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Coatings of poly(2-Wylpyridine) have been f o d  successfuly on various substrates 

in aqueous medium by electropolymerization of the 2-vhylpyridine monomer. The e f k t s  of 

various chernical and physical variables on the electropolymerization process have been 

studied. These include electro1yte pH, rnonomer concentration, operating temperature, 

methano1 content in the electrolyte, electrolysis duration, and nature and concentration of the 

supporthg elecbolytes. The polymer coating fomed was characterized by U.V.-visible, n-IR 

and 'H NMR spectroscopies. Polyrner composition, glass transition temperature and the 

presence of certain impurities were examineci using instrumental techniques. Coating adhesion, 

porosity, conductivity and corrosion resistance were also evaluated. Coating thickness and 

surface roughness distribution were measured quantitatively using confocal scanning laser 

rnicroscopy. 

The principal cont r i ions  of this research are the development of a successful method 

for the formation of poly(2-Wiylpyridine) coatings via electropolymerization and the proposai 

of a mechanism for the process. When protonated in an acid aqueous electrolyte, 2- 

Wiylpyridine can migrate and adsorb ont0 the cathodic surface during electrolysis. At a half- 

wave potentid of -1 .O V (SCE) or more negative, the protonated 2-vinylpyridine molecules 

can be reduced to fiee-radicals which then combine with neutrd fomed 2-vinylpyridine 

molecules to rom polyrner chains. The polymer f o d  can stiii undergo protonation in the 

acidic aqueous electrolyte and be reduced at more negative electrode potentials to produce 

poIymeric radiais. Frorn these polyrnenc radicais, highiy branched and crosslinked polymer 

chains are produced on the electrode surfaces. The value of electrolyte pH is cntical to the 



electropolymerization process and lies in a narrow range close to the pKa d u e  of the 

monomer so both protonated and neutral2-vinylpyridine are present in d c i e n t  amounts in 

the electrolyte. 

Cyclic potential sweep electrolysis jn the range fiom 4 . 7  to -2.5 V and at a scan rate 

of 30 mV/s was found to be suitable for 2-vinylpyridine elearopolyrnerization on mild steel 

substrates. Monomer concentrations between 0.2 and 0.3 M 2-vinylpyridine were found to 

produce the best coatings. A suitable range of methanol content in the electrolyte was famd to 

be between 10 to 25 vol %. An operating temperature between 20 and 40 O C  was found to be 

rnoa favourable for coating formation Higher operating temperatures (> 40°C) tended to 

generate low molecular weight polyrner, increasing the solubility of the coating poIymer in the 

electrolyte and leadiig to a thin coating. The relative importance of these operaîing parameters 

decreased in the foilowing order: monomer concentration > solution pH > methanol content in 

the electrolyte > operating temperature. Other operating parameters exarnined included 

electrolysis duration, which was found to &kt the coating thickness propodody during the 

fint 2 hours, but had little e f f i  on the coating thickness thereaffer. NI&C1O4 was found to be 

the best supporting electrolyte for the coating formation, however, its concentration did not 

affect the process sigruficantly. 

Poly(2-vinylpyridie) ccatings have dso been f o d  successftlly on various 

substrates, including zinc, lead, stainless steel, copper, bras  and graphite. ûther rnonomers 

have ben tried to fom homopolyrner coatings partly to test the proposed process mechanism 

for 2-Wiylpyridine electropolymerization. This research has resolved some of the experimental 

discrepancies previously reported in the literature. The results and conclusions from this work 



should contribute sipificantly to the fiindamental understanding of electropolymerization as 

weN as to practid aspects of the process. 
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CHAPTER 1 

INTRODUCTION AND RESEARCH OBJECTIVES 

1.1. Introduction 

The formation of organic and polymer coatings on conducting substrates has 

always been of great interest. The coatings can be applied for purposes of surface 

decoration, optical activity alteration, heat and Wctional resistance enhancement and 

corrosion protection (Leidheiser, 1979; Walter, 1986a and 1986b; Funke, 1987; Sekine et 

al., 1992; De Bruyne et al., 1995). Other important applications include improvement of 

interfaciahterlaminar shear strength and toughness of brittle composites (Subramanian 

and Jakubowski, 1978; MacCallurn and MacKerron, 1982; Chang et al., 1987; Iroh et al., 

1990 and 1991; Wirnolkiatisak and Bell; Iroh et al., 1993a and 1993b; Liang et ai., 1993; 

Iroh et al., 1994), as well as use in modifieci electrodes (Abruna et al., 198 1; Murray, 1984a 

and l984b; Hillman, 1987; Diaz, 199 l), rnicroelectronic devices and semiconductors 

(Belanger and Wrighton, 1 987; Billingham and Calvert, 1 989), matrices for incurporating 

electroactive groups at electrode airfices (Oyama and Anson, 1979a, 1979b and 1980; 

Sharp et ai., 1 985), chernid senson (Harsanyi, 1995) and polyelectrolytes (Tenenbaum, 

196 1; Oosawa, 1971; Nuyken, 1992). 

Originaily, organic and polymer coatings were applied manuaiiy or mechanically on 

substrates. However, rnanual or mechanical application of coatings had inherent 

disadvantages and gave rise to additional problems (Cooke et al., 1971). Currently, the 



principal mode of organic and polymer coating formation for protection purposes is the 

application of paint formulations based on synthetic polyrners, which are generally applied 

to the substrate by an electrophoretic deposition technique (Brewer, 1973). 

Electrophoresis was introduced industriaily during the 1960's and is now used world-wide 

due to its many advantages (Levinson, 1972). It involves the deposition of a pre-formed 

ionizable polymer on a conducting substrate f?om polymer solutions or suspensions by 

electrophoretic means. The object is dipped into a tank of soluble polymer and a current is 

passed through the system. The polymer is attracted to the article and forms a coherent 

protective layer. 

The electrophoretic technique requires that the polymer used in the process has 

good solubility, as weil as a reasonable viscosity and mobility in the media. These 

requirements often limit the technique. In addition the electrophoretic technique requires 

a very large amount of energy to deposit the coatings. Very high applied cell potentials of 

200-500 volts are necessary for migration and deposition of the polymer. The 

combination of these high voltages and the appreciable currents leads to a large Joule 

heating of the electrolyte. Consequently, constant cooling and temperature control are 

required during operation. The resulting coatings must be subsequently cured at elevated 

temperatures (> 200°C). Oae fiequent fault of coatings formed in this manner is the 

relatively poor adhesion to the rnetal surface. This arkes because attachent stems 

primarily from the flocculation of polymer micelles at the substrate-liquid interfkce without 

any preceding interaction on a molecular scale b e ~ e e n  the polymer and the substrates 

(Mengoli, 1979). 



Electropolymerization is quite difFerent from electrophoretic deposition (Teng et 

ai., 1977). In this technique, electrolysis is used to initiate the process with the monomer 

being polymerized in situ to a conducting surface. For this reason, the process is often 

referred to as electroinitiated polyrnerization. In contrast to the electrophoretic coating 

method, high potentials are not necessary for electropolymerization. It uses low molecular 

weight monomers that have higher solubility in the media, as well as more favourable 

viscosity and mobility than in the case of the electrophoresis process. Polymerization 

initiatioii can be directly controlled by electrolytic means. It also provides a possible 

method to control the propagation and termination processes. It is possible for the fomed 

polymer to have a controlled molecular weight and molecular weight distribution and a 

predetermined yield (Wïhnolkiatisak and Bell, 1 992). Chernical additives are not needed 

for initiation in this type of poiymerization, leading to a purer polymer product containhg 

no initiator fragments. This is a significant advantage for the polymer coating industries 

because initiator fragments are usually sites where degradation of the coatings first begins. 

Electropolymerization usually involves some specific interaction between the monomer 

and the electrode surface which lads  to better coating adhesion (Mengoli et al., 1979a). 

In addition, due to the use of monomers for in siru polymerization on the substrates, the 

monomer solutions with a relatively low viscosity c m  wet the substrates more easily than 

do polymer solutions and therefore can permit polyrnerization within crevices of the 

substrates, locking the polymer chains f i d y  in place (Lee and Bell, 1995a; Zhang et al., 

1996). A fùrther advantage of the electropolymerization process is that the high 

temperature thermal curing process cari ofien be avoided. Therefore, it is possible to 

obtain a polymer coating on a conducting substrate from Iow molecular weight precursors, 



fiee fiorn irnpunties in rnany cases by single electrochemical process (Garg et al., 1978). 

The process is usuaiiy operated under mild conditions and âorn a practicd standpoint 

requires ody simple industrial equipment similar to that used for electroplating. 

ElectropoIymerization is a relatively new technique involving aspects of 

electrochemical engineering, polyrner science, organic chemistry and coating/plating 

technology. The complexity and breadth of the subject have made it more difncult for 

systematic and comprehensive shidies to be done. Most of the research so far has focused 

on producing coatings and measuring their polymer and film properties (Meverden and 

Hogen-Esch, 1983; Seery and Amis, 199 1; Fe11 and Bohn, 1993; Yoshida et al., 1993; 

Hogen-Esch et al., 1995; Martin et al., 1996; Rafique et al., 1996). Relatively little 

research has been direaed at elucidating the mechanisms operating in this method 

(Fleischmann et al., 1983; Mengoli et al., 1983; Iroh et al., 199 1; Iroh et al., 1993a and 

1993b; Lee and Bell, 1995a and 1995b; Zhang et ai., 1996). This lack of understanding of 

the underlying mechanisms has contributed to poor quaiity coatings and poor 

reproducibility in some of the previously reponed work (Murray, 1984a and 1984b; 

Troch-Nagels et al., 1992; De Bruyne et al., 1995). 

Coating morphology analysis, including coating thickness and surface roughness 

measurements, is a very important aspect in the coating industry. Usuaily, various 

rnicroscopic techniques (e-g., scanning electron microscopy, scanning tumehg 

microscopy, atomic force microscopy, etc.), are applied for qualitative measurement of 

coating topology. There has been a lack of suitable techniques for quantitative 

measurement of coating thickness, which may have led to errors in evduating coating 

quality and to problems in applying the coatings. 



1.2. Research Objectives 

The primary objective of tbis project is to exploit and develop new electrochemical 

techniques for in sizu synthesis of polymer coa~gs on conduceing subsms  in aqueocs 

solutions. Poly(2-vinyipyridine) coathg formation on mild steel substrates by 

electroreduction polymerization is chosen as the system upon which to base the 

investigation. Eiec~0polymerizati011~ involving other organic monomers and substrates are 

to be extensions of this work. Investigation of the effects of experimental parameters on 

coarjng quality is &O a primary objective of the project. This is to be used to de termine 

the relative importance of the operating parameters and the optimum combination of the 

o p e r a ~ g  parameters. Further details of the poly(2-Wiy1pyridine)-mild steel systern will be 

studied and used to postulate a reaction mechanism for this electropolymerization process. 

Polymer cbaracterization is another important aspect of the research project. It cm 

be used to conhm the f o d o n  of the desired polyrneric materials and to help understand 

the mechanism of the electropolymerization process. The measurement of the composition 

and physical and chernical propemes of the coatings, as weil as quantitative analysis of 

coathg morphology (e.g., coating thickness and coating surface roughness) are also very 

important aspects of the research objectives. Successfd completion of the project is 

expected to contnoute signififantly to electropolymerization theory, as weU as provide a 

bais for practical appiicaaon of the technique. 



CHAPTER 2 

COATING FUNDAMENTALS 

2.1. Coatings and Coating Formation 

A satisfactory coating can be descnbed as a continuous, highiy adherent nIm of a 

uniform thickness over a substrate. There are many khds of coatings having different 

characteristics depending on the application. The coating must be converted to a dense 

and tight solid membrane. The effectiveness of a particular coating is very much 

determined by the overall coating process. In the following section, various coating 

formation processes are presented and their advantages and disadvantages are discussed 

(Dumey, 1984; Satas, 199 1). 

2.1.1. Coating Formation by Solvent Evaporation 

Coating formation by solvent evaporation, which in p ~ c i p l e  should be the 

sirnplest method, is far fiom simple to apply in practice. The formation of a coating does 

not commence until the evaporation of the solvent reaches an advanced stage and the resin 

molecules are brought into such close proximity that their mutual attraction causes them 

to codesce. Coating properties are influenced by the molecular arrangement or structure 

within the coating. A homogeneous, dense structure is promoted by a solvent that 

maintains maximum dispersion and mobility of the polymers during coating formation. Xf 

the solvent and polyrner are not well mixed and the polymer mobility in the solvent is not 



high enough, then resh precipitation may occur in the bulk solution and not on the 

substrate. The attraction between the polymer moleniles not only is limited to coatings 

produced fiom solution, but also is the basis of ali coatings, as weU as the force that binds 

the molecules together. 

If the solvent evaporates too rapidly when the coating is applied, the resin will tend 

to dty before it contacts the surface and overspraying wiIi result. Fast-evaporating solvents 

aiso elirninate any possibility of brushing. Alternatively, solvents that evaporate t oo slowly 

will cause very slow coathg formation. Slow evaporation generally produces sticky 

coatings with solvent being retained in the coating for a long penod of time, making the 

coating less water and chemically resistant. In order to obtain a strong, smooth and 

continuous resin coating, it is usually necessary to use a combination of solvents, which 

include active solvents, latent solvents and diluents. The active solvents are those which 

easily dissolve the resin and are primarily responsible for solvation. The Iutent solvents are 

less active, but stiii act as solvents, while the diluents are materiais which tend to soften 

the resin, but will not actively dissolve it. The aim in mOOng solvents is to provide for 

uniforni evaporation. The dEerent solvents evaporate at dinerent rates. The active solvent 

is usually the last solvent to leave the film, creating the conditions whereby the resin 

molecules orient themselves to form a smooth, clear, continuous film. One distinct 

advantage of the solvent evaporation method is that coating formation is fast and takes 

place in a single stage since the resin is a long-chah oligomer prior to solvation. Because 

these coatings are pemanently soluble in their own solvents, these coatings are generally 

easier to repair and maintain than therrnosetting or conversion coatings. However, it is not 

practical to use these coatings in any medium containhg their own solvents. Moreover, it 



is oflen more difncult to apply these coatings th= conversion coatings, whether done by 

air-spraying or by brushing. 

2.1.2. Coating Formation by Change-of-Phase 

Change-of-phase (or hot-melt) is a technique in which the resin is converted, 

usudy by heat, from a soiid to a liquid and then back to a solid. The principal materiais 

used in this process are asphalt and coal tan. The liquid resin cm readily be applied to a 

substrate by doubing, a process of brushing a material on a surface while it remains in a 

liquid state. For the interior of pipes, the hot-melt materids are often applied by 

centrifûgal force. The cornmon method of extemal application involves applying several 

pipe-wraps ont0 the liquid resin as the pipe revolves. 

The hot-melt technique is effective whenever a basic resin cm be converted 

(melted) to a liquid or semi-liquid form. Since no solvent or volatile materiai is involved, 

100% of the resin material is applied to the surface. Thick coatings are easily formed from 

the hot-melt materials and, when applied properly, the hot-rnelt materials should have no 

dficulty in settling on the surface of the substrate. However in practice, the liquid resin 

may cool rapidly at the substratdresin interface, resulting in poor adhesion. The formation 

of a good coating also depends on the condition of the substrate sunace, the control of the 

resin and substrate temperature, as well as the ambient humidity. It may also be difncult to 

ûpply a coating to an already coated surface. 



2.1.3. Coating Formation by Oxidation 

The fonnation of coatings by oxidation pnmarily evolves fiom dryîng oils which 

are naturd materiais of vegetable or fish origin, i-e., cornpounds of one molecde of 

g l y c e ~  and three molecules of long-chah fatty acids. The oils are applied in relatively 

thin fiims and are aliowed to stay in place until they have reacted with oxygen in the 

atmosphere long enough to become hard and dry. Oxidation of an oil can isomerize, 

polymerize and cleave the carbon-carbon chah, as well as form oxidation products. The 

steps involved in this type of nIm-formation include 1) an induction period in which little 

visible change in physical or chernical properties of the oil occurs while antioxidants 

present in the film are behg destroyed; 2) an increase in oxygen uptake and fonnation of 

hydroperoxides and conjugates; 3) the autocataiytic decomposition of the hydroperoxides 

to form fiee radicals; 4) the start of polymerization and cleavage reactions. Oxygen 

absorption reaches a maximum rate at about the time the film foms and then oxygen 

continues to bc absorbed, but at a much lower rate. 

Dryhg oils and oil-modified coatings can be applied very easily by either brushing 

or air spraying. Oil-based materials can wet substrate surfaces very easily to form 

sufficiently flexible coatings. These coatings generally have good weather durability and 

can provide protection for a number of years. On the other hand, they are not highly 

protective due to the relatively high water vapour transfer rate. The lack of resistance to 

alkali is another major deficiency of oil-based coatings, precluding application to any 

alkaline surface. Also, most oil-based coatings become brinle with aging. 



2.1.4. Coating Formation by Polymerization 

Polyrnerization is a reaction in which large moleailes are created from many s m d  

monomers. Normaily, it is a process which must be controlled carefuliy under strict 

conditions. Previously, it was not considered to be applicable to the in situ formation of 

coatings. The few exarnples of coating formation by polymerization actuaiiy entaiied 

cross-linking processes. Recently, successful film formation by electropolymerVation has 

been reported and will be discussed in detail later. 

Polyrnerization by cross-linking broadly includes many types of baked coatings 

such as those used on appliance surfaces. The polymerization takes place between a 

monomer and one or more dEerent types of polyrners to produce the cross-linked 

polymer coating. In this case, a rigid, three-dimensional molecular structure is created in 

situ to form a film which is insoluble in its own solvents and is not softened appreciably by 

heat. Cross-linked coatings are generally harder and more protective than oxidation 

conversion coatings due to greater chemical, water and solvent resistance. 

2.1.5. Coating Formation by Coalescence 

Coalescence of polyrneric particles is an important basis for coating techniques 

(Wicks et ai., 1992). In this case, the polymer is not in solution but rather present as a 

dispersion of insoluble polymer particles. M e r  application and loss of the volatile 

components, the particles coalesce to a continuous fi. Latex is the most common 

application of this technique. Because the viscosity of the dispersion is independent of the 

molecular weight of the polymer and depends primarily on the volume Fraction of the 

intemal phase and the packing fiaction of the particles, it is possible for the system to have 



low viscosity, with relatively high soiids content of high molecdar weight polymers. The 

hi& molecular weight polymers provide sufficient strength in the films for many 

applications without the need for cross-linking. 

When applying the coalescence technique for film formation, the operation must be 

conducted at a temperature higher than the glass transition temperature (TJ of the 

polymenc materials. This allows polymer molecules in the latex particles to be free to 

diffuse into neighboring particles so that the individual particles disappear in the coalesced 

film. Usually, it is necessary to emulsiQ a plasticizer into the latex to reduce the Tg of the 

latex polymer in order to permit film formation at a lower temperature. Unfortunately, this 

may introduce some impurities into the film and reduce the resistance of the coating to 

degradation. 

Sol-gel technology is another exarnple of coating formation by coalescence. It 

originally was a method of fabrication of high quality cerarnics and glasses. It involves the 

dispersion of colloidal particles in a liquid to form a sol and then the destabilization of the 

sol to produce a gel. The pnnciples and applications of sol-gel technology have been 

recently collected by Klein (1994). In recent years, this technique has been extended to the 

fabrication of films and fibers. Since the chernical reactants for sol-gel processing can be 

purified conveniently by distillation and crystallization, films of high purity can be 

fabricated by sol-gel processing. Chernicals used in film formation by sol-gel processing 

are dissolved in a liquid to form a solution. Since al1 the starting materials are mked at the 

molecular level in the solution, a highly homogeneous film can be expected. The pores in 

properly dried gels are otten extremely small since the components of a homogeneous gel 

are intimately rnixed. This allows lower processing temperatures to be used for sol-gel- 



derived ceramics. This can be impofiant in compositions which undergo undesired phase 

transitions or have volatile components, or which exist in structures which undergo 

undesired dfis ion or compositional changes at higher temperature. Another advantage of 

sol-gel processing is that, because of the solution form of the raw materials, trace elements 

can be easily introduced into the solution by adding the elements in the fonn of 

organometallic compounds or soluble organic or inorganic salts. Such trace elements can 

be important in adjusting the microstructure or in improvhg the properties of films. The 

viscosity, surface tension and concentration of the polyrneric solution can be easily 

adjusted. Large-area films of desired composition and thickness can be easily formed on a 

substrate of complex geometry. The methods of application of the film, including dipping, 

spinning, spraying or even painting, can be easily tailored to any specifk requirement. 

Films fomed by the sol-gel technique usudy have to be thermdy cured under high 

temperature (up to 1200°C)- Severe shrinkage and collapse of the films often occur during 

the pyrolysis. 

2.1.6. Inorganic Coating Formation 

Usually, inorganic coatings refer to zinc and silicate coatings fiom either a water or 

solvent base. The formation of a coating £iom zinc and inorganic or organic silicates 

involves a class of reactions dEerent from what takes place in the case of organic films. 

While the molecules of organic films are primarily made up of carbon atoms combined into 

long-chah linear polymers or cross-linked polyrners, the basic building blocks of inorganic 

coatings are silica, oxygen and Snc. In liquid form, they contain relatively small molecules 

of metdic silicates or organic silicates. These essentially monomenc materials are cross- 



iinked into a silica-oxygen-zinc structure. This occurs tbrough a chah of rather complex 

chernicd reactions, some of which take place rather rapidly whiie others proceed slowly. 

There are essentidiy three steps in the formation of inorganic coatings: 1) the 

concentration of the silicates in the coating by evaporation of solvent after the coating has 

been applied to the surface; 2) the ionkation of the zinc which initiates the reaction of the 

zinc ion with the silicate molecule to fom a zinc silicate polymer, 3) the completion of the 

film reaction over a long penod of t h e  by continued formation of zinc ions, which react 

to increase the size of the zinc silicate polymer and cross-link it into a very insoluble, 

resistant, three-dimensional structure. The principal method of application for inorganic 

coatings is by spraying. Curing is a crucial requirement for thk method. 

2.2. Coating Adhesion 

Adhesion is a criticai factor in the evaluation of coatings (Fowkes et al., 1981; 

Vakula and Pritykin, 1991; Wicks et ai., 1992) and determines whether the coating is 

merely a thin sheet of matenai lying on the substrate or an integrai part of the substrate. 

Three types of adhesive bonds are identified, namely chemical, polar and mechanical 

bonds, depending on the characteristics of the substrate and coating. Chernical adhesion, 

which is created by a chemical reaction between the coating and the substrate, is 

undoubtedly the strongest bond. Polar adhesion is considered secondary valence bonding 

where the adhesion occurs by way of secondary attractions between the resin molecules 

and the substrate surface microstructure. The adhesion strength is proportionai to the sixth 

power of the intemolecular distance, but does nct become effective until this distance is 



under 5 A (Federation of Societies for Coating Technology, 1978). Most of the adhesion 

of organic coatings is of the polar or secondary valence type: the resin molecules are 

attracted to the substrate and result in a coating. If the coating formation process is 

accomplished by a series of in situ chemical reactions on the substrate, the resin molecules 

cm react directly with the metallic species at the substrate. In this way, a primary valence 

bond (Le., chemical bond) between the resin coating and the abstrate can form, thereby 

increasing the coating adhesion. Coating formation by electropolymerization belongs in 

this category since the monomen are polymerized in situ on the substrates. 

Mechanicd adhesion is the type of adhesion associated with surface roughness 

resulting in anchor patterns. An anchor pattern is the surface roughness formed by peaks 

and valleys on the substrate. These can vary over a relatively wide range of depths. 

However, most important is the density of hills and vaileys which enhance the adhesion by 

an increase in surface area and actual roughness. Some coatings which are not strongly 

bonded or are thick require good surface roughness and a deep anchor pattem to obtain 

adequate adhesion. Most high-performance coatings obtain adequate adhesion with an 

anchor pattern between 1 to 2 Pm in depth. Such a surface roughness substantialiy 

increases the surface area over which the coating has an oppominity to bond (Snogen, 

1974). 



CHAPTER 3 

THEORY 

3.1. Chemistry of Vinylpyridine and its Polymerization 

3.1.1. The Structure and Properties of the Monomer 

Vinylpyridine is structuraily similar to styrene, but is based on the pyridine ring 

rather than the benzene ring. Although three kinds of vinylpyridines exist (as s h o w  

vinylpyridine denvatives are synthesized fiom these two compounds. 

2-(viny 1 pyridine) 3 -(Mnylpyridine) 4-(vinylpyridine) styrene 

Vinylpyridine is weakly basic. The nitrogen atom in the pyridine ring is 

electronegative, which results in the attached double-bond being polarized. It is soluble in 

cornmon organic solvents and slightly soluble in water. Some important physicd 

properties of vinylpyridines are s h o w  in Table 3.1. Vinylpyridines have a distinct and 

intense odour and show narcotic effects on rats and mice f i e r  administration via ingestion 

or inhalation. The cornpounds also cause irritation of the skin and mucous membranes. 

The toxicity of Cvinylpyridine is approximately twofold higher than 2-vinylpy~idine and is 

classified as a highly toxic material. Its safe exposure level in a workplace is 0.5 mglm3 

(Khan, 1989). As a result of their high tendency to polymerize, vinylpyridines must be 



stabilized for storage and ~ansportation. 

Vmylpyridines are g e m y  prepared by dehydrogenation of the corresponding 

alkyipyridme or by dehydration of hydroxpllqdpyridine (Rhan. 1989). Because of the 

presence of the nitmgen atom Li the p m e  ring, vinyipyridines can undergo a large 

numbcr of chernical reactions, e.g., oxihtion, hydrogenation, brornination, dimerizaûon, 

etc. (Giam, 1961; Tomcufcik and Starker, 1961). The electronegative ninogen atom c m  

atnact positive ions, makmg the whole molecule positively charged and, therefore, 

atmacteci to the negative pole in an electrk icld.. Although most of the pyridine derivatives 

cm participate in both aaodic oxidatim and cathodic reduction reactions, only cathodic 

reduction reaction has been reported (Toomey, 1984). More information on 2- 

vinylpyridine is available in the literature (Wall et al, 1951; Petro and Smyth, 1957; 

Luskin, 1974; Nuyken, 1992). 

3.1.2. Polymerization and Polymer Properties 

Table 3.1. Important physical properties of vinyipyridines (fiom Perrin, 1965; Khan, 1989; 

Nuyken, 1992) 

As a vinyl denvative with the electron-withdrawing pyriidine group attached to the 

double-bond, Wiylpyridine is susceptible to fiee radical and anionic polyrnerization. The 

Solubility in water 

(fi) 
4.92 

5.62 

under 736.6 mm Hg ' under 38 1 mm Hg. 

Type of 

Monomer 

2-Vinylpyrictine 

4-Vinylpyridine 

%' 

1 S495 

1.5499 

P K ~  

4.92 

5.50 

b.p. 

cc) 
79-82 ' 

65 * 

d(" 

0.9985 

0.9800 



polyvinylpyridines have similar properties to polystyrenes, but require a higher 

temperature for moulding. Due to the need for large amounts of synthetic mbber during 

World War II, polyvinylpyridines were needed to replace polystyrenes. This gave strong 

impetus to the shidy of the polymerization and copolymerization of vinylpyridines. 

Typical vinylpyridine polymerization processes include 1) radical polymerization 

with 2-methyl-5-vinylpyridine, initiated by potassium persuffate in the presence of anionic 

emulsifiers such as sodium lauryl sulfate and sodium laureate (Crescenti et ai., l965), and 

with 4-vinylpyridine initiated by potassium persulfate and sodium palmitate (Katchalslq et 

al., 1957), and 2) anionic polymerization with 2- or 4-vinylpy~idine initiated by n- 

butyiiithium (Matsuaki et al., 1977), 2-ethylpyridyilithium (Hogen-Esch and Jenkins, 

198 l), dibenzylmagnesium (Soum and Foutanille, 1980) or cumylbarium (Tang and 

Francois, 1983). No anempt at cationic polyrnerization has been reported (Nuyken, 1992). 

The polymerization process is complicated by side reactions of the initiators with polar- 

substitutes. The fkaction of the initiators producing grcwing chains is, therefore, low. Side 

reactions of the growing centres may also occur, particularly at higher temperatures. The 

rate of polymerization is low, especially for 2-vinylpyridine, mostly due to stenc effects 

and the effect of high-temperature side reactions. Electrochemicaliy initiated vinylpyridine 

polymeriration, which c m  overcome some of these shortcomings, was introduced in the 

early 1950s (Parravano, 195 1). One example of this is the electrochemicai anionic 

polymerization of 4-Wiylpyridine reported by Bhadani and Parravano (1970). A more 

detailed review of this area will be presented in a later section. 

Poly(2-vinylpyridine) is water soluble as a basic salt in the presence of 3 1% or 

more of the equivalent amount of hydrogen iodide. Wall et ai. (195 1) studied the electrical 



properties of poly(2-vinylpyridine) and measured a number of quantities, including the 

transference number of the polyion, the number of equivdents of polymer trawported per 

faraday, the fiaction of iodide ions associated with the polyanions and the overd1 degree 

of ionization of the polymer. They also found that when hydrogen ions were added, the 

polymer accumulated a positive charge and the polycation migrated toward the cathode. 

Viylpyridine polymers have been used as carriers in oxidation and reduction reactions. 

The presence of the tertiary Ntrogen makes the polymers a convenient starting point for 

the preparation of cationic polyelectrolytes. They are dso very important in applications 

such as polymeric reagents and in elearical applications. The presence of the weakly basic 

nitrogen in the ring makes vinylpyridine polymers usefil in flocculation and adsorption of 

metd ions for such applications as waste water treatment (Funt, 1991). Recently, Sekine 

et al. (1992) reported that poly(2-vinylpyridine) coatings fomed by electropolymerization 

provided supenor corrosion protection. More detailed discussion of their findings d l  be 

given later. 

3.2. Principles of Electropolymerization 

3.2.1. ElectrochemicaI Techniques for Electropolymerization 

3 -2.1.1. Linear Sweeo Voltarnmety 

Linear sweep voltarnrnetry is a popular technique for electrochemical studies. It 

has proven useftl in obtaining Uiformation about complicated electrode reactions (Bockris 

and Reddy, 1970; Noel and Vasu, 1990; Newman, 1991). It is performed by applying a 

triangular potentiai wave to the working electrode with respect to a reference electrode. 



Considerable Lifonnation can be obtained fkom a qualitative inspeaion of the obtained i-v 

diagram (voltammogram). It can indicate the half-wave potential of the concemed 

reactions, the diffusion limiting current (or the peak current) of the particular syaern, the 

reversibility of the reactions and the possible occurrence of a sequence of electron transfer 

steps. Analytical expressions relating peak current and peak potential have been derived 

for a number of simple systems. Many of these are given by Bard and Faulkner (1980). 

In application of voltammetry to electropolyrnerization, it has been found that 

sometimes more than one current wave appears dong the anodic or cathodic potential 

sweeps of the voltammograms. Some recent examples inclsde the electropolymerizations 

of ferrocene and cobaltocene electrode films (Nishihara et al., 1987), acrylamide (Hacioglu 

et al., 1989), maleic anhydride in an acetonitde-dimethyformamide mixture (Akbulut and 

Hacioglu, 1991) and of aiiylphenylether in acetonitrile (Sen et al., 1995). These multi- 

waved voltarnmograrns indicate that at least one other electron transfer reaction is 

o c c u ~ g  &er oxidation or reduction of the monorner. This phenornenon has not 

attracted enough attention. 

3 -2.1.2. Chronoamperometric Electrol~sis 

Chronoarnperometric electrolysis (also called potentiostatic electrolysis) is 

conducted with a three-electrode system. The potential between the working and 

reference electrodes is maintained by a potentiostat (Bard and Faulkner, 1980). An 

electronic feedback circuit continually compares and controls the working electrode 

potential with respect to the reference electrode. Several factors should be considered in 

choosirig the appropriate electrolysis potential, including the threshold reaction potential 



determined by voltammetry, the potential at which interferhg reactions may occur and the 

desired rate of the electrochernicai reaction. Anaiytical expressions relating current and 

potentiai for some typical chronoarnperometric systems are available in the literature (Bard 

and Faulkner, 1980). 

3.2.1.3. Galvanostatic Electrolysis 

Galvanostatic electrolysis (dso called constant current electrolysis) is carried out 

by applying a constant current between the working and auxiliary electrodes using a 

galvanostat. Only a simple, two-electrode configuration is required for galvanostatic 

electrolysis. Analytical expressions relating potential and current for some simple systems 

are available in the literature (Bard and Faulkner, 1980). The galvanostat ensures a 

constant current density and thus a controlied rate of the electrochemicai reaction. The 

Faradaic efficiency cm be calculated directly for this type of electrolysis. The total charge 

passed can be calculated directly since the produa of current and t h e  can be obtained 

without having to do a separate measurement. However, as the reaction proceeds, the 

potentiai on the working electrode may change, new electrochemicd processes may occur 

at dEerent potentids and a change in the composition or character of the product rnay 

result . 

3 -2.1.4. Cvclic Potential Sweep Electrolvsis 

Cyclic potential sweep (CPS) electrolysis is an extension of the 

chronoarnperometric method. In this technique, the potential is cyclicaliy scanned between 

fixed iimits. If the rate of mass transport to the electrode is insufficient to maintain a 



steady concentration of reactants during regular potentiostatic electrolysis some 

undesirable effects may be produced. The morphology of the formed coating may change 

and secondary reactions may be favoured. CPS electrolysis is a method of intempting or 

modifjing the pattern of imposed potentials to minimize these effects. Cycling the 

potential of the system provides an oppominity for mass transport to minimize 

concentration polarization and provides a lower average curent density for the process 

(Funt, 1991). A lower current density can reduce the possibiiity of secondary reactions 

and lead to more uniform coatings. The use of CPS to conduct electropolymerization has 

been reported (Abruna et al., 198 1; Nishihara et al., 1987; Ohno et al., 1990). Its speciai 

features for studying electropolymerization have been surnmarized by Funt (1 99 1). 

3 -2.1.5. Current Reversal ElectroIvsis 

Current reversal electrolysis is a galvanostatic technique in which a senes of 

current pulses (with different current values) are applied to the electrolytic system. It 

permits good control of the initiation, propagation and termination steps in polymerization 

and consequently produces a polymer with controlled rnolecular weight and molecular 

weight distribution, as well as predetermined yield (Ogurni et al., 1976; Mano and 

Calafate, 1983; Ruckenstein and Park, 1991; Dujardin et al., 1986; Garcia-Camarero; 

1990; Funt et al., 1986). Such a method is particularly appropriate for a polymerization 

process in which chah termination does not occur readily (e.g., ionic polymerization). 

Current reversal can be used to form polymer coatings at both electrodes and to minimize 

the effects of concentration polarization due to the depletion of reactions at the electrode 

(Funt, 1991). This last effect is useful in ail deposition processes for producing uniform 



and compact coatings. An example of this kind of technique is pulse plating. Some good 

review papers are available (Devaraj et al., 1990). Current reversal electrolysis can also be 

used in electropolymerization to study accurately the Metirne of the chain radical (Bhadani 

and Kundu, 1984; Iroh and Labes, 1992). 

3.2.1.6. Constant CeIl-Potential Electrolvsis 

Constant cell-potentid electrolysis is canied out by applying a constant potential 

between the working and auxiliaxy electrodes using a power source. Only a simple, two- 

electrode configuration is required for this operation. However, no information of any 

individuai electrode potentid can be obtained dunng the electrolysis. As the readon 

proceeds, although the ceil potential is kept constant, the potential on the working 

electrode may change, and new electrochemical processes may occur at the working 

electrode and a change in the composition or character of the product may result. This 

technique is popularly applied in manufacturing processes of well-studied systems in the 

electrochemical industry. It has been applied for electropolymerization as weil (Teng et al., 

1977; Sekine et al., 1992). 

3.2.2. Electroinitiation and Polymerization 

Electropolymerization is a process in which an initiator is generated in siru by an 

electrochemical reaction. It is different fiom an electrochernkd synthesis since the amount 

of monomer polyrnerized is not in a stoichiometric ratio with the arnount of electncal 

charge passed. The ways in which an electrochemical system can be employed to perform 

a polyrnerization process can be classified according to the mechanisms of the 



polymerizatîon process: a) fke radical polymeriza~n, b) anionic polymerization; 

cationic polymerization and secondary groups: d) organometaiiic species-induced co- 

ordination polymerization and e) g r o u p - d e r  polymerization (Funt, 1991). The 

initiators of polymerization can include the monomer molecules, supporting electrolyte 

ions, solvent molecules, some impinities in the system or any species deliberately added to 

the electrolyte (Dey and R u a  1974; Akbulut et aL, 1975; Subramanian and Jakubowski, 

1978; MacCallum and MacKemn, 1982; Lee and Be& 1995a). Sometimes, it is difficult 

to d i s~gu i sh  between these possiUties until the role played by every species present in 

the ekctrolyte is carefully investigated and a detailed mechanism of the process is 

thoroughly understood (Funt, 199 1; Odian, 1991; Rosen, 1993; Ling et al., 1997). 

3 -2.2.1. Free Radical Polvmerization 

Free radical initiation was the h t  recognized electropolymerization reac tion 

(Wion, 1949). The h e  radical initiators can be generated irreversibly at the cathode by 

reduction of hydrogen ions adsorbed on the elecnode surface fkom an aqueous solution 

WO)a + ë -+ &O + GO* (3- 1) 

or by reduction of protonated monomer species adsorbed on the cathode surface 

 MOI+ ë A (Hm1 (3-2) 

Since the radicah are normally adsoràd on the elec~ode surface, they are presented in the 

above equêtions with the subscript ad. However, this subscript wiii be omitted h m  the 

remainder of this work for the purpose of sirnplicity. 

Sometimes when conditions allow, a fke radical initiator can also be generated by 

activation of a ndox cataiyst 



~ e ~ '  + e- + ~ e ~ '  (3.3) 

Fe2+ + H202 + Fe3* + .OH + -OH (3 -4) 

or by direct reduction of a peroq compound 

RzOz + e' + RQ' + RO' (3 -5 )  

Free radical initiators can also be generated at the anode by oxidation readions, e.& 

anodic dissolution in the presence of peroxy compounds 

Fe + ~ e ~ +  + 2e- (3 -6) 

~ e ~ '  + &O2 + ~ e ) +  + 'OH + -OH (3 -7) 

or by the Kolbe reaction 

CH3COO- -+ Cfi' + CO2 + e- (3-8) 

Considenng the initiation process in which a monomer molecule is directly 

involved (reaction 3.2), the initiation rate v can be expressed in terms of the current 

(Shapoval and Gorodyskïi, 1973): 

where i is the initiation current density, n is the electron transfer number and ofien equals 

1 in an electropolymerllation process, F is the Faraday constant, a is the transfer 

coefficient, q is the electrode overpotential, and f is a combination of ~araday constant, 

molar gas constant and operating temperature (= F/Rï). 

The radicals may imrnediately react in one of three ways: 

1) recombination with each other at the electrode surface: 

m r + m  -% HM-MEI 



at a rate of 

vi = k 2 W 1 2  

2) combination with the generated hydrogen radiais (H3 at the electrode surface: 

at a rate of 

VÎ = k ~ m ] [ H . ]  (3.13) 

The consequence of the reactions (3.10) and (3.12) is the so-cailed cage elyct .  

3) reaction with a neutral monomer to initiate the polymerization 

W + M  k4,HM-h.I' 

at a rate of 

v3 = bW1M 

Thus, the actual polymerization rate depends on the rates of reactions (3.2) and (3.14), 

which in tum are determined by the overpotential q the monomer concentration and 

the active radical concentration [W]. The yield, of the polymer can then be written, 

provisionaily, as the ratio of the rate of reaction (3.14) to the sum of the rates of the 

paraliel reactions (3.1 O), (3.12) and (3.14): 



Equation (3.18) indicates that for an eiectroreduction polyrnerization @Re) process, the 

polymer yield dccnasts as the h radical concentrations increase, while the yield 

inmases with a rising monomer concentration For an eiectmolcidation polymerization 

@OP) process, a corresponding relationship can be obtained with a similar analysis. 

Researchers originally believed that only a srnail amount of elecaicity was required 

to initiate the polymexization in an elecaopolymerization process. The polymerization 

would then proceed continuously. However, the actual processes are more complicated, at 

least in a fiee radical-inih'ated electropolymerization process. The strong cage effect (e.g., 

reactions 3.10 and 3.12) would conmme a large arnount of fhx radicals generated and 

cause a very low initiation efEciency, especially for an elecaopolyrnerization coating 

formation process when the reactions occur in the close vicinity of the electrode surface. 

Therefore, a much larger amount of electricity (than the theoretically calcuiated arnount) 

has to be provided cont8iuously for elecmlysis throughout the elec~opolymerization. In 

addition, some side reactions (e-g., hydrogen evolution and/or subs trate oxidation) may 

also occur on the electrode surface and conmibute to the process current. Chain aansfer 

reactions may occur in the process and affect the process kinetics. Aimost anything may 

act as a c h a i . - m e r  agent under the appropriate conditions, including the initiators, 

supporting electmlytes, solvent molecules, monomers and inactive polymer chains. The 

effect of dissolved oxygen in the electrolyte is another complicating factor for an 

elecaopolyrnerization process. It can affect a process either as an initiator or an 

inhibitor/retarder, or as both at the same the .  On the other hancl, the post-polymerization 



after the cessation of current flow can infïuence the yieid of a electropolymerization in a 

diEerent way, Le., produchg mon polymer products with less electricity consumption 

(Ogurni et ai., 1976; Funt, 199 1; Iroh and Labes, 1992). Last but not least, a coatkig 

formation process is différent h m  bulk polymerization. In a coating formation process, 

some portion of the fonned polymer deposits on the electrode surface while another 

portion rnay not r e h  on the surface but dissolve in or precipitate out of the electrolyte. 

This win surely cause an error in estimation of the yield of polymer products on the basis 

of a weight change measuremnt of the coating samples. Due to the complexity of an 

electmpolymerization process and the lack of knowledge of its detailed mechanism, the 

signiiicance of any theoretical analysis of the process kinetics using the above equations 

(3.1 to 3.18) is limited b r n  a quantitative point of view, although it can sti l l  be insmctive 

b m  a qualitative point of view. 

3.2.2.2. Anionic Polvmerization 

The cathodic reduction of a supporthg electroIyte followed by the interaction with 

monomer molecules or the direct electrochemicaî reduction of the monomer molecules can 

form anionic radicals and lead to the initiation of anioniç polymerization (Morton 1983; 

Fetters, 1984). In this type of polymerization, each elecuon msferred at the electrode 

produces a single chah The chain can grow on electmdes or desorb from the electrode 

surfaces (due to the repulsion h m  the negatively charged elecmdes) and propagate in 

the bulk solution Each chah grows until the monomer is exhausteci in the medium, 

Ieaving behind a living chain-end. This chah can react further with additional monomer or 



with a new monomer added to the reaction medium, uniess some temllnator in the 

medium reacts with the chah and ends the process. 

If the electron affinty of the cation of the supporthg electrolyte is greater than 

that of the monomer, the cation will be reduced first at the cathode. The reduced species 

may react with the monomer to form species capable of initiating M o n k  polymerization: 

S' + e' S (3.19) 

where S denotes the supporting electrolyte and M is the neutral monomer. The anionic 

radicals can combine with each other to form a di-anionic diradical: 

w+M-A,-W 

which cm combine with a neutral monomer to form a trimer: 

and so on. The rates of the various stages in the process are 

VI = ki[s7e'- - k2[s]e('"* (3 -23) 

Y = k [ S ] M  - k<[S?LM] (3.24) 

a = k5 W12 (3 -25) 

The rate of the electrode reaction depends on the cathodic overpotential and very little on 

the concentration of the supporting electrolyte since S' is regenerated through interaction 

with the monomer (reaction 3.20). The efficiency of initiation, which may be measured by 

the forward rate constant k3 of the reaction (3.20). is determined by the difference in 

electron affinity between S and M. This quantity is constant for each S-M pair. 



If the half-wave potentiai for redudion of S' is more negative than that of the 

monomer, electropolymeriration will be initiated by direct reduction of the monomer 

molecule to the anion radical 

M + e - c , W  (3.26) 

that can then undergo initiation and propagation via reactions (3.2 1) and (3.22). The rate 

of the electrochemicai reaction 

v4 = k , ~ e ' ~  - k@A-]e""* (3 -27) 

is proportional to the monomer concentration and depends strongly on the cathodic 

overpotential 7, assuming that ks is small. The rate of dimerkation of the anionic radicals 

via reaction (3.25) is Iimited by the rate of anion radical formation and by Coulombic 

repulsion. The rate of reaction (3.22) which represents polymer chah growth is given as 

vs = ks [%--w]pfl (3 .28) 

and is determined by the initiating dianion and the monomer concentration. 

The actual kinetics of an electropolymerization process is much more complicated 

than the above description. For exarnple, an anionic process prefers an aprotic medium 

and requires s t ~ g e n t  material purity, in particular exclusion of proton-donating impurities 

d u ~ g  the course of the reaction. A smail amount of proton-donating impurities (e-g., 

moisture) cm affect the process kinetics significantly. The anion radicais, especially the di- 

anion radicals, are veiy likely repelled by the cathode surface. This might prevent a 

polymer coating from forming even if polymerization occurs. On the other hand, under 

such conditions, a remarkable degree of control over the rate of reaction and the product 

composition can be exercised. Combined with proper electrochemicai techniques, 

polyrners with a controlled molecular weight and molecular weight distribution and 



predetennined yield can be produced. Therefore, an accurate process kinetic description 

now d l  depends on the experimental results. No reliable theoretical description is 

available yet. 

3 -2.2.3. Cationic Pofvmerization 

The electrochemical oxidation at the anode produces active cation radicals that can 

initiate polymerization. The oxidation of a supporting electrolyte containhg anions such as 

BF4- or CIOr-, can form radicals such as BF3' or CIO:, which are common initiators of 

cationic polyrnerization. The suggested mechanism of cationic initiation involves anodic 

oxidation of a supponing electrolyte anion (e-g., oxidation of CIOr- to form a CIO; 

radical) 

~104- , CIO: + 6 (3 .29) 

and then the interaction between the radica.1 and the monomer on the electrode surface to 

form the carbonium radical nii' ' 

CIO; + M k2 , CIOC + M" (3.30) 

The rate of such an initiation process is given by the following expressions 

VI = ki[CIOJ e"** (3.3 1) 

v2 = k2[C10; ]~  (3 .32) 

In the steady state, the overall rate of polymerization is determined by the rate of the 

electrode reaction, VI ,  which varies exponentially with the electrode overpotential. It also 

depends on the monomer concentration and the concentration of perchlorate ion, which 

can be regenerated by reaction (3.30). 



A second possibility can occur if the anodic oxidation of the monomer takes place 

at a less positive electrode potential than that required for reaction (3.29). In this case, 

direct anodic oxidation of a monomer molecule 

M k , ~ + e -  (3.33) 

can take place. Its rate 

(1-)nfi( 
VI = G[M] e (3 -34) 

depends on the monomer concentration and the electrode overpotential. 

Although the possibility of the electroinitiation of cationic polymeriration has been 

demonstrated and explained theoretically, it has been observed in only a few cases with 

monomers having electron-nch substitut es adjacent to the double-bond (Breitenbach and 

Sma, 1962). The a m a i  kinetics of a cationic polyrnerization process is generally much 

more complicated than that descnbed above. It is strongly affected by the ionic 

environment of the reaction system, similar to that in anionic polymerization. Rates of 

polymerization differ considerably in various solvents. Differences in the nature of the 

electrode substrates also affect the rate of processes. Chain transfer may become a 

dorninating process when conditions are appropriate, and limit polymer chah growth and 

thus, the molecular weight of the product. 

3 -2.2.4. 2-Vinvlpyridine Polvmerization 

The presence of electronegative nitrogen and the attachent of a double-bond at 

the O-position of the pyridine ring introduces unique and complicating factors to 2- 

Mnylpyridine polyrnerization. Chemically initiated Zvinylpyridine polymerization can 

proceed by either a free radical mechanism or an anionic mechanism (Leonard, 1971). For 
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3.2.3. Reaction Medium 

In an electropolymerization system, the reaction medium always includes a solvent, 

supporting electrolytes and electrodes. Each of these components has a arong influence 

on the polymerization mechanism and product quality. 

3 .2.3.l. Solvent 

The choice of solvent influences rnany aspects of the electropolymerization 

process. Muhial solubility of the monorner and supponing electrolyte is the basic 

requirement for an appropriate solvent. In addition, the solubility of the polymer coating 

must be considered. A maximum solubility difference between the chosen monomer and 

the corresponding polymer is oflen preferred. The solvent should not favour the 

dissolution of the coating over its formation. The solvent must be chemically compatible 

with the polymerization reaction, e.g., proton-donating solvents must be avoided for 

anionic polymerization and proton-accepting solvents must be avoided for cathodic 

polymerization. Solvents such as CC4 that are prone to chain transfer should not be used 

if high molecular weights are desued. Solvents also influence the rnorphology of polyrner 

chahs, polymer coating thickness and uniformity. Some solvents favour chah extension, 

while others enhance the intrachain attraction, and therefore, produce a poiymer with a 

tightly coiied stnicture. Moreover, it is important for the soivent to remain stable during 

an electropolymerization process. Solvent dissociation by reduction or oxidation reactions 

before the desired electroinitiation reaction occurs should be avoided. 

Water is aiways found to be a good solvent for obtaining polymer coatings. More 

recently, the awareness of the environmental problems associated with disposing of 



organic solvents has promoted the investigation of systems requinng little or no organic 

solvent. Besides its practical advantages with respect to cost and environmental concems, 

water has a high surface tension and can enhance physical adsorption of the dissolved 

monomers on electrode surfaces. This favours the formation of coatings with good 

adhesion to substrates. The addition of dcohol to water is sometimes necessary to 

enhance the solubility of the monomers while maintaining a low solubility for its 

corresponding polymer. Methanol is particularly suitable for this purpose. It normaily has 

a good afIinity with monomers and incompatibility with the corresponding polyrners. At 

the sarne time, methanol is unlikely to affect the adsorption of the monomers on the 

electrode surface significantly due to its relatively low ability to adsorb. The 

watedmethanol ratio wiil afect the properties of the synthesized polymers. An increase in 

the amount of methanoi will lead to coatings consisting of higher molecular weight chahs. 

Some good research reports of the effects of solvedwater ratio of the electrolyte on the 

polymer coating formation by electropolymerization are available (Liang et al., 1993; Iroh 

et al., 1993a and 1993b; Lee and Bell, 1995b). Although it is possible for an 

electropolymerization process to be cmied out by a fiee radical or an ionic mechanism, 

the use of water as the primaq reaction medium likely limits the polymenzation to a f?ee 

radical mechanism (Iroh et al., 199 1; Iroh et al., 1994). 

3.2.3 -2. Supportin? Electrolyte 

Basically, a supporting electrolyte serves to increase the condunivity of the 

electrolyte by providing a relatively high ionic concentration. A relatively high 

concentration of the supporting electrolyte can swamp the eEects of migration of minor 



species to the electrodes. Consequently, in a quiescent solution, df is ion to the electrodes 

becomes the only significant means of mass transport for species present in small amounts. 

It also allows the interpretation of electroanaiytical data easier by s impwng the mass 

transport equations (Bard and Faulkner, 1980). In the area of electropolymerization, it has 

also been found that supporting electrolytes are sometimes directly involved in the 

electroinitiation process (Shapoval and Gorodyskii, 1973; Funt, 199 1). It has even been 

reported that no detectable polymerization can occur in the absence of a supporting 

electrolyte (Garg et al., 1978). 

In electropolymerization, the solubility of the supponing electrolyte and the range 

of potential over which the suppoiting electrolyte is stable emerge as the major criteria for 

the selection of the supporting electrolyte. KCI is one of the most cornmonly used 

supporting electrolytes, although the CI- ions may sometimes cause problems such as 

generating CI2 on the anode surface or complexing with cations in the solutions. From this 

point of view, the relatively large ions (e-g., perchlorate anion and ammonium cation) are 

stable over a wider range of elenrode potential and are unlikely to cause complexaiion. 

Tetraalkylammoniurn perchlorate is often used in reiatively non-polar systems (Funt, 

1991). It not only increases the conductivity of the electrolytic solutions, but also 

increases the hydrogen overpotentiai by adsorbing on the electrode surfaces and forming 

so-called chicken-fat efectrode. 

3 -2.3 -3 .  Substrate 

The basic requirernent for a subarate in an electropolymerization process is that it 

should not react with the solvent or the solute species. It is also important for the 



subsûate not to uedergo duction or olridation reactions before or during the elecmlysis. 

The elecaode potential at which elecûopolymerization takes place varies depending on the 

electrude m a t d  This is diffèrent for an EOP pmcess and an ERP process. For an EOP 

process, the concem is that the metal substrate rnay be oxidized, suggesting that noble 

metal is a preferred candidate. The an& limir of metal substrates in aqueous systems 

inmases in the following order (Subramanian, 1979) 

Zo+Fe-+Ni+Pb+Ag+Pd+Pt- tAu 

For an ERP process, ondation of the metal is not a problem, but hydrogen 

evolution at the cathode becomes a concem Genedy, more ekctronegative metais are 

easier to coat. Also, metal substrates having a higher hydrogen overpotential can be 

coated more easily. This is probably due to the adsorbed hydmgen obstructing the 

formaMn of a polymer coating. The cathodic limit of the metal substrates in aqueous 

solutions, considering their hydrogen overpo t e n a  inmases in the folio wing order 

(Subramanian, 1979) 

Pd+Au+Pt+Ni+Fe+Cu+Sn+Pb+Zn+Hg 

The rno$hology of an elecaode surface can also infiuence the coating formation 

process: porous surfaces may be coated more easily than smooth ones, apparently because 

of the greater surface reactivity of porous surfaces. 



CHAPTER 4 

ELECTROPOLYR,IERIZATION - LITERATURE REVIEW 

4.1. Electropolymerization 

Electropolymerization has been observed for quite some tirne in the practice of 

organic electrochernistry. In 1939, Wilson pointed out that reduction by alkali metals 

occurred in the sarne way as reduction at a cathode sufice and consequently suggested 

that electrochernical initiation of polymerization was possible. Ten years later, Dineen et 

al. (1949) and Wilson (1949) observed that unsaturated cornpounds undenvent 

hydrogenation with great difficulty at a rnercury cathode in acid medium, whereas they 

were rapidly polymerized. However, the use of electrochemically generated radicals to 

initiate polymerization is a rather recent innovation (Mengoli and Tidswell, 1975). 

Some important advantages of electropolymerization were recognized at the 

beginning of its development (Shapoval and Gorodyskii, 1973). Since the species 

responsible for initiating polymerkation are formed through an electrochemical reaction, 

the rate of initiation can be  controlled easily by varying electrochemical parameters such as 

applied current density or potentid. Electropolyrnerization processes can often be carried 

out under rnild conditions and the polymers produced will not contain initiator fragments 

which can cause degradation of the polymer coating. Electrochemical initiation may also 

influence polymer chain growth, for instance in the orientation of molecules 

(stereoregulation) (Fettes, 1967; Tomilov, 1968). 



In the early work on electropolymerizatio~ attention was focused on the 

polymerization processes that performed in the bulk solutions (Funt, 1968; Yamazaki et 

ai., 1968). During the electropolymerization, however, it was often noticed that some 

polymer films formed on the eIectrode surfaces, which were considered to be undesirable 

side reactions. These films changed the electrode potentials in an erratic manner and made 

it dZEcult to study the process mechanisrns. This aarted the research into the 

characteristics of electrochernicaily deposited polymers on rnetal surfaces. This was found 

to be a very complicated research area, given different monomers, reaction circumstances 

and the variety of electrode matenals. Aithough it was claimed that any electronicdy 

conducting matenais (metallic or non-rnetallic) could be coated, only noble rnetals, such as 

platinum (Akbulut et al., lPÎj), silver (Fleischmann et al., 1983; Mengoli et ai., 1983), and 

gold (Desbene-Monvemay et al., 1978) were ofien used as substrates. Sometimes, 

substrates with high hydrogen overpotential, e-g., zinc and lead (Pistoia et al., 1976) and 

graphite (Subramanian and Jakubowski, 1978; MacCallum and MacKerron, 1982; Iroh et 

al., 1994) were also used. Recently, the attention given to materials has moved toward 

iron and its alloys with the research directed at producing coatings for long tenn 

protection (Mengoli et al., 199 1; Musiani et al., 1993). 

A large number of expenments have involved non-aqueous systems with various 

additives as supporting electrolytes. The most often used organic solvents include N,N- 

dimethylformarnide @MF), dimethyl sulfoxide (DMSO) and acetonitrile (AN) (Mengoli 

and Tidswell, 1975; Abruna et ai., 1981), while the most popular supporting electrolyte 

was tetraal~larnmoniurn perchlorate (Funt, 199 1). Recently, aqueous systems have 

become more attractive for electropolymerization investigations (Pistoia et al., 1978; 



Mengoli et al, 1991; Lee and Bell, 199%; Zhang et al, 1996) due to the increasing 

environmental concem and the fire hazard assOaated with organic solvents, as weil as the 

econornic advantage of aqueous systems. 

The number of monomers exploitable for elecmpolymerization in aqueous 

systems is resaifted, fint of ail, by the solubillty of the monomers in an aqueous solution. 

In order to mcrease the monomer solubility in the solvents, it was suggested (Mengoli and 

Musiani, 1987) that some organic solvents (e.g., aicohok) be added to the aqueous 

solution This was found to produce polymer coatings with more insoluble hctions (Le., 

the higher molecular weight fractions). However, it was pointed out (Suhamanian, 1979) 

that because the alcohol in the solvent increased the polymer solubility in the medium. the 

rate of formation of the polymer coating must be p a t e r  than its rate of dissolution. 

Whenever a polymer of relatively high solubility was fomed, only thin films were 

produced on the substrates. On the other hand, it was reporteci that the more soluble the 

polymer was in the elecmlyte, the more iikely the c o a ~ g s  were to be powdery or spongy 

(Mengoli et al., 1979a and 1980). 

During electropolymerization of polymer c o a ~ g s  by conuolled-potential 

techniques, it was often found that the c m n t  decreased quickly afier the onset of the 

e1ecuoIysis (Mengoli and Musiani, 1987; Sekine et ai., 1992). However, the current did 

not decrease ail the way to zero, but remainecl at a low level steadily for the rest of the 

process. Some researchm (Submmmhn, 1979; Mengoli and Musi- 1994) suggested 

that this occurred because the C O ~ M ~  forrned was swollen with the electrolyte or the 

coating was in the fom of a geL Therefore. it would remain electricdy conducting to 

some extent and allow electropolymerization to continue. Some research has k e n  done 



(Iroh et al., 1993a and 1993b; Lee and Bell, 1995b) in studying the mass transfer 

phenomena through polymer coathgs on electrode sulfaces using some fitndamental 

electrochemistry relationships (Bard and Faulkner, 1980). 

4.2. Electrooxidation and Electroreduction Polymerization 

ElectropoIymenzation c m  be classified accordmg to the relevant electrode 

dynarnic characteristics. If the process occurs at an anode, it is cailed electrooxidation 

polymerization (EOP); if it occurs at a cathode, it is called electroreduction polymerization 

(ERP). Due to the uniqueness of the two electrode processes, the applied techniques and 

operating conditions are distinct. EOP has received much more attention than ERP in the 

previous research. It was even concluded that electropolyrnerization leading to polymer 

deposition on an electrode was based largely on the anodic oxidation of aromatic 

compounds. An extensive review of electropolymerization film formation was published 

by Adamcova and Dempirova (1989). However, some information needs to be updated. 

4.2.1. Electrooxidation Polyrnerization 

The most significant EOP studies thus far have dedt with the 

electropolymerization of phenol and its derivatives on steel substrates. As simple and 

cheap monomers, phenol and its derivatives can be electropolyrnerked, form strongly 

reticulated polymer films on metd substrates, and provide a coherent and robust banier 

against corrosion. The first patent in this area was granted to McKinney and Fugassi in 

1960 for their work in both the molten date and the aqueous state with minor amounts of 



non-aqueous solvents. In 1967, another patent was granted to General Electric (Boman, 

1967) for the electropolyrnerization of phenols in watedorganic solvent mixtures. 

Although experimental results were not particularly promising in the early stage, interest 

was sustained in in situ electropolymerization of phenols for corrosion protection for a 

number of reasons. This was due to simplicity and flexibility of the experirnental 

apparatus, versatility with respect to the substrate to be coated, promising physical 

properties of the coatings and the possibility of coating inaccessible areas. 

Since the late 1970's, systematic and extensive studies were carried out on phenol 

electropolymerkation for rnetal protection (Mengoli and Musiani, 1987, 1994). Various 

electrochernical techniques (e.g., cyclic potential sweep, potentiostatic and gaivanostatic) 

have been employed to form quality coatings and to elucidate the process rnechanism as 

well. Various solvent-electrolyte combinations have been tested, including rnolten, non- 

aqueous solutions, aikaline aqueous solutions, alkaline alcoholic solutions, hydroalcoholic 

solutions containing amines and acidic solutions. In molten and non-aqueous solutions 

(McKinney and Fugassi, 1960), very high voltages were required and uneven polymer 

growth at the metal surface was observed. In using aqueous alkaline solutions, thin 

(several Pm thick) and powdery coatings were obtained and the current efficiency was 

found to be low. The ratio of monomer to alkali was found to be a cnticd parameter in 

this case. In alkaline aicoholic solutions using sodium hydroxide (Borman, 1967), adherent 

and homogeneous coatings were obtained, but they could not effectively resist penetration 

by corrosive agents due to their extreme thimess (maximum 1 pm). However, when 

aiiphatic amine (Mengoli et al., 1980) or ammonia (Mengoli et al., 1990) was used instead 

of hydroxide (the hydroalcoholic solutions), it was found that the polymer coating 



thickness could be increased to 15 - 20 pm, considered as an optimal coating thickness 

for corrosion protection. In situ spectroscopie evidence obtained by s u h c e  enhanceci 

Raman scattering (SERS) (Fleischmann et al., 1983; Mengoli et al., 1983) showed that 

allylamine displaced most hydroxide and phenoxide ions fiom the electrode surface, thus 

preventing the formation of a compact layer by oxidation. In addition, the growing 

pol yrner layer remained quite hydro p hilic, permeable to the monomer ap proaching the 

electrodes and sufficiently conducting. Oxalic acidic solutions were also tested as possible 

media for electropolymerization of phenols (Mengoli and Musiani, 1986a). A two-layer 

coating was formed by anodizing miid steel in oxalic acid-phenol mixtures, with an 

underlying ferrous oxalate layer being stabilized by the polyoxyphenylene formed on top 

of it. It was also found (Mengoli and Musiani, 1986b) that the coating characteristics 

could be modified by adding sodium silicate to improve adhesion and sodium sulfite to 

promote the growth of thicker coatings. Recently, the technique was applied to form 

protective coatings on phosphated mild steel and phosphated galvanized steel (Musiani et 

al., 1993). Improved corrosion protection was also achieved by increasing the molecular 

weight of the coating matenal after electropolymerization through thermal curing when 

the selected monomer contained a functional group (e.g., an allyl-group) which can be 

thermally activated (Mengoli et al., 1 98 1). 

Besides phenol and its denvatives, some other organic compounds were also 

studied for polymer coating formation by electropolymexization. Polypyrrole films were 

prepared in deoxygenated acetonitnle with tetraethylarnmonium tetrafluoroborate 

@ N F 4 )  as the supporting electrolyte (Diaz and Kanazawa, 1983). The polymer was 

synthesized potentiostatically at a voltage of 0.8 V vs. standard calomel electrode (SCE). 



The thickness of the film obtained was < 0.5 pm, but thick fiims (up to 200 pm) were 

formed by galvanostatic electrolysis. A scherne for electrooxidation polymerization of 

pyrrole was proposed (Adarncova and Dempirov, 1989). Polymer film formation by CO- 

polymerizing pyrrole with other organic compounds such as phenol and fûran, was also 

reported (Narmann et al., 1983). The films formed showed good strength, electrical 

conductivity, and thermal stability. Organic and inorganic species were also inserted into 

polypyrrole films to improve properties. For example, electrodeposition of platinum 

particles in a polypyrrole film was reported to decrease the ohrnic resistance significantly 

(Vork et al., 1987; Chandler and Pletcher, 1986). 

4.2.2. Electroreduction Polymerization 

Research has been performed on ERP processes. Methyl methacrylate was 

polymerized at a mercury electrode in acidic aqueous solutions (Shelepin and Fedorova, 

1964). The cathode compartment was separated fiom the anode compartment by a closed 

tap. Since polymerization could only occur when monomer was in contact with air, it was 

suggested that the polymerization is associated with reduction of impunties of a peroxide 

nature in the system or theû decomposition products. Another electropolymerization of 

methyl methacrylate in an aqueous sulfùric acid solution in a two-cornpartment ce11 was 

reported later (Pistoia et al., 1976). Polymerization from acrylonitrilelacrylic acid mixtures 

has been conducted using a three-cornpartment ce11 separated by two sintered glass disks 

(Teng et al., 1977). Some fundamental results conceming the relationship between 

polymerization voltage and coating thickness and appearance were obtained. Acrolein was 

reduced on metallic surfaces to form polyacrolein films in DMF, with 



benzyItrimethylarnmonium perchlorate (BTMAP) as the supporting electrolyte (Desbene- 

Monvernay et al., 1978). Acrylonitrile and methacrylonitrile were polymerized 

cathodically under various electrolysis conditions (Tidswell and Mortimer, 1981a and 

198 Ib). Polymer films have also been prepared by cathodic polymerization of halogenated 

xylenes at an iron electrode in a non-aqueous electrolytic solution (Ohno et al., 1990). Lee 

and Bell (1995a and 1995b) formed polymer coatings derived frorn the rnonomers such as 

acvlamide, acrylonitriie, and N,Ny-methylenebisacrylarnide on an alurninurn alloy cathode 

at room temperature with persulfate as initiator for the electropolyrnerization. A three- 

compartment galvanostatic cell with staidess steel counter electrodes was used for the 

process. The electropolyrnerization was performed with the galvanostatic rnethod. The 

initiation reaction was confirmed to occur by a fiee radical mechanism by canying out the 

process in the presence of benzoquinone, a weli-known fiee-radical inhibitor. Zhang et al. 

(1996) formed poly(styrene-CO-4-carbonxyphenyl maleimide) coatings ont0 steel with the 

similar experimental set-up. Maleic anhydride was electrochemically polymerired in 

acetonitrile-dimethylformamide mixture with tetra-butylarnmonium tetrduoroborate as 

supporting electrolyte (Akbulut and Hacioglu, 199 1). The synthesis was accomplished by 

utilizing a controlied potential electrolysis technique. A brown paramagnetic polymer 

coating was formed on the platinum electrodes. ESR and FT-IR were applied to 

characterize the polymer coatings. A process mechanism was proposed. However. it 

appeared that certain basic concepts of electrochernistry (e-g., the diffusion current density 

in voltamrnetry) were incorrect and the polymerization process was not explained clearly. 

Hydrogen evolution is often the greatest restriction for an ERP coating formation 

process. It may sometimes even completely prevent the formation of the coating, not to 



mention causing a low current efficiency. However, this problem can be prevented when 

materials with high hydrogen overpotentiai are used as cathodes. A typicai material of this 

kind is graphite. Considerable electropoIymerization research has been carried out using 

graphite and some significant results have been obtained. Graphite fibers are commercially 

used for the manufacture of composites due to their mechanical performances and by 

anaiogy to giass fiber technology. Coating these graphite fiber composites with a layer of 

polymer film formed by in silu electro pdymerization c m  enhance the int erlaminar shear 

strength of the graphite fiber. Subramanian and Jakubowski (1978) galvanically 

polymerized polyacqlamide coatings on graphite fibers in aqueous solutions. MacCaUum 

and MacKerron (1 982) electropolymerized various monomers, including vinyl polymer 

and some cyclic fundonal groups. It was demonstrated that the effect of 

electropolymerization on the interfacial properties of the resulting composite was 

manifested by variations of the measured interlaminar shear and impact strengths of the 

specimens. It was concluded that the electrochemically formed interlayer contributed to 

one or more of the toughenhg mechanisms that are available to fiber reinforced 

composites. The potential value of interface modification by electrochemicd 

polymerization was clearly indicated. 

Zhang et al. (1987) CO-polymerized acrylonitrile and methyl acrylate ont0 graphite 

fibers using the electrochemical method. The coatings were relatively uniform and their 

modules could be systematically varied by controlling the monomer ratio in the electrolyte 

solution. The glass transition temperature and molecular weight of the CO-polymer were 

measured. Monomer reactivity ratios based on free radical kinetics were detedned from 

cyclic voltammetry data. A hydrogen radical initiation mechanism was suggested for the 



process. Iroh et al (1990) studied the galvanostatic CO-polymerization of 3-carboxyphenyl 

makimide and styrene onto graphite fibers in a sulfuric aqueous solution The process 

occtxred rapidly aod the rate increased with the increase of the monomer concentrations 

and cumnt density. Besides the polymer coatings formed on the graphite fiber surface, 

some polymer was also found to fom in the solution. Iroh et al. (1991) reported 

experimental results of electropolymerization of polyacrylamide on graphite fibers using a 

similar experimental set-up and operating conditions. The rate of electropolymerization 

was obtained h m  the dope of the tinear ngion of the c m  for polyme~ weight gain as a 

h7ction of electropolymerization the. It was found to depend on the initial monomer 

concentration, sulfuric acid concenaation, and current density raised to the powers of 

1.67,0.02,0.54, respectively. Lroh et ai. (I993a) reported the results of mechaniSm studies 

of CO-polymerization of 3-carboxyphenyl maleimide and styRne ont0 graphite fibers in a 

sulfuric aqueous solution by electropolymerization. Cyclic voltammemc analysis results 

suggested radical initiation of polymerization via the reduction of the 3-carboxyphenyl 

maleunide. Hydmquinone and 23-diphenylpicryIhydrazy1 (DPPH) were added to test for a 

&-radical mechankm and a radical chah electropolymerization mechanism was suongly 

suggested. Rinetic analysis showed a h t -  and 1A -order dependence of the rate of chah 

growth on the initial monomer concenûation and i n i ~ t o r  concentration, respectively. A 

subsequent snidy on poly(N,N'dimethyl acrylamide) C O ~ M ~  formation on graphite fiber in 

an aqueous s u h i c  acid solution aho suggested a &-radical polymerization mechanism 

for this systea A hydrogen initiation mechanism was suggested for the process (Iroh et 

al., 1993b). Liang et al. (1993) CO-pdymerized 2- and Ccarboxyphenyl methacrylamide 

with either methyl methacrylate or N-phenyhaleunide on graphite fibers 



by electropolymerization. It was found that a higher solventlwater ratio hel ped to increase 

polymer weight gain by increasing the solvent swelling and increasing the diffusion 

coefficient of the active species. 

The ERP process of most interest to this work is the electropolymerization of 

poly(2-vinylpyridine) (Sekine et al., 1992; De Bruyne et al., 1995; Ling et al., 1998a and 

1998~). Due to the presence of the nitrogen atom in the pyridine ring, it is possible for a 

variety of reactions to occur with a vinylpyridine molecule. Polyvinylpyridines are 

particularly important for use as polyeiectrolytes and polymenc reagents in electricd 

applications. Furthermore, they may fonn metal-organic complexes at the basic nitrogen 

moiety (Khan, 1989; Nuyken, 1992). Initially, fundamental studies were carried out to 

understand the basic electrolytic properties of poly(2-vinylpyridine). For example, Wall et 

al. (1951) studied the ionization of 2-Wiyipyridine in hydroiodic acid solution to form a 

polymeric electrolyte. Anderson et al. (1965) studied its electrolytic properties by carrying 

out electropolymerization at a mercury cathode in a concentrated solution of 2- 

vinylpyridine in 67% aqueous tetraethyiarnmoniurn p-toluenesulfonate. Sekine et al. 

(1992) tried to form protedive coatings on mild steel by both EOP and ERP processes 

with numerous monomers, based on aniline, phenol, normal vinyl and heterocyclic vinyl 

type monomers. Several electrolytic media, including aqueous and non-aqueous solutions, 

were also tested using various electrochernical techniques, e.g., cyclic potential sweep, 

potentiostat, galvanostat, and constant celi-potential. Poly(2-vinylpyridine) coating was 

formed in a methanovwater solution with ammonium perchlorate as the supporting 

electrolyte. The corrosion resistance of the coating was rneasured by the ac impedance 

technique and it was concluded that poly(2-vinylpyridine) coating formed in a constant 



ceil-potential system had the best corrosion resistance among dl thc tested polymer 

coatings. However, Troch-Nagels et ai. (1992) and De Bniyne et al. (1995) found it was 

dZEcuIt to repeat the reported result due to the intense hydrogen evolution on the steel 

cathode surfaces. They could oniy fonn poly(2-vinylpyridine) coatings on zinc substrates 

which are known for their high hydrogen overpotential. The process was quite fast (within 

a period of 0.5 to 20 minutes) and produced a coating that was insulating and had a high 

corrosion resistance, tested by salt spray and polarization techniques. Based on the 

gravimetnc measurements and the hypothesis of one electron reduction per monomer, 

Bmyne et al. estimated the coating to be as thick as 90.6 Pm. No thermal curing was 

necessary when the process was carried out at an eievated temperature (40 to 60°C). 

Interesthg research was also carried out on Cvinylpyridine electropolymerization 

(Bhadani and Parravano, 1970). The process, identified as electrochemical anionic 

polymerization, was done in pyridine with sodium tetraphenylboron as supporting 

electrolyte. Plathum electrodes were used for both anode and cathode. The electrolysis 

was performed galvanostatically. Polymer was found to form in the liquid phase of the 

cathodic cornpartment exclusively, where a yellow to red-orange solution developed 

during the electrolysis. The extent of the reaaion was very sensitive to the expenmental 

conditions and a srnaLi amount of impurities such as air or moisture could terminate the 

polymerization imrnediately. During the voltammetnc study, two reduction waves were 

observed at -2.15 and -2.4 V, respectively. The former potential was assigned to 4- 

vinylpyridine monomer reduction reaction and the latter one was assigned to the reduction 

of pyridine or NaBPL. The fonned polymer was soluble in CHJOH, CH3Cl and DMF, but 

insoluble in H20 and THF. C& and C&CH3 were found to swell the polymer. Three 



possible modes of initiation were proposed: 1) direct electron transfer to monorner, 2) 

electron transfer to monomer from Na metal deposited on the cathode; 3) initiation by 

pyridyl radical anions formed by reduction of pyridine. 

4.2.3. Cornparison of EOP and ERP 

A cornparison of EOP and ERP processes shows that each has its own distinctive 

characteristics. Film formation by the EOP process is ofien accompanied by oxidation of 

the rnetal substrates. Metal oxide layers accumulate on the metal substrates, leading to 

porous and thin polymer films. Therefore, noble metals are ofien used as substrates for 

most EOP studies. No such oxidation occurs in the ERP process so more compact and 

thicker films are expected. However, when ERP processes are processed in an aqueous 

medium, there is always the possibility of hydrogen evolution occurring dong with the 

coating formation, leading to a porous and irregular coating, not to mention a low current 

efficiency. That is why very often ERP processes are carried out on materials with high 

hydrogen overpotential (e.g., zinc, lead, etc.). For materials which do not have a high 

hydrogen overpotential, intense hydrogen evolution is often the main reason for the failure 

of coating formation by ERP. As rnentioned previously, much less research has been done 

on the ERP processes. No comprehensive mechanism has been proposed. In view of the 

promising results with poly(2-vinylpyridine) in protective coating formation, a more 

thorough study of the system is warranted. 



4.3. Polymer Coating Morphology Analysis 

Coating morphology is one of the important factors in evaluating the quality of 

polymer coatings, especially coating uniformity and thickness which greatly influence the 

performance properties. Minute flaws (Le., pits craters and pores) in the coatings will also 

affect properties such as conductivity, permeability and corrosion resistance. Thus, it is 

necessary to evaluate the morphology of the polymer coatings formed. A convenient and 

reiiable method for non-destructive analysis which can provide a detailed evaluation of the 

morphology of the coating such as its roughness and thickness, is essential in selecting a 

suitable synthesis technique for producing the coatings. 

Quantitative measurement of coating thickness and qualitative observations of the 

morphology of the coating have conventionally been carried out by separate techniques. 

The former is usually accomplished by estirnahg the weight increase of a coated sample 

(gravimetry), while the latter is commody done by various rnicroscopic techniques, 

namely, scanning electron microscopy (SEM) or scanning tumeling rnicroscopy (STM). 

Other techniques such as magnetic induction, eddy current, radioisotope backscattering, 

resistivity measurement and X-ray fluorescence have also been applied occasionally for 

evaluating polymer coatings. A number of recent publications describing the applications 

of these methods for evaluating coating morphology are available in the literature (Sheard 

and Sornekh, 1988; Yang et al., 1988; Haworth and Robinson, 199 1; Lewis and Bush, 

199 1 ; Solov'ev, 1 99 1 ; Roessiger and Raffelsberger, 1992; Edneral, 1993 ; Silkin and 

Ponomarev, 1993; Latter, 1994; Mmtgomery, 1994; Reilly, 1994; Hong et al., 1995).Due 

to the complexity of the polymer coating properties (e.g., conductivity, uniformity, 



fluorescence and other optical and thermal properties) and the intrinsic iiitations of these 

various techniques, the application of these methods is oeen restricted. For exarnple, the 

rnagnetic induction method c m  only be used for steel substrates; the eddy current 

technique requires that the substrate and the coating have sufficiently different electrical 

conductivities; the radioisotope backscattering technique requires the atomic numbers of 

the coating and substrate materials to be significantly different; the X-ray fluorescence 

technique is lirnited since many synthesized polymers contain fluorescein; and the 

resistivity measurement method cm be applied oniy to insulating coatings and can be 

infiuenced by many factors concurrently (e.g., coating composition and uniformity, the 

presence of coating defects, adhesion between the coating and the substrate and variations 

in the gecmetry of the substrate and in the preparation of the surface). An independent 

calibration curve is often needed for each individual case. 

In this work, we have appiied confocal scanning laser microscopy (CSLM) as a 

new non-destructive method to andyze the topography and the morphology of a polymer 

coating. The technique is fast and easy to operate. It can provide high resolution images of 

the coating surface as welI as quantitative measurement of the surface roughness and the 

coating thickness. Aithough Our application is on poIy(2-vinylpyridine) coatings formed on 

miid steel substrates by in situ electropolymerization, the technique should be feasible for 

a wide range of coatinglsubstrate systems, as long as the coating examined is not 

completely opaque. In this and the following chapter, the principles and histoq of the 

development of CSLM are presented as well as a detailed description of its application to 

poly(2-vinylpyridine) coatings formed by electropolymerization. A brief assessrnent of 

some popularly used microscopie techniques for morphological analysis is first &en. 



4.3.1. Popular Techniques for Morphological Analysis 

There are a number of techniques for investigating the morphology of surfaces. 

However, as mentioned previously, the techniques for surface profile evaluation and 

quantitative coating thickness and roughness measurernents are often separated. 

Gravimetry is the most widely used technique for the measurement of coating thickness, 

while SEM and STM are the most popularly used methods for the observation of surface 

rnorphology. 

4.3.1.1. Gravimetrv 

Gravimetry involves determinhg the mass change of a sample as a result of coating 

formation. In the case of coatings formed electrochemically, it is usually done either by 

directly recording the sample weight changes before and after coating formation (Mengoli 

and Tidswell, 1975; Teng et al., 1977; Mengoli and Musiani, 1987; Sekine et al., 1992; 

Musiani et al., 1993) or by m e a s u ~ g  the total arnount of charge passed in the process and 

cdculating the coating mas using basic electrochemicd relations such as Faraday's Law 

oenisevich et al., 1982; McCarIey et al., 1990; Mengooli et al., 1990; Taj et al., 1993; De 

Bniyne et ai., 1995). When ody a thin coating is fonned, the coating weight is normally 

very small compared to the weight of the substrate which can lead to a significant relative 

error in the estimate of the coating weight. Another major problem with the second 

approach stems fiorn the fact that oniy the initiation step during electropolymerization 

involves electron transfer, whereas the propagation and termination steps do not (Funt, 

1991). In addition, it is known that some side electrochemical reactions (e-g., hydrogen 

evolution and metal substrate oxidation (Mengoli and Musiani, 1994; Ling et al., 1998a)) 



usualiy accompany the electropolyrnerization, m a h g  charge t rader  more difncult to 

interpret. The detemination of the coating thickness from the coating weight is also 

subject to additional error since it is necessary to have an accurate value of the actuai 

coating density which is usually unknown (Mengoli and Musiani, 1986; Odian, et al., 

199 1; Taj et al., 1993). 

4.3.1.2. Scannine Electron Microscopy (SEM) 

Although SEM has been widely used to examine polymer coatings (Wang et al., 

1989; McCarley et al., 1990; Ohno et al., 1990; Arapapavinasam, 1993; Musiani et al., 

1993; De Bmyne et al., 1995), it has several limitations. Frequently, organic coatings must 

be coated with gold or other conductive materiais (Teng et al., 1977; Ohsaka et al., 1987; 

Kunimura et al., 1988). Experimentai conditions, such as high vacuum and beam heating, 

may alter or damage the coating surface. Furthemore, quantitative data such as coating 

thickness cannot be obtained by STM. 

4.3.1.3. Scannina T u m e h ?  Microsco~v ( S m  

The principles and the applications of STM have been described in recent 

publications (Guntherodt and Wiesendanger, 1992; Wiesendanger and Guntherodt, 1992; 

Bockns and Khan, 1993; Wiesendanger and Guntherodt, 1993; DïNardo, 1994). STM has 

found increasing use for both metal and polymer thin films (Heben et al., 1989; Everson 

and Helms, 1991; Ngo et al., 1993; Song et al., 1993). Because the tumeling current is very 

sensitive to the distance between the substrate and the probe, STM is not well suited for 



large areas or rough surfaces. Similar to SEM, quantitative data such as coating thickness 

and surface roughness distribution cannot be obtained by STM. 

4.3.2. Confocal Scanning Laser Microscopy 

Confocal scanning laser microscopy (CSLM) offen the distinct advantage of 

eiiminating defocuseci images rather than cfeathg a blur of those images as in standard 

microscopy. The intensity of the CSLM image drops sharply as the image is defoawd, 

whereas the intensity does not change with a standard microscope. Therefore, the plane which 

is in focus can be observeci without interference fiom layen above or below. This property 

dows irnaging of structures with height differences comparable to the wavelength of the laser 

beam, thus permitting quantitative rneanirements of surtace roughness. Its defocushg 

characteristic aiso permits opticai cross-sectioning of a non-opaque specimen and can 

distinguish between coating and substrate. This dows the quantitative measurement of coaring 

thickness. CSLM images tend to have sharper edges and stronger contrast than images 

obtained with a standard microscope. The technique is convenient to operate, can perform 

scans rapidly and does not damage the specimen. There are no stna requirements on the 

coating and substrate matenais in order for CSLM to image the surface topography. 

Meanirement of coating thickness, however, does requise that the coating be translucent to 

some extent. 

The p ~ c i p l e  of confocal microscopy was fint described by Young and Roberts 

(195 1). The details of this type of imaghg were k t  desaibed by Minsb (196 1). Davidovits 

and Egger (1969) were the fint to develop a workuig laser-based confocal microscope. Wdson 

and Sheppard (1984) and Wdson (1990) have provided a detaiied analysis of this technique. 



Dixon et ai. (1991a) developed a trammitteci-light and reflected-light scanning stage 

microscope, which uses the same confocai detector for both reflected and transmitted light. 

The transrnitted beam is re-injecteci into the optical path of the microscope parallel to the 

reflected beam The microscope forms images both in transmission through the top and bottom 

of the specimen as well as  in refiection Eom the top and bottom of the specimen. The various 

beams are separated by placing a haKwave plate and a polarizer in the transmission arm of the 

microscope and a second polarizer in the deteaion m n  of the microscope. This has the 

advantage of imaging large area sarnples with very high resolution. Recently, the fint p d c a l  

scanning beam confocal transmission microscope was describeci, dong with new applications in 

transmission (Dixon et al., 1991 b). This device has ail the advantages of a scanning stage 

microscope in addition to producing a high resolution image (512 x 5 12 pixel and 256 grey 

levels) in less than two seconds. Because the contrast mechanisms for these images are 

dinerent, the reflection and  mission images contain complementary information The 

optical slicing property of the confocal microscope is used to obtain single confocal slice 

images both in transmission and refiection. The modified confocal scanning beam laser 

microscope developed by Dixon et ai. has been used to measure the suiface roughness of a 

copper deposit (Ling et al., 1995). In this study, CSLM is used to measure quantitatively the 

uniformity and thickness of the polymer coated. Some of the research results fiorn this aniilysis 

have recently been published (Ling et al., 1998b). 



4.4. Polymer Characterization 

Polyrner characterization is important for confirming the formation of the 

polymenc materials and investigating their properties. It can also be used to study the 

structure of polymenc materiais and be helpfbl in understanding the process mechanism. 

The techniques for polymer characterization used in this project are briefly reviewed 

below. 

4.4.1. Ultraviolet and Visible Spectroscopy 

Ultraviolet and visible spectroscopy is used to examine matenais qualitatively, 

providing information regarding the structure, formula and stability of the materials 

(Shugar and Dean, 1989). Absorption spectra are produced when ions or molecules 

absorb electromagnetic radiation in the ultraviolet or visible regions. The absorption of 

energy is a result of displacing an outer electron in the molecule. The spearum is a 

fùnction of the whole structure of a substance and the information obtained should be used 

in conjunction with other evidence to confirm the identity of a compound. Since molar 

absorptivity values frequently exceed 10,000 L moi-' cm-', dilute solutions cm be used. 

This technique has been used for characterization of poly(2-vinylpyridine) formed by buik 

polymerization (Foster, 1969; Phiuips et al., 1970) and by electropoIymerization (Sekine 

et al., 1992; De Bruyne et al., 1995). 



4.4.2. Fourier Transform Infrared (Fï-IEX) Spectroscopy 

1nfi.ared spectroscopy has long been recognized as a powerful tool for the 

characterization of polymers (Koenig et al., 1994). It is based on the absorption of 

radiation in the infiared fiequency range due to the molecular vibrations of the funaional 

groups contained in the polymer chah Prior to FT-R Uinared spectroscopy was carried 

out using a dispersive instrument utilizing pnsms or gratings to disperse the infiared 

radiation geometricdy. Using a scanning mechanism, the dispersed radiation was passed 

over a slit system which isolated the fiequency range falling on the detector. This 

technique is highly limited in sensitiviv because most of the radiation transmitted through 

a sample as a fùnction of frequency does not faIl on the open slits. The Fî-IR provides 

speed and sensitivity due to the use of a Michelson interJerometer consisting of two 

mirrors and a beam splitter. The beam splitter transmits half of al1 incident radiation from a 

source to a movhg mirror and reflects hdf to a stationary mirror. Radiation reflected by 

the sarnple is reflected by the two mirrois to the beam splitter where the amplitudes of the 

waves are combined either destmctively or constructively to form an interferograrn as seen 

by the detector. By means of algorithms, the interferogram is Fourier-transformed into the 

fiequency spectrum. This technique has several distinct advantages over conventional 

dispersive techniques. It can scan the infiared spectnim constantly throughout its optical 

range in fiactions of a second at rnoderate resolution. It can measure al1 wavelengths 

simultaneously with a high signai-to-noise ratio. The interferometer has no slit or grating. 

As a result, its energy throughput is high. FT-IR has been applied to characterize poly(2- 

Wiylpyridine) formed by electropolymerization (De Bruyne et ai., 1995). 



4.4.3. Nuclear Mapetic Resonance (NMR) Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for 

elucidating chernical structures. The basic principle of this technique is that the nuclei of 

certain isotopes have an i n t ~ s i c  spinning motion around their axes which generates a 

magnetic moment dong the axis of spin. The shultaneous application of a strong extemal 

magnetic field and the radiation nom a second and weaker radio-eequency source to the 

nuclei results in transitions between energy States of the nuclear spin. Absorption occurs 

when these nuclei undergo transition fiom one alignment in the applied field to an opposite 

one. The energy needed to excite these transitions can be measured. Nuclei with zero 

1 - 13 electnc quadrupole moment give the best resolved spectra, which incfude H, C, "si 

and 3 1 ~ .  The result is often the delineation of complete sequences of groups or 

arrangements of atoms in the molecule. Quantitative analysis is available by integration of 

areas under the absorption peaks and the peak of the internai standard. 

Abundant information of NMR analysis for poly(2-vinyipyridine) is available in the 

literature (Natta et ai., 1961; Matsuzaki and Sugimoto, 1967; Weill and Hermann, 1967; 

Hogen-Esch and Jenkins, 198 1; Khan and Hogen-Esch, 1983). Matsuzaki et al. ( 1976 and 

1977) reported their stereoregularity studies of polyvinylpyridines with 'H and 13c NMR. 

The deuterated and nondeuterated polyvinylpyridines were synthesized by radical 

polymerization and by anionic polymerization. The results showed that the 

polyvinylpyridines formed by either radical and Monk polymerization were atactic. Yin 

and Hogen-Esch (1 994) synthesized poly(2-vinylpyridine)-b-poly(t-butylmethacrylate) and 

studied its stereoregularity with 'H NMR. No report has been published on an NMR study 

of polyvinylpyridines formed by electropolyrnerization. 



4.5. Reaction Mechanism Studies of Electropolymerization 

4.5.1. Inhibition Study of Polymerization 

The addition of kee-radical inhibitors is a commonly used technique for 

detennining whether a fiee-radical mechanism is occurring. In the presence of certain 

inhibitors and radical scavengers, free-radical polymerization can be  completely stopped 

while ionic polymerization should not be aected. The inhiiitors act by reacting with the 

initiating and pro pagating radicals and converting them either to nonradical species or 

radicals with too low reactivity to undergo propagation. The cornrnonly used inhibitors 

include quinones (such as benzoquinone and chioranil) and 2,2-di p henyl- 1- picryihydrazyl 

(DPPH). Research regarding the use of inhibitors to study the mechanisms of radical 

polymerization in various systems has been reported (Yassin and Ri& 1978a and 1978b; 

Kamachi et al., 1977, 1978, 1979a and 1979b). An example is the dilatometric study of the 

behaviour of some inhibitors in the polymerization of liquid vinyl acetate (Bartlett and 

Kwart, 1950). The behaviour of DPPH, hydroquinone, dinitrodurene, nitrobenzene, p- 

nitrotoluene, iodine and O-, m- and p-dinitrobenzenes as inhibitors of the peroxide-induced 

polymerization of vinyl acetate was studied kinetically by the dilatornetric method. 

Information about the rate of initiation, the order and relative speed of the chain- 

terminating a e p  and the number of chahs stopped by a terminating molecule was obtained 

by analyzing the relevant results. Another example of an inhibition study was done by Iroh 

and his colleagues (1993a) on CO-polyrnerizing 3-carboxyphenyl maleimide and styrene 

onto graphite fibers in aqueous solutions. Hydroquinone and DPPH were used in a cyclic 

voltammetric analysis to confirm the eee-radical mechanism of the electropolymerization 



process. The results suggested radical initiation of polymerization via the reduction of the 

3 -carboxyphenyl maleimide. 

4.5.2. Surface Enhanced Raman Scattering Spectroscopy 

Raman spectroscopy is used to determine molecular structures and compositions 

of organic and inorganic matends. It can span the entire vibrational spectmm with one 

instrument. When an intense beam of monochromatic light impinges on a material, most 

collisions are elastic with the fi-equency of the scattered light being the sarne as that of the 

original Light (so-called Rayleigh scattering). Another type of scattering that can occur 

simultaneously with the Rayleigh scattering is known as the Raman effect. It &ses when 

the change in the vibrational mode of a molecular bond resulting from a beam of intense 

monochromatic radiation causes a change in the moIecular polarizability. 

Surface enhanced Raman scattering (SERS) was first recognized about two 

decades ago (Jeanmaire and Van Dupe, 1977; Albrecht and Creighton, 1977). It was 

noticed that the Raman s c a t t e ~ g  intensity of a molecule adsorbed on the surfaces of 

certain metals (e-g., Au, Ag and Cu) could be remarkably enhanced (up to 106 times). This 

gives SERS a much higher sensitivity compared to ordinary Raman scattering. 

Furthermore, this enhancement occurs only for species at the metal surface. SERS is 

therefore ideal for study of adsorption of organic compounds at metal surfaces. However, 

the technique is restricted by the necessity of creating a rough surface prior to irradiation 

and of only using certain metals in order for enhancement to occur (Seki, 1986). 

Nevertheless, SERS has been found to be powerful in examining chemical and physicai 

phenornena associated with adsorption at metai/solution interfaces (Chang and Furtak, 



1982; Brandt, 1985; Brolo et al., 1997). Its applications range from electrochemicai 

studies such as corrosion processes (Gui and Devine, 1994; Odziemkowski et al., 1994), 

film growth (Missono et al., 1994) and ~e~assembled monolayers (Matsuda et al., 1995) 

to medical applications W i e v  et ai., 1994) and trace anaiysis (Gouveia et al., 1994; 

Rodger et al., 1996). Some comprehensive reviews of this technique are aiso available 

(Pemberton, 199 1; Pettinger, 1 992). 

Pyridine and its derivatives were the first substances investigated by SERS 

(Fieischmann et al., 1974). In addition to a large amount of research conceming simple 

organic cornpounds, some of the research has been concemed with the adsorption of 

macromolecules at metal surfaces (Diaz et al., 1979; Kaneto et al., 1983). In some cases, 

investigators had difnculties in using SERS to gain a clear understanding of 

macromolecular adsorption on metal surfaces (Lee and Meisel, 1983; Kobayashi and Imai, 

1985). In other cases, v e q  usehl information was obtained (Lippert and Brandt, 1988; 

Garreli and Beer, 1988 and 1989; Tashiro et ai., 1990; Mostefai et ai., 1996). Certain 

research problems in eIectropolymerization processes were solved by SERS technique 

(FIeischmann et al., 1983). However, most of the previous SERS work has dealt with 

either micromolecular or macromolecular adsorption on rnetal surfaces instead of in situ 

polymerization of monomers at metal surfaces as investigated in this research. 



CHAPTER 5 

EXPERIMENTAL DESIGN AND PROCEDURE 

5.1. Reagents and Experimental Apparatus 

5.1.1. Reageats 

2-Wiylpyridine (Aldrich Chemical Company) was purified to remove the inhibitor 

(0.1 wt. % p-tert-butylcatechol) by distillation at 70°C under vacuum (100 kPa Hg). AU 

other chernicals were analytical grade and used without further purification. The solvent 

was normaily a waterhethanol mixture with volume ratio of 8:2. The normal supporting 

electrolyte was 0.05 M bELC104. Various amounts of HCI04 or m O H  were added to 

the electrolyte to adjust the solution pH as required. When another chernical was used as 

the supporting electrolyte, the corresponding acid with the same cation was used to adjust 

the solution pH. Al1 solutions were prepared with ultra-pure water (Mïilipore8 ultra-pure 

water system) and a total solution volume of 60 rnL was used in each 

electropolymerization experirnent. 

5.1.2. Electrodes and Electrolytic Ce11 

A three-electrode system was used to carry out the electropolyrnerization in a 100- 

mL electrolytic ce11 open to the atmosphere. For the polymer coating formation, the 

working electrode was usually a rnild steel coupon (SAE 1018-1020, C: 0.20%, Mn: 



maximum, S: 0.05% maximum) with an active surface area of 5 5 cm2, 

electrode was a platinum wire. The reference electrode was a standard 

0.60%, P: 0.04% 

while the counter 

calomel electrode (SCE, Aldrich Chexnical Company) and aU the potentials reported in this 

project are referred to the SCE scale. The working electrode was cleaned ultrasonically 

first in a soap solution for 30 minutes and then polished with Sic-type abrasive paper (up 

to 1200 grade). Degreasing was canied out with trichloroethylene for 2 minutes, foilowed 

by a washing with soap solution to remove the grease and tnchloroethylene, a rinsing with 

a large arnount of deionized water and finally a rinsing with ultra-pure water. The 

prepared metal samples were stored in a desiccator until needed. The platinurn wire was 

cleaned by immersion in the Electrode-Cleanefi solution (Fisher Scientific, containhg 

500 mL 2-(iso)-propanol, 500 rnL ethyl ether, 250 mL concentrated hydrochloric acid and 

250 rnL water) for 2 minutes and then rinsed with tap water and ultra-pure water. 

A copper electrode was used when investigating the process mechanism with 

SERS spectroscopy. This electrode was a copper disk with a diameter of 3 mm, while the 

counter and reference electrodes remained the same as before. Before using the copper 

electrodes for the SERS investigation, they were roughened ex situ electrochemically by 

applying several oxidation-reduction cycles between -1 .O and 1 .O V at 30 mV/s in O. 1 M 

KCI solution for achieving the optimum SERS spectra (Brandt, 1985; Beer et al., 1989). 

When other electrode materials were examined for polyrner coating formation by 

electropolymerization, the surface areas were kept the same at 5.5 cm2 and the same 

procedure for preparation of the working electrode was applied as mentioned above. 



5.1.3. Experimental Apparatus 

An EG&G potentiostat/gaivanostat (EG&G Princeton Applied Research, 

Potentiostat/Galvanostat, Modei 273) was used to control the electrochemical processes 

during electropolymerization. D u ~ g  electrolysis, the electrode potential or current was 

monitored as a fùnction of time on a computer screen and the potential or current data 

were recorded on the data logging computer (TPC 386SQ The working electrode was 

placed in the rniddle of the electrolytic ceU, and the platinurn coi1 counter electrode was 

located against the internai wd of the ceii. The SCE reference electrode was positioned 

close to the working electrode. Experiments were nomdy carried out at 20°C with 

magnetic stimng maintained throughout the electrolysis. A schematic of the experimental 

apparatus is shown in Fig. 5.1. 

Electrode 

Reference Electrode 

ounter EIectrode 

Electrolytic Cell Data Logging Computer 

Fig. 5.1. Experimental apparatus for in siru electropolymerization of poly(2-vinylpyridine) 

coatings on mild steel substrates fiom aqueous solutions. 



5.2. Electropolymerization for Coating Formation 

5.2.1. Preliminary Experiments: Linear Sweep Voltarnmetry Studies 

The purposes of these preliminary experiments were to study the basic 

electrochemical properties of the 2-vinylpyridine aqueous system and assess the feasibility 

of electropolymerizing poly(2-vinylpyridine) coatings on mild steel substrates. Information 

on parameters such as half-wave potential (En) for reduction or oxidation of the 

monomer, supporting electrolytes and solvents was expected. Any side reaction can be 

indicated by the results of the voltarnrnetry studies. Some basic operating conditions (e.g., 

supporting electrolyte, solution p K  and potential sweep range and rate, etc.) were 

adjusted until polymer coatings with acceptable quaiity were obtained. 

5.2.2. Studies of Various Electrochemical Techniques 

The purpose of these experirnents was to determine the most suitable 

electrochemical technique for electropolyrnerization. These electrochemical methods 

considered included chronoarnperometric electrolysis, irnproved chronoarnperometrk 

electrolysis, galvanostatic eledrolysis, cyclic potential sweep (CPS) electrolysis and 

constant cell-potential electrolysis. 

5.2.3. Single Parameter Studies 

In order to obtain a good understanding of the effects of the operating parameters 

on electropolymerization, single parameter studies were carried out. In every series of 



experiments, one operating parameter was varied over a certain range while the other 

parameters were kept constant at certain values. The parameten and the range over which 

they were studied are listed in Table 5.1. The values of the constant parameten are also 

listed in the table. These values were obtained f?om initial hctionai-factorial by designed 

experiments described in the next section. It is irnponant to emphasize the need to 

maintain these parameters at appropriate values, or otherwise, the experimental results 

may be rnisleading. 

5.2.4. Statistical Studies 

Statisticaiiy designed experiments were carried out to investigate interactions 

between the operating pararneters. The chosen statistical technique was the orrhogonol 

fractional factorial (OF6 design, also d e d  optimum operating condition search design 

(McLean and Andenon, 1984; Dey, 1985). From the results of these designed experiments, 

the relative importance of the operating parameten can be obtalied as well as the optimum 

cornbition of the operating parameters for the electropolymerization process. The operating 

parameters studied by the OFF designed experiments and the levels of the variances of these 

parameten are listed in Table 5.2. The results 60m the single parameter studies were used 

to choose the parameters for these experiments. A standard 4-parameter and 3-level OFF 

design is shown in Table 5.3 



In a single parameter experiment when one operating parameter i s  varied over a certain range, the remaining parameters are kept 

constant at their rronnd valrre. 

Table 5.1. Parameters and their ranges tested in the single parameter experiments. 

Operating parameter 

2-Vinylpyridine Concentration (M) 

Methanol Concentration in the Solvent (vol. %) 

Operating Temperature (OC) 

Supporting Electrolyte (J'dT&C104) Concentration (M) 

Normal value 

0.25 

20 

20 

0.05 

Range tested 

0.01 - 0.4 

1-40 

10-70 

0.01 - 0.2 

Electrolysis Duration 

Electrode Surface Area (cm2) 

Solution pH 

Potential Range for Sweep Electrolysis (V) 

Potential Scan Rate for Sweep Electrolysis (mV/s) 

2 hrs 

5.5 

4.8 

-0.7 - -2.5 

30 

1 5 min. - 10 hrs 

0.07 - 1 O0 

1 - 10 

-0.7 - -4 

5 - 100 



Table 5 -3. CParameter, 3 -Level standard orthogonal fiactional factorial design 

Table 5.2. Some important operating parameters and their 3-level ranges studied 

' Preceding Table 5.2 gives the code of the parameten and the meaning of A. B. C and D 

designations. 

' A comprehensive evaluation of the quaiity of the fonned polyrner coatings, including 

coating thickness and surface roughness distribution. 
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The obtained results can be used to calculate the optimum Ievel of the operathg 

parameters by calculating the relevant OFF averages with the equations below: 



The maximum daerences of the averages of the same fiactional factors can aiso be 

calculated to reveal the relative importance of the various operathg parameters 

- - 4 =Mm, -MNI, i = A B , C a n d D  

5.2.5. Post-Treatments of the Coated Samples 

M e r  the electropolymerization process, the coated samples were rinsed with 

deionized water and dried in vacuum (VWR 1410) for 24 hours to remove solvents and 

remaining mor.omer retained inside the coating. Thermal curing was done optiondy at 

-120°C for 30 minutes to complete the polymerization. The cured coating samples were 

compared with the uncured samples to assess the effects of thermal curing. The coated 

samples were weighed to estirnate coating thickness and density. 

5.2.6. Poly(2-Vinylpyridine) Formation by Bulk Polymerization 

For comparative purposes, poly(2-vinylpyridine) was also fonned at room 

temperature by bulk polymerization with 1 wt % benzoyl peroxide (Aldrich) as free radical 

initiator (Chohan et al., 1992). The polymer was precipitated by pouring the reaction 

solution into hexane (BDH). The cmde polymer was then purified by dissolving in 

tetrahydrofuran (BDH) and precipitating again with hexane. The polymer was finally dned 

under vacuum at room temperature. 



5.3. Polymer Charactekation 

5.3.1. Ultraviolet and Visible Spectroscopy 

The ultraviolet and visible spectroscopic study was carried out with a ~ e c k r n a n ~  

DU 600 Spectrophotometer in a wavelength range of 190 to 1 100 nm. Coatings obtained 

before and after thermal curing were dissolved in methanol for the test. Although the 

solubility of the polymer coating in mehano1 was low, enough could be dissolved for 

purposes of the analysis. Pure methanol was used as the reference for the spectra. 

Monomer and polymer fonned by bulk polymerization were also examined and their 

spectra were compared with that of the polymer coating obtained by 

electropolymerization. 

5.3.2. FT-IR Spectroscopy 

The FT-IR spectroscopic shidy was carried out with a ~icolet@ 520 FT-IR 

Spectrometer in a wavelength range of 250 to 4000 cm-'. The polymer coatings were 

removed fiom the metal substrates and mixed with pre-dried KBr powder to make srnall 

discs for the FT-IR test. Coated sarnples obtained before and d e r  thermal treatment were 

exarnined to investigate the effects of thermal curing on the polymer coatings. The 

resulting spectra were compared with the standard poIy(2-vinylpyridine) spectra available 

in the literanire (Pouchert, 198 1). 



5.3.3. 'H NMR Spectroscopy 

The NMR spectroscopie midy was carried out with a 250 MHz ~ruker@ NMR 

(Am-250, Bruker Spectrospin). The polymer coating was dissolved in dimethyLd6 

suifoxide (DMSO-ds) to make up 10 ppm solutions for the 'H NMR tests. The resulting 

spectra were compared with the standard poly(2-vinylpyridine) spectra in the literature 

(Pouchert and Behnke, 1993). 

5.4. Polymer Coating Property Measurements 

5.4.1. Chernical Composition Measurement 

The chernical compositions (Le., C, H and N ratio) of the polymer coatings were 

measured by isotope mass spectrometry @NO8 Car10 ~ r b a @  Elemental Analyzer). Polymer 

simples were removed fiom the metal substrates and combusted in He/& at 1 030°C, followed 

by separation with a ~ o r a ~ a k @  type Q GC column (Mesh 50-80). Peak heights of CG, Nz and 

H a  were mea~uced and converted to C, N and H ratio. Coatings both before and d e r  thermal 

c u ~ g  were examinecl. 

5.4.2. Glass Transition Temperature Measurement 

The polyrner coatings were removed fiorn the metd substrate and analyzed using 

dinerential scanning calorimetry (DSC 2920, TA Instruments ) to determine its glas transition 

temperature (TJ. The measurement was carried out in the temperature range of 25 to 125°C at 

a heating rate of 10°C/min. under the protection of helium. indium metal was used for 

diration. 



5.4.3. Inorganic Impurity Measurement 

Inorganic impurities, especially metai ions such as iron and manganese fkom metal 

substrates, were measured by a Direct Current Plasma spectrophotometer (ARL SS-7 

DCP, ~isons@). Since the metai impurities might be in the form of inorganic ions or metai- 

organic complexes, the test was performed in both organic and aqueous media. For 

measurement in the organic system, the polymer was dissolved in DMSO and then diluted 

with DCP base oil (spexa base oil20). For the aqueous system measurement, the polymer 

was fist dissolved in dimethyl formamide @MF) and then dned in the air by solvent 

evaporation. The dry polymer sarnple was then dissolved in 5 N HCI solution for the DCP 

study. Any ~ d -  in the HCI was removed by passage through an ion exchange column 

packed with Arnberlite IRA400 (Dorfher, 1972). 

5.4.4. Conductivity Measurement 

The eiectronic conductivity of the poly(2-vinylpyridine) coating on the metal 

substrate was measured with a high precision ElectrometerMultimeter (Keithley 619) 

equipped with a four-point differential probe (Keithley 3000 series). The resistance 

measurement was made by moving the probes over the coating surface and reading the 

coating conductivity directly fiom the Electrometer. 

5.4.5. Corrosion Resistance Measurement 

The corrosion resistance of the coated metal samples was evaluated by 

polarkation studies (Walter, 1986b). A coated sample was immersed in a test solution 

(3% NaCl solution) for 3 hours under ambient conditions. A polarization curve was then 



obtained by polarizing the coated sample f?om the open-circuit potential (E-) in the 

cathodic direction and then in the anodic direction. The resulting voltammogram was then 

compared with the voltammogram of a bare metal sample. The improvement of the 

corrosion resiaance of the sample was determined by the change of the corrosion current 

and corrosion potentid (Fowkes et al., 198 1; Funke, 1987). 

5.4.6. Adhesion Measurement 

The adhesion characteristics of the polymer coating were investigated using a cross 

hatching technique (ASTM, 1993). The surface of a coated metal sample was scored 

several tirnes in paraiiel directions on the surface with a sharp knife and then scored 

similarly on the surface perpendicularly to the previous sconng lines. A PVC tape was 

pressed on the scratched coating surface and pulied off to qualitatively evaluate the 

strength of adhesion. 

5.4.7. Porosity Measurement 

The compactness of the polymer coating was evaluated by a copper cementation 

technique used by De Bruyne et al. (1995). A coated sample was first imrnersed in a 0.1M 

CUSOI (BDH) solution for 30 seconds to allow copper to cernent out on any uncoated 

portion of the rnild steel substrate. Since the cemented copper has a much stronger 

contrat than the polymer coating, quantitative image analysis can be done to evaluate the 

ratio of the area of the copper deposit to that of the polymer coating over the surface. 
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5.4.8. Coating Weight Increase and Coating Density Estimation 

The mass of the poiyrner coating formed was measured by comparing the sample 

weight before and after the electropolymeritation Good sensitivity was possible since the 

accuracy of the sample weight was on the order of 0.1 mg, while the masses of the 

polymer coatings and metal sarnples were about 10 mg and 10 g, respectively. The 

polymer coating mass was combined with the coating thickness measured by CSLM to 

d e t e d e  its density. 

5.5. Coating Morphology Analysis 

Analysis of coating morphology including coating roughness distribution, coathg 

uniformity and coating thickness is a very important factor in evaluating coating quality. 

Confocal scanning laser rnicroscopy (CSLM) was applied in this project for this purpose. 

A Model-325P UNPHASE@ He-Ne Laser (1 mW, with wavelength of 632.8 nm) was 

employed as the illumination for surface scanning. The opticai diagram, experimentai apparatus 

and detailed operatkg parameten have ben published elsewhere (Dixon et al., 199 la and 

1991b, Ling et al., 1995). The sufice scan of the coating was carrieci out over surfàce areas 

nom 200 x 200 pm to 4 x 4 mm. The correspondhg resolutions Vary f?om 0.4 to 7 p., 

respedvely. 

The whole procedure was continuaily observeci on a monitor during a scanning 

process. It Uivolved fkst focusing the laser beam just above the coating sufiace so that no 

distinct image of any part of the surface appeared on the monitor. Then the focus of the laser 

beam was slowly lowered onto the surtàce and the locations of the points on the surface of the 



focal plane were observed. Eventually, the laser beam passed through the entire surface siice by 

slice and f o d  within the bulk of the coating so that al1 the distinctive images disappeared 

Eom the monitor. The intensity of the refiected images a .  each d a c e  location was 

automatically meanireci throughout this scanning process by an on-line cornputer system. The 

number of Mages taken and the depth over which the laser ba rn  was focused were 

predetermined and set according to the roughness and thickness of the coating. By combining 

the entire set of intensity images, a rnap of the maximum intensities across the whole surfàce 

was obtained. A quantitative measure of the coating surface roughness was made by combining 

this rnap with hrther image processing- 

Because the poIy(2-vinylpyridine) coating is not completely opaque, the laser beam 

wuld penetrate the entire coating and foas  on the surface of the metal substrate. Foiiowing 

the same procedure as descri'bed above, a maximum intensity image of the metal substrate was 

obtained without interference f?om the adhering coating layer. From these maximum intensity 

images and the corresponding depths, it was possible to obtain surface depth profiles and to 

reconstruct 3-D topographic images of the scanneci surfàces, which have the advantage of 

providing a better stereoscopic expression of the particular surfaces. 

Since the reflected light only has high intensity at the airkoating and coating/substrate 

interfaces and essentidly zero intensity within the voids, coating and substrate, a profile of the 

coating thickness dong a h e  couid be obtallied by perforrning a cross-sectionhg scan of the 

laser beam over the line. This method gave direct visuaIization of the thickness and uniformity 

of the coating. n ie  cuating thickness at any given point or the average value over a particular 

distance codd be determineci by measuring the iight intensity as a fiinction of depth into the 

sample at the given location. By repeating this process at a number of points dong the line, the 



variation of thickness dong the ihe d d  be determineci. This aliowed flaws in the coating as 

smd as the image resolution to be detected. FIaws as  smaii as  this are difnailt to detect with a 

standard microscope. 

By applying the double reflection and transmission characteristics of the modified 

CSLM and scanning over a relatively large surface area, information on the surface roughness 

distniution over the entire surface couid be obtained over a wide range of areas. The largest 

&ce area scanned in this project was 4 mm x 4 mm. 

5.6. Process Mechanism Studies 

5.6.1. Inhibition Study 

The radical inhibitors p-benzoquinone and 2,2-diphenyl- 1 -picrylhydrazyl @PPH) 

were used to determine whether electropolymerization of 2-vinylpyridine occurs by a free- 

radical mechanism. Very low concentrations of the inhibitors were added (1 o - ~  M} for the 

tests. The inhibitors were dissolved in the electrolyte before the electrolysis, while the 

other operating conditions remained unchanged as before for a typical coating formation 

process (i.e., 0.25 M 2-vinylpyridine in 20% methanol aqueous solution with 0.05 M 

m C 1 0 . 1  as supporting eledrolyte and solution pH of 4.8, adjusted with HCIO4). The 

weight change of the working electrode before and &er the electropolymerization was 

recorded and compared with that from a similar electrolysis process without inhibitors. 

The electrolysis current change during the electrolysis was recorded and compared with 

that obtained without inhibitors. 



5.6.2. Surface Enhanced Raman Scattering Spectroscopy Study 

Raman spectra were obtained with a Ramascope 1000 (Renishaw) systern. A Meiles 

Griot He-Ne laser (17 mW, with wavelength of 362.8 nm) equipped with a holographic notch 

filter was ernployed as the source of illumination. A cornputer (Pentium 167, IPC) was used 

to record spectral data. To study the protonation of 2-Wiylpyridine molecules in aqueous 

solutions of dEerent solution pH without electrolysis, ordinary Raman scattering 

spectroscopy was used. The Raman spectrum of neat 2-vinylpyridine monomer was also 

obtained for cornparison. The adsorption of 2-vinylpyridine species on a copper electrode 

surface was studied by surface enhanced Raman scattering (SERS) spectroscopy. SERS 

was aiso applied to study the adsorption of 2-wiylpyridine species on the copper electrode 

surface in situ during electropolymerization at dierent electrode potentials. To achieve 

optimum SERS spectra, 3-mm diameter pure copper (>99.99) disks were used as the 

working electrode. The copper electrode was ex situ electrochernicaliy roughened by 

applying several oxidation-reduction cycles between - 1 .O and 1 .O V at 30 mV/s in 0.1 M 

KCI solution before use (Brandt, 1985; Beer et al., 1989). The cathodic compartment and 

anodic compartment of the electrolytic ceil were separated by a sintered g l a s  membrane. 

Details of the electrolytic ceIl are given in the relevant literature (Brolo et al., 1997). The 

electropolymerization process in these experiments was carried out potentiostatically. 

Nitrogen gas was used to purge the dissolved oxygen from the electrolyte in the cathodic 

cornpartment prior to the electrolysis and was continuously sparged throughout the 

process. 



5.6.3. Extended Voltammetry Study 

This extended voltammetry study of the process mechanism was carried out with a 

polymer modified electrode. The electrode was a mild steel coupon pre-coated with 

poly(2-vinylpyridine) using the electropolymerization process described before. This pre- 

coated electrode increased the hydrogen overpotential remarkably and thereby allowed the 

voltarnrnetnc scan to be extended to a much more negative potential. Concurrently, the 

electrolysis current was suppressed sigiuncantly by the presence of the high resistance 

polymer coating. Many unique characteristics of the electrolytic system can be observed 

by using such modified electrodes (Murray 1984a and 1984b). Other operating parameters 

were similar to other in the ordinary voltammetry studies descnbed in the previous section. 

To provide insight into the mechanism of coating formation, electrolysis of the pre-coated 

electrode was also conducted in an electrolyte containing dissolved poly(2-vinylpyridine), 

pre-formed by bulk poiymerization process without any monomer present. 

5.7. Other Studies 

5.7.1. Poly(2-Vinylpyridine) Coating Formation on Various Substrates 

m e r  the studies of poly(2-vinylpyridine) coating formation on mild steel 

substrates, other materials were applied for the coating formation. The substrates included 

aluminum, brass, copper, graphite, lead, stainless steel and zinc. The operating parameters 

were kept unchanged. The results were cornpared to those obtained with a mild steel 

substrate to determine the effects of the nature of the substrates on poly(2-vinylpy~idine) 

coating formation by electropolymerization. 



5.7.2. Polymer Coating Formation from Different Monomers 

Other monorners were also employed to form polymer coatings on various 

substrates via electropolymeriration. The studies stiii focused on ERP processes in 

aqueous systems. The monomers to be examined, together with their Q-e values 

(Greenley, l984), monomer pKa values (Perrin, 1965) and relevant references, are listed 

in Table 5.4. An important purpose of this part of the experiments was to generalize the 

conclusions f?om the process mechanism study concemed with poly(2-vinylpyridine) 

coat ings. 

Table 5.4. Monomers for polymer coating formation by electropolymerization (from 

Greenley, 1984 and Perrin, 1965). 

Type of Q 
monomer 

Acrylonitrile 0.48 

Acry larnide 0.23 
L 

Aniline - 

value 1 of monomer 

Reference I 
Sekine et al., 1992; De Bruyne et al., 

1995 

Bhadani and Parravano, 1970; 

S e h e  et al., 1992 

Sekine et ai., 1992 

Sekine et ai., 1992; Teng et al., 1977 l 
Mengoli et al., 199 1 I 
Shelepin and Fedorov* 1964; Pistoia 

and Voso, 1976 

Sobiesky and Zerner, 1969 I 
Venugopal et al., 1995 



CHAPTER 6 

RESULTS AND DISCUSSION - PART ONE: 

ELECTROPOLYMERIZATION COATING FORMATION 

Although it has been reported that some unsaturated compounds can self-initiate 

and form polymer coatings on mild steel substrates in acidic media (Pistoia et al., 1976; 

Mengoli et al., 1979% 1979b and 1991, Zhang and Bell, 1997), this does not occur in the 

case of 2-vinylpyridine polymerization. Prelirninary expenments were camed out by 

imrnersing various metal (mcluding mild steel) samples in the 2-vinylpyridine electrolytes 

for various time periods (from 0.5 to 48 hours) with no current flow. No polymer coating 

was found to fonn on the substrates. The mild steel samples were oxidized in the acidic 

solution which resulted in the formation of some black oxides on the surfaces. It is 

concluded that current flow through the ceii is necessary to initiate the 2-vinylpyridine 

polymerization. 

6.1. Electrolyte Preparation 

When the electrolytes are first mixed, Le., 0.05 M NHiC104 in 10% methanol 

aqueous solution, the solution pH is -5.5. When the desired amount of 2-vinylpyridine 

monomer is added to the above electrolyte, the solution pH increases to -7.5 due to its 

weakly basic monomer. The electrolyte appears clear and no noticeable heat generation is 



observed during the above muring. Solution agitation is necessary for the monomer to 

dissolve. 

6.2. Linear Sweep Voltammetry Studies 

Prelirninary voltarnrnetric experirnents were carried out in the potential range of 

3.0 to -3.0 V with various potential scan rates. The voltarnrnograms showed that oxygen 

evolution is the only anodic reaction in the system. Since this project focused on 

electroreduction reaction at cathode surfaces, the following discussion of the voltamrnetry 

results is confined to the cathodic portion of the voltammogram. 

When no 2-Wiylpyridine monomer is added to the electrolyte (Le., only 0.05 M 

N&C104 in 10% methanol aqueous solution), the electrolyte begins to dissociate 

cathodicdy at about -0.40 V. Considerable hydrogen evolution is observed at the rnild 

steel cathode. This voltammogram is show in Fig. 6. la. When 0.25 M 2-Wiylpyridine is 

added to the above electrolyte, hydrogen evolution is still very prominent and the 

voltammogram shows no reduction wave of 2-Wiylpyridine. However, when the solution 

pH is decreased from the original 7.5 to -5 (with concentrated HC104), hydrogen 

evolution is found to be delayed and suppressed significantly (Fig. 6.lb). A distinct 

reduction wave is observed before rhe onset of the large curent rise due to hydrogen 

evolution. The En of this new wave is about -1 .O V. 

Mer a linear potentiai scan between -0.7 and -2.5 V at 30 mV/s, some white or 

light yellow solids are observed on the cathode surface. When the voltarnmetry scan is 



O -0.5 - 1 -1.5 -2 -2.5 

Potential (V) 

Fig. 6.1. Typical voltammograrns of 0.05 M =IO4 in 10% methanol aqueous solution. 

(a) Without 2-vinylpyridiie and solution pH = 7.5. @) With 0.25 M 2-vinylpyridine and 

solution pH = 4.8; Potential scan rate = 30 mV/s. 
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Fig. 6.2. The decrease of the electrolysis curent in a cyclic voltammetnc electrolysis of 2- 

vinylpyridine electrolyte. The operating conditions are the sarne as those in Fig. 6.1b. 



camed out repeatedty, the cumnt response of the process is found to decrease rapidly, 

W~thin 10 cycles, the ciment has dropped to about 10% of its initial vahe, indicating that 

some highly resistant film has formed on the electtode surface mg. 6.2). 

The experimentd nsults mdicate that 2-vinyIpyridine c m  be reduced at the 

cathode prior to hydrogen reduction at the appropriate pH. An organic deposit foxms on 

the cathodic surface very rapidly &er the reduction of the monomer. The deposit appears 

to have low conductivity and causes a dramatic decrease in ekcmlytic cumnt It also 

displays a high hydrogen overpotential and therefore delays and suppresses the hydrogen 

evolution on the cathode surface. Solution pH is found to have a marked effect on the 

process. This suggests that the formation of the o r g e  deposit on the cathodic surface 

occurs as the consequence of monomer reduction rather than hydrogen reduction, which 

has ofien been proposed as the initiation step of certain electmpolymerization processes 

(Shapoval and Gorodyskii, 1973; Sul*amanian and Jakubowski, 1978; MacCallum and 

MacKerron, 1982; Iroh et al ,  199 1; Iroh et al., 1993a and 1993 b). More evidence for this 

suggestion will be @en later in the discussion of the impact of electrolyte pH on the 

electroplymerization. A detailed discussion of the process mechanism will be given in 

Chapter 10. 

6.3. Coating Formation Using Various Electrochemical Methods 

63.1. Chronoamperometric EleCffO1ysis 

In this technique, the electrode potential of the working electrode is kept at a fked 

value during elecnopolymerizatioa Opera~g conditions for the cbronoamperometric 



electrolysis (e.g., the constant cathodic potential for the electrolysis) are based on the 

findings fiom the above voltammetry studies. A typical chronoamperometric electrolysis is 

carried out at a constant potential of -1.3 V for 2 hours. Coating formation can be 

observed during the electrolysis by the gradua1 change in colour of the electrode surface 

from silver-gray to yellow. Hydrogen bubbles are fomed on the cathode surface during 

the electrolysis. The hydrogen bubbles fotm evenly over the electrode surface, which then 

expand and coalesce and finally detach nom the electrode surface. The films are found to 

contah some smali craters with dimensions fiom a few micrometers to 1 millimeter (Fïg. 6.3). 

These craters are the remit of hydrogen bubbles on the electrode surfaces during the coating 

formation. However, the coating images tiom CSLM (Fig. 6.3) show that the bases of these 

crates do not extend to the metal mbstrate. The colour of the electrolyte slowly changes 

during the electrolysis from clear to light yellow. 

Fig. 6.3. Coating surface morphology kom CSLM in a 4 mm x 4 

two-hour chronoamperometric eiectrolysis at - 1.3 V. The electroiyte is 0.25 M 2-vinylpyridine 

in 10% methanol aqueous solution with 0.05 M NHXIOJ as supporthg electrolyte at a 

solution pH of 4.8, adjusted with HClO* 
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It is also found that the electrolysis cument drops abmptly after the onset of the 

electrolysis. In about 5 minutes, the electrolysis current drops to about 10% of the initial 

current (Fig. 6.4a). However, when electrolysis is carried out at the same potential in the 

electrolyte without the monomer, no current drop is observed (Fig. 6.4b). The relevant 

current signal is noisy due to the wohtion of hydrogen bubbles. This is identical to the 

results in the voltammetry studies and supports the eariier conclusion that the current drop 

is the result of the formation of a highly resistant coating on the electrode surface. 

O 10 20 30 40 50 60 

Time (minute) 

Fig. 6.4. Current vs. time diagram dunng chronoamperornetnc elect r oly sis at a constant 

cathodic potential of -1.3 V, with solution of a) 0.25 M 2-vinylpyridine and b) no 

monomer present. The other operating conditions are the same as described in Fig. 6.3. 

Aithough the current drops rapidly after the onset of the electrolysis, it does not 

f d  to zero. Instead, it reaches a relatively steady value in about 15 minutes and maintains 



that value for the rest of the process. D u ~ g  this steady current period, the polymerization 

process continues at the electrode surface. This is indicated from the change cf colour of 

the coating and the increase in sample weight. The reason for this steady current is not 

completely clear yet. It may be the consequence of several reduction reactions in the 

system. For example, it may be partially due to hydrogen reduction during the electrolysis. 

It may be caused by the fact that the fonned coating is somewhat porous due to the nature 

of the coating or due to the hydrogen evolution during the coating formation. The 

growing polymer coating may be a solvent-swollen ionically conducting gel, that may 

d o w  rather easy transport of hydrogen ions, monomers and oligorners, and thus permit 

electron transfer leading to hydrogen evolution and electropolymerization at the 

metdcoating interface (Mengoli and Musiani, 1994; Liang et al., 1993; Lee and Bell, 

1995a and 1995b). More discussion about this phenornenon will be provided later when 

the process mechanism is proposed. 

DifEerent values of cathodic potentials were used for the chronoamperometrk 

electrolysis. If the cathodic potential is too negative (5 -1.5 V), excessive hydrogen 

evolution occurs. This dismpts film formation, leading to a thin and irregular coating with 

small clumps over the electrode surface. As expected, less hydrogen is generated at less 

negative cathodic potentials, but the formed coatings are extremely thin. When the 

electrolysis is carried out at an electrode potential less negative than -1.0 V, no visible 

coating forms on the electrode surface after two hours of electrolysis. However, the 

electrolysis current also decreases quickly after the onset of the electrolysis. The substrate 

looks purple and blue. When the working electrode potential is less negative than -0.8 V, 

the electrolysis current rernains at a lower but constant level dunng the course of 



ekctrolysis. The current response of the process looks simikr to that in Fg. 6.4b. After 

two hours of electrolysis at such a elecaode potential (< 4.8 V), no change can be 

obsmred on the substrate. The cumnt appears to be due primarily to hydrogen reduction. 

It appears that a condition may exist which promotes the k t  mono-molecular layer of 

polymer molecules to fom and be adsorbed on the electrode surface which significantly 

alters the electrochemicd properties of the ektrodes. This explmation is consistent with 

the principle of polymer-modW electrodes (Murray, 1984a and 1984b; Diaz, 1991). In 

our case, this fint adsorbeci monomolecular layer Uicreases the elecflcal resistance and 

hydrogen overpotential of the working electrode. It is known that when the working 

eIectrode potenw is slightly iess negative than the EtR, the monomer reduction reaction 

can still occur but at a much slower rate. However, when the working electrode potential 

is significantly more pontive than the Ein, no monomer reduction would occur. This may 

explain why the polymer film can still fom on the substrate at a workùig electrode 

potential between -1.0 V aad -0.8 V aluiough the polymer film foxmed may be ody a 

mono-moiecular layer, while no polymer film f o m  on the electrode surface when the 

potential is above -0.8 V. This also supports the earlier conclusion that the 

polymerization is initiated by formation of monomer radicals rather than hydrogen 

radicals. 

6.33. Modified C hronoamperome tric ElectroIysis 

Various anempts were made to m .  the hydrogen evolution and irnprove the 

coating quaIity diiring chronoamperometric electrolysis. These included varying the extent 

of solution agitation and mechmkally removing the gas bubbles b m  the electrode surface 



dunng electrolysis. No significant improvement is found in either case. Although polishing 

the coupon very smoothly with alumina (0.05 micron, Grinder-Polisher Motopol 8) pnor 

to electrolysis reduces the extent of hydrogen evolution, it also causes the polyrner coating 

to be poorly adherent to the substrate. Considering the difnculties of applying this method 

to large and cornplex-shaped substrates, no further effort was made in this direction. 

An interesting idea of applying a vmying-potentiai chronwmperometnc 

electrolyss to restnct hydrogen evolution and increase the coating thickness emerged 

fkom the practice of ordinaq chronoamperometnc electrolysis. The ordinary 

chronoamperometric electrolysis was modifiai by fïrst applying a constant caîhodic potential 

(e.g., -1.3 V) for a certain time and then graduaiiy decreasing the potential to a lower value 

(e-g., 4.7 V) over a certain penod. During the fint (more negative potential) stage, a large 

arnount of coating formed on the electrode surface. However, due to the intense hydrogen 

evolution, the coating is non-dom.  During the second stage when the potential is gradually 

reduced, the evolution of hydrogen subsides signt6cantly and the coating formation process, 

dthough reduced as weU, appean to ocair primarily on the thinner recesses within the craten. 

Consequentiy, the craters are fled by the polyrner, thereby making the coating more uniform. 

The potential waveform and the resulting m e n t  response are shown in Fig. 6.5. Some CSLM 

images of coated samples fomed by the above irnproved chronoamperometric electrolysis 

are shown in Fig. 6.6. Some results of this section have recently been published (Ling et 

al., 1998a). 



Fig. 6.5. ïhe potential waveform vs. tirne (a) and resulting m e n t  response vs. time (b) 

diagram ffom a rnodified chronoamperometric electrolytic process. The electrolyte and orher 

expehental conditions are the same as those in Fig. 6.3. 

Fig. 6.6. The morphologies of coatings produced by the electrolytic process described in Fig. 

6.5. CSLM images of partidy Med pits at different mapification: (a) 4 mm x 4 mm, (b) 1 mm 

x 1 mm and (c) 200 pn x 200 p. 



6-3.3- Galvanostatic EIectroIysis 

Attempts to use gaivanostatic electrolysis as an effective method for 

electropolymerization coating formation met with little success. The electrolysis was 

c-ed out at 10 to 100 rn~/cm* for 10 minutes to 2 hours. The primary problem 

associated with this method is the difficulty in choosing a suitable constant current for the 

electrolysis. This information should be obtainable fiom a voltammetry study of the 

system. However, since the current decreases dramatically during the process due to the 

high resistance of the coating formed, it is impracticable to choose one value suitable for 

the whole electrolysis process. A high current causes intense hydrogen evolution, while a 

Iow current leads to very little coating formation. As the coating resistance increases 

rapidly dong with the formation of the polymer films in a galvanostatic process, the 

electrode potentials increase rapidly as weU. This leads to a very intense hydrogen 

evolution on the electrode surface. Such a phenomenon has been reported in the other 

electropolymerization processes carried out via galvanostatic electrolysis (Everson and 

Helms, 1991; Liang et al., 1993a and 1993b). The ineffectiveness of this method for 

electropolymerization coating formation is not unexpected. In an electropoIyrnerization 

process, the electron transfer process is mostly involved in the initiation (or radical 

generation) step and so the current is not an essential critical factor in the process unless 

radical generation is rate limiting. On the other hand, an appropriate electrode potential is 

more important for the electrolysis process in order to control electrode processes and 

prevent side reactions. Therefore, rhe potentiostatic technique is prefened to the 

galvanostatic technique. S M a r  results have been concluded for other 

electropolymerization systems (Ohno et al., 1990; Mengoli and Musiani, 1994) 



6.3-4. Constant CeII-Potentid Electrolysis 

This method diners nom chronoarnperometry in that the ceii potentid rather than 

the working electrode potential is kept constant during electrolysis. However, the use of 

constant cel1-potential technique was also found to be unsuccessfûl in Our study. The 

electrolysis was camied out at constant celi-potential of 3 to 10 V for 10 minutes to 2 

hours. The basic problem in applying this technique is that the working electrode potential 

floats during the electrolysis, whiie the cell-potential is kept constant using a power supply 

(Hewlett Packard 6263B DC Power Supply). This is due to the dramatic increase in 

system resistance as the coating f o m .  The lack of control of the worklng electrode 

potential causes difnculty in controlling coating formation and leads to non-reproducible 

results. Sornetimes some fiim can be forming, while at other cases only intense hydrogen 

evolution is observed. In addition, when applying this method for electropolymerization 

research, no findamental information related to the electrode process is available and thus 

this technique is not useful for exploratory research. A potentiostatic method such as 

chronoamperometry is more effective since the working electrode potential is always kept 

controlied by the potentiostat and the current response is aiways being monitored. When 

the current changes, it is the counter electrode potential that floats in order to maintain the 

working electrode potential at the desired value (Bard and Faulkner, 1980). 



6.3.5. Cydic Potential Sweep (CPS) Electdysis 

6.3 -5.1. Characteristics of CPS Electrolyis 

CPS electrolysis is the extension of linear sweep voltammetry. It involves the 

application of repeated cathodic or anodic potential scans during electrolysis. The cathodic 

potential sweep range used in this study was normally between 4.7 and -2.5 V with a 

scan rate of 30 mV/s. The current vs. time (i-t) diagram of such a CPS process is s h o w  

in Fig. 6.7. D u ~ g  a CPS electrolysis it is found that the first current peak is very high and 

subsequent peaks shrink rapidly thereafter. The second current peak is usually 115 or 1/10 

of the height of the first peak. After about three or four potential sweeps, the current peak 

height reaches a relatively constant value and remains at that approxirnate value through 

the rest of the process. This result is simiiar to the previous hding  from the 

chronoamperometric study. The 1-t diagram of a CPS process is composed of a senes of 

repeating voltamrnograms. They provide important information about the syaem during 

the electrolysis, such as changes in the shapes of the voltamrnograms. From the enlarged 

partial 1-t diagrarn (Fig. 6.8), it is clear that the current drops rapidly at the beginning of 

electrolysis (Fig. 6.8a) and reaches a relative steady condition where the system gives a 

similar response fiom one cycle penod to the next (Fig. 6.8b). It also shows how the 

shapes of the voltamrnogams change gradudy during this relative steady process Ofg. 

6.8~). Thick and uniforin coatings are formed by CPS electrolysis, and a coating image is 

shown in Fig. 6.9. 
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Fig. 6.7. A typical I-t diagram of a CPS electrolysis. The cathodic potential sweep range is 

between -0.7 and -2.5 V and the scan rate is 30 mV/s. The electrolyte and other 

expenmental conditions are the same as those described in Fig. 6.3. (a), @) and (c) are the 

three parts enlarged and shown in Fig. 6.8. 
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Fig. 6.8. The enlarged partial 1-t diagram of the CPS process shown in Fig. 6.7. (a), @) 

and (c) are from the beginning, the middle and the end of the 1-t diagram, respectively. 



Fig. 6.9. Coating surfàce morphology Born CSLM in a 1 mm x 1 mm scannuig area, d e r  a 

two-hour CPS electrolysis between 4 . 7  and -2.5 V at a scan rate of 30 mV/s. The other 

experimentd conditions are descn'bed in Fig. 6.7. 

A brief cornparison of the results obtained using the dEerent electrochernical 

techniques is summarized in Table 6.1. It is found that CPS produces the best quality 

coatings, Le., the most uniform coatings with various thickness, and therefore, is the most 

suitable technique for electropolyrnerization of 2-vinylpyridine. With the application of a 

potential sweep during electrolysis, the working electrode potential is never maintained at 

a highly negative value for a long time. Therefore, initiator is not being generated 

throughout the entire process as will likely happen during chronoamperometry. Once the 

workuig electrode is held at a highly negative potential for a short penod to generate 

enough initiators, it is changed to a value close to the system open circuit potential (E,) 

where no current passes through the electrodes and no electrode reaction occurs. During 

this period, the generated initiator species have the time to combine with the monomer 

molecules and propagate polymer chahs. By reducing the time that the working electrode 

is at a very cathodic potential, hydrogen evolution and the formation of craters are kept to 

a minimum. 



Table 6.1. Summary of dierent electrochemical techniques for coating formation. 

Different electrochemical 

techniques 

Chronoamperometry 

(or Potmûostatic) 

hproved Chronoamperometry 

Constant CeU-Potential 

1 Cyclic Potentiai Sweep 

Result 

Intense hydrogen evolution (at hi& potentiai) or thin coating 

(at low potential) 

The hydrogen the coathg are reflied to a certain 

degree, and uniforni coating formed 

Diniculties in choosing a proper constant current. Intense 

hydrogen evolution and no coating generatioo 

Floaîing electrode potentiais and poor experimentai 

reproducibiiity 

Thick and uniforrn coating fonned 

6-3-52. The Effect of the Potential Range of a CPS Electroivsis 

The effect of the range of the working electrode potential during a CPS 

electrolysis has been studied by adjusting one lirnit while keeping the other limit constant. 

The other operating parameters are kept constant, as mentioned previously. The resulting 

1-t diagrams for these experiments are s h o w  in Figs. 6-10 and 6.11. The experimentai 

results and some simple descriptions are summarized in Tables 6.2 and 6.3. 

When the potential sweeps are perfonned between -0.7 and -2.5 V (Fig. 6. lOa), 

thick and uniforni coatings are formed on the substrates. When the cathodic lirnit is 

increased to -2.2 V, a sirnilar quality of coatings is obtained. The only difference between 

these two processes can be observed f?om the 1-t diagrams (Fig. 6.10b). During the 

sotential sweep between -0.7 and -2.2 V (Fig. 6.10b), the current of the process drops 

rapidly after the first cycle of potential sweep. In the case of the sweep from -0.7 V to 
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Fig. 6.10. The effect o f  the range of the working electrode potential during CPS 

electrolysis on the electropolymerization 1-t diagrams. The explanation legend (a) to (e) is 

given in Table 6.2. 



Table 6.2. Effea of the range of the working electrode potential of CPS eiectrolysis on 

coating formation. The other experimental conditions are the same as those described in 

Fig. 6.7. The relevant 1-t diagrams are shown in Fig. 6.1 0. 

-2.5 V (Fig. 6. lOa), the current remains high d e r  the f2st few cycles of potential sweep. 

A possible explanation is that hydrogen evolution is more intense in the case of the more 

negative cathodic limit. Consequently, it would take a longer time for the coating tu build 

up to a point where its resistance begins to slow down the process. It is also wonh noting 

that the amount of coating ultimately formed in the above two cases is virtuaily identical. 

When the cathodic lirnit is increased further, the coating formation process is 

aEected adversely. Hydrogen evolution becomes more intense and the coating formed 

become thin and non-uniform. Eventually, no visible coating c m  be observed when the 

cathodic limit reaches -1.3 V. From the 1-t diagrams (Figs. 6 .10~  to 6. lOe), it is observed 

that the current decrease with tirne becomes more gradua1 as the cathodic lirnit rises. This 

again suggests H2 evolution becornes increasingly important at the sarne tirne. 

For the experiments in which the cathodic lirnit is fixed at -2.2 V while the anodic 

limit varies, it is found that good quality coatings fom when the anodic limit is > -1.0 V. 

Legend 

in 

Fig. 6.10 

(4 

(b) 

(d 

(d) 

(e) 

The corresponding 1-t diagrams (Figs. 6.1 lc and 6.11d) show a rapid drop in the system 

Anodic limit 

(V) 

-0.7 

-0.7 

-0.7 

-0.7 

-0.7 

Cathodic 

limit 

(V) 

-2.5 

-2.2 

-1.9 

-1.6 

-1.3 

Coating 

weight 

(mg) 

5.6 

5.7 

3 -3 

1.6 

0.3 

Result 

Thick and uniform coating 

Thick and uniform coating 

Thin and non-uniform film 

Very thin and irregular film 

No visible coating formed 



current and are quite sirnilar to Fig. 6. lob, which also corresponds to a good coating. 

When the anodic limit is too negaiive (< -1.0 V), poor coatings are formed. The coatings 

are not only thin and non-uniform, but aiso porous and poorly adherent to the substrates. 

The 1-t curves (Figs. 6.1 la  and 6.11b) show abnormal shapes. At the beginning of the 

processes, the currents decrease slowly due to the irnproper range of the potential sweep, 

indicating that the arnount and quality of coatings being formed on the electrode surfaces 

are lower. M e r  about 30 minutes of electrolysis the currents start to increase quickly, 

indicating that the rates of coating formation are lower than that of coating detachment 

due to the effea of hydrogen evolution and/or coating dissolution. Hydrogen evolution at 

the cathode becomes very strong, leading to porous and poorly a d h e ~ g  coatings. 

Table 6.3. Effea of the range of the working electrode potential of CPS electrolysis on 

coating formation. The other experimental conditions are the same as those descnbed in 

Table 6.2. The relevant 1-t diagrarns are shown in Fig. 6.1 1. 

Legend 

in 
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Anodic 

limit 

03 

Cathodic 

b i t  

(v) 

Coating 

weight 

(mg) 

1.7 Thin and irregular coating, porous and 

pwrly adherent to the substrate 

Thin and irreguiar coating, porous and 

pwrly adherent to the substrate 

5.7 1 Thick and uniform coating 



Fig. 6.11. The effect of the range of the working electrode potential during CPS 

electrolysis on the elearopolyrnerization 1-t diagrams. The explmation legend (a) to (e) is 

given in Table 6.3. 



6.3 -5.3. The Effect of the Potential Scan Rate of a CPS Efectrolvsis 

When the CPS eIectroly3es are performed at dierent potentiai sweep rates in the 

range between -1 -0 and -2.2 V, interesting results are obtained. If potential sweep rates 

are between 10 and 50 mV/s, an acceptable quality of coatings is produced. The 1-t 

diagrams show rapid current decrease after the onset of the electrolysis (Figs. 6.12 b to 

6.12d). At a high potential sweep rate (Le., 100 mV/s), several cycles of electrolysis are 

required before a decrease in system current to a relatively stable value is obtained (Fig. 

6.12a). This can be explained by the fact that the high sweep rate shortens the polymer 

growing tirne (the period when no or very Iow current flows through the electrodes) and 

rnakes it difficult for the coating to accumulate on the substrate. The coating is relatively 

thin and non-uniform. On the other hand, at a low potential sweep rate (Le., 5 mV/s), the 

coating is also non-uniform and poorly adherent even though it is relatively thick. The 

relevant 1-t diagram (Fig. 6.12e) is abnormal. The current decreases slowly at the 

beghning of the process and increases after about 40 minutes of electrolysis. Although 

there is now a longer continuous period for both the highly cathodic and open-circuit 

stages of the process, the initiation reaction (at cathodic potential with high current) and 

the propagation reaction (near the open-circuit potential with very low current) do not 

coincide much in t h e .  Therefore, they cannot cooperate effectively for the polyrnerization 

and coating formation. 

The above experimental results demonstrate that a proper combination of the 

potential sweep range and rate is very important for a successful electropolymerization 

coating formation process by the CPS technique. The selection of the values of the vanous 



Fig. 6.12. The effect of the potential sweep rate during CPS electrolysis on the 

electropolymerization 1-t diagrarns. The exphnation legend (a) to (e) is given in Table 6.4. 



Table 6.4. Effect of the rate of potential sweep on coating formation (in the potential 

range of -1 .O to -2.2 V). The relevant 1-t diagrams are shown in Fig. 6.12. 

(a) 1 100 1 4.9 ( Non-dom coating 1 

Legend 

in Fig. 6.12 

10 I 6-7 1 Thick and d o m  cuatuig I 
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(c) 

Even though coaîing is not vexy thin, 

it is n o n - d o m  and poorly adherent 

Result 

I 
Potential sweep rate 

(mV/s) 

parameters is ni11 empirical. Future research into developing a quantitative mode1 would 

be usefiil for obtaining a better understanding of the interaction between these parameters. 

Coating weight 
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30 

6.4. Poly(2-Vinylpyridine) Formation by Free Radical Bulk 

Polymeriza tion 

For comparative purposes, poly(2-vinylpyridine) is also fonned at room 

temperature by bulk polyrnerization with 1 wt. % benzoyl peroxide as fiee radical initiator. 

The colour of the reaction solution changed gradually from clear to light yellow during the 

polymerization. The formed polyrner appears white d e r  being purified repeatedly with 

hexane and THF and is soluble in methanol, THF and chlorofom. Polyrner products from 

processes under elevated temperatures (e.g., 40 and 70°C) usually have a dark brown 

colour. At a higher temperature when the rate of polymerization is too high, the rnolecular 

weight of the polyrner produas become low and the polyrner products adopt a brown 

1 
I 

6 -2 

6-6 

Thick and d o m  coating 

Thick and uniforrn coating 



colour characteristic of 2-vinylpyridme oligomer (De Bniyne et al., 1995). Auto- 

acceleration is evident at the end of the polymerization fiom the increase of the viscosity 

of the reaction solution. 

Poly(2-vinylpyridine) formed by bulk polymerization has also been used to form 

coatings on mild steel substrates by the solvent evaporation technique. 4 gram of polymer 

are first dissolved in 20 mL THF and then the solvent allowed to evaporate partialiy until 

the viscosity of the polymer solution is suitable for coating formation. A mild steel 

coupon, similar to the ones used in the electropolyrnerization, are then dipped into the 

polyrner solution for coating formation and then dned in air. The formed coatings are 

colourless and very smooth. After thermal curing at -120°C for 30 minutes, the colour of 

the coating becomes brown and some cracks show in the coating surface. It is hard to 

control the coating unifonnity and coating thickness. Sometimes air bubbles form in 

coatings during solvent evaporation process. The coatings are hard, but the adhesion of 

the coating on the substrate is not as good as that of the coatings formed by 

electropolymerization. A piece of coating can be scratched off the substrate relatively 

easily. 



CHAPTER 7 

RESULTS AND DISCUSSION - PART TWO: 

EFFECT OF OPERATING CONDITIONS 

7.1. Effect of Solution pH 

As mentioned previously, solution pH is a critical variable in the electropolymerization 

process. To study this, a senes of voltammograms was obtained for a 0.25 M 2-vinylpyridine 

solution at various pH values. The cathodic portions of these voltammograms are show in 

Fig. 7.1. The curves have been deliierately shifled dong the horizontal axis to avoid any 

overlap. The anodic parts which show only the current rise for oxygen evolution are omitted. 

Before the addition of HClOl or =OH to the 0.25 M 2-vinylpyridine solution to adjust pH, 

the electrolyte initially has a pH of 7.5. At this pH value, very intense hydrogen evolution 

ocaus during the voltammetic experiments. No other current wave can be observed in the 

voltammogram. When the solution pH is increased by adding W O H ,  a siMiar wave 

characteristic is observed. However, when the solution pH is reduced to about 5 using HCIOs, 

a significant cathodic s h i .  of the starting potential for hydrogen evolution is observed and a 

new current plateau with a En of about -1.0 V appears. When the solution pH is reduced 

M e r ,  the shape of the voltammograms shows no essential change. While the En for the 

plateau remains at about -1.0 V, the current nse for hydrogen evolution shifts slightly in the 

positive direction This may be due to the higher concentration of hydrogen ions in the solution 

at the lower pH 



Potential 

Fig. 7.1. The effxt of sohition pH on the shape of the voltammograms obtahed in 0.25 M 2- 

vinylpyridine solution Potential scan is between -0.7 V and -2.0 V and scan rate is 3 0 mV/s. 

The cuves have been sMed dong the potential axis to avoid any overlap. 

Solution pH does influence the coating formation process significantiy. After a one- 

hour chronoamperometric electrolysis at a constant cathodic potential of -1.3 V, a CSLM 

image of the coated sample morphology shows ody scattered deposits on the electrode SZUface 

fkom a solution of pH 7.5 (Fig. 7.2b). At higher values of pH, even les deposit is f o d  (Fig. 

7.2~). Oniy when the solution pH is reduced to about 5 does a udorm coating form on the 

electrode sur fke  (Fig. 7.2a). However, m e r  reduction in pH to below 4 results in hydrogen 

evoiution at more positive potentials and very iittle deposit forms on the substrates. When the 

pH is lower than 2, no visible film formation can be observed. During the electrolysis, the 

sohition pH remah unchanged. The experimental resuks are summarized in Table 7.1. 



Fig. 7.2. The e f k t  of solution pH on wating morphologies (4 mm x 4 mm d g  CSLM 

areas), after a one-hour chranoamperometric eiectrolysis at a constant potential of -1.3 V. (a) 

pH = 4.8: wating is unifom aithough srnail pits can be seen; @) pH = 7.5: coating is scattered 

and irreguiar; (c) pH = 9.5: very thin and irregular coating. 

During the chronoamperometric electrolysis (at -1.3 V) at various values of pH, the 

system current is found to decrease rapidly after the onset of the electrolysis (Fig. 7.3). 

Interestingly, even when very M e  or no visible film f o m  on the substrate d a c e  at Iow pH 

(e.g., pH value of 1.9), the m e n t  sa decreases vexy rapidly with tirne. On the other hand, at 

high pH the coating quality is poor, whiie the cunent drops off Iess sharply. The reason for this 

behaviour may be that extremely thin but veq compact films have formed on the substrates 

even when the coating is poor. These experimemal results are also summarized in Table 7.1. 

When electrolyte pH > 7.5 or < 3 -5, intense hydrogen evolution occurs, indicating that 

a large arnount of hydrogen radicais have been generated at the cathode sudice: 

at low pH: W30' + 2 è  + 2 H a  + 2X -+ 2H20 + H2 (7.1) 

at high pH: m0 + 2e- + 20H + 2K+ 20H + Hz (7-2) 



Table 7.1. Sumrnary of the experimental results of the effect of solution pH on coating formation fiom a one-hour clwonoamperometric 

electrolysis at a constant cathodic potential of -1.3 V (0.25 M 2-vinylpyridine in 2W methanol aqueous solution with 0.05 M Nf&C104 as 

Solution 

PH 

1.9 

3.5 

4.8 

Ein 

(VI 

-1.15 

7.5 

The Ein corresponds to the half-wave potential for 2-vinylpyridine reduction reaction. 

* Duraiion of experiments was one hour. 

-1.15 

-1.20 

L 

9.5 

1 Oc) 

Coating weight i 0.3 

(me) 

O 

- 

0.5 

3.5 

- 

Current change in chronoamperometric electrolysis 

Current decrases quickl y; reaches a final value of 1 -35 rnA/cm2 

1.8 

Coating morphology 

No visible film 

Current decreascs quickly; reaches a final value of 0.82 rnNcm2 

Current decreases quickly; reaches a finai value of 0.45 rnA/cm2 

1 .1  

Very little visible film 

chin film with small cracks and little 

Cument decreases quickly; reaches a final value of 0.9 1/cm2 

clumps. 

Scaîîered and irregular film 

Current decreases quickly; reaches a final value of 1.64 rn~lcm* Very thin and irregular film 



Fig. 7.3. The effect of solution pH on cathodic current during chronoamperometric electrolysis 

in a 0.25 M 2-WiylpyridLie solution at constant potential of -1.3 V in 200/o methanol aqueous 

solution with 0.05 M =Cl04 as supporthg electroiyte. pH: (+) 1.9, (+) 3-3, 

(+) 4.8, (+) 7.5, (-x-) 9.5. 

However, very thin polymer coatings, sometimes even no visible coating, can be observed on 

the electrode sufaces. This indicates that hydrogen radicals do not contriiute to the initiation 

of polymerization. The initiation of the polymerization would involve the reduction of 

monomer moleailes, indicated by the reduction wave at about -1.0 V on the voltammograms 

(Fig. 7.1). This conclusion is consistent with the one obtained before in linear sweep 

voltarnmetry studies (Section 6.2.). Obviously, electrolyte pH has a major effkct on the 

electropolymeriration process. The effect of pH on the shape of the voltammograms would 

seem to relate directly to the rnechanisrn of the electropolymerization process. More detailed 



diswsion of this issue and the mechanisn of process initiation reactions wül be provideci later 

in Chapter 10. 

7.2. Effect of Methanol Concentration in EIectroIyte 

From the single parameter experiments, it is found that methanol content in the 

electrolyte plays an important role in the coating f o d o n  process. At low methmol content 

(eg ,  1 to 5 %), the solubility of 2-viny1pyridiie in water is not high enough to rnake a 0.25 M 

2-vinylpyridine solution without adding concentrateci HC104 to lower the pH As the solution 

pH is reduced, a portion of the 2-Wiylpyridiie molecules (l) is protonated to fonn 2- 

Wiylpyridinium ions which are soluble in water. Detailed discussion of this issue wiIl be 

presented later dong with the results from Raman scattering spectroscopy. The 2- 

Wiylpyridiim ions can be represented by a variety of canonical forms, such as II and III, etc. 

O (n) (m) 

When the methanol content is low (e-g., 5%), the polymer fomed during electrolysis 

has a low solubility in the electrolyte. Therefore, the coating starts to fom rapidly after the 

onset of the electrolysis. However, since the coating formation process may be so rapid, the 

coating is non-uniform. The low molenilar weight content in the coating is high which causes 

the coating to have poor solidification characteristics. Moreover, the coating does not adhere 

to the substrate very weli and some actuaily U s  off the electrode in srnail pieces. Sorne of 



the eleztrode and fom little lumps on the substrate. As the methanol 

content inmeases above 10°?, the monomer and polymer becorne more soluble in the solvent. 

This inmeases the higher molecuiar weight polymer component in the film and yields a more 

solidifieci c o h g .  Thick and uniform coatings start to form under these conditions. However, 

when the methanol content in the solvent is higher than 30D/o, the formed c o h g  becomes thin 

but stdl uniform. Hydrogen evolution becomes more intense during coating formation, 

especiaily at the beginning of the process. The polymer now is more soluble in the electrolyte 

that a larger portion of t re-dissolves, particularly the low molecular weight component formed 

at the beginning of the process. Whatever coating is present is not capable of suppressing 

hydrogen evolution The results of these experiments on the effect of methanol content are 

summarized in Table 7.2. 

Table 7.2. Summary of the effkct of methanol content in the electrolyte on the polymer coating 

formation by two-hour CPS processes. The electrolyte is 0.25 M 2-Wiylpyridine with 0.05 M 

NE~CIOI as supporting electrolyte and solution pH of 4.8, adjusted by HC104. The potential 

sweep is between 4.7 and -2.5 V at 30 mV/s. 

Methanol concentration 

(vol. %) 

I 5 I 4.1 1 Thin and non-unifonn coatiag l 

15 

20 

8.5 

25 

30 

40 

Thick and d o m  coabng 

7.9 Thik and unifom coating 

6.4 

4.8 

2.3 

Thick and uniform coating 

Thin but unifOm coating 

Thin but uniform coating 



Fig. 7.4. The effect of methanol content in the electrolyte on the 1-t diagrams obtained during 

CPS electrolysis of poly(2-vinylpyridine) coatings. The methanol contents (by volume) in the 

electrolyte are (a) 40 %, (b) 20 % and (c) 5 %. Same experirnental conditions as descn'bed in 

TabIe 7.2. 



The 1-t diagrams of the CPS processes 7.4) support the above explanations. W& 

a low or intemiediate methanol content (1 20%), the system m e n t  drops rapidly &er the 

onset of the electrolysis, indicating that a resistant £üm forms on the electrode surfàce rapidly. 

When the methanol content is high (2 30%), the airrent only starts to decrease g r a d d y  after 

the first half-hour of electrolysis. This indicates that during the first haifhour, Whially no film is 

formed on the electrode surfice. However, the detailed voltammograrns show that monomer 

reduction reaction still take place during this penod. Apparently, the reduction product must be 

dissolvhg in the electrolyte as quickiy as it f o m .  

nie effect of  solvent on polymer coating formation appears very cornplex. A solvent 

with an appropriate combination of components assists the stretching of the polymer mils, 

which is helphl for the formation of a thick, coherent and uniforni coating. More research in 

this area is warranteci. 

7.3. Effect of Operating Temperature 

Temperature was found to play an intereshg role in the electropolymerization process. 

When the electrolysk is operateci at 20°C (0.25 M 2-WiyIpyridine in 20% rnethanol aqueous 

solution with 0.05 M m C l O 4  as supporthg electrolyte and solution pH of 4.8 adjusted with 

HC104), a thick and uniform yellow coating is obtained. hiring a two-hour CPS electrolysis 

(between 4 . 7  and -2.5 V at a sûui rate of 30 mV/s), the electrolyte graduaiiy becornes yeiiow 

as weii. When the operating temperature is higher than 20°C, the coatings become thicker and 

the coating colour changes more quickly. Presurnably, this is due to the increase in 

polyrnerization rate with rise in temperature. When the operating temperature is over 40°C, the 



coating weight increase begb to slow as the temperature rises. This o b m t i o n  is consistent 

with the fâct that the rate of polymerization increases as the temperature rises but when the 

temperature is too high the molecular weight of the polymer would be expected to decrease. 

The low molecular weight polymer has a higher solubii  in the hot solvent than the high 

molecular weight polymer in the d e r  solvent. Since the lower molecular weight portions 

would preferentiaiiy dissolve, this wouid lave behind enough of higher rnoleailar weight 

components, resulting Li very coherent and d o m  coatings. The yeliow colour of the 

electrolyte may be due to the presence of relatively low molecular weight polymer in the 

solution men and Hogen-Esch, 1976; Jenkins et al., 1979; Mathis and Hogen-Esch 1982; 

Meverden and Hogen-Esch, 1983; De Bruyne et al., 1995). More discussion about this aspect 

will be presented later. 

Support for the above explanation is found fiom the experirnental result obtained at a 

lower electrolysis temperature. At 10°C, more coating f o m  on the substrate than at 20°C. 

Although polymerization ocairs at a slower rate at the lower temperature, the r d t i n g  

polymer has a higher rnoleailar weight and therefore a heavier coating on the substrate. 

Moreover, the fomed coating is found to have a much Iighter colour than the ones produced at 

higher temperature, whiie the solution colour is much lighter as weii. A yeiiow colour is 

normally characteristic of a lower moleailar weight 2-vinylpyridine oligomer whereas a light or 

no colour is typicdy associated with a higher molecular weight polymer. n i e  1-t diagrarns of 

the CPS processes (Fig. 7.5) also support the above explanations. At higher temperature (e-g., 

70°C), the electrolysis current through the whole process is higher than that at the lower 

temperature (Fig. 7.5c), indicating a higher rate of electropolymeNation. At lower temperature 

(lO°C), the drop of the m e n t  is relatively gradua1 at the beglluiing Fig. 7.Sa), indicating that 



Fig. 7.5. The effect of opetating temperature on 1-t diagrams obtained during CPS electrolysis 

(between -0.7 and -2.5 V at 30 mV/s) of poly(2-viny1pyrkhe) coatings. The electrobe was 

0.25 M 2-Wiylpyridine in 2û% methanol aqueous solution with 0.05 M as supporting 

electrolyte and solution pH of 4.8 adjusted with HCI04. The operating temperatures are (a) 

1 O°C, @) 40 O C  and (c) 70 OC. 



les coatings is formed on the electrode surfàce due to the slower rate of the 

electropolyrnerization. Taken together, the resuits on the effect of temperature suggest that 

increasing temperature promotes the formation of a M e r ,  low moleailar weight coating that 

nonetheles can stili be protedive if the other conditions are favourable. The experimentai 

results on the effect of temperature are sumrnarized in Table 7.3. 

Table 7.3. Sumrnary of the experimentd results on the effect of operating temperature on the 

electropolymexization. The experimentai resuits are the same as describeci in Fig. 7.5. 

1 Operating temperature Coating weight I I Comments I 
cc> 
10 

I 50 l 7.3 1 Uniforni caitiag with darker yellow colour l 

20 

30 

40 

(mg) 

8.2 

7.4. Effect of Monorner Concentration 

Thick and uniform coating with lighter yeiiow colour 

7.9 

8 -2 

8.5 

60 

70 

These experirnents are operated at 20°C using dEerent amounts of monomer dissolved 

in 20% methanol aqueous solution with 0.05 M NH<C104 as  supporting electrolyte and 

solution pH of 4.8 adjusted with HClO4. The CPS are carried out between 4 . 7  and -2.5 V at 

a scan rate of 30 mV/s. It is found that the En of 2-Wiylpyridine reduction at different 

rnonomer concentrations are shified only slightiy. When the monorner concentration is Iow (< 

0.15 M), intense hydrogen evolution is observed at the cathode surface. Consequently, the 

mck and unifonn coatuig wiîh yeUow colour 

Thick and uniform coatulg with yeUow coIour 

Thick and uniform coating with yeUow colour 

6.5 

6 2  

Very d o m  coating with darker yeUow colour 

Vexy unifom coating with dark yeIIow colour 



fbmed coatings art thin and kreguiar- Presumably, thexe is not enough monomer in the 

ektmfyte to compete with hydrogen for covaage of the elecaode surface. As the monomer 

concentration haeses, the ~~ surfke coverage by the monomer increases so that 

hydrogen evohtion is suppresd. MeanwW, the polymerization rate increases with the 

inmase of monoma concentration, and therefore, thkker and uniform c o a ~ g s  are obtained. 

Howeveq when the monomer a>-n is too high (> 0.3 M), it is difncult to dissolve ail 

of the monoma in the ekxtmlyte. The coatings are found to be uneveniy disaibuted on the 

elecaode slirfaces and are poorly solidified Sometimes the polymeric material appears in a 

semi-kki state on the subseate. This phnomenon is siniilar to the case when the solvent has a 

vay low methanol content. 

When the monomer concenaation is very hi& the polymerization occurs very rapidly 

and the resultmg polymex wouid be expected to have b w  molecular weight. A low molecular 

weight polymer has a higher soiubïiïty in the solvent and solidifies with difficulty. The 1-t 

diagrams (Fig- 7.6) of the CPS pmxsses support the above explanations. At Iow monomer 

concentration (e.g., 0.1 M), the electrolysis c m n t  does not demase for the fïrst hour mg. 

75a), idkathg nry little coating forms on the elecaode sirrface. At high monomer 

concentration (e.g., 0.35 M), the drop of the nment is very rapid and the cunent is much 

hi- than that at b w  monomer concenaarion Fig. 7Sc), indica~g a rapid foxmation of 

polyna coating on the eiecnode &. Tbe experimental results are s u r m u i d  in Table 

7.4. What shodd be empbasizd here is diat a heavier c o a ~ g  alone does not necessady 

indicate a good quality of coating. Cozting dormi ry  should aiways be taken into account in 

coating quality evaluatioos. 
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Fig. 7.6. The effen of mononier concentration on 1-t diagrams obtained during CPS 

electrolysis (between 4.7 and -2.5 V at 30 mV/s) of pol.2-vinylpyridine) coatings. The 

~~~ is U)"C in methanol aqueous soludon with 0.05 M ma04 as supporting 

ektmlyte and solution pH of 4.8 adjusted with HCi04. The monomer concenaations are (a) 

O. 1 M, (b) 0.25 M and (c) 0.35 M. 



Table 7.4. Enecr of monomer concentration on the eEectropolynmerization p e s s  during two- 

7.5. Effect of Electrolysis Duration 

hour 8 s  ekcaolysis. 

The e&ts of B S  electro1ySs duration on the elecmpolymerization process have 

been snidied for tim periods beoveen 15 minutes to 10 hours. Although visible polyrner 

deposit can be observed on the cathodic srrrface after the first cycle of the potencial sweep (Le., 

in 2 minutes), coatings of good qua&y cannot be obtained in shorter than one hour of CPS 

ektrolysis. When electrolysis is carrjed out for only 20 minutes, coating formation is evident 

on the elanode sirrfaa, but not very uniform. Further elecmlysis not only inmases the 

thickness of the coating, but also makes it more d o m  At the beginning of the electrolysis, 

the ekcmde surfàce is b h  a d  the eIectrolysis occurs over a large surface area The 

elecmlysis current is hi& providing a large amount of initiator in a short period resulting in 

rapid polymerkatioa At the same the,  hydrogen evolution is very intense during this stage. 

While the polymer coating is forming rapidly on the elecaode sinface, the hydrogen evolution 

Cormnent 

-y thin coating wirh inrcme Hz evoluti~n 

Tfrin but urriform coaiing with iniense H2 evdution 

T&ick and d o m i  coatnig 

Thick and unifam cuating 

Tnick but nn-dm coating, the coating is sticky 

Ihieveniy distributai coating. rhe pdymer appeand to 

be able to fiow on the elmrde surface 

2Virpsridine 

mmmtdon 

OM) 

O. 10 

O. 15 

0.20 

0.25 

0.30 

0.35 

-w@ 
(mg) 

1.2 

22 

3.2 

3.4 

11.3 

13.8 



interféres greatly and causes the polymer coatîng to be unevenly distributeci. However, once 

the electrode sucface becornes completely covered with the polymer coating (ahhough it is sa 

uneven) after enough eiectrolysis, hydrogen evolution is geatiy suppressed. During the 

remaining electrolysis, coating formation oaws prdermtidy on the more M y  coated areas 

thai have lower resistance and consequentiy becornes increasingly more Ievel as it thickens. 

When the electrolysis duration is over a certain period (Le., 2 houn), the coatlig 

thickness stops Uicreasing, and even deaeases slightly. In this period, the electrolysis current 

does not drop to zero and the electmpolymerization, Le., the monomer reduction reaction 

which contnïutes to the electrolysis m e n t ,  and the initiation, propagation and termination 

reactions, &Il carry on, but at a lower rate. Meanwhile, mme of the formed poly(2- 

vinylpyridine) dissolves in the solvent. An equilibriurn between coating formation and 

dissolution is eventually reached and the coating thickness reaches a constant value. The 

experimentd results are Summarized in Table 7.5. 

Table 7.5. Effect of electrolysis duration on the electropolymerization. 

Electrolysis Duration 

(minute) 

Comment 

I 60 I 5.0 1 Thicker and more unifom coatiag I 
Uniforln coating 

Thick and d o m  coatiag 

I 180 I 7.5 1 Thick and d o m  coating I 
1 270 1 6.9 1 Thick and d o m  ooatuig 1 

300 

600 

7.0 Thick and unifoxm coating 

6.8 Thick and d o m  coating 



7.6. Effect of Supporting Electrolytes 

7.6.1. Effect o f  the Nature of Supporting Elechûlytes 

DEerent inorganic compounds have been tested as supporting electrolytes for the 

electropolymerization, including N&CI04 KCIOc KCi, W C l ,  (NH&S04, N U % ,  

(NI&)904 and H a .  The monomer (0.25 M) is dissolveci in 1% methanol aqueous solvent 

with different supporthg electrolytes. The acid corresponding to each supporting electrolyte 

has been used to adjust the solution pH to 4.8. The voltammograms obtained using diEerent 

supporting electrolytes are quite sirnilar. The En of 2-vinylpyridine reduction in the different 

supporting electrolytes shifl oniy slightiy. The electropoIymerïzation are perforrned by 

chronoamperometric electrolysis at -1.3 V for two hours. When M&Ci& is used as the 

supporting electrolyte with HClOd to adjust solution pI3, thick and uniforni coatings are 

obtained. The coating is very hard with excellent adhesion to the abstrate. However, coatings 

f?om KCIO4-HCIO4 electrolytes are thinner than that those from N&C104-.HC104 electrolytes 

aithough the other operating conditions are the sarne. This is considered, at lest partidly, the 

wnsequence of the intrarnolecuiar solvation of aikaii metal ions by the nitrogen atom of the 

pendtirnate pyridhte ~ g .  The intramolecular coordination results in the formation of a 

conformationally constrained mdti-membered ring (Srnid, 1969). 

The strong intramolecular interaction between the alkali metal ion and the monomer m o l d e  

makes it l e s  Etvourable for 2-Wiylpyridine polymerization. Therefore, when KClQ replaces 



as the supporthg dectrolyte, a t h e r  coating is obtained. 

When W C 1  is used as  the supporthg electrolyte with HCI to adjust the solution pH, 

less w&g is fonned than with NH&lOh The coating is also relativeiy loose and powcfery. 

This rnay be due to chlorine g e n d o n  at the anodq which was detected in and around the 

electrolytic ce& (the chloride oxidation wave in the vo1tammograrn overiaps with the oxygen 

evolution wave and therefore cannot be used as dear evidence of chlorine generation) 

2CT - 2e + Ch (7.4) 

The generated chlorine and its derivatives (e.g., CIO-) can dissolve in the electmlyte, ciifFuse to 

the cathode surfàce and react with the living polymers or the cathodically generated initiaton 

C&+ZM'+2e+2Cl-+2M (7-5) 

2CIO-+4K+M+2e-tCl2+2M+Wfi (7.6) 

On the other hanci, t is interesting that no hydrogen bubbles appear on the cathode 

d a c e  during the electrolysis. The residuai current is higher (up to 4-5 times) than that in the 

WC104 situation. An even thinner coating is obtained with KCl as supporting electrolyte due 

to the presence of the akali metal ion in the electrolyte. An explmation to account for the loose 

and powdery coating formation is not avdable yet. When m)2S04, NHJVQ or (M&PO1 

is used as supporting electrolyte with HSO* H m  or H301 to adjust the solution pH, 

respectively, similady loose and powdery coatings to those obtained with chloride supporthg 

electrolytes are obtained. No hydrogen bubbles are observed during these experiments. 

When HCIO4 done is used as  the supporting electrolyte and for pH adjustment, good 

coaîings Mar to those ftom the MtClOJ solutions are obtained. Hydrogen bubbles are a h  

observed during electropolyrnerization. Aithough CIOJ- ions do not apparently inhiit 

hydrogen evolution, they are related somehow to the formation of good coatings. This implies 



that either hydrogen evolution rnay not aiways be detrimental to coating formation, or that 

CIOC ions may be involveci in the polymer cuating formation and adhesion process on the 

substrate. Further information related to these obsewations is not yet available. The 

experimental results on the effects of the ditrent supporting electrolytes are summarized in 

Table 7.6. Some images of coatings f?om Herent supporthg electrolytes are show in Fig. 

7.7. Cornparhg with the coating images fiom NHiCIOj-HCIOI electrolytes (Figs. 6.6 and 6.9), 

it is clear that coatings f h m  supporting electrolytes except NH+CI04 are more powdery and 

granular. It is obvious from the above r e d i s  that the fiindon of the supporthg eiectrolyte in 

2-Wiylpyridine electropolymerization is beyond that of simply enhancing the electrolytic 

conductivity. Both cations and anions afExt the coating fomtion process and influence the 

coating adhesion on the substrata. More investigation shodd be camied out in this area in an 

effort to fùrther understand the mechanism. 

Fig. 7.7. CSLM images (200 pn x 2200 pm) of poly(2-vinylpyridine) coatings fiom different 

supporting electrolytes (0.05 M) after a two-hour chronoarnperornetric electrolysis at a 

constant potentid of -1.3 V. (a) fiom WCl-HCI electrolytes; (b) 60m (NH&SOI-H~SO~ 

electroiytes; (c) fiom NHjNO&NG electrolytes. 
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7.63. Effert of -O4 Concenîration on &ctropolymerization Process 

From the resuits of the above experirnents on the effects of different supporthg 

ektrolytes on the electropolymerkation, MtCIO., is selected as the nomial supporting 

electrolyte for the remahder of this project Dinerent wncentrations of NH&lOs have been 

used to test their effkcts on the electropo1ymerization process. The half-wave potential for 2- 

vinylpyridine reduction is found to be v M y  d e c t e d  by the N&Ci04 concentration 

Furthemore, the mat@ obtained are very similar in their unifomiity and thichess. N&CIOJ 

does not appear to have a signifiant &ect on electropolymerization above the lowest 

concentration of 0.0 1 M tested, as show in Table 7.7. 

Table 7.7. Effect of NH<ClOa concentration on the electropolymerization process coatings 

formed during a two-hour CPS electrolysis. 

PmC10, concentration 

O 

Coating weight 

(mg) 



The e f f i  of dissolveci oxygen in the electrolyte on the electropolymerization process 

has been studied using a speafically designed electrolytic cell in which the anodic and cathodic 

cumpartments are separated by a sintered glas membrane. The same electrolyte as used in 

other experiments, i.e., 0.25 M 2-vinylpyriidine solution in 20% methano1 aqueous with 

N).iJc104 as supporting electrolyte and solution pH of 4.8, adjusted with concentrateci HCIOc 
I 

is used in both compartments. The cathodic cornpartment is purged with nitrogen for 30 

minutes before conduchg the electrolysis and is sparged with nitrogen gas throughout the 

electrolysis. The electropolymerization is performed by 2 hours CPS electrolysis between 4.7 

and -2.5 V with scan rate of 30 mV/s. The coatings obtained are thinner and have a lighter 

@eUow) colour than those produced when no steps are taken to eliminate dissolved oxygen. 

Meanwh.de, the electrolyte has l e s  colour change during the process. In a two-hour CPS 

electrolysis, 5.5 mg coathg is obtained, (cf: 7.9 mg coating fiom a two-hou CPS electrolyte 

with dissolved oxygen in the electrolyte). 

Although it is often stated in the literature @hanu and Kishore, 199 1; Odian, 199 1) 

that dissolved oxygen plays meanin@ roles of both initiator and inhibitor in a polymerization 

process, the situation rnay be different for an electropolymerization process. In an 

electropolymerization process, the process of initiator generation is an electrochemical 

reaction, oflen involving monomer reduction or oxidation reactions at the electrode surfàce. 

Therefore, the rate of the initiation reaction often depends on the applied electrode potential or 

the electrolysis current passing through the ceii. For fke radical polymeritation, excess of 

radicals are generated Li a short period when the electrode potential is highly cathodic. These 



fadicals rnay participate in the initiation reaaion or react with one another or wdh a living 

p o b e r  chah to temùnate the poiymerization. In other words, the electrochemically generated 

radicals rnay hct ion as both initiators and inhibiton. In addition, the other electrode reactions 

(e.g., the hydrogen reduction in our case) can generate radicals to initiate or terminate the 

poiymerVaton as weii. Therefore, even if the dissolveci oxygen does play some role in initiation 

or Uih'bition, its & k t s  rnay be swamped by those of the electrochanicaily generated radiais. 

7.8. Statistical Studies of Some Important Parameten 

Mer the studies of the effeas of single pararneters on the electropolymerization 

process, some important parameters have been selected for the M e r  study so as to evaiuate 

their relative importance to the process. The following parameters have been selected on the 

basis of the single parameter experiments: operating temperature, monomer concentration, 

methmol content in the eleaolyte and the solution pH (see Table 5.1). A series of 4-Fdaor 3- 

Ievel orthogonal ktctional factoriai designeci experiments have been c&ed out. The effects of 

the pararneters on the coating weight and morphology are summarized in Table 7.8. Using 

statistical analysis as mentioned in Chapter 5, some interesthg results have been found and are 

reported in Tables 7.9 and 7.10. The relative importance of the parameters in the selected 

ranges to the electropolymerization process is found to decrease in the foilowing order: 

monomer concentration (&or B) > solution pH (factor D) > methanol content (factor C) > 

temperature (factor A). 

- - 
W~th a closer look at Table 7.9, we f k d  that A, , A, and & are close to each other 

and relatively evenly distributed, indicating that the e f f w  of operating temperature over the 



range of 20 to 40°C do not change much AIthough (40°C) appears to the best operating 

temperature, A( (20°C) is recommended due to convenience and the fàct that the temperature 

is not a strongly acting variable of the process. is the smallest value in the entire series of 

experïments and therefore the situation of a low monomer concentration should always be 

avoided. Although high monomer concentration Pm) increases the coating weight the most, it 

leads to uneven and poorly solidified coatinop. Consequentiy, an intermediate concentration of 

0.25 M 2-vinylpyridine (Bu) is suggested as the optimum level for the monomer concentration. 

- 
C, and Gare very close to each other and are much higher than G, indicaihg that the 

suitable methanol content should be between 5 to 15 vol %. Moreover, considering the 

difiiculty of monomer dissolution in a low methanol-content solvent, Cn (15 vol. %) is 

- - - 
suggested for use in h r e  work D, , D, and Dm are weil separated, indicating that the 

solution pH value oui stili affect the electropolymerization process significantly even in the 

small range &orn 4.4 to 5.5. & (pH 5)  is certainly the most appropriate solution pH value for 

the electropolymerization. Therefore, a combination of the best operating conditions for the 

electropolymerization is 4, BE, Cu and &, i-e., operating temperature: 20°C; monomer 

concentration: 0.25 M; methanol content in the electrolyte: 15 vol. %; solution pH: 5.0. The 

consistency between these conclusions and the previous single-parameters is readiily apparent. 







CHAPTER 8 

RESULTS AND DISCUSSION - PART THREE: 

POLYMER CHARACTERIZATION AND COATING 

PROPERTY MEASUREMENT 

8.1. Polymer Characterization 

8.1.1. U.V.-Visible Spectroscopy Characterization 

Since the poly(2-vinylpyridine) coatings are slightly soluble in methanol, enough 

polymer could be dissolved fiom a coated electrode for analysis by U.V.-visible 

spectroscopy. The polyrner coating was obtained fi-om a typical electropolymerization 

process. The electrolytes were 0.25 M 2-vinylpyridine in 20% methanol aqueous solution 

with 0.05 M m C 1 0 4  as supporting electrolyte and solution pH of 4.8, adjusted with 

concentrated HCIOI. The electropolymerization was carried out at 20°C through a two- 

hour CPS electrolysis between 4 . 7  and -2.5 V at 30 mVIs. The U.V.-visible spectra of 2- 

vinylpyridine monorner and poly(2-vinylpyridine) in rnethanol solution are shown in Fig. 

8.1. Although the scans have been carried out over a wide range of wavelengths between 

190 to 1100 nm, Fig. 8.1 shows ody the lower wavelength portion since the high 

wavelength section is primarily flat with no characteristic peak. The spectmm of the 

monomer (Fig. 8. la) shows two peaks at 233 and 278 nm based on vinyl (x-x* electron 

transformation) and pyridine groups (B absorption band of aromatic x-x* electron 



(d) polymer sample from bulk polymerization 

(c) baked polymer sample 

(a) monomer sample 
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Fig. 8.1. U.V.-visible spectrum of poly(2-vinylpyridine) formed by electropolymerization. 

The electrolyte is 0.25 M 2-vinyipyridine in 20% methanol aqueous solution with 0.05 M 

WC104 as supporting electrolyte and solution and solution pH of 4.8, adjusted with 

HClOI. The electropolymerization is carrieci out via a two-hour CPS electrolysis between 

-0.7 and -2.5 V at 30 mV/s. 



transformation), respectively (Phillips et ai., 1970). In the spectmm of uncured poly(2- 

vinylpyridme) formed by electropolyrnerîzation (Fig. 8.lb), the absorbantes at these two 

peaks decrease and a new peak at 268 nm appears. This new peak at 268 nm is consistent 

with a poly(2-vinylpyridine) structure (Silverstein et al., 1981). M e r  curing the above 

polymer sample at 1 20°C for 30 minutes or vacuum dryhg for 24 hours, the two peaks at 

233 and 278 nm wmpletely disappear. Only the 268 nm peak remains in the spectrum 

(Fig. 8. lc). For cornparison, a poly(2-vinylpyridie) sarnple fiom buik polymerization with 

benzoyl peroxide as initiator is examined by U.V.-visible spectroscopy. This spectrum (Fig. 

8. ld) is found to be identical with the spectmm of the post-treated poly(2-vinylpyridine) 

sample formed by electro polymerizat ion (Fig. 8.1 c). This experiment suggests that poly(2- 

vinylpyridme) is being formed by the electropolymerization process and that there is not 

likely to be any other organic by-product formed by the eIectropolymerization. The 

poly(2-vinylpyridine) coating possibly has some unreacted monomer trapped in its 

network. Thus, the characteristic peaks for the monomer (233 and 278 nm) appear in the 

spectmm of the unbaked polymer (Fig. 8. lb). M e r  thermal curing, the trapped monomer 

molecules are polymerized and these peaks disappear fiom the spectrum (Fig. 8. lc). 

8.1.2. FT-IR Spectroscopy Characterization 

A typical poly(2-vinylpyridine) coating formed under the conditions descnbed 

previously has been examined by FT-IR spectroscopy. The resulting spebnim (Fig. 8.2) 

was compared with a standard poly(2-vinylpyridine) IR spectrum (Hummel, 1978) and a 

good agreement has been found. The ody dEerence fiom the standard spectnim is the 

appearance of a strong peak at 1100 cm-' which apparently does not match any of the 



poly(2-wiylpyridine) charaderistic peaks. However, the peak at 1 100 cm-' is normally 

assigned as a characteristic peak for CIOC (Nakarnoto, 1963), which of course is present 

in Our electropolymerization system as the supporting electrolyte. In previous studies 

when CIOJ- was used as supporting electrolyte for electropolymerization, this peak at 

1100 nm was always observed from the FT-IR spectra of the relevant polymer produds 

and assigned to CIO; without any proof (McCarley et al., 1990; Huang et al., 1995; Sen 

et al., 1995). However, no investigation has ever been canied out to codirm directly this 

aspect. To CO- this hypothesis, a poly(2-vinylpyridine) coating sample, produced by 

the sarne electropolymerization process except with NHjN03 as the supporting electrolyte 

and HN03 to adjust the solution pH, was examined by FT-IR spectroscopy. While most of 

this spectrum is identical with the one in Fig. 8.2, the strong peak at 1100 cm" does not 

appear. Instead, another strong peak at 1350 cm-' is present in this new speamm, which 

is normally assigned to NO3- (Nakamoto, 1963). This result ïndicates that ClOJ is indeed 

present in the coating. What should be emphasized is that the CIO4- ions are believed to be 

only physically trapped in the polymer network and no bond likely exists between the 

C l 0 4  ions and the organic compounds. An IR spectmm of poly(2-vinylpyridinium 

perchlorate) is available in the literature (Hummel, 1978), which has distinct differences 

frorn the spectnirn of poly(2-vinylpyridine) formed by bulk polymerization or the spectmm 

of poly(2-vinylpyridine) formed by electropolymerization with CIO4- ions trapped in the 

stnicture (Fig. 8.2). More information about this aspect will be given later in the Raman 

spectroscopic shidies. 
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The good correspondence of Fig. 8.2 to the published poly(2-vinylpyridine) IR 

spectrum also indicates that no organic by-product f o m  during the electropolyrnerization 

process. However, the spectral positions of the vinyl double-bond and the aromatic 

double-bond overlap in the wavelength range of 1400 to 1600 nrn and therefore the 2- 

VinyIpyridine spectnirn is very similar to the one for poiy(2-vinylpyridine). Therefore, one 

mua be carefùl in concluding that polymerization has occurred on the basis of the FT-IR 

spectra alone. In addition to the results fiom U.V.-visible spectroscopy, further evidence of 

polymerization is found from the results of the NMR analysis. 

2000 2500 

Wavenurnber (cm1) 

Fig. 8.2. FT-IR spectrum of poly(2-vinylpyndine) fonned by electropolyrnerization with 

NttClOI as supporting electrolyte. The conditions of the electropolymerization are same 

as described in the title of Fig. 8.1. 



8.13. 'H NMR Spectroscopy Characterizatioa 

The poly(2-vinylpyridine) coating formed by electropolymerization as described 

previously was dissolved completely in DMSO46 for 'H NMR spectroscopic analysis. The 

spectrum is shown in Fig. 8.3 and has been compared with the standard poly(2- 

vinylpyridine) 'H NMR spectrum pubiished in "The Aldrich Library of 13c and 'H FT 

NMR Spectra" (Pouchert and Behnke, 1993) and a good agreement is found. The 

characteristic absorbances of the methine protons of the ortho-substituted pyridine ring 

clearly appear at 7.3, 7.7 and 8.5 ppm. The characteristic absorbances of the aliphatic 

methine and methylene protons are also present at 1.8 and 3.0 ppm, respectively. The 

strong peak at 2.6 ppm is due to the DMS046 solvent and the absorbance at 3.5 ppm is 

from moisture in the polyrner sample. There is no evidence of the methine proton 

associated with the C=C bond in the monomer, which othenvise should appear in the 

range of -5 to 6 ppm. This confirms that aII the vinyl double-bonds have been opened and 

the polymerization process is completed. A group of absorbance peaks that is usudly 

assigned to aliphatic methyl protons are also found in the range from 1.3 to 1.5 ppm. This 

may be evidence of a hydrogen termination, which will also be discussed later. 

8.1.4. Polymer Molecular Weight Measurement 

Atternpts to measure the molecular weight of the polymer coating formed using gel 

permeation chromatography met with little success. The basic problem in applying this 

technique to measure the molecular weight of the polymer coating formed is that the 

coating is not soluble in the cornmody used organic solvents, such as tetrahydrofuran or 



trichlorobenzene. It is Likely that the polymer is somehow crossllliked. A mechanism for 

this possiile crosslinking will be proposed later in Chapter 10. 

Fig. 8.3. 'H NMR spectmm of poIy(2-vinyIpyridine) fomed by electropolymerization as 

described in the caption for Fig. 8.1 and dissolved in DMSOd6. 

8.2. Coating Property Measurement 

8.2.1. Chernical Composition Measurement 

The chernical composition of the polymer coating has been meanired by isotope 

ratio mass-spectroscopy to yield the results given in Table 8.1. The coatuig is formed 

under the same conditions as described in the caption for Fig. 8.1. The elemental ratio of 

carbon to nitrogen (7.033) is very close to the stoichiometric value of 7:1 for poly(2- 



vinylpyridine) (C~HTN)~. However, the amornt of hydrogen in the C O ~ M ~  is somewhat 

higfier than that expected h m  the poly(2-vinyIpyridme) stoichiometxy. Same as the 'H 

NMR resdts, this may iudicate that hydmgen ions or hydrogen radicals, foxmed by H? 

reduction at the cathode, play an impomuit d e  in the electmpolymerization process. 

Aitemative1y, very low mole& weighr polyma could be king formed. A detailed 

discussion of this issue wili be presented later. 

Table 8.1. Eiemental d y s i s  of the formed polymer C O ~ M ~  compositions. nie coating is 

formed under the samc conditions as described in the caption for Fig. 8.1. 

82.2. Inorganic Impurity Measurement 

Because of the yellow colour of both the poly(2-vinylpy~idine) c o a ~ g  and the 

associated electmlytic solution, it was suspected that ionic iron species might also be 

f o d  as a result of a redox couple on the miid steel substrates. Iron could become 

trapped in the polyma coating and leak into the solution, causing them both to become 

yellow. Therefore, the polyma sample was examined by direct cumnt plasma (DCP) 

specmscopy in organic and aqueous solutions to detect the presence of iron and 

manganese species. The electrolyte was also examined for the same purpose. The coating 

is formed under the same conditions as described in the caption for Fig. 8.1. In either case, 

no bon or  manganese species was detected above a detection limit of 50 ppb. This result 

EIemeatal ratio (molar) 

H : N  

7.42 : 1 

7: 1 

Experimental 

Theoreticai 

C:N 

7.03 : 1 

7: 1 

C:H 

1: 1.06 

1: 1 



was not unexpected since all the dectr~chemical process was carried out entire1y at 

electrode potenriais below the s y s m  open circuit potentiai G). These DCP results, 

together with the previous resdts b r n  the polyma characterizahon, indicate that the 

e1ectmchemicaUy produced poly(2-vinylpyridine) coatings are reasonably pure. 

8.23. GIass Transition Temperature Measurement 

The glas transition temperature (TJ of the poly(2-vinylpydine) coating polymer 

has ken measured with a differential scanning calorimeter @SC). The coating is formed 

under the same conditions as described in the caption for Hg. 8.1. The DSC diagram is 

shown in Fig. 8.4. The glas transition region covers a wide range of temperatures, 

indica~g that there may be a broad distribution of the polymer molecdar weights. 

However, the Tg is found to be quite high (lOS°C), indicating a high average decular 

weight of the polymer. In the fiterature (FeH et al., 1993), it has been reponed that poly(2- 

vhylpyridine) forrned by bulk polymerkation with a MW of 300,000-400,000 has a Tg of 

104°C. 

83.4. Porosity Measurement 

The c o a ~ g  porosity has been measirred using the copper cernentation experiments 

desdbed by De Bniyne et al, (1995). After irnmersing a coated sample in a 0.1 M CuS04 

solution for 30 seconds, the sample was rinsed with deionized water and air dried for the 

mimscopic examination (with CSML). The C O ~ M ~  is formed under the same conditions 

as described in the caption for Fig. 8.1, no trace of copper deposit was found on the 

coating surface, which otherwise woufd be distinguished h m  the polymer coating due to 





the much higher intensity of refiemd light for copper deposits. This suggests that the 

coating is non-pomus, at least d o m  to the resolution of the CSLM analysis (-0.5 p). 

8.2.5. Couductivity Measurement 

The electrical conductivity of the coated samples (rather than of the c o a ~ g s  

themselves) has been measured The coating is formed under the same conditions as 

describai in the caption for Fig. 8.1. Despite the variety of coating thichesses, the coated 

samples have aiways been found to have infimte electrical resstance. In other words. the 

f o d  poly(2-vinylpyridine) coating is insulating. This nsult is consistent with that 

reported in the literahire (Sekine et al., 1992; De Bmyne et al, 1995). 

Questions arke as to how a thick insulating coating can be f m e d  

electmhemidy and how it can be used in a polymer-modified elecaode io support 

elecaochemical reactions. Aithough some tentative explanations have ken suggested in 

the fiterature, apparently no firm understanding or reasonable exphbon has been 

presently availabIe. Later in this thesis, an explauation will be given based on the 

experimental results and pmposed mechanism 

82.6. Adhesion Measurement 

The characteristics of the polymer coating adhesion on a d d  steel substrate have 

been examhed by the surface cross-hatching technique. The coating is foxmed under the 

same conditions as described in the caption for Fig. 8.1. Excellent surface adhesion of the 

poly(2-vinylpyridine) coating on the mild steel substrate has been confirmed qualitatively 

regardless of the coating thickness. 



8.2.7. Corrosion Resistance Measurement 

Polarization curves of coated metal samples before and after thermal ciaing were 

obtained to evaiuate the conosion nsistance of the poly(2-vinylpyridine) coatings. The 

c o a ~ g  is f o d  under the same conditions as describexi in the caption for Rg. 8.1. Since 

very Sirnilar results were obtained h m  the coatings before and &ter the themal cining, 

only a polarization c m e  h m  a coating before the thexmal curing is shown in Fig. 8.5. 

For the purpose of cornparison, a polarization curve of a bare mild steel coupon has also 

been obtained and pnsented in Fig. 8.5. It is found that &ter the metai sample is coated 

with poly(2-vinylpyridine), the system open circuit potential is shifted negatively and the 

conosion current is rliminir;hed significantly. These results indicate that the corrosion 

resistance of a coated saxnple is inæased. This finding is consistent with that obtained by 

Sekine et al (1992) using the ac impedance technique and by De Bruyne et al. (1995) 

using the polarization wibique. In addition, it was found that there was no significant 

difference in the corrosion rcsistance of the coated samples before and after thermal 

cirring. This results agree with the report of De Bmyne et ai. (1995), but dBer h m  that 

reported by S e h e  et aL (1992). De Bruyne's coating however was f o n d  at elevated 

temperature (50-70 OC) on zinc substrates, while our c o a ~ g s  are f o d  at 20°C on lnild 

steel, which is simüar to Sekine's procedure. The reason for this disagreement may be due 

to the msshking of our polymer samplc. More details about the polyma sample 

crosslinking wiU be discussed lam in the m e s s  mechanism section. 



Potential (V) 

Fig. 8.5. Cornparison of polarization Cumes for (a) bare mild steel and (b) d d  steel 

coated with poly(2-vinylpyridine) foxmed by electtopoiymerization. The c o a ~ g  formation 

foUows the same procedure as described in Kg. 8.1. The samples are immersed in 3% 

NaCl solution for 3 hours under ambient conditions before the polarization c w e s  are 

taking. 



83. Coating Morphology Anaiysis 

Coating murphology evaluation has b e n  camed out using confocal scanning laser 

microscopy (CSLM). The surface scanning and image pfocessing foilow the procedure 

deScnbed in Section 5.6. The images shown in Fig. 8.6 represent a 200 p x 200 p area 

of a coatiug f m e d  under the same conditions descnbed in the caption for Fig. 8.1. Figs. 

8.6a to 8.6d are the 2x14 Mth, 26th and 38th slice (imtensity) image, respectively, taken 

h m  the entire set of 40 images. Focused parts of the surface are clearly shown in each 

image, while aIl other parts of the siirface are out of focus. The big advantage of CSLM is 

that out-of-focus planes are totaIly eliminated. Fig. 8.7a is the maximum intensity image of 

the top surface of the coating, obtained by wmbining the entire set of intensity images. 

Simüarly, the maximum intensity image of the steel substrate direcriy undemeath the 

coating imaged in Fig. 8.6 has been obtained and is shown in Fïg 8.7b. The 3-D 

reconstnicted surface topographic images of the coating and substrate in Fïgs. 8.6 and 8.7 

are presented in Rgs. 8.8a and 8.8b, respectively. By combining Figs. 8.8a and 8.8b, a 

volumenic portion of the polyma coating layer can be imaged, as shown in Fig. 8.9. This 

volumetric portion of the polymer coating laya has the advantage of providing a good 

stereoscopic expression of the specific coating. It should be noted that the coating 

thickness is more Womi than what would be expected based only on the morphology of 

the top surface of the c o a ~ g  in Fig. 8.8a Some of the relief in the top surface is caused 

by the topography of the substrate. The topography of the polymer coating confomis 

reasombly to the topography of the metal substrate, dthough ir is somewhat smwther. 

On the whole, the c o a ~ g  is smooth and so distinct features do not appear in the images. 



Fig. 8.6 CSLM images of a poly(2-vinylpyridine) coating (200 p x 200 p) formed by 

electropolyrnerization. (a), @), (c) and (d) are the 2nd, 14th 26th, and 38th image, 

respectively, of the entire set of 40 images. The coating formation foilows the same 

procedure mentioned in Fig. 8.1. The surface scanning and image processing follow the 

procedure descnbed in Section 5.6. 

Fig. 8.7 CSLM images of a poIy(2-vinylpyridine) coating forrned by electropolymerization 

(200 pm x 200 pm). Maximum intensity image of (a) the coating surface, and @) the 

metal substrate which locates at the same surface area as image (a). 



Fig. 8.8. 3-D reconstructed surface topography of (a) the polymer coating and @) the 

metal substrate in Figs. 8.7a and 8.7b. The coating formation and image processing foiIow 

the sarne procedures mentioned in the text. 



Fig. 8.9. The volumetric portion of the scanned polymer coating: a combination of the 

images in Figs. 8.8a and 8.8b. The polymer coating surface is shown above the metai 

substrate surface. The coating formation and image processing foiiow the sarne 

procedures as in Fig. 8.8. 

A side proNe of the coating obtained by a cross-sectioning laser beam scan over 

an arbitrarily chosen direction within the scan area of the previous figures is presented in 

Fig. 8.10a. Such a figure is very useful since it provides direct visualitation of the 

thickness and uniformity of the coating. Two bright bands appear across the entire scan 

length in Fig. 8.10a. The upper band corresponds to the coatinghir interface, while the 

lower band corresponds to the coating/steel interface. It is interesting to note that the 

lower band is brighter than the upper one despite the fact that it is below the outer surface. 

This is due to the larger change in the refiactive index across this interface than across the 

coating/air interface. 

Fig. 8. IOb shows how the intensity of the reflected light varies along the vertical 

direction at a particular point dong the scan line. Two sharp peaks appear at depths of 6.1 



prn and 13.3 pm (measured tiom an upper reference point) and correspond to the top 

points of the coating and substrate, respedvely. The coating thickness at this particular 

location which is given by the spacing between the maxima of these peaks is found to be 

7.2 m. Such a thickness is typical of that obtained for poly(2-vinylpyridiie) in this study 

and is much smder than that reported by others using gravimetric methods (De Bruyne et 

al., 1995). By repeating this process at a number of points dong the line, the variation of 

thickness dong the line can be detennined. This allows flaws in the coating, as small as the 

image resolution (e-g., 0.4 pm in Fig. 8.10b), to be detected, which is dEcult to achieve 

with a standard microscope. 

WGHT iNTENSiTY 

@) 

Fig. 8.10. A Iine scan image of the sectional coating thickness profile. The line was 

randomly selected from the same surface as Fig. 8.6. The two bright bands in (a) highlight 

the top outlines of the polymer coating and metal substrate (20 pm x 200 pm). The plot 

shows the variation of reflected light intensity with depth into the specimen. 



The coating density can be estimated by combining the average wating thickness 

obtained above with the sample weight increase before and after electropolymerization. 

For example, for the coating in Figs. 8.6 to 8.10 (Le., 7.9 mg coating on 5.5 cm2 substrate 

with an average thickness of 7.2 p ), a density of 1.99 is obtained. This value 

differs significantly from the value of 0.9985 #cm3 for the 2-vinylpyridine monomer 

(Weast and Astle, 1992) and the vaiue of 1.153 &m3 for poly(2-vinylpyridine) formed by 

buk polymerization (Miller, 1983). 

To test the reliability of the density detedation, the density vaiue of 1.99 g/m3 

has been used to estimate the coating thickness for another poIy(2-vinylpyridine) film 

produced by the same process as mentioned above d e r  1.5 hours of CPS electrolysis. The 

sample shows a weight increase of 5.6 mg, which is calculated to have a coating thickness 

of 5.1 pm based on the above density. This result compares favourably to a value of 5.2 

p obtained by direct graphic analysis of the light intensities from the CSLM images. This 

close agreement dso indicates that the densities of both coatings are very similar. If the 

density of the polymer formed by buk polymerization were used for above calculation, a 

large error would have been introduced in estimating the coating thickness; an even larger 

error would have been introduced if the density of the monomer were used. The results of 

the sarnple calculations are summarized in Table 8.2. These results suggest that the values 

of coating thickness reponed in the recent publication (De Btuyne et al., 1995) 

overestirnate the tme values considerably, where the values of coating thickness were 

calculated fiom a hypothetical specific gravity of coating of 1 kg/dm3. 
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Table 8.2. Coating thickness esrimated by dinerent methods 

Methods 1 Coating thickness 

using the mcasured polymer eoatlig density of 1.99 g/cm3. I 

Thickness by direct measurement using CSLM. 

Thickness calcdated fiom &g weight (5.6 mg) and area (5.5 d), 

niickness calculated fiom same coaîing weight and area using the 

density of 1.153 dan) for polymer forrned by bulk polymerization 

(PI 
5.2 

5.1 

It is important to point out that the measured coating density is abnomally higher 

Thiclmess calculated fiom same coating weight and area using the 

monomer density of 0.9985 &m3. 

Thiclmess calcuIated fiom same coating weight and area using the 

hypothetical densis. of 1 kg/dm3as used by De Bruyne et al. (1995). 

than that of a polyrner product fkom a bulk polymerization. AIthough it is not unusual for 

the polymer to have a higher density (up to 30%) from a polymerization process with 

branching and crosslinking involved, it is abnormal to have a density of about 100% higher 

than that fiom the buik polymerization. A possible resource of this error may be from the 

fact that the refiactive indexes of the coating and the testing environment (e-g., the air) are 

dinerent. A more detailed discussion of this aspect will be presented later. 

Another important application of CSLM in coating morphology analysis is to 

measure quantitatively the coating surface roughness distribution. It is obvious that a 

unifiorm surface should show a narrow roughness distribution, while a very irregular 

surface will have a wide roughness distribution. Fig. 8. 11 shows a finely polished metal 

substrate surface (1 mm x 1 mm). Fig. 8.1 la is the maximum intensity image of the 

surface. Fig. 8.11b depicts the surface roughness distribution diagrarn obtained fiom Fig. 

10.2 

10.2 



8.1 l a  with necessary image pmcesshg. The regda. nature of the coating is clearly show 

in this distribution diagram. The surface height gives the distance of a point on the surface 

to xnne reference point An elevation of O pm corresponds to the highest surface point, 

while a height of 9 pm co~responds to the lowest point on the surface. Fig. 8.1 1c is the 3D 

reconmcted d a c e  topography. Fig. 8.12 shows an image of a larger area (4 mm x 4 

mm) of a poly(2-vinylpyridine) coating obtained under similar experimental conditions as 

mentioned previously but at a pH of 7.5. Only a patchy coating is formed at this pH, as 

cm be obsmed from the relevant msUamum intensity image (Fg. 8.12a). The irregular 

nature of such a coating is clearly shown in the distribution diagram of surface height 

presented in Fig. 8.12b. The isreguiar nanire of the coating is m e r  illustrated in the 

sectional scan (20 pm x 200 jm) in Wg. 8.12~. Aithough this scan shows that c o a ~ g  is 

present everywhere dong the arbitrary direction chosen. the thickness varies h m  4.5 pm 

at point cr to 8 pm at point b. This variation is very large considering bat the coating is 

less than 10pm everywhere. It should De noted that over other pations of the substrate, 

no C O ~ M ~  has f o d  whatsoever. Obviously, the determination of an average thickness 

bas& on the gravimetric method is meaNngless for the purpose of characterizing coatings 

such as the one shown in Fig. 8.12. 

The above results on the coating morphological analysis with CSLM have also 

k e n  published recently (Ling et al., 1998b). 



Surface Height, pm 

Fig. 8.1 la: An maximum intensity image (1 mm x 1 mm) of a finely polished metd 

substrate. Fig. 8.11b: Surface roughness distribution diagram of the metd substrate. The 

smooth surface lads to a narrow distributed surface roughness. Fig. 8.1 1c: A 3D 

reconstructed surface topography of the metd substrate. 

Fig. 8.12a: An maximum intensity image (4 mm x 4 mm) of an irregular coating obtained 

with similar experimentd conditions to those in Fig. 8.10, but at a pH of 7.5. Fig. 8.12b: 

Surface roughness distribution diagram of the polymer deposit in Fig. 8.12a. Fig. 8.12~: A 

sectional scan of the surface dong an arbitrary direction chosen direction (20 pm x 200 



CHAPTER 9 

RESULTS AND DISCUSSION - PART FOUR: 

MECHAMSM STUDIES OF POLY(2-VINYLPYRIDINE) 

COATING FORMATION BY 

ELECTROPOLYMERIZATION 

9.1. Inhibition Study 

Previous investigators have suggested that poly(2-vinylpyridine) coating 

formation by electropolymerization might occur by either an anionic polymerization 

mechanism or a combination of anionic and fiee radical polymerization (Sekine et al., 

1992; De Bruyne et al., 1995). However, in view of the reaction conditions, it does not 

seem iikely that an anionic aqueous mechanism would be possible since the polymerization 

is carried out in an acidic medium with methanol as a CO-solvent. Anionic processes prefer 

an aprotic medium and require exclusion of proton-donating materials during the course of 

reaction. Methanol and acidic aqueous solutions are nomally used as terminators for an 

anionic process (Morton, 1983). Consequently, it would be dficult for any anionic- 

polymerlation-based rnechanism to occur under the condition used in this project. 

To test for a fiee radical mechanism, fkee radical inhibitors and scavengers such as 

p-benzoquinone and DPPH (IO-' M) were added to the electrolyte pnor to 

electropolymerization. The other solution components were left unchanged, as described 



155 

in the caption for Fig. 8.1. T&e two-hour process was carried out either by B S  (between 

4.7 and -2.5 V at 30 mV/s) or chmnoampemmetric electrolysis (at -1.3 V). 

For the chronoamperomePic electrolysis with p-benzoquinone, intense hydrogen 

evolution was observed at the cathodic srirface throughout the process. The eIectm1ysis 

c m n t  remsined at a high level, although it decnased slowly during the electrolysis (Fig. 

9.1). The appearance of the solution was altered no ticeably during the elecw lysis, s t h g  

fiom the green colour of benzoquinone to dark brown and eventually biack. m e r  a N o -  

hour electrolysis, some black deposit was found on the cathode surface. The deposit did 

not cling to the substrate well and was easily h h e d  away by a Stream of water. 

O 20 40 60 80 100 1 20 

Tirne (minute) 

Fig. 9.1. The effect of p-benzoquinone (10-~ M) on the electropolymerization process. 

The i-t diagram of a two-hou. chronoamperometric eelctrolysis at -1.3 V. The elecrrolyte 

and operating conditions are the same as described in Fig. 8.1. 



A similar phenornenon was observed during the CPS electrolysis. The peak current 

of the process remained high and intense hydrogen evolution was observed throughout the 

process Vig. 9.2a). A slightly more black deposit was coliected fkom the cathode surface 

than that during the chronoamperometric process. The deposit was washed and dried and 

dissolved in methanol for U.V.-visible spectroscopie examination. No characteristic band of 

2-vinylpyridine or poIy(2-vinylpyridine) was observed in the spearum, indicating no 

polymer coating was formed in the presence ofp-benzoquinone inhibitor. 

Although no polymer has been formed during the electrolysis in the presence ofp- 

benzoquinone, monomer reduction could still occur at the cathode surface. This is 

confirmed by the appearance of a series of reduction waves for 2-Wiylpyridine in the i-t 

curves for the CPS electrolysis (Fig. 9.2b). No such information could be obtained nom 

the i-t curve of the chronoarnperometric process. The CPS technique is therefore usefiil 

for diagnostic purposes in addition to being an effective method for producing coatings. 

When DPPH was used, no visible coating was observed on the substrate at the end 

of a two-hour CPS electrolysis. Intense hydrogen evolution was observed at the cathodic 

surface throughout the process. Similar to the observation when p-benzoquinone was 

used, the electrolysis current remained high throughout the processes of both the 

chronoamperometric and the CPS electrolysis. The corresponding i-t diagrams are similar 

to Fig. 9.1 and 9.2, respectively. During the electrolysis, the solution colour changed from 

deep violet to iight yeliow. This colour change, together with that in the case of p- 

benzoquinone, indicates that some redox reactions involving the inhibitors likeiy occur. 

Some possible reactions have been suggested in the literature (Odian, 1983). Detailed 

studies of these reactions are beyond the scope of this project. 



Fig. 9.2. The effect ofp-benzoquinone (10-~  M) on the electropolynerization process. The 

i-t diagram of a two-hour CPS electrolysis between 4 . 7  and -2.5 V at 30 mV/s. The 

other operating conditions are the same as described in Fig. 9.1. Fig. 9.2b is an enlarged 

portion of the i-t diagram of Fig. 9.2a. 



Although it is still diffIcult to determine if any anion is generated at the cathode 

during the electropolymerization, it is certain that no anion contributes to the formation of 

the polyrner coating due to the strong proton-donating environment of the system. 

Therefore, it cm be concluded that poIy(2-vinylpyridine) coating formation by 

electropolymerization is a Eee radical process. 

Table 9.1. Summary of the experimental results from the inhibition study of the mechanism 

of poly(2-vinylpyridine) coating formation in acidic aqueous media by 

electropolymerization. The experimental conditions are described in Fig. 9.1. 

Inhibitor and its 

concentration 

p-benzoquinone (1 O-) M) ' 
p-benzoquinone (10-~ M) 

DPPH (10" M) ' 
DPPH (lo-) M) ' 

Comments Coating weight f 

0-3 (mg) 

0.7 

1.5 

- 
- 

no inhibitor $ 

Scatîered black deposit 

7.9 

Scatiered black deposit 

- 

- 
': Chronoamperometric electrolysis at -1 -3 V for 2 hours. 

': CPS electrolysis between -0.7 and -2.5 V at 30 mV/s for 2 hours. 

- 

No visible mating formed 

No visible coating formed. Violet sohtion 

changes to yellow. 

Thkk and d o r m  coating with yeiiow 



9.2. Surface Enhanced Raman Scatterhg Spectroscopic Study 

9.2.1. Ordinary Raman Scattering of the Bulk Solution 

An ordinary Raman spectnirn of neat 2-vinylpy~idine was obtained to serve as a 

reference (Fig. 9.3). The spectnim has been compared with a standard Raman spectmm of 

2-Wiylpyridine in the Iiterature (Lin-Vien et al., 1991) and good agreement is found. 

sbo idoo id00 22dm 2400 3d00 3 Joo 
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Fig. 9.3. Ordinary Raman spectmm of neat 2-vinylpyridine at 20°C. 

Spectra of 0.25 M 2-vinylpyridine aqueous solutions containing 20% 

were then obtained at different values of solution pH (Fig. 9.4). Results are shown for 

electrolytes at pH 10.0, 7.4, 4.8 and 1.0 in which =OH or HC104 was used for pH 

adjustrnent (initiai pH = 7.4). Cornparison of Fig. 9.3 with Fig. 9.4 shows that the 

spectmm for pure 2-vinylpyridine does not contain the strong water absorbance peak at 



high wavenumber (> 3 LOO cm-') nor the absorbantes at 2848, 2952 and 1453 cm-', bath 

of which are present in the spectra of the aqueous-methanol solution. The characteristic 

band for ClOI at 932 cm-' appears in the solution spectra in Fig. 9.4 as weii as changes in 

intensity due to the variation of the CIO4- concentration in the solutions. No CIO4- 

absorbance appears in the pure 2-vinylpyridine spectmm. There is no distinct band 

observed in either figure in the range of 1700 to 2800 cm-', indicating that no pyridine- 

c h l o ~ e  bond exists in the system (Lin-Vien et al., 199 1). 

Wavenumber / cm-' 

Fig. 9.4. Ordinq Raman spectra fiom a 0.25 M 2-vinylpyridine aqueous solution (with 

20% methanol) at 20 OC and at different solution pH, adjusted with concentrated HCIOI 

or =OH. (a) pH = 10.0; @) pH = 7.4; (c) pH = 4.8; (d) pH = 1 .O. 



In Fig. 9.4, the effect of pH on the extent of protonation of 2-vinylpyridiie in 

aqueous medium can be seen. The most striking diierences in these spectra are in the 

1550-1650 cm-' double-bond stretching region that is shown in more detail in Fig. 9.5. 

The spectrum f?om a Iow pH solution (Fig. 9.5d) has a distinct band at 16 19 cm-', which 

has been reported previously (Putterman et al., 1979) and assigned to the vga ring mode of 

the pyridinium ion on the basis of similar bands in substituted (Clements and Wood, 

1973a) and unsubstituted (Clements and Wood, 1973b) salts. This band becomes weaker 

as the solution pH increases to 4.8 (Fig. 9%) and totaily vanishes at pH 7.4 (Fig. 9.5b) 

and 10 (Fig. 9.5a). The bands at 1565 and 1595 cm-' in pure 2-vinylpyridine are norxndy 

assigned to v~ and v a  modes of the neutral pyridine ring. It is observed that these bands 

appear in the spectrum for pure 2-vinylpyridine in Fig. 9.3 and the solution spectra at pH 

7.4 and 10.0 (Figs. 9.5a and 9.5b). These bands becorne weaker as solution pH decreases 

(Fig. 9 .5~)  and totally vanish at very low pH (Fig. 9.5d). Only at pH 4.8 do the peaks for 

both the neutral and protonated forms of the monomer CO-exist. Cornparison of Figs 9.5a 

and 9.5b shows that the spectra above pH 7.4 are identical. This indicates that the 

protonation of 2-vkylpyridine is no longer changing and that 2-vinylpyrïdine is Wcely 

cornpietely neutral once a pH of 7.4 is reached. It is also noticed that the band at 1630 to 

1640 cm-' fiom the spectra of both pure 2-vinylpyridine and the higher pH solutions 

(dom to pH 4.8) is shifted to 1640 to 1650 cm-' at pH 1.0. The reason for this shift is not 

cl ear. 

These spectra are consistent with the pH dependence of 2-vinylpyridine 

protonation in aqueous solution and its effect on electropolymerization postulated 

previously. At high pH (e-g., pH > 7.4), rnost of the 2-vinylpyridine molecules exist in 



their neutral form in the solution and so a fûrther increase in pH has no effect on 2- 

vinylpyridie protonation. At low solution pH (e.g., pH = 1), most of the 2-vinylpyridine 

molecules exist in their protonated form. When the solution pH has an intermediate value 

(e.g., pH = 4.8), both neutral and protonated 2-vinylpy~idie species CO-exkt in the 

solution and consequently, the corresponding spectmm has the characteristics of both 

forms. These results are also consistent with the reported pKa value for the protonation of 

2-Wiylpyridine (Penh, 1965). As shown in Chapter 6, only at this intermediate pH when 

both neutral and protonated forms of 2-vinylpyridine are present in solution can good 

quaiity polymer films be fonned via electropolymerization. 

Wavenumber 1 crrri 

Fig. 9.5. Detailed view of the range from 1540 to 1700 cm" of the Raman spectra in Fig. 

9.4. (a) pH 10.0; (b) pH 7.4; (c) pH 4.8; (d) pH 1.0. 



Wavenumber / cm -' 

Fig. 9.6. Detailed view of the range fiom 970 to 1500 cm-' of the Raman spectmm in Fig. 

9.4. (a) pH 10.0; (b) pH 7.4; (c) pH 4.8; (d) pH 1.0. 

Other changes are also evident in other bands show in Fig. 9.6, although not al 

these bands have been defitively assigned. A double-peaked band at 1215 and 1228 cm-' 

is converted to a single-peaked band at 1236 cm-' when solution pH decreases kom 7.4 to 

1.0. Meanwhile, the spectmm at pH 4.8 shows a triple-peaked band, containing the 

characteristic bands fkom both high and low pH solutions. This 1236 cm-' band is 

normally assigned to N-H in-plane wag (Lin-Vien et al., 1991). Another double-peaked 

band appears at 100 1 and 10 16 cm-' at high pH (Figs. 9.6a and 9.6b). When the solution 

pH decreases, the peak at 1001 cm-' first diminishes to a shoulder at pH 4.7 (Fig. 9 . 6 ~ )  

and then totally disappears at pH 1.0 (Fig. 9.6d). Meanwhile the band at 1016 cm-' does 



not change. SUnilarly, a multi-peaked band in the range from 1400 to 1500 cm-' shows 

similar changes as the solution pH is altered. 

On the other han& it is also observed that some bands do not shifi d u ~ g  the 

change of solution pH. Among them are the bands at 1016 and 1450 cm-'. Although the 

band at 1054 cm1 does not shift in position, it is found to decrease in size as the solution 

pH decreases. Since no assignments for these bands are available, it is not possible to 

attribute these changes detinitively to protonation of 2-vinylpyridine. However, their 

similarity to the trends observed for the peaks in the vicinity of 1600 cm-' suggests that 

they may be related to 2-vinylpyridine protonation. 

The charactenstic bands of pure and dissolved 2-vinylpyridine obtained above, 

together with other Raman spectra in the litsrature (Lin-Vien et al., 1 Wl), are used in the 

next sub-section for cornparison with SERS spectra obtained fiom electropolymerization 

on copper electrodes. 

9.2.2. SERS at Copper Electrode Surfaces 

When the electrolytic ce11 is operated at its open circuit potential G) of -0.18 V 

in a solution of pH 4.8, the SERS spectrum obtained for the surface of a copper electrode 

immersed in a 0.25 M 2-vinylpyridine solution (Fig. 9.7a) is similar to the ordinary Raman 

spectrum in Fig. 9.4 for the bulk solutions, but without the charactenstic bands of water 

and methanol. This indicates that the monomer is preferentially adsorbed and no 

significant adsorption of water or methanol occurs at the electrode surface. When the 

potential of the working electrode (E,J was increased in the positive direction (Le., Ev > 

E, = 4 . 1 8  V), changes in the spectra are observed. At E, of 4 . 1  and O V (Figs. 9.7b 



and 9.7c, respectively), the characteristic band for the pyridinium ion at 1619 cm-' 

disappears fiom the spectra, whiie the characteristic band for the neutral pyridine ring at 

1565 cm-' remains unchanged and the band at 1595 cm-' shifis to 160 1 cm-'. (It may be 

worthwhile to point out that the peak at 1630-40 appears at all potentials.) This suggests 

that only the neutral fonn of vinylpyridine molecule is now adsorbed on the copper surface 

and the pyridinium ions have been repelled from the working electrode which is now 

anodic. It is also observed that a new band at 1538 cm-' appears and a band at 1449 cm-' 

disappears when the workhg electrode becomes anodic. No explanation has been made 

for these changes. Other changes in the spectrurn are ais0 observed, such as the changes to 

the multi-peaked band at 1215 to 1236 cm? The band at 1236 cm-', which is normally 

assigned to N-H in-plane wag, disappears when the working electrode becomes anodic, 

while the peak at 1228 cm-' remains the same and the peak at 1215 cm-' diminishes to a 

shoulder. Although the band at 788 cm" and the shoulder at 1001 cm-' do not shift in 

position, they decrease in intensity. Another noteworthy finding from Fig. 9.7 is that the 

spectrurn for -0.1 V is wtualiy identical to that for O V, suggesting that the desorption of 

pyridinium ions at the copper surface is essentially complete and independent of the 

magnitude of the anodic electrode potential. 
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Fig. 9.7. SERS spectra of a copper electrode sudace immersed in a solution at pH 4.8 

containing 0.25 M 2-Wiylpyridine. (a) at open circuit potential & = -0.18 V) when no 

current flows; @) working electrode at -0.1 V with anodic current flowing; (c) working 

electrode at O V with anodic current flowing. 

Some opposite findings had been reported by Lippert and Brandt (1988) in their 

SERS studies of poIy(2-vinylpyridine) adsorption f?om a chloride solution. They found 

that when the electrode was anodic (i.e., L > E-), the species on the electrode surface 

was predominantly the pyridinium ion. When the working electrode potential was near 

E-, the species on the electrode surface were predominantly neutral pyridine molecules. 

The discrepancy in these results may be due to the dserences in the anions used in the 

two studies. Lippert and Brandt interpreted their results by the formation of an anionic 

poly(2-viny1pyridine)-H-CI complex and its adsorption to the anodic surface. However, in 



our case, no characteristic band for the analogous poly(2-Wiy1pytidine)-H-CIO4 complex 

between 1700 to 2800 cm-' has been observed. Consequently, no monomer or polymer 

anions that adsorb ont0 the electrode likely exist. This result is consistent with the FT-IR 

spectra for the polyrner coatings and indicates that aithough there are perchlorate ions 

present in the formed coatings, they are in physicaiiy trapped in the polymer network 

rather than present in an anionic polymer complex (Nakamoto, 1963). 

Wavenumber / cm-' 

Fig. 9.8. SERS spectra in the 1500-1700 cm-' region at a copper electrode surface 

immersed in a solution at pH 4.8 containing 0.25 M 2-Wiylpyridine. (a) at open circuit 

potential (E, = 4 . 1 8  V); (b) at -0.3 V; (c) at -0.6 V; (d) at -1.0 V; (e) at -1.3 V. 



When the potential of the working electrode is decreased below E,, the spectra in 

Figs. 9.8, 9.9 and 9.10 are obtained. Significant changes in the spectra are found as the 

electrode potential was made progressiveIy more negative. While one characteristic band 

for the pyridiniurn ion at 163 2 cm-' shows no position SM but only a intensity decrease as 

the working eiedrode potential changes to more negative values, the other characteristic 

band at 161 9 cm-' shifts to 16 1 1 cm-' at -0.3 V Vig. 9.8b), to 1608 cm-' at -0.6 V (Fig. 

9 . 8 ~ )  and eventually to 1600 cm-' at -1.0 V and below, where it overlaps with one of the 

figerpint bands of the neutral pyridine Mig (Figs. 9.8d and 9.8e). While one of the 

characteristic bands for a neutral pyridine ring at 1565 cm-' appears at al1 potentials the 

other one at 1595 cm-' starts to shift to a higher wavenumber soon &er the cathodic 

current begins to flow (Fig. 9.8b) and reaches 1600 cm-' and overlaps with the shified 

pyridiniurn band at -0.6 V (Fig. 9.8c), remaining at this wavenumber as the potential 

becomes more negative (Figs. 9.8d and 9.8e). 

At more negative potentials (e.g., E, < -1.0 V), more changes can be observed in 

the spectra. For example, a new band appears at 1537 cm-' at -1.3 V (Fig. 9.8e). As 

show in Fig. 9.9d, the band at 1476 cm-' begins to split into a double-peaked band at - 

1.0 V. WhiIe the peak at 1437 cm-' remains unchanged, the peak at 1449 cm-' diminishes 

and disappears (Figs. 9.9d and 9.9e). The band at 1420 cm-' also shifts when the working 

electrode becomes cathodic and disappears when E, reaches -1 .O V (Figs. 9.9c, 9.9d and 

9.9e). Bands at 13 18 to 1305 cm-' and at 1236 and 1216 cm-' are found to shift in the 

direction of smaller wavenumbers. Some of the bands also diminish afler shifting (Figs. 

9.9d and 9.9e). While the band at 1016 cm-' remains unchanged, the shoulder at 100 1 cm- 



' disappears, and a new band at 970 cm*' appean when electrode potentiais are more 

negative than 4.6 V (Figs. 9.10c, 9.10d and 9.10e). 

Fig. 9.9. SERS spectra in the 1100-1500 cm-' region from a copper electrode surface 

Ynmersed in a solution at pH 4.8 containing 0.25 M 2-vinylpyridine. (a) at open circuit 

potentiai (Eo, = 4 . 1 8  V); @) at -0.3 V; (c) at -0.6 V; (d) at -1.0 V; (e) at -1.3 V. 
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Fig. 9.10. SERS spectra in the 94û-1100 cm*' region tiorn a copper electrode surface 

immersed in a solution at pH 4.8 containhg 0.25 M 2-vinylpyridine. (a) at open circuit 

potential (E, = 4 - 1 8  V); @) at -0.3 V; (c) at -0.6 V; (d) at -1.0 V; (e) at -1.3 V. 

It should be pointed out here that since Raman scattering can be afFected by 

electric fields, the peak position in a Raman spectmm for a given bond may shift when the 

electrode potentiai changes. This sometimes makes it more complicated to interpret the 

spectral results. Nevertheless, it is still possible to make the following conclusions from 

the above Raman and SERS experiments: 



1). 2-vinyipyridine can be protonated in acidic aqueous solutions. At a high 

solution pH (> 7.4). most 2-vinyipyridine species exist in their neuaal form; at a low 

solution pH (c 1.0). most 2-Mnyipyridme species are in thek protonated foxm; at an 

intemediate solution pH (- 4.8). Zvinyipyridine species exist in both neutrd and 

protonated f m s  (Figs. 9.4 to 9.6). 

2). Neutml form of 2-vinylpyridine adsorbs on an anodic electrode surface, while 

protonated 2-vinylpyridine is not be adsorbed @g. 9.7). 

3). Both neutrai and protonated forms of 2-vinyIpyidine species are adsorbed on 

an cathodic eiectrode sdace. However, once the ektrode potential is su&ciently 

cathodic, neutral2-vinyipyridine is the predominant form adsorbed at the cathode of pre- 

coated elec~odes (Figs. 9.8-9.10). 

9.3. Extended Voltammetry 

A series of voltammetry experiments have been carried out on mild steel electrodes 

pre-coated with poIy(2-vinylpyridine) via the usual electropolymerization process 

described in the caption for Fig. 8.1. It is found that the cathodic potential scan cm be 

extended to potentials more negative than -5 V without intense hydrogen evolution. 

During a wide range cathodic potential scan, three current peaks appear in the 

voltammogram (Fig. 9.1 1) at ha-wave potentials of -0.95, -1.30 and -1.91 v, 

respectively, indicating that more than one electron transfer reaction is occurring in the 

process. We have found a sknüar phenornenon with other electrode materials such as 



copper, brass, zinc and lead and with various supporting electrolytes (e-g., SO?, Na-, 

Cl-, etc.). 
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Fig. 9.11. Voltammograrn on a pre-coated steel electrode immersed in a 0.25 M 2- 

vinylpyridine aqueous solution. Potential scan rate is 30 mV/s. The three observed E ~ Q  are 

4.95,  - 1.30 and - 1.9 1 V, respectively. The arrows indicate the direction of the scan. 

A mechanism involving more than one electron transfer process is more complex 

than the conventional single reaction process proposed for electropolymerization 

(Gaylord, 1970, 1974). Similar phenornena have been reported recently for the 

electropolymerizations of maleic anhydride in an acetonitrile-dimethylformarnide mixture 

(Akbulut and Hacioglu, 1991) and of allylphenylether in acetonitrile (Sen et al., 1995). 

However, no process mechanism has been proposed to interpret the observation 

reasonably. A mechanism based on the reduction of the formed poly(2-vinylpyridine) at 

the cathode surface that involves multiple electron transfer processes wili be proposed in 

the next chapter. 



Further voltanunetric experiments have been camed out to test the hypothesis of 

the formed polymer nduction mechanism on the cathode surface. Poly(2-vinylpyridine) 

formed by the fke radical bulk polymerization process was dissolved in an acid solution to 

form a 0.1 M. % polyelectrolyte solution. No monomer was added to the electrolyte. The 

other components of the solution (Le., the methanol content, the nanue and concenmtion 

of supporthg electrolyte, etc.) and the experimental operating conditions were the same as 

used for a standard electropolymerization process described in the caption for Fig. 8.1. 

However, the solution pH couM only be adjusted to lower than 2.9 or higher than 9.2 

since any intermediate value was found to be very unstable. An mild steel electrode pre- 

coated with poly(2-vinyipyridine) was used as the working electrode. At pH 2.9, the 

voltammogram (Fig. 9.12a) clearly shows two current waves at EIn of -1.24 and -1.88 V, 

while the voltammogram fiom the pH 9.2 ektrolyte shows only the hydrogen evolution 

rise mg. 9.12b). 

Cornparison of the above rrsults shows that the wave with a Eln of -0.95 V in Fïg. 

9.1 1 does not appear in Fig. 9.12, while the other two waves are very close to those in 

Fig. 9.12. Since the voltammogram in Fg. 9.12 is obrained fkom a electrolyte containing 

no monomer, it is clear that the wave with a Ein of -0.95 V in Fig. 9.11 may Likely be 

associated with reduction of 2-vinylpyndine monorner. The other two waves in Fig. 9.11 

can be attributed to the reduction of poly(2-vinylpynd~ne) at the cathode surface. Further 

discussion of the polymer reduction naction and its significance to electropolymerization 

coating formation WU be presented in the next chapter. 
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Fig. 9.12. Voltammogram of a pre-coated electrode immersed in a 0.1 wt. % poly(2- 

vinylpyridine) electrolyte. (a) Solution pH = 2.9, adjusted with concentrated HCIOJ and 

@) solution pH = 9.2, adjusted with concentrated =OH. Potential scan rate = 30 mV/s. 

The poly(2-vinylpyridine) is formed by bulk polymerization, with benzoyl peroxide as 

initiator. The two observed En are -1.24 and -1.88 V, respectively. The arrows indicate 

the direction of the scans. 



CHAPTER 10 

PROCESS MECHANISM IDENTIFICATION OF 

POLYMER COATING FORMATION BY 

ELECTROPOLYMERLZATION IN AQUEOUS 

MEDIUM 

In this chapter, the process mechanism of poly(2-vinylpyridine) coating formation 

by electropoIymerization on mild steel substrates in an aqueous solution will be proposed 

based on the accomplished experimental results. Previous experirnental results and 

conclusions will be reviewed and reinterpreted in tems of the process mechanism. 

Experimentd results for electropolymerization using other substrates and monomers will 

also be presented to assess the proposed mechanism. 

10.1. Process Mechanism Identification 

Structurally, 2-vinylpyridine is sirnilar to styrene but with a Ntrogen atom in the 

ortho-position of the pyridine ring 



Due to the presence of the electronegative nitrogen atom in the pyridine ring, 2- 

Wiylpyridine is weakly basic with an e value of 4 . 4 2  in the Q-e scheme (Greenley, 1984). 

The nitrogen atom can attract cations in electrolyte (e.g., hydrogen ion in an acidic 

aqueous medium) and enable the 2-vinylpyridine molecule to be protonated: 

The protonation of 2-Wiylpyridine has been confixmed by the results of our ordinary 

Raman scattering spectroscopic study of the bulk solutions. In an aqueous solution, the 

foiiowing equilibrium exists between the 2-vinylpyridinium ions and neutral2-vinylpyridine 

where M and M a  represent the neutral and protonated forms of 2-vinylpyridine, 

respectively, and pKa = 4.92 (Pemn, 1965). Therefore, we have 

4.92 = pH - log [Ml 
[M-KI 

We can solve Equation (10.3) to obtah the concentration distniution curves for neutral and 

protonated 2-vinylpyridine species as a fiinction of electrolyte pH (Fig. 10.1). 

It is clear that nearly ail 2-vinylpyridine molecules exist in their neutral form at the 

original electrolyte pH of 7.5, while 2-vinylpyridinium ions represent only 0.2% of the 

total 2-vinylpyridine m a s .  When the solution pH increases fùrther, the extent of 2- 

vinylpyridine protonation has virtually no change. When the electrolyte pH is reduced to a 
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value close to the pKa value for 2-Wiylpyridine, there is an abundance of both 2- 

vinylpyridinium ions and neutral 2-vinylpyridine molecules in the electrolyte. When the 

electrolyte pH is reduced fiirther (e-g., < 3), most of the 2-vinylpyridine molecules in the 

electrolyte exkt in their protonated form, while only a very smaU arnount remains in the 

neutrai form. Below this pH value, no further change of the extent of 2-Wiylpyridine 

protonation occurs in the electrolyte. This analysis is consistent with the previous results 

of the Raman scattering spectroscopie studies reported in Chapter 9. 

O 2 4 6 8 10 12 14 

Solution pH 

Fig. 10.1. The concentration distribution airves of neutrai and protonated 2-vinylpyridine in 

aqueous solution at dEerent pH. 

The 2-vinylpyridiniurn ions are then attracted by the electnc field to the cathode 

where they migrate and adsorb: 



The adsorption of the ions is indicated by the surface enhanced Raman scattering (SERS) 

spectroscopic studies (Fig. 9.6 to 9.8). SERS spectra show that neutral 2-vinylpyridine is 

aiso present on the cathodic surface. 

The adsorbed pyridinium ions (III), which are more easily reduced than a neutral 

molecule, would then be converted to a free radical (IV) at a En about -1 V : 

(nr) 0 

However, the generated free radical 0 is unstable and would combine with a neutral 2- 

vinylpyridine molecule (I) to form an energetically more favoured secondary radical (IVa), 

which would likely tautornerize back to the aromatic pyridine (Nb): 

The free radicais (IVb) would then combine with more neutral 2-vinylpyridine molecules 

(I) to initiate and propagate the polymerization. 



The propagation process may eventualiy be tenninated by another radical, such as the 

hydrogen radical generated at the cathode surface by H+ reduction: 

or by combination or disproportionation. The fi-ee-radical mechanism for the 

electropolymerization is supponed by the results of the inhibition studies. The formation 

of poly(2-vinylpyridine) coatings has been confirmed by U.V.-visible, FT-IR and proton 

NMR spectrosco py . 

From the above analysis, it is clear that both neutral and protonated 2-vinylpyridine 

species play important roles in the eIectropolymerization process. It is essential to have 

enough 2-vinylpyridinium ions in the electrolyte to adsorb on the cathode and be reduced 

to form radicals. It is also crucial that a sufficient amount of neutral 2-Wiylpyridine 

molecules be present in the electrolyte to stabilize the generated radicals and carry out the 

polymerization. The feasibility of the reduction of the 2-vinylpyridinium ions at the 



cathode and the opening up of the vhyl double-bond in a neutral 2-Wiylpyridine molecule 

is necessary for electropolymeriration. Due to the high polarity of the vinyl double-bond in 

the 2-vinylpyridinium ions, it is difncult for them to open up for the propagation reaction 

(Odian, 199 1). 

When the solution pH is 7.5 or above (Fig. 7.1), no 2-vinylpyridine reduction peak 

appears on the corresponding voltarnmogram due to the deficiency of 2-vinylpyridir~ium 

ions in the solution. Therefore, a good quality polymer coating cannot be formed on the 

electrode surface. Instead, intense hydrogen evolution is observed. When the electrolyte 

pH is reduced, the 2-vinylpyridinium ion reduction peak appears in the voltammograrns 

and hydrogen evolution is diminished and inhibited sigruficantly. However, when the 

electrolyte pH is too low @elow 3 . 9 ,  this does not favour efficient coating formation 

although a sufficient arnount of fiee radicais is generated from the reduction of 2- 

vinylpfidiniurn ions. This is due to the lack of neutral 2-Wiylpyridine molecules in the 

electrolyte to stabilize the generated radicals and initiate and propagate polymerization. 

Only when the solution pH has a medium value (i.e., close to the pKa value of the 

monomer) where there is an abundance of both neutral and protonated 2-vinylpyridine 

species in the electrolyte, can efficient radical generation, stabilization, and polyrner chah 

initiation and propagation reactions occur. This is the fundamentai requuement for the 

formation of good polymer coatings. 

Soon after the formation of the polymer film on the electrode surface, the 

electrolysis current decreases markedly due to the high resistance of the formed polymer 

&S. However, the current does not drop to zero, but remains at a certain (ver- low) 

value throughout the rest of the process. The source of this so-cded residuai current may 



partially be the continuous hydrogen evolution, and may dso be elecîron t r a d e r  

processes directly related to the electropolymerization. 

The fonned poly(2-vinyIpyriduie) coating still has many features of the monomer. 

For example, it is a weak base due to the presence of the electronegative nitrogen atorn h 

its structure with apKa value of - 4 (Satoh et al., 1989). Therefore, the polymer can also 

attract hydrogen ions and be protonated in an acidic electrolyte (Wail, et al., 195 1; Lippert 

and Brandt., 1988; Garreii and K. D. Beer, 1988): 

The protonated polymer rnay then undergo reduction at the cathode surface and be 

converted to a polymeric radical (IX) (deadpolymer revivzfication is the phrase used in 

this thesis): 

(vm) m 
Since the active site of the polymenc radical @O is Wtely to be in the middle of the chain, 

a branched polymer would then be produced when it combines with neutral 2- 



If the polymer radical reacts with another polymer molecule containing a double-bond 

(formed by e.g., disproportionation termination, hydrogen abstraction or some chain 

transfer reactions) or with another polymer radical, a crosslinked polymer would be 

produced. These branched and crosslinked polymer molecules could be further protonated 

and reduced at the cathode surface and make the polymer even more highly branched or 

Thus, when poly(2-vinylpyrîdine) fiims form on the cathode surfaces, reduction of 

not ody the monomer, but also the fomed polymer occurs. Both processes contribute to 

the process current. The appearance of more than one wave in the correspondhg 

voltarnmogram Vig. 9.10) presumably reflects the fact that reduction occurs at difEerent 

types of sites d u ~ g  this branching and cross-linking process. The formation of highly 

branched and crossluiked polyrners explains the 15ia that these poly(2-vinylpyridine) h s  

are relatively insolub!e in organic solvents. It also explains the fact that only when the 

cathodic-limit electrode potential is negative enough (e-g., < -1.5 V) during CPS 

electrolysis cm good quaiity (thick and uniforni) coatings be formed. The electrode 



potential must be negative enough for polymer reduction and consequently branching and 

cross-linking to occur. 

Another unusziral phenomenoü observed in the electropolymerization process is 

that the colour of the fonned poly(2-hylpyridine) coating is yeliow (Sekine et al., 1992; 

De Bruyne et al., 1995) rather than colourless as in the case of buik polymerization. A 

similar phenornenon has been observed by other researchers in the formation of other 

polymer coatings by electropolymerization. For example, Akbulut and Hacioglu (1991) 

obtained a brown polymer coating on a platinum cathode surface fiom the colorless maleic 

anhydride. In this project, yellow-coloured poly(2-vinylpyridine) h s  have been 

consistently observed on difFerent electrode materials. Therefore, the colour of the coating 

is considered not to be caused by the nature of the electrode material but to be directly 

related to the mechanism of electropolymerization. 

During the poly(2-vinylpyridine) coating formation, hydrogen evolution occurs on 

the cathode surface throughout the process. The generated hydrogen radicais can combine 

with the active polymer chahs and terminate the polymerization process. This hydrogen 

termination process may occur at an early stage, causing the formed polymer to have 

relatively short chains. However, these short-chah polyrners soon become revived and 

start to become branched and crosslinited. As this hydrogen-terminatiodshort-polymer- 

revivification process continues, the ultimate polymer chains would be linearly short but 

highly branched and crosslinked. Considering the faa that a 2-Wiylpyridine oligomer has a 

yeUow colour (Jenkins et al., 1979; Mathis and Hogen-Esch, 1982; Meverden and Hogen- 

Esch, 1983; Sekine et ai., 1992; De Bmyne et al., 1995), it seems reasonable to suggest 

that the formed poly(2-vinylpyridine) coatings adopt the same colour as the structurally 



sirnilar (Le., linearly-short chah) 2-Wiylpyridine oligomer. In order for this explanation to 

be correct, the yeliow colour of the coating would be due to the presence of linearly short 

chahs, but not to its molecular weight. Although it was not practically possible to masure 

the molecular weight of the electrochemically formed 2-vinylpyridine polymer due to its 

low solubility in the solvents, the measured Tg indicated that the average molecular weight 

is quite high. The fiequent occurrence of hydrogen termination may be the reason, at least 

partidly, of the higher hydrogen ratio in the elemental analysis results (Section 8.2.1 .). 

Although the reduction of 2-vinylpyridinium ions is considered to be the primary 

source of fiee radicals which initiate the polymerization, it is also possible, at least 

theoretically, to reduce neutral2-vinylpyridine to generate anionic radicals 

@ H 
H2C&e-- Hg& 

(1) go) 

Such a reduction reaction should occur at a more negative cathodic potential than that of 

the 2-vinylpyridinium ion. The relevant current peak may be covered by that of hydrogen 

evolution and therefore cannot be monitored on the voltarnmogram. However, aithough 

anionic radicals would be generated at cathode surfaces, it would be difficult for the 

generated 2-vinylpyridine anionic radicais (XI) to linger at the electrode surfaces. They are 

likely to be repelled into the bulk solution by the cathode and make no contribution to 

coating formation. Moreover, anionic radicals in environments such as those of this 

project will be consumed imrnediately by the proton-donating species (e.g., hydrogen ions, 

methanol and water) in the media. Hence, anionic polymerization is not expected to 



contribute to coating formation no matter if neutral f o m  2-vinylpyridine reduction occurs 

at the electrode surface. 

No electropolymerization occurs at potentials above -0.8 V when no monomer 

reduction occurs and only H2 evolution takes place. Thus, it would be reasonable to 

conclude that 2-Wiylpyridine radical formation (Reactions (10.6) to (10.8)) is necessary to 

initiate the electropolymerization rather than hydrogen radical initiation (reaction (10.14)) 

or translation (reaction (1 O. 1 5) ) :  

(1) (xm) 

Furthemore, even if the hydrogen radical initiation occurred, it would have to take place 

between hydrogen radicals and neutrd 2-vinylpyridine molecules since it is difficult to 

open the highly polarized double-bond in 2-vinylpyridiniurn ions. Then, polymer coating 

formation would preferentially occur in an electrolyte with a high pH value, such as 7.5 or 

higher. However, this contradicts our experimental results on the impact of the electrolyte 

pH on the electropolymerization process (Section 7.1). Considering al1 these experimental 

results together, it is reasonable to conclude that the electropolymerization is initiated by 



monomer radicais produced f?om 2-vinylpyridium ion reduction rather than by hydrogen 

radicals fiom hydrogen ion reduction. 

Since the formed poly(2-vinylpyridine) can be protonated in acidic aqueous 

solutions (reaction 10. IO), there is an equilibnum between the protonated and neutral form 

poly(2-vinylpyridine) species. From the poly(2-vinylpyridine) pKa value (- 4 fiom Satoh, 

et al., 1989) and the following mass balance equation, 

pKa = pH - log [Pl 
rp-FI 

where P and P a  present the neutral and protonated forms of poly(2-vinylpyridine) 

species, respectively, it is readiiy seen that 13.7 % of poly(2-vinylpyridine) is protonated at 

pH 4.8. This might provide enough charged sites for the coating to be electrically 

conduding in an acidic aqueous solution and to support eledrochemical reactions after the 

working electrode is completely covered by the polymer coating. This may also explain 

why a pre-coated electrode could be used as a polymer-rnodified electrode for the 

extended linear sweep voltarnmetry studies presented in Chapter 9. Upon drying or curing, 

these charged sites are neutralized and the coating becomes insulating. It should be noted 

that the coating is always in a dry state when its conductivity has been measured. In fact, 

this phenornenon is quite sllnilar to the electrode doping process? in which an insulating 

polymer becomes conducting after being immersed in a strong electrolyte (Murray, 1984a 

and 1984b). On the other hand, at a solution pH of 6.5 (typical for drinking water and the 

salt spray test for corrosion protection in 3% NaCl solution), 99.7 % of the polymer is in 

its neutral form and the coating is basically insulating. Although it has been reported that 

polyvinylpyridine formed by bulk solution, emulsion or suspension polyrnerization swells 



in water (Luskh, 1974), no evidence of swelhg is found for the poly(2-vùiylpyridine) 

formed by electropolymerization. This may be one of the consequences of the highiy 

branched and crossiinked structure of the polymer. 

10.2. Process Mechanism Verification 

10.2.1. Coating Formation on Different Substrates 

Besides mild steel, other materials such as copper (> 99.99%), brass (C3600, with 

60-63% Cu, 33-37% Zn, 2.5-37% Pb and 0.35% Fe), lead (> 99.9%), zinc (> 99.9%), 

graphite, staidess steel (SS 3 16), platinum (> 99.99%) and alurninurn (> 99.9%) have 

been used as substrates for 2-vinylpyridine electropolymerization. Moa of the electrodes 

have the same shape as that of the mild steel coupon with a 5.5 cm2 area, except for the 

graphite and platinum electrodes. The graphite electrode is a 5 mm (diameter) rod of 3.4 

cm in length with an active area of 5.5 cm2, whiie the platinum electrode is a section of 

coi1 of 1 mm in diameter and 40 cm in length (i.e., an active electrode area of 12.6 cm2). Ln 

each case, the electropolymerization processes is canied out by CPS electrolysis for 2 

hours. While the solution composition is the sarne as before (Le., 0.25 M 2-vinylpyridine in 

20% methanol aqueous solution with 0.05 M N&CI04 as supporting electrolyte and 

solution pH of 4.8, adjusted with HC104), some electrochernicai parameters (e.g., the 

range of potential sweep) are dflerent £Yom those in operation for mild steel substrates. 

The ranges of potential sweep for different electrode systems have been summarized in 

Table 10.1. 



Table IO. 1. Results of poly(2-vinylpyridine) coating formation on dserent subarates by 

two-hour CPS electrolysis. The electrolyte is 0.25 M 2-vinylpyridine in 20% methanol 

aqueous solution with 0.05 M N&C104 as supporting electrolyte and solution pH of 4.8, 

adjusted with HC104. Potential scan rate is 30 mV/s. Unless speciticaily mentioned, al1 

electrodes are in the shape of coupon with an active electrode area of 5.5 cm2. 

Type of 

Substrate 

I - 1 -0.7 to -2.5 1 12.4 1 Thick and uniform coating 

Co~Per 

Brass 

1 Zinc 1 -0.9 to -2.5 1 14.7 1 Thick and uniforni coating 

Potential Range for 

CPS Electrolysis (V) 

-0.7 tû -2.2 

-0.7 to -2-2 

Coating Weight 

(mg) 

Graphite ' 

I A1-- I -0.6 to -2.5 I - I No visible coating fomed 

Comment 

7.9 

8.1 

Platinum $ 

S taidess S tee1 

' in the shape of a rod. 

in the shape of a coil, with an active electrode area of 12.6 cm2. 

Thick and unifonn waîhg 

Thick and unifonn coating 

-0.7 to -2.5 

For the copper and bras substrates, the CPS electrolysis is camied out in the 

potential range of -0.7 V to -2.2 V. As in the case of rnild steel electrodes, hydrogen 

bubbles are observed on the electrode surfaces during the electropolymerization. The 

coating formed are uniform and hard and adhere very well to the substrates. The thickness 

of the obtained coatings is close to those formed on rnild steel substrates. The 1-t diagrams 

for copper and bras electrodes are very similar to that of the mild steel electrodes. As an 

example, the 1-t diagram for the bras electrode (very similar to that of the copper 

-0.3 to -2.3 

-0.3 tû -2.3 

6.5 Thick and uniform coating 

- 

0.8 

No visible coatiag formed 

Small amount scatîered deposits 



30 Ti- 

- 

Tirne (mnute) 
200 

(cl 

Fig. 10.2. 1-t diagrams of CPS electrolysis of 2-vinylpyridine on different electrodes. The 

working electrodes are (a) brass; (b) lead; (c) stainiess steel. The detailed electrolyte 

composition, experimental conditions and the dimension of the electrodes are descnbed in 

Table 10.1. 



electrode) is shown in Fig. 1 0 . 2 ~ ~  The diagram for bms is very similar to that for copper. 

For zinc and lead substrates, the CPS electrolysis is carried in the potential range of 4 . 9  

to -2.5 V and -0.7 to -2.5 V, respectively. Only smd amounts of hydrogen are observed 

at the beginning of the electrolysis and no hydrogen is observed during the rest of the 

electrolysis penod. The formed coatings are very smooth and uniform and thicker than in 

the case of rnild steel. The Et diagrams, very s ida r  to each other, appear different from 

the one for brass (therefore, mild steel as well) electrode. As an example, the 1-t diagram 

for the lead electrode is show in Fig. 10.2b. Because of the less intense hydrogen 

evolution, the current is much lower than that for the bras electrode. For example, the 

f ~ s t  current peak for the bras electrode is about 430 while only about 28 mA in the 

case of the lead electrode. The ciifference in hydrogen evolution is not unexpected since it 

correlates weU with the hydrogen overpotential of the various substrates. The higher the 

hydrogen overpotential of a particular substrate, the less intense is hydrogen evolution 

during electrolysis, and the thicker and more uniforni is the coating. The results also 

Uidicate that hydrogen evolution is an Unponant source of the electrolysis current during 

the electropolymerization. 

The poly(2-vinylpyridine) coatings formed on the above met al substrat es are all 

yellow, which is consistent with the previous conclusion that the colour of the coatings is 

not related to the nature of the substrates but to intrinsic properties of the polyrner itself 

The reaction eiearolytes afler the electrolysis are yellow in the cases of copper and brass 

substrates, as with mild steel. However, for the cases of zinc and lead eiectrodes the 

yellow colour of the electrolyte is much lighter although the coatings have the same yellow 

colour as with copper and brass. This may again reflect the effects of hydrogen evolution 



on the coating formation process. Intense hydrogen evolution blows polyrner formed on 

the electrode into solution and causes the electrolyte to becorne yeliow. It also would 

decrease the uniforrnif~ of the coating and could have adverse effects on the coating 

adhesion Since vimially no hydrogen evolves on lead or zinc during the eIectrolysis, very 

little polymer would detach from the coating to make the solution tum yellow. This result 

suggests that another important aspect of coating formation by electropolymerization @ut 

which has not received much attention) is the detachment of formed polymer. A 

contnbuting factor for the thicker coatings being formed on lead and zinc electrodes may 

be the minimal removal of polymer fiom these substrates during electropolymerization. 

The adverse effects of hydrogen evolution are observed most clearly in the coating 

formation processes on stainless steel or platinum substrates. In the case of a stainiess steel 

substrate, intense hydrogen evolution is observed during the electrolysis at a rather 

positive electrode potential (- -0.45 V). During the electrolysis, the current remains high 

(- 70 mA) instead of dropping quickly after the onset of the electrolysis as it does in the 

case of some other metal substrates (e.g., mild steel, lead and zinc). The relevant 1-t 

diagram is shown in Fig. 10.2~. Because of the intense hydrogen evolution, the cunent 

response looks noisy and irregular. The electrolyte colour tums yellow quickly dunng the 

electrolysis. M e r  2 hours of CPS electrolysis between -0.3 to -2.3 V, only a smdl 

amount of a yellow coating forms in a scattered manner on the electrode surface. 

Nevertheless, the deposit is very hard and strongly adherent to the substrate surface. The 

reason for the low hydrogen overpotential of the stainless steel electrode is presumably 

due to the presence of chrorniurn in the stainless steel samples. Platinum is well known for 

its low hydrogen overpotential and therefore it is not surprising to observe intense 



hydrogen evolution at a very positive electrode potential (- -0.35 V). M e r  two hours of 

CPS electrolysis in the potential range of 4 . 3  to -2.3 V, no visible coating formation can 

be observed on the electrode surface. The electrolysis current also remallis high during the 

electrolysis and the associateci 1-t diagrarn is quite similar to that of  a stainless steel 

electrode. The solution colour also tums yeilow quickly during the electrolysis. 

Electropolymerization of 2-vinylpyridine on aluminum electrode shows unique 

results. Unlike the case of any other electrode materiai, the voltarnrnogram on an 

aluminum electrode shows no current wave for 2-vinylpyridine reduction. The electrolysis 

current remains at a very low level(< O. 18 rnAkrnZ) up to -1.87 V. However, when the 

cathodic potentid becomes more negative than -1.87 V, intense hydrogen evolution 

occurs. After a two-hour CPS electrolysis between -0.6 and -2.3 V at 30 mVls, no visible 

coating foms on the aluminum electrode. No current drop has been observed duiing the 

electrolysis. The current response is irregular. The reason for this behaviour is not clear. It 

may be related to the formation of an extremely thin but highly dense alurninum oxide film 

on the substrate surface, which not only has a very high hydrogen overpotential, but dso 

prevents 2-vinylpyridine species (specificaily protonated 2-Wiylpyridine ions) nom 

adsorbing on the electrode surface. The entire 1-t diagrarn of the two-hour process is 

shown in Fig. 10.3a and an enlargeci portion of the 1-t diagram is shown Fig. 10.3b, which 

shows clearly that no monomer reduction occurs dunng the potentid sweep. 



Time (minute) 

Fig. 10.3. 1-t diagrams of CPS electrolysis of 2-vinylpyridine on an aluminum electrode. 

The current response is random and irregular, and no monomer reduction wave can be 

observed during the potential sweep. The detailed electrolyte composition, experimental 

conditions and the dimension of the electrodes are described in Table 10.1. 



Fig. 10.4. 1-t diagrarns of CPS electrolysis of 2-vinylpyridine on a graphite electrode. The 

electrolysis current starts low (only 20 mA) due to the less intense of hydrogen evolution. 

Fig. 10.4b shows clearly the feature of monomer reduction reaction during the potential 

sweep. The detailed electrolyte composition, experimental conditions and the dimension of 

the electrodes are descnbed in Table 10.1. 



Electropolyrnerization of 2-vinylpyridine on a graphite electrode shows very 

interesthg result S. Graphite dso has a high hydrogen overpo t ential and t herefore, the 

corresponding cathodic linear sweep can be extended to -3 V without severe interference 

fiom hydrogen evolution. M e r  two hours of CPS electrolysis between 4 . 7  and -2.5 V, 

the experimental results obtained are rather similar to those f?om zinc and lead electrodes. 

The 1-t diagram is shown in Fig. 10.4. The electrolysis current starts low (ody 20 mA) 

due to the less intense of hydrogen evolution. The edarged 1-t diagram shows clearly the 

feature of monomer reduction reaction during the potential sweep. The coating is yellow, 

while the electrolytic solution is still clear after the two-hour CPS electrolysis. The coating 

is hard and tightly adherent to the graphite rod. This suggests a potential application of 

poly(2-vinylpyridine) coatings for protecting graphite materials fiom scratching and 

abrasion during material handling processes. Abundant research has been done for similar 

applications using dserent monorners via electropolymerization (Subramanian and 

Jakubowski, 1978; MacCalium and MacKerron, 1982; Chang et al., 1987; Iroh et al., 

1990 and 199 1; Wholkiatisak and Bell, 1992; Iroh et ai., 1993a and 1993b; Liang et al., 

1993~; Iroh et al., 1994). 

Another important observation fiom the above experiments on electropolymerizing 

2-vinylpyridine coating on various substrates is that the criterion that determined the 

optimum solution pH value for a rnild steel substrate apparently can also be applied to 

other electrode systems. This indicates that the effect of solution pH on the 

electropolymerization process is dictated by the pKa value of the monomer and 

independent of the nature of the electrode materials. More discussion of this issue wiU be 

present in the next section. The experimental conditions and results are summarized in 



Table 10.1. For cornparison, the experimental conditions for a system with rnild steel 

substrate and the correspondhg results are aiso Iisted in the table. 

103.2. Electropolymerization of Coatings with Various Monomers 

The most important aim in forming polymer coatings from other monomers in this 

study is to critically assess the proposed mechanism for electropolymerVarion of 2- 

vinylpyridine. To facilitate coating formation as much as possible, zinc and lead working 

electrodes (active area of 5.5 cm2) are used. Based on the proposed mechanism, the 

foiiowing three criteria are key to successfil electropolymerization: 1) the monomer 

should have an unsaturated molecular stmcture (e.g., C=C or C=N bond), which is active 

enough for polyrnerization. Such information can be inferred from the Q values in the Q-e 

scheme; 2) the monomer should have enough basicity that it can be protonated, adsorb on 

an electrode surface and undergo cathodic reduction. Such information can be obtained 

f?om the pKa values of the monomer, 3) the polymer fomed should also have sufficient 

basicity that it can be protonated and cathodicdy reduced and consequently undergo 

revivification. A multi-waved voltammogram will then be a good indication for such a 

process. A number of the monomers have been selected for eIectropolymerization since 

they fuifill these requirernents. To funher evaluate the proposed mechanism, severai 

monomers that do not meet the above criteria have also been tested. Nevertheless, the 

same electrochemicai approach that was successfùl for 2-vinylpyridine has been applied to 

al1 of the monorners. 

The following monomers have been selected for electropolyrne~tion: 4- 

vinylpyridine (Aldrich, inhibited with 100 ppm hydroquinone), 1 -vinylirnidazole (BDH), 



aniline (AnalaR), arylamide (J. T. Baker), acrylonitrile (Aldrich, inhibited with 3 5-45 pprn 

hydroquinone monomethyl ether), methacrylonitrile (Aldrich, inhibited with 50 ppm 

hydroquinone monomethyl et her) and methyl methacrylate (BDH, inhibited with 1 0 ppm 

hydroquinone monomethyl ether). The monomers are purified by passing through the 

inhibitor remover colurnns (Aldrich, column 30-63 1-2). Some properties (such as pKa and 

Q-e scheme) of the seleded monomers are listed in Table 10.2. The purified monorners 

are then dissolved in an aqueous solution containing 10 voL % methanol to make 0.25 M 

rnonomer solutions. Supporting electrolyte is added to each solution to brïng its 

concentration to 0.05 M and the corresponding acid or base is used to adjust the solution 

pH. For a monorner with a known pKa value (Perrin, 1965), the solution pH is then 

directly adjusted close to this value. Otherwise, exploratory tests are carried out to 

determine a proper electrolyte pH. Voltammograms are obtained for every monomer 

system with a zinc or lead working electrode to decide the potential range for the CPS 

electrolysis. The detailed experimental conditions and results are summarized in Table 

10.2. For cornparison, the results for a poly(2-vinylpyridine) coating are also listed in the 

table. 

CKnylpyridine readily dissolves in a 10% methanol aqueous solution to give an 

initial pH of 7.65. NH<CI04-HCI04 solution is first used as the supporting electrolyte and 

also to adjust the solution pH to 5.5. Surprisingly, the solution becomes turbid a few 

minutes after the rnixing and then a large amount of white precipitate forms. No distinct 

changes in solution temperature and pH are observed during this precipitation process. 

However, if the solution pH is reduced quickly afler the mixing of the solution to lower 

than 1.5, the precipitation can be prevented. However, once the precipitate has forrned, 





adjustrnent to a low solution pH cannot make the precipitant disappear. Precipitation 

always occurs when the solution has a high pH (> 5.5). 

The reason for the above precipitation is not clear. A possible cause may be the 

formation of a carbonium radical, M", by the strong oxidant ClOI (Shapoval and 

Gomdyskii, 1973) 

C104' +2M + H20 -.t CIO3- + AC +OH (1 O. 17) 

The carbonium radical M" would then begin cationic polymerization 

W + M  -+M-PVI" (1 O. 18) 

where M is the CWiylpyridine monomer and M" represents the relevant carbonium 

radical. The abiiity of 4-vinylpyridine to undergo such a reaction may be due to its high Q 

value in the Q-e scheme (T6bIe 10.2). 

N&N03-EWû3 solution is then used as the supporthg electrolyte (0.05 M 

m 0 3 )  and also to adjua the solution pH to 5.5. In this case, the solution remains clear 

and no precipitation occurs up to 3 days. Linear sweep voltammetry is carried out 

between -0.7 and -2.5 V at 30 mV1s. The obtained voltammogram is s h o w  in Fig. 10. 5. 

It is seen that at least two reduction current waves appear in the voltammogram. 

The two reduction waves have Em of -1.0 V and -1.85 V, respectively, followed by the 

large wave for hydrogen evolution. An anodic linear sweep voltammograrn that has also 

been obtained shows no current wave other than one for oxygen evolution. The effects of 

the solution pH on the shape of the voltammograms and on the rate of the current 

decreases during a one-hour chronoamperornetric electrolysis are shown in Figs. 10.6 and 

10.7, respectively. The results are found to be quite similar to that for 2-vinylpyridine 

electropolyrnerization, as show in Figs. 7.1 and 7.3, respectively. 
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Fig. 10.5. Cathodic linear sweep voitammogram of 4-vinylpyridine (0.25 M) in 10% 

methanol aqueous solution, with 0.05 M N)4N03 as supporthg electrolyte. Solution pH 

is 5.5 adjusted with HN03. Potential scan is between -0.7 to -2.5 V at 30 mV/s. Working 

electrode is M C  (5.5 cm2). 
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Fig. 10.6. The effect of solution pH on the shape of the Iinear sweep voltammograrns of 

0.25 M CWiylpyridine. Solution pH is adjusted with concentrated HNOa. Potentiai scan is 

between -0.7 V and -2.5 V at 30 rnV/s. The curves have been shifted dong the potential 

axis deliberately to avoid any overlap. 
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Fig. 10.7. The effect of solution pH on electrolytic current d u ~ g  chronoarnperometric 

electrolysis of 4-Wiylpyridine at a constant potential of -1.5 V. Solution pH are 2.6 

(&), 5.5 (+) and 8.5 (+), adjusted with HN03. 

Chronoarnperometric electrolysis has been carried out for poly(4-vinylpyridine) 

coating formation at cathodic potentials of -1 .O, - 1.2 and -1 -5 V, at pH 5.5. No visible 

coating is found on the electrode surface afler 1 hour of chronoarnperometric electrolysis 

at a potential of -1.0 V, whereas only very thin coatings are obtained at -1.2 and -1 -5 V. 

Hydrogen evolution is observed d u ~ g  the above processes, and is likely partiaiiy 

responsible for the thimess and poor uniformity of the coatings. CPS electrolysis between 

4.7 V and various cathodic lirnits has also been carried out for poly(4-vinylpyridine) 

coating fonnation. When the cathodic lirnit of the scan is not low enough (Le., -1.5 V), 

only a very thin coating forms after a two-hour electrolysis. When the cathodic limit is 

decreased to -2.3 V, a thick and uniform poly(4-vinylpyridine) coating foms on the 

electrode surface. The relevant 1-t diagram is shown in Fig. 10.8. The coating is also 



Fig. 10.8. The 1-t diagram of a two-hour CPS electrolysis of 0.25 M Cvinylpyridine in 

10% methano1 aqueous solution. The supporthg electrolyte is N&N03, and the solution 

pH is 5.5, adjusted with HN03. The cathodic potential sweep range is between -0.7 and - 

2.3 V at 30 mV/s. 



yellow, but with a slightly green tint. The coating is somewhat powdery and the adhesion 

to the electrode surface is not as good as in the case of the poly(2-vinylpyridine) coating 

with MtCIO4 as supporthg electrolyte. The coating is relatively uniform with an average 

thickness of 9.4 pn based on CSLM analysis. Combined with a coating weight of 8.0 mg, 

the poly(4-vinylpyridine) coating is found to have a density of 1.55 g/cm3. The coating is 

also electncdy insulating and cannot be dissolved in common organic solvents (e-g., THF, 

TCB or chlorofonn, etc.). The results are summarized in Table 10.2. 

The above experirnents on poly(4vinylpyridine) coating formation by 

electropolymerization have been carried out under the guidance of the previous experience 

with 2-vinylpyridine and the proposed mechanism for polymer coating formation. This 

includes, for example, the selection of the solution pH (close to the monomer pKa value), 

the type of electrochernical technique (CPS electrolysis) and the potential range for the 

CPS electrolysis (fiom the multi-waved voItammogram), etc. The results with 4- 

Wiylpyridine confirm that the proposed process mechanism incorporates the intnnsic 

characteristics of the electropolymerization coating formation. It can be applied not only 

to 2-vinylpyridine system, but to other organic systems as weU. More applications of the 

proposed process mechanism to other monomer systems are discussed below in a less 

detailed manner. 

The electropolymerization of 1-vinylimidazole has been canied out in a similar way 

as for the Wiylpyridines, and the experimental results are similar as well. Since 1- 

vinylimidazole bas a much smaller Q value (O. 11) in the Q-e scheme, its relative reactivity 

is much smaller than that of the vinylpyridines. The higher pKa value (7.5) indicates its 

stronger basicity, and so the corresponding electrolyte (0.25 M 1-vinylimidazole in 10% 



methanol aqueous solution with 0.05 M N&CIO4 as supporthg electrolyte) has an initial 

pH of 8.7. The solution pH is then decreased to 7.5 with HCIOa. Several reduction waves 

appear on the voltammogram from the above electrolyte on a zinc working electrode, with 

En of - 1.2, -1.6 and -2.3 V (Fig. 10.9). Hydrogen evolution is relatively intense during 

the voltamrnetry measurement and the obtained voltammograrn is relative noisy, especially 

near the cathodic limit. Chronoamperometnc and CPS electrolysis have aiso been carried 

out for poly(1-vinylimidazole) coating formation on zinc substrates. Some yellow coating 

(2.1 mg) forms after a two-hour CPS electrolysis between -0.7 and -2.5 V at 30 mV/s. 

During the electro polymerization, the colour of the electrolytic solution changes to light 

yellow. The coating is rather thin, but quite uniform, hard and tightly adherent to the 

electrode surface. It is also electrically insulating and cannot be dissolved in THF and 

TCB. The relevant results are also summarized in Table 10.2. 

O -0.5 - 1 -1 -5 -2 -25 -3 
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Fig. 10.9. The linear sweep voltamrnogram of 0.25 M 1-vinylimidazole in 10% methanol 

aqueous solution on a zinc electrode. The supponing electrolyte is 0.05 M ML~CIOI, and 

the solution pH is 7.5, adjusted with HCI04. The cathodic potential scan rate is 30 mV/s. 



The reason for the formation of a very thin poly(l-vinyiimidazole) coating on the 

electrode surface may be related to its relative low reactivity. Aithough 1-vinylirnidazole 

can be protonated in aqueous solutions, its reduction potential is more negative than that 

of the vinylpyridines due to the low reactivity. Therefore, hydrogen evolution becomes a 

more cornpetitive reaction on the cathode surface. This causes the formed coating to be 

rather thin and the voltammogram to be relatively noisy. 

Electropolymerization of acrylonitrile is carried out Li a similar way as for the 2- 

vinylpyridine. The organic dissolves in the solvent readily and no precipitation occurs. 

Unlike vinylpyridines, acrylonitrile is not basic and its addition to the electrolyte does not 

change the electrolyte pH significantly. The pH changes only from 5.6 to 5.2 (compared to 

a change From 5.6 to 7.5 in 2-vinylpyridine solutions). However, the solution pH is not 

stable. A srnaIl amount of acid (e-g., HCIOJ or base (e-g., W O H )  added to the solution 

can change the solution pH below 2.0 or above 8.5, respectively, from the original pH 

value of 5.2. Linear sweep voltammetry has been carried out between the potentials of - 

1.06 and -2.15 V at 30 mV/s at solution pH of 2.0 on a zinc electrode. A smaii but 

consistent current wave (En of -1.1 V) is observed before the large hydrogen evolution 

wave (Fig. 10.10). However, no second reduction wave associated with the organic 

appears, even in the voltammogram on a pre-coated electrode (not shown here). At high 

solution pH (e-g., 8.5), no monomer reduction wave cm be observed fiom the relevant 

voltammogram. Chronoamperornetric electrolysis has been carried out at -1 -25 V and no 

coating can be found afker a one hour electrolysis. The decline in electrolysis current is 

more graduai than that in the vinylpyridine situation. CPS electrolysis has also been carried 

out over a potential range from -1.0 to -2.2 V at 30 mV/sec at a solution pH of 2.0 on a 



Pnc electrode. The coating is thin but uniform, hard and tightly adherent to the electrode 

surface. It is also electncally insulating but can be partidly dissolved in THF and methanol. 

The relevant results are dso sumrnarized in Table 10.2. 

The reason for the formation of only a thin polyacryionitrile coating by 

electropolymentation may be due to significant differences with the previously proposed 

mechanism for 2-vinylpyridine. The nitrogen atom in an acrylonitrile molecule is in the 

form of C=N, so that it is not electronegative as it is in vinylpyridine. Consequently, 

acrylonitrile is not a weak base and does not become protonated in acidic aqueous 

medium. Although it may stiU be reduced at the cathode and form coatings by some other 

mechanism (which is not clear yet), the formed polymer is not readily reducible, as in the 

cases of polywiylpyridines and poly(1-vinylimidazoie). Thus, the corresponding 

voltammogram (Fig. 10.10) is not rnulti-waved, like those of 1 -vinylirnidazoie and 

vinyipyridines. Good quality coatings (Le., thick, uniform and relatively insoluble in 

organic solvents) cannot be formed using the same approach that works for vinylpyridines. 

Instead, hydrogen evolution becomes intense and dominant. 

The eiectropolymerization of methyiacrylonitrile is carried out in a similar way as 

for acrylonitrile, and the experirnental results are quite similar as well. The solution pH is 

initially 4.7, but very sensitive between pH 2.5 and 9.0. A reduction wave (Eln of -1.1 V) 

appears in the voltammogram of the solution of pH 2.5, but no such wave was observed 

of the solution of pH 9.0. Chronoamperometric (at -1.2 V) and CPS (between -1 .O and - 

2.1 V) electrolysis have been carried out for polymethylacrylonitrile coating formation on 

zinc substrates. Some thin, but uniform coating forms &er a two-hour CPS electrolysis. 
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Fig. 10.10. The linear sweep voltamrnogram for a 0.25 M acrylonitrile in 10% rnethanol 

aqueous solution on a zinc electrode. The supponing electrolyte is NI%C1O4, and the 

solution pH is 2.0, adjusted with HCIO*. The cathodic potential scan rate is 30 mV/s. 



The cuating is hard and tightly adherent to the substrate. It is also electricdy insulating 

and c m  be partially dissolved in THF and methanol. The relevant results are sumarized 

in Table t 0.2. 

The electropolymerization of methyl rnethacrylate is carried out in a similar 

manner. The pH of a 0.25 M methyl methacrylate aqueous solution (with 10Y0 methanol) 

is initidy 6.9, but is unstable and varies between 1.8 and 8.4. A reduction current wave 

(En of -0.65 V) appears in the voltamrnograrn (on a lead working electrode) of solution 

pH 1.8 (Fig. 10.11). No monorner reduction wave was observed in high pH solution (e.g., 

pH 8.5). Chronoamperometric (at -0.6 V) and CPS electrolysis (between 4 . 4 8  and -1.8 

V) are carried out for poly(methy1 methacrylate) coating formation on lead substrates. 

Dunng the electrolysis, the current decreases quickly (Fig. 10.12). Some white particles 

form in the solution and accumulate at the bottom of the cell, while other particles adhere 

to the cathode and form a coating. The coating poorly adheres to the substrate surface and 

can be easily wiped off. The relevant results are also summarized in Table 10.2. 

The reason for the poor coating by the electropolymerization approach used for 

vinylpyridines may also be due to the fact that a difEerent mechanism is operating. Similar 

to acrylonitrile and methacrylonitriie, methyl methacrylate is not an organic base and 

therefore does not become protonated in an acidic aqueous solution. Although it cm still 

be reduced at the cathode surface and form a polymer following some unknown 

rnechanisxn, the formed polymer does not adhere on the electrode surface and cannot be 

reduced to form good quality coatings. Instead, hydrogen coverage is dorninating on the 

cathode surface and intense hydrogen evolution occurs. The formed polymer products 

slough off into the bulk solution, either by hydrogen gas evolution or by electrode 
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Fig. 10.11. The linear sweep voltarnmograrn for a 0.25 M methyl methacrylate aqueous 

solution in 10% methanol on a lead electrode. The supporting electrolyte is MI&104, and 

the solution pH is 1.8, adjusted with HClO4. The cathodic potential scan rate is 30 mV/s. 
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Fig. 10.12. The 1-t diagram of chronoarnperometric electrolysis for a 0.25 M methyl 

methacrylate in 10% methanol aqueous solution at -0.6 V . The supporting electrolyte is 

%C1O4, and the solution pH is 1.8, adjusted with HCI04. 



repulsion. The experimental results are summarized in Table 10.2. Detailed study of the 

mechanism is out of the scope of this project. 

The electropolymerization of acrylamide is camied out in a similar manner as 

above. The pH of a 0.25 M acxylamide aqueous solution (with 10% methanol) is Uiitially 

5.6, but is not stable and varies between pH 2.5 and 8.5. In a solution of pH 2.5, a 

reduction current wave appears in the voltammogram on a lead working electrode with a 

haif-wave potential of -1.1 V. Chronoamperometric (at -1.2 V) and CPS (between -0.7 

to -2.3 V at 30 mV/s) electrolyses have been canied out for polyacrylamide coating 

formation on lead substrates. Dunng the electrolyses, the current also decreases, but the 

hydrogen evolution is strong and the current decrease is not as rapid as  that in 

Wiylpyridine electropolymerization. Some coating (1 -3 mg) is found afler two-hour CPS 

electrolysis. The coating is thin and white in colour, but not distributed evenly on the 

substrates. The experirnental conditions and results are also summarized in Table 10.2. 

The results from electropolymerization of aniline are initially surprising. It was 

carried out in a similar manner as descnbed above. The 0.25 M aniline aqueous solution 

(with 10% methanol) had an initial pH of 7.1 due to the weak basicity of the aniline. The 

pKa value of aniline in aqueous solution is 4.6 (Perrin, 1965). Therefore, the solution pH 

was adjusted to 4.5 with HC1O4. A linear sweep voltamrnogram was then measured on a 

zinc working electrode. Although a multi-waved voltammogram (similar to Fig. 10.9) was 

expected, no reduction wave was actuaily observed. Intense hydrogen evolution occumed 

on the cathode sunace. Nevertheless, a dark colour coating was formed on the platinum 

anode after a few seconds. The coating was uniform and insoluble in organic solvents. It 

even had a strong resistance to strong acid solutions (e-g., the Electrode-CleaneB from 



Fisher Scientzc). The reason for the organic oxidation reaction on the anode instead of a 

reduction reaction on the cathode is not clear. It has been suggested (Venugopal et al., 

1995) that the protonated aniline molecules rnight form a complex with the anions of the 

supporting electrolytes. This complex could migrate to the anode and undergo 

polyrnerization. Study of the detailed mechanism is beyond the scope of this thesis. 

The above studies show that the electropolymerization mechanism identified fiom 

poly(2-vinylpyridine) coating formation successfuIiy reflects some intrinsic characteristics 

of the process. It has been successfuIIy applied to several other monomers, such as 4- 

vinylpyridine and 1-vinylimidazole. In addition to the usual properties required for 

polymerhtion, these monomers have sufficient basicity that they can be protonated in an 

acidic solution, adsorb at the cathode and undergo cathodic reduction to generate fiee 

radicds. For best results, the formed polyrners should also be sufficiently basic that they 

cm undergo protonation, reduction and revivification to produce branching and 

crosslinking polymer coatings. Solution pH always plays an important role regardless of 

the electrodes or the monomers, indicating the fundamental relationship between the pKa 

value of the monomen and the elecîropolymerization process. Electropolymerization of 

those monomer/polymer systems, such as methyl methacrylate, acrylonitrile and acrylamide, 

etc. that do not fu1fii.I al1 of the above requirements was unsuccessfu1. 



CHAPTER 11 

CONCLUSIONS AND RECOMMENDATIONS 

11.1. Conclusions 

Polymer coating formation by eiectropolymerisaton on elearically conducting 

substrates has been shidied in aqueous solutions. Starting with the 2-Wiylpyridine monomer, 

various aspects of the electropolymerization process were investigated in a laboratory-de 

electrolytic ceii. The effects of operating pararneten were studied individudy and via 

orthogonal- fraaional-factonaldesigned experiments. The relative imponance of the operating 

pararneten and an optimum combination of some important operating pararneten were 

detemilied. The fortned polyrner coatings were characterized via UV-visible, Fï-IR and *H 

NMR spectroscopy. Coating morphology and topology were shidied quantitatively using 

confocal scanning laser microscopy. In addition, the rnechanism of the electropolymerization 

process was investigated employing inhibition, surfàce enhancd Raman scattering (SERS) 

spectroscopy and linear sweep voltarnmetry on electrodes pre-coated with poly(2- 

Wlylpyridine). B a d  on the experimental results, a detailed rnechanism of the 

electropolyrnerization process was proposeci and related to experimental results obtained using 

other electrode substrates and monomers. The major conclusions are nunmarized below: 

1). Various electrochemical techniques were investigated for the electro polymerization. 

Cyciic potential sweep (CPS) electrolysis was found to be the moa suitable method for coating 

formation by electropolymerization. A cathodic potentiai scan range fkom -0.7 to -2.5 V at a 



scan rate of 30 mV/s was found suitable for 2-vkyipyridine electropolymerization on mild steel 

substrates. CPS has also been proven to be a powerfiil technique to study the mechanism of the 

electropolymerization process. 

2). 2-Viylpyridine can be protonated in an acidic aqueous medium to form 2- 

vinylpyridinium ions that adsorb on the cathode and can be reduced to fkee radicals. The 

generated radicals, d e r  stabilization by a neutral 2-vinylpyridine molecule, initiated the 

polymerization Propagation of the polymer chah involved the repeated combination of the 

ever-growing polyrner radical with neutral 2-vinylpyridine molecules. Therefore, solution pH 

value was critical for the electropolyrnerization process. Only when solution pH was in a 

narrow range of 4.5 to 5.5 (close to the pKa value of the monomer) could 

electropolymerization be initiated and propagated successfully. 

3). Higher monomer concentration was found to favour coating formation. It provided 

effective competition with the hydrogen evolution on the cathode surface and led to the 

formation of thick and d o m  polymer coa~gs .  However, excasively high monomer 

concentration made monomer dissolution diflicuit and resulted in a polymer cuating that was 

not completely soiidified. Methanol content in the electrolyte was another important factor in 

eIectropolymerizaîion. A suitable methanol content in the electrolyte was found to be between 

10 to 25 vol %. A low methano1 content did not allow suflicient monomer dissolution and a 

high methano1 content led to a thin coating. An operating temperature between 20 and 40 OC 

was found to be most favourable for coating formation. A high operating temperature (> 40°C) 

tended to generate a low molenilar weight polyrner and increase the solubility of the coating 

polyrner in the electrolyte, consequently leadiig to a thin coating. A low operating temperature 

(Le., 10°C) sometimes was suitable for coating formation due to the benefit of the formation of 



a higher m o l d a r  weight polymer. The relative importance of the above operating parameters 

decreased in the foiiowing order: monomer concentration > solution pH > methanol content in 

the solvent > operating temperature. 

4). The effects of other operating parameters on the electropolymerization have also 

k e n  exarnined. The electrolysis duration was found to affect the coating thickness 

proportionaily before the first two hours. Mer  two hours had elapsed, electrolysis duration 

was observeci to have oniy a minimum effèct. N&C1O4 was found to be the best supporthg 

electrolyte for the coating formation, although its concentration did not affect the process 

sigificantly. The presence of the anion C104- appeared to play an important role in the 

electropolymerization coating formation process, however, the research provided no clear 

explanation for this observation. 

5).  The mechanism of the electropolymerization has been c o n h e d  as a fiee radical 

polymerization by inhibition midies. This initiation mechanism appears to ocair as the 

consequence of 2-vinylpyridinium reduction r d o n  on the cathode rather than hydrogen 

radical initiation or t d e r  process. The conclusion is b a s 4  on the experimentd results of 

voltammetric midies and the impact of electrolyte pH on the electropolymerization process. 

Surface enhanceci Raman scattering (SERS) spectroscopy was applied to investigate the 

organic monomer protonation and adsorption behaviour in the bulk solution and on electrode 

Surfaces. Further evidence for 2-Wiylpyridine protonation, adsorption and reduction on the 

cathodic surfàces was obtained. The voltammetry midy on electrodes pre-coated with poly(2- 

vinylpyridie) suggested that the fomed coating could be fbrther protomteci in an acidic 

medium and undergo revivification at a more negative electrode potential. 



polymer has been characterized via various spectroscopie 

ET-IR and 'H NMR These investigations confirmed that 

6). The formed coating 

techniques, such as  W-visible, 

l 

potymerization had o m e d  and that no sigrdiant organic by-product was being fomed in 

the coating. The isotope elernental analysis of the f o d  polymer cuating showed a chernical 

composition close to that expected fhm the stoichiometry of 2-vinylpy~idhe. The DCP 

analysïs confirmed the absence of metal ions, such as iron, in the coahg polymer. DSC 

d y s i s  was wd to determine the Tg of the coating polymer which indicated a rather hi& 

average molecular weight with a somewhat broad distniution. 

7). Various coahg properties have also been investigated. Coating adhesion on a rnild 

steel substrate was studied using the cross hatching technique and good adhesion was found. 

Coating porosity was studied using a copper cementation method which confirmeci a very 

dense coating The conductivity of the coating was examinecl with an electrometer equipped 

with a four-point resistance probe. Infinite resistance was rneasured. The coating corrosion 

protection was investigated by a polarization technique. A sigmficant improvement in corrosion 

resistance was confimeci. 

8). Coating morpholog and topology was evaluated quantitatively using confocal 

scanning laser microscopy. Under appropriate conditions, a typicd cuating thickness of 7.2 p 

was produced within two hours of CPS electrolysis between 4.7 and -2.5 V at 30 mV/s. 

Coating roughness was also evaluated with the sarne technique. Coating density was estirnated 

fiom the coating thickness rneasurements and the rneasured coating weights. 

9). Poly(2-vinylpyridine) coatings were also formed on various substrates by the 

electropoiymerization technique. The resuits indicated that the proposed process mechanism is 

independent of the properties of the electrode materials. Hydrogen evolution was found to play 



a role in the process by decreasing the uniformity and thickness of the coating On the other 

hand, its formation on the electrode surfàce during the dectrolysis tended to rnake the coatings 

more dense and compact. 

10). Various other polymer coatings were formed by the electropoIymerization 

technique. These r d t s  confinneci some of the requirements for applying the proposed 

mechanism to electropolymerization coating formation. They include monomer protonation in 

a proper pH range; adsorption of the monomer species on the cathodic surface; monomer 

reduction and radical generation on the electrode surface; radical stabilimtion and 

polymerization The polymer c h a h  so formed can be M e r  protonated and undergo 

revivification on the cathode, leading to a linearly shoc but highly branched and cross-linked 

structure. This might enable fiirther thermal curing to be ornineci. The formed polymer coating, 

therefore, can be thick and uniform and insoluble in the solvents. 

11). Electropolymerization has ben shown to produce good quality polymer coatings 

fiom simple organic compounds in a single step. Sufice enhanced Raman scattering (SERS) 

spectroscopy has been niccessfuiiy applied in studying the mechanism of electropolymerization 

coating formation. Confocal scanning laser rnicroscopy has been successfully applied in 

quantitative eduation of polymer coating thichess and coating roughness distribution. 

Results obtained in this work should contribute siguficantly to the understanding and 

develo pment of the technique of electro polymerization. 



1). The detailed role of N&C104 as the supporthg elech~lyte in the 

electropolymerization is an unsolved aspect of this research. It appears that the most intensive 

hydrogen evolution occurred in the presence ofN'&CI04, but it is also the electrolyte which 

produced the best coatings. It also m&es the fomed coating compact instead of powdety. It is 

not clear how the CIOa- ions hnprove the quality of the forrned coatings. Additional research 

should be c&ed out on this topic. It is beiieved that a good understandimg of this effkct will 

enable fbrther improvernent of the electropolymerization technique. 

2). The mea~u~ed density of the poly(2-~inylpyridïme) coating of 1.99 glcm3 is 

surprishg since it is much higher than that expected for a polymer coating- However, most data 

of polymer densities reporteci are for polyrners formed by bulk methods. No data of a polymer 

density fiom a coating has been reported due to the technical difnculties in coating thickness 

meanirement. The arrangement of polymer chains and the degree of o r d e ~ g  for a polymer 

nom bulk polymerization are likely to be considerably Werent for a polymer that is fomed on 

and adheres to an electrode. n ie  presence of pdymer chains within the electric field at a 

cathode may also cause the polymer stmcture to be much more compressed than that 

ohenvise possible. Although the highSr branching and cross-linking of the formed polymer 

cannot entirely explain the density of 1.99 g/m3, it rnay p d y  contniute to the high value. 

Since no metal has been detected in the polymer coating, the hi& density cannot be attributed 

to this faaor. Last but not least, there may be erron associatecl with the coating thickness 

measurement by CSLU As has recently b e n  pointed out by Dr. Kevin Ellis, the polymer 

coating refktive index might be dinerent f?om that of the air in the experimental environment 





6). Pulse plating is a relatively new and very promishg electrochemicai technique for 

various coating formaiion processes. Nevertheless, no application of this technique has ever 

been reporteci for electropolymerization. Since the nature of the pulse plating technique, i-e., 

the periodid altemation of the current density seems to fit the characteristics of the 

eIectropolymerization process, it would be worthwhile to hvestigate the possibility of applying 

this technique to electropolymerization. An appropriate combination of the electrochemical 

parameters of the pulse plating technique may bring M e r  irnprovements to the 

electropolymerization process. 

7). So far, the research in polymer c o a ~ g  formation by e~ectropoiymerization is very 

fimdarnental. Some modeling work should be done in the area to siiulate the 

electropolymerization process. This wiU be helpfid in understanding the process mechanism 

fkom another point of view and instructive for potential industrial practice. 

8). m e r  monomers and monomer combinations should be investigated for formation 

of po1ymer coatings. This wiU be helpfùi for a more sophisticated understanding of the pro- 

mechanism and expand the application of the technique. EIectrochernical copolymerization is 

certauily an interesthg research area warranthg more attention. 
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