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Abstract

The problem of pricing a product line to maximize profits is an important challenge

faced by many companies. To address this problem, we discuss four different probabilistic

choice models that are based on reservation prices: the Uniform Distribution Model, the

Weighted Uniform Model, the Share-of-Surplus Model, and the Price Sensitive Model.

They are formulated as convex mixed-integer mathematical programs. We explore the

properties and additional valid inequalities of these formulations. We also compare their

optimal solutions on a set of inputs. In general, the Uniform Distribution, Weighted

Uniform, and Price Sensitive Models have the same optimal solution while the Share-of-

Surplus Model gives a different solution in many cases.

We develop a few heuristics for finding good feasible solutions. These simple and

efficient heuristics perform well and help to improve the solution time. Computational

results of solving problem instances of various sizes are shown.
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Chapter 1

Introduction

One of the key revenue management challenges for a company is to determine the “right”

price for each of their product line. Generally speaking, a company wants to set the prices

to maximize their total profit. The challenge arises from the complex relationship between

the product prices and the total profit. For example, how do the prices affect the demand

for each product? In cases where multiple products are offered by the company, the price

and demand for a product cannot be considered in isolation from the other products.

Clearly, a customer’s decision to purchase a product can be swayed by the relative prices

of similar products offered by the same company. Thus, prices need to be set to avoid

“cannibalizing” their product line. For example, if there are high margin and low margin

products, setting the price of the latter too low may decrease demand for the high margin

product, thus resulting in lower profit.

In this thesis, we study several different models for product pricing from a mathematical

programming perspective. The models differ from one another according to different as-

sumptions on customer purchasing behavior. Before we discuss the details of our approach,

let us first give a brief overview of relevant work in this area.

1.1 Background

Revenue management in general is the practice of maximizing a company’s revenue by

optimally choosing the price of products and which customers to serve at any given time.

1



Introduction 2

It has been used extensively in the airline, hotel, and manufacturing industry (see [7] and

[9] for a comprehensive overview of the history of revenue management).

Product pricing is a sub-problem of revenue management, focused on determining the

optimal prices of a product line. There are many variations on product pricing framework

depending on the setting. For example, there is the single-product, multi-customer setting,

which is primarily concerned with what price to offer to different customer segments.

Airline revenue management is one of the most popular examples of this context, where

business travelers, leisure travelers and budget travelers are offered different prices for the

same flight, depending on the lead time of purchase and additional options (e.g., partially

refundable tickets). An alternative framework is the multi-product, multi-customer setting

where every customer is offered the same price for a given product, but different customer

segments have varying preferences. This is more of a combinatorial problem where given

the customer preference information, the prices need to be set to maximize total revenue.

We will focus on the second type of problem in this thesis.

In general, suppose a company has m different product lines and market analysis tells

them that there are n distinct customer segments, where customers of the same segment

behave the “same”. A key revenue management problem is to determine optimal prices

for each product to maximize total revenue, given the customer choice behavior. There

are multitudes of models for customer choice behavior [9], but this paper focuses solely on

those based on reservation prices.

Let Rij denote the reservation price of segment i for product j, i = 1, . . . , n, j =

1, . . . ,m, which reflects how much customers of segment i are willing and able to spend

on product j. Rij is not only the dollar amount that product j is worth to customers in

segment i, but it also reflects how much they are able to pay for it. For example, if a

customer segment believes that a 7 day vacation to St. Lucia is worth $2,000, but they

can only afford $1,000 for a vacation, then their reservation price for St. Lucia is $1,000.

Without loss of generality, we make the following assumption:

Assumption 1.1.1. Rij is a nonnegative integer for all i = 1, . . . , n and j = 1, . . . ,m.

If the price of product j is set to $πj, πj ≥ 0, then the utility or surplus (we will

use these terms interchangeably throughout the thesis) of segment i for product j is the

difference between the reservation price and the price, i.e., Rij − πj.
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Finally, we assume that reservation prices are the same for every customer in a given

segment and each segment pays the same price for each product. Customer choice mod-

els based on reservation prices assume that customer purchasing behavior can be fully

determined by their reservation price and the price of products.

Even in a reservation price framework, there are several different models for customer

choice behavior in the literature. In [2, 3], the authors proposed a pricing model that

maximizes profits with the assumption that each customer segment only buys the product

with the maximum surplus if the surplus is nonnegative. This model is often referred to as

the maximum utility or envy free pricing model. In this model, each segment buys at most

one product. The authors modeled the problem as a nonconvex, nonlinear mixed-integer

programming problem and solved the problem using a variety of heuristic approaches.

In [6], the authors examined a Share-of-Surplus Choice Model in which the probability

that a segment will choose a product is the ratio of its surplus versus the total surplus

for the segment across all products with nonnegative surplus. They proposed a heuristic

which involves decomposing the problem into hypercubes and use a simulated annealing

algorithm to find the best hypercube. Solutions found by the heuristic for problems with

sizes up to 5 products and 10 segments were shown to be near-optimal.

Another approach of pricing multiple products is to consider the problem of bundle

pricing [4]. It is the problem of determining whether it is more profitable to offer some

of the products together as a package or individually, and what prices should be assigned

to the bundles or individual products to maximize profit. The authors formulated the

bundle pricing problem as a mixed integer linear problem using a disjunctive programming

technique [1].

Some research has been done on partitioning customers into segments by the probability

that they would buy each product. In [5], the authors proposed a segmentation approach

that groups the customers according to their reservation prices and price sensitivity. The

probability of a segment choosing a product j is modeled as a multinomial logit model

with the segment’s reservation price, price sensitivity, and the price of the product j as

parameters. Unlike their model, we do not consider price sensitivity in this paper as a

criterion when we partition customers into segments and we assume that all segments

react to price changes in the same way.
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In this thesis, we assume that the reservation prices for each customer segment and

product are given. Given different models of customer purchasing behavior, we aim to

formulate and solve the corresponding revenue maximization problem as a mixed-integer

programming problem. In the Appendix, we will discuss how we performed the customer

segmentation and estimated the reservation prices from real purchase orders of a Canadian

travel company.

1.2 Probabilistic Choice Models

In this section, we will introduce the general framework of probabilistic customer choice

models that determines the probability that customer segment i will purchase product j,

i = 1, . . . , n, j = 1, . . . ,m.

It is often assumed that a segment will only consider purchasing a product with non-

negative utility, i.e.,

Assumption 1.2.1. If segment i buys product j, then Rij − πj ≥ 0, i = 1, . . . ,m, j =

1, . . . ,m.

Let βij be binary decision variables:

βij :=

{

1, if and only if the surplus of product j is nonnegative for segment i, j,

0, otherwise.

i.e., βij = 1 if and only if Rij − πj ≥ 0 and βij = 0 if and only if Rij − πj < 0, where,

again, πj is the decision variable for the price of product j. This relationship can be naively

modelled by:

(Rij − πj)βij ≥ 0,

(Rij − πj)(1 − βij) ≤ 0,

for i = 1, . . . , n and j = 1, . . . ,m. To linearize the above inequalities, we can use a

disjunctive programming trick. Let pij be an auxiliary variable where pij = πjβij, i.e,

pij :=

{

πj, if βij = 1,

0, otherwise.
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This relationship can be modeled by the following set of linear inequalities:

pij ≥ 0,

pij ≤ πj,

pij ≤ Rijβij,

pij ≥ πj − ( max
i=1,...,n

Rij + 1)(1 − βij),

for i = 1, . . . , n and j = 1, . . . ,m. The first two inequalities set pij = 0 when βij = 0, and

the last two inequalities set pij = πj when βij = 0. Rij is a valid upperbound for pij since

if pij > Rij, then βij = 0 and thus pij = 0. Also, maxi=1,...,n Rij + 1 is a valid upperbound

for πj since no segment will buy product j if πj > Rij for all i = 1, . . . , n. We also need

the following constraint to force βij to be 1 when Rij equals to πj for all j:

(Rij − πj + 1) ≤ (Rij − min
i

Rij + 1)βij ∀i,∀j,

which is valid under Assumption 1.1.1.

Where π,β, and p are vectors of πj, βij and pij, respectively, let P be the following

polyhedron:

P = {(π, β, p) : Rijβij − pij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m,

Rij(1 − βij) − πj ≤ 0, i = 1, . . . , n, j = 1, . . . ,m,

pij ≤ πj, i = 1, . . . , n, j = 1, . . . ,m,

Rij − πj + 1 ≤ (Rij − mini Rij + 1)βij i = 1, . . . , n, j = 1, . . . ,m,

pij ≥ 0, πj ≥ 0, i = 1, . . . , n, j = 1, . . . ,m}.

Thus, to model the condition in Assumption 1.2.1, we need to set prices πj and βij such

that β ∈ {0, 1} and (π,β,p) ∈ P .

There are ambiguities regarding the choices between multiple products with nonnega-

tive utility. Given all the products with nonnegative surplus, which products would the

customer buy? Are there some products they are more likely to buy than others? In a

probabilistic choice framework, we need to determine the probability Prij that segment i
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buys product j. Then the expected revenue for the company is

n
∑

i=1

NiE[revenue earned from segment i] =
n
∑

i=1

Ni

m
∑

j=1

πjPrij.

In our revenue management problem, we can interpret Prij as the fraction of customers of

segment i that buys product j, i.e., the expected revenue is

m
∑

j=1

πjE[number of customers in segment i that buys product j] =
m
∑

j=1

πj

n
∑

i=1

NiPrij.

Furthermore, Prij is positive if and only if the surplus of product j is nonnegative for

segment i.

Thus, the expected revenue maximization problem is:

max
n
∑

i=1

m
∑

j=1

NiπjPrij, (1.1)

s.t. Prij > 0 ⇔ βij = 1, i = 1, . . . , n; j = 1, . . . ,m,

Prij = 0 ⇔ βij = 0, i = 1, . . . , n; j = 1, . . . ,m,

(π, β, p) ∈ P,

βij ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . ,m.

All the probabilistic choice models explored in this thesis is based on the optimization

problem (1.1). What differentiates the different model is how Prij is defined.

One of the most popular probabilistic choice model in the marketing literature may be

the multinomial logit (MNL) model,

Prij =
evij

∑

k evik
,

where vij represent the utility or desirability of the product j to segment i. Clearly, there

are wide varieties to how this vij is modeled as well. The main motive for the exponential

is to allow vij to take on any real value. For example, an alternative model is to have

Prij =
vij

∑

k vik

,



Introduction 7

but we would then require vij ≥ 0 and
∑

k vik > 0, which could be easily addressed in

many cases.

In this thesis, we examine several probabilistic choice model from a mathematical pro-

gramming perspective. Depending on how Prij is modeled, we can formulate the opti-

mization problem (1.1) as a convex mixed-integer programming problem (MIP). In Chap-

ter 2, we assume that Prij is uniform across all products with nonnegative surplus. We

call this model the Uniform Distribution Model. In Chapter 3, we modify the Uniform

Distribution Model so that customers are more likely to purchase products with higher

reservation prices. We call this model the Weighted Uniform Model. In Chapter 4, we

explore mathematical programming formulations of the Share-of-Surplus Model proposed

in [6], including an MIP formulation for the case with restricted prices. Chapter 5 explores

the Price Sensitive Model where Prij decreases as the price of product j increases. In

Chapter 6, we discuss special properties of the optimal solutions and compare the optimal

prices πj and variables βij of the different models. We also consider enhancements to the

models (Chapter 7), including heuristics to determine good feasible solutions quickly and

valid inequalities to speed up the solution time of the MIP. In Chapter 8, we show how we

can incorporate product capacity limits and product costs into the models . We illustrate

some computational results of our models in Chapter 9 and conclude and discuss future

work in Chapter 10.



Chapter 2

Uniform Distribution Model

2.1 The Model

A very simple model of customer choice behavior is to assume that each segment chooses

products with a uniform distribution across all products with nonnegative surplus. We

call this model the Uniform Distribution Model. Again, let βij be binary decision variables

where

βij :=

{

1, if the surplus of product j is nonnegative for segment i, j,

0, otherwise.

i.e., βij = 1 if and only if Rij − πj ≥ 0.

Then in the Uniform Distribution Model, the probability that the customer segment i buys

product j would be

Prij :=



















0, if
m
∑

j=1

βij = 0,

βij
∑m

k=1 βik

, otherwise.

Under this assumption, the expected revenue is

n
∑

i=1

Niti

8



Uniform Distribution 9

where

ti :=











m
∑

j=1

πj

βij
∑m

k=1 βik

=

∑m

j=1 pij
∑m

k=1 βik

, if
m
∑

j=1

βij 6= 0,

0, otherwise,

where pij is the auxiliary variable in Section 1.2 such that pij := πjβij. Thus, ti corresponds

to the average price that segment i pays.

We further reformulate the problem to

max
n
∑

i=1

Niti

s.t.
m
∑

j=1

βijti ≤
m
∑

j=0

pij, ∀i,

ti ≤ (maxk Rik)
∑

j βij, ∀i,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j.

where P is the polyhedron defined in Section 1.2.

Let us introduce yet another auxiliary variable aij such that aij = tiβij, i.e., aij = ti if

βij = 1 and aij = 0 otherwise. Then the above formulation can be converted to a linear

mixed-integer programming problem

max
n
∑

i=1

Niti, (2.1)

s.t.
∑m

j=1 aij ≤
∑m

j=1 pij, ∀i,

ti ≤ (maxk Rik)
∑

j βij, ∀i,

aij ≤ (maxk Rik)βij, ∀i,∀j,

aij ≤ ti, ∀i,∀j,

aij ≥ ti − (maxk Rik)(1 − βij), ∀i,∀j,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j.
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To make this Uniform Distribution Model more realistic, we may want to bound the

absolute difference of the positive surpluses by adding the constraints

|(Rij − πj) − (Rik − πk)| ≤ ∆ ∀i,∀j 6= k where βij = βik = 1

where ∆ is some user-defined constant. The linearized form of this constraint is

(Rijβij − pij) − (Rikβik − pik) ≤ ∆ + Rij(1 − βik), ∀i,∀j 6= k

(Rikβik − pik) − (Rijβij − pij) ≤ ∆ + Rik(1 − βij), ∀i,∀j 6= k.

2.2 Alternative Formulation

Note that if βij’s are given in Problem (2.1), then

πj = min
i:βij=1

Rij

in the optimal solution if βij = 1 for some i, i = 1, . . . , n. If βij = 0 for all i (i.e., product

j is not bought by any customer), then πj > max
i=1,...,n

Rij.

Let us introduce a dummy customer segment, segment 0, where R0j > maxi=1,...,n Rij

and N0 = 0, and a binary decision variable xij where:

xij :=











1, if segment i has the smallest reservation price out of all

segments with nonnegative surplus for product j,

0, otherwise.

With the constraint
∑n

i=0 xij = 1 for all products j, we get

πj =
n
∑

i=0

Rijxij, βij =
∑

l:Rlj≤Rij

xlj.

Thus the continuous variables pij and πj can be eliminated. Using the xij variables, the

objective function of the Uniform Distribution Model is

n
∑

i=0

Ni

m
∑

j=1

(

n
∑

i=0

Rijxij

)(
∑

l:Rlj≤Rij
xlj

∑m

k=1

∑

l:Rlk≤Rik
xlk

)

=
n
∑

i=0

Ni

(
∑m

j=1

∑

l:Rlj≤Rij
Rljxlj

∑m

k=1

∑

l:Rlk≤Rik
xlk

)
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where the equality follows from
∑n

i=0 xij = 1,∀j, x2
ij = xij, and xijxlj = 0 for i 6= l.

Then:

ti :=







P

j

P

l:Rlj≤Rij
Rljxlj

P

k

P

l:Rlk≤Rik
xlk

, if
∑

k

∑

l:Rlk≤Rik
xlk 6= 0,

0, otherwise.

Then Model (2.1) is equivalent to

max
n
∑

i=1

Niti, (2.2)

s.t.
∑n

i=0 xij = 1, ∀j,
∑m

j=1 aij ≤
∑m

j=1

∑

l:Rlj≤Rij
Rljxlj, ∀i,

aij ≤ ti, ∀i, j,

aij ≤ (maxk Rik)
∑

l:Rlj≤Rij
xlj, ∀i, j,

aij ≥ ti − (maxk Rik)
∑

l:Rlj>Rij
xlj, ∀i, j,

ti ≤ (maxk Rik)
∑m

j=1

∑

l:Rlj≤Rij
xlj, ∀i,

ti ≥ 0, ∀l, i,

aij ≥ 0, ∀i, j,

xij ∈ {0, 1}, ∀i, j.

2.3 Strength of the Two Formulations

Aside from computational experimentation, we wish to compare the relative “strength” of

the original and alternative mixed-integer programming formulations of the Uniform Dis-

tribution Model. Namely, let us compare the strength of the LP relaxation of formulations

(2.1) and (2.2).

Let F1 be the feasible region of the LP relaxation of (2.1) and let F2 be that of (2.2).

We compare both formulations on the same data n (the number of customers), m (number

of product) and Rij (reservation price), i = 1, . . . , n, j = 1, . . . ,m. However, note that

we add a dummy customer segment 0 in the alternate formulation (2.2). Thus, (2.2) has

customer segments i = 0, 1, . . . , n, and R0j = maxi=1,...,n Rij + 1.



Uniform Distribution 12

Let Πt(Fk) be the projection of the set Fk, k = 1, 2, onto the variables ti, i = 1, . . . , n,

i.e.,

Πt(F1) := {t : ∃(β, π, p, a) such that (t, β, π, p, a) ∈ F1}

and

Πt(F2) := {t : ∃(t0,x, a) such that (t0, t, x, a) ∈ F2}

where t is the vector of ti’s , i = 1, . . . , n, a is the vector of aij’s, i = 1, . . . , n, j = 1, . . . ,m,

β is the vector of βij’s, i = 1, . . . , n, j = 1, . . . ,m, π is the vector of πj’s, j = 1, . . . ,m, p

is the vector of pij’s, i = 1, . . . , n, j = 1, . . . ,m, and x is the vector of xij’s, i = 1, . . . , n,

j = 1, . . . ,m. The following lemma shows that Πt(F2) is strictly contained inside Πt(F1),

implying that the optimal objective value of the LP relaxation of (2.2) is less than or equal

to that of of (2.1).

Lemma 2.3.1. Πt(F2) ⊂ Πt(F1) and the inclusion is strict.

Proof. To show the inclusion, suppose (t̂0, t̂, x̂, â) ∈ F2. Let β̄ij =
∑

l:Rlj≤Rij
x̂lj, π̄j =

∑n

i=1 Rijx̂ij, p̄ij =
∑

l:Rlj≤Rij
Rljx̂lj, āij = âij, i = 1, . . . , n, j = 1, . . . ,m. It is easy to see

that (t̂, β̄, π̄, p̄, ā) ∈ F1. Thus, Πt(F2) ⊆ Πt(F1)

To show that the inclusion is strict, let n = 2, m = 2, N1 = N2 = 1, and R =

[

1 2

0 1

]

be

the matrix of reservation prices where rows are the segments and products are the columns.

F1 contains the following point:

t =

[

2

0.5

]

, β =

[

0 1

0 0.5

]

, π =
[

2 2
]

, p =

[

0 2

0 0.5

]

, a =

[

0 2

0 0

]

where again, the rows correspond to segments and the columns correspond to products.

The dummy segment in (2.2) has reservation prices R01 = 2 and R02 = 3. We will show

that t =

[

2

0.5

]

/∈ Πt(F2).

Given t1 = 2 and t2 = 0.5, the fifth set of constraints in (2.2) are a11 ≥ 2 − 2x01

and a12 ≥ 2 − 2x02. The second set of constraints yield a11 + a12 ≤ x11 + 2x12 + x22.

Combining it with the above two inequalities and the first set of constraints gives us
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x01 + x12 + x02 − x21 ≥ 2, implying x01 + x12 + x02 ≥ 2. With the first set of constraints,

this yields x01 ≥ 1 and x12 + x02 ≥ 1, implying x11 = x21 = 0 and x22 = 0. The sixth set

of constraints t2 ≤ x21 + x22 = 0 contradicts t2 = 0.5. Thus, t =

[

2

0.5

]

/∈ Πt(F2).

Thus, to test the empirical running time of the Uniform Distribution Model, we will use

the alternative MIP formulation (2.2) instead of (2.1). Chapter 9 illustrates the running

time of the Uniform Distribution Model on various problem sizes.

2.4 A Pure 0-1 Formulation

It turns out that the Uniform Distribution Model can also be formulated as a pure 0-1

optimization problem. For k = 0, . . . ,m, let

yik :=

{

1, if segment i has exactly k products with nonnegative surplus,

0, otherwise.

Then, the probability that segment i buys product j is

m
∑

k=1

1

k
βijyik,

Thus, with variables βij, πj and xij defined earlier, the objective function is:

n
∑

i=1

Ni

m
∑

j=1

πjPrij,

=
n
∑

i=1

Ni

m
∑

j=1

πj(
m
∑

k=1

1

k
βijyik),

=
n
∑

i=1

Ni

m
∑

j=1

∑

l:Rlj≤Rij

Rljxlj(
m
∑

k=1

1

k
yik).

Let zljik := xljyik, ∀i, l : Rlj ≤ Rij,∀j, k = 1, . . . ,m. Then the Uniform Distribution Model

can be modeled by the the following 0-1 programming problem:
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max
n
∑

i=1

Ni

m
∑

j=1

∑

l:Rlj≤Rij

Rlj

m
∑

k=1

1

k
zljik, (2.3)

s.t.
n
∑

i=1

xij = 1, j = 1, . . . ,m,

m
∑

k=0

yik = 1, i = 1, . . . , n,

m
∑

k=1

m
∑

j=1

∑

l:Rl,j≤Ri,j

1

k
zl,j,i,k = 1 − yi,0, i = 1, . . . , n,

m
∑

j=1

∑

l:Rl,j≤Rij

xlj =
m
∑

k=0

kyik i, . . . ,m,

zl,j,i,k ≤ xl,j, ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j,

zl,j,i,k ≤ yi,k, ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j,

zl,j,i,k ≥ xl,j + yi,k − 1, ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j,

xi,j ∈ {0, 1}, ∀i,∀j,

yi,k ∈ {0, 1}, ∀i, k = 0, . . . ,m,

0 ≤ zl,j,i,k ≤ 1, ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j,

2.4.1 Preliminary Computational Results

To compare the empirical performance of the pure 0-1 formulation (2.3) and the previous

mixed 0-1 formulation (2.2), we randomly generated multiple instance of reservations prices

Rij for various n (number of customer segments) and m (number of products). For each

(n,m), five random instances were generated. Both models were run with default parameter

settings of CPLEX 9.1. The results are shown in Table 2.1.
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Uniform Alternate Formulation (2.2) Uniform Pure 0-1 Model (2.3)

n m v LP optval SM itn nodes time LP optval SM itn nodes time

4 4 1 2304.79 58 3 0.018 2564.71 206 0 1.320

2 3447.79 17 0 0.007 3404.00 78 0 0.070

3 333.60 60 0 0.008 333.00 62 0 0.050

4 3005.67 25 0 0.002 3060.92 64 0 0.060

5 3294.81 31 0 0.007 3360.95 103 0 0.090

4 10 1 382.54 157 42 0.065 406.42 4132 83 16.460

2 381.85 142 3 0.059 398.19 1109 26 365.750

3 358.60 107 13 0.056 397.36 1859 40 11.860

4 355.97 105 0 0.037 389.98 496 0 5.230

5 394.23 90 0 0.029 402.74 267 0 0.630

10 4 1 744.71 196 12 0.106 802.93 4106 52 28.620

2 845.80 266 35 0.110 856.12 1195 17 803.000

3 799.50 259 31 0.117 850.95 5320 68 31.880

4 809.58 159 0 0.033 856.85 972 3 15.600

5 883.05 99 0 0.031 925.44 1111 21 15.070

10 10 1 985.58 359 36 0.424 997.40 6105 57 240.610

2 991.44 253 8 0.150 1008.53 5123 45 183.780

3 1016.35 269 0 0.137 1021.94 1016 0 84.340

4 825.48 18666 2630 2.762 872.92 139656 1138 1849.010

5 1014.14 357 19 0.161 1021.50 1309 12 121.720

Table 2.1: Comparison of Uniform Model formulations (2.2) and (2.3).

Table 2.1 compares formulations (2.2) and (2.3) in terms of the objective value of their

linear programming relaxation (“LP optval”), total number of dual simplex iterations (“SM

itn”), total number of branch-and-bound nodes (“nodes”), and total CPU seconds required

to find a provable optimal solution (“time”). n is the number of customer segments, m

is the number of products, and v is a label of the problem instance. Bolded LP optval

correspond to the integer optimal value.
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The above results clearly show that the mixed-integer formulation (2.2) is far superior

to the pure 0-1 formulation (2.3) in terms of total running time. This is not surprising since

the latter formulation involves significantly more variables, thus the per node computation

time is expected to be longer. However, it may be surprising that in almost all cases, the

pure 0-1 formulation has a weaker LP relaxation than the mixed-integer formulation and

requires more branch-and-bound nodes.

These preliminary computational results may indicate that there is no merit in studying

the pure 0-1 formulation. However, since the constraints for (2.3) can be represented by

0-1 knapsack constraints, there may be strong cover inequalities that can be generated

from them. Furthermore, these inequalities can be projected down to the space of xij

variables in the alternate mixed-integer formulation (2.2). We further explore this idea in

the Section 7.2.



Chapter 3

Weighted Uniform Model

3.1 The Model

In this chapter, we modify the Uniform Distribution Model of Chapter 2 so that customers

are more likely to purchase a product with higher reservation price. This model, which

we call the Weighted Uniform Model, is inspired by the multinomial-logit (MNL) model

discussed in Section 1.2. Let vij = Rij, but only consider products with nonnegative

surplus. Let

Prij :=



















0, if
m
∑

j=1

Rijβij = 0,

u(Rij)βij
∑m

k=1 u(Rik)βik

, otherwise.

where u(·) is a monotonically increasing function of Rij. Thus, with this definition of Prij,

out of all products with nonnegative surplus, a customer is more likely to buy a product

with higher reservation price. In the marketing literature, u(x) = exp(x) is a common

function for the MNL model since u(x) > 0 for all x ∈ R, x < ∞. However, since from

Assumption 1.1.1 Rij ≥ 0,∀i, j, we define u(x) = x, i.e.,

Prij =
Rijβij

∑m

k=1 Rikβik

, if
m
∑

j=1

Rijβij ≥ 1

.

17
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Analogous to Model (2.1), the corresponding expected revenue maximizing problem is

max
n
∑

i=1

Niti, (3.1)

s.t.
∑m

j=1 Rijaij ≤
∑m

j=1 Rijpij, ∀i,

ti ≤ (maxk Rik)
∑m

j=1 Rijβij, ∀i,

aij ≤ (maxk Rik)βij, ∀i,∀j,

aij ≤ ti, ∀i,∀j,

aij ≥ ti − (maxk Rik)(1 − βij), ∀i,∀j,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j.

3.2 Alternative Formulation

Analogous to the alternate formulation of the Uniform Distribution Model in Section 2.2,

the Weighted Uniform Model has an alternate formulation using the variables xij:

max
n
∑

i=1

Niti, (3.2)

s.t.
∑n

i=0 xij = 1, ∀j,
∑m

j=1 Rijaij ≤
∑m

j=1

∑

l:Rlj≤Rij
RijRljxlj, ∀i,

aij ≤ ti, ∀i, j,

aij ≤ (maxk Rik)
∑

l:Rlj≤Rij
xlj, ∀i, j,

aij ≥ ti − (maxk Rik)
∑

l:Rlj>Rij
xlj, ∀i, j,

ti ≤ (maxk Rik)
∑m

j=1

∑

l:Rlj≤Rij
xlj, ∀i,

ti ≥ 0, ∀l, i,

aij ≥ 0, ∀i, j,

xij ∈ {0, 1}, ∀i, j.
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Similar to the Uniform Distribution Model, this alternate formulation results in a

stronger integer programming formulation. Chapter 9 illustrates the running time of the

Weighted Uniform Model on various problem sizes.



Chapter 4

Share-of-Surplus Model

4.1 The Model

It seems realistic to assume that the probability of a customer buying a product is related

to the surplus. A similar scenario is when a customer prefers buying the product that has

the most discount at the moment, rather than picking a product randomly or preferring the

product with the highest reservation price. We want a model such that a larger surplus

means that a larger fraction of a customer segment buys that product. That is, the

probability that a customer buys a product depends on the customer’s reservation price as

well as the price of the product. A monotonically increasing function is needed to describe

the relationship between the probability and the surplus.

The Share-of-Surplus Choice Model [6] is a form of a probabilistic choice model where

the probability that a segment will choose a product is the ratio of its surplus versus the

total surplus for the segment across all products with nonnegative surplus. Again, let

βij :=

{

1, if the surplus of product j is nonnegative for segment i, j,

0, otherwise.

In this model, the probability that segment i will buy product j is given by:

Prij :=
(Rij − πj)βij

∑

k(Rik − πk)βik

.

20
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For the moment, let us assume that
∑

k(Rik −πk)βik > 0 for all i = 1, . . . , n for notational

simplicity. We will relax this assumption in Section 4.4.

With the above definition, Prij = 0 if Rij = πj, which may not be desirable. To ensure

that the probability Prij is strictly positive when Rij = πj, we may define the probability

as follows:

Pr∗ij :=
(Rij − πj + c)βij

∑

k(Rik − πk + c)βik

. (4.1)

where c is a small positive constant. For simplicity’s sake, we will use the first definition of

the probability throughout the rest of this chapter. Note that this differs from the standard

MNL model since we do not consider negative surplus products.

The expected revenue given by this model is

n
∑

i=1

m
∑

j=1

Niπj

(

(Rij − πj)βij
∑

k(Rik − πk)βik

)

.

We can model this Share-of-Surplus Choice Model as the following nonlinear mixed-

integer programming model:

max
n
∑

i=1

m
∑

j=1

Niπj

(

(Rij − πj)βij
∑

k(Rik − πk)βik

)

(4.2)

s.t. (π, β, p) ∈ P,

βij ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . ,m,

where P is the polyhedron defined in Section 1.2.

The objective function can further be reformulated to a sum of ratios, where the nu-

merator is a concave quadratic and the denominator is linear:

max
n
∑

i=1

m
∑

j=1

Niπj

(

(Rij − πj)βij
∑

k(Rik − πk)βik

)

⇔ max
n
∑

i=1

m
∑

j=1

Ni

(

Rijpij − p2
ij

∑

k Rikβik − pik

)

.

Thus, Model (4.2) can be formulated as the following mixed-integer fractional program-
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ming problem with linear constraints:

max
n
∑

i=1

m
∑

j=1

Ni

(

Rijpij − p2
ij

∑

k Rikβik − pik

)

, (4.3)

s.t. (p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j.

An advantage of this model is the fact that it allocates some customers to each product

whose price leaves a positive utility for the customer segment in a way that higher the

positive utility of the product, higher the market share of the product.

In the following sections, we explore ways to solve Problem (4.3) to global optimality

by finding convex relaxations or approximations of the model.

4.2 Quadratically Constrained Optimization Problem

Let us bring the objective function of Model (4.3) into the constraints and convert the

problem to a minimization problem:

min
n
∑

i=1

Niti

s.t.
m
∑

j=1

(

p2
ij − Rijpij

)

≤ ti

(

∑

k

(Rikβik − pik)

)

, ∀i,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j.

Let us further introduce auxiliary variables xi and yi such that

xi − yi := ti,

xi + yi :=
∑

k

(Rikβik − pik).
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Then Model (4.3) can be written as

min
n
∑

i=1

Niti (4.4)

s.t.
√

∑m

j=1

(

p2
ij − Rijpij

)

+ y2
i ≤ xi, ∀i,

xi − yi = ti, ∀i,

xi + yi =
∑

k(Rikβik − pik), ∀i,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j,

whose continuous relaxation strongly resembles a second-order cone formulation. Unfortu-

nately, the continuous relaxation of Model (4.4) does not result in a convex optimization

problem.

Let us elaborate. Let a symmetric n× n matrix A, an n-vector a and a constant α be

given. Then the quadratic inequality

xT Ax + 2aT x + α ≤ 0

is convex if and only if A � O. We can represent this inequality as

[

1,xT
]

[

α aT

a A

][

1

x

]

≤ 0.

To represent this inequality as a second order cone constraint, we need to find an (n+1)×

(n + 1) nonsingular matrix L such that

LT

[

α aT

a A

]

L =

[

−1 0T

0 I

]

.

Therefore, we conclude that the quadratic constraint is representable by a single Second

Order Cone constraint if and only if the matrix

[

α aT

a A

]
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has at most one negative eigenvalue. However, note that in our model (4.4) the corre-

sponding matrix (ordered with respect to 1, t,β,p):













0 0 0T −RT

0 0 −R̃
T

eT

0 −R̃ O 0T

−R e 0 I













has exactly two negative eigenvalues.

4.3 Second-Order Cone Approximation

As we showed above, we cannot expect convexity from this quadratic inequality as it stands.

So let us consider some convex relaxations or approximations to Model (4.4).

Adding the term
1
4
R2

ij
∑

k(Rik − πk)βik

to the objective function of Model (4.3) yields the following convex formulation:

min
n
∑

i=1

Niti (4.5)

s.t.
√

∑m

j=1

(

pij −
1
2
Rij

)2
+ y2

i ≤ xi, ∀i,

xi − yi = ti, ∀i,

xi + yi =
∑

k(Rikβik − pik), ∀i,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j,

whose relaxation is a second-order cone programming problem. Unfortunately, empirical

experiments showed that this approximation resulted in unrealistic prices. It seems that

the price of each product are set to be much lower than the reservation prices of the

customers who buy that product. However, with the β’s fixed, we do not want the prices

to be too low in practice since that generally result in lower revenue.
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4.4 Restricted Prices

Unlike the Uniform and Weighted Uniform Models, the optimal price given βij’s is not

immediate for the Share-of-Surplus model. Define Bi = {j|βij = 1}. Then the optimal

prices is the solution to

max
n
∑

i=1

∑

j∈Bi

Niπj

(

(Rij − πj)
∑

k∈Bi
(Rik − πk)

)

(4.6)

s.t. Rij − πj ≥ 0, ∀i, j ∈ Bi,

Rij − πj < 0, ∀i, j /∈ Bi,

πj ≥ 0, ∀j.

If βij equals one for at least one segment, then we know that

πj ∈ ( max
i:βij=0

Rij, min
i:βij=1

Rij].

Suppose product l is bought by at least one segment and its price is increased by ǫ > 0

such that βij’s do not change. Define Sj = {i|βij = 1}. Then the change in the objective

value is:

∑

i∈Sl

Ni

(

∑

j∈Bi\{l} πj(Rij − πj) + (πl + ǫ)(Ril − (πl + ǫ))

(
∑

k∈Bi\{l}(Rik − πk)) + (Ril − (πl + ǫ))
−

∑

j∈Bi
πj(Rij − πj)

∑

k∈Bi
(Rik − πk)

)

=
∑

i∈Sl

Ni

(

∑

j∈Bi
πj(Rij − πj) + ǫ(Ril − 2πl − ǫ)
∑

k∈Bi
(Rik − πk) − ǫ

−

∑

j∈Bi
πj(Rij − πj)

∑

k∈Bi
(Rik − πk)

)

=
∑

i∈Sl

Ni

(

ǫ(Ril − 2πl − ǫ)(
∑

k∈Bi
(Rik − πk)) + ǫ

∑

j∈Bi
πj(Rij − πj)

(
∑

k∈Bi
(Rik − πk))(

∑

k∈Bi
(Rik − πk) − ǫ)

)

=
∑

i∈Sl

ǫNi

(

(Ril − (πl + ǫ))
∑

j∈Bi
(Rij − πj) +

∑

j∈Bi
(πj − πl)(Rij − πj)

(
∑

k∈Bi
(Rik − πk))(

∑

k∈Bi
(Rik − πk) − ǫ)

)

(4.7)

Increasing the price of product l by ǫ would result in an increased objective value if (4.7)

is positive. The βij’s do not change after the price increase, which implies that Ril ≥ πl +ǫ.
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Therefore, all the terms in (4.7) are nonnegative except perhaps (πj − πl). Thus, we can

expect (4.7) to be positive if πl is relatively low compared to other prices. Intuitively, this

means that if πl is low enough relative to other prices, then we want to raise πl so that

the surplus of product j decreases, hence decreasing the probability that the customers

will buy this low-priced product. On the other hand, if πl is high enough relative to other

prices, we want to decrease πl so that the probability that the customers will buy this

expensive product increases, thus generating more revenue.

Suppose we restrict πj to be equal to mini:βij=1 Rij, just as in the Uniform Distribution

and Weighted Uniform Models. Then the Share-of-Surplus Model can be modeled as a

mixed-integer linear programming model.

Again, let xij equal 1 if segment i has the smallest reservation price out of all segments

with positive surplus for product j, 0 otherwise. Again, we introduce a dummy segment

0 with R0j > maxi=1,...,n Rij,∀j, N0 = 0 and add the constraint
∑n

i=0 xij = 1. As before,

βij =
∑

l:Rlj≤Rij
xij and let us restrict πj to equal

∑

i Rijxij. Then the objective function

of the Share-of-Surplus Model is:

n
∑

i=0

m
∑

j=1

Niπj

(

(Rij − πj)βij
∑

k(Rik − πk)βik

)

=
n
∑

i=0

Ni

m
∑

j=1

πj

(

(Rij − πj)
∑

l:Rlj≤Rij
xlj

∑m

k=1((Rik − πk)
∑

l:Rlk≤Rik
xlk)

)

=
∑

i

Ni

∑

j

(

∑

i

Rijxij

)(

(Rij −
∑

s Rsjxsj)
∑

l:Rlj≤Rij
xlj

∑

k((Rik −
∑

r Rrjxrj)
∑

l:Rlk≤Rik
xlk)

)

=
∑

i

Ni

∑

j

(

∑

i

Rijxij

)(

Rij

∑

l:Rlj≤Rij
xlj −

∑

l:Rlj≤Rij
Rljxlj

∑

k(Rik

∑

l:Rlk≤Rik
xlk −

∑

l:Rlk≤Rik
Rlkxlk)

)

=
∑

i

Ni

(
∑

j(Rij

∑

l:Rlj≤Rij
Rljxlj −

∑

l:Rlj≤Rij
R2

ljxlj)
∑

k(Rik

∑

l:Rlk≤Rik
xlk −

∑

l:Rlk≤Rik
Rlkxlk)

)

=
∑

i

Ni

(
∑

j

∑

l:Rlj≤Rij
Rlj(Rij − Rlj)xlj

∑

k

∑

l:Rlk≤Rik
(Rik − Rlk)xlk

)

Let us now relax the assumption that the denominator
∑m

k=1(Rik − πk)βik > 0 or
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∑m

k=1

∑

l:Rlk≤Rik
(Rik − Rlk)xlk > 0 for all i. Define:

ti :=







P

j

P

l:Rlj≤Rij
Rlj(Rij−Rlj)xlj

P

k

P

l:Rlk≤Rik
(Rik−Rlk)xlk

, if
∑

k

∑

l:Rlk≤Rik
(Rik − Rlk)xlk 6= 0,

0, otherwise.

Let us introduce an auxiliary continuous variable ulij where ulij := tixlj for all segments

l, i and products j where Rlj ≤ Rij. Then we can formulate the problem as a linear mixed-

integer programming problem:

max
n
∑

i=1

Niti, (4.8)

s.t.
∑n

i=0 xij = 1, ∀j,
∑m

j=1

∑

l:Rlj≤Rij
(Rij − Rlj)ulij ≤

∑m

j=1

∑

l:Rlj≤Rij
Rlj(Rij − Rlj)xlj, ∀i,

ulij ≤ ti, ∀l, i, j, Rlj ≤ Rij,

ulij ≤ (maxk Rik)xlj, ∀l, i, j, Rlj ≤ Rij,

ulij ≥ ti − (maxk Rik)(1 − xlj), ∀l, i, j, Rlj ≤ Rij,

ti ≤ (maxk Rik)
∑m

j=1

∑

l:Rlj≤Rij
(Rij − Rlj)xlj, ∀i,

ti ≥ 0, ∀l, i,

ulij ≥ 0, ∀l, i, j, Rlj ≤ Rij,

xij ∈ {0, 1}, ∀i, j.

If we use the probability Pr∗ij (4.1) instead, then the objective function is:

∑

i

Ni

(
∑

j

∑

l:Rlj≤Rij
Rlj(Rij − Rlj + c)xlj

∑

k

∑

l:Rlk≤Rik
(Rik − Rlk + c)xlk

)
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Then the problem can be formulated as follows:

max
n
∑

i=1

Niti, (4.9)

s.t.
∑m

j=1

∑

l:Rlj≤Rij
(Rij − Rlj + c)ulij ≤

∑m

j=1

∑

l:Rlj≤Rij
Rlj(Rij − Rlj + c)xlj, ∀i,

∑n

i=0 xij = 1, ∀j,

ulij ≤ ti, ∀l, i, j, Rlj ≤ Rij,

ulij ≤ (maxk Rik)xlj, ∀l, i, j, Rlj ≤ Rij,

ulij ≥ ti − (maxk Rik)(1 − xlj), ∀l, i, j, Rlj ≤ Rij,

ti ≤ (maxk Rik)
∑m

j=1

∑

l:Rlj≤Rij
(Rij − Rlj + c)xlj, ∀i,

ti ≥ 0, ∀l, i,

ulij ≥ 0, ∀l, i, j, Rlj ≤ Rij,

xij ∈ {0, 1}, ∀i, j.

If c < 1, then we need to replace the constraint

ti ≤ (max
k

Rik)
m
∑

j=1

∑

l:Rlj≤Rij

(Rij − Rlj + c)xlj,∀i

by

ti ≤
1

c
(max

k
Rik)

m
∑

j=1

∑

l:Rlj≤Rij

(Rij − Rlj + c)xlj,∀i

so that the right-hand-side is ≥ (maxk Rik) whenever the summation is non-zero.

The constant c used in the formulation is assumed to be small enough such that the

difference between Pr∗ij and Prij is almost negligible but that the probability is positive

when the surplus is nonnegative. In future work, we may like to examine the effect of the

value of c on the problem and determine the ideal value for the constant.

From experiments, we found that the Share-of-Surplus Model is hard to solve. We

would like to explore other ways to formulate it or perhaps find different cuts in order to
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decrease the solution time. We may also want to investigate other monotonically increasing

functions to describe the probability which would perhaps lead to formulations that are

easier to solve. The experimental results are discussed further in Chapter 9.



Chapter 5

Price Sensitive Model

A common economic assumption is that as the price of a product decreases, the demand

increases. In this chapter, we discuss a probabilistic choice model where the probability of

a customer buying a particular product with nonnegative surplus is inversely proportional

to the price of the product. Unlike the models discussed in the previous chapters, the

probability Prij depends only on πj.

5.1 The Model

Again, let pij be the auxiliary variable where pij := πjβij. Consider the probability of

customer segment i buying product j as defined below:

Prij :=















0, if βij = 0 (Case 0),

1, if βij = 1,
∑

k βik = 1 (Case 1),
1

P

k βik−1

(

βij −
pij

P

k pik

)

, otherwise (Case 2).

In this model, Prij = 0 if product j has a negative surplus for segment i (Case 0), Prij =

1 if product j is the only product with nonnegative surplus (Case 1), and if there are

multiple products with nonnegative surplus (Case 2), Prij is inversely proportional to the

price of those products. Thus, we call this model the Price Sensitive Model. With some

reformulation, the expected revenue maximization problem corresponding to this model

can be formulated as a second-order cone problem with integer variables.

30
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If Revij is the expected revenue earned from segment i for product j, we want Revij = 0

in Case 0, Revij = πj in Case 1, and Revij =
πj

P

k βik−1

(

βij −
pij

P

k pik

)

in Case 2. Let zi be

a binary decision variable where zi = 1 if segment i buys exactly one product and zi = 0

otherwise. The expected revenue Revij earned from segment i buying product j can be

modeled as:

Revij :=

{

0, if
∑

j pij = 0,
πj

P

k βik−1+zi

(

βij −
pij

P

k pik

)

+ πjzi, otherwise.

Then the expected revenue from segment i, Revi, is Revi =
∑m

j=1 Revij or

Revi :=

{

0, if
∑

j pij = 0,
( P

j pij
P

j βij−1+zi
−

P

j p2

ij

(
P

j βij−1+zi)(
P

k pik)

)

+ (
∑

j pij)zi, otherwise.

Let si be an auxiliary variable where si := (
∑

j pij)zi, which we know is a relationship

that can be modeled by linear constraints. Also let

ti :=

{

0, if
∑

j pij = 0,
P

j pij
P

j βij−1+zi
−

P

j p2

ij

(
P

j βij−1+zi)(
P

k pik)
, otherwise.

Then the expected revenue maximization problem corresponding to the Price Sensitive

Model is:

max
n
∑

i=1

Niti +
n
∑

i=1

Nisi, (5.1)

s.t.
∑

j p2
ij ≤ (

∑

j pij)
2 − ti(

∑

j βij − 1 + zi)(
∑

j pij), ∀i,

ti ≤
∑

j pij, ∀i,

si ≤
∑

j pij, ∀i,

si ≤
∑

j Rijzi, ∀i,
∑

j βij ≤ zi + m(1 − zi), ∀i,

zi ≥ βij −
∑

k 6=j βik, ∀i,∀j,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j,

zi ∈ {0, 1}, si ≥ 0, ∀i, j,
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where P is the polyhedron defined in Section 1.2.

We need to reformulate the first set of constraints to make the continuous relaxation

of (5.1) a convex programming problem. Let us look at the first set of constraints:
∑

j

p2
ij ≤ (

∑

j

pij)
2 − ti(

∑

j

βij − 1 + zi)(
∑

j

pij), ∀i. (5.2)

However, if ti > 0 then zi = 0 and if zi = 1 then ti = 0. Thus, we can eliminate the zi

term from the above inequality if we include the constraint

ti ≤ max
k

Rik(1 − zi).

Also, let bij be auxiliary variables where bij := tiβij. Again, such relations can be modeled

by linear constraints. Then, (5.2) becomes
∑

j

p2
ij ≤ (

∑

j

pij)(
∑

j

pij −
∑

j

bij + ti), ∀i.

Let us further introduce auxiliary variables xi and yi such that:

xi + yi =
∑

j

pij −
∑

j

bij + ti, ∀i,

xi − yi =
∑

j

pij, ∀i.

Thus, the constraint becomes
∑

j

p2
ij ≤ (xi + yi)(xi − yi) = x2

i − y2
i

Then (5.2) can be represented by the second-order cone and linear constraints shown below:
√

∑

j p2
ij + y2

i ≤ xi, ∀i, (5.3)

xi + yi =
∑

j pij −
∑

j bij + ti, ∀i,

xi − yi =
∑

j pij, ∀i,

ti ≤ R̃i(1 − zi), ∀i,∀j,

bij ≤ R̃iβij, ∀i,

bij ≤ ti, ∀i,∀j,

bij ≥ ti − R̃i(1 − βij), ∀i,∀j,
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where R̃i := maxj Rij.

The formulation of the Price Sensitive Model becomes:

max
n
∑

i=1

Niti +
n
∑

i=1

Nisi, (5.4)

s.t.
√

∑

j p2
ij + y2

i ≤ xi, ∀i,

xi + yi =
∑

j pij −
∑

j bij + ti, ∀i,

xi − yi =
∑

j pij, ∀i,

ti ≤ R̃i(1 − zi), ∀i,∀j,

bij ≤ R̃iβij, ∀i,

bij ≤ ti, ∀i,∀j,

bij ≥ ti − R̃i(1 − βij), ∀i,∀j,

ti ≤
∑

j pij, ∀i,

si ≤
∑

j pij, ∀i,

si ≤
∑

j Rijzi, ∀i,
∑

j βij ≤ zi + m(1 − zi), ∀i,

zi ≥ βij −
∑

k 6=j βik, ∀i,∀j,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j,

zi ∈ {0, 1}, si ≥ 0, bij ≥ 0, ∀i, j.

5.2 Computational Results

Table 5.1 shows some computational results of running small problem instances with the

Price Sensitive Model formulation (5.4). The first ten cases (t*) each has 3 products and

3 segments. The next six cases (rand*) each has 5 products and 5 segments and the

reservation prices are random numbers that range from 500 to 1200. The rest of the cases

are subsets of real data and the file name (n×m) indicates the number of segments and the

number of products, respectively, in the inputs. The model was run with default parameter
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settings of CPLEX 9.1 and a time limit of two hours (7200 CPU seconds).

For each case, Table 5.1 shows the objective value (“Objective Value”), total CPU

seconds required to find a provable optimal solution (“Time”), total number of dual simplex

iterations (“Number of Iterations”), total number of branch-and-bound nodes (“Number

of Nodes”), total number of branch-and-bound nodes unvisited (“Number of Nodes Left”),

and the optimality gap when CPLEX was terminated (“Gap”).

Since the formulation has a second-order cone constraint, only small problems can

be solved quickly. The smaller cases can be solved to optimality fairly quickly, but the

solutions for the last two cases (“10×10” and “10×20”) found by CPLEX after 2 hours

have large optimality gaps.
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File CPLEX Objective Time Number of Number Number of Gap

Status Value Iterations of Nodes Nodes Left

t1 Optimal 14.47 0.61 861 106 0 0

t2 Optimal 18.46 0.74 616 54 0 0

t3 Optimal 16.00 0.53 453 48 0 0

t4 Optimal 12.95 1.00 980 86 0 0

t5 Optimal 14.11 0.69 716 84 0 0

t6 Optimal 90.00 0.76 1023 98 0 0

t7 Optimal 9.09 0.67 579 46 0 0

t8 Optimal 12.95 1.01 980 86 0 0

t9 Optimal 92.00 0.78 940 86 0 0

t10 Optimal 21.00 0.61 507 52 0 0

rand1 Optimal 4277.49 21.30 20625 1682 0 0

rand2 Optimal 113443274.07 14.47 12025 735 3 0

rand3 Optimal 100887782.67 9.67 7254 498 42 0

rand4 Optimal 113332142.77 6.34 4899 316 0 0

rand5 Optimal 110221028.53 10.08 7443 474 5 0

rand6 Optimal 101665597.25 12.85 11705 873 13 0

2x2 Optimal 2656.00 0.01 8 0 1 0

2x5 Optimal 121519.94 0.59 768 56 0 0

5x2 Optimal 200078.66 0.54 785 81 0 0

5x5 Optimal 163817.58 23.62 25662 2151 0 0

5x10 Optimal 217195.42 4232.98 2685098 182506 15 0.01

10x5 Optimal 324163.32 1331.47 970831 79289 1 0.01

10x10 Feasible 381825.37 7247.06 1655571 105230 58508 71.96

10x20 Feasible 553040.97 7248.08 168276 7984 5627 85.77

Table 5.1: Price Sensitive Model



Chapter 6

Properties of the Models

In this chapter, we discuss properties of the optimal solutions of our models for specialized

data sets. We also compare the optimal prices πj and variables βij for all the models on

different sets of reservation prices.

6.1 Special Properties

Lemma 6.1.1. Suppose n ≤ m, and for every segment i, we can find a unique product p(i)

such that Rip(i) = maxj Rij. Further suppose that for each of such product p(i), segment i

is the unique segment such that Rip(i) = maxkRkp(i).

Let J := {j|j = p(i) for some segment i 6= 0}.

Then in the optimal solution,

βij :=

{

1, if j = p(i),

0, otherwise.

In the alternative formulations, the optimal solution is

xij :=











1, if j = p(i),

1, if i = 0 and j /∈ J ,

0, otherwise.

where segment 0 is the dummy segment.

36
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Proof. The maximum revenue we can get from segment i is Ni(maxj Rij) = NiRip(i). This

happens when segment i only buys product p(i). Hence, the objective value of any feasible

solution is at most
∑n

i=1 NiRip(i).

Consider the solution with the x variables assigned as in the lemma and

πj :=

{

maxk=1,...,n Rkj, if j ∈ J ,

R0j, otherwise.

Because of the assumptions in the Lemma, the solution is feasible with exactly one

segment with nonnegative surplus for each product j ∈ J and no segment buying any

products j /∈ J . That implies every segment only buys the product with the maximum

reservation price. The corresponding objective value is
∑n

i=1 NiRip(i), and thus the solution

is optimal.

The following lemmas apply to the Uniform Distribution Model (Chapter 2), the

Weighted Uniform Model (Chapter 3), and the Share-of-Surplus Model with restriced prices

(Section 4.4).

Lemma 6.1.2. If the optimal values for the x (or β) variables are known, then the optimal

prices can be determined. Furthermore, if the optimal prices are known, then the optimal

values for the x (or β) variables can be determined.

Proof. If the x variables are known, then πj = Rij where i is the segment such that xij = 1.

If the β variables are known, then πj = mini:βij=1 Rij.

If the optimal prices are known, we know that each πj equals the reservation price of

some segment. Then in the optimal solution,

xij :=

{

1, if Rij = πj,

0, otherwise.

and

βij :=

{

1, if Rij ≥ πj,

0, otherwise.

These are the only values that would make the solution feasible.
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Lemma 6.1.3. Suppose Rst is the maximum reservation price over all segments and prod-

ucts and only one pair of segment and product has that reservation price. Then in any

optimal solution, segment s buys product t.

Proof. Suppose in an optimal solution, βst = 0. We know that βit = 0 for all segments i in

all three models. Let v be the optimal value. Consider the objective value v’ if βst is set

to 1. We will have πt = Rst.

In the Uniform Distribution Model, if
∑

j βsj = 0, then clearly the objective value

increases by NsRst. If
∑

j βsj ≥ 1, then

v′ − v = Ns

(

Rst +
∑

j psj

1 +
∑

j βsj

−

∑

j psj
∑

j βsj

)

= Ns

(

Rst

∑

j βsj −
∑

j psj

(
∑

j βsj)(1 +
∑

j βsj)

)

= Ns

(

Rst

∑

j βsj −
∑

j πjβsj

(
∑

j βsj)(1 +
∑

j βsj)

)

= Ns

(

∑

j(Rst − πj)βsj

(
∑

j βsj)(1 +
∑

j βsj)

)

(6.1)

Rst is the maximum reservation price and each of the πj’s equals to a reservation price,

so Rst ≥ πj ∀j. The condition
∑

j βsj ≥ 1 implies that βsk = 1 for some product k 6= t,

and we know that Rst > πk. So the expression (6.1) is strictly positive. This contradicts

the fact that it is an optimal solution. Therefore, βst ≥ 1 in an optimal solution.

Similarly, in the Weighted Uniform Model, if
∑

j βsj = 0, then clearly the objective

value increases by NsRst. If
∑

j βsj = 1, then

v′ − v = Ns

(

Rstπt +
∑

j Rsjπjβsj

Rst +
∑

j Rsjβsj

−

∑

j Rsjπjβsj
∑

j Rsjβsj

)

= NsRst

(

πt

∑

j Rsjβsj −
∑

j Rsjπjβsj

(
∑

j Rsjβsj)(Rst +
∑

j Rsjβsj)

)
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= NsRst

(

∑

j(πt − πj)Rsjβsj

(
∑

j Rsjβsj)(Rst +
∑

j Rsjβsj)

)

> 0

where πt = Rst > πj ∀j.

In the Share-of-Surplus Model with restricted prices, if
∑

j βsj = 0, then the objective

value increases by NsRst. Otherwise,

v′ − v = Ns

(

πt(Rst − πt + c) +
∑

j πj(Rsj − πj + c)βsj

(Rst − πt + c) +
∑

j(Rsj − πj + c)βsj

−

∑

j πj(Rsj − πj + c)βsj
∑

j(Rsj − πj + c)βsj

)

= Ns(Rst − πt + c)

(

∑

j(πt − πj)(Rsj − πj + c)βsj

(
∑

j(Rsj − πj + c)βsj)((Rst − πt + c) +
∑

j(Rsj − πj + c)βsj)

)

> 0

where we let c > 0 to avoid singularity.

In all three models, we showed that the solution is not optimal if βst = 0. So in any

optimal solution, segment s buys product t.

6.2 Comparisons

In this section, we compare the optimal solution, in terms of the prices πj’s and βij’s, of

the different models. We notice in most examples, the four models have the same optimal

solutions. Of the ones where they have different optimal solutions, usually the Uniform

Distribution Model, the Weighted Uniform model, and the Price Sensitive model have the

same optimal solution, while the Share-of-Surplus Model has a different optimal solution.

The optimal solutions of the models for four small test cases are shown to illustrate

the differences in the models (Tables 6.1, 6.2, 6.3, and 6.4). Each table corresponds to

a different set of reservations prices. The matrix R corresponds to the reservation prices

where the rows correspond to the customer segments and the columns correspond to the

products. The column “Price π” corresponds to the optimal prices, the “β” corresponds

to the optimal βij and “Obj Value” corresponds to the optimal objective value.



Properties of the Models 40

The only difference between the inputs of Test 1 (Table 6.1) and Test 2 (Table 6.2) is

R21. All the models have the same optimal solution for Test 1, but the Share-of-Surplus

Model has a different optimal solution from the other models in Test 2.

Let us consider why the Share-of-Surplus Model has a different optimal solution in Test

2. Clearly, β11 = 1 in an optimal solution in all the models (by Lemma 6.1.3). If we have

β12 = 1 and β21 = 1, then we get more revenue from segment 2. In the Uniform, Weighted

Uniform, and Price Sensitive models, this solution gives a higher objective value since

π2 = R12 is quite high and the probability of segment 1 buying product 2, Pr12, is high

enough so that the decrease in revenue from segment 1 is small compared to the revenue

from segment 2. Pr12 is approximately 0.5, 0.44, and 0.36 in the Uniform, Weighted

Uniform, and Price Sensitive Models respectively. It is different with the Share-of-Surplus

Model, however, because the surplus of segment 1 for product 1 (R11−R21 = 5) is relatively

high. The probability of segment 1 buying the lower priced product, Pr11, is quite high at

0.86, so the decrease in revenue from segment 1 is greater than the gain in revenue from

segment 2. Therefore, the optimal solution in the Share-of-Surplus Model is simply β11 = 1

and all other β’s are zero.

Compared to Test 2, the surplus (R11 − R21) is smaller in Test 1 and also π1 = R21

is higher. Therefore, with β12 = 1 and β21 = 1, the decrease in revenue from segment 1

($1.75) is smaller than the gain in revenue from segment 2 ($7) in the Share-of-Surplus

Model.

In Test 3 (Table 6.3), the Weighted Uniform Model has a different optimal solution

than the other models. In the other three models, segments 1 and 2 only buy product

1, and segment 3 does not buy any products. This is because the reservation prices of

segment 3 are relatively low. If segment 3 buys any product, the revenue from segment 1

and 2 will decrease significantly because of the lower prices and the decrease in revenue

cannot be compensated by the extra revenue from segment 3. However, this is not the

case in the Weighted Uniform Model. Recall that in the Weighted Uniform Model, the

probability of segment i buying product j is proportional to Rij. For both segments 1

and 2, the reservation prices for product 1 are much greater than the reservation prices

for product 2. R11 and R21 are almost double R12 and R22, respectively. Therefore, when

the price of product 2 is 22, the probability of segments 1 and 2 buying product 1 at a
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Test 1 R =







9 8 3

7 3 2

1 1 1







Price π β Obj Value

Uniform 7 8 4 1 1 0 14.50

1 0 0

0 0 0

Share of 7 8 4 1 1 0 14.25

Surplus 1 0 0

0 0 0

Weighted 7 8 4 1 1 0 14.47

Uniform 1 0 0

0 0 0

Price 7 8 4 1 1 0 14.47

Sensitive 1 0 0

0 0 0

Table 6.1: Optimal Prices πj and βij of all four models.

high price is much greater than the probability of those segments buying product 2. The

extra revenue from segment 3 overcompensates the small loss in revenue from the other

segments.

Test 4 (Table 6.4) is another example in which the Share-of-Surplus Model has a dif-

ferent optimal solution as the other models.

We also compare the models’ optimal solutions on random data with 5 segments and

5 products in which the reservation prices are uniformly generated from a specified range.

The difference in the optimal prices are shown in Tables 6.5 and 6.6. We let ‘U’, ‘W’, ‘S’,

and ‘P’ represent the Uniform, Weighted Uniform, Share-of-Surplus, and Price Sensitve

Models respectively. For example, the column “U - W” shows the difference in the optimal

prices of the Uniform Model and the Weighted Uniform Model. Suppose π1
j are the optimal

prices of one model and π2
j are those of another model. Then the entry in the table is
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Test 2 R =







9 8 3

4 3 2

1 1 1







Price π β Obj Value

Uniform 4 8 4 1 1 0 10

1 0 0

0 0 0

Share of 9 9 4 1 0 0 9

Surplus 0 0 0

0 0 0

Weighted 4 8 4 1 1 0 9.8824

Uniform 1 0 0

0 0 0

Price 4 8 4 1 1 0 9.3333

Sensitive 1 0 0

0 0 0

Table 6.2: Optimal Prices πj and βij of all four models.
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Test 3 R =







49 28 27

46 25 23

24 22 21







Price π β Obj Value

Uniform 46 29 28 1 0 0 92

1 0 0

0 0 0

Share-of- 46 29 28 1 0 0 92

Surplus 1 0 0

0 0 0

Weighted 46 22 28 1 1 0 96.822

Uniform 1 1 0

0 1 0

Price 46 29 28 1 0 0 92

Sensitive 1 0 0

0 0 0

Table 6.3: Optimal Prices πj and βij of all four models.
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Test 4 R =











889 1241 1015 1284

779 594 823 625

1425 1053 1018 1283

1112 652 1195 608











Price π β Obj Value

Uniform 1112 1241 823 1283 0 1 1 1 3978.83

0 0 1 0

1 0 1 1

1 0 1 0

Share-of- 1425 1242 1195 1284 0 0 0 1 3904.00

Surplus 0 0 0 1

1 0 0 0

0 0 1 0

Weighted 1112 1241 823 1283 0 1 1 1 4013.61

Uniform 0 0 1 0

1 0 1 1

1 0 1 0

Price 1112 1241 823 1283 0 1 1 1 3921.13

Sensitive1 0 0 1 0

1 0 1 1

1 0 1 0

Table 6.4: Optimal Prices πj and βij of all four models.
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∑m

j=1 |π
1
j − π2

j |.

The Uniform and the Weighted Uniform Models have the same optimal prices for all

these problem instances, probably because it is unlikely in the random data to have the

reservation prices for one product to be much larger than those of another product as in

Test 3 (Table 6.3). These two models have the same optimal prices as the Price Sensitive

Model except in only 2 of the problem instances. The same optimal prices (hence, same

optimal β’s) imply that the Uniform Model may not be as naive as it seems since in most

cases, it gives the same solutions as the two other more realistic models. However, the

Share-of-Surplus Model appears to behave in a special way with results different from the

other three models in more cases.

Tables 6.7 and 6.8 show the differences in the optimal values of each pair of the models.

For example, the column “U - W” is the optimal value of the Uniform Model minus the

optimal value of the Weighted Uniform Model. The differences in the optimal values of the

Uniform, the Weighted Uniform, and the Price Sensitive Models are quite small in many

problem instances, but the Share-of-Surplus Model gives smaller optimal values than the

other three models in most cases (the columns “U - S,” “W - S,” and “P - S” have positive

and relatively large entries). It is most likely because the probability for a segment to buy

a lower-priced product is usually higher in the Share-of-Surplus Model than in the other

three models.

1The actual optimal prices found by CPLEX are (1111.999934, 1240.999815, 823.000164, 1282.999916)
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Difference in Prices

Range Test # U - W U - S U - P S - P

1000-1100

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 1 0 1

6 0 0 0 0

7 0 4 1 3

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

1000-1500

1 0 0 0 0

2 0 126 0 126

3 0 0 0 0

4 0 35 0 35

5 0 73 0 73

6 0 356 0 356

7 0 0 0 0

8 0 45 0 45

9 0 0 0 0

10 0 0 0 0

1000-1700

1 0 0 0 0

2 0 146 0 146

3 0 11 0 11

4 0 0 0 0

5 0 389 389 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 105 0 105

Table 6.5: Comparison of the Prices in the Models’ Solutions for Random Tests (1)



Properties of the Models 47

Difference in Prices

Range Test # U - W U - S U - P S - P

1000-2000

1 0 199 0 199

2 0 257 0 257

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 768 0 768

9 0 156 0 156

10 0 0 0 0

1000-3000

1 0 10 0 10

2 0 0 0 0

3 0 1 1 0

4 0 716 0 716

5 0 0 0 0

6 0 0 0 0

7 0 137 0 137

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

Table 6.6: Comparison of the Prices in the Models’ Solutions for Random Tests (2)
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Difference in Objective Value

Range Test # U - W U - S U - P W - S W - P P - S

1000-1100

1 -0.01 1.00 0.01 1.01 0.02 0.99

2 0 0 0 0 0 0

3 0.07 45.09 0.49 45.02 0.42 44.60

4 -0.04 4.66 0.02 4.70 0.06 4.64

5 -0.05 12.18 0.24 12.23 0.29 11.93

6 -0.38 21.90 0.28 22.28 0.66 21.62

7 -0.10 32.63 0.66 32.73 0.76 31.97

8 0 0 0 0 0 0

9 0.07 9.39 0.14 9.32 0.07 9.25

10 -0.10 24.17 0.18 24.27 0.28 23.99

1000-1500

1 -1.36 -20.63 0.62 -19.27 1.98 -21.26

2 -5.17 132.60 10.96 137.77 16.13 121.65

3 -0.31 44.17 1.65 44.48 1.96 42.53

4 -0.22 9.00 1.42 9.22 1.64 7.58

5 0.22 14.00 0.23 13.78 0.01 13.77

6 -1.30 117.19 5.10 118.49 6.40 112.09

7 0 0 0 0 0 0

8 -7.00 112.90 8.77 119.90 15.77 104.13

9 0 0 0 0 0 0

10 -0.01 8.44 0.08 8.45 0.09 8.36

1000-1700

1 -2.05 73.47 3.61 75.52 5.66 69.86

2 0.27 55.86 1.40 55.59 1.13 54.46

3 0.22 15.50 0.44 15.28 0.22 15.06

4 -0.12 -5.75 0.03 -5.63 0.15 -5.78

5 -8.93 83.78 2.76 92.71 11.69 81.03

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 -3.33 136.89 3.78 140.22 7.11 133.11

9 0.50 30.60 0.65 30.10 0.15 29.94

10 -4.74 113.11 7.19 117.85 11.93 105.92

Table 6.7: Comparison of the Objective Values for Random Tests (1)
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Difference in Objective Value

Range Test # U - W U - S U - P W - S W - P P - S

1000-2000

1 -9.94 201.44 19.48 211.38 29.42 181.96

2 -19.04 487.80 83.00 506.84 102.04 404.80

3 0 0 0.01 0 0.01 -0.01

4 0 0 0 0 0 0

5 0.52 18.24 0.20 17.72 -0.32 18.05

6 0 0 0 0 0 0

7 -4.44 113.49 6.21 117.93 10.65 107.28

8 -2.11 185.00 23.07 187.11 25.18 161.93

9 -1.93 18.43 1.12 20.36 3.05 17.31

10 0 0 0.01 0 0.01 -0.01

1000-3000

1 -0.90 81.00 3.43 81.90 4.33 77.57

2 -0.20 33.77 0.37 33.97 0.57 3.39

3 -0.20 208.21 8.75 208.41 8.95 199.47

4 -35.80 203.74 21.62 239.54 57.42 182.13

5 -2.50 177.71 11.55 180.21 14.05 166.16

6 0 0 0.01 0 0.01 -0.01

7 12.20 326.37 30.57 314.17 18.37 295.79

8 3.80 54.62 11.83 50.82 8.03 42.80

9 0 0 0.01 0 0.01 -0.01

10 -17.60 180.03 10.80 197.63 28.40 169.23

Table 6.8: Comparison of the Objective Values for Random Tests (2)



Chapter 7

Enhancements

In this chapter, we explore ways to improve the solution time for the mixed-integer pro-

gramming problems. First, we develop heuristics to efficiently find “good” feasible solu-

tions. Second, we study two sets of valid inequalities in hopes to find effective cutting

planes.

7.1 Heuristics

As we will see in Chapter 9, CPLEX takes significant time just to find a feasible solution

for larger problems. Fortunately, we can easily find a feasible mixed-integer solution for

the formulations of all our models. For example, in the alternative formulations of the

models, the solution

x1j = 1, ∀j,

xij = 0, ∀i 6= 1,

πj = R1j, ∀j

is a feasible solution (all other variables can be easily determined after the x variables are

fixed). Thus, we may provide the solver a “good” starting feasible solution in hopes of

decreasing the solution time.

50
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7.1.1 Heuristic 0

One possible strategy, which we call Heuristic 0, is to set βij∗ = 1 for each segment i

where Rij∗ = maxj Rij. The other β variables are set accordingly to ensure feasibility. The

pseudo-code is presented in Algorithm 1. For special data sets, this heuristic can result in

the optimal solution.

Lemma 7.1.1. Suppose the conditions are the same as stated in Lemma 6.1.1. That is,

for every segment i, we can find a unique product p(i) such that Rip(i) = maxjRij, and for

each of such product p(i), segment i is the unique segment such that Rip(i) = maxkRkp(i).

Then Heuristic 0 gives the optimal solution.

Proof. In the first step when we set βij = 1 if Rij = maxk Rik, we have

βij :=

{

1, if j = p(i),

0, otherwise.

which is the optimal solution by Lemma 6.1.1. This is the solution found by Heuristic 0,

thus, it provides the optimal solution for this particular data set.

However, Heuristic 0 may not yield a strong solution in general. For the rest of this

section, we discuss a few simple techniques for improving on the feasible solution found by

Heuristic 0.

Algorithm 1 Heuristic 0

heuristic0(numSegments, numProducts, N, R, beta, pi)

1: for each segment i, set βij = 1 where j = argmaxjRij

2: for each product j, set πj = mini{Rij : βij = 1}

3: return β

7.1.2 Heuristic 1

After running Heuristic 0, we select a product k that is bought by at least one customer

segment, and let l be the segment with the lowest reservation price that buys product k. We
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Algorithm 2 Make one swap if possible

swap(j, k, β, π)

1: for seg i = argmini{Rij : βij = 1}, find the greatest increase in objective value if

segment i buys another product k (or does not buy any product) instead of j.

2: if increase in obj val ≤ 0 then

3: return 0

4: end if

5: βij := 0

6: if product k is found then

7: βik := 1

8: end if

9: make the solution feasible and set the prices π to the appropriate values

10: return the increase in objective value after ONE swap

Algorithm 3 Heuristic 1

heuristic1(numSegments, numProducts, N, R, β, π)

1: β := heuristic0(numSegments, numProducts, N, R, β, π)

2: k := -1;

3: repeat

4: increase := 0;

5: make a heap H where the elements are products and the comparator compares the

product prices

6: while increase ≤ 0 and H is not empty do

7: j := H.pop()

8: increase := swap(j, k, β, π)

9: end while

10: until increase ≤ 0

consider the change in the objective value if the segment does not buy product k anymore

and perhaps buys another product q that it does not currently buy (i.e., βlq currently equals

to 0). This can be thought of as swapping βlk with βlq. We select the option that increases
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the objective value the most and modify the β variables accordingly. That is, segment l

either does not buy product k anymore, or it buys another product instead of product k. If

none of the options increases the objective value, we make no changes. We repeat until no

swaps can be made to increase the objective value. This algorithm terminates because the

objective function is bounded and the objective value strictly increases after each swap.

The order in which we select the products to be examined affects the final solution that

will be given by the heuristic. The goal is to use an order that maximizes the total increase

in the objective value. In this heuristic, we sort the products by the price and examine

the products in the order of the lowest price to the highest price. If we make a change

in any iteration, we sort the products again since the prices may change, and start with

the lowest-priced product again. The heuristic stops when no changes can be made after

examining all the products consecutively from the lowest price to the highest price. The

pseudo-code is shown in Algorithm 3 and the swap subroutine is shown in Algorithm 2.

This simple heuristic can be used to find a feasible integral solution for any of the

models. The only part that needs to be changed is how the objective value is calculated.

The version shown here makes use of β, but it can be easily modified to use the x variables

as in the alternative formulation.

7.1.3 Heuristic 2

Heuristic 1 (Section 7.1.2) can be modified to have a polynomial runtime if the price

of the product that we examine is non-decreasing in each iteration.

From experiments of Heuristic 1, we noticed that if a swap can be made when product

k at price πk is selected, it is very unlikely that a swap can be made for a product at a

price lower than πk in subsequent iterations. Therefore, we would expect the results to be

similar if we do not examine products with lower prices again.

Heuristic 2 is the same as Heuristic 1 (Section 7.1.2) but the products are selected in

a different order. After a customer is swapped out of product k with price πk before the

swap, only products with prices at least πk are examined. The price of product k increases

after a swap, so it will be examined again if there are still customers buying product k. If

a new product s is bought and if its new price πnew
s is less than πk, then product s will

never be examined. If a product cannot be swapped to increase the objective value, then
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Algorithm 4 Heuristic 2

heuristic2(numSegments, numProducts, N, R, β, π)

1: β := heuristic0(numSegments, numProducts, N, R, β, π)

2: increase := 0;

3: make a heap H where the elements are products and the comparator compares the

product prices

4: while H is not empty do

5: k := -1;

6: πtemp := πj

7: j := H.pop()

8: increase := swap(j, k, β, π)

9: if increase > 0 then

10: if product j is still bought by some segment then

11: H.push(j)

12: end if

13: if k ≥ 0 and πk ≥ πtemp then

14: H.push(k)

15: end if

16: end if

17: end while

it will not be examined again. The pseudo-code is presented in Algorithm 4.

Let O(f(n,m)) be the runtime to calculate the increase in objective value if segment

l does not buy product k anymore or if segment l buys product s instead of product k,

where n is the number of customer segments and m is the number of products. Clearly,

f(n,m) is polynomial in n and m, since the runtime to calculate the objective value is

polynomial.

Lemma 7.1.2. The runtime of Heuristic 2 is polynomial.

Proof. The time it takes to examine a product k is O(mf(n,m)) since we consider up to

m products that product k can swap with. A product is examined multiple times only

if its price increases after a swap. Since a product’s price always equals to a segment’s
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reservation price, it can only increase at most n times. So there are at most O(nm)

iterations to examine a product, and each iteration has a runtime of O(mf(n,m)).

Therefore, the runtime of Heuristic 2 is O(nm2f(n,m)).

7.1.4 Heuristic 3

Heuristic 3 is a hybrid between Heuristic 1 (Section 7.1.2) and Heuristic 2 (Section 7.1.3).

It examines the products in the same way, but after a swap in which segment l buys

product s instead of product k and πnew
s < πk (equivalently, Rls < Rlk), it would examine

all the products with prices ≥ πnew
s . That is, the price of the products that it examines

decreases only if a product has a lower price after a swap. The pseudo-code is presented

in Algorithm 5.

It is not yet clear if this heuristic has an exponential worst case runtime. However,

experimental results shows that it has a similar runtime as Heuristic 2 and the resulting

objective value is usually better (Tables 7.1, 7.2, and 7.3).

7.1.5 Comparison of the Heuristics

Tables 7.1, 7.2, 7.3, and 7.4 show the results of the three heuristics with problem instances

of different sizes as inputs. The column “n” is the number of segments and “m” is the

number of products in the problem instance.

Tables 7.1 and 7.2 show the initial objective value found before any swaps (i.e., Heuristic

0), and the number of swaps performed, the number of CPU seconds required and the final

objective value found by each heuristic. The objective values are rounded to the nearest

integer. Tables 7.3 and 7.4 show the difference in time required and the final objective

value for each pair of the heuristics. For example, the “Heur. 1 – Heur. 2” columns show

the time and objective value of Heuristc 2 subtracted from the time and objective value of

Heurstic 1, respectively.

All of the heuristics terminates in a very short time. The time required for Heuristic

1 to terminate increases significantly as the problem size increases. The objective values

found are better than or at least as good as the ones found by the other two heuristics,

except in one problem instance (when n = 60, m = 20) where Heuristic 2 has a better



Enhancements 56

Algorithm 5 Heuristic 3

heuristic3(numSegments, numProducts, N, R, β, π)

1: β := heuristic0(numSegments, numProducts, N, R, β, π)

2: increase := 0;

3: make a heap H where the elements are products and the comparator compares the

product prices

4: while H is not empty do

5: k := -1;

6: πtemp := πj

7: j := H.pop()

8: increase := swap(j, k, β, π)

9: if increase > 0 then

10: if product j is still bought by some segment then

11: H.push(j)

12: end if

13: if k ≥ 0 then

14: if πk ≥ πtemp then

15: H.push(k)

16: else

17: for products l where πk ≤ πl ≤ πtemp do

18: H.push(l)

19: end for

20: end if

21: end if

22: end if

23: end while

solution. Experimental results shows that Heuristic 3 has a similar runtime as Heuristic

2 and the resulting objective value is usually better. We can see from Tables 7.3 and 7.4

that Heuristic 3 found a lower objective value than Heuristic 2 in one problem instance

only (when n = 60, m = 20).
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The effect of using a starting solution found by the heuristics for the Uniform Distri-

bution Model is explored in Chapter 9.

7.2 Valid Inequalities

To further improve the solution time for the mixed-integer programming models, we con-

sidered several mixed-integer cuts for the various choice models.

7.2.1 Convex Quadratic Cut

In the original Uniform Distribution Model (Section 2.1), the variable aij were introduced

to convexify the bilinear inequalities:

m
∑

j=1

tiβij ≤
m
∑

j=1

pij, ∀i.

We wish to include a convex constraint in the mixed-integer programming formulation that

is implied by the above inequalities and some valid convex inequalities.

Let Mi be a positive number (as small as possible) such that t2i ≤ Mi, for every feasible

solution (t1, . . . , tn, β11, . . . , βnm, p11, . . . , pnm) of the mixed integer programming problem.

Also, note that β2
ij ≤ βij. Combining these relations together yields the following set of

valid inequalities:

ait
2
i + bi

m
∑

j=1

(β2
ij − βij) +

m
∑

j=1

tiβij −
m
∑

j=1

pij ≤ aiMi, i = 1, . . . , n, (7.1)

where ai and bi are nonnegative constants. With appropriate values of ai and bi, the above

set of quadratic inequalities would represent a convex region.

Lemma 7.2.1. The function f(t, β1, . . . , βm, p1, . . . , pm) = at2+b
∑m

j=1(β
2
j−βj)+

∑m

j=1 tβj−
∑m

j=1 pj is a convex function iff a > 0, b > 0 and ab ≥ m
4
.

Proof. The Hessian of f is

∇2f =

[

A 0

0T 0

]
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Heuristic 1 Heuristic 2 Heuristic 3

Initial # Time Final # Time Final # Time Final

n m Obj Val Swaps Obj Val Swaps Obj Val Swaps Obj Val

2 2 2656.00 0 0.003 2656 0 0.003 2656 0 0.003 2656

2 5 121520 0 0.003 121520 0 0.002 121520 0 0.003 121520

2 10 165960 0 0.006 165960 0 0.006 165960 0 0.006 165960

2 20 207680 0 0.010 207680 0 0.010 207680 0 0.010 207680

2 60 66801 0 0.025 66801 0 0.024 66801 0 0.024 66801

2 100 66801 0 0.039 66801 0 0.040 66801 0 0.039 66801

5 2 176584 1 0.004 212238 1 0.004 212238 1 0.004 212238

5 5 131346 5 0.020 164038.67 5 0.014 164038.67 5 0.015 164039

5 10 177403 10 0.079 217832 4 0.020 212348 10 0.048 217832

5 20 124311 0 0.022 124311 0 0.022 124311 0 0.022 124311

5 60 377480 0 0.049 377480 0 0.049 377480 0 0.049 377480

5 100 316906 8 0.473 318770 8 0.276 318770 8 0.277 318770

10 2 543760 0 0.003 543760 0 0.003 543760 0 0.004 543760

10 5 307678 3 0.018 323976 3 0.012 323976 3 0.016 323976

10 10 320574 11 0.099 379851 9 0.033 375924 11 0.044 379851

10 20 448921 21 0.365 555829 21 0.114 555829 21 0.134 555829

10 60 489794 11 0.324 624070 10 0.235 624070 10 0.236 624070

10 100 528288 7 0.807 605906 7 0.305 605906 7 0.371 605906

Table 7.1: Comparison of Heuristics (1)



E
n
h
a
n
cem

en
ts

59

Heuristic 1 Heuristic 2 Heuristic 3

Initial # Time Final # Time Final # Time Final

n m Obj Val Swaps Obj Val Swaps Obj Val Swaps Obj Val

20 2 503054 8 0.019 544933 8 0.013 544933 8 0.016 544933

20 5 552958 9 0.042 597752 9 0.022 597752 9 0.023 597752

20 10 624238 16 0.128 746544 15 0.048 743491 15 0.055 743491

20 20 698462.78 35 0.951 823206 31 0.148 822773 35 0.209 823206

20 60 934624 48 5.134 1174843 37 0.647 1094627 48 0.958 1174844

20 100 806249 25 4.256 868827 10 0.445 851503 17 0.699 863241

60 2 1136086 6 0.019 1228719 6 0.013 1228719 6 0.014 1228719

60 5 1407568 4 0.028 1526584 4 0.020 1526584 4 0.025 1526584

60 10 1480566 39 0.378 1770829 39 0.115 1770829 39 0.123 1770829

60 20 1697868 49 1.241 1957967 56 0.279 1978848 49 0.286 1957967

60 60 1976530 92 21.621 2476842 88 1.376 2437774 91 1.558 2476277

60 100 2824349 83 52.689 3218884 55 2.385 3171053 76 5.013 3215687

100 2 2201501 9 0.028 2368924 9 0.020 2368924 9 0.020 2368924

100 5 2177005 19 0.103 2493507 19 0.049 2493507 19 0.053 2493507

100 10 2307042 43 0.415 2703764 43 0.146 2703764 43 0.153 2703764

100 20 2384416 45 1.854 2736795 45 0.280 2736795 45 0.285 2736795

100 60 3548047 89 21.130 4128381 88 1.725 4127951 88 1.789 4127951

100 100 3568616 132 108.240 4380587 120 3.938 4338345 126 6.679 4366574

Table 7.2: Comparison of Heuristics (2)
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Heur. 1 – Heur. 2 Heur. 1 – Heur. 3 Heur. 2 – Heur. 3

n m Time Obj Val Time Obj Val Time Obj Val

2 2 0 0 0 0 0 0

2 5 0.001 0 0 0 -0.001 0

2 10 0 0 0 0 0 0

2 20 0 0 0 0 0 0

2 60 0.001 0 0.001 0 0 0

2 100 -0.001 0 0 0 0.001 0

5 2 0 0 0 0 0 0

5 5 0.007 0 0.006 0 -0.001 0

5 10 0.060 5484 0.031 0 -0.028 -5484

5 20 0 0 0 0 0 0

5 60 0 0 0 0 0 0

5 100 0.197 0 0.196 0 -0.001 0

10 2 0 0 -0.001 0 -0.001 0

10 5 0.006 0 0.002 0 -0.004 0

10 10 0.065 3927 0.055 0 -0.011 -3927

10 20 0.251 0 0.231 0 -0.020 0

10 60 0.089 0 0.088 0 -0.001 0

10 100 0.503 0 0.436 0 -0.066 0

20 2 0.006 0 0.003 0 -0.003 0

20 5 0.020 0 0.019 0 -0.001 0

20 10 0.080 3053 0.073 3053 -0.007 0

20 20 0.802 433 0.742 0 -0.061 -433

20 60 4.487 80216 4.175 0 -0.311 -80216

20 100 3.811 17324 3.558 5586 -0.254 -11738

Table 7.3: Comparison of Heuristics (3)
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Heur. 1 – Heur. 2 Heur. 1 – Heur. 3 Heur. 2 – Heur. 3

n m Time Obj Val Time Obj Val Time Obj Val

60 2 0.006 0 0.005 0 -0.001 0

60 5 0.008 0 0.003 0 -0.005 0

60 10 0.263 0 0.255 0 -0.008 0

60 20 0.962 -20881 0.956 0 -0.007 20881

60 60 20.245 39068 20.064 565 -0.182 -38503

60 100 50.304 47831 47.677 3197 -2.627 -44634

100 2 0.009 0 0.008 0 -0.001 0

100 5 0.055 0 0.051 0 -0.004 0

100 10 0.268 0 0.262 0 -0.007 0

100 20 1.574 0 1.569 0 -0.005 0

100 60 19.406 430 19.341 430 -0.064 0

100 100 104.302 42242 101.562 14013 -2.741 -28229

Table 7.4: Comparison of Heuristics (4)
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where A =

[

2a eT

e 2B

]

, B is an m × m diagonal matrix with b, b, . . . , b on the diagonal,

and e is a vector of ones. Since f is twice continuously differentiable, f is convex iff A is

a positive semi-definite matrix.

If b ≤ 0, then A is not positive semi-definite and f is not convex. So we can assume

b > 0.

The Schur-complement of B in A is 2a − 1
2b

(eT e), thus

A � 0 ⇔ a −
m

4b
≥ 0 ⇔ ab ≥

m

4
.

Next, we generalize the above construction to allow different coefficients bj for the

inequalities β2
ij ≤ βij. Let b denote the vector (b1, b2, . . . , bm)T and let B denote the m×m

diagonal matrix with entries b1, b2, . . . , bm on the diagonal.

Lemma 7.2.2. The function F (t, β1, . . . , βm, p1, . . . , pm) = at2+
∑m

j=1 bj(β
2
j−βj)+

∑m

j=1 tβj−
∑m

j=1 pj is a convex function iff b > 0 and a ≥
∑m

j=1
1

4bj
.

Proof. As in the proof of the previous lemma, F is twice continuously differentiable. The

Hessian of F is

∇2F =

[

A 0

0T 0

]

,

where A :=

[

2a eT

e 2B

]

. Therefore, F is convex iff A is positive semidefinite. If for some j,

bj ≤ 0, then A is not positive semidefinite. Therefore, b > 0. Let b̄ := ( 1√
b1

, 1√
b2

, . . . , 1√
bm

)T .

Also, if a ≤ 0 then A is not positive semidefinite, thus a > 0. The Schur complement of a

in A is 2B − 1
2a

eeT . Thus,

A � 0 ⇔ 2B −
1

2a
eeT � 0

⇔ 4I −
1

a
b̄b̄

T
� 0

⇔ 4b̄
T
b̄ −

1

a
(b̄

T
b̄)2 ≥ 0
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⇔ a ≥
b̄

T
b̄

4
=

m
∑

j=1

1

4bj

.

Corollary 7.2.1. Let Mi be as above, and b1 > 0, b2 > 0, . . . , bm > 0, and a ≥
∑m

j=1
1

4bj
be

given. Then the inequality

ait
2
i +

m
∑

j=1

[bjβ
2
ij + (ti − bj)βij − pij] ≤ aMi

is a valid convex quadratic inequality for the feasible region of the mixed integer program-

ming problem.

Several computational experiments on randomly generated problem instances were per-

formed to test whether these valid inequalities are actually a cut. The inequalities (7.1)

were added to the Uniform Distribution Model formulation (2.1) and the resulting mixed-

integer programming problem with convex quadratic inequalities (MIQP) were solved by

CPLEX 9.1. However, it was difficult to test whether (7.1) cut off any regions of the LP

feasible region of (2.1) because of the numerical inaccuracies in the solutions provided by

CPLEX. For example, in a random instance with n = 10 and m = 10, CPLEX returned

an optimal objective value of 9218.698757 for the continuous relaxation of the MIQP. For

the LP relaxation of (2.1), CPLEX returned an optimal value of 9219.085299. However,

we verified that this latter optimal solution did not violate any of the inequalities (7.1).

Thus, the difference in the optimal value was due to numerical inaccuracies of the CPLEX

quadratic programming solver. Clearly, more testing needs to be done, perhaps with a

different optimization software.

7.2.2 Knapsack Covers

The pure 0-1 formulation (2.3) shown in Section 2.4 may not be as strong as the mixed-

integer formulation (2.2). However, we may be able to exploit the vast amount of work done

in developing strong valid inequalities for pure 0-1 programming problems for formulation

(2.3). These inequalities can not only improve the solution time for the 0-1 problem,
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but we may be able to project them to the space of Formulation (2.4) to strengthen the

mixed-integer programming formulation as well.

One obvious family of valid inequalities are the knapsack covers [8]. From (2.3), we

have the constraints
m
∑

j=1

βij =
m
∑

k=0

kyik, i, . . . ,m,

(where we substituted βij :=
∑

l:Rl,j≤Rij
xlj purely for notational ease) and

m
∑

k=0

yik = 1, i = 1, . . . , n.

From these, for a given i and k, we get:

m
∑

j=1

βij ≤

k
∑

l=0

kyil +
m
∑

l=k+1

myil

⇒

m
∑

j=1

βij ≤

k
∑

l=0

kyil +
m
∑

l=k+1

myil + m − m

m
∑

k=0

yik

⇒

m
∑

j=1

βij ≤ −

k
∑

l=0

(m − k)yil + m

⇒
m
∑

j=1

βij + (m − k)
k
∑

l=0

yil ≤ m,

where the last inequality is a knapsack constraint (note that
∑k

l=0 yil ∈ {0, 1} in the integer

solution so we can treat the term as a 0-1 variable). For a given i and k, let Pik be a subset

of k + 1 products , i.e, Pik ⊆ {1, . . . ,m}, |Pik| = k + 1. Thus, the corresponding knapsack

cover inequality is
∑

j∈Pik

βij +
k
∑

l=0

yil ≤ k + 1. (7.2)

Given a fractional solution to (2.3), separating (7.2) can be done in polynomial time.

Given xij’s , and thus βij’s, we rank βij for each i, i = 1, . . . , n. For each k, let P ∗
ik = {j :
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βij is one of the kth largest βij’s, j = 1, . . . ,m}. Thus, for each i and k, the corresponding

cover inequality is violated by the current solution if and only if
∑

j∈P ∗
ik

βij+
∑k

l=0 yil > k+1.

We can also incorporate all of the inequalities (7.2) to (2.3) with only polynomial

numbers of additional constraints and variables.

Lemma 7.2.3. Given i and k, there exists βij, j = 1, . . . ,m and yil, l = 0, . . . , k satisfying

(7.2) for all Pik ⊆ {1, . . . ,m}, |Pik| = k+1 if and only if there exists q and pj, j = 1, . . . ,m

such that

(k + 1)q +
m
∑

j=1

pj +
k
∑

l=0

yil ≤ k + 1,

q + pj ≥ βij, j = 1, . . . ,m,

pj ≥ 0, j = 1, . . . ,m.

Proof. For given βij’s, finding the most violated subset P ∗
ik for (7.2) is equivalent to solving

max
∑m

j=1 βijzj,

s.t.
∑m

j=1 zj = k + 1,

0 ≤ zj ≤ 1, j = 1, . . . ,m

Since the feasible region of the above LP is an integral polyhedron, and since the LP is

clearly feasible and bounded, it has an optimal 0-1 solution corresponding to the charac-

teristic vector of P ∗
ik. The Dual of this LP is:

min (k + 1)q +
∑m

j=1 pj,

s.t. q + pj ≥ βij, j = 1, . . . ,m,

pj, j = 1, . . . ,m.

If there exists βij’s and yil that satisfies (7.2) for all covers Pik, then it must satisfy

(7.2) for P ∗
ik. Thus, from strong duality, there exists q and pj satisfying the constraints for

the Dual LP and
∑

j∈P ∗
ik

βij = (k + 1)q +
∑m

j=1 pj.

Conversely, if there exists q and pj that satisfies the constraints of the Dual LP and

there is a yil such that (k + 1)q +
∑m

j=1 pj +
∑k

l=0 yil ≤ k + 1, then from weak duality,
∑

j∈Pik
βij ≤ (k + 1)q +

∑m

j=1 pj for all Pik’s and thus,
∑

j∈Pik
βij +

∑k

l=0 yil ≤ k + 1 for all

Pik’s.
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Thus, we can either iteratively separate the knapsack cover inequalities, or from Lemma

7.2.3, add the constraints:

(k + 1)qik +
m
∑

j=1

pi,j,k +
k
∑

l=0

yil ≤ k + 1, i = 1, . . . , n; k = 0, . . . ,m, (7.3)

qik + pijk ≥ βij, j = 1, . . . ,m; i = 1, . . . , n; k = 0, . . . ,m,

pijk ≥ 0, j = 1, . . . ,m; i = 1, . . . , n; k = 0, . . . ,m,

to (2.3).

Table 7.5 illustrates that these knapsack covers (7.2) are indeed cuts. It compares

formulation (2.3) with and without the cover inequalities (7.3) in terms of the objective

value of their linear programming relaxation on the same randomly generated instances

shown in Section 2.4. Again, n is the number of customer segments, m is the number of

products, and v is a label of the problem instance. LP objective values in bold corresponds

to the IP optimal value.

These knapsack cover inequalities (7.2) can also be used to generate cuts for the mixed-

integer programming formulation (2.2).

Lemma 7.2.4. Suppose x̄ij is a fractional solution of (2.2) and let β̄ij =
∑

l:Rlj≤Rij
x̄lj.

For a given i, i = 1, . . . , n, if there are no yik’s that satisfies

∑m

k=0 yik = 1, (7.4)
∑m

k=0 kyik =
∑m

j=1 β̄ij,
∑k

l=0 yil ≤ k + 1 −
∑

j∈P ∗
ik

β̄ij, k = 0, . . . ,m

where P ∗
ik = {j|β̄ij is one of the k largest β̄ij, j = 1, . . . ,m}, then

m
∑

j=1

vβij +
∑

j∈P ∗
ik

wkβij ≤

m
∑

k=0

(k + 1)wk (7.5)

is a valid inequality for (2.2) that cuts of x̄ij, where

u + kv +
∑k

l=0 wk ≥ 0, k = 0, . . . ,m,

u +
∑m

j=1 β̄ijv +
(

k + 1 −
∑

j∈P ∗
ik

β̄ij

)

wk < 0,

wk ≥ 0, k = 0, . . . ,m,
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n m v (2.3) without (7.3) (2.3) with (7.3)

4 4 1 2564.71 2399.63

2 3404.00 3404.00

3 333.00 333.00

4 3060.92 3005.67

5 3360.95 3271.48

4 10 1 406.42 390.50

2 398.19 391.36

3 397.36 373.89

4 389.98 365.59

5 402.74 384.18

10 4 1 802.93 799.31

2 856.12 853.60

3 850.95 848.58

4 856.85 842.16

5 925.44 911.67

10 10 1 997.40 990.70

2 1008.53 1003.15

3 1021.94 1016.75

4 872.92 864.30

5 1021.50 1013.01

Table 7.5: Strength of Knapsack Cover inequalities (7.2)

for some u.

Proof. The system (7.4) are valid inequalities for the pure 0-1 formulation (2.3). Thus, x̂ij

is a feasible integer solution to (2.2) if and only if x̂ij and ŷik = 1 where k =
∑

l:Rlj≤Rij
xlj

is a feasible integer solution to (2.3).

From Farkas’ Lemma, (7.4) is infeasible if and only if there exists u, v, and wk, k =
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0, . . . ,m, where

u + kv +
∑k

l=0 wk ≥ 0, k = 0, . . . ,m,

u +
∑m

j=1 β̄ijv +
(

k + 1 −
∑

j∈P ∗
ik

β̄ij

)

wk < 0,

wk ≥ 0, k = 0, . . . ,m.

Therefore,
∑m

j=1 vβij +
∑

j∈P ∗
ik

wkβij ≤
∑m

k=0(k + 1)wk is a valid inequality for (2.2) and

are violated by β̄ij.



Chapter 8

Product Capacity and Cost

In all of our discussions thus far, we have assumed that there are no capacity limits nor

costs for our products. Clearly, this is not a realistic assumption in many applications.

In this chapter, we discuss how we can incorporate capacity limits and product costs into

some of our customer choice models.

8.1 Product Capacity

Product capacity limits are crucial constraints for products such as airline seats and hotel

rooms. Certain consumer choice models handle capacity constraints easily, whereas it

poses a challenge to others. We present this extension for the Uniform Distribution Model,

the Weighted Uniform Model, and the Share-of-Surplus Model with restricted prices. We

were not able to incorporate the capacity constraint in the Price Sensitive Model while

maintaining the convexity of the continuous relaxation. In all of the following subsections,

we assume that the company can sell up to Capj units of product j, Capj ≥ 0, j = 1, . . . ,m.

8.1.1 Uniform Distribution and Weighted Uniform Model

Capacity constraints can be incorporated to the mixed-integer formulations of the Uniform

Distribution Model (Chapter 2) and the Weighted Uniform Model (Chapter 3) with some

additional variables. We discuss the formulation for the Uniform Distribution Model only,
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since it extends easily to the Weighted Uniform Model.

In the Uniform Distribution Model, the expected number of customers that buy product

j is
∑

i Ni
βij

P

k βik
if
∑

k βik ≥ 1 and is 0 if
∑

k βik = 0.

Let Bij be an auxiliary variable such that Bij :=
βij

P

k βik
if
∑

k βik ≥ 1 and is 0 if
∑

k βik = 0 (i.e., the fraction of customers from segment i buying product j, Prij). Thus,

βij = Bij

∑

k

βik

Let bijk := Bijβik. The capacity constraint can be represented by the following set of linear

constraints:

∑

i NiBij ≤ Capj, ∀j, (8.1)

βij =
∑

k bijk, ∀i,∀j,

bijk ≤ βik, ∀i,∀j,∀k,

bijk ≥ Bij − (1 − βik), ∀i,∀j,∀k,

bijk ≤ Bij, ∀i,∀j,∀k,

bijk ≥ 0, ∀i,∀j,∀k.

The above constraints can also be represented by xij variables of Section 2.2 instead of

the βij variables.

8.1.2 Share-of-Surplus Model

Similar to section (8.1.1), in the Share-of-Surplus Model with restricted prices (4.8), the

expected number of customers that buy product j is
∑

i Ni

(

P

l:Rlj≤Rij
(Rij−Rlj)xlj

P

k(
P

l:Rlk≤Rik
(Rik−Rlk)xlk)

)

if
∑

k(
∑

l:Rlk≤Rik
(Rik − Rlk)xlk) 6= 0.

Let Bij be an auxiliary variable such that

Bij :=







(

P

l:Rlj≤Rij
(Rij−Rlj)xlj

P

k(
P

l:Rlk≤Rik
(Rik−Rlk)xlk)

)

, if
∑

k(
∑

l:Rlk≤Rik
(Rik − Rlk)xlk) 6= 0

0, otherwise.
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(again, Bij is the fraction of customers from segment i buying product j, or Prij). Thus,

∑

l:Rlj≤Rij

(Rij − Rlj)xlj = Bij

∑

k

(
∑

l:Rlk≤Rik

(Rik − Rlk)xlk)

Let bijlk := Bijxlk. Just as before, the capacity constraint can be represented by the

following set of linear constraints:

∑

i NiBij ≤ Capj, ∀j, (8.2)
∑

l:Rlj≤Rij
(Rij − Rlj)xlj =

∑

k(
∑

l:Rlk≤Rik
(Rik − Rlk)bijlk) ∀i,∀j,

bijlk ≤ xlk, ∀i,∀j,∀l,∀k,

bijlk ≥ Bij − (1 − xlk), ∀i,∀j,∀l,∀k,

bijlk ≤ Bij, ∀i,∀j,∀l,∀k,

bijlk ≥ 0, ∀i,∀j,∀l,∀k.

8.1.3 Risk Products

In some cases, companies may want to penalize against under-shooting a capacity. For

example, if there is a large fixed cost or initial investment for product j, the company may

sacrifice revenue and decrease its price to ensure that all of the product is sold. We call such

products risk products. For these products, we may add a penalty for under-shooting in

the objective, i.e., given a user-defined penalty coefficient wj > 0 for under-selling product

j, we modify the objective to

n
∑

i=1

Ni

m
∑

j=1

πjPrij −
m
∑

j=1

wj(Capj −
n
∑

i=1

NiBij)

or
n
∑

i=1

m
∑

j=1

Ni(πjPrij + wjBij)

where Bij is as before.

From a profit optimization point of view, it is sub-optimal to forcibly sell unprofitable

products. Such a policy implies that the company is overstocked with these risk products,
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i.e., Capj is too large. In some cases, we may want to treat Capj as a variable. For

example, in the travel industry, the product procurement division will seek out contracts

with hotels to secure certain numbers of rooms for a given time period. However, if that

travel destination is not profitable for the company, they may be better off securing very

few rooms or not securing any rooms at all. In all of our models, making Capj a variable

will not affect the linearity of the constraints. Also, there will most likely be an upperbound

for Capj for all j = 1, . . . ,m. If procuring a unit of product j costs vj, then the objective

function can be modified to:

n
∑

i=1

Ni

m
∑

j=1

πjPrij −
m
∑

j=1

vjCapj

By determining the optimal value for Capj, it should no longer be necessary for the com-

pany to penalize under-selling of products1.

8.2 Product Cost

Suppose each product j has a variable cost of cj per unit. In the objective function, we

want to subtract cj multiplied by the expected number of customers that buy product

j. For all the probabilistic choice models discussed in this thesis, the objective function

becomes
∑

i

Ni

∑

j

(πj − cj)Prij

where Prij is the probability that the customer segment i buys product j. This is equivalent

to lowering all the reservation prices of product j by cj in all of the models except the Price

Sensitive Model.

1It is possible that a company may procure large quantities of a currently non-profitable product to

increase their long-term market share. We will not consider such long-term marketing strategy in this

thesis.



Chapter 9

Computational Results

To compare the empirical performances of the Uniform Distribution, Weighted Uniform,

and Share-of-Surplus Models, we solve a set of problem instances using the different formu-

lations. The inputs are subsets of reservation prices estimated from actual booking orders

of a travel company (our procedure in estimating reservation prices are discussed in the

Appendix). The sizes of the inputs used are from 2 segments and 2 products to up to 100

segments and 100 products. Unfortunately, not all reservation prices can be estimated, so

the subsets only contain reservation prices that are available. Due to this restriction, we

do not have inputs of sizes larger than 100 segments and products. In the future, we would

like to find a better way of estimating the reservation prices so that we can test the models

with larger real problems.

The models were run with default parameter settings of CPLEX 9.1 and a time limit

of two hours (7200 CPU seconds) unless indicated otherwise. They were run on a machine

with four 1.3 GHz Itanium 2 processors and 8 GB of RAM, with at most one process

running at a time on each processor.

The tables show the number of segments n and the number of products m in the input,

whether an optimal solution was found in the time limit (“Status”), total CPU seconds

(“Time”), the objective value (“Objective Value”), total number of dual simplex iterations

(“Number of Iterations”), total number of branch-and-bound nodes (“Number of Nodes”),

total number of branch-and-bound nodes unvisited (“Number of Nodes Left”), and the

optimality gap when CPLEX was terminated (“Gap”).
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9.1 Uniform Distribution Model

Tables 9.1 and 9.2 show the results of the Uniform Distribution Model (2.1). Tables 9.5

and 9.6 show the results of the alternative formulation (2.2).

The Uniform Distribution Model is surprisingly difficult to solve. For both the original

and the alternative formulations, about half of the problem instances could not be solved

to optimality in two hours. For the problem instances that were solved to optimality in

two hours, the alternative formulation is faster than the original formulation. For the other

17 problem instances, the alternative formulation found a better objective value for 9 of

them after 2 hours.

The results of the alternative formulation (2.2) using the results of Heuristic 1 (Section

7.1.2) as the starting solutions are shown in Tables 9.7 and 9.8. The column “Heuristic

Obj Val” is the objective value found by Heuristic 1 and “Init. Gap” is the percentage

difference between the heuristic’s objective value and the best objective value found by

CPLEX.

The solutions found by the heuristic are fairly good even though the heuristic is so

simple. The largest initial gap is 20.11%, and the initial gaps are all under 3% on Table

9.7. Most notably, the heuristic’s solution for the last case (n = 100, m = 100) is better

than all the other solutions found by CPLEX in two hours, and its objective value is much

higher than the one found without using a starting solution (Table 9.6). For most of the

cases, the best objective values found with the heuristic is at least as good as the ones found

without the heuristic. However, the heuristic did not help to find an optimal solution for

a problem instance that was not solved to optimality without the heuristic.

9.2 Weighted Uniform Model

The results of solving the problem instances using the Weighted Uniform Model alternate

formulation (Formulation 3.2) are shown in Tables 9.9 and 9.10. Same as the Uniform

Distribution Model, about half of the problem instances could not be solved to optimality

in two hours. The optimality gaps are smaller compared with the Uniform Distribution

Model alternative formulation (Tables 9.5 and 9.6).
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CPLEX Number of Number Number of

n m Status Time Obj Val Iterations of Nodes Nodes Left Gap (%)

2 2 Optimal 0.02 2656 13 0 0 0

2 5 Optimal 0.01 121520 71 0 0 0

2 10 Optimal 0 165960 81 0 0 0

2 20 Optimal 0.01 207680 138 0 0 0

2 60 Optimal 0.02 66801 197 0 0 0

2 100 Optimal 0.03 66801 245 0 0 0

5 2 Optimal 0.02 212238 162 7 0 0

5 5 Optimal 0.24 164328 1415 105 0 0

5 10 Optimal 3.00 217832 21703 2119 3 0.01

5 20 Optimal 0.02 124311 292 0 0 0

5 60 Optimal 0.07 377480 564 0 0 0

5 100 Optimal 3.19 319142 3460 732 68 0.01

10 2 Optimal 0.07 560232 446 18 0 0

10 5 Optimal 2.85 325489 18235 1695 1 0.01

10 10 Optimal 2789.23 385511 9167097 1076780 790 0.01

10 20 Feasible 7237.72 560367 12727737 474382 376034 8.25

10 60 Feasible 7275.31 631920 8177609 217996 171964 4.48

10 100 Feasible 7457.28 605906 7174112 638891 415703 0.88

Table 9.1: Uniform Model (1)
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CPLEX Number of Number Number of

n m Status Time Obj Val Iterations of Nodes Nodes Left Gap (%)

20 2 Optimal 0.31 546773 1416 16 0 0

20 5 Optimal 24.72 636451 74407 3755 2 0

20 10 Feasible 7252.61 824247 10656382 223336 136694 7.52

20 20 Feasible 7240.35 883241 6136494 79263 69814 18.82

20 60 Feasible 7239.35 1220410 3434397 30294 25958 10.60

20 100 Feasible 7240.15 992662 2489086 14000 12680 9.76

60 2 Optimal 2.73 1358680 6733 117 1 0

60 5 Optimal 3351.05 1910820 3495195 230052 264 0.01

60 10 Feasible 7238.34 1973310 4487693 36960 30922 18.29

60 20 Feasible 7221.81 2266160 2041911 10131 9111 24.76

60 60 Feasible 7223.33 2857320 589082 1655 1499 27.37

60 100 Feasible 7229.98 3389180 201143 420 419 24.83

100 2 Optimal 7.71 2623610 12879 273 3 0.01

100 5 Feasible 7334.14 2978190 5783913 251626 29031 0.71

100 10 Feasible 7224.75 3225400 2475106 9993 8302 21.70

100 20 Feasible 7213.37 3262130 1139453 1965 1691 36.10

100 60 Feasible 7213.87 4452940 289521 1022 927 33.74

100 100 Feasible 7224.99 3560210 122419 417 414 43.91

Table 9.2: Uniform Model (2)
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CPLEX Number of Number Number of

n m Status Time Obj Val Iterations of Nodes Nodes Left Gap

2 2 Optimal 0.06 2656 11 0 0 0

2 5 Optimal 0.07 121520 71 0 0 0

2 10 Optimal 0.06 165960 80 0 0 0

2 20 Optimal 0.07 207680 94 0 0 0

2 60 Optimal 0.08 66801 195 0 0 0

2 100 Optimal 0.08 66801 140 0 0 0

5 2 Optimal 0.08 212238 145 2 0 0

5 5 Optimal 0.27 164328 1361 89 0 0

5 10 Optimal 3.01 217832 21801 2044 1 0.01

5 20 Optimal 0.08 124311 256 0 0 0

5 60 Optimal 0.11 377480 332 0 0 0

5 100 Optimal 2.20 319142 2865 452 35 0.01

10 2 Optimal 0.13 560232 446 18 0 0

10 5 Optimal 2.72 325489 15979 1502 3 0.01

10 10 Optimal 3181.13 385511 9623983 1299396 1112 0.01

10 20 Feasible 7238.98 561337 12451833 535871 434348 8.03

10 60 Feasible 7278.03 631920 8138257 216657 170901 4.48

10 100 Feasible 7472.39 605906 7717636 739322 559107 1.17

Table 9.3: Uniform Model with Heuristic 1 (1)
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CPLEX Number of Number Number of

n m Status Time Obj Val Iterations of Nodes Nodes Left Gap

20 2 Optimal 0.38 546774 1416 16 0 0

20 5 Optimal 24.81 636451 74407 3755 2 0

20 10 Feasible 7261.61 821689 10595897 230660 144129 7.84

20 20 Feasible 7245.32 873254 6042271 84480 76624 19.83

20 60 Feasible 7244.07 1211212 3175678 26667 23652 11.38

20 100 Feasible 7243.18 992662 2347139 12973 11690 9.77

60 2 Optimal 2.73 1358681 6733 117 1 0

60 5 Optimal 3519.19 1910818 3495195 230052 264 0.01

60 10 Feasible 7252.85 1973166 4180683 35371 29337 17.69

60 20 Feasible 7225.01 2266157 2002222 9331 8320 24.72

60 60 Feasible 7225.97 2856577 636216 1698 1528 27.39

60 100 Feasible 7232.24 3578698 353851 1080 939 20.62

100 2 Optimal 7.57 2623610 12879 273 3 0.01

100 5 Feasible 7339.67 2978189 5751906 248851 30153 0.74

100 10 Feasible 7227.60 3225400 2518973 10220 8497 21.61

100 20 Feasible 7217.26 3310931 1192737 2052 1685 35.14

100 60 Feasible 7221.01 4450962 300963 993 917 33.76

100 100 Feasible 7244.49 4758460 202445 1292 1196 25.03

Table 9.4: Uniform Model with Heuristic 1 (2)
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CPLEX Number Number of Number of Gap

n m Status Time Obj Val Iterations of Nodes Nodes Left (%)

2 2 Optimal 0.009 2656 6 0 0 0

2 5 Optimal 0.007 121520 38 0 0 0

2 10 Optimal 0.005 165960 29 0 0 0

2 20 Optimal 0.008 207680 39 0 0 0

2 60 Optimal 0.022 66801 98 0 0 0

2 100 Optimal 0.048 66801 206 0 0 0

5 2 Optimal 0.013 212238 54 5 0 0

5 5 Optimal 0.077 164328 507 99 1 0.002

5 10 Optimal 2.120 217832 21968 4540 2 0.007

5 20 Optimal 0.024 124311 127 0 0 0

5 60 Optimal 0.059 377480 150 0 0 0

5 100 Optimal 0.906 319142 482 30 5 0.009

10 2 Optimal 0.026 560232 123 7 0 0

10 5 Optimal 1.903 325489 16209 4649 6 0.008

10 10 Optimal 738.667 385511 4902316 1438972 2395 0.010

10 20 Feasible 7249.830 561753 35188051 5116542 4307083 6.538

10 60 Feasible 7280.240 631944 15818206 3233966 2401721 2.485

10 100 Feasible 7309.910 605906 17125414 1307050 841663 0.655

Table 9.5: Uniform Model Alternative Formulation (1)
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CPLEX Number Number of Number of Gap

n m Status Time Obj Val Iterations of Nodes Nodes Left (%)

20 2 Optimal 0.050 546773 152 0 0 0

20 5 Optimal 21.309 636451 141298 31251 40 0.010

20 10 Feasible 7295.710 821823 33441844 6281274 3861280 2.830

20 20 Feasible 7215.740 870620 21312071 1383325 1316170 19.024

20 60 Feasible 7249.030 1214110 10223033 345551 293840 10.959

20 100 Feasible 7280.100 1003350 6759345 318931 280624 5.759

60 2 Optimal 2.009 1358680 5757 420 0 0

60 5 Feasible 7290.210 1908940 22301732 3547946 1857893 2.091

60 10 Feasible 7221.630 1963310 15853218 1413813 1374355 17.695

60 20 Feasible 7240.630 2257700 8799107 304290 294812 21.858

60 60 Feasible 7235.580 2928260 2166352 44619 40270 24.676

60 100 Feasible 7222.360 3527260 931556 6303 3723 21.291

100 2 Optimal 6.722 2623610 20970 1360 0 0

100 5 Feasible 7256.840 2975900 14142345 1966351 1787586 6.783

100 10 Feasible 7261.720 3219900 9349927 694326 672535 19.465

100 20 Feasible 7247.980 3359730 3650764 150810 148601 31.501

100 60 Feasible 7223.770 4780230 780897 6693 5461 28.173

100 100 Feasible 7220.100 2179480 358686 377 378 65.570

Table 9.6: Uniform Model Alternative Formulation (2)
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CPLEX Number of Number Number of Gap Heuristic Init.

n m Status Time Obj Val Iterations of Nodes Nodes Left (%) Obj Val Gap

2 2 Optimal 0.06 2656 5 0 0 0 2656.00 0

2 5 Optimal 0.06 121520 37 0 0 0 121520.00 0

2 10 Optimal 0.06 165960 28 0 0 0 165960.00 0

2 20 Optimal 0.06 207680 28 0 0 0 207680.00 0

2 60 Optimal 0.08 66801 96 0 0 0 66801.00 0

2 100 Optimal 0.10 66801 125 0 0 0 66801.00 0

5 2 Optimal 0.07 212238 40 1 0 0 212238.00 0

5 5 Optimal 0.15 164328 501 99 1 0.002 164038.67 0.18

5 10 Optimal 1.61 217832 14520 3066 2 0.007 217832.00 0

5 20 Optimal 0.10 124311 124 0 0 0 124311.00 0

5 60 Optimal 0.17 377480 146 0 0 0 377480.00 0

5 100 Optimal 1.17 319142 537 27 3 0.007 318770.00 0.12

10 2 Optimal 0.08 560232 123 7 0 0 543760.00 2.94

10 5 Optimal 1.80 325489 14702 4473 7 0.008 323975.50 0.46

10 10 Optimal 478.43 385511 3099905 976193 1854 0.010 379850.67 1.47

10 20 Feasible 7242.66 562543 36883946 4521011 3838288 7.005 555828.57 1.19

10 60 Feasible 7256.94 631920 16801245 3206741 2375616 2.272 624070.00 1.24

10 100 Feasible 7371.20 605906 14817894 2201874 1495908 0.690 605906.00 0

Table 9.7: Uniform Alternative Formulation with Heuristic (1)
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CPLEX Number of Number Number of Gap Heuristic Init.

n m Status Time Obj Val Iterations of Nodes Nodes Left (%) Obj Val Gap

20 2 Optimal 0.13 546773 152 0 0 0 544933.00 0.34

20 5 Optimal 22.45 636451 148607 33304 50 0.010 597751.73 6.08

20 10 Feasible 7277.33 826388 33346360 5977052 2050909 1.178 746544.34 9.66

20 20 Feasible 7218.68 871438 20586030 1288903 1232530 19.083 823205.84 5.53

20 60 Feasible 7263.70 1210300 9038508 435610 404399 11.199 1174843.45 2.93

20 100 Feasible 7263.57 1003460 6982060 250213 214378 5.949 868826.67 13.42

60 2 Optimal 2.10 1358680 5757 420 0 0 1228719.00 9.57

60 5 Feasible 7291.07 1910760 21893848 3472747 1636867 1.772 1526583.90 20.11

60 10 Feasible 7221.03 1942390 15824025 1460216 1417895 18.640 1770828.61 8.83

60 20 Feasible 7237.20 2269720 8570162 290388 280059 21.442 1957967.13 13.74

60 60 Feasible 7254.81 2911460 2180690 43495 36861 25.113 2476842.23 14.93

60 100 Feasible 7274.08 3509440 996247 6782 5251 21.663 3218883.70 8.28

100 2 Optimal 6.78 2623610 20970 1360 0 0 2368923.50 9.71

100 5 Feasible 7251.92 2963210 14311720 2001758 1840599 7.433 2493506.73 15.85

100 10 Feasible 7253.18 3253390 9416746 644540 621411 18.704 2703764.17 16.89

100 20 Feasible 7248.55 3396390 3513959 142581 140405 30.802 2736795.27 19.42

100 60 Feasible 7242.20 4903330 785803 5144 4196 26.295 4128380.75 15.80

100 100 Feasible 7333.07 4380590 375860 659 605 30.798 4380586.63 0

Table 9.8: Uniform Alternative Formulation with Heuristic (2)
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CPLEX Number Number Number of

n m Status Time Obj Val of Iter of Nodes Nodes Left Gap

2 2 Optimal 0.010 2656 4 0 0 0

2 5 Optimal 0.007 121520 42 0 0 0

2 10 Optimal 0.005 165960 22 0 0 0

2 20 Optimal 0.011 207680 24 0 0 0

2 60 Optimal 0.027 66801 41 0 0 0

2 100 Optimal 0.042 66801 39 0 0 0

5 2 Optimal 0.008 216338 42 0 0 0

5 5 Optimal 0.069 165148 436 115 0 0

5 10 Optimal 3.211 219925 39592 7077 10 0.009

5 20 Optimal 0.025 124311 62 0 0 0

5 60 Optimal 0.067 377480 111 0 0 0

5 100 Optimal 0.547 319192 420 69 8 0.010

10 2 Optimal 0.027 560991 101 9 0 0

10 5 Optimal 1.314 327000 11085 3520 3 0.009

10 10 Optimal 472.095 387000 3165547 968679 1571 0.010

10 20 Feasible 7261.740 565445 37926349 6364811 5439663 6.677

10 60 Feasible 7382.970 639020 18502911 3595605 2263154 1.356

10 100 Feasible 7411.000 605924 15518283 2088360 1123705 0.575

Table 9.9: Weighted Uniform Alternative Formulation (1)
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CPLEX Number Number Number of

n m Status Time Obj Val of Iter of Nodes Nodes Left Gap

20 2 Optimal 0.064 547088 147 2 0 0

20 5 Optimal 20.426 636940 135886 31914 36 0.010

20 10 Feasible 7279.800 826632 35940853 5420698 3795875 4.246

20 20 Feasible 7221.450 872954 25070512 1744665 1693375 19.076

20 60 Feasible 7347.510 1235430 10506427 990001 945836 8.711

20 100 Feasible 7437.890 1022360 9108317 638577 546293 4.271

60 2 Optimal 1.550 1359510 4894 684 0 0

60 5 Feasible 7298.230 1915680 23198431 3733640 1504625 1.444

60 10 Feasible 7224.970 1994670 15131234 1242080 1163999 15.197

60 20 Feasible 7229.770 2305230 8634225 381480 373301 20.172

60 60 Feasible 7252.620 2988900 2504747 105419 101468 18.636

60 100 Feasible 7259.140 3636920 1250190 40587 39000 14.323

100 2 Optimal 5.692 2623900 17588 2030 0 0

100 5 Feasible 7253.330 2970500 13911585 2424888 2252629 7.967

100 10 Feasible 7273.250 3240780 9749274 689954 670640 18.802

100 20 Feasible 7256.960 3479020 5137320 167759 164638 25.400

100 60 Feasible 7240.230 4909840 1081647 33629 31731 19.097

100 100 Feasible 7244.340 4801770 582742 20574 20184 16.530

Table 9.10: Weighted Uniform Alternative Formulation (2)
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9.3 Share-of-Surplus Model

Tables 9.11 and 9.12 show the results of the Share-of-Surplus Model with restricted prices

formulation (4.9) where c = 1.

It seems that the Share-of-Surplus Model is very difficult to solve. No mixed-integer

feasible solutions were found for the larger problem instances because the LP relaxation

could not be solved in two hours. From the CPLEX outputs when solving the LP relaxation,

we noticed many times that there were unscaled infeasibility and CPLEX takes a long

time to try to resolve it. CPLEX’s preprocessor scales the rows of the mixed-integer

programming formulation before solving it, and unscaled infeasibility occurs if the optimal

solution found for the scaled problem is not feasible for the original problem. This seems

to imply that our problem is ill-conditioned. Consider the constraints in the formulation

(4.9). The reservation prices in the problem instances are generally in the range of 500

to 1500. That is, the coefficients of some of the variables are more than 1500 times the

coefficients of other variables, making the problem quite ill-conditioned.

We can attempt to solve this problem by scaling the reservation prices before using them

in the model since the optimal solution is the same regardless of the unit the reservation

prices are in. We let the parameter R to be Rij :=
rij

s
where rij is the original reservation

price and s is the scale used.

To use the scaled R’s in the formulation, we need to replace the following constraint

from formulation (4.9)

ti ≤ (max
k

Rik)
m
∑

j=1

∑

l:Rlj≤Rij

(Rij − Rlj + c)xlj,∀i

with the constraint

ti ≤ s(max
k

Rik)
m
∑

j=1

∑

l:Rlj≤Rij

(Rij − Rlj +
c

s
)xlj,∀i.

If no scaling is done, then s = 1 and the two constraint are the same.

Tables 9.13 to 9.20 show the results with scaled reservation prices. They include the

scale used (“Scale”) and the objective values without scaling (“Obj Val w/o Scale”) which

is the objective value multiplied by the scale. The reservation prices are scaled by 100 in
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CPLEX Number Number Number of

n m Status Time Obj Val of Iter of Nodes Nodes Left Gap

2 2 Optimal 0.003 2656.00 10 0 0 0.00

2 5 Optimal 0.008 121520.00 45 0 0 0.00

2 10 Optimal 0.006 165960.00 33 0 0 0.00

2 20 Optimal 0.010 207680.00 55 0 0 0.00

2 60 Optimal 0.033 66801.00 178 0 0 0.00

2 100 Optimal 0.052 66801.00 230 0 0 0.00

5 2 Optimal 0.030 188262.33 174 14 0 0.00

5 5 Optimal 0.233 156227.63 1355 173 0 0.00

5 10 Optimal 12.493 200113.95 91471 15219 6 0.01

5 20 Optimal 0.054 124311.00 186 0 0 0.00

5 60 Optimal 0.226 377480.00 371 0 0 0.00

5 100 Optimal 196.712 314096.48 63338 24343 13332 0.01

10 2 Optimal 0.254 547230.84 1099 44 0 0.00

10 5 Optimal 7.867 318568.75 41285 3391 1 0.01

10 10 Optimal 4974.726 353560.05 18591446 1156595 488 0.01

10 20 Feasible 7238.979 522364.84 11137946 638525 551029 14.17

10 60 Feasible 7421.309 595944.46 2394669 23646 21987 13.74

10 100 Feasible 7398.787 550178.41 1291597 5457 3958 12.28

Table 9.11: Share-of-Surplus (1)
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CPLEX Number Number Number of

n m Status Time Obj Val of Iter of Nodes Nodes Left Gap

20 2 Optimal 2.869 544852.40 7378 113 0 0.00

20 5 Optimal 1650.083 603613.93 3236589 132607 44 0.01

20 10 Feasible 7234.299 743424.33 5653478 66730 60424 24.54

20 20 Feasible 7216.812 737637.11 1929323 17840 17042 36.68

20 60 Feasible 7319.291 109891.44 118185 164 165 92.28

20 100 Feasible 7244.623 78106.70 104593 0 1 92.98

60 2 Optimal 1167.595 1347710.18 618883 2234 1 0.01

60 5 Feasible 7204.174 1555525.57 472679 84 85 39.07

60 10 Feasible 7202.876 833661.00 184065 0 1 69.98

60 20 No solutions found

60 60 No solutions found

60 100 No solutions found

100 2 Feasible 7207.918 2617144.84 638357 535 419 17.11

100 5 Feasible 7201.978 2701523.77 139184 0 1 34.75

100 10 No solutions found

100 20 No solutions found

100 60 No solutions found

100 100 No solutions found

Table 9.12: Share-of-Surplus (2)
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the Tables 9.13 and 9.14. They are scaled so that the maximum scaled reservation price

is 1 in the Tables 9.15 and 9.16, i.e., the scale is the largest original reservation price. In

Tables 9.17 and 9.18, the maximum reservation price is 10. The results with the maximum

reservation price equals to 10 and rounded to the nearest integer are shown in Tables 9.19

and 9.20.

The scaled instances improve the gap of the best solution by a little for most cases, but

not significantly. The larger problems instances still could not be solved in two hours.

To better understand the problem, we ran the LP relaxation of the model with different

scaling for 11 of the problem instances. They were run with default parameter settings

of CPLEX 9.1 and a time limit of 24 hours. The results are shown in Tables 9.21 and

9.22. The first column indicates the scaling method used: “100” means the scale used

is 100, “maxR=1” and “maxR=10” indicates the maximum reservation price is 1 and 10

respectively, and “maxR=10 ro” means the maximum reservation price is 10 and then

rounded to the nearest integer. The “CPLEX Status” is Unknown indicates that the

problem instance could not be solved in 24 hours.

Running the problems without scaling seems to have the worst performance since it

results in the worst runtime for 6 of the 8 problem instances that were solved to optimality.

On the other hand, scaling such that the maximum reservation price is 1 seems to perform

the best. It was the only scaling that could solve the problem instances (60 × 60) and

(100× 20) to optimality in 24 hours. It has the fastest runtime for 6 cases and the second

fastest runtime for 3 other cases. The improvement is perhaps due to the fact that the

scaled reservation prices are closer to 1, hence the coefficients of the x variables are closer to

1, which is the coefficient of many variables in the formulation. Unfortunately, the optimal

solution for the (100x100) problem instance could not be found with any of the scalings.

These results show that solving the LP relaxation of the Share-of-Surplus Model is a

key bottleneck for solving the MIP. It seems like scaling shortens the solution time for the

LP relaxation by a little. Clearly, further investigation is required to determine the best

scaling strategy to help solve the LP. We also need to study the structure of the LP to

determine additional causes of the computational difficulty.
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CPLEX Time Obj Val Number Number Number of

n m Status w/o Scale Obj Val of Iter of Nodes Nodes Left Gap

2 2 Optimal 0.003 2656.00 26.56 13 0 0 0.00

2 5 Optimal 0.008 121520.00 1215.20 48 0 0 0.00

2 10 Optimal 0.006 165960.00 1659.60 29 0 0 0.00

2 20 Optimal 0.010 207680.00 2076.80 55 0 0 0.00

2 60 Optimal 0.032 66801.00 668.01 170 0 0 0.00

2 100 Optimal 0.055 66801.00 668.01 266 0 0 0.00

5 2 Optimal 0.026 188262.33 1882.62 178 14 0 0.00

5 5 Optimal 0.180 156227.63 1562.28 957 108 0 0.00

5 10 Optimal 11.190 200113.95 2001.14 78978 14870 6 0.01

5 20 Optimal 0.051 124311.00 1243.11 163 0 0 0.00

5 60 Optimal 0.204 377480.00 3774.80 401 0 0 0.00

5 100 Optimal 74.669 314096.48 3140.96 40180 3226 1217 0.01

10 2 Optimal 0.236 547230.84 5472.31 1089 47 0 0.00

10 5 Optimal 8.763 318568.75 3185.69 41052 3731 1 0.00

10 10 Optimal 4920.005 353560.05 3535.60 16648615 1334858 622 0.01

10 20 Feasible 7247.964 522573.63 5225.74 12330270 821723 714028 13.24

10 60 Feasible 7333.222 595031.83 5950.32 2559793 31151 19144 13.70

10 100 Feasible 7516.007 550176.66 5501.77 1349279 21509 16851 11.68

Table 9.13: Share-of-Surplus, reservation prices scaled by 100 (1)
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CPLEX Time Obj val Number Number Number of

n m status w/o scale Obj val of Iter of Nodes Nodes Left Gap

20 2 Optimal 2.727 544852.40 5448.52 7435 122 0 0.00

20 5 Optimal 1720.597 603613.93 6036.14 3003469 129654 28 0.01

20 10 Feasible 7234.556 759072.02 7590.72 5786176 71796 63793 23.13

20 20 Feasible 7216.712 741360.40 7413.60 1977868 22423 21479 36.37

20 60 Feasible 7261.751 152840.00 1528.40 88149 10 11 89.26

20 100 Feasible 7223.192 96544.00 965.44 83963 0 1 91.33

60 2 Optimal 981.469 1347710.18 13477.10 586240 2217 0 0.00

60 5 Feasible 7208.297 1799277.94 17992.78 628742 989 915 29.48

60 10 Feasible 7205.185 1145996.94 11459.97 74661 0 1 58.74

60 20 No solutions found

60 60 No solutions found

60 100 No solutions found

100 2 Feasible 7207.671 2537308.99 25373.09 635508 583 462 20.98

100 5 Feasible 7204.616 2701523.77 27015.24 101638 0 1 34.75

100 10 No solutions found

100 20 No solutions found

100 60 No solutions found

100 100 No solutions found

Table 9.14: Share-of-Surplus, reservation prices scaled by 100 (2)
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CPLEX Time Obj Val Number Number Number of

n m Status w/o Scale Obj Val of Iter of Nodes Nodes Left Gap Scale

2 2 Optimal 0.003 2656.00 2.50 10 0 0 0 1064

2 5 Optimal 0.009 121520.00 77.90 60 0 0 0 1560

2 10 Optimal 0.006 165960.00 63.22 58 0 0 0 2625

2 20 Optimal 0.011 207680.00 61.72 70 0 0 0 3365

2 60 Optimal 0.028 66801.00 28.10 144 0 0 0 2377

2 100 Optimal 0.048 66801.00 28.10 200 0 0 0 2377

5 2 Optimal 0.032 188262.33 80.21 236 16 0 0 2347

5 5 Optimal 0.158 156227.63 94.68 795 101 0 0 1650

5 10 Optimal 12.553 200113.95 104.23 92693 17830 6 0.01 1920

5 20 Optimal 0.072 124311.00 52.30 339 0 0 0 2377

5 60 Optimal 0.181 377480.00 139.76 516 0 0 0 2701

5 100 Optimal 190.210 314096.48 82.20 45447 18300 6858 0.01 3821

10 2 Optimal 0.214 547230.84 210.72 967 52 0 0 2597

10 5 Optimal 8.063 318568.75 174.46 36274 3275 1 0.01 1826

10 10 Optimal 4627.430 353560.05 165.21 16782955 1429172 618 0.01 2140

10 20 Feasible 7283.021 522629.32 193.49 13566471 1002368 894043 13.53 2701

10 60 Feasible 7388.581 596020.80 216.11 2823045 31714 26768 13.46 2758

10 100 Feasible 7637.544 550147.13 143.98 1394015 16724 14012 11.87 3821

Table 9.15: Share-of-Surplus, the maximum reservation price is 1. (1)
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CPLEX Time Obj Val Number Number Number of

n m Status w/o Scale Obj Val of Iter of Nodes Nodes Left Gap Scale

20 2 Optimal 2.041 544852.40 342.03 5823 119 0 0 1593

20 5 Optimal 1584.893 603613.93 329.48 2733059 133057 39 0.01 1832

20 10 Feasible 7235.973 742365.41 319.85 5755205 74990 66480 24.03 2321

20 20 Feasible 7218.123 780306.73 256.85 1786584 17275 16570 33.20 3038

20 60 Feasible 7264.515 231840.00 60.68 124889 270 271 83.71 3821

20 100 Feasible 7249.705 96544.00 25.27 88214 0 1 91.33 3821

60 2 Optimal 836.968 1347710.18 777.23 523024 2237 0 0 1734

60 5 Feasible 7208.292 1844218.81 842.88 586540 920 843 27.74 2188

60 10 Feasible 7204.123 1145996.94 493.75 67089 0 1 58.74 2321

60 20 No solutions found

60 60 No solutions found

60 100 No solutions found

100 2 Feasible 7211.785 2588279.64 1492.66 718432 1602 1273 19.90 1734

100 5 Feasible 7204.581 2701523.77 1022.53 81562 0 1 34.77 2642

100 10 No solutions found

100 20 No solutions found

100 60 No solutions found

100 100 No solutions found

Table 9.16: Share-of-Surplus, the maximum reservation price is 1. (2)
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CPLEX Time Obj Val Number Number Number of

n m Status w/o Scale Obj Val of Iter of Nodes Nodes Left Gap Scale

2 2 Optimal 0.003 2656.00 24.96 13 0 0 0.00 106.4

2 5 Optimal 0.008 121520.00 778.97 43 0 0 0.00 156.0

2 10 Optimal 0.006 165960.00 632.23 33 0 0 0.00 262.5

2 20 Optimal 0.010 207680.00 617.18 55 0 0 0.00 336.5

2 60 Optimal 0.031 66801.00 281.03 175 0 0 0.00 237.7

2 100 Optimal 0.053 66801.00 281.03 273 0 0 0.00 237.7

5 2 Optimal 0.034 188262.33 802.14 239 18 0 0.00 234.7

5 5 Optimal 0.177 156227.63 946.83 954 106 0 0.00 165.0

5 10 Optimal 11.212 200113.95 1042.26 80609 16181 7 0.01 192.0

5 20 Optimal 0.051 124311.00 522.97 150 0 0 0.00 237.7

5 60 Optimal 0.245 377480.00 1397.56 455 0 0 0.00 270.1

5 100 Optimal 129.728 314096.48 822.03 38668 14017 7323 0.01 382.1

10 2 Optimal 0.235 547230.84 2107.17 1007 49 0 0.00 259.7

10 5 Optimal 8.679 318568.75 1744.63 41322 3585 2 0.01 182.6

10 10 Optimal 5180.500 353560.05 1652.15 17079760 1461167 587 0.01 214.0

10 20 Feasible 7250.343 522179.67 1933.28 10456907 503699 408902 13.19 270.1

10 60 Feasible 7395.238 596044.21 2161.15 2714929 29712 25282 13.40 275.8

10 100 Feasible 7533.797 550177.30 1439.88 1354189 27122 22210 11.58 382.1

Table 9.17: Share-of-Surplus, the maximum reservation price is 10. (1)
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CPLEX Time Obj Val Number Number Number of

n m Status w/o scale Obj Val of Iter of Nodes Nodes Left Gap Scale

20 2 Optimal 2.811 544852.40 3420.29 7748 123 1 0.00 159.3

20 5 Optimal 1773.690 603613.93 3294.84 3048780 134206 37 0.01 183.2

20 10 Feasible 7234.025 743310.20 3202.54 5752233 67864 60306 24.44 232.1

20 20 Feasible 7217.175 760461.33 2503.16 2089323 17030 16149 34.80 303.8

20 60 Feasible 7265.950 152840.00 400.00 119785 182 183 89.26 382.1

20 100 Feasible 7253.102 78106.70 204.41 69197 0 1 92.98 382.1

60 2 Optimal 1061.125 1347710.18 7772.26 609752 2210 2 0.01 173.4

60 5 Feasible 7208.166 1780929.79 8139.53 618179 1000 891 30.22 218.8

60 10 Feasible 7201.985 714525.00 3078.52 160062 0 1 74.27 232.1

60 20 No solutions found

60 60 No solutions found

60 100 No solutions found

100 2 Feasible 7208.812 2558417.99 14754.43 648189 414 350 20.94 173.4

100 5 Feasible 7203.587 2701523.77 10225.30 88266 0 1 34.76 264.2

100 10 No solutions found

100 20 No solutions found

100 60 No solutions found

100 100 No solutions found

Table 9.18: Share-of-Surplus, the maximum reservation price is 10. (2)
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CPLEX Time Obj Val Number Number Number of

n m Status w/o Scale Obj Val of Iter of Nodes Nodes Left Gap Scale

2 2 Optimal 0.010 2660.00 25.00 13 0 0 0 106.4

2 5 Optimal 0.003 124800.00 800.00 17 0 0 0 156.0

2 10 Optimal 0.005 168000.00 640.00 27 0 0 0 262.5

2 20 Optimal 0.009 201900.00 600.00 54 0 0 0 336.5

2 60 Optimal 0.029 64892.10 273.00 131 0 0 0 237.7

2 100 Optimal 0.064 64892.10 273.00 308 0 0 0 237.7

5 2 Optimal 0.049 197148.00 840.00 340 20 0 0 234.7

5 5 Optimal 0.199 149100.73 903.64 1333 149 0 0 165.0

5 10 Optimal 14.090 204430.82 1064.74 109513 14282 3 0.008 192.0

5 20 Optimal 0.836 117265.33 493.33 1129 202 0 0 237.7

5 60 Optimal 0.183 378140.00 1400.00 367 0 0 0 270.1

5 100 Optimal 873.327 301970.81 790.29 1297787 52288 640 0.010 382.1

10 2 Optimal 0.362 579052.55 2229.70 2168 140 0 0 259.7

10 5 Optimal 13.357 324211.33 1775.53 58199 8404 1 0.004 182.6

10 10 Feasible 7255.469 348881.67 1630.29 26576525 2032571 1049733 6.010 214.0

10 20 Feasible 7239.328 512733.88 1898.31 11793024 620950 534734 13.733 270.1

10 60 Feasible 7712.828 640245.94 2321.41 2983122 12152 6454 7.698 275.8

10 100 Feasible 7672.237 537996.80 1408.00 1889087 19398 15454 13.231 382.1

Table 9.19: Share of Surplus, the maximum reservation price is 10 and rounded. (1)



C
o
m

p
u
ta

tio
n
a
l
R

esu
lts

96

CPLEX Time Obj Val Number Number Number of

n m Status w/o Scale Obj Val of Iter of Nodes Nodes Left Gap Scale

20 2 Optimal 6.620 535122.67 3359.21 21795 413 0 0 159.3

20 5 Optimal 2113.888 628452.71 3430.42 4985376 359870 11 0.009 183.2

20 10 Feasible 7232.234 793271.00 3417.80 5559267 51842 46660 21.121 232.1

20 20 Feasible 7322.441 825107.48 2715.96 2159065 17868 16962 29.219 303.8

20 60 Feasible 7350.367 239555.72 626.95 68000 7 8 82.803 382.1

20 100 Feasible 7406.689 74763.08 195.66 79617 0 1 93.107 382.1

60 2 Optimal 2070.205 1366263.05 7879.26 1258689 4181 0 0 173.4

60 5 Feasible 7215.075 1880038.45 8592.50 487379 403 376 26.251 218.8

60 10 Feasible 7214.648 785948.72 3386.25 94813 0 1 71.860 232.1

60 20 No solutions found

60 60 No solutions found

60 100 No solutions found

100 2 Feasible 7212.891 2743817.20 15823.63 608674 882 731 16.031 173.4

100 5 No solutions found

100 10 No solutions found

100 20 No solutions found

100 60 No solutions found

100 100 No solutions found

Table 9.20: Share of Surplus, the maximum reservation price is 10 and rounded. (2)
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Scaling CPLEX Obj Val Obj #

n m Status Time w/o Scale Val Iter. Scale

10 10

No scale Optimal 0.37 491649 491649.03 1063 1.0

100 Optimal 0.29 491649 4916.49 835 100.0

maxR=1 Optimal 0.29 491649 229.74 821 2140.0

maxR=10 Optimal 0.26 491649 2297.43 793 214.0

maxR=10 ro Optimal 0.35 501474 2343.34 949 214.0

10 20

No scale Optimal 1.72 674610 674610.01 2239 1.0

100 Optimal 0.78 674610 6746.10 1797 100.0

maxR=1 Optimal 1.09 674610 249.76 1614 2701.0

maxR=10 Optimal 0.88 674610 2497.63 1600 270.1

maxR=10 ro Optimal 0.95 678427 2511.76 2156 270.1

10 60

No scale Optimal 9.20 693731 693730.60 3714 1.0

100 Optimal 7.79 693731 6937.31 3320 100.0

maxR=1 Optimal 7.45 693732 251.53 3588 2758.0

maxR=10 Optimal 10.90 693731 2515.34 4445 275.8

maxR=10 ro Optimal 10.49 709322 2571.87 4247 275.8

20 10

No scale Optimal 5.72 1060889 1060888.61 5332 1.0

100 Optimal 4.03 1060889 10608.89 3230 100.0

maxR=1 Optimal 3.92 1060889 457.08 3325 2321.0

maxR=10 Optimal 3.91 1060889 4570.83 3000 232.1

maxR=10 ro Optimal 4.55 1061492 4573.43 3612 232.1

20 60

No scale Optimal 430.69 1425113 1425113.18 22012 1.0

100 Optimal 536.07 1425113 14251.13 29008 100.0

maxR=1 Optimal 248.86 1425113 372.97 15040 3821.0

maxR=10 Optimal 300.93 1425113 3729.69 17854 382.1

maxR=10 ro Optimal 396.77 1394647 3649.95 23526 382.1

20 100

No scale Optimal 1586.71 1113668 1113668.06 43259 1.0

100 Optimal 990.64 1113668 11136.68 29600 100.0

maxR=1 Optimal 979.17 1113668 291.46 31591 3821.0

maxR=10 Optimal 1301.03 1113668 2914.60 38829 382.1

maxR=10 ro Optimal 1302.59 1085155 2839.98 39565 382.1

Table 9.21: Share-of-Surplus LP Relaxation (1)
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Scaling CPLEX Obj Val Obj #

n m Status Time w/o Scale Val Iter. Scale

60 20

No scale Optimal 14410.04 3193481 3193480.95 191793 1.0

100 Optimal 4305.10 3193481 31934.81 75242 100.0

maxR=1 Optimal 4541.50 3193481 828.40 79255 3855.0

maxR=10 Optimal 10313.59 3193481 8284.00 160262 385.5

maxR=10 ro Optimal 5350.56 3226598 8369.91 88228 385.5

60 60

No scale Unknown 86441.56 – – 305500 1.0

100 Unknown 86734.86 – – 354500 100.0

maxR=1 Optimal 75188.34 3990330 860.73 291119 4636.0

maxR=10 Unknown 86545.40 – – 323100 463.6

maxR=10 ro Unknown 88165.56 – – 346400 463.6

100 10

No scale Optimal 50881.92 4835642 4835642.06 450708 1.0

100 Optimal 15466.55 4835642 48356.42 167898 100.0

maxR=1 Optimal 11078.28 4835642 1315.82 141522 3675.0

maxR=10 Optimal 26565.45 4835642 13158.21 171992 367.5

maxR=10 ro Optimal 25875.97 4865261 13238.80 230320 367.5

100 20

No scale Unknown 87733.20 – – 424900 1.0

100 Unknown 86407.83 – – 401300 100.0

maxR=1 Optimal 71195.08 5306483 1127.36 321094 4707.0

maxR=10 Unknown 88385.15 – – 373700 470.7

maxR=10 ro Unknown 88625.64 – – 220800 470.7

100 100

No scale Unknown 89220.89 – – 296800 1.0

100 Unknown 86497.65 – – 246600 100.0

maxR=1 Unknown 86494.29 – – 295200 5680.0

maxR=10 Unknown 86523.08 – – 322700 568.0

maxR=10 ro Unknown 86434.80 – – 189500 568.0

Table 9.22: Share-of-Surplus LP Relaxation (2)
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Conclusion

This thesis presents ways to formulate and solve product pricing models using mathemati-

cal programming. We have discussed four different probabilistic choice models, all of which

are based on reservation prices and are formulated as convex mixed-integer programming

problems. The Uniform Distribution Model assumes that Prij, the probability that seg-

ment i buys product j, is uniform among all products with nonnegative surplus. The

Weighted Uniform Model assumes that Prij is proportional to the reservation price Rij. In

the Share-of-Surplus Model, the probability Prij depends on the surplus of the products.

Using the assumption that demand increases as price decreases, the Price Sensitive Model

uses Prij that is inversely proportional to the price of the products with nonnegative sur-

plus. A few special properties of the models have been shown and comparisons of the

models’ optimal solutions provide some indication of how the models behave. We have

proposed and tested a few simple heuristics for finding feasible solutions and we conclude

that using a starting feasible solution found by the heuristic does improve the solution

time. Computational results of the various models are also presented and they show that

the proposed models are difficult to solve for larger problems.

Further research is needed to develop better heuristics (perhaps heuristics tailored to

each model) to find a good starting solution to improve the solution time. More investi-

gations on different cuts should also be done, especially on the valid inequalities discussed

in Section 7.2.

For the Share-of-Surplus Model, we may want to investigate other monotonically in-
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creasing functions to describe the probability which would perhaps lead to formulations

that are easier to solve. We may like to examine the effect of the value of the constant c on

the problem (4.9) and determine the ideal value for the constant. In addition, we currently

do not fully understand the effect of scaling the reservation prices and this area should be

explored further.

All the models discussed in this thesis assume that the company has no competitors.

We should explore ways to consider competitor products in our models in order to correctly

model the loss of revenue when the customers buy from other companies. We can easily

incorporate competitor products in our formulations by considering the surplus of every

segment for every competitor product. However, this may unrealistically increase the

denominator of Prij and collecting such detailed competitor information is very difficult.

The challenge is to determine how to include competitor information without explicitly

considering each competitor product individually.

The motive of this thesis is to show how some marketing models of customer choice

behavior can be modelled exactly using mixed-integer programming. This preliminary work

illustrates the modeling power of integer and convex nonlinear programming techniques,

and we hope to extend our work to other product pricing and customer choice models in

the future.



Appendix A

Estimating the Reservation Price

The reservation price data used in the computational experiments of Chapter 9 are es-

timated from actual purchase orders of a Canadian travel company. The customers are

partitioned into segments according to their demographic information, purchase lead time

and other characteristics. Suppose after the segmentation, there are n customers, with Ni

customers in segment i, i = 1, . . . , n. The company offers m products.

From the historical data, we know what fraction of customers of each segment purchased

each product and how much they paid for it. Let

frij := the fraction of segment i customers who purchased product j,

Bi := {j|frij > 0} , i.e., set of products purchased by segment i,

pij := the price that customers of segment i paid for product j.

The price paid for a particular product may be slightly different from customer to customer

depending on the time of sales and other anomalies. Thus, the above pij value is the average

price paid by segment i for product j.

To estimate the reservation price Rij of segment i for product j, we assumed that

customers behaved according to the Share-of-Surplus Model of Chapter 4. Thus, frij

should be approximately equal to

Rij − pij
∑

k∈Bi
Rik − pik

where Rij’s are now variables and pij’s are data.
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We fit Rij’s and the Share-of-Surplus Model to the data using least squares regression,

i.e., for each segment i, we solved for Rij’s, j = 1, . . . ,m, that minimizes

∑

j∈Bi

(

fij −
Rij − pij

∑

k∈Bi
Rik − pik

)2

or
∑

j∈Bi

(

fij(
∑

k∈Bi

Rik − pik) − Rij − pij

)2

subject to

Rij − pij ≥ 0, j ∈ Bi,
∑

k∈Bi
Rik − pik ≥ δ

where δ > 0.

There are some further details that need to be addressed. One of the key issues is

estimating Rij for j /∈ Bi. Currently, we have these Rij’s set to 0, which is clearly an un-

derestimate. Although we do not have any direct information about segment i’s preference

level of product j, we may be able to infer this from other segments that do purchase prod-

uct j. As a future work, we can consider using data mining techniques such as clustering

and collaborative filtering to determine these Rij’s.
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