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Abstract 
 

This research addresses a number of fundamental issues concerning convective 

mass transfer across fluid-fluid interfaces in porous media. Mass transfer to/from 

distributed sinks/sources is considered for i) the slow dissolution of liquid filaments of a 

wetting non-aqueous phase liquid (NAPL) held in the corners of angular pores or throats 

and ii) the fate of gas bubbles generated during the flow of a supersaturated aqueous 

phase in porous media.  

1. Effects of the stability of NAPL films on wetting NAPL dissolution 

Wettability profoundly affects the distribution of residual NAPL contaminants in 

natural soils. Under conditions of preferential NAPL wettability, NAPL is retained within 

small pores and in the form of thick films (liquid filaments) along the corners and 

crevices of the pore walls. NAPL films in pore corners provide capillary continuity 

between NAPL-filled pores, dramatically influencing the behaviour of NAPL dissolution 

to the flowing aqueous phase by convection and diffusion. A pore network model is 

developed to explore the dissolution behaviour of wetting NAPL in porous media. The 

effects of initial NAPL distribution and NAPL film stability on dissolution behaviour are 

studied using the simulator. NAPL phase loses continuity and splits into disconnected 

clusters of NAPL-filled pores due to rupture of NAPL films. Quasi-state drainage and 

fingering of the aqueous phase into NAPL-filled pores is treated as an invasion 

percolation process and a stepwise procedure is adopted for the solution of flow and 

solute concentration fields. NAPL film stability is shown to critically affect the rate of 

mass transfer as such that stable NAPL films provide for more rapid dissolution. The 

network simulator reproduces the essential physics of wetting NAPL dissolution in 

porous media and explains the concentration-tailing behaviour observed in experiments, 

suggesting also new possibilities for experimental investigation. 

2.   Convective Mass Transfer across Fluid Interfaces in Straight Angular Pores 

Steady convective mass transfer to or from fluid interfaces in pores of angular 

cross-section is theoretically investigated.  The model incorporates the essential physics 

of capillarity and solute mass transfer by convection and diffusion in corner fluid 
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filaments. The geometry of the corner filaments, characterized by the fluid-fluid contact 

angle, the corner half-angle and the interface meniscus curvature, is accounted for. 

Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-

slip’) at the fluid-fluid interface are considered. The governing equations for laminar flow 

within the corner filament and convective diffusion to or from the fluid-fluid interface are 

solved using finite-element methods.  Flow computations are verified by comparing the 

dimensionless resistance factor and hydraulic conductance of corner filaments against 

recent numerical solutions by Patzek and Kristensen [2001]. Novel results are obtained 

for the average effluent concentration as a function of flow geometry and pore-scale 

Peclet number.  These results are correlated to a characteristic corner length and local 

pore-scale Peclet number using empirical equations appropriate for implementation in 

pore network models.  Finally, a previously published “2D-slit” approximation to the 

problem at hand is checked and found to be in considerable error. 

3.  Bubble evolution driven by solute diffusion during the process of 

supersaturated carbonated water flooding 

In situ bubble growth in porous media is simulated using a pore network model 

that idealizes the pore space as a lattice of cubic chambers connected by square tubes. 

Evolution of the gas phase from nucleation sites is driven by the solute mass transfer 

from the flowing supersaturated water solution to the bubble clusters. Effects of viscous 

aqueous phase flow and convective diffusion in pore corners are explicitly accounted for. 

Growth of bubble clusters is characterised by a pattern of quasi-static drainage and 

fingering in the gas phase, an invasion percolation process controlled by capillary and 

gravitational forces. A stepwise solution procedure is followed to determine the aqueous 

flow field and the solute concentration field in the model by solving the conservation 

equations. Mobilization of bubbles driven by buoyancy forces is also studied. Results of 

bubble growth pattern, relative permeability and macroscopic mass transfer coefficient 

are obtained under different gas saturations and aqueous flow conditions.  
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Chapter 1 

Introduction and Objective 

 

 

Mass transfer between two fluid phases simultaneously present within a porous 

medium is frequently encountered in engineering practice. For example, during the 

dissolution of residual nonqueous phase liquids (NAPL) for soil remediation, convective 

diffusion transfers an organic solute from the NAPL into a flowing aqueous phase. [e.g., 

Powers et al., 1991; Dillard and Blunt, 2000; Bradford et al., 1999; Sahloul et al., 2002]. 

In cases of supersaturated water injection (SWI) for NAPL recovery [Li, 2004] or 

solution gas drive for oil recovery [Sheng et al., 1999a; b; Bora et al., 2000], gas bubbles 

nucleate in a supersaturated liquid phase and grow as a result of solute mass transfer from 

the liquid phase. A similar situation is found within the porous gas diffusion layer at the 

anode of a direct methanol fuel cell (DMFC). In that instance, product CO2 in excess of 

the solubility concentration results in the formation of gas bubbles near the anode catalyst 

surface layer, limiting methanol transport to the reaction sites [e.g., Argyropoulos et al., 

1999ab; Yang et al., 2005]. In other instances, mass transport of oxygen or other reactive 

gases from gas bubbles in soil or rock directly influences the process of bioremediation of 

organic contaminants [e.g., Wilson et al., 1994; Borden et al., 1997; Deeb et al., 2000], or 

gas bubbles are generated as a result of biological activity (biogenic methane generation) 
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[e.g., Reynolds et al., 1992; Beckwith and Baird, 2001; Kellner et al., 2004]. What is 

common in all of these situations is the need to describe the physics of mass transfer to 

(from) sinks (sources) in porous media (gas bubbles or liquid ganglia).  Not only are 

these sinks (sources) distributed in a complex fashion, presenting interfacial areas for 

mass transfer that depend on the mass transfer process itself, but they can be mobile, as is 

the case with growing bubbles in porous media. In this research, mass transfer across 

fluid-fluid interfaces to (from) distributed sinks (sources) is considered with an aim to 

improve the understanding of two processes of importance to environmental engineering. 

These are (i) dissolution of wetting NAPL sources in soil and (ii) in situ growth of gas 

bubbles (sinks) in porous media by convective diffusion from an injected supersaturated 

liquid phase.  

 

1.1 NAPL dissolution 

 

Hazardous non-aqueous phase liquids (NAPL), such as gasoline, halogenated 

solvents and other petroleum products enter the subsurface through leakage from storage 

tanks, improper disposal of wastes or accidental spillage. Non-aqueous phase liquids that 

are lighter than water (LNAPL) and non-aqueous phase liquids that are heavier than 

water (DNAPL) are generally immiscible with water and have very low aqueous 

solubility. Once such contaminants enter the subsurface, they are entrapped in the pore 

space of soil, posing a serious threat to groundwater resources and an unprecedented 

challenge to remediation efforts.  



 3

NAPL dissolution to the mobile aqueous phase has been found to be a mass 

transfer limited process [Miller et al., 1990; Powers et al., 1991; Powers et al., 1992; 

Sahloul et al., 2002]. Pore-scale studies [Dillard and Blunt, 2000; Zhou et al., 2000; 

Sahloul et al., 2002] suggested that the rate of NAPL dissolution is determined by corner 

film flow and diffusion. Factors that control the mass transfer of NAPL dissolution 

should include the hydrodynamic properties of the aqueous phase and the configuration 

and distribution of the NAPL sources, which largely depend on the wettability and 

microstructure of the porous medium.  

 Numerous experimental and theoretical researches on NAPL dissolution have 

been focused on water wet systems [e.g., Powers et al., 1992; Jia et al., 1999; Dillard et 

al., 2001; Held and Celia, 2001]. However, although water has a natural tendency to wet 

the surfaces of soil grains, some NAPLs can alter the wettability of soil grains, rendering 

them oil-wet [Dwarakanath et al., 2002].  If soil is preferentially wetted by water, residual 

non-wetting NAPL forms discrete ganglia in pores of high aspect ratio. Under oil-wet 

conditions, however, the NAPL is likely to be entrapped within the smaller pores and in 

the form of filaments along the corners of pores invaded by the non-wetting phase 

(water). Changes in the pore-scale configuration of residual NAPL due to wettability 

variation can dramatically influence the aqueous phase flow field [Wang, 1988] and 

NAPL-water interfacial area [Bradford and Leij, 1997]. Since the processes of inter-

phase mass transfer are sensitive to system hydrodynamics and interfacial area, mass 

transfer during residual NAPL dissolution is obviously different between water-wet and 

NAPL-wet systems, and an understanding of the differences is essential in designing 

effective remedial strategies for NAPL-contaminated sites. Glass micromodel 
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experiments on wetting NAPL dissolution by Sahloul et al. [2002] showed that slow 

dissolution of residual NAPL residing in the corners of water-invaded pores is 

accompanied by quasi-static drainage of water in NAPL-filled pores. The “capillary 

pumping” of NAPL from NAPL-filled pores to dissolving thick NAPL films creates new 

paths for water flow and increases the interfacial area for mass transfer. Based on the 

mechanism of wetting NAPL dissolution revealed by micro-model experiments [Sahloul 

et al., 2002], Zhao and Ioannidis [2003] developed a pore network model to simulate 

wetting NAPL dissolution and suggested that the tailing behavior could be attributed to 

NAPL film disconnection. Their model suggested that the rupture and concomitant loss 

of hydraulic continuity of thick NAPL films critically affects the NAPL dissolution 

behavior. However, the role of NAPL film stability on NAPL dissolution was not 

accounted for. 

 

1.2 NAPL remediation technologies 

 

Remediation of NAPL-contaminated sites has traditionally involved pumping as 

much of the free organic phase from the aquifer as possible, followed by in situ water 

flushing, a technique known as pump-and-treat remediation, to dissolve NAPL ganglia or 

“blobs” retained within the porous medium and to remove the dissolved organic from the 

aquifer [Testa and Wiengardner, 1991]. Although the pump-and-treat technique (Figure 

1.1) is the most commonly used approach to subsurface cleanup, it is usually quite 

ineffective due to rate-limited interphase mass transfer.  
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Air sparging is a remediation method for NAPLs with relatively high volatilities. 

In this approach, air is injected into the subsurface saturated zone, enabling the transfer of 

volatile contaminants into the gas phase, which is then vented through the unsaturated 

zone.  The most serious problem confronting air sparging is the buoyancy-driven 

capillary fingering of injected air through the high permeability paths around the injection 

point [e.g., Ji et al., 1993; Tomlinson et al., 2003]. The lack of direct contact between 

residual NAPL and air, which results from air by-passing contaminated zones of 

relatively lower permeability, often severely undermines the effectiveness of the 

technology.  A schematic of this phenomenon is shown in Figure 1.2. 

Other NAPL remediation technologies include soil excavation, surfactant 

flooding, in situ chemical oxidation, and bioremediation. All of the aforementioned 

technologies encounter various technical difficulties and there is a pressing need for 

developing novel technologies for NAPL remediation and particularly for the efficient 

removal of free-phase residual NAPL.  The research presented here aims to support on-

going efforts at University of Waterloo to develop such a novel NAPL remediation 

technology, namely supersaturated water injection or SWI.  The SWI method involves 

flushing with water supersaturated with carbon-dioxide (or other gases) beneath or into 

the NAPL source zone. This technology has the potential to overcome the serious 

problems with air sparging, namely that the injected air tends to by-pass the low 

permeability zones through high permeability zones near the injection point. 

Experimental studies of SWI [Li, 2004] have shown that the injected supersaturated 

water can deliver dissolved gas phase to low permeability zones, where gas bubbles 

nucleate and subsequently grow to contact, volatilize and mobilize NAPL ganglia. In 



 6

order to design remediation strategies using this promising new technology, theoretical 

investigations of the in situ evolution of gas bubbles from supersaturated aqueous 

solutions within porous media are required to better understand the relevant mass transfer 

issues.          

 

 

 

 

Figure 1.1 Schematic of pump-and-treat technology. 

 

NAPL leakage 

Injection Well 
 

Pumping Well 
 

Water Water 

Contaminated Zone 
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Figure 1.2 Schematic of air pathways during air sparging by-passing zones of low 

permeability [from Ji et al., 1993] 

. 

1.3  In-situ gas evolution in porous media 

 

Formation of gas bubbles may have significant effects on geochemical and 

hydraulic properties of groundwater environment [Donaldson et al., 1997].  Dissolved gas 

transport in porous media involves a diffusion-controlled gas partitioning process when 

mass transfer takes place between the mobile aqueous phase and the trapped gas phase. 

The presence of a discontinuous gas phase in natural aquifers may be the result of bubble 

entrapment due to water table fluctuations or biogenic gas production [e.g., Reynolds et 

al., 1992; Beckwith and Baird, 2001; Kellner et al., 2004]. Some groundwater 

remediation technologies also introduce gas phase to the subsurface. For example, air is 

injected below the water table during in situ air sparging in order to recover volatile 

A BA B
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organic contaminants and during in situ chemical oxidation processes and CO2 is 

generated when chlorinated solvents are oxidized by introduced oxidants, such as 

KMnO4. Higher gas saturation in subsurface can be achieved by supersaturated water 

injection (18-27% compared to 14-17% by in situ air sparging) [Fry et al., 1997]. 

Experiments on SWI [Li, 2004] showed that relatively homogeneous gas distributions 

could be obtained even in heterogeneous porous media. These phenomena could benefit 

the remediation of volatile NAPLs (as already mentioned) and the bioremediation 

process, where delivery of reactive gases to assist the microbial degradation of the 

organic contaminants is required [e.g., Wilson et al., 1994; Borden et al., 1997; Deeb et 

al., 2000]. The related process of solution gas drive (SGD) in oil reservoirs has been 

studied extensively [e.g., Li and Yortsos, 1995a; El Yousfi, et al., 1997; Dominguez et al., 

2000].  In SGD, the supersaturation leading to bubble nucleation and growth is usually 

the result of pressure depletion, which is essentially different from the SWI, where the 

aqueous phase is mobile and the gas partition process is mainly controlled by convective 

mass transfer.  

 

1.4  Pore network modeling 

 

Application of network models is an effective way to investigate the capillary, 

flow and transport properties of porous media.  A network model is a detailed model of a 

porous medium, generally incorporating pore-scale descriptions of the medium and of the 

physical pore-scale events. To model porous media, the disordered and geometrically 

complex void space is typically represented as a network of lager spaces (pores) 
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connected by narrow constrictions (throats).  The assumption that the pore space can be 

conceptually simplified as pore bodies and throats and mapped onto a regular or irregular 

lattice of sites and bonds is well justified for consolidated porous rocks and random 

packing of particles and is probably applicable to most geologic materials [e.g., Imdakm 

and Sahimi, 1991; Dullien 1992; Reeves and Celia, 1996; Thompson and Fogler, 1997]. 

A different size is assigned to each pore body and throat from a representative pore size 

distribution.  Regular geometries are usually assumed to simplify the pore elements (e.g., 

spherical pores and cylindrical throats) and analytical equations are used to compute fluid 

volumes and interfacial shapes and areas. By reasonably specifying size, shape, 

connectivity and spatial arrangement of pores and throats, researchers can use network 

models to simulate a broad range of transport and capillary phenomena in porous media 

[Ioannidis and Chatzis, 1993; Sahimi, 1993; Yiotis et al., 2001; 2005; Blunt et al., 2002]. 

Because network models enable the prediction of macroscopic transport properties of 

porous media from the microstructure, they can be used to explain the experimental 

results and relate the macroscopic properties to pore-scale physics.   

Pore network models have been extensively used to simulate mass transfer 

processes in porous media, for example, non-wetting NAPL dissolution [Zhou et al., 

2000; Dillard and Blunt, 2000; Dillard et al., 2001; Held and Celia, 2001]; wetting NAPL 

dissolution [Zhou et al., 2000; Zhao and Ioannidis, 2003]; drying of porous media [Yiotis 

et al., 2001; 2005; Freitas and Prat, 2000] and solution gas drive [Li and Yortsos, 1995a;  

Dominguez et al., 2000; Tsimpanogiannis and Yortsos, 2002; 2004]. Pore network 

modeling is the main method used in this research to study convective mass transfer in 

porous media.  
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1.5  Research scope and objectives 

 

 1.5.1   Dissolution of residual NAPL that preferentially wets the solid surface  

A 2D pore network model is developed to explore the effects of stability of 

wetting NAPL films on NAPL dissolution. Effects of initial NAPL distribution, pore 

structure and disjoining pressure on NAPL dissolution dynamics are studied. Results of 

simulations show that thick NAPL films in pore corners provide capillary continuity 

between NAPL-filled pores, dramatically influencing the dynamics of NAPL dissolution 

to a flowing aqueous phase by convection and diffusion. Physicochemical and pore 

structure parameters affecting the stability of thick NAPL films are thus expected to 

affect the dissolution behaviour. NAPL film stability critically affects the rate of mass 

transfer, such that stable NAPL films provide for more rapid dissolution. The network 

simulator reproduces the essential physics of wetting NAPL dissolution in porous media 

and explains the concentration-tailing behaviour observed in experiments, suggesting also 

new possibilities for experimental investigation. 

 

1.5.2 Bubble evolution driven by solute diffusion during the process of 

supersaturated carbonated water flooding  

In situ bubble growth in porous media is simulated using a 2D pore network 

model that idealizes the pore space as a lattice of cubic chambers connected by square 

tubes. Evolution of the gas phase from nucleation sites is driven by the solute mass 

transfer from the flowing supersaturated water solution to the bubble clusters.  Effects of 

viscous aqueous phase flow and convective diffusion in pore corners are explicitly 
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accounted for. Growth of bubble clusters is characterised by a pattern of quasi-static 

drainage and fingering in the gas phase, an invasion percolation process controlled by 

capillary and gravitational forces.  A stepwise solution procedure is followed to 

determine the aqueous flow field and the solute concentration field in the model by 

solving the conservation equations.  Mobilization of bubbles driven by buoyancy forces 

is also studied. Results of bubble growth pattern, relative permeability and macroscopic 

mass transfer coefficient are obtained under different gas saturations and aqueous flow 

conditions.  
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Chapter 2 

Background 

 

 

 Environmental research since the late 1980s has succeeded in elucidating many 

aspects of the behavior of non-aqueous phase liquids (NAPL) in subsurface formations. 

NAPLs entering the subsurface penetrate through the soil vertically and displace the 

previously existing pore water under the action of viscous, gravitational and capillary 

forces.  Once they reach the water table, NAPLs lighter than water (LNAPL) depress the 

water table slightly and spread laterally along the water table. Due to fluctuations of the 

water table, LNAPL may be trapped below the water table. NAPLs denser than water 

(DNAPL) may move downward continuously until they encounter a capillary barrier. 

During the migration, NAPL ganglia are formed from residual segments of NAPL 

breaking off from the main body of the liquid and are held in aquifer pore spaces by 

capillary forces [Geller and Hunt, 1993]. The mechanism and degree of entrapment of 

NAPL in soil depends on physical and chemical characteristics of both the NAPL and the 

porous medium. 
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2.1  Pore-level events and multiphase flow in porous media 

 

2.1.1   Pore Structure 

A porous medium generally consists of solid matrix and pore space. It is rather 

difficult to describe the microscopic structure of pore space in an exact manner because 

of its geometrical complexity. The pore space of geologic media, such as soil and 

reservoir rock, consists of a network of large pores (pore bodies) communicating through 

relatively narrow constrictions (pore throats).  Figure 2.1 is the schematic of a part of a 

2D network of pore space. Since the shape of an actual pore is quite irregular, 

approximations of pore shape with regular geometries, such as cube, sphere, etc, are 

commonly made in theoretical studies of the effects of pore structure. A geometrically 

specified pore structure model enables the computation of volumes and surface areas of 

the pores.  

 

 

 

 

 

 

 

 

 

Figure 2.1 Part of a 2D network of pore space. 

Pore bodies 

Solid 

Pore throats 
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With the exception of geometric characterization of 3D microtomographic images 

of the pore space [e.g., Auzerais et al., 1996], pore structure characterization is 

accomplished by indirect experimental methods. Such methods include 2-D image 

analysis, mercury porosimetry and nitrogen adsorption methods, all of which have been 

reviewed by Dullien [1992]. It should be noted that indirect methods of pore structure 

characterization do not provide identical results because of the different assumptions 

made to interpret the experimental data [Dullien 1992]. For the case of unconsolidated 

media, such as soil, the effects of pore structure are often correlated with the particle or 

grain size distribution. Median grain size 50d , which is the grain diameter greater than 

that of 50% of the particles by weight, is an important parameter used by many 

researchers instead of the average pore size. 

  

2.1.2   Wettability and spreading coefficient 

 Wettability is a fluid-solid property that characterizes solid surfaces and is 

determined by solid-liquid interactions. Wettability critically affects the spreading of a 

liquid over a solid surface, the penetration of a liquid into a porous medium or the 

displacement of one liquid by another [Berg, 1993]. 

 Wettability can be described by the contact angle (θ ) between the solid surface 

and the interface between two fluids. A low contact angle measured through the fluid 

phase of interest corresponds with preferential wetting of the solid by that phase. Figure 

2.2 shows two sessile liquid drops (fluid A) immersed in another liquid phase (fluid B) 

over a solid surface with different contact angles.  
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                                                                   Fluid B 

 

                                           

                                           θ  Fluid A                                     θ   Fluid A 

                                                (a)                                                 (b) 

Figure 2.2 Schematic of contact angle between resting drops and solid surface, 

preferential wetting of the solid by (a) fluid A (b) fluid B. 

 

The form of entrapped NAPL within the pore space is determined by the 

physicochemical properties of the fluid and the physical characteristics of soil. Soil 

wettability is one of the important factors that can influence the distribution of residual 

NAPL as well as the rate of NAPL dissolution into the water phase. In a NAPL-water-

solid system, NAPL with a contact angle less than 090  is considered the wetting phase 

and the solid surface is called NAPL-wet, otherwise NAPL with a contact angle larger 

than 090  is the non-wetting phase and the solid surface is called water-wet. Contact angle 

can be related to interfacial tensions through Young’s equation, 

NW

WSNS

σ
σσ

θ
−

=cos                                                        (2.1) 

where NSσ  is the interfacial tension between NAPL and solid, WSσ  is the interfacial 

tension between water and  solid, NWσ  is the interfacial tension between NAPL and 

water. 

 In water-wet porous media, water occupies the smaller pores and the pore space 

immediately adjacent to the solid in the larger pores, while residual NAPL is entrapped in 
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the form of ganglia occupying one or more pores.  In NAPL-wet porous media, NAPL is 

entrapped in smaller pores and spreads over the solid surface of larger pores leaving 

water between the NAPL films along the pore corners. Figure 2.3 shows the distribution 

of NAPL in water-wet and NAPL-wet porous media. In many situations, porous media 

have both NAPL-wet and water-wet solid surfaces. Such a condition is termed fractional 

wettability. Residual NAPL in a porous medium with fractional wettability can be 

entrapped as singlets or multi-pore ganglia in the pores with water-wet solid surfaces and 

as NAPL films coating the NAPL-wet solid surfaces. 

 

Figure 2.3 Schematic of NAPL distribution in porous media (a) Water-wet system (b) 

NAPL-wet system [from Sahloul et al., 2002]. 
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The distribution of fluids in porous media also depends on fluid-fluid interaction. 

In a NAPL-water-gas system, for example, upon contact with a gas phase, NAPL 

spontaneously spreads over water and a NAPL film is formed between gas and water (see 

Figure 2.4) if the three-phase system has a positive spreading coefficient. The spreading 

coefficient, S, is defined as 

owgogwS γγγ −−=                                              (2.2) 

where γ is the interfacial tension and the subscripts g, w and o denote gas, water and oil 

(NAPL) respectively. In systems with negative spreading coefficient, non-zero contact 

angles will be formed among the three phases along the contact line [Chatzis et al., 1988; 

Vizika and Lombard, 1996; Grattoni and Dawe, 2003]. Hawes et al. [1996, 1997] 

indicated that the spreading coefficient can substantially influence the growth pattern of 

gas bubbles and the value of the critical gas saturation. The visualization experiments 

conducted by Grattoni et al. [2001] show that as oil is spreading, it will redistribute in the 

pore space in the form of films around gas bubbles and can be mobilized along with the 

bubbles, as they move upwards due to buoyancy. Such observations have also been made 

by Li [2004] in experimental studies of the SWI process for NAPL recovery (see Figure 

2.5). A schematic of the mechanism of this behaviour is shown in Figure 2.6. Even a non-

spreading oil can be mobilized when gas expansion displaces water or oil and push the oil 

slugs through pore throats [Grattoni and Dawe, 2003]. 
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Figure 2.4 NAPL (TCE) spreads around a CO2 bubble [from Li, 2004]. 
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Figure 2.5 Recovery of nonvolatile NAPL by SWI [from Li, 2004].  
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Figure 2.6 Mechanism of NAPL mobilization by moving bubbles. 
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2.1.3 Capillarity 

 Capillary phenomena play an important role in NAPL entrapment in porous 

media. Capillary pressure CP  is defined as the pressure difference between two 

immiscible fluids at equilibrium within the pore space and is expressed as 

wnwC PPP −=                                            (2.3) 

where nwP  is the pressure of the non-wetting phase and wP  is the pressure of the wetting 

phase. Capillary pressure involves the interfacial tension and the interfacial curvature in 

Laplace’s equation: 

            )11(
21 rr

JPC ±== σσ                    (2.4) 

where σ  is the interfacial tension and J is the curvature of the interface, which is 

characterized by two principal radii of the curved surface 1r  and 2r . The principal 

curvature radii at a point on the interface lie on two planes perpendicular to each other 

and intersect at the point, as shown in Figure 2.7. 

 

       2r   

 

   1r      1r     

            2r   

     (a)  )11(
21 rr

PC −= σ     (b) )11(
21 rr

PC += σ  

Figure 2.7 Schematic of the curvature of interface (a) concave interface (b) convex 

interface. 



 22

 In a cylindrical capillary tube, capillary pressure is given by 

r
JPC

θσσ cos2
==                               (2.5) 

where r is the radius of the tube and θ  is the contact angle. However, the geometry of 

pores in porous media is more complex and conduits with angular cross-section are often 

used to represent the channels in porous media.  An expression of capillary pressure for 

an interface in a tube with rectangular cross-section was given by Legait [1983]: 

⎟
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⎟
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⎞
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t
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JP                  (2.6) 

 where Rt  is the characteristic size of the tube and θ  is the contact angle.    

 

 

2.1.4  Drainage and imbibition 

Understanding of the pore scale events during immiscible displacement is 

necessary in modeling the macroscopic behavior of fluids in porous media.  Drainage and 

imbibition are fundamental processes of immiscible displacement. The former is the 

process of displacement of the wetting phase by the non-wetting phase, whereas the latter 

is the process of displacement of non-wetting phase by the wetting phase.  In both cases 

contact angle hysteresis exists.  Namely, the observed receding contact angle Rθ  during 

drainage is smaller than the equilibrium or static contact angle Eθ , while the advancing 

contact angle Aθ  is larger than Eθ  [Dullien, 1992]. The contact angle hysteresis 

phenomena are depicted in Figure 2.8. 
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           Aθ        
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Figure 2.8 Schematic of drainage and imbibition and effects of contact angle hysteresis. 

 

 Understanding of the pore-scale mechanisms of drainage- and imbibition-type 

displacement is necessary in order to understand NAPL entrapment. This understanding 

has been provided by Chatzis and Dullien [1983], who used pore doublet models to 

visualize drainage and imbibition displacements. Figure 2.9 and Figure 2.10 depict the 

displacement processes in doublet models. When the fluid flow rate is low, the process is 

controlled by capillary forces.  During an imbibition displacement, the advancing wetting 

phase enters the narrower pore first because of the capillary pressure difference between 

the pores. If the aspect ratio of the pore (i.e. the ratio of pore body size to pore throat size) 

is low, non-wetting phase in the pore will totally recede from the pore (Figure 2.9 a). 

Fluid B 

Fluid A Fluid B 

Fluid A Fluid B 

Fluid A 
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Otherwise, a singlet blob will be entrapped in the pore. Once the wetting phase reaches 

the downstream node, a similar imbibition process takes place in the larger pore or a 

snap-off phenomenon happens at the downstream node causing non-wetting phase 

entrapment in the larger pore (Figure 2.9b). Conversely, in a drainage process, the non-

wetting phase displaces the wetting phase in the larger pore first and the wetting phase in 

smaller pore is entrapped when the non-wetting phase bypasses it (Figure 2.10). The 

fundamental difference of pore scale fluid displacement between imbibition and drainage 

is attributed to the fact that imbibition is controlled by the pore body radii whereas 

drainage is controlled by the throat radii [Chatzis and Dullien, 1983].     

   

 

 

 

 

Figure 2.9 Imbibition displacement mechanism in pore doublet [after Chatzis et. al., 

1983]. 

 

 

 

 

Figure 2.10 Drainage displacement mechanism in pore doublet [after Chatzis et. al. 1983]. 

  (a) imbibition process in pore doublet with low aspect ratio 

     (b) imbibition process in pore doublet with high aspect ratio 
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 Quasi-static drainage experiments in porous media show that the capillary 

pressure increases with increasing saturation of the non-wetting phase. The relationship 

between capillary pressure and non-wetting phase saturation is called the drainage 

capillary pressure curve. On the contrary, an imbibition process is characterized by 

decreasing values of capillary pressure as the non-wetting phase saturation decreases. A 

set of capillary curves is shown in Figure 2.11.  

 

 

 

 

Figure 2.11 Typical capillary pressure curves [after Chatzis, 1980]. 
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It can be seen that a minimum capillary pressure (entry pressure) must be reached 

before drainage begins.  When the capillary pressure reaches a value 0
CP  commonly 

referred to as the breakthrough capillary pressure, a steep increase in non-wetting phase 

saturation is observed.  At this pressure, a percolation threshold is reached and the non-

wetting phase can form a sample-spanning cluster.  A residual (or sometimes called 

irreducible) saturation of the wetting phase wirS  is gradually approached as capillary 

pressure is further increased – a situation connected to the gradual loss of bulk 

connectivity of the wetting phase (which nevertheless remains connected through wetting 

films and wetting fluid filaments in pore corners).  The imbibition curve does not retrace 

the drainage curve, but instead hysteresis is observed. A minimum non-wetting phase 

saturation nwrS  is reached at low values of capillary pressure.  The reason that the non-

wetting phase cannot be completely displaced is permanent entrapment of the non-

wetting phase due to the snap-off and bypassing mechanisms during the imbibition 

process, as shown in Figure 2.9b [e.g., Chatzis and Dullien, 1983; Ioannidis et al., 1991].  

 

2.1.5 Permeability  

Under creeping flow conditions, single-phase flow of incompressible fluids in 

porous media is governed by Darcy’s law: 

)( gPKv
rr

ρ
μ

−∇−=         (2.7) 

where vr  is the Darcy velocity, K is the absolute permeability, μ  is the dynamic viscosity 

of the fluid, P∇  is the pressure gradient and ρ  is the fluid density. 
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 For a porous medium with multiphase flow, the relative permeability of fluid i, 

riK , is defined as  

           
K

K
K i

ri =          (2.8)  

where iK is the effective permeability of fluid i and Equation (2.7) can be written as 
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KK

v ii
i

ri
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μ
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r        (2.9) 

where the subscript i denotes fluid i. 

 Relative permeability is often correlated to phase pressures and saturations. 

Pressure-saturation-permeability or P-S-K relations are of critical importance for 

multiphase flow modeling. Numerous empirical correlations of P-S-K relations have been 

proposed using pressure-saturation (P-S), saturation-permeability (S-K) and hysteretic 

models for two- or three-phase systems [Miller et al., 1998]. An example of such 

correlation is the Brooks-Corey model, which is frequently used in reservoir engineering 

and groundwater modeling: 

      λλ /)32( += effrw SK        (2.10) 

    λλ /)2(2 )1()1( +−−= effeffrnw SSK       (2.11)
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where rwK and rnwK are the drainage relative permeabilities of the wetting and non-

wetting phase respectively, λ is the experimentally determined pore size distribution 

index, effS is the effective saturation, wS is the wetting phase saturation and iwS  is the 
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irreducible wetting phase saturation. A more thorough review of correlations of relative 

permeability is given by Miller et al. [1998]. 

 

2.2 NAPL dissolution  

 

2.2.1 Mass transfer during NAPL dissolution 

            Correlations in forms of dimensionless numbers are often developed to express 

the effects of fluid flow on mass transfer. The Reynolds number quantifies the relative 

magnitude of inertial force and viscous forces: 

      
w

pwUd
μ

ρ
=Re                                                     (2.13) 

The Schmidt number is used to relate viscous momentum transfer to diffusive mass 

transfer: 

wm

w

D
Sc

ρ
μ

=                    (2.14) 

where wμ  is the aqueous phase viscosity, wρ  is the aqueous phase density, U is the 

Darcy velocity, dp is the characteristic length, and Dm is the molecular diffusion 

coefficient of NAPL in water. The Peclet number is defined as the product of Reynolds 

number and Schmidt number and measures the relative significance of convective to 

diffusive mass transfer, 
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D
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The Sherwood number is used to correlate the dissolution rate coefficient, 
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m

pdiss

D
dk

Sh =         (2.16) 

Much of the early theoretical and experimental work pertaining to mass transfer 

during NAPL dissolution in porous media concentrated on ideal systems, that is, either 

perfect spheres packed in columns or theoretical investigations assuming an ideal 

geometry of pore structure. The theoretical studies dealt with mass transfer into fluids 

flowing around single cylinders [Dobry and Finn, 1956] or spheres [Ranz and Marshall, 

1952]. The theoretical work also involved the mass transfer behavior in packed beds, 

which is significantly different from the ideal systems. Correlations based on the packed 

bed experiments were developed to study mass transfer coefficients [Williamson et al., 

1963; Wilson et al., 1966; Dwivedi and Updhyay, 1977; Wakao et al., 1978]. Table 2.1 

lists some theoretical and experimental correlations reported in the chemical engineering 

literature. 

With reference to column (1D) experiments, convection, dispersion and interphase mass 

transfer for a single component, slowly-dissolving NAPL are described by the following 

system of equations [e.g., Baldwin and Gladden, 1996;  Johns and Gladden, 1999]: 
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in which φ  is the porosity, oS  is the NAPL saturation, C  is the organic solute 

concentration in aqueous phase, sC  and oρ  are the equilibrium solubility and density of 

the NAPL, U  is the Darcy velocity, D  is the hydrodynamic dispersion coefficient, dissK  
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is the mass transfer coefficient and ia  is the NAPL-water specific interfacial area.  With 

few exceptions, only the lumped parameter idiss aK  is determined experimentally and a 

phenomenological approach is adopted to correlate idiss aK  with the volumetric NAPL 

content, the aqueous phase Darcy velocity and system properties, such as the median 

grain size and molecular diffusivity [Imhoff et al., 1998].   

 

Table 2.1 Theoretical and experimental mass transfer correlations.  

System Correlation  Ref 
Theoretical    
Single sphere 3189.0 PeSh =  Pe>>1 1 
 

)
21

1ln(4
PePe

Sh
−

=  
Pe<<1 1 

 3124.12 PeSh +=  0<Pe<<1000 2 
 2132 )21.14( PeSh +=  0<Pe<<10000 3 
Multi-particle 31)/2(0.2 λPeSh →  

−λ  dimensionless length 
∞→Pe   

creeping flow 
4 
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⎤
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23531 )1(2)1(3)1(32 nnnW −−−+−−=
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Experimental    
Benzoic acid-
water 

3109.1 Pe
n

Sh =  
0.0016<Re<55 
0.35<n<0.75 

6 

 6.031 Re1.12 ScSh +=  3<Re<2000 7 
 

58.0386.082.0 Re
365.0

Re
765.0

nSc
uSh ⎥⎦

⎤
⎢⎣
⎡ +=  

0.01<Re<15000 8 

 
32415.0Re
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Sc
uSh =  
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References: 1. Friedlander, 1957                          2. Levich, 1962 

         3. Sherwood et al., 1975        4. Sorensen and Stewart, 1974 

         5. Pfeffer, 1964                    6. Wilson and Geankoplis, 1966 

        7. Wakao and Funazkri, 1978       8. Dwivedi and Updhyay, 1977  
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The last term of the Equation (2.17) represents the mass transfer flux due to a 

linear driving force: 

                                                         )( CCaKJ Sidiss −=                                             (2.19)  

If steady state is assumed and the dispersion term is neglected, Equation (2.13) can be 

rewritten as follows: 

                                                      )( CCaK
x
CU Sidiss −=

∂
∂                               (2.20) 

The solution of Equation (2.20) for a zero inlet concentration is 

     )ln( CC
L
UaK Sidiss −−=                  (2.21) 

where C  is the NAPL concentration at the column outlet ( Lx = ). Equation (2.21) shows 

that the mass transfer rate coefficient idiss aK  can be determined by measuring the effluent 

concentration, column length and Darcy velocity. Equation (2.21) is applied when non-

equilibrium conditions prevail, that is when C < CS. Effluent concentration curves have 

been measured experimentally [Miller et al., 1990; Powers et al., 1992; 1994a; Imhoff et 

al., 1994; Guo and Thompson, 2001]. Figure 2.12 shows normalized effluent 

concentration (the ratio of effluent concentration to NAPL solubility) as a function of the 

number of pore volumes of water pumped through the column.  

To obtain a predictive expression for the dissolution rate coefficient, the estimates 

of lumped parameter idiss aK  obtained from experimental data are used to develop 

empirical relations in terms of dimensionless numbers. Although the specific NAPL-

water interfacial area ai is difficult to obtain, idiss aK  can be easily calculated using 

Equation (2.21). A modified Sherwood number, 'Sh  was defined by Miller et al. [1990] 

as an alternative to Equation (2.16): 
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Mass transfer correlations developed in the environmental engineering literature are 

summarized in Table 2.2. 

 

 

 

 

Figure 2.12 Normalized effluent concentration curves for styrene and TCE dissolution 

[Powers et al., 1994a]. 
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Table 2.2 Correlations obtained from experimental work in the environmental 

engineering literature. 

NAPL Correlation  Ref 
TCE 
Styrene 
 

41.064.0
50

61.0Re7.57' iUdSh =  10<Pe<250 1 

TCE 
Styrene 

4

0

)(Re13.4' 369.0673.0598.0 β

θ
θ

δ
n

n
iUSh =  

iU1.0114.0518.04 ++= δβ  

10<Pe<170 2 

Naphthalene 654.0Re6.77=Sh  1<Pe<200 3 
TCE 31.0

50
71.087.0 )()(Re'340' xdSh nθ=  1<Pe<25 

0< nθ <0.04 
180/4.1 50 ≤≤ dx  

4 

TCE 486..075.09.0 Re34.1' ScSh nθ=   5 

Ui = d60/d10   -  uniformity index, nθ  - volumetric NAPL fraction                                                    

0nθ  - initial volumetric NAPL fraction,  δ  - normalized grain size 

References: 1. Powers et al., 1992       2. Powers et al., 1994a         3. Powers et al., 1994b 

         4. Imhoff et al., 1994       5. Imhoff et al., 1997 

 

 

All of the correlations listed in Table 2.2 have been developed from data obtained 

from experiments with water-wet systems. However, none of them can provide an 

accurate description of dissolution data obtained from systems with fractional wettability 

[Bradford et al., 1999]. In order to describe the fractional wettability dissolution datasets, 

Bradford et al. [2000] developed a two-parameter power function correlation for the 

modified Sherwood number: 

β
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where α  and β  are parameters that are adjusted to explain the dissolution data using a 
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non-linear least squares fitting method: 

187.1475.0254.0 −= iUδα ,               r2 = 0.999                (2.24) 

iU
oF

265.6

)0.1(959.0 −=β ,            r2 = 0.879     (2.25) 

where Fo is the mass fraction of NAPL-wet sand and r2 is the coefficient of linear 

regression. This empirical correlation yielded good predictions for the dissolution 

behavior of the higher NAPL-wet fraction systems. However, predictions for the lower 

NAPL-wet fraction systems were unsuccessful. 

Although the previously developed correlations can be used to explain the data 

from certain experiments, they have considerable limitations [Khachikian and Harmon, 

2000].  The dissolution rate coefficient is a parameter that is influenced by many dynamic 

effects, such as changes of local hydrodynamic conditions, NAPL blob size, NAPL 

saturation and NAPL-water interfacial area during the dissolution process.  The empirical 

correlations cannot properly account for the dissolution rate at the pore level. In addition, 

they are not applicable to the data obtained from other experiments under different 

conditions and generally they are not applicable to field settings. Pore network modeling 

based on the basic physics of the process can provide insight into the NAPL dissolution 

mechanisms and assist in overcoming these limitations [Dillard et al., 2001]. 

 

2.2.2  Wetting-NAPL dissolution in column experiments 

Most of NAPL dissolution investigations have been conducted in water-wet 

porous media. However, fractional wettability, that is the condition for which water-wet 

and NAPL-wet solid surfaces are present in a porous medium, is recognized as a 
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ubiquitous condition in real soil formations [Brown et al., 1956; Salathiel, 1973]. There 

are much fewer experiments reported in the literature for NAPL-wet systems than for 

water-west systems. Parker et al. [1991] studied multi-component NAPL dissolution in 

NAPL-wet porous media. In their experiments, sand grains in a column were coated with 

NAPL before the column was saturated with water, making the sand NAPL-wet. Water 

was flushed through the column at constant Darcy velocity and concentration data versus 

time were obtained. Bradford et al. [1999] reported on the dissolution behavior of 

tetrachloroethylene (PCE) in porous media with fractional wettability. The experimental 

porous media consisted of various sieve sizes of Ottawa sands, some of which were 

treated with a 3-5% solution (by volume) of octadecyltrichlorosilane (OTS) in ethanol to 

render them hydrophobic. Fractional wettability media were obtained by mixing various 

mass fractions of untreated and OTS-treated Ottawa sands. Dissolution experiments were 

conducted after PCE entrapment in the column. Effluent data from a representative PCE 

dissolution experiment with 100% fraction of NAPL-wet sands are plotted in Figure 2.13. 

A series of effluent curves obtained from the experiments with different fractions of 

NAPL-wet sands are shown in Figure 2.14. Their research revealed that an increase in the 

NAPL-wet soil fraction tends to result in a longer period of high effluent concentrations, 

followed by a rapid reduction of concentration until a low concentration level is attained 

(tailing). A concentration rebound was also observed in the tailing region after a long-

term interruption of water flow (Figure 2.13). Effluent concentration was at a high value 

when the water flow resumed and decreased rapidly to the level reached before the 

interruption began. The concentration rebound was used as evidence of the presence of 

limited amounts of separate phase NAPL ganglia or less accessible NAPL films in the 



 36

medium. The concentration curves were interpreted by assuming that residual NAPL is 

entrapped both as films covering NAPL-wet solids and as ganglia near water-wet solids. 

The distribution of NAPL depends on the extent of fractional wettability and the pore 

structure of the medium. Because the ratio of NAPL-water interfacial area to the medium 

volume is much higher when NAPL is present as films than as ganglia, a larger interfacial 

area is obtained as the fraction of NAPL-wet sands is increased. The existence of the 

NAPL films is responsible for the longer period of high effluent concentrations in 

systems with a higher fraction of NAPL-wet sand. The ganglia in contact with NAPL 

films provide a supply of NAPL to the films, which promotes the dissolution of the 

ganglia and facilitates the maintenance of high interfacial area and high effluent 

concentration. As dissolution proceeds, the NAPL films are dissolved, the interfacial area 

decreases dramatically, and so does the effluent concentration. The low concentration 

tailing behavior observed was attributed to three possible effects: (1) desorption of NAPL 

from the sands, (2) presence of persistent NAPL ganglia that dissolve much slower by 

comparison to the NAPL films and/or (3) NAPL films not easily accessible to flowing 

water [Bradford, 1999]. The explanation of the tailing behavior is still controversial, even 

in water-wet media. Miller et al. [1998] suggested that the tailing could be due to 

dissolution fingering. Imhoff et al. [1998] reported that rate-limited desorption of NAPL 

may account for the concentration tailing. A continuum numerical model of porous media 

with fractional wettability was developed by Bradford et al. [2000] to explain the tailing 

phenomenon from the desorption point of view. 
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Figure 2.13 Effluent concentration curve for 100% NAPL-wet system [from Bradford et 

al., 1999]. 

 

 

Figure 2.14 Effluent concentration curves for different fractions of NAPL-wet sands 

[from Bradford et al., 1999]. 
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2.2.3  Observations in micro-model experiments 

Sahloul et al. [2002] studied NAPL dissolution behavior in transparent glass 

micro-model experiments. Since a thorough understanding of NAPL dissolution behavior 

at the pore level is crucial to prediction of NAPL dissolution rate and network modeling, 

it is worth to examine their observations in more detail. 

Figure 2.15 shows the pore network patterns used to make 2-D transparent glass 

micro-models with different wettability. In the water-wet model (Figure 2.15a), NAPL 

doublet ganglia are entrapped and water is injected with very low flow rate through the 

flow bypass channels open to the pore doublet containing entrapped NAPL. Due to the 

difference in water pressure along the pore doublet, water can flow along the corners of 

irregular pore walls and around the trapped NAPL ganglia and mass transfer by 

convection and diffusion takes place in the space between the NAPL-water interface and 

the pore wall. The evolution of the size and shape of the dissolving NAPL ganglia was 

visualized over time with image analysis techniques. Figure 2.16 is a set of pictures 

showing the dissolution history of non-wetting NAPL ganglia in the model.  It is 

observed that, as the ganglia shrink in size, a progressively thicker collar of the water 

phase forms in the pore throat and a snap-off event occurs in the pore throat. The newly 

formed NAPL-water interfaces spontaneously retreat towards the pore bodies forming 

two singlet ganglia. The singlet ganglia dissolve sequentially and not simultaneously: the 

ganglion upstream will dissolve first because the driving force for dissolution 

)( waters CC −  is greater upstream. 

In a NAPL-wet model (Figure 2.15b), NAPL coats the solid walls in the form of 

films along the corners of the water flowing channel and entrapped NAPL completely 
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occupies the pore doublet. The NAPL films present in the inner and outer corners of the 

water bypassing channels are gradually dissolved. As dissolution proceeds, the outer film, 

which in the micro-model is actually disconnected from the rest of NAPL, dissolves 

completely. However, the inner NAPL film dissolves to a certain thickness only.    

Driven by capillary pressure gradients, continuous supply of NAPL from the trapped 

ganglia to the dissolving films by film flow along pore corners makes the dissolving film 

thickness remain constant.  At this stage, water displaces NAPL and gradually invades 

the throat followed by a sequence of snap-off events that increase the interfacial area for 

mass transfer until the throat and the adjacent pore are completely drained. The sequence 

of phenomena is shown in Figure 2.17. This phenomenon takes place again when water 

penetrates the other throat and pore until an additional open channel for water flow 

becomes available [Sahloul et al, 2002]. The pore network modeling of NAPL dissolution 

in this work is based on the dissolution mechanism of wetting NAPL briefly reviewed 

above and will be discussed in detail in Chapter 3.    

 

 

Figure 2.15 Schematic description of the glass models (a) water-wet (b) NAPL-wet 

Residual NAPL shown in black [Sahloul et al. 2002]. 
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Figure 2.16 Non-wetting NAPL dissolution in micro-model [Sahloul et al. 2002]. 
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Figure 2.17 Wetting NAPL dissolution in micro-model [Sahloul et al. 2002]. 
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2.3  Remediation of subsurface NAPL sources 

 

Remediation of NAPL contaminated sites involves control of the dissolved NAPL 

plume in groundwater and removal of the NAPL sources. This research will focus on the 

latter issue. Technologies for NAPL source-zone remediation are of two types, mass-

removal technologies that bring NAPL to the surface for disposal and treatment (e.g., 

pump-and-treat, steam flushing, air sparging, surfactant flushing, co-solvent flushing) and 

mass-destruction technologies that destroy NAPL in situ (e.g., chemical oxidation, 

chemical reductive dehalogenation, biodegradation) [Cherry et al., 1996].   

Pump-and-treat is the most commonly used method, and is a dissolution treatment 

whereby large amounts of water are flushed through the contaminated area and water 

with dissolved NAPL is collected downstream and treated at the surface. This technology 

has been in practice since the 1980s, but proven ineffective. Decades are required to 

achieve total source zone restoration. The failure of pump-and-treat promoted the 

development of new in situ technologies.  Steam injection combined with soil vacuum 

extraction (SVE) is used to vaporize and remove NAPL. Chemicals such as surfactants 

and co-solvents are added to the flushing water to increase the effective solubility of 

NAPL. Although these methods are much more effective in NAPL removal than the 

conventional pump-and-treat technology, there are still many technical difficulties. 

Heterogeneities of permeability and NAPL distribution in the soil often impede the 

contact of the flushing fluids with NAPL, which is critical in the restoration of the source 

zone using these technologies. New contaminations may be caused by downward 



 43

mobilization of NAPL with decreased interfacial tension or by the injected chemicals 

themselves [Cherry et al., 1996]. 

Another method for restoring NAPL sources is air sparging.  Air or other gases 

are injected below or within the source zone of volatile contaminants, which are 

volatilized into the air phase and transported upward to the vadose zone, where they are 

collected in vacuum extraction wells. Air sparging also benefits the bioremediation 

process by introducing oxygen to the source zone. Laboratory and site investigations 

show that air migrates upward in air channels or stream tubes instead of rising bubbles 

and forms parabolic or V-shaped air plumes that are centered around the injection well 

during the process [e.g., Ji, et al., 1993; Lundegard and LaBrecque, 1995; Elder and 

Benson, 1999]. Contaminated soil inside the channels would be aerated. However, 

regions outside the air channels are much less affected by the air flow [Hinchee, 1994]. 

Since the air phase tends to migrate through preferential pathways (high permeability 

portions of the medium), it bypasses the NAPL in zones of lower permeability (see 

Figure 1.2), which tremendously reduces the effectiveness of the technology.   

Research on a novel technology of NAPL remediation, based on introducing 

supersaturated carbonated water (SWI) to the source zone, is on-going at the University 

of Waterloo. To overcome the problems of residual NAPL inaccessibility during air 

sparging, water highly supersaturated with carbon dioxide is injected beneath the NAPL 

sources. A patented technology, Gas inFusionTM, which has the ability to efficiently 

dissolve large amounts of gas into water makes SWI possible.  A conceptual design of the 

SWI technology for NAPL remediation is shown in Figure 2.18 [Li, 2004]. 
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Column experiments using SWI [Li, 2004] show that NAPL ganglia can be 

recovered by volatilization and mobilization. 2D experiments (Figure 2.19) conducted by 

Li [2004] also reveal that SWI is a significant improvement on direct gas injection in a 

porous medium. Gas channelling phenomena observed in air sparging process [e.g. Ji et 

al., 1993; Tomlinson et al., 2003] can be avoided and dissolved gas can be delivered to 

zones of low permeability. Bubbles are nucleated and subsequently grow to make direct 

contact with NAPL ganglia, making recovery of NAPL, especially volatile ones, much 

more effective than air sparging. 

 

 

Figure 2.18 Conceptual design of supersaturated water injection (SWI) for NAP 

remediation [Li, 2004]. 
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Figure 2.19 Flow diagram of the gas evolution experiment by Li [2004]. 

 

In summary, the following advantages of this method are apparent and make the 

SWI technology promising: 

1. High degree of supersaturation of the injected water allows in-situ gas bubble 

nucleation in the porous medium, even in zones with low permeability, where capillary 

forces prevent direct NAPL-gas contact during air sparging.  

2. The gas distribution in the medium is more homogeneous by comparison to air 

sparging, during which gas flows in high permeability channels.  

3. Higher gas saturation can be obtained when surpersaturated water is injected to 

restore the DNAPL contaminated zone under the water table.   
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4. A larger zone of influence might be obtained. Preliminary experiments show 

that bubbles appear far away from the water injection point. 

5. Upon contact with bubbles, NAPL (with positive spreading coefficient) will 

spontaneously spread around the bubbles and be vaporized into the gas phase if the 

NAPL is volatile. Multiple bubbles in NAPL phase lead to large interfacial area and thus 

effective mass transfer. 

6. Lower interfacial tension between NAPL and gas (compared with the water-gas 

IFT) makes gas flow easier in the pore network due to smaller capillary resistance.  

7. NAPL in the form of spreading films could be mobilized by the growth and 

upward migration of bubbles due to solution gas drive and buoyancy.   

8. In the bioremediation processes where oxygen presence is critical for 

biodegradation [e.g., Wilson et al., 1994a; Borden et al., 1997a; Deeb et al., 2000], O2 

could be introduced to the source zone more effectively when water with supersaturated 

O2 is injected.  

9. Other options of treatments could be available such as combining soil vacuum 

extraction and follow-up air injection to mobilize the bubbles trapped in the media.   

To design the NAPL remediation strategy using SWI, theoretical studies on 

behaviours of bubble growth and mass transfer during gas evolution in porous media are 

required. Mass transfer of gas evolution by solute diffusion and mechanisms of bubble 

nucleation, expansion, coalescence and fragmentation will be discussed in Chapter 5. 
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2.4 Pore network modeling 

 

2.4.1 General 

Network models are used to investigate the macroscopic properties of porous 

media on the basis of pore-scale descriptions of the pore structure and multiphase flow 

phenomena. Due to the geological complexity and topological randomness of the pore 

space, it is practically impossible to reproduce the structure of real porous media in an 

exact manner. Simple geometry is often applied to idealize the pore space and a lattice 

with sites (pore bodies) and bonds (throats) is constructed to represent the topology of the 

medium [Dullien, 1992]. Figure 2.20 shows some examples of lattices of pore space with 

circles representing sites and lines denoting bonds, where z is the coordination number 

describing the number of neighboring pores that each pore connected to. 

Using pore network models can be traced to the pioneering work of Fatt [1956].   

Pore network models overcome the limitations of early conceptualizations of pore space 

that involved bundles of parallel capillary tubes of varying radii (Figure 2.21a).  Early 

pore network models were based on the assumption that the pore intersections do not 

have volume of their own [Berkowitz and Ewing, 1998].  However, since pore bodies 

contribute to the majority of the pore volume, most researchers nowadays use models that 

have pore bodies with size and volume [e.g., Chatzis and Dullien, 1985; Ferrand and 

Celia, 1990a; Bryant et al., 1993b; Ioannidis and Chatzis, 1993; Jia and Yortsos, 1999; 

Dillard and Blunt, 2000;]. It is noted that there exist no dead-end capillaries in these 

networks. Experiments have indicated that the volume fraction of blind pores is quite 

small (about 1%) in sandstone or sintered glass beads [Mysels and Stigter, 1953]. 
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Figure 2.20 Typical lattices used in network modeling [from Berkowitz and Ewing, 1998] 

(a) square z = 4 (b) triangle z = 6 (c) honey comb z = 3 (d) voronoi 6=z  (e) cubic z = 6  

(f) Cayley tree z = 3. 
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Figure 2.21 Evolution of pore space models [from Berkowitz and Ewing, 1998] 

(a) parallel tubes (b) tube network (c) ball-and-stick (d) biconical. 

 

Chatzis and Dullien [1977] first studied the differences between 2D and 3D 

networks and pointed out that since two continuous phases cannot exist in two-

dimensional networks, 3D networks and not 2D ones must be used to model immiscible 

displacement. They also demonstrated that the minimum size of a network, 40 by 40 for 

2D and 20 by 20 by 20 for 3D, is necessary to approximate an infinite lattice [Chatzis and 

Dullien, 1977].  Nowadays, much modeling work is still done on 2D lattices with actually 

3D network elements (pore bodies and throats), allowing for the existence of bicontinua 

(e.g., continuous NAPL phase and water phase) in the models. For our purposes, network 
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dimensionality is not crucial since water and NAPL can co-exist within angular pores. 

In many cases, independent distributions of pore and throat sizes are assumed, e.g. 

normal, lognormal, Weibull etc. However, studies of the pore structure indicate that a 

correlation exists between the size of a pore body and the adjacent throat size. The radius 

of a throat must be smaller than the smaller of the two adjacent pores [Wardlaw et al., 

1987]. Normally, the throat size is a function of the pore size given a certain aspect ratio 

and most of the resistance to fluid flow is in the narrow bonds [Koplik, 1982]. 

Network modeling has developed enormously as percolation theory was used to 

describe multiphase flow properties in porous media. Percolation theory is a branch of 

probability theory dealing with properties of random media [Sahimi, 1993; Berkowitz 

and Ewing, 1998]. The application of percolation theory to this work involves the 

breakthrough phenomenon for quasi-static drainage displacement. Figure 2.22 shows a 

network at the point of breakthrough [Chatzis and Dullien, 1977]. Nodes of different size 

are distributed randomly over the network and whenever a bond is “open” both the 

neighboring nodes connected with the bond are also assumed to be “open”. The bonds in 

the network are labeled with consecutive numbers representing the pore sizes. Stepwise 

penetration of the non-wetting phase into the network takes place through the inlet face. 

The largest pore (index  = 1) accessible from the inlet face is penetrated first. The second 

largest pore is open at the next step, and so forth. When at a particular step the non-

wetting phase reaches the outlet face of the network, a cluster of bonds and sites filled 

with non-wetting phase spans the entire network and the condition is termed 

“breakthrough” [Dullien, 1992].  
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Figure 2.22 Square lattice at breakthrough [Chatzis and Dullien, 1977]. 

 

 

In principle, local capillary equilibrium is assumed during pore-scale simulations 

and the configurations of fluids in pores of different shape are determined by Young-

Laplace equation. The flow of each phase is determined by the hydraulic conductance of 

each phase in each pore and throat and the pressure difference between the neighbouring 

pores. Mass conservation equations are used to compute the pressure field throughout the 
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network when all of the interfaces are assumed to be locked in place for a certain 

simulation step. From the calculated fluid flow field, macroscopic properties such as 

absolute and relative permeability can be obtained.  This approach is valid when 

displacement takes place at sufficiently low values of the capillary number (so-called 

quasi-static displacement). 

Although pore network models based on regular lattices are extensively used to 

represent pore spaces, recently developed pore-scale modelling techniques focus on 

deriving geologically realistic networks. In order to capture properties of a porous 

medium (in terms of topology, pore size distribution, spatial correlation of the pore space, 

etc.), pore network models are constructed from 3D voxel-based images that may be 

generated by X-ray microtomography [e.g., Biswal et al. 1999; Oren and Bakke, 2002] or 

by 3D reconstruction (stochastic or process-based) informed by 2D thin sections [e.g., 

Quiblier, 1984; Adler and Thovert, 1998; Liang et al., 2000; Oren and Bakke, 2003]. 

Such models are often used to predict multiphase flow and transport properties in porous 

media.  In the current study, pore network models with simple geometric elements (cubic 

pores and square throats) on regular lattices are used for the purpose of qualitatively 

investigating mass transfer in porous media and providing new insights into the simulated 

processes by incorporating the basic physics behind the phenomena of interest.  
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2.4.2 Pore network modeling of NAPL dissolution 

Pore network modeling proved effective in investigations of the properties of 

fluid flow in porous media and thus is a powerful tool of the investigation of NAPL 

dissolution. Numerical pore networks have been developed recently to study several 

aspects of the dissolution problem. Jia and Yortsos [1999] studied mass transfer in flow 

with varying Peclet number over various macroscopic- and microscopic-scale source 

geometries. They adjusted the local mass transfer rate to explain the dissolution at the 

interface and conducted network model simulations to test their theoretical analysis and 

compare the results to etched glass micro-model experiments. Zhou et al. [2000] used a 

conceptual model, which was constructed with bundles of parallel tubes, to predict NAPL 

dissolution rate. A mechanism of corner flow of water between the NAPL-water interface 

and pore walls was proposed. Three different diffusion mechanisms of non-wetting 

NAPL were taken into account and each of them was shown to control dissolution in a 

different range of Peclet numbers. They also studied a NAPL-wet system and argued that 

wetting NAPL dissolution is governed exclusively by corner diffusion, a mechanism 

whereby wetting NAPL phase in the corners of the pores diffuses into the water phase in 

the center of the pores. Based on the model of Zhou et al. [2000], Dillard and Blunt [2000] 

developed a network model to investigate the fundamental physics of non-equilibrium 

NAPL dissolution in water-wet systems. Relative permeability curves were obtained and 

the observed hydraulic conductivity was reproduced. The results of NAPL volume 

effluent concentration and modified Sherwood number versus Peclet number were 

compared with the data obtained from the experiments conducted by Powers et al. [1992] 

for water-wet system. Dillard et al. [2001] estimated dissolution rate coefficient and 
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NAPL-water specific interfacial area in subsequent work and attempted to develop a 

methodology for incorporating pore-scale processes into field-scale prediction of NAPL 

dissolution. Held and Celia [2001] developed a 3D pore network model to predict the 

evolution of interfacial front in column experiments of porous media initially at residual 

non-aqueous phase saturation. Comparisons were made between their results and the 

experimental data of Mayer and Miller [1992] and Imhoff et al. [1994] for water-wet 

systems.      

It should be noted that all of the aforementioned network models were developed 

to simulate NAPL dissolution for water-wet systems.  Effects of soil wettability on NAPL 

dissolution have been investigated by some researchers using various methods, namely 

column experiments [Parker et al., 1991; Mayer and Miller, 1992; Imhoff et al., 1994; 

Bradford et al., 1999], micro-model experiments [Sahloul et al., 2002] and conceptual or 

continuum models [Zhou et al., 2000; Bradford et al., 2000]. A 2D network model was 

developed by Yiotis et al. [2001] to investigate drying of porous solids, a process 

involving vaporization of a wetting phase (e.g. water, hexane, etc) to the gas phase in 

porous materials. This is a drainage process and is similar to wetting-NAPL dissolution. 

However, their model does not take into consideration the effects of wetting films, and is 

essentially different from the mechanism underpinning the model developed in this work. 

 The experiments of Sahloul et al. [2002] have demonstrated the qualitative 

features of residual NAPL dissolution in NAPL-wet systems. The pore-scale mechanisms 

were shown to involve "capillary pumping" of NAPL from NAPL-filled pores to 

dissolving thick NAPL films residing in the corners of water-invaded pores. Capillary 

pumping is driven by and tends to balance capillary pressure increases in areas of active 
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dissolution, where NAPL-water menisci recede further into the crevices and corners of 

pore walls. This mechanism results in piston-type drainage of NAPL-filled pores by 

water, creating new paths for water flow. Based on this mechanism, Zhao and Ioannidis 

[2003] developed a pore network model to simulate wetting NAPL dissolution. Figure 

2.23 is the simulation result of NAPL effluent concentration as a function of volume of 

water injected. The tailing behaviour of the effluent NAPL concentration, as observed in 

column experiments, is attributed to the rupture and concomitant loss of hydraulic 

continuity of thick NAPL films [Zhao and Ioannidis, 2003]. The simulations indicated 

that the distribution and stability of NAPL films critically affect the dissolution behaviour 

of wetting NAPL and deserve further investigation.  
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Figure 2.23 Normalized effluent solute concentration as a function of pore volume of 

water injected. Low-concentration tailing is due to significant bypassing of the 

contaminated zone by the flowing aqueous phase, after NAPL film disconnection [Zhao 

and Ioannidis, 2003]. 
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2.4.3 Pore network modeling of multiphase flow and mass transfer 

 The approach used in two phase flow modeling has been extended to three-phase 

(oil/NAPL, water, gas) flow by many researchers [e.g. Mani and Mohanty, 1998, Hui and 

Blunt, 2000, van Dijk et al., 2001; a recent bibliography can be found in Blunt, 2001]. 

The purpose of these models is to predict phase displacement events and macroscopic 

properties of three phase flow in porous media by incorporating physically-based pore-

scale mechanisms.  

To model three phase flow in porous media, a common method is to construct 

three-phase relative permeabilities from two-phase data using empirical models that have 

little or no physical basis [Blunt, 2001]. Many efforts are made to predict three-phase 

relative permeability using pore network models [e.g., Fenwick and Blunt, 1998 a b, 

Blunt et al., 2002, Held and Celia, 2001 a].  Three-phase permeabilities in porous media 

are significantly influenced by the configurations of fluids, which strongly depend on the 

wettability of the media [Blunt, 2001]. Using a three phase network model, Mani and 

Mohanty [1998] showed that gas and oil relative permeabilities are functions of spreading 

coefficient. Kovscek et al. [1993] investigated the fluid configuration in a star-shaped 

pore and stated that the solid surfaces in a single pore can have different wettability. 

Experiments and free energy calculations conducted by Dong and Chatzis [1995] and 

Dong et al. [1995] showed that NAPL layers may form between water and gas when 

NAPL imbibes into pore crevices. Hui and Blunt [2000] studied three-phase 

configurations in triangular tubes and suggested that different configurations of NAPL 

layers between water and gas may arise in water-wet or mixed-wet pores with different 

distributions of contact angles. These spreading layers provide the connectivity of NAPL 
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phase for NAPL flow and the large interfacial area for mass transfer.  

A number of network models have been developed to model gas evolution in 

porous media due to solute diffusion [Li and Yortsos, 1995 a, b, Hawes et al., 1996, 

Carmeliet, et al., 1999, Du and Yortsos, 1999, McDougall and Sorbie, 1999, Dominguez 

et al., 2000, Pérez-Aguilar et al., 2002, Tsimpanogiannis and Yortsos, 2002, 2004]. These 

models involve simulations of nucleation and subsequent growth of bubbles in porous 

media. Attention is given to the effects of depressurization rate, capillarity, wettability, 

viscosity and gravity on the rate and pattern of bubble nucleation and gas cluster growth, 

bubble mobilization and critical gas saturation.   
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Chapter 3 

Effect of NAPL film stability on the dissolution of 

residual wetting NAPL in porous media  

 

 

3.1  Summary        

 

Wettability profoundly affects not only the initial distribution of residual NAPL 

contaminants in natural soils, but also their subsequent dissolution into a flowing aqueous 

phase. Under conditions of preferential NAPL wettability, the residual NAPL phase is 

found within the smaller pores and in the form of continuous thick films along the 

corners and crevices of the pore walls.  Such films expose a much greater interfacial area 

for mass transfer than would be exposed by the same amount of non-wetting NAPL.  

Importantly, capillary and hydraulic continuity of thick NAPL films is essential for 

sustaining NAPL-water counterflow during the course of NAPL dissolution in flowing 

groundwater - a mechanism which maintains and even increases the interfacial area for 

mass transfer.  Continued dissolution results in gradual thinning of the NAPL films, 

which may become unstable and rupture causing disconnection of the residual NAPL in 

the form of clusters.  A pore network simulator is developed to demonstrate that NAPL 

film instability drastically modifies the microscopic configuration of residual NAPL, and 
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hence the local hydrodynamic conditions and interfacial area for mass transfer, with 

concomitant effects on macroscopically observable quantities, such as the aqueous 

effluent concentration and the fractional NAPL recovery with time.  These results 

strongly suggest that the disjoining pressure of NAPL films may exert an important, and 

hitherto unaccounted, control on the dissolution behaviour of a residual NAPL phase in 

oil wet systems.   

 

 3.2  Background 

 

The potential of environmentally significant non-aqueous phase liquids (NAPL), 

such as chlorinated degreasing or dry-cleaning solvents, creosote and weathered fuel 

hydrocarbons, to change the wettability of natural mineral surfaces upon introduction into 

the subsurface has been recently recognized.  For example, coal tar and creosote can wet 

quartz media at acidic or neutral pH conditions [Powers et al., 1996; Barranco and 

Dawson, 1999; Zheng and Powers, 1999; Zheng et al., 2001; Zheng et al., 2001].  

Changes of wettability in NAPL-water-solid systems might occur in the presence of 

organic additives and greases [Jackson and Dwarakanath, 1999].  Contaminant aging has 

also been found to have an impact on wettability alteration [Powers and Tamblin, 1995; 

Harrold et al., 2001]. 

Wettability plays a key role in multiphase flow, affecting the efficiency of 

immiscible displacement [Dwarakanath et al., 2002] by dictating the pore-scale 

configuration of NAPL and water [Hui and Blunt, 2000].  Following immiscible 

displacement by water, a NAPL that does not wet the mineral surface is retained by 
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capillary forces in the form of discrete blobs or ganglia within larger pores of high aspect 

ratio, whereas a wetting NAPL is trapped within smaller pores and in the form of thick 

films along the corners and crevices of the pore walls.  For the same volumetric NAPL 

content, both the interfacial area available for mass transfer and the hydrodynamic 

conditions for water flow at the pore scale are markedly different depending on 

wettability.  These differences have a significant effect on the dynamics of residual 

NAPL dissolution into a flowing aqueous phase - an effect that only recently has come 

under investigation.  For example, column dissolution experiments with porous media 

containing both water-wet and oil-wet surfaces have revealed that increasing the NAPL-

wet fraction results in rather long periods of high (near-equilibrium) effluent 

concentrations, followed by a rapid rate of concentration reduction and significant 

concentration tailing at low levels [Bradford et al., 1999].  Such observations are in 

contrast to the macroscopic behaviour seen in similar water-wet systems [Powers et al., 

1994; Imhoff et al., 1994] and reflect the effect of wettability on the initial NAPL 

distribution and subsequent dissolution behaviour at the pore scale. 

The wetting of mineral surfaces by water or oil is controlled by surface forces 

(electrostatic, van der Waals and structural) that become important when two interfaces 

(fluid-fluid and fluid-solid) approach each other [Hirasaki, 1991; Drummond and 

Israelachvili, 2002].  At equilibrium, the pressure difference across the fluid-fluid 

interface (the capillary pressure), cP , is given by the augmented Young-Laplace 

equation: 

)(2 hHcP Π+= σ             (3.1) 

where σ  is the interfacial tension, H is the mean curvature of the fluid-fluid interface and 



 62

)(hΠ  is the disjoining pressure, which depends on the distance h between the fluid-fluid 

and fluid-solid interfaces and measures the net surface force tending to attract or repel 

them. A thick wetting water film between the NAPL and the mineral surface must 

become unstable and collapse to a thin layer of hydration water of thickness δ  before 

NAPL can adhere to the solid, usually by means of adsorption of NAPL-soluble, high-

molecular-weight polar compounds with surface active characteristics [Buckley et al., 

1989; Kovscek et al., 1993; Barranco and Dawson, 1999; Zheng and Powers, 1999]. It is 

generally accepted that wetting water film instability and collapse occurs at a critical film 

thickness crit
wh , corresponding to a local maximum maxΠ  in the disjoining pressure 

isotherm (Figure 3.1) [Hirasaki, 1991; Kovscek et al., 1993].  The corresponding critical 

capillary pressure is thus given by:  

     max2 Π+= critcrit
c HP σ      (3.2) 

 

 
 

Figure 3.1 Schematic of disjoining pressure isotherm for wetting films on solids. 
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Following immiscible displacement of the NAPL by water, mineral surfaces of 

altered wettability retain thick NAPL films within water-invaded pores.  The stability of 

these NAPL films is expected to depend on the thickness δ  of the hydration water layer 

covering the solid surface [Hirasaki, 1991].  Specifically, for an NAPL film over 

hydration water on a silica substrate, it is theoretically predicted that the disjoining 

pressure is repulsive if 0=δ  (no hydration water) and, consequently, the NAPL film is 

stable for any value of its thickness NAPLh .  On the other hand, if NAPLh>>δ , the 

disjoining pressure is attractive and the NAPL film is unstable for any value of its 

thickness NAPLh .  At intermediate values of δ , the disjoining pressure exhibits a 

maximum maxΠ at a critical NAPL-film thickness crit
NAPLh [Hirasaki, 1991; Kovscek et 

al., 1993] and a NAPL film is expected to become unstable at a critical capillary pressure 

which is given by Equation (3.2).   

To the best of the author’s knowledge, no direct measurements of the disjoining 

pressure of NAPL films in environmentally significant systems are available in the 

literature. Yet, reversal of wettability from oil-wet to water-wet conditions has been 

documented, mainly in relation to oil recovery from oil-wet reservoir rocks by imbibition 

of aqueous surfactant solutions [Austad et al., 1998; Standnes and Austad, 2000; 2003a; 

2003b].  It has also been shown that quartz sand surfaces, which at low pH become oil-

wet after being exposure to coal tar [Powers et al., 1996; Barranco and Dawson, 1999; 

Zheng and Powers, 1999; Zheng et al., 2001], may become water-wet again in the 

presence of surfactants at concentrations below the critical micelle concentration [Dong 
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et al., 2004]. These findings suggest that NAPL films over hydration water can be 

destabilized, as expected from theoretical considerations [Hirasaki, 1991].   

 This research seeks not to examine the physicochemical parameters and 

mechanisms (surfactant-related or not) governing the stability of NAPL films, but instead 

to demonstrate that conditional stability of NAPL films can profoundly affect the 

dissolution of residual wetting NAPL in a flowing aqueous phase.  Experiments of NAPL 

dissolution in oil-wet transparent glass micromodels provide the motivation [Sahloul et 

al., 2002].  These experiments, which have been carried out under conditions of 0=δ  

(unconditionally stable NAPL films), have shown that slow dissolution of residual NAPL 

residing in the corners of water-invaded pores is accompanied by quasi-static piston-type 

invasion of water (drainage) in NAPL-filled pores.  This mass-transfer-driven drainage 

was explained as corresponding to NAPL-water counterflow driven by the increase in 

capillary pressure in areas of active dissolution, where NAPL-water menisci tend to 

recede farther into the crevices and corners of pore walls.  This mechanism creates new 

paths for water flow and increases the interfacial area for mass transfer. 

A pore network simulator that captures the aforementioned mechanism was 

developed by Zhao and Ioannidis [2003] to study the dissolution of a wetting NAPL. 

Simulations have suggested that the sharp reduction of effluent concentration from near-

equilibrium values and the significant concentration tailing observed in column 

experiments [Bradford et al., 1999] may be explained by a rapid reduction of the 

interfacial area for mass transfer that takes place if capillary and hydraulic continuity is 

lost between NAPL-filled pores and NAPL filaments in water-invaded pores. It was 

hypothesized that this happens when NAPL films covering the mineral surface become 
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unstable, but NAPL film stability was not explicitly accounted for in the simulations.   

Rupture of initially stable NAPL films over hydration water ( )δ>>NAPLh  on 

silica substrates seems inevitable, because the NAPL film thickness continuously 

decreases during the dissolution process.  NAPL film rupture may therefore be an 

important factor affecting the dissolution of residual wetting NAPL in porous media.  In 

this research a previously developed pore network simulator [Zhao and Ioannidis, 2003] 

is extended and used to explore the effects of initial NAPL distribution and NAPL film 

stability on NAPL phase continuity, evolution of NAPL-water interfacial area, NAPL 

recovery rate and aqueous phase effluent concentration. NAPL dissolution is considered 

in oil-wet pore networks after water flooding to NAPL saturations corresponding to water 

breakthrough or lower.  The results obtained provide new insights on the dissolution 

dynamics of a residual wetting NAPL in porous media. 

 

3.3 Pore network model 

 
3.3.1 Model construction 

The void space in real porous media is a network of irregularly shaped pores 

communicating with each other through constrictions in the pore space continuum (pore 

throats).  The complexity of actual pore space geometry precludes a precise description of 

the shape of fluid-fluid interfaces and compels us to introduce several assumptions and 

simplifications, which should nevertheless preserve the essential physics of the process 

under consideration.   

The pore space is modeled as an irregular network of pores, each connected to 

four nearest neighbors. For computational convenience, each pore is represented by a 
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cubic chamber (pore body) and parts of four tubes of square cross section (pore throats).  

The pore body radius, pR , is randomly distributed over the nodes of a square lattice from 

a log-normal distribution:   
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where μ  is the population mean and σ  is the standard deviation. In this work, only pore-

throat correlations are accounted for. The tube radius, tR , and the tube length, tL , are 

correlated to the radii of adjoining pores i  and j  as follows: 

)](),(min[
2
1),( jRiRjiR ppt =                                                (3.4) 

)()(),( jRiRjiL ppt +=                             (3.5) 

The square tubes serve a dual purpose.  They model the presence of local constrictions 

(pore throats) in terms of the variable tR , and account for the length of wetting fluid 

filament in the corners and crevices of pores in terms of the variable tL .  The pore 

network is assumed to have two open and two impermeable boundaries. 

Neither the emplacement of NAPL into an initially water-saturated pore network, 

nor the subsequent development of NAPL-wetness the NAPL-invaded pores is modeled 

here, although this is certainly possible [Dixit et al., 1999].  Instead, a pore network in 

which NAPL has displaced water from all pores is used, causing a uniform change in 

wettability from water-wet to oil-wet.  The pore walls are thus assumed to be covered by 

hydration water of thickness δ  (neglected in volumetric calculations).  The simulation 

begins with quasi-static drainage of the NAPL by water.  This establishes initial 
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conditions of residual NAPL saturation corresponding to breakthrough of the aqueous 

phase (or lower, e.g. Runs 7 and 8, Table 3.2), as shown in Figure 3.2(a). Each water 

invaded pore is assumed to contain NAPL filaments held in the corners of a square tube 

of radius tR  and length tL , as shown in Figure 3.2 (b).  Subsequently, water begins to 

flow through the open paths from left to right at constant volumetric flow rate.  Organic 

solute is removed by diffusion and convection as NAPL dissolution takes place at the 

NAPL-water interfaces.  It is important to emphasize that, unless NAPL filaments 

become disconnected, the NAPL phase is continuous at all NAPL saturations.  It should 

also be clear that connectivity of corner filaments is assumed rather than obtained from 

explicit geometric considerations.  Figure 3.2 (c) shows a specific pore geometry for 

which corner filaments would be explicitly continuous in a 2D network. 
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Figure 3.2 (a) Schematic of pore network model. White and black elements represent 

water-invaded and NAPL-filled chambers and tubes respectively (b) Schematic of a 

water invaded tube. (c) Schematic of corner filaments in a pore and a throat. 
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3.3.2 Aqueous phase flow 

NAPL-water interfaces held in the corners of water-invaded tubes have the shape 

of circular arcs of radius nwR .  The radius of curvature of a newly formed arc meniscus 

in a water-invaded pore is related to the entry capillary pressure o
cP , interfacial tension 

σ , contact angle θ  and pore throat radius tR  as follows [Legait, 1983]: 
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For o
cc PP > , the radius of curvature of such NAPL-water interfaces is determined by 

interfacial tension and capillary pressure: 

 
c

nw P
R σ

=                                                            (3.7) 

Furthermore, the cross-sectional area available for flow of water in a water-invaded tube 

is estimated as: 

22 )4(4 nwtw RRA π−−=              (3.8) 

Dissolution at a NAPL-water interface results in a tendency of the interface to recede 

farther into the corner, causing an increase in interfacial curvature and generating a 

gradient in capillary pressure.  This tendency is balanced by flow of NAPL out of a 

NAPL-filled pore which is simultaneously invaded by water.  Experiments in glass 

micromodels have quantitatively confirmed that the rate of advancement of a water-

NAPL interface into a previously NAPL-filled pore is controlled by the rate of NAPL 
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dissolution at NAPL-water interfaces in the corners of previously water-invaded pores 

[Sahloul et al., 2002].  Water invasion into NAPL-filled pores is assumed to follow an 

invasion percolation pattern [Zhao and Ioannidis, 2003] – an assumption tantamount to 

neglecting viscous resistance in the NAPL phase. 

Assuming capillary equilibrium and slow dissolution, NAPL from the largest 

accessible pore supplies the dissolving corner menisci in water-invaded tubes, giving rise 

to an invasion percolation pattern.  Water flow in water-invaded tubes is assumed to 

follow Poiseuille’s law: 

)( jiijij PPgQ −=         (3.9) 

where Q  is the water flow rate between two adjacent nodes in the network, g  is the 

hydraulic conductance of the connecting channel and P  is the water pressure at a node. 

For a tube with square cross section, the hydraulic conductance may be expressed as: 
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where μ  is the water viscosity and effR  is an effective radius defined as follows [Dillard 

and Blunt, 2000]: 
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The pressure field in the network is determined from the solution of a system of algebraic 

equations, obtained by applying mass conservation at the nodes of the network: 

               0=∑
j

ijQ                                                            (3.12) 
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3.3.3 Convective mass transfer in pore throats 

Within a water-invaded tube, dissolved NAPL is transported by diffusion and 

convection away from the NAPL-water interface.  For slow NAPL dissolution, quasi-

steady-state conditions may be assumed.  Following previous studies [Dillard and Blunt, 

2000; Zhou et al., 2000; Sahloul et al., 2002; Zhao and Ioannidis, 2003] the 2-D slit 

model (see Figure 3.2 (b)) is adopted here as an approximation of solute transport in the 

3D pore channels of the pore network.   

The aqueous phase velocity is a function of y-direction only and the NAPL 

concentration is a function of both x-direction and y-direction. Gravitational effects are 

neglected and the density and diffusivity are assumed constant. With reference to Figure 

3.2(b), the velocity distribution may be obtained from the equations of continuity and 

motion: 

t
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μ
Δ

−=2

2

                  (3.13)  

where Vx is water velocity, PΔ  is the pressure drop across the tube, μ  is the water 

viscosity and Lt is the length of the tube. Boundary conditions applied to the O.D.E are  

B.C.1:  Vx = 0 :  y = 0                     (3.14) 

       B.C.2:  Vx = 0 :  y = δ                          (3.15) 

and the water velocity is evaluated by solving Equation (3.13): 

       )()( 2 yy
L
PyV

t
x ⋅−

Δ
−= δ

μ
                        (3.16) 

Accordingly, the maximum velocity and the average velocity of water in a tube are 
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                        (3.18) 

The NAPL concentration profile in a tube is determined from the steady-state 

transport equation representing convection and diffusion: 

                                         02 =∇−∇⋅ CDCV m                                   

(3.19)  

where C is the NAPL concentration, a function of both x and y, and Dm is the binary 

diffusion coefficient of NAPL in water. The term CV ∇⋅  represents convection whereas 

the term CDm
2∇  represents diffusion. Assuming that convection is dominant by 

comparison to diffusion in x-direction, Equation (3.19) becomes: 

2

2

y
CD

x
CV mx ∂

∂
=

∂
∂         (3.20) 

Substituting the velocity distribution in Equation (3.16) and solving Equation (3.20), the 

NAPL concentration profile C(x, y) can be determined. Equation (3.20) is rewritten in 

dimensionless form: 

2

2

2

1
2

1
ζ
φ

ζζξ
φ

∂
∂

−
=

∂
∂

Pe
                  (3.21) 

where 
inS

in
CC

CC

−

−
≡φ  is the dimensionless concentration, CS  is the NAPL solubility, 

δζ /y≡  and δξ /x≡  are the dimensionless distances and Pe is the pore-scale Peclet 

number,  
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mD

V
Pe

δmax≡        (3.22) 

A numerical approach (method of lines) is employed to solve the above P.D.E. 

using a non-stiff O.D.E solver. The boundary conditions imposed to the problem are: 

            B.C.1:  SCC = :  y = 0                     (3.23) 

B.C.2:  0=
∂
∂

y
C : δ=y                                          (3.24) 

                                  B.C.3:   C = 0: x = 0                                          (3.25) 

The dimensionless distance in y-direction, ζ , is divided into n segments by defining 

)1( +n  nodes. The second derivative term is approximated as: 

          2
11

2

2

)(
2
ζ

φφφ
ζ
φ

Δ
+−

=
∂
∂ −+ iiii               i = 2, 3, 4, ……, n                       (3.26) 

where 
n
1

=Δζ  and the range of ζ  is from 0 to 1. Accordingly,  

ζζ Δ−= )1(ii              i = 1, 2, 3, ……, n+1                    (3.27) 

For the terminal node (i = n+1), 0=
∂
∂
ζ
φ  (B.C.2) and the three-point backward 

approximation is applied: 

0
)(

43
2

111 =
Δ

+−
=

∂
∂ −++

ζ
φφφ

ζ
φ nnnn                                        (3.28) 

From Equation (3.28),  

11 3
1

3
4

−+ −= nnn φφφ            (3.29) 

Differentiating Equation (3.29) with respect toξ ,    
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From Equation (3.26) and Equation (3.30), a system of simultaneous O.D.E is obtained to 

solve for the concentration at each ζ -node as a function of ξ : 
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              i = 2, 3, 4, ……, n                (3.31)  
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3
4 −− −=                        i = n+1    (3.32) 

The mathematical model enables one to obtain the normalized average dissolved 

NAPL concentration, Ed, at the exit end of the tube. dE  is a function of dimensionless 

residence time dt  and is an important parameter in the solution of the concentration field 

in the network. The normalized average dissolved NAPL concentration, Ed, at the exit 

end of the tube is given by 

∫ −
−

=
δ

δ
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]),([1 dyCyLC
CC

E int
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d                                  (3.33) 

or: 
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L

E t
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1

0
∫=                                                   (3.34) 

Ed is a function of dimensionless residence time dt ,  

δ
t

d

L

Pe
t 1

=                        (3.35) 

Solving the O.D.E. (3.31) and (3.32), a correlation between dE  and dt  can be obtained. 

Figure 3.3 shows a plot of dE  versus dt  curve. The Matlab programs developed to solve 

this problem are given in Appendix A. 
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Figure 3.3 Normalized average solute concentration, Ed, vs. Lt /(δPe), where the pore-

scale Peclet number is defined as 
mD

VPe
2
3 δ

≡  and V  is the average water velocity in the 

tube. 

The 2-D slit model used here is an approximation of convective mass transfer 

occurring in the 3-D pore throat. The approximation, however, is considered adequate for 

the purposes of the present investigation, which is primarily focused on qualitative trends. 

A more accurate solution of the problem of convective mass transfer to/from wetting 

fluid filaments along corners of angular pores is obtained in Chapter 4. 

 

Lt/(δPe) 
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3.3.4  Mass balance of dissolved NAPL 

With the flow field known, the concentration field is obtained by imposing mass 

conservation of the solute at network nodes corresponding to water-invaded pores, 

0=∑
j

ijF                                                 (3.36)        

where ijF  is the solute flow from node j  to node i .  The effect of interfacial curvature 

on the solubility of NAPL is neglected and sC  is assumed to be constant.  With reference 

to Figure 3.4, the following possible solute flows into and out of node a are take into 

account: 

(i) Solute mass transfer by aqueous phase advection from node 1. In this case, the 

solute concentration inC  entering node a , and the solute mass transfer rate aF ,1  are 

written as follows: 

)( 11 CCECC Sdin −+=              (3.37) 

[ ])( 11,1,1,1 CCECQCQF sdainaa −+==              (3.38) 

(ii)  The solute mass transfer rate by aqueous phase advection out of node a is written 

as: 

aaa CQF 2,2, =                                                       (3.39) 

(iii) Solute mass transfer by diffusion from a NAPL-filled pore (node 3 in Figure 3.4).  

The solute mass transfer rate by diffusion into node a is written as: 
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p

as
tma R

CC
ADF

)(
,3

−
=                                              (3.40)  

where tA  is the cross sectional area of the pore throat and pR  is the radius of pore a. 

(iv) Finally, the rate of solute mass transfer by diffusion from a water-invaded pore 

with no advection ( aPP =4 ) is written as: 

t

a
wma L

CC
ADF

)( 4
,4

−
=                                       (3.41) 

where wA  is the cross-sectional area of aqueous phase in the tube.  

Given the pressure field in the network worked out, the water flow rate in each 

water-invaded tube is computed from Poiseuille’s law. Imposing mass conservation of 

dissolved NAPL to every water-invaded chamber, a system of linear algebraic equations 

for the NAPL concentrations in the water-invaded chambers is obtained. The 

concentration field of the network is then obtained by solving the linear system. 

 

 

 

 

 

Figure 3.4 Schematic depicting dissolved organic flows into and out of a chamber. 

(Shaded arrows represent flows by diffusion only). 

a

4

3

1 2



 78

3.3.5  NAPL displacement 

During the simulation, the chambers serve as containers for the NAPL and water 

phases and it is assumed that they have no capillary or flow resistance. The tubes serve as 

conductors for water flow and mass transfer and act as capillary barriers. When water 

phase flows through the open channels of the network, NAPL diffuses from the NAPL-

water interface and pore drainage events take place in the NAPL-filled tubes and 

chambers. In this work, the mechanism of wetting NAPL dissolution observed by Sahloul 

et al. [2002] in glass micro-models is applied to simulate the pore drainage process.  

The interfacial meniscus remains stationary at the inlet of a NAPL-filled tube 

until the interfacial pressure difference exceeds the threshold capillary pressure of the 

tube. As water invades a NAPL-filled tube, a piston-type displacement of NAPL occurs 

in the tube as NAPL in the bulk phase continuously supplies NAPL to the dissolving 

NAPL films by corner film flow. This process may be followed by several snap-off 

events after the meniscus enters the neighboring chamber until both the tube and the 

chamber contain only NAPL films coating the solid walls. At this point, a new channel is 

available to the water flow [Sahloul, et al., 2002].  

For each simulation time step, a NAPL-filled tube is emptied, as shown in Figure 

3.5. If the tube lies between a water-invaded chamber and a NAPL-filled chamber, both 

the tube and the adjacent NAPL-filled chamber are emptied (Figure 3.5a). In the case that 

a NAPL-filled tube lies between two water-invaded chambers, only the tube is emptied at 

this step (Figure 3.5 b). It is assumed that the thickness of NAPL films remains uniform 

throughout the network at each step, as NAPL from a water-invaded tube and/or chamber 

is assumed to supply the dissolving films.  
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Figure 3.5 The evolution of pore drainage for a simulation time step (a) NAPL-filled tube 

and chamber are invaded (b) NAPL-filled tube between two water-invaded chamber is 

invaded. 

 

As shown in Figure 3.2 (a), the network is initially saturated with NAPL except 

for open boundary channels for water flow. Water flows from the left face to the right 

face. At each time step, aqueous phase invades the NAPL-filled tube with the biggest 

radius available and displaces the NAPL in the tube and neighbouring NAPL-filled 

chamber (if available). The pressure field and concentration field are computed and 

several parameters, such as NAPL saturation, interfacial area, capillary pressure and 

effluent concentration, are calculated accordingly. In the next time step, simulation 

continues with a drainage event taking place in the next biggest tube accessible.   
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3.3.6  Disconnection of NAPL films  

When the capillary pressure in a water-invaded tube reaches a critical value, 

NAPL films coating the pore walls are assumed to become unstable, causing 

disconnection of corner NAPL filaments at both ends of the tube.  Pore wall curvature 

has an effect on the film stability condition [Kovscek et al., 1993].  For the situation 

depicted in Figure 3.6 (a), where the curvature of the film away from the sphere contact is 

approximately that of the sphere, the critical capillary pressure for film rupture is 

i
crit

c rP /2max σ−Π= , where ir  is the sphere radius [Kovscek et al., 1993].  

Consequently, the wetting film on the smallest sphere ruptures at a lower value of 

capillary pressure. In the pore network geometry depicted in Figure 3.6 (b), flat NAPL 

films lie between the water and the solid walls, whereas the configuration of the NAPL-

filled corners is that of constant curvature circular arcs.  Here, the critical capillary 

pressure for rupture of the flat wetting films is simply maxΠ=crit
cP . To account for pore 

wall curvature on the critical capillary pressure for film rupture, Equation (3.2) is 

expressed as follows:  

   t
crit

c RxP /max σ−Π=                                     (3.42) 

where tR  is the pore throat radius and x is a geometric parameter related to pore wall 

curvature that is positive for convex (e.g., “star-shaped”) pores. In this research it is 

assumed that x =1.  Equation (3.42) is motivated by the fact that small pores and throats 

are found between small grains, where the film curvature is larger. 

The simulations begin with a continuous NAPL phase, as shown in Figure 3.2 (a).  

As dissolution proceeds, the capillary pressure reaches the critical value for NAPL film 
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rupture so that NAPL corner filaments in some of the water-invaded tubes become 

disconnected. 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.6 Schematics of wetting films (a) over spherical grains and (b) on the surface of 

rectangular pores. 

 

  To account for the dissolution of disconnected corner filaments, the volume of 

NAPL held in the corners is calculated: 

tnwtnwfilm LRLAV 2)4( π−==                 (3.43) 

where Anw is the cross-sectional area of NAPL phase in the tube.  Because of NAPL 

disconnection, the capillary pressure is no longer uniform in the network.  Instead, nwR  

varies among corner menisci belonging to different NAPL clusters and must be 

calculated separately. Over a small time interval tΔ , the loss of NAPL volume from the 

corner filaments in a tube is given by 

h 

(a)

Rnw 

Rt 

h 

(b) 

  
r1 

r2
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=Δ              (3.44) 

where ijQ  is the water flow rate between nodes i  and j , oρ is the NAPL density, in
ijC  

and out
ijC  are the organic solute concentrations at the inlet and outlet of the tube and 

)( in
ijSd

in
ij

out
ij CCECC −+= .  Furthermore, i

in
ij CC = , where iC  is the organic solute 

concentration in node i .  Accordingly, Equation (3.44) becomes: 

       
o

iSdij
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CCtEQ
V

ρ

)( −Δ
=Δ     (3.45)  

Vfilm is updated for each simulation step and when Vfilm ≤ 0 the film in the tube disappears 

and mass transfer ceases ( 0=dE ).  

 

 3.3.7  Labelling of NAPL clusters  

As mentioned before, the rupture of NAPL films causes disconnection of the 

NAPL phase into a number of clusters.  The cluster multiple labeling algorithm by 

Hoshen and Kopelman [1976] is modified for application to the bonds of the network. 

Instead of clustering the NAPL-filled pores, the modified algorithm focuses on the tubes 

with NAPL or NAPL corner filaments.  Each tube is a bond with six neighbors in the 

network (Figure 3.7 a) and is assigned a binary index as follows.  NAPL-filled bonds and 

water-invaded bonds in which the capillary pressure is below the critical value for film 

rupture are assigned an index of unity. Water-invaded bonds in which the critical 

capillary pressure has been reached (i.e., tubes with disconnected corner filaments) and 
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bonds without corner filaments are assigned an index of zero. Those tubes marked with 

unity indices are clustered to determine the continuity of NAPL. At each simulation step, 

the lattice is scanned to update the status of the bonds and all distinct clusters of bonds 

with index equal to unity are found (see Figure 3.7 b).  Two types of NAPL clusters are 

identified. Type-F clusters are clusters with NAPL filaments, whereas Type-NF are 

clusters without NAPL filaments.  Absence of NAPL filaments in Type-NF clusters 

means that NAPL in this form exposes a much smaller interfacial area for mass transfer, 

admits no water flow through it, and thus dissolves at a much slower rate than NAPL in 

the form of Type-F clusters.  

 
3.3.8  Summary of simulation procedure 

Fortran program developed to carry out the simulations is given in Appendices. 

Figure 3.8 is a brief flow chart of the program. Capillary pressure is uniform within each 

NAPL cluster, but different among different clusters. For each cluster present in the 

network, the mass loss of NAPL is computed and accumulated at each time step.  When it 

becomes equal to the mass of NAPL in the largest accessible NAPL-filled pore in the 

cluster, that pore and its entry tube are considered invaded by water.  The pressure and 

concentration fields in the network are computed anew and several parameters, such as 

the NAPL saturation and cluster distribution, the NAPL-water interfacial area and the 

average effluent concentration, are computed.  
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(a) 

 

(b) 

Figure 3.7 (a) Schematic of typical bonds (A and B) with 6 neighbor bonds (shaded) 

 (b) Schematic of NAPL clusters in the network.  White represents water phase and black 

represents NAPL. Statuses 0 or 1 are shown for some typical bonds.  
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Type-NF clusters 
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Figure 3.8 Flow chart of simulation without NAPL film disconnection. 

Initialize conditions (t = 0)  
Assign radius randomly to each chamber, determine the size of each tube 

Determine the conductance g of each water-invaded tube 
Impose conservation of volume to each water-invaded node 

Construct matrices to compute the pressure field 

Calculate the water flow rate Q, Pe, td and Ed for each water-invaded tube 
Impose conservation of NAPL mass to each water-invaded node 

Construct matrices to compute the concentration field 

Determine the volumes of the removed NAPL in each cluster, Vremove 
Vremove≥ VL ? 

Yes: Stop 

Are all of the Water-filled tubes drained? 

No: 
t = t +Δ tstep 

Yes: 
Drain the tube and chamber  

Calculate the volume of corner filaments, Vfilm 

Identify the largest NAPL filled tube available in each cluster  
Calculate the volumes of the tube and neighbour chamber, VL 

Determine the capillary pressure and compute the radius of interfacial 
menisci Rnw in the cluster 

Label each tube with continuous corner filaments with 1 
Use HK algorithm to label NAPL clusters  

No: 
VL = VL- Vremove 

No: 
Label the tube with 0 

Yes: 
Vfilm= Vfilm- ΔVfilm 

Vfilm.> 0 ? 

Calculate the capillary pressure of each tube 
Does it reach the critical value ? 

Yes: 
Disconnect the filaments  

Calculate the volume loss of each disconnected corner filament, ΔVfilm 
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3.4  Results and discussion 
 

A network of 50×50 chambers, as shown in Figure (3.2 a), was used to obtain 

simulation results. Parameter values chosen in the simulation such as physical properties 

of NAPL and constant water injection rate are listed in Table 3.1.  A set of runs are 

conducted under the conditions of different pore size distributions, initial NAPL 

saturations and NAPL disjoining pressures, as summarized in Table 3.2.  

 
Table 3.1 Parameters used in the simulations. 
 

 
Table 3.2 Set of simulation runs. 

Run 
No. 

Average pore 

radius, pR   Standard 
deviation 

Disjoining 
pressure 

Initial NAPL 
saturation 

  [μm] [μm] [Pa]   
1 552 174 280 0.36 
2 552 174 320 0.36 
3 552 174 280 0.36 
4 552 174 320 0.36 
5 552 174 280 0.36 
6 552 174 320 0.36 
7 552 174 320 0.13 
8 552 174 280 0.13 
9 55 174 1400 0.36 
10 55 174 1600 0.36 

 

Parameter Value 
Interfacial tension, σ  [N/m] 2107.2 −×  
Contact angle, θ  20° 
Diffusion coefficient, Dm [m2/s] 10108.8 −×  
NAPL density, oρ  [kg/m3] 310463.1 ×  
Water viscosity, μ  [Pa-s] 4109.8 −×  
NAPL solubility, SC  [kg/m3] 1.277 
Water flow rate, Q [m3/s] 7101 −×   
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3.4.1  NAPL cluster development  

As already mentioned, the aqueous phase invades the largest accessible NAPL-

filled tube and adjacent chamber, while NAPL is dissolved at NAPL-water interfaces and 

is removed by diffusion and advection in the aqueous phase.  As dissolution proceeds, the 

capillary pressure increases and the condition crit
cc PP =  is satisfied for some of the 

water-invaded tubes. The NAPL film in these tubes becomes unstable and the corner 

filaments are disconnected at the tube junctions.  In this manner the NAPL phase breaks 

up into separate clusters. During a single time step in the simulation, the capillary 

pressure is uniform within each cluster, but generally different between clusters. 

Representative results, obtained from the same realization of the pore network 

(Runs 1 and 2, Table 3.2), are shown in Figure 3.9 ( =Π max  280 Pa) and Figure 3.10 

( =Π max  320 Pa), where a higher value of maxΠ  corresponds to more stable NAPL 

films. In these figures, the biggest and the second biggest cluster are shown in red and 

blue, respectively.  For these two clusters only, water-invaded tubes and chambers 

containing connected NAPL films and corner filaments are shown in orange.   

It is clear by comparing Figure 3.9 and Figure 3.10 that the microscopic 

configuration of residual NAPL during dissolution in a flowing aqueous phase is 

dramatically affected by the stability of NAPL films.  Relatively larger clusters of 

residual NAPL remain in the network when NAPL films are less stable ( =Π max  280 Pa).  

On the contrary, when =Π max 320 Pa, the same total amount of residual NAPL is found 

in the form of numerous small clusters.  These differences are explained by considering  
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(a)     PV = 6511   Sn= 8.01% 

 

Figure 3.9 (a). Visualization of dissolution of NAPL clusters and corresponding cluster 

size distributions for run 1 ( Pa280max =Π ). 
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(b)   PV = 6673   Sn= 6.84%   

 

Figure 3.9 (b) Visualization of dissolution of NAPL clusters and corresponding cluster 

size distributions for run 1 ( Pa280max =Π ). 
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(a)     PV = 1255   Sn=11.11%   
 

Figure 3.10 (a). Visualization of dissolution of NAPL clusters and corresponding cluster 

size distributions for run 2 ( Pa320max =Π ). 
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(b)     PV = 1640  Sn=7.72% 
 

Figure 3.10 (b). Visualization of dissolution of NAPL clusters and corresponding cluster 

size distributions for run 2 ( Pa320max =Π ). 

 



 92

 

 

 

 

 

 

 

 

 

 

 

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0.0
00

0.0
01

0.0
02

0.0
05

0.0
10

0.0
19

0.0
38

0.0
77

0.1
53

0.3
06

0.6
12

1.2
25

2.4
50

4.9
00

cluster size (%PV)

pr
ob

ab
ili

ty

type-F cluster
type-NF cluster

 

(c)     PV = 2050  Sn= 6.41% 
 

Figure 3.10 (c). Visualization of dissolution of NAPL clusters and corresponding cluster 

size distributions for run 2 ( Pa320max =Π ). 



 93

that when NAPL films are weaker, fragmentation of the NAPL phase takes place at an 

earlier stage in the dissolution process, thus creating larger clusters.  Of these clusters, the 

most persistent ones are those exposing the least interfacial area for mass transfer, in 

particular type-NF clusters.  When NAPL films are stronger, however, fragmentation of 

the NAPL phase takes place when a much larger fraction of originally NAPL-filled pores 

have been invaded by water, leading to the formation of smaller clusters.   

The evolution of NAPL-water interfacial area, shown in Figure 3.11, further 

illustrates the significance of NAPL film stability.  Starting from the same initial 

condition (point A), a system with weak NAPL films experiences a rapid reduction in 

total interfacial area at a relatively high volumetric NAPL content, as the NAPL phase is 

disconnected and isolated NAPL filaments quickly dissolve in the flowing aqueous phase 

(point B).  On the contrary, a system with strong NAPL films is able to maintain and, in 

fact, increase its NAPL-water interfacial area for mass transfer as dissolution proceeds.  

In a system with strong NAPL films, it is type-F NAPL clusters that contribute almost 

exclusively to the mass transfer area (see Figure 3.11).  On the contrary, in a system with 

weak NAPL films, there exist few type-F clusters and their contribution to the total 

interfacial area for mass transfer is relatively small.  As the volumetric NAPL content 

decreases during dissolution, the interfacial area contributed by type-F clusters 

diminishes.  The key effect of increased NAPL film stability is to prolong the presence of 

type-F clusters.  For the simulation results shown in Figure 3.11, the contribution of type-

F clusters to the total interfacial area for mass transfer becomes negligible when nS  < 

0.05 and nS  < 0.15 for systems with strong and weak NAPL films, respectively.  For nS  

< 0.05, there is no difference on the dependence of mass transfer area on NAPL 
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saturation between the two systems and one expects the corresponding NAPL residual to 

be removed by dissolution in exactly the same number of pore volumes of the injected 

aqueous phase.  Reduction of residual NAPL saturation from the initial value of o
nS  = 

0.36 to nS  = 0.05, however, is expected to require a much smaller number of pore 

volumes of the injected aqueous phase when =Π max  320 Pa than when =Πmax  280 Pa.  

This is an immediate consequence of the smaller mass transfer area in the latter case. 
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Figure 3.11 Specific interfacial area vs. NAPL saturation for run 1 and 2. 
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3.4.2  Effluent concentration and NAPL recovery  

Normalized effluent concentration is plotted against the number of pore volumes 

of water injected in Figure 3.12 ( =Πmax  320 Pa) and Figure 3.13 ( =Πmax  280 Pa).  

Results from three different realizations of the pore network are shown in each figure (see 

Table 3.2).  The following comments are in order.  Firstly, increasing the stability of 

NAPL films results in a longer period of high effluent concentration (near NAPL 

solubility), which is followed by a rapid reduction of concentration and tailing at low 

concentration levels.  When NAPL films are weak, fragmentation of the NAPL phase 

takes place early on in the dissolution process, creating large clusters with few or no films 

in the network.  In this case, the lower interfacial area available for mass transfer results 

in effluent concentration that rapidly drops to a lower level (around 10% of NAPL 

solubility).  Secondly, greater film instability increases the sensitivity of effluent 

concentration to the initial NAPL distribution.  This is evident by comparing Figure 3.12, 

in which little difference is seen between the results from three different realizations of 

the pore network, and Figure 3.13.  Less stable NAPL films increase the variability in the 

distribution of disconnected NAPL films, influencing the NAPL concentration field in the 

relatively small pore networks considered in this work.   
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Figure 3.12 Normalized effluent concentration vs. pore volume of water injected for run 

2, 4, 6 (Rp = 0.552mm, o
nS  = 0.36, Pa320max =Π ). 
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Figure 3.13 Normalized effluent concentration vs. pore volume of water injected for run 

1, 3, 5 (Rp = 0.552mm, o
nS  = 0.36, Pa280max =Π ). 
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The effect of initial NAPL saturation on effluent concentration is shown in Figure 

3.14 ( =Πmax  320 Pa, Run 7, Table 3.2) and Figure 3.15 ( =Πmax  280 Pa, Run 8, Table 

3.2).  A lower value of o
nS  corresponds to a higher initial value of capillary pressure, for 

which a larger number of NAPL film disconnection events take place. As a result, the 

initial interfacial area for mass transfer is lower and the effluent concentration drops to 

lower values.  The observed fluctuations of the effluent concentration seen in Figure 3.14 

and Figure 3.15, which are also seen in Figure 3.13, can be explained as follows. At late 

stages in the dissolution process or when the NAPL saturation is low, mostly type-NF 

clusters are present (see Figure 3.11).  Drainage events create type-F clusters which are 

short-lived, particularly when NAPL films are weak (see Figure 3.15).  Spikes in effluent 

concentration correspond with the appearance and disappearance of such clusters as a 

consequence of determining the effluent concentration from steady-state solute balances. 

The fractional NAPL recovery history is plotted in Figure 3.16 ( =Πmax  320 Pa) 

and Figure 3.17 ( =Πmax  280 Pa).  As expected, the same amount of NAPL takes a 

much longer time to be removed when NAPL films are weak (~10000 PV vs. ~4000 PV 

for 99% recovery).  The abrupt increase in NAPL recovery history for systems with weak 

NAPL films (see Figure 3.17) corresponds with nS  = 0.15, the saturation at which type-F 

clusters effectively cease to contribute to the interfacial area for mass transfer. Under 

such conditions, the disappearance of NAPL from a few pores in the network can 

dramatically affect the concentration field, as illustrated in Figure 3.18.  It deserves to be 

mentioned that the pore network model used in this work does not attempt to account 

quantitatively for NAPL-water interfacial areas in real porous media, but rather to 



 99

illustrate key qualitative features of the dissolution of a wetting NAPL.  Thus, the number 

of pore volumes required to remove the NAPL from the pore network model is likely to 

be considerably overestimated.     
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Figure 3.14 Normalized effluent concentration vs. pore volume of water injected for run 

7 

(Rp = 0.552mm, o
nS = 0.13, Pa320max =Π ). 
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Figure 3.15 Normalized effluent concentration vs. pore volume of water injected for run 

8 

(Rp = 0.552mm, o
nS  = 0.13, Pa280max =Π ). 
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Figure 3.16 Percentage of NAPL removal vs. pore volume of water injected for run 2, 4, 

6  

(Rp = 0.552mm, o
nS  = 0.36, Pa320max =Π ). 
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Figure 3.17 Percentage of NAPL removal vs. pore volume of water injected for run 1, 3, 

5  

(Rp = 0.552mm, o
nS = 0.36, Pa280max =Π ). 
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Figure 3.18 Visualizations of NAPL concentration fields before and after a local 

breakthrough (run 1). 
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3.4.3  Effect of pore size distribution 

The condition of NAPL film instability, Equation (3.42), provides the connection 

between the disjoining pressure and the pore size distribution and explains the choice of 

maxΠ  values used in the simulations presented here.  Critical capillary pressures at 

which significant changes in behaviour are seen, are related to the typical capillary 

pressures for displacement.  Corner NAPL filaments first appear when a tube is invaded, 

at o
cc PP = , and become disconnected when crit

cc PP = .  Therefore the range of capillary 

pressures over which corner filaments in a tube remain connected is crit
cc

o
c PPP <<  and 

it is convenient to define a critical pressure ratio o
c

crit
c PP  which depends on pore size 

and maxΠ .  Corner filaments in tubes for which 1≤o
c

crit
c PP  become immediately 

disconnected. The pattern of residual NAPL fragmentation during dissolution in a 

flowing aqueous phase is controlled by o
nS  and the distribution of critical pressure ratio.  

Such distributions are shown in Figure 3.19 for different choices of maxΠ  and pore size 

distribution (see Table 3.2).  Run 1 and Run 9, as well as Run 2 and Run 10, are 

characterized by identical o
nS  and critical pressure ratio distribution.  Their effluent 

concentration curves are compared in Figure 3.20.  These curves are in essential 

agreement.  The small difference is due to the effect of pore size on Pe.  That is, for a 

given volumetric flow rate of the aqueous phase, pore-scale mass transfer rates are higher 

in a network of smaller pores and thus the drop in effluent concentration takes place at an 

earlier stage in the dissolution process.  Finally, the effect of increasing maxΠ  for a 

given pore size distribution is to shift the curves of Figure 3.19 to the right. This 
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corresponds to NAPL films that remain stable at high values of capillary pressure. Under 

such conditions, most of the NAPL can be drained out of the pore network, few or no 

isolated clusters of NAPL-filled pores are created during dissolution, and the interfacial 

area for mass transfer remains high at very low values of the NAPL saturation [Zhao and 

Ioannidis, 2003].    

 

 

0

0.1

0.2
0.3

0.4

0.5

0.6

0.7
0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
Pc

crit / Pc
o

C
um

ul
at

iv
e 

nu
m

be
r f

re
qu

en
cy Run1

Run2
Run9
Run10

 

 

Figure 3.19 Distributions of critical pressure ratio for run 1, 2, 9 and 10. 

 

 

 

 



 106

 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000 10000 100000
PV

N
or

m
al

iz
ed

 e
ffl

ue
nt

 N
A

PL
 c

on
ce

nt
ra

tio
n 

C
/C

s
Run1
Run2
Run10
Run9

 

 

Figure 3.20 Normalized effluent concentration vs. pore volume of water injected for run 

9 and 10 (Rp = 0.055mm, o
nS  = 0.36). 
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3.5  Conclusions 
 

A pore network model is developed to explore the qualitative effects of NAPL 

film stability on the dissolution behavior of residual wetting NAPL in porous media.  The 

simulation was based on the mechanism of mass-transfer-driven drainage observed in 

experiments using transparent glass micromodels [Sahloul et al., 2002].  Advection and 

diffusion of organic solute from NAPL-water interfaces were accounted for.  A stepwise 

solution procedure was used to obtain the flow and solute concentration fields in the 

network as the aqueous phase gradually invades NAPL-filled throats and pores and a 

quasi-state drainage pattern develops. Wetting NAPL films held in the corners of throats 

were assumed responsible for the hydraulic continuity of the NAPL phase and the large 

interfacial area for mass transfer during dissolution in a flowing aqueous phase. Film 

rupture was related to disjoining pressure and film curvature and the fragmentation of 

residual NAPL into distinct clusters during dissolution was followed. The results indicate 

that the dissolution behavior is very sensitive to the stability and distribution of thick 

NAPL films along pore corners. Rupture of NAPL films results in severe loss of NAPL-

water interfacial area and a large reduction in the rate of mass transfer. On the contrary, 

long-term high effluent NAPL concentrations (near NAPL solubility) are observed when 

NAPL films are stable.  The simulations strongly suggest that factors affecting NAPL 

film stability may play an important role in residual NAPL dissolution in oil wet systems. 

 

 

 

 



 108

 

Chapter 4  

Convective Mass Transfer across Fluid Interfaces 

in Straight Angular Pores 

 

 

4.1  Summary 

Steady convective mass transfer to or from fluid interfaces in pores of angular 

cross-section is theoretically investigated.  This situation is relevant to a variety of mass 

transport process in porous media, including the fate of residual non-aqueous phase liquid 

ganglia and gas bubbles. The model incorporates the essential physics of capillarity and 

solute mass transfer by convection and diffusion in corner fluid filaments. The geometry 

of the corner filaments, characterized by the fluid-fluid contact angle, the corner half-

angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero 

surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid-fluid 

interface are considered. The governing equations for laminar flow within the corner 

filament and convective diffusion to or from the fluid-fluid interface are solved using 

finite-element methods.  Flow computations are verified by comparing the dimensionless 

resistance factor and hydraulic conductance of corner filaments against recent numerical 

solutions by Patzek and Kristensen [2001]. Novel results are obtained for the average 
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effluent concentration as a function of flow geometry and pore-scale Peclet number.  

These results are correlated to a characteristic corner length and local pore-scale Peclet 

number using empirical equations appropriate for implementation in pore network 

models.  Finally, a previously published “2D-slit” approximation to the problem at hand 

is checked and found to be in considerable error.  

 
 
4.2  Background  

  

Mass transfer across fluid-fluid interfaces in geologic porous media arises in a 

variety of circumstances of importance to environmental engineering. An important 

example concerns the dissolution into a flowing aqueous phase of residual non-aqueous 

phase liquids (NAPL) trapped in the form of ganglia [Dillard and Blunt, 2000; Zhou et 

al., 2000; Dillard et al., 2001; Sahloul et al., 2002]. This situation is encountered in the 

so-called pump-and-treat method for soil remediation [Khachikian and Harmon, 2000]. 

 Another important example concerns the transport of dissolved gases in the 

presence of trapped gas bubbles [Donaldson et al., 1997; Williams and Oostrom, 2000; 

Holocher et al., 2003].  Bubble-mediated mass transfer can affect significantly the 

interpretation of atmospheric gas concentration in groundwater, as well as intrinsic and 

enhanced bioremediation processes dependent on the actual dissolved gas content of 

gases such as oxygen and nitrogen. In both cases, flow of the aqueous phase along the 

nooks and crannies of pores containing trapped NAPL ganglia or gas bubbles imparts a 

significant convective component to solute mass transfer [Dillard and Blunt, 2000; Zhou 

et al., 2000; Sahloul et al., 2002].  The fact that more than one fluid phase can be present 
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within the same pore is well recognized in the literature on pore network modeling, 

where straight pore channels of angular cross-section are most often used to represent the 

pore space [e.g., Ioannidis and Chatzis, 1993; Hui and Blunt, 2000].  When two fluids are 

present in an angular pore, the non-wetting phase fills the central part of the pore, whilst 

the wetting phase occupies the pore corners as corner films or filaments. Solute mass 

transfer takes place across the fluid-fluid interface during, for instance, dissolution of 

NAPL ganglia, when organic solute diffuses into and is carried away by the flowing 

aqueous phase.  Pore-scale studies of NAPL dissolution [Dillard and Blunt, 2000; Zhou 

et al., 2000; Sahloul et al., 2002] show that the rate of dissolution is largely determined 

by corner film flow and diffusion.  In these studies, convective mass transfer from a 

fluid-fluid interface in the 3D conduit formed by the pore walls and the arc meniscus has 

been approximated by the analogous 2D problem in a slit [Dillard and Blunt, 2000; Zhou 

et al., 2000; Sahloul et al., 2002]. This approximation captures qualitatively the physics 

of mass transfer in a corner filament, but its quantitative accuracy is uncertain. A 

solution, however, to the problem of convective diffusion to or from fluid interfaces in 

pores of angular cross-section, does not exist in the literature. The related problem of 

mass transfer from planar films to simple shear flows has been solved [Stone, 1989], but 

this solution is not applicable to the problem at hand.    
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4.3     Corner flow 

  

Straight pores of triangular or rectangular cross-sections are commonly used in 

pore network models to approximate the complex and largely unknown pore geometry 

[e.g., Ioannidis and Chatzis, 1993; Hui and Blunt, 2000; Zhao and Ioannidis, 2003; Piri 

and Blunt, 2005].  A pore corner filled by a wetting fluid filament, confined between the 

pore walls and an arc meniscus (interface separating the wetting fluid filament from the 

non-wetting phase filling the center of the pore) is depicted in Figure 4.1. The shape of 

the filament cross section is determined by the corner half angle, β , the contact angle,θ , 

and the radius of curvature of the interface, nwR . 

 Under conditions of steady laminar flow, the hydrodynamic problem may be 

stated as follows:  

           
L
PVz μ

Δ
−=∇2                                                       (4.1) 

where ),( yxVV zz =  is the fluid velocity, PΔ  is the pressure drop across a length L of 

the corner and μ  is the fluid viscosity. Spatial coordinates are scaled using the meniscus-

apex distance, b, defined as follows: 

 
β

βθ
sin

sincos −
= nwRb             (4.2) 

In this manner, Equation (4.1) is written in dimensionless form as: 

      0
Re
1 **2 =∇−∇ PVz                                      (4.3) 
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Figure 4.1 Corner fluid filament (a) and cross-section (b).  Flow is perpendicular to the 

cross-section.  
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where ( ) μρ bV0Re ≡  is the Reynolds number, ρ  is the density of the wetting fluid, 

( ) ( )LPbV μΔ≡ 2
0  is a characteristic fluid velocity, 0

* VVV zz ≡  is the dimensionless 

fluid velocity and ( ) ( )Re2
0

* bLVPP =Δ≡ ρ  is the dimensionless fluid pressure. Due to 

the symmetry of the corner geometry, only half of the flow domain needs to be 

considered. A no-slip boundary condition is imposed along the pore walls, whereas at the 

fluid-fluid interface both the perfect-slip and the no-slip conditions are considered.  These 

conditions are given by Equation (4.4) and Equation (4.5), respectively: 

0
**

=
∂

∂
=

∂

∂
∗∗ y

V

x

V zz      (4.4) 

  0* =zV      (4.5) 

A hydraulic resistance factor may be defined as follows:  

           
*

02 1

zzz VV

V
b

VL
P

==
Δ

≡
μ

χ            (4.6) 

 where zV  is the average fluid velocity and 0
* VVV zz ≡  is the dimensionless 

average fluid velocity.  The volumetric flow rate of the wetting phase is given by 

        
L
PgdSVQ

S
z

Δ
== ∫                                           (4.7) 

In Equation (4.7), S is the cross-sectional area of the half-domain,  

                  ⎥
⎦

⎤
⎢
⎣

⎡
−++

+
⎥
⎦

⎤
⎢
⎣

⎡
−

=
2sin

)cos(cos
sincos

sin
2

22 πθβ
β

βθθ
βθ

βbS                 (4.8) 

and g is the hydraulic conductance,  
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∗∗∗ == ∫ gbdSVbg
S

z μμ

44
             (4.9) 

where 2/ bSS ≡∗  is the dimensionless cross-sectional area and ∗g  is the dimensionless 

hydraulic conductance. 

  Equation (4.3) is solved by a finite-element method implemented in the 

FEMLAB® 3.0 environment and employing the linear solver UMFPACK [Van 

Schijndel, 2003; COSMOL, 2003]. The PDE (incompressible Navier-Stokes equation) is 

predefined in the software package and the GUI for entering the input parameters is 

shown in Figure 4.2. Up to 14,000 triangular elements were used to discretize the 3D 

half-domain (see Figure 4.3) and convergence of the solutions was established by 

refining the meshes. Other information about boundary and sub-domain settings on 

FemLab® platform is given in Appendix A. 
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Figure 4.2 FEMLAB graphic user interface of entering sub-domain input parameters for 

impressible Navier-Stokes Equation. 

 

Figure 4.3 Finite element mesh for the half domain of the wetting filament. 
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4.4  Convective mass transfer in a corner filament 

  

Equation (4.10) is the governing equation for steady transfer of a solute within the 

flowing corner filament to or from the fluid-fluid interface (Figure 4.1):   

           
z
CVCD zm ∂

∂
=∇2                           

(4.10) 

where mD  is the molecular diffusion coefficient, ),,( zyxCC =  is the solute 

concentration and zV  is the fluid velocity.  In dimensionless form, Equation (4.10) is 

written as 

        *

*
**2

z
CPeVC z ∂

∂
=∇                           

(4.11) 

where ( ) me DbVP 0≡  is a pore-scale Peclet number, *
zV  is the dimensionless fluid 

velocity and bzz ≡∗ . The dimensionless concentration is defined as 

i

i
CC

CC
C

−

−
=∗

0
                                                      (4.12) 

where 0C  is the inlet concentration and iC  is the concentration at the fluid-fluid 

boundary.  Both 0C  and iC  are assumed constant. The no-flux boundary condition, 

0* =∇⋅ Cn
r

, is imposed on the pore wall.   

Coupled with Equation (4.3), Equation (4.11) is solved using the same finite-

element method described in Section 4.3. Predefined PDE for convection and diffusion is 
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solved to obtain the concentration distribution in the sub-domain. Figure 4.4 is the GUI 

for entering the input parameters. Boundary and sub-domain settings are given in 

Appendices. 

 

 

 

 

Figure 4.4 FEMLAB graphic user interface of entering sub-domain input parameters for 

convection and diffusion equation. 

 

 

From the obtained concentration profile, the average (“mixing-cup”) solute 

concentration, dE , at the exit end of the corner filament is computed:   
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∫

∫

∗

∗∗

=

S

S
d dSV

dSCV
E *

*

                              (4.13) 

For a given flow geometry (i.e., fixed β  and θ ) and if diffusion along the z-direction can 

be neglected (i.e., for sufficiently high values of Pe), dE  is expected to depend only on 

the dimensionless residence time [Dillard and Blunt, 2000; Zhou et al., 2000; Sahloul et 

al., 2002].   

      ∗== z
PebV

zD
t m
d

1
2

0

        (4.14) 

As discussed in Chapter 3, the parameter dE  is important in calculations of the 

concentration field in pore network models via the solution of solute mass balance 

equations at the network nodes.  

 

 

4.5  Results and discussion 

 

4.5.1  Hydraulic resistance factors and hydraulic conductances 

  Representative visualization of the velocity fields in the wetting filament is shown 

in Figure 4.5. Calculated dimensionless hydraulic resistance factors and hydraulic 

conductances for flow domains corresponding to different values of the half-angle β (30o 

and 45o) and contact angle θ (0o, 10o, 20o, 30o and 40o) are listed in Table 1 and Table 2, 

respectively.  The results are compared to the numerical solutions reported by Patzek and 

Kristensen [2001], whose work refined results first published by Ransohoff and Radke 
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[1988]. The difference is less than 2%.  Note that in the work of Patzek and Kristensen, 

the spatial coordinates are scaled with the distance a (see Figure 4.1), which is different 

from the meniscus-apex distance b (see Figure 4.1) used in this study. 

It is important to note that the pore geometry considered here possesses 

translational invariance and therefore flow is characterized by one velocity component 

only. Stated differently, only two-dimensional arc menisci are considered.  This is clearly 

a simplification motivated by the need for consistency with existing pore network 

simulators of flow and transport, which presently neglect the negative curvature of pore 

channels in real porous media [e.g., Ransohoff and Radke, 1988; Man and Jing, 2000; 

Piri and Blunt, 2005]. The development of transverse velocities in a convergent-divergent 

pore channel geometry and their potential interaction with arc menisci in pore corners is 

not explored here. 

 

Figure 4.5 Fluid velocity distribution of wetting filament (perfect-slip condition at the 

fluid-fluid interface, β = 45°, θ = 0°, Pe = 50). 
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Table 4.1 Hydraulic resistance factors for wetting fluid filament under conditions of 

perfect-slip and no slip at the fluid-fluid interface. Values in brackets are the resistance 

factors reported by Patzek and Kristensen [2001], but scaled with b (meniscus-apex 

distance defined in this work). 

  θ→ 0°  0° 10° 20° 30° 40° 

β = 30° perfect-slip 29.83 [ 30.10 ] 29.55 29.09 28.66 28.21 

 no-slip 63.98  63.36 62.34 61.38 60.60 

        

β = 45° perfect-slip 15.45 [ 15.68 ] 15.17 14.78 14.42 14.08 

  no-slip 42.00   41.25 40.07 39.05 38.28 
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Table 4.2 Hydraulic conductance of wetting fluid filament. Values in brackets are the 

conductance values reported by Patzek and Kristensen [2001], but scaled with b 

(meniscus-apex distance defined in this work). 

β  θ→ 0° 10° 20° 30° 40° 

30° perfect-slip 0.011481 0.011448 0.011333 0.011148 0.010951 

  [0.011378] [0.011332] [0.011208] [0.011032] [0.010831] 

       

 no-slip 0.005352 0.005340 0.005289 0.005205 0.005098 

  [0.005304] [0.005304] [0.005250] [0.005167] [0.005063] 

       

45° perfect-slip 0.040491 0.040158 0.039169 0.037894 0.036563 

  [0.03988] [0.039512] [0.038547] [0.037253] [0.035840] 

       

 no-slip 0.014891 0.014774 0.014450 0.013991 0.013448 

    [0.014764] [0.014645] [0.014324] [0.013866] [0.013324] 
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4.5.2  Effects of Peclet number and interface boundary condition on Ed 

 Representative visualization of the concentration fields in the wetting filament is 

shown in Figure 4.6. The normalized average effluent concentration, dE , is plotted 

against the dimensionless corner length, bL , in Figure 4.7.  This figure reveals the 

effects of Peclet number and interface boundary condition. As expected, solute 

concentration reaches equilibrium ( 0=dE ) over shorter distances along the corner for 

smaller values of the Peclet number, that is as diffusion becomes increasingly dominant 

over convection.  The choice of interface boundary condition has a discernible effect on 

dE , which is more pronounced at higher values of Pe (see Figure 4.7).  

 

Figure 4.6 Solute concentration distribution in the wetting filament (perfect-slip condition 

at the fluid-fluid interface, β = 45°, θ = 0°, Pe = 150). 
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Figure 4.7 Effects of Peclet number and boundary condition at the interface (β = 45°, θ = 

0°). 
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4.5.3  Empirical correlations for Ed 

 For any fixed value of eP  and half-angle β , the value of contact angle θ   has a 

negligible effect on computed values of dE  (see Figure 4.8).  It is also found that dE  is 

independent of Pe for ≤Pe 1 (see Figure 4.9), and that it depends only on the 

dimensionless residence time, dt (cf. Equation 4.14), for sufficiently high values of Pe 

(see Figure 4.10), as expected.   

 

 

 

Figure 4.8 Effect of contact angle (β = 45°, perfect slip at the interface). 
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On the basis of these observations, the results of all computations are correlated in 

terms of a parameter ψ  that smoothly interpolates between the behavior for low and high 

Pe values and is defined as follows:   
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where α  and η  are empirical coefficients, the values of which depend on the half-angle, 

β , and the interface boundary condition.  As shown in Figure 4.11, dE  curves for 

intermediate Pe values collapse into a single curve when ψ  is defined according to 

Equation (4.15).  A different master curve is obtained for each value of half-angle β  and 

each choice of interface boundary condition.  These master curves can be fitted by the 

following function:  

]exp[)1(]exp[ σψγλψγ −−+−= w
dE      (4.16) 

in terms of the adjustable parameters γ, λ, w, and σ .  This fitting function is shown as a 

solid line in Figure 4.9 - 4.11, whereas best-fit values of the parameters are listed in Table 

4.3.  Typical absolute and relative errors of the correlation, Equation (4.16), with respect 

to the numerical solution are shown in Figure 4.12 and 4.13.  Relative errors are less than 

±10%, except at the exit end of the pore where Ed values are close to zero.  Correlation of 
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the dE  data in terms of Equation (4.15) and Equation (4.16) facilitates the incorporation 

of the results of this study in pore network models and should lead to more accurate 

computations of mass transfer to or from trapped fluid phases in porous media [Dillard 

and Blunt, 2000].     
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Figure 4.9 Dimensionless average exit concentration Ed as a function of the parameter ψ  

for 1≤eP  (β  = 45°, perfect slip at the interface, θ = 0°, 10°, 20°, 30°, 40°). 
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Figure 4.10 Dimensionless average exit concentration dE  as a function of the parameter 

ψ  for 1001 ≤≤ eP  (β  = 45°, perfect slip at the interface, θ = 0°, 10°, 20°, 30°, 40°). 
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Figure 4.11  Dimensionless average exit concentration dE  as a function of the parameter 

ψ  for 100>eP  ( β  = 45°, perfect slip at the interface, θ = 0°, 10°, 20°, 30°, 40°). 
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Table 4.3. Correlation parameters for Equation (4.16) 

 

 

β B.C.  α η γ λ w σ 

         

45° Perfect-slip Pe≤1   0.502429 4.45084 0.754991 2.1272 

  1<Pe≤100 0.00018526 0.066813 0.441819 4.836317 0.672339 2.302964 

  Pe>100   1 27.65009 0.679092  

         

45° No-slip Pe≤1   0.232082 5.286217 0.943766 2.180605 

  1<Pe≤150 5.4122E-05 0.036969 0.207129 6.930067 0.911547 2.279209 

  Pe>150   1 75.93903 0.837611  

         

         

30° Perfect-slip Pe≤1   0.566622 4.266318 0.750798 2.18938 

  1<Pe≤150 5.0522E-05 0.019809 0.542916 3.980639 0.688368 2.28511 

  Pe>150   1 61.91404 0.729914  

         

30° No-slip Pe≤1   0.249056 6.023966 1.001145 2.287237 

  1<Pe≤150 2.2207E-05 0.01823 0.220152 7.112064 0.990951 2.363122 

  Pe>150   1 142.1271 0.879357  
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Figure 4.12  Absolute deviation of correlation, Equation (4.16), from simulation data for 

1001 ≤≤ eP  ( β  = 45°, perfect slip at the interface, θ = 0°, 10°, 20°, 30°, 40°). 
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Figure 4.13.  Relative error of correlation, Eq. [16], with respect to numerical solution for 

1001 ≤≤ eP  ( β  = 45°, perfect slip at the interface, θ = 0°, 10°, 20°, 30°, 40°). 
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4.5.4 Comparison to the 2D slit model 

 In previous studies, convective mass transfer within a 3D corner fluid filament 

has been approximately analyzed in terms of convective mass transfer in a 2D slit 

[Dillard and Blunt, 2000; Zhou et al., 2000; Sahloul et al., 2002].  As shown in Figure 

4.14, the pore corner is approximated by a slit formed between two parallel flat surfaces, 

the pore wall and the fluid-fluid interface.  Both no-slip and perfect-slip interface 

boundary conditions are considered in the calculation of the flow field.   

 

 
 
 

 
 

Figure 4.14  Schematic of slit model with velocity profiles under no-slip and perfect-slip 

conditions at the interface. 
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Referring to Figure 4.14, the boundary conditions for solute transport in the slit 

model may be expressed as: 

0)( =δxV         (4.17) 

     0)0( =xV              no-slip at the interface   (4.18) 

0
0

=
=y

x
dy

dV
       perfect-slip at the interface                        (4.19) 

The flow velocity profiles can be obtained by solving the motion equation with the 

following elementary results:  

No-slip at the interface:   )(
2

)( 2yy
L

PyVx −
Δ

= δ
μ

     (4.20) 

2
12

δ
μL
PVslit

Δ
=    (4.21) 

Perfect-slip at the interface:              )(
2

)( 22 y
L

PyVx −
Δ

= δ
μ

          (4.22) 

2
3

δ
μL
PVslit

Δ
=     (4.23) 

where V is the fluid velocity, PΔ  is the pressure drop across the corner length, μ is the 

fluid viscosity and slitV  is the average velocity. 

Assuming that convection dominates diffusion along the x-direction, steady state 

solute transport is governed by the following equation: 

2

2
)(

y
CD

x
CyV mx ∂

∂
=

∂
∂                                      (4.24) 
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where Dm is the molecular diffusion coefficient and C is the solute concentration. Similar 

with Equation (4.10-4.11), Equation (4.24) can be written in dimensionless form:  
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where 
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inlet concentration and Cint is the interfacial concentration. Accordingly, the average 

(“mixing cup”) exit concentration, dE , and the dimensionless residence time, dt , are 

defined as 
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(4.27) 

Equation (4.25) is solved numerically using the method of lines (described in Chapter 3).  

It is interesting to ask if transport in the 3D filaments considered in this work can 

be quantitatively modeled as transport in a 2D slit.  In view of the definition of Pe, setting 

b=δ  results in the same value of Pe in a 2D slit as in a 3D filament. The dE  vs. dt  

curves from the 2D slit model are compared to those from the 3D filament model in 

Figure 4.15 for perfect slip at the interface, and in Figure 4.16 for no slip at the interface. 
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These comparisons make it clear that convective transport to/from fluid-fluid interfaces 

in rectangular or triangular pores cannot be quantitatively modeled as convective 

transport in a 2D slit, as previously assumed [Dillard and Blunt, 2000; Zhou et al., 2000]. 

 

 

 
 
 
Figure 4.15  Ed vs. td  curves for convective transport in 3D corner filament (markers) and 

2D slit (solid line) (β = 45°, θ = 0°, perfect-slip condition at the interface). 
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Figure 4.16 Ed vs. td  curves for convective transport in 3D corner filament (markers) and 

2D slit (solid line) (β = 45°, θ = 0°, no-slip condition at the interface). 
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4.5.5 Verification and discussion on solution of convective mass transfer equations 

 The FEMLAB environment has been successfully used by others to solve 

complex problems involving coupled PDEs [e.g., van Schijndel, 2003]. In FEMLAB the 

finite element mesh is automatically generated by triangulation of the domain (see Figure 

4.3). This mesh is used for discretization of the PDE problem and can be modified to 

improve accuracy. The linear solver is UMFPACK and a reference to the FEMLAB 

manual is made where further information on this solver may be found. For the flow 

problem, Equation (4.3), obtained numerical solutions of hydraulic resistance factors and 

hydraulic conductances (see section 4.5.2) are in very good agreement with the results of 

Patzek and Kristensen [2001]. For the coupled flow and transport problem, Equation 

(4.3) and Equation (4.11), finite element solutions are obtained for the case of 2D slit 

geometry (Figure 4.14). Figure 4.17 is the discretization and solute concentration profile 

of the slit domain. The results are in good agreement with the analytical solution of 

Equation (4.25) by the method of lines (valid for Pe sufficiently high to neglect axial 

diffusion), as shown in Figure 4.18. 

If solute diffusion in the direction of liquid flow can be ignored (high Peclect 

number situations) then Equation (4.11) becomes: 
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∂

∂                                        (4.28) 

Using the method of separation of variables, Equation (4.28) has a solution in the form:  

          ),()exp(),,( ** yxCzzyxC λλ−=                 (4.29) 

where the eigenfunctions  ),(* yxCλ  are solutions of the equation 
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     0***2 =+∇ λλ λ CPeVC z                     (4.30) 

A general solution of Equation (4.28) may then be expressed as the sum or integral in λ  

of the solutions of Equation (4.30), which leads to the following general expression for 

the average solute concentration, Ed: 

    
∫

∫
∑ −=

S z

S z
d dSV

dSCV
zE *

**

)exp( λ

λ
λ λβ                (4.31) 

where λβ  are coefficients selected to fit the boundary conditions. 

 Equation (4.31) shows that Ed is expected to be given in terms of a sum of 

exponentials.  This provides justification for the empirical correlation (Equation 4.16), 

since it is well known that a stretched-exponential function can be used to approximate a 

sum of exponentials [Peyron et al., 1996]. 
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Figure 4.17 Mesh and concentration profile of a slit. x = 4, y = 1, z = 12, 16504 elements, 

Pe = 150. Same colormap as in Figure 4.6. 
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Figure 4.18 Comparison of Ed-td results between method of 

lines and FEMLAB. 
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4.6     Conclusions 

  

 With an aim to improve pore network computations of mass transfer to/from 

trapped non-aqueous phase ganglia or bubbles in porous media, we used finite element 

methods to study convective mass transfer in wetting fluid filaments along corners of 

angular pores.  The flow and transport domain was described in terms of the corner half-

angle, contact angle and interfacial meniscus curvature, thus accounting for the exact 

geometry of the fluid filament confined within the pore walls and an arc meniscus.  Both 

perfect-slip and no-slip interfaces were considered.  Solution of the flow problem yielded 

hydraulic resistance factors and hydraulic conductance of the corner filaments in 

agreement with the numerical results reported by Patzek and Kristensen [2001].  Novel 

results were obtained for the normalized average exit concentration in corner filaments.  

These results were correlated with the pore-scale Peclet number and the characteristic 

dimensions of the corner geometry, facilitating their use with pore network simulators in 

which pores and throats are modeled as straight tubes of rectangular or equilateral 

triangular cross-sections.  
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Chapter 5 

Pore Network Simulation of Gas Evolution during 

Supersaturated Water Injection 

 

 

5.1 Summary 

 

In situ bubble growth in porous media is simulated using a 2D pore network 

model that idealizes the pore space as a lattice of cubic chambers connected by square 

tubes. Evolution of the gas phase from nucleation sites is driven by solute mass transfer 

from the flowing supersaturated water solution to the bubble clusters. Effects of viscous 

aqueous phase flow and convective diffusion in pore corners are explicitly accounted for. 

Growth of bubble clusters is characterised by a pattern of quasi-static drainage and 

fingering in the gas phase, an invasion percolation process controlled by capillary and 

gravitational forces. A stepwise solution procedure is followed to determine the aqueous 

flow field and the solute concentration field in the model by solving the conservation 

equations. Mobilization of bubbles driven by buoyancy forces and bubble fragmentation 

and coalescence are also modeled. Results of bubble growth pattern, relative permeability 

and macroscopic mass transfer rate coefficient are obtained under different gas 

saturations and aqueous flow conditions.  
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5.2    Background 

          

 In situ development of gas saturation within initially fluid-saturated porous media 

is encountered in a variety of processes of technological significance (for example the 

solution gas-drive (SGD) process for oil recovery [Sheng et al., 1999a; b; Bora et al., 

2000], the CO2 evolution process in gas diffusion layer inside direct methanol fuel cells 

(DMFC) [e.g., Argyropoulos et al., 1999 a; b; Yang et al., 2005], the CO2 leakage from 

CO2 storage reservoir [e.g,, Pruess, 2005], accumulation of biogenic bubbles in peat [e.g., 

Reynolds et al., 1992; Beckwith and Baird, 2001; Kellner et al., 2004], the oxygen 

delivery during bioremediation [e.g., Wilson et al., 1994; Borden et al., 1997; Deeb et al., 

2000], the supersaturated water injection (SWI) for NAPL recovery [Li, 2004]). The 

growth of gas phase in porous media involves the interplay of many factors, such as 

bubble nucleation, capillarity, diffusion and advection, all of which should be accounted 

for in studying multi-phase flow and mass transfer issues in porous media. 

 

5.2.1  Bubble Nucleation 

 Nucleation is the process of formation of bubbles in a pure homogeneous liquid or 

a solution containing dissolved gas at supersaturation. The saturation or equilibrium 

concentration of a dissolved gas in the aqueous phase at a certain temperature can be 

determined by Henry’s law: 

                  
H
P

x i
i =                                        (5.1) 

where xi is the mole fraction of dissolved gas in the aqueous phase, Pi is the partial 
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pressure of the gas and H is Henry’s constant. Supersaturation is the condition for which 

the dissolved gas concentration exceeds the equilibrium value at the system temperature 

and pressure. In most studies devoted to the problem of gas evolution in porous media 

due to solute diffusion, supersaturation is achieved by depressurizing the system [e.g., Li 

and Yortsos, 1995a; El Yousfi, et al., 1997; Dominguez et al., 2000].  

 A supersaturated solution is thermodynamically unstable such that bubbles will 

nucleate and subsequently grow by solute mass transfer.  Pre-existing nuclei or cavities 

with trapped micro-bubbles are usually considered responsible for bubble generation at 

low levels of supersaturation [e.g., Dean, 1944; Jones et al., 1998; Li and Yortsos, 1995a, 

b; Bora et al., 2000], otherwise high levels of supersaturation are required [Kamath and 

Boyer, 1995; Jones et al., 1999a, b]. The mechanism of bubble production in the former 

case is referred to as heterogeneous nucleation, whereas the latter is termed homogeneous 

nucleation.  

            The most plausible bubble nucleation mechanism in porous media is 

heterogeneous nucleation [Yortsos and Parlar, 1989; Kamath and Boyer, 1995; 

Dominguez et al. 2000], in which case a nucleation site (crevice) on the pore wall 

containing pre-existent or nucleated gas is activated when the local supersaturation 

exceeds the capillary barrier of the site. Figure 5.1 shows the mechanism of 

heterogeneous nucleation in a pore with a pre-existing micro-bubble trapped in wall 

crevice. The necessary condition is expressed by the following equation 

                                                         WlPHC
γ2

≥−                                                  (5.2) 

where H is the Henry constant, C and Pl are local solute concentration and pressure in the 

liquid respectively, γ is the interfacial tension and W is the radius of the crevice mouth. 
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Figure 5.1 Schematic of bubble nucleation from a crevice with a pre-existing nucleus. 

 

  

 Kashchiev and Firoozabadi [1993], Firoozabadi and Kashchiev [1996] and 

Firoozabadi [1997] suggested that a number of bubbles can nucleate at the same time on 

randomly distributed sites and are not generated from pre-existing microbubbles. 

However, this instantaneous nucleation (homogeneous) mechanism, which does not take 

the surface heterogeneity into consideration, could be valid only when a sudden increase 

in supersaturation occurs. With a gradual supersaturation change, for example during 

slow pressure depletion, the heterogeneous or progressive nucleation would be the 

mechanism at play [Li and Yortsos, 1995a; b]. Experiments using micromodels [El 

Yousfi, et al., 1997] show that bubbles of the order of 1 μm appear progressively in 

supersaturated carbonated water before they are released from the pore walls and 

continue to grow. Their observations are in agreement with the heterogeneous nucleation 

model.  However, the period of bubble nucleation is short (about 15% of the time 
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required in pressure depletion) and the instantaneous mechanism could be applied to 

approximate the nucleation process in exploring bubble evolution over a long period 

[Arora and Kovscek, 2003]. 

 

5.2.2  Bubble growth  

Once nucleated, gas bubbles begin to grow as a result of mass transfer driven by 

the solute concentration difference between the supersaturated bulk liquid phase and the 

solute concentration at the gas-liquid interface. Transparent micromodel observations 

show that initial bubble nucleation is followed by rapid detachment of the bubble from 

the pore wall and migration towards the center of the pore [e.g., El Yousfi et al., 1991; 

Dominguez et al., 2000], where it continues to grow until it fills the pore body (see 

Figure 5.1). SGD experiments in transparent micromodels by George et al. [2005] also 

show that nucleated bubbles grow to fill pores before they are mobilized.  

The difference between SGD and SWI is that in the former process, mass transfer 

is controlled by solute diffusion, while the latter process is controlled by convective mass 

transfer. Growth of gas bubbles involves two periods of the process: increase of gas 

volume as a result of solute mass transfer, corresponding to the growth of unconfined 

bubbles and increase of gas pressure, corresponding to the growth of single bubbles or 

gas clusters confined by capillary forces within pore bodies. 

The general convection-diffusion equation for solute mass transfer in a bulk fluid 

phase can be written as [Li and Yortsos, 1995a]: 

    CDCu
t
C 2∇=∇•+

∂
∂ r                                                    (5.3) 
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where C is the volatile component concentration at the interface, D is the molecular 

diffusivity and uv  is the liquid velocity. For creeping flow and in the absence of gravity, 

the liquid velocity uv  obeys Stoke’s equation: 

uPl
v2∇=∇ μ                                                            (5.4) 

where Pl is the liquid pressure and μ  is the liquid viscosity.   

 Contrary to the gas growth pattern in bulk phase, the bubble growth pattern in 

porous media is disordered and non-symmetric, reflecting the pore structure of the 

medium. Visualization experiments using micro-models show that invasion percolation 

(IP) is the growth mechanism whereby a locally spherical interface advances in the 

perimeter pore throat with the smallest capillary resistance (Pg – Pl ≥ Pc) and 

subsequently occupies the adjacent pore, developing a ramified cluster [e.g., Li and 

Yortsos, 1995a; Dominguez et al., 2000]. However, for sufficiently large clusters, 

pressure drops in the liquid phase may be comparable to capillary forces and viscous 

effects must be considered [Satik, et al. 1995; Li and Yortsos, 1995 b]. This is also true 

when gravitational effects are considered [Hawes et al., 1996; Dominguez et al., 2000; 

Tsimpanogiannis and Yortsos, 2004]. The “one-at-a-time” IP pattern of bubble cluster 

growth can thus be violated such that gas phase may invade more than one perimeter pore 

throats at the same time as long as the capillary forces are overcome. The corresponding 

pattern is of the viscous fingering type and similar to DLA (diffusion-limited 

aggregation). Satik et al. [1995] studied growth patterns of a single bubble cluster and 

defined two critical radii of the bubble (RP and Rvf) to determine the growth patterns (IP 

or DLA).When the characteristic cluster radius R is smaller than RP, the growth is 

capillary-controlled and the percolation pattern is followed. When R is larger than Rvf, the 
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growth is viscous controlled and the DLA pattern is followed. A combined mechanism 

(percolation-modified DLA) was adopted when R is between the two critical values. The 

analyses of patterns and rates of bubble growth show that for a fixed supersaturation 

value, RP and Rvf are a function of the capillary number  

          
σ
μuCa =                    (5.5) 

where u is the bubble velocity,  μ  is the liquid viscosity and σ  is the interfacial tension. 

Both critical values tend to decrease with an increase of Ca, while higher supersaturation 

with the same capillary number leads to smaller critical radii.  

 Two bubbles may coalesce when they come close to each other as a result of 

migration or growth. This process involves drainage of the liquid film between two 

approaching menisci. In the absence of surfactants, critical thinning of the liquid film is 

likely to occur, leading to coalescence of the bubbles.  

 Bubble snap-off may take place in the pore throat when the interface moves 

through an invaded throat to a sufficiently large pore. A conceptual model of the snap-off 

process is shown in Figure 5.2. The liquid distribution in a noncircular capillary becomes 

unstable to snap-off as the interfacial curvature J decreases to a critical value, 

corresponding to the curvature of the inscribed circle [Ransohoff et al., 1987]. When the 

critical curvature is reached, the instability results in an essentially instantaneous snap-off 

process [Roof, 1970; Ransohoff et al., 1987]. Ransohoff et al.’s [1987] study of moving 

bubble behavior in smoothly constricted noncircular capillaries sets the criterion of 

bubble snap-off, which can be expressed as  

      tp RJR ∗≥       (5.6) 
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where pR and tR are the radii of the invaded pore and throat, respectively, and J* is the 

critical interfacial curvature. 

During imbibition displacement, snap-off can also take place. Snap-off capillary 

pressure during imbibition in pore throats could be computed as [Li and Wardlaw, 1986] 

ξ

piston
coffsnap

c

P
P =−                    (5.7) 

where piston
cP  is the drainage capillary pressure for piston-type invasion of the non-

wetting phase into a pore or throat and ξ  is the critical pressure ratio, the value of which 

depends on the local pore geometry [Tsakiroglou and Payatakes, 1991;  Ioannidis and 

Chatzis, 1993].  In the absence of surfactant to stabilize the liquid film between bubbles, 

the new bubble formed by snap-off will likely recombine with the parent bubble if the 

latter continues to expand [Kam et al., 2001]. 

 

 

Figure 5.2  Schematic of bubble snap-off during gas expansion.   
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5.2.3  Bubble mobility 

Multiple clusters can arise from various nucleation sites and each of them will 

grow provided that appropriate conditions for mass transfer into the cluster are met. Due 

to the growth and coalescence of clusters, the gas phase may become free to flow when a 

sample-spanning cluster is formed. This corresponds to the so-called critical gas 

saturation Sgc [e.g. Li and Yortsos, 1995b; Hawes et al. 1996] (foamy oil flow is an 

exception, where the gas released into oil flows in the form of small dispersed bubbles 

under conditions of solution gas drive [Sheng et al., 1999a]). Measured values of the 

critical gas saturation in the literature range from 0.5% to 38% PV [Sheng et al. 1999a]. 

The variation depends on experimental conditions. Many factors can affect the critical 

gas saturation. As supersaturation increases, the critical gas saturation also increases 

[Firoozabadi et al., 1992]. The pore structure seems to influence the critical gas saturation 

more than does the permeability of the medium [Kortekaas and van Poelgeest, 1991; 

Firoozabadi et al., 1992]. The nucleation fraction, which is defined as the number fraction 

of nucleated sites in the medium, determines the number of evolving clusters around the 

sites. Assuming low supersaturation or slow pressure depletion rate and fast mass transfer, 

Du and Yortsos [1999] simulated the critical gas saturation using a pore network model 

in the absence of viscous and gravity forces and obtained correlations between Sgc and the 

final nucleation fraction fq:  16.0
qgc fS =  in 3D and 09.0

qgc fS = in 2D. The validity of 

these results, however, is uncertain in the presence of gravity and viscous forces. 

When a gas cluster is large enough so that the gravity effect cannot be neglected, 

buoyancy may mobilize the cluster upward. A cluster migration mechanism should be 

adopted in the model to incorporate buoyancy effects, such that when gas penetrates a 
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throat (drainage) due to the combined effect of capillarity and buoyancy of the cluster, 

withdrawal of the gas cluster (imbibition) should take place from another pore with lower 

location [Wagner et al., 1997]. Tsimpanogiannis and Yortsos [2004] studied the critical 

gas saturation in the presence of gravity and modified the definition of Sgc so that it 

corresponds to the gas saturation at which the gas phase first becomes mobile (onset of 

mobilization). Sgc was correlated with the Bond number, which is the ratio of 

gravitational forces to capillary forces: 

σ
ρ gk

Bo
Δ

=         (5.8) 

where ∆ρ is the density difference between liquid and gas, k is the permeability and σ  is 

the interfacial tension. Their correlation reads 91.0−= BoS gc
 in 2D lattices. Figure 5.3 

shows the critical gas saturation vs. Bo for different nucleation fractions in a 40 by 40 

network. Bond numbers on the order 310− or larger tend to result in bubble mobilization 

by buoyancy, whereas for low Bond number conditions ( 410−≤Bo ), bubbles are unlikely 

to be mobilized before a sample-spanning cluster formed.  

  The definition of Sgc is based on the assumption that once the gas is mobilized, it 

will be free to flow.  However, this is not necessarily true because the mobilized gas 

could be trapped again by capillary forces. Birovljev et al. [1995] studied the migration 

and fragmentation of a buoyant non-wetting phase cluster. The 2D IP cluster was formed 

not by nucleation and mass transfer from the liquid, but by slowly injecting gas into a 

horizontal liquid-saturated porous medium. The medium was tilted at a very slow rate 

and the cluster was mobilized and fragmented when upward migration took place through 

a sequence of steps involving drainage events at the leading front and imbibition events at 
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the trailing front, resulting in the formation of an elongated branch-like structure. At a 

greater angle of inclination, this structure fragmented and became trapped, only to be 

mobilized again and fragment into smaller fragments at even higher inclination angles. 

  

 

 

 

Figure 5.3 Critical Gas Saturation as a function of Bond number for different nucleation 

fraction [Tsimpanogiannis and Yortsos, 2004]. 
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For gas and water in porous media with permeability lower than 10-10 m2 (i.e., 100 

Darcy), Bond numbers are on the order of 10-5 or smaller in the absence of surfactants.  

Studies by Tsimpanogiannis and Yortsos [2004], Birovljev et al. [1995] and Wagner et al. 

[1997] suggest that gas clusters grown by convective diffusion from supersaturated 

aqueous solutions would begin to migrate once they become large enough (of the order of 

tens of pores), but would fragment and become trapped, only to migrate again as a result 

of subsequent growth or coalescence with other growing or migrating clusters. Complex 

interactions between heterogeneous nucleation, convective mass transfer, capillarity and 

buoyancy govern the growth, coalescence, migration and fragmentation of gas clusters.  

Results of the simulations conducted by Tsimpanogiannis and Yortsos [2004] could be 

used to study the gas evolution until the onset of gas mobilization, after which the 

behavior of the mobilized gas remains unclear and is worth investigating.  

 

5.2.4  Gas evolution in SWI experiments  

 In situ development of gas saturation in porous media during SWI was 

experimentally studied by Li [2004].  Supersaturated carbonated water was injected into a 

box (125 cm long by 70 cm high by 2.5 cm wide) that was filled with glass beads and 

initially saturated with water (see Fig. 2.19). Figure 5.4 are photographs showing gas 

evolution over time during SWI experiment. Gas was observed to evolve over the entire 

length of the box uniformly as a front advancing from the injection to the extraction end. 

Higher gas saturation is observed closer to the injection well than farther away.   
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Figure 5.4 Photographs showing gas evolution in porous media over time during SWI 

Experiment [Li, 2004]. 

 
  

Gas flow rates were measurable only in the first 35 cm of distance from the 

injection point. Increasing the injection flow rate and injection pressure of carbonated 

water did not increase the distance beyond which gas production was undetectable. The 

rate of gas ebullition in the vicinity of the injection well, however, increased with 

increasing injection pressure and flow rate.  Intermittent mobilization of gas, in the form 

of large bubbles migrating upwards, was observed at distances greater than 40 cm from 

the injection well.  Figure 5.5 shows gas production rates as a function of distance from 

the injection end for various injection pressure conditions. Gas saturation development 

was observed to develop in the whole medium.  
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Figure 5.5 Gas evolution rates as a function of distance from the injection end for various 

injection pressure conditions [Li, 2004]. 
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5.3  Model development 

 

5.3.1  Model description           

 A pore network model, similar to the one used in Chapter 3, is developed to 

represent the pore space. The model is a 2D lattice of cubic chambers connected by 

square tubes as shown in Figure 5.6 a. To incorporate the effects of liquid corner flow, an 

adjustment of pore-throat arrangement is made, as shown in Figure 5.6.b. The model is 

initially saturated with pure water and supersaturated water is injected at the left 

boundary and flows through tubes (bonds) and chambers (nodes) from the left to the right 

between the two impermeable boundaries. As bubbles emerge in the medium, non-

wetting gas phase resides in centers of tubes and chambers while water flows around the 

bubbles through corner filaments. Each corner of chambers containing gas (pore A in 

Figure 5.6) and each water-filled chamber itself (pore B in Figure 5.6) serves as a node, 

where the aqueous phase is well mixed and the site is considered possessing uniform 

liquid pressure and solute concentration.  
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Figure 5.6 Schematic of pore network model with water flowing around a bubble. Arrows 

represent the water flow directions. 
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 Under creeping flow conditions, the hydraulic conductance in a rectangular duct 

is a function of the shape factor of the cross section and is given by Patzek and Silin 

[2001] as: 

                                                     tLAgg μ/2∗=                                                          (5.9) 

where A is the cross sectional area of the tube, μ is the water viscosity, Lt is the tube 

length and ∗g  is the dimensionless hydraulic conductance. For a square duct, 

0351.0=∗g . The corresponding liquid flow rate is PgQ Δ= , where PΔ  is the pressure 

drop in the tube.  

 The liquid flow and convective mass transfer problems have been solved in 

Chapter 4. The hydraulic conductance in a liquid filament, gp can be calculated from 

meniscus-apex distance of the filament, b (see Figure 4.1), and the dimensionless 

hydraulic conductance, g*, ( μ/4*bgg p = , Equation 4.9). The meniscus-apex distance b 

can be calculated using Equation (4.2) and g* values are given in Table 4.2. The 

corresponding flow rate in the filament is LPgQ p /Δ= , where is PΔ  is the pressure 

drop along the filament and L is the corner length. The field of liquid pressure or 

potential (if gravity is considered) can be obtained by imposing mass conservation 

equations at network nodes, 0=∑Q .  

 Similarly, solute mass balances are considered. Figure 5.7 shows situations of 

solute flows into and out of the typical network nodes: 
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         (a)    (b)    (c) 

Figure 5.7 Schematic of solute flows into and out of network nodes (a) corner node 

connected to a liquid-filled bond (b) corner node connected to a gas-invaded bond (c) 

pore node. 

 

(i) Rate of solute transport by aqueous phase advection through tubes without gas-

water interface into a node (Figure 5.7 a, c) is 

    neighborinin CQF =         (5.10) 

where Qin is the liquid flow rate into the node and Cneighbor is the solute concentration in 

the neighbor node.   

(ii)       Rate of solute transport by convective mass transfer through corner filaments into 

a node (Figure 5.7 b) is 

    ⎥⎦
⎤

⎢⎣
⎡ −+= )( intint CCECQF neighbordinin                      (5.11)  

where Ed is the average effluent concentration, which has been obtained in Chapter 4, Cint 

is the equilibrium concentration at the interface given by Henry’s Law, HPC g /int = , Pg 

is the gas pressure and H is the Henry’s constant. 

gas gas

liquid filaments 

water 
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(iii) The rate of solute transport by aqueous phase advection out of a node is simply 

    nodeoutout CQF =       (5.12) 

where Qout is the liquid flow rate out of the node and Cnode is the solute concentration in 

the node. 

(iv) The transport rates by diffusion of the solute into and out of a node are 

    
t

neighbornode
tmdiff L

CC
ADF

−
±=    (5.13)  

where Dm is the solute diffusivity, At is the cross-sectional area of the tube without gas-

water interface, Lt is the tube length and the sign denotes direction of mass transfer. Note 

that Equation (5.13) is only used for tubes without a gas-water interface because in corner 

filaments diffusive mass transfer has been incorporated in Equation (5.11). 

 Solute mass balances are formulated by imposing solute mass conservation to 

each node: 

    
t

CCV
F

n
node

n
nodenode

Δ

−
=

+

∑
)( 1

      (5.14) 

where Vnode is the node volume, 1+n
nodeC  and n

nodeC are the node concentrations at the 

current and previous simulation step, respectively, and tΔ  is the simulation time step. 

The term at the right hand side of Equation (5.14) is the mass accumulation term. The 

solute concentration field of the network is obtained by solving the system of linear 

algebraic equations generated by application of the Equation (5.14) to each node. 
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5.3.2  Bubble growth 

 The simulation of bubble growth involves three steps: 

(i) Nucleation 

 The mechanism of heterogeneous nucleation is adopted and nucleation sites are 

randomly assigned throughout the network except for the boundary pores, i.e., all 

nucleation sites are at least several pores away from the boundaries in order to avoid 

boundary effects. The number of nucleation sites is determined by a pre-selected 

nucleation fraction defined as 

     
t

q N
Nf =       (5.10) 

where N is the number of nucleation sites and Nt is the total number of pores in the 

network. A threshold solute concentration is set so that when the concentration in a 

nucleation site exceeds the threshold concentration, inequality (5.2) is assumed satisfied 

and the site is activated. Subsequent to nucleation, the host site is assumed immediately 

occupied by the nucleated gas bubble surrounded by water. The bubble pressure is 

                                                               clg PPP +=                                                   (5.10) 

where Pl is the liquid pressure in the pore and  Pc is the capillary pressure in the pore, 

calculated using Equation (3.6). The radius of curvature of the gas-water interface, 

cnw PR γ= , and pore radius, Rp , are used to calculate the bubble volume, Vg.  The ideal 

gas law 

                   nRTVP gg =                                                (5.11) 

is used to determine the bubble mass, n.  
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(ii) Pressurization 

            A bubble or cluster is pressurized by convective mass transfer. The gas volume is 

assumed to be constant during this step until the perimeter throat with the smallest 

capillary pressure is invaded when 

                                                               clg PPP ≥−                                                   (5.12)  

From the ideal gas law: 

                                                             
dt
dnRT

dt
dP

V g
g =                                              (5.13) 

 The mass transfer rate from a corner filament to the bubble is determined by the 

water flow rate in the corner and the concentration difference between the two corner 

ends. The total flux is  

                                                            ∑ Δ== CQ
dt
dnN A                                           (5.14)  

The updated mass and pressure of the bubble are determined using Equation (5.13) and 

Equation (5.14).    

(iii) Penetration 

            The pressurized bubble will invade the perimeter throat with the smallest capillary 

pressure and occupy the adjacent pore immediately when inequality (5.12) is satisfied.   

Mass transfer is neglected in this step. Both pressure and volume of the cluster change 

when the cluster displaces water in the newly invaded pore so that:  

                                                          nRTPVVP gggg == 00                                         (5.15) 

The updated cluster volume gV  is determined by local pore geometry by assuming a 

value of the curvature Jo of the interface. From Equation (5.15), the gas pressure gP  is 



 163

calculated to obtain the capillary pressure ( lgc PPP −= ) and the interfacial curvature 

( γ/cPJ = ). Based on the difference of Jo and J, additional iterations are taken on the 

assumed Jo until convergence is reached. gV , gP  and cP  are then updated. 

 As two clusters coalesce, the sums of masses and volumes of the merging clusters 

are initially assigned to the new cluster and the cluster pressure is calculated accordingly. 

The same iterative procedure is adopted to determine the equilibrium volume and 

pressure of the new cluster.  

 

5.3.3  Bubble mobilization and fragmentation 

 When a gas cluster is large enough so that the gravity effect cannot be neglected, 

buoyancy may mobilize the cluster upward and the mobilization tendency increases with 

increasing Bond number. A cluster migration mechanism should be adopted in the model 

to incorporate gravity so that when gas penetrates a throat (tube j in Figure 5.8) due to the 

buoyancy of the cluster, withdrawal of the gas cluster (imbibition) should take place from 

another pore at a lower location (site i in Figure 5.8) [Wagner et al., 1997]. The threshold 

for cluster mobilization can be expressed by the following inequality: 

                                                          0≥Δ+− ji
j

c
i
c ghPP ρ                                         (5.18) 

where Pc is the capillary pressure of throat j and pore i, Δρ is the density difference 

between liquid and gas, and hji = zj – zi  denotes the distance between pore j and pore i. 

Note that  zj > zi. 

            During the simulation, each cluster is scanned to find the migration pair of 

invading throat and withdrawing pore. When a bubble is mobilized, imbibition takes 
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place in every perimeter throat of the withdrawing pore, i.e., the gas-water interfaces 

retreat from the pore to neighbors through connecting tubes. A cluster can be fragmented 

during mobilization depending on the nature of imbibition events (site i in Figure 5.9). 

Snap-off may take place at pore throats when Equation (5.7) is satisfied. The value 6=ξ  

is chosen as representative of the critical pressure ratio in granular media [Chang and 

Ioannidis, 2003].  
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Figure 5.8 Schematic of gas cluster mobilization due to buoyancy. The cluster invades 

throat j as it withdraws from pore i. 
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Figure 5.9 Schematic of gas cluster fragmentation during mobilization. The cluster is 

divided into two clusters as interfaces withdraw from pore i to neighboring pores. 
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5.4 Algorithmic issues 

 

 The Hoshen-Kopelman algorithm is used to label bubble clusters. However, the 

cluster labels change with the cluster distribution in the network.  To keep track of cluster 

properties ( gV , gP , gn , etc.) in each simulation step, the cluster evolving from a 

nucleation site is labeled sequentially according to the order of site activation. The cluster 

labels change only in situations of coalescence and fragmentation. When two clusters 

coalesce, the label of the expanding cluster is assigned to the new cluster. During 

fragmentation, a new label is assigned to the daughter cluster by adding a sufficiently 

large number (500 for simulations with 250 nucleation sites; 100 for simulations with 50 

nucleation sites) to the original label. 

 Another critical algorithm involves node coordination. With reference to Figure 

5.6 b, each gas-occupied pore is represented by four nodes, meaning that the total number 

of nodes depends on both the network size and the number of pores containing gas, 

      pyxtotal nnnn 3+=        (5.19) 

where nx and ny are the network dimensions and np is the number of gas occupied pores. 

Figure 5.10 graphically depicts the coordination system of a 3 by 4 network. The node 

identification number depends on the location and the gas distribution in the network: 

            pcornery nnjnin ′+++−= 3)1(      (5.20) 

where i, j denote the location of the pore, ncorner is the corner number ( =cornern  0, 1, 2, 3 

for top, left, right and bottom corner nodes and =cornern  0 for pore nodes), pn′  is the 
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number of the gas-occupied pores before a certain node in the node sequence, for 

example, 2=′
pn  for node 14 in Figure 5.10 a.  

 For each simulation step, solute concentrations at the nodes are obtained before 

bubble nucleation, expansion and mobilization, after which the node coordination 

changes (see Figure 5.10 b). Because mass balance in the next step requires the 

concentration data of the current step to calculate the mass accumulation, a new 

concentration array has to be constructed corresponding to the new node coordination. 

This is detailed below. 

 For a node without a phase displacement event in its host pore (e.g., pore 14 in 

Fig 5.10 a, i.e. pore 20 in Fig 5.10 b), 

      ][)](3[0 nCnnnC imbibitiondrainage =′−′+                                (5.21) 

where C is the concentration for the current step, C0 is the new concentration array to be 

used in the next step, drainagen′  and imbibitionn′  are the numbers of newly drained and 

imbibed pores before the host pore in the sequence. For a newly drained pore due to 

nucleation (pore E in Fig 5.10 b), expansion (pore D in Fig 5.10 b) or mobilization (pore 

B in Fig 5.10 b), 

   ][])(3[0 nCnnnnC cornerimbibitiondrainage =+′−′+                   (5.22) 

For a newly imbibed pore (pore 22 in Fig 5.10 b),  

                         CnnnC imbibitiondrainage =′−′+ )](3[0      (5.23) 

where C  is the volumetric average concentration of the four corner nodes before the 

imbibition. 
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Figure 5.10 Schematic of node coordination system. (a) A, B, C are gas occupied pores  

(b) A expands to D, cluster B-C is mobilized upwards to a new location and E is a new 

nucleated bubble. 
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5.5  Summary of simulation steps 

 

 FORTRAN programs were developed to simulate the bubble evolution process 

and provided in Appendices. Boundary pressures are set to make supersaturated water 

flow through the network that is initially saturated with pure water. Using the method 

described in Section 5.3.1, the pressure and concentration fields of the liquid phase are 

obtained. Bubbles are nucleated at the pre-assigned nucleation sites when local solute 

concentrations reach the nucleation thresholds. Gas pressures, volumes and masses are 

calculated from the pore geometry and ideal gas law. The amounts of solute masses 

diffusing into the bubbles by convective mass transfer are computed and bubbles are 

pressurized. Gas distribution in the network is updated when any process of nucleation, 

invasion percolation, coalescence, mobilization and fragmentation of gas clusters takes 

place. Additional iterations are conducted to determine the configurations of local gas-

water interfaces and pressures and volumes of gas clusters are calculated accordingly. 

The HK algorithm is used to label the gas clusters and the liquid pressure and 

concentration fields are then computed anew. When gas clusters reach the boundaries, the 

amount of gas transferred into the clusters is considered to escape from the network. A 

flow chart of the program is given in Figure 5.11. 
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Figure 5.11 Flow chart of simulation gas evolution in pore-network model. 
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5.6  Results and Discussions 

  

 Pore sizes are generated following a lognormal distribution to idealize a 

homogeneous porous medium. Carbon dioxide is chosen as the representative gas phase 

and parameter values corresponding to the system CO2 – water are listed in Table 5.1.  

 The equilibrium solute concentration, sC , is determined by Henry’s law 

     
H

P
C l

s =      (5.24) 

where lP  is the hydrostatic liquid pressure and H is Henry’s constant. A coefficient, fS , 

is used to indicate the supersaturation of the injected solution above the equilibrium 

concentration: 

       sfin CSC =      (5.25) 

where inC  is the inlet concentration of the injected supersaturated water. The solute 

concentration at the gas-water interface is also given by Henry’s law: 

      
H

P
C g=int      (5.26) 

where 
gP  is the gas pressure. 
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Table 5.1 Physical parameters used in simulations. 
 
Parameter Value 

Interfacial tension, σ   2102.7 −× [N/m] 

Contact angle, θ  0° 

CO2 diffusion coefficient, Dm 91097.2 −× [m2/s] 

CO2 molecular weight, M 44 

Water density, ρ  1000 [kg/m3] 

Water viscosity, μ  4109.8 −× [kg/ms] 

Temperature, T 298 [K] 

Gravitational constant, g 9.81 [m/s2] 

Henry’s coefficient, H 31059.2 ×  [Pa*m3water/(molCO2)] 

Ideal gas constant, R  8.314 [Pa*m3/(molK)] 

saturated CO2 concentration, Cs 43.04 [mol CO2/ m3 water] 

Average pore radius, pR  400 [μm] 

Standard deviation 365 [μm] 
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5.6.1    Visualizations of bubble growth and concentration field 

 Simulation is conducted to visualize CO2 bubble growth from a single nucleation 

site in a 100 by 50 network. Because the tendency of bubble mobilization increases with 

the Bond number ( σ
ρ gk

Bo
Δ

= ), a large Bond number condition 

( 41054.8 −×=Bo  ) is imposed to emphasize the process of mobilization and 

fragmentation. The bubble growth pattern is shown in Figure 5.12 (see also the animation 

single_bubble.wmv in Appendix).  Supersaturated water is injected from the left 

boundary and the nucleation site is activated as the local concentration exceeds the 

nucleation threshold. The bubble subsequently grows by convective mass transfer, it is 

pressurized and a ramified cluster evolves during a process of invasion percolation. When 

the cluster is large enough so that buoyancy overcomes the pinning capillary forces, it is 

mobilized upwards and fragmentation is observed. Fragmented clusters migrate upwards 

independently until they are trapped again by capillary forces. The simulated bubble 

growth pattern is in agreement with the experimental observations of Birovljev et al. 

[1995]. Experimental studies on buoyancy-affected two-phase flow in porous media 

[Auradou et al., 1999; Stohr and Khalili, 2006] also show that gas flow through a channel 

is unstable and it is more likely that gas migrates upwards intermittently in the form of 

isolated clusters. The identification of critical gas saturation for continuous gas flow by 

Tsimpanogiannis and Yortsos [2004], as the gas saturation at the onset of mobilization, is 

not confirmed by the simulations presented here. 
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Figure 5.12 Bubble growth from a single nucleation site. 100x50 network, white 

represents gas, color represents solute concentration in aqueous phase, pore throats are 

not shown, Bo = 8.54e-4, <Rp> = 400 μm, ΔP = 1000Pa. (see also the animation 

single_bubble.wmv in Appendix) 

nucleation site

0 Sf=3 
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 To visualize the multiple bubble growth pattern, multiple nucleation sites are 

assigned in a 100 by 100 network, as shown in Figure 5.13. The nucleation sites are 

randomly distributed in the center of the network (a 60 by 60 square region) to minimize 

boundary effects. The growth pattern and solute concentration fields are shown in Figure 

5.14 (see also the animation multiple_bubble.wmv in Appendix). The advancement of 

solute concentration is visualized during the miscible displacement of non-carbonated 

water by the injected supersaturated water. Bubbles are gradually nucleated as the 

supersaturated water reaches the nucleation sites. Gas saturation increases when more 

bubbles are nucleated and gas clusters subsequently evolve from the nucleation sites due 

to convective mass transfer. 
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Figure 5.13 Nucleation sites in a 100 by 100 network. Black dots represent 50 randomly 

assigned nucleation sites. 
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(a) PV = 0.09, Sg = 0.07%                                 

 

 

Figure 5.14 (a) visualization of bubble growth pattern and concentration field. 100x100 

network with 50 nucleation sites, same colormap as in Figure 5.12, pore throats are not 

shown, Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. (see also the animation 

multiple_bubble.wmv in Appendix). 
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(b) PV = 0.17, Sg = 2.4%                                 

 

 

Figure 5.14 (b) visualization of bubble growth pattern and concentration field. 100x100 

network with 50 nucleation sites, same colormap as in Figure 5.12, pore throats are not 

shown, Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. (see also the animation 

multiple_bubble.wmv in Appendix). 
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(c) PV = 0.32, Sg = 7.4%                                 

 

 

Figure 5.14 (c) visualization of bubble growth pattern and concentration field. 100x100 

network with 50 nucleation sites, same colormap as in Figure 5.12, pore throats are not 

shown, Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. (see also the animation 

multiple_bubble.wmv in Appendix). 
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(d) PV = 0.45, Sg = 10.0%                                 

 

 

Figure 5.14 (d) visualization of bubble growth pattern and concentration field. 100x100 

network with 50 nucleation sites, same colormap as in Figure 5.12, pore throats are not 

shown, Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. (see also the animation 

multiple_bubble.wmv in Appendix). 
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(e) PV = 0.96, Sg = 20.3%                                 

 

 

Figure 5.14 (e) visualization of bubble growth pattern and concentration field. 100x100 

network with 50 nucleation sites, same colormap as in Figure 5.12, pore throats are not 

shown, Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. (see also the animation 

multiple_bubble.wmv in Appendix). 
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 (f) PV = 1.26, Sg = 29.6%                                 

 

 

Figure 5.14 (f) visualization of bubble growth pattern and concentration field. 100x100 

network with 50 nucleation sites, same colormap as in Figure 5.12, pore throats are not 

shown, Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. (see also the animation 

multiple_bubble.wmv in Appendix). 
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 At high gas saturations, large clusters are formed in the network and the liquid 

flow rate decreases dramatically. The regions behind the clusters in the direction of liquid 

flow have solute concentrations close to the equilibrium value (see Figure 5.14 f). This 

could be attributed to the lack of solute supply by liquid flow and the gas stripping 

process when the solute concentration decreases after supersaturated water flows through 

the corner filaments around gas-occupied pores. Figure 5.15 depicts the flow potential 

profiles at different gas saturations in the network corresponding to the concentration 

fields in Figure 5.14. At low gas saturation (Figure 5.14 b and Figure 5.15 a), the flow 

potentials are well-distributed across the network. At high gas saturation (Figure 5.14 f 

and Figure 5.15 b), the potential in regions behind large clusters are almost uniform, 

resulting in very small liquid flow therein. Growth of the clusters in those regions is 

slowed unless a pathway of liquid flow is available again by migration of blocking 

clusters. This phenomenon could be used to explain the observations in SWI experiments 

(see Figure 5.5) by Li [2004]. Free gas flow can be detected only at a certain distance 

from the injection point and the gas production distance is independent on the injection 

flow rate and pressure of supersaturated water. Increasing injection pressure and flow rate 

can only increase the gas production rate in the vicinity of the injection well [Li, 2004]. 

The simulations show that although low mass transfer zones exist, gas saturation still 

increases in the whole medium, a phenomenon also observed in Li’s experiments. This is 

because gas saturation in the whole network is already established before the large 

blocking clusters are formed. 
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           ΔP = 0          ΔP = 1000 Pa  

 

(a) PV = 0.17, Sg = 2.4%                                 

 

Figure 5.15 (a) Visualization of water potential field corresponding to Figure 5.14 b.  
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           ΔP = 0          ΔP = 1000 Pa  

 

(b) PV = 1.26, Sg = 29.6%                                 

 

Figure 5.15 (b) Visualization of water potential field corresponding to Figure 5.14 f.  
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5.6.2  Effect of nucleation fraction 

 To study the effect of nucleation fraction, simulations are conducted with more 

nucleation sites in the network, as shown in Figure 5.16 (250 nucleation sites compared 

to 50 in Figure 5.13). The bubble growth and concentration fields with high nucleation 

fraction are shown in Figure 5.17. The bubble growth pattern is similar to the pattern with 

lower nucleation fraction. Larger clusters tend to form close to the injection boundary, 

while smaller ones are trapped at farther downstream. For different nucleation fractions, 

no significant effect is observed on the highest gas saturation that can be obtained before 

gas can escape from the network. The highest gas saturations for multiple realizations are 

in the range of 27 to 31%.  
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Figure 5.16 Nucleation sites in a 100 by 100 network. Black dots represent 250 randomly 

assigned nucleation sites. 
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(a) PV = 0.16, Sg = 7.9%                                 

 

 

Figure 5.17 (a) visualization of bubble growth pattern and concentration field. 100x100 

network with 250 nucleation sites, same colormap as in Figure 5.12, pore throats are not 

shown, Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. 
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(b) PV = 0.44, Sg = 29.9%                                 

 

 

5.17 (b) visualization of bubble growth pattern and concentration field. 100x100 network 

with 250 nucleation sites, same colormap as in Figure 5.12, pore throats are not shown, 

Bo = 8.54e-5, <Rp> = 400 μm, ΔP = 1000Pa. 
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5.6.3 Water relative permeability 

 Water permeability is calculated by Darcy’s Law, PLUK Δ= /μ , where U is 

Darcy velocity ( ,/ AQU =  where Q is the water flow rate and pRWA 2=  is the cross-

sectional area of the network, W is the width of the network and pR  is the average pore 

radius), μ  is water viscosity, L is the length of the network and PΔ  is the pressure drop. 

Water relative permeability is the ratio of water permeability to the absolute permeability 

of the medium, corresponding to the permeability at a water-saturated condition. Water 

relative permeability curves for the networks with 50 and 250 nucleation sites are shown 

in Figure 5.18 and Figure 5.19, respectively. A linear relationship between water relative 

permeability and water saturation is observed within the limited range of water saturation 

explored by the simulations. As gas saturation increases in the network, liquid flow rate 

decreases dramatically due to the reduced water conductivity.  
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Figure 5.18 Water relative permeability vs. water saturation from three realizations of a 

100x100 network with 50 nucleation sites, <Rp> = 400 μm, ΔP = 1000Pa.  
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Figure 5.19 Water relative permeability vs. water saturation. 100x100 network with 250 

nucleation sites, <Rp> = 400 μm, ΔP = 1000Pa.  

 

5.6.4  Effects of heterogeneity   

 To investigate the effects of heterogeneity, a lower permeability zone is 

embedded in the network, which is achieved by decreasing the sizes of the pore throats in 

a 20 by 30 block in the network by 2.5 times. Figure 5.18 shows the gas evolution and 

concentration profile in the heterogeneous medium. As expected, the solute concentration 

within the heterogeneity increases slowly compared to the rest of the network due to the 

lower permeability ( 2
tRK ∝ ). However, nucleation sites can still be activated and 

bubbles appear in the zone, a behaviour that is unlikely to take place during air sparging.  
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(a) PV = 0.44, Sg = 29.9%                                 

 

Figure 5.20 (a) visualization of bubble growth pattern and concentration field. A 20x30 

heterogeneity is embedded in the 100x100 network with 250 nucleation sites, same 

colormap as in Figure 5.12, pore throats are not shown, Bo = 8.54e-5, <Rp> = 400 μm, 

ΔP = 1000Pa. 
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(b) PV = 0.44, Sg = 29.9%                                 

 

Figure 5.20 (b) visualization of bubble growth pattern and concentration field. A 20x30 

heterogeneity is embedded in the 100x100 network with 250 nucleation sites, same 

colormap as in Figure 5.12, pore throats are not shown, Bo = 8.54e-5, <Rp> = 400 μm, 

ΔP = 1000Pa. 
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5.6.5  Macroscopic mass transfer rates 

 The macroscopic rate of CO2 mass transfer from the liquid to the gas phase is 

expressed as: 

     )( intCCKN −=       (5.27) 

where K [1/s] is the mass transfer rate coefficient, Cint is the concentration at the interface 

and C is the volumetric average concentration in the liquid phase: 

     
∑

∑
=

i
i

i
ii

V

CV
C      (5.28) 

where Vi and Ci are the volume and solute concentration of the ith node.  

 The mass transfer rate coefficient, K, is a function of gas saturation. Figure 5.21 

displays curves of K against gas saturation for two realizations. At low gas saturation (Sg 

< 15%), K decreases dramatically with increasing Sg. At high gas saturation (Sg > 15%), 

the curves level off and K approaches a relatively constant value. The mass transfer rate 

coefficient K also depends on Peclet number, 
m

p

D

Ru
Pe

><
= , which decreases as gas 

saturation increases, because the simulation is carried out using boundaries of constant 

ΔP across the network. Figure 5.22 shows the effect of supersaturation of the injected 

solution on the mass transfer rate coefficient for different gas saturations: K depends on 

both Sg and Sf at low gas saturations. When gas saturation is close to steady state (Sg > 

25%), K becomes independent of Sf. Using a continuum model to fit the SWI 

experimental results, Li [2004] estimated 4103 −×=K  [1/s] at 15=Pe , which is in a 
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good agreement with the value of mass transfer rate coefficient at high gas saturations 

calculated in this study (in the range of 4101 −× to 4105 −× [1/s]).  
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Figure 5.21 Mass transfer rate coefficient vs. gas saturation (two realizations). 100x100 

network with 50 nucleation sites. <Rp> = 400 μm, ΔP = 1000Pa. 

 

 

 



 196

 

 

 

 

 

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

8.0E-04

9.0E-04

1.0E-03

1 1.5 2 2.5 3 3.5
Sf

K
(1

/s
)

Gas saturation 20%
Gas saturation 22%
Gas saturation 25%
Gas satruation 27%

 

 

Figure 5.22 Mass transfer rate coefficient vs. supersaturation of injected solution at 

different gas saturations. 
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 Equation 5.27 describes the macroscopic mass transfer in the network and is often 

used for continuum models at larger scale. Three assumptions are made:  

1) linear driving force for mass transfer, (C - Cint);  

2) uniform liquid concentration in the network; 

3) homogeneous gas distribution. 

However, gas evolution is a dynamic process. Visualizations show that in the network 

model, neither the gas distribution is homogeneous, nor is the liquid concentration 

uniform, especially at low gas saturation conditions. With respect to Figure 5.14 and 5.17, 

less than one pore volume of the supersaturated water needs to be injected to achieve 

high gas saturations. Calculations of the volumetric average concentration of the liquid 

phase, C, actually underestimate the effective driving force of mass transfer, leading to an 

overestimation of K. This effect is significant, especially at conditions of low gas 

saturations. For the same Peclet number, higher injection concentration leads to higher 

mass transfer rate. For simulations shown in Figure 5.22, 0.25 and 0.38 PV of injected 

solution (Sf = 3) are needed to obtain 20% and 27% gas saturation, respectively,  

compared to 0.66 and 0.98 PV for Sf = 1.5.   

 Correlations between Sherwood number and Peclet number are often used to 

describe the process of convective mass transfer. The Sherwood number is defined as: 

     mp DRKSh ><= ∗                                        (5.29) 

where ∗K  [m/s] is the mass transfer coefficient. iaKK /=∗ , where ia [1/m] is the 

specific interfacial area between gas and liquid phases (interfacial area per unit pore 
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volume of the porous medium). Figure 5.23 shows typical Sh vs. Pe curves from the 

simulations.  These data follow 42.0065.0 PeSh =  in the range 15 < Pe < 65. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23. Sherwood number vs. Peclet number curves. Three realizations in 100x100 

network with 50 nucleation sites. <Rp> = 400 μm, ΔP = 1000Pa. 
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5.7 Conclusions 

 

 A pore network model is developed to simulate the process of in situ gas 

evolution during supersaturated water injection (SWI). Simulations are carried out under 

different flow conditions to investigate bubble growth driven by convective mass transfer 

and bubble migration driven by buoyancy. Ramified clusters evolve from the nucleation 

sites and migrate upwards intermittently during the miscible displacement of water by 

supersaturated solution.  Processes of cluster coalescence and fragmentation are 

accounted for. Visualizations of liquid pressure profile show that liquid flow could be 

significantly affected by gas distribution in the medium. Water relative permeability 

dramatically decreases as gas saturation increases. The observed pattern of bubbles 

repeatedly trapped by capillary forces after mobilization implies that the definition of 

critical gas saturation for continuous gas flow by Tsimpanogiannis and Yortsos [2004] is 

not applicable to the gas evolution problem in homogeneous porous media. Larger gas 

clusters tend to form close to the injection boundary and dissolved gas is stripped after 

the supersaturated water flows through the clusters by corner flow. Although the 

stripping process could result in the existence of zones with low solute concentration 

(near the saturated value), relatively homogeneous gas distribution could still be achieved, 

a phenomenon that is consistent with the experimental observations [Li, 2004]. In this 

study, the largest gas saturations in a homogeneous medium could be obtained are in the 

range of 27% to 31%. Effects of heterogeneity of the porous medium are investigated and 

the simulations show that bubbles could be nucleated and grow inside the zone of low 

permeability. This behaviour could be favourably exploited in NAPL recovery in order to 
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overcome the difficulties associated with air sparging (lack of direct contact between gas 

and contaminants due to the gas bypassing of the less permeable contaminated zones). 

The developed pore network model reproduces the fundamental physics of two phase 

flow, convective mass transfer and capillary phenomena and the results obtained, such as 

water relative permeability, mass transfer rate coefficient and Sherwood number, could 

be used to inform simulations using continuum models at larger scale. 
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Chapter 6 

Conclusions and Recommendations 

 

 

6.1  Conclusions 

 

  A number of fundamental issues concerning convective mass transfer across 

fluid-fluid interfaces in porous media are investigated by simulating the processes of   

mass transfer to/from distributed sinks/sources, which focus on i) slowly dissolving liquid 

filaments of a wetting non-aqueous phase liquid (NAPL) held in the corners of angular 

pores or throats and ii) gas bubbles growing during the flow of a supersaturated aqueous 

phase in porous media. Both of these processes are immediately relevant to groundwater 

remediation processes. 

 

6.1.1 Effects of the stability of NAPL films on wetting NAPL dissolution 

A pore network model is developed to qualitatively explore the dissolution 

behaviour of wetting NAPL in porous media. Under conditions of preferential NAPL 

wettability, NAPL is retained within small pores and in the form of thick films (liquid 

filaments) along the corners and crevices of the pore walls. These NAPL corner filaments 

are assumed to be responsible for the hydraulic continuity between NAPL-filled pores 
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and the large interfacial area for mass transfer during NAPL dissolution. A stepwise 

solution procedure is used to obtain the flow and solute concentration fields in the 

network. The simulations reproduce the mechanism of mass-transfer-driven drainage 

observed in experiments using transparent glass micromodels [Sahloul et al., 2002].  

Rupture of NAPL films is related to disjoining pressure and film curvature. Distinct 

clusters of residue NAPL are formed subsequently and a cluster multiple labeling 

algorithm is developed to simulate the process. The simulation results indicate that the 

NAPL dissolution behavior is very sensitive to the stability and distribution of thick 

NAPL films along pore corners. Rupture of NAPL films results in severe loss of NAPL-

water interfacial area and a large reduction in the rate of mass transfer. The observed 

behavior of long-term high effluent NAPL concentrations (near NAPL solubility) is 

attributed to stable NAPL films.  The simulations strongly suggest that factors affecting 

NAPL film stability may play an important role in residual NAPL dissolution in oil wet 

systems. 

 

6.1.2 Convective mass transfer across fluid interfaces in straight angular pores 

 A finite element method is used to study convective mass transfer in wetting fluid 

filaments along corners of angular pores. The exact geometry of the flow and mass 

transfer domain within the pore walls and the arc meniscus of the fluid interface is 

accounted for in terms of the corner half-angle, contact angle and interfacial meniscus 

curvature. Both perfect-slip and no-slip interfaces were considered. The model is verified 

by comparing the results of hydraulic resistance factors and hydraulic conductance of the 

corner filaments to the numerical results reported by Patzek and Kristensen [2001]. Novel 
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results were obtained for the normalized average exit concentration in corner filaments.  

These results were correlated with the pore-scale Peclet number and the characteristic 

dimensions of the corner geometry and compared to the previously published 

approximations using 2d slit models. The latter solutions are found to be in considerable 

errors. The results obtained can be used to facilitate the use of pore network simulators in 

which pores and throats are modeled as straight tubes of rectangular or equilateral 

triangular cross-sections. 

 

6.1.3 In situ gas evolution in porous media during supersaturated water injection 

A 2D pore network model is developed to simulate the process of in situ gas 

evolution in porous media during supersaturated water injection (SWI). The model is 

based on the fundamental physics of miscible flow, capillarity, bubble nucleation, 

convective mass transfer and buoyancy-driven gas migration and fragmentation. 

Simulations under different flow conditions show that: 

• Bubble growth is driven by convective mass transfer and sufficient large bubbles 

can be mobilized by buoyancy and migrate upwards intermittently. Bubble coalescence 

and fragmentation take place repeatedly during the processes. The mobilized bubbles 

could be trapped by capillary forces again.  

•  Gas distribution in porous media significantly affects the liquid flow. Liquid 

relative permeability decreases significantly as gas saturation increases. 

• 27-31% gas saturation can be achieved by SWI in homogeneous porous media 

before gas can escape from the network. 
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• Relatively homogeneous gas distribution can be obtained by SWI while larger gas 

clusters tend to form close to the injection boundary. 

• Regions of low solute concentration (near the solubility value) and low liquid 

flow rate exist in the medium when large gas clusters block the liquid flow and dissolved 

gas is stripped after the supersaturated solution flows through the blocking clusters. 

• Gas bubbles can be nucleated and subsequently grow inside low permeability 

zones, a phenomenon which makes SWI advantageous over air sparging in its potential to 

contact and volatilize NAPL sources. 

  

6.2 Recommendations 

 

• Since the wettability of porous media plays an import role in multiphase flow and 

NAPL remediation, experimental data of disjoining pressure for environmentally relevant 

NAPLs are needed for further investigations of the effects of NAPL film stability on 

NAPL dissolution. To the best of the author’s knowledge, there is no systematic 

experimental study on the issue in the literature so far.  

• The present simulations have neglected viscous NAPL flow in dissolving NAPL 

filaments, caused by capillary pressure gradients. While this is considered appropriate for 

a slowly dissolving wetting NAPL, viscous flow in the NAPL phase would have to be 

accounted for in cases of rapid dissolution (e.g., in the presence of surfactant solutions). 
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• Convective mass transfer of multiple-component fluids and reactions taking place 

in corner filaments may be important in modeling some processes of enhanced NAPL 

remediation.  

• In the study of convective mass transfer in angular pores, straight pores or throats 

are chosen to idealize the pore geometry. However, models with non-constant pore cross 

sections (e.g., bi-conical pores) are sometimes used in pore scale simulations. The 

convective mass transfer in such geometries could be studied to facilitate pore network 

modeling. 

• In the study of gas evolution, a single component gas phase is assumed. Models 

should be developed to simulate the process of gas evolution from multi-component 

solutions when the partial pressure of each gas component has to be accounted for. 

• Further studies on NAPL recovery using SWI method are needed. This is a 

problem of three phase flow.  Upon direct contact with growing bubbles, NAPL spreads 

on the surfaces of the bubbles and mass transfer issues of diffusion and mobilization of 

NAPL have to be addressed.  

• The reverse process to gas evolution from supersaturated solution is the 

dissolution of bubbles into an undersaturated aqueous phase. The developed model could 

be modified to simulate such phenomena. 

• Gas evolution in porous media is an important research subject.  Two situations of 

great interest are (i) in situ formation of CO2 bubbles within the porous anode electrode 

backing layer of direct methanol fuel cells (DMFC) [e.g., Argyropoulos et al., 1999 a, b; 

Yang et al., 2005] and (ii) the potential loss of seal integrity in reservoirs used for CO2 

sequestration that may accompany the appearance of gas bubbles in cap rock as a result 
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of reservoir pressure fluctuations [e.g., Patzek et al., 2003, Pruess, 2005]. The developed 

pore network model could be used (with some modifications) to simulate these processes. 

• Most of the computer programs in this research are written in FORTRAN. For 

models as complicated as the ones developed here, object oriented languages, C++ for 

instance, are preferable from a programming point of view.  

• Upscaling pore network modeling results remains a considerable challenge. How 

to apply the microscopic results to the macroscopic and field-scale modeling should be 

the focus of future research on the SWI process. 
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Appendix A 

FAMLAB GUI Information in Simulation of Convective 

Mass Transfer in Corner Filament 

 

 

Specified multi-physics equations 
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Boundary Settings – Incompressible Navier-Stokes Equation 

 

 

 

Boundary Setting Value 

1. pore wall No slip  

2. plane dividing half domains Slip/symmetry  

3. inlet Normal flow/pressure  P0 = pre 

4. outlet Outflow/pressure P0 = 0 

5. interface Slip/symmetry or no slip  
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Boundary Settings – Convection and Diffusion 

 

 

 

Boundary Setting Value 

1. pore wall Insulation/symmetry  

2. plane dividing half domains Insulation/symmetry  

3. inlet Concentration  C0 = 1 

4. outlet Convective flux P0 = 0 

5. interface Concentration C0 = 0 
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Mesh Parameters  
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Solver Parameters 
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Constants 
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Appendix B 

Computer Programs 

 

Computer programs are provided in attached CD (only available in bound copies): 

1. FORTRAN program for simulation of wetting NAPL dissolution 

NAPL_film.doc 

2. FORTRAN program for simulation of gas evolution 

bubble.doc 

3. MATLAB program for visualization of concentration field 

color_plot.m; coord.m; drooc.m; fillex_color.m 

4. MATLAB program for visualization of pressure field 

pres_plot.m; fillex_pressure.m 

5. MATLAB program for making movie clips for bubble growth 

movietest.m; colorplot_movie.m 

6. MATLAB program for visualization of NAPL clusters 

color_cluster.m; fillex_clu.m 
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Appendix C 

Movie Clips 

 
Movie clips for bubble evolution are provided in attached CD (only available in bound 
copies): 
 
 

1. Bubble evolution from single nucleation site 

single_bubble.wmv 

2. Bubble evolution from multiple nucleation sites 

multiple_bubble.wmv 

 

 

 

 

 

 

 

 


