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Abstract

Bilinear pairings on elliptic curves have many cryptographic applications such as identity
based encryption, one-round three-party key agreement protocols, and short signature
schemes. The elliptic curves which are suitable for pairing-based cryptography are called
pairing friendly curves. The prime-order pairing friendly curves with embedding degrees
k = 3, 4 and 6 were characterized by Miyaji, Nakabayashi and Takano. We study this
characterization of MNT curves in details. We present explicit algorithms to obtain
suitable curve parameters and to construct the corresponding elliptic curves. We also
give a heuristic lower bound for the expected number of isogeny classes of MNT curves.
Moreover, the related theoretical findings are compared with our experimental results.
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CHAPTER 1

Introduction

Let E be an elliptic curve defined over a finite field Fq. Also let #E(Fq) = n = hr be the
number of Fq-points on E, where r is the largest prime divisor of n, and gcd(r, q) = 1.
The set of all points of order r in E(F̄q) forms a subgroup of E(Fq) denoted by E[r]. For
such an integer r, a bilinear map is defined from the pair of r-torsion points of E to the
rth roots of unity in F̄q as

er : E[r]×E[r] 7→ µr.

In fact, the multiplicative group µr in the above mapping lies in the extension field Fqk

where k is the least positive integer satisfying k ≥ 2 and qk ≡ 1 (mod r). The above
mapping is called the Weil pairing, and the integer k is called the embedding degree of
E. There also exists a similar mapping which is called the Tate pairing. For more details
on the properties of these pairings we refer the reader to the book [3].

These pairings are used in many cryptographic applications such as identity based
encryption [7], one-round 3-party key agreement protocols [15], and short signature
schemes [6]. The computation of pairings requires arithmetic in the finite field Fqk .
Therefore, k should be a ’small’ integer for the efficiency of the application. On the
other hand, the discrete logarithm problem in the order-r subgroup of E(Fq) can be
reduced to the discrete logarithm problem in Fqk [23]. Therefore, k must also be ’big’
enough to satisfy the security requirements. In other words, it is reasonable to ask for
parameters (q, r, k) so that the discrete logarithm problem in E(Fq), and the discrete
logarithm problem in Fqk have approximately the same difficulty. In particular, given the
best algorithms known and today’s computer technology to attack discrete logarithms in
elliptic curve groups and in finite field groups, 80-bit security level is satisfied by choosing
r ≈ 2160, and qk ≈ 21024.

Miyaji, Nakabayashi, and Takano gave the characterization of prime order elliptic curves
with embedding degree k = 3, 4 and 6 [24]. Barreto and Naehrig, in 2005, constructed
an explicit family of prime order elliptic curves with k = 12 [2]. In 2006, Freeman
constructed a family of prime order elliptic curves with k = 10 [10]. Galbraith, McKee,
and Valenca extended the methods of [24] to non-prime order elliptic curves and they
characterize the families of elliptic curves with embedding degrees k = 3, 4, 6, and with
cofactors 2 ≤ h ≤ 5 [12]. Barreto, Lynn, and Scott [1] investigated elliptic curve
constructions for certain values of k. In particular, they described a construction method
for k = 2i3jps which can generate curves with 1 < ρ = log2 n/ log2 r ≈ 2. Moreover,
Dupont, Enge, Morain [8], and Cocks, Pinch [4] presented constructions of elliptic curves
for arbitrary values of k. In general, their methods are expected to produce elliptic curves
with ρ ≈ 2.
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2 1. INTRODUCTION

In this work, we concentrate on the characterization of elliptic curves with embedding
degrees k = 3, 4, and 6, and the detailed analysis of this construction.

In Chapter 2, we give some background and definitions related to finite fields, and
elliptic curves. Then, we give details on the MNT characterization theorem. Given the
parameters for prime order ordinary elliptic curves with k = 3, 4, and 6, Section 2.1
explains the construction of these curves through the complex multiplication method.
Section 2.2 presents the results of Luca and Shparlinski [18], [19] which show that MNT
curves are very rare.

As we see in Section 2.1, the construction of elliptic curves is based on solving some
particular Pell equations. Therefore, some background on continued fractions and Pell-
type equations is provided in Chapter 3.

In Chapter 4, we study the construction of prime order elliptic curves with k = 6.
First, we provide a detailed analysis of the corresponding Pell equation. A necessary
and sufficient condition for the solubility of the Pell-equation is given by Theorem 4.10.
Using the sufficiency part of this theorem, we obtain a lower bound for the number of Pell
equations having integer solutions. Moreover, we give a lower bound for the expected
number of MNT curves. We also present an explicit algorithm to obtain suitable elliptic
curve parameters. Outputs of this algorithm are discussed and they are compared with
the theoretical findings from [18] and from this work.

Chapter 5 is analogous to Chapter 4 and investigates elliptic curves with k = 3 and 4.

In Chapter 6 we give some cryptographically interesting examples of prime order elliptic
curves.

We conclude by Chapter 7 by giving a brief summary of our work and suggesting some
research problems.



CHAPTER 2

Prime-order curves of low embedding degree

We begin by giving some facts on finite fields and elliptic curves. The proofs of the
statements relating to finite fields can be found in the book by R. Lidl and H. Niederreiter
[17]. We refer to Silverman’s book [30] for more details on elliptic curves.

Let Fq be a finite field with q elements, and char(Fq) = p. The set of nth roots of unity
over Fq is defined to be

µn = {u ∈ Fq : un = 1}

where Fq is the algebraic closure of Fq. Let f be a positive degree polynomial with
coefficients in Fq. The splitting field of f over Fq is the smallest field containing all
the roots of f . For n ≥ 1 the splitting field of f(x) = xn − 1 over Fq is called the
nth cyclotomic field over Fq, and hence obtained as Fq(µn). If gcd(p, n) = 1 then µn

is a cyclic group of order n with respect to multiplication in Fq(µn). In this case, any
generator of the cyclic group µn is called a primitive nth root of unity over Fq.

Let ζ be a primitive nth root of unity over Fq. Then, for 1 ≤ s < n with gcd(s, n) = 1,
ζs is also a primitive nth root of unity over Fq and the polynomial

φn(x) =
n∏

s=1
gcd(s,n)=1

(x− ζs)(2.1)

is called the nth cyclotomic polynomial over Fq. The cyclotomic field Fq(µn) is an al-
gebraic extension of Fq. Moreover, if n is coprime to q then the extension degree is
[Fq(µn) : Fq] = k, where k is the least positive integer such that qk ≡ 1 (mod n).

Let char(Fq) 6= 2, 3. An elliptic curve over Fq is defined by the Weierstrass equation

E : Y 2 = X3 + aX + b, a, b ∈ Fq, 4a3 + 27b2 6= 0,

and denoted by E/Fq. The set of rational points on E/Fq is defined by

E(Fq) = {(x, y) ∈ (Fq, Fq) : y2 = x3 + ax + b, a, b ∈ Fq} ∪ {O}
where O is the point at infinity. The rational points on an elliptic curve form an abelian
group with identity O, under the addition operation defined by the tangent-chord method
([30], p.55). The cardinality of E(Fq) is denoted by #E(Fq) and is called the order of
E . The following theorem is due to Hasse:

Theorem 2.1. Let E/Fq be an elliptic curve. Then

(
√

q − 1)2 ≤ #E(Fq) ≤ (
√

q + 1)2.
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4 2. PRIME-ORDER CURVES OF LOW EMBEDDING DEGREE

By Theorem 2.1, #E(Fq) = q +1− t for some integer t such that |t| ≤ 2
√

q. The integer
t is called the trace of the elliptic curve E.

Let P be a point in E(Fq). The order of P is the least positive integer r such that
rP = O. If P ∈ E(Fq) has order dividing r then it is called an r-torsion point. The set
of all r-torsion points in E(Fq) forms a subgroup in E(Fq), and it is denoted by E(Fq)[r].

Elliptic curves are characterized as supersingular elliptic curves and ordinary (or non-
supersingular) elliptic curves depending on whether the endomorphism ring is non-
commutative (i.e., the supersingular case) or commutative (i.e., the ordinary case). If E
is defined over a finite field Fq with char(Fq) = p then it is known that E is supersin-
gular if and only if p | t where t is the trace of E. The supersingular elliptic curves in
Theorem 2.3.(ii) and (iii) are defined over finite fields of characteristic 2 and 3 (see the
proof of Theorem 2.3) and there are faster algorithms for discrete logarithm problem in
fields of small characteristics. For instance, the record for discrete logarithms in fields of
characteristic two is in the field F2613 whereas the record for fields of large characteristic
is in the field Fq where q ≈ 2448 (see [16], [21], [32], [28]). We should note that even
though these attacks are applicable in finite field groups, elliptic curve groups may still
suffer from these attacks since if E/Fq is an elliptic curve then the group E(Fq) can be
embedded into the multiplicative group of Fqk for some k via the MOV-reduction and
FR-reduction [23], [11]. The security of supersingular elliptic curves defined over a finite
field Fq3 of characteristic three (with k = 6), and the security of ordinary elliptic curves
defined over a finite field Fqp of characteristic p (with k = 6) is compared by Page, Smart,
and Vercauteren [28]. They conclude that q3 ≈ q1.7

p must be satisfied in order to get the
same level of security. Moreover, supersingular curves defined over fields of characteristic
3 are compared to ordinary curves [28] in terms of efficiency and they are shown to be
less efficient in the verification algorithm in BLS signatures [6], and in Boneh-Franklin
[7] encryption. Therefore, we will focus on ordinary elliptic curves because of efficiency
and security reasons.

Now, let #E(Fq) = n = hr where r is a large prime factor of n and gcd(q, r) = 1. As
discussed above, Fq(µr) = Fqk where k is the least positive integer satisfying qk ≡ 1
(mod r). The integer k is called the embedding degree of E. The elliptic curves with
embedding degree k = 3, 4, 6 are characterized by Miyaji, Nakabayashi and Takano [24].
The authors give the parametrization of such curves in terms of their group orders and
traces. The main theorem is given below. The proof we provide here is a combination
of proofs given by Miyaji, Nakabayashi and Takano [24], and by Menezes [22]. It uses
the following lemma by Menezes [22] .

Lemma 2.2 ([22], Lemma 6.3). Let n be a prime and let q be an integer such that
n | φk(q) and n ∤ k. Then n ∤ qd − 1 for each 1 ≤ d ≤ k − 1.

Proof. We should first note that in the original statement of this lemma q is taken
to be prime. The proof given by Menezes [22] also applies to the case when q is an
integer as follows:

Let f(X) = Xk − 1 and F be the field of integers modulo n. Note that q is a root of
f(X) over F and also f(X) = Xk − 1 =

∏
d|k φd(X) (Theorem 2.45(i), [17]). Now, since

n ∤ k we have gcd(f(X), f ′(X)) = 1 in F[X] and so f(X) does not have any repeated



2. PRIME-ORDER CURVES OF LOW EMBEDDING DEGREE 5

roots in F[X]. Hence, n ∤ qd − 1 for each d such that d < k and d | k. Also, n ∤ qd − 1
for d ∈ [1, k − 1] and d ∤ k since otherwise we would have n | qe − 1 where e = gcd(d, k)
which is a contradiction as e | k. �

Theorem 2.3 ([24]). Let E/Fq be an ordinary elliptic curve defined over a finite field
Fq. Let n = #E(Fq) be a prime and k the embedding degree of E.
(i) Suppose q > 64. Then k = 3 if and only if q = 12l2 − 1 and t = −1 ± 6l for some
l ∈ Z.
(ii) Suppose q > 36. Then k = 4 if and only if q = l2 + l + 1 and t = −l, l + 1 for some
l ∈ Z.
(iii) Suppose q > 64. Then k = 6 if and only if q = 4l2 + 1 and t = 1 ± 2l for some
l ∈ Z.

Proof. (i) Let q = 12l2 − 1 and t = −1 ± 6l. Then n = q + 1 − t = 12l2 ∓ 6l + 1
and q ≡ −1± 6l (mod n). Since

q3 − 1 = (q − 1)(q2 + q + 1)

≡ (q − 1)((−2± 6l)2 + (−2± 6l) + 1) (mod n)

≡ 3(q − 1)(12l2 ∓ 6l + 1) (mod n)

≡ 0 (mod n),

we get k ≤ 3. Now, using Lemma 2.2 we conclude that k = 3.

Conversely, suppose that k = 3. Then, n | q3−1 and also n ∤ q−1 since k 6= 1. Therefore,
n | q2 + q + 1 and we can write for some integer λ that

q2 + q + 1 = λn.(2.2)

Rewriting q2 + q+1 = (q+1)2− t2 + t2−q in the above equation and using q+1− t = n,
we get

q − t2 = (q + 1)2 − t2 − λn(2.3)

= (q + 1− t)(q + 1 + t)− λn

= n(q + 1 + t− λ),

and dividing both sides by q results in

1− t2

q
=

n

q
(q + 1 + t− λ).(2.4)

By Hasse’s Theorem, t satisfies |t| ≤ 2
√

q, that is,

−3 ≤ 1− t2

q
≤ 1.(2.5)

Also, the assumption q > 64 in Hasse’s Theorem
(
√

q−1)2

q
< n

q
<

(
√

q+1)2

q
implies that

49

64
<

n

q
<

81

64
.(2.6)

Now, combining (2.4), (2.5) and (2.6) gives that q + 1 + t− λ ∈ {−3,−2,−1, 0, 1}. We
analyse these 5 possibilities. For this, we first rewrite (2.3) as

q − t2 = (q + 1− t)(q + 1 + t− λ)(2.7)
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Case 1. q + 1 + t− λ ∈ {−3,−1, 1}:
If q+1+t−λ = −3 then t2+3t−(4q+3) = 0 by (2.7). But, reducing this equation modulo
2 gives that t2+t+1 ≡ 0 (mod 2), a contradiction. Similarly, the cases q+1+t−λ = −1, 1
give the same contradiction.

Case 2. q + 1 + t− λ = 0:
By substituting q + 1 + t− λ = 0 in (2.7) we get t2 = q, that is t = ±√q for q = pr for
some prime p and even integer r. In this case, E is a supersingular elliptic curve.

Case 3. q + 1 + t− λ = −2:
By substituting q + 1 + t− λ = −2 in (2.7) we get t2 + 2t− (3q + 2) = 0. The roots of

this equation are given by t = −1±
√

3(q + 1). In order to have integer solutions for t
we need that q satisfies the relation q = 12l2 − 1 which completes the proof of (i).

(ii) Let q = l2 + l + 1 and t = −l, l + 1. Then n = q + 1− t = l2 + 2l + 2 if t = −l and
n = q + 1− t = l2 + 1 if t = l + 1. Suppose t = −l and so q ≡ (−l − 1) (mod n). Since

q4 − 1 = (q2 − 1)(q2 + 1)

≡ (q2 − 1)((−l − 1)2 + 1) (mod n)

≡ (q2 − 1)(l2 + 2l + 2) (mod n)

≡ 0 (mod n),

we get k ≤ 4. Now, using Lemma 2.2 we conclude that k = 4. Similarly, t = l + 1 gives
k = 4.

Now, suppose that k = 4. Then, n | q4 − 1 and also n ∤ q2 − 1 since k 6= 1, 2. Therefore,
n | q2 + 1 and we can write for some integer λ that

q2 + 1 = λn.(2.8)

Similarly as in the proof of (i), rewriting q2 + q + 1 = (q + 1)2 − t2 + t2 − q in the above
equation and using q + 1− t = n, we get

2q − t2 = n(q + 1 + t− λ),(2.9)

and dividing both sides by q results in

2− t2

q
=

n

q
(q + 1 + t− λ).(2.10)

In the same way as in the proof of (i), using |t| ≤ 2
√

q and
(
√

q−1)2

q
< n

q
<

(
√

q+1)2

q
with

q > 36 we get q + 1 + t− λ ∈ {−2,−1, 0, 1, 2}. We first rewrite (2.9) as

2q − t2 = (q + 1− t)(q + 1 + t− λ),(2.11)

Case 1. q + 1 + t− λ ∈ {−2,−1, 2}:
If q+1+ t−λ = −2 then t must satisfy t2 +2t− (4q+2) = 0 by (2.11). The roots of this
equation are given by t = −1±√4q + 3. However, for any integer m we have m2 ≡ 0, 1
(mod 4). Hence, there are no integer solutions for t. If q + 1 + t − λ = −1 then t must

satisfy t2 + 2t − (3q + 1) = 0. The roots of this equation are given by t = −1±√
12q+5
2

.
However, for any integer m we have m2 ≡ 0, 1, 4, 9 (mod 12). Again, there are no integer
solutions for t. If q + 1 + t − λ = 2 then we get t2 − 2t + 2 = 0 for which there are no
integer solutions.
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Case 2. q + 1 + t− λ = 0:
By (2.11), t must satisfy t2 = 2q, that is t = ±√2pr for p = 2 and an odd integer r. In
this case, E is a supersingular elliptic curve.

Case 3. q + 1 + t− λ = 1:
By substituting q + 1 + t − λ = 1 in (2.11) we get t2 − t − (q − 1) = 0. The roots of

this equation are given by t = 1±√
4q−3
2

. In order to have integer solutions for t we let
4q − 3 = m2 for some odd integer m, say m = 2l + 1. Then we get q = l2 + l + 1 and
t = −l, l + 1, as required.

(iii) Let q = 4l2 + 1 and t = 1± 2l. Then n = q + 1 − t = 4l2 ∓ 2l + 1 and so q ≡ ±2l
(mod n). Since

q6 − 1 = (q3 − 1)(q + 1)(q2 − q + 1)

≡ (q3 − 1)(q + 1)(4l2 ∓ 2l + 1) (mod n)

≡ 0 (mod n),

we get k ≤ 6. Now, using Lemma 2.2 we conclude that k = 6.

Now, suppose that k = 6. Then, n | q6−1 and n ∤ q3−1 since k 6= 3. Moreover, n ∤ q +1
since otherwise we would have n | q2− 1 and k ≤ 2. Therefore, n | q2− q +1 and we can
write for some integer λ that

q2 − q + 1 = λn.(2.12)

As in the proof of (i), replacing q2 + q + 1 = (q + 1)2 − t2 + t2 − q in the above equation
and using q + 1− t = n, we get

3q − t2 = n(q + 1 + t− λ).(2.13)

Since q > 64, similarly as in the proof of (i), we are left with cases q + 1 + t − λ ∈
{−1, 0, 1, 2, 3}. Before analyzing these 5 possibilities we rewrite (2.13) as

3q − t2 = n(q + 1 + t− λ).(2.14)

Case 1. q + 1 + t− λ ∈ {−1, 1, 3}:
Reducing (2.14) modulo 2 gives t2 + t + 1 ≡ 0 (mod 2), contradiction.

Case 2. q + 1 + t− λ = 0:
By (2.14), t must satisfy t2 = 3q, that is t = ±√3pr for p = 3 and an odd integer r. In
this case, E is a supersingular elliptic curve.

Case 3. q + 1 + t− λ = 2:
By substituting q + 1 + t − λ = 2 in (2.14) we get t2 − 2t − (q − 2) = 0. The roots of
this equation are given by t = 1±√q − 1. In order to have integer solutions for t we let
q−1 = m2 for some even integer m, say m = 2l. Then we get q = 4l2 +1 and t = 1±2l,
as required. �
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1. Constructing elliptic curves with embedding degree k = 3, 4 or 6

The prime order ordinary elliptic curves with embedding degree k = 3, 4, and 6 are
completely classified by Theorem 2.3. For practical applications, the next step is to
construct such curves. One way of constructing an elliptic curve E/Fq with trace t is
the complex multiplication (CM) method. In this method, given q and t one writes the
following CM equation

4q − t2 = DV 2(2.15)

where D is the square free part of 4q− t2. Then any root of the Hilbert class polynomial
H−D(x) modulo q gives rise to an elliptic curve E/Fq which has complex multiplication

in Q(
√
−D), and #E(Fq) = q + 1− t. The CM method is efficient only for small values

of D; in practice, we are restricted to D ≤ 1010 [9]. We refer the reader Chapter 6 and
[3] for more details on the CM method.

Our ultimate aim is to construct ordinary elliptic curves, E/Fq, with embedding degree
k = 3, 4 and 6. In cryptographic applications it is desirable for q and n to be prime and
also log n ≈ log q ≈ 160 for efficiency and security reasons. Note that if one chooses
q and t first then the square-free part of 4q − t2 is of the order of the magnitude of q.
However, handling discriminants of the size D ≈ q ≈ 2160 is simply impossible given
today’s algorithmic knowledge and computer technology. But if we choose D first then
it is almost impossible to solve for q, t, V when simply working with (2.15). Therefore,
we need to find a way to keep D under control, or to fix D first, and still be able to find
q, t, V . For this reason, following the approach of Miyaji, Nakabayashi and Takano [24],
we manipulate the CM equations for elliptic curves with embedding degree k = 3, 4 and
6.

1.1. CM equation for k = 3. By Theorem 2.3, if E is an ordinary elliptic curve
defined over a finite field Fq, q is prime, and n = #E(Fq) is prime then E has an
embedding degree k = 3 if and only if q = 12l2 − 1, and t = −1 ± 6l for some l ∈ Z.
Note that t = −1± 6l gives n = q + 1− t = 12l2 ∓ 6l + 1.

Case 1. q = 12l2 − 1, t = −1 + 6l, n = 12l2 − 6l + 1.
In this case, the CM equation can be written as

4q − t2 = D′V 2 ⇔ 12l2 + 12l − 5 = D′V 2(2.16)

⇔ (6l + 3)2 − 3D′V 2 = 24.

Case 2. q = 12l2 − 1, t = −1− 6l, n = 12l2 + 6l + 1.
In this case, the CM equation can be written as

4q − t2 = D′V 2 ⇔ 12l2 − 12l − 5 = D′V 2(2.17)

⇔ (6l − 3)2 − 3D′V 2 = 24.

The above discussion shows that in order to construct an elliptic curve of prime order
with embedding degree k = 3 we have to find some special pair of solutions to the
following Pell equation (see Chapter 3)

X2 −DY 2 = 24, D > 0, D ≡ 0 (mod 3).(2.18)
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If (x, y) is a solution to (2.18) we have to guarantee that x ≡ 3 (mod 6) and that for
l = (x± 3)/6 we must have q = 12l2 − 1 and n = 12l2 ± 6l + 1 are primes.

1.2. CM equation for k = 4. By Theorem 2.3, if E is an ordinary elliptic curve
defined over a finite field Fq, q is prime, and n = #E(Fq) is prime then E has an
embedding degree k = 4 if and only if q = l2 + l + 1, and t = −l, l + 1 for some l ∈ Z.
Note that t = −l gives n = q+1−t = l2 +2l+2 and t = l+1 gives n = q+1−t = l2 +1.

Case 1. q = l2 + l + 1, t = −l, n = l2 + 2l + 2.
First note that the primality of n requires that l ≡ 1 (mod 2). Therefore, we can replace
l by 2l′−1 and this gives the parametrization as q = 4l′2−2l′+1, t = 1−2l′, n = 4l′2+1.
Now, the CM equation can be written as

4q − t2 = D′V 2 ⇔ 12l′
2 − 4l′ + 3 = D′V 2(2.19)

⇔ (6l′ − 1)2 − 3D′V 2 = −8.

Finally, since q is prime we must have l′ 6≡ 1 (mod 3).

Case 2. q = l2 + l + 1, t = l + 1, n = l2 + 1.
Similarly as in first case, we can replace l by 2l′ since n is prime and so l is even. Then,
the new parametrization is q = 4l′2 + 2l′ + 1, t = 1 + 2l′, n = 4l′2 + 1, and the CM
equation can be written as

4q − t2 = D′V 2 ⇔ 12l′
2
+ 4l′ + 3 = D′V 2(2.20)

⇔ (6l′ + 1)2 − 3D′V 2 = −8.

Similarly as above, the primality of q requires l′ 6≡ 2 (mod 3).

The above discussion shows that in order to construct an elliptic curve of prime order
with embedding degree k = 4 we have to find some special pair of solutions to the
following Pell equation

X2 −DY 2 = −8, D > 0, D ≡ 0 (mod 3).(2.21)

If (x, y) is a solution to (2.21) we have to guarantee that x ≡ ∓1 (mod 6) and that for
l′ = (x± 1)/6 we must have n = 4l′2 + 1 and q = 4l′2 ∓ 2l′ + 1 are primes.

1.3. CM equation for k = 6. By Theorem 2.3, if E is an ordinary elliptic curve
defined over a finite field Fq, q is prime, and n = #E(Fq) is prime then E has an
embedding degree k = 6 if and only if q = 4l2 + 1, and t = 1± 2l for some l ∈ Z. Recall
that t = 1± 2l gives n = q + 1− t = 4l2 ∓ 2l + 1.

Case 1. q = 4l2 + 1, t = 1 + 2l, n = 4l2 − 2l + 1.
In this case, the CM equation can be written as

4q − t2 = D′V 2 ⇔ 12l2 − 4l + 3 = D′V 2(2.22)

⇔ (6l − 1)2 − 3D′V 2 = −8.

Also note that if l ≡ 1 (mod 3) then n ≡ 0 (mod 3). Therefore, in order to obtain n
prime the restriction l 6≡ 1 (mod 3) is required.
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Case 2. q = 4l2 + 1, t = 1− 2l, n = 4l2 + 2l + 1.
In this case, the CM equation can be written as

4q − t2 = D′V 2 ⇔ 12l2 + 4l + 3 = D′V 2(2.23)

⇔ (6l + 1)2 − 3D′V 2 = −8.

Similarly as above, the primality of n requires l 6≡ 2 (mod 3).

The above discussion shows that in order to construct an elliptic curve of prime order
with embedding degree k = 6 we have to find some special pair of solutions to the
following Pell equation

X2 −DY 2 = −8, D > 0, D ≡ 0 (mod 3).(2.24)

If (x, y) is a solution to (2.24) then we have to guarantee that x ≡ −1 (mod 6) or x ≡ 1
(mod 6). In the former case, setting l = (x + 1)/6, we must have

q = 4l2 + 1 is prime, and n = 4l2 − 2l + 1 is prime.(2.25)

In the latter case, setting l = (x− 1)/6, we must have

q = 4l2 + 1 is prime, and n = 4l2 + 2l + 1 is prime.(2.26)

Remark 2.1. By equations (2.22) and (2.23) it is clear that D in (2.24) must be odd.

The following proposition is new.

Proposition 2.4. Let n > 64 and q > 64 be primes. Then n and q represent an elliptic
curve E6/Fq with embedding degree k = 6 and #E6(Fq) = n if and only if n and q
represent an elliptic curve E4/Fn with embedding degree k = 4 and #E4(Fn) = q.

Proof. Let n > 64 and q > 64 represent an elliptic curve E6/Fq with k = 6 and
#E6(Fq) = n = q + 1− t. By Theorem 2.1, we have t2 ≤ 4q. Now,

t2 ≤ 4q ⇔ t2 ≤ 4(t− 1 + n)

⇔ (t− 2)2 ≤ 4n.(2.27)

Now, let n′ = q, q′ = n, and t′ = q′ + 1− n′ = (2− t). By (2.27), t′ satisfies the Hasse
bound with q′ = n so that E4/Fn with #E4(Fn) = q is well defined. The fact that the
corresponding embedding degree k′ = 4 follows easily from the above derivation of CM
equations for k = 4 and k = 6. The converse part can be proved similarly. �

2. Scarcity of MNT curves

Now, suppose that E/Fq is an elliptic curve with embedding degree k and #E(Fq) =
n = hr = q + 1− t where r is a large prime factor of n. By Theorem 2.1, t must satisfy
|t| ≤ 2

√
q. Also, it follows from Lemma 2.2 that r | φk(q). Luca and Shparlinski [18]

define Qk(x, y, z) as the number of prime powers q ≤ x for which there exist a prime
r ≥ y and an integer t satisfying

|t| ≤ 2
√

q, r | q + 1− t, r | φk(q),

and (2.15) has a solution (D, V ) where D is positive, square-free and D ≤ z. Luca and
Shparlinski, in 2005, proved an upper bound for Qk(x, y, z):



2. SCARCITY OF MNT CURVES 11

Theorem 2.5 (Theorem 1, [18]). For any fixed integer k and positive real numbers x, y,
and z the following bound holds:

Qk(x, y, z) ≤ x3/2+o(1)y−1z

as x→∞.

Then, in 2006 [19], the same authors improved the upper bound in Theorem 2.5 as
follows:

Qk(x, y, z) ≤ φ(k)x3/2y−1z1/2 log x

log log x

where φ(k) is the Euler totient function. Also, based on the results about the distribution
of square free integers, and the number of primes in an interval, they gave a heuristic
lower bound for Qk(x, y, z) provided that y ≥ x1/2 [19]:

Qk(x, y, z) ≥ x2+o(1)y−2z1/2.

In Theorem 2.5, let y = xα for some positive real number α and let k be fixed. Also, let
z = O(1) since the CM method is only effective for small values of D. Then the number
of possible fields Fq such that q ≤ x and E/Fq with embedding degree k is constructable
can be bounded above by x3/2+o(1)−α for large enough x. By the prime number theorem
the number of all finite fields Fq with q ≤ x is more than x/ log x. So, the density of

suitable fields is less than x3/2+o(1)−α

x/ log x
= x1/2−α+o(1) log x. In particular, if y > x1/2 (that

is, α > 1/2) then the density goes to zero as x → ∞. Hence, this shows that elliptic
curves with a fixed embedding degree k, and with ρ = log2 n/ log2 r < 2 are scarce.

Moreover, Luca and Shparlinski [18] show that the number of possible constructable
prime order elliptic curves given that D has to be bounded with embedding degree
k = 3, 4 or 6 is bounded above by an absolute constant. For instance, the construction
of E/Fq with k = 6 reduces to finding some suitable solutions of (2.24). As we will see
in Chapter 3, an infinite class of solutions of (2.24), say (xj, yj), can be obtained from
a minimal solution (x, y) of (2.24). In fact, all solutions can be obtained in this way
by using all minimal solutions. However, (xj , yj) and D will have to satisfy some extra
conditions because of the parametrization of E, (q(l), t(l)). Also, the solutions (xj , yj)
grow exponentially. Combining these facts with heuristic arguments, Luca and Shpar-
linski define N(D′) as the expected total number of prime powers among the numbers
of qj(l) satisfying the additional condition that nj(l) is also a prime, and they show that

N(D′)≪ 1

(log D′)2
.(2.28)

Then they define E(z) as the expected total number of isogeny classes of MNT curves
with k = 6 and D′ ≤ z, and conclude that

E(z) =
∑

D′≤z

D′square-free

N(D′)≪
∑

D′≤z

1

(log D′)2
≪ z

(log z)2
·(2.29)

Also, assuming a widely believed conjecture about the size of a regulator of a quadratic
field holds, Luca and Shparlinski provide a better upper bound for E(z) [18]:

E(z) ≤ z1/2+o(1).(2.30)
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We will come back to these bounds in Chapters 4, 5 and compare them with our exper-
imental results.



CHAPTER 3

Continued fractions and Pell-type equations

In this chapter, some background on continued fractions and Pell equations is given. We
use Mollin’s book [25] as our guide. Before proceeding we shall give some preliminaries
on quadratic number fields.

Let D be a nonzero square free integer. The quadratic field Q(
√

D) is obtained by

adjoining the element
√

D to Q. If D > 0 (D < 0) then Q(
√

D) is called a real

(imaginary) quadratic field. The elements in Q(
√

D) are represented by a+ b
√

D where

a, b ∈ Q. Clearly, Q(
√

D) is a subfield of the complex numbers C. By definition, a
complex number is an algebraic integer if it is a root of some monic polynomial with
coefficients in Z. The set of algebraic integers forms a ring in C, and denoted by A.
Then A ∩Q(

√
D) is the ring of algebraic integers in Q(

√
D), and denoted by R.

Theorem 3.1 ([20], Corollary 2, p.15). Let D be a square free integer. The set of

algebraic integers in the quadratic field Q(
√

D) is

{a + b
√

D : a, b ∈ Z} if D ≡ 2, 3 (mod 4),

{a + b
√

D

2
: a, b ∈ Z, a ≡ b (mod 2)} if D ≡ 1 (mod 4).

Let α = a+b
√

D ∈ Q(
√

D). The norm map N : Q(
√

D)→ C is defined as N(a+b
√

D) =
a2 − Db2 and it is easy to check that N is multiplicative. The norm of an element is
denoted by ‖α‖. It is known that α is an algebraic integer if and only if 2a and ‖α‖
are integers. A unit in R is an element u such that there exists an element v ∈ R with
uv = 1. The set of units is a group under multiplication, and denoted by R∗. The units
in R are the elements with norm ±1.

An ideal in R is an additive subgroup I ⊂ R such that ra ∈ I for every r ∈ R, a ∈ I.
An ideal I ⊂ R is called a principal ideal if there exists α ∈ R such that I = αR =
{αr : r ∈ R}, and denoted by (α). An ideal P ⊂ R is called prime ideal if α, β ∈ R
and αβ ∈ P implies α ∈ P or β ∈ P . The ideals in R factor uniquely into prime ideals
([20], Corollary, p.60). Now, let p be a prime in Z and Q(

√
D), R be as above. Then

the factorization of the principal ideal pR in R is given in the following theorem:

Theorem 3.2 ([20], Theorem 25, p.74). If p | D, then pR = (p,
√

D)2.

If D is odd, then

2R =






(2, 1 +
√

D)2 if D ≡ 3 (mod 4)

(2, 1+
√

D
2

)(2, 1−
√

D
2

) if D ≡ 1 (mod 8)
prime if D ≡ 5 (mod 8).

13
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If D is odd, p ∤ D, then

pR =

{
(p, m +

√
D)(p, m−

√
D) if D ≡ m2 (mod p)

prime if D is not a square mod p.

1. Continued Fractions

Let α ∈ R. A continued fraction is an expression of the form

α = q0 +
1

q1 +
1

q2+
. . .

+
1

ql−1 +
1

ql
. . .

and where q0 = ⌊α⌋, qi ∈ R+ for i > 0. If the fraction terminates after some fi-
nite terms, say at ql, then it is called a finite continued fraction of length l and de-
noted by 〈q0; q1, . . . , ql〉. Otherwise, it is an infinite continued fraction and denoted by
〈q0; q1, . . . , ql, . . .〉. A continued fraction is called simple if qi ∈ Z for all i ≥ 0. An infinite
simple continued fraction is called periodic if there exist integers k ≥ 0 and l ∈ N such
that qn = qn+l for all integers n ≥ k. A periodic continued fraction is denoted by

α = 〈q0; q1, . . . , qk−1, qk, qk+1, . . . qk+l−1〉.
The period of α is the smallest l = l(α) with the above property. Finally, if α has a
continued fraction expansion α = 〈q0; q1, . . . , ql, . . .〉, then Ck = 〈q0; q1, . . . , qk〉 is defined
to be the kth convergent of α.

It is known that α ∈ Q if and only if α can be written as a finite simple continued
fraction. In particular we have a recursive formula for determining any convergent of α,
given by the following theorem:

Theorem 3.3 ([25], Theorem 5.1.2). Let α = 〈q0; q1, . . . , ql〉 for l ∈ N be a finite con-
tinued fraction expansion. Define two sequences for an integer k ≥ 0:

A−2 = 0, A−1 = 1, Ak = qkAk−1 + Ak−2,

and

B−2 = 1, B−1 = 0, Bk = qkBk−1 + Bk−2.

Then

Ck = Ak/Bk =
qkAk−1 + Ak−2

qkBk−1 + Bk−2

is the kth convergent of α.
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Similarly, α is an irrational number if and only if it has an infinite simple continued
fraction expansion. And, there is a special subset of irrational numbers which are equiv-
alent to having a periodic infinite simple continued fraction expansion. These irrational
numbers are called quadratic irrationals and defined as follows:

α =
P +
√

D

Q

where D ∈ N, D is not a perfect square, P, Q ∈ Z, Q 6= 0 and P 2 ≡ D(mod Q) for a
suitable choice of a triple (P, Q, D). The continued fraction expansion of a quadratic

irrational α = P+
√

D
Q

= 〈q0; q1, . . . , qk, . . .〉 can be determined by the following recursive

relations:

P0 = P, Q0 = Q,

qk =

⌊
Pk +

√
D

Qk

⌋
,

Pk+1 = qkQk − Pk,

Qk+1 =
D − P 2

k+1

Qk

.

Also, the algebraic conjugate of α is defined by α′ = P−
√

D
Q

.

Finally, the integer Gk−1 for k ≥ −1 is defined by

Gk−1 = Q0Ak−1 − P0Bk−1(3.1)

where Ak−1, Bk−1 are as in Theorem 3.3. The following relation holds for k ≥ 1 ([25],
Theorem 5.3.4, p.246) :

G2
k−1 − B2

k−1D = (−1)kQkQ0.(3.2)

2. Pell Equation

Let m ∈ Z, D ∈ N and D not a perfect square. Then a general Pell equation can be
given as follows

X2 −DY 2 = m.(3.3)

Note that finding a solution pair (x, y), x ∈ Z, y ∈ Z to (3.3) is equivalent to finding an

element (x + y
√

D) ∈ Q(
√

D) with norm m and x, y ∈ Z. For instance, the set of all
integer solutions of

X2 −DY 2 = 1(3.4)

is contained in the set of units of the field Q(
√

D). Therefore, we use both (x, y) and

(x + y
√

D) to refer to a solution of (3.3).

Now, let α = x + y
√

D be a solution to (3.3). If gcd(x, y)=1 then α is called a primitive

solution. Two primitive solutions α1 = x1 + y1

√
D and α2 = x2 + y2

√
D belong to the

same class of solutions if there is a solution β = u + v
√

D of (3.4) such that α1 = βα2.

If α1 and α′
1 = x1 − y1

√
D are in the same class then the class is called ambiguous. If

α = x+y
√

D is a solution of (3.3) for which y is the least positive value in its class then α
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is called the fundamental solution in its class. Note that if the class is not ambiguous then
the fundamental solution is determined uniquely. If the class is ambiguous then adding
the condition x ≥ 0 defines the fundamental solution uniquely. Finally, if α = x + y

√
D

is a solution of (3.3) for which y is the least positive value and x is nonnegative in its
class then α is called the minimal solution in its class, and it is determined uniquely. We
should note that the minimal solution and the fundamental solution in the same class
does not have to be the same.

We give some important facts about the solutions of Pell equations.

Proposition 3.4 ([25], Proposition 6.2.1). Two primitive solutions xj + yj

√
D for j =

1, 2 of X2 −DY 2 = m are in the same class if and only if both

(x1x2 − y1y2D)/m ∈ Z and (y1x2 − x1y2)/m ∈ Z.(3.5)

Consequently, there are only finitely many classes of primitive solutions of x2−Dy2 = m.

Theorem 3.5 ([26], Theorem 4.2). Let D ∈ N, not a perfect square, and m ∈ Z. Then

x + y
√

D

is a primitive solution of

X2 −DY 2 = m

if and only if all of the following hold:

(a) There exists an integer P0 defined by

P0 +
√

D = (x + y
√

D)(x1 + y1

√
D),

for some unique element x1 + y1

√
D with −|m|/2 < P0 ≤ |m|/2.

(b) In the simple continued fraction expansion of α = (P0 +
√

D)/m, there is a nonnega-
tive integer t such that Qt = 1. And, in the simple continued fraction expansion of −α′,
there is a nonnegative integer t′ such that Qt′ = 1.

(c) There exists a nonnegative integer z such that lz + t − 1 is odd where l = l(α),
x0 = Glz+t−1, and y0 = Blz+t−1. And, there exists a nonnegative integer z′ such that
lz′ + t′ − 1 is odd where l = l(α) = l(−α′), x0 = Glz′+t′−1, and y0 = Blz′+t′−1.

Remark 3.1. The uniqueness of the element x1 + y1

√
D in part (a) follows from the

restriction −|m|/2 < P0 ≤ |m|/2. Since x + y
√

D is a primitive solution we have
gcd(x, y) = 1 and so there exist integers r, s such that xr + ys = 1. Now, setting
x1 = s− tx and y1 = r + ty for t ∈ Z gives that

(x + y
√

D)(x1 + y1

√
D) = (xx1 + yy1D) + (xy1 + yx1)

√
D

= xs + yrD − t(x2 − y2D) + (xr + ys)
√

D

= (xs + yrD − tm) +
√

D.

Hence, restricting −|m|/2 < P0 ≤ |m|/2 fixes the value of t and determines x1 + y1

√
D

uniquely.
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Remark 3.2 ([25], Theorem 4.2-(4)). Let α = x + y
√

D and P0 be as in Theorem 3.5.

Let β = a + b
√

D be in the same class as α. Then, by Proposition 3.4, we have

xa− ybD = mU,

ya− xb = mT

for some integers U, V . This implies

x = aU + bDT,

y = aT + bU.

Let a1 = x1U + y1TD and b1 = y1U + x1T . Then

(a + b
√

D)(a1 + b1

√
D) = aa1 + bb1D + (ab1 + a1b)

√
D

= x1(aU + bTD) + y1(aTD + bUD) +

(y1(aU + bTD) + x1(aT + bU))
√

D

= xx1 + yy1D + (xy1 + x1y)
√

D

= P0 +
√

D.

The last equality follows from the fact that (x + y
√

D)(x1 + y1

√
D) = P0 +

√
D. Hence,

P0 is unique in a sense that every solution β = a + b
√

D, in the same class as α, has a
unique element (a1 + b1

√
D) such that (a + b

√
D)(a1 + b1

√
D) = P0 +

√
D.

As a consequence of the above remark we can give the following definition.

Definition 3.1 ([25], Definition 6.2.4). If α is any solution in a given class of (3.3),
then α is said to belong to the unique element −P0 where P0 is determined by Theorem
3.5.

Note that Theorem 3.5 suggests an algorithm to check if there exist solutions to the
equation X2 −DY 2 = m. If there is a solution we can also determine the fundamental
solution of each class. In fact, each possible class is represented by an element in the set

P = {P0 : P 2
0 ≡ D (mod |m|), −|m|/2 < P0 ≤ |m|/2}(3.6)

by Theorem 3.5 (a). For each P0 ∈ P, there may or may not be solutions belonging
to P0. In order to analyze the existence of a solution belonging to the class P0 we set
α = (P0 +

√
D)/Q0 where Q0 = m. Note that α is a quadratic irrational and it has

a periodic infinite simple continued fraction expansion, say with period l = l(α). By
Theorem 3.5 (b), we look for a nonnegative integer t such that Qt = 1 in the continued
fraction expansion of α. The existence of such a t and the existence of a nonnegative
integer z with lz + t− 1 is odd guarantees that there is a solution. Now, using that α is
periodic with period l, Qt = 1, lz + t is even, and m = Q0, we can write by (3.2) that

G2
lz+t−1 − B2

lz+t−1D = (−1)lz+tQlz+tQ0

= QtQ0

= m.

Hence, x0 = Glz+t−1 and y0 = Blz+t−1 gives a solution to X2 − DY 2 = m such that
(x0, y0) belongs to P0. Finally, choosing t and z as the least positive integers satisfying
the above properties gives a minimal solution belonging to P0.
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The algorithm discussed above determines the minimal solutions with their correspond-
ing P0 values. However, in some circumstances we may not need to know the corre-
sponding P0 values, but only we may be interested in the list of all minimal solutions.
The following algorithm is a variant of the above algorithm and, according to Robertson
[29], it lists the minimal solutions of each class for D > m2.

Algorithm 1 Pell Equation Solver
Input: D ∈ Z, m ∈ Z\{0} : D > m2, D is not a perfect square
Output: all minimal positive solutions (x, y) : x2 −Dy2 = m

1: B−1 ← 0, G−1 ← 1
2: P0 ← 0, Q0 ← 1, a0 ← ⌊

√
D⌋, B0 ← 1, G0 ← a0

3: i← 0
4: repeat

5: i← i + 1
6: Pi ← ai−1Qi−1 − Pi−1

7: Qi ← (D − P 2
i )/Qi−1

8: ai ← ⌊(Pi +
√

D)/Qi⌋
9: Bi ← aiBi−1 + Bi−2

10: Gi ← aiGi−1 + Gi−2

11: until Qi = 1 and i ≡ 0 (mod 2)
12: s← 0
13: for 0 ≤ j ≤ i− 1 do

14: if G2
j −DB2

j = m/f 2 for some f > 0 then

15: Output: (fGj, fBj)
16: s← 1
17: end if

18: end for

19: if s == 0 then

20: Output: No solutions exist
21: end if

We shall note that the sequence {Qi} has the same period as the continued fraction

expansion of the quadratic irrational α =
√

D = 〈a0; a1, · · · , ak, · · · 〉, say l. So, the
smallest integer i with Qi = 1 and i ≡ 0 (mod 2) has the property that either i = l or
i = 2l since 1 = Q0 = Ql.

As we noted above, Algorithm 1 finds minimal solutions when D > m2. The brute-force
searching algorithm can be used to find fundamental solutions when D ≤ m2 [29].

The following two lemmas are new.

Lemma 3.6. Let m > 2 be an even integer and D an odd positive integer, not a perfect
square. Then, the set of solutions to X2 − DY 2 = m does not contain any ambiguous
class.

Proof. Suppose that there is an ambiguous class of solutions. Then there exists
a primitive solution α = x + y

√
D such that α and α′ are in the same class. Note

that since α is a primitive solution and m is even, y must be odd. By Proposition 3.4,
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(x2 +y2D)/m = (m+2y2D)/m must be an integer. In particular, 2y2D/m is an integer.
But this is a contradiction since y and D are odd and 2 < m is even. �

Lemma 3.7. Let D ∈ N, not a perfect square, and m ∈ Z such that gcd(D, m) = 1. Two
solutions (x, y) and (a, b) of X2 − DY 2 = m belong to the same −P0 (P0 as defined in
3.5(a)) if and only if they are in the same class.

Proof. Suppose first that (x, y) and (a, b) belong to the same −P0. By Theorem
3.5, there exist unique (x1, y1) and (a1, b1) such that

x1 + y1

√
D =

P0 +
√

D

x + y
√

D

=
P0x + yD + (P0y + x)

√
D

m
and

a1 + b1

√
D =

P0 +
√

D

a + b
√

D

=
P0a + bD + (P0a + b)

√
D

m
.

In particular, we have

P0x + yD ≡ 0 (mod m),(3.7)

P0a + bD ≡ 0 (mod m),(3.8)

P0y + x ≡ 0 (mod m),(3.9)

P0b + a ≡ 0 (mod m).(3.10)

Now, multiplying (3.8) by x and (3.9) by −bD and then adding those two together we
get

P0(ax− byD) ≡ 0 (mod m).(3.11)

Similarly, first multiplying (3.7) by −b and (3.8) by y and then adding those two together
we get

P0(ay − bx) ≡ 0 (mod m).(3.12)

Note that gcd(P0, m) = 1 since P 2
0 ≡ D (mod m) and gcd(D, m) = 1. Hence, (3.11) and

(3.12) give us that (ax − byD)/m and (ay − bx)/m are integers. In other words, (x, y)
and (a, b) are in the same class by Proposition 3.4. Remark 3.2 proves the converse part
of the theorem. �
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Algorithm 2 Pell Equation Solver 2
Input: D ∈ Z, m ∈ Z\{0} : D ≤ m2, D is not a perfect square
Output: all fundamental solutions (x, y) : x2 −Dy2 = m

1: find a minimal solution, (u, v), to U2 − DV 2 = 1 by using Algorithm 1 with input
D, 1.

2: if m > 0 then

3: L1 ← 0, L2 ←
√

m(u− 1)/(2D)
4: else

5: L1 ←
√

(−m)/D, L2 ←
√

(−m)(v + 1)/(2D)
6: end if

7: for L1 ≤ y ≤ L2 do

8: if m + Dy2 is a square then

9: x←
√

m + Dy2

10: if (x, y) and (−x, y) are not in the same class then

11: Output: (x, y), (−x, y)
12: else

13: Output: (x, y)
14: end if

15: end if

16: end for



CHAPTER 4

The case k = 6: X2 −DY 2 = −8

Let q and n be prime integers. Let E/Fq be an ordinary elliptic curve with embedding
degree k = 6, and #E(Fq) = n. It was shown in Section 2.1.3 that constructing E is
reduced to finding some suitable solutions to the Pell equation

X2 −DY 2 = −8, D > 0, D ≡ 0 (mod 3), D ≡ 1 (mod 2).(4.1)

Recall from Section 2.1 that for efficiency reasons it is essential to keep D small. There-
fore, the general strategy is first fixing a small D and then tracing for suitable solutions
to (4.1) using the techniques developed in Chapter 3. However, it is known that this
construction method is unlikely to generate curves (see Section 2.2). In this chapter we
try to find some necessary conditions on D, and also analyze the solution classes of (4.1)
in order to gain some efficiency in searching for suitable elliptic curves. Then we give a
searching algorithm and provide some experimental results.

Lemma 4.1. If (x, y) is a primitive solution to (4.1), (that is gcd(x, y) = 1) then x and
y must be odd.

Proof. First note that if y is even then x must be even, that is (x, y) is not primitive.
So, it is enough to show that the case: x is even, y is odd is not possible. Suppose to the
contrary that x is even and y is odd. Then 4 | D and we get a contradiction as D ≡ 1
(mod 2). �

Lemma 4.2. If (4.1) has a primitive solution then D ≡ 1 (mod 8).

Proof. Let (x, y) be a primitive solution. By Lemma 4.1, x and y must be odd.
Now, reducing (4.1) modulo 8 we get D ≡ 1 (mod 8). �

Theorem 4.3. Equation (4.1) either does not have any solution or it has exactly two
classes of solutions. In particular, if α is a solution of (4.1) then α and α′ represent the
two solution classes.

Proof. If (4.1) does not have any solution then we are done. Therefore, we shall
assume that α is a solution belonging to some class, say P0. Then, by Lemma 3.6,
α′ is a solution belonging to −P0. If these are the only two solution classes then we
are done. So, we assume that there are more than two solution classes. Note that the
possible values for P0 which represent the different classes of solutions are P0 = ±1,±3
since P 2

0 ≡ D (mod 8), −4 < P0 ≤ 4 by Theorem 3.5 and D ≡ 1 (mod 8) by Lemma
4.2. Therefore, we can assume without loss of generality that α, α′, β, β ′ are solutions
corresponding to P0 values: −1, 1,−3, 3, respectively.

21



22 4. THE CASE k = 6: X2
− DY 2 = −8

Since α is a solution belonging to class P0 = −1 we can write for some integers, m1, n1

that

1 +
√

D = α(m1 + n1

√
D),(4.2)

and from which it follows that

1−
√

D = α′(m1 − n1

√
D).(4.3)

Assume first that D = 8m+1 with m even and let α = x+y
√

D. Consider the quadratic
field Q(

√
D), and its ring of integers R. The prime ideal generated by 2 is factorized in

R as follows:

2R = (2,
1 +
√

D

2
)(2,

1−
√

D

2
).(4.4)

Note that α/2 and α′/2 are both algebraic integers in Q(
√

D) since x and y have the
same parity by Lemma 4.1. Also the principal ideals generated by α/2 and α′/2 are
prime ideals since ‖α/2‖ = ‖α′/2‖ = 8/4 = 2. We can also check that the ideals (α

2
) and

(α′

2
) are coprime: Let π be a prime dividing both α/2 and α′/2. Then π | α

2
+ α′

2
= x

and π | α
2
· α′

2
= −2. Since x is an odd integer there exist integers u and v such that

ux− 2v = 1, that is π | 1 in R but this is a contradiction since π is a prime, not a unit.
Combining this argument with (4.2) and (4.3), it follows from the unique factorization
of ideals in R that

2R = (2,
1 +
√

D

2
)(2,

1−
√

D

2
)(4.5)

= (
α

2
)(

α′

2
)

with (α
2
) = (2, 1+

√
D

2
) and (α′

2
) = (2, 1−

√
D

2
).

Now, we apply a similar reasoning to β and β ′. Since β is a solution belonging to class
P0 = −3 there exist integers m2 and n2 such that

3 +
√

D = β(m2 + n2

√
D),(4.6)

that is,

2− (
1−
√

D

2
) =

β

2
(m2 + n2

√
D)(4.7)

and using β
2
· β′

2
= −2 we obtain

1−
√

D

2
= −β

2
(
β

2
+ m2 + n2

√
D).(4.8)

Therefore, the inclusion of ideals (2, 1−
√

D
2

) ⊆ (β
2
) holds. Similarly, (2, 1+

√
D

2
) ⊆ (β′

2
).

In fact, the inclusions imply the equality of the ideals since they are all nonzero prime
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ideals. Hence, the below factorization holds:

2R = (2,
1 +
√

D

2
)(2,

1−
√

D

2
)(4.9)

= (
α

2
)(

α′

2
)

= (
β

2
)(

β ′

2
)

where

(2,
1 +
√

D

2
) = (

α

2
) = (

β ′

2
),(4.10)

(2,
1−
√

D

2
) = (

α′

2
) = (

β

2
).(4.11)

It follows from (4.10) that

1 +
√

D = β ′(
m3 + n3

√
D

2
)(4.12)

for some integers m3, n3 of the same parity. In fact, m3 and n3 must be odd since β ′ is
a solution belonging to the class P0 = 3. Also, it follows from (4.10) that

α = β ′(
m4 + n4

√
D

2
)(4.13)

for some integers m4, n4 of having the same parity. In fact, m4 and n4 must be odd since
α and β ′ belong to different solution classes.

Now combining (4.2), (4.12) and (4.13) together we get

m3 + n3

√
D = (m1 + n1

√
D)(m4 + n4

√
D),(4.14)

and so

n3 = m1n4 + m4n1.(4.15)

Recall that n3, m4 and n4 are all odd integers. Hence, we have only two possibility for
the parity of integers m1 and n1: (m1 is even and n1 is odd) or (m1 is odd and n1 is
even). In both cases, the integer m2

1 − n2
1D is odd. Now, taking the norm of both sides

of (4.2)

1−D = ‖α‖
∥∥∥m1 + n1

√
D

∥∥∥ ,(4.16)

that is,

m2
1 − n2

1D =
∥∥∥m1 + n1

√
D

∥∥∥ = m.(4.17)

This finally gives a contradiction since m was assumed to be even.

Now, suppose D = 8m + 1 and m is odd. It follows from (4.11) that

3 +
√

D = α′(
m1 + n1

√
D

2
)(4.18)
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for some integers m1 and n1 of having the same parity. In fact, m1 and n1 must be odd
since α′ is a solution belonging to class P0 = 1. By (4.10) and the fact that β and α′

belong to different solution classes we get

β = α′(
m3 + n3

√
D

2
)(4.19)

for some odd integers m4 and n4. Combining (4.6), (4.18), and (4.19) gives us

m1 = m2m3 + n2n3D.(4.20)

However, m1, m3, n3 and D are all odd integers and so there can only be two configura-
tions for m2 and n2: (m2 is even and n2 is odd) or (m2 is odd and n2 is even). In both
cases, m2

2 − n2
2D is odd. Taking the norm of both sides of (4.18) gives

9−D = ‖α‖
∥∥∥m2 + n2

√
D

∥∥∥ ,(4.21)

that is,

m2
2 − n2

2D =
∥∥∥m2 + n2

√
D

∥∥∥ = m− 1(4.22)

is an even integer, contradiction. The proof is complete. �

If (x, y) is a minimal solution to X2 − DY 2 = n, and (u, v) is a minimal solution to
U2−DV 2 = 1 then all primitive solutions (xj , yj) in the class of (x, y) can be generated
as follows:

xj + yj

√
D = ±(x + y

√
D)(u + v

√
D)j, where j ∈ Z.(4.23)

It is stated in [18] that the sequence (xj)j∈Z defined as in (4.23) and belonging to (4.1)
is periodic modulo 6 with period at most 2. We could not find a proof anywhere, and
we include our own proof for a more general case.

Lemma 4.4. Let m be a nonzero integer, and let D be a positive integer such that D is
not a perfect square and D ≡ 0 (mod 3). Then, the sequence (xj)j∈Z defined as in (4.23)
and belonging to X2 −DY 2 = m is periodic modulo 6 with period at most 2.

Proof. Suppose j ≥ 0. By expanding (4.23) we can write x0 = x, y0 = y, xi+1 =
xiu+yivD, and yi+1 = xiv+yiu for i ≥ 0. Then, using u2 +v2D = 1+2v2D and 2D ≡ 0
(mod 6), we get

xi = xi−1u + yi−1vD

= xi−2(u
2 + v2D) + 2yi−2uvD

≡ xi−2 (mod 6)

for i ≥ 2, which proves the result. Similarly, the case when j < 0 can be proved. �

Proposition 4.5. If an ordinary elliptic curve E over a prime field with embedding
degree 6 is constructable then (4.1) must have only primitive solutions and the value D
in (4.1) must satisfy D ≡ 9 (mod 24). Also, −2 must be a square modulo D.
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Proof. If E with k = 6 is constructable then there exists some integer l satisfying
12l2 ± 4l + 3 = D′V 2 by (2.22) and (2.23). In other words, 4l(3l ± 1) + 3 = D′V 2

holds, and so D′V 2 ≡ 3 (mod 8). Hence,D′ ≡ 3 (mod 8) proving that D ≡ 9 (mod 24)
since D = 3D′. Now, let (x, y) be a solution of (4.1) with gcd(x, y) = d > 1 and let

x = dx′, y = dy′. Since d2(x′2 − Dy′2) = −8 is satisfied we must have d = 2. Then

x′2 −Dy′2 = −2 and reducing this equation modulo 8 gives x′2 − y′2 ≡ 6 (mod 8). But,
the last congruence does not have any integer solutions and so any solution of (4.1) must
be primitive. Finally, reducing (4.1) modulo D proves that −2 must be a square modulo
D. �

Proposition 4.6. Let Sα and Sα′ denote the two solution classes of (4.1) as in Theorem
4.3. Then the set of elliptic curves, say Eα, constructed through Sα and the set of elliptic
curves, say Eα′, constructed through Sα′ are identical.

Proof. Let Eα(Fq) ∈ Eα with trace t, and #Eα(Fq) = n. Then there exists a pair
(x, y) in Sα such that x ≡ 1 (mod 6) or x ≡ 5 (mod 6). Suppose first that x ≡ 1 (mod 6)
and let x = 6l+1 for some integer l. Then by Theorem 2.3.(iii) (see also (2.26)) q = 4l2+1,
t = 1−2l and n = 4l2 +2l+1. Let (x′, y′) = (−x, y). Then (x′, y′) ∈ Sα′ since (4.1) does
not contain any ambiguous class by Lemma 3.6. Now, x′ = 6(−l) − 1, x′ ≡ 5 (mod 6)
and (see (2.25)) also q′ = 4(−l)2 +1 = q, t′ = 1+(−2l) = t, n′ = 4(−l)2−2(−l)+1 = n.
Since (x′, y′) corresponds to an elliptic curve Eα′ ∈ Eα′ defined over Fq′ with trace t′

and #Eα′(Fq′) = n′ we find Eα = Eα′ and Eα ⊂ Eα′. Conversely, the same argument
proves that Eα′ ⊂ Eα. Also, the case when x ≡ 5 (mod 6) is similar as above and hence,
Eα = Eα′ �

Before giving the searching algorithm we shall summarize the above results.

• D should be fixed such that 0 < D ≤ 1010, D/3 is square free, D ≡ 9 (mod 24),
and −2 is a square modulo D.
• Let (u, v) be a minimal solution to U2 − DV 2 = 1. If there is a solution to

X2−DY 2 = −8 then it is enough to find, if it exists, only one minimal solution,
say (x0, y0).
• Let (xj , yj) = ±(x0, y0)(u, v)j be the set of all solutions in the same class as

(x, y). It is enough to consider only one of the solutions (xj , yj) and −(xj , yj),
by the proof of Proposition 4.6
• If x0 6≡ ±1 (mod 6) then there do not exist any suitable (i.e., curve generating)

solutions (xj , yj) for j ≡ 0 (mod 2) by Lemma 4.4, and Section 2.1.3. Similarly,
if x1 6≡ ±1 (mod 6) then there do not exist any suitable solutions (xj , yj) for
j ≡ 1 (mod 2).

Algorithm 3 searches through all solutions (xj , yj) satisfying (xj + yj

√
D) = (x +

y
√

D)(u + v
√

D)j for j ≥ 0. Of course, the solutions corresponding to j < 0 must
also be considered. For simplicity, we haven’t included this case in the algorithm.
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Algorithm 3 EC parameters with k = 6
Input: N , z
Output: EC parameters (q, n, k, D′) where q and n are N -bit primes, k = 6, and D′ ≤ z
(where 4q − t2 = D′V 2)

1: for 0 < D ≤ 3z, D/3 square free, D ≡ 9 (mod 24), −2 is a square modulo D do

2: if D > 64 then

3: find a minimal solution, (x0, y0), to X2−DY 2 = −8 by using Algorithm 1 with
input D, −8.

4: else

5: find a minimal solution, (x0, y0), to X2−DY 2 = −8 by using Algorithm 2 with
input D, −8.

6: end if

7: find a minimal solution, (u, v), to U2−DV 2 = 1 by using Algorithm 1 with input
D, 1.

8: x1 ← x0u + y0vD, y1 ← x0v + y0u
9: x← x0, y ← y0, x′ ← x1, y′ ← y1

10: if x0 ≡ ±1 (mod 6) then

11: while |x| ≤ 2⌈N/2⌉ do

12: l ← (x∓ 1)/6
13: if ⌊(N − 2⌋)/2 ≤ log2 l < ⌈(N − 2)/2⌉ then

14: q ← 4l2 + 1, n← 4l2 ∓ 2l + 1
15: if q and n are primes then

16: Output (q, n)
17: end if

18: end if

19: x̃← x
20: x← x(2u2 − 1) + 2yuvD
21: y ← y(2u2 − 1) + 2x̃uv
22: end while

23: end if

24: if x1 ≡ ±1 (mod 6) then

25: while |x′| ≤ 2⌈N/2⌉ do

26: l ← (x′ ∓ 1)/6
27: if (N − 2)/2 ≤ log2 l < ⌈(N − 2)/2⌉ then

28: q ← 4l2 + 1, n← 4l2 ∓ 2l + 1
29: if q and n are primes then

30: Output (q, n)
31: end if

32: end if

33: x̃′ ← x′

34: x′ ← x′(2u2 − 1) + 2y′uvD
35: y′ ← y′(2u2 − 1) + 2x̃′uv
36: end while

37: end if

38: end for
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Now, let n and q be primes and define the following sets

D = {D : D/3 is square free, D ≡ 9 (mod 24),−2 is a square modulo D},

D[i] = {D ∈ D : 0 < D ≤ 2i},

D−8[i] = {D ∈ D[i] : there exist solutions to X2 −DY 2 = −8},

D−8,q,n[i] = {(D, (q, n)) : D ∈ D−8[i] and primes q, n exist through the solutions of X2−
DY 2 = −8},

Recall that in Chapter 2 E(z) is defined to be the number of isogeny classes of MNT
curves for k = 6 and D′ ≤ z (where 4q − t2 = D′V 2). So, in the context of the above
definitions we can write #D−8,q,n[i] = E(2i/3).

For a given integer i, we aim to find some approximations for the cardinality of the sets
D[i],D−8[i] and D−8,q,n[i].

First we give an asymptotic approximation for #D[i]. Let D ∈ D and let D =
∏w(D)

s=1 ps

be the prime factorization of D where p1 = 3 and w(D) is the number of distinct prime
factors of D. We know that −2 is a square modulo D if and only if −2 is a square modulo
ps for every s = 1, . . . , w(D). And, −2 is a square modulo ps if and only if ps ≡ 1, 3
(mod 8). Moreover, it is known that if F (z) is the set of integers D such that D ≤ z
and (1 − ǫ) ln ln D < w(D) < (1 + ǫ) ln ln D for every positive ǫ then F (z) has density
one, that is, F (z)/z → 1 as z → ∞ ([13]). So, choosing ǫ arbitrarily small, we may
suppose on average that the number of distinct prime factors of D is ln lnD. Therefore,

the probability that −2 is a square modulo D may be written as
(

1
2

)ln lnD
. Also, the

asymptotic number of square free integers ≤ z, say S(z), is given by [27]

S(z) =
6z

π2
+ O(

√
z).(4.24)

The above discussion then leads to the following asymptotic approximation for #D[i].

#D[i] =
1

24
·
(

1

2

)ln ln 2i (
6(2i/3)

π2
+ O(2i/2)

)
,

or

#D[i] =
2i−ln ln 2i

12π2
+ O(2i/2−ln ln 2i

)(4.25)

For future reference, we define

f(i) =
2i−ln ln 2i

12π2
.(4.26)

The next proposition provides a sufficient condition for X2 − DY 2 = −8 to have a
solution and will be helpful to give a lower bound for #D−8[i].

Proposition 4.7. Let D′ be a positive, square free integer such that D′ ≡ 1 (mod 8),

and D′ ≡ 0 (mod 3). Let hD′ denote the class number of the quadratic field Q(
√

D′). If
hD′ = 1 then X2 −D′Y 2 = −8 has a solution.
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Proof. Let R be the ring of integers of the field Q(
√

D′). By (4.4), the ideal

I = (2, 1+
√

D′

2
) is a prime divisor of the ideal (2) in R. Since hD′ = 1, there exists α ∈ R

such that (α) = I. In particular, |N(α)| = N(I) = 2. By Theorem 3.1, α = x+y
√

D′

2
for

some x, y such that x ≡ y (mod 2). We claim that x ≡ y ≡ 1 (mod 2) and N(α) = −2:
If x ≡ y ≡ 0 (mod 2) and N(α) = 2 then we would have a2−D′b2 = 2 for some integers
a, b and reducing this equation modulo 8 gives a2 − b2 ≡ 2 (mod 8), contradiction. If
x ≡ y ≡ 0 (mod 2) and N(α) = −2 then we would have a2 − D′b2 = −2 for some
integers a, and b. Reducing both sides modulo 8 we would get a2 − b2 ≡ 6 (mod 8),
contradiction. If x ≡ y ≡ 1 (mod 2) and N(α) = 2 then we would have x2−D′y2 = 8 for
some integers x, and y. Reducing this equality modulo 3 we would get x2 ≡ 2 (mod 3),

contradiction. Hence, the only possible case is α = x+y
√

D
2

, x ≡ y ≡ 1 (mod 2), and
N(α) = −2, that is x2 −D′y2 = −8, as required. �

We should note that according to the Cohen-Lenstra heuristics [5], 75.4% of the real

quadratic fields Q(
√

D′) with prime D′ have class number 1. In fact, if hD′ = 1 then
it is known that D′ = p for some prime p, or D′ = 2q, or D′ = q1q2 for some primes
q, q1, q2 ≡ 3 (mod 4). And, it is widely believed that similar heuristics hold for all such
configurations of D′ [31]. In particular, we may assume that the set of quadratic fields

Q(
√

D′) with D′ = 3q1 (q1 ≡ 3 (mod 4)), and hD′ = 1 has a positive density in the set

of all real quadratic fields Q(
√

D′) with D′ ≡ 3q1, q1 ≡ 3 (mod 4).

Therefore, under this assumption, we can conclude that

Theorem 4.8. Let q represent a prime congruent to 3 modulo 4. Assume that the set of
quadratic fields Q(

√
D′) with D′ = 3q, and hD′ = 1 has a positive density, say C, in the

set of all real quadratic fields Q(
√

D′) with D′ = 3q. Then a lower bound for #D−8[i]
can be given as follows

#D−8[i] ≥
C

12

2i

ln(2i/3)
.(4.27)

Proof. Define S = {D : D ≤ 2i, D = 3q, q 6= 3, q ≡ 3 (mod 8)}. Note that

S ⊂ D[i] and by the prime number theorem, |S| ≈ 1
4

2i/3
ln(2i/3)

. Hence, by the assumption

of the theorem, and by Proposition 4.7 we conclude

#D−8[i] ≥
C

4
· 2i/3

ln(2i/3)
,(4.28)

where C is the constant specified in the statement of the theorem. �

For future reference, we define

g(i) =
2i

ln(2i)
.(4.29)

The following proposition will help to prove the lower bound (4.27) with the assumption
of Theorem 4.8 replaced by another assumption, and using the Cohen-Lenstra heuristics
on the class numbers of quadratic fields with prime D′.
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Proposition 4.9. Let p be a prime such that p ≡ 1 (mod 8) and p ≡ 1 (mod 3).
Assume that Q(

√
p) has class number hp = 1. Then, at least one of the equations

X2 − pY 2 = −8 or X2 − pY 2 = 8 has an integer solution. Moreover, if X2 − pY 2 = −8
is soluble then X2 − 9pY 2 = −8 is also soluble.

Proof. The first part of the theorem follows from the proof of Proposition 4.7. Now,
assume (x, y) is a solution to X2 − pY 2 = −8. Then x2 − y2 ≡ 1 (mod 3) and this is
possible only if y ≡ 0 (mod 3). In this case, (x, y/3) is a solution to X2− 9pY 2 = −8 as
required. �

Note that the lower bound in Theorem 4.8 was computed by considering the set S =
{D : D ≤ 2i, D = 3p, p 6= 3, p ≡ 3 (mod 8)}. We can apply a similar argument and
prove the lower bound (4.27) by replacing S with S ′ = {D : D ≤ 2i, D = 9p, p ≡ 1
(mod 3), p ≡ 1 (mod 8)}, and by using Cohen-Lenstra heuristics and Proposition 4.9.
Of course, we need to replace the assumption of Theorem 4.8 with the assumption that
for primes p as in Proposition 4.9, the set of equations X2 − pY 2 = −8 that are soluble
has a positive density in the set of equations X2 − pY 2 = ±8 that are soluble.

In the proof of Proposition 4.7, the sufficiency condition hD′ = 1 is used only to guarantee

that the ideal I = (2, 1+
√

D′

2
) is principal. In other words, the existence of a solution to

X2−D′Y 2 = −8 is guaranteed when the ideal (2, 1+
√

D′

2
) is principal, and say generated

by α. In this case, the conjugate of α would generate the ideal (2, 1−
√

D′

2
), and by Theorem

3.2 the prime factors of the ideal 2R would be principal. Conversely, if α = x + y
√

D′ is

a solution to X2−D′Y 2 = −8 then the ideal (2, 1+
√

D′

2
) is principal and, without loss of

generality, generated by α/2. Moreover, (2, 1+
√

D′

2
) is generated by α′/2 (see the proof

of Theorem 4.3). To summarize, we get the following theorem as a generalization of
Proposition 4.7:

Theorem 4.10. Let D′ be a positive, square free integer such that D′ ≡ 1 (mod 8), and
D′ ≡ 0 (mod 3). Then X2 −D′Y 2 = −8 has an integer solution if and only if the ideal

(2, 1+
√

D′

2
) is principal in the quadratic field Q(

√
D′). Equivalently, X2−D′Y 2 = −8 has

an integer solution if and only if the prime 2 splits as a product of two principal prime
ideals in the ring of integers of Q(

√
D′).

Next, we give a lower bound for E(z). We represent an elliptic curve E, defined over
a finite field Fq, with embedding degree k, and #E(Fq) = n by a tuple (E, q, n, k, D′)
where 4q − t2 = D′V 2. We restrict q > 64, and n > 64 to be prime and k = 6. Recall
from Section 2.1.3 that constructing E is reduced to finding some suitable solutions to

X2 − 3D′Y 2 = −8(4.30)

where D′ > 3 is a square free integer. For a given D′, once a solution (x, y) is found then
the parameters are given by

• Case 1. x ≡ 1 (mod 6): q = 4l2 + 1, n = 4l2 + 2l + 1 where l = (x− 1)/6, or,
• Case 2. x ≡ −1 (mod 6): q = 4l2 + 1, n = 4l2 − 2l + 1 where l = (x + 1)/6.
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Remark 4.1. Given a solution (x, y) of X2 − 3D′Y 2 = −8 with x is odd we must have
x ≡ 1 (mod 6) or x ≡ −1 (mod 6). ( If x ≡ 0 (mod 3) then reducing x2 − 3D′y2 = −8
modulo 3 gives a contradiction.)

Also, an easy counting argument gives the following lemma:

Lemma 4.11. Let s ≥ 0 be an integer and define

A1(s) = {a ∈ Z : 1 ≤ a ≤ (2s + 1)2, a is perfect square, a ≡ 1 (mod 6)},
A4(s) = {a ∈ Z : 1 ≤ a ≤ (2s)2, a is perfect square, a ≡ 4 (mod 6)}.

Then |A1(s)| = ⌈(2s + 1)/3⌉, and |A4(s)| = ⌈2s/3⌉.

Note that the sequence {(3D′− 8)}D′ runs through all integers congruent to 1 modulo 3
as D′ runs through all integers greater than 2. So, by Lemma 4.11, {(3D′− 8)}D′ where

D′ ∈ [3, (z + 8)/3], runs through 2
√

z
3

+ O(1) many perfect squares in the interval [1, z].
That is, if D′ is an integer randomly chosen from the interval [3, (z + 8)/3], then the

probability that (3D′ − 8) is a perfect square can be estimated as 2
√

z+O(1)
3z

.

Also, recall that the asymptotic number of square free integers ≤ z, say S(z), is given
by S(z) = 6z/π2 + O(

√
z) (see (4.24)). Moreover, we can write that the asymptotic

number of square free integers which are odd is at least S(z)/2 since every even square
free integer, say m, corresponds to an odd square free integer, say m/2.

Now, for an integer D′, randomly chosen from the interval [3, (z + 8)/3], define e(D′) as
the event that D′ is odd, square free and that (3D′− 8) is a perfect square. Then, using
the above discussion, we may argue that the probability assigned to e(D′) is

P (e(D′)) ≥ 1

2
· 6(z/3)/π2 + O(

√
z/3)

z/3
· 2
√

z + O(1)

3z
.(4.31)

That is, we may write for some positive constants c1, and c2 that

P (e(D′)) ≥ 1

2
·
(

6

π2
− c1√

z

)
·
(

2

3
√

z
− c2

z

)

≥ 1

2
·
(

4

π2
√

z
− (18c2 + 2π2c1)

3π2z
+

c1c2

z
√

z

)

≥
(

2

π2
√

z
− (9c2 + π2c1)

3π2z

)
.(4.32)

Now, suppose D′ satisfies the conditions that D′ is odd, square free and (3D′−8) = x2 for
some integer x. Then we get a solution, (x, 1), to the Pell equation X2 − 3D′Y 2 = −8.
Note that x > 0 is odd and also, by Remark 4.1, x must satisfy x ≡ 1,−1 (mod 6).
Suppose first that x ≡ 1 (mod 6). Define the following integers l = (x − 1)/6, q =

4l2 + 1, n = 4l2 + 2l + 1. That is, q = 2x2

3
− 4x

3
+ 5

3
and n = 2x2

3
− x + 4

3
. Note

that q ≤ x2 = 3D′ − 8 and n ≤ x2 = 3D′ − 8. By the prime number theorem, we
may estimate the probability that both q and n are prime as 1

(ln(3D′−8))2
. Similarly, this

estimation holds when we assume x ≡ −1 (mod 6). So, for an integer D′ randomly
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chosen from an interval [5, (z + 8)/3], the probability of obtaining (E, q, n, k, D′) is at
least (

2

π2
√

z
− (9c2 + π2c1)

3π2z

)
· 1

(ln(3D′ − 8))2
.(4.33)

Summing (4.33) for all D′ in [5, (z + 8)/3], and defining c = (9c2+π2c1)
3π2 , we get

E(z) ≥ ·
(

2

π2
√

z
− c

z

) ⌊(z+8)/3⌋∑

D′=5

1

(ln(3D′ − 8))2

≥
(

2

3π2
·
√

z

(ln z)2
− c

(ln z)2

)
.

We can summarize our discussion in the following theorem:

Theorem 4.12. Let E(z) denote the expected number of isogeny classes of MNT curves
with k = 6 and D′ ≤ z. Then, given any ǫ > 0, E(z) satisfies

E(z) ≥ 2

3π2
·
√

z

(ln z)2
− ǫ,(4.34)

as z →∞.

For future reference, we define

σ(z) =

√
z

(ln z)2
.(4.35)

We have tested the approximation for #D[i] (see (4.25)), the lower bound for #D−8[i]
(see (4.27)), We have also tested the upper and lower bounds for #D−8,q,n[i] (see (2.29),
(2.30), (4.34) and recall that E(2i/3) = #D−8,q,n[i]) in experiments.

In particular, we have run Algorithm 3 with inputs 1 ≤ N ≤ 300, and z = 8/3 ·107. The
results are given in Table 1. Note that for some integers i we have #D−8[i] < #D−8,q,n[i]
because for some values of D ∈ D−8[i] there correspond more than one suitable prime
pair (q, n). We see that the necessary conditions put on D for the existence of a solution
to X2−DY 2 = −8 are not sufficient since D[i] 6= D−8[i] in general. The smallest 11 ele-
ments, corresponding to D[12]\D−8[12], are {321, 993, 1257, 1641, 1761, 1929, 2313, 2913,
3201, 3609, 3873}. The class numbers of the corresponding quadratic fields are {3, 3, 3, 5,
7, 3, 3, 7, 8, 5, 3}.

We investigated additive and multiplicative structures of D to find some pattern on the
set D−8[i] (or D[i]\D−8[i]). In particular, we analyzed the values D ∈ D−8[i] modulo
some integers. However, all the patterns we found for D ∈ D−8[i] to satisfy were already
implied by the conditions in D. For instance, D 6≡ 5 (mod 10), or D 6≡ 7 (mod 14)
are implied by the condition that −2 is a square modulo D. On the other hand, one
interesting observation appears in the fifth column of Table 1 and that indicates a conver-
gence to a 75% proportion for #D−8[i]/#D[i]. This is not obvious from our theoretical
findings (4.25) and (4.27) because limi→∞ f(i)/g(i) = ∞. Note that in the proof of
the lower bound for #D−8[i], only quadratic fields with class number 1 were considered

and there still exist values of D such that Q(
√

D) has class number greater than 1 and
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X2−DY 2 = −8 has a solution. For instance, if D = 561 then hD = 2 and (71, 3) is a so-
lution to X2−DY 2 = −8. So, it may be possible to improve the lower bound for #D−8[i]
by analyzing the fields with class numbers greater than 1, and to use Theorem 4.10 in
order to explain the convergence 75%. More precisely, this would be achieved in the fol-
lowing scenario: For a given ideal (1, 1+

√
D/2), if e(D) is the event that (1, 1+

√
D/2)

is principal in Q(
√

D) then there exists a probability function, say p(e(D), hD) (given D,

the probability that (1, 1+
√

D/2) is principal), which only depends on the class number

of Q(
√

D). For example we already know that p(e(D), 1) = 1. This might be possible
in general for hD > 1 because it is known that ideals are approximately uniformly dis-
tributed among the ideal classes. And, this might not be possible because the uniform
distribution is asymptotic in the size of the norm of ideals.

In the sixth and seventh columns of Table 1, #D[i] and #D−8[i] are compared with
f(i) and g(i) (see (4.25), (4.26),and (4.27), (4.29)). The increase in the ratio #D[i]/f(i)
suggests that there may be a better approximation for #D[i] or the discrepancy is swal-
lowed in the big O notation in (4.25). The increase in the ratio g(i)/#D−8[i] indicates
that g(i) can be improved as we discussed before. Finally, we can see the behaviour of
E(z) compared to its upper bound (2.30), and to its lower bound (see (4.34) and (4.35))
in the last two columns of Table 1.

(Note that in our discussion we should omit the last row of the table since it corresponds
to a search range such that 3 ≤ D ≤ 227, whereas we run our experiments for D ≤
8 · 107 < 227.)
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i #D[i] #D−8[i] #D−8,q,n[i] #D−8[i]
#D[i]

1
10

#D[i]
f(i)

1
5

g(i)
#D−8[i]

10·#D−8,q,n[i]√
2i

1
10

#D−8,q,n[i]

σ(2i)

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 2 2 3 1 0.9939 1.5388 3.7500 0.6486
7 2 2 3 1 0.5530 2.6380 2.6516 0.6242
8 7 7 5 1 1.0616 1.3190 3.1250 0.9609
9 12 11 7 0.9166 0.9873 1.4922 3.0935 1.2039
10 25 23 7 0.9200 1.1064 1.2846 2.1875 1.0509
11 44 38 8 0.8636 1.0401 1.4137 1.7677 1.0276
12 85 74 12 0.8706 1.0671 1.3309 1.8750 1.2972
13 165 136 14 0.8242 1.0948 1.3369 1.5467 1.2559
14 322 270 14 0.8385 1.1246 1.2506 1.0937 1.0299
15 619 519 17 0.8384 1.1339 1.2144 0.9391 1.0152
16 1198 977 22 0.8155 1.1475 1.2096 0.8593 1.0569
17 2327 1885 27 0.8100 1.1623 1.1801 0.7457 1.0355
18 4511 3594 32 0.7967 1.1721 1.1692 0.6250 0.9729
19 8783 6915 43 0.7873 1.1846 1.1514 0.5938 1.0300
20 17102 13356 49 0.7810 1.1950 1.1326 0.4785 0.9196
21 33349 25828 65 0.7745 1.2052 1.1156 0.4488 0.9510
22 65090 50115 78 0.7699 1.2147 1.0976 0.3808 0.8856
23 127199 97545 105 0.7669 1.2241 1.0788 0.3625 0.9214
24 248833 189651 147 0.7622 1.2331 1.0635 0.3588 0.9931
25 487218 369882 187 0.7592 1.2419 1.0470 0.3228 0.9693
26 954700 722611 268 0.7569 1.2503 1.0306 0.3271 1.0625
27 1132405 855990 290 0.7560 0.7611 1.6756 0.2503 0.8767

Table 1: k = 6; see Algorithm 3 and (4.26), (4.29), (4.35) for definitions of f, g, σ





CHAPTER 5

The cases k = 3, 4

The constructability of elliptic curves with embedding degree k = 6 was analyzed in
Chapter 4 by discussing the set of solutions to the corresponding Pell equation. In this
chapter, a similar analysis is given for embedding degrees k = 3 and k = 4. First we note
that the analysis of the case k = 4 is exactly the same as the case k = 6 by Proposition
2.4. So, we only concentrate on the case k = 3.

It was shown in Section 2.1.1 that constructing an elliptic curve E with k = 3 is reduced
to finding some suitable solutions to

X2 −DY 2 = 24, D > 0, D ≡ 0 (mod 3).(5.1)

The analysis of (5.1) was mostly done by Miyaji, Nakabayashi, and Takano [24]. The
following proposition summarizes their results.

Proposition 5.1. If an ordinary elliptic curve E over a prime field with embedding
degree 3 is constructable then (5.1) must have only primitive solutions and the value
D in (5.1) must satisfy D ≡ 57 (mod 72). Moreover, (5.1) has exactly two classes of
solutions and if α = (x, y) is a solution to (5.1) then α and α′ = (x,−y) represent the
two different solution classes.

Proof. The proof follows from Lemma 1, Lemma 2 and Proposition 1 of [24]. �

The following proposition is analogous to Proposition 4.6.

Proposition 5.2. Let Sα and Sα′ denote the two solution classes of (5.1) as in Propo-
sition 5.1. Then the set of elliptic curves, say Eα, constructed through Sα and the set of
elliptic curves, say Eα′, constructed through Sα′ are identical.

Now, let (x, y) be a minimal solution to X2 − DY 2 = n, and let (u, v) be a minimal
solution to U2−DV 2 = 1. Recall that all primitive solutions (xj , yj) in the class of (x, y)
can be generated as follows:

xj + yj

√
D = ±(x + y

√
D)(u + v

√
D)j, where j ∈ Z.(5.2)

As in Chapter 4, we summarize our discussion and give a searching algorithm for suitable
prime order elliptic curve parameters with k = 3.

• D should be fixed such that 0 < D ≤ 1010, D/3 is square free, D ≡ 57 (mod 72),
Also, 6 must be a square modulo D.

35
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• Let (u, v) be a minimal solution to U2 − DV 2 = 1. If there is a solution to
X2−DY 2 = 24 then it is enough to find, if it exists, only one minimal solution,
say (x0, y0).
• Let (xj, yj) = ±(x0, y0)(u, v)j be the set of all solutions as in the same class as

(x, y). It is enough to consider only one of the solutions (xj , yj) and −(xj , yj).
• If x0 6≡ 3 (mod 6) then there do not exist any suitable (i.e., curve generating)

solutions (xj , yj) for j ≡ 0 (mod 2) by Lemma 4.4, and Section 2.1.1. Similarly,
if x1 6≡ 3 (mod 6) then there do not exist any suitable solutions (xj , yj) for j ≡ 1
(mod 2).
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Algorithm 4 EC parameters with k = 3
Input: N
Output: EC parameters (q, n, k, D′) where q and n are N -bit primes, k = 3, and D′ ≤ z
(where 4q − t2 = D′V 2)

1: for 0 < D ≤ 3z, D/3 square free, D ≡ 57 (mod 72), 6 is a square modulo D do

2: if D > 576 then

3: find a minimal solution, (x0, y0), to X2−DY 2 = −8 by using Algorithm 1 with
input D, 24.

4: else

5: find a minimal solution, (x0, y0), to X2−DY 2 = −8 by using Algorithm 2 with
input D, 24.

6: end if

7: find a minimal solution, (u, v), to U2−DV 2 = 1 by using Algorithm 1 with input
D, 1.

8: x1 ← x0u + y0vD, y1 ← x0v + y0u
9: x← x0, y ← y0, x′ ← x1, y′ ← y1

10: if x0 ≡ 3 (mod 6) then

11: while |x| ≤ 2⌈N/2⌉ do

12: l1 ← (x− 3)/6, l2 ← (x + 3)/6
13: if ⌊(N − 4⌋)/2 ≤ log2 l1, log2 l2 < ⌈(N − 3)/2⌉ then

14: q1 ← 12l22 − 1, n1 ← 12l21 − 6l + 1, q2 ← 12l22 − 1, n2 ← 12l22 + 6l2 + 1
15: if q1 and n1 are primes then

16: Output (q1, n1)
17: end if

18: if q2 and n2 are primes then

19: Output (q2, n2)
20: end if

21: end if

22: x̃← x
23: x← x(2u2 − 1) + 2yuvD
24: y ← y(2u2 − 1) + 2x̃uv
25: end while

26: end if

27: if x1 ≡ 3 (mod 6) then

28: while |x′| ≤ 2⌈N/2⌉ do

29: l1 ← (x′ − 3)/6, l2 ← (x′ + 3)/6
30: if ⌊(N − 4⌋)/2 ≤ log2 l1, log2 l2 < ⌈(N − 3)/2⌉ then

31: q1 ← 12l22 − 1, n1 ← 12l21 − 6l + 1, q2 ← 12l22 − 1, n2 ← 12l22 + 6l2 + 1
32: if q1 and n1 are primes then

33: Output (q1, n1)
34: end if

35: if q2 and n2 are primes then

36: Output (q2, n2)
37: end if

38: end if

39: x̃′ ← x′

40: x′ ← x′(2u2 − 1) + 2y′uvD
41: y′ ← y′(2u2 − 1) + 2x̃′uv
42: end while

43: end if

44: end for
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Now, let n and q be primes and define the following sets

D = {D : D/3 is square free, D ≡ 57 (mod 72), 6 is a square modulo D},

D[i] = {D ∈ D : 0 < D ≤ 2i},

D24[i] = {D ∈ D[i] : there exist solutions to X2 −DY 2 = 24},

D24,q,n[i] = {(D, (q, n)) : D ∈ D24[i] and primes q, n exist through the solutions of
X2 −DY 2 = 24}.

As in Chapter 4, defining E(z) to be the number of isogeny classes of MNT curves for
k = 3 and D′ ≤ z (where 4q − t2 = D′V 2) we have the relation #D24,q,n[i] = E(2i/3).

We proceed similarly as in Chapter 4 and try to find approximations for the cardinality
of the sets D[i],D24[i] and D24,q,n[i].

First we consider the set D[i]. Let D ∈ D and let D =
∏w(D)

s=1 ps be the prime factorization
of D where p1 = 3 and w(D) is the number of distinct prime factors of D. We know that
6 is a square modulo D if and only if 6 is a square modulo ps for every s = 1, . . . , w(D).
Assuming without loss of generality that ps > 3, 6 is a square modulo ps if and only if
the Legendre symbol satisfies

(
6
ps

)
= 1. In other words, we must have

(
2
ps

)
=

(
3
ps

)
= 1 or(

2
ps

)
=

(
3
ps

)
= −1. Using the facts that

(
2

ps

)
=

{
1 if p ≡ 1, 7 (mod 8)
−1 if p ≡ 3, 5 (mod 8),

and (
3

ps

)
=

{
1 if p ≡ 1, 11 (mod 12)
−1 if p ≡ 5, 7 (mod 12)

we can conclude that 6 is a square modulo ps > 3 if and only if ps ≡ 1, 5, 19, 23 (mod 24)
and 6 is a not a square modulo ps > 3 if and only if ps ≡ 7, 11, 13, 17 (mod 24). Now,
applying the similar reasoning as in the case for k = 6, we obtain the following approxi-
mation for #D[i] follows as

#D[i] =
2i−ln ln 2i

36π2
+ O(2i/2−ln ln 2i

).(5.3)

For future reference, we define

f(i) =
2i−ln ln 2i

36π2
.(5.4)

We will use the following proposition to give a lower bound for #D24[i].

Proposition 5.3. Let D′ be an integer such that D′ = 3q where q is a prime and q ≡ 19
(mod 24). Let hD′ denote the class number of the quadratic field Q(

√
D′). If hD′ = 1

then X2 −D′Y 2 = 24 has a solution.

Proof. Let R be the ring of integers of the field Q(
√

D′). By Theorem 3.2, the

ideal I = (2, 1+
√

D′

2
) is a prime divisor of the ideal (2) in R, and J = (3,

√
D′) is a prime

divisor of the ideal (3) in R. Since hD′ = 1, there exists α ∈ R such that (α) = IJ . In



5. THE CASES k = 3, 4 39

particular, |N(α)| = N(IJ) = 6. By Theorem 3.1, α = x+y
√

D′

2
for some x, y such that

x ≡ y (mod 2). We claim that x ≡ y ≡ 1 (mod 2) and N(α) = 6: If x ≡ y ≡ 0 (mod 2)
and N(α) = 6 then we would have a2−D′b2 = 6 for some integers a, b and reducing this
equation modulo 8 gives a2 − b2 ≡ 6 (mod 8), contradiction. If x ≡ y ≡ 0 (mod 2) and
N(α) = −6 then we would have a2 − D′b2 = −6 for some integers a, and b. Reducing
both sides modulo 8 we would get a2 − b2 ≡ 2 (mod 8), contradiction. If x ≡ y ≡ 1
(mod 2) and N(α) = −6 then we would have x2 − D′y2 = −24 for some integers x,
and y. Considering this equality modulo 3 we get x ≡ 0 (mod 3). Now, let x = 3s
for some integer s. Then (9s2) − D′y2 = −24, and so 6s2 ≡ 3 (mod 9), contradiction.

Hence, the only possible case is α = x+y
√

D
2

, x ≡ y ≡ 1 (mod 2), and N(α) = 6, that is
x2 −D′y2 = 24, as required. �

Theorem 5.4. Let q represent a prime congruent to 19 modulo 24. Assume that the set
of quadratic fields Q(

√
D′) with D′ = 3q, and hD′ = 1 has a positive density, say C, in

the set of all real quadratic fields Q(
√

D′) with D′ ≡ 3q. Then a lower bound for #D24[i]
can be given as follows

#D24[i] ≥
C

36
· 2i

ln(2i/3)
(5.5)

Proof. Define S = {D : D ≤ 2i, D = 3q, q 6= 3, q ≡ 19 (mod 24)}. Note that

S ⊂ D[i] and by the prime number theorem, |S| ≈ 1
12

2i/3
ln(2i/3)

. Hence, by the assumption

of the theorem, and by Proposition 5.3 we conclude

#D24[i] ≥
C

12
· 2i/3

ln(2i/3)

where C is the constant specified in the statement of the theorem. �

For future reference, we define

g(i) =
2i

ln(2i)
.(5.6)

Analogous to Theorem 4.10, we can give a generalization of Theorem 5.4 as follows:

Theorem 5.5. Let D′ be an integer such that D′ = 3q where q is a prime and q ≡ 19
(mod 24). Then X2−D′Y 2 = 24 has an integer solution if and only if the ideal generated

by 6 can be written as a product of two principal ideals of both of norm 6 in Q(
√

D′).

Using similar arguments as in the proof of Theorem 4.12, one can prove the following
theorem:

Theorem 5.6. Let E(z) denote the expected number of isogeny classes of MNT curves
with k = 3 and D′ ≤ z. Then, given any ǫ > 0, E(z) satisfies

E(z) ≥ 1

3π2
·
√

z

(ln z)2
− ǫ,(5.7)

as z →∞.
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For future reference, we define

σ(z) =

√
z

(ln z)2
.(5.8)

We have tested the approximation for #D[i] (see (5.3)), the lower bound for #D24[i]
(see (5.5)). We have also tested the upper and lower bounds for #D24,q,n[i] (see (2.29),
(2.30), (5.7) and recall that E(2i/3) = #D24,q,n[i]) in experiments.

The analysis is very similar to the case k = 6 in Chapter 4. In particular, we have run
Algorithm 4 with inputs 1 ≤ N ≤ 300, and z = 13/3 ·107. The results are given in Table
1. Note that for some integers i we have #D24[i] < #D24,q,n[i] because for some values
of D ∈ D24[i] there correspond more than one suitable prime pair (q, n). We see that
the necessary conditions put on D for the existence of a solution to X2 −DY 2 = 24 are
not sufficient since D[i] 6= D24[i] in general. The smallest 7 elements, corresponding to
D[11]\D24[11], are {993, 1641, 1929, 2505, 3585, 3873, 4161}. The fifth column of Table 1
indicates a convergence to a constant proportion for #D−8[i]/#D[i], and this convergence
might be explained by Theorem 5.5 (also see the analysis of the case k = 6).

In the sixth and seventh columns of Table 1, #D[i] and #D24[i] are compared with f(i)
and g(i) (see (5.3), (5.4),and (5.5), (5.6)). As in the case for k = 6, it might be possible
to find a better approximation for #D[i] and to improve the lower bound g(i). Finally,
we can see the behaviour of E(z) compared to its upper bound (2.30), and to its lower
bound (see (5.6) and (5.8)) in the last two columns of Table 1.

(Note that in our discussion we should omit the last row of the table since it corresponds
to a search range such that 3 ≤ D ≤ 227, whereas we run our experiments for D ≤
13 · 107 < 227.)
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i #D[i] #D24[i] #D24,q,n[i] #D24[i]
#D[i]

1
15

#D[i]
f(i)

1
13

g(i)
#D24[i]

10·#D24,q,n[i]√
2i

1
7

#D24,q,n[i]

σ(2i)

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 1 1 3 1 0.9939 1.1837 3.7500 0.3815
7 1 1 3 1 0.5530 2.0292 2.6516 0.3672
8 3 3 6 1 0.9099 1.1837 3.7500 0.6782
9 6 5 7 0.8333 0.9873 1.2626 3.0935 0.7081
10 11 9 8 0.8181 0.9736 1.2626 2.5000 0.7065
11 20 16 14 0.8000 0.94562 1.2913 3.0935 1.0579
12 37 30 15 0.8108 0.9290 1.2626 2.3437 0.9538
13 71 58 19 0.8169 0.9422 1.2057 2.0992 1.0026
14 136 107 21 0.7868 0.9500 1.2137 1.6406 0.9087
15 258 212 27 0.8217 0.9452 1.1435 1.4915 0.9484
16 498 405 32 0.8132 0.9540 1.1223 1.2500 0.9043
17 964 796 41 0.8257 0.9630 1.0749 1.1324 0.9249
18 1866 1511 49 0.8097 0.9697 1.0696 0.9570 0.8763
19 3624 2903 64 0.8010 0.9776 1.0548 0.8838 0.9017
20 7058 5619 81 0.7961 0.9864 1.0354 0.7910 0.8942
21 13765 10872 112 0.7898 0.9949 1.0193 0.7733 0.9639
22 26857 21027 148 0.7829 1.0024 1.0062 0.7226 0.9885
23 52484 40732 191 0.7760 1.0101 0.9937 0.6594 0.9859
24 102673 79446 258 0.7737 1.0176 0.9764 0.6298 1.0253
25 201040 154715 330 0.7695 1.0249 0.9627 0.5696 1.0062
26 394039 302129 440 0.7650 1.0344 0.9480 0.5371 1.0261
27 749310 572505 585 0.7640 1.0073 0.9636 0.5049 1.0403

Table 1: k = 3; see Algorithm 4 and (5.4), (5.6), (5.8) for definitions of f, g, σ





CHAPTER 6

Cryptographically Interesting Examples

Let the triple (E/Fq, n, k) represent an elliptic curve E such that E is defined over Fq,
#E(Fq) = n = q + 1 − t, and E has embedding degree k. We give some examples of
(E/Fq, n, 6) where q and n are prime. In the examples given below we choose q ≈ 2160

because of the current requirements in the cryptographic applications.

Recall from Section 2.1.3 that in order to construct (E/Fq, n, 6) one should find a solution
(x, y) to the equation

X2 −DY 2 = −8, D > 0, D′ = D/3 is square free

such that x = 6l + 1 or x = 6l − 1. If x = 6l + 1 we set l = (x − 1)/6 and check the
primality of q = 4l2 +1 and n = 4l2 +2l+1. If x = 6l−1 we set l = (x+1)/6 and check
the primality of q = 4l2 + 1 and n = 4l2 − 2l + 1. Suppose that one of these primality
conditions are satisfied for (q, n). Then (E/Fq, n, 6) with complex multiplication in
Q(
√
−D′) can be constructed as follows: First the Hilbert class polynomial H−D′(x) is

computed ([3], p.150). Any root of H−D′(x) over Fq, say j, is called the j-invariant, and
an elliptic curve E with given j-invariant can be obtained by using the following lemma.

Lemma 6.1 ([3], Lemma VIII.3, p.153). Let q be a prime. Then the following hold for
elliptic curves over Fq.
(i) Every element in Fq is the j-invariant of an elliptic curve over Fq.
(ii) Let D > 4 and j ∈ Fq with j 6= 0, 1728. Then all elliptic curves over Fq with
j-invariant j are given by

y2 = x3 + 3sc2x + 2sc3

where s = j/(1728− j) and c is any element in Fq.
(iii) Suppose E and E ′ have the same j-invariant j but are not isomorphic over the field
Fq. If j 6= 0 or 1728, then E ′ is the quadratic twist of E and if #E(Fq) = q + 1− t then
#E ′(Fq) = q + 1 + t.

Moreover, because of the efficiency in the implementations [14], we specifically look for
elliptic curve equations of the form

E/Fq : y2 = x3 − 3x + b, b ∈ Fq.(6.1)

By Lemma 6.1.(ii), given q, n, D′ and j as in Lemma 6.1-(ii), then choosing c ∈ Fq such
that 3kc2 = −3 gives rise to an elliptic curve E/Fq with curve equation (6.1). Note that
#E(Fq) = q + 1 − t or #E(Fq) = q + 1 + t by Lemma 6.1.(iii). The former case would
give us the desired triple (E/Fq, n, 6) since n = q + 1− t. The algorithm can be given as
follows.
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Algorithm 5 EC Generation
Input: (q, t, D) : 4q − t2 = (D/3)V 2

Output: A set of isogenous, non-isomorphic elliptic curves with #E(Fq) = q + 1− t and
curve equation (6.1)

1: D′ ← D/3
2: compute H−D′(x)
3: for each j : H−D′(j) = 0 in Fq do

4: s← j/(1728− j)
5: if (−1/s) is a square in Fq then

6: c←
√
−1/s

7: b← 2sc3

8: E ← y2 = x3 − 3x + b
9: if #E = q + 1− t then

10: Output: E
11: end if

12: end if

13: end for

Note that given parameters (q, t, D) we may not always be able to find a curve equation
of the form (6.1). In general, for given (q, t, D) (where n = q + 1 − t, q are primes,
4q − t2 = DV 2, qk ≡ 1 (mod n), and D′ = D/3), let R be the the number of distinct
roots of H−D′(x) over Fq. Then we may expect that the number of non-isomorphic
elliptic curves (E/Fq, n, k) with curve equation of the form (6.1) is

(1/2)(1/2)R.(6.2)

The first factor (1/2) is because of the fact that (−1/s) must be a square in Fq, and the
second factor (1/2) is because of the fact that the obtained elliptic curve has order either
q + 1 − t or q + 1 + t. Hence, given (q, t), if Algorithm 5 does not succeed to find an
elliptic curve then we may need to relax the condition (6.1) and construct other elliptic
curves.

Now, we give some examples (E/Fq, n, 6) satisfying (6.1), and q ≈ n ≈ 2163. The
parameters q, t, and D in the examples are obtained using Algorithm 3. Note that the
parameters already guarantee that the embedding degree is 6. Then the elliptic curves
are constructed using Algorithm 5.

Example 6.1. If D = 3D′ = 3 · 3 · 602489 then for
q = 6409832084579048520099972164544618793148521015057, and
n = 6409832084579048520099969632780000077765548633973, we have

4q − t2 = (3) · (602489) · (3261735686581819844153)2.

The Hilbert class polynomial H−D′ is a 234th degree polynomial and we denote its roots
over Fq by ji for 1 ≤ i ≤ 234.
1. One triple (j1, s1, c1) : s1 = j1/(1728− j1), 3s1c

2
1 = −3 can be given as

j1 = 558894523781075170405217466097328291167667952084,

s1 = 6337638885562738737659376147650853771198981874925,

c1 = 4547195893538903524295645367021365051863034819249
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which leads to the elliptic curve with embedding degree k = 6:

E1/Fq : y2 = x3 − 3x + 3725272382080289991608653595046507482570972391616.

2. Another triple (j2, s2, c2) : s2 = j2/(1728− j2), 3s2c
2
2 = −3 can be given as

j2 = 556087427823803282020655760874960856823890986364,

s2 = 2019562180316454228849641801563210976205650268870,

c2 = 6405541916102174689219590515151681488684959286604

which leads to the elliptic curve with embedding degree k = 6:

E2/Fq : y2 = x3 − 3x + 8580336953747661760763298785874608927123456906.

3. Another triple (j3, s3, c3) : s3 = j3/(1728− j3), 3s3c
2
3 = −3 can be given as

j3 = 732472603087096754819192766833752641470553913726,

s3 = 1628060532545483756369424668628680813207666904884,

c3 = 1306765472096623448859897527422769434446815629623

which leads to the elliptic curve with embedding degree k = 6:

E3/Fq : y2 = x3 − 3x + 3796301140385801622380177109699079924254889755811.

Similarly, we can produce (at most) 234 non-isomorphic triple (E/Fq, n, 6) satisfying
(6.1).

We give a list of parameters for (E/Fq, n, 6) in Table 1, where 4q − t2 = 4n− (t− 2)2 =
D′V 2 for some V . The parameters were obtained by running Algorithm 3 exhaustively
with inputs 160 ≤ N ≤ 300 and z = 8/3·107. The integer n is coded with its hexadecimal
representation in the table.

Note that, by Proposition 2.4, each parameter for an isogeny class of elliptic curves with
embedding degree k = 6 also leads to an isogeny class of elliptic curves with embedding
degree k = 4. We close this chapter by giving an application of Proposition 2.4.

Example 6.2. If D = 3D′ = 3 · 3 · 602489 then for
q = 6409832084579048520099969632780000077765548633973, and
n = 6409832084579048520099972164544618793148521015057, we have

4q − t2 = (3) · (602489) · (3261735686581819844153)2.

The Hilbert class polynomial H−D′ is a 234th degree polynomial and we denote its roots
over Fq by ji for 1 ≤ i ≤ 234.
1. One triple (j1, s1, c1) : s1 = j1/(1728− j1), 3s1c

2
1 = −3 can be given as

j1 = 205382486759756102731345269923409119497677095011,

s1 = 1030074272414746070227032937461091441024020680054,

c1 = 4913131820296422278034456914854176685888512376772

which leads to the elliptic curve with embedding degree k = 4:

E1/Fq : y2 = x3 − 3x + 2993400528565252484131025435851646783754072514402.
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log2(q) n t D′

161 155FCBA17D27DBF83AF9FD356 −139728374055967 12574563
017E52DC96BA3B93 1498201549

163 462C2CFB8DAF4B2900F9D0C24 253176461871538 1807467
FF03527FF496EF75 2972381085

203 72910E9DFC2C47EB63868A3D9 −339209996912051 1060147
A3350AA45CC9DB1D98E38979F5 8114320071409379

204 D6A9E1C9B05FD8BEBE17E7BB1 −464321486126945 20902979
F2FE140314E9F9AD763E360EDD 3164637057497163

206 23D95C1E7E1B4C336BF5D8232 −758994211965354 9877443
83F1905EB83CD664F6436C345C9 5518047831928199

224 8EB4FCF5E831AC7AB5918D6AB 387669957747373 496659
621AF5A6691BB9C34648F2259 48695166999426
467B0D 44997

226 3AEBF8126FF428B6BE9B3F101 −996408345680572 16460547
636B6DB7BB24DA229ADBB6CD6 309843015580581
E335CAB 4405

261 14749107E42C9FB1D262AE514 153901472457873 15496387
706F39BABD560AC355577B563 754362732302340
20985934B2B5C1AB 5643880571

263 4AB39EA921C86AEA4EB6C0239 294106425169528 17960923
014EB4E9E6C7F29DAECE65353 647921521687105
90069F5599A34191 9617419121

296 CA6E1A83814CC9334C6BAD8A2 317290385189035 1695003
D4EAED740FA60ECA58583813E 493455173766896
ED642FE2DA370A54997EABE9 601332896354905

Table 1: list of parameters for k = 6



CHAPTER 7

Conclusion

In our work, we gave a detailed analysis of prime order elliptic curves with embedding
degree k = 3, 4, 6 which are so called MNT curves. Finding suitable parameters for
such curves is closely related to finding solutions to certain Pell equations. We provided
necessary and sufficient conditions for solubility of the equations X2 − DY 2 = m for
(D, m) = (3D′,−8), and (D, m) = (3D′, 24). In particular, using the sufficency condi-
tion, we were able to give a heuristic lower bound for the number of Pell equations which
have integer solutions.

We also presented explicit algorithms to obtain MNT curve parameters and to construct
these curves. An upper bound for the expected number of isogeny classes of MNT
curves (E(z)) was known before and we gave a lower bound for E(z). We compared
these theoretical findings with experimental results that we obtained by running our
algorithms for certain ranges. Our comparisons showed that it is quite possible to find
a precise approximation for E(z).

Moreover, we gave a list of new cryptographically interesting elliptic curve parameters.

One possible direction for work would be finding a tight approximation for E(z). Finding
necessary and sufficient conditions (depending on D and m) for solubility of a larger
family of Pell equations X2 −DY 2 = m would be another interesting research problem.
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