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Abstract

This thesis addresses two main issues: first, forecastiog-tdrm electricity market
prices; and second, the application of short-term elagtrivarket price forecasts to
operation planning of demand-side Bulk Electricity Markets@umers (BEMCs). The
Ontario electricity market is selected as the primary caaekat and its structure is stud-
ied in detail. A set of explanatory variable candidates éntbelected accordingly, which
may explain price behavior in this market. In the processetécing the explanatory
variable candidates, some important issues, such as direadirect effects of the vari-
ables on price behavior, availability of the variables bef®al-time, choice of appropri-
ate forecasting horizon and market time-line, are takemactount. Price and demand
in three neighboring electricity markets, namely, the NewkY New England, and PIJM

electricity markets, are also considered among the exfganeariable candidates.

Electricity market clearing prices in Ontario are calcethévery five minutes. How-
ever, the hourly average of these 5-minute prices, reféoed the Hourly Ontario En-
ergy Price (HOEP), applies to most Ontario market partiipéor financial settlements.
Therefore, this thesis concentrates on forecasting themH®Eemploying various linear

and non-linear modeling approaches.

The multivariate Transfer Function (TF), the multivari&gnamic Regression (DR),
and the univariate Auto Regressive Integrated Moving Averg®RIMA) are the lin-
ear time series models examined. The non-linear approacmegrise the Multivariate
Adaptive Regression Splines (MARS), and the Multi-Layer Bpton [((MLP) neural
networks. Multivariate HOEP models are developed considewo forecasting hori-
zons, i.e., 3 hours and 24 hours, taking into account the rcasket time-line and the
ability of market participants to react to the generateegdasts. Univariate ARIMA
models are also developed for day-ahead market prices thitbe neighboring electric-
ity markets. The developed models are used to generatefpreasts for low-demand,

summer peak-demand, and winter peak-demand periods.



The HOEP forecasts generated in this work are significantlgeraccurate than any
other available forecast. However, the accuracy of the ig¢ee HOEP forecasts is rel-
atively lower than those of the price forecasts for Ontari@ighboring electricity mar-
kets. The low accuracy of the HOEP forecasts is explainedhgacting a price volatil-
ity analysis across the studied electricity markets. Tlolatdity analysis reveals that
the Ontario electricity market has the most volatile pricespared to the neighboring
electricity markets. The high price volatility of the Oritaelectricity market is argued
to be the direct result of the real-time nature of this marketis further observed that
the inclusion of the just-in-time publicly available datamultivariate HOEP models
does not improve the HOEP forecast accuracy significanttys Tack of significant im-
provement is attributed to the information content of thekeatdata which are available

just-in-time.

The generated HOEP forecasts are used to plan the shortpemation of two typ-
ical demand-side case-study BEMCs. The first case-study BEM(ecess industry
load with access to on-site generation facilities, and #o®sd one is a municipal wa-
ter plant with controllable electric demand. Optimizatimodels are developed for the
next-day operation of these BEMCs in order to minimize thealtenergy costs. The op-
timization problems are solved when considering marketepiorecasts as the expected
future prices for electricity. The economic impact of priceecast inaccuracy on both the
case study is analyzed by introducing the novel Forecasturacy Economic Impact
(FIEI) index. The findings of this analysis show that elaxtyi market price forecasts
can effectively be used for short-term scheduling of dernsidd BEMCs. However,
sensitivity to price forecast inaccuracy significantlyigaracross market participants. In
other words, a set of price forecasts may be considered faiscenough” for a customer,

while leading to significant economic losses for another.
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Chapter 1

Introduction

1.1 Research Motivation

During the past decade, many countries have moved from izaytintegrated operat-

ing environment and have introduced privatization, coftipatand hence deregulation
of their power industry. In vertically integrated systemlgctricity price is usually regu-

lated and customers are offered pre-determined tariffsommpetitive electricity markets,

however, market operators determine the electricity piocespecific intervals during a

day (e.g., 5-minute or hourly prices), taking into accowariaus economical and opera-
tional factors. Thus, the supply and demand side markeicgeahts are faced with the

new challenge of electricity market price uncertainty iaitfdaily operations.

In a competitive electricity market, participants have tiption of trading electric-
ity through spot markets, forward markets, or physicaltbial contracts. Furthermore,
Bulk Electricity Market Customers (BEMCs) may choose to supbsirtenergy needs
using on-site Distributed Generation (DG) facilities. BEM@ay also adopt other feasi-
ble load management strategies (e.g., load shifting) irra@minimize their electricity

costs. Given such a wide variety of options, conjecture effthure electricity market
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prices is essential for market participants in order toroe their operation.

A prior knowledge of electricity market price fluctuationslps power suppliers in
setting up rational offers in the short-term, as well asglgsg physical bilateral con-
tracts in the medium-term. In addition, generation expamgilans are directly influ-
enced by the trend of electricity market prices in the losigrt. For the demand-side, an
insight into the market price trends and fluctuations is iadun order to design optimal
operational strategies in the short-term. Furthermois,itisight can help the demand-
side to hedge against the risk of price volatility througlygibal bilateral contracts in
the medium-term, and aid in the planning of their investreentDG options over the
long-term. In view of the these facts, electricity markdaterforecasting has gained a
critical significance in electricity market research dgrihe past recent years. However,
there are many aspects of the price-forecasting probletrreha@ain to be addressed, as

discussed in the following sections.

Load management programs are receiving a great deal ofiattdrom both the In-
dependent System Operators (ISOs) and the BEMCs. The ISOddpodliable tools
to reduce the system demand during stressed operating AdweBEMCs, on the other
hand, look for feasible options to avoid the high electyieitarket prices during peak
hours. Employing on-site electricity generation facitiand managing the controllable
part of their load are two viable options being promotednsieely by the ISOs for the
BEMCs. These options call for new research to derive optimaitslerm operational
strategies for the BEMCs while taking into account the uratetbehavior of future elec-

tricity market prices.

This thesis addresses the important issues of forecastingef electricity market
prices and scheduling the short-term operation of BEMCs. Tdsgarch is novel be-
cause no previous work has been reported that dealsimghratingthe operation of
the demand-side with the competitive electricity marketsac¢hieve increased benefits

for the system as a whole. The Ontario electricity marke¢ieded as the primary case
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market and its structure is studied in detail. Thereaftesetaof explanatory variable
candidates are selected from Ontario and its neighboringetss and various methods
are employed to forecast future Ontario electricity magketes. The generated Ontario
market price forecasts are then used for short-term oparptanning of two case study
BEMCs, one with on-site generation facilities and one withddéxt-day operation of
the case study BEMCs is formulated and the corresponding mgatiion problems are
solved to minimize their total energy costs. Economic intmdi@rice forecasting inac-

curacy in both the case studies is also analyzed.

The “big picture” of this research is presented in Figure IHistorical data from
the electricity market is used by the forecasting systemetaoegate electricity market
price forecasts. An optimization model is developed caersnd) the BEMC's techni-
cal characteristics, generated electricity market praredasts, and any other relevant
information from the electricity market. The optimizatipnoblem is solved and opti-
mal operation schedules are derived, so that the net cosaifieity transactions with
the electricity market is minimized. Effectiveness of wgsprice forecasts for operation

planning is then assessed by an economic impact analysisgurce.

The Ontario electricity market is selected as the case mad@ause of its various
unique features. For example, several kinds of price anehtey caps exist for whole-
sale market participants and retail customers. Also, eWem @&s deregulation, about
75% of the generation capacity is held by one generating eomadn addition, Ontario
is a single-settlement uniform-price real-time marketiletine other four adjacent North
American markets are two-settlement markets with nodakegri Furthermore, the On-
tario power grid is directly connected to the New York and Wt electricity markets
and indirectly connected to the New England and PJM markets.also connected to
the regulated utilities in Quebec and Manitoba, both hagiggificant energy transac-
tions with utilities in the United States. As a result of teggnificant interconnections,
the operation of the Ontario electricity market can grgaiffect the Northeast and the

Mid-West power interconnections in North America.
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Figure 1.1: The “big picture”.

1.2 Literature Review

1.2.1 Electricity Market Price Forecasting

Electricity market price forecasting is a relatively neveaof research, unlike the elec-
tric load forecasting problem [1]. Chronological load véioas show a high degree of
seasonality and dependence on exogenous factors, egpeaather-related variables.
These dependencies are well studied and addressed anddtiewhg for various situ-
ations are well known. However, the relationship betweectekity market price and
other factors (e.g., demand) have not been clearly addrgssdf at all. For example, an
analysis by Vuceti@t.al in [2] to understand the relationship between the demand and

price in the electricity market of California shows that severice behavior regimes
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may exist, and numerous characterizing models are needkastoate the approximate
price-demand relationship in different situations.

Electricity market prices are highly volatile, sufferingpin unusually high or low
price spikes [2,3,4]. Moreover, prices are shown to be mol&tie in electricity markets
than other financial markets [5]. These are mainly becaudbeofact that electrical
supply and demand need to be on a real-time balance andgotliler commodities,
it is practically impossible to store electricity econoallg. In general, various factors
may affect electricity market price volatility such as, »pected physical problems in
generation and transmission systems, sudden changestimeveanditions, availability
of relatively inexpensive generation facilities (e.g.claar and hydro), volatility in fuel

markets, and possible collusion among market players.

The factors which may specifically affect price volatilibhgwever, vary across elec-
tricity markets. A study by Beninet al. [3] shows that in California, PJM and Spain
electricity markets, price volatility is strongly connedtto the installed generation ca-
pacity. However, in the erstwhile UK power pool, market fegions, such as the inclu-
sion of a “capacity payment” factor in the spot price, arenibin [3] to be the dominant
factors leading to highly volatile prices. It is also demiated in [3] that proper market
regulations can restrict any possible collusive behawiooreg generation companies and
hence reduce electricity price volatility, as in the cas¢éhef Spain’s electricity market.
These facts imply that it would be very difficult to generalia pattern in price behav-
ior across electricity markets, and hence, price foregssi a complexnarket-specific
phenomenon.

Electricity market prices may be forecasted by using eliraulation-based or analysis-
based methods. In simulation-based methods, which ardymesad by power utilities
and market operators, the actual market dispatch is mirdiblgeconsidering initial sup-
ply offers, demand bids, and system operating constrait][ Although simulation-
based price forecasting can provide a more detailed vielweptice fluctuations, they
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require full insight into the system operation and hencenateractical for market par-
ticipants. Analysis-based methods, however, use histlosjgeration data to forecast fu-
ture prices. The present thesis employs analysis-basdwdwetor short-term electricity
market price forecasting with a maximum 24-hour forecagstiarizon.

The first attempt to forecast electricity market prices vegmorted in 1997 [8], where
Artificial Neural Networks (ANNSs) have been used to prediet tuture System Marginal
Prices (SMPs) in the erstwhile UK power pool. Subsequesglyeral methods have been
reported in the literature for short-term electricity metrgrice forecasting. Among these,
artificial intelligence-based methods [9, 10, 11,12, 13,15}, univariate Auto Regres-
sion Integrated Moving Average (ARIMA) models [14,16, 17, 1Bultivariate Dynamic
Regression (DR) models [14,19], multivariate Transfer FondfTF) models [14,19,20],
input/output hidden Markov models [21], wavelet models,[14], and General Auto
Regressive Conditional Heteroscedastic (GARCH) models [22$@ame of the methods
that have been reported.

Szkutaet al. [9] have developed ANN models using historical price, dedpand
system reserve data, and 1-hour-ahead price forecasteneeated for the Victorian
(Australia) power market. Multi-Layer Perceptron (MLP)daRadial Basis Function
(RBF) neural networks have been employed in [10, 11, 12, 13bttechst the average
on-peak (from 7 AM to 11 PM) and average off-peak (from 1 AM tAM and from 11
PM to 12 PM) New England electricity market prices. Histatiprice, market demand,
fuel prices, and system reserve data are considered asfagpoits in these studies, and
1-step-ahead forecasts are generated. Employing diffeedwork structures and imple-
menting improved training algorithms have led to slightétter forecasting accuracy in
these studies.

Contrerast al.[16] have developed univariate ARIMA models to forecast teieity
market prices in California and Spain. Multivariate TF and m&dels have been applied

by Nogaleset al.[19] to the prices in Californian and Spanish electricity keds, where
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demand is the only explanatory variable used. Comparingdrexést results obtained
in [16] with those obtained in [19] shows that the forecasteagated by using multi-
variate TF and DR models have gained higher accuracy thae thith ARIMA models.
Nogales and Conejo [20] have used TF models to forecast Pdittieiy market prices,
where demand is again the only explanatory variable studiad/ariate ARIMA models
are also used in [18] for predicting Leipzig’'s (Germany)ctieity market prices. Nu-
merous forecast models are developed in [18], based on whgboncluded that in the
case of the Leipzig electricity market, forecasting hoymtices using separate models

for each hour yields better results than modeling all 24 lyquiices as a whole.

Wavelet transformation used by Conejoal. in [17] is observed to slightly improve
the forecasting accuracy of univariate ARIMA models. GARCH misdcare used by
Garciaet al. in [22] to account for fluctuations in the variance of elettyi prices in
the Spanish electricity market. Input/Output hidden Markeoodels are employed by
Gonzalezt al. in [21] to generate 1-hour-ahead forecasts for Spanishrigli®g market
prices; however, their forecast results do not depict aggicant improvement com-
pared to previous works. In [14], TF, DR, ARIMA, wavelet, and NMhodels are used
to generate 24-hour-ahead price forecasts for the PJMrielgctmarket, where the his-

torical demand is the only explanatory variable considanetis study.

It can be concluded from the above-cited studies that nawlite TF and DR mod-
els have yielded more accurate results than other methdasevweomparison has been
possible. For example, while the price forecasts genetayaasing TF and DR mod-
els for the Spanish electricity market report a weekly Medis@dute Percentage Error
(MAPE) on the order of 5% [19], the weekly MAPE of the foresagenerated by the
input/output hidden Markov models for the same market i8%H5[21]. It is also shown
in [14] that the TF and DR models outperform the ARIMA, ANN, andvelet models
for forecasting PJM electricity market prices.

The Hourly Ontario Energy Price (HOEP) is a province-widéamm market price,
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applicable to wholesale electricity customers in Ontdfiarecasting the HOEP has been
a challenging issue for both market participants and the@ntndependent Electricity
System Operator (IESO) [23]. Simulation-based HOEP fatscare published by the
IESO, referred to as Pre-Dispatch Prices (PDPs), and tmesgdated every hour until
real-time [24]. The last published PDP for a given hour, emall-hour-ahead PDP, is
considered the final price signal to be sent from the IESO tm@mmarket participants
before real-time. Analysis of the historical market datzesds that there exists a signifi-
cant deviation of the HOEP from 1-hour-ahead PDPs, with arPEAf 35.2% over the
first four years of market operation (May 1, 2001-April 3002D. In the only other re-
ported research on HOEP forecasting [15], 1-hour-aheadfoEecasts are generated
by using a non-linear neuro-fuzzy model. Ontario demaniteft outages, and capac-
ity excess/shortfall are considered as input factors. ©hechsts have resulted in daily
MAPESs to be varying between 19.83% to 24% across differesmiangos. To the best of
the author’s knowledge, no work has been reported so faafhEies time series models
to HOEP forecasting.

From the above cited studies, it can also be concluded tiag forecasting accu-
racy varies significantly across the electricity marketsr &ample, the MAPE of the
forecasts generated for Ontario market prices is in therafli20-24% [15], and in the
range of 10-15% for PJM prices [14], while varying betwee 8% for Spanish mar-
ket prices [16, 19]. No studies have been reported that tigate and explaine these
differences.

Furthermore, an important factor to observe is that the efoited references have
employedafter-the-factdata for model building and out-of-sample forecastinghgitgh
building price models usingx-postdata is important in order to discover the factors
influencing price behavior, these data are not availablerbatal-time for a practical
price-forecasting tool. This calls for research on develgorecasting models based on

publicly availablebefore-the-factlectricity market data.
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The forecasting horizon is considered to be one hour in sdntieecabove studies,
since one-hour-ahead forecasting is very useful in examitiie efficiency of the devel-
oped forecasting models. In addition, there may be someehagticipants who are
able to refine their operation based on 1-hour-ahead mariketforecasts. However, in
practice, the majority of market participants are not ablallowed to change their oper-
ation schedules one hour before real-time, depending omérket rules and structure.
Selecting appropriate forecasting horizons, when conisigenarket time-line and the
participants’ ability to react to price forecasts, has reg systematically addressed in

the literature yet.

The Multivariate Adaptive Regression Splines (MARS) apphoaas first introduced
by Friedman [25] to approximate the relationship betweeeeddent variable and a set
of explanatory variables in a piece-wise regression. Céipabf MARS for modeling
time series data was subsequently demonstrated in [26evidgged values of the time
series were treated as explanatory variables. Althoughcapipn of MARS has been
reported for modeling a variety of data with promising pemrfance in recent years, such
as for speech modeling [27] and mobile radio channels ptiedif28], no work has been

reported on applying MARS for electricity market price foasting.

1.2.2 Demand-side Scheduling in Competitive Electricity Market

Optimizing electricity consumption and load managemerat isature area of research
which was originally developed in the 1980s [29]. The coemith load management is
to change the shape of the load curve of electricity conssinaerd hence of the system
as a whole, so that less electricity is consumed during teeesy peak demand hours.
In general, load management programs are promoted by eogliggs to provide their

consumers with economic incentives to reduce their loathduhe stressed periods of
system demand. Electricity consumers are induced to takandae of the available

economic incentives by changing their load patterns angoreding to high electricity
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prices. Theprice-responsivgroup of electricity consumers either have on-site genera-
tion facilities as an alternative source of electricityttoe nature of their controllable load
enables them to reduce their demand during high price h@&xs3[l]. Scheduling the
short-term operation of this group of electricity consusner a competitive electricity

market environment is the focus of this research.

On-site generation of electricity using DG facilities h&ready been widely adopted
in several countries, and estimations show that it will dbote more in the future to the
power generation business [32]. Major manufacturers, etasearch organizations,
and consulting companies believe that by the year 2010, henarket size would be in
the range of $10 to $30 billion in the US and $75 billion worlde:. Furthermore, devel-
opments in small size generation unit markets (under 5 M) i@present the growing
trends toward DG in power industry. Potential economic lien&rom on-site electric-
ity generation are: impact on electricity prices; defeafalipgrades to the transmission
and distribution systems; utilization of waste energy ueses and fuel flexibility; im-
provement in power quality; provision of ancillary seng¢ceogeneration or Combined
Heat and Power (CHP) production; providing reliable powérgad applications, and
microgrid benefits [33, 34, 35, 36, 37].

Various aspects of on-site generation of energy such asgsireliability, and in-
vestment have been addressed in the literature. The eland thermal energy needs
of industrial loads can be separately met by the grid and @erdional thermal energy
generator, respectively. However, several industriess@to have their own on-site gen-
eration facilities with CHP capability, or cogenerationirtgrove their energy efficiency.
The overall efficiency of available cogeneration systentgagally around 75% to 90%,
which makes them a viable option for energy production, $igady when electricity
prices are high [31, 38,39,40,41,42,43].

The common objective for optimal scheduling of cogeneratigstems is to mini-

mize the total cost of meeting thermal and electrical eneapds, subject to equipment
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specifications and operational constraints. Pre-defiresdredity tariffs and bilateral en-
ergy contracts are considered among the optimization ngt in [30, 31, 39,40], in a
regulated electricity sector environment. Optimal ogerabf cogeneration systems is
studied in [41, 42, 43] within the context of liberalized ememarkets. In these studies,
optimization models are developed to decide the mid-tertorgg-term energy contract
options available to cogeneration system owners. Scheglatigeneration systems when

considering short-term electricity market prices has marbreported in the literature.

Electricity consumers with controllable load are capabl@adopting suitable load
management strategies to optimize their usage of gridredeggt[30, 44, 45]. In [30],
an optimization model is developed for a price-responsieegss industry load with no
access to on-site generation facilities. The studied lsaahi industrial flourmill with
storage facilities and night-work shift options. Prodantcommitments are optimally
scheduled to minimize electricity costs under time-of-aetricity rates. In [44], a
fuzzy-based decision making algorithm is developed foustdal load management;
the algorithm is applied to a cool energy storage air comlitig system for minimizing
electricity costs under the Taipower’s time-of-use rateg45], a multi-objective opti-
mization model is developed for municipal water plant mamagnt. Minimizing energy
costs is part of the objective function, given the fact thahping can be scheduled at off-
peak hours. To the best of the author’s knowledge, no stindies been reported which
address the short-term operational scheduling of elé@gtaonsumers with controllable

load in a competitive electricity market environment.

Participants in a competitive electricity market need tostder the challenge of elec-
tricity market price uncertainty in their operation plamgi One feasible approach to deal
with this challenge is to forecast short-term electricitgriet prices and to schedule their
operations accordingly. This approach has been exerais@d] to derive optimal bid-
ding strategies for a thermal-based power supplier. Toéisedf the author’s knowledge,
no studies regarding the applicability of electricity metrprice forecasts for short-term

operation planning of BEMCs have been reported in the litegatu
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Electricity demand forecasting is the core component opgugcheduling programs
in power systems, and economic impact of demand forecastaoguracy has been ad-
dressed in the literature [47, 48, 49]. Studies have shoanithproving demand fore-
casting accuracy, even by 1%, can help power utilities saltens of dollars [48]. In
the same way, an accurate forecast of future electricitketgrices may possibly save
the electricity market participants significant costs. ldgear, no studies have been re-
ported in the literature that examine the economic impa&noploying price forecasts

for short-term scheduling of demand-side market partitipa

1.3 Objectives

Considering the state-of-the-art of research discussedeabite main objectives in this

thesis can be stated as follows:

1. Review rules, regulations, and structure of a selected oagket, which is the

Ontario electricity market, in order to gain a clear undamding of its operation.

2. Detect explanatory variables candidates which areaaibefore real-timdrom
publicly available sources, and examine if these variatdesd potentially explain

market price behavior.

3. Employ well-established linear and non-linear forecasnethods, including MARS,

to relate price behavior in the case market to the selectgldetory variables.

4. Generate price forecasts for the case market considienegasting horizons that

are practical from the viewpoint of market participants.

5. Develop forecasting models for the case market’s neighip@lectricity markets

and compare their accuracy with that of the models develtpédtie case market.
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6. Explain the differences observed in price predictabditross the case market and

its neighboring markets.

7. Apply the generated price forecasts to short-term sdhmgpof two case study

BEMCs, one with on-site generation facilities and one without

8. Analyze the economic impact of price forecasts inacguatthe BEMC case

studies.

1.4 Thesis Outline

Chapter 2 presents a detailed overview of the operation dtitario electricity market.
The Ontario market outcomes, such as market prices for g operating reserves,

and demand, are also analyzed in this chapter for the firstyars of market operation.

Chapter 3 describes the process of selecting explanatoigblercandidates, and
applying linear time series models to forecast the HOEPisePorecasting models for
the neighboring electricity markets, i.e., the New Englaxew York, and PJM markets

are also developed in this chapter.

Chapter 4 discusses the application of two non-linear agpes i.e., MARS and
MLP networks, to HOEP forecasting.

Chapter 5 presents a comprehensive price volatility arefgsiOntario and its neigh-
boring markets. This volatility analysis explains the elifnces observed between the
accuracy of the price forecasts generated for the Ontaeictrédity market and those

generated for the three neighboring electricity markets.

Chapter 6 presents the application of electricity marketepforecasts to short-term
scheduling of two BEMC case studies. Economic impact of gooecasting inaccuracy

on the studied BEMCs is also analyzed in this chapter.
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Finally, Chapter 7 summarizes the main content and conioibsiof this thesis, and

suggests directions for possible future research work.



Chapter 2

An Overview of the Operation of the

Ontario Electricity Market 1

2.1 Introduction

In order to gain a clear understanding of the operation ofthtario electricity market,
which is selected as the case market in this thesis, a ditawerview of this market
is presented in this chapter. The procedures for cleariagettergy and operating re-
serve markets, pre-dispatch and real-time dispatch ofupgelg and demand sides, inter-
jurisdictional energy trading, and procurement of angyliservices are discussed. Fur-
thermore, the main market outcomes, namely pre-dispatdhesi-time energy prices,
operating reserve prices, and market demand, are studi¢gdefperiod May 1, 2002 to
April 30, 2006. The programs introduced by the IESO to enbahe operational aspects
of the Ontario electricity market are also analyzed and #igectiveness is discussed.

IFindings of this chapter have been partly presented in ti¢6 2BEE PES General Meeting, San
Francisco, USA [24], and submitted to in tHeEE Transactions on Power Systef&6].

15
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2.2 Ontario Power Industry at a Glance

In the Ontario electricity sector prior to deregulation,t@io Hydro along with some
small municipal utilities generated, transmitted, andrdtigted electricity to their cus-
tomers across the province. In that era, electricity pneexe regulated by the provincial
government. The Ontario Electricity Act of 1998 reorgadifentario Hydro into five
companies, and on April 1, 1999, these new companies weagectenamely, the Inde-
pendent Market Operator (IMO), Hydro One Inc., Ontario Po@&eneration Inc! (OPG),
the Electrical Safety Authority (ESA), and the Ontario Etaity Financial Corporation
(OEFC). The ESA is responsible for the electric industry déaids, and the OEFC man-
ages financial services of the erstwhile Ontario Hydro asidutcessors.

The Ontario wholesale electricity market opened on May D220wo years after the
originally scheduled date. This market consists of a rea¢-physical market for energy
and operating reserves, and a financial transmission rightget. The Electricity Act
of 2004, renamed the IMO as the Independent Electricitye3y<Dperator (IESO). The
IESO is a non-profit company which is regulated by the OntBnergy Board and its
core responsibility is to operate the Ontario wholesaletgtsty market.

Hydro One Inc., wholly owned by the Government of Ontaridhiss major transmis-
sion company that owns and operates Ontario’s transmis&twork. The transmission
system has remained regulated and the Ontario Energy Botedrdees the transmis-
sion and distribution tariffs. The distribution system Iscaregulated by the Ontario
Energy Board with 91 local distribution companies delivgrigectricity to the retail
customers. The Ontario’s high voltage transmission systaminterconnections with
Manitoba, Quebec, New York, Michigan and Minnesota cordarels through 12 lines.

These high voltage interties allow 4,000 MW of electric powvansactions.

The OPG owns about 75% of the 30,662 MW installed capacityritafio. The total
installed generation capacity consists of: 11,397 MW ofl@arcpower plants (37.2%);
7,855 MW of hydro and other renewable resources (25.6%B46MW of coal-fired
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generation facilities (21%); and 4,976 MW of oil/gas-firedyer stations(16.2%). En-
ergy imports from the neighboring areas are also an impbpart of Ontario’s supply

portfolio. The highest Ontario summer peak demand was decbin August 2006 at
27,005 MW, an about 3% increase with respect to the previeak gemand recorded in
July 2005 at 26,160 MW.

A target of refurbishing, rebuilding, or replacement of %) MW of generating
capacity by the year 2020 has been set by the government totihee®ntario demand
while replacing polluting coal-fired generation. The goweent has also set a target
of reducing Ontario’s energy consumption by 5% by 2007. Hamhore, the Ontario
Energy Board is developing a plan for installation of smarterefor all consumers
by 2010. The Conservation Bureau of the Ontario Power Authdasiresponsible to
pursue the Government’s energy conservation and demandgearent programs. The
Ontario Power Authority was established in 2005, undercatibas of the Electricity
Act of 2004, to ensure the long-term adequacy, reliabsiggurity, and efficiency of the
Ontario electricity sector.

The supply and demand side entities within the provincertadirect connection
to the transmission network must participate in the Onteleéatricity market [51]. This
group of entities consists of generation companies, largestrial loads, and local distri-
bution companies. Other parties with physical assets wdrieltonnected to the distribu-
tion network are referred to as “embedded” facilities and @aoose to either participate
in the market or buy/sell power through contracts with poregailers. There are, how-
ever, other market participants without a physical connacsuch as power traders, or
boundary entities who import/export power to/from Ontaial may participate in the

physical or financial markets.

Energy market participants in Ontario can choose to buylbesergy through bilat-
eral contracts. However, bilateral contracts may not bessarily reported to the IESO.

Bilateral contracts are not considered in the process offedimg and dispatch of energy,
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and have a small share in the whole electricity trading ina@aot

Market participants are grouped into dispatchable anddigpatchable. Dispatch-
able market participants actively bid into the market antkree dispatch commands
every five minutes to reach a specified level of generatioronsemption. In contrast,
non-dispatchable market participants are “price-takargl accept to produce or con-
sume power at real-time and be paid or charged at the hourdg prevailing at that
time. Most of the loads in Ontario are non-dispatchable, modt of the generation
facilities are dispatchable. Non-dispatchable genesadoe those generation facilities
which cannot follow dispatch instruction as required by #B8O; this group of genera-
tors are either small self-scheduling units, such as hytnote running on a small river,

or intermittent generators such as wind farms.

A uniform, province-wide, Market Clearing Price (MCP) is deténed for Ontario
every five minutes. The hourly average of these five-minute M@Rlefined as the
Hourly Ontario Energy Price (HOEP). For financial settletsetthe MCP applies to
dispatchable market participants, whereas the HOEP iscafy® to non-dispatchable
participants. Zonal MCPs are also calculated for each of thintertie zones. The
pre-dispatch and real-time Ontario MCPs and zonal MCPs arbahis of settling the

imports and exports.

The Ontario electricity market has 289 market participghtay 2006). Wholesale
prices apply to most of the electricity consumers havingartban 250 MWh/year of
electricity consumption, whereas, prices are capped atthé level. The capped prices
are determined based on the Regulated Price Plan (RPP) whiohitiated by the Elec-
tricity Act of 2004. Residential customers pay 5.8 centslierfirst 600 kWh per month
and 6.7 cents for the consumption over this threshold, asayf 2006. Designated large-
volume consumers such as schools, universities, hosddams and specified charities

also pay the RPP rates.
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2.3 The Physical Market for Energy and Operating Re-

serves

The physical market is jointly optimized for energy and @ieig reserves. Three sep-
arate operating reserve classes are used in the Ontari@tnaginely, 10 minute syn-
chronized operating reserve (also called 10 minute spginom10S), 10 minute non-
synchronized operating reserve (also called 10 minutespamaing or 10N), and 30
minute non-synchronized operating reserve (30R). Onlyaticdiable generators are au-
thorized to offer the 10S, while dispatchable generatoddaads, and boundary entities
can participate in the market for 10N and 30R operating vesefThese three operating
reserve classes are requirements determined by the Noréniéan Electric Reliability
Council (NERC), and the Northeast Power Coordinating CouncilGaP

The physical market is optimized to maximize the marketsd&omic Gain”, which

is conceptually same as the social welfare. The market ggairon program, referred to
as Dispatch Scheduling and Pricing Software (DSPS), cissiseveral system and data
analysis blocks, with a dc-based security-constraineangpipower flow block together
with an ac-power-flow-based contingency analysis tool saéart [52, 53]. Several
penalty functions and violation variables are also defiredliow thel DSPS to auto-
matically violate system constraints when a solution isfoohd otherwise. A separate
ac power flow is run to calculate the transmission losses;hware incorporated in the
power balance requirements constraint using approprialfy factors, and reactive
power dispatch and voltage profiles.

The market Economic Gain is defined as the difference betwleewvalue of the
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electricity produced and the cost of producing that eleyias follows:

Economic Gain= Zij XPD]' XPFD]'

_ Zpsz X Pg; x PFg,; — ZPOR y POR

— Violation Variables— Tie Breaking (2.1)

wherePp ; and Ps ; are demand bid and supply bid blocks respectively; andps ; are
the prices associated with ti&® ; andPs ;; PFD andPSF are the defined loss penalty
factors associated with each demand or supply E’i@f is a bid block for class of
operating reserves with a pri@ﬁf; the Violation Variables are defined to represent the
cost of violating respective constraints; and the Tie Bregtunction deals with the bids
that have the same price. The algorithm determines the tzet-bff between energy

and operating reserves using appropriate constraints @eratonal functions.

The DSPS is run in two time-frames, i.e., the pre-dispatchraal-time (dispatch),
and in two modes, i.e., unconstrained and constrained. Teéeippatch run is used to
provide the market participants with the “projected” salled and prices for advisory
purposes in advance, while the final schedules and pricenfamcial settlement are
determined in the real-time run. In the “unconstrained’oalpm, the Economic Gain
is optimized based on supply and demand bids, but most oftihsiqal power system
constraints are neglected except for some of the operdttonatraints, such as intertie
energy trading limits and ramping constraints. In the “¢cmeed” algorithm however,
system security limits together with a representation ef@mtario transmission network

model are considered.

2.3.1 Market Time-line

Hourly supply and demand bids as well as operating resendssftr a dispatch day
must be submitted to the IESO between 6:00 and 11:00 on thdigpatch day. The
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bids may be revised up until two hours prior to the dispatalr mathout any restriction.
Furthermore, the quantity of bids can be revised up until irfutes before dispatch hour
(for imports and exports 60 minutes prior the dispatch hautf) the permission of the
IESO (see Fig. 211).

Pre-dispatch

From 11:00 of the pre-dispatch day, the pre-dispatch versidSPS is run hourly for

the remaining hours of the pre-dispatch day and for 24 holutiseodispatch day. This

procedure uses the unconstrained algorithm to determanerttjected market clearing
prices for energy and operating reserves, referred to aBri®ispatch Prices (PDPs),
and unconstrained schedules. The resulting schedulesaarahalyzed for any network
constraint violations iteratively until all violationseresolved. If violations exist, the
associated constraint equations are incorporated in th&treaned algorithm. The eco-
nomic gain is optimized again using the constrained algoriaind final schedules are

generated and sent to each market participant.

The pre-dispatch run covers a range of 37 hours (at 11:00eoprérdispatch day) to
14 hours (at 10:00 on the dispatch day), and provides a fiasicgl on future schedules
and prices. Every hour after 11:00 on the pre-dispatch @ased pre-dispatch sched-
ules and prices are derived for the rest of the pre-dispagtadd/or dispatch day, until
11:00 on the dispatch day, which then becomes the pre-displaty for tomorrow (see
Fig./2.1). The results for energy prices and total marketatahat each pre-dispatch run
are publicly available by the end of the hour or during thet iner.

Real-time

In real-time, the dispatch version of DSPS is run every fivautas to derive prices,
schedules and dispatch instructions for each interval. Bwhunconstrained and con-

strained algorithms start at the beginning of each intef/ak unconstrained algorithm
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Figure 2.1: Market time-line: pre-dispatch and dispatcysda

determines the market schedule and prices for the intelmeljust passed, based on
real-time supply and consumption (see Fig. 2.2). The caim&d algorithm provides
real-time schedules and dispatch instructions for the imatval. Schedules and prices
obtained in real-time are the basis of all financial settietsielt is to be noted that af-
ter June 2004, a Multi-Interval Optimization (MIO) algdmib was implemented by the
IESO, thereby the constraint algorithm derives real-ticteeslules for an interval while
also considering four other advisory intervals. The MIOjgcbis described in more de-
tails in Section 2.4/4. The differences of the pre-dispatuth dispatch versions of DSPS
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are mostly on the time frame and the type of inputs used, leualigporithms remain the

same.
Interval (K-1)
i o — -
|
|
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Constrained LUnconstrained
algorithm: algorithm:
schedules for Interval (K)| schedules and
interval {(K+1) prices for
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_— e mm = =

Figure 2.2: Unconstrained and constrained algorithm ihthes.

2.3.2 Clearing Energy and Operating Reserves Markets
Pre-dispatch

The IESO forecasts the aggregate non-dispatchable Omteanand and estimates the
amount of generation capacity available from non-dispaitéh generators for the dis-
patch hour. Recall that non-dispatchable loads and gemsratmsume/generate the
amount of energy they need/can regardless the market pficetefore, the predicted
amount of price-taker demand is considered as an energndplyd at the Maximum
Market Clearing Price (MMCP), and the aggregated predictetofdispatchable gen-
eration capacity available is considered as an energy tsgleaMMCP. The MMCP is
currently $2000/MWh.
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All price-sorted energy buying bids from entities within t@no plus all exports are
stacked in decreasing order, and all price-sorted supply foom generators inside On-
tario plus all import bids are stacked in increasing ordguei@ting reserve offers from
inside Ontario and boundary entities for the three reselagses are also stacked in in-
creasing order, and the operating reserves requirememtspacified by the IESO for
each hour. The point of intersection between energy suppdlydemand bid stacks,
while honoring all applicable constraints, determinesuh#gorm Ontario energy MCP
(see Fig.| 2.3 for a simple illustration). The projected erid each class of operating
reserves are also calculated in a similar manner, excepattsangle auction’ market
structure [54] is used (see Fig. 2.4). Energy and operaésgrves MCPs are calculated
jointly and the algorithm determines the best trade-offMeein energy and operating re-
serves. The calculated MCPs apply to all the twelve 5-mimitiervals of the dispatch
hour. It should be noted that for import and export bids, titertie physical capacity
limits as well as the Net Interchange Schedule Limit (NISIg<cribed in Section 2.3.3)
are considered in the algorithm.

Real-time

The dispatch version of the unconstrained algorithm is outietermine the Ontario en-
ergy and operating reserves MCPs in real-time. This vergdrasically the same as
the pre-dispatch unconstrained algorithm, except for tfierdnces in inputs and time
horizon. For example, the import/export quantities forrggeand operating reserves
cleared in the one-hour ahead pre-dispatch run are asswmstant and treated as sup-
ply/demand bids with the prices of -MMCP/MMCP respectivelyrtRermore, actual
metered non-dispatchable “primary” demand, as well asybhem losses for the previ-
ous interval is used as an energy bid with the price of MMCP &ge2.5). Also, the
non-dispatchable generators’ capacity forecast is assasia supply bid with the price
of -MMCP, similar to the pre-dispatch run.
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2.3.3 Inter-jurisdictional Energy Trading

The Ontario electricity market is interconnected with th@eaNYork electricity market,
and Quebec, Michigan, Manitoba, and Minnesota controlsar@he last three control
areas are now part of the Midwest market. The New York elgttrimarket is also
interconnected with the PJM and New England electricitykets; and New England
and PJM trade energy with Quebec and Michigan (seel Fig. Zfgrgy transactions
take place among all these interconnected control areas.

Imports and exports to and from Ontario are treated in theesaamner as the local
supply and demand in many aspects. However, there are twar mageptions: first, as
previously described in Section 2.8.2, imports and expangsscheduled in the 1-hour-
ahead pre-dispatch run and they are considered as consfply ®ffers and demand
bids in real-time; second, physical intertie limitatioas, well as the NISL are honored

by the DSPS when scheduling the imports and exports.
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Figure 2.6: Ontario’s interconnections with other areas.

Net Interchange Schedule Limit

Sharp changes in import/export schedules during conseduburs can expose the IESO-

controlled grid to reliability risks. To prevent this pdskity, the Net Interchange Schedule

(NIS) is defined as the total imports minus total exports,taedhange in NIS across two
consecutive hours is limited to 700 MW. This limitation i$eed to as the NISL and is
automatically respected by the dispatch algorithm. Becafidee NISL, there might be

some uneconomical supply/demand bids scheduled (or ecoalbsupply/demand bids
not being scheduled) which should not have been schedutedl|shave been sched-
uled) in the absence of NISL. If there is insufficient impaddand export bids for the
algorithm to come up with a feasible solution, the IESO asksarters and exporters to

change their import/export bids.
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Zonal MCPs for the Interties

In order to find the zonal MCPs, the DSPS passes the importfeljus to the Ontario
bid stacks while honouring both physical capacity limitsl @ime NISL. If all economic
bids from an intertie can be used in the Ontario market withaalating both limits,
or if the economical bids cannot be used due to the NISL, tieere® congestion in
the intertie, and the zonal MCP is equal to the Ontario MCP;retise, the intertie is
assumed congested and the marginal price of energy in #riéntone is considered as
the zonal MCP. For example, assume that the New York intelniysipal limit for import
is 1000 MW and there are 1500 MW of import bids, all with pricesler $300/MWh,
and the NISL is met; up to 1000 MW of bid blocks are being pass#ae Ontario supply
bid stack, and the Ontario MCP clears at $300/MWh (seeFig. this case, since
the next MWh not scheduled due to intertie limit is valued a&@®&1the zonal MCP is
$100.

. Ontario
New York Imponrt Bids Market Bids
4 $300/MWh
$120/MWh ————— ==
$150MWh
‘$100Mwh | 1000 mw | ST0OMWR |
1500 MW | [seomwvh Scheduled | oq0mwh
$30/MWh $30MWh
V| seomwn | ] soomwh | 4
Zone MCP=$100/MWh ON MCP=$300/MWh

Figure 2.7: Determining zonal MCP
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Intertie Congestion Price

The Intertie Congestion Price (ICP) is defined as the net costsred by the Ontario
market because of congestion in an intertie. The ICP is catiedlbased on pre-dispatch
zonal and Ontario MCPs and then used in real-time to deterthaénal zonal MCPs
for financial settlements.

In pre-dispatch, the ICP is determined considering two soesian the first scenario,
where only the physical intertie capacity limits the scHewpof intertie offers/bids, the
ICP is calculated as the difference between the 1-hour-apesadispatch zonal MCP

and the pre-dispatch Ontario MCP, as follows:
ICP = MCP%3¢ — MCP2Y (2.2)

whereP D indicates pre-dispatch, MCP* is the zonal MCP and MCP' is the Ontario
MCP. For the example in Section 2.3.3, if the intertie limitreed 001 MW, one more
MWh would be supplied from the $100 import bid, instead of gghe $300 Ontario bid;
therefore, the congestion has cost the Ontario market $294, i.e., ICP=-$200/MWh.

In the second scenario, both the physical intertie capauity the NISL limit the
scheduling of intertie offers/bids. It is to be noted thatewththe NISL is violated and
the intertie is congested, relaxing the physical limit foristertie leads to decreasing the
physical limit for another intertie. In this scenario, thelzpl cost of congestion from
both the increase and decrease of the intertie capacittedcglated for determination of
the intertie ICP. For example, let assume that an export ctedentertie is relaxed by
one MW and that this will save the market $300; at the same, tis®ume that decreasing
another intertie limit by one MW, to meet the NISL, will cosietmarket $200. This is
the total cost of the intertie congestion or, ICP=$100/MWh.

In real-time, the ICP is used to determine the final price fterie transactions, as
follows:
MCPZ" = ICP + MCPoY (2.3)
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whereRT indicates real-time; a similar process is used to deteraon@l MCP for 10N
and 30N operating reserve classes. It should be noted thatt wh intertie is export
congested, the exporters should pay a price higher thannteri® MCP for the energy
purchased from the Ontario market and hence3QP On the other hand, when the
intertie is import congested, the importers should recaipeice lower than the Ontario
MCP for the energy sold to the Ontario market and thus<tGP

The ICPs for energy and operating reserves for the 12 insestie zero most of the
time. Table 2.1 shows the maximum and minimum energy ICP$&périod of January
12 to October 31, 2004 for the Manitoba, Michigan, Minnesotd New York interties.

Table 2.1: Energy ICPs ($/MWh) for January 12 to Octo-
ber 31, 2004.

Manitoba | Michigan | Minnesota| New York

Max 4.54 177.62 55.8 167.33

Min -56.83 -825 -91.99 -5.497

Intertie Offer Guarantee

To ensure adequate supply and encourage power imports &i@rihe Intertie Offer
Guarantee (I0OG) mechanism is designed to pay the power tersat least the average
price of their bid and prevent importers from incurring n@gaoperating profit. One
of the main assumptions in the Ontario market design is tiyaply and demand bids
are based on marginal costs and marginal benefits. It meansg the MCP for a given
interval is equal to a bid price, the operating profit of thepective market participant
is zero and it would not be better off either scheduled herefore, if under any

2This assumption is not necessarily true in an entirely cditiypemarket in which the market partici-
pants design their bidding strategies to maximize profit.
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circumstances the actual operating profit for a power ingoastnegative, the 10G pay-
ments return it to zero. Of course, this payment does noténgdgrisk of having a lower
operating profit in real-time than what was expected in pspatch.

For example, assume the pre-dispatch Ontario MCP is equal3V¥Vh and the
ICP is zero. The expected operating profit for a 100 MW powetroirhat the bid price
of $20/MWh for a given hour would be:

OP=100MWhx ($25/MWh-$20/MWH = $500 (2.4)

where OP is the operating profit. If in real-time the Ontari@RIturns out to be equal to
$15/MWh, the actual operating profit would be:

OP=100MWhx ($15/MWh-$20/MWHhH = —$500 (2.5)

In this case, an 10G payment equal #00 will be made by the IESO to the power

importer to return it to zero operating profit.

2.3.4 Congestion Management Settlement Credit

In the Ontario electricity market, real-time unconstraingices and schedules are the
basis of the financial settlements. If power system comggdorce a market partici-
pant to generate/consume more/less than what it was suppm$e the unconstrained
schedule, the market participant is treated as ‘consaimgoff’, and the Congestion
Management Settlement Credit (CMSC) is used to provide the ehagticipant with
the same operating profit as it would gain in the absence oépeystem constraints.

For example, assume that generatdnids to generate 100 MW of energy at a price
of $20/MWh for a given hour. Assume also that the Ontario MCRyisa¢to $30/MWh,
and generator is scheduled by the unconstrained algorithm for its enticefor all
5-minute intervals of the hour. In this case the “operatingfiy of generatorA would
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be:
OP = 100MWh x ($30/MWh— $20/MWh) = $1000 (2.6)

However, if in the constrained algorithm run the generat@cheduled to inject only 50

MW at all 5-minute intervals, the actual operating profit \ebbe:
OP = 50MWh x ($30/MWh — $20/MWh) = $500 (2.7)

and hence the lost profit is $500. In such a case, a $500 CMSCeuaymill be given
to generatorA to bring it to the same level of operating profit as obtainemfrthe

unconstrained schedule.

When a market participant has gained some profit or preveos=dith real time as
the result of being constraint on/off, it has to pay the erfarating profit to the IESO
as CMSC. For example, an exporter is scheduled to export 100 MWigithe next hour
in the pre-dispatch unconstrained run, but network comsgrdorce the exporter not to
export at all. Let then assume the exporter’s bid price ig//#¥0h, the ICP is equal
to zero, and the real-time MCP is $60/MWh for the all 5-minuteeiivals of the hour.
Under these circumstances, the exporter would lose $200@dfre not constrained off.
Therefore, the exporter has to pay $2000 to the IESO as CMSC.

It was observed by the IESO that in the cases when the offeepivere negative,
constrained-off payments could be very high and unjustdéiabherefore, changes were
made to the financial settlement algorithm in June 2003 tdb0#&Wh offer prices in
such cases.

2.3.5 Contracted Ancillary Services

Ancillary services are required to ensure the reliabilityhe IESO-controlled grid. An-
cillary services may be procured either through physicaketa, such as operating re-

serves or through contracts with eligible service prosddie IESO procures five dif-
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ferent ancillary services through contracts with varioels/ige providers in addition to

the three classes of operating reserves discussed etiréise are:

¢ Regulation/Automatic Generation Control Service: The IE®@t@acts with eli-
gible generators to provide regulation service for theqeebeginning May 1 of
each year to April 30 of the following year. Minimum requirents are calculated
by the IESO and control signals are sent to the generatomsr wahtract to raise

or lower their output as required.

e Reactive Support and Voltage Control: Reactive support angelcontrol is
contracted to ensure that the IESO is able to maintain thagellevel of its grid
within acceptable limits. Generation facilities are thganarovider of this service
in Ontario.

e Black Start Service: Black start service is contracted to rieetequirements of
restoring Ontario’s power system after a major continge@snerators that wish

to provide this service must meet specific requirementshited by the IESO.

e Emergency Demand Response Load: Emergency demand respadseate the
loads that can be called upon by the IESO to cut their demarsti@n notice in or-
der to maintain the reliability of the IESO-controlled grillis service is envisaged

for emergency operating conditions.

¢ Reliability Must-Run Resources: Whenever sufficient resoutcgsovide physi-
cal services in areliable way are not available, the IESO megyl to call registered
facilities, excluding non-dispatchable loads, to mamtaie reliability of the grid

through reliability must-run resources contracts.
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2.3.6 Market Uplift

The Ontario electricity market has been designed so thatdhsumers of electricity
pay for all costs associated with operating the market inliabie way. The operating
costs are categorized under hourly and monthly componedtsegovered through mar-
ket uplift. The market uplift is collected from the loads edn their share of the total
demand. Congestion management costs, operating resemgeacmsthe costs associ-
ated with system losses are the hourly components of theanapkift. However, other
components of the market uplift, including contracted Baugi services, IESO adminis-
tration fees and miscellaneous charges, are calculatethipgoSome costs are regulated
by the Ontario energy authorities and have a fixed price per Midthexample, the
IESO administration fees are $0.909/MWh. The market upfiftesars in the customers’

monthly invoice under separate charges.

2.3.7 Market Data

The Ontario IESO publishes two sets of system operation jpiada to real-time dis-
patch of energy. The first set consists of conventional fistcfor some of the market
variables, and is published as the “System Status Repor&R)SThe SSR provides
forecasts for Ontario demand and supply, energy importscapacity excess or short-
fall. The SSR also contains total planned transmission anéation outages and other
market advisory notices. The SSR is released for each daasit 24 hours in advance,
and it is updated in case of any change in the system statossmafsts. The second set is
referred to as the “Pre-Dispatch Reports” (PDR) and it pravitie market participants
with simulation-based forecasts of market outcomes, geeerby the pre-dispatch run
of the market, as explained in Section 2.3.1.
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2.4 Programs to Improve Market Operation

Subsequent to the opening of the Ontario electricity madateral programs have been
introduced by the IESO in order to improve reliability, eificcy, and transparency of
the Ontario electricity market. These are briefly discusselis section.

2.4.1 Hour-Ahead Dispatchable Load Program

Most of the loads in Ontario are non-dispatchable and thezehey do not respond to
high market prices in real-time. The Hour-Ahead Dispatédaload (HADL) program
was launched in June 2003 for three main reasons: First, ke man-dispatchable loads
more price-responsive; second, to allow the IESO to includiere load reductions in
the scheduling process; and third, to encourage load tugat during peak operating
hours.

The non-dispatchable loads would have an upper limit on teggy costs associ-
ated with their production process in most cases. If el@tgrprice exceeds a specific
upper cap, the load would choose to shut down its production-dispatchable loads
who wish to participate in the HADL program offer their pricap to the IESO and the
guantity of demand that would be curtailed. If the 3-houeadh PDP is higher than the
price cap offered by the load, the IESO will send dispatclmsgructions to the load to
reduce its demand by the amount of its HADL offer. If the risade HOEP turns out to
be equal or more than the loads price cap, there will not bepagynent. However, if
the real-time HOEP is lower than the load’s price cap, thd lwauld have been better
off to operate than shutting down its processes. In thiesgdn, there would be a lost
operating profit and the Hour-Ahead Dispatchable Load Gifearantee (HADLOG) is
payable to the load to bring it to the same operating profit a®uld have been gained
when operating. The HADLOG is calculated as follows:

HADLOG = max{0, (PC-HOEP) Q} (2.8)
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where Q is the quantity of demand that is offered to be cut, R@ds the load price
cap. For example, Load bids to cut 100 MW of its demand if the 3-hour-ahead PDP
for energy is more than $45/MWh. If in the 3-hour-ahead psgpdich run the energy
price for the dispatch hour clears at $50/MWh, dispatch contware sent to Load

by the IESO to cut its load by 100 MW. If in real-time, the HOHPars at $40/MWh, an
HADLOG payment of $500 will be credited to Loatl by the IESO in this case, as per
equation (2.8).

2.4.2 The Spare Generation On-Line

Fossil-based generation units usually require a long apdresive start-up process, and
thus they require a reasonably long operation period inrdodecover the start-up costs.
During the off-peak periods, these units are exposed toiskeof not being scheduled
for a long enough period, and hence, they may decide not tbigstfor the risky off-
peak periods. On the other hand, if during the off-peak jgeadarge decrease in supply
or increase in demand occurs, the IESO has to buy power frora expensive units or

import expensive power; these lead to unusually high pipadees.

To increase the reliability of the IESO-controlled grid aodeduce price volatility,
the IESO launched the Spare Generation On-Line (SGOL) aragn August 2003,
which offers eligible generators a guarantee of their stprtosts. Eligible generators
submit their minimum loading point, minimum up-time and doned guaranteed costs
tothe IESO. If an eligible generator registered in the SG@lgpam submits a supply bid
and is scheduled to run but the revenue earning over its mmimp-time is lower than
its combined guaranteed costs, it will receive compensdtiam the IESO to cover its
minimum combined guaranteed costs. The IESO recovers ti@d_§@yments through

monthly uplift charges to loads.



An Overview of the Operation of Ontario’s Electricity Matke 37

2.4.3 Control Actions Operating Reserves

Under the Ontario market rules, the IESO is allowed to useobmarket control actions
when there no sufficient operating reserve offered in theketaiThese control actions
include a 3% voltage reduction, a 5% voltage reduction, arediaction of 30R require-
ments. In the initial Ontario market design, the market afmrmanually put in place
these actions to maintain system reliability in stressathibns. This was obviously
an out-of-market action and there was no cost associatédititid the market partici-
pants. This ‘free’ service could affect integrity of theg&isignals sent to the supply
side, putting unrealistic downward pressure on the HOERhEtmore, out-of-market
control actions have been recognized as one of the maineafdiscrepancy between

pre-dispatch and real-time prices.

To mitigate potential implications of the ‘free’ out-of-mhk&t control actions, the
Control Action Operating Reserve (CAOR) was introduced in theketain August
2003. The first 200 MW CAOR was priced at $30/MWh as 10N operatsgrve, and
at $30.1/MWh as a reduction in 30R operating reserve reqeingsn In October 2003,
an additional 200 MW CAOR was implemented in the market with shme pricing
scheme. This 400 MW CAOR resulted in a significant reductiotherate of out-of-
market control actions. An additional 400 MW CAOR was laterught into the market
in November 2005 at the price of $75/MWh for the first 200 MW aa@&MWh for the
next 200 MW. Although it is expected that the CAOR result iglstly higher HOEPs, it

would provide more realistic price signals during stressmutlitions.

2.4.4 Multi-Interval Optimization Project

The MIO project was implemented in two stages. The initiagstwas implemented in
March 2004, by which a change was made to the DSPS to recoeffzetive unit ramp
rates’. Before this stage, the DSPS assumed that generatoonty operate under their
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offered ramp rates. If a unit could not reach the dispatckedl for a specific interval
for any reason, dispatch instructions for next intervalald¢de undesirably affected,;
this problem is referred to as the ‘stutter step’ by the Qatararket participants. On the
other hand, it was observed that some non-quick start giemsiaan ramp up higher than
their offered ramp rates for a short period of time. Therefan order to prevent some
undesirable dispatch instructions, the DSPS was modifiadeeffective unit ramp rate,
which is the lesser of the offered ramp rate for the intervaltiplied by 1.2, and the
maximum registered ramp rate. For example, if the maximuwgistered ramp rate of a
facility is 4 MW/min, and the offered ramp rate for a given v is 2.0 MW/min, the
effective ramp rate that is used by the DSPS is 2.4 MW/min.

In the initial DSPS, dispatch instructions were derived dach interval indepen-
dently. This caused some dispatching difficulties becaus¢ESO had to dispatch gen-
erators on and off to maintain system reliability. HoweWerguent ramp up and down
instructions are costly. In order to address this issue gppatch volatility, the second
stage of MIO was implemented in June 2004 [55], through whlispatch instructions
for a given interval is calculated considering four otheriadry intervals. These four in-
tervals are selected out of a rolling 11-interval ‘studyipeét based on some pre-defined
selection criteria. These criteria are designed with thenition of providing the most
efficient optimal solution, as well as providing the unit ogters with an insight into
the upcoming operating instructions. The four advisorgnvels are not necessarily the
same for each study period, and unit operators are providdagvisory dispatch tar-
gets for these intervals. The new MIO algorithm is furthepested to improve system

reliability, market efficiency, and market transparency.
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2.4.5 Demand Response Programs
Emergency Demand Response Program

The Emergency Demand Response Program (EDRP), announcedeir2002, is in-

tended to enhance system reliability by providing the IES® & control action option

prior to non-dispatchable load shedding. Terms and camditof the EDRP are agreed
upon by the IESO and the interested market participant gir@u18-month contract. In
case the IESO anticipates an emergency situation, it wi# ghe EDRP participants a
notice indicating the possibility of EDRP activation. EDRRtpdpants are required to
inform the IESO whether they intend to curtail their loadEDRP participants reduce
their demand in practice, they will receive financial congagion for the costs they in-
curred in responding to the IESO'’s request, based on theamnmates. Of the several
occasions that the EDRP participants were given notice faRIEBRctivation (e.g., during

summer 2003, winter 2004, and summer 2005), there was oelactoal load reduction.

Emergency Load Reduction Program

In view of the EDRP experience and feedback from stakehqgldadsto address the reli-
ability concerns arisen from the shortage of supply durtmgmmer 2005, the Emergency
Load Reduction Program (ELRP) was approved for launching oe 1%, 2006. The
ELRP is intended to provide Ontario market participants w&ittopportunity to improve
the reliability of the electricity grid during stressed & conditions, particularly in the
summer. If the program can attract a dependable amount afeimand side, it will en-
able the IESO to reduce usage of other more costly contrares;tsuch as emergency
energy purchases and voltage reductions. In fact, the ELRBrtsof the IESO Emer-
gency Operating State Control Action (EOSCA) list prior to lilppeals for energy

conservation, 3% and 5% voltage reductions, emergencggiperchases, and EDRP.

The ELRP is an ongoing program which will be activated only conidlays to Fridays
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from 8 AM to 8 PM, and market participants with capability eflucing their consump-
tion for at least 1 MW during a minimum 2-hour time window carfipate. The ELRP
will be implemented in three steps. In the notification stepyket participants will be
informed that the ELRP will be implemented for a given day. Tb&éce may be issued
a day ahead or on the dispatch day, and can be for any numbeuis within the pro-

gram’s window. In the offering step, the interested marlaetipipants notify the IESO
by submitting their MW offer of load reduction. Although paipating in the ELRP

is not mandatory, a market participant is committed to reditg specified load upon
submitting an ELRP offer to the IESO. In the activation stée, EESO contacts ELRP
participants to reduce their consumption, and non-compéapenalties may apply in
case of under performance of greater than 20%.

ELRP participants will receive two types of financial compsians. A standby
fee of $15 per MW per hour will be paid for participating in theogram up until the
activation hour. Upon activation, the participants wilted/e a load reduction payment
based on the greater of the HOEP and the applicable follooatigns:

e $400/MWh, for 2 hours of consecutive load reduction,
e $500/MWh, for 3 hours of consecutive load reduction,

e $600/MWh, for 4 hours of consecutive load reduction.

Load reduction for a period longer than 4 hours is not comsiien the program. Actual
load reductions, measured and verified by the IESO, are tie fma payments.

2.4.6 Mitigating OPG’s Market Power

In order to limit OPG’s market power, the Market Power Mitiga Agreement (MPMA)
was put in place by the Ontario government before openingrtagket in May 2002.
According to the MPMA, OPG had to pay the IESO a rebate if theERGexceeded
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$38/MWh. However, it was observed that the MPMA seriouslgetiid OPG's efficiency
and led to financial problems; it cost OPG about $100 millien month, as OPG was
not able to recover the overall costs of producing eledyrici

The Electricity Act of 2004 replaced the MPMA with a new pldrat sets capped
prices and revenue for most of the OPG’s generation faslitEffective April 1, 2005,
generation from OPG'’s base load hydroelectric and nucteslitfes, referred to as regu-
lated assets, was capped at $33/MWh, and $49.5/MWh, resplgctivese regulated as-
sets represent about 40% of the Ontario’s total generaéipadity. Furthermore, OPG’s
revenues from about 85% of its unregulated assets, i.e-basa load hydroelectric, coal
and gas-fired stations, were set at an upper limit of $47/MWRGE unregulated assets
represent about 33% of the total generation capacity in r@nt&Jnder this new pric-
ing regime, most of the demand side participants are edidgitnl two types of rebates.
These rebates are referred to as the OPG Rebate and the Gijbsiment Rebate, and
are calculated based on the HOEP and the mentioned limitsRéh &sets. The limits
on prices and revenues are subjected to change each yeareatedngorarily in effect
until Ontario government develops a mechanism for pricif®§33 output, no later than
March 2008.

2.4.7 Day-Ahead Commitment Process

In late 2003, the Day-ahead Market Working Group was estagdl by the IESO in order
to assess feasibility and features of a day-ahead markettari®. The group proposed a
comprehensive day-ahead market with nodal pricing mesharhiowever, it was finally
not implemented by the IESO because of various politicalnemical, regulatory, and
design issues raised by stakeholders. Instead of the chemmsize day-ahead market, a
Day-Ahead Commitment Process (DACP) with reliability guaeas was approved by
the IESO Board of Directors in September 2005.

The DACP is intended to improve system reliability by prowmiglithe supply side
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with financial incentives, 24 hours before real-time dispaif energy. The fundamental
targets of designing the DACP are to address frequent maalfailure of import trans-
actions, and to optimally manage next-day available ensxggurces. The DACP was
launched on May 31, 2006. The IESO will evaluate effectigsnaf the DACP based on
its impact on system reliability, import failures reduetjcand market uplifts, and will
decide whether to continue with the DACP after November 2006.

The DACP is aimed to provide the IESO with a reliable antiggpabf next day’s
available supply. For this purpose, dispatchable genevétads who intend to partici-
pate in next day’s real-time market must submit their openal data to the IESO by 11
AM on pre-dispatch day. Dispatchable facilities are alspned to submit an Availabil-
ity Deceleration Envelope (ADE). The ADE specifies the hpersergy, and capacity
limits within which a dispatchable facility intends to opé during real-time. Although
the dispatchable facilities are allowed to change offemézep, quantity of bids have to
remain within the limits specified in the ADE. Importers act abliged to submit import
data into the DACP; however, they must do so in order to be figglior the DACP fi-
nancial incentives. The importer participating in the DACiH laave to pay a day-ahead
import failure charge if they do not follow their DACP obligans. It is to be noted that
under the pre-DACP data submission rules, market partitspagre allowed to make

any change to their submitted data, up to two hours befoldiree.

The DACP is also designed to help dispatchable generatorsrgaiters to manage
the financial risks associated with supplying energy ineo@mtario grid. A Day-Ahead
Generation Cost Guarantee (DAGCG) is offered to dispatchymslerators to ensure they
recover certain combined costs if they have not recovemddtbsts through market rev-
enues. The DAGCG is the day-ahead version of the SGOL, extcalgbicovers eligible
maintenance and operation costs. A Day-Ahead Intertier@fgarantee (DAIOG) is
also offered to imports to guarantee their ‘as-offered’tgoand is basically the day-
ahead version of the I0G. Aside from some minor differencethé way the DAGCG

and the DAIOG are calculated and financially settled, theybasically the same as the
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real-time SGOL and the IOG payments, respectively. If a migplarticipant is entitled
to both day ahead (DAGCG and DAIOG) and real-time (SGOL and)I€r&dits, only
the higher one will be credited. The costs of paying the DAG@ BAIOG will be
recovered through market uplifts.

The existing pre-dispatch algorithm, discussed earlgethé calculation engine for
the DACP. The first four runs of the pre-dispatch algorithreraftl AM on pre-dispatch
day are used to generate DACP schedules. The first three rerte generate initial
schedules and necessary reliability refinements are daoae Also, energy limited
generators can change their submitted data during theHnest runs. The4 run starts
at 14:00 and produces final schedules, referred to as thdigpatch of Record. The
Pre-dispatch of Record is the basis of financial guaranteesmay be rejected by the
committed participants by hour 15:15.

2.5 Analysis of Market Outcomes and Discussion

The main market outcomes, namely pre-dispatch and real€imergy prices, operating
reserve prices, and market demand are studied in this etfaptbe period May 1, 2002
to April 30, 2006.

2.5.1 Energy Price

The monthly demand-weighted averages of the HOEP for thegef May 1, 2002 to
April 30, 2006 are shown in Figure 2.8. The Ontario marketegigmced a high record
demand during summer 2002, which coincided with some sujppltations. Early in
winter 2003, extremely cold weather resulted in an incréasemand as well. Further-
more, during winter 2003, marginal cost of supplying eledir into the grid soared as

a result of unusually high natural gas prices. Also, soméefjas/oil stations were not
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available to the market operator as they experienced diféisun their fuel procurement
systems in this period. Thus, the high demand and limite@lgwgvailability resulted in
high energy prices during summer 2002 and winter 2003.
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Figure 2.8: Monthly weighted HOEP averages, 2002-2006

The average HOEPs remained steady until summer 2005, whktdmperature and
humidity levels led to a record peak demand. On the other hatidnce on gas-fired
stations during this period was increased as a result ofcextiydroelectric outputs
and the shutdown of a large coal-fired station. Furthermsirese natural gas prices
were high during this period, some generators preferredltdreir gas contracts in the
natural gas spot markets rather than producing electridigyce, the costs of producing

electricity in Ontario as well as in the neighboring areageased, resulting high and
volatile HOEPs.

Energy prices in Ontario on average have been in the same asdée wholesale
energy prices in New York and PJM. However, New England gritave been persis-

tently higher than Ontario prices. Michigan, Manitoba, didnesota control areas have
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joined the Mid-West electricity market, opened in April Z20Qvith the energy prices
being always lower than the HOEP. It is usually expected ithat fully competitive

environment, arbitrage results in elimination of the pultiéerences in the neighboring
areas; however, transmission line constraints, diffeseheduling protocols, and physi-
cal power flow rules have limited the ability of power traderarbitrage away the price

differences.

The HOEP has been in general highly volatile, varying frortomsas $4/MWh to as
high as $1,028.4/MWh during the 4-year period. About 82% efitburs, the HOEP has
remained in the range of $20/MWh to $80/MWh, and for about 15%hefhours, the
HOEP has varied in the $80/MWh-$200/MWh range. Furthermargnd the first four
years, there have been 196 hours at which the HOEP has excg20@MWh. Finally,
for about 2% of the hours, prices have been low, in the rangd®iWh to $20/MWh.

2.5.2 Demand

During the period May 1, 2002 to April 30, 2006, the highesbreled demand in Ontario
was 26,160 MW, attained in July 2005. The monthly maximuntsaverages of the On-
tario demand over the 4-year period are displayed in Figigelcan be observed from
Figures 2.8 and 2.9 that demand is the main driver of energg;pnowever, unusually
high energy prices occurred when peak demand coincidedsujply limitations. For
instance, while maximum demand in winter 2004 was slighiyhér than that of winter

2003, energy prices were higher in winter 2003 as a resulifgbly limitations.

2.5.3 Operating Reserve Prices

The yearly average prices of the three classes of operatisgrwres are displayed in
Figure 2.10. Unlike the energy prices, operating reservieep have declined over the

4-year period. It was observed that the operating resefeegpwere as high as energy
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Figure 2.9: Mean and maximum Ontario demand.

prices on a few days during September 2003 because of a seurasual events; these
unusually high prices interrupted the reducing patterrnefXON and 30R prices during
the second year. Reduction in operating reserve prices cattriiited to the fact that
about 600 MW of dispatchable load has emerged in the markes. group of loads are
allowed to offer 10N and 30R into the market, resulting in aenmmpetitive and lower
10N and 30R prices. It should be noted that despite the higitggmrices during summer
2005, the 10S prices have continued to decline; these lowpii@8s can be explained
by the fact that the limited water supply due to drought duyitims period shifted some

of the hydroelectric units from energy production to prawgl10S reserve.

2.5.4 Discrepancy between the HOEP and the PDPs

The PDPs are generated based on the most recent availalidet imdormation in order

to provide the market participants with an estimate of tla¢-tiene HOEPs. However, it
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Figure 2.10: Yearly operating reserve (OR) price averages

has been consistently observed that there is a large daswreetween the PDPs and
the HOEP [23]. Let define the yearly Mean Absolute PercenErger (MAPE) of the
PDPs as:

N
100 IHOEP. — PDP|
MAPE = — x } 2,

N = 2. HOER (2.9)

where HOERand PDR), are the values of the HOEP and PDP for hguespectively,
and N is the number of hours in a year. The yearly MAPEs of the 14adwad and 3-
hour-ahead PDPs for the first four years of market operatieni@picted in Figure 2.11.
One can observe from this figure that the discrepancy betimeHOEP and PDPs has
declined, to some extent, through the first three years. @ the highest discrepan-
cies happened during the first year of market operation, Ipnaecause of the volatile
prices during summer 2002, and probably due to market immtyatiNote that the de-
viation of HOEP from the PDPs has increased in tHeyéar, which is because of the

unstable and unusually high prices during summer 2005.
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Figure 2.11: Yearly MAPE of the discrepancy between the HQE®PPDPs.

The high discrepancy between the HOEP and the PDPs can ksregby opera-
tional aspects of the Ontario market. The real-time natttt@®market makes it vulnera-
ble against unpredictable events. The generation offeredarOntario is “hockey-stick”
shaped [23]. Consequently, demand over-forecasting, deonager-forecasting, errors
in forecasting the output of self-scheduling generatard,import/export failures oblige
the market operator to commit expensive units on the “blguaetion of the offer curve,
or to de-commit some of the already committed units and mack lon the “shaft”
portion of the offer curve. This requirement puts upward awadward pressure on the
HOEP, leading to price spikes and deviation of HOEP from th@# Furthermore, out-
of-market control actions affect the consistency betwéerréal-time and pre-dispatch

market clearing procedures, leading to deviation of the R@Em the PDPs.

The improvements in consistency between the HOEP and PDRsecattributed to
changes and enhancements gradually being implemented mdtket. Specifically, the

processes of forecasting the load, as well as forecastm@uiput of self-scheduling
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generators have been modified. Furthermore, 800 MW of cuatarket control actions

are introduced in the market by the CAOR program.

Deviation of the HOEP from the PDPs has many implicationd, sariously affects
market efficiency. For example, analysis of PDP data for tfs¢ four years of market
operation shows that for about 81% of the hours, real-tim&RA®have been less than
the corresponding 1-hour-ahead PDPs. For such hoursjlelignporters are entitled to
I0OG payments, recalling the fact that imports are schechéseéd on 1-hour-ahead PDPs.
Furthermore, too many imports are scheduled while the cloeapsupply is dispatched
off, and too few exports are scheduled while the demand sitteeineighboring areas are
willing to pay more for Ontario energy. Another example is tHADL program which
is also designed based on the 3-hour-ahead PDPs. If themeaHOEPS turn out to be
lower than the 3-hour-ahead PDPs, which has been the caabdat 79% of the hours
for the first four years of the market operation, the HADL paog participants may be
eligible for HADLOG payments.

2.5.5 Effectiveness of the Market Improvement Programs

Although the programs implemented by the IESO to enhanc&ehaperation have
positively affected market outcomes, the goals of the @agr have not been entirely
reached in some cases [23]. The following conclusions camrdéehed considering the
publicly available data and reports:

¢ By using the MIO and looking-ahead scheduling, the use obbduarket control
actions is reduced. However, the problem of dispatch \iativhich was one of

the main objectives to be addressed by the MIO programgesisks.

e The HADL program was implemented to boost load responsa&ie price sig-
nals. Only a total of 240 MW load participated in the programg the participants

have been scheduled for load reduction for 110 hours. Aralg$ market data
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have revealed that the overall benefit to the market form tABHprogram has
been minimal, given the high discrepancy between the HOERen3-hour-ahead
PDPs.

e The SGOL program was mainly designed to improve marketbiit,a While
this objective has been met, market efficiency has been eelducthe payment of

more than $33 million to eligible generators.

e There are only 600 MW of dispatchable loads biding into thekeita These loads
usually bid high prices compared to the normal range of th&PF@nd demand-
side involvement in market enhancement programs has nat\sg significant.

This high level of load inelasticity in Ontario affects matlefficiency in general.

e The MPMA program was designed to improve market efficiencynbiygating
OPG’s obvious market power. However, it resulted in inefintioperation of
OPG and subsidized electricity prices for the consumers.sidering the dom-
inant share of OPG in Ontario supply, these side effects gaest market effi-
ciency and transparency. On the other hand, non-utilityeggors (NUGs) have
been holding long-term power purchase agreements with thari®@ government
that have excluded them from openly competing in the markiso, the Ontario
Power Authority has been assigned to manage generatioroaddianagement
contracts with supply and demand side entities in order suenavailability of
reliable power for Ontario. These contracts are refereed the “Request for Pro-
posal” (RFP) contracts. Under the RFP contracts, while themgeors sell their
output into the market, they will be provided with guaracteevenue to ensure
they can recover their costs. The generators will be findipsattled based on
the net revenue they received from the market, and the regeagreed upon in
the RFP contract. Given the NUG and RFP contracts, and the navedarices
and revenues over most of the OPG’s output, only about 25%eofatal Ontario

generation capacity is fully open to compete in the market.
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e Despite the reduction in the deviation of the HOEP from théBDRhe discrepancy
between the two and the overall price volatility is still higThe highly volatile
pre-dispatch and real-time prices during the summer 20§lighted the limited
effectiveness of the implemented market programs in miaingconsistency be-

tween the pre-dispatch and real-time prices.

2.6 Summary

This chapter presents a unique overview of the operatioheoOntario electricity mar-
ket, along with an analytical discussion of the market'soates. The Ontario electricity
market is the only real-time market in North America, anditriterconnected with the
New England, New York, PJM, and Midwest competitive eletyimarkets, as well as
Quebec and Manitoba regulated power markets. The physistdra is not fully con-

sidered in the process of clearing the market prices, andanue-wide uniform price

applies to all market participants. Most of the load in Oiatas not price-responsive,
which has adversely affected the load management prognaitreted by the Ontario

IESO. Many programs are being implemented by the IESO toongthe market op-
eration; however, some of the challenges behind the impiéatien of these programs

have not been fully addressed yet.



Chapter 3

Forecasting the HOEP Using Linear

Time Series Models

3.1 Introduction

In Chapter 2, the operation of the Ontario electricity maiketeviewed and the pro-
cess of clearing energy prices in this market is discussedalRipat the HOEP is the
province-wide uniform price that applies to non-dispatitbanarket participants, mainly
the demand-side BEMCs. Keeping in mind the findings and dismussf Chapter 2, an
attempt is made in the present chapter to forecast the srontbehavior of the HOEP
by employing the well-established linear time series medeklevant data from Ontario
and its neighboring electricity markets, namely the Newkydew England, and PIM
electricity markets, are investigated and a final set of axgiory variable candidates
are selected. The focus of the variable selection procadune those variables that are
available before real-time. This makes the selected Vi@satapable of being used in

practical price forecasting tools.

Findings of this chapter have been accepted for publicatidhe IEEE Transactions on Power Sys-
temg[56].

52
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The multivariate TF and DR models are employed to relate HO&favior to the
selected explanatory variable candidates. Univariate ARMvdels are also developed
for HOEP forecasting. The HOEP models are developed on tsie batwo forecasting
horizons, i.e., 3 hours and 24 hours, and forecasting pagnce of the multivariate
models is compared with that of the univariate ARIMA modelsnivdriate ARIMA
models are also developed for three day-ahead Locationadiivéd Prices (LMPs) of
Ontario’s neighboring markets, and the accuracy of thesgesas compared with those
for the HOEP.

3.2 Selecting Explanatory Variable Candidates

While demand has been the most commonly examined explanaoable in the re-
ported price forecasting studies (e.g., in [19, 14]), thespnt research evaluates a wide
range of system information to develop price forecastinglei® The explanatory vari-
able candidates are selected from information publiclylabke before real-time, based
on two main criteria. The first criterion is the consideratad implicit and/or explicit ef-
fects of the variables on the Ontario market clearing precéke second criterion is the
consideration of linear correlations between current HO&RBes and current and past
values of the variables, given the linear nature of TF and Ridets. These correlations
are measured by the Cross Correlation Functions (CCF) [57],\ewe linear corre-
lation coefficients between current HOEP values and cusaoes of each explanatory
variable candidate, referred to adere, are the only correlation coefficients discussed
here.

The Ontario Market Surveillance Panel (MSP) reports [28¢at that coal and gas
fired generators are the main price setters in the Ontarairigly market. However,
although fuel prices have shown to affect the long-term H@ERds, no short-term

relationship between the HOEP and fuel prices was founddh [Bherefore, the present
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study does not consider fuel prices among the explanateighbla candidates.

The ability of market participants to react to price fordsadepends on the fore-
casting horizon. For example, in the Ontario electricityrked, dispatchable generators
are restricted from changing their bids two hours beforétigee [51], as discussed in
Section 2.3.11. This requires that HOEP forecasts shoul@&bergted at least three hours
before real-time so as to make them useful to this group ofigeears. On the other hand,
when the forecasting horizon is long, say more than 24 hautial market information
is either not available, or available but likely subjectignificant changes. Thus, 3 hours
and 24 hours are the reasonable HOEP forecasting horizedshase to which market

participants can properly react.

As described in Section 2.3.7, The Ontario IESO publishessits of system opera-
tion data prior to real-time dispatch of energy, namely,Sgstem Status Reports (SSR),
and the Pre-Dispatch Reports (PDR). These data sets arelpalbhdable on the IESO’s
web site at www.ieso.ca, and are mined here to explain HOBBRVar.

3.2.1 Explanatory Variables from the SSR
Demand Forecasts

Ontario demand is one of the main factors involved in the gse®f clearing the HOEP.
The relationship between Ontario demand and the HOEP igpiex$ in Figure 3.1-a.

The corresponding linear correlation coefficient is 0.78e Tost accurate forecast of
Ontario demand available 24 hours before real-time is tHe &3nand forecast.

Let define the annual MAPE of demand forecasts as:
Nx24

100 Z |Demand ; — Demand ;|
N x 24 — Demand ;

MAPE = (3.1)

where Demang, and Demangl, are the forecast and the actual values of demand at hour

t, respectively, anadV is the number of days in the studied yeaf & 366 for 2004).
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The 24-hour-ahead SSR demand forecasts have annual MAPE$%fand 4.8% for
2004, when compared with actual Ontario demand and actudetndemand (demand
plus exports and losses), respectively. Furthermoregetf@ecasts show a significant
linear correlation with the HOEP, as shown in the scatter plesented in Figure 3.1-b.
The linear correlation coefficient between SSR demand &stsand the HOEP is 0.68.
Thus, the SSR demand forecast variable is included in thefsetplanatory variable
candidates.

Predicted Supply Cushion

The SSR energy supply forecast variable shows no meaniliggak correlation with the
HOEP, as shown in Figure 3.2-a. Nevertheless, the concepipgfly cushion (SC) [23]
is used here, and is defined as follows:

_ EO-(TD+OR)

¢ TD+OR

100 (3.2)

where EO is the actual energy offered, TD is the actual mat&etand, and OR is the
operating reserve requirement. It was observed in [23]ghaé spikes are more likely
when the SC is below 10%. In the present work, [(3.2) is modHied actual quantities
are substituted with respective forecasts from the SSRehdting SC is referred here
to as the Predicted Supply Cushion (PSC). The PSC is found tmdally correlated
with the HOEP, as shown in Figure 3.2-b, wjih= —0.60; hence, it is added to the set

of explanatory variable candidates.

Planned Outages

Although the physical power system is not directly consedein the process of de-
termining the HOEP, as discussed in Chapter 2, the physistéésycan influence the
HOEP behavior indirectly. For example, outage of cheap igdioa facilities can result

in higher energy prices, especially during low-demand &¢28]. However, the total
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Figure 3.1: Relationship between: a) Ontario demand and ®ER b) SSR demand
forecast and the HOEP.

outages reported in the SSR is the aggregation of variomnethgeneration and trans-
mission system outages, and this total is found to be not megfutly correlated with

the HOEP p = 0.18). Hence, the SSR planed outages variable is not considerbe i
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model building process.
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Capacity Excess or Shortfall

The SSR capacity excess or shortfall variable is found torteaily correlated with the
HOEP, with a linear correlation coefficient pf= —0.65; hence, it is included in the set
of explanatory variable candidates. However, it shoulddieahthat when demand is low,
capacity excess is high and vice versa, a fact confirmed bligienegative correlation
between the SSR capacity excess or shortfall and demand (0.75). Therefore,

the SSR capacity excess or shortfall variable is highlyimedr with the SSR demand
forecast variable and should be included in the model oribr die possible effects of

demand have been modeled.

Imports

The SSR import forecast variable deviates significantlynfictual values. Therefore,
the import forecasts are not considered in the set of exfangariable candidates. No

export forecasts are published in the SSR.

3.2.2 Explanatory Variables from the PDR

Recall from Section 2.3 that the Ontario market clearing rtlgm is run in pre-dispatch
and real-time (dispatch). The pre-dispatch run providesiharket participants with the
“projected” schedules and prices, based on the most recaitalale market information.
Outcomes of the pre-dispatch run are published by the IES®eaBDR for a variety of
variables, including energy and operating reserves pricésl load, dispatchable load
not served, system losses, and some of the system secumgyr@iots. From the PDR
variables, the PDP and Pre-Dispatch Demand (PDD) variaaley the latest informa-
tion about demand and price in the coming hours; hence, tiegesx@amined here for their

role in improving accuracy of HOEP forecasting.
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The PDP/PDD values that correspond to hoand that are published hours be-
fore real-time are calleél-hour-ahead PDPs/PDDs [24]. Linear correlation coeffisien
between the HOEP andhour-ahead PDP% (joep o, and between the HOEP ané
hour-ahead PDD$(oeppon, for &k = {1,2, 3,24}, are presented in Table 3.1. Linear
correlation coefficients between actual Ontario marketatedrandi-hour-ahead PDDs

(pppD,pemand a@re also presented in Table 3.1.

k-hour-ahead PDPs

It can be inferred from the correlation coefficients presdrin Table 3.1 that wheh

is small, thek-hour-ahead PDPs are closer to the HOEP. Hence, consideifagir-
ahead PDPs as explanatory variables depends on the fangdastizon. For 24-hour-
ahead forecasting, the 24-hour-ahead PDP variable islycleatr useful and hence is
not considered as an explanatory variable candidate. Hawéw shorter forecasting
horizons k-hour-ahead PDPs become more relevant; thus, in this wer-tihour-ahead
PDP variable is included in the set of explanatory varialaledidates for 3-hour-ahead

forecasting.

k-hour-ahead PDDs

It can be observed from Table 3.1 that thénour-ahead PDDs do not deviate signifi-
cantly from actual market demand, thus these should bededlin the set of explanatory
variable candidates. Therefore, the 3-hour-ahead PDRMearis considered an explana-
tory variable candidate for 3-hour-ahead forecasting. él@# since the accuracy levels
of the 24-hour-ahead PDDs and the SSR demand forecastsrareloage, only one of
them, namely the SSR demand forecast, is included in thef sstptanatory variable
candidates. It is worth mentioning that the 24-hour-ahdaD Rariable was also consid-
ered for model building, in lieu of the SSR demand forecasttée, but no significant

difference in the overall performance of the developed rteodas observed.
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Table 3.1: Correlation between HOEPhour-ahead PDPs, and PDDs

k 24 3 2 1

proerpop | 0.16| 0.74| 0.77| 0.78
proeppop | 0.62| 0.63| 0.63| 0.64
PpDoD,Demand| 0.97 | 0.98| 0.98 | 0.98

3.2.3 Demand and Energy Price in the Neighboring Areas

As previously mentioned in Section 2.3.3, the Ontario eieity market is intercon-
nected with the New York electricity market, and Quebec, ijan, Manitoba, and
Minnesota control areas. The last three control areas avgoad of the Midwest mar-
ket. The New York electricity market is also interconnecteth the PJM and New
England electricity markets, and New England and PJM tragegy with Quebec and
Michigan (see Figure 2.6). With such a complex interconpadbetween neighboring
areas, it is difficult to assess the effects of energy priak damand of the neighbor-
ing areas on the HOEP. Furthermore, lack of publicly avéelafformation on quantity
and price of energy transactions between Ontario and Quibeligan, Manitoba, and
Minnesota constrained the author to consider only the &fifademand and price of the
New York, New England and PJM electricity markets on the HOHE data employed

are available online at www.nyiso.com, www.iso-ne.cont @amvw.pjm.com.

Demand

To evaluate the possible effects of New England and PJM rhdemands on HOEP,
actual demand data from these markets are considered. Bog #iese data are not
available before real-time, they cannot be consideredarittal models even if they turn

out to be significant. For the New York market, historical @& forecasts are available
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and hence are used in this study.

Linear correlation coefficients between demand in the rghg markets and de-
mand and price in Ontario market are presented in Table 3i@afit conditions that are
similar across New York, Ontario, and New England could beason for the collinear-
ity in demand between these markets. Consequently, demdlireaaty could be the
reason for high correlation between the HOEP and the New &bndckNew England de-
mands. On the other hand, the low correlation between thar@rand PJM demands
can be attributed to variations in the residential and itrcaldoad distribution pattern

across these markets, plus climatic differences betwesetwib.

In this work, the New York and New England markets demandsansidered as
explanatory variable candidates. However, due to thenadlity between the Ontario
demand and the other demands, they should be included inddelrbuilding process
only after the effects of the Ontario demand on the HOEP armdeted. Given its small
correlation with the HOEP, the PIJM market demand is not damed an explanatory

variable candidate.

It was also observed that actual quantities of power trdizgecthrough the Ontario-
New York intertie had no meaningful correlation with demangbrice in the neighboring
markets. This lack of correlation is due to the fact that moicthe overall transactions
constitute power wheeling transactions from differentipartaking place through this

intertie.

Price

Only day-ahead prices in the neighboring markets are exafor their possible effects
on the HOEP, because they are known before real-time. Nat¢ith main components
of the costs of any energy transactions between Ontariotenddighboring markets are
the HOEP and the LMPs at the pricing points in those markgtdvued in the trade; thus,

only these three LMPs are studied here. These LMPs are deasteMRyon for the
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Table 3.2: Correlation between demand in the neighboringetsy Ontario price and

Ontario demand, year 2004

New York | New England] PJM

demand demand demand

HOEP 0.54 0.63 0.37

Ontario Demand 0.83 0.89 0.52

New York to Ontario interface in the New York market, LMRy for the New England
to New York interface in the New England market, and Ly for the PIM to Ontario

interface in the PJM market.

The HOEP is correlated to LMRon, LMPreny and LMBsjvon, With p values of
0.69, 0.67, and 0.67, respectively; hence, they are camsldes explanatory variable
candidates. Since market prices are influenced mainly byaddnthe high correlations
may be due to the similar demand patterns in the neighboniegsa Therefore, the
mentioned LMPs need to be included in the HOEP models ordy #fe possible effects
of demand in Ontario and other markets on the HOEP are propetieled.

For simplicity, the final and total set of explanatory vatebandidates are denoted

by z, to 9, and are summarized in Table 3.3.

3.3 Review of Time Series Models

3.3.1 ARIMA Model

Let denote the equally sequenced values of a stationartyadtic processby z;, z;_1, ....
An Auto Regressive Moving Average model ARMAg) for this process can be ex-
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Table 3.3: The final explanatory variable candidates

Variable 0
x1. 3-hour-ahead PDP 0.74
T9. 3-hour-ahead PDD 0.63

x3. Predicted supply cushion (PSC)| -0.60

x4. The SSR Ontario demand foreca€1.68

x5. New England market demand | 0.63

x¢. New York market demand 0.56

xr. LMPrneNY 0.67

xs. LMPNYON 0.69

Tg. LMPp3ivon 0.67

x10. The SSR capacity excess -0.65

pressed as [58]:
p q
2y = C+ Z gbizt_i + € + Z Qjet_j (33)

i=1 j=1

wherec, ¢; andd; are the model parameters to be estimated, cangl assumed to be
an independently and identically distributed (i.i.d.) mat random variable (shock) with
mean zero and varianeé. Using the backward shift operatéy, i.e., Bz; = z;_;, model
(3.3) may be represented as:

¢(B)Zt =c+ H(B)Gt (34)
where¢(B) = 1 — ¢, B — ... — ¢,B" is the auto regressive operator AR, 0(B) =
1-6,B—...—0,B%is the moving average operator Nif.

Stationarity condition requires stability in the mean aadance of the process; most



Chapter 3: Forecasting the HOEP Using Linear Time Series Mode 64

real-life processes do not meet these requirements. Noioisrity in variance is dealt
with by the Box-Cox power transformations which is definecas= (2 — 1)/ for

A # 0 € IR. For a given model, the optimal value dfis found by minimizing the sum
of squares of the residuals of the model. In casgrns out to be close to or equal to zero,
a natural logarithmic transformatian = In (z;) is used [58]. If non-stationarity is the
result of a variable mean, th#&" order differenced process = (1 — B)?z; is modeled.
Settingd = 1 or d = 2 usually induces constant mean; the ARK#A;) model for the
differenced process is referred to as the Auto Regressive Integrated Moving Ayera

model ARIMA(p, d, q) for the process.
A time series with potential seasonality, indexeddyyis represented by a general
ARIMA (p,d, q)(P, D, Q) model:

¢p(B)®p(B*)(1 — B)¥ (1 — B*)P2 = ¢+ 0,(B)O¢g(B%)e (3.5)

where ¢,(B) and 6,(B) are nonseasonal AR(and MA(g) operators;®p(B*) and
O©¢(B?*) are seasonal AR{) and MA(Q) operators; and3’ is the seasonal backward
shift operator which is defined d%°z; = z;_,. For hourly datas = 24 ands = 168
indicate daily and weekly seasonality, respectively.

3.3.2 Dynamic Regression Model

The relationship between a dependent varigldad a set of explanatory variablesi =
1,2,...,n, at timet can be expressed by a constana transfer function ternf, and a

disturbance tern¥,, as follows:
Yy =c+ f(T14, s Tny) + N (3.6)

In ordinary linear regression (OLR) models,in (3.6) is a linear function of the ex-

planatory variables;,i = 1,2, ..., n, and the disturbance term is assumed to be an i.i.d.
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normal random shock, i.e.,

Y =CH+wiT1s+woloy + ... + wpne + €6 =c+ Zwix@t + € (3.7)

=1
wherew; are the coefficients to be estimated. If the current valuéetiependent vari-
able is affected by up te;, past values of th&” explanatory variable, in addition to the

current values of the explanatory variables, the OLR modelle represented as:

Yr =+ (W1,0T1¢ + Wi1T1—1 + oo+ Wi T1gepy) +
(wo, 024 + Wo 1T t—1 + ... + WoryToypy) + ..

(wn,Oxn,t + wm,lxn,t—l + ...+ Wn,rnxn,t—rn) + €t (38)

wherew; ; corresponds to the coefficients foy at lagj to be estimated. Using the
backward shift operator, model (3.8) can be representedllasvt:

Yy = C + Z ZijBj(B)th —+ €t (39)

i=1 j=0
Models (3.8) or/(3.9) are referred to as distributed lag nofE9)].

It is also possible to include up te past values of the dependent variable in this
model as explanatory variables as follows:

n T

Y =+ (01Yi—1 + GaYi—2 + ... + Opl—p) + Z Zwi,ijxz’,t + € (3.10)

i=1 j=0
whereg;s are model parameters to be estimated. By applying the badlshet operator

on the dependent variable model (3.10) can be represented as follows:

S(Byyr =c+ Y Y wijBlr, +ea (3.11)

i=1 j=0

where¢(B) is defined in (3.4). The models (3.10) and (3.11) are somstiekerred to
as a dynamic regression (DR) [14, 19] or autoregressive dynaodel [59].
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3.3.3 Transfer Function Model

In a more general form than the DR model, the relationshipvéei the dependent vari-
abley and the independent variabless, can be defined as a rational transfer function

term and a disturbance terivy as follows [57, 60]:
"\ w;(B)B"
Y = C+ ; W%’t + Nt (312)

wherew;(B) = Y. wi;B; 6;(B) = 1— 3"}, 6, B"; k; is the order of the polynomial
0;(B); b; is referred to as the delay time for variabtg the disturbance tern¥; is
expressed by an ARMA model, i.eV;, = 6(B)e,/¢(B); and the polynomial operators
¢(B) andf(B) are defined in (3.4). The model in (3.12) is referred to as a ©Heh

3.3.4 Building Time Series Models

The Box-Jenkins three-stage procedure, comprising ideattiibn, estimation and diag-
nostic checking, for the ARIMA model building has been usecjg8]. In the identifi-
cation stage, the time series data is analyzed using thmeastl autocorrelation function
(ACF) and partial autocorrelation function (PACF), and a aéwé model is selected.
In the estimation stage, the parameters of the tentativeeharé estimated using the
maximum likelihood method. In the diagnostic checking, tb&iduals of the model are
examined for the i.i.d. assumption and, in case of failune, tentative model is im-
proved accordingly until it is acceptable. Normalized desils time domain plots, resid-
uals ACF, the Ljung-Box statistics [60], residuals probapilots, and plotting residuals
against the fitted values are popular tests in the diagndsticking stage; all of these are

employed in the current work.

For building the TF and DR models, the three-stage linearstea function (LTF)
method [57] is used here. In the identification stage, a teethTF is selected for the
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transfer function term. For TF models, a simple ARMA modelaiested for the distur-
bance term, while for DR models, the disturbance term israssito be an i.i.d. normal
random shock and a tentative AR term is specified for the agtessive terny(B).
The tentative model is estimated and the disturbance tecmesked for stationarity. In
case of non-stationarity of the disturbance, the respondesgplanatory variables are
properly transformed. The tentative terms are modified ratteg to the behavior of the
residuals of the model. A tentative rational form for thensfer function term may be
identified at this stage for the TF models. The estimationtaeddiagnostic checking

stages are similar to the aforementioned Box-Jenkins ptoweddr the ARIMA model.

3.4 Modeling Market Prices by Time Series Models

3.4.1 General Considerations

Three time periods, each of two weeks duration, are seldoteouilding the time se-
ries models and generating HOEP forecasts. The first pedoghdses two consecutive
weeks from April 26 to May 9, 2004, referred to as Weakd Week; during this period,
the Ontario market demand reached its spring low point. Boersd period comprises
two consecutive summer peak-demand weeks from July 26 tagt®) 2004, and are
referred to as Wegland Week. The last period includes two high-demand winter weeks
in 2004, spanning December 13-26, and are referred to as;VdediNeek.

Models for each of the six weeks have been individually idiet, estimated and
checked. The ARIMA models are built using four weeks of histrdata, while the TF
and DR models are developed based on ten weeks of histoaitzal the main criteria for
identifying the final models are as follows: diagnostic dtieg tests (Section 3.3.4); the
principle of parsimony [60]¢-value of the estimated model parameters; Akaike Informa-
tion Criterion (AIC) [57]; out-of-sample forecasts accuraagpd reality of the identified

models.
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Figure 3.3: Week a) Residuals ACF of the DR model. b) Residuals ACF of the TF

model.

To illustrate some results of the diagnostic checking stage residuals ACFs of
the 24-hour-ahead forecasts by the TF model and the 3-hHmaekbforecasts by the DR
model developed for WegKin Section 3.4.3) are presented in Figure 3.3; the horaont
bands in this figure represent the significance limits of thd# Observe that no signif-

icant correlations for the first few lags and the relevansseal lags (e.g., 24, 48) exist.

The Scientific Computing Associates (SCA) statistical systenmsed here to build
the proposed models [61]. To deal with outliers, the Chenadlgorithm for joint es-
timation of model parameters and outliers [62], implemdntethe SCA system, was
employed; however, no significant improvement in the ovéoaécasting accuracy was
observed. Natural logarithmic transformation is found éalie optimal Box-Cox trans-

formation for variance stability in this study, given thestorical data and the identi-
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Table 3.4: The ARIMA models for the HOEP

Week | (1)(24,25,72,119)(168,169)Z, = (1)(24)¢,

Week | (1)(24,25,72)(168,169,336)Z, = (1)(24)e,

Week; (1,2)(24,25)(168) Z, = (1,2, 3)(24)e,

Week, (1,2)(24)Z, = (1,2)(24)e,

Week ¢ (1)(23)Z, = (1,2,3,4)(24)e,

fied models; hence, the forecasts are untransformed usngthiased untransformation
method in [63]. Furthermore, a seasonal differencing wite- 24 is applied to in-
duce mean stationarity in all models. The transformed diffeed HOEP time series,
i.e., (1 — B?')In(HOER,), is referred to a&/; here onward.

3.4.2 ARIMA Models for the HOEP

A shorthand convention, also used in [61], is employed heraimplicity to show the
developed ARIMA models. According to this convention, an ARao MA operator

is represented by the orders of the respective backwartdagiefator. For example, the
ARIMA model (1 — ¢ B)(1 — ®, B* — &7 BY) 2= (1 — 0,B2)(1— 04, B*')¢, is shown
as(1)(24,47)z = (2)(24)e;. The ARIMA models developed for each of the six studied
weeks are listed in Table 3.4.

3.4.3 TF and DR Models for HOEP

Multicollinearity arises in a regression problem if theseal linear dependency among
the explanatory variables. Popular methods to deal wittptbblem of multicollinear-



Chapter 3: Forecasting the HOEP Using Linear Time Series Mode 70

ity, such as ridge regression [64] and principal componegrassion [65], are developed
in the ordinary regression framework. Hence, they are nptiegble to multivariate
time series models, given the inherent differences betwestel definitions and estima-
tion for time series models and ordinary regression modelghis study, the following
two-step procedure is designed for building the TF and DR etsooh the presence of
multicollinearity among the explanatory variables:

1. Inthe first step, market knowledge, theoretical justiitses, and linear correlation
between the HOEP and the explanatory variable candida#assed to choose the
most influential explanatory variable, referred to as thestfstep variable”. TF
and DR models for the HOEP are fully built assuming that the-8tep variable
is the only explanatory variable. In this step, the powengfarmation and the
differencing order, which are needed for stabilizing thearece and the mean of

the time series are identified.

2. In the second step, the general form of the transfer fandgrm associated with
the first-step variable is kept constant and other variadnlesadded to the model
in a step-wise manner; variables with collinearity with firet-step variable are
considered first. The performance of the new models is madtosing the identi-
fication criteria mentioned in Section 3.4.1. The transfection terms associated
with each significant variable, as well as the disturbanaaegeare modified appro-
priately in this step, and the final model is identified by addother explanatory
variable candidates and repeating this step.

Since the PDP variables are produced by mimicking the mat&ating process us-
ing the most recent market data, they implicitly carry tHfeimation of inherent interac-
tions among influential market variables. Hence, the 3-4atw@ad PDP variable, namely
x1, is considered as the first-step variable in the TF and DR feed®en the forecasting

horizon is three hours. In addition, given the critical effef Ontario demand on the
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HOEP, the SSR demand forecast variable, namglis selected as the first-step variable

when the forecasting horizon is 24 hours.

Lags 1, 2, 3, 4, 23, 24, 25,47, 48,49, 71, 72, 73, 95, 96, 97,1A® 121, 143, 144,
145, 167, 168, 169, 335, and 336, of each explanatory ver@bididate are considered
for TF and DR model building. The inclusion of trading-dajeets in the TF and DR
models was not found to improve overall forecast accurdgyg;dan be attributed to the
fact that demand forecasts are already used as model irgantging the corresponding

trading-day information.

TF Models

The final TF models in the first step for 3-hour-ahead and 24-abead forecasting hold
the following form:

Z3M = (w10 4+ w11 B + w1 2B (1 — B*)In(z1,) + NP (3.13)
Zi" = (w10 + w11 B +w12B%)(1 — B*) In(z4,) + N7* (3.14)

Observe in models (3.13) and (3.14) that only the two lataktes of the first-step vari-
ables affect HOEP behavior. The LTF method did not yield eonai form for the TF

models in all cases in this step.

In the second step, the following TF models were finally ided for 3-hour-ahead
and 24-hour-ahead forecasting:

Zh =37 32 (wi i BY)(1 - B*)In(z) + N} (3.15)
Zh = Z?:o((WS,ij )(1— B**)as, +
(wa;B7)(1 — B**)In(z44)) + N (3.16)

No rational form was identified for the models in this step.eThisturbance terms cor-
responding to models (3.15) and (3.16) are presented ire[Babland 3.6, respectively.
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Table 3.5: Disturbance terms for 3-hour-ahead forecadtthghodels

Week - (1)(24)N? = (24, 48)¢;

Week, | (1,2,3)(23,24) N = (1)(24, 48)¢,

Week s | (1)(23,24,25)N3 = (1,2)(24)e,

Table 3.6: Disturbance terms for 24-hour-ahead foreag3tiansfer Function (TF) mod-

els
Week | (1)(24,25,72)N2* = (1,2,3,4)(24)e,
Week (1)(23,24,25, 72)N2* = (24)¢,
Weelks, | (1)(24,25)(168,169) N2 = (1,2, 3)(24)e;
Week (1) (24)NZ = (2)(24)eq

DR Models

The general forms of the final identified DR models for the seeks under study, and
for both forecasting horizons, are:

CZ)(B)ZE% = Z?:l Z?:o(wi,ij)(l - B*) In(zit) + € (3.17)
$(B)Z7" =375 ((ws 3 BI)(1 — Bz, +
(w4,ij)(1 — B*) In(xa4)) + & (3.18)

The final identifiedy(B)s turn out to be similar for both forecasting horizons, andl ca
be presented as(B) = (1, 2, 3, 4, 23, 24, 25, 47, 48, 49, 71, 72, 73, 95, 96, 97, 119,
120, 121, 143, 144, 145, 167, 168, 169, 335, 336). Howewverfallowing lags were not
found to be significant: lags 2, 3, 4, 23, 335 for WegKags 3, 4, 25, 336 for Wegk;

and lags 2, 335, 336 for Wegk
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3.4.4 ARIMA Models for the Neighboring Markets’ LMPs

In order to compare the price behavior in Ontario with thathi& neighboring markets,
ARIMA models are also developed for LMBvy, LMPnyon, and LMBsjvon (27, 2, and
x9). Ten weeks of historical data are used to identify and eggrthe following models
for Week:

1. New England:

(1)(23,24, 25,48, 72,96, 120, 144)(167, 168, 169, 170) x

(1— B*)In(z7,) = (1,2,3,4,5)(24, 25)¢; (3.19)
2. New York:
(1,2)(24,48,49,72,96)(168, 169, 336, 337, 504) x
(1 — B*")In(zs,) = (1)(24,48,72,96)¢, (3.20)
3. PIM:

(1,2,3)(24,25,26,47,72)(167, 168, 169) x
(1 — B*")In(zg,) = (24)(167, 168, 169)e; (3.21)

It is observed that the studied LMPs exhibit a stable bemavi@ther words, models
(3.19), (3.20), and (3.21) fit the data well for Weeknd even for Week and Week.
Similar behavior is reported in [19, 16, 14, 20], where thealigped models are shown to
perform stably for long periods of time, in some cases forlaykar. However, the final
identified ARIMA, TF, and DR models for the HOEP are differemt the studied weeks.
The unstable behavior of the HOEP models highlights thetfeatt these models have
to be re-identified and re-estimated after new observatwasavailable. The need for
model re-identification implies that market participarasicot count on a single model
in order to produce HOEP forecasts in a non-supervised aitormanner, a fact that

must be taken into account for commercialization of thedasting models.
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3.5 Numerical Results and Discussion

3.5.1 Final Identified Explanatory Variables

The final identified sets of explanatory variables differttoe two forecasting horizons.
When the forecasting horizon is three hours, 3-hour-ahedd &l New England de-
mand are the significant explanatory variables for both efftR and DR models iden-
tified in the second step. For the 24-hour forecasting hofiRSC and New England
demand are identified as significant variables in the sectapd ¢t is observed in [23]
that the New England electricity market prices are genetatiher than the HOEP, a
factor affecting exports from Ontario, which in turn affe¢tOEP behavior. This would
explain why the New England demand appears in the developedn@ DR models,
hence improving the forecast MAPEs by about 1%. Howevecesatfter-the-fact New
England demand data are used in the model building prodassexpected that if de-
mand forecast is used in a practical implementation, it @aiffset this improvement;

hence, the New England demand is excluded from the final pregenodels.

Because of the presence of the 3-hour-ahead PDP variable Biltbur-ahead fore-
casting models, the PSC variable does not appear in thesalsnddhis complies with the
nature of PDPs, which are the final projected values of the Pi@iking into account all
available market information and market variable inteacacd. Demand and price from
other markets, and the SSR capacity excess or shortfaliblarare also insignificant
variables in the developed models, thereby implying thay ttio not carry additional
information once the effects of the Ontario and New Englagmhands are modeled.
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3.5.2 Accuracy Measures

Two measures are used in this work to quantify out-of-sarfgskecast accuracy of the

developed models. Thus, the absolute error (AE) is defined as

AE, = P/ — P2 (3.22)

where Ff and P are the forecast and the actual values of market priceeBpectively.

The absolute percentage error (APE) is defined as:

Pl — Pt
P

APE, — (3.23)

The weekly mean absolute error (MAE) and mean absolute p&ge error (MAPE)
can be defined as follow:

168

1
MAE = — AE 3.24
3 ; : (3.24)
168
100
MAPE = — AP 3.25
68 ; E (3.25)

Neither the HOEP nor the other studied LMPs have ever shovar@avalue during the
studied period; therefore, the values of ARIEe finite values for all hours. In cases where
market prices may take a zero value, modified versions oftlbgeaerror measures can
be used [7].

3.5.3 Forecasting Results for Ontario

The weekly MAPEs and MAEs of the generated HOEP forecastitranse of the IESO-
generated PDPs for the six studied weeks are presented liesTal and 3.8. The fore-
casting origin for a set of 24-hour-ahead forecasts is teehaur of the previous day;
for example, for the 24-hour-ahead forecast horizon spgnfiom today midnight to
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tomorrow midnight, the forecasting origin is 11 PM today. Ba other hand, forecast-
ing origins move through the day in case of 3-hour-aheaccésting. It is to be noted
that the PDP values used in the present work have the sanwa$bireg origins as the
generated HOEP forecasts. The mean, standard deviati@)(8inimum (Min), and
maximum (Max) of the HOEP for the six studied weeks are prieskim Table 3.9.

Table 3.7: Weekly MAPEs (%), and weekly MAEs ($/MWh) fo the H®Eodels

3-hour-ahead

ARIMA TF DR PDP

MAPE | MAE | MAPE | MAE | MAPE | MAE | MAPE | MAE

Week 13.6 6.5 124 | 6.0 12.3 6.0 26 11.2

Week 15.5 7.0 147 | 6.7 12.9 6.2 26.4 | 10.6

Averagé | 14.5 6.8 13.5 6.4 12.6 6.1 26.2 | 10.9

Week; 11 5.6 105 | 54 9.6 5.0 15.2 7.4

Week, 14.3 5.6 119 | 48 12.2 5.3 15.1 6.0

Weel 12.5 7.9 10 6.4 10.8 6.8 28.8 | 16.7

Week; 176 | 9.75 | 13.2 7.6 12.5 7.1 289 | 16.5

Averagé | 13.9 7.2 114 6.0 11.3 6.1 220 | 11.7

Grand 14.1 7.1 12.2 6.2 11.7 6.1 23.4 11.4
Average

a Average for the low-demand period (Weeknd Week).
b Average for the high-demand period (Wees Week).

The results presented in Tables 3.7 and 3.8 show that theamgcof the gener-
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Table 3.8: Weekly MAPESs (%), and weekly MAEs ($/MWh) fo the H®Bodels

24-hour-ahead

ARIMA TF DR PDP

MAPE | MAE | MAPE | MAE | MAPE | MAE | MAPE | MAE

Week 15.9 7.2 156 | 7.1 15.9 7.3 39.7 | 175

Week 18.6 8.2 18 8.2 18.1 8.2 30.3 12

Averagé | 17.2 7.7 16.8 1.7 17 7.8 35 14.7

Weelk 13.6 6.9 123 | 6.4 13 7.2 36.9 | 20.6

Week; 21.5 8.7 18.3 7.3 19 7.6 316 | 123

Week 15.4 9.6 14.8 9.2 14.7 9.3 60.2 | 34.3

Weelk 20.8 | 120 | 175 | 10.1 | 185 10.7 37.3 | 22.8

Averagé | 17.8 9.3 15.7 | 8.2 16.3 8.7 415 | 22.5

Grand 17.6 8.8 16.1 8.1 16.5 8.4 40 19.9
Average

2 Average for the low-demand period (Weednd Week).
b Average for the high-demand period (Weds Week;).

ated HOEP forecasts is significantly higher than that of Ef®Q-generated PDPs. The
overall MAPE of the generated forecasts are 23.9% and 11ov#rlthan those of the
IESO-generated PDPs for 24-hour-ahead and 3-hour-aheszhgis, respectively. Also,
the overall weekly MAE of the 24-hour-ahead and 3-hour-dHeegecasts generated by
the TF and DR models are $11.8/MWh and $5.3/MWh lower, resgagtithan those
of the 3-hour and 24-hour-ahead IESO-generated PDPs. dfontine, observe that, as
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Table 3.9: HOEP statistics for each week

Week; | Week, | Week; | Week, | Week; | Weeks

Mean| 45.4 46.4 51.2 46.7 54.9 51.6

STD | 16.4 16.9 13.8 18.9 23.1 23.7

Min 18.9 13.9 20.6 10 35.4 30.3

Max | 153.1 | 106.1 | 101.8 | 94.8 | 175.2 | 135

expected, the accuracy of the forecasts is generally hiffinethe shorter forecasting
horizons.

The results in Tables 3.7 and 3.8 clearly show that for thi-digmand period (Wegk
to Week), multivariate models outperform the univariate models can observe that
the MAPEs of the 24-hour-ahead forecasts generated by thmodels and the 3-hour-
ahead forecasts made by the DR models improve by 2.1%, af6l 2e8pectively. In
terms of MAE, the improvements achieved over the ARIMA modbgishe multivariate
models are $1/MWh for the 24-hour-ahead forecasts and $W2ykdr the 3-hour-ahead
forecasts. However, for the low-demand period (Weakd Week), inclusion of the
market data in the multivariate models does not improvecseaccuracy. This result
implies that during low-demand periods, the market dataydass useful information
than during high-demand periods. The improvements madadynultivariate models

are lower when all the six studied weeks are considered.

Although inclusion of thebefore-the-facimarket data into the forecasting models
improves forecast accuracy to some extent, this improveimsemot significant. This
not-so-significant improvement in accuracy of the mulieer HOEP models can be
attributed to the real-time nature of the Ontario market. @aRdom Section 2.5.4 that

the entire demand obligation has to be cleared in real-tm@nitario, which puts upward
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or downward pressures on the HOEP, leading to price spikethérmore, out-of-market
actions by which the market operator manipulates the matkaring procedure affect
the patterns behind the price behavior. Hence, the HOERjgyhvolatile, as analyzed
in more detail in Chapter 5, and the information contents eftibfore-the-fact market

data have a high level of uncertainty.

In some studies, such as [14] and [19], multivariate modedsr@ported to signifi-
cantly outperform univariate models. These two studiesafitge-the-factdemand data
for developing multivariate models; although buildinggerimodels using actual demand
data is important in order to discover the true demand-prtationships, these data
are not available before real-time for a practical priceeaisting tool. In contrast, the
multivariate models developed in the present work do natigantly improve forecast
accuracy compared with univariate models. This deficiemeyle attributed to the lack
of accuracy in information content of tibefore-the-factlata used, which is not the case
when usingafter-the-factdata.

The forecasts obtained for Weglone of the highest demand weeks of 2004, have
the lowest error among the studied weeks. Actual values dPl@nd the most accurate
HOEP obtained using the corresponding TF model are depiatéayure 3.4. During
this week, prices on all seven days were within the normajeaexcept for three unusual
price spikes. Although the general price trend during tregkvcould be forecasted with

considerable accuracy, none of the three price spikes vagtered by the models.

The 24-hour-ahead HOEP forecasts generated by the ARIMAren@F models are
plotted against the corresponding actual HOEP values fakWa Figure 3.5, which
presents the poorest forecasting results; the resulttéddR model are similar to those
of the TF and hence are not shown here. During this week, thegpare unusually high
for the first two days, and relatively low for the rest of theeke Note that none of the
models can reasonably forecast the unusually high or loeeprialthough the TF and
DR models predict high/low prices relatively better than NRI.
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Figure 3.4: 24-hour-ahead and 3-hour-ahead HOEP foreftasf¥eek; by the TF and
DR models.

During Week the prices also behave irregularly, as depicted in Figuse Bor this
week, severe mid-day price fluctuations happened in thewicstlays, and the Christmas
holidays at the end caused unusual flat prices during théhlieest days; observe also the
price spike on Christmas Eve day. When forecasting horizod isdirs, none of the

models could predict the unusual prices; however, the 3-Abaad forecasting models
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Figure 3.5: 24-hour-ahead HOEP forecasts for Wdmkthe ARIMA and TF models.

predict better the unusual prices in the market.

Histograms of APEvalues for the 24-hour-ahead forecasts by the TF modeldpand
the 3-hour-ahead forecasts by the DR models for the entirersek period are shown
in Figure! 3.7; histograms of the corresponding PDPs for dadtasting horizon are
also presented for comparison purposes. Although the acgaf the generated HOEP
forecasts is significantly higher than the PDPs, thereestiit some hours during which
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Figure 3.6: Forecasts by TF models for Weék forecasting horizons of 3 and 24 hours.

the forecasting errors are relatively high. For example28%6 of the hours in the case of
24-hour-ahead forecasts, and for 17% of the hours in theafé&s@our-ahead forecasts,
the APEs are more than 20%. If only the high-demand period, i.e.,Rif¢eek;, is

considered, these numbers improve to 19% for 24-hour-atoeadasts, and to 11% for

3-hour-ahead forecasts.
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Figure 3.7: APEs histograms for the TF and DR models.
3.5.4 Forecasting Results for the Neighboring Markets

The models developed in Section 3/4.4 are used to generdteltdahead forecasts for
the studied LMPs for Wegko Week. The time duration of these weeks is the same as
that defined in Section 3.4.1, and correspond to two typamademand and two typical

high-demand weeks in these markets. The calculated weeklpB4 of the forecasts
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Table 3.10: Weekly MAPESs (%) of the forecasts for the neighigpLMPs

New England | New York | PJM | Ontario
Week 6.2 6.9 10.1 15.9
Week 5.4 7.1 114 18.6
Weel 3.7 6.1 8.7 13.6
Week, 7.1 8.1 17.3 215
Average 5.6 7.1 11.9 17.4

are presented in Table 3.10, along with the respectiveteefrlthe HOEP forecasts for
comparison. Observe that the accuracy of the forecastsaeddor the New England,
New York, and PJM day-ahead market LMPs, i®&., rs, andz,, is higher than the
accuracy of the HOEP forecasts. As well, the HOEP forecagisrted in the present
paper, and elsewhere [15, 23], have a much lower accuraey tlean price forecasts
for other markets (e.g., Spanish [19] and PJM [14] marke#s)volatility analysis is
presented in Chapter 5 in order to partly explain the relbtikmv accuracy level of the
HOEP forecasts.

3.6 Summary

In this chapter, publicly available electricity marketa&bm Ontario and its neighboring
markets are evaluated to determine how efficiently they eaanbployed for improving
HOEP forecast accuracy. A wide range of market informatsostuidied in detail, and a
final set of explanatory variable candidates are selectegoitant practical issues, such
as the availability of explanatory variables before réalet and the market structure and

operational time-line are considered in the process otselethe explanatory variables,
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which have not been addressed in previous research work.ndved concept of Pre-
dicted Supply Cushion (PSC) is introduced as an explanataighbla candidate in this
study.

Multivariate TF and DR models are employed to relate HOEPabieh to the se-
lected market variables. Univariate ARIMA models are alseettgped for the HOEP
and their accuracy is compared with that of the multivaratedels. The problem of
multicollinearity among the explanatory variable cantkdas addressed by a two-step
model building procedure. The developed models are usedrtergte HOEP forecasts

for low-demand, summer peak-demand, and winter peak-demamods.

The results of this chapter demonstrate that the accurattyediOEP forecasts gen-
erated in this research is significantly higher than anyrotéported HOEP forecasts.
However, that is still relatively low compared to the acayraf forecasts generated for
Ontario’s neighboring electricity markets. Furthermates observed that inclusion of
the just-in-time publicly available data in multivariate HOEP models does signifi-
cantly improve the forecast accuracy, compared to the H@iEgtasts generated using
univariate ARIMA models. It is also observed that the avddabarket data is not very
useful in predicting unusual upward or downward price spiKéhe small improvements
gained by using the multivariate HOEP models can be atetd the poor information
content of the market data available in practice. Finallis found that the final set of
informative explanatory variables is different for eacteftasting horizon, leading to dif-
ferent forecast accuracies. Furthermore, the developdeH@odels are less stable than
the similar models developed for other electricity markatgs. This model-instability
highlights the difficulties of developing practical forastiag tools to predict short-term
HOEP behavior.



Chapter 4

Forecasting the HOEP Using

Non-linear Model

4.1 Introduction

In Chapter 3, the application of linear time series modelsotedasting the HOEPs is
presented. Although the accuracy measures of the foreglasstimied by the linear mod-
els are significantly improved compared to previously reggbiHOEP forecasts, it is
important to examine if any non-linear relationship extst$ween the explanatory vari-
able candidates and the HOEP. In order to investigate thigejstwo well-established
non-linear techniques, namely, MARS and MLP neural netwasks examined in the

present chapter.

MARS is an adaptive piece-wise regression approach and leassoecessfully em-
ployed for various prediction and data mining applicationsecent years. This method

has been shown to be particularly useful when a large nunfbexpdanatory variables

1Some of the findings of this chapter have been presented ia(0& IEEE PES General Meeting,
Montreal, Canada [66].

86
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are involved. MLP networks have also been successfullyiegpd various function ap-
proximation problems in several areas. These networkseg@ted to be able to model
virtually any function, provided an appropriate architeetis used. Neural network-
based models have been applied to the HOEP forecastingepmobl[15]; however, they
are considered here again since a new set of explanatogbl@aigandidates is used in

the present work.

4.2 Multivariate Adaptive Regression Splines for Fore-

casting

4.2.1 MARS Review

Shortly after Friedman introduced MARS as a piece-wise ugal regression method
[25], it was demonstrated in [26] that MARS can be efficientbed to model time se-
ries. Subsequently, MARS has been applied to a variety of imgdand data mining
problems; among these, MARS has been used for speech mof&lijagnobile radio
channels prediction [28], and intrusion detection in infation systems security [67]. In
addition, MARS has been employed to model the relationshiywdsn retention indices
and molecular descriptors of alkanes [68], to describeigdsttransport in soils [69],
to predict the average monthly foreign exchange rates {@0hodel credit scoring [71],
and for data mining on breast cancer pattern [72]. In all efdited studies, promising

results are reported for both modeling and data mining egpdins.

MARS is a non-parametric modeling approach, different frobewell-known global
parametric modeling methods such as linear regression [B5¢lobal parametric ap-
proaches the underlying relationship between a targeabvigriand a set of explanatory
variables is approximated using a (usually simple) glolsimetric function which is
fitted to the available data. While global parametric modgtirethods are relatively easy
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to develop and interpret, they have a limited flexibility amork well only when the true
underlying relationship is close to the pre-specified apipnated function in the model.
To overcome the weaknesses of global parametric apprgacbegparametric models
are developed locally over specific subregions of the damgata is searched for op-
timum number of subregions and a simple function is optiynfdlto the realizations
in each subregion. Recursive Partitioning Regression (RPR)esbthe most studied
paradigms of the non-parametric modeling approaches.

RPR is an adaptive algorithm for function approximation with capability of han-
dling a large number of explanatory variables. Let consadest of explanatory variables
X = {x1,x9,...,z,} over adomainD C I[R", and a target variablg. The true relation-
ship betweery and X can be described as:

y = f(z1,29,...,2,) + € 4.2)

where f is an unknown function, and the error teens a white noise. Brieflyf(X) is
approximated in RPR as:

M
F(X) =" anBn(X) (4.2)

where{a,, }#! are the coefficients of the model which are estimated to yredcbest fit
to the data}M is the number of subregioris,, C D, or equivalently the number of basis
functions in the model; and the basis functiBp is defined as:

1 XeR,

B (X) = (4.3)

0 otherwise
Although RPR is a powerful method, it suffers from variousrstmmings such as dis-
continuity at the subregion boundaries. MARS is a genemlizsion of RPR that

overcomes some of the limitations of the original version.

The main core of the MARS modeling approach is the hockekstline basis
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Figure 4.1: Hockey-stick spline basis function and its isnég ¢ = 4.

function, which maps a variableto z* as:
" =maxx — ¢,0) (4.4)

where c is referred to as the basis function knot. The mimage of the hockey-stick
spline basis function is also exploited in MARS to handle mem slope for values
below the knot, and it can be expressed as:

z* =max—(z — ¢),0) (4.5)

A hockey-stick spline basis function and its mirror image idustrated in Figure 4.1.
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In MARS, the RPR model represented|in (4.2) is modified as falow

M
fX)=as+ > amHu(X) (4.6)

whereq, is a constantg,, and M are defined in/ (4.2), and the spline basis functions
H,,(X) are defined as:

K7n,

Hn(X) = [ [(max(sm (@om) — tem), 0)] (4.7)

k=1
where the explanatory variables associated with the basistibn H,,, are labeled by
v(k,m); K,, is the level of interaction betweerik, m) variablesy, ,,, indicates the knot
locations forH,,,; and sy ,, takes +1 for the hockey-stick basis function and -1 for its

mirror image.

MARS models are developed through a two-stage forward/backwtepwise re-
gression procedure. In the forward stage, the entire domamsplit into overlapping
subregions and the model parameters are estimated by mingva lack-of-fit criterion.

If the maximum number of subregions is not specified, an ot#edfimodel with basi-
cally one subregion (basis function) per realization idthaithis stage, and all possible
interactions among the explanatory variables are coreidén the backward stage, the
basis functions which no longer contribute to the accurddgefit will be removed. To
make the MARS algorithm computationally affordable, theelesf interaction between
variables, as well as the maximum number of basis functionise model are specified
by the user.

A modified version of the generalized cross validation ddte (MGCV) is used in
the MARS algorithm as the lack-of-fit criterion:

1

MGCV = >y — X/ - <

T i=1

(4.8)
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whereN,. is the number of realization§, — aTAf]Q is a penalty factor accounting for the

increased variance resulting from a complex model, @t ) is defined as:
CM)=C(M)+d-M (4.9)

whereC'(M) is the number of parameters being fit, ahi$ another penalty factor with

3 as a typical value [25].

4.2.2 Modeling the HOEP Using MARS

In this section, the MARS technique is applied to the probldriOEP forecasting.
Thus, MARS models are developed to generate 3-hour-aheaé4ahdur-ahead fore-
casts for the six-week study period described in Sectiori3Recall that this six-week
period comprised two consecutive weeks of low demand, surmpeak-demand and win-

ter peak-demand.

Two scenarios are considered for model building: In the &cgnario, denoted by
SCN;, MARS models are developed solely based on the historical H@&ues; this
scenario can be imagined as a univariate adaptive nonlagaregressive modeling
paradigm. In the second scenario, denoted by S@he explanatory variable candi-
dates selected in Section 3.2 are used as the right-handssidbles for model building.
The planned outages variable is denotedrhy and is also considered here to capture
any non-linear effects this variable may have on the HOERMieh The New Eng-
land market demand variable is excluded from the set of egptay variable candidates
because this is the ondfter-the-facexplanatory variable candidate, as discussed in Sec-
tion/3.5.1. The second scenario can be thought of as an edayn-linear multivariate

dynamic regression modeling paradigm.

The models are built using 8 weeks of historical data, andttientific Computing
Associates (SCA) statistical system [73] is used in this workuilding MARS models.

The final set of explanatory variable candidates for S@&N\bresented in Table 4.1.
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Table 4.1: The final explanatory variable candidates for SCN

x1: 3-hour-ahead PDP 7. LMPNENY

xo: 3-hour-ahead PDD xg: LMPnyon

x3: Predicted supply cushion (PSC)| z9: LMPp3ivon

x4: The SSR Ontario demand forecast,: The SSR capacity exces

[72)

6. New York market demand x11: The SSR planned outagés

In order to limit the negative effects of outlier price obssrons on forecasting per-
formance of the MARS models, the data is pre-processed bb&ing used for model
building. An upper limit of $200/MWh is defined for the HOER)sé prices over this
amount are treated as anomalous prices by the Ontario IESJO The pre-processing
scheme is defined such that if the HOEP is more than $200/MWilil] lie replaced with
a demand weighted average of the HOEPs of three similarqus\days. This scheme

is formulated below:

HOEPR. if HOEP, < 200
?:1(HOSEPt_16s.i~Demanq_168.7-,> if HOER, > 200

5—1 Demand_16s.;

HOEPR, = (4.10)

SCN,

In order to build MARS models in SCNlagsl € LN of the HOEP (i.e., HOER,) are
initially considered as explanatory variables, witf™ defined in[(4.11). However, in
this scenario, it is found that lags 335, 336 and 337 of the A@& not contribute to the
developed models for all studied weeks. Furthermore, theiboiting lags for individual

weekly models are different for each week, which is conststath the HOEP model-
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Table 4.2: Significant lags for each week in SCN

Week » | LIS = {1,24,48, 49,120,121, 144, 169}

Week | L3™ = {1,25,48,96,97, 119,120, 144, 145,169}

Week, | L3N = {1,2,23,24, 25,48, 72,96, 120, 144, 145, 168,169}

Week ¢ | LS5 = {1,2,24, 48,49, 72,96,120, 144, 168}

instability observed in Section 3.4.4.

L3N — 11,2,3,23,24,25,47,48,49,71,72,73,95,96,97, 119,
120,121,143, 144, 145,167, 168, 169, 335, 336, 337} (4.11)

The set of final identified explanatory variables for each kvieeSCN; can then be

presented as:
XN = [HOEPR_, |n € LN} (4.12)

wherew € {1,2,3,4,5,6} is the index of the studied week. The sets of the detected
HOEP lags in SCiNare denoted by.>“™ and presented in Table 4.2.

SCN,

In SCN,, MARS models are built by initially considering lagse L5“™ of the HOEP,
the explanatory variable candidates presented in Tabl@.4.1z; ), and lagd € LS

of the explanatory variable candidates (i«,_;). Given the findings of Section 3.4.3
which showed only the recent values of the explanatory blesawere informative,
L5N: is defined as follows:

LS = {1,2,3,23,24,25,47, 48, 49} (4.13)
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Table 4.3: Significant lags of the final explanatory varialdtar each week in SCN for
both forecasting horizons

Week » | L3N = {0,1,24,25} | LT = {0,1,24}
Weeks 4 | L347N? = {0,1,2,24,25} | L3N = {0,1,2, 24}

Week ¢ | Lag°“"* ={0,1,24,25} | LI ={0,1,2,24,25}

Itis observed in this scenario that the autoregressive pathe developed models are
the same as found in SGNin other words, the HOEP lags which appear in the weekly
models in SCN are identical to those that appeared in SCS8imilar to the explanatory
variables found in Section 3.4.3, the 3-hour-ahead PDP drali8-ahead PDD variables
and their lags are identified here also in the case of 3-hoeaéforecasting. In the case
of 24-hour-ahead forecasting, the PSC and the SSR Ontamaurtk forecast variables
and their lag are the detected informative variables heree Jets of final identified
explanatory variables for each of the two forecasting lworszcan be presented as:

XS = {HOER._,, w1,4—, T2 |n € L5y € LW5ON?} (4.14)
XS — (HOER, _,, w34, Tas-pln € LN, B € LoMSON?) (4.15)

where, L35C¢N2 gnd [24h-5CN2 gre the sets of detected lags of the corresponding ex-
planatory variable for the 3-hour and 24-hour forecastimggons, respectively, for week

w in SCN,; andz; ., andx; ;g represent the explanatory variabidagged byy and
steps. Note that lagin L3"5°N2 and L24"5CN? represents the current value of the corre-
sponding explanatory variable, i.e;,. The setd 3"5¢N2 gand L24"5CN2 gre presented

in Table 4.3.

The maximum number of basis functions in this work was ititiselected to be very
high, i.e., 2200, and an interaction level of 2 was examiretd/een the input variables.

However, while the models with the interaction took a mugaigler time to be generated,
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they were not found to be more accurate overall than the raattleloped with no inter-
actions considered. Hence, no interactions are assumeatgiimoexplanatory variables.
It was also observed that a maximum number of 165 basis fumsis enough to build
the models. All final models took less than two minutes to bié# ban a Pentium(R) 4

CPU 2.53 GHZ, 1.0 GB RAM computer.

The final MARS models take the general form of:

M
HOEPR = ag + Y ay MaX($yn (T — tm),0) + € (4.16)

m=1

where HOEPRIs the value of the HOEP at tinteo be forecasted}/ is the final number
of basis functions in the model; ang, takes either +1 or -1z, represents the explana-
tory variables which contribute to the' basis function; and,, is the knot location
for them! basis function. As examples of (4/16), the developed maddisrecast the
HOEP during Weekin SCN; and in SCN for a forecasting horizon of 3 hours are pre-
sented in Appendix A; the models developed for the other wee& generally similar to
those presented in Appendix A.

4.2.3 Numerical Results

The MARS models developed in the previous section are usedrtergte forecasts for
the six individual weeks considered for the studies. As icti®a 3.5, weekly MAEs and

MAPESs are the measures used to assess the accuracy of ttastsrelhe values of the
weekly MAEs and MAPEs of the generated forecasts are predémfTable 4.4. For the

sake of comparison, Table 4.5 summarizes the lowest MAPEesadchieved by using
the time series models presented in Chapter 3 and the MARS mdidelissed here.

Observe from the results presented in Table 4.4 that, in dise of 24-hour-ahead
forecasting, the overall MAPE of the forecasts in SABl only improved by 1.1% .
While this improvement is higher in the case of 3-hour-aheagldasting, i.e., 2.4%, it is
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Table 4.4: Weekly MAPEs (%) and weekly MAEs ($/MWh) of the foasts by the
MARS models

24-hour-ahead 3-hour-ahead

SCN SCN, SCN, SCN,

MAPE | MAE | MAPE | MAE | MAPE | MAE | MAPE | MAE

Week 17.5 7.8 16.1 7.5 14.2 5.8 12.5 6.1

Week 17.9 7.9 18.3 8.1 14.5 5.8 12.8 6.2

Averagé | 17.7 7.9 17.2 7.8 14.3 5.8 12.7 6.1

Weel 14.2 7.1 13.3 7.3 10.6 5.1 9.6 4.3

Week 21.0 8.6 19.3 8.1 14.1 5.7 11.8 5.2

Week 15.2 9.5 15.2 9.3 13.1 7.8 104 7.1

Week; 215 | 11.8 | 18.6 | 10.5 16.8 9.5 12.1 7.2

Averagé | 18.0 9.2 16.6 | 8.8 13.6 7.0 11.0 6.0

Grand 17.9 8.8 16.8 | 85 13.9 6.6 115 6.0

Average

2 Average for the low-demand period (Weeknd Week).
b Average for the high-demand period (Weds Week).

Table 4.5: The lowest six-weekly MAPEs (%) of the HOEP fostsa

24-hour-ahead 3-hour-ahead

Transfer Function MARS: SCN, | Dynamic Regression MARS: SCN,

16.1 16.8 11.7 11.5
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still not very significant. Hence, the inclusion of the justime available market data in
MARS models has not significantly improved HOEP forecast ez especially when
the forecasting horizon is long. This is consistent withfthdings of Section 3.5, where
the multivariate linear models also did not yield signifitanmproved forecasts than
the univariate ARIMA models. These small improvements hgittlthe fact that the

available market data is not informative enough to forettestHOEP.

Also observe from the results presented in Tables|4.4, 38/,ahd 4.5 that fore-
cast accuracy of the time series models in Chapter 3 and ththedflIARS models in
the present chapter are very close. In the case of 24-h@adatorecasting, the fore-
casts generated by the MARS models in both univariate andvautte scenarios have
slightly higher errors than those generated by the timeesemnodels. In this case, the
overall forecast MAPE of the multivariate MARS models is 0.filgher than that of the
TF models. In the case of 3-hour-ahead forecasting, howtheoverall MAPE of the
HOEP forecasts by MARS models has improved only by 0.2%, coedp@ the overall
MAPE of the forecasts by the time series models. It is wortimtivaing that applying

the pre-processing scheme helps improve the overall fet@cauracy just marginally.

The 24-hour-ahead HOEP forecasts generated by MARS for \eek Week are
presented in Figure 4.2. Observe from this figure that, sintd the linear time series
models in Chapter|3, the unusually low or high prices are natirately predicted by the
MARS models either.

Despite the fact that MARS models have not contributed to avipg HOEP fore-
casting accuracy significantly, some of its modeling adsges should be highlighted.
Given the automatic model building procedure in MARS, depiglg MARS models re-
quires minimal intervention compared to time series modeds the time series models,
many diagnostic tests and trial and error steps have to ksdzmed in order to find the fi-
nal best possible fit. In MARS, there are only a few parametéisiwneed to be decided,

such as, the interaction level and the maximum number oslfasctions. Furthermore,
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Figure 4.2: The 24-hour-ahead HOEP forecasts by MARS for Wae# Week.

comparison of the two-step model building procedure in i8ec3.4.3 and the MARS
model building process presented in this chapter showsttimmore cumbersome to
build time series models than MARS models when a large numbexpanatory vari-

ables are involved.

It should be noted that the inclusion of explanatory vagdags for building MARS
models in this work is principally inspired by the developrhef time series models
in Chapter 3. Although building linear models is more trosbime than MARS, linear

models provide useful insights into the set of explanataryable candidates lags which



Chapter 4: Forecasting the HOEP Using Non-linear Models 99

are useful for building MARS models.

4.3 Atrtificial Neural Networks for Forecasting

ANNSs are inspired by the biological structure of the humaairor The brain consists
of a large number (about!!) of highly connected (approximately)* connections per
element) neurons. Each neuron receives electrical sifrmaisother neurons as input,
applies a transfer function to them and sends the resultitiguo signal to other neurons.
MLP networks with Back Propagation learning algorithm areagithe most common
ANN architectures for function approximation and pattexoagnition [74,75,76]. The
feedforward MLP architecture is employed in this reseaacld, is briefly explained next.

4.3.1 Feedforward MLP Networks

A typical artificial neuron model is shown in Figure 4.3. listmodel, individual inputs
D1, D2, - - -, pr are multiplied by corresponding weights ; , . . ., wy g, and then a transfer
function f is applied to the summation of weighted inputs with a biagpically 1. The
output of the neuron can be written@s- f(1W P+b). An ANN usually has a few layers
with each layer consisting of several neurons. The last lmyealled the output layer,
and other layers are referred to as hidden layers (Figude Kh.Bnost cases, the transfer
function for hidden layers is a log-sigmoid function, whistdefined as:

B 1
l4em

f(n) (4.17)

wheren is the input; a log-sigmoid function is depicted in Figuré.4.

If the flow of signal in an ANN network is from the input factaxsthe output layer,
without any feedback connection, the network is usualliedsh feedforward MLP. The
number of input factors and output neurons in an MLP netwoekdefined by the cor-

responding problem; however, there is no precise methoetermine the number of
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Figure 4.3: A simple artificial neuron model.

hidden layers as well as the number of neurons in each layéP ietworks may be
used for function approximation and pattern recognitiorppees, and with two or three

layers, they usually exhibit acceptable performance intrapglications [75, 76].

15

-0.5 :
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Figure 4.4: Log-sigmoid transfer function.
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Preparing an MLP for function approximation has three msjages, namely, train-
ing, validation, and test stages. Accordingly, the datasséivided into three parts with
the first and biggest part of the data being used for the trgistage. In the training
stage, the training data, comprising input patterns andités&red/measured output tar-
gets, are fed into the network and an optimization problemsolsed to minimize an
error function. The error function is usually defined basadte difference between
the network’s actual output and the desired output; meaarsgerror is one typical er-
ror function. Many training algorithms are available for ANraining, with the Back
Propagation algorithm being the most common. Standard BemkaBation is a gradi-
ent descent algorithm in which the network weights are maledg the negative of the
gradient of the error function. There are several otheratians of the basic algorithm
that are based on other standard optimization technigues asj Conjugate Gradient,
Scaled Conjugate Gradient, and Newton methods [74, 76]nifigais continued until a
defined performance goal is met. In the training stage, theoms biases and connection
weights are estimated according to a learning algorithne vidlidation part of the data
set is then fed to the network to finish its training. At thismipthe MLP is ready to be
tested by exposing it to the test part of the data. Dependmnth® performance of the
network in the test stage, more training may be required.

4.3.2 Modeling the HOEP Using MLP Networks

The fully connected feedforward MLP networks discussed/apaith one hidden layer,
are trained and used for forecasting the HOEP during theveek study period. The
explanatory variables presented in Table 4.1 and theirllag$1, 2, 3, 23, 24, 25} were
considered for as MLP inputs. In addition to these, lags L™ of the HOEP, with
LSN defined inl(4.11), were also considered. Since there is rimatjjoaccepted rule for
finding the optimal MLP structure, various combinations df®Minputs were examined

via numerous scenarios. The explanatory variables detégt¢he TF and DR models
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Figure 4.5: A typical feedforward ANN diagram.

in Section 3.4.3, and those detected by the MARS models ind®e¢f2.2 were among

the studied sets of inputs.

Separate MLP models were trained for 3-hour-ahead and @ddtead forecasting,
because of the different informative explanatory varialplieeviously found for each fore-
casting horizon. Note that in the case of 24-hour-ahead&steng,r; andz, were not
available at the forecasting origin, and hence were notidered for network building
purposes. In the case of 3-hour-ahead forecasting, the S&&i®@demand forecasts
variable was excluded from the inputs, since the 3-houadRDD variable was consid-

ered in the set input variables.

Different numbers of neurons for the hidden layer were teatel different ranges of
historical data, from 10 previous weeks to 36 previous weekse considered. The pre-
processing scheme discussed in Section 4.2.2 was alse@ppthe employed data here.
The MLP networks were developed using the MATLAB Neural NatkvToolbox, and
various training algorithms were examined. The Scaled @aigiGradient algorithm
[76] yielded the best performance.
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4.3.3 Numerical Results

Among the numerous scenarios examined, the highest fdracagracy was achieved
by the MLP networks when the explanatory variables deteloyeitie MARS models in
SCN, in Section 4.2.2 were used as the MLP inputs. In fact, the MARBets were
used as a filter to detect MLP inputs, similar to the approaeuun [71]. Seven neurons
were assigned for the hidden layer in these scenarios, aneeks of historical data
were found to yield the most accurate results. The weekly BlABd MAPEs of the
forecasts are presented in Table 4.6.

Observe in Table 4.6 that the six-week MAPE of the 3-houradhend 24-hour-ahead
HOEP forecasts are 13.7% and 18.3%, respectively; theseBdARe in the same order
as those of the univariate ARIMA models reported in Chapter431@h and 17.6%).
However, these forecasts have generally higher error mesaghan those obtained from
the proposed multivariate time series models in Chapter 8,tla@ MARS models in
SCN, earlier in the present chapter (see Tables/ 3.7, 3.8, and 4.4)

The low accuracy of the MLP networks developed in this workassistent with the
findings reported in [14, 15], where ANNs are applied to fastog electricity market
prices. In [14], it is found that time series models out-parf ANNs for PJM market
price forecasting. Furthermore, the HOEP forecasts g&eteby the neuro-fuzzy models
in [15] is also reported to have high error levels. Considgthre fact that determining
the optimal structure of the ANNSs is a difficult and time-comsng task, and also given
the higher accuracy of the other proposed models in thiareseMLP networks would
not be the preferred models in the case of HOEP forecasting.

4.4 Summary

In this chapter, two non-linear modeling approaches, ngm@ARS and MLP neural
networks, are employed to forecast the HOEP. MARS is apptigti¢ electricity mar-
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Table 4.6: Weekly MAPEs (%) and weekly MAEs
($/MWh) of the forecasts by the MLP networks

24-hour-ahead| 3-hour-ahead

MAPE | MAE | MAPE | MAE
Weelk 17.8 7.8 14.2 5.8
Week 18.6 8.1 14.6 6.3
Averagé 18.2 8.0 14.4 6.0
Weel 14.5 7.7 10.1 5.2
Week, 215 9.2 14.1 5.9
Weel 15.6 9.5 13.1 7.9
Week; 21.8 | 119 | 16.2 9.7
Averagé 18.3 | 9.6 134 | 7.2
Grand Average| 18.3 9.1 13.7 6.8

a Average for the low-demand period (Wee&nd
Week).

b Average for the high-demand period (Weeto
Weelk).

ket price forecasting problem for the first time in this workhe MARS models are
developed in this study in two scenarios: a univariate stemehere only the historical
HOEP data are used as explanatory variables, and a mudtiwagtenario where other
candidates as explanatory variable are also consideredsistemt with the findings of
Chapter 3, the SSR Ontario demand forecasts and the PSClearaipear in the final
24-hour-ahead MARS models. In the case of 3-hour-aheaddstiag, the 3-hour-ahead
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PDP and the 3-hour-ahead PDD variables are detected by tiSMAodels as informa-
tive variables. It is further observed that the inclusiomdrket data in the non-linear
MARS models does not improved forecast accuracy signifigantl

Despite a slightly higher forecasting error rate for the MARSBdels, compared to
the time series models, MARS has a more straightforward nimdieling procedure than
the time series models. Furthermore, it can easily handiega Inumber of explanatory
variable candidates. These advantages are of practicalkiamze given the fact that a

high level of model-instability is observed in the case ot@®io market prices.

It is observed that applying MLP neural networks to foreicasthe HOEP does
not improve forecast accuracy. The highest forecast acgusaattained by the MLP
networks when the explanatory variables detected by the MA&R&els are used as the
network inputs; however, this accuracy is even lower thamh ofithe univariate ARIMA
models developed in Chapter 3. In addition, developing ANN$@eciding about their
architecture and inputs is a more complicated and timetooimgy task than those of
the time series and MARS models. Hence, MLP networks are nadidered here as
preferred tools for forecasting the HOEP.



Chapter 5

Price Volatility Analysis for the Ontario

Electricity Market 1

5.1 Introduction

In Chapter 3, it is observed that the accuracy of the priceckms®s generated for the
Ontario electricity market is lower than forecasts gereztdbr the neighboring New
England, New York, and PJM electricity markets. Furthemp@ithough the forecasts
generated in Chapters 3 and 4 are significantly more accurateany other available
HOEP forecasts, they still have relatively high error lsveln order to explain these
observations, a comparative volatility analysis is présgim this chapter and price un-
certainty is compared across the New England, New York, Rdtd,Ontario electricity

markets.

Volatility indices in this work are developed based on trstdrical volatility and the
price velocity concepts, previously applied to other eleity market prices. Intra-day,
trans-day, and trans-week price fluctuations are the ba#ie @rice volatility analyses

IFindings of this chapter have been submitteddarnal of Energy Policy [77].
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in this research. The analysis is carried out in two scesaiiio the first scenario, the
volatility indices are determined for the price time ser@assa whole without splitting

it into separate time series; in the second scenario, tlwe piata is broken up into 24
time series corresponding to each of the 24 hours, and regpeolatility indices are

calculated separately. Considering the high HOEP forewgstirors in Chapter 3 and
the volatility analysis in the present chapter, the retatfop between price volatility and
price predictability is discussed. The price volatilitgioes determined for the Ontario

electricity market are also compared to the results reddaeother electricity markets.

5.2 Analysis Measures and Methodology

Volatility refers to the unpredictable fluctuations of a gges observed over time in ev-
eryday life. In economics and finance, volatility is badical criterion to study the
risks associated with holding assets. Volatility analysidatility modeling, and volatil-
ity forecasting have many applications such as risk manageand option valuation in
financial markets [78]. These applications can be extenolgubiwer markets [7], con-
sidering the fact that electricity market participants dnaeveral options for managing
their energy needs, in the short-term, mid-term, and l@ngrt In addition, quantifying
and comparing electricity market price volatility acros$edent electricity markets can
help market authorities in making appropriate amendmermtsadvancements to market
regulations and physical power systems.

With the advent of deregulated electricity markets in maoyntries, economic op-
eration of power systems has been influenced by the volatile® of electricity market
prices [3]. In [3], volatility of the prices in the Spanish, [@arnian, UK, and PJM elec-
tricity markets are analyzed, concluding that the SpanighRRIM market prices were
the lowest and the highest volatile, respectively. Valgtileatures of the Nordic day-
ahead electricity market are studied in [5] for a 12-yeaiqueup until the year 2004,
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and a high level of price volatility, in comparison to otherancial markets, is reported.
In [79], the periodic part of the price variations, for an nolwn market, is separated out
using a frequency-domain method and volatility of the remmay part is analyzed. Value
at risk methodology is used in [80] to study volatility of tRalifornian market prices.
Volatility analysis for 14 electricity markets, world-wedis reported in [81], with widely
varying price volatility behaviors being observed acraffegent markets. A multivariate
GARCH model is employed in [82] to study the inter-relatiopsiimong prices and price
volatilities in the 5 Australian electricity markets. Tcetbest of the author’s knowledge,

no price volatility analysis has been reported for the Qatealectricity market.

5.2.1 Historical Volatility

Let denotep, as the spot price for a commodity at timeThe arithmetic return over a

time periodh is defined as:
Rt,h _ Pt — Pt—n (5.1)

and the logarithmic return, over the time periods defined as:

ren = In( b ) =In(p;) — In(ps—pn) (5.2)
Pt—h

When returns are small, the arithmetic and logarithmic ret@are close, given the fact
that:

Dt
Pt—n
Most volatility analysis studies consider the logarithmaturn over arithmetic return due

)= In(1+ Ryp) ~ Ry, (5.3)

ren = In(

to several reasons which are discussed in [83, 84]; hengaritbmic return is used in

the present work as well.

If the return values are i.i.d. over a time wind@wone can present them as:

Teh = b + Ot € (5.4)
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where i, r is the conditional mean returia;, - is the conditional return variance; and
the random variable is a mean zero, unit variance, i.i.d. innovatioh, 1 is referred
to as historical volatility over the time windoW; in other words, historical volatility is
defined as the standard deviation of arithmetic or logaiithieturns over a time window
T. Given the return values, the estimated valué;pf can be calculated as:

P \/Zi\fol(rt,h -

’ N, —1

whereo,, 1 is the estimated value of historical volatility,, is the number of, ;, obser-

Thr)?

(5.5)

vations, and, r is the simpler, , average, all of them over the time winddw

In most volatility analysis studie$, = 1 is the commonly used time period. How-
ever, since electricity market prices usually follow thengel trend of electricity de-
mand, it is not surprising to encounter significant pricettlations when moving from
the off-peak hours to the on-peak hours of a day. In [5], teetperiodh is selected to
be 24 hours and trans-day price fluctuations are analyzeatielpresent study, however,
in order to quantify the price uncertainty to which the mansarticipants are exposed
when moving from one week to the next week, trans-week prigguations are also
considered. Thug; = 168 hours is considered for the analyses, in addition te 1,

and 24 hours.

The definition of historical volatility in (5.4) is based dmetassumption that the log-
arithmic return observations follow an i.i.d. random vat&a In other words, the returns
are assumed to behave randomly, having constant mean aadogover the time win-
dowT'. These assumptions are usually true for most stochastimeein economics and
finance, when ignoring small return correlations for the fiesv time steps [85, 83, 84].
However, electricity market prices follow daily, weeklychsometimes seasonal patterns,
which are basically due to the seasonal behavior of elégtdemand. As a result, elec-
tricity market price returns are highly correlated and dolmehave as an i.i.d. random
variable. For exampley »4 is calculated for the HOEP using (5.2), and their autocasrel

tion functions [60] for two arbitrary samples of 168 and 2#urae observationsi{ = 168
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andT = 24), are determined and displayed in Fig. 5.1. Observe thatehens are
correlated for the first 7 lags in tHe = 168 case, whereas faf = 24 the correlations
are negligible. Accordingly, when studying electricity ket price volatility, the time
window 7" should be selected to be short enough in order to have nielgliggturn cor-
relations, which is the case in this study. Furthermoresciglg a short time window’
allows for analyzing the original price time series witheonsidering separation of the
periodic and random parts of the price data.
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Figure 5.1: Autocorrelation functions for the logarithrHOEP returns: a)J’ = 168; b)
T = 24.

In order to define historical volatility indices, marketg@idata are dealt with in two
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scenarios. In the first scenario, a price time series isddeas a whole signal for all 24
hours of a day, and volatility indices are calculated agdgtfor overall price behavior.

In the second scenario, a price time series is broken up #htori2 series corresponding
to each of the 24 hours. This scenario provides insight imarisks associated with the

price at each particular hour of a day.

Scenario 1

In this scenario, the time windoW is selected to be 24 hours (one full day) and the

historical volatility for each studied day, i.e, 24(d), is determined as:

24xd _
\/Zt T+24x(d 1) (Tt,h —Ten)?
Oh 24

(5.6)

whered € {1,2,3,...,366} is the index of studied days, ang, is the logarithmic returns
average over each day. In this scenario, houtly=( 1), daily (h = 24), and weekly
(h = 168) logarithmic returns are the basis of analysis and the gesrafo;, »4(d) over

all studied days, i.eq, 24, h = 1,24, 168, are used as volatility indices.

Scenario 2

In this scenario, the logarithmic return for hgyrdayk, over a time period, is defined

as.
) j
Ti,h =1In (

) = In(p) — In(p}_,) (5.7)

pk h
wherep{t refers to price at houj on dayk. Choosingh = 1 in (5.7) implies that market
prices at hourj for two consequent days are compared. By considering a 7+Hohegy t
window (one full week), i.e.]" = 7, andh = 1, historical volatility for hour; for week

w can be determined as follows:

: (5.8)
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wherew is the index of each studied weeke {1,2, 3, ..., 24} is the index of hour, and
ﬁ;l is the return average over the 7-day time window for hourhe average of{J(w)
over all studied weeks, i.e?,{j, is used as the volatility index for price at hourin fact,
this scenario quantifies the fluctuations of price at a palgichour in subsequent days
over a 7-day period.

5.2.2 Price Velocity

The authors in [79, 3, 5] employ the historical volatilityra®@pt in order to analyze elec-
tricity market prices volatility. On the other hand, thetaus in [81], defineprice ve-
locity for quantifying price uncertainty. Let define the absolutdue of the difference

between two prices which arfetime period apart as:

5t,h = ’pt - pt—h| (5.9)

Two volatility measures are defined in [81] for electricityrket prices as “daily velocity
based on overall average price” (DVOA), and “daily velodigtsed on daily average
price” (DVDA), as follows:

Daily Average of o, ,
Overall Average ofp;

DVOA,, = (5.10)

Daily Average of 9, 5,
Daily Average of p;

DVDA 4, = (5.11)

whered is the index of studied day. The averages of DVJQAand DVDA,; over the
studied days, i.eDVOA; andDVDA 1, are employed in [81] to compare price volatility

in 14 electricity markets, world-wide. Observe that wHBViOA, is 0.2 for a specific
market, it basically implies that average intra-day pricargye has been about 20% of the
long-term average price for the studied period. SimilaslgenDVDA is 0.2, it means
that the average intra-day price change has been about 20% average daily price. It

should be noted that the concept of price velocity diffeosrfhistorical volatility in the
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sense that it employs the daily average of price changesawotifiyi price uncertainty, in

lieu of the standard deviation of price returns in histdnaadatility.

In this study, in order to analyze trans-day and trans-weele dluctuations, the
price velocity concept is extended for the time periads 24 andh = 168 hours. By
choosingh = 24 or 168 hoursPVOA,, andDVOA 45 represent the average changes in
prices in subsequent days and average changes in pricesgecdic day in subsequent
weeks, as a fraction of overall average price, respectin@§DA ., andDVDA 145 can
be interpreted similarly. Values @VOA, andDVDA, for h = 1, 24, and 168 hours,

are also employed here as volatility indices.

Briefly, the following volatility indices are used in the pesd work to compare elec-
tricity market price volatility in Ontario and other market;, .4, DVOA,,, andDVDA;,
with h = 1,24, 168, ando ..

5.3 Price Volatility Analysis for the Ontario Electricity
Market

Historical HOEP data for the period of May 1, 2002, to April 2005, is used to analyze
price volatility in the Ontario electricity market. The dat available at www.ieso.ca.
The analyzed HOEP data is depicted in Fig/ 5.2, where the HfERIations over an
arbitrary week (the week May 17-23, 2004), are also disglag@bserve from Fig. 5/2-a
that during the first year of market operation, the pricesewaegher and more unstable
than the next two years. For instance, from the first to thel thear, the number of
hours during which the HOEP exceeded $200/MWh was 106, 103angespectively,
and the average HOEP was $58.4/MWh, $48.2/MWh, and $51.2/M@&pectively.
Unusual prices during the on-peak and off-peak hours areobriee features of the
Ontario electricity market and happen on both weekdays aekends, as illustrated in
Fig.5.2-b.
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Figure 5.2: a) HOEP fluctuations over the the period of MaydD22 to April 30, 2005;
b) HOEP over the week May 17-23, 2004.

5.3.1 Historical Volatilities
Scenario 1

Historical volatilities, i.e.7, 24(d), are calculated fok = 1, 24, and 168 hours and are
depicted in Fig. 5.3. Observe in this figure that the highe®ER volatiles occurred
in February and early March in year 2003, as discussed ind®e2t5. The period of

January, February, and early March, 2003 was an extremédly period and natural
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gas prices were very high. As a result of this, many gasdujlenerating facilities ex-

perienced difficulties and were unavailable to the IESO .hHigmand and shortage of
supply in this period resulted in unusually high and voéaHIOEPS even in the off-peak
hours [23]. It is also observed that the historical vola&$ are relatively higher during

the high demand periods than the low demand periods, astexjpec
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Figure 5.3: HOEP volatilities fok = 1, 24, 168; andT = 24.

Volatility indicesa;, 24, h = {1, 24, 168}, are determined over the entire 3-year period
and for each of the 3 years of market operation and are pesséniable 5.1. Observe
that these volatility indices have declined from the firsinyt® the third year, with the first
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year showing the highest volatility. This improvement candtributed to the amend-
ments made to the market rules and regulations, and also adtarmof market maturity.
Furthermore, the values of trans-day and trans-week \iglandices, i.e.,o2424 and
T16s8.24, are higher than the value of intra-day volatility index,. iz o4; this basically
implies that, on average, the trans-day and trans-wee& phanges fluctuate in a wider

range than the intra-day price changes.

Table 5.1: Historical volatilities for Ontario market

0124 | 02424 | 016824

Year 1 0.2843| 0.3771| 0.3821
Year 2 0.2477| 0.3214| 0.3220
Year 3 0.2088| 0.2623| 0.2613

3-Year Period 0.2469| 0.3203| 0.3222

Historical volatilities are studied in [5] for the Nordicesltricity market over a 12
years period ending May 2004. Only the time periog 24 is considered and it is found
thatoa, 24 = 0.16 (12-year average). Furthermore, in [5], the level of prio&atility in
the Nordic electricity market is compared with averagedrisal volatilities in some
other markets, such as stock indices with », = 0.01 — 0.015, crude oil markets with
T2424 = 0.02 — 0.03, and natural gas markets witi, 24 = 0.03 — 0.05. Comparing
024,24 = 0.3203 for the HOEP with these volatility indices reveals highacewolatility
in the Ontario electricity market.

Scenario 2

In this scenariOg{J(w), j=123,..,24, w = 1,2,3,...,156, are calculated using

(5.8), and the corresponding three-year averages witreceéspw, i.e., 5{’7, are dis-
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played in Fig. 5.4. Observe in this figure thﬂ'g?s fluctuate across the different hours,
with hours 5 and 8 have the lowest and the highest indicepecotisely. Furthermore,
prices at the on-peak hours, i.e., between hours 7 to 21haraost volatile prices, while
prices at off-peak hours, i.e., hours 22 to 24 and hours 1 tyéthe least volatile, as
expected. However, it should be noted that the price valatl off-peak and on-peak

hours are both significantly high.
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Figure 5.4: HOEP volatilities for each hour.

5.3.2 Price Velocities

The values oDVOA,;, andDVDA,, for h = 1, 24, and 168 hours, for the HOEP are
also calculated over the 3-year period, as well as for eatcheothree years of market
operation, and are presented in Table 5.2. These resulsrdtrate that thBVOA, and

DVDA,, values have also declined over the years, which is consiatiéimthe findings
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of historical volatility. FurthermoreDVOA, and DVDA, have the highest values for
h = 168 hours, and the lowest values for= 1 hour; from this, it can be inferred that the
average trans-day and trans-week changes in prices arer ltingim the average intra-day
changes in prices.

Table 5.2: Price velocities for the Ontario market

DVOA, | DVDA, | DVOA,, | DVDA,, | DVOAss | DVDA 168

Year 1 0.2438 | 0.1890 | 0.4208 | 0.3430 | 0.5106 0.4379

Year 2 0.1604 | 0.1719 | 0.2694 | 0.2966 | 0.3083 | 0.3430

Year 3 0.1463 | 0.1478 | 0.2346 | 0.2421 | 0.2761 0.2849

3-Year 0.1835| 0.1696 | 0.3083 | 0.2939 | 0.3655 0.3557
Period

Values ofDVOA; andDVDA for the Scandinavia, Spain, California, New Zealand,
the UK, Leipzig (Germany), New England, Australia ( New SoWales, Victoria, South
Australia, Queensland), Alberta (Canada), Netherland$PaiM electricity markets are
presented in [81]. Time duration of the study varies acrbgsmarkets, all of them
ending December 31, 2001. Six of the studied markets in j@fely, Alberta, PJM,
Netherlands, Victoria, South Australia, and QueenslahdwshigherDVOA, values
than that for the Ontario market. Furthermore, Alberta,tB@&wstralia, and Queensland
electricity markets are reported to haB®DA; values higher than thBVDA; value
obtained for the Ontario market. Despite the differencetime durations of the study
in [81] and the present paper, it can be concluded that Qregectricity market is among
the most volatile markets from tH2VOA,; andDVDA ; point of views.
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5.4 Price Volatility Analysis for the Ontario’s Neighbor-
ing Electricity Markets

As discussed earlier in Chapter 2, the Ontario electricityketais interconnected with
New York electricity market and Quebec, as well as with thettian, Manitoba, and
Minnesota control areas (see Fig. 2.6). The interconnegtesdricity markets have facil-
itated interjurisdiction energy trades in the region arelghpply and demand sides have

the option of freely playing in these markets.

The price and demand information regarding Michigan, Marat and Minnesota
control areas are only available after April 1, 2005, on \khite Midwest market was
launched, and hence is beyond the study period of this pRpahermore, Quebec has a
regulated electricity sector and no market activity hasbegiated yet. Therefore, New
York, New England and PJM markets are the only studied eébégtmarkets here.

The year 2004 historical LMP data for 9 pricing points in Nengkand, 9 pricing
points in New York electricity, and 15 pricing points in PJM@ricity market are used in
this study to calculate the neighboring markets’ volatilitdices. The data are available
at www.iso-ne.com, www.nyiso.com, and www.pjm.com, respely. These pricing
points include load zones, and interfaces with other ar8awe the day-ahead market
has the dominant share of energy transactions in these teadidy day-ahead LMPs
are considered for the analysis. The presented quantitigss section are the average

of the corresponding quantities for all studied pricingmieifor each market.

5.4.1 Historical Volatilities
Scenario 1

The averages of volatility indices, 24, h = {1, 24, 168}, for the studied pricing points
in each of the three markets are presented in Table 5.3. Tinesponding indices for
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the HOEP over the same year are also presented in this tatifeefsake of comparison.
These results show that Ontario market price has the hidfngstical volatility among
the studied market prices, with the New England market shgwhe lowest historical
volatilities. Observe that the intra-day volatilities &igher than the trans-day and trans-

week volatilities for the neighboring markets, while fort@no is the reverse.

Table 5.3: Historical volatilities for the Ontario and itsighboring markets, year 2004

0124 | 02424 | 016824

New England| 0.0844| 0.0676| 0.0722

New York | 0.1117| 0.0837| 0.0907

PIM 0.1637| 0.1294| 0.1343

Ontario 0.2212] 0.2813]| 0.2805

As an illustration, let simply assume that the zero-meganvalues follow a normal
distribution over the studied time windows. A historicalattlity of 7 » implies that,

on average and with a 95% confidence, one expects that:

25 <P <27, (5.12)
Pt—n
or
pe_ne 2T < pp < pyppe” T (5.13)

With 754 24 = 0.2813 for the Ontario market in year 2004, prices in a given day d¢de!
up to 75.5% higher than the prices in the day before, or thejddoe 43% lower. These
numbers for the New England market are 14.4% and 12.6%, ctagplg, which reflects

a much narrower range for price changes in the New Englanienar
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Figure 5.5: Historical volatilities for each hour: Ontadnd its neighboring markets.
Scenario 2

The volatility indices for price at each specific hour in theee neighboring markets are
presented in Fig.5.5, along with the corresponding re$oitthe Ontario market. This
figure illustrates the fact that for each of the 24 hours of @ @mntario market prices
are more volatile than the prices in the three neighborinkata. Observe that prices at
hours 7, 8, and 9 in the morning are the most volatile pricealfanarkets, and the New
England market has the lowest volatilities for all hoursadidlition, volatility of the PIM
market prices at the hours 7, 8, and 9 are somewhat closede thoOntario; however,
Ontario prices are significantly more volatile at other sour



Chapter 5: Price \olatility Analysis 122

5.4.2 Price Velocities

The values oDVOA,, andDVDA,, h = {1, 24, 168}, for the mentioned LMPs were also
calculated, and their averages over the studied pricingtpaire presented in Table 5.4.
Observe from these results that the price velocity indicesakso higher for the Ontario

market than the other three markets.

As a simple illustration, th®VOA,, = 0.2541 implies that the changes in prices
over subsequent days was 25.41% of the 2004 HOEP averadethegit2004 HOEP
average being $49.9/MWh, the average change in HOEP in sudasedays could be up
to $12.7/MWh. The year 2004 average LMP for the New England3$%2.83/MWh;
hence, with DVOA,, = 0.0976, the average change in New England day-ahead market
LMPs in subsequent days could be up to US$5.1/MWh, which stlesn half of that
obtained for Ontario.

Table 5.4: Price velocities for the Ontario and its neigiMgpmarkets, year 2004

DVOA, | DVDA, | DVOA,, | DVDA,, | DVOA;ss | DVDA 165

New England| 0.0603 | 0.0508 | 0.0976 | 0.0802 | 0.1452 | 0.1282

New York | 0.0730| 0.0726 | 0.0932 | 0.0929 | 0.1327 0.1283

PIM 0.1129 | 0.1133| 0.1448 | 0.1489 | 0.1955 0.1957

Ontario 0.1586 | 0.1551| 0.2541 | 0.2573 | 0.2933 0.3005
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5.5 Discussion

5.5.1 Market Structure and Price Volatility: The Case of New Eng-

land

According to the volatility analysis presented in the poed sections, price volatility
in the Ontario electricity market is significantly higheathprice volatility in the New
England, New York, and PJM electricity markets. It shouldhibged that despite many
differences in the detailed market rules and regulationd,ia physical characteristics
of the supply and demand sides, the New England, New YorkPdinl electricity mar-
kets are all based on Standard Market Design (SMD) stru¢Bfje which is basically
a two-settlement market with nodal pricing. Also, obseha the volatility indices ob-
tained for the New England market are the lowest, very clogkdse for the New York
market. Furthermore, the PJM electricity market has goneutih various market ex-
pansions during 2004. Finally, the New England market wasaktime market with a
region-wide uniform price, similar to the current Ontarianiet structure, before the im-
plementation of the SMD structure. Therefore, only the NewglBnd market is selected

for the discussions presented in this section.

The New England wholesale electricity market was launchreay 1, 1999, as a
single-settlement real-time market. On March 1, 2003, thStructure was imple-
mented, which converted the market structure into a new ld&d market comprising
a day-ahead market and a real-time market. The New Englanetrizefore the imple-
mentation of the SMD structure is referred to as the New Ewhlaterim Market. More
than 31,000 MW of generation capacity along with importsrfrdanada and New York
State serve the New England market demand with a peak demagdl@7 MW (2006).
From the addition of more than 9,000 MW of new generation capaomprising gas-
fired generation units from 2000 to 2004, cleaner power has beade available with the

prices declining through this period by 5.7%. Natural gesdfigenerators (about 43%
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of the total capacity), and nuclear generators (about 28%efotal capacity), are the
major source of power in this market, and the gas-fired unésree most frequent price
setters [87].

The current structure of the Ontario electricity marketjchhis a single-settlement
real-time market with a province-wide uniform price, is g8anto the New England
Interim Market structure. More than 31,000 MW of generateapacity, along with
imports from neighboring regions, serve the Ontario demaitd a peak demand of
27,005 MW (2006). Coal-fired generators are the most freqQeario market price
setters, while expensive gas-fired units are the main petters during extreme demand
hours [23]. The total installed generation capacity andkgead in Ontario and New
England electricity markets are in the same order.

In order to provide a more detail insight into price volailin the New England mar-
ket, the employed volatility indices are calculated forfingt three years of the operation
of the New England Interim Market, and are presented in Eablg and 5.6. The three-
year averages of the respective volatility indices for @atare also presented in these
tables for comparison purposes. Observe from these volatitlices that price volatility
has been high in the New England Interim Market, and fairbselto the volatility in-
dices obtained for Ontario. On the other hand, and as exgeafier implementation of
the SMD structure in New England, price volatility indices/k declined significantly, as
demonstrated by the results presented in Tables 5.4 anfib6tBe current New England
market. These results imply that the real-time nature ofitheket in Ontario is directly

linked with the high levels of electricity price volatility

5.5.2 Influential Parameters on Price Volatility in Ontario

To explain the high price volatility in Ontario market, caesr the following events

which frequently happen in this market and are discussedire metail in [23]:
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Table 5.5: Historical volatilities for New England’s Inier Market

T1,24 02424 | 016824

New England| 0.2261| 0.2866| 0.2972

Ontario 0.2469| 0.3203| 0.3222

Table 5.6: Price velocities for New England’s Interim Marke

DVOA, | DVDA, | DVOA,, | DVDA,, | DVOAss | DVDA 145

New England| 0.1483 | 0.1372 | 0.2854 | 0.2563 | 0.3307 0.3260

Ontario 0.1835| 0.1696 | 0.3083 | 0.2939 | 0.3655 0.3557

e Demand underforecast: A demand underforecast error dthreageak hours, even
in the acceptable range of 1-2%, may force the market opet@utispatch some

of the expensive units and thus causing unpredictable pptes.

e Export/Import transactions failure: Exports and impors scheduled 1 hour be-
fore the dispatch hour in the Ontario market and are consitas fixed load and
supply, respectively, in real-time [24]. Any failure in i transactions may force
the market operator to instantly dispatch expensive unitéch also may cause
unusual price spikes. In addition, any failure in exporhsa@ctions may force the
Ontario market operator not to dispatch some of the marginis$, which in turn

may cause unusually low prices.

e Error in non-dispatchable generators energy output feteda the Ontario mar-
ket, price-taking self-scheduling generators (e.g., shyalro units) and intermit-
tent generators (e.g., wind farms) forecast their hourgrgy output and submit it
to the IESO. Analysis of the Ontario market data shows theit tieal-time avail-
able capacity deviates from their forecasted values, somstup to more than
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250 MW. Similar to the demand forecast error or export/inhpaiture situations,
dealing with the discrepancy between the forecasted andlaavailable capac-
ity of the self-scheduling generators in real-time may eawsusually high or low

market prices.

Dealing with such unpredictable, and most of the time urdaldle, events in real-time
puts upward or downward pressure on market prices, and Heads to high market
price volatility. Moving toward a two-settlement marketndiar to the SMD structure
is clearly necessary for Ontario, since in a single setttemeal-time market, the price
volatility resulting from such events affects all markettmgapants. However, in a two-
settlement market, most of the eventual real-time demanteared in the day-ahead
market (on average 97% for the New England market [87] and f@d%ew York market
[88] in 2004), where no physical transactions take placeth\Wie major part of the
market demand cleared 24 hours before real-time, markgtipants have enough time
to arrange for their supply and demand obligations, and $e od unpredictable events,
only real-time prices may become volatile with a small grafipnarket players who
participate in the real-time market being affected.

5.5.3 Price Volatility and Price Predictability

The findings of Chapter 3 show that HOEP forecasts have a signify lower level of
accuracy than the price forecasts generated for the neigigbmarkets. Moreover, it
is demonstrated in Chapters 3 and 4 that employing varioes#ésting methods cannot
improve the HOEP forecast accuracy significantly. On thesotiand, it is shown in
the present chapter that the HOEP is significantly more Melttan the other studied
electricity market prices. Keeping these findings in mird telationship between the
volatility of a time series and the accuracy of the forecgstserated for the time series
IS investigated in this section.
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Consider an ARIMA model representing a zero-mean stationagess:; as:
$(B)(1 — B)"z = 0(B)e, (5.14)

where¢(B), 0(B), B, ande, are defined in Section 3.3.1. The model (5.14) can be
expressed as an infinite weighted sum of current and prevadgom shocks;, as
follows [60]:

2 =€+ V161 + PVog_o + ...

=&+ Y e, (5.15)
j=1

Thus, the relationship between the variance;pf.e.,o%, and the variance of the random
shocke;, i.e.,02, can be written as:

0.2

2 z
O = 7 ~—o 2
T+ 20, 47
On the other hand, the variance of thsetep-ahead forecast error generated by model
(5.14), denoted byil, can be presented as:

(5.16)

-1
ol =021+ > 47 (5.17)
j=1

From (5.16) and (5.17);2}1 can be written as:

-1
2 L+ Zj=1 7%2 2
el — 00 QUZ
N DR

where¢(y) < 1 for afinite forecasting horizoh For a given ARIMA model{(v) is a

= &(W)o? (5.18)

g

constant depending on the estimated parameters of the mdelete, highs? results in
high ai,, which means forecast errors can potentially be high. Nwefor a stationary
time series, the variance is constant and can be represeytéa historical volatility
measures defined earlier. Similar reasoning can be appli&# tand DR models with

similar conclusions. Considering the high volatility of tHOEP time series discussed
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in the previous sections and the reasoning presented afo®eyould expect the HOEP

forecasts to have high errors compared to the other neigigorarker prices.

The 4-weekly MAPEs of the forecasts generated for the Gmi@nd its neighbor-
ing electricity markets discussed in Section 3.5.4, aloit) the intra-day volatilities
from Table 5.3 are depicted in % in Fig. 5.6. Observe from figisre that the HOEP
volatilities and the HOEP forecasts MAPEs are the highestranthe four, as expected.
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Figure 5.6: Forecast MAPEs and price volatiliti&s(4) .

5.6 Summary

In this chapter, various volatility indices are developaddx on historical volatility and
price velocity concepts, and price volatility in the Onteglectricity market is quantified
accordingly. The employed volatility indices are also &pto several pricing points in
three of Ontario’s neighboring electricity markets, nayntfie New England, New York,
and the PJM markets. Intra-day, trans-day and trans-weeketnarice fluctuations are

considered in calculating the volatility indices. The cepicof price velocity is extended
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for trans-day and trans-week analyses in this study, ang-ngeek historical returns are
also proposed for volatility analysis in this researchslaiso formally shown that out-
of-sample forecast accuracy of a time series model is affiduy the volatility of the time
series under study.

The findings of this chapter show that price volatility in tBatario electricity market
is significantly higher than that observed in the neighlmpefectricity markets. Com-
paring the volatility indices obtained for Ontario with preusly published results for
other electricity markets reveals that the HOEP is amongntbst volatile electricity
market prices worldwide. The generally higher error lemaHOEP forecasts compared
to other market price forecasts can be attributed to the lleiggd of HOEP volatility. It
is further argued that the highly volatile nature of the HO&R direct result of the real-
time operating environment of the Ontario electricity merkand the lack of a hedging
mechanism such as the day-ahead market in the SMD structyplemented in Mew

England’s electricity market.



Chapter 6

Application of Price Forecasts to
Short-term Planning of BEMCSE

6.1 Introduction

In Chapters 2, 13 and 4, an effort is made to understand the topemaf the Ontario
electricity market and forecast its future price behaveaecurately as possible. How-
ever, the volatility analysis presented in Chapter 5 showasthice forecasting error is
inevitable, especially in volatile markets like Ontario®loreover, as can be observed
from the literature review presented in Chapter 1, most ofithik on electricity market
price forecasting is focused on improving forecast acgureather than the effects of
price forecast inaccuracy on market participants. Hemazetis a need to examine how
erroneous market price forecasts affect the participghésining activities, particularly
in the short-term. In view of this, the present chapter aslelrs the economic impact of
using electricity market price forecasts in the operatiomesiuling of two typical BE-
MCs.

!Based on the findings of this chapter, a paper is in preparttibe submitted to thEEEE Transactions

on Power Systems
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The first case-study BEMC is a process-industry load with ssé@ an on-site co-
generation facility. The second case-study BEMC is a mualcigater plant having
controllable demand. These two BEMCs represent a consigesaiificant class of
wholesale market customers and have different load maregtecapabilities. Next-day
operation of the two BEMCs is formulated as optimization peaid which are solved to

minimize their expected energy costs.

The Ontario electricity market is the case-market usednagaid two sets of HOEP
forecasts are considered as the expected future electmatket prices. The first set
is the 24-hour-ahead HOEP forecasts generated by the TFIsnadéhapter 3, which
yield the lowest error measures. The second set is the |IES@rgted 24-hour-ahead
PDPs which yield the highest error measures. For the sakeroparison, thex-post
HOEPs are also used in a complementary scenario to detetimaifieleal” schedules and
their associated costs. The economic impact of using paecésts for scheduling is
analyzed by comparing cost that the BEMC would have incuiréi“ideal” schedules
were available and implemented in reality, and the costa@a®owith implementing the

schedules derived based on price forecasts.

6.2 Problem Formulation

6.2.1 Optimization Under Uncertainty

From the demand-side point of view, ‘optimal’ operation irc@mpetitive electricity
market environment constitutes the minimization of totatticity costs. The problem
of minimizing electricity costs over a specific planningipdr(e.g., a day) for a BEMC
can be generally formulated as:

min Cost= Zk Pk * P

(6.1)
subject to &(Py)
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wherek is the index of planning interval, is the electricity market price at interval
k, Py is the net power purchased from the market in intefyednd&(Py) is the set of
technical constraints. This optimization problem has tsdleed before the start of the
planning period. Howevepys are unknown random variables which will be cleared after

real-time, and hence, (6.1) represent an “uncertain” dpétion problem.

The approach to deal with this uncertain problem in the preserk is to minimize
theconditional expectatioof total costs; whereonditionalrefers to the entire available
information with regard to the electricity market price beior at the optimization origin.
This approach has also been used in [46] to derive optimdifdstrategies of a supply-
side market participant.

The problem in (6.1) can be reformulated as follows to mimantheexpecteaost of
electricity:
min  E[Costl] = E[)_, pr - Pi|!]
subject to &(Pr)
whereE denotes the mathematical expectation, amglthe available information about

(6.2)

electricity market price behavior. It should be noted tit tandom variables;. only
affect the objective function. Hence, by swapping the etqiean and summation oper-
ators, (6.2) can be written as:

min  E[CostI] = -, Elpy - Py|I]

= > Eloll] - Py (6.3)
subject to &(Pr)

Recalling from the fundamentals of time series analysis arethsting [57,60], price
forecasts generated by a time series model are the coralittxpectations of actual
prices. In other words, given a time series model for priegyy|I|=pr, Where g, is
the forecasted value for,. Therefore,[(6.3) can be solved as an ordinary optimization
problem as follows:

min  E[CostI] =), pr - Fx

(6.4)
subject to £(Py)
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The solution of this problem provides the BEMC with the optilm@erational schedules
which minimize the totaéxpectecklectricity costs.

6.2.2 Forecast Inaccuracy Economic Impact

In order to analyze the economic impact of using price fastefa short-term scheduling,
let us consider two price scenarios. In the first scenariochvis a fictitious scenario,
it is assumed that the market price forecasts are “exactdthier words, actual prices
are available before real-time. Let denote the solutiomefdptimization problem (6.4)
under this price scenario by?. Hence, if P2 were available and implemented in reality,
the BEMC would have incurred a cost of:

C=> P (6.5)
k

wherep is the actual market price cleared for hduyrand C is the cost associated with
implementing the schedule?.

In the second price scenario, it is assumed that a set of fatieeasts;, is available
before real-time and is used to solve the optimization mwob(6.4). Let denote the
solution of (6.4) when using;.s as price forecasts b¥,. The actual electricity cost that

the BEMC will pay after implementing’, schedule can be formulated as:
C=> Db (6.6)
k

whereC is the actual costs incurred by the BEMC when implementirgithsched-
ule. Note that althougl?, is determined based on price forecasts, the actual eliggtric

charges are determined based on actual pyiges
The Forecast Inaccuracy Economic Loss (FIEI) index is pseddere as:

c-C
FIEI (%) = 100 x = (6.7)
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Since P2 and P, are two particular solutions of the optimization problémgjgobtained
by using two sets of electricity market prices, the FIEI carpbsitive, negative, or zero.
A positive value of FIEI indicates the percentage of the fowdts which is attributable
to price forecasting errors. In other words, the final inedrelectricity cost could be
lower by FIEI percent if the price forecasts were “exact”. Whbke FIEI is negative,
it basically means that the actual incurred costwarexpectedlyower than the “ideal”
cost. A value of zero for FIEI indicates that the actual ceshe same as the “ideal”

cost, despite the presence of price forecasting errors.

The value of FIEI can only be found after real-time when the@mmarket prices are
available. Therefore, it can only be used as#iar-the-factindex to evaluate the overall
usefulness of employing electricity market price foresdst short-term planning.

6.3 Operation of the Case-study BEMCs

The first case-study BEMC considered in this work is a proaedsstry load having
both thermal and electrical energy demand and owning @nggibheration facilities (see
Figure 6.1). The on-site generation facility is a gas enggaeipped with a heat recovery
boiler for Combined Heat and Power (CHP) production. A traddl oil-boiler is also

installed to cover the thermal demand.

The gas engine can be employed to generate electricity asdhe electricity mar-
ket prices are expected to be high. Thermal energy is a byuptof the gas engine
that increases its overall energy efficiency and makestergsneration a viable option.
Having an understanding of the future prices, a combinatfahe gas engine, oil-boiler,
and grid electricity can be “optimally” scheduled to mineaitotal energy costs.

The second case-study BEMC is a municipal water plant withidigation to meet
its hourly water demand day-by-day. The water plant is caaagdaf an inexhaustible

potable water source, five pumps, an elevated reservoiraandin pipeline to convey
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Figure 6.1: The process-industry load.

water from the pumping station to the elevated reservaij (dee Figure 6.2). The wa-
ter plant is modeled in this research using a simplified n@$ance model in which the
nodal pressure requirements are assumed to be satisfiedwgtier level in the elevated
reservoir remains in the desired range [45]. The five constocity centrifugal pumps
work in parallel and their pumping capacity is assumed todrestant during each hour.
Thirty-two possible pump combinations can be considenemmfthe state in which all
pumps are off-line to the state in which all pumps are in gexviFor this BEMC, pump-
ing operation can be optimally scheduled at low price hoaver a 24-hour planning

period, in order to minimize electricity costs.

Operation of the above two case studies is modeled over a@dghanning period.
A 24-hour planning period is equally divided into 24 plarmintervals, denoted here by
ke {1,2,...,24}. All the scheduled variables are assumed to be constanttiogek-
hour planning intervals. The system characteristics andetformulations of the water

plant and the process-industry load are taken from [45] d83{ fespectively, and are
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Figure 6.2: The water plant.

provided in detail in the following sections. It is importao highlight the fact that,

however, the objective functions for minimizing total egpe costs of the BEMCs, and

applying constraints to impose emission limitations ondperation of the cogeneration

system are novel contributions of the present work.

The following assumptions are made for the analysis:

e The BEMCs carry out their own forecast of the next-day eleityrimarket prices,

right before the start of the new day, and plan their openadxordingly.

e No rescheduling or revision of the initially obtained schled are considered dur-

ing the planning period.

e The BEMCs are price-taker customers which means that theytaffact market

clearing prices by any strategic behavior.

e The BEMCs' bids to purchase electricity from the market areagswcleared.
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6.3.1 Formulating the Process-industry Load

Oil Boiler Formulation

The oil-boiler fuel consumption during interval denoted withF}, (ton/hour), is rep-
resented by a linear function of the thermal energy produttethg the hour [43], as

follows:
F,= AV, +B,-TP® (6.8)
Fmin'VkSFkSFmax'Vk (6-9)
Cosf® = (M + ) > " F; (6.10)
k

whereA; and B, are the coefficients of the linear functions which are olgdifrom the
oil-boiler technical performance datBP° (MW) is the oil-boiler thermal power during
interval k; Fiin and Fax are fuel consumption limits of the oil-boiler, COts the total
operation cost of the oil-boiler over the 24-hour plannimgipd; A/°° is the operation
and maintenance (O&M) costs of the oil-boiler; apftl is the contracted price of oil
which remains constant over the planning peridd.is a binary variable representing
oil-boiler status at the planning interviakthat can be defined as follows:

1 if the oil-boiler is on.

Vie = (6.11)
0 if the oil-boiler is off.

Gas Engine Formulation

Similarly, the gas engine fuel consumption during intefyalenoted by~ (km3(N)/h,
is represented by a linear function of the thermal and eéattenergy produced during

2Kilo normal cubic meter of natural gas per hour.
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that interval [43], as follows:

Gp = Ay - Wy, + B, - TP (6.12)

Gp = As - Wy + By - EP® (6.13)

Grin - Wi < G < Grmax- Wi (6.14)

Cosf®= M%) "EP*+p") Gy (6.15)
k k

where Ay, B,, Az, and B are the linear coefficients which are obtained from the gas
engine technical performance dafaP’’® (MW) is the gas engine thermal power during
interval k, EP2® (MW) is the gas engine electrical power during interkalG i, and
Gmax are fuel consumption limits of the gas enging?® represents the O&M costs of
the gas engine; and' is the fixed natural gas price. The total costs associatdd wit
the gas engine operation, i.e., Csis formulated as a function of the electrical energy
produced and the amount of fuel consumaéd;, is a binary variable representing the
status of the gas engine during the intervals follows:

1 if the gas engine is on.

Wy = o (6.16)
0 if the gas engine is off.

Gas Engine Carbon Dioxide Emissions

It is assumed that the process-industry load has to maiita{iO, emissions, result-
ing from electricity generation, below a certain specifieaitl of £FmCap (ton/day), as

follows:

Em® .Y " EP¥ < EmCap (6.17)
k

where Em9 is theC'O, emission of the gas engine per MWh of electrical energy gener-
ated.
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Electricity Market Transaction Cost

The cost of the net electricity transaction with the markat be presented as:

Cost™=(1+a)) p- B = pr- B (6.18)

whereE!™ (MW) and EZ® (MW) are the electrical energy imported and exported from/to
the market during the planning intervi) respectively, and Cd&t" is the net cost of
electricity transaction with the market. Observe thatéhsran extra uplift charge, rep-
resented byy, associated with the energy imported from the market to atcfor the
network charges and other regulated fees; for example, algf#t charge on top of

total electricity costs typically applies to Ontario elggty consumers.

Energy Balance

The thermal demand must be met at all hours by the thermagemeoduced either
by the oil-boiler or by the gas engine or both. The electréehand must also be met
either by the electricity purchased from the market or teetelcity produced by the gas

engine or a combination of the two. Hence, the energy balemastraints can be written

as follows:
TP® 4+ TP¥*=1TD, (6.19)
E™ + EL = ED, (6.20)
EP¥=E. + E® (6.21)

whereT D, (MW) and ED,, (MW) are the hourly thermal and electrical loads, respec-
tively. E! (MW) is the electric power from the gas engine supplying trealalemand
during hourk.
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Objective Function

The optimization objective is to minimize the total expecémergy cost over a 24-hour

planning period while meeting all the system constrainfséd in (6.8) to|(6.21). Thus:
: il _ b e A imp P Y
min  E[Cosf"|7] = Cost® + Cost® + (1 + ) S o B =Y p- EPP(6.22)

whereE[CosP"|I] is the expected total energy cost of the process-indusay. lo

The above optimization model is a Linear Mixed-Integer Paogming (LMIP) prob-
lem and is solved using the well-known CPLEX solver in the GAptS8gramming en-

vironment [89].

After the actual electricity market prices are released, fthal energy cost of the

process-industry load, denoted @fos{)" here, can be found as:
Cost' = Cost’+ Cost™ + (1 +a) Y pp- E™ -3 pi - £ (6.23)

where£/™ and £¥° are the scheduled energy import and export from and to thkehar
by solving (6.22), and:f)s'?b andCost® are the costs of the oil boiler and the gas engine
associated with the solution of (6/22). Note tizast” and Cost® do not depend on

the electricity market prices, and hence will take the saaiaes as those found from
solving (6.22).

6.3.2 Formulating the Water Plant

While an alternative source of electrical energy is avadablthe case of the process-
industry load, electricity from the grid is the only sourdenergy in the case of the water
plant. However, the existence of a water reservoir enahkesgvater plant to pump more
water during low price hours than during high price hoursnttg the objective function
here is to shift pumping operation such that the expectetiafosonsumed electricity

over a planning period is minimized.
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Let us denote the pump index bye {1,2,3,4,5}; water level in the reservoir at
the 1-hour planning intervdl by &, (m); initial water level byh;,; (m); water demand at
intervalk by D (m®); the rated power of pumpby P, (MW); and the water discharge

of pumpi by Q@ (m?). The optimization model can then be formulated as follows:

min  E[Cost?|]] = Z Pk Z s (6.24)
subject to

1 o
hie = hor + 2 _(ULQ") = D) (6.25)
hmin < e < hmax (626)
ho = hini (6.27)
hay = hini (6.28)

where E[Cost®|I] is the total expected electricity cost of the water plant &} is a
binary variable representing the status of pundprring the planning interval as:
1 if pumpzison.

U = _ (6.29)
0 if pumpi is off.

Equations[(6.25) and (6.26) ensure the water level remairthd desired range, and
equations (6.27) and (6.28) define the initial level and #xréd level at the end of each

planning period. Note that for a 1-hour planning interva water discharge and electric

power consumption of an assigned pump combination is fixedl tlee nonlinearities in

the combination of the pumps are neglected.

The above optimization model is also a LMIP problem and igeblsing the CPLEX

solver in the GAMS programming environment [89].

The cost of implementing the above schedules can be cadculahen the actual

electricity market price data are available, as follows:

Cost” = Y, it 3, P (6.30)
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whereCost " is the water plant’s actual electricity cost, abid, is the solution of the
optimization problem (6.24)-(6.28).

6.4 Numerical Results and Discussion

6.4.1 Data Sets

Typical chronological hourly thermal and electrical demhgumofiles have been consid-
ered here for the process-industry load and are shown inrdHig18; the correspond-
ing hour-wise data are also presented in Table B.1 in AppeBdi¥arious parameter
representing the process-industry load are presentedhile Bal. The operation and
maintenance (O&M) costs of the gas engine and the oil-ballerselected as per avail-
able typical values [32, 43]. The average 2004 natural gdsodrprices are obtained
from [90], and converted to appropriate units in Canadiala@;land are also presented

in Table 6.1. The value af is considered to be 30%, in line with what has been observed

in Ontario.

The water plant is assumed to have access to a reliable lyeluodr forecast of
water demand for the next 24-hour planning period, and aetatger demand values do
not deviate from the forecasted values significantly. Altdédly demand of 54,788 fris
considered here, and a typical chronological water demanaas shown in Figure 6.4.
The area of the elevated reservoirds= 2600 m?, and the maximum and the minimum
water levels aréimax = 7 M, andhnin = 1 m, respectively. The water level at the
beginning of a planning period f5, = 3 m, and it has to be maintained at the end of
the planning period, i.ehy; > 3. The power and discharge capacity of the pumps are
provided in Table 6.2.

3An average exchange rate of US$1=Can$1.40 is used for 2004.
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Electrical
= = = Thermal

Hour

Figure 6.3: Thermal and electrical demand of the procedssitny load. Note that ther-
mal demand has been converted to equivalent MW units forake sf uniformity [43].

6.4.2 Short-term Planning

The optimization problems, developed in Section 6.3, adévidually solved for each
day of the 6-week study period. Two sets of price forecagixansidered for the sim-
ulations: the 24-hour-ahead HOEP forecasts generatedebyEhmodels which were
found to yield the lowest errors, and the IESO-generatetid#-ahead PDPs which
were found to yield the highest error measures. A fictitiotsnario is also analyzed
here when the correspondieg-postHOEP values are used for scheduling, so that daily
FIEI indices may be calculated according to (6.7) to allowdomparisons. The over-

all economic impact of using price forecasts for schedubnghe case studies is also
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Table 6.1: System parameters for the process-industry (aladosts and prices are in

average 2004 Canadian Dollar equivalent)

%

EPyiy

= 0.4 MW

EP% = 7.0MW

TP

min

= 1.06 MW

TP, =515 MW

max

TFain

=04 MW

TP% — 6.0 MW

max

EmCap = 55 ton/day
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P = $491/ton
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Figure 6.4: Water demand curve of the water plant.
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Table 6.2: Technical characteristics of the pumps.

Discharge (nwh) | Power (MW)
Pump 1 1800 0.595
Pump 2 1440 0.445
Pump 3 828 0.260
Pump 4 828 0.260
Pump 5 1800 0.595

Table 6.3: Summary of total operating cost during the sixekvperiod based on the
three different price scenarios for the two case-study BEMCs

The process-industry LoaJdThe Water Plant

Ex-postHOEPs $445,500 $34,172
HOEP forecasts by the TF models $454,670 $35,936
PDPs $463,930 $36,177

assessed using the following six-weekly FIEI index:

42 ~
c-cC
FIEI (%) = 100 x cay-1 _ )
> day1 C
day=1

(6.31)

The total operation costs under each of the price scenaeqwesented in Table 6.3.
Observe from this table that the overall cost of operatiorbfith case studies decreases
with more accurate price forecasts, as expected. Howdwemrxtent of this decrease
varies for the case studies, which is discussed later.
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The Process-industry Load

Operation of the process-industry load during three tymlests, namely, day 5, day 11,
and day 39, of the 42-day study period are the basis of theshismns presented in this

section. These days are selected for the folowing reasons:

e Onday 5, the TF and PDP forecasts have significantly diftevekxPEs and so are

the associated daily FIEI indices;

e on day 11, the PDPs have a significantly higher MAPE than théofdcasts, but
the FIEI index associated with the PDPs is unexpectedlyddisgn that with the

TF forecasts;

e on day 39, the MAPE of the TF forecasts is about 10%, and theceged FIEI

index is zero.

The forecast MAPEs and the daily FIEI indices for days 5, htl 39 are presented
in Table 6.4. Observe from this table that on day 5, the MAPEhefTF forecasts has
improved by 12.2%, when compared to that of the PDPs. Thg &#il index has also
significantly improved from 12.6% when using the PDPs to %64hen using the TF
forecasts. On day 11 on the other hand, while the MAPESs ofakiedets of forecasts are
on the same order as for day 5, the daily FIEI associated WaiE forecasts (2.81%)
is no longer better than the one obtained with the PDPs (1.T&@xplain this point, the

operation of the process-industry load should be consifasediscussed next.

The process-industry load purchases electricity from theket if the market price
is lower than a certain threshold. This threshold price ¢amply be found by gradu-
ally increasing the electricity market prices in the op#ation problem from zero and
determining that value beyond which no electricity is pas#d from the market. This
threshold for the particular studied system is found to b&. ®MWh, which means
that when the electricity market price is below $53.7/MWH ed#éctricity is purchased
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Table 6.4: The forecasts MAPEs for days 5, 11, and 39, and
the associated daily FIEIs for the process-industry load

TF Forecasts Pre-Dispatch Prices

FIEI (%) | MAPE (%) || FIEI (%) | MAPE (%)

Day5 | 0.6 16.3 12.6 28.5
Day 11| 2.81 16.9 1.7 28.7
Day39| O 9.4 5.18 15.6

from the market. Thus, if the electricity market prices aeetasted to be higher than
the threshold price, it would be economical to produce tlaiired electricity locally.
Therefore, forecasting the future electricity market @sigvith respect to the threshold is
a crucial factor for the process-industry load.

The energy import schedules on day 5 and 11 by the proceastigdoad when using
the PDPs and the TF forecasts, are shown in Figures 6.5 ancar@l@-igures 6.7 and
6.8. The actual and forecasted HOEPs, and the “ideal” enprggrt schedules are also
presented in these figures for comparison purposes. Olisd¥igrire 6.5 that the relative
direction of the future prices with respect to the threshsldot correctly predicted by
the PDP forecasts at several hours such as hours 10 and 13uAt®, the price forecast
is lower than $53.7/MWh, while the actual price is higher t8&8.7/MWh. In contrast,
at hour 17, the price forecast is higher than $53.7/MWh, wthiéeactual HOEP is lower.
The direction of actual prices is similarly predicted inemtly at nine other hours by the
PDPs. On the other hand, the price forecasts by the TF modstedthe direction of the
prices at only four such hours (see Figure 6.6). Therefordayb, the daily FIEI index

associated with using the TF forecasts is significantly kalvan that with the PDPs.

Onday 11, the TF forecasts wrongly predicted the markeefiection with respect
to the threshold for five hours. The PDPs, however, did so fily three hours (see
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Figurel 6.7 and Figure 6.8). In other words, despite the miyh&®PE of the PDPs than
the TF forecasts, PDPs have better predicted the relatigetain of prices with respect
to the threshold; hence, the resulting economic loss ofgusia PDPs is lower on this
day. Note that both sets of forecasts could predict theivelalirection of price with

respect to the threshold quite well on this day, when conth&reday 5, resulting in
generally low economic losses and hence low FIEI indices.

For day 39, the daily MAPEs of the forecasts and the resulEtg indices are
presented in Table 6.4. Observe from this table that dei@tpresence of 9.4% forecast
MAPE for the TF forecasts, the resulting daily FIEI index #.0This basically implies
that the relative direction of the electricity market psceith respect to the threshold is

correctly predicted by the TF forecasts, as demonstratEdjure 6.9.

The six-weekly FIEI indices for the process-industry loae ealculated, using the
operation costs given earlier in Table 6.3, and are predent&able 6.5. The forecast
MAPEs are also presented in Table Table 6.5. Observe frogrtabie that the overall
six-weekly FIEI index resulting from using the TF forecaist2%, half the FIEI value
associated with using the PDPs (4%); this is somehow cemsigtith the difference be-
tween the MAPESs of the two sets of price forecasts (16.1% a#6)4This improvement
basically implies that, on average, the economic loss &ssacwith using the TF price
forecasts is half the loss associated with using the PDRthEstudied process-industry
load, this is equivalent to savings of $77,220 per year.

The Water Plant

In the case of the water plant, two typical days, namely, dapdday 39, are selected
for discussion. These days are specifically selected to Slomwusing an identical set of

price forecasts can result in different economic lossediftegrent customers.

The daily FIEI indices associated with using the TF forezasid the PDPs for pump
scheduling on day 5 and day 39 are presented in Table 6.6. rAkgse results, the cor-
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Figure 6.5: Energy imported from the market by the procedsstry load during day 5

based on PDP forecasts.
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Figure 6.6: Energy imported from the market by the procedsstry load during day 5
based on TF forecasts.
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Figure 6.7: Energy imported from the market by the procedsistry load during day 11
based on PDPs.
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Figure 6.8: Energy imported from the market by the procedsistry load during day 11
based on TF forecasts.
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Figure 6.9: Energy imported from the market by the procedsistry load during day 39
based on TF forecasts.
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Table 6.5: The six-weekly forecasts MAPEs, and

the associated FIEI indices for the process-industry

load

TF Forecasts

Pre-Dispatch Prices

FIEI (%)

MAPE (%)

FIEI (%) | MAPE (%)

2.0

16.1

4.0 40.0

responding daily FIEI indices on day 5, are found to be 10.&86¢,11.5%, respectively.

These results imply that there is only one percentage painhgs if the TF forecasts
are used for water plant scheduling, rather than the PDPse iNdTable 6.4 that the

FIEI index improvement by using the TF forecasts is much nsayeificant in the case

of process-industry load. Furthermore on day 39, the FIB&inassociated with the
TF forecasts improves by 12.9% compared to that with the FDPthe water plant;

this improvement was 5.18% in the case of process-indusag (see Tables 6.6 and

6.4). These results highlight the fact that using the geedrfrecasts on these days has

caused different levels of economic loss on the water plastlae process-industry load.

In order to explain this difference, the nature of the watanpoptimization problem is

examined next.

Table 6.6: The forecasts MAPEs for days 5 and 39, and the

associated FIEIs for the water plant

TF Forecasts

Pre-Dispatch Prices

FIEI (%) | MAPE (%) | FIEI (%) | MAPE (%)
Day5 | 105 16.3 11.5 28.5
Day39| 0.7 9.4 13.6 15.6
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The solution of the water plant optimization problem is stitdt the pumping op-
eration is mainly scheduled during the low price hours nathan the high price hours.
For example, for a hypothetical two-hour planning periag$uamne that the actual hourly
prices are 10 $/MWh and 80 $/MWh, respectively. Assume futthesrpumping of water
during a single hour can satisfy the total water demand. Riéggs of how precise these
two prices are forecasted, as long as the forecasted pri¢beddirst hour is lower than
the forecasted price for the second hour, the pumping wildieeduled at the first hour.
Therefore, ability of a forecasting model to predict thegyahtrend of price fluctuations
is an important and valuable feature in the case of the wéaet,palthough it might be

highly inaccurate in point price forecasting.

The importance of trend forecasting for the water plant ithier examined by pro-
ducing a fictitious set of price forecasts by adding $10/MWAhlt@ctual hourly prices
over the 42-day period. The general trend of the fictitiowsdasts and the actual hourly
prices will hence be exactly identical, although the fiotis forecasts will have a 6-week
MAPE of 23.4%. Using this fictitious set of forecasts for pusgheduling over the six-
week study period results in a 6-week FIEI index of as low 4%@.This low FIEI index
supports the aformentioned argument that forecastingghergl trend is more important

in the case of water plant scheduling.

The hourly electricity consumptions associated with thepung schedules obtained
for day 5 by using the TF forecasts and the PDPs are presentédure 6.10 and Fig-
ure 6.11, respectively. Observe from these plots thatpagh the TF forecasts and the
PDPs are different in terms of point price forecasting, theth have predicted the gen-
eral trend of the HOEP fairly well. This in turn has resultadhe close FIEI indices as
discussed above (10.5%, and 11.5%). Similar explanatiphesto day 39.

The six-weekly FIEI values associated with the TF forecasts the PDPs and the
corresponding forecasts MAPEs for the water plant are pteden Table 6.7. Observe
from this table that the six-week FIEI index associated wiing the TF forecasts for
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Table 6.7: The bi-weekly and six-weekly forecasts
MAPEs, and the associated FIEIs for the water
plant

TF Forecasts Pre-Disptch Prices

FIEI (%) | MAPE (%) || FIEI (%) | MAPE (%)

4.9 16.1 5.5 40.0

pump scheduling is 4.9%, versus the FIEI of 5.5% associatédusing the PDP fore-
casts; an improvement of only 0.6% achieved. These findimgkdr support the argu-
ment that a particular set of price forecasts may resulignicantly different economic
impacts when used by different BEMCs.

The economic impacts of load forecasting inaccuracy haga peeviously addressed
for various supply-side entities [47, 48, 49]. These staidiave been conducted in the
context of the vertically integrated power systems, undeickvenergy utilities are re-
quired to optimally schedule their own resources to meet ttemand. The economic
impact in these studies was defined as the difference bettheesystem costs had the
actual hourly loads been known, and the system costs wheg tis¢ load forecasts.
The reported economic impact analyses show that while thegmassociated with load
forecasting accuracy vary across the studied systemshdihegr correlation exists be-
tween the load forecasting error and the economic impacta¥@nage, improving the
load forecast accuracy by 1% has led to savings of about 0f3#teototal incurred
costs [48]. Considering the discussions presented in thigse such correlations is not

observed in the case of price-forecasting problem.

It is worth mentioning that if the price forecasts generdtedhe New England elec-
tricity market in Section 3.5.4 were used for scheduling ¢hee studies BEMCs, the

overall 4-weekly FIEI indices found for the process-indudbad and the water plant
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would be 0.12% and 0.28%, respectively. This highlightsfdot that operation plan-
ning based price forecasts is very efficient in markets wtrexee is a high level of price
predictability.

6.5 Summary

In this chapter, scheduling the short-term operation of BElOssing electricity market
price forecasts is discussed. Next-day operation of twierdift case studies, i.e., a
process-industry load and a water plant, is formulated gtidhal schedules are derived
to minimize their expected total energy costs. These twe sasdies have different
load management capabilities and represent a considerafniber of BEMCs. The 24-
hour-ahead HOEP forecasts generated by the TF models in é&f&pivhich yielded
the lowest error measures, and the IESO-generated 24amaad PDPs, which yielded
the highest error measures are used as the expected flegateodtly market prices. The
economic impact of price forecast inaccuracy is quantifigthtyoducing the novel FIEI

index.

The findings of this chapter demonstrate that electricitykaiaprice forecasts can
be effectively employed for short-term scheduling. Howesgensitivity to price fore-
cast inaccuracy varies depending on the characteristitiseo$ystem under study. In
other words, economic impact of using a particular set afgforecasts for short-term
scheduling can significantly differ across various markettemers; it can be high for
one customer and at the same time, low for another. This @nphat “accurate” price
forecasting has different meanings for different marketippants. Unlike the load-
forecasting problem, a linear correlation between theticadhl error measures and the
economic impact of forecast inaccuracy is not found to eikisthe price-forecasting

problem.
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Figure 6.10: Energy consumed by the water plant during dasg&dbon the TF forecasts.



Chapter 6: Application of Price Forecasts to Short-term kitap..

Water Plant
200 T T 1T 17T T 717 1T T T T T T T T T T TT1
m—HOEP|: ¢ o s
7_:\150--PDP5 R T O R
2 e AT A
BL00F
9 R N S
EoS0F N
L RmRRRTL L SN
0 N N N N AN AN (NN (N (N NS N AN AN A (N (NN (N N NN SN AN A A |
12345678 9101112131415161718192021222324
Hour
4 T 1T T T T T T T T T T T T1
-BasedonHOEP‘“““““““‘
3| [ JBasedonPDPs | =

—
T

Electricity Consumption (MWwh)
o

12345678 9101112131415161718192021222324_

Hour

159

Figure 6.11: Energy consumed by the water plant during degsgdon the PDPs.



Chapter 7

Conclusions

7.1 Summary and Conclusions

This thesis concentrates on forecasting of electricityketgurices and applying the price
forecasts for short-term operation planning of demand-Biglk Electricity Market Cus-
tomers (BEMCs). The structure of a case market, which is chusé® the Ontario
electricity market in this thesis, is studied in detail, amdet of explanatory variable
candidates that may explain price behavior in this markselscted. Various linear and
non-linear models are developed to relate electricity miapkice behavior in Ontario
to these explanatory variable candidates. Forecastingelsiage also developed for the
day-ahead prices in three neighboring electricity marketsmely, New York, New Eng-
land, and PJM, and price predictability is compared acrbesstudied markets. The
observed differences in the accuracy of the models develtgpehe market prices are
explained by conducting a comprehensive volatility analy$he generated price fore-
casts are used for short-term scheduling of two typical sasgdy BEMCs. Economic
impact of price forecast inaccuracy on the case studiesalyzed by devising the novel

Forecast Inaccuracy Economic Impact (FIEI) index.

160
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In Chapter 2, a detailed overview of the operation of the Qm&lectricity market is
presented. Further in this chapter, the Ontario marketoooés, such as market prices
for energy and operating reserves and demand, are analyedueffirst four years of
market operation. The programs implemented by the Ontadependent Electricity
System Operator (IESO) to improve market efficiency are déscribed in this chapter
and their effectiveness is discussed. This chapter prevadeomprehensive insight into
the operational aspects of the Ontario electricity market.

In Chapter 3, a wide range of market data from Ontario and ighbering electricity
markets are investigated and a final set of explanatory blarieandidates which may
explain electricity market price behavior in Ontario isss#éd. Direct and indirect effects
of these variables on the Hourly Ontario Energy Price (HOE®)e been taken into
account in the process of variable selection. In additissues such as, availability of
explanatory variables before real-time and the choice pf@piate forecasting horizon,
that are of practical significance, are considered. Theivaulate Transfer Function (TF)
and Dynamic Regression (DR) time series models are used te i@EP behavior to
the selected explanatory variable candidates. Two fotiacgisorizons, i.e., 3 hours and
24 hours, are considered for building the multivariate HO&dlels, taking into account
the ability of market participants to react to price fordsaf/nivariate Auto Regressive
Integrated Moving Average (ARIMA) models are also develof@dthe HOEP. The
novel concept of Predicted Supply Cushion (PSC) is introdwedl employed as an
explanatory variable candidate in this study, and the rkdf multicollinearity among
the explanatory variable candidates is addressed by atepaysodel building procedure.
In this chapter, the generated HOEP forecasts have sigmifjclmwer error measures
than any other available forecast, and several issues igitifisant practical importance

are discussed.

In Chapter 4, two non-linear modeling approaches, i.e., iVariate Adaptive Re-
gression Splines (MARS) and Multi-Layer Perceptron (MLPJnaé¢ networks, are ex-
amined for HOEP forecasting. MARS models are developed leH®EP consider-
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ing a variety of explanatory variables, and the 3-hour antt@4r forecasting horizons.
MARS models are also developed based on the historical HOE&/lm# in a univariate
scenario. Multivariate MLP networks are developed by ad&ishg numerous scenarios
in terms of MLP structure and inputs. The informative explany variables detected by
the TF, DR, and MARS models are examined as MLP inputs in idansicenarios. In
this chapter, the application and advantages of usinginea MARS approach for price
forecasting are presented, and it is found that the othetagmeg modeling approaches
outperform the MLP networks for HOEP forecasting.

In Chapter 5, a comprehensive price volatility analysis isied out to explain the
high level of error in the HOEP forecasts and the differenaleserved in price pre-
dictability across the Ontario and its three neighborireceilcity markets. Previously
reported volatility measures are extended and new indiefamnulated based on his-
torical volatility and price velocity concepts. These ek are applied to the intra-day,
trans-day, and trans-week market price fluctuations toyaedhe volatility of the studied
electricity market prices. The relatively high error leeéthe HOEP forecasts obtained
in previous chapters, compared to the price forecastsrateor other markets, is ex-
plained in this chapter by showing that the HOEP is signifigamore volatile than the

other studied prices.

In Chapter 6, the application of price forecasts to shortitecheduling of BEMCs
is presented. Next-day operation of two case study BEMCs, d.@rocess-industry
load and a municipal water plant, is formulated and optim@@ration schedules are
generated so as to minimize their expected energy costscadeestudies have different
load management capabilities and represent a significambeuof small-sized demand-
side market participants. The HOEP forecasts generateldebyE models, which have
the lowest error measures, and the IESO-generated Pratbiisprices (PDPs), which
have the highest error measures, are used in the optimzataxlels as the expected
future electricity market prices. Economic impact of usimgertain price forecasts for

short-term scheduling is analyzed by devising the novel Féex. It is demonstrated
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in this chapter that a particular set of price forecasts neay lto significantly different
economic impacts for different BEMCs, and “accurate” prioeetasting has different

meanings depending on BEMCs’ characteristics.

7.2 Contributions

The focus of this thesis is on two main issues:

e Developing the most accurate electricity market pricedasting models that are

practically realizable and feasible from the participaniswpoint.

e Examining the application of price forecasts to short-teparation scheduling of

BEMCs, and studying the associated economic impacts.

This research is novel because it deals with the practicalementation of price fore-
casting, and addresses the problem of short-term opesatiwduling of price-responsive

electricity consumers within the context of competitiveatficity markets.

The following are the highlights and main contributionstaétthesis:

1. A unique and comprehensive overview of the Ontario atgttrmarket is pre-
sented, providing a clear picture of the operational aspudl performance of this

market.

2. Forecasting models are developed by considering a witdgeraf publicly avail-
able data from the case market and its neighboring elegtmcarkets. Various
important issues are taken into account when building tiee pnodels; these in-
clude market time-line and data availability before realet and the choice of

forecasting horizon based on the participants’ abilityetaat to the price forecasts.
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3. The linear multivariate TF and DR time series models adieg to the prob-
lem of HOEP forecasting, significantly improving the acayraf HOEP forecasts
compared to other reported forecasts.

4. Well-established multivariate approaches, i.e., thedr TF and DR, and the non-
linear MARS and ANNSs, are employed to relate HOEP behaviortimad set of
explanatory variable candidates, demonstrating the tagél lof uncertainty and
the lack of reliable information content in the large set ablic data available
on the Ontario electricity market. Furthermore, it is shalwat the final set of
informative explanatory variables, as well as model aagynzaries by forecasting

horizon.

5. The problem of model-instability for the HOEP is highlig, underlining the

difficulties of developing practical HOEP-forecasting l&o

6. The non-linear MARS approach is applied to electricity keaprice forecasting,
demonstrating its modeling advantages which are of sigmfionportance in case

of model-instability.

7. A volatility analysis is conducted, demonstrating theg HOEP is significantly
more volatile than the prices in the neighboring day-aheadkets and showing
that it is among the most volatile electricity market prieesldwide. Furthermore,
it is proved that out-of-sample forecast accuracy of a tierees is affected by the
time series’ volatility. These observations explain thghhlevel of HOEP forecast
inaccuracy and the differences observed in price preditiahcross the Ontario

and its neighboring electricity markets.

8. By considering two typical BEMCs with different load managsincapabilities,
itis shown that short-term electricity market price forgtsacan be effectively used
for operation planning. Furthermore, by highlighting teetnical differences be-

tween the two studied BEMCs, it is demonstrated that sertgitwiprice forecast
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inaccuracy varies significantly for different market peigants. The novel FIEI
index is also introduced in order to quantify the economipawt of price forecast
inaccuracy on the BEMCs.

9. While the focus of the mainstream price forecasting resgaron improving elec-
tricity price forecasting accuracy in terms of traditioeator measures, this work
examines how such improvements can help market partiGpaith improving
their operation planning. It is argued that improving theuaacy of price fore-
casts in terms of traditional error measures (e.g., MAPEsdwmt necessarily al-

ways guarantee economic benefits for all market particgpant

7.3 Directions for Future Work

Based on the research work presented and discussed in this, thuether research may

be pursued on the following subjects:

e Designing new customer-specific forecasting models, afididg new error mea-

sures to assess and compare their forecast accuracy.

e Studying the application of price forecasts for short-teqperation scheduling of
other types of market participants, such as non-dispatelsafall-sized hydro gen-

erators with limited hydro resources.

e Application of price forecasts for operation planning atprsetter market partic-

ipants.

e Scheduling market participants based on price forecastsmo-settiement market
environment, considering different level of risks asstedawith each of the day-

ahead and real-time market prices.



Chapter 7: Conclusions 166

e Operation scheduling while revising the schedules basedeforecasts obtained

by models with short forecasting horizons.



Appendix A

Sample MARS Models

The developed MARS model to forecast HOEP values during WeeBRCN; :

HOEP, = 22.69 — 0.4950 max(HOEP,_; — 90.82, 0)
— 0.1269 max(104.91 — HOEP._ 49, 0)
+ maxHOEP_,, — 23.49, 0)
— 0.1870 max(110.49 — HOEP._ 9, 0)
— 0.1245 maxHOEP_45 — 25.192,0)
+ maxHOEP,_ 4, — 25.481,0)
— 1.1766 max HOEP_; — 49.23,0)
+ maxHOEP,._; — 30.14,0)
+1.12 max(55.21 — HOEP,_40, 0)
+ maxHOEP_5; — 33.21,0) + ¢ (A1)
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The developed MARS model to forecast HOEP values during Weék a forecast-
ing horizon of 3 hours in SCN

HOEP, = 61.6 — 0.5456 max(92.1 — HOEPR_,,0) + max(z,, — 21.22,0)
+ maxHOEP,_ 5 — 97.11,0) — 0.2651 max94.73 — HOEP_;4, 0)
+ max(48.11 — HOER_ 1,1, 0) + max(z,, — 20702.0, 0)
—0.0012 max(21434.0 — z24-1,0) — 0.0070 max(za+—25 — 19700.0,0)
+ Max(19501.0 — o5, 0) + Max(zs,_24 — 18201.0,0)
— 1.8860 max(HOEPR,_159 — 89.13,0) + 1.2536 max(83.24 — x1;_55,0)
+ max(HOER_5 — 19.13,0) + max(xy,_o4 — 56.2345,0)
— 0.7416 maxHOER, _144 — 69.7,0) — 0.2110 maxHOEPR, _155 — 57.41,0)
+ maxHOEPR,_44 — 58.5,0) — 0.1010 maxHOEP,_4 — 16.86,0)
— 0.4512 max(zy+ — 94.1,0) + max97.0 — x4, 0)
+ maxHOEPR,._; — 71.21,0) — 0.4520 maxHOER,_,; — 47.50, 0)
+ maxHOER_,; — 41.210,0) + ¢ (A.2)



Appendix B

Data

Table B.1: The thermal and electrical demand values for the

process industry load

Hour | Electrical Demand (MW) | Thermal Demand (MW)
1 1.92 3.0

2 1.55 2.875

3 1.55 2.75

4 1.55 2.75

5 1.92 2.75

6 2.37 3.25

7 3.91 3.875

8 5.03 4.375

9 5.84 4.75

10 6.22 5.0

11 6.22 5.0

12 6.22 5.0

Continued on next page
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Table B.1 — continued from previous page

Hour

Electrical Demand (MW)

Thermal Demand (MW)

13
14
15
16
17
18
19
20
21
22
23

5.47
5.47
5.84
5.84
5.84
5.47
5.03
4.28
3.91
3.1
2.73

4.625
4.5
4.75
4.75
4.75
4.375
4.25
4.0
3.875
3.75
3.5
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