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Abstract

The facility layout design problem is a fundamental optimization problem encountered in

many manufacturing and service organizations that was originally formulated in 1963 by

Armour & Buffa. This thesis derives a convex programming model, IBIMODEL, that is

designed to improve upon the ModCoAR model of Anjos & Vannelli for the facility layout

problem with unequal areas. The purpose of IBIMODEL is to find ’good’ initial locations for

the departments that a second model then uses to produce a detailed solution to the facility

layout problem. The proposed model has four ideas behind it: unlike ModCoAR, it does not

improve the objective function as the departments start overlapping, it takes into account the

aspect ratio requirements, it introduces a systematic approach to making parameter choices,

and it uses a new second stage recently proposed by Luo, Anjos & Vannelli to obtain the

actual facility layouts. In this way, IBIMODEL efficiently generates a reasonably diverse set

of superior solutions that allow the second stage to provide a wide variety of layouts with

relatively low aspect ratios and total cost.

The proposed methodology was implemented and numerical results are presented on well-

known large layout problems from the literature. To demonstrate the potential of the combi-

nation of IBIMODEL with Luo, Anjos & Vannelli’s model, our results are compared with the

best layouts found to date for these well-known large facility layout problems. The results

support the conclusion that the propose a methodology consistently produces competitive,

and often improved, layouts for large instances when compared with other approaches in the

literature.
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1 Introduction

The unequal-area facility layout problem (FLP) is concerned with finding the most efficient

arrangement of m non-overlapping indivisible departments with unequal area requirements

within a facility. The objective of the FLP is to minimize the total expected cost of flows

inside the facility, where the cost incurred for each pair of departments is taken as the rec-

tilinear distance between the centroids of the departments times the projected flow between

them. The projected flow may reflect transportation costs, the construction of a material-

handling system, the costs of laying communication wiring, or even adjacency preferences

among departments. The problem contains two sets of constraints: department/floor area

requirements and department location requirements (such as departments not overlapping,

lying within the facility, and in some cases being fixed to a location, or being forbidden from

specific regions). We assume that the facility and the departments are all rectangular. If

the height and width of the departments can vary, then finding their optimal rectangular

shapes is also part of the problem. The ratios height/width and width/height, called aspect

ratios, also pose a challenge since square-like shaped departments with low aspect ratios are

most practical in real-world applications, but this makes the problem harder. A solution

to the FLP is a block layout that specifies the relative location and the dimensions of each

department as illustrated in Figure 1(a). Once a block layout has been achieved, a detailed

layout can be designed (Figure 1(b)) which specifies department locations, aisle structures

and input/output (I/O) point locations (Kim & Kim 1999, Lee, Rohb & Jeong 2005, Takuya

& Takashi 2006, Bock & Hoberg 2007). In this thesis, we will focus exclusively on block

layout.

Facility layout design plays a significant role on manufacturing systems’ effective utilization

(Sule 1994, Tompkins, White, Bozer, Frazelle, Tanchoco & Trevino 1996), since a good

solution for the facility layout problem contributes to the overall efficiency of operations. As

stated in Chiang & Chiang (1998), a poor layout can lead to the accumulation of work-in-
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(a) Block Layout (b) Detailed Layout

Figure 1: Facility layout examples
(Figures taken from Meller & Gau (1996))

process inventory, overloading of material handling systems, inefficient set-ups, and longer

queues. Furthermore, a facility layout represents a costly, long-term investment, since future

large modification expenditures to the manufacturing system, if required, may not be easy

to carry out. Modifying the layout of facilities is not only time-consuming but also disrupts

worker activities and the flow of materials (Sule 1994). Other design environments where

FLPs occur include; hospital, school and airport layouts (Singh & Sharma 2006), process

plant layout (Patsiatzis & Papageorgiou 2002), piping design problems (Castillo, Westerlund,

Emet & Westerlund 2005), VLSI macrocell design (Luo, Anjos & Vannelli n.d.), newspaper

layout design (Yasdi 2000) and cutting/packing in various industries (Jakobs 1996, Liu &

Teng 1999). All of these problems are very difficult, and are known to be NP-hard (Sahni &

Gonzalez 1976), in particular because of the large number of possible physical layouts, and

the existence of many locally (but not globally) optimal layouts.

The primary contribution of this thesis is the IBIMODEL that provides a block layout.

IBIMODEL is a mathematical programming model that is designed to improve upon Anjos

& Vannelli’s (2006) ModCoAR model for the purpose of finding ’good’ initial points for

the detailed layout model of the second stage in a two-stage solution process. In Section

2, background on the facility layout problem is given. In Section 3, the IBIMODEL is
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motivated and derived, and Luo et al.’s (n.d.) second stage that takes these ’good’ initial

points from IBIMODEL and generates the final facility layout, is described. Computational

results demonstrating the potential of the IBIMODEL model when used in conjunction with

Luo et al.’s (n.d.) second stage model are presented in Section 4. Finally, possible directions

for future research are discussed in Section 5.
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2 Background

In the 1970s and 1980s, two major approaches were taken for modeling the FLP: the quadratic

assignment problem (QAP) approach and the graph-theoretical approach. In the 1990s,

two other approaches evolved based on mixed-integer linear programming and non-linear

programming. Different solution methodologies have also been developed over the years to

solve the different models, including exact, heuristic and metaheuristic algorithms.

2.1 Modeling Approaches

2.1.1 Quadratic Assignment Problem Model

The QAP approach was introduced by Koopmans & Beckman (1957) to model the problem

of locating interacting plants of equal areas. The QAP is a special case of the facility layout

problem because it assumes that all departments have equal shapes and all possible locations

are fixed and known a priori. The QAP formulation assigns every department to one location

and at most one department to a particular location. The cost of placing a department at a

particular location is dependent on the location of the other departments’ interacting with

it. Such dependency leads to a quadratic objective that inspires the problem’s name. Many

researchers have addressed the importance of the QAP and its relevance to the equal area

FLP (see e.g. Bazaraa 1975, Kusiak & Heragu 1987, Francis, McGinnis & White 1992).

Typically departments have unequal areas, and the QAP formulation for the unequal-area

FLP is less appealing than for the equal-area FLP. Solution techniques for the QAP are based

on variations of the branch-and-bound approaches initially proposed by Gilmore (1962) and

Lawler (1963). Armour & Buffa (1963) applied a pair-wise exchange method to solve the

unequal-area FLP, while others like Smith & Tate (1992) approached the problem with

heuristic procedures. (Bazaraa 1975, Hassan, Hogg & Smith 1986, Kusiak & Heragu 1987)

4



modeled the unequal-area facility layout problem as a special QAP by breaking the depart-

ments into small squares with equal areas, assigning a large artificial flow between the squares

arising from the same department to ensure that they are not placed far apart, and solving

the resulting QAP. However Bozer & Meller (1997) show that since these artificial flows are

much larger than the real flows, the cost of ’travel’ within departments will dominate the cost

of travel between departments and negatively affect the quality of the solutions obtained. For

instance, regardless of the flows among departments that were supplied by the analyst, each

department is predisposed to assume a certain shape. In other words, high artificial flows

implicitly add department shape constraints (Bozer & Meller 1997). Due to the discrete rep-

resentation of the floor area, the layout frequently contains irregularly shaped departments

that are not feasible in practice. There have been attempts made to place restrictions on

the department shapes (Hassan et al. 1986, Kusiak & Heragu 1987). We refer the reader to

Anstreicher (2003) for recent advances in QAP-solutions, description of new algorithms and

computational structures used, and to Loiola, Maia de Abreu, Boaventura-Netto, Hahn &

Querido (2007) for a thorough up-to-date review of the QAP.

The QAP has drawn a lot of attention in the past fifty years due to its complexity. Garey

& Johnson (1979) showed that the QAP is NP-hard and NP-complete. To date, globally

optimal solutions to general cases of the problem can only be obtained for problems with

up to 36 departments. The 36-department problem Ste36a (Steinberg 1961) was solved to

optimality by Brixius & Anstreicher (2001) and the Nugent 30 problem (Nugent, Vollman &

Ruml 1968), one of the most well-known and challenging instances, was solved to optimality

by Anstreicher & Brixius (2001).

2.1.2 Graph Theory Model

Graph-theoretical approaches assume that the preferences of any pair of departments to be

placed adjacently is known. The area and shape of the departments are at first ignored, and
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each department is represented by a node in a graph. Satisfied department adjacency rela-

tionships are represented by an arc connecting the two adjacent departments in the graph

(Hassan & Hogg 1987). The objective is to maximize the weight on the adjacencies (arcs)

between department pairs (nodes). One of the most formative contributions to solving FLP

with graph theory is Foulds & Robinson’s (1978) model. Their method develops a family

of interconnected planar graphs in a way that planarity is not violated and the need to

constantly test for planarity is removed. Subsequent to Foulds & Robinson’s (1978) con-

tribution, most of the research has focused upon improving the selection and placement of

vertices into such a graph. Chan & Milner (1982) developed a methodology that modified

the means of vertex placement, Eades, Foulds & Griffin (1982) developed a wheel expan-

sion algorithm based upon the deltahedron methodology of Foulds & Robinson (1978), and

Al-Hakim (1991) developed two edge-elimination and edge-replacement algorithms for the

purpose of improving the solution quality. Boswell (1992) developed TESSA, a heuristic

that focuses on adding faces instead of single vertices at each iteration. (A face is a closed

path in a graph that has no intersecting edges and no edge inside its enclosed region.) More

thorough reviews of graph-theoretic approaches and heuristics can be found in Hassan &

Hogg (1987) and Foulds (1991).

Unlike for the QAP approach, even unequal-area problems of small size (such as 10-department

problems) cannot be solved to guaranteed optimality with graph-theoretic approaches. It

is a time-consuming process that often requires trial and error. Moreover, the constructed

layout is not guaranteed to satisfy the prescribed adjacencies (Heragu 1997).

2.1.3 Mixed-Integer Linear Programming Model

Recently, attention has shifted to formulating FLPs as mixed-integer linear programming

(MILP) models, as first introduced by Montreuil (1990). The model uses a distance-based

objective but is not based on the traditional discrete (QAP) framework because it utilizes a
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continuous representation of the layout. Meller & Gau (1996) separate the layout problem

into two sub-problems: the block layout problem and the detailed layout problem. The block

layout problem specifies sizes, shapes and relative locations of the departments within the

facility, while the detailed layout problem addresses specific details such as exact department

locations, aisle structures and input/output (I/O) points.

A block layout model was developed by Heragu & Kusiak (1991) where the department

lengths, widths, and orientations are specified a priori. Many researchers have attempted

to find ’good’ feasible solutions for this model by heuristically fixing a subset of the binary

variables and then optimizing the resulting linear program, see for example Montreuil, Ratliff

& Goetschalckx (1987) and Langevin, Montreuil & Riopel (1996). Gau & Meller (1999) took

Montreuil’s (1990) model, redefined its binary variables and tightened the department area

constraints. Meller, Narayanan & Vance (1999) also improved on Montreuil’s (1990) model

by approximating the non-linear area requirement for each department by an empirically

derived relationship constraints (where area restrictions become more faithful as depart-

ments become more non-square) and strengthening the model with seven classes of valid

inequalities to derive an augmented model formulation. Sherali, Fraticelli & Meller (2003)

built upon Meller et al.’s (1999) model by further reducing problem symmetry, evaluating

the performance of several classes of valid inequalities, exploring the construction of par-

tial convex hull representations for the disjunctive constraints, and investigating judicious

branching variable selection priority schemes. Sherali et al. (2003) achieved impressive re-

sults by solving a 9-department problem to global optimality. Castillo & Westerlund (2005)

dealt with the nonconvex and hyperbolic area restrictions by devising a linear model that

guarantees that, at optimality, the final area of each department is within an ε% error of the

required area. Then Castillo et al. (2005) improved on Castillo & Westerlund’s (2005) model

by introducing a decision variable transformation and symmetric convex lower bound to

gain an exact representation of the area restrictions, which together with a simple constraint

avoids symmetric layout solutions. Others, such as Lacksonen (1994), proposed a two-step
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algorithm for the block layout problem that assumes departments can have varying areas

and then modified their previous model in Lacksonen (1997) to deal with unequal areas and

rearrangement costs.

Kim & Kim (1999) took the detailed layout problem and placed the input and output points

of each department so that the total (shortest path) distance of material flows between the

I/O points would be minimized. A branch and bound algorithm is developed to solve Kim &

Kim’s (1999) model, and find locally optimal solutions in a relatively short time even for large

(20 and 30-department) problems. However, simultaneous solution of the block problem and

the I/O points layout was not attempted in a single problem until Barbosa-Povoa, Mateus

& Novais (2000). Then, in Barbosa-Povoa, Mateus & Novais (2001), different production

sections and space, safety and operability restrictions are also addressed.

The mixed-integer linear programming approach is a promising technique that can solve

larger problems than the QAP and graph theory models (Meller & Gau 1996). Currently only

FLPs with up to 9 departments (Sherali et al. 2003) have been solved to global optimality.

2.1.4 Non-Linear Programming Model

Non-linear programming (NLP) models are typically nonconvex and, as a consequence they

are not guaranteed to find global optimal solutions (Bazaraa, Sherali & Shetty 1993), but

only local optima. Drezner (1980) uses a dispersion-concentration concept to formulate a

nonconvex mathematical problem that he solves in two stages using the Lagrangian Dif-

ferential Gradient Method. van Camp, Carter & Vannelli (1991) develop a three-stage

penalty-based algorithm, called the nonlinear optimization layout technique (NLT). Then,

Anjos & Vannelli (2002) proposed a convex optimization model, the CoAR model, based on

an attractor-repeller concept. This model is solved with a nonlinear programming heuristic.

Castillo & Sim (2004) base their model on Anjos & Vannelli’s (2002) model, but change the
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objective function to reflect a spring-embedded (SE) concept. The SE concept is based on

a system of particles with given areas that are mutually connected by strings of different

strengths, and the system is allowed to oscillate until it stabilizes at a minimum-energy

arrangement. The convexified Attractor-Repeller (CoAR) model is improved in Anjos &

Vannelli (2006) by introducing generalized target distances that aim to account for the flows

between departments. This thesis falls into this area of research, and therefore the models

mentioned above are presented in greater detail in Section 3.

2.2 Solution Methodologies

2.2.1 Exact Algorithms

The branch-and-bound method was developed by Gilmore (1962). It is a popular method to

solve QAP problems, as in White (1993) and Brixius & Anstreicher (2001), since the QAP

model only involves binary variables. More recently (Lacksonen 1997, Sherali et al. 2003)

have applied branch-and-bound to graph theory and MILP model formulations. Brixius &

Anstreicher (2001) have solved problems with up to 32 departments (with the Gilmore-Lawler

bound) to global optimality.

The cutting-plane method is another exact algorithm. It was developed by Bazaraa & Sherali

(1982), and like the branch-and-bound algorithm, the cutting plane algorithm has a high

time and storage complexity. The largest FLP solved by a cutting-plane algorithm was an

8-department layout problem (Kusiak & Heragu 1987).

2.2.2 Heuristic Algorithms

Heuristic algorithms can be classified as construction-type and improvement-type algorithms

that are either adjacency-based or distance-based. Construction-type algorithms build a
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solution from scratch and are considered the simplest and oldest heuristic approaches (but

provide less satisfactory solutions). Improvement-type algorithms take a feasible solution as

an initial solution and try to improve it by performing interchanges of single assignments.

The difference between adjacency-based and distance-based algorithms lies in the objective

function. The objective function for an adjacency-based algorithm is defined as:

max
∑

i

∑
j(rij)xij

where rij is the department closeness rating between department i to j and xij is 1 if

department i is adjacent to department j, and 0 otherwise. Adjacency-based algorithms are

usually used for graph-based models based on the principle that material handling costs are

reduced if two departments are adjacent to one another (Meller & Gau 1996). On the other

hand, the objective function for a distance-based algorithm is defined as:

min 1
2

∑n
i=1,i6=k

∑n
j=1,j 6=l

∑n
k=1

∑n
l=1 CikDjlXijXkl

where Cik and Djl stand for the material handling cost between departments i and k, and the

distance between locations j and l, respectively. The variable Xij is equal to 1 if department

i is assigned to location j, or 0 otherwise. In the distance-based algorithm, the distance

increases the total cost of traveling (Meller & Gau 1996).

Montreuil et al.’s (1987) MATCH is a construction-type adjacency-based algorithm that

utilizes a discrete representation and uses integer programming to solve a matching problem.

The algorithm attempts to maximize department adjacency scores that are based on adjacent

segments. In an iterative approach MATCH generates departments that are rectangular in

shape.

An example of a construction-type algorithm that is distance-based is SHAPE (Hassan

et al. 1986). The algorithm uses department flows and user-defined critical flows to determine
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the department selection sequence as it begins placing departments at the center of the

layout. Subsequent departments are placed on each of the layout’s four slides, depending on

their effect on the objective function value. Since the department shapes are controlled by

the objective function, department shapes at the edges of the layout deteriorate.

LOGIC (Tam 1992a, Tam 1992b) is a distance-based improvement-type algorithm that uses

a collection of rectangular partitions as the layout, and a slicing-tree to specify if depart-

ments on opposite sides of a branch are to the left, to the right, above, or below one another.

The algorithm determines the layout by partitioning rectangular areas and placing the de-

partments into the area specified by the branch operators (left, right, above or below). To

avoid narrow department shapes, Tam introduces a penalty function to control department

shapes. Tam (1992a) uses simulated annealing and Tam (1992b) uses a genetic algorithm to

solve the resulting sub-problems.

Improvement-type algorithms that are distance-based include the commercial software CRAFT

(Armour & Buffa 1963) and its improved algorithm, MULTIPLE (Bozer, Meller & Erlebacher

1994). Both CRAFT and MULTIPLE use pairwise interchanges, and are steepest-descent

algorithms that converge to the first local minimum encountered. The performance of these

algorithms is greatly affected by the given initial solution, and the department shapes ob-

tained within the layout often have long thin edges, and hence could serve no practical

purpose.

2.2.3 Metaheuristic Algorithms

Various metaheuristics have been employed to tackle the FLP and studies have demonstrated

the efficacy and promise of such approaches (Tate & Smith 1995, Wu, Huang, Lau, Wong &

Young 2002).

Simulated annealing (SA) is based on the analogy of annealing solids and was used for solving

11



optimization problems by Burkard & Rendl (1984) for solving the QAP. The underlying

dynamics of SA allow it to efficiently generate a reasonably diverse set of superior solutions,

which is a critical factor for effective decision-making in layout design (Al-Hakim 2000).

Promising results have been obtained by simulated annealing ( Souliah 1995, Hopper &

Turton 2001, Balakrishnan, Cheng & Wong 2003), and Singh & Sharma (2006) provide a

survey of SA-based FLP papers.

Genetic algorithms (GA) have become fairly popular in the past decade. A genetic algorithm

uses fixed-length strings of zeros and ones to encode layouts. In a parallel process, the GA

searches for the global optimum from a small set of feasible solutions, generating the new

solutions in some randomized fashion. Kochhar, Foster & Heragu (1998) and Balakrishnan

et al. (2003) are some of the papers that use GA to solve FLP and Singh & Sharma (2006)

provide a list of recent papers on GA-based FLP.

Tabu search (TS) is another metaheuristic that is actively researched and continues to evolve

(Sporin-Kapov 1994, Helm & Hadley 2000), as are naive evolution (Hopper & Turton 2001)

and neural networks (Tsuchiya, Bharitkar & Takefuji 1996).

2.3 Facility Layout Software Packages

Facility layout research has led to a variety of facility layout software packages. According

to Sly (1995) and Heragu (1997), the leading packages are:

• SPIRAL, distributed by Marc Goetschalckx (Goetschalckx 1992), uses graph-theory-

based algorithms to obtain block layouts.

• VisFactory (or e-Factory), by CIMTECHNOLOGIE, includes multiple modules, namely,

FactoryCAD, FactoryFLOW, FactoryPLAN/OPT, and FactoryVIEW, that incorpo-

rate a SPIRAL algorithm with some CRAFT-like improvement routines.
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• LayOPT, by Production Modeling Corp., uses MULTIPLE.

• Factory Modeler, by Systems Espace Temps Inc., implements a MIP-based approach.

• eM-Workplace, by Tecnomatix Technologies Ltd., is a workplace/layout design and

material flow simulation.

• FACOPT by (Balakrishnan et al. 2003) uses simulated annealing and a genetic algo-

rithm.

Recently the systematic layout planning (SLP) approach has been applied in software pack-

ages to provide more practical layouts (Ferrari, Pareschi, Persona & Regattieri 2003). It

consists of data collection, block layout planning, intra-block design and plant realization.

The LRP (logistic and re-layout program) is a software product that uses SLP. It was devel-

oped in 1999 and focuses on continuous dual analysis of the flow of materials and activity

relationships (Ferrari et al. 2003). Main features of LRP include human interactivity, mod-

ularity (with regards to data input and solution optimization) and lastly, compatibility and

integration with CAD software.

2.4 Choice of Distance Measure

Choosing the criteria to be used to identify the ’best’ solution from among several alternative

solutions in the unequal-area FLP problem is not trivial. Most often the objective is to

minimize the weighted distance traveled, with the weights representing the material flow,

and therefore the Euclidean distance is appropriate to calculate the cost when it comes to

overhead material handling systems, determining wiring between office units or in advanced

flexible manufacturing systems. However, in office layouts that contain walls and corridors,

in process plant layout or in piping design problems that incorporate piping, connection and

other material handling costs, the rectilinear distance is more realistic. Cheng & Kuh (1984)
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and Weis & Mlynski (1987) have shown through computational experiments, and Blanks

(1985) has shown probabilistically, that the Euclidean and rectilinear distances converge as

the number of departments goes to infinity. In this thesis, we use the Euclidean distance in

IBIMODEL, and the rectilinear distance in the second model.
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3 Proposed Mathematical Model

3.1 Previous Nonlinear-Programming-Based Methods

In order to put this thesis’s contribution into its technical context, some of the methods

mentioned in Section 2 are reviewed in some detail, and related to the proposed new

approach. The reviewed methods are the DISpersion-CONcentration (DISCON) method

(Drezner 1980), the Non-linear optimization Layout Technique (NLT) (van Camp et al. 1991),

the Attractor-Repeller (AR) (Anjos & Vannelli 2002), the Spring-Embedded (SE) (Castillo

& Sim 2004), and MODified COnvexified Attractor-Repeller (ModCoAR)- Bilinear Penalty

Layout (BPL) methods (Anjos & Vannelli 2006).

Throughout this thesis we label the departments i = 1, ..., N , where N is the total number

number of departments, and each of these departments is approximated by a circle of radius

ri. The position of each department i is expressed by the coordinates of its center and is

denoted by (xi,yi). It is assumed that the nonnegative costs cij per unit distance between

departments i and j are given and are symmetric, i.e. cij=cji.

3.1.1 The DISCON Method

Drezner’s (1980) DISCON method assumes that departments have circular shapes and ar-

ranges them so that they do not overlap and the Euclidean distance among them is at a local

minimum. Furthermore, the model does not require that all departments be placed within

a facility or that the layout area satisfy any dimensional requirements.

DISCON can be represented by the optimization problem:
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(DISCON)

Minimize
∑

1≤i<j≤N

cijdij

s.t. dij ≥ ri + rj, for all 1 ≤ i < j ≤ N,

where rij is the radius of circle i, and dij =
√

(xi − xj)2 + (yi − yj)2 is the Euclidean distance

between the centers of the circles. The objective function minimizes the total material

handling cost inside the facility and the constraints require that the circles corresponding to

each pair of departments do not overlap.

Conceptually, Drezner (1980) solves DISCON in two stages using the Lagrangian Differential

Gradient Method, a penalty method for which the penalty factors are changed continuously.

The first stage is the dispersion phase, where all the departments are dispersed far from

the center of the layout area. Initially circles are placed very close to the origin where the

minimum of the objective function is attained, but constraints are strongly violated. The

constraint violations generate repulsion forces which in turn disperse the circles from the

origin and expand the whole system. Drezner (1980) uses the following system of ordinary

differential equations with free parameter t for the first stage of the method:

dxi

dt
= 2

∑n
j=1

(uij−cij)(xi−xj)

dij
for i = 1, . . . , n

dyi

dt
= 2

∑n
j=1

(uij−cij)(yi−yj)

dij
for i = 1, . . . , n

duij

dt
:=





λ2(ri + rj − dij) if dij ≤ ri + rj or uj(t) > 0,

0 otherwise,

for 1 ≤ i < j ≤ n

where the variable uij ≥ 0 is the dual variable associated with the constraint and is propor-

tional to the force of repulsion. If the solution to the above system converges over time and

if x0 and y0 reach a steady value, then (x0,y0) satisfies the Karush-Kuhn-Tucker optimality

conditions for the problem with u0 as the Lagrange multiplier vector, and DISCON has been

solved.
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The first stage provides a good starting point for the second stage, since the circles are

widely dispersed and are not touching. In the second stage, the concentration phase, all the

departments are brought back together to converge to a local minimum. The second stage

formulation introduces a new vector, vij, that is associated with uij, yielding the following

system of ordinary differential equations:

dxi

dt
= 2

∑n
j=1

(uij−cij)(xi−xj)

dij
for i = 1, . . . , n

dyi

dt
= 2

∑n
j=1

(uij−cij)(yi−yj)

dij
for i = 1, . . . , n

dvij

dt
:=





λ2(ri + rj − dij) if vij + λ2(ri + rj − dij) > 0,

−vij otherwise,

for 1 ≤ i < j ≤ n

uij = vij +
dvij

dt
for 1 ≤ i < j ≤ n

where x, u and v ≥ 0. The DISCON second stage local minimum provides the final solution

for the problem, as illustrated in Figure 2 for a 30-department problem.

Figure 2: Typical layout for Drezner’s DISCON model
(Figure taken from Drezner (1980))
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3.1.2 The NLT Method

The NLT method (van Camp et al. 1991) uses a three-stage penalty-based algorithm to solve

the facility layout problem. The first two stages are solved by a relaxation of the NLT model

that approximates each department by a circle whose radius is proportional to the area of

the department, while the third stage determines the final layout solution by solving the

following optimization problem:

(NLT)

Minimize
∑

1≤i<j≤N cijdij

s.t. |xi − xj| − 1
2
(wi + wj) ≥ 0 if |yi − yj| − 1

2
(hi + hj) < 0

|yi − yj| − 1
2
(hi + hj) ≥ 0 if |xi − xj| − 1

2
(wi + wj) < 0

1
2
wF − (xi + 1

2
wi) ≥ 0 for i = 1, ..., N

(xi − 1
2
wi) + 1

2
wF ≥ 0 for i = 1, ..., N

1
2
hF − (yi + 1

2
hi) ≥ 0 for i = 1, ..., N

(yi − 1
2
hi) + 1

2
hF ≥ 0 for i = 1, ..., N

min(wi, hi)− lmin
i ≥ 0 for i = 1, ..., N

lmax
i −min(wi, hi) ≥ 0 for i = 1, ..., N

min(wF , hF )− lmin
F ≥ 0

lmax
F −min(wF , hF ) ≥ 0

where (xi,yi) and dij are as previously defined; wi, hi are the width and height of department

i; lmin
i ,lmax

i are the minimum and maximum allowable lengths for the sides of department i;

wF , hF are the width and height of the facility; and lmin
F ,lmax

F are the minimum and maximum

allowable lengths for the facility.

In the first stage, the model first evenly distributes the centers of the departments inside the

facility. The algorithm calculates the number of evenly spaced rows and columns to place
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(a) Starting layout for Stage One (b) Stage One solution

(c) Stage Two solution (d) Stage Three solution

Figure 3: Layouts from van Camp et al. (1991) three-stage NLT model
(Figures taken from van Camp et al. (1991))

the departments in the plant layout. This ’ideal’ even spread, shown in Figure 3 (a), serves

as the starting point for the first stage model. Next, a set of constraints are enforced on

the centers of the departments to ensure that the moments about the x- and y-axis of the

computed solution correspond to an evenly spread solution. van Camp et al. (1991) define

the mth moment about the axes of the ideal layout to be

Mm(k) =
N∑

i=1

x
(m−k)
i yk

i , k = 0, . . . ,m

and require Mm(k), the mth moment of the actual layout being generated, to satisfy

Mm(k) = Mm(k), for k = 0, . . . ,m and m = 1, . . . , N.
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In particular, this constraint will ensure that the sum of the department centers to the right

(or above) the origin will equal the sum of department centers to the left (or below) the

origin. Therefore the model for the first stage is:

Minimize
∑

1≤i<j≤N

cijd
2
ij

s.t. Mm(k) = Mm(k), for k = 0, . . . , m and m = 1, . . . , N.

where the distance measure, dij, is squared to avoid discontinuities in the gradient of the

Euclidean distance. (The gradient is undefined when dij = 0 which is when the departments

completely overlap.)

First, Stage One is taken with the two lowest orders of moments being constrained and is

run until the penalty cost (proportional to the square of a measure of the degree to which a

constraint is violated) is less than one percent of the total cost. This solution is then used

as the initial point to re-solve the Stage One model with the three lowest orders of moments

being constrained. The resulting solution is once again considered as the initial point for

Stage One, and it is re-solved with the four lowest orders of moments being constrained, and

so on. The Stage One model is thus re-solved with appropriate initial points until all of the

moments have been constrained. van Camp et al. (1991) illustrated their solution for the

first stage in Figure 3(b).

In the second stage, the objective is to reduce the overlap among departments. The Stage

Two model is:
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Minimize
∑

1≤i<j≤N cijdij

s.t. dij − (ri + rj) ≥ 0

1
2
wF − (xi + ri) ≥ 0 for i = 1, . . . , N and j = 1, . . . , N

1
2
hF − (yi + ri) ≥ 0 for i = 1, . . . , N and j = 1, . . . , N

(xi − ri) + 1
2
wF ≥ 0 for i = 1, . . . , N

(yi − ri) + 1
2
hF ≥ 0 for i = 1, . . . , N

min(wF , hF )− lmin
F ≥ 0

lmax
F −min(wF , hF ) ≥ 0

where ri is the radius of the circle representing department i. This model ensures that no two

departments overlap, all departments remain inside the facility, and the dimensions of the

facility as a whole remain within acceptable limits. The solution of this problem, shown in

Figure 3 (c), is found by solving the Stage Two model until the penalty cost (using a penalty

in the objective function for every constraint that is violated) is less than one percent of the

total function value.

Lastly in the third stage, the NLT model is solved using the solution from Stage Two as an

initial solution. After each run, departmental interchanges are attempted to try to improve

the layout. Figure 3 (d) is an example of a successful layout that the NLT model produced.

3.1.3 The AR Method

Anjos & Vannelli (2002) derived the Attractor-Repeller (AR) model to improve on van Camp

et al.’s (1991) NLT method. The AR model replaces the first two stages of the NLT method,

and finds a good initial point for NLT method’s third stage.

The AR model is derived from nature’s concept of attractor and repeller particles, as shown

in Figure 4. An attractor element attracts particles according to set strength and range

parameters. Each attractor can be set to attract any combination of particles. A repeller
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Figure 4: Repulsive and attractive forces on particles
(Figure taken from Anjos & Vannelli (2002))

element is identical to an attractor but has a negative strength parameter which makes it

push particles away from each other. Anjos & Vannelli (2002) define the attractor component

to be
∑

1≤i<j≤N cijd
2
ij in the objective function. When the objective function is minimized,

this attractor component will try to minimize distances by moving the circles closer together

until they are on top of each other, at which point d2
ij = 0. Then, to prevent overlap, the

AR model employs the concept of target distances. The target distance between any two

circles i and j is denoted by
√

tij, where tij = α(ri + rj)
2 and α > 0. The parameter tij

is the target value for Dij, which is the square of the distance between each pair of circles:

Dij := d2
ij = (xi − xj)

2 + (yi − yj)
2. The α parameter provides flexibility as to how tightly

the user wishes to enforce the constraint of circles non-overlapping. Hence, choosing α < 1

allows a priori some overlap of the areas of the respective circles, while α=1 means that there

should be no overlap and the circles should intersect at exactly one point on their boundaries.

The target distance is enforced by penalizing the overlap with respect to the target distance

by introducing the term K · f(
Dij

tij
) in the objective function, where f(z) = 1

z
− 1, z > 0 and

K = 10 · (∑i,j cij). Therefore if the target distance is reached right on, then z = 1 which

makes the f(z) term disappear. However, if the distance is a lot smaller then the target

distance, then f(z) −→ ∞ since z becomes really small. Hence, Anjos & Vannelli (2002)
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define the repeller component to be
∑

1≤i<j≤N Kf
(

Dij

tij

)
in the objective function, which

prevents circles from overlapping. The AR model is formulated as:

(AR)

Minimize
∑

1≤i<j≤N cijDij + K · f
(

Dij

tij

)

s.t. 1
2
wf ≥ xi + ri for i = 1, ..., N

1
2
wf ≥ ri − xi for i = 1, ..., N

1
2
hf ≥ yi + ri for i = 1, ..., N

1
2
hf ≥ ri − yi for i = 1, ..., N

wmax
F ≥ wF ≥ wmin

F

hmax
F ≥ hF ≥ hmin

F .

The first four constraints require that all the circles be entirely contained within the facility,

and the remaining two constraints bound the width and height of the facility. However, the

AR model is not convex, and therefore the optimal solution is not necessarily unique. Anjos

& Vannelli (2002) also modify the AR model’s objective function to yield a convex problem,

the convexified AR model, CoAR. The CoAR model formulation is:

(CoAR)

Minimize
∑

1≤i<j≤N fij (xi, xj, yi, yj)

s.t. 1
2
wf ≥ xi + ri for i = 1, ..., N

1
2
wf ≥ ri − xi for i = 1, ..., N

1
2
hf ≥ yi + ri for i = 1, ..., N

1
2
hf ≥ ri − yi for i = 1, ..., N

wmax
F ≥ wF ≥ wmin

F

hmax
F ≥ hF ≥ hmin

F .

where

fij(xi, xj, yi, yj) :=





cijDij + tij/Dij − 1 if Dij >
√

tij/cij

2
√

cijtij − 1 if 0 ≤ Dij ≤
√

tij/cij
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and cij > 0, tij > 0 and Dij = (xi − xj)
2 + (yi − yj)

2. This way fij attains its minimum

value whenever the positions of circles i and j satisfy Dij ≤
√

tij/cij. Since whenever Dij <
√

tij/cij there will be overlap among circles, it is therefore desirable to have Dij ≈
√

tij/cij.

Another way of looking at this is that if Dij ≈ Tij then Dij is proportional to both tij and

1/cij and Dij is close to the geometric average of these two quantities. Note that when the

cij is large, 1/cij is small, and therefore it is desirable for the circles to be near each other

(and vice versa when the cost is small).

However, Anjos & Vannelli (2002) do not use the CoAR model because it requires a carefully

designed line search procedure and the non-convex AR model with the scaling by K performs

well in practice, in spite of lacking convexity.

3.1.4 The SE Method

Castillo & Sim (2004) introduced the SE Method which is based on relating the arrangement

of circles within a facility to a dynamically balanced spring system. The strength of the

spring between each pair of circles is represented by cij, and the force created in the spring

is represented by the Euclidean distance between the centers of the circles.

The SE model is based on the AR model and introduces a new objective function. As in the

AR model, the first four constraints require that all the circles be entirely contained within

the facility, and the remaining two constraints bound the width and height of the facility.

The SE model is formulated as:
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(SE)

Minimize
∑

1≤i<j≤N cijd
2
ij + max {0, Kij(ri + rj − dij)}

s.t. 1
2
wF ≥ xi + ri for i = 1, ..., N

1
2
wF ≥ ri − xi for i = 1, ..., N

1
2
hF ≥ yi + ri for i = 1, ..., N

1
2
hF ≥ ri − yi for i = 1, ..., N

wmax
F ≥ wF ≥ wmin

F

hmax
F ≥ hF ≥ hmin

F

where Kij > 0, 1 ≤ i < j ≤ N .

As in previously described methods, the
∑

1≤i<j≤N cijd
2
ij component seeks to make the dis-

tances between departments as small as possible by attracting all pairs of circles to each

other, and the penalty term representing the total energy of the springs is introduced to

enforce non-overlapping. The penalty term assumes a non-negative value proportional to

the magnitude of the area overlap of the circles and results in a repulsive force. If there is no

overlap, the total energy function is not penalized, and only an attractive force remains. In

summary, the objective function of the SE model represents the total energy function and

minimizes the degree of imbalance inside a facility.

3.1.5 The ModCoAR-BPL Method

Anjos & Vannelli (2006) builds upon the convexified CoAR model (Anjos & Vannelli 2002)

and the second stage of the NLT method (van Camp et al. 1991).

Anjos & Vannelli (2006) define a generalized target distance as:

Tij :=

√
tij

cij + ε
, 1 ≤ i < j ≤ N,
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where ε > 0 is a small enough number such that if cij = 0 then Tij will not be undefined,

but if Dij ≈ Tij then Dij ≈
√

tij/cij. As with the target distance of the CoAR model, both

the relative size of the departments and the connection cost between them are taken into

account. However, the generalized target distance is defined even when cij = 0. Anjos &

Vannelli (2006) also sacrifice the convexity of the model for computational practicality, by

adding the term − ln(Dij/Tij) to the objective function so that an appropriate algorithm

will stop at a solution that is on or near the flat portion of the objective function but is

farthest from the origin, i.e., where Dij ≈ Tij. Hence the final model is formulated as:

(ModCoAR)

Minimize
∑

1≤i<j≤N Fij(xi, xj, yi, yj)−K ln
(

Dij

Tij

)

s.t. 1
2
wF ≥ xi + ri

1
2
wF ≥ ri − xi

1
2
hF ≥ yi + ri

1
2
hF ≥ ri − yi

wmax
F ≥ wF ≥ wmin

F

hmax
F ≥ hF ≥ hmin

F

where Fij(xi, xj, yi, yj) :=





cijDij + tij/Dij − 1 if Dij > Tij

2
√

cijtij − 1 if 0 ≤ Dij ≤ Tij

where the constant K is a large penalty factor (typically 10
∑

cij).

Next, Anjos & Vannelli (2006) consider the final stage of the method and reformulate the

disjunctive nonoverlap constraints within the NLT model (van Camp et al. 1991) that are

the most difficult to handle. By introducing two new complementary variables, Xij and Yij,

that satisfy Xij ≥ 1
2
(wi +wj)−|xi−xj|, Xij ≥ 0 and Yij ≥ 1

2
(hi +hj)−|yi− yj|, Yij ≥ 0, the

nonoverlap constraints are equivalent to XijYij = 0. Because of these last constraints, this

model is a mathematical program with complementarity constraints (MPCC). To enforce
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the restriction that at any feasible point Xij = 0 or Yij = 0 must hold, Anjos & Vannelli

(2006) penalize the constraints in the objective to obtain the bilinear penalty layout model

(BPL). Hence the formulation of the BPL model is as follows:

(BPL)

Minimize
∑

1≤i<j≤N cijdij + KXijYij

s.t. Xij ≥ 1
2
(wi + wj)− |xi − xj| for 1 ≤ i < j ≤ N

Yij ≥ 1
2
(hi + hj)− |yi − yj| for 1 ≤ i < j ≤ N

Xij ≥ 0, Yij ≥ 0, and XijYij = 0 for 1 ≤ i < j ≤ N

1
2
wF − (xi + 1

2
wi) ≥ 0 for i = 1, ..., N

(xi − 1
2
wi) + 1

2
wF ≥ 0 for i = 1, ..., N

1
2
hF − (yi + 1

2
hi) ≥ 0 for i = 1, ..., N

(yi − 1
2
hi) + 1

2
hF ≥ 0 for i = 1, ..., N

wihi = ai for i = 1, ..., N

min(wi, hi)− lmin
i ≥ 0 for i = 1, ..., N

lmax
i −min(wi, hi) ≥ 0 for i = 1, ..., N

min(wF , hF )− lmin
F ≥ 0

lmax
F −min(wF , hF ) ≥ 0

where K =
∑

1≤i<j≤N cij.

As shown in Figure 5, Anjos & Vannelli (2006) solved the well-known 20-department problem

of Armour & Buffa (1963) using their ModCOAR and BPL combination and obtained layouts

that are up to 20% better that the results reported in Smith & Tate (1992).

3.2 The IBIMODEL

The contribution of this thesis is a model that is built upon Anjos & Vannelli’s (2006)

ModCoAR model. The first main idea behind the proposed model is that it does not improve
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Figure 5: ModCoAR and BPL layout for Armour & Buffa’s (1963) 20-department problem
(Figure taken from Anjos & Vannelli (2006))

the objective function as the circles start overlapping and the distance between the circle

centers becomes less than ri + rj. A second idea is to try to include some information about

aspect ratios. Thirdly, a systematic approach to making parameter choices is introduced.

Lastly, a new final stage recently proposed by Luo et al. (n.d.) is used to obtain the actual

facility layouts. The net result is a methodology that consistently produces competitive, and

often better layouts for large FLPs, when compared with other approaches in the literature.

3.2.1 Improved Objective Function

The means for not rewarding the objective function as the circles start overlapping is based

on ri + rj (the actual sum of radii),
√

tij
cij+ε

(the generalized target distance from Anjos

& Vannelli (2006)) and τij (a new target distance). In IBIMODEL, tij is defined slightly

differently than in the previously mentioned models. The α is dropped from tij and thus

tij := (ri + rj)
2 is the actual sum of radii squared. Furthermore, we set a new parameter vij

and the new target distance τij as follows:
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if tij >
√

tij
cij+ε

then vij = cijtij and τij = tij

else vij = 2
√

tijcij + ε− 1 and τij =
√

tij
cij+ε

.

The idea is that if the generalized target distance is less than the actual sum of radii squared,

then the function is truncated at a higher level than the previous value in ModCoAR (so

that overlapping is not rewarded) by setting the new target distance, τij, to tij and setting

the cost to cijtij. On the other hand, if the generalized target distance is greater than or

equal to the actual sum of radii squared, then this indicates that tij is in the flat part of

the convexified function and therefore the cost can be set to the value at the flat part of the

function, vij = 2
√

tijcij + ε − 1, and the new target distance can be set to the generalized

target distance. This concept leads to the IBIMODEL below:

(IBIMODEL)

Minimize
∑

i<j Fij(xi, xj, yi, yj)−K log
(

Dij

tij

)

s.t. 1
2
wF ≥ xi + ri for i = 1, ..., N

1
2
wF ≥ ri − xi for i = 1, ..., N

1
2
hF ≥ yi + ri for i = 1, ..., N

1
2
hF ≥ ri − yi for i = 1, ..., N

where τij =





tij if tij ≥
√

tij
cij+ε

√
tij

cij+ε
otherwise,

vij =





cijtij if tij ≥
√

tij
cij+ε

2
√

tijcij + ε− 1 otherwise,

Fij(xi, xj, yi, yj) =





cijDij +
α tij
Dij

− 1 if τij ≤ Dij

vij if τij > Dij
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where Dij and ε are both as previously defined in Section 3.1.5.

3.2.2 Aspect Ratios

One way to obtain very low costs in the FLP is by aligning the departments in a stack

of long, narrow departments where the centroids are very close to one another. Therefore,

another goal of the FLP is to try to give the rectangular-shaped departments dimensions

that are not too far off from being square. The concept of aspect ratio measures how far

off a department’s shape is from being square. The aspect ratio of department i is defined

as βi := max hi

wi
, wi

hi
, where hi is the height and wi is the width of department i. As the

aspect ratio becomes smaller (approaching 1), the problem becomes more constrained, the

total cost increases, and feasible solutions become harder to find. With the exception of the

last stage of the NLT method and of BPL, all of the above models do not have any control

over the aspect ratios.

IBIMODEL tries to include some information about the desired width and height for each

department. The aspect ratios can be thought of as a bound on a department’s width and

height. For example, if department i has area ai and a restriction that its minimum length

should be larger then µi, so that hi ≥ µi, wi ≥ µi must hold (as in van Camp et al.’s (1991)

example), then (provided µi > 0) one can show that

hi

wi
=

h2
i

wihi
≥ µ2

i

ai
and wi

hi
=

w2
i

hiwi
≥ µ2

i

ai
, as well as hi

wi
= hiwi

w2
i
≤ ai

µ2
i

and wi

hi
= wihi

h2
i
≤ ai

µ2
i

.

Given that the aspect ratio is βi = max{ hi

wi
, wi

hi
}, the implied bound on the aspect ratio is

βi ≤ ai

µ2
i
. Therefore, by altering the minimum side length of departments, one can control

the upper bound of the aspect ratio. It is important to note that this upper bound will be

different for each department i as the area ai for each department differs.

Since the aspect ratio is closely related to the minimum side length of the department, the

idea of controlling the aspect ratio via the minimum side length of departments provides a
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link back to the notion of having the departments represented by circles. (To date only circles

have been considered as initial estimators for departments, likely because of their symmetry.)

In the proposed first stage of the facility layout design, IBIMODEL, the radii of circles that

represent departments are considered to be a given parameter, even though one only knows

the desired area of the departments. If one simply takes the radius to be ri =
√

ai/π,

the results tend to yield costs that are relatively low but also departments with relatively

large aspect ratios, i.e., with a large difference between the length and width. Intuitively,

one reason for the large aspect ratios is that it is much harder for the larger departments

than for smaller departments to shape themselves into square-like rectangles when the circle

sizes only depend on the desired department areas. Large departments usually have many

more neighbours than smaller departments, and rely more heavily on these neighbours to

move/jump around to allow the large department the flexibility it needs to form itself into a

square-like shape. Therefore if larger departments have relatively larger circles to represent

their areas, the circles may reserve enough area inside the facility for the second stage model

to be able to form departments with lower aspect ratios. For this reason in IBIMODEL, the

radii are calculated to be ri =
√

ai

π
∗ log2(1 + ai

ϕ2 ) where ϕ is a parameter for controlling the

desired smallest length or width for each department in the layout. By construction, the log

scaling factor is greater than or equal to 1, and as ϕ decreases, the log factor increases and

IBIMODEL aims for lower aspect ratios, while if ϕ increases then the log factor decreases

and allows IBIMODEL to aim for higher aspect ratios.

Since the areas of the circles that represent the departments are increased, the floor di-

mensions also have to be adjusted in order to allow the circles to fit with a nice spread

(and reduced overlap). Therefore, the facility dimensions are also adjusted by a factor

χ = max log2(1 + ai

ϕ2 ). This way the circles will fit nicely and have the potential of leading

to small aspect ratios for the department in the layout obtained using the second stage.

For example, consider a 10-department example with a facility of dimensions 20×30, depart-
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Area Radius Adjustment Adjusted Radius

ai

√
ai/π log2(1 + ai

22 )
√

ai/π ∗ log2(1 + ai

22 )

9 1.69257 1.7004 5.8870
18 2.39365 2.4594 5.8870
24 2.76395 2.8074 7.7594
27 2.93161 2.9542 8.6606
41 3.61257 3.4542 12.6146
42 3.65636 3.5236 12.8834
45 3.78469 3.6147 13.6806
60 4.37019 4.0000 17.4808
64 4.51351 4.0875 18.4488
70 4.72034 4.2094 19.8700

Table 1: Radius calculation for example.

ments with areas 9, 18, 24, 27, 41, 42, 45, 60, 64, and 70, and a restriction that the minimum

height and width of a department is 2. The adjusted radii calculated with ϕ = 2 are given

in last column of Table 1. Since the circles have been increased, the facility layout has to be

increased as well. Calculating χ = max log2(1 + ai

22 ) for this problem gives χ = 4.3038 and

hence the facility length and width are increased by a factor of χ to 86× 129.

It is shown in Section 4 that, together with the final stage of Luo et al. (n.d.), IBIMODEL

does provide a wide variety of layouts with relatively low aspect ratios and costs. Since

real-world problems are customarily simplified before they are modeled using the FLP, even

if the model does solve the problem to optimality, the original problem being solved is much

too simplified compared to its real-world setting. With IBIMODEL and the second stage of

Luo et al. (n.d.), it is possible to get a wide variety of layouts with competitive costs. In this

way, a layout that most closely meets all the problems requirements (even the ones that were

not accounted for in the FLP model) can be selected from the range of layouts obtained.
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3.2.3 Parameter Selection of α and K

IBIMODEL has two main parameters that need to be adjusted experimentally: α and K.

The parameter α controls the amount of overlap amongst circles, by penalizing overlaps in

the objective function. K is the dispersion parameter, so if K is too small, all the circles will

be placed on top of each other around the center of the layout, as illustrated in Figure 6 (a).

If K is too large, then all the circles will be pushed to the edges of the layout as illustrated

in Figure 6 (c). Finding a good balance between these two extremes will result in the most

promising layouts after the second stage, as in Figure 6 (b).
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(a) K is too small
Max Aspect Ratio*: 10.27

Cost*: 24303
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(b) K is good
Max Aspect Ratio*: 3.75

Cost*: 25000
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(c) K is too big
Max Aspect Ratio*: 16.77

Cost*: 27257

Figure 6: Layouts for Tam’s 30-department problem with different K parameter values in
IBIMODEL

* Calculated after the 2nd stage has computed the layout.

Since the ranges of α and K within which good layouts can be found vary from one instance

to another, one must first experiment with extreme values for each parameter to get a good

sense of which values will yield the most promising results. This is done by fixing α first

to a value around 3 (since this was found to be always within α’s range) and varying K, to

find a value of K for which all the circles are approaching the center of the layout and are

practically on top of each other, and another value of K that starts pushing all the circles to

the layout edges. Afterwards K is fixed to a value that provided one of the smallest costs in

the previous experiments (when α was fixed and K was varied) and α is varied to extreme

33



values that provide solutions where all circles start overlapping or are pushed to the edges

of the layout. Once the ranges of the parameters have been determined, one can either solve

the IBIMODEL for all possible combinations of α and K on a grid within these extreme

valued ranges (to find the best possible layout) or randomly sample within the same ranges.

Figure 7: Cost fluctuations on the 20-department problem

In order to experimentally determine if random sampling was a reasonable way of choosing

values for α and K, we conducted a test using Armour & Buffa’s (1963) 20-department

problem. First, a regular grid coverage on the parameters was used to solve the problem
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231 times (contained in Appendix I and II), with 21 different α values between 1 and 3 in

increments of .1, and with 11 different K values between 1000 and 10000 in increments of

100. The result of IBIMODEL was used as input to the second stage described in Section

3.4. Figure 7 illustrates clearly that there is no definite correlation between parameter values

and final layout costs. As observed, there is not one region in the graph that has consistently

low layout costs, and actually the costs fluctuate significantly with even small changes in

the parameters. Next, the 20-department problem was solved using increasing sets of 20, 30,

40 and 50 randomly generated values for α and K. When the results of the grid coverage

and random sampling are compared in Tables 2 and 3, one can observe that the difference

between the results is not large. As illustrated in Table 3, up to the 3rd quartile, the best

layouts for the sample sets are at most 3.2% worse than those from the grid coverage.

Data Set Min 1st quartile 2nd quartile 3rd quartile Max

20 Samples 2902.1 3074.8 3181.1 3266.0 3642.9
30 Samples 2902.1 3101.7 3181.1 3318.9 3642.9
40 Samples 2902.1 3119.3 3237.0 3351.5 3642.9
50 Samples 2847.7 3096.4 3181.1 3323.2 3642.9

Grid Coverage 2811.0 3084.7 3208.1 3321.1 4100.4

Table 2: Cost statistics for the 20, 30, 40, 50 sample and grid coverage data sets

Data Set Min 1st Quartile 2nd Quartile 3rd Quartile Max

20 Samples 3.2% 0.3% 0.8% 1.7% 11.2%
30 Samples 3.2% 0.6% 0.8% 0.1% 11.2%
40 Samples 3.2% 1.1% 0.9% 0.9% 11.2%
50 Samples 1.3% 0.4% 0.8% 0.1% 11.2%

Table 3: Percentage difference between the 20, 30, 40, 50 sample data set costs and the grid
coverage data set costs

Hence, based upon this experiment, it can be concluded that randomly sampling parameter

values may yield approximately the same quality of layouts as tediously large grid samplings

would, allowing the method to be more efficient.
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3.3 First Stage Model Variations

Facility layout problems sometimes require departments not to be narrower than a certain

value. For example, van Camp et al. (1991) has a 10-department problem with the restriction

that the departments cannot be narrower then 5 meters in either dimension. This restriction

can be accounted for in IBIMODEL by changing the ϕ parameter. As explained in Section

3.2.1, the log function helps in adjusting the respective circle sizes for each department to

allow them to have enough space in order to be able to shape themselves closer to a square

shape.

Figure 8: Floor plan for the 30-department layout
(Figure taken from Tam (1992a))

Often facility layout problems do not allow the entire floor plan to be used for placing

departments. There may be locations on the floor plan that are already occupied by existing

facilities such as elevator shafts, utilities and columns, etc. For example, Tam (1992a) and

Tam (1992b) consider a 30-department problem with 3 occupied spaces at the corner, as

shown in Figure 8. With IBIMODEL, two different approaches can be used to solve this

30-department problem. The first approach considers the 3 occupied spaces as additional

’departments’, hence solving the problem at the first stage as a 33-department problem.
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These additional 3 departments have associated flows of zero, and fixed positions at the

spots where they are required to be. The second approach initially ignores these 3 occupied

spaces and solves the first stage as a 30-department problem, and then adds these 3 extra

departments into the problem at the second stage. The results in Section 4 suggest that the

latter approach yields layouts with lower costs.

3.4 Second Stage Model

The second stage model that we used was developed by Luo et al. (n.d.). Given the fixed-

outline of the facility and the locations of circles (from the first stage), semidefinite program-

ming is used to provide the precise location and rectangular dimensions of the departments

while minimizing the layout costs.

3.4.1 Semidefinite Programming

Definition 1 (Positive Semidefiniteness) A matrix X ∈ Sn, where Sn denotes the set

of n× n real symmetric matrices, is said to be positive semidefinite (psd) if for all y ∈ Rn:

yT Xy =
∑
i,j

Xi,jyiyj ≥ 0.

Definition 2 (Semidefinite Programming) In Sn, a semidefinite programming (SDP)

problem has the form:

min C •X

s.t.

Ai •X = bi, for i = 1, 2, ...m,

X º 0.

where A •X =
∑

i,j Ai,jBi,j = trace(BT A) and X is psd.
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SDP is a generalization of linear programming and is a convex optimization problem that

can be solved effectively using interior-point algorithms (Wolkowicz, Vandenberghe & Saigal

2000). Based on the relative position of departments obtained from the first stage, we

formulate the FLP as a convex optimization problem using SDP. In this section, the second

stage model is formulated by applying semidefinite optimization techniques to the area and

aspect ratio constraints.

3.4.2 SDP Model

One property of psd matrices is that all principal minors are non-negative. Therefore for

ai > 0, if we relax the area constraint wihi = ai to wihi ≥ ai, we can express the relaxed

constraint as a PSD constraint:




wi
√

ai

√
ai hi


 º 0.

Assuming that the aspect ratio of department i must be bounded above by a given value

β∗i > 0, then letting wlow
i = hlow

i =
√

ai/β∗i where ai = wihi, we have:

wi ≥ wlow
i > 0,

w2
i ≥ ai/β

∗
i ,

β∗i w
2
i ≥ ai,

β∗i ≥ hi/wi.

Similarly, as hi ≥ hlow
i > 0 we can conclude that β∗i ≥ wi/hi.

With β∗i ≥ hi/wi and wihi = ai, Luo et al. (n.d.) obtain β∗i ≥ h2
i /ai and aiβ

∗
i ≥ h2

i .
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Thus, β∗i ≥ hi/wi is equivalent to the following psd constraint:




β∗i hi

hi ai


 º 0,

and β∗i ≥ wi/hi is equivalent to 


β∗i wi

wi ai


 º 0.

Combining all these constraints yields the second stage model for the FLP:

min
(xi,yi),wi,hi

∑
1≤i<j≤n

cij (|xi − xj|+ |yi − yj|)

s.t.

xi +
1

2
wi ≤ 1

2
wF ∀ i

yi +
1

2
hi ≤ 1

2
hF ∀ i

1

2
wi − xi ≤ 1

2
wF ∀ i,

1

2
hi − yi ≤ 1

2
hF ∀ i,

wlow
i ≤ wi ≤ wup

i ∀ i,

hlow
i ≤ hi ≤ hup

i ∀ i,



wi
√

ai

√
ai hi


 º 0 ∀ i,




β∗i hi

hi ai


 º 0, ∀ 1 ≤ i < j ≤ n,




β∗i wi

wi ai


 º 0, ∀ 1 ≤ i < j ≤ n

where wF and hF are the fixed width and height of the facility. Note that the non-overlap
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constraints are absent from this formulation. They are enforced using additional linear

constraints in the manner that we now describe.

3.4.3 The Relative Position Matrix

Recall from the NLT model that the overlap-free constraints for each pair of departments

can be expressed as:

1
2
(wi + wj)≤ |xi − xj| if |yi − yj| < 1

2
(hi + hj )

1
2
(hi + hj ) ≤ |yi − yj | if |xi − xj| < 1

2
(wi + wj).

Since the relative positions of the departments are already determined in the first stage,

one can determine which of these two conditions applies, and therefore also eliminate the

symbols of absolute values, thus linearizing the non-overlap constraints.

The relative positions of the departments are stored in a Relative Position Matrix (RPM).

A RPM is an N ×N non-negative, symmetric matrix with zeros on the principal diagonal,

where N is the number of departments in the problem. Since the matrix is symmetric, the

information in the upper triangular matrix is sufficient. The RPM matrix is populated in

the following manner:

• “1-” is used to represent that department i is horizontally separated from department

j. Furthermore, “11” means that department i is to the left of department j (Figure

9(a)), and “12” means that department i is to the right of department j (Figure 9(b)).

• “2-” is used to represent that department i is vertically separated from department j.

Furthermore, “21” means that department i is above department j (Figure 9(c)), and

“22” means that department i is below department j (Figure 9(d)).

If the relative position of two departments is diagonal (Figure 10), the following rule is applied
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Figure 9: Horizontal and vertical relative positioning amongst modules
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Figure 10: Diagonal relative positioning amongst modules

to determine how the two modules are separated. If ∆y ≥ ∆x, then only the vertical relative

positioning is considered, and if ∆x > ∆y, then only the horizontal relative positioning is

considered.
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(b) The final layout

Figure 11: A 4-department example from Luo et al. (to be published)

We use a 4-department example to show how a RPM can be generated. A relation position

graph obtained from the first stage for the four-department case is shown in Figure 11(a).

Based upon the labeling system explained, the following RPM matrix is obtained for this
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example: 


0 11 21 0

0 0 0 21

0 0 0 11

0 0 0 0




where the following relative position relations are given by the entries of the RPM:

• “11” in entry (1,2): Department 1 is on the left of department 2;

• “11” in entry (3,4): Department 3 is on the left of department 4;

• “21” in entry (1,3): Department 1 is above department 3;

• “21” in entry (2,4): Department 2 is above department 4.

The final layout for this example, based on this RPM, is illustrated in Figure 11(b).

3.4.4 The Voronoi Diagram

It only remains to present how a planar graph that reflects the relative positions of the

departments is obtained from the solution of IBIMODEL. Luo et al. (n.d.) converts the

output of IBIMODEL into a planar graph using the Delaunay Triangulation (DT) and its

dual construction, the Voronoi diagram (VD). As illustrated in Figure 13(a), we use the

positions of the centers of the circles obtained from IBIMODEL to partition the plane into

the resulting Voronoi diagram. The idea is that each cell in the VD contains exactly one

department center and every point in a given cell is closer to its generating department center

than to any other.

The DT for a set of points P in the plane is the triangulation DT (P ) such that no point

in P is inside the circumcircle of any triangle in DT (P ). Delaunay triangulations maximize
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the minimum angle of all the angles of the triangles in the triangulation, and hence avoid

sliver-like triangles. In Figure 13(b), the dashed circles represent the solution of the first

stage, the fine lines represent the corresponding DT and the black bold lines represent the

cells of the corresponding VD. The edges of the DT represent the relative positions of the 9

departments. These relationships are then included in the RPM matrix.
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(a) Layout after the first stage.




0 21 11 11 11 11 11 22 11
0 0 11 11 11 11 22 22 22
0 0 0 11 22 22 22 22 22
0 0 0 0 22 22 22 22 22
0 0 0 0 0 11 22 22 22
0 0 0 0 0 0 12 12 22
0 0 0 0 0 0 0 22 22
0 0 0 0 0 0 0 0 11
0 0 0 0 0 0 0 0 0




(b) RPM

Figure 12: 9-department example from Luo et al.
(Figure taken from Luo et al.)
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(a) Voronoi diagram on top of the graph
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(b) Delaunay triangulations added to graph

Figure 13: Relative position graph with the Voronoi diagram and Delaunay triangulation
for 9-department example

(Figure taken from Luo et al.)
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4 Computational Results

4.1 Computational Details

IBIMODEL was tested using the non-linear optimization solver KNITRO 5.0 accessed via the

modeling language AMPL on a Microsoft Windows Server 2003 with a 2.84 GHz processor.

The radii of the approximating circles was set to ri =
√

ai

π
∗ log2(1 + ai

ϕ2 ) where ϕ = 2 or

the desired minimum length for the instance (if any is specified) and the generalized target

distance was set with ε = 0.1. When solving IBIMODEL, KNITRO requires initial starting

points for the centers of the circles. Since it is not clear a priori what the ’best’ starting

configuration is, following Anjos & Vannelli (2006), the centers of the N circles were initially

placed at regular intervals around a large circle of radius r = (wF + hF ) ∗ χ. The χ variable

is the adjusting ratio that corresponds to the ratios that the circle sizes were enlarged by,

and hence χ = max(log2(1 + ai

ϕ2 )). Therefore, the initial centers (xi, yi) of the departmental

circles can be set to xi = r cos θi ∗ χ and yi = r sin θi ∗ χ, where θi = 2π(i− 1).

The IBIMODEL has 2N variables and 3
(

n
2

)
+ N + 3 parameters with only the objective

function being non-linear.

The AMPL code of IBIMODEL can be found in Appendix III.

4.2 20-Department Test Problem

Arguably the best known large benchmark instance in FLP research is Armour & Buffa’s

(1963) 20-department problem. This instance uses a symmetrical flow matrix and rectilinear

distances. As proposed originally, it does not have any requirements on the minimum side

length or the maximum allowable aspect ratio. Armour & Buffa (1963) approached this prob-

lem by requiring all departments to be made up of contiguous rectangular building blocks,
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and then applied departmental adjacent pairwise exchanges. Tong (1991) approached this

problem by assuming rectangular departmental shapes placed in bays. Tate & Smith (1995)

applied genetic optimization with adaptive penalty functions to improve the solution. Kim &

Kim (1998) used a simulated annealing approach with probabilistically based aspect ratios.

Enea, Galante & Panascia (2005) also used a genetic algorithm that employed concepts of

evolutionary hybrid algorithms to obtain a better local optima. Anjos & Vannelli (2006)

were able to find the best costs in the literature using the two-stage non-linear framework

described earlier.

4.2.1 Computational Results on Armour & Buffa’s 20-Department Problem

Reported below in Table 4 are the results that were obtained from applying IBIMODEL and

the SDP-based second stage to the Armour & Buffa (1963) 20-department problem. (The

corrected cost matrix from Scriabin & Vergin (1975) and Huntley & Brown (1991) was used.)
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(b) Final layout using Luo et al. (n.d.)

Figure 14: Best layout achieved for the 20-department problem

As explained in Section 3.2.3, the α and K parameters were varied randomly and also
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β∗i Cost of best Cost of best Cost of best Cost of best
layout in TS layout in EGP layout in AV layout by IBIMODEL

8 5255.0† 4793.5† 4591.3† 3014.2
7 5255.0 4793.5 4591.3† 2979.3
6 5524.7† 5397.6† 4591.3† 2708.0
5 5524.7 5397.6 4591.3 3009
4 5743.1 5370.9 4786.4 2960.5
3 5832.6 5594.3 5140.1 -*
2 6171.1 6023.2 5224.7 -*

Table 4: Comparison of the algorithms for the Armour and Buffa problem
(*No feasible layout found, †Cost of layout for that specific aspect ratio is the best for a lower aspect ratio)

(TS is Tate & Smith (1995), AV is Anjos & Vannelli (2006), EGP is Enea, Galante & Panascia (2005))

systematically to obtain different layouts. The combination of our first stage algorithm and

Luo et al.’s (n.d.) second stage model found the layout in Figure 14, with a cost of 2708. The

layout in Figure 14 shows department 7 as having the largest aspect ratio (of 6). Parameter

combination α=1.04 and K=1690 was used to solve the first stage model in 0.769 seconds

and the second stage model in 16.6 seconds. In comparison, the genetic algorithm in Tate &

Smith (1995) with a (lower) bound of 7 on the aspect ratio found a best layout with a cost

of 5255.0 (over 10 runs of the algorithm) and the best layout reported in Anjos & Vannelli

(2006) was 4591.3 (with an aspect ratio of 5 however). Thus the new layout obtained using

IBIMODEL as the first stage algorithm found improved layouts with aspect ratios as low as

4 and improved by 41% on the previous best cost found for an aspect ratio bound of 7.

4.3 30-Department Test Problem

Another large problem that is well known in the literature is the 30-department Nugent

et al. (1968) QAP problem. Tam (1992a) and Tam (1992b) transformed this problem into

a FLP and included three additional pre-positioned departments, as illustrated in Figure 8.

The three pre-positioned departments represent areas that are occupied by existing facilities

such as elevator shafts or columns. Tam (1992a) uses a genetic algorithm and Tam (1992b)
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uses a simulated annealing algorithm with a slicing structure/tree method that contains

information on partitioning the floor. Tam (1992a) and Tam (1992b) aim for relatively

low aspect ratios (all below 2.5) and minimal deadspace. Deadspace refers to overlap, both

between two departments and between a department and the occupied areas. Their algorithm

uses a penalizing component in the objective function to compensate for larger aspect ratios

and existing deadspace (the latter gauges the degree of shape distortion of departments due

to overlap of occupied areas). Hence, Tam’s (1992a) and Tam’s (1992b) layout solutions

provide some awkwardly shaped facilities that are not always practical in the real-world (see

departments 15 and 19 in Figure 15(a) and department 29 in Figure 15(b)).

(a) Tam’s (1992a) minimum cost layout (b) Tam’s (1992b) minimum cost layout

Figure 15: Tam’s 30-department minimum cost layouts

Other papers have attempted to solve this hard problem, but due to its size, the aspect ratio

requirements, and the three pre-positioned departments, each one of these approaches made

its unique simplifications. The unfortunate result is that it is not possible to compare our

costs directly with theirs. Kim & Kim (1998) solved this 30-department problem using a

simulated annealing algorithm in which a solution is encoded as a matrix that has information

about relative locations of the facilities on the floor. To compare their results with Tam

(1992a) and Tam (1992b), they converted Tam’s costs to minimum total transportation

47



distances by subtracting the penalties from the objective function to obtain an estimate that

their model beat. Lee & Lee (2002) developed a shape-based block layout approach that

uses a hybrid genetic algorithm (which adds the strength of simulated annealing and tabu

search algorithms to the genetic algorithm). Even though they claim to be basing their

test data on Nugent et al. (1968), Tam (1992a) and Tam (1992b), their areas and aspect

ratios are different from those of the original problem, and the pre-positioned departments are

completely ignored. Balakrishnan et al. (2003) developed the FACOPT software package that

uses two algorithms, simulated annealing and a genetic algorithm, to solve the 30-department

problem. However, FACOPT only beats Tam’s (1992a) and Tam’s (1992b) results with its

genetic algorithm-based model and there is no indication in the paper about whether the

pre-positioned departments were considered and what aspect ratios were obtained in these

layouts.

4.3.1 Computational Results on Tam’s 30-Department Problem

Table 5 illustrates the lowest costs that were obtained by Tam (1992a), Tam (1992b), Lee

& Lee (2002) and Balakrishnan et al. (2003) for the 30-department problem with occupied

spaces. Also, all of these models contain a penalty component in their objective function,

hence these models minimize a penalty-added objective function value for feasible solutions

(including penalties incurred due to unsatisfied shape constraints). Tam (1992a) and Tam

(1992b) have aspect ratio requirements that vary from 1 to 2.5, Balakrishnan et al. (2003)

use an upper bound of 3 as the aspect ratio requirement, and Lee & Lee (2002) do not

mention what aspect ratio bound was used.

Kim & Kim (1998) were the first to use a model that did not contain a penalty component

in its objective function. However, it did not consider the occupied areas. Their objective is

to find the best feasible solution with a maximum aspect ratio of 2. Kim & Kim (1998) also

published Tam’s (1992) unpenalized layout by subtracting the penalites from the objective
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Cost of best Cost of best Cost of best Cost of best
layout in layout in layout in layout in

Tam (1992a) Tam (1992b) Lee & Lee (2002)† Balakrishnan et al. (2003)

Layout Cost 47422.3 47483.7 51373 42638.6

Table 5: Comparison of the best results in the literature for the Tam’s 30-department problem
with penalty costs

†Layout dimension is not considered and aspect ratios are not mentioned in publication
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Figure 16: Best floor plan for 30-department problem (with no occupied area)

function value as done in Meller & Bozer (1996). Table 6 compares the results of the

unpenalized Tam (1992b), Kim & Kim (1998) and our algorithm’s costs for the problem

without the pre-occupied areas. As shown, our model provides very consistent costs as the

aspect ratios increase or decrease. Also, for this specific problem, our model was not able

to achieve better results then Kim & Kim (1998), however we obtained costs that were only

8.6% higher. Figure 16 illustrates the facility layout obtained by IBIMODEL and Luo et al.’s

(n.d.) model that has a cost of 23420 and a maximum aspect ratio of 7.67 (which took 2.91

seconds for the first stage and 255.2 seconds for the second stage to solve).

Table 7 on the other hand shows results that were obtained with our model for the 30-
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Cost of best Cost of best Cost of best
β∗i layout in layout in layout found by

Tam (1992b)* Kim & Kim (1998)† our algorithm

10 23416.5 21560.6 24098
9 23416.5 21560.6 23924
8 23416.5 21560.6 23420
7 23416.5 21560.6 23974
6 23416.5 21560.6 23770
5 23416.5 21560.6 24916
4 23416.5 21560.6 25000

Table 6: Comparison of the algorithms for Tam’s 30-department problem without occupied
areas

*Minimum cost reported in Meller & Bozer (1996) was estimated by subtracting the penalties from the
objective value give in Tam (1992b), † Facilities have an upper limit of 2.0 for their aspect ratios.
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Figure 17: Best floor plan for 30-department problem (with circles 31-33 representing occu-
pied areas)
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Cost of best
β∗i layout found by

our algorithm

10 24017
9 24477
8 23994
7 24200

Table 7: Results of our algorithm for Tam’s 30-department problem with occupied areas and
no penalty costs

department problem with pre-occupied areas. Figure 17 illustrates the solution obtained for

the 30-department problem that uses 3 extra circles to estimate the preoccupied areas. This

layout has a cost of 23994 and a largest aspect ratio of 7.41 (which took 4.1 seconds for the

first stage and 236 seconds for the second stage to solve). Once again, it can be noted that

the layout costs are very consistent for varying aspect ratios, which is a fairly important

feature of our algorithm.
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5 Conclusions and Future Research

IBIMODEL is a promising method that efficiently generates a reasonably diverse set of

’good’ initial locations for departments in the FLP. The proposed model does not improve

the objective function as the circles start overlapping and the distance between the circle

centers becomes less than ri + rj. IBIMODEL also provides a systematic approach to set-

ting the required parameters and has the ability to account for aspect ratio requirements.

When IBIMODEL is used together with Luo et al.’s (n.d.) second stage, the net result is a

methodology that consistently produces competitive, and often better layouts for large FLPs

when compared with other approaches in the literature.

Nonetheless, future research should include investigating how to control the aspect ratios

better. Potentially, using ellipsoids instead of circles to approximate the initial positions of

departments could provide better results (this has not been attempted in the literature to

date). Ellipsoids would likely provide more realistic estimations of department positions,

since departments in real-world applications are not square-shaped.

Further work also includes adjusting the ϕ (the parameter that can control what the desired

smallest length or width should be in each department’s layout) and potentially personalizing

it for each department (hence turning it into ϕi).

Finally, different combinations of first stage and second stage models from past papers should

be tested, to see which combination provide the best overall layouts.
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Appendix III - AMPL Code used for IBIMODEL

IBIMODEL was implemented in AMPL modeling language for mathematical programming.
The AMPL code is shown below:

set DEP ordered;
param wmin

f > 0;
param wmax

f ≥ wmin
f ;

param hmin
f > 0;

param hmax
f ≥ hmin

f ;
param a {DEP} > 0;

param r {i in DEP} ≥ 0, :=

√
a[i]
π
∗ log2(1 + a[i]/ϕ2);

param c {DEP, DEP} ≥ 0;
param α > 0;
param ε ≥ 0;
param t {i in DEP, j in DEP} := (r[i]+r[j])2;

param τ {i in DEP, j in DEP} := if t[i,j] >

√
t[i,j]

c[i,j]+ε
then t[i,j]

else

√
t[i,j]

c[i,j]+ε
;

param v {i in DEP, j in DEP} := if t[i,j] >

√
t[i,j]

c[i,j]+ε
then c[i,j]*t[i,j]

else
√

t[i,j]*c[i,j] + ε− 1;

param D {i in DEP, j in DEP} := (x[i]-x[j])2 + (y[i]-y[j])2;
param k ≥ 0;

var x {DEP} ;
var y {DEP} ;
var wf ≥ wmin

f , ≤ wmax
f ;

var hf ≥ hmin
f , ≤ hmax

f ;

minimize Cost:
∑

i<j c[i,j]*D[i,j] +
αt[i,j]
D[i,j]

− 1

+ max (0, min (1, dτ [i,j]-D[i,j]e))*(v[i,j]-c[i,j]D[i,j]-
αt[i,j]
D[i,j]

+ 1) - k log

(
D[i,j]
t[i,j]

)
;

s.t. Const1 {i in DEP} : x[i] + r[i] - 1
2
wf <= 0;

s.t. Const2 {i in DEP} : r[i] - x[i] - 1
2
wf <= 0;

s.t. Const3 {i in DEP} : y[i] + r[i] - 1
2
hf <= 0 ;

s.t. Const4 {i in DEP} : r[i] - y[i] - 1
2
hf <= 0 ;
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