# Probabilistic Choice Models for Product Pricing Using Reservation Prices 

by

Betsy Y. Hui

A thesis<br>presented to the University of Waterloo<br>in fulfillment of the<br>thesis requirement for the degree of<br>Master of Mathematics<br>in<br>Combinatorics and Optimization

Waterloo, Ontario, Canada, 2007
© Betsy Y. Hui, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.

Betsy Y. Hui


#### Abstract

The problem of pricing a product line to maximize profits is an important challenge faced by many companies. To address this problem, we discuss four different probabilistic choice models that are based on reservation prices: the Uniform Distribution Model, the Weighted Uniform Model, the Share-of-Surplus Model, and the Price Sensitive Model. They are formulated as convex mixed-integer mathematical programs. We explore the properties and additional valid inequalities of these formulations. We also compare their optimal solutions on a set of inputs. In general, the Uniform Distribution, Weighted Uniform, and Price Sensitive Models have the same optimal solution while the Share-ofSurplus Model gives a different solution in many cases.

We develop a few heuristics for finding good feasible solutions. These simple and efficient heuristics perform well and help to improve the solution time. Computational results of solving problem instances of various sizes are shown.


## Acknowledgements

I would like to thank my supervisor, Professor Romy Shioda, for her guidance, support, and patience that made this thesis possible. I am also grateful for Professor Levent Tuncel's many helpful comments and suggestions throughout my research. In addition, I would like to thank my readers, Dean Tom Coleman and Professor Levent Tuncel, for their invaluable feedback.

## Contents

1 Introduction ..... 1
1.1 Background ..... 1
1.2 Probabilistic Choice Models ..... 4
2 Uniform Distribution Model ..... 8
2.1 The Model ..... 8
2.2 Alternative Formulation ..... 10
2.3 Strength of the Two Formulations ..... 11
2.4 A Pure 0-1 Formulation ..... 13
2.4.1 Preliminary Computational Results ..... 14
3 Weighted Uniform Model ..... 17
3.1 The Model ..... 17
3.2 Alternative Formulation ..... 18
4 Share-of-Surplus Model ..... 20
4.1 The Model ..... 20
4.2 Quadratically Constrained Optimization Problem ..... 22
4.3 Second-Order Cone Approximation ..... 24
4.4 Restricted Prices ..... 25
5 Price Sensitive Model ..... 30
5.1 The Model ..... 30
5.2 Computational Results ..... 33
6 Properties of the Models ..... 36
6.1 Special Properties ..... 36
6.2 Comparisons ..... 39
7 Enhancements ..... 50
7.1 Heuristics ..... 50
7.1.1 Heuristic 0 ..... 51
7.1.2 Heuristic 1 ..... 51
7.1.3 Heuristic 2 ..... 53
7.1.4 Heuristic 3 ..... 55
7.1.5 Comparison of the Heuristics ..... 55
7.2 Valid Inequalities ..... 57
7.2.1 Convex Quadratic Cut ..... 57
7.2.2 Knapsack Covers ..... 63
8 Product Capacity and Cost ..... 69
8.1 Product Capacity ..... 69
8.1.1 Uniform Distribution and Weighted Uniform Model ..... 69
8.1.2 Share-of-Surplus Model ..... 70
8.1.3 Risk Products ..... 71
8.2 Product Cost ..... 72
9 Computational Results ..... 73
9.1 Uniform Distribution Model ..... 74
9.2 Weighted Uniform Model ..... 74
9.3 Share-of-Surplus Model ..... 85
10 Conclusion ..... 99
A Estimating the Reservation Price ..... 101

## List of Tables

2.1 Comparison of Uniform Model formulations (2.2) and (2.3). ..... 15
5.1 Price Sensitive Model ..... 35
6.1 Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models. ..... 41
6.2 Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models. ..... 42
6.3 Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models. ..... 43
6.4 Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models. ..... 44
6.5 Comparison of the Prices in the Models' Solutions for Random Tests (1) ..... 46
6.6 Comparison of the Prices in the Models' Solutions for Random Tests (2) ..... 47
6.7 Comparison of the Objective Values for Random Tests (1) ..... 48
6.8 Comparison of the Objective Values for Random Tests (2) ..... 49
7.1 Comparison of Heuristics (1) ..... 58
7.2 Comparison of Heuristics (2) ..... 59
7.3 Comparison of Heuristics (3) ..... 60
7.4 Comparison of Heuristics (4) ..... 61
7.5 Strength of Knapsack Cover inequalities (7.2) ..... 67
9.1 Uniform Model (1) ..... 75
9.2 Uniform Model (2) ..... 76
9.3 Uniform Model with Heuristic 1 (1) ..... 77
9.4 Uniform Model with Heuristic 1 (2) ..... 78
9.5 Uniform Model Alternative Formulation (1) ..... 79
9.6 Uniform Model Alternative Formulation (2) ..... 80
9.7 Uniform Alternative Formulation with Heuristic (1) ..... 81
9.8 Uniform Alternative Formulation with Heuristic (2) ..... 82
9.9 Weighted Uniform Alternative Formulation (1) . ..... 83
9.10 Weighted Uniform Alternative Formulation (2) ..... 84
9.11 Share-of-Surplus (1) ..... 86
9.12 Share-of-Surplus (2) ..... 87
9.13 Share-of-Surplus, reservation prices scaled by 100 (1) ..... 89
9.14 Share-of-Surplus, reservation prices scaled by 100 (2) . . ..... 90
9.15 Share-of-Surplus, the maximum reservation price is 1. (1) ..... 91
9.16 Share-of-Surplus, the maximum reservation price is 1. (2) ..... 92
9.17 Share-of-Surplus, the maximum reservation price is 10 . (1) ..... 93
9.18 Share-of-Surplus, the maximum reservation price is 10 . (2) ..... 94
9.19 Share of Surplus, the maximum reservation price is 10 and rounded. (1) ..... 95
9.20 Share of Surplus, the maximum reservation price is 10 and rounded. (2) ..... 96
9.21 Share-of-Surplus LP Relaxation (1) ..... 97
9.22 Share-of-Surplus LP Relaxation (2) ..... 98

## Chapter 1

## Introduction

One of the key revenue management challenges for a company is to determine the "right" price for each of their product line. Generally speaking, a company wants to set the prices to maximize their total profit. The challenge arises from the complex relationship between the product prices and the total profit. For example, how do the prices affect the demand for each product? In cases where multiple products are offered by the company, the price and demand for a product cannot be considered in isolation from the other products. Clearly, a customer's decision to purchase a product can be swayed by the relative prices of similar products offered by the same company. Thus, prices need to be set to avoid "cannibalizing" their product line. For example, if there are high margin and low margin products, setting the price of the latter too low may decrease demand for the high margin product, thus resulting in lower profit.

In this thesis, we study several different models for product pricing from a mathematical programming perspective. The models differ from one another according to different assumptions on customer purchasing behavior. Before we discuss the details of our approach, let us first give a brief overview of relevant work in this area.

### 1.1 Background

Revenue management in general is the practice of maximizing a company's revenue by optimally choosing the price of products and which customers to serve at any given time.

It has been used extensively in the airline, hotel, and manufacturing industry (see [7] and [9] for a comprehensive overview of the history of revenue management).

Product pricing is a sub-problem of revenue management, focused on determining the optimal prices of a product line. There are many variations on product pricing framework depending on the setting. For example, there is the single-product, multi-customer setting, which is primarily concerned with what price to offer to different customer segments. Airline revenue management is one of the most popular examples of this context, where business travelers, leisure travelers and budget travelers are offered different prices for the same flight, depending on the lead time of purchase and additional options (e.g., partially refundable tickets). An alternative framework is the multi-product, multi-customer setting where every customer is offered the same price for a given product, but different customer segments have varying preferences. This is more of a combinatorial problem where given the customer preference information, the prices need to be set to maximize total revenue. We will focus on the second type of problem in this thesis.

In general, suppose a company has $m$ different product lines and market analysis tells them that there are $n$ distinct customer segments, where customers of the same segment behave the "same". A key revenue management problem is to determine optimal prices for each product to maximize total revenue, given the customer choice behavior. There are multitudes of models for customer choice behavior [9], but this paper focuses solely on those based on reservation prices.

Let $R_{i j}$ denote the reservation price of segment $i$ for product $j, i=1, \ldots, n, j=$ $1, \ldots, m$, which reflects how much customers of segment $i$ are willing and able to spend on product $j$. $R_{i j}$ is not only the dollar amount that product $j$ is worth to customers in segment $i$, but it also reflects how much they are able to pay for it. For example, if a customer segment believes that a 7 day vacation to St. Lucia is worth $\$ 2,000$, but they can only afford $\$ 1,000$ for a vacation, then their reservation price for St. Lucia is $\$ 1,000$. Without loss of generality, we make the following assumption:

Assumption 1.1.1. $R_{i j}$ is a nonnegative integer for all $i=1, \ldots, n$ and $j=1, \ldots, m$.
If the price of product $j$ is set to $\$ \pi_{j}, \pi_{j} \geq 0$, then the utility or surplus (we will use these terms interchangeably throughout the thesis) of segment $i$ for product $j$ is the difference between the reservation price and the price, i.e., $R_{i j}-\pi_{j}$.

Finally, we assume that reservation prices are the same for every customer in a given segment and each segment pays the same price for each product. Customer choice models based on reservation prices assume that customer purchasing behavior can be fully determined by their reservation price and the price of products.

Even in a reservation price framework, there are several different models for customer choice behavior in the literature. In [2, 3], the authors proposed a pricing model that maximizes profits with the assumption that each customer segment only buys the product with the maximum surplus if the surplus is nonnegative. This model is often referred to as the maximum utility or envy free pricing model. In this model, each segment buys at most one product. The authors modeled the problem as a nonconvex, nonlinear mixed-integer programming problem and solved the problem using a variety of heuristic approaches.

In [6], the authors examined a Share-of-Surplus Choice Model in which the probability that a segment will choose a product is the ratio of its surplus versus the total surplus for the segment across all products with nonnegative surplus. They proposed a heuristic which involves decomposing the problem into hypercubes and use a simulated annealing algorithm to find the best hypercube. Solutions found by the heuristic for problems with sizes up to 5 products and 10 segments were shown to be near-optimal.

Another approach of pricing multiple products is to consider the problem of bundle pricing [4]. It is the problem of determining whether it is more profitable to offer some of the products together as a package or individually, and what prices should be assigned to the bundles or individual products to maximize profit. The authors formulated the bundle pricing problem as a mixed integer linear problem using a disjunctive programming technique [1].

Some research has been done on partitioning customers into segments by the probability that they would buy each product. In [5], the authors proposed a segmentation approach that groups the customers according to their reservation prices and price sensitivity. The probability of a segment choosing a product $j$ is modeled as a multinomial logit model with the segment's reservation price, price sensitivity, and the price of the product $j$ as parameters. Unlike their model, we do not consider price sensitivity in this paper as a criterion when we partition customers into segments and we assume that all segments react to price changes in the same way.

In this thesis, we assume that the reservation prices for each customer segment and product are given. Given different models of customer purchasing behavior, we aim to formulate and solve the corresponding revenue maximization problem as a mixed-integer programming problem. In the Appendix, we will discuss how we performed the customer segmentation and estimated the reservation prices from real purchase orders of a Canadian travel company.

### 1.2 Probabilistic Choice Models

In this section, we will introduce the general framework of probabilistic customer choice models that determines the probability that customer segment $i$ will purchase product $j$, $i=1, \ldots, n, j=1, \ldots, m$.

It is often assumed that a segment will only consider purchasing a product with nonnegative utility, i.e.,

Assumption 1.2.1. If segment $i$ buys product $j$, then $R_{i j}-\pi_{j} \geq 0, i=1, \ldots, m, j=$ $1, \ldots, m$.

Let $\beta_{i j}$ be binary decision variables:

$$
\beta_{i j}:=\left\{\begin{array}{lc}
1, & \text { if and only if the surplus of product } j \text { is nonnegative for segment } i, j, \\
0, & \text { otherwise. }
\end{array}\right.
$$

i.e., $\beta_{i j}=1$ if and only if $R_{i j}-\pi_{j} \geq 0$ and $\beta_{i j}=0$ if and only if $R_{i j}-\pi_{j}<0$, where, again, $\pi_{j}$ is the decision variable for the price of product $j$. This relationship can be naively modelled by:

$$
\begin{gathered}
\left(R_{i j}-\pi_{j}\right) \beta_{i j} \geq 0, \\
\left(R_{i j}-\pi_{j}\right)\left(1-\beta_{i j}\right) \leq 0,
\end{gathered}
$$

for $i=1, \ldots, n$ and $j=1, \ldots, m$. To linearize the above inequalities, we can use a disjunctive programming trick. Let $p_{i j}$ be an auxiliary variable where $p_{i j}=\pi_{j} \beta_{i j}$, i.e,

$$
p_{i j}:=\left\{\begin{array}{cc}
\pi_{j}, & \text { if } \beta_{i j}=1, \\
0, & \text { otherwise }
\end{array}\right.
$$

This relationship can be modeled by the following set of linear inequalities:

$$
\begin{gathered}
p_{i j} \geq 0 \\
p_{i j} \leq \pi_{j} \\
p_{i j} \leq R_{i j} \beta_{i j} \\
p_{i j} \geq \pi_{j}-\left(\max _{i=1, \ldots, n} R_{i j}+1\right)\left(1-\beta_{i j}\right)
\end{gathered}
$$

for $i=1, \ldots, n$ and $j=1, \ldots, m$. The first two inequalities set $p_{i j}=0$ when $\beta_{i j}=0$, and the last two inequalities set $p_{i j}=\pi_{j}$ when $\beta_{i j}=0 . R_{i j}$ is a valid upperbound for $p_{i j}$ since if $p_{i j}>R_{i j}$, then $\beta_{i j}=0$ and thus $p_{i j}=0$. Also, $\max _{i=1, \ldots, n} R_{i j}+1$ is a valid upperbound for $\pi_{j}$ since no segment will buy product $j$ if $\pi_{j}>R_{i j}$ for all $i=1, \ldots, n$. We also need the following constraint to force $\beta_{i j}$ to be 1 when $R_{i j}$ equals to $\pi_{j}$ for all $j$ :

$$
\left(R_{i j}-\pi_{j}+1\right) \leq\left(R_{i j}-\min _{i} R_{i j}+1\right) \beta_{i j} \quad \forall i, \forall j
$$

which is valid under Assumption 1.1.1.
Where $\boldsymbol{\pi}, \boldsymbol{\beta}$, and $\boldsymbol{p}$ are vectors of $\pi_{j}, \beta_{i j}$ and $p_{i j}$, respectively, let $P$ be the following polyhedron:

$$
P=\left\{(\boldsymbol{\pi}, \boldsymbol{\beta}, \boldsymbol{p}): \begin{array}{cl}
R_{i j} \beta_{i j}-p_{i j} \geq 0, & i=1, \ldots, n, j=1, \ldots, m, \\
R_{i j}\left(1-\beta_{i j}\right)-\pi_{j} \leq 0, & i=1, \ldots, n, j=1, \ldots, m, \\
p_{i j} \leq \pi_{j}, & i=1, \ldots, n, j=1, \ldots, m, \\
R_{i j}-\pi_{j}+1 \leq\left(R_{i j}-\min _{i} R_{i j}+1\right) \beta_{i j} & i=1, \ldots, n, j=1, \ldots, m, \\
p_{i j} \geq 0, \pi_{j} \geq 0, & i=1, \ldots, n, j=1, \ldots, m\} .
\end{array}\right.
$$

Thus, to model the condition in Assumption 1.2.1, we need to set prices $\pi_{j}$ and $\beta_{i j}$ such that $\beta \in\{0,1\}$ and $(\boldsymbol{\pi}, \boldsymbol{\beta}, \boldsymbol{p}) \in P$.

There are ambiguities regarding the choices between multiple products with nonnegative utility. Given all the products with nonnegative surplus, which products would the customer buy? Are there some products they are more likely to buy than others? In a probabilistic choice framework, we need to determine the probability $P r_{i j}$ that segment $i$
buys product $j$. Then the expected revenue for the company is

$$
\sum_{i=1}^{n} N_{i} E[\text { revenue earned from segment } i]=\sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \pi_{j} P r_{i j}
$$

In our revenue management problem, we can interpret $P r_{i j}$ as the fraction of customers of segment $i$ that buys product $j$, i.e., the expected revenue is

$$
\sum_{j=1}^{m} \pi_{j} E[\text { number of customers in segment } i \text { that buys product } j]=\sum_{j=1}^{m} \pi_{j} \sum_{i=1}^{n} N_{i} P r_{i j} .
$$

Furthermore, $P r_{i j}$ is positive if and only if the surplus of product $j$ is nonnegative for segment $i$.

Thus, the expected revenue maximization problem is:

$$
\begin{array}{lll}
\max & \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i} \pi_{j} P r_{i j},  \tag{1.1}\\
\text { s.t. } & P r_{i j}>0 \Leftrightarrow \beta_{i j}=1, \quad i=1, \ldots, n ; j=1, \ldots, m, \\
& \operatorname{Pr} r_{i j}=0 \Leftrightarrow \beta_{i j}=0, \quad i=1, \ldots, n ; j=1, \ldots, m, \\
& (\boldsymbol{\pi}, \boldsymbol{\beta}, \boldsymbol{p}) \in P, \\
& \beta_{i j} \in\{0,1\}, \quad i=1, \ldots, n ; j=1, \ldots, m .
\end{array}
$$

All the probabilistic choice models explored in this thesis is based on the optimization problem (1.1). What differentiates the different model is how $P r_{i j}$ is defined.

One of the most popular probabilistic choice model in the marketing literature may be the multinomial logit (MNL) model,

$$
\operatorname{Pr}_{i j}=\frac{e^{v_{i j}}}{\sum_{k} e^{v_{i k}}},
$$

where $v_{i j}$ represent the utility or desirability of the product $j$ to segment $i$. Clearly, there are wide varieties to how this $v_{i j}$ is modeled as well. The main motive for the exponential is to allow $v_{i j}$ to take on any real value. For example, an alternative model is to have

$$
\operatorname{Pr}_{i j}=\frac{v_{i j}}{\sum_{k} v_{i k}},
$$

but we would then require $v_{i j} \geq 0$ and $\sum_{k} v_{i k}>0$, which could be easily addressed in many cases.

In this thesis, we examine several probabilistic choice model from a mathematical programming perspective. Depending on how $P r_{i j}$ is modeled, we can formulate the optimization problem (1.1) as a convex mixed-integer programming problem (MIP). In Chapter 2, we assume that $\operatorname{Pr}_{i j}$ is uniform across all products with nonnegative surplus. We call this model the Uniform Distribution Model. In Chapter 3, we modify the Uniform Distribution Model so that customers are more likely to purchase products with higher reservation prices. We call this model the Weighted Uniform Model. In Chapter 4, we explore mathematical programming formulations of the Share-of-Surplus Model proposed in [6], including an MIP formulation for the case with restricted prices. Chapter 5 explores the Price Sensitive Model where Pr $_{i j}$ decreases as the price of product $j$ increases. In Chapter 6, we discuss special properties of the optimal solutions and compare the optimal prices $\pi_{j}$ and variables $\beta_{i j}$ of the different models. We also consider enhancements to the models (Chapter 7), including heuristics to determine good feasible solutions quickly and valid inequalities to speed up the solution time of the MIP. In Chapter 8, we show how we can incorporate product capacity limits and product costs into the models . We illustrate some computational results of our models in Chapter 9 and conclude and discuss future work in Chapter 10.

## Chapter 2

## Uniform Distribution Model

### 2.1 The Model

A very simple model of customer choice behavior is to assume that each segment chooses products with a uniform distribution across all products with nonnegative surplus. We call this model the Uniform Distribution Model. Again, let $\beta_{i j}$ be binary decision variables where

$$
\beta_{i j}:=\left\{\begin{array}{lc}
1, & \text { if the surplus of product } j \text { is nonnegative for segment } i, j, \\
0, & \text { otherwise }
\end{array}\right.
$$

i.e., $\beta_{i j}=1$ if and only if $R_{i j}-\pi_{j} \geq 0$.

Then in the Uniform Distribution Model, the probability that the customer segment $i$ buys product $j$ would be

$$
\operatorname{Pr}_{i j}:=\left\{\begin{array}{cc}
0, & \text { if } \sum_{j=1}^{m} \beta_{i j}=0, \\
\frac{\beta_{i j}}{\sum_{k=1}^{m} \beta_{i k}}, & \text { otherwise } .
\end{array}\right.
$$

Under this assumption, the expected revenue is

$$
\sum_{i=1}^{n} N_{i} t_{i}
$$

where

$$
t_{i}:=\left\{\begin{array}{cc}
\sum_{j=1}^{m} \pi_{j} \frac{\beta_{i j}}{\sum_{k=1}^{m} \beta_{i k}}=\frac{\sum_{j=1}^{m} p_{i j}}{\sum_{k=1}^{m} \beta_{i k}}, & \text { if } \sum_{j=1}^{m} \beta_{i j} \neq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where $p_{i j}$ is the auxiliary variable in Section 1.2 such that $p_{i j}:=\pi_{j} \beta_{i j}$. Thus, $t_{i}$ corresponds to the average price that segment $i$ pays.

We further reformulate the problem to

$$
\begin{array}{cc}
\max & \sum_{i=1}^{n} N_{i} t_{i} \\
\text { s.t. } & \sum_{j=1}^{m} \beta_{i j} t_{i} \leq \sum_{j=0}^{m} p_{i j}, \quad \forall i, \\
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j} \beta_{i j}, \quad \forall i, \\
& (\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, \\
\beta_{i j} \in\{0,1\}, & \forall i, j .
\end{array}
$$

where $P$ is the polyhedron defined in Section 1.2.
Let us introduce yet another auxiliary variable $a_{i j}$ such that $a_{i j}=t_{i} \beta_{i j}$, i.e., $a_{i j}=t_{i}$ if $\beta_{i j}=1$ and $a_{i j}=0$ otherwise. Then the above formulation can be converted to a linear mixed-integer programming problem

$$
\begin{array}{cl}
\max & \sum_{i=1}^{n} N_{i} t_{i},  \tag{2.1}\\
\text { s.t. } & \sum_{j=1}^{m} a_{i j} \leq \sum_{j=1}^{m} p_{i j}, \\
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j} \beta_{i j}, & \forall i, \\
a_{i j} \leq\left(\max _{k} R_{i k}\right) \beta_{i j}, & \forall i, \forall j, \\
a_{i j} \leq t_{i}, & \forall i, \forall j, \\
a_{i j} \geq t_{i}-\left(\max _{k} R_{i k}\right)\left(1-\beta_{i j}\right), & \forall i, \forall j, \\
(\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, & \\
\beta_{i j} \in\{0,1\}, & \forall i, j
\end{array}
$$

To make this Uniform Distribution Model more realistic, we may want to bound the absolute difference of the positive surpluses by adding the constraints

$$
\left|\left(R_{i j}-\pi_{j}\right)-\left(R_{i k}-\pi_{k}\right)\right| \leq \Delta \quad \forall i, \forall j \neq k \text { where } \beta_{i j}=\beta_{i k}=1
$$

where $\Delta$ is some user-defined constant. The linearized form of this constraint is

$$
\begin{array}{ll}
\left(R_{i j} \beta_{i j}-p_{i j}\right)-\left(R_{i k} \beta_{i k}-p_{i k}\right) \leq \Delta+R_{i j}\left(1-\beta_{i k}\right), & \forall i, \forall j \neq k \\
\left(R_{i k} \beta_{i k}-p_{i k}\right)-\left(R_{i j} \beta_{i j}-p_{i j}\right) \leq \Delta+R_{i k}\left(1-\beta_{i j}\right), & \forall i, \forall j \neq k
\end{array}
$$

### 2.2 Alternative Formulation

Note that if $\beta_{i j}$ 's are given in Problem (2.1), then

$$
\pi_{j}=\min _{i: \beta_{i j}=1} R_{i j}
$$

in the optimal solution if $\beta_{i j}=1$ for some $i, i=1, \ldots, n$. If $\beta_{i j}=0$ for all $i$ (i.e., product $j$ is not bought by any customer), then $\pi_{j}>\max _{i=1, \ldots, n} R_{i j}$.

Let us introduce a dummy customer segment, segment 0 , where $R_{0 j}>\max _{i=1, \ldots, n} R_{i j}$ and $N_{0}=0$, and a binary decision variable $x_{i j}$ where:

$$
x_{i j}:=\left\{\begin{array}{cc}
1, & \text { if segment } i \text { has the smallest reservation price out of all } \\
0, & \text { segments with nonnegative surplus for product } j \\
0, & \text { otherwise. }
\end{array}\right.
$$

With the constraint $\sum_{i=0}^{n} x_{i j}=1$ for all products $j$, we get

$$
\pi_{j}=\sum_{i=0}^{n} R_{i j} x_{i j}, \quad \beta_{i j}=\sum_{l: R_{l j} \leq R_{i j}} x_{l j} .
$$

Thus the continuous variables $p_{i j}$ and $\pi_{j}$ can be eliminated. Using the $x_{i j}$ variables, the objective function of the Uniform Distribution Model is

$$
\sum_{i=0}^{n} N_{i} \sum_{j=1}^{m}\left(\sum_{i=0}^{n} R_{i j} x_{i j}\right)\left(\frac{\sum_{l: R_{l j} \leq R_{i j}} x_{l j}}{\sum_{k=1}^{m} \sum_{l: R_{l k} \leq R_{i k}} x_{l k}}\right)=\sum_{i=0}^{n} N_{i}\left(\frac{\sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} R_{l j} x_{l j}}{\sum_{k=1}^{m} \sum_{l: R_{l k} \leq R_{i k}} x_{l k}}\right)
$$

where the equality follows from $\sum_{i=0}^{n} x_{i j}=1, \forall j, x_{i j}^{2}=x_{i j}$, and $x_{i j} x_{l j}=0$ for $i \neq l$.
Then:

$$
t_{i}:=\left\{\begin{array}{cc}
\frac{\sum_{j} \sum_{l: R_{l j} \leq R_{i j}} R_{l j} x_{l j}}{\sum_{k} \sum_{l: R_{l k} \leq R_{i k}} x_{l k}}, & \text { if } \sum_{k} \sum_{l: R_{l k} \leq R_{i k}} x_{l k} \neq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then Model (2.1) is equivalent to

$$
\begin{array}{cc}
\max & \sum_{i=1}^{n} N_{i} t_{i},  \tag{2.2}\\
\text { s.t. } & \forall j, \\
\sum_{i=0}^{n} x_{i j}=1, & \forall i, j, \\
\sum_{j=1}^{m} a_{i j} \leq \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} R_{l j} x_{l j}, & \forall i, \\
a_{i j} \leq t_{i}, & \forall i, j, \\
a_{i j} \leq\left(\max _{k} R_{i k}\right) \sum_{l: R_{l j} \leq R_{i j}} x_{l j}, & \forall i, j, \\
a_{i j} \geq t_{i}-\left(\max _{k} R_{i k}\right) \sum_{l: R_{l j}>R_{i j}} x_{l j}, & \forall i, \\
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} x_{l j}, & \forall i, \\
t_{i} \geq 0, & \forall l, i, \\
a_{i j} \geq 0, & \forall i, j, \\
x_{i j} \in\{0,1\}, & \forall i, j .
\end{array}
$$

### 2.3 Strength of the Two Formulations

Aside from computational experimentation, we wish to compare the relative "strength" of the original and alternative mixed-integer programming formulations of the Uniform Distribution Model. Namely, let us compare the strength of the LP relaxation of formulations (2.1) and (2.2).

Let $F_{1}$ be the feasible region of the LP relaxation of (2.1) and let $F_{2}$ be that of (2.2). We compare both formulations on the same data $n$ (the number of customers), $m$ (number of product) and $R_{i j}$ (reservation price), $i=1, \ldots, n, j=1, \ldots, m$. However, note that we add a dummy customer segment 0 in the alternate formulation (2.2). Thus, (2.2) has customer segments $i=0,1, \ldots, n$, and $R_{0 j}=\max _{i=1, \ldots, n} R_{i j}+1$.

Let $\Pi_{t}\left(F_{k}\right)$ be the projection of the set $F_{k}, k=1,2$, onto the variables $t_{i}, i=1, \ldots, n$, i.e.,

$$
\Pi_{t}\left(F_{1}\right):=\left\{\boldsymbol{t}: \exists(\boldsymbol{\beta}, \boldsymbol{\pi}, \boldsymbol{p}, \boldsymbol{a}) \text { such that }(\boldsymbol{t}, \boldsymbol{\beta}, \boldsymbol{\pi}, \boldsymbol{p}, \boldsymbol{a}) \in F_{1}\right\}
$$

and

$$
\Pi_{t}\left(F_{2}\right):=\left\{\boldsymbol{t}: \exists\left(t_{0}, \boldsymbol{x}, \boldsymbol{a}\right) \text { such that }\left(t_{0}, \boldsymbol{t}, \boldsymbol{x}, \boldsymbol{a}\right) \in F_{2}\right\}
$$

where $\boldsymbol{t}$ is the vector of $t_{i}$ 's $, i=1, \ldots, n, \boldsymbol{a}$ is the vector of $a_{i j}$ 's, $i=1, \ldots, n, j=1, \ldots, m$, $\boldsymbol{\beta}$ is the vector of $\beta_{i j}$ 's, $i=1, \ldots, n, j=1, \ldots, m, \boldsymbol{\pi}$ is the vector of $\pi_{j}$ 's, $j=1, \ldots, m, \boldsymbol{p}$ is the vector of $p_{i j}$ 's $, i=1, \ldots, n, j=1, \ldots, m$, and $\boldsymbol{x}$ is the vector of $x_{i j}$ 's, $i=1, \ldots, n$, $j=1, \ldots, m$. The following lemma shows that $\Pi_{t}\left(F_{2}\right)$ is strictly contained inside $\Pi_{t}\left(F_{1}\right)$, implying that the optimal objective value of the LP relaxation of (2.2) is less than or equal to that of of (2.1).

Lemma 2.3.1. $\Pi_{t}\left(F_{2}\right) \subset \Pi_{t}\left(F_{1}\right)$ and the inclusion is strict.
Proof. To show the inclusion, suppose $\left(\hat{t_{0}}, \hat{\boldsymbol{t}}, \hat{\boldsymbol{x}}, \hat{\boldsymbol{a}}\right) \in F_{2}$. Let $\bar{\beta}_{i j}=\sum_{l: R_{l j} \leq R_{i j}} \hat{x}_{l j}, \bar{\pi}_{j}=$ $\sum_{i=1}^{n} R_{i j} \hat{x}_{i j}, \bar{p}_{i j}=\sum_{l: R_{l j} \leq R_{i j}} R_{l j} \hat{x}_{l j}, \bar{a}_{i j}=\hat{a}_{i j}, i=1, \ldots, n, j=1, \ldots, m$. It is easy to see that $(\hat{\boldsymbol{t}}, \overline{\boldsymbol{\beta}}, \overline{\boldsymbol{\pi}}, \overline{\boldsymbol{p}}, \overline{\boldsymbol{a}}) \in F_{1}$. Thus, $\Pi_{t}\left(F_{2}\right) \subseteq \Pi_{t}\left(F_{1}\right)$

To show that the inclusion is strict, let $n=2, m=2, N_{1}=N_{2}=1$, and $\boldsymbol{R}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ be the matrix of reservation prices where rows are the segments and products are the columns. $F_{1}$ contains the following point:

$$
\boldsymbol{t}=\left[\begin{array}{c}
2 \\
0.5
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{cc}
0 & 1 \\
0 & 0.5
\end{array}\right], \quad \boldsymbol{\pi}=\left[\begin{array}{ll}
2 & 2
\end{array}\right], \quad \boldsymbol{p}=\left[\begin{array}{cc}
0 & 2 \\
0 & 0.5
\end{array}\right], \quad \boldsymbol{a}=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

where again, the rows correspond to segments and the columns correspond to products. The dummy segment in (2.2) has reservation prices $R_{01}=2$ and $R_{02}=3$. We will show that $\boldsymbol{t}=\left[\begin{array}{c}2 \\ 0.5\end{array}\right] \notin \Pi_{t}\left(F_{2}\right)$.

Given $t_{1}=2$ and $t_{2}=0.5$, the fifth set of constraints in (2.2) are $a_{11} \geq 2-2 x_{01}$ and $a_{12} \geq 2-2 x_{02}$. The second set of constraints yield $a_{11}+a_{12} \leq x_{11}+2 x_{12}+x_{22}$. Combining it with the above two inequalities and the first set of constraints gives us
$x_{01}+x_{12}+x_{02}-x_{21} \geq 2$, implying $x_{01}+x_{12}+x_{02} \geq 2$. With the first set of constraints, this yields $x_{01} \geq 1$ and $x_{12}+x_{02} \geq 1$, implying $x_{11}=x_{21}=0$ and $x_{22}=0$. The sixth set of constraints $t_{2} \leq x_{21}+x_{22}=0$ contradicts $t_{2}=0.5$. Thus, $\boldsymbol{t}=\left[\begin{array}{c}2 \\ 0.5\end{array}\right] \notin \Pi_{t}\left(F_{2}\right)$.

Thus, to test the empirical running time of the Uniform Distribution Model, we will use the alternative MIP formulation (2.2) instead of (2.1). Chapter 9 illustrates the running time of the Uniform Distribution Model on various problem sizes.

### 2.4 A Pure 0-1 Formulation

It turns out that the Uniform Distribution Model can also be formulated as a pure 0-1 optimization problem. For $k=0, \ldots, m$, let

$$
y_{i k}:=\left\{\begin{array}{lc}
1, & \text { if segment } i \text { has exactly } k \text { products with nonnegative surplus, } \\
0, & \text { otherwise }
\end{array}\right.
$$

Then, the probability that segment $i$ buys product $j$ is

$$
\sum_{k=1}^{m} \frac{1}{k} \beta_{i j} y_{i k}
$$

Thus, with variables $\beta_{i j}, \pi_{j}$ and $x_{i j}$ defined earlier, the objective function is:

$$
\begin{gathered}
\sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \pi_{j} P r_{i j}, \\
=\sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \pi_{j}\left(\sum_{k=1}^{m} \frac{1}{k} \beta_{i j} y_{i k}\right), \\
=\sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} R_{l j} x_{l j}\left(\sum_{k=1}^{m} \frac{1}{k} y_{i k}\right) .
\end{gathered}
$$

Let $z_{l j i k}:=x_{l j} y_{i k}, \forall i, l: R_{l j} \leq R_{i j}, \forall j, k=1, \ldots, m$. Then the Uniform Distribution Model can be modeled by the the following $0-1$ programming problem:

$$
\begin{array}{cl}
\max & \sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} R_{l j} \sum_{k=1}^{m} \frac{1}{k} z_{l j i k},  \tag{2.3}\\
\text { s.t. } & j=1, \ldots, m, \\
\sum_{i=1}^{n} x_{i j}=1, & i=1, \ldots, n, \\
\sum_{k=0}^{m} y_{i k}=1, & \\
\sum_{k=1}^{m} \sum_{j=1}^{m} \sum_{l: R_{l, j} \leq R_{i, j}} \frac{1}{k} z_{l, j, i, k}=1-y_{i, 0}, & i=1, \ldots, n, \\
\sum_{j=1}^{m} \sum_{l: R_{l, j} \leq R_{i j}} x_{l j}=\sum_{k=0}^{m} k y_{i k} & i, \ldots, m, \\
z_{l, j, i, k} \leq x_{l, j}, & \forall i, \forall j, k=1, \ldots, m ; l: R_{l, j} \leq R_{i, j}, \\
z_{l, j, i, k} \leq y_{i, k}, & \forall i, \forall j, k=1, \ldots, m ; l: R_{l, j} \leq R_{i, j}, \\
z_{l, j, i, k} \geq x_{l, j}+y_{i, k}-1, & \forall i, \forall j, k=1, \ldots, m ; l: R_{l, j} \leq R_{i, j}, \\
x_{i, j} \in\{0,1\}, & \forall i, \forall j, \\
y_{i, k} \in\{0,1\}, & \forall i, k=0, \ldots, m, \\
0 \leq z_{l, j, i, k} \leq 1, & \forall i, \forall j, k=1, \ldots, m ; l: R_{l, j} \leq R_{i, j},
\end{array}
$$

### 2.4.1 Preliminary Computational Results

To compare the empirical performance of the pure 0-1 formulation (2.3) and the previous mixed 0-1 formulation (2.2), we randomly generated multiple instance of reservations prices $R_{i j}$ for various $n$ (number of customer segments) and $m$ (number of products). For each ( $n, m$ ), five random instances were generated. Both models were run with default parameter settings of CPLEX 9.1. The results are shown in Table 2.1.

|  | m | v | Uniform Alternate Formulation (2.2) |  |  |  | Uniform Pure 0-1 Model (2.3) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | LP optval | SM itn | nodes | time | LP optval | SM itn | nodes | time |
|  | 4 | 1 | 2304.79 | 58 | 3 | 0.018 | 2564.71 | 206 | 0 | 1.320 |
|  |  | 2 | 3447.79 | 17 | 0 | 0.007 | 3404.00 | 78 | 0 | 0.070 |
|  |  | 3 | 333.60 | 60 | 0 | 0.008 | 333.00 | 62 | 0 | 0.050 |
|  |  | 4 | 3005.67 | 25 | 0 | 0.002 | 3060.92 | 64 | 0 | 0.060 |
|  |  | 5 | 3294.81 | 31 | 0 | 0.007 | 3360.95 | 103 | 0 | 0.090 |
| 4 | 10 | 1 | 382.54 | 157 | 42 | 0.065 | 406.42 | 4132 | 83 | 16.460 |
|  |  | 2 | 381.85 | 142 | 3 | 0.059 | 398.19 | 1109 | 26 | 365.750 |
|  |  | 3 | 358.60 | 107 | 13 | 0.056 | 397.36 | 1859 | 40 | 11.860 |
|  |  | 4 | 355.97 | 105 | 0 | 0.037 | 389.98 | 496 | 0 | 5.230 |
|  |  | 5 | 394.23 | 90 | 0 | 0.029 | 402.74 | 267 | 0 | 0.630 |
| 10 | 4 | 1 | 744.71 | 196 | 12 | 0.106 | 802.93 | 4106 | 52 | 28.620 |
|  |  | 2 | 845.80 | 266 | 35 | 0.110 | 856.12 | 1195 | 17 | 803.000 |
|  |  | 3 | 799.50 | 259 | 31 | 0.117 | 850.95 | 5320 | 68 | 31.880 |
|  |  | 4 | 809.58 | 159 | 0 | 0.033 | 856.85 | 972 | 3 | 15.600 |
|  |  | 5 | 883.05 | 99 | 0 | 0.031 | 925.44 | 1111 | 21 | 15.070 |
| 10 | 10 | 1 | 985.58 | 359 | 36 | 0.424 | 997.40 | 6105 | 57 | 240.610 |
|  |  | 2 | 991.44 | 253 | 8 | 0.150 | 1008.53 | 5123 | 45 | 183.780 |
|  |  | 3 | 1016.35 | 269 | 0 | 0.137 | 1021.94 | 1016 | 0 | 84.340 |
|  |  | 4 | 825.48 | 18666 | 2630 | 2.762 | 872.92 | 139656 | 1138 | 1849.010 |
|  |  | 5 | 1014.14 | 357 | 19 | 0.161 | 1021.50 | 1309 | 12 | 121.720 |

Table 2.1: Comparison of Uniform Model formulations (2.2) and (2.3).

Table 2.1 compares formulations (2.2) and (2.3) in terms of the objective value of their linear programming relaxation ("LP optval"), total number of dual simplex iterations ("SM itn"), total number of branch-and-bound nodes ("nodes"), and total CPU seconds required to find a provable optimal solution ("time"). $n$ is the number of customer segments, $m$ is the number of products, and $v$ is a label of the problem instance. Bolded LP optval correspond to the integer optimal value.

The above results clearly show that the mixed-integer formulation (2.2) is far superior to the pure 0-1 formulation (2.3) in terms of total running time. This is not surprising since the latter formulation involves significantly more variables, thus the per node computation time is expected to be longer. However, it may be surprising that in almost all cases, the pure 0-1 formulation has a weaker LP relaxation than the mixed-integer formulation and requires more branch-and-bound nodes.

These preliminary computational results may indicate that there is no merit in studying the pure 0-1 formulation. However, since the constraints for (2.3) can be represented by $0-1$ knapsack constraints, there may be strong cover inequalities that can be generated from them. Furthermore, these inequalities can be projected down to the space of $x_{i j}$ variables in the alternate mixed-integer formulation (2.2). We further explore this idea in the Section 7.2.

## Chapter 3

## Weighted Uniform Model

### 3.1 The Model

In this chapter, we modify the Uniform Distribution Model of Chapter 2 so that customers are more likely to purchase a product with higher reservation price. This model, which we call the Weighted Uniform Model, is inspired by the multinomial-logit (MNL) model discussed in Section 1.2. Let $v_{i j}=R_{i j}$, but only consider products with nonnegative surplus. Let

$$
\operatorname{Pr}_{i j}:=\left\{\begin{array}{cc}
0, & \text { if } \sum_{j=1}^{m} R_{i j} \beta_{i j}=0 \\
\frac{u\left(R_{i j}\right) \beta_{i j}}{\sum_{k=1}^{m} u\left(R_{i k}\right) \beta_{i k}}, & \text { otherwise. }
\end{array}\right.
$$

where $u(\cdot)$ is a monotonically increasing function of $R_{i j}$. Thus, with this definition of $P r_{i j}$, out of all products with nonnegative surplus, a customer is more likely to buy a product with higher reservation price. In the marketing literature, $u(x)=\exp (x)$ is a common function for the MNL model since $u(x)>0$ for all $x \in \mathbb{R}, x<\infty$. However, since from Assumption 1.1.1 $R_{i j} \geq 0, \forall i, j$, we define $u(x)=x$, i.e.,

$$
\operatorname{Pr}_{i j}=\frac{R_{i j} \beta_{i j}}{\sum_{k=1}^{m} R_{i k} \beta_{i k}}, \quad \text { if } \sum_{j=1}^{m} R_{i j} \beta_{i j} \geq 1
$$

Analogous to Model (2.1), the corresponding expected revenue maximizing problem is

$$
\begin{array}{cl}
\max & \sum_{i=1}^{n} N_{i} t_{i},  \tag{3.1}\\
\text { s.t. } & \sum_{j=1}^{m} R_{i j} a_{i j} \leq \sum_{j=1}^{m} R_{i j} p_{i j}, \\
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} R_{i j} \beta_{i j}, & \forall i, \\
a_{i j} \leq\left(\max _{k} R_{i k}\right) \beta_{i j}, & \forall i, \forall j, \\
a_{i j} \leq t_{i}, & \forall i, \forall j, \\
a_{i j} \geq t_{i}-\left(\max _{k} R_{i k}\right)\left(1-\beta_{i j}\right), & \forall i, \forall j, \\
(\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, & \\
\beta_{i j} \in\{0,1\}, & \forall i, j .
\end{array}
$$

### 3.2 Alternative Formulation

Analogous to the alternate formulation of the Uniform Distribution Model in Section 2.2, the Weighted Uniform Model has an alternate formulation using the variables $x_{i j}$ :

$$
\begin{array}{cl}
\max & \sum_{i=1}^{n} N_{i} t_{i},  \tag{3.2}\\
\sum_{i=0}^{n} x_{i j}=1, & \forall j, \\
\text { s.t. } & \forall i, j, \\
\sum_{j=1}^{m} R_{i j} a_{i j} \leq \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} R_{i j} R_{l j} x_{l j}, & \forall i, \\
a_{i j} \leq t_{i}, & \forall i, j, \\
a_{i j} \leq\left(\max _{k} R_{i k}\right) \sum_{l: R_{l j} \leq R_{i j}} x_{l j}, & \forall i, j, \\
a_{i j} \geq t_{i}-\left(\max _{k} R_{i k}\right) \sum_{l: R_{l j}>R_{i j}} x_{l j}, & \forall i, \\
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} x_{l j}, & \forall l, i, \\
t_{i} \geq 0, & \forall i, j, \\
a_{i j} \geq 0, & \forall i, j .
\end{array}
$$

Similar to the Uniform Distribution Model, this alternate formulation results in a stronger integer programming formulation. Chapter 9 illustrates the running time of the Weighted Uniform Model on various problem sizes.

## Chapter 4

## Share-of-Surplus Model

### 4.1 The Model

It seems realistic to assume that the probability of a customer buying a product is related to the surplus. A similar scenario is when a customer prefers buying the product that has the most discount at the moment, rather than picking a product randomly or preferring the product with the highest reservation price. We want a model such that a larger surplus means that a larger fraction of a customer segment buys that product. That is, the probability that a customer buys a product depends on the customer's reservation price as well as the price of the product. A monotonically increasing function is needed to describe the relationship between the probability and the surplus.

The Share-of-Surplus Choice Model [6] is a form of a probabilistic choice model where the probability that a segment will choose a product is the ratio of its surplus versus the total surplus for the segment across all products with nonnegative surplus. Again, let

$$
\beta_{i j}:=\left\{\begin{array}{lc}
1, & \text { if the surplus of product } j \text { is nonnegative for segment } i, j, \\
0, & \text { otherwise. }
\end{array}\right.
$$

In this model, the probability that segment $i$ will buy product $j$ is given by:

$$
\operatorname{Pr}_{i j}:=\frac{\left(R_{i j}-\pi_{j}\right) \beta_{i j}}{\sum_{k}\left(R_{i k}-\pi_{k}\right) \beta_{i k}}
$$

For the moment, let us assume that $\sum_{k}\left(R_{i k}-\pi_{k}\right) \beta_{i k}>0$ for all $i=1, \ldots, n$ for notational simplicity. We will relax this assumption in Section 4.4.

With the above definition, $P r_{i j}=0$ if $R_{i j}=\pi_{j}$, which may not be desirable. To ensure that the probability $P r_{i j}$ is strictly positive when $R_{i j}=\pi_{j}$, we may define the probability as follows:

$$
\begin{equation*}
\operatorname{Pr}_{i j}^{*}:=\frac{\left(R_{i j}-\pi_{j}+c\right) \beta_{i j}}{\sum_{k}\left(R_{i k}-\pi_{k}+c\right) \beta_{i k}} . \tag{4.1}
\end{equation*}
$$

where $c$ is a small positive constant. For simplicity's sake, we will use the first definition of the probability throughout the rest of this chapter. Note that this differs from the standard MNL model since we do not consider negative surplus products.

The expected revenue given by this model is

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} N_{i} \pi_{j}\left(\frac{\left(R_{i j}-\pi_{j}\right) \beta_{i j}}{\sum_{k}\left(R_{i k}-\pi_{k}\right) \beta_{i k}}\right)
$$

We can model this Share-of-Surplus Choice Model as the following nonlinear mixedinteger programming model:

$$
\begin{align*}
& \max \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i} \pi_{j}\left(\frac{\left(R_{i j}-\pi_{j}\right) \beta_{i j}}{\sum_{k}\left(R_{i k}-\pi_{k}\right) \beta_{i k}}\right)  \tag{4.2}\\
& \text { s.t. } \quad(\boldsymbol{\pi}, \boldsymbol{\beta}, \boldsymbol{p}) \in P \text {, } \\
& \beta_{i j} \in\{0,1\}, \quad i=1, \ldots, n ; j=1, \ldots, m,
\end{align*}
$$

where $P$ is the polyhedron defined in Section 1.2.
The objective function can further be reformulated to a sum of ratios, where the numerator is a concave quadratic and the denominator is linear:

$$
\max \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i} \pi_{j}\left(\frac{\left(R_{i j}-\pi_{j}\right) \beta_{i j}}{\sum_{k}\left(R_{i k}-\pi_{k}\right) \beta_{i k}}\right) \Leftrightarrow \max \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i}\left(\frac{R_{i j} p_{i j}-p_{i j}^{2}}{\sum_{k} R_{i k} \beta_{i k}-p_{i k}}\right) .
$$

Thus, Model (4.2) can be formulated as the following mixed-integer fractional program-
ming problem with linear constraints:

$$
\begin{array}{rc}
\max & \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i}\left(\frac{R_{i j} p_{i j}-p_{i j}^{2}}{\sum_{k} R_{i k} \beta_{i k}-p_{i k}}\right),  \tag{4.3}\\
\text { s.t. } & (\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, \\
& \beta_{i j} \in\{0,1\},
\end{array} \forall i, j .
$$

An advantage of this model is the fact that it allocates some customers to each product whose price leaves a positive utility for the customer segment in a way that higher the positive utility of the product, higher the market share of the product.

In the following sections, we explore ways to solve Problem (4.3) to global optimality by finding convex relaxations or approximations of the model.

### 4.2 Quadratically Constrained Optimization Problem

Let us bring the objective function of Model (4.3) into the constraints and convert the problem to a minimization problem:

$$
\begin{array}{cc}
\min & \sum_{i=1}^{n} N_{i} t_{i} \\
\text { s.t. } & \sum_{j=1}^{m}\left(p_{i j}^{2}-R_{i j} p_{i j}\right) \leq t_{i}\left(\sum_{k}\left(R_{i k} \beta_{i k}-p_{i k}\right)\right), \\
(\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, & \forall i, \\
\beta_{i j} \in\{0,1\}, & \forall i, j .
\end{array}
$$

Let us further introduce auxiliary variables $x_{i}$ and $y_{i}$ such that

$$
\begin{aligned}
x_{i}-y_{i} & :=t_{i} \\
x_{i}+y_{i} & :=\sum_{k}\left(R_{i k} \beta_{i k}-p_{i k}\right) .
\end{aligned}
$$

Then Model (4.3) can be written as

$$
\begin{array}{cc}
\min & \sum_{i=1}^{n} N_{i} t_{i}  \tag{4.4}\\
\text { s.t. } & \sqrt{\sum_{j=1}^{m}\left(p_{i j}^{2}-R_{i j} p_{i j}\right)+y_{i}^{2}} \leq x_{i}, \\
& \forall i, \\
x_{i}-y_{i}=t_{i}, & \forall i, \\
& x_{i}+y_{i}=\sum_{k}\left(R_{i k} \beta_{i k}-p_{i k}\right), \\
& \forall i, \\
& (\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P,
\end{array}
$$

whose continuous relaxation strongly resembles a second-order cone formulation. Unfortunately, the continuous relaxation of Model (4.4) does not result in a convex optimization problem.

Let us elaborate. Let a symmetric $n \times n$ matrix $\boldsymbol{A}$, an $n$-vector $\boldsymbol{a}$ and a constant $\alpha$ be given. Then the quadratic inequality

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+2 \boldsymbol{a}^{T} \boldsymbol{x}+\alpha \leq 0
$$

is convex if and only if $\boldsymbol{A} \succeq \boldsymbol{O}$. We can represent this inequality as

$$
\left[1, \boldsymbol{x}^{T}\right]\left[\begin{array}{cc}
\alpha & \boldsymbol{a}^{T} \\
\boldsymbol{a} & \boldsymbol{A}
\end{array}\right]\left[\begin{array}{l}
1 \\
\boldsymbol{x}
\end{array}\right] \leq 0 .
$$

To represent this inequality as a second order cone constraint, we need to find an $(n+1) \times$ $(n+1)$ nonsingular matrix $\boldsymbol{L}$ such that

$$
\boldsymbol{L}^{T}\left[\begin{array}{ll}
\alpha & \boldsymbol{a}^{T} \\
\boldsymbol{a} & \boldsymbol{A}
\end{array}\right] \boldsymbol{L}=\left[\begin{array}{cc}
-1 & \mathbf{0}^{T} \\
\mathbf{0} & I
\end{array}\right]
$$

Therefore, we conclude that the quadratic constraint is representable by a single Second Order Cone constraint if and only if the matrix

$$
\left[\begin{array}{cc}
\alpha & \boldsymbol{a}^{T} \\
\boldsymbol{a} & \boldsymbol{A}
\end{array}\right]
$$

has at most one negative eigenvalue. However, note that in our model (4.4) the corresponding matrix (ordered with respect to $1, t, \boldsymbol{\beta}, \boldsymbol{p}$ ):

$$
\left[\begin{array}{cccc}
0 & 0 & \mathbf{0}^{T} & -\boldsymbol{R}^{T} \\
0 & 0 & -\tilde{\boldsymbol{R}}^{T} & \boldsymbol{e}^{T} \\
\mathbf{0} & -\tilde{\boldsymbol{R}} & \boldsymbol{O} & \mathbf{0}^{T} \\
-\boldsymbol{R} & \boldsymbol{e} & \mathbf{0} & I
\end{array}\right]
$$

has exactly two negative eigenvalues.

### 4.3 Second-Order Cone Approximation

As we showed above, we cannot expect convexity from this quadratic inequality as it stands. So let us consider some convex relaxations or approximations to Model (4.4).

Adding the term

$$
\frac{\frac{1}{4} R_{i j}^{2}}{\sum_{k}\left(R_{i k}-\pi_{k}\right) \beta_{i k}}
$$

to the objective function of Model (4.3) yields the following convex formulation:

$$
\begin{array}{cc}
\min & \sum_{i=1}^{n} N_{i} t_{i}  \tag{4.5}\\
\text { s.t. } & \sqrt{\sum_{j=1}^{m}\left(p_{i j}-\frac{1}{2} R_{i j}\right)^{2}+y_{i}^{2}} \leq x_{i}, \\
& \forall i, \\
x_{i}-y_{i}=t_{i}, & \forall i, \\
& x_{i}+y_{i}=\sum_{k}\left(R_{i k} \beta_{i k}-p_{i k}\right), \\
& \forall i, \\
& (\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, \\
\beta_{i j} \in\{0,1\}, & \forall i, j,
\end{array}
$$

whose relaxation is a second-order cone programming problem. Unfortunately, empirical experiments showed that this approximation resulted in unrealistic prices. It seems that the price of each product are set to be much lower than the reservation prices of the customers who buy that product. However, with the $\beta$ 's fixed, we do not want the prices to be too low in practice since that generally result in lower revenue.

### 4.4 Restricted Prices

Unlike the Uniform and Weighted Uniform Models, the optimal price given $\beta_{i j}$ 's is not immediate for the Share-of-Surplus model. Define $B_{i}=\left\{j \mid \beta_{i j}=1\right\}$. Then the optimal prices is the solution to

$$
\begin{array}{cl}
\max \sum_{i=1}^{n} \sum_{j \in B_{i}} N_{i} \pi_{j}\left(\frac{\left(R_{i j}-\pi_{j}\right)}{\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)}\right) &  \tag{4.6}\\
\text { s.t. } & R_{i j}-\pi_{j} \geq 0, \\
R_{i j}-\pi_{j}<0, & \forall i, j \in B_{i}, \\
& \pi_{j} \geq 0, \\
& \forall j,
\end{array}
$$

If $\beta_{i j}$ equals one for at least one segment, then we know that

$$
\pi_{j} \in\left(\max _{i: \beta_{i j}=0} R_{i j}, \min _{i: \beta_{i j}=1} R_{i j}\right] .
$$

Suppose product $l$ is bought by at least one segment and its price is increased by $\epsilon>0$ such that $\beta_{i j}$ 's do not change. Define $S_{j}=\left\{i \mid \beta_{i j}=1\right\}$. Then the change in the objective value is:

$$
\begin{gather*}
\sum_{i \in S_{l}} N_{i}\left(\frac{\sum_{j \in B_{i} \backslash\{l\}} \pi_{j}\left(R_{i j}-\pi_{j}\right)+\left(\pi_{l}+\epsilon\right)\left(R_{i l}-\left(\pi_{l}+\epsilon\right)\right)}{\left(\sum_{k \in B_{i} \backslash\{l\}}\left(R_{i k}-\pi_{k}\right)\right)+\left(R_{i l}-\left(\pi_{l}+\epsilon\right)\right)}-\frac{\sum_{j \in B_{i}} \pi_{j}\left(R_{i j}-\pi_{j}\right)}{\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)}\right) \\
\quad=\sum_{i \in S_{l}} N_{i}\left(\frac{\sum_{j \in B_{i}} \pi_{j}\left(R_{i j}-\pi_{j}\right)+\epsilon\left(R_{i l}-2 \pi_{l}-\epsilon\right)}{\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)-\epsilon}-\frac{\sum_{j \in B_{i}} \pi_{j}\left(R_{i j}-\pi_{j}\right)}{\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)}\right) \\
\quad=\sum_{i \in S_{l}} N_{i}\left(\frac{\epsilon\left(R_{i l}-2 \pi_{l}-\epsilon\right)\left(\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)\right)+\epsilon \sum_{j \in B_{i}} \pi_{j}\left(R_{i j}-\pi_{j}\right)}{\left(\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)\right)\left(\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)-\epsilon\right)}\right) \\
=\sum_{i \in S_{l}} \epsilon N_{i}\left(\frac{\left(R_{i l}-\left(\pi_{l}+\epsilon\right)\right) \sum_{j \in B_{i}}\left(R_{i j}-\pi_{j}\right)+\sum_{j \in B_{i}}\left(\pi_{j}-\pi_{l}\right)\left(R_{i j}-\pi_{j}\right)}{\left(\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)\right)\left(\sum_{k \in B_{i}}\left(R_{i k}-\pi_{k}\right)-\epsilon\right)}\right) \tag{4.7}
\end{gather*}
$$

Increasing the price of product $l$ by $\epsilon$ would result in an increased objective value if (4.7) is positive. The $\beta_{i j}$ 's do not change after the price increase, which implies that $R_{i l} \geq \pi_{l}+\epsilon$.

Therefore, all the terms in (4.7) are nonnegative except perhaps $\left(\pi_{j}-\pi_{l}\right)$. Thus, we can expect (4.7) to be positive if $\pi_{l}$ is relatively low compared to other prices. Intuitively, this means that if $\pi_{l}$ is low enough relative to other prices, then we want to raise $\pi_{l}$ so that the surplus of product $j$ decreases, hence decreasing the probability that the customers will buy this low-priced product. On the other hand, if $\pi_{l}$ is high enough relative to other prices, we want to decrease $\pi_{l}$ so that the probability that the customers will buy this expensive product increases, thus generating more revenue.

Suppose we restrict $\pi_{j}$ to be equal to $\min _{i: \beta_{i j}=1} R_{i j}$, just as in the Uniform Distribution and Weighted Uniform Models. Then the Share-of-Surplus Model can be modeled as a mixed-integer linear programming model.

Again, let $x_{i j}$ equal 1 if segment $i$ has the smallest reservation price out of all segments with positive surplus for product $j, 0$ otherwise. Again, we introduce a dummy segment 0 with $R_{0 j}>\max _{i=1, \ldots, n} R_{i j}, \forall j, N_{0}=0$ and add the constraint $\sum_{i=0}^{n} x_{i j}=1$. As before, $\beta_{i j}=\sum_{l: R_{l j} \leq R_{i j}} x_{i j}$ and let us restrict $\pi_{j}$ to equal $\sum_{i} R_{i j} x_{i j}$. Then the objective function of the Share-of-Surplus Model is:

$$
\begin{gathered}
\sum_{i=0}^{n} \sum_{j=1}^{m} N_{i} \pi_{j}\left(\frac{\left(R_{i j}-\pi_{j}\right) \beta_{i j}}{\sum_{k}\left(R_{i k}-\pi_{k}\right) \beta_{i k}}\right)=\sum_{i=0}^{n} N_{i} \sum_{j=1}^{m} \pi_{j}\left(\frac{\left(R_{i j}-\pi_{j}\right) \sum_{l: R_{l j} \leq R_{i j}} x_{l j}}{\sum_{k=1}^{m}\left(\left(R_{i k}-\pi_{k}\right) \sum_{l: R_{l k} \leq R_{i k}} x_{l k}\right)}\right) \\
=\sum_{i} N_{i} \sum_{j}\left(\sum_{i} R_{i j} x_{i j}\right)\left(\frac{\left(R_{i j}-\sum_{s} R_{s j} x_{s j}\right) \sum_{l: R_{l j} \leq R_{i j}} x_{l j}}{\sum_{k}\left(\left(R_{i k}-\sum_{r} R_{r j} x_{r j}\right) \sum_{l: R_{l k} \leq R_{i k}} x_{l k}\right)}\right) \\
=\sum_{i} N_{i} \sum_{j}\left(\sum_{i} R_{i j} x_{i j}\right)\left(\frac{R_{i j} \sum_{l: R_{l j} \leq R_{i j}} x_{l j}-\sum_{l: R_{l j} \leq R_{i j}} R_{l j} x_{l j}}{\sum_{k}\left(R_{i k} \sum_{l: R_{l k} \leq R_{i k}} x_{l k}-\sum_{l: R_{l k} \leq R_{i k}} R_{l k} x_{l k}\right)}\right) \\
=\sum_{i} N_{i}\left(\frac{\sum_{j}\left(R_{i j} \sum_{l: R_{l j} \leq R_{i j}} R_{l j} x_{l j}-\sum_{l: R_{l j} \leq R_{i j}} R_{l j}^{2} x_{l j}\right)}{\sum_{k}\left(R_{i k} \sum_{l: R_{l k} \leq R_{i k}} x_{l k}-\sum_{l: R_{l k} \leq R_{i k}} R_{l k} x_{l k}\right)}\right) \\
=\sum_{i} N_{i}\left(\frac{\sum_{j} \sum_{l: R_{l j} \leq R_{i j}} R_{l j}\left(R_{i j}-R_{l j}\right) x_{l j}}{\sum_{k} \sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}}\right)
\end{gathered}
$$

Let us now relax the assumption that the denominator $\sum_{k=1}^{m}\left(R_{i k}-\pi_{k}\right) \beta_{i k}>0$ or
$\sum_{k=1}^{m} \sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}>0$ for all $i$. Define:

$$
t_{i}:=\left\{\begin{array}{cc}
\frac{\sum_{j} \sum_{l: R_{l j} \leq R_{i j}} R_{l j}\left(R_{i j}-R_{l j}\right) x_{l j}}{\sum_{k} \sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}}, & \text { if } \sum_{k} \sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k} \neq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Let us introduce an auxiliary continuous variable $u_{l i j}$ where $u_{l i j}:=t_{i} x_{l j}$ for all segments $l, i$ and products $j$ where $R_{l j} \leq R_{i j}$. Then we can formulate the problem as a linear mixedinteger programming problem:

$$
\begin{array}{cl}
\sum_{i=1}^{n} N_{i} t_{i}, &  \tag{4.8}\\
\text { max } & \sum_{i=0}^{n} x_{i j}=1, \\
\sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}\right) u_{l i j} \leq \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} R_{l j}\left(R_{i j}-R_{l j}\right) x_{l j}, & \forall i, \\
u_{l i j} \leq t_{i}, & \forall j, i, j, R_{l j} \leq R_{i j}, \\
u_{l i j} \leq\left(\max _{k} R_{i k}\right) x_{l j}, & \forall l, i, j, R_{l j} \leq R_{i j}, \\
u_{l i j} \geq t_{i}-\left(\max _{k} R_{i k}\right)\left(1-x_{l j}\right), & \forall l, i, j, R_{l j} \leq R_{i j}, \\
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}\right) x_{l j}, & \forall i, \\
t_{i} \geq 0, & \forall l, i, \\
u_{l i j} \geq 0, & \forall l, i, j, R_{l j} \leq R_{i j}, \\
x_{i j} \in\{0,1\}, & \forall i, j .
\end{array}
$$

If we use the probability $\operatorname{Pr}_{i j}^{*}$ (4.1) instead, then the objective function is:

$$
\sum_{i} N_{i}\left(\frac{\sum_{j} \sum_{l: R_{l j} \leq R_{i j}} R_{l j}\left(R_{i j}-R_{l j}+c\right) x_{l j}}{\sum_{k} \sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}+c\right) x_{l k}}\right)
$$

Then the problem can be formulated as follows:

$$
\begin{equation*}
\max \sum_{i=1}^{n} N_{i} t_{i} \tag{4.9}
\end{equation*}
$$

s.t. $\quad \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}+c\right) u_{l i j} \leq \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}} R_{l j}\left(R_{i j}-R_{l j}+c\right) x_{l j}, \quad \forall i$,

$$
\begin{array}{cl}
\sum_{i=0}^{n} x_{i j}=1, & \forall j, \\
u_{l i j} \leq t_{i}, & \forall l, i, j, R_{l j} \leq R_{i j}, \\
u_{l i j} \leq\left(\max _{k} R_{i k}\right) x_{l j}, & \forall l, i, j, R_{l j} \leq R_{i j}, \\
u_{l i j} \geq t_{i}-\left(\max _{k} R_{i k}\right)\left(1-x_{l j}\right), & \forall l, i, j, R_{l j} \leq R_{i j}, \\
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}+c\right) x_{l j}, & \forall i, \\
t_{i} \geq 0, & \forall l, i, \\
u_{l i j} \geq 0, & \forall l, i, j, R_{l j} \leq R_{i j}, \\
x_{i j} \in\{0,1\}, & \forall i, j .
\end{array}
$$

If $c<1$, then we need to replace the constraint

$$
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}+c\right) x_{l j}, \forall i
$$

by

$$
t_{i} \leq \frac{1}{c}\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}+c\right) x_{l j}, \forall i
$$

so that the right-hand-side is $\geq\left(\max _{k} R_{i k}\right)$ whenever the summation is non-zero.
The constant $c$ used in the formulation is assumed to be small enough such that the difference between $P r_{i j}^{*}$ and $P r_{i j}$ is almost negligible but that the probability is positive when the surplus is nonnegative. In future work, we may like to examine the effect of the value of $c$ on the problem and determine the ideal value for the constant.

From experiments, we found that the Share-of-Surplus Model is hard to solve. We would like to explore other ways to formulate it or perhaps find different cuts in order to
decrease the solution time. We may also want to investigate other monotonically increasing functions to describe the probability which would perhaps lead to formulations that are easier to solve. The experimental results are discussed further in Chapter 9.

## Chapter 5

## Price Sensitive Model

A common economic assumption is that as the price of a product decreases, the demand increases. In this chapter, we discuss a probabilistic choice model where the probability of a customer buying a particular product with nonnegative surplus is inversely proportional to the price of the product. Unlike the models discussed in the previous chapters, the probability $P r_{i j}$ depends only on $\pi_{j}$.

### 5.1 The Model

Again, let $p_{i j}$ be the auxiliary variable where $p_{i j}:=\pi_{j} \beta_{i j}$. Consider the probability of customer segment $i$ buying product $j$ as defined below:

$$
\operatorname{Pr}_{i j}:=\left\{\begin{array}{cc}
0, & \text { if } \beta_{i j}=0(\text { Case 0) } \\
1, & \text { if } \beta_{i j}=1, \sum_{k} \beta_{i k}=1(\text { Case 1) } \\
\frac{1}{\sum_{k} \beta_{i k}-1}\left(\beta_{i j}-\frac{p_{i j}}{\sum_{k} p_{i k}}\right), & \text { otherwise (Case 2) }
\end{array}\right.
$$

In this model, $P r_{i j}=0$ if product $j$ has a negative surplus for segment $i($ Case 0$), P r_{i j}=$ 1 if product $j$ is the only product with nonnegative surplus (Case 1), and if there are multiple products with nonnegative surplus (Case 2), $P r_{i j}$ is inversely proportional to the price of those products. Thus, we call this model the Price Sensitive Model. With some reformulation, the expected revenue maximization problem corresponding to this model can be formulated as a second-order cone problem with integer variables.

If $R e v_{i j}$ is the expected revenue earned from segment $i$ for product $j$, we want $R e v_{i j}=0$ in Case 0, $\operatorname{Rev}_{i j}=\pi_{j}$ in Case 1, and $\operatorname{Rev}_{i j}=\frac{\pi_{j}}{\sum_{k} \beta_{i k}-1}\left(\beta_{i j}-\frac{p_{i j}}{\sum_{k} p_{i k}}\right)$ in Case 2. Let $z_{i}$ be a binary decision variable where $z_{i}=1$ if segment $i$ buys exactly one product and $z_{i}=0$ otherwise. The expected revenue $R e v_{i j}$ earned from segment $i$ buying product $j$ can be modeled as:

$$
\operatorname{Rev}_{i j}:=\left\{\begin{array}{cc}
0, & \text { if } \sum_{j} p_{i j}=0 \\
\frac{\pi_{j}}{\sum_{k} \beta_{i k}-1+z_{i}}\left(\beta_{i j}-\frac{p_{i j}}{\sum_{k} p_{i k}}\right)+\pi_{j} z_{i}, & \text { otherwise }
\end{array}\right.
$$

Then the expected revenue from segment $i, \operatorname{Rev}_{i}$, is $\operatorname{Rev}_{i}=\sum_{j=1}^{m} R e v_{i j}$ or

$$
\operatorname{Rev}_{i}:=\left\{\begin{array}{cc}
0, & \text { if } \sum_{j} p_{i j}=0 \\
\left(\frac{\sum_{j} p_{i j}}{\sum_{j} \beta_{i j}-1+z_{i}}-\frac{\sum_{j} p_{i j}^{2}}{\left(\sum_{j} \beta_{i j}-1+z_{i}\right)\left(\sum_{k} p_{i k}\right)}\right)+\left(\sum_{j} p_{i j}\right) z_{i}, & \text { otherwise }
\end{array}\right.
$$

Let $s_{i}$ be an auxiliary variable where $s_{i}:=\left(\sum_{j} p_{i j}\right) z_{i}$, which we know is a relationship that can be modeled by linear constraints. Also let

$$
t_{i}:=\left\{\begin{array}{cc}
0, & \text { if } \sum_{j} p_{i j}=0, \\
\frac{\sum_{j} p_{i j}}{\sum_{j} \beta_{i j}-1+z_{i}}-\frac{\sum_{j} p_{i j}^{2}}{\left(\sum_{j} \beta_{i j}-1+z_{i}\right)\left(\sum_{k} p_{i k}\right)}, & \text { otherwise } .
\end{array}\right.
$$

Then the expected revenue maximization problem corresponding to the Price Sensitive Model is:

$$
\begin{array}{cc}
\max &  \tag{5.1}\\
\sum_{i=1}^{n} N_{i} t_{i}+\sum_{i=1}^{n} N_{i} s_{i}, & \\
\text { s.t. } \sum_{j} p_{i j}^{2} \leq\left(\sum_{j} p_{i j}\right)^{2}-t_{i}\left(\sum_{j} \beta_{i j}-1+z_{i}\right)\left(\sum_{j} p_{i j}\right), & \forall i, \\
t_{i} \leq \sum_{j} p_{i j}, & \forall i, \\
s_{i} \leq \sum_{j} p_{i j}, & \forall i, \\
s_{i} \leq \sum_{j} R_{i j} z_{i}, & \forall i, \\
\sum_{j} \beta_{i j} \leq z_{i}+m\left(1-z_{i}\right), & \forall i, \\
z_{i} \geq \beta_{i j}-\sum_{k \neq j} \beta_{i k}, & \forall i, \forall j, \\
(\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, & \forall i, j, \\
\beta_{i j} \in\{0,1\}, & \forall i, j, \\
z_{i} \in\{0,1\}, s_{i} \geq 0, &
\end{array}
$$

where $P$ is the polyhedron defined in Section 1.2.
We need to reformulate the first set of constraints to make the continuous relaxation of (5.1) a convex programming problem. Let us look at the first set of constraints:

$$
\begin{equation*}
\sum_{j} p_{i j}^{2} \leq\left(\sum_{j} p_{i j}\right)^{2}-t_{i}\left(\sum_{j} \beta_{i j}-1+z_{i}\right)\left(\sum_{j} p_{i j}\right), \quad \forall i \tag{5.2}
\end{equation*}
$$

However, if $t_{i}>0$ then $z_{i}=0$ and if $z_{i}=1$ then $t_{i}=0$. Thus, we can eliminate the $z_{i}$ term from the above inequality if we include the constraint

$$
t_{i} \leq \max _{k} R_{i k}\left(1-z_{i}\right) .
$$

Also, let $b_{i j}$ be auxiliary variables where $b_{i j}:=t_{i} \beta_{i j}$. Again, such relations can be modeled by linear constraints. Then, (5.2) becomes

$$
\sum_{j} p_{i j}^{2} \leq\left(\sum_{j} p_{i j}\right)\left(\sum_{j} p_{i j}-\sum_{j} b_{i j}+t_{i}\right), \quad \forall i
$$

Let us further introduce auxiliary variables $x_{i}$ and $y_{i}$ such that:

$$
\begin{aligned}
& x_{i}+y_{i}=\sum_{j} p_{i j}-\sum_{j} b_{i j}+t_{i}, \forall i, \\
& x_{i}-y_{i}=\sum_{j} p_{i j}, \quad \forall i .
\end{aligned}
$$

Thus, the constraint becomes

$$
\sum_{j} p_{i j}^{2} \leq\left(x_{i}+y_{i}\right)\left(x_{i}-y_{i}\right)=x_{i}^{2}-y_{i}^{2}
$$

Then (5.2) can be represented by the second-order cone and linear constraints shown below:

$$
\begin{array}{cl}
\sqrt{\sum_{j} p_{i j}^{2}+y_{i}^{2}} \leq x_{i}, & \forall i,  \tag{5.3}\\
x_{i}+y_{i}=\sum_{j} p_{i j}-\sum_{j} b_{i j}+t_{i}, & \forall i, \\
x_{i}-y_{i}=\sum_{j} p_{i j}, & \forall i, \\
t_{i} \leq \tilde{R}_{i}\left(1-z_{i}\right), & \forall i, \forall j, \\
b_{i j} \leq \tilde{R}_{i} \beta_{i j}, & \forall i, \\
b_{i j} \leq t_{i}, & \forall i, \forall j, \\
b_{i j} \geq t_{i}-\tilde{R}_{i}\left(1-\beta_{i j}\right), & \forall i, \forall j,
\end{array}
$$

where $\tilde{R}_{i}:=\max _{j} R_{i j}$.
The formulation of the Price Sensitive Model becomes:

$$
\begin{array}{cl}
\max \sum_{i=1}^{n} N_{i} t_{i}+\sum_{i=1}^{n} N_{i} s_{i}, &  \tag{5.4}\\
\text { s.t. } & \sqrt{\sum_{j} p_{i j}^{2}+y_{i}^{2}} \leq x_{i}, \\
x_{i}+y_{i}=\sum_{j} p_{i j}-\sum_{j} b_{i j}+t_{i}, & \forall i, \\
x_{i}-y_{i}=\sum_{j} p_{i j}, & \forall i, \\
t_{i} \leq \tilde{R}_{i}\left(1-z_{i}\right), & \forall i, \forall j, \\
b_{i j} \leq \tilde{R}_{i} \beta_{i j}, & \forall i, \\
b_{i j} \leq t_{i}, & \forall i, \forall j, \\
b_{i j} \geq t_{i}-\tilde{R}_{i}\left(1-\beta_{i j}\right), & \forall i, \forall j, \\
t_{i} \leq \sum_{j} p_{i j}, & \forall i, \\
s_{i} \leq \sum_{j} p_{i j}, & \forall i, \\
s_{i} \leq \sum_{j} R_{i j} z_{i}, & \forall i, \\
\sum_{j} \beta_{i j} \leq z_{i}+m\left(1-z_{i}\right), & \forall i, \\
z_{i} \geq \beta_{i j}-\sum_{k \neq j} \beta_{i k}, & \forall i, \forall j, \\
(\boldsymbol{p}, \boldsymbol{\pi}, \boldsymbol{\beta}) \in P, & \\
\beta_{i j} \in\{0,1\}, & \forall i, j, \\
z_{i} \in\{0,1\}, s_{i} \geq 0, b_{i j} \geq 0, & \forall i, j .
\end{array}
$$

### 5.2 Computational Results

Table 5.1 shows some computational results of running small problem instances with the Price Sensitive Model formulation (5.4). The first ten cases ( $\mathrm{t}^{*}$ ) each has 3 products and 3 segments. The next six cases (rand*) each has 5 products and 5 segments and the reservation prices are random numbers that range from 500 to 1200 . The rest of the cases are subsets of real data and the file name $(n \times m)$ indicates the number of segments and the number of products, respectively, in the inputs. The model was run with default parameter
settings of CPLEX 9.1 and a time limit of two hours ( 7200 CPU seconds).
For each case, Table 5.1 shows the objective value ("Objective Value"), total CPU seconds required to find a provable optimal solution ("Time"), total number of dual simplex iterations ("Number of Iterations"), total number of branch-and-bound nodes ("Number of Nodes"), total number of branch-and-bound nodes unvisited ("Number of Nodes Left"), and the optimality gap when CPLEX was terminated ("Gap").

Since the formulation has a second-order cone constraint, only small problems can be solved quickly. The smaller cases can be solved to optimality fairly quickly, but the solutions for the last two cases (" $10 \times 10$ " and " $10 \times 20$ ") found by CPLEX after 2 hours have large optimality gaps.

| File | CPLEX <br> Status | Objective <br> Value | Time | Number of Iterations | Number of Nodes | Number of Nodes Left | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| t1 | Optimal | 14.47 | 0.61 | 861 | 106 | 0 | 0 |
| t2 | Optimal | 18.46 | 0.74 | 616 | 54 | 0 | 0 |
| t3 | Optimal | 16.00 | 0.53 | 453 | 48 | 0 | 0 |
| t4 | Optimal | 12.95 | 1.00 | 980 | 86 | 0 | 0 |
| t5 | Optimal | 14.11 | 0.69 | 716 | 84 | 0 | 0 |
| t6 | Optimal | 90.00 | 0.76 | 1023 | 98 | 0 | 0 |
| t7 | Optimal | 9.09 | 0.67 | 579 | 46 | 0 | 0 |
| t8 | Optimal | 12.95 | 1.01 | 980 | 86 | 0 | 0 |
| t9 | Optimal | 92.00 | 0.78 | 940 | 86 | 0 | 0 |
| t10 | Optimal | 21.00 | 0.61 | 507 | 52 | 0 | 0 |
| rand1 | Optimal | 4277.49 | 21.30 | 20625 | 1682 | 0 | 0 |
| rand2 | Optimal | 113443274.07 | 14.47 | 12025 | 735 | 3 | 0 |
| rand3 | Optimal | 100887782.67 | 9.67 | 7254 | 498 | 42 | 0 |
| rand4 | Optimal | 113332142.77 | 6.34 | 4899 | 316 | 0 | 0 |
| rand5 | Optimal | 110221028.53 | 10.08 | 7443 | 474 | 5 | 0 |
| rand6 | Optimal | 101665597.25 | 12.85 | 11705 | 873 | 13 | 0 |
| 2x2 | Optimal | 2656.00 | 0.01 | 8 | 0 | 1 | 0 |
| 2x5 | Optimal | 121519.94 | 0.59 | 768 | 56 | 0 | 0 |
| 5x2 | Optimal | 200078.66 | 0.54 | 785 | 81 | 0 | 0 |
| $5 \times 5$ | Optimal | 163817.58 | 23.62 | 25662 | 2151 | 0 | 0 |
| 5x10 | Optimal | 217195.42 | 4232.98 | 2685098 | 182506 | 15 | 0.01 |
| 10x5 | Optimal | 324163.32 | 1331.47 | 970831 | 79289 | 1 | 0.01 |
| 10x10 | Feasible | 381825.37 | 7247.06 | 1655571 | 105230 | 58508 | 71.96 |
| 10x20 | Feasible | 553040.97 | 7248.08 | 168276 | 7984 | 5627 | 85.77 |

Table 5.1: Price Sensitive Model

## Chapter 6

## Properties of the Models

In this chapter, we discuss properties of the optimal solutions of our models for specialized data sets. We also compare the optimal prices $\pi_{j}$ and variables $\beta_{i j}$ for all the models on different sets of reservation prices.

### 6.1 Special Properties

Lemma 6.1.1. Suppose $n \leq m$, and for every segment $i$, we can find a unique product $p(i)$ such that $R_{i p(i)}=\max _{j} R_{i j}$. Further suppose that for each of such product $p(i)$, segment $i$ is the unique segment such that $R_{i p(i)}=\max _{k} R_{k p(i)}$.

Let $J:=\{j \mid j=p(i)$ for some segment $i \neq 0\}$.
Then in the optimal solution,

$$
\beta_{i j}:= \begin{cases}1, & \text { if } j=p(i) \\ 0, & \text { otherwise }\end{cases}
$$

In the alternative formulations, the optimal solution is

$$
x_{i j}:=\left\{\begin{array}{lc}
1, & \text { if } j=p(i) \\
1, & \text { if } i=0 \text { and } j \notin J \\
0, & \text { otherwise }
\end{array}\right.
$$

where segment 0 is the dummy segment.

Proof. The maximum revenue we can get from segment $i$ is $N_{i}\left(\max _{j} R_{i j}\right)=N_{i} R_{i p(i)}$. This happens when segment $i$ only buys product $p(i)$. Hence, the objective value of any feasible solution is at most $\sum_{i=1}^{n} N_{i} R_{i p(i)}$.

Consider the solution with the $x$ variables assigned as in the lemma and

$$
\pi_{j}:=\left\{\begin{array}{cc}
\max _{k=1, \ldots, n} R_{k j}, & \text { if } j \in J \\
R_{0 j}, & \text { otherwise }
\end{array}\right.
$$

Because of the assumptions in the Lemma, the solution is feasible with exactly one segment with nonnegative surplus for each product $j \in J$ and no segment buying any products $j \notin J$. That implies every segment only buys the product with the maximum reservation price. The corresponding objective value is $\sum_{i=1}^{n} N_{i} R_{i p(i)}$, and thus the solution is optimal.

The following lemmas apply to the Uniform Distribution Model (Chapter 2), the Weighted Uniform Model (Chapter 3), and the Share-of-Surplus Model with restriced prices (Section 4.4).

Lemma 6.1.2. If the optimal values for the $x$ (or $\beta$ ) variables are known, then the optimal prices can be determined. Furthermore, if the optimal prices are known, then the optimal values for the $x$ (or $\beta$ ) variables can be determined.

Proof. If the $x$ variables are known, then $\pi_{j}=R_{i j}$ where $i$ is the segment such that $x_{i j}=1$. If the $\beta$ variables are known, then $\pi_{j}=\min _{i: \beta_{i j}=1} R_{i j}$.

If the optimal prices are known, we know that each $\pi_{j}$ equals the reservation price of some segment. Then in the optimal solution,

$$
x_{i j}:= \begin{cases}1, & \text { if } R_{i j}=\pi_{j}, \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\beta_{i j}:= \begin{cases}1, & \text { if } R_{i j} \geq \pi_{j} \\ 0, & \text { otherwise }\end{cases}
$$

These are the only values that would make the solution feasible.

Lemma 6.1.3. Suppose $R_{s t}$ is the maximum reservation price over all segments and products and only one pair of segment and product has that reservation price. Then in any optimal solution, segment $s$ buys product $t$.

Proof. Suppose in an optimal solution, $\beta_{s t}=0$. We know that $\beta_{i t}=0$ for all segments $i$ in all three models. Let v be the optimal value. Consider the objective value $\mathrm{v}^{\prime}$ if $\beta_{s t}$ is set to 1 . We will have $\pi_{t}=R_{s t}$.

In the Uniform Distribution Model, if $\sum_{j} \beta_{s j}=0$, then clearly the objective value increases by $N_{s} R_{s t}$. If $\sum_{j} \beta_{s j} \geq 1$, then

$$
\begin{align*}
v^{\prime}- & v=N_{s}\left(\frac{R_{s t}+\sum_{j} p_{s j}}{1+\sum_{j} \beta_{s j}}-\frac{\sum_{j} p_{s j}}{\sum_{j} \beta_{s j}}\right) \\
& =N_{s}\left(\frac{R_{s t} \sum_{j} \beta_{s j}-\sum_{j} p_{s j}}{\left(\sum_{j} \beta_{s j}\right)\left(1+\sum_{j} \beta_{s j}\right)}\right) \\
& =N_{s}\left(\frac{R_{s t} \sum_{j} \beta_{s j}-\sum_{j} \pi_{j} \beta_{s j}}{\left(\sum_{j} \beta_{s j}\right)\left(1+\sum_{j} \beta_{s j}\right)}\right) \\
& =N_{s}\left(\frac{\sum_{j}\left(R_{s t}-\pi_{j}\right) \beta_{s j}}{\left(\sum_{j} \beta_{s j}\right)\left(1+\sum_{j} \beta_{s j}\right)}\right) \tag{6.1}
\end{align*}
$$

$R_{s t}$ is the maximum reservation price and each of the $\pi_{j}$ 's equals to a reservation price, so $R_{s t} \geq \pi_{j} \quad \forall j$. The condition $\sum_{j} \beta_{s j} \geq 1$ implies that $\beta_{s k}=1$ for some product $k \neq t$, and we know that $R_{s t}>\pi_{k}$. So the expression (6.1) is strictly positive. This contradicts the fact that it is an optimal solution. Therefore, $\beta_{s t} \geq 1$ in an optimal solution.

Similarly, in the Weighted Uniform Model, if $\sum_{j} \beta_{s j}=0$, then clearly the objective value increases by $N_{s} R_{s t}$. If $\sum_{j} \beta_{s j}=1$, then

$$
\begin{gathered}
v^{\prime}-v=N_{s}\left(\frac{R_{s t} \pi_{t}+\sum_{j} R_{s j} \pi_{j} \beta_{s j}}{R_{s t}+\sum_{j} R_{s j} \beta_{s j}}-\frac{\sum_{j} R_{s j} \pi_{j} \beta_{s j}}{\sum_{j} R_{s j} \beta_{s j}}\right) \\
=N_{s} R_{s t}\left(\frac{\pi_{t} \sum_{j} R_{s j} \beta_{s j}-\sum_{j} R_{s j} \pi_{j} \beta_{s j}}{\left(\sum_{j} R_{s j} \beta_{s j}\right)\left(R_{s t}+\sum_{j} R_{s j} \beta_{s j}\right)}\right)
\end{gathered}
$$

$$
=N_{s} R_{s t}\left(\frac{\sum_{j}\left(\pi_{t}-\pi_{j}\right) R_{s j} \beta_{s j}}{\left(\sum_{j} R_{s j} \beta_{s j}\right)\left(R_{s t}+\sum_{j} R_{s j} \beta_{s j}\right)}\right)
$$

where $\pi_{t}=R_{s t}>\pi_{j} \quad \forall j$.
In the Share-of-Surplus Model with restricted prices, if $\sum_{j} \beta_{s j}=0$, then the objective value increases by $N_{s} R_{s t}$. Otherwise,

$$
\begin{gathered}
v^{\prime}-v=N_{s}\left(\frac{\pi_{t}\left(R_{s t}-\pi_{t}+c\right)+\sum_{j} \pi_{j}\left(R_{s j}-\pi_{j}+c\right) \beta_{s j}}{\left(R_{s t}-\pi_{t}+c\right)+\sum_{j}\left(R_{s j}-\pi_{j}+c\right) \beta_{s j}}-\frac{\sum_{j} \pi_{j}\left(R_{s j}-\pi_{j}+c\right) \beta_{s j}}{\sum_{j}\left(R_{s j}-\pi_{j}+c\right) \beta_{s j}}\right) \\
=N_{s}\left(R_{s t}-\pi_{t}+c\right)\left(\frac{\sum_{j}\left(\pi_{t}-\pi_{j}\right)\left(R_{s j}-\pi_{j}+c\right) \beta_{s j}}{\left(\sum_{j}\left(R_{s j}-\pi_{j}+c\right) \beta_{s j}\right)\left(\left(R_{s t}-\pi_{t}+c\right)+\sum_{j}\left(R_{s j}-\pi_{j}+c\right) \beta_{s j}\right)}\right) \\
>0
\end{gathered}
$$

where we let $c>0$ to avoid singularity.
In all three models, we showed that the solution is not optimal if $\beta_{s t}=0$. So in any optimal solution, segment $s$ buys product $t$.

### 6.2 Comparisons

In this section, we compare the optimal solution, in terms of the prices $\pi_{j}$ 's and $\beta_{i j}$ 's, of the different models. We notice in most examples, the four models have the same optimal solutions. Of the ones where they have different optimal solutions, usually the Uniform Distribution Model, the Weighted Uniform model, and the Price Sensitive model have the same optimal solution, while the Share-of-Surplus Model has a different optimal solution.

The optimal solutions of the models for four small test cases are shown to illustrate the differences in the models (Tables 6.1, 6.2, 6.3, and 6.4). Each table corresponds to a different set of reservations prices. The matrix $\boldsymbol{R}$ corresponds to the reservation prices where the rows correspond to the customer segments and the columns correspond to the products. The column "Price $\pi$ " corresponds to the optimal prices, the " $\beta$ " corresponds to the optimal $\beta_{i j}$ and "Obj Value" corresponds to the optimal objective value.

The only difference between the inputs of Test 1 (Table 6.1) and Test 2 (Table 6.2) is $R_{21}$. All the models have the same optimal solution for Test 1, but the Share-of-Surplus Model has a different optimal solution from the other models in Test 2.

Let us consider why the Share-of-Surplus Model has a different optimal solution in Test 2. Clearly, $\beta_{11}=1$ in an optimal solution in all the models (by Lemma 6.1.3). If we have $\beta_{12}=1$ and $\beta_{21}=1$, then we get more revenue from segment 2. In the Uniform, Weighted Uniform, and Price Sensitive models, this solution gives a higher objective value since $\pi_{2}=R_{12}$ is quite high and the probability of segment 1 buying product $2, \operatorname{Pr}_{12}$, is high enough so that the decrease in revenue from segment 1 is small compared to the revenue from segment 2. $P r_{12}$ is approximately $0.5,0.44$, and 0.36 in the Uniform, Weighted Uniform, and Price Sensitive Models respectively. It is different with the Share-of-Surplus Model, however, because the surplus of segment 1 for product $1\left(R_{11}-R_{21}=5\right)$ is relatively high. The probability of segment 1 buying the lower priced product, $P r_{11}$, is quite high at 0.86 , so the decrease in revenue from segment 1 is greater than the gain in revenue from segment 2. Therefore, the optimal solution in the Share-of-Surplus Model is simply $\beta_{11}=1$ and all other $\beta$ 's are zero.

Compared to Test 2, the surplus ( $R_{11}-R_{21}$ ) is smaller in Test 1 and also $\pi_{1}=R_{21}$ is higher. Therefore, with $\beta_{12}=1$ and $\beta_{21}=1$, the decrease in revenue from segment 1 ( $\$ 1.75$ ) is smaller than the gain in revenue from segment $2(\$ 7)$ in the Share-of-Surplus Model.

In Test 3 (Table 6.3), the Weighted Uniform Model has a different optimal solution than the other models. In the other three models, segments 1 and 2 only buy product 1 , and segment 3 does not buy any products. This is because the reservation prices of segment 3 are relatively low. If segment 3 buys any product, the revenue from segment 1 and 2 will decrease significantly because of the lower prices and the decrease in revenue cannot be compensated by the extra revenue from segment 3. However, this is not the case in the Weighted Uniform Model. Recall that in the Weighted Uniform Model, the probability of segment $i$ buying product $j$ is proportional to $R_{i j}$. For both segments 1 and 2, the reservation prices for product 1 are much greater than the reservation prices for product 2. $R_{11}$ and $R_{21}$ are almost double $R_{12}$ and $R_{22}$, respectively. Therefore, when the price of product 2 is 22 , the probability of segments 1 and 2 buying product 1 at a

| Test 1 | $\boldsymbol{R}=\left[\begin{array}{lll}9 & 8 & 3 \\ 7 & 3 & 2 \\ 1 & 1 & 1\end{array}\right]$ |  |  |
| :---: | :---: | :---: | :---: |
|  | Price $\pi$ | $\beta$ | Obj Value |
| Uniform | 784 | $\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 14.50 |
| Share of Surplus | 784 | $\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 14.25 |
| Weighted <br> Uniform | 784 | $\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 14.47 |
| Price <br> Sensitive | 784 | $\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 14.47 |

Table 6.1: Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models.
high price is much greater than the probability of those segments buying product 2 . The extra revenue from segment 3 overcompensates the small loss in revenue from the other segments.

Test 4 (Table 6.4) is another example in which the Share-of-Surplus Model has a different optimal solution as the other models.

We also compare the models' optimal solutions on random data with 5 segments and 5 products in which the reservation prices are uniformly generated from a specified range. The difference in the optimal prices are shown in Tables 6.5 and 6.6. We let 'U', 'W', 'S', and ' P ' represent the Uniform, Weighted Uniform, Share-of-Surplus, and Price Sensitve Models respectively. For example, the column "U - W" shows the difference in the optimal prices of the Uniform Model and the Weighted Uniform Model. Suppose $\pi_{j}^{1}$ are the optimal prices of one model and $\pi_{j}^{2}$ are those of another model. Then the entry in the table is

| Test 2 | $\boldsymbol{R}=\left[\begin{array}{l}9 \\ 4 \\ 1\end{array}\right.$ | [ $\left.\begin{array}{ll}8 & 3 \\ 3 & 2 \\ 1 & 1\end{array}\right]$ |  |
| :---: | :---: | :---: | :---: |
|  | Price $\pi$ | $\beta$ | Obj Value |
| Uniform | 484 | $\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 10 |
| Share of Surplus | 994 | $\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 9 |
| Weighted <br> Uniform | 484 | $\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 9.8824 |
| Price Sensitive | 484 | $\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | 9.3333 |

Table 6.2: Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models.

| Test 3 | $\boldsymbol{R}=\left[\begin{array}{llll}49 & 28 & 27 \\ 46 & 25 & 23 \\ 24 & 22 & 21\end{array}\right]$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Price $\pi$ |  | $\beta$ |  | Obj Value |
| Uniform | 46 | 29 | 28 | 1 | 0 | 0

Table 6.3: Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models.


Table 6.4: Optimal Prices $\pi_{j}$ and $\beta_{i j}$ of all four models.
$\sum_{j=1}^{m}\left|\pi_{j}^{1}-\pi_{j}^{2}\right|$.
The Uniform and the Weighted Uniform Models have the same optimal prices for all these problem instances, probably because it is unlikely in the random data to have the reservation prices for one product to be much larger than those of another product as in Test 3 (Table 6.3). These two models have the same optimal prices as the Price Sensitive Model except in only 2 of the problem instances. The same optimal prices (hence, same optimal $\beta$ 's) imply that the Uniform Model may not be as naive as it seems since in most cases, it gives the same solutions as the two other more realistic models. However, the Share-of-Surplus Model appears to behave in a special way with results different from the other three models in more cases.

Tables 6.7 and 6.8 show the differences in the optimal values of each pair of the models. For example, the column " $\mathrm{U}-\mathrm{W}$ " is the optimal value of the Uniform Model minus the optimal value of the Weighted Uniform Model. The differences in the optimal values of the Uniform, the Weighted Uniform, and the Price Sensitive Models are quite small in many problem instances, but the Share-of-Surplus Model gives smaller optimal values than the other three models in most cases (the columns "U - S," "W - S," and "P - S" have positive and relatively large entries). It is most likely because the probability for a segment to buy a lower-priced product is usually higher in the Share-of-Surplus Model than in the other three models.

[^0]|  |  | Difference in Prices |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Range | Test \# | U - W | U-S | U - P | S - P |
| 1000-1100 | 1 | 0 | 0 | 0 | 0 |
|  | 2 | 0 | 0 | 0 | 0 |
|  | 3 | 0 | 0 | 0 | 0 |
|  | 4 | 0 | 0 | 0 | 0 |
|  | 5 | 0 | 1 | 0 | 1 |
|  | 6 | 0 | 0 | 0 | 0 |
|  | 7 | 0 | 4 | 1 | 3 |
|  | 8 | 0 | 0 | 0 | 0 |
|  | 9 | 0 | 0 | 0 | 0 |
|  | 10 | 0 | 0 | 0 | 0 |
| 1000-1500 | 1 | 0 | 0 | 0 | 0 |
|  | 2 | 0 | 126 | 0 | 126 |
|  | 3 | 0 | 0 | 0 | 0 |
|  | 4 | 0 | 35 | 0 | 35 |
|  | 5 | 0 | 73 | 0 | 73 |
|  | 6 | 0 | 356 | 0 | 356 |
|  | 7 | 0 | 0 | 0 | 0 |
|  | 8 | 0 | 45 | 0 | 45 |
|  | 9 | 0 | 0 | 0 | 0 |
|  | 10 | 0 | 0 | 0 | 0 |
| 1000-1700 | 1 | 0 | 0 | 0 | 0 |
|  | 2 | 0 | 146 | 0 | 146 |
|  | 3 | 0 | 11 | 0 | 11 |
|  | 4 | 0 | 0 | 0 | 0 |
|  | 5 | 0 | 389 | 389 | 0 |
|  | 6 | 0 | 0 | 0 | 0 |
|  | 7 | 0 | 0 | 0 | 0 |
|  | 8 | 0 | 0 | 0 | 0 |
|  | 9 | 0 | 0 | 0 | 0 |
|  | 10 | 0 | 105 | 0 | 105 |

Table 6.5: Comparison of the Prices in the Models' Solutions for Random Tests (1)

|  |  | Difference in Prices |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Range | Test \# | $\mathrm{U}-\mathrm{W}$ | $\mathrm{U}-\mathrm{S}$ | $\mathrm{U}-\mathrm{P}$ | $\mathrm{S}-\mathrm{P}$ |
|  | 1 | 0 | 199 | 0 | 199 |
|  | 2 | 0 | 257 | 0 | 257 |
| $1000-2000$ | 3 | 0 | 0 | 0 | 0 |
|  | 4 | 0 | 0 | 0 | 0 |
|  | 5 | 0 | 0 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 |
|  | 7 | 0 | 0 | 0 | 0 |
|  | 8 | 0 | 768 | 0 | 768 |
|  | 9 | 0 | 156 | 0 | 156 |
|  | 10 | 0 | 0 | 0 | 0 |
|  | 1 | 0 | 10 | 0 | 10 |
|  | 2 | 0 | 0 | 0 | 0 |
|  | 3 | 0 | 1 | 1 | 0 |
|  | 4 | 0 | 716 | 0 | 716 |
|  | 5 | 0 | 0 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 |
|  | 7 | 0 | 137 | 0 | 137 |
|  | 8 | 0 | 0 | 0 | 0 |
|  | 9 | 0 | 0 | 0 | 0 |
|  | 10 | 0 | 0 | 0 | 0 |

Table 6.6: Comparison of the Prices in the Models' Solutions for Random Tests (2)

|  |  | Difference in Objective Value |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range | Test \# | U - W | U - S | U-P | W-S | W - P | P - S |
| 1000-1100 | 1 | -0.01 | 1.00 | 0.01 | 1.01 | 0.02 | 0.99 |
|  | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 3 | 0.07 | 45.09 | 0.49 | 45.02 | 0.42 | 44.60 |
|  | 4 | -0.04 | 4.66 | 0.02 | 4.70 | 0.06 | 4.64 |
|  | 5 | -0.05 | 12.18 | 0.24 | 12.23 | 0.29 | 11.93 |
|  | 6 | -0.38 | 21.90 | 0.28 | 22.28 | 0.66 | 21.62 |
|  | 7 | -0.10 | 32.63 | 0.66 | 32.73 | 0.76 | 31.97 |
|  | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 9 | 0.07 | 9.39 | 0.14 | 9.32 | 0.07 | 9.25 |
|  | 10 | -0.10 | 24.17 | 0.18 | 24.27 | 0.28 | 23.99 |
| 1000-1500 | 1 | -1.36 | -20.63 | 0.62 | -19.27 | 1.98 | -21.26 |
|  | 2 | -5.17 | 132.60 | 10.96 | 137.77 | 16.13 | 121.65 |
|  | 3 | -0.31 | 44.17 | 1.65 | 44.48 | 1.96 | 42.53 |
|  | 4 | -0.22 | 9.00 | 1.42 | 9.22 | 1.64 | 7.58 |
|  | 5 | 0.22 | 14.00 | 0.23 | 13.78 | 0.01 | 13.77 |
|  | 6 | -1.30 | 117.19 | 5.10 | 118.49 | 6.40 | 112.09 |
|  | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 8 | -7.00 | 112.90 | 8.77 | 119.90 | 15.77 | 104.13 |
|  | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 10 | -0.01 | 8.44 | 0.08 | 8.45 | 0.09 | 8.36 |
| 1000-1700 | 1 | -2.05 | 73.47 | 3.61 | 75.52 | 5.66 | 69.86 |
|  | 2 | 0.27 | 55.86 | 1.40 | 55.59 | 1.13 | 54.46 |
|  | 3 | 0.22 | 15.50 | 0.44 | 15.28 | 0.22 | 15.06 |
|  | 4 | -0.12 | -5.75 | 0.03 | -5.63 | 0.15 | -5.78 |
|  | 5 | -8.93 | 83.78 | 2.76 | 92.71 | 11.69 | 81.03 |
|  | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 8 | -3.33 | 136.89 | 3.78 | 140.22 | 7.11 | 133.11 |
|  | 9 | 0.50 | 30.60 | 0.65 | 30.10 | 0.15 | 29.94 |
|  | 10 | -4.74 | 113.11 | 7.19 | 117.85 | 11.93 | 105.92 |

Table 6.7: Comparison of the Objective Values for Random Tests (1)

|  |  | Difference in Objective Value |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Range | Test \# | $\mathrm{U}-\mathrm{W}$ | $\mathrm{U}-\mathrm{S}$ | $\mathrm{U}-\mathrm{P}$ | $\mathrm{W}-\mathrm{S}$ | $\mathrm{W}-\mathrm{P}$ | $\mathrm{P}-\mathrm{S}$ |
| $1000-2000$ | 1 | -9.94 | 201.44 | 19.48 | 211.38 | 29.42 | 181.96 |
|  | 2 | -19.04 | 487.80 | 83.00 | 506.84 | 102.04 | 404.80 |
|  | 3 | 0 | 0 | 0.01 | 0 | 0.01 | -0.01 |
|  | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 5 | 0.52 | 18.24 | 0.20 | 17.72 | -0.32 | 18.05 |
|  | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 7 | -4.44 | 113.49 | 6.21 | 117.93 | 10.65 | 107.28 |
|  | 8 | -2.11 | 185.00 | 23.07 | 187.11 | 25.18 | 161.93 |
|  | 9 | -1.93 | 18.43 | 1.12 | 20.36 | 3.05 | 17.31 |
|  | 10 | 0 | 0 | 0.01 | 0 | 0.01 | -0.01 |
| $1000-3000$ | 1 | -0.90 | 81.00 | 3.43 | 81.90 | 4.33 | 77.57 |
|  | 2 | -0.20 | 33.77 | 0.37 | 33.97 | 0.57 | 3.39 |
|  | 3 | -0.20 | 208.21 | 8.75 | 208.41 | 8.95 | 199.47 |
|  | 4 | -35.80 | 203.74 | 21.62 | 239.54 | 57.42 | 182.13 |
|  | 5 | -2.50 | 177.71 | 11.55 | 180.21 | 14.05 | 166.16 |
|  | 6 | 0 | 0 | 0.01 | 0 | 0.01 | -0.01 |
|  | 7 | 12.20 | 326.37 | 30.57 | 314.17 | 18.37 | 295.79 |
|  | 8 | 3.80 | 54.62 | 11.83 | 50.82 | 8.03 | 42.80 |
|  | 9 | 0 | 0 | 0.01 | 0 | 0.01 | -0.01 |
|  | 10 | -17.60 | 180.03 | 10.80 | 197.63 | 28.40 | 169.23 |

Table 6.8: Comparison of the Objective Values for Random Tests (2)

## Chapter 7

## Enhancements

In this chapter, we explore ways to improve the solution time for the mixed-integer programming problems. First, we develop heuristics to efficiently find "good" feasible solutions. Second, we study two sets of valid inequalities in hopes to find effective cutting planes.

### 7.1 Heuristics

As we will see in Chapter 9, CPLEX takes significant time just to find a feasible solution for larger problems. Fortunately, we can easily find a feasible mixed-integer solution for the formulations of all our models. For example, in the alternative formulations of the models, the solution

$$
\begin{aligned}
& x_{1 j}=1, \quad \forall j, \\
& x_{i j}=0, \quad \forall i \neq 1 \text {, } \\
& \pi_{j}=R_{1 j}, \quad \forall j
\end{aligned}
$$

is a feasible solution (all other variables can be easily determined after the $x$ variables are fixed). Thus, we may provide the solver a "good" starting feasible solution in hopes of decreasing the solution time.

### 7.1.1 Heuristic 0

One possible strategy, which we call Heuristic 0 , is to set $\beta_{i j *}=1$ for each segment $i$ where $R_{i j *}=\max _{j} R_{i j}$. The other $\beta$ variables are set accordingly to ensure feasibility. The pseudo-code is presented in Algorithm 1. For special data sets, this heuristic can result in the optimal solution.

Lemma 7.1.1. Suppose the conditions are the same as stated in Lemma 6.1.1. That is, for every segment $i$, we can find a unique product $p(i)$ such that $R_{i p(i)}=\max _{j} R_{i j}$, and for each of such product $p(i)$, segment $i$ is the unique segment such that $R_{i p(i)}=\max _{k} R_{k p(i)}$.

Then Heuristic 0 gives the optimal solution.
Proof. In the first step when we set $\beta_{i j}=1$ if $R_{i j}=\max _{k} R_{i k}$, we have

$$
\beta_{i j}:= \begin{cases}1, & \text { if } j=p(i) \\ 0, & \text { otherwise }\end{cases}
$$

which is the optimal solution by Lemma 6.1.1. This is the solution found by Heuristic 0, thus, it provides the optimal solution for this particular data set.

However, Heuristic 0 may not yield a strong solution in general. For the rest of this section, we discuss a few simple techniques for improving on the feasible solution found by Heuristic 0.

```
Algorithm 1 Heuristic 0
heuristic0(numSegments, numProducts, N, R, beta, pi)
1: for each segment i , set \(\beta_{i j}=1\) where \(j=\operatorname{argmax}_{j} R_{i j}\)
2: for each product j , set \(\pi_{j}=\min _{i}\left\{R_{i j}: \beta_{i j}=1\right\}\)
3: return \(\beta\)
```


### 7.1.2 Heuristic 1

After running Heuristic 0 , we select a product $k$ that is bought by at least one customer segment, and let $l$ be the segment with the lowest reservation price that buys product $k$. We

```
Algorithm 2 Make one swap if possible
\(\operatorname{swap}(\mathbf{j}, \mathbf{k}, \beta, \pi)\)
```

    1: for seg \(i=\operatorname{argmin}_{i}\left\{R_{i j}: \beta_{i j}=1\right\}\), find the greatest increase in objective value if
    segment \(i\) buys another product \(k\) (or does not buy any product) instead of \(j\).
    2: if increase in obj val $\leq 0$ then
3: return 0
end if
5: $\beta_{i j}:=0$
6: if product k is found then
7: $\quad \beta_{i k}:=1$
end if
make the solution feasible and set the prices $\pi$ to the appropriate values
10: return the increase in objective value after ONE swap

```
Algorithm 3 Heuristic 1
heuristic1(numSegments, numProducts, \(\mathbf{N}, \mathbf{R}, \beta, \pi\) )
    \(\beta:=\) heuristic 0 (numSegments, numProducts, \(\mathrm{N}, \mathrm{R}, \beta, \pi\) )
    \(\mathrm{k}:=-1\);
    repeat
        increase \(:=0\);
        make a heap \(H\) where the elements are products and the comparator compares the
        product prices
        while increase \(\leq 0\) and H is not empty do
            \(\mathrm{j}:=\mathrm{H} . \operatorname{pop}()\)
            increase \(:=\operatorname{swap}(j, k, \beta, \pi)\)
        end while
    until increase \(\leq 0\)
```

consider the change in the objective value if the segment does not buy product $k$ anymore and perhaps buys another product $q$ that it does not currently buy (i.e., $\beta_{l q}$ currently equals to 0 ). This can be thought of as swapping $\beta_{l k}$ with $\beta_{l q}$. We select the option that increases
the objective value the most and modify the $\beta$ variables accordingly. That is, segment $l$ either does not buy product $k$ anymore, or it buys another product instead of product $k$. If none of the options increases the objective value, we make no changes. We repeat until no swaps can be made to increase the objective value. This algorithm terminates because the objective function is bounded and the objective value strictly increases after each swap.

The order in which we select the products to be examined affects the final solution that will be given by the heuristic. The goal is to use an order that maximizes the total increase in the objective value. In this heuristic, we sort the products by the price and examine the products in the order of the lowest price to the highest price. If we make a change in any iteration, we sort the products again since the prices may change, and start with the lowest-priced product again. The heuristic stops when no changes can be made after examining all the products consecutively from the lowest price to the highest price. The pseudo-code is shown in Algorithm 3 and the swap subroutine is shown in Algorithm 2.

This simple heuristic can be used to find a feasible integral solution for any of the models. The only part that needs to be changed is how the objective value is calculated. The version shown here makes use of $\beta$, but it can be easily modified to use the $x$ variables as in the alternative formulation.

### 7.1.3 Heuristic 2

Heuristic 1 (Section 7.1.2) can be modified to have a polynomial runtime if the price of the product that we examine is non-decreasing in each iteration.

From experiments of Heuristic 1, we noticed that if a swap can be made when product $k$ at price $\pi_{k}$ is selected, it is very unlikely that a swap can be made for a product at a price lower than $\pi_{k}$ in subsequent iterations. Therefore, we would expect the results to be similar if we do not examine products with lower prices again.

Heuristic 2 is the same as Heuristic 1 (Section 7.1.2) but the products are selected in a different order. After a customer is swapped out of product $k$ with price $\pi_{k}$ before the swap, only products with prices at least $\pi_{k}$ are examined. The price of product $k$ increases after a swap, so it will be examined again if there are still customers buying product $k$. If a new product $s$ is bought and if its new price $\pi_{s}^{\text {new }}$ is less than $\pi_{k}$, then product $s$ will never be examined. If a product cannot be swapped to increase the objective value, then

```
Algorithm 4 Heuristic 2
heuristic2(numSegments, numProducts, \(\mathbf{N}, \mathbf{R}, \beta, \pi\) )
    \(\beta:=\) heuristic0(numSegments, numProducts, \(\mathrm{N}, \mathrm{R}, \beta, \pi\) )
    increase \(:=0\);
    make a heap \(H\) where the elements are products and the comparator compares the
    product prices
    while H is not empty do
        \(\mathrm{k}:=-1\);
        \(\pi_{t e m p}:=\pi_{j}\)
        \(\mathrm{j}:=\mathrm{H} . \operatorname{pop}()\)
        increase \(:=\operatorname{swap}(j, k, \beta, \pi)\)
        if increase \(>0\) then
            if product j is still bought by some segment then
            H.push ( \(j\) )
        end if
        if \(k \geq 0\) and \(\pi_{k} \geq \pi_{\text {tem } p}\) then
            H.push ( \(k\) )
        end if
        end if
    end while
```

it will not be examined again. The pseudo-code is presented in Algorithm 4.
Let $O(f(n, m))$ be the runtime to calculate the increase in objective value if segment $l$ does not buy product $k$ anymore or if segment $l$ buys product $s$ instead of product $k$, where $n$ is the number of customer segments and $m$ is the number of products. Clearly, $f(n, m)$ is polynomial in $n$ and $m$, since the runtime to calculate the objective value is polynomial.

Lemma 7.1.2. The runtime of Heuristic 2 is polynomial.
Proof. The time it takes to examine a product $k$ is $O(m f(n, m))$ since we consider up to $m$ products that product $k$ can swap with. A product is examined multiple times only if its price increases after a swap. Since a product's price always equals to a segment's
reservation price, it can only increase at most $n$ times. So there are at most $O(n m)$ iterations to examine a product, and each iteration has a runtime of $O(m f(n, m))$.

Therefore, the runtime of Heuristic 2 is $O\left(n m^{2} f(n, m)\right)$.

### 7.1.4 Heuristic 3

Heuristic 3 is a hybrid between Heuristic 1 (Section 7.1.2) and Heuristic 2 (Section 7.1.3). It examines the products in the same way, but after a swap in which segment $l$ buys product $s$ instead of product $k$ and $\pi_{s}^{\text {new }}<\pi_{k}$ (equivalently, $R_{l s}<R_{l k}$ ), it would examine all the products with prices $\geq \pi_{s}^{n e w}$. That is, the price of the products that it examines decreases only if a product has a lower price after a swap. The pseudo-code is presented in Algorithm 5.

It is not yet clear if this heuristic has an exponential worst case runtime. However, experimental results shows that it has a similar runtime as Heuristic 2 and the resulting objective value is usually better (Tables 7.1, 7.2, and 7.3).

### 7.1.5 Comparison of the Heuristics

Tables 7.1, 7.2, 7.3, and 7.4 show the results of the three heuristics with problem instances of different sizes as inputs. The column " n " is the number of segments and " m " is the number of products in the problem instance.

Tables 7.1 and 7.2 show the initial objective value found before any swaps (i.e., Heuristic 0 ), and the number of swaps performed, the number of CPU seconds required and the final objective value found by each heuristic. The objective values are rounded to the nearest integer. Tables 7.3 and 7.4 show the difference in time required and the final objective value for each pair of the heuristics. For example, the "Heur. 1 - Heur. 2" columns show the time and objective value of Heuristc 2 subtracted from the time and objective value of Heurstic 1, respectively.

All of the heuristics terminates in a very short time. The time required for Heuristic 1 to terminate increases significantly as the problem size increases. The objective values found are better than or at least as good as the ones found by the other two heuristics, except in one problem instance (when $\mathrm{n}=60, \mathrm{~m}=20$ ) where Heuristic 2 has a better

```
Algorithm 5 Heuristic 3
heuristic3(numSegments, numProducts, \(\mathbf{N}, \mathbf{R}, \beta, \pi\) )
    \(\beta:=\) heuristic 0 (numSegments, numProducts, \(\mathrm{N}, \mathrm{R}, \beta, \pi\) )
    increase \(:=0\);
    make a heap \(H\) where the elements are products and the comparator compares the
    product prices
    while H is not empty do
        \(\mathrm{k}:=-1\);
        \(\pi_{\text {temp }}:=\pi_{j}\)
        \(\mathrm{j}:=\mathrm{H} . \operatorname{pop}()\)
        increase \(:=\operatorname{swap}(j, k, \beta, \pi)\)
        if increase \(>0\) then
            if product j is still bought by some segment then
            H.push ( \(j\) )
        end if
        if \(k \geq 0\) then
            if \(\pi_{k} \geq \pi_{\text {temp }}\) then
                H.push ( \(k\) )
            else
                for products l where \(\pi_{k} \leq \pi_{l} \leq \pi_{t e m p}\) do
                        H.push (l)
                end for
            end if
        end if
        end if
    end while
```

solution. Experimental results shows that Heuristic 3 has a similar runtime as Heuristic 2 and the resulting objective value is usually better. We can see from Tables 7.3 and 7.4 that Heuristic 3 found a lower objective value than Heuristic 2 in one problem instance only (when $\mathrm{n}=60, \mathrm{~m}=20$ ).

The effect of using a starting solution found by the heuristics for the Uniform Distribution Model is explored in Chapter 9 .

### 7.2 Valid Inequalities

To further improve the solution time for the mixed-integer programming models, we considered several mixed-integer cuts for the various choice models.

### 7.2.1 Convex Quadratic Cut

In the original Uniform Distribution Model (Section 2.1), the variable $a_{i j}$ were introduced to convexify the bilinear inequalities:

$$
\sum_{j=1}^{m} t_{i} \beta_{i j} \leq \sum_{j=1}^{m} p_{i j}, \quad \forall i
$$

We wish to include a convex constraint in the mixed-integer programming formulation that is implied by the above inequalities and some valid convex inequalities.

Let $M_{i}$ be a positive number (as small as possible) such that $t_{i}^{2} \leq M_{i}$, for every feasible solution $\left(t_{1}, \ldots, t_{n}, \beta_{11}, \ldots, \beta_{n m}, p_{11}, \ldots, p_{n m}\right)$ of the mixed integer programming problem. Also, note that $\beta_{i j}^{2} \leq \beta_{i j}$. Combining these relations together yields the following set of valid inequalities:

$$
\begin{equation*}
a_{i} t_{i}^{2}+b_{i} \sum_{j=1}^{m}\left(\beta_{i j}^{2}-\beta_{i j}\right)+\sum_{j=1}^{m} t_{i} \beta_{i j}-\sum_{j=1}^{m} p_{i j} \leq a_{i} M_{i}, \quad i=1, \ldots, n \tag{7.1}
\end{equation*}
$$

where $a_{i}$ and $b_{i}$ are nonnegative constants. With appropriate values of $a_{i}$ and $b_{i}$, the above set of quadratic inequalities would represent a convex region.

Lemma 7.2.1. The function $f\left(t, \beta_{1}, \ldots, \beta_{m}, p_{1}, \ldots, p_{m}\right)=a t^{2}+b \sum_{j=1}^{m}\left(\beta_{j}^{2}-\beta_{j}\right)+\sum_{j=1}^{m} t \beta_{j}-$ $\sum_{j=1}^{m} p_{j}$ is a convex function iff $a>0, b>0$ and $a b \geq \frac{m}{4}$.

Proof. The Hessian of $f$ is

$$
\nabla^{2} f=\left[\begin{array}{cc}
\boldsymbol{A} & \mathbf{0} \\
\mathbf{0}^{T} & 0
\end{array}\right]
$$

|  |  |  | Heuristic 1 |  |  | Heuristic 2 |  |  | Heuristic 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | m | $\begin{array}{r} \text { Initial } \\ \text { Obj Val } \end{array}$ | Swap | Time | Final Obj Val |  | Time | $\begin{array}{r} \text { Final } \\ \text { Obj Val } \end{array}$ |  | Time | Final Obj Val |
| 2 | 2 | 2656.00 | 0 | 0.003 | 2656 | 0 | 0.003 | 2656 | 0 | 0.003 | 2656 |
| 2 | 5 | 121520 | 0 | 0.003 | 121520 | 0 | 0.002 | 121520 | 0 | 0.003 | 121520 |
| 2 | 10 | 165960 | 0 | 0.006 | 165960 | 0 | 0.006 | 165960 | 0 | 0.006 | 165960 |
| 2 | 20 | 207680 | 0 | 0.010 | 207680 | 0 | 0.010 | 207680 | 0 | 0.010 | 207680 |
| 2 | 60 | 66801 | 0 | 0.025 | 66801 | 0 | 0.024 | 66801 | 0 | 0.024 | 66801 |
| 2 | 100 | 66801 | 0 | 0.039 | 66801 | 0 | 0.040 | 66801 | 0 | 0.039 | 66801 |
| 5 | 2 | 176584 | 1 | 0.004 | 212238 | 1 | 0.004 | 212238 | 1 | 0.004 | 212238 |
| 5 | 5 | 131346 | 5 | 0.020 | 164038.67 | 5 | 0.014 | 164038.67 | 5 | 0.015 | 164039 |
| 5 | 10 | 177403 | 10 | 0.079 | 217832 | 4 | 0.020 | 212348 | 10 | 0.048 | 217832 |
| 5 | 20 | 124311 | 0 | 0.022 | 124311 | 0 | 0.022 | 124311 | 0 | 0.022 | 124311 |
| 5 | 60 | 377480 | 0 | 0.049 | 377480 | 0 | 0.049 | 377480 | 0 | 0.049 | 377480 |
| 5 | 100 | 316906 | 8 | 0.473 | 318770 | 8 | 0.276 | 318770 | 8 | 0.277 | 318770 |
| 10 | 2 | 543760 | 0 | 0.003 | 543760 | 0 | 0.003 | 543760 | 0 | 0.004 | 543760 |
| 10 | 5 | 307678 | 3 | 0.018 | 323976 | 3 | 0.012 | 323976 | 3 | 0.016 | 323976 |
| 10 | 10 | 320574 | 11 | 0.099 | 379851 | 9 | 0.033 | 375924 | 11 | 0.044 | 379851 |
| 10 | 20 | 448921 | 21 | 0.365 | 555829 | 21 | 0.114 | 555829 | 21 | 0.134 | 555829 |
| 10 | 60 | 489794 | 11 | 0.324 | 624070 | 10 | 0.235 | 624070 | 10 | 0.236 | 624070 |
| 10 | 100 | 528288 | 7 | 0.807 | 605906 | 7 | 0.305 | 605906 | 7 | 0.371 | 605906 |

Table 7.1: Comparison of Heuristics (1)

|  |  |  | Heuristic 1 |  |  | Heuristic 2 |  |  | Heuristic 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | m | $\begin{array}{r} \text { Initial } \\ \text { Obj Val } \end{array}$ |  | Time | Final Obj Val |  | Time | Final Obj Val |  | Time | $\begin{array}{r} \text { Final } \\ \text { Obj Val } \end{array}$ |
| 20 | 2 | 503054 | 8 | 0.019 | 544933 | 8 | 0.013 | 544933 | 8 | 0.016 | 544933 |
| 20 | 5 | 552958 | 9 | 0.042 | 597752 | 9 | 0.022 | 597752 | 9 | 0.023 | 597752 |
| 20 | 10 | 624238 | 16 | 0.128 | 746544 | 15 | 0.048 | 743491 | 15 | 0.055 | 743491 |
| 20 | 20 | 698462.78 | 35 | 0.951 | 823206 | 31 | 0.148 | 822773 | 35 | 0.209 | 823206 |
| 20 | 60 | 934624 | 48 | 5.134 | 1174843 | 37 | 0.647 | 1094627 | 48 | 0.958 | 1174844 |
| 20 | 100 | 806249 | 25 | 4.256 | 868827 | 10 | 0.445 | 851503 | 17 | 0.699 | 863241 |
| 60 | 2 | 1136086 | 6 | 0.019 | 1228719 | 6 | 0.013 | 1228719 | 6 | 0.014 | 1228719 |
| 60 | 5 | 1407568 | 4 | 0.028 | 1526584 | 4 | 0.020 | 1526584 | 4 | 0.025 | 1526584 |
| 60 | 10 | 1480566 | 39 | 0.378 | 1770829 | 39 | 0.115 | 1770829 | 39 | 0.123 | 1770829 |
| 60 | 20 | 1697868 | 49 | 1.241 | 1957967 | 56 | 0.279 | 1978848 | 49 | 0.286 | 1957967 |
| 60 | 60 | 1976530 | 92 | 21.621 | 2476842 | 88 | 1.376 | 2437774 | 91 | 1.558 | 2476277 |
| 60 | 100 | 2824349 | 83 | 52.689 | 3218884 | 55 | 2.385 | 3171053 | 76 | 5.013 | 3215687 |
| 100 | 2 | 2201501 | 9 | 0.028 | 2368924 | 9 | 0.020 | 2368924 | 9 | 0.020 | 2368924 |
| 100 | 5 | 2177005 | 19 | 0.103 | 2493507 | 19 | 0.049 | 2493507 | 19 | 0.053 | 2493507 |
| 100 | 10 | 2307042 | 43 | 0.415 | 2703764 | 43 | 0.146 | 2703764 | 43 | 0.153 | 2703764 |
| 100 | 20 | 2384416 | 45 | 1.854 | 2736795 | 45 | 0.280 | 2736795 | 45 | 0.285 | 2736795 |
| 100 | 60 | 3548047 | 89 | 21.130 | 4128381 | 88 | 1.725 | 4127951 | 88 | 1.789 | 4127951 |
| 100 | 100 | 3568616 | 132 | 108.240 | 4380587 | 120 | 3.938 | 4338345 | 126 | 6.679 | 4366574 |

Table 7.2: Comparison of Heuristics (2)

|  |  | Heur. 1 - Heur. 2 | Heur. 1 - Heur. 3 | Heur. 2 - Heur. 3 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | m | Time | Obj Val | Time | Obj Val | Time | Obj Val |
| 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 5 | 0.001 | 0 | 0 | 0 | -0.001 | 0 |
| 2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 60 | 0.001 | 0 | 0.001 | 0 | 0 | 0 |
| 2 | 100 | -0.001 | 0 | 0 | 0 | 0.001 | 0 |
| 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 5 | 0.007 | 0 | 0.006 | 0 | -0.001 | 0 |
| 5 | 10 | 0.060 | 5484 | 0.031 | 0 | -0.028 | -5484 |
| 5 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 60 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 100 | 0.197 | 0 | 0.196 | 0 | -0.001 | 0 |
| 10 | 2 | 0 | 0 | -0.001 | 0 | -0.001 | 0 |
| 10 | 5 | 0.006 | 0 | 0.002 | 0 | -0.004 | 0 |
| 10 | 10 | 0.065 | 3927 | 0.055 | 0 | -0.011 | -3927 |
| 10 | 20 | 0.251 | 0 | 0.231 | 0 | -0.020 | 0 |
| 10 | 60 | 0.089 | 0 | 0.088 | 0 | -0.001 | 0 |
| 10 | 100 | 0.503 | 0 | 0.436 | 0 | -0.066 | 0 |
| 20 | 2 | 0.006 | 0 | 0.003 | 0 | -0.003 | 0 |
| 20 | 5 | 0.020 | 0 | 0.019 | 0 | -0.001 | 0 |
| 20 | 10 | 0.080 | 3053 | 0.073 | 3053 | -0.007 | 0 |
| 20 | 20 | 0.802 | 433 | 0.742 | 0 | -0.061 | -433 |
| 20 | 60 | 4.487 | 80216 | 4.175 | 0 | -0.311 | -80216 |
| 20 | 100 | 3.811 | 17324 | 3.558 | 5586 | -0.254 | -11738 |

Table 7.3: Comparison of Heuristics (3)

|  |  | Heur. 1 - Heur. 2 |  | Heur. 1 - Heur. 3 |  | Heur. 2 - Heur. 3 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: | ---: |
| n | m | Time | Obj Val | Time | Obj Val | Time | Obj Val |
| 60 | 2 | 0.006 | 0 | 0.005 | 0 | -0.001 | 0 |
| 60 | 5 | 0.008 | 0 | 0.003 | 0 | -0.005 | 0 |
| 60 | 10 | 0.263 | 0 | 0.255 | 0 | -0.008 | 0 |
| 60 | 20 | 0.962 | -20881 | 0.956 | 0 | -0.007 | 20881 |
| 60 | 60 | 20.245 | 39068 | 20.064 | 565 | -0.182 | -38503 |
| 60 | 100 | 50.304 | 47831 | 47.677 | 3197 | -2.627 | -44634 |
| 100 | 2 | 0.009 | 0 | 0.008 | 0 | -0.001 | 0 |
| 100 | 5 | 0.055 | 0 | 0.051 | 0 | -0.004 | 0 |
| 100 | 10 | 0.268 | 0 | 0.262 | 0 | -0.007 | 0 |
| 100 | 20 | 1.574 | 0 | 1.569 | 0 | -0.005 | 0 |
| 100 | 60 | 19.406 | 430 | 19.341 | 430 | -0.064 | 0 |
| 100 | 100 | 104.302 | 42242 | 101.562 | 14013 | -2.741 | -28229 |

Table 7.4: Comparison of Heuristics (4)
where $\boldsymbol{A}=\left[\begin{array}{cc}2 a & \boldsymbol{e}^{T} \\ \boldsymbol{e} & 2 \boldsymbol{B}\end{array}\right], \boldsymbol{B}$ is an $m \times m$ diagonal matrix with $b, b, \ldots, b$ on the diagonal, and $\boldsymbol{e}$ is a vector of ones. Since $f$ is twice continuously differentiable, $f$ is convex iff $\boldsymbol{A}$ is a positive semi-definite matrix.

If $b \leq 0$, then $\boldsymbol{A}$ is not positive semi-definite and $f$ is not convex. So we can assume $b>0$.

The Schur-complement of $\boldsymbol{B}$ in $\boldsymbol{A}$ is $2 a-\frac{1}{2 b}\left(\boldsymbol{e}^{T} \boldsymbol{e}\right)$, thus

$$
\boldsymbol{A} \succeq 0 \quad \Leftrightarrow \quad a-\frac{m}{4 b} \geq 0 \quad \Leftrightarrow \quad a b \geq \frac{m}{4} .
$$

Next, we generalize the above construction to allow different coefficients $b_{j}$ for the inequalities $\beta_{i j}^{2} \leq \beta_{i j}$. Let $\boldsymbol{b}$ denote the vector $\left(b_{1}, b_{2}, \ldots, b_{m}\right)^{T}$ and let $\boldsymbol{B}$ denote the $m \times m$ diagonal matrix with entries $b_{1}, b_{2}, \ldots, b_{m}$ on the diagonal.

Lemma 7.2.2. The function $F\left(t, \beta_{1}, \ldots, \beta_{m}, p_{1}, \ldots, p_{m}\right)=a t^{2}+\sum_{j=1}^{m} b_{j}\left(\beta_{j}^{2}-\beta_{j}\right)+\sum_{j=1}^{m} t \beta_{j}-$ $\sum_{j=1}^{m} p_{j}$ is a convex function iff $\boldsymbol{b}>0$ and $a \geq \sum_{j=1}^{m} \frac{1}{4 b_{j}}$.

Proof. As in the proof of the previous lemma, F is twice continuously differentiable. The Hessian of $F$ is

$$
\nabla^{2} F=\left[\begin{array}{cc}
\boldsymbol{A} & \mathbf{0} \\
\mathbf{0}^{T} & \mathbf{0}
\end{array}\right]
$$

where $\boldsymbol{A}:=\left[\begin{array}{cc}2 a & \boldsymbol{e}^{T} \\ \boldsymbol{e} & 2 \boldsymbol{B}\end{array}\right]$. Therefore, $F$ is convex iff $\boldsymbol{A}$ is positive semidefinite. If for some $j$, $b_{j} \leq 0$, then $\boldsymbol{A}$ is not positive semidefinite. Therefore, $\boldsymbol{b}>\boldsymbol{0}$. Let $\overline{\boldsymbol{b}}:=\left(\frac{1}{\sqrt{b_{1}}}, \frac{1}{\sqrt{b_{2}}}, \ldots, \frac{1}{\sqrt{b_{m}}}\right)^{T}$. Also, if $a \leq 0$ then $\boldsymbol{A}$ is not positive semidefinite, thus $a>0$. The Schur complement of $a$ in $\boldsymbol{A}$ is $2 \boldsymbol{B}-\frac{1}{2 a} \boldsymbol{e} \boldsymbol{e}^{T}$. Thus,

$$
\begin{aligned}
\boldsymbol{A} \succeq 0 & \Leftrightarrow \quad 2 \boldsymbol{B}-\frac{1}{2 a} \boldsymbol{e} \boldsymbol{e}^{T} \succeq 0 \\
& \Leftrightarrow \quad 4 I-\frac{1}{a} \overline{\boldsymbol{b}} \overline{\boldsymbol{b}}^{T} \succeq 0 \\
& \Leftrightarrow \quad 4 \overline{\boldsymbol{b}}^{T} \overline{\boldsymbol{b}}-\frac{1}{a}\left(\overline{\boldsymbol{b}}^{T} \overline{\boldsymbol{b}}\right)^{2} \geq 0
\end{aligned}
$$

$$
\Leftrightarrow \quad a \geq \frac{\overline{\boldsymbol{b}}^{T} \overline{\boldsymbol{b}}}{4}=\sum_{j=1}^{m} \frac{1}{4 b_{j}} .
$$

Corollary 7.2.1. Let $M_{i}$ be as above, and $b_{1}>0, b_{2}>0, \ldots, b_{m}>0$, and $a \geq \sum_{j=1}^{m} \frac{1}{4 b_{j}}$ be given. Then the inequality

$$
a_{i} t_{i}^{2}+\sum_{j=1}^{m}\left[b_{j} \beta_{i j}^{2}+\left(t_{i}-b_{j}\right) \beta_{i j}-p_{i j}\right] \leq a M_{i}
$$

is a valid convex quadratic inequality for the feasible region of the mixed integer programming problem.

Several computational experiments on randomly generated problem instances were performed to test whether these valid inequalities are actually a cut. The inequalities (7.1) were added to the Uniform Distribution Model formulation (2.1) and the resulting mixedinteger programming problem with convex quadratic inequalities (MIQP) were solved by CPLEX 9.1. However, it was difficult to test whether (7.1) cut off any regions of the LP feasible region of (2.1) because of the numerical inaccuracies in the solutions provided by CPLEX. For example, in a random instance with $n=10$ and $m=10$, CPLEX returned an optimal objective value of 9218.698757 for the continuous relaxation of the MIQP. For the LP relaxation of (2.1), CPLEX returned an optimal value of 9219.085299. However, we verified that this latter optimal solution did not violate any of the inequalities (7.1). Thus, the difference in the optimal value was due to numerical inaccuracies of the CPLEX quadratic programming solver. Clearly, more testing needs to be done, perhaps with a different optimization software.

### 7.2.2 Knapsack Covers

The pure 0-1 formulation (2.3) shown in Section 2.4 may not be as strong as the mixedinteger formulation (2.2). However, we may be able to exploit the vast amount of work done in developing strong valid inequalities for pure $0-1$ programming problems for formulation (2.3). These inequalities can not only improve the solution time for the $0-1$ problem,
but we may be able to project them to the space of Formulation (2.4) to strengthen the mixed-integer programming formulation as well.

One obvious family of valid inequalities are the knapsack covers [8]. From (2.3), we have the constraints

$$
\sum_{j=1}^{m} \beta_{i j}=\sum_{k=0}^{m} k y_{i k}, \quad i, \ldots, m
$$

(where we substituted $\beta_{i j}:=\sum_{l: R_{l, j} \leq R_{i j}} x_{l j}$ purely for notational ease) and

$$
\sum_{k=0}^{m} y_{i k}=1, \quad i=1, \ldots, n
$$

From these, for a given $i$ and $k$, we get:

$$
\begin{gathered}
\sum_{j=1}^{m} \beta_{i j} \leq \sum_{l=0}^{k} k y_{i l}+\sum_{l=k+1}^{m} m y_{i l} \\
\Rightarrow \sum_{j=1}^{m} \beta_{i j} \leq \sum_{l=0}^{k} k y_{i l}+\sum_{l=k+1}^{m} m y_{i l}+m-m \sum_{k=0}^{m} y_{i k} \\
\Rightarrow \sum_{j=1}^{m} \beta_{i j} \leq-\sum_{l=0}^{k}(m-k) y_{i l}+m \\
\Rightarrow \sum_{j=1}^{m} \beta_{i j}+(m-k) \sum_{l=0}^{k} y_{i l} \leq m
\end{gathered}
$$

where the last inequality is a knapsack constraint (note that $\sum_{l=0}^{k} y_{i l} \in\{0,1\}$ in the integer solution so we can treat the term as a $0-1$ variable). For a given $i$ and $k$, let $P_{i k}$ be a subset of $k+1$ products, i.e, $P_{i k} \subseteq\{1, \ldots, m\},\left|P_{i k}\right|=k+1$. Thus, the corresponding knapsack cover inequality is

$$
\begin{equation*}
\sum_{j \in P_{i k}} \beta_{i j}+\sum_{l=0}^{k} y_{i l} \leq k+1 . \tag{7.2}
\end{equation*}
$$

Given a fractional solution to (2.3), separating (7.2) can be done in polynomial time. Given $x_{i j}$ 's, and thus $\beta_{i j}$ 's, we rank $\beta_{i j}$ for each $i, i=1, \ldots, n$. For each $k$, let $P_{i k}^{*}=\{j$ :
$\beta_{i j}$ is one of the $k^{t h}$ largest $\beta_{i j}$ 's, $\left.j=1, \ldots, m\right\}$. Thus, for each $i$ and $k$, the corresponding cover inequality is violated by the current solution if and only if $\sum_{j \in P_{i k}^{*}} \beta_{i j}+\sum_{l=0}^{k} y_{i l}>k+1$.

We can also incorporate all of the inequalities (7.2) to (2.3) with only polynomial numbers of additional constraints and variables.

Lemma 7.2.3. Given $i$ and $k$, there exists $\beta_{i j}, j=1, \ldots, m$ and $y_{i l}, l=0, \ldots, k$ satisfying (7.2) for all $P_{i k} \subseteq\{1, \ldots, m\},\left|P_{i k}\right|=k+1$ if and only if there exists $q$ and $p_{j}, j=1, \ldots, m$ such that

$$
\begin{aligned}
(k+1) q+\sum_{j=1}^{m} p_{j}+\sum_{l=0}^{k} y_{i l} & \leq k+1 \\
q+p_{j} & \geq \beta_{i j}, \quad j=1, \ldots, m \\
p_{j} & \geq 0, \quad j=1, \ldots, m
\end{aligned}
$$

Proof. For given $\beta_{i j}$ 's, finding the most violated subset $P_{i k}^{*}$ for (7.2) is equivalent to solving

$$
\begin{array}{cl}
\max & \sum_{j=1}^{m} \beta_{i j} z_{j}, \\
\text { s.t. } & \sum_{j=1}^{m} z_{j}=k+1, \\
& 0 \leq z_{j} \leq 1, \quad j=1, \ldots, m
\end{array}
$$

Since the feasible region of the above LP is an integral polyhedron, and since the LP is clearly feasible and bounded, it has an optimal 0-1 solution corresponding to the characteristic vector of $P_{i k}^{*}$. The Dual of this LP is:

$$
\begin{array}{ccl}
\min & (k+1) q+\sum_{j=1}^{m} p_{j}, & \\
\text { s.t. } & q+p_{j} \geq \beta_{i j}, & j=1, \ldots, m, \\
& p_{j}, & j=1, \ldots, m .
\end{array}
$$

If there exists $\beta_{i j}$ 's and $y_{i l}$ that satisfies (7.2) for all covers $P_{i k}$, then it must satisfy (7.2) for $P_{i k}^{*}$. Thus, from strong duality, there exists $q$ and $p_{j}$ satisfying the constraints for the Dual LP and $\sum_{j \in P_{i k}^{*}} \beta_{i j}=(k+1) q+\sum_{j=1}^{m} p_{j}$.

Conversely, if there exists $q$ and $p_{j}$ that satisfies the constraints of the Dual LP and there is a $y_{i l}$ such that $(k+1) q+\sum_{j=1}^{m} p_{j}+\sum_{l=0}^{k} y_{i l} \leq k+1$, then from weak duality, $\sum_{j \in P_{i k}} \beta_{i j} \leq(k+1) q+\sum_{j=1}^{m} p_{j}$ for all $P_{i k}$ 's and thus, $\sum_{j \in P_{i k}} \beta_{i j}+\sum_{l=0}^{k} y_{i l} \leq k+1$ for all $P_{i k}$ 's.

Thus, we can either iteratively separate the knapsack cover inequalities, or from Lemma 7.2.3, add the constraints:

$$
\begin{array}{rlrl}
(k+1) q_{i k}+\sum_{j=1}^{m} p_{i, j, k}+\sum_{l=0}^{k} y_{i l} \leq k+1, & & i=1, \ldots, n ; k=0, \ldots, m  \tag{7.3}\\
q_{i k}+p_{i j k} \geq \beta_{i j}, & j & =1, \ldots, m ; i=1, \ldots, n ; k=0, \ldots, m \\
p_{i j k} \geq 0, & j=1, \ldots, m ; i=1, \ldots, n ; k=0, \ldots, m
\end{array}
$$

to (2.3).
Table 7.5 illustrates that these knapsack covers (7.2) are indeed cuts. It compares formulation (2.3) with and without the cover inequalities (7.3) in terms of the objective value of their linear programming relaxation on the same randomly generated instances shown in Section 2.4. Again, $n$ is the number of customer segments, $m$ is the number of products, and v is a label of the problem instance. LP objective values in bold corresponds to the IP optimal value.

These knapsack cover inequalities (7.2) can also be used to generate cuts for the mixedinteger programming formulation (2.2).

Lemma 7.2.4. Suppose $\bar{x}_{i j}$ is a fractional solution of (2.2) and let $\bar{\beta}_{i j}=\sum_{l: R_{l j} \leq R_{i j}} \bar{x}_{l j}$. For a given $i, i=1, \ldots, n$, if there are no $y_{i k}$ 's that satisfies

$$
\begin{gather*}
\sum_{k=0}^{m} y_{i k}=1  \tag{7.4}\\
\sum_{k=0}^{m} k y_{i k}=\sum_{j=1}^{m} \bar{\beta}_{i j}, \\
\sum_{l=0}^{k} y_{i l} \leq k+1-\sum_{j \in P_{i k}^{*}} \bar{\beta}_{i j}, \quad k=0, \ldots, m
\end{gather*}
$$

where $P_{i k}^{*}=\left\{j \mid \bar{\beta}_{i j}\right.$ is one of the $k$ largest $\left.\bar{\beta}_{i j}, j=1, \ldots, m\right\}$, then

$$
\begin{equation*}
\sum_{j=1}^{m} v \beta_{i j}+\sum_{j \in P_{i k}^{*}} w_{k} \beta_{i j} \leq \sum_{k=0}^{m}(k+1) w_{k} \tag{7.5}
\end{equation*}
$$

is a valid inequality for (2.2) that cuts of $\bar{x}_{i j}$, where

$$
\begin{array}{cl}
u+k v+\sum_{l=0}^{k} w_{k} \geq 0, & k=0, \ldots, m, \\
u+\sum_{j=1}^{m} \bar{\beta}_{i j} v+\left(k+1-\sum_{j \in P_{i k}^{*}} \bar{\beta}_{i j}\right) w_{k}<0, & \\
w_{k} \geq 0, & k=0, \ldots, m,
\end{array}
$$

| $n$ | $m$ | v | $(2.3)$ without (7.3) | $(2.3)$ with $(7.3)$ |
| ---: | ---: | ---: | ---: | ---: |
| 4 | 4 | 1 | 2564.71 | 2399.63 |
|  |  | 2 | $\mathbf{3 4 0 4 . 0 0}$ | $\mathbf{3 4 0 4 . 0 0}$ |
|  |  | 3 | $\mathbf{3 3 3 . 0 0}$ | $\mathbf{3 3 3 . 0 0}$ |
|  |  | 4 | 3060.92 | $\mathbf{3 0 0 5 . 6 7}$ |
|  |  | 5 | 3360.95 | 3271.48 |
| 4 | 10 | 1 | 406.42 | 390.50 |
|  |  | 2 | 398.19 | 391.36 |
|  |  | 3 | 397.36 | 373.89 |
|  |  | 4 | 389.98 | 365.59 |
|  |  | 5 | 802.74 | 384.18 |
| 10 | 4 | 1 | 856.93 | 799.31 |
|  |  | 2 | 850.95 | 853.60 |
|  |  | 3 | 956.85 | 848.58 |
|  |  | 4 | 997.44 | 942.16 |
|  |  | 5 | 1008.53 | 911.67 |
| 10 | 10 | 1 | 1021.94 | 1003.15 |
|  |  | 2 | 872.92 | 1016.75 |
|  |  | 3 | 1021.50 | 864.30 |
|  |  | 4 | 1013.01 |  |

Table 7.5: Strength of Knapsack Cover inequalities (7.2)
for some $u$.
Proof. The system (7.4) are valid inequalities for the pure 0-1 formulation (2.3). Thus, $\hat{x}_{i j}$ is a feasible integer solution to (2.2) if and only if $\hat{x}_{i j}$ and $\hat{y}_{i k}=1$ where $k=\sum_{l: R_{l j} \leq R_{i j}} x_{l j}$ is a feasible integer solution to (2.3).

From Farkas' Lemma, (7.4) is infeasible if and only if there exists $u$, $v$, and $w_{k}, k=$
$0, \ldots, m$, where

$$
\begin{array}{cl}
u+k v+\sum_{l=0}^{k} w_{k} \geq 0, & k=0, \ldots, m, \\
u+\sum_{j=1}^{m} \bar{\beta}_{i j} v+\left(k+1-\sum_{j \in P_{i k}^{*}} \bar{\beta}_{i j}\right) w_{k}<0, & \\
w_{k} \geq 0, & k=0, \ldots, m .
\end{array}
$$

Therefore, $\sum_{j=1}^{m} v \beta_{i j}+\sum_{j \in P_{i k}^{*}} w_{k} \beta_{i j} \leq \sum_{k=0}^{m}(k+1) w_{k}$ is a valid inequality for (2.2) and are violated by $\bar{\beta}_{i j}$.

## Chapter 8

## Product Capacity and Cost

In all of our discussions thus far, we have assumed that there are no capacity limits nor costs for our products. Clearly, this is not a realistic assumption in many applications. In this chapter, we discuss how we can incorporate capacity limits and product costs into some of our customer choice models.

### 8.1 Product Capacity

Product capacity limits are crucial constraints for products such as airline seats and hotel rooms. Certain consumer choice models handle capacity constraints easily, whereas it poses a challenge to others. We present this extension for the Uniform Distribution Model, the Weighted Uniform Model, and the Share-of-Surplus Model with restricted prices. We were not able to incorporate the capacity constraint in the Price Sensitive Model while maintaining the convexity of the continuous relaxation. In all of the following subsections, we assume that the company can sell up to $C a p_{j}$ units of product $j, C a p_{j} \geq 0, j=1, \ldots, m$.

### 8.1.1 Uniform Distribution and Weighted Uniform Model

Capacity constraints can be incorporated to the mixed-integer formulations of the Uniform Distribution Model (Chapter 2) and the Weighted Uniform Model (Chapter 3) with some additional variables. We discuss the formulation for the Uniform Distribution Model only,
since it extends easily to the Weighted Uniform Model.
In the Uniform Distribution Model, the expected number of customers that buy product $j$ is $\sum_{i} N_{i} \frac{\beta_{i j}}{\sum_{k} \beta_{i k}}$ if $\sum_{k} \beta_{i k} \geq 1$ and is 0 if $\sum_{k} \beta_{i k}=0$.

Let $B_{i j}$ be an auxiliary variable such that $B_{i j}:=\frac{\beta_{i j}}{\sum_{k} \beta_{i k}}$ if $\sum_{k} \beta_{i k} \geq 1$ and is 0 if $\sum_{k} \beta_{i k}=0$ (i.e., the fraction of customers from segment $i$ buying product $j, \operatorname{Pr}_{i j}$ ). Thus,

$$
\beta_{i j}=B_{i j} \sum_{k} \beta_{i k}
$$

Let $b_{i j k}:=B_{i j} \beta_{i k}$. The capacity constraint can be represented by the following set of linear constraints:

$$
\begin{array}{cl}
\sum_{i} N_{i} B_{i j} \leq C a p_{j}, & \forall j,  \tag{8.1}\\
\beta_{i j}=\sum_{k} b_{i j k}, & \forall i, \forall j, \\
b_{i j k} \leq \beta_{i k}, & \forall i, \forall j, \forall k, \\
b_{i j k} \geq B_{i j}-\left(1-\beta_{i k}\right), & \forall i, \forall j, \forall k, \\
b_{i j k} \leq B_{i j}, & \forall i, \forall j, \forall k, \\
b_{i j k} \geq 0, & \forall i, \forall j, \forall k .
\end{array}
$$

The above constraints can also be represented by $x_{i j}$ variables of Section 2.2 instead of the $\beta_{i j}$ variables.

### 8.1.2 Share-of-Surplus Model

Similar to section (8.1.1), in the Share-of-Surplus Model with restricted prices (4.8), the expected number of customers that buy product $j$ is $\sum_{i} N_{i}\left(\frac{\sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}\right) x_{l j}}{\sum_{k}\left(\sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}\right)}\right)$ if $\sum_{k}\left(\sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}\right) \neq 0$.

Let $B_{i j}$ be an auxiliary variable such that

$$
B_{i j}:=\left\{\begin{array}{cc}
\left(\frac{\sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}\right) x_{l j}}{\sum_{k}\left(\sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}\right)}\right), & \text { if } \sum_{k}\left(\sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}\right) \neq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

(again, $B_{i j}$ is the fraction of customers from segment $i$ buying product $j$, or $\operatorname{Pr}_{i j}$ ). Thus,

$$
\sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}\right) x_{l j}=B_{i j} \sum_{k}\left(\sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) x_{l k}\right)
$$

Let $b_{i j l k}:=B_{i j} x_{l k}$. Just as before, the capacity constraint can be represented by the following set of linear constraints:

$$
\begin{array}{cl}
\sum_{i} N_{i} B_{i j} \leq C a p_{j}, & \forall j,  \tag{8.2}\\
\sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}\right) x_{l j}=\sum_{k}\left(\sum_{l: R_{l k} \leq R_{i k}}\left(R_{i k}-R_{l k}\right) b_{i j l k}\right) & \forall i, \forall j, \\
b_{i j l k} \leq x_{l k}, & \forall i, \forall j, \forall l, \forall k, \\
b_{i j l k} \geq B_{i j}-\left(1-x_{l k}\right), & \forall i, \forall j, \forall l, \forall k, \\
b_{i j l k} \leq B_{i j}, & \forall i, \forall j, \forall l, \forall k, \\
b_{i j l k} \geq 0, & \forall i, \forall j, \forall l, \forall k .
\end{array}
$$

### 8.1.3 Risk Products

In some cases, companies may want to penalize against under-shooting a capacity. For example, if there is a large fixed cost or initial investment for product $j$, the company may sacrifice revenue and decrease its price to ensure that all of the product is sold. We call such products risk products. For these products, we may add a penalty for under-shooting in the objective, i.e., given a user-defined penalty coefficient $w_{j}>0$ for under-selling product $j$, we modify the objective to

$$
\sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \pi_{j} P r_{i j}-\sum_{j=1}^{m} w_{j}\left(C a p_{j}-\sum_{i=1}^{n} N_{i} B_{i j}\right)
$$

or

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} N_{i}\left(\pi_{j} P r_{i j}+w_{j} B_{i j}\right)
$$

where $B_{i j}$ is as before.
From a profit optimization point of view, it is sub-optimal to forcibly sell unprofitable products. Such a policy implies that the company is overstocked with these risk products,
i.e., $C a p_{j}$ is too large. In some cases, we may want to treat $C a p_{j}$ as a variable. For example, in the travel industry, the product procurement division will seek out contracts with hotels to secure certain numbers of rooms for a given time period. However, if that travel destination is not profitable for the company, they may be better off securing very few rooms or not securing any rooms at all. In all of our models, making $C a p_{j}$ a variable will not affect the linearity of the constraints. Also, there will most likely be an upperbound for $C a p_{j}$ for all $j=1, \ldots, m$. If procuring a unit of product $j$ costs $v_{j}$, then the objective function can be modified to:

$$
\sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \pi_{j} P r_{i j}-\sum_{j=1}^{m} v_{j} C a p_{j}
$$

By determining the optimal value for $C a p_{j}$, it should no longer be necessary for the company to penalize under-selling of products ${ }^{1}$.

### 8.2 Product Cost

Suppose each product $j$ has a variable cost of $c_{j}$ per unit. In the objective function, we want to subtract $c_{j}$ multiplied by the expected number of customers that buy product $j$. For all the probabilistic choice models discussed in this thesis, the objective function becomes

$$
\sum_{i} N_{i} \sum_{j}\left(\pi_{j}-c_{j}\right) P r_{i j}
$$

where $P r_{i j}$ is the probability that the customer segment $i$ buys product $j$. This is equivalent to lowering all the reservation prices of product $j$ by $c_{j}$ in all of the models except the Price Sensitive Model.

[^1]
## Chapter 9

## Computational Results

To compare the empirical performances of the Uniform Distribution, Weighted Uniform, and Share-of-Surplus Models, we solve a set of problem instances using the different formulations. The inputs are subsets of reservation prices estimated from actual booking orders of a travel company (our procedure in estimating reservation prices are discussed in the Appendix). The sizes of the inputs used are from 2 segments and 2 products to up to 100 segments and 100 products. Unfortunately, not all reservation prices can be estimated, so the subsets only contain reservation prices that are available. Due to this restriction, we do not have inputs of sizes larger than 100 segments and products. In the future, we would like to find a better way of estimating the reservation prices so that we can test the models with larger real problems.

The models were run with default parameter settings of CPLEX 9.1 and a time limit of two hours ( 7200 CPU seconds) unless indicated otherwise. They were run on a machine with four 1.3 GHz Itanium 2 processors and 8 GB of RAM, with at most one process running at a time on each processor.

The tables show the number of segments $n$ and the number of products $m$ in the input, whether an optimal solution was found in the time limit ("Status"), total CPU seconds ("Time"), the objective value ("Objective Value"), total number of dual simplex iterations ("Number of Iterations"), total number of branch-and-bound nodes ("Number of Nodes"), total number of branch-and-bound nodes unvisited ("Number of Nodes Left"), and the optimality gap when CPLEX was terminated ("Gap").

### 9.1 Uniform Distribution Model

Tables 9.1 and 9.2 show the results of the Uniform Distribution Model (2.1). Tables 9.5 and 9.6 show the results of the alternative formulation (2.2).

The Uniform Distribution Model is surprisingly difficult to solve. For both the original and the alternative formulations, about half of the problem instances could not be solved to optimality in two hours. For the problem instances that were solved to optimality in two hours, the alternative formulation is faster than the original formulation. For the other 17 problem instances, the alternative formulation found a better objective value for 9 of them after 2 hours.

The results of the alternative formulation (2.2) using the results of Heuristic 1 (Section 7.1.2) as the starting solutions are shown in Tables 9.7 and 9.8. The column "Heuristic Obj Val" is the objective value found by Heuristic 1 and "Init. Gap" is the percentage difference between the heuristic's objective value and the best objective value found by CPLEX.

The solutions found by the heuristic are fairly good even though the heuristic is so simple. The largest initial gap is $20.11 \%$, and the initial gaps are all under $3 \%$ on Table 9.7. Most notably, the heuristic's solution for the last case $(n=100, m=100)$ is better than all the other solutions found by CPLEX in two hours, and its objective value is much higher than the one found without using a starting solution (Table 9.6). For most of the cases, the best objective values found with the heuristic is at least as good as the ones found without the heuristic. However, the heuristic did not help to find an optimal solution for a problem instance that was not solved to optimality without the heuristic.

### 9.2 Weighted Uniform Model

The results of solving the problem instances using the Weighted Uniform Model alternate formulation (Formulation 3.2) are shown in Tables 9.9 and 9.10. Same as the Uniform Distribution Model, about half of the problem instances could not be solved to optimality in two hours. The optimality gaps are smaller compared with the Uniform Distribution Model alternative formulation (Tables 9.5 and 9.6).

|  |  | CPLEX |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | m | Status | Time | Obj Val | Number of |  |  |
| Iterations | Number <br> of Nodes | Number of <br> Nodes Left | Gap (\%) |  |  |  |  |
| 2 | 2 | Optimal | 0.02 | 2656 | 13 | 0 | 0 |
| 2 | 5 | Optimal | 0.01 | 121520 | 71 | 0 | 0 |
| 2 | 10 | Optimal | 0 | 165960 | 81 | 0 | 0 |
| 2 | 20 | Optimal | 0.01 | 207680 | 138 | 0 | 0 |
| 2 | 60 | Optimal | 0.02 | 66801 | 197 | 0 | 0 |
| 2 | 100 | Optimal | 0.03 | 66801 | 245 | 0 | 0 |
| 5 | 2 | Optimal | 0.02 | 212238 | 162 | 7 | 0 |
| 5 | 5 | Optimal | 0.24 | 164328 | 1415 | 105 | 0 |
| 5 | 10 | Optimal | 3.00 | 217832 | 21703 | 2119 | 3 |
| 5 | 20 | Optimal | 0.02 | 124311 | 292 | 0 | 0 |
| 5 | 60 | Optimal | 0.07 | 377480 | 564 | 0 | 0 |
| 5 | 100 | Optimal | 3.19 | 319142 | 3460 | 732 | 0 |
| 10 | 2 | Optimal | 0.07 | 560232 | 446 | 18 | 0 |
| 10 | 5 | Optimal | 2.85 | 325489 | 18235 | 1695 | 0 |
| 10 | 10 | Optimal | 2789.23 | 385511 | 9167097 | 1076780 | 0 |
| 10 | 20 | Feasible | 7237.72 | 560367 | 12727737 | 474382 | 376034 |

Table 9.1: Uniform Model (1)

|  |  | CPLEX |  |  | Number of | Number | Number of |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | m | Status | Time | Obj Val | Iterations | of Nodes | Nodes Left | Gap (\%) |
| 20 | 2 | Optimal | 0.31 | 546773 | 1416 | 16 | 0 | 0 |
| 20 | 5 | Optimal | 24.72 | 636451 | 74407 | 3755 | 2 | 0 |
| 20 | 10 | Feasible | 7252.61 | 824247 | 10656382 | 223336 | 136694 | 7.52 |
| 20 | 20 | Feasible | 7240.35 | 883241 | 6136494 | 79263 | 69814 | 18.82 |
| 20 | 60 | Feasible | 7239.35 | 1220410 | 3434397 | 30294 | 25958 | 10.60 |
| 20 | 100 | Feasible | 7240.15 | 992662 | 2489086 | 14000 | 12680 | 9.76 |
| 60 | 2 | Optimal | 2.73 | 1358680 | 6733 | 117 | 1 | 0 |
| 60 | 5 | Optimal | 3351.05 | 1910820 | 3495195 | 230052 | 264 | 0.01 |
| 60 | 10 | Feasible | 7238.34 | 1973310 | 4487693 | 36960 | 30922 | 18.29 |
| 60 | 20 | Feasible | 7221.81 | 2266160 | 2041911 | 10131 | 9111 | 24.76 |
| 60 | 60 | Feasible | 7223.33 | 2857320 | 589082 | 1655 | 1499 | 27.37 |
| 60 | 100 | Feasible | 7229.98 | 3389180 | 201143 | 420 | 419 | 24.83 |
| 100 | 2 | Optimal | 7.71 | 2623610 | 12879 | 273 | 3 | 0.01 |
| 100 | 5 | Feasible | 7334.14 | 2978190 | 5783913 | 251626 | 29031 | 0.71 |
| 100 | 10 | Feasible | 7224.75 | 3225400 | 2475106 | 9993 | 8302 | 21.70 |
| 100 | 20 | Feasible | 7213.37 | 3262130 | 1139453 | 1965 | 1691 | 36.10 |
| 100 | 60 | Feasible | 7213.87 | 4452940 | 289521 | 1022 | 927 | 33.74 |
| 100 | 100 | Feasible | 7224.99 | 3560210 | 122419 | 417 | 414 | 43.91 |

Table 9.2: Uniform Model (2)

|  |  | CPLEX |  |  | Number of | Number | Number of |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | m | Status | Time | Obj Val | Iterations | of Nodes | Nodes Left | Gap |
| 2 | 2 | Optimal | 0.06 | 2656 | 11 | 0 | 0 | 0 |
| 2 | 5 | Optimal | 0.07 | 121520 | 71 | 0 | 0 | 0 |
| 2 | 10 | Optimal | 0.06 | 165960 | 80 | 0 | 0 | 0 |
| 2 | 20 | Optimal | 0.07 | 207680 | 94 | 0 | 0 | 0 |
| 2 | 60 | Optimal | 0.08 | 66801 | 195 | 0 | 0 | 0 |
| 2 | 100 | Optimal | 0.08 | 66801 | 140 | 0 | 0 | 0 |
| 5 | 2 | Optimal | 0.08 | 212238 | 145 | 2 | 0 | 0 |
| 5 | 5 | Optimal | 0.27 | 164328 | 1361 | 89 | 0 | 0 |
| 5 | 10 | Optimal | 3.01 | 217832 | 21801 | 2044 | 1 | 0.01 |
| 5 | 20 | Optimal | 0.08 | 124311 | 256 | 0 | 0 | 0 |
| 5 | 60 | Optimal | 0.11 | 377480 | 332 | 0 | 0 | 0 |
| 5 | 100 | Optimal | 2.20 | 319142 | 2865 | 452 | 35 | 0.01 |
| 10 | 2 | Optimal | 0.13 | 560232 | 446 | 18 | 0 | 0 |
| 10 | 5 | Optimal | 2.72 | 325489 | 15979 | 1502 | 3 | 0.01 |
| 10 | 10 | Optimal | 3181.13 | 385511 | 9623983 | 1299396 | 1112 | 0.01 |
| 10 | 20 | Feasible | 7238.98 | 561337 | 12451833 | 535871 | 434348 | 8.03 |
| 10 | 60 | Feasible | 7278.03 | 631920 | 8138257 | 216657 | 170901 | 4.48 |
| 10 | 100 | Feasible | 7472.39 | 605906 | 7717636 | 739322 | 559107 | 1.17 |

Table 9.3: Uniform Model with Heuristic 1 (1)

|  |  | CPLEX |  |  | Number of | Number | Number of |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | m | Status | Time | Obj Val | Iterations | of Nodes | Nodes Left | Gap |
| 20 | 2 | Optimal | 0.38 | 546774 | 1416 | 16 | 0 | 0 |
| 20 | 5 | Optimal | 24.81 | 636451 | 74407 | 3755 | 2 | 0 |
| 20 | 10 | Feasible | 7261.61 | 821689 | 10595897 | 230660 | 144129 | 7.84 |
| 20 | 20 | Feasible | 7245.32 | 873254 | 6042271 | 84480 | 76624 | 19.83 |
| 20 | 60 | Feasible | 7244.07 | 1211212 | 3175678 | 26667 | 23652 | 11.38 |
| 20 | 100 | Feasible | 7243.18 | 992662 | 2347139 | 12973 | 11690 | 9.77 |
| 60 | 2 | Optimal | 2.73 | 1358681 | 6733 | 117 | 1 | 0 |
| 60 | 5 | Optimal | 3519.19 | 1910818 | 3495195 | 230052 | 264 | 0.01 |
| 60 | 10 | Feasible | 7252.85 | 1973166 | 4180683 | 35371 | 29337 | 17.69 |
| 60 | 20 | Feasible | 7225.01 | 2266157 | 2002222 | 9331 | 8320 | 24.72 |
| 60 | 60 | Feasible | 7225.97 | 2856577 | 636216 | 1698 | 1528 | 27.39 |
| 60 | 100 | Feasible | 7232.24 | 3578698 | 353851 | 1080 | 939 | 20.62 |
| 100 | 2 | Optimal | 7.57 | 2623610 | 12879 | 273 | 3 | 0.01 |
| 100 | 5 | Feasible | 7339.67 | 2978189 | 5751906 | 248851 | 30153 | 0.74 |
| 100 | 10 | Feasible | 7227.60 | 3225400 | 2518973 | 10220 | 8497 | 21.61 |
| 100 | 20 | Feasible | 7217.26 | 3310931 | 1192737 | 2052 | 1685 | 35.14 |
| 100 | 60 | Feasible | 7221.01 | 4450962 | 300963 | 993 | 917 | 33.76 |
| 100 | 100 | Feasible | 7244.49 | 4758460 | 202445 | 1292 | 1196 | 25.03 |

Table 9.4: Uniform Model with Heuristic 1 (2)

| n | m | CPLEX <br> Status | Time | Obj Val | Number <br> Iterations | Number of of Nodes | Number of Nodes Left | Gap <br> (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | Optimal | 0.009 | 2656 | 6 | 0 | 0 | 0 |
| 2 | 5 | Optimal | 0.007 | 121520 | 38 | 0 | 0 | 0 |
| 2 | 10 | Optimal | 0.005 | 165960 | 29 | 0 | 0 | 0 |
| 2 | 20 | Optimal | 0.008 | 207680 | 39 | 0 | 0 | 0 |
| 2 | 60 | Optimal | 0.022 | 66801 | 98 | 0 | 0 | 0 |
| 2 | 100 | Optimal | 0.048 | 66801 | 206 | 0 | 0 | 0 |
| 5 | 2 | Optimal | 0.013 | 212238 | 54 | 5 | 0 | 0 |
| 5 | 5 | Optimal | 0.077 | 164328 | 507 | 99 | 1 | 0.002 |
| 5 | 10 | Optimal | 2.120 | 217832 | 21968 | 4540 | 2 | 0.007 |
| 5 | 20 | Optimal | 0.024 | 124311 | 127 | 0 | 0 | 0 |
| 5 | 60 | Optimal | 0.059 | 377480 | 150 | 0 | 0 | 0 |
| 5 | 100 | Optimal | 0.906 | 319142 | 482 | 30 | 5 | 0.009 |
| 10 | 2 | Optimal | 0.026 | 560232 | 123 | 7 | 0 | 0 |
| 10 | 5 | Optimal | 1.903 | 325489 | 16209 | 4649 | 6 | 0.008 |
| 10 | 10 | Optimal | 738.667 | 385511 | 4902316 | 1438972 | 2395 | 0.010 |
| 10 | 20 | Feasible | 7249.830 | 561753 | 35188051 | 5116542 | 4307083 | 6.538 |
| 10 | 60 | Feasible | 7280.240 | 631944 | 15818206 | 3233966 | 2401721 | 2.485 |
| 10 | 100 | Feasible | 7309.910 | 605906 | 17125414 | 1307050 | 841663 | 0.655 |

Table 9.5: Uniform Model Alternative Formulation (1)

| n | m | CPLEX <br> Status | Time | Obj Val | Number Iterations | Number of of Nodes | Number of Nodes Left | Gap (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 0.050 | 546773 | 152 | 0 | 0 | 0 |
| 20 | 5 | Optimal | 21.309 | 636451 | 141298 | 31251 | 40 | 0.010 |
| 20 | 10 | Feasible | 7295.710 | 821823 | 33441844 | 6281274 | 3861280 | 2.830 |
| 20 | 20 | Feasible | 7215.740 | 870620 | 21312071 | 1383325 | 1316170 | 19.024 |
| 20 | 60 | Feasible | 7249.030 | 1214110 | 10223033 | 345551 | 293840 | 10.959 |
| 20 | 100 | Feasible | 7280.100 | 1003350 | 6759345 | 318931 | 280624 | 5.759 |
| 60 | 2 | Optimal | 2.009 | 1358680 | 5757 | 420 | 0 | 0 |
| 60 | 5 | Feasible | 7290.210 | 1908940 | 22301732 | 3547946 | 1857893 | 2.091 |
| 60 | 10 | Feasible | 7221.630 | 1963310 | 15853218 | 1413813 | 1374355 | 17.695 |
| 60 | 20 | Feasible | 7240.630 | 2257700 | 8799107 | 304290 | 294812 | 21.858 |
| 60 | 60 | Feasible | 7235.580 | 2928260 | 2166352 | 44619 | 40270 | 24.676 |
| 60 | 100 | Feasible | 7222.360 | 3527260 | 931556 | 6303 | 3723 | 21.291 |
| 100 | 2 | Optimal | 6.722 | 2623610 | 20970 | 1360 | 0 | 0 |
| 100 | 5 | Feasible | 7256.840 | 2975900 | 14142345 | 1966351 | 1787586 | 6.783 |
| 100 | 10 | Feasible | 7261.720 | 3219900 | 9349927 | 694326 | 672535 | 19.465 |
| 100 | 20 | Feasible | 7247.980 | 3359730 | 3650764 | 150810 | 148601 | 31.501 |
| 100 | 60 | Feasible | 7223.770 | 4780230 | 780897 | 6693 | 5461 | 28.173 |
| 100 | 100 | Feasible | 7220.100 | 2179480 | 358686 | 377 | 378 | 65.570 |

Table 9.6: Uniform Model Alternative Formulation (2)

|  |  | CPLEX |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | m | Status | Time | Obj Val | Number of <br> Iterations | Number <br> of Nodes | Number of <br> Nodes Left | Gap <br> $(\%)$ | Heuristic <br> Obj Val | Init. <br> Gap |
| 2 | 2 | Optimal | 0.06 | 2656 | 5 | 0 | 0 | 0 | 2656.00 | 0 |
| 2 | 5 | Optimal | 0.06 | 121520 | 37 | 0 | 0 | 0 | 121520.00 | 0 |
| 2 | 10 | Optimal | 0.06 | 165960 | 28 | 0 | 0 | 0 | 165960.00 | 0 |
| 2 | 20 | Optimal | 0.06 | 207680 | 28 | 0 | 0 | 0 | 207680.00 | 0 |
| 2 | 60 | Optimal | 0.08 | 66801 | 96 | 0 | 0 | 0 | 66801.00 | 0 |
| 2 | 100 | Optimal | 0.10 | 66801 | 125 | 0 | 0 | 0 | 66801.00 | 0 |
| 5 | 2 | Optimal | 0.07 | 212238 | 40 | 1 | 0 | 0 | 212238.00 | 0 |
| 5 | 5 | Optimal | 0.15 | 164328 | 501 | 99 | 1 | 0.002 | 164038.67 | 0.18 |
| 5 | 10 | Optimal | 1.61 | 217832 | 14520 | 3066 | 2 | 0.007 | 217832.00 | 0 |
| 5 | 20 | Optimal | 0.10 | 124311 | 124 | 0 | 0 | 0 | 124311.00 | 0 |
| 5 | 60 | Optimal | 0.17 | 377480 | 146 | 0 | 0 | 0 | 377480.00 | 0 |
| 5 | 100 | Optimal | 1.17 | 319142 | 537 | 27 | 3 | 0.007 | 318770.00 | 0.12 |
| 10 | 2 | Optimal | 0.08 | 560232 | 123 | 7 | 0 | 0 | 543760.00 | 2.94 |
| 10 | 5 | Optimal | 1.80 | 325489 | 14702 | 4473 | 7 | 0.008 | 323975.50 | 0.46 |
| 10 | 10 | Optimal | 478.43 | 385511 | 3099905 | 976193 | 1854 | 0.010 | 379850.67 | 1.47 |
| 10 | 20 | Feasible | 7242.66 | 562543 | 36883946 | 4521011 | 3838288 | 7.005 | 555828.57 | 1.19 |
| 10 | 60 | Feasible | 7256.94 | 631920 | 16801245 | 3206741 | 2375616 | 2.272 | 624070.00 | 1.24 |
| 10 | 100 | Feasible | 7371.20 | 605906 | 14817894 | 2201874 | 1495908 | 0.690 | 605906.00 | 0 |

Table 9.7: Uniform Alternative Formulation with Heuristic (1)

| n | m | CPLEX <br> Status | Time | Obj Val | Number of Iterations | Number of Nodes | Number of Nodes Left | Gap <br> (\%) | Heuristic <br> Obj Val | Init. <br> Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 0.13 | 546773 | 152 | 0 | 0 | 0 | 544933.00 | 0.34 |
| 20 | 5 | Optimal | 22.45 | 636451 | 148607 | 33304 | 50 | 0.010 | 597751.73 | 6.08 |
| 20 | 10 | Feasible | 7277.33 | 826388 | 33346360 | 5977052 | 2050909 | 1.178 | 746544.34 | 9.66 |
| 20 | 20 | Feasible | 7218.68 | 871438 | 20586030 | 1288903 | 1232530 | 19.083 | 823205.84 | 5.53 |
| 20 | 60 | Feasible | 7263.70 | 1210300 | 9038508 | 435610 | 404399 | 11.199 | 1174843.45 | 2.93 |
| 20 | 100 | Feasible | 7263.57 | 1003460 | 6982060 | 250213 | 214378 | 5.949 | 868826.67 | 13.42 |
| 60 | 2 | Optim | 2.10 | 1358680 | 5757 | 420 | 0 | 0 | 1228719.00 | 9.57 |
| 60 | 5 | Feasible | 7291.07 | 1910760 | 21893848 | 3472747 | 1636867 | 1.772 | 1526583.90 | 20.11 |
| 60 | 10 | Feasible | 7221.03 | 1942390 | 15824025 | 1460216 | 1417895 | 18.640 | 1770828.61 | 8.83 |
| 60 | 20 | Feasible | 7237.20 | 2269720 | 8570162 | 290388 | 280059 | 21.442 | 1957967.13 | 13.74 |
| 60 | 60 | Feasible | 7254.81 | 2911460 | 2180690 | 43495 | 36861 | 25.113 | 2476842.23 | 14.93 |
| 60 | 100 | Feasible | 7274.08 | 3509440 | 996247 | 6782 | 5251 | 21.663 | 3218883.70 | 8.28 |
| 100 | 2 | Optima | 6.78 | 2623610 | 20970 | 1360 | 0 | 0 | 2368923.50 | 9.71 |
| 100 | 5 | Feasible | 7251.92 | 2963210 | 14311720 | 2001758 | 1840599 | 7.433 | 2493506.73 | 15.85 |
| 100 | 10 | Feasible | 7253.18 | 3253390 | 9416746 | 644540 | 621411 | 18.704 | 2703764.17 | 16.89 |
| 100 | 20 | Feasible | 7248.55 | 3396390 | 3513959 | 142581 | 140405 | 30.802 | 2736795.27 | 19.42 |
| 100 | 60 | Feasible | 7242.20 | 4903330 | 785803 | 5144 | 4196 | 26.295 | 4128380.75 | 15.80 |
| 100 | 100 | Feasible | 7333.07 | 4380590 | 375860 | 659 | 605 | 30.798 | 4380586.63 | 0 |

Table 9.8: Uniform Alternative Formulation with Heuristic (2)

|  |  | CPLEX |  |  | Number <br> of Iter | Number <br> of Nodes | Number of <br> Nodes Left | Gap |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | m | Status | Time | Obj Val | Optimal | 0.010 | 2656 | 4 |
| 0 | 0 | 0 |  |  |  |  |  |  |
| 2 | 5 | Optimal | 0.007 | 121520 | 42 | 0 | 0 | 0 |
| 2 | 10 | Optimal | 0.005 | 165960 | 22 | 0 | 0 | 0 |
| 2 | 20 | Optimal | 0.011 | 207680 | 24 | 0 | 0 | 0 |
| 2 | 60 | Optimal | 0.027 | 66801 | 41 | 0 | 0 | 0 |
| 2 | 100 | Optimal | 0.042 | 66801 | 39 | 0 | 0 | 0 |
| 5 | 2 | Optimal | 0.008 | 216338 | 42 | 0 | 0 | 0 |
| 5 | 5 | Optimal | 0.069 | 165148 | 436 | 115 | 0 | 0 |
| 5 | 10 | Optimal | 3.211 | 219925 | 39592 | 7077 | 10 | 0.009 |
| 5 | 20 | Optimal | 0.025 | 124311 | 62 | 0 | 0 | 0 |
| 5 | 60 | Optimal | 0.067 | 377480 | 111 | 0 | 0 | 0 |
| 5 | 100 | Optimal | 0.547 | 319192 | 420 | 69 | 8 | 0.010 |
| 10 | 2 | Optimal | 0.027 | 560991 | 101 | 9 | 0 | 0 |
| 10 | 5 | Optimal | 1.314 | 327000 | 11085 | 3520 | 3 | 0.009 |
| 10 | 10 | Optimal | 472.095 | 387000 | 3165547 | 968679 | 1571 | 0.010 |
| 10 | 20 | Feasible | 7261.740 | 565445 | 37926349 | 6364811 | 5439663 | 6.677 |
| 10 | 60 | Feasible | 7382.970 | 639020 | 18502911 | 3595605 | 2263154 | 1.356 |
| 10 | 100 | Feasible | 7411.000 | 605924 | 15518283 | 2088360 | 1123705 | 0.575 |

Table 9.9: Weighted Uniform Alternative Formulation (1)

| n | m | CPLEX <br> Status | Time | Obj Val | Number of Iter | Number of Nodes | Number of Nodes Left | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 0.064 | 547088 | 147 | 2 | 0 | 0 |
| 20 | 5 | Optimal | 20.426 | 636940 | 135886 | 31914 | 36 | 0.010 |
| 20 | 10 | Feasible | 7279.800 | 826632 | 35940853 | 5420698 | 3795875 | 4.246 |
| 20 | 20 | Feasible | 7221.450 | 872954 | 25070512 | 1744665 | 1693375 | 19.076 |
| 20 | 60 | Feasible | 7347.510 | 1235430 | 10506427 | 990001 | 945836 | 8.711 |
| 20 | 100 | Feasible | 7437.890 | 1022360 | 9108317 | 638577 | 546293 | 4.271 |
| 60 | 2 | Optimal | 1.550 | 1359510 | 4894 | 684 | 0 | 0 |
| 60 | 5 | Feasible | 7298.230 | 1915680 | 23198431 | 3733640 | 1504625 | 1.444 |
| 60 | 10 | Feasible | 7224.970 | 1994670 | 15131234 | 1242080 | 1163999 | 15.197 |
| 60 | 20 | Feasible | 7229.770 | 2305230 | 8634225 | 381480 | 373301 | 20.172 |
| 60 | 60 | Feasible | 7252.620 | 2988900 | 2504747 | 105419 | 101468 | 18.636 |
| 60 | 100 | Feasible | 7259.140 | 3636920 | 1250190 | 40587 | 39000 | 14.323 |
| 100 | 2 | Optimal | 5.692 | 2623900 | 17588 | 2030 | 0 | 0 |
| 100 | 5 | Feasible | 7253.330 | 2970500 | 13911585 | 2424888 | 2252629 | 7.967 |
| 100 | 10 | Feasible | 7273.250 | 3240780 | 9749274 | 689954 | 670640 | 18.802 |
| 100 | 20 | Feasible | 7256.960 | 3479020 | 5137320 | 167759 | 164638 | 25.400 |
| 100 | 60 | Feasible | 7240.230 | 4909840 | 1081647 | 33629 | 31731 | 19.097 |
| 100 | 100 | Feasible | 7244.340 | 4801770 | 582742 | 20574 | 20184 | 16.530 |

Table 9.10: Weighted Uniform Alternative Formulation (2)

### 9.3 Share-of-Surplus Model

Tables 9.11 and 9.12 show the results of the Share-of-Surplus Model with restricted prices formulation (4.9) where $c=1$.

It seems that the Share-of-Surplus Model is very difficult to solve. No mixed-integer feasible solutions were found for the larger problem instances because the LP relaxation could not be solved in two hours. From the CPLEX outputs when solving the LP relaxation, we noticed many times that there were unscaled infeasibility and CPLEX takes a long time to try to resolve it. CPLEX's preprocessor scales the rows of the mixed-integer programming formulation before solving it, and unscaled infeasibility occurs if the optimal solution found for the scaled problem is not feasible for the original problem. This seems to imply that our problem is ill-conditioned. Consider the constraints in the formulation (4.9). The reservation prices in the problem instances are generally in the range of 500 to 1500 . That is, the coefficients of some of the variables are more than 1500 times the coefficients of other variables, making the problem quite ill-conditioned.

We can attempt to solve this problem by scaling the reservation prices before using them in the model since the optimal solution is the same regardless of the unit the reservation prices are in. We let the parameter $R$ to be $R_{i j}:=\frac{r_{i j}}{s}$ where $r_{i j}$ is the original reservation price and $s$ is the scale used.

To use the scaled $R$ 's in the formulation, we need to replace the following constraint from formulation (4.9)

$$
t_{i} \leq\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}+c\right) x_{l j}, \forall i
$$

with the constraint

$$
t_{i} \leq s\left(\max _{k} R_{i k}\right) \sum_{j=1}^{m} \sum_{l: R_{l j} \leq R_{i j}}\left(R_{i j}-R_{l j}+\frac{c}{s}\right) x_{l j}, \forall i .
$$

If no scaling is done, then $s=1$ and the two constraint are the same.
Tables 9.13 to 9.20 show the results with scaled reservation prices. They include the scale used ("Scale") and the objective values without scaling ("Obj Val w/o Scale") which is the objective value multiplied by the scale. The reservation prices are scaled by 100 in

|  |  | CPLEX |  |  | Number |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | m | Status | Time | Obj Val | Number <br> of Iter | Number of <br> of Nodes | Nodes Left | Gap |
| 2 | 2 | Optimal | 0.003 | 2656.00 | 10 | 0 | 0 | 0.00 |
| 2 | 5 | Optimal | 0.008 | 121520.00 | 45 | 0 | 0 | 0.00 |
| 2 | 10 | Optimal | 0.006 | 165960.00 | 33 | 0 | 0 | 0.00 |
| 2 | 20 | Optimal | 0.010 | 207680.00 | 55 | 0 | 0 | 0.00 |
| 2 | 60 | Optimal | 0.033 | 66801.00 | 178 | 0 | 0 | 0.00 |
| 2 | 100 | Optimal | 0.052 | 66801.00 | 230 | 0 | 0 | 0.00 |
| 5 | 2 | Optimal | 0.030 | 188262.33 | 174 | 14 | 0 | 0.00 |
| 5 | 5 | Optimal | 0.233 | 156227.63 | 1355 | 173 | 0 | 0.00 |
| 5 | 10 | Optimal | 12.493 | 200113.95 | 91471 | 15219 | 6 | 0.01 |
| 5 | 20 | Optimal | 0.054 | 124311.00 | 186 | 0 | 0 | 0.00 |
| 5 | 60 | Optimal | 0.226 | 377480.00 | 371 | 0 | 0 | 0.00 |
| 5 | 100 | Optimal | 196.712 | 314096.48 | 63338 | 24343 | 13332 | 0.01 |
| 10 | 2 | Optimal | 0.254 | 547230.84 | 1099 | 44 | 0 | 0.00 |
| 10 | 5 | Optimal | 7.867 | 318568.75 | 41285 | 3391 | 1 | 0.01 |
| 10 | 10 | Optimal | 4974.726 | 353560.05 | 18591446 | 1156595 | 488 | 0.01 |
| 10 | 20 | Feasible | 7238.979 | 522364.84 | 11137946 | 638525 | 551029 | 14.17 |
| 10 | 60 | Feasible | 7421.309 | 595944.46 | 2394669 | 23646 | 21987 | 13.74 |
| 10 | 100 | Feasible | 7398.787 | 550178.41 | 1291597 | 5457 | 3958 | 12.28 |

Table 9.11: Share-of-Surplus (1)

| n | m | CPLEX | Time | Obj Val | Number of Iter | Number <br> of Nodes | Number of Nodes Left | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 2.869 | 544852.40 | 7378 | 113 | 0 | 0.00 |
| 20 | 5 | Optimal | 1650.083 | 603613.93 | 3236589 | 132607 | 44 | 0.01 |
| 20 | 10 | Feasible | 7234.299 | 743424.33 | 5653478 | 66730 | 60424 | 24.54 |
| 20 | 20 | Feasible | 7216.812 | 737637.11 | 1929323 | 17840 | 17042 | 36.68 |
| 20 | 60 | Feasible | 7319.291 | 109891.44 | 118185 | 164 | 165 | 92.28 |
| 20 | 100 | Feasible | 7244.623 | 78106.70 | 104593 | 0 | 1 | 92.98 |
| 60 | 2 | Optimal | 1167.595 | 1347710.18 | 618883 | 2234 | 1 | 0.01 |
| 60 | 5 | Feasible | 7204.174 | 1555525.57 | 472679 | 84 | 85 | 39.07 |
| 60 | 10 | Feasible | 7202.876 | 833661.00 | 184065 | 0 | 1 | 69.98 |
| 60 | 20 | No solutions found |  |  |  |  |  |  |
| 60 | 60 | No solutions found |  |  |  |  |  |  |
| 60 | 100 | No solutions found |  |  |  |  |  |  |
| 100 | 2 | Feasible | 7207.918 | 2617144.84 | 638357 | 535 | 419 | 17.11 |
| 100 | 5 | Feasible | 7201.978 | 2701523.77 | 139184 | 0 | 1 | 34.75 |
| 100 | 10 |  | solutions | found |  |  |  |  |
| 100 | 20 |  | solutions | found |  |  |  |  |
| 100 | 60 |  | solutions | found |  |  |  |  |
| 100 | 100 |  | solutions | found |  |  |  |  |

Table 9.12: Share-of-Surplus (2)
the Tables 9.13 and 9.14. They are scaled so that the maximum scaled reservation price is 1 in the Tables 9.15 and 9.16, i.e., the scale is the largest original reservation price. In Tables 9.17 and 9.18, the maximum reservation price is 10 . The results with the maximum reservation price equals to 10 and rounded to the nearest integer are shown in Tables 9.19 and 9.20 .

The scaled instances improve the gap of the best solution by a little for most cases, but not significantly. The larger problems instances still could not be solved in two hours.

To better understand the problem, we ran the LP relaxation of the model with different scaling for 11 of the problem instances. They were run with default parameter settings of CPLEX 9.1 and a time limit of 24 hours. The results are shown in Tables 9.21 and 9.22. The first column indicates the scaling method used: " 100 " means the scale used is 100 , " $\operatorname{maxR}=1$ " and " $\operatorname{maxR}=10$ " indicates the maximum reservation price is 1 and 10 respectively, and "maxR $=10$ ro" means the maximum reservation price is 10 and then rounded to the nearest integer. The "CPLEX Status" is Unknown indicates that the problem instance could not be solved in 24 hours.

Running the problems without scaling seems to have the worst performance since it results in the worst runtime for 6 of the 8 problem instances that were solved to optimality. On the other hand, scaling such that the maximum reservation price is 1 seems to perform the best. It was the only scaling that could solve the problem instances $(60 \times 60)$ and $(100 \times 20)$ to optimality in 24 hours. It has the fastest runtime for 6 cases and the second fastest runtime for 3 other cases. The improvement is perhaps due to the fact that the scaled reservation prices are closer to 1 , hence the coefficients of the $x$ variables are closer to 1, which is the coefficient of many variables in the formulation. Unfortunately, the optimal solution for the ( $100 \times 100$ ) problem instance could not be found with any of the scalings.

These results show that solving the LP relaxation of the Share-of-Surplus Model is a key bottleneck for solving the MIP. It seems like scaling shortens the solution time for the LP relaxation by a little. Clearly, further investigation is required to determine the best scaling strategy to help solve the LP. We also need to study the structure of the LP to determine additional causes of the computational difficulty.

| n | m | CPLEX Status | Time | Obj Val w/o Scale | Obj Val | Number of Iter | Number of Nodes | Number of Nodes Left | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | Optimal | 0.003 | 2656.00 | 26.56 | 13 | 0 | 0 | 0.00 |
| 2 | 5 | Optimal | 0.008 | 121520.00 | 1215.20 | 48 | 0 | 0 | 0.00 |
| 2 | 10 | Optimal | 0.006 | 165960.00 | 1659.60 | 29 | 0 | 0 | 0.00 |
| 2 | 20 | Optimal | 0.010 | 207680.00 | 2076.80 | 55 | 0 | 0 | 0.00 |
| 2 | 60 | Optimal | 0.032 | 66801.00 | 668.01 | 170 | 0 | 0 | 0.00 |
| 2 | 100 | Optimal | 0.055 | 66801.00 | 668.01 | 266 | 0 | 0 | 0.00 |
| 5 | 2 | Optimal | 0.026 | 188262.33 | 1882.62 | 178 | 14 | 0 | 0.00 |
| 5 | 5 | Optimal | 0.180 | 156227.63 | 1562.28 | 957 | 108 | 0 | 0.00 |
| 5 | 10 | Optimal | 11.190 | 200113.95 | 2001.14 | 78978 | 14870 | 6 | 0.01 |
| 5 | 20 | Optimal | 0.051 | 124311.00 | 1243.11 | 163 | 0 | 0 | 0.00 |
| 5 | 60 | Optimal | 0.204 | 377480.00 | 3774.80 | 401 | 0 | 0 | 0.00 |
| 5 | 100 | Optimal | 74.669 | 314096.48 | 3140.96 | 40180 | 3226 | 1217 | 0.01 |
| 10 | 2 | Optimal | 0.236 | 547230.84 | 5472.31 | 1089 | 47 | 0 | 0.00 |
| 10 | 5 | Optimal | 8.763 | 318568.75 | 3185.69 | 41052 | 3731 | 1 | 0.00 |
| 10 | 10 | Optimal | 4920.005 | 353560.05 | 3535.60 | 16648615 | 1334858 | 622 | 0.01 |
| 10 | 20 | Feasible | 7247.964 | 522573.63 | 5225.74 | 12330270 | 821723 | 714028 | 13.24 |
| 10 | 60 | Feasible | 7333.222 | 595031.83 | 5950.32 | 2559793 | 31151 | 19144 | 13.70 |
| 10 | 100 | Feasible | 7516.007 | 550176.66 | 5501.77 | 1349279 | 21509 | 16851 | 11.68 |

Table 9.13: Share-of-Surplus, reservation prices scaled by 100 (1)

| n | m | CPLEX <br> status | Time | Obj val w/o scale | Obj val | Number of Iter | Number of Nodes | Number of Nodes Left | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 2.727 | 544852.40 | 5448.52 | 7435 | 122 | 0 | 0.00 |
| 20 | 5 | Optimal | 1720.597 | 603613.93 | 6036.14 | 3003469 | 129654 | 28 | 0.01 |
| 20 | 10 | Feasible | 7234.556 | 759072.02 | 7590.72 | 5786176 | 71796 | 63793 | 23.13 |
| 20 | 20 | Feasible | 7216.712 | 741360.40 | 7413.60 | 1977868 | 22423 | 21479 | 36.37 |
| 20 | 60 | Feasible | 7261.751 | 152840.00 | 1528.40 | 88149 | 10 | 11 | 89.26 |
| 20 | 100 | Feasible | 7223.192 | 96544.00 | 965.44 | 83963 | 0 | 1 | 91.33 |
| 60 | 2 | Optimal | 981.469 | 1347710.18 | 13477.10 | 586240 | 2217 | 0 | 0.00 |
| 60 | 5 | Feasible | 7208.297 | 1799277.94 | 17992.78 | 628742 | 989 | 915 | 29.48 |
| 60 | 10 | Feasible | 7205.185 | 1145996.94 | 11459.97 | 74661 | 0 | 1 | 58.74 |
| 60 | 20 |  | No solu | ions found |  |  |  |  |  |
| 60 | 60 |  | No solu | ions found |  |  |  |  |  |
| 60 | 100 |  | No solu | ions found |  |  |  |  |  |
| 100 | 2 | Feasible | 7207.671 | 2537308.99 | 25373.09 | 635508 | 583 | 462 | 20.98 |
| 100 | 5 | Feasible | 7204.616 | 2701523.77 | 27015.24 | 101638 | 0 | 1 | 34.75 |
| 100 | 10 |  | No solu | ions found |  |  |  |  |  |
| 100 | 20 |  | No solu | ions found |  |  |  |  |  |
| 100 | 60 |  | No solu | ions found |  |  |  |  |  |
| 100 | 100 |  | No solu | ions found |  |  |  |  |  |

Table 9.14: Share-of-Surplus, reservation prices scaled by 100 (2)

| n | m | CPLEX <br> Status |  | Obj Val w/o Scale | Obj Val | Number <br> of Iter | Number <br> of Nodes | Number of Nodes Left | Gap | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | Optimal | 0.003 | 2656.00 | 2.50 | 10 | 0 | 0 | 0 | 1064 |
| 2 | 5 | Optimal | 0.009 | 121520.00 | 77.90 | 60 | 0 | 0 | 0 | 1560 |
| 2 | 10 | Optimal | 0.006 | 165960.00 | 63.22 | 58 | 0 | 0 | 0 | 2625 |
| 2 | 20 | Optimal | 0.011 | 207680.00 | 61.72 | 70 | 0 | 0 | 0 | 3365 |
| 2 | 60 | Optimal | 0.028 | 66801.00 | 28.10 | 144 | 0 | 0 | 0 | 2377 |
| 2 | 100 | Optimal | 0.048 | 66801.00 | 28.10 | 200 | 0 | 0 | 0 | 2377 |
| 5 | 2 | Optimal | 0.032 | 188262.33 | 80.21 | 236 | 16 | 0 | 0 | 2347 |
| 5 | 5 | Optimal | 0.158 | 156227.63 | 94.68 | 795 | 101 | 0 | 0 | 1650 |
| 5 | 10 | Optimal | 12.553 | 200113.95 | 104.23 | 92693 | 17830 | 6 | 0.01 | 1920 |
| 5 | 20 | Optimal | 0.072 | 124311.00 | 52.30 | 339 | 0 | 0 | 0 | 2377 |
| 5 | 60 | Optimal | 0.181 | 377480.00 | 139.76 | 516 | 0 | 0 | 0 | 2701 |
| 5 | 100 | Optimal | 190.210 | 314096.48 | 82.20 | 45447 | 18300 | 6858 | 0.01 | 3821 |
| 10 | 2 | Optimal | 0.214 | 547230.84 | 210.72 | 967 | 52 | 0 | 0 | 2597 |
| 10 | 5 | Optimal | 8.063 | 318568.75 | 174.46 | 36274 | 3275 | 1 | 0.01 | 1826 |
| 10 | 10 | Optimal | 4627.430 | 353560.05 | 165.21 | 16782955 | 1429172 | 618 | 0.01 | 2140 |
| 10 | 20 | Feasible | 7283.021 | 522629.32 | 193.49 | 13566471 | 1002368 | 894043 | 13.53 | 2701 |
| 10 | 60 | Feasible | 7388.581 | 596020.80 | 216.11 | 2823045 | 31714 | 26768 | 13.46 | 2758 |
| 10 | 100 | Feasible | 7637.544 | 550147.13 | 143.98 | 1394015 | 16724 | 14012 | 11.87 | 3821 |

Table 9.15: Share-of-Surplus, the maximum reservation price is 1. (1)

| n | m | CPLEX <br> Status | Time | Obj Val <br> w/o Scale | Obj Val | Number <br> of Iter | Number of Nodes | Number of Nodes Left | Gap | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 2.041 | 544852.40 | 342.03 | 5823 | 119 | 0 | 0 | 1593 |
| 20 | 5 | Optimal | 1584.893 | 603613.93 | 329.48 | 2733059 | 133057 | 39 | 0.01 | 1832 |
| 20 | 10 | Feasible | 7235.973 | 742365.41 | 319.85 | 5755205 | 74990 | 66480 | 24.03 | 2321 |
| 20 | 20 | Feasible | 7218.123 | 780306.73 | 256.85 | 1786584 | 17275 | 16570 | 33.20 | 3038 |
| 20 | 60 | Feasible | 7264.515 | 231840.00 | 60.68 | 124889 | 270 | 271 | 83.71 | 3821 |
| 20 | 100 | Feasible | 7249.705 | 96544.00 | 25.27 | 88214 | 0 | 1 | 91.33 | 3821 |
| 60 | 2 | Optimal | 836.968 | 1347710.18 | 777.23 | 523024 | 2237 | 0 | 0 | 1734 |
| 60 | 5 | Feasible | 7208.292 | 1844218.81 | 842.88 | 586540 | 920 | 843 | 27.74 | 2188 |
| 60 | 10 | Feasible | 7204.123 | 1145996.94 | 493.75 | 67089 | 0 | 1 | 58.74 | 2321 |
| 60 | 20 |  | No solut | ions found |  |  |  |  |  |  |
| 60 | 60 |  | No solut | ions found |  |  |  |  |  |  |
| 60 | 100 |  | No solut | ions found |  |  |  |  |  |  |
| 100 | 2 | Feasible | 7211.785 | 2588279.64 | 1492.66 | 718432 | 1602 | 1273 | 19.90 | 1734 |
| 100 | 5 | Feasible | 7204.581 | 2701523.77 | 1022.53 | 81562 | 0 | 1 | 34.77 | 2642 |
| 100 | 10 |  | No solut | ions found |  |  |  |  |  |  |
| 100 | 20 |  | No solut | ions found |  |  |  |  |  |  |
| 100 | 60 |  | No solut | ions found |  |  |  |  |  |  |
| 100 | 100 |  | No solut | ions found |  |  |  |  |  |  |

Table 9.16: Share-of-Surplus, the maximum reservation price is 1. (2)

| n | m | CPLEX <br> Status |  | Obj Val w/o Scale | Obj Val | Number of Iter | Number of Nodes | Number of Nodes Left | Gap | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | Optimal | 0.003 | 2656.00 | 24.96 | 13 | 0 | 0 | 0.00 | 106.4 |
| 2 | 5 | Optimal | 0.008 | 121520.00 | 778.97 | 43 | 0 | 0 | 0.00 | 156.0 |
| 2 | 10 | Optimal | 0.006 | 165960.00 | 632.23 | 33 | 0 | 0 | 0.00 | 262.5 |
| 2 | 20 | Optimal | 0.010 | 207680.00 | 617.18 | 55 | 0 | 0 | 0.00 | 336.5 |
| 2 | 60 | Optimal | 0.031 | 66801.00 | 281.03 | 175 | 0 | 0 | 0.00 | 237.7 |
| 2 | 100 | Optimal | 0.053 | 66801.00 | 281.03 | 273 | 0 | 0 | 0.00 | 237.7 |
| 5 | 2 | Optimal | 0.034 | 188262.33 | 802.14 | 239 | 18 | 0 | 0.00 | 234.7 |
| 5 | 5 | Optimal | 0.177 | 156227.63 | 946.83 | 954 | 106 | 0 | 0.00 | 165.0 |
| 5 | 10 | Optimal | 11.212 | 200113.95 | 1042.26 | 80609 | 16181 | 7 | 0.01 | 192.0 |
| 5 | 20 | Optimal | 0.051 | 124311.00 | 522.97 | 150 | 0 | 0 | 0.00 | 237.7 |
| 5 | 60 | Optimal | 0.245 | 377480.00 | 1397.56 | 455 | 0 | 0 | 0.00 | 270.1 |
| 5 | 100 | Optimal | 129.728 | 314096.48 | 822.03 | 38668 | 14017 | 7323 | 0.01 | 382.1 |
| 10 | 2 | Optimal | 0.235 | 547230.84 | 2107.17 | 1007 | 49 | 0 | 0.00 | 259.7 |
| 10 | 5 | Optimal | 8.679 | 318568.75 | 1744.63 | 41322 | 3585 | 2 | 0.01 | 182.6 |
| 10 | 10 | Optimal | 5180.500 | 353560.05 | 1652.15 | 17079760 | 1461167 | 587 | 0.01 | 214.0 |
| 10 | 20 | Feasible | 7250.343 | 522179.67 | 1933.28 | 10456907 | 503699 | 408902 | 13.19 | 270.1 |
| 10 | 60 | Feasible | 7395.238 | 596044.21 | 2161.15 | 2714929 | 29712 | 25282 | 13.40 | 275.8 |
| 10 | 100 | Feasible | 7533.797 | 550177.30 | 1439.88 | 1354189 | 27122 | 22210 | 11.58 | 382.1 |

Table 9.17: Share-of-Surplus, the maximum reservation price is 10 . (1)

| n | m | CPLEX <br> Status | Time | Obj Val w/o scale | Obj Val | Number <br> of Iter | Number of Nodes | Number of Nodes Left | Gap | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 2.811 | 544852.40 | 3420.29 | 7748 | 123 | 1 | 0.00 | 159.3 |
| 20 | 5 | Optimal | 1773.690 | 603613.93 | 3294.84 | 3048780 | 134206 | 37 | 0.01 | 183.2 |
| 20 | 10 | Feasible | 7234.025 | 743310.20 | 3202.54 | 5752233 | 67864 | 60306 | 24.44 | 232.1 |
| 20 | 20 | Feasible | 7217.175 | 760461.33 | 2503.16 | 2089323 | 17030 | 16149 | 34.80 | 303.8 |
| 20 | 60 | Feasible | 7265.950 | 152840.00 | 400.00 | 119785 | 182 | 183 | 89.26 | 382.1 |
| 20 | 100 | Feasible | 7253.102 | 78106.70 | 204.41 | 69197 | 0 | 1 | 92.98 | 382.1 |
| 60 | 2 | Optimal | 1061.125 | 1347710.18 | 7772.26 | 609752 | 2210 | 2 | 0.01 | 173.4 |
| 60 | 5 | Feasible | 7208.166 | 1780929.79 | 8139.53 | 618179 | 1000 | 891 | 30.22 | 218.8 |
| 60 | 10 | Feasible | 7201.985 | 714525.00 | 3078.52 | 160062 | 0 | 1 | 74.27 | 232.1 |
| 60 | 20 |  | No solu | ions found |  |  |  |  |  |  |
| 60 | 60 |  | No solu | ions found |  |  |  |  |  |  |
| 60 | 100 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 2 | Feasible | 7208.812 | 2558417.99 | 14754.43 | 648189 | 414 | 350 | 20.94 | 173.4 |
| 100 | 5 | Feasible | 7203.587 | 2701523.77 | 10225.30 | 88266 | 0 | 1 | 34.76 | 264.2 |
| 100 | 10 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 20 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 60 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 100 |  | No solu | ions found |  |  |  |  |  |  |

Table 9.18: Share-of-Surplus, the maximum reservation price is 10 . (2)

| n | m | CPLEX <br> Status | Time | Obj Val w/o Scale | Obj Val | Number of Iter | Number of Nodes | Number of Nodes Left | Gap | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | Optimal | 0.010 | 2660.00 | 25.00 | 13 | 0 | 0 | 0 | 106.4 |
| 2 | 5 | Optimal | 0.003 | 124800.00 | 800.00 | 17 | 0 | 0 | 0 | 156.0 |
| 2 | 10 | Optimal | 0.005 | 168000.00 | 640.00 | 27 | 0 | 0 | 0 | 262.5 |
| 2 | 20 | Optimal | 0.009 | 201900.00 | 600.00 | 54 | 0 | 0 | 0 | 336.5 |
| 2 | 60 | Optimal | 0.029 | 64892.10 | 273.00 | 131 | 0 | 0 | 0 | 237.7 |
| 2 | 100 | Optimal | 0.064 | 64892.10 | 273.00 | 308 | 0 | 0 | 0 | 237.7 |
| 5 | 2 | Optimal | 0.049 | 197148.00 | 840.00 | 340 | 20 | 0 | 0 | 234.7 |
| 5 | 5 | Optimal | 0.199 | 149100.73 | 903.64 | 1333 | 149 | 0 | 0 | 165.0 |
| 5 | 10 | Optimal | 14.090 | 204430.82 | 1064.74 | 109513 | 14282 | 3 | 0.008 | 192.0 |
| 5 | 20 | Optimal | 0.836 | 117265.33 | 493.33 | 1129 | 202 | 0 | 0 | 237.7 |
| 5 | 60 | Optimal | 0.183 | 378140.00 | 1400.00 | 367 | 0 | 0 | 0 | 270.1 |
| 5 | 100 | Optimal | 873.327 | 301970.81 | 790.29 | 1297787 | 52288 | 640 | 0.010 | 382.1 |
| 10 | 2 | Optimal | 0.362 | 579052.55 | 2229.70 | 2168 | 140 | 0 | 0 | 259.7 |
| 10 | 5 | Optimal | 13.357 | 324211.33 | 1775.53 | 58199 | 8404 | 1 | 0.004 | 182.6 |
| 10 | 10 | Feasible | 7255.469 | 348881.67 | 1630.29 | 26576525 | 2032571 | 1049733 | 6.010 | 214.0 |
| 10 | 20 | Feasible | 7239.328 | 512733.88 | 1898.31 | 11793024 | 620950 | 534734 | 13.733 | 270.1 |
| 10 | 60 | Feasible | 7712.828 | 640245.94 | 2321.41 | 2983122 | 12152 | 6454 | 7.698 | 275.8 |
| 10 | 100 | Feasible | 7672.237 | 537996.80 | 1408.00 | 1889087 | 19398 | 15454 | 13.231 | 382.1 |

Table 9.19: Share of Surplus, the maximum reservation price is 10 and rounded. (1)

| n | m | CPLEX <br> Status | Time | $\begin{array}{r} \text { Obj Val } \\ \text { w/o Scale } \end{array}$ | Obj Val | Number of Iter | Number of Nodes | Number of Nodes Left | Gap | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2 | Optimal | 6.620 | 535122.67 | 3359.21 | 21795 | 413 | 0 | 0 | 159.3 |
| 20 | 5 | Optimal | 2113.888 | 628452.71 | 3430.42 | 4985376 | 359870 | 11 | 0.009 | 183.2 |
| 20 | 10 | Feasible | 7232.234 | 793271.00 | 3417.80 | 5559267 | 51842 | 46660 | 21.121 | 232.1 |
| 20 | 20 | Feasible | 7322.441 | 825107.48 | 2715.96 | 2159065 | 17868 | 16962 | 29.219 | 303.8 |
| 20 | 60 | Feasible | 7350.367 | 239555.72 | 626.95 | 68000 | 7 | 8 | 82.803 | 382.1 |
| 20 | 100 | Feasible | 7406.689 | 74763.08 | 195.66 | 79617 | 0 | 1 | 93.107 | 382.1 |
| 60 | 2 | Optimal | 2070.205 | 1366263.05 | 7879.26 | 1258689 | 4181 | 0 | 0 | 173.4 |
| 60 | 5 | Feasible | 7215.075 | 1880038.45 | 8592.50 | 487379 | 403 | 376 | 26.251 | 218.8 |
| 60 | 10 | Feasible | 7214.648 | 785948.72 | 3386.25 | 94813 | 0 | 1 | 71.860 | 232.1 |
| 60 | 20 |  | No solu | ions found |  |  |  |  |  |  |
| 60 | 60 |  | No solu | ions found |  |  |  |  |  |  |
| 60 | 100 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 2 | Feasible | 7212.891 | 2743817.20 | 15823.63 | 608674 | 882 | 731 | 16.031 | 173.4 |
| 100 | 5 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 10 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 20 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 60 |  | No solu | ions found |  |  |  |  |  |  |
| 100 | 100 |  | No solu | ions found |  |  |  |  |  |  |

Table 9.20: Share of Surplus, the maximum reservation price is 10 and rounded. (2)

| n | m | Scaling | $\begin{array}{r} \text { CPLEX } \\ \text { Status } \end{array}$ |  | Obj Val w/o Scale | $\begin{gathered} \hline \text { Obj } \\ \text { Val } \end{gathered}$ | \# Iter. | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | No scale | Optimal | 0.37 | 491649 | 491649.03 | 1063 | 1.0 |
|  |  | 100 | Optimal | 0.29 | 491649 | 4916.49 | 835 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 0.29 | 491649 | 229.74 | 821 | 2140.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 0.26 | 491649 | 2297.43 | 793 | 214.0 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 0.35 | 501474 | 2343.34 | 949 | 214.0 |
| 10 | 20 | No scale | Optimal | 1.72 | 674610 | 674610.01 | 2239 | 1.0 |
|  |  | 100 | Optimal | 0.78 | 674610 | 6746.10 | 1797 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 1.09 | 674610 | 249.76 | 1614 | 2701.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 0.88 | 674610 | 2497.63 | 1600 | 270.1 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 0.95 | 678427 | 2511.76 | 2156 | 270.1 |
| 10 | 60 | No scale | Optimal | 9.20 | 693731 | 693730.60 | 3714 | 1.0 |
|  |  | 100 | Optimal | 7.79 | 693731 | 6937.31 | 3320 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 7.45 | 693732 | 251.53 | 3588 | 2758.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 10.90 | 693731 | 2515.34 | 4445 | 275.8 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 10.49 | 709322 | 2571.87 | 4247 | 275.8 |
| 20 | 10 | No scale | Optimal | 5.72 | 1060889 | 1060888.61 | 5332 | 1.0 |
|  |  | 100 | Optimal | 4.03 | 1060889 | 10608.89 | 3230 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 3.92 | 1060889 | 457.08 | 3325 | 2321.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 3.91 | 1060889 | 4570.83 | 3000 | 232.1 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 4.55 | 1061492 | 4573.43 | 3612 | 232.1 |
| 20 | 60 | No scale | Optimal | 430.69 | 1425113 | 1425113.18 | 22012 | 1.0 |
|  |  | 100 | Optimal | 536.07 | 1425113 | 14251.13 | 29008 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 248.86 | 1425113 | 372.97 | 15040 | 3821.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 300.93 | 1425113 | 3729.69 | 17854 | 382.1 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 396.77 | 1394647 | 3649.95 | 23526 | 382.1 |
| 20 | 100 | No scale | Optimal | 1586.71 | 1113668 | 1113668.06 | 43259 | 1.0 |
|  |  | 100 | Optimal | 990.64 | 1113668 | 11136.68 | 29600 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 979.17 | 1113668 | 291.46 | 31591 | 3821.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 1301.03 | 1113668 | 2914.60 | 38829 | 382.1 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 1302.59 | 1085155 | 2839.98 | 39565 | 382.1 |

Table 9.21: Share-of-Surplus LP Relaxation (1)

| n | m | Scaling | CPLEX <br> Status | Time | Obj Val w/o Scale | Obj <br> Val | $\begin{array}{r} \# \\ \text { Iter. } \end{array}$ | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 20 | No scale | Optimal | 14410.04 | 3193481 | 3193480.95 | 191793 | 1.0 |
|  |  | 100 | Optimal | 4305.10 | 3193481 | 31934.81 | 75242 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 4541.50 | 3193481 | 828.40 | 79255 | 3855.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 10313.59 | 3193481 | 8284.00 | 160262 | 385.5 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 5350.56 | 3226598 | 8369.91 | 88228 | 385.5 |
| 60 | 60 | No scale | Unknown | 86441.56 | - | - | 305500 | 1.0 |
|  |  | 100 | Unknown | 86734.86 | - | - | 354500 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 75188.34 | 3990330 | 860.73 | 291119 | 4636.0 |
|  |  | $\operatorname{maxR}=10$ | Unknown | 86545.40 | - | - | 323100 | 463.6 |
|  |  | $\operatorname{maxR}=10$ ro | Unknown | 88165.56 | - | - | 346400 | 463.6 |
| 100 | 10 | No scale | Optimal | 50881.92 | 4835642 | 4835642.06 | 450708 | 1.0 |
|  |  | 100 | Optimal | 15466.55 | 4835642 | 48356.42 | 167898 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 11078.28 | 4835642 | 1315.82 | 141522 | 3675.0 |
|  |  | $\operatorname{maxR}=10$ | Optimal | 26565.45 | 4835642 | 13158.21 | 171992 | 367.5 |
|  |  | $\operatorname{maxR}=10$ ro | Optimal | 25875.97 | 4865261 | 13238.80 | 230320 | 367.5 |
| 100 | 20 | No scale | Unknown | 87733.20 | - | - | 424900 | 1.0 |
|  |  | 100 | Unknown | 86407.83 | - | - | 401300 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Optimal | 71195.08 | 5306483 | 1127.36 | 321094 | 4707.0 |
|  |  | $\operatorname{maxR}=10$ | Unknown | 88385.15 | - | - | 373700 | 470.7 |
|  |  | $\operatorname{maxR}=10$ ro | Unknown | 88625.64 | - | - | 220800 | 470.7 |
| 100 | 100 | No scale | Unknown | 89220.89 | - | - | 296800 | 1.0 |
|  |  | 100 | Unknown | 86497.65 | - | - | 246600 | 100.0 |
|  |  | $\operatorname{maxR}=1$ | Unknown | 86494.29 | - | - | 295200 | 5680.0 |
|  |  | $\operatorname{maxR}=10$ | Unknown | 86523.08 | - | - | 322700 | 568.0 |
|  |  | $\operatorname{maxR}=10$ ro | Unknown | 86434.80 | - | - | 189500 | 568.0 |

Table 9.22: Share-of-Surplus LP Relaxation (2)

## Chapter 10

## Conclusion

This thesis presents ways to formulate and solve product pricing models using mathematical programming. We have discussed four different probabilistic choice models, all of which are based on reservation prices and are formulated as convex mixed-integer programming problems. The Uniform Distribution Model assumes that $P r_{i j}$, the probability that segment $i$ buys product $j$, is uniform among all products with nonnegative surplus. The Weighted Uniform Model assumes that $P r_{i j}$ is proportional to the reservation price $R_{i j}$. In the Share-of-Surplus Model, the probability $P r_{i j}$ depends on the surplus of the products. Using the assumption that demand increases as price decreases, the Price Sensitive Model uses $P r_{i j}$ that is inversely proportional to the price of the products with nonnegative surplus. A few special properties of the models have been shown and comparisons of the models' optimal solutions provide some indication of how the models behave. We have proposed and tested a few simple heuristics for finding feasible solutions and we conclude that using a starting feasible solution found by the heuristic does improve the solution time. Computational results of the various models are also presented and they show that the proposed models are difficult to solve for larger problems.

Further research is needed to develop better heuristics (perhaps heuristics tailored to each model) to find a good starting solution to improve the solution time. More investigations on different cuts should also be done, especially on the valid inequalities discussed in Section 7.2.

For the Share-of-Surplus Model, we may want to investigate other monotonically in-
creasing functions to describe the probability which would perhaps lead to formulations that are easier to solve. We may like to examine the effect of the value of the constant $c$ on the problem (4.9) and determine the ideal value for the constant. In addition, we currently do not fully understand the effect of scaling the reservation prices and this area should be explored further.

All the models discussed in this thesis assume that the company has no competitors. We should explore ways to consider competitor products in our models in order to correctly model the loss of revenue when the customers buy from other companies. We can easily incorporate competitor products in our formulations by considering the surplus of every segment for every competitor product. However, this may unrealistically increase the denominator of $P r_{i j}$ and collecting such detailed competitor information is very difficult. The challenge is to determine how to include competitor information without explicitly considering each competitor product individually.

The motive of this thesis is to show how some marketing models of customer choice behavior can be modelled exactly using mixed-integer programming. This preliminary work illustrates the modeling power of integer and convex nonlinear programming techniques, and we hope to extend our work to other product pricing and customer choice models in the future.

## Appendix A

## Estimating the Reservation Price

The reservation price data used in the computational experiments of Chapter 9 are estimated from actual purchase orders of a Canadian travel company. The customers are partitioned into segments according to their demographic information, purchase lead time and other characteristics. Suppose after the segmentation, there are $n$ customers, with $N_{i}$ customers in segment $i, i=1, \ldots, n$. The company offers $m$ products.

From the historical data, we know what fraction of customers of each segment purchased each product and how much they paid for it. Let

$$
\begin{aligned}
f r_{i j} & :=\text { the fraction of segment } i \text { customers who purchased product } j, \\
B_{i} & :=\left\{j \mid f r_{i j}>0\right\}, \text { i.e., set of products purchased by segment } i, \\
p_{i j} & :=\text { the price that customers of segment } i \text { paid for product } j .
\end{aligned}
$$

The price paid for a particular product may be slightly different from customer to customer depending on the time of sales and other anomalies. Thus, the above $p_{i j}$ value is the average price paid by segment $i$ for product $j$.

To estimate the reservation price $R_{i j}$ of segment $i$ for product $j$, we assumed that customers behaved according to the Share-of-Surplus Model of Chapter 4. Thus, $f r_{i j}$ should be approximately equal to

$$
\frac{R_{i j}-p_{i j}}{\sum_{k \in B_{i}} R_{i k}-p_{i k}}
$$

where $R_{i j}$ 's are now variables and $p_{i j}$ 's are data.

We fit $R_{i j}$ 's and the Share-of-Surplus Model to the data using least squares regression, i.e., for each segment $i$, we solved for $R_{i j}$ 's, $j=1, \ldots, m$, that minimizes

$$
\sum_{j \in B_{i}}\left(f_{i j}-\frac{R_{i j}-p_{i j}}{\sum_{k \in B_{i}} R_{i k}-p_{i k}}\right)^{2}
$$

or

$$
\sum_{j \in B_{i}}\left(f_{i j}\left(\sum_{k \in B_{i}} R_{i k}-p_{i k}\right)-R_{i j}-p_{i j}\right)^{2}
$$

subject to

$$
\begin{aligned}
R_{i j}-p_{i j} & \geq 0, \quad j \in B_{i}, \\
\sum_{k \in B_{i}} R_{i k}-p_{i k} & \geq \delta
\end{aligned}
$$

where $\delta>0$.
There are some further details that need to be addressed. One of the key issues is estimating $R_{i j}$ for $j \notin B_{i}$. Currently, we have these $R_{i j}$ 's set to 0 , which is clearly an underestimate. Although we do not have any direct information about segment $i$ 's preference level of product $j$, we may be able to infer this from other segments that do purchase product $j$. As a future work, we can consider using data mining techniques such as clustering and collaborative filtering to determine these $R_{i j}$ 's.

## Bibliography

[1] E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. 1997,SIAM J. Alg. Disc. Meth., 6:466-486, 1985.
[2] G. Dobson and S. Kalish. Positioning and pricing a product line. Marketing Science, 7:107-125, 1988.
[3] G. Dobson and S. Kalish. Heuristics for pricing and positioning a product-line using conjoint and cost data. Management Science, 39:160-175, 1993.
[4] W. Hanson and R.K. Martin. Optimal bundle pricing. Management Science, 36:155174, 1990.
[5] W.A. Kamakura and G.J. Russell. A probabilistic choice model for market segmentation and elasticity structure. Journal of Marketing Research, 26:379-390, 1989.
[6] U.G. Kraus and C.A. Yano. Product line selection and pricing under a share-of-surplus choice model. European Journal of Operational Research, 150:653-671, 2003.
[7] J. I. McGill and G. J. Van Ryzin. Revenue management: Research overview and prospects. Transportation Science, 33:233-256, 1999.
[8] G. L. Nemhauser and L.A. Wolsey. Integer Programming and Combinatorial Optimization. John Wiley and Sons, 1999.
[9] G. Van Ryzin and K.T. Talluri. The Theory and Practice of Revenue Management. Kluwer Academic Publishers, 2004.


[^0]:    ${ }^{1}$ The actual optimal prices found by CPLEX are (1111.999934, $\left.1240.999815,823.000164,1282.999916\right)$

[^1]:    ${ }^{1}$ It is possible that a company may procure large quantities of a currently non-profitable product to increase their long-term market share. We will not consider such long-term marketing strategy in this thesis.

