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Abstract

The application of H, control techniques to study global acoustic noise reduction
in a one-dimensional duct is considered. The acoustic problem is formulated as an
unbounded control system on an infinite-dimensional Hilbert space. A sequence
of approximatixfg finite-dimensional control systems is shown to converge to the
solution of the well-posed infinite-dimensional problem under certain conditions.
The finite-dimensional control problem is solved using Nevanlinna-Pick interpola-
tion. The question of the achievable level of global acoustic noise reduction in the
one-dimensional duct is then addressed. Both feedback and feedforward design are
examined. Optimal placement of the controller actuator location and controller
sensor location is discussed, as well as the effect of the number and location of per-
formance points in relation to the actuator and sensor. Numerical results indicate
that uniform stabilizability of approximations is not necessary for controller design.
Results also indicate that behaviour of the zeros of the approximations, as well as

the poles, is important for H,, controller design.
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Chapter 1

Introduction

Acoustic noise is a source of pollution that has unfavourable effects on people. Pas-
sive noise control has been shown to be effective at frequencies higher than 500
Hertz (e.g., [TL92]). Unfortunately, passive noise control techniques such as the
use of sound absorbers do not work well at lower frequencies. For lower frequen-
cies, active noise control techniques are required. This is because the wavelength
of the acoustic wave becomes large compared to the dimension of the absorptive
material. Furthermore, adding material for sound absorption increases the weight.
This is especially of concern when designing noise control systems for airplanes and

automobiles.

An active noise control system generally consists of one or more control speakers
(sources of sound) driven by a signal determined by the undesirable acoustic noise
measured through sensors and processed by a controller. The waves are superim-
posed and destructively interfere with each other to produce a reduction in noise.
This concept is of increasing interest in a variety of applications such as noise re-

duction in air conditioning ducts, airplane cabins, the interior of automobiles, as
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well as exterior exhaust and motor noise.

Active noise control systems have been studied since the 1930’s. In 1936, Lueg
(referred to by [EN93] and [TL92]) first described the basic concepts of active noise
control. In 1953, Olson and May (referred to by [EN93] and [TL92]) introduced an
“electronic sound absorber”. In this paper, Olson and May proposed applying the
effect of noise cancellation at a microphone to create a quiet area in an enclosed
space. Both Tokhi and Leitch [TL92] and Nelson and Elliott [NE92] give extensive

historical reviews of the development of active noise control.

Over the last 25 years, a number of different noise suppression techniques have
been developed. Several examples referred to by Tokhi and Leitch [TL92] include
the work of Swinbanks in 1973, Roure in 1985, Manjal and Eriksson in 1988, and
Elliott and Nelson in 1987. Tokhi and Leitch [TL92] provide a detailed account of
the research undertaken to date. The controller techniques in these past studies
have not used classical feedback control theory. Instead adaptive filters have been
used to reduce acoustic noise. Adaptive systems modify their characteristics in an
attempt to conform to changing properties of signals and systems. In other words,
an adaptive controller is one that is capable of “self-tuning” itself. In essence,
design of a self-tuning controller involves recursive parameter estimation based on

the current input and output to the system.

However, as already noted, these approaches do not fully explore the applicability of
modern feedback control theory. In particular, these techniques have no systematic
analysis of the closed loop stability and performance. As a result, in more recent
years, attempts have been made at incorporating modern control techniques in
acoustic noise reduction design. Hull et al. [HRS93] use a pole placement feedback
control algorithm to reduce noise levels. Pole placement modifies the eigenstruc-

ture of the system to increase the dissipation in the duct and attenuate duct noise.
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Hu [Hu95] [Hu96] undertakes a complete analysis of the transfer function and then
uses the internal model principle in the controller design. This approach requires an
accurate internal model of the noise (for example, the frequency) and can also only
deal with narrow-band noise. Another approach is to consider “optimal” controller
design using linear quadratic control theory. Hong et al. [HAV*96] use feedback
control and linear quadratic Gaussian (LQG) synthesis to study the acoustic noise
reduction problem with a single input and a single output. In recent years, more
attention has been given to applying “smart materials” to control acoustic noise
in a cavity. In a paper by Banks, Fang, Silcox, and Smith [BFSS91], piezoceramic
patches embedded in a beam are used to excite the beam and produce bending
moments which lead to acoustic noise reduction in the adjacent cavity. Banks,
Demetriou, and Smith [BDS97] also study two-dimensional structural acoustic sys-
tems and the use of coupling effects between two adjacent media. In these latter

two cases, the authors employ an “optimal” controller design approach by solving

a linear quadratic regulator (LQR) problem.

In this thesis, we consider a different approach to solving the problem of achievable
noise reduction. The problem of acoustic noise reduction can be expressed as the
problem of minimizing the transfer of acoustic energy through the application of
some controller. This method is known as H, controller design. We shall use this

concept to formulate the problem of acoustic noise reduction in a duct.

The duct is the simplest acoustic cavity that we may consider. If the cross-section
of a three-dimensional duct is small compared to the wavelengths of interest, then
we may think of this three-dimensional duct or cavity as being a one-dimensional
duct. Studying a problem involving a one-dimensional duct is beneficial since the
problem is simple enough that both theoretical and numerical analysis is possible.

To explore the advantage of feedback control in active sound cancellation, we need
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an appropriate model that describes the dynamics of the duct and completely qual-
ifies the interaction between the noise in the duct and cancellation signal. Most
importantly, we need a transfer function that shows the system zeros, which, as we

shall see, are important in designing feedback controllers.

Acoustic noise is best modeled using partial differential equations. These equations
are just one example of infinite-dimensional systems. We shall attempt to use the
infinite-dimensional model rather than a finite-dimensional approximation since it
better represents the dynamics of the system, and therefore provides more accurate

results in the controller design.

It seems logical that an infinite-dimensional controller could be used to stabilize an
infinite-dimensional system or plant, or to achieve certain performance specifica-
tions. The difficulty in this approach is in the design and implementation of such a
controller. The other approach is to approximate the plant by a finite-dimensional
system, and then to design a controller using this approximation. The initial ben-
efit of such a design strategy is the usefulness of the large wealth of theory and
software that exists for such systems. However, by introducing finite-dimensional
approximations we open the door to questions of convergence of the approximations
to the exact solution, as well as to problems of determination and appropriateness
of the approximations to the plant. It is well known that zeros in the transfer
function of a plant play an important role in the controller design and achievable
performance. Therefore, the chosen approximations must somehow represent the
zeros of the original infinite-dimensional system. We consider in some detail the
question of what makes one approximating scheme better than another. We keep
in mind that any methodology or strategy should be practical when extended to

acoustic noise reduction in a three-dimensional cavity.

We also address the following question: Is it possible to reduce acoustic noise
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everywhere in an enclosure by applying a feedback controller at a finite number
of sensing points? This is the problem of global noise reduction. In particular, we
consider the one-dimensional duct with one noise disturbance and one sensor, where
the noise is measured and used in the controller design. The controller produces
some controller signal which is introduced to the duct at some actuating point.
Now suppose there are m performance or observation points in the duct at which
we would like to reduce the noise level. This leads to a “tall” problem where the
number of outputs (m) of our system is greater than the number of inputs (one in
this case). This problem is numerically sensitive and not easily solved. The tall
problem H,, optimal control problem is solved exactly, hence providing results on

the optimal placement of sensors and actuators for global noise reduction.



Chapter 2

The One-Dimensional Duct

Acoustics is the general name given to the study of the production, transmission,
effect, and control of sound. Sound, on the other hand, is the impression left by
energy transmitted by longitudinal pressure waves. These waves are modeled using
the wave equation. Realistically, the acoustic response in an enclosure may be a
combination of standing and propagating wave components, caused by some non-
idealized partially reflective / partially absorptive boundary condition. Physically,
a partially absorptive boundary would allow acoustic waves to pass through the
boundary. A partially reflective condition would allow some acoustic energy to
be dissipated through the boundary while the remainder of the energy is reflected
back into the enclosure or cavity. This would create both standing and propagating

waves.

The simplest cavity we consider is the one-dimensional duct. Studying this problem
1s constructive since it is simple enough that both theoretical and numerical analysis
is possible. In addition, we may think of the duct as modeling a long and narrow
cavity so that it is also physically realistic and important in applications.
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2(z,t)
z
t
L

particle displacement (m)

position of the particle along the duct (m)

time (s)

length of duct (m)

wave speed (m/s)

density of the medium in the duct (kg/m?)

position where the disturbance is applied (0 < z4 < L)

position where the pressure is sensed or measured and fed back
through the controller (0 < z, < L)

position where the pressure generated by the controller is applied
to duct (0 <z, < L)

control pressure applied at z = z,

disturbance pressure applied at z = z4

Table 2.1: One-dimensional duct: variable definitions

2.1 Modeling

2.1.1 Time Domain

The system model we use is as follows [Doa73a], [Doa73b], [HRMM90], [HAV+96].

All variable definitions are given in Table 2.1. Suppose we have a duct of length L

(m). The partial differential equation governing the motion of waves in the duct is

given by

—(z,t) =

Py(t)
p

8%z 8%z
5(z,t) + 6(z — z,)

dz?

Fe(t)

ETe + d(z — z4)

(2.1)
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with zero initial conditions

2(z,0)=0, 0<z<L

Oz
g = <z<JL.
at(:z:,O) 0, 0<z<L

Assume that all forces and measurements in the duct are pressure. The term
“6(z — za)P—“fﬂ” represents a control pressure P.(t) applied at the point z = z,
in the duct. Similarly, the term “§(z — :z:d)P‘ﬁt ” represents point application of a
disturbance pressure P4(t) at £ = z4. Assume that we are modeling a hard-walled
duct so that there is dissipation only at the ends of the duct. In addition, assume

that there is no mean flow in the duct and air viscosity is negligible.

Consider a completely reflective end at z = 0, so that

g—:(o,t) = 0. (2.2)

At z = L, consider a partially reflective boundary condition. By conservation of
mass, we find that this condition is a relationship between the spatial gradient and
the time gradient of the wave displacement. Let K € R be the impedance of the
end (dimensionless). Then the boundary condition may be expressed as [SR88]

Oz K 0z
a—z(L’t) = —_C-—a?(L, t), K ?é 0, 1, oo. (23)

When K is zero or infinity, the end of the duct reflects all the acoustic energy and
the acoustic response in the duct is composed only of standing waves. When K = 1,
the end of the duct absorbs all the acoustic energy and the acoustic response in
the duct is composed only of propagating waves. All other values of K result in
some combination of standing and propagating waves. The value of K is associated
with energy dissipation. Experimental evidence in [HR92] and [SR88] supports this

choice of boundary condition.



CHAPTER 2. THE ONE-DIMENSIONAL DUCT

In addition, the acoustic pressure P(z,t) at some point 0 < z < L and time ¢ > 0

is related to the spatial gradient of the wave displacement by (given in [Set71],

referred to in [HRS93])
P(z,t) = —pczg—;(z,t).

2.1.2 Frequency Domain: The Transfer Function

Taking the Laplace transform of equations (2.1), (2.2), and (2.3), and assuming

zero initial conditions we obtain,

. 8%z P.(s)
2 2
s*z(z,8)=c 57 (z,8) + d(z — za4) >

0z
—a-;(O, 3) = 0,

and

0z K .
3—2:(L’8) = —?sz(L,s)

where

z(z,8) = L(z(z,t)),
P(s) = L(P.(1)),
Py(s) = L(Pa(2))
The solution to (2.4) with P.(s) = Py(s) =0is

#(z,s) = Ae™ 4+ Be™ <

for A, B €R. Deﬁnea:%{%elR,wherel<|a|<oo.

+4(=z

- z4) Pd/fs) , (2.4)
(2.5)
(2.6)
(2.7)

In the duct, we have possible forces applied at z, and z4, and possible measurements

at z and z,. Let P(z, s) (or simply P(z)) indicate the Laplace transform of pressure

P(t) applied at z. Since it is obvious whether a function is in the time or frequency
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domain, the hats over all frequency domain functions are dropped. Let G(z,, z;) be
the transfer function relating the pressure measured at z; to the pressure applied

at z,, so that

P(z,) pressure at T,
P(z,) ~  disturbance pressure at z,

= G(ZB]_, 1:2)'

Solving for the Green’s function of (2.4), (2.5), and (2.6) [Hu95] [YT92] we find

i2(s9-1) —e— ity
ei(zl—zg) (ec i +a 1 ezc , z; < Tz

—ad
e ¢ L—a

28 =L) — 20z
2 -2 ec (1 - l4e™ ¢ 2
eclza==2) ( —ZL_ ) ( 2 ) v T1> T2

G(z1,z2) = (2.8)

We will use this transfer function to formulate the problem of minimizing noise in

the duct.

2.2 Stability

Control systems are designed to meet certain performance specifications. We would
like to formulate a control problem that gives us a formal definition of what we mean
by acoustic noise reduction. Before doing so, we first provide a brief review of some

important background concepts in feedback control theory.

2.2.1 Definitions

Consider the basic feedback configuration in Figure 2.1. The plant being controlled
1s represented by its transfer function G(s) and the controller by its transfer function
C(s). The signals labeled in Figure 2.1 have the following interpretations:
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ld

Figure 2.1: Basic feedback control system

r - reference input

u - actuating signal or plant input

d - external disturbance

y - plant output.
We consider only linear time-invariant systems. As well, the energy of all signals
is assumed to be finite, i.e., all signals belong to L,[0,00). These signals are called
L,-stable.

Definition 2.1

A system is La-stable if inputs u € L,[0,00) map to outputs y € L,[0,00). Further-

more, there is a mazimum ratio

llgll2

< 0o. 2.9
2 lula (29)

This is called the Ly—gain.

Thus, G(s) is stable if the maximum energy amplification from all finite energy
input signals » to all output signals y is finite.
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Definition 2.2 (H,, transfer functions)

The Hardy space H,, consists of all complez-valued functions F(s) which are ana-
lytic and bounded in the right half plane, R(s) > 0. The H,, norm of F(s) is the

least such bound; that is,

[ Flleo = SIllpoll"(&‘)l < oo.

R(s)>

Theorem 2.1 (e.g., [Fra87])

The mazimum energy amplification in (2.9) is the norm of G(3), t.e.,
llyll2
sup ——— = ||G||oo-
Tl =

Thus, Hy, can be thought of as the set of all stable transfer functions.

The H,, norm of a system represents a physically meaningful quantity, namely the

ratio of the energy of the output signal over the energy of the input signal.

Example We shall show that the transfer function for the one-dimensional duct
(2.8) is in H,,. We first find the poles of G(z,, z,) and show that the function
is analytic in the right half plane. We then show that G(z,,z,) is bounded
in the right half plane.

The poles of G(z,,z,) are solutions of

This implies the poles are

Pn = —i[lna-{-m'wr]], n=0,%£1,%£2,.... (2.10)
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Since 1 < |a| < oo, the poles of G(z,,z,) lie in the left half plane. Therefore
G(z,,Z,) is analytic in the right half plane. Now, obviously, G(z,,z,) is
bounded on closed, bounded subsets in the right half plane. All exponential
terms have negative real parts for R(s) > 0. Since |a| > 1, it follows that
G(z,, Za) is uniformly bounded in the right half plane. Thus, G(z,,z.) € He.

Definition 2.3 (Closed Loop Stability)

The transfer functions from the ezogenous inputs r and d to the outputs of the
summang junctions e, and e, are given by

ey 1 1 —'G T
e 1+GC | ¢ 1 d 1l

The feedback system is closed loop stable if and only if all four of these transfer

functions are in H,.

We now introduce a method of parametrizing the set of all possible controllers C

for which the feedback system in Figure 2.1 is stable.

Theorem 2.2 (e.g., [Vid85, page 364])

Let G(s) € He- The set of all controllers C for which the feedback system (Figure

2.1) is stable is
Q .
{I_GQ.QEHQO}.

The function @(s) is known as the Youla parameter. Since any Q € H,, yields
a stable closed loop, @ is free to be chosen so that performance specifications are

satisfied.
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Td

DucCcrT

s

C

Figure 2.2: One-dimensional duct with controller

2.3 Simple Control Problem

Consider the duct and controller configuration in Figure 2.2. A basic control prob-

lem can be stated as follows.

Given a disturbance at £y and a measurement at z,, can we determine
the best control pressure to be applied at z, so that the effect of the

disturbance is minimized at some arbitrary location z?

The plant we are controlling has transfer function G(z,,z,). When z, > z,, we say
the system is a feedback system (since the output at z, is further away from z =0
than the input at z,). Similarly, when z, < z,, we say the system is a feedforward

system. Both systems are illustrated in Figure 2.3.

The pressure P(z) at an arbitrary location z is due to the disturbance P; and the

control pressure P.. (Here we are working entirely with Laplace transforms, and
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= DUCT = DUCT

— T, — Za
Zzg T,
C C
(a) Feedback (b) Feedforward

Figure 2.3: Feedback and feedforward systems

so the * notation is not used.) Suppose all disturbance signals are in L,[0, o).
The L,—gain 7 between the norm of the output P(z) and the disturbing P; is the

maximum ratio such that

1 P(z)ll2 < vl Pall2-

To minimize this gain over all frequencies in some range we find the infimum of

(2.11)

oo

over all stable, stabilizing controllers. At higher frequencies, acoustic noise may
be effectively suppressed using passive methods [TL92]. We therefore design the
controller to reduce the response to low frequencies. We choose the simplest low

pass weighting function
1
Wi(s) = ————
1(s) 1+ s/w,

where w, is the cut-off frequency.



CHAPTER 2. THE ONE-DIMENSIONAL DUCT 16
r y
—{ + — C >

G

A

Figure 2.4: Block diagram of simple duct control system

We now calculate P(z) explicitly. Consider the block diagram in Figure 2.4. Sup-
pose C is stabilizing. Then

¥-_0
r
for some Q € H,,. Also,
y__ C
r 1-CG’
Now,
P(z) = G(z,z4)Ps + G(z,z,)P- (2.12)
and
P. = CG(z,,z4)Pa + CG(z,,z,) P:
so

Pl — CG(z,,z5)] = CG(zs,z4) P2

which yields
P CG(z,,z4)

== CG(%%)P,,. (2.13)
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We need a controller C so that the closed loop due to feedback from z, to z, is

stable. Since G(z,,z,;) € Hx, any stabilizing controller is given by

10
) = T 60, =00 (214

for some Q(s) € Hy (see Theorem 2.2). Thus, substituting (2.14) into (2.13) we

obtain,
P. = [ TGmig O (%e: Zd) '
1 + =520 G(%e: Za)
so that

Pc = —QG(:!:,, :Bd)Pd.

Substituting this into (2.12) we obtain

P(z) = G(z,z4) Ps — G(z,z,)QG(z,, za) Pa-

That is,
22) _ 6(s,24) - G(2,20)Gl20, 200,
Py
so that {2.11) becomes
Yopt = Qié}:fr;l Wl(s) [G(.'B, .'Bd) - G(.’B, ZQ)G(-'C" zd)Q] "co (215)

2.3.1 Noise Reduction at a Point

In this section, we consider the simplest problem of noise reduction at a single
point. This problem was analyzed by Morris [Mor97a]. Both feedforward (z, > z,)
and feedback (z, < z,) are considered. The results provide insight as well as a

framework for further study of the global noise reduction problem.

We write

G(z;, .'Bz) = G{Go
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where

G'. = e-;';|='-'1 —za|

and

2 (rq—1) £
ec @ 1- 1
=227 =+ ezc ’ for T < Iy,
G = e ¢ “-a
° (=) _, ~-its

l14e ¢
TIEiL t 3 ) N for T > Ts.
eT e -

Note that |Gi(yw)| = 1 and G, has no right half plane zeros. The performance
measure (2.15) may be rewritten as

Yopt = iIl.f

QeHcol Wi [Go(-’l:, Zd)e-iuz-:dl_lz-hl-lz'—zd” - Go(Z,24)Go(zs, zd)Q] ”m

(2.16)

Feedforward (z, < z,)

In all cases analyzed in [Mor97a}, the disturbance is at z4 = V.

Case 1: z > z,

Consider (2.16) with z4=0:

Yopt = _inf

QeHw' W [G°(z’ 0)e~&(=e==2) — G, (2, z4)Golz,, O)Q] ” ’

oo

Clearly, the choice
Qopt = Gol(z,0)e” "= G, (2,,0) ' Go(z, za)

will give a zero response at any frequency. The “optimal” controller is then
g

— Qopt
Copt = I — G(Z4,Za)Qop

(see also [HB95], [Rou85]). However there are several problems with this choice

of controller. The controller C,,: may be improper. Since G,(z,z,)™! ¢ He,
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Qopt ¢ Hoo so that the closed loop is unstable. Thus, it is possible to reduce the
effect of a disturbance to zero at the point z only if the disturbance frequency is
not equal to a zero of G(z,z,). That is, if wy is the frequency of the disturbance
then any Q € H,, such that Q(jwq) = Qope(jwaq) will work. However, this is not
usually practical since this controller will only reduce noise at one point and few
disturbances are purely harmonic. As well, if the feedback gain |G(z, z,)| is large,

the controller may become unstable. This results in implementation problems.

Morris also shows the following. Let
Go(z7 za) = Go(:c,O)f,.(a:a)(s)

where
Frlea)(s) = =

The closed right half plane zeros of f, are s = *jw, where w, = 52—"2:—’;)2, n =
0,%1,%£2,.... Thus,
Yopt 2 5up [(W1Go(z,0))(3wa)l-

IfK<1,
|—1-a] 1
L—==
Sl:;p IGo(:B, 0)(]“))' = |1 — al K
and
| 1=
> — . — .
inf Go(2, 00 ()| 2 oy — g = K
IfK>1,
|—1—af
> —_— —
sgp IGo("E, 0)(Jw)l = |1 _ al K
and
11— of

1
. < —_— = —,
IEfIGo(zyo)(Jw)I - | -1 al K
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If the control actuator point z, satisfies 22 = -1, for m some positive integer, and
F=1+ 2—:"- - ﬁ where k is some integer chosen so that z > 0, then

oy |=1—q
Go(z,0)(jwn) = l—o °
i.e., the supremum is achieved. These values of z, and z are “bad”.

If the control actuator point z, satisfies 22 = -, for m some positive integer,

and £ =1 — ;25 where k is some integer chosen so that 0 < k < 2%£%, then
m+1 2

l—a
Gule,0)(gwn) = T
i.e., the infimum is achieved. These values of z, and z are “good”. In either
case, the sensing point z, does not affect the achievable performance. The above
analysis is for £, < £, < z. Thus, the performance point is further removed from

the sensing point. The actuating point is an intermediate point that directly affects

the disturbance seen at z.

Results for both “good” and “bad” choices of z, show a phenomenon referred to
as the “spatial waterbed effect”: an improvement in performance for z > z, comes

with a worsening of performance for z < z,.

Case 2: z < z,

In this case, (2.16) becomes

Yopt = _inf

%(zq+t.—2z) —
2t [wi[6(z, 00 Gal,22)Ga(z0 0)Q)|

Morris shows the following. The closer z is to Ztf%a, the better the performance.
Also, note that since again G,(z,z,) ¢ Ho, the optimal performance cannot be

achieved by a stabilizing controller. Let jw, be the imaginary axis zeros of G,(z, Z,)-
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Then |G,(z,0)(jwn)| = 1 regardless of @. Thus, performance better than the
uncontrolled performance can only be achieved on frequency ranges that exclude

the points jwi,.

Feedback (z, > z,)

Consider the case where z4 = 0, z, = 0, and z, > z,, . With these choices (2.16)

becomes
Yot = infoer. Wl[Go(z,O)—e-E:‘G,,(z,O)Go(z,,O)Q]“

. o % (2.17)
= infyep_|WiGo(z,0) — e~ Q"

where

Q = WlGo(z’ O)Go(zn O)Q'

However, here the function W1G,(z,0) in (2.17) is not rational. The case where
W1Go(z,0) is a rational function has been studied by a number of groups [ZK87],
[LST88], [FTZ8T].

In the case where this weight is not rational, the problem may be manipulated until

the weight is rational. Consider the following. Recall (2.15) is

Wi(s) [G(z, z4) = G(z, 2a)G(z., ”d)Q] “

Yopt = Qggml

Let
W = W1 (s)G(z, z4)-

We will assume for simplicity of the discussion that z4 = z,. Then
G(z,z4)"1G(z, z.)G(z,, z4) = G(z,, Ta)

and

Yopt = Q%&"W(s) [1 - G(z.,za)Q(S)]

oo
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Suppose we write a factorization of G(z,, z4)
G(z,,z4) = GiG,

where

G; = e~zl=—=dl (2.18)
and G, has no zeros in R(s) > 0. Let Q = G,Q so that

= inf W(l—G,.')l 2.19
Topt QGHJI Q ( )

oo

If W is of the form

P
W=, (2.20)

where p and q are rational functions and 1/(1 — G;q) € H., then

. G-s
Yopt _o‘enf, p(l Sy _
Let Q = %qi.. Then
Tore = Q’é’zfmlp(l N QQ) Hoo

This is in the form of a problem with rational weight and irrational plant. The
solution to this problem has been studied by several authors [093], [ZK87], [LST88],
[FTZ87). However, in our case, this method is not practical. Firstly, the above
discussion assumes that z4 = z,, which is not a realistic assumption. Secondly, the
above discussion also assumes that the weight W (s) is of the form given in (2.20).
This special form restricts our choice of W,. Again this is not a realistic assumption

since we would like to choose W; so that low frequencies are weighted.

Case 1: 2(L —z) > z,

In this case, the problem in (2.17) becomes

= inf
Togt QeHx

W, — "‘Q" .
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This is the rational weight case solved by Zhou and Khargonekar [ZK87]. The main

result is summarized in the following theorem.

Theorem 2.3 [ZK87]

Let Wy(s) = C(sI — A)™!B be a stable rational minimal realization, and let ¢ =
e~*t*. Define
A BBT/\

F\=
—~CCT/A —AT

Then
Tope = maz{ | det{(#(Fa)lar} = 0},
where [H](2,2) denotes the (2,2) block of the block matriz H. If W,(s) = ﬁ-ls—/a’ then

1

Yopt =

where r € (7 /2,7) is the unique solution to

= 0.

tan(r) +

az,
Case 2: 2(L—z) <z,

Because these is no method to compute 7ope in (2.17) exactly, a numerical technique

to calculate vope to within arbitrary accuracy is given.

Case 3: z =1L

Let wy(t) = L£7}(Wi(s)). In this case w,(t) is replaced by w(t) where w(t) =
(1 — L)w,(t). Thus, the method in [ZK87] can be used where W; has the minimal
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realization [A, B, C,0] and W has the realization [A, fB, fC,0] for f =,/1—1/a.
In this case, Morris shows that

Yo

1
7opt=|1_'a—

where v, is the optimal performance for Case 1 when 2(L — z) > z,.

Results

The results obtained for the feedback case are summarized as follows.
o The feedback sensor z, should be placed as close as possible to z4 = 0.
o For 2(L — z) > z,, the optimal performance 7,,: = 71 depends only on the
location of z, and the weight W;.
e For z = L, the optimal performance «.p: = 7, depends on z,, Wy, and K.
e Forintermediate points z, the optimal performance varies continuously from
T1 to 7.
These results as well as those obtained for the feedforward case will influence our
choices for z,, z4, z,, and K when we consider the solution of the global noise

reduction problem in Chapters 4 and 6.

2.4 Global Noise Reduction

The control problem formulated in the last section considers the effect of the dis-
turbance at z4 on one arbitrary location z in the duct. We would like to extend
this to considering the problem of global noise reduction. We are interested in the

following questions.
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e Isit possible to reduce acoustic noise everywhere in the duct by applying a
control pressure at a finite number of points?
e What is the best location for the sensor?
This problem of “optimal global noise reduction” may be mathematically formu-

lated as follows.
Problem 1:
Find

Wi(s) (G(z,zd) - G(z,za)G(z,,zd)Q) LH . (2.21)

inf [inf [sup
z.,€[0,L) |Q€H z€(0,L]

In other words, we minimize the maximal output pressure everywherein the duct by

Yopt =

choosing a Youla parameter Q(s). Then we determine the optimal position of the
sensor =, such that the acoustic noise is again minimized everywhere in the duct.
We minimize the maximum output pressure by choosing the best Youla parameter
Q(s) for each sensing point z,. This problem is very difficult. We consider the

following simplifications to this problem:.
Suppose we let the sensor location z, be fixed. This yields the following.

Problem 2:

= inf | su
Yopt Q€Hx [::GIOI,)L]

In simplifying from Problem 1 to Problem 2, we lose any information regarding

Wi(s) (G(:c, z4) — G(z, 7a)G(z., zd)Q) “m] . (2.22)

the optimal placement of the sensor at z,. However, because there are still an

uncountable number of performance points z, the problem is still intractable.

As a further simplification to Problem 2, let X = {z,,z,,...,z} be some appro-
priate discrete partition of the duct, spanning the length of the duct. Then we have
the following.
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Problem 3:

You = Jinf | Ty — T2Q l (2.23)
where
[ Wi(s)G(z1,24) | [ Wi(5)G(z1,2e) G20, 24) |
- Wi (s)G(z2,z4) - Wi(s)G(z2,2,)G(z,, za)
Tl = . ’ Tz = .
| Wi(s)G(zm, z4) | | Wi(s)G(zm,22)G (s, Za) |

In Problems 1 and 2, we are concerned with reducing acoustic noise everywhere in
the duct. In Problem 3, we consider whether it is possible to reduce the acoustic
noise at some fixed points given by X. If only one point is considered, then (2.23)

is precisely the problem discussed in Section 2.3.

However, because the matrices T; and T, have irrational elements, we again cannot
solve the problem. A further simplification to the global noise reduction problem
is to approximate each infinite-dimensional plant G(z,,z,) with some appropriate

sequence of finite-dimensional plants G,(z,, z;).

Definition 2.4

The space RHo, is the subset of Hy, consisting of all real rational functions which

are stable and proper. Matrices are indicated by RHZ*™ or M(RH,,).

This results in a problem of the following form.
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Problem 4:

T = oitf, [T -T:Q]
where
[ Wi(s)Galz1,7a) | [ Wi(5)Ga(21,2a)Gal(24, 24) |
Wl(s)Gﬂ(z2a 3d) Wl(s)Gn(-'BZa za)Gn(zu zd)
T1 = . Tg = .
L Wl(s)Gn(zM7zd) ] R Wl(s)Gn(zm-yza)Gn(zn .'Bd) ]

27

(2.24)

(2.25)

Here T, € RH™*!, T, € RH?*! and Q € RH,,. In addition, T} and T are strictly

proper. We will refer to (2.24) as the “tall problem™.

In the scalar-valued case (m = 1), solution to this problem is straightforward. In

the matrix-valued case (m > 1), the solution is much more involved. However,

because T, and T, are rational, a solution can be obtained. Details are in Chapter

5. This problem is the most easily solvable of the four problems discussed. However,

the approximations G, to the irrational transfer function G must be chosen so that

Yn — Yopt- This problem is not straightforward and will be discussed in Chapter 3.



Chapter 3

Control and Approximation of

Systems

Systems whose dynamics are described by linear ordinary differential equations
can be described by linear maps on linear function spaces. We shall refer to such
systems as finite-dimensional since the states lie in a finite-dimensional function
space. Many problems with physical applications have delays in the dynamics of
the system, or dynamics best described by partial differential equations. For sys-
tems described by partial differential equations (distributed parameter systems) or
by delay equations, the appropriate state-space is an infinite-dimensional function
space. Such systems are generally called infinite-dimensional. In addition, infinite-
dimensional systems can be classified as bounded or unbounded control systems,

depending on the control and observation used.

It is generally very difficult if not impossible to solve control problems involving
infinite-dimensional systems. Finite-dimensional approximations are usually re-

quired.

28
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In this chapter, we present an overview of finite-dimensional control systems theory
and the linear quadratic regulator (LQR) problem. The LQR problem is an optimal
control problem which has a very simple elegant solution. The solution to this
problem is also key to determining, for example, stabilizability and detectability of

control systems.

Unlike the solution to the H, optimal sensitivity problem, the solution to the
infinite-dimensional LQR problem via finite-dimensional approximations for
bounded control systems is well-known. These results have also been extended to
some unbounded control problems. We will use the solution of the LQR problem as
our benchmark problem. Approximations to the infinite-dimensional LQR problem
will provide us with some general criteria which ensure convergence to the infinite-

dimensional solution.

We conclude this chapter by considering approximations to the H., optimal control
problem given by Problems 3 and 4 (see page 26 and page 27, respectively) and

requirements for the approximations to converge to the actual solution.

3.1 Finite-Dimensional Theory

In this section, we restrict ourselves to systems which are governed by linear time
invariant ordinary differential equations with a given initial state. These systems

can be written in state-space form,

w(t) = Aw(t) + Bu(t), w(0) = wo
y(t) = Cu(t)

(3.1)

where w € R" is the state, wo € R", u(t) € R™, A € R**", B€ R**™, and C €
IRP*". The control function is u(t), and y(¢) = Cw(t) is known as the observation
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equation. The unique solution of (3.1) is
t
y(t) = CeHwy + C/ e~ Bu(r) dr.
0

In general, the purpose of a control system is to maintain or create stability in
a system while meeting certain performance criteria. To discuss the development
of control systems further, we require concepts of stability, stabilizability, and de-

tectability.

Definition 3.1

The group of operators et is ezponentially stable if there exist M,o > 0 such that

lle®t|| < Me™"* forall t>0.

Definition 3.2

The matriz A s Hurwitz if and only if the real parts of all its eigenvalues are

negative.

Definition 3.3

Equation (3.1) (or equivalently (A, B)) is stabilizable if there ezists K € IR™*™ such
that A — BK is Hurwitz.

Definition 3.4

Equation (3.1) (or equivalently (A, C)) is detectable if there exists FF € IR**P such
that A — FC is Hurwitz.

If we design our control system such that it is stabilizable and detectable, we may

consider the question of optimal control.
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3.1.1 Linear Quadratic Regulator Problem

The linear quadratic regulator (LQR) problem consists of finding an optimal control
to a linear system by minimizing a quadratic cost function. Consider the cost
functional,

Tywe) = [ [ wlt), Quit)) + (u(t), Rult))] dt (3.2)
where @ and R are real symmetric n x » and m x m matrices, respectively, with
@ > 0 and R > 0. The problem of minimizing (3.2) subject to (3.1) is called the
linear quadratic regulator problem. The matrix Q may be thought of as a penalty
or weight on the states and similarly, the matrix R as a weight on the control. One
possible choice for @ is Q@ = CC. In effect, this introduces a weight on the output
y of the system. The conditions imposed on the definiteness of the matrices @ and
R ensure that the cost functional has positive values. The form of the solution to
the linear regulator problem is strongly associated with the solution to the algebraic
Riccati equation

Q+MNA+ A NI -NIBR'BII =0, (3.3)
which is solved for the nonnegative definite self-adjoint matrix II. If I is a solution
to (3.3) and II < II for all other solutions II, then II is called the minimal solution
of (3.3).

Theorem 3.1 [Zab92, page 138]

If there ezists a nonnegative self-adjoint solution II of (8.8), then there ezists a

unique minimal solution II of (3.8) and the control @ in feedback form,
i(t) = —R™ 1B TIw(t), t>0
minimizes the cost functional (3.2). The minimal value of the cost functional is

(Mw, w).
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If we consider the case when @ = C=C, then we have the following result.

Theorem 3.2 [Zab92, page 138]

If (A, B) ts stabilizable and (A, C) is detectable, then (8.8) has a unique nonnegative
self-adjoint solution and the matriz A — BR™!'B"Il is Hurwitz.

Theorem 3.2 gives a way to determine whether a system can be stabilized by finding

the solution to an associated linear quadratic regulator problem.

3.2 Motivating Examples

In the sections that follow, we will consider both “bounded” and “unbounded”
control systems, as well as approximations to the LQR problem for such systems.
Before doing so, we present two examples of control systems which illustrate the
difference between “bounded” and “unbounded” control systems. The first example
is a heated metal rod. The second example is the one-dimensional duct model

presented in Chapter 2.

Example 1 Consider a metal rod of length one heated along its length according

to
% (26) = T2 (z.t) + Bz)ul?)
z(z,0) = f(z)

y(t) = /0 ' (z)2(z,t) do

for z € [0,1] and ¢ > 0, with boundary conditions

0z 0z
%(O’t) = 'é;(lvt) =0, t>0
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where z(z,t) is the temperature at time ¢ and position z, u(t) is the control
function representing the addition of heat in the rod, and y(t) is the observa-
tion. Suppose b(z) and c(z) represent “functions” around the points zo and

z,, respectively, given by,

1
b(z) = é_ezl[zo—eb.zo-{»q](z)’
and
1
c(z) = Zl[zx —cc.z|+ec](z)7
where

1, fora<z<g,
lag =

0, elsewhere.

For fixed, small, positive constants €, and €., b(z) and c(z), respectively,
are both elements of L,(0,1), which is a suitable state-space for the heat
equation without input (e.g., [CZ95, Example 2.3.7]). Thus, the above partial

differential equation can be formulated in state-space form,
z(t) = Az(t) + Bu(?)
y(t) =Cz(t)

where H = L5(0,1), Y =R, A: D(A) C H — H is given by A= £ and
Bu := b(z)u for B € L(IR,H). In addition,

Cz(t) := /01 c(z)z(z) dz.

We will refer to systems which fit the above framework as bounded control

systems.

The operators B and C approximate point actuators and point sensors, re-

spectively. As well, for €, €. > 0, B and C are bounded. However, a point
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actuator is usually modeled as a delta distribution. Thus a point actuator
is not represented as a bounded operator on L,(0,1). We will refer to such
systems as unbounded control systems. Curtain and Zwart [CZ95, Section
3.3] give some examples of control systems that can be reformulated on an

extended state-space with bounded B.

Example 2 Consider the one-dimensional acoustic duct model given in Chapter
2 (see (2.1), (2.2), and (2.3)). Note that the one-dimensional duct model is
both infinite-dimensional and unbounded. Suppose P.(t) = 0 and the input
u(t) is the disturbance Py(t) at z4. These equations may be written as an

abstract differential equation of the form
w(t) = Aw(t) + Bu(t).

Let

¢
' 9z
We endow H,(0, L) with the inner product

HI(OVL) = {C € LZ(OaL) € LZ(O L)}

L _ L ¢ of
& = [ (eE@ e+ [ oot
Similarly, define the quotient space H,(0, L) by
FI(O, L) = H]_(O, L) \ k

for k some constant, with inner product

_ [roCo
(6.6 = o Oz 0z dz.

Let the state-space for w = (z,z) be H = H;(0,L) x L3(0, L) with inner
product

(€ 6n = A f;(‘ '261 dz + / (2&; dz. (3.4)
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Then,
0 I
Aw(t) = [ A } w(t), (3.5)
CZF 0
and
Bu(t) = [ P } u(t). (3.6)

In the following sections, we will describe both bounded and unbounded infinite-
dimensional control systems. We will also discuss the linear quadratic regulator
problem for both of these systems, as well as results for approximating these prob-

lems on finite-dimensional spaces.

3.3 Semigroup Operators and Control Systems

In order to use existing state-space techniques for infinite-dimensional systems, we
would like to be able to take any linear control system and write it in state-space

form. The purpose of this section is to describe an abstract state-space formulation
w(t) = Aw(t) + Bu(t), w(0) = wy (3.7)

on a Hilbert space H that will enable us to present a unified approach to both
finite and infinite-dimensional systems. Let H be a (possibly infinite-dimensional)
Hilbert space. Let wg € H be the initial state of the dynamical system defined on
‘H and let w(t) be the state at any future time ¢. We will assume that the dynamics
governing the evolution from wg to w are linear and time invariant. Let I denote
the identity operator on H; that is, Jw = w, for w € H. Define a linear operator
S(t) for some time ¢ such that,
St):H—=H; S(0)=1I
w(t) = S(t)wo.
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The operator S(¢) on H maps the state of the system at time 0 to its state at time ¢.
We also assume that the state of our system satisfies the Hadamard well-posedness
conditions, namely:

(1) it is unique;

(2) it varies continuously with the initial state.

Because the state is unique, we have
w(t +8) = S(t + s)wo = S(t)w(s) = S(t)S(s)wo,
S(t+ s) = S(¢)S(s).
Since we are assuming the state varies continuously with the initial state wq, we
know S(t) is a bounded map on H. We also impose smoothness on w(t) and assume
w(t) = wo as t — 0% for all wo € H. S(¢t) is called a semigroup of bounded linear
operators, formally defined as follows.

Definition 3.5

Let H be a Hilbert space. A one parameter family S(t), 0 < t < oo, of bounded

linear operators from H into H is a semigroup of bounded linear operators on H if

7)) S5(0)=1I
(W) S(t+s) = S(t)(s) for every t,s > 0 (the semigroup property).

Definition 3.6

A semigroup S(t), 0 < t < oo, of bounded linear operators on H is a strongly continuous

(Co) semigroup of bounded linear operators if
Lim S(t)w =w for every w € H.
t—0+t
If §(t) is a Co semigroup, then there ezist constants ¢ > 0 and M > 1 such that

IS < Me™, for 0<t< oo
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Example Let A € L(H). Then

S(t) — oAt — io (A:')n

is a Cy semigroup and is uniformly continuous.

We would like to relate the operator S(t) to the operator A in (3.7).

Definition 3.7

The infinitesimal generator A of a strongly continuous semigroup S(t) on a Hilbert

space H is defined by

Aw = lim l(S(t) ~ 1w

t—0+ ¢
whenever the limit ezists. The domain of A, D(A), is the set of elements in H for

which the limit ezists.

Let A be the infinitesimal generator of S(¢). Then, w(t) = Aw(t), w(0) = wo €
D(A), has the solution w(t) = S(¢)w(0). Thus, the conditions under which an
operator A is the infinitesimal generator of a semigroup are of utmost importance.
The following theorem provides a necessary and sufficient condition under which

this requirement is met.

Theorem 3.3 (Hille-Yosida Theorem [Paz8S, page 8])

A linear (unbounded) operator A on a Banach space H is the infinitesimal generator

of a Cqy semigroup S(t), t > 0 if and only if
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(i) A is closed and D(A) = H.
(ii) There ezist real numbers M, o, such that for all real A > o, A € p(A),
the resolvent set of A,

M

1B A < s

or equivalently,
(A—o)
M k4

where R(A: A) = (Al — A)~! is the resolvent.

(AL = A)]| >

In this case,

ISE) < Me™. (3.8)

In general, it is difficult to check the conditions of the Hille-Yosida theorem. Below,
we state a result derived from the Hille-Yosida theorem which involves the adjoint
operator A". This leads to conditions which are in general easier to verify on a

Hilbert space.

Definition 3.8

Let A be a closed, densely defined, linear operator with domain D(A) on a Hilbert
space H, which is identified with its adjoint space. The adjoint A™ of A is a trans-
formation whose domain D(A") consists of all g € H for which there ezists a g~ € H
such that

(Aw, g) = (w,g") for allw € D(A).

In this case, g~ = A”g.
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Theorem 3.4 [CP78, page 22]

Let A be a closed, densely defined, linear operator on a Hilbert space H. Then A
generates a semigroup S(t) on ‘H satisfying ||S(¢)|| < et for all t > 0 if and only if
for all A > o, where 0 € R,

(AL — A)wlln 2 (A = a)lfwllz, w e D(A) (3.9)

1AL = A)wflaee 2 (A = o)|lw]le, w™ € D(A”). (3.10)

The conditions in (3.9) and (3.10) can be rewritten as
(AT = A)w, (Al — Ayw) > (A - 0)* (w,w)
for A > o, w € D(A) and
(A = A%)w™, (AT = A%)w™) > (A —0)*(w",w")

for A > o, w™ € D(A"), respectively, and these equations can in turn be rewritten

as
2(olwl® - R(Aw, ) + (Aw, Aw) - o?ul? 20, weDA) (311
and
2 (olw™|? - R(A"w, w)) + (A", Aw) — [P 20, w € DA, (3.12)

respectively. The inequality in (3.11) holds with a suitable choice for w if there
exists a @ such that
Bllwl)? > R(Aw,w), w € D(A). (3.13)

Similarly, the inequality in (3.12) holds if
Bllwr|l? > R(A"w",w7), 0" € D(AY). (3.14)

These results can be summarized in the following corollary.
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Corollary 3.5 [CP78]

If for a suitable choice of w there ezists a B such that
Bllwll* > R(Aw,w), w € D(A)
Bllwf? 2 R(A™w",w"), w" € D(A7),
then the operator A satisfies the Hille-Yosida theorem with semigroup S(t).
The conditions of the corollary are easier to check that those given in the Hille-

Yosida theorem.

Thus far we have seen that if A generates a strongly continuous semigroup S(t),
then w(t) = Aw(t), w(0) = wo has solution w(t) = S(t)w(0). We now extend this

concept to
w(t) = Aw(t) + f

11)(0) = Wo

(3.15)
where f:[0,T] - H.

Definition 3.9

Any continuous function w : [0,T] = H such that

(i) w(0) = wp, w(t) € D(A), t €[0,T],
(it) w s differentiable at any time t € [0,T] and

w(t) = Aw(t) + f(t), t €[0,T]

is called a strong solution of (8.15) on [0,T).

If f(-) is a function with continuous first derivatives on [0, 0) and w € D(.A), then
(3.15) has a strong solution [Paz83]. The strong solution is

w(t) = S(thwo + [ “S(t— s)f(s) ds, t>0. (3.16)
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If the function w(t), ¢t > 0, given in (3.16) is well-defined for an arbitrary integrable
function f(-), then (3.16) is called a weak or mild solution of (3.7). In general, we
have the following definition.

Definition 3.10 [CP78]
If f € Ly(0,t5;H), p > 1, we say that
w(t) = S(t)wo + [ " S(t - 8)f(s) ds (3.17)
is o mild solution of
w(t) = Aw(t) + f (3.18)
on [0, 1]. That is, w(t) is the only function such that for all v* € D(A7),
(1) (w(t),v") is absolutely continuous and
(2)  (w(t),v") = (w(t), Av") + (f,v").
In general, for B € £(i, ) and the state-space system,
w(t) = Aw(t) + Bu(t), w(0) = wo
y(t) = Cw(t),

(3.19)

we use the mild solution
t
w(t) = S(¢)wo + /0 S(t — s)Bu(s) ds

almost everywhere on [0, T).

3.4 Infinite-Dimensional Bounded Control Sys-

tems

In this section, we consider the optimal control problem for (possibly) infinite-

dimensional, bounded, linear time invariant systems with quadratic cost criteria.
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The corresponding problem for finite-dimensional systems leads to feedback control.
A similar result holds for the infinite-dimensional case.

3.4.1 Linear Quadratic Regulator Problem

Consider a semigroup control system defined on a Hilbert space H,

w(t) = Aw(t) + Bu(t), w(0) = wy
y(¢) = Cw(t)

where A and B are operators and A : D(A) C H — H is the infinitesimal generator

(3.20)

of a strongly continuous semigroup S(t) on H, B € L(U, H), with control space U,
and C € L(H,Y). For controls in U, the mild solution of (3.20) is

w(t) = S(tywo + [ " S(t — r)Bu(r) dr. (3.21)

Let @ = C™C and R be operators such that Q € L(H,H),R € L(U,U) are self-
adjoint and R > 0. This effectively establishes a weight on the output y of the

system. The associated cost functional is
J(uw0) = [ m[(w(t),Qw(t)) + (u(t),R'u.(t))] dt. (3.22)
The abstract linear optimal regulator problem is
Minimize { J(u,wo) whereu € Lz(O,oo;U)} (3-23)

subject to w satisfying (3.21). A function u € L,(0, 0o;U) is an admissible control
if (3.22) is finite.

As in the corresponding finite-dimensional case, the algebraic Riccati equation plays
a very important role in the solution of (3.23). For our abstract semigroup sys-

tem, an operator II € L(H,H) is a solution of the algebraic Riccati equation if
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II : D(A) — D(A") and II satisfies

AN+ OA-TIBR'BII+Q =0 (3.24)
on H. Similarly to its counterpart, A" is the generator of a strongly continuous
semigroup of operators S™(¢) which is adjoint to S(t).

In control theory, we are often concerned with the question of stabilizability. Earlier
we presented definitions and results for finite-dimensional control systems. Here,

we introduce similar results for semigroup control systems.

Definition 3.11

The Co semigroup S(t) is (uniformly) ezponentially stable if there ezist positive
constants M and o such that ||S(t)|| < Me™, for allt > 0.

Definition 3.12

Let A be the infinitesimal generator of a strongly continuous semigroup S(t) on
a Hilbert space H, and B € L(U,H), where U is a Hilbert space. If there ezists
K € L(H,U) such that A — BK generates a strongly continuous semigroup T (t)
with

T < Me™, w>0, (3.25)

then the pair (A, B) is said to be ezponentially stabilizable.

Definition 3.13

(A,C) is detectable if there ezists an operator F € L(Y,H) such that A — FC

generates a uniformly ezponentially stable semigroup on H.

The solution of (3.24) is summarized in the following theorem [Gib79, Theorem

4.11].
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Theorem 3.6 (Algebraic Riccati Equation Solution)

Let A,B,R,Q be as above. There ezists a nonnegative self-adjoint solution II of
AN+ INA-NBR'BTI+Q =0 (3.26)
if and only if for each wo € H, there exists an admissible control. If this is true,

then the unique optimal control and corresponding trajectory for (3.23) are given

by
u(t) = —R™'B"TIw(t)

and

w(t) = T(t)wo

respectively, where II is the unique minimal nonnegative self-adjoint solution of
(8.26) and T(t) is the strongly continuous semigroup generated by A — BR™'B~Il.
If lw(t)]] = 0 as t = oo for any admissible control, then II is the unique nonneg-
ative self-adjoint solution of the algebraic Riccati equation and T(t) is uniformly

ezponentially stable.

Assuming the special form @ = C*C we have the following useful result.

Theorem 3.7 (e.g., [CP78, page 111])

If (A, B) is stabilizable and (A,C) is detectable, then the algebraic Riccati equation
has a unique nonnegative self-adjoint solution II.
3.4.2 Approximation of the LQR Problem

Solution of the bounded infinite-dimensional LQR problem, denoted by (A4, B, @, R),

requires the solution of an infinite-dimensional algebraic Riccati equation. Such
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a Riccati equation cannot usually be solved. A sequence of finite-dimensional
problems will be shown to converge to the solution of the infinite-dimensional
problem provided certain criteria are met. We begin by formulating a sequence
of approximate finite-dimensional regulator problems, which will be denoted by
(An, Bn, Qn, R™).

For n = 1,2,..., consider a sequence #, of finite-dimensional linear subspaces of
H. Let (Hn,An, Bn) be the corresponding problem. Let P, be the orthogonal
projection of H onto H,. Also, A, : Hn = Ha, B € LU, Hp), Qn € L(Hn, Ha),
and R € L(U,U).

Consider the sequence of finite-dimensional regulator problems:

Minimize { Jn(u,w,(0)) where u € L,(0, oo;L()} (3.27)
subject to
in(t) = Anwn(t) + Bau(t), t >0
tha(t) = Avtoa(t) + Bru(t) 528)
w,.(O) = Wpy = P,{lﬂo
where

Tnlat wa(0)) = [ [ (wn(t), Quwn(t)) + (ult), Ru(e)) | &t (329)

The solution of (3.28) is given by

Wn(t) = Sn(t) Pawo + /ot Sn(t — 7)Bpu(r) dr

where S5,(t) is a sequence of Cq semigroups on #,, with infinitesimal generators A,.

If there exists an admissible control u, € L3(0,00;), then the optimal control for
(3.27) is given by
uUn(t) = —R™! B Il w,(t) (3.30)
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where II,, € L(Hn, Ha) is the unique minimal nonnegative self-adjoint solution of

the algebraic Riccati equation

for the approximating system, and w,(¢) is the corresponding solution of (3.28)
with u(t) given in (3.30). As before, A}, is the infinitesimal generator of a strongly

continuous semigroup of operators S;(t) adjoint to S,(¢).

We require several assumptions on the approximations for simulation and control.
The following assumptions are necessary for the simulation of approximations to

bounded control systems.

(S1b) For each w € H, we have
Sa(t)Paw — S(t)w
where the convergence is uniform in ¢ on bounded subsets of [0, o).
(S2b) For each v € U, Bov — Bv, and for each w € H, Bjw — B*w.

(S3b) For each w € H, @ P,w = Quw.

The following assumptions are sufficient for controller design using the approximat-

ing control systems.

(C1b) For each w € H, we have
Sn(t)"Paw — S*(t)w

where the convergence is uniform in ¢ on bounded subsets of [0, o).
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(C2b) If (A, B) is exponentially stabilizable, then {(An, B,)} is uniformly expo-
nentially stabilizable by some {K,}, where || K, || < M.

Theorem 3.8 [BK84]

Assume (51b)-(53b) and (C1b) hold. Let II,, be the unique nonnegative self-adjoint
solution to the Riccati equation on H, for the approzimating formulation (3.29).
Assume (A, B) and (A,, B,) are uniformly ezponentially stabilizable by some oper-
ators K and K, = KP,, respectively. Let My, M, 0 > 0. Let T,(t) indicate the
semigroups generated by A, — B,R™'B:Il,, on H,. Then

ITa(t)lu. < Mye ™ fort>0,n=1,2,..., (3.32)

Mall, < Mz, (3.33)

and (An, By) is uniformly ezponentially stabilizable by the operator K, = R~ B:I1,.

Thus, an approximating scheme is suitable for LQR controller design if (S1b)-(S3b)
and (C1b)-(C2b) are satisfied. These include conditions on
(1) the existence of an admissible control in the approximating system,
(2) the convergence of the approximating semigroups S,(¢) and approximating
adjoints of semigroups S3(t),
(3) the convergence of the approximating control operators B, and adjoints of
control operators B}, and
(4) the uniform stabilizability of the approximations (An, By).
Ito and Morris [IM98] study approximations to the solution to operator Riccati
equations for H,, control. The authors make the same assumptions required in
the approximation of the LQR problem and show that the sequence of solutions
to the finite-dimensional (H) Riccati equations converge to the solution of the
corresponding infinite-dimensional (H,) Riccati equation.
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In the following section, we will consider the analogous unbounded control case.
We will look for similar conditions for suitability of the finite-dimensional approxi-

mations for controller design.

3.5 Infinite-Dimensional Unbounded Control Sys-

tems

Consider the state-space representation in (3.20). For bounded linear operators B

and C, the input/output map is given by
t
y(t) =C / S(t — 7)Bu(r) dr.
0

When B and C are unbounded operators, this map is no longer well-defined.

In this section, we will consider the case of point observation and control, as in the
one-dimensional duct model in Chapter 2. In the standard state-space representa-
tion,

w(t) = Aw(t) + Bu(t), w(0) = w, (3.34)

and

y(t) = Cw(t), (3.35)

this leads to unbounded operators C and B. Let W, H, and V be Hilbert spaces
such that W < H — V. Suppose A € L(W,H), B € L(U,V) and C € L(W, ).
We assume that A is the infinitesimal generator of a strongly continuous semigroup
S5(t) on all three spaces W, H, and V. Then for v € H;(0,t;U), the solution to
(3.34) is

w(t) = S(tywo + [ * S(t — 7)Bu(r) dr
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where S is in V. However, w(t) may not be in the domain of the operator C. For

p € p(A) and v € Ha(0,¢;U), (3.34) may be written as
w(t) = (uf = A (pu(t) = i(t)) + (uI - 4)"*But).
This suggests defining
y(t) = C(ul — A7 (ww(e) - (®)) + Gult)
for some G,, € L(U,)). To summarize, the state-space realization on H is

w(t) = Aw(t) + Bu(t), w(0) = wo,

3.36
y(t) = Clul ~ A)~ (w(e) — () + Guut). (3:36)

This system is said to be well-posed if both the state w(¢) and the output y(¢t) depend
continuously on the initial state wo and the input u(¢). The formal definition is as

follows.

Definition 3.14 (Well-posedness of an unbounded control system (e.g., [Sal87]))

The state-space realization given in (8.36) is said to be well-posed if the following
four conditions hold for all t > 0:

(WP1) The operator A with domain D(.A) generates a strongly continuous semi-
group on all three spaces W, H, and V.

(WP2) There ezists a constant ¢, such that for all u € H,(0,t;U)
t
[ st -niBu(r) ar| < allullimmn.
(WP3) There ezists a constant ¢z such that for allw € W

ICS(-YwollL,(0.:3) < c2llwolln
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(WP4) There ezists a constant c3 such that for all u € H,(0,¢;U) with u(0) =0

91l ;0.6 < €3 M1l 2z 0,620 -

The above conditions essentially ensure that the mappings from the input to the
output, the input to the state, and the state to the output are bounded and con-
tinuous in some sense. When the transfer function G(s) from u to y is known,

condition (WP4) may be established using the following result.

Theorem 3.9 [CW89]

Suppose (A, B,C) satisfies conditions (WP1)-(WPS). Condition (WP4) is satisfied

if and only if there ezists a real number & such that the transfer function G satisfies

sup [|G(s)|lc@w.y) < oo.
R(s)>5

We now consider the well-posedness of the one-dimensional duct model described

in Chapter 2.

3.5.1 Well-posedness of the One-Dimensional Duct Model

We first formulate the state-space representation of the one-dimensional duct model

first presented in Chapter 2 (see (2.1), (2.2), and (2.3)).

The state-space for the state (z,z) is H = H1(0, L) x L2(0, L) (see page 34). Then

A:D(A) CH — His given by
r
o I|l¢
= 3.37
PN -
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where

D(A) =
{(¢.6) € H 1€ € (0, 1), Cer € La(0,1),6a(0) = 0, (L) = ~ g1 }.

The eigenvalues A, of A are

An = ——Ina + 229

57 T m=0,kLE2,. (3.38)

The eigenfunctions ¢, of A are

b = (3.39)

An= =An=®
€ ¢ +e c

[ L™ 4 =0 }

The adjoint operator A~ of A is

1 0 —1I U1
= (3.40)
yz} [-62% 0 Hyz}
D(A") =

—_ K
{(yI’yZ) € H I Y2 € Hl(ovL)aylxz € L2(Ov L)vylz(o) = 07ylx(L) = —;‘yz(L)}.

A"

where

The eigenvalues u, of A" are
Pn = An. (3.41)

The eigenfunctions ¥, of A" are

(3.42)

oo | (T HeTE =)

n— x =pn=x
—an(e&e‘" +e < )

where a,, are constants determined so that (@n,¥n)u = dmn. It is easy to show

that a, = —é. For simplicity of exposition, consider a single control input at z4
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and a single output measurement at z,. The control space is then &/ = IR. Define

W = [D(A)] to be the domain of A equipped with the graph norm, i.e.,
lwlloasy = llwllx + [ A™w||%-

Also let V = [D(A")} where X’ indicates the dual space of X. Thus, [D(A)] —
H — [D(A")]’. The control operator B € L(U,V) is

5 [ ; } | 540
S(z—z4)

Consider an observation (output) at z, with observation space } = IR. The obser-

vation operator C € L(W,)) is

C= —pc2 [ %L=z 0 ] . (3.44)

Spectral Representation of Semigroups

To show that (WP2) and (WP3) hold, we need a representation for S(¢). To find
this representation, we use its spectral expansion. We will first find the spectral
expansion when the states are in H. = L2(0,L) x L,(0,L). We will then use this
result to show that S(t) defined on H has a spectral expansion.

We begin with some mathematical preliminaries concerning the definition of a Riesz

basis and Riesz spectral operator.

Definition 3.15 (e.g., [CZ95, page 38])

A sequence of vectors {¢n, n > 1} in a Hilbert space X forms a Riesz basis for X
if
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(a) 3pam,, {¢n} =X, and
(b) there exist positive constants m and M such that for arbitrary N € N and

arbitrary scalars a,, n=1,..., N,

2 N*
SMY ol

=1

.
m Y lanf? < |

=1

N
_Z Cnn

Alternatively, we have the following result.

Theorem 3.10 (e.g., [CZ95, Ezercise 2.21(a), page 89])

Let {en,n > 1} be an orthonormal basis for the Hilbert space X. The set {¢n,n > 1}
forms a Riesz basis for X if and only if there ezists a bounded invertible operator

T € L(X) such that ¢, = Ten,n > 1.

Definition 3.16

Two sequences {¢n} and {¢,.} are biorthogonal if

(¢m1 ¢n) = 6mn-

The next theorem shows that any elemeni in X can be uniquely represented as
a linear combination of the Riesz basis elements ¢, by means of a biorthogonal

sequence.

Theorem 3.11 [CZ95, Lemma 2.3.2, page 38]

Suppose that the closed, linear operator A on the Hilbert space X has simple eigen-
values {An}, forn = 1,2,..., and that its corresponding eigenfunctions {¢n} for

n=1,2,..., form a Riesz basis for X.
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(a) If {¢n} for n = 1,2,..., are the eigenfunctions of the adjoint of A cor-
responding to the eigenvalues {A.} forn = 1,2,..., then the {3} can be
suitably scaled so that {¢,.} and {¢.} are biorthogonal.

(b) Every z € X can be represented uniquely by

z= ¥<z’ ¢n)¢n

and there ezist positive constants m and M such that

m Y [z, %a)* < Izl < M 3 [z, ¥a)
n=1 n=1

In order to show that S(¢) has a spectral representation we need the following

definition.

Definition 3.17 (Riesz Spectral Operator, e.g., [CZ95, page 41])

Suppose that A is a linear, closed operator on a Hilbert space H with simple eigen-
values {\,, n > 1} and suppose that the corresponding eigenfunctions {¢n, n > 1}
form a Riesz basis in H. If the closure of {\n, n > 1} is totally disconnected, then

we call A a Riesz spectral operator.

The following theorem provides a way of obtaining the spectral expansion of the

semigroup S(t) for a Riesz spectral operator.

Theorem 3.12 [CZ95, Theorem 2.8.5(c), page 41]

Suppose that A is a Riesz-spectral operator with simple eigenvalues {A,, n > 1} and
corresponding eigenfunctions {¢n, n > 1}. Let {pym, m > 1} be the eigenfunctions
of A® such that (¢n,¥m) = 6am- Then A is the infinitesimal generator of a Cy
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semigroup if and only if sup,>; R(An) < co and S(t) is given by

S(t) = 3 €, Y. (3.45)

Let us now return to the one-dimensional duct model. In [MRH91], the authors
define a “virtual duct” on [—L, 0] and then use this model to define an inner product
under which the eigenfunctions form an orthogonal basis. The following argument

was inspired by this idea. Let H. = L2(0,L) x L2(0, L) with weighted norm
112 = (e
where
(€, E)e = c2/LC & dz + /Lsz_zdz
1§ /e o 161 0 .
Consider the one-dimensional duct model with states w = (z,, z;) € H.. The partial

differential equation (2.1) with no control terms (i.e., P.(t) = 0 and P4(t) = 0) can

be written as

where

d
| 0 & ¢ (3.46)
a4 0 ||e
and the domain of A, is
D(A.) =
(@) enla e a0.0), G € L0, 2), G0 =0, G(0) =~ (D)}
The eigenvalues A, of A, are the same as those of A (see (3.38)). The eigenfunctions

Pn, of A, are
Liglas _ ==
Pn. = [ (e ¢ <) J (3.47)

Anz =An=z
e ¢ +e 3
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The adjoint A; of A, is given by

and the domain of A is
. K
D(Ae) = {(ylayz) € He I Y1.,Y2, € L2(07 L)7y1(0) = Ovyl(L) = ?yz(L)} .
The eigenvalues pu, of A7 are the same as those of A" (see (3.41)). The eigenfunc-

tions v,  of A are

¢ﬂ¢ = z —pnr (3.48)
—an(eﬂe" + e~

g!l-(ee're'_:' —_ e—fz":)
[

)
where a, = —i.

Lemma 3.1 [Mor97b]

The functions {¢n.} defined in (3.47) form a Riesz basis for H..

Proof:
The set

€np =

WESCE) | o
Y/ sin(=5%)

form an orthonormal basis for H.. Let »r = —3-1n a. Defining,

and finally
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we have that
&n. = Ten.

Thus, by Theorem 3.10, {¢, } form a Riesz basis for #.. !
We now need to show that A, is a closed linear operator. Clearly, A, is linear.
By [CZ95, Theorem A.3.46, page 596], we need to show that A, is invertible with
Al € L(H., H.). Let

[ o

Q! 0

where Q = % and Q71f = /f(z) dz. Clearly, T is bounded on H., A.T = I, and
TA. = I. Hence, A, is a closed linear operator. Thus, by Theorem 3.11, every

w, € H. can be represented uniquely by

w, = i_°:<wc,¢n,>u,¢n,

where convergence is in the H, norm.

Theorem 3.13 [Mor97b]

The set {¢n} of etgenfunctions in (8.89) form a Riesz basis for H.

P = % 0 .
0 I
Note that P¢, = ¢y,, PPn = ¥, and that (Pw, Pz)y, = (w, z)y forany w,z € H.

Choose any w € H. Since ¢, forms a Riesz basis on H,,

Proof:
Define P € L(H, H.)

w = P 'Pw
= P-l Z('Pw? ¢ﬂe)1‘¢¢ﬂe‘
n=1
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Now since

. [/f(z) dz 0}

0 I
is bounded from H. to H,

o0
-1
w= Z(Pw7¢ﬂe)1"gp ¢n¢
n=1
where convergence is now in H. Thus,

w = S (Pw, Pyu)u.én
n=1

= Z (w7 ¢n)'ﬂ¢n-

n=1
Thus, span(¢.) = H. Now, for any scalars a,,n = 1,2,..., N, where N is arbitrary,

2 2

N N
Yo onga| = [[PTIPS angn
n=l Nn:l
= (P! Z andn,
N n=1 2
= E aﬂ¢n¢
n=1 e

But {¢n.} form a Riesz basis for H.. Therefore, there exist positive constants m
and M such that

N
<MY ol

2
e n=1

N
2 Cntn,
n=1

Thus, by Definition 3.15, the sequence {¢,} form a Riesz basis for H. O

N
m Y |aa|* <
n=1

We must finally show that A is a linear closed operator. Clearly, A is linear.
By [CZ95, Theorem A.3.46, page 596], we need to show that A is invertible with

A-' € L(#H,H). Define
Fo|? =@
I 0
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where Q = £ and Q' f = / f(z) dz. Now, for P defined by
Q 0
o I}

Al = pIiT,

P =

we have

Since P~! and T are bounded in H, A is bounded in H. Thus, A is a linear closed

operator. Therefore, A is a Riesz spectral operator.

We now show that the one-dimensional duct model is well-posed.

Theorem 3.14

The system in (3.837), (3.43), and (3.44) is well-posed on H.

Proof:
To show well-posedness, we must verify (WP1)-(WP4).

(WP1) We have shown that A is a Riesz spectral operator on H with simple
eigenvalues {A,,n > 1} and eigenfunctions {¢,,n > 1} which form a Riesz
basis in H. By Theorem 3.12, we know that if Sup,>; R(An) < oo, then A is
the infinitesimal generator of a Cy semigroup. Since R(\,) = —37 Ina, this
result follows trivially. The semigroup S(¢) defined on H can be extended to
W = [D(A)] and V = [D(A")]’ [Sal84]. Thus, (WP1) holds.

(WP2) [Mor97b] First note that B € L(U, V). Now, since S has an expansion in

terms of the Riesz basis
T T o
/ S(T - s)Bu(s) ds = /0 3 T By, )y yedn ds
0 n=1

T o
- /0 > e T=y(s)B Yo, ds
n=1
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where convergence is in V. This convergence is independent of s and so
T © AT
/ S(T - s)Bu(s)ds = 3 /0 Ty (s) dsB Yoy,
o n=1

where convergence is guaranteed in V.

. — T (T ? 2 2
Z[/o Ty (s) dsB'zpn] < M2fuld, 0720 (3.49)
n=1

then

T
B(T)u := /0 S(T — s)Bu(s) ds € H

and B(T') € £(L2(0,T); H) for each T. Thus, in order to show (WP2), we
need to prove (3.49).

First
B, = _$(6¥‘ — e
and
M; := sup |B ¢Yy,| < oo.
Also,

T T Jncxs
/ e*(T-2)y(s) ds / u(s)e™"¢  dsf.
0 0

By standard results in Fourier series theory,

<

[T e 2
| [ st o] < ol ra
n=1
for some constant Mj. Therefore, (3.49) is true with M; = M, M, and (WP2)

holds.

< M|yl Ly 0,720 (3.50)

(WP3) [Mor97b] We now prove (WP3) or, equivalently, that
T
/ S*(T — 5)C"u(s) ds
H

] 0
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The spectral expansion of S*(t) is
S (t)z = > ez, n)¥n
n=1

and

/(;T S*(T — s)C u(s) ds = ./(;Tg e* Ty (5)Chnthn ds.

As for the proof of (WP2), in order to prove (3.50) we need to prove
) T 2
> (/ e#(T=2)y(s) ds C¢n) < oo.
n=1 o

But

Anz, Anzy
—e )

sup [Cén| = sup |pc(e™ < | < oo
n n

and g, = A,. The proof is identical to that of (WP2). Thus, (WP3) holds.

(WP4) In Chapter 2, Section 2.3, we showed that G(z, z;) is bounded in the right
half plane for all feasible inputs at z; and outputs at z;. Thus, by Theorem
3.9, (WP4) holds.

Therefore, since (WP1)-(WP4) hold, we conclude that the one-dimensional duct
model is well-posed. O

3.5.2 Linear Quadratic Regulator Problem

In Section 3.4.1 we considered the LQR problem for bounded control systems.
We showed that under certain assumptions including uniform stabilizability of the
approximations, the optimal feedback control for the approximations converges to

the infinite-dimensional solution.
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In this section, we will look at the analogous LQR. problem for unbounded systems
and review the existing results. We will show that under certain assumptions the ap-
proximating optimal state feedback operators converge to the infinite-dimensional
solution. These results are similar to those for bounded control systems. We will
review the results of Ito and Tran [IT89] which apply to Pritchard-Salamon systems
(defined below), and Banks and Ito [BI97] which apply to unbounded systems that

generate analytic semigroups. First we consider the work of Ito and Tran.

The Pritchard-Salamon conditions [PS87] for well-posedness are similar to but more
restrictive than conditions (WP1)-(WP4).

Definition 3.18

A control system of the form

t
w(t) = S(t)wo + / S(t — 7)Bu(r) dr
0
y(t) = Cuw(t)
where wo € V and t > 0 is called a Pritchard-Salamon system if, for W — H — V,

the following four conditions hold.

(WP1) ' The operator A with domain D(A) generates a strongly continuous semi-
group S(t) on all three spaces W, H, and V.

(WP2) ' There ezists a constant ¢, such that for all u € L,(0,¢;U)
t
|[ st -nButr) dar| < cullulzaosso
(WP3) ' There ezists a constant c; such that for all w € W

ICS()0llygoge3) < callwllv.
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(WP4) ' There ezists a constant c3 such that for all u € L,(0,¢;U) with w(0) =0
”y"r,,(o.:;y) <es ||“||r4(o.c-u) .

It is more difficult to determine whether a system is Pritchard-Salamon than well-
posed. Norms on the spaces W and V enter as part of conditions (WP2) ’ and
(WP3) ’, and the choice of these spaces is generally not obvious. Curtain [Cur88]
gives conditions for systems to belong to this class. The following are required

assumptions.
Assumptions:

As shown in Section 3.5.1, our system satisfies the following.
(1) The operator A has eigenvalues {A,}32, and corresponding eigenfunctions
{#n}2, which form a Riesz basis.

(2) The operator A" has eigenvalues {A,}, and corresponding eigenfunctions
{¥n}2, which form a biorthogonal sequence on H.

(3) The semigroup S(t) generated by A has the spectral representation
5(t)- = 3 (-, ¥n)
n=1

(4) Define
cn = Con
b = B¢,

forn=1,2,...,00.

We then have the following result.



CHAPTER 3. CONTROL AND APPROXIMATION OF SYSTEMS 64

Theorem 3.15 [Cur88]

Suppose

(1) b =0, cn #0, R\, # 0, n?||cal|y|RAa| < 1, for sufficiently large n;

(i) ca =0, bs #0, RA, # 0, n?||bp]lu < |RA|, for sufficiently large n; and
(iii) sup, |[RA.|>€>0.

Then conditions (WP2) ' and (WP3) ' are satisfied if

lleal|»[|Bn [l
,é:, RO1/2 < oo (3.51)

where [={n € N: R\, < 0}.

In our system,

and

Thus, for Y = R,

n?||eallm = n?pcle” — =0

which grows without bound as n gets large. Therefore condition (i) of Theorem
3.15 fails. It is unlikely that the one-dimensional duct model is Pritchard-Salamon.
Nevertheless, reviewing the results of Ito and Tran still provides some insight into

approximating infinite-dimensional systems.

Let H#, U, V, and Y be Hilbert spaces such that W «— H < V. Consider a
semigroup control system defined on a Hilbert space H,
w(t) = Aw(t) + Bu(t), w(0) = wo
y(t) = Cw(t)

(3.52)
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where A is the infinitesimal generator of a strongly continuous semigroup S(t) on
‘H. Also suppose B € L(U,V) and C € L(W,)). To allow for solutions in all
three spaces W, H, and V, Ito and Tran [IT89] make several assumptions on the
semigroup S(t), the details of which may also be found in Pritchard and Salamon
[PS87]. Let D(A) C W be restricted to V with a continuous dense embedding and
let D(A) be endowed with the graph norm of A on V. For controls in U/, the weak
solution of (3.52) is

¢
w(t) = S(t)wo + /0 S(t — 7)Bu(r) dr. (3.53)
Consider the special case when @ = C*C. Then the associated cost functional is
Ju,wo) = [ m[(Cw(t),Cw(t)) + (u(t),Ru(t))] dt. (3.54)

For simplicity, we let the penalty on control R = 1. As in the bounded input/output

case, the abstract linear optimal regulator problem is
Minimize { J(u,wp) whereu € L»(0,00; U)} (3.55)

subject to w satisfying (3.53).

Similarly to the bounded input/output case we have the following definitions.

Definition 3.19 (Stabilizability)

The pair (A, B) is stabilizable if there ezists an operator K € L(V,U) such that the

operator A — BK generates an ezponentially stable semigroup on V.

Definition 3.20 (Detectability)

The pair (A,C) is detectable if there ezists an operator F € L(Y,V) such that the

operator A — FC generates an ezponentially stable semigroup on V.
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The solution of the infinite-dimensional unbounded input/output LQR problem is

summarized in the following theorem.

Theorem 3.16 [PS87]

Suppose (A, B) is stabilizable and (A,C) is detectable. Then there ezists a unique
solution II € L(V,W) where Il = II* > 0 to the algebraic Riccati equation

(A II+IA-IIBBTI+ C*C)w =0
for all w € D(A). The optimal control u* that minimizes (3.54) is

v (t) = —B " TIw(t).

3.5.3 Approximation of the LQR Problem

Consider a sequence of approximations (A, Bg, Cn;tn,Jn) such that A, € L(IR"),
B, e L(U,R"), C, € L(IR",)), and 1, and j, are injective linear maps defined as

follows:

i, R = H

Jn : IR = V=,
Let H, be a sequence of finite-dimensional linear subspaces of H such that H, =
image(i,). The norm is induced from the H norm; that is, ||z||3 = ||tnz]|% for
z € R". Also let W,, = tmage(jn) where W, C V* . In general, W,, ¢ H,. The
norm || - ||y on IR" is induced from one on V*; that is, [|z[|% = ||jaz||}. for z € R™.

Define the linear map k, by (k.w, z) g = (w, Jnz)y. for z € R" and w € V~.

Consider the following. The output equation y(t) = Cw(t) can be written as [Gib83]

y(t) = Mwo + Lu
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where
(Mwo)(t) =CS(t)wy forwo € W (3.56)
t
(Lu)(t) =C / S(t—)Bu(r) dr for u € Ly(0, c0; ). (3.57)
0

The cost functional (3.54) can be written as
J(u, wo) = ||Mwo + L"”i,(o.oo;y) + ”u”%g(o,oo;ll)'
The nt*-dimensional approximation of the cost functional is
Jn(u, wo) = || Mawo + Lnu”i-_,(o,oo;y) + ||u||§,2(o,oo;u)

where

(Mawo)(t) = Cine*(jn) wo, wo €V (3.58)

and

(Law)(t) = Cin /o C=An(i ) Bu(r) dr,  u € Ly(0, 00i). (3.59)

With the above results, we have the following definition.

Definition 3.21

An approzimation is consistent if, as n — oo, the following hold:

| Mawo — Mwol|z,0,00:) = 0, for allwg € V
| Lnte — Luf|y (0,003 = 0, for all uw € L;(0, 00;U)
I(M)"y — M~ylly- = 0, for ally € L(0,00;Y)
I(La)"y — L7yllv- = 0, for ally € Ly(0,00; V).

That is, an approximation is consistent if the output maps M,, the input/output
maps Ly, and their adjoints converge. For bounded control systems, this condition

follows from the convergence of the semigroups S, and their adjoints S7. Let P§



CHAPTER 3. CONTROL AND APPROXIMATION OF SYSTEMS 68
be the orthogonal projection of H onto H,. We also assume that C,(i,)" = CPg
and i,B, = P;B.

We have the following main convergence result.

Theorem 3.17 [IT89, Theorem 2.6]

Suppose that for some positive constant N,

(1) the approzimation is consistent,

(2) (An, Bn) is uniformly stabilizable; that is, there ezist constants My, > 1, 0, > 0
independent of n and a sequence of operators K, € L(IR®,U) such that

Sup [|jn(&n)"llc@,v+) < oo,

l|7aetAn=BnEn) 1 bllye < Mye™|| ]|y,

and

(3) (An,C.) is uniformly detectable; that is, there exist constants My, > 1, g, > 0
independent of n and a sequence of operators F,, € L(Y,IR") such that

sup [|(Fa) Rallcve3) < o0,

7neAn=FaCnl ke llye < Mae™o(|g||y-,

forn > N and ¢ € V*. Then, asn — oo,
| 7n1ln(jn)"wo — Mwg|ly- — 0

for all wo € V, where Il is as in Theorem $.16, and II, = I > 0 is the unique

solution to the approzimate algebraic Riccati equation in R"

AL, + A, — II,B,B.IL, + C:Cn = 0.



CHAPTER 3. CONTROL AND APPROXIMATION OF SYSTEMS 69

In addition, for eachu € U,
[|l7nIln Bau — IIBu|ly- — 0

as n —r 00.

We can see the recurrence of the following requirements of an approximating scheme
for controller design:
(1) consistency of the approximations, and

(2) uniform stabilizability and detectability of the approximations.

We now consider the work of Banks and Ito [BI97] which applies to a different
class of systems. Let W, #H, and V be Hilbert spaces such that W «— H «— V.
There are not always the same spaces as in the definition of a well-posed system
(see Definition 3.14). Comnsider a sesquilinear form o on W, ie., s : W x W — C
such that

lo(#,¥)| < cligllwll¥llw for ¢, €W (3.60)

and

Ro (¢, ¢) > wl|dlliy — pllgll7 for € W (3.61)

where w > 0. If A is defined by

o($,¥) = (—Ad,Yhyw forallg,p e W
and the adjoint operator A~ € L(W,V) is defined by

o(¢,¥) = (¢, —A"P)wy forall ¢,9 €W,

then A generates an analytic semigroup [Paz83] S(¢) on H, W, and V where W —
H —V and

Du(A) = {6 € W : [0(8,9)] < ksllblln for all § € wi.
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Thus, the sesquilinear form generates an analytic semigroup which implies the uni-
form stabilizability of (A, B). As we shall see, using these sesquilinear forms in
the approximations also generates stable analytic semigroups which again are auto-
matically uniformly stabilizable. Since the eigenvalues of A for the one-dimensional
duct (see (2.10)) lie on a vertical line, the semigroup S(t) generated by A is not
analytic [Paz83]. Thus, the one-dimensional duct model does not fit the frame-
work outlined by Banks and Ito. However, for completeness, we review the main

existence and convergence results of Banks and Ito.

We need the following additional definitions. Define the sesquilinear forms o¢ and

oy on W by

_ 0(4,%) +9(%.9)
2

and

_ 9($,9) ~ 5%, 9)
2

for ¢, € W. Let Ay be a self-adjoint operators on # defined by

D(A4) = {u EW : [oo(w,v)| < kuljvl|x for all v € w}
(Aou,v) = oo(u,v)+ p(u,v)y for all u,v € W,
where
oo(u,u) + pu, u)y > wllulf}y for u € W.
Let A = Ay/* with D(A) = W. Also for 0 < 6 < 1, let W = [W, H]s = D(A*?).
Then (W, V], = H and

Iéliwe < clldlliglli®
< <l Il Bl
< cllglly sl
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Let C € L(W,)Y) and B € L(U,V). As in the bounded control case, we are

concerned with minimizing the cost functional
Ty wo) = [ °"[(cw(t),cw(t)) + (u(t),u(t))] dt.

The optimal feedback solution is given by the following theorem.

Theorem 3.18 [BI97, Theorem 5.4]

Suppose the sesquilinear form o satisfies

lo1(8, )] < M| liwe 1 llw

for some M >0 and 0< 0 <1 for all ¢, p € W, as well as (3.60) and (5.61). If
(A, B) s stabilizable and (A,C) is detectable, then the algebraic Riccati equation

o(z,Ily) + o(y,lz) + (B"llz, B'Ily) — (Cz,Cy) =0, forallz,ye W (3.62)

has a unique non-negative solution II = II* € L(W) and A — BB"II generates a
stable analytic semigroup T'(t), t > 0 on H. The optimal control u* is given by

v (t) = —=B°IIT(t)w, t >0, forw e H.

Let W, be a sequence of finite-dimensional subspaces of W C H. Let A, : W, —
W, be such that
(—An¢7 d)) = 0(¢1 ¢) for all ¢1'¢’ € Wn-

For B € L(U,V) define B, € L(U,W,) by
(Bnu,¥) = (u,B™Y) forallyp e W,
and Iet Cn = Can.

Let P, denote the usual orthogonal projection of H onto W,; i.e., for ¢ € H,
P.¢ € Wy, and (Padn,¥n) = ($,%) for all ¥ € W,. We have the following result

for the approximating systems.
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Theorem 3.19 [BI97, Theorem 5.5]

Suppose the assumptions of Theorem 8.18 hold. Also suppose that

(i) for any ¢ € W, there ezists a sequence ¢, € W, such that ||p, — ¢|lw — 0
asn — oo, and
(ii) there ezists a constant ¢ > 0 such that | P,d||w < é||@|lw for all p e W.
Then, for n sufficiently large, there ezists a unique non-negative solution II, =

IT;, € L(W) N L(H) to the algebraic Riccati equation in W,
o(z,Iay) + o(y,az) + (B2, B I,.y) — (Cz,Cy) =0, for allz,y € W,,
and there ezist constants M > 1 and & > 0 such that
[|ef(An=BnBilln) P |5 < Me™%||plla, ¢t > 0. (3.63)
In addition,
II,P.¢ — II$p strongly in H for each ¢ € H,
I,P,¢ — IIp weakly in W for eachd € W,

and B*II,P, — B-II strongly in L(W,U) is the unique non-negative solution to
(8.62). Also, for n sufficiently large, A — BB.Il, generates a stable analytic semi-
group on H.

The inequality in (3.63) and the assumptions in the theorem statement imply that
the approximations are uniformly stabilizable if the original system is stabilizable.
As well, for all ¢ € H,

I5n(£) Padp — S(t)éllx — 0

and

15a(8) Padp — 5™ ()l — 0
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as n — 0o, where convergence is uniform on bounded t-intervals [BI97].

In the next section, we will discuss general requirements of an approximating scheme

for guaranteed convergence of the closed loop system.

3.6 General Conditions for Approximating Sys-

tems

Consider the following differential equation defined on a (possibly infinite-dimensional)

Hilbert space H:
w(t) = Aw(t) + Bu(t), w(0) = wo,
y(t) = Cw(t).

(3.64)

The operator A generates a strongly continuous semigroup of operators S(¢) on H
so that A is closed with domain D(.A) dense in H,ie., A: D(A)CH —- H. In
general B and C may be unbounded.

Practical design and simulation involving (3.64) is generally very difficult and in
most cases it is impossible to determine a closed form solution. Thus, it is necessary
to approximate (3.64) on some finite-dimensional subspace H, C H. Let P, denote
the orthogonal projection of H onto H,. Also, A, : D(A,) — H,., B, := P.B
and C, := C|y,. This approximation is given by a system of n ordinary differential
equations,

Wn(t) = Anwn(t) + Bau(t), wa(0) = wp,,

y(t) = Cow,(t).

For u(t) € L,(0, c0; IRP), (3.65) has the mild solution

(3.65)

Y(t) = CrSa(t)wp, + Cn /: Sn(t — 7)Bpu(T) dr.
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The transfer function from u to y is given by Cn(s] — A,)"'B,. We would like to
use the above finite-dimensional system for both controller design and simulation.
The designed controller should behave as predicted by computer simulation when

implemented with the original infinite-dimensional system.

A scheme that is good for simulation may not be appropriate for controller design.
In particular, although sufficient for simulation, convergence of the approximating
semigroups Sy,(t) for the open loop response is not sufficient to ensure that the
approximating scheme is compatible for controller design. Consider the following
assumptions, standard in schemes for simulation (e.g., [BK84], [Ito87], [Mor96]).
(S1) For all w € H, im,, || Paw — w|| = 0.

(S2) Let H C V so that B € L(U,V). Then, as n — oo,

[|Bpu — Bu|ly = 0, for allu e U

and

|Biw — B u|ly — 0, for all w € H.
(83) For all w € H, Sa(t)Paw — S(t)w.

(S4) The semigroups S,(t) are uniformly bounded, i.e., there exist real numbers
M, k, and an integer N such that

1Sa(t)]] < Me*, forall n> N

where the convergence is uniform in ¢ on bounded subsets of [0, o).

Morris [Mor96] gives an example of an approximation scheme for a bounded control

system that meets assumptions (S1)-(S4), but is not suitable for controller design.
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The following assumptions appear in all existing results on LQR controller design
using approximations. Similar assumptions on the approximating systems for non-

singular H, state-feedback control problems are made in [IM98].

(C1) For all w € H, S;;(t)P,w — S*(t)w where the convergence is uniform in ¢ on
bounded subsets of [0, c0).

(C2) If the original system (A, B) is stabilizable, then the approximations (A, B,)
are uniformly stabilizable.

(C3) If the original system (A,C) is detectable, then the approximations (A4,, C,)
are uniformly detectable.

We shall see that not all of these conditions appear necessary for controller design
in finite dimensions. Morris [Mor96] proves that assumptions (S1)~(S4) plus (C2)
or (C3) imply convergence of the transfer functions. The common factor in all
assumptions is the importance of the convergence of transfer functions. Suppose
we have a linear system with transfer function G and a controller C. Let A(G, C)
denote the closed loop system (see Figure 2.1 in Chapter 2) and suppose this system
is stable. Let G, be the n‘*-dimensional approximation of G. Suppose that for all
sufficiently small neighbourhoods B of G, G, € B implies that

(1) the closed loop A(G,,C) of G, and C is externally stable, and

(2) the closed loop response A(G,,C) of G, and C is close to the closed loop

response A(G,C) of G and C.

If G and G, are stable, then |G, — G}|c — 0 as n — oo implies (1) and (2) above.

Thus, we are justified in considering convergence in the H,, norm.
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3.7 Approximating the H, Optimal Sensitivity
Problem

Recall that we would like to solve an H,, optimal control problem (see page 26) via

approximations (see page 27). The following definitions are required.

Definition 3.22 (Inner Functions and Matrices)
A scalar-valued function f € RH,, s inner if it has magnitude one on the yjw—azis.

A matriz ® € M(RH,,) is inner if (s)®(s) = I, i.e., ®°(s) = &T(—s).

Definition 3.23 (Quter Functions and Matrices)
A scalar-valued function f € RH,, is outer if it has no zeros in R(s) > 0.

A matriz ® € M(RH,) ts outer if, for every R(s) > 0, ®(s) has a right-inverse

which is analytic in RN(s) > 0.

Definition 3.24 (Blashke Product)

A function B(3) of the form

n

B(s) =]

i=1

S — a;
8 + a;

where a; € Cis called a (finite) Blashke product.

Definition 3.25 (Inner/QOuter Factorization, e.g., [Vid85])

An inner/outer factorization of a matriz F € M(RH) is a factorization

F = F;F,
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where F; i3 inner and F, is outer. Every matriz in M(RH.) has an inner/outer
factorization. If F has no zeros on the jw—azis, then F = BF,, where B is a

matriz whose elements are a finite Blashke product.

As we shall see, convergence of the approximating transfer functions G, as well
as convergence of the approximating inner factors G, in a weighted semi-norm is

sufficient for convergence of the H,, optimal sensitivity problem.

Let

o= 5 1Ty - ToQllo

(see Problem 4 on page 27), where we require that 4, — v (see Problem 3 on

page 26).

The general H, weighted sensitivity minimization problem is to find v such that
16) = jnf IWi(1 - GQ)ll

where G € Ho, and W;(s) € H, is outer and strictly proper. Let G,(s) be the nth-
dimensional approximation to an infinite-dimensional system G(s). Smith [Smi90]
considers the following problem. Does ||G, — G|| — 0 imply 7v(G,) = 7(G) ? The

answer is no. This is illustrated by the following two examples.

Example 1
Let
8 1
G(s) = porE W(s) = P
Then v(G) > |W(0)| = 1. Let
G.(s) = s+¢

s+1
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Then ||G. — G|lc = 0 as € — 0 and 4(G,) = 0 for all ¢ > 0. Thus, 7(-) is
discontinuous at G. In this example, G(s) has a zero on the imaginary axis.

The approximations G.(s) are all invertible outer functions.

Example 2
Let
e’ 1
G(s) = porE Wi(s) = PR
Then

v(G) = infoen., [W( - GQ)lleo
= infoer. [W — e=*Qlloo

1

- ; 1+4a2

where a is the unique root of the equation
tana+a=0

lying between 7/2 and = [FTZ86]. Let

1
(s +1)(L+s/n)~

Then |Gn — Gllw — 0 as n — oo and 7(G,) = 0 for all n. Thus, v(-) is

Gn(s) =

discontinuous at G. In this example, G(s) has a pure time delay which is an

inner function. The approximations G,(s) are all outer functions.

The one-dimensional acoustic duct model which we study in this thesis also
has an inner factor which is a pure time delay. Thus, we must be careful in

our approximations.

Let G = G;G, and G, = G,,G,_, be inner/outer factorizations of G and G,
respectively. Then we have the following result.
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Theorem 3.20 [Smi90]

If there ezists a sequence {Gn} such that ||Gn—G|lcc — 0 asn — co and furthermore
if |W1i(Gn; — Gi)lleo = 0 and n — oo, then v(Gn) — 7(G).

Thus, the H,, problem is well-posed provided that the G, are chosen appropriately.

Rodriguez and Dahleh [RD90] show that by approximating the inner factor Gy,
on compact sets and ensuring that the approximation of the outer factor G, is

well-behaved, one can obtain a near optimal finite-dimensional solution.

Theorem 3.21 [RDY0]

Let Wy(s) € RHy,. Let

XQ =
0, elsewhere.

{ 1, forw e [-Q,9]

If

1) |(Gn(yw) — G(yw))Xa| = 0 as n = oo, and

2)  |[Wi(gw)(Gn;(Jw) — Gi(yw))Xa| = 0 as n — o,
then v(Gn) = v(G) as n = .

Thus, in general, the inner factor of the infinite-dimensional system must be ap-
proximated by a sequence of finite-dimensional inner functions. However, not all
approximations of an inner factor have right half plane zero locations that are sim-
ilar. This phenomenon was studied by Lindner et al. [LRT93]. In their paper,
the authors study the zeros of the modal approximations of a flexible beam. The
authors show that in some instances the zero placement may change significantly

with model order.
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This is one reason we must use extreme caution when using a finite-dimensional
plant to approximate the infinite-dimensional plant. The location and number of
right half plane zeros generated by a particular scheme is important because, for a
scheme to be a viable choice for solving the optimal sensitivity problem, the inner
factors (which contain the right half plane zeros) of the transfer function must
converge. The reason for this will become clear when we discuss the solution to the
optimal sensitivity problem in Chapter 5. The effect of the right half plane zeros is
further studied when looking at the convergence of the inner factor of the transfer

function in Chapter 7.

Thus, given an approximating scheme, if the transfer functions converge and the
inner factors converge over increasingly larger frequency subintervals then we know
that 4, — . Note that these approximation results are centred on convergence of

the transfer functions.



Chapter 4

Approximating the Acoustic

Model

In Chapter 2, the problem of global acoustic noise reduction was formulated (see
(2.21)). Through successive simplifications of this problem, we arrived at two prob-
lems, Problems 3 and 4 (see page 26 and page 27, respectively). In Chapter 3,
Section 3.7, we provided criteria under which the solution of Problem 4 is guaran-
teed to converge to that of Problem 3. We also considered general conditions for

approximating systems.

In this chapter, we examine several approximating schemes. We pay particular at-

tention to the margin of stability generated by the approximation methods studied.

One of the goals of this research was to obtain a method for studying the global
noise reduction problem in three dimensions. Because of this, it is not appropriate
to use some simple approximation method such as Padé approximants to formulate
finite-dimensional approximations to our problem. We want a method suitable

for studying the three-dimensional problem. With this in mind, we consider the

81
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following popular approximation schemes.

Method I Legendre polynomial based Galerkin approximation method with states

(2, ze).
Method II Linear spline based Galerkin approximation method with states (z, z,).

Method III Finite difference method with states (z, z;).

All numerical examples used ¢ = 331 m/s (the speed of sound in air), p =
1.29 kg/m?, and K = 0.7. The impedance K was chosen so that the end of
the duct is partially reflective/absorptive. The length L of the duct is 4 m. The
transfer function studied is for the single-input/single-output case with the input
at z4 = 0 and the output at z = 2. The weight W, was chosen to be a simple

low-pass filter

1
tooo T 1
In the results that follow we will determine

Wi(s) =

1) the margin of stability of the approximations,
2) whether |{Gn(yw) — G(yw)| — 0 over any compact interval Q as n increases,
and
3) whether |Wi(jw)(Ghy; (Jw) — G:i(yw))| = 0 over any compact interval Q as
n increases.
These latter two points will establish whether or not an approximation method is
suitable for our purpose of determining optimal weighted sensitivity (see Section

3.7).

We begin by showing the general variational approach to finding the finite-
dimensional state-space representation of the one-dimensional duct problem. This

approach is used to calculate the Galerkin approximations (Methods I and II).
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4.1 Semi-Discrete Galerkin Approximations

If z solves (2.1), then for ¥(z) € L,(0, L),

+ Pc(t);;b(za) + Pd(t)¢(zd)

L L 2
/0 2utb(z) dz = /0 P 2oatb(z) dz ;

Using integration by parts we obtain,

o Pelty(za) | Pult)h(za)

£ dz = ¢ |p(L)za(D) — [ d
/(; zutp(z) dz =c [¢( )zz( )"/(; z:%:(z) :1:] p p

Substituting in the boundary conditions we get,

Pc(t)¢(za) + Pd(t)¢(zd)
P p

L L
/0 zatb(z) dz+ Kep(L)ze( L)+ /0 zee(z) dz = . (4.1)

If z satisfies (4.1) for all ¥(z) € L;(0, L), we say that it is the weak solution of the
partial differential equation (2.1). Consider now a sequence of finite-dimensional
subspaces H, of H such that H, - H as n — oo. Let (z",z}}) € H, = Hn x H,

where

Mo t) = 3 ailt)di(z). (4.2)
=0
Also suppose that {¢;},7=0,1,...,n are a basis for H,. Let

ao(t) |

a(t) = 01.(*')

| an(t) |

Substituting (4.2) into (4.1), setting ¥(z) = ¢;(s) for all j = 0,1,...,n and rear-
ranging we get,

Sa() [ be)dile) de + KedsD) D adI(L) + & Sault) [ i(e)6(2) da

_ Pt)ds(za) , Palt)éslza) o
p p

forj=0,1,...,n.
(4-3)
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Let u(t) = P.(t) be the control input, and d(¢) = P4(t) be the disturbance. Then

(4.3) may be written as

Ma(t) + Da(t) + Ga(t) = Fiu(t) + Fod(t).

where
L
[M];; =/(; ¢i(z)d;(z) dz,
[D];; = Kegi(L)#;(L),
L
Gl = [ dtolte) ds).
= ¢;(Za)
[FI]J _P )
and
_ $i(za)
[F2]J - p .
Let

wa(t) = { ‘f(t) J .
a(t)

w,,(t)+[ 0 jlu(t)+|: 0 Jd(t) (4.4)
M-'F, M-'F,

Thus, we may write

0
-M-'G -M"'D

Wa(t) = I:

or alternatively
0 I

MY %4, (t) = M2y, (t)
M-V M-L/2 —M-12ppM-L/2

0
+ [ MR, u(t) + [ M-ip, } d(t).

The form given in (4.5) has the advantage in that it generally improves the condition

(4.5)

number of the associated matrices. For d(t) = 0 in (4.4) we may write

Wn(t) = Anwa(t) + Buu(t)
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where

B, =

M-1F

If the pressure at z € X = {z1,Z2,...,Zm} is observed (as in Problem 4 on page 27),

then
[ 8 0z 0z T
y(t) = —pCz | -an—:;(.'l:l,t) %(zz':t) .o a—z(zm,t)l ’
= —pc? Zai(t)¢§($1) dai(t)di(z2) ... Y ai(t)pi(zm) ]
L =0 =0 - 1=0
$o(z1) ... dn(z1) aolt)
L @) o dte) ||
= —pc . . .
: : : ¢
 diem) o dilem) | L
Thus, the output equation has the form
§(t) = Cowa(t) = [C Omxnnyhn(?) (4.6)

where y(t) = P(z,t) for z € X, and

AR ACHR
| @) - bilz)

| $o(zm) .. Hu(zm) i

or alternatively
y(t) = —pcz[-(_jM'I/2 Omx(n“)]Ml/zw,,(t).
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4.2 Method I: Legendre Polynomials

Consider the following set of Legendre polynomials,
1 4

= onpl dzn

for z € [-1,1]. Redefining these functions on z € [0, L] we obtain a set of orthogonal

Py(z) =1, P.(z) (z2-1)", n=12,...,

basis functions {¢;(z)} for ¢ = 0,1, ..., n whose first few terms are as follows (see
Figure 4.1):

$o(z) = 1,

$1(z) = 2z -1,

$2(z) = FE-1) -1,

1 (4.7)
2
$a(z) = $(E-1PF-3(%-1), ..., ete.

Numerical simulations (see Table 4.1) indicate that this method yields approxi-
mations that have a uniform margin of stability. Therefore this scheme produces
finite-dimensional approximations that are (trivially) uniformly stabilizable.

Figure 4.2(a)-(d) shows the poles and Figure 4.2(e)-(f) the zeros of the approxima-
tions for n = 5 and n = 10. We can clearly see that most of the poles lie on the
vertical line s = —3%[In |a] + 2n7j] = —71.7691 + 82.75nxy, for n = 0,1, £2,. ..,
which is where exact poles of the system lie (see (2.10)). The inner factor of the
original infinite-dimensional system is a pure delay. The zeros of G(z, z4) are solu-

tions of

e"'?‘(z-L) —a=0.
This implies the zeros are
c
Zn——z(z_L)[lna+2n1r]], n=0%1,+2,.... (4.8)

Thus, all the zeros of G(z,z4) lie in the left half plane. In the approximations,

there are a number of zeros that lie on the vertical line s = eegyln la| + 2nmy] =
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Legendre Polynomials

T T T T

Pn(x)

Figure 4.1: Legendre polynomials

87



CHAPTER 4. APPROXIMATING THE ACOUSTIC MODEL 88

n | dim(A,) | max{ReA, A € o(4,)}
b 11 -71.7689
6 13 -71.7458
7 15 -71.6939
8 17 -71.7691
9 19 -7T1.7673
10 21 -71.7591
11 23 -71.7617
12 25 -71.7690
13 27 -71.7681
14 29 -71.7663
15 31 -71.7691
16 33 -71.7690
17 35 -71.7687
18 37 -71.7686
19 39 -71.7691
20 41 -71.7691
21 43 -71.7690
22 45 -71.7691
23 47 -71.7691
24 49 -71.7691
25 51 -71.7691
26 53 -71.7691
27 59 -71.7691
28 LY -71.7691
29 59 -71.7689
30 61 -71.7689

Table 4.1: Legendre polynomials: open loop margin of stability

—143.5382 + 165.5n7y for n = 0,+1,+2,..., which is where exact zeros of the
system lie. However, there are a number of zeros not on this line as seen in Figure
4.2(e)-(f). These are the zeros due to approximating the inner factor of the original

infinite-dimensional system which is a pure delay.
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(e) zeros for n = 5 (f) zeros for n = 10

Figure 4.2: Legendre polynomials: poles and zeros for G, (x=poles,
0=zeros)
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Figure 4.3: Legendre polynomials: magnitude and phase for G(jw) (solid)
and G,(yw) (n =5 (dashed), n = 10 (dash/dot))

4.2.1 Convergence of the Transfer Function

In this section, we examine the behaviour of |G,(yw) — G(jw)| over any compact in-
terval  as n increases. Typical plots of the magnitude of the exact transfer function
and the approximations are shown in Figure 4.3. From these plots, it is apparent
that the approximating transfer functions for larger n are better representations of

the exact transfer function over successively larger bandwidths.

Figure 4.4 shows the behaviour of |G, (yw) — G(yw)| for 0 < w < 2000 rad/sec, for
n = §, 10, and 15. We can see that the error goes to zero very quickly. Figure 4.5
shows the maximum of |G,(yw) — G(jw)| over 0 < w < 2000 rad/sec versus n. We

can see that the error tends to zero as n increases.
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Figure 4.4: Legendre polynomials: |G(yw) — Ga(jw)| (n = 5 (solid), » = 10
(dashed), n = 15 (dash/dot))
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Figure 4.5: Legendre polynomials: maxo<w<2000 |G(7w) — Gn(yw)| versus n
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4.2.2 Convergence of the Inner Part of the Transfer Func-

tion

In this section, we examine the behaviour of |W;(jw)(Gn,(yw) — Gi(Jw))| over any
compact interval 2 as n increases. We know the exact transfer function has inner
factor (see (2.18))

G; = e~ <%,

Because the magnitude of G, (yw) is effectively one for all frequencies, only the
phase of Wi (jw)(Ga,(yw) — Gi(yw)) was useful for determining convergence. Con-
tributing to the phase are both the real and imaginary parts of Wi (jw)(Gx; (yw) —
Gi(yw)), with errors in these values occurring at all frequencies. Thus, we de-
cided that it is easier to see the origin of errors by considering the real and
imaginary parts of W,(yw)(Ghn,(jw) — G:(yw)). Figure 4.6 shows the behaviour
of the magnitude of the real and imaginary parts of Wi (yw)(Ghn; (Jw) — Gi(yw)) for
0 < w < 2000 rad/sec. We can see from these plots that the errors are tending to

zero although not as quickly as for the transfer function.

For n = 5, we find the right half plane zeros of the inner factor of the approximating
transfer function are

z= [ 794.9385 + 372.69667 ] . (4.9)

For n = 10, we find the right half plane zeros of the inner factor of the approximating

transfer function are

(4.10)

z=

1009.6333 + 1050.23207
1274.0411 + 339.49947 |

We can clearly see the varied location of the right half plane zeros. This trend
continues for larger n (see also Figure 4.2). The erratic behaviour of the right half
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plane zeros is illustrated by the variation in the errors of the inner factors given in

Figure 4.6.

4.2.3 Conclusion

As shown above, the numerical results obtained using Legendre polynomial based

approximation method indicate the following:

1) |Ga(yw) — G(yw)| = 0 as n — oo, for 0 < w < 2000 rad/sec;
2) Wi(qw)(Gn;(qw) — Gi(yw))| = 0 as n — oo, for 0 < w < 2000 rad/sec; and
3) thereis a uniform margin of stability for all approximations.

Thus, Legendre polynomials provide a suitable approximating scheme under which

to study the H,, control problem.

The Legendre polynomials are what we may refer to as “global” basis functions since
each basis function is defined for all z € [0, L] (see Figure 4.1). Any errors made
in attempting to enforce the boundary condition at z = L may be perpetuated
along the rest of the duct. Thus, it is possible that a set of basis functions with
compact support may be less sensitive to numerical errors. Using splines also leads
to sparse matrices. This is advantageous for the three-dimensional case where
computations are more intensive. For this reason, we also consider the linear spline

based approximation method.
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Figure 4.6: Legendre polynomials: magnitude of real and imaginary part of

W1 (3w)(Gi(yw) — Gn; (yw))
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n | dim(A,) | max{Re\, X € 0(An)}
5 11 -22.0314
6 13 -16.1294
7 15 -12.2373
8 17 -9.5679
9 19 -7.6698
10 21 -6.2773
11 23 -5.2279
12 25 -4.4186
13 27 -3.7822
14 29 -3.2730
15 31 -2.8595
16 33 -2.5193
17 35 -2.2361
18 37 -1.9978
19 39 -1.7956
20 41 -1.6225
21 43 -1.4732
22 45 -1.3435
23 47 -1.2302
24 49 -1.1306
25 51 -1.0426
26 53 -0.9644
27 55 -0.8947
28 57 -0.8323
29 59 -0.7762
30 61 -0.7256

Table 4.2: Linear splines: open loop margin of stability

4.3 Method II: Linear Splines

Consider the following set of linear splines:

i=-F), Bl
$i(z) = p(ENE _z), L < g GHUE (4.11)
0, otherwise

for:=0,1,...,n. (Thesé are commonly referred to as “hat” functions.)

Table 4.2 shows that all approximations are stable. However, there is no uniform

margin of stability. Figure 4.7(a)-(d) shows the poles and Figure 4.7(e)-(f) the zeros
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of the approximations for n = 5 and n = 10. As for the Legendre polynomials,
we see that most of the poles lie on the vertical line s = —71.7691 + 82.75n~3, for
n = 0,+£1,+2,..., although it is much more difficult to see here than for Legendre
polynomials. There are also a number of spurious poles, particularly a number that
lie increasingly close to the imaginary axis (for larger imaginary parts) as evidenced
in Table 4.2. In addition, there are a number of zeros that lie on the vertical line
s = —143.5382 + 165.5n7y for n = 0,+1,42,..., although this is more difficult
to see. However, there are also a number of zeros not on this line. Again, this
is the recurring problem of wandering right half plane zeros which will affect the

convergence of the inner factors. This is discussed further on page 100.

4.3.1 Convergence of the Transfer Function

In this section, we examine the behaviour of |G,(yw) — G(yw)| over any compact
interval  as n increases. Plots comparing the magnitude and phase of the exact
transfer function and the approximations are shown in Figure 4.8. We can see
that the approximating transfer functions appear to converge to the exact transfer
function as the number of basis functions is increased. However, the convergence

is not as smooth as for Legendre polynomials.

Figure 4.9 shows the behaviour of |G, (yw) — G(yw)]| for 0 < w < 2000 rad/sec, for
n =3, 10, and 15. We can see that the error tends to zero, although convergence
is apparently not uniform. This is perhaps more easily observed by looking at the
maximum of |G, (Jw) — G(yw)| versus n in Figure 4.10. We can see that the error
is getting smaller although it oscillates for all larger values of n.
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Figure 4.7: Linear splines: poles and zeros for G, (x=poles, o=zeros)
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Figure 4.8: Linear splines: magnitude and phase for G(jyw) (solid) and
Ga(yw) (n = 5 (dashed), n = 10 (dash/dot))
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=0
"t

Figure 4.9: Linear splines: |G(jw)—Gn(yw)| (n = 5 (solid), n = 10 (dashed),
n = 15 (dash/dot))

Figure 4.10: Linear splines: maxXo<w<2000 |G(jw) — Gn(yw)| versus n
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4.3.2 Convergence of the Inner Part of the Transfer Func-

tion

Figure 4.11 shows the behaviour of the magnitude of the real and imaginary parts of
W1 (yw)(Gr, (Jw) —G:(yw)) for 0 < w < 2000 rad/sec (see Section 4.2.2). We can see
from these plots that the errors are tending smoothly to zero. In fact, convergence
for the inner factors appears to be better than for the transfer function. This
suggests that linear splines provide approximations that are suitable for controller

design.

For n =5, we find the right half plane zeros of the inner factor of the approximating

transfer function are

z= [ 1013.4764 + 0.0013; ] : (4.12)

For n = 10, we find the right half plane zeros of the inner factor of the approximating

transfer function are
2065.2172

z = | 2037.9170 + 36.09167 | - (4.13)
1996.8563 + 21.3390;
Recall that for Legendre polynomials we had

z= [ 794.9385 + 372.6966; ]

for n = 5, and
[ 1009.6333 + 1050.2320; }
Z =

1274.0411 + 339.4994;
for n = 10. What is interesting to note here is the large difference in the location,
magnitude and number of right half plane zeros for two different approximating

schemes with the same dimension. This clearly will affect convergence of the inner
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factors. If we compare Figure 4.6 with Figure 4.11, we see that the error for large
n is smaller for Legendre polynomials than for linear splines. This suggests that
Legendre polynomials better approximate the inner factor than do linear splines.
Nevertheless, the inner factors determined using linear splines also appear to be

converging.

4.3.3 Conclusion

As shown above, the numerical results obtained using the linear spline based ap-
proximation method indicate the following:
1) |Ga(yw)-G(w)| — 0 as n — oo, for 0 < w < 2000 rad/sec (not smoothly);
2) W (qw)(Gn; (Jw) — Gi(yw)){ = 0 as n = oo, for 0 < w < 2000 rad/sec; and
3) there is no set margin of stability for successively larger approximations,
although all approximations remain stable.
Thus, linear splines may provide a suitable approximating scheme. This will be

further pursued in Chapter 7.
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4.4 Method III: Finite Differences

The finite difference method is generally used to compute the solution to a par-
tial differential equation at nodes in the spatial domain. It is a common choice
for simulating the dynamics of the one-dimensional wave equation and many other
problems. Banks, Ito, and Wang [BIW91] show that a finite difference approximat-
ing scheme is not uniformly stable. For completeness, these results are verified in

this section.

Suppose we have n equally spaced nodes z; in [0, L] where Az = n%l and
z; =(t—1)Az, fori=1, ..., n.

We will use central differences. Let z;(t) and v;(t) be the approximation of the
solution values z(t,z;) and z:(t,z;), respectively. Then the one-dimensional wave

equation (2.1) is approximated by

Za(t) = u(t)

and

d _ 2 [ z+(t) = 2zi(8) + zia (2)

Loty =c ( i (4.14)
for ¢ =1, ... ,n. Suppose that a control P.(t) is applied at £ = 0 so that the
boundary condition becomes

0z _ Pt)
a—z(O,t) =T

Discretizing and introducing an imaginary node at ¢ = 0, we get

22 — 2o _ _Pc(t)
20z ~ pe?

which gives
P.(t
20 = 22 + piz)(ZAz).
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Thus,
d 2 P.(t)(2Az)
dont) = [222 - 25 4 A2 (4.15)
At : =n (or z = L), the discretized boundary condition becomes
Oz _ KOz
oz ¢ o8t’
Introducing an imaginary node at ¢ = n + 1, this gives
K Oz (t
Zn+l = 2Zp—-1 — -:(2Az)-—5t—)
However,
_ Oza(t)
wn(t) = 5,
so that
Zntl = Zn-1 — —Icg(2Az)vn(t).
Thus
Zn4l = Zn_y] — £:—(2A:z:)'u,,(t)
and
d o K
Zn(t) = 2 [2zn_1 — 22, — ?(2A:c)vn(t)] . (4.16)

Collecting (4.14), (4.15), and (4.16), the state-space representation for the dis-

cretized form is

R -
F41 41
Z.z Z2
Zn Aun | A1z 2n
Tl = + BP,(t)
v Ay | A2z v
U v2

| Vn | L Un
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where
A11=Onxn1
A12=Inxn,
- -
-2 2 0 0 ... O
2 1 -2 1 0 ... O
Aoy = —— —
2= A3 0 1 21 ... 0 s
0 0 c 2 -—ZJ
L nxn
(0 0 0 |
0 0 ... 0
A22= - » 3 3 ?
_2Ke
_0 0o ... as o
and _
onxl
2
pAzx
B = 0
- O J2nx1

If the pressure is observed at z = z,, then

0z

y(t) = —pcz—z(zut)
Y
- pe T 2Az ]
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where i* is the i*" cell closest to z = z,. Thus,

y(t)=—2Az[o 0 ... 0 Lieg O Lyopq O ... O]M,.

2z

Z2

1

V2

Un
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Figure 4.12(a)-(b) shows the poles and zeros of the approximations for n = 5 and

n = 10, respectively. We see that the poles with large imaginary part tend to the

imaginary axis. As well, the margin of stability is very small (see Table 4.3). Banks,
Ito, and Wang [BIW91] show that, for bounded control, a finite-difference method

does not produce a uniform margin of stability, whereas, as illustrated in Table 4.1,

Legendre polynomials do.

We attempted to test for the convergence of the transfer function but found that for

both n = 5 and n = 10, |G.(Jw)| was extremely large at low frequencies. In fact,

the magnitude was of the order of 10°. Aside from large values of |G, (yw) — G(jw)|,

poles with very small real part lead to numerical problems and no further analysis

was made.
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n | dim(A,) | max{ReX, A € o(An)}
9 9 -4.30794252539185
6 11 -2.81732506185543
7 13 -1.97835299062118
8 15 -1.46294421001218
9 17 -1.12469340564840
10 19 . -0.89112563549924
11 21 -0.72323684934815
12 23 -0.59858278607953
13 25 -0.50352709711569
14 27 -0.42940516016569
15 29 -0.37050099967621
16 31 -0.32292186338634
17 33 -0.28394321877147
18 35 -0.2516123939166
19 37 -0.22450056032983
20 39 -0.20154278423252
21 41 -0.18193241332506
22 43 -0.16504924183261
23 45 -0.15041051546177
24 47 -0.13763546735322
25 49 -0.12642921429108
26 51 -0.11652296947000
27 53 -0.10774105478626
28 55 -0.09991773108766
29 57 -0.09291483303468
30 59 -0.08662286040794

Table 4.3: Finite differences: open loop margin of stability
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Figure 4.12: Finite differences: poles and zeros for G, (x=poles, o=zeros)
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4.5 Discussion

Banks, Ito, and Wang [BIW91] show that (Legendre) polynomial based Galerkin
approximation methods provide a uniform margin of stability whereas polynomial
(linear) spline based Galerkin approximation methods produce eigenvalues with
large imaginary part that tend toward the imaginary axis. The eigenvalues found
using Legendre polynomials also tend to the exact eigenvalues as the dimension of
the approximating space tends to infinity.

Legendre polynomials appear to be the best choice of approximation scheme for
control and simulation. This method exhibits smooth convergence of the transfer
and inner functions, as well as a uniform margin of stability. Hence the approxima-
tions are (trivially) uniformly stabilizable. However, the numerical results produced
using linear splines in Section 4.3 suggest that this method is also a practical choice.
In Chapter 3, Section 3.6 we outlined some general conditions for the feasibility of
an approximation scheme. Included in these conditions is the uniform stabiliz-
ability of the finite-dimensional approximations. In Section 4.3, we showed that
linear splines produce finite-dimensional approximations that appear to not have
a uniform margin of stability. The approximations may or may not be uniformly
stabilizable. However, the approximations of the transfer and inner functions do

appear to converge. This point will be further pursued in Chapter 7.



Chapter 5

Solving the H,, Optimal Control
Problem

Consider the problem of determining

Yopt = QeiﬁfH& “Tl - TZQ"oo (5.1)

where T} and T, are tall matrices with one column. Since T} and T, have ratio-
nal elements, there are a number of approaches to solve this problem. We will

outline these methods below and end with the method of choice, Nevanlinna-Pick

interpolation.

5.1 DGKF: State-Space Technique I

We describe here a state-space method for finding all stabilizing controllers such
that
I Fillee <,

110



CHAPTER 5. SOLVING THE H,, OPTIMAL CONTROL PROBLEM 111

where F; is a closed loop transfer function. We then iterate to find the optimal

solution <., where v < v,pe. Consider the standard feedback system in Figure 5.1

where G is the transfer function of the plant we wish to control and C is the transfer

function of the controller. Let
w(t) =
z(t) =
y(t) =

where
d(t)
u(t)
z(t)
y(¢)
w(t)
Also,

From (5.2),

Aw(t) + Bid(t) + Bou(t)
C]_‘ll)(t) -+ Dud(t) + Dnﬂl.(t)
Caw(t) + Dyrd(t) + Dagu(t)

-+[g‘}(sI—A)"[BI Bz]-

disturbance vector
control input vector
error vector
observation vector

state vector.

(5.2)

2

G = Ci(sI — A)™'B, + Dy,
Gi12 = Ci(sI — A)"'B; + D2
Gz = C2(sI — A)71B, + Dy,
G2 = Ca(sI — A)™'B; + D»,.
We assume that all frequency dependent weights are included in this model. The

closed loop transfer function from d to z is

E(Gv C) = Gll + GuC(I - GzzC)—lel.



CHAPTER 5. SOLVING THE H,, OPTIMAL CONTROL PROBLEM 112

z d
G

~ C

Figure 5.1: Basic feedback control system

We want to find a controller C so that the closed loop is stable and

for some given . The optimal performance vop: is the smallest v for which (5.3)

ﬁ“ <1 (5.3)
7 oo

has a solution. Doyle and Glover [GD88] give a state-space parametrization of all
controllers that satisfy (5.3). The solution involves solving two algebraic Riccati
equations. The resulting algorithm is known as the DGKF algorithm, after the
authors, Doyle, Glover, Khargonekar, and Francis, of the paper [DGKF89]. The

following are required assumptions.

Assumptions:

(1) (A, B,,C,) must be stabilizable and detectable.

(2) (A, B,,C;) must be stabilizable and detectable.
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(3) There must be a non-singular penalty on control, i.e., D;; must have full col-

umn rank.

(4) There must be a non-singular disturbance weighting, i.e., D;; must have full

row rank.
(5a) D11 =0, Dy2 =0,

(5b) D’ﬁ[cu D12]=[0 I],and

B, 0
I

Do
Theorem 5.1 [DGKF89]

(5¢)

Suppose that (1)-(5) hold. Then there ezists a controller C such that

B
2

<l

(> <]

if and only if the following conditions hold:

(a) The Riccati equation
AT + A+ (B, BT — B,BI)IT1+ CTC, =0
has a solution Il =TI, =7 >0 and A + (B,BT - B, B, is Hurwitz.
(b) The Riccati equation
Al + DAT + I(CTC, - CTC,)II+ ByBT =0
has a solution Il = I, =IZ > 0 and A + I*[CTC, — CTC,)] is Hurwitz.

(C) O’maz(H1H2) <1.
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Thus, given a choice for v, we may iterate until we find a solution sufficiently close
to 'Yopt.
We now put the acoustic noise control problem into this standard framework. For

simplicity, consider the SISO case, i.e., m = 1. Suitable choices for the above

standard DGKF problem are then

Gu = WiG.(z,z4),
Gz = WiGa(z,za),
Gy = Gn(znzd)’
Gz = Ga(zs,Za),
C = -K

where K is some controller, and
Q=K -G2nK)"''=K(I-G.(z,,z.)K) .

Since our approximations G,(z1, z,) are stable, assumptions (1) and (2) are trivially
met. However these approximations are also strictly proper so that Dy, = Dy =0,
and thus assumptions (3) and (4) are not met. Two possible ways of getting around

this problem are as follows.

Method 1:

Let Di; = Dy = €, where ¢ is some “small” positive real number. The problem
with this choice is that it changes some properties of the transfer function, such as
the gain at low frequencies. Because of the complicated nature of the problem, we

have no way of tracing the effects of € on the optimal performance 7op-
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Method 2:

We wish to solve
Wig
7 e
where § = Gn(z,z4) — Gn(z, Za)Gn(z,, z4)Q(3). Suppose we instead solve
Wig
v <1,
W.T

= <]

<l (5.4)

where W, = ¢, some small positive number, and T =1 — S. Then

[ WiGa(z,24)
G11 = )
| Wa(I = Ga(z, 2a))
WGn yLa
G12 = ' (z : ) )
. —WZGn(z7 za)

G21 = Gn(zu .’Bd),
G2 = Gn(zu za)a and
C = -K.

With these choices we can use the DGKF algorithm to find C. The solution is
suboptimal since we are introducing an artificial weight W,. This causes numerical
problems since the problem is close to being singular. Also, the deviation from the

optimal solution 7.p: is not known.

In the next two sections, we will discuss other methods that can be used to find
the optimal solution to our problem. The first is another state-space technique.
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5.2 Model-Matching: State-Space Technique II

Consider the following. Let T}, T; € RH,,. We perform an inner/outer factoriza-
tion (see Definition 3.25) of T,
T2 = TZ.'T2o

where T3, is inner and T3, is outer. For any Q € H,,
1Ty - T2Qlle = |Th — T2,T2.Qll
= sup,, |T5' (jw)Ti(7w) — T2, (7w)Q(sw)|.
Let R = T.;lTl and X = T, Q. Note that R ¢ H,.

Definition 5.1
The space L, consists of all bounded functions F(yjw), w € R. The L, norm of

F is defined to be
[Fllo = sup [F(yw)| < 0.

Then

i IR—Xll, = inf sup|R(w) - X ()|

where we are now looking at the L., norm since R ¢ H,,. Now factor R as
R= R, +R,
where R, ¢ H, and R, € RH,,. Then
7= Xlenfgm | Ru + (Rs — X)[oo-

From this last equation, we can see that we want to minimize the distance between
a stable transfer function and an unstable transfer function, where distance is mea-
sured in the Lo, norm. For R real-rational, by Nehari’s Theorem (e.g., [Fra87]) we

know that the optimal solution ., exists where v < yope-
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We may also show that 7., is the square root of the largest eigenvalue of the
product of the observability and controllability gramians found using the state-
space representation of R, (e.g., [Fra87]). However, since we require that X € RH,,
and R ¢ H, there must be an ezact cancellation of unstable poles in forming X.
Because of this, computational difficulties often arise. This method is only suitable
for lower order problems where Maple [Sof97] or hand calculations can be used. In
addition, determining the stable and unstable parts of R is a numerically sensitive

problem. Thus, it may be difficult to compute Yope.

As a result we consider an alternative approach, namely the Nevanlinna-Pick inter-

polation method for solving the minimal model-matching error problem.

5.3 Nevanlinna-Pick Interpolation

In this section, an interpolation method is considered because it is computationally
more stable than the state-space techniques outlined in the previous two sections.
Using an operator theoretical approach to interpolation, we will show how the
results of Sarason [Sar67] imply the Nevanlinna-Pick interpolation method and
how this method may be used to solve the above problem. After we review these
results, we will show our acoustic noise reduction problem can be solved using

Nevanlinna-Pick interpolation.

Recall that the problem we are solving is

iz T ~ ThQlls

’Yom—q

where Tj, T, € RHZ*!. For simplicity of exposition, let m = 1 at this point.
Consider the following. Factor

T, =TT,
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where T3, is a finite Blashke product (see Definition 3.25) (i.e., T5; has all its zeros
in the open right half plane) and T3, is outer. Then

Tore = ol ITh = Tl = o L, _IT2 =TT Qlle

Now factor T,, as vu where v has all of its zeros on the imaginary axis and » is a

unit of RH,, (that is, u,u™! € RHy ). Thus,

Yopt = Qei}lszm |7y — T2vuQ|eo = Qeingm IT: — T2,vQ|lo (5.5)

where u has been absorbed into the free parameter Q.

Consider the modified problem

'?om =

Qeungm 171 = T%,Q| - (5.6)

Nevanlinna-Pick interpolation is a technique for solving (5.6). The following theo-

rem gives conditions under which Yope = Yope-

Theorem 5.2 [Vid85, Lemma 11, page 177]

Let jwy, jws, ..., Jw; be the distinct zeros of v on the imaginary azis. Also suppose
that v is strictly proper so that it has a zero as s = 00. Then Yope = Jope if and

only if |Ty(jw:)| < qope for all © and lim,, |T1(s)] = 0.

Proof:

“only if”

Since v(yw;) = 0 for all ¢, (T5,vQ)(yw:) = 0 for all ¢, for all Q € RH,. Hence
(T1 — T,vQ)(3w;) = T1(yw;) for all ¢, and as a result

Ty — T2,0Qlee = sup (Ty — T2,vQ)(qw)]|

> max|(Ty — T5,0Q) (yws)| (5.7)
= m?xlTl(]w;)|a for all Q € RH..
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Thus,
Yopt = Yopt = QeRH 1Ty — T2,vQllee > max | Ty (gws)-

Select Qopt € RHy, such that vope = [|T1 — T2;Qopt|lco- Define for € > 0 and w € IR,
- s3$-Jw
=)= T e

and

1 m;
he(s) = mg [Puw;.e(8)]™

where m; is the multiplicity of jw; as a zero of v. Now observe that for each ¢ > 0,
he/v is a unit of RH, and h.(yjw) — 1 on all compact subsets of the imaginary

axis that do not contain any of the w;’s, as ¢ — 0.

Consider the family Q. € RH for € > 0 defined by Q. = Qopehe/v. Then by (5.5)
1Ty — T2,vQelloc > Yope, for each € > 0. (5.8)
Then
T1 To,vQc = Ty — T5,Qopthe

so that
[(Th — T2,vQe) (gw)| = [(T1 — T2, Qope) (7w)| < Fope

uniformly on all compact subsets of the imaginary axis that do not contain any of
the w;’s. Also, by hypothesis,

(Ty — TovQc) (qws)| = [T1(qws)| < Yope-

Thus,
lim sup 1Ty — T2;0Qelloc < Fope- (5.9)

=0+t
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Combining (5.8), (5.9), and the fact that v,pe < 7ope leads to the conclusion that

Yopt = '7opt and that
1Ty — T2,vQclloc = Yopt as € = 0F.
O

We will show in the course of our numerical work that 7, has no zeros on the
imaginary axis except as $ — co. Thus, since lim,_,, |T1(s)| = 0, by Theorem 5.2,
Yopt = Yopt-

Thus, we consider the equivalent problem

Yopt = Qemlgiw 1Ty — T%,Q| -

This is the precise problem addressed by [Tan92|, where Nevanlinna-Pick interpo-

lation is used.

For simplicity of exposition, the results of this section are presented on the open
unit disc. Let D be the open unit disc and D be the closed unit disc. The right half
plane R(s) > 0 may be mapped to the open unit disc using a conformal mapping.
For example, for s in the right half plane and z € D, let

_1+z

1-=z

3

or equivalently,
s—1
z= .
s+1

Thus, the imaginary axis as well as s — oo is mapped to the unit circle €%,

6 € [0, 2x].

Let F(s) = f(::_—i) If F(s) is a bounded analytic function on R(s) > 0, then the

conformal mapping preserves all important properties. That is, f(z) is a bounded

analytic function on D.
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The basic Nevanlinna-Pick problem can be stated as follows.

Find necessary and sufficient conditions for the existence of an analytic
¢ : D — D such that ¢(\;) = b;, i =1,2,...,n, for given points A; € D
and b; € D.

We assume the A; are distinct. If A; are the zeros of T; in the open unit disc, then
(T, - T2Q)(N) =Ty (M) = by, for all £ = 1,2,...,n. Thus, ¢ “looks like” Ty — T5Q.
That is, ¢ is an analytic function whose zeros match those of T} — T>Q in the right

half plane.

Consider the model-matching problem
ITy — T2,Qlle < 1. (5.10)
Suppose we find Q € Hy(D) such that ||@|lec < 1 and @(N\;) = b;. Write
¢=T1-T5,Q

and solve for Q:

Since ¢(A;) = T1(\;) at the zeros of Ty, Q@ € Hy(D). In other words, the model-
matching problem can be solved by solving an interpolation problem. The technique

for solving this interpolation problem is described below.

The explanation in this section is based largely on the tutorial paper of Tannenbaum

[Tan92]. We first begin with some mathematical preliminaries.
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Definition 5.2
A function f(z), z € C, is in Ho(D) if f is analytic in D and
1 2x 2 1/2
1£llz = sup (27/0 |f(re?)] de) < oo.
The inner product on H,(D) is defined by

(f.g) = ziw i " f(e®)g(e®)" db.

Let f be an analytic function in D. Then f may be written as

f(z) = i fiz*

=0
where z € D. Let S : Hy(D) — H,(D) be the right shift operator, i.e., Sf(z) =
zf(z) for z € D. That is, S shifts all coeflicients of f to the right. The adjoint
of the shift operator, denoted by S, shifts all coefficients to the left. That is,
S* : Hy(D) — Hz(D) is defined by
(5" f)z) =27 (f(2) = fo) = fr + faz + fa® + ...

for all f € Hy(D). Let P : Ho(D) — H,(D)© UH,(D) be the orthogonal projection
where U € Hy. Define the orthogonal complement of H, in X by

XOH = {h € X | (hyhy) = 0 for all Ay em}.
Define the compressed shift operator by

T := PS|g,(pyoum(p)

where U € H,. The adjoint of T is T* = S* restricted to Hy(D) © UH,(D). Note
that TP = PS.
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Let ¢ € Ho(D) be an arbitrary function. Let My : Hy(D) — Hy(D) denote the
maultiplication operator induced by ¢. That is, Myf = ¢f. Then we define

$(T) := PMy|p, pyorm(n) -

An operator A : Ha(D) — H,(D) commutes with S : Ho(D) — Hj(D) if and
only if A = My for some ¢ € Ho, (D). That is, every time invariant input/output
operator admits a transfer function. Thus, ||A|| = ||¢||c Where ||A]| is the operator

norm of A [NS82]. Sarason’s Theorem is a generalization of this idea.

Theorem 5.3 (Sarason’s Theorem, [Sar67])

Let U € Hy. Let A : Ho(D) © UH,(D) — H,(D) © UH,(D) be any (bounded
linear) operator such that TA = AT. Then there ezists a function ¢ € Hoo(D) such
that A = §(T) and ||A| = [|4]lco-

We now put the Nevanlinna-Pick problem into the framework of Sarason’s Theorem.
For the Blashke product (see Definition 3.24)

n

B(z) =]

=1

Z—/\,'
I—X;Z

define X = H,© BH,. Every inner factor we consider is of this form. In particular,
Ts; is of this form. We also have the following result.

Lemma 5.1 (e.g., [Tan92])

X is a finite-dimensional vector space of dimension n. A basis of X consists of

{91,92,. .- 1 9n} where gi(2) = Iz fori=1,2,...,n.

Proof:
One can use Cauchy’s Integral Theorem to show that for h € Ha, (h,g;) = h(\:),



CHAPTER 5. SOLVING THE H,, OPTIMAL CONTROL PROBLEM 124

for all . So g € BH, if and only if (q, g;) = 0 for all i. Thus ¢ € BH, if and only if
g L { span of g;} whichis X. Linear independence can be shown by contradiction
using the form of B(z). a

It is easier to show how T : X — X acts on {g;} by considering T : X — X.

Lemma 5.2 (e.g., [Tan92])
T*g;: = \igs, foralli=1,2,... n.

Thus, g; are eigenvectors of T~.

Proof:

Let zo be a point on the unit circle, i.e., |zg| = 1. Then, for g € X,

T"g(z0) = % (g(20) - 9(0))-

Also,
%(gi(ZO) - gi(0)> =% (1 _1/\—_20 - 1) = Xigi(zo)-

0O

An operator A : X — X commutes with T if and only if A~ commutes with T~.
From Sarason’s Theorem, A commutes with T if and only if there exists a function
¢ € Hoo(D) such that A = ¢(T). We then say that “¢ interpolates A”. This

terminology is made clear by the following lemma.

Lemma 5.3 [Tan92, Lemma §]

Let A: X — X be such that A*g; = b;g;, for all i. A function ¢ € H. (D) satisfies
#(T) = A if and only if (X)) = b;, for all . In this case, we say ¢ interpolates A.
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Proof:
“only if”
Suppose A = ¢(T'). Then Ag; = ¢g;: — Bg; for some ¢; € H,, for all . Thus,

(Ag:)(X:) = d(A:)gi(Xs)- (5.11)
Also,
(Ag:)(A) = biga( o).
But
(Ag:)(X) = (Agi,g:)
= (9«',:1'9.') (5.12)
= (g, bigi)
= bigi(M:).

Thus, by (5.11) and (5.12), ¢é(A;) = b;.
“if”
Suppose that ¢(X;) = b;, for all z. To show ¢(T') = A, we need only check the basis
vector g;. Hence, we must show that ¢(T)"g; = b;g;, for all 7. It is enough to show
that

(#(T) g:, 95) = (bigs, g;), for all i, j.
Observe that

$(T)g: = ¢g: — Ba

for some ¢; € Hy(D), for all <. Also, since g; L BH,(D),

(gi,Bg;) =0, for allz,j.
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Thus,
(#(T)g:i,95) = (9:,4(T)g;)
= (g:,49; — Bg;)
= (g:, %9;)
= {4959
= $(X)g;(h)

= ¢(X)gi(A;) since gi(A;) = g;(A)-
Now since (b;g:, g;) = b;gi(\:) and ¢(\;) = b;, we are done. m]

With the above results, we have the following main theorem.

Theorem 5.4 (Nevanlinna-Pick Theorem)

There ezists an analytic function ¢ : D — D such that ||$|| < 1 and $(\;) = b;, for
all ¢ if and only if the Pick matriz

1 — bb;
= > 0.
[1—/\;1\,'} 20

Proof:

By Sarason’s Theorem, there exists an interpolating function ¢ such that [[¢|[e < 1
(i.e., ¢ : D — D) if and only if ||A[| < 1 where A = ¢(T). By Lemma 5.3, we
need necessary and sufficient conditions such that A : X — X, A~g; = b;g;, satisfies

Al < 1.

Now

Al <1
if and only if

A7 <1
if and only if

(Ag,A%g) < (g,g), forallge X. (5.13)
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By Lemma 5.1, any g € X may be uniquely represented by
9= aig
=1
for some {a;}. Now
(9:9) = ) oa(gi95)

1<ij<n
= Y ame(d))
1<ij<n
so that
1
(9.9) = &0 ——=—.
1<§<n d 1- ’\ ’\
But
A"g = aibigri + ... + anboga
and so
1
(A7g,A%g) = c;a;bib
1<tz,1:<n L -XN 1- ’\ ’\
Therefore (5.13) holds if and only if
1 1
;@ < T =
1<12_1:<n b 1-X iAj 15:‘2.3':gn 1- Aid;
That is, _
1 —b;b;
0< o d; ( ~J )
15:‘2.;;5': \1- ’\t'bj

Since the a; are arbitrary, the Pick matrix must be positive semi-definite.

Thus, by the above results, we may solve the problem

Yopt = Qéngm 171 — T2,Qllw

127

(5.14)

(5.15)

using Nevanlinna-Pick interpolation. Now suppose our “tall” problem (5.1) can be

rewritten so that instead we are solving the scalar problem

7= izt IF - BQlle

(5.16)
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where FF € RH,, and B is inner. We shall show in Section 5.4 that our acoustic
problem can in fact be rewritten this way. The following theorem and its corollary

provide a simple method to compute this infimum.

Theorem 5.5 [Vid85, page 197]

Let Ay, A2, ..., Ar be the simple zeros of B. Suppose F € RH,. Define the
following:
Q = Block Diagonal{F'(z\l ), s F'(,\k)}

and

T=[T, i5o=1, ..., k

where

[T):; = T

and Q € %k T e %%, Then

i — =1 4 -Q° . .
0dtf, IF - BQllw mf{7 4T QQ>0} (5.17)

Proof:

Examining the proof of Theorem 5.4 we see that the matrix representation of A"
with respect to the basis {g;} is the diagonal matrix Q with entries b; (see (5.15)).
Let a be the coordinates of some arbitrary element g € X. Then

1A%gl* = IQall* = a2 Qa.

Also by (5.14),

llgll* = a'Te
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where
[Tl = 7=
Y- AN
Thus,
A <~
or,
14”gl1> < ¥*llgll?
if and only if

~'T - Q°Q > 0.

0

From the proof of Theorem 5.5, both ' and Q22 are positive definite and Hermitian.

Corollary 5.6 (e.g., [DFT92])

Let omaz(M) denote the mazimum eigenvalue of a symmetric matriz M € IR"*".

Then,
I o= inf{7 T — Q0 > 0}

- \/ama,,(F'l/zQ'QI“l/"’).

Proof:

By simple manipulation we obtain

Y L-Q" Q>0

4T > Q-0

JATT-V/? > Q-Qr-1/2

y2I > IY2QQr-Y2 since y€ C
((72[ - I“l/zﬂ'QI"l/z)z,z> > 0.

t ¢ ¢ ¢
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Therefore
inf{—y . T —Q°Q > o} - inf{7 : {(+*1 - D72Q-Qr YY)z, 2) > o}.

Now 72T — 2°Q > 0 if and only if 12 > gus (F-I/ZQ-QF-I“). Thaus,

Je = ‘/am, (r—l/zn-m*-m).
(]

These results hold for the scalar model-matching problem. In the next section, we
shall see how these results may be used to solve the tall model-matching problem.

5.4 Solving the Tall Model-Matching Problem

Recall that
Yopt = Qei%x HT; - TzQ”oo
where
T, € RHm*!
T, € RH®*!

and m is the number of observation (performance) points. We need to rewrite this
so that it is a scalar problem. Recall that T) and T are strictly proper and assume
T; has no zeros on the imaginary axis. We can then apply the results from the

previous section. Factor

T, =TT,
where T3, € RHZ*! is inner with no zeros on the imaginary axis except possibly
as s = oo and T3, € RH is outer. By Theorem 5.2, T,, may be absorbed into the

free parameter Q.
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Definition 5.3

A complementary inner factor (CIF) is defined to be a matriz © € RH™*(™-1) sych
that for M € RH™*! inner, ® € RH™*™ given by

& =M O]

is square and inner.

By [Vid85, Lemma 7, page 213], we may construct a square inner matrix & €

T,
T.=%
gim=1)x

¢=|1, o]

RHZ*™ such that

and

where © € RH™*(™~1) js the complementary inner factor of T;. Thus

1Ty — 2@l =

Let

A
} = &"T, € M(Lo).

oL

Therefore we may write

ITy = T2Qllo =

= =]
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A-Q
c

If we can find My, where My, M{' € M(RH,,), such that M{ M; = I — G*G, then
M, is a left spectral factor of [ — G=G.

Let Q = T5,Q. Then

1Ty ~ T2Q|le = (5.18)

Definition 5.4

Definition 5.5

If we can find M., where M,, M' € M(RH), such that M. M = [ — GG~, then
M, is a right spectral factor of [ — GG*.

The following lemma is needed to reduce (5.18) further to a scalar problem.

Lemma 5.4 [Vid85, Lemma 27, page 216]

X
Suppose W = I: € M(Lo) is rational. If ||Y |l < v, then ||[Wlle < v if and
Y

only if | X (7] — Y"Y)"¥?||, < 1.

Note: (y2I — Y"Y)~'/2 denotes the left spectral factor of (y2] — Y"Y)~!.

Proof:
Clearly ||[Wllo 2 ||Y]lco. Now [|W||ao < v if and only if
W(rw)W=(yw) < ~%I, for all w
& (XX +YY")(quw) <121, forall w
& (XX7)(w) < (I -YY")(yw), for all w.
If v > [Y]lo, (7% — Y"Y)¥/? exists and has an inverse in M(H,) [Vid85]. The

result now follows. ]
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4

inf AR -CC)Y YV - Q|lo < 1.
P |A(y ) Qlleo <

Theorem 5.7

inf

. <~
QEM(RHx)

o0

if and only if

Proof:

From Theorem 5.4 we know

if and only if

_inf (A= Q)PT-CC) Y, <1
GeM(RH)

where ||C||c < 7. Now

I(A = Q)2 = C"C) o = |A(Y*] = C*C)™'/2 = Q(1*] - C*C) ™| s
and (y*I — C*C)~/? € M(RH) since ||Cllc < 7. Thus, let § = Q(+21 —
C*C)~Y? € M(RH,) (another free parameter). 0

Observe that A(y*I —C=C)~'/2 € M(Ls) (not necessarily stable) and Q € M(H)
(stable).

Definition 5.6

Suppose D, N € M(Hy). Then D and N are left coprime if and only if there ezist
X,Y € M(H,,) such that XD +YN =1I.
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Definition 5.7

Let G € M(Ls). An ordered pair (D,N) where D, N € M(RH.) is a

left coprime factorization of G if

1) D is square and |D| # 0,
2) G=D"'N, and
8) D and N are left coprime.

Let L = (y2I — C~C)~'/2. Since AL € M(L,), it has a left coprime factorization
(D, N) so that AL = D='N where D, N € M(RH). Let D = D,D; be an
inner/outer factorization where D, is a unit (i.e., has an inverse in M(RH)). So

- -

AL=D"'N =D'D;'N = D'V (5.19)

where V = D;'N € M(RH,,). Recall from properties of matrices that

Acd
A"l = TaT
Thus,
1AL = Qllee = 1157V = Qlle
= % - Q“m .
Since |D;| = 1 on the imaginary axis,
IAL = Qlleo = [|F — BQ|lo (5.20)

where F = D!¥D-'N and B = |D;|. Details of how to find D; and V may be
found in Appendix A, Section A.1.2.

This is now a scalar problem which can be solved using Corollary 5.6.
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5.5 Implementation

The results of the previous section are summarized in the following algorithm.
Some difficulties associated with computation are then discussed. Details of routine

calculations, such as inner/outer factorizations, are in Appendix A.

Algorithm

Step (1) Calculate an inner/outer factorization of T,

Tz = TziTzo.

Step (2) Construct a square inner matrix ® such that

T,
Tg =&
O(m-tyxt

where ® = [ T,. © ] and © is the complementary inner factor.

Step (3) Find A and C such that

A
= -Tl.
C
Step (4) Choose v > ||C||co-
Step (5) Calculate L = (y*I — C~C)~1/2,
Step (6) Solve
J*=_inf ||AL - Qe (5.21)

QeM(RHcx)

as follows.

6(a) Calculate a left coprime factorization (D, N) for AL: AL = D-!N.
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6(b) Calculate an inner/outer factorization for D: D = D,D;.
6(c) Let F = D!¥D-'N and B = |D;].
6(d) Find the (simple) zeros of B (call them {A;, Az, ..., Ac}).
6(e) Form

(1) $ = Block Diagonal{F~(\;), ..., F*(\)},

(i) T = [I};] where

6(f) Compute

Je = \ﬂm (r‘—llm-ar—lﬂ).

Step (7) If J* < 1, decrease v and go to Step (5). If J* > 1, increase 7y and go to
Step (5). Stop when J= = 1. The optimal « is the current choice of 7.

In each step we must either determine a factorization or perform a numerical cal-
culation such as determining zeros or computing the norm of a transfer matrix, for

instance. Recall that we are solving a tall model-matching problem. That is,

Yopt = Qel}%wa 17y — T2Q|leo

where Ty, T, € RHZ*!. If we are to consider the problem of “global” noise reduc-
tion, then the number of rows of T; and T (representing the number of performance
points) must be allowed to increase. In addition, the elements of T} and T; are ra-
tional approximations with increasing dimension (see Problem 4 on page 27). Thus,
the degree of each element is potentially very large, depending on the dimension
n of the finite-dimensional approximating space used. We can see that the imple-
mentation of the algorithm becomes unwieldy very quickly.
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Because of this, we found it necessary to be clever in the execution of each step
of the algorithm. In particular, to prevent degree inflation and to circumvent the
accumulation of numerical errors, it was essential that we employ model reduction
techniques at every step. In the next section, we describe some approaches to model

reduction.

5.5.1 Model Reduction

A realization which is both controllable and observable is called minimal We
may find a minimal realization by “removing” first any uncontrollable modes, and
then any unobservable modes. For a single-input/single-output system, finding a
minimal realization is essentially cancelling common poles and zeros in the transfer

function. A numerically stable method is via balanced realizations.

Minimal and balanced realizations play a very important role in every aspect of the
algorithm. They are used in every step that requires factorizations or the solution of
a Riccati equation. Without these realizations, matrices become poorly conditioned
and the degree of the transfer function in question inflates, causing the algorithm
to fail.

Let us consider a strictly proper transfer function G(s). A balanced realization of

G(s) = C(sI — A)™'B :=[A, B,C, 0] is one such that the Lyapunov equations
AP+ PAT + BBT =0 (5.22)

and

ATQ+QA+CTC=0 (5.23)
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have a common diagonal solution X = P = Q such that

- -

ool 0 ... 0 O
0 0’2[ 0 0
X = . (5.24)
: 0o - :
0 0 ... 0 o]

where o; are known as the system singular values. (e.g., [Mac89]). The solution P
to (5.22) is called the controllability gramian. Similarly, the solution Q to (5.23) is
called the observability gramian. In order to reduce the order of the model, we toss
out the “small” o, representing the unobservable and/or uncontrollable modes.
The balanced realization of the original system is further reduced by discarding
those states which are weakly coupled to the inputs and outputs.

One method for obtaining a balanced realization of the original system is given in
[Moo81]. Suppose P = @ = X as in (5.24). Let Gi(s) is the k** order reduced
model, P the balanced controllability gramian, and Q the balanced observability

gramian. Then

1G(s) = Ge(s)lw <2 3" 0w

i=k+1
Thus, an error bound is easily obtained. A common criterion for order reduction is

to choose k such that ||G(s) — Gi(s)|le < € for some € > 0.

The question remains, how do we know which modes to discard? That is, at what
point does a mode become essentially uncontrollable or unobservable? Unfortu-
nately, the answer is more an art than a science. In the model reductions performed
during the implementation of the algorithm, special care had to be taken not to
move or remove any right half plane zeros of T} since this would alter the solution
to the model-matching problem. In addition, care had to be given not to change

the frequency response characteristics of the transfer function involved, since this
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too would alter the solution to the problem. Thus, for n sufficiently large, the
pattern of the right half plane zeros (the number and location) was observed before

determining the most reasonable tolerance to be used in the model reduction.

5.5.2 Programming

The factorizations used in the implementation of the algorithm are discussed in
Appendix A. These factorizations generally require the solution of either one or two
algebraic Riccati equations. The factorizations are, for the most part, easily coded
in Matlab [Mat94]. However, some of the methods to obtain these factorizations
require that the state-space representations be non-strictly proper. Therefore, to
alter the state-space form, a “relative degree” trick was used, the details of which
may be found in Appendix A, Section A.2.

Finally, we would be remiss if we did not mention that all programs used in the
course of this work were written in Matlab [Mat94]. Source code is listed in Ap-
pendix B. However, because of the size and complexity of the problem, most of
the code had to be converted to C. This was done using the Matlab command
mcc. Using this command was far from trivial. Unfortunately, the conversion was
unreliable since mcc was unable to convert many of the more numerically intensive
Matlab modules, such as the Riccati equation solver. Conversion had to be checked
by hand.



Chapter 6

A chievable Acoustic Noise

Reduction

In Chapter 5, we presented the algorithm required to solve Problem 4, the tall acous-
tic noise reduction problem with finite-dimensional approximations (see page 27).
In Chapter 4, we showed that with an appropriate approximation scheme, the solu-
tion to Problem 4 converges to the solution of Problem 3, the infinite-dimensional
acoustic noise reduction problem (see page 26). By increasing the number of ob-
servation points r; and varying the location of the controller sensing point at z,
and controller actuating point at z,, we will discuss the solution to the problem of

achievable global noise reduction for a disturbance at z4.

In the design of a controller, we may use either feedback or feedforward design.
Recall that when the sensor location z, is located to the right of the actuator
location z, so that z, > z,, we refer to this as a feedback system. Similarly,
when z, < z,, we refer to this as a feedforward system. Both configurations are

illustrated in Figure 2.3.

140
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First, let us consider feedback design. There are a number of questions that we may
pose. How does noise reduction with an increasing number m of observation points
z; located throughout the duct compare to the achievable level of noise reduction
at a single point in the duct? Is it possible to reduce noise everywhere in the duct
to a level comparable to that of reducing noise at a single point? How does the level
of achievable noise reduction vary as z, is varied? Similarly, how does the level of
achievable noise reduction vary as z, is varied? Finally, suppose that both z, and
z, are fixed. How does the location of the observation points z; about these fixed

locations affect the achievable noise reduction?

Second, let us consider feedforward design. Suppose z, and z, are both fixed. How
does an increasing number of observation points z; between z, and z, affect the
achievable level of acoustic noise reduction? What is the achievable level of noise

reduction at observation points located to the right of z,?

In the results that follow, we will try to answer these questions.

6.1 Numerical Preliminaries

Recall that we are solving an infinite-dimensional problem by approximating it
on successively larger finite-dimensional subspaces using Legendre polynomials or
linear splines. We know from Chapter 4 that our approximating plant transfer
function G, is converging to the exact transfer function G over any compact interval
as n increases. We also know that the associated inner factors are also converging
over any compact interval as n increases. Because of the computational intensity of
the problem, we will determine a priori what value of = is sufficient for all further
calculations. Recall the problem we are solving (see Problems 3 and 4 on pages 26

and 27, respectively). Let m be the number of observation (or performance) points
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in the duct. Let z € {z;, z2, ..., Tm}. Then

Wi (Gn(zla 3d) - Gn(zly za)Gn(zn zd)Q

o Wl(Gn(zz,zd)—Gn(zz,za)cn(z.,zd)cz
7’1 = lanGRch . (6 1)

Wl (Gn(zma zd) - Gn(zmy za)Gn(zn zd)Q)
= infgern, |11 — T2Q||o-

Let the length L of the duct be 4 metres. Let Wi(s) = Zlﬁ (so that low frequencies
1000
are weighted) and K = 0.7 (so that the boundary at z = L is partially absorptive

and reflective). Also, let the disturbance location z, be fixed at zero.
We want to find n so that v, = v where

Wl G(zh :Dd) - G(:Blv ZQ)G(Z,, zd)Q
Wi G(z2,za) — G(z2,2.)G(z,,24)Q

W, (G(zm,zd) _ G(.zm,za)G(z,,zd)Q)

Suppose Legendre polynomials are used in the approximation scheme. We will
consider four cases: m = 1 (the SISO case), m = 2, m = 3, and m = 4, ie.,
one, two, three, and four observation points. For the numerical computations, we
let z, = 1 and z, = 0. The following observation points are used. For m = 1,
z =2 form =2 z¢€ {15, 2}; for m =3, z € {1.5, 2, 2.5}; and for m = 4,
z € {0, 1, 2, ,3}. The exact value for m = 1, where z, = 1 and z = 2 is -2.21
dB [Mor97a]. The convergence results are shown in Figure 6.1. The solid line in
Figure 6.1 is for m = 1. Comparing this achievable noise reduction at a single point
with the exact solution of -2.21 dB we see that even for n = 30, that the sequence

{7} has not yet converged to the exact value. However, the v, versus n results
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Figure 6.1: Legendre polynomials: determining n for convergence: «, ver-
sus dimension n for m = 1 (solid), m = 2 (dashed), m = 3
(dash/dot), and m = 4 (dot)

in Figure 6.1 for m = 1,2, 3, and 4 appear to be converging for n > 24. Thus, we
conclude that n at least 25 is adequate for all further calculations.

In Chapter 4, numerical results indicated that linear splines also provide a suitable
approximation scheme. As for Legendre polynomials, we need to determine n such
that 9, =~ . Again we consider four cases: m = 1 (the SISO case), m = 2, m = 3,
and m = 4. The same point locations used for Legendre polynomials are used
here. Figure 6.2 shows the computed values of v, for increasing values of n. As
for Legendre polynomials, we can see that the sequence {v,} is converging as n
gets large. In fact, it appears that n = 15 is sufficient for all further calculations.
This is significantly smaller than the value of 25 determined earlier for Legendre
polynomials.
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In order to ensure that any further calculations of 4, using linear splines are rea-
sonable (in the sense that they are “close” to those determined using Legendre
polynomials) we compared the computed values of 4, versus n for m = 1, m = 2,
m = 3, and m = 4 found using both Legendre polynomials and linear splines. These
results are shown in Figure 6.3. We can see that v, for linear splines are slightly
larger than v, for Legendre polynomials, although both appear to be converging to
the same approximate value. Because we are solving a delicate numerical optimal

sensitivity problem, we expect the jaggedness of the results given in Figure 6.3.

Recall that in Section 2.3.1 we reviewed the solution to the problem of achievable
noise reduction at a single point through point control. The exact solution to this
problem is known [Mor97a). For z, = 2, z4 = 0, and z, = 0, the achievable noise
reduction at z = 1 and at z = 2.5, for example, are identical. Figure 6.4 shows
this exact solution (-0.8 dB) as well as the computed values for linear splines and
Legendre polynomials. We can see that the computed solutions are very close to
each other for all n and are in fact converging to the exact solution. Figure 6.5
illustrates the relative rate of convergence for linear splines and Legendre polyno-
mials to the exact solution. As noted earlier, we see that linear splines do converge

markedly faster.

Thus, in the results that follow, n = 25 is used for the Legendre polynomial based
approximation scheme and n = 15 is used for linear splines. Because the Leg-
endre polynomial approximations are uniformly stable, we shall use this scheme
first. However, in some cases, linear spline based approximations prove to be more
acceptable and versatile. Thus, in these cases, we use linear splines. Where not
specified, we assume that Legendre polynomials are being used. In Chapter 7, we
will discuss the differences in properties exhibited by these two schemes and study
which properties affect controller design.
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However, before proceeding, we first set a baseline for comparison of all future noise
reduction results. Naturally, this choice is the uncontrolled level in the duct; that is,
IT1]lco. Using n = 25 basis functions and Legendre polynomials, we calculated the
following. Consider three cases: m =1 (z =2), m =2 (z = {1.5, 2}),and m = 3
(z = {15, 2, 2.5}). For m = 1, ||T}|lo = 3.0980 dB; for m = 2, ||T}||cc = 5.9556
dB; and for m = 3, [[T1]| = 7.6484 dB. The norm could not be computed for
m = 4 because of near singular matrices caused by the choice of z; (see Section
6.2). From Figure 6.3 we see that introduction of the controller reduces the noise

level in the duct anywhere from 3 to 6 dB.

In the remainder of this chapter, we focus on the question of achievable acoustic
noise reduction. Results obtained will be compared relative to other noise reduction
results, so that the effect of point location on the achievable noise reduction level

may be determined.
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Figure 6.2: Linear splines: determining n for convergence: v, versus dimen-
sion » for m = 1 (solid), m = 2 (dashed), m = 3 (dash/dot),
and m = 4 (dot)
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6.2 Feedback Design

In the study of the achievable level of acoustic noise reduction in the duct, there
are three parameters that are allowed to vary. These are the sensor location z,, the
actuator location z,, and the number and location of the observation or performance

points z;.

Analysis of the problem of achievable noise reduction at a point (see Section 2.3.1)
showed that z, should be as close as possible to the disturbance at z4. In the
feedback design case, this implies that z, is as close as possible to the z4 (since
zq < T, < z,). However, we are still free to change the location z, of the sensor

and the number and location of the observation points z;.

To help us in our choice of z,, recall the following. The concept of “good” and
“bad” z, points was first introduced in the SISO feedforward case where z4 = 0,
z, > z,, and £ > z, (see Section 2.3.1). Recall that Morris [Mor97a] showed that

the achievable noise reduction at a point is better at

Te = ok 41 (6-2)
than at
L
Ta ﬁ’ (63)

where k is some positive integer. Thus, the points given in (6.2) are referred to as

“good” points whereas the points in (6.3) are referred to as “bad” points. We will

test some typical good and bad points in the feedback case. Since we know that the

feedback sensor at z, should be placed as close as possible to z4 for the best noise

reduction results, we will generally restrict ourselves to z, small, say 0 < z, < 1.
L L

For example, some good z, points are {4L_1’ 20> 17} and some bad z, points are

{%, %, %} We will also consider z, = 0 and z, =1 (good points).
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In order to study the problem of global noise reduction, we consider an interval of
the duct and increase the number of observation points in this interval. Let z,,;, and
Zmaz bDe the minimum and maximum values of z, respectively. To avoid numerical
difficulties when implementing the algorithm we must determine beforehand what

values of Zn;, and z,,.. are possible.

The interpolation technique used is only valid for non-repeated open right half plane
zeros in T3 (see (6.1)). Thus, we must avoid the situation when |z; — z,| = |z, - z4|,
for any ¢ = 1,2,...,m 45 well, for z4 = 0, we cannot have |z; — z,| = |z,],
for any i:. With z, small (i.e., close to z4 = 0), we cannot have any z; =~ z,.
In addition, we cannot have any z; too close to zg4, since for z; =~ z4, we have
G(z;i,z4) =~ G(zi,z;) = I. Numerically for this to be true, we need an exact
cancellation of poles and zeros, and attempting to do so leads to poorly conditioned
and nearly singular matrices. Similarly, we also cannot have any z; too close to
z4. Through numerical simulations and a trial and error approach, we found that

Zmin = 0.25 worked well as a minimum observation point.

According to the exact solution to the SISO feedback problem, « is independent of
z for 2(L — z) > z, (see Section 2.3.1). For K < 1, v decreases for ”‘—;"- <z< L.

Thus, we let Tz = L;’* Let m be the number of observation points and define

Az = M, for m > 1.
m-—1
The set of observation points {z;, 2, ..., Zm} is chosen such that

T = ZTmin+ (1 — 1)Az, forz=12,...,m

and z; # z, for any i. For m = 1, £ = ZminitZmaz (the midpoint of the interval
considered). We will consider the cases z, = {1, 2, 3}, z, = {%, %, %} =
{0.0976, 0.1905, 0.3636} (good points), z, = {Z, £, L} = {0.1, 0.2, 0.4} (bad

points), 2, =0,z, = 1l,and m =1, ..., 10.
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Global Noise Reduction

With these preliminaries, let us now determine how the achievable level of noise
reduction in the duct with an increasing number of observation points compares
to the achievable level of noise reduction at a single point. Suppose that instead
of having m distinct observation points z; we have m identical observation points
z; = Z. Defining F; = W1Gn(z:,z4) — W1Gn(zi, 3)Gn(zs,24)Q for i = 1,2,...,m,
the H, optimal control problem of finding Q € RH,, such that

Fy
F

Fr

can be written as
,]Y2
|7+ 152+ 1P| ] <o
o0

Soif F;=F,forall t=1,2,...,m, then
Y

T

Now, the achievable noise reduction v for m distinct points can be no better than

”Fluoo S

placing m observation points at one location in the duct. That is, if (™ is the

achievable noise reduction for m distinct points, then

1™ 2 ),
where 71} is the optimal noise reduction with any one point. In particular, let y(!)
be the noise reduction for z = 2 (at the centre of the duct).

Figures 6.6 — 6.11 show that 7(™), form = 1, 2,...,10, is very close to v{!),/m. This

implies that the minimum possible global (as m increases) acoustic noise reduction
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(™) is attainable. Physically, this means that noise may be reduced everywhere in

the duct to a level comparable to that of noise reduction at a single point.
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Effect of sensor location z,

Suppose that z, is fixed. In particular, let z, = 0. Figure 6.12 shows the depen-
dence of v on the location of the sensing point at z,. In this figure, the relative
location of z,, z,, and z; are also illustrated. Each horizontal line in the figure
represents the computed value of 7 for some particular choice of z,, z4, z,, and ob-
servation points z;. These point locations are visually displayed on each horizontal
line with the appropriate symbol. With several cases (v determined for different
points) displayed in each figure, we can easily see the effect of point location on
achievable noise reduction. We find that the achievable noise reduction v is better
for z, smaller (i.e., z, = 1). Similar results for z, = {0.0976, 0.1905, 0.3636} and
zs = {0.1, 0.2, 0.4} are also given in Figures 6.13 and 6.14.

The role of the sensor at z, is to measure the effect of the disturbance at zq = 0 and
to use this information in the controller design. The closer z, is to z4, the smaller
the delay in measurement of the actual disturbance. In this case, a controller is
designed that acts almost immediately to try to éancel the disturbance seen in the

duct. Thus, we expect the achievable noise reduction to be best for z, small.
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Effect of actuator location z,

Suppose that z, is fixed. Figures 6.15-6.17 show the dependence of v on the location
of the actuating point at z,. Forz, = 1,5 <y < 6.5. Forz, = 2,8 < 7 < 9.25 (for
good z, points) and 7.5 < ¥ < 9.5 (for bad z, points). For z, = 3, 9.25 < v < 9.75
(for good z, points) and 8 < v < 9.75 (for bad z, points). Thus, for each fixed
location z, considered, the variation in v is no more than 2 dB. However, what is
interesting to note is that, for fixed z,, the achievable level of noise reduction is
better for z, larger. That is, the results are better for z, closer to z, rather than for
z, closer to z4 = 0. Recall that although the disturbance is introduced into the duct
at z4, it is actually measured at z,. Thus, the closer z, is to z,, the more closely
the control wave will be a mirror image of the disturbance seen by the controller so
that the disturbance seen near z, and z, is reduced. Unfortunately, the disturbance
at zq = 0 is not directly cancelled. However, z, and z, are sufficiently close that

the control wave acts to cancel all disturbances for performance points near z = 0.
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Effect of observation point locations z;

Again let us consider feedback design with z, > z,. In this case, we keep both
the sensor location z, and the actuator location z, fixed, and move the observation
points about z, and z,. Suppose z, = 2 and z, = 1. Figure 6.18 shows the value
of v for four different cases of multiple observation points: two observation points
both located before z,; two observation points located between z, and z,; two
observation points located after z,; and four observation points located after z,.
We observe the following. The achievable noise reduction is best for observation
points located between the sensor and actuator. The achievable noise reduction is

worst for observation points located after the sensing point.



CHAPTER 6. ACHIEVABLE ACOUSTIC NOISE REDUCTION 169

Thus, the noise level at points located between the sensing point at z, and the
actuating point at z, can be reduced more than at points outside this interval. In
the next section, we compare this best case (z; between z, and z,) in the feedback

case to the analogous situation in the feedforward case (where z, < z,).

Consider now a linear spline based approximating scheme rather than Legendre
polynomials. By using linear splines, we find that we have greater freedom in
varying the location of the observation points z; in relation to z, and z,. Suppose
z, = 2 and z, = 1. Figure 6.19 shows the value of v for several different cases of

multiple observation points.

The relative location of each performance point is indicated by the appropriate
symbol in Figure 6.19. We observe the following. The achievable noise reduction
is best for observation points located close to the sensor at z,. In this case, the
controller is directly using these points (nearby the control point) to compute the
noise cancellation signal. Points located at varying locations in the duct and more
importantly further away from the sensing point at z, do not greatly affect the
determination of the control signal as those points located closer to z,. For this
same reason, the achievable noise reduction worsens when observation points are
placed before the control point at z,. As well, the achievable noise reduction is worst
for observation points located over the entire duct, be they before z,, between z,

and z,, or after z,.
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6.3 Feedforward Design

Consider the feedforward case, z, > z,. Figure 6.20 shows the results for m = 2
and m = 4, where all observation points are located between z, and z,. We see
that performance declines drastically with a larger number of observation points.
Also if we compare Figure 6.18 with Figure 6.20 when the observation points are
between z, and z, (and m = 2), we see that the feedforward design produces results

which are only slightly better than the feedback case.

With both feedback and feedforward systems, we have the concern of reflected
waves caused by the boundaries combining with the control wave. The net result
is a disturbance that is not initially seen by the controller or used in the controller

design. Thus, even feedforward control contains “feedback” due to these reflections.
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Severe numerical difficulties were encountered for observation point locations z; <
z,. In particular, we found that the algorithm failed when performing the in-
ner/outer factorization (see Step (1) of the algorithm in Section 5.5). Thus far,
considerable effort has been made to study the problem of achievable (global) noise
reduction using Legendre polynomials in both feedback and feedforward design.
However, this approximation scheme falls short in the case of feedforward design
where we found great difficulties in varying the location of the observation points z;
in relation to the sensing point location z, and the actuating point location z,. For
this reason, we used a linear spline based approximation scheme. In Chapter 7, we
will study the approximations of the inner factors for both Legendre polynomials

and linear splines.

Suppose z, = 1/3 and z, = 4/3. Figure 6.21 shows the value of v for four different
cases. We see that with multiple observation points located either 1) between
the control point at z, and the sensing point at z,, or 2) between these points
as well as after the control point, the achievable noise reduction only varies by 1
or 2 dB. Numerical results indicate that the achievable noise reduction decreases
with an increasing number of observation points between z, and z,. Also we see
that the feedback design produces results which are only slightly better than the
feedforward case. In effect, the two cases illustrated in Figures 6.19 and 6.21 are
duals of each other in that the locations of z, and z, have been switched. For z,
and z, small enough, the reflective waves produced at the boundary z = L do not
pose any serious concerns, thereby giving the appearance that both cases (feedback

and feedforward) do not significantly differ in their results.
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Figure 6.21: Feedforward (linear splines): -y versus locations ( z; (x), z, = 1/3
(0), za = 4/3 (+) )
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6.4 Discussion

Figures 6.19 and 6.21 show the general picture of how feedback control compares
to feedforward control. Consider each case in more detail. First consider feedback
control. Figure 6.22(a)-(c) is Figure 6.19 expanded in more detail. Figure 6.22(a)
shows the best noise reduction scenarios whereas Figure 6.22(c) shows the worst.
We can see that as the number of performance or observation points z; increases
before the actuator at z, and after the sensor at z,, the achievable noise reduction
worsens. The achievable noise reduction is best for performance points located near

the actuator at z,.

Now consider feedforward design. Figure 6.23(a)-(d) is Figure 6.21 expanded. In
all cases, there are a number of observation points z; between the sensor at z, and
the actuator at z,. As expected, the achievable noise reduction worsens for an
increasing number of points between z, and z,, and is worst for observation points
located before z, and after z,. Performance or observation points located outside
the interval [z,, z,] (in the feedforward case) or [z,, z,] (in the feedback case) places
these points outside the “controller loop” where the controller has the most effect
on the disturbance. Also, observation points located closer to the ends of the duct
where either the disturbance is being introduced (at z = 0) or waves are being
absorbed and reflected (at z = 0 and z = L) and further away from the control

signal at z, will have a greater level of noise measured.

Finally let us consider the variation in the achievable noise reduction for different
scenarios presented in the feedback design case. Results in Figure 6.19 show that if
the number of observation points increases in the duct, then the noise level changes
from approximately 0 dB to just over 5 dB. Thus, there is a significant variation in

results as the number of points increases. Similarly, we can consider the variation
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in the achievable noise reduction for different scenarios in the feedforward design
case. Figure 6.21 shows that the noise level varies from approximately 3 dB to
around 7.5 dB.

In order to achieve the best level of acoustic noise reduction in the duct, the follow-
ing point placements are recommended. In the feedback design case, the sensor at
z, should be placed as close as possible to the disturbance at z4. In addition, the
actuator at z, should be placed as close as possible to the sensor. Not surprisingly,
since z4 < T, < Z,, these point placements suggest that z, and z, should be as close
as possible to z4. Feedforward design results indicate the same point placement.
Numerical results with these point locations imply that the highest achievable noise
reduction is for performance points situated between z, and z,, whereas the worst

noise reduction observed is when performance points are located after z,.

Results concerning the dependence of the achievable level of noise reduction on
the number of observation points imply that noise can be reduced everywhere in
the duct but not to some arbitrarily small level. Assuming a wide range of per-
formance point locations throughout the duct, results also indicate that feedback

design produces slightly better results than feedforward design.
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Chapter 7

Properties of Approximations for

Control

In Chapter 4, we showed that Legendre polynomials provide a suitable approxima-
tion method for both simulation and control. A linear spline based approximation
method was also considered. We showed that this method may be suitable for con-

trol since the approximating transfer functions and inner factors are converging.

Existing theorems indicate that an open loop convergent approximating scheme for
a bounded control system is also closed loop convergent if the scheme is uniformly
stabilizable and/or detectable. We saw in Chapter 3 that for certain classes of sys-
tems where results have been obtained, that uniform stabilizability is a sufficient
condition for the convergence of the Riccati operator in the approximating LQR
problem (see [BK84| for the bounded control case, [BI97] and [IT89] for results
that apply to some unbounded control problems). In this chapter, we consider
whether uniform stabilizability is a necessary condition for controller design for
finite-dimensional approximations. In addition, we compare the ability of Legendre

178
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polynomials and linear splines to approximate inner factors in both feedback and
feedforward design and also discuss the symmetry properties exhibited in either
case. We begin by considering the question of uniform stabilizability of approxima-

tions.

7.1 Uniform Stabilizability of Approximations
We consider three basic control systems. These are summarized as follows.

(1) Infinite-dimensional operator control systems: Let w € H satisfy the

equation

w(t) = Aw(t) + Bu(t), t>0, w(0)=wo (7.1)

where A: D(A) CH — Hand B € L(U,H). We will assume, in general, that
U = IR®. The operator A is an unbounded linear operator which generates a

strongly continuous semigroup of bounded linear operators in .

(2) Finite-dimensional operator control systems: Let {H,}32, be a sequence
of finite-dimensional subspaces of H. Let A, € L(H,) and B, € L(U,H,)
be approximations of A and B € H,, respectively. Let w, € H, satisfy the
equation

Wn(t) = Anwa(t) + Bau(t), £>0, wn(0) = wn,. (7.2)

(3) Finite-dimensional matrix representations: Let {#:}}_, be a basis for
H. and {i};_, be a basis for U. Then (2) can be represented by a lin-
ear system in IR". Namely, let w, € IR" satisfy the equation

Wn(t) = Anwa(t) + Buu(t), t>0, wn(0) = wn,. (7.3)
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The matrices A, and B, are the matrix representations of the operators A,

and B,.

Recall that the problem we are studying is an unbounded control problem. Unfor-
tunately, well established results to determine whether or not a system is uniformly
stabilizable exist only for bounded control systems. For example, Banks and Ku-
nisch [BK84] describe a class of approximating systems that satisfy a condition
they refer to as a preservation of ezponential stabilizability under approzimation.
Peichl and Wang [PW97] give a necessary condition for the uniform stabilizability
of the approximating systems for the wave equation with damping in the bound-
ary conditions. Their main result may be summarized as follows. If the finite-
dimensional approximating systems are uniformly stabilizable for all dimensions
n and the choices of bases for the approximating state-space and control space
satisfy a uniform norm equivalence condition, then the margin of stabilizability is
uniformly bounded away from zero. Thus, if the margin of stabilizability tends to
zero, then the approximating system is not uniformly stabilizable. It is interest-
ing to note that one common scheme for approximating the one-dimensional wave
equation (the one-dimensional duct problem) is to use finite differences. However,
Peichl and Wang [PW97] show numerically that the finite difference approximation
of the wave equation with bounded control is not uniformly exponentially stabiliz-
able. Again this result is proven only for bounded control systems. In this chapter,
we will look at the work of Peichl and Wang and assume, without proof, that their

results extend to our unbounded control system.
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7.1.1 Uniform Stabilizability and the Margin of Stabiliz-
ability

In this section, we present the results of Peichl and Wang which describe the con-

nection between uniform stabilizability and the margin of stabilizability.

Consider the (possibly infinite-dimensional) system given in (7.1) and the approxi-
mations given in (7.2) and (7.3). We require the following definition.

Definition 7.1 (Margin of Stabilizability for Matriz Representations [PW97])

Let A, € R and B, € R"*P. The margin of stabilizability of (An, B,) is defined

by

~o(An, Ba) = min{u[JA,,, 5Bullly s (An + 8An, B + 6B,) is not stabih’zable}

where || - ||2 is the matriz norm induced by the Euclidean vector norm.

The matrix representations A, and B, in the above definition are basis function
dependent. If we consider instead the analogous case of approximating operators,
we have a similar definition. Let [A,, B,] be a linear operator in L(H, x U, Ha)
defined by

[An, Bal(wa, v) = Aqw, + Bau, (wn,u) € Ha X U.

Then we have the following.

Definition 7.2 (Margin of Stabilizability for Operator Representations [PW97])

Let A, € L(H,) and B, € L(U,H,). The margin of stabilizability of (An, Bn) s
defined by

7U(Aﬂ’ Bn) = m.in{"[JA.'” (sBﬂ]"L(unxu‘u") Py (Aﬂ'{"&Aﬂ, Bn+53n) s not stabilizable}.
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The margin of stabilizability of operators is not easy to compute. Peichl and Wang

given a condition under which the operator and matrix norms are equivalent.

Condition 7.1 (Uniform Equivalence of the Operator Norms)

A given choice of bases for the spaces H, and U satisfies the uniform equivalence of
the operator norms condition, if there ezist positive constants ¢; and c, independent
of n such that the matriz representations A, and B, of operators A € L(H,) and
B e LU, H,) satisfy

a1 [|[An, B,,]Ilz < |[An, Bn]”z:(u,,xu,ﬂ,.) < c2[|[Aa, Bn]”z .

Let {¢}7-, be a basis for H, and {¥+};_, be a basis for &. Define the matrices
[Mn]ij = (¢is ¢J>1'l

for¢,7=1,2,...,n,
[Vals = (¥, ¥5)u

for7,7=1,2,...,p, and

0
Let {Ar}7-, be the eigenvalues of M, such that

M, O
Gn=
Va

AM2A 2.2,
and similarly let {u: }t? be the eigenvalues of G, such that

B2 p2 2 ... 2 pPngp.

We have the following result that is simpler to check than Condition 7.1.
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Theorem 7.2 [PW97]

Condition 7.1 holds if and only if there exist positive constants , and T, such that

A <n
Hntp
and
ﬁ <7
V 7
for all n.

Peichl and Wang study the connection between stablizability and the margin of sta-
bilizability. These authors give a necessary condition for the uniform stabilizability

of approximate control systems.

Theorem 7.3 [PW97, Corollary 3.1]

Let A€ L(Hn) and B € L(U,H,). If

(1) the approzimating finite-dimensional control systems

wn(t) = Aqwn(t) + Bau(t), t >0,

wn(0) = wy,

are uniformly stabilizable for all n, and
(2) the choice of bases for H, and U satisfy the uniform equivalence of the
operator norm condition,

then there ezists a constant € > 0 such that for all n, v,(An, Bp) > e.

Thus, if the margin of stabilizability of (A4,,B,) tends to zero as = — oo, then
either (A,, B,) is not uniformly stabilizable, or Condition 7.1 does not hold. For

a given approximation method, if we can establish that Condition 7.1 holds and
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show that the margin of stabilizability tends to zero, then we can conclude that
(An,B,) is not uniformly stabilizable. This result is summarized in the following
corollary of Theorem 7.3.

Corollary 7.4
Let A€ L(H,) and B€ LU, H,). If

(1) there exist positive constants 1, and T, such that

A
Hntp

<n

and

for all n, and
(2) for any e > 0, there ezists n such that v,(An, Bn) < €,
then (An, B,) is not uniformly stabilizable for all n.

In the following two sections, we consider (1) and (2) in Corollary 7.4.

7.1.2 Uniform Equivalence of Norms for Linear Splines

Recall, the inner product on H = H, x L, is given by

(C1 6)7( ./(; aCl El dz +/ szz dz

where { = ((1,(z) and £ = (&1,£2). Let {$r}7-, be the linear splines defined in
(4.11). As in Chapter 4, we will assume that {¢;}7_, form a basis for H, where
Hn, = H,x H,. Let ©, be the basis for i = R, i.e., one control input. In particular,
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Figure 7.1: Upper and lower bounds for equivalence of norms

let
2c
@n = ﬁ
where ¢ = 331m/s is the speed of sound in air. Thus,
4c?
— 2 _ -
Va=(0,)* = —-

The computed values of ,/“—:: <7 and \/%? < 7, (from Theorem 7.2) are plotted
in Figure 7.1. We find 7y = 2 and » =~ 1/2, i.e.,, 1, = 1/72. Thus, Condition 7.1
holds.

7.1.3 The Margin of Stabilizability for Matrix Representa-

tions

In this section, we study the behaviour of the margin of stabilizability of the matrix

representations v,(An, Bn) as n gets large.
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Let the approximating system (7.3) be determined using the semi-discrete Galerkin
approach outlined in Chapter 4. Again we assume that z;, =0, z, = 0, z, = 1,
and z = 2. As well, K = 0.7 and L = 4. Numerical results in Chapter 4 indicate
that the Legendre polynomial method is uniformly stable. Thus, the margin of
stabilizability of this method is not in question. Instead, we comsider a linear
spline based scheme. As in Chapter 4, we consider the finite-dimensional transfer
function Gn(z,z4). Let [An, Bn, Cn, D,] be the “natural” state-space representation

of Gn(z,z4) given in (4.4) and (4.6).

Let omin(M) denote the smallest singular value of a matrix M € R**(™¥™)_ The
minimal singular value Omin([An, Bn]) provides an upper bound for 7,(An, B,)
[PW97] [BP89]. Figure 7.2(a) illustrates the computed minimum singular value
Omin([An, Bn]). We can see that omin([An, Ba]) = 0 as n gets large. This suggests
that «,(An, Ba) = 0 as n gets large.

However, as mentioned in Section 5.5, balanced realizations are key to maintain-
ing numerical stability of various state-space calculations (see Appendix A). In
determining a balanced realization, a transformation T}, € IR"*" is found so that a
balanced realization is [An, By, Cn, Dp] = [TaAnT, TaBa, CoT7Y, D). In general,
Ye(Any Bn) # Ys(An, Bn) [BP89]. Figure 7.2(b) illustrates the computed minimum
singular value Opmin([An, B,]). We can see that omin([An, Ba)) is constant as n gets
large. Thus, results in this case indicate that v,(A,, B,) may or may not approach
zero. However, balanced realizations, although generally numerically more stable,
destroy any physical significance of the state variables. In addition, to obtain a
balanced realization we need to employ the observation operator C,. This intro-
duces artificial weighting on the matrices A, and B,. Thus, in many respects,
Omin([An, Bn]) calculated using the “natural” realization provides a better repre-
sentation of the true upper bound of the margin of stabilizability.
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Figure 7.2: Computed minimum singular values
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7.1.4 LQR and LQE Design

Recall that in finite dimensions, two matrices A, and B, are stabilizable if there
exists a constant matrix K, such that A, — B, K, is stable. The matrix K,, can be
found using standard LQR techniques. If we consider the margin of stability of A, —
B, K,, this will provide us with information similar to the margin of stabilizability
of (An, By).

Thus, consider the control systems in (7.2). We need to find K, such that A,,— B, K,
are stable. Let us consider the finite-dimensional system given in (7.3). Let the

output equation be given by
Yn(t) = Crwn(2).

Suppose that all states are not detectable so that a state estimator is required. Let

the estimator have the form
Wn(t) = Antin(t) + Bate(t) + FaCo(wn — ) (7.4)

where 1 are the estimated states and F, is some constant vector. Combining (7.3)
and (7.4) we get

én(t) = (An — FaCh)en(t)
where e, = w, — w,. Thus, W, tends to w, provided that the eigenvalues of
A, — F,,C,, have negative real parts. The control system with estimator and state

feedback is shown in Figure 7.3. From this figure we have u = r — K,w,, (assuming
a full state estimator) so that the realization of the feedback system is

Wn(t) = (An ~— BoKp)wa(t) + Bar
Yn(t) = Crwn(t).
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r u Wa(t) = Anwa(t) + Bnu(t) o
/ Yn(t) = Cawa(t)

K, Estimator

Figure 7.3: Estimator with state feedback

For closed loop stability, K, is chosen so that the eigenvalues of A,, — B, K, have
negative real parts (which is possible if the system is stabilizable). A common
way of choosing K, and F, is by solving the linear quadratic regulator (LQR) and
linear quadratic estimator (LQE) problems, respectively. These are summarized as

follows (e.g., [AM90]).
Consider the linear time-invariant stabilizable system

Wn(t) = Anwn(t) + Bau(t)
Yn(t) = Cawa(t).

Suppose (An, B,) is stabilizable. Let D,, be any matrix such that Q, = DID,, > 0
and (An, D,) is detectable. Define the cost functional as

J(u) = /0 [(w,,, Qr.wn) + (u, R,.u)] dt.
The optimal solution of minimizing the above cost functional subject to

Wn(t) = Anwa(t) + Bau(t)
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is given by state feedback u(t) = —K,w,(t) where
K, = R7'BTII,,
where II,, = IIT > 0 satisfies the algebraic Riccati equation
I, A, + ATII,, - I, B.R-*BTI,,_ + Q.. =0.

If all states are not detectable, we require a state estimator. This may be determined
by solving the linear quadratic estimator (LQE) problem (e.g., [Mac89]). Consider
the system
Wn(t) = Anwa(t) + Bau(t) + w
Yn(t) = Chwa(t) + v

where w is a random noise disturbance input and v is a random measurement
(sensor) noise. We assume that both of these variables are white Gaussian zero-
mean with known covariances. The problem is to obtain an estimate w, of the
state w, based on noise-corrupted measurements such that the variance of the

€ITOT W, — Wy is minimized. The following is assumed:

o (C,, A,) is detectable,
e R.>0,and
o there exists D, such that D, DI = Q.. > 0 and (A, D,) is stabilizable.

Under these assumptions, the optimal estimator is given by

Wn = Aptbn + Batt + Lo(yn — Catiry)
L,=11, C,’f R; 1

where IL., = IIZ > 0 solves the algebraic Riccati equation
Annen + HQnA?': - HenCZRc_ICﬂHGn + Qen = 0'

Several authors have studied the convergence of the above Riccati operator II,,

(and likewise II.,). These results were summarized in Chapter 3.
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In the following two sections, we will consider two design cases: Q = CTC and
Q@ = I. Because this latter case does not use the output equation y, = C,wn, we

avoid any special weighting incurred by this output equation.

Case 1: Q,, = CIC,

Let Q., = CTC, and R, = 1. This choice for Q,, introduces the output in the
cost function. Similarly, we may choose R, = 1 and Q., = B.BY since (Aqn, B,) is
stabilizable. Further examination of the LQR and LQE problems reveals that the

two problems are duals of each other.

The state-space representation of the optimal feedback controller G, is given by

Wn(t) = (An — BuKpn — LnCr)tin(t) + Loyn(t)
@(t) = Kpin(t).

Figures 7.4 and 7.5 show the magnitude and phase of G., for various increasing
values of n, for both the Legendre polynomial and linear spline based approximation
methods. Figure 7.6 shows the magnitude and phase of G., for n = 45 for both
approximation methods. We can see that the G., computed by both methods are
converging to the same controller. Figures 7.7 and 7.9 show the magnitude of the
closed loop responses A(G, G.,) = y/r (with the exact plant) and A(G,, G.,) = y/r
(with the approximate plant) for both methods. The phase is shown in Figures
7.8 and 7.10. Again, we can see these are converging. Figures 7.11 and 7.12
show that the closed loop responses for both methods are in fact converging to
the same response. For stable systems, convergence of the closed loop responses
(i.e., A(Gn,G.,) = A(G,G.)) is equivalent to convergence of the plant G, — G
and the controller G., — G. in the graph topology [Vid85, Theorem 7.2.28]. This

topology is a generalization of the H,, norm and so is an appropriate framework
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(b) Linear splines

Figure 7.4: Case 1: magnitude of LQR controllers (n = 15 (solid), » = 30
(dashed), n = 45 (dash/dot))

in which to study convergence of approximations used in our controller design.
Thus, convergence of the controllers and of the closed loop responses implies the

applicability of the linear spline approximations for controller design.
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Figure 7.5: Case 1: phase of LQR controllers (n = 15 (solid), » = 30
(dashed), n = 45 (dash/dot))
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Figure 7.6: Case 1: LQR controllers for Legendre polynomials and linear
splines (n = 45, Legendre polynomials (solid), linear splines
(dashed))
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Figure 7.7: Case 1: magnitude of closed loop with exact plant and LQR
controller (n = 15 (solid), n = 30 (dashed), n = 45 (dash/dot))
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Figure 7.8: Case 1: phase of closed loop with exact plant and LQR controller
(n = 15 (solid), n = 30 (dashed), n = 45 (dash/dot))
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Figure 7.9: Case 1: magnitude of closed loop with approximate plant and
LQR controller (n = 15 (solid), n = 30 (dashed), n = 45
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Figure 7.10: Case 1: phase of closed loop with approximate plant and LQR
controller (n = 15 (solid), » = 30 (dashed), n = 45 (dash/dot))
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Figure 7.11: Case 1: closed loop response with exact plant and LQR con-
trollers for Legendre polynomials and linear splines (n = 45,
Legendre polynomials (solid), linear splines (dashed))
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Figure 7.12: Case 1: closed loop response with approximate plant and LQR
controllers for Legendre polynomials and linear splines (n = 45,
Legendre polynomials (solid), linear splines (dashed))
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n | max{ReA, X € 0(A, — B,K,.)}
5 -87.3613
10 -69.4325
15 -66.8039
20 -55.9816
25 -50.5908
30 -47.0653
35 -29.1101
40 -24.8533
45 -17.1784

Table 7.1: Case 1: linear splines — margin of stability of A, — B, K,

The stability margin of A, — B,K, for linear splines controlled using LQR state
feedback K, is shown in Table 7.1. We can see from these results that this margin

is tending to zero as n gets large.

Case 2: Q=1

In this section, we will only consider the solution to the LQR problem. Let w € H =
H,(0,L) x L(0, L). Consider the infinite-dimensional state-space representation

w(t) = Aw(t) + Bu(t)
and the associated cost functional
J(u) = /0 [(w, Qu) + (u, Ru)] dt

where Q > 0 and R > 0 are symmetric. Let Q, = Q,. and R, = R. The finite-

dimensional matrix representation of the above system is
w,(t) = Apwa(t) + Bu(t)
for w, € H,, with the cost functional

I = [ [(wnr Q) + (u, R0 .
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Suppose @ = I. We need to determine the matrix representation of Q,. Consider

the inner product defined on H (see (3.4)). The state is w = [z z]. Then with

Q@ = I we have
wore = (| 2] 1))
t 2 ”
= CZ/OLVzvzdz-i-/ongzt dz.
From (4.2),
z*(z,t) = ;ai(t)‘ﬁi(z) (7.5)
= OV
where
® = [¢o(z) d1(z) ... ¢a(z)]
and i _
ao(t)
V _ al.(t)
| aa(t) |
Thus,
<[ o }[ o J> = ¢ /L[v(w)]Tv(W) dz+/L[<I>V]T<I>V dz
Zn, )/, 0 0

L . L
= VT [/ vQTdez} V+VT [/ 8T dz] V.
0 0
(7.6)
Now the “states” used in calculations are the coefficients {a;(¢)}, i.e., the vector V,

so that we need to consider the inner product (wn, @, wn)r Where w, = [V V] Let

% el
0 @,
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) a

R

Thus,
|4 QnV

V]| Qv
= VTQ.V+VQ.,V.
Comparing (7.6) and (7.7) we find

]

(s Quan) =

L
@n, =c2/0 78T v & dz

and
L
— T
Qn, = /0 8Td d.
That is,
2 L
@l = [ 6i(2) 7 45(2) dz

0

and

[@na)is = /OL di(z)d;(z) dz.

Table 7.2 shows the margin of stability of A, — B, K, with the above choice for Q,,
and R = 1 with linear splines used as the basis functions. We clearly see that the

margin is tending to zero as n gets large.
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n

max{ReA, A € 0(An — BoK,)}

)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

-22.0421

-16.1439
-12.2564
-9.5921

-7.6999

-6.3138

-5.2715

-4.4701

-3.8421
-3.3419
-2.9380

-2.6079

-2.3354
-2.1083
-1.9177
-1.7566

-1.6196
-1.5026
-1.4021
-1.3155

-1.2407
-1.1757
-1.1192

-1.0699
-1.0268
-0.9891

Table 7.2: Case 2: linear splines — margin of stability of A, — B, K,

201
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7.1.5 Discussion

In this chapter, we have shown that (1) the approximating scheme using linear
splines appears to have a margin of stabilizability that tends to zero as n — oo,
and (2) the uniform equivalence of norms condition is satisfied. Thus, Corollary 7.4
suggests that this method is not uniformly stabilizable. In addition, LQR results
for two separate cases indicate that the margin of stability of A, — B,.K, is also

tending to zero.

However, we make the following observations. In Chapter 4, we showed numerically
that the approximating transfer function and inner factors using linear splines are
converging. Figure 7.6 in Case 1 shows that the controller found for either Legendre
polynomials or linear splines is converging to the same controller. As well, the closed

loop responses in Figures 7.11 and 7.12 are also converging.

The convergence in the above mentioned situations is likely due to the feedback
matrix C, since this matrix plays a role in both the transfer function and in the
state weighting Q,, = CTC, in the LQR design. An observation is only made
at a finite number of points. Hence, those modes which are tending towards the
imaginary axis and as a result are difficult to uniformly stabilize, do not show up

in the transfer function (since they are not observed and/or weighted).

If we compare the margin of stability in Table 7.1 or Table 7.2 with the open loop
margin of stability in Table 4.2, we see that the addition of the controller does
greatly improve the margin of stability of the system even though this margin is
not uniform. In addition, both closed loop transfer functions A(G,G.,) (closed
loop with the exact plant and finite-dimensional controller) and A(Gh, G.,) (closed
loop with the approximate plant and finite-dimensional controller) are converging.

Thus, the linear spline based method provides good results for both approximation
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of the transfer function and design of a controller for closed loop stability. These
results indicate that uniform stabilizability is not a necessary condition for controller
design.

Recall also from Chapter 4 that (i) |G, (yw) — G(yw)| — 0 over all compact intervals
as n increases, and (ii) |W;(jw)(Ghn, (Jw)—G:(yw))| — 0 over all compact intervals as
n increases. Thus, besides convergence of the approximating transfer functions, we
also have convergence of the inner factors of the approximating transfer functions.
As discussed in Chapter 3, convergence of the inner factors is important for solving
the optimal sensitivity problem. In the next section, we discuss the approximation
of inner factors using different approximation schemes in an effort to understand

why linear splines exhibit superior numerical properties to Legendre polynomials.

7.2 Approximation of Inner Functions

Consider the transfer function G(z,, z2). Regardless of whether z; > z, or z;, < z,,

the inner factor of G(zi, z;) is given by (see (2.18))

G‘i — e—ilzl—zzl.
Thus, approximations Gy, to the inner factor G; should also be the same regardless
of whether the system is feedback or feedforward.

We will show here that although both Legendre polynomials and linear splines ap-
proximate the transfer function for a feedforward system “well”, only linear splines

approximate the inner factors such that
Gn.'(zly 22) = Gn; (321 zl),

1e.,

2 -
Gn.- "+ e clzl 22I.
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We consider the transfer functions

(1) G(z1,22) = G(3,2) (feedforward), and

(1) G(z2,z1) = G(2, ) (feedback).
Figure 7.13 shows a typical magnitude and phase of the approximating and ex-
act transfer functions found using Legendre polynomials, for the feedforward and
feedback cases, respectively. Figure 7.14 shows a typical magnitude and phase of
the approximating and exact transfer functions found using linear splines, for the
feedforward and feedback cases, respectively. We can see that both methods give
good approximations. There is no offset visible for the linear spline method. Figure
7.15 shows the phase of the approximating inner factor G, for the feedforward and
feedback cases found using Legendre polynomials. The exact phase is also shown.
The magnitudes in all cases are effectively unity for all frequencies and so are not
shown. Figure 7.16 shows the phase for the approximating inner factor found using
linear splines. Results for linear splines show that the phase for G,,_.(-;-, 2) is exactly
the same as that for Gy,(2,1). This is not true for Legendre polynomials. Also,
calculations carried out using Legendre polynomials are very sensitive to point lo-
cations (see Section 6.3). These problems do not appear to affect the linear spline

based approximation method.

To explain this discrepancy between the two approximating methods, we hypothe-
size the following. Recall that in Chapter 4, we referred to Legendre polynomials
as “global” basis function and linear splines as “local” basis functions or basis func-
tions with “compact” support. The errors in approximating the inner factor of the
transfer function are dependent on the choice of location for the output z; and the
input z;. The matrices which determine the control weights (see F; in (4.4)) and
the observation weights (see C in (4.6)) depend on the basis functions and deriva-

tives of the basis functions, respectively. For Legendre polynomials these matrices
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are not sparse whereas for linear splines they are sparse. Thus, the points z;, and

z, and slight variations therein have a much wider and more far-reaching effect on

these matrices when Legendre polynomials are used.
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Figure 7.13: Legendre polynomials: feedforward and feedback (exact solution
(solid), approximate solution for n = 10 (dashed))
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Figure 7.14: Linear splines: feedforward and feedback (exact solution (solid),
approximate solution for n = 10 (dashed))
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Figure 7.15: Legendre polynomials: inner factor for feedforward and feed-
back (exact solution (solid), approximate feedforward for n = 10
(dashed), approximate feedback for n = 10 (dash/dot))
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Figure 7.16: Linear splines: inner factor for feedforward and feedback (exact
solution (solid), approximate feedforward for n = 10 (dashed),
approximate feedback for n = 10 (dash/dot))
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Property Legendre Polynomials | Linear Splines
1)- |Gn(gw) — G(jw)| = 0 ? Yes Yes
2)" | IW1(qw)(Gn;(yw) — Gi(yw)| = 0 ? Yes Yes
3)" Gp;(z1,Z2) = Gp,(z2,21) ? No Yes
4) uniform margin of stability? Yes No
5) uniformly stabilizable? Yes No

Table 7.3: Properties of approximating schemes (* over compact intervals)

7.3 Summary

For completeness, we summarize the suitability of the two different schemes, Leg-
endre polynomials and linear splines, for approximating our H., control problem.
Let G be the exact transfer function, G, the n**-dimensional approximation of G.
Similarly, let G; be the inner factor of G, and G, the n**-dimensional approxi-
mation of G;. A summary of the relevant approximation results is given in Table
7.3. As seen in Chapter 6, the linear spline based approximation method allows us
greater freedom in varying the location of performance points in the duct. These
results indicate that points (1)—(3) of those listed in Table 7.3 are most important
in the approximation and study of the acoustic noise reduction problem. Therefore,

we suggest the following modification of Theorem 3.21.

Conjecture 7.1

Let W1(s) € RHy. Let z; and =, be two control points, where a signal is mea-
sured and where a signal is applied. Suppose we are given an infinite-dimensional

bounded or unbounded control system with transfer function G(z,,z2) and inner
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Approximating Yopt CPU time

Scheme (dB) (seconds)
Legendre polynomials | —3.6262 = 550
linear splines -3.2811 = 185

Table 7.4: CPU time comparison

factor Gi(z,,z2). The finite-dimensional systems with transfer function G, and in-
ner factor Gy; generated by the approzimating scheme are suitable for H., controller
design if

1) |Gn(yw) — G(yw)| — 0 over any compact interval as n — oo,

2)  |Wi(qw)(Gn;(3w) — G:i(yw))| — 0 over any compact interval as n — oo, and

8) Gni(z1,z2) = Gn;(z2,z1) over any compact interval.

Recall that when first considering approximation methods, our goal was to choose
only those methods that are potentially applicable to the three-dimensional acoustic
noise reduction problem. Results in this chapter as well as Chapter 4 suggest that
linear splines satisfy the requirements of Conjecture 7.1. Also, it is well-known that
linear splines generate sparse matrices when used to approximate partial differential
equations. Thus, the above results indicate that linear splines would provide an
appropriate as well as numerically feasible choice for the more complicated three-
dimensional problem. To illustrate the difference in CPU time required for each
approximating scheme, consider the following test case. Let z4 = 0, z, = 1, z, = 2,
and z = 3. The results in Table 7.4 indicate that Legendre polynomials require
approximately three times as much CPU time as linear splines to compute a solution
in this simple SISO case. This difference will be very beneficial when studying the

three-dimensional acoustic noise reduction problem.



Chapter 8

Conclusions and Future Research

The general aim of this thesis has been to study the problem of achievable global
noise reduction in the one-dimensional duct. We formulated the problem of global
noise reduction in the duct, considering the optimal placement of the sensor and
the actuator. Through successive simplifications to this problem we arrived at (see
Problem 3 ou page 26)

T, - T2Q (8.1)

Yopt = Qgg

oo (= =]

where T, and T3 are non-rational transfer functions. We further simplied (8.1)
by using an appropriate finite-dimensional approximation scheme to obtain (see

Problem 4 on page 27)

inf

=t |7 - T

Tn (8-2)

o0

where T} and T3 are rational transfer functions, and we stipulate that v, — Yopt-
The theory of both finite and infinite-dimensional control systems was presented in
a uniform framework by describing the state-space dynamics of the model in terms
of semigroup control systems. Several authors have studied conditions for the con-

vergence of finite-dimensional approximations with respect to the LQR problem

212



CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 213

for both bounded and unbounded control systems (e.g., [Gib79], [BK84], [IT89],
[BI97]). These results were reviewed. Although none of these results directly ap-
plies to our problem, we saw that there is a common thread amongst all sufficient
conditions. On the other hand, we saw in Chapters 4 and 7 that not all conditions
are necessary. In particular, we illustrated that the common condition of uniform
stabilizability of the approximations is not a necessary condition. We also consid-
ered conditions under which solutions to finite-dimensional approximations of the
H,, optimal control problem converge to the solution of the infinite-dimensional
H,, optimal control problem. We found that key are the convergence over com-
pact intervals of both the transfer functions and the inner factors of the transfer

functions [Smi90] [RD90].

Recall that one of our goals was to determine methods that are applicable to the
three-dimensional acoustic noise reduction problem. Once the model is formulated
in three dimensions, we must establish well-posedness of the system before any
convergence results can be discussed. Wang [Wan95] considers the regularity of
the wave equation with boundary damping and point control in two and three
dimensions. These results provide insight into the question of well-posedness. Sub-
sequently, in order to solve the three-dimensional problem via finite-dimensional
approximations, we need an approximating method that will generate an appro-
priate as well as computationally feasible scheme. In this thesis, we showed that
both Legendre polynomials and linear splines are suitable basis functions for ap-
proximating the one-dimensional duct model. It is well-knowr that linear splines
generate matrices which are sparse. The local nature of the basis for linear splines
may lead to better handling of the reflection of the waves in the duct at z = 0 and
z = L. This suggests that linear splines would also be most appropriate in the

three-dimensional case where reflection is caused by all boundaries. This clearly
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is important in the three-dimensional problem where an effort must be made to
reduce computation time. As well, because of the high degree of reflection present
in a three-dimensional cavity, the achievable level of global acoustic noise reduction

will most likely be significantly lower than in the one-dimensional duct.

Results in this thesis indicate that the stabilizability of approximations is not nec-
essary for controller design. As well, the benefits of using linear splines to select
sensor, actuator, and performance point locations in the duct were illustrated.
These results indicate that again linear splines are the most suitable choice for ap-
proximating the global noise reduction problem. A formal derivation of necessary
conditions for H,, state feedback controller design for bounded and unbounded con-
trol systems would provide a solid framework for all subsequent work on achievable

global acoustic noise reduction.

Nevanlinna-Pick interpolation was explained and an algorithm to solve the tall
model-matching problem was presented. An assumption of the algorithm is that
T; not have any repeated right half plane zeros or finite imaginary axis zeros. As
we saw in Chapter 6, this restricts our choices of sensor, actuator, and performance
point locations. In addition, it is surprising that T2 does not have any imaginary axis
zeros since T; does. A logical extension of the algorithm would be to incorporate
the two special cases: when there are imaginary axis zeros and when there are
repeated right half plane zeros. This should make the algorithm less sensitive to

point locations.

We studied the solution of the global noise reduction problem using feedback and
feedforward design. Various configurations of the actuator, the sensor, and the ob-
servation points were considered, and recommendations for the optimal placement
of the points were made. We found that noise may be reduced at a number of points

in the duct to alevel comparable to noise reduction at a single point. We also found
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that linear splines allow for greater freedom in the placement of observation points

with respect to the sensor and actuator locations.

It would be interesting to calculate the optimal controller and then to use this
controller to determine if noise reduction at a number of points results in noise
elevation between these points. If so, would it help to use more than one actuator

and sensor to reduce noise everywhere in the duct to an arbitrarily small level?

In addition, there are several other point placements that would be interesting to
investigate. For example, what is the effect of collocated sensor, actuator, and
observation points on the achievable level of noise reduction? Rather than con-
sidering a uniform distribution of observation points throughout the duct, should
these points be placed close together as well as close to the sensor to “block out”
the disturbance wave past a certain point? The answer to these and other questions

is the subject of future research.



Appendix A

State-Space Calculations

In this appendix, we consider the implementation of the algorithm given in Section
9.5. The problem is challenging numerically because of the complexity of the al-
gorithm and because of the size of the problem, since we are considering a “tall”
problem. A few of the most difficult numerical aspects of the algorithm will be con-
sidered in this appendix. We begin by looking at the various factorizations required

and conclude with several useful numerical “tricks”. All calculations are performed
Al|lB
c .

We will consider the cases where we need to perform one of the following factoriza-

with the state-space realization

G(s):=[A,B,C,D]:=

A.1 Factorizations

tions:

216
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(i) inner/outer factorization (IOF),

(ii) right and left coprime factorizations (RCF and LCF),

(iii) complementary inner factorization (CIF), and

(iv) spectral factorization (SF).
The details of these factorizations can be found in [CD84]. Let G(s) have a sta-
bilizable/detectable minimal realization. As we shall see in the following sections,
the algebraic Riccati equation plays a crucial role in obtaining each of the above
named factorizations. Each of these factorizations requires the solution of either

one or two algebraic Riccati equations.

A.1.1 Inner/Outer Factorizations (IOF)
An inner/outer factorization for G(s) is
G(s) = N(s)M~'(s)

where M is outer and a unit (i.e., M, M~ € H,), N(s) is inner, and

As | B A-BK | BR-/2
N(s) := = (A.1)
.. | D C - DK , DR-'/?
B, A-BK | BR-V/?
M(s) := = . (A.2)
Cout | Dot ~K | R

Here R = DTD > 0, K = R~Y(BTILy + DTC) and H;,y > 0 solves the Riccati

equation

(A—BR'DTC) Iy +Miog(A— BR™DTC) -,y BR™' BT Ml;,y + CTD, DTC = 0
(A.3)
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where D, is the orthogonal complement of D. This method only applies to non-
strictly proper transfer functions. However, in the algorithm, we need an IOF of 75,
where T is strictly proper. Thus, we must use the “relative degree” trick, i.e., find
k such that T, = Ty(s + a)* is proper. To preserve equality, (s + a)~*, is absorbed
into the Youla parameter. The details are in Section A.2.

A.1.2 Right and Left Coprime Factorizations (RCF and
LCF)

A right coprime factorization for G(s) is

G(s) = N(s)M~1(s)

where
A-BK|B
N(s) :=
C-DK|D
and
A-BK[B}
M(s) := .
~K |1

The gain K is chosen so that A — BK is Hurwitz. Finding the left coprime factor-
ization is the dual problem of finding the right coprime factorization.

To find D; and V in (5.19), we use the following result.

Theorem A.1 [Mac89, p.820]

Suppose that G has e minimal realization G := [A,B,C,D|. If N and M have

realizations

N:=[A+ HC,B+ HD,C, D]
M :=[A+ HC,-H,C,~I
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where H = —XCT and X is the stabilizing solution of the Riccati equation
AX + XAT - XCTCX =0.

Then G = M~'N and MM~ = I (i.e., M is inner).

Thus, in the above factorizations, we make the substitutions,

M — Di

NV
That is, to find the LCF and IOF of AL, consider the following. We know from
Theorem A.1 that AL = M~!N where M is inner. So,

AL - Qlle = IM'N - Q|

= [[M(MN - Q)le

since AL is SISO and M is inner.

A.1.3 Complementary Inner Factorizations (CIF)

Recall from Definition 5.3 that a CIF is defined to be a matrix @ € RH™*(m~)
such that for T3, € RH;"' inner,

¢=|1, o]
is square and inner. Thus, using the above state-space representation for the inner
factor (see (A.1)) we have the following.

Let I, be a pseudo-left inverse of Il;; where IL;,; is the solution to (A.3). Then a
CIF for G(s) is given by
Ain | ~ILCTD,

(A-4)
C| D

Gaif(s) = [
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where A;, and B;, are given in (A.l). Thus, to find a CIF for T, we need a

state-space representation for T5;
T2; = [A(n-; Bifu Ciny Din]-

Then O is given by (A.4).

A.1.4 Spectral Factorizations (SF)

Let
G(s) :=[A, B, C, D]

be a stabilizable realization of G(s) € RLEX™. We would like to compute a left
spectral factor M(s) such that

M™(s)M(s) = p* — G™(s)G(s)

where [|G|lo < 1 and
M(s) := [Am, B, Cm, Dpn]

is a unit in RAZ*™. A realization is

A-Ks;K.|B-K;
RL/ZKC ’ R1/2

M(s) := [
where
R = u?I-DTD >0,

K. = R™YBTI, - DTD),

K; = IL.KIR,
II, is the solution to the Riccati equation
(A+BR™'DTC)TI,+11,(A+BR™'DTC)-I,(BR ' BT)II,+CT(I+DR™'DT)C =0,
and II, is the solution to the Riccati equation

AT, + LA - TI,KTRK, = 0.
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A.2 Relative Degree

To find the IOF and CIF of T using the Riccati solution (see Section A.1.1), T,
must be proper, not strictly. However, T; is strictly proper. To circumvent this
problem, we find a positive integer k such that Ty = Ty(s + a)*, where a > 0, is
non-strictly proper. This k is called the relative degree. Let T, = T5,T5, be an IOF.

Then
T, = Ty(s+a)*

= T2.'T2o(3 +a)7*

= T3T,
where i
Ty, = Ty
T, = Ty (s+a)*
and

T1T2Q = Tl—Tz.-Tz.,Q
= T, -TQ
where Q = T3,Q € H.,,. We, however, also need the state-space representation of
.
Let the following be a minimal realization of a strictly proper transfer function
F(s):
F(s) = C(sI-A)'B

= [A,B,C,0].
Then
sF(s) = CsI(sI-A)"'B
= C(sI—A)(sI—A)"'B+CA(sI - A)'B
= CB+CA(sI-A)™'B
and

aF(s) = Ca(sI — A)™'B.
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So,
F(s)(s+a) = C(A+al)(sI-A)'B+CB

:= [A,B,C(A+al),CB]
which is non-strictly proper if CB # 0. In this case, the relative degree is one. If
CB =0, we continue. Assume CB = 0. We need to determine what the state-space

representation for F(s)(s + a)? is. Thus,
F(s)(s+a)s = C(A+al)s(sI —a)™'B
= C(A+al)(sI—A)sI-A)"'B+C(A+al)A(sI - A)"'B
= C(A+al)B+C(A+al)A(sI— A)'B

and
F(s)(s+a)a=Ca(A+al)(s] - A)"'B.

So
F(s)(s+a)) = C(A+al)*(sI-A)"'B+C(A+al)B

:= [A,B,C(A+al)’,C(A+ al)B].
Hence, if C(A + al)B # 0, the relative degree is two. In general, we have the

following result which can be proven by induction.

Theorem A.2

Let
F(s):=[A,B,C,0]

be a minimal state-space realization. Let n € N and a € R. Then if F has relative

degree N > n,

F(s)(s+a)":=[A,B,C(A+al)",C(A+al)"'B). (A.5)
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A.3 Computing ||G|lw

In the algorithm, the H, norm (or L., norm) provides an upper and lower bound
on the achievable noise reduction. For this reason, we must have a reliable method

for computing these values.

Let G:=[A, B,C, D]. If A is Hurwitz,

IGlle = sup Omaz(G(3))
Re(s)>0

where o mq. is the maximum singular value, i.e.,

Omaz(G) = AY2.(G"G).

mazx

If G e L,
|Gllec = sup Omaz(G(sw)).
weER
So in particular, if A is Hurwitz, the Lo, norm is the H,, norm. Let
' A—- BRDTC —4BR'BT
. 4CTS-'C AT + CTDR-'BT

where R = DTD — %], S = DDT — 42 and H, is the Hamiltonian matrix, i.e.,

J'H,J = -HT
where
[ 0 I
J =
[—I 0

Theorem A.3 [BBK89]

Assume A has no imaginary azis eigenvalues, v > 0 is not a singular value of D,
and wo € R. Then v is a singular value of G(ywo) if and only if (H, — ywol) is

singular.
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Theorem A.4 [BBK89]

Let A be Hurwitz and v > Omaz(D). Then ||G|lw > 7 if and only if H, has
imaginary azis eigenvalues, i.e., |G|l < 7 if and only if H., has no eigenvalues on

the imaginary azis.
Remarks:

(1) Theorem A.4 suggests a bisection method for computing ||G||co-

(2) If Ais not Hurwitz, but has no jw—axis eigenvalues, then Theorem A .4 remains

true with the H, norm replaced by the L, norm:

|Gllre = sup OTmaz(G(Jw)).
weR



Appendix B
Program Listings

In this appendix, the Matlab routines used to solve the acoustic noise reduction

problem in the one-dimensional duct are given.

B.1 Main Source Code
B.1.1 Legendre Polynomials

function [gamma_opt,x,xs,xa,xd,nn]=mimo(x,xs,xa,xd);
% function [gamma_opt,x,xs,xa,xd nn]‘mlmo(x xs,xa,xd) ;

% October, 1997
% Janet R. Grad

% Matlab code to run the frequency domain algorithm on the
% MIMO system.

. x is varied over all values between O and L

% (global noise reduction).

4 gamma_opt = \inf_{Q \in {\cal H}_{\infty} } \| T1 - T2*Q \| where
% Ti1=W1*G(x,xd)
% T2=W1*G(x,xa)*G(xs,xd)

% xs = sensor location

% xa = actuator location

% xd = disturbance location
4 x = global location
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A

n = number of Legendre polynomials used in approximation

format long
tcpu=cputime;
value=now;

di

sp(’the time of day is....’)

date
[hour(value) minute(value) second(value)]

%
di
(L

n=
j-

input standards
sp(’standards: input standards (L,c,rho,...)’)
,¢,rho,K,alpha,Aw,Bw,Cw,Dv]=standards(1) ;

25;
star_to0l=0.01

gam_tol=0.005

A
A

di

3 e 2k 2k o 2k e 3 e e e 2k 2k K 2k 3 e ke e e 35 2 8¢ e e 2 e e 8 e 2 e e K 2k e 3 e e e e 3 e e 3 e e A ok e e e e ke e ke Ak ok
25 2 5 2k ok 2k ok ok 3 2k e 3k 3 e 3 3k e 3 4 3k e e 3 e e 34 e e e 2 4 e e A 36 R 3 0 e e ¢ e e e R e o e e ok e e e e ke e ek ok

sp(’tit2_mimo: form ss reps for T1 and T2’)

[At1,Bt1,Ct1,Dt1,At2,Bt2,Ct2,Dt2]=...

h
4
if
h

el

t1t2_mimo_x(n,x,xs,xa,xd,c,L,rho,K,Aw,Bw,Cw,Dw);

the relative degree should be the same for all n
given some set of x

norm(Dt2)<0.1,

a=10;

determine the relative degree of T2 (strictly proper)

disp(’relative_degree: determine the relative degree of T2’)

[rel_degl=relative_degree(At2,Bt2,Ct2,Dt2,a)

[At2_hat,Bt2_hat,Ct2_hat,Dt2_hat,scale]=T2_hat (At2,Bt2,Ct2,...
Dt2,a,rel_deg);

se
At2_hat=At2;
Bt2_hat=Bt2;
Ct2_hat=Ct2;
Dt2_hat=Dt2;
rel_deg=0;

end

A
A
di

perform the IQF/CIF of T2_hat
(s+a) " (reg.deg) is absorbed into the outer part
sp(’iof: find the IOF and CIF of T2_hat’)

[At2_hat_in,Bt2_hat_in,Ct2_hat_in,Dt2_hat_in,...

4
di

At2_hat_cif,Bt2_hat_cif,Ct2_hat_cif,Dt2_hat_cif, junk,...
junk, junk, junk]=iof (At2_hat ,Bt2_hat,Ct2_hat,Dt2_hat);

find Phi
sp(’phi: find Phi and Phi~*’)

[Aphi,Bphi,Cphi,Dphi,Aphi_star,Bphi_star,Cphi_star,Dphi_star]=...

phi(At2_hat_in,Bt2_hat_in,Ct2_hat_in,Dt2_hat_in,...
At2_hat_cif,Bt2_hat_cif,Ct2_hat_cif,Dt2_hat_cif);
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% find (Phi~=*)(T1)

disp(’phi_star_t1i: find (Phi~x*)(T1)?’)

[Ap,Bp,Cp,Dpl=phi_star_t1(Aphi_star,Bphi_star,..
Cphi_star,Dphi_star,.
At1,Bt1,Ct1,Dt1);

%“ find A and C
disp(’A_C: find A and C’)
[AA,BA,CA,DA,AC,BC,CC,DC]=A_C(Ap,Bp,Cp,Dp);

disp(’norm_infty: find infinity norm of C (lower bound)’)
gam_lower=norm_infty_bis(AC,BC,CC,DC);

disp(’norm_infty: find infinity norm of T1 (upper bound)’)
gam_upper=norm_infty_bis(At1,Bt1,Ct1,Dt1);

gam=(gam_lower+gam_upper)/2;
1flag=0;

icount=0;

max_count=20;

counter=zeros (max_count,1);
gam_cur=zeros (max_count,1) ;
j_star_cur=zeros(max_count,1);

% et e o ook e e o sl ok o ok ok ook o kA 3 KA A R ARk R o R K R e oo o
while iflag==0 & icount<max_count,

icount=icount+1

gam_lower

gam_upper

gam

% find L

disp(’L_function: find L’)
[AL,BL,CL,DL]=L_function(AC,BC,CC,DC,gam);

% find (A)(L)
disp(’A_L: find AL’)
[(A_al,B_al,C_al,D_all=A_L(AA,BA,CA,DA,AL,BL,CL,DL);

% find j_star
disp(’j_star: find j_star’)
[j_star_vall=j_star(A_al,B_al,C_al,D_al);

gam_cur (icount, :)=gam;

if j_star_val==[],
iflag=1;
j-star_opt=999;
gamma_opt=gam_upper;

end
if iflag==0,
disp(’gam_upper-gam_lower’)
gam_upper-gam_lower
if ((gam_upper-gam_lower)/gam)<gam_tol |
( j_star_val<l & (1-j_star_val)<j_star_tol),
gamma_opt_upper=gam_upper;
gamma_opt_lower=gam_lower;
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if j_star_val<=i,
gamma_opt=gam;

else
gamma_opt=gam_upper;
end .
J.star_opt=j_star_val;
iflag=1
else

if j_star_val>i,
disp(’go bigger’)
gam_lower=gam;
gam=(gam_upper+gam) /2;

elseif j_star_val«<i,
disp(’go smaller’)
gam_upper=gam;
gam=(gam+gam_lower)/2;

end
end
end

if abs(j_star_val-gam)<0.05 & iflag<1i,
disp(’offset the gamma to make it different from j_star’)
gam=gam+ (gam_upper-gam) /4;

end

counter(icount, :)=icount;
j-star_cur(icount, :)=j_star_val;

disp(’ *** counter *** gamma *** j_star *x* ’)
[counter(1:icount,:) gam_cur(l:icount,:) j_star_cur(i:icount,:)]
disp (? kckskskokssk sk ok Aok Ak R AR AR KA A R KR KRR ARk ok T )

end
Y Aeteak ook ke s e ke ol o ke sk e e sl e ke sl o ke o e o e o e ol ok o ke 3k Kk o 3 3 o 3 o e e sl o ke sk e o e o o e ok o o ok oK

if icount==max_count,
gamma_opt_upper=gam_upper;
gamma_opt_lower=gam_lower;
1f j_star_val<=1,
gamma_opt=gam;
else
gamma_opt=gam_upper;
end
end .
clear counter gam_cur j_star_cur

counter=zeros (max_count,1);

gam_cur=zeros(max_count,1);

j_star_cur=zeros(max_count,1);

gu=gamma_opt_upper;

gl=gamma_opt_lower;

Y e o ok s s ek o o ok o o i o o k3o o o oo 3k ok o o ok o ok ok o o e ok e o e ok oo o ok e sk ok ok ok o
% e ok sk ok ke ok ke oo s o ok oo o ek ok o ek ok ko i ek o ok o oo o oo ok ek ol e s ok ok ok ok

value=now;
disp(’the time of day is....’)
date
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[hour(value) minute(value) second(value)]
Tcpu=cputime-tcpu

B.1.2 Linear Splines

function [gamma_opt,x,xs,xa,xd,nn]=mimo(x,xs,xa,xd);
%4 function [gamma_opt,x,xs,xa,xd, nn]—mlmo(x xs xa,xd)

% October, 1997
% Janet R. Grad

% Matlab code to run the frequency domain algorithm
% on the MIMO system.

% x is varied over all values between O and L
% (global noise reduction).

% gamma_opt = \inf_{Q \in {\cal H}_{\infty} } \| T1 - T2*Q \|
% where

% T1=W1*G(x,xd)

% T2=Wi*G(x,xa)*G(xs,xd)

% xs = sensor location

% xa = actuator location

% xd = disturbance location

% = global location

% n = number of linear splines used in approximation

format long

tcpu=cputime;

value=now;

disp(’the time of day is....’)

date
[hour(value) minute(value) second(value)]

% input standards

disp(’standards: input standards (L,c,rho,...)’)
[L,c,rho,K,alpha,Aw,Bw,Cw, Dv]—standards(i)

n=15;

j-star_tol=0.01

gam_tol=0.005

% ok ok Aok Ak ok ok o e e ok o o ok e o e ok ok e s e ok ok e ok A o e o
% ek Aol o e Ao AR o K K A R AR o AR ook e ok sk e o oK

disp(’t1t2_mimo: form ss reps for T1 and T2’)
[At1,Bt1,Ct1,Dt1,At2,Bt2,Ct2,Dt2]=..
t1t2_mimo_x 11nspl(n x xs,xa,xd c L,rho,K,Av,Bw,Cv,Dv);

% the relative degree should be the same for all n
% given some set of x

if norm(Dt2)<0.1,
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a=10;

% determine the relative degree of T2 (strictly proper)
disp(’relative_degree: determine the relative degree of T2’)
[rel_degl=relative_degree(At2,Bt2,Ct2,Dt2,a)
disp(’T2_hat: form a 4pts_a non-strictly proper T2’)
[At2_hat,Bt2_hat,Ct2_hat,Dt2_hat,scale]=...

T2_hat_linspl(At2,Bt2,Ct2,Dt2,a,rel_deg);

“Rt2_hat=At2;
Bt2_hat=Bt2;
Ct2_hat=Ct2;
Dt2_hat=Dt2;
rel_deg=0;
end
% perform the IOF/CIF of T2_hat
4 (s+a)~(reg_deg) is absorbed into the outer part
disp(’iof: find the IOF and CIF of T2_hat’)

[At2_hat_in,Bt2_hat_in,Ct2_hat_in,Dt2_hat_in,...
At2_hat_cif,Bt2_hat_cif,Ct2_hat_cif,Dt2_hat_cif,junk,...

el

junk, junk, junk]=iof _linspl(At2_hat,Bt2_hat,Ct2_hat,Dt2_hat);

% find Phi
disp(’phi: find Phi and Phi~=*’)

[Aphi,Bphi,Cphi,Dphi,Aphi_star,Bphi_star,Cphi_star,Dphi_star]=...

phi(At2_hat_in,Bt2_hat_in,Ct2_hat_in,Dt2_hat_in,...
At2_hat_cif,Bt2_hat_cif,Ct2_hat_cif,Dt2_hat_cif);

% find (Phi~=*)(T1)

disp(’phi_star_t1: find (Phi~*)(T1)’)

[Ap,Bp,Cp,Dpl=phi_star_t1(Aphi_star,Bphi_star,...
Cphi_star,Dphi_star,...
At1,Bt1,Ct1,Dtl);

% find A and C
disp(’A_C: find A and C’)
(AA,BA,CA,DA,AC,BC,CC,DC]=A_C(Ap,Bp,Cp,Dp);

disp(’norm_infty: find infinity norm of C (lower bound)’)
gam_lower=norm_infty_bis(AC,BC,CC,DC);

disp('norm_infty: find infinity norm of T1 (upper bound)’)
gam_upper=norm_infty_bis(At1,Bt1,Ct1,Dt1);

gam=(gam_lower+gam_upper)/2;
1flag=0;

icount=0;

max_count=20;

counter=zeros (max_count,1) ;
gam_cur=zeros (max_count,1);
j_star_cur=zeros(max_count,1);

’/. 30 e 3k e e e ke 3¢ 3 e e 3 3k e e ke 3 e e ke ok o sk 3 3 2 5 2 e e e 2k 26 e e e 3 e 3 2 3 35 e e 3 e 3 3k e ke e 3 3 o 3K e e ok ke e ke 3k

while iflag==0 & icount<max_count,
icount=icount+1
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gam_lower
gam_upper
am

% find L
disp(’L_function: f£find L’)
[AL,BL,CL,DL]=L_function(AC,BC,CC,DC,gam) ;

% find (A) (L)
disp(’A_L: find AL’)
[(A_al,B_al,C_al,D_all=A_L(AA,BA,CA,DA,AL,BL,CL,DL);

% find j_star
disp(’j_star: find j_star’)
[j_star_vall=j_star(A_al,B_al,C_al,D_al);

gam_cur (icount, :)=gam;

if j_star_val==[],
iflag=1;
j.star_opt=999;
gamma_opt=gam_upper;

e
i% iflag==0, :

disp(’gam_upper-gam_lower’)

gam_upper-gam_lower

if ((gam_upper-gam_lower)/gam)<gam_tol | ...

( j_star_val<i & (1-j_star_val)<j_star_tol),
gamma_opt _upper=gam_upper;
gamma_opt_lower=gam_lowver;
if j_star_val<=1,

gamma_opt=gam;
else
gamma_opt=gam_upper;
end .
J.star_opt=j_star_val;
iflag=1
else .
if j_star_val>i,
disp(’go bigger’)
gam_lower=gam;
gam=(gam_upper+gam)/2;
elseif j_star_val<l1,
disp(’go smaller’)
gam_upper=gam;
gam=(gam+gam_lower)/2;
end

end
end

if abs(j_star_val-gam)<0.05 & iflag<1i,

disp(’offset the gamma to make it different from j_star’)

gam=gam+ (gam_upper-gam) /4;
end

counter(icount, :)=icount;
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j.star_cur(icount, :)=j_star_val;

disp(’ *%*x counter *** gamma *** j_star *x* ’)
[counter(1:icount,:) gam_cur(l:icount,:) j_star_cur(l:icount,:)]
disp (7 skttt AR o A AR A Ak Ak Ak ok sk ook )

end
% deakteaate ke sk e ke o s ke e sk e ke ke o e e ko ke sk o e o e ok o e ok o 3 ok ok o e ke s e sk s e sk e e ek sk e ok ok o K ok oK

if icount==max_count,
gamma_opt_upper=gam_upper;
gamma_opt_lower=gam_lowver;
if j_star_val<=1,

gamma_opt=gam_upper;
end

end .
clear counter gam_cur j_star_cur

counter=zeros(max_count,1);

gam_cur=zeros (max_count,1);

j-star_cur=zeros(max_count,1);

gu=gamma_opt_upper;

gl=gamma_opt_lower;

AR T T D r g
% Akt el oA o oK o o A oK o ok AR o R ok ok o A A o o o

value=now;

disp(’the time of day is....?’)

date

[hour(value) minute(value) second(value)]

Tcpu=cputime-tcpu

B.2 Sub-Routines
B.2.1 standards.m

function [L,c,rho,K,alpha,Aw,Bw,Cw,Dv]=standards (dummy) ;
%4 function [L,c,rho,K,alpha,num_w,den_v]=standards (dummy) ;
% standard values

% October, 1997
% Janet R. Grad

4 constants are for dry air (see Tipler)
L=4; 7 length of duct

c=331; Y% speed of sound

rho=1.29; ¥ density of air

4 set up the range of frequencies we wish to consider
w_last=6300;
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v=[0.000001:1:w_last];
v_size=max(size(w));

K=0.7; Y% impedence for boundary condition at x=L
alpha=(1+K)/(1-K);

num_w=1; J numerator of the weight
den_w=[1/1000 1]; % denominator of the weight
[Aw,Bw,Cw,Dul=tf2ss(num_w,den_vw) ;

B.2.2 t1t2_mimo_x.m

function [ATI,BTI,CTI,DT1,AT2,BT2,CT2,DT2]=...
t1t2_mimo_x(n,x,xs,xa,xd,c,L,rho,K,Av,Bw,Cw,Dw);

%function [ATI,BT1,CT1,DT1,AT2,BT2,CT2,DT2]=...

%A tit2_mimo(n,x,xs,xa,xd,c,L,rho,K,Aw,Bw,Cw,Dvw);

% October, 1997
% Janet R. Grad

% form the statespace representation of T1 and T2
A x-pts: ... output/input

%“ x varies over some set; xs, xd, and xa are constant

AT1=[];
BT1=
CT1=
DT1=
AT2=
BT2=
CT2=
DT2=L];
x_len=length(x);
xs_len=length(xs);
xd_len=1length(xd) ;
xa_len=length(xa) ;

-
2
.
»
-
2
-
]
.
]

O00000Oo

'/. e e 2k 3k 26 3 e ke 2 2 e 2K 2 e e 3fe sk afe 2 2 e 3k 0 2k ke 3l e ok e s 3K ke 3k e 3 o e e 2 e 2k 3k e 3 e ke e e ke e ok kK

% form T1

for ii=1:x_len,
(At1,Bt1,Ct1,Dt1]=ss(n,L,c,K,rho,x(ii),xd);
CT1(ii, :)=Ct1;
DT1(ii,1)=Dt1;

end

AT1=At1;

BT1=Bt1;

% put W1 in series with G(x,xd)

[n1,n2]=size(AT1);
[n3,n4]=size(Aw);
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AT1=[AT1 BT1*Cw; zeros(n3,n2) Aw];
BT1=[BT1*Dw; Bw]

CT1=[CT1 DT1*Cw];

DT1=DT1+*Dw;

% ko ook ook o o ek o e ok e ok ki ot i s s o o ok A oo o o o ok oo oo ok o o
% form T2

(A,B,C,D]=ss(n,L,c,K,rho,xs,xd) ;
[a,B,C D]-serles(Av Bv Cv Dw A,B,C,D);

4 x changes the output C (and D)
% B stays the same

for ii=1:x_len,
[At2, Bt2 Ct2 ,Dt2]=ss(n,L,c,K,rho,x(ii),xa);
CT2(11,.) Ct2
DT2(ii,1)= th;

end

AT2=At2;
BT2=Bt2;

% put in series

[n1,n2]=size(AT2);
[n3,n4]=size(A);

AT2=[AT2 BT2*C; zeros(n3,n2) Al;
BT2=[BT2*D; B];

CT2=[CT2 DT2*C]

DT2=DT2*D;

[AT1,BT1,CT1,DT1]=mymodred (AT1,BT1,CT1,DT1,10"~(-5)
[AT2,BT2,CT2,DT2] =mymodred (AT2,BT2,CT2,DT2, 10" (-5)

if norm(DT1)<10 (-5),
DT1=zeros(size(DT1));

end

if norm(DT2)<10"(-5),
DT2=zeros(size(DT2));

end

);
);

B.2.3 t1t2_mimo _x_linspl.m

function [ATI BT1,CT1,DT1,AT2,BT2,CT2,DT2]=..
t1t2_mimo_x llnspl(n X,Xs xa,xd c, L rho, K, Av Bw,Cw,Dw);

%function [ATi BT1,CT1,DT1,AT2,BT2,CT2 DT2]‘
%  tit2 mlmo(n x,xs,xa,xd,c,L,rho,K, Aw Bw,Cw Dw)

% October, 1997
% Janet R. Grad

%4 form the statespace representation of T1 and T2
4 x-pts: ... output/input

% x varies over some set; xs, xd, and xa are constant
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AT1=
BT1=
CT1=
DT1=
AT2=
BT2=
CT2=
DT2=L];
x_len=length(x) ;
xs_len=length(xs);
xd_len=length(xd);
xa_len=length(xa);
% etk ok ok ek ok e s S o o ook ke o o R ok ok ok o i e sk ok o ok ook
% form T1
for ii=1:x_len,
[At1,Bt1,Ct1,Dt1]=ss_splines(n,L,c,K,rho,x(ii),xd);
CT1(ii,:)=Ct1;
DT1(ii,1)=Dt1;
end
AT1=At1;
BT1=Bt1;

% put Wi in series with G(x,xd)

[n1,n2]=size(AT1);
[n3,n4]=size(Aw);

AT1=[AT1 BT1*Cw; zeros(n3,n2) Aw];

BT1=[BT1*Dw; Bw];

CT1=[CT1 DT1*Cw];

DT1=DT1*Dw;

Y koo e ok ok ok o koo ook i e ke e ok ok sl o o sl s ok ke o ok o e s e s e o oo ook o ook o o
% form T2

(A,B,C,D]=ss_splines(n,L,c,K,rho,xs,xd);
[A,B,C,D]=series(Aw,Bw,Cw,Dw,A,B,C,D);

% x changes the output C (and D)

% B stays the same

for ii=1:x_len,
(At2,Bt2,Ct2,Dt2]=ss_splines(n,L,c,K,rho,x(ii),xa);
CT2(ii,:)=Ct2;
DT2(ii,1)=Dt2;

end

AT2=At2;

BT2=Bt2;

% put in series

[n1,n2])=size(AT2);
[n3,n4]=size(A);

AT2=[AT2 BT2*C; zeros(n3,n2) A];
BT2=[BT2*D; B];

.
?
-
?
]
.

2
]
-
2
’

00000000
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CT2=[CT2 DT2#*C];
DT2=DT2*D;

[ATI,BTI,CT1,DT1]=mymodred(AT1,BT1,CT1,DT1,10“(-5));
[ATZ,BT2,CT2,DT2]=mymodred(AT2,BT2,CT2,DT2,10“(-5));
if norm(DT1)<10~(-5),

DT1i=zeros(size(DT1));

end

if norm(DT2)<10~(-5),
gT2=zeros(size(DT2));

en

B.2.4 ss.m (Legendre)

function [aa,bb,cc,dd]=ss(n,L,c,K,rho,x1,x2);
%“function [aa,bb,cc,dd]l=ss(n,L,c,K,rho,x1,x2);

% October, 1997
% Janet R. Grad

% Form the state-space reps using Legendre polynomials.
m=n+1;

M=zeros(m,m) ;
for i=1:m,
M(i,i)=L/(2*i-1);
end
G1l_test=zeros(n,n);
s=0;
for i=1:n,
s=s+i;
Gl_test(i,i)=s;

end

stuff=diag(Gl_test);

for i=3:2:n,

count=0;

for j=1:n-i+l,
G1_test(i+count,j)=stuff(j);
count=count+1;

end

end
Gl_test=G1l_test+Gl_test.’-diag(diag(Gl_test));
Gl=zeros(1:m,1:m);

G1(2:m,2:m)=G1_test;

Di=ones(m,m);

for i=1:m,
F2(i)=leg(i-1,x2,L);

end

F2=F2.7;

for i=1:m,
Ci1(i)=leg_diff(i-1,x1,L);
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end

aa=zeros (2*m, 2*m) ;

aa(l:m,m+1:2*m)=eye(m,m);
aa(m+1:2*m,1:m)=-c~2*M~ (-1/2)*G1*M~ (-1/2) ;
aa(m+1:2*m,m+1:2%m)=-Kxc*M~ (~1/2)*D1*M~(-1/2) ;
bb=zeros(2*m,1);

cc=zeros(1,2+m);
bb(m+1:2%*m,1)=M"(-1/2)*F2/rho;
cc(1,1:m)=-rho*c 2*C1*M~(-1/2);

dd=0;

4 Find the stable part only since we know the
% approximations are stable.
4 This gets rid of the unstable pole/zero at s=0.

[aa,bb,cc,dd, junk, junk, junk, junk, junk] =stabproj(aa,bb,cc,dd);

B.2.5 ss_splines.m (linear splines)

function [AA,BB,CC,DD]=ss_splines(n,L,c,K,rho,x1,x2);
“function [AA,BB,CC,DD]=ss_splines(n,L,c,K,rho,x1,x2);

% October, 1997
% Janet R. Grad

% Form the state-space reps using linear splines.
format long

[M,G,D]= mats_linspl(n,L);

G2=c"2%G;

D2=c*Kx*D;
procread(’Bmatrix_linear.src’);
maple(’Bmatrix_linear’,n,L,x2);
F=numeric(ans);

F2=(1/rho) *F;

F2=F2’;

aa=zeros(2*(n+1) ,2x(n+1));
aa(1:n+1,n+2:2%(n+1))=eye(n+1,n+1);
aa(n+2:2*(n+1),1:n+1)=-inv(M)*G2;
aa(n+2:2*(n+1) ,n+2:2*(n+1) )=-inv (M) *D2;

bb=zeros (2*(n+1),1) ;
bb(n+2:2*(n+1),1)=inv(M) *F2;
procread (’Cmatrix_linear.src’);
maple(’Cmatrix_linear’,n,L,x1);
C_tilde=-rho*c~2*numeric(ans);
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C_tilde(1,n+2:2%x(n+1))=zeros(1l,n+1);
cc=C_tilde;

dd=0;
[AA,BB,CC,DD]=minreal(aa,bb,cc,dd);

if any(real(eig(AA))>0),
disp(’A is unstable’)
max(real(eig(AA)))
else
disp(’A is stable’)
end

B.2.6 matslinspl.m (linear splines)

function [m,g,d]=mats_linspl(n,L);
Afunction [m,g,d]=mats_linspl(n,L);

% October, 1997
% Janet R. Grad

% Form the matrices used in the state-space rep
% for linear splines.

m=zeros(n+1,n+1);

m=diag(2/3*ones(1,n+1))+...
diag(1/6*ones(1,n),-1)+...
diag(1/6%ones(1,n),1);

m(1,1)=1/3;

m(n+1,n+1)=1/3;

m=(L/n)*m;

g=zeros(n+1,n+1);

g=diag(2*ones(1,n+1))+diag(-ones(1,n),-1)+diag(-ones(1,n),1);

g(1,1)=1;

g(n+1,n+1)=1;

g=g*(n/L);

d=zeros(n+1,n+1);

d(n+1,n+1)=1;

B.2.7 relative_degree.m

function [rel_degl=relative_degree(At2,Bt2,Ct2,Dt2,a,tol);
% function [rel_degl=relative_degree(At2,Bt2,Ct2,Dt2,a);
%4 determine the relative degree

% October, 1997
% Janet R. Grad
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count=0;

iflag=0;

if nargin==5,
t0l=0.01;

end

vhile iflag==0,

count=count+1;

norm(Ct2* (At2+a*eye(length(At2))) "~ (count-1)*Bt2)

if norm(Ct2*(At2+a*eye(length(At2)))~(count-1)*Bt2)>tol,
rel_deg=count;
iflag=1;

end

end

B.2.8 T2_hat.m

function [At2_hat,Bt2_hat,Ct2_hat,Dt2_hat,scalel=...
T2_hat (At2,Bt2,Ct2,Dt2,a,rel_deg);

% function [At2_hat,Bt2_hat,Ct2_hat,Dt2_hat]=...

A T2_hat(At2,Bt2,Ct2,Dt2,a,rel_deg);

% October, 1997

% Janet R. Grad

At2_hat=At2;

Bt2_hat=Bt2;

Ct2_hat=Ct2*( ( At2+a*eye(length(At2)) )"rel_deg );
Dt2_hat=Ct2*( ( At2+a*eye(length(At2)) )~(rel_deg-1))=*Bt2;

% make sure the new system has the same dcgain as the old system

disp(’T2_hat: scaling’)

scale=mean(dcgain(At2,Bt2,Ct2,Dt2))/...
mean(dcgain(At2_hat,Bt2_hat,Ct2_hat,Dt2_hat))

Ct2_hat=Ct2_hatx*scale;
Dt2_hat=Dt2_hat*scale;

[(At2_hat,Bt2_hat,Ct2_hat,Dt2_hat]=...
mymodred (At2_hat ,Bt2_hat,Ct2_hat,Dt2_hat);

B.2.9 T2 hat_linspl.m

function [At2_hat,Bt2_hat,Ct2_hat,Dt2_hat,scale]=...
T2_hat_linspl(At2,Bt2,Ct2,Dt2,a,rel_deg);

% function [At2_hat,Bt2_hat,Ct2_hat,Dt2_hat]=...

% T2_hat (At2,Bt2,Ct2,Dt2,a,rel_deg);
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% October, 1997

% Janet R. Grad

At2_hat=At2;

Bt2_hat=Bt2;

Ct2_hat=Ct2x( ( At2+a*eye(length(At2)) ) rel_deg );
Dt2_hat=Ct2x( ( At2+axeye(length(At2)) )~ (rel_deg-1))=*Bt2;

% make sure the new system has the same dcgain as the old system

disp(’T2_hat: scaling’)
scale=mean(dcgain(At2,Bt2,Ct2,Dt2))/...
mean(dcgain(At2_hat,Bt2_hat,Ct2_hat,Dt2_hat))

Ct2_hat=Ct2_hat*scale;
Dt2_hat=Dt2_hat*scale;

[At2_hat,Bt2_hat,Ct2_hat,Dt2_hat]=...
mymodred_linspl (At2_hat ,Bt2_hat,Ct2_hat,Dt2_hat);

B.2.10 phi.m

function [Aphi,Bphi,Cphi,Dphi,Aphi_star,Bphi_star,Cphi_star,...

Dphi_star]=phi(At2_hat_in,Bt2_hat_in,Ct2_hat_in,Dt2_hat_in, ..

At2_hat_cif,Bt2_hat_cif,Ct2_hat_cif,Dt2_hat_cif);

Afunction [Aphi,Bphi,Cphi,Dphi,Aphi_star,Bphi_star,Cphi_star,...

240

%  Dphi_star]=phi(At2_hat_in,Bt2_hat_in,Ct2_hat_in,Dt2_hat_in,...

% At2_hat_cif ,Bt2_hat_cif,Ct2_hat_cif,Dt2_hat_cif);

% October, 1997
% Janet R. Grad

% siso

if (norm(sum(Bt2_hat_cif))<0.001 & ...
norm(sum(Dt2_hat_cif))<0.001 ) | ...
(norm(sum(Ct2_hat_cif))<0.001 & ...
norm(sum(Dt2_hat_cif))<0.001 ),
Aphi=At2_hat_in;
Bphi=Bt2_hat_in;
Cphi=Ct2_hat_in;
Dphi=Dt2_hat_in;

% mimo

else
Aphi=At2_hat_in;
Bphi=[Bt2_hat_in Bt2_hat_cif];
Cphi=[Ct2_hat_in];
Dphi=[Dt2_hat_in Dt2_hat_cif];

end

[Aphi,Bphi,Cphi,Dphil=mymodred (Aphi,Bphi,Cphi,Dphi, 10~ (-8));
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% find Phi~=

Aphi_star=-Aphi’;
Bphi_star=-Cphi’;
Cphi_star=Bphi’;
Dphi_star=Dphi’;

B.2.11 phistar_tl.m

function [AA,BB,CC,DD]=phi_star_t1(Aphi_star,Bphi_star,.

Cphi_star,Dphi_star,At1,Bt1,Ct1,Dtl1);
/function [AA,BB,CC,DD]=phi_star_t1(Aphi_star,Bphi_star,...
% Cphi_star,Dphi_star,At1,Bt1,Ct1,Dt1);

% October, 1997
% Janet R. Grad

[n1,n2]=size(Aphi_star);
[n3,n4]=size(Atl);

AA=[Aphi_star Bphi_star*Cti; zeros(n3,n2) At1];
BB=[Bphi_star*Dt1; Bti];

CC=[Cphi_star Dphi_star*Cti1];

DD=Dphi_star*Dti;

[AA,BB,CC,DD] =mymodred (AA,BB,CC,DD,10~(-8));

B.2.12 A_C.m

function [al,b1,c1,d1,a2,b2,c2,d2]=A_C(Ap,Bp,Cp,Dp);
/function [al,bl,c1,d1,a2,b2,c2,d2]=A_C(Ap,Bp,Cp,Dp);

% October, 1997
% Janet R. Grad

% A is the first row of [Ap Bp Cp Dpl]
% (i.e., the first output and the first input)
% C is the rest
(mi,m2]=size(Cp);
% siso
if mi==1,

alj=Ap;

b1j=Bp;

c1j=Cp;

d1j=Dp;

al=alj;

bi=blj;

cl=clj;
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di=d1j;

a2=0;

b2=0;

c2=0;

d2=0;
[a1,b1,c1,d1]=mymodred(al,bl,c1,d1,10"(-8));

% mimo
else
alj=Ap;
blj=Bp;
c1j=Cp(1,:);
d1j=Dp(1,:);
al=alj;
bi=b1j;
cl=clj;
d1=d1j;
a2j=Ap;
b2j=Bp;
[n1,n2]=size(Cp);
c2j=Cp(2:n1,:);
[n1,n2]=size(Dp);
d2j=Dp(2:n1,:);
a2=a2j;
b2=b2j;
c2=c2j;
d2=d2j;
[a1,b1,c1,d1]=mymodred(al,bl,c1,d1,10"(-8));
[a2,b2,c2,d2] =mymodred(a2,b2,c2,d2,10"(-8));

end

B.2.13 norm_infty_bis.m

function [norm_vall=norm_infty_bis(a,b,c,d);
%#function [norm_vall=norm_infty_bis(a,b,c,d);

% October, 1997
% Janet R. Grad

% Compute the infinity norm of statespace rep [a b c d].
% We require a minimal realization.

[a,b,c,d]=myminreal(a,b,c,d);

[n1,n2]=size(a);

if ni1==1 & n2==1 & a==0,
norm_val=abs(d) ;

else
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gamma_upper=100;

gamma_lower=0;
gamma_diff=abs(gamma_upper-gamma_lower) ;
tol=10-(-6);

AR S e

while gamma_diff>tol,

gam=(gamma_upper+gamma_lower) /2;
r=d’*d-gam~2*eye(length(d’*d));
s=d*d’-gam~2*eye(length(d*d’));
H=[a-b*inv(r)*d’*c -gam*b*inv(r)*b’ ;..
gam*c’*inv(s)*c -a’+c’*d*inv(r)*b’];
ee=eig(H);
ind=find(abs(real(ee))<10-(-6));

if isempty(ind)==1, % no eigenvalues on the imaginary axis
gamma_upper=gam;

else % eigenvalues on the imaginary axis
gamma_lower=gam;
end
gamma_diff=abs(gamma_upper-gamma_lower) ;
end

U mkkkaokdok s okok ok
norm_val=gam + (gamma_upper-gamma_lower)/2;
end

B.2.14 L_function.m

function [AL,BL,CL,DL]=L_function(AC,BC,CC,DC,gam);
%function [AL,BL,CL,DL]=L_function(AC,BC,CC,DC,gam);

% October, 1997
% Janet R. Grad

% siso
[n1,n2]=size(AC);
if ni==1 & n2==1,
AL=0;
BL=0;
CL=0;
DL=(gam~2-DC~2)~(-1/2);
% mimo
else

CC=CC/gam;

DC=DC/gam;

[AC,BC,CC,DC]=mymodred (AC,BC,CC,DC,10~(-8));
[AL,BL,CL,DL]=matlabsf1 (AC,BC,CC,DC);

243
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CL=CL/gam;
DL=DL/gam;

end

B.2.15 AL.m

function [aa,bb,cc,dd]=A_L(AA,BA,CA,DA,AL,BL,CL,DL);
“function [aa,bb,cc,dd]=A_L(AA,BA,CA,DA,AL,BL,CL,DL);

% October, 1997
% Janet R. Grad

[n1,n2]=size(AA);
[(n3,n4]=size(AL);

A=[AA BA*CL; zeros(n3,n2) AL];
B=[BA*DL; BL];

C=[CA DA*CL];

D=DA=*DL;

[aa,bb, cc,dd]=mymodred(A,B,C,D);

B.2.16 j_star.m

function [j_star_vall=j_star(a,b,c,d,icount);
4function [j_star_vall=j_star(a,b,c,d);

% October, 1997
% Janet R. Grad

A Compute j_star.m

aric=a;

wric=c’x*c;

qric=zeros(length(a));

[Pi,P2,lamp,perr,vellposed,x]=myriccati(aric’,qric,vric,’schur’);

resx=aric*x+x*aric’-x*wric*x+qric;

if norm(resx)>10,
disp(’Warning: residual of riccati equation in j_star’)
norm(resx)

end

H=-x*c?’;

An=a+H*c;

Bn=b+H*d ;

Cn=c;

Dn=d;

Am=a+Hx*c;

Bm=-H;

Cm=c;
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Dm=-1;

4 In the standard configuration,
A\l AL - Q \| _{\infty} = \I M = ( M"(-1)*N - Q@ ) \| _{\infty}
A =\l N - MQ \| _{\infty}

% where M is inner (AL is siso).
flag3=0;

ai=Am;

bi=Bm;

ci=Cm;

di=Dm;

ao=An;

bo=Bn;

co=Cn;

do=Dn;
(ai,bi,ci,di]l=mymodred(ai,bi,ci,di);
[ao,bo,co,do]l=mymodred(ao,bo,co,do);

% set up Omega

U ek ok Rk dok ok ok
if length(ai)==0,
p=0;
z=0;
flag2=1; % no rhp zeros
flag3=1;

else

[p,zl=inner(ai,bi,ci,di);
4 get rid of the repeated rhp zeros case

z=sort (z);

ij_count=0;

for ij=1:length(z),

if imag(z)>=0,

ij_count=ij_count+1;
z_test(ij_count)=z(ij);

end
end
diff_z_test=diff(z_test);

for ij=1:length(diff_z_test),
if abs(diff_z_test(ij))<10-(-2),
flag3=1;
end
end
if flag3==1,
j-star_val=999;
end

end
Y dedkkak o ok o e e ok e e ok o sk ok

./. e 2 2k 3k e 3§ 35 e 3 2 38 2 2 2 3¢ k¢ 32k e e 3k e 2k e 3 ke e ok ok ok 2k 2k ke e e e ok sk 3¢ ke e e e e Ak e Ak ok ok 3k 3 356 3¢ ok ek e 3k e e e 3k
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if flag3==0, ) there are no repeated roots

nz=length(z) ;
% check to see if there are any rhp zeros
if nz=
flag2‘1;
disp(’no RHP zeros!’)
else
flag2=0; / go on
end
% Aokt e e e s sl o sk o o e e oo o AR o R Ao R AR o KA e o o o e ek ek R o
if flag2==0, J), there are RHP zeros so continue

% {al} is the rhp zeros of T2

% enforce what nz is since this tends to get lost somehow
nz=length(z) ;

%4 evaluate Ti at the rhp zeros of T2 to determine {b}

size_ao=max(size(ao));
for i=1:nz,
b(1)—co*lnv(z(l)*eye(size_ao,size_ao)-ao)*bo+do;

end
Y sk ek e o ke o sl fe o o o o i ok o o e el o oo o s o o e e e e ok ok o oo
% find the Pick matrix
for i=1:nz,
for j=1:nz,
A_tilde(i,j)=(1/(z(i)+conj(z(3))));
B tllde(l,J) ((b(1)*con3(b(3) )/ (z(i)+conj(z(j))));

end
end

q=diag(schur(A_tilde~(-1/2)*B_tilde*A_tilde~(-1/2)));
j.star_val=real(sqrt(max(q)));
P=A_tilde-realpow(j_star_val,-2)*B_tilde;
if any((real(eig(P))<-0.0001)),

dlsp(’P is NOT positive semi-definite!?’)

j-star_val=999;
end

end /) end of flag2
% e 3 e 2 k¢ ok 3 3 2 2k 2 e e 25 s ke 3¢ e 2 e 3k 4 24 2 2 e e ke e 3 e ke 4 e e ek 3 3 e 3K 3 e e e e e ke e e e e ok K A e e e 3K ke A

end /% end of flag3
% e ke 3k 2 e 3¢ 3 2k 3k ok o e e fe 3k A 8 ke 3k e e 35 o 3 2k 2 3¢ 2k e 4 e e ke e 38 3k 3¢ 35 e 0 3¢ 3 Sk e K e 3 2k e 3 e 3k e k¢ ke 3 ke ok 3k ek K

B.2.17 mymodred.m

function [aa,bb,cc,dd]=mymodred(AA,BB,CC,DD,tol);
/function [aa,bb,cc,dd]=mymodred(AA,BB,CC,DD,tol);

% October, 1997
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% Janet R. Grad

% function to eliminate unobservable/uncontrollable states
/4 using obalreal

[n1,n2]=size(CC);

[n3,n4]=size(DD);

% siso

if ni==1 & n4==1,
[AA,BB,CC,DD]=myminreal (AA,BB,CC,DD);

end

if nargin==4,
t01=0.0001;

end

[AA_bal,BB_bal,CC_bal,g,p]=obalreal (AA,BB,CC) ;
gg=g/max(abs(g));
elim=find( abs(gg)<tol );

if elim==[],
1 aa=AA_bal; bb=BB_bal; cc=CC_bal; dd=DD;
e

se
[aa,bb,cc,dd]=modred (AA_bal,BB_bal,CC_bal,DD,elim);

end

error_obalreal=2*sum(g(elim));

if error_obalreal>10,

disp(’Warning: error_obalreal in mymodred’)

error_obalreal
end

B.2.18 myminreal.m

function [am,bm,cm,dm] = myminreal(a,b,c,d,tol)
/function [am,bm,cm,dm] = myminreal(a,b,c,d,tol)

% Matlab function call minreal.m

[ns,nu] = size(b);
if nargin ==
tol = 10*ns*norm(a,l)*eps;

end
[am,bm,cm,t,k] = ctrbf(a,b,c,tol);
kk—

= sum(k) ;
nu = ns - kk;
nn = nu;
am = am(nu+l:ns,nu+i:ns);
bm = bm(nu+i:ns,:);
cm = cm(:,nu+l:ns);
ns = ns - nu;
if ns
(am,bm,cm,t,k] = obsvf(am,bm,cm,tol);
kk = sum(k);
nu = ns - kk;
nn = nn + nu;
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am(nu+1:ns,nu+l:ns);
bm(nu+i:ns,:);
cm(:,nu+l:ns);

am
bm
cm

end
dm

248
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