models does so with reference to longitudinal
data; we shall adopt the same convention. Diggle et al. (1994) provides a very suitable
general reference. The application of generalized estimating equations in this context is
well documented; see for example Liang and Zeger (1986), Zeger et al. (1988) and Liang
et al. (1992). A critical review of marginal models is provided in Lindsey and Lambert
(1997), and an interesting cautionary note is given in Pepe and Anderson (1994).

The primary focus of marginal models is on a regression function describing how the
population-averaged response, not that of any one individual, depends on a set of cova-
riates. One is mainly concerned with the parameters for the marginal expectation of the

response. Accordingly, the dependence structure among the repeated observations on a gi-
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ven subject is of secondary interest. As indicated in Zeger and Liang (1992), this approach
can be viewed as the natural analogue for correlated data, of standard generalized linear
models (GLM’'s) or quasi-likelihood methods for independent data; the regression coeffi-
cients from this approach also have the same interpretation. The specification of a marginal
model follows that of any GLM in that a regression relationship is postulated between the
marginal mean of the response and the explanatory covariates, via some link function; we
furthcr assume that the marginal variance is a function of the marginal mean. To complete
the specification, some form of correlation is assumed between the repeated observations
on the same individual, and this is modelled by one or more additional parameters. These
however have no bearing on the interpretation of the regression coefficients.

Section 2.2 mentioned fitting cross-sectional models to the WSPP3 data, modelling
the responses of students separately at each grade. This would give us information about
factors affecting the smoking rates of students at one particular point in time. A logical
extension would be to fit a marginal model to the combined data from several grades,
giving us a single global and generally more useful summary of the effect of such factors,
using all available data. Again, although there are advantages to choosing a sensible form
for the correlation structure which we assume for the response vector of a given individual,

this is typically not of primary interest.

3.3.2 Conditional Models

Carrying on in the context of longitudinal data, conditional models, in contrast to marginal
models, focus simultaneously on the parameters for the mean specification of the response
and the intra-individual correlations. One may refer again to Diggle et al. (1994), or for
example to papers by Prentice (1988) and Zeger and Liang (1992). Generally speaking, any
model which is not marginal can be considered to be conditional in some sense. However

here we discuss in particular fully conditional, or transition models, which have special
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relevance for longitudinal data in which there is a natural ordering of the observations in
time. Instead of describing the marginal expectation of an individual’s response at a given
time, a model is postulated for the conditional expectation, given previous responses as well
as relevant covariates. In this way, the pairwise correlations between repeated observations
on the same individual are implicitly determined. This is perhaps the most natural way
to proceed in the analysis of repeated measurements data, given the temporal ordering,
especially if one is interested in assessing not a population-averaged effect, but that for a
specific individual. This conditional approach takes into account in an explicit manner the
individual histories of subjects, something the marginal model largely neglects. There is
of course a trade-off in that the population-averaged effect discussed above is obscured in
a conditional analysis. It is fair to say that useful information can be drawn from both
approaches. Thus for example, in assessing the impact of a smoking prevention curriculum
on students’ smoking behaviour, one will likely be interested in the effect of the curriculum
on average smoking rates in schools, as well as in looking at the impact on particular
students, with various different individual profiles. It seems unlikely that a single analysis
would be sufficient to achieve both ends to satisfaction.

3.3.3 Random Effects Models

Random effects models are based on the explicit identification of individual and population
characteristics; i.e. it is assumed that the response of each individual is influenced by effects
specific to that individual as well as by effects common to the whole population. In this
sense the term ‘mixed effects model’ is perhaps more appropriate. This type of model is
another example of the cluster-specific approach. It is precisely illustrated by equation
(3.2.1); note that when a cluster refers to a group of observations on the same individual
such a model is normally termed subject-specific.

Random or mixed effects models assume that responses from the same individual (or the
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same cluster) are independent, given that individual’s (or cluster’s) specific coefficient(s).
Using the notation of section 3.2, we assume for example that Y;; and Y;; are independent
given ;. Unconditionally, with respect to the whole population, this induces correlation
between observations from the same individual or cluster; in the case of binary data this
correlation will also depend on the mean formulation. Generally, such models are not
likely to be very suitable for describing longitudinal data, in which the correlation between
two repeated observations normally depends on the time between them. They are more
effective in modelling clustered data arising by design or through some external factor (i.e.
the heterogeneity due to cross-sectional clustering, as described in section 1.1). In the
WSPP3 data, the primary sampling units (schools) are subsampled to obtain responses of
individual students. This design naturally lends itself to postulating random school effects
to capture the impact of school environment on an individual’s response.

Another interpretation and justification for the use of random effects which is often
applicable is in terms of latent variables. We assume that all responses within a cluster are
affected by the same unobserved realization of some underlying random variable. Thus for
example, we postulate some sort of effect on students’ smoking behaviour due to school
environment, without directly observing this effect. If the data consist of relatively few
clusters, one can adjust for the presence of such a latent variable by including in a model
a separate indicator variable for each cluster; this then replaces the random effects model
by a fixed effects model. However as the number of clusters increases it becomes more
convenient to assume that the unobserved effects are derived from some distribution.

Laird and Ware (1982) provide a good discussion of random effects models in the linear
framework, and Stiratelli, Laird and Ware (1984) extend this by treating the non-linear
case, considering specifically the analysis of binary responses. An appreciation of these
models in a broader and more theoretical context is conveyed in Breslow and Clayton
(1993) and McCulloch (1997). In section 3.6 we discuss estimation for random effects

models from an empirical Bayes perspective. Some further general comments are also
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given there.

3.4 Two Simple Methods for Overdispersed Binomial
Data

Well established methods exist for the regression analysis of binomial data, with the
logistic-linear model being perhaps the best known and most popular. Extensions of this
model are possible, to address the problem of extraneous variance in the data, known
as extra-binomial variation (EBV) or more generally as overdispersion. EBV is manifest
whenever the observed variability in the response proportions exceeds the nominal level
predicted by the binomial model. Models for overdispersed binomial data have been pro-
posed for example by Williams (1975, 1982) and Moore (1987), and an extension to the
multinomial setting is described by O’Hara-Hines and Lawless (1993). We review two basic
methods here, representing a likelihood and a quasi-likelihood approach.

3.4.1 Maximum Likelihood Estimation, Modified to Incorporate

Extra-Binomial Variation

One explanation for EBV is based on the assumption that the correlation between any
two observations within a given cluster is some non-zero value, say p. This is equivalent to
assuming an exchangeable correlation structure for the data, in the sense that it implies a
common correlation between any two observations within the same cluster.

Denoting individual responses as successes or failures, suppose that the ith cluster
gives rise to R; successes and m; — R; failures. Assume further that associated with this
cluster are explanatory variables z; = (zi, ..., Zip)T, { = 1,..., K where K is the number
of clusters. Note that the following development only allows for covariates defined on the
level of the cluster, so that the data can be expressed in collapsed form; that is, each
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observation corresponds to the information from an entire cluster, namely the number
of successes observed, the cluster size and corresponding covariate vector. This method
would not be appropriate, for example, for modelling smoking rates as a function of gender,
taking schools to be clusters, since gender is an individual-level covariate and generally not
constant within schools.

The logistic model assumes that R; ~ Bin(m;, 6;) where
e’:ﬂ

b; = ——=

1+ =B

is the probability of a success in cluster i, and 8 = (£, ..., Bp)7 are the parameters to be
estimated.

EBV may be modelled by assuming that R; is binomially distributed only conditional
on some value p;, but that p; itself is a realization of a random variable P; supported on

[0,1] with mean and variance depending on §;. Specifically,

R;|P; =p; ~ Bin(m;,p;)
with E(P,) = 6; and
Var(P,) = p0.-(1—0,-).

It follows that unconditionally
E(R;) = E(E(R;|P: = p;)) = E(mip;) = mib; (3.4.1)
and

Var(R;) = E(Var(R;|P; = p;)) + Var(E(R;| P: = p;))
E(m;p;(1 — p;)) + Var(m;p;)
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= 1n,-[0,' -p 0,'(1 - 0,') — 9‘2] + m?p 0;(1 - 0,')
= m0i(1 - 6;)(1 + p(m; — 1)]. (3.4.2)

Hence Var(R;) = viw;! where v; = m;6;(1 — 6;) (the nominal binomial variance), and
w! = 1+ p(m; — 1), which is the variance inflation factor due to overdispersion. In
this formulation p is interpreted as the intra-cluster correlation that is expected to exist
between any two of the binary observations from a given cluster. (Note that we can write
R; as a sum of individual responses ¥; W;;, where W;; ~ Bin(1,6:),j = 1,...,m; and
corr(Wi;, Wie) = p,j # k). Observe that if p = 1, then Var(R;) = m?6;(1 — 6;), and if
p = 0, Var(R;) = m;0;(1 — 6;). These results are exactly as expected; a value of p = 1
suggests perfect positive correlation between the observations in a cluster, implying that
either R; = my, with probability 8; (the case that all W;; = 1), or R; = 0, with probability
1 — 6; (the case that all W;; = 0). It is easily seen that in this situation that

Var(R:) = E(R})-E(R:)?
= mf; — (msb;)’
= m26:(1 - 6;).

In contrast, p = 0 implies independence between observations, and the usual binomial
variance Var(R;) = m;0;(1 — 6;) is obtained.
Some further interesting points: consider the variance of the proportion of successes in

the zth cluster. This is

Va.r(%) = %Var(R,-)

0,'(1-—0,') m,-—l
+ 6;(1 — 6;).
- P 41— 6)

Written in the above form we see that this variance can be expressed as the sum of two
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parts, the first constituting the binomial component and the second the extra-binomial
component. Furthermore, Var(R;/m;) can be written as the weighted average

EL]

Var(
m;

_6:(1-6;) _ (1 — A,
)= T mg ~(1 - p) +6:(1 - 6;)p.

From this we observe the following: if p = 0

Va.r(f—:"‘-:) = ——_-0"(17;:. 0‘.) ’

which is the variance of the mean of m; independent observations from the distribution
Bin(1,6;). fp=1
R;
Var(—) = 6;(1 - 6;),
(=) =6« )

which is the variance of a single observation from Bin(1, §;). No matter where in the unit
interval [0,1] p lies, Var(R;/m;) can always be interpreted as a weighted average of the
variance of a single observation from Bin(1,8;) and the variance of the mean of m; inde-
pendent observations from Bin(1,6;). This highlights the notion that as the intra-cluster
correlation p approaches 0, the information from the tth cluster increases to that contai-
ned in m; independent binary observations, and as p approaches unity the information in
cluster ¢ decreases, as expected, to that contained in just a single observation.

Note that the interpretation of Var(R;/m;) as a weighted average requires that 0 < p <
1, and assuming that E(P;) = 6; and Var(P;) = p 6;(1 — 6;) automatically restricts p to lie
in this interval. To see this, observe that since Var(P;) > 0 and 0 < 6; < 1, we must have
p 2 0. Furthermore,

IN A

= 1"',-2 P;

so E(P?) < E(B)=6;,
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from which it follows that
Var(P;) = E(P})-E(R)?

< E(R)- 6
6:(1 -6;),

implying that p < 1.

Maximum likelihood estimation is possible once a particular distribution for P; is cho-
sen. A widely used model for overdispersed binomial data is the beta-binomial, which
assumes that P; follows a beta distribution; see for example Williams (1975), Crowder

(1978) and Moore (1987). Recall that if P; ~ beta(a;, b;), then

- & N a:b; o
E(P:) = otk and Var(P) = AT a0 T 0 a;, b; > 0.

Therefore the variance of P; has exactly the form p 6;(1 — 6;), with p = (a; + b; +1)~! and
0: = a;/(a; + b;); (this is provided that a; + b; is constant for all ¢, which may or may not
be a reasonable assumption). Unconditionally R; has a beta-binomial distribution, with

the likelihood contribution from the ith cluster being

(at +r;— 1)(")(61' +m; — Ty — 1)(".‘-") (3 4 3)
(a; + b; + m; — 1)(m3) ’ o

having observed R; = r; successes out of m; trials. Here n(") means ‘n to r factors’, i.e.
n() =n(n —1)...(n —r+1). We will revisit this model in Chapter 5 and provide some
further details there.

Note that the above developments are only appropriate in discussing overdispersion;
they cannot be applied to the much rarer phenomenon of underdispersion, in which case

the intra-cluster correlation p is negative. Nevertheless the variance formula (3.4.2) in
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itself does also accomodate such models, and it is possible in principle to obtain negative
estimates of p when the data exhibit less than the nominal amount of variability expected
under a particular model. It is also appealing that equation (3.4.2) yields the intuitively
sensible result for the degenerate case p = —1. This describes a situation of perfect negative
correlation between any two observations in a given cluster. It is clear that this can only
arise if all clusters are of size two, each having one response equal to 1 and the other equal
to 0. In other words, R; = 1 with probability one for all ¢, implying that Var(R;) = 0; this
is also the value given by formula (3.4.2) for p = —1 and m; = 2.

3.4.2 Model Fitting Using Quasi-Likelihood

In the absence of EBV maximum likelihood estimates for B8 can be calculated by iterative
reweighted least squares as described in Nelder and Wedderburn (1972) and McCullagh
and Nelder (1989). Given initial estimates B, updated estimates 3, are given by

By = (XTVX)'XTVY (3.4.4)

where X is the K x p design matrix of covariates, V' = diag(v;) and Y = (Y3,...,Yx)7T is
the vector of adjusted response variables, with Y; = ¥, z:,8, + (R; — m;6;) /v;. Note that in
this notation Var(Y;) = v;}, or equivalently, Var(Y') = V-!. Further, V and Y in (3.4.4)
are evaluated at B = B q); because of the dependence of V and Y on 3, (3.4.4) must be
solved iteratively to obtain the solution /3.

Suppose now that overdispersion is suspected, but that no particular model for it is
adopted. Thus the distribution of R; is not fully specified. Direct maximum likelihood
cannot be used in this case, but knowing the first two moments allows us to apply a
quasi-likelihood method (Wedderburn, 1974). In this case we express the variance of Y
as Var(Y) = (WV)™! where W = diag(w;), and the weighted least squares equations,
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analogous to (3.4.4), are
By = (XTWVX) ' XTWVY. (3.4.5)

The quasi-likelihood estimate 3 can be obtained from any logistic regression program that
will allow a set of weights {w;} to be specified in the fitting procedure. However the weights
in (3.4.5) depend on p which is initially unknown. Williams (1982) suggests an iterative
procedure to estimate p. He notes that if the weights w; were known and specified in the

model, then the adjusted goodness-of-fit statistic

= g mff‘(l"_";‘;f_l (3.4.6)
(approximately the weighted sum of squares of residuals (Y — X B)TWV(Y —~ X)), would
have asymptotically a chi-squared distribution on K — p degrees of freedom. Now suppose
for the moment that the m; are equal, i.e. m; = m V ¢, and a logistic model is fit without
specifying any weights. Then from (3.4.2) and (3.4.6) it follows that in the presence of
EBYV the approximation

E(x*) = (K — p)[1 + p(m —1)] (3.4.7)

holds, implying that the heterogeneity factor 1+ p(m — 1) can be estimated by x2/(K —p).
Since in this simple case the weight matrix W is proportional to the identity matrix, the
parameter estimates obtained from equations (3.4.4) and (3.4.5) are identical, but if (3.4.4)
is used, the estimated covariance matrix of 3 must be scaled up by this heterogeneity factor.
Equation (3.4.7) indicates that if a logistic model assuming no EBV is fit to data that are
in fact overdispersed, the x? goodness-of-fit statistic will tend to be systematically larger

than K — p on account of the overdispersion. For moderate to large cluster sizes, the
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inflation factor multiplying K — p can be rather significant, even for p close to 0. For
instance, with clusters of size 50, an intra-cluster correlation as small as 0.02 will result in
a two-fold inflation of the nominal x? statistic. Hence, assuming that a p-parameter model
is fit to data on K clusters, overdispersion is evident whenever x> >> K — p.

Relaxing the assumption of equal m;, Williams gives two equations analogous to (3.4.7);
the first assumes that x? comes from a logistic fit with W the identity matrix, the second
that x? comes from a fit with prior weights already specified. These equations ((3.3) and
(3.4) respectively in his paper) are

E(x) = K—p+pd {(mi—-1)(1-wg)} f W=1I (3.4.8)

E(x) = 2lwi(l~wwg){l+p(mi—1)}] if W#I, (3.4.9)

where ¢; is the ith diagonal element of X(XTWV X)XT. The iterative estimation scheme
proceeds by equating the observed value of x? to its expectation and solving for p. Thus
one initially assumes that p = 0, obtains x? from the fit of the logistic model and compares
this to the x%_, distribution. If x? is unduly large, conclude that p > 0 and calculate
the current moment estimate j using (3.4.8), replacing E(x?) with x3. Using weights
w; = {1 + p(m; — 1)}~ one then reestimates B using (3.4.5), recalculates x> and the
updated estimate of p using (3.4.9). Now one computes updated weights and repeats this
process until x? is sufficiently close to K —p, or equivalently, convergence in p has occurred.

We propose two equations similar in spirit to (3.4.8) and (3.4.9), which are however
simpler and have more intuitive appeal. Returning again to the simplest case of equal
cluster sizes, observe that the estimate of p from (3.4.7) is

._ X*—(K-p)
p= K-pm-1 (3.4.10)

If K is large relative to p, this equation is roughly similar to a cruder approximation one
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would obtain by replacing the denominator on the right side of (3.4.10) by K(m — 1).
This allows us to generalize (3.4.10) immediately to the case of unequal cluster sizes: a

reasonable estimate of p in this case is

. _X —(K~-p)
=5 3.4.11
Finally, if x* comes from a weighted model fit then an updated estimate of p must reflect
the impact of the current weights w;. In (3.4.11) it is assumed that each observation
receives unit weight; if instead each observation receives weight w; then it is sensible to
replace K in equation (3.4.11) with 3_w; and 3 (m; — 1) with 3 w;(m; — 1). Hence we

obtain

X = (Zw)+p
b=t (3.4.12)

(Note that (3.4.12) reduces to (3.4.11) when w; = 1 for all ). The iterative scheme
proposed by Williams can be carried out by replacing the estimates from (3.4.8) and (3.4.9)
with the simpler estimates (3.4.11) and (3.4.12); the results are identical and convergence
using (3.4.11) and (3.4.12) is only slightly slower. Furthermore, using these alternative
equations avoids the need of having to find v; and g¢;.

As an aside, a heuristic justification can be given for replacing K with ¥ w; and similarly
weighting the sum in the denominator of (3.4.12). With p > 0 each w; = {1 +p(m; —1)}!
is less than one, so 3" w; < K. This suggests that one can perceive an analysis of K clusters
exhibiting overdispersion as equivalent to an analysis of 3" w; < K clusters in which this
has been adjusted for, i.e. showing no more extra variation. (We note here that in contrast
to section 3.4.1, this quasi-likelihood approach also admits the added flexibility of allowing

for underdipersion. Negative estimates of p are possible as long as p > —(m — 1)~! where

m = max{m;}).



CHAPTER 3. ANALYSIS OF CORRELATED BINARY DATA 29

An attractive feature of this method is the fact that it can be implemented using

standard software packages for generalized linear models, such as GLIM or SAS.

3.5 Generalized Estimating Equations

A versatile and widely utilized approach for the analysis of clustered data, which also
accomodates covariates specific to each individual observation, is based on the use of ge-
neralized estimating equations (GEEs), as introduced formally by Liang and Zeger (1986)
and Zeger and Liang (1986). This approach is an extension of generalized linear models
to the analysis of longitudinally or otherwise clustered data. It involves the specification
of estimating equations which give consistent estimates of regression parameters and their
variances, while accounting for the correlation structure inherent in the clusters. The user
must settle on an assumed form of this correlation structure in order to fit a GEE model,
but the resulting estimates are robust to possible misspecification of the within-cluster
dependence. Over the past 10 years a very large literature dealing with applications of
the GEE methodology has developed. Some key references among many include Prentice
(1988), who extended the GEE approach to allow joint estimation of the parameters in
both the marginal means as well as the pairwise correlations (see also Zhao and Pren-
tice (1990)); Zeger et al. (1988), who discuss applications for both population-averaged
and subject-specific contexts; Lipsitz et. al (1994), who discuss issues of practical perfor-
mance, and Fitzmaurice and Laird (1995), who describe applications to clustered bivariate

respomnses.

3.5.1 Overview (IEE and GEE)

In this section we briefly explain how the GEE approach operates; the development closely
parallels that given in Liang and Zeger (1986). The subsequent sections will describe a
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variety of models which can be fit using this method.

As in section 3.2 let Y;; denote the response of the jth individual in cluster ¢, j =1, ...,n;
and ¢ = 1,..., K; (in a longitudinal analysis Y;; would refer to the jth observation on indi-
vidual 7). Associate with each Y;; a vector of p explanatory covariates z;; = (zij1, ..., z,-_.,-,,)T.
Further, let Y; = (Y4, ..., Y.-n..)T represent the n; x 1 vector of responses from the ith cluster
and X; = (Zi1,---y Zin;)T the associated n; x p matrix of covariate values. We assume that

Y;; has a marginal density of the exponential family form

fys5) = exp{(yi;6;; — a(8;;) + b(y:5)) 6} (3.5.1)

where 6;; = h(m:;), ni; = z:.jﬂ and ¢ is a scale parameter. (The function A(.) will vary
with the choice of link function used to relate the random and systematic components of
a particular model, say n = g(u), where u = E(Y'). Every distribution of the form (3.5.1)
has a special link function for which 8, called the canonical parameter, equals the linear
predictor 7. These link functions are referred to as canonical links). It is easily shown that

pi; = E(Y;5) =a'(6;;) and w; = Var(Ys;) = o' (6;5)/9, (3.5.2)

where a dash represents differentiation with respect to 6. Instead of modelling the joint
distribution of the responses within a cluster, the GEE approach only makes an assumption
about the first two moments of ¥;. In this sense it can be viewed as a multivariate analogue
of quasi-likelihood (Wedderburn (1974), McCullagh (1983)).

Consider now the estimation of a set of regression parameters 3, assuming to begin
with that observations are independent. The familiar system of score equations one needs

to solve in this case is the set of independence estimating equations (IEEs)

K
Y- XTAS: =0, (3.5.3)

=1
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where A; = diag(96;;/0m:;), S: = Y: — ps and p; = (@i, ..., ftin;)¥. Note that when using
the canonical link function, A; is simply an n; X n; identity matrix. The estimator 3 7 is the
solution to (3.5.3). Given that the particular model which was chosen (i.e. the particular

form of (3.5.1)) is correct, the asymptotic covariance matrix of 3; (as K — o) is given by

K
Vn(Br) = (3 XTAAAX:) ™, (3.5.4)
i=1
wherc A; is the n; X n; matrix diag{a"(6;;)}. This is often referred to as the naive or
model-based variance estimate. Note that (3.5.4) depends on B, through A; and possibly
A;, and can be consistently estimated by replacing 3, with B 1- A covariance matrix which
is robust to model misspecification (and hence referred to as the robust estimate) is given

by

Ve(Br) = Vn(Br) {i XT A:Cov(Y:)AiX:} Vw(By) (3.5.5)
and is consistently estimated by substituting the moment estimate (¥; — u;)(Y; — ;)7 for
Cov(Y;), and evaluating this as well as A; and A; at 3;. Both 3 ; and Vr(B,) are consistent
given only that the regression model specified for E(Y;;) is correct. The form of equation
(3.5.5) follows from an argument based on Taylor series expansions, laid out carefully in
Royall (1986). The implication of using B 7 in conjunction with the robust variance estimate
(3.5.5) is that asymptotically valid inferences will be drawn even if assumptions about the
model are incorrect. In particular, (3.5.5) is robust to the misspecification of Cov(Y;) which
results from assuming independence between observations within a cluster, i.e. not taking
intra-cluster correlation into account. Hence the IEEs (3.5.3) may be recommended for
practical purposes whenever the association between pairs of observations is considered of
little interest in itself. Apart from this the cost of using the estimator ,é 7 18 in terms of a loss
of efficiency; the stronger the intra-cluster correlation, the greater the loss of efficiency. The
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GEE approach provides a way of obtaining regression estimates which are more efficient by
making explicit assumptions about the correlation structure within clusters. At the same
time the desirable property that variance estimates can be constructed which are robust
to possible failure of these assumptions, is retained.

In order to write down the generalized estimating equations for a set of parameters B¢,

analogous to (3.5.3), we define
Vi = A Ri(a) 4"/, (3.5.6)

which is the covariance matrix assumed for ¥;. V; hinges on the n; x n; working correlation
matrix R;(a), which the user must specify; a here simply denotes a vector of parameters
which fully specifies R;. Note that if R;(c) is in fact the true correlation matrix, then
Vi = Cov(Y;). The GEEs are defined to be

K
Y DTv7!s; =0, (3.5.7)
i=1
where D; = A;A:X;. Note that these equations reduce to the score equations (3.5.3) if
R;() is the identity matrix. Let B; be the solution to (3.5.7). Similar to (3.5.4) and

(3.5.5), the model-based variance estimate is

. K
Vw(Be) = Q- DIV Dy)™ (3.5.8)
i=1
and the robust estimate is
~ -~ K -
Ve(Bg) = Ww(Be) {3_ DTV ' Cov(Y:)ViDi} Vr(Bo)- (3.5.9)
i=1

Estimation of B is carried out by a procedure equivalent to iteratively reweighted least
squares. At each iteration, updated moment estimates of & and possibly ¢ are calculated,
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based on the current estimate of B.

We shall discuss specific choices for the correlation matrix in the next section, and only
mention here that « is typically a function of the estimated Pearson residuals

fi = (v — B}/ {05112,
where fi;; = p;j(B¢) and #; = vi;(B¢); for models in which the scale parameter ¢ is not
equal to one, it can be estimated by

. K n; K
¢! = er‘?j/(gm -p)

i=1 j=1
3.5.2 Marginal Models and Possible Correlation Structures

A variety of models with differing interpretations can be fit using GEE, some of which can
be classified as marginal models; we shall discuss these first.

In a marginal regression model the marginal expectation of the response is modelled
as a function of explanatory variables. If multiple observations are made on a number
of individuals, as in a longitudinal study, the GEE approach will separately model the
correlation we might expect between responses from the same individual; the same holds
if study units consist of clusters of a general nature, each of which give rise to several
observations. Estimation of regression coeflicients and correlation parameters is typically
achieved using one set of estimating equations of the form (3.5.7), although Prentice (1988)
describes a more involved approach in which both response probabilities and correlations
are modelled as functions of explanatory variables. This requires two sets of estimating
equations, one for the mean specification of the model and the other for the correlation
parameters ax. We shall discuss this approach further in section 3.5.5.

A wide variety of choices for R(ax) can be specified using GEE. Existing SAS ma-
cros, distributed for example by M. R. Karim ((©1989, Department of Biostatistics, The
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Johns Hopkins University) and U. Groemping ((©1993, Fachbereich Statistik, Universitat
Dortmund, Germany), admit independent, exchangeable, m-dependent, user-specified and
unspecified correlation structures. (More recently the fitting of GEE models has become
possible using the procedure GENMOD in SAS Version 6.12).

The independent correlation structure assumes that R(«) is the identity matrix; a GEE
fit under this assumption is equivalent to an analysis assuming independence between all
observations.

Exchangeable correlation may be a reasonable postulation for cross-sectional clusters
in which observations are not ordered in any special manner. The assumption is that a
common correlation p is shared between any two observations within the same cluster, i.e.
Corr(Y;j, Yie) = p, j # k. (In this case dim(ax) = 1, with & = p). The parameter p, and
more generally « when dealing with other correlation structures, is estimated by borrowing

strength across the K clusters. In this case p is estimated by

K K

. 3 . - 1

=013 3 fufir]/[D mi(n: — 1) —pl. (3.5.10)
i=1j>5 i=1

The m-dependent correlation structure is especially suitable for longitudinal data in

that it allows the correlation between repeated observations to depend on the lag between

the observations; it assumes that

Pr—-j fork=3+1,..,7+m

Corr(Y;;, Ya) =
0 for k>j+m.

Similar formulae as for the case of exchangeable correlation, based on functions of residuals,
exist for the estimation of pi_;; see Liang and Zeger (1986).
If one is dealing with small cluster sizes and has strong prior convictions about the

intra-cluster correlation, the user-specified correlation structure may be the most appealing
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option. In this case R(cx) is not estimated but provided a priori by the user. In contrast,
one may wish to leave R(a) totally unspecified and have GEE estimate it by the sample
correlation matrix based on the data. This requires equi-sized clusters, and since 3n(n—1)
parameters need to be estimated, this choice is only sensible for small cluster sizes.

Note that variable cluster sizes are admissible only under the assumption of independent
or exchangeable correlation. All other structures require equi-sized clusters.

The software currently available to fit GEE models has the limitation that once a
correlation structure is specified, that same structure is assumed to apply to all clusters
in the data set. On occasion it would desirable to relax this condition. Suppose, for
example, that we find an exchangeable correlation structure to be adequate, but instead
of an estimate of intra-cluster correlation that applies to all clusters, we identify groups of
clusters for each of which we would like a separate estimate of the exchangeable correlation.
Examining the WSPP3 data for instance, we might wish to analyze smoking rates in grades
7 and 8, and define cross-sectional clusters as groups of students in the same school and
the same grade. This would give rise to two logical groups of clusters, one for the grade 7
responses and one for the grade 8 responses. Hence we might be interested in estimating
a separate correlation parameter for each of these groups. Since estimation of a single
correlation parameter proceeds by borrowing strength across all clusters, estimation of
several such parameters could logically be achieved by borrowing strength only across the
clusters which define the particular groups that we are interested in differentiating. For
the example above, suppose that C, and C; denote the set of clusters of grade 7 and grade
8 responses respectively. Denoting the intra-cluster correlations in the two groups as p;

and p,, the estimate of p; would then be, similar to equation (3.5.10),

po= X X futl/[X grilm—1) =, k=12 (35.11)

1€Cy >3’ i€C,

One question which arises here concerns the minimum number of clusters one should have
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In any given group.

A second and similar generalization with respect to modelling intra-cluster correlation
involves estimation of separate correlation parameters for subgroups of observations within
clusters. This achieves a compromise between the exchangeable and unspecified correlation
structures. Suppose observations within clusters can be further grouped on some basis,
(say the gender of students within schools), and it is of interest to estimate the correlation
between individuals in the same group within a cluster, as well as the correlation between
individuals in different groups within a cluster. Using the example of gender distinction,
three correlation parameters (pys, pm and py,,) could be estimated, by borrowing strength
across all clusters but restricting calculations first to only females in the clusters, then to
males, and finally to the mixed gender pairs. In this case

K K
- - . a 1
pr=0 D 2 Faral/D Znsilngi—1) —pl, (3.5.12)
i=1;>3.jj'€F; =1
where Fj is the set of females and ny; the number of females in cluster ¢. A similar estimate

can be constructed for pm, by replacing F; and ny; in (3.5.12) by the analogous quantities
M; and n,,;. Finally,

. X K
Prm =D, Y. Fiifip)/ (D nsitimi — pl. (3.5.13)

=1 jeF; j'eM; i=1

3.5.3 Survival Models

In the framework of dichotomous responses there are applications in which we are not
interested so much in the marginal probability of response as in an analysis of the data
from a time-to-event or current status perspective. With the WSPP3 data for example, we
might consider modelling the probability of failure (having smoked at least once) by time ¢,
given survival (having never smoked) until time ¢ —1. Examining data for grades 6, 7 and 8
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for instance, such an analysis would include only non-smokers at grade 6 (whose responses
would be smoking status in grade 7) and non-smokers at grade 7 (whose responses would
be smoking status in grade 8). A grouped proportional hazards model (Cox, (1972), Cox
and Oakes (1984)) is appropriate for this type of modelling, and can be combined with
the GEE methodology to account for the clustering due to schools. One needs to specify
a model with binomial error structure in conjuction with the complementary log-log link.

To examine this idea more closely, suppose that observations are made at time points
t., r=1,2,3,... . We are interested in modelling the probability of failure during the rth
time interval, given survival up until time ¢,_;. To this end, define Y;;(r) as

Y() 1 ifT"_,'St,, given T,'j>t,._1
() =
’ 0 ifTy;>t,

where T;; denotes the survival time (time to first smoking) of individual j in cluster :. We

wish to construct a model for

pii(r) = E(Yi(r)) (3.5.14)
= P(ty1 <T; <t.|Ti; > t1), 7=1,2,3,....

Suppose now that the hazard function of the distribution governing the ‘lifetimes’ Tj;
has the Cox proportional hazards form (Cox, (1972))

h(t; z:5) = ho(t)e™iP,

where z;; is a vector of time-independent covariates with associated coefficients 3, and

ho(t) is a baseline hazard function not depending on z;;. The survivor function of T;; can
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be written as

Sult) = P(Ty>1) = exp{~ [ h(uizi)du}
= exp{—e’:'iﬁ /0 ‘ho(u)du}.

Therefore

Sij(tr—1) — Sij(tr)
pij(r) = Sa(tor)
1- exp{—e‘:';ﬁ[‘/(;t' ho(u)du — ‘/:'-l ho(u)du]}

= 1—exp{—edt =B},

where g(t,) = log f;~ ho(u)du, so that
log{—log(1 — pij(r))} = g(t-) + =;;8,

implying the complementary log-log link. The simplest choice for g(t,) is a linear function
of t,. Thus for example if we are analyzing grade 7 and 8 responses we might choose
g(t:) = Bo + Prt, where t, = 0 for a grade 7 observation (say r = 1), and ¢, = 1 for
a grade 8 observation (say r = 2). The extension to a larger number of time points is
straightforward; in general, if responses at £ time points are to be analyzed, g(¢,) can be
written as a linear combination of £—1 indicator variables plus a constant term, r = 1, ..., £

Depending upon the application and the analysis of interest, such survival models in
combination with the GEE methodology can be a useful means of analyzing data that
are both longitudinally and cross-sectionally clustered. In the WSPP3 data for instance,
multiple responses over time can be examined using the approach described above, while
at the same time accounting for the clustering induced by the different schools, using

GEE. The estimating equations are exactly of the form (3.5.7); the only change necessary
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when using the complementary log-log link as opposed to the canonical logistic link is in
terms of the matrix A;, which will no longer be the identity matrix. Recall that A; =
diag(08;;/0n;;). For binary data Yi;(r), 8;; = log{p:j(r)/(1 — pi;(r))}, and letting n;; =
g(t;) + z;;8 it follows that

0:; = loglexp{e™i} — 1], (3.5.15)

and hence

96;; _ exp{m; + e™i}
= . 3.5.16
Oni;  exp{emi} —1 ( )

Thus for the complementary log-log link,

i &XP{mi + e™i}
A; = diag( exple™} — 1 )-

(Similar straightforward calculations will yield A; for any other link function which might

be of interest).

3.5.4 Transition Models

Transition models also constitute a useful method for analyzing longitudinal data. These
models distinguish themselves from survival models in that they do not focus on the time
to a certain event, but allow for transitions into and out of a set of states defined by the
response variable. Suppose that multiple observations are made over time on each of a
number of individuals. In contrast to marginal models, transition models describe the
expectation of the response variable conditional on previous responses as well as covariate
information. Let ¥;; be the response of individual j in cluster ¢ at time point ¢,¢ = 1,...,T.
Perhaps the most widely used transition models are Markov models, which assume that
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the conditional distribution of Y;; given all previous responses depends only on the m
previous responses Yjje—1, ..., Yijt—m, for some value of m. The observations on a particular
subject are assumed to be conditionally independent. Thus, assuming for the moment that
observations are independent between and within clusters, the likelihood contribution of

individual j in cluster i for a Markov model of order m =1 is

T
Li(Yijny - vis) = Flwiin) 1 Fwizelvie-1),
t=2

with the full likelihood given by [I;; Lij. Any software that fits GLMs can be used to fit
such a model, by including ¥;;;—, in the set of predictor variables for observation Y;;. If
observations within (cross-sectional) clusters are not independent, GEE can be used to
account for this in a similar fashion as for the survival models of section 3.5.3.

For binary responses we can distinguish between two types of models. The first is the
one discussed above and assumes that the effect of the covariates on the response Y;;; is the
same for both positive and negative responders at Y;;.,, after adjusting for Y;;—;. Such
models simply include Y;j.—; as an explanatory variable in the linear predictor for Y;;; they
take the form

logit P(Yije = 1|Yijem1 = thije-1) = 2338 + Wije-1-

With reference to the WSPP3 data, if ¥;;, is an indicator of smoking status for individual j
in school 7 at time ¢, the odds of this individual smoking at time ¢, having adjusted for the
effects of the covariates contained in z;;, are €” times larger if that student was smoking
at time ¢ — 1 as opposed to not smoking.

The second type of model assumes that the effect of the covariates on the response Y;;
is different for positive and negative responders at Y;j,—;. If this assumption holds one
might either fit two separate logistic models to Y¥;; (one to the portion of the data with

Yije-1 = 0, and one to the part with Y;;_; = 1), or one may combine these two into a single
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model by including as predictors the previous response Y;;—; as well as the interaction of

Y:jt—1 with each of the covariates under consideration. For note that the two models

logit P(Yije = 1|Yije-1 = 0) = 3:',':30
logit P(Y5e = 1|Y;56-1 = 1) = z:'jaﬂl

are equivalent to
logit P(Yeje = 1{Yijee1 = tije-1) = 3B + Yije-1ZijeY

where 3, = B, + v (Diggle et al. (1994), Ch. 10). Continuing with the smoking example,
4 is a measure of the covariate effect differential inherent in z;; when modelling smoking
rates at time ¢ and comparing smokers at time ¢ — 1 with non-smokers. In this case the odds
of individual (%, ;) smoking at time ¢, having adjusted for the effects the covariates, are
e%iieY times larger if he or she was smoking at time ¢ — 1 as opposed to not smoking; note
that this factor now depends on z;j. If zij = (1, Zijer, ooy Zijes) 30 ¥ = (Y0,71y -1 Ts) 5
then a test of the hypothesis that 4 = (7,0, ...,0)" is equivalent to testing whether or not
the covariates have the same effect on the response Y;;; regardless of the value of ¥;;,_; (i.e.
whether or not the simple Markov model described above is adequate).

A logical extension can be made to include Yi;—; and ¥;j_, in the model for Y;.
Alternatively it may be of interest to condition on the previous response as well as a
dichotomous covariate. For example, one might wish to model smoking rates at a particular
time point, adjusting for smoking status at the previous time point and the gender of the

individual. Letting Z;; = 0 for a male and 1 for a female, say, the four models of interest

logit P(Yije = 1|Y3je-1 = 0,Z;; = 0) = 3:'_,-¢ﬁoo
logit P(Yije = 1|Y;jemy = 0, Z;; = 1) = 2,85,



CHAPTER 3. ANALYSIS OF CORRELATED BINARY DATA 42

logit P(Yije = 1|Yije-1 = 1, Z;5 = 0) = 2,844
logitP(K-,-g = llyijt-l =1, Zt'i = 1) = z:'iﬁu

can bc combined into the following single model:

logit P(Yije = 1Yije1 = WYije-1, Zij = %j) =

1 ’ I’ '
TiB + Yije—1Zi56Y1 + ZiiZTi5Y2 + Yije-1%55Ti5 Y 3

Thus By = B, Bor =B+ 73, Bro =B+, and By; =B+, +v; + 75 Now a test

of Ho : vy = 93 = 73 = 0 would determine whether or not the covariates z;;; have the
same effect on the response probability regardless of the value of (Yj:—1, Z;;). Similarly,
a test of Hg : v, = 73 = 0 would determine whether or not the covariates have the same
effect on the response regardless of an individual’s gender (Z;;). Testing Hp : v, = v3 =0
would enable one to draw conclusions in a similar fashion about previous smoking status
Yijt-1. As already indicated above, a more refined version of these hypothesis tests might
only test that all components except the intercept term in 4, are zero. This would allow
the conditioning variables to affect the baseline response probability without impacting on
the additional effect of the covariates.

Transition models are very useful for conditional analyses of longitudinal data, especi-
ally when strong dependence is suspected between successive observations on an individual.
This is the case for instance in the WSPP3 data; a student’s smoking status at time ¢ can
be shown to depend heavily on smoking status at time ¢ — 1 and even ¢ — 2; see Chapter 7
for further details.

Survival and transition models were discussed in the context of GEE here, but one
should note that a random effects approach (see for instance section 3.6) can also be
applied to such models as an alternative cluster-specific method of adjusting for extraneous
school-to-school variability.
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3.5.5 Symmetric Modelling of Mean and Correlation

Prentice (1988) describes an extension of the GEE approach for binary regression to allow
estimation of parameters not only in a model for the response probabilities, but also in a
similar model for the correlation parameters. Explicit modelling of the pairwise correlations
in this manner is an alternative to the simpler methods of section 3.5.2 and may further
improve the efficiency of the estimator B for the response rates. Instead of basing the
estimate of the correlation parameter a on functions of standardized residuals, Prentice
suggests a GEE estimator of & which is constructed in much the same manner as the
estimator for 3. He derives a second set of estimating equations for «, as follows:

Let E(Y:;) = pi; = pijy @55 = 1 — pij, P; = (Pity ---» Pin;) and D; = A;A; X;. Note that
D; is the n; x p matrix of derivatives dp;/83, where p = dim(83). In this notation the

generalized estimating equations (3.5.7) can be written as

S° DIV (¥ - p) =0, (35.17)
i=1
To obtain (3.5.17) we needed to make certain assumptions about p; and V;, the mean
and variance of Y;. Hence in order to derive an analogous set of estimating equations
for & we need to make similar assumptions about the mean and variance of Z;, the (';')
vector of sample correlations between the observations in cluster i. As in Prentice’s paper
we let Z; = (Zi12, -y Zirngy Biz3y -+ Bing—1n;) » Where Zi;, is the sample correlation between

observation j and k in cluster i, equal to

Zijk = Zij(B) = (KZP:ZJIZS::):: i) (3.5.18)

Letting E(Z;;) = pijr it follows that

Var(Zije) = wisk = 1+ (1 — 2p5)(1 — 2pia) (pijgispingin) " 2pije — Pl (3.5.19)
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To show this we note that Var(Z;:) = E(Z%;) — p; and that

E(Z%) = (piigpaga) "E{(Y:Ya — Yijpa — Yapi; + piipa)’}
= ¢ E{Y Y} - 2Y}Yupu + Ypi
—2(Y;;Yiipij — 2Yi5Yapispie + Yiipiipl)
+Yipl; — 2Yapuri; + pari}h (3.5.20)

where ¢ = (p;jq;;pixqix) . Now since Y;; is a 0-1 response, Y;=Y5, r=1,2,... . Thus

E(Y;Y:) = E(Yi;Ya)
= Cov(Y;;Y) + pi;pir

= piin(Pij@iipingin)’? + pijvir

for r,s = 1,2,... . Using this result to carry through the expectation in equation (3.5.20)
yields, upon some simplification and subtraction of p?jk, equation (3.5.19).

Let p; = (pi12, ---» Pilngs Pi23s s Pini—1n; ) a0d Wi = diag{wira, ..., Witn;, Wiz3, -+-y Win;—1n; }-
Furthcrmore, let E; be the (';') x v matrix of derivatives p;/0c, where r = dim(ax). The

estimating equations for a are, analogous to (3.5.17),

K
S ETW:Y(Z; - p;) = 0. (3.5.21)

=1

This set of equations allows one to estimate parameters in a flexible model for p;j:. One
possible choice might be pijx = ap + ay 25 + azzix + aszijzix + ayn;, where z; indicates the
gender of the jth individual in cluster ¢; this would assume that the correlation between
two individuals in a given cluster depends on their gender as well as the cluster size.

One constraint to bear in mind when modelling p;;; is the fact that, barring further
restrictions, this coefficient must in any case lie in the interval (—1,1). By way of analogy,
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one of the key reasons for choosing a logistic model for E(Y;;) = p;; is to guarantee a fitted
value p;; which lies in (0, 1), while at the same time removing all constraints in estimating
the parameters 3. A similar provision would be useful when building a model for p;;i.

Note in contrast to the estimating equations (3.5.17) that no working correlation matrix
(other than the implicit identity matrix) is specified in (3.5.21). If the sizes of W;, i =
1,...,K are small enough, a generalization to include a non-trivial working correlation
matrix is straightforward. Note however that for sizeable clusters, W;, of dimension (’;‘) X
(';') , is prohibitively large. For example, a cluster of size 100 would necessitate a 4950 x 4950
matrix W;. In such cases the diagonal structure of this matrix should be exploited to
avoid having to define it explicitly at all. If W; is diagonal, ETW;™! does not have to be
constructed internally through matrix multiplication but can be defined at once as a single
matrix, say T;. Let v, ..., v, denote the rows of ET, and let w; = diag(W;™'). The rows of
T; are simply v;; X wi, ...,V X w;, where ‘X’ indicates element-wise multiplication. Thus
the computational burden is reduced from specifying W; to defining the r x (’;‘) matrix
T:, which is more manageable.

The joint estimation of (3, ) proceeds by iterating back and forth between the two
sets of estimating equations (3.5.17) and (3.5.21) until convergence is achieved at a value
(B(&), &(B)). Naive and robust variance estimates for a can be constructed in exactly the
same fashion as for B (refer to equations (3.5.8) and (3.5.9)). More generally however one
will expect nonzero covariances between the elements of 8 and «. In this case a covariance
estimate of the joint parameter estimate ([:J, &) is available and is given by expression (15)

in Prentice (1988).

3.5.6 Application of GEE to Random Effects Models

As a final note in this expository section on generalized estimating equations, we briefly
highlight the work of Waclawiw and Liang (1993, 1994), which provides a good example
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of how the GEE methodology may also be used to draw cluster-specific inferences in the
context of a random effects model. They propose a cyclical algorithm based on the use
of estimating equations to fit such a model, obtaining estimates of the fixed effects 3,
the random effects, as well as the variance of the random effects distribution. A cycle of
three steps is iterated repeatedly until convergence is achieved in one of the parameters of
interest (usually the estimate of the random effects variance).

We shall describe the procedure for the specific case of the logistic - univariate normal
model as discussed in Waclawiw and Liang (1994) and in the next section. In principle
however, it can be adapted to other error distributions in the exponential family, other
link functions and different choices for the random effects distribution.

Begin by assuming that

Y|z, 0: ~ Bin(l, p;;), where

b;; = log(lfi;") = z;;8+b;
7

b % N(0,0%). (3.5.22)

This model adjusts for the heterogeneity across clusters by assuming the presence of an
unobserved random effect for each cluster, conditional upon which observations are treated
as independent. The random effects themselves are assumed to obtain from a Gaussian
distribution with zero mean. See the next section for further details.

Starting with an assumed initial value for 02, the variance of the random effects, the
GEE approach is used to estimate B3, the vector of fixed effects. In order to implement
GEE an expression for the marginal mean and variance of the response Y;; is required.

Under the above model formulation no closed form expression for E(Y;;) exists. However
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the cumulative Gaussian approximation to the logistic function,

) . ;. 163
loglt E(}’,’J) = loglt E(E(K,'b;)) >~ .\/]._chz—ﬁ’ c= E-’ (3.5.23)

as citcd in Zeger et al. (1988) and Johnson and Kotz (1970), is remarkably accurate over
a reasonable range for the linear predictor and the variance o? (say, —3 < z:-jﬁ <3 and
o? < 2). Zeger et al. (1988) further give an approximation for the marginal covariance
matrix of the vector of responses from the ith cluster, based on a Taylor series expansion
of the link function about b; = 0. This is justified in that only an approximation for the
covariance matrix is required to obtain consistent and reasonably efficient estimates for 3
using the GEE approach. Note that in this step of the procedure only an estimate of o2 is
required; it does not actually involve the random effects themselves.

Having obtained an estimate of the fixed effects B, one can use these as well as the
current estimate of the random effects variance to obtain estimates of the random effects

b;, i = 1,..., K. These are computed as the solutions to estimating equations of the form

9(b:;, B,0%) =Y (G + di —E(Yyb)) =0, i=1,.., K. (3.5.24)

=1

Optimal values of the shrinkage factors ¢;; and d; can be computed by minimizing the
Godambe risk function (Godambe (1960)). This leads to a set of Stein-type estimating

equations, each of the form

b ] i
2 (wiysi + (1~ wi)E(Y55)) = Y (B(Yi5(5:)), (3.5.25)
Jj=1 Jj=1
where the w; are estimated weights (0 < w; < 1) which will be functions of 8 and o2 (see
also Liang and Waclawiw (1990)).
Finally, from the estimates computed for 8 and ¥, ¢ = 1,..., K, one can calculate an
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updated estimate of 2. Note that
Var(b;) = E(6?) = E(82) — 2E((b: — b:)5:) + E(b: — b:)*. (3.5.26)

Waclawiw and Liang suggest estimating Var(b;) by approximating the first term on the right
hand side of equation (3.5.26) by the moment estimator 3K, b?/ K, assuming the cross-
product term to be negligible and estimating the last term with the estimating function

based estimator

. . (b: 2

E(h - b)? = E{gi(bB,0%)/ 2227 2 (3527
which is derived from the linear Taylor series approximation to g:(§;,8,0%) = 0, expanding
about b;. Alternatively, this term could be estimated by the asymptotic posterior variance

d*log f(b:ly;) )-1
ob?

K n; 1
> Xl —ps) + 517 (3.5.28)

=1 j=1

Var(bily:) ~ —(

1
K

R

where f(b;|y;) is the posterior distribution of b; given the data from the ith cluster; note
that this variance estimate also borrows strength across clusters by averaging over ¢ =
1,.., K.

With the updated estimate of o2 one can begin another cycle of the procedure and
estimate the updated value of 3, hence the random effects b;, and finally a subsequent esti-
mate of g2. Iteration in this fashion continues until convergence in one of the parameters,
such as o2, is achieved.

Since the random effects variance is updated empirically after each iteration, this ap-
proach can be viewed as a combination of GEE and empirical Bayes estimation for random

effects models. More will follow on this in next section and in Chapter 4, where these two
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techniques are also combined, though in a different manner, to fit a more complex model.

3.6 Random Effects Models and Empirical Bayes

Estimation

3.6.1 Preliminaries

' As indicated in section 3.3.3, random effects models are appropriate if one is interested
in cluster-specific inferences. Such models can be applied in the longitudinal setting, but
are especially appropriate for cross-sectionally clustered data. An early application of a
random effects model to binary data is given by Korn and Whittemore (1979). More
general references include the previously mentioned papers by Laird and Ware (1982) and
Stiratelli et al. (1984); see also Zeger et al. (1988). A good overview of the use of random
effects models in the class of generalized linear models is given in Chapter 9 of Diggle et
al. (1994).

Suppose that as in section 3.5.1 our data consist of observations Y;;, j = 1,...,n; and:
t = 1,..,K. Along with the p x 1 vector of fixed effects covariates z;;, associate with
each Y;; a vector of r random effects covariates, contained in z;;. This implies that the
coefficients for the z;; are constant across clusters, whereas the coefficients for the Zij
i.e. the random effects, display heterogeneity across clusters, thus inducing within-cluster
correlation. Similar to the development in section 3.5.1, in the GLM framework the density
of Y;; conditional on some (possibly vector-valued) random variable b; is assumed to follow

the exponential family form
f(yii1bs) = exp{(y:i0:;; — a(6:;) + b(y:;))$}- (3.6.1)

Conditional on b; the observations Y, ..., Yi, are assumed to be independent. As before
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pi; = E(Y:5]b:;) = a'(6;;) and Var(Y;;]b;) = a”(6;;)/ 4, where now
9(pi5) = mir i = 2B + z5b5, (3.6.2)

for some link function g(.). We assume that by, ...,bx are i.i.d. observations from some
distribution G(b) with mean 0 and covariance matrix E. The joint distribution of y;; and
b; is f(vij]b:)g(b:), so the marginal likelihood for the data is given by

K ny
18, %;y) = I [ 1 ftuibo)g(bi)dbs (36.3)

For most non-linear models this integral is intractable and must be evaluated numerically.
A fairly large literature is devoted to the non-trivial problem of parameter estimation in
the generalized linear mixed model. References include Conaway (1990), who proposes a
special model which yields a marginal likelihood that can be evaluated without numerical
integration, Wolfinger and O’Connell (1993) who suggest a pseudo-likelihood approach,
Waclawiw and Liang (1993, 1994) whose approach was discussed above, and Gibbons and
Hedeker (1994) who propose a general random effects probit model. An excellent overview,
discussing both theoretical issues and applications, is given by Breslow and Clayton (1993).

3.6.2 The Empirical Bayes Approach

Empirical Bayes approaches to inference for random effects models avoid the integration
involved in (3.6.3). Instead of attempting to obtain the marginal likelihood, the problem
is viewed from a Bayesian perspective. A noninformative prior distribution is placed on
the fixed effects parameters, together with a proper prior for the random effects, and the
resulting posterior distribution of all parameters is maximized. This procedure implies
that the parameter(s) of the prior random effects distribution are known. In practice one

could either postulate a hyperprior for these parameters, yielding a fully Bayesian analysis,
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or estimate them empirically in some fashion, giving rise to the empirical Bayes approach.
The latter will be the focus for the remainder of this section, in preparation for the model
discussed in Chapter 4. There is a large literature documenting the successful applications
of this approach; samples include the work of Morris (1983), MacGibbon and Tomberlin
(1989), Farrell (1991) and Farrell et al. (1994).

To fix ideas more firmly, note that we can write the joint distribution of the data, the
fixed and the random effects as

K n; K n;
II{II £(wiilbi)g(:)} o TI{II £(w:;lb:,B,E)g(b:,B(E)}

=1 j=1 =1l j=1
K n; K
= [I—II{I-;[I f(yijlbiaﬂ7 E)] [l:Ilg(bnﬁlz)]
= p(ylb, B, Z)p(b, B|X)
= p(y,b,B8|%) (3.6.4)

The right side of the first line in (3.6.4) is just a re-expression of the left side which
emphasizes the assumed dependencies in the conditional and prior distributions. Observe
that we can write g(b;) o< g(b:,3) since a noninformative prior distribution is assumed for
B. The posterior distribution of the parameters given the data is then
r(y,b,8(%)
b,8ly, L) = ———. 3.6.5

p(b,Bly, T) = =015 (3.6.5)
In most cases finding a closed-form expression for equation (3.6.5) is an intractable problem.
But we can nevertheless maximize the posterior in (b, 3) (or equivalently the log-posterior)
by simply maximizing the joint distribution, since the denominator in (3.6.5) does not
involve these parameters. As is standard practice, and stated as follows for instance in

MacGibbon and Tomberlin (1989), the posterior is expressed as a multivariate normal

distribution having its mean at the mode of (3.6.5) and variance equal to the inverse of
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the information matrix evaluated at the mode.

Now all of the distributions in the above equations assumed that the prior covariance
matrix X is known. Since this is not the case in practice, the empirical Bayes approach uses
an EM-type algorithm (Dempster, Laird and Rubin (1977)) to estimate ¥. Beginning with
an initial estimate %(%), (3.6.5) or equivalently the joint distribution (3.6.4) is maximized,
yielding (b, 3) and Cov((b,3)). From these estimates an updated value for I is computed,
following the same argument as outlined for the univariate case, referring back to equation

(3.5.26). Assuming a zero-mean prior distribution,

¥ = Cov(b;) = E(b:b])
= B((6: - (B — b:))(b: — (b — b:))")
= E(bib; — bi(b: — b:)T — (b — b:)b; + (B: — bi)(B: — b:)T)
~ E(bib; ) + E(b; — b:)(b: — b;)T. (3.6.6)

Hence (3.6.6) can be estimated by the sum of k!X, 5,-5? and the estimated average
asymptotic posterior covariance matrix for b, i = 1,..., K. The updated value for ¥ is

therefore

»(1) —

a aT .~ a
Z.{il b:b; 2‘_1;1 Cov(b;|y)
7 + K . (3.6.7)

Given Z(*) new parameter estimates are obtained from the maximization of (3.6.4), whe-

reupon the estimate of ¥ is updated again, and so forth, until convergence is achieved.

3.6.3 Some Examples

We now describe the standard logistic-normal random effects model for the case of a uni-

variate random effects distribution, and will discuss two examples where an extension to
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either two separate or a bivariate distribution is appropriate. In the next chapter we will
introduce a generalization of this standard model to allow for the simultaneous modelling
of cross-sectional and longitudinal dependence.

As already outlined in section 3.5.6, the logistic-normal model for cluster correlated
binary data, assuming a single (scalar) random effect for each cluster, can be stated as

follows:

Y.-,-Iz,-_.,-,b,- ~ Bin(l,Pij)v where

b;; = log(lf—i;__) = z;;8+b,
7

b % N(0,s%). (3.6.8)
The log of the posterior distribution is given by

log p(b,Bly, %) x
K n; , 1 X
3 2 {uis(wisB + b) —log(1 + i)} — — > (3.6.9)
i=1 j= i=
This function is easily maximized, given a value of o2%; see section 4.2.1 for details on
estimation. The above model would be suitable for instance for a cross-sectional analysis
of the WSPP3 cohort at one given time point, with clusters defined by schools.
Extensions of model (3.6.8) are relatively straightforward. Consider for example the
survival model described in section 3.5.3. It was suggested there to use GEE to account
for the clustering due to schools. If the analysis were to involve both elementary and
highschools it would be sensible to estimate two exchangeable correlation parameters, one
for each type of school, in the manner discussed in section 3.5.2. This would allow for a
varying degree of similarity in the smoking behaviour of students from the same elemtary
school as compared to students from the same highschool. Alternatively, an analogous
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random effects model can be specified by postulating two independent random effects
distributions, one for each type of school. Both would be centered at zero but would have
unequal variances. (Indicator variables in the fixed effects portion of the model can be used
to adjust for the difference in mean response rates over time). To write this model down
we need a slight generalization of the notation in section 3.5.3. The definition of ¥;;(r)
in equation (3.5.14) implicitly assumed that the configuration of clusters is fixed across
time, i.e. that individuals do not move to a different cluster (school) over the period of
observation. In fact however, the school an individual is attending at any given time does
depend on time, the most obvious example of this being the fact that students move from
elementary to highschools after grade 8. Therefore, letting ¢ = 1,2,3,... be the times of
data collection, simply define T; as the time to first smoking of the ith individual in the

data set, and Y;; as

v 1 fT;<t,givenT;>t—1
it =
0 fT;>t.

Further, let b(;;) be the random effect associated with the school attended by individual ¢
at time ¢, and let E = {bg:, ..., b5k, } and H = {bg, ..., barx, } be the sets of elementary and
highschool random effects, respectively. Then the model can be stated as

Yi|Zie,biy ~ Bin(l,px) where
Dit ’
log(————) = z,8+bsy,
og(l_p“) zoB + by
N(0,0%) if by € E
by ~

N(O, O’;I) if b(ig) € H.

(3.6.10)

Assuming we have data on N individuals, each contributing m; > 1 observations, the



CHAI’TER 3. ANALYSIS OF CORRELATED BINARY DATA 55

log-posterior is therefore

N m; ,
log p(6,Bly,02%,0%) o 35 {uir(iB + biir)) — log(1 + e=irB+oin )}

=1 r=1
1 1
—_ b2, — — b3,,. (3.6.11)
20% ,g;g Bk 20% g}:{ Hk

Note that as above (3.6.11) assumes a logistic model for the conditional distribution of the
data given the random effects. The complementary log-log link could be substituted just
as easily if the proportional hazards model is of interest. The log-posterior would then be

given by

log p(b,Bly, 0%, 08) «
N m;

§ : E :{y,-,log(l - exP(—ezz'ﬁ.H’(") ) -(1- yir)ez;'ﬁ+b(")}
i=1r=1
1 1
INENE o VTN o T I 3.6.12
ZPIL P L

The univariate analogue of equation (3.6.7) is used to update separately the estimates of
0% and o%; observe that averages are taken over the k; elementary schools only to compute
025, and over the k; highschools to compute oly.

The second example we consider involves estimating a bivariate random effect for each
school, allowing for correlation between the two marginal components. This would be an
appropriate analogous model for example to the generalization described in section 3.5.2,
concerning the estimation of separate correlation parameters for pairs of observations from
the same gender group within a school, as well as for mixed gender pairs. For the sake of
clarity consider data from a single time point, so that Y;; will once again refer to individual
j in school i. Let z; = (1,0)7 if ¥;; is an observation on a female student, and (0, 1)7 if it is
an observation on a male student. In addition, let b; = (b;1, b;2)T, where b;; and b;; are the

random effects associated with females and males, respectively, in school i. Suppressing
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the dependence of ¥;; on the z; and the usual fixed effects covariate vector z;;, the model

is given by

Y;;| b ~ Bin(l,p;;) where

log( p,_-,p.) = 3:'jﬁ + z;jbiv

y 0 2
b ¥ BVN | TF o PTFIMO (3.6.13)
0 poFoM O

Equality between the marginal variances 0% and o3, would suggest that the impact of
school environment on the smoking behaviour of males and females is similar. One might
expect such a finding to be accompanied by a strong positive correlation p, which indicates
the extent to which males and females behave similarly within a school. Thus for example,
it would be unusual to encounter numerous schools in which a large proportion of the

boys were smoking, but not many of the girls, and vice versa. The log-posterior for model

(3.6.13) is

K n; i ’ ’
IOg p(b’ﬂlya 0125'7 aﬁlr P) x Z Z{y"j(zijﬁ + zs'jbi) - log(l + ez_-,ﬁ-i-z.-jb,-)}

i=1 j=1
b4 biabiz | b}
) p,) g{v - —Fm +a§‘}. (3.6.14)

Updated estimates of 0%, 03, and p are obtained from the appropriate elements of updated

covariance matrix, computed directly using (3.6.7).

With reference to these examples, in Chapter 5 we describe an alternative general

approach to extending model (3.6.8).

A limitation of all of the approaches outlined so far is the fact that data exhibiting
two levels of dependence, i.e. longitudinal and cross-sectional, cannot be analyzed in full
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generality. In the next chapter we discuss this problem further and describe a method for

simultaneously modelling data with such a composite correlation structure.



Chapter 4

Simultaneous Modelling of

Cross-Sectional and Longitudinal

Dependence

4.1 Introduction

The discussion thus far has pointed out several times that some studies give rise to data
which can be logically grouped into clusters in more than one way. We have indicated
that the WSPP3 study is a good example of a longitudinal study where the data are
also cross-sectionally grouped in meaningful units. Clusters are thus defined for groups of
observations belonging to the same unit (which may include data on the same individual
at more than one time point) as well as for groups of observations made on the same
individual over time.

If interest lies in a marginal analysis focussing only on one time point, one might
analyze the data using GEE, specifying, for example, an exchangeable correlation structure
to model the correlation expected to exist between students attending the same school.

58
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Alternatively, the standard logistic-normal random effects model would achieve a similar
end from the point of view of a conditional analysis. However if one wishes to analyze
data from two or more observation times simultaneously, the longitudinal correlation must
also be taken into account. One approach would be to carry on with GEE and merely
specify a more complicated correlation structure: one might for example assume strong
dependence between observations on the same individual, moderate correlation between
observations on different individuals in the same school at the same time and still weaker
correlation between observations on different individuals in the same school at different
times. There are however two problems with this approach. Firstly, solving the estimating
equations would require the repeated definition and inversion of potentially very large
matrices, since cluster sizes in this framework are determined by the number of students
in a given school times the number of observation points. The second and more limiting
problem is the implicit assumption that all students within a given school stay in that
school over all observation times. This approach does not allow the possibility of students
changing schools over time, which is, however, a characteristic observed in the WSPP3
data. (Note in fact that apart from haphazard switching, students all change schools by
design after grade 8, as they move from elementary to highschools).

4.2 A Composite Model

We present a composite analysis which avoids the problems outlined above. We consider
the GEEs one would use for a straightforward longitudinal analysis and augment the linear
predictor associated with each observation with a random effect for the school attended by
that particular individual at the particular time in question. It is assumed that the effect of
school environment is common to all observations collected in a given school, i.e. not just
those gathered at one particular time point. Observations from different individuals in the

same school are taken to be independent conditional on the random effect for that school.
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Note that there is no restriction on which school an individual attends at any given time.
The school random effects will be estimated using empirical Bayes methods, as described

in section 3.6.

In the following two sections we first review estimation for the logistic-normal random
effects model, assuming only one level of clustering in the cross-sectional sense, and then

describe the more general composite model, which we refer to as the ‘quasi empirical Bayes

model’.

4.2.1 Estimation in the Standard Logistic-Normal Empirical Bayes
Random Effects Model

Consider model (3.6.8) for data collected in K schools, with n; observations from school .

The empirical Bayes estimating equations for this model can be expressed as

K

Uss(B) = Y XI(Yi-mp) = 0,
=1
T bi
Uss(bs) = 17(Yi-p)—— =0, (4.2.1)
ti=1,...,. K

where X; is the design matrix for the ith cluster (school), Y; and p; are (Y, ..., Yin,)T and
(pi1, ---, Pin; )T respectively, and 1 is a unit vector of appropriate dimension. The matrix of
negative second derivatives of the log posterior, whose inverse serves as an approximate

covariance matrix in much the same way as the information matrix in a likelihood analysis,

is of the form

BE., Ckxk

Iss = [ Aor Bpxc ] (4.2.2)
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with

Apo = iX?AiXi

Bpxx = ng,---,Bx),
B: = XTA:1

Ckxxk = diag{C,,...,Ck},
C: = 174 1+%,

where A; = diag{pi1(1 — pi1), ...y Pin;(1 — Pin;)}. For a given value of the prior variance
o? the system of equations (4.2.1) is solved to produce estimates of the fixed and random
effects, using the standard Newton-Raphson algorithm

2 (L+1) _ 2(8) 4 -1 )
v ¥ + Igp UEBIaY:,Y(Ov

where 4 is the estimate of 4 = (B,by,...,bx)T after the fth iteration, and Ugp =
(Ues(B), Uss(b1), ---, Uss(bk))7.

The univariate version of (3.6.7) is used to update the estimate of the prior variance,
and with this estimate Ugp = 0 is solved once again to produce new fixed and random

effects estimates. This cycle continues until convergence in o2 is achieved.

4.2.2 The Quasi Empirical Bayes Model

Liang and Zeger (1986) moved from likelihood score equations to generalized estimating
equations for longitudinal data ((3.5.3) to (3.5.7)) by introducing a working covariance
matrix, reflecting the correlation structure among repeated observations on the same indi-
vidual, into the estimating equations. We extend the empirical Bayes estimating equations

Ugp in a similar manner in order to facilitate the analysis of data exhibiting both a cross-
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sectional as well as a longitudinal component of clustering.

The notation used thus far has been largely dependent on the specific context under
consideration, and in what follows it will be crucial to be able to clearly distinguish obser-
vations or groups of observations as belonging either to an individual or to a school. Unless
otherwise indicated, the following notation will therefore be strictly adhered to throughout
this chapter. Let the data consist of observations on N individuals (students), each obser-
ved at T times. Let ¢ be the subscript used to refer to an individual, and ¢ the subscript used
to refer to a time point. Furthermore let the N x T observations be collected in K schools,
and let the subscript k refer to a school, with j indicating the jth observation within a
school. Thus Y;, denotes the {th observation on individual i (¢ = 1,...,T, i = 1,...,N),
whereas Yi; denotes the jth observation in school k (j =1,...,n¢, k = 1,..., K). Similarly,
vectors or matrices with a single subscript ¢ or k refer to collections of observations on the
corresponding individual or school, respectively.

Consider the following model:

Ya|zie, bary ~ Bin(1,pse),  Corr(Ya, Yiel{bG), b }) = per,
where

log(—22—) = zi,8 + bg),

1—p
beey € {b1,...,bx},
b ~ N(0,6%), k=1,.,K. (4.2.3)

Here b;) is the random effect associated with the school attended by individual ¢ at time .
The model assumes that the correlation between two observations on the same individual
is only a function of time, conditional on the effect of the school(s) attended by that

individual at the two time points.
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We are interested in estimating the fixed effect parameters 8 and within-individual
correlations p = (pi2, ---, pr-1T), 88 Well as the random effects be, £ = 1,..., K and their
variance 2. To accomplish this we generalize the system of equations in (4.2.1) as follows:
note that Ugg(B) can be written either as a sum over schools or as a sum over individu-
als. (In fact, it just equals X7 (Y — p) where X is the full design matrix, and Y is the
corresponding response vector, with p = E(Y)). To incorporate the correlation among
repeated observations on the same individual into the estimating procedure, construct the
estimating equations for the fixed effects as sums over individuals, introducing a working
covariance matrix in the same manner as described in section 3.5.1. As indicated at the
beginning of section 4.2 this yields GEEs of exactly the same form as (3.5.7), with the
exception that the probability p; is conditional on b(;). We therefore write

N
Ugen(B) = Y XT AV (Y: — pi), (4.2.4)

=1

where A; = diag{pi1(1 — pi1), ---»pir(1 — pir)} and V; is the working covariance matrix
A; / 2R(c.z)A,}/ 2. As usual « represents all parameters required to specify the working cor-

relation matrix R; we can write @ = p. The estimating equations for the random effects

have a similar form; they can be written as

b
Ugen(be) = 1TAV;(Yi—pe) - ;%, (4.2.5)
k=1,..,.K

where A, = diag{pe1(1 — pr1), ---) Pin, (1 — Pin, )} and Vi is the working covariance matrix
A,l,/ 2'R,k(a)A,1=/ ? defined for school k. The entries of the corresponding correlation matrix

Ri(ax) are defined in terms of the conditional correlations between repeated observations
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on the same individual in the same school, given the random effect for that school:

pw if Yi; and Yij are obs’ns taken on the
Corr(Yij, Yejrlbe) = [Re(a)ljy = same student, at times ¢ and ¢’

0 otherwise
k=1,.,K (4.2.6)

The matrix of negative second derivatives is given by

Iges = [A?xp Bpux ] (4.2.7)

Bf., Ckxk

where
N
App = 3 XTAV'AX:
Byxk = (Buroor B,
B, = XTAV'A 1
Ckxx = diag{Cy,...,Ck},
1

Cr = 1TAV AL 1+ =
For a given value of 02 the quasi empirical Bayes estimating equations

Ugss = (Uges(B), Uges(b:), ---, Uges(bk))T

are set to zero to solve for the estimates of the fixed and random effects. Moment estimates
for the intra-individual correlation parameters p are computed after each iteration toward
a solution to the estimating equations (see section 3.5 or Liang and Zeger (1986)). If the

number of repeated observations on each individual is relatively small, we suggest using an
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unspecified correlation structure for R(ar). Hence we define this T' x T working correlation
matrix as having diagonal elements equal to 1, and off-diagonal elements p, estimated by
the off-diagonal elements of the matrix

N
(N —P)‘l ZA'Tllz(Yi "Pi)(Yi _p‘.)TA;-l/z.
=1
After the nth estimation cycle conditional on of,, the prior variance is updated using

the formula

i1 i) + TK | Var(bimly)

a(z"'f‘l) = K K ’ (4.2.8)

where V;r(bk(n)ly) is the (p + k,p + k) element of Iy, evaluated at the nth cycle.

4.3 A Robust Covariance Matrix

4.3.1 The Problem

Model-based variance estimates for the estimates (B,ih, ...,EK) from the quasi empirical
Bayes model are obtained from the diagonal elements of I‘aiw. Observe however that these
estimates are computed assuming that the value of the random effects variance, on which
they are conditioned, is fixed. They do not account for the additional variability induced
by the fact that o2 is empirically estimated. Bootstrap adjustments to the model-based
variance estimates are commonly used with empirical Bayes procedures to correct this
problem, yielding robust variance estimates. Refer for example to the detailed exposition
given in Laird and Louis (1987), or to Farrell (1991); Waclawiw and Liang (1994) also
combine parametric bootstrap procedures with their estimating function approach.

The bootstrap is much harder to apply in a similar manner when the data are cluste-

red in more than one direction. The parametric boostrap would require generating data
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exhibiting the same underlying correlation structure as seen in the original data, which,
except in simple circumstances, is virtually impossible. On the other hand, a nonparame-
tric bootstrap procedure is not feasible either, since the fact that individual students can
change schools over time implies that observations belonging to the same individual could
appear in more than one school, thus precluding schools as the resampling unit.

We adopt a different approach to generate a robust covariance matrix, which avoids
resampling altogether. Suppose that instead of empirical Bayes estimation we had carried
out a fully Bayesian analysis which assumes the postulation of a hyperprior distribution for
o2, whose parameters are known or in turn somehow estimated. The system of equations
we would have solved to obtain our parameter estimates would have included equations for
both fixed and random effects, as well as the prior variance o*. The inverse of the matrix of
negative second derivatives derived from the fully Bayesian approach would yield variance
estimates duly adjusted for the estimation of all parameters in the model (except the
hyperprior parameters, which need not concern us here), including o2. Now let us define a
Bayesian analysis to be equivalent to an empirical Bayes procedure for the same problem
if the two analyses yield the same estimates for the fixed and random effects, as well as for
the random effects variance. It seems reasonable therefore to determine, for the results of a
given empirical Bayes analysis, an equivalent Bayesian analysis in the above sense, and use
the inverse matrix of negative second derivatives from this as a robust covariance matrix.
An added advantage of proceeding in this manner is that an estimate of the variability in

o2 is obtained in the process, which is not available from the empirical Bayes estimation

alone.
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4.3.2 A Bayesian Formulation Equivalent to
Empirical Bayes

Assume for the moment that repeated observations on the same individual are conditionally
independent, so that the data are cross-sectionally clustered only, putting us back in the
standard empiricial Bayes framework. We make this distinction for the sake of clarity and
to be able to write down appropriate posterior distributions. The following development
applies in a similar manner to the quasi empirical Bayes model, and extends immediately
to it.

Consider now a fully Bayesian analysis of the logistic-normal model, which may be

expressed as follows:

Yijlzej, b ~ Bin(l,pr;) where

log(;2-) = 2,8+,

b 2 N(0,0%),
o ~ G(o*v). (4.3.1)

Let G(o?,v) represent the C.D.F. of the hyperprior distribution on the random effects
variance, and denote its density by g(o?,v). We assume this distribution is fully specified
by the (possibly vector-valued) hyperparameter v. The posterior distribution for the fixed

and random effects, as well as their variance, is given by

?(8,b,0%|y,v)

K ng _ _— 1 1 K 9 .
{ggpkj (1 - pei) 4 Y ‘/ﬁa)xexp{—ggbk}y(a ,v). (4.3.2)

We are interested in a distribution G(o?,v) which will yield estimates equivalent to those
obtained from the analogous empirical Bayes formulation. Although the choice of this dis-
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tribution is certainly not unique in the class of distributions with support on the positive
real line, it is also not arbitrary. The following proposition illustrates this with reference
to the exponential distribution.

Propositon 4.3.1: The exponential distribution cannot serve as a hyperprior for o2
in a fully Bayesian formulation of the logistic-normal model, if this analysis is to be equi-
valent to an empirical Bayes analysis.

Proof: Assume that there exists an exponential distribution which yields the same esti-
mates when used as a hyperprior in a fully Bayesian analysis, as does the corresponding
empirical Bayes analysis. Then

9(o?,v) = ve™’

for some v > 0. The estimating function used to obtain the estimate of o2 is

dlogp(B,b,q%ly,v) K e b8 _
Oa? =202 T T ogt v (4:3.3)

Let bip and o2p be the Bayesian estimates of b; and o2, and let brgp and ?gp be the
empirical Bayes estimates. Evaluated at by = bz and o2 = 0‘:23, equation (4.3.3) equals

zero, yielding the following quadratic equation in olg:
. 1 X.. -
o2p = —(3 b5 — 2votp). (4.3.4)
K=
Now if the Bayesian and the empirical Bayes analyses were equivalent we would have

51:3 = i)kgg and 0‘:25 = a“‘zgg, k=1,..,K.
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However
1 K | K . .
olgg = ?(Z bigp + Y Var(bezsly))
=1 k=1
1 XK.,
= T('(Z begp + ™m1),
k=1
where m; > 0. Furthermore from (4.3.4) we observe that
R 1 X.
o’ = }(‘(Z big + m3),
k=1

where m; < 0 since v > 0. Therefore if the random effects estimates from the two analyses
were equivalent, this would imply that o%gg # c;zg; similarly if the two estimates of o2
were cquivalent, this would imply that the random effects estimates could not be. Hence
an exponential hyperprior cannot be used in a Bayesian analysis, if this is to be interpreted

as equivalent to an empirical Bayes analysis.

A similar result holds for the Pareto distribution, and we conjecture that it holds for
any distribution on positive support with mode strictly at zero.

We therefore require a more general hyperprior. In our experience the gamma distri-
bution is a suitable choice, though other families exhibiting similar shapes, such as the
lognormal, generalized Pareto or Weibull, may be equally useful. Even within the class of
gamma distributions there are undoubtedly various parameter choices which would yield
the same result. Here we shall focus specifically on the gamma(¥, %) distribution with
density

o2)¥/2-1 —g?
o(0?,v) = &) 2v/?rt'lé) 2 5o (4.3.5)

Note that for positive integers v, (4.3.5) is the density of a chi-square distribution on v
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degrees of freedom. In any case the mean and variance of G ~ gamma(¥, ;) are v and 2v

respectively. The following proposition states the central result of this section.

Propositon 4.3.2: The empirical Bayes analysis for the logistic-normal model is equiva-

lent to a fully Bayesian analysis assuming a gamma(%, 1) hyperprior, where

.
Tz bisp (4.3.6)

v=2+ K+ olgg —
o%gp

and bizp and o?gp are the empirical Bayes estimates of b; and the prior variance, respec-

tively.

Proof: Substituting (4.3.5) into (4.3.2) we derive the following estimating function for

o3

do? 202 + 204 o?

2 K p2 -
U(az) — 3logp(ﬁ,b,a Iysu) = - K Z:kzlbk+V/2 1_%. (4.3_7)

Note that for a given value of o2 the estimating equations for the fixed and random effects
from the fully Bayesian posterior are equivalent to those from the empirical Bayes posterior;

hence they lead to the same estimates of these quantities. If in addition that value of o2

equals 0333 then

- K K j3 v—2 1
U(o?eB)ly <ty = — +2k=1 LEB +

202 EB 204 EB 20 3gp 2
_ —Ko'sp + T biss + %55 + Kales — T, bigp — o5
20*EB

= 0,

implying that the empirical Bayes estimate of the prior variance is also a solution to the
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Bayesian estimating equation for o2 and hence equal to o%g. The two analyses are there-

fore equivalent.

Since we have now found a hyperprior which will generate the same (Bayesian) estimates

as an empirical Bayes analysis would, we can use the estimates from the empirical Bayes

model to evaluate the fully Bayesian matrix of negative second derivatives, and use the

diagonal elements of its inverse as variance estimates, adjusted for the estimation of o2.

This matrix is simply Igp (see (4.2.2)), augmented by another row and column correspon-

ding to the negative second derivatives of the log-posterior with respect to ¢? and 3, o?

and b, and (0?)2. It can be written as

Igg | E
Is = | ——— ——_|,
ET | D
where (letting ps = p(B, b, 72|y, v))
ET — (_6"'10ng _8logps _azlogpg)
- 8B3c* ° 06,802’ ObgBo?
(_BU(or’) _au(a?) 6U(¢r’))
B ' 8y ' bk
b

K
= (05,0, =% s = —Dix(p4K)

and
D _Blogps _ _ 9U(d?)
- (a2 902

2&1"1_1{‘”'{‘2
ot 20¢

(4.3.8)
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As mcntioned at the end of section 4.3.1, proceeding in this manner allows us to obtain a
variance estimate for o2gp as well. This is given by the (p+ K + 1), (p + K + 1) entry of
Ig!. It can be explicitly expressed as

Var(o2gp) = (D — ETIgLE)™?, (4.3.9)

where a ‘hat’ denotes evaluation at the empirical Bayes estimates.
As indicated earlier, the results of this section apply to the quasi empirical Bayes model

in the same way as described here. Simply replace I with

IQEB I E
Igg = | ——— ——_ (4.3.10)
ET | D
and equation (4.3.9) with
Var(o2qes) = (D — ETIgkgE), (4.3.11)

where a ‘hat’ now indicates evaluation at the quasi empirical Bayes estimates. Note in
particular that the entries of E and D are unaffected by incorporating intra-individual

correlations into the estimation procedure.

The performance of the robust variance estimates described here, including the variance

estimate for a‘:’, will be studied in section 4.5.
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4.4 Generating Data With a Specified Composite
Correlation Structure

In this section we describe the simulation of various data scenarios, which will be used in
the ncxt section to study the properties of the estimates from the quasi empirical Bayes
model. We shall consider three cases, for each of which we generate data sets consisting
of thrce observations on each of 200 students, attending a total of 20 schools (10 students,
or 30 observations, in each school). Note that for the purpose of the simulation study,
students will in fact remain in the same school over all three observation times, so that
b(ir) in (4.2.3) remains constant as ¢ varies. Hence in this case we can let Yi; represent
the tth observation on individual j in school k. This is a slight alteration of the notation
introduced in section 4.2.2 in that two subscripts are used to refer to an observation in a
given school, denoting the individual responding and the time point in question. Model
(4.2.3) can then be equivalently expressed as

Yise|Zaje,be ~ Bin(1,pe;:), where
Corr(Yeje, Yijerlbe) = pee,
log(;22—) = =z,;,8 +b,
b ~ N(0,0%), k=1,..K. (4.4.1)

It is only possible to express the model in this manner because of the present restriction
that students do not change schools over time. For the rest of this section it will be more
convenient and helpful to refer, not to the model as given in (4.2.3), but instead to its
equivalent restatement in (4.4.1).

The first case we consider is the simplest and models the response Yi;: as a function of
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time only. Thus, referring to (4.4.1), we have

los(lpi.—) = P1Ziju + PazZrjez + PaZijes + br,
= DPkjt

where

1 ift=r
Thjer = r= 1, 2, 3.
0 otherwise

The second case models Yi;; as a function of time as well as a dichotomous individual-
level covariate, assumed to be time-independent. We assume that half of the students in
each school belong to one group and half to the other. This simulates a variable indicating

gender, for example. Retaining zyje1, Zijez and zijs as above, and defining gi; as

1 if student j in school & is female
ki =
’ 0 otherwise

we have in this case

log(lp%) = B1Zrje1r + PaZrjez + BsZrjes + BeGi; + bi.
— Pije

(To be fully consistent with (4.4.1) we could think of the fourth covariate gi; as zpju,
constant across time.)

The third case models Yi;; as a function of time as well as a dichotomous school-
level covariate, also assumed to be time-independent. Here we assume that half of the
schools under study belong to one group and half to the other. This simulates a variable

indicating treatment condition, for example, where the intervention is applied at the level
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of the school. Defining g, as

1 if school k belongs to the treatment group
9k =
0 if school k& belongs to the control group

we have

108("'&"‘—') = P1Zrjer + Pazrjez + PBsZrjes + Pagr + br.

1 — prje
(As above we could think of gz as Zpj4, now constant across time and subjects within
schools.)

These data scenarios allow us to investigate the quasi empirical Bayes model for a
number of common study designs. Thus the second case could be interpreted as a trial
in which the data are clustered in schools but individuals are the units of randomization,
being assigned to either treatment or control within schools. Observe that this case could
also be interpreted as a matched pairs analysis. In each of 20 schools, we can think of
half of the students as belonging to a treatment group, and half to a control group. We
could equivalently view this as data on 40 schools, each half the size of the original 20, and
divided on the treatment variable. Each of the 20 distinct random effects associated with
the original school structure would now apply to exactly two of the new schools, creating
20 matched pairs of schools, with each pair containing one treatment and one control
school. (This type of design allows treatment comparisons between schools which are
largely unaffected by other known or unkown school-level covariates, due to the matching.
It would make sense with such a study design to postulate random effects not for individual
schools, but for the matched pairs of schools). Finally, as indicated above, the third case
reflects an (unmatched) cluster-randomization trial in which schools are randomized to
either a treatment or a control condition.

The actual data simulation is described in the Appendix at the end of this chapter. For

each of the three cases discussed, the same ‘true’ parameter values were used to generate
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the data. The fixed effects parameters were set to the following values:
B =-20 B2 = -1.0 Bs = 0.0 B¢ = 1.0.

This implies an increasing probability of response (Y = 1) with time, and the same ef-
fect size associated with the individual-level covariate as with the school-level covariate.

Since we are simulating data for three time points, we must specify three intra-individual

correlation parameters:

Corr(Yij1, Yajzlba) = p1a = 0.3
Corr(Yijz, Yejslbe) = pas = 04
Corr(Yiji, Yejalb) = p1s = 0.2

(Though not explicitly indicated, it is of course assumed that Corr(Yi;e, Yje|be) is condi-
tional not only on the random effect for school k, but also on the covariate vectors zi;
and z;). Emrich and Piedmonte (1991) point out that for correlated binary variables,
P is not free to vary over (-1,1), but must satisfy certain range restrictions to ensure that
the joint probability function for the responses is nonnegative for all outcomes (see also

Prentice (1988)). In particular, for given marginal probabilities p; and py, py must satisfy

In other words, p:+ must be less than or equal to the root of the smaller of the two odds
ratios that can be formed by p, and p;s, which is

P, P
/

if .
l1—p' 1—pe Pe > Pe
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(A similar lower bound can be placed on py, but this bound is strictly negative and
therefore not a concern in the present problem). It is easily verified that in all of the
models we consider, the probabilities for any given individual at times 1 and 2 differ by 1
on the logistic scale, from which it follows that

Similarly the probabilities for a given individual at times 2 and 3 differ by 1 on the logistic
scale, from which follows the similar restriction ps3 < 0.6065. Finally the probabilities for
an individual at times 1 and 3 differ by 2, so that

p13 < exp(—1) = 0.3679.

Hence (pi12,p23,p13) = (0.3,0.4,0.2) are all within the admissible range for the intra-

individual correlation parameters.

Finally, we assume a value of 0 = 2.0 for the random effects variance.

4.5 A Simulation Study

4.5.1 Results for Data With Covariates for Time Only

We initially simulated 300 data sets according to (4.4.1), modelling the response as a
function of indicator variables for time only.
Consider first some graphical summaries of the results. The figures referred to in this
and the following two subsections appear at the end of each respective subsection.
Plotted in figure 4.1 are the cumulative averages of the estimates of the fixed effects
parameters, across the 300 data sets. Specifically, if Beo is the estimate of B obtained from
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the vth simulated data set, the graph shows
Zov=1 P '3“' plotted against r, £=1,2,3, r=1,..,300.

Also plotted at regular intervals are points indicating one standard error above and below

the current estimate of the cumulative average. These standard errors were computed as

s.o(Zemt P Bun \J ZVM(ﬂm)

The variability in the cumulative average of the estimates diminishes as more estimates
enter the calculations. As a reference, horizontal lines are indicated at the true parameter
values (8; = —2, f2 = —1, B3 = 0). We see that the averages of all three estimates settle
somewhat higher than their true value, suggesting a slight bias.

Figure 4.2 shows similar plots for the intra-individual correlations. (Since no model-
based estimate of the variance of py is available, we used the sample standard error of
the cumulative average of the estimates to compute standard errors as above). We witness
considerable bias in the estimates of p12, p2s and p,s; in all cases they underestimate the
true value of the parameter. This however is not surprising. The true value of py is
conditional upon an unobserved set of random effects, whereas its estimate is computed
conditional on the estimates of these random effects. But the random effects estimates, in
adjusting for the overdispersion between schools, will in the process tend to adjust for some
of the correlation between observations on the same individual as well. Similarly, if we were
to ignore the clustering due to schools and estimate only fixed effects and intra-individual
correlations, we would expect the correlation estimates to be larger than nominal, since
these would then also be capturing some of the extraneous variability in the data due to

the cross-secticnol clustering. In the following two sections we shall see that this is indeed

the case.
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Figure 4.3 is a cumulative average plot of the random effects variance estimates. It
seems that o? somewhat underestimates the true value, although the bias is not severe.
Since for each simulated data set we first needed to generate a sample of random effects, we
actually know for such data the true values of the “unobserved” random effects. From these
an unbiased estimate of the true random effects variance (simply the sample variance) can
be computed for each data set. A scatterplot of these sample variances versus the quasi
empirical Bayes estimates is shown in figure 4.4. The 45 degree line through the origin
is supcrimposed for reference. The points appear to be scattered roughly about this line,
with the sample variances tending on average to be slightly larger than the corresponding
model estimates, as anticipated.

Finally, we consider normal probability plots for the fixed effects parameter estimates.
These are displayed in figure 4.5. The pronounced linear pattern in each of these plots
validates the assumption of asymptotic normality for the estimates and hence justifies the
use of standard normal confidence intervals.

Table 4.1 gives a numerical summary of the results. Shown are the averages of the
parameter estimates across the 300 data sets, the averages of the “naive” or model-based
standard errors, computed from 1.5}33, as well as those of the robust standard errors, com-
puted from f5 5. For comparison, the sample standard errors of the parameter estimates
across all data sets are also included. Note that the robust standard errors are only slightly
larger on average than the model-based ones; (the same will be observed in the next two
sections and is pursued further there). This is not surprising, as it turns out that the pa-
rameter estimates from the quasi empirical Bayes model tend not to be sensitive to small
changes in the prior variance on which they are conditioned (see sections 4.5.2 and 4.5.3).
Both the model-based and the robust standard errors seem to underestimate the true
variability in the parameter estimates, as a comparison with the sample standard errors
indicates. The discrepancy is not large, however; observe also the similarity between the

mean of the robust standard error estimate for 02 and the corresponding sample standard
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Par. True Mean Mean Mean Sample

Value Est. s.e.(N) s.e(R) 8.€.
51 -2.0 -1.9320 3718 3764 3913
B2 -1.0 -0.9314 3484 .3506 3672
Bs 0.0 0.0538 3414 .3422 .3616
p1a 0.3  0.2163 -- -- 0802
P23 04  0.3154 -- -~ .0681
P13 0.2 0.1358 -- -- .0627
o? 2.0 1.8554 - - 7797 .8392

Table 4.1: Numerical results of model fitting to simulated data, assuming covariates for
time only.

€ITor.

In tables 4.2 and 4.3 we consider confidence intervals for the fixed effects parameter
estimates and investigate the empirical coverage rates for intervals of varying sizes. Table
4.2 reports coverage rates for the model-based confidence intervals. The entries in this
table correspond to the number of datasets (out of 300) for which the true parameter value
was included in the interval # + A s.e.y(ﬁ), where Z, is the appropriate normal quantile,
and the standard error is the model-based one for the particular estimate 3. The values
in brackets express the coverage as a percentage. Table 4.3 reports coverage rates for the
corresponding robust intervals B + Z, - s.e.p(f). Neither the model-based nor the robust
confidence intervals fully achieve the nominal coverage, though they are quite close. The
robust intervals improve somewhat on the model-based ones. In interpreting such empirical
coverage rates one must also keep in mind the magnitude of the error to be expected, due

to performing only a finite number of simulations. For tables 4.2 and 4.3, computing the

standard deviation of the estimate p, of a nominal coverage rate p, as \/pa(l - Pa)/300,

we find that most of the observed coverage rates lie within 3 standard deviations of the
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Nominal

Coverage B Ba Bs
99 % 297 (0.990) 294 (0.980) 290 (0.967)
98 % 295 (0.983) 288 (0.960) 287 (0.957)
95 % 278 (0.927) 277 (0.923) 275 (0.917)
90 % 259 (0.863) 253 (0.843) 253 (0.843)
80 % 230 (0.767) 228 (0.760) 228 (0.760)

Table 4.2: Coverage rates for model-based confidence intervals, assuming covariates for
time only.

Nominal

Coverage B Ba Ba
99 % 297 (0.990) 294 (0.980) 290 (0.967)
98 % 296 (0.987) 290 (0.967) 289 (0.963)
95 % 278 (0.927) 278 (0.927) 275 (0.917)
90 % 259 (0.863) 253 (0.843) 254 (0.847)
80 % 231 (0.770) 228 (0.760) 228 (0.760)

Table 4.3: Coverage rates for robust confidence intervals, assuming covariates for time only.

corresponding nominal value. In the analogous tables in sections 4.5.2 and 4.5.3, they all
lie within this range of the nominal value. (Using p, 3 3s.d.(p,) as a plausible range for
an estimate of p, relies on the normal approximation to the binomial, which is reasonable
as long as the smaller of np, and ng, is greater than 5, where n is the sample size and
ga = 1 — po. This condition is satisfied for most coverage rates given in tables 4.2 and 4.3
and in analogous tables in the subsequent sections).

A similar but more extensive examination of the performance of the quasi empirical
Bayes model is given in the next two sections, where we fit the model to data with either an

individual or a cluster-level covariate, and compare the results to those of other analyses.
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Cumulative Averages for 3;, B and Bs
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Figure 4.1: Cumulative averages of fixed effects parameter estimates (3;, f2, Bs), assuming

covariates for time only; points indicate +1 std. error.
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Cumulative Averages for pis, po3 and pi3
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Figure 4.2: Cumulative averages of intra-individual correlation estimates (pia, ps, p1s),

assuming covariates for time only; points indicate +1 std. error.
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Cumulative Average for o2

< -
-
o = |
- o~
-
>
-
- m"‘
=
-
R
E o
>
o
=
=
T T T T T T 4
o so 100 180 200 280 300
Data Set

Figurc 4.3: Cumulative average of prior variance estimates (0'2), assuming covariates for

time only; points indicate +1 std. error.

QEB Estimates of 02 vs Sample Variances
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Figure 4.4: QEB Estimates of the random effects variance versus sample variances of the

(simulated) random effects, assuming covariates for time only.



CHAPTER 4. SIMULTANEOUS MODELLING 85

Normal Probability Plots for £;, B and Ba
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Figure 4.5: Normal probability plots for fixed effects parameter estimates (B;, B2 and fs),

assuming covariates for time only.
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4.5.2 Results for Data With an Individual-Level Covariate

We ncxt simulated 300 data sets according to (4.4.1), modelling the response as a function
of indicators for time, as well as an individual-level covariate (see the description in section
A 2 of the Appendix to this chapter).

As in the previous section, figure 4.6 shows plots of the cumulative averages of the
estimates of the fixed effects parameters across the 300 data sets. Here we do not observe
the cumulative averages to be consistently larger or smaller than the true parameter va-
lues, and for none of the parameters does the overall mean of the estimates appear to be
significantly different from the true value. The bias in the fixed effects parameter estimates
therefore seems to be negligible.

Considering similar plots for the intra-individual correlations (see figure 4.7), we make
the same observations as before. The estimates of P12, P23 and p;3 underestimate the true
values of the correlation parameters.

Figure 4.8 shows the cumulative average plot of the random effects variance estimates.
As before it appears that o2 slightly underestimates the true value, but this bias seems
insignificant. A scatterplot of sample variances versus the quasi empirical Bayes estimates
is given in figure 4.9.

The normal plots for the fixed effects parameters are displayed in figure 4.10. Again
we detect no significant departure from linearity in any of the graphs.

Table 4.4 gives a numerical summary of the results for this set of simulations, similar
to that in table 4.1. As seen from the graphs referred to above, the fixed effects parame-
ter estimates seem to be virtually unbiased. Note that here the model-based, robust and
sample standard errors are all roughly the same size, so that confidence interval coverage
properties can be expected to be quite good. In table 4.5 we give the empirical coverage
rates for A1, Bz, s and Bs, for model-based confidence intervals; in table 4.6 coverages for
the corresponding robust intervals are given. Indeed the results in both cases are auspi-
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Par. True Mean Mean Mean Sample

Value Est. se(N) s.e.(R) 8.e.
B -2.0 -1.9873 .3949 .3989 3957
B2 -1.0 -1.0065 3765 .3780 .3804
Ba 0.0 -0.0227 3702 .3705 3712
B 1.0 0.9997 .2456 2474 .2662
P12 0.3 0.2233 -- -- .0817
P23 0.4 0.3134 -- -- .0738
P13 0.2 0.1379 -- -- .0648
o? 2.0 1.9381 -- .7931 .7635

Table 4.4: Numerical results of model fitting to simulated data, assuming inclusion of an
individual-level covariate.

cious; the nominal coverage rates are almost attained, especially by the robust confidence
intervals.

We now examine the fit of the quasi empirical Bayes model more closely for several
particular cases. Out of the 300 simulated data sets consider specifically the five data sets
giving estimates of the prior variance o? corresponding to the largest and smallest of the
300, the endpoints of the interquartile range and the median. We first wish to investigate
the sensitivity of the results to changes in the value of o2. For this purpose we computed for
each of these five data sets the standard error of 02 = a‘:’Q g8 (on the basis of I3p), and refit
the model twice, taking (J’ —s.e.(0?)) and (c;2 +s.e.(0?)) in turn as the ‘true’ fixed value
of the random effects variance. (Note that this refitting should not be referred to as quasi
empirical Bayes, since no updating of the variance parameter is involved). The results are
tabulated in table 4.7. For g2 = 0.508, 1.383, 1.782, 2.429 and 4.385 the estimates of £,
P2, B3 and B, are shown, along with their (model-based) standard errors, assuming that

0? = g2 —s.e.(d?), 0 = o2 and 0? = 02 +s.e.(03). Given the relative insensitivity of the
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Nominal

Coverage B Ba Bs Be
99 % 298 (0.993) 294 (0.980) 298 (0.993) 296 (0.987)
98 % 293 (0.977) 292 (0.973) 294 (0.980) 291 (0.970)
95 % 282 (0.940) 276 (0.920) 283 (0.943) 281 (0.937)
90 % 269 (0.897) 267 (0.890) 267 (0.890) 257 (0.857)
80 % 242 (0.807) 245 (0.817) 236 (0.787) 229 (0.763)

Table 4.5: Coverage rates for model-based confidence intervals, assuming inclusion of an

individual-level covariate.

88

Nominal

Coverage By B2 Bs Ba
99 % 298 (0.993) 294 (0.980) 298 (0.993) 296 (0.987)
98 % 293 (0.977) 292 (0.973) 294 (0.980) 292 (0.973)
95 % 283 (0.943) 278 (0.927) 284 (0.947) 282 (0.940)
90 % 269 (0.897) 267 (0.890) 267 (0.890) 260 (0.867)
80 % 246 (0.820) 245 (0.817) 235 (0.783) 229 (0.763)

Table 4.6: Coverage rates for robust confidence intervals, assuming inclusion of an
individual-level covariate.

estimates of B to even substantial changes in o2, as seen in tabie 4.7, it makes sense that
the robust standard errors for these parameters, taking into account the variability due to
the fact that 0% has to be estimated, are only marginally larger than the ones from the
model.

Consider now a comparison of the quasi empirical Bayes model with three other models,
each a special case of this more general model: to each of the five data sets described
above we fit a standard logistic model, a standard logistic-normal empirical Bayes model
addressing the cross-sectional clustering but not the longitudinal component, a GEE model
accomodating the longitudinal nature of the data but not the cross-sectional, and finally
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8.e. 8.e. 8.e. 8.e.

o? B B B b B) (B) (B) (B
o2 —se.(0?) 0102  -1.865 -1.057 -0.058 0.579  .243 .214 .200 .239
a? 0.508  -1.963 -1.123 -0.064 0.606  .289 .263 .251 .242

o2 +se(c?) 0914  -2.007 -1.155 -0.072 0.620  .322 .299 .289 .245

s.e.(0?) : 0.406

o‘iz - s.e.(a‘z) 0.756 -1.637 -0.827 0.175 0.812 298 .282 .276 .241
o2 ) 1.383 -1.702 -0.858 0.181 0.854 351 336 .331 .247
a2 +s.e.(c?) 2.006 -1.736 -0.875 0.184 0.876 395 .382 .376 .251

se.(0?) :  0.623

o2 —s.e.(02) 1.034  -2.268 -1.486 -0.537 1.228 339 319 .306 .244
o2 1.782  -2.363 -1.556 -0.571 1.278 396 .377 .365 .250
0% +se(s?) 2531  -2.418 -1.598 -0.592 1.305 444 427 415 253

s.e.(0?) : 0.748
g% —s.e.(0?) 1.440  -1.512 -0.532 0.385 0.678 351 .339 339 .244
o? . 2.429 -1.582 -0.571 0.380 0.711 420 .409 .410 .250
o2 +s.e.(0?) 3.418 -1.622 -0.595 0.375 0.730 478 .468 .468 .253
se.(0?) :  0.989
a2 — s.e.(atz) 2.869 -1.906 -1.038 0.164 1.236 461 449 442 .263
a2 . 4.385 -1.975 -1.072 0.171 1.292 542 .531 .523 .271
o2 +s.e.(0?) 5.900 -2.015 -1.091 0.176 1.325 .611 .600 .593 .276
s.e.(0?) : 1.515

Table 4.7: Sensitivity of fixed effects estimates and standard errors to the prior variance
o?, assuming inclusion of an individual-level covariate; (each horizontal panel corresponds
to one data set).
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the composite quasi empirical Bayes model. The results are shown in table 4.8.

The (standard) empirical Bayes model improves on the logistic in that it more accu-
rately reflects the variability in the estimates of the intercept parameters 8,, f2 and Ss;
as the variance of the random effects (i.e. the overdispersion between schools) increases,
so does the variance of these estimates, as one might expect. However this model does
not show a substantial inflation in the variance of the estimate of ¢, the parameter for
the individual-level covariate, as compared to the logistic fit. This is due to the fact that
standard empirical Bayes neglects to account for the intra-individual correlations. Note
also that since the estimation of B4 is confined to comparisons between individuals within
schools, its variability is largely unaffected by the size of o2.

In contrast, the GEE model improves on the logistic in that by estimating the intra-
individual correlations, it more accurately reflects the variability in ,34, as one would antici-
pate for an individual-level covariate. The increase in the standard error for this parameter
over that estimated from the logistic model is roughly constant over the given range of o2.
The drawback with GEE is the fact that because it ignores the cross-sectional overdisper-
sion, the standard errors of Bl, Bz and Bs are in each case understated (roughly in keeping
with the estimates of the logistic model).

The quasi empirical Bayes model is the only one which properly adjusts for both forms
of clustering in the data. The nominal standard errors of the time parameter estimates are
duly inflated, as in the empirical Bayes fit, and that of the estimate for the individual-level
covariate is also adjusted, as in the GEE fit.

Note also that those approaches ignoring the presence of random effects (the logistic and
GEE models) produce coefficient estimates which are attenuated from the ones given by
the empirical or quasi empirical Bayes fits. These purely population-averaged approaches
effectively average over the random effects distribution in computing parameter estimates.
The resulting attenuation factor on the coefficients, comparing with the estimates from a

cluster-specific model, depends on the random effects variance and approximately equals
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MODELS:
Par. Logistic EB GEE QEB
B -1.821 (.214)  -1.974 (.286) -1.835 (.234) -1.963  (.292)
B2 -1.024 (.182)  -1.123 (.259) -1.039 (.203) -1.123  (.264)
B -0.0543 (.169)  -0.0625 (.247) -0.0671 (.189)  -0.0636 (.249)
Ba 0.559 (.183) 0.605 (.191) 0.577 (.246) 0.606 (.242)
p12 0.432 0.381
P23 0.486 0.397
P13 0.283 0.209
a? 0.590 (.315) 0.508 (.406)
B -1.385 (.191)  -1.724 (.361) -1.385 (.213) -1.702  (.353)
B2 -0.712 (.173)  -0.871 (.346) -0.712  (.195) -0.858 (.337)
B 0.122 (.168) 0.180 (.340) 0.122 (.189) 0.181 (.330)
B 0.675 (.175) 0.851 (.200) 0.676 (.247) 0.854 (.249)
P12 0.530 0.333
P23 0.537 0.373
P13 0.405 0.255
a? 1.596 (.624) 1.383 (.623)
5 -1.849 (.211)  -2.438 (.411) -1.805 (.228) -2.363  (.402)
B2 -1.216 (.187)  -1.624 (.390) -1.174  (.207) -1.556 (.381)
B -0.467 (.172)  -0.625 (.376) -0.428 (.193) -0.571 (.366)
Ba 1.020 (.184) 1.338 (.218) 0.991 (.248) 1.278 (.252)
P12 0.389 0.193
p23 0.492 0.221
p13 0.429 0.228
a? 2.007 (.774) 1.782 (.748)
£ -1.149 (.183)  -1.621 (.426) -1.135  (.204) -1.582 (.422)
B2 -0.385 (.168)  -0.615 (.415) -0.368 (.190) -0.571 (.410)
B 0.300 (.168) 0.349 (.415) 0.316 (.190) 0.380 (.409)
Ba 0.526 (.172) 0.718 (.203) 0.514 (.246) 0.711 (.251)
p12 0.542 0.297
P23 0.576 0.372
p13 0.429 0.197
a? 2.598 (.977) 2.429 (.989)

(continuzed)

91
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MODELS: T

Par. Logistic EB GEE QEB

Je X -1.171 (.183) -1.963 (.545) -1.166 (.207) -1.975 (.544)
Ba -0.660 (.171) -1.055 (.532)  -0.655 (.195) -1.072  (.531)
B 0.0505 (.167) 0.180 (.525) 0.0562 (.190) 0.172  (.523)
Ba 0.738 (.172) 1.289  (.239) 0.730 (.251) 1.292  (.274)
P12 0.601 0.164

P23 0.601 0.233

p13 0.462 0.153

a2 4488 (1.502) 4.385 (1.515)

Table 4.8: Comparison of the QEB model with the logistic, empirical Bayes (EB), and GEE
fits, assuming inclusion of an individual-level covariate; (standard errors are indicated in
brackets - each horizontal panel corresponds to one data set).

(1+ *a?)~Y/2, where ¢ = 16/3/15x; see section 3.5.6 and equation (3.5.23). Observe that
the quasi empirical Bayes model is neither purely a population-averaged, nor an entirely
cluster-specific approach. It has a population-averaged interpretation insofar as it models
in a marginal sense the repeated observations on individuals within schools, and a cluster-
specific interpretation insofar as it conditions on random effects for schools.

In the previous section we gave a brief justification of why the intra-individual cor-
relations, as estimated from the quasi empirical Bayes model, will tend to somewhat
underestimate the true values of these parameters. If we consider the GEE correlation
estimates given in table 4.8, however, we see that these seem to overstate the correlations.
As indicated, this is due to some of the extraneous variability from the cross-sectional
overdispersion being captured in jy/. As a consequence, neither the QEB nor the GEE
estimates of correlation are unbiased, but note that the former at least are conditioned on
estimates of the school random effects, whereas the latter are not. The QEB estimates

will therefore give a better indication of the true values of the conditional correlations
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COIT()’];,}, l’kjgllbk) = P’ than the GEE estimates.
In the next section we consider one more set of simulations, to investigate the perfor-

mancc of the quasi empirical Bayes model on data with a cluster-level covariate.
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Cumulative Averages for 3, Ba, B3 and B4
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Figure 4.6: Cumulative averages of estimates Bl, Bz, ,33, ﬁ4, assuming inclusion of an

individual-level covariate; points indicate +1 std. error.
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Cumulative Averages for p;2, p23 and py3
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Figure 4.7: Cumulative averages of correlation estimates pi2, p2s, p1s, assuming inclusion

of an individual-level covariate; points indicate £1 std. error.
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Cumulative Average for o2
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Figurc 4.8: Cumulative average of variance estimates o2, assuming inclusion of an

individual-level covariate; points indicate +1 std. error.
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Figure 4.9: QEB Estimates of o2 versus sample variances of the (simulated) random effects,

assuming inclusion of an individual-level covariate.
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Figure 4.10: Normal probability plots for estimates B;, Bg, ,éa and 34, assuming inclusion

of an individual-level covariate.
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4.5.3 Results for Data With a Cluster-Level Covariate

We simulated 300 data sets according to (4.4.1), modelling the response as a fanction of
indicators for time, as well as a cluster- or school-level covariate (see the description in
section A 3 of the Appendix to this chapter).

Figure 4.11 shows plots of the cumulative averages of the estimates of the fixed effects
parameters across the 300 data sets. The intercept parameter estimates are again slightly
larger on average than the true parameter values, whereas the coefficient for the cluster-level
covariate is somewhat underestimated. The intra-individual correlation estimates behave
as in the previous two sections (see figure 4.12). Considering the cumulative average plot of
the random effects variance estimates (figure 4.13), these estimates seem to settle exactly
at the true value of the prior variance. The scatterplot of sample variances versus the quasi
empirical Bayes estimates suggests, as in the previous two sections, that o? underestimates
o? for smaller values of the prior variance, but overestimates o2 for larger values. Here a

balance seems to have been achieved, in view of the average of the 300 estimates.

Par. True Mean Mean Mean Sample

Value Est. s.e.(N) s.e.(R) s.e.
B -2.0 -1.9158 .5059 .5089 .4961
B2 -1.0 -0.9261 .4927 .4939 4871
B 0.0 0.0682 .4884 .4887 4638
Ba 1.0 0.9216 .6719 .6729 .6948
P12 0.3 0.2260 -- -- 0771
P23 0.4 0.3187 -- -- 0760
pra 0.2  0.1416 -- -~ .0655
o? 2.0 1.9947 -- .8292 .7961

Table 4.9: Numerical results of model fitting to simulated data, assuming inclusion of a
cluster-level covariate.
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Table 4.9 gives a numerical summary of the results for this set of simulations, similar to
those in the previous two sections. Curiously the sample standard errors for the intercept
parameters (3, f, and B3 turned out to be slightly smaller than the means of the model-
based and robust standard errors, whereas the sample standard error for B¢ is larger.
Comparing robust and sample standard errors for o2, we find that they agree fairly well,
as in the previous two sections.

In table 4.10 we give the empirical coverage rates for Bl, Bg, Bs and ,[§4, for model-
based confidence intervals; in table 4.11 coverages for the corresponding robust intervals
are given. As expected, the coverage rates for B, Bg and B are excellent; however they
are a bit understated for 3. The robust intervals closely resemble the model-based ones.

As in the last section we next examine the fit of the quasi empirical Bayes model
more closely for the five specific data sets yielding the smallest and largest estimates of
o?, and the estimates delimiting the interquartile range and the median. In table 4.12
the sensitivity of the results to changes in the value of o2 is investigated, in the same
manner as in table 4.7. The sample of random effects variance estimates in this case was
{0.477,1.379,1.930,2.446,4.479}. Again we observe that whereas the standard errors of
the parameter estimates do increase or decrease fairly substantially according to changes in
the value of o2, the point estimates themselves, in comparison, remain relatively insensitive
to such changes.

As before, consider now a comparison of the quasi empirical Bayes model including a
cluster-level covariate with the standard logistic, empirical Bayes and GEE models. Refer-
ring to table 4.13, we note the similarity in point estimates and standard errors between the
empirical Bayes and the quasi empirical Bayes analyses. Here the standard error of f3; is a
function of the size of the random effects variance, and increases with larger values of o2.
One would expect to see such behaviour, bearing in mind that 8, is now the coefficient of a
cluster-level covariate (i.e. the effect of this covariate is estimated in terms of a comparison

between schools, and is therefore sensitive to cross-sectional overdispersion). The estimate
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Nominal . X X
Coverage B B2 Bs Ba
99 % 297 (0.990) 299 (0.997) 297 (0.990) 294 (0.980)
98 % 293 (0.977) 295 (0.983) 295 (0.983) 291 (0.970)
95 % 281 (0.937) 283 (0.943) 289 (0.963) 277 (0.923)
90 % 270 (0.900) 267 (0.890) 274 (0.913) 260 (0.867)
80 % 238 (0.793) 229 (0.763) 241 (0.803) 224 (0.747)

Table 4.10: Coverage rates for model-based confidence intervals, assuming inclusion of a
cluster-level covariate.

Nominal

Coverage B B2 Bs B
99 % 297 (0.990) 299 (0.997) 297 (0.990) 294 (0.980)
98 % 293 (0.977) 295 (0.983) 295 (0.983) 292 (0.973)
95 % 283 (0.943) 284 (0.947) 289 (0.963) 277 (0.923)
90 % 270 (0.900) 266 (0.887) 274 (0.913) 260 (0.867)
80 % 238 (0.793) 229 (0.763) 241 (0.803) 224 (0.747)

Table 4.11: Coverage rates for robust confidence intervals, assuming inclusion of a cluster-
level covariate.

of 02 and its standard error are also similar in the empirical Bayes and quasi empirical
Bayes models. The similarity of these two analyses implies that if interest is only focussed
on the parameters in the mean specification of model (4.4.1) and not the intra-individual
correlations, and provided that only cluster-level covariates are to be investigated, then a
standard empirical Bayes model can be applied to estimate the parameters (3, 02) from
(4.4.1); the point estimates and their standard errors will closely reflect those from the
quasi empirical Bayes model. This fact may be of advantage, since the empirical Bayes
model is conceptually simpler than the quasi empirical Bayes, and also considerably easier

to fit in a computational sense.
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. . s:e. 8..8. 8‘:8. B:C.

o? b B2 B Ba (B1) (B2) (Bs) (Ba)

o? —s.e(o?) 0.141 -1.486 -0.667 0.142 0.350 241 221 216 .276
o2 0.477 -1.546 -0.697 0.151 0.360 308 201 .288 .383

o? +se.(0?) 0814  -1.575 -0.712 0.152 0.366 358 .343 .340 .460

se.(0?) :  0.337

o2 —se.(o?) 0728  -2.203 -1.026 0.024 1.742  .364 .34 .338 .456
o2 1379 2317 -1107 -0.010 1.835 451 434 428 586
o2 +se.(0?) 2029  -2.383 -1.159 -0.036 1.891  .522 .507 .502 .691

s.e.(e;z) : 0.651

02 —se(o?) 1125  -2.225 -1.077 -0.305 1.540 419 402 .395 .538
a2 ) 1.930  -2.342 -1.151 -0.345 1.643  .511 .497 .490 .676
o2 +se.(02) 2734  -2.415 -1.200 -0.375 1.712  .587 .575 .569 .789

se.(o?) :  0.804

g2 —se.(0?) 1463  -2.311 -1.310 -0.283 1.583 463 .447 441 509
o2 2446 2425 -1.395 -0.330 1.666  .566 .553 .547 .750
o2 +se(o?) 3430  -2.496 -1.451 -0.366 1.721  .652 .640 .635 .875

se.(0?) : 0984

g2 -se(0?) 2906  -2.927 -1.540 -0.575 2.313  .625 .598 .590 .816
o2 4479  -3.038 -1.589 -0.597 2.429  .747 .722 .715 .996
o? +se(c?) 6052  -3.105 -1.621 -0.614 2.504  .850 .827 .820 1.147

se(0?) : 1573

Table 4.12: Sensitivity of fixed effects estimates and standard errors to the prior variance
o2, assuming inclusion of a cluster-level covariate; (each horizontal panel corresponds to
one data set).
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MODELS:

Par. Logistic E B GEE QEB

B -1.443 (.196)  -1.561 (.317)  -1.450 (.212) -1.546  (.308)
Bz -0.641 (.172)  -0.692 (.300) -0.650 (.188) -0.697 (.289)
Bs 0.135 (.167) 0.156  (.297)  0.127 (.183) 0.151 (.285)
Ba 0.338 (.176) 0.361 (.386)  0.346 (.228) 0.360 (.379)
P12 0.285 0.184

P23 0.472 0.366

P13 0.233 0.134

o3 0.574  (.295) 0.477 (.337)
B -1.883 (.212)  -2.357 (.469) -1.892 (.233) -2.317 (.457)
B -0.824 (.181)  -1.116 (.452) -0.834 (.200) -1.107  (.438)
Bz 0.0525 (.174) -0.0283  (.446) 0.0515 (.190) -0.00992 (.429)
Ba 1.511 (.191) 1.805 (.603)  1.508 (.255) 1.835 (.590)
P12 0.452 0.372

P23 0.480 0.266

P13 0.255 0.103

o2 1.546  (.653) 1.379 (.651)
B -L712  (.203)  -2.217  (.502) -1.729 (.226) -2.342  (.514)
B -0.802 (.176)  -1.031 (.486)  -0.821 (.199) -1.151 (.498)
Bs -0.211 (.170)  -0.251  (.481)  -0.225 (.191) -0.345 (.491)
Ba 1.168 (.180) 1.529 (.656)  1.174 (.249) 1.643 (.678)
P12 0.433 0.335

P23 0.529 0.251

P13 0.351 0.228

o? 1.900 (.736) 1.930 (.804)
By -1.750 (.204)  -2.490 (.593) -1.761 (.228) -2.425 (.573)
Bz -0.967 (.180)  -1.440 (.579) -0.982 (.203) -1.395 (.557)
Bs -0.215 (.171)  -0.372 (.572) -0.230 (.192) -0.330 (.549)
Ba 1.227 (.182) 1731 (.780)  1.235 (.251) 1.666 (.753)
p1z 0.386 0.118

P23 0.587 0.270

P13 0.351 0.135

o2 2.713  (1.031) 2.446 (.984)

(continued)
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MODELS:

Par. Logistic EB GEE QEB

By -1.911 (211) -3.082 (.757) -1.876 (.233)  -3.038  (.752)
Ba -1.126 (.186) -1.631 (.730) -1.082 (.208)  -1.589  (.723)
Bs -0.506 (.174) -0.630 (.721) -0.470 (.195)  -0.597  (.715)
Ba 1.469 (.186) 2.486 (1.007) 1.436 (.257) 2.429 (1.000)
P12 0.515 0.0471

p23 0.573 0.186

P13 0.358 -0.0254

o2 4.582 (1.586) 4479 (1.573)

Table 4.13: Comparison of the QEB model with the logistic, empirical Bayes (EB), and
GEE fits, assuming inclusion of a cluster-level covariate; (standard errors are indicated in
brackets - each horizontal panel corresponds to one data set).

Examining the standard error of B¢ for the GEE analyses, we observe that it seems
to be inflated from that given by the logistic model, though not to the same extent as
in the standard or quasi empirical Bayes models. Again, the variability in the parameter
estimate of a cluster-level covariate is driven by the size of the random effects variance
and not the intra-individual correlations, whereas that of the estimate of an individual-
level covariate is largely determined by the intra-individual correlations, not the size of
o?. Therefore the standard error for B, given by GEE is approximately correct for the
analyses presented in table 4.8, but not for those in table 4.13. Note however that no
similar implication as set forth in the last paragraph holds for the GEE approach, with
reference to individual-level covariates. In other words, even if interest is focussed only
on individual-level covariates, GEE alone cannot be used to estimate (3, p) from model
(4.4.1), since this approach estimates neither the correct (cluster-specific) coefficients 3, nor
the appropriate conditional intra-individual correlations; see the discussion in the previous

section. (On this final point consider for example the (albeit extreme) case of the fit of the
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last data set in table 4.13, and note the large discrepancy in the correlation estimates).
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Cumulative Averages for ﬂ}, Bg, ﬁ3 and ,34
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Figure 4.11: Cumulative averages of estimates B, Ba, Bs, Ba, assuming inclusion of a

cluster-level covariate; points indicate +1 std. error.
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Cumulative Averages for p12, g3 and pi3
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Figure 4.12: Cumulative averages of correlation estimates jy2, 23, p13, assuming inclusion

of a cluster-level covaﬁate; points indicate +1 std. error.
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Cumulative Average for o2
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Figure 4.13: Cumulative average of variance estimates o2, assuming inclusion of a cluster-

level covariate; points indicate £1 std. error.

QEB Estimates of 02 vs Sample Variances
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Figure 4.14: QEB Estimates of o? versus sample variances of the (simulated) random

effects, assuming inclusion of a cluster-level covariate.
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Figure 4.15: Normal probability plots for estimates f;, s, Bs and fq, assuming inclusion

of a cluster-level covariate.
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4.6 Discussion

The composite quasi empirical Bayes model described in this chapter combines empirical
Bayes methods and GEEs in a useful and relatively straightforward manner. It allows the
modelling of more complicated correlation structures than either technique can reasonably
support on its own, and can thus provide an analysis which better accomodates complex
study or sampling designs such as that of the WSPP3.

We developed a robust covariance matrix for the fixed and random effects estimates
from this model, adjusted for the fact that the prior variance ¢, on which these esti-
mates are conditioned, is not known but estimated empirically. This also allowed us to
obtain an explicit estimate of the variability in o2, which was previously not available. We
hence described the simulation of data sets with a specified composite correlation stucture
and various covariate patterns; these were then used to study the properties of the quasi
empirical Bayes model.

It is interesting to note that somewhat better results, in terms of apparent unbiasedness
of fixed effects estimates and confidence interval coverage properties, were observed for the
data sets in section 4.5.2 which included an individual-level covariate, than in either sections
4.5.1 or 4.5.3. The reason for this phenomenon is unclear and deserves further study. At
any rate, the bias in the fixed effects parameter estimates from the quasi empirical Bayes
model does not appear to be severe. Neuhaus and Segal (1997) examine the performance
of two approximate maximum likelihood estimators in the generalized linear mixed model
framework. One is based on a second order Taylor series expansion of the integrated
likelihood (3.6.3) about b = 0, where b denotes the vector of random effects (see for
example Longford (1994)), whereas the other is based on Breslow and Clayton’s (1993)
penalized quasi-likelihood (PQL) approach. Using this method the integrand for each
cluster in (3.6.3) is approximated with a first order Taylor series expansion about the value
b; which maximizes the integrand, and is then integrated analytically. Neuhaus and Segal’s
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findings suggest that the estimates obtained from these approaches are attenuated from the
actual cluster-specific maximum likelihood estimates, more closely resembling population-
averaged estimates. The authors show that in some cases this bias can be severe. For the
PQL approach specifically, they show that parameter estimates will be close to population-
averaged estimates if the estimated random effects variance is severely attenuated, which
is common in PQL estimation. The quasi empirical Bayes approach advanced here is
more similar to penalized quasi-likelihood than to the Taylor approximation method of
Longford (1994). The empirical estimation of o however seems to provide only slightly
biased estimates of the random effects variance, suggesting that the bias in the fixed effects
parameter estimates should be less severe than one might expect from PQL. Of course one
must bear in mind that quasi empirical Bayes estimation also adjusts for intra-individual
correlation using a GEE approach, conditional on the cluster-level random effects. One
should investigate further the impact on the bias of estimated covariate effects of this
superimposed marginal method of accounting for the longitudinal dependence in the data.
It would be of interest for instance to study model estimates as the degree of intra-individual
correlation varies, given a fixed value of o2. Finally, we point out that the difference between
population-averaged and cluster-specific parameter estimates is generally less dramatic
than the examples in Neuhaus and Segal suggest. The authors discuss applications to
matched pairs data and trachomal eye disease data, wherein clusters are of size 2 and the
random effects variance in each case is very large. In studies such as the WSPP3, in which
clusters contain many observations, the random effects variance is typically much smaller,
and population-averaged and cluster-specific estimates tend to be more similar.

As a cautionary note, we must bear in mind that the results presented in section 4.5
were based on the assumption that students remain in the same school over time. In
practice this assumption may be violated and we pointed out that an advantage of the
quasi empirical Bayes model is its flexibility in allowing individuals to change schools over

time. If a substantial number of such switches occur, or there is a systematic change
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affecting all individuals at a given time point (such as the transition from elementary to
highschools after grade 8), the results have to be interpreted more carefully in view of this.

Further discussion is deferred to Chapter 7, where we shall consider applications of the
quasi empirical Bayes model in modelling the WSPP3 data.

4.7 Appendix

Here we describe the actual data simulation discussed in section 4.4. The following three
subsections outline the generation of data with covariates for time only, with covariates
for time plus an individual-level covariate, and with covariates for time plus a cluster-
level covariate. Recall that the parameter values used were (B4, 02,83, 8:s) = (-2, -1,0,1),
(P12, P23, p13) = (0.3,0.4,0.2), and o2 = 2.

A 1 Generating Data With Covariates for Time Only

The aim here is to generate data from model (4.4.1) where the only covariates are indicators

for time. The marginal probabilities

e—z+bl e-1+bh ebk
kil = T———37%C kj2 = T Tope ki3 =
Pl = T e PH2= T oomm PERS T0h

must be recovered while ensuring that py3 = 0.3, p23 = 0.4 and p;5 = 0.2.
Consider the first two time points. Begin by generating a sample of 20 independent

observations from N(0,5?), using these as the random effects by, ..., b0. Noting that
Yej1 ~ Bin(l,pei1), j=1,..,10, k=1,...,20,

generating the 200 observations for ¢ = 1 is trivial. Correlation between observations on

the same individual at times 1 and 2 is introduced by postulating a conditional probability
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of response at time 2 given the outcome at time 1. Let

eSntnavnji+be
P(Yijz = 1Yej = yein, be) = Pei(la M) = T —mmmnse (4.7.1)

We require that

E(Yaj Yija[be) — PrsaPriz _ 4
V/Prir (L = Pusi)prsa(1 — prsa)

p12 = Corr(Yij1, Yeja|bi) =

Now

E(Yij Yijelbe) = P(Yej =1,Y2 = 1{b)

P(Yijz = 1|Yaj = 1,b) P(Yijn = 1{bs)
eSatriths e—2th
1 + efstmthe X 14 e-2t5"

Therefore £ and <; must satisfy the following equation:

eé&"""i"’bl e—2+b. e-2+b§ e—-1+b.
1+ elatntds 1 4 e2+bs 1 4 -2tk | 4 e-1+h

= 03. (4.7.2)

’ e—2+bs e—1+b 1/2
o e-1+b~)=)

At the same time we must ensure P(Yijz = 1|b) = pijz = e 1% /(1 + e~1t5); observe

that

P(Yijz =1lb) = P(Yijz =1|Yij =1,b)P(Yaju = 1[bs) +
P(Yij2 = 1|Y;1 = 0, ) P(Yiej1 = Olbr).
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Hence & and 4 must also satisfy the equation

ebrtrthe e—2+b P igal 1 e—1+b

TF it T1e it | 14eath 1fei  Ite i (4.7.3)

Therefore, for each random effect by (each school) we obtain two equations in two unknowns
which can be readily solved for £ and ;. Having obtained these values, equation (4.7.1)

can be used together with the data from time 1 to generate the time 2 observations:
Yl:jzl),kjl ~ Bin(l,pk;'(fk, Yk, bk)), j = 11 eoey 10’ k= 11 ceoy 20.

The Yi;2 generated from this conditional model have the desired marginal mean and are
appropriately correlated with Y;;.

In a similar fashion, correlation between observations on the same individual at times
2 and 3 and at times 1 and 3 is introduced by postulating a conditional probability of

response at time 3, given the outcomes at times 1 and 2. Let

P(Yijs = 1|Yajz = ykjz, Yej1 = Ykjn, be) =  Pri(Ces P26, 1k, b2)
eSk+Hoaavnja +914vkj1+bs

= 1+ eSetdnvijz+onveji+by (4'7-4)

We require that

E(Yj2Yejslbr) — prjapeis
V/Pri2(L — Pri2)pris(L — prjs)

E(Yiej1Yijs|be) — prjiPess  _ 0.9,
V/Prir (1 — prit)prss(1 — pijs)

= 0.4 and

pas = Corr(Yijz, Yijalbe) =

p1s = Corr(Yeji, Yejalbe) =

Consider first pas.

1
E(Yij2Yeislbe) = Y. P(Yijs = 1|Yajz = 1, Yaj = yin, be) ¥

vij1=0



CHAPTER 4. SIMULTANEOUS MODELLING 114

P(Yiia = 1|Yij1 = Ukji, be) P(Yes1 = Yeju|be).

Abbreviating (4.7.4) by P(Yijs = llyij2,¥kj1,b:) and (4.7.1) by P(Yijz = l|yejr,be), it
follows that (g, U2 and 9, must satisfy the equation

{[P(},"J’S = llla 0, bk) y P(Yl=52 = 1|01 bi) - (1 -ij1)+
P(Yk.iS = lll, 1, bk) * P(ijz = lll, bk) 'ij1] —pk,'zpka}x
{pri2(1 — priz)pris(l — peja)}/? = 04. (4.7.5)

Considering now p,3, we have
1

E(YijiYejslbe) = Y. P(Yijs = 1Yij2 = yrje, Yijn = 1,bx) x

Vij2=0

P(Yija = yrja|Yejs = 1,b) P(Yas1 = 1|be).
Therefore (&, 92x and 9, must also satisfy the equation

{[P(Yjs = 1[0,1,b¢) - P(Yeja = O|1,8¢) - prja +
P(Yijs = 11,1, b¢) - P(Yajz = 1|1, ) - pji] — prjiprjs} ¥
{Peir(1 — prsi)pris(l — peja)} Y2 = 0.2 (4.7.6)

Finally, we must ensure that P(Yi;s = 1|be) = prjs = €** /(1 + €%*). Noting that

1 1
PYajs=1{be) = Y. > P(Yijs = llykjz, yuj1, bi) ¥
¥4j1=0 ¥2j2=0

P(Yej2 = Yijalyrin, be) P(Yijr = yrjilbe),
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we see that (i, 92 and 94, also have to satisfy

P(Yijz = 1/0,0,b¢) - P(Yij2 = 0[0,b¢) - (1 — prjn) +
P(Yijs = 1[1,0,b:) - P(Yaj2 = 1]0,bi) - (1 — pejn) +
P(Yajs = 1]0,1,b) - P(Yija =0|1,b) - pejn  +
P(fis = 1LLb) - P(Yi = Lbe) i = Tomy.  (4TD)

Hence at this stage we obtain for each random effect b, three equations in three unknowns
((4.7.5), (4.7.6) and (4.7.7)) which can be solved for (i, 2 and 9. Having obtained these
values, equation (4.7.4) can be used together with the data from time points 2 and 1 to

generate the time 3 observations:
}’kj3l}’lcj2y },kjl ~ Bin(l,Pk:i(Cka 192137 "1k1 bk))) j = 1’ ceey 107 k= 11 sevy 20.

Similar to the previous result, the Yi;s generated from this conditional model have the
desired marginal probability and are appropriately correlated with both Yi;; and Yi;s2.
In summary, we obtain the following algorithm for generating a data set with covariates

for time only, exhibiting the correlation structure described here:

1. Generate a sample of 20 independent observations from N(0, o?), using these as the

random effects by, ..., bg.
2. Generate Y;;;, from Bin(1,pjn), 7=1,..,10, k=1,...,,20.
3. For each bi, k = 1, ..., 20, solve equations (4.7.2) and (4.7.3) for {. and k.
4. Generate Yij; from Bin(1, pe;j(&e, &, b%)), 7 =1,..,10, k=1,...,20.

5. For each bz, k = 1,...,20, solve equations (4.7.5), (4.7.6) and (4.7.7) for (i, 92z and
I1k.
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6. Generate Yi;3 from Bin(l,p),j(fk,ﬁgk, 91k, bk)), 7j=1..,10, k=1,..20.

A 2 Generating Data With an Individual-Level Covariate

The method described in the previous section generalizes in a straightforward manner to
the problem of simulating data from model (4.4.1), where the covariate structure includes
indicators for time as well as an individual-level covariate. Suppose as we have above that
this additional covariate is an indicator for gender, with half the students in each school
being males and half females. In general the marginal probabilities

ePrtBagnj+bs
Prit(9kj) = P(Yise = liges, be) = T mma e

must be recovered, which we can categorize as either pgj(1) or pi;.(0), denoting proba-
bilities associated with females and males, respectively. Therefore this yields six distinct
marginal probabilities for each school:

e—2+1+bs e—1+1+bs elth

P (1) = 1+ e ies Pri2(1) = 14 o1t Prjs(l) = [gnpseTYy
e—2+b e o ebr

Prj1(0) = Troam Pal0)= = Pis(0) = 7 e

Consider again the first two time points. Begin by obtaining a sample of 20 independent

random effects from N(0,c?) and generate the observations for ¢ = 1 according to
}’kjl ~ Bin(l,pk,-l(gk,-)), j = 1, ceey 10, k= 1, veey 20.

Once again, correlation between observations on the same individual at times 1 and 2 is
introduced by specifying a conditional probability of response at time 2 given the outcome

at time 1. However to ensure that the intra-individual correlations are the same for males
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and females, we must specify separate probabilities for each gender. Let
logit P(Yijz = Llykji, gkjs be) = logit puj(&e, Ves 9ris i)

&P+ TFYiyy + o f grj=1
Eint + Viemyes + b if gej = 0.

(4.7.8)

Now consider the case for females. We require that

E(Vaj1 Yijalges =1, 06) — pein(Vpeia(l) _ oo
VPt (D) = Pt (1))prsa(1)(1 — prja(1))

p12 = Corr(Yej1, Yajalges = L, be) =

Therefore & and v,r must satisfy the equation

eSeFtHrer+be e—2+1+h e—2+1+b e—1+1+h
1+ eortmrtby 1 f e-2+1+b ] + e-2+1+bs | 4 e-1+1+hs

0.3. (4.7.9)

e—2+1+bs e—1+1+bs 1/2
((1 + e—2t1+h)2 ) (1 + e—t+1+n )2)

At the same time we must ensure that P(Yijz = 1lgr; = 1,bx) = prja(1) = e 11+ /(1 +

e~1+1+b). this requires that £ir and i must also satisfy

eSer+rer+be e—3+1+b eSertbe 1
14+ elertraptbe ) 14+ e—2+1+bs + 1+ efxr+be ' 1+ e-2+1+b.
e—1+1+6&
= (4.7.10)

Therefore, for each random effect b, we again obtain two equations in two unknowns which
can be solved for &r and vir. The development for males proceeds in exactly the same

manner. From the conditions

p1z = Corr(Yi;1, Yijz|gk; = 0,b:) = 0.3
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and
e-1+b.

P(Yijz = lgi; = 0.b) = prnn(0) = 73

we obtain two equations similar to (4.7.9) and (4.7.10); simply replace &ir and yir with
&xar and qrpr, and the marginal probabilities prje(1) with pe;(0). These equations can
then be solved for &ear and vear. Having obtained the four values &xr, Yer, &emr and Year,

equation (4.7.8) can be used together with the data from time 1 to generate the time 2

observations:
},"J'?l},kil ~ Bin(lip"i(fk’ Yes 9ks5) bk))v J = 11 sery 107 k= 1’ seoy 20.

Analogous to (4.7.4) we next postulate gender-specific probabilities of response at time

3, given the outcomes at times 1 and 2:

logit P(Yijs = 1lykjz, Ykj1, Gijr b) = logit pij(Ce, D2k, O1ky gkj» bee)
_ ) GF +O2Fyiiz + Fueryrin + 0 ifgri =1
Cear + V2emyriz + Suenmeyrjs + b if gej = 0.

(4.7.11)

Considering again the case for females, the conditions

p2s = Corr(Yijsz, Yajslges = 1,b) = 0.4,
piz = Corr(lﬁe,-l,lﬁ,,-slgkj = l,bk) =0.2 and

elths
Pes(l) = P(Yijs =1llgws =L b) = 70—

lead to the equations

{[P(YEJ'S = lllr 0! gkj = 1, bk) * P(ijz = llov gkj = 1, bk) ° (1 "Pkil(l)) +
P(Yijs =1|1,1,ge5 = 1,b:) - P(Yaja = 1|1, 085 = 1, ba) - pja(1)] -
Pri2(1)Peia(1)} x {paja(1)(1 — prja(1))prja(1)(1 — peja(1))} 2 = 04, (4.7.12)
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{[P(Ysja=1[0,1,gx; = 1,bs) - P(Yaj2 = 0|1, gxj = 1, b)) - paja(l) +
P(Yijz=1|1,1,g85 = 1,be) - P(Yajz = 1|1, qaj = 1,2) - paja(1)] —
Pei1(1)Peja(1)} x {pej1(1)(1 — peja(1))peja(1)(1 — peja(1)} Y = 0.2

and

P(Yijs = 10,0, g&j = 1,b¢) - P(Yaj2 = 0[0, 95 = 1,8:) - (1 — pr;r(1))
P(Yijs = 1/1,0, gej = 1,b¢) - P(Yajz = 1[0, 965 = 1,8:) - (1 — pr;jr(1))
P(Yijs = 1|0,1, x5 = 1, ¢) - P(Yej2 = 0|1, 915 = 1,b¢) - psr(1)

P(Yijs = 1|1,1, g&5 = 1,8¢) - P(Yej2 = 1|1, 9x5 = 1,b¢) - prji(1)
el+b.

T 14 elth’
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(4.7.13)

(4.7.14)

which can be solved for (ir, Y2tr and ¥14r. Again, the analogous equations for (ras,

Y2xar and 91ar are obtained in the same way. Simply replace all occurrences of {xr, Y2rr

and Yr in (4.7.12), (4.7.13) and (4.7.14) with (ear, Y2:ar and d1epr, and the marginal

probabilities pgje(1) with pg;e(0). Having obtained the six values (ir, 92xr, 91er, Cine,

Y2rar and Yyzpr, equation (4.7.11) is used together with the data from time points 2 and 1

to generate the time 3 observations:

Y;,jalyka, ijl ~~ Bin(l,pkj(Ck, ‘03],, 1911,,91,,', bk)), ] = 1, eeny 10, k = 1, veny 20.

Hence we obtain the following algorithm for generating a data set with indicators for

time, as well as an individual-level covariate:

1. Generate a sample of 20 independent observations from N(0,5?), using these as the

random effects b, ..., byo.
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2. Generate Yz;; from Bin(1, pij1(9%)), 7=1,...,10, k=1,...,20.

3. For each b, k = 1,...,20, solve equations (4.7.9) and (4.7.10) for &x and yir, and

the analogous equations for {xas and Years-
4. Generate Yi;; from Bin(1, pi; (&, Yis 9ks> 0%)), 7=1,...,10, k=1,...,20.

5. For each b, k = 1, ..., 20, solve equations (4.7.12), (4.7.13) and (4.7.14) for (ir, Y2krF

and 91xr, and the analogous equations for (iar, Y2xar and 91ear.

6. Generate Yi;3 from Bin(1, pe;({is P26, O1k, Gkjr be)), 7 =1,...,10, k=1,...,20.

A 3 Generating Data With a Cluster-Level Covariate

One can simulate data from model (4.4.1) where the covariate structure includes indicators
for time as well as a cluster-level covariate, using the same equations as developed in the
last section. We simply bear in mind that this additional covariate is now on the level of

the school, so that we can express the required marginal probabilities as

ePetBagutba
Peit(ge) = P(Yise = 196, be) = y——gmmm

which we shall categorize as either pgje(1) or pi;:(0), denoting probabilities associated with,
say, treatment and control schools respectively. Therefore this yields six distinct marginal
probabilities (now three for each type of school), identical to the ones given in the previous
section. From here the same arguments apply as before, but instead of carrying calculations
through for both gender types in each school, we perform one set of calculations for each of
the two types of schools. One can then apply an algorithm very similar to that described
at the end of section A 2, the only notable difference being, again, the fact that in steps (3)
and (5) the two systems of two equations and two systems of three equations respectively
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are solved for the two different types of schools, rather than for the two gender types within
each school.



Chapter 5

Approximating Correlation
Structures in Clustered Binary Data

Using Random Effects Models

5.1 Introduction

In Chapter 4 we described a general method of addressing the composite correlation struc-
ture inherent in longitudinal data which are also cross-sectionally grouped. In this chapter
we focus specifically and in greater detail on the element of cross-sectional clustering and
suggest applications of random effects models which can be interpreted as modelling both
the mean as well as the correlation structure of the data. We will show that such models
can lead to a significant improvement in fit over other simpler random effects models, by
making the most effective use of covariates thought to be related to the correlation struc-
ture (concerning model fit, see in particular Chapter 6). Such covariates might well exist,
and may or may not be associated with the mean specification of the model; numerous ex-

amples will be discussed throughout the chapter - we shall begin with a simple motivating

122



CHAPTER 5. APPROXIMATING CORRELATION STRUCTURES 123

illustration.

Consider data from WSPP1, the first study (1979-1982) in the series of Waterloo
Smoking Prevention Projects. This was a relatively small-scale formative evaluation of
a school-based smoking prevention program. Twenty-two schools from two school boards
were randomly assigned to either a treatment or a control condition. The core WSPP
program was delivered to students in schools within the treatment group in grade 6, with
booster sessions given in each of grades 7 and 8. The table below lists the data on the
students in grade 8, where r is the number of smokers out of n students observed at a given
school. We use the abbreviations “WSSB” to stand for Waterloo Separate School Board
and “OPSB” for Oxford Public School Board.

Control Schools Treatment Schools
WSSB OPSB WSSB OPSB

r n rfan r n rt/n r n r/n r n r/n

9 19 047 7 19 037 6 23 026 3 18 0.17

1 17 006 5 13 0.38 2 29 007 11 28 0.39

9 24 038 5 18 0.28 0 16 0.00 4 30 0.13
18 32 056 4 18 0.22 8 22 0.36 0 17 0.00

32 11 027 0 8 0.00 7 21 0.33 1 22 0.05

5 12 0.42 14 22 0.64

The fit of a standard logistic model to these data, expressing the response proportion in
each school as a function of treatment condition and school board (the interaction between
the two factors was found to be insignificant) produces a deviance of 71.82 on 19 degrees
of freedom, showing clear evidence of overdispersion; see the first panel of table 5.1. A
logical next step might be to assume that the unexplained school-to-school heterogeneity,
having adjusted for treatment and school board effects, is due to certain unobserved effects

deriving from the same distribution. This could be modelled by the simple logistic-normal
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Logistic Model Simple R. E. Model Refined R. E. Model
est. s.e. est. s.e. est. s.e.

Bo -1.0105 (.2120) -1.2149 (.3990) -0.9391 (.2604)
e -0.5648 (.2169) -0.6433 (-4338) -1.1994 (.2884)
Ba 0.5949 (.2250) 0.6554 (.4381) 0.7329 (-2917)
v 2.2159 (.9515)
a -0.3859 (.5220) -2.7092 (1.633)
(a”) 0.6799 0.06659
ik -252.00 -241.97 -236.70
D (d.f) 71.82 (19) 51.76 (18) 41.22 (17)

Table 5.1: Motivating example: various model fits to the WSPP1 data; (last two lines
report the log-likelihood and model deviance, respectively).

model

log 1 LI Bo + Bitrt; + Babrd; + b;, b; = N(0,03),

where p; represents the proportion of smokers in school z, trt; takes value 1 if school 2
is in the treatment condition and 0 otherwise, and similarly brd; takes value 1 if school
¢t is in the Waterloo Separate School Board, and 0 otherwise. The fit of this model is
summarized in the second panel of 5.1. Maximum likelihood estimates were computed,
using numerical integration to obtain the marginal likelihood; to achieve greater numerical
stability we parameterized o? as e* and maximized the likelihood in (85, 81,82, a1). A
clear improvement in fit is realized over the logistic model; at the same time, whereas the
effect of both treatment condition and school board seemed to be significant in the logistic
model, neither of these factors retains statistical significance under the simple random
effects model above.

In trying to describe school-to-school variability more carefully one will notice a striking
feature in this data set: in each group of schools defined by a common treatment - school

board combination, one school clearly stands out by reporting a proportion of smokers
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much larger or smaller than the remaining schools in the same group. Among the control
schools, the observed proportions 1/17 and 0/8 in the WSSB and OPSB respectively seem
unusually small, and among the treatment schools the rates 14/22 and 11/28 in the same
two boards are strikingly large. If in fact there were some justification beyond inspection
of the data for treating these schools as different from the rest, one could entertain the

following refined random effects model formulation:

log T2 = o+ utrte + Babrds + ™, B E N0,

where z; is an indicator taking value 1 for the four schools in question and 0 otherwise. We
surmise that most of the unexplained variability in the logistic model, captured as best as
possible by the estimate of o2 in the simple random effects model, is in fact due to the
widely varying responses in only these four schools. Hence when fitting the above model
we should expect a rather large point estimate 4, and in contrast 3 to be quite small in
comparison to &7. Referring to the last panel in 5.1 we see that this is indeed the case. The
impact of the random effects b; is very much smaller for the 18 schools not highlighted,
than estimated under the first random effects model. (Note the difference by a factor of
10 in 62 vs 62). On the other hand this impact is greatly inflated (by an estimated factor
of €159 = 9.2) for the four schools in question. The refined model achieves an additional
significant increase in likelihood over the simpler random effects model. It is also interesting
to note that while both these models produce standard errors for ﬁo, ,él and f, that are
larger than those from the logistic model, the refined model, which better captures the
covariance structure in the data, has smaller standard errors than the simpler model. This
need not be the case necessarily, but is not inconsistent with Neuhaus et al. (1992) who
examine the effects of mixture distribution misspecification in mixed effects models; further
discussion is provided in sections 5.5 and 5.6. In particular one will note that in describing

the nature of the overdispersion as we have in the refined random effects model, the impact
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of both treatment condition and school board are again judged to be significant. Beyond
that the magnitude of the coeflicient for treatment condition is twice as large in the refined
model as compared to the logistic, which is perhaps not surprising since the refined model
attenuates the impact of the two treatment schools with the highest smoking rates, and
the two control schools with the lowest, suggesting a stronger than actual treatment effect.
(Grouping the two treatment schools with the lowest smoking rates together with the four
previously mentioned schools and refitting the refined random effects model produced a
more moderate estimate for treatment condition).

When actually analyzing data we certainly do not recommend approaching model selec-
tion in the above manner. The above example was simply meant to illustrate the fact that
there may exist situations in which the nature of the apparent overdispersion is such that
it can be described by a functional relationship, quantifiable in terms of one (or several)
covariates, in much the same way as the mean is specified. Further, a better model fit
may be achieved by specifying such a relationship, and inferences might also be affected.
The random effects models we consider in this chapter are all of the same structure as the
refined model presented here, and are described and interpreted in sections 5.2 and 5.3. In
particular, in section 5.3 we interpret such models as equivalent to particular realizations
of population-averaged representations, with certain intra-cluster correlation structures.
Through these models it is possible to meet the main objective in the modelling process,
namely to obtain “good” fixed effects estimates (in the sense of small bias and asymptoti-
cally valid standard errors), as well as a reasonable reflection of the correlation structure
in the data.

The approach described here allows for greater flexibility in allowing for varying intra-
cluster correlation than does GEE, mainly because it can incorporate covariate information
in a natural way, whereas GEE cannot. On the other hand, intra-cluster correlation is
modelled in a more explicit manner through GEE than through random effects models.

However a major advantage of the random effects formulation is the fact that it admits
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a likelihood-based analysis, thus facilitating the choice between competing nested models.
In section 5.4 we discuss some issues relating to the choice of particular random effects
models, and in section 5.5 we examine the results of simulations performed to investigate
questions of power and the effects of model misspecification.

Note that the methods described here could also be used to extend, in a fairly straight-
forward manner, the quasi empirical Bayes model described in the previous chapter. This

however is not considered further at this point.

5.2 A General Class of Random Effects Models

5.2.1 The Model

For the sake of consistency with section 3.6, and to emphasize the shift in focus from the
composite modelling approach in the last chapter to issues related specifically to cross-
sectional clustering, we again adopt the notation used in section 3.6, where we initially
discussed random effects models. For the analysis of binary data, assuming the logit link,
we consider models of the following form for the probability p;;j that the jth individual in

cluster ¢ has response Y;; = 1:

log 72 — =28+ flaim) by b~ N(O,0P). (5.2.1)
Assume as usual that two observations from the same cluster are independent only con-
ditional on the random effect for that cluster; i.e., that they are marginally correlated.
Naturally one could write down a similar formulation for other link functions or data ty-
pes; for dichotomous data in particular, (5.2.1) offers a convenient means of addressing
both variation in the mean response, as well as allowing for an indirect modelling of the

correlation structure through the function f(zj;;+). In multiplying the cluster-specific
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random effect, this function, which can be specific to the individual, either inflates or at-
tenuates the random effect, thus tailoring its impact for each specific cluster, perhaps even
each individual. The term f(z;;4) relaxes the assumption of a common random effects
variance; the variance of the random component associated with subject j in cluster 7 is
F3(zij; )02, so the function f serves to explain some of the extra heterogeneity in the
data, over and above that which can be captured in the linear predictor z;jﬁ. In the
introductory example, for instance, the covariate z; was not related to the mean response
in school ¢, but instrumental in describing the overdispersion. Model (5.2.1) gives us a
straightforward framework for assessing the impact of covariates thought to be associated
with the correlation structure in the data. In letting f(z;;;<) depend on parameter(s) ¥
we are able to use the data to estimate the best fitting relationship between z;; and b;, (for
a given family f, and conditioning on z;;).

The parameters (3,<) from (5.2.1) can be estimated using empirical Bayes methods,
or by maximizing the marginal likelihood (3.6.3). The computational burden involved in
this latter approach is quite manageable, certainly with a univariate mixing distribution;

we shall consider maximum likelihood estimation throughout this chapter.

5.2.2 Related Work

The recent literature reports numerous applications of various random effects models, for
binary data in particular. Smyth (1989) describes a generalization of GLMs in which the
dispersion parameter may be allowed to depend on covariates in the same manner as does
the mean. This leads to two submodels for which an alternating estimation procedure is
proposed. Our approach has a similar spirit, but we model the variance of a random effects
distribution instead of the dispersion parameter; only in linear models do these coincide.
Estimation seems simpler to carry out for (5.2.1) since only a single model is specified.
Neuhaus et al. (1992) examine the performance of mixed-effects logistic regression analysis
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when the mixture distribution is misspecified. The authors consider situations in which
a single mixture distribution applies to all clusters, whether this be the correct or an
erroneously assumed distribution. Related to this is the work of Fattinger et al. (1995), in
the context of non-linear models. In section 5.5 we investigate the effect of misspecification
when the true mixing distribution depends on cluster or individual-level covariates. Our
emphasis is not so much on assessing the exact form of the mixing distribution, but rather
on establishing a relationship between this distribution and covariates thought to affect
intra-cluster correlation. (The connection to the work of Neuhaus et al. (1992) is discussed
further in section 5.6). Follman and Wu (1995) present a class of random effects models
to deal with missing data in longitudinal studies, an issue which is not addressed here.
Cook and Ng (1997) describe an application to disease-state data in which the correlation
structure is addressed through a bivariate random effects distribution wherein the two
random effects may be correlated. A general probit-normal model which also allows for
correlated random effects is proposed by Chan and Kuk (1997); these authors employ an
EM algorithm to obtain maximum likelihood estimates, treating the random effects as
the missing data component; see also Walker (1996) for a similar application of the EM
algorithm.

5.3 Moving Between Cluster-Specific and
Population- Averaged Formulations

In this section we focus on the relationship between cluster-specific and population-averaged
models, and highlight the notion that each type of model can be thought of as equivalent
to a certain formulation of the other type. We do this to emphasize that the marginal
correlation structure in a data set can also be modelled by fitting a cluster-specific random
effects model. We begin by considering the case of the linear model, and then discuss the
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implications in models for binary data.

5.3.1 The Linear Model

Consider the following linear random effects model for the continuous response );; of

individual j in cluster i:
Yii = mij + fishi + €35, b; ~ N(0,0%), &~ N(0,07), (5.3.1)

where );; and );;» are independent given b;, and {§;} and {¢;;} are assumed to be i.i.d.
samples from their respective distributions. (In the notation of (5.2.1) we would have
pij = z;;8 and fi; = f(z;5;7)). Under this model the marginal mean and variance of J;;
are

E(Vy) =pm; and  Var(Yy) = fio + o7

and the marginal correlation is given by

Cov(Vij, Vije)
v/ Var(V;;) Var(¥iy)
Es{Cov(Yij, Yis| b:)} + Covi{E(Vij| b:), E(Vss| b:)}
V(FEo? + o) (fho? + 02)

Corr(Yij, Vijr)

fisfiza? _ fer L
Bt (et ten | Borver (19T RYI)

Model 5.3.1 is therefore equivalent to the marginal model

- fog?
Vij = pij+vij,  Corr(Yyj, Vigr) = &fﬂ-, (5.3.2)

0i;0i5

where v;; ~ N(0,0%), Cov(vij,viy) = fijfijo® and o; = fio® + o2; (observations from

different clusters are independent, as before). Note that as the random effects variance
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o? approaches 0, Corr(});;, Vi) = 0 and as 02 — oo, Corr();;, Vi) = 1 as one should
expect. Thus the random effects model (5.3.1) represents one way to accomodate intraclu-
ster correlation and happens in this case to correspond to a marginal model with unequal
variances.

Alternatively, a population-averaged model assuming equal marginal variances and an
arbitrary intracluster correlation structure cannot be expressed, in general, in the form

(5.3.1). Consider for instance the model
Yii = mij + €;, Corr(Yij, Vij') = pijirs (5.3.3)

where Var(e;;) = Var();;) = v2. To write (5.3.3) in the form of (5.3.1) one would need to
fix f;; at a constant value. This in turn would also imply a fixed value for p;;;.

Summarizing, in models (5.3.1) and (5.3.2) the marginal variances are functions of f;;
and f;j, as are the marginal correlations. In linear models in general one can also specify
constant marginal variances, and arbitrary intracluster correlations - the case in (5.3.3).
This distinction fades however when considering generalized linear models for binary data,
in which the variance is already a function of the mean and therefore specific to each
observation. We shall discuss this case next.

5.3.2 Marginal Correlation Estimates Induced by Random Ef-
fects Models for Binary Data

Model (5.2.1) is a cluster-specific formulation for the conditional probability

pij = P(Y; = 1] =i, 25, b:)-
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As Neuhaus et al. (1991) point out, this also specifies a unique marginal model for Y;;
(averaging over the distribution g(b;) of b; - N(0,0?) in this case):

P(Yij = 1] 25, 25) = [ P(Yis = 1] s, 25, b)g(5:) b (5.3.4)

(See also the discussion in section 3.2). In the same manner we can obtain the marginal

correlation between Y;; and Y;; induced by (5.2.1). Noting that

Cov(Yij, Yipl 2,2) = Es{Cov(Yi, Yij 2,2,:)} +
Covs{E(Y;| 2, 2, 5), E(Yiz| z, z,b)}
= 0+ Cov(pij, pig)
and Var(Yil z,2) = E(Y}| z,2) - [E(Yy] z,2)]*
= B{E(Y| z,2,5)} — [Bs(pi;)]?
= Bu{pi;(1 — pi;) + 05} — [Be(pi)]”
= Euy(pi;)(1 — Es(pij)),

we have

Cov(Y:;, Yis| 2, 2)
VVar(Y;;| z, z)Var(Yij| z,2)
_ Cove(psj, Pist) (5.3.5)
vEs(pi;)(1 — Es(pi;))Es(piz') (1 — Es(piy))

COIT(K,', }’;j:' z, z) =

In the conditional expressions above, z and z are used as generic variables to indicate con-
ditioning on whichever covariates are appropriate. Thus for example Corr(Y;;, Yij| z, 2) =
Corr(Y;;, Yiy| zij, zijr, 2ij, Zij7). Closed-form expressions exist neither for (5.3.4) nor for

(5-3.5). However the approximation due to Johnson and Kotz (1970) (given in equation
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(3.5.23)) is frequently used to obtain the fairly accurate estimate

e2iBIV/1+8 P(wj )

, 5.3.6
1 4+ e=iPIV1+E Plzi)o? (5:36)

P(Y; =1l z,z) = BEupy) =

¢ = 161/3/15x. Similarly one can also derive an approximation for the marginal correlation
given by (5.3.5). We develop this for two cases, the first assuming covariates on the level
of the cluster only, the second allowing for individual-level covariates.

For the first case we consider the model

Kjl b ~ Bin(l,p,'), b; ~ N(O’ 02)
ezZﬂ-l-f(z.':‘Y)-b.'

1 + =B+ =N b (5.3.7)

i = pi(k) =

In this case

Vars(pi) (5.3.8)

Corr(Y:;,Yiy| z,2) = Eu(p:(1 — pi)) + Varp(p;)”

Using a second-order Taylor series expansion of p;(b;) around b; = 0 leads to the approxi-

mation
1- 21r,-)’f,-’¢72

Varb(p,-) ~ 1r,-z(1 - 1I’,')2(1 <+

and a similar expansion of p;(5;)(1 — p:(b;)) gives

1r,-(1 — 1I',')(1 - 21!’,')2
2

i flo',

Es(pi (1 —p;i)) + Vary(p;) = mi(1—m:)[1+ —2mi(1—m)fla®+
where 7; = p;(0) and f; = f(2;;4). Therefore (5.3.8) can be approximated by

pi = Cort(Yy;, Y z,2)
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mi(1 — m)[1 + 2T g2 52

—— . . (5.3.9)
14 ‘—f':i —2m;(1 — =) fRo% + "(1_").‘.(1—2*')2 fio*

lad

Note that as in the linear case, for fixed =;, as f?0? — oo, the approximation for p; ap-
proaches 1, and as f?0? — 0 it approaches 0, as expected. Equation (5.3.9) emphasizes
the flexibility which the function f(z;<) provides in model (5.3.7): for fixed #; and o2,
varying degrees of intra-cluster correlation can be accomodated through the cluster depen-
dent value of f;. Table 5.2 compares the performance of the approximation for p; with
the exact value, obtained from (5.3.8). Specifically, letting (b, %) denote the N(0,a?)
density, we used numerical integration to evaluate the integrals

Es(i(8)) = [ pb)p(s,0”)db  and  Es(p(6)) = [ p3(E)e(b,0%)db

and using these, evaluated equation (5.3.8). The top row in each pair of rows in table 5.2
gives the approximate value, to be compared to the exact value given in the bottom row.
For combinations of 62 and f; in which the product f?0? is not too large, say less than or
equal to 1.5, approximation (5.3.9) is reasonably close to the true value of p;. (We note
in passing that this restriction on f; and o? is moderate enough to cover many situations
of practical interest). Observe nevertheless that the true value of the marginal correlation
tends to be less sensitive to the value of ; than the approximation to it suggests; this tends
to underestimate p; for «; near 0 or 1, but overestimate it for n; near 0.5. In addition,
whereas (5.3.9) will never produce a negative estimate, a desirable feature when analyzing
overdispersed data, it can for some combinations of f; and o2 take on values larger than

1, as seen in table 5.2. In such regions the approximation is of course not helpful.



CHAPTER 5. APPROXIMATING CORRELATION STRUCTURES

o =0.1 .13
fi 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1 (A) 0.00475 0.00900 0.0187 0.0250 0.0187 0.00900 0.00475
(E) 0.00508 0.00938 0.0185 0.0238 0.0185 0.00938 0.00508
2 (A) 0.0189 0.0359 0.0747 0.1000 0.0747 0.0359 0.0189
(E) 0.0242 0.0410 0.0700 0.0842 0.0700 0.0410 0.0242
3 (A 0.0423 0.0796 0.1659 0.2250 0.1659 0.0796 0.0423
(E) 0.0658 0.0979 0.1421 0.1607 0.1421 0.0979 0.0658
4 (A) 0.0738 0.1373 0.2857 0.4000 0.2857 0.1373 0.0738
(E) 0.1312 0.1722 0.2203 0.2386 0.2203 0.1722 0.1312
0'z =0.2 s
fi 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1 (A) 0.00949 0.0180 0.0375 0.0500 0.0375 0.0180 0.00949
(E) 0.0108 0.0194 0.0363 0.0456 0.0363 0.0194 0.0108
2 (A) 0.0376 0.0710 0.1480 0.2000 0.1480 0.0710 0.0376
(E) 0.0568 0.0865 0.1289 0.1471 0.1289 0.0865 0.0568
3 (A) 0.0825 0.1529 0.3178 0.4500 0.3178 0.1529 0.0825
(E) 0.1495 0.1913 0.2390 0.2568 0.2390 0.1913 0.1495
4 (A) 0.1400 0.2514 0.5122 0.8000 0.5122 0.2514 0.1400
(E) 0.2615 0.3002 0.3401 0.3540 0.3401 0.3002 0.2615
a? =0.5 L1}
fi 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1 (A) 0.0237 0.0447 0.0932 0.1250 0.0932 0.0447 0.0237
(E) 0.0317 0.0522 0.0857 0.1014 0.0857 0.0522 0.0317
2 (A) 0.0911 0.1682 0.3488 0.5000 0.3488 0.1682 0.0911
(E) 0.1673 0.2094 0.2563 0.2736 0.2563 0.2094 0.1673
3 (A) 0.1878 0.3269 0.6472 1.1250 0.6472 0.3269 0.1878
(E) 0.3395 0.3722 0.4046 0.4157 0.4046 0.3722 0.3395
4 (A) 0.2945 0.4744 0.8571 2.0000 0.8571 0.4744  0.2945
(E) 0.4728 0.4935 0.5133 0.5199 0.5133 0.4935 0.4728

(continued)

135
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o2=1.0 5

5 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1 (A) 0.0469 0.0881 0.1837 0.2500 0.1837 0.0881 0.0469
(E) 0.0750 0.1091 0.1547 0.1735 0.1547 0.1091 0.0750

2 (A) 0.1700 0.2995 0.6000 1.0000 0.6000 0.2995 0.1700
(E) 0.3121 0.3471 0.3821 0.3942 0.3821 0.3471 0.3121

3 (A) 03201 0.5059 0.8913 2.2500 0.8913 0.5059 0.3201
(E) 0.4987 0.5171 0.5347 0.5406 0.5347 0.5171 0.4987

4 (A) 0.4583 0.6531 1.0000 4.0000 1.0000 0.6531 0.4583
(E) 0.6133 0.6230 0.6322 0.6352 0.6322 0.6230 0.6133

Table 5.2: Performance of the approximation to p; = Corr(Y;;, ;| z, z); rows flagged by
(A) and (E) contain the approximate and exact values of p; respectively, for the given
combinations of #;, f; and o3.

In a similar fashion, the marginal correlation (5.3.5) can be approximated when cova-
riates are also on the level of the individual. In this case the model of interest is

Y;jl & ~ Bin(l, py), b; ~ N(0,0%)
log 77— = 2B+ flz57) - b (5.3.10)

Writing p;; as p;;(b;) and using Taylor series expansions as above leads to the following

approximation:

pijy = Corr(Y;,Yiy| z,2)
J (1 — ) mip(l — miz)

v.-,-v,-,-,

0+ (1 —2m;)(1 —227rii')fiifi:"°'2 }iifizo?, (5.3.11)

where

vi; =14

fio? 1
’2 —2m5(1 — mi) f0® + 57&‘:‘(1 — m5)[1 — 2w o
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and ;= pi;(0), fi; = f(z57)-

5.3.3 Random Effects Variance Estimates Induced by Marginal
Models for Binary Data

So far the discussion has focussed on the transition from a cluster-specific model, of the
form (5.3.7) or (5.3.10), to the population-averaged model induced by it. Conversely, one
might begin with a marginal model formulation and determine a cluster-specific equivalent.
As noted by Neuhaus et al. (1991), in the first case a unique marginal is implied, but a given
marginal model does not specify any single mixed-effects model. Let us therefore restrict
our attention to the class of logistic-normal random (mixed) effects models in determining
a cluster-specific model arising as an equivalent analogue to a marginal model.

We can describe a marginal, or population-averaged model for binary data by its mar-
ginal probabilities p,, and pairwise correlations p. Each of these may be thought of as
functions of cluster-specific probabilities @ (with 7; depending on f;) and the variance o?
of a random effects distribution, used to specify a logistic-normal mixed effects model. The
relationship between (p,, p) and (m, o2) can be explicitly investigated, for example using
the approximations given above. In the case of cluster-level covariates only, for instance,
setting pari = P(Y;; = 1| z,2) and p; = Corr(Y;;,Yi| z, 2) equal to the expressions in
(5.3.6) and (5.3.9) respectively, yields two equations in two unknowns which may be solved
for n; and o2; (recall that m; = p;(0), referring to (5.3.7)). One obtains the solutions

clog(pai/ (1-paei)) /14 f10?

= 1 + logtPai/(1-pai))y/ 142 fa? (5.3.12)
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and

A {4p,-/f,? if m; = 0.5
o’ =
~di—\/d?—4a;c; .
~yTEE it 405,

where

as = ~3(1 - pi)m(1 = m)(1 = 2,

d = (% —2m(l—m))ps —mi(l—m), ¢ = p;

138

(5.3.13)

It is of interest in particular to study the behaviour of o? as a function of pa: and p;.
Figure 5.1 depicts this graphically, plotting the estimate of o2 given in (5.3.13) against a

grid of values corresponding to combinations of pa; and p;. Note that we have assumed

o9
o, 0®
oé%, o °’M

o2

Figure 5.1: Perspective plot of o2 vs (pa:, pi)-
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here that f; = 1; alternatively one can interpret this graph as plotting f20? vs (pasi, pi)-
Clearly o2 is an increasing function of intra-cluster correlation, and for any fixed value
of p;, the more extreme the marginal probability, the larger the random effects variance
implied. This is the sort of behaviour one would expect; under a cluster probability close
to 0 or 1, most observations tend already to be of the same type, successes or failures.
Introducing positive correlation among the observations in addition serves to emphasize
this tendency further, making it necessary to postulate perhaps a very large random effect

to account for the extreme response rate.

5.3.4 Example: the Beta-Binomial Model

Here we draw a brief comparison between the beta-binomial model and the random effects
model (5.3.7). The former is flexible enough to allow a cluster-dependent modelling of the
correlation structure in the data, independent of the mean, whereas the latter will admit a
cluster-dependent estimate of the random effects variance. The above discussion suggests
that we should therefore be able to find such a random effects model that closely resembles
the beta-binomial. We can restate the problem by focussing on a single cluster, fixing
the two parameters of the beta-binomial distribution (giving us a marginal probability
and correlation pair (par,p)), computing an appropriate random effects variance estimate
and a probability for the cluster-specific model, and comparing the resulting probability
distribution to the beta-binomial. To fix ideas, suppose that R = 37, Y; is distributed as
beta-binomial(a, b), so that par = E(Y;) = a/(a + b), p = Corx(Y;,Y;) = (1 + a+b)~! and

(a+r—=1)C)(b+n—~r—1)"")
(a+b+n—1)n

P(R=r)= , r=12..,n. (5.3.14)



CHAPTER 5. APPROXIMATING CORRELATION STRUCTURES 140

(See also equation (3.4.3)). We would like to compare this probability function with the
analogous one produced by the random effects model, that being

(F)pora—swr—ieeia, r=1,n Ga

We can use equations (5.3.12) and (5.3.13) to approximate p(b) and o2, respectively; in

elos(a/b)\/ 142 3024

1+ elog(a/b)\/l-(»c’f’c’-f-f-b

P(R=r)=["

this case

p(b) =

with m; = « = p(0), from which the approximation for o? easily follows. Figure 5.2
compares the probability histograms for the beta-binomial distribution (5.3.14) to those
of the approximating distribution (5.3.15), based on the random effects model, for (a,d) =
(0.9,8.1), (1.8,7.2) and (4.5,4.5) (i.e. par = 0.1, 0.2 and 0.5 and p = 0.1). Assume without
loss of generality that f = 1. The binomial probability histograms, assuming p = 0, are also
shown for comparison. In all cases we have considered a cluster size of n = 50, for which an
intra-cluster correlation of p = 0.1 is very substantial, leading to a variance inflation factor
of almost 6. The distribution (5.3.15) approximates (5.3.14) very well for all 3 marginal
probabilities, capturing the effect of overdispersion in the same manner as the beta-binomial
model does. The close correspondence between the two modéls is further emphasized by
comparing their histograms to the ones based on the binomial model, assuming nominal
dispersion.

We have therefore found a distribution based on a cluster-specific random effects model
which is very similar to that based on the marginal beta-binomial model. Just as in
modelling the responses from several clusters using the beta-binomial model we can allow
intra-cluster correlation to be cluster-dependent, so too we can achieve a similar fit by
introducing an appropriate cluster-specific function f(z;;<) into a random effects model,

as in (5.3.7). Further discussion on this is provided in the next section. There are several
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Bela-tinomial, n=50 p=0.1 tho<0.10  Approximation, n=50 p=0.1 rho=0.10 Binomial, n=50 p=0.1
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Beta-binomial, n=50 p=0.5 ho=0.10  Approximation, n=50 p=0.5 rho=0.10 Binomial, n=50 p=0.5

0.0 0.02 0.04 0.08 0.08 0.10
0.0 0.02 0.04 0.068 0.08 0.10
0.0 0.02 0.04 0.06 0.08 0.10

Figure 5.2: Graphical examination of a random effects model approximating the beta-
binomial; the bars in each plot represent the probabilities P(R = r), for r ranging from 0
to 50. The binomial probability histograms are shown for comparison.
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advantages of this latter modelling approach over the former: it provides a more natural
framework for regression analysis; it allows one to retain the context of the logistic model;
and perhaps most importantly, it extends easily to situations involving individual-level

covariates, which the beta-binomial model cannot accomodate.

5.4 The Function f(z;7)

5.4.1 Cluster-Level Covariates

In this section we consider cases where the function f(z;9) depends on a cluster-level
covariate z. A situation in which z varies from individual to individual within a cluster is
discussed in the next section.

It would be desirable at the stage of exploratory analysis to have a simple means of
assessing whether or not much can be gained through modelling the random cluster effect
as f(z;~) - bi, b; ~ N(0,0%), and given this, what functional forms for f(z;<) would be
most appropriate. The first of these objectives can be addressed to a limited extent by
simple plotting techniques, whereas the second is very difficult but also less important to
meet.

Consider model (5.3.7), with r;/n; the observed proportion of successes in the ith
cluster, t = 1, ..., K. The relationship between the random cluster effect and the covariate

of interest z should be roughly indicated by a plot of

é&; = log( T )—zB vs z i=1,.,K, (5.4.1)

n; — 1

where 3 is the maximum likelihood estimate of 3 from a standard logistic model fit to the
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data. The residuals &; represent the discrepancies on a logistic scale between the observed
and the fitted proportions, i.e. the errors which the random effects are trying to explain.
The plot é; vs z; may therefore be interpreted in a similar manner as a residual plot for a
linear model. The usual precautions can be applied in (5.4.1) to avoid infinite values, that
is, replacing 7;/(n; — ;) by (r; + 0.5)/(n; — r; + 0.5) whenever r; = 0 or n;. Furthermore
if the fixed effects covariates include ones on the level of the individual, one might replace
z;8 with T; z;;8/n:.

Unfortunately experience shows that the random effects variance must depend rather
heavily on the covariate z for a plot of ¢; vs z; to show a clear pattern. Of course this also
depends on the number of clusters available, and to some extent on the cluster size. If the
covariate of interest is cluster size, then the range of cluster sizes will play a crucial role.
It may be useful to plot €2 vs z; in addition to (5.4.1), since £? is more directly related
to the random effects variance. Another alternative is to fit a standard empirical Bayes
random effects model (assuming a constant random effects variance) and plot Var(b;) vs z;,
where 8,- is the random effects estimate for cluster :. One should expect a violation of the
assumption of constant variance to be reflected in the estimates of variability associated
with the random effects estimates. However one must be careful here especially when the
covariate of interest z is cluster size, since Var(;) is already inherently a function of cluster
size.

Exactly how large an effect is required in order to be able to detect it at a given Type
I error rate in the model fitting process is discussed in section 5.5. Here we give a few
examples from our experience of visual examination of the plots discussed above. Consider
the model logit(p;) = u7b;, where b; ~ N(0,1) and u; ~ Unif(0,1). Since we are only
interested in the random component of the linear predictor here, we omit specifying a model
for the mean response beyond a common mean of 0.5 for all clusters. For v = 0.25, for
instance, as many as 200 clusters would be required to detect an increase in the magnitude

of &; with u;. For 7 > 0.5, 50 clusters seem to be sufficient. Consider a similar model,
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logit(p;) = e™b;; detecting an increasing pattern in the residuals at all suggests that 4
is more than likely greater than 0.5, and even for v = 0.5 at least 100 clusters seem to
be required. The more convex the function f(z;v) = f(u:;v) is, the more difficult it is
to interpret the residual plot, especially if K is small. A wider range of u; or a larger
value of the variance of b; would of course allow us to detect a pattern in the residuals for
smaller values of 7, and with fewer clusters; see also section 5.5. We considered as well
the case where the magnitude of the random effects is a decreasing function of cluster size.
Specifically, consider the model logit(p;) = b;/(n:)”. For v = 0.25 and n; ranging linearly
from 20 to 200, a decreasing trend in the residuals is evident with about 50 clusters or
more. For 4 > 0.5 one should be able to detect a pattern with a range of cluster sizes as
small as 20 to 100. This is assuming in each case that b ~ N(0, o?), where o2 is chosen so
that the random effects variance in the smallest cluster equals 2; i.e. o%/20%" = 2.

In all cases it seems that one should not look to such residual plots for direction unless
one has data on a fair number of clusters, i.e. 50 at the very least. They are useful at
best for identifying general relationships, such as increasing or decreasing variablility with
a covariate of interest. In most cases we are only looking to detect this kind of simple
relationship, and the precise form of f(z;4) is almost immaterial. Consider for example

two models for the random effect f(z;v)b;:

i) fubi = zM'b;, vs i) fab; = em5b;,

b ~ N(0,07) b ~ N(0,03),

where z; ~ Unif(a,b), b > a > 0. We can easily determine values 71, o, 42 and o2
which will induce similar behaviour in f;b; and fy:b;, suggesting that misspecification of
one function by choosing the other will not have have a dramatic effect. For instance,
note that the variance of fi;b; ranges in (a®"o?,5M0}) = (el',e™), and that of fyb; in

(31202, e21b63) = (ef2,e*?). The two functions cover the same range in their variances,
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withll=lg=la.ndu1=uz=u,if

_ I—u PR (%) 10
M = Seg@ —tog®)’ - TP ioga) —log(t)
l—u 3 l—u
2 = m, 9, = eXP{l—a_ba}-

The only difference between them is that f;;b; is more convex than fi;b;, which in most
cases is unlikely to make a substantial difference to the fit of a model. A vast amount
of data would be needed to distinguish between fi1:b; and fab;; in finite samples both
functional forms will capture the same qualitative trend.

5.4.2 Individual-Level Covariates

In some cases intracluster correlation may be a function of individual-level covariates, and
this can also be accomodated through a random effects model, of the form (5.3.10). We
shall consider specifically cases where the correlation is a function of a categorical variable,
with pairs of individuals having the same value of this variable sharing a similar correlation
depending on this value. This has direct relevance to the WSPP3: the data collected on
each student includes a risk score, categorized as high, medium or low, giving an indication
of the student’s individual risk of smoking. It is of interest to determine whether or not
there is additional variability in the data, after accounting for random school effects, which
is due to students’ individual risk profiles. This information could help explain the school-
to-school variability in smoking rates and provide some direction as to where one should
concentrate the efforts of smoking prevention programs.

We suggest a simple graphical tool which is helpful in detecting such varying disper-
sion among subgroups within clusters. For the purpose of illustration we shall consider a
situation in which each individual belongs to one of two groups within a given cluster, and
whose response is a function of a random effect at the level of the cluster multiplied by a
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factor depending on the group the individual is in; this allows for varying dispersion in the
two groups which cannot be accounted for by the cluster-level random effect alone. (The
generalization to more than two groups is straightforward; see Chapter 7). In mathematical

terms we can describe the model as
105(;%) = z;B + ™k, b~ N(0,0%), (5.4.2)
— pi;

where z; = 0 or 1, according to whether the jth individual in cluster ¢ belongs to group
1 or 2 respectively. If v > 0 there is greater overdispersion (stronger correlation) among
individuals in group 2 across clusters than among individuals in group 1, and vice versa if

v < 0. To detect departures of v from 0 one might proceed as follows:
1. Fit a standard logistic model to the data to obtain 3.

2. For each group, compute the residunals

by =log(r—2—) = 3 =B/, i=1,..K, g=12

¢ — Tig jlzij=g
where 75 /n;, is the observed proportion of successes in group g.

3. Sort the clusters by overall proportion of successes (r;/n;), from smallest to largest,

and save the resulting set of cluster indices (the order statistics) in the vector m.
4. On the same graph plot &;, vs m; for g =1,2.

If v > 0 the residuals &;, are generally larger in magnitude than &;,, particlarly for clusters
with very small or large response proportions. The converse holds if v < 0. Figure 5.3 shows
some typical patterns one might observe, for data sets with varying numbers of clusters,
observations within groups and effect sizes. We generated the data from model (5.4.2)

letting z:-,.ﬂ = 0 for simplicity, since we are not concerned with the mean specification of
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Figure 5.3: Some typical residual plots of ;;, vs m;, g = 1,2, for various values of K, n;,
and 7. Observations from group 1 are indicated by a ‘+’, and those from group 2 by ‘o’.
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the model here. In all cases we chose o2 = 1 and a constant cluster size, with half of the
observations within each cluster belonging to group 1, and the other half to group 2.

Examination of such plots is useful even with a smaller number of clusters, our experi-
ence suggesting that 20 seem to be sufficient. One drawback is that on average 10 or more
observations per group within clusters seem to be required. In each of the plots shown in
figure 5.3 it is clear that the residuals belonging to observations from group 2 (marked by
‘o’s) are larger in magnitude than those from group 1 (marked by ‘+’s). The residual plot
for the combined observations from each cluster lies roughly between the two group-specific
plots.

The approach advanced here is a simple but effective way of visually assessing the
inadequacy of assuming a single cluster-level random effect, when the departure from this
assumption is of the manner described. Note that we are assuming the presence of two
random effects distributions in model (5.4.2), both with mean zero but one with variance
o?, the other with variance e*702. Alternatively one could specify a bivariate random
effects distribution in this case, but the representation given here is more parsimonious
and less computationally intensive in terms of implementation. We have only considered a
simple example here, but this latter point becomes increasingly important as the number

of levels of z; increases.

5.5 Some Simulation Results

In this section we address two issues of interest regarding the models discussed. First we
investigate how large an effect (in terms of the magnitude of v in f(z;;4)) is required in
order to be able to detect it with a certain power at a given type I error rate. Secondly, we
shall examine the effect of model misspecification (assuming that f(z;;4) = 1, given that
the data are generated from a model with f(z;;4) # 1). These results are not extensive
but give some indication of what one might expect from this general class of random effects
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models.

5.5.1 The Power for Testing Hy: y=0vs Hy: v> 0

149

Assuming that v = 0 implies f(z;;9) = 1, section 5.4 was concerned with visual as-

sessment of whether or not ¥ = 0. In this section we investigate the same question more

formally. In particular, we shall examine five different models and for each determine power

curves associated with tests of the hypothesis Hy : v = 0 vs H4 : v > 0. Each model can

be expressed in the form

Ri| b ~ Bin(ni,p:), i=1,...,50,

log (1 f’_‘p‘.) = fo+ Pzi+ f(z;7) - b,

b,' ~ N(O,a’).

We consider the following five formulations:

M1

M2:

M3:

flz7) =), (n=m), == { =L

(nl, N2, ..., ngs) = (20, 40, 60, 80, ceny 500),
Tip25 = Ny, 1=1,..,25,
.30=_1a ﬂl =21 02=4;

as M1, but (ny,ns,...,ns) = (20,28, 35,42, 50, ..., 200)
(cluster sizes increasing linearly from 20 to 200, with =n;

rounded to the nearest integer);

as M1, but (ny,n,,..., n2s) = (20,23,27,30,33,...,100)
(cluster sizes increasing linearly from 20 to 100, with =»;

(5.5.1)
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rounded to the nearest integer);

M4: f(z;v) =", (zi==:), zi~ Uniform(0,1), ¢=1,...,50,
n; =40 Vi, fo=-1, =2, ¢®=0.25

M5: as M4, but 0% = 1.0.

Models M1 to M3 describe situations in which intra-cluster correlation is a function of the
cluster size n;, for various observed ranges of n;. In these models the covariate associated
with the correlation structure of the data has no impact on the mean. Models M4 and
M5 examine cases where intra-cluster correlation is a function of a continuous covariate,
which also appears in the mean formulation of the model.

It is useful to consider what the test Hy : v+ = 0 vs H4 : v > 0 implies about the
probabilities p;, since these are of immediate interest. The specific form of the random
component in each cluster should have little bearing on point estimates or predictions
one might make from a given model; it impacts rather on the variance associated with
an estimated probability. (We consider here only the variability in p; stemming from the
random effect f(z;7)b;, not that due to the estimation of 3). Figure 5.4 shows upper
and lower bounds on the variability of p; for each of the models M1 to M5, computed
as a function of the covariate z in f(z;v). The plots may be interpreted as indicating
approximate 95 % confidence limits on p;, since the range at a given set of covariate values

was computed as

@+ e—(po-i-ﬁlz.--?cf(z;n)))—l’(l + e—(ﬁo+ﬂtzi+3¢f(‘-';‘f)))‘1).

If f(z;~) is a function of a covariate which has no effect on the mean specification of the
model, as in models M1 to M3, testing Hy : ¥ = 0 is equivalent to testing for parallel
lines on a plot of this type (assuming that vy = 0 = f(z;v) = 1). If on the other hand z;
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Figure 5.4: Variance ranges for p; for models M1 to M5; upper and lower bounds are
shown, corresponding to values of f(z;v)b; at a distance of + 2 standard deviations from
zZero.
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Figure 5.5: Variance ranges for p;, with logit(p;) = —6 + 12z + 20€¢™, z € (0,1) and
o =0.5.

also appears in the mean formulation of the model, as in M4 and M35, the null hypothesis
is equivalent to two horizontally parallel S-curves, shifted in location by a distance of
40/, where B is the coefficient of z in the model for the mean; (this is assuming that
other predictors for the mean are held constant). It is obvious that as the magnitude of
v increases, the departure from parallel lines or S-curves becomes more dramatic. It is
however more difficult to judge whether two curves differ only by a shift in location than it
is to determine whether two lines are parallel. An example of the ideal pattern one might
detect in the former case, both under Hy and Hy, is shown in figure 5.5. The three plots

show probability ranges

((1 + c-(—6+12"2"1‘))‘1, (1 + e-(—6+123+2¢e"))—1)

for z € (0,1), 0> = 0.5 and vy = 0,1 and 2.



CHAPTER 5. APPROXIMATING CORRELATION STRUCTURES 154

Returning to the task of power calculation, for M1 to M3, 400 data sets were simulated
from each model, assuming each of the following values of v: ¥ = 0.0,0.1,0.2,0.3,0.5, 1.0.
In each case the model was fit to the 400 simulated data sets, and the empirical distribution
of the test statistic 7/s.e.(¥) calculated. For a given type I error rate a, an estimate of the
power for testing Hp : v = 0 vs H4 : v > 0 was then computed as the proportion of times an
observed value 4, /s.e.(¥,), r = 1, ..., 400, exceeded the critical value Z,_, from the standard
normal distribution. Note that when -y = 0, the probability of rejecting Hj reflects a Type I
error rate, whereas for 4 > 0, the alternative hypothesis is true and hence the probability of
rejecting Hp reflects the power against the alternative. We proceeded similarly for models
M4 and M5, with the exception that data were simulated for v = 0.0,0.25,0.5,0.75, 1.0
and 1.5. Results were obtained for @ = 0.005,0.01,0.025,0.05 and 0.10, and are shown
in figure 5.7. (The power for values of 4 not explicitly examined was estimated using
cubic spline interpolation). For each model we assessed the assumption of normality of
the test statistics by constructing normal probability plots for ¥./s.e.(¥.), r = 1,...,400
under the null hypothesis Hy : 4 = 0, and by examining histograms of these standardized
estimates. The normal plots all produced a linear pattern, roughly about the 45 degree
line y = z, and the histograms were all symmetric in shape (see figure 5.6), suggesting
that it is reasonable to treat the observed test statistics under Hy as a sample from a

standard normal distribution. We also compared the observed proportion of test statistics

M1 M2 M3 M4 M5

a=0.005 0.0100 0.0075 0.0075 0.0025 0.0000
=0.010 0.0150 0.0075 0.0125 0.0050 0.0075
=0.025 0.0250 0.0300 0.0375 0.0300 0.0250
=0.050 0.0525 0.0675 0.0450 0.0750 0.0550
=0.100 0.1000 0.1100 0.1000 0.1300 0.1000

Table 5.3: Comparing empirically determined test sizes with «, for models M1 to Ms;
entries in the table give the proportion of test statistics greater than Z;_,.
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Figure 5.6: Histograms of test statistics 4/s.e.(¥) under Hp : v = 0, models M1 to M5.

greater than Z,_, under Hy to a, for each of the various sizes of tests considered. Table
5.3 compares the empirically determined test sizes to the true values of a; there appears
to be very good agreement between the two, especially considering the moderate number
of simulations.

Referring to figure 5.7 we note that for models M1 to M3, the power to detect a positive
value of o decreases as the range of cluster sizes becomes smaller; intuitively we should
expect the power for testing whether or not ¥ > 0 to be a function of the effective range of
the variance of the random component in the model. In the first three models this range
is given by ((10/n1)*70?,(10/ns)?*70?), where ns and ny, refer to the smallest and largest
cluster size, respectively. Note that this range decreases to 0 as v+ — 0. Furthermore, it
seems that the power depends not so much on the absolute range of the random effects
variance (designating f;b; to be the random effects in this case) as on the ratio of the upper
to the lower endpoint. This is illustrated well in models M4 and M5, which have very

similar power curves; the model specifications are the same with the exception that the
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Figure 5.7: Simulated power curves for models M1 to M5, for the test Hy : v = 0 vs
H, : v > 0. Results are shown for 5 type I error rates: 0.005, 0.01, 0.025, 0.05 and 0.10
(corresponding to the curves in order from bottom to top in each plot).
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constant prior variance o2 in M5 is four times greater than in M4. Hence the cluster-level
variance range, (o2, e*70?), is much larger in absolute terms for M5, but the same on a
relative scale. Of course one must bear in mind that in testing Ho: y =0vs Hy : v > 0
we are trying to determine whether the extraneous variation in the data is of a particular
form. If o2 is very small such a test will be neither powerful nor relevant. In this case the

more pertinent question concerns whether or not there is evidence for overdispersion at all.

5.5.2 The Effect of Model Misspecification

We now examine the effect of model misspecification for various cases. As in the previous

section we consider a number of model formulations. The first four of these can be expressed
as in (5.5.1) and are as follows:
1 i=1,..,25
M6:  f(zi1) =27, (n=m), == :
‘/: 0 1=26,...,50
(nl,ng, ...,nzs) = (20, 40, 60, 80, ...,500) Ni425 = Ny, t= 1, cany 25,
Po==2, fp=1, 7=1, o*=1;

M7:  as M6, but (ny,na,...,n2s) = (20,23, 26, 30, 34, ..., 382,437, 500)
(cluster sizes increasing exponentially, so that {log(n,),...,log(n2s)}

is a linearly increasing series (values of n; rounded to nearest integer));

MS: f(z;7) =2, (z==z2), =z~ Uniform(0,1), i=1,..,50,
n; = 40 Vis ﬁ0=_11 ﬂ1=2a 7=1, 0'2=1;

1 i=1,.,25
M9:  f(zv)=2, =z~Unf(0,1), =z= )
0 i=26,..,50

;=40 Vi, fo=-1, =2 7=1, =1
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Models M6 and M7 are similar to M1 and M2 and examine situations where intra-cluster
correlation is a function of cluster size, where either there is a uniform representation of
cluster sizes from smallest to largest, or where there are many small to moderately sized
clusters, and only a few large ones. M8 and M9 resemble M3 and M4 in describing cases
in which intra-cluster correlation is a function of a continuous covariate, which may or may
not have an effect on the mean of the model.

The last model (M10) includes an individual-level covariate; we assume that individuals
belong to one of two groups within each cluster and that both the mean and the impact
of the cluster-level random effect is different in the two groups. Thus define the model as

M10 : Y| b; ~ Bin(Lpiy;), j=1,..,40, i=1,...,30,
log (_p.,_) = fo+ Przij + Tk,
1-pij

1 j=1,.,20
Zi; = ’
0 j=21,..,40

Po=-2, fp=1, v=1, b~ N(0,0.25).

We simulated 300 data sets under each of these five models, and for every data set we
fit the true model, as well as the incorrect simpler model, assuming f(z;;v) = 1. The
results are summarized in table 5.4. The mean of the estimated model parameters from
the 300 data sets is reported, as well as the average of the model-based standard errors
(s.e.(M)) and, for comparison, the empirical sample standard errors of the estimators of
the parameters (s.e.(S)). In addition, rows indicated by f2o2? and f302 report the lower
and upper endpoints of the range of the variance component f3(z;;v)o?, as well as the
estimated endpoints from the correct and misspecified model fits. Thus for example, for

M6 the range is (0.04,1.0) and estimated from the simulation to be the average value of
(1/20/500 21'0‘2,, 1/20/20 2%a",), r =1,...,,300. Finally, for each model the average value
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Correct Model Fit Misspecified Model Fit
Model True Mean s.e.(M) s.e.(S) Mean s.e.(M) s.e(S)
Value
M6 Bo -2.0 -1.9959 0651 .0711 -1.9897 0716  .0747
B 1.0 0.9975 .0880 .0942 0.9978 0971 .1051
v 1.0 0.9635 4004 .5729
fie?  0.04 0.0387 0.0811
fia? 1.00 1.3760 0.0811
llik -6184.14 -6188.18
M7 Bo -2.0 -2.0054 .0853 .0895 -1.9837 1055  .1073
B 1.0 1.0057 1152 .1216 0.9983 1431 .1492
04 1.0 1.0562 3239 .3590
fio? 0.04 0.0383 0.1753
fie? 100 1.1445 0.1753
llik -3653.72 -3659.44
M8 Bo -1.0 -0.9972 1146  .1116 -1.0000 1739 1296
B 2.0 1.9991 2937  .2933 1.9627 .2986  .3290
v 1.0 1.2214 .5261  .6076
fio? 0.0 0.0000 0.2967
22 1.0 1.1395 0.2967
Hik -1271.56 -1278.48
M9 Bo -1.0 -1.0138 .1069  .1100 -1.0132 1322 .1431
B 2.0 2.0196 1519  .1580 2.0197 .1875  .2061
v 1.0 1.2195 .5813  .6755
fio? 0.0 0.0000 0.3050
fia? 1.0 1.1465 0.3050
llik -1148.86 -1154.91
M10 Bo -2.0 -2.0274 1653 .1705 -2.1896 2381  .1843
B 1.0 1.0195 3209  .2492 1.2369 3196 .2245
Y 1.0 1.2108 5764 6393
fioc? 0.2500 0.2546 1.0863
J it 1.8473 1.8580 1.0863
llik -550.28 -554.63

Table 5.4: Summary of correct and misspecified model fits, models M6 to M10.
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of the maximized log-likelihood is also given.

For M6 through M9, misspecification of the model does not seem to have a substantial
impact on the fixed effect estimates ﬁ, nor on their standard errors; if these are the
sole quantities of interest no loss is incurred by simply fitting a standard random effects
model. The correct model does however provide a better fit to the data in that it gives
a better description of the correlation structure. In this case this is also reflected in a
significant increase in log-likelihood over the maximized value from fitting the incorrect
model. Chapter 6 will discuss the idea of goodness-of-fit of models for correlated data in
greater detail.

Interestingly, for model M10 erroneously assuming that f(z;;;v) = 1 appears to pro-
duce biased estimates of 8o and B;. In the previous models all covariates affecting the
mean response and the random effect were on the level of the cluster, and modelling the
correlation structure via f(z;~) had little impact on the fixed effects parameters specifying
the mean, even in model M8 where z; also appeared in the mean formulation. In M10
however, not only does the covariate z;; divide the observations in each cluster into two
groups, for which we want to estimate separate means, but the group with the larger mean
also has much greater variability. None of the other models displays this type of imbalance,
which likely explains the results. In cases such as this some reasonable form of modelling
the correlation structure seems particularly important.

Overall, with perhaps the exception of model M10, the overdispersion in the models
above is not extreme, so one might have expected the effect of misspecifying the nature of
the extraneous variation to be relatively inconsequential, as far as parameter estimates and
their standard errors are concerned. But this fact itself is noteworthy, since it is of interest
to consider the effect of misspecifying the correlation structure in cases where it is not
immediately obvious. When the impact of the function f(z;<y) is very pronounced it is not
likely to escape notice. In such situations it is also more likely that model misspecification

in the sense discussed here will have a greater effect on parameter estimates and standard
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errors. This, however, warrants further investigation.

5.6 Discussion

In this chapter we examined the use of random effects models to approximate correlation
structures in clustered binary data. We discussed the relationship between cluster-specific
and population-averaged model formulations, pointing out that each type of model can
induce a certain form of the other. There is an abundant literature dealing either directly
or indirectly with the link between these two types of models. We stress that due to this
link it is possible and in many cases easier, at least for cluster-correlated data, to achieve
the same end through random effects models as is achieved by a direct modelling of intra-
cluster correlation, as in approaches like GEE or the representation given in Bahadur
(1961).

The random effects models presented here are ideally suited to drawing mixed-effects
model inferences from cluster-correlated data, when specific hypotheses about the correla-
tion structure are of interest, or when information about the correlation structure is availa-
ble. The WSPP3 elementary intervention, for instance, was based on a social influences
curriculum which increased students’ awareness of various influences in their environment
which might prompt smoking, such as peer pressure, and provided tools to help them re-
sist these pressures. The nature of this intervention program underscores the importance
of understanding behavioural patterns in the study population when examining an out-
come such as smoking status. In mathematical terms this can be quantified in terms of
a non-independent covariance structure, using covariates to determine a specific model.
For example, an indicator of individual-level risk (high vs moderate or low) in the random
component of a model of form (5.2.1) shows that school-to-school variability is much higher
for high-risk students. This suggests that students whose individual profile puts them at
high risk of smoking tend to be more similar in their smoking behaviour within a given



CHAPTER 5. APPROXIMATING CORRELATION STRUCTURES 162

school than students at low or moderate risk; see section 7.1.2. Proceeding in a similar
fashion, no difference in terms of the correlation structure was observed on the basis of
gender.

Model (5.2.1) is useful in that it provides a straightforward tool with which aspects of
the correlation structure of the data can be captured in a parsimonious fashion. Instead
of resorting to several variance components to explain the extraneous variability, covariate
information (z) is used in conjunction with associated parameters () to adjust the impact
of random effects from a single univariate distribution. As pointed out in section 5.2, added
flexibility is gained by the fact that -y, which determines the impact of z, is estimated from
the data.

As indicated earlier, the work of Neuhaus et al. (1992) has special relevance to this
discussion. The authors examine the effects of mixture distribution misspecification in
mixed-effects logistic models. Their findings indicate that estimated regression coefficients
from the fit of a misspecified model will be nearly consistent; the intercept term will also
show little bias if both the true and assumed random effects distributions are symmetric,
but larger bias if the true mixing distribution is skewed and the assumed one is symme-
tric. Furthermore, simulations similar to those carried out in section 5.5.2 revealed that
valid standard error estimates for the regression parameters can also be obtained from the
misspecified model. Our work centers more on incorporating covariate information into
the random effects specification of the mixed model. We have considered the effects of
misspecification in the sense of omitting such covariates when the random component of
the model truly depends on them. Throughout we have assumed that the underlying mi-
xing distribution is normal. Future research should combine the focusses of Neuhaus et al.
(1992) and the work presented here in studying the impact of model misspecification when
the mixing distribution depends on covariates and is not normal or symmetric. Situations
in which the same covariate(s) affect both the mean and the correlation structure of the

responses are of special interest, in particular cases such as model M10 (section 5.5.2),
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involving imbalances between the mean and the correlation structure.
The simulation results described in section 5.5, while limited, give a general indication
of the behaviour of the models presented here. It would be useful to undertake further

study of these models through more extensive simulations.



Chapter 6

Testing the Goodness-of-Fit of
Models for Correlated Data

6.1 Introduction

In the previous chapters we were primarily concerned with issues surrounding model speci-
fication and estimation. However a third important component of the model fitting process,
and one which does not always receive due consideration, is that of checking the adequacy
of the fit of the model to the data. Whereas a great deal of research in recent years has
focussed on parameter estimation in generalized linear mixed models and other extensi-
ons of GLMs for non-independent data, comparatively little attention has been directed
toward the problem of assessing model fit. This is due in part to the fact that in relaxing
the assumption of independence between observations, the likelihood function usually be-
comes much more complicated, and when recourse is taken to other methods of analysis
the notion of a clearly defined model deviance is no longer available. The deviance, howe-
ver, is often the measure on which goodness-of-fit statistics are based, at least for nested

model comparisons. The problem of assessing goodness-of-fit for correlated data is further
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complicated since one needs to entertain a broader concept of the idea of ‘fit’: this must
refer not only to how well fitted values match the observed data, but also to how well
the dispersion predicted by the model matches the observed variance in the data, given a
certain specification for the mean response.

Though not abundant, the literature in this area does include several noteworthy refe-
rences. Vonesh, Chinchilli and Pu (1996) describe a general, formal approach to assessing
the adequacy of an assumed mean and covariance structure in the framework of generalized
nonlinear mixed-effects models. The authors propose a statistic similar to the R? criterion
for linear regression models, for testing the fit of the predicted values from a model, as well
as a pseudo-likelihood ratio test for testing the adequacy of the assumed covariance struc-
ture. The principal drawback is the fact that both procedures are based on the underlying
assumption of normality and are therefore not well suited to problems involving discrete
data. For binary data, methods for testing goodness-of-fit have been proposed based on
partitioning the covariate space in some meaningful manner and considering functions of
the observed minus predicted responses in each region. See for example Tsiatis (1980)
and Hosmer and Lemeshow (1989). Extensions of this idea to correlated data are possible
by considering differences between data-based and fully model-based variance contribu-
tions in each region, where these terms are subject to some definition; examples of this
will be seen in sections 6.3 and 6.4. Lipsitz, Fitmaurice and Molenberghs (1996) consider
partitioning response categories to construct goodness-of-fit statistics for ordinal response
models. Other recent references in general include le Cessie and van Houwelingen (1995),
Farrington (1996) and section 3.3 in Ng (1997).

In the following section we propose a procedure to assess the fit of a model to non-
independent data, under very general conditions. It is quite straightforward, yet nevert-
heless appears to give valuable insight into how well a given model reflects the covariance
structure of the data, having assumed that a given mean specification cannot be improved

upon. We propose both numerical statistics as well as associated plots to assess goodness-
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of-fit.
The developments in this chapter will pertain to cases in which there is a single source

of clustering, so that observations are correlated within but independent between clusters.

6.2 Covariance-based Measures of Goodness-of-Fit

6.2.1 Motivation

Any definition of goodness-of-fit involves some notion of the extent to which predicted
values from a model (V') agree with the data observed (Y). Assuming that the form of the
chosen model is correct, improvements in fit are then attempted by refining the formulation
for E(Y'), and evaluated with a test for goodness-of-fit. With clustered data, however, one
is often faced with overdispersion of some form, even when the mean structure of the
data has been modelled as carefully as possible. In such cases the resulting overdispersion
can only be corrected by a more careful modelling of the covariance structure. As an
interesting example, consider the data from a toxicology experiment cited in Ganio and
Schafer (1992). This study was conducted to investigate the carcinogenic effects of the
toxic compound aflatoxin. Forty tanks of rainbow trout embryos, each containing between
84 and 90 fish, were exposed to either aflatoxin Bl (AB1) or aflatoxicol (Al), a related
substance. Exposure occurred for one hour at one of 5 doses: 0.01, 0.025, 0.05, 0.10 or 0.25
parts per million; recorded was the incidence of liver tumors after one year, in each of the
tanks. A logistic model adjusting for the effects of dose and compound type, as well as their
interaction, seems to fit quite well at first glance, but examining the individual deviance
components actually suggests underdispersion among the responses from the AB1 tanks,
and overdispersion in those from the Al tanks. Hence a truly well-fitting model for these
data must have a covariance structure sufficiently flexible to accomodate this phenomenon,

and it would be desirable to have a way of assessing whether a given covariance structure
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improves on a simpler alternative, in the same manner that other goodness-of-fit measures
evaluate the improvement on a given mean response function (see section 6.4 for a detailed
discussion of this example). As stated by Vonesh et al. (1996), p.577, “the utility of any
statistical model is determined not only by its ability to approximate an otherwise unknown
response function but also by its ability to account for the accompanying background
noise”. In a similar spirit as these authors, we shall therefore be concerned with assessing
how well the covariance structure of a given model fits the empirical covariance structure
as reflected by the data, assuming at the outset that the mean response function has been

correctly specified.

6.2.2 Analysis of Var(T;; Y;;)

Let Y;; denote the response of individual j in cluster ¢, j = 1,...,n;, i = 1, ..., K, assuming
independence between observations from different clusters. Let E(Y;;) = p;j, and Y be
the entire data vector, with E(Y) = p. Further, let the parameter vector p denote the
non-zero intra-cluster correlations. We base our measure of the empirical variance in the
data on a quantity Vp(Y'; p), which we call the data-based variance of 3~;; Y;; and define

as

K n; K
Ww(¥;p) = X3 (Yi—pi)*+2d Y (Y — pis)(Yes — pis)

i=1 j=1 =1 j<j!

Ap(Y;p) + Bp(Y'; p). (6.2.1)

Define Vi (p, p), the model-based variance of 3_;; Y;j, as

K n; K
Vu(p,p) = Y3 Var(¥i) +2) Y Cov(Yy, Yiy)

i=1j=1 i=1 j<j

Au(p, p) + Bu(p, p), (6.2.2)
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where Var(Y;;) and Cov(Y;;,Y;;) depend on a given model specification. We wish to
compare Vp(Y'; p) with Vi (p, p). Note that under the true model for the data,

Vi(p,p) = E[Vo(Y;p)] = Var(3_Yy;).

In practice we need to estimate Vp(Y'; p) and Va(p, p) by replacing p and p with their
estimated values from a given model under consideration. (Note that although largely
empirical, Vp(Y'; p) is also weakly model-dependent in that it depends on the mean for-

mulation). Thus we may write

Vo = Vp(Y;p) = Ap+Bp and
Vi = Vu(d,p) = An+ Bu.

(Note that to compute f/M we need estimates of the marginal covariances between Y;; and
Y:;. These are directly available for marginal models, but usually have to be approximated
for conditional models. For this latter class of models, in fact, some adjustment is generally
also necessary to obtain the marginal means. See section 6.3 for further comments on this).
The goal is to find a model which fits well, in the sense that |Vp — V| is small.

To determine whether or not Vp and Vi differ significantly in a statistical sense, we need
to have an idea of the sampling variability in Vp. If covariates are on the level of the cluster
only, so that p;; = p; for all j and Corr(Y;;, Yij) = pi, 7 # 7', it is possible and feasible
to compute Var(Ap(Y'; p)) and Var(Bp(Y'; p)) exactly. Straightforward calculations show
that

K n;
Var(Ap(Y;p)) = Var{d_ Y (Y —pi;)*}

=1 j=1

K
= Y npi(l — pi)(1 — 2p:)*[1 + pi(ni — 1)) (6.2.3)

i=1
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Some further algebra yields the result

K
Var(Bp(Y;p)) = Var{2) > (Y — pi) (Vi — piy)}

i=1j<j’
K .
= 4343 b1 = 201 = pta — 2} +
pi(1 —pi)* {1 - 4p:}] + 2%}, (6.2.4)

where
¥; =3 (';‘) {E(Y:;YaYimYin) — 4p:E(Yi;YaYim) + 3pf + 6pi03 (1 — i) — p307 (1 - pi)*} +

3 (f;) {(1 — 2p)E(Ys;YaYim) + 50} (1 - pi) — 202} (1 — i) — pipi(1 - pi)* — 9¥ + 29},
FJF#Fl#Fm#£n.

We shall estimate Var(Ap(Y'; p)) and Var(Bp(Y'; p)) by replacing p; and p; with p; and j;
in (6.2.3) and (6.2.4). Now in order to compute ¥; we need to calculate the fourth and third
order mean products E(Y;;YuYimYin) and B(Y;;YaYim). If pi; = p; for all j, E(Y;;YuYimYin)
takes the same value for all j # [ # m # n. Further, if p; > 0, the beta-binomial
distribution may be used to compute these mean products. Letting R be distributed as
beta-binomial(a;, b;) with n; = 4, where a; = p;(3- — 1) and & = (1 — p;)(5; — 1), we have
in this case that

E4i = E(YtJYtIKmKn) = P(R = 4)
a;(a; + 1)(a; +2)(a; + 3)
(ai + &) (as + b + 1)(ai + b + 2)(a: + b + 3)°

Similarly,
ai(a: +1)(ai +2)
(@ + b;)(as + b + 1)(ai + b; + 2)

Note that this parameterization does not allow for negative correlation, since a; and b; are

Es; = E(Yi;YaYim) =
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positive parameters in the beta-binomial distribution. If however we express Ej; and Ej;

as functions of p; and p;, we get

_ Micofmlpi” — 1] + £} _ Miofmilor* — 1] + K}
Ej; = l'IZ:o{P,'l —1+k} and Ey = HLO{P;I “1+ A} s (6.2.5)

which coincides with the alternative parameterization above when p; > 0, but is also
well-defined for p; < 0. The values in (6.2.5) in fact correspond to those obtained from
the extended beta-binomial model, described in Prentice (1986), which allows for negative
correlation. We therefore compute E3; and Ey; using (6.2.5) in general, ensuring of course
that p; lies in the admissible range (—(n; — 1), 1).

It would be considerably more cumbersome to derive a similar formula for Var(Vp(Y'; p)),
due to the non-trivial covariance term Cov(Ap, Bp). Furthermore this is not necessary.
Having explicitly expressed Vp and Vjs as sums of two terms A and B, we note that A is the
contribution to the total variance due to the nominal dispersion, and B is the contribution
due to over- (or under-) dispersion. If the mean of the model is correctly specified, from
which follows the form of the marginal variances in the exponential family, then Ap and
Ay are generally very similar, and the comparison one is really interested in is Bp — By.
To illustrate, we briefly consider the analysis of the toxicology data introduced in section
6.2.1. Saving the details for section 6.4, three models were fit to these data: a simple logi-
stic model and two GEE models which address the correlation structure in different ways.
Table 6.1 reports the values of fip and fiy, as well as the standard error \/V;I(AD(Y; D))
in brackets for each of these models. The close proximity of Ap and Ay seen hereis typical

of what we have observed in other real and simulated data sets and emphasizes that any
discrepancy between Vp and Vi is bound to be due to a large difference between Bp and
By, indicating an incorrect modelling of the correlation structure. We will therefore focus
on Bp and BM.

Equation (6.2.4) provides an exact expression for Var(Bp(Y'; p)) when covariates are
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Logistic Model GEE-M1 GEE-M2
Ap  580.72 (11.10) 580.72 (9.73)  580.72 (10.08)
Ay 580.72 580.80 580.96

Table 6.1: Comparison of Ap and A for the toxicology data given in Ganio and Schafer
(1992).

on the level of the cluster only. Whereas an analogous expression can be developed for
the case of individual-level covariates, this becomes computationally intractable even for
moderately sized clusters. In addition, an estimate of Var(Bp(Y ; p)) does not give any
additional information beyond the second moment about the distribution of Bp(Y';p).
For these reasons we use simulation as a means for estimating Var(Bp) in cases where an
exact result is difficult to compute, and to study the shape of the distribution of Bp. To
this end we shall treat the estimated values p and p from a given model fit as fixed, and
proceed as follows: _

1. Fit the model of interest, M, to the original data Y to obtain p and p (if M has a

non-independent correlation structure).

2. Generate data Y* from model M, using p and p (if M was parameterized in terms
of p and p), or the original parameter estimates from the fit in (1) (if p and p had
to be computed from these).

3. Compute Bp(Y *; D).

4. Repeat steps (2) and (3) N times.

This will give rise to é,‘,t, 31‘,2, veey B{,N. Using these values we compute the simulation-

based variance estimate

— N rp= _ T2
Vax(Bo(Y;p) = Ze={T0. — Bk

(6.2.6)
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where B, = 37| ﬁa./N.

A model which reflects the correlation structure of the data well should therefore yield a
data-based estimate Bp reasonably close to By, where what is reasonable is determined in
part by the shape of the histogram of the simulated values {Bb}. If the degree of skewness
is not unduly severe, then Bp and By, might be expected to be within two standard errors
of one another. In other words the standardized statistic

. Bo—Bu

S —_—
? v/Var(Bp)

(6.2.7)

should be in the range (-2, 2).
To investigate how well a given model captures the correlation structure of the data at
the cluster level, one can examine relevant partitions of Bp and Bag; this is discussed in

the following section.

6.2.3 Partitioning of Bp, By

As alluded to in section 6.1, the idea of partitioning the covariate space into meaningful
groups and comparing the contributions to Bp and Bjs in each group can be useful in de-
tecting somewhat more subtle correlation patterns. This proves to be effective for instance
in the toxicology example mentioned earlier, in which tanks should be grouped according
to compound type. Alternatively, recall model M6, described in section 5.5.2, in which
the variance of the random component in the linear predictor for each cluster is a function
of cluster size. In comparing the fit of such a model to one which assumes this variance
is common across all clusters, one might divide the data into groups of clusters of similar
sizes and examine separately the contributions to Bp and By from each group. We shall
pursue this particular example further in section 6.3.

In general, suppose a partition of the covariance terms B into m parts is of interest, so
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that B can be written as
B=By+B:+---+ Bn.

Noting that B is a sum of K independent contributions, one from each cluster, we can also

express B as N
B=Ydi=Y di+ Y di+---+ Y d,
i=1

i€ i€, i€Qm
where {Qy, ..., O} partitions the set of clusters so that Y ;eq, & = By, { = 1,...,m. Asindi-
cated in the previous section, we can compute data-based as well as model-based estimates
of d;. These are given by

dp, =23 (Yi; — 5i;) (Vi — i)  and  dag =2 Cov(Vy, V).
i<s i<

Hence Bp = Y BD, and By = ) 3yilty BM,, with

Bpl = E JD.- and BM‘ = z ciM.-, L= 1,...,m.
i€R, i€,

Specific questions concerning the fit of a given model, regarding in particular its correlation

structure, can be investigated by looking at the standardized values

5, _ BD, - BM‘

B, = —— A )
* /Vax(Bp,)

As above, we can estimate Var(Bp,) using either equation (6.2.4) or a simulation-based

estimate. In either case, Var(Bp,) = Tien, Var(dp;), where from (6.2.4),

t=1,..,m. (6.2.8)

Var(dp,) = 4{ (’;‘) (a1 - M1 - pibi(L - )} + B2 - {1 - 4} + 28}, (62.9)

or, for the simulation-based estimate, the individual terms in each of éfn , ﬁl‘,z, eey 35 ~ are
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used to compute Va\t(tip.-). That is, noting that BB. = J;,n RN J;_.,‘K, s=1,..,N, we

obtain the simulation based estimates

c',=1 {é‘D,.’ 2'D.' }2

Var(dp,) = ~ :; , i=1,.,K, (6.2.10)

where d, = TN | Jb“/N.

It is also useful to examine plots of the individual standardized values

S'i = (JDE - JM.)/V v;r(d-D.)

for each cluster. This provides a visual assessment of the model fit and allows omne to
identify outliers (i.e. clusters inconsistent with the model-based correlation structure).
Such plots are considered in section 6.3 and also in the example in section 6.4.

This discussion has only focussed on partitioning the covariate space according to groups
of clusters. One might also consider meaningful groupings of the observations within clu-
sters. Recall for example model M10, also from section 5.5.2, under which each individual
in a given cluster belongs to one of two groups, with the impact of the cluster-level random
effect differing in the two groups. Here one might for a given model fit examine separately
the contributions to Bp and By (across clusters) from individuals belonging to the same
group.

Finally, we have considered only cross-sectionally clustered data here. But the same
ideas apply in principle when the dependence between observations is due to longitudinal
correlation, though it will be difficult to distinguish minor differences in the intra-individual
correlation structure. Also, unless a reasonably large number of repeated observations is

available on each subject, plots of the type discussed above will not be very informative.
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6.3 Analysis of |Bp — By| Based on Simulated Data

In this section we examine a number of the data sets which were simulated under model

M6 as described in section 5.5.2. Recall that we specified this model as follows:

Ri| b ~ Bin(ni,pi(%)), :=1,...,50,

s bg v
log (%) = ﬂo +,Blz,- + ‘/—5;6 b‘. b,' ~ N(O, 0’2),

1 ¢:=1,.,25

Ty = y (63.1)
0 i=26,...,50

(nl,n;, ey n25) = (20, 40, 60, eeey 500), Ni4p2s = Ny, 1= 1, ceny 25,

with the true parameter values taken to be (8o, 51,7, 02) = (—2,1,1,1). For each simulated
data set we computed w, the estimated range (over the span of cluster sizes) of the variance
of the random term /20/n; 7b,-. That is, we calculated &, = a3, — (20/500)‘7'53,., r =
1,...,300, where the subscript r denotes the estimate from the rth simulated data set.
We then selected those data sets among the 300 giving the largest and smallest estimated
ranges, the endpoints of the interquartile range and the median value. This corresponded
to values for 4 and a? giving estimated ranges @ = 0.001, 0.392, 0.907, 1.683 and 9.869. We
wish to compare the fit of the true model to these data with that of the misspecified model
which assumes that 4y = 0 (& w = 0); the idea is to illustrate that the proposed method of
assessing model fit will indeed reveal a poorer fit for the misspecified model in cases where
there is evidence that the variance range is larger than zero, and an adequate fit in cases
where w seems to be close to zero. We will show that as the magnitude of @ increases, the
discrepancy in the fit, in the sense we have discussed, of the true model versus that of the
misspecified model increases correspondingly, with only the former continuing to fit well.
In order to compute Bp and By for random effects models such as (6.3.1) we need
an estimate p; of the marginal probability Ey(p;(b;)), as well as estimates of the marginal
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correlations. Using cluster-specific parameter estimates one could simply apply the ap-
proximations discussed in section 5.3. Recall however that the formula for p; (equation
(5.3.9)) may not be very accurate for large values of 2, or f202. We therefore recommend
using numerical integration for computing the marginal covariance terms for random effects
models, as well as the marginal means.

Model 6.3.1 suggests that the cluster-level variability is a decreasing function of cluster
size. To investigate how well a given model reflects this characteristic of the data, we shall
compute not only Bp and Bjs but examine in particular a breakdown of these terms into
four contributions from clusters of similar sizes. The following assignment of clusters was

chosen for the four groups:

0 : contains clusters sized 80 or smaller (i=1,...,.4 and 26,...,29)
§2; : contains clusters sized 100 - 200 (¢=5,..,10 and 30,...,35)
23 : contains clusters sized 220 - 340 (¢#=11,..,17 and 36,...,42)
4 : contains clusters sized 360 - 500 (¢=18,...,25 and 43,...,50).

What we should find is that the misspecified random effects model, assuming no dependence
of the cluster-level variability on n;, underestimates the dispersion in smaller clusters and
overestimates it in larger ones. For each of the five data sets described above, table 6.4
contains the statistic Sp as defined in equation (6.2.7), as well as SB,,..., 58, (equation
(6.2.8)), for the following model fits: the correct model, as in (6.3.1); the misspecified
model assuming v = 0; and finally, for the sake of comparison, the standard logistic model.
In this case maximum likelihood was used to fit all models.

Recalling that $g and 5'3,, ...,S’B‘ can be computed in two ways, depending on how
the relevant standard errors are calculated, we give both estimates for these quantities in

table 6.4. Rows flagged by (E) refer to values standardized by variance estimates based



CHAPTER 6. GOODNESS-OF-FIT 177

on the exact formula given in the previous section, and those flagged by (S) refer to values
standardized by simulation-based variance estimates, computed from N = 200 simulated
data sets. To generate data Y* = (Y7, ..., Ygp) from model (6.3.1), for example, we first
obtain a random vector (], ...,b3) from the N(0,02) distribution. We then compute
pi(87) = (1 + exp{—(Bo + Brz: + /20/n; -‘i'b,?)})‘1 and generate an observation Y;" (= R})
from the Binomial(n;, p;(b)) distribution, for ¢ = 1,...,50. Here o, Gi, 4 and o2 refer to
the estimates from the fit of model (6.3.1) to the original data.

Examining the histograms of the simulated values {53} for these models revealed that
the distribution of Bp tends to be only moderately right-skewed. One could study this
sampling distribution more closely by increasing the number of simulations, and in fact an
essentially exact test of the hypothesis Hy : Bp = Bay is obtained as N — co. However for
practical purposes, even reporting the standardized statistics discussed above is sufficient
to provide a legitimate quantitative assessment of how close Bp and By are, albeit without
the additional support of a p-value. For illustration the histograms for the three model fits
corresponding to the largest value of @ are shown in figure 6.1.

To allow a fuller appreciation of table 6.4, we present below the detailed results of a
single model fit: the simple (misspecified) random effects model fit to the data set giving,
under the true model, the median value of &. For this model we obtained o2 = 0.0892
with an approximate standard error of 0.049. The data-based (D) and model-based (M)
estimates of B as well as B;, B;, Bs and B, are given below (table 6.2). The respective
simulation-based standard errors are shown in brackets, in addition to the ones based on
the exact formula. Note that for ép we have given two simulation-based standard errors.
The first was computed using formula (6.2.6). An alternative estimate of the same quantity
is given on the line below, calculated as

s.e.(Bp) = ,’ f\?&(ép,.), (6.3.2)
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B B B, Bs B,
D 7206.0 271.1 694.1 3261.1 2979.7
(4167.9)s (81.9)s (435.3)s (1509.3)s (3654.7)s
(3978.8)s
(3700.4) (76.0)g (467.9)g (1450.4)g (3371.1)g
M 10843.4 58.1 694.4 2746.1 7344.9

Table 6.2: Detailed results of simple random effects model fit for & = 0.907; simulation-
based and exact standard errors are subscripted by S and E respectively.

where VaTr(JD..) is computed using (6.2.10). Both estimates are in reasonably good agree-
ment with the one obtained from the exact variance formula, though it appears in this
model fit and in others that the simulation-based standard error computed using (6.3.2)
tends to be slightly closer to the true value; hence we use it for computing the simulation-
based standardized statistic S5. At any rate, the agreement between ‘exact’ and ‘simulated’
standard errors seen in the table above is reflective of that observed in other model fits and
other data sets, and is encouraging, given the modest number of simulations performed.
From the values above we can directly compute S5, Sp,, Sp,, Sp, and Sp,. These are
given in table 6.3, and are flagged by (S) or (E), depending on which quantity was used to
standardize.

Se__Ss, Sp, Ss, Ss,
(S)  -091 2.60 0.00 0.34 -1.19
(E) -098 2380 0.00 036 -1.29

Table 6.3: Standardized statistics computed from the values in table 6.2.

From table 6.4 we note that in all the data sets, the logistic model provides a much
poorer fit than either of the random effects models. In the first two data sets (& = 0.001 and
@ = 0.392) there is no distinguishable difference in fit between the misspecified and the true
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Sp "S5, Ss, Ss, Ss.
S = 0.001 Logistic Model (S) 1497 1.08 7.8 432 13.05
(E) 1511  0.97 690 4.07 13.66

Misspecified R. E. Model  (S) 0.0030 -0.074 1.04 -0.77 0.18
(E) 0.0033 -0.081 102 -0.79 0.20

Correct R. E. Model (S) 0.0049 -0.078 1.07 -0.77 0.18
(E) 0.0054 -0.083 1.02 -0.79 0.20
% = 0.392 Logistic Model (S) 663 040 4.37 809 176

() 634 034 423 7.67 168

Misspecified R. E. Model  (S) -0.32  -0.17 0.85 123 -1.03
(E) -03¢ -0.15 074 133 -1.12

Correct R. E. Model (S) 012 -096 042 156 -0.82
(E) o012 -0.83 040 156 -0.85
% =0.907 Logistic Model (S) 1438  7.72 5066 1451 649

(E) 14.12 7.71 539 13.62 6.49

Misspecified R. E. Model  (S) -0.91  2.60 0.00 0.34 -1.19
(E) -098 280 000 036 -1.29

Correct R. E. Model (S) -0.11 0.40 -0.54 0.98 -0.62
(E) -0.11 0.40 -0.51 1.02 -0.64
& = 1.683 Logistic Model (S) 11.38 13.07 854 804 5.10

(E) 1105 1191 848 7.92 4.91

Misspecified R. E. Model  (S) -1.16  4.70 113 -0.41 -1.33
(E) -l24 492 1.02 -042 -l.44

Correct R. E. Model (S) 024 065 045 048 -0.25
(E) 025 074 041 049 -0.27
% = 9.869 Logistic Model (S) 842 18.73 12.97 423 232

(B) 822 1585 1251 3.97 2.30

Misspecified R. E. Model  (S) -2.04 523 094 -1.43 -1.84
(E) -22¢ 515 0.85 -148 -2.04

Correct R. E. Model (S -066 -0.15 042 -0.56 -0.71
(E) -068 -0.16 039 -056 -0.75

Table 6.4: Analysis of Sp = (Bp — Buy)/ \/V;r(Bp) based on simulated data from model
(6.3.1); (each set of three horizontal panels corresponds to one data set — statistics stan-
dardized by simulation-based standard errors are flagged by (S), those computed on the
basis of the exact formula by (E)).
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Figure 6.1: Histograms of the simulated values {Bp} for the three model fits corresponding
to @ = 9.869; (for the logistic model, Bp = 3856.3 is too far in the right tail to be located).

random effects model. Although there is strong evidence that the data are overdispersed,
there is no basis for suggesting that this overdispersion is a function of cluster size. In
the third data set (& = 0.907) lack of fit in the misspecified model becomes apparent.
Overall [Bp — By does not differ significantly from zero, but the model clearly seems to
underestimate the dispersion in the smaller clusters (n; < 80). Lack of fit of this type
becomes more dramatically evident in the last two data sets (& = 1.683 and @ = 9.869),
with only the fit of the true model continuing to be adequate. Note that in the last three
data sets the values Sp, through 5'3‘ are decreasing monotonically for the misspecified
model fit, with $p, > 0 and Sp, < 0. This reflects the fact that, as anticipated, this model
underestimates the dispersion in smaller clusters and overestimates it in larger ones.

For each of the 15 model fits under consideration, figure 6.2 shows plots of the stan-
dardized values §; = (dp, — JM,) / m for each cluster, plotted against cluster size.
These complement the numerical assessment given in table 6.4. As suggested above, the
plots for the two random effects model fits to the first two data sets are very similar.
The lack of fit of the misspecified model to the third data set seems due to one cluster in
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Figure 6.2: Plots of 5; vs Cluster Size, for simulated data sets 1 through 5 (corresponding
to @ = 0.001 through 9.869) and various model fits; coordinates indicated refer to points
out of range.

particular, whose variability, assuming the estimated mean to be accurate, is much larger
than that predicted by the model. In the last two data sets the fit of the simple random
effects model is such that §; follows a noticeable decreasing pattern with increasing cluster
size, indicating a likely dependence of the extraneous variation in the data on cluster size.
In these as well as the third data set, the plots corresponding to the correct model fits,
though still indicative of some lack of fit in individual clusters, show visible improvements

over the misspecified random effects model fits.
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Logistic Misspecified Correct
Model L. R. Stat. R. E. Model L. R. Stat. R. E. Model
@ =0.001 -6251.96 -6217.02 -6217.02
(& =-2.73 (.30)) (& =-2.72 (1.71))
(¥ = 0.0032 (.63))
69.88 0.0
@ =0.392 -6156.42 -6144.19 -6143.01
(&= -3.35 (.37)) (& = —0.89 (1.20))
(9 = 0.96 (.48))
24.46 2.36
@ =0.907 -6508.15 -6467.46 -6463.73
(& = —2.42 (.30)) (@ = —0.052 (.84))
(% = 0.97 (.34))
81.38 7.46
w =1.683 -6097.97 -6067.32 -6061.07
(@ = —2.46 (.32)) (& = 0.54 (0.79))
(¥ = 1.31 (.33))
61.30 12.5
w=9.869 -6228.48 -6191.29 -6178.93
(& = —1.96 (.29)) (& = 2.29 (0.91))
(% = 1.98 (.40))
74.38 24.72

Table 6.5: Values of the maximized log-likelihoods from the model fits presented in table
6.4. Point estimates of @ = log 02 and «, with standard errors in brackets, are shown where
applicable. Likelihood ratio statistics for adjacent model comparisons are also given.

Since we were able to carry out maximum likelihood estimation for these models, and
since the three model formulations we considered are all special cases of the true model
(6.3.1), we briefly compare the results obtained here with likelihood ratio tests. Table 6.5
gives the values of the maximized log-likelihoods from the model fits presented in table 6.4.
In all cases the maximized likelihood under the misspecified random effects model is much
larger than that under the simple logistic model. No significant increase in likelihood is
noted for the first two data sets, when comparing the fits of the misspecified and the correct
random effects model. For the last three data sets, however, the maximized likelihood
under the true model is indeed significantly larger when compared to the value under the
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competing simpler random effects model; computing twice the difference in log-likelihood
yields 7.46, 12.5 and 24.72 respectively for these data sets, suggesting a decidedly better
fit under the true model.

In the following section we apply the methods developed here to a real data set, for
which we compare two GEE models to decide on the best-fitting correlation structure.

6.4 Example: Analysis of Toxicology Data (Ganio and
Schafer (1992))

Here we will investigate the toxicology data described in Ganio and Schafer (1992), and
discussed briefly in section 6.2.1. Recall that 40 tanks of rainbow trout embryos were
exposed to one of two compounds, aflatoxin Bl (AB1) or aflatoxicol (Al) at one of five
doses, the response of interest being the incidence of liver tumors (r/n) seen in each of the

tanks after one year. The data are listed below.

Dose (ppm) Aflatoxin B1 ] Aflatoxicol

0.010 3/86 5/86 4/88 2/86 9/87 5/86 2/89 9/85
0.025 14/87 14/90 9/83 12/88 30/86 41/86 27/86 34/88
0.050 29/90 31/89 33/89 26/87 54/89 53/86 64/90 55/88
0.100 44/86 40/80 44/89 43/88 71/88 173/89 65/88 72/90
0.250 62/87 67/88 59/88 58/84 66/86 75/82 72/81 173/89

In studies such as this one often finds extraneous tank-to-tank variation. In this parti-
cular set of data, however, there is evidence to suggest that there is some overdispersion in
the aflatoxicol tanks only, and that the aflatoxin Bl tanks may in fact be underdispersed.
We therefore examine three models for these data: the first, a logistic model fitting the
main effects of compound type and dose, as well as their interaction; the second, a GEE

model having the same marginal mean and assuming exchangeable correlation between fish
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in the same tank, common across all tanks (GEE-M1). The third model also assumes that
intra-cluster correlation is exchangeable, but estimates a separate correlation parameter
for each group of tanks, allowing for differing dispersion under the two compound types
(GEE-M2).

Letting p be the common correlation parameter in GEE-M1, and (p451, pa1) the correla-
tion parameters for the AB1 and Al tanks respectively in GEE-M2, the following estimates

were obtained:

GEEM1: 5 = —0.00269; GEE-M2: j.5 = -0.00821
pu = 0.00284

To compute relevant simulation-based statistics as outlined in the previous sections, we
need to be able to generate both positively and negatively correlated binomial data. The
beta-binomial distribution can be used to generate positively correlated data. Simply use
the estimated marginal probability of response and the positive intra-cluster correlation
estimate for a given tank, say p; and j 4, to calculate a; = Pi(z=—1) and b; = (=555 —
1); then generate an observation p; from the beta-binomial(n;, a;, b;) distribution, where
n; refers to the tank size. Finally, use this value to simulate an observation R} from the
Binomial(n;, p}) distribution.

The generation of negatively correlated binomial data is more problematic. Emrich and
Piedmonte (1991) describe an algorithm for generating vectors of binary variates which al-
lows for a small range of negative correlations, but this range turns out to be too restrictive
in this case, given our estimates of p and pap; and the relatively large cluster sizes. For
similar reasons, the extended beta-binomial model presented in Prentice (1986) is not sui-
table either for simulating negatively correlated data in the present setting. We therefore

resort to an ad hoc approach for simulating observations R; which can be represented as
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follows:

n;
R; = E}’ij’ Yt':i ~ Bin(lapi)a COII'(KJ', },l'.‘i') =p<0, J # j"r

j=1

which implies that

E(R;)=mp; and Var(Ri) = nipi(l — pi)[1+ pi(n: — 1)]

< mpi(l - p;).

Now given p; and p; it is easy to generate values

R, = Si\/1 + pini — 1) + maps(1 — /1 + pi(ns — 1)),

where S; ~ Bin(n;, p;). Furthermore, R} has the same mean and variance as R;. Unfortu-
nately R; is not integer-valued, and hence cannot be directly used in place of R;. However
rounding to the nearest integer will produce a variable with approximately the correct
specifications in terms of mean and correlation. Therefore, given the estimated marginal
probability of response and the negative intra-cluster correlation estimate for a particular

tank, say p; and j, generate a value S? from the Binomial(n;, p;) distribution and use

B: = S35 (m = 1) + nafu(l — /14 A = 1))

rounded to the nearest integer as the simulated observation. The simulation-based standard
errors computed using data generated in this manner were quite close to those based on
formula (6.2.4); see table 6.6.

For each of the three models of interest we computed Bp and By, as well as the
breakdown of these terms into the sum of the contributions from the two types of tanks.
Representing this division of B as B = Byg; + B, table 6.6 gives the data-based and
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B “Bas Ba
Logistic D -177.00 -214.68 37.68
Model (137.14)s  (100.50)s  (93.32)s
(140.42)z  (101.17)s (97.39)s
M 0.00 0.00 0.00
GEE-M1 D -177.05 -214.68 37.63

(104.19)s  (76.64)s  (70.59)s
(107.99)s  (77.83)s (74.86)z

M -134.80 -67.74 -67.06

GEEM2 D  -176.96  -214.67  37.71
(120.39)s  (30.41)s (125.77)s
(124.89)z  (30.09)z (121.21)g

M -135.78 -206.53 70.75

Table 6.6: Goodness-of-fit analysis for models fit to toxicology data given in Ganio and
Schafer (1992); simulation-based standard errors for Bas were computed using formula
(6.3.2) applied to these data.

model-based estimates of B, B4p: and By for each model. As before, standard errors are
given in brackets. The simulation-based values were computed from 200 simulated data
sets, as in section 6.3. Table 6.7 reports the resulting standardized statistics Sz, Sz Bt
and $p,,.

Fitting the logistic model to these data produces a deviance of 31.93 on 30 degrees of
freedom, indicating at first glance a perfectly adequate fit. Indeed, even Bp and By do not
differ significantly for this model, nor for either of the GEE models. However, decomposing
Bp and By into the contributions from the 20 AB1 tanks and the 20 Al tanks, it is apparent
that the logistic model does not adequately reflect the underdispersion in the data from
the AB1 tanks. The data-based covariance contributions to Bp from this group tend to be
significantly smaller than the covariance or fully model-based ones (these all being zero in
the logistic model). GEE-M1 does not yield a much better fit, but GEE-M2 does show a
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5p HSBAQL gia_

Logistic Model -1.26 -2.12  0.39
GEE-M1 -0.39 -1.89 1.40

GEE-M2 -0.33 -0.27 - -0.27

Table 6.7: Standardized goodness-of-fit statistics, computed from the values in table 6.6;
the ‘exact’ standard errors were used throughout to standardize.

Logistic Model QEE-M1 QEE-M2

-0 - ) 0 mc
Tank Number

o =0 ) -o
Tank Number

° o P ° e =
Tank Numnber

Figure 6.3: Plots of $; vs Tank Number, for various model fits to Ganio and Schafer’s
toxicology data.

significant improvement in that under this model the model-based estimates are consistent
with the data-based estimates, both across all tanks and when broken down by compound
type.

Figure 6.3 shows the plots of the standardized values S; = (dp, — da;)/ Vv Var(dp,) for
each tank, plotted against tank number where numbers 1 through 20 correspond to the
ABI1 tanks, and 21 through 40 correspond to the Al tanks. The lack of fit of the logistic
model and GEE-M1 is manifested here in that for most of the AB1 tanks, 5; < 0, implying

that dp, is consistently smaller that du;; in other words the variance in this group of
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tanks is consistently overestimated by both the the logistic model and GEE-M1. This
pattern is no longer evident in the plot for GEE-M2, the more random scatter of points
suggesting that the estimation of two correlation parameters more adequately reflects the
correlation structure in the data. One should note that the plot for the logistic model fit
looks qualitatively very similar to a plot of the deviance contributions from the individual
tanks versus tank number. Such analogous deviance plots are not available, however, for

the two GEE models.

6.5 Discussion

We have described a procedure to assess the fit of a model to correlated data under quite
general conditions. Specifically, our focus was to test how well the covariance structure of
a given model fits the empirical covariance structure as reflected by the data, assuming the
model correctly specifies the mean.

Throughout this chapter it is essential to interpret the standardized test statistics as
conditional on the estimates p and p from the fit of the model under consideration. The
statistic Sp (equation (6.2.7)) and the various analogous quantities discussed in section
6.2.3 are standardized assuming that p and p are fixed values, i.e. taking into account
only the variability in Bp (the data-based term). For a given model of interest, M, Sp
should therefore be used to address question

Q1: Are the observed data consistent with model M, having true parameter
values p = p and p = p?

as opposed to
Q2: Is the difference between Bp and By significantly different from zero,
assuming the data were generated according to model M with parameters

p=pand p=p?



CHAPTER 6. GOODNESS-OF-FIT 190

In answering the first question, Bp is compared to a fixed constant whereas in the second
question, the difference between two estimates of the same quantity is compared to zero.
In addressing Q2 the variability in the difference (Bp — Bas), which is a function of the
variability in both Bp and By, needs to be considered. Var(Bp — By) can be estimated
using a slightly altered version of the algorithm given on page (1IZI2I) Keeping steps (1), (2)
and (4) the same, replace (3) by

3’. Fit model M to Y* to obtain p° and p*. Compute

A* = Bp(Y*;5°) — Bu(p"; 5°).

This gives rise to A], A3, ..., A} and hence the parametric bootstrap estimate

Vax(Bp — Bu) = '-1{15'_ . Ay (6.5.1)

where A" = N | A:/N. From (3' ) it is clear that both Bp(Y *; $°) and Ba(p*; #°) depend
on Y*. Furthermore these two variables will be strongly positively correlated, hence we
might expect that

Var(Bp — Bu) = Var(Bp(Y";$")) + Var(Bu(p"; ")) — 2Cov(Bo(Y™; "), Bu(5"; "))
< Var(Bp(Y*";p")). (6.5.2)

The inequality in (6.5.2) will hold true if pp, the correlation between Bp(Y™;p") and
Bu(p™; p°), exceeds 0.5. In fact
ps > 0.5

is a conservative bound, since in order for (6.5.2) to hold we must have

Var(Bu(p"; ")) — 208y Var(Bp(Y*; ")) Var(Bu (% 7)) < 0,
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implying that

1 [ Var(Bu(3"; 57))
B > E\J Var(Bo (V"3 57"

But Var(Bu(p"; p7)) < Var(Bp(Y™; 7)), since

Var(Bp(Y*;p%)) = Var[E(Bp(Y ;%) (5%,7"))] + E[Var(Bp(Y"; ") (#°,5"))]
= Var(Bu(p"; #7)) + E[Var(Bp(Y™; §7)| (57, 57))]
2 Var(Bu(p™; 57)).

Hence /Var(By(p"; p°))/Var(Bp(Y™*; p°)) < 1 and pp > 0.5. Therefore if Var(Bp) from
(6.2.6) roughly equals the sampling variability in Bp(Y™; p"), we could also expect that

Var(Bp) > Var(Bp — By)

if pp > 0.5. Hence, the test statistics developed in this chapter will be conservative in

addressing the second question given above.

To illustrate, consider the goodness-of-fit summaries listed in table 6.4; we reanalyze

the data set corresponding to & = 9.869, using \/V;r(BD — Byg) as the standard error in
computing 5'3, and computing 5’31, S Ba» .S"B, and 5'3‘ in a similar fashion, using a sample
variance of the form (6.5.1) computed over the appropriate groups of clusters. Table 6.8
reports the simulation-based standard errors and those based on the exact formula (6.2.4),
used to compute the test statistics for each of the three models for @ = 9.869 shown in
table 6.4. These are flagged by (S) and (E) as before. Rows flagged by (A) report the
alternative standard errors based on (6.5.1). The corresponding test statistics are given in
table 6.9. As before computations were based on 200 simulated data sets.

For the logistic model, standardizing on the basis of (6.5.1) produces results very si-
milar to those given in table 6.4. This is a reflection of the fact that By (p*;p") = 0
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Standard Errors Proposed for: Sp Ss, 5‘3, Sg, S,

@ =9.869 Logistic Model (S) 457.38 29.07 114.59 221.63  382.83
(E) 469.38 34.35 118.78 236.21  386.30

(A) 443.85 27.77 103.77 214.14  370.79

Misspecified R. E. Model (S) 5368.55 87.87 534.25 1959.99 4968.56
(E) 4898.16 89.30 591.98 1894.63 4477.04

(A) 341731 83.71 469.85 1654.51 3995.71

Correct R. E. Model (S) 1584.75 407.70 640.09 843.70 1106.19
(E) 1544.33 378.05 674.68 843.00 1037.39

(A) 505.31 298.48 494.59 645.61 740.29

Table 6.8: Comparison of standard errors proposed for computing Sa, 5'31, 5'5,, 5'3, and
SB,, for the data set corresponding to @ = 9.869 (see section 6.3); rows flagged by (S) and
(E) denote simulated and exact standard errors as previously described, those flagged by
(A) the alternative standard errors based on (6.5.1).

> = o e =

Sp Ss, SB, SB, 5B,

@ =9.869 Logistic Model (S) 842 1873 12.97 4.23 232
(E) 8.22 1585 12,51 3.97 2.30

(A) 8.69 19.61 14.32 4.38 239

Misspecified R. E. Model  (S) -2.04 523 0.94 -1.43 -1.84
(B) -224 515 0.85 -1.48 -2.04

(A) -321 549 1.07 -1.70 -2.28

Correct R. E. Model (S) -0.66 -0.15 0.42 -0.56 -0.71
(E) -0.68 -0.16 0.39 -0.56 -0.75

(A) -207 -020 0.54 -0.73 -1.05

Table 6.9: Comparison of test statistics Sz, 5'31 ) 5'3,, 5'3, and 5'3‘, standardized according
to the values in table 6.8.
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under the assumption of independence, making (6.5.1) and (6.2.6) almost identical in this
case. As anticipated however, the standard errors computed from (6.5.1) are smaller than
those previously obtained for the two random effects models. This results in an inflation
of the statistics Sp, especially for the correct model. The more flexible a given model-
based covariance structure, the better it is able to reflect the data-based covariance; hence
pB should be an increasing function of model complexity. The empirical correlation bet-
ween Bp(Y";p") and Bux(D"; p*) over the 200 simulated data sets was 0.782 under the
misspecified random effects model and 0.944 under the correct model.

Note that the difference in the standard errors for each of S, By» S Bas 5'3, and S B, is not
nearly as dramatic as for the global statistic Sp. This is so because the contribution to
the model-based estimate Bpy(p°; p*) from a specific group of clusters which are similar in
their correlation structure, (say, Bi,l), tends to be less variable across simulated data sets
than Bp(p®; p°) in its entirety. The difference in the standard errors for 5'3‘ computed
on the basis of (6.5.1) and (6.2.6) diminishes as Var(B,‘m) — 0. Hence distinguishing
between the two questions posed at the beginning of this discussion is less important when
considering the fit of a modelled correlation stucture to the various parts of a division of
the covariate space. Reasonable arguments can be made for supporting either question
in the development of goodness-of-fit procedures. Proceeding as we have in this chapter
has the advantage that simulation-based standard errors are more easily computed, since
refitting the model of interest to each simulated data set is avoided. More importantly,
it is desirable when possible to avoid simulation altogether, and as described in section
6.2.2 a closed-form analytic expression is available for (6.2.6). This is applicable when
covariates are on the level of the cluster only, and also with individual-level covariates,
provided cluster sizes are small. In contrast, no analogous exact variance expression exists

for (6.5.1).
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Assessing goodness-of-fit in the manner described in this chapter focusses attention on
the covariance structure of the data in particular. The methods presented here complement
those of Chapter 5 and are useful in general for examining the adequacy of a model for
correlated data. Addressing the correlation structure in a basic fashion is central to making
correct inferences, but refinements to the model for Cov(Y') can also be important. As
indicated in Chapter 5, these may give useful insight into the mechanism which generated
the data, and will impact on interval estimates for estimated probabilities. We have descri-
bed procedures for examining this aspect of model fit; these should be interpreted as tests
of the difference in a data-based and a model-based quantity, wherein the null hypothesis
states that the true model is the one under consideration, with parameters equal to the

estimates obtained from the fit of the model to the original data.



Chapter 7

IMlustrations from the WSPP3 Data

In this chapter we focus on applications of the methods discussed in this thesis by consi-
dering various models for the WSPP3 data. The reader is referred back to Chapter 2 for

a description of the study.

7.1 Examination of Grade 7 and 8 Smoking Behaviour

in Baseline Non-Smokers

7.1.1 A Quasi Empirical Bayes Model

We begin by examining some aspects of elementary school smoking behaviour, as revealed
by the WSPP3. Consider data from the first three years of the study, corresponding to
the time the cohort of students spent in elementary schools. The subset of observations
we selected includes the responses (self-reported smoking status) in grades 7 and 8 (¢t = 1
and 2, respectively) of those students who were non-smokers at baseline. Considering
a complete-case analysis, this corresponded to 2 observations on each of 3380 students,
attending a total of 99 schools. We examined a logistic model formulation expressing the

195
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probability of smoking at time ¢ as a function of the following variables, which were found

to be of most relevance:

Cond : study condition (Cond = 1 for schools in one of the four treatment conditions

and 0 otherwise);

Risk : an individual-level smoking risk score (Risk = 1 for students classified on the basis
of external factors to be at low risk for smoking, Risk = 2 for students at medium
risk and 3 for students at high risk);

Gr8surv : a school-level risk score, coded as a continuous covariate ranging between 0
and 100, with larger values indicative of higher-risk schools; this was derived from an

examination of the proportion of smokers among the senior students in each school;
Gr8 : a grade effect (Gr8 = 1 for a grade 8 observation, 0 otherwise).

In addition the interaction between Cond and Gr8surv (Cx Gr8surv) was taken into con-
sideration. Since students’ individual-level risk could change over time, the value reported
at time ¢ — 1 was used to predict the observation at time t. In this analysis we focussed
on marginal smoking rates at each time point, relegating a student to the smoking state
(Y:e = 1) if (s)he reported to be either an experimental or a regular smoker, and to the
non-smoking state (Y;; = 0) otherwise. Letting z; refer to the realization of the covariate
vector (1, Cond, Risk, Gr8surv, Gr8, Cx Gr8surv) for student i at time ¢, the results of
fitting the composite QEB model

— exp{z:,B + by} . Yaal {Benr, Ben}) =
Yttl b(:t) Bin (1, 1+ exp{z:,ﬂ + b(lt)} ’ COI'I'(Y.]_, Y-zl {b(ll)) b(sz)}) = p12

b(“) € {bl’ ] b99}s be ~ N(Oa 0,2), k= 1,...,99
i=1,..,3380, t=1,2
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Logistic GEE Emp. Bayes QEB

Term est. s.e. est. s.e. est. s.e. est.  s.e.
Intcpt 44741 (2060) -4.1339 (.2185) -4.4237 (.2817) -4.1424 (.2810)
Cond 0.4123  (.1855)  0.4352 (.2026)  0.3546 (.2803)  0.3773 (.2787)
Risk 0.8657  (.0536) 0.6734 (.0558) 0.8517 (.0547) 0.6896 (.0571)
Gr8surv 0.0284 (.00881)  0.0304 (.0096)  0.0287 (.0135)  0.0312 (.0134)
Gr8 0.8640 (.0806)  0.8560 (.0680)  0.8690 (0.812)  0.8641 (.0708)
CxGr8surv  -0.0240 (.00992) -0.0272 (.0108)  -0.0255 (.0149) -0.0280 (.0147)
P12 0.2857 0.2499

o2 0.2001 0.1590

Table 7.1: Various model fits to the WSPP3 elementary school data.

are given in table 7.1, along with the estimates from the three models which are special
cases of the more general formulation, namely the ordinary logistic fit, assuming indepen-
dence between all observations, the GEE fit, ignoring the random school effects, and the
standard empirical Bayes logistic-normal model, assuming repeated observations on the
same individual to be independent.

As anticipated, the standard errors for the two school-level covariates Cond and Gr8surv
are similar for the empirical Bayes and composite model fits, and underestimated by the
other models. The standard error for the individual-level covariate Risk is similar in the
GEE and composite model fits; in this case it does not appear significantly understated by
the other models, which is perhaps not surprising given the rather moderate estimate of
p12 and only two observations per subject.

All models suggest that a student’s individual risk score and that of the school(s)
he/she attends are highly predictive of smoking status. Both the empirical Bayes and
the composite model fits indicate that there is a marginally significant interaction between
Cond and Gr8surv, suggesting that the intervention program may effect lower smoking rates
in students, but only in the high-risk schools. A graphical representation of the results of
fitting the QEB model, illustrating this phenomenon, is shown in figure 7.1. Both the
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Probability of Smoking - all Intervention Conditions vs Control
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Figure 7.1: Estimated probability of smoking in grade 8, for high-risk individuals (risk=3)
- dotted line, and low-risk individuals (risk=1) - solid line.

logistic and GEE model fits lead to a similar conclusion, but estimate this interaction to
be more significant than it is in actual fact.

The standard errors reported for the QEB model are the model-based values. Robust
standard errors were also computed, using the technique described in section 4.3. However,
the last diagonal element of fa 5 (refer to equation (4.3.10)), corresponding to an estimate
of Var(c;"‘), turned out to be negative. This problem had not occurred in any of the
simulated data sets examined in Chapter 4; in trying to determine its cause we noted that
the value of v (equation (4.3.6)) computed from the QEB model was 62.6. This value is not
unreasonable given the large number of clusters, but makes no sense in its interpretation
as the mean of a hypothetical hyperprior distribution for o2, given that o2 is estimated to

be about 0.15. However if we follow the same development as in section 4.3, but assume a
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gamma hyperprior for co? instead of o2, for a positive constant c, then v retains the same
interpretation as the mean of the hyperprior and is given by

.Y 4

v=2+K +co?—
0-2

For clarge enough, v and co? are within a more reasonable range and the variance estimates
from faé are all positive. (For example for ¢ = 1000, v = 211.9 and co? = 149.4). The
robust variance estimates for the fixed effects parameters were found to be quite insensitive
to the particular choice of ¢, and in fact these estimates were virtually identical to the
model-based ones. This is not astonishing in light of the findings in Chapter 4 and the fact

that o2 is estimated from quite a large number of clusters in this case.

7.1.2 A Closer Look at School-to-School Variability

We next examine more carefully the school-to-school variability seen in these data. For
this purpose we will focus on random effects models as discussed in Chapter 5, ignoring the
intra-individual correlation between grade 7 and grade 8 observations. We will however
consider models including the same covariates as those in table 7.1.

We are interested first of all in determining whether the extraneous school-to-school
variation can be ascribed to a particular group of students, on the basis of their individual-
level smoking risk. To this end we begin by fitting a simple logistic model containing the
predictors (Cond, Risk, Gr8surv, Gr8, Cx Gr8surv), and constructing plots as described in
section 5.4.2. In this case we consider three subgroups within each cluster, defined by the

low, medium and high-risk observations. Letting

Thg = >, Y,

JYa;€ group g

be the total smoking response in school k out of n;, observations for group g, g = 1,2, 3,
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we plot the residuals

Erg = log(;ka"i—"%) - jll’n,-ezaroup az;,.[i/n,,,, k=1,..,99, ¢g=1,2,3
against the order statistics obtained by sorting the schools according to overall observed
smoking proportion; see figure 7.2. We observe a wider spread on average in the residuals
for students in the extreme risk groups (low or high) than for those who are at medium
risk of smoking. When we combine low and medium risk students and compare this group
to the high risk students (see the lower three plots in figure 7.2), we also see a wider spread
in the residuals for the latter group as compared to the former.

In consideration of these plots we consider the general random effects model

log (1 fk;k_) = z,;8 + exp(n zej1 + T22kia) < bk, bk ~ N(0,0?) (7.1.1)
7

for the response probability for the jth observation in school k, where z.; is the correspon-

ding covariate vector including an intercept and the predictors mentioned above, and

{ 1 for a low-risk obs'n (Risk = 1) { 1 for a high-risk obsn (Risk = 3)
Zkj1 = Zkj2 =

0 otherwise, 0 otherwise.

We compare the fit of this model to the two special cases obtained by assuming v; = 0 and
71 = 72 = 0. The results of these fits, along with that of the logistic model, are shown in
table 7.2. In these random effects models, we integrated to obtain the marginal likelihood
and then proceeded with maximum likelihood estimation. The value of the maximized

log-likelihood for each model is also given in table 7.2.
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Figure 7.2: Exploratory residual plots for the WSPP3 elementary school data: investigating

differences in overdispersion according to individual risk level.

In comparing the random effects model which estimates both v, and v, with the stan-

dard model assuming f(zx;; ) to beidentically equal to 1, we note first of all that inferences

for the covariates zi; remain the same. Both parameter estimates and standard errors are

similar in the two formulations. However the significant estimate of 7, in the more refined

model suggests greater variability in the responses of the high-risk students as compared

to those at medium and low risk. Combining the latter two risk groups (assuming 7; to

be 0) and refitting the model yields the results in the last panel of table 7.2. We conclude
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Logistic Random Effects Models
Term est. 8.e. est. s.e. est. s.e. est. 8.e.
Int’cpt -4.4741 (-2060) -4.4820 (.2820) -4.3936 (.2760) -4.3557 (.2720)
Cond 0.4123  (.1855) 0.3640 (.2802) 0.3135 (.2655) 0.3089 (.2668)
Risk 0.8657 (.0536) 0.8600 (.0550) 0.8398 (.0609) 0.8261 (.0597)
Gr8surv 0.0284 (.00881) 0.0293 (.0135) 0.0283 (.0128) 0.0278 (.0129)
Gr8 0.8640 (.0806) 0.8764 (.0816) 0.8711 (.0819) 0.8728 (.0819)
CxGr8surv  -0.0240 (.00992) -0.0261 (.0149) -0.0248 (.0141) -0.0251 (.0142)
T 0.3184 (.3560)
v2 0.7508 (.3159) 0.6335 (.2615)
o2 0.1950 0.0993 0.1300
ik -2321.25 -2302.76 -2299.93 -2300.31

Table 7.2: Models for school-to-school variability in the WSPP3 elementary school data,
based on formulation (7.1.1).

from this fit that the standard deviation of the random effects distribution governing the

0.6335

school-to-school variability in smoking rates among high-risk students is € or about

twice as large as that for the remaining students. Adjusting for this difference in disper-
sion also produces a significant increase in log-likelihood over the standard random effects
model.

As a final note, a word of caution is in order when interpreting residual plots such
as those in figure 7.2. Care is needed especially when dividing clusters into groups of
observations on the basis of a covariate which also has a significant impact on the response
probability, as is the case in this application. Note that when the observed proportion of
successes in a subgroup of a given cluster is quite small or even zero, a misleadingly large
residual on the scale of the linear predictor can still be obtained even if the estimated
proportion in this subgroup is reasonably close to the observed. As an extreme example of
this note that |logit(p,) —logit(p)| — oo as p, — 0 for any p > 0; in practice we may replace
the observed value logit(r/(n —r)) with logit((r+0.5)/(n—r+0.5)) to avoid infinite values,
but the stated problem persists. Thus it looks from the plots in figure 7.2 as though the
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variability in the residuals for the low-risk students is just as large as that for the high-risk
students; but since the probabilities in the former group are quite small compared to those
in the latter group, the discrepancy between observed and fitted proportions is not nearly
as dramatic. As a consequence, fitting a model comparing only low-risk students to all the
rest (assuming 7, to be 0) yields a small and non-significant point estimate for 7;.

Another question of interest is whether or not the school-to-school variability seen
in these data is a function of school size. Knowing this would help one to distinguish
between two competing theories postulated to explain the cause of the overdispersion. The
first of these suggests that as a result of some common environmental effect acting on all
students in a given school, there is a common (exchangeable) correlation between any two
individuals in a given school. This intra-school correlation may be constant or may vary
across schools, but it need not be a function of school size. In contrast, the second theory
relates to peer cohesion and attributes extraneous school-to-school variability to the strong
behavioral similarity among students in small peer groups within schools. The smaller the
school, the fewer such subgroups it would contain and consequently the larger the relative
variability in the responses. Similarly, this variability would be smaller in larger schools,
containing many subgroups. In this case intra-school correlation would necessarily have to
be a decreasing function of school size.

To investigate the dependence of school-to-school variability on school size in the

WSPP3 data, consider fitting the random effects model

log (T%;_k) = z;,-ﬂ + exp(yni) -be, b ~ N(0,0%), (7.1.2)
2]

in which the vector z;; contains the same covariates as listed previously. A negative
estimate of v would imply a decrease in variability between schools as school size n;
increases and in a marginal sense would suggest that intra-school correlation decreases with

increasing school size. The estimates obtained from the fit of this model and the model
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" R.E.Model (y=0) R.E.Model (7 =7)
Term est. s.e. est. s.e.
Int’cpt -4.4820 (-2820)  -4.5140 (:2701)
Cond 0.3640 (-2802) 0.4520  (.2727)
Risk 0.8600 (.0550) 0.8581 (.0551)
Gr8surv 0.0293 (.0135) 0.0274  (.0131)
Gr8 0.8764 (.0816) 0.8785 (.0817)
CxGr8surv  -0.0261 (.0149)  -0.0272  (.0146)
~y -0.00392  (.00251)
o? 0.1950 0.3903
ik -2302.76 -2301.40

Table 7.3: Models for school-to-school variability in the WSPP3 elementary school data,
based on formulation (7.1.2).

assﬁming «4 = 0 (also given in table 7.2) are listed in table 7.3. Judging by the standard
error of 4 and the increase in likelihood when estimating 7 as opposed to assuming it to be
0, there is mild evidence against the hypothesis of no association between school-to-school
variability and school size. As a more direct way of assessing the extent to which the fit
of (7.1.2) improves on that of the standard random effects model, we apply the methods
of checking goodness-of-fit discussed in Chapter 6. Table 7.4 reports the estimates Bp
and BM, as well as the standardized statistics 5'3 for the two models of interest. On
the whole both models seem to adequately reflect the correlation structure; although the
discrepancy between Bp and By is larger under the simpler random effects model than
under the more general formulation, this difference is not significant. One does however see
some improvement in the fit of the latter model when considering plots of the standardized
values S plotted against school size; see figure 7.3. It is apparent that the simpler model
tends to overestimate the dispersion among large schools and underestimate it among

smaller ones. Further, this problem seems to be resolved in the fit of the second model
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B Ss
R.E. Moddl D 930.53  -0.86
(y=0) (694.25)
M 152597
R.E. Model D  894.18  -0.27
(r=9%) (346.82)
M 98743

Table 7.4: Goodness-of-fit analysis for models fit to WSPP3 elementary school data;
simulation-based standard errors, based on 200 simulated data sets, are shown in brackets.

which estimates 4. Hence there appears to be at least some support for arguing that the
variability between schools is a decreasing function of school size.

R. E. Model 1 R. E. Model 2
-”> - - L. 2
~a -~ -
- '.- -
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Figure 7.3: Plots of Sk vs School Size (ni), for the models in table 7.3; Model 1: v = 0,
Model 2: v = 4.

Unfortunately this conclusion does not allow us to rule out either of the two behavioral
theories discussed above; the absence of an inverse relationship between school-to-school
variability and school size would have allowed dismissing the second of these, based on

peer cohesion. It is worth pursuing somewhat the implications of this theory. Suppose one
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models the correlation structure of the responses from a given school with an exchangeable
correlation parameter, say pi, when in actual fact only the responses among individuals
in the same peer group are correlated, and students from different groups in the same
school act independently. Assume for the sake of simplicity an exchangeable correlation pj,
between any two individuals in the same peer group, common for all groups in the school.
It is instructive to examine the relationship between p; and p}, which will depend on the
school size and number of subgroups contained within the school. If covariates are on the

level of the cluster only this is quite straightforward. Consider a model which assumes
ng
Rk = ZY"j7 }’kj ~ Bin(l,py,), COII'(}’];J', },k:") = Pk, j # j’a

i=1

under which
Var(Ri) = nipe(l — pe) + ni(ne — 1)pape(l — pe) = nepe(l — pe)(1 + p(ne — 1)).

Suppose however that ny = m; + --- + m,, and that the true structure of the data is as

follows:
8k Mg

Re=3Y Y Yuj, Core(Yirj,Yirjs) =ph, i#3, 7=1,..,,

r=1j=1

Corr(Yirj, Yirrjr) =0, r#1,
where Y, ; is the jth observation in the rth subgroup in school k. From this follows that

Var(Ri) = nepe(l — pe) + im,(m, — 1)pipi(1 — pi)

r=1

and hence the relation between p; and p; which would equate these two expressions for
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m=3
Sk: 1 2 5 10 50 100
(nx: 3 6 15 30 150 300)
pr= 0.2 0.2000 0.0800 0.0286 0.0138 0.0027 0.0013
0.4 0.4000 0.1600 0.0571 0.0276 0.0054 0.0027
0.6 0.6000 0.2400 0.0857 0.0414 0.0081 0.0040
0.8 0.8000 0.3200 0.1143 0.0552 0.0107 0.0054
m=3
8: 1 2 5 10 50 100
(nr: 5 10 25 50 250 500)
p= 0.2 0.2000 0.0889 0.0333 0.0163 0.0032 0.0016
0.4 0.4000 0.1778 0.0667 0.0327 0.0064 0.0032
0.6 0.6000 0.2667 0.1000 0.0490 0.0096 0.0048
0.8 0.8000 0.3556 0.1333 0.0653 0.0129 0.0064

Table 7.5: Values of pr computed from equation (7.1.3).

Var(R;) is

prne(ne — 1)

Pk = — Pl oty me(m, — 1)
T e me(m, - 1) ]

g (nk - 1)

= (7.1.3)
Note that the there is no explicit dependence on p; in the above equations, although if
estimation proceeds by way of a cluster-specific model, i will in fact depend on p. Table
7.5 reports the values of p; which would correspond to each of several fixed values of p;
and various choices of s; and m, where we let m = m; = --- = m,,. One way to interpret
a given estimate of intra-school correlation, therefore, would be to think of it as resulting
from the presence of numerous small groups in the school, in each of which the smoking
behaviour of all members is essentially the same.

To get some sense of how this might relate to the WSPP3 data, consider the fit of
model (7.1.2). Although we also included individual-level covariates in this fit, we will

just examine marginal correlation estimates using the cluster-level random effects model
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(5.3.7) with f(zx;¥) = exp(—0.00392 ni) and o2 = 0.3903; n is in the range (5, 291),
implying that f(zi;4) varies from 0.320 to 0.981. We give several estimates of intra-school
correlation in the table below, corresponding to various values of ni and pi(0). (Recall

that in (5.3.7) pi(be) = [ + exp(—(ziB + fu - be))] ™).

Nk 10 20 50 100 200 300

px(0) = 0.05 0.0214 0.0195 0.0148 0.0095 0.0041 0.0018
0.10 0.0367 0.0337 0.0261 0.0172 0.0076 0.0034

0.50 0.0771 0.0720 0.0585 0.0410 0.0196 0.0091

Throughout this development we have made strong and largely unverifiable simplifying
assumptions. If the behavioural theory based on peer cohesion were indeed the sociological
phenomenon causing the cross-sectional clustering in the WSPP3 data, it would likely
apply under much more general conditions. The peer group sizes surely would not all
be the same, nor would the specific intra-group correlation necessarily be constant across
groups. It would for instance make sense given the previous results that peer groups
consisting of purely high-risk students should be more strongly correlated in their smoking
behaviour than groups with varied backgrounds. This is also intuitively clear.

7.2 'Transition Models

In this section we consider transition models of the type discussed in section 3.5.4. There
the notation Y;;; was used to denote the response of individual j in cluster ¢ at time point
t. More generally, we can adopt the notation introduced in section 4.2.2 and used in 7.1.1
above, letting Y;, refer to the tth observation on individual #, and noting implicitly in which
of the 99 schools this observation was taken.

We will consider two models: the first will consider the responses collected in grades

8 and 7 and condition each observation on the previous year’s responses, the second will
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consider the grade 8 data only and condition on the responses from the previous two years
for each student. Such conditioning could largely remove the extraneous school-to-school
variability; nevertheless we use random effects to adjust for any remaining overdispersion.
In addition to the covariates defined in section 7.1, let Y1 and Y2 denote the response
(smoking status) obtained from the cohort in grades 6 and 7 respectively. Lettingt = 3,2,1
correspond to grades 8, 7 and 6, we specify logistic formulations for the probability that
student ¢ will be smoking at time ¢ (Y¥;; = 1), either of the form

exp(h (e, Yie-1) + bgar)) £=23 (7.2.1)

P(Ye = 1] gie-1,bgy) = 1 + exp(h(zse, Yie-1) + b))’

or

exp(h(zs, iz, Y1) + biia)) (7.2.2)

P(Y.a = ]-I Yiz, yt'17b("3)) = 1+ exp(h(zia, Yia, yu) + b(:s)) ’

Here h(-) is used generically to denote a linear combination of covariates and past reponses,
and possibly their interactions. Once again b(;) denotes a random effect associated with the
school attended by individual ¢ at time ¢, assumed to be normally distributed with mean
0 and some variance o?. Maximizing the integrated likelihood, the above models were fit
as standard logistic-normal random effects models, taking the conditional responses to be
independent of one another within a given school. Model summaries are given in table 7.6.

Conditioning on only the previous year’s response, we note that smoking status at time
t — 1 is highly predictive of the response at time f. The effect of the other predictors
on the response is the same regardless of previous smoking status, with the exception
that the impact of risk appears to be less dramatic for previous smokers as compared to
non-smokers.

The results of the second model fit, conditioning the grade 8 observations on the grade

7 and 6 responses, are perhaps even more interesting. For students who were non-smokers
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Conditioning Conditioning
Yi:on Y, Yieon Yy, Y2
Term est. s.e. Term est. s.e.
Int’cpt -4.1613 (.2637) Int’cpt -3.5044 (.3234)
Cond 0.3389 (.2560) Cond 0.5611 (.3244)
Risk 0.7193 (.0591) Risk 0.6529 (.0721)
Gr8surv 0.0291 (.0122) Gr8surv 0.0380 (.0153)
Gr8 0.6878 (.0784) CxGr8surv -0.0481 (.0173)
Cx Gr8surv  -0.0267 (.0135) Y2 2.1534 (.1475)
Y1 3.1412 (.3706) Y1 7.1314 (1.802)
Y._.1xRisk  -0.4544 (.1539) YIxC -3.9646 (1.689)
Y1xRisk -0.9487 (.3099)
Y1x Gr8surv -0.1332 (.0590)
YIxCxGr8surv  0.1558 (.0647)
a? 0.1404 0.2191
llik -2400.63 -1391.30

Table 7.6: Transition models based on (7.2.1) and (7.2.2).

in grades 6 and 7, the interaction between Cond and Gr8surv already discussed in section
7.1.1 is quite pronounced, both in terms of the magnitude of the regression coefficient and
its significance. The odds of a student smoking in grade 8 are estimated to be 8.6 times
higher if that student was also smoking in grade 7. We also witness a very strong impact
on the grade 8 responses, due to grade 6 smoking status. Not only is there a tremendous
marginal effect if a student was also smoking in grade 6, but the impact of each of the
covariates Cond, Risk, Gr8surv differs too. The interactions described by the parameter
estimates in table 7.6 are interpreted in table 7.7 in terms of estimated probabilities of grade
8 smoking, given various covariate combinations. All entries in this table were computed
assuming a medium level of individual risk, i.e. Risk = 2. We see that students in the

intervention condition who were non-smokers in grade 6 fare better in high-risk schools
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Cond=1 Cond=0
Gr8surv=0 Gr8surv=60 Gr8surv=0 Gr8surv=60

Y2=1

YIi=1 0.856 0.927 (53) 0.994 0.372 (14)

Y1=0 0.626 0.477 (215) 0.489 0.903 (45)
Y2=0

YIi=1 0.409 0.594 (48) 0.954 0.064 (19)

Y1=0 0.163 0.096 (2510) 0.100 0.520 (610)

Table 7.7: Some estimated probabilities of smoking, computed from the second model in
table 7.6, conditioning grade 8 observations on grade 7 and 6 responses; all values are
calculated assuming Risk = 2; sample sizes for each group of observations are given in

brackets.

than students in similar control schools. However the opposite seems to be true for grade
6 smokers: the smoking rates seem to be lower in low-risk intervention as compared to
control schools, but higher in the high-risk intervention schools. Of course one should keep
in mind that there were only a small number of smokers in grade 6 when interpreting these
findings. The sample sizes for each of the eight groups of observations distinguished in
table 7.7 are given in brackets beside the estimated probabilities.

It is also surprising that conditioning on the previous response(s) does not seem to
reduce the school-to-school variability; note for instance the similar estimates of o2 reported
in tables 7.6 and 7.1. This may have in part to do with the variability in the number of
first-time smokers in grades 7 and 8. Also, random effects in a logistic-normal model are
additive on the logistic scale, and effects of similar size can have very differing impacts on
estimated probabilities, depending on the fixed effects formulation for the mean.

To finish this section we examine the goodness-of-fit of the second model in table 7.6,
compared to that of the nested logistic model, assuming o2 = 0. Table 7.8 reports the
estimates Bp and By and the standardized statistics S for both the logistic and the
random effects model. The logistic model is clearly inadequate in terms of describing the
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B Sp

Logistic Model D  496.03  6.56
(75.67)
M 0.00

R. E. Model D 53584  -0.50
(313.88)
M  691.86
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Table 7.8: Goodness-of-fit for random effects transition model vs. logistic model.
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Figure 7.4: Plots of Si vs School Size for the second random effects transition model in

table 7.6 and the corresponding logistic model.
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covariance structure of the data, whereas the random effects model does quite well. As
in figure 7.3 we have plotted the standardized values Si against school size in figure 7.4.
In the plot for the random effects model only one school stands out from the rest as not
well modelled. Closer examination revealed that out of the 22 grade 8 observations in
this school, 8 (36 %) were smoking. This is not an unduly large proportion; however,
none of these 22 students had been smokers in the previous two grades. The estimated
mean probability of smoking for this school (0.12) therefore underestimates the observed
proportion of smokers. Since the proposed goodness-of-fit procedures assume to begin with
that the mean of the model is correctly specified, a much larger variability in the responses
from this school would need to be postulated in order to reconcile the large discrepancy in

observed and fitted values in this case.

7.3 Secondary School Smoking Behaviour

Here we consider data from the secondary phase of WSPP3 only. In order to assess the post-
intervention impact of the elementary smoking prevention program, and any additional
effect due to the highschool intervention, we examined the high school smoking behaviour
of those students who were in one of the five original study conditions in grade 6, reported
to be non-smokers in grade 8, attended one of the 30 study highschools in grade 9 and
provided complete data until grade 12. This resulted in 4 observations (grades 9 through
12) on each of 1381 students, attending at any given time either.one of the 30 study schools,
or a non-study highschool; (a student could for instance transfer to a non-study school after
grade 9). As in section 7.1.1 we examined logistic model formulations for the probability

of student ¢ smoking at time ¢. The covariates we retained in this case were the following:

Grl0, Grll, Grl2 : indicator variables taking value 1 for observations in grades 10, 11

and 12 respectively, and 0 otherwise,
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Cond9 : highschool study condition (Cond9 = 1 for intervention schools and 0 otherwise),
Cond6 : elementary school study condition (defined as Cond in section 7.1.1),

Gender : taking value 1 for female students, 0 for males,
Risk : individual-level smoking risk score (as defined previously).

In addition let Gx C9 denote the interaction between Gender and Cond9. Here we carried
out an intent-to-treat analysis, treating individuals as though they remained in the same
study condition throughout their highschool career. That is, the value of Cond9 assigned
to schools in grade 9, and hence to all students therein, was taken to be fixed for each
student, even if the individual moved to a school of the opposite study condition or to a
non-study school at a later time. We considered a comparison of the same four models
as are listed in table 7.1, both for regressions including and not including indicators for
time. In this case we are modelling Y3, ¢t =1,...,1381, t = 1, ...,4 (& Gr.9,...,Gr.12), and
hence estimate, for the GEE and QEB model fits, the 6 parameters in the intra-individual

correlation matrix

Ya 1 p12 p1s p1e
Y: 1

Corr(¥;) = Corr 2 - f12 P23 P2
Yis P13 pas 1 ps3
Y | P14 P24 P34 1 J

In addition, the empirical Bayes and QEB fits model Y; conditional on b), where in
this case by € {b1,...,ba1}, b ~ N(0,0?%), k = 1,...,31. Thirty of these random effects
correspond to the 30 study schools, and the 31st is specified for those observations taken in
any other school; (since all students in this data set attended one of the 30 study schools
in grade 9, such observations were necessarily responses in grade 10 or higher). Model

summaries are provided in table 7.9.
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Logistic GEE Emp. Bayes QEB
Term est. s.e. est. 8.e. est. s.e. est. s.e.
Int’cpt -2.1700 (.1123) -1.8499 (-1479)  -2.2692 (.1474) -1.7854 {.1700)
Cond9 -0.1078 (.0866) -0.1311 (-.1257)  -0.0987 (.1380) -0.0781 (.1604)
Cond6 -0.0005 (.0769) 0.0281 (-1120) 0.0748 (.0931) 0.0620 (-1251)
Gender -0.0734 (.0883) -0.1225 (.1287) -0.0702 (.0901) -0.1014 (.1270)
Risk 0.8345 (.0391) 0.5412 (-0441) 0.8294 (.0399) 0.5044 (.0425)
GxC9 0.2408 (.1196) 0.3119 (.1738) 0.2191 (.1216) 0.2662 (-.1715)
Pi2 0.355 0.304
P13 P23 0.248 0.573 0.211 0.582
Pl4 P24 P34 0.191 0.416 0.582 0.159 0.418 0.614
o? 0.1213 0.0794
Int’cpt -2.7800 (.1289) -2.0922 (-.1529) -2.9068 (.1630) -2.2699 (.1803)
Grl0 0.7640 (.0927) 0.7778 (.0691) 0.7789 (.0933) 0.7852 (.0726)
Grll 0.9682 (.0916) 1.0407 (.0729) 0.9916 (.0925) 1.0474 (-0766)
Grl2 1.0515 (.0914) 1.1442 (.0754) 1.0796 (.0927) 1.1499 (.0790)
Cond9 -0.1112 (.0879) -0.1236 (-:1271)  -0.0946 (.1409) -0.0812 (-1637)
Cond6 0.0002 (.0780) 0.0162 (-1128) 0.0760 (.0947) 0.0616 (.1287)
Gender -0.0748 (.0898) -0.0872 (-1299)  -0.0676 (.0916) -0.0814 (.1311)
Risk 0.7680 (.0398) 0.3718 (-0423) 0.7644 (.0407) 0.4007 (.0442)
GxC9 0.2550 (.1214) 0.2747 (-1757) 0.2282 (.1236) 0.2563 (.1770)
P12 0.410 0.375
P13 p23 0.332 0.585 0.298 0.546
Pie P24 P34 0.283 0.426 0.580 0.253 0.390 0.535
o? 0.1323 0.0817

Table 7.9: Various model fits to the WSPP3 secondary school data.
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Examining briefly the standard errors of the regression coefficients, we note the similar
values for individual-level covariates under the QEB and GEE fits, which are underestima-
ted by the other two models (see in particular Cond6 and Gender). Cond9 as defined is
also an individual-level covariate, though insofar as most students do remain in the same
study condition over time, it should also behave like a school-level covariate. This is indeed
the case. In both sets of models in table 7.9, the standard error of the coefficient for Cond9
is inflated under the GEE and empirical Bayes fit as compared to the logistic fit, and the
QEB model in each case provides the largest estimate of all four models.

No problems as discussed in section 7.1.1 were encountered when computing robust
standard errors for these models; again these values were very similar to the model-based
quantities, agreeing up to the third decimal place.

There is no discernible difference in the highschool smoking rates between students who
had received the WSPP3 elementary intervention and those who had not. The secondary
intervention also shows little impact. A previous analysis of the data suggested that males
who were non-smokers in grade 8 and subsequently entered a secondary intervention school
showed significantly lower smoking rates than females at the end of grade 10, and that this
difference was maintained to the end of grade 12 by those males from high-risk elementary
schools (Brown and Cameron (1997)). Nevertheless considering all the data over the entire
span of the highschool observation period, the effects of intervention, gender and their
interaction are slight. It would be worthwhile to consider separate analyses of specific
portions of the data, to avoid unduly large models containing complicated higher-order
interactions. For example one might examine males and females separately, and within
each gender look at groups of students with similar risk profiles.

From the various model fits in table 7.9 we note that responses from the same individual
over time tend to be more strongly correlated in later years; compare also to the estimates of
the correlation between grade 7 and 8 observations from table 7.1. In addition, considering
the models which include the grade indicators adjusting for time, we note that the odds of a
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student smoking in grade 10 as compared to grade 9 are about €%™ = 2.2 times larger, but
that the analogous increase in comparing grades 11 and 10 is only a factor of }-%-0-7 = 1.3,
and almost negligible in comparing grades 12 and 11 (taken from the QEB model fit in
table 7.9). This suggests that smoking behaviour in adolescents becomes more firmly set
throughout the highschool years, i.e. less easily influenced by intervention programming.
Launching such programs in much earlier grades seems to provide some measure of success,

though it is not clear how to maintain these positive results as students move to secondary

schools, apart from providing continued intensive intervention throughout highschool.



Chapter 8

Conclusion

The analysis of correlated binary data is a vast field. We have discussed a number of esta-
blished modelling approaches for such data in this thesis, and have suggested contributions
to facilitate the analysis of data such as that arising from the WSPP3. We addressed the
problem of analyzing cluster-correlated longitudinal observations by combining the me-
thods of empirical Bayes estimation for random effects models with generalized estimating
equations, to obtain a single model formulation. We expect that data exhibiting such a
composite correlation structure arise in various other settings as well; one might for in-
stance consider an application to the analysis of multi-center longitudinal clinical trials, in
which the different centers would form the cross-sectional clusters.

An interesting point to note from the simulations in Chapter 4 is the fact that when data
are clustered cross-sectionally and also longitudinally correlated, and the effect of interest
can be modelled in terms of a cluster-level covariate, then the intra-individual correlation
need not necessarily be taken into account in order to obtain a valid estimate of this effect
and its standard error. This has particularly important implications when designing a
study such as WSPP3, in which a great administrative burden would be avoided if one

were not required to collect personal information from each student in order to be able to

218
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link repeated obervations over time to the same individual. At the same time one must
be clear about the limitations involved in restricting oneself to a series of cross-sectional
studies. In section 2.2 we outlined three general questions of interest surrounding a smoking
prevention program, dealing with the effectivenenss of the intervention in general, the
nature of smoking onset, and how specifically the intervention relates to smoking onset.
The first of these questions can be addressed through school-level covariates only, and
hence a cross-sectional investigation would suffice. On the other hand, studying smoking
onset in students requires information on the smoking behaviour of individuals over time,
necessitating a longitudinal study design. Individual-level characteristics, as well as school-
level covariates, also play an important role in distinguishing differing treatment effects in
subgroups of the cohort. In this case intra-individual correlation should be taken into
account as well.

In Chapter 5 we explored at some length the relationship between population-averaged
and cluster-specific models, and the usefulness of relatively straightforward random effects
models to describe certain correlation stuctures. The models we discussed allow for the
inclusion of covariate information in the specification of the random term of the linear
predictor, which hinges on a deterministic function whose parameter(s) are estimated from
the data. This approach allows the modelling of general features of the correlation structure
in a parsimonious fashion, without having to appeal to more complicated models involving
several variance components. The material in this chapter is complemented by that in
Chapter 6, where we considered testing the goodness-of-fit of the covariance structure of a
model, given that the mean is correctly specified. The methods proposed are quite general
and hinge on comparing data-based and model-based covariance estimates in a similar
manner as one might compare observed data and fitted values to assess the adequacy of a
mean-model specification.

We ended by describing the results of several model fits to the WSPP3 data, using
the techniques developed. In this smoking prevention program the highschool intervention
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seems to have had little impact, but there is some evidence that the elementary school
intervention was effective for students in high-risk schools. Interestingly there appeared
to be no significant differences among the four treatment conditions described in Chapter
2; both nurses and teachers seemed to achieve about the same results, regardless also of
training method. Furthermore, the content and style scores also mentioned in Chapter 2
were found to be inconsequential as well. Such information is useful in that it has important
bearing on the design and implementation of future programs and studies.

The WSPP3 data motivated much of the work in this thesis, and was also used for the
purpose of illustrations. However the thesis does not by any means constitute an exhaustive
analysis of the data. The interested reader is referred to the final report by Brown and
Cameron (1997) and in general to the Health Behaviour Research Group at the University
of Waterloo.
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