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Abstract

In this study, various stability control systems are developed to remove the lateral instability

of a conventional articulated steer vehicle (ASV) during the oscillatory yaw motion or “snaking

mode”. First, to identify the nature of the instability, some analyses are performed using several

simplified models. These investigations are mainly focused on analyzing the effects of forward

speed and of two main subsystems of the vehicle, the steering system and tires, on the stability.

The basic insights into the stability behavior of the vehicle obtained from the stability analyses

of the simplified models are verified by conducting some simulations with a virtual prototype

of the vehicle in ADAMS.

To determine the most critical operating condition with regard to the lateral stability and

to identify the effects of vehicle parameters on the stability, various studies are performed by

introducing some modifications to the simplified models. Based on these studies, the disturbed

straight-line on-highway motion with constant forward speed is recognized as the most critical

driving condition. Also, the examinations show that when the vehicle is traveling with differ-

entials locked, the vehicle is less prone to the instability. The examinations show that when

the vehicle is carrying a rear-mounted load having interaction with ground, the instability may

happen if the vehicle moves on a relatively good off-road surface. Again, the results gained

from the analyses related to the effects of the vehicle parameters and operating conditions on

the stability are verified using simulations in ADAMS by making some changes in the virtual

prototype for any case.

To stabilize the vehicle during its most critical driving condition, some studies are directed

to indicate the shortcomings of passive methods. Alternative solutions, including design of

different types of stability control systems, are proposed to generate a stabilizing yaw moment.

The proposed solutions include an active steering system with a classical controller, an active

torque vectoring device with a robust full state feedback controller, and a differential braking

system with a robust variable structure controller. The robust controllers are designed by using

simplified models, which are also used to evaluate the ability to deal with the uncertainties of the

vehicle parameters and its variable operating conditions. These controllers are also incorporated

into the virtual prototype, and their capabilities to stabilize the vehicle in different operating

conditions and while traveling on different surfaces during the snaking mode are shown.
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Chapter 1

Introduction

Both maneuverability and traction of off-road vehicles are important for better performance in

applications on unprepared, unpredictable and changing terrains. However, the combination of

these two important features is technically difficult because high traction requires driving effort

on the front wheels in addition to the rear wheels, as well as large tires, which limit the steer

angles, and thus the maneuverability, of front wheel steer vehicles. For this reason, various

steering layouts for off-road vehicles have been designed. Typical off-road vehicle steering

layouts are illustrated in Figure 1-1. Types 1, 2, 3, and 5 are most commonly used, type 4

is less common and is sometimes adopted for earth-moving and agricultural vehicles. Type 6

is a combination of types 4 and 5 and may be used for farm transportation and load carrying

purposes. Type 7, skid-steer system, has been introduced for enabling off-road vehicles to

maneuver effectively in confined spaces. In this design, all of the wheels are non-steerable, and

those on one side turn together independently of those on the opposite side. If all of the wheels

on both sides are driven forward with the same speed, the vehicle moves forward, but if the

two wheels on one side are driven in the opposite direction, the vehicle will turn on itself.

The low speed turning behavior (with a constant angle and without considering tire side

slip) of off-road vehicles with the steering layouts of type 1 to 6 has been compared in [1]. The

single steered axle layouts (types 1 and 2) create four wheel trajectories, but types 3, 4 and 5

result in superior tracking where the rear wheels follow the exact trajectory of the front wheels.

Also, type 6 can be designed, in a complicated way, for perfect tracking if the ratio between the

body and axle steer angles is appropriate. Perfect tracking can increase the traction force that
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1- Front Wheel Steering 2- Rear Wheel Steering

3- Four Wheel Steering 4- Twin Axle Steering

5- Articulated Frame Steering 6- Articulated and Axle Steering

7- Skid-Steer System

Figure 1-1: Typical steering layouts of off-road vehicles.

is available from the rear tire and removes the need for a longitudinal differential in four-wheel

drive vehicles, as the front and rear wheels travel at the same speed. This will also reduce

driving resistance forces, and thus, decrease the tire wear.

Type 3 includes twice as many moving parts in the axles as those in types 1 and 2, result-

ing in high manufacturing and servicing costs. Therefore, for both technical and economical

reasons, type 5, articulated frame steering, has become popular and an increasing number of

manufacturers choose this simple but efficient steering system. Articulated frame steering is

a type of powered steering system by which the relative yaw angle of two parts of the vehicle

is changed, usually by two hydraulic actuators. The introduction of articulated frame steering

was a landmark in the development of off-road vehicles, especially for loading and earth-moving

applications. This design significantly improved the level of maneuverability and turning abil-

ities of off-road vehicles, which led to more efficient performance. The concept of articulated

frame steering was first proposed in the early 20th century by a number of manufacturers [2],

such as Pavesi-Toloti (Italy), Pavesi-Wilson (England), Leturno (France), Krupp (Germany),

and Lockheed (USA). However, for many years, this idea was not commonly used. It was not
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until the development of drive systems, such as hydraulic systems, that the applications of

articulated frame steering were increased.

Articulated steer vehicles (ASVs) with articulated frame steering layout, such as scrapers,

loaders and forestry skidders, fall into the category of articulated vehicles with two separate

and rigid segments. In general, articulated vehicles are defined as vehicles with two or more

sections joined together (multiple-units), while each section may have one or more axles. Also,

each axle can be equipped with single or dual tires on the left and right sides. An articu-

lated vehicle, for instance a tractor-trailer combination, can be designed with different steering

layouts. However, to take full advantage of the articulation principle, articulated vehicles are

equipped with articulated frame steering layout, and become ASVs. Owing to their specific

steering layout, ASVs have great maneuverability in confined areas. The operator can even

make steering corrections in stationary conditions. In addition, the steering layout of ASVs

results in a larger wheelbase, which gives the advantage of less pitch motion on rough surfaces.

ASVs usually have large, wide tires, which provide remarkable mobility even during travel on

rough terrain (i.e. due to reduced ground pressure and minimum sinking into soft ground).

For this reason, ASVs are utilized on rough surfaces and muddy terrains, where a single frame

vehicle can lose traction and become bogged down.

Mostly, ASVs have rigid suspension systems, and dynamic loads from the ground on the

cab are damped by their flexible tires and a spring-mounted operator seat. Currently, the

use of suspension systems on ASVs to enhance driver comfort has been considered by some

manufacturers. In an ASV, a torque converter may be placed between the engine and drive

wheels to prevent the engine from going into a stall, although some ASVs have a direct drive

design in which the engine is coupled directly to the transmission. ASVs generally have a

permanent four-wheel drive configuration. This drive configuration permits traveling on various

surfaces, even muddy ground conditions. The front and rear axles have transverse differential

gears to transfer power to the left and right wheels that can be locked. A longitudinal differential

may also be used between front and rear axles, which can be locked during travel on soft or icy

surfaces by a differential lock. In some ASVs (typically for load-carrying applications), the front

and rear axles can be also decoupled to transfer power to one of the axles. In these vehicles,

the drive configuration can be selected during motion by the operator.
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In the most commonly used ASVs (conventional ASVs), the articulation joint is placed near

the centre of the wheelbase. However, for ASVs with a rear load-carrying platform, the halfway

located joint is not suitable because it divides the loading area. Therefore, for load-carrying

ASVs, the articulation joint is located near the front axle. To keep constant ground contact on

all wheels during travel on different terrains, a joint is added to allow rolling of one of the axles

relative to its frame (pendulum axle). In general, the axle with the smaller load will be the

pinned axle (rear or front). Typically, the roll freedom is ±15◦, whereas the yaw articulation

angles are ±45◦. ASVs include considerably larger inertias than wheel steer vehicles, and these

must be displaced during the steering process; therefore, ASVs generally have a higher power

requirement for the steering process. Typically, ASVs require 3.5 times as much as energy as a

similar wheel steer vehicle for an equivalent lock-to-lock turn [3].

Despite the above-mentioned advantages, the articulated frame steering layout introduces

some problems to ASVs, including both roll and lateral instabilities in different situations. To

obtain a preliminary insight into these problems, the previous work on the roll and lateral

stability of ASVs is reviewed in the following sections.

1.1 Research Literature on Stability of ASVs

In articulated vehicles, the front and rear sections affect one another due to the inner forces at

the articulation joints. Therefore, the stability analysis of these vehicles is much more complex

than that of single frame vehicles. Based on practical reports, both roll instability at low

speeds and lateral instability at high speeds can occur for ASVs. Roll instability is related to

the possibility that the vehicle will roll over. Lateral stability requires that the vehicle remains

in a state of equilibrium when it is subjected to a small disturbance, such as small movements

of the steering wheel by the operator. The disturbing factor causes a perturbation of the vehicle

lateral or yaw motion, and as a result, the vehicle may become unstable.

1.1.1 Roll Stability

During operation on inclined grounds and banked roads at low speeds, an ASV typically has

a lower roll stability than that of a single frame vehicle [4]. This is the case as the vehicle
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Overturn Line

Vehicle Center of Mass

Figure 1-2: Center of mass position for an ASV during the vehicle turning.

center of gravity moves towards the line of overturn when the articulation angle increases [5],

as shown in Figure 1-2. Gibson et al. [4, 6] investigated tipping of four-wheel drive logging

machines (articulated steer skidders and forwarders) with a pinned front axle during operation

on inclined grounds at low speeds. In this study, they defined a stability triangle for the vehicle

by using three supporting points (i.e. rear tires’ contact points and front axle pin). The tipping

begins when the weight vector of the vehicle intersects the line forming a side of the defined

stability triangle. Based on this criterion, for any given articulation angle and orientation of

the vehicle on the slope, they computed the slope angle at which tipping occurs. They also

determined the minimum stability point (i.e. the lowest slope when tipping occurs) for a given

articulation angle. They also compared their results with those from the tipping tests of a scale

model of the vehicle. Gibson et al. later developed an early warning device for the vehicle based

on their previous studies [7]. To develop this device, they also took into account the pulling

effects of the load on the tipping, for instance, a rear-mounted log for skidders. Some sensors

(i.e. load cells) were used to send the information about the resultant tipping forces applied

to the vehicle by the load to the warning device. This information was utilized to modify the

shape of the stability triangle of the vehicle, and load-correction computations.

In addition, Wray et al. [8] developed two different types of early warning devices for a

specific type of ASVs, a front-end loader. The first device was developed based on the concept

of the stability triangle by including the effects of some factors, such as the vehicle pitch
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angle and load. The inputs from five sensors were used to calculate the angle at which the

vehicle would roll over. The difference between the resulting angle and the actual roll angle was

indicated by a voltage that was sensed by four level detectors. Each level detector was connected

to one of the four indicator lights with different colors (one green, two amber, and one red).

This system was installed on three vehicles in a rock quarry operation during a 12-month test

period, and was recognized as very useful by the operators of the vehicles. To build a simpler

and cheaper system, they designed a second device based on sensing the normal load on wheels

to trigger the system. They utilized some strain gauges to determine the bending stress on the

axles, and this information was used to measure the wheel normal load by canceling out the

effects due to the tire side force. This system consisted of a simpler electronic package, and the

required computational operations were reduced. Inertia effects (i.e. acceleration, deceleration

and centripetal forces) were also considered by incorporating a differentiator circuit into the

system. The field testing of this system was also positive [8].

1.1.2 Lateral Stability

The effects of higher speeds on the lateral stability of ASVs are more remarkable than those

for wheel steer vehicles, which produces one of the main disadvantages of ASVs: the lateral

instability while driving straight at higher speeds. During travel on roads at high speeds, two

types of lateral instability are possible: a diverging mode in which the front section of the vehicle

tends to fold around the rear section [9], and a weaving mode in which the two sections of the

vehicle oscillate, relative to each other at a frequency of approximately 1 Hz [10]. These two

modes are similar to the classic jackknifing and snaking instabilities of wheel steer articulated

vehicles, such as tractor-semitrailers and car-caravan combinations, which are explained briefly.

For tractor-semitrailers, there are two common modes of jackknifing, as shown schematically

in Figure 1-3. The first mode is a tractor jackknife and occurs when the trailer is stable on

the road, but the tractor turns around the articulation joint in a highly unstable manner. The

second is a trailer swing and is the reverse phenomenon; the tractor remains stable and the

semitrailer can no longer be controlled around the articulation joint. For ASVs, jackknifing

usually occurs in load-carrying vehicles, for instance dumpers, with an articulation joint near

the front axle, especially when the vehicle is fully loaded [11]. This problem typically occurs

6



Tractor Jackknife

Trailer Swing

Figure 1-3: A schematic of jackknifing modes for tractor-semitrailers.

when the steering wheel is turned by the driver, but the rear part of the vehicle keeps traveling

straight, which may lead to a complete failure of the hydraulic cylinders.

The most common problem encountered in the use of a car-caravan combination is oscillatory

yaw motion [12], or snaking, shown schematically in Figure 1-4. This undesirable behavior is

generated at moderate to high road speeds [13]. The oscillations occur at a typical frequency of

0.6 Hz, and become stronger as the speed or the trailer to car mass ratio increases. The result

is a considerable number of loss-of-control accidents. New trends in the automotive industry,

such as weight reduction in cars and equipment installation in caravans, can intensify snaking

due to a greater caravan to car mass ratio. The most commonly used anti-snaking device is

the operator-adjustable friction damper at the connection joint. The operator can arbitrarily

preload friction material pads within the joint. However, it is possible for the operator to choose

a friction level that is sufficient to stabilize low amplitude oscillations but insufficient to stabilize

high amplitude oscillations. As a result, the combination can become unstable following a small

perturbation. Therefore, new alternatives, such as a caravan active braking system to reduce

the snaking motions, have been proposed [14, 15].

For the most widely used design of ASVs, with the articulation joint at the halfway point of

the vehicle, a similar problem is common. During on-highway travel in a straight line at higher

speeds, the two segments of the vehicle oscillate with different phases relative to each other,

as shown schematically in Figure 1-5. “The problems are expressed qualitatively by drivers as
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Caravan

Figure 1-4: A schematic of snaking mode for car-caravan systems.

Figure 1-5: A schematic of snaking mode for conventional ASVs.

weaving, wandering or snaking” [10].

Crolla and Horton [3] first investigated the lateral stability of an ASV traveling in a straight

line at a constant forward speed, based on the results from a planar linearized three degrees of

freedom (DOF) model. They used a torsional spring and damper at the articulation joint to

represent the hydraulic cylinders between the front and rear parts. The authors identified two

common lateral stability problems related to this type of vehicle at higher speeds, the diverging

and weaving instabilities. During the diverging instability, or jackknifing, the front part of the

vehicle folds around the rear part. During the weaving instability, or snaking, the two parts of

the vehicle oscillate relative to each other, typically at a frequency of 1 Hz. Their investigations

showed that these modes may occur when there is a low value of effective torsional stiffness at

the joint. An amount of entrapped air and flexible pipes in the hydraulic system are the factors

that can result in low stiffness at the articulation joint. In addition, the important effect of the

center of mass position of the rear part of the ASV on the type of unstable mode was revealed

by their work. An undesirable oscillatory mode, or snaking, takes place when the center of
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mass of the rear part is placed behind the rear axle; however, if it is placed in front of the

rear axle, only diverging instability or jackknifing is possible. Crolla and Horton’s results were

qualitatively similar to the problems reported by the different manufacturers.

Later, these authors published their numerical results, based on a model that consisted of the

vehicle model and the hydraulic steering system model [10]. The combined model was generated

from their previous 3-DOF model, with the inclusion of the normalized equations of the steering

valve and hydraulic cylinder. The characteristics of the steering system were identified to be the

most sensitive design features for the lateral stability of the vehicle. In addition to the two types

of instabilities discussed previously, which occur when there is low torsional stiffness at the joint,

a third type of instability was also identified; a slowly diverging mode similar to the oversteer

mode of a single frame vehicle. The corrective attempts of the steering system to return the

vehicle to its nominal path during this mode results in a low frequency weaving mode. Most

importantly, their work showed that introduction of leakage across the hydraulic cylinders can

be utilized to stabilize the snaking oscillations. Stabilization could be also achieved by increasing

the structural damping of the system, for instance introducing friction at the articulation joint.

He et al. [16] devised a similar linearized combined mechanical and hydraulic model of an

ASV, as shown in Figure 1-6. Their work was intended to further investigate the effects of

the steering system on lateral stability of ASVs. The model of the hydraulic steering system

in their work was the type that is common in passenger cars, including the torsion bar and

mechanical rack and pinion. The sliding valve in the previous combined model, developed by

Horton and Crolla in [10], was replaced with a rotary valve. Their results showed that, with the

introduction of fluid leakage either in the rotary valve or in the hydraulic cylinder, the stability

of the oversteer mode was degraded. However, in the case of snaking mode, the introduction of

the fluid leakage improves the stability of the vehicle.

1.2 Problem Statement

Over the past decades, high-power engines and new powertrains have created a continuous

increase in operational speeds of ASVs [5]. Also, there is a growing demand for transport-

oriented ASVs in applications such as agriculture and forestry, which results in considerably
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Figure 1-6: A combined model of an ASV [16].

higher speeds [17]. In view of the continual increase in operational speeds of ASVs on public

roads and highways, a high level of technical safety should be provided for these vehicles [5],

as there is no guarantee of the driver behavior being sympathetic during critical conditions.

However, ASVs have received surprisingly little attention in this area. This may be due to the

fact that, traditionally, these vehicles have been relegated to low-speed applications, such as in

agriculture, forestry and construction, whereas the safety problems of road vehicles are due to

their instability and dynamic behavior at high speeds.

An articulated steer logging tractor, produced by Timberjack1, is a practical example of a

conventional ASV that is subject to safety problems. This vehicle, commonly called a forestry

skidder, can be used for performing various types of tasks on various terrains. It is usually used

to transport logs from one place (e.g. where the trees are cut) to another place (e.g. where the

logs are loaded onto trucks for further transportation). In addition, it may be equipped with

different front-mounted and rear-mounted attachments for various applications. A grapple-type

forestry skidder (illustrated in Figure 1-7) pushes and stacks logs with its front dozer, and drags

and lifts the logs with its rear grapple. Road experience has indicated that some problems can

occur when these vehicles, which are mainly designed for working on off-road surfaces, travel

at higher speeds on roads and highways. Based on practical reports by the manufacturer, these

vehicles are most prone to the snaking oscillations at forward speeds of approximately 40 km/h

1A John Deere Company
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Figure 1-7: A schematic of a forestry skidder.

and higher. During this motion, the two parts of the vehicle oscillate relative to each other at

low frequency.

Referring to the research literature, it is obvious that previous studies on the stability of

ASVs at higher speeds are limited. For instance, regarding the snaking mode, they are mainly

concerned with the analysis of the effects of the steering system characteristics [10]. These

analyses suggested some changes in the steering system properties to decrease the snaking

oscillations. The snaking mode may be alleviated by using passive methods, such as increasing

friction at the articulation joint or introducing leakage flow across the hydraulic cylinders.

Although these methods may be applicable to improve the lateral stability during the snaking

mode for some cases, they are not effective and reliable methods for this purpose in many

cases, as will be shown later. Moreover, they result in loss of power and the introduction of

nonlinearity to the steering system operation, which are not acceptable. Therefore, attention

must be paid to the development of some effective methods to remove the lateral instability of

ASVs during the snaking mode.

Active safety devices for a better control of wheel steer vehicles were first introduced to

the market two decades ago [18]. These systems help drivers to control the vehicle in critical

situations. Nowadays, many light-duty vehicles, for instance passenger cars, have been equipped

with such systems. In these systems, the required yaw moment to control the vehicle may

be produced by different strategies. The most common strategies are active steering, torque

vectoring and differential braking. The controller design is critical for these devices due to the

fact that the control system must be developed with regard to existing uncertainties of the
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vehicle parameters and its driving conditions. For instance, tire-road contact parameters may

change very rapidly and in an unknown pattern when the vehicle is traveling. Similar active

devices may be designed to remove the instability of ASVs during the snaking mode. Based

on the knowledge of the author, no attempt has been made to apply the above-mentioned

systems to prevent the snaking mode of ASVs. The development of such systems is not possible

without extending the previous work by more detailed analyses. More insights into the causes

of the instability must be examined, and the effects of various vehicle parameters and operating

conditions on the stability must be also examined sufficiently. In addition, the previous studies

have been limited to analyses of simplified models, and neglect some effects, for instance, tire

rolling resistance. Therefore, no process has been conducted to verify the results from these

simplified models or to analyze the effects of the parameters ignored in the development of these

models. In order to do this, an experimental test of a real vehicle or a simulation of the dynamic

behavior in an environment similar to which the actual system will experience is essential.

1.3 Contributions of the Dissertation

This study is intended to cover the lack of research for ASVs by developing several active

strategies to stabilize the snaking oscillations of a conventional ASV, specifically, a forestry

skidder manufactured by Timberjack. These developments are based on a comprehensive study

of the causes of the instability and of the effects of the vehicle parameters and operating

conditions on the stability during the snaking mode. In brief, the main contributions of this

work are as follows:

• Analysis of the lateral stability of the vehicle with a rear-mounted load having interaction

with ground

• Analysis of the lateral stability of the vehicle with front and rear differentials locked

• Design of an active torque vectoring device with robust full state feedback controller based

on the Lyapunov method

• Design of a differential braking system with robust variable structure controller
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1.4 Outline of the Dissertation

In Chapter 2, the causes of the lateral instability of the baseline vehicle (i.e. the forestry skidder)

during the snaking mode are determined. The investigations are mainly concentrated on ex-

amining the effects of forward speed and parameters of two main subsystems of the vehicle, the

steering system and tire. The preliminary analyses are conducted using various models of the

vehicle developed by simplifying assumptions. Several on-road and off-road tire models, includ-

ing linear, Fiala, mobility number-based and Metz models are detailed. Moreover, two types

of steering systems, including hydrostatic and hydraulic-mechanical systems, are explained.

Based on the pressure-flow equation for a hydraulic-mechanical steering system, a model for

the steering system characteristics is proposed. Two linearized models of the baseline vehicle,

including 1-DOF and 3-DOF models, are built. They are used for the lateral stability analysis

in travelling with different forward speeds by the eigenvalues of the system. The eigenvalue

results from the 3-DOF model analysis are validated by using the data for an ASV introduced

in [3]. This model is also utilized for identifying the effects of the steering system characteristics

on the lateral stability. To verify the results from the 3-DOF model, a virtual prototype of the

baseline vehicle in ADAMS2 is developed. The response of the vehicle is simulated for different

situations, and the results are compared with those from the 3-DOF model analysis. Moreover,

based on the simulations, the crucial effects of the resultant lateral force produced at the front

and rear axles on the stability are investigated.

In Chapter 3, the effects of different parameters and operating conditions on the lateral

stability of the baseline vehicle during the snaking mode are studied. Regarding the operation

of the vehicle for doing different tasks, such as for load-carrying at the front or rear, it is

equipped with several front and rear-mounted attachments. Therefore, the vehicle parameters

such as mass properties and center of mass positions for both the rear and front parts can

change. The operating conditions may also vary for the vehicle, owing to travel on different

soft and hard surfaces, such as soils, gravel and highway, to travel in a straight-line or a

steady-state turning, with constant forward speed or forward acceleration. Also, the vehicle

usually has differential locks on the front and rear axles, which are locked for making more

2ADAMS is a trademark and product of MSC Software.
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traction or carrying loads. In addition, the vehicle may be utilized to pull a rear-mounted

load or attachment having interaction with the ground. A change in the vehicle parameters

or its operating condition affects the lateral stability during the snaking mode. The effects

of these changes on the stability of the baseline vehicle are analyzed by using the eigenvalue

results, critical speed, and critical torsional stiffness of the vehicle. Although some of these

studies are conducted using the 3-DOF model, to study the effects of locking differentials and

carrying a load having interaction with the ground, the 3-DOF model is extended to 5-DOF

and 4-DOF models, respectively. To verify all of the results from the above conducted analyses,

some simulations are done using the virtual prototype of the vehicle in ADAMS. The virtual

prototype is also modified for the operating conditions.

In Chapter 4, some studies are conducted to show the shortcomings of passive methods and

then, the use of stability control systems to remove the instability during the snaking mode of the

baseline vehicle is examined. Two common techniques that are available for yaw moment control

of wheel steer vehicles are proposed for the stability control of the baseline vehicle. These include

making a change in the steering or articulation angle (i.e. active steering) and producing a yaw

moment by producing different values of driving or braking force on the two sides of the vehicle

(i.e. torque vectoring or differential braking, respectively). However, regarding the effectiveness

of these techniques, the focus of the studies will be on using the different values of driving or

braking force for stabilization of the vehicle. The main issue for developing these systems is

the controller design, owing to the existing uncertainties. Some of the parameters, for instance

tire parameters, may change rapidly during operation, and are identified as uncertain time-

varying parameters. Other parameters, such mass properties, are constant during operation;

however, they can take different values for different operations and are identified as unknown

constant parameters. For each stability control strategy, active steering, torque vectoring and

differential braking, a different controller is designed. These include classical, robust full-state

feedback and robust variable structure controllers. The performance of the resulting systems is

examined for different situations. For designing the controller for any strategy, the 3-DOFmodel

is extended to include the important effects in an appropriate way. For developing the active

steering system, the extended model consists of the steering system equation. For designing the

torque vectoring device and differential braking system, the extended model includes the wheel
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rotational dynamics. The robust controllers are also incorporated into the virtual prototype of

the vehicle, and the performance is evaluated for different conditions.

In Chapter 5, a summary of the results is presented. Finally, some research topics are

introduced as potential future work on the subject of stability of ASVs.
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Chapter 2

Vehicle Dynamic Modeling and

Stability Analysis

As mentioned before, the most common problem encountered in the use of an ASV with the

articulation joint in the middle is the emergence of a snaking mode at high speeds. Following a

small perturbation in traveling in a straight line, either by the steering input or by an external

disturbance, a weaving change in the articulation angle will occur. This chapter is intended

to analyze the causes of the lateral instability of the baseline vehicle during this undesirable

behavior. The effects of forward speed and properties of two main subsystems of the vehicle, the

steering system and tires, are pivotal for these analyses. Several models of the baseline vehicle

are developed, and a lateral stability analysis is conducted in terms of the forward speed of the

vehicle. These models are built based on the models of vehicle subsystems, including tire and

steering system. First, the modeling aspects of the force and moment generation at the tire-

ground contact area are detailed. Various on-road and off-road tire models, including linear,

Fiala, mobility number-based and Metz models are introduced. Then, two types of steering

systems that are commonly used for ASVs, including hydrostatic and hydraulic-mechanical

systems, are described. The pressure-flow equation for a hydraulic-mechanical steering system

is reviewed, and, in view of this equation, a model for the steering system characteristics is

introduced. By using the models representing the vehicle subsystems, two simplified models of

the baseline vehicle, including 1-DOF and 3-DOF models, are developed. These models are used
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to analyze the lateral stability of the baseline vehicle during the snaking mode in travelling with

different forward speeds, based on the eigenvalues of the system. The eigenvalue results from

the 3-DOF model analysis are first validated based on results presented in the previous work for

an articulated steer tractor. The effects of the steering system characteristics on the stability

are also investigated using the 3-DOF model. A virtual prototype of the baseline vehicle is

built in ADAMS, and the change in the articulation angle is simulated during the snaking

mode. The results from the 3-DOF model and the simulations in ADAMS are compared for

different conditions. Finally, based on the simulations, the interaction of the resultant lateral

force produced at the front and rear axles as an important factor for the stability of the vehicle

is studied. Most of the materials of this chapter were previously published in [19, 20].

2.1 Modeling of Tires

Knowledge of forces and moments generated at the tire-terrain contact area is essential to any

study of road vehicle dynamics. The external forces that can cause longitudinal or lateral

motion of a road vehicle are mainly generated at the tires. Research on the forces and moments

generated by tires has been conducted by using different analyses and measurements. The

reader can refer to [21], a definitive book about tire mechanics and modeling, for comprehensive

information. In general, the interaction between a tire and the terrain is dominated by the

deformations of these bodies in the contact area. Depending on the values of the deformations,

four different conditions can be assumed: (i) a rigid tire on a deformable surface, (ii) a flexible

tire on a hard surface, (iii) a flexible tire on a deformable surface, and (iv) a rigid tire on a hard

surface. The last case is assumed for the study of dynamics of railway vehicles. The second

case is assumed for the study of motion of road vehicles on hard surfaces, and the third case is

commonly assumed for the study of off-road vehicle motion on deformable terrains. Also, the

first case may be used to study the motion of a high pressure tire on a soft soil.

Various moments and forces are generated at the tire-road contact area. To describe these

forces and moments, a tire coordinate system must be defined. The SAE tire coordinate system

is shown in Figure 2-1. The SAE coordinate system is the one defined by the Society of Auto-

motive Engineering, and ISO provides another alternative. The origin of the SAE coordinate
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Figure 2-1: The SAE tire coordinate system.

system is the center of the contact area. The x axis is the intersection of the wheel plane and

the ground plane with a positive direction forward. The z axis is perpendicular to the ground

plane with a positive direction downward. The y axis is in the ground plane, and its direction

is chosen to make the coordinate system right hand. In the ISO axis system, the x axis has the

same direction as in the SAE axis system. However, the y and z axes have opposite directions.

There are three forces and three moments generated at the contact area. The longitudinal

tire force Fx is produced at the contact area due to the wheel longitudinal slip S when a torque

is applied about the wheel spin axis. The wheel longitudinal slip may be defined in different

ways, such as the following suggested by the SAE:

S = −Vx − re$
Vx

(2.1)

where $ represents the wheel angular velocity, Vx is the wheel center velocity in the x direction

and re is effective rolling radius, which is slightly different from the tire undeflected radius.

For the freely rolling wheel, the forward wheel speed V◦ and the angular velocity $◦ can be

measured to find re by the following equation:

18



re =
V◦
$◦

(2.2)

During forward acceleration, the wheel angular velocity $ is increased, and thus the wheel slip

becomes positive. However, during braking, the wheel slip becomes negative.

The lateral force generated at the tire Fy is very important for steering, side slope operation

and also lateral stability of road vehicles. On hard surfaces, Fy depends on the slip angle

α, the vertical tire load Fz and also the friction coefficient μ. Typical tire-ground friction

coefficients for different surfaces are given in Table 2.1 from [22]. The maximum value of this

coefficient μmax determines the peak value of the tire force when the saturation is reached. The

sliding value of this coefficient μs is related to the conditions in which the whole contact area

is dominated by sliding and the longitudinal slip is 100 percent [23].

The slip angle α is defined as the angle between the direction of the tire centre line and the

direction in which it is actually traveling, as shown in Figure 2-1. This definition is used for

both a steered and non-steered wheel, based on the following equation [21] (suggested by the

SAE):

tanα =
Vcy
Vcx

(2.3)

where Vcx and Vcy represent the components of the velocity of the tire contact patch center in

the x and y directions. In addition to α, tire camber angle γ, the angle formed between the

xz plane and the wheel plane, produces lateral tire deformation and thus, tire lateral force. In

general, this lateral force and that due to α are additive. Usually, Fy acts behind the center of

the contact area which causes the self-aligning moment Mz, a restoring effect that attempts to

return the tire to a zero slip angle state. The moment arm tp is known as pneumatic trail. The

aligning moment Mz also depends on the slip angle α at which the tire is traveling, and also

the tire vertical load Fz.

In addition to the aligning moment, two other moments are also produced at the tire contact

area: overturning moment Mx and rolling resistance moment My. The overturning moment is

caused by a lateral shift of the vertical load during cornering. The rolling resistance of tires

on hard surfaces is mainly produced by the hysteresis in tire materials. Other factors, such as
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Surface μmax μs
Asphalt and concrete (dry) 0.8-0.9 0.75
Asphalt (wet) 0.5-0.7 0.45-0.6
Concrete (wet) 0.8 0.77
Gravel 0.6 0.55
Earth road (dry) 0.68 0.65
Earth road (wet) 0.55 0.4-0.5
Snow (hard-packet) 0.1 0.07
Ice 0.1 0.07

Table 2.1: Friction coefficients for different surfaces [22].

friction at the contact area due to sliding, the air resistance inside the tire, and the fan effect

of the spinning tire, have less effects. When the carcass is deformed during rolling, the normal

pressure in the leading half of the contact area is higher than that in the trailing half. Thus,

the center of normal pressure is displaced in the direction of rolling, which generates a moment

about the axis of rotation of the tire, called the rolling resistance moment. In a free-rolling

tire with constant angular speed, a horizontal force at the contact area must exist to maintain

equilibrium. This horizontal force is called the rolling resistance Fr, and the ratio of the rolling

resistance to the normal tire force is described as the coefficient of rolling resistance Crr:

Fr = CrrFz (2.4)

When a tire is traveling with a longitudinal slip S or slip angle α on a hard surface, the contact

area is deformed. The lateral and longitudinal deformation of the tire is dominated by both

adhesion and sliding phenomena. At a part of the contact area, the tread elements adhere to the

surface and the deformation increases proportional to distance from the initial contact point

between the surface and the tire. At a point where the tire-ground friction cannot support

further tire deformation, the tread elements slide laterally or longitudinally. When S or α

increases, a greater part of the contact area is involved in the sliding, and at higher values of

S or α, a maximum force Fx or Fy is reached and saturation occurs. However, the pneumatic

trail tp decreases once sliding begins and approaches zero at higher slip angles. In this case, the

aligning moment Mz is reduced to near zero and may even reverse sign.

Moreover, for any change in S or α, tires have a finite response time related to the time taken
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for the contact area to achieve a new deformed shape. This dynamic effect can be represented

by the following equation [17]:

F = Fst(1− e
−x
lr ) (2.5)

where:

F : Tire force (lateral or longitudinal)

Fst : Steady-state value of force

x : Distance rolled by tire following a perturbation

lr : Relaxation length

For the lateral force generation, lr is approximately equal to the rolling radius of the tire.

Equation (2.5) indicates a first order lag when it is written in the time domain, with break

frequency u
lr
, where u is the vehicle forward speed. When u is low and lr is large, the tire

transient response will be important. Large and soft tires have a higher tire relaxation length

lr. For the steady-state conditions, Fx, Fy and Mz are functions of S, α , Fz and γ:

Fx = Fx(S,α, Fz, γ), Fy = Fy(S,α, Fz, γ),Mz =Mz(S,α, Fz, γ) (2.6)

The functions Fx(S,α, Fz, γ), Fy(S,α, Fz, γ) and Mz(S,α, Fz, γ) can be obtained from experi-

mental measurements for a given speed and road condition (experimental models). Figure 2-2

shows typical lateral tire force and aligning moment characteristic curves on hard surfaces [21].

2.1.1 Linear Tire Model

Pure slip is a condition when either tire longitudinal slip or lateral slip occurs in isolation. For

the pure slip conditions, the slope of the tire characteristics curves at zero slip is expressed as

the longitudinal slip stiffness CFs, lateral slip stiffness or cornering stiffness CFα and aligning

stiffness CTα, respectively:

CFs = (
∂Fx
∂S

)S=0 (2.7)

CFα = (
∂Fy
∂α

)α=0 (2.8)
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Figure 2-2: Lateral tire force and aligning moment characteristic curves on hard surfaces.

CTα = −(
∂Mz

∂α
)α=0 (2.9)

The longitudinal slip stiffness CFs is typically higher than the cornering stiffness CFα, but for

equal lateral and longitudinal tire stiffness, CFs and CFα will be equal [21]. For small levels

of slip, the linearized functions for tire forces and moment can be represented by the following

expressions:

Fx = CFsS (2.10)

Fy = CFαα (2.11)

Mz = −CTαα (2.12)

2.1.2 Fiala Tire Model

In addition to experimental measurements, analytical functions are used to compute tire forces

and moments. For instance, Fiala developed a tire model based on the deformation parameters

at the contact area. The analytical functions to compute the tire forces and moments based

on this model can be found in [21]. For small levels of slips, these analytical functions can be

linearized and take the same form as the equations for the linear tire model. In addition, based
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on this model, CTα can be related to CFα by the following equation [21]:

CTα =
CFαlt
6

(2.13)

where lt is the tire contact length, and can be computed by the following expression for off-road

tires [24]:

lt = Cl
p
δt(dt − δt) (2.14)

where δt is the tire vertical deflection under its vertical load on a rigid surface and dt is the

overall tire diameter. The coefficient of Cl (dimensionless) can be computed by using the

following empirical equation [24]:

Cl =
23

(
¯̄̄
dt
bt
− 3.5

¯̄̄
+ 11.9)

(2.15)

where bt is the tire width.

2.1.3 Mobility Number-Based Off-road Tire Model

During motion of vehicles on deformable surfaces, the tire tread penetration into the ground

is also important, and thus, the forces which can be generated at the tire contact area depend

on the strength of the soil in shear and on tire-soil friction. When a tire is travelling with

lateral or longitudinal slip on a deformable surface, tread distortion occurs at the contact area.

The tire elastic deformation occurs in a part of the contact area. However, at some point,

the shear force due to tire deformations equals the soil shear strength and there is no further

tire deformation and soil shear occurs. Soil shear strength is typically less than tire-ground

friction on hard surfaces, hence the maximum tire force produced on deformable surfaces is

reduced. There are more problems related to the measurements of tire force characteristics on

deformable surfaces. For instance, on field surfaces, many repeated tests must be conducted to

reach a suitable statistical accuracy. A summary of data measurements on deformable surfaces

was reported in [17]. Based on the measured data, the relation between Fx and wheel slip S∗
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can be represented by the following equation [17]:

Fx = FzCsmax(1− e−k1S
∗
) (2.16)

where Csmax and k1 are constants for particular conditions. In Equation (2.16), S∗ is defined

as follows:

S∗ = 1− Vx
re$

(2.17)

The generation of Fy with wheel slip α can be approximated by a similar equation to the

longitudinal force generation:

Fy = FzCαmax(1− e−k2α) (2.18)

where Cαmax and k2 refer to a specific set of tire parameters and terrain conditions. Different

forms of this empirical equation, for instance, polynomials of different orders, have been also

suggested, but the exponential form is both accurate and simple. This equation is analogous

to soil shear behavior (shear-displacement curve), which dominates the tire force generation

on deformable surfaces. Different methods to obtain coefficients of Cαmax and k2 have been

suggested. These methods are commonly based on different forms of mobility number. The

mobility number was first defined by using dimensional analysis to model the tire forces, and

consists of effects of tire size, load and soil conditions [25]. One of the most important forms of

the mobility number MOB (dimensionless) is computed for any Fz by using [17]:

MOB =

q
δt
ht
(CIbtdt)

Fz(1 + (
bt
2dt
))

(2.19)

where the soil cone index CI is a parameter to describe the strength of soil in terms of its

resistance to the penetration of a standard size cone, and ht is the tire section height (distance

from the bottom of the bead to the top of the tread). The soil penetration resistance depends

on moisture content, specific weight and soil type. Typically, cone index readings of 200 kPa,

700 kPa and 1500 kPa represent loose, average and firm field conditions, respectively [26]. Tire

deflection δt is measured statically on a hard surface. The value of δt
ht
at a manufacturer’s

24



recommended load and inflation pressure is about 0.2 for off-road tires. For bias-ply tires,

coefficients of Cαmax and k2 can be computed by using [17]:

Cαmax =
0.69

MOB
+ 0.61 (2.20)

k2Cαmax = 2.34 + 0.088MOB (2.21)

For small slip angles (≤ 10◦), Equation (2.18) can be reasonably linearized:

Fy = FzCαα (2.22)

where α is in radian, Cα is the lateral force coefficient and:

Cα = k2Cαmax (2.23)

Similarly, the tire aligning moment for small slip angles can be described by:

Mz = −FzCMαα (2.24)

where CMα is the tire aligning moment coefficient. There is a relation similar to Equation (2.13)

between Cα and CMα. The similar relations for Csmax and k1 in terms of MOB are [17]:

Csmax = 0.796−
0.92

MOB
(2.25)

k1Csmax = 4.838 + 0.061MOB (2.26)

Similarly, for small longitudinal slip:

Fx = FzCsS
∗ (2.27)

where Cs is the longitudinal force coefficient and:

Cs = k1Csmax (2.28)
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In addition, the coefficient of rolling resistance Crr can be also predicted by MOB as follows

[27]:

Crr = 0.049 +
0.287

MOB
(2.29)

In order to model tire forces in the pure longitudinal or lateral slip, Equations (2.16) and

(2.18) can be used. However, when both forces are generated in combination and at the same

time, the modified equations described in [17] offer an approximate representation of the real

behavior. Under this condition, the lateral force characteristic curve is assumed to be controlled

by generated longitudinal force (friction ellipse model), and Cαmax is computed by [17]:

(
Cαmax

C 0
αmax

)2 + (
Fx

FzCsmax
)2 = 1 (2.30)

where C
0
αmax is related to the pure lateral slip conditions when Fx = 0.

2.1.4 Metz Tire Model

Metz has introduced an empirical tire model to predict the lateral force during motion on

different surfaces [28]. This model has been developed for pure cornering, when both camber

and longitudinal wheel slip are negligible. This model relates Fy and α by using an exponential

function as follows:

Fy = AFz(1− e−Bα) (2.31)

where A is given in Table 2.2 for different surfaces, and B (with unit of 1/deg) is determined

for a specific conditions of the tire and surface by the following equation:

B =
C

A

µ
FZT
Fz

¶m
+

µ
D

A

¶
(2.32)

where FZT is the tire design load at operation pressure and m is an exponent equal to 0.14.

The coefficients of C and D are also given in Table 2.2 for different surfaces.

Based on Equation (2.31) and Equation (2.8), the cornering stiffness CFα can be computed

as follows:
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Surface A C D
Highway 0.67 0.677 -0.563
Plowed Field 0.65 0.267 -0.222
Gravel 0.52 0.588 -0.489
Corn Field 0.53 0.440 -0.365
Meadow 0.88 0.784 -0.652

Table 2.2: Metz tire model coefficients for different surfaces [28].

CFα = ABFz (2.33)

Then, Fy for the small slip angles becomes:

Fy = ABFzα (2.34)

In general, the cornering stiffness of tires on a highway surface is higher than that for off-road

surfaces. However, owing to the interaction of tire tread and rooted plants in the meadow, it is

high in the meadow, as well [28]. Moreover, comparing Equations (2.34) and (2.22) shows that:

Cα = AB (2.35)

2.2 Modeling of Steering Systems

Both hydrostatic and hydraulic-mechanical steering systems are adopted for ASVs [9]. The

steering control can be either an open loop or a closed loop, depending on the application. In

the following sections, the construction and operation of the steering systems are described,

and a model for representing the steering system characteristics is introduced.

2.2.1 Hydrostatic Steering Systems

Hydrostatic steering systems are used to control off-road trucks, earth-moving machines, and

tractors that require high steering forces. In the past, hydrostatic steering systems used a pilot

valve with a small displacement to control a directional valve. However, today, hydrostatic

steering systems include a gerotor as an oil meter element. In this system (i.e. metered flow),
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Figure 2-3: A schematic of a hydrostatic steering system.

the oil volume sent to the hydraulic cylinders is proportional to the input turning angle of the

steering wheel, as shown schematically in Figure 2-3, and there is usually no feedback from the

articulation angle (open-loop steering system). The steering valve is usually similar to the type

described in [29], which consists of a rotary valve with a spool inside a sleeve within a housing.

When the steering wheel is turned, the spool rotates relative to the sleeve, and opens paths

that permit oil flow through the spool and sleeve combination. Oil flows to a gerotor set and

causes the gerotor to rotate. The gerotor functions as an oil flow meter, and when the rotation

of the steering wheel stops, the gerotor gear continues to rotate until the sleeve stops the flow

to the gerotor.

The pressure-flow equation for such a steering system has been developed for both a closed-

loop and an open-loop control in [10]. In the closed-loop system, the difference between the

desirable articulation angle and the actual angle was used to regulate the valve displacement by

proportional control. The resulting equations representing the steering system characteristics

for both open- and closed-loop control is similar to that for a hydraulic-mechanical system,

which is introduced in the next section. Moreover, Horton and Crolla’s work [10] showed that

the closed-loop control has no important benefit over the open-loop control in terms of the

lateral stability.

2.2.2 Hydraulic-Mechanical Steering Systems

In hydraulic-mechanical steering systems, a hydraulic valve is activated by a mechanical input,

for instance by turning a steering wheel. The connection between the steering wheel and the
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Figure 2-4: A schematic of hydraulic-mechanical steering systems.

hydraulic valve is mechanical. The most commonly used hydraulic valve is a sliding valve with

spool type construction. This valve controls the flow of hydraulic fluid from a pump to the

cylinders, as shown schematically in Figure 2-4 by standard hydraulic symbols. A closed-loop

control may also be used for hydraulic-mechanical steering systems. In this case, there is a

mechanical feedback unit, for instance a four-bar linkage [30].

2.2.3 Pressure-Flow Equation for Steering System

In this section, an equation that describes the pressure-flow relationship for an open-loop

hydraulic-mechanical steering system is presented. A hydraulic-mechanical steering system

includes two cross-connected steering cylinders, as depicted in Figure 2-5. They can be repre-

sented by a single double-acting cylinder with the following effective area:

Ae =
π

4
[(d2p − d2r) + d2p] (2.36)

where dp and dr are the piston and rod diameters for each steering cylinder, respectively.

Therefore, a hydraulic-mechanical steering system can be represented by a combination of

a sliding valve and a hydraulic cylinder, as illustrated in Figure 2-6. For a sliding valve with
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Figure 2-5: A schematic of cross-connected hydraulic cylinders.

matched and symmetrical orifices, an explanation for deriving the linearized equation around

the origin point of the pressure-flow curve is given in [31]. In summary, based on the equations

governing the piston motion and the flow in the chambers and some simplifying assumptions,

the pressure-flow equation is described as follows [31]:

Kqxv = Ae
dxp
dt

+ (Ctp +Kc)PL +
Vt
4βe

dPL
dt

(2.37)

where,

Vt : Total volume of chambers

Kq : Valve flow gain

Kc : Valve flow-pressure coefficient

Ctp : Total leakage coefficient (internal and external)

PL : Pressure difference

xv : Displacement of spool

xp : Displacement of piston

Ae : Effective area of hydraulic cylinders

βe : Effective bulk modulus of system (including oil, entrapped air, and mechanical com-

pliance of system)

The pressure difference PL is defined as:

PL = P1 − P2 (2.38)
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Figure 2-6: A model of an open-loop hydraulic-mechanical steering system.

where P1 and P2 represent pressure of the forward and return chamber of the cylinder, respec-

tively. For small values of articulation angle φ, the following equation can be used:

xp = φdj (2.39)

where dj is the perpendicular distance from the articulation point to the steering cylinder, as

shown in Figure 2-6. Therefore, Equation (2.37) can be rewritten as:

Kqxv = Aedj
dφ

dt
+ (Ctp +Kc)PL +

Vt
4βe

dPL
dt

(2.40)

It is easy to see that this equation is similar to those derived for both a closed-loop and an open-

loop hydrostatic steering system by Horton and Crolla [10], which are in the normalized form.

The torque TS generated by the steering system can be computed by the following equation:

TS = PLAedj (2.41)

For a critically closed center valve and by assuming negligible leakage across the cylinder, Kc

and Ctp can be ignored. Therefore, when the valve is in the neutral position (xv = 0), PL can
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be found from Equation (2.40) in terms of φ. Under this condition, by using Equation (2.41),

TS is:

TS = −
4A2ed

2
j

Vt
βeφ (2.42)

Therefore, the steering system is equivalent to a torsional spring at the articulation joint with

the following stiffness:

KS =
4A2ed

2
j

Vt
βe (2.43)

where KS is equivalent torsional stiffness of the steering system, and is dependent on βe. This

equation agrees with that shown by Horton and Crolla [10] for a hydrostatic steering system;

the compressibility effect of the trapped oil in the cylinders corresponds to a combination of

two torsional springs at the articulation joint with the stiffness KR as follows:

KR = (
1

V1
+
1

V2
)A2ed

2
jβe (2.44)

where, V1 and V2 are the fluid volume of the chambers with increasing and decreasing volumes,

respectively. In the neutral position with V1 = V2 = Vt
2 , Equations (2.43) and (2.44) will be the

same (KS = KR). From the manufacturer’s data, the parameters of the hydraulic system for

the baseline vehicle are given in Table 2.3. In the absence of entrapped air and flexible pipes,

the effective bulk modulus βe is equal to the bulk modulus of the hydraulic fluid alone, which

is about 1.5 × 109 Pa. For this value of βe and the given parameters of the hydraulic system,

KS is about 1.5 × 107 Nm/rad, based on Equation (2.43). However, a small amount of the

entrapped air can reduce βe substantially [31]. The value of βe may be decreased by a factor

of up to 100 by inclusion of the effects of the entrapped air and mechanical compliance of the

flexible pipes [10].

Owing to friction in the cylinders and articulation joint, torsional damping can be considered

at the joint (i.e. structural damping). In general, the structural damping is a constant value.

Horton and Crolla [10] showed that introducing leakage across the cylinders in a steering system

with a typical closed center valve (Ctp+Kc 6= 0) is equivalent to increasing the torsional damping

at the articulation joint in terms of the lateral stability. Therefore, an equivalent torsional
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Parameter Unit Value
Ae m2 0.01
Kq m2/s 5
dj m 0.5
V1 m3 0.005
V2 m3 0.005

Table 2.3: Parameters of steering system for baseline vehicle.

damping CR at the articulation joint can be used to show the effects of friction and leakage.

In summary, the steering system of the vehicle can be modeled as a combination of torsional

spring KR and a torsional damping CR at the articulation joint.

2.3 1-DOFVehicleModel and Stability Analysis during Snaking

Mode

One important nominal motion of an ASV, or of any other road vehicle, is constant speed

operation in a straight-line. It is desirable that this motion be stable. To study this motion,

a linear analysis of the lateral stability is conducted. Such analyses have been presented by

several authors [3, 10, 32, 16]. The general approach to these analyses is to derive the linear

differential equations that govern the disturbed motion. Next, from the resulting set of the

linear equations, the characteristic equation is obtained. Finally, the stability of the system

is investigated by considering the coefficients or roots of this equation. This approach can be

applied to the different models of the baseline vehicle.

The simplest model of the vehicle with 1-DOF is illustrated in Figure 2-7. This planar

model consists of front and rear parts, which are connected to each other by an articulation

joint. No input from the steering system is assumed. Therefore, the two parts of the vehicle

should be in a locked position. However, due to the compressibility effects in the hydraulic

cylinders, some small changes in the articulation angle can occur after disturbing the motion.

As mentioned before, a torsional spring KR and a torsional damper CR at the articulation

joint can be considered. Therefore, when there is no steering input, a resistant torque TR at

the joint represents the hydraulic cylinders. If it is assumed that the front part of the vehicle

is not affected by the changes in the articulation angle, the only result is the yawing motion
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Figure 2-7: A 1-DOF model of an ASV.

of the the rear part. In addition, it is assumed that the tire rolling resistance is very small,

and thus, it is neglected. Moreover, the aerodynamic resistance is neglected and a flat road

is assumed. Owing to the yaw motion of the rear part, the longitudinal velocity of the rear

tires will change. This produces a longitudinal slip, and thus, a longitudinal force at the tires.

These forces are much smaller than the lateral force generated at the tires, and thus, they are

ignored in the preliminary stage. Also, it is assumed that the vehicle is traveling on a surface

with constant tire-road contact parameters. The ISO axis system is used to describe the rear

tires lateral forces and aligning moments. The resultant lateral force and moment of the rear

tires are assumed to act at the centre of the rear axle. The transient response of the tires is

neglected, as this does not affect the main results of the analysis; Horton and Crolla [10] showed

that introducing the transient response of the tires to the equations of motion for an ASV is

equivalent to increasing the torsional damping CR slightly, in view of the lateral stability during

the snaking mode.

2.3.1 Equation for Perturbed Motion

Assuming that X − Y frame is the global coordinate system fixed to the ground, an equation

for the yawing motion of the rear part can be derived with regard to the model shown in Figure
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2-7. In the following, the subscripts 1 and f refer to the front and 2 and r refer to rear. To

derive the equations of motion, the gyroscopic effects are neglected and the axles and wheels

are assumed lumped with their respective parts. As mentioned before, the lateral force and

aligning moment at each tire are functions of the slip angle, vertical tire load, surface friction

properties and camber angle. For small articulation angles φ, the average of the left and right

tire slip angles at the rear axle α2 can be described as:

α2 = −
"
(c+ d)φ̇

u
+ φ

#
(2.45)

As shown in Figure 2-7, c and d are the distance from the articulation point to the rear

body center of mass, and the distance from the rear wheels to the rear body center of mass,

respectively. As the camber effects for the baseline vehicle with rigid suspension would be

negligibly small [28], the resultant lateral force Fy2 (described in x2 − y2 frame attached to the

rear part center of mass) is a function of α2, and by using the mobility number-based tire model

can be described as:

Fy2 = −N2Cα2α2 (2.46)

where Cα2 is the rear tire lateral force coefficient, and it is the same for the left and right tires.

In terms of the cornering stiffness, this equation is as follows:

Fy2 = −Cαrα2 (2.47)

where Cαr is the effective cornering stiffness for the rear axle. The vertical loads at the front

and rear axles N1 and N2, shown in Figure 2-8, are assumed constant during the motion. They

can be computed using static equilibrium equations, as follows:

N1 =
m1g(b+ c+ d) +m2gd

a+ b+ c+ d
(2.48)

N2 = (m1 +m2)g −N1 (2.49)

where a is the distance from the front body center of mass to the front wheels and b is the

distance from the articulation point to the front body center of mass, respectively.
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Figure 2-8: Vertical tire loads before perturbed motion.

Also, by using the mobility number-based tire model, the resultant self-aligning moment

Mz2 is:

Mz2 = N2CMα2α2 (2.50)

where CMα2 is the rear tire aligning moment coefficient, and it is the same for the left and right

tires. In terms of the aligning stiffness, this equation is as follows:

Mz2 = CTrα2 (2.51)

where CTr is the effective aligning stiffness for the rear axle. By using Equation (2.45), Fy2 is:

Fy2 = N2Cα2

"
(c+ d)φ̇

u
+ φ

#
(2.52)

In addition, Mz2 is:

Mz2 = −N2CMα2

"
(c+ d)φ̇

u
+ φ

#
(2.53)

The equation of the moments about the articulation point can be written as:
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(I2+m2c
2)φ̈+[N2Cα2

(c+ d)2

u
+N2CMα2

(c+ d)

u
+CR]φ̇+[KR+N2CMα2+(c+d)N2Cα2]φ = 0

(2.54)

where m2 and I2 are the rear body mass and moment of inertia about its center of mass,

respectively. The result is an equation that is analogous to that for a rotational inertia-spring-

damper system. If the coefficients of the motion variable (φ) and its derivatives (φ̇ and φ̈) are

assumed to be constant in the resulting equation, then, the system can be regarded as Linear

Time Invariant (LTI). For the stability analysis, this equation can be transformed into the

Laplace notation to obtain the characteristic equation:

a2s
2 + a1s+ a0 = 0 (2.55)

The coefficients of a0, a1, and a2 are expressions that include the parameters of the vehicle

and its subsystems. It is easy to see that the coefficients of the characteristic equation are

positive, and thus, based on the Routh criteria, the vehicle is consistently stable. The roots of

Equation (2.55), λ1 and λ2, are the eigenvalues of the system. In general, the eigenvalues of

a system are complex numbers, and provide some information on the natural frequencies and

mode shapes of the system. For instance, the imaginary part indicates the damped natural

frequency, and the real parts of the eigenvalues reveal the stability of the system. A large

negative value indicates a well-damped system, whereas a positive number shows an unstable

system. Two types of instability are possible: exponential and oscillatory for zero and non-zero

imaginary parts, respectively.

2.3.2 Effects of Forward Speed

Table 2.4 shows the rear part parameters of the baseline vehicle. ASVs are typically designed in

such a way that the front and rear part center of mass positions are located near their respective

axles (a = 0 and d = 0). This is to reduce the vertical force applied to the articulation joint.

In practice, various changeable rear-mounted and front-mounted attachments can be installed

on an ASV, which results in different rear and front center of mass positions. The previous

work shows that the snaking mode occurs if the rear center of mass is located behind the rear
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Parameter Unit Value
m2 kg 7280
I2 kgm2 7280
c m 1.827
d m −0.1
N2 N 74030
Cα2 rad−1 5
CMα2 m/rad 0.4

Table 2.4: Rear part parameters of baseline vehicle.

axle [3]. Therefore, the value of d is set to −0.1 m for a typical position of a rear-mounted

grapple of the baseline vehicle. In addition, a set of typical tire parameters (Cα2 and CMα2) for

traveling on roads and tracks is considered based on [10]. The previous work shows that the

snaking oscillations are stronger if KR and CR take lower values [10]. Therefore, KR is given a

low value about 1× 105 Nm/rad, resulting from entrapped air and flexible pipes. The value of

CR is also dependent on the properties of the steering system and articulation joint.

In some cases, CR can be negligibly small, which has resulted in some practical problems

for the steering process of ASVs, such as oil mass resonance. Scholl and Klein [33] showed

both practically and theoretically the fluctuations of the steering response of an ASV, which

are produced due to very low values of the torsional damping. To overcome this problem, they

suggested some compensation methods from [34], which are commonly used to improve response

of lightly damped hydraulic drives. For CR = 0, the real parts of λ1 and λ2 versus the forward

speed u are plotted in Figure 2-9 for the vehicle parameters. For the forward speeds lower than

3.7 m/s, there is a pair of negative distinct real roots, that shows an overdamped yaw motion

for the rear part. However, for the higher speeds, there is a negative complex conjugate pair

of roots with the same real part that shows an underdamped yaw motion. Equation (2.55) is

rearranged to the following well-known form:

s2 + 2ξ$ns+$
2
n = 0 (2.56)

where ξ and $n are the damping ratio and natural frequency of the system, respectively. As

an example, for the forward velocity u = 34 km/h (9.5 m/s), if the parameters of the baseline

vehicle are substituted into the frequency and damping ratio expressions, then $n = 0.8 Hz
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Figure 2-9: Eigenvalue results for a 1-DOF model.

and ξ = 0.4. The plot reveals that the real parts of the eigenvalues are negative, and thus, the

system is stable. Although Figure 2-9 does not directly reveal any instability, it does indicate

that high speeds reduce the damping ratio, an undesirable effect for this system.

2.4 3-DOFVehicleModel and Stability Analysis during Snaking

Mode

The preceding analysis of the 1-DOF model for an ASV does not reveal any oscillatory yaw

instability, although it can occur for a real vehicle. Now, the analysis is extended by using a

3-DOF model of an ASV, depicted in Figure 2-10. For this model, ψ is the yaw angle between

the front part centreline and X axis. In addition, θ is the angle between the rear part centreline

and X axis. Also, u and v represent the local components of the front part center of mass

velocity in x1− y1 frame attached to the front part center of mass and:

u = Ẋ1 cosψ + Ẏ1 sinψ (2.57)
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Figure 2-10: A 3-DOF model of an ASV.

v = −Ẋ1 sinψ + Ẏ1 cosψ (2.58)

The lateral and yaw motions of the front part provide the additional two degrees of freedom;

the forward speed u is again assumed constant. The general assumptions are also the same as

the 1-DOF model. The devised 3-DOF model is similar to the model presented in [3], except

the equations of motion are derived in [3] without considering the tire self-aligning moment.

As shown later, the consideration of the tire self-aligning moment can effectively change the

predicted behavior in the case where the center of mass positions are near the axles.

2.4.1 Equations for Perturbed Motion

With regard to the model shown in Figure 2-10, the independent coordinates q to describe the

configuration of the system are:

q = [X1, Y1,ψ, θ] (2.59)

where X1 and Y1 are the absolute coordinates of the front part center of mass. The following

form of Lagrange’s Equations, including the dissipation function R, will be used to derive the

equations of motion:
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d

dt
(
∂T

∂q̇i
)− ∂T

∂qi
+

∂V

∂qi
+

∂R

∂q̇i
= Qi (2.60)

The total kinetic energy of the system is:

T = T1 + T2 (2.61)

where T1 and T2 are the kinetic energy of the front and rear parts, respectively, and T1 is:

T1 =
1

2
m1(Ẋ

2
1 + Ẏ

2
1 ) +

1

2
I1ψ̇

2
(2.62)

where m1 and I1 represent front part mass and moment of inertia, respectively. Assuming small

values for θ and ψ, T2 is:

T2 =
1

2
m2[Ẋ

2
1 + (Ẏ1 − bψ̇ − cθ̇)2] +

1

2
I2θ̇

2
(2.63)

The potential energy of the system V is due to the torsional spring at the articulation joint:

V =
1

2
KR(ψ − θ)2 (2.64)

and the dissipation function of the system R is for representing the torsional damper at the

articulation joint:

R =
1

2
CR(ψ̇ − θ̇)2 (2.65)

The system is subject to the lateral forces and aligning moments at the tires. For small values

of θ and ψ, the total virtual work done by the external forces and moments is:

δW = Fy1δ(Y1 + aψ) + Fy2δ[Y1 − bψ − (c+ d)θ] +Mz1δψ +Mz2δθ (2.66)

where Fy1 and Mz1 are resultant lateral force (described in x1− y1 frame attached to the front

part center of mass) and resultant aligning moment at the front, respectively. Therefore, the

41



generalized forces and moments are:

QY = Fy1 + Fy2 (2.67)

Qψ = aFy1 − bFy2 +Mz1 (2.68)

Qθ = −(c+ d)Fy2 +Mz2 (2.69)

Also, regarding the large mass of the vehicle (about 14500 kg), the change in the forward speed

due to the longitudinal components of the tire lateral forces can be ignored (u ≈ Const.).

Equation (2.60) can be used to derive the linearized equations of motion (for small deviations)

in terms of the defined motion variables. However, a simpler form of these equations with

reduced order can be achieved if they are written in terms of the coordinates v, ψ and φ, by

applying the following equations:

Ẏ1 = uψ + v (2.70)

φ = ψ − θ (2.71)

The average slip angle for the front and rear tires, α1 and α2, respectively, can be described as:

α1 = −
v + aψ̇

u
(2.72)

α2 = −
"
v − bψ̇ − (c+ d)(ψ̇ − φ̇)

u
+ φ

#
(2.73)

Two variables yc (lateral coordinate of the front part center of mass in x1− y1 frame) and ψ do

not appear in the resulting equations of motion, which results in two eigenvalues with zero value

(rigid body modes). The following state variables X can be used to derive the final equations

of motion:

X = [v, ψ̇, φ̇,φ]T (2.74)
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The final form of the equations in terms of the state variables can be considered as a LTI system

described by:

Ẋ = AX (2.75)

The entries for matrix A are found in Appendix A. The following solution is assumed for

Equation (2.75):

X = [x1, x2, x3, x4]
T est (2.76)

Therefore, to find the characteristic equation of the system:

det(sI−A) = 0 (2.77)

then, the resulting characteristic equation is:

a4s
4 + a3s

3 + a2s
2 + a1s+ a0 = 0 (2.78)

Based on the Routh criteria, if the coefficients of this equation meet some specific conditions, the

system will be stable. In addition, the real parts of the four eigenvalues of the system (λ1, λ2, λ3

and λ4) can be plotted in terms of u to reveal the stability. To validate the resulting equations

for the 3-DOF model, they are first used to analyze the lateral stability of an articulated steer

tractor, which was previously analyzed in [3].

2.4.2 Model Validation

The data for a typical articulated steer tractor is given in Table 2.5. This data was presented

in [3], and is used for the stability analysis of this vehicle through the 3-DOF model. The given

Cα is an intermediate value, which is computed by the mobility number-based tire model, and

represents both a good off-road surface (firm and dry) and a poor road surface (gritty track).

The real parts of the eigenvalues of the system (λ1, λ2, λ3 and λ4) in terms of the forward

speed are shown in Figures 2-11(a) and 2-11(b). The resulting graphs are similar to those

shown in [3]. In other words, the equations for the 3-DOF model and those for that model

43



Parameter Unit Value
m1 kg 1500
I1 kgm2 1500
m2 kg 1500
I2 kgm2 1500
a m -0.1
b m 1.3
c m 1.3
d m -0.1
Cα1 rad−1 3.4
Cα2 rad−1 3.4
CMα m/rad 0
KR Nm/rad 5× 104
CR Nms/rad 0

Table 2.5: Parameters of an articulated steer tractor [3].

developed in [3] produce the same eigenvalue results when the aligning moments of the tires are

neglected (CMα = 0). The real parts of λ3, λ4 are negative in the whole range of the operating

speeds, according to Figure 2-11(b); however, as shown in Figure 2-11(a), the real parts of λ1,

λ2, which are complex conjugate numbers with the same real part, are positive for the forward

speeds higher than ucr =2.5 m/s, the so-called critical speed. This corresponds to an unstable

oscillatory yaw motion or snaking mode for these forward speeds. However, the consideration

of the tire aligning moment can effectively change these results because the center of mass

positions for the vehicle are near their axles (a = d = −0.1 m). For instance, if the aligning

moment coefficient CMα increases from 0 to 0.4, the unstable snaking mode of the vehicle will

be removed, as illustrated in Figure 2-12. In this case, the real parts of λ1 and λ2 are negative

in the whole range of the operating speeds, according to Figure 2-12(a).

2.4.3 Effects of Forward Speed

Now, the lateral stability of the baseline vehicle is analyzed in terms of u, based on data given

in Table 2.6. To compute the tire forces and moments, instead of the off-road mobility number-

based tire model, the Metz tire model is used that has the capability to predict the tire lateral

forces for both off-road and on-highway surfaces. To compute the cornering stiffness CFα in

Equation (2.11) for finding the front and rear lateral tire forces, two coefficients A and B are

required according to Equation (2.33). The coefficient A is given in Table 2.2, and to calculate
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Parameter Unit Value Parameter Unit Value
m1 kg 7280 B2 1/deg 0.2697
m2 kg 7280 a m 0.03
I1 kgm2 7280 b m 1.697
I2 kgm2 7280 c m 1.823
B1 1/deg 0.2834 d m -0.12

Table 2.6: Parameters of baseline vehicle.

B, the coefficients C and D are also given in Table 2.2, and m is equal to 0.14. Based on

the manufacturer’s data, the tire design load for the baseline vehicle’s tires is FZT = 72971 N,

which can be used to compute B. The given values of B for the front and rear tires (B1 and

B2) are computed for an on-highway surface. Then, to compute the aligning stiffness CTα in

Equation (2.12), the tire contact length lt is required according to Equation (2.13). To find lt,

the tire deflection δt is required according to Equation (2.14), which can be computed by using

the tire vertical stiffness kt = 682200 N/m [35]. To find lt, in addition to δt, the coefficient Cl

is required that can be calculated according to Equation (2.15) by using the tire dimensions

dt = 1.88 m and bt = 0.775 m. In summary, the computations result in a cornering stiffness

of 371050 N/rad and 385435 N/rad for the front and rear tires, respectively, and respective

aligning moment stiffnesses of 33163 Nm/rad and 35945 Nm/rad. The center of mass positions

are set based on a typical rear-mounted and front-mounted attachment.

For a value ofKR = 1.1×105 Nm/rad and CR = 0, the real parts of eigenvalues of the system

versus forward speed are shown in Figure 2-13. There is a pair of complex conjugate roots with

very small real part that dominate the response as depicted in Figure 2-13(a). At lower speeds,

the real part of these eigenvalues is negative, and thus, the vehicle is stable. However, the

dominant oscillatory roots have a positive real part at forward velocities higher than ucr =36

km/h (10 m/s). This means the vehicle will show an undamped oscillatory yaw motion or

unstable snaking mode at these speeds. Therefore, the behavior predicted by the 3-DOF model

is very close to that observed in practice. As the forward speed u increases, the amplitude of

the unstable snaking mode grows at a higher rate. The frequency of this undesirable behavior

is 0.9 Hz at ucr =36 km/h. When the forward speed increases, this frequency does not increase

significantly. There are also two other eigenvalues that have large negative real parts, as plotted

in Figure 2-13(b). Although the critical speed of the baseline vehicle and the articulated steer
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Figure 2-13: Eigenvalue results for baseline vehicle: (a) λ1,λ2 (left graph) and (b) λ3,λ4 (right
graph).

tractor (10 m/s and 2.5 m/s) are different, the eigenvalue results for the two vehicles are similar.

2.4.4 Effects of Steering System Properties

Now, if KR is increased to 3×105 Nm/rad for the baseline vehicle, the real part of the dominant

complex roots (λ1,λ2) will be negative, as shown in Figure 2-14, which indicates a stable

oscillatory yaw motion. The other eigenvalues of the system (λ3,λ4) have negative real parts

and similar patterns to their previous ones. Also, for KR = 1.1× 105 Nm/rad, if the torsional

damping at the articulation joint is increased to CR = 350 Nms/rad, the vehicle will be stable

up to 12 m/s, as plotted in Figure 2-15.

2.5 Simulation of Snaking Mode in ADAMS (12-DOF Model)

To verify the results from the 3-DOF model analysis, the straight-line motion is simulated by

using a virtual prototype of the baseline vehicle in ADAMS. ADAMS is a commercial software

package used to model and simulate a multi-body system and test the model in an environment

similar to that which the actual system will experience [36]. Figure 2-16 shows the virtual

prototype built according to the dimensional description and mass properties of the baseline

vehicle. The front and rear parts are connected to each other by an articulation joint between

47



0 2 4 6 8 10 12
-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Forward speed (m/s)

R
ea

l p
ar

t o
f e

ig
en

va
lu

e

K
R
 = 3 * 105 Nm/rad

Oscillatory Mode

Figure 2-14: Real part of λ1 and λ2 for KR = 3× 105 Nm/rad.
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them with allowable steering angles of ±45◦, by using the two-sided BISTOP contact function

of ADAMS. Each part has two wheels rotating on its axle with the wheel mass mw = 557 kg.

The front axle is allowed to roll ±15◦ relative to the front part. The hydraulic cylinders at the

articulation joint are represented by a torsional spring and damper, similar to the 3-DOF model.

The SAE tire coordinate system is used by default to describe the tire forces and moments in

ADAMS. The tire rolling resistance, lateral force, longitudinal force and aligning moment are

computed by the Fiala tire model. The Fiala tire model can generate accurate values for lateral

force, longitudinal force and aligning moment in response to slip angle and longitudinal slip for

different types of tires without the need for tire tests or large storage requirements for look-up

tables. In addition, if the equations describing tire forces and moments based on the Fiala

tire model are linearized for small deviations, they take the forms similar to those used for the

3-DOF model. For simplicity, the tire longitudinal slip stiffness CFs and cornering stiffness

CFα are assumed to be equal, and the same value as CFα for the 3-DOF model. The value of

μmax and μs are considered for a concrete highway from Table 2.1 ( μmax = 0.9 and μs = 0.75).

Moreover, the tire vertical load Fz is computed based on the normal deflection of the tire, as

follows:

Fz = ktδt + ctδ̇t (2.79)

where ct denotes the tire vertical damping coefficient, which is about 4800 N.s/m [35].

An equal driving torque Td is applied to the four wheels of the vehicle. The value of Td

is adjusted using a tuned PID (Proportional+Integral+Derivative) control law to move the

vehicle with a constant forward speed u. To examine the perturbed motion, after the straight-

line motion with constant forward speed begins, a pulsed external torque Te is applied to the

articulation joint, which changes the articulation angle slightly, and then it vanishes. Finally,

the articulation angle in response to this disturbing element, which can typically be generated

from the movements of the steering wheel by the operator, is plotted.

2.5.1 Effects of Steering System Properties

For the first step, the rolling resistance is neglected similar to the 3-DOF model. Therefore, the

driving torque Td will be zero at the steady-state. The perturbed motion of the vehicle with the
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Figure 2-16: Virtual prototype of baseline vehicle in ADAMS.

critical speed predicted by the 3-DOF mode (ucr = 10 m/s, see Figure 2-13), CR = 0 and KR =

1.1× 105 is simulated. As shown in Figure 2-17, the response is an undamped oscillatory yaw

motion, or snaking mode, as predicted by the 3-DOF model. The frequency of the resulting

oscillatory motion is 0.8 Hz at ucr =36 km/h, which is very close to that predicted by the

3-DOF model (0.9 Hz). For KR = 3× 105 Nm/rad, the vehicle is stable at this forward speed,

as depicted in Figure 2-18. The response is a damped oscillatory mode, as predicted by the

3-DOF model for this value of KR (see Figure 2-14). Figure 2-19 shows the articulation angle

for the perturbed motion with u = 10 m/s, KR = 1.1× 105 Nm/rad and CR = 350 Nms/rad.

The response is a damped oscillatory mode, as predicted by the 3-DOF model and the vehicle is

stable at this velocity (see Figure 2-15). Therefore, for the negligible rolling resistance and small

deviations, the results from the simulations and the 3-DOF model are reasonably consistent.

Now, a typical value of 0.017 is considered for the tire rolling resistance coefficient Crr on

concrete. In this case, the driving torque Td will be non-zero at the steady-state. The response

of the system is again shown in Figure 2-20 for KR = 1.1 × 105 Nm/rad and CR = 0. The

response is a damped oscillatory yaw motion, which is different from that shown in Figure 2-17.

This difference is due to the fact that the change in v during the perturbed motion leads to a

small change in the roll motions of the rear and front parts. Therefore, the normal load Fz at

the left and right wheels of a given axle will be slightly different. This leads to the different
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Figure 2-17: Change in articulation angle for KR = 1.1× 105 Nm/rad.

rolling resistance Fr at the left and right wheels because Fr is dependent on Fz. Therefore,

the resulting moment produced by these different rolling resistances will introduce a stabilizing

effect similar to increasing the torsional damping.

2.5.2 Effects of Front and Rear Tire Properties

The dynamic behavior of the virtual prototype in ADAMS is nonlinear, and thus, for the larger

deviations, the response may be slightly different from that predicted by the 3-DOF model.

For instance, as shown in Figure 2-14, the baseline vehicle is stable at u = 12 m/s, for the

torsional stiffness KR = 3 × 105 Nm/rad and CR = 0, based on the 3-DOF model analysis.

Although the real part of the dominant eigenvalues is very close to zero, it is still negative,

indicating a very slowly-damped oscillatory yaw motion. However, for the virtual prototype of

the vehicle for the larger perturbation, the response is an undamped oscillatory yaw motion, as

plotted in Figure 2-21. The undamped oscillations start because the external torque Te makes a

larger change in the articulation angle as the initial condition for this simulation. Therefore, the

nonlinear effects, for instance due to tire forces and moments, appear and lead to the undamped

oscillations, instead of very slowly-damped oscillations.

To obtain insight into the dynamic behavior during the snaking mode, some results are
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Figure 2-18: Change in articulation angle for KR = 3× 105 Nm/rad.

Figure 2-19: Change in articulation angle for KR = 1.1× 105 Nm/rad and CR = 350 Nms/rad.
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Figure 2-20: Change in articulation angle for KR = 1.1 × 105 Nm/rad and CR = 0 with
considering rolling resistance.

examined for this simulation. The slip angles of the left and right front tires are plotted in

Figure 2-22. These angles are very similar for the left and right tires (solid and dotted lines).

The slip angles are also close to each other for the left and right rear tires (solid and dotted

lines), as illustrated in Figure 2-23. However, the magnitude and sign of the slip angles at the

rear tires and front tires are different. This will result in different lateral tire forces at the front

and rear. The lateral tire force of the left front and left rear tires are graphed in Figure 2-24.

These forces are different, as expected. The longitudinal forces of these tires are also plotted

in Figure 2-25, which shows that the longitudinal tire forces are much smaller than the lateral

tire forces. The aligning moment of the left front tire is also shown in Figure 2-26. In general,

the front and rear resultant lateral tire forces have significant effects on the dynamic behavior

during the snaking mode.

The lateral force produced at the tires is dependent on their cornering stiffness. Therefore,

when the cornering stiffness of the front or rear tires changes, the dynamic behavior will change

during the snaking mode. This change in the cornering stiffness can be a result of change in the

tire properties such as construction, size and inflation pressure [37]. Even for a given size and

type, tires produced by different manufacturers have a standard deviation of about 15 percent

on cornering stiffness. The change in the cornering stiffness caused by using the tire properties
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Figure 2-21: Oscillatory behavior of articulation angle in response to an external disturbance,
u = 12 m/s.

Figure 2-22: Slip angles of left and right front tires during snaking mode.
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Figure 2-23: Slip angles of left and right rear tires during snaking mode.

Figure 2-24: Lateral forces of left front and rear tires.
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Figure 2-25: Longitudinal forces of left front and rear tires.

Figure 2-26: Aligning moment of left front tire.

56



Figure 2-27: Damped oscillatory behavior by increasing CFα at front tires.

has been used by designers to improve lateral stability and handling behavior of wheel steer

vehicles. As an example, some wheel steer vehicles, such as sports and performance cars, have

in common rear tires that are wider than those in front. The wider tires at the rear result in an

increase in the cornering stiffness to induce an understeer effect on the handling behavior. A

similar effect can be achieved by using tires with unequal pressures and section heights in the

front and rear.

Now, if CFα for the front tires increases by 10 percent of the nominal value, the articulation

angle will change according to Figure 2-27. The response is a damped oscillatory yaw motion,

and the vehicle is stable. However, the snaking oscillations are damping out very slowly. The

articulation angle for 10 percent decrease in CFα for the rear tires is shown in Figure 2-28. This

is possible, for instance, by using narrower tires at the rear. The response is again a damped

oscillatory yaw motion, but the snaking oscillations are decreasing at a higher rate compared

with the previous case. The articulation angle for 10 percent decrease in the cornering stiffness

of the rear tires and 10 percent increase in the cornering stiffness of the front tires is shown in

Figure 2-29. The response is very close to that of the previous example.
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Figure 2-28: Damped oscillatory behavior by decreasing CFα at rear tires.

Figure 2-29: Damped oscillatory behavior by decreasing CFα at rear tires and increasing CFα
at front tires.
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2.6 Summary

A comprehensive study of the lateral stability of an ASV during the snaking mode was con-

ducted to identify the causes of the instability. First, several stability analyses based on simpli-

fied models of the vehicle, including 1-DOF and 3-DOF, were performed. These models were

developed using models of the subsystems, including tire and steering system. The model-

ing of tires, using linearization and mobility number, as well as Fiala and Metz methods, was

described. The commonly-used steering systems for ASVs, including hydrostatic and hydraulic-

mechanical, were reviewed. In view of the pressure-flow equation for these steering systems, a

torsional spring and damper at the articulation joint were used to represent the steering system

characteristics. The simplified models were used to analyze stability in straight-line travel with

different forward speeds, based on the characteristic equation and eigenvalues. The analysis

of the 1-DOF model for the baseline vehicle indicated no lateral instability, but showed that

increasing the forward speed results in an oscillatory yaw motion with lower damping ratio.

The eigenvalue results for the 3-DOF model were validated based on the results reported in

[3] for an articulated steer tractor. The analysis of the 3-DOF model for the baseline vehicle

showed an unstable oscillatory yaw motion or snaking mode for the forward speeds higher than

ucr =10 m/s. Also, these investigations reveal that the effects of higher speeds on the lateral

stability of ASVs are remarkable.

The effects of the steering system characteristics on the stability were also examined. The

additional energy given to the vehicle that could result in the instability during the snaking mode

must be absorbed by the torsional stiffness, or it should be dissipated by the torsional damping.

Therefore, the instability of an ASV occurred when the torsional stiffness and damping, which

result from the steering system characteristics, were at low levels. An increase in the torsional

stiffness or torsional damping can alleviate the snaking oscillations. These studies show that

the design of the articulated frame steering system that controls the articulation angle is more

critical than design of steering system for front wheel steer vehicles. This is due to the fact that

the steering system of an ASV has two different functions, ensuring both maneuverability and

lateral stability.

To verify the results predicted by the 3-DOF model, the motion of a virtual prototype

of the vehicle in ADAMS was simulated for different conditions. The comparisons show that
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the results from the simulations and stability analyses by the 3-DOF model are reasonably

consistent. Therefore, the 3-DOF model can be used to obtain a considerable insight into basic

aspects of the lateral stability of an ASV during the snaking mode for different conditions. The

effects of the tire rolling resistance on the stability during the snaking mode were also examined

by the simulations. A stabilizing yaw moment was generated by changes in the rolling resistance

at the right and left tires of a given axle. This effect on the stability is equivalent to increasing

the torsional damping at the articulation joint. In addition, the results show that the interaction

of the lateral forces of the front and rear tires dominate the response during the snaking mode.

Therefore, by making some changes in the cornering stiffness of the tires at the front or rear,

the response of the vehicle will change. The studies show that when the cornering stiffness of

the rear tires is reduced, the snaking oscillations will also be alleviated. The cornering stiffness

of these tires can be reduced by changing the tire construction or dimensions; for instance,

narrower tires have less cornering stiffness.
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Chapter 3

Effects of Vehicle Parameters and

Operating Conditions on Stability

ASVs are utilized to do different tasks on various surfaces. They are used to carry distinct

values of loads at the front and rear, which may have interaction with ground. To do their

functions, they are equipped with several changeable front and rear-mounted attachments,

the configuration of which can change considerably. All of these factors affect the vehicle

parameters, such as mass properties and center of mass positions, for both the front and rear

parts. The operating condition is also changing for an ASV, similar to any other road vehicle.

An ASV is required to travel on different soft and hard surfaces, such as soils, gravel and

highways during a working cycle. It can travel in a straight-line or in a turning motion, with

constant forward speed or with acceleration. Moreover, ASVs with permanent four-wheel drive

configuration are usually equipped with differential locks on their front and rear axles. When

more total traction is required, for instance on soft surfaces or for carrying loads, differentials

can be locked. ASVs are also used to carry a rear-mounted load or attachment that interacts

with the ground. For instance, forestry skidders are used to transport logs or tractors are

equipped with a long plough.

When the baseline vehicle parameters or its operating condition change, the lateral stability

during the snaking mode is affected. In this section, the effects of these changes on stability are

studied. Some of these analyses are conducted by using the 3-DOF model. However, this model
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is not suitable to study the effects of either locking differentials or of carrying a load which has

interaction with the ground. For these cases, the 3-DOF model is extended to a 5-DOF and

4-DOF model to complete the analyses. Most of the materials of this chapter were previously

published in [38, 39, 40].

3.1 Operation with Different Mass Distributions

The baseline vehicle, a forestry skidder, can be equipped with different types of front and rear-

mounted attachments, such as a dozer and grapple. These attachments can considerably change

the mass and moment of inertia for both the front and rear parts. Also, the configuration of

these attachments may be changed by the operator, resulting in changes in the rear or front

part center of mass positions. As an example, the rear grapple of the baseline vehicle in its

full reach position represents a long rear-mounted attachment, which increases the moment of

inertia for the rear part considerably. By using the 3-DOF model, the effects of these changes

on stability during the snaking mode can be studied, as described in the following sections.

3.1.1 Front and Rear Center of Mass Position

As mentioned previously, conventional ASVs are typically designed in such a way that their

front and rear part center of mass positions are located near their respective axles. Assuming

these center of mass positions for the baseline vehicle ( a = d = 0, b = 1.727 m and c = 1.703

m), even if both KR and CR are zero, the baseline vehicle will be stable over a range of forward

speeds up to and beyond 20 m/s during on-highway travel. This result is based on observing

the real parts of the eigenvalues (λ1, λ2, λ3 and λ4) for different forward speeds, as shown

in Figure 3-1. The real parts of all eigenvalues are negative, and thus, the vehicle is always

stable. The mass properties are the same as those used in Chapter 2 (Table 2.6), and the tire

parameters are calculated based on the Metz tire model.

The previous work shows that the snaking mode may occur when there is a shift in the

rear part center of mass position rearward of the rear axle [3]. For the baseline vehicle, this is

shown in Figure 3-2 by setting a = 0 and d = −0.5 m. The system will have a pair of complex

conjugate eigenvalues with positive real parts for KR = 1 × 105 Nm/rad and CR = 0, over
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Figure 3-1: Eigenvalue results for a = d = 0.

the given range of the forward speeds. This means the vehicle will show the oscillatory yaw

instability for this rear part center of mass position at any forward speed.

A change in the configuration of a front-mounted attachment may also shift the front part

center of mass position forward of the front axle. This may cause the unstable snaking mode, as

shown in Figure 3-3 for a = −0.5 m, d = 0, KR = 1× 105 Nm/rad, CR = 0 and forward speed

higher than ucr = 16.5 m/s (about 60 km/h). Therefore, in addition to the well-backward

center of mass positions for the rear part, the well-forward center of mass positions for the

front part may also lead to the unstable snaking mode if the vehicle moves at considerably high

speeds. However, the well-backward center of mass positions for the rear part result in the

unstable snaking mode even at lower forward speeds.

To identify the significant effects of the center of mass positions on the stability during the

snaking mode, another analysis is conducted. As shown before, the equivalent torsional stiffness

at the articulation joint KR is determined based on the steering system characteristics. For a

given CR, only when this stiffness is less than a minimum value, the unstable snaking mode will

occur. For CR = 0, the minimum torsional stiffness Kcr to stabilize the baseline vehicle up to

u = 20 m/s can be used to determine the effects of different values of the rear and front center
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Figure 3-2: Eigenvalue results for a = 0 and d = −0.5 m.
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Figure 3-3: Eigenvalue results for a = −0.5 m and d = 0.
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Figure 3-4: Critical torsional stiffness for various center of mass positions.

of mass positions on the stability. The critical torsional stiffness Kcr is calculated by examining

the eigenvalues of the system for any case. The value of Kcr is shown in Figure 3-4 for various

combinations of the front and rear parts center of mass positions. The order of magnitude

for Kcr changes when the variations are introduced to the center of mass positions. Also, this

plot clearly implies the important effect of the rear part center of mass position to promote

instability during the snaking mode, compared with the front part center of mass position.

3.1.2 Front and Rear Part Mass

When a front or rear-mounted attachment is loaded, the mass of the front or rear part will

change. To identify the effects of change in the front and rear part masses on stability during

the snaking mode, an analysis based on Kcr is conducted. For the rear part center of mass

position d = −0.5 m, the critical torsional stiffness Kcr is shown in Figure 3-5 for some changes

in the rear part mass. Based on this graph, the maximum increase in the rear part mass is:

10000−7280
7280 ×100 = 37 percent. This maximum change in the rear part mass results in a decrease

of 11 percent inKcr. For the front part center of mass position a = −0.5m, the critical torsional
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Figure 3-5: Critical torsional stiffness for different values of rear part mass.

stiffness Kcr is shown for the different values of the front part mass in Figure 3-6. This plot

shows that an increase of 37 percent in the front part mass only changes about one percent

in Kcr. Comparing Figures 3-5 and 3-6 also shows that Kcr for stabilizing the vehicle with a

front-mounted attachment is considerably less than that with a rear-mounted attachment.

3.1.3 Front and Rear Part Moment of Inertia

The configuration of a front or rear-mounted attachment may change considerably. This may

introduce a large change in the moment of inertia, but the mass remains constant. To identify

the effects of these changes on the stability, a similar analysis is conducted. For the rear part

center of mass position d = −0.5 m, Kcr for the different values of the rear part moment

of inertia is shown in Figure 3-7. This graph indicates that an increase of 37 percent in the

rear part moment of inertia increases 19 percent in Kcr. Therefore, the effect of the rear part

moment of inertia is opposite of that for the rear part mass. For the front part center of mass

position a = −0.5 m, Kcr is also shown for the different values of the front part moment of

inertia in Figure 3-8. This plot indicates that an increase of 37 percent in the front part moment

of inertia decreases 41 percent in Kcr.
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Figure 3-6: Critical torsional stiffness for different values of front part mass.
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Figure 3-7: Critical torsional stiffness for different values of rear part moment of inertia.
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Figure 3-8: Critical torsional stiffness for different values of front part moment of inertia.

3.2 Operation on Different Road Surfaces

An ASV moves on different road surfaces during its operation. The rolling resistances of tires

are smaller during on-highway travel and the vehicle can also move at higher speeds. Therefore,

regarding the effects of forward speed and rolling resistance on stability, which was discussed

previously, the unstable snaking oscillations are more likely during on-highway travel. For this

reason, the previous analyses were conducted for travel on a highway surface. However, on a

reasonably good off-road surface covered with gravel, the vehicle may be able to travel at higher

speeds. For this condition, as an example, Kcr for different values of the rear part mass is shown

in Figure 3-9. The tire properties for gravel surface are computed based on the Metz model.

Comparing Figures 3-5 and 3-9 shows that the change in Kcr for the different values of the rear

part mass is similar for gravel and highway surfaces. However, the stabilization during the on-

highway travel requires more torsional stiffness, although the difference in Kcr is not significant

(about 14 percent). This is due to the fact that the on-highway tire cornering stiffness is higher

than that for a surface covered with gravel. Therefore, the lateral force produced at the tires is

larger on highway surface. As shown before, the interaction of the lateral tire forces produced
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Figure 3-9: Critical torsional stiffness for different values of rear part mass on gravel surface.

at the front and rear has an important effect on the stability during the snaking mode. When

there is a significant difference between the values of the resultant lateral force at the rear and

front, the snaking oscillations are stronger, which is the case during on-highway travel.

3.3 Operation with Forward Acceleration

Regarding the large mass of ASVs (e.g. 14500 kg for the baseline vehicle), the forward acceler-

ation of these vehicles is generally low. Therefore, the analysis of the lateral stability with the

assumption of the constant forward speed can be extended for the travel with forward accelera-

tion by some minor modifications. Applying driving torques for acceleration to the four wheels

of an ASV results in additional tractive force at the tires. This is shown for the 3-DOF model

in Figure 3-10, in which the tractive force is shown at the four tires. The virtual work done by

the tire tractive forces which is related to ψ and θ can be represented by δWl as follows:

δWl = [(Fx1 − Fx2)δψ + (Fx3 − Fx4)δθ]
wt
2

(3.1)

69



where wt is the wheel track, and Fx1, Fx2, Fx3 and Fx4 are tire tractive forces at the front and

rear. The tractive tire force on the left and right tires is normally the same:

Fx1 = Fx2 (3.2)

Fx3 = Fx4 (3.3)

Therefore, according to Equation (3.1), there is no effect on the lateral and yaw motion of the

vehicle due to the tire tractive forces. ASVs have a large wheelbase (e.g. a+ b+ c+d = 3.43 m

for the baseline vehicle), which causes less pitch motion, and thus, less longitudinal load transfer

for smoother driving. Therefore, the change in the cornering stiffness of the tires due to the

change in the normal force at the front and rear is not significant. However, when tractive

force is present at a tire, the cornering force capability reduces [37]. If the tractive force is

high, the cornering stiffness of the tire decreases significantly. This effect changes the handling

characteristics of conventional wheel steer vehicles. For instance, for a wheel steer vehicle with

rear-wheel drive configuration, applying traction force to the rear wheels decreases the cornering

stiffness of these tires, which results in an oversteering effect. However, for a front-wheel drive

vehicle, applying traction force to the front wheels will cause an understeering effect [23]. To

describe the effect of tire tractive force Fx on the cornering stiffness CFα, the friction ellipse

model described by Equation (2.30) is written in a modified form. For a given slip angle α and

tire normal load Fz, this model can be described by the following equation:

(
CFα

C
0
Fα

)2 + (
Fx

Fxmax
)2 = 1 (3.4)

where Fxmax shows the maximum longitudinal tire force, and C
0
Fα is related to the pure lateral

slip conditions when Fx = 0. Based on Equation (3.4), when the tire tractive force is present at

the tires, CFα < C
0
Fα; therefore, the effect of adding tractive force at the tires is a reduction in

the cornering stiffness of these tires. This is an effect similar to travel on a surface which causes

smaller cornering stiffness for the tires, for instance an off-road surface, which was analyzed in

the previous section. In addition to the decrease in the cornering stiffness, applying the driving

torque to the wheel during forward acceleration has a significant effect on the tire aligning
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Figure 3-10: A 3-DOF model of an ASV with considering tire tractive force.

moment [23]. For a given slip angle, a driving torque increases the tire aligning moment,

which has a stabilizing effect during the snaking mode. Therefore, in summary, traveling with

a constant forward speed results in a more critical situation regarding the lateral stability,

compared with the travel at the same speed with forward acceleration.

3.4 Operation in Steady-State Turning

One of the main disadvantages of ASVs is roll instability in steady-state turning, even at low

speeds. This decreases the maximum safe driving speed of ASVs during steady-state turning.

The articulation angle is typically less than ±10◦ for travel on public roads. When an ASV

is traveling with a non-zero articulation angle in the steady-state condition, the normal load

on the inside tires will be decreased and on the outside tires will be increased. Due to the

nonlinear relation between the normal force and lateral force, this lateral load transfer results

in a reduction in the total lateral force [23, 37] at the front and rear. This effect is shown for a

given axle in Figure 3-11. As mentioned before, the reduction in the resultant lateral force at
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the both front and rear has a stabilizing effect during the snaking mode. In addition, when an

ASV is traveling with a non-zero articulation angle in the steady-state, the slip angles of the

tires will increase. When the slip angle increases, the equivalent cornering stiffness of the tire

decreases (see Figure 2-2).

Moreover, during steady-state turning, tractive forces should be present at the tires for

balancing the longitudinal components of the inertia forces and the lateral tire forces. The

tractive force at the tires also causes a stabilizing effect during the snaking mode, as shown

previously. Therefore, all of the above-mentioned factors cause stabilizing effects during the

snaking mode for travel with non-zero articulation angle.

Furthermore, for hydraulic systems with a valve-piston combination, the most critical oper-

ating point from a stability viewpoint is the neutral position of the valve. Near this point, the

valve flow gain is very high, and the damping ratio is very small [31]. For the hydraulic steering

system of an ASV, the equivalent torsional stiffness is minimum at the zero articulation angle.

As shown previously, the compressibility effects of the trapped oil in the cylinders correspond

to a combination of two torsional springs at the articulation joint, according to Equation (2.44).

Based on this equation, it is easy to see that the minimum stiffness occurs when the piston

is in the middle, that is, the vehicle is moving in a straight line. Again, these imply that the

straight-line motion (zero articulation angle) is more critical, compared with the motion during

steady-state turning.

3.5 Operation with Locked Differentials

For an ASV, the front and rear differential locks are hydraulically operated, and may be acti-

vated on-the-go or in standstill by the operator through pushing a button or through a foot-

controlled valve in the cab. By opening these locks, full differential operation during normal

load conditions can be achieved. Both the front and rear differentials can be also controlled

by a single valve. This section is intended to investigate the effects of locking differentials on

stability during the snaking mode of the baseline vehicle. First, the 3-DOF model is modified

for the operation with locked differentials. Then, the critical torsional stiffness Kcr for the

vehicle with front or rear differentials locked in the straight-line motion with constant forward
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Figure 3-11: Effect of lateral load transfer on resultant force.

speed (which is the most critical driving condition based on the above-mentioned analyses) is

plotted for changes in the center of mass positions. To verify the results from the analysis of the

resulting 5-DOF model, the motion of the virtual prototype with the front differential locked

is simulated during the snaking mode in ADAMS.

3.5.1 5-DOF Model of Vehicle with Locked Differentials

In wheel steer vehicles, when an axle is solid, the right and left wheels will rotate at the

same speed. If the left and right wheels travel in tracks with different radius, this causes

longitudinal slips for these wheels. Therefore, two longitudinal forces with opposite directions

will be produced, which results in a turning moment on the vehicle. This effect has been used

in racing cars with solid differentials to produce an understeering moment [37]. Moreover, this

effect has been used to enhance running stability and controllability of large-sized vehicles, for

instance trucks, against disturbances such as road roughness and wind gusts at higher speeds

[41]. During the snaking mode of an ASV with locked front and rear differentials, there is
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Figure 3-12: A 5-DOF model of an ASV with locked differentials.

similar condition. The previous 3-DOF model can be extended to include the effects of locking

differentials, as shown in Figure 3-12.

3.5.2 Equations for Perturbed Motion

In this case, new variables θf and θr, which represent the spin rotation angle of the front and

rear wheels, introduce two additional degrees of freedom. The independent coordinates q to

describe the configuration of the system are:

q = [X1, Y1,ψ, θ, θf , θr] (3.5)

According to Equation (3.1), the longitudinal forces produced at the tires contribute the virtual

work δWl to the system. Therefore, the generalized forces and moments are changed as follows:

QY = Fy1 + Fy2 (3.6)

Qψ = aFy1 − bFy2 +Mz1 + (Fx1 − Fx2)
wt
2

(3.7)
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Qθ = −(c+ d)Fy2 +Mz2 + (Fx3 − Fx4)
wt
2

(3.8)

The longitudinal tire force produced at the left and right tires are similar; therefore, the forward

speed remains constant (u ≈ Const.). The wheel longitudinal slips, which are required to find

the longitudinal tire force, based on Equation (2.1) can be described in a linearized form as:

S1 ≈ −
u+ wt

2 ψ̇ − reθ̇f
u

(3.9)

S2 ≈ −
u− wt

2 ψ̇ − reθ̇f
u

(3.10)

S3 ≈ −
u+ wt

2 ψ̇ − reθ̇r
u

(3.11)

S4 ≈ −
u− wt

2 ψ̇ − reθ̇r
u

(3.12)

Also, based on Equation (2.10), the tire longitudinal forces Fx1, Fx2, Fx3 and Fx4 are as follows:

Fx1 = CsfS1 (3.13)

Fx2 = CsfS2 (3.14)

Fx3 = CsrS3 (3.15)

Fx4 = CsrS4 (3.16)

where Csf and Csr are the longitudinal slip stiffness of the front and rear tires, respectively.

After substituting the resulting longitudinal tire force relationships, two variables θf and θr are

eliminated from the equations of motion, and based on Equation (2.71) and Equation (2.70),

the following state variables can be again used to represent the final equations:

X = [v, ψ̇, φ̇,φ]T (3.17)

The final form of the equations in terms of the state variables can be considered as a LTI system

described by:
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Ẋ = AX (3.18)

The entries for matrix A are found in Appendix B, and are different from those for the 3-DOF

model. They include the longitudinal slip stiffness of the tires, in addition to the cornering

stiffness. The characteristic equation of the system is:

a4s
4 + a3s

3 + a2s
2 + a1s+ a0 = 0 (3.19)

Therefore, the system has four eigenvalues (λ1, λ2, λ3 and λ4) whose values are dependent on

the forward speed and other parameters of the vehicle.

3.5.3 Preliminary Analysis

For an ASV, locking the differentials causes longitudinal slips at the wheels for non-zero artic-

ulation angles. This leads to the longitudinal tire forces at the wheels that produce turning

moments. For introductory study, the baseline vehicle with its nominal mass properties (given

in Table 2.6 and wt = 2.46 m) and the rear part center of mass position d = −0.5 m is con-

sidered when it is traveling with the front differential locked. For KR = 1 × 105 Nm/rad and

CR = 0, the vehicle with open differentials will show the lateral instability over a range of

operating speeds up to 20m/s, as shown in Figure 3-2. However, if the front differential is

locked, the vehicle will be stable up to ucr = 14 m/s, as shown in Figure 3-13. Therefore,

the resultant turning moment produced by locking the front differential has a stabilizing effect.

Now, this result is compared with the response of the virtual prototype of the vehicle with front

differential locked during the snaking mode in ADAMS.

3.5.4 Simulation in ADAMS

For the virtual prototype of the baseline vehicle with the front differential locked (the rear part

center of mass position d = −0.5 m, KR = 1×105 Nm/rad and CR = 0), the perturbed motion

is simulated for forward speeds smaller, equal to and higher than the critical speed predicted

by the 5-DOF model (ucr = 14 m/s). To model the locked front differential, the left and right

driveshafts of the front axle are connected rigidly by a fixed joint, but the left and right wheels
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Figure 3-13: Real part of eigenvalues for a = 0 and d = −0.5 m (front differential locked).

of the rear axle can rotate independently. The results are shown in Figures 3-14, 3-15 and

3-16. For u = 13.5 m/s, the response is a damped oscillatory yaw motion, as shown in Figure

3-14. The amplitude of this motion is decreasing. The response at u = 14 m/s is an undamped

oscillatory yaw motion, as shown in Figure 3-15. The amplitude of this motion is constant, and

thus, this velocity indicates the critical speed of the vehicle. For u = 14.5 m/s, the response is a

snaking mode whose amplitude is increasing, as shown in Figure 3-16. Therefore, the dynamic

behavior of the virtual prototype is similar to that predicted by the 5-DOF model. This means

that the 5-DOF model can be used to identify the effects of locking the differentials on the

stability during the snaking mode with an acceptable precision.

3.5.5 Locking Front and Rear Differentials

As shown in the previous sections, if the front differential is locked, the vehicle will be unstable

for u > 14 m/s, based on the 5-DOF model. However, if both the front and rear differentials

are locked, the vehicle will be stable over a range of operating speeds up to and beyond 20

m/s. This is shown for the baseline vehicle with its nominal mass properties (d = −0.5 m,

KR = 1 × 105 Nm/rad and CR = 0) in Figure 3-17. As mentioned before, ASVs have a
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Figure 3-14: Articulation angle for u = 13.5 m/s with front differential locked.

 

Figure 3-15: Articulation angle for u = 14 m/s with front differential locked.
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Figure 3-16: Articulation angle for u = 14.5 m/s with front differential locked.

differential locking device that can be activated manually by the operator even on-the-go.

Therefore, the operator can easily utilize this device for stabilizing the vehicle, as the frequency

of the snaking oscillations is low (about 1 Hz). Therefore, this is a simple method to alleviate

the snaking oscillations effectively in different conditions.

To show the effectiveness of locking differentials, Kcr for different center of mass positions

for front or rear or both differentials locked are compared during the straight line on-highway

motion with constant forward speed, which is the most critical driving condition for a con-

ventional ASV. Figure 3-18 shows Kcr for both differentials locked. Comparing this plot with

that for both differentials open (see Figure 3-4) indicates that the value of Kcr is reduced by

a factor of 100 for different center of mass positions if the differentials are locked. This means

that the instability will not occur for different center of mass positions during the most criti-

cal driving condition unless there is a major problem in the hydraulic steering system of the

vehicle. Similar plots for the vehicle with the front and also rear differential locked are shown

in Figures 3-19 and 3-20. These plots are obtained from the 5-DOF model by eliminating the

effects of the resulting longitudinal tire forces at the front or rear. For these cases, Kcr is still

considerably less than that for the open differentials (see Figure 3-4), but more than that for

the both differentials locked (see Figure 3-18). However, when only one of the differentials is

locked, a better maneuverability can be achieved during the motion. In addition, the tire wear
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Figure 3-17: Eigenvalues results for a = 0 and d = −0.5 m (both differentials locked).

problem is less under this condition.

These results can be clearly justified based on a good theoretical explanation as follows. The

unstable snaking mode of an ASV is an undamped oscillatory yaw motion that can be alleviated

by introducing appropriate values of damping to the system for a given KR. This can be done

by absorbing energy through friction at the articulation joint or introducing leakage across

the hydraulic cylinders [10, 16]. These forms of damping will add extra values to the existing

CR. The key point is that by locking the differentials, the required damping for alleviating the

snaking oscillations will be provided by the work done by longitudinal tire forces. This can be

realized by comparing the virtual work done by these forces δWl and that done by CR at the

articulation joint δWc. The value of δWc can be described as follows:

δWc = −[CR(ψ̇ − θ̇)δψ + CR(θ̇ − ψ̇)δθ] (3.20)

By using Equation (3.1), and the equations describing the tire longitudinal slips, δWl can be

described as follows:
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Figure 3-18: Critical torsional stiffness for both differentials locked.

 

Figure 3-19: Critical torsional stiffness for front differential locked.
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Figure 3-20: Critical torsional stiffness for rear differential locked.

δWl = −[
Csfw

2
t ψ̇

2u
δψ +

Csrw
2
t θ̇

2u
δθ] (3.21)

Comparing Equations (3.20) and (3.21) clearly shows that locking the differentials introduces

an equivalent damping, similar to CR, that dissipates the energy during the snaking mode.

It is obvious that when both the differentials are locked, the equivalent damping increases.

Therefore, the instability can be prevented more effectively in this condition. These explanations

are reasonably consistent with the results from the 5-DOF model analysis in Figures 3-18 to

3-20.

3.6 Operation with Rear-mounted Log Interacting with Ground

ASVs are also used to carry a rear-mounted load or attachment that contacts the ground. For

instance, forestry skidders are usually used for carrying logs on the soft surfaces of forestlands

or farms, where, under typical conditions, tire cornering properties and lateral load capability

may be half that of on-highway characteristics [28]. In this condition, even if the vehicle with
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its rear—mounted load can travel at higher speeds, the lateral tire forces are still very small to

cause the lateral instability during the snaking mode. There are new trends towards the more

efficient usage of ASVs to move loads to farther places for loading operations. For this purpose,

ASVs may also be required to carry their rear-mounted loads on poor roads or on dry and

firm soils, and thus, an unstable snaking mode may occur. In this situation, the tire cornering

properties and lateral force capabilities are higher than those for forestlands, but still less than

those for highways. In addition, the moment of inertia of the whole rear part of the vehicle may

be increased considerably by a long rear-mounted attachment or load. Most importantly, the

position of the center of mass of the whole rear part of the vehicle, including a rear-mounted

attachment or load, will be well backward of the rear axle. All of these factors deteriorate the

lateral stability of the vehicle with its rear-mounted load during the snaking mode. In this

section, an analysis of the lateral stability of the baseline vehicle pulling a log in the critical

condition is presented.

3.6.1 4-DOF Model of Vehicle with Load

A model of the perturbed motion for the baseline vehicle with load is illustrated in Figure 3-21.

The load is a log carried by the rear grapple of the vehicle. The grapple is connected to the rear

part by a joint (grapple joint), and thus, the log can rotate during the motion. This introduces

an extra degree of freedom to the 3-DOF model, and thus, the resulting model will have 4-DOF.

In addition, a torsional damping Cg at the grapple joint is present (due to a swing dampener

with friction plate), and the value of Cg can be adjusted manually by the operator to some

degree.

3.6.2 Equations for Perturbed Motion

Forces acting at different contact points of the vehicle before the perturbed motion are shown

in Figure 3-22. The rear grapple and the log are both connected to the rear part by a lateral

axis and a vertical axis joint. Again, N1 and N2 are the resultant vertical loads at the front and

rear axles, respectively, and it is assumed that they act at the center of the axles. The rolling

resistance of the tires is also neglected. However, a vertical contact force N3 and a longitudinal

force Fl are present at the load-ground contact area, and it is assumed that:
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Figure 3-21: A model of an ASV with a rear-mounted load.

Fl = μN3 (3.22)

where μ is the surface friction coefficient, and the direction of Fl is the opposite of the direction

of the log contact point velocity. As the forward velocity u is assumed to be constant, the

resultant tractive force at the tires equals to Fl. It is assumed that a resultant tractive force Ft1

acts only at the front wheels (front-wheel drive configuration). For small deviations, the type

of the drive configuration of the vehicle has negligible effect on the dynamic behavior during

the snaking mode. Therefore:

Ft1 = μN3 (3.23)

It is assumed that N1, N2 and N3 remain constant during the perturbed motion. These

forces can be computed using the static equilibrium equations. As shown in Figure 3-22, there

are two reaction forces, P and Q, at the grapple lateral axis joint, which are used for finding

the following relations:

N1 =
m1g(b+ c+ d) +m2gd− Pe− μN3Hg

a+ b+ c+ d
(3.24)
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N2 = (m1 +m2)g − P −N1 (3.25)

N3 =
m3gf

f + h+ μHg
(3.26)

P = m3g −N3 (3.27)

where:

e : Distance from the grapple joint to rear wheels

f : Distance from the grapple joint to the log center of mass

h : Distance from the log center of mass to the log contact point

Hg : Height of the grapple lateral axis joint above ground

The independent coordinates q to describe the situation of the system are:

q = [X1, Y1,ψ, θ, η] (3.28)

where η is the angle between the load centreline and X axis. The total kinetic energy of the

system is:

T = T1 + T2 + T3 (3.29)

where T1 and T2 are the same as those for the 3-DOF model, and T3 is the kinetic energy of
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the load:

T3 =
1

2
m3{Ẋ2

1 + [Ẏ1 − bψ̇ − (c+ d)θ̇ − f η̇]2}+
1

2
I3η̇

2 (3.30)

where m3 and I3 represent load mass and moment of inertia, respectively. The potential energy

of the system is the same as 3-DOF model, but the dissipation function is due to both torsional

damper at the articulation and grapple joints:

R =
1

2
CR(ψ̇ − θ̇)2 +

1

2
Cg(θ̇ − η̇)2 (3.31)

The load contact force Fl can be considered as a resultant of lateral and longitudinal components

Ffy and Ffx in x1− y1 frame. These components are proportional to N3, in direction opposite

to log tip velocity:

Ffx = −μN3 cos(
v − br − (c+ d+ e)θ̇ − (f + h)η̇

u
) (3.32)

Ffy = −μN3 sin(
v − br − (c+ d+ e)θ̇ − (f + h)η̇

u
) (3.33)

The virtual work done by Ft1 and Ffx can be described as follows:

δW1 = −Ffx[(c+d+ e+f +h)(ψ− θ)]δθ−Ffx[(f +h)(ψ− η)]δη+FfxψδY1+Ft1ψδY1 (3.34)

The virtual work done by Ffy is:

δW2 = Ffyδ[Y1 − bψ − (c+ d+ e+ f + h)θ − (f + h)η] (3.35)

The above equations can be used to describe the general forces and moments as follows:

QY = Fy1 + Fy2 + Ffy (3.36)

Qψ = aFy1 − bFy2 − Ffyb+Mz1 (3.37)

Qθ = −(c+ d)Fy2 − Ffy(c+ d+ e+ f + h) +Mz2 − Ffx[(c+ d+ e+ f + h)(ψ − θ)] (3.38)
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Qη = −Ffx(f + h)(ψ − η)− Ffy(f + h) (3.39)

As the baseline vehicle is used for carrying the load in off-road applications, the mobility number-

based off-road tire model is used. Therefore, the lateral tire forces and aligning moments can

be calculated using Equation (2.22) and Equation (2.24). By introducing the following state

variables, the order can be reduced to six. In addition, the articulation angle φ and grapple

joint angle ϕ will be used:

X = [v, ψ̇, φ̇, ϕ̇,φ,ϕ]T (3.40)

where:

ϕ = θ − η (3.41)

Again, the final form of the equations in terms of the state variables can be considered as a LTI

system described by:

Ẋ = AX (3.42)

The entries for matrix A are found in Appendix C. The characteristic equation of the system

is:

a6s
6 + a5s

5 + a4s
4 + a3s

3 + a2s
2 + a1s+ a0 = 0 (3.43)

Based on the Routh criteria, the coefficinets of this equation can be used to identify the stability

of the system. Also, the roots of Equation (3.43) are the six eigenvalues of the system.

3.6.3 Effects of Parameter Variations

Table 3.1 shows the parameters of the baseline vehicle and its rear-mounted load. The mobility

numbers MOB1 and MOB2 for the front and rear tires, respectively, are given for a dry and

firm surface. Different experiments in a variety of field conditions show that the tire aligning

moment on deformable surfaces is negligibly small [25, 42], and thus, the tire aligning moment

coefficients CMα1 and CMα2 are set to zero. In addition, the center of mass position for the
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Parameter Unit Value Parameter Unit Value
m1 kg 7280 a m 0.03
m2 kg 7280 b m 1.697
m3 kg 2500 c m 1.803
I1 kgm2 7280 d m -0.1
I2 kgm2 7280 e m 1.797
I3 kgm2 10700 f m 3.5
MOB1 - 17.8 h m 3.45
MOB2 - 13.5 Hg m 1.5
CI kPa 1500 μ - 0.9

Table 3.1: Parameters of baseline vehicle and its load.

rear part is located far from the rear axle, which is another factor that would reduce the effect

of the aligning moment on stability.

If CR and Cg are assumed to be negligibly small, forKR = 1×106 Nm/rad, all the eigenvalues

have negative real parts; thus, the vehicle is stable for any forward speed u smaller than 7 m/s,

as shown in Figure 3-23. If KR is reduced to a value, such as 5 × 105 Nm/rad, the real part

of the dominant complex roots is very close to the horizontal axis, which indicates a slowly

damped oscillatory mode, as plotted in Figure 3-24. The other eigenvalues have negative real

parts and similar patterns to their previous ones. When KR is reduced to a lower value, such as

4.5× 105 Nm/rad, the dominant oscillatory roots have a positive real part at forward velocities

higher than ucr = 4.75 m/s, as depicted in Figure 3-25. The value of ucr depends highly on KR

and CR. When KR and CR are increased, ucr increases, as shown in Figure 3-26. For a suitable

combination of KR and CR values, the vehicle is stable over the given range of operating speeds.

This is shown for KR = 3.5 × 105 Nm/rad and CR = 300 Nms/rad in Figure 3-27. For much

smaller values of KR with CR = 0, the unstable snaking oscillations may occur over the given

range of the operating speeds, as shown in Figure 3-28 for KR = 1× 105 Nm/rad. The snaking

mode for this value of KR has a typical frequency of 0.9 Hz (predicted by the model). When KR

decreases from this value, the unstable snaking mode occurs over the given range of operating

speeds, but the frequency of the snaking mode is also reduced because the effective stiffness of

the system is diminished.

During the snaking mode, all parts of the vehicle including the rear-mounted log are involved

in the oscillatory motion. This is an undesirable behavior because even a very small change
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Figure 3-23: Eigenvalue results for KR = 1× 106 Nm/rad (vehicle with load).

in the articulation or grapple joint angle will result in a considerable change in the position of

the log contact point. In addition to increasing CR, by an increase in Cg at the grapple joint,

ucr can be increased, and the instability can be removed. This is shown in Figure 3-29, when

Cg takes different values, but CR = 0. However, the effect of CR on ucr is more significant

than that of Cg, as shown in Figure 3-26. For a suitable combination of KR and Cg values, the

vehicle is stable over the whole range of its operating speed. This is plotted for KR = 3.5× 105

Nm/rad and Cg = 600 Nms/rad in Figure 3-30.

3.6.4 Simulation in ADAMS

The virtual prototype of the baseline vehicle is changed in a way that a log is held by a grapple

at the rear part, as shown in Figure 3-31. A torsional damper Cg is present at the grapple

joint, similar to the 4-DOF model. The grapple and log can rotate about the vertical axis by

this joint. In addition, they can rotate around the lateral axis freely by a lateral axis joint.

Moreover, a contact force between the log and the ground is defined. This can be done by

defining a plane as the ground and using the contact function of ADAMS. The parameters of

the load will be the same as those for the 4-DOF model. A subroutine including the off-road
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Figure 3-24: Eigenvalue results for KR = 5× 105 Nm/rad (vehicle with load).
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Figure 3-26: Critical speed for different values of KR and CR (vehicle with load).

0 1 2 3 4 5 6 7
-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Forward speed (m/s)

R
ea

l p
ar

t o
f e

ig
en

va
lu

e

C
R
 = 300 Nms/rad

K
R
 = 3.5 * 105 Nm/rad
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with load).
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Figure 3-29: Critical speed for CR = 0 and different values of Cg.
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Figure 3-30: Eigenvalue results for KR = 3.5× 105 Nm/rad and Cg = 600 Nms/rad (CR = 0).

tire model based on the mobility number is developed and linked to the model of the vehicle.

The tire rolling resistance, lateral force and longitudinal force are computed by this subroutine

for both front and rear tires. The effect of longitudinal tire force on the lateral force coefficient

(the friction ellipse model, Equation (2.30)) is also considered.

Figure 3-32 shows the response for the perturbed motion with u = 5 m/s, and KR = 5×105

Nm/rad and CR = Cg = 0 after applying Te. The response is a slowly damped oscillatory

mode, as predicted by the 4-DOF model.

Figure 3-33 shows the response for KR = 3.5 × 105 Nm/rad and CR = Cg = 0. In this

condition, the vehicle is again moving with forward velocity u = 5 m/s, and the response is

an undamped oscillatory mode, as predicted by the 4-DOF model for this value of KR. The

change in the grapple joint angle is also shown in Figure 3-34. This response is also an undamped

oscillatory motion, similar to that of the articulation angle. Figure 3-35 shows the response

with u = 5 m/s, KR = 3.5 × 105 Nm/rad, CR = 300 Nms/rad and Cg = 0. The response is

a slowly damped oscillatory motion and the vehicle is stable at this velocity, as predicted by

the 4-DOF model. A similar response can be achieved if Cg is increased to 600 Nms/rad, as

plotted in Figure 3-36.
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Figure 3-31: Virtual prototype of baseline vehicle with load in ADAMS.

Figure 3-32: Articulation angle for KR = 5× 105 Nm/rad and u = 5 m/s.
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Figure 3-33: Articulation angle for KR = 3.5× 105 Nm/rad and u = 5 m/s.

Figure 3-34: Grapple joint angle for KR = 3.5× 105 Nm/rad and u = 5 m/s.
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Figure 3-35: Articulation angle in response to an external disturbance for KR = 3.5 × 105
Nm/rad, CR = 300 Nms/rad and u = 5 m/s.

Figure 3-36: Articulation angle for KR = 3.5× 105 Nm/rad, CR = 0, Cg = 600 Nms/rad and
u = 5 m/s.
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3.7 Summary

The analysis of the effects of different parameters and operating conditions on the lateral sta-

bility of an ASV during the snaking mode showed that the straight-line on-highway motion

with constant forward speed was the most critical driving condition. It was shown that the

change in the mass and moment of inertia can change the critical torsional stiffness to some

degree. However, the center of mass positions for the front and rear parts can change the order

of magnitude of the critical torsional stiffness. The front part center of mass position had less

effect on the stability compared with that of the rear part. The results also indicated that, in

addition to the well-rearward center of mass positions for the rear part, the well-forward center

of mass positions for the front part of the vehicle may cause the instability. However, this may

only happen at considerably high speeds, for instance 60 km/h or higher.

To study the effects of locking differentials on stability, the 5-DOF model was generated

based on the previous 3-DOF model. The results showed that locking both front and rear

differentials caused a significant reduction in the critical torsional stiffness. It was shown that

locking both differentials prevented the instability in normal driving conditions. In addition,

locking only one of the differentials also improved the lateral stability of the vehicle during the

snaking mode. Based on the conducted theoretical analysis, locking one or both of the differ-

entials introduced an equivalent damping, similar to the torsional damping at the articulation

joint that dissipated the energy during the snaking mode. However, when both the differentials

were locked, the equivalent damping was increased. Therefore, the snaking oscillations can

be alleviated more effectively in this condition. The 5-DOF model was developed based on

some simplifications. By using the simulation of the motion for the virtual prototype of the

baseline vehicle in ADAMS, it was shown that these simplifications had no significant effect on

the results. The snaking mode is a problem that makes some difficulties for the drivers during

travel at higher speeds on roads and highways, and many manufacturers have tried different

changes to the hydraulic system of the vehicle to alleviate this problem. However, locking the

differentials is a simple and effective method for this purpose, which can be even used on-the-go.

To study the lateral stability of an ASV with a rear-mounted load having interaction with

ground, the 3-DOF model was extended to a 4-DOF model. Some assumptions were considered

to develop this model. For instance, the normal force at the tires and load-ground contact
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area was assumed to be constant. A stability analysis of the straight-line motion of the baseline

vehicle was presented by using the eigenvalues of the system. The results showed that, when the

vehicle was carrying a rear-mounted load, unstable snaking oscillations occurred if the travel was

on a relatively good off-road surface and the torsional stiffness or damping at the articulation

joint was very small. However, when the torsional stiffness or damping at the articulation angle

was increased, the snaking oscillations were removed or delayed to higher speeds. This can be

also achieved if the torsional damping at the grapple joint is increased. To verify the results

from the analysis of the 4-DOF model, the motion of the virtual prototype in ADAMS was

simulated for different values of the torsional stiffness and damping at the articulation joint

and the torsional damping at the grapple joint. The off-road tire model based on the mobility

number was also linked to the virtual prototype. The results from the simulations and the

stability analyses were reasonably consistent. They both indicated the important effects of the

torsional stiffness and damping at the articulation joint and also the torsional damping at the

grapple joint on the lateral stability. These results were expected regarding the important effects

of the steering system characteristics on the stability for the vehicle without load, which was

discussed before. For the time being, with regard to the current operation of the baseline vehicle

for carrying logs, which is mostly on soft soils with differentials locked and considerable damping

at the grapple joint, the instability during the snaking mode is not a problem. However, for

future applications of this type of vehicle at higher speeds and on good surfaces such as dry

and firm soils or unpaved roads, it may be a problem.
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Chapter 4

Design and Evaluation of Stability

Control Systems

In the previous chapters, the studies focused on identifying the causes of the instability dur-

ing the snaking mode and the effects of different parameters and operating conditions on the

stability. These studies showed that a conventional ASV is more prone to the instability in

on-highway travel at higher speeds. Such concerns are very important for highway traffic safety

as there is no guarantee of an appropriate driver response to dangerous situations. In view of a

gradual increase in operating speeds of ASVs, it is essential to address this undesirable dynamic

behavior to avoid loss-of-control accidents as these vehicles move from one job site to another

on public roads and highways. Regarding the instability during the snaking mode, some studies

have indicated the use of passive methods to alleviate the problem. These methods are mostly

based on some changes in the steering system. However, the review of the research literature

on lateral stability of conventional ASVs clearly shows that no attention has been paid to the

development of more effective methods for stability control.

Stability control systems for wheel steer vehicles were introduced to the market two decades

ago. These systems are used to lead the vehicle to predictable behavior and to prevent the

vehicle from spinning and drifting out by influencing the vehicle yaw rate so that the drivers have

better control on the vehicle. Two main techniques are commonly used for yaw moment control.

The first technique is introducing an additional steer angle to the front or rear wheels, called
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active front or rear steering. Improved vehicle dynamics, increased safety, enhanced comfort

and compact packaging are new features that are all incorporated into active steering systems

for wheel steer vehicles [43]. The second technique is generating a yaw moment by producing

different values of driving or braking force on the two sides of the vehicle. Depending on the

type of the longitudinal force (driving or braking), the technique is called torque vectoring

or differential braking. Integrated stability control systems, resulted from combining the two

above techniques, have been also proposed by some researchers [44, 45].

One of the challenging issues in development of vehicle stability control systems is the con-

troller design. Any reliable controller for such a system must be developed with regard to

existing uncertainties of parameters of the vehicle and its subsystems. Regarding the highly

variable operating condition of ASVs, the controller design will be a crucial subject. In this

chapter, the shortcomings of using passive methods to stabilize the baseline vehicle during

the snaking mode by making some changes in the steering system are indicated. Then, com-

monly used active strategies for stabilizing the baseline vehicle, including active steering, torque

vectoring and differential braking, are investigated. The studies are concentrated on the appli-

cation of the tire longitudinal forces (torque vectoring and differential braking) for the purpose

of stability control. For each strategy, a different controller is utilized and its performance

is evaluated. These include classical, robust full-state feedback and robust variable structure

controllers. Most of the materials of this chapter were previously published in [46, 47, 48, 49, 50].

4.1 Shortcomings of Stabilization by Passive Methods

Based on previous work, the snaking oscillations can be alleviated to some degree by using

passive methods. These methods are based on some changes in the steering system. Therefore,

to review the effectiveness of these methods, the 3-DOF model is modified to include the

pressure-flow equation of the steering system. Then, using the modified model, the shortcomings

of some passive methods, such as introducing friction at the articulation joint and leakage flow

across the cylinders for decreasing the snaking oscillations, are indicated.
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4.1.1 Equations for Perturbed Motion based on Modified 3-DOF Model

To modify the 3-DOF model, the pressure-flow characteristics of the steering system described

by Equation (2.40) are added to the equations of motion, and the torsional spring KR at the

articulation joint is eliminated. However, the torsional damping CR is still present to introduce

the structural damping. In addition, to avoid large numerical errors, a scaled and dimensionless

pressure difference variable P̂L (instead of PL) is used in the pressure-flow Equation (2.40):

P̂L =
PL
βe

(4.1)

Therefore, the pressure-flow equation can be rewritten as:

Kqxv = Aedj
dφ

dt
+ (Ctp +Kc)P̂Lβe +

Vt
4

dP̂L
dt

(4.2)

Also, the steering torque TS becomes:

TS = P̂LβeAedj (4.3)

The virtual work δWS done by TS is as follows:

δWS = TSδψ − TSδθ (4.4)

The equations of the system can be written in terms of the following state variables:

X = [v, ψ̇, φ̇,φ, P̂L]
T (4.5)

The final form of the equations in terms of the state variables can be considered as a linear

time invariant (LTI) system described by:

Ẋ = AX+BU (4.6)

The entries for the system matrix A and the input matrix B are found in Appendix D, where

the input U is the valve displacement xv.
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4.1.2 Analysis of Passive Methods

The parameters of the baseline vehicle are the same as those given in Table 2.6. The tire

parameters are also computed for on-highway surface based on the Metz tire model. For the

first step, the values of CR and Ctp are assumed to be negligibly small. It is assumed that the

baseline vehicle is traveling in a straight line with forward velocity of u = 12 m/s. By using

the modified model, the articulation angle is simulated in response to an initial condition φ0

= 0.1 rad (5.73◦), with no input from the steering system (xv = 0), as shown in Figure 4-1.

The response of the vehicle shows a snaking mode for which the amplitude of oscillations is

increasing. The snaking oscillations of the baseline vehicle are produced because the equations

of motion result in a pair of complex poles with positive real part at u = 12m/s. These unstable

poles dominate the response of the vehicle and result in the instability. Now, if the value of

structural damping CR increases to 1× 103 Nms/rad, the response of the vehicle will be stable,

as depicted in Figure 4-2. An increase in CR results in a negative real part for the dominant

oscillatory poles. To increase the value of CR, some friction pads at the articulation joint can

be used. Although this value of CR is sufficient to decrease the snaking oscillations in this

condition, it may be insufficient when the road properties or forward speed change. Therefore,

using static friction is not a reliable method to remove the instability.

Now, the effect of introducing leakage flow across the cylinder on the stability is examined.

For the neutral position of the steering valve (xv = 0), when CR = 0 and Ctp = 1 × 10−11

m3/Pa.s, the response to the above initial condition (φ0 = 0.1 rad) is an unstable snaking

mode, as shown in Figure 4-3. For this Ctp and pressure difference PL = 1 × 107 Pa, leakage

flow across the cylinder QL is about 10−4 m3/s. Although this value of QL is not very small

(about 6 percent of the rated flow of the steering system, Q0 = 1.6×10−3 m3/s), the instability

occurs. In this condition, the response of the vehicle is dominated by a pair of unstable complex

poles and a very small negative real pole generated by the pressure-flow equation. If QL is

increased to more than half of the rated flow of the steering system, the instability still occurs.

Therefore, introducing more leakage flow across the cylinder is not always a practical method

to decrease the snaking oscillations.

In addition to the external disturbance, the snaking may occur in response to the steering

input. The articulation angle in response to a pulsed steering input φS = 10
◦, which is produced
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Figure 4-1: Instability of baseline vehicle in response to an initial condition.

by a valve displacement xv = 0.463 mm, is shown in Figure 4-4 for Ctp = 1× 10−11 m3/Pa.s.

The steering response of the vehicle is an unstable snaking mode similar to the disturbance

response.

In summary, the use of the passive methods, including static friction and leakage, to re-

move the instability has the advantage of simplicity. However, there are certain disadvantages,

including loss of power in steady-state conditions and an increase in the nonlinearity of the

steering behavior (due to nonlinear sliding friction). Most importantly, these methods may not

be always reliable or practical methods of stability control.

4.2 Performance of Different Yaw Moment Control Strategies

Regarding the shortcomings of the passive methods, the use of other alternative methods in-

cluding active yaw moment control strategies should be investigated for the stabilization of the

baseline vehicle. However, at the first step, two main strategies for the yaw moment control

including change in the steering (articulation) angle by a steering torque and producing a stabi-

lizing yaw moment by generating longitudinal force (driving or braking) at tires are compared.
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Figure 4-2: Articulation angle in response to an intial condition with CR = 1000 Nms/rad.
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Figure 4-3: Articulation angle in response to an intial condition with Ctp = 1× 10−11 m3/Pa.s.
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Figure 4-4: Articulation angle in response to steering input with Ctp = 1× 10−11 m3/Pa.s.

According to Equation (4.4), the steering torque TS can be used to change the articulation

angle for the stabilization of a conventional ASV during the snaking mode. In this condition,

when the articulation angle φ is increasing, the yaw angles of the both front and rear parts of

the vehicle can be reduced by applying an appropriate TS . This results in a decrease in the slip

angles of the both front and rear tires, and thus, the resultant lateral force at the front and

rear axles is also reduced. Therefore, the snaking oscillations are alleviated. Although this is

one method of diminishing the snaking oscillations, a more efficient method for this purpose

can be achieved by producing longitudinal tire force at the rear wheels of the vehicle. This

method is more efficient for several reasons: first, the resulting yaw moment can be used to

prevent an increase in the yaw motion of the rear part, and thus, the slip angles of the rear

tires. Therefore, the resultant lateral force at the rear axle is reduced. Moreover, the normal

load on the rear axle is usually more than that on the front axle during the snaking mode.

This is due to the fact that the snaking oscillations are mainly initiated when a massive rear-

mounted attachment shifts the rear part centre of mass position well-backward of the rear axle

[3]. Therefore, as the normal loads on the rear wheels are large, high longitudinal tire forces

can be also generated at these wheels to stabilize the vehicle. The second factor is related to a
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change in the cornering properties of the rear wheels due to the generation of the longitudinal

tire forces at these wheels. The generation of the longitudinal tire forces at the rear wheels

reduces the cornering stiffness of these tires. This effect also decreases the resultant lateral

force at the rear axle. As another advantage, the distance between the tire centerline and the

articulation point is typically about three times the distance between the hydraulic cylinder

centerline and the articulation point. Therefore, a higher stabilizing moment is produced by

using the tire longitudinal force to stabilize the vehicle. Finally, the snaking oscillations are

stronger when the vehicle is traveling on surfaces with a larger friction coefficient. Therefore, a

higher longitudinal tire force can be produced at the tire and can be used for the stabilization

of the vehicle. In brief, the most effective strategy to deal with the instability of conventional

ASVs during the snaking mode is the use of longitudinal force at the rear tires.

However, the use of active steering to stabilize conventional ASVs during the snaking mode

can be still considered as an alternative. Conventional ASVs are sometimes required to do

specific tasks during travel. For some of these tasks, the steering should be accurate and the

vehicle should follow a desired path exactly. For instance, when a tractor is used for row crop

cultivating, the inter-row maneuverability must be approximately±9 cm to prevent overrunning

the crop [51]. To improve steering response for this kind of ASV, the use of an active steering

system for the vehicle can result in a prompt and accurate steering. Recently, the concept of an

electrohydraulic steering system to improve steering performance of ASVs has been proposed

[52]. An electrohydraulic valve receives electrical control signals from a controller to adjust

the hydraulic pressure to each cylinder. By using this system, the steering jerk can be limited

and the articulation angle is adjusted precisely according to the rotation of the steering wheel.

The concept has been suggested by considering the regulations that demand a mechanical

or hydraulic connection between the steering wheel and the steering actuator in the event of

electrical power failure. Therefore, for ASVs demanding a good steering response, the use of

active steering for improvement of stability behavior during the snaking mode can be a solution;

however, this is not the case for the baseline vehicle. As a result, although a preliminary study

is conducted regarding the use of active steering system to stabilize the baseline vehicle, the

more detailed investigations are related to the use of longitudinal force at the rear tires for the

stabilization.
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The required longitudinal force at the tires can be produced by applying driving or braking

torques. ASVs have very powerful engines, and their powertrains are designed to produce

extremely high driving torques at the wheels. To enhance the traction capabilities of four-

wheel drive vehicles, they may be equipped with active torque distribution devices, such as

electronically-controlled, limited-slip differentials and electromagnetically-controlled couplings

[53, 54]. These devices can optimize driving force distribution to all four wheels of the vehicle

under different driving conditions. Active torque distribution systems have also been utilized

as a basis for designing vehicle stability control systems [18]. These new applications of active

torque distribution systems motivate the development of a similar active control system to

prevent instability during the snaking mode of the baseline vehicle. As a result, both enhanced

traction performance and stability control can be achieved using this type of system. By using a

torque vectoring device, both the left and right rear tires can be used to produce the longitudinal

force; thus, tire wear is not a big problem. Moreover, as two equal but opposite longitudinal

forces can be generated at the left and right tires for the stabilization, the forward speed remains

constant. However, for stability control of the vehicle, the input torque from the engine to the

rear axle may be insufficient for cases in which the snaking oscillations are very strong. For

these cases, extra power should be supplied to the rear axle for the stabilization.

A much simpler method for producing the longitudinal force at the tires is the application of

braking torque; however, using this method results in more energy loss by wasting the energy

provided for one of the wheels in the form of heat [55]. Despite this shortcoming, in many

stability control systems for front wheel steer vehicles, differential braking is a popular strategy

to produce the required yaw moment for the control of the directional stability [56]. This is

mainly due to the availability of anti-lock braking systems (ABS) and the possibility for easily

changing the brake pressure for each wheel. Differential braking can be used to develop a

similar active control system to prevent instability during the snaking mode for a conventional

ASV, as well. As the braking torque is applied to one individual rear wheel for producing

the longitudinal tire force, the required longitudinal force is about two times that for the case

of using torque vectoring device. Thus, a larger braking force should be generated, resulting

in more tire wear. Although, the forward speed of a wheel steer vehicle may be reduced due

to braking force, this effects is not considerable in the case of ASVs, due to their large mass
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(typically about 14500 kg).

In the following sections, the application of different types of stability control systems as

alternative solutions for the stabilization of the baseline vehicle is reviewed.

4.3 Classical Controller for Active Steering System

In this section, the idea of using an active steering system to remove instability during snaking

mode for the baseline vehicle is investigated using the previously modified 3-DOF model with

the pressure-flow equation of the steering system. To make an active steering system for the

vehicle, the sliding valve of the steering system is replaced with an electrohydraulic valve that

has the capability of implementing electronic control. It is assumed that the displacement of

the valve xv is adjusted by a controller. Figure 4-5 shows a schematic of an ASV with an

active steering system. The user of the vehicle turns the steering wheel to achieve the desired

articulation angle φd. The actual articulation angle φ is then fed back and used by the control

system to adjust xv. The steering process continues until φd is achieved.

The most commonly used classical controllers for improving the response of a dynamic

system are PD, PI, and PID (Proportional+Integral+Derivative control). The PD controller

can increase damping in a system, but it has less effect on the steady-state error. The PI

controller can improve the relative stability and steady-state error at the same time, but the

rise time is increased. By using a PID controller, the best features of each of the PI and PD

controllers are utilized. As a representative of the classical controllers, PID controllers have

been used in many engineering applications, owing to their essential functionality, structural

simplicity and easy application by manual tuning.

If the controller of the active steering system includes only a PID element, the displacement

of the electrohydraulic valve xv is adjusted as follows

xv = Pc(φd − φ) + Ic

Z
(φd − φ)dt+Dc(φ̇d − φ̇) (4.7)

where Pc, Ic and Dc are the proportional, integral and derivative gains of the controller, respec-

tively. These gains can be tuned to stabilize the snaking oscillations for a specific condition.

Sometimes, the pressure-flow equation of the steering system (Equation (2.40)) introduces a
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Figure 4-5: A schematic of an ASV with active steering system.

high lag to the system, which can not be compensated by tuning the PID element, and the

steering response is not sufficiently prompt and well-damped.

As shown before, the unstable snaking oscillations of the baseline vehicle are due to a pair

of complex poles which dominate the response of the vehicle. By using a notch filter in the

network of the controller, the undesirable effect of the dominant unstable poles can be reduced.

A notch filter consists of a pair of complex zeros and a pair of complex poles, and has the

following transfer function [57]:

Gn(s) = Kc
s2 + b1s+ b2
s2 + a1s+ a2

(4.8)

where all of the coefficients Kc, b1, b2, a1 and a2 can be adjusted independently. As long as

the notch zeros are close enough to the dominant poles of the system, they can sufficiently

reduce their effects. Also, the magnitude of the real value of the notch poles should be large

enough to result in a well-damped response. Although the notch filter can remove the instability

generated by the dominant unstable poles, the response of the vehicle should also be prompt

and well-damped. This can be done in a good way by tuning a PID element. Thus, a stable

and acceptable steering response can be achieved by a controller including both a notch filter

and a PID element. By using MATLAB, the coefficients of these elements which are given in

Table 4.1, are tuned to obtain the desirable response for the on-highway travel at u = 12 m/s.

The response of the vehicle for a pulsed steering input φd = 10
◦ is shown in Figure 4-6. The

response is stable with no snaking oscillations. The step steering response of the vehicle for

φd = 15
◦ is also plotted in Figure 4-7. The resulting steering response is stable and sufficiently

prompt.
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Based on the simulations, the developed controller works satisfactorily for many other op-

erating conditions, when the parameters of the vehicle or its subsystems, such as rear part

moment of inertia, forward speed or tire parameters change. This is due to the fact that the

dominant poles of the resulting closed-loop system are chosen in such a way that the parameter

variations do not affect them significantly. However, the controller is highly conservative and

the required flow to stabilize the vehicle in the critical conditions may be as many times as

the maximum flow of the existing hydraulic system of the vehicle. This means that some extra

elements should be added to the hydraulic system of the vehicle to provide the required flow.

Moreover, there are many unknown factors affecting the vehicle dynamics due to the operation

with different attachments and on unpredictable and time-varying terrains that may deteriorate

the performance of the controller. Therefore, design of robust controllers for the stabilization

of the baseline vehicle must be taken into account.

As shown before, the most critical driving condition for a conventional ASV is the straight-

line travel with constant forward speed. For a given straight-line motion with constant forward

speed, all the vehicle parameters are constant, except for the tire parameters, as the road surface

may change. These parameters may change rapidly when the vehicle is moving from one job

site to another. In practice, many factors, such as inflation pressure, normal load, nonlinearity

and so on affect these parameters. In general, tire parameters represent the most important

source of uncertainties of models for road vehicles. Thus, the controller must be robust against

these uncertain time-varying parameters. Also, although other parameters of the vehicle, for

instance mass properties, are constant for a given straight-line motion with constant forward

speed, they can take different values for different motions. Therefore, the controller should be

robust when these unknown constant parameters change, as well, for instance, when the vehicle

is carrying a long rear-mounted attachment.

For the straight-line travel with constant forward speed, the dynamic system of a conven-

tional ASV can be adequately represented by a dominant nominal system plus time-varying

unknown terms resulting from the uncertain tire-road contact parameters. As the bounds on

the uncertainties are known, two popular techniques for designing a deterministic stability con-

trol of the vehicle are present. These design techniques are both based on the Lyapunov second

theorem on stability [58]:
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PID Value Notch filter Value
Pc 10 Kc 1.5
Ic 0.01 b1 6
Dc 2.5 b2 9

a1 120
a2 3600

Table 4.1: Parameters of classical controller for active steering system.
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Figure 4-6: Articulation angle in response to a pulsed steering input.

(I) Design by finding a Lyapunov function

(II) Design of a Variable Structure Control (VSC)

The use of these techniques to design a robust controller for the stability control system of

the baseline vehicle is the focus of the following sections.

4.4 Robust Feedback Controller for Torque Vectoring System

Many active torque managing devices that include electronically controlled differentials and

couplings, overdriven and torque vectoring differentials, and engine control systems have been

developed to control torque distribution between, as well as across axles. By using these active
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Figure 4-7: Articulation angle in response to step steering input.

devices, the driving torque can be distributed independently among all the wheels, depending

on driving condition. The driveline system is adaptive, and can be like an open ordinary

differential, a locked differential, or a limited-slip differential. In addition, the input torque

can be delivered to the wheels of a given axle with different values, and the input power from

the engine can be adjusted and delivered to one or both of the axles with any desirable ratio.

Obviously, these devices are more advantageous for enhancing the traction capabilities of ASVs

with regard to their heavy-duty applications, than with front wheel steer vehicles. At the

same time, these devices can be utilized to improve the stability behavior of conventional ASVs

during snaking mode.

In this section, a torque vectoring device equipped with a robust full-state feedback controller

to accommodate the uncertainties is designed for the stabilization of the baseline vehicle. First,

the 3-DOF model is modified to include the rotational dynamics of the four wheels of the

vehicle. This is due to the fact that the rotation angles of the wheels are changed by applying

the torque vectoring device. The resulting 7-DOF model is then examined to identify the most

important uncertain tire parameters. The equations of motion for this model are represented

in the form of a polytope system, which depends affinely on the most important uncertain tire
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parameters. Then, the Lyapunov function and state feedback matrix of the controller are found

by solving some Linear Matrix Inequalities (LMIs) in MATLAB. Finally, to verify the results

from the 7-DOF model analysis, simulations are performed using the virtual prototype of the

vehicle, to which the active torque vectoring device is connected.

4.4.1 7-DOF Model of Vehicle with Wheel Rotational Dynamics

The 3-DOF model can be extended to include the rotations of the four wheels of the vehicle,

as shown in Figure 4-8. As a result, four additional degrees of freedom are introduced to the

system. As the previous cases, it is assumed that the tire rolling resistance and aerodynamic

forces are negligibly small and the road is flat. Therefore, the input driving torque from the

engine will be zero for constant speeds during a straight line motion. During the perturbed

motion, the yaw motions of the front and rear parts of the vehicle result in a longitudinal

slip at the four wheels, and thus the longitudinal tire force. By controlling the direction and

magnitude of the resulting longitudinal tire forces at the left and right wheels of the rear axle,

the produced yaw moment can be used to stabilize the snaking oscillations. The control of the

longitudinal tire force at the rear wheels can be achieved by applying equal but opposite torque

∆T to these wheels, which will be a basis for the stability control system of the vehicle by its

torque vectoring device.

4.4.2 Equations for Perturbed Motion

For the resulting 7-DOF model, the following coordinates are used to describe the configuration

of the system:

q = [X1, Y1,ψ, θ, θ1, θ2, θ3, θ4] (4.9)

where θ1, θ2, θ3 and θ4 represent the spin rotation angle of the right and left front and rear

wheels, respectively. To derive the equations of motion, the gyroscopic effects are neglected

and the axles and wheels are assumed lumped with their respective parts. As shown previously,

the longitudinal tire forces produced at the tires introduce the virtual work δWl to the system,

according to Equation (3.1). These forces, together with the applied input torque ∆T , change
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Figure 4-8: A model of an ASV with considering wheel rotational dynamics.

the rotational motion of the wheels (θ1, θ2, θ3 and θ4), and introduce another virtual work δWr

described by:

δWr = −(Fx1δθ1 + Fx2δθ2 + Fx3δθ3 + Fx4δθ4)re +∆T δθ4 −∆Tδθ3 (4.10)

Therefore, the seven corresponding generalized forces and moments are:

QY = Fy1 + Fy2 (4.11)

Qψ = aFy1 − bFy2 +Mz1 + (Fx1 − Fx2)
wt
2

(4.12)

Qθ = −(c+ d)Fy2 +Mz2 + (Fx3 − Fx4)
wt
2

(4.13)

Qθ1 = −Fx1re (4.14)

Qθ2 = −Fx2re (4.15)

Qθ3 = −Fx3re −∆T (4.16)
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Qθ4 = −Fx4re +∆T (4.17)

Also, the longitudinal wheel slips are:

S1 ≈ −
u+ wt

2 ψ̇ − reθ̇1
u

(4.18)

S2 ≈ −
u− wt

2 ψ̇ − reθ̇2
u

(4.19)

S3 ≈ −
u+ wt

2 ψ̇ − reθ̇3
u

(4.20)

S4 ≈ −
u− wt

2 ψ̇ − reθ̇4
u

(4.21)

In the resulting equations of motion, the spin angles of the wheels θ1, θ2, θ3 and θ4 are not

present, therefore, the rotational dynamics of the wheels can be represented by a set of first

order equations. In addition, by using the new variables $1, $2, $3 and $4, instead of θ̇1, θ̇2,

θ̇3 and θ̇4, the above equations (4.18 to 4.21) are changed to a suitable form for the state-space

representation by eliminating u from the numerator:

$1 = θ̇1 −
u

re
(4.22)

$2 = θ̇2 −
u

re
(4.23)

$3 = θ̇3 −
u

re
(4.24)

$4 = θ̇4 −
u

re
(4.25)

Also, the four first order equations of motion for the wheels can be replaced by two equations

in terms of the following variables:

$f = $2 −$1 (4.26)

$r = $4 −$3 (4.27)

Finally, the following six state variables are enough to derive the equations of motion:
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X = [v, ψ̇, φ̇,φ,$f ,$r]
T (4.28)

The final form of the equations in terms of the state variables is:

Ẋ = AX+BU (4.29)

The entries for the system matrix A and input matrix B are found in Appendix E. The input

U is ∆T , the transferred torque from one wheel to another one at the rear axle. By designing

a proper controller, the transferred torque ∆T can be adjusted to stabilize the baseline vehicle

during the snaking mode. The transferred torque∆T can be found based on a full state feedback

as follows:

∆T = KX (4.30)

where K shows the feedback matrix, and must be found for the robust stabilization of the

vehicle.

The difference between the resulting equations for the 7-DOF model and those for the 3-

DOF model affects the critical speed of the vehicle ucr. To find ucr based on the 7-DOF model

(CR = 0, KR = 1× 105, Ie = 574 kgm2, re = 0.94 m and the nominal parameters of the vehicle

given in Table 2.6), the eigenvalue results in terms of forward speed are plotted. The tire

parameters take their values for on-highway travel based on the Metz tire model. The system

has a pair of dominant eigenvalues with positive real parts for the forward speed ucr ≈ 12 m/s

and higher, as shown in Figure 4-9. This indicates that the critical speed predicted by the

7-DOF model is higher than that predicted by the 3-DOF model (ucr ≈ 10 m/s). As a result,

the longitudinal forces produced at the tires during the snaking mode result in a stabilizing

turning moment, which increases the critical speed.

4.4.3 Range of Uncertainty in Tire Parameters

When the baseline vehicle is travelling at a constant forward speed, all the parameters of the

vehicle, such as mass and moment of inertia, are constant. However, the road surface may

change; for instance, from a hard on-highway surface to a surface covered with gravel, or from
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Figure 4-9: Eigenvalue results for baseline vehicle with considering wheel rotational dynamics.

a dry to a wet surface, and thus, the tire parameters will also change. In addition to the above

uncertainties in practice, the theoretical equations based on a proposed tire model introduce

another type of uncertainty to these parameters due to the different tire parameters that may

be obtained based on different tire models. A different value for the tire parameters may result

in a completely different response for the vehicle during the snaking mode. Therefore, a robust

controller is required to accommodate the uncertainties of the tire parameters. Two steps are

required to analyze the effects of these uncertainties on the vehicle dynamics. First, the most

significant tire parameters on the lateral stability must be identified. Then, the controller must

be designed with consideration of the range of the possible changes in these important tire

parameters.

In the equations of motion for the 7-DOF model, Csf , Csr (the longitudinal slip stiffness of

the front and rear tires, respectively) and Cαf , CTf , Cαr, CTr (the effective cornering stiffness

and effective aligning stiffness for the front and rear axles, respectively) are related to the

tire-road contact. To obtain the previous eigenvalue results from the 7-DOF model, these

parameters were set to their corresponding values for an on-highway surface. Generally, for this

surface, Cαf and Cαr have their maximum values, which are reduced during travel on other
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surfaces and, due to this reduction, the snaking oscillations are alleviated. This effect can be

recognized in Figure 4-10. When Cαf and Cαr are about 90 percent of their maximum values,

the critical speed is very close to that for their maximum values (according to 100 percent in

Figure 4-10). However, for the lower values, the critical speed increases significantly. When

Cαf and Cαr are reduced to 62 percent of their maximum values (for instance, on an off-road

surface), the vehicle will be stable over the whole range of its operating speed (until u = 60

km/h or 16.7 m/s). The pneumatic trail that is the distance between the tire lateral force and

the centre of the tire-road contact area was set to about 17 percent of the length of contact

area to reach the previous results, based on the Fiala tire model. However, some models predict

that the pneumatic trail is about 25 percent of the length of contact area [21], which is a more

realistic value. If this value is used to calculate CTf and CTr, the vehicle will be stable over

the whole range of its operating speeds during on-highway travel. However, when the slip angle

increases slightly, the pneumatic trail will decrease, and it may reach about 17 percent of the

length of contact area for the small perturbations. This may promote the snaking oscillations

by reducing the critical speed, as shown in Figure 4-11. Finally, the longitudinal slip stiffness

for the front and rear tires, Csf and Csr were considered to be 20 percent higher than their

respective cornering stiffness. However, these values may be about 0-50 percent more than their

respective cornering stiffness, due to the tire construction and other factors [21]. When Csf and

Csr change in this range, the critical speed of the vehicle does not change considerably, as shown

in Figure 4-12. In summary, the conducted analyses show that the uncertainties in Csf and

Csr do not have a significant effect on lateral stability during the snaking mode. However, the

uncertainties in Cαf , Cαr, CTf and CTr do have considerable effects on the stability behavior

of the vehicle and must be considered in the design of the controller.

4.4.4 Robust State Feedback Controller Design

As mentioned previously, to guarantee the stability of the baseline vehicle in the presence of

uncertainties, the controller should be robust. To design a robust controller, the uncertain-

ties must first be represented by a polytopic or norm-bounded characterization. Generally, a

polytopic characterization of uncertainties results in less conservative controller designs com-

pared with norm-bounded characterization [59]. The important case of interval matrices can be
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Figure 4-10: Effect of cornering stiffness on critical speed of baseline vehicle.
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Figure 4-11: Effect of pneumatic trail on critical speed of baseline vehicle.
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Figure 4-12: Effect of longitudinal slip stiffness on critical speed of baseline vehicle.

exactly modelled using the polytopic characterization. However, the norm-bounded characteri-

zation may introduce some dependencies among the parameters for this case, and this leads to

an approximate representation of the uncertain domain [60]. A robust controller for stabilizing

the uncertain system of the baseline vehicle can be designed by finding a Lyapunov function.

For doing this, a polytopic characterization of the uncertainties of the parameters related to

tire-road contact is required. In the following, a brief review of the theoretical background of

the subject is presented.

Quadratic Stabilization of Polytopic Systems

Clearly, there is a difference between Linear Time-Varying (LTV) and Linear Time-Invariant

(LTI) systems for stability analysis. To examine the stability of LTI systems, the real parts of

the eigenvalues of the system can be considered as the stability criterion. For LTV systems, for

instance the dynamic system of a conventional ASV, even if the real parts of the eigenvalues

of the system are all negative for any given time, the system may be unstable. Therefore,

the use of Lyapunov functions for examining the stability of LTV systems has been proposed

by researchers [61]. More specifically, for uncertain LTV systems, undertaking the stability
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analysis by constructing a suitable quadratic Lyapunov function is a popular approach. This

leads to the concept of quadratic stability as follows.

Consider the following LTV system:

Ẋ(t) = A(t)X(t) (4.31)

By definition, this system is quadratically stable if there is a quadratic Lyapunov function

L(X) = XTPX, where XT is the transpose of X, and P is a positive definite matrix (P > 0)

with constant arrays. This results in:

L̇(X) = XT [AT (t)P+PA(t)]X (4.32)

Therefore, the above LTV system is quadratically stable if and only if there is a constant matrix

P > 0 and:

AT (t)P+PA(t) < 0, ∀ t ² R+ (4.33)

Thus, all trajectories of this system converge to zero as t → ∞, which indicates a uniformly

asymptotic stability [61]. Now, the stability of polytopic linear systems is described. Consider

the following linear time-varying system in the state-space form:

Ẋ(t) = A(t)X(t) +B(t)U(t) (4.34)

where A(t) and B(t) include r time-varying parameters pi(t) (i = 1, ..., r) and each pi(t) is

bounded by its extreme values:

pmini ≤ pi(t) ≤ pmaxi (4.35)

If there are constant matrices A0, Āi, B0 and B̄i such that A(t) and B(t) can be represented

for all time by the following equations:

A(t) = A0 +
rX
i=1

Āipi(t) (4.36)
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B(t) = B0 +
rX
i=1

B̄ipi(t) (4.37)

By definition, the system introduced in Equation (4.34) will be a polytope of linear systems. To

determine the stability of this polytopic system, its vertices, (A1, B2), (A2, B2),. . . , (AL, BL),

where L = 2r, can be used. These vertices can be found easily when r time-varying parameters

pi(t) take their extreme values ( pmini , pmaxi ) [59]. The above-mentioned polytope system is

quadratically stable if and only if there is a Lyapunov matrix P > 0 such that [62]:

ATj P+PAj< 0, j = 1, ..., L (4.38)

where, each Aj shows one vertex of the system. Suppose that the input U(t) = KX(t). This

system can then be stabilized by state feedback if and only if there is a Lyapunov matrix P > 0

and a feedback matrix K such that:

(Aj +BjK)
TP+P(Aj +BjK)< 0, j = 1, ..., L (4.39)

Boyd et al. [62] introduce a change of variables that converts this inequality to a Linear Ma-

trix Inequality (LMI). A LMI may be presented by an equivalent convex optimization problem

that can be solved by various numerical methods starting from an arbitrary initial point and

executing a number of iterations in a specific way for converging to a solution. By multiplying

Q = P−1 from both sides of Equation (4.39), the following equation is obtained:

Q(Aj +BjK)
T+(Aj +BjK)Q < 0, j = 1, ..., L (4.40)

By definingY = KQ and substituting that in the above equation, the following can be achieved:

QATj +AjQ+Y
TBTj +BjY < 0, j = 1, ..., L (4.41)

If a Q > 0 and a Y can be found such that the above LMI holds, the system will be stable and

the state feedback matrix K is calculated from:

K = YQ−1 = YP (4.42)
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State Feedback Matrix for Control of Baseline Vehicle

By using the equations of motion for the 7-DOF model, the dynamics of the baseline vehicle

can be described as a polytopic linear system. This representation will be helpful in designing

a state feedback control system for the vehicle, as follows. In this system, A(t) depends affinely

on the four uncertain parameters Cαf , Cαr, CTf and CTr (r = 4):

A(t) = A0 +A1Cαf +A2Cαr +A3CTf +A4CTr (4.43)

However, B is a constant matrix, and does not include these uncertain parameters. The range

of the uncertain tire parameters can be found based on the previously conducted analysis, as

follows:

460100 ≤ Cαf ≤ 742100 (4.44)

477940 ≤ Cαr ≤ 770870 (4.45)

41122 ≤ CTf ≤ 99489 (4.46)

44571 ≤ CTr ≤ 107830 (4.47)

By using the extreme values of the uncertain parameters, the system can be described by its

vertices (A1, B2), (A2, B2),. . . , (AL, BL) and LMIs in Equation (4.41) can be solved by using

LMI Control Toolbox in MATLAB for finding the state feedback matrix K [63]. The maximum

value of the forward speed of the vehicle is assumed to be u = 60 km/h or 16.7 m/s, and

the torsional stiffness and damping are set at their minimum values ( KR = 1 × 105 Nm/rad,

CR = 0). The other parameters of the vehicle are the same as in previous cases. A solution for

K can be found based on the algorithm developed in [63], as follows:

K =1× 104[−0.1481 -3.2948 -1.4472 -3.2759 -1.2524 0.1754] (4.48)
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Figure 4-13: Instability of baseline vehicle for u = 12.5 m/s.

4.4.5 Evaluation of Controller Performance

By using the resulting feedback matrix K, the baseline vehicle can be stabilized in different

driving conditions. As shown previously, if the tire parameters take their nominal values for

the highway surface, the vehicle shows instability for the forward speed ucr ≈ 12 m/s and

higher. For example, the change in the articulation angle in response to an initial condition for

u = 12.5 m/s is shown in Figure 4-13, based on the 7-DOF model. The response is in the form

of an undamped oscillatory mode with increasing amplitude. The amplitude of the oscillations

is growing, and it would reach 0.6◦ after about 9.7 seconds of the motion. If the controller

is activated at this time, the snaking oscillations will be eliminated, as shown in Figure 4-14.

The required transfered torque ∆T for stabilization of the vehicle is also shown in Figure 4-15,

based on the 7-DOF model.

Now, by using the 7-DOF model, the response of the vehicle is simulated for on-highway

travel at 60 km/h (16.7 m/s) for a larger perturbation in the articulation angle. This forward

speed is higher than the critical speed of the vehicle; therefore, the amplitude of the snaking

mode will grow at a faster rate as shown in Figure 4-16. After ten seconds of this motion, the
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Figure 4-14: Stabilization of baseline vehicle for u = 12.5 m/s.
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Figure 4-15: Required torque transfer for stabilization of baseline vehicle for u = 12.5 m/s.
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articulation angle will be about 5◦ and the vehicle may roll over, with regard to its high speed.

If the control system is activated at this time, the instability will be prevented, as shown in

Figure 4-17. The required torque transfer to stabilize the vehicle in this condition is shown in

Figure 4-18.

There is a difference between the angular velocity of the left and right rear wheels during

the snaking mode when the rear differential is free or unlocked. When the torque vectoring

device is not present, the angular velocities of the left and right wheels can become the same as

each other by locking the rear differential. This results in two reaction torques in the opposite

directions at the left and right wheels, and the resulting longitudinal forces at these wheels tend

to stabilize the vehicle, as discussed previously. The value of this reaction torque or locking

torque is also shown in Figure 4-18. To compute the locking torque in the dynamic equations of

the rear wheels, the angular velocities of the left and right wheels are assumed to be the same

as each other and the reaction torque is then computed. It is clear that the required torque

transfer is less than the locking torque in most cases.

The baseline vehicle can be equipped with different attachments at the front and rear. A

rear-mounted attachment has more effect on stability during the snaking mode than a front-

mounted attachment. A rear-mounted attachment can change the mass, moment of inertia and

the centre of mass position for the whole rear part. In general, a change in the mass has no

significant effect on the stability of the vehicle during the snaking mode. However, an increase

in the moment of inertia and a well-backward centre of mass position for the rear part may

promote the snaking oscillations. To design the controller, the rear part centre of mass position

was set to its most critical condition for the various rear-mounted attachments ( d = −0.12 m).

This centre of mass position can be achieved if, for instance, the grapple is placed at its full

reach. This long rear-mounted attachment can increase the whole rear part moment of inertia.

For an increase of 1000 kgm2 in the rear part moment of inertia, the response of the vehicle

during on-highway disturbed motion with u = 60 km/h is shown in Figure 4-19. After five

seconds of this motion, the articulation angle will be about 5◦ and the vehicle may roll over. If

the developed controller is activated at this time, the instability will be prevented, as shown in

Figure 4-20. The required torque transfer ∆T to stabilize the vehicle and locking torque are

shown in Figure 4-21. The change in the angular velocity of the left and right rear wheels from
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Figure 4-16: Snaking oscillations in response to an initial condition for u =60 km/h.

the initial conditions are shown in Figure 4-22. The changes in the angular velocity of the left

and right wheels are similar but occur in opposite directions.

Figure 4-21 shows the required torque transfer to stabilize the vehicle in the most critical

driving condition, when the vehicle is travelling at its maximum speed and carrying a long rear-

mounted attachment. The locking torque is also shown for any moment of the stabilization in

the graph. For many moments, the required torque transfer is less than the locking torque.

Therefore, for these times, if the torque vectoring device acts like a limited slip differential, the

required torque can be provided, regardless of the driving torques at the wheels. However, for

those times when the locking torque is less than the required torque, the driving torque at one

wheel should be decreased and the same value should be added to the driving torque at the

other wheel using the device. Based on the graph, the maximum transferred torque from one

wheel to another is less than 4000 N.m for this case (the first intersection point of two curves).

In addition, the average of the angular velocities of the rear wheels is about 17.73 rad/s for

the forward speed of 60 km/h. Therefore, the required power at each wheel will be about 71

kW, which means the transferred power to the rear axle should be about 142 kW. For a typical

ASV that travels with a forward speed up to 60 km/h, the engine power is more than 200
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Figure 4-17: Stabilization of snaking oscillations by feedback controller for u =60 km/h.
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Figure 4-18: Required torque transfer and locking torque for stabilization at u =60 km/h.
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Figure 4-19: Snaking mode for baseline vehicle with a long rear-mounted attachment.
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Figure 4-20: Stabilization of baseline vehicle with a long rear-mounted attachment.
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Figure 4-21: Required torque transfer and locking torque for baseline vehicle with its attach-
ment.
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Figure 4-22: Change in angular velocity for left and right rear wheels.
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kW. Therefore, the required power is available for stabilizing the vehicle, in the worst case, by

application of the torque vectoring device.

Finally, the combination of the vehicle and the stability controller causes a new system. The

steering response of the resulting system is also stable, although the stability of the disturbance

response was only examined in the previous sections. This is due to the fact that stability is

a property of the system, regardless of the nature of the external force or moment applied to

the system that can typically be from the road or from the steering by the operator. Moreover,

the stability controller must be active when the vehicle is operating at small steering angles,

typically φS ≤ 10◦. This range of steering angles is normally used during travel on public

roads at higher speeds, which is the most critical driving condition with regard to the stability.

As mentioned previously, in the other situations (φS > 10
◦), the instability during the snaking

mode is unlikely because the vehicle normally travels at much smaller forward speeds due to the

risk of rollover. To deactivate the stability controller for these situations, the angular position

of the steering wheel can be measured by a sensor.

4.4.6 Simulation in ADAMS

The analysis of the 7-DOF model shows that for u = 12.5 m/s, the instability happens in

response to an assumed initial condition during the snaking mode. For this forward speed and

the given initial condition, the change in the articulation angle is simulated for the virtual

prototype of the vehicle in ADAMS, as shown in Figure 4-23. The response is an undamped

oscillatory mode, similar to that for the 7-DOF model. The change in the amplitude of the

response is also similar to that for the 7-DOF model (see Figure 4-13). However, the amplitude

of the response reaches the same level as that for the 7-DOF model (0.6◦) after 9.4 seconds of the

disturbed motion, instead of 9.7 seconds. Note that there is a difference about 7 percent between

the frequency of the oscillations for the 7-DOF model and that for the virtual prototype. This

is mainly due to the fact that the tires have their own mass for the virtual prototype. If the

front and rear part mass consist of the mass of their tires, the frequency of the oscillations will

be similar to that for the 7-DOF model. The controller is connected to the existing virtual

prototype of the vehicle and is activated at this time. This in turn prevents the instability

during the snaking mode, as shown in Figure 4-24. The dynamic behavior after the controller
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Figure 4-23: Simulation of snaking oscillations for u = 12.5 m/s in ADAMS.

is activated is also similar to that for the 7-DOF model (see Figure 4-14). The required torque

transfer is also shown in Figure 4-25, which is very close to that shown in Figure 4-15. In

summary, the results from the 7-DOF model analysis and those from the simulations in ADAMS

are reasonably consistent.

4.5 Robust Variable Structure Control for Differential Braking

System

In this section, to remove the instability of the baseline vehicle, the applied braking torque at

the rear wheels will be adjusted to produce the required stabilizing yaw moment. Regarding the

existing uncertainties, the controller should be designed with robustness as a significant feature.

The variable structure control (VSC) on the basis of the sliding mode theory is a common

technique to design robust controllers that are suitable for uncertain dynamic systems [64], and

thus, is applicable to the dynamics of the baseline vehicle, as well. To design a robust VSC, the

input matrix for the 7-DOF is first modified according to the differential braking strategy. The

equations of motion are then written in the state-space form in which the uncertain parameters

related to tire-road contact appear as some unknown and time-varying terms. These terms

introduce a time-varying disturbance function. The bound on the norm of this function can
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Figure 4-24: Stabilization of baseline vehicle at u = 12.5 m/s in ADAMS.

 

Figure 4-25: Required torque transfer for stabilization at u = 12.5 m/s in ADAMS.
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be found by the range of the uncertainties, which will be a basis for designing the controller

structure. To verify the results from the analysis of the modified 7-DOF model, the motion of

the virtual prototype is simulated in ADAMS, to which the controller is connected.

4.5.1 Model Modification for Differential Braking

The 7-DOF model was developed to include the wheel rotational dynamics when applying two

equal but opposite torques to the rear wheels. However, the input matrix for this model must

be changed for the differential braking strategy (see Appendix E). For this strategy, as shown

in Figure 4-26, the differential braking torque ∆T is the input to the system, and can be found

by:

∆T = TBr − TBl (4.49)

where, TBr and TBl are the braking torque applied to the right and left rear wheels, respectively.

The differential braking torques can be provided by applying the braking torques to the rear

wheels of the vehicle according to the following rules:

For ∆T > 0: ∆T = TBr and TBl = 0 (4.50)

For ∆T < 0: ∆T = −TBl and TBr = 0 (4.51)

4.5.2 Robust Variable Structure Controller Design

In a variable structure control (VSC) system, the control structure is switched when the system

state trajectory crosses a certain hypersurface in the state space. When the system trajectory

reaches this surface, it is constrained to remain on that, keeping a motion along its trajectory

on that surface, the so-called sliding mode [65]. One advantage of this technique is that the

dynamics of the system during the sliding mode can be totally determined by choosing the

hypersurface [66]. However, in view of the implementation, the main drawback of this tech-

nique is chattering due to the discontinuity of the control effort because the switching is not
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Figure 4-26: Modified model of an ASV with differential braking.

instantaneous. This undesirable behavior results in high control activity, and may excite the

unmodeled high frequency dynamics. To alleviate this problem, the control discontinuity can

become smooth in a boundary layer near the hypersurface [61]. Another alternative to remove

the chattering is adding an integrator to the control signal; however, this will increase the order

by one and the transient response may deteriorate considerably [67].

The VSC technique is a popular method used to provide robustness for the control of

uncertain systems, such as spacecraft, power systems and underwater vehicles. For example,

this technique has been used for robust control functions of underwater vehicles when the

dynamics and operating conditions of the system are changing. Cristi et al. [68] designed both

non-adaptive and adaptive VSC systems for an Autonomous Underwater Vehicle (AUV). In

their work, the dynamics of the AUV were represented by a dominant single input linear model

plus a function denoting the uncertainties. For developing the non-adaptive VSC, the norm on

the uncertainty function, including nonlinearities and parameter uncertainties, were assumed to

be known. The control law had two different parts, including a linear feedback and a switching

135



function. The first part of the control determined the desirable dynamics of the system on the

sliding surface. The second part was designed to push and maintain the system trajectory on

the sliding surface. To design the first part of the control law, conventional methods, such as

pole placement, were used.

For the case of the adaptive VSC, the uncertainty function represented the norm-bounded

nonlinearities. In addition, the norm on the parameter uncertainties were assumed to be known,

and they were also in the range space of the output, so-called matching conditions. In this case,

the gains of the feedback part of the controller were updated on-line based on a given law. The

VSC was also utilized to design a sliding mode AUV autopilot for the combined steering, diving

and speed control functions by Healy and Lienard [69]. The design method was similar to the

previous approach; however, the control law consisted of an extra term denoting an estimate

of the uncertainty function. Later, the approach proposed by Healy and Lienard was used for

designing a VSC system for the control of a flight AUV [70]. The experimental results showed

that the resulting controller had more robustness and better performance compared to both

classical and fuzzy controllers.

The parameter uncertainty in the dynamic system of the baseline vehicle does not lie in the

range space of the input matrix (so-called mismatched uncertainty) [71]; therefore, the adaptive

VSC designs proposed in [68, 72] are not applicable to this system. To design a VSC for

systems with a specific class of mismatched uncertainties, another adaptive technique has been

proposed by Kwan [71]. However, to use this technique, another type of matching conditions

for the system is required, which is not the case for many dynamic systems, including the

dynamics of the baseline vehicle. For designing an adaptive VSC, an on-line estimation method

can be coupled to modify the controller parameters. However, this makes some difficulties, for

instance, the stability and convergence of the resulting controller is very difficult to guarantee,

more specifically when the signals of the system are not very rich (persistently exciting), leading

to the large increase in estimation errors [61]. Moreover, on-line estimation methods in general

require enough time for parameter adaptation with good accuracy. More specifically, this is the

case during the transient phase, for instance, in the start-up or when the parameters change

considerably. On the other hand, the implementation of a VSC in practice, by using a computer

and several sensors, is performed at a time interval. If this time interval becomes higher, owing
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to an acceptable adaptation and the time delay related to the computations of the estimation

process, the VSC system is prone to chattering and instability. Therefore, the non-adaptive VSC

presented by Healy and Lienard is used for the robust stability control of the baseline vehicle.

Before designing the robust VSC system, a brief explanation of the approach is presented.

VSC Design for single input Systems

Consider a class of single input systems represented by a combination of a dominant linear

model and a function representing the uncertainties and nonlinearities:

Ẋ = AX+BU +F(X) (4.52)

where, A and B are constant matrices, and F(X) denotes the nonlinearities and parametric

uncertainties. The following control U is proposed for stabilizing the system:

U = Ul + Un (4.53)

where Ul is the linear part of the control, usually a state feedback law that is called equivalent

control. The equivalent control Ul determines the dynamics on the sliding surface. Furthermore,

there is a nonlinear switching control law Un that ensures keeping the state trajectory on the

sliding surface in spite of the uncertainties. Now, the method for finding Ul and Un are described.

First, a set of negative eigenvalues λi for having a desirable dynamics on the sliding surface

are chosen. One of these eigenvalues should be zero. This is consistent with the reduced order

dynamics of the system in the sliding mode. By using the pole placement technique for the

linear part of Equation (4.52), a feedback vector K, and thus, the linear part Ul = −KTX

can be determined so that the closed loop dynamics of the linear part of the system has the

specified eigenvalues λi. Therefore, based on Equations (4.52) and (4.53):

Ẋ = ACX+BUn +F(X) (4.54)

where:

AC = A−BKT (4.55)
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If S is an eigenvector of ATC corresponding to λ = 0, then:

ATCS = λS = 0 (4.56)

Therefore:

STAC = (A
T
CS)

T= 0 (4.57)

The sliding surface σ is defined as follows:

σ = STX (4.58)

Multiplying Equation (4.54) by ST :

ST Ẋ = STACX+ S
TBUn + S

TF(X) (4.59)

Based on Equation (4.57) and (4.59), this results in:

σ̇ = STBUn + S
TF(X) (4.60)

If F̂(X) indicates an estimation of F(X), the following may be used to determine the discon-

tinuous control Un:

STBUn = −ST F̂(X)−ηsign(σ), η ² R+ (4.61)

where η(t) is a positive switching gain, which is determined later. Therefore, Equation (4.60)

can be written as:

σ̇ = ST [F(X)− F̂(X)]−ηsign(σ) (4.62)

Defining the following Lyapunov function:

L(σ) =
1

2
σ2 (4.63)
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To guarantee reaching the sliding surface (σ = 0) globally asymptotic, the condition below must

be satisfied:
dL

dt
= σσ̇ < 0 (4.64)

However, to guarantee reaching the sliding surface in a finite time or having an ideal sliding

mode, a stronger condition is required [64]:

σσ̇ ≤ −η0 |σ| , η0 ² R+ (4.65)

where η0 is a positive value. Based on Equation (4.62):

σσ̇ = σ{ST [F(X)− F̂(X)]−ηsign(σ)} (4.66)

or

σσ̇ = σ{ST [F(X)− F̂(X)]}−η |σ| (4.67)

Now, to satisfy Equation (4.65), assume that:

η = kSk
°°°F(X)− F̂(X)°°°+ η0 (4.68)

where k.k indicates the Euclidean norm for each vector. Therefore:

σσ̇ ≤ σ{ST [F(X)− F̂(X)]}− ( kSk
°°°F(X)− F̂(X)°°°+ η0) |σ| (4.69)

or

σσ̇ ≤ σ{ST [F(X)− F̂(X)]}− kSk
°°°F(X)− F̂(X)°°° |σ|− η0 |σ| (4.70)

Thus:

σσ̇ ≤
¯̄̄
σ{ST [F(X)− F̂(X)]}

¯̄̄
− kSk

°°°F(X)− F̂(X)°°° |σ|− η0 |σ| (4.71)

That implies Equation (4.65), regarding the following equation:
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¯̄̄
σ{ST [F(X)− F̂(X)]}

¯̄̄
≤ kSk

°°°F(X)− F̂(X)°°° |σ| (4.72)

By finding η(t) based on Equation (4.68), U can be found by:

U = −KTX+ (STB)−1[−ST F̂(X)−ηsign(σ)] (4.73)

In practice, the discontinuity in the control law by the function sign(σ) may result in the

chattering. Both a reduction of chattering and low-pass noise filtering can be achieved if a

continuous function in a thin boundary layer, instead of the sign function, is considered:

U = −KTX+ (STB)−1[−ST F̂(X)−ηtanh(σ
Φ
)] (4.74)

where Φ is the boundary layer thickness.

Note that the resulting control only assures the global bounded stability instead of the

global asymptotic stability for the reaching condition. This is the case for the states of the

system as well. Moreover, if the elimination of the chattering for all situations is required,

the thickness of the boundary layer must be large enough; however, this may significantly

deteriorate robustness and accuracy. To solve these problems, a boundary layer with varying

thickness must be considered [73, 74]. The thickness can be changed based on a function of

the norm of the states that shows the distance between the state trajectory and the origin.

This function can be constructed by using the tuned fixed boundary layers for two different

operating points, as shown later.

Variable Structure Control for Baseline Vehicle

The dynamic system of the baseline vehicle can be described as a combination of a nominal

linear system and the parameter uncertainties:

Ẋ = AnX+BU +F(t) (4.75)

where An corresponds to a condition that the uncertain parameters take their average values.

Regarding Equation (4.43), An can be described by the following equation:
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An = A0 +A1C̄αf +A2C̄αr +A3C̄Tf +A4C̄Tr (4.76)

In this equation C̄αf , C̄αr, C̄Tf and C̄Tr are the average values of the uncertain parameters,

which can be easily specified based on the maximum and minimum of these parameters. In

addition, F(t) can be represented in terms of the change in these parameters:

F(t) =∆A(t)X(t) (4.77)

where:

∆A(t) = A1∆Cαf (t) +A2∆Cαr(t) +A3∆CTf (t) +A4∆CTr(t) (4.78)

In addition, ∆Cαf (t), ∆Cαr(t), ∆CTf (t) and ∆CTr(t) show the difference between the real

values and the average values of the uncertain parameters. For the case Cαf (t), Cαr(t), CTf (t)

and CTr(t) take their average values, the uncertainties are zero ( F̂(t) = 0), therefore for any

other case: °°°F(X)− F̂(X)°°° ≤ k∆A(t)k kX(t)k (4.79)

where the norm on ∆A(t) can be found by using the vehicle parameters, as follows:

k∆A(t)k ≤ kA1k
¯̄
∆C̄αf

¯̄
+ kA2k

¯̄
∆C̄αr

¯̄
+ kA3k

¯̄
∆C̄Tf

¯̄
+ kA4k

¯̄
∆C̄Tr

¯̄
(4.80)

By using Equation (4.44) to Equation (4.47), ∆C̄αf , ∆C̄αr, ∆C̄Tf and ∆C̄Tr are computed

(the half difference between the maximum and minimum of their values). The forward speed of

the vehicle is set to its maximum value ( u = 60 km/h or 16.7 m/s) and the torsional stiffness

and damping are set at their minimum values ( KR = 1 × 105 Nm/rad, CR = 0). Also, the

other parameters of the vehicle are the same as in previous cases. For these values, according

to Equation (4.80):

k∆A(t)k ≤ 58.36 (4.81)

Equations (4.79) and (4.80) can also be used to find the switching gain η(t) based on Equation

(4.68) if S is also specified. To do this, the closed loop poles on the sliding surface are chosen
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λ1 = −12, λ2 = −8, λ3 = −6, λ4,5 = −2.1 ± 5.6i, and the sixth eigenvalue is λ6 = 0. As

shown later, these choices of the eigenvalues result in an acceptable performance. By using the

pole placement method, based on the above eigenvalues, the state feedback vector K can be

calculated by MATLAB, as follows:

KT=2× 105[−0.0163 1.4950 0.3695 -0.0330 0.6859 -0.1658] (4.82)

Then, based on Equation (4.55), AC can be found, and S is a normalized eigenvector of ATC

corresponding to λ6 = 0:

ST=[0.0105 -0.8976 -0.0888 0.1409 -0.4028 0.0658] (4.83)

Finally, based on Equation (4.68), η is tuned based on the following to overcome the uncertain-

ties:

η>58.36 kXk (4.84)

A higher η can provide robustness against unmodeled disturbance or nonlinearity as well. The

varying boundary layer Φ is related to the norm of the states based on the following equation,

which results in a good trade-off between the robustness and chattering elimination:

0.05 < kXk < 1.3 : Φ = kXk ; kXk > 1.3 : Φ = 1.3; kXk < 0.05 : Φ = 0.05 (4.85)

Therefore, based on Equation (4.74), the control law is determined that in fact specifies the

differential braking torque ∆T .

4.5.3 Evaluation of Controller Performance

By using the devised controller, stability can be achieved in different driving conditions. As

shown previously (see Figure 4-13), the articulation angle will change according to an undamped

oscillatory mode in response to a small perturbation in the articulation angle for u =12.5 m/s.

If the resulting differential braking system is activated after 9.7 seconds of this motion, the

instability will be eliminated, as shown in Figure 4-27. As shown in Figure 4-16, for u = 60

km/h (16.7 m/s), the disturbed motion of the vehicle is again an undamped oscillatory mode. If
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the resulting stability control system is activated after ten seconds of this motion, the instability

will be prevented, as shown in Figure 4-28. For the motion with a long rear-mounted attachment

at u = 60 km/h, a promoted instability occurs, as shown in Figure 4-19. If the developed system

is activated after five seconds of this motion, the instability is removed, as shown in Figure 4-29.

The required differential braking torque is also shown in Figure 4-30 for this case. The dynamic

behavior after the controller operation is similar to that resulting from the activation of the

torque vectoring device (see Figure 4-20). However, the required torque is about two times that

as in the case of the torque vectoring device (see Figure 4-21). This is due to the fact that

two rear wheels of the vehicle were used for that device. Moreover, the maximum longitudinal

tire force resulting from the braking torque shown in Figure 4-30 is less than 10000 N, which is

much smaller than the maximum tire force that can be produced on the highway surface (about

30000 N). Therefore, the required longitudinal tire force to stabilize the baseline vehicle in its

most critical condition can be easily provided. Also, regarding the large mass of the vehicle

(about 14500 kg), the decrease in the forward speed of the vehicle during the stabilization will

be about 1.5 m/s. Therefore, even in the most critical condition for the stabilization of the

vehicle, the change in the forward speed is not considerable.

The performance of the stability controller is also evaluated when the vehicle is traveling on

another surface, such as a road covered with gravel. For this surface, the response is simulated

at u = 60 km/h, as shown in Figure 4-31. The tire parameters for this surface are computed

based on the Metz tire model. The response is an unstable snaking mode. Comparing Figures

4-16 and 4-31 shows that the snaking oscillations are stronger when the vehicle is traveling

on highway surface. This is due to the higher lateral tire force produced at the wheels. If

the resulting control system is activated after ten seconds of this motion, the instability is

eliminated, as shown in Figure 4-32.

4.5.4 Simulation in ADAMS

To verify the results from analyzing the modified 7-DOF model, the motion of the virtual

prototype of the baseline vehicle is simulated in ADAMS by incorporating the stability controller

system to remove the instability. As shown in Figure 4-23, the response of the virtual prototype

at u =12.5 m/s, following a small perturbation, is the unstable snaking oscillations. If the
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Figure 4-27: Stabilization of baseline vehicle at u =12.5 m/s by differential braking.
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Figure 4-28: Stabilization of baseline vehicle at u = 60 km/h by differential braking.
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Figure 4-29: Stabilization of baseline vehicle with rear-mounted attachment by differential
braking.
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Figure 4-30: Differential braking torque for stabilization of baseline vehicle with rear-mounted
attachment.
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Figure 4-31: Instability of baseline vehicle at u = 60 km/h on gravel surface.
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Figure 4-32: Stabilization of baseline vehicle on gravel surface by differential braking.
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Figure 4-33: Stabilizing of baseline vehicle with differential braking in ADAMS.

stability controller is activated, the response will be as shown in Figure 4-33. For the modified

7-DOF model, the response of the vehicle after the control system activation at u =12.5 m/s was

shown in Figure 4-27. Comparing Figures 4-33 and 4-27 indicates that the resulting dynamic

behavior after starting the stabilization is similar for the both modified 7-DOF and virtual

prototype. The braking torques applied to the left and right wheels of the rear axle are shown

in Figure 4-34. Regarding the large mass of the vehicle, the change in the forward speed due

to these braking torques is not considerable.

4.6 Summary

To indicate the shortcomings of passive methods to stabilize a conventional ASV, which are

mainly based on changes in the steering system, a combined model of the vehicle with a

hydraulic-mechanical steering system was developed based on a 3-DOF model. To do this,

the pressure-flow equation of the steering system was added to the equations of motion for the

3-DOF model. The analysis of the resulting equations showed that the instability of a conven-

tional ASV during the snaking mode can be alleviated by increasing friction at the articulation

joint or introducing leakage flow across the cylinders. Although these methods can be used

to alleviate the problem, they are not always practical and reliable methods for this purpose.
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Figure 4-34: Braking torques at left and right rear wheels from ADAMS.

In addition, they result in loss of power and greater nonlinearity of the system. Therefore,

other alternatives, including different types of stability control systems, were suggested. With

regard to advantages of using longitudinal tire force at the rear wheels for the stabilization of

the vehicle, the studies in this chapter were mostly concentrated on the use of torque vectoring

and differential braking strategies.

First, an active steering system was proposed to remove the instability. This system not

only prevented the instability, but also improved the steering response of the vehicle. For

this system, a classical controller including PID element and notch filter was tuned for the on-

highway travel of the baseline vehicle at a forward speed of 12 m/s. Although the performance of

the resulting system was satisfactory and mainly insensitive to the parameter variations, it was

highly conservative, owing to the high value of the required flow for the stabilization. Therefore,

considering the many unknown factors affecting vehicle dynamics, owing to its operation with

different attachments and on unpredictable and time-varying terrains, the design of robust

controllers for the stabilization of the baseline vehicle was considered.

For doing this, an active torque vectoring device was investigated to remove the instability

despite any uncertainty. This system can be used to remove the instability, and at the same

time to improve the traction capabilities of a conventional ASV. For this device, a robust full

state feedback controller was developed. The stabilization was done by controlling two equal
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but opposite torques at the left and right rear wheels of the vehicle. Two longitudinal tire

forces were generated by applying these opposite torques to the wheels of the rear axle through

a torque vectoring device. To design the controller, first, the 3-DOF model was modified to

include wheel rotational dynamics, resulting in a 7-DOF model. This model was examined

to analyze the effects of uncertainty in the various tire parameters. The effective cornering

stiffness and aligning stiffness for the rear and front axles were identified as the most important

uncertain parameters for the stability during the snaking mode. Next, by using the resulting

7-DOF model, the equations of motion were represented in the form of a polytopic system,

which depends affinely on the four above-mentioned uncertain parameters. Finally, some Lin-

ear Matrix Inequalities (LMIs) were solved using MATLAB to find both the Lyapunov and

state feedback matrices for the robust stabilization of the resulting polytopic system of the

vehicle. The simulations showed that the vehicle can be stabilized, and the snaking oscillations

can be effectively prevented even if the vehicle is equipped with a long rear-mounted attach-

ment. The stability control system was incorporated into the virtual prototype of the vehicle

in ADAMS, and the motion was simulated. The results based on the analysis of 7-DOF model

were reasonably consistent with those from the simulation in ADAMS.

As another solution, a stability control system based on differential braking to remove the

instability of the baseline vehicle was developed. For this system, a robust variable structure

control system was designed. The input matrix for the 7-DOF model was changed according

to differential braking strategy. By using the equations of motion, the uncertainties of the

parameters related to tire-road contact were introduced as some unknown and time-varying

terms. These terms were considered as a norm-bounded disturbance vector based on the range

of the uncertainties. Based on this description, the robust control system was designed to

stabilize the vehicle during the snaking mode. The robustness of the resulting system was

investigated for traveling on different surfaces, and for different driving conditions in terms of

the forward speed and vehicle parameters, based on the modified 7-DOF model. The control

system was also connected to the virtual prototype of the vehicle in ADAMS, and its operation

was investigated. In general, the results from the modified 7-DOF model analysis and simulation

in ADAMS were reasonably compatible. These results showed that the vehicle can be stabilized

in different driving conditions and in traveling on different surfaces.
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Chapter 5

Conclusions and Future Work

This study was undertaken to address the lack of research on effective stabilization of conven-

tional ASVs at higher speeds by designing several stability control systems for a typical ASV,

specifically, a forestry skidder. These systems were developed to stabilize the snaking oscil-

lations by using various strategies, including active steering, torque vectoring and differential

braking. These developments were based on a comprehensive study of the causes of the insta-

bility and the effects of the vehicle parameters and its operating conditions on the stability. In

this chapter, a summary of the achievements is presented and some topics are introduced that

can be considered as potential future studies in this area.

5.1 Dissertation Summary

First, to identify the causes of instability during the snaking mode for a conventional ASV (i.e.

a forestry skidder) various analyses were presented. These analyses were mostly concentrated

on examining the effects of forward speed and of two main subsystems of the vehicle, steering

system and tire, which were determining factors on the stability. With regard to the importance

of the tire and steering system, the modeling aspects of these systems were detailed. Several tire

models, such as linear, off-road mobility number-based, Fiala and Metz model, were introduced.

Typical steering systems of ASVs, including hydrostatic and hydraulic-mechanical, were also

described. In view of the pressure-flow equation for these steering systems, a torsional spring

and damper at the articulation joint were utilized to model the steering system characteristics.

150



Two simplified models of the vehicle, including a 1-DOF model and a 3-DOF model, were

devised using models of the vehicle subsystems. The simplified models of the vehicle were

used for the stability analysis of straight-line travel with different forward speeds. To do this,

the roots (eigenvalues) of the characteristic equation of the system were used. Although the

analysis of the 1-DOF model showed no instability, it implied that increasing the forward speed

leads to an oscillatory yaw motion with lower damping ratio. The results of the 3-DOF model

analysis were consistent with given results for an articulated steer tractor reported in [3]. An

analysis was then conducted based on the 3-DOF model for the baseline vehicle, which indicated

an unstable snaking mode for forward speeds higher than the so-called critical forward speed.

Therefore, higher speeds significantly affect the lateral stability of conventional ASVs. The

effects of torsional spring stiffness and damping at the articulation joint on the snaking were

also examined. The investigations showed that an increase in torsional stiffness or torsional

damping can alleviate the snaking oscillations. This means that the design of the articulated

frame steering system that controls the articulation angle is more critical than the design of the

steering system for front wheel steer vehicles. This is due to the fact that the steering system

of an ASV has two different functions: ensuring both maneuverability and lateral stability,

considering the instability of an ASV occurs only when the torsional spring and stiffness, which

result from the steering system characteristics, are at low levels.

To verify the results predicted by the 3-DOF model, the motion of a virtual prototype of

the vehicle in ADAMS was simulated for different conditions. The comparisons showed that the

results from the simulations and the stability analyses using the 3-DOF model were reasonably

consistent. In other words, the conducted analyses showed that the 3-DOF model can be used

to obtain considerable insight into basic aspects of the lateral stability of a conventional ASV

during the snaking mode for different conditions. Also, the effect of tire rolling resistance on

stability was investigated using the virtual prototype. This effect was equivalent to increasing

the torsional damping at the articulation joint. Moreover, the simulations by the virtual proto-

type showed that the interaction of the resultant lateral force at the front and rear dominated

the response of the vehicle during the snaking mode. When the cornering stiffness of the tires

at the front or rear changed, the response of the vehicle was affected. The results showed

that when the cornering stiffness of the rear tires decreased, the snaking oscillations were also
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alleviated. The effects of vehicle parameters and operating conditions on stability were also

examined. These studies were mostly based on the minimum torsional stiffness required to

stabilize the vehicle up to 20 m/s (i.e. critical torsional stiffness). The investigations suggested

that the straight-line on-highway motion with constant forward speed was the most critical

driving condition. The change in the mass and moment of inertia affected the critical torsional

stiffness to some degree. The effects of the center of mass positions were so significant that

they could change the order of magnitude of the critical torsional stiffness, although the front

part center of mass position has less effect compared with that for the rear part. When the

rear part center of mass was located well-rearward or the front part center of mass was located

well-forward, the vehicle showed an unstable snaking mode. The instability for the well-forward

front part center of mass happens at considerably high speeds (i.e. 60 km/h or higher).

Moreover, to identify the effects of locking differentials on the stability, the 3-DOF model

was extended to a 5-DOF model, including two more degrees of freedom for the rotation of

the front and rear tires. Based on the results, a significant reduction in the critical torsional

stiffness can be achieved by locking both differentials. This powerful effect resulting from locking

both differentials is enough to prevent the instability in normal driving conditions during the

snaking mode. Locking only one of the differentials can also be used to stabilize the vehicle,

but to a lower degree. The important effects of locking the differentials were explained based

on a theoretical analysis. The analysis implied that the effect is similar to introducing a kind

of damping, similar to the torsional damping at the articulation joint for wasting the energy,

according to Equation (3.21). A more equivalent damping was provided by locking both the

differentials, and thus, the effect on the snaking oscillations was more significant. To verify

the results from the 5-DOF model, the motion of the virtual prototype with front differential

locked was simulated in ADAMS. The result showed that the simplifying assumptions used in

developing the 5-DOF model have no important effects. Note that the virtual prototype of the

vehicle in ADAMS is a three dimensional nonlinear model, but the 5-DOF model is planar and

linear. In brief, the studies based on the 5-DOF model suggested that locking the differentials

can be used for stabilizing the snaking oscillations, even on-the-go. This simple and effective

method overcomes a problem that makes some difficulties for the drivers during travel on roads

and highways. Based on several simplifying assumptions, the 3-DOF model was then extended
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to a 4-DOF model to analyze the effects of a rear-mounted load having interaction with the

ground on stability. These assumptions include application of the tractive force only at the front

wheels instead of the four wheels, and application of a constant normal force at the tires and

load-ground contact area. A stability analysis based on the eigenvalues of the system showed

that when the vehicle was carrying a rear-mounted load, unstable snaking oscillations occurred

if the vehicle was moving on a relatively good off-road surface. Increasing the torsional stiffness

or damping at the articulation joint resulted in a decrease in the snaking oscillations. The

same result can be achieved by an increase in the torsional damping at the grapple joint. To

verify the results from the above stability analysis, the motion of the virtual prototype was

simulated for different conditions by linking the mobility number-based off-road tire model to

the ADAMS solver. In general, the simulation results were consistent with the results from the

stability analysis. In brief, the investigations on the stability of the vehicle with rear-mounted

load indicated the important effects of the torsional damping at the grapple joint, in addition

to the torsional stiffness and damping at the articulation joint.

To show the shortcomings of passive methods to stabilize the vehicle during the snaking

mode, which are mostly based on some changes in the steering system, the 3-DOF model was

changed to a combined model including both a model of the vehicle and its steering system. For

the combined model, both the equations of motion of the 3-DOF model and the pressure-flow

equation of the steering system were present. The combined model was analyzed to identify

the relieving effects of increasing friction at the articulation joint or introducing leakage flow

across the cylinders. The analyses showed that these passive methods may alleviate the snaking

oscillations to some degree; however, they may not be suitable for all cases and lead to loss

of power (described by Equation (3.20) for any equivalent torsional damping) and greater

nonlinearity of the system. As a result, the investigations suggested using alternative solutions

to stabilize the vehicle. Therefore, applications of different types of stability control systems

were reviewed, with more focus on using longitudinal tire force for the stabilization. The use

of an active steering system was initially studied as a stabilizing device. An extra feature of

this system is an improvement in the steering response of the vehicle. A classical controller

based on a PID element and a notch filter was tuned for a specific driving condition of the

vehicle, on-highway travel with a forward speed of 12 m/s. Although the performance of the
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controller was satisfactory for some conditions, the performance may not be suitable for the

other situations due to the unknown factors that change the stability behavior during different

operations. To prevent the instability, another alternative, the use of an active torque vectoring

device, was also studied. The device was able to produce and control the values of two equal but

opposite torques at the left and right rear wheels. Owing to the resulting opposite but similar

longitudinal tire forces, the forward speed of the vehicle remains constant. An extra feature of

this system is an improvement in the traction capabilities of the vehicle, in addition to removing

the instability. To accommodate the uncertainties, this device was equipped with a robust full-

state feedback controller. To include the effect of wheel rotational dynamics due to applying

a torque, the 3-DOF model was extended to a 7-DOF model, with the rotation angles of the

four wheels as four extra degrees of freedom. By using this model, the effects of uncertainty in

the different tire parameters were studied to identify the most important uncertain parameters

for the stability during the snaking mode. Based on the results, the front and rear effective

cornering stiffness and aligning stiffness were determined to be the most significant uncertain

parameters. Then, the 7-DOF model was used to represent the equations of motion in the

form of a polytopic system that depends affinely on the most significant uncertain parameters.

For the resulting polytopic system, several Linear Matrix Inequalities (LMIs) were developed

and solved by MATLAB to detect the Lyapunov and state feedback matrices for the robust

stabilization. Some simulations were conducted based on the 7-DOF model to reveal that the

vehicle can be effectively stabilized during the snaking mode even if the vehicle was equipped

with a long rear-mounted attachment. The stability control system was also connected to the

virtual prototype of the vehicle and the motion was simulated. The results from the simulations

based on both the 7-DOF model and the virtual prototype were reasonably compatible.

As another solution to prevent the instability, a stability control system based on differential

braking was designed. Differential braking is a simple strategy, compared to torque vectoring,

for stability control. By applying braking torque to a single wheel for producing the longitudinal

tire force, the forward speed of the baseline vehicle was partially reduced. Compared with the

torque vectoring strategy, more tire wear is introduced due to the large braking force produced

at the wheels. For differential braking strategy, a robust variable structure controller was

designed to accommodate the uncertainties. For this system, the input matrix of the 7-DOF
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model was different from that for the torque vectoring device. The equations of motion for

the 7-DOF model were written in a form such that the uncertainties of the above-mentioned

parameters related to tire-road contact were introduced as some unknown and time-varying

terms. Then, the bound on the norm of uncertain terms were found by using the range of

the uncertainties. This allowed for the design of a robust variable structure control system to

stabilize the vehicle during the snaking mode. The 7-DOF model was used to examine the

robustness of the resulting stability controller for different conditions in terms of forward speed

and vehicle parameters. Again, the control system was incorporated into the virtual prototype

and the performance was evaluated. In general, the results implied that the developed system

can effectively stabilize the vehicle in different driving conditions and when traveling on different

surfaces.

5.2 Future Work

As mentioned previously, for load-carrying ASVs with an articulation joint in the front, the

most common form of the lateral instability is jackknifing. Similar to the snaking instability,

jackknifing is also promoted when the forward speed increases. In view of increasing forward

speeds for ASVs, this instability should be addressed to increase on-highway safety during the

travel of ASVs. Although some limited studies have been conducted to analyze this undesirable

motion by the author [39, 75], a comprehensive examination is still required to investigate the

effects of vehicle parameters and operating conditions. These investigations might be used to

develop active safety devices that are capable of preventing or alleviating the instability.

Also, there is a new trend towards providing various suspension systems for ASVs to improve

comfort. Obviously, the use of a suspension system introduces some changes in the dynamics of

the vehicle, which affects both the roll and lateral stability of the vehicle. The resulting effects

on the stability should be analyzed to identify any possible problem.
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Appendix A

Entries of Matrix A for 3-DOF

Model

Entries of matrix A can be found by using the following equation:

A = −M−1C (A.1)

where the entries of M and C are as follows:

M(1, 1) = m1 +m2

M(1, 2) = −m2(b+ c)

M(1, 3) = m2c

M(1, 4) = 0

M(2, 1) = −bm2
M(2, 2) = I1 +m2b

2 +m2bc

M(2, 3) = −m2bc

M(2, 4) = 0

M(3, 1) = −m2c

M(3, 2) = I2+ m2c
2 +m2bc

M(3, 3) = −(I2 +m2c
2)

M(3, 4) = 0

M(4, 1) = 0
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M(4, 2) = 0

M(4, 3) = 0

M(4, 4) = 1

C(1, 1) = N1Cα1+N2Cα2
u

C(1, 2) = N1Cα1a−N2Cα2b−N2Cα2(c+d)
u + (m1 +m2)u

C(1, 3) = N2Cα2(c+d)
u

C(1, 4) = N2Cα2

C(2, 1) = N1Cα1a−N2Cα2b−N1CMα1
u

C(2, 2) = N1Cα1a2+N2Cα2b2+N2Cα2(c+d)b−N1CMα1a
u −m2bu

C(2, 3) = CR − N2Cα2(c+d)b
u

C(2, 4) = KR −N2Cα2b

C(3, 1) = −N2Cα2(c+d)−N2CMα2

u

C(3, 2) = N2Cα2(c+d)b+N2Cα2(c+d)2+N2CMα2(b+c+d)
u −m2cu

C(3, 3) = −CR − N2Cα2(c+d)2+N2CMα2(c+d)
u

C(3, 4) = −N2Cα2(c+ d)−KR −N2CMα2

C(4, 1) = 0

C(4, 2) = 0

C(4, 3) = −1

C(4, 4) = 0

In the above entries:

Cα1 =
Cαf

N1
(A.2)

Cα2 =
Cαr

N2
(A.3)

CMα1 =
CTf
N1

(A.4)

CMα2 =
CTr
N2

(A.5)
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Appendix B

Entries of Matrix A for 5-DOF

Model

Entries of matrix A can be found by using the following equation:

A = −M−1C (B.1)

where the entries of M and C are as follows:

M(1, 1) = m1 +m2

M(1, 2) = −m2(b+ c)

M(1, 3) = m2c

M(1, 4) = 0

M(2, 1) = −bm2
M(2, 2) = I1 +m2b

2 +m2bc

M(2, 3) = −m2bc

M(2, 4) = 0

M(3, 1) = −m2c

M(3, 2) = I2+ m2c
2 +m2bc

M(3, 3) = −(I2 +m2c
2)

M(3, 4) = 0

M(4, 1) = 0
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M(4, 2) = 0

M(4, 3) = 0

M(4, 4) = 1

C(1, 1) = N1Cα1+N2Cα2
u

C(1, 2) = N1Cα1a−N2Cα2b−N2Cα2(c+d)
u + (m1 +m2)u

C(1, 3) = N2Cα2(c+d)
u

C(1, 4) = N2Cα2

C(2, 1) = N1Cα1a−N2Cα2b−N1CMα1
u

C(2, 2) = N1Cα1a2+N2Cα2b2+N2Cα2(c+d)b−N1CMα1a
u −m2bu+ N1CF1w

2
t

2u

C(2, 3) = CR − N2Cα2(c+d)b
u

C(2, 4) = KR −N2Cα2b

C(3, 1) = −N2Cα2(c+d)−N2CMα2

u

C(3, 2) = N2Cα2(c+d)b+N2Cα2(c+d)2+N2CMα2(b+c+d)
u −m2cu+ N2CF2w

2
t

2u

C(3, 3) = −CR − N2Cα2(c+d)2+N2CMα2(c+d)
u − N2CF2w

2
t

2u

C(3, 4) = −N2Cα2(c+ d)−KR −N2CMα2

C(4, 1) = 0

C(4, 2) = 0

C(4, 3) = −1

C(4, 4) = 0

In the above entries:

Cα1 =
Cαf

N1
(B.2)

Cα2 =
Cαr

N2
(B.3)

CMα1 =
CTf
N1

(B.4)

CMα2 =
CTr
N2

(B.5)
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CF1 =
2Csf
N1

(B.6)

CF2 =
2Csr
N2

(B.7)
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Appendix C

Entries of Matrix A for 4-DOF

Model

Entries of matrix A can be found by using the following equation:

A = −M−1C (C.1)

where the entries of M and C are as follows:

M(i, j) = 0, (i, j = 1 to 6), except for:

M(1, 1) = m1 +m2 +m3

M(1, 2) = −m2(b+ c)−m3(b+ c+ d+ e+ f)

M(1, 3) = m2c+m3(c+ d+ e+ f)

M(1, 4) = m3f

M(2, 1) = −b(m2 +m3)

M(2, 2) = I1 + (m2 +m3)b
2 +m2bc+m3b(c+ d+ e+ f)

M(2, 3) = −m2bc−m3b(c+ d+ e+ f)

M(2, 4) = −m3bf

M(3, 1) = −m2c−m3(c+ d+ e)

M(3, 2) = I2+ m2c
2 +m2bc+m3(c+ d+ e)

2 +m3(c+ d+ e)(b+ f)

M(3, 3) = −[I2 +m2c
2 +m3(c+ d+ e)

2]−m3(c+ d+ e)f

M(3, 4) = −m3(c+ d+ e)f
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M(4, 1) = −m3f

M(4, 2) = I3 +m3f
2 +m3bf +m3(c+ d+ e)f

M(4, 3) = −[I3 +m3f
2 +m3(c+ d+ e)f ]

M(4, 4) = −[I3 +m3f
2]

M(5, 5) = 1

M(6, 6) = 1

C(i, j) = 0, (i, j = 1 to 6), except for

C(1, 1) = N1Cα1+N2Cα2+μN3
u

C(1, 2) = N1Cα1a−N2Cα2b−N2Cα2(c+d)−μN3(b+c+d+e+f+h)
u + (m1 +m2 +m3)u

C(1, 3) = N2Cα2(c+d)+μN3(c+d+e+f+h)
u

C(1, 4) = μN3(f+h)
u

C(1, 5) = N2Cα2

C(2, 1) = N1Cα1a−N2Cα2b−μN3b−N1CMα1
u

C(2, 2) = N1Cα1a2+N2Cα2b2+N2Cα2(c+d)b+μN3b(b+c+d+e+f+h)−N1CMα1a
u − (m2 +m3)bu

C(2, 3) = CR − N2Cα2(c+d)b+μN3b(c+d+e+f+h)
u

C(2, 4) = −μN3b(f+h)
u

C(2, 5) = KR −N2Cα2b

C(3, 1) = −N2Cα2(c+d)−N2CMα2−μN3(c+d+e)
u

C(3, 2) = N2Cα2(c+d)b+N2Cα2(c+d)2+N2CMα2(b+c+d)+μN3(c+d+e)(b+c+d+e+f+h)
u − [m2c+m3(c+

d+ e)]u

C(3, 3) = −CR − N2Cα2(c+d)2+N2CMα2(c+d)+μN3(c+d+e)(c+d+e+f+h)
u

C(3, 4) = Cg − μN3(c+d+e)(f+h)
u

C(3, 5) = −N2Cα2(c+ d)−KR −N2CMα2 − μN3(c+ d+ e+ f + h)

C(4, 1) = −μN3(f+h)
u

C(4, 2) = μN3(f+h)(b+c+d+e+f+h)
u −m3fu

C(4, 3) = −μN3(f+h)(c+d+e+f+h)
u

C(4, 4) = −μN3(f+h)2

u − Cg
C(4, 5) = −μN3(f + h)

C(4, 6) = −μN3(f + h)

C(5, 3) = −1
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C(6, 4) = −1

In the above entries:

Cα1 =
Cαf

N1
(C.2)

Cα2 =
Cαr

N2
(C.3)

CMα1 =
CTf
N1

(C.4)

CMα2 =
CTr
N2

(C.5)
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Appendix D

Entries of Matrices A and B for

Modified 3-DOF Model

Entries of matrix A can be found by using the following equation:

A = −M−1C (D.1)

Also, entries of matrix B can be found by using the following equation:

B =M−1W (D.2)

where the entries of M, C andW are as follows:

M(1, 1) = m1 +m2

M(1, 2) = −m2(b+ c)

M(1, 3) = m2c

M(1, 4) = 0

M(1, 5) = 0

M(2, 1) = −bm2
M(2, 2) = I1 +m2b

2 +m2bc

M(2, 3) = −m2bc

M(2, 4) = 0
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M(2, 5) = 0

M(3, 1) = −m2c

M(3, 2) = I2+ m2c
2 +m2bc

M(3, 3) = −(I2 +m2c
2)

M(3, 4) = 0

M(3, 5) = 0

M(4, 1) = 0

M(4, 2) = 0

M(4, 3) = 0

M(4, 4) = 1

M(4, 5) = 0

M(5, 1) = 0

M(5, 2) = 0

M(5, 3) = 0

M(5, 4) =
Aedj
Kq

M(5, 5) = Vt
4Kq

C(1, 1) = N1Cα1+N2Cα2
u

C(1, 2) = N1Cα1a−N2Cα2b−N2Cα2(c+d)
u + (m1 +m2)u

C(1, 3) = N2Cα2(c+d)
u

C(1, 4) = N2Cα2

C(1, 5) = 0

C(2, 1) = N1Cα1a−N2Cα2b−N1CMα1
u

C(2, 2) = N1Cα1a2+N2Cα2b2+N2Cα2(c+d)b−N1CMα1a
u −m2bu

C(2, 3) = CR − N2Cα2(c+d)b
u

C(2, 4) = −N2Cα2b

C(2, 5) = −Aedjβe
C(3, 1) = −N2Cα2(c+d)−N2CMα2

u

C(3, 2) = N2Cα2(c+d)b+N2Cα2(c+d)2+N2CMα2(b+c+d)
u −m2cu

C(3, 3) = −CR − N2Cα2(c+d)2+N2CMα2(c+d)
u

C(3, 4) = −N2Cα2(c+ d)−N2CMα2
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C(3, 5) = Aedjβe

C(4, 1) = 0

C(4, 2) = 0

C(4, 3) = −1

C(4, 4) = 0

C(4, 5) = 0

C(5, 1) = 0

C(5, 2) = 0

C(5, 3) = 0

C(5, 4) = 0

C(5, 5) = βeKe

Kq

W(1, 1) = 0

W(2, 1) = 0

W(3, 1) = 0

W(4, 1) = 0

W(5, 1) = xv

In the above entries:

Cα1 =
Cαf

N1
(D.3)

Cα2 =
Cαr

N2
(D.4)

CMα1 =
CTf
N1

(D.5)

CMα2 =
CTr
N2

(D.6)
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Appendix E

Entries of Matrices A and B for

7-DOF Model

Entries of matrix A can be found by using the following equation:

A = −M−1C (E.1)

Also, entries of matrix B can be found by using the following equation:

B =M−1W (E.2)

where the entries of M, C andW are as follows:

M(1, 1) = m1 +m2

M(1, 2) = −m2(b+ c)

M(1, 3) = m2c

M(1, 4) = 0

M(1, 5) = 0

M(1, 6) = 0

M(2, 1) = −bm2
M(2, 2) = I1 +m2b

2 +m2bc

M(2, 3) = −m2bc
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M(2, 4) = 0

M(2, 5) = 0

M(2, 6) = 0

M(3, 1) = −m2c

M(3, 2) = I2+ m2c
2 +m2bc

M(3, 3) = −(I2 +m2c
2)

M(3, 4) = 0

M(3, 5) = 0

M(3, 6) = 0

M(4, 1) = 0

M(4, 2) = 0

M(4, 3) = 0

M(4, 4) = 1

M(4, 5) = 0

M(4, 6) = 0

M(5, 1) = 0

M(5, 2) = 0

M(5, 3) = 0

M(5, 4) = 0

M(5, 5) = Ie

M(5, 6) = 0

M(6, 1) = 0

M(6, 2) = 0

M(6, 3) = 0

M(6, 4) = 0

M(6, 5) = 0

M(6, 6) = Ie

C(1, 1) = N1Cα1+N2Cα2
u

C(1, 2) = N1Cα1a−N2Cα2b−N2Cα2(c+d)
u + (m1 +m2)u

C(1, 3) = N2Cα2(c+d)
u
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C(1, 4) = N2Cα2

C(1, 5) = 0

C(1, 6) = 0

C(2, 1) = N1Cα1a−N2Cα2b−N1CMα1
u

C(2, 2) = N1Cα1a2+N2Cα2b2+N2Cα2(c+d)b−N1CMα1a
u −m2bu+ N1CF1w

2
t

2u

C(2, 3) = CR − N2Cα2(c+d)b
u

C(2, 4) = KR −N2Cα2b

C(2, 5) = N1CF1rewt
2u

C(2, 6) = 0

C(3, 1) = −N2Cα2(c+d)−N2CMα2

u

C(3, 2) = N2Cα2(c+d)b+N2Cα2(c+d)2+N2CMα2(b+c+d)
u −m2cu+ N2CF2w

2
t

2u

C(3, 3) = −CR − N2Cα2(c+d)2+N2CMα2(c+d)
u − N2CF2w

2
t

2u

C(3, 4) = −N2Cα2(c+ d)−KR −N2CMα2

C(3, 5) = 0

C(3, 6) = N2CF2rewt
2u

C(4, 1) = 0

C(4, 2) = 0

C(4, 3) = −1

C(4, 4) = 0

C(4, 5) = 0

C(4, 6) = 0

C(5, 1) = 0

C(5, 2) = N1CF1wtre
u

C(5, 3) = 0

C(5, 4) = 0

C(5, 5) = N1CF1r
2
e

u

C(5, 6) = 0

C(6, 1) = 0

C(6, 2) = N2CF2wtre
u

C(6, 3) = −N2CF2wtreu
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C(6, 4) = 0

C(6, 5) = 0

C(6, 6) = N2CF2r
2
e

u

W(1, 1) = 0

W(2, 1) = 0

W(3, 1) = 0

W(4, 1) = 0

W(5, 1) = 0

For torque vectoring deviceW(6, 1) = 2, and for differential brakingW(6, 1) = 1.

In the above entries:

Cα1 =
Cαf

N1
(E.3)

Cα2 =
Cαr

N2
(E.4)

CMα1 =
CTf
N1

(E.5)

CMα2 =
CTr
N2

(E.6)

CF1 =
2Csf
N1

(E.7)

CF2 =
2Csr
N2

(E.8)
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