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Real Time Optimization of Chemical Processes — A
Comparison of Closed Versus Open Form Equations
Using Commercial Simulation Packages

Abstract

Real time optimization (RTO) is the continuous reevaluation and alteration
of operating conditions of a process so that the economic productivity of
the process is maximized subject to operational constraints. Current indus-
trial real time optimizers are generally designed and coded manually for each
application, using a programming language such as FORTRAN. PASCAL
or C. in order to solve the optimization problem within a reasonable pe-
riod of time. Recently. computers have become powerful enough to allow
the use of chemical process simulation packages in real time optimization.
Process simulation packages have the advantages of providing user friendly
interfaces, a library of pre-built and tested unit operation models. rigorous
property libraries and built in optimization algorithms. Therefore. real time
optimization applications can be developed more easily and quickly. and are
easier to maintain than those developed by direct coding.

The main objective of this research was to compare the use of closed and
open form equation based process simulation packages as the process models
in real time optimization. Currently, both closed form equation based. or
sequential modular, and open form equation based. or equation-oriented.
process simulators have been suggested for use in real time optimization. but
not implemented.

Two real time optimizers were developed for an industrial refinery stabi-
lizer-splitter process using ASPEN PLUS. a sequential modular process sim-
ulator. and SPEEDUP, an equation-oriented process simulator.

After testing the two real time optimizers, it was concluded that nei-
ther ASPEN PLUS nor SPEEDUP in their present form were robust enough
for an industrial on-line application. The equation-oriented simulator, how-
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ever. was able to find better objective function values using approximately
half as many cycles of the real time optimizer than the sequential modular
simulator. The sequential modular simulator had difficulty in converging
the economic optimization problem when inequality constraints became vi-
olated. Problems were also encountered converging the tear stream blocks
in ASPEN PLUS for some operating conditions. The SPEEDUP real time
optimizer required weighting factors in the objective functions for both data
reconciliation and economic optimization due to a lack of tuning parameters
for the SRQP optimization algorithm and possible flowsheet variable scaling
problems.

From the development of the two real time optimizers, it was concluded
that sequential modular simulators are quicker and easier to use than equa-
tion oriented simulators. However. they are not as flexible with respect to the
choice of manipulated variables for optimization and convergence of flowsheet
recycle loops and tear streams. The development of the real time optimizers
also provides a “test bed” for future research into real time optimization.

Overall, despite the added difficulty in developing and converging an
equation-oriented process flowsheet model. the added flexibility in terms of
variable specification, robust and rapid tear stream convergence. and more
powerful optimization algorithms make the equation-oriented process simu-
lator a more attractive tool for real time optimization, provided the problems
encountered can be overcome. Equation oriented process simulation pack-
ages have also already been used in advanced model based control. scheduling
and process operation analysis which has the advantage of providing the same
user-interface and models for all process modelling performed.

Several other runs were performed with the ASPEN PLUS real time op-
timizer testing changes in the economic objective function parameters and
the effect of process disturbances. Also, a sensitivity study of the economic
objective function stream prices was performed which showed that in every
case tested, the real time optimizer was able to find a better operating point
after a change in economic parameters.
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Chapter 1

Introduction

1.1 Objectives

The main objective of this research is to compare the use of closed and
open form equation based process simulation packages as the plant models
in real time optimization. By developing real time optimization systems in
both closed (sequential modular) and open (equation-oriented) form equation
process simulators, this research will also help to determine the feasibility of
using an “off the shelf” process simulation package as the process model
in real time optimization. Development of the two real time optimization
systems will provide “test beds” for further research on real time optimization
applications and performance. This research will also help to close the gap
between industry and research in this field as there is very little literature
available on real time optimization.

Two other areas of real time optimization will also be studied in this
research:

1. Determine the effect of changes in the financial model on the real time
optimizer;

2. Demonstrate the effects of process disturbances on the operation of the
real time optimizer.




These two areas will help to illustrate the benefits of performing real time

optimization on a chemical process.

1.2 Real Time Optimization

The terms real time optimization (RTO) and on-line optimization are used to
indicate the continuous reevaluation and alteration of operating conditions
of a process so that the economic productivity of the process is maximized
subject to operational constraints [56]. Optimization of process operations
is of considerable interest in industry due to increasing global competition
and tightening product requirements (32, 34]. Real time optimization is an
appealing concept because it is at the level of the control hierarchy at which
business decisions are integrated into the operation (see Section 1.2.1 for
more detail). Advances in the speed and power of computers at lower costs
are making on-line optimization a more cost effective method of improving
plant performance.

Latour [62] lists the benefits from steady-state real time optimization as:

e Improved product yields and/or quality;

¢ Reduced energy consumption and operating costs;

e Increased capacity of equipment, stream factors;

e Less maintenance cost and better maintenance of instrumentation;

e More efficient engineers and operators as a tool for process trouble
shooting and operation;

e Tighter, lower cost process designs if new plant designs include a real
time optimizer.

However, not all processes will benefit from real time optimization. Processes
that experience a wide range of operating conditions due to variability in



product prices and material costs, large variations in ambient conditions.

or economic trade-offs and constraints will benefit the most from real time

optimization. Some examples of suitable processes are steam utility plants.

fluidized catalytic cracking units and downstream gas separation units [87].
A real time optimizer will perform the following general steps:

1. Detect when the plant is sufficiently close to steady state to perform
optimization:

(8]

Perform data rectification on the process data (data reconciliation and

possibly gross error detection);

3. Read the data into the process model and optimize the set points for the
plant using an economic objective function and operational constraints:

4. Download the new set points into the plant’s process control system
and return to step 1.

Details on how each of these steps can be performed and the methodologies
being used at present are covered in Chapter 2.

1.2.1 Real Time Optimization and Control Hierarchy

Figure 1.1 graphically represents the hierarchy of process control applications.
At the base of the pyramid is regulatory control. This is a basic requirement
for all for all further applications higher up the pyramid as they all require
the availability of current on-line data from the plant [52].

Advanced regulatory control is used mostly in situations where where the
process is unstable and requires stability. Advanced regulatory control is
mostly applied using the DCS (distributed control system) hardware or with
a higher level device such as an application module.

Advanced control is the application of software and control algorithms
to do some predictive analysis and local optimization of the process. Some
model based multivariable control techniques include generic model control
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Figure 1.1: Hierarchy of process control applications [52].




(GMC) [22, 64], dynamic matrix control (DMC) [33], model algorithmic con-
trol (MAC) [90] and internal model control (IMC) [46]. Advanced controllers
generally provide control strategies for one or two process units.

Wide area or real time optimization involves multiple process units, com-
plex units or several areas within a plant. The goal is to maintain an optimum
over a wider area of the plant and thus assumes that the combination of ad-
vanced and regulatory control can implement and maintain any set point
requested by the optimizer.

Finally, at the top of the pyramid is “what-if” analysis. This includes
production planning and scheduling as well as off-line analysis of the process.

1.2.2 Current Real Time Optimization Systems

Industrial real time optimization systems operating today are generally de-
signed and coded specifically for each application. These large scale real time
optimization systems are difficult to develop and maintain, requiring exten-
sive development periods by highly skilled staff before implementation. The
process models used in the real time optimizer are usually coded manually in
open form equations, using a programming language such as FORTRAN 77,
PASCAL or C. Typically, the process model will require in the order of
10,000 variables and equations to represent a chemical process. Subsequent
maintenance of this process model is also difficult and highly specialized,
often requiring recoding of sections of the process model. Historically, this
method of development has been necessary to ensure that a cycle of the real
time optimization can be completed within an acceptable amount of time on
the computers available, typically between 1 and 3 hours.

Recently, computers have become powerful enough to allow the use of
higher level programming and modelling techniques to be used in real time
optimization. Several authors have proposed the use of process simulation
packages for performing real time optimization (20, 45, 71, 105] (see Sec-
tion 2.2.1 for further details). Both closed form (sequential modular) and
open form (equation-oriented) equation process simulation packages have



been proposed. However, there are no known industrial applications of real
time optimizers using process simulators. Historically, the reason for this was
that the additional computational time required to complete real time opti-
mization using a process simulation package was too great. With the recent
advances in computer processor power and speed, this additional computa-
tional overhead is no longer a barrier to the use of process simulation packages
in real time optimization systems. Process simulation packages also offer the
advantages of built in unit operation models, powerful nonlinear optimization
software and user friendly interfaces.

Several process simulation companies are working on the development of
real time optimization and on-line modelling systems. These systems are
summarised in Table 1.1. All of these systems are currently being imple-
mented on chemical processes in conjunction with other companies, however
it appears that these implementations are being used to assist in the devel-
opment and testing of these packages. At the time of writing, none of these
real time optimization systems had been released as commercial packages.

1.3 Process Simulation

Chemical process simulation, or process flowsheeting, is used to enable an
engineer to model the behaviour of a plant, or parts of it, under defined
conditions and so produce the heat and material balances for the process. In
mathematical terms, the requirement is to solve the large number of nonlinear
equations that represent the performance of the unit operations and the
behaviour of the chemical components {104]. Process simulators are typically
used in design, analysis and optimization of chemical processes [88].

Process flowsheeting architectures used to solve the nonlinear equations
generated fall into two main categories: the sequential modular and the
equation-oriented approaches. These two approaches and their advantages
are discussed in the following subsections.



Table 1.1: Commercial real time optimization systems in development.

Company Product Process Modelling Method

Aspen RT-OPT Open form equation models,

Technology [14] possibly based on SPEEDUP
process simulation models.

Honeywell Hi-Spec RT-EXEC Based on open form equation

Solutions [52, 53] (Previously MASSBAL process simulation

OPTIMIZER) models.

HyproTech and MDC HYSYS.RTO+ Unknown.

Technologies [55]

Simulation ROM Originally based on closed form

Sciences [94] equation PRO/II process
simulation models, may now
use open form equation models.

Treiber Controls CRO Open form equation models.




1.3.1 Sequential Modular Process Simulators

The sequential modular approach to process simulation implements unit op-
eration blocks as computer subroutines, or modules, that calculate the output
variables as functions of the input variables [67]. These computer subrou-
tines are stored as library models which are matched to the various unit
operations in the flowsheet. An executive program calls each subroutine in
turn, using the output stream data from one unit as the input data for the
next unit. Since most continuously operated plants involve multiple recycles.
the executive program needs to manage the iterative calculation around the
loops until a satisfactorily converged solution is achieved. Calls for physical
properties are standardized so that consistent data are available through-
out the program [104]. Thus, the basic components of a sequential modular
simulation system are the executive, the model library and the physical prop-
erties system as summarised in Figure 1.2. The executive program accepts
input data, determines the process flowsheet, derives and controls the calcu-
lation sequence for the unit operations in the flowsheet. The executive passes
control to unit operations for the execution of the modules.

The level of model complexity is internalized within each model in a
sequential modular simulation allowing the substitution of shortcut with rig-
orous unit models requiring only minor changes to the simulation program.
Also, special purpose solution strategies can be constructed for each different
unit type without altering the overall approach to the flowsheeting program.
Liu et al. [67] list the advantages of sequential modular simulators as:

e the approach is conceptually easy for process engineers to understand:

e there is a large body of computer software organized in the form needed
by the sequential modular approach:

e it is possible to include convergence heuristics developed by experience
over the years (e.g., good initialization procedures);

e in case of an error, it easy to give understandable error messages.



EXECUTIVE PROGRAM
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control unit calculations
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UNIT OPERATIONS
LIBRARY
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PHYSICAL PROPERTIES
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Figure 1.2: Structure of a sequential modular process simulator [18].

However, the input/output nature of the unit operation modules leads to
difficulties as well. Problems occur when the recycle structure of the flowsheet
and any external design specifications create awkward iteration loops, or tear
streams, in the calculation sequence. Iteration loops are also required when
any indirect unit specifications or design constraints are used [18].

Most of the more widely used flowsheeting systems such as Simulation Sci-
ence’s PRO/II, Aspen Technology’s ASPEN PLUS and HyproTech’s HYSIM
employ the sequential modular approach (see Biegler [18] for 2 more com-
prehensive list of process simulation packages). The sequential modular ap-
proach has had wide acceptance due to the ease of building process flowsheets
and the reliability of their solution.

Recently, some sequential modular process simulators have gradually add-
ed simultaneous modular methods. Unit operation modules remain intact,
however the flowsheet stream connections are solved simultaneously using
application of Broyden-type or quasi-Newton methods. This has allowed
complicated recycles and flowsheet constraints to be solved together produc-
ing much faster convergence rates.
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1.3.2 Equation-oriented Process Simulators

The basic idea of equation-oriented approaches to process simulation is to
collect all of the equations describing the flowsheet together, and solve them
as a large system of nonlinear algebraic equations. Mathematically this prob-
lem can be stated as [67]:
solve f(x,u) =0 (L1)
subject to g(x,u) <0
where x = the vector of state (dependent) variables;
u = the vector of decision (independent) variables;
f(x.u) = the set of process model equations;
g(x,u) = the set of inequality or equality constraints.

The decision variables include all of the input variables and the feed stream
variables. The state variables include all the intermediate and product stream
variables, internal variables within each unit operation block, and output
performance variables from each block.

The crucial difference between sequential modular and equation-oriented
process simulators is that the process equations, no matter how they are
collected, are treated by general purpose solution strategies (e.g.. Newton-
Raphson) and are often solved simultaneously. The basic components of
an equation-oriented process simulator are summarised in Figure 1.3. As
seen in Figure 1.3, the executive performs a slightly different function to
the executive for a sequential modular simulation (see Figure 1.2) in that it
organises the equations and controls the general purpose equation solver.

Equation-oriented simulators are far more flexible than sequential mod-
ular simulators in terms of solving problems with nested tear recycle loops
and additional design constraints at the flowsheet level. Also, the accessibility
of derivative and function information within the equation oriented simula-
tor allows for the application of more sophisticated optimization strategies.
However, the solution of several thousand equations that represent a typical
industrial scale process is a much more complex mathematical task than that
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EXECUTIVE PROGRAM
Set up flowsheet and
unit equations

y

SIMULTANEOUS EQUATION
CREATION AND SOLUTION

y

PHYSICAL PROPERTIES
LIBRARY

Figure 1.3: Structure of an equation-oriented process simulator [18].

posed by a sequential modular approach. where the equations are segregated
into smaller sets in the unit operation routines. Equation-oriented flowsheet-
ing problems require large scale numerical algorithms. good initialization
strategies and reliable options to prevent convergence failures [18. 54. 104].
Equation-oriented process simulation packages are not as widely used as
sequential modular simulators. Two commercially used packages are As-
pen Technology’s SPEEDUP. originally developed by Imperial College. and
Honeywell Hi-Spec Solutions’ MASSBAL. commonly used in the pulp and
paper industry. Neither of these packages are “purely” equation-oriented as
they incorporate procedures at the lowest levels to promote convergence. In
particular, physical properties are determined using procedures rather than
including large sets of nonlinear property equations in the simulation.

1.4 Scope of this Research

Current large scale real time optimizers implemented in industry usually suf-
fer from a lack of user friendliness. Both Lojek and Whitehead [68], and
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Darby and White [34] emphasize the importance of good man-machine inter-
faces required to facilitate the use and maintenance of a real time optimizer.
One method of simplifying the development and subsequent maintenance of a
real time optimization system is to use process simulation packages. Several
process simulation packages already have the features required to implement
a complete real time optimization system, including the ability to perform
the process modelling, data reconciliation. economic optimization and data
transfer required. In addition to simpler modelling environments. process
simulation packages also offer the advantages of rigorous property calcula-
tions, choice of convergence algorithms and, with some packages. graphical
user interfaces.

Process simulation packages aiso offer the advantage of providing a stan-
dardized modelling environment for several areas of the process control hi-
erarchy shown in Figure 1.1. As well as providing the models for economic
optimization and data reconciliation in real time optimization. the models
could also potentially be used in advanced control and “what-if” analysis.
For example, process simulator models can be used in Generic Model Con-
trol (GMC) as demonstrated by Douglas et al. [36] and Lee [65] who both
used the SPEEDUP simulations package as the model. The same models
used in the real time optimizer and advanced control can also be used by
process engineers for general process simulation and trouble shooting. These
same models may also be used for nonlinear modelling of entire plants for
scheduling and production planning purposes. For example, McLellan [75]
and Picaseno-Gamiz [86] both used SPEEDUP to present systematic nonlin-
ear approaches to scheduling for continuous processes.

The purpose of this research is to compare the use of the two main types
of process simulation package in real time optimization applications. The two
main types are closed form equation, or sequential modular, and open form
equation, or equation-oriented, process simulators. Both types of process
simulator were used to develop a real time optimizer for the same chemi-
cal process to compare the development and operation advantages of each
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package.

The two process simulation packages chosen were ASPEN PLUS v9.2 (8.
9] and SPEEDUP v5.5d (11, 12]. A newer version of ASPEN PLUS, ver-
sion 9.3 was used for some real time optimizer testing, however, unless oth-
erwise stated in the thesis, version 9.2 of ASPEN PLUS was used. These
packages were chosen as being representative of their respective types of pro-
cess simulator and for their extensive optimization capabilities.

ASPEN PLUS is a sequential modular process simulator with some si-
multaneous modular convergence options. It also has a wide range of unit
operation models with tailored convergence methods for best performance.
An SQP (successive quadratic programming) algorithm is available for op-
timization problems (see Section 4.2.1 for more detail on SQP) and user
defined FORTRAN blocks can be added to a process flowsheet. The process
flowsheet is specified either using the MODELMANAGER graphical user
interface or by editing a keyword based text file.

SPEEDUP is an equation-oriented process simulation package with pro-
cedure base property calculations. SPEEDUP contains a library of pre-
coded simple unit operation models which can be combined to form more
complex units. Both MINOS and SRQP (successive reduced quadratic pro-
gramming) optimization algorithms are included with SPEEDUP (see Sec-
tion 4.3.1 for more detail on SRQP). User defined models may be added using
both SPEEDUP’s modelling code and additional FORTRAN procedures if
required. The process flowsheet is specified by editing a keyword based text
file, with a text based user interface providing syntax checking, result display
and several error diagnosis tools.

The chemical process chosen for testing both real time optimizers was a
stabilizer-splitter process at Shell Canada’s Sarnia refinery. This process is
used to remove the light ends from a hydrocracked stream in the stabilizer
column, and then remove the petroleum products in the splitter fractionation
column. For a detailed description of this process, see Section 3.1.2. The
stabilizer-splitter was chosen as being a suitably complex industrial process
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for testing a real time optimizer, while being small enough to be optimized
within a reasonable period of time using the computing resources available.

The basic structure of the real time optimizer to be developed using
both types of process simulator is summarised in Figure 1.4. Both real time
optimizers were developed in four stages:

1. The process model to be used in both the data reconciliation and eco-
nomic optimization was simulated. The development of the process
model is discussed in Chapter 3.

2. The data reconciliation optimization was added to fit the measured
data to the process model using a least squares objective function op-
timization. Gross error detection was not performed on the process
data. See Chapter 4 for details of the data reconciliation development.

3. The economic optimization using a profit objective function was devel-
oped. This optimization development is discussed in Chapter 5.

4. Finally, the above components were linked together to form the real
time optimizer as shown above the dashed line in Figure 1.4. The
plant, shown below the dashed line in Figure 1.4, provides process
measurements either from real process data supplied by Shell. or from
a steady state process simulation with noise added to the results. See
Section 6.1 for details on the formation of the real time optimizers.

The testing of and results obtained from the two real time optimizers are
also discussed in Chapter 6.

The development of the two real time optimization applications will also
provide “test beds” for future on-line optimization testing and research. To
date, most research into real time optimization has been conducted in in-
dustry, and there has been very little academic research into this area. The
availability of a working real time optimization application should help close
the gap between industry and research in the field of real time optimization.
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Figure 1.4: Real time optimizer process flow diagram.

In addition to comparing the two types of process simulators in real time
optimization applications, two further areas of real time optimization were
studied. The first is to study the effects of changes in the economic objective
function on the real time optimizer. The results of this study is presented in
Section 6.3. The second area is to demonstrate the effect of process distur-
bances on the operation of the real time optimizer (see Section 6.4 for details).
The study of these areas will help to illustrate the benefits of performing real
time optimization on this process when changes in either economic or process
conditions occur.

1.5 Conventions Used in this Thesis

Real time optimizers and process simulators perform several different types
of iterations during their operation. To prevent confusion about which type
of iteration is being discussed, the following conventions will be used:
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“Cycle” will be used to indicate a full cycle of the real time optimizer.
This is one complete run through the flow chart given in Figure 1.4.
that is the measured data is read from the plant. data reconciliation
is performed on this data, then the process is optimized before the set
points are passed back to the plant.

“Tteration” will normally refer to an iteration of an optimization algo-
rithm (either SQP iz ASPEN PLUS or SRQP in SPEEDUP). Iterations
occur in both the data reconciliation optimization and the economic
optimization steps of a real time optimization cycle.

Flowsheet “passes” refer to one evaluation of the entire process flow-
sheet by the simulator. Multiple flowsheet passes are usually made on
an iteration of an optimization algorithm.

“Tear stream iterations” are required in ASPEN PLUS to converge a
tear stream. To prevent confusion with optimization algorithm itera-
tions. these will always be referred to in full as tear stream iterations.
Several tear stream iterations are required on each flowsheet pass to
converge a tear stream.




Chapter 2

Literature Review

2.1 Components of a Real Time Optimizer

A general structure for real time optimization based on the one shown in
Hanmandlu et al. [49] is given in Figure 2.1. This structure is also similar to
those presented in several other papers [17. 34, 38. 43. 44. 56. 68. 70. 83. 93].

The general steps taken in one cycle of the real time optimizer pictured

in Figure 2.1 are:

1. Steady State Detection: This detects when the process is close enough
to steady state to allow the real time optimizer to model the process
with reasonable accuracy. When the plant is determined to be at steady

state, data from the process is passed onto the optimizer.

9. Data Reconciliation and Gross Error Detection: All measured data are
subject to error. Data reconciliation adjusts the measured variables
(e.g., energy, mass, etc.) and, il possible, estimates any unmeasured
variables for the process so that they satisfy the balance constraints.
Gross error detection takes suitable corrective actions to rectify any
gross errors found in the process data [101]. This adjusted data from
the plant is then passed onto the next step.

17
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Figure 2.1: General structure for model based real time optimization.

. Parameter Estimation: The process of updating the model parameters

to the adjusted process data available. These model parameters are
then used in the process model for the optimization of the set points.

. Process Model: The model of the process which represents the effects

of changes made to the process by the optimization algorithm while it

is iterating to an optimum solution.

. Optimization: The optimization algorithm used to determine the opti-

mum set points for the process given an objective function and process

constraints.

Updating of Process Set Points: The optimum set points for the process
found by the optimizer are returned to the plant. Once the plant has
returned to steady state, another cycle of the real time optimizer is

performed to keep the plant operating at its optimum.

Some of the above steps are detailed further in the following subsections.
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2.1.1 Steady State Detection

Steady state is one of the most important assumptions made when designing
a real time optimizer because the plant is being represented by a steady state
model [82]. The steady state model is used to perform data reconciliation
and parameter estimation on the raw data from the plant. If unsteady or
transient data is used, the reconciled results may not accurately reflect the
operation of the plant, and therefore the subsequent optimization of the plant
may not vield a realistic optimum for the current operating conditions. For
this reason, a method of checking for steady state is required before real time
optimization can proceed.
In any steady state detection algorithm, two questions must be answered [87]:

L .

1. Which measured variables should be used to determine if the process
is at steady state? Not every measured variable should be analysed in
assessing the state of the plant. The variables used to assess the plant
condition should be chosen from the measured variables considered to
be the most representative of the state of the plant. These choices are
usually made based on operational experience within the plant.

[SV]

How much variability in the measurements is allowed before the pro-
cess is deemed unsteadv? This question is also answered from plant
operating experience. When the plant is considered to be at steady
state over a period of time. the variances of the key variables can be
estimated. These base variances can then be used to determine the
plant’s “steadiness” when compared to the future observed variances.
Generally, on-line tuning of the steady state detection algorithm will
be required over a period of time to ensure that the state of the plant
is being predicted accurately.

Two methods for determining the condition of the plant have been pro-
posed in the literature; the successive means test and examination of resid-
uals. The successive means test offers a more statistically valid method of
checking for steady state, while the examination of residuals method has a
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higher degree of tunability. Figure 2.2 shows a general steady state detection
program algorithm.

Successive Means Test:

Two papers by Narasimhan et al. {80. 82| detail the successive means test
method. This test involves the calculating the means and variances of the
key variables over two time periods. These two periods are then compared
statistically to determine if there is a significant difference between the two
means. This statistical test is based on the mathematical theory of evidence
and is calculated using the following calculation [80]:

2 A (Z2y — 1)’ .
tl.l = .\ ﬁ (2.1)
1 3

where t?, = a random variables obeying Hoteller’s T2 distribution with nu-
merator degrees of freedom 1. and denominator degrees of free-
dom 2.V — 2.
.V = number of measurements in each period.

Z1; = mean value of variable i in the first time period.

Z»; = mean value of variable : in the second time period.

s, = sample variance of variable i in the first time period.

s3; = sample variance of variable i in the second time period.

A level of significance, ¢, is chosen, and T?(a) is calculated to be the
upper quantile of the T2 distribution. Two cases are now possible:

Case I: t{; < T*(a), and therefore the plant is presumed to be at steady
state with respect to variable i.

Case II: t; > T?(a). and therefore the plant is presumed to not be at
steady state.

The following assumptions are made in using this method:
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Figure 2.2: General steady state detection program flowchart [87].
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1. A process undergoes a change in steady state if the true values of one
or more of its variables change.

o

Measurements of process variables only contain normally distributed
random errors with mean Q and covariance matrix Q.

3. A time period consists of .V successive measurements. The process
state can change from one period to another. but within a period the

process is assumed to be in a steady state.
4. Successive measurements are mutually independent.

5. Q is unknown. It is diagonal and constant from one period to another.

Examination of Residuals:

Examination of residuals is based on a confidence region approach to deter-
mine if the process is at steady state. A maximum residual value is chosen
for each variable. The number of violations of this maximum residual are
determined from the sample of .V measurements over a given period. If the
number of violations for a variable exceeds the maximum violations allowed.
then the plant is assumed to not be at steady state. [f the maximum viola-
tions allowed is not exceeded then the plant is presumed to at steady state
with respect to that variable. Figure 2.3 illustrates how the examination of
residuals method determines both steady and non-steady state variables.

2.1.2 Data Reconciliation and Gross Error Detection

The key features of the process data problem are as follows:

1. All measurements are subject to errors. Random errors are assumed to
be normally distributed and have zero mean. Gross errors are caused
by non-random events such as instrument biases, maifunctioning mea-

suring devices, inaccurate or incomplete process models and process
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Figure 2.3: Examination of residuals test [52].

leaks [66. 73, 101]. Figure 2.4 gives an illustration of the probabilities
involved for random and gross errors.

[SV]

Not all process variables are measured for reasons of cost. inconvenience
or technical infeasibility.

3. There is data redundancy in the sense that there are more measure-
ments (or data) available than needed if the measurements were not
subject to errors. This is also referred to as spatial redundancy [28, 73,
76].

4. Since most process data are being sampled continuously and regularly
at great frequencies. there is also data redundancy if the process condi-
tions are truly at steady state. This is usually referred to as temporal
redundancy.

The adjustment of measured variables for random errors and, if possi-
ble, the estimation of unmeasured variables so that they satisfy the balance
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Figure 2.4: Error probability distribution for process measurements [101].

constraints is known as the data reconciliation problem. Detection of the
presence of any gross errors so that suitable corrective actions can be taken
is known as the gross error detection problem [99]. Collectively, these two
problems are sometimes called data rectification [100]. The objectives of
data rectification are to improve confidence in the measurements, estimate
unmeasured streams, identify meter faults and to identify process losses {63].
A simplified view of the three basic steps to data rectification is shown in
Figure 2.5. The first step, variable classification, involves determining which
variables are observable and/or redundant [66]. In practice, steps two and
three are often used iteratively to reconcile the data and remove gross errors.

Linear, Steady State Data Reconciliation:

The simplest case is linear, steady state data reconciliation. This is cov-
ered by Mah [73] and Crowe et al. [31]. The basic model used for the data
reconciliation in the absence of gross errors [73] is:

y=X+¢ (2.2)
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Figure 2.5: General steps for processing measurement data [66].

where y = (s x 1) vector of measured variables:
x = (s x 1) vector of true variable values:
z = (s x 1) vector of random measurement errors.

It is usually assumed that:
1. the expected value of =, E(z) = 0:
2. the successive vectors of measurements are independent. i.e..
E(eie]) = 0, for i # j;
3. the covariance matrix is known and positive definite. i.e..
cov(e) = E(g;¢f) = Q, and Q is positive definite and known.

The linear constraints are formed by stoichiometric constraint, energy.
mass and other balances. In this case they are linear and homogeneous, and
given by:

Ax=0 (2.3)
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where A = (n x s) coefficient matrix representing the linear process model
(A is of full row rank).

If we assume that the measurement errors are normally distributed. the
data reconciliation problem may be formulated as the following constrained
least squares estimation problem:

min [(y - x)"Q"'(y — x)]

subject to Ax =0

(2.4)

The solution is given by:

(]
(1)
~—

%=y -QAT(AQAT) T Ay (2.

Crowe et al. [31] use a projection matrix to obtain a reduced set of balance
equations (equation (2.3)), and also include a statistical test for the removal
of gross errors. Mah [73] also covers the decomposition and solution of these

equations in detail.

Nonlinear, Steady State Data Reconciliation:

Nonlinear, steady state data reconciliation is the extension of the above
method to include nonlinear constraints. These occur when variables are
measured indirectly by other physical properties. e.g.. concentration by den-
sity, pH or thermal conductivity. Bilinear constraints occur when variables
appear in two balances, e.g., temperatures measured along with concentra-
tions will appear in both energy and component material balances. Bilinear
constraints also occur when a stream is split into two or more streams of
the same temperature and composition. No general analytical solution is
available to bilinear and nonlinear data reconciliation problems. Nonlinear
constraints also make it more difficult to determine whether unmeasured
variables may be estimated, and how to decompose a problem with missing
measurements [73].
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One simple method of solving the nonlinear data reconciliation problem
is to extend the linear case to handle the nonlinear constraints {87]:

min{(y - x)"Q7'(y - x)]
subject to h(x) =0 (2.6)
9(x) 20

where h(x) = the set of equality constraints representing the process model:
g(x) = any inequality constraints present in the process model.

There is no longer an analytical solution to the problem given in equa-
tion (2.6) and the problem must be solved using an optimization algorithm.
In practical applications of this method, weights are added to the least
squares objective function to place emphasis on key measured variables. A
large weighting factor for a given variable will force the optimization to reduce
the degree of adjustment for that variable. These weights are usually chosen
based on operational experience. The objective function for the nonlinear
data reconciliation then becomes:

n 2
. . Yi — I\~
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subject to h(x) =0
g{x) 20

where w = weighting factor associated with each measured variable:
y = the measured variable:
z = the true variable value:
s = the standard deviation of the measurements (usually the stan-
dard deviation of the measurement transmitter).

Crowe [26] handles the nonlinear constraints by extending the method
outlined in Crowe et al. [31] by applying two successive projection matrices
to the equations defining conservation laws and other constraints. Also, no
restrictions are placed on the location of measurements, nor upon what is



28

measured in any one stream. The construction of the projection matrices
is direct and each requires the inversion of a matrix that is also needed for
subsequent steps in the solution.

A paper by Serth et al. [89] adds details on the choice of regression vari-
ables used in nonlinear data reconciliation by defining primary and secondary
variables. Total flow and component flows are examples of primary and sec-
ondary flows respectively. Since material balances are linear in secondary
variables. they can be exploited to develop a particularly efficient data rec-
onciliation procedure [26]. However. they do not vield maximum likelihood
estimates for the true values of primary measured variables. This in turn
could affect the error detection procedure. tending to increase the number of
Tvpe I errors (Definition of Type [ error is given in the Gross Error Detection
section).

Data reconciliation using process simulation software has been looked at
by both Macchietto et al. [70] and Stephenson and Shewchuk {95]. Both
used equation based simulation packages. Macchietto et al. [70] used both
SPEEDUP and a package using simplified process models called DEBIL.
SPEEDUP was found to be slower and use more computational resources.
but was more flexible. Stephenson and Shewchuk [95] detail the methodology
by which MASSBAL solves the data reconciliation problem. Applications to
a pulp mill screening and cleaning svstem are described.

Takivama et al. [98] outline the use of SEBDARM (Sensor Based Data
Reconciliation Method). The method is based on the direct use of measure-
ment variables rather than using balanced variables (conventional method).
This has the advantage of having the reconciled data not being influenced by
the number of reduced balance equations. Their method, however. has only
been tested on pilot plants to date.

Dynamic Data Reconciliation

This is relatively new area of research in the field of data reconciliation. In

many practical situations the process conditions are continuously undergoing
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changes and steady state is never truly reached. Generally the data recon-
ciliation problem in this case is reduced to a discrete Kalman filter for a
quasisteady-state problem [35].

Darouach and Zasadzinski [35] develop a new dynamic algorithm based on
steady state reconciliation leading to a recursive scheme useful for real time
processing of data. The method was shown to reduce computational problems
associated with discrete Kalman filters, especially for singularities and round
off error situations. Rollins and Devanatham [89] refine the method proposed
by Darouach and Zasadzinski [35] to reduce the computational time required.
while preserving its properties of unbiased estimation. Liebman et al. [66]
use nonlinear programming to help solve systems in highly nonlinear regions
where the Kalman filter method may be inaccurate. The method given was
found to be a more robust means for reconciling dynamic data, especially
in the presence of inequality constraints. The method is demonstrated on a

reactor example.

Gross Error Detection

Gross errors in the data invalidates the statistical basis of reconciliation due
to their non-normality. One gross error present in a constrained least squares
reconciliation will cause a series of small adjustments to other measured vari-
ables. For these reasons, gross errors need to be identified and removed before
data reconciliation is carried out. The most common techniques for detect-
ing gross errors are based on statistical hypothesis testing of the observed or
measured data. For any gross error detection method to work, there must
be at least two alternative ways of estimating the value of a variables, for
instance, measured and reconciled values [73]. Crowe [27] and Mah [73] give
detailed accounts of typical statistical gross error detection algorithms.
Two measures of the effectiveness of a gross error detection scheme are the
terms Type I and Type II errors made by the detection scheme. Type I errors
refer to wrongly identifying truly random errors to be gross errors. Type II
errors refer to wrongly finding truly gross errors to be random errors [27].
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In devising the tests for a gross error, the probability of a correct detection
must be balanced against the probability of mispredictions.

The Maximum Power (MP) test for Gross Errors is detailed in two papers
by Crowe [29, 30]. The maximum power test has the greatest probability of
detecting the presence of a gross error without increasing the probability
of Tvpe I error than any other test would on a linear combination of the
measurements. Crowe [29] only deals with the linear case, while Crowe [30]
extends the method to the bilinear case and retests the original constraints
used.

The Generalized Likelihood Ratio (GLR) approach is detailed by Nara-
simhan and Mah [81] and Mah [73]. The previously discussed methods only
deal with gross errors from measurement or sensor biases. The GLR ap-
proach provides a framework for identifying any type of gross errors that can
be mathematically modeled. This can be very useful for identifying other pro-
cess losses such as a leak. The method and examples of its use are detailed
reasonably fully by Narasimhan and Mah [81]. Narasimhan [78] shows that
the Maximum Power Test detailed above is equivalent to the GLR approach
for simple steady state models.

Serth and Heenan [91] tested 3 different methods of gross error detection
on the same steam metering system. These methods were:

1. Measurement test (MT) method. This method proposed by Mah and
Tamhane [74] uses a test which possesses maximal power properties
for detecting the presence of a single outlier (gross error) of the least
squares residuals. The main problem with this method is that the
least squares procedure tends to spread the gross errors over all the
measurements, thereby creating large residuals corresponding to good
measurements [91]. Two modifications of the MT have also been pro-
posed: the iterative measurement test (IMT) method, and the modified
iterative measurement test (MIMT) method. The IMT method simply
applies the MT method iteratively removing one gross error at each
iteration until none remain. IMT, however, can predict sets of recon-
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ciled variables which may contain negative flow rates or absurdly large
values. The MIMT adds bounds to the reconciled variables to prevent
negative flows and absurdly large values

2. Method of pseudonodes (MP). This method proposed by Mah et al. [72]
is based on a nodal imbalance test applied to each node and also to
aggregates of two or more nodes, which are called pseudonodes. This
method predicts potentially bad streams (i.e. may contain gross errors)
and then treats these streams as being bad. Therefore this method will
tend to err on the side of treating good streams as containing gross
errors [91]. A modified method of pseudonodes (MMP) fixes a problem
which arises in MP when no potentially bad streams are predicted. but
one or more nodes are bad. Practically, this modification has very little
effect on the performance of this method.

3. Combinatorial method. The basic idea behind this method proposed
by Serth and Heenan [91] is to identify combinations of gross errors
that are consistent with the observed pattern of nodal imbalances.
The Combinatorial method was found to be less susceptible to error
cancellation than MP or MMP as the algorithm does not work with
aggregates of nodes. However, this method can result in an extremely
large combinatorial problem, even on on a system of moderate size.
The Screened Combinatorial (SC) method was proposed to alleviate
this problem by using the MMP method as a screening procedure to
reduce the size of the combinatorial problem.

From the results of their testing, Serth and Heenan [91] concluded that both
the screened combinatorial (SC) and modified iterative measurement test
(MIMT) methods constitute effective and reliable methods for gross error
detection and data reconciliation in steam metering systems. MIMT was
found to be computationally more efficient than the SC method. Both the
MT method and MP were found to perform very poorly.
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Combined Data Reconciliation and Gross Error Detection Methods

Two papers by Narasimhan and Harikumar [50, 79] give details of incorporat-
ing bounds into data reconciliation. Most approaches to data reconciliation
do not impose inequality constraints because the solution can no longer be
obtained analytically, and the statistical analysis of the measurement resid-
uals for gross error detection is difficult. This leads to an iterative cycle
of data reconciliation and gross error detection phases to complete the data
rectification. Narasimhan and Harikumar [79] develop the algorithm for solv-
ing the data reconciliation problem with bounds and produce the constraint
and measurement residuals. In the second paper [50], the gross error detec-
tion procedures are detailed and the whole method is compared to existing
methods. Their results indicate that their method performed better than
currently available methods.

Tjoa and Biegler [101] develop a simultaneous data reconciliation and
gross error detection method. They minimize an objective function that
is constructed using maximum likelihood principles to construct a new dis-
tribution function. This distribution takes into account both contributions
from random and gross errors. This method gives unbiased estimates in the
presence of gross errors. Therefore simultaneously a gross error detection
test can be constructed based on the new distribution functions without the
assumption of linearity of constraints. This method is particularly effective
for nonlinear problems.

Serth et al. [92] show how the choice of regression variables can adversely
affect the performance of an associated gross error detection algorithm. The
principal effect is an increased tendency of the algorithm to make Tvpe I
errors. Their study was carries out on two sets of variables: primary or to-
tal low variables, and secondary or components flow rates. They conclude
that for systems with relatively small numbers of variables and constraint
equations, data reconciliation should be performed by regressing the pri-
mary variables. For large systems where computational efficiency has a high
priority, the best approach may be to regress on the secondary variables and
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to use the primary residuals for gross error identification.

Terry and Himmelblau [100] detail the use of Artificial Neural Networks
(ANN) for Data reconciliation and gross error detection. The ANN is “trained”
or “learns” to perform the data rectification based on a given model and con-
straints. The method is still being researched and the results look promising
compared to models built from first principles.

2.1.3 Parameter Estimation

Parameter estimation, or model parameter updating, involves updating of
any process parameter in the model which changes slowly over time, usually
due to wear and tear of the equipment or catalysts. Process parameters in-
clude heat transfer coefficients, column efficiencies and loading factors, and
reactor effectiveness factors. The real-time updating of a model’s parameters
permits realistic models to be provided for an optimization system. Another
benefit of parameter estimation is the ability to track the condition of equip-
ment in the plant with time (e.g., heat exchanger fouling, catalyst activity
etc.) [32].

A simple method of updating process parameters is to include them in the
objective function during data reconciliation. Since these parameters should
not vary significantly between each cycle of a real time optimizer, movement
from the previous parameter value should be penalized. This can be achieved
by setting the weight associated with a parameter to a large value (e.g., two or
three orders of magnitude larger than the weights associated with measured
variables) [87]. In this case, the nonlinear constrained data reconciliation

problem given in equation (2.7) becomes:
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where v = weighting factor associated with each parameter to be estimated,;
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p' = the previous estimated parameter value;

p = the estimated parameter value.

MacDonald and Howat [71] propose two different methods of combined
data reconciliation and parameter estimation. The first method is a sequen-
tial, “decoupled” procedure that reconciles the data to satisfy the material
and energy balances, and then estimates the process parameters using max-
imum likelihood estimation. The second method is a “coupled” procedure
that simultaneously reconciles the data to satisfy the constraints and esti-
mates the process parameters. Both methods were tested on a single stage
flash. It was found that the decoupled procedure was computationally faster
and more easily adapted to existing reconciliation algorithms. However, the
coupled procedure was more statistically rigorous and gave better parameter
estimates.

Krishnan et al. [59] present a two step method for the design of a robust
parameter estimation scheme that may be used to update the process model
employed in on-line optimization. This method is summarized in Figure 2.6.
The first step involves a determining the “key” model parameters (i.e. those
having a significant effect on the calculated optimum). The second step
involves finding the “best” set of measurements to estimate these parameters.
This is achieved by using structural analysis, singular value analysis and
calculation of parameter confidence regions. A case study using this method
is detailed in a later paper [60].

Stewart et al. [96] provide an extensive review of Bayesian and likelihood
approaches to parameter estimation from various types of multiresponse data
with an unknown covariance matrix. They found that these methods are
preferable to weighted least squares and to use of a specified covariance ma-
trix, since they estimate the covariance and parameters optimally from the
data provided. Several software programs were described for performing both
least squares and multiresponse parameter estimation. Some multiresponse

applications were also reviewed.
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DETERMINATION OF KEY PARAMTERS
Optimization and peturbation studies
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Figure 2.6: Methodology for selecting a robust parameter estimation
scheme [39].
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2.1.4 Process Model

The process model used in real time optimization must represent changes
in the manipulated variables of the process given the updated set points
calculated by the optimization algorithm. The model approximates the effect
of these variables on the dependent variables, which are usually those that
are constraints or those that have a significant economic impact, such as
vields, material balance or utility usage. In virtually all practical cases,
the model is based on steady state (rather than dynamic) relationships and
is non-linear [34]. The choice of measurements to be used for matching the
model parameters to the plant operations must be made carefully to avoid an
infeasible problem. Bailey et al. [17] chose their variables so that each piece
of equipment had enough associated specifications for the available degrees
of freedom. Development of process models for optimization is covered in
detail by Edgar and Himmelblau [37].

Fatora and Ayala [38] discuss the application of open equation-based
models. Instead of posing an equation in its closed form, for example equa-
tion (2.9), the equation should be formulated in its open residual format as
shown in equation (2.10).

Q =mGCy(Tz - Th) (2.9)

R=Q - mCy(T; - Ti) (2.10)

A simultaneous equation solving and optimization package will manipu-
late the unknowns such that the residual terms, R, are driven to zero. This
method gives the same results as the closed form equation. The advantage
of open form equations is that the model formed from them are more eas-
ily maintained than closed form models. Such models are easily modified
to account for process changes in the plant since the convergence scheme is
separated from the model. The maintenance staff need not recode the con-
vergence scheme each time the model is changed. The open equation-based
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approach to process simulation has been used successfully in industry for
several vears with the proper mathematical tools available.

Two papers by Forbes et al. [43, 44] give some criteria for helping chose
a model adequate for real time optimization. The quality of the model has
a large effect on the success of the real time optimization system. They
give a point-wise model adequacy criterion as the ability of the model to
have an optimum that coincides with the true plant optimum. Analytical
methods for checking the point-wise model adequacy were developed using
reduced space optimization theory, and from these more practical numerical
methods were developed for use on industrial problems [44]. A later paper
by Forbes and Marlin [42] extends the point-wise model accuracy criteria to
vield a set of necessary conditions which must be met for a given real time
optimization system to exhibit zero-offset in the manipulated variables with
respect to the plant optimum. They also introduce the idea of Design Cost
as a framework within which real time optimization design decisions can be
made. The Design Cost metric consists of two terms: one for offset from
the plant optimum manipulated values and one for the covariance of the
model based predictions of the optimal manipulated variables. A systematic
method for selecting which parameters should be adjusted by the real time
optimizer based on Design Cost is presented.

Bailey et al. [17] briefly cover some modeling issues affecting their non-
linear optimization of a hydrocracker fractionation plant. They found that
large equation-based models are sensitive to scaling. However choosing ap-
propriate units avoided numerical problems, even if the resulting units were
unusual (e.g., TJ per day). Numerical stability of the model can also be a
problem and care should be taken to avoid division as an operator. Also, dur-
ing the optimization, bounds must be placed on certain variables to prevent
the solution from moving too far from the starting point. This is because it
takes a finite amount of time to move the plant to a new operating point,
therefore the set points should not be moved a great deal on each run of
the optimizer. They suggest choosing bounds on the variables to reflect the
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allowable change in 1 to 3 hours. The maximum change should depend on
the length of time it would take the control system to take the maximum
step and bring the plant back to steady state.

A common method for more rapidly computing the optimum is an “inside-
out” algorithm first proposed by Boston and Britt [21] to solve a single stage
flash algorithm. In this method the major iterations deal with updating the
parameters for the simplified models and matching their properties with a
rigorous model. Therefore since the more computationally expensive model is
only evaluated in the outer loop, considerably less effort is required than with
a conventional procedure. However, Biegler et al. [19] and Forbes et al. [44]
point out that when this method is applied to optimization problems, this
approach based on simplified models can converge to a solution that may not
necessarily correspond to the optimum predicted when only rigorous methods
are used. They give two observations to help avoid this problem when the
“inside-out” type of algorithm is used:

1. A necessary condition for an appropriate simplified model for optimiza-
tion is that it recognizes the rigorous model optimum as a Karush-
Kuhn-Tucker (KKT) point, that is an optimal point.

2. A sufficient condition for an appropriate simplified model is that it
matches all the gradients of the rigorous at all points of interest.

Several papers cover the use of commercially available process simulation
packages used as the process model, although there is no evidence to date of
this method being used in industry. Two types of simulation packages are
available. The first are open form, equation oriented or simultaneous pro-
cess simulation packages, for example, SPEEDUP and MASSBAL. Although
these simulators are more flexible, they generally require a high level of ex-
pertise to learn and use, have poor user interfaces, and are not widely used in
industry. The second type is the closed form or sequential modular process
simulation packages, for example, ASPENPLUS, PRO II and HYSIM. These
packages are widely used in industry due to their proven reliability and ease
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of use, however, they are less efficient with respect to speed and computer
processing power required [45]. In addition they require special techniques
and insights to develop and change the optimization strategies for on-line
operation due to the sequential modular architecture.

Gallier and Kisala [45] used ASPEN. a sequential modular package. in
their study of real time optimization. They cover two methods where the
simulator is treated as a“black-box” and as an infeasible path optimization
using the SQP method. It was found that the latter is preferable as the
constraints at each iteration need not be satisfied. This allows the optimiza-
tion of the process model to be completed in as few as five simulation time
equivalents. Macchietto et al. [70] used the equation-based SPEEDUP pro-
cess simulation package as the process model and also to perform the data
reconciliation, gross error detection and optimization steps. Dynamic real
time optimization is also possible using the SPEEDUP package. Shewchuk
and Morton [93] outline the use of SACDA’s MASSBAL process simulation
packages as the model in their OPTIMIZER package. This package is also
capable of both steady state and dynamic optimization.

2.1.5 Optimization
Objective Function

The objective function is derived from the plant model, and is to be either
maximized or minimized through changes in the independent variables. The
objective function for real time optimization normally represents the eco-
nomic model of the process, usually limited to variable effects and ignoring
fixed costs such as labour, overheads, etc. A typical objective function given
in Darby and White [34] is:

Objective =Product value — Feed costs — Utility costs

+ Other variable economic effects

(2.11)

Bailey et al. [17] cover objective function development in detail. Feed
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and product prices must be chosen carefully since different values are often
associated with the same material. For example the product might have a
contract price, spot market price and also be an intermediate stream sent to
another part of the plant for further processing. The case of a stream being
an intermediate stream and a product is particularly difficult to determine
an accurate value for an inter-process stream. as many planning models only
consider feeds and finished products. One remedy for this problem is to
include a simple model of the finishing process in the objective function
thereby giving an approximate value to the inter-process stream.

Since the optimizer will be estimating derivatives of the objective func-
tion with respect to operating variables, it is important that the objective
function be continuous. Discontinuities arising from streams with multiple
prices should be treated specially (e.g.. the stream has a contractual price
and a spot price). Often an average price for the stream is not acceptable.
and the discontinuity caused needs to be handled by a method such as an
integer programming technique.

Bailey et al. [17] also show how they developed their objective function
for the real time optimization of a hydrocracker fractionation plant in some
detail. Edgar and Himmelblau [37] cover the development of objective func-
tions including methods for measuring profitability and cost estimations.

Optimization Algorithm

The optimization algorithm uses the process model and the objective func-
tion to solve for the new optimum set points for the plant. The important
considerations in choosing an optimizing algorithm are computational re-
quirements. number of objective function evaluations and robustness. The
general form of the constrained optimization problem using the process model
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and the objective function {38] is:

min (or max)(F(z, p)]
subject to f(z,p) =0 (2.12)

2125 24

p) = the objective function;
f(z,p) = the vector of n equality constraints (from the process model);
p = fixed variables or parameters (e.g., fouling factors, cost co-
efficients etc., changes in these variables will change the
optimum values of z);
z = the process variables which can be varied to optimize F' (the
number of these variables must be greater than n);
z1, zy = the lower and upper bounds on the variables z respectively
(which give the inequality constraints on the model).

Methods on how to solve the above constrained optimization problem are
covered in several texts [37, 40, 47]. A great deal of literature is available on
optimization algorithms, and generally is considered to be a mature area of
mathematics.

Presently, the most common type of algorithm reported in the literature
for solving this type of problem are Sequential (or Successive) Quadratic Pro-
gramming (SQP) techniques. The SQP method approximates the objective
function by a quadratic function, and the constraints by linear functions. so
that quadratic programming can be used recursively to find a search direc-
tion minimizing the objective function. At each outer iteration (or quadratic
program solution) the SQP method constructs these approximations using in-
formation about the values of the variables and their derivatives with respect
to the decision variables [37, 40, 69, 93, 103]. Edgar and Himmelblau [37)
provide a table of the sources of computer codes for SQP methods. Lucia and
Xu [69] provide an extensive review of the SQP algorithms available, partic-
ularly with respect to chemical processes and large-scale problems. Fatora
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and Ayala report the use of an SQP algorithm in their real time optimization
with over 36,000 variables and 31,000 equations.

Bailey et al. [17] use the MINOS routine developed by Stanford. MINOS
is a sequential quadratic programming technique which also makes use of the
Simplex method and a projected Lagrangian algorithm. The MINOS method
is detailed by Murtagh and Saunders [77], and has been shown to solve large
problems of around 5000 variables and 4500 equality constraints successfully.

The DICOPT routine is discussed in a paper by Kocis and Grossman [38].
DICOPT is an outer-approximation/equality relaxation algorithm specifi-
cally designed for process systems involving mixed-integer nonlinear pro-
gramming (MINLP) due to nonlinearities in the models. The algorithm was
tested successfully using problems of up to 528 variables and 1171 constraints.
including 74 binary variables.

2.2 Methods of Real Time Optimization

2.2.1 Global or Centralized Approach to Real Time
Optimization

This is the most common approach found in the literature. It involves op-
timizing the plant as a whole using one objective function. subject to con-
straints, and a model of the entire plant.

Several examples in the literature use very similar techniques of taking
a rigorous steady state model of the process which is then optimized using
a nonlinear objective function and constraints. In all the cases listed below.
the model appeared to be developed specifically for the real time optimiza-
tion implementation. Examples of this general form were performed on the
following plants:

e Hydrocracker fractionation plant, Bailey et al. [17]. The optimization
algorithm was carried out using MINQOS 5.1 on nonlinear mass and en-
ergy balances models and nonlinear constraints. Comparison is made to
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a rank-null space decomposition SQP (Sequential Quadratic Program-
ming) optimization technique. The problem involved 2836 equations.
2891 variables and 10 degrees of freedom. Modeling issues were found
to be problems with scaling of the problem, numerical stability. partic-
ularly when using the division operator, and minimizing the number of
relinearizations of the model constraints required to find the optimum.
Bounds were placed on the maximum amount any variable could be
changed in a run of the real time cptimizer to prevent large set point
changes destabilizing the plant. Objective function development was
also covered in detail.

Olefins plant, Fatora and Ayala [38]. Rigorous. fundamental chemi-
cal engineering models were developed for the olefins plant. All of the
models were written in the open equation form and were optimized
using an SQP algorithm. The resulting complex nonlinear optimiza-
tion problem contained over 36,000 variables and 31,000 equations. and
approximately 20 minutes is taken to complete a full cvcle of the real
time optimizer. The real time optimizer was commissioned in Febru-
ary 1991. and took a total of three weeks to fully implement. The
payback was less than one year. The observed benefits from installing
the real time optimizer were:

— Improvements of 5% to 10% of the value added by the process.
— Consistently holding the process at production targets.

— Decreased product variability.

— Optimal handling of utility versus vield trade-off.

— Many perceived bottlenecks were eliminated.

— Energy savings.

— Increased productivity by trending unit performance and moni-
toring of key parameters.

— More accurate off-line planning.
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e Olefins plant, Lojek and Whitehead [68]. This reference gave very few

specifics on what methods they actually used in the real time optimiza-
tion. They do however outline a very generalized method. The model
was based on a set of modular blocks of successive plant sections. The
advanced local control techniques used in the plant were also detailed
in the paper.

Hot acid leaching and strong acid leaching residue treatment plant in
a zinc refinery, Krishnan et al. [60]. The purpose of this real time op-
timization was to show the effectiveness of the robust parameter esti-
mation method as outlined in Krishnan et al. [59] and the development
of the rigorous steady-state model required. However, the reference
mentions very little about the optimization itself.

Ammonia process, Tsang and Meixell [102]. A rigorous plant model
built from first principles was used for the ammonia unit handling
1600 t/day. They found that statistical regression type models were
found to have significant disadvantages to the rigorous model approach.
The model was performed in Exxon Chemical’s Equation Manager and
Solver (EMS) package using 5500 equations with 160 tear streams tak-
ing two person years’ effort to set up.

Packed-bed immobilized-cell reactor, Hamer and Richenburg [48]. Used
a recursive least squares algorithm and high pass filtering of the data
to estimate the parameters in the discrete-time dynamic model which
was optimized by a full Newton optimization algorithm using the objec-
tive function’s curvature information. The process was relatively small
compared to most of the other plants listed, although it did involve
very noisy process data.

Refinery power plant, Wellons et al. [103]. The MESA nonlinear sim-
ulator was selected to model the power plant unit as it was specifi-
cally developed for power plants. Mobil’s proprietary SQP optimiza-
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tion technology, MOPT, was used as the optimization algorithm. They
ran the real time optimization algorithm every 30 minutes, but have
the option of execution on demand. The system averages 20 updates
to the plant per day. From an audit of the on-line power plant op-
timizer, savings of approximately $2.1 million/year or a 3% saving in

fuel consumption were found.

Pulp refining process, Strand et al. [97]. They found that the model
based control technique was dependent on three main factors:

1. Robust, mechanistic models which accurately describe the effects
of process conditions over a wide range of operating conditions.

2. Tuned parameters for the refiner models so that the equations
accurately represent the real process.

3. Optimization and control techniques which allow the refiner mod-
els to be applied in a systematic fashion.

They found the weaknesses of their optimization system were main-
taining the flow of information to the model and ensuring the correct
information is available. Maintenance of the system was found to re-
quire a dedicated effort from both the mill and vendor.

Refinery hydrogen plant, Bussani et al. [23]. On-line data reconcilia-
tion, gross error detection and optimization were carried out on the hy-
drogen plant. A sequential modular modelling approach was used. The
model contained 27 units and 51 streams, including 8 recycle streams.
The optimization was solved using a feasible path/black box method
based on SQP. The paper covers the development of the data reconcil-
iation and optimization steps in some detail.

High-pressure low-density polyethylene (LDPE) tubular reactor, Kip-
arissides et al. [57]. Parameter estimation, modelling and optimization
issues specific to the LDPE tubular reactor are discussed in this paper
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in some detail. Unfortunately very few numerical or structural details
of the real time optimizer are given. [t was found that real time op-
timization of this process offers large economic gains due to its high
volume and extreme operating conditions on one hand. and tight profit
margins and quality specifications on the other.

Jang et al. [36] took a two-phase approach to the global real time opti-
mization method. The problem of plant operation is based on the idea of a
moving time horizon. The method uses the present measurements and the
measurements taken during the past period of time, together with a par-
tial knowledge of the plants physical and chemical principles governing the
plant, to give an optimal time plan for the manipulation of the set points
for a future period of time. The plant is modeled by either a steady state
or dynamic model depending on how stable the plant is. The two phase ap-
proach is summarized in Figure 2.7. The identification phase of the method
is only carried out when the process has been significantly disturbed from
the previous steady state.

Several authors have proposed using process simulation packages for per-
forming real time optimization and data reconciliation of chemical processes:

e Zhang et al. [105] used a combination of ASPEN PLUS for process
optimization and parameter estimation, and GAMS/MINQOS for data
reconciliation and gross error detection to form a real time optimizer
for a Monsanto sulphuric acid plant. The data reconciliation and gross
error detection method use was the bivariate approach proposed by
Tjoa and Biegler [101]. The data reconciliation involved 39 process
measurements, 29 of which were required to determine the state of the
process. Parameter estimation in ASPEN PLUS used a least squares
optimization to determine the 22 key parameters. Other details such as
data validation and simulation errors were also covered in this paper.
A profit improvement of 17% was achieved, as well as a 25% reduction
in stack gas emissions over the previous operating conditions.
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e Gallier and Kisala [45] use process simulation as the process model

using a SQP optimization algorithm to solve for the optimum. Their
steps to create the real time optimizer, given the model of the plant,

were to:

1. identify the objective function.

o

. identify the degrees of freedom for the optimization.

3. identify the constraints.

They found the SQP method was very efficient at finding the optimum
of the ammonia synthesis example they tested. However, they did not
extend the method to a real plant situation nor mention the use of data
reconciliation or gross error detection in their method.

Bossen et al. [20] discuss the use of the equation oriented simulator
GHEMB for simulation, optimization and data reconciliation of chem-
ical processes. They found that the equation oriented approach was
better suited for handling complex and highly integrated process flow-
sheets. Examples of data reconciliation and optimization were per-
formed on an ammonia process containing 5 recycle streams using a
SQP optimization algorithm.

Macchietto et al. [70] used a an equation oriented simulator, SPEEDUP,
a data screening program called DEBIL and the SPEEDUP External
Data Interface (EDI) as a communication mechanism to form a real
time optimizer. Figure 2.8 gives an outline of plant/control/simulator
system. SPEEDUP has an advantage of having both SQP and MINOS
optimization routines built into the simulator. They conclude that the
SPEEDUP flowsheet optimizing package, using the built in external
data interface, can be used successfully on-line with a plant control
system. Only case studies are presented in the paper, and no evidence
of an industrial application of this method of real time optimization
was given.
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Several process simulation companies are also developing real time op-
timization and on-line modelling systems. Honeywell Hi-spec Solutions is
developing a system called RTEXEC (previously called OPTIMIZER) based
on their equation oriented process simulator MASSBAL {51, 52, 93]. Aspen
Technology is also currently developing an equation oriented real time opti-
mization system called RTOPT [14]|. Simulation Sciences is developing a rig-
orous on-line modelling svstem called ROM which will also be capable of real
time optimization [94]. Hyprotech and MDC Technologies are also developing
a real time modelling and optimization package called HYSYS.RTO+ [33].
At the time of writing, there were no known industrial applications of these

three packages as real time optimizers.

2.2.2 Distributed Approach to Real Time Optimiza-
tion

The distributed approach breaks down the overall optimization into several
local optimizations which are coordinated by a unit optimization/coordination
model. Figure 2.9 contrasts the distributed approach to the centralized or
global approach [34]. The aim of the distributed approach is to decompose
the large scale plant into subsystems thereby reducing the complexity of the
original optimization problem [3]. The distributed approach is also some-
times referred to as modular or hierarchical optimization. Distributed real
time optimization has been likened to a “bottom-up” implementation of op-
timization as opposed to the “top-down” centralized approach.

Darby and White {34] give a proposed overall control systems structure
to deal with the distributed real time optimization shown in Figure 2.10.
Some short examples are given to illustrate that the distributed approach
will lead to the same answer as the global approach, but very little detail on
implementation of the method is given.

Arkun and Stephanopoulos (3] give a very detailed method of how to per-
form optimization on a plant decomposed into its subsystems with functional
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uniformity and common objectives in terms of economics and operation. The
subsystems are not independent of each other so interconnections between
the subsystems are defined. Local optimizing controllers are designed for
each subsystem, S;, of the plant. If the plant has .V subsystems, then the

subproblem S;,i = 1...., N is subject to the system constraints, as given
by:
El}rll]‘ l,‘ = (Di(l'i, m;, U, dt) - Aiui -+ Z A?jSyi (213)
7

where d; = vector of disturbances entering the subsystem S;;
l;

my

I

sub-Langrangian for a subsystem ¢;

vector of manipulated variables;

Q; = incidence matrix denoting the interconnection among the sub-
systems;

u; = vector of interconnection points;

z; = vector of state variables;

y; = vector of output variables;

Ai = Lagrange multipliers for the interconnection constraints:
®; = subobjective function.

The coordinator or overall optimizing problem for the plant attempts to
satisfy the interaction balance between the subsystems by satisfving:

N
ui =) QY (2.14)
j=1

By performing this decomposition, and by properly formulating the sub-
system control objectives, the selection of the controlled and manipulated
variables can be made in a decentralized fashion. The method also deals
with the sequencing of the set point changes using “Sequencing Trees” to en-
sure plant safety and bottlenecking are considered. The best route selected
should also try to reduce the number of set point changes made and select
the smoother and faster routes with respect to plant operation.




There is no agreement in the literature on whether distributed is better
than global real time optimization or not. Darby and White [34] claim the
following advantages for the distributed approach:

e The distributed optimization can be carried out more frequently than
the global approach as the method only has to wait for steady state in
each subsystem rather than the plant as a whole.

e The local optimizers can model the subsystem more accurately and
completely than a global optimizer can as the individual model dimen-
sionalities will be less restricted then the global model. Also different
models can have different optimization levels.

e Local optimizers permit the incorporation of on-line adaptation or on-
line parameter estimation more easily.

e Local optimizers are easier to maintain as they are less complex and
hence easier to understand than a large global optimizer.

e If problems are occurring in the modeling, the local optimizer caus-
ing the problem can be taken off-line while the rest of the optimizers
continue to function. A global optimizer would have to be completely
turned off to be restructured.

Bailey et al. [17], however. point out two major difficulties with the dis-
tributed approach:

e The constraint information being passed between local unit optimizers
to prevent conflicts is not as effective as that in a global approach.

e [t is possible to get inconsistencies in the update of the parameters
when only parts of the process are considered in the local optimizers.

Unfortunately no actual case studies using the distributed approach were
available to help determine which approach gives better results.
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2.2.3 Direct Methods (Model free approaches)

The real time optimization is performed directly on the process without
explicitly using any model. Direct methods are discussed by Arkun and
Stephanopoulos {2] who conclude that the method is too slow and simplistic
for on-line optimization. The method is an evolutionary operation, some-
times called an on-line hill-climbing gradient search, where after each trial
of set point changes. the objective function is measured at steady state and
its sensitivity is used to readjust the set point. Large numbers of set point
changes and on-line sensitivity measurements are required to observe the be-
haviour of the objective function, especially when process noise is present.
The method is also slow to reach the optimum as it has to wait for steady
state after each set point change. In early attempts at real time optimization,
this method was used and criticized for its slowness.

2.3 Implementation

Two papers by Latour {61, 62| cover many of the issues relating to real
time optimization from a business objective point of view. A list of their

requirements for an on-line optimization project to be successful are:

e Select proper independent variables.

Formulate model requirements.

Formulate business objective functions.

Select optimization algorithms appropriate to the nature of the problem
(process and business). Always guarantee a feasible solution. Handle
partial equipment failures.

Specify sensor inputs and manual inputs.



e Define human interface for objectives, defaults. economic parameters.
physical limits, laboratory analyses. The system must inform people
what it is doing and why.

e Specifv the interface with regulatory controls. consider timing, move
limits. output sequencing, process dynamics, stability and interactions.

e Specify computer hardware and software.

e Consider procedures for maintaining model fidelity, process and eco-

normic.

However. what an on-line optimizer will not achieve when it is implemented
into the plant is:

e Determine business objectives of the plant.

Specify the process and economic models.

Select criteria for finding and defining the plant optimum.

Select the best set of independent variables.

Specify mechanical or safety limits

Determine market requirements for product quality.

Verify product values, fuel and feed costs, and production rate limits.

All process models are only approximations of real process behaviour.
Therefore as operating conditions in the units shift with time, the model co-
efficients will require updating. Also new constraints may need to be added
or old ones deleted at some point. Whether some model maintenance should
be carried out manually or automatically is an important decision to be made
in the implementation of the optimizer. Ongoing long term maintenance of
the on-line optimizer must be carried out after implementation. There have
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been many cases of initial successes which later floundered due to an inad-
equate number of trained personnel assigned to the long term maintenance
of the optimizer. This often results in the real time optimizer falling into
disuse.

The complexity of the process model also determines the sophistication of
the maintenance required. Not all variables and constraints can be included
in the process model. The art of optimization modeling is to select the
variables that have the most significant effect on the economics and important
constraints, while eliminating those of lesser significance [34].

It is difficult to convey to operators what the optimizer is doing and why.
Generally. if the operator does not understand the results, the optimizer will
be turned off at the first excuse. Simplicity and modularity in the inter-
face to the operators will enhance understanding [34]. Campbell [24] and
Hanmandlu et al. [49] both cover features of on-line optimization software.
Figure 2.11 shows how an on-line optimizer interacts with other parts of the
plant. Good training and documentation at both the user and system level
are required to get the best results out of the optimizer.

The real time optimizer needs to be able to operate without some available
process measurements. If the optimization is disabled every time a single
input is off-line, then it will not be in use very much in a large plant. Methods
for getting around this problem include estimating the missing input or being
able to switch off that portion of the optimizer affected by the loss of the
input [34].
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Chapter 3

Process Simulation Model

Development

3.1 Introduction

3.1.1 Objectives

The objective in developing the process simulation model is to represent the
real stabilizer-splitter process as closely as possible. This process model will
be used as the basis for both the data reconciliation of the raw plant data and
the subsequent economic optimization of the process set points. Figure 3.1
highlights the part of the real time optimizer to be discussed in this chapter.

3.1.2 Process Description

The process to be modelled consists of a stabilizer column and a splitter
column used to prepare the feed stream for a catalytic cracking unit in an
oil refinery. A process flow diagram of the plant to be modelled is given in
Figure 3.2.

The stabilizer column is fed by a hydrocracked petroleum based stream
on stage 14 of a 29 stage column. Light hydrocarbons and other gases are re-

39
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PROCESS
MODEL

Figure 3.1: Real time optimizer process flow diagram with process model
highlighted.

moved in the Vapour product stream from the stabilizer’s partial condenser.
The liquid product from this condenser, Cy-distillate, contains mainly C; hy-
drocarbons. The bottoms from the stabilizer are passed though a heat ex-
changer before being fed into the splitter column on stage 21.

The splitter column consists of a 24 stage main column with two 3 stage
sidestrippers. Three product streams, Light Iso. Heavy Iso and Light Dis-
tillate, are removed from this column, and the bottoms are fed to the hy-
drocracker. Light Iso is a gasoline product stream removed from the total
condenser on the main splitter column. Heavy Iso, also a gasoline product
stream, is removed from the reboiler on the first sidestripper. This sidestrip-
per is fed by a liquid draw from stage 15 of the main column, and returns
vapour to stage 14. Light Distillate, a heating oil product stream. is removed
from the reboiler on the second sidestripper. This sidestripper is fed by a
liquid draw from stage 18 of the main column, and returns vapour to stage 17.

Note that the column stages are numbered from top to bottom following
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the convention used the two process simulation packages used. Also, the

stages used in these columns are equilibrium stages. that is. tray efficiencies

are not used when modelling this flowsheet.

3.1.3 Development Method

The ASPEN PLUS and SPEEDUP process simulation models were developed
using the same method:

1.

(O]

Choose the components and pseudo-components. and develop the rigor-
ous thermodynamic properties. These were developed based on stream
assay data provided by Shell Canada.

Develop the process flowsheet around the operating point provided and
compare results to those generated by Shell’s real time optimizer. The
point at which this simulation was run was a typical plant operating
point for which the data had already been reconciled to fit mass and
energy balances. The results of the simulation being developed were
checked against the results of Shell’s real time optimization simulation
run on the same data.

Validate the process model using raw data from the plant. Key vari-
ables were checked to ensure that they were being modelled correctly
bv the process simulation package. A great deal of experience from
plant operation was required to check that the results were reasonable
and consistent.

3.2 Properties

Both of the process simulation packages, ASPEN PLUS and SPEEDUP.
interface with the same properties package, PROPERITIES PLUS [6. 7.
10]. Therefore the properties development for both simulators was identical.
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The properties were developed using the MODELMANAGER graphical user
interface [8, 9].

Hydrocracked refinery streams typically consist of a range of components
from gases such as hydrogen and ammonia to hydrocarbons ranging from
methane to nonane and other heavy hydrocarbons. For hydrocarbons com-
ponents above pentane, many isomers with different properties may exist in
the stream. Due to the large number of components present in small quanti-
ties, components above pentane are approximated using pseudocomponents.
Pseudocomponents are defined in boiling point ranges, e.g., one pseudocom-
ponent may represent all hydrocarbons boiling between 125°C and 145°C.
Each pseudocomponent has an associated boiling point, specific gravity and
molecular weight which are used to determine other physical and thermo-
dynamic properties for that pseudocomponent. Pseudocomponents are then
treated by the simulator in the same way as all other components [4].

The component composition of the stabilizer feed stream was determined
from a light ends analysis, true boiling point (TBP) curve, stream specific
gravity and stream molecular weight provided by Shell Canada. From this
information, the stabilizer feed stream composition was approximated using
7 conventional components and 16 pseudocomponents. The seven conven-
tional components were methane (C;), ethane (C;), propane (Cj), i-butane
(i-Cy4), n-butane (n-Cy), i-pentane (i-Cs) and n-pentane (n-Cs). The six-
teen pseudocomponents were used to represent true boiling point ranges of
hvdrocarbons larger than n-pentane. The naming convention used for pseu-
docomponents in both simulations is B(7})T(7;) where 77 and T, give the
boiling point range in degrees Celsius. For example, B205T235 represents all
hydrocarbons with boiling points between 205°C and 235°C.

The Peng-Robinson equation of state is used to calculate all the thermo-
dynamic properties required except for liquid molar volume. Liquid molar
volume is calculated for conventional components using the Rackett model.
and for pseudocomponents using the API method for molar volume. The
Peng-Robinson equation of state is applicable to nonpolar or mildly polar
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mixtures such as hydrocarbons including light gases (e.g.. carbon dioxide,
hydrogen, hydrogen sulphide etc.). This equation of state is recommended
for refinery and other hydrocarbon applications [6].

3.3 Sequential Modular Simulation

Development of the sequential-modular process simulation model was per-
formed using the MODELMANAGER graphical user interface [8, 9] to pro-
duce an ASPEN PLUS input file. The input file produced is keyword based
ASCII text file which can either be edited directly, or imported into MOD-
ELMANAGER for editing. Figure 3.3 shows how the process flowsheet given
in Figure 3.2 was modelled with ASPEN PLUS.

Five models were required to model the stabilizer-splitter process. The
following subsections outline the models used and the flowsheet convergence.

3.3.1 Stabilizer (C1)

The stabilizer column was modelled using the model RADFRAC, a rigor-
ous tray by tray equilibrium based distillation column [5]. Both a vapour
product, VAP, and a liquid product, DIST-C4 are drawn from the partial
condenser at stage 1 of this column. A liquid bottoms product, SPLTFEED,
is drawn from stage 29. The reboiler furnace was simulated as a 2 phase
pumparound reboiler with both the draw and return streams on stage 29
of the stabilizer column. To improve the column convergence efficiency and
reliability in petroleum applications, the RADFRAC convergence algorithm
“SUM-RATES"” was chosen.

3.3.2 Heat Exchanger (E1)

The heat exchanger was modelled using the model HEATER, a simple generic
heating or cooling model [53]. The preferred model for this block would have
been HEATX, a rigorous heat exchanger model, which also calculates the
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heat transfer coefficients. However. there were insufficient measured variables
around this unit in the actual process to provide the information required to
use HEATX.

3.3.3 Splitter (C2, C4 and C5)

A combination of three models were used to model the splitter: PETRO-
FRAC. FSPLIT and HEATER. The main column. condenser and sidestripper
columns were all modelled using PETROFRAC. a rigorous tray by tray equi-
librium based distillation column model designed specifically for petroleum
applications. Another model. MULTIFRAC. could have been used in place of
PETROFRAC to produce similar results. however this is not recommended
for petroleum applications [3]. The liquid product stream LT-ISO was drawn
from the subcooled total condenser at stage 1. Two reboiled sidestrippers are
used to remove the liquid products HV-ISO and LT-DIST. The first sidestrip-
per, C4. is fed by a liquid from stage 13. and returns vapour to stage 14. The
second sidestripper, C5. is fed by a liquid drawn from stage 18 and returns
vapour to stage 17.

PETROFRAC was unable to model a 2 phase pumparound reboiler.
Therefore. the C2 reboiler furnace was modelled externally using a combi-
nation of the model FSPLIT. a simple flow splitting block. and a HEATER
model. Since these models generate a recycle loop in the flowsheet. a tear
stream convergence block was also needed (see Section 3.3.4 below for conver-
gence block details). FSPLIT was used to split the PETROFRAC bottoms
into a liquid product stream. SSFEED. and the reboiler feed. The HEATER
model was used to reboil the stream C2REBL before it was returned to
stage 29 of the main splitter column.

3.3.4 Convergence

A convergence block was required to converge the tear stream created by the
external pumparound reboiler on the splitter column. This tear stream was
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placed on the stream C2REBL between the reboiler and the main column.
The tear stream was converged using the Wegstein method to tolerance. tol.
of 1 x 10~* for each variable to be converged using the following expression:

—tol < ZTealculated — Tassumed

< tol (3.1)

Tassumed

This convergence test is bypassed for all components with a mole fraction
less than the trace value of tol/100. The Wegstein acceleration parameter.
q. was allowed to vary between 0 and —5. For a detailed description of
the Wegstein method, see either the ASPEN PLUS User Guide {9] or Perry
and Green [85]. Converging the tear stream on C2REBL requires iterative
solution of the blocks PETROFRAC. FSPLIT and HEATER that make up
the splitter column. Typically convergence of the tear stream takes between
15 and 25 passes through these blocks. I[nitial guesses of the C2REBL stream
flow rate. pressure. temperature and composition were also required.

To promote flowsheet convergence speed. estimates of the column tem-
perature. vapour flow and liquid flow profiles were used. These estimates are
obtained from a previous run of the process model when it is used in the real
time optimizer.

3.4 Equation-oriented Simulation

The equation-oriented process simulation flowsheet was developed by writing
a kevword based ASCII text input file. The SPEEDUP Executive is a text
based interface which provides svntax checking, specification checking (de-
grees of freedom analysis) and some tools for run-time error diagnose [11, 12}.
Figure 3.4 shows how the process flowsheet given in Figure 3.2 was modelled
with SPEEDUP.

Modelling of the stabilizer-splitter lowsheet equipment in SPEEDUP re-
quired 7 macros and 24 models. Macros are groups of repeated models used
to simplify construction of the flowsheet. In this flowsheet, macros were used
to model sections of the distillation columns using multiple distillation tray
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models. One user defined equipment model was used in the flowsheet as the
bottom stage of columns C1 and C2 (see Section 3.4.1 below for details of
the model).

In addition to the equipment models, an extra 17 user defined measure-
ment models were required to calculate volume flow rates, Cs compositions.
true boiling point temperatures and Reid vapour pressures (see Section 3.4.2
below for details of these models). Including the models used in the macros.
a total of T4 models were used to simulate the stabilizer-splitter flowsheet.
The following subsections outline how these macros and models were used.
and the flowsheet convergence.

3.4.1 User Defined Equipment Models

SPEEDUP allows user defined models to be added to the flowsheet easily.
In this simulation, one user written equipment model, BTRAY_SS was used
to simulate the bottom tray of columns C1 and C2. BTRAY.SS is based
on the SPEEDUP Library model FTRAY_SS without a vapour inlet stream
and two liquid outlet streams. This model was required because the bottom
trays of columns C1 and C2 are fed by mixed vapour-liquid streams instead
of vapour only inlet streams. Also, two liquid outlet streams are drawn from
the bottom tray; the reboiler feed stream and the bottoms product stream.
This model was created by copying the model FTRAY _SS from the SPEED-
UP Library and editing the input code. The input code (including the mod-
elling equations) for BTRAY_SS is listed in Appendix E, Section E.8.

3.4.2 User Defined Measurement Models

Seven user defined models were created to measure the various stream prop-
erties required by the real time optimizer. These measurement models do
not change or affect the flowsheet in any other way. They are included in
the flowsheet in the same way as other unit models. The input code for the
models outlined below is included in Appendix E, Section E.8.
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Volume Flow Rates

Three models, VFLOW, LIQ_VFLOW and VAP_VFLOW, were created to
measure standard and true volume flow rates for mixed phase, liquid and
vapour streams respectively.

The true volume is calculated by making a property procedure call for the
liquid or vapour molar density at the current pressure and temperature of the
stream. The volume flow rate is then obtained by solving for the unknown
volume flow F, from the known molar flow F and molar density p:

F= F,,p (32)

For the model VFLOW, the property calls are made separately for the liquid
and vapour phases. The liquid and vapour volume flow rates are calculated
separately, and then summed to give the overall stream volume flow rate.
The standard liquid volume flow rate is calculated in the same way as
true volume flow, except the property procedure call for molar density is
only made for the liquid phase at 60°F and 1 atmosphere. The model
VAP_VFLOW also calculates a standard vapour flow using a property pro-
cedure call for molar density for the vapour phase at 60°F and 1 atmosphere.

Cs; Composition

The model C5_.VFLOW is used to calculate both volume flow rates and the
stream Cs composition. The C; composition, C5S. is calculated simply by

adding the i-pentane and n-pentane compositions together. This model is
identical to LIQ_VFLOW with addition of the calculation for C5S.

True Boiling Point Temperatures

The model TBP is used to calculate both volume flow rates and true boil-
ing point temperatures. The true boiling point temperatures are calculated
at both 10% and 90% standard liquid volume distilled. A user supplied
FORTRAN procedure, which linearly interpolates between the boiling point
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temperatures of the pseudocomponent, is used to determine the true boil-
ing point temperatures at both 10% and 90% of the streams standard liquid
volume. This model is the same as LIQ_VFLOW with addition of the true

boiling point procedure calls.

Reid Vapour Pressure

Unfortunately SPEEDUP does not include a built in procedure for determin-
ing the Reid vapour pressure of a stream. Therefore, two user-defined models,
M2R and RVP, were created to determine Reid vapour pressure based on the
methods outlined in the API Technical Data Book [1] and ASTM standard
D323 [41].

The model M2R changes the stream equation of state from Peng-Robinson
to ideal, and adds air as the 24th stream component. The model RVP fol-
lows the procedure outlined below with the outlet stream of M2R as the inlet
stream:

1. Saturate the stream with air at 32°F'.

2. Calculate the moles of air required to mix air with the stream at a ratio
of 4:1 at 32°F.

3. Flash the 4:1 mixture of air and the stream at 100°F under constant
volume. This pressure of this flash under these conditions gives the
Reid vapour pressure of the stream.

The model RVP requires that the ideal molar density of air at 32°F and 100°F
are set in the simulation operation section. This model was tested against
Reid vapour pressure results produced in ASPEN PLUS simulations at sev-
eral operating conditions and was found to be in close agreement (£1.0%).

3.4.3 Stabilizer (C1)

The stabilizer was modelled using 2 macros and 7 other models. The feed
stream, STAB, was specified using MOL_FEED, a molar feed model [10].
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The stabilizer column stages were modelled using two SECTION_SS macros
and a FTRAY _SS rigorous feed stage model at stage 15. The SECTION_SS
macros form both the stripping and rectifying sections of the column, and
are made up of 14 and 12 stages respectively. Each of the stages within the
macro use the model TRAY_SS, a rigorous distillation stage, which flashes
the mixture of the inlet vapour and liquid streams to yield the outlet vapour
and liquid steams.

The partial condenser was modelled using PCOND_SS, a rigorous partial
condenser model, and RSPLIT, a liquid flow splitting model. The vapour
product, VAP, was drawn from the partial condenser. The RSPLIT model
divides the condensed overhead liquid into a reflux stream and the liquid
product stream DIST-C4.

The reboiler and bottom stage (stage 29) of the column were modelled
using the models BTRAY_SS, HEAT_COOL and TEAR. One of the liquid
outlet streams from BTRAY _SS was fed to the reboiler, while the other forms
the bottoms product. The reboiler was modelled by a HEAT_COOL model,
a simple generic heating or cooling model. Since the pumparound reboiler
creates a flowsheet recycle loop, a TEAR block was required. The TEAR
block was placed on the stream from the reboiler feeding the bottom stage
of the column. See Section 3.4.6 for details and convergence of the TEAR
block.

3.4.4 Heat Exchanger (E1)

The heat exchanger was modelled using the model HEAT_COOL. Unfortu-
nately a more rigorous heat exchanger model could not be used to calculate
heat transfer coefficients due to insufficient measured data around this unit
in the actual process.



3.4.5 Splitter (C2, C4 and C5)

The splitter columns were modelled using 5 macros and 16 other models.
The main column was formed using 3 feed stage models, FTRAY_SS. 3 stan-
dard stage models, TRAYSS, 2 liquid flow splitting models. RSPLIT. and
3 column section macros. SECTION_SS. The three feed stage models were
used at stages 14. 17 and 21. Stage 21 receives the column feed from the heat
exchanger E1. Stages 14 and 17 receive vapour phase feed from the sidestrip-
per columns C+4 and C5 respectively. The two RSPLIT models are used to
the liquid feeds for the sidestripper columns C4 and C5 from stages 15 and 18
respectively. The 19 stage rectifying section of the C2 column is formed by
2 SECTION_SS macros. 3 TRAY_SS and 2 FTRAY _SS models. The strip-
ping section of the column is formed using a 2 stage SECTION_SS macro.

The sub-cooled condenser was modelled using TCONDSS, a rigorous
total condenser model. Both the sub-cooled liquid product, LT-ISO, and the
reflux are drawn from the total condenser. The reboiler and bottom stage
(stage 24) of the column were modelled with the same models and layout
used in the stabilizer column, CI1.

The two sidestripper columns. C4 and C5 were formed using the same
simulation models. The columns were modelled using 2 stage SECTION_SS
macros. The reboilers were simulated using REBOILER_SS. a rigorous kettle
reboiler model. A liquid product was removed from the reboilers and vapour
was returned to the sidestripper columns. Since the sidestrippers create a
flowsheet recycle loop, a TEAR block was placed on the vapour si.-eam being
returned to the main column, C2.

3.4.6 Convergence

The process simulation flowsheet in SPEEDUP was solved as a large set of
simultaneous equations. After translation of the input code, block decompo-
sition of the flowsheet is performed. For this simulation. 1164 equation blocks
used to solve the 6066 equations and unknown variables. These equation
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blocks are formed based on the equations in the models used. and the vari-
ables set in the operation section of the input code. Only 6 of the 1164 blocks
generated are nonlinear and contain more than one equation. SPEEDUP
then generates the derivative code for the simulation (13.653 derivative ex-
pressions were required). The simulation is then ready for solution.

The linear equation blocks are solved by direct substitution. The 6 non-
linear blocks are solved using a Newton trust region method using a dogleg
step (see Edgar and Himmelblau [37]. Fletcher [40] or Gill et al. [47] for de-
tails of this method). The flowsheet is converged to an accuracy of 1 x 107°.
that is, all the equation residuals are less than 1 x 1073. The residual of
an equation is the difference between and left and right hand sides of the
equation.

To promote flowsheet convergence, all variables not “set” in the operation
section were given preset values. The values used to preset the first runs
of this process model were generated by an ASPEN PLUS run of the same
model to attain convergence. Later runs used presets generated from previous
SPEEDUP simulations to ensure flowsheet convergence.

Tear streams in an equation-oriented simulators do not require a separate
convergence scheme from the rest of the flowsheet. In SPEEDUP, a TEAR
block is used to add slack variables to the recycle stream which allow for
the convergence of the recycle loop. The tear model has equations for flow.
temperature, pressure and each composition of the form:

B = Lout — Fslack (33)

All the slack variables (e.g., Fi.cx) are set to zero in the input file operation
section and the tear stream equations are converged using the same method
as the rest of the flowsheet. Therefore, the addition of a TEAR block in this
simulation means the addition of 26 equations and variables to the overall
flowsheet problem. Four TEAR blocks were required for this flowsheet: two
were used in the reboilers for columns C1 and C2, and two were used on the
vapour returns from the two sidestrippers C4 and C5.



3.5 Discussion

The following subsections discuss various problems and modelling aspects en-
countered using both the sequential modular and equation-oriented process
simulators. Property development issues are discussed separately as these
were common to both simulation packages. A summary comparing various
quantitative aspects of the process model simulation development and per-
formance are presented in Table 3.1.

3.5.1 Properties

Property development for both of the process simulation packages took 104 hours
to complete due to difficulties in matching the pseudocomponent properties
to those of a hydrocracked petroleum stream. Specifically, the properties of
the first two pseudocomponents, B45T65 and B65T85 (representing hydro-
carbons with boiling points from 43°C to 65°C and 65°C to 83°C respec-
tively), were the most difficult to match. This was because the properties
of these components greatly affect the operation of the condensers on both
columns C1 and C2. It was found with the original assay data provided that
if the correct temperatures were met in the condensers of both columns, the
compositions and product flows of the Cy-Distillate and Light Iso streams
were incorrect by up to 200%.

The cause of this problem was found to be the assumptions made by
PROPERTIES PLUS when determining the specific gravities and molecular
weights for each pseudocomponent from the data provided. Since only an
overall specific gravity and molecular weight had been given in the assay
analysis, PROPERTIES PLUS determines the pseudocomponent properties
based on a typical hydrocarbon stream’s specific gravity and molecular weight
curves. A hydrocracked hydrocarbon stream, however, exhibits different typ-
ical property curves due to the presence of a different component mix, partic-
ularly at the ends of the curves (i.e., the light and heavy components). Using
typical hydrocracked petroleum stream curves, the pseudocomponents were




Table 3.1: Comparison of both process simulators for model development.

Sequential Equation-
Modular oriented
Simulator Simulator

Development Time (hours) 192 310

(excluding property development) (88) (206)
Input file size (bytes) 10,855 263,366

(without preset variables) (8,083) (44,324)
Number of process models used 3 74
Number of tear streams 1 4
CPU time (mins)® 1.17 1.51
Stabilizer column flowsheet passes 1 3
Splitter column flowsheet passes 5 2
Largest discrepancy from Shell process model 0.30% 2.65%

¢CPU time is measured for calculations only on an IBM RS 6000 Model 530H computer.
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recalculated. These new pseudocomponents provided very accurate results
to within 0.5% of Shell’s simulated results.

3.5.2 Sequential Modular Simulation

The initial building and debugging of the process flowsheet in ASPEN PLUS
was relatively straightforward. The major problems encountered were during
the modelling of the two phase pumparound reboiler on the splitter column
using the rigorous multiple distillation column models available, and drying
up of the main splitter column during flowsheet convergence.

The model PETROFRAC was a very powerful way to model a column in-
cluding sidestrippers by removing the need for flowsheet tear streams. PET-
ROFRAC solves the recycle loops created internally within the block, thereby
ensuring robust convergence and faster solution. However, PETROFRAC
was not as flexible as RADFRAC in simulating the column C2 furnace re-
boiler. The pumparound model built into PETROFRAC is only capable
handling single phase streams. Therefore, the reboiler had to be modelled
externally using an FSPLIT and a HEATER model, thereby creating a re-
cvcle loop. The addition of this tear stream significantly slows convergence
of the flowsheet due to the extra flowsheet passes required to converge the
recycle loop. The addition of this recycle loop illustrates the effect of recycle
loops on convergence of sequential modular process flowsheets.

Internal convergence of the PETROFRAC block was initially quite difhi-
cult. The main column tended to dry up around the stages where liquid was
drawn to feed the sidestripper columns. This problem was fixed by adding
temperature, liquid flow and vapour flow column profile estimates. Initially
these estimates were guesses until convergence of the column was achieved.
From then on, the column was initialized using estimates provided from a
previous run of the process model. Correction of the pseudocomponent prop-
erties as discussed in Section 3.5.1 also helped this convergence problem.

Table 3.2 summarises the testing of the final ASPEN PLUS process model
simulation against Shell’s RTO process model. From these results and testing
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performed by Shell against actual plant data, it was felt that this model
adequately reflects the true process for real time optimization.

3.5.3 Equation-oriented Simulation

The initial building and syntax debugging of the SPEEDUP flowsheet in-
put code was relatively straightforward. Obtaining flowsheet convergence.
however, was very difficult for several reasons outlined below.

In building the flowsheet, several user written models were required to
supplement those in the SPEEDUP model library (see Sections 3.4.1 and 3.4.2
for details). These models were easy to write and implement with the excep-
tion of the Reid vapour pressure measurement model. This model required
a complex series of flashes and a different equation of state to the rest of
the process flowsheet to calculate the Reid vapour pressure. It is probable
that in future versions of SPEEDUP. procedure calls to PROPERTIES PLUS
will be implemented for Reid vapour pressure and other petroleum specific
properties.

The main problem with flowsheet convergence was caused by the large
numbers of equations and variables created because of the 23 components
in each stream. This resulted in a problem involving 6066 equations and
unknown variables which were difficult to analyse due to number of compo-
sition variables. Also. a large percentage of these composition variables were
at or close to zero. Therefore bound checking was very difficult to perform
since usually over 1000 composition variables would be on their lower bound.
Bounds on variables in an equation-oriented simulator are used to prevent
impossible solutions, e.g., negative compositions. temperatures below abso-
lute zero etc. Bounds can also be used to promote flowsheet convergence by
preventing excessive movements in some variables which can prevent solu-
tion. However, bounds can also hinder flowsheet convergence if they restrict
the movement of the equation solver too much.

Initially, fowsheet convergence was promoted by using a combination of
checking the bounds after solution failure and checking the maximum resid-



Table 3.2: Discrepancies between the ASPEN PLUS process model and
Shell’s RTO process model.

Streamm Name Molar Flow Temperature
Vapour 0.00% 0.01%
C,-distillate 0.00% 0.01%
Splitter Feed 0.00% 0.00%
Light Iso 0.01% 0.01%
Heavy Iso 0.00% 0.23%
Light Distillate 0.01% 0.30%
SS Feed 0.01% 0.00%

uals at the end of each iteration. When variables other than compositions
hit their bounds, these bounds were widened. For variables with the highest
residuals on the first iteration, estimates of the final values of those variables
were provided from the results of an ASPEN PLUS process simulation in
the form of “presets”. Eventually it was found that so many variables re-
quired estimates, it was decided to preset all variables using ASPEN PLUS
process model results. Flowsheet convergence was then obtained. Future
process model simulations were then run using presets of a previous simula-
tion which had converged. using SPEEDUP’s ability to save results. These
saved results can then be used to preset future simulations through the “Use”
sub-environment.

This difficulty with flowsheet convergence shows that for very large. com-
plex simulations using an equation-oriented process simulator, the initial val-
ues of the unknown variables dramatically affects the simulator’s ability to
obtain a solution. In this case, the simplest way to provide estimates was
to use the results of a sequential modular simulation. In future runs, it was
found that if the process model was initialized using a feasible solution, con-
vergence was usually obtained, even for quite large movements in operating
conditions.

Another tool that was useful in promoting flowsheet convergence was
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scaling of the flowsheet variables and equations. In this problem, variables
ranged in magnitude from 1072 for compositions to 10* for flows. When
scaling is used, the flowsheet is solved in terms of scaled variables. A scaled
variable is equal to the unscaled variable divided by a user set scaling factor.
The aim of scaling is to have all the scaled variables of similar magnitude
to promote convergence and performance of the simulation. It was found
that scaling did help convergence considerably, however presets were still
required for most variables. Unfortunately, scaling has not been implemented
in SPEEDUP for use in optimization runs at this time. Therefore the process
model had to be able to converge without scaling.

Table 3.3 summarises the testing of the final SPEEDUP process model
simulation against Shell’s RTO process model. From these results and testing
performed by Shell against plant data, it was felt that this model adequately

reflects the true process for real time optimization.

Table 3.3: Discrepancies between the SPEEDUP process model and Shell’s
RTO process model.

Streamm Name Molar Flow Temperature
Vapour 0.00% 0.62%
Cs-distillate 0.00% 0.62%
Splitter Feed 0.29% 0.00%
Light Iso 0.00% 0.00%
Heavy Iso 0.00% 2.65%
Light Distillate 0.00% 0.59%
SS Feed 0.67% 0.10%




Chapter 4

Data Reconciliation

Development

4.1 Introduction

4.1.1 Objectives

The objective of data reconciliation is to adjust the measured process data
to satisfy mass and energy balances. The adjustments made to the process
data should be as small as possible to cnsure that the reconciled data still
accurately represents the true operating conditions of the process. The data
reconciliation is to be performed using the process model developed in the
previous chapter. Figure 4.1 highlights the part of the real time optimizer to
be developed in this chapter.

4.1.2 Data Reconciliation Description

The stabilizer-splitter data reconciliation problem is a nonlinear, steady state,
unconstrained data reconciliation involving 28 measurements. Figure 4.2
shows the measured temperature and flow variables available for the stabilizer-
splitter process. All the variables shown in Figure 4.2 were rcconciled except

81
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PROCESS
MODEL —»{DATA RECONCILIATION|

Figure 4.1: Real time optimizer process flow diagram with data reconciliation
highlighted.

for the stage 3 temperature, T11. The stage 3 temperature was not recon-
ciled because the process model developed uses equilibrium stages to model
the stabilizer column, therefore an accurate measurement of the true tray 3
temperature cannot be made using this process model. See Table B.2 or
Table C.2 for full explantations of the measured variables by tag name. No
gross error detection or parameter estimation was performed using the pro-
cess data.

The data reconciliation problem was solved using a weighted least squares
objective function similar to the one used by Piccolo [87]. The objective
function for this problem is given by:

28
min [Z E,]
i=1
subject to h(x) =0 (4.1)

yi—l‘i>2

54

where F; = w; (
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where E = least squares error term associated with each measured variable:

w = weighting factor associated with each measured variable;
y = the measured variable;
r = the reconciled variable;
s = the standard deviation of the measurement transmitter;
h(x) = the set of equality constraints represented by the process model.

The standard deviations of the measurement transmitters used in the
objective function were obtained from Shell. The weighting factors can be
used to place emphasis on certain measured variables for a variety of reasons.
Weighting of the objective function was implemented in both simulators.
however it was not used to place emphasis on any variables in this study
(i.e., all the weights were set to same value).

4.2 Sequential Modular Simulation

Development of the sequential modular data reconciliation simulation was
performed using the MODELMANAGER graphical user interface (8. 9] to
produce an ASPEN PLUS input file. Some direct editing of the input file was
also required, particularly in developing the in-line FORTRAN blocks and
the FORTRAN objective function. Details of the optimization algorithm
used, objective function and manipulated variable selection are covered in

the following subsections.

4.2.1 Optimization Algorithm

The optimization algorithm used to converge the data reconciliation objec-
tive function was the SQP (sequential or successive quadratic programming)
method [9]. This optimization algorithm follows a feasible path for this prob-
lem, converging the tear stream at every iteration of the optimization. The
exact steps used by the ASPEN PLUS SQP algorithm are not detailed in
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any of the manuals. The SQP optimization algorithm is probably based on
the general method summarised in Figure 4.3 [37].

The solution of the optimization problem is performed to an optimiza-
tion tolerance of 1 x 10~!. That is, until the improvement of the objective
function on successive iterations is reduced below this tolerance. The con-
vergence of the process flowsheet and tear streams are performed using the
same tolerances and methods detailed in Section 3.3.4.

4.2.2 Objective Function

The objective function in ASPEN PLUS is supplied as FORTRAN 77 code.
The objective function given in Equation (4.1) was implemented by calcu-
lating the 28 least square error terms, E; corresponding to each measured
variable, first. An example error term calculation for the stabilizer feed flow,
F01, is given below:

F EFO01 = WFO1x((FO1-SF01)/VF01)**2

where EFO1 = least squares error term corresponding to FOI;

WFO1 = weighting factor associated with F01;
FO1 = reconciled value;
SFO1 = measured value of FO01;

VFO1 = the standard deviation associated with F'01.

These error terms were then summed to give the data reconciliation objective
to be minimized.

The weighting factors, measured values and standard deviations are read
from the data files IWGHT.DAT, IMEAS.DAT and IVARNC.DAT respec-
tively using an in-line FORTRAN block (see Appendix B for a detailed de-
scription of these data files). This in-line FORTRAN block is executed before
the data reconciliation optimization commences. The data read in from the
files are stored in FORTRAN “common” blocks for use during the calculation
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—p{ (comprised of all equality constraints plus the active and
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I Given initial conditions. J

!

Calculate members of the active set of constraints

violated inequality constraints).

v

| Check convergence. |

Converged?

Update the approximate Hessian matrix using a secant
method (e.g. BFGS or Broyden).

v

| Estimate the Lagrange multipliers. |

y

Calculate a new search direction (solve the quadratic
programming sub-probiem).

v

Move a step in this direction using a penaity function

to promote convergence.

Figure 4.3:
rithm [37].

Flow diagram summarising a general SQP optimization algo-
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of the objective function. These common blocks need to be declared in both
the ASPEN PLUS in-line FORTRAN block and the optimization block.

The reconciled variable values used in the data reconciliation objective
function correspond to flowsheet variables in the process model. These AS-
PEN PLUS flowsheet variables are accessed in the objective function by being
declared as FORTRAN variables.

4.2.3 Manipulated Variable Selection

Manipulated variables in ASPEN PLUS must correspond to specified vari-
ables in the process model, that is, manipulated variables cannot correspond
to calculated (or result) variables. The manipulated variables used in the AS-
PEN PLUS data reconciliation optimization problem are given in Table 1.1.

The initial guess used for a manipulated variable is the corresponding in-
put specification value. Upper and lower bounds are also required for manip-
ulated variables. These bounds are specified using FORTRAN expressions.
The bounds are set to the initial manipulated variable value plus or minus
a range. These ranges are specified in the input data file IDFREE.DAT.
and read into a FORTRAN common block before the data reconciliation
commences. Since this data reconciliation is an unconstrained optimization.
these manipulated variable bounds should not be reached during the data
reconciliation optimization. The bounds are still required. however, as they
are used by the optimization algorithm to help determine manipulated vari-
able scaling and step sizes. Therefore the manipulated variables bounds must
be wide enough not restrict the movement of the optimization algorithm. yet
narrow enough to prevent too large a step being taken.

4.3 Equation-oriented Simulation

Development of the equation-oriented data reconciliation simulation was per-
formed by editing an ASCII text keyword based SPEEDUP input file. De-
tails of the optimization algorithm used, objective function and manipulated
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Table 4.1: ASPEN PLUS data reconciliation manipulated variables.

Variable Units
STAB feed stream mole flow Ibmol/hr
STAB feed stream temperature oF

C1 molar reflux ratio Ibmol/lbmol
C1 condenser molar vapour fraction Ibmol/lbmol
C1 reboiler mole flow Ibmol/hr

C1 reboiler outlet temperature oF

E1 outlet temperature °F

C2 liquid distillate mole flow Ibmol/hr
C2 reboiler mole flow Ibmol/hr
C2 reboiler outlet temperature oF

C2 condenser sub-cooled temperature oF

C4 reboiler heat duty MMBTU/hr
C5 reboiler heat duty MMBTU/hr
C4 feed stream mole flow Ibmol/hr

C5 feed stream mole flow

Ibmol/hr
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variable selection are covered in the following subsections.

4.3.1 Optimization Algorithm

The optimization algorithm used to converge the data reconciliation objec-
tive function was the SRQP (successive reduced quadratic programming)
method [13. 25]. This method is used to converge the process flowsheet
in addition to optimizing the data reconciliation objective function. SRQP
is an infeasible path optimization method. This means that the optimizer
does not necessarily converge the flowsheet, constraints or variable bounds
at the end of each iteration. SRQP is particularly suited to the solution of
sparse systems with large numbers of equality constraints, typically found in
equation-oriented process flowsheets. The steps used by the SRQP optimiza-
tion algorithm are summarized in Figure 4.4.

The solution of the optimization problem is performed to an optimization
tolerance of 1 x 10~!, that is, until the improvement of the objective function
on successive iterations is reduced below this tolerance. The convergence of
the flowsheet is performed to a residual tolerance of 1 x 1073, that is, until
all the flowsheet equation residuals are less than this tolerance. The global
convergence scheme chosen for the SRQP method was a line search method
with a modified Lagrangian. All other SRQP options were set to their default

values.

4.3.2 Objective Function

The objective function in SPEEDUP is specified in the global section of the
input file using the same equation syntax used in SPEEDUP models. The
objective function itself is the sum of the 28 least square error terms, E;, cor-
responding to each measured variable as given in Equation (4.1). These error
terms are calculated as additional equality constraints in the Global section.
An example error term calculation for the stabilizer feed temperature, TOL,

is given below:
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I Given initial conditions. ]

!

Form a reduced quadratic subproblem (quadratic
approximation of the reduced Hessian of the Lagrangian
P1 function with linear approximations of the constraints)
and solve using a primal-dual method for a search
direction and the estimated Lagrangian multipliers.

v

| Check convergence. ]

Converged?

A special forcing procedure is used to ensure
convergence measured using a modified Lagrangian
merit function. Feasibility improvements are performed
when necessary. Obtain a new estimate of the solution.

y

Update the reduced quadratic approximation Hessian
of the Lagrangian function using a modified BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method.

Figure 4.4: Flow diagram summarising the SRQP optimization algo-
rithm [25].
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ETO1 = WTO1 * ((MFEED.T_OUT - STO1) / VTO1)’2 ;

where ETO1 = least squares error term corresponding to TO01:

WTO1 = weighting factor associated with TO1;
MFEED .T_OUT = reconciled value of TO1:
STO1 = measured value of TO1:

VTO1 = the standard deviation associated with TO1.

The weighting factors, measured values and standard deviations are read
from the data files IWGHT.DAT. IMEAS.DAT and IVARNC.DAT respec-
tively using SPEEDUP’s external data interface (EDI) (see Appendix C for
a detailed description of these data files). The EDI is used prior to the data
reconciliation to assign variables with the values read in from external data
files. The EDI is specified in two parts. The first is the external section of
the SPEEDUP input file which specifies which SPEEDUP variables are to
be read in or written out. The second is an EDI FORTRAN input file which
is used to interface with the external data. in this case to read from the data
files.

The reconciled variable values used in the data reconciliation objective
function correspond to flowsheet variables in the process model. These flow-
sheet variables are accessed directly by using their full SPEEDUP variable

name.

4.3.3 Manipulated Variable Selection

Manipulated variables, or “free” variables, must correspond to variables al-
ready set in the operation section of the input file. The manipulated variables
used in the SPEEDUP data reconciliation optimization problem are given in
Table 4.2.

The initial guess used for a manipulated variable is the corresponding
value set in the operation section for that variable. Upper and lower bounds
are for manipulated variables are specified by adding bound specifications in
the set subsection of the operation section. These bound specifications are
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Table 4.2: SPEEDUP data reconciliation manipulated variables.

Variable Units
C1 condenser heat duty MMBTU /hr
DIST-CH stream mole flow Ibmol/hr
STAB stream mole flow Ibmol/hr
STAB stream temperature oF
E1l inlet mole flow Ibmol/hr
C1 reboiler mole flow Ibmol/hr
C2 condenser heat duty MMBTU /hr
C2 condenser subcooled temperature drop oF

(bubble point less subcooled temperature)
E1 outlet temperature oF
SSFEED stream mole flow Ibmol/hr
C2 reboiler mole flow Ibmol/hr
C4 feed stream mole flow Ibmol/hr
C5 feed stream mole flow Ibmol /hr
HV-ISO stream mole flow Ibmol/hr

LT-DIST stream mole flow

Ibmol/hr
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set using the EDI before the data reconciliation commences. The bounds
are equal to the initial guess for the manipulated variable plus or minus a
range. These ranges are specified in the input data file [IDFREE.DAT. and
are read in and added to or subtracted from the initial guesses using the
EDI FORTRAN code. Since this data reconciliation is unconstrained. these
manipulated variable bounds should not be reached during the data recon-
ciliation optimization. The bounds are still required. however. as they are
used by the optimization algorithm to help determine manipulated variable
scaling and step sizes.

4.4 Discussion

The following subsections discuss various problems encountered using both
the sequential modular and equation-oriented simulators for data reconcilia-
tion. A summary comparing various quantitative aspects of the data recon-
ciliation development and performance are presented in Table 4.3.

4.4.1 Sequential Modular Simulation

The building and debugging of the data reconciliation objective function in
ASPEN PLUS was relatively easv. Two problems arose when trying to debug
the transfer of data between simulation blocks using the FORTRAN common
blocks. The first was caused by the differences between input and result
variables in ASPEN PLUS. Input variables are used to specify the problem.
and provide initial estimates. However, they are not updated with their final
values at the end of a simulation; the final values are stored in a result variable
instead. The only exceptions are the optimization manipulated variables
which have their final values stored in the input variable. [t is very easy to
confuse the two types of variables when developing the simulation. thereby
passing incorrect data between blocks. Secondly, there is no simple way to
check the intermediate values of the data being transferred between blocks.
The easiest way to check these variables was to temporarily add FORTRAN
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Table 4.3: Comparison of both process simulators for data reconciliation.

Sequential Equation-

Modular oriented
Simulator Simulator
Development Time (hours) 133.5 395.5
Input file size (bytes) 63,514 275,288
(without preset variables) (60.714) (61.114)
Number of manipulated variables 15 15
Number of reconciled variables 28 28
CPU time (mins)® 386.52 106.21
Optimization iterations 15 28
Flowsheet passes or function evaluations 424 30
(tear stream iterations) (5.660)
(derivative evaluations) (29)
Initial objective function value 255.7225 255.72
Final objective function value 41.1884 33.20

¢CPU time is measured for calculations only on an IBM RS 6000 Model 530H computer.
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code which writes variable values to a file to check that the correct values were
being passed between blocks. This was time consuming method of checking
the data.

Since the variables to be manipulated during the optimization must be
chosen from input (or set) variables. the choice of manipulated variables is
severely restricted. This is because only certain combinations of variables can
be used to specify a given process model in a sequential modular simulation.
In addition, even though a given combination of variables are allowed to be
specified. convergence of that process model may still be impossible. Initially.
the condenser duties for both columns C1 and C2 and the bottoms molar
flow rates were used as manipulated variables. Unfortunately convergence of
both columns C1 and C2 were not possible using this combination of input
variables. even during steady state process model only simulations.

The manipulated variable bounds were initially chosen by guessing how
much each variable would be varied during the data reconciliation. These
guesses were then adjusted until eventually the variable bounds were wide
enough to be inactive throughout the optimization. It was found that if these
bounds were too wide. the optimizer would take a large step on the first
iteration which sometimes caused the optimization algorithm or flowsheet
convergence to fail. thereby terminating the simulation.

The following tuning parameters were used to promote convergence of
the SQP optimization algorithm:

e EST-STEP=YES. An estimation step is performed before the first iter-
ation to determine the initial step lengths to be taken. This helped
prevent large steps being taken on the first iteration of the optimiza-
tion.

e DERIV-SWITCH=YES. When convergence failure occurs, the numerical
derivative method is changed from forward difference to central differ-
ence. This helped produce better numerical derivative information for
the optimizer to use, thereby promoting convergence.
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The speed of the optimizer was affected mostly by the tear stream conver-
gence on the splitter column. Since this convergence block was required to
converge for each flowsheet evaluation, this resulted in a total of 5,660 passes
through the process units C2C4C5, C2SPL1 and F2. Therefore, an average
of 13 tear stream iterations were required for each flowsheet pass. To try and
reduce the number of tear stream iterations, the SQP optimization algorithm
was also used as an infeasible path method. That is, the algorithm was used
to solve the tear streams as well, but not necessarily on each flowsheet pass.
An extra optimization algorithm tuning parameter, MAXLSPASS. was used
to specify the maximum number of tear stream iterations allowed on each
flowsheet pass. Unfortunately the number required was the same as using
SQP as a feasible path method to achieve convergence on the final iteration.
Therefore, it was decided use SQP as a feasible path optimizer as there was

no performance penalty and tear stream convergence was improved.

4.4.2 Equation-oriented Simulation

Building and debugging of the data reconciliation objective function in SPEED-
UP was relatively easy. Transferring data to and from the optimization
block (global section) is very simple and easy to check. Variables from other
flowsheet blocks are specified directly by typing their full name in the form
unitname.variablename.

Extreme difficulty was encountered in choosing the manipulated (or free)
variables for this flowsheet. Equation-oriented simulators allow any combi-
nation of variables to specify the flowsheet, provided they match the degrees
of freedom available. However, this does not mean that the flowsheet can
necessarily be converged using these variables. SPEEDUP performs checks
to see that each equation block is not under or over specified, but does not
check for the independence of the manipulated variables. Initially, the same
manipulated variables used in the ASPEN PLUS data reconciliation were
chosen for the SPEEDUP simulation, however, the flowsheet failed to con-
verge. The manipulated variables used to specify the condensers and reboilers
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for C1 and C2 were then changed to achieve flowsheet convergence. However,
the optimizer was unable to find a solution and failed for several different
reasons including inconsistent constraints, slow convergence and property
errors. Slight changes in presets or tuning parameters would cause com-
pletely different errors. Eventually it was discovered after analysis of the
mass and energy balances around individual process units, that the manip-
ulated variables chosen were completely specifying the mass balance around
the stabilizer column and the energy balance around the splitter column.
SPEEDUP cannot, however, detect this problem and tries to solve this sim-
ulation thereby causing the inconsistent error messages observed. With even
larger process flowsheets, this problem could become extremely difficult to
detect.

Several other problems were also observed while trying to promote con-
vergence of the data reconciliation problem. The optimization algorithm,
SRQP, provides very poor information on its progress when solving. Several
print levels are provided which give either too little information, or more
information than can reasonably be handled. This makes it very hard to
determine if the optimizer has hit variables bounds other than those on the
manipulated variables. Also, the SPEEDUP/PROPERTIES PLUS interface
is unable to track at which point in the flowsheet that a property errors occur.
An error message such as “error in flash” is produced with no indication of
which of the 63 flashes in this flowsheet caused the problem. Finally, looking
at intermediate values for an infeasible path optimizer solving an equation-
oriented simulation flowsheet provides very little useful information. This is
because the optimization algorithm does not converge the flowsheet at each
iteration, therefore individual variables may have values outside their bounds
and may not fulfil mass and energy balances when the optimizer fails. It is
sometimes useful to look at equation residuals at the end of an iteration to
see which equations are contributing the most error to the solution of the
flowsheet. These residuals may indicate problems with either that equation
or one of the variables used in that equation.
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The manipulated variable bounds were initially chosen by guessing how
much each variable would be varied during the data reconciliation. These
guesses were then adjusted until eventually they were wide enough to be
inactive throughout the optimization. The manipulated variables bounds
were found to be critical in preventing the optimization algorithm from taking
extremely large steps on the first few iterations. Taking large optimization
steps with this process flowsheet tends to cause extremely large flowsheet
convergence residual errors which may prevent convergence of the optimizer.
In extreme cases, physical property errors occur which generally causes a
severe error crashing the SPEEDUP simulation.

Several optimization algorithms were available in SPEEDUP. The stan-
dard optimizer, FEASOPT, was unable to even initialize the optimization
problem within 8 hours of CPU time. SRQP can be used with three slightly
different convergence strategies. The default method uses a line search
method with an absolute penalty function to promote convergence. This
method tended to take extremely conservative steps and consistently failed
due to “slow convergence”. The other two methods both use a modified La-
grangian function as the global convergence scheme. The augmented mod-
ified Lagrangian function was not required for the data reconciliation opti-
mization problem since no additional inequality constraints were used in the
problem.

Tuning of the SRQP optimization algorithm was difficult due to lack of
tuning parameters available to modify the behaviour of the optimizer. The
only numerical tuning parameters available are the optimization tolerance
and the flowsheet residual convergence tolerance. There was no parame-
ter to control the number of iterations taken before the optimization error
“slow convergence” is given. There was also no way to directly restrict the
manipulated variable step sizes taken to prevent the algorithm from occasion-
ally taking large steps. Scaling of both manipulated variables and process
flowsheet variables is not available with SRQP. These would both help con-
vergence of both the flowsheet and optimizer. It is expected that these will
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be added in a future release of SPEEDUP.

Some tuning of the optimization problem was possible by varying the data
reconciliation weighting factors. The weighting factors were still all equal.
but were varied together between 1 and 2 to scale the whole objective func-
tion. By varying these weights. it was possible to get convergence for nearly
everv problem attempted. However, the weights required for convergence
were often different for different starting points. and there was no automatic
method for choosing these weighting factors. Therefore. since these weights
need to be determined manually by the user for each problem attempted.
this SPEEDUP simulation is not practically suited for use in a real time
optimization system.

4.4.3 Checking for Model Differences

Table 4.4 shows the differences between the ASPEN PLUS and SPEEDUP
process models. The results in this table were produced by performing a
steady state simulation in ASPEN PLUS using the results obtained at the
end of the SPEEDUP data reconciliation. The largest discrepancy found
between the two process models for any stream property was a 0.42% differ-
ence for the standard volume flow of the Heavy Iso stream. For this operat-
ing point, SPEEDUP gave a data reconciliation objective function value of
55.20. ASPEN PLUS calculated the data reconciliation objective function
to be 56.04 for the same operating point, a discrepancy of 1.52%. Therefore
it can be concluded that the differences between the two process models are
extremely small.

Unfortunately ASPEN PLUS does not include any options to view the re-
duced gradients from the process model during the optimization. This would
allow the comparison of the gradients produced by both ASPEN PLUS and
SPEEDUP to see if the difference in results were caused by the optimization
algorithm or inaccuracies in derivatives from the process models.
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Table 4.4: Discrepancies between ASPEN PLUS and SPEEDUP process
models at the SPEEDUP data reconciliation optimum.

Stream Name Molar Flow Temperature
Vapour 0.01% 0.00%
C,-distillate 0.01% 0.00%
Splitter Feed 0.00% 0.00%
Light Iso 0.01% 0.00%
Heavv Iso 0.03% 0.01%
Light Distillate 0.01% 0.00%
SS Feed 0.00% 0.01%




Chapter 5

Economic Optimization

Development

5.1 Introduction

5.1.1 Objectives

The objective of the economic optimization is to optimize the process set
points to maximize the profitability of the process subject to operating con-
straints. The adjustments made to the process set points from one cycle
of the real time optimizer should be restricted to prevent large changes to
the process operating conditions being passed to the plant’s process control
system. The economic optimization is to be performed using the process
model developed in Chapter 3. Figure 5.1 highlights the part of the real
time optimizer to be developed in this chapter.

5.1.2 Economic Objective Function

The economic optimization of the stabilizer-splitter process is a nonlinear,
steady state, constrained optimization problem. The profit based objective
function consists of the sum of the product values less the feed and utility
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Figure 5.1: Real time optimizer process flow diagram with the economic
optimization highlighted.

costs as shown in Equation (3.1).

6
max [Z P; — Creed — Cuilities
X

i=1
subject to g(x) >0
h(x)=0

where P, = product stream values ($/hr);
Creeq = feed stream cost ($/hr);
Cuitivies = total utility costs (8/hr);
g(x) = the set of process inequality constraints;
h(x) = the set of equality constraints represented by the process model.

The six product values are calculated by the following equation:

P=Dw; i=1,....,6 (5.2)
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where D; = the product streams unit prices ($/m?3); for the base case, these
unit prices are given in Table 5.1 except for the Light Iso product

stream which is more complex and is given by Equation (5.3):

v; = the standard volume flow rate of the product stream (m3/hr).

The unit cost for the Light Iso product stream also includes a quality pre-
mium based on the Reid vapour pressure of the stream. The following equa-
tion shows how this quality premium is added to the Light Iso unit price. d;.
from Table 5.1:

Dy =dp + q.(Pr — Pspec) (5.3)

where D; = Light Iso product stream unit price including the Reid vapour
pressure quality premium ($/m?);
q. = Reid vapour pressure quality premium ($/m?/kPa);
P, = Light Iso product stream Reid vapour pressure (kPa);
Pspec = Reid vapour pressure specification (kPa).

For the base case, the quality premium, qr, used was -0.18 $/m?/kPa, and
the Reid vapour pressure specification, Pspec, was 97.0 kPa.

The feed cost is calculated similarly to the product values using the fol-
lowing equation:

Creed = DieedVUteed (5.4)

where Dpeq = the stabilizer feed stream unit price (3/m?); for the base case,
this unit price is given in Table 5.1;
Vteeq = the standard volume flow rate of the stabilizer feed stream

(m3/hr).

Finally, the utility cost of the furnace heating oil for the reboilers on both
columns C1 and C2 is calculated from Equation (5.53). This method uses the
API liquid fuel equivalent (LFE) volume estimated from the reboiler heat
duty to determine the utility costs [1].

2
Cuitiies = _ [DrFocacs (1/m:) Qi (

i=1

(1]
(S]]
~—
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Table 5.1: Stream and utility unit prices.

Name Price Units
Vapour product stream 0.15 $/m?
C,-Distillate product stream 100.07 $/m3
Light Iso product stream 182.69 $/m?
Heavy Iso product stream 193.89 $/m3
Light Distillate product stream 180.52 $/m3

C2 bottoms product stream 158.34 $/m?
Stabilizer feed stream cost 158.34 $/m?
Furnace heating oil cost ¢ 82.14 $/LFEm’®

synit price is given in dollars per Liquid Fuel Equivalent standard volume

flow

where Dro = the furnace heating oil unit price (§/LFEm?®): for the base

case. this unit price is given in Table 5.1:

c, = volume conversion
(0.1589873 m?3/bbl);

from barrels

to cubic metres

¢y = conversion from heat duty to liquid fuel equivalent volume

(0.158730158 MMBTU/LFEbbI);

n; = furnace efficiency for columns C1 and C2 respectively (as-

sumed to be 70%):

Q; = furnace heat duty for columns Cl and C2 respectively

(MMBTU /hr).

5.1.3 Process Inequality Constraints

In addition to the equality constraints represented by the process model,

25 process inequality constraints were required. These inequality constraints

prevent the economic optimization from moving outside plant safety limits,

product quality specifications or other operating limits. The inequality con-

straints required for the stabilizer-splitter process flowsheet are summarised
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in Table 5.2.

5.1.4 Set Point Movement Restriction

Bounds restricting the movement of the manipulated variables during the
economic optimization are used to prevent large movements in the process
set points being returned to the plant after a cycle of the real time optimizer.
Large movements in the process set points may upset the plant. affecting the
true plant profits or destabilizing the plant’s operating conditions. Therefore
restriction of the manipulated variable movements is required.

The manipulated variable bounds were chosen from plant operation ex-
perience on how large a change can be made to each set point in the plant.
For the stabilizer-splitter economic optimization, the manipulated variables
were allowed to move by up to £5.0% of their original values, except tem-
peratures which may move by up to £5.0°F from their original values during
one cycle of the real time optimizer. Therefore, for all manipulated vari-
ables except temperatures, the size of the “window” created by the bounds
can vary between cycles of the real time optimizer (i.e.. 0.05zo # 0.05z, as
shown in Figure 5.2). Figure 5.2 illustrates how these manipulated vari-
able bounds are implemented using an example optimization problem with

2 manipulated variables.

5.2 Sequential Modular Simulation

The sequential modular economic optimization simulation was developed us-
ing the MODELMANAGER graphical user interface (8, 9] to produce an
ASPEN PLLUS input file. Some direct editing of the input file was also re-
quired, particularly in developing the in-line FORTRAN blocks, and the
FORTRAN objective function.

The SQP optimization algorithm was used to solve this optimization prob-
lem. The implementation of the SQP method was similar to that used for
the data reconciliation problem; see Section 4.2.1 for more details. Details of
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Table 5.2: Economic optimization inequality constraints.

Lower Variable Upper Units
Bound Bound
0.005 Cg-Distillate stream Cs mole fraction 0.150 Ibmol/lbmol
— Light Iso stream Reid vapour pressure 14.0 psi
110.0 Light Iso stream bubble point — °F
temperature
176.0 Heavy Iso 10% volume distilled true 266.0 °F
boiling point temperature
284.0 Heavy Iso 90% volume distilled true 164.0 ©F
boiling point temperature
302.0 Light Distillate 10% volume distilled 554.0 °F
true boiling point temperature
302.0 Light Distillate 90% volume distilled 554.0 ©F
true boiling point temperature
1000 C1 column reflux standard liquid 9000 bbl/dayv
volume flow
— C2 column reflux standard liquid 25,000 bbl/day
volume flow
— C4 column feed standard liquid 10.604 bbl/day
volume flow
— C5 column feed standard liquid 6000 bbl/day
volume flow
125.0 C1 column tray 3 temperature 220.0 °F
530.0 C1 column reboiler outlet temperature 675.0 °F
120.0 C2 column tray 2 temperature 250.0 °F
550.0 C2 column reboiler outlet temperature 700.0 °F
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the objective function, inequality constraints and manipulated variables are
covered in the following subsections.

5.2.1 Objective Function

The profit objective function in ASPEN PLUS is supplied as FORTRAN 77
code. The objective function is calculated in the following order:

1. Calculate the Light Iso unit price including the Reid vapour pressure
quality premium from Equation (3.3):

2. Calculate the six product values individually using Equation (5.2). then
sum them to give the total product value:

3. Calculate the feed cost from Equation (3.4);
4. Calculate the two furnace utility costs individually using Equation (5.3):

5. Finally, subtract the feed cost and the two furnace utility costs from
the total product value to give the profit to be maximized.

Where necessary, unit conversions were added to the above equations to
convert variables from the imperial units used in the process flowsheet to the
metric units used in the objective function. The current value of the stream
flow rate and reboiler heat duty variables used in the above equations were
accessed directly from the process flowsheet. These ASPEN PLUS flowsheet
variables are defined as FORTRAN variables prior to execution of the of the
objective function code.

The Reid vapour pressure premium (g.) and specification (Pspec). unit
prices given in Table 5.1 and the furnace efficiencies (r;) are all read in
from the data file IOBJFN.DAT using an in-line FORTRAN block (see Ap-
pendix B for a detailed description of this data file). This in-line F ORTRAN
block is executed before the economic optimization commences. The data
read in from the file are stored in FORTRAN *“common” blocks for use during
the calculation of the objective function.
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5.2.2 Process Inequality Constraints

The 25 inequality constraints listed in Table 5.2 were implemented using
95 constraint blocks in ASPEN PLUS. Each constraint block is also listed in
the optimization block in order to apply the constraint to that optimization
problem. Each constraint requires a specification involving ASPEN PLUS
flowsheet variables defined as FORTRAN variables, and FORTRAN com-
mon block variables. A tolerance specification for each constraint is also
required. The constraint is said to be “active” if the constrained variables
are within this tolerance, “inactive” if the variables are inside the constraint
and “violated” if the variables are outside the constraint.

The constraint values given in Table 5.2 are read in from the data file
ICNSTR.DAT using an in-line FORTRAN block (see Appendix B for a de-
tailed description of this data file). The data read in from the file are stored
in FORTRAN “common” blocks for use during the calculation of the con-

straints.

5.2.3 Manipulated Variable Selection and Bounding

The manipulated variables used in the ASPEN PLUS economic optimization
are the same as those used in the data reconciliation, except the stabilizer
feed stream flow rate and temperature. The stabilizer feed stream conditions
cannot be affected by the stabilizer-splitter process, and therefore cannot be
manipulated during the economic optimization. The manipulated variables
used are summarised in Table 5.3. The initial guesses used for the manip-
ulated variables are the corresponding process flowsheet input specification
values.

The condenser heat duties for columns C1 and C2 cannot be varied au-
tomatically by the process control system in this plant. Unfortunately, these
heat duties are result variables in the process model and therefore cannot be
fixed easily. Therefore, two equality constraint blocks were added to prevent
movement of the condenser heat duties during the economic optimization.
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Table 5.3: ASPEN PLUS economic optimization manipulated variables.

Variable Units

C1 molar reflux ratio Ibmol/1bmol
C1 condenser molar vapour fraction Ibmol/Ibmol
C1 reboiler mole flow Ibmol/hr

C1 reboiler outlet temperature °F

E1l outlet temperature oF

C2 liquid distillate mole flow Ibmol/hr

C2 reboiler mole flow Ibmol/hr

C2 reboiler outlet temperature oF

C2 condenser sub-cooled temperature °F

C4 reboiler heat duty MMBTU /hr
C5 reboiler heat duty MMBTU /hr
C4 feed stream mole flow Ibmol/hr

C5 feed stream mole flow Ibmol/hr

These constraint blocks work by storing the initial value of the condenser
heat duty to a FORTRAN common block variable before the optimization
commences. The constraint is then specified by requiring the condenser heat
duty to be equal to its initial value stored in the common block variable. to
within the specified tolerance of 0.1 MMBTU /hr.

The upper and lower bounds on the manipulated variables are used to
restrict the movement of the optimizer to prevent large changes in the set
points being returned to the plant’s process control system (see Section 5.1.4
for more detail). These manipulated bounds are specified for all manipulated
variables except temperatures similarly to the following example ASPEN
PLUS input code:

LIMITS "C2MD-(C2MD*PC2MD)" "C2MD+(C2MD*PC2MD)"

where C2MD = initial manipulated variable value (for this example, the Light

Iso stream molar flow rate);
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PC2MD = the fraction of the initial manipulated value value that this
variable my be varied. For this problem, PC2MD is equal to 0.05
for all manipulated variables except temperatures.

For temperature manipulated variables. the manipulated variable bounds are
specified in the same manner as the following ASPEN PLUS input code:

LIMITS "C1iRBT - PCiRBT" "C1RBT + PC1RBT"

where C1RBT = initial manipulated variable value (for this example. the C1
reboiler outlet temperature):

PC1RBT = the number of degrees Fahrenheit this manipulated variable

may be varied. For this problem. PC1RBT is equal to 5°F for

all manipulated temperature variables.

The variables specifying the ranges in which the manipulated variables may
move (for the above example codes, PC2MD and PC1RBT) are read in from the
data file [IOFREE.DAT using an in-line FORTRAN block (see Appendix B
for a detailed description of this data file). The data read in from this file
are stored in FORTRAN “common” blocks for use during the calculation of
the manipulated variable bounds.

5.3 Equation-oriented Simulation

Development of the equation oriented economic optimization was performed
by editing the ASCII text keyword based SPEEDUP input file. Details of
the objective function, inequality constraints and manipulated variables are

covered in the following subsections.

5.3.1 Optimization Algorithm

The SRQP optimization algorithm was used to solve the SPEEDUP economic
optimization problem. The implementation of the SRQP method was similar
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to that used for the data reconciliation problem. except that the global con-
vergence scheme chosen was a line search method with a modified augmented
Lagrangian. The modified augmented Lagrangian was used because of the
inequality constraints present in this optimization problem See Section 4.3.1
for more details on how the SRQP algorithm was implemented.

5.3.2 Objective Function

The objective function was specified in the global section of the SPEEDUP
input file using the same equation syntax used in SPEEDUP models. The
objective function to be maximized is the profit calculated by subtracting
the feed cost and the two furnace utility costs from the total product value.
This profit objective is also multiplied by a weighting factor which can be
varied to help promote convergence (see Section 5.4.2 for more detail). The
following equations are included as equality constraints in the global section
of the input file to be solved simultaneously with the rest of the process
fowsheet:

e Calculate the Light Iso unit price including the Reid vapour pressure

quality premium from Equation (5.3);

e Calculate the six product values individually using Equation (5.2). then

sum them to give the total product value;
e Calculate the feed cost from Equation (5.4):
e Calculate the two furnace utility costs individually using Equation (5.5):

Where necessary. unit conversions were added to the above equations to
convert variables from the imperial units used in the process models to the
metric units used in the objective function. The current value of the stream
flow rate and reboiler heat duty variables used in the above equations were
accessed directly from the process flowsheet by using their full SPEEDUP

variable name.
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The Reid vapour pressure premium (q.) and specification (Pspec), unit
prices given in Table 5.1, furnace efficiencies (7;) and the objective func-
tion weighting factor are all read in from the data file IOBJFN.DAT using
SPEEDUP’s external data interface (EDI) (see Appendix C for a detailed
description of this data file). The EDI is used prior to the optimization to
assign SPEEDUP variables with variables read in from external data files.

5.3.3 Process Inequality Constraints

The 25 inequality constraints listed in Table 5.2 were implemented in the
global constraint subsection of the SPEEDUP input file. Each inequality
constraint is also specified as a variable bound for the corresponding con-
strained variable through the EDI. This method of duplicating constraints in
both the global section and as a variable bounds is recommended when using
SRQP. This is because SRQP can handle simple variable bounds directly
without the use of slack variables [13]. These simple bounds will always be
satisfied by the SRQP method, unlike the inequality constraints.

The constraint values given in Table 5.2 are read in from the data file
ICNSTR.DAT using SPEEDUP’s EDI (see Appendix C for a detailed de-
scription of this data file).

5.3.4 Manipulated Variable Selection and Bounding

The manipulated variables used in the SPEEDUP economic optimization
are the same as those used in the data reconciliation. except the stabilizer
feed stream flow rate and temperature, and the condenser heat duties. The
stabilizer feed stream conditions cannot be affected by the stabilizer-splitter
process, and therefore cannot be manipulated during the economic optimiza-
tion. Likewise, the condenser heat duties for the columns C1 and C2 cannot
be adjusted automatically by the process control system in this plant and
are therefore not manipulated during the economic optimization. The ma-
nipulated variables used are summarised in Table 5.4. The initial guesses
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Table 5.4: SPEEDUP economic optimization manipulated variables.

Variable Units
DIST-C4 stream mole flow Ibmol/hr
El inlet mole flow Ibmol/hr
C1 reboiler mole flow [bmol/hr
C2 condenser subcooled temperature drop oF
(bubble point less subcooled temperature)

El outlet temperature °F
SSFEED stream mole flow Ibmol/hr
C2 reboiler mole flow Ibmol/hr
C4 feed stream mole flow Ibmol/hr
C5 feed stream mole flow Ibmol/hr
HV-ISO stream mole flow Ibmol/hr
LT-DIST stream mole flow Ibmol/hr

used for the manipulated variables are the corresponding input specification
values.

The upper and lower bounds on the manipulated. or free. variables are
used to restrict the movement of the optimizer to prevent large set point
changes as detailed in Section 5.1.4. From testing of this optimization prob-
lem in SPEEDUP, it was found that the SRQP optimization algorithm was
unable to find an optimum if it lay on a manipulated variable bound. There-
fore the manipulated variable bounds were applied indirectly as bounds and
inequality constraints on flowsheet variables equal to the manipulated vari-
ables. For example, the column Cl bottoms mole flow. C1BT29.L_0UT1 is
a manipulated variable. The heat exchanger El inlet mole flow. E1.F_IN
should also be at the same value as the bottoms mole flow, therefore both
bounds and global inequality constraints are placed on this variable instead.
Similar equivalent variables were found for all of the manipulated variables
in this optimization.




115

The upper and lower bounds, and inequality constraints on the variables
equivalent to the manipulated variables were implemented in the optimiza-
tion simulation as follows:

e For all variable types except temperature, the upper and lower bounds

and inequality constraints are calculated from:

1]
£)+qi1:

0 0
B=I$)—qil'£)

©

UB __ .
yi =z 1

y (5.6)
where y2 = upper bound for the variable equivalent to the manipu-
lated variable;

yLB = lower bound for the variable equivalent to the manipu-
lated variable;
$$0) = initial manipulated variable value:
g; = the fraction of the initial manipulated variable value that

this variable may be varied. For this problem. all ¢; are
equal to 0.05.

e For temperature variables, the upper and lower bounds and inequality
constraints are calculated from:

UB 0)

B = O _

L
Y T

where r; = the number of degrees Fahrenheit this manipulated variable
may be varied. For this problem, all r; are equal to 5°F.

The variables specifying the ranges in which the manipulated variables may
move (the values ¢; and r; in Equations (5.6) and (5.7)) are read in from
the data file IOFREE.DAT using SPEEDUP’s EDI (see Appendix C for a
detailed description of this data file). The values of the bounds y¢ 2 and y/?
are calculated in the EDI FORTRAN code and then assigned directly to the
variable’s upper and lower bounds, and also to SPEEDUP global variables
for use in the inequality constraints.



116

The manipulated variables also require upper and lower bounds for use
by the optimization algorithm to determine initial step sizes. These bounds.
however, should not be reached during the optimization simulation. There-
fore, these bounds are set outside the bounds placed on the variables equiva-
lent to the manipulated variables. This is achieved by the following method:

e For all variable types except temperature, the upper and lower manip-
ulated variable bounds are calculated from:

ve __ (0) (0)

;7 =z; +1.5¢qx; _
LB _ (0 _q=_ (0 (5.8)
;7 =z, —logx;
where V8 = upper bound for the manipulated variable:
zL8 = lower bound for the manipulated variable.

e For temperature variables, the upper and lower bounds and inequality
constraints are calculated from:

7 0
IiLB_ ()

13 -
(5.9)
xf‘B = IEO) 5

The values of the bounds z¥Z and z12 are also calculated in the EDI FOR-
TRAN code and then assigned directly to the manipulated variable’s upper
and lower bounds.

5.4 Discussion

The following subsections discuss various problems encountered using both
the sequential modular and equation-oriented simulators for economic op-
timization. A summary comparing various quantitative aspects of the eco-
nomic optimization development and performance are presented in Table 3.3.
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Table 5.5: Comparison of both process simulators for economic optimization.

Sequential Equation-

Modular oriented
Simulator Simulator
Development Time (hours) 73.5 134.5
Input file size (bytes) 40,746 291,130

(without preset variables) (37,616) (71.374)
Number of manipulated variables 13 11
Number of inequality constraints 25 17
Number of additional equality constraints 2 0
CPU time (mins)® 119.78 104.89
Optimization iterations 6 28
Flowsheet passes or function evaluations 139 35

(tear stream iterations) (1,519)

(derivative evaluations) (29)
Initial objective function value ($/hr) -159.7225 -159.73
Final objective function value ($/hr) 91.1353 116.00
Number of constraints active at solution 1 1€

aCPU time is measured for calculations only on an IBM RS 6000 Model 530H computer.

*Light Iso stream Reid vapour pressure upper bound constraint active.

<C,-Distillate stream Cs component mole fraction lower bound constraint active.
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5.4.1 Sequential Modular Simulation

The building and debugging of the economic optimization simulation was
relatively simple. A problem arose when trying to find a method of prevent-
ing the column C1 and C2 condenser heat duties from being varied during
the economic optimization. Ideally, the condenser heat duties would have
been specified variables in process flowsheet preventing them from chang-
ing throughout the simulation. However, flowsheet convergence was unable
to be obtained when the condenser heat duties were used as specified vari-
ables. Therefore, two equality constraints were added to ensure that the
condenser heat duties remained at their initial value. It was found that un-
less this constraint was ‘converged’ on the first iteration of the optimizer, it
was extremely unlikely that the SQP optimization algorithm would be able
to satisfy the constraint before the end of the simulation. The solution to this
was to ensure that the initial values of the condenser heat duties were passed
to the optimization simulation from the results of the previous data recon-
ciliation simulation. This ensured that both of the equality constraints were
converged on the first iteration of the SQP algorithm, and usually remained
converged throughout the optimization.

The only other problems with the ASPEN PLUS economic optimization
were found when trving to debug errors in passing information between sim-
ulation blocks using FORTRAN common blocks. This was the same problem
encountered with the data reconciliation simulation development, and was
solved in the same way using temporary FORTRAN code to print out the val-
ues of the variables being passed between simulation blocks (see Section 4.4.1
for more detail).

One extra SQP optimization algorithm tuning parameter was used in
addition to those described in Section 4.1.1 for the data reconciliation sim-
ulation. This parameter was CONST-ITER which was set to 10 iterations.
This parameter specifies the number of additional iterations that the SQP
optimization algorithm should take after the optimization convergence test
has been satisfied to satisfy any violated constraints. This parameter was
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increased to 10 iterations to help improve the optimizer’s ability to converge
any violated constraints

Most convergence problems encountered when testing this optimization
simulation were caused by violated constraints. It was found that if the sim-
ulation began with significantly violated inequality constraints that the SQP
optimization algorithm appeared to have some difficulty in satisfying these
constraints during the course of the optimization. The errors returned by
the SQP optimization algorithm were either “Up hill search direction pre-
dicted” or “Line search failed on the final iteration”™. This was especially
noticeable on violations of the constraints involving “property set” variables:
Reid vapour pressure, 10% and 90% volume distilled true boiling point tem-
peratures, and bubble point temperature. Property set variables are mea-
surements defined by the user to be calculated for flowsheet streams other
than the standard flow, composition and thermodynamic data produced by
ASPEN PLUS. Increasing the parameter CONST-ITER helped. but not in all
cases.

As found with the data reconciliation optimization in ASPEN PLUS.
computational speed of the optimizer was affected mostly by the tear stream
convergence on the splitter column. A total of 1519 passes through the
process units C2C4C35, C2SPL1 and F2 were required for the 139 flowsheet
evaluations required during the optimization. Therefore an average of 11 tear
stream iterations were required for each flowsheet pass requiring a significant
amount of computational time.

5.4.2 Equation-oriented Simulation

Development of the objective function and inequality constraints was rela-
tively straight forward for the SPEEDUP economic optimization. The ma-
nipulated variables were chosen to be the same as the data reconciliation
optimization except for the stabilizer feed stream mole flow and tempera-
ture, and the column C1 and C2 condenser heat duties. This prevented the
convergence problems due to poor choice of manipulated variables as seen in
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the data reconciliation optimization development. Also, since the column C1
and C2 condenser heat duties were already specified variables, there was no
need for equality constraints to prevent the economic optimizer from varying
these variables as with ASPEN PLUS.

The main problem encountered in debugging the SPEEDUP economic
optimization was restricting the movement of the manipulated variables. Ini-
tially, the manipulated variable bounds were applied directly to the manip-
ulated variables. This resulted in repeatable errors from the SRQP opti-
mization algorithm caused by “inconsistent constraints” when the optimum
was found to lie on a manipulated variable bound. Since the manipulated
variable bounds are being used deliberately to limit the movement of the
economic optimization on each cycle of the real time optimizer, several ma-
nipulated variable bounds will often be active at the optimum. To alleviate
this problem, indirect manipulated variable bounds were added to prevent
the true manipulated variable bounds from being reached as described in
Section 5.3.4. These indirect bounds were implemented as both bounds and
global inequality constraints on the variables equivalent to the manipulated
variables. The reason for both bounds and inequality constraints is because
the variable bounds can be handled directly by the SRQP optimization al-
gorithm, and presence of the inequality constraints provide Lagrangian and
other information at the end of the optimization. This is the same reason for
duplicating the process inequality constraints in both the global constraint
subsection and also as variables bounds. No reason has been found for why
the SRQP optimization algorithm consistently fails when the optimum lies on
a manipulated variable bound, however the above work around does appear
to fix this problem.

Tuning of the SRQP optimization algorithm was again found to be dif-
ficult for the same reasons found in the data reconciliation optimization,
mostly due to a lack of tuning parameters with which to modify the algo-
rithms behaviour. The global convergence scheme chosen was the augmented
modified Lagrangian function due to the presence of inequality constraints.
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It was found that the line search method with an absolute penalty func-
tion tended to take very small step sizes and consistently failed due to “slow
convergence” .

The profit objective function was multiplied by a weighting factor to pro-
vide a method for tuning the optimization. This weighting factor was varied
between 1 and 2 to promote convergence of the economic optimization. Gen-
erally the weighting factor was found to lie between 1.2 and 1.5. This method
worked for most of the problems attempted, but often required retuning of
the weighting factor even for slight changes in starting point. Convergence
failures for problems with poorly tuned weighting factors were reported by
the SRQP optimization algorithm to be caused by either “slow convergence”
or “inconsistent constraints”. No consistent pattern or reason for these con-
vergence failures could be found. A possible reason may be the unscaled
manipulated and process flowsheet variables in this problem. Also the crite-
ria for “slow convergence” appears to be too strict and often occurs when the
optimizer seems close to an answer. Unfortunately, there is no way to tune
the SRQP algorithm’s criteria for slow convergence to prevent this error.

From Table 5.5, it can be seen that SPEEDUP achieved a significantly
better profit objective function value for this one run of the economic opti-
mization. This higher objective function profit may have been caused by a
combination of SPEEDUP’s infeasible path SRQP optimization method and
more accurate derivative information available from the process flowsheet
models. See Section 6.6.2 for a more detailed comparison of the ASPEN
PLUS and SPEEDUP economic optimization results.

5.4.3 Checking for Model Differences

Table 5.6 shows the differences between the ASPEN PLUS and SPEED-
UP process models. The results in this table were produced by performing
a steady state simulation in ASPEN PLUS using the results obtained at
the end of the SPEEDUP economic optimization. The largest discrepancy
found between the two process models for any stream property was a 0.93%
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Table 5.6: Discrepancies between ASPEN PLUS and SPEEDUP process
models at the SPEEDUP economic optimization optimum.

Stream Name Molar Flow Temperature
Vapour 0.00% 0.00%
C,-distillate 0.00% 0.00%
Splitter Feed 0.01% 0.00%
Light [so 0.00% 0.00%
Heavy Iso 0.00% 0.00%
Light Distillate 0.02% 0.00%
SS Feed 0.00% 0.00%

difference for the Heavy Iso stream 10% volume distilled true boiling point
temperature. For this operating point, SPEEDUP gave a profit objective
function value of $416.00/hr. ASPEN PLUS calculated the profit to be
$411.23/hr for the same operating point, a discrepancy of 1.15%. Therefore
it can be concluded that the differences between the two process models are
extremely small.

Unfortunately ASPEN PLUS does not include any options to view the re-
duced gradients from the process model during the optimization. This would
allow the comparison of the gradients produced by both ASPEN PLUS and
SPEEDUP to see if the difference in results were caused by the optimization
algorithm or inaccuracies in derivatives from the process models.




Chapter 6

Real Time Optimizer Linking
and Results

6.1 Real Time Optimizer Linking

The data reconciliation and economic optimization simulations developed in
the previous two chapters need to be linked together to form the real time op-
timizer. The linking of the optimizer involves writing a program to call the
data reconciliation and economic optimization simulations when required.
transfer data between the simulations and the plant, store the results pro-
duced and detect any errors encountered during the real time optimization.
Figure 6.1 highlights the part of the real time optimizer to be developed in
this section.

The data to be transferred within the real time optimization system is
similar for both real time optimizers. Figure 6.2 illustrates the data files
which need to be transferred between the data reconciliation and economic
optimization simulations, and also between the real time optimizer and the
plant’s process control system. The real time optimizer cycle begins with the
data reconciliation module reading in the measurement data from the plant’s
process control system. For these simulations, the process data is supplied
either from process data provided by Shell Canada, or from a steady state

123
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Figure 6.1: Real time optimizer process flow diagram with the real time
optimizer highlighted.

process simulation acting as the plant. The Shell process data are averaged
over one hour of measurements from the plant and are used for the first
cvcle of most of the following real time optimizer runs. All subsequent cycles
use data provided from the steady state simulation either with or without
random noise added (see Section 6.2 for details of the noise added).

The data reconciliation simulation reads in the measurement data vari-
ances and data reconciliation weights from data files. Before the data recon-
ciliation commences, the final simulation settings from the previous economic
optimization simulation are read in from a file. These simulation settings
are used to provide the best known starting point for the data reconcilia-
tion. When the data reconciliation is completed, the reconciled variables
and other results files are produced by the simulation. The simulation set-
tings at the end point of this simulation are also transmitted to the economic
optimization simulation to provide the starting point.

The economic optimization simulation then reads in the economic data
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Figure 6.2: Real time optimizer data transfer.
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and inequality constraint values from data files. At the end of the optimiza-
tion, the new optimized set points for the process are sent to the plant’s
process control system for implementation in the plant. Also. the simulation
settings from the end point of the optimization are stored in a data file for
use by the data reconciliation simulation during the next cycle of the real
time optimizer.

As previously mentioned, most testing of the real time optimizer is per-
formed using measurement data from a steady state ASPEN PLUS simula-
tion of the stabilizer-splitter process. This simulaticn is used to simulate the
set points received from the economic optimization and output a new set of
measurement data for the next cycle. Random noise is added to the process
data using a small FORTRAN program which calls a NAG FORTRAN Li-
brary Routine [84] for generating random numbers. The input code for both
the plant simulation and the FORTRAN program to add noise are included
in Appendix F.

6.1.1 Sequential Modular Simulator

Figure B.2 in Appendix B shows a flow chart of the sequential modular simu-
lator implementation of the real time optimizer cycle illustrated in Figure 6.2.
A Unix C-Shell script is used to control the real time optimizer by starting
the simulations when required. moving the data files between simulations.
storing the results and checking for errors. The data reconciliation and eco-
nomic optimization simulations were combined into a single input file and
sequenced using an ASPEN PLUS sequence block. This allows the economic
optimization to start using the end point of the data reconciliation without
the need to write out to a data file. Passing the results of the economic
optimization back to the data reconciliation for the next cycle was more dif-
ficult. Every specified and estimated variable needs to written out and read
in through a user specified FORTRAN block. This involved a lot of code
and was difficult to debug.

Before running the real time optimizer, a setup program needs to be ex-



ecuted which translates and compiles the simulations. Appendix B provides
the documentation for setting up and running the ASPEN PLUS based real
time optimizer. The input code used for the sequential modular real time
optimizer is included in Appendix D.

6.1.2 Equation-oriented Simulator

Figure C.2 in Appendix C shows a flow chart of the equation-oriented simula-
tor implementation of the real time optimizer cycle illustrated in Figure 6.2.
Similar to the sequential modular simulator, a Unix C-Shell script is used
to control the real time optimizer by starting the simulations when required.
moving the data files between simulations, storing the results and checking
for errors. SPEEDUP has no sequencing feature. so the data reconciliation
and economic optimization have to be run as separate simulations in different
directories. Therefore the results of the data reconciliation have to written
to file and passed on to the economic optimization simulation. However.
this was accomplished simply by issuing a single command which saves the
results of previous run to file. These results are then read back in and are
then used to preset a simulation using SPEEDUP’s “Use” environment. To
run SPEEDUP simulations in batch mode, a text file storing the commands
for the SPEEDUP Executive is specified in the command line when running
the simulation.

Before running the real time optimizer, a setup program needs to be exe-
cuted which translates and compiles the simulations, and runs the PROPER-
TIES PLUS input files. Appendix C provides the documentation for setting
up and running the SPEEDUP based real time optimizer. The input code
used for the equation-oriented real time optimizer is included in Appendix E.

6.2 Real Time Optimizer Comparison

The first run comparing the sequential modular and equation-oriented real
time optimizers used the base case economic data presented in Table 5.1. The
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two optimizers were run for as many cycles as possible using this economic
data with no random noise added to the process measurements. That is.
the economic optimization on each cycle was started with the results of the
previous economic optimization. The term “cycle” of a real time optimizer
will be used in this thesis to refer to one complete run through the flow chart
given in Figure 6.1. That is, the measured data is read in from the plant.
data reconciliation is performed on this data. then the process is optimized
before the set points are passed back to the plant.

Figure 6.3 graphs the progress of the economic objective function on each
cycle for both of the real time optimizers. The expected global optimum
profit of $751.95/hr shown in Figure 6.3 was the highest obtained profit
over several runs for this problem when all restrictions on the movement of
the manipulated variables were removed (the process inequality constraints
were still applied). Since the actual shape of the shape of the objective
function is extremely complex, and also because of any process modelling
errors, this optimum cannot be guaranteed to be the true global optimum
for this process.

SPEEDUP failed after fewer cyvcles, unable to converge the economic
optimization on sixth cycle, however, it achieved a higher profit objective
than the ASPEN PLUS real time optimizer. nearly reaching the expected
global optimum profit. Twelve different weighting factors were tried manually
in the economic objective function, all of which ended with the same -“slow
convergence” error given by the SRQP optimization algorithm. It is possible
that a weighting factor exists which can converge this problem. however it
was extremely difficult to determine the value of the weighting value manually
for this particular optimization.

ASPEN PLUS failed on the eleventh cycle due to a violated inequality
constraint which the SQP algorithm could not satisfy. The violated con-
straint was the upper limit on the Light Distillate stream 90% volume dis-
tilled true boiling point temperature. The error given by the optimization
algorithm was “line search failed on final iteration; solution may not be op-
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Figure 6.3: Graph comparing base case with no measurement noise profits
(economic objective function) for both real time optimizers. The expected
global optimum profit for this optimization is shown as a dashed line.
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timal”.

The active inequality constraint at the end of the first cycle was the Light
[so stream Reid vapour pressure upper bound for both real time optimizers.
For all subsequent cycles of the ASPEN PLUS real time optimizer, the active
constraint was the upper bound on the Light Distillate stream 90% volume
distilled true boiling point temperature. The upper bound constraint on
the Light Iso stream Reid vapour pressure was also active at the end of
cvcles 2. 6, 7 and 10. For all cycles. except the first, of the SPEEDUP real
time optimizer. the active inequality constraints were lower bound on the Cy-
Distillate stream Cs mole fraction and the upper bound on the Light Distillate
stream 90% volume distilled true boiling point temperature. Figures 6.4
and 6.5 show the set point changes made at the end of each cycle by both
of the real time optimizers. For more information on the performance of the
two real time optimizers, see Table A.3 and Table A.4 in Appendix A.

A second run comparing the two types of real time optimizer was per-
formed on the base case economic data with noise added to the plant mea-
surements. Again, the two optimizers were run for as many cycles as possible
using the economic data presented in Table 5.1. The random noise was added
to the process measurements calculated by the plant simulation was normally
distributed with a standard deviation equal to 5% of the measured value.

A graph comparing the profit objective function values achieved by the
two real time optimizers is given in Figure 6.6. As can be seen from this
graph, both optimizers managed to complete only a few real time optimiza-
tion cvcles. Again, the expected global optimum of $751.95/hr is shown in
Figure 6.6.

The SPEEDUP real time optimizer failed on the third cycle due to se-
vere property errors which could not be corrected, however, it still attained a
higher profit than the ASPEN PLUS optimizer. The property error occurred
during a flash calculation by PROPERTIES PLUS when the bubble point
for a mixture could not be found. Unfortunately there is no way to deter-
mine which flash in the flowsheet was consistently causing this error during
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the economic optimization on the third cycle of the real time optimizer. It
should be noted that SPEEDUP required the objective function weights for
both data reconciliation and economic optimization objective functions to be
changed on both cycles completed. Changing the economic objective func-
tion weight for the third cycle of the real time optimizer had no effect on the
property errors generated.

The ASPEN PLLUS real time optimizer failed on the fifth cycle due to a
violated inequality constraint which the SQP optimization algorithm could
not satisfy. The violated bound was the upper limit on the Light Distil-
late stream 90% volume distilled true boiling point temperature. The error
given by the optimization algorithm was “line search failed on final iteration:
solution may not be optimal”.

The active inequality constraint at the end of the first cycle was the Light
Iso stream Reid vapour pressure upper bound for both real time optimizers.
For all subsequent cycles of the ASPEN PLUS real time optimizer. the active
constraint was the upper bound on the Light Distillate stream 90% volume
distilled true boiling point temperature. At the end of the second cycle of
the SPEEDUP real time optimizer. the active inequality constraints were
lower bound on the C,-Distillate stream Cs mole fraction and the upper
bound on the Light Distillate stream 90% volume distilled true boiling point
temperature. For more information on the performance of the two real time

optimizers, see Table A.1 and Table A.2 in Appendix A.

6.3 Economic Model Changes

Three areas of the economic model were studied:

1. Changes to the two key product stream prices, Heavy Iso and Light
Distillate.

2. Sensitivity analysis of the economic objective function.
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3. The effect of changes in the economic parameters part way through a
real time optimizer run. This was tested by changing the product prices
from typical winter operating prices to typical summer operating prices.
Please note that these runs were tested using ASPEN PLUS version 9.3
instead of version 9.2 as all other runs used. For more details on the
different versions of ASPEN PLUS, see Section 6.3.

The results of these studies are presented in the following subsections. Only
the ASPEN PLUS real time optimizer was used in the following studies due
to the problems encountered tuning the SPEEDUP real time optimizer for
each cycle.

6.3.1 Product Price Changes

Four real time optimizer runs were performed to study the effect of Heavy
Iso and Light Distillate product stream price changes. High and low val-
ues were chosen for each of these product prices to see what effect they
have on the operation of the real time optimizer. The high and low prices
were $193.89/m® and $173.89/m* for the Heavy Iso product stream and
$200.52/m* and $180.52/m? for the Light Distillate product stream respec-
tively. The run with the Heavy Iso and Light Distillate stream prices at
$193.89/m? and $180.52/m3 respectively corresponds to the base case run in
Section 6.2. Random measurement noise was added to the data produced by
the “plant” simulation for all four of the following real time optimizer runs.

A graph comparing the objective function profits at the end of each cycle
for each of the four real time optimizer runs is presented in Figure 6.7. It
should be noted that the negative profits shown in Figure 6.7 mean that
the stabilizer-splitter process is being run at a loss, however, this does not
necessarily reflect a loss for the refinery as a whole. This is because the feed
flow rate to this process is being determined by an upstream process and is
not being varied by the real time optimizer. Since the feed to the stabilizer-
splitter process cannot be used as a product, it must be split into products
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Figure 6.7: Graph comparing profits (economic objective function) for differ-
ent Heavy Iso and Light Distillate prices using the ASPEN PLUS real time

optimizer.

even if that incurs a loss for this process. In this case the real time optimizer
is trying to minimize the loss incurred by the stabilizer-splitter process.

The real time optimizer runs shown in Figure 6.7 were attempted for four
cycles each, however, the case where the Heavy Iso and Light Distillate prices
were $173.89/m® and $200.52/m? respectively, convergence of the economic
optimization on the fourth cycle was not possible. This convergence failure
was for the same reason as the previous ASPEN PLUS real time optimizer
failures, that is, the SQP optimization algorithm was unable to satisfy the
upper bound inequality constraint on the Light Distillate stream 90% volume
distilled true boiling point temperature. The error given by the optimization



algorithm was “no feasible point found to quadratic subproblem”.

The active inequality constraints at the end of each real time optimizer
cvcle were the same as the base case run except for the case where both Heavy
Iso and Light Distillate stream prices were at their high values. For all cases,
the active inequality constraint after the first cycle was the Light Iso stream
Reid vapour pressure upper bound, and at the end of the other cycles, the
upper bound on the Light Distillate stream 90% volume distilled true boiling
point temperature was active. For the case where the Heavy Iso and Light
Distillate prices were $193.89/m* and $200.52/ m3 respectively, at the end
of the fourth cycle, the lower bound on the Heavy Iso stream 10% volume
distilled true boiling point temperature was also active. Figures 6.8 and 6.9
show the changes in set points made at the end of each cycle of the four real
time optimization runs completed. For more information on the performance
of real time optimizer on each of the four cases studied, see Tables A.1, A.3,
A.6 and A.7 in Appendix A.

6.3.2 Economic Objective Function Sensitivity Analy-
sis
To perform the economic objective function sensitivity analysis, the economic
optimization simulation developed in Chapter 5 was modified to allow free
movement of the manipulated variables. That is, the bounds used to con-
strict the manipulated variable movements on each real time optimizer cycle
were widened to allow the economic optimization to proceed directly to the
optimum subject to the inequality constraints. The product stream prices,
feed stream cost and utility fuel oil costs were then varied by +5% from their
original values (the original prices and costs are given in Table 5.1). The
results of this study were produced by Fenton [39] and are summarised in
Table 6.1. Each of the 14 runs detailed in Table 6.1 began from the simu-
lation settings of an optimized base case run. The initial profit before and
after optimization with the new product price or cost is given, along with




138

[ =~ Upper Bound Y
SET POINTS BY CYCLE (NOISE ADDED) | -8~ LT-DIST=180.52, HV-ISO =193.89 |
(Part 1 of 2) —&— LT-DIST=180.52, HV-ISO =173.89 |
| 96 LT-DIST=200.52, HV-iSO =193.89
| - LT-DIST=200.52, HV-iSO =173.89 |
{ — = tLower Bound
10000 ) 240
o %000 € 220 —~
g 8000 r :
g m‘—f E 200 i
Z 6000 & a0 P
@ w00 g 'F--EE;""‘!!--;;;;;;;s;=55=r—‘*
S
X 4000 E 60 -
& 3000 % 40
3
~ 2000 2 T
Q - 120
1000 Q
Q 100 —— +
1 2 k] 4 1 2 3 4
CYCLE CYCLE

700
: 3 — ‘
= & 680 j
g 5 r
< < 840
[y =T l
w u a20
§ é 600 —
-
: x 580
g 32 s0 v
3 -]
[
s 540
» - T
a 5 =0
500 v
1 2 3 4
CYCLE
30000 12000 |
e, e, e r e e ————— ——— - -
= 25000 __ 10000 ‘
- -
3 i |
£ 20000 3 8000
5 : —=
2 15000 — —————g ¢ oo
.3 hd
) -]
& 10000 @ 000 1
[ H
3 i
8 00 2000 :
!
:
o 9 H

CYCLE CYCLE

Figure 6.8: Graphs of the set point changes made during the runs with
different Heavy Iso and Light Distillate prices using the ASPEN PLUS real
time optimizer (1 of 2).
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the penalty for not re-optimizing after this price or cost change occurred.

6.3.3 Changes in Economics During Real Time Opti-

mization Runs

Four real time optimizer runs were performed using the ASPEN PLUS ver-
sion 9.3 real time optimizer instead of version 9.2 (see Section 6.5 for more de-
tails on the changes between versions). Two of the runs used winter economic
conditions throughout. that is. the prices were $173.89/m> and $200.52/m3
for Heavy Iso and Light Distillate streams respectively and a Light Iso prod-
uct Reid vapour pressure upper limit was set to 14 psi. The other two
runs were performed with product prices changing part way through the
run to summer prices from the winter conditions given above. The summer
conditions used were $193.89/m® and $180.52/m? for Heavy Iso and Light
Distillate streams respectively and a Light [so product Reid vapour pressure
upper limit of 10.5 psi. The price changes were chosen to reflect the change
between tvpical summer and winter economic conditions. that is. in winter
heating oil is generally in higher demand. while in summer. gasoline is in
higher demand.

Graphs comparing the profit objective functions at each cycle for the
winter case and winter to summer price change runs. with and without mea-
surement noise. are presented in Figure 6.10. The ASPEN PLLUS version 9.3
real time optimizer failed on the fifth cycle of the winter case run with ran-
dom measurement noise due to two violated constraints. For the winter to
summer run with measurement noise. the real time optimizer failed on the
sixth cvcle, also due to two violated inequality constraints. In both cases.
the constraints violated were the upper bound on the stabilizer column C1
reflux flow and the upper bound on the Light Distillate stream 30% volume
distilled true boiling point temperature. The error returned by the SQP
optimization algorithm for the winter case was “no feasible point found to
quadratic subproblem”, and for the winter to summer run the error returned
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Table 6.1: ASPEN PLUS economic objective function sensitivity study re-

sults [39].

Run Profit Profit Penalty  Penalty
before after for not (%)
opti- opti- optimiz-
mization mization ing
($/year) (8$/year) (3/year)

Base case — 4,901,100 — —

Low Vapour price 4,901,000 5,530,800 628,700 12.8

High Vapour price 4,901,200 5,137,500 236,300 .8

Low Cy-Distillate price 4,375,200 4.477.400 102.200 2.3

High C4-Distillate price 5,427,100 5,574,900 147.800 2.7

Low Light Iso price 4,227,300 4,663.500 136.200 10.3

High Light Iso price 5,575,000 7,548,700 1.973.700 35.4

Low Heavy Iso price 3,025,800 4,004,100 978.300 32.3

High Heavy Iso price 7,450,300 9.717.200 2,266.900 30.4

Low Light Distillate price 4,152,400 4.663.400 511.000 12.3

High Light Distillate price 5,649,900  8.066.800  2.416.900 12.8

Low Stabilizer feed cost 9,110,600 9,269,600 159,000 1.7

High Stabilizer feed cost 691,600 1,832,800 1.141,200 165.0

Low fuel oil cost 4,947,900 7,257,000 2.309.100 16.7

High fuel oil cost 4,854,400 6,380,200 1.525.800 31.4
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was “line search failed on final iteration; solution may not be optimal”.

The winter case and the winter to summer run with no measurement noise
were both completed without errors for all 10 cycles of the real time optimizer
attempted. However. the winter to summer with no measurement noise did
have violated constraints at the end of both cycles 4 and 5. the two cycles
completed after the change to summer conditions. The constraints violated
at the end of the fourth cvcle were the Light Iso Reid vapour pressure and the
Light Distillate stream 90% volume distilled true boiling point temperature
upper bounds. At the end of the fifth cycle, just the Light [so Reid vapour
pressure constraint was violated.

The active inequality constraints for most of the winter run with ran-
dom measurement noise were the C4-Distillate stream Cs mole fraction lower
bound and the Light Distillate stream 90% volume distilled true boiling point
temperature upper bound. For the winter run with no measurement noise.
the active inequality constraints were the Light Iso stream Reid Vapour pres-
sure for the first few cvcles. For the latter cycles. the active constraints were
both the upper and lower bounds on the Light Distillate stream 90% volume
distilled true boiling point temperature. For more information on the perfor-
mance of real time optimizer on the winter case runs. see Tables A.8 and A.9
in Appendix A.

For the winter to summer run with noise added to the measurement
data, the active constraints for most of the summer cycles was the upper
limits on the Light Distillate stream 90% volume distilled true boiling point
temperature and the Light Iso stream Reid vapour pressure. The Light
Distillate stream 90% volume distilled true boiling point temperature was
at its upper limit for all of the summer cycles of the winter to summer
run without measurement noise. For the first 1 summer cycles, the Light Iso
stream Reid vapour pressure was also at its upper limit. For more information
on the performance of real time optimizer on the two winter to summer runs,
see Tables A.10 and A.11 in Appendix A.
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Figure 6.10: Graphs comparing profits (economic objective function) for win-
ter case and winter to summer price change with and without noise using the
ASPEN PLUS version 9.3 real time optimizer.
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Figure 6.11: Graphs of the set point changes made during the winter case
and winter to summer price change with no measurement noise runs using
the ASPEN PLUS version 9.3 real time optimizer (1 of 2).
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6.4 Process Disturbances

To test the effect of process disturbances on the performance of the real
time optimizer, the example of a restriction on the cooling capacity of the
condensers on columns C1 and C2 was chosen. This was implemented by
adjusting the measured condenser temperatures returned from the “plant”
simulation. For the cases tested. the condenser temperatures were forced
to be 100°F. approximately 10°F higher than normal. This test was used
to simulate an increase in ambient temperature and humidity around the
plant, thereby increasing the temperature of the cooling water used in the
condensers on columns C1 and C2.

Graphs comparing the profit objective functions at each cycle for the
base case and condenser temperature disturbance runs. with and without
measurement noise. are presented in Figure 6.13. Both runs. with and with-
out measurement noise, were run for as many cycles as possible. For the the
condenser disturbance run with measurement noise. the SQP optimization
algorithm failed due to violated inequality constraints on the fifth cvcle. The
constraints violated were the upper limits on the C1 reflux flow and the Light
Distillate stream 90% volume distilled true boiling point temperature. The
error given by the optimization algorithm was “line search failed on final
iteration: solution may not be optimal”.

Similarly, the run with no measurement noise failed on the sixth cvcle
of the real time optimizer due to violated inequality constraints and a con-
vergence failure within tear stream block on the stripper column. The con-
straints violated in this case were the upper limits on the Light [so stream
Reid vapour pressure and the C,-Distillate stream Cs mole fraction. The
tear stream convergence failure appeared to be caused by problems with the
convergence of the PETROFRAC flowsheet block, C2C4C5. during some of
the tear stream iterations. This prevented the convergence of the tear stream
block within the required 30 tear stream iterations. The error given by the
obtimization algorithm was “no feasible point found to quadratic subprob-

"

lem”.
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Figure 6.13: Graphs comparing profits (economic objective function) for base
case and condenser disturbance runs with and without noise using the AS-
PEN PLUS real time optimizer.
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The active inequality constraints during the condenser disturbance run
with measurement noise were then same as for the base case run (see Sec-
tion 6.2). For the condenser disturbance run without measurement noise, the
active inequality constraints for cycles 2, 3 and 5 were the upper limits on
the Light Iso stream Reid vapour pressure, the C,-Distillate stream Cs mole
fraction and the Light Distillate stream 90% volume distilled true boiling
point temperature. At the end of cycle 4, both the Reid Vapour pressure
and Cs mole fraction constraints were active. Figures 6.14 and 6.15 compare
the changes in set points made at the end of each cycle for the base case and
condenser disturbance runs without measurement noise added to the process
data. For more information on the performance of real time optimizer on the
two condenser disturbance runs, see Tables A.12 and A.13 in Appendix A.

6.5 ASPEN PLUS Software Upgrade

Soon after the previous real time optimizer runs were completed, the ASPEXN
PLUS process simulation package was upgraded from version 9.2 to 9.3. To
test the effect of this upgrade, the real time optimizer was run without any
modification using the new version of ASPEN PLUS on the base case. It
was found that the optimizer failed on the second iteration due to process
flowsheet convergence failures in both column C1 (modelled using RAD-
FRAC) and columns C2, C4 and C5 (modelled using PETROFRAC). From
the ASPEN PLUS version 9.3 manual [13], it was found that modifications
had been been made to the RADFRAC and PETROFRAC unit operation
models, and the SQP optimization algorithm.

During testing of the real time optimization problem, it was found that
RADFRAC was now allows the use of different initialization methods for the
column. It was found that setting the option INIT-OPTION=CRUDE in the
RADFRAC model prevented the convergence errors encountered previously.
No other changes were made to the real time optimizer code.

The graph in Figure 6.16 compares the profits returned from the economic
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Figure 6.16: Graph comparing base case profits (economic objective function)
with measurement noise for ASPEN PLUS versions 9.2 and 9.3

optimization for the two versions of ASPEN PLUS for the base case with
measurement noise added to the plant data. The ASPEN PLUS version 9.3
real time optimization failed on the fourth cycle due to a violated inequality
constraint which the SQP optimization algorithm could not satisfy. The
violated constraint was the upper limit on the Light Distillate stream 90%
volume distilled true boiling point temperature. The error given by the
optimization algorithm was “line search failed on final iteration: solution may
not be optimal”. For more information on the performance of the ASPEN
PLUS version 9.3 real time optimizer, see Table A.14 in Appendix A.
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6.6 Discussion

6.6.1 Real Time Optimizer Linking

Formation of the complete real time optimizer was relatively simple for both
the sequential modular and equation-oriented process simulators. The linking
of the real time optimizer took 37.5 hours of development time for ASPEN
PLUS and 46 hours for SPEEDUP. Including the times for developing the
process model, data reconciliation and economic optimization, the total real
time optimizer development times were 436.5 hours for ASPEN PLUS and
886 hours for SPEEDUP.

The ability to perform sequencing of the data reconciliation and economic
optimization simulations in ASPEN PLUS greatly simplified the linking of
the real time optimizer. This allowed the whole real time optimization to be
performed with a single ASPEN PLUS input file using one process flowsheet
with two optimization blocks sequenced to run consecutively. SPEEDUP
does not have a sequencing feature, therefore the data reconciliation and
economic optimization simulations had to be performed using separate input
files, and were sequenced externally using the Unix C-Shell controlling the
real time optimizer.

SPEEDUP’s ability to save the present operating point of a simulation
and to re-read this operating point back into the simulation at any time
simplified the transfer of data between simulations. In ASPEN PLUS, the
transfer of the simulations settings at the end point of the economic opti-
mization to the data reconciliation for the beginning of the next cycle had
to coded manually using a user defined FORTRAN block. This was time
consuming and required debugging of the FORTRAN code.

6.6.2 Real Time Optimizer Comparison

Both the sequential modular and equation-oriented process simulator based
real time optimizers were able to be compared on only two problems due
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to difficulties tuning the objective function weights in SPEEDUP. The two
problems tested were the base case, using the economic data given in Ta-
ble 5.1, and the base case with no measurement noise added to the data
produced from the “plant” simulation.

Figure 6.3 shows that both the SPEEDUP and ASPEN PLUS real time
optimizers were reasonably close to the expected global optimum when they
failed for the case where no random noise was added to the measured data
(SPEEDUP finished $53.30/hr and ASPEN PLUS $97.14/hr lower than the
expected global optimum). However in Figure 6.6, for the runs where random
noise was added to the process measurements, both optimizers were unable
to get close to the expected global optimum (SPEEDUP finished $372.43/hr
and ASPEN PLUS $504.92/hr lower than the expected global optimum).
The global optimum shown in Figures 6.3 and 6.6 cannot be guaranteed
to be the true economic global optimum for this process due to the highly
complex and nonlinear nature of the objective function, and also because of
any process modelling errors that may exist.

The graphs in Figures 6.3 and 6.6 show that SPEEDUP was able to
achieve significantly higher profits than ASPEN PLUS, even though less op-
timizer cycles were able to be completed. The most likely reasons for the more
aggressive economic optimization performed by SPEEDUP is due in part to
the more accurate derivative information used by the optimization algorithm
from the process model, and the use of an infeasible path optimization al-
gorithm. Equation-oriented process models are able to produce analytical
derivative information, where possible, instead of the numerical derivative
information calculated from a sequential modular process flowsheet. This
not only reduces the computational time required for an optimization, it
also provides more accurate information for the optimization algorithm to
estimate step lengths and search directions. The infeasible path SRQP opti-
mization algorithm does not require the process flowsheet to be converged at
every iteration and permits violation of constraints and variable bounds on
the way to the optimum. ASPEN PLUS’s SQP optimization algorithm can
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only violate the inequality and equality constraints specified in the input file
constraint blocks at each iteration. This ability to violate constraints allows
the optimizer the possibility of finding a better optimum by stepping outside
constraints temporarily on the way to the optimum.

Also, SPEEDUP used significantly less computational time to complete
each real time optimization cycle requiring an average of 232.14 CPU min-
utes for the base case and 93.70 CPU minutes for the base case with no
measurement noise. ASPEN PLUS required an average of 479.11 CPU min-
utes for the base case and 116.10 CPU minutes for the base case with no
measurement noise to complete a real time optimizer cycle. The main reason
for this difference in computational times is the iterative method used by the
sequential modular simulator to solve tear stream blocks. See Section 4.4.1
for a more thorough discussion of how tear stream convergence affects the
computational time taken by ASPEN PLUS.

As already discussed in Sections 4.4.2 and 5.4.2, many problems were en-
countered tuning the SPEEDUP real time optimizer by adjusting weighting
factors in the objective function to promote convergence of the SRQP opti-
mization algorithm. Unfortunately, the SRQP algorithm does not allow the
user to modify any parameters that affect the algorithm’s criteria for “slow
convergence”, the most common error message returned when the optimiza-
tion fails to converge. Another factor that may contribute to the convergence
difficulties in SPEEDUP optimization problems is poor flowsheet and manip-
ulated variable scaling with the process models used. At this time, automatic
flowsheet scaling using user defined scaling parameters is only available for
steady state and dynamic simulations. Flowsheet scaling for optimization
problems will be added in a future version of SPEEDUP according to the
program documentation [11, 12]. Flowsheet scaling was observed to have sig-
nificant benefits in promoting flowsheet convergence during the steady state
development of the process model (see Section 3.5.3).

Another problem encountered with the equation-oriented simulation based
real time optimizer was the failure of the economic optimization due to prop-
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erty errors during the third cycle of the base case run. This error in an
undetermined flash calculation occurred consistently on the second iteration
of the economic optimization on the third cycle of the real time optimizer.
This error did not prevent the simulation from continuing, but did cause the
constraint violations to be approximately 3 orders of magnitude larger than
normal during this optimization. This resulted in the SRQP optimization
algorithm failing due to “inconsistent constraints” on every attempt to solve
this problem. Some method of tracking which flash and/or model equations
caused this property error is required to allow the user a chance to place
bounds on the offending variable to restrict its movement within reasonable
limits.

Several problems were also encountered with the sequential modular sim-
ulation based real time optimizer. The most common problem was the in-
ability of the SQP optimization algorithm to satisfy violated constraints after
converging the economic objective function. This usually occurred when two
or more constraints became active during the economic optimization. The
two inequality constraints which commonly caused the failure of the ASPEN
PLUS real time optimizer by being violated were the upper limit on the Light
Distillate stream 90% volume distilled true boiling point temperature, and
the upper limit on the Cy4-Distillate stream Cs mole fraction. By looking at
the optimization history, it appears that once a constraint is violated, the
SQP optimization algorithm makes very little effort to satisfy the constraint
until the end of the optimization. At this stage, the constraint has usually
been violated to such an extent, that the optimizer is unable to satisfy the
constraint on subsequent iterations. It is likely that this problem is caused by
the lack of accurate derivative information available to the SQP optimization
algorithm from the sequential modular process flowsheet.

Occasionally, failures in the tear stream convergence were noticed during
flowsheet passes of the ASPEN PLUS process flowsheet. These failures gen-
erally did not cause any problems other than adding extra computation time
to the optimization convergence, and possibly returning inaccurate numerical
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derivative information to the SQP optimization algorithm. Flowsheet con-
vergence was only found to be a problem in one run of the ASPEN PLUS real
time optimizer. It occurred on the sixth cycle of the condenser disturbance
with no measurement noise run (see Section 6.4). However, since this process
flowsheet contains relatively few recycle loops, convergence of the flowsheet
recycle loops is a concern when using sequential modular process simulators
in real time optimization on more complicated industrial processes.

From the graphs in Figures 6.4 and 6.5 comparing the set point changes
made by both real time optimizers on the base case without measurement
noise, it can be seen that the SPEEDUP tended to make fairly large changes
to the composition related set points. In particular, the largest changes
occurred on the C,-Distillate streamm Cs mole fraction and the Heavy Iso
stream 10% volume distilled true boiling point temperature. Decreasing the
C,-Distillate stream Cs mole fraction as low as possible increases the profit by
forcing these Cs components into the higher priced Light Iso product stream,
provided the constraints on the bubble point in the condenser on column C2
and the Light Iso stream Reid vapour pressure can be maintained. AS-
PEN PLUS is slower to accomplish this reduction in Cs components in the
C,-Distillate product stream. In turn, the Heavy Iso product stream 10%
volume distilled true boiling point temperature is increased to provide some
heavier components in the Light Iso stream to reduce the Reid vapour pres-
sure. Reducing the Reid vapour pressure increases the Light [so stream price
because of the quality specification associated with the Light Iso Reid vapour
pressure as given in Equation (5.3). It is likely that the SPEEDUP real time
optimizer made these changes in set points more quickly than ASPEN PLUS
because of SPEEDUP’s infeasible path optimization method, and also due
to the more accurate derivative information provided by the process flow-
sheet in an equation-oriented simulation. Both real time optimizers quickly
increased the Light Distillate stream 90% volume distilled true boiling point
temperature the upper limit, to allow as many heavy components as possible
into the Light Distillate product stream rather than to the splitter bottoms
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stream for further cracking. It is likely that this constraint will always be
active during this economic optimization for this reason.

Figures 6.4 and 6.5 also show that at the end of the first cycle, there
were already significant differences in the C,-Distillate stream Cs mole frac-
tion between the two real time optimizers. Some of this difference can be
attributed to the more aggressive optimization performed by SPEEDUP’s
SRQP optimization algorithm. However, this large difference may have also
been caused in part by differences in the results from the data reconciliation
of the measured data performed by both of the real time optimizers. Slight
differences between the process models used in the two process simulation
packages may also contribute to this difference.

6.6.3 Economic Model Changes

The first economic runs performed tested the effect of changes in the Heavy
Iso and Light Distillate product stream prices. These runs were chosen to
test the performance of the ASPEN PLUS real time optimizer under different
economic conditions where the expected performance of the optimizer was
known from Shell Canada’s experience. In particular, the base case run where
the price of the Heavy Iso stream was $193.89/m? and the Light Distillate
stream was $180.52/m3, and the run where the price of the Heavy Iso stream
was $173.89/m3 and the Light Distillate stream was $200.52/m?, correspond
to tvpical summer and winter economic operating conditions respectively
(however, the summer or base case has the same Light Iso Reid vapour
pressure upper limit of 14 psi as used under normal winter operation). The
graphs of the objective function profit at the end of each real time optimizer
cycle given in Figure 6.7 show similar shaped curves for all of the runs with
different stream prices.

Differences in the performance of the real time optimizer in the runs with
different Heavy Iso and Light Distillate stream prices can be seen on the
graphs of the set point changes made in Figures 6.8 and 6.9. Not surprisingly,
the runs where the Heavy Iso and Light Distillate stream prices were both
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at their highest values or at their lowest values produced very similar set
point changes as the difference between the two stream prices was the same
for both runs. The largest difference in set point changes made were for
the base case (summer) run and the winter run. For the base case run, the
emphasis for the economic optimization is to produce as much Heavy Iso
product as possible, because this stream has the highest associated price.
To achieve this, the optimization forces the set points on the Heavy Iso
stream 90% volume distilled and the Light Distillate stream 10% volume
distilled true boiling point temperatures as high as possible to encourage the
production of as much Heavy Iso as possible. Also the flow to the column C5
sidestripper, where the Light Distillate product draw is taken, is reduced as
much as possible within the process constraints.

Similarly for the winter run, the emphasis for the economic optimizer is
to produce as much Light Distillate product as possible. To achieve this.
the optimization forces the set points on the Heavy Iso stream 90% volume
distilled and the Light Distillate stream 10% volume distilled true boiling
point temperatures as low as possible to encourage the production of as
much Light Distillate as possible. These results are similar to those observed
with Shell Canada’s real time optimizer.

The results of the sensitivity study on the economic objective function
performed by Fenton [39] in Table 6.1 seem to show some inconsistent data.
The optimizations performed with the modified economic data were all ini-
tialized with the results of the optimized base case run. However, it is likely
that the optimized base case was not solved to the global optimum profit,
and that the optimizer on this run finished at a local optimum of the profit
objective function. This is especially evident from the high and low fuel oil
costs where the optimizer was able to increase the starting profit by 31% and
47% respectively. This seems to represent a large change in optima for just
a +5% change in the reboiler furnace heating oil cost. Unfortunately, there
is no way to guarantee that an optimization has reached the global optimum
of a given objective function, therefore is is always possible that the profit
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returned from the real time optimization is actually a local optimum.

This economic sensitivity study does, however, show how continuous op-
timization of the process can help increase the profit made by the process.
In every run tested in this study, the economic optimization was able to find
a better operating point. Therefore, even though the optimum found can-
not be guaranteed to be the global optimum for the process, it can be seen
that continuously optimizing the plant does produce higher profits than not
optimizing after changes in economic parameters.

The effect of changing the economics from typical winter to typical sum-
mer operating conditions part way through the optimizer run can clearly be
seen in Figure 6.10. For these runs, the Light Iso Reid vapour pressure upper
limit was also changed for summer to 10.5 psi from the limit of 14 psi used
during winter operation. Changing the economics at the beginning of cycle 3
for the run with measurement noise and cycle 4 for the run with no mea-
surement noise caused the profits to remain almost constant for three cycles
as the real time optimizer changed optimization strategies. The optimizer
was then able to make gains in profit for the run with no measurement noise
at almost the same rate as the winter case. This was an expected result.
as the optimizer had been trving to maximize the production of Heavy Iso
up to the change in economic conditions, and had to switch to maximizing
production of the Light Distillate product stream. This can be seen in the
graphs comparing the set point changes made at the end of each cycle for
the runs with no measurement noise added, given in Figures 6.11 and 6.12.
For the winter case, the real time optimizer lowered the Heavy Iso product
stream 90% volume distilled and the Light Distillate stream 10% volume dis-
tilled true boiling point temperatures as much as possible on each cycle, to
allow as many components as possible to be included in the Light Distillate
product. For the summer cycles of the winter to summer run, the real time
optimizer swapped to a strategy of increasing the Heavy Iso product stream
90% volume distilled and the Light Distillate stream 10% volume distilled
true boiling point temperature to maximize the amount of Heavy Iso being
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produced for gasoline products.

The change in the Light Iso Reid vapour pressure upper constraint from
14 psi to 10.5 psi had an obvious effect on the operation of the condenser on
the C1 stabilizer column. From Figure 6.11. it can be seen that the amount
of C5 components retained in the Cy-Distillate stream increased noticeably.
This is to reduce the number of lighter components in the Light Iso product.
thereby lowering the Reid vapour pressure of this stream tc comply with the
lowered Reid vapour pressure constraint.

6.6.4 Process Disturbances

The disturbance created by the increased condenser temperatures in both
columns C1 and C2 reduced the profit attained by the real time optimizer
significantly, as can be seen in Figure 6.13. Both of the condenser distur-
bance runs with and without measurement noise produced similar results.
with profit objective function unable to be pushed higher than approxi-
mately $180/hour. For the first two cycles of both condenser disturbance
runs. the profits obtained were almost identical to the base case runs at
which point the optimizers were unable to make any further significant gains
in profit.

Comparing the set point changes made during the base case and condenser
disturbance runs with no measurement noise in Figures 6.14 and 6.15. it can
be seen that the major difference was in the handling of the C,-Distillate
Cs mole fraction set point. This set point was forced to its upper bound
within 2 cvcles of the real time optimizer to reduce the amount of light
components reaching the splitter column This was the expected reaction to a
loss in cooling in the condensers, therefore causing a reduction in the ability
to condense lighter components at the top of both columns. This resulted
in increased Vapour product stream flow and a corresponding decrease in
C,-Distillate product stream flow compared with the base case run.

Originally this run was planned have the process disturbance added at the
ASPEN PLUS base case optimum solution. However, due to the problems the
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SQP optimization algorithm had in satisfying active inequality constraints
once the process disturbance was added, this was not possible. Therefore.
it was decided to have the process disturbance added right from the start
of the run. Unfortunatelv this meant that no runs were possible to test the
performance of the real time optimizers once it had attained a near optimal
operation of the plant.

6.6.5 ASPEN PLUS Software Upgrade

From the results shown in Figure 6.16. it can be seen that even small changes
to process models and optimization algorithms can have a significant effect
on the performance of a real time optimizer. The optimization algorithm
in ASPEN PLUS version 9.3 was able to obtain a slightly higher profit (ap-
proximately $40/hr more) in fewer real time optimizer cycles. This profit
was still approximately $100/hr less than the profit achieved by SPEEDUP
on the base case. and used more real time optimizer cycles and computation
time. The ASPEN PLUS version 9.3 real time optimizer still failed due to
violated inequality constraints in a similar manner to the version 9.2 real
time optimizer.

The problems encountered in trying to achieve convergence of the real
time optimizer with the new version of ASPEN PLUS show how care must
be taken when upgrading process simulation packages. Testing, debugging
and retuning of the real time optimizer needs to be performed to verify that
the real time optimization application is still producing valid results.
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Chapter 7
Conclusions

The conclusions from this research are covered in the next three sections.
Conclusions from the development of the real time optimizers using both se-
quential modular and equation-oriented process simulation packages are cov-
ered in Section 7.1 below. Comparison of the two types of process simulation
packages used with respect to their performance in real time optimization
applications are covered in Section 7.2. In Section 7.3. conclusions specific to
the stabilizer-splitter process studied are made. Finally, in Section 7.4. some

suggestions for future work following on from this research are made.

7.1 Real Time Optimizer Development

Overall. it can be concluded that sequential modular process simulation pack-
ages are easier to use when developing real time optimization applications.
however equation-oriented simulators are more flexible for manipulated vari-
able choice and recycle loop convergence. Development of the same real time
optimizer using SPEEDUP, an equation-oriented process simulator. took ap-
proximately twice as long as the development using ASPEN PLUS, a sequen-
tial modular process simulator.

The main reason for this development time difference was due to the lack
of useful, or meaningful, error messages produced by an equation-oriented
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simulator when either the process flowsheet or optimization algorithm fails
to converge. Debugging convergence problems is a slow process of eliminating
all possible sources of error over many runs of the simulation. since different
errors often result in the same error message from the convergence algorithm.
This lack of useful information is caused in part by the simultaneous solution
of equation-oriented process flowsheet equations and also the infeasible path
convergence algorithms used. Since an equation-oriented simulator solves the
process flowsheet as a large set of simultaneous equations. it is difficult to
track errors to a particular equation or variable.

A few mathematical tools are available in SPEEDUP to help determine
the cause of a convergence failure. One method of tracking these errors is to
monitor the largest equation residuals during the solution of the flowsheet to
track down problem equations and/or variables. Another method is to track
the variables which changed by the largest amount between iterations of the
flowsheet convergence algorithm. These equations and/or variables can then
be checked by hand to see if the problem is caused by incorrect modelling
equations. poor starting point values. incorrect variable bounds. or is caused
by errors in other variables or equations. However. the large number of equa-
tions and variables involved. 6066 equations and unknown variables for the
stabilizer-splitter process flowsheet. make this a time consuming task. The
infeasible path algorithms used to solve the process flowsheet and optimiza-
tion problems also make it difficult to detect errors because intermediate
variable values do not necessarily satisfy constraints and bounds. This can
result in some strange intermediate variable values which have no physical
meaning, for example. negative component compositions. Therefore looking
at the actual intermediate value of variables provides very little information
with respect to convergence failures.

Sequential modular process flowsheet errors can always be tracked to a
particular unit operation, and often a reasonably accurate error message is
produced. This makes debugging of flowsheet convergence problems rela-

tively simple. Optimization algorithm convergence failures are somewhat



165

more difficult to debug, however more useful information is available for
finding the cause of the error than in an equation-oriented simulator. Since
the flowsheet solution is always feasible at the end of an iteration. variable
values can be used to help find the cause of the convergence failure.

Sequential modular process simulators usually also have the advantage
of a graphical user interface. however. graphical user interfaces are presently
being developed for several equation-oriented packages including SPEEDUP
and MASSBAL. A graphical user interface is useful for preventing syntax
errors in the input file. quickly building process flowsheets and ensuring that
the correct number of variables have been specified before running a sim-
ulation. However most of the time in developing a real time optimizer is
spent fixing convergence errors and ensuring that the process flowsheet is
adequately modelling the plant. For these tasks. a graphical user interface
does not offer many advantages over direct editing of the input code.

An equation-oriented process simulator has two main advantages over a
sequential modular process simulator when developing a real time optimizer.
The first advantage is how equation-oriented process simulators handle the
convergence of recycle loops and tear streams. A recycle loop in an equation-
oriented simulator is handled by inserting a tear block which equates the inlet
and outlet streams plus a slack variable which is set to zero. The tear stream
is then converged at the same time as all the other flowsheet equations. In
a sequential modular simulator. a recycle loop results in the creation of a
tear stream convergence loop which iterates through all the blocks in the
recvcle loop until convergenice of the torn stream is obtained. This tear
stream convergence method is computationally time consuming and also less
robust, particularly for large recycle loops. For complex process flowsheets
with more recycle than the stabilizer-splitter flowsheet studied. convergence
of tear streams in a sequential modular simulator would be extremely difficult
to guarantee over the range that the real time optimizer is required to operate.

The second main advantage of using equation-oriented process simulators
to develop a real time optimizer is their flexibility in choosing specified or
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manipulated variables. A sequential modular simulator restricts the user to
specifying the inputs available for that process model. If any other variables
need to specified, a design specification is required which is solved using an
iterative procedure to converge the specification. In an equation-oriented
simulator. any combination of variables (input or output variables) can be
chosen directly as the specified or manipulated variables, provided they fulfil
the degrees of freedom required, and do not over or under specify an equation
block after decomposition has been performed. This does not mean that any
combination of variables will necessarily converge the flowsheet, but it does
offer more flexibility than a sequential modular flowsheet.

This flexibility in the choice of manipulated variables does cause some
other problems. During the development of the SPEEDUP real time opti-
mizer, problems were encountered when the manipulated variables chosen
fully specified the mass balance around column C1 and the energy balance "
around column C2. Since this problem was not detected during analysis of
the flowsheet by SPEEDUP, solution of the flowsheet was performed which
resulted in many different error messages such as “inconsistent constraints”.
“slow convergence” and various property errors. This problem was only de-
tected after extensive analysis of the process flowsheet by hand. For larger
flowsheets. this problem would be difficult and time consuming to find and
correct.

Several process simulator specific problems were found with both ASPEN
PLUS and SPEEDUP. Errors in the transfer of data between blocks in AS-
PEN PLUS using FORTRAN common blocks were difficult to debug since
there is no automatic method for checking the variable values being trans-
ferred. Also ASPEN PLUS has no simple mechanism for saving the results of
a simulation, and then using these results to initialize another simulation as
with SPEEDUP. Several useful features not available in SPEEDUP at present
are the addition of variable scaling for optimization simulations, sequencing
of global optimization blocks similar to ASPEN PLUS’s convergence block
sequencing, and improved error tracking for property errors indicating in



167

which unit the error occurred.

When developing the real time optimizers using both types of process sim-
ulator. it was found that the properties used had a large effect on the accuracy
of the process models. In particular, it was found with the stabilizer-splitter
process that the cross over from conventional components to pseudocompo-
nents was critical when modelling the operation of the condensers in both
columns C1 and C2. When analysing the assay data provided. if was found
that PROPERTIES PLUS assumed the stream was a typical refinery stream.
and therefore used typical specific gravity, boiling point and molecular weight
curves when estimating the pseudocomponent properties. However. hydro-
cracked refinery streams exhibit different typical stream properties. particu-
larly for the light and heavy pseudocomponents, which had to be corrected.
This problem highlights how errors can be caused by not checking the un-

derlying assumptions used in the property calculation routines.

7.2 Real Time Optimizer Comparison

From testing of both the equation-oriented and sequential modular process
simulator based real time optimizers, it can be concluded that the equation
oriented real time optimizer was a far more powerful optimizer. This was
due to the benefits of open form equation solution methods allowing for
very robust and quick tear stream convergence, infeasible path optimization
methods not requiring the solution of the flowsheet on each iteration and
the availability of more accurate analytical derivative information from the
process model equations. The closed form equation based models. with only
one recycle loop in the flowsheet, took approximately between 2 and 4 times
longer to complete a cycle of the same optimization and data reconciliation
problems as the open form equation based models. A more complicated
flowsheet with more recycle would add even more to the convergence time for
a sequential modular simulator, in addition to the problems with convergence
robustness for closed form tear stream solution.
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A process simulator specific conclusion that should be noted is that nei-
ther the ASPEN PLUS nor the SPEEDUP process simulator based real time
optimizers were robust enough for an industrial application in their present
form. SPEEDUP. however. was able to find better profits with less optimizer
cveles and computational time than ASPEN PLUS on all runs tested. The
following conclusions are based on the results from the testing of the two real
time optimizers. ‘Where appropriate. more general conclusions will also be
pointed out.

Two problems were encountered when testing the ASPEN PLUS real time
optimizer. The first was the poor handling of violated inequality constraints
by the SQP optimization algorithm used in ASPEN PLUS. This was the
most common reason for failure of the real time optimizer and almost always
occurred when two inequality constraints had been active on the previous
cvcle of the optimizer. The economic optimizer would then violate one or
both of these constraints searching for an improved profit objective function.
however it was unable to satisfv these constraints again once a new optimum
had been found. The most commonly violated constraints were the upper
limits on the column C1 reflux flow rate and the Light Distillate stream
90% volume distilled true boiling point temperature. The most likely cause
for this problem is the SQP optimization algorithm implemented in ASPEN
PLUS. With more refinement of the algorithm. it is possible this problem
may be alleviated. Another contributing cause for this is the less accurate
derivative information available for the optimization algorithm from the nu-
merical derivatives calculated using the sequential modular process flowsheet
models. Adding to some of the poor derivative information. some flowsheet
passes used to determine derivative values failed to converge due to tear
stream or process model convergence failures. The less accurate derivative
information is typical of all sequential modular flowsheet simulators due to
the closed form of the modelling equations.

The second problem encountered using ASPEN PLUS was the occasional
failure to converge the tear stream block. This failure usually did not di-
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rectly cause failure of the real time optimizer. but did add significantly the
computational time taken during optimization. It also possibly contributed
to inaccurate information being passed to the SQP optimization algorithm.
For complex flowsheets with more recycle loops than the stabilizer splitter
process. tear stream convergence failures would make optimization of the
process very difficult to achieve over all process operating conditions. Prob-
lems converging tear streams quickly and robustly is typical of all closed form
equation solution methods because of the iterative nature of thei: solution.

The main problem with the SPEEDUP real time optimizer was the lack
of tuning parameters available for the SRQP optimization algorithm. Almost
all convergence failures encountered when running the SPEEDUP real time
optimizer produced the error message “slow convergence”. however there was
no method for changing the criteria used to determine slow convergence. On
many occasions. it appeared that the optimizer was very close to the opti-
mum when the “slow convergence” error occurred. For this reason. weighting
factors had to be used in the objective functions for the data reconciliation
and economic optimization to promote convergence of the optimization algo-
rithm. These weighting factors could not be automatically determined during
the real time optimization and required the user to find their value which
allowed convergence. This is not practical for implementation in a real time
optimizer. Another factor which may have caused these convergence prob-
lems was scaling of the process flowsheet and manipulated variables. This
result is a process simulator specific problem. as many other optimization al-
gorithms are available which may be more suitable for solving this problem.
Unfortunately. no other optimization algorithms were available for testing
with SPEEDUP for this study.

Another problem encountered with SPEEDUP was the occurrence of
property errors. particularly during flash calculations. SPEEDUP does not
provide any method of tracking which process model flash procedure was be-
ing calculated at the time. This would allow bounds restricting movement of
some variables to be set. preventing the optimizer from moving into regions
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where property calculations may fail. Again. this is likely to be a process sim-
ulator specific result due to problems either in the properties or convergence
algorithms used.

SPEEDUP consistently found better profit objective function values. usu-
allv by $200/hr or more. at each cycle of the real time optimizer than AS-
PEN PLUS. For the base case runs with no measurement noise (see Fig-
ure 6.3). both ASPEN PLUS and SPEEDUP came very close to achieving
the expected global optimum before the real time optimizers failed. However.
SPEEDUP used half as many cvcles to achieve this increase in profit. The
reason for this could be seen from SPEEDUP’s more aggressive set point
changes made at the end of each real time optimizer cycle. The most likely
reasons for the better performance of the SPEEDUP real time optimizer are
more accurate analvtical derivative information available from the equation-
oriented process flowsheet and the infeasible path optimization algorithm
used.

The SPEEDUP real time optimizer was also computationally more effi-
cient than ASPEN PLUS. taking approximately half as long to complete each
cvcle of the real time optimizer. The difference in computation times was
mostly due to the extra time taken by ASPEN PLUS to converge the tear
stream on each flowsheet pass. and the time taken to calculate the numerical
derivatives for the optimization algorithm. It is likely that for complex flow-
sheets with more recvcle loops. that a sequential modular process simulator
would become even slower relative to an equation-oriented simulator. This
was an expected result for an open equation model based optimization.

It is likely that if the above problems with the SPEEDUP equation-
oriented process simulation package can be addressed. then SPEEDUP could
become a very useful tool for developing and performing real time optimiza-
tion. Despite the added difficulty in developing and converging an equation-
oriented process flowsheet model, the added flexibility in terms of variable
specification. robust and rapid tear stream convergence, and more powerful
optimization algorithms make the equation-oriented process simulator a more
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attractive tool for real time optimization. It is unlikely that the problems
with the ASPEN PLUS process simulator’s ability to converge flowsheet recy-
cle loops quickly and robustly can solved easily using the sequential modular
architecture. Some simultaneous-modular methods have been incorporated
into ASPEXN PLUS to speed convergence of tear streams. however it is un-
likelv that these will achieve the level of performance required for complex
flowsheets used in real time optimization. For less complex flowsheets with
little or no recvcle. a sequential modular simulator provides a very simple
method to develop a real time optimization application. provided the SQP
optimization algorithm’s convergence with respect to violated constraints can
be improved.

A final conclusion regarding upgrading versions of the process simula-
tion software should be noted. When ASPEN PLUS was upgraded from
version 9.2 to 9.3. the real time optimizer failed to converge without adjust-
ments to the process simulation code. Considering that version 9.3 was only a
minor software upgrade. this shows that care must be taken when upgrading
to ensure that the real time optimizer is still producing valid results. Even
small changes to the process models and the optimization algorithm can have
an impact on the performance of the optimization. This conclusion should
apply equally to both sequential modular and equation-oriented simulator
based real time optimizers. Upgrading to version 9.3 of ASPEN PLUS did
cause the real time optimizer to be slightly more robust. however constraint
handling and tear stream convergence problems were still observed similar
to those seen with version 9.2.

7.3 Process Specific Conclusions

The development of real time optimizers with both ASPEN PLUS and SPEED-
UP fulfilled the objective of developing a “test bed” for real time optimization
to allow further research to be conducted. It should be noted that the pro-
cess studied in this thesis is somewhat less complex than those typically used
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with industrial real time optimizers. The process chosen was smaller than
normal to allow the solution of a real time optimizer cycle to be completed
within a reasonable period of time with the computing resources available.
Therefore it could be argued that the objective of real time optimization
on this process as implemented could also be achieved using a combination
of advanced control and process insight. This is because onlv two major
operating strategies were observed in the testing of this process. that is. a
summer and a winter operating strategy hased on the economic conditions.
To implement some form of model based local optimizer would be the correct
decision in an industrial situation if this was the whole process to optimized.
However. for the purposes of researching real time optimization this process
produces valid results.

The stabilizer-splitter process at Shell Canada’s Sarnia refineryv is in-
cluded in a real time optimizer which also optimizes the operation of the
catalvtic cracking units. This addition of several extra unit operations to the
real time optimizer introduces many different operating strategies and trade-
offs that can be mmade between process units. These trade-offs between the
operation of several units and changes in operating conditions are where the
pavback from installing a real time optimization application can be made.
Also. with more unit operations included in a real time optimizer. less con-
flict is possible between the operating strategies used in different parts of the
plant.

All of the following conclusions were based on testing of the ASPEN
PLUS real time optimizer under varving economic conditions and process
disturbances.

Several real time optimizer runs were carried out to check the performance
of the real time optimizer under tvpicai summer and winter economic oper-
ating conditions. It was concluded that the real time optimizer performed as
expected by trving to maximize production of the Heavy [so gasoline product
stream during typical summer economic conditions. and maximizing Light
Distillate heating oil product stream under tyvpical winter economics. Two
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runs were also performed where the economic conditions were changed from
winter to summer part way through the real time optimizer run. These runs
produced similar set point changes and results after the change in economics
as the previous real time optimizer run completely with typical winter eco-
nomic conditions.

From the results of the winter only and the winter to summer runs pre-
sented in Section 6.3.3. the two operating strategies that could be imple-
mented using advanced control for optimizing only the stabilizer-splitter pro-

cess would be:

1. For summer economics and process constraints. the objective would
be to increase the Heavy Iso and Light Distillate 90% volume distilled
true boiling point temperatures as close to their constraints as possible
while maintaining the Light Iso stream Reid vapour pressure at its

upper limit.

(]

For winter economics and process constraints. the operating objective is
to increase the Light Distillate 90% volume distilled true boiling point
temperature and decrease the Light Distillate 10% volume distilled true
boiling point temperature as close to their constraints as possible. The
C,-Distillate stream C; mole fraction should also be reduced as much
as possible while the Light Iso stream Reid vapour pressure at its upper
limit.

A sensitivity study performed by individually varying the economic objec-
tive function prices by £5% concluded that continually optimizing the plant
does produce higher profits than not optimizing after economic changes. In
every case tested, the real time optimizer was able to find a better operat-
ing point after a change in economic parameters. However. this study also
showed that there is no way to guarantee that the optimization has found
a global optimum profit objective function which made the results of this
study difficult to analyse.
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Finally, a process disturbance in the condenser cooling water tempera-
ture was simulated by increasing the condenser temperatures returned in the
measured data to the real time optimizer. The real time optimizer performed
as expected to the reduction in the available cooling in the condensers which
significantly reduced the profit attained by the economic optimization.

7 4 Recommendations for Future Research

Researching real time optimization is difficult due to the large amount of
time required to develop, debug and test the real time optimizer code. The
development of an industrial real time optimization application from this
research allows many areas of real time optimization to be studied in the
future. Several possible areas of future research are outlined below.

A new version of SPEEDUP. version 6.0, is expected before the end of
1997 [16] which may address some of the shortcomings found when using
SPEEDUP for real time optimization. With the addition of flowsheet scaling,
SRQP optimization interface enhancements and optimization manipulated
variable scaling, it should be possible to fix the “slow convergence’ problems
encountered with the SPEEDUP real time optimizer. Further testing of the
equation-oriented real time optimizer will then be possible, thereby providing
more comparison runs with the sequential modular simulator based real time
optimizer.

Shell Canada has modified the stabilizer-splitter plant over the last year
adding a draw from column C2 which is fed back to column C1. thereby cre-
ating a flowsheet recycle loop. By making this process modification to both
the ASPEN PLUS and SPEEDUP based real time optimizers, this would
show the effect of adding a recycle loop to the flowsheet on both sequen-
tial modular and equation-oriented solution methods. This study could also
be used to show how easily the process model in the two types of process
simulators can be modified and maintained.

The simulation model used as the “plant” in this study should be im-
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proved to allow more effective analysis of the real time optimization applica-
tions. Modelling of the process control used in the stabilizer-splitter process

using a dynamic simulation would allow several studies to be researched:

e the effect of real time optimization set point changes on the stability

and performance of the plant’s process control.

e the cost of disturbing the plant by making continuous process control
set point changes compared to the profit gained by moving the plant’s
operating point.
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