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Abstract

This thesis addresses two main issues: first, forecasting short-term electricity market

prices; and second, the application of short-term electricity market price forecasts to

operation planning of demand-side Bulk Electricity Market Customers (BEMCs). The

Ontario electricity market is selected as the primary case market and its structure is stud-

ied in detail. A set of explanatory variable candidates is then selected accordingly, which

may explain price behavior in this market. In the process of selecting the explanatory

variable candidates, some important issues, such as director indirect effects of the vari-

ables on price behavior, availability of the variables before real-time, choice of appropri-

ate forecasting horizon and market time-line, are taken into account. Price and demand

in three neighboring electricity markets, namely, the New York, New England, and PJM

electricity markets, are also considered among the explanatory variable candidates.

Electricity market clearing prices in Ontario are calculated every five minutes. How-

ever, the hourly average of these 5-minute prices, referredto as the Hourly Ontario En-

ergy Price (HOEP), applies to most Ontario market participants for financial settlements.

Therefore, this thesis concentrates on forecasting the HOEP by employing various linear

and non-linear modeling approaches.

The multivariate Transfer Function (TF), the multivariateDynamic Regression (DR),

and the univariate Auto Regressive Integrated Moving Average (ARIMA) are the lin-

ear time series models examined. The non-linear approachescomprise the Multivariate

Adaptive Regression Splines (MARS), and the Multi-Layer Perceptron (MLP) neural

networks. Multivariate HOEP models are developed considering two forecasting hori-

zons, i.e., 3 hours and 24 hours, taking into account the casemarket time-line and the

ability of market participants to react to the generated forecasts. Univariate ARIMA

models are also developed for day-ahead market prices in thethree neighboring electric-

ity markets. The developed models are used to generate priceforecasts for low-demand,

summer peak-demand, and winter peak-demand periods.
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The HOEP forecasts generated in this work are significantly more accurate than any

other available forecast. However, the accuracy of the generated HOEP forecasts is rel-

atively lower than those of the price forecasts for Ontario’s neighboring electricity mar-

kets. The low accuracy of the HOEP forecasts is explained by conducting a price volatil-

ity analysis across the studied electricity markets. This volatility analysis reveals that

the Ontario electricity market has the most volatile pricescompared to the neighboring

electricity markets. The high price volatility of the Ontario electricity market is argued

to be the direct result of the real-time nature of this market. It is further observed that

the inclusion of the just-in-time publicly available data in multivariate HOEP models

does not improve the HOEP forecast accuracy significantly. This lack of significant im-

provement is attributed to the information content of the market data which are available

just-in-time.

The generated HOEP forecasts are used to plan the short-termoperation of two typ-

ical demand-side case-study BEMCs. The first case-study BEMC isa process industry

load with access to on-site generation facilities, and the second one is a municipal wa-

ter plant with controllable electric demand. Optimizationmodels are developed for the

next-day operation of these BEMCs in order to minimize their total energy costs. The op-

timization problems are solved when considering market price forecasts as the expected

future prices for electricity. The economic impact of priceforecast inaccuracy on both the

case study is analyzed by introducing the novel Forecast Inaccuracy Economic Impact

(FIEI) index. The findings of this analysis show that electricity market price forecasts

can effectively be used for short-term scheduling of demand-side BEMCs. However,

sensitivity to price forecast inaccuracy significantly varies across market participants. In

other words, a set of price forecasts may be considered “accurate enough” for a customer,

while leading to significant economic losses for another.
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Chapter 1

Introduction

1.1 Research Motivation

During the past decade, many countries have moved from a vertically integrated operat-

ing environment and have introduced privatization, competition and hence deregulation

of their power industry. In vertically integrated systems,electricity price is usually regu-

lated and customers are offered pre-determined tariffs. Incompetitive electricity markets,

however, market operators determine the electricity pricefor specific intervals during a

day (e.g., 5-minute or hourly prices), taking into account various economical and opera-

tional factors. Thus, the supply and demand side market participants are faced with the

new challenge of electricity market price uncertainty in their daily operations.

In a competitive electricity market, participants have theoption of trading electric-

ity through spot markets, forward markets, or physical bilateral contracts. Furthermore,

Bulk Electricity Market Customers (BEMCs) may choose to supply their energy needs

using on-site Distributed Generation (DG) facilities. BEMCsmay also adopt other feasi-

ble load management strategies (e.g., load shifting) in order to minimize their electricity

costs. Given such a wide variety of options, conjecture of the future electricity market

1



Introduction 2

prices is essential for market participants in order to optimize their operation.

A prior knowledge of electricity market price fluctuations helps power suppliers in

setting up rational offers in the short-term, as well as designing physical bilateral con-

tracts in the medium-term. In addition, generation expansion plans are directly influ-

enced by the trend of electricity market prices in the long-term. For the demand-side, an

insight into the market price trends and fluctuations is crucial in order to design optimal

operational strategies in the short-term. Furthermore, this insight can help the demand-

side to hedge against the risk of price volatility through physical bilateral contracts in

the medium-term, and aid in the planning of their investments in DG options over the

long-term. In view of the these facts, electricity market price forecasting has gained a

critical significance in electricity market research during the past recent years. However,

there are many aspects of the price-forecasting problem that remain to be addressed, as

discussed in the following sections.

Load management programs are receiving a great deal of attention from both the In-

dependent System Operators (ISOs) and the BEMCs. The ISOs lookfor reliable tools

to reduce the system demand during stressed operating hours. The BEMCs, on the other

hand, look for feasible options to avoid the high electricity market prices during peak

hours. Employing on-site electricity generation facilities and managing the controllable

part of their load are two viable options being promoted intensively by the ISOs for the

BEMCs. These options call for new research to derive optimal short-term operational

strategies for the BEMCs while taking into account the uncertain behavior of future elec-

tricity market prices.

This thesis addresses the important issues of forecasting future electricity market

prices and scheduling the short-term operation of BEMCs. Thisresearch is novel be-

cause no previous work has been reported that deals withintegrating the operation of

the demand-side with the competitive electricity markets to achieve increased benefits

for the system as a whole. The Ontario electricity market is selected as the primary case
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market and its structure is studied in detail. Thereafter, aset of explanatory variable

candidates are selected from Ontario and its neighboring markets, and various methods

are employed to forecast future Ontario electricity marketprices. The generated Ontario

market price forecasts are then used for short-term operation planning of two case study

BEMCs, one with on-site generation facilities and one without. Next-day operation of

the case study BEMCs is formulated and the corresponding optimization problems are

solved to minimize their total energy costs. Economic impact of price forecasting inac-

curacy in both the case studies is also analyzed.

The “big picture” of this research is presented in Figure 1.1. Historical data from

the electricity market is used by the forecasting system to generate electricity market

price forecasts. An optimization model is developed considering the BEMC’s techni-

cal characteristics, generated electricity market price forecasts, and any other relevant

information from the electricity market. The optimizationproblem is solved and opti-

mal operation schedules are derived, so that the net cost of electricity transactions with

the electricity market is minimized. Effectiveness of using price forecasts for operation

planning is then assessed by an economic impact analysis procedure.

The Ontario electricity market is selected as the case market because of its various

unique features. For example, several kinds of price and revenue caps exist for whole-

sale market participants and retail customers. Also, even after its deregulation, about

75% of the generation capacity is held by one generating company. In addition, Ontario

is a single-settlement uniform-price real-time market, while the other four adjacent North

American markets are two-settlement markets with nodal prices. Furthermore, the On-

tario power grid is directly connected to the New York and Midwest electricity markets

and indirectly connected to the New England and PJM markets.It is also connected to

the regulated utilities in Quebec and Manitoba, both havingsignificant energy transac-

tions with utilities in the United States. As a result of these significant interconnections,

the operation of the Ontario electricity market can greattly affect the Northeast and the

Mid-West power interconnections in North America.
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Figure 1.1: The “big picture”.

1.2 Literature Review

1.2.1 Electricity Market Price Forecasting

Electricity market price forecasting is a relatively new area of research, unlike the elec-

tric load forecasting problem [1]. Chronological load variations show a high degree of

seasonality and dependence on exogenous factors, especially weather-related variables.

These dependencies are well studied and addressed and load patterns for various situ-

ations are well known. However, the relationship between electricity market price and

other factors (e.g., demand) have not been clearly addresses yet, if at all. For example, an

analysis by Vuceticet.al in [2] to understand the relationship between the demand and

price in the electricity market of California shows that several price behavior regimes
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may exist, and numerous characterizing models are needed toillustrate the approximate

price-demand relationship in different situations.

Electricity market prices are highly volatile, suffering from unusually high or low

price spikes [2,3,4]. Moreover, prices are shown to be more volatile in electricity markets

than other financial markets [5]. These are mainly because ofthe fact that electrical

supply and demand need to be on a real-time balance and, unlike other commodities,

it is practically impossible to store electricity economically. In general, various factors

may affect electricity market price volatility such as, unexpected physical problems in

generation and transmission systems, sudden changes in weather conditions, availability

of relatively inexpensive generation facilities (e.g., nuclear and hydro), volatility in fuel

markets, and possible collusion among market players.

The factors which may specifically affect price volatility,however, vary across elec-

tricity markets. A study by Beniniet al. [3] shows that in California, PJM and Spain

electricity markets, price volatility is strongly connected to the installed generation ca-

pacity. However, in the erstwhile UK power pool, market regulations, such as the inclu-

sion of a “capacity payment” factor in the spot price, are found in [3] to be the dominant

factors leading to highly volatile prices. It is also demonstrated in [3] that proper market

regulations can restrict any possible collusive behavior among generation companies and

hence reduce electricity price volatility, as in the case ofthe Spain’s electricity market.

These facts imply that it would be very difficult to generalize a pattern in price behav-

ior across electricity markets, and hence, price forecasting is a complexmarket-specific

phenomenon.

Electricity market prices may be forecasted by using eithersimulation-based or analysis-

based methods. In simulation-based methods, which are mainly used by power utilities

and market operators, the actual market dispatch is mimicked by considering initial sup-

ply offers, demand bids, and system operating constraints [6, 7]. Although simulation-

based price forecasting can provide a more detailed view of the price fluctuations, they
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require full insight into the system operation and hence arenot practical for market par-

ticipants. Analysis-based methods, however, use historical operation data to forecast fu-

ture prices. The present thesis employs analysis-based methods for short-term electricity

market price forecasting with a maximum 24-hour forecasting horizon.

The first attempt to forecast electricity market prices was reported in 1997 [8], where

Artificial Neural Networks (ANNs) have been used to predict the future System Marginal

Prices (SMPs) in the erstwhile UK power pool. Subsequently,several methods have been

reported in the literature for short-term electricity market price forecasting. Among these,

artificial intelligence-based methods [9, 10, 11, 12, 13, 14, 15], univariate Auto Regres-

sion Integrated Moving Average (ARIMA) models [14,16,17,18], multivariate Dynamic

Regression (DR) models [14,19], multivariate Transfer Function (TF) models [14,19,20],

input/output hidden Markov models [21], wavelet models [14, 17], and General Auto

Regressive Conditional Heteroscedastic (GARCH) models [22] are some of the methods

that have been reported.

Szkutaet al. [9] have developed ANN models using historical price, demand, and

system reserve data, and 1-hour-ahead price forecasts are generated for the Victorian

(Australia) power market. Multi-Layer Perceptron (MLP) and Radial Basis Function

(RBF) neural networks have been employed in [10, 11, 12, 13] to forecast the average

on-peak (from 7 AM to 11 PM) and average off-peak (from 1 AM to 7AM and from 11

PM to 12 PM) New England electricity market prices. Historical price, market demand,

fuel prices, and system reserve data are considered as inputfactors in these studies, and

1-step-ahead forecasts are generated. Employing different network structures and imple-

menting improved training algorithms have led to slightly better forecasting accuracy in

these studies.

Contreraset al.[16] have developed univariate ARIMA models to forecast electricity

market prices in California and Spain. Multivariate TF and DRmodels have been applied

by Nogaleset al. [19] to the prices in Californian and Spanish electricity markets, where
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demand is the only explanatory variable used. Comparing the forecast results obtained

in [16] with those obtained in [19] shows that the forecasts generated by using multi-

variate TF and DR models have gained higher accuracy than those with ARIMA models.

Nogales and Conejo [20] have used TF models to forecast PJM electricity market prices,

where demand is again the only explanatory variable studied. Univariate ARIMA models

are also used in [18] for predicting Leipzig’s (Germany) electricity market prices. Nu-

merous forecast models are developed in [18], based on whichit is concluded that in the

case of the Leipzig electricity market, forecasting hourlyprices using separate models

for each hour yields better results than modeling all 24 hourly prices as a whole.

Wavelet transformation used by Conejoet al. in [17] is observed to slightly improve

the forecasting accuracy of univariate ARIMA models. GARCH models are used by

Garciaet al. in [22] to account for fluctuations in the variance of electricity prices in

the Spanish electricity market. Input/Output hidden Markov models are employed by

Gonzalezet al. in [21] to generate 1-hour-ahead forecasts for Spanish electricity market

prices; however, their forecast results do not depict any significant improvement com-

pared to previous works. In [14], TF, DR, ARIMA, wavelet, and ANN models are used

to generate 24-hour-ahead price forecasts for the PJM electricity market, where the his-

torical demand is the only explanatory variable consideredin this study.

It can be concluded from the above-cited studies that multivariate TF and DR mod-

els have yielded more accurate results than other methods, where comparison has been

possible. For example, while the price forecasts generatedby using TF and DR mod-

els for the Spanish electricity market report a weekly Mean Absolute Percentage Error

(MAPE) on the order of 5% [19], the weekly MAPE of the forecasts generated by the

input/output hidden Markov models for the same market is 15.8% [21]. It is also shown

in [14] that the TF and DR models outperform the ARIMA, ANN, andwavelet models

for forecasting PJM electricity market prices.

The Hourly Ontario Energy Price (HOEP) is a province-wide uniform market price,
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applicable to wholesale electricity customers in Ontario.Forecasting the HOEP has been

a challenging issue for both market participants and the Ontario Independent Electricity

System Operator (IESO) [23]. Simulation-based HOEP forecasts are published by the

IESO, referred to as Pre-Dispatch Prices (PDPs), and these are updated every hour until

real-time [24]. The last published PDP for a given hour, called 1-hour-ahead PDP, is

considered the final price signal to be sent from the IESO to Ontario market participants

before real-time. Analysis of the historical market data reveals that there exists a signifi-

cant deviation of the HOEP from 1-hour-ahead PDPs, with an MAPE of 35.2% over the

first four years of market operation (May 1, 2001-April 30, 2005). In the only other re-

ported research on HOEP forecasting [15], 1-hour-ahead HOEP forecasts are generated

by using a non-linear neuro-fuzzy model. Ontario demand, forced outages, and capac-

ity excess/shortfall are considered as input factors. The forecasts have resulted in daily

MAPEs to be varying between 19.83% to 24% across different scenarios. To the best of

the author’s knowledge, no work has been reported so far thatapplies time series models

to HOEP forecasting.

From the above cited studies, it can also be concluded that price forecasting accu-

racy varies significantly across the electricity markets. For example, the MAPE of the

forecasts generated for Ontario market prices is in the order of 20-24% [15], and in the

range of 10-15% for PJM prices [14], while varying between 3 to 8% for Spanish mar-

ket prices [16, 19]. No studies have been reported that investigate and explaine these

differences.

Furthermore, an important factor to observe is that the above-cited references have

employedafter-the-factdata for model building and out-of-sample forecasting. Although

building price models usingex-postdata is important in order to discover the factors

influencing price behavior, these data are not available before real-time for a practical

price-forecasting tool. This calls for research on developing forecasting models based on

publicly availablebefore-the-factelectricity market data.
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The forecasting horizon is considered to be one hour in some of the above studies,

since one-hour-ahead forecasting is very useful in examining the efficiency of the devel-

oped forecasting models. In addition, there may be some market participants who are

able to refine their operation based on 1-hour-ahead market price forecasts. However, in

practice, the majority of market participants are not able or allowed to change their oper-

ation schedules one hour before real-time, depending on themarket rules and structure.

Selecting appropriate forecasting horizons, when considering market time-line and the

participants’ ability to react to price forecasts, has not been systematically addressed in

the literature yet.

The Multivariate Adaptive Regression Splines (MARS) approach was first introduced

by Friedman [25] to approximate the relationship between a dependent variable and a set

of explanatory variables in a piece-wise regression. Capability of MARS for modeling

time series data was subsequently demonstrated in [26], where lagged values of the time

series were treated as explanatory variables. Although application of MARS has been

reported for modeling a variety of data with promising performance in recent years, such

as for speech modeling [27] and mobile radio channels prediction [28], no work has been

reported on applying MARS for electricity market price forecasting.

1.2.2 Demand-side Scheduling in Competitive Electricity Markets

Optimizing electricity consumption and load management isa mature area of research

which was originally developed in the 1980s [29]. The core idea in load management is

to change the shape of the load curve of electricity consumers, and hence of the system

as a whole, so that less electricity is consumed during the system peak demand hours.

In general, load management programs are promoted by energyutilities to provide their

consumers with economic incentives to reduce their load during the stressed periods of

system demand. Electricity consumers are induced to take advantage of the available

economic incentives by changing their load patterns and responding to high electricity
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prices. Theprice-responsivegroup of electricity consumers either have on-site genera-

tion facilities as an alternative source of electricity, orthe nature of their controllable load

enables them to reduce their demand during high price hours [30, 31]. Scheduling the

short-term operation of this group of electricity consumers in a competitive electricity

market environment is the focus of this research.

On-site generation of electricity using DG facilities has already been widely adopted

in several countries, and estimations show that it will contribute more in the future to the

power generation business [32]. Major manufacturers, market research organizations,

and consulting companies believe that by the year 2010, the DG market size would be in

the range of $10 to $30 billion in the US and $75 billion worldwide. Furthermore, devel-

opments in small size generation unit markets (under 5 MW) also represent the growing

trends toward DG in power industry. Potential economic benefits from on-site electric-

ity generation are: impact on electricity prices; deferralof upgrades to the transmission

and distribution systems; utilization of waste energy resources and fuel flexibility; im-

provement in power quality; provision of ancillary services, cogeneration or Combined

Heat and Power (CHP) production; providing reliable power; off-grid applications, and

microgrid benefits [33,34,35,36,37].

Various aspects of on-site generation of energy such as sizing, reliability, and in-

vestment have been addressed in the literature. The electrical and thermal energy needs

of industrial loads can be separately met by the grid and a conventional thermal energy

generator, respectively. However, several industries choose to have their own on-site gen-

eration facilities with CHP capability, or cogeneration, toimprove their energy efficiency.

The overall efficiency of available cogeneration systems istypically around 75% to 90%,

which makes them a viable option for energy production, specifically when electricity

prices are high [31,38,39,40,41,42,43].

The common objective for optimal scheduling of cogeneration systems is to mini-

mize the total cost of meeting thermal and electrical energyneeds, subject to equipment
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specifications and operational constraints. Pre-defined electricity tariffs and bilateral en-

ergy contracts are considered among the optimization constraints in [30,31,39,40], in a

regulated electricity sector environment. Optimal operation of cogeneration systems is

studied in [41, 42, 43] within the context of liberalized energy markets. In these studies,

optimization models are developed to decide the mid-term orlong-term energy contract

options available to cogeneration system owners. Scheduling cogeneration systems when

considering short-term electricity market prices has not been reported in the literature.

Electricity consumers with controllable load are capable of adopting suitable load

management strategies to optimize their usage of grid electricity [30, 44, 45]. In [30],

an optimization model is developed for a price-responsive process industry load with no

access to on-site generation facilities. The studied load is an industrial flourmill with

storage facilities and night-work shift options. Production commitments are optimally

scheduled to minimize electricity costs under time-of-useelectricity rates. In [44], a

fuzzy-based decision making algorithm is developed for industrial load management;

the algorithm is applied to a cool energy storage air conditioning system for minimizing

electricity costs under the Taipower’s time-of-use rates.In [45], a multi-objective opti-

mization model is developed for municipal water plant management. Minimizing energy

costs is part of the objective function, given the fact that pumping can be scheduled at off-

peak hours. To the best of the author’s knowledge, no studieshave been reported which

address the short-term operational scheduling of electricity consumers with controllable

load in a competitive electricity market environment.

Participants in a competitive electricity market need to consider the challenge of elec-

tricity market price uncertainty in their operation planning. One feasible approach to deal

with this challenge is to forecast short-term electricity market prices and to schedule their

operations accordingly. This approach has been exercised in [46] to derive optimal bid-

ding strategies for a thermal-based power supplier. To the best of the author’s knowledge,

no studies regarding the applicability of electricity market price forecasts for short-term

operation planning of BEMCs have been reported in the literature.
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Electricity demand forecasting is the core component of supply scheduling programs

in power systems, and economic impact of demand forecastinginaccuracy has been ad-

dressed in the literature [47, 48, 49]. Studies have shown that improving demand fore-

casting accuracy, even by 1%, can help power utilities save millions of dollars [48]. In

the same way, an accurate forecast of future electricity market prices may possibly save

the electricity market participants significant costs. However, no studies have been re-

ported in the literature that examine the economic impact ofemploying price forecasts

for short-term scheduling of demand-side market participants.

1.3 Objectives

Considering the state-of-the-art of research discussed above, the main objectives in this

thesis can be stated as follows:

1. Review rules, regulations, and structure of a selected case market, which is the

Ontario electricity market, in order to gain a clear understanding of its operation.

2. Detect explanatory variables candidates which are availablebefore real-timefrom

publicly available sources, and examine if these variablescould potentially explain

market price behavior.

3. Employ well-established linear and non-linear forecasting methods, including MARS,

to relate price behavior in the case market to the selected explanatory variables.

4. Generate price forecasts for the case market consideringforecasting horizons that

are practical from the viewpoint of market participants.

5. Develop forecasting models for the case market’s neighboring electricity markets

and compare their accuracy with that of the models developedfor the case market.
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6. Explain the differences observed in price predictability across the case market and

its neighboring markets.

7. Apply the generated price forecasts to short-term scheduling of two case study

BEMCs, one with on-site generation facilities and one without.

8. Analyze the economic impact of price forecasts inaccuracy on the BEMC case

studies.

1.4 Thesis Outline

Chapter 2 presents a detailed overview of the operation of theOntario electricity market.

The Ontario market outcomes, such as market prices for energy and operating reserves,

and demand, are also analyzed in this chapter for the first four years of market operation.

Chapter 3 describes the process of selecting explanatory variable candidates, and

applying linear time series models to forecast the HOEPs. Price forecasting models for

the neighboring electricity markets, i.e., the New England, New York, and PJM markets

are also developed in this chapter.

Chapter 4 discusses the application of two non-linear approaches, i.e., MARS and

MLP networks, to HOEP forecasting.

Chapter 5 presents a comprehensive price volatility analysis for Ontario and its neigh-

boring markets. This volatility analysis explains the differences observed between the

accuracy of the price forecasts generated for the Ontario electricity market and those

generated for the three neighboring electricity markets.

Chapter 6 presents the application of electricity market price forecasts to short-term

scheduling of two BEMC case studies. Economic impact of priceforecasting inaccuracy

on the studied BEMCs is also analyzed in this chapter.
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Finally, Chapter 7 summarizes the main content and contributions of this thesis, and

suggests directions for possible future research work.



Chapter 2

An Overview of the Operation of the

Ontario Electricity Market 1

2.1 Introduction

In order to gain a clear understanding of the operation of theOntario electricity market,

which is selected as the case market in this thesis, a detailed overview of this market

is presented in this chapter. The procedures for clearing the energy and operating re-

serve markets, pre-dispatch and real-time dispatch of the supply and demand sides, inter-

jurisdictional energy trading, and procurement of ancillary services are discussed. Fur-

thermore, the main market outcomes, namely pre-dispatch and real-time energy prices,

operating reserve prices, and market demand, are studied for the period May 1, 2002 to

April 30, 2006. The programs introduced by the IESO to enhance the operational aspects

of the Ontario electricity market are also analyzed and their effectiveness is discussed.

1Findings of this chapter have been partly presented in the 2005 IEEE PES General Meeting, San

Francisco, USA [24], and submitted to in theIEEE Transactions on Power Systems[50].

15
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2.2 Ontario Power Industry at a Glance

In the Ontario electricity sector prior to deregulation, Ontario Hydro along with some

small municipal utilities generated, transmitted, and distributed electricity to their cus-

tomers across the province. In that era, electricity priceswere regulated by the provincial

government. The Ontario Electricity Act of 1998 reorganized Ontario Hydro into five

companies, and on April 1, 1999, these new companies were created, namely, the Inde-

pendent Market Operator (IMO), Hydro One Inc., Ontario Power Generation Inc. (OPG),

the Electrical Safety Authority (ESA), and the Ontario Electricity Financial Corporation

(OEFC). The ESA is responsible for the electric industry standards, and the OEFC man-

ages financial services of the erstwhile Ontario Hydro and its successors.

The Ontario wholesale electricity market opened on May 1, 2002, two years after the

originally scheduled date. This market consists of a real-time physical market for energy

and operating reserves, and a financial transmission rightsmarket. The Electricity Act

of 2004, renamed the IMO as the Independent Electricity System Operator (IESO). The

IESO is a non-profit company which is regulated by the OntarioEnergy Board and its

core responsibility is to operate the Ontario wholesale electricity market.

Hydro One Inc., wholly owned by the Government of Ontario, isthe major transmis-

sion company that owns and operates Ontario’s transmissionnetwork. The transmission

system has remained regulated and the Ontario Energy Board determines the transmis-

sion and distribution tariffs. The distribution system is also regulated by the Ontario

Energy Board with 91 local distribution companies delivering electricity to the retail

customers. The Ontario’s high voltage transmission systemhas interconnections with

Manitoba, Quebec, New York, Michigan and Minnesota controlareas through 12 lines.

These high voltage interties allow 4,000 MW of electric power transactions.

The OPG owns about 75% of the 30,662 MW installed capacity in Ontario. The total

installed generation capacity consists of: 11,397 MW of nuclear power plants (37.2%);

7,855 MW of hydro and other renewable resources (25.6%); 6,434 MW of coal-fired
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generation facilities (21%); and 4,976 MW of oil/gas-fired power stations(16.2%). En-

ergy imports from the neighboring areas are also an important part of Ontario’s supply

portfolio. The highest Ontario summer peak demand was recorded in August 2006 at

27,005 MW, an about 3% increase with respect to the previous peak demand recorded in

July 2005 at 26,160 MW.

A target of refurbishing, rebuilding, or replacement of 25,000 MW of generating

capacity by the year 2020 has been set by the government to meet the Ontario demand

while replacing polluting coal-fired generation. The government has also set a target

of reducing Ontario’s energy consumption by 5% by 2007. Furthermore, the Ontario

Energy Board is developing a plan for installation of smart meters for all consumers

by 2010. The Conservation Bureau of the Ontario Power Authority is responsible to

pursue the Government’s energy conservation and demand management programs. The

Ontario Power Authority was established in 2005, under directions of the Electricity

Act of 2004, to ensure the long-term adequacy, reliability,security, and efficiency of the

Ontario electricity sector.

The supply and demand side entities within the province having direct connection

to the transmission network must participate in the Ontarioelectricity market [51]. This

group of entities consists of generation companies, large industrial loads, and local distri-

bution companies. Other parties with physical assets whichare connected to the distribu-

tion network are referred to as “embedded” facilities and can choose to either participate

in the market or buy/sell power through contracts with powerretailers. There are, how-

ever, other market participants without a physical connection, such as power traders, or

boundary entities who import/export power to/from Ontarioand may participate in the

physical or financial markets.

Energy market participants in Ontario can choose to buy or sell energy through bilat-

eral contracts. However, bilateral contracts may not be necessarily reported to the IESO.

Bilateral contracts are not considered in the process of scheduling and dispatch of energy,
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and have a small share in the whole electricity trading in Ontario.

Market participants are grouped into dispatchable and non-dispatchable. Dispatch-

able market participants actively bid into the market and receive dispatch commands

every five minutes to reach a specified level of generation or consumption. In contrast,

non-dispatchable market participants are “price-takers”and accept to produce or con-

sume power at real-time and be paid or charged at the hourly price prevailing at that

time. Most of the loads in Ontario are non-dispatchable, andmost of the generation

facilities are dispatchable. Non-dispatchable generators are those generation facilities

which cannot follow dispatch instruction as required by theIESO; this group of genera-

tors are either small self-scheduling units, such as hydro plants running on a small river,

or intermittent generators such as wind farms.

A uniform, province-wide, Market Clearing Price (MCP) is determined for Ontario

every five minutes. The hourly average of these five-minute MCPs is defined as the

Hourly Ontario Energy Price (HOEP). For financial settlements, the MCP applies to

dispatchable market participants, whereas the HOEP is applicable to non-dispatchable

participants. Zonal MCPs are also calculated for each of the 12 intertie zones. The

pre-dispatch and real-time Ontario MCPs and zonal MCPs are thebasis of settling the

imports and exports.

The Ontario electricity market has 289 market participants(May 2006). Wholesale

prices apply to most of the electricity consumers having more than 250 MWh/year of

electricity consumption, whereas, prices are capped at theretail level. The capped prices

are determined based on the Regulated Price Plan (RPP) which was initiated by the Elec-

tricity Act of 2004. Residential customers pay 5.8 cents for the first 600 kWh per month

and 6.7 cents for the consumption over this threshold, as of May 2006. Designated large-

volume consumers such as schools, universities, hospitals, farms and specified charities

also pay the RPP rates.
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2.3 The Physical Market for Energy and Operating Re-

serves

The physical market is jointly optimized for energy and operating reserves. Three sep-

arate operating reserve classes are used in the Ontario market, namely, 10 minute syn-

chronized operating reserve (also called 10 minute spinning or 10S), 10 minute non-

synchronized operating reserve (also called 10 minute non-spinning or 10N), and 30

minute non-synchronized operating reserve (30R). Only dispatchable generators are au-

thorized to offer the 10S, while dispatchable generators and loads, and boundary entities

can participate in the market for 10N and 30R operating reserves. These three operating

reserve classes are requirements determined by the North American Electric Reliability

Council (NERC), and the Northeast Power Coordinating Council (NPCC).

The physical market is optimized to maximize the market’s “Economic Gain”, which

is conceptually same as the social welfare. The market optimization program, referred to

as Dispatch Scheduling and Pricing Software (DSPS), consists of several system and data

analysis blocks, with a dc-based security-constrained optimal power flow block together

with an ac-power-flow-based contingency analysis tool as its heart [52, 53]. Several

penalty functions and violation variables are also defined to allow the DSPS to auto-

matically violate system constraints when a solution is notfound otherwise. A separate

ac power flow is run to calculate the transmission losses, which are incorporated in the

power balance requirements constraint using appropriate penalty factors, and reactive

power dispatch and voltage profiles.

The market Economic Gain is defined as the difference betweenthe value of the
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electricity produced and the cost of producing that electricity, as follows:

Economic Gain=
∑

j

ρD,j × PD,j × PFD,j

−
∑

i

ρS,i × PS,i × PFS,i −
∑

k,c

ρOR
k,c × POR

k,c

− Violation Variables− Tie Breaking (2.1)

wherePD,j andPS,j are demand bid and supply bid blocks respectively;ρD,j andρS,j are

the prices associated with thePD,j andPS,j; PFD andPSF are the defined loss penalty

factors associated with each demand or supply bid;POR
k,c is a bid block for classc of

operating reserves with a priceρOR
k,c ; the Violation Variables are defined to represent the

cost of violating respective constraints; and the Tie Breaking function deals with the bids

that have the same price. The algorithm determines the best trade-off between energy

and operating reserves using appropriate constraints and operational functions.

The DSPS is run in two time-frames, i.e., the pre-dispatch and real-time (dispatch),

and in two modes, i.e., unconstrained and constrained. The pre-dispatch run is used to

provide the market participants with the “projected” schedules and prices for advisory

purposes in advance, while the final schedules and prices forfinancial settlement are

determined in the real-time run. In the “unconstrained” algorithm, the Economic Gain

is optimized based on supply and demand bids, but most of the physical power system

constraints are neglected except for some of the operational constraints, such as intertie

energy trading limits and ramping constraints. In the “constrained” algorithm however,

system security limits together with a representation of the Ontario transmission network

model are considered.

2.3.1 Market Time-line

Hourly supply and demand bids as well as operating reserves bids for a dispatch day

must be submitted to the IESO between 6:00 and 11:00 on the pre-dispatch day. The
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bids may be revised up until two hours prior to the dispatch hour without any restriction.

Furthermore, the quantity of bids can be revised up until 10 minutes before dispatch hour

(for imports and exports 60 minutes prior the dispatch hour)with the permission of the

IESO (see Fig. 2.1).

Pre-dispatch

From 11:00 of the pre-dispatch day, the pre-dispatch version of DSPS is run hourly for

the remaining hours of the pre-dispatch day and for 24 hours of the dispatch day. This

procedure uses the unconstrained algorithm to determine the projected market clearing

prices for energy and operating reserves, referred to as thePre-Dispatch Prices (PDPs),

and unconstrained schedules. The resulting schedules are then analyzed for any network

constraint violations iteratively until all violations are resolved. If violations exist, the

associated constraint equations are incorporated in the constrained algorithm. The eco-

nomic gain is optimized again using the constrained algorithm and final schedules are

generated and sent to each market participant.

The pre-dispatch run covers a range of 37 hours (at 11:00 on the pre-dispatch day) to

14 hours (at 10:00 on the dispatch day), and provides a first glance on future schedules

and prices. Every hour after 11:00 on the pre-dispatch day, revised pre-dispatch sched-

ules and prices are derived for the rest of the pre-dispatch day and/or dispatch day, until

11:00 on the dispatch day, which then becomes the pre-dispatch day for tomorrow (see

Fig. 2.1). The results for energy prices and total market demand at each pre-dispatch run

are publicly available by the end of the hour or during the next hour.

Real-time

In real-time, the dispatch version of DSPS is run every five minutes to derive prices,

schedules and dispatch instructions for each interval. Boththe unconstrained and con-

strained algorithms start at the beginning of each interval. The unconstrained algorithm
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Figure 2.1: Market time-line: pre-dispatch and dispatch days.

determines the market schedule and prices for the interval that just passed, based on

real-time supply and consumption (see Fig. 2.2). The constrained algorithm provides

real-time schedules and dispatch instructions for the nextinterval. Schedules and prices

obtained in real-time are the basis of all financial settlements. It is to be noted that af-

ter June 2004, a Multi-Interval Optimization (MIO) algorithm was implemented by the

IESO, thereby the constraint algorithm derives real-time schedules for an interval while

also considering four other advisory intervals. The MIO project is described in more de-

tails in Section 2.4.4. The differences of the pre-dispatchand dispatch versions of DSPS
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are mostly on the time frame and the type of inputs used, but the algorithms remain the

same.

Figure 2.2: Unconstrained and constrained algorithm in real time.

2.3.2 Clearing Energy and Operating Reserves Markets

Pre-dispatch

The IESO forecasts the aggregate non-dispatchable Ontariodemand and estimates the

amount of generation capacity available from non-dispatchable generators for the dis-

patch hour. Recall that non-dispatchable loads and generators consume/generate the

amount of energy they need/can regardless the market price.Therefore, the predicted

amount of price-taker demand is considered as an energy buying bid at the Maximum

Market Clearing Price (MMCP), and the aggregated predicted ofnon-dispatchable gen-

eration capacity available is considered as an energy sell at the -MMCP. The MMCP is

currently $2000/MWh.
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All price-sorted energy buying bids from entities within Ontario plus all exports are

stacked in decreasing order, and all price-sorted supply bids from generators inside On-

tario plus all import bids are stacked in increasing order. Operating reserve offers from

inside Ontario and boundary entities for the three reserve classes are also stacked in in-

creasing order, and the operating reserves requirements are specified by the IESO for

each hour. The point of intersection between energy supply and demand bid stacks,

while honoring all applicable constraints, determines theuniform Ontario energy MCP

(see Fig. 2.3 for a simple illustration). The projected price of each class of operating

reserves are also calculated in a similar manner, except that a ‘single auction’ market

structure [54] is used (see Fig. 2.4). Energy and operating reserves MCPs are calculated

jointly and the algorithm determines the best trade-off between energy and operating re-

serves. The calculated MCPs apply to all the twelve 5-minute intervals of the dispatch

hour. It should be noted that for import and export bids, the intertie physical capacity

limits as well as the Net Interchange Schedule Limit (NISL) (described in Section 2.3.3)

are considered in the algorithm.

Real-time

The dispatch version of the unconstrained algorithm is run to determine the Ontario en-

ergy and operating reserves MCPs in real-time. This version is basically the same as

the pre-dispatch unconstrained algorithm, except for the differences in inputs and time

horizon. For example, the import/export quantities for energy and operating reserves

cleared in the one-hour ahead pre-dispatch run are assumed constant and treated as sup-

ply/demand bids with the prices of -MMCP/MMCP respectively. Furthermore, actual

metered non-dispatchable “primary” demand, as well as the system losses for the previ-

ous interval is used as an energy bid with the price of MMCP (seeFig. 2.5). Also, the

non-dispatchable generators’ capacity forecast is assumed as a supply bid with the price

of -MMCP, similar to the pre-dispatch run.
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Figure 2.3: Energy MCP in pre-dispatch.

Figure 2.4: Determining operating reserves (OR) MCP for a specific class of operating

reserves in pre-dispatch.
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Figure 2.5: Energy MCP in real-time.

2.3.3 Inter-jurisdictional Energy Trading

The Ontario electricity market is interconnected with the New York electricity market,

and Quebec, Michigan, Manitoba, and Minnesota control areas. The last three control

areas are now part of the Midwest market. The New York electricity market is also

interconnected with the PJM and New England electricity markets, and New England

and PJM trade energy with Quebec and Michigan (see Fig. 2.6).Energy transactions

take place among all these interconnected control areas.

Imports and exports to and from Ontario are treated in the same manner as the local

supply and demand in many aspects. However, there are two major exceptions: first, as

previously described in Section 2.3.2, imports and exportsare scheduled in the 1-hour-

ahead pre-dispatch run and they are considered as constant supply offers and demand

bids in real-time; second, physical intertie limitations,as well as the NISL are honored

by the DSPS when scheduling the imports and exports.
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Figure 2.6: Ontario’s interconnections with other areas.

Net Interchange Schedule Limit

Sharp changes in import/export schedules during consecutive hours can expose the IESO-

controlled grid to reliability risks. To prevent this possibility, the Net Interchange Schedule

(NIS) is defined as the total imports minus total exports, andthe change in NIS across two

consecutive hours is limited to 700 MW. This limitation is referred to as the NISL and is

automatically respected by the dispatch algorithm. Becauseof the NISL, there might be

some uneconomical supply/demand bids scheduled (or economical supply/demand bids

not being scheduled) which should not have been scheduled (should have been sched-

uled) in the absence of NISL. If there is insufficient import bids and export bids for the

algorithm to come up with a feasible solution, the IESO asks importers and exporters to

change their import/export bids.
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Zonal MCPs for the Interties

In order to find the zonal MCPs, the DSPS passes the import/export bids to the Ontario

bid stacks while honouring both physical capacity limits and the NISL. If all economic

bids from an intertie can be used in the Ontario market without violating both limits,

or if the economical bids cannot be used due to the NISL, thereis no congestion in

the intertie, and the zonal MCP is equal to the Ontario MCP; otherwise, the intertie is

assumed congested and the marginal price of energy in the intertie zone is considered as

the zonal MCP. For example, assume that the New York intertie physical limit for import

is 1000 MW and there are 1500 MW of import bids, all with pricesunder $300/MWh,

and the NISL is met; up to 1000 MW of bid blocks are being passedto the Ontario supply

bid stack, and the Ontario MCP clears at $300/MWh (see Fig. 2.7). In this case, since

the next MWh not scheduled due to intertie limit is valued at $100, the zonal MCP is

$100.

Figure 2.7: Determining zonal MCP
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Intertie Congestion Price

The Intertie Congestion Price (ICP) is defined as the net costs incurred by the Ontario

market because of congestion in an intertie. The ICP is calculated based on pre-dispatch

zonal and Ontario MCPs and then used in real-time to determinethe final zonal MCPs

for financial settlements.

In pre-dispatch, the ICP is determined considering two scenarios: In the first scenario,

where only the physical intertie capacity limits the scheduling of intertie offers/bids, the

ICP is calculated as the difference between the 1-hour-aheadpre-dispatch zonal MCP

and the pre-dispatch Ontario MCP, as follows:

ICP = MCPZone
PD − MCPON

PD (2.2)

wherePD indicates pre-dispatch, MCPZone is the zonal MCP and MCPON is the Ontario

MCP. For the example in Section 2.3.3, if the intertie limit were 1001 MW, one more

MWh would be supplied from the $100 import bid, instead of using the $300 Ontario bid;

therefore, the congestion has cost the Ontario market $200/MWh, i.e., ICP=-$200/MWh.

In the second scenario, both the physical intertie capacityand the NISL limit the

scheduling of intertie offers/bids. It is to be noted that when the NISL is violated and

the intertie is congested, relaxing the physical limit for an intertie leads to decreasing the

physical limit for another intertie. In this scenario, the global cost of congestion from

both the increase and decrease of the intertie capacities iscalculated for determination of

the intertie ICP. For example, let assume that an export congested intertie is relaxed by

one MW and that this will save the market $300; at the same time, assume that decreasing

another intertie limit by one MW, to meet the NISL, will cost the market $200. This is

the total cost of the intertie congestion or, ICP=$100/MWh.

In real-time, the ICP is used to determine the final price for intertie transactions, as

follows:

MCPZone
RT = ICP+ MCPON

RT (2.3)
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whereRT indicates real-time; a similar process is used to determinezonal MCP for 10N

and 30N operating reserve classes. It should be noted that when an intertie is export

congested, the exporters should pay a price higher than the Ontario MCP for the energy

purchased from the Ontario market and hence ICP>0. On the other hand, when the

intertie is import congested, the importers should receivea price lower than the Ontario

MCP for the energy sold to the Ontario market and thus ICP<0.

The ICPs for energy and operating reserves for the 12 interties are zero most of the

time. Table 2.1 shows the maximum and minimum energy ICPs for the period of January

12 to October 31, 2004 for the Manitoba, Michigan, Minnesotaand New York interties.

Table 2.1: Energy ICPs ($/MWh) for January 12 to Octo-

ber 31, 2004.

Manitoba Michigan Minnesota New York

Max 4.54 177.62 55.8 167.33

Min -56.83 -825 -91.99 -5.497

Intertie Offer Guarantee

To ensure adequate supply and encourage power imports to Ontario, the Intertie Offer

Guarantee (IOG) mechanism is designed to pay the power importers at least the average

price of their bid and prevent importers from incurring negative operating profit. One

of the main assumptions in the Ontario market design is that supply and demand bids

are based on marginal costs and marginal benefits. It means that if the MCP for a given

interval is equal to a bid price, the operating profit of the respective market participant

is zero and it would not be better off either scheduled or not2. Therefore, if under any

2This assumption is not necessarily true in an entirely competitive market in which the market partici-

pants design their bidding strategies to maximize profit.
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circumstances the actual operating profit for a power importer is negative, the IOG pay-

ments return it to zero. Of course, this payment does not hedge the risk of having a lower

operating profit in real-time than what was expected in pre-dispatch.

For example, assume the pre-dispatch Ontario MCP is equal to $25/MWh and the

ICP is zero. The expected operating profit for a 100 MW power import at the bid price

of $20/MWh for a given hour would be:

OP=100MWh× ($25/MWh-$20/MWh) = $500 (2.4)

where OP is the operating profit. If in real-time the Ontario MCP turns out to be equal to

$15/MWh, the actual operating profit would be:

OP=100MWh× ($15/MWh-$20/MWh) = −$500 (2.5)

In this case, an IOG payment equal to$500 will be made by the IESO to the power

importer to return it to zero operating profit.

2.3.4 Congestion Management Settlement Credit

In the Ontario electricity market, real-time unconstrained prices and schedules are the

basis of the financial settlements. If power system constraints force a market partici-

pant to generate/consume more/less than what it was supposed to in the unconstrained

schedule, the market participant is treated as ‘constrained on/off’, and the Congestion

Management Settlement Credit (CMSC) is used to provide the market participant with

the same operating profit as it would gain in the absence of power system constraints.

For example, assume that generatorA bids to generate 100 MW of energy at a price

of $20/MWh for a given hour. Assume also that the Ontario MCP is equal to $30/MWh,

and generatorA is scheduled by the unconstrained algorithm for its entire bid for all

5-minute intervals of the hour. In this case the “operating profit” of generatorA would
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be:

OP= 100MWh × ($30/MWh− $20/MWh) = $1000 (2.6)

However, if in the constrained algorithm run the generator is scheduled to inject only 50

MW at all 5-minute intervals, the actual operating profit would be:

OP= 50MWh × ($30/MWh− $20/MWh) = $500 (2.7)

and hence the lost profit is $500. In such a case, a $500 CMSC payment will be given

to generatorA to bring it to the same level of operating profit as obtained from the

unconstrained schedule.

When a market participant has gained some profit or prevented loss in real time as

the result of being constraint on/off, it has to pay the extraoperating profit to the IESO

as CMSC. For example, an exporter is scheduled to export 100 MW during the next hour

in the pre-dispatch unconstrained run, but network constraints force the exporter not to

export at all. Let then assume the exporter’s bid price is $40/MWh, the ICP is equal

to zero, and the real-time MCP is $60/MWh for the all 5-minute intervals of the hour.

Under these circumstances, the exporter would lose $2000 ifit were not constrained off.

Therefore, the exporter has to pay $2000 to the IESO as CMSC.

It was observed by the IESO that in the cases when the offer prices were negative,

constrained-off payments could be very high and unjustifiable. Therefore, changes were

made to the financial settlement algorithm in June 2003 to use$0/MWh offer prices in

such cases.

2.3.5 Contracted Ancillary Services

Ancillary services are required to ensure the reliability of the IESO-controlled grid. An-

cillary services may be procured either through physical markets, such as operating re-

serves or through contracts with eligible service providers. The IESO procures five dif-
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ferent ancillary services through contracts with various service providers in addition to

the three classes of operating reserves discussed earlier;these are:

• Regulation/Automatic Generation Control Service: The IESO contracts with eli-

gible generators to provide regulation service for the period beginning May 1 of

each year to April 30 of the following year. Minimum requirements are calculated

by the IESO and control signals are sent to the generators under contract to raise

or lower their output as required.

• Reactive Support and Voltage Control: Reactive support and voltage control is

contracted to ensure that the IESO is able to maintain the voltage level of its grid

within acceptable limits. Generation facilities are the major provider of this service

in Ontario.

• Black Start Service: Black start service is contracted to meetthe requirements of

restoring Ontario’s power system after a major contingency. Generators that wish

to provide this service must meet specific requirements determined by the IESO.

• Emergency Demand Response Load: Emergency demand response loads are the

loads that can be called upon by the IESO to cut their demand onshort notice in or-

der to maintain the reliability of the IESO-controlled grid; this service is envisaged

for emergency operating conditions.

• Reliability Must-Run Resources: Whenever sufficient resourcesto provide physi-

cal services in a reliable way are not available, the IESO mayneed to call registered

facilities, excluding non-dispatchable loads, to maintain the reliability of the grid

through reliability must-run resources contracts.
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2.3.6 Market Uplift

The Ontario electricity market has been designed so that theconsumers of electricity

pay for all costs associated with operating the market in a reliable way. The operating

costs are categorized under hourly and monthly components and recovered through mar-

ket uplift. The market uplift is collected from the loads based on their share of the total

demand. Congestion management costs, operating reserve costs and the costs associ-

ated with system losses are the hourly components of the market uplift. However, other

components of the market uplift, including contracted ancillary services, IESO adminis-

tration fees and miscellaneous charges, are calculated monthly. Some costs are regulated

by the Ontario energy authorities and have a fixed price per MWh; for example, the

IESO administration fees are $0.909/MWh. The market uplift appears in the customers’

monthly invoice under separate charges.

2.3.7 Market Data

The Ontario IESO publishes two sets of system operation dataprior to real-time dis-

patch of energy. The first set consists of conventional forecasts for some of the market

variables, and is published as the “System Status Reports” (SSR). The SSR provides

forecasts for Ontario demand and supply, energy imports, and capacity excess or short-

fall. The SSR also contains total planned transmission and generation outages and other

market advisory notices. The SSR is released for each day at least 24 hours in advance,

and it is updated in case of any change in the system status or forecasts. The second set is

referred to as the “Pre-Dispatch Reports” (PDR) and it provides the market participants

with simulation-based forecasts of market outcomes, generated by the pre-dispatch run

of the market, as explained in Section 2.3.1.
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2.4 Programs to Improve Market Operation

Subsequent to the opening of the Ontario electricity market, several programs have been

introduced by the IESO in order to improve reliability, efficiency, and transparency of

the Ontario electricity market. These are briefly discussedin this section.

2.4.1 Hour-Ahead Dispatchable Load Program

Most of the loads in Ontario are non-dispatchable and therefore they do not respond to

high market prices in real-time. The Hour-Ahead Dispatchable Load (HADL) program

was launched in June 2003 for three main reasons: First, to make non-dispatchable loads

more price-responsive; second, to allow the IESO to includefuture load reductions in

the scheduling process; and third, to encourage load curtailment during peak operating

hours.

The non-dispatchable loads would have an upper limit on the energy costs associ-

ated with their production process in most cases. If electricity price exceeds a specific

upper cap, the load would choose to shut down its production.Non-dispatchable loads

who wish to participate in the HADL program offer their pricecap to the IESO and the

quantity of demand that would be curtailed. If the 3-hour-ahead PDP is higher than the

price cap offered by the load, the IESO will send dispatchinginstructions to the load to

reduce its demand by the amount of its HADL offer. If the real-time HOEP turns out to

be equal or more than the loads price cap, there will not be anypayment. However, if

the real-time HOEP is lower than the load’s price cap, the load would have been better

off to operate than shutting down its processes. In this situation, there would be a lost

operating profit and the Hour-Ahead Dispatchable Load OfferGuarantee (HADLOG) is

payable to the load to bring it to the same operating profit as it would have been gained

when operating. The HADLOG is calculated as follows:

HADLOG = max{0, (PC-HOEP)× Q} (2.8)
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where Q is the quantity of demand that is offered to be cut, andPC is the load price

cap. For example, LoadA bids to cut 100 MW of its demand if the 3-hour-ahead PDP

for energy is more than $45/MWh. If in the 3-hour-ahead pre-dispatch run the energy

price for the dispatch hour clears at $50/MWh, dispatch commands are sent to LoadA

by the IESO to cut its load by 100 MW. If in real-time, the HOEP clears at $40/MWh, an

HADLOG payment of $500 will be credited to LoadA by the IESO in this case, as per

equation (2.8).

2.4.2 The Spare Generation On-Line

Fossil-based generation units usually require a long and expensive start-up process, and

thus they require a reasonably long operation period in order to recover the start-up costs.

During the off-peak periods, these units are exposed to the risk of not being scheduled

for a long enough period, and hence, they may decide not to putbids for the risky off-

peak periods. On the other hand, if during the off-peak period, a large decrease in supply

or increase in demand occurs, the IESO has to buy power from more expensive units or

import expensive power; these lead to unusually high price spikes.

To increase the reliability of the IESO-controlled grid andto reduce price volatility,

the IESO launched the Spare Generation On-Line (SGOL) program in August 2003,

which offers eligible generators a guarantee of their start-up costs. Eligible generators

submit their minimum loading point, minimum up-time and combined guaranteed costs

to the IESO. If an eligible generator registered in the SGOL program submits a supply bid

and is scheduled to run but the revenue earning over its minimum up-time is lower than

its combined guaranteed costs, it will receive compensation from the IESO to cover its

minimum combined guaranteed costs. The IESO recovers the SGOL payments through

monthly uplift charges to loads.
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2.4.3 Control Actions Operating Reserves

Under the Ontario market rules, the IESO is allowed to use out-of-market control actions

when there no sufficient operating reserve offered in the market. These control actions

include a 3% voltage reduction, a 5% voltage reduction, and areduction of 30R require-

ments. In the initial Ontario market design, the market operator manually put in place

these actions to maintain system reliability in stressed situations. This was obviously

an out-of-market action and there was no cost associated with it to the market partici-

pants. This ‘free’ service could affect integrity of the price signals sent to the supply

side, putting unrealistic downward pressure on the HOEP. Furthermore, out-of-market

control actions have been recognized as one of the main sources of discrepancy between

pre-dispatch and real-time prices.

To mitigate potential implications of the ‘free’ out-of-market control actions, the

Control Action Operating Reserve (CAOR) was introduced in the market in August

2003. The first 200 MW CAOR was priced at $30/MWh as 10N operatingreserve, and

at $30.1/MWh as a reduction in 30R operating reserve requirements. In October 2003,

an additional 200 MW CAOR was implemented in the market with the same pricing

scheme. This 400 MW CAOR resulted in a significant reduction inthe rate of out-of-

market control actions. An additional 400 MW CAOR was later brought into the market

in November 2005 at the price of $75/MWh for the first 200 MW and $100/MWh for the

next 200 MW. Although it is expected that the CAOR result in slightly higher HOEPs, it

would provide more realistic price signals during stressedconditions.

2.4.4 Multi-Interval Optimization Project

The MIO project was implemented in two stages. The initial stage was implemented in

March 2004, by which a change was made to the DSPS to recognize‘effective unit ramp

rates’. Before this stage, the DSPS assumed that generators can only operate under their
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offered ramp rates. If a unit could not reach the dispatched level for a specific interval

for any reason, dispatch instructions for next intervals could be undesirably affected;

this problem is referred to as the ‘stutter step’ by the Ontario market participants. On the

other hand, it was observed that some non-quick start generators can ramp up higher than

their offered ramp rates for a short period of time. Therefore, in order to prevent some

undesirable dispatch instructions, the DSPS was modified touse effective unit ramp rate,

which is the lesser of the offered ramp rate for the interval multiplied by 1.2, and the

maximum registered ramp rate. For example, if the maximum registered ramp rate of a

facility is 4 MW/min, and the offered ramp rate for a given interval is 2.0 MW/min, the

effective ramp rate that is used by the DSPS is 2.4 MW/min.

In the initial DSPS, dispatch instructions were derived foreach interval indepen-

dently. This caused some dispatching difficulties because the IESO had to dispatch gen-

erators on and off to maintain system reliability. However,frequent ramp up and down

instructions are costly. In order to address this issue of dispatch volatility, the second

stage of MIO was implemented in June 2004 [55], through whichdispatch instructions

for a given interval is calculated considering four other advisory intervals. These four in-

tervals are selected out of a rolling 11-interval ‘study period’, based on some pre-defined

selection criteria. These criteria are designed with the intention of providing the most

efficient optimal solution, as well as providing the unit operators with an insight into

the upcoming operating instructions. The four advisory intervals are not necessarily the

same for each study period, and unit operators are provided with advisory dispatch tar-

gets for these intervals. The new MIO algorithm is further expected to improve system

reliability, market efficiency, and market transparency.
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2.4.5 Demand Response Programs

Emergency Demand Response Program

The Emergency Demand Response Program (EDRP), announced in June 2002, is in-

tended to enhance system reliability by providing the IESO with a control action option

prior to non-dispatchable load shedding. Terms and conditions of the EDRP are agreed

upon by the IESO and the interested market participant through a 18-month contract. In

case the IESO anticipates an emergency situation, it will give the EDRP participants a

notice indicating the possibility of EDRP activation. EDRP participants are required to

inform the IESO whether they intend to curtail their load. IfEDRP participants reduce

their demand in practice, they will receive financial compensation for the costs they in-

curred in responding to the IESO’s request, based on the contract rates. Of the several

occasions that the EDRP participants were given notice for EDRP activation (e.g., during

summer 2003, winter 2004, and summer 2005), there was only one actual load reduction.

Emergency Load Reduction Program

In view of the EDRP experience and feedback from stakeholders, and to address the reli-

ability concerns arisen from the shortage of supply during summer 2005, the Emergency

Load Reduction Program (ELRP) was approved for launching on June 15, 2006. The

ELRP is intended to provide Ontario market participants withan opportunity to improve

the reliability of the electricity grid during stressed system conditions, particularly in the

summer. If the program can attract a dependable amount of thedemand side, it will en-

able the IESO to reduce usage of other more costly control actions, such as emergency

energy purchases and voltage reductions. In fact, the ELRP ispart of the IESO Emer-

gency Operating State Control Action (EOSCA) list prior to public appeals for energy

conservation, 3% and 5% voltage reductions, emergency energy purchases, and EDRP.

The ELRP is an ongoing program which will be activated only on Mondays to Fridays
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from 8 AM to 8 PM, and market participants with capability of reducing their consump-

tion for at least 1 MW during a minimum 2-hour time window can participate. The ELRP

will be implemented in three steps. In the notification step,market participants will be

informed that the ELRP will be implemented for a given day. Thenotice may be issued

a day ahead or on the dispatch day, and can be for any number of hours within the pro-

gram’s window. In the offering step, the interested market participants notify the IESO

by submitting their MW offer of load reduction. Although participating in the ELRP

is not mandatory, a market participant is committed to reduce its specified load upon

submitting an ELRP offer to the IESO. In the activation step, the IESO contacts ELRP

participants to reduce their consumption, and non-compliance penalties may apply in

case of under performance of greater than 20%.

ELRP participants will receive two types of financial compensations. A standby

fee of $15 per MW per hour will be paid for participating in theprogram up until the

activation hour. Upon activation, the participants will receive a load reduction payment

based on the greater of the HOEP and the applicable followingoptions:

• $400/MWh, for 2 hours of consecutive load reduction,

• $500/MWh, for 3 hours of consecutive load reduction,

• $600/MWh, for 4 hours of consecutive load reduction.

Load reduction for a period longer than 4 hours is not considered in the program. Actual

load reductions, measured and verified by the IESO, are the basis for payments.

2.4.6 Mitigating OPG’s Market Power

In order to limit OPG’s market power, the Market Power Mitigation Agreement (MPMA)

was put in place by the Ontario government before opening themarket in May 2002.

According to the MPMA, OPG had to pay the IESO a rebate if the HOEP exceeded
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$38/MWh. However, it was observed that the MPMA seriously affected OPG’s efficiency

and led to financial problems; it cost OPG about $100 million per month, as OPG was

not able to recover the overall costs of producing electricity.

The Electricity Act of 2004 replaced the MPMA with a new plan that sets capped

prices and revenue for most of the OPG’s generation facilities. Effective April 1, 2005,

generation from OPG’s base load hydroelectric and nuclear facilities, referred to as regu-

lated assets, was capped at $33/MWh, and $49.5/MWh, respectively; these regulated as-

sets represent about 40% of the Ontario’s total generation capacity. Furthermore, OPG’s

revenues from about 85% of its unregulated assets, i.e., non-base load hydroelectric, coal

and gas-fired stations, were set at an upper limit of $47/MWh; OPG’s unregulated assets

represent about 33% of the total generation capacity in Ontario. Under this new pric-

ing regime, most of the demand side participants are eligible for two types of rebates.

These rebates are referred to as the OPG Rebate and the Global Adjustment Rebate, and

are calculated based on the HOEP and the mentioned limits on OPG assets. The limits

on prices and revenues are subjected to change each year and are temporarily in effect

until Ontario government develops a mechanism for pricing OPG’s output, no later than

March 2008.

2.4.7 Day-Ahead Commitment Process

In late 2003, the Day-ahead Market Working Group was established by the IESO in order

to assess feasibility and features of a day-ahead market in Ontario. The group proposed a

comprehensive day-ahead market with nodal pricing mechanism; however, it was finally

not implemented by the IESO because of various political, economical, regulatory, and

design issues raised by stakeholders. Instead of the comprehensive day-ahead market, a

Day-Ahead Commitment Process (DACP) with reliability guarantees was approved by

the IESO Board of Directors in September 2005.

The DACP is intended to improve system reliability by providing the supply side
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with financial incentives, 24 hours before real-time dispatch of energy. The fundamental

targets of designing the DACP are to address frequent real-time failure of import trans-

actions, and to optimally manage next-day available energyresources. The DACP was

launched on May 31, 2006. The IESO will evaluate effectiveness of the DACP based on

its impact on system reliability, import failures reduction, and market uplifts, and will

decide whether to continue with the DACP after November 2006.

The DACP is aimed to provide the IESO with a reliable anticipation of next day’s

available supply. For this purpose, dispatchable generators/loads who intend to partici-

pate in next day’s real-time market must submit their operational data to the IESO by 11

AM on pre-dispatch day. Dispatchable facilities are also required to submit an Availabil-

ity Deceleration Envelope (ADE). The ADE specifies the hours, energy, and capacity

limits within which a dispatchable facility intends to operate during real-time. Although

the dispatchable facilities are allowed to change offered prices, quantity of bids have to

remain within the limits specified in the ADE. Importers are not obliged to submit import

data into the DACP; however, they must do so in order to be qualified for the DACP fi-

nancial incentives. The importer participating in the DACP will have to pay a day-ahead

import failure charge if they do not follow their DACP obligations. It is to be noted that

under the pre-DACP data submission rules, market participants were allowed to make

any change to their submitted data, up to two hours before real-time.

The DACP is also designed to help dispatchable generators andimporters to manage

the financial risks associated with supplying energy into the Ontario grid. A Day-Ahead

Generation Cost Guarantee (DAGCG) is offered to dispatchablegenerators to ensure they

recover certain combined costs if they have not recovered their costs through market rev-

enues. The DAGCG is the day-ahead version of the SGOL, except it also covers eligible

maintenance and operation costs. A Day-Ahead Intertie Offer Guarantee (DAIOG) is

also offered to imports to guarantee their ‘as-offered’ costs, and is basically the day-

ahead version of the IOG. Aside from some minor differences in the way the DAGCG

and the DAIOG are calculated and financially settled, they are basically the same as the
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real-time SGOL and the IOG payments, respectively. If a market participant is entitled

to both day ahead (DAGCG and DAIOG) and real-time (SGOL and IOG) credits, only

the higher one will be credited. The costs of paying the DAGG and DAIOG will be

recovered through market uplifts.

The existing pre-dispatch algorithm, discussed earlier, is the calculation engine for

the DACP. The first four runs of the pre-dispatch algorithm after 11 AM on pre-dispatch

day are used to generate DACP schedules. The first three runs are to generate initial

schedules and necessary reliability refinements are carried out. Also, energy limited

generators can change their submitted data during the first three runs. The 4th run starts

at 14:00 and produces final schedules, referred to as the Pre-dispatch of Record. The

Pre-dispatch of Record is the basis of financial guarantees, and may be rejected by the

committed participants by hour 15:15.

2.5 Analysis of Market Outcomes and Discussion

The main market outcomes, namely pre-dispatch and real-time energy prices, operating

reserve prices, and market demand are studied in this chapter for the period May 1, 2002

to April 30, 2006.

2.5.1 Energy Price

The monthly demand-weighted averages of the HOEP for the period of May 1, 2002 to

April 30, 2006 are shown in Figure 2.8. The Ontario market experienced a high record

demand during summer 2002, which coincided with some supplylimitations. Early in

winter 2003, extremely cold weather resulted in an increasein demand as well. Further-

more, during winter 2003, marginal cost of supplying electricity into the grid soared as

a result of unusually high natural gas prices. Also, some of the gas/oil stations were not
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available to the market operator as they experienced difficulties in their fuel procurement

systems in this period. Thus, the high demand and limited supply availability resulted in

high energy prices during summer 2002 and winter 2003.

Figure 2.8: Monthly weighted HOEP averages, 2002-2006

The average HOEPs remained steady until summer 2005, when high temperature and

humidity levels led to a record peak demand. On the other hand, reliance on gas-fired

stations during this period was increased as a result of reduced hydroelectric outputs

and the shutdown of a large coal-fired station. Furthermore,since natural gas prices

were high during this period, some generators preferred to sell their gas contracts in the

natural gas spot markets rather than producing electricity. Hence, the costs of producing

electricity in Ontario as well as in the neighboring areas increased, resulting high and

volatile HOEPs.

Energy prices in Ontario on average have been in the same order as the wholesale

energy prices in New York and PJM. However, New England prices have been persis-

tently higher than Ontario prices. Michigan, Manitoba, andMinnesota control areas have
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joined the Mid-West electricity market, opened in April 2005, with the energy prices

being always lower than the HOEP. It is usually expected thatin a fully competitive

environment, arbitrage results in elimination of the pricedifferences in the neighboring

areas; however, transmission line constraints, differentscheduling protocols, and physi-

cal power flow rules have limited the ability of power tradersto arbitrage away the price

differences.

The HOEP has been in general highly volatile, varying from aslow as $4/MWh to as

high as $1,028.4/MWh during the 4-year period. About 82% of the hours, the HOEP has

remained in the range of $20/MWh to $80/MWh, and for about 15% ofthe hours, the

HOEP has varied in the $80/MWh-$200/MWh range. Furthermore, during the first four

years, there have been 196 hours at which the HOEP has exceeded $200/MWh. Finally,

for about 2% of the hours, prices have been low, in the range of$4/MWh to $20/MWh.

2.5.2 Demand

During the period May 1, 2002 to April 30, 2006, the highest recorded demand in Ontario

was 26,160 MW, attained in July 2005. The monthly maximums and averages of the On-

tario demand over the 4-year period are displayed in Figure 2.9. It can be observed from

Figures 2.8 and 2.9 that demand is the main driver of energy price; however, unusually

high energy prices occurred when peak demand coincided withsupply limitations. For

instance, while maximum demand in winter 2004 was slightly higher than that of winter

2003, energy prices were higher in winter 2003 as a result of supply limitations.

2.5.3 Operating Reserve Prices

The yearly average prices of the three classes of operating reserves are displayed in

Figure 2.10. Unlike the energy prices, operating reserves prices have declined over the

4-year period. It was observed that the operating reserve prices were as high as energy
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Figure 2.9: Mean and maximum Ontario demand.

prices on a few days during September 2003 because of a seriesof unusual events; these

unusually high prices interrupted the reducing pattern of the 10N and 30R prices during

the second year. Reduction in operating reserve prices can beattributed to the fact that

about 600 MW of dispatchable load has emerged in the market. This group of loads are

allowed to offer 10N and 30R into the market, resulting in a more competitive and lower

10N and 30R prices. It should be noted that despite the high energy prices during summer

2005, the 10S prices have continued to decline; these low 10Sprices can be explained

by the fact that the limited water supply due to drought during this period shifted some

of the hydroelectric units from energy production to providing 10S reserve.

2.5.4 Discrepancy between the HOEP and the PDPs

The PDPs are generated based on the most recent available market information in order

to provide the market participants with an estimate of the real-time HOEPs. However, it
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Figure 2.10: Yearly operating reserve (OR) price averages

has been consistently observed that there is a large discrepancy between the PDPs and

the HOEP [23]. Let define the yearly Mean Absolute PercentageError (MAPE) of the

PDPs as:

MAPE =
100

N
×

N
∑

t=1

|HOEPt − PDPt|

HOEPt

(2.9)

where HOEPt and PDPa,t are the values of the HOEP and PDP for hourt, respectively,

andN is the number of hours in a year. The yearly MAPEs of the 1-hour-ahead and 3-

hour-ahead PDPs for the first four years of market operation are depicted in Figure 2.11.

One can observe from this figure that the discrepancy betweenthe HOEP and PDPs has

declined, to some extent, through the first three years. Moreover, the highest discrepan-

cies happened during the first year of market operation, mainly because of the volatile

prices during summer 2002, and probably due to market immaturity. Note that the de-

viation of HOEP from the PDPs has increased in the 4th year, which is because of the

unstable and unusually high prices during summer 2005.



An Overview of the Operation of Ontario’s Electricity Market 48

Figure 2.11: Yearly MAPE of the discrepancy between the HOEPand PDPs.

The high discrepancy between the HOEP and the PDPs can be explained by opera-

tional aspects of the Ontario market. The real-time nature of this market makes it vulnera-

ble against unpredictable events. The generation offer curve in Ontario is “hockey-stick”

shaped [23]. Consequently, demand over-forecasting, demand under-forecasting, errors

in forecasting the output of self-scheduling generators, and import/export failures oblige

the market operator to commit expensive units on the “blade”portion of the offer curve,

or to de-commit some of the already committed units and move back on the “shaft”

portion of the offer curve. This requirement puts upward or downward pressure on the

HOEP, leading to price spikes and deviation of HOEP from the PDPs. Furthermore, out-

of-market control actions affect the consistency between the real-time and pre-dispatch

market clearing procedures, leading to deviation of the HOEP from the PDPs.

The improvements in consistency between the HOEP and PDPs can be attributed to

changes and enhancements gradually being implemented in the market. Specifically, the

processes of forecasting the load, as well as forecasting the output of self-scheduling
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generators have been modified. Furthermore, 800 MW of out-of-market control actions

are introduced in the market by the CAOR program.

Deviation of the HOEP from the PDPs has many implications, and seriously affects

market efficiency. For example, analysis of PDP data for the first four years of market

operation shows that for about 81% of the hours, real-time HOEPs have been less than

the corresponding 1-hour-ahead PDPs. For such hours, eligible importers are entitled to

IOG payments, recalling the fact that imports are scheduledbased on 1-hour-ahead PDPs.

Furthermore, too many imports are scheduled while the cheaplocal supply is dispatched

off, and too few exports are scheduled while the demand side in the neighboring areas are

willing to pay more for Ontario energy. Another example is the HADL program which

is also designed based on the 3-hour-ahead PDPs. If the real-time HOEPs turn out to be

lower than the 3-hour-ahead PDPs, which has been the case forabout 79% of the hours

for the first four years of the market operation, the HADL program participants may be

eligible for HADLOG payments.

2.5.5 Effectiveness of the Market Improvement Programs

Although the programs implemented by the IESO to enhance market operation have

positively affected market outcomes, the goals of the programs have not been entirely

reached in some cases [23]. The following conclusions can bereached considering the

publicly available data and reports:

• By using the MIO and looking-ahead scheduling, the use of out-of-market control

actions is reduced. However, the problem of dispatch volatility, which was one of

the main objectives to be addressed by the MIO program, stillexists.

• The HADL program was implemented to boost load responsiveness to price sig-

nals. Only a total of 240 MW load participated in the program,and the participants

have been scheduled for load reduction for 110 hours. Analyses of market data
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have revealed that the overall benefit to the market form the HADL program has

been minimal, given the high discrepancy between the HOEP and the 3-hour-ahead

PDPs.

• The SGOL program was mainly designed to improve market reliability. While

this objective has been met, market efficiency has been reduced by the payment of

more than $33 million to eligible generators.

• There are only 600 MW of dispatchable loads biding into the market. These loads

usually bid high prices compared to the normal range of the HOEP, and demand-

side involvement in market enhancement programs has not been very significant.

This high level of load inelasticity in Ontario affects market efficiency in general.

• The MPMA program was designed to improve market efficiency bymitigating

OPG’s obvious market power. However, it resulted in inefficient operation of

OPG and subsidized electricity prices for the consumers. Considering the dom-

inant share of OPG in Ontario supply, these side effects are against market effi-

ciency and transparency. On the other hand, non-utility generators (NUGs) have

been holding long-term power purchase agreements with the Ontario government

that have excluded them from openly competing in the market.Also, the Ontario

Power Authority has been assigned to manage generation and load management

contracts with supply and demand side entities in order to ensure availability of

reliable power for Ontario. These contracts are refereed toas the “Request for Pro-

posal” (RFP) contracts. Under the RFP contracts, while the generators sell their

output into the market, they will be provided with guaranteed revenue to ensure

they can recover their costs. The generators will be financially settled based on

the net revenue they received from the market, and the revenues agreed upon in

the RFP contract. Given the NUG and RFP contracts, and the new capped prices

and revenues over most of the OPG’s output, only about 25% of the total Ontario

generation capacity is fully open to compete in the market.
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• Despite the reduction in the deviation of the HOEP from the PDPs, the discrepancy

between the two and the overall price volatility is still high. The highly volatile

pre-dispatch and real-time prices during the summer 2005 highlighted the limited

effectiveness of the implemented market programs in maintaining consistency be-

tween the pre-dispatch and real-time prices.

2.6 Summary

This chapter presents a unique overview of the operation of the Ontario electricity mar-

ket, along with an analytical discussion of the market’s outcomes. The Ontario electricity

market is the only real-time market in North America, and it is interconnected with the

New England, New York, PJM, and Midwest competitive electricity markets, as well as

Quebec and Manitoba regulated power markets. The physical system is not fully con-

sidered in the process of clearing the market prices, and a province-wide uniform price

applies to all market participants. Most of the load in Ontario is not price-responsive,

which has adversely affected the load management programs initiated by the Ontario

IESO. Many programs are being implemented by the IESO to improve the market op-

eration; however, some of the challenges behind the implementation of these programs

have not been fully addressed yet.



Chapter 3

Forecasting the HOEP Using Linear

Time Series Models1

3.1 Introduction

In Chapter 2, the operation of the Ontario electricity marketis reviewed and the pro-

cess of clearing energy prices in this market is discussed. Recall that the HOEP is the

province-wide uniform price that applies to non-dispatchable market participants, mainly

the demand-side BEMCs. Keeping in mind the findings and discussions of Chapter 2, an

attempt is made in the present chapter to forecast the short-term behavior of the HOEP

by employing the well-established linear time series models. Relevant data from Ontario

and its neighboring electricity markets, namely the New York, New England, and PJM

electricity markets, are investigated and a final set of explanatory variable candidates

are selected. The focus of the variable selection procedureis on those variables that are

available before real-time. This makes the selected variables capable of being used in

practical price forecasting tools.

1Findings of this chapter have been accepted for publicationin the IEEE Transactions on Power Sys-

tems[56].

52
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The multivariate TF and DR models are employed to relate HOEPbehavior to the

selected explanatory variable candidates. Univariate ARIMA models are also developed

for HOEP forecasting. The HOEP models are developed on the basis of two forecasting

horizons, i.e., 3 hours and 24 hours, and forecasting performance of the multivariate

models is compared with that of the univariate ARIMA models. Univariate ARIMA

models are also developed for three day-ahead Locational Marginal Prices (LMPs) of

Ontario’s neighboring markets, and the accuracy of these models is compared with those

for the HOEP.

3.2 Selecting Explanatory Variable Candidates

While demand has been the most commonly examined explanatoryvariable in the re-

ported price forecasting studies (e.g., in [19, 14]), the present research evaluates a wide

range of system information to develop price forecasting models. The explanatory vari-

able candidates are selected from information publicly available before real-time, based

on two main criteria. The first criterion is the consideration of implicit and/or explicit ef-

fects of the variables on the Ontario market clearing process. The second criterion is the

consideration of linear correlations between current HOEPvalues and current and past

values of the variables, given the linear nature of TF and DR models. These correlations

are measured by the Cross Correlation Functions (CCF) [57], however, the linear corre-

lation coefficients between current HOEP values and currentvalues of each explanatory

variable candidate, referred to asρ here, are the only correlation coefficients discussed

here.

The Ontario Market Surveillance Panel (MSP) reports [23] reveal that coal and gas

fired generators are the main price setters in the Ontario electricity market. However,

although fuel prices have shown to affect the long-term HOEPtrends, no short-term

relationship between the HOEP and fuel prices was found in [23]. Therefore, the present
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study does not consider fuel prices among the explanatory variable candidates.

The ability of market participants to react to price forecasts depends on the fore-

casting horizon. For example, in the Ontario electricity market, dispatchable generators

are restricted from changing their bids two hours before real-time [51], as discussed in

Section 2.3.1. This requires that HOEP forecasts should be generated at least three hours

before real-time so as to make them useful to this group of generators. On the other hand,

when the forecasting horizon is long, say more than 24 hours,critical market information

is either not available, or available but likely subject to significant changes. Thus, 3 hours

and 24 hours are the reasonable HOEP forecasting horizons used here to which market

participants can properly react.

As described in Section 2.3.7, The Ontario IESO publishes two sets of system opera-

tion data prior to real-time dispatch of energy, namely, theSystem Status Reports (SSR),

and the Pre-Dispatch Reports (PDR). These data sets are publicly available on the IESO’s

web site at www.ieso.ca, and are mined here to explain HOEP behavior.

3.2.1 Explanatory Variables from the SSR

Demand Forecasts

Ontario demand is one of the main factors involved in the process of clearing the HOEP.

The relationship between Ontario demand and the HOEP is presented in Figure 3.1-a.

The corresponding linear correlation coefficient is 0.73. The most accurate forecast of

Ontario demand available 24 hours before real-time is the SSR demand forecast.

Let define the annual MAPE of demand forecasts as:

MAPE =
100

N × 24

N×24
∑

t=1

|Demandf,t − Demanda,t|

Demanda,t

(3.1)

where Demandf,t and Demanda,t are the forecast and the actual values of demand at hour

t, respectively, andN is the number of days in the studied year (N = 366 for 2004).
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The 24-hour-ahead SSR demand forecasts have annual MAPEs of2.1% and 4.8% for

2004, when compared with actual Ontario demand and actual market demand (demand

plus exports and losses), respectively. Furthermore, these forecasts show a significant

linear correlation with the HOEP, as shown in the scatter plot presented in Figure 3.1-b.

The linear correlation coefficient between SSR demand forecasts and the HOEP is 0.68.

Thus, the SSR demand forecast variable is included in the setof explanatory variable

candidates.

Predicted Supply Cushion

The SSR energy supply forecast variable shows no meaningfullinear correlation with the

HOEP, as shown in Figure 3.2-a. Nevertheless, the concept ofsupply cushion (SC) [23]

is used here, and is defined as follows:

SC=
EO-(TD+OR)

TD+OR
× 100 (3.2)

where EO is the actual energy offered, TD is the actual marketdemand, and OR is the

operating reserve requirement. It was observed in [23] thatprice spikes are more likely

when the SC is below 10%. In the present work, (3.2) is modifiedand actual quantities

are substituted with respective forecasts from the SSR; the resulting SC is referred here

to as the Predicted Supply Cushion (PSC). The PSC is found to be linearly correlated

with the HOEP, as shown in Figure 3.2-b, withρ = −0.60; hence, it is added to the set

of explanatory variable candidates.

Planned Outages

Although the physical power system is not directly considered in the process of de-

termining the HOEP, as discussed in Chapter 2, the physical system can influence the

HOEP behavior indirectly. For example, outage of cheap generation facilities can result

in higher energy prices, especially during low-demand hours [23]. However, the total
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Figure 3.1: Relationship between: a) Ontario demand and the HOEP; b) SSR demand

forecast and the HOEP.

outages reported in the SSR is the aggregation of various planned generation and trans-

mission system outages, and this total is found to be not meaningfully correlated with

the HOEP (ρ = 0.18). Hence, the SSR planed outages variable is not considered in the
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Figure 3.2: Relationship between: a) SSR supply forecast andthe HOEP; b) PSC and

the HOEP.

model building process.
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Capacity Excess or Shortfall

The SSR capacity excess or shortfall variable is found to be linearly correlated with the

HOEP, with a linear correlation coefficient ofρ = −0.65; hence, it is included in the set

of explanatory variable candidates. However, it should be noted that when demand is low,

capacity excess is high and vice versa, a fact confirmed by thehigh negative correlation

between the SSR capacity excess or shortfall and demand (ρ = −0.75). Therefore,

the SSR capacity excess or shortfall variable is highly collinear with the SSR demand

forecast variable and should be included in the model only after the possible effects of

demand have been modeled.

Imports

The SSR import forecast variable deviates significantly from actual values. Therefore,

the import forecasts are not considered in the set of explanatory variable candidates. No

export forecasts are published in the SSR.

3.2.2 Explanatory Variables from the PDR

Recall from Section 2.3 that the Ontario market clearing algorithm is run in pre-dispatch

and real-time (dispatch). The pre-dispatch run provides the market participants with the

“projected” schedules and prices, based on the most recent available market information.

Outcomes of the pre-dispatch run are published by the IESO asthe PDR for a variety of

variables, including energy and operating reserves prices, total load, dispatchable load

not served, system losses, and some of the system security constraints. From the PDR

variables, the PDP and Pre-Dispatch Demand (PDD) variablescarry the latest informa-

tion about demand and price in the coming hours; hence, they are examined here for their

role in improving accuracy of HOEP forecasting.
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The PDP/PDD values that correspond to hourt and that are publishedk hours be-

fore real-time are calledk-hour-ahead PDPs/PDDs [24]. Linear correlation coefficients

between the HOEP andk-hour-ahead PDPs (ρ HOEP,PDP), and between the HOEP andk-

hour-ahead PDDs (ρ HOEP,PDD), for k = {1, 2, 3, 24}, are presented in Table 3.1. Linear

correlation coefficients between actual Ontario market demand andk-hour-ahead PDDs

(ρPDD,Demand) are also presented in Table 3.1.

k-hour-ahead PDPs

It can be inferred from the correlation coefficients presented in Table 3.1 that whenk

is small, thek-hour-ahead PDPs are closer to the HOEP. Hence, consideringk-hour-

ahead PDPs as explanatory variables depends on the forecasting horizon. For 24-hour-

ahead forecasting, the 24-hour-ahead PDP variable is clearly not useful and hence is

not considered as an explanatory variable candidate. However, for shorter forecasting

horizons,k-hour-ahead PDPs become more relevant; thus, in this work the 3-hour-ahead

PDP variable is included in the set of explanatory variable candidates for 3-hour-ahead

forecasting.

k-hour-ahead PDDs

It can be observed from Table 3.1 that thek-hour-ahead PDDs do not deviate signifi-

cantly from actual market demand, thus these should be included in the set of explanatory

variable candidates. Therefore, the 3-hour-ahead PDD variable is considered an explana-

tory variable candidate for 3-hour-ahead forecasting. However, since the accuracy levels

of the 24-hour-ahead PDDs and the SSR demand forecasts are very close, only one of

them, namely the SSR demand forecast, is included in the set of explanatory variable

candidates. It is worth mentioning that the 24-hour-ahead PDD variable was also consid-

ered for model building, in lieu of the SSR demand forecast variable, but no significant

difference in the overall performance of the developed models was observed.
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Table 3.1: Correlation between HOEP,k-hour-ahead PDPs, and PDDs

k 24 3 2 1

ρHOEP,PDP 0.16 0.74 0.77 0.78

ρHOEP,PDD 0.62 0.63 0.63 0.64

ρPDD,Demand 0.97 0.98 0.98 0.98

3.2.3 Demand and Energy Price in the Neighboring Areas

As previously mentioned in Section 2.3.3, the Ontario electricity market is intercon-

nected with the New York electricity market, and Quebec, Michigan, Manitoba, and

Minnesota control areas. The last three control areas are now part of the Midwest mar-

ket. The New York electricity market is also interconnectedwith the PJM and New

England electricity markets, and New England and PJM trade energy with Quebec and

Michigan (see Figure 2.6). With such a complex interconnection between neighboring

areas, it is difficult to assess the effects of energy price and demand of the neighbor-

ing areas on the HOEP. Furthermore, lack of publicly available information on quantity

and price of energy transactions between Ontario and Quebec, Michigan, Manitoba, and

Minnesota constrained the author to consider only the effects of demand and price of the

New York, New England and PJM electricity markets on the HOEP. The data employed

are available online at www.nyiso.com, www.iso-ne.com, and www.pjm.com.

Demand

To evaluate the possible effects of New England and PJM market demands on HOEP,

actual demand data from these markets are considered. But, since these data are not

available before real-time, they cannot be considered in the final models even if they turn

out to be significant. For the New York market, historical demand forecasts are available
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and hence are used in this study.

Linear correlation coefficients between demand in the neighboring markets and de-

mand and price in Ontario market are presented in Table 3.2. Climatic conditions that are

similar across New York, Ontario, and New England could be a reason for the collinear-

ity in demand between these markets. Consequently, demand collinearity could be the

reason for high correlation between the HOEP and the New Yorkand New England de-

mands. On the other hand, the low correlation between the Ontario and PJM demands

can be attributed to variations in the residential and industrial load distribution pattern

across these markets, plus climatic differences between the two.

In this work, the New York and New England markets demands areconsidered as

explanatory variable candidates. However, due to the collinearity between the Ontario

demand and the other demands, they should be included in the model building process

only after the effects of the Ontario demand on the HOEP are modeled. Given its small

correlation with the HOEP, the PJM market demand is not considered an explanatory

variable candidate.

It was also observed that actual quantities of power transactions through the Ontario-

New York intertie had no meaningful correlation with demandor price in the neighboring

markets. This lack of correlation is due to the fact that muchof the overall transactions

constitute power wheeling transactions from different parties taking place through this

intertie.

Price

Only day-ahead prices in the neighboring markets are examined for their possible effects

on the HOEP, because they are known before real-time. Note that the main components

of the costs of any energy transactions between Ontario and the neighboring markets are

the HOEP and the LMPs at the pricing points in those markets involved in the trade; thus,

only these three LMPs are studied here. These LMPs are denoted as LMPNYON for the
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Table 3.2: Correlation between demand in the neighboring markets, Ontario price and

Ontario demand, year 2004

New York New England PJM

demand demand demand

HOEP 0.54 0.63 0.37

Ontario Demand 0.83 0.89 0.52

New York to Ontario interface in the New York market, LMPNENY for the New England

to New York interface in the New England market, and LMPPJMON for the PJM to Ontario

interface in the PJM market.

The HOEP is correlated to LMPNYON, LMPNENY and LMPPJMON, with ρ values of

0.69, 0.67, and 0.67, respectively; hence, they are considered as explanatory variable

candidates. Since market prices are influenced mainly by demand, the high correlations

may be due to the similar demand patterns in the neighboring areas. Therefore, the

mentioned LMPs need to be included in the HOEP models only after the possible effects

of demand in Ontario and other markets on the HOEP are properly modeled.

For simplicity, the final and total set of explanatory variable candidates are denoted

by x1 to x10, and are summarized in Table 3.3.

3.3 Review of Time Series Models

3.3.1 ARIMA Model

Let denote the equally sequenced values of a stationary stochastic processz byzt, zt−1, ....

An Auto Regressive Moving Average model ARMA(p, q) for this process can be ex-
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Table 3.3: The final explanatory variable candidates

Variable ρ

x1: 3-hour-ahead PDP 0.74

x2: 3-hour-ahead PDD 0.63

x3: Predicted supply cushion (PSC) -0.60

x4: The SSR Ontario demand forecast0.68

x5: New England market demand 0.63

x6: New York market demand 0.56

x7: LMPNENY 0.67

x8: LMPNYON 0.69

x9: LMPPJMON 0.67

x10: The SSR capacity excess -0.65

pressed as [58]:

zt = c+

p
∑

i=1

φizt−i + ǫt +

q
∑

j=1

θjǫt−j (3.3)

wherec, φi andθj are the model parameters to be estimated, andǫt is assumed to be

an independently and identically distributed (i.i.d.) normal random variable (shock) with

mean zero and varianceσ2
ǫ . Using the backward shift operatorB, i.e.,Bzt = zt−1, model

(3.3) may be represented as:

φ(B)zt = c+ θ(B)ǫt (3.4)

whereφ(B) = 1 − φ1B − ... − φpB
p is the auto regressive operator AR(p), θ(B) =

1 − θ1B − ...− θqB
q is the moving average operator MA(q).

Stationarity condition requires stability in the mean and variance of the process; most
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real-life processes do not meet these requirements. Non-stationarity in variance is dealt

with by the Box-Cox power transformations which is defined asut = (zλ
t − 1)/λ for

λ 6= 0 ∈ IR. For a given model, the optimal value ofλ is found by minimizing the sum

of squares of the residuals of the model. In caseλ turns out to be close to or equal to zero,

a natural logarithmic transformationut = ln (zt) is used [58]. If non-stationarity is the

result of a variable mean, thedth order differenced processvt = (1 − B)dzt is modeled.

Settingd = 1 or d = 2 usually induces constant mean; the ARMA(p, q) model for the

differenced processv is referred to as the Auto Regressive Integrated Moving Average

model ARIMA(p, d, q) for the processz.

A time series with potential seasonality, indexed bys, is represented by a general

ARIMA (p, d, q)(P,D,Q)s model:

φp(B)ΦP (Bs)(1 − B)d(1 − Bs)Dzt = c + θq(B)ΘQ(Bs)ǫt (3.5)

whereφp(B) and θq(B) are nonseasonal AR(p) and MA(q) operators;ΦP (Bs) and

ΘQ(Bs) are seasonal AR(P ) and MA(Q) operators; andBs is the seasonal backward

shift operator which is defined asBszt = zt−s. For hourly data,s = 24 ands = 168

indicate daily and weekly seasonality, respectively.

3.3.2 Dynamic Regression Model

The relationship between a dependent variabley and a set of explanatory variablesxi, i =

1, 2, ..., n, at timet can be expressed by a constantc, a transfer function termf , and a

disturbance termNt, as follows:

yt = c+ f(x1,t, ..., xn,t) +Nt (3.6)

In ordinary linear regression (OLR) models,f in (3.6) is a linear function of the ex-

planatory variablesxi, i = 1, 2, ..., n, and the disturbance term is assumed to be an i.i.d.
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normal random shock, i.e.,

yt = c+ ω1x1,t + ω2x2,t + ...+ ωnxn,t + ǫt = c+
n

∑

i=1

ωixi,t + ǫt (3.7)

whereωi are the coefficients to be estimated. If the current value of the dependent vari-

able is affected by up tori past values of theith explanatory variable, in addition to the

current values of the explanatory variables, the OLR model can be represented as:

yt = c+ (ω1,0x1,t + ω1,1x1,t−1 + ...+ ω1,r1
x1,t−r1

) +

(ω2,0x2,t + ω2,1x2,t−1 + ...+ ω2,r2
x2,t−r2

) + ...+

(ωn,0xn,t + ωm,1xn,t−1 + ...+ ωn,rn
xn,t−rn

) + ǫt (3.8)

whereωi,j corresponds to the coefficients forxi at lag j to be estimated. Using the

backward shift operator, model (3.8) can be represented as follows:

yt = c+
n

∑

i=1

ri
∑

j=0

ωi,jB
j(B)xi,t + ǫt (3.9)

Models (3.8) or (3.9) are referred to as distributed lag models [59].

It is also possible to include up top past values of the dependent variable in this

model as explanatory variables as follows:

yt = c+ (φ1yt−1 + φ2yt−2 + ...+ φpyt−p) +
n

∑

i=1

ri
∑

j=0

ωi,jB
jxi,t + ǫt (3.10)

whereφis are model parameters to be estimated. By applying the backward shift operator

on the dependent variabley, model (3.10) can be represented as follows:

φ(B)yt = c+
n

∑

i=1

ri
∑

j=0

ωi,jB
jxi,t + ǫt (3.11)

whereφ(B) is defined in (3.4). The models (3.10) and (3.11) are sometimes referred to

as a dynamic regression (DR) [14,19] or autoregressive dynamic model [59].
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3.3.3 Transfer Function Model

In a more general form than the DR model, the relationship between the dependent vari-

abley and the independent variablesxis, can be defined as a rational transfer function

term and a disturbance termNt as follows [57,60]:

yt = c+
n

∑

i=1

ωi(B)Bbi

δi(B)
xi,t +Nt (3.12)

whereωi(B) =
∑ri

j=0 ωi,jB
j; δi(B) = 1−

∑ki

k=1 δi,kB
k; ki is the order of the polynomial

δi(B); bi is referred to as the delay time for variablexi; the disturbance termNt is

expressed by an ARMA model, i.e.,Nt = θ(B)ǫt/φ(B); and the polynomial operators

φ(B) andθ(B) are defined in (3.4). The model in (3.12) is referred to as a TF model.

3.3.4 Building Time Series Models

The Box-Jenkins three-stage procedure, comprising identification, estimation and diag-

nostic checking, for the ARIMA model building has been used here [58]. In the identifi-

cation stage, the time series data is analyzed using the estimated autocorrelation function

(ACF) and partial autocorrelation function (PACF), and a tentative model is selected.

In the estimation stage, the parameters of the tentative model are estimated using the

maximum likelihood method. In the diagnostic checking, theresiduals of the model are

examined for the i.i.d. assumption and, in case of failure, the tentative model is im-

proved accordingly until it is acceptable. Normalized residuals time domain plots, resid-

uals ACF, the Ljung-Box statistics [60], residuals probability plots, and plotting residuals

against the fitted values are popular tests in the diagnosticchecking stage; all of these are

employed in the current work.

For building the TF and DR models, the three-stage linear transfer function (LTF)

method [57] is used here. In the identification stage, a tentative LTF is selected for the
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transfer function term. For TF models, a simple ARMA model is selected for the distur-

bance term, while for DR models, the disturbance term is assumed to be an i.i.d. normal

random shock and a tentative AR term is specified for the autoregressive termφ(B).

The tentative model is estimated and the disturbance term ischecked for stationarity. In

case of non-stationarity of the disturbance, the response and explanatory variables are

properly transformed. The tentative terms are modified according to the behavior of the

residuals of the model. A tentative rational form for the transfer function term may be

identified at this stage for the TF models. The estimation andthe diagnostic checking

stages are similar to the aforementioned Box-Jenkins procedure for the ARIMA model.

3.4 Modeling Market Prices by Time Series Models

3.4.1 General Considerations

Three time periods, each of two weeks duration, are selectedfor building the time se-

ries models and generating HOEP forecasts. The first period comprises two consecutive

weeks from April 26 to May 9, 2004, referred to as Week1 and Week2; during this period,

the Ontario market demand reached its spring low point. The second period comprises

two consecutive summer peak-demand weeks from July 26 to August 8, 2004, and are

referred to as Week3 and Week4. The last period includes two high-demand winter weeks

in 2004, spanning December 13-26, and are referred to as Week5 and Week6.

Models for each of the six weeks have been individually identified, estimated and

checked. The ARIMA models are built using four weeks of historical data, while the TF

and DR models are developed based on ten weeks of historical data. The main criteria for

identifying the final models are as follows: diagnostic checking tests (Section 3.3.4); the

principle of parsimony [60];t-value of the estimated model parameters; Akaike Informa-

tion Criterion (AIC) [57]; out-of-sample forecasts accuracy; and reality of the identified

models.
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Figure 3.3: Week3: a) Residuals ACF of the DR model. b) Residuals ACF of the TF

model.

To illustrate some results of the diagnostic checking stage, the residuals ACFs of

the 24-hour-ahead forecasts by the TF model and the 3-hour-ahead forecasts by the DR

model developed for Week3 (in Section 3.4.3) are presented in Figure 3.3; the horizontal

bands in this figure represent the significance limits of the ACFs. Observe that no signif-

icant correlations for the first few lags and the relevant seasonal lags (e.g., 24, 48) exist.

The Scientific Computing Associates (SCA) statistical systemis used here to build

the proposed models [61]. To deal with outliers, the Chen-Liualgorithm for joint es-

timation of model parameters and outliers [62], implemented in the SCA system, was

employed; however, no significant improvement in the overall forecasting accuracy was

observed. Natural logarithmic transformation is found to be the optimal Box-Cox trans-

formation for variance stability in this study, given the historical data and the identi-
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Table 3.4: The ARIMA models for the HOEP

Week1 (1)(24, 25, 72, 119)(168, 169)Zt = (1)(24)ǫt

Week2 (1)(24, 25, 72)(168, 169, 336)Zt = (1)(24)ǫt

Week3 (1, 2)(24, 25)(168)Zt = (1, 2, 3)(24)ǫt

Week4 (1, 2)(24)Zt = (1, 2)(24)ǫt

Week5,6 (1)(23)Zt = (1, 2, 3, 4)(24)ǫt

fied models; hence, the forecasts are untransformed using the unbiased untransformation

method in [63]. Furthermore, a seasonal differencing withs = 24 is applied to in-

duce mean stationarity in all models. The transformed differenced HOEP time series,

i.e.,(1 −B24) ln(HOEPt), is referred to asZt here onward.

3.4.2 ARIMA Models for the HOEP

A shorthand convention, also used in [61], is employed here for simplicity to show the

developed ARIMA models. According to this convention, an AR or an MA operator

is represented by the orders of the respective backward shift operator. For example, the

ARIMA model (1−φ1B)(1−Φ24B
24−Φ47B

47)zt= (1−Θ2B
2)(1−Θ24B

24)ǫt is shown

as(1)(24, 47)zt = (2)(24)ǫt. The ARIMA models developed for each of the six studied

weeks are listed in Table 3.4.

3.4.3 TF and DR Models for HOEP

Multicollinearity arises in a regression problem if there is a linear dependency among

the explanatory variables. Popular methods to deal with theproblem of multicollinear-
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ity, such as ridge regression [64] and principal component regression [65], are developed

in the ordinary regression framework. Hence, they are not applicable to multivariate

time series models, given the inherent differences betweenmodel definitions and estima-

tion for time series models and ordinary regression models.In this study, the following

two-step procedure is designed for building the TF and DR models in the presence of

multicollinearity among the explanatory variables:

1. In the first step, market knowledge, theoretical justifications, and linear correlation

between the HOEP and the explanatory variable candidates are used to choose the

most influential explanatory variable, referred to as the “first-step variable”. TF

and DR models for the HOEP are fully built assuming that the first-step variable

is the only explanatory variable. In this step, the power transformation and the

differencing order, which are needed for stabilizing the variance and the mean of

the time series are identified.

2. In the second step, the general form of the transfer function term associated with

the first-step variable is kept constant and other variablesare added to the model

in a step-wise manner; variables with collinearity with thefirst-step variable are

considered first. The performance of the new models is monitored using the identi-

fication criteria mentioned in Section 3.4.1. The transfer function terms associated

with each significant variable, as well as the disturbance terms, are modified appro-

priately in this step, and the final model is identified by adding other explanatory

variable candidates and repeating this step.

Since the PDP variables are produced by mimicking the marketclearing process us-

ing the most recent market data, they implicitly carry the information of inherent interac-

tions among influential market variables. Hence, the 3-hour-ahead PDP variable, namely

x1, is considered as the first-step variable in the TF and DR models when the forecasting

horizon is three hours. In addition, given the critical effect of Ontario demand on the
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HOEP, the SSR demand forecast variable, namelyx4, is selected as the first-step variable

when the forecasting horizon is 24 hours.

Lags 1, 2, 3, 4, 23, 24, 25, 47, 48, 49, 71, 72, 73, 95, 96, 97, 119, 120, 121, 143, 144,

145, 167, 168, 169, 335, and 336, of each explanatory variable candidate are considered

for TF and DR model building. The inclusion of trading-day effects in the TF and DR

models was not found to improve overall forecast accuracy; this can be attributed to the

fact that demand forecasts are already used as model inputs,carrying the corresponding

trading-day information.

TF Models

The final TF models in the first step for 3-hour-ahead and 24-hour-ahead forecasting hold

the following form:

Z3h
t = (ω1,0 + ω1,1B + ω1,2B

2)(1 − B24) ln(x1,t) + N3
t (3.13)

Z24h
t = (ω1,0 + ω1,1B + ω1,2B

2)(1 − B24) ln(x4,t) + N24
t (3.14)

Observe in models (3.13) and (3.14) that only the two latest values of the first-step vari-

ables affect HOEP behavior. The LTF method did not yield a rational form for the TF

models in all cases in this step.

In the second step, the following TF models were finally identified for 3-hour-ahead

and 24-hour-ahead forecasting:

Z3h
t =

∑2
i=1

∑2
j=0(ωi,jB

j)(1 − B24) ln(xi,t) + N3
t (3.15)

Z24h
t =

∑2
j=0((ω3,jB

j)(1 − B24)x3,t +

(ω4,jB
j)(1 − B24) ln(x4,t)) + N24

t (3.16)

No rational form was identified for the models in this step. The disturbance terms cor-

responding to models (3.15) and (3.16) are presented in Table 3.5 and 3.6, respectively.
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Table 3.5: Disturbance terms for 3-hour-ahead forecastingTF models

Week1,2 (1)(24)N3
t = (24, 48)ǫt

Week3,4 (1, 2, 3)(23, 24)N3
t = (1)(24, 48)ǫt

Week5,6 (1)(23, 24, 25)N3
t = (1, 2)(24)ǫt

Table 3.6: Disturbance terms for 24-hour-ahead forecasting Transfer Function (TF) mod-

els

Week1 (1)(24, 25, 72)N24
t = (1, 2, 3, 4)(24)ǫt

Week2 (1)(23, 24, 25, 72)N24
t = (24)ǫt

Week3,4 (1)(24, 25)(168, 169)N24
t = (1, 2, 3)(24)ǫt

Week5,6 (1)(24)N24
t = (2)(24)ǫt

DR Models

The general forms of the final identified DR models for the six weeks under study, and

for both forecasting horizons, are:

φ(B)Z3h
t =

∑2
i=1

∑2
j=0(ωi,jB

j)(1 − B24) ln(xi,t) + ǫt (3.17)

φ(B)Z24h
t =

∑2
j=0((ω3,jB

j)(1 − B24)x3,t +

(ω4,jB
j)(1 − B24) ln(x4,t)) + ǫt (3.18)

The final identifiedφ(B)s turn out to be similar for both forecasting horizons, and can

be presented asφ(B) = (1, 2, 3, 4, 23, 24, 25, 47, 48, 49, 71, 72, 73, 95, 96, 97, 119,

120, 121, 143, 144, 145, 167, 168, 169, 335, 336). However, the following lags were not

found to be significant: lags 2, 3, 4, 23, 335 for Week1,2; lags 3, 4, 25, 336 for Week3,4;

and lags 2, 335, 336 for Week5,6.
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3.4.4 ARIMA Models for the Neighboring Markets’ LMPs

In order to compare the price behavior in Ontario with that inthe neighboring markets,

ARIMA models are also developed for LMPNENY, LMPNYON, and LMPPJMON (x7, x8, and

x9). Ten weeks of historical data are used to identify and estimate the following models

for Week1:

1. New England:

(1)(23, 24, 25, 48, 72, 96, 120, 144)(167, 168, 169, 170)×

(1 −B24) ln(x7,t) = (1, 2, 3, 4, 5)(24, 25)ǫt (3.19)

2. New York:

(1, 2)(24, 48, 49, 72, 96)(168, 169, 336, 337, 504)×

(1 −B24) ln(x8,t) = (1)(24, 48, 72, 96)ǫt (3.20)

3. PJM:

(1, 2, 3)(24, 25, 26, 47, 72)(167, 168, 169)×

(1 −B24) ln(x9,t) = (24)(167, 168, 169)ǫt (3.21)

It is observed that the studied LMPs exhibit a stable behavior; in other words, models

(3.19), (3.20), and (3.21) fit the data well for Week2, and even for Week3, and Week4.

Similar behavior is reported in [19,16,14,20], where the developed models are shown to

perform stably for long periods of time, in some cases for a full year. However, the final

identified ARIMA, TF, and DR models for the HOEP are different for the studied weeks.

The unstable behavior of the HOEP models highlights the factthat these models have

to be re-identified and re-estimated after new observationsare available. The need for

model re-identification implies that market participants cannot count on a single model

in order to produce HOEP forecasts in a non-supervised automatic manner, a fact that

must be taken into account for commercialization of the forecasting models.
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3.5 Numerical Results and Discussion

3.5.1 Final Identified Explanatory Variables

The final identified sets of explanatory variables differ forthe two forecasting horizons.

When the forecasting horizon is three hours, 3-hour-ahead PDD and New England de-

mand are the significant explanatory variables for both of the TF and DR models iden-

tified in the second step. For the 24-hour forecasting horizon, PSC and New England

demand are identified as significant variables in the second step. It is observed in [23]

that the New England electricity market prices are generally higher than the HOEP, a

factor affecting exports from Ontario, which in turn affects HOEP behavior. This would

explain why the New England demand appears in the developed TF and DR models,

hence improving the forecast MAPEs by about 1%. However, since after-the-fact New

England demand data are used in the model building process, it is expected that if de-

mand forecast is used in a practical implementation, it would offset this improvement;

hence, the New England demand is excluded from the final presented models.

Because of the presence of the 3-hour-ahead PDP variable in the 3-hour-ahead fore-

casting models, the PSC variable does not appear in these models. This complies with the

nature of PDPs, which are the final projected values of the HOEP taking into account all

available market information and market variable interactions. Demand and price from

other markets, and the SSR capacity excess or shortfall variable are also insignificant

variables in the developed models, thereby implying that they do not carry additional

information once the effects of the Ontario and New England demands are modeled.
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3.5.2 Accuracy Measures

Two measures are used in this work to quantify out-of-sampleforecast accuracy of the

developed models. Thus, the absolute error (AE) is defined as:

AEt =
∣

∣

∣
Pf

t − Pa
t

∣

∣

∣
(3.22)

where Pft and Pat are the forecast and the actual values of market price Pt, respectively.

The absolute percentage error (APE) is defined as:

APEt =

∣

∣

∣
Pf

t − Pa
t

∣

∣

∣

Pa
t

(3.23)

The weekly mean absolute error (MAE) and mean absolute percentage error (MAPE)

can be defined as follow:

MAE =
1

168

168
∑

t=1

AEt (3.24)

MAPE =
100

168

168
∑

t=1

APEt (3.25)

Neither the HOEP nor the other studied LMPs have ever shown a zero value during the

studied period; therefore, the values of APEt are finite values for all hours. In cases where

market prices may take a zero value, modified versions of the above error measures can

be used [7].

3.5.3 Forecasting Results for Ontario

The weekly MAPEs and MAEs of the generated HOEP forecasts, and those of the IESO-

generated PDPs for the six studied weeks are presented in Tables 3.7 and 3.8. The fore-

casting origin for a set of 24-hour-ahead forecasts is the last hour of the previous day;

for example, for the 24-hour-ahead forecast horizon spanning from today midnight to
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tomorrow midnight, the forecasting origin is 11 PM today. Onthe other hand, forecast-

ing origins move through the day in case of 3-hour-ahead forecasting. It is to be noted

that the PDP values used in the present work have the same forecasting origins as the

generated HOEP forecasts. The mean, standard deviation (STD), minimum (Min), and

maximum (Max) of the HOEP for the six studied weeks are presented in Table 3.9.

Table 3.7: Weekly MAPEs (%), and weekly MAEs ($/MWh) fo the HOEP models

3-hour-ahead

ARIMA TF DR PDP

MAPE MAE MAPE MAE MAPE MAE MAPE MAE

Week1 13.6 6.5 12.4 6.0 12.3 6.0 26 11.2

Week2 15.5 7.0 14.7 6.7 12.9 6.2 26.4 10.6

Averagea 14.5 6.8 13.5 6.4 12.6 6.1 26.2 10.9

Week3 11 5.6 10.5 5.4 9.6 5.0 15.2 7.4

Week4 14.3 5.6 11.9 4.8 12.2 5.3 15.1 6.0

Week5 12.5 7.9 10 6.4 10.8 6.8 28.8 16.7

Week6 17.6 9.75 13.2 7.6 12.5 7.1 28.9 16.5

Averageb 13.9 7.2 11.4 6.0 11.3 6.1 22.0 11.7

Grand

Average

14.1 7.1 12.2 6.2 11.7 6.1 23.4 11.4

a Average for the low-demand period (Week1 and Week2).
b Average for the high-demand period (Week3 to Week6).

The results presented in Tables 3.7 and 3.8 show that the accuracy of the gener-
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Table 3.8: Weekly MAPEs (%), and weekly MAEs ($/MWh) fo the HOEP models

24-hour-ahead

ARIMA TF DR PDP

MAPE MAE MAPE MAE MAPE MAE MAPE MAE

Week1 15.9 7.2 15.6 7.1 15.9 7.3 39.7 17.5

Week2 18.6 8.2 18 8.2 18.1 8.2 30.3 12

Averagea 17.2 7.7 16.8 7.7 17 7.8 35 14.7

Week3 13.6 6.9 12.3 6.4 13 7.2 36.9 20.6

Week4 21.5 8.7 18.3 7.3 19 7.6 31.6 12.3

Week5 15.4 9.6 14.8 9.2 14.7 9.3 60.2 34.3

Week6 20.8 12.0 17.5 10.1 18.5 10.7 37.3 22.8

Averageb 17.8 9.3 15.7 8.2 16.3 8.7 41.5 22.5

Grand

Average

17.6 8.8 16.1 8.1 16.5 8.4 40 19.9

a Average for the low-demand period (Week1 and Week2).
b Average for the high-demand period (Week3 to Week6).

ated HOEP forecasts is significantly higher than that of the IESO-generated PDPs. The

overall MAPE of the generated forecasts are 23.9% and 11.7% lower than those of the

IESO-generated PDPs for 24-hour-ahead and 3-hour-ahead forecasts, respectively. Also,

the overall weekly MAE of the 24-hour-ahead and 3-hour-ahead forecasts generated by

the TF and DR models are $11.8/MWh and $5.3/MWh lower, respectively, than those

of the 3-hour and 24-hour-ahead IESO-generated PDPs. Furthermore, observe that, as
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Table 3.9: HOEP statistics for each week

Week1 Week2 Week3 Week4 Week5 Week6

Mean 45.4 46.4 51.2 46.7 54.9 51.6

STD 16.4 16.9 13.8 18.9 23.1 23.7

Min 18.9 13.9 20.6 10 35.4 30.3

Max 153.1 106.1 101.8 94.8 175.2 135

expected, the accuracy of the forecasts is generally higherfor the shorter forecasting

horizons.

The results in Tables 3.7 and 3.8 clearly show that for the high-demand period (Week3

to Week6), multivariate models outperform the univariate models; one can observe that

the MAPEs of the 24-hour-ahead forecasts generated by the TFmodels and the 3-hour-

ahead forecasts made by the DR models improve by 2.1%, and 2.6%, respectively. In

terms of MAE, the improvements achieved over the ARIMA modelsby the multivariate

models are $1/MWh for the 24-hour-ahead forecasts and $1.2/MWh for the 3-hour-ahead

forecasts. However, for the low-demand period (Week1 and Week2), inclusion of the

market data in the multivariate models does not improve forecast accuracy. This result

implies that during low-demand periods, the market data carry less useful information

than during high-demand periods. The improvements made by the multivariate models

are lower when all the six studied weeks are considered.

Although inclusion of thebefore-the-factmarket data into the forecasting models

improves forecast accuracy to some extent, this improvement is not significant. This

not-so-significant improvement in accuracy of the multivariate HOEP models can be

attributed to the real-time nature of the Ontario market. Recall from Section 2.5.4 that

the entire demand obligation has to be cleared in real-time in Ontario, which puts upward
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or downward pressures on the HOEP, leading to price spikes. Furthermore, out-of-market

actions by which the market operator manipulates the marketclearing procedure affect

the patterns behind the price behavior. Hence, the HOEP is highly volatile, as analyzed

in more detail in Chapter 5, and the information contents of the before-the-fact market

data have a high level of uncertainty.

In some studies, such as [14] and [19], multivariate models are reported to signifi-

cantly outperform univariate models. These two studies useafter-the-factdemand data

for developing multivariate models; although building price models using actual demand

data is important in order to discover the true demand-pricerelationships, these data

are not available before real-time for a practical price forecasting tool. In contrast, the

multivariate models developed in the present work do not significantly improve forecast

accuracy compared with univariate models. This deficiency can be attributed to the lack

of accuracy in information content of thebefore-the-factdata used, which is not the case

when usingafter-the-factdata.

The forecasts obtained for Week3, one of the highest demand weeks of 2004, have

the lowest error among the studied weeks. Actual values of HOEP, and the most accurate

HOEP obtained using the corresponding TF model are depictedin Figure 3.4. During

this week, prices on all seven days were within the normal range, except for three unusual

price spikes. Although the general price trend during this week could be forecasted with

considerable accuracy, none of the three price spikes were captured by the models.

The 24-hour-ahead HOEP forecasts generated by the ARIMA and the TF models are

plotted against the corresponding actual HOEP values for Week4 in Figure 3.5, which

presents the poorest forecasting results; the results for the DR model are similar to those

of the TF and hence are not shown here. During this week, the prices are unusually high

for the first two days, and relatively low for the rest of the week. Note that none of the

models can reasonably forecast the unusually high or low prices, although the TF and

DR models predict high/low prices relatively better than ARIMA.
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Figure 3.4: 24-hour-ahead and 3-hour-ahead HOEP forecastsfor Week3 by the TF and

DR models.

During Week6 the prices also behave irregularly, as depicted in Figure 3.6. For this

week, severe mid-day price fluctuations happened in the firsttwo days, and the Christmas

holidays at the end caused unusual flat prices during the lastthree days; observe also the

price spike on Christmas Eve day. When forecasting horizon is 24 hours, none of the

models could predict the unusual prices; however, the 3-hour ahead forecasting models
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Figure 3.5: 24-hour-ahead HOEP forecasts for Week4 by the ARIMA and TF models.

predict better the unusual prices in the market.

Histograms of APEt values for the 24-hour-ahead forecasts by the TF models, andfor

the 3-hour-ahead forecasts by the DR models for the entire six-week period are shown

in Figure 3.7; histograms of the corresponding PDPs for eachforecasting horizon are

also presented for comparison purposes. Although the accuracy of the generated HOEP

forecasts is significantly higher than the PDPs, there stillexist some hours during which
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Figure 3.6: Forecasts by TF models for Week4 for forecasting horizons of 3 and 24 hours.

the forecasting errors are relatively high. For example, for 28% of the hours in the case of

24-hour-ahead forecasts, and for 17% of the hours in the caseof 3-hour-ahead forecasts,

the APEts are more than 20%. If only the high-demand period, i.e., Week3-Week6, is

considered, these numbers improve to 19% for 24-hour-aheadforecasts, and to 11% for

3-hour-ahead forecasts.
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Figure 3.7: APEts histograms for the TF and DR models.

3.5.4 Forecasting Results for the Neighboring Markets

The models developed in Section 3.4.4 are used to generate 24-hour-ahead forecasts for

the studied LMPs for Week1 to Week4. The time duration of these weeks is the same as

that defined in Section 3.4.1, and correspond to two typical low-demand and two typical

high-demand weeks in these markets. The calculated weekly MAPEs of the forecasts
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Table 3.10: Weekly MAPEs (%) of the forecasts for the neighboring LMPs

New England New York PJM Ontario

Week1 6.2 6.9 10.1 15.9

Week2 5.4 7.1 11.4 18.6

Week3 3.7 6.1 8.7 13.6

Week4 7.1 8.1 17.3 21.5

Average 5.6 7.1 11.9 17.4

are presented in Table 3.10, along with the respective results for the HOEP forecasts for

comparison. Observe that the accuracy of the forecasts generated for the New England,

New York, and PJM day-ahead market LMPs, i.e.,x7, x8, andx9, is higher than the

accuracy of the HOEP forecasts. As well, the HOEP forecasts reported in the present

paper, and elsewhere [15, 23], have a much lower accuracy level than price forecasts

for other markets (e.g., Spanish [19] and PJM [14] markets).A volatility analysis is

presented in Chapter 5 in order to partly explain the relatively low accuracy level of the

HOEP forecasts.

3.6 Summary

In this chapter, publicly available electricity market data from Ontario and its neighboring

markets are evaluated to determine how efficiently they can be employed for improving

HOEP forecast accuracy. A wide range of market information is studied in detail, and a

final set of explanatory variable candidates are selected. Important practical issues, such

as the availability of explanatory variables before real-time, and the market structure and

operational time-line are considered in the process of selecting the explanatory variables,
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which have not been addressed in previous research work. Thenovel concept of Pre-

dicted Supply Cushion (PSC) is introduced as an explanatory variable candidate in this

study.

Multivariate TF and DR models are employed to relate HOEP behavior to the se-

lected market variables. Univariate ARIMA models are also developed for the HOEP

and their accuracy is compared with that of the multivariatemodels. The problem of

multicollinearity among the explanatory variable candidates is addressed by a two-step

model building procedure. The developed models are used to generate HOEP forecasts

for low-demand, summer peak-demand, and winter peak-demand periods.

The results of this chapter demonstrate that the accuracy ofthe HOEP forecasts gen-

erated in this research is significantly higher than any other reported HOEP forecasts.

However, that is still relatively low compared to the accuracy of forecasts generated for

Ontario’s neighboring electricity markets. Furthermore,it is observed that inclusion of

the just-in-timepublicly available data in multivariate HOEP models does not signifi-

cantly improve the forecast accuracy, compared to the HOEP forecasts generated using

univariate ARIMA models. It is also observed that the available market data is not very

useful in predicting unusual upward or downward price spikes. The small improvements

gained by using the multivariate HOEP models can be attributed to the poor information

content of the market data available in practice. Finally, it is found that the final set of

informative explanatory variables is different for each forecasting horizon, leading to dif-

ferent forecast accuracies. Furthermore, the developed HOEP models are less stable than

the similar models developed for other electricity market prices. This model-instability

highlights the difficulties of developing practical forecasting tools to predict short-term

HOEP behavior.



Chapter 4

Forecasting the HOEP Using

Non-linear Models1

4.1 Introduction

In Chapter 3, the application of linear time series models to forecasting the HOEPs is

presented. Although the accuracy measures of the forecastsobtained by the linear mod-

els are significantly improved compared to previously reported HOEP forecasts, it is

important to examine if any non-linear relationship existsbetween the explanatory vari-

able candidates and the HOEP. In order to investigate this issue, two well-established

non-linear techniques, namely, MARS and MLP neural networks, are examined in the

present chapter.

MARS is an adaptive piece-wise regression approach and has been successfully em-

ployed for various prediction and data mining applicationsin recent years. This method

has been shown to be particularly useful when a large number of explanatory variables

1Some of the findings of this chapter have been presented in the2006 IEEE PES General Meeting,

Montreal, Canada [66].

86
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are involved. MLP networks have also been successfully applied to various function ap-

proximation problems in several areas. These networks are reported to be able to model

virtually any function, provided an appropriate architecture is used. Neural network-

based models have been applied to the HOEP forecasting problem in [15]; however, they

are considered here again since a new set of explanatory variable candidates is used in

the present work.

4.2 Multivariate Adaptive Regression Splines for Fore-

casting

4.2.1 MARS Review

Shortly after Friedman introduced MARS as a piece-wise non-linear regression method

[25], it was demonstrated in [26] that MARS can be efficiently used to model time se-

ries. Subsequently, MARS has been applied to a variety of modeling and data mining

problems; among these, MARS has been used for speech modeling[27], mobile radio

channels prediction [28], and intrusion detection in information systems security [67]. In

addition, MARS has been employed to model the relationship between retention indices

and molecular descriptors of alkanes [68], to describe pesticide transport in soils [69],

to predict the average monthly foreign exchange rates [70],to model credit scoring [71],

and for data mining on breast cancer pattern [72]. In all of the cited studies, promising

results are reported for both modeling and data mining applications.

MARS is a non-parametric modeling approach, different from the well-known global

parametric modeling methods such as linear regression [25]. In global parametric ap-

proaches the underlying relationship between a target variable and a set of explanatory

variables is approximated using a (usually simple) global parametric function which is

fitted to the available data. While global parametric modeling methods are relatively easy
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to develop and interpret, they have a limited flexibility andwork well only when the true

underlying relationship is close to the pre-specified approximated function in the model.

To overcome the weaknesses of global parametric approaches, non-parametric models

are developed locally over specific subregions of the data; the data is searched for op-

timum number of subregions and a simple function is optimally fit to the realizations

in each subregion. Recursive Partitioning Regression (RPR) is one of the most studied

paradigms of the non-parametric modeling approaches.

RPR is an adaptive algorithm for function approximation withthe capability of han-

dling a large number of explanatory variables. Let considera set of explanatory variables

X = {x1, x2, ..., xn} over a domainD ⊂ IR
n, and a target variabley. The true relation-

ship betweeny andX can be described as:

y = f(x1, x2, ..., xn) + ǫ (4.1)

wheref is an unknown function, and the error termǫ is a white noise. Briefly,f(X) is

approximated in RPR as:

f̂(X) =
M

∑

m=1

amBm(X) (4.2)

where{am}
M
1 are the coefficients of the model which are estimated to yieldthe best fit

to the data;M is the number of subregionsRm ⊂ D, or equivalently the number of basis

functions in the model; and the basis functionBm is defined as:

Bm(X) =







1 X ∈ Rm

0 otherwise
(4.3)

Although RPR is a powerful method, it suffers from various shortcomings such as dis-

continuity at the subregion boundaries. MARS is a generalized version of RPR that

overcomes some of the limitations of the original version.

The main core of the MARS modeling approach is the hockey-stick spline basis
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Figure 4.1: Hockey-stick spline basis function and its image for c = 4.

function, which maps a variablex to x∗ as:

x∗ = max(x− c, 0) (4.4)

where c is referred to as the basis function knot. The mirror image of the hockey-stick

spline basis function is also exploited in MARS to handle non-zero slope for values

below the knot, and it can be expressed as:

x∗ = max(−(x− c), 0) (4.5)

A hockey-stick spline basis function and its mirror image are illustrated in Figure 4.1.
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In MARS, the RPR model represented in (4.2) is modified as follows:

f̂(X) = a0 +
M

∑

m=1

amHm(X) (4.6)

wherea0 is a constant,am andM are defined in (4.2), and the spline basis functions

Hm(X) are defined as:

Hm(X) =
Km
∏

k=1

[max(sk,m(xv(k,m) − tk,m), 0)] (4.7)

where the explanatory variables associated with the basis functionHm are labeled by

v(k,m); Km is the level of interaction betweenv(k,m) variables;tk,m indicates the knot

locations forHm; andsk,m takes +1 for the hockey-stick basis function and -1 for its

mirror image.

MARS models are developed through a two-stage forward/backward stepwise re-

gression procedure. In the forward stage, the entire domainD is split into overlapping

subregions and the model parameters are estimated by minimizing a lack-of-fit criterion.

If the maximum number of subregions is not specified, an over fitted model with basi-

cally one subregion (basis function) per realization is built in this stage, and all possible

interactions among the explanatory variables are considered. In the backward stage, the

basis functions which no longer contribute to the accuracy of the fit will be removed. To

make the MARS algorithm computationally affordable, the level of interaction between

variables, as well as the maximum number of basis functions in the model are specified

by the user.

A modified version of the generalized cross validation criterion (MGCV) is used in

the MARS algorithm as the lack-of-fit criterion:

MGCV =
1

Nr

Nr
∑

i=1

[yi − f̂(Xi)]
2/[1 −

C̃(M)

Nr

]2 (4.8)
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whereNr is the number of realizations,[1− C̃(M)
Nr

]2 is a penalty factor accounting for the

increased variance resulting from a complex model, andC̃(M) is defined as:

C̃(M) = C(M) + d ·M (4.9)

whereC(M) is the number of parameters being fit, andd is another penalty factor with

3 as a typical value [25].

4.2.2 Modeling the HOEP Using MARS

In this section, the MARS technique is applied to the problem of HOEP forecasting.

Thus, MARS models are developed to generate 3-hour-ahead and24-hour-ahead fore-

casts for the six-week study period described in Section 3.4.1. Recall that this six-week

period comprised two consecutive weeks of low demand, summer peak-demand and win-

ter peak-demand.

Two scenarios are considered for model building: In the firstscenario, denoted by

SCN1, MARS models are developed solely based on the historical HOEP values; this

scenario can be imagined as a univariate adaptive non-linear autoregressive modeling

paradigm. In the second scenario, denoted by SCN2, the explanatory variable candi-

dates selected in Section 3.2 are used as the right-hand sidevariables for model building.

The planned outages variable is denoted byx11, and is also considered here to capture

any non-linear effects this variable may have on the HOEP behavior. The New Eng-

land market demand variable is excluded from the set of explanatory variable candidates

because this is the onlyafter-the-factexplanatory variable candidate, as discussed in Sec-

tion 3.5.1. The second scenario can be thought of as an adaptive non-linear multivariate

dynamic regression modeling paradigm.

The models are built using 8 weeks of historical data, and theScientific Computing

Associates (SCA) statistical system [73] is used in this workfor building MARS models.

The final set of explanatory variable candidates for SCN2 is presented in Table 4.1.
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Table 4.1: The final explanatory variable candidates for SCN2

x1: 3-hour-ahead PDP x7: LMPNENY

x2: 3-hour-ahead PDD x8: LMPNYON

x3: Predicted supply cushion (PSC) x9: LMPPJMON

x4: The SSR Ontario demand forecastx10: The SSR capacity excess

x6: New York market demand x11: The SSR planned outages

In order to limit the negative effects of outlier price observations on forecasting per-

formance of the MARS models, the data is pre-processed beforebeing used for model

building. An upper limit of $200/MWh is defined for the HOEP, since prices over this

amount are treated as anomalous prices by the Ontario IESO [23]. The pre-processing

scheme is defined such that if the HOEP is more than $200/MWh, itwill be replaced with

a demand weighted average of the HOEPs of three similar previous days. This scheme

is formulated below:

HOEPt =







HOEPt if HOEPt < 200P
3

i=1
(HOEPt−168·i·Demandt−168·i)P

3

i=1
Demandt−168·i

if HOEPt ≥ 200
(4.10)

SCN1

In order to build MARS models in SCN1, lagsl ∈ LSCN1 of the HOEP (i.e., HOEPt−l) are

initially considered as explanatory variables, withLSCN1 defined in (4.11). However, in

this scenario, it is found that lags 335, 336 and 337 of the HOEP do not contribute to the

developed models for all studied weeks. Furthermore, the contributing lags for individual

weekly models are different for each week, which is consistent with the HOEP model-
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Table 4.2: Significant lags for each week in SCN1

Week1,2 LSCN1

1,2 = {1, 24, 48, 49, 120, 121, 144, 169}

Week3 LSCN1

3 = {1, 25, 48, 96, 97, 119, 120, 144, 145, 169}

Week4 LSCN1

4 = {1, 2, 23, 24, 25, 48, 72, 96, 120, 144, 145, 168, 169}

Week5,6 LSCN1

5,6 = {1, 2, 24, 48, 49, 72, 96, 120, 144, 168}

instability observed in Section 3.4.4.

LSCN1 = {1, 2, 3, 23, 24, 25, 47, 48, 49, 71, 72, 73, 95, 96, 97, 119,

120, 121, 143, 144, 145, 167, 168, 169, 335, 336, 337} (4.11)

The set of final identified explanatory variables for each week in SCN1 can then be

presented as:

XSCN1

w = {HOEPt−η|η ∈ LSCN1
w } (4.12)

wherew ∈ {1, 2, 3, 4, 5, 6} is the index of the studied week. The sets of the detected

HOEP lags in SCN1 are denoted byLSCN1

w and presented in Table 4.2.

SCN2

In SCN2, MARS models are built by initially considering lagsl ∈ LSCN1 of the HOEP,

the explanatory variable candidates presented in Table 4.1(i.e.,xi,t), and lagsl ∈ LSCN2

of the explanatory variable candidates (i.e.,xi,t−l). Given the findings of Section 3.4.3

which showed only the recent values of the explanatory variables were informative,

LSCN2 is defined as follows:

LSCN2 = {1, 2, 3, 23, 24, 25, 47, 48, 49} (4.13)
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Table 4.3: Significant lags of the final explanatory variables for each week in SCN2, for

both forecasting horizons

Week1,2 L3h,SCN2
1,2 = {0, 1, 24, 25} L24h,SCN2

1,2 = {0, 1, 24}

Week3,4 L3h,SCN2
3,4 = {0, 1, 2, 24, 25} L24h,SCN2

3,4 = {0, 1, 2, 24}

Week5,6 L3h,SCN2
5,6 = {0, 1, 24, 25} L24h,SCN2

5,6 = {0, 1, 2, 24, 25}

It is observed in this scenario that the autoregressive parts of the developed models are

the same as found in SCN1; in other words, the HOEP lags which appear in the weekly

models in SCN2 are identical to those that appeared in SCN1. Similar to the explanatory

variables found in Section 3.4.3, the 3-hour-ahead PDP and 3-hour-ahead PDD variables

and their lags are identified here also in the case of 3-hour-ahead forecasting. In the case

of 24-hour-ahead forecasting, the PSC and the SSR Ontario demand forecast variables

and their lag are the detected informative variables here. The sets of final identified

explanatory variables for each of the two forecasting horizons can be presented as:

X3h,SCN2

w = {HOEPt−η, x1,t−γ , x2,t−γ|η ∈ LSCN1
w , γ ∈ L3h,SCN2

w } (4.14)

X24h,SCN2

w = {HOEPt−η, x3,t−β, x4,t−β|η ∈ LSCN1
w , β ∈ L24h,SCN2

w } (4.15)

where,L3h,SCN2
w andL24h,SCN2

w are the sets of detected lags of the corresponding ex-

planatory variable for the 3-hour and 24-hour forecasting horizons, respectively, for week

w in SCN2; andxi,t−γ andxi,t−β represent the explanatory variablexi lagged byγ andβ

steps. Note that lag0 in L3h,SCN2
w andL24h,SCN2

w represents the current value of the corre-

sponding explanatory variable, i.e.,xi,t. The setsL3h,SCN2
w andL24h,SCN2

w are presented

in Table 4.3.

The maximum number of basis functions in this work was initially selected to be very

high, i.e., 2200, and an interaction level of 2 was examined between the input variables.

However, while the models with the interaction took a much longer time to be generated,
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they were not found to be more accurate overall than the models developed with no inter-

actions considered. Hence, no interactions are assumed among the explanatory variables.

It was also observed that a maximum number of 165 basis functions is enough to build

the models. All final models took less than two minutes to be built on a Pentium(R) 4

CPU 2.53 GHZ, 1.0 GB RAM computer.

The final MARS models take the general form of:

HOEPt = a0 +
M

∑

m=1

am max(sm(xm − tm), 0) + ǫ (4.16)

where HOEPt is the value of the HOEP at timet to be forecasted;M is the final number

of basis functions in the model; andsm takes either +1 or -1;xm represents the explana-

tory variables which contribute to themth basis function; andtm is the knot location

for themth basis function. As examples of (4.16), the developed modelsto forecast the

HOEP during Week1 in SCN1 and in SCN2 for a forecasting horizon of 3 hours are pre-

sented in Appendix A; the models developed for the other weeks are generally similar to

those presented in Appendix A.

4.2.3 Numerical Results

The MARS models developed in the previous section are used to generate forecasts for

the six individual weeks considered for the studies. As in Section 3.5, weekly MAEs and

MAPEs are the measures used to assess the accuracy of the forecasts. The values of the

weekly MAEs and MAPEs of the generated forecasts are presented in Table 4.4. For the

sake of comparison, Table 4.5 summarizes the lowest MAPE values achieved by using

the time series models presented in Chapter 3 and the MARS models discussed here.

Observe from the results presented in Table 4.4 that, in the case of 24-hour-ahead

forecasting, the overall MAPE of the forecasts in SCN2 is only improved by 1.1% .

While this improvement is higher in the case of 3-hour-ahead forecasting, i.e., 2.4%, it is
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Table 4.4: Weekly MAPEs (%) and weekly MAEs ($/MWh) of the forecasts by the

MARS models

24-hour-ahead 3-hour-ahead

SCN1 SCN2 SCN1 SCN2

MAPE MAE MAPE MAE MAPE MAE MAPE MAE

Week1 17.5 7.8 16.1 7.5 14.2 5.8 12.5 6.1

Week2 17.9 7.9 18.3 8.1 14.5 5.8 12.8 6.2

Averagea 17.7 7.9 17.2 7.8 14.3 5.8 12.7 6.1

Week3 14.2 7.1 13.3 7.3 10.6 5.1 9.6 4.3

Week4 21.0 8.6 19.3 8.1 14.1 5.7 11.8 5.2

Week5 15.2 9.5 15.2 9.3 13.1 7.8 10.4 7.1

Week6 21.5 11.8 18.6 10.5 16.8 9.5 12.1 7.2

Averageb 18.0 9.2 16.6 8.8 13.6 7.0 11.0 6.0

Grand

Average

17.9 8.8 16.8 8.5 13.9 6.6 11.5 6.0

a Average for the low-demand period (Week1 and Week2).
b Average for the high-demand period (Week3 to Week6).

Table 4.5: The lowest six-weekly MAPEs (%) of the HOEP forecasts

24-hour-ahead 3-hour-ahead

Transfer Function MARS: SCN2 Dynamic Regression MARS: SCN2

16.1 16.8 11.7 11.5
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still not very significant. Hence, the inclusion of the just-in-time available market data in

MARS models has not significantly improved HOEP forecast accuracy, especially when

the forecasting horizon is long. This is consistent with thefindings of Section 3.5, where

the multivariate linear models also did not yield significantly improved forecasts than

the univariate ARIMA models. These small improvements highlight the fact that the

available market data is not informative enough to forecastthe HOEP.

Also observe from the results presented in Tables 4.4, 3.7, 3.8, and 4.5 that fore-

cast accuracy of the time series models in Chapter 3 and that ofthe MARS models in

the present chapter are very close. In the case of 24-hour-ahead forecasting, the fore-

casts generated by the MARS models in both univariate and multivariate scenarios have

slightly higher errors than those generated by the time series models. In this case, the

overall forecast MAPE of the multivariate MARS models is 0.7%higher than that of the

TF models. In the case of 3-hour-ahead forecasting, however, the overall MAPE of the

HOEP forecasts by MARS models has improved only by 0.2%, compared to the overall

MAPE of the forecasts by the time series models. It is worth mentioning that applying

the pre-processing scheme helps improve the overall forecast accuracy just marginally.

The 24-hour-ahead HOEP forecasts generated by MARS for Week3 and Week4 are

presented in Figure 4.2. Observe from this figure that, similar to the linear time series

models in Chapter 3, the unusually low or high prices are not accurately predicted by the

MARS models either.

Despite the fact that MARS models have not contributed to improving HOEP fore-

casting accuracy significantly, some of its modeling advantages should be highlighted.

Given the automatic model building procedure in MARS, developing MARS models re-

quires minimal intervention compared to time series models. For the time series models,

many diagnostic tests and trial and error steps have to be considered in order to find the fi-

nal best possible fit. In MARS, there are only a few parameters which need to be decided,

such as, the interaction level and the maximum number of basis functions. Furthermore,
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Figure 4.2: The 24-hour-ahead HOEP forecasts by MARS for Week3 and Week4.

comparison of the two-step model building procedure in Section 3.4.3 and the MARS

model building process presented in this chapter shows thatit is more cumbersome to

build time series models than MARS models when a large number of explanatory vari-

ables are involved.

It should be noted that the inclusion of explanatory variable lags for building MARS

models in this work is principally inspired by the development of time series models

in Chapter 3. Although building linear models is more troublesome than MARS, linear

models provide useful insights into the set of explanatory variable candidates lags which
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are useful for building MARS models.

4.3 Artificial Neural Networks for Forecasting

ANNs are inspired by the biological structure of the human brain. The brain consists

of a large number (about1011) of highly connected (approximately104 connections per

element) neurons. Each neuron receives electrical signalsfrom other neurons as input,

applies a transfer function to them and sends the resulting output signal to other neurons.

MLP networks with Back Propagation learning algorithm are among the most common

ANN architectures for function approximation and pattern recognition [74, 75, 76]. The

feedforward MLP architecture is employed in this research,and is briefly explained next.

4.3.1 Feedforward MLP Networks

A typical artificial neuron model is shown in Figure 4.3. In this model, individual inputs

p1, p2, . . . , pR are multiplied by corresponding weightsw1,1, . . . , w1,R, and then a transfer

functionf is applied to the summation of weighted inputs with a biasb, typically 1. The

output of the neuron can be written asa = f(WP+b). An ANN usually has a few layers

with each layer consisting of several neurons. The last layer is called the output layer,

and other layers are referred to as hidden layers (Figure 4.5). In most cases, the transfer

function for hidden layers is a log-sigmoid function, whichis defined as:

f(n) =
1

1 + e−n
(4.17)

wheren is the input; a log-sigmoid function is depicted in Figure 4.4.

If the flow of signal in an ANN network is from the input factorsto the output layer,

without any feedback connection, the network is usually called a feedforward MLP. The

number of input factors and output neurons in an MLP network are defined by the cor-

responding problem; however, there is no precise method to determine the number of
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Figure 4.3: A simple artificial neuron model.

hidden layers as well as the number of neurons in each layer. MLP networks may be

used for function approximation and pattern recognition purposes, and with two or three

layers, they usually exhibit acceptable performance in most applications [75,76].
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Figure 4.4: Log-sigmoid transfer function.
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Preparing an MLP for function approximation has three majorstages, namely, train-

ing, validation, and test stages. Accordingly, the data setis divided into three parts with

the first and biggest part of the data being used for the training stage. In the training

stage, the training data, comprising input patterns and thedesired/measured output tar-

gets, are fed into the network and an optimization problem issolved to minimize an

error function. The error function is usually defined based on the difference between

the network’s actual output and the desired output; mean square error is one typical er-

ror function. Many training algorithms are available for ANN training, with the Back

Propagation algorithm being the most common. Standard Back Propagation is a gradi-

ent descent algorithm in which the network weights are movedalong the negative of the

gradient of the error function. There are several other variations of the basic algorithm

that are based on other standard optimization techniques such as, Conjugate Gradient,

Scaled Conjugate Gradient, and Newton methods [74, 76]. Training is continued until a

defined performance goal is met. In the training stage, the neurons biases and connection

weights are estimated according to a learning algorithm. The validation part of the data

set is then fed to the network to finish its training. At this point, the MLP is ready to be

tested by exposing it to the test part of the data. Depending on the performance of the

network in the test stage, more training may be required.

4.3.2 Modeling the HOEP Using MLP Networks

The fully connected feedforward MLP networks discussed above, with one hidden layer,

are trained and used for forecasting the HOEP during the six-week study period. The

explanatory variables presented in Table 4.1 and their lagsl ∈ {1, 2, 3, 23, 24, 25} were

considered for as MLP inputs. In addition to these, lagsl ∈ LSCN1 of the HOEP, with

LSCN1 defined in (4.11), were also considered. Since there is no globally accepted rule for

finding the optimal MLP structure, various combinations of MLP inputs were examined

via numerous scenarios. The explanatory variables detected by the TF and DR models
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Figure 4.5: A typical feedforward ANN diagram.

in Section 3.4.3, and those detected by the MARS models in Section 4.2.2 were among

the studied sets of inputs.

Separate MLP models were trained for 3-hour-ahead and 24-hour-ahead forecasting,

because of the different informative explanatory variables previously found for each fore-

casting horizon. Note that in the case of 24-hour-ahead forecasting,x1 andx2 were not

available at the forecasting origin, and hence were not considered for network building

purposes. In the case of 3-hour-ahead forecasting, the SSR Ontario demand forecasts

variable was excluded from the inputs, since the 3-hour-ahead PDD variable was consid-

ered in the set input variables.

Different numbers of neurons for the hidden layer were tested and different ranges of

historical data, from 10 previous weeks to 36 previous weeks, were considered. The pre-

processing scheme discussed in Section 4.2.2 was also applied to the employed data here.

The MLP networks were developed using the MATLAB Neural Network Toolbox, and

various training algorithms were examined. The Scaled Conjugate Gradient algorithm

[76] yielded the best performance.
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4.3.3 Numerical Results

Among the numerous scenarios examined, the highest forecast accuracy was achieved

by the MLP networks when the explanatory variables detectedby the MARS models in

SCN2 in Section 4.2.2 were used as the MLP inputs. In fact, the MARS models were

used as a filter to detect MLP inputs, similar to the approach used in [71]. Seven neurons

were assigned for the hidden layer in these scenarios, and 15weeks of historical data

were found to yield the most accurate results. The weekly MAEs and MAPEs of the

forecasts are presented in Table 4.6.

Observe in Table 4.6 that the six-week MAPE of the 3-hour-ahead and 24-hour-ahead

HOEP forecasts are 13.7% and 18.3%, respectively; these MAPEs are in the same order

as those of the univariate ARIMA models reported in Chapter 3 (14.1% and 17.6%).

However, these forecasts have generally higher error measures than those obtained from

the proposed multivariate time series models in Chapter 3, and the MARS models in

SCN2 earlier in the present chapter (see Tables 3.7, 3.8, and 4.4).

The low accuracy of the MLP networks developed in this work isconsistent with the

findings reported in [14, 15], where ANNs are applied to forecasting electricity market

prices. In [14], it is found that time series models out-perform ANNs for PJM market

price forecasting. Furthermore, the HOEP forecasts generated by the neuro-fuzzy models

in [15] is also reported to have high error levels. Considering the fact that determining

the optimal structure of the ANNs is a difficult and time-consuming task, and also given

the higher accuracy of the other proposed models in this research, MLP networks would

not be the preferred models in the case of HOEP forecasting.

4.4 Summary

In this chapter, two non-linear modeling approaches, namely, MARS and MLP neural

networks, are employed to forecast the HOEP. MARS is applied to the electricity mar-
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Table 4.6: Weekly MAPEs (%) and weekly MAEs

($/MWh) of the forecasts by the MLP networks

24-hour-ahead 3-hour-ahead

MAPE MAE MAPE MAE

Week1 17.8 7.8 14.2 5.8

Week2 18.6 8.1 14.6 6.3

Averagea 18.2 8.0 14.4 6.0

Week3 14.5 7.7 10.1 5.2

Week4 21.5 9.2 14.1 5.9

Week5 15.6 9.5 13.1 7.9

Week6 21.8 11.9 16.2 9.7

Averageb 18.3 9.6 13.4 7.2

Grand Average 18.3 9.1 13.7 6.8

a Average for the low-demand period (Week1 and

Week2).
b Average for the high-demand period (Week3 to

Week6).

ket price forecasting problem for the first time in this work.The MARS models are

developed in this study in two scenarios: a univariate scenario where only the historical

HOEP data are used as explanatory variables, and a multivariate scenario where other

candidates as explanatory variable are also considered. Consistent with the findings of

Chapter 3, the SSR Ontario demand forecasts and the PSC variables appear in the final

24-hour-ahead MARS models. In the case of 3-hour-ahead forecasting, the 3-hour-ahead
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PDP and the 3-hour-ahead PDD variables are detected by the MARS models as informa-

tive variables. It is further observed that the inclusion ofmarket data in the non-linear

MARS models does not improved forecast accuracy significantly.

Despite a slightly higher forecasting error rate for the MARSmodels, compared to

the time series models, MARS has a more straightforward modelbuilding procedure than

the time series models. Furthermore, it can easily handle a large number of explanatory

variable candidates. These advantages are of practical importance given the fact that a

high level of model-instability is observed in the case of Ontario market prices.

It is observed that applying MLP neural networks to forecasting the HOEP does

not improve forecast accuracy. The highest forecast accuracy is attained by the MLP

networks when the explanatory variables detected by the MARSmodels are used as the

network inputs; however, this accuracy is even lower than that of the univariate ARIMA

models developed in Chapter 3. In addition, developing ANNs and deciding about their

architecture and inputs is a more complicated and time-consuming task than those of

the time series and MARS models. Hence, MLP networks are not considered here as

preferred tools for forecasting the HOEP.



Chapter 5

Price Volatility Analysis for the Ontario

Electricity Market 1

5.1 Introduction

In Chapter 3, it is observed that the accuracy of the price forecasts generated for the

Ontario electricity market is lower than forecasts generated for the neighboring New

England, New York, and PJM electricity markets. Furthermore, although the forecasts

generated in Chapters 3 and 4 are significantly more accurate than any other available

HOEP forecasts, they still have relatively high error levels. In order to explain these

observations, a comparative volatility analysis is presented in this chapter and price un-

certainty is compared across the New England, New York, PJM,and Ontario electricity

markets.

Volatility indices in this work are developed based on the historical volatility and the

price velocity concepts, previously applied to other electricity market prices. Intra-day,

trans-day, and trans-week price fluctuations are the basis of the price volatility analyses

1Findings of this chapter have been submitted toJournal of Energy Policy [77].
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in this research. The analysis is carried out in two scenarios: in the first scenario, the

volatility indices are determined for the price time seriesas a whole without splitting

it into separate time series; in the second scenario, the price data is broken up into 24

time series corresponding to each of the 24 hours, and respective volatility indices are

calculated separately. Considering the high HOEP forecasting errors in Chapter 3 and

the volatility analysis in the present chapter, the relationship between price volatility and

price predictability is discussed. The price volatility indices determined for the Ontario

electricity market are also compared to the results reported for other electricity markets.

5.2 Analysis Measures and Methodology

Volatility refers to the unpredictable fluctuations of a process observed over time in ev-

eryday life. In economics and finance, volatility is basically a criterion to study the

risks associated with holding assets. Volatility analysis, volatility modeling, and volatil-

ity forecasting have many applications such as risk management and option valuation in

financial markets [78]. These applications can be extended to power markets [7], con-

sidering the fact that electricity market participants have several options for managing

their energy needs, in the short-term, mid-term, and long-term. In addition, quantifying

and comparing electricity market price volatility across different electricity markets can

help market authorities in making appropriate amendments and advancements to market

regulations and physical power systems.

With the advent of deregulated electricity markets in many countries, economic op-

eration of power systems has been influenced by the volatile nature of electricity market

prices [3]. In [3], volatility of the prices in the Spanish, Californian, UK, and PJM elec-

tricity markets are analyzed, concluding that the Spanish and PJM market prices were

the lowest and the highest volatile, respectively. Volatility features of the Nordic day-

ahead electricity market are studied in [5] for a 12-year period up until the year 2004,
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and a high level of price volatility, in comparison to other financial markets, is reported.

In [79], the periodic part of the price variations, for an unknown market, is separated out

using a frequency-domain method and volatility of the remaining part is analyzed. Value

at risk methodology is used in [80] to study volatility of theCalifornian market prices.

Volatility analysis for 14 electricity markets, world-wide, is reported in [81], with widely

varying price volatility behaviors being observed across different markets. A multivariate

GARCH model is employed in [82] to study the inter-relationship among prices and price

volatilities in the 5 Australian electricity markets. To the best of the author’s knowledge,

no price volatility analysis has been reported for the Ontario electricity market.

5.2.1 Historical Volatility

Let denotept as the spot price for a commodity at timet. The arithmetic return over a

time periodh is defined as:

Rt,h =
pt − pt−h

pt−h

(5.1)

and the logarithmic return, over the time periodh, is defined as:

rt,h = ln(
pt

pt−h

) = ln(pt) − ln(pt−h) (5.2)

When returns are small, the arithmetic and logarithmic returns are close, given the fact

that:

rt,h = ln(
pt

pt−h

) = ln(1 +Rt,h) ≈ Rt,h (5.3)

Most volatility analysis studies consider the logarithmicreturn over arithmetic return due

to several reasons which are discussed in [83, 84]; hence, logarithmic return is used in

the present work as well.

If the return values are i.i.d. over a time windowT , one can present them as:

rt,h = µ̂h,T + σ̂h,T ǫt (5.4)
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whereµ̂h,T is the conditional mean return;̂σh,T is the conditional return variance; and

the random variableǫ is a mean zero, unit variance, i.i.d. innovation.σ̂h,T is referred

to as historical volatility over the time windowT ; in other words, historical volatility is

defined as the standard deviation of arithmetic or logarithmic returns over a time window

T . Given the return values, the estimated value ofσ̂h,T can be calculated as:

σh,T =

√

∑No

t=1(rt,h − rh,T )2

No − 1
(5.5)

whereσh,T is the estimated value of historical volatility,No is the number ofrt,h obser-

vations, andrh,T is the simplert,h average, all of them over the time windowT .

In most volatility analysis studies,h = 1 is the commonly used time period. How-

ever, since electricity market prices usually follow the general trend of electricity de-

mand, it is not surprising to encounter significant price fluctuations when moving from

the off-peak hours to the on-peak hours of a day. In [5], the time periodh is selected to

be 24 hours and trans-day price fluctuations are analyzed. Inthe present study, however,

in order to quantify the price uncertainty to which the market participants are exposed

when moving from one week to the next week, trans-week price fluctuations are also

considered. Thus,h = 168 hours is considered for the analyses, in addition toh = 1,

and 24 hours.

The definition of historical volatility in (5.4) is based on the assumption that the log-

arithmic return observations follow an i.i.d. random variable. In other words, the returns

are assumed to behave randomly, having constant mean and variance over the time win-

dowT . These assumptions are usually true for most stochastic returns in economics and

finance, when ignoring small return correlations for the first few time steps [85, 83, 84].

However, electricity market prices follow daily, weekly and sometimes seasonal patterns,

which are basically due to the seasonal behavior of electricity demand. As a result, elec-

tricity market price returns are highly correlated and do not behave as an i.i.d. random

variable. For example,rt,24 is calculated for the HOEP using (5.2), and their autocorrela-

tion functions [60] for two arbitrary samples of 168 and 24 return observations (T = 168
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andT = 24), are determined and displayed in Fig. 5.1. Observe that thereturns are

correlated for the first 7 lags in theT = 168 case, whereas forT = 24 the correlations

are negligible. Accordingly, when studying electricity market price volatility, the time

window T should be selected to be short enough in order to have negligible return cor-

relations, which is the case in this study. Furthermore, selecting a short time windowT

allows for analyzing the original price time series withoutconsidering separation of the

periodic and random parts of the price data.

Figure 5.1: Autocorrelation functions for the logarithmicHOEP returns: a)T = 168; b)

T = 24.

In order to define historical volatility indices, market price data are dealt with in two



Chapter 5: Price Volatility Analysis 111

scenarios. In the first scenario, a price time series is treated as a whole signal for all 24

hours of a day, and volatility indices are calculated as criteria for overall price behavior.

In the second scenario, a price time series is broken up into 24 time series corresponding

to each of the 24 hours. This scenario provides insight into the risks associated with the

price at each particular hour of a day.

Scenario 1

In this scenario, the time windowT is selected to be 24 hours (one full day) and the

historical volatility for each studied day, i.e.,σh,24(d), is determined as:

σh,24(d) =

√

∑24×d

t=1+24×(d−1)(rt,h − rt,h)2

23
(5.6)

whered ∈ {1, 2, 3, ..., 366} is the index of studied days, andrt,h is the logarithmic returns

average over each day. In this scenario, hourly (h = 1), daily (h = 24), and weekly

(h = 168) logarithmic returns are the basis of analysis and the averages ofσh,24(d) over

all studied days, i.e.,σh,24, h = 1, 24, 168, are used as volatility indices.

Scenario 2

In this scenario, the logarithmic return for hourj, dayk, over a time periodh, is defined

as:

rj
k,h = ln(

pj
k

pj
k−h

) = ln(pj
k) − ln(pj

k−h) (5.7)

wherepj
k refers to price at hourj on dayk. Choosingh = 1 in (5.7) implies that market

prices at hourj for two consequent days are compared. By considering a 7-day time

window (one full week), i.e.,T = 7, andh = 1, historical volatility for hourj for week

w can be determined as follows:

σj
1,7(w) =

√

∑7×w

t=1+7×(w−1)(r
j
k,1 − rj

k,1)
2

6
(5.8)
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wherew is the index of each studied week,j ∈ {1, 2, 3, ..., 24} is the index of hour, and

rj
k,1 is the return average over the 7-day time window for hourj. The average ofσj

1,7(w)

over all studied weeks, i.e.,σj
1,7, is used as the volatility index for price at hourj. In fact,

this scenario quantifies the fluctuations of price at a particular hour in subsequent days

over a 7-day period.

5.2.2 Price Velocity

The authors in [79,3,5] employ the historical volatility concept in order to analyze elec-

tricity market prices volatility. On the other hand, the authors in [81], defineprice ve-

locity for quantifying price uncertainty. Let define the absolute value of the difference

between two prices which areh time period apart as:

δt,h = |pt − pt−h| (5.9)

Two volatility measures are defined in [81] for electricity market prices as “daily velocity

based on overall average price” (DVOA), and “daily velocitybased on daily average

price” (DVDA), as follows:

DVOAd,h =
Daily Average of δt,h
Overall Average ofpt

(5.10)

DVDA d,h =
Daily Average of δt,h
Daily Average ofpt

(5.11)

whered is the index of studied day. The averages of DVOAd,1 and DVDAd,1 over the

studied days, i.e.,DVOA1 andDVDA 1, are employed in [81] to compare price volatility

in 14 electricity markets, world-wide. Observe that whenDVOA1 is 0.2 for a specific

market, it basically implies that average intra-day price change has been about 20% of the

long-term average price for the studied period. Similarly,whenDVDA 1 is 0.2, it means

that the average intra-day price change has been about 20% ofthe average daily price. It

should be noted that the concept of price velocity differs from historical volatility in the
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sense that it employs the daily average of price changes to quantify price uncertainty, in

lieu of the standard deviation of price returns in historical volatility.

In this study, in order to analyze trans-day and trans-week price fluctuations, the

price velocity concept is extended for the time periodsh = 24 andh = 168 hours. By

choosingh = 24 or 168 hours,DVOA24 andDVOA168 represent the average changes in

prices in subsequent days and average changes in prices for aspecific day in subsequent

weeks, as a fraction of overall average price, respectively; DVDA 24 andDVDA 168 can

be interpreted similarly. Values ofDVOAh andDVDAh for h = 1, 24, and 168 hours,

are also employed here as volatility indices.

Briefly, the following volatility indices are used in the present work to compare elec-

tricity market price volatility in Ontario and other markets: σh,24, DVOAh, andDVDAh,

with h = 1, 24, 168, andσj
1,7.

5.3 Price Volatility Analysis for the Ontario Electricity

Market

Historical HOEP data for the period of May 1, 2002, to April 30, 2005, is used to analyze

price volatility in the Ontario electricity market. The data is available at www.ieso.ca.

The analyzed HOEP data is depicted in Fig. 5.2, where the HOEPfluctuations over an

arbitrary week (the week May 17-23, 2004), are also displayed. Observe from Fig. 5.2-a

that during the first year of market operation, the prices were higher and more unstable

than the next two years. For instance, from the first to the third year, the number of

hours during which the HOEP exceeded $200/MWh was 106, 10, and3, respectively,

and the average HOEP was $58.4/MWh, $48.2/MWh, and $51.2/MWh, respectively.

Unusual prices during the on-peak and off-peak hours are oneof the features of the

Ontario electricity market and happen on both weekdays and weekends, as illustrated in

Fig. 5.2-b.
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Figure 5.2: a) HOEP fluctuations over the the period of May 1, 2002, to April 30, 2005;

b) HOEP over the week May 17-23, 2004.

5.3.1 Historical Volatilities

Scenario 1

Historical volatilities, i.e.,σh,24(d), are calculated forh = 1, 24, and 168 hours and are

depicted in Fig. 5.3. Observe in this figure that the highest HOEP volatiles occurred

in February and early March in year 2003, as discussed in Section 2.5. The period of

January, February, and early March, 2003 was an extremely cold period and natural
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gas prices were very high. As a result of this, many gas-fulled generating facilities ex-

perienced difficulties and were unavailable to the IESO. High demand and shortage of

supply in this period resulted in unusually high and volatile HOEPs even in the off-peak

hours [23]. It is also observed that the historical volatilities are relatively higher during

the high demand periods than the low demand periods, as expected.
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Figure 5.3: HOEP volatilities forh = 1, 24, 168; andT = 24.

Volatility indicesσh,24, h = {1, 24, 168}, are determined over the entire 3-year period

and for each of the 3 years of market operation and are presented in Table 5.1. Observe

that these volatility indices have declined from the first year to the third year, with the first
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year showing the highest volatility. This improvement can be attributed to the amend-

ments made to the market rules and regulations, and also is a matter of market maturity.

Furthermore, the values of trans-day and trans-week volatility indices, i.e.,σ24,24 and

σ168,24, are higher than the value of intra-day volatility index, i.e.,σ1,24; this basically

implies that, on average, the trans-day and trans-week price changes fluctuate in a wider

range than the intra-day price changes.

Table 5.1: Historical volatilities for Ontario market

σ1,24 σ24,24 σ168,24

Year 1 0.2843 0.3771 0.3821

Year 2 0.2477 0.3214 0.3220

Year 3 0.2088 0.2623 0.2613

3-Year Period 0.2469 0.3203 0.3222

Historical volatilities are studied in [5] for the Nordic electricity market over a 12

years period ending May 2004. Only the time periodh = 24 is considered and it is found

thatσ24,24 = 0.16 (12-year average). Furthermore, in [5], the level of price volatility in

the Nordic electricity market is compared with average historical volatilities in some

other markets, such as stock indices withσ24,24 = 0.01 − 0.015, crude oil markets with

σ24,24 = 0.02 − 0.03, and natural gas markets withσ24,24 = 0.03 − 0.05. Comparing

σ24,24 = 0.3203 for the HOEP with these volatility indices reveals higher price volatility

in the Ontario electricity market.

Scenario 2

In this scenario,σj
1,7(w), j = 1, 2, 3, ..., 24, w = 1, 2, 3, ..., 156, are calculated using

(5.8), and the corresponding three-year averages with respect tow, i.e., σj
1,7, are dis-
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played in Fig. 5.4. Observe in this figure thatσj
1,7s fluctuate across the different hours,

with hours 5 and 8 have the lowest and the highest indices, respectively. Furthermore,

prices at the on-peak hours, i.e., between hours 7 to 21, are the most volatile prices, while

prices at off-peak hours, i.e., hours 22 to 24 and hours 1 to 6,are the least volatile, as

expected. However, it should be noted that the price volatility at off-peak and on-peak

hours are both significantly high.
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Figure 5.4: HOEP volatilities for each hour.

5.3.2 Price Velocities

The values ofDVOAh andDVDAh, for h = 1, 24, and 168 hours, for the HOEP are

also calculated over the 3-year period, as well as for each ofthe three years of market

operation, and are presented in Table 5.2. These results demonstrate that theDVOAh and

DVDAh values have also declined over the years, which is consistent with the findings



Chapter 5: Price Volatility Analysis 118

of historical volatility. Furthermore,DVOAh andDVDAh have the highest values for

h = 168 hours, and the lowest values forh = 1 hour; from this, it can be inferred that the

average trans-day and trans-week changes in prices are higher than the average intra-day

changes in prices.

Table 5.2: Price velocities for the Ontario market

DVOA1 DVDA 1 DVOA24 DVDA 24 DVOA168 DVDA 168

Year 1 0.2438 0.1890 0.4208 0.3430 0.5106 0.4379

Year 2 0.1604 0.1719 0.2694 0.2966 0.3083 0.3430

Year 3 0.1463 0.1478 0.2346 0.2421 0.2761 0.2849

3-Year

Period

0.1835 0.1696 0.3083 0.2939 0.3655 0.3557

Values ofDVOA1 andDVDA 1 for the Scandinavia, Spain, California, New Zealand,

the UK, Leipzig (Germany), New England, Australia ( New South Wales, Victoria, South

Australia, Queensland), Alberta (Canada), Netherlands, and PJM electricity markets are

presented in [81]. Time duration of the study varies across the markets, all of them

ending December 31, 2001. Six of the studied markets in [81],namely, Alberta, PJM,

Netherlands, Victoria, South Australia, and Queensland, show higherDVOA1 values

than that for the Ontario market. Furthermore, Alberta, South Australia, and Queensland

electricity markets are reported to haveDVDA 1 values higher than theDVDA 1 value

obtained for the Ontario market. Despite the differences intime durations of the study

in [81] and the present paper, it can be concluded that Ontario electricity market is among

the most volatile markets from theDVOA1 andDVDA 1 point of views.
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5.4 Price Volatility Analysis for the Ontario’s Neighbor-

ing Electricity Markets

As discussed earlier in Chapter 2, the Ontario electricity market is interconnected with

New York electricity market and Quebec, as well as with the Michigan, Manitoba, and

Minnesota control areas (see Fig. 2.6). The interconnectedelectricity markets have facil-

itated interjurisdiction energy trades in the region and the supply and demand sides have

the option of freely playing in these markets.

The price and demand information regarding Michigan, Manitoba, and Minnesota

control areas are only available after April 1, 2005, on which the Midwest market was

launched, and hence is beyond the study period of this paper.Furthermore, Quebec has a

regulated electricity sector and no market activity has been initiated yet. Therefore, New

York, New England and PJM markets are the only studied electricity markets here.

The year 2004 historical LMP data for 9 pricing points in New England, 9 pricing

points in New York electricity, and 15 pricing points in PJM electricity market are used in

this study to calculate the neighboring markets’ volatility indices. The data are available

at www.iso-ne.com, www.nyiso.com, and www.pjm.com, respectively. These pricing

points include load zones, and interfaces with other areas.Since the day-ahead market

has the dominant share of energy transactions in these markets, only day-ahead LMPs

are considered for the analysis. The presented quantities in this section are the average

of the corresponding quantities for all studied pricing points for each market.

5.4.1 Historical Volatilities

Scenario 1

The averages of volatility indicesσh,24, h = {1, 24, 168}, for the studied pricing points

in each of the three markets are presented in Table 5.3. The corresponding indices for
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the HOEP over the same year are also presented in this table for the sake of comparison.

These results show that Ontario market price has the highesthistorical volatility among

the studied market prices, with the New England market showing the lowest historical

volatilities. Observe that the intra-day volatilities arehigher than the trans-day and trans-

week volatilities for the neighboring markets, while for Ontario is the reverse.

Table 5.3: Historical volatilities for the Ontario and its neighboring markets, year 2004

σ1,24 σ24,24 σ168,24

New England 0.0844 0.0676 0.0722

New York 0.1117 0.0837 0.0907

PJM 0.1637 0.1294 0.1343

Ontario 0.2212 0.2813 0.2805

As an illustration, let simply assume that the zero-meanrt,h values follow a normal

distribution over the studied time windows. A historical volatility of σh,T implies that,

on average and with a 95% confidence, one expects that:

−2 σh,T ≤ ln
pt

pt−h

≤ 2 σh,T (5.12)

or

pt−he
−2 σh,T ≤ pt ≤ pt−he

2 σh,T (5.13)

With σ24,24 = 0.2813 for the Ontario market in year 2004, prices in a given day could be

up to 75.5% higher than the prices in the day before, or they could be 43% lower. These

numbers for the New England market are 14.4% and 12.6%, respectively, which reflects

a much narrower range for price changes in the New England market.
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Figure 5.5: Historical volatilities for each hour: Ontarioand its neighboring markets.

Scenario 2

The volatility indices for price at each specific hour in the three neighboring markets are

presented in Fig.5.5, along with the corresponding resultsfor the Ontario market. This

figure illustrates the fact that for each of the 24 hours of a day, Ontario market prices

are more volatile than the prices in the three neighboring markets. Observe that prices at

hours 7, 8, and 9 in the morning are the most volatile prices for all markets, and the New

England market has the lowest volatilities for all hours. Inaddition, volatility of the PJM

market prices at the hours 7, 8, and 9 are somewhat close to those for Ontario; however,

Ontario prices are significantly more volatile at other hours.
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5.4.2 Price Velocities

The values ofDVOAh andDVDAh, h = {1, 24, 168}, for the mentioned LMPs were also

calculated, and their averages over the studied pricing points are presented in Table 5.4.

Observe from these results that the price velocity indices are also higher for the Ontario

market than the other three markets.

As a simple illustration, theDVOA24 = 0.2541 implies that the changes in prices

over subsequent days was 25.41% of the 2004 HOEP average; with the 2004 HOEP

average being $49.9/MWh, the average change in HOEP in subsequent days could be up

to $12.7/MWh. The year 2004 average LMP for the New England is US$52.83/MWh;

hence, with aDVOA24 = 0.0976, the average change in New England day-ahead market

LMPs in subsequent days could be up to US$5.1/MWh, which is less than half of that

obtained for Ontario.

Table 5.4: Price velocities for the Ontario and its neighboring markets, year 2004

DVOA1 DVDA 1 DVOA24 DVDA 24 DVOA168 DVDA 168

New England 0.0603 0.0508 0.0976 0.0802 0.1452 0.1282

New York 0.0730 0.0726 0.0932 0.0929 0.1327 0.1283

PJM 0.1129 0.1133 0.1448 0.1489 0.1955 0.1957

Ontario 0.1586 0.1551 0.2541 0.2573 0.2933 0.3005
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5.5 Discussion

5.5.1 Market Structure and Price Volatility: The Case of New Eng-

land

According to the volatility analysis presented in the previous sections, price volatility

in the Ontario electricity market is significantly higher than price volatility in the New

England, New York, and PJM electricity markets. It should benoted that despite many

differences in the detailed market rules and regulations, and in physical characteristics

of the supply and demand sides, the New England, New York, andPJM electricity mar-

kets are all based on Standard Market Design (SMD) structure[86], which is basically

a two-settlement market with nodal pricing. Also, observe that the volatility indices ob-

tained for the New England market are the lowest, very close to those for the New York

market. Furthermore, the PJM electricity market has gone through various market ex-

pansions during 2004. Finally, the New England market was a real-time market with a

region-wide uniform price, similar to the current Ontario market structure, before the im-

plementation of the SMD structure. Therefore, only the New England market is selected

for the discussions presented in this section.

The New England wholesale electricity market was launched on May 1, 1999, as a

single-settlement real-time market. On March 1, 2003, the SMD structure was imple-

mented, which converted the market structure into a new LMP-based market comprising

a day-ahead market and a real-time market. The New England market before the imple-

mentation of the SMD structure is referred to as the New England Interim Market. More

than 31,000 MW of generation capacity along with imports from Canada and New York

State serve the New England market demand with a peak demand of 28,127 MW (2006).

From the addition of more than 9,000 MW of new generation capacity comprising gas-

fired generation units from 2000 to 2004, cleaner power has been made available with the

prices declining through this period by 5.7%. Natural gas-fired generators (about 43%
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of the total capacity), and nuclear generators (about 28% ofthe total capacity), are the

major source of power in this market, and the gas-fired units are the most frequent price

setters [87].

The current structure of the Ontario electricity market, which is a single-settlement

real-time market with a province-wide uniform price, is similar to the New England

Interim Market structure. More than 31,000 MW of generationcapacity, along with

imports from neighboring regions, serve the Ontario demandwith a peak demand of

27,005 MW (2006). Coal-fired generators are the most frequentOntario market price

setters, while expensive gas-fired units are the main price setters during extreme demand

hours [23]. The total installed generation capacity and peak load in Ontario and New

England electricity markets are in the same order.

In order to provide a more detail insight into price volatility in the New England mar-

ket, the employed volatility indices are calculated for thefirst three years of the operation

of the New England Interim Market, and are presented in Tables 5.5 and 5.6. The three-

year averages of the respective volatility indices for Ontario are also presented in these

tables for comparison purposes. Observe from these volatility indices that price volatility

has been high in the New England Interim Market, and fairly close to the volatility in-

dices obtained for Ontario. On the other hand, and as expected, after implementation of

the SMD structure in New England, price volatility indices have declined significantly, as

demonstrated by the results presented in Tables 5.4 and 5.3,for the current New England

market. These results imply that the real-time nature of themarket in Ontario is directly

linked with the high levels of electricity price volatility.

5.5.2 Influential Parameters on Price Volatility in Ontario

To explain the high price volatility in Ontario market, consider the following events

which frequently happen in this market and are discussed in more detail in [23]:
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Table 5.5: Historical volatilities for New England’s Interim Market

σ1,24 σ24,24 σ168,24

New England 0.2261 0.2866 0.2972

Ontario 0.2469 0.3203 0.3222

Table 5.6: Price velocities for New England’s Interim Market

DVOA1 DVDA 1 DVOA24 DVDA 24 DVOA168 DVDA 168

New England 0.1483 0.1372 0.2854 0.2563 0.3307 0.3260

Ontario 0.1835 0.1696 0.3083 0.2939 0.3655 0.3557

• Demand underforecast: A demand underforecast error duringthe peak hours, even

in the acceptable range of 1-2%, may force the market operator to dispatch some

of the expensive units and thus causing unpredictable pricespikes.

• Export/Import transactions failure: Exports and imports are scheduled 1 hour be-

fore the dispatch hour in the Ontario market and are considered as fixed load and

supply, respectively, in real-time [24]. Any failure in import transactions may force

the market operator to instantly dispatch expensive units,which also may cause

unusual price spikes. In addition, any failure in export transactions may force the

Ontario market operator not to dispatch some of the marginalunits, which in turn

may cause unusually low prices.

• Error in non-dispatchable generators energy output forecast: In the Ontario mar-

ket, price-taking self-scheduling generators (e.g., small hydro units) and intermit-

tent generators (e.g., wind farms) forecast their hourly energy output and submit it

to the IESO. Analysis of the Ontario market data shows that their real-time avail-

able capacity deviates from their forecasted values, sometimes up to more than
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250 MW. Similar to the demand forecast error or export/import failure situations,

dealing with the discrepancy between the forecasted and actual available capac-

ity of the self-scheduling generators in real-time may cause unusually high or low

market prices.

Dealing with such unpredictable, and most of the time unavoidable, events in real-time

puts upward or downward pressure on market prices, and henceleads to high market

price volatility. Moving toward a two-settlement market similar to the SMD structure

is clearly necessary for Ontario, since in a single settlement real-time market, the price

volatility resulting from such events affects all market participants. However, in a two-

settlement market, most of the eventual real-time demand iscleared in the day-ahead

market (on average 97% for the New England market [87] and 90%for New York market

[88] in 2004), where no physical transactions take place. With the major part of the

market demand cleared 24 hours before real-time, market participants have enough time

to arrange for their supply and demand obligations, and in case of unpredictable events,

only real-time prices may become volatile with a small groupof market players who

participate in the real-time market being affected.

5.5.3 Price Volatility and Price Predictability

The findings of Chapter 3 show that HOEP forecasts have a significantly lower level of

accuracy than the price forecasts generated for the neighboring markets. Moreover, it

is demonstrated in Chapters 3 and 4 that employing various forecasting methods cannot

improve the HOEP forecast accuracy significantly. On the other hand, it is shown in

the present chapter that the HOEP is significantly more volatile than the other studied

electricity market prices. Keeping these findings in mind, the relationship between the

volatility of a time series and the accuracy of the forecastsgenerated for the time series

is investigated in this section.
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Consider an ARIMA model representing a zero-mean stationary processzt as:

φ(B)(1 −B)dzt = θ(B)ǫt (5.14)

whereφ(B), θ(B), B, andǫt are defined in Section 3.3.1. The model (5.14) can be

expressed as an infinite weighted sum of current and previousrandom shocksǫj, as

follows [60]:

zt = ǫt + ψ1ǫt−1 + ψ2ǫt−2 + ...

= ǫt +
∞

∑

j=1

ψjǫt−j (5.15)

Thus, the relationship between the variance ofzt, i.e.,σ2
z , and the variance of the random

shockǫt, i.e.,σ2
ǫ , can be written as:

σ2
ǫ =

σ2
z

1 +
∑

∞

j=1 ψ
2
j

(5.16)

On the other hand, the variance of thel-step-ahead forecast error generated by model

(5.14), denoted byσ2
e,l, can be presented as:

σ2
e,l = σ2

ǫ (1 +
l−1
∑

j=1

ψ2
j ) (5.17)

From (5.16) and (5.17),σ2
e,l can be written as:

σ2
e,l =

1 +
∑l−1

j=1 ψ
2
j

1 +
∑

∞

j=1 ψ
2
j

σ2
z = ξ(ψ)σ2

z (5.18)

whereξ(ψ) < 1 for a finite forecasting horizonl. For a given ARIMA model,ξ(ψ) is a

constant depending on the estimated parameters of the model. Hence, highσ2
z results in

highσ2
e,l, which means forecast errors can potentially be high. Note that for a stationary

time series, the variance is constant and can be representedby the historical volatility

measures defined earlier. Similar reasoning can be applied to TF and DR models with

similar conclusions. Considering the high volatility of theHOEP time series discussed
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in the previous sections and the reasoning presented above,one would expect the HOEP

forecasts to have high errors compared to the other neighboring marker prices.

The 4-weekly MAPEs of the forecasts generated for the Ontario and its neighbor-

ing electricity markets discussed in Section 3.5.4, along with the intra-day volatilities

from Table 5.3 are depicted in % in Fig. 5.6. Observe from thisfigure that the HOEP

volatilities and the HOEP forecasts MAPEs are the highest among the four, as expected.

Figure 5.6: Forecast MAPEs and price volatilities (σ24,24) .

5.6 Summary

In this chapter, various volatility indices are developed based on historical volatility and

price velocity concepts, and price volatility in the Ontario electricity market is quantified

accordingly. The employed volatility indices are also applied to several pricing points in

three of Ontario’s neighboring electricity markets, namely, the New England, New York,

and the PJM markets. Intra-day, trans-day and trans-week market price fluctuations are

considered in calculating the volatility indices. The concept of price velocity is extended
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for trans-day and trans-week analyses in this study, and trans-week historical returns are

also proposed for volatility analysis in this research. It is also formally shown that out-

of-sample forecast accuracy of a time series model is affected by the volatility of the time

series under study.

The findings of this chapter show that price volatility in theOntario electricity market

is significantly higher than that observed in the neighboring electricity markets. Com-

paring the volatility indices obtained for Ontario with previously published results for

other electricity markets reveals that the HOEP is among themost volatile electricity

market prices worldwide. The generally higher error level in HOEP forecasts compared

to other market price forecasts can be attributed to the highlevel of HOEP volatility. It

is further argued that the highly volatile nature of the HOEPis a direct result of the real-

time operating environment of the Ontario electricity market, and the lack of a hedging

mechanism such as the day-ahead market in the SMD structure implemented in Mew

England’s electricity market.



Chapter 6

Application of Price Forecasts to

Short-term Planning of BEMCs1

6.1 Introduction

In Chapters 2, 3 and 4, an effort is made to understand the operation of the Ontario

electricity market and forecast its future price behavior as accurately as possible. How-

ever, the volatility analysis presented in Chapter 5 shows that price forecasting error is

inevitable, especially in volatile markets like Ontario’s. Moreover, as can be observed

from the literature review presented in Chapter 1, most of thework on electricity market

price forecasting is focused on improving forecast accuracy, rather than the effects of

price forecast inaccuracy on market participants. Hence, there is a need to examine how

erroneous market price forecasts affect the participants’planning activities, particularly

in the short-term. In view of this, the present chapter addresses the economic impact of

using electricity market price forecasts in the operation scheduling of two typical BE-

MCs.
1Based on the findings of this chapter, a paper is in preparation to be submitted to theIEEE Transactions

on Power Systems.
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The first case-study BEMC is a process-industry load with access to an on-site co-

generation facility. The second case-study BEMC is a municipal water plant having

controllable demand. These two BEMCs represent a considerably significant class of

wholesale market customers and have different load management capabilities. Next-day

operation of the two BEMCs is formulated as optimization problems which are solved to

minimize their expected energy costs.

The Ontario electricity market is the case-market used again, and two sets of HOEP

forecasts are considered as the expected future electricity market prices. The first set

is the 24-hour-ahead HOEP forecasts generated by the TF models in Chapter 3, which

yield the lowest error measures. The second set is the IESO-generated 24-hour-ahead

PDPs which yield the highest error measures. For the sake of comparison, theex-post

HOEPs are also used in a complementary scenario to determinethe “ideal” schedules and

their associated costs. The economic impact of using price forecasts for scheduling is

analyzed by comparing cost that the BEMC would have incurred if the “ideal” schedules

were available and implemented in reality, and the cost associate with implementing the

schedules derived based on price forecasts.

6.2 Problem Formulation

6.2.1 Optimization Under Uncertainty

From the demand-side point of view, ‘optimal’ operation in acompetitive electricity

market environment constitutes the minimization of total electricity costs. The problem

of minimizing electricity costs over a specific planning period (e.g., a day) for a BEMC

can be generally formulated as:

min Cost=
∑

k ρk · Pk

subject to ξ(Pk)
(6.1)
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wherek is the index of planning interval,ρk is the electricity market price at interval

k, Pk is the net power purchased from the market in intervalk, andξ(Pk) is the set of

technical constraints. This optimization problem has to besolved before the start of the

planning period. However,ρks are unknown random variables which will be cleared after

real-time, and hence, (6.1) represent an “uncertain” optimization problem.

The approach to deal with this uncertain problem in the present work is to minimize

theconditional expectationof total costs; whereconditionalrefers to the entire available

information with regard to the electricity market price behavior at the optimization origin.

This approach has also been used in [46] to derive optimal bidding strategies of a supply-

side market participant.

The problem in (6.1) can be reformulated as follows to minimize theexpectedcost of

electricity:

min E[Cost|I] = E[
∑

k ρk · Pk|I]

subject to ξ(Pk)
(6.2)

whereE denotes the mathematical expectation, andI is the available information about

electricity market price behavior. It should be noted that the random variablesρk only

affect the objective function. Hence, by swapping the expectation and summation oper-

ators, (6.2) can be written as:

min E[Cost|I] =
∑

k E[ρk · Pk|I]

=
∑

k E[ρk|I] · Pk

subject to ξ(Pk)

(6.3)

Recalling from the fundamentals of time series analysis and forecasting [57,60], price

forecasts generated by a time series model are the conditional expectations of actual

prices. In other words, given a time series model for price,E[ρk|I]=ρ̂k, whereρ̂k is

the forecasted value forρk. Therefore, (6.3) can be solved as an ordinary optimization

problem as follows:

min E[Cost|I] =
∑

k ρ̂k · Pk

subject to ξ(Pk)
(6.4)
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The solution of this problem provides the BEMC with the optimal operational schedules

which minimize the totalexpectedelectricity costs.

6.2.2 Forecast Inaccuracy Economic Impact

In order to analyze the economic impact of using price forecast for short-term scheduling,

let us consider two price scenarios. In the first scenario, which is a fictitious scenario,

it is assumed that the market price forecasts are “exact”; inother words, actual prices

are available before real-time. Let denote the solution of the optimization problem (6.4)

under this price scenario byP a
k . Hence, ifP a

k were available and implemented in reality,

the BEMC would have incurred a cost of:

C =
∑

k

ρa
k · P

a
k (6.5)

whereρa
k is the actual market price cleared for hourk, and C is the cost associated with

implementing the scheduleP a
k .

In the second price scenario, it is assumed that a set of priceforecastŝρk is available

before real-time and is used to solve the optimization problem (6.4). Let denote the

solution of (6.4) when usinĝρks as price forecasts bŷPk. The actual electricity cost that

the BEMC will pay after implementinĝPk schedule can be formulated as:

Ĉ =
∑

k

ρa
k · P̂k (6.6)

whereĈ is the actual costs incurred by the BEMC when implementing the P̂k sched-

ule. Note that althougĥPk is determined based on price forecasts, the actual electricity

charges are determined based on actual pricesρa
k.

The Forecast Inaccuracy Economic Loss (FIEI) index is proposed here as:

FIEI (%) = 100 ×
Ĉ− C

Ĉ
(6.7)
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SinceP a
k andP̂k are two particular solutions of the optimization problem (6.4), obtained

by using two sets of electricity market prices, the FIEI can be positive, negative, or zero.

A positive value of FIEI indicates the percentage of the finalcosts which is attributable

to price forecasting errors. In other words, the final incurred electricity cost could be

lower by FIEI percent if the price forecasts were “exact”. When the FIEI is negative,

it basically means that the actual incurred cost areunexpectedlylower than the “ideal”

cost. A value of zero for FIEI indicates that the actual cost is the same as the “ideal”

cost, despite the presence of price forecasting errors.

The value of FIEI can only be found after real-time when the actual market prices are

available. Therefore, it can only be used as anafter-the-factindex to evaluate the overall

usefulness of employing electricity market price forecasts for short-term planning.

6.3 Operation of the Case-study BEMCs

The first case-study BEMC considered in this work is a process-industry load having

both thermal and electrical energy demand and owning on-site generation facilities (see

Figure 6.1). The on-site generation facility is a gas engine, equipped with a heat recovery

boiler for Combined Heat and Power (CHP) production. A traditional oil-boiler is also

installed to cover the thermal demand.

The gas engine can be employed to generate electricity in cases the electricity mar-

ket prices are expected to be high. Thermal energy is a by-product of the gas engine

that increases its overall energy efficiency and makes on-site generation a viable option.

Having an understanding of the future prices, a combinationof the gas engine, oil-boiler,

and grid electricity can be “optimally” scheduled to minimize total energy costs.

The second case-study BEMC is a municipal water plant with an obligation to meet

its hourly water demand day-by-day. The water plant is composed of an inexhaustible

potable water source, five pumps, an elevated reservoir, anda main pipeline to convey
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Figure 6.1: The process-industry load.

water from the pumping station to the elevated reservoir, [45] (see Figure 6.2). The wa-

ter plant is modeled in this research using a simplified mass-balance model in which the

nodal pressure requirements are assumed to be satisfied if the water level in the elevated

reservoir remains in the desired range [45]. The five constant velocity centrifugal pumps

work in parallel and their pumping capacity is assumed to be constant during each hour.

Thirty-two possible pump combinations can be considered, from the state in which all

pumps are off-line to the state in which all pumps are in service. For this BEMC, pump-

ing operation can be optimally scheduled at low price hours,over a 24-hour planning

period, in order to minimize electricity costs.

Operation of the above two case studies is modeled over a 24-hour planning period.

A 24-hour planning period is equally divided into 24 planning intervals, denoted here by

k ∈ {1, 2, ..., 24}. All the scheduled variables are assumed to be constant overthe 1-

hour planning intervals. The system characteristics and model formulations of the water

plant and the process-industry load are taken from [45] and [43], respectively, and are
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Figure 6.2: The water plant.

provided in detail in the following sections. It is important to highlight the fact that,

however, the objective functions for minimizing total expected costs of the BEMCs, and

applying constraints to impose emission limitations on theoperation of the cogeneration

system are novel contributions of the present work.

The following assumptions are made for the analysis:

• The BEMCs carry out their own forecast of the next-day electricity market prices,

right before the start of the new day, and plan their operation accordingly.

• No rescheduling or revision of the initially obtained schedules are considered dur-

ing the planning period.

• The BEMCs are price-taker customers which means that they cannot affect market

clearing prices by any strategic behavior.

• The BEMCs’ bids to purchase electricity from the market are always cleared.
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6.3.1 Formulating the Process-industry Load

Oil Boiler Formulation

The oil-boiler fuel consumption during intervalk, denoted withFk (ton/hour), is rep-

resented by a linear function of the thermal energy producedduring the hour [43], as

follows:

Fk = A1Vk +B1 · TP
ob
k (6.8)

Fmin · Vk ≤ Fk ≤ Fmax · Vk (6.9)

Costob = (Mob + ρoil)
∑

k

Fk (6.10)

whereA1 andB1 are the coefficients of the linear functions which are obtained from the

oil-boiler technical performance data;TP ob
k (MW) is the oil-boiler thermal power during

intervalk; Fmin andFmax are fuel consumption limits of the oil-boiler, Costob is the total

operation cost of the oil-boiler over the 24-hour planning period;Mob is the operation

and maintenance (O&M) costs of the oil-boiler; andρoil is the contracted price of oil

which remains constant over the planning period.Vk is a binary variable representing

oil-boiler status at the planning intervalk that can be defined as follows:

Vk =







1 if the oil-boiler is on.

0 if the oil-boiler is off.
(6.11)

Gas Engine Formulation

Similarly, the gas engine fuel consumption during intervalk, denoted byGk (km3(N)/h)2,

is represented by a linear function of the thermal and electrical energy produced during

2Kilo normal cubic meter of natural gas per hour.
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that interval [43], as follows:

Gk = A2 ·Wk +B2 · TP
ge
k (6.12)

Gk = A3 ·Wk +B3 · EP
ge
k (6.13)

Gmin ·Wk ≤ Gk ≤ Gmax ·Wk (6.14)

Costge = Mge
∑

k

EP ge
k + ρng

∑

k

Gk (6.15)

whereA2, B2, A3, andB3 are the linear coefficients which are obtained from the gas

engine technical performance data;TP ge
k (MW) is the gas engine thermal power during

interval k, EP ge
k (MW) is the gas engine electrical power during intervalk; Gmin and

Gmax are fuel consumption limits of the gas engine;Mge represents the O&M costs of

the gas engine; andρng is the fixed natural gas price. The total costs associated with

the gas engine operation, i.e., Costge, is formulated as a function of the electrical energy

produced and the amount of fuel consumed.Wk is a binary variable representing the

status of the gas engine during the intervalk as follows:

Wk =







1 if the gas engine is on.

0 if the gas engine is off.
(6.16)

Gas Engine Carbon Dioxide Emissions

It is assumed that the process-industry load has to maintainits CO2 emissions, result-

ing from electricity generation, below a certain specified limit of EmCap (ton/day), as

follows:

Emge ·
∑

k

EP ge
k ≤ EmCap (6.17)

whereEmge is theCO2 emission of the gas engine per MWh of electrical energy gener-

ated.
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Electricity Market Transaction Cost

The cost of the net electricity transaction with the market can be presented as:

Costmar = (1 + α)
∑

ρk · E
imp
k −

∑

ρk · E
exp
k (6.18)

whereE imp
k (MW) andEexp

k (MW) are the electrical energy imported and exported from/to

the market during the planning intervalk, respectively, and Costmar is the net cost of

electricity transaction with the market. Observe that there is an extra uplift charge, rep-

resented byα, associated with the energy imported from the market to account for the

network charges and other regulated fees; for example, a 30%uplift charge on top of

total electricity costs typically applies to Ontario electricity consumers.

Energy Balance

The thermal demand must be met at all hours by the thermal energy produced either

by the oil-boiler or by the gas engine or both. The electricaldemand must also be met

either by the electricity purchased from the market or the electricity produced by the gas

engine or a combination of the two. Hence, the energy balanceconstraints can be written

as follows:

TP ob
k + TP ge

k = TDk (6.19)

E imp
k + El

k = EDk (6.20)

EP ge
k = El

k + Eexp
k (6.21)

whereTDk (MW) andEDk (MW) are the hourly thermal and electrical loads, respec-

tively. El
k (MW) is the electric power from the gas engine supplying the local demand

during hourk.
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Objective Function

The optimization objective is to minimize the total expected energy cost over a 24-hour

planning period while meeting all the system constraints defined in (6.8) to (6.21). Thus:

min
k

E[Costpil|I] = Costob + Costge + (1 + α)
∑

ρ̂k · E
imp
k −

∑

ρ̂k · E
exp
k (6.22)

whereE[Costpil|I] is the expected total energy cost of the process-industry load.

The above optimization model is a Linear Mixed-Integer Programming (LMIP) prob-

lem and is solved using the well-known CPLEX solver in the GAMSprogramming en-

vironment [89].

After the actual electricity market prices are released, the final energy cost of the

process-industry load, denoted bŷCost
pil

here, can be found as:

ˆCost
pil

= ˆCost
ob

+ ˆCost
ge

+ (1 + α)
∑

ρa
k · Ê

imp
k −

∑

ρa
k · Ê

exp
k (6.23)

whereÊ imp
k andÊexp

k are the scheduled energy import and export from and to the market

by solving (6.22), and ˆCost
ob

and ˆCost
ge

are the costs of the oil boiler and the gas engine

associated with the solution of (6.22). Note that̂Cost
ob

and ˆCost
ge

do not depend on

the electricity market prices, and hence will take the same values as those found from

solving (6.22).

6.3.2 Formulating the Water Plant

While an alternative source of electrical energy is available in the case of the process-

industry load, electricity from the grid is the only source of energy in the case of the water

plant. However, the existence of a water reservoir enables the water plant to pump more

water during low price hours than during high price hours. Hence, the objective function

here is to shift pumping operation such that the expected cost of consumed electricity

over a planning period is minimized.
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Let us denote the pump index byi ∈ {1, 2, 3, 4, 5}; water level in the reservoir at

the 1-hour planning intervalk by hk (m); initial water level byhini (m); water demand at

intervalk byDw
k (m3); the rated power of pumpi byP i

max (MW); and the water discharge

of pumpi byQi (m3). The optimization model can then be formulated as follows:

min E[Costwp|I] =
∑

k

ρ̂k

∑

i

P i
maxU

i
k (6.24)

subject to

hk = ht−1 +
1

A
(
∑

i

(U i
kQ

i) −Dw
k ) (6.25)

hmin ≤ hk ≤ hmax (6.26)

h0 = hini (6.27)

h24 ≥ hini (6.28)

whereE[Costwp|I] is the total expected electricity cost of the water plant, and U i
k is a

binary variable representing the status of pumpi during the planning intervalk as:

U i
k =







1 if pumpi is on.

0 if pumpi is off.
(6.29)

Equations (6.25) and (6.26) ensure the water level remains in the desired range, and

equations (6.27) and (6.28) define the initial level and the desired level at the end of each

planning period. Note that for a 1-hour planning interval, the water discharge and electric

power consumption of an assigned pump combination is fixed, and the nonlinearities in

the combination of the pumps are neglected.

The above optimization model is also a LMIP problem and is solved using the CPLEX

solver in the GAMS programming environment [89].

The cost of implementing the above schedules can be calculated when the actual

electricity market price data are available, as follows:

ˆCost
wp

=
∑

k ρ
a
k

∑

i P
i
maxÛ

i
k (6.30)
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where ˆCost
wp

is the water plant’s actual electricity cost, and̂U i
k is the solution of the

optimization problem (6.24)-(6.28).

6.4 Numerical Results and Discussion

6.4.1 Data Sets

Typical chronological hourly thermal and electrical demand profiles have been consid-

ered here for the process-industry load and are shown in Figure 6.3; the correspond-

ing hour-wise data are also presented in Table B.1 in AppendixB. Various parameter

representing the process-industry load are presented in Table 6.1. The operation and

maintenance (O&M) costs of the gas engine and the oil-boilerare selected as per avail-

able typical values [32, 43]. The average 2004 natural gas and oil prices are obtained

from [90], and converted to appropriate units in Canadian dollar3, and are also presented

in Table 6.1. The value ofα is considered to be 30%, in line with what has been observed

in Ontario.

The water plant is assumed to have access to a reliable hour-by-hour forecast of

water demand for the next 24-hour planning period, and actual water demand values do

not deviate from the forecasted values significantly. A total daily demand of 54,788 m3 is

considered here, and a typical chronological water demand curve is shown in Figure 6.4.

The area of the elevated reservoir isA = 2600 m2, and the maximum and the minimum

water levels arehmax = 7 m, andhmin = 1 m, respectively. The water level at the

beginning of a planning period ishini = 3 m, and it has to be maintained at the end of

the planning period, i.e.,h24 ≥ 3. The power and discharge capacity of the pumps are

provided in Table 6.2.

3An average exchange rate of US$1=Can$1.40 is used for 2004.
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Figure 6.3: Thermal and electrical demand of the process-industry load. Note that ther-

mal demand has been converted to equivalent MW units for the sake of uniformity [43].

6.4.2 Short-term Planning

The optimization problems, developed in Section 6.3, are individually solved for each

day of the 6-week study period. Two sets of price forecasts are considered for the sim-

ulations: the 24-hour-ahead HOEP forecasts generated by the TF models which were

found to yield the lowest errors, and the IESO-generated 24-hour-ahead PDPs which

were found to yield the highest error measures. A fictitious scenario is also analyzed

here when the correspondingex-postHOEP values are used for scheduling, so that daily

FIEI indices may be calculated according to (6.7) to allow for comparisons. The over-

all economic impact of using price forecasts for schedulingon the case studies is also
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Table 6.1: System parameters for the process-industry load(all costs and prices are in

average 2004 Canadian Dollar equivalent)

EP ge
min = 0.4 MW EP ge

max = 7.0 MW TP ge
min = 1.06 MW

TP ge
max = 5.15 MW TP ob

min = 0.4 MW TP ob
max = 6.0 MW

EmCap = 55 ton/day Emge = 560 kg/MWh ρoil = $491/ton

ρng = $410/km3(N) Mge = $10/MWh Mob = $2.5/ton

Gmin = 0.1604 km3(N)/h Gmax = 1.652 km3(N)/h Fmin = 0.0406 ton/h

Fmax = 0.6062 ton/h A1 = 0.0002 ton/h B1 = 0.101 ton/MWh

A2 = −0.228 km3(N)/h B2 = 0.365 km3(N)/MWh A3 = 0.07 km3(N)/h

B3 = 0.226 km3(N)/MWh TDmax = 5 MW EDmax = 6.22 MW

Figure 6.4: Water demand curve of the water plant.
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Table 6.2: Technical characteristics of the pumps.

Discharge (m3/h) Power (MW)

Pump 1 1800 0.595

Pump 2 1440 0.445

Pump 3 828 0.260

Pump 4 828 0.260

Pump 5 1800 0.595

Table 6.3: Summary of total operating cost during the six-week period based on the

three different price scenarios for the two case-study BEMCs

The process-industry LoadThe Water Plant

Ex-postHOEPs $445,500 $34,172

HOEP forecasts by the TF models $454,670 $35,936

PDPs $463,930 $36,177

assessed using the following six-weekly FIEI index:

FIEI (%) = 100 ×

∑42
day=1(Ĉ− C)
∑42

day=1 Ĉ
(6.31)

The total operation costs under each of the price scenarios are presented in Table 6.3.

Observe from this table that the overall cost of operation for both case studies decreases

with more accurate price forecasts, as expected. However, the extent of this decrease

varies for the case studies, which is discussed later.
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The Process-industry Load

Operation of the process-industry load during three typical days, namely, day 5, day 11,

and day 39, of the 42-day study period are the basis of the discussions presented in this

section. These days are selected for the folowing reasons:

• On day 5, the TF and PDP forecasts have significantly different MAPEs and so are

the associated daily FIEI indices;

• on day 11, the PDPs have a significantly higher MAPE than the TFforecasts, but

the FIEI index associated with the PDPs is unexpectedly lower than that with the

TF forecasts;

• on day 39, the MAPE of the TF forecasts is about 10%, and the associated FIEI

index is zero.

The forecast MAPEs and the daily FIEI indices for days 5, 11, and 39 are presented

in Table 6.4. Observe from this table that on day 5, the MAPE ofthe TF forecasts has

improved by 12.2%, when compared to that of the PDPs. The daily FIEI index has also

significantly improved from 12.6% when using the PDPs to 0.64% when using the TF

forecasts. On day 11 on the other hand, while the MAPEs of the both sets of forecasts are

on the same order as for day 5, the daily FIEI associated with the TF forecasts (2.81%)

is no longer better than the one obtained with the PDPs (1.7%). To explain this point, the

operation of the process-industry load should be considered, as discussed next.

The process-industry load purchases electricity from the market if the market price

is lower than a certain threshold. This threshold price can simply be found by gradu-

ally increasing the electricity market prices in the optimization problem from zero and

determining that value beyond which no electricity is purchased from the market. This

threshold for the particular studied system is found to be $53.7/MWh, which means

that when the electricity market price is below $53.7/MWh, all electricity is purchased
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Table 6.4: The forecasts MAPEs for days 5, 11, and 39, and

the associated daily FIEIs for the process-industry load

TF Forecasts Pre-Dispatch Prices

FIEI (%) MAPE (%) FIEI (%) MAPE (%)

Day 5 0.6 16.3 12.6 28.5

Day 11 2.81 16.9 1.7 28.7

Day 39 0 9.4 5.18 15.6

from the market. Thus, if the electricity market prices are forecasted to be higher than

the threshold price, it would be economical to produce the required electricity locally.

Therefore, forecasting the future electricity market prices with respect to the threshold is

a crucial factor for the process-industry load.

The energy import schedules on day 5 and 11 by the process-industry load when using

the PDPs and the TF forecasts, are shown in Figures 6.5 and 6.6, and Figures 6.7 and

6.8. The actual and forecasted HOEPs, and the “ideal” energyimport schedules are also

presented in these figures for comparison purposes. Observein Figure 6.5 that the relative

direction of the future prices with respect to the thresholdis not correctly predicted by

the PDP forecasts at several hours such as hours 10 and 17. At hour 10, the price forecast

is lower than $53.7/MWh, while the actual price is higher than$53.7/MWh. In contrast,

at hour 17, the price forecast is higher than $53.7/MWh, whilethe actual HOEP is lower.

The direction of actual prices is similarly predicted incorrectly at nine other hours by the

PDPs. On the other hand, the price forecasts by the TF models missed the direction of the

prices at only four such hours (see Figure 6.6). Therefore onday 5, the daily FIEI index

associated with using the TF forecasts is significantly lower than that with the PDPs.

On day 11, the TF forecasts wrongly predicted the market price direction with respect

to the threshold for five hours. The PDPs, however, did so for only three hours (see
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Figure 6.7 and Figure 6.8). In other words, despite the higher MAPE of the PDPs than

the TF forecasts, PDPs have better predicted the relative direction of prices with respect

to the threshold; hence, the resulting economic loss of using the PDPs is lower on this

day. Note that both sets of forecasts could predict the relative direction of price with

respect to the threshold quite well on this day, when compared to day 5, resulting in

generally low economic losses and hence low FIEI indices.

For day 39, the daily MAPEs of the forecasts and the resultingFIEI indices are

presented in Table 6.4. Observe from this table that despitethe presence of 9.4% forecast

MAPE for the TF forecasts, the resulting daily FIEI index is 0%. This basically implies

that the relative direction of the electricity market prices with respect to the threshold is

correctly predicted by the TF forecasts, as demonstrated inFigure 6.9.

The six-weekly FIEI indices for the process-industry load are calculated, using the

operation costs given earlier in Table 6.3, and are presented in Table 6.5. The forecast

MAPEs are also presented in Table Table 6.5. Observe from this table that the overall

six-weekly FIEI index resulting from using the TF forecastsis 2%, half the FIEI value

associated with using the PDPs (4%); this is somehow consistent with the difference be-

tween the MAPEs of the two sets of price forecasts (16.1% and 40%). This improvement

basically implies that, on average, the economic loss associated with using the TF price

forecasts is half the loss associated with using the PDPs. For the studied process-industry

load, this is equivalent to savings of $77,220 per year.

The Water Plant

In the case of the water plant, two typical days, namely, day 5and day 39, are selected

for discussion. These days are specifically selected to showhow using an identical set of

price forecasts can result in different economic losses fordifferent customers.

The daily FIEI indices associated with using the TF forecasts and the PDPs for pump

scheduling on day 5 and day 39 are presented in Table 6.6. As per these results, the cor-
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Figure 6.5: Energy imported from the market by the process-industry load during day 5

based on PDP forecasts.
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Figure 6.6: Energy imported from the market by the process-industry load during day 5

based on TF forecasts.
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Figure 6.7: Energy imported from the market by the process-industry load during day 11

based on PDPs.



Chapter 6: Application of Price Forecasts to Short-term Planning... 152

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

53.7

100

150

Hour

P
ri
c
e

 (
$

/M
W

h
)

Process Industry Load

 

 
HOEP
TF Forecasts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

Hour

E
n

e
rg

y
 I
m

p
o

rt
 S

c
h

e
d

u
le

(M
W

h
)

 

 
Based on HOEP
Based on TF Forecasts

Figure 6.8: Energy imported from the market by the process-industry load during day 11

based on TF forecasts.
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Figure 6.9: Energy imported from the market by the process-industry load during day 39

based on TF forecasts.
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Table 6.5: The six-weekly forecasts MAPEs, and

the associated FIEI indices for the process-industry

load

TF Forecasts Pre-Dispatch Prices

FIEI (%) MAPE (%) FIEI (%) MAPE (%)

2.0 16.1 4.0 40.0

responding daily FIEI indices on day 5, are found to be 10.5%,and 11.5%, respectively.

These results imply that there is only one percentage point savings if the TF forecasts

are used for water plant scheduling, rather than the PDPs. Note in Table 6.4 that the

FIEI index improvement by using the TF forecasts is much moresignificant in the case

of process-industry load. Furthermore on day 39, the FIEI index associated with the

TF forecasts improves by 12.9% compared to that with the PDPsfor the water plant;

this improvement was 5.18% in the case of process-industry load (see Tables 6.6 and

6.4). These results highlight the fact that using the generated forecasts on these days has

caused different levels of economic loss on the water plant and the process-industry load.

In order to explain this difference, the nature of the water plant optimization problem is

examined next.

Table 6.6: The forecasts MAPEs for days 5 and 39, and the

associated FIEIs for the water plant

TF Forecasts Pre-Dispatch Prices

FIEI (%) MAPE (%) FIEI (%) MAPE (%)

Day 5 10.5 16.3 11.5 28.5

Day 39 0.7 9.4 13.6 15.6
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The solution of the water plant optimization problem is suchthat the pumping op-

eration is mainly scheduled during the low price hours rather than the high price hours.

For example, for a hypothetical two-hour planning period, assume that the actual hourly

prices are 10 $/MWh and 80 $/MWh, respectively. Assume furtherthat pumping of water

during a single hour can satisfy the total water demand. Regardless of how precise these

two prices are forecasted, as long as the forecasted price for the first hour is lower than

the forecasted price for the second hour, the pumping will bescheduled at the first hour.

Therefore, ability of a forecasting model to predict the general trend of price fluctuations

is an important and valuable feature in the case of the water plant, although it might be

highly inaccurate in point price forecasting.

The importance of trend forecasting for the water plant is further examined by pro-

ducing a fictitious set of price forecasts by adding $10/MWh toall actual hourly prices

over the 42-day period. The general trend of the fictitious forecasts and the actual hourly

prices will hence be exactly identical, although the fictitious forecasts will have a 6-week

MAPE of 23.4%. Using this fictitious set of forecasts for pumpscheduling over the six-

week study period results in a 6-week FIEI index of as low as 0.1%. This low FIEI index

supports the aformentioned argument that forecasting the general trend is more important

in the case of water plant scheduling.

The hourly electricity consumptions associated with the pumping schedules obtained

for day 5 by using the TF forecasts and the PDPs are presented in Figure 6.10 and Fig-

ure 6.11, respectively. Observe from these plots that, although the TF forecasts and the

PDPs are different in terms of point price forecasting, theyboth have predicted the gen-

eral trend of the HOEP fairly well. This in turn has resulted in the close FIEI indices as

discussed above (10.5%, and 11.5%). Similar explanation applies to day 39.

The six-weekly FIEI values associated with the TF forecastsand the PDPs and the

corresponding forecasts MAPEs for the water plant are presented in Table 6.7. Observe

from this table that the six-week FIEI index associated withusing the TF forecasts for
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Table 6.7: The bi-weekly and six-weekly forecasts

MAPEs, and the associated FIEIs for the water

plant

TF Forecasts Pre-Disptch Prices

FIEI (%) MAPE (%) FIEI (%) MAPE (%)

4.9 16.1 5.5 40.0

pump scheduling is 4.9%, versus the FIEI of 5.5% associated with using the PDP fore-

casts; an improvement of only 0.6% achieved. These findings further support the argu-

ment that a particular set of price forecasts may result in significantly different economic

impacts when used by different BEMCs.

The economic impacts of load forecasting inaccuracy have been previously addressed

for various supply-side entities [47, 48, 49]. These studies have been conducted in the

context of the vertically integrated power systems, under which energy utilities are re-

quired to optimally schedule their own resources to meet their demand. The economic

impact in these studies was defined as the difference betweenthe system costs had the

actual hourly loads been known, and the system costs when using the load forecasts.

The reported economic impact analyses show that while the savings associated with load

forecasting accuracy vary across the studied systems, a high linear correlation exists be-

tween the load forecasting error and the economic impact. Onaverage, improving the

load forecast accuracy by 1% has led to savings of about 0.3% of the total incurred

costs [48]. Considering the discussions presented in this section, such correlations is not

observed in the case of price-forecasting problem.

It is worth mentioning that if the price forecasts generatedfor the New England elec-

tricity market in Section 3.5.4 were used for scheduling thecase studies BEMCs, the

overall 4-weekly FIEI indices found for the process-industry load and the water plant
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would be 0.12% and 0.28%, respectively. This highlights thefact that operation plan-

ning based price forecasts is very efficient in markets wherethere is a high level of price

predictability.

6.5 Summary

In this chapter, scheduling the short-term operation of BEMCsby using electricity market

price forecasts is discussed. Next-day operation of two different case studies, i.e., a

process-industry load and a water plant, is formulated and optimal schedules are derived

to minimize their expected total energy costs. These two case studies have different

load management capabilities and represent a considerablenumber of BEMCs. The 24-

hour-ahead HOEP forecasts generated by the TF models in Chapter 3, which yielded

the lowest error measures, and the IESO-generated 24-hour-ahead PDPs, which yielded

the highest error measures are used as the expected future electricity market prices. The

economic impact of price forecast inaccuracy is quantified by introducing the novel FIEI

index.

The findings of this chapter demonstrate that electricity market price forecasts can

be effectively employed for short-term scheduling. However, sensitivity to price fore-

cast inaccuracy varies depending on the characteristics ofthe system under study. In

other words, economic impact of using a particular set of price forecasts for short-term

scheduling can significantly differ across various market customers; it can be high for

one customer and at the same time, low for another. This implies that “accurate” price

forecasting has different meanings for different market participants. Unlike the load-

forecasting problem, a linear correlation between the traditional error measures and the

economic impact of forecast inaccuracy is not found to existfor the price-forecasting

problem.



Chapter 6: Application of Price Forecasts to Short-term Planning... 158

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

50

100

150

200

Hour

P
ri
c
e

 (
$

/M
W

h
)

Water Plant

 

 
HOEP
TF Forecasts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1

2

3

4

Hour

E
le

c
tr

ic
it
y
 C

o
n

s
u

m
p

ti
o

n
 (

M
W

h
)

 

 
Based on HOEP
Based on TF Forecasts

Figure 6.10: Energy consumed by the water plant during day 5 based on the TF forecasts.
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Figure 6.11: Energy consumed by the water plant during day 5 based on the PDPs.



Chapter 7

Conclusions

7.1 Summary and Conclusions

This thesis concentrates on forecasting of electricity market prices and applying the price

forecasts for short-term operation planning of demand-side Bulk Electricity Market Cus-

tomers (BEMCs). The structure of a case market, which is chosento be the Ontario

electricity market in this thesis, is studied in detail, anda set of explanatory variable

candidates that may explain price behavior in this market isselected. Various linear and

non-linear models are developed to relate electricity market price behavior in Ontario

to these explanatory variable candidates. Forecasting models are also developed for the

day-ahead prices in three neighboring electricity markets, namely, New York, New Eng-

land, and PJM, and price predictability is compared across the studied markets. The

observed differences in the accuracy of the models developed for the market prices are

explained by conducting a comprehensive volatility analysis. The generated price fore-

casts are used for short-term scheduling of two typical casestudy BEMCs. Economic

impact of price forecast inaccuracy on the case studies is analyzed by devising the novel

Forecast Inaccuracy Economic Impact (FIEI) index.

160
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In Chapter 2, a detailed overview of the operation of the Ontario electricity market is

presented. Further in this chapter, the Ontario market outcomes, such as market prices

for energy and operating reserves and demand, are analyzed for the first four years of

market operation. The programs implemented by the Ontario Independent Electricity

System Operator (IESO) to improve market efficiency are alsodescribed in this chapter

and their effectiveness is discussed. This chapter provides a comprehensive insight into

the operational aspects of the Ontario electricity market.

In Chapter 3, a wide range of market data from Ontario and its neighboring electricity

markets are investigated and a final set of explanatory variable candidates which may

explain electricity market price behavior in Ontario is selected. Direct and indirect effects

of these variables on the Hourly Ontario Energy Price (HOEP)have been taken into

account in the process of variable selection. In addition, issues such as, availability of

explanatory variables before real-time and the choice of appropriate forecasting horizon,

that are of practical significance, are considered. The multivariate Transfer Function (TF)

and Dynamic Regression (DR) time series models are used to relate HOEP behavior to

the selected explanatory variable candidates. Two forecasting horizons, i.e., 3 hours and

24 hours, are considered for building the multivariate HOEPmodels, taking into account

the ability of market participants to react to price forecasts. Univariate Auto Regressive

Integrated Moving Average (ARIMA) models are also developedfor the HOEP. The

novel concept of Predicted Supply Cushion (PSC) is introducedand employed as an

explanatory variable candidate in this study, and the problem of multicollinearity among

the explanatory variable candidates is addressed by a two-step model building procedure.

In this chapter, the generated HOEP forecasts have significantly lower error measures

than any other available forecast, and several issues with significant practical importance

are discussed.

In Chapter 4, two non-linear modeling approaches, i.e., Multivariate Adaptive Re-

gression Splines (MARS) and Multi-Layer Perceptron (MLP) neural networks, are ex-

amined for HOEP forecasting. MARS models are developed for the HOEP consider-
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ing a variety of explanatory variables, and the 3-hour and 24-hour forecasting horizons.

MARS models are also developed based on the historical HOEP behavior in a univariate

scenario. Multivariate MLP networks are developed by considering numerous scenarios

in terms of MLP structure and inputs. The informative explanatory variables detected by

the TF, DR, and MARS models are examined as MLP inputs in identical scenarios. In

this chapter, the application and advantages of using non-linear MARS approach for price

forecasting are presented, and it is found that the other employed modeling approaches

outperform the MLP networks for HOEP forecasting.

In Chapter 5, a comprehensive price volatility analysis is carried out to explain the

high level of error in the HOEP forecasts and the differencesobserved in price pre-

dictability across the Ontario and its three neighboring electricity markets. Previously

reported volatility measures are extended and new indices are formulated based on his-

torical volatility and price velocity concepts. These indices are applied to the intra-day,

trans-day, and trans-week market price fluctuations to analyze the volatility of the studied

electricity market prices. The relatively high error levelof the HOEP forecasts obtained

in previous chapters, compared to the price forecasts obtained for other markets, is ex-

plained in this chapter by showing that the HOEP is significantly more volatile than the

other studied prices.

In Chapter 6, the application of price forecasts to short-term scheduling of BEMCs

is presented. Next-day operation of two case study BEMCs, i.e., a process-industry

load and a municipal water plant, is formulated and optimal operation schedules are

generated so as to minimize their expected energy costs. Thecase studies have different

load management capabilities and represent a significant number of small-sized demand-

side market participants. The HOEP forecasts generated by the TF models, which have

the lowest error measures, and the IESO-generated Pre-Dispatch Prices (PDPs), which

have the highest error measures, are used in the optimization models as the expected

future electricity market prices. Economic impact of usinguncertain price forecasts for

short-term scheduling is analyzed by devising the novel FIEI index. It is demonstrated
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in this chapter that a particular set of price forecasts may lead to significantly different

economic impacts for different BEMCs, and “accurate” price-forecasting has different

meanings depending on BEMCs’ characteristics.

7.2 Contributions

The focus of this thesis is on two main issues:

• Developing the most accurate electricity market price forecasting models that are

practically realizable and feasible from the participants’ viewpoint.

• Examining the application of price forecasts to short-termoperation scheduling of

BEMCs, and studying the associated economic impacts.

This research is novel because it deals with the practical implementation of price fore-

casting, and addresses the problem of short-term operationscheduling of price-responsive

electricity consumers within the context of competitive electricity markets.

The following are the highlights and main contributions of this thesis:

1. A unique and comprehensive overview of the Ontario electricity market is pre-

sented, providing a clear picture of the operational aspects and performance of this

market.

2. Forecasting models are developed by considering a wide range of publicly avail-

able data from the case market and its neighboring electricity markets. Various

important issues are taken into account when building the price models; these in-

clude market time-line and data availability before real-time, and the choice of

forecasting horizon based on the participants’ ability to react to the price forecasts.
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3. The linear multivariate TF and DR time series models are applied to the prob-

lem of HOEP forecasting, significantly improving the accuracy of HOEP forecasts

compared to other reported forecasts.

4. Well-established multivariate approaches, i.e., the linear TF and DR, and the non-

linear MARS and ANNs, are employed to relate HOEP behavior to abroad set of

explanatory variable candidates, demonstrating the high level of uncertainty and

the lack of reliable information content in the large set of public data available

on the Ontario electricity market. Furthermore, it is shownthat the final set of

informative explanatory variables, as well as model accuracy, varies by forecasting

horizon.

5. The problem of model-instability for the HOEP is highlighted, underlining the

difficulties of developing practical HOEP-forecasting tools.

6. The non-linear MARS approach is applied to electricity market price forecasting,

demonstrating its modeling advantages which are of significant importance in case

of model-instability.

7. A volatility analysis is conducted, demonstrating that the HOEP is significantly

more volatile than the prices in the neighboring day-ahead markets and showing

that it is among the most volatile electricity market pricesworldwide. Furthermore,

it is proved that out-of-sample forecast accuracy of a time series is affected by the

time series’ volatility. These observations explain the high level of HOEP forecast

inaccuracy and the differences observed in price predictability across the Ontario

and its neighboring electricity markets.

8. By considering two typical BEMCs with different load management capabilities,

it is shown that short-term electricity market price forecasts can be effectively used

for operation planning. Furthermore, by highlighting the technical differences be-

tween the two studied BEMCs, it is demonstrated that sensitivity to price forecast
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inaccuracy varies significantly for different market participants. The novel FIEI

index is also introduced in order to quantify the economic impact of price forecast

inaccuracy on the BEMCs.

9. While the focus of the mainstream price forecasting research is on improving elec-

tricity price forecasting accuracy in terms of traditionalerror measures, this work

examines how such improvements can help market participants with improving

their operation planning. It is argued that improving the accuracy of price fore-

casts in terms of traditional error measures (e.g., MAPE) does not necessarily al-

ways guarantee economic benefits for all market participants.

7.3 Directions for Future Work

Based on the research work presented and discussed in this thesis, further research may

be pursued on the following subjects:

• Designing new customer-specific forecasting models, and defining new error mea-

sures to assess and compare their forecast accuracy.

• Studying the application of price forecasts for short-termoperation scheduling of

other types of market participants, such as non-dispatchable small-sized hydro gen-

erators with limited hydro resources.

• Application of price forecasts for operation planning of price-setter market partic-

ipants.

• Scheduling market participants based on price forecasts ina two-settlement market

environment, considering different level of risks associated with each of the day-

ahead and real-time market prices.
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• Operation scheduling while revising the schedules based onthe forecasts obtained

by models with short forecasting horizons.



Appendix A

Sample MARS Models

The developed MARS model to forecast HOEP values during Week1 in SCN1:

HOEPt = 22.69 − 0.4950 max(HOEPt−1 − 90.82, 0)

− 0.1269 max(104.91 − HOEPt−169, 0)

+ max(HOEPt−24 − 23.49, 0)

− 0.1870 max(110.49 − HOEPt−49, 0)

− 0.1245 max(HOEPt−48 − 25.192, 0)

+ max(HOEPt−144 − 25.481, 0)

− 1.1766 max(HOEPt−1 − 49.23, 0)

+ max(HOEPt−1 − 30.14, 0)

+ 1.12 max(55.21 − HOEPt−120, 0)

+ max(HOEPt−121 − 33.21, 0) + ǫ (A.1)
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The developed MARS model to forecast HOEP values during Week1 with a forecast-

ing horizon of 3 hours in SCN2:

HOEPt = 61.6 − 0.5456 max(92.1 − HOEPt−1, 0) + max(x1,t − 21.22, 0)

+ max(HOEPt−120 − 97.11, 0) − 0.2651 max(94.73 − HOEPt−120, 0)

+ max(48.11 − HOEPt−121, 0) + max(x2,t − 20702.0, 0)

− 0.0012 max(21434.0 − x2,t−1, 0) − 0.0070 max(x2,t−25 − 19700.0, 0)

+ max(19501.0 − x2,t−25, 0) + max(x2,t−24 − 18201.0, 0)

− 1.8860 max(HOEPt−169 − 89.13, 0) + 1.2536 max(83.24 − x1,t−25, 0)

+ max(HOEPt−48 − 19.13, 0) + max(x1,t−24 − 56.2345, 0)

− 0.7416 max(HOEPt−144 − 69.7, 0) − 0.2110 max(HOEPt−120 − 57.41, 0)

+ max(HOEPt−144 − 58.5, 0) − 0.1010 max(HOEPt−49 − 16.86, 0)

− 0.4512 max(x1,t − 94.1, 0) + max(97.0 − x1,t−1, 0)

+ max(HOEPt−1 − 71.21, 0) − 0.4520 max(HOEPt−24 − 47.50, 0)

+ max(HOEPt−24 − 41.210, 0) + ǫ (A.2)



Appendix B

Data

Table B.1: The thermal and electrical demand values for the

process industry load

Hour Electrical Demand (MW) Thermal Demand (MW)

1 1.92 3.0

2 1.55 2.875

3 1.55 2.75

4 1.55 2.75

5 1.92 2.75

6 2.37 3.25

7 3.91 3.875

8 5.03 4.375

9 5.84 4.75

10 6.22 5.0

11 6.22 5.0

12 6.22 5.0

Continued on next page

169



Appendix B 170

Table B.1 – continued from previous page

Hour Electrical Demand (MW) Thermal Demand (MW)

13 5.47 4.625

14 5.47 4.5

15 5.84 4.75

16 5.84 4.75

17 5.84 4.75

18 5.47 4.375

19 5.03 4.25

20 4.28 4.0

21 3.91 3.875

22 3.1 3.75

23 2.73 3.5
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