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Abstract 

The intelligent information processing performed in humans is now king mimicked in 

a new generation of adaptive machines as the srate-ofthe-art technology. Inspûed by 

the functiondity of brain nerve celis, artificial neural networks can learn to recognize 
complex patterns and iùnctions, and based on the biologicd p ~ c i p l e  of "survivai of 
the fittest", genetic algorithms are devdoped as powerfui optirnization and search 

techniques. Likewise, fuzzy logic irnitaies the mechanism of approximate reasoning 
perfomed in the hurnan rnind, and hence cm reason with Iinguistic and imprecise 
information. 

Although these intelligent techniques have produced promising results in some 
applications, certain cornplex problems cannot be solved using oniy a single technique. 
Each technique has particular computationai features (e.g. ability to learn, explanation 
of decisions) that d e  it suitable for particular problems and not for others. These 

limitations have motivated the creaiion of intelligenr Izybrid systems where two or 

more techniques are combind Although there is an increasing interest in the 
integntion of fuzzy logic, neural networks, and genetic algorithms to build irttelligertr 

hybrid sysrer~zs. no systematic synthesis framework has been developed so far. 
Therefore, the objective of this thesis is to constmct an inrelligerlt leaming schenie 
that incorporates the merits and overcornes the limitations of the three paradigrns. ïhe 

applications considered for the proposed scheme are modeling and control. 

The generic topology of the system used in this thesis has a transparent stntcture; 
its pararneters. links, signals and modules have their own physical interpretations. 
Moreover, the leaming scheme uses task decomposition to identim the systems' 
parameters. The leaming cask is decomposai into three subtasks (phases). The first 
phase perfom a coarse identification for the systems' numerical pararneters using 
unsupervised learning (clustering) aigorithm. The second phase finds the linguistic- 
association pamme ters (linguistic rules) using unsupervised as well as supervised 
karning algorithrns. Ln the thud phase, the numerical parameters are optirnized and 

fine-tuned using supervised learning and search techniques. The performance of the 

wheme is asscssed by testing it on two benchmark modeling applications. The results 
are compared to that of other intelligent modeling approaches to show the performance 
characteristics of the proposed scheme. The scheme is also assessed by applying it to 
nonlinear control problems. The synchronous machine voltage regulation and speed 
stabilization problems have been tackled using the proposed scheme. Several 
comparative studies are camed out to show the advantages of the proposed control 
approach over conventional approaches. 
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Chapter 1 

Introduction 

1.1 Preface 

Humans are hybrid information processing machines. Our actions are governed by a 
combination of genetic information acquired through karning. Information in Our genes 

hold successful survivd methods that have k e n  tried and tested over milIions of years of 

evolution. Human Ieaming consists of a variety of complex processes that use 

information acquired from interactions with the environment. It is the combination of 

these difierent types of information processing methods that has enabled humans to 

succeed in cornplex, rapidIy changing environrnents. 

This type of hybrid information processing is now king mirnicked in a new 

genention of adaptive machines as the state-of-the-art technology. The applications 

range from aircraft control systerns that diagnose and repair ihemselves to systems that 

can successfuIly trade in foreign exchange markets [l-81. At the heart of these adaptive 

machines are inlenigent computing systei~ls, some of which are inspired by the 

mechanics of nature. 

Neural Networks (NNs), for example, are inspired by functionality of nerve cells in 

the brain. Like humans, neural networks can l e m  to kognize patterns by repeated 

exposure to rnany different examples. They are good at recognizing complex patterns 

such as hand-written charactes and financial markets decisions- 

Genetic Algorithms (GAs), are also naturally inspireci and based on the biological 

p ~ c i p l e  of "survival of the fittest". The main idea behind a genetic aigorithm is the 

evolution of a probIem9s solution over many generations, with each generation having a 
better solution than its predecessor. 



Chapter 1. Introduction 

While these intelligent techniques have produceci encouraging results in particular 
tasks, certain complex problems cannot be solved by a single intelligent technique aione. 
Each intelligent technique has particular computational properties (e.g. abiiity to l em,  

explanation of decisions) that make them suitable for particular problems and not for 
othen. For example. while neural networks are good at recogninng complex patterns. 

they are not gwd at explainhg how they reach their decisions. Fuzy logic systems, 
which can reason with imprecise information, aIso have particular strengths and 

limitations. They are good at explaining their decisions but they cannot automatically 
acquire the mles they use to rnake those decisions (lack of leaniing ability). These 
Iimitations have been a central driving force behind the creation of intelligent hybrid 
systems where two or more techniques are combined in a rnanner that overcomes the 

limitations of individual techniques [9]. 

1.2 Problem 

A leading application dornain for intelligent hybrid systerns is process modeling and 

control. Control systems based on fuzzy logic and neural networks are no longer just 
research topics. Indeed, their popularity has redefined the field of Intelligent conrrol, in 
which much activity is now devoted to the investigation of hybrid architectures that 
integrate neural networks, fuzzy logic. genetic algorithms and other noveI (or newly 

resurgent) technologies. 

Since fuuy logic approach has been proposed by Zadeh [ 10- 1 11, fuzzy modeling and 
control are considered one of the most attractive strategies in tackling complex control 

and decision systems. Fuzzy logic strategies are particularly suitable for nonlinear 
systems with imprecise andor uncertain knowledge of their parameters and behavior. 

Fuzzy control systems, unlike conventional control systems, have a large number of 
parameters to be tuned during the design process. However, most of the current 

implementations and designs of fuPy models/controllers rely mainly on a substantial 
amount of heunstic observations to express the system strategy's knowledge and tune its 

parameters [9, 12). Therefore, the practical development of such systems still suffers 
from two critical problerns: fmding the system-strategy's initial mles. and tuning the 
initial rules and heir membefship functions. Moreover, it is ciifficult for hwnan experts 

to examine al1 input-output data recorded from a cornpiex process to find and m e  the 
niles and their membership funetions within fuzzy systerns. Therefore. a fuzzy Iogic 

system should be integrated (or augmenteci) with some techniques that can provide 
learning, adaptation and optimization capabilities to this system. 
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Neural networks and genetic algorithms are promising learning synergisms to be 

integrated with fuzzy logic in order to construct a suitable inrelligent hybrid system for 

modeling and control applications. This integration enables the system to handle both 
quantitative and qualitative knowledge. in other words, the system can be learned from 
the avaiiable inputsutput properties (data) as well as the designer expenence. 

1.3 Objectives 

Although there is an increasing interest in the integration of fuzzy logic, neuraI 

networks. and genetic algorithms to build intelligent systerns for modehg and control 

applications, suc h integration of these three technologies (according to o u  know ledge) 

can't be found in the literature so far. However. there is already significmt literature in 
the integration of neural networks or genetic algorithms with fuzzy logic for modehg 

and control. Hence, one of the objectives of the cunent research is to construct an 

intelligent learning scheme that incorporates the merits of the three paradigms with 

application focused on modeling and control. 

Another objective is to overcome the limitations of each approach by compensating 

such Limitations with some of the salient features in other approaches. For example, 

neural networks have limitations in handling qualitative knowledge and they are black 

box approaches which theu actions or decisions cadt  be expressed by natural language. 

This limitation is welI compensated by the linguistic reasoning provided by fûzzy logic. 

On the other hand, fuuy logic lacks the capability for learning and adaptation which is 

compensated by the powerful learning and adaptation capabili ties in neural networks. 

Genetic aigorithms, when integrated with fuzzy logic and neural networks, grant this 

hybnd systern with robust search and optimization technique that reduces the 

dependency on the designer experience for synthesizing a mode1 or controller. 

One of the main advantages behind the popularity of fuzzy control is that it is a 

model-free approach with high capability of reasoning under nonlinearity and 

uncertainty. This advantage is preserved in the intelligent hybrid sytem proposed in this 

thesis. The proposed synthesis approach does not depend on a priori quantitative mode1 

of the plant under study or need to evaiuate any parameter in this plant. However. the 

input-output properties (data) of the plant under study is mainly required to perform the 

Iearnui~ptationloptimization tasks in this approach. This dues not present an 
obstacle as such data, in most cases, is usually available or easy to be collected. 

Aiso, an invaluable objective in the proposed approach is to utilize and incorporate 

al1 the available sources of information about the plant in the synthesis process. These 
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sources could take the fonn of observations and/or experience, numerical data or model, 

and linguistic data. The synthesis as weU as the topology of the proposed hybnd system 
are organized in a manner that can satisfi this objective. 

1.4 Approach 

In order to synthesize an intelligent hybrid system, two requirements have to be 

specified. The first requirement is the topology (structure) which shows the distribution 

of the different parameters of the system and how they interact together. The second 

requirement is the leaming scheme which adapts the system parameters according to the 

received information h m  the surrounding environment. 

In this thesis, the selected topoIogy of the system is transparent. In other words, all 
its parameters, links, signals, and modules have their own physical interpretations (or 

meanings). Unlike rnost neural networks structures, the structure used does not have a 

black box form, instead it has a glass box form. This important feature grants us a better 

understanding of the system's reaction and behavior. 

The number of pararneters which should be found in order to synthesize the 

intelligent systems, are usually large. Also, the parameters themselves take different 

foms such as nurnencal numbers or linguistic associations (like linguistic rules). 

Identifj4ng al1 these parameters instantaneously is a very difficult task and found to be 

impractical. Thus, it is more convenient to divide the leaming scheme into subtasks. in 
this thesis, the proposed leaming scheme is divided into three phases. The first phase 

performs a couse identification for the system' numerical pararneters using 

unsupervised l m i n g  (clustering) algorithms. The second phase is used to fmd the 

linguistic-association parameters (linguistic rules) using unsupervised as well as 

supervised leaming aigorithms. In the third phase, the numerical pararneters are 

optunized and fine-tuned using supervised learning and search techniques. 

Numerical data as well as expert knowledge could be incorporateci together in al1 the 

three leaming phases. However. the utilization of the expert knowledge, in the second 

leaming phase, is more vital and effective. The selection of the numerical training data 

has also a remarkable effect on the overall design specially in control applications. Thus, 

the incorporation of expert knowledge in choosing the appropriate training data is also 

effective. 
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1.5 Thesis overview 

The dissertation spans nine chapters. Chapter 2 presents a review of the fundamental 
concepts of fuzzy control, neuro-conuol, and neuro-fuPy control with an extensive 
survey of the work done in these areas. Moreover, an o v e ~ e w  on genetic algorithrns 
and the work emphasizing the application of them in the optimization of fuay and 
neuro-controllers are presented- 

In Chapter 3, the proposed intelligent hybrid leaming scheme as weIi as the 
suggested topology are described. Also, the associated task decornposition and the 
suggested candidates for each subtask are discussed in details. 

In Chapter 4. the coarse identification Iearning phase is descnbed. The suggested 
techniques are also presented in detail. A comparative study among hem is carried out 

using different evaluating indices. 

In Chapter 5, the linguistic-rule formation phase is described, the proposed 
algorithms are presented, and a comparative study arnong them using a well-known 
benchmark is carried out- 

In Chapter 6. the optimization learning phase is descnbed. the proposed dgorithms 
are also presented, and a comparative study using a well-known benchmark is carried 
out. Moreover, a sensitivity analysis is performed to investigate the effect of some 

panmeters on the algodhm used in this Iearning phase. 

In Chapter 7, the application of the proposed hybrid learning schenze in modeüng of 
cornplex dynamical systerns is presented. Two well-known benchmarks are used to show 
the effectiveness of the proposed scheme. 

In Chapter 8, the application of the proposed hybrid Iearning scherne in nodinear 
control problems is presented. The proposed scheme is used to design different control 
schemes for synchnous machines. A review of the -te-of-the-art applications of 
arti ficial intelligence tec biques in synchronous-machine control is presented. The 
synchronous-machine voltage regulaîion and speed stabilization problems are tackied. 
Many comparative studies are carrieci out to show the advantages of the proposed 
control approaches over conventional approaches. 

In Chapter 9. the contribution of this dissertation is emphasized. Conclusions and 

suggested future work are also presented. 



Chapter 2 

Background and Literature Survey 

2.1 Introduction 

In recent years it has b e n  recognized that to realize more flexible controt systenis it is 
necessary to incorporate other elements, such as logic, reasoning and heuristics intu 
the more algonthmic techniques provided by conventional control theory [ 131, and 

such systems have corne to be known as intelligent control systems. The technical 
comniittee on intelligent controi of the IEEE ControI Systems Society has defined the 

general characteristics of intelligent control as having an ability to emulate human 
capabilities, such as planning, learning and adaptation (14-151. LRarning and 
adaptation eqxïal ly are essential characteristics of intelligent control systems, and 
while adaptation does not necessarily require a learning ability for systems ta be able 

to ccipe with a wide variety of unexpected changes and envircmnents, learning is 
invariably required. 

f t  is necessary to specify the chuacteristics thtit qualify a systeni to be justifiably 
recognized as an intelligent control system. Firs t and foremost, intelligent conuol 
systems are designed to maintain satisfactory closed-Ioop system performance and 
integrity over a wi& range of operating conditions. 'The characteristics of the system 
must therefore relate to the complexity of the plam including non-linear and tirne- 
variant plant behavior, dimensiooal and other rnultivariable characteristics, the 
complexity of the desired performance objective, imperfection and uncertainties in the 
measurements, and an ability ID cope with component failmes. 

In recent years the use of the terminology 'intelligent wntrol' has come to embrace 

diverse methodologies mmbiniag amventional conml theory and emergent techniques 
based on physiological metaphors, such as neural neworks, fuuy Iogic, artificial 
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intelligence, genetic aïgorithm and a wi& variety of search and optiaiization 
techniques, This chapter reviews the aspects of these emergent techniques, namely, 
fuuy logic, neural networks and genetic aigorithm that pertain to the realizruion of 

intelligent control systems. The fundamental concepts of each paradigm are also 
discussed. 

2.2 Fuzzy logic control 

Conceptually, fuuy logic control systems are rule-based expert systems which 

comprise if .... then (conditionhction) d e s  of the form [ 1 1 ] 

. . 

THEN Y, is B; and Y, is B: ... Y, is BA 

where Xi E U, and 5 E Vq are process input and output variables. and Ar and B i  are 
their actuaI values for the fth rule, respectively. ïhese values generally depict 
linguistic (or fuzzy) terms, such as high, cold, negative which are represented by f u u y  

sets defined on the cmesponding universes of discourse U,, and V,. It is cornmon to 

use the mernbership fmction of the fuzy set A, to represent the set itself. One of 

the most popular niembership descripticins is the Gaussian function, which is detined 
as 

where ni, is the centrciid of the fuzzy set (niembership function) and 0; its width. This 
type of membership functions is characterized by only two parameters, ni and G. 

Each fuzzy 'if ... then' rule defines a fuzzy hyperset given by the Cartesian product 
of the f u a y  sets of the variables in the mie, i-e. = C(A; x pAJrx ... x p,/ + pB;. 
The interpretaîion and membership functions of these rules ciepend on the t-nom 
oprator used for the implication of the mIe [16]. Typicaily, the 'niin' and 'algebraic 
produc?' operations are used and. respectively, interpreted as 
* min 

P A ~ B  = M ~ ~ ( C L A  P B )  (2-3) 
algebraic product 

PA+B = PA x PB (2-4) 
where b ,~ is the resultant confidence factor of a fuzzy rule. 
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The most common fuzzy inference method is the so cailed superstar (O) 

composition mIe 11 1, 17-18] wtiich can be descnbed as follows. Let A = {A,, A2 ... 
A,) E U be the inputs to the fuzzy system. The membership function of the jth output 
fuuy set h n i  the rth rule is given by 

where * is a 1-nom operator such as 'min' or 'algebraic' prociuct, and p i ( y )  is the 

resultant rnembership function of the jth output of the rth rule after applying the f imy 
inference. The overail result from a set of R fuzzy mles is an aggregation of the PR 

M y  sets, performed a number of ways using t-conorms, such as union or aigebraic 
sum. Tu obtain a nonfuzzy output h m  these rules, one of severid different 
defuzzification techiques is applied [ 17- 181. For example, using the Mean-Of- 
Centers (MOC) method a e  output can be obtained as 

where g; is the central support of che consequence h i u y  set of each mle and p is 
s,' 

the weight of each rule determinecl f h m  equation (2.5). It is clear that employing 
different operators for inference or aggregation c m  result in different behavior of the 

fuzzy system. The rnost cammonly used t-nonns (t-conorms) are min (rnax) and 

aigebraic product (dgebraic sum). 

An alternative approach of fuzzy inference, wNch was rneant to overcome the fact 
that the supstar inference resuIts in an output which is a fuzzy set rather than a r d -  
valued variable, hence, requiring the use of defuzzifiers, is introduced by Tukagi- 
S ~ n o  [ 19 1. nie Takagi-Sîgeno fuzzy controller uses fuzy niles which have an 'if 

part similar to Zadeh [ I l ]  rules, but whose 'then' part is a notlfuvy quantity 
expressed as a polynomial. The 'then' part is composed as, a linear functicin of 'if part 

variables. Rules are typicaily of the fom: 

where bi and q are scalar quantities. The overall output nom al1 the rules is obtained 

as weighted average of the mle outputs 
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where k is the tmth value of each mle and is cdculated as a product of the 

mernbershi p gracies of the an tecedents 

Notice that this technique has sirniIarity with the Zadefr approach if aigebraic 

product and mean-of-centers are used for inference and defuuification. The Tdagi- 

Sugeno approach provides a compact form suitable for application of pararneter- 
estimation methods. On the other hand, it excludes the possibility for incorprating 
human expert knowledge. 

Figure 2.1 shows a general configuration for implementing a fuzzy Iogk conml 
system. The system has five distingishable umponents: a fuzufier for cxmverting 
inputs to fuzzified vaiues in the universe of discourse, a knowiedge base containing dl 

the infmnaiion about fuzzy membership functions of the input variables, a rule base 

consisting of f u z y  ccintrol niles, an inference logic such as pattern matching or 

supstar composition, and a defuzpfier such as the weighted averaging technique, 
center of gravity methoci, and mean of maxima rnethod 

Output-scaîing factors, I 
nomaii7ation senson ' 

Figure 2.1 A simple fuzzy logic control system block diagram. 
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Lee [17-181 has presented a survey on different fuzzy controllers design 

techniques. In particular, the survey iacludes a discussion of fuzzification and 
defùzzification strategies, the denvation of the database and control rules, fhe 
definition of f u u y  implication, and an analysis of fuzzy reasoning mechaaism. A 

general methodology for consmcting a fuzzy controiler has been alm described 

together with the assessrnent of its performance. 

23 Neural networks applications in control 

Artificiai neural networks (ANNs) are biologkally inspired and represent a major 
extension of computation (201. 'lhey emhxiy computational paradigms, based on a 
hiological metaphor, to mimic the computations of the brain, The i m p v e d  
understanding of the tùnctioning of the neuron and the pattern of its interconnections 
has enabled researchers to produce the necessary mathematical mixiels for testing their 
themies and developing practical applications. The basic element of any neural 
network structure is cailed ' n ewn '  which is an extremely simple processing element 
that has multiple inputs and a single output. An input to a neuron could be from the 
surrounding environment or from other neurons. Also, a neumn output could be fed 
into other neurons or directly into the surrounding environment. The output of a 
neuron is constructed by taking the weighted sum of its inputs transfonned by a 
&ansfer function. Neural networks gain their overall prtcessing capability by 

comecting these simple neurons to other neurons with an asscxiated weight, which 
determines the structure of the signal that is transmitted t'mm a neunm to another. The 
total collection of weighfs are the parameters that completely specify the mode1 of the 

process which this net represents. Therefore, in order to learn or i&ntify this m e 1  
one needs a systematic strategy for adjusting these weights wtùch is calleci the learning 
a1gonth.m. In order for the net to learn, one needs to present a number of examples to 
the net whose attributes are laiown and are representatives for the unknc1wn model. 
T h i s  set of given examples is called the training set. 

The use of neural networks in control systems can be seen as natural step in the 

evolution of control methodology to meet new chaiienges [2I 1. Looking back, the 
evolution in the conml area has been fiided by three major needs: the need to d e .  

with increasingly cornplex systerns, the need to accomplish increasingly demanding 
design requirernents, and the need to attain these requirements with less precise 
advancecl knowledge of the plant and its environrnent - that is, the need ta conml 
under increased uncertainty. Today, the need to control, in a better way, increasingly 
cornplex dynamical systems 1221 under significant uncertaincy has led to  reevaluation 
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of the amventional contrd methods, and it has made ttie n& for new methods quite 
apparent [2 1 -261. 

Extensive research has been done in the application of neural networks in control 
sysrems [27). In efforts to provide a consistent classification for the large n u m k  of 

diveme applications, Werbos [28) suggested five categories based on netwïxk 
functional approaches. These are: supervised control, where NNs are trained on a 
dalabase of correct signals; direct inverse control, where NNs l e m  the mapping 
between a desirable r q n s e  trajectory and the control signals that produce it: neural 
adaptive ctintrcil where NNs are used in place of standard techniques of mode[-based 
adaptive contrd such as identification of dynamitai m&Is; dynamic optimization; 
and adaptive critic confrol such as reinforcernent learning. These categories are 
describeci as follows: 

1. Srtpemisecl control: The training of neural controllers based on human-expert 
c-xperience is sornetirnes the on1 y feasi ble design rnethod, espeaall y for con trol lers 
of complex and p r l y  definecl processes for which no suitable amventionai 
controller exists, but fc~r which human experts ofien make reascinable conml 
ciaisions based on experience and intuition. Similarly, the neural network niay be 

trained on the actions provideci by a conventionai controlier. The perfc~nnmce of 

the neural controller in both cases will be Iimited by the performance of the 

cmginal controller, and hence this approach is only advantageous in situaticins 
where the original controtler is computationally more expensive, such as in a 

process with fast dynamics. 

2. Direct inverse control: A common application technique is tci train the neuro- 
controtler using prcxess open-loop input-output data so that it  is abIe to extract 

the inverse niapping between the output and conml input. Supervised learning is 
used tci learn the mapping between the process state signals and control signals as 
shown in Figure 2.2. Subsequently, during the operation stage the network is 
provicieû with the desired vaiues of the plant output and infers a suitable control 
signal, and hence used directIy as the controller. Direct inverse control is based on 
the assumption that there exists a one-to-one mapping b r n  the input state to the 

output state, in -ch case there also exists an inversé map from the output state 
to the input sate. The plant must, however, be open-lcmp stable. The inverse rnap 
is leamed by randornly traversing the input space and building up a database of 
input-output pairs. Problems are encountered if the mapping h m  control inputs 
to plant output is not invettible, or is not one-to-one. 
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3. Neural adaptive cczntrol= Adaptive control techniques can be cafegorized roughly 
into two classes according to the meam by which the controller parameters are 
adjusted. First is the direct approach such as mode1 reference control where 
controller parameters are continuously adjusted using, for example, an error- 
gradient bas& methad to mini& an errer between the plant and the refea-ence 
model. The second approach is the indirect or self-tuning method where first a 

mode1 of the plant is identifie& and then the parameters of this mode1 are used to 
design the crintroller. Both the conrroller and the model may be represented by 

several networks. In predictive control using W, a mode1 is used to predict future 
values of the controlled variable over a horizon of interest, which may be operated 
in pardlel with the process to derive actual on-line plant parameters. 

4. Dyarnic oprimization: In this approach, the NN is trained to discover and 

optimize a control strategy, without guidance of exampIes or training patterns. 
The rraining procedure is, in most cases, carrieci out on a model of the process; 
however, schenies where this can be conducted on the plant itself, are significantly 
niore important sine the performance of the trained neural controller will be 

bounded by the accuracy of the model used as shown in Figure 2.3. The training 
procedure involves assuming a set of parameters for a given neural controller and 

evaluating a performance measure for the set. A performance measure is used as a 
training signal. The inputs to the controller are, in general, cuen t  and past values 

tif the plant inputs and outputs. Superviseci learning techniques can be extended to 

achieve a self-leaming controller using multiple networks [B 1. For example, one 
network is used as an emulator and learns the system dynamics while another is 
used to cantrol the emulator hy minimizing the error between the desired output 

and the output of the emulator. 

5 .  Adaptivr critic contral: The adaptive critic family of designs is more complex 
than the other four. One of the most popular such critic designs is the 

reinforcement learning scherne. Reinfimement control schemes are minimally 
supervised leaniing algorithrns; tfie only information that is made available is 
whether or not a particular set of control actions has been successful. The original 
application attempted to balance an inverted pendulum, subject to the constraints 
that the platfonn should not move more than a certain distance h m  its starting 
point and that the inverted pendulum remaineci approximately uprïght. if either of 

these constraiots was viol- a failure signai was sent to the learning algorithms. 
The solution proposed by Baero et al. (301 was to construct a control scheme that 
was compsed of two adaptive elements; an Associative Search Bernent (ASE) 
and an Adaptive Critic Bernent (ACE). The ASE attempts ro repduce the 

optimal controt signai that satisfies the given performance objectives, while the 
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ACE atternpts to rnonitor the performance of the conuoller internally and tc) 

provide an interna1 reinforcement signai which is used to train the ASE, as 

illustrateci in Figure 2.4. 

control c 
Figure 2.2 Direct inverse plant modeling. 

I optimization hop I 
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Figure 2.3 Dynamic optimization conml architecture. 
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Figure 2.4 An ASWACE reinforcement system's architecture. 
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2.4 Genetic algorithrns overview 

Search Plant 

Genetic algorithm (GAs) are powerful search and optimization algorithnis based on 
the mechanics of naturai selection and naturd genetics. GAs can be characterized by 
the following features (3 1-34]. 

w 

A scheme for encoding solutions to the problem, refemed to as chmosonies or 
suings. 
An evaiuation fùnction (refened to as a fitness function) that rates each 
chmmosome relative t c ~  the others in the current set of chromosomes (referred ta 
as a population). 
An ini tialization procedure for a population of chromoscmes (strings). 
A set of operators wtuch are used to manipulate the genetic composition of the 
population (such as recornbination, mutation, crossover, etc.). 
A set of control parameters that provide initial settings for the algorithm and its 
operators. Aiso, the algorithm teminating condition should be specüieci 

Element 

A candidate solution (in a GA) for a specific problem is called a chromosome and 
consists of a linear list of geaes, where each gene can assume a finite number of values 
(alleles). A population consists of a fimte number of chromosomes. The genetic 
algorithm evaluates a population and generates a new one iteratively, with each 
successive population refmed to as a generation. Given an initial population P(O), the 
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GA genmes a new generation P(t) based on the previous generation P(t-1) as follows 

t 341: 

Initial ize P(t)+ P(0) :P(t) Population at thle t 

Evaluate P(0)  

While (not ferminatecondition) do 
begin 

t c  t+ 1 .- Irzcrement generation 
select P(t) Jrorn P(t- 1 )  
recontbine P(t) rapply genetic operators (crossovc.r, nlttratiorz) 
uvalrcare P(t) 

ertd 
end. 

The GA uses three basic operators to manipulate the genetic composition of a 
population: reproduction, crossover, and mutation. Reproduction is a process by 

which the rnost higNy rated chromosomes in the current generation are reprduced in 
the new generation. Crossover operator provides a mechanism for chmrnosomes to 

nux and match attributes through random processes. For example, if twc) 

chniniasl~rnes (parents) are selected at random (such as [ai bI CI  dl el ] and [al bz cz d2 

ez]) and an arbitrary crossover site is selected (such as '3'). tIien the resulting two 

chmosornes (offspring) will be (al bl cl d2 e2] and [a3 ci dl el] after the crossover 
operation takes place. Mutation is a random alteration of some gene values in a 
chromosome. Every gene in each chmmosome is a candidate for mutation, and its 
selection is determineci by the mutation probability. 

In order tci understand how genetic aigc~thrns work we have to intrcxiuce the 

Hollund's sdzenia thmry (351. A schema is a similarity ternplate among different 
chromosomes. A schema (over the binary space without loss of generality) is a suing 

of type (al, a?, ...,ai, ..., a,), ai E {O, 1, *). The '*' symhl is a don't care symh>l 
which accepts b t h  ' 1' and '0'. A schema is a template that describes a sub-space of 
strings that match the schema at aï1 loci where the schema is specifîc (specifies eithex 
'I' or '0'). and regardles of the value the s t ~ g s  exhibit af the Ioci of the '*' symbol. 

The mathematical basis of Holland's schema theorem arises h m  the observation 
that in evaluating the fitness of a chromosome one dso denves implicit kwwledge 
about ihe schemata which describe that chromosome. 'Rie accuracy of this 
extraplation depends on the specificity of the given schema, At the micro-level of a 
GA. the search is viewed through the space of chromosomes. However, the essence of 
the sdiema theorem is that one can a h  view the changing population as a search 
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uirough the set of schemata which the chromosomes instantiate. Since each 
chromosc~me is an instantiation of 2" possible schemata, in testing a chromosome one 
derives a great deal of implicit information regarding the 'fitness' of the schernata it 
belongs to. Holland calls this "inrplicit parallelisnr", and this observation is a major 
part of the explanation of the power of the GA search. 

With the schema theorem in hand, the essence of the chromosome suucture in GA 

optirnizrttion becornes clearer. B y selecti ng chmmosomes h m  a sampled population 
with a probability relative to their fitnesses. one selects representatives of a particular 
schemata proportionate to their average fitness. The avexage fitness of a schemata is 
an arri ficial quantity that oniy indicates which chrornmonie templates are mcw 

promising to investigate, and by how much more. 

The frequency m(H, r )  of a schema H at generation t ,  will change at genention 
time t+ l proportionally to the respective selection probability fc~r reproduction. More 
precisely, the growth of a schema due to the proportionai replication is given by (331 

- 
where the numerator f (H) is the average fitness of al1 chn,rnc)somes belonging to the 

schema H. Similarly, the denominator 7 is the average fitness of the entire 
pc~pulation. 

Schemata may be dismpted due to crossover (unless, of course, the crossover is 
perîi~rmed between identical chromr~sonies), and therefore, the expected growth of a 
schema of equation (2.10) is disrupted accordingly. If P, is the prc~bability for a 
mssover, and RH) is rtie metric distance between the first and the 1 s t  sjpecific 
schema positions, then the probability of a schema tri be dismpted due to mssover is 

given by (331 

A schema can also be disrupted due to mutation. If the probability of a mutation is 
Pm and the number of specific positions contained in the schema is &noted by the 

order of the schema o(W, then the probability of a schema king  disrupted by a 

mutation is given by 
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and the approximated growth of a schema under crossover and mutation is 

The schema theorern explains why GAs exhibit high efficiency in search spaces 
that contain stnicturaily similar sub-spaces, ive. similarities that can be associated with 
characteristic performance. Thus, by observing the similarities between chromosomes 
one cm advance the search with great efficiency resulting Wrn the implicit 
parallelism. 

As pwerfùl ~~ptimization and search techniques. genetic dgorithms are used in 

conml systems design by appIying them in off-line tuning of controller paranieters. 
For exarnple, Section 2.6 shows how fuzzy controllers could be augmented with 

genetic algmithrns to optimize their parameters and find their rules. 

2.5 Fuzzy-neural networks in control systems 

There is a rapidly growing interest in the fusion of fuzzy systems and neural networks 
to obtain the advantages of both methrxis while avoiding their individuai drawbacks. 

The pcissibility of integration of these two paradigms has aven nse Co a rapidly 
emerging field of f u u y  neural networks. Fuzzy neural networks have k o m e  an area 
of great activity in control engineering and many impcmant problems have been 
successfully addressed. 

There are two distinctive approaches for fuzzy-neural integration. On the one hand, 
many paradigms that have k e n  proposed simply view a fuzzy-neural system as any 
rxdinary multilayered feedforward neural network which is designed tu approximate a 
f u u y  control algoritfun [36-371. On the other hand, there are those approaches which 

aim to realize the process of fuay reasoning and inference through the structure of a 
connectionist network [38-401. Fuzzy-neural networks are, in general, neural networks 

whose nodes have 'localized fields' which cm be cornpared with fuzzy rules and 
whose conneaion weights can similariy be equated to input or output mernbership 
functions. The majority of reportai studies on fuuy-neural control applications 
address one of the following fumions: 

using neural networks to tune h y  systems [41]; 

extracting fuzzy mles from given numeric data examples (37,401; 
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developing h~brid systems combining neural networks and funy syaems in 
various implernentaîion f m s  [42]. 

The simplest attempt in merging of fuzzy logic and neural controllers is to make 
the NN l m  the input-output characteristics of a fuzzy contrdler [43-441. The NN in 

this case imitates the fuzzy controUer but the only advantage is that the trained NN 
output has more smoothing robust actions than that of the fuzzy controller. 

Evidently, the most cornmon trend has b e n  to apply neuraI networks to tune the 
membership functions for defined sets of rules. Hon'kawa et al. [45], for instance, 
start with a fixed number of rutes whuse membership functions are subsequently 
pemrbed through backpropagation until they fit a gi ven data. 

A new approach that is rapidly gaining interest is to create special architectures out 

of standard feedforward networks that can be interpreted as fuzzy controllers (39, 40, 

421. The membership functions and sets of rules are constructed from data examples 
using multi-step procedures that involve leaniing the membership functions, forming 
rule representations and consuucting computational networks. From the input to the 

output, these networks are constructed to replicate the structure of a fuzzy controllex 
using eithex multiple layers or separate networks (40, 461. Lin a d  L.ee [40], for 

example, proposed a generai neural-network connectionist that perf~~rms the fuzzy 
control actions. The proposeci fuzzy controVdecision network can be constructed kom 
training examples using a rnulti-step learning scheme. The first step is used to find the 

initial memkrship fùnctions using Kolzonen self-organizing feature maps (471, the 

second step is used to find the firzzy rules using a cornpetitive learning technique, and 

the t ! d  step is used to c~ptiniize the input/output membership functions using a 
backpropagation algorithm. Another example is the work of Hmg [ 1 2 1, in which he 
proposed the application of Kohonen self organiUng feature maps and learning vector 
quantization dgcmthms for tfie creation of two-stage training networks for generating 
fuzzy pinciples rutes fmm expea-imental inputhutput data The previous examples 
assume the availability of sufficient training data but in the case of the diffïculty of 
obtaining such training data, reinfbrcement leaniing techniques have been propcmd 
and successfully used (42,481. 

Neural networks have also been desîgned to generate rules autonomously by self- 

Iearning methods. Nie a d  Linkens 149, 501 have studied an approach that uses an 
iterative leaming tedinique to reduce the erra between the controlled plant and a 
reference model, by repeatedly operating the plant through a reference-input profile. 
The referenœ mode1 is used to provide desirable plant outputs which guide the 

modification of the neuraï networks weights until the e m r  between the actuai plant 
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and the refexenœ mode1 is sufnciently reduced with the number of iterallons of plant 
operation. Kyung curd k e  [51] have propos& an approach which relies on on-line 
input-output characteristics of a network-based W y  controller to fonn its mles. 
Called a quasi-fuay logic cootroller (QFLC), its functional blocks emulate rhe 

compnents of the traditional fuuy conb'ofIer, consisting of an inference network and 
a defuzzi fication network Learning is achieved throug h both reinforcement learning 
and on-Iine backpropagation, 

3ang and Sun 1521 have reviewed the fundamental and the advanced developments 
in neurc~fuzzy synergism for modeüng and control. They formalized the adaptive 
networks as  a universal representation for any parameterized models. The fuzzy mcxkl 
under the fi;unework of adaptive nenkrorks is calleci Adaptive-Network-based Fuzzy 
lnference System (ANFIS). They have introduced the design meth& for ANFIS in 

hth  modeLing and control applications. 

2.6 Fuzzy-genetic applications in control systems 

A mmmon difficulty in fuzzy systems is the need for their parameters to be specified 
by hurnan designers. Following their successfùl apptication to a vctriety of leaniing and 
optimization prohlems, GAs have ken proposed as a leaniing method that cm enable 
automatic generation of optimal parameters for fuzzy controilers, based on an 
objective criteria. Fusion of fuuy systems and genetic aigorithrns has recentIy 
attracted interest and a number of successful applications have ben reporteci. ïhere 
are three application approaches for this fusion. Ln one case, linguistic fuzzy rules of a 
cmventional fuuy  controller are fixed and their membership functions are aptirnized 
[53]. In the second case, the mernbership functions of specified linguistic values are 
fixed and the GA is used to determine an optimal set of mIes for the application [54, 

551. 'Riere is a third approach which combines both and in which rules and 

membership functions are adjusted sirnuItanmusly [56-591. For example, Homaifar 
afid McCornrick [59] have proposeci a genetic algorithm to tune the fuuy rules and 

their members hip functions simul taneousl y; however, they have intrnduced many 
assumptions to reduce the number of parameters (search apace) and dectease the 

convergence computation time. 

ïhe  interdependence between the linguistic variables and their membership 
functions suggested that both of them should be adjusted to achieve superior 
performance. Thus, the membenhip functions are adjusted individually for each mle 
and it has k e n  shown that this approach can achieve better results than the orher 
methods. However, one drawback with this type of applicaîion is that the ability to 
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interpret and explain the behavior of the fuzzy controller may subsequently be los& 
since the membership functions are no longer associami with only one Linguistic name. 

Genetic algdthms in generaI, and aiso in combinalion wiih fuzzy logic, have ken 
very successful in other off-line optimization problems [601, including robot motion 
planning (33, 61 1, pH concentration control [53], and shop floor job scheduling 
p b l e m s  [62]. GAs have also been applied to fuuy pattern-classification f3om 
numerical data Ishibuchi et al. [63],  for example, have propsed a GA to select the 
most appropriate fuzzy rules from a large set of available f u z y  niles in order to 
construct a minimal compact set of rules thaf maximizes the number of correct 
classifications. 

Genetic aigorithms, and for that matter any stochastic search techniques, are not 

suited to rd-time control problems because they take a long time to converge and 

niay also inflict severe cunsequences on the prcxess if prcxiuced unpredicted results. 

2.7 Neuro-genetic algorithms 

Genetic algorithms and artificial neural networks both are techniques for l-ng and 

optimization wtiich have been adopted h m  biological systems. They are h~th  self- 
learning methods but they use quite different approaches. Neural networks use 
inductive Iearning and in g e n d  reqWre examples, while GA use deductive learning 
and require an objective evaluation (fitness) function. A synergism between the two 
techniques has been recognized which can be appiied to enhance each technique 
performance in what may be refemed tu as evolutionary neural networks. This is a 

very recent field and hence ttiere are very few studies. Schuger et al. (64 1 present a 

survey of studies on combination of GAs and NNs. 

An area that attracted the most interest is the use of GAs as an alternative learning 
technique in place of gradientdescent methods, such as, error backpropagation. 
Superviseci learning algoritbxns suffex from a possibility of getting trapped on sub- 
optimal solutions. GAs enable the leaming process tn escape fiom enaapment in local 
nYnima in instances where the backpmpagation aïgorithm converges prematurely. 

Many studies, on the other hand have atîempted to take advantage of both 

techniques in hybrid networks. For example, algorithms which combines GA and 
backpropagation have been shown to exhibit betfer convergence properties than the 

pure backpropagation 165, 661. The GA is used to rapidl y locate the region of optimal 
performance and then gradient descent backpropagation can be applied in this region. 
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GAs have a h  ben studied as a generalized sûucturdpararneter leaming in neur-al 
networks. This type of Iearning combines, as cornpiimentary tooIs, both inductive 
leaming through synaptic weight adjustment and deductive learning thmugh the 
m o d i f i ~ o n  of the network topology to obtain automatic adaptation of system 
kriowledge to the domain environment 1671. Such hyMd systems are capable of 
finding both weights and the architecture of a neural network, induding the number of 
Iayers, the nurnber of processing elements per layer and the comectivity behveen 
processing elements [68, 691. This approach has aïs0 been extended t c ~  fuzzy neural 
networks (70, 7 11. Cliff et al. (721 presented theoretical studies of the use of a genetic 
algorîthm to dynamically evolve neurai networks that reflect the cornplexity of the 
envimnment. 

2.8 Summary 

Over recent years, several techniques have ken proposai in the iïterature for 

implementing integrated -y-neural, fuzzy-genetic, and neuro-genetic conml 
systems. Many of these have been reviewed in this chapter. However, there is no 

available approach that integrates the three pâradigms (fuzzy logic, neural networks, 
and genetic algorithms) in one system to capture the merits in each paradigm and to  

avoid their individual Linlitations. It has ben shown, finm the discussion in this 
chapter, thai there are great opportunities for their future integration. Therefore, the 

main purpose of the next chapter is to present how this integration is achieved and 
illusrrate the advantages and new feamres that the new hybrid system has. 
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Synthesis of Hybrid Systems 

3.1 Linguistic modeling 

The principle of incompatibility, fomuIated by L a d e h  [ 1 1 1, explains the 
inadequacy of h-adi tionai quantitative techniques when used to desai  be complex and 
A~tntciriistic systems. Zadeh has suggested a linpistic (qualitative) malysis for these 
systeiiis in place of the amventionül quantitative analysis. Accordingly, linguistic 
mtdeling of complex systerns has becrime cine of the riiost important issues [73-76). A 

linguistic mdeI is a knowledge-bas& representation of a system; its rules and 

inputhutput variables are describeci in a linguistic forni which can be erisily 
underscood and handled by a human operator; in other words, this kind of 

representation of information in linguistic models imitates the mechanism of 

approximate reasoning performed in the human mind 

The fuuy set theory fmulated by Zaddt [ 101 has ken considered an appropriate 
representation methcd for linguistic terms and human concepts. Manuiani 's pirineering 
work in fuzzy controt [3j has motivated many researchers to pursue theu research in 

fuzzy mcdeling [73-8 1 1. Fuzzy modehg uses a natural descriptive language to fcmn a 

system mode1 bas& on fuzzy logic with fuzzy predicates. 

The bowledge representation in fuzzy modehg can be viewed as having two 
cl asses. The first (clriss A), as suggested by Takagi and Sugeno in [ 191, can represent 
a general class of static or dynamic noniinear systems. It is based on "fuzzy partition" 
of input space and it can be viewed as the expansion of a piecewise linear partition 
which is represented as 



R: I/ x, i s ~ ;  andx, i s ~ i .  .... andx, is& 
(3.1) 

thrn y' = a: +a+, +...+ akx, 

where R ( i= l .  2. .... c) denotes the ith t u z y  nile, and A-, (j= 1.2, .... m) is the input and 
y' is the output of the fbzzy mle R'. A,', A; . .. . A.' (i= I .2... .. c) are fuzzy membership 
functions which can be bell-shaped, trapezoidal, or triangular, etc., and usually they 

are not assocïated with Iinguistic terms. h m  (3.1). it is noted that Takagi and 

Sugeno approac h approximates a nonlinear sy stem wi th a combination of several 
Li near systems by demmposing the whole input space into several partial hvzy spaces 

and representing each output space with a iinear equation. This type of knowledge 
representation does not allow the output variables to be describeci in Linguistic terms 
which is one of the drawbacks of this approach. Another drawback is that the 
parameter identification of this niode1 is carried out iteratively using a nonlinear 
c~ptiniization rnethod (19, 79). ?he implementation of this method is not an easy task 
[77, 80, 811, as the pmblem of detennining the optimal membership paranieters 
invoI ves a nonli near programmi ng problem. 

The second class of laiowledge representation (cIass B) in fuzzy mcxiels was 
developed by Manrdnrii [821 and used hy Lin and k e  [40] and S u p ~ o  and Yasrlkmc~ 
1761. The knowledge is presented in these mcxiels as 

R' : I /  xI  k A; and xt is A$. . ... arid x,,, is A;,, 

tltw $is B~ 

where A,', AI- .... A,'. Eli{i=l.2, .... c) are hizzy membership functions which are heu- 

shaped, trapezoidal, or triangular, etc.. and usually associated with finguistic tenns. 
This approach has some advantages over the first approach. The consequent parts are 
presented by linguistic terms, which makes this mode1 more intuitive and 

undersrandable and gives more insight into the mode1 structure. Also, this nicxîeling 
appmach is easier tci implernent than the first approach [8 1 ) .  This seamd fom (class 
B) of knowledge representation will be adopted throughout this work as we are more 
concemed with the linguistic modehg approaches. 

Many studies regarding finding the rules and tuning the membership function 
parameters of fUzzy modds have been reprted (73-811. Neural networks are 
integrated with fuzzy Iogic in a fonn of Fuzzy Neural Networks (FN-Ns) and used to 
buiid f k z y  modeis 140, 83-88]. Many algorithms have been proposed to train these 

FNNs [83-881, and Jan8 et al. [85] have reviewed the fundamental and advance. 
developments in neuro-fuzzy synergisrns for modehg and control. However, efficient 
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design of fuzzy models/controllers that provides both interactivity with humans as weii 
as accuracy, still needs more considerab1e investigation and focusing research. 

In this chapter, an outline of a systematic approach for building fuzzy 
modeIs/amtrolIers with an optimi;reri (efficient) performance is proposed. The 
mggesteci mode1 topology, mat can support the incorPofacion of both qualitative and 
quantitative information during the identification proçess, is describeci in detail. The 
proposeci approach integrates fuzzy Iogic, neural networks, and genetic algmithms in a 
systematic way to utilize their strengths. 

3.2 The neuro-fuzzy mode1 topology 

In this thesis, the Neuro-Fuzzy (NF) mode1 is built using the multilayer fuzzy neural 
network shown in Figure 3.1. The system has a total of five Iayers as proposed by Lin 

and L e  [al. A mode1 with two inputs and a single output is considered here for 
convenience. Accofdingly, there are IWO nodes in layer 1 and one n d e  in layer 5. 

Nodes in layer 1 are input n& that directly transmit input signals to the next layer. 
Layer 5 is the output layer. Nodes in Iayers 2 and 4 are "term nodes" and they act as 
menibership fwictions to express the input/output fuzty linguistic variables. A beii- 

shaped function is adopted to represent a membership function, in which the mean 
value rn and the variance a are adjusted through the leaniing process. The two fiizzy 

sets of the first and the second input variables consist of ni and nz linguistic ternis, 
respectively. The linguistic terms, such as psitive large (PL), positive medium (PM), 
positive small (PS), zero (ZE), negaiive srnail (NS), negative medium (NM), negative 
large (NL), are numbereâ in descending order in the term nocies, Hence, nl+nz nodes 
and n3 ncides are included in layers 2 and 4, respctively, to indicate the inpuVoutput 
Linguistic variables. 

Each no& of layer 3 is a 'hile node" and represents a single fuzzy control rule. In 
total, there are nlxnz nodes in layer 3 to fœm a fuey mle base for NO Linguistic input 
variables. The links of layers 3 and 4 detine the preconditions and consequences of tfie 

mle nodes, respectively. For each rule node, there are two fixed links from the input 
term nodes. Layer 4 Iinks, encircled in datted line, are adjusteci in response to varying 
control situations. By contrast, the links of layers 2 and 5 rernain fixed between the 

inputIoutput nodes and their correspondhg tem nodes. The NF modei can adjust the 
fuzzy niles and their membeasbip functions by modifjdng layer 4 ünks and the 

parameters that represent the beU-shaped rnembership functions for each node in 
layers 2 and 4. For convenience we use the foliowing notarion to descri be the functions 
of the nodes in each of the five layers: 



net: : the net input value to the i-th node in layer L, 

O: : the output value of the i-th node in layer L, 
nl:, 0: : the mean and variance of  the bell-shaped function of the i-th node in layer 

L, 

wij : the link that connects the output of the j-th node in layer 3 with the input to 

the i-th ncxie in Iayer 4. 

Layer 5 
Output Node 

9 t 
I b 

Input Nides 

Figure 3.1 Topology of the neuro-fuuy rnodel. 

La~er 1: The nodes of this layer directly transmit input signals to the next layer. That 
is, 
0,l = I l  , 021 = IZ (3.3) 

Layer 2; The nodes of this layer act as membership hinctions to express the iinguistic 
terms of input variables. For a bell-shaped membership huiction, they are 
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..... for i = 1.2, ,nl 

0: fori = q+!, ...... n l + q  

2 

2 ......... Oj = e  for i = 1.2 n, + n2 (3.5) 

Note that layer 2 links are al1 set to unity. 

Layer 3: The links in this layer are used t o  perform precondition matching of fuuy 

ruIes. Thus, each node has two input values from layer 2. The correlation-minimum 
inference procedure is utilized here to detennine the fixing strenghs of each rule. The 
output of the nodes in ttiis layer is demmhed by fuzy  APvD operation. Hence. the 
functions of the layer are as follows: 

net: = rnin(0:,0:). i = n , u - I ) + ( k - n Z )  
(3.6) 

f o r j =  1.2. ..... n,; k = n , +  l . n , + 2 ,  ..... , "1 + n2 

The link weights in this layer are aiso set to unity. 

Laver 4: Each node of lhis layer performs the f u e y  OR operarion to integrate the field 

rules leading to the same output luiguistic variable. The functions of the layer are 
expressed as follows: 

4 "I -'9 
net, = Y,O; 

The Link weight Wti in this layer expresses the association of the j-th rule wi th the i-th 
output linguistic variable. It can take only two values; either 1 or O. 

Laver 5: The node in this layer cornputes Ihe output signai of the NF rnodel. The 
output node together with laya 5 links act as a defuzzifier. The center of area 
defuuificatioo scheme [ 17-18], useû in this model, can be simulated by 
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Hence, the j-th Link weight in this layer is nzi4df. 

3.3 The hybrid learning scheme 

In this section, a the-phase leaming scheme for the proposed neuro-fùuy 
comectionist mode1 is presented [87]. In phase one, unsupervisexi learning algorithms 
are used to locate the initial membership functions by clustering the data into an 
appropriate number of clusters. In phase two, superviseci as weii as unsuperviseû 
learning algorithms are used to find the fuzzy rules. In phase three, ~ ~ p e ~ s e d  learning 
algcmthrns are used to optimdly adjust (fine-me) the inputhutput niembership 
functions- To initiate the Iearning scheme, training data rnust be provided h m  the 

ou tside wcirld 

33.1 Leaming Phase One 

The problem for the first learning phase cari be stated as: "Given the training input 
data x ~ ( I ) ,  i=l .  ..... n, t= I. .... N (no. uf train in^ aan~ples), the desired output value 
~ ( t ) .  i= 1.2. ...... m. the tÛzzy partitions IT(x)l and K(y)l, and the desired shapes of 
mernberstiip tùncticins, we want tc) Iwate the initial membership functims". In h i s  

phase. the network wtlrks in a two-sided manner; that is, the nodes and the links at 

layer four are in the up-down transmission mode (follow the doned arrows in Figure 
3.1) so that the training input and output data are fed into this network h m  both 
sides. 

To f m  the membership functions, this learning phase clusters each input/output 
vector in the training data into an appropriate numba of clusters, which could be 

detennined h m  the designer's experienœ or using assessrnent techniques (clustering 
validi ty measures) for measuring clustering quali ty . The number of cl usters represents 
the required fuzzy partition of the input/output space (i.e., the size of the term set of 
each inputhutput hguistic variable). 

There are many c lus te~g  techniques that could be used in this learning phase. 
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However, the following candidates v e n t  sume of the most suitable fcx building 
fiuq membership functions: 

1. Kohonen Self-Organizing feature Maps (SOM) [47]. 

2. Fuzzy C-Means clustering ( K M )  [89 1. 
3. Mountain function aigorithm (901, 
4. Subuactive clustering [9 1 1. 

Mountain function as weU as subtractive clustering algorithms are usuaily used to 
serve as twls to obtain the initial estimation of the cluster centers, which can be fine- 
tuned after that using Kohonen self-organizing feature rnaps or fuzzy c-means 
clustering aigoritkms. However, in situations where only approximate, not tw exact. 
vaiues of cluster centers are needed, these approaches cm act as a stand aione 
clustering aigorithm. Accordingly, the study in this work will focus on the first two 
algorithms as they ghe more accurate clustering, and these algorithms will be ini tiated 
by distributi ng the initiai clusters centers regularl y within the clustering space. nie 
details of this study will be presented in Chapter 4. 

3.3.2 Learning Phase Two 

After the initial parameters of  the rnernbership functions have b e n  found, the rraining 
signals h n i  both extemal sides can reach the outputs of term nodes at layer two and 
layer four. Furthemore, the outputs of tenn nodes at layer two can be transmitted to 

rule-nodes through the initial architecture of layer-tfiree links. Thus we can get the 

firing strength of each rule node. Based on these rule firing strengths (denoted as 
ok3(t)'s) and the outputs of term nodes at layer four (denoted as oh4(t)k), we want t» 
decide the currect consequence-link fcx each rule ncde (firom the co~ected n3 Iayer- 
four-links) to  find the nlxn- fuzzy rules. by one of the following Ieaming algorithms: 

1. Cornpetitive Learning Algonthms (CLA) [92]. 
2. Minimum Distance Algonihm (MDA) [871. 

3. Maximum Matching Factor Algorithm (MMFA) [93]. 
4. Static Genetic Algorithm (SGA) [94]. 

Afkr applying one of the above leafning algorithms using the whoie training data 

set. the Link weights at layer four represent the strength of the existence of the 

cmespnding rule consequence, Among the links wtuch connect a rule node (layer 3) 
and the tenn nodes (layer 4) of the output linguistic node, at most one Unk with 
maximum weight is chosen and the others are deleted Hence, only one term in an 
output Linguistic variable's term set can becorne one of the mnssquences of a fuzzy 
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rule. if al1 the ïink weights becween a rule node and the term nodes of an output 
Linguistic node are very small. then al1 the cmesponding links are deletecl, meaning 
that this rule node has litlie or no relation to this output linguistic variable. If al1 the 

links between a mle node and the Iayer-four nodes are deleted, then this mle node can 
be eliminated since it does not affect the outputs. 

After the consequences of mle ncides are cietennina the mle combination is 
performed to reduce the number of  rules. The criteria for a set of rule nodes to be 

cornbinecl into a single rule node are: 1) they have exactiy the same consequences, 2) 

some preconditions are ammon to al1 the rule nodes in this set, 3) the union of other 
preconditions of  these rule nt& composes the whole term set of some input linguistic 
variables. 

The details of these algcwithms as well as a comprative mdy between hem wil1 k 

presented in Chapter 5. 

3 3 3  Learning Phase Three 

mer  the f imy mles are found, the whole network structure is estabiished, and the 
third-learning phase is started in order to optimalIy adjust the parameters of the 
rnembership functions. Optimization, in the most general form, involves finding the 

rnost optimum solution from a family of reasonable solutions according t a  an 
optiniization criterion. For ail but a few trivial problems, finding the glvbai optimum 
c m  never be garanteai (95, ch. 141. Hence, optixnization in the last three decades has 

fmsed on methods to achieve the best solution per unit cornpufational cost. 

The problem fm this supervised Ieaming phase can be stated as: "Given the 

training input data ~ $ 1 ) .  i= I ,  .-.., n, the desired output vaiue ~ i ( i ) ,  i= 1.2, ....., m. the 
fuzzy partitions IT(x)l and IT(y)I, the desîred shapes of rnembership functions, the 

initial parameters of the memhership functions, and the fuzzy niles, adjust the 

parameters of the rnembership functions optimaily". In this phase, the network works 
in the feedforward rnanner; that is, the nodes and the links at layer four are in the 

down-up transmission mode (follow the soiid Lines in Figure 3.1). The proposed idea is 
ta use one of the following algorithms: 

1. Backpropagation algori thm [96]. 
2. Multi-Resotutional Dynamic Genetic Aigorithm (MRD-GA) [97]. 
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The details of these algmithms as weU as a comparative stuciy between them wiil 

be presented in Chapter 6. The whole three-phase learning scfieme is sumrnarized in 
the following flow chart (Figure 3.2). 

Training data and 
expen knowledge 

Cluster the data to find 
the initial mem bership-function 

parameters using SOM or FCM. 

Fonn rhe fuuy rules using 
CLA, MDA, MMFA, or 

SGA. 

1 Eiiminate weak rules. 

Combine similar des.  

parameters using BP or MRD-GA 

Figure 3.2 Fiow of the hybrid learning scherne. 
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Coarse Identification Phase 

4.1 Introduction 

By Iwking at the problems included in the identification of fuzzy models/contmllers, 
we can divide the identification into two levels: structure-identification and parameter- 
identification. The structure identification of a system has to solve two probIems: in 
the first one, one has to find the input variables and in the secund one, one has to find 
the most appropriate fuzzy partitioning of each inputhutput variable. 

In cxdinary system identification parameters are the çcxfficients in a functionül 
system model. In a fuzzy mo&I, the parameters are those in the membership functions 
of fuzzy sets. There is no big difference except in the number of parameters, that are 
much more in fuzzy identification. In principle, the structure identification problem 
and parameter identification problem can't be separately sotved, which makes the 
identification task very cornpBca[ed, In our approach, we sirnplify the identification by 

solving the parameter identification problem after the structure identification one. 

Clustering is a mol that artempts to assess the relationships aniong patterns of a 
data set by mganking the patterns into groups or clusters such that patterns within a 
cluster are more sirnilar to each other tiian are patterns belonging to different clusters. 

Clustering is used here to f m  the initial mernbership functions for the inputfoutput 
variables. For each variable, each cluster represents a Linguistic term and the number 
of clusters represents the fuzzy partition. 

The wisupervised murai-network aIgorithms are available candidates to find 

clusters of data that cm represent fuuy rnembership functians. One of these 
candidates is Kohonen's Self-Organizing feature Maps (SOM) algorithm [47 ] that 
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constructs internai models to capture regularities in their input data vectors without 
receiving any additional infimution m m  h e  outside wodd. 

Another avaifable candidate is the Fuzzy C-Means (FCM) algorithm proped by 

R d e k  (891 in 198 1. He has suggessed the use of an objective function approach for 
clustering the data into hyperspherïcal clusters. Both of the SOM and FCM dgorithms 
are adapted in this chapter to wlve the parameter identification problem by ûnding the 
initial centers rn 's and widùis 0's of the beU-shaped membership functions of tUzzy 

models. 

Also, in this chapter, it is suggested to soIve the structure identification problem 
using, what's called, Clustering VaIidity Measures (CVMs) to assess the quality of 
clustering for each input/output variable. Three CVMs are presented here with a 

cornparison between them. Also, a detailed assessrnent of each clustering aigorithm 
together with a comparative study are presented. 

4.2 Self-Organizing Feature Maps 

In the Kohonen's Self-organizing feature Map (SOM) that is shown in Figure 4.1, the 
four output neurons are arranged on a 2-dimensional Iattice (higher-di mensional maps 

can generally be defined). Each input vector compnent is co~ected to each neunm 
via a synaptic weight that is calculated in the training mode. Each neuron pcxsesses a 

weight vector rhat has the sanie size as the input vectcr. 

Output Layer (Feature Map) ..----.-.-------------..-.-*.---------------.--- 

Input Vector 

Figure 4.1 Neural network architecture of Kohonen's 
self-organizing f e u e  map. 
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The purposes of the SOM algorithm are to cluster the input -ce into a finite 
number of classes represented by the neurai-netwcn-k weight-vectors, and to perform a 
toplogy-preserving mapping of high dimensional input vectors (Le., long vectors) 
ont0 a lower dimensional surface represented by the location of the neuron on the grid 

In the SOM network, unsupervised learning is achieved ia $re feanrre map layer 
thmgh cornpetition. When an input pattern h m  the training set is presented to the 
network each neumn in the f e u e  map layer cornputes the relative Euclide.  distance 
between its weight vector and the input vector. The units then cornpete for the 

privilege of learning. Thus, the unit with the minimum Euclidean distance is chosen as 
the winniog unit. This unit and its immediate neighbors on the grid are the oniy units 
permitted to leam in this pattern presentation by updating their weight vectors. During 
training, the weiefit adjustment is proprtional to the ciifference between the input 
vector and weight vector. 

M e r  training, any input vector stimulates only the neurnn whose weight vector is 
the closest to the input vectm in the input space. The weight vectors, therefore, 
represent certain averages of disjoint set or classes of input vectors. 

The problem of finding the menibershïpfunction parameters of a fuuy niode1 can 
be stated as: "Given the input vectors xi(t), i= 1. .... N, the desireû fuuy partitioning, 
and the desired shapes of membership functions, we want to initially locate the 
membership fùnctions". 

The Ml-shaped function is considered here to represent fuzy membership 
fundons due to its simplicity, continuity and adaptability. This ftqction is given by 

the foUowing equation: 

Using the above fiuiction, the SOM algorithm is adapted D find the enter nii and 
the width oi of the i-th membership function by the following equations [40]: 
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where Mt) is a monotonically decreasing scalar leaniing rate, c is the required fuzzy 
partitioning, and t is the iterauon counter. 

Once the centers of membership functions are found their widths c m  be 

determined by the N-nearest-neighbors heuristic, by minirnizing the foilowing 
objective tiinction with respect to the widths q's ,  Le., 

where r is an overlap parameter that usually ranges from 1.0 to 2.0. Since it is 
difficult to t3nd the widths h m  Equation (4.5), they can be roughly determined by the 
first-nearest-neighkr heuristic as 

4.3 Fuzzy C-Means Clustering 

The Fuzzy C-Means ( K M )  clustering [89] is the fuzzy equivaient of the nearest mean 
"hard" clustering aigorithm [98], which rninimizes the fcNowing objective fünction 
with respect to fuuy membership pi and cluster centroid nt;, 

where c is the nurnber of clusters. N is the number of input vectors (data points), and ri 
> 1 is the fuzziness index [89]. The FCM aigcirithm is performed in the fc>llowing 
steps. 

Ster, i : Inititilize memberships pi of -5 belonging to cluster i such that 

Ster, 2: Compute the fuzzy centroid nii for i = 1, 2, ..., c using 
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Step 3: Update the fuzzy membership pi using 

Ster, 4: Repeat steps 2 and 3 until the value of J, is no longer decreasing. 

Mer the aigorithm converges to strict local minima of J,, the resultant nii's are the 

optimal centers of the bell-stiaped membership functions in the f-y model. In order 
to find the widths (ci's) of the membership fiinctions, the following aigcmthm is used: 

For i= I ro ç 

Fird [lie oi valrie [lut rnininzizes tlir c-ost fwiction f;{aJ. 
End 

The Ci that minimizes the cost function can be found using the well-known Lest 
Mean Squares (LMS) algorithms. 

4.4 Clustering Validity Measures 

The subjective nature of the clustering problem precludes a realistic mathematical 
cornparison of dl clustering techniques. Hence, an intimately related important issue 
tc~  the clustering problern is the "cluster vaiidity" which deais with the significance of 

the stnicture imposed by a clustering methoci. A cluster validity lùnction is used to 
masure the quaiity of a clustering by measuring how closely the data p in& are 
associated to the cluster centers. The level of association or classification can be 

measured by defining a membership function for each cluster. If the value of one of 

the memberships is significantly larger than the others for a particular data pint, then 
thaî point is identifiai as king a part of the subset of the &ta presented by the 

conesponding ciuster center. 

As a fuay  clustering validity function Betedek [89] designed the partition 
coefficient SI to memue the amount of "overtap" between clustes. 



In this forrn, SI is inverseIy proportional to the overall average overlap between 
pairs of firzzy subsets. In particular. there is ao membership sharing between any pairs 
of fuuy clusters if SI = 1. Fuiding the c value that produces the maximum SI value i s  

the method to find a valid (appropriate) ciustering of any data set. Disadvantages of 

the partition coefficient SI are the iack of direct comection to the geometrical propeny 
of the data and its monotonie-decreasing tendency with the increase of c. 

Another fuzzy clustenng validity function is prqwsed by Xie et al (991. This 
function measures the overd1 average compactness and separation of a fuzzy c- 

partition. In tfus fwiction. the separation of the fuzty c-partition is defined with the 
parameter S. where 

A larger s indicates that al 1 the clusters are more separated. The average compactness 
nierisure of the data in al1 the fuzzy subsets is given by 

The compactness and separation validity function S2 is defined as the ratio of 
canipactness IT to the separation S. The overall expression is given by 

As a speciat case, using the FCM algorithm with n=2, S2 can be shown to be 

which is very easy to calculaie. From (4.15) and (4.16), it is clear that the smaller the 
vaiidity masure S2 the better is the fuuy clustenng, and the smallest S2 indicates a 
valid optimal fuzzy partition. 



Chapter 4. Coarse Identification Phase 

ïhe  third validity cnterion presented here is proposed by Sugeno et al [76]. They 
used a validity function defmed by the following equation: 

where ; is the average of the data (xi. i= 1. 2, 3. ......, IV). 

As seen in (4.17), the fmt tenn of the right-hand side is the variance of the data in 
a cIuster and the second terrn is that of the clusters themselves. Therefore the optimal 
c l u s t e ~ g  is expected to mhirnize the variance in each cIuster and to rnaximize the 

variance between cIusters. So, the minimum value of S3 indicates an optimal valid 

fuzzy clustering. 

4.5 Testing and Evaluation Results 

Three different well-known benchmarks are used in this section to compare between 

the SOM and FCM algonthms, and evaluate their effectiveness in building fuzy 
membership functions. The b e n c h k s  are also used to investigate the effectiveness 
of the cluster validity masures described above. In each benchmark, the number of 
clusters in the data is already hown in advance. Also, it is known to which cluster 

each point in the data set belongs. Thus. the results found by each algorithm are 
compared with the acturtl results. 

45.1 Example 1 

The well-known Anderson's iris data [IO01 consists of 150 fourdimensional vectors. 

The components of a vector are the measurements of the petal length. petal width. 
sepal length, and sepal width of a particular iris plant. There are 50 flowers in each of 
the ttiree subspecies of Iris represented in the data, so it is assumed that an effective 
validity function should indicate the presence of three clusters. In the numerical 
representation of the data, two of the classes have substantiai overlap, while the third 
is well separated from the other two (linearly separable). Thus, one can argue in favor 
of b t h  c=2, and c=3 for this data as a valid clustering. We have divided this data into 
two qua1 groups. The fmt is used for training, and the other is used for testing. 

The SOM algorithm (presented in Section 4.2) is applied to cIuster the Iris training 
data with r = 1.5. The three validiy rneasures ( S I ,  S2, and S3) are usai to identiQ the 

number of clusters in the data. The results of the analysis are shown in Table 4.1. The 
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maximum of SI is pmduced ai c' = 3, which matches the actud number of clusters. 
However, the minimum values of both S2 and S3 are produced at c0=2 and c'=ri, 

respectively. Both of them failed to match the actual cIustering. However, S2 pcoduced 

more accepted clustering partition as mentioned before. The leaming and the testing 
results of the Iris data using the SOM are summarized in Table 4.2, which shows a 

performance of 88%. The results show that the algorithm performance depends on the 

resultant centers m i s  and not on the value of the parameter r (which is used to 

evaluate the widths cies using equation (4.6)). 

Table 4.1 Validity measures of h s  &ta after SOM (r =1.5). 

Table 4.2 SOM results of lris Data 

No. of SI S2 S3 
Ciusters 

3 
4 
5 
6 
7 

Then, the FCM algonthm (presented in Section 4.3) is applied to cluster the iris 
... data with n = 2. E = I@, and c = 2. 3 7. The three validity measures (SI.  S2. and 

SS) are used to identiw the nurnber of clusters in the data nie results of the analysis 
are shown in Table 4.3. The minimum of S3 is produced at c* = 3, which matches the 

actual nurnber of clusters. However, h t h  the minimum vaïue of S2 and the maximum 
value of SI are produceci at cm=2. which are also acceptable results. The learning and 
the testing results of the Iris data using the FCM algorithm are sumrnarized in Table 

4.4, which shows a performance of 90%. The resultant widths cri's do not affect the 

results on Table 4.4. However, they affect the validity measures values. These widths 

are f u d  as proposeci in Section 4.3. Table 4.5 shows a mugh comparison between 
the speed of both the SOM and FCM algorithms in the clustering of the Iris data at c 

= 3. This comparison is just presented as an indication of the relative speed between 

the two algorithms. 

r 

1 .O 

1.5 

............ ... .: ..... ,,,.,.. <. ..'.:S.. ......:..:.. ........ 
fi:; .......... ....... ..:::O= ..<. .. ..... ............. .; 

O. 1 798 
0.2016 
O. 153 1 
0.0876 

0.0833 
O. 1573 
0 -07 29 
0.0735 
0.0702 

75 Learning Samples 

- 1 .5772 
-3.0247 

::<8::~::::+:.Y.;;:~~I.:<$.:.:;~::::: 

....... . ~ ~ ~ : : ' : + ~ . : ~ : .  ....,..... .............. ..,......... .,.z , ............. :,..fi.::$.: ::: 

-3.3706 
- 1 .a47 

Hi t 
65 

65 

75 Testing Sarnples 

Miss 
10 
10 

Hi t 
67 
67 

Miss 
8 
8 
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Table 4.3 Validity measures of iris data after FCM. 

1 No. of 1 SI 

Table 4.4 FCM results of Iris data 

Table 4.5 The speed of both SOM and FCM. 

75 Learning Samples 

4.5.2 Example 2 

Hi t 
68 

75 Testing Samples 

FCM 

The second example uses an artificially generated data prcpsed by Wiridhant [ 10 1 1. 
The data set consists of a twrrdimensional data pictured in Figure 4.2. It is ribtained 

by chiming 50 points at randorn in each of the disks of radius me centered at the 

points (2, l) ,  (2, -1), (-2, 1). and (-2, -1), respectively. As the figure indicates, it  would 
be reasonable to expect that a clustering algorithm wodd identify the presence of four 
clusters. However, the presene of only two clusters is justifiable. A set of 200 

di fferent data points is also generated in the same way for the testing purposes. 

Miss 
7 

Hit 
67 

No. of Rops 1,505,352 
No. Iterations 10,000 

i Ropditeration Ipp' 151 

The SOM algorithm is used with r = 1.0. and 2.0. The results of the analysis are 
shown in Table 4.6. SI. S2, and S3 have failed to produce an optimal number of 
clusters that matches the acaial numba of clusters (c = 4). but S2 has a justifable 
result. The clustering and testing results are summanzed in Table 4.7. The results 
show that the SOM performance is around 67%. 

Miss 
8 

128,039 
15 

8536 
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Di& Data (radius = 1.0) 
2.5 1 w 1 v 1 

Table 4.6 Vabdity measures of  disks data (radius=l .O) after SOM. 
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Tahle 4.7 SOM results of disks data (radius=l .O). 

-3 -2 -1 O t 2 3 

Figure 4.2 Disks data distribution (radius=l.O) of example 2. 

r 
r 

2.0 

200 Leaming Samples 

Hit I Miss 
135 65 

200 Testing SampIes 

Hit 

132 
Miss 
68 
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Table4.8 Vaüdity rneaSuTes of disks data after FCM. 

Thus, the FCM algorithm is used to cluster the data with n = 2, E = IO", and c = 
2. 3. ... 7, and the vaiidity measures are used to identify the number of clusters. The 
results of the analysis are shown in Table 4.8. The minimuni of S3 is producexi at c* = 
4, which matches the actual number of clusters. However, both Si and S2 produced 
justifiable results but failed to match the actual clustering. The leamhg and the testing 
results of FCM algorithm are sumrnarized in Table 4.9, showing a 99.5% 
pe~c~rrnance. Table 4.10 shows a rough cornparison between the speed of tx~th SOM 
and FCM atgorithms at c = 4. 

No. of 
Clusters 

2 
3 
4 
5 
6 
7 

Table 4.9 FCM results of disks data. 

SI S2 S3 

Table 4.10 The s p e d  of both SOM and FCM. 

1 SOM FCM 

1 No. of Flops 11,075,600 41 9,905 

200 Learning Sarnples 

Hit 

199 - 

200 Testing Samples 

4.5.3 Example 3 

Miss 
1 

Hit 
199 

NO. Iterations I 10,000 22 

The data in this example is artificially generated exactly in the same way like the 
previous example, except that the radii of the disks are 1.5 rather than 1. As can be 
seen in Figure 4.3, because of the overlap of the disks, this data set appears to have 
two clusters rather than four. Thus, an optimal clustering of two is an acceptable 
result. DifTerent 200-points data set is aiso generated in the same way for testing 

Miss 
1 

Fiopditeration 108 19087 
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The SOM algorithm is used with r = 1.0. The three validity measures are used to 

identify the nurnber of clusters in the data. The results of the analysis are shown in 
Table 4.1 1. SI .  and S3 have failed to produce an optinid nurnber of clusters that 

matches the actual number of clusters (c = 4, but S2 produces an acceptable result. 
The clustering and the testing results are sumrnarized in Table 4.12. The results show 

that the SOM performance is around 75%. 

Disks Data (radius = 1.5) 

Table 4.1 1 Validity measures of disks data (radius = 1.5) alter SOM. 
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Figure 4.3 Disks data distribution (radius=lS) of example 3. 
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Table 4.12 SOM results of disks &ta (radius = 1.5). 

r 200 Learning Samples 200 Testing Samples 

Hi t Miss Hit Miss 
1 .O 151 49 148 52 

Then, the FCM algorithm is applied with n = 2, and E = le, and the validity 
rneaswes are used to idenm the number of clusters. The results of the analysis are 
show in Table 4.13. The minimum of S3 is produceci at ce = 4, which matches the 

actual number of clusters. Both SI and S2 produce acceptable results (c = 2). The 
results of FCM algorithm are summarized in Table 4.14, showing a 90% performance. 

Table 4.1 3 Validity rneasures of disks data (radius= 1 -5 )  after FCM. 

Table 4.14 FCM results of disks data. 

5.4.4 The effect of n 

In this section, we m d y  the effect of n (the weighting expnent of the FCM aigorithrn) 
on the validity maures (SI. S2. and S3). The Iris data (150 samples) is used in this 

. ... study The data is clustered with different values of n (n = I 7) and different values 

of c (C = 2 ... 10). Table 4.15 Lists the optimal values of c chosen by each of the 
validity measures. We have shaded those cetls of the table which agree with the 
preferred (actuai or acceptable) value of c for the Iris data 

200 Learning Samples 

Hit 
183 

2 0  Testing Samples 
Miss 

17 
Kit 
178 

Miss 
22 
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Table 4.15 Optimal values of c chosen by each validity measure. 

From the analysis in Table 4.15, it is noticed that the most workable range of IL is 
h m  2.0 to 4.0, where ri=2 has often k e n  the preferred choice for many users [102]. 
The three vaiidity measures have reasonable results within this range. The S3 measure 
is extremely sensitive to the values of n outside this range. However, it produces h e  

best results among the other rneasures within this range. 

4.6 Conclusions 

The SOM and FCM algorithms have been used for building fuvy membership 
functions for three benchmarks. Table 4.1 6 shows a comparison between the two 
aigorithm extracteci tiom the results in this chapter. Both algorithnis have gcwd 

convergence and stabiii ty features. However, the performance of the FCM algontfuli 
exceeds that of the SOM algorithm in al1 the evaiuation tests. 

Table 4.16 A comparison benveen SOM and FCM. 

- 

I 
- - 

View point SOM FCM 7 

1 Clustering assessrnent by S3 1 hconsistent 1 Excellent I 

The sped of the SOM algorithm depends on the initial learning rate and the 

44 
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requued accuracy (E). It is found that if the required accuracy of both the SOM and 

FCM a l g o r i t h  are the same. the FCM algorithm is still faster. However. for srnail 

data sets (few hundreds of data points). the speed difference between the two 
aigorithm is not of major concem, especidly in off-iine applications. The three 

validity measures (SI. S2. and S3) are used to assess the quality of clustering 
produced by each algorithm. The three measures failed to produce consistent results 

from the clusters found by the SOM algorithm. On the other hand, the SI and S2 

measures have produced acceptable results from those found by the FCM dgorithm 
and S3 measure has produced excellent results. Therefore, it c m  be concluded that the 

quality of clustering produced by the FCM algonth is more appropriate than that of 

the SOM algorithm in building fuuy membership functions. however, SOM algorith 
is still useable. 

The validity measure S3 1763 shows an excellent performance with the FCM 
algorithm. The optimal fuzzy partition found by this measure always matches the 
actual partition in al1 the benchmarks used. However, this measure shows high 
sensitivity to the weighting exponent iz. The suggested workable range of rt is fiom 2.0 

to 4.0. Beyond this range, S3 has produced inconsistent results. This drawback of this 

measure is not of major concem if we know that n=2.O is the most popular value used 

by many designers [ 1021. 

Finally, the FCM algorithm is recommended to be used in building friuy 

rnembenhip functions, and 53 validity measure to be used in finding the most 
appropriate f u z y  partition (the optimal number of membership functions). 



Chapter 5 

Rule-Formation Phase 

S. 1 Introduction 

In many of the rd-world control problems, the human operator interaction is an 
essential part of the contml Imp. The environment facing this human controller, in 
such complex control systems, i s  so compLicated that no mathematical mode1 exists, 
or, the mathematical mode1 is strongly noniinear so that a systematic design methoci 
does not exist. 

To design a controller that c m  replace the human operator in a control Iwp, we 
tlrst need to see what inforniation is available. Since in this work, we consider only a 

nicxiel-fke design, there are usually two ki nds of information avaiIable to us: 

The experience of the human cc~ntroller that is usually expressed as amie 
iinguistic "IF-TKEN" rules. These rules state in what situations which actions 
should be taken. 
Sampled input-output data pairs that are recordeci h m  successful control by the 

human controller, or that give enough information about the dynamics of the plcuit. 

The human experience alone is usually considemi incomplete as, in many cases, 
some information will be lost when humans express their experience. Also, it is 
difficult for human experts to examine al1 inputatput data recorded from a compIex 
process to finci, and tune the IF-THEN rules and their rnembership functions within 
fuuy conmol systems [12]. Accordingly, thae is a need for systematic approach to 
find the iinguistic fuay rules from the input-output data of a complex plant. The 

required approach should decrease or elirninate the dependency on the human 
experience in forming the mies, but at the same tirne, should allow the incorporation of 
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this experience, in order ta utilize ai l  the avaïiable information in generating the d e s .  

In this chapter, four different techniques are presented to f m  the -y-iinguistic 
mles h m  the inputhutput data of a cornplex ptant. These techniques are: the 

Competi tive Learning Algorithm (CLA), Minimum Distance Aigclrichm (MD A), 

Maximum Matching-Factor Algorithm (MMFA), and Static Genetic Algorithm 

(SGA). A weU-known bencimark is used to test the four techniques by building four 
different models for this benchmark The performance of the four models is illustrateci 
and, accmdingly, each technique is evaluated A cornparison among the four 
tecfiniques is aiso p e n t e d .  Conclusions are drawn h m  the assessrnent of each 

technique. 

5.2 Learning techniques 

Wkile huzy logic prwides a mathematicai mcn-phdogy m emulate certain perceptual 
and linguistic amibutes asswïated with human cognition, artificial neural netwc~rks 
offer exciting advantages such as learning, adaptation, fault-tolerance, and 

generalization. The si milar paral lelism properties of neural -nets and fuzzy-logic 
systems make their integration more suitable for solving and studying the behavim of 

imprecisely-&fined complex systems [103]. The suengths of both systerns can be 

utilized to form the fuzzy m1es and tune their membership fünctions within a fuzy 
conuoiier (83-88). 

In this section we present four 1e-g scfiemes for finding the linguistic-hzzy 
conuol rules. To initiate the learning schemes, training data and the desireci or selected 

coarse of fuzzy partition must be provided from the outside world. Also, the initial 

centers (ni ' s )  and widths (a 3 )  of the membership functions have to be found. Chapter 
4 has presented different techniques to find the initial memhership functions. 

After the parameters of the membership fimctions have been found, the training 
signals h m  both extemal sides can reach the outputs of the term nodes at layer 2 and 
layer 4. Furthemore, the outputs of term nodes at Iaya two can be transmitted to 
rule-ncxies thn~ugh the initial architeme of layer-three links. Thus, we cm get the 
firing strength of each mie-node. Based on these mie-fixing strengths (denoted as 

O&) and the outputs of tenn-nodes at layer four (denoted as 02s). we want to 
deci& the correct corisequencelink for each d e  node ( h m  the connecteci n3 layer- 
four-links) to Bnd the n i w 2  rules. Four algorithms are presented here to perform this 

tas k. 
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5.2.1 CLA Algorithm [Y21 

Sten 1 : the Links at layer four are initially fully connected. We denote the weight of 
the ünk between the ith rule node andm output term node as w,, and initialize it with 

zero value. in this case, we have nlxnixn3 weights. 

S tep 2: wji is calculated according to the followi ng peudocode: 

For i= 1. 2. ..., np.2 
For j = 1. 2, ..., nj 
For k = 1, 2, .... N (the 110. of available training exunzples) 

End 
End 

End 

Here oh4 serves as a win-Ioss index of the jth term node at Iayer 4. The theme of 
this Iaw is that *leam if Mn'. In the exueme case, if 0 k 1 4  is '0- 1' threshold function, 
then the above law says ' l em  oniy if win'. 

Ster, 3: After the cornpetitive leaming is perfcmied through the whole trainine data 

set, the link-weights at layer 4 represent the suength of the existence of the 
ccmesponding rule consequence. Among the links, which comect rule node and term 
ncxies of an output Linguistic variable, at most one iink with maximum weight is 

chosen and the others are deleted. Hence, only one term in an output Luiguistic 
variable's tenn set can become one of the consequences of a fuzzy logic rule. If dl the 

Link-weights between a rule node and the tenn nodes of an output Linguistic nrxie are 
very small, then ail the coxresponding links are deleted, rneaning that this mle node has 
Little c r  no relation to this output linguistic variable. If ail the links between a rule node 
and the layer-four nodes are deleted, then this mle ncxie c q  be eiiminated since it does 
not affect the outputs. 

53.2 MDA Aigorithmm [87] 

Step 1: We denote the Euclidean distance between the ith rule node and the jth 
output tenn node as dg, and initiaiize it with zero value. In this case, we have n1xnzxn3 
d 'S. 
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Step 2: dg is calculated according to ihe following pseudocode: 

For i=i .  2, ..., n,xn,- 
For j = 1, 2, ..., n~ 
For k = 1, 2. .... N (the no. of available truining examples) 

End 
End 

End 

where q, is a specified tiueshold value, This value depends on the distribution of the 

training patterns, and is selected by heuristics fcx the best performance measure, as 
wiIl be seen later in Section 5.3. 

Ster, 3: Afier cdculating dl the d's using the previous code considering ai1 the 

available training patterns, the rule-consequences c m  be determined fonn these factors 
according to the following pseudoccxie: 

For 1 = 2, 2. ..., tl,x?lz 

F i i d  the nritrinrunt distatice dm, front tire set 4 (/ di: j= 1. 2. .... n,/). 

Firrd the correspor!din,q terni-rrode Ntdex (jmm) of dmm. 
[Mete d l  the layr-furrr-links of file i-th rde-riode except the orle mnnectiqq it 

rvirlt the terni-rtode of i ~ i d a  j,,, 

End 

5.2.3 MMFA Algorithm [93] 

S t e ~  1 : For each layer-three-mle node we construct n~ rnatching factors. In this case, 
we have nixn2xn3 matching factors. Each matching factor is denoted as Me with zero 
initial value, where the subsmpt i is the rule-node-index (i=i, 2, ..., nixn2), and the 

suhscript j is the output-linguistic-variable-index (output-km-node-index) (j=l, 2, ..., 

n3). 

Steo 2: Mi is calculated according to the following pseudocode: 

For i= 1, 2, ..., nlm2 

Fur j = 1, 2, ..., nj  
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For k = 1, 2, ..., N (the no. of available training examples) 

+ Oii $0,: is the m a r i m m  elment in the set 0f 

M . .  Otizenuise 
il 

End 

Er~d 
End 

Ster, 3: After calcdating al1 the M s  using the previous code considering al1 the 

available training patterns, the rules consequences c m  be detennined form these 

factors according to the following pseudocade: 

For i = 1 ,  2, ..., rr,xliz 

Fiml i/za muxinzurn nratching-factur M-Jionr the set Mi ([ Mc; j= 1, 2, .... r i , ] ) ,  

Firrd flte corresporidi~ig terni-node index (j-) of M,, 
Delele d l  the Iayrfour-links of tire i-tfz nile-riode excep the orrr cortrrcctiqq it 
with tlte ternr-rrode of index j,, 

End 

Sten 4: Frtm the above aigotitiun, oniy one term in the output Linguistic variabte's 
term set can becorne the cmsequence of a cenain fuzzy-lo@c rule. If ail the matching 
factors of a d e - n d e  are very srnail (meaning that this rule has sniall or no effect on 

the output), fhen al1 the corrqonding links are deleted, and this rule-ncxie is 
etiminated. 

5.2.4 Static Genetic Algorithm 1941 

nie proposed SGA uses decimal-integer strings to encode the fuzzy rules. The 
decimal strings are considered a more suitable representative method than the binary 

strings. This representation aîlows the use of more compact-size smngs. The number 
of alleles (individual Iocations wtùch make up the string) is cietennineci f h m  the total 
number of fuzzy rules. From the NF mode1 configuration stmwn in Figure 3.1, we 

have nixn2 rules. It is allowed ftx each ailele ta take any value in the set (1 ,  2, ..., 91, 
where 1 represents NL, 2 represents NM, 3 represents NS, 4 represents NVS, 5 
represents ZE, 6 represents PVS, 7 represents PS, 8 represents PM, and 9 represents 
PL. 

The GA propos& h m  is calleci static to distinguish it fmm the dynarnic one that 
will be prcpsed later in Section 6.3. The SGA is coded using the well-stmctured 
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laquage Ct+. 'The program aiîows the user to define the values for population size 
(pop-size), maximum number of generations (max~en) ,  probability of crossover 
(pcross), and probabiiity of mutation (pmut). in order to select the individuais for the 

next generation, the touniament selection methoci is used. In this method, two members 
of the population are selected at random and their fitness values compared The 
m e m k  with higher fitness advances to the next generation, An advantage of this 
rnethod is that it needs less computationai effort than other methods. Also, it does not 
need a scaling process (like the roulette wheel selection) [3 11. However, the particulars 
of the reproduction scheme are not critical to the peffonnance of the SGA; virtually, 
any reproduction scheme, in such kind of genetic algorith, that biases the population 
toward the fitter strings works well [53]. 

The proposed SG A uses the Mean Squared Error (MSE) (the error is the différence 
between the actual output and the estimated output by the fuuy model) as a tiîness 
hction. Simply, for each chromosome, (I/MSE) is considered as the fitness nieasure 
of it. The MSE is caiculated f r m  N data points as 

where r c ,  is the actual value and f i i  is the estimated value. 

The usual GA terminating amdition is a maximum number of ailowable 
genentions or a certain value of MSE reqWred to be reached. In this SGA algorithm, 
the stopping criterion is the execution of a certain number of generations without any 
impmvernent in the best fitness value. In this criterion, you do ncx need to specify a 

required MSE value (which usually unknown in advance) or a required number of 

generations (where there is no guarantee mat this number will produce an appropriate 
solution). This SGA uses simple mssover (single point crossover) and mutation 
operators. 

The pn~psed SGA pseudocode is as follows. 

h i  fialite P(t)-+ P(0). : P(t) Puprrlation at tinze t. 

hitialize besrf7t = 0. : The bestfrrness value. 
Evaluaie P(0). 
Searclr for the besr fitness of P(0) and assign bestJit to it. 
Wliile (not tenninate-condition) do 

Begin 
f+ r+I :Increment generation. 



Chapter 5. Rule- Formution Phase 

Select P(r) front P(t-1) using tournament selection crireria 
Recombine P(t) :apply generic ope rato rs (crossover, mutation). 
Evaiuate P(t). 

Search for rhe bestfirness of P(t) and compare it with bestgt ,  iflarger rhen do 

Begin 
Assign bestJit tu the best firness value of P(t). 

End 
End 

End. 

5.3 Simulation studies 

The presented algorithms are examineci using the well-known example of systern 

identification given by Box and Jertkins [103]. The process is a gas furnace with a 
singIe input u(t) and a single output ~ ( t ) :  gas flow rate and CO2 concentration, 

respectively. The data set consists of N=296 pairs of experirnentai input-output 
measurements. The sampling interval is 9 seconds. 

The inputs to the fuzzy model are selected to be y(t-1) and u(t-4). respectively, as 
in [73]. The y(t-1) input variable is modified to be y '( t- l) ,  where y ' ( t - I )  = y(t-1) - 
ymcnnr , ~ m ~ ~ ~  is the average of al1 the y's. Each of the input variables is partitioned into 
seven linguistic sets (ni=n2=7). The output of the fuzzy mode1 is y '(t), where the actual 

process output is y(t) = y'(r) + y,,,,,. The model output y'(t) is partitioned into nine 
Iinguistic sets (n3=9). 

The gas furnace is modeled using the fuuy-neural network shown in Figure 3.1. 
The SOM algorithm (Section 4.2) is used to determine the initial centers and widths of 
the 23 member functions of the inputloutput variables. The tbree scaling factors of this 

model are determineci as 'Gu=û.658', 'Gyd.227'. and 'Go=7.909'. The resuItant 
membership functions after finishing this learning phase are shown in Figure 5.1. 

The CLA algorithrn (Section 5.2.1) is then applied to find the fuuy rules. Twenty- 
eight mtes are only considered and shown in Table 5.1. The other 21 rules are deleted 
because their weights are very s d l  (less than 5% of the highest weight). Usually, the 
rules with very sml1 weights produce incorrect consequences due to the lack of 
adequate training examples in the region of these d e s .  Including these rules in the 

mode1 rnay have detrimentai effect. For example, including ail the 49 d e s  that are 
found by the CLA algorithrn produces an MSE of 2.327 1. However. deleting the 2 1 

weak rules results in an MSE of 2.17 17. The blank d e s  could be filleci by smoothing 
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out ancilor extrapolating the existing rules. Leaving this d e s  blank Mplies a 'no 
action' state for the output and this sometimes gives better performance than filling the 
blank spaces with imprecise consequences. The output of the mode1 with 28 d e s  is 
shown in Figwe 5.2. 

The membership Fns for the u( t4)  input signal. 

The membership Fns for the y'(t-1) input signal. 

The membership Fns for the y'(t) output signal. 

Figure 5.1 The normalized membenhip functions after SOM. 

Table 5.1 The compiete f u u y  associative memory matrix with CLA niles. 
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The output of gas fumace model. 
62 1 , 1 1 f 

Figure 5.2 Output of the gas fumace mode1 with CLA rules. 

The MDA algorithm (Section 5.2.2) is then appïied tu find the fuuy rules. Thiny- 
four rules are found and shown in Table 5.2. The other 15 rules are delered as they are 

found to have insignificant effect. Mer  many trials and simulation studies. i t  is found 
mat the k t  MSE value of 0.9709 is produced at q, = 0.17. The gas himace output 
wiîh MSE cif 0.9709 is shown in Figure 5.3. The main disadvantage of this aigorithm 
is the difficulty of finding the q, value that gives the moa appropriate set of rules. 
Table 5.3 shows the MSE values at different q.'s. 

The p u p s e  of using a threshold vaiue q, is to ensure that the training patterns. 
that are employed to find a certain rule, are in an active statu. In other words. rhe 

aigorithm uses only the training patterns thar activate the rule node in Iayer 3. which is 
associaied with a certain funy nile. Employing ail the training patterns (passive and 

active) deteriorate rhe algorithm performance as shown in Table 5.3 at q r  0.0. 
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Table 5.2 The complete fuzzy associative memory rnatrix with MDA rules. 

-- 

Al1 entries correspond w y'(t) 

The output ot gas fumace rnodel. 
62 8 I I 1 

' 1  
IL --- ActuaI Output 
ii 
$ - -  Mode1 Output 

44 1 1 I I 

O 50 1 00 150 200 250 
Time Sarnples 

Figure 5.3 Output of  the gas fiimace mode1 with MDA rules. 

Table 5.3 The change of MSE with q,. 

, rlc 

MSE 
0.05 

4.0590 

" 
0.0 

41.05 

0.07 

2.7514 

0.11 

1.4027 

0.15 

1.0173 

0.17 

0.9709 

0.25 

0.9913 

0.2 

0.9740 

0.35 

0.9962 
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The MMFA aigorithm (Section 5.2.3) is used to find the Linguistic fuzzy rules of 

the gas funiace model. Out of the 49 rules of the fuzzy model. 37 rules are only 

considered. The rest are deleted because they have very small matching factors (les 

than 5% of the highest matching factor of al1 the rules). The 37 rules are shown in 

Table 5.4. The model is simulateû as shown in Figure 5.4. and its MSE value is found 

Table 5.4 The complete huzy associative mernory rnatrix with MMFA rules. 

PM 1 PS PS PS PVS PVS 

PL PL PM PS PM PM 
Al1 entries correspond to y'(t) 

The output of gas furnace model. 
62 1 s 1 t s 1 

Figure 5.4 Output of the gas furnace mode1 with MMFA niles. 
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FinalIy, the SGA aigorithm (Section 5.2.4) is used to find the linguistic fuzzy niles 

of the gas furnace model. The a lgor i th  is executed using a population size of 150 tc. 
decrease the chances of pre-mature convergence. Aiso, It is applied many times with 

different crossover and mutation probabilities, to obtain the best possible result. A 

satisfactory performance of the SGA is reached Men the probabiiity of crossover and 
mutation are set to 0.9 and 0.01, respectively. Out of the possible 49 rules of the -y 
nwieI, 37 mles are only considered. The rest are deleted because of their negiïgible 
effect (they have las than 5% of the highest firing rate of al1 the niles). The 37 rules 
are shown in Table 5.5. The mode1 is simulateci as shown in figure 5.5, and its MSE 
value is found to be 0.6492 with the convergence rate show in Figure 5.6. 

Table 5.5 The complete fuzzy associative memory matrix with SGA mles. 
k-4) 

Al1 enmes correspond to y'(t) 

5.4 Conclusions 

y([-1) 

This chapter presents four techniques to extract linguistic modelinglconml mles &orn 
the input-output data of any plant. Ail the algorithms are implemented using the C++ 

Ianguage on a Pentium 166MHz. The techniques are tested using a weiI-known 
benchmark The cornparison among the different approaches is shown in Table 5.6. 

The CLA technique compared to the other techniques has a relatively Iriw 

performance. Moreover, it has a relatively short execution time but not the shortest. 
The performance of the MDA algaithm is better than b a t  of the CLA algorithm. 
However, the main disadvantage of this aigorithm is hding the qc value that gives the 
most appropriate set of niles as discussed before in Section 5.2.2. For this teason i t is 
not as fast as a e  CLA and MMFA aigorithms. The MMFA performance exceeds 
those of CLA and M D A  and its execution time is also the shortest (among the four 
techniques). 
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The output of gas furnace madel. 
62 1 8 m 1 1 
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Figure 5.5 Output of the gas funiace nuiel with SGA rules. 

Figure 5.6 The SGA convergence rate with pcross=0.9 and pmut4.01. 
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The SGA technique has the best performance but. at the same tirne. is much siower 
than the othen. The SGA algorithm has a difficulty of estirnahg the pop-size. pcross, 

and pmut parameters that give the most appropriate performance. The CLA. MDA, 
and MMFA techniques are unsuperviseci learning algorithms while the SGA technique 
is a kind of supervised leaming algorithm. For this reason the SGA aigorithm is 

considered more robust than the other algorithms as it takes a feed-back guiding signai 
from the outside world. and it is expected to have the best performance and longest 
execution tirne. 

The main performance difference among the four techniques occun in the regions 

with low density of training data. in the regions with high training data density. they 
produced almost the same d e s .  This gives an indication about the behavior of these 
aIgorithrns if a lack of andor imprecise information exists. 

The SGA is found to be the most suitabIe technique if the performance and the 

accuracy are the major concems of the designer. especially if al1 these techniques run 
off-Iine. Also. the MMFA algorithm is the most suitable one if the performance is 

required with high speed, for instance, on-line and real-time applications. In other 

words, the MMFA has the best performance per unit computational cost ratio. 

Table 5.6 The cornparison among the different techniques. 

Algorithm 
Name 

37 1 0.6492 1 30 min. 1 Su~ervised 1 

28 

MMFA 37 

No. of Rules 
r 

MSE 

2.1717 
0.9707 
0.944 1 

Computation Tirne 

10.12 sec. 
19.87 sec. 
3.17 sec. 

Leaming Mode 

Unsupervised 
Unsupervised 
Unsupervised 



Chapter 6 

Optimization Phase 

6.1 Introduction 

In Chapter 4. we introduced the coarse identitication phase of the hybrid learning 
scherne. Using this leaniing phase, we can End the most appropriate fuzzy partitionhg 
for each inputIoutput variable, the inputhutput scaling factors, and the initial 

parameters of the rnembership functions. 

In Chapter 5, the rule-formation phase of the proposeci learning scheme is 
presented. Using one of the techniques proposed in this phase, the linguistic "If-Then" 
niles could be extracted from both the inputhutput data and the expert knowledge. 

In this chapter, the initial paranieters of the rnembership fwictions, that are found 
in the coarse identification phase, wi11 be optirnized to give the best performance of the 

fiizzy modeVcontroller according ta a certain assessment criterion. Two different 
algorithm are described here to perform the optimization task. These techniques are: 
the Back-Propagation (BP) algorithm and the Multi-Resolutionai Dynamic Genetic 
Algorithm (MRD-GA). A well-laiown benchmark is used to test and evaluate the two 

techniques. A comparative study between the two techniques is also presented. 
Conclusions are drawn from the assessment of each technique. 

The back-propagation training algorithm [96] is a generalization of the Least Mean 
Squares (LMS) aïgorithm. It uses a gradientaescent search technique to minimize a 
cost function q u a i  to the mean square ciifference between the desired and the actllai 
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network outputs. The network is train& by presenting ai1 training dam repeatedly. The 
network parmeters are adjuaed after tri& using side information specifymg the 

correct class until parameters converge and the cost function is reduced to an 
acceptable value. An essentiai component of the algorithm is the iterative method that 
propagates error t e m s  required to adapt parameters back h m  nodes in the output 
layer to nodes in Iower layers. 

The goal of this superviseci learning algorithni (refer to Figure 3.1 ) is to nilnimize 

the emr function 

where y([) is the desired c~uutput. and ~ ' ( t )  is the current output. The leaming rules of 
each layer can be driven as follows: 

h ~ r r  5: The error signai of the output node is 

The mean (center) and the variance (width) of each output membership fùnctian are 
adapted by 

for i = I,2, ..., n3 

where q is Ihe leanùng rate of the networlç and i t  is selected accmding to the probleni 
and the experience of the designer, and it is preferred to be srnail and les than one. 

Lmer 4: The error signal of each node is 



kn>er 3: No parameter needs to be adjusted in this layer, and only the error signal 
needs to be cornputed and pmpagated backward. That is. 

Lnyr 2: The mean and the variance of the input membership funclions c m  he updafed 

aE 
where - = z q k  ao,Z 

where the summation is prfomied over the rule nodes that O,' feeds into, and 

Afcer the ermr function converges to the desired error value. the resultant centers 
and widths represent the optimized membership fùnctions of the h i u y  mociel. 



6 3  Mdti-resoIutiona1 dynamic genetic algorithm 

A new approach is proposeci here to use GAs for the optimization of the mernbership 
functions parameters. Pmblem-specific knowledge is used to tailor GAs tr, the needs 
of this karning phase. The main attnbute of the proposed approach is that the f u u y -  
mode1 configuration is dynamically adapted while the optimization process is running. 
According 1 y, the proped  Mul ti-Resolutional Dynamic Genetic Algori thm (MRD- 
GA) changes its search space with the change of the probIem configuration and with 

the advance of generations. The MRD-GA search space monotonicaily gets narrower 
and nmwer,  while the mode1 parameters get closer and closer to the optimal values. 

figure 6.1 ilIustrates this ath-ibute by shcwing the behavior of one of the mode1 
parameters (a center of a membership function) duting the optimization prwess, The 
ellipses in the figure represent the search space and the centers of these ellipses 
represent the difierent values taken by the center of the membership function. The 
figure shows how the resofution of the search space increases with the advance of 

generations, as the number of search points is kept constant and the search area gets 
srnailer and smaller. 

Low ResoIution 
Advance of 
Genentions 

'The location of the membership function center 

Figure 6.1 The adaptation process in the MRD-G A. 



The MRD-GA is axieû using the weiî-stnicnrred language C++. The program 
al1ows the user to define the values for population size (pop-size), maximum number 
of generaîions (max~en), probability of mssover (pcross), and probability of 

mutation @mut). In order to select the individuals for the next generaîion, the 

tournament selection method is used. In this method, two members of the population 
are selected at random and their fitness values compared. The member with higher 
fitness advances to the next generation. An advantage of this method is that it needs 
less computationai effort than other metho&. Also, it does ncx need a scaling prwess 
(like the roulette wheel selection). However, the particulars of the reproduction scheme 
are not mtical to the performance of the MRD-GA; virtually, any reproductian 
scheme that biases the population toward the fitter strings works weîi [53]. 

The MRD-GA uses decimal-integer strings to encode the mode1 parameters. The 

decimal strings are crmsidered a more suitable representative method than the binary 

strings. This representation allows the use of more compact-size strings. The number 
of aïleles (individual locations which make up the suing) is determinai fmrn the total 
number of fuzzy sets used to partition the spaces of the inpuVoutput variables. For the 

made1 configuration shown in Figure 3.1, we have (n4=nl+n~n3) membership 

functions. Each bell-shaped membership function is defined by two parameters (the 

center nl, and the width O). To optimize the membership functions, we have to 
optirnize ( ~ 2 )  parameters. Thus, the MRD-GA uses strings of length 14x2 alleles. It 

is allowed for each allele to take any value in the set 11, î, ..., 91. Tc) convert the aliele- 
value to a new center or width of a certain membership function, we use the following 
pr tdure :  

Srer, 1 : The initial values of the centers and widths of the fuuy contmller are entered 

to the GA program. for example, (nliol i= 1.2, ..., Q) and (a,l i= 1-2, ..., 14). 

Step 2: The new centers and widths are calculated from the allele values as 

where nr, and a, are the new center and width values, respectively, si is the value of the 

i-th alleie in the string, and &, and 6, are the offsets of the centers and widths, 
respectively. It is recommended to set these offsets to very small values (around 
0.01). This ailows a more stable convergence of the MRD-GA. 
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Ster, 3: if the al1 ele value Si of any center or width equals '5' then no change occurs. 
If si is greater than '5' then a positive change occurs (the center or width increases). if 
it is l e s  than '5' then a negative change occurs (the center or width decreases). 

The MRD-GA uses the Mean Squared E m r  (MSE) (the error is the differenœ 
beniveen the actual output and the estimated output by the f i n y  model) as a fitness 
function. Simply, for each chromosome (l/MSE) is considered as the fitness measure 
of it. The MSE is calculated from N data points as 

I N  
MSE = - X(ui - Gi) 2 

N i =  1 

where ui is the actual value, and fi i  is the estimated value. 

The MRD-GA can aiso use a fitness function that has an inverse proportionality 
with some of contrciller perfcmnance indices such as the settling time, overshwt, and 
integral of error. An example of such fitness function is 

wheref is the fitness funcucin, e(t) is the conuoller output e m r  at time t ,  T,  is the 
settling time, and kl and k2 are weighting factors. 

Each r generations, the offset values (6, and &) decrease acccirding to the 

following decaying hnctions: 

where 8, and 8, are the modiwg factors for the centers and widths, respectively. 
The decaying functions c m  take any decaying shape such as an exponential decay. 
The usual GA tenninating condition is a maximum allowable number of generations 
cir a certain value of MSE required to be reached Ln rhis GA algorithm. the stopping 
critenon is the execution of a certain number of generations without any improvement 
in the best fitness value. In this criterion, you do not need to speaQ a reguired MSE 
value (which is usually unknown in advance) or a required number of generatirins 
(where there is no guarantee that lhis number will produce an appropriate solution). 
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The Mm-GA pseudocode is: 

Ifiitiali:e P(t)-+ P(0). :P(t) Population at finie t. 
Initialize bestJlt = 0. .* ïXe &est fimess value. 
Evaluare P(0). 
Sccclrclt for rhe Dest flness of P(0) and assign bestJr'r tu if. 
Wiiife (rior ternzi~late-corrditiun) do 

Reg in 
tt- t+I .. lncrement pieration. 
If rnod(tl"c) =O then modify (decrease) 6, and 6, as given irr (6.15), and (6.16). 
Select P(f)frorn P(t-1) using tournantent selection cn'ten'a. 
Recombine P(t) :app& genetic operators (crossover, niutarion). 
Evaluate P(t). 
SearcFt for the besrfitness of P( t )  and cunipure it with bestfit. if largrr tfzm clo 

Bqitz 
Assign bestJit to ttir bestfitness valrie uf P(r). 
Adapt the centers and the widths ((nzJ i=1.2. ....  ri^) crriil (a,l i=I,2. .... n4)) 
accurdi~tg tu the strtte of the clironmsonir Fzrrving the ba t  fi tness risirig (6. i 11, nrid 
(6.12). 

Er1 d 
End 

Etid. 

The &ove GA offers exciting advantages over the conventional GA [ 105-1071 (the 

conventional GA is like the one described in Section 3.4, which its paran~eters are kept 
constant during the optiniization process (i.e. static GA)). The MRD-GA alIows a 
dynanuc increase in the resolution of the search space (by decreasing 6, and 60) as the 

mdel parameters approach their optimal values. It also changes the nature of the 
modeLidentifkation problem h m  a static type to a dynamic type (by adapting m, & 

a, continuously) which demeases the chances of the GA premature convergence, as 

this dynamic feanrre preserves the diversity within the GA'S populations. 

6.4 Testing and evaluation study 

The benchmark used in ihis section is the one used in the previous chapter (the gas 

fùrnace mode1 ( 1041). The initial parameters of the input/output membership functions 
are found by SOM and shown in Figure 5.1. The MMFA algorithm is used to find the 

37 Linguistic rules that are show in Figure 5.4. Both BP aigorithm and MRD-GA 
algorithm will be used to optimize the parameters of the membership functions, in 

or&r to build an accurate linguistic fuzzy mode1 for the gas furnace. 
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The BP algorithm is applied with different leaming rates (q) It is found that. ushg 
the gas himace data. the BP aigonthrn gets mpped in local minima except with very 
small learning rates (0.001-0.005). and also suffen from divergence probtems using 
large leaming rates (0.5-2). Figure 6.2 shows rhe convergence curves of B P algorithm 
using various learning rates. 

The MRD-GA is then applied to optimize the membership function parameters. 
This algorithm has rnany control parameters which should be selected before ninning, 
such as the population size (pop-size), crossover probability (pcross), type of the 
crossover operator. mutation probability (pmut). the offset values (6, and 6,), the 
modifying factors (8, and O,), and the decaying t h e  constant (7). The last £ive 
parameters are mainly used to convert the genetic algorithm from an integer 
optirnization technique to a continuos optimization one. The effect of the first three 
parameten on the performance of the MRD-GA will be studied, as the algorithm is 
more sensitive to the variation in these parameten than the others. 

To study the effect of the pop-size, the MRD-GA parameters are set as follows: 
pcross = 0.9, pmut = 0.1. chromosome-1engt.h = 46. 6, = 0.0006, 6, = 0.00025. 0, = 
0.99,8, = 0.99. and r = 10. To study the pop-size effect on the search performance of 
the proposed MRD-GA. the MRD-GA is applied four tirnes with different population 

sizes (pop-size = 80. 50, 30. and 12). Afier finishing the second learning phase and 
before applying the MRD-GA, the mode1 has an MSE value of 0.9441. This MSE 
value is decreased to 0.1 1 1 afier 4972 generations of the =-GA using popsize = 
50 (note that the MSE vaIue reached 0.15 after oniy 900 generations). The MSE 
decay rates using different population sizes are show in Figure 6.3. 

Convergence of BP with diffemnl leaming rates. 
0.25 

Figure 6.2 Convergence c w e s  of back-propagation algorithm. 
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Figure 6.3 The MRD-G A convergence rates wi th different population sizes. 

To compare and evaluate ttie perfmnance of the MRD-GA that uses different 
population sizes, an MSE value of 0.14 is selected to be the stopping criteria. The 
resulfs in Table 6.1 show that the increase in the population size decreases the number 
of generations needed to anah this MSE, and increases the accuracy. However, we are 
more mncerned about the computation time, which is directly proportional to the 

population size for the sarne number of generations. The population size of 1 2 requires 
las computation than the other ppuiation sizes to mach an MSE of 0.14, but the 
minimum MSE attaïned is larger than the others. A compromise between the accuracy 
and the cornputation aniount should be done in selecting the appropriate population 
size. From the results in Table 6.1, it is obvious that there is no big difference in the 

accuracy for 80, 50, and 30 population sizes. Accmdingly, it is recognized that the 
pr~~pc~ssed MRD-GA has less sensitivity to the population size than the conventional 
GA due to its dynamic feature- Therefore, population sizes around 30 are considerd 
suitable for this modehg example. 

Table 6.1 Convergence speed at different population sizes. 
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To study the effect of the mssover probabiiity on the performance of the MRD- 
GA, The aigorithm is applied to optimize the parameters of a second order dynamic- 
systern (which will be explained in details in Section 7.3). The algorithm parameters 

are set as follows: pop-size = 20, pmut = 0.05, chromosome-Iength = 48, 6, = 
0 . 0 1 . 6 ,  = 0.0001.8, = 0.99,9,= 0.99, and r = 25. The MRD-GA is appïied many 
times with different crossover probabilities. After finishing the second learning phase 
and before appl ying the MRD-G A, the mode1 has an MSE value of 0.2058. This MSE 
value is decreased to 0.0374 after 5533 MRD-GA generations using a single point 
crossover with pcross value of 0.25. The MSE decay rates using different crosscwer 

probabilities are shown in Figure 6.4. To compare and evaluate the performance of the 

MRD-GA that uses different crossover probabiïities, an MSE value of 0.041 is 

selected to be the stopping criterion. The results in Table 6.2 show the effect of pcross 

on the convergence rate of the MRD-GA. Each entry in this table is the average of 

three individual runs. A low pcross value (0.1-0.3) limits the MRD-GA f?om 

reproducing finer individuais through the advance of generations, while a hi@ pcrcjss 

value (0.95- 1.0) has a detrimental effect on the diversity of the population which rnay 
cause a premature convergence. The previous two factors have a considerable effect 
on the search performance of the MRD-GA. Table 6.2 shows that the search 
performance h a  hvo pea.k!s at pcross values of 0.6 and 0.9 respectivety. At these 
values, the global (overail) effect of the hvo factors are minimum. Accordingly, the 

intermediate range of pcmss (0.5-0.9) is considered, in this example, suitable for the 

proposed MRD-GA. 

Table 6.2 The convergence speed of different mxsover rates. 

Probability of No. of Generations for 
crossover 1 MSE = 0.041 

O. 10 420 1 
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The convergence of oie GA wilh a t f m l  crossaver mes. 

Figure 6.4 MRD-G A convergence curves with di fferent crossover rates. 

The performance of the pmposed MRD-GA is then investigaleci using a different 
type of crossover operators (2-point cmssover). The 2-point crossover operator uses 
two randomly selected sites instead of one to perform the crossover ciperation. For 
example. if we have twci chromosomes; [al a2 a3 a as as], b l  b3 b4 bs bg] and the 

selected two sites are 2 and 5. The resultant offspring chromosomes wiII be [al a2 63 bi 

hr %], [bl bl a3 as bs]. Table 6.3 shows that the 2-point crossover operator has 

degraded the performance of the algorithm. This result sustains the results of De 

Jong's study [108]. An intuitive explanation for this observation cm be found Dy 

counting the number of unique operators involved [31]. In the case of simple 
cmssover. we have not jua a single operator but a set of 1-1 (where I is the string 
length) operators. With a 2-point crossover there are l(1- I ) / 2  different ways of picking 
the two cmssover points. As a result. each operator is less likely to be preserved. With 

more mixing and less structure, these more involved crossover operators become Like a 
random shuffie and fewer important schemata can be preserved, especially for shon 
strings. This also explains the gocxi performance of thé 2-pint crossover at high 
mssover rates (0.99), at which some randomization is needed to preserve the 

population diversity. 



Chapter 6. Optimizatwn Phare 

Table 6.3 Cornparison between 1-point mssover and 2-point crossover. 

No. of generations for MSE = 0.041 
r I 

Pcross value 1 I -point crossover 2-point crossover 
1 

O. 25 1 2807 3024 

0.60 2328 3289 

0.90 I 1784 2396 

6.5 Conclusions 

This chapter presents two techniques to optimize the parameters of the membership 
functions of a fuzzy model. The BP  and MRD-GA are implemented using the Ce 
language on a Pentium 166MHz, and then tested using the gas fumace benchmark A 

comparative study of these approaches is s h o w  in Table 6.4. 

The tabte shows that the --GA has better performance (better MSE). 
However, it takes more urne to converge than the BP. Both of the two algorithms are 
supervised aigwithms. The BP algorithm minimizes the MSE between the desired and 
the t ù u y  niode1 outputs. For this reason, i t  needs hoth input and output data samples 
to work However, the input-output data is usually available in mcdeiing apptications 
but not in control applications, in which the output of the conrroller can not be 

specified in advance. On the contrary, the MRD-GA aigorithm optimizes an objective 
function. This objective îünction can be tailored to the needs of the designer, without 
the necessity tu obtain output data samples for the system under study. This feature 
makes the MRD-GA suitable for both modeling and control purposes as wil1 be shwn 
in Chapters 7 and 8. 

One of the disadvantages of the MRD-GA is the existence of many control 
parameters that should be detemined before applying the algorithm. A sensitivity 
study for some of these parameters is presented in Section 6.3, in order to give the 

reader a bnef guide for the selection of these parameters: On the other hand, the BP 
algorithm has the advantage of having only one control parameter (q) or two if a 
momentum term is added to the algorithm. 

The MRD-GA has also other advanmges over the back-propagation (BP) 
aigorithm. The MRD-GA allows one to obtain intermediate solutions, wtiich the BP 
usually can't offer; also, the GA does not suffer h m  amvergence problems with the 





Chapter 7 

Intelligent Modeling of Complex Systems 

7.1 Introduction 

Linguistic mcxieling of cornplex irregular systems constitutes the heart of many contrd 

and decision-making systems, and fùzzy logic represents one of the most effective 

algorithrns to build such linguistic rnodels. In this chapter, two well-known 
benchmarks are rnodeled using the proposed hybrid learning scheme. The 

performances of the models buil t for the two benchmarks provide a full assessment for 

the propsed intelligent hybnd system. Moreover, to show the effectiveness of the 

proposed appruach, this approach is compared with other intelligent mcxieling 
approaches. 

7.2 Gas furnace mode1 

The benchmark used in this section is the one used in Chapters 5 & 6 (the gas furnace 
mode1 (1041). The gas furnace is modeled using the fuzzy-neural network shown in 
Figure 3.1. The initial parameters of the inputhutput mernbership functions are found 
by SOM and are shown in Figure 5.1. The MMFA algorithm is used to find the 37 

linguistic rules that are show in Figure 5.4. nie MRD-GA algorithm (Section 6.4) is 
then used to optimize the parameters of the mernbership functions, in order to build an 
accurate linguistic f u u y  mode1 for the gas fumace. 

The computation time elapsed to perfcmn the whole leaming scherne is mughly 
detennined as shown in Table 7.1. The resultant mernbership functions and the mc&l 
output are shown in Figure 7.1 and 7.2, respectively. The MSE decrase rates using 
different population sizes are also show in Figure 6.3. 
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TabIe 7.1 Computation time of the gas fumace model. 

hplementation 1 C++ codes on a Pentiurn 166 MHz. 
Cornputation Phase HI 

Erne 124 min. 
- - 

Learning Mode unSUpervi~ed 
' 

unsupavised S U P M S ~ ~  
(m epochs) (37 rules) (4972 generations) , 

The membership Fns for the u(t-4) input signal. 
I I 1 

-1 -0.5 O 0.5 1 

The membership Fns for the y'(t-1) input signal. 

The membership Fns for the f(t) output signal. 
I I 1 l 1 1 

Figure 7.1 ï h e  optimized membership functions after the MRD-GA. 



The output of gag furnace model. 
62 1 

A c t 4  Output 

- - Model Output 

44 L I 
O 50 100 150 200 250 300 

Time Samples 

Figure 7.2 Output of the gas furnace fuzzy m a l .  

In Table 7.2, our fuzzy mdel is compared with other m a l s  identifieci fnim the 

same data. It can be seen thai our mode1 outperforms al1 the other models in i î s  class 
(class B, refer to equaîion 3.2). In comparison with class-A models (refer tri equation 
3.1). Srtgerro's model 1791 has less MSE value using six inputs but, at the same time, 
has much higher MSE value using the sarne inputs used by our model b(k - I ) ,  arld 

u(k-4)). Also, this model is quite difficult to build 177, 80, 811; the most difficult 
aspect lies in the identification of the prernise structure, niainly the membership 
fhnctions of the input variables. For each membership funcrion, at least two or three 
parameters have to be calculated through a nonlînear programming procedure. The 
choice and computation of these mernhership functions are rather tncky and subjective 
so that i t  is possible for different designers to sometimes get completely different 
results. 

Wang's model (class A) [77] has comparable resu1ts and l a s  number of rules; 
however, the number of rules does not aecessarily give a reliable indication of the 

number of unknown parameters of the rnodel. For exampie, in Wang's mode1 [77] five 
class-A rules are used with two inputs, the num ber of unknown parameters in this case 
(in both the premise and consequent parts) are 35. In ow maiel, 37 class B mies are 
used with two inputs and 46 unknown parameters. Bearing in muid that our mcdel 
shows about 30% decline in the MSE value and provides a linguistic description fur 
the gas furnace system, these two advantages, in our view, compensate for the 

difference in the number of parameters (46 versus 35). 
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Table 7.2 Cornparison of our model with other models. 

Mode1 Narne 
Tong's model [ 1091 

Pedrycz's mode1 17.41 

Xu's mode1 [75] 

Box's mode1 [ 1041 

Sugeno's mode1 [79] 

Sugeno's mode1 [79] 

Sugeno's niodel [76] 

Wang's mode1 [77] 

Our mode1 

Type 
F w y ,  Class B 

Fuuy, Class B 

F q ,  Class B 

Fuzzy, Chss A 

Fuzzy, Class A 

Fuzzy, Class B 

Fuzzy, Class A 

Fuzzy, Class B 

Number of Rules 
19 

MSE 
0.469 

0.320 

0.328 

O. 202 

0.068 

O. 359 

O. 190 

O. 158 

0.1 i l  

This example is taken h m  Narendra er al. [22] in which the plant to be identifieci is 
given by the second-order highly nonlinear difference equation 
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Training data of 500 points are generaîed h m  the plant mode1 by assuming a 

random input signai 'ukV unifody distributed in the interval [-2, 2). This dam is used 
to build a linguistic-fuzzy mode1 for this plant, 

The plant is modeled using the FNN describeci in Section 3.2. The mode1 has three 

inputs uk, y,,, and yk.2, and a singie output yk. The inputs uk and yk-~ are intuitively 
partitioned into five fuzzy linguistic spaces {NL, NS, ZE, PS, PL), the input yk-z is 

partitioned into three fuzzy spaces {N, 2, P) and the output yk is partitioned into 

eleven fuzzy spaces (NVL, NL, NM, NS, NVS, ZE, PVS, PS, PM, PL, PVL). The 
SOM aigorithm described in Section 4.2 is used to determine the initial centers and 
widths of the 24 membership functiiins of the inputhutput variables of the fuzzy 
model. nie four scaiing factors of this fuzzy mode1 are decennined from this learning 
phase as 'Gu = 0.7476'. 'Gy = 0.4727', 'G, = 0.626 1 ', and 'Go = 5.578 1 '. 

Accimiing tci the strucrure of this fuzzy-neural network, the number of mles (rule- 
nodes in the third layer) is 5 ~ 5 x 3  = 75. The MMFA aigorithm (Section 5.2.3) is used 
to tlnd the 75 rules of this fuzzy mode1 and the results are shown in Table 7.3. 

The MRD-GA (Section 6.3) is applied to optirnize the parameters of the dynamic- 
systern rntidel. The algorithm parameters are set as follows: pop-size = 20, pmut = 
0.05, chromosome-length = 48. 6, = 0.0001, 6, = 0.0001, 0, = 0.99, O,= 0.99, and T 

= 25. After finishing the seand l d n g  phase and before applying the MRD-G A, the 

niode1 has an MSE vdue cif 0.2058. This MSE value is decreased t a  0.0374 after 
35 17 generations using a single point crossover with pcrcxs vaiue of 0.9 (note that the 

MSE value reached 0.06 after only 470 generations). The computation time used tci 

perfcmn this learning prwess is illustrateci in Table 7.4. The MSE decay rates using 
di fferent crossover probabilities are shown in Figure 6.4. 
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Table 7.3 The complete FAM matrices with the fuzzy rules. 

Table 7.4 The cornpufation time of the second cxder model. 

Mer the learning process is finished, the mode! is tested by applying a sinusciidal 

input signal ut = sin(2W25) to the huzy modei. The output of both the f u y  model 
and the actual model are shown in Figure 7.3. The funy mode1 has a good match with 

the actual mode1 with an MSE of '0.0403'. Another test is cm-ied «ut using an input 
signal uk = 1.6xcos(2nk/30). The result is shown in Figure 7.4 and the MSE in thh 
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case is '0.0369'. After extensive testuig and simulations, the fuvy mode1 proved an 
excellent performance in faecasting the output of the amplex-dynamic plant 
Remember that in this example onIy 500 data points are used to build Vie model; while 
in [221, 100,000 data points have been used to iden- a neural network model. It can 
be expected that the performance of the identined fuzzy model may be further 
improved if the nurnber of data points used to build the mode1 is increased 

Forecasting Using A Furzy Model. 

Solid line: Actual model 
Dashed line: Funy mode1 u(k) = sin(2'pi*kl25) 

Figure 7.3 Testing of the fuzzy mode1 vs. the rictual niodel. 

In order to compare our modeling approach with that of Sugeno's [ 19. 79 ] and 

Waug 's [77] approaches. both of these approaches are implemented. The Sugenu 's 
approach is implemented using the MATLAB fuzzy-logic toolbox. nie approach (521 

applies the Least-Squares Algorithm (LSA) and the back-propagation gradient descent 
method for i d e n t w g  the iinear (consequent) and nonïinear (premise) parameters of 

the class-A fuvy mies. respectively. The core function of this algorithm is 
implemented wing an-optimized-for-speed C code. Wang's approach is implemented 
using the CH programming laquage. The approach uses the Fuuy  C-Means (FCM) 
c i u s t e ~ g  algorithm 1891 to find the premise parameters of the ciass-A hiay mies. 
then appties the least squares algorithm to find the consequent tinear parameters of the 

niles. 
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Forecasting Using A Furzy Model. 

-2 1 Solid line: Actual model 1 
Dashed line: F u z y  model u(k) = 1.6'cos(2'pi'k/30) 

I 1 I I 1 1 1 

40 60 80 100 120 140 160 180 
Time Samples 

Figure 7.4 Testing of the fuzzy mode1 vs. the actual model. 

Table 7.5 compares our mdeling approach with hoth of Sugeno 's and Wang 's 

approcuihes. The models are learned from the previously randomly generated 500 data 

pairs and tested by applying a sinusriidal input signal tek = sirz(21dd25). Al1 the 

expenments are c M e d  out on a Pentium 166MHz PC. The comparison shows the 
advantages of our rnodeling approach. 

Table 7.5 A modeling comparison using the second order system. 

View point 

parameters 
Total no. of 

[ Compuation tirne 1 59 min, 1 91 min. 1 19 min. 

Our Mode1 
Class B 

ritk), v(k-1). y(&-2) 
75 
- 

Type 
Input variables 

No. of rules 
Na. of Linear 

Leaming MSE 1 0.0374 
Testing MSE 1 0.0403 

I 

48 

S ~ c p n o ' s  Mode1 
Class A 

k k 2 
12 
48 

param eters 

0.5072 
O .2447 

WWR s MAI 
Class A 

u(k).  y t k - 0 ,  vtk-21 
8 
32 

14 ' 

I 

62 

0.6 184 
0.2037 

48 No. of nonlinear 1 48 

80 



Chapter 8 

Intelligent Control of Synchronous Machines 

8.1 Introduction 

The highly interconnecteci nature of power systems makes their operation and control 
complex processes. The disturbances in some elements may affect the whoIe systern 
operation and stahiliry, causing pcxx p w e r  quality or even interruption of pwer 
supply [ 1 10- 1 121. For analytical studies. researchers have classified the power systerii 
stability into three categriries [ 1 10- 1 14): 

1 .  Sfeady-srare stability: This C O K ~ V ~ ~ S  to the stabiiity of a pwer system around 
an operating point. If the system is able to maintain synchronism after sala11 
changes in operating conditions, it is said that it has steady-state stability. 

2. Transient stubilip: ?lis refers to the ability of a power system to regain stability 
after a sudden and severe disturhance. System faults, line-switching, and large 
changes in loads can be a~nsidered as severe disturbances that may lead to 

transient stabili ty prr~blems. 

3. Dynaniic stdility: It is the stabiiity of a power system under small and sudden 
disturbances. These types of distur&ances can lead to long-tam sustained 
oscillations [ 1 13 1. 

Many techniques have been proposed to control synchronous generators in order to 
overcome stability problems. One of the most basic techniques is to introduce damper 
windings in synchronous generators [ 1 1 1 - 1 121 to damp out the speed oscillations. 
Other methods include govemor control [ 1 14- 1 17 1, capaci tor switching control [ 1 18- 

1 191 and excitation control [ 120- 1223. Out of these methods, excitation control has 
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been given most attention because a synchronous generator excitation Ioop has a srnall 
time constant as compared to a mechanical governor time constant and, hence, fast 
response is expected. 

Since the beginning of the late 1950's and early 1960's most of the generating units 

have been equipped wi th a con tinuousl y -acting Automatic Voltage ReguI ator ( AVR) 
to irnprove the voltage profile at the consumer end and to enhance the p w e r  system 
transient stability. Power System Stabilizers (PSSs) have been used to enhance the 

performance of the AVRs. These stabilizers provide a supplementary control signal (in 
phase with the speed deviation of the rotor) to the excitation control lmp (1 1 1, 123- 
1 241. The whole system configuration is shown in Figure 8.1. 

In the study of a single-machine infinite-bus system, the pwer system experiences 
only a single-mde of oscillation, This is not the case in real pwer systems in which a 

large number of synchronous generators, wi th quite different inertia constants, are 
connected together through transmission lines. In such systems, it is cornmon to find 
two groups (or more) of generators that are weakly inter-connecîed. This results in 

mu1 ti-mode oscillation phenornenon, which is divided into three modes of oscillation 
( 1  101: 

1. hiter-niacliirte nlode: which describes fkequencies relateci to closely couplai 
generators that swing relative t o  each other. These fiequencies are in the range of 

0.8-2.0 HZ. 

2. Locïzf nrocle: usually refers to oscillations a c w n g  in plant nansienrs, caused by 

generatclr rotors that cscilIate relative to the combinai equivalent inertia of the 

whole plant. Local mode oscillation frequencies are in the range of 0.5- 1.5 Hz. 

3. Inter-area modes: these frequencies are caused by coherent groups of generators in 

one area which swing relative to a number of other coherent groups of generators 
in other areas. These frequencies are in the range of 0.1-0.7 Hz. 

8.2 Review 

Srarting h m  the late 1950's. various types of techniques and control theones have 
been used for synchronous-machine control in order to enhance the stability of p w a  
systems. We categorize these techniques into three di fferent p u p s  as foilows. 
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1 . Conventional control techniques: These include Proportional-Integral- Derivati ve 
control (PD), lead-lag compensators and pole placement strategies. 

2. Modeni corrtrol techniques: mese include Li near optimal control , adaptive control, 
and H, (robust) control strategies. 

3. Anficiin1 intelligence techniques: These include Expert Syçterns (ES). Neunl 
Networks (w, Fuuy Logic (FL), and Hybrid-Fuuy control strategies. 

I 
AVR 

Figure 8.1 Biock diagram of a generating unit including the AVR and PSS. 

Designed using classical conuol theory, conventional PSSs (CPSSs) have k e n  
able to improve the stabitity limits of the system. However, their performance may 
deteriorate with cktnges of the operating point. This is because the conventional PSSs 
are designed using a linearized mode1 of the machine at a prescribed operating point 
and, in practice, power systems are highly non-iinear with stochastic operation in 
nature. For example, the gain of a plant increases with the generator loading [ 1201. 
Thus, controller parameters that are optimum for one set of operating conditions, may 
not be optimum for another set of operating conditions. This has opened the door fa 
more research using modern connol t ethniques. 
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The iinear optimal conml is one of the modem control techniques [lZ-1271. The 
main drawback of this tedinique is that it is based on a iinearïzed system mode1 thaî 
corresponds to a given operating point, 'lhus, it also has the sarne limitations that 
faced the CPSSs. Another alternative is the adaptive control. which has k e n  hund to 
suit the stochastic nature of power systems. The advantage of adaptive pwer system 
stabilizers (APSS) is their ability to adjust controller parameters on-iine according to 
the current operating conditions, Using amplex algorithrns for parameter 
identification and optirnization, APSSs can provide good damping over a wide range 
of system operating conditions [128-1311. H, control has also been successfully 
applied to off-line design of AVRs [132] as weU as PSSs [ 133-1341. Both APSS and 

H, control have demonstrated thai it is pssibIe to achieve much better performance 
than with CPSSs. However, most modem controI techiques require extensive 
mathematicai calculations, which implies the need for high-speed processon, and hi@ 
implernentation costs. 

Recentiy, Artificial intelligence (Ai) control techniques have ken appLied as 
aiternatives fcx both the cmventianal control and niodem control techniques. Table 
8.1 gives a snapshot on the state-of-the-art and an overview on the AI applications in 

synchronous-machine controt. For more deuils, the reader is referred to [166] as a 

comprehensive review. Four Ai techniques have been used in the literature s c ~  far. 
Expert systems are used mare often as a supervisory controller than as an automatic 
controller. They are useful in assisting the human aperator but can not replace him/her 

cornptetely. Neural networks have been successfully applied; however, they have 

limitations in handling qualitative knowledge, and it is very diftlcult to ume to a 
reasonable interpretation of the overalt structure of the network in tenns of humanly 
understandable concepts. Funy logic controllers interpret the expert knowledge into a 

form of If-Then rules, but they lack a systernatic way to find their parameters. 

Fuzzy-neural-networks based controllers utiiize the strengths of both fuzzy logic 
and neurai networks. Also, genetic-based fiuzy approaches present pwerfU1 
optimization and synthesis tools for a controller design. However, still not enough 
wtwk has been done in the application of these approaches in synchnous-machine 
conuol. Therefore, the research using the latter approaches is encourageci due to their 
power in httndiing both quantitative and qualitative knowledge. 

Man y AI-based synchronous-machine controliers have been success full y 
implemented and tested in labs [149, 150, 153, 1551. However, not many controllers 
have been implemented on-line in industry andfor pwer-stations. The reasons for that 
could be the state of the AI techniques as a new technology, and the usuai 
conservativeness of the industrial utilities for upgrading a running system. 



Table 8.1 An ovemiew of AI applications to s ynchronous machines control. 
-- - -- -- - -  

A ~ication 1 pp 1 References [ Approach 1 Comments ] 
Expert System 

I I 1 PSS 1 145 1 Neural Network 

Determines the exact cause of 
' 

the instability, and helps the 
operator to maintain the system 
stabilitv. 

t 
PSS 
PSS 

Uses heuristic if-rhen d e s .  
Different ba&-propagation I tecimiaues. 

137 
138- 144 

ES (rule-based) 
Netmi Network 

PSS 
PSS 
AVR 

PSS stability 
PSS 

PSS 
PSS 

146 
147-154 

155 
156 
157 

PSS + AVR 
PSS 
PSS 

Nonlinear power flow dynamics. 
Heuristic rules. Lab tests. 
Heuristic niles. Lab tests. 
Shows robusmess of FL PSSs. 
Fuzzy controI+Neuro-prediction 
routine. 
Self-Organizinp, ARMA model. 
Modification of terminal 

Neural Network 
Fuzzy Logic 
Fuzzy h g i c  
Fuzzy Lopic 

FL+NN 

158 
159 

I 

I PSS 

fedback voltage. l 

Fuzzy Lopic 
Fuzzy Logic 

1 

160 
161 
1 62 

163 

In this chapter, the hybrid learning scheme propos& in Chapter 3 is used to design 
three different control schemes for synchronous machines. The first controller is a 
Neuro-Fuzzy Automatic Voltage Regulator (NF AVR) for a synchronaus generator to 
improve its voltage stability. The second controiier is a Neuro-Fuzzy Power System 
Stabiiizer (NF PSS) for a single-machine inûnite-bus system. The third one is a neuro- 
fuzzy power system stabilizer for a synctironous machine in a rnulti-machine power- 
systern environment to suppress multi-mode osdlations. 

Fuzzy Logic 
LQR + FNN 
Neuro-Fuzzy 

NeuruFuzzy 
I 

Off-line 3-plme self-learning 
approach. 
Optimized conuo lier, many 
assumptions. 

AVR 

PSS 

87 

164. 165 

Neuro-Fuzzy 

Fuzzy-Genetic 
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8 3  NF AVR for a synchronous generator 

Figure 8.2 shows the block diagram of the excitation-control system in the classical 
feedback control form. The proposed Neuro-Fuzzy Controtler (WC) is used as an 
Automatic Voltage Regulator (AVR) for a synchronous genemor (871. We refer later 
to this controller as the NeurwFuzzy Automatic Voltage Regulator (NF AVR). The 
inputs to this NF AVR are the error and the rate of change of the generator terminal 

voltage (del-volt), as shown in Figure 8.2. 

Figure 8.2 Excitation control system using the N F  AVR. 

Three scaling factors Ge, Gd, and G, are used within the NF AVR to adjust the 

input/output values of the conmiller into proper ranges [167]. With the help of these 

factors, we can Say that the NF AVU consists of a normalized NF AVR and three 
scaling factors, as shown in Figure 8.3. In the nomalized NF AVR, the centers of the 

inputhutput membership functions of the crintrcil ler lay in the range of [- 1,  1 1. 

8,3,1 Pre-trained NF AVR 

Gentrator & Power 

Del-volt System 

I r  - i Plant 

The NF AVR is initially designeci from the author expenenoe and knowkdge of the 
control objectives. In this design, the centers of the inputioutput variables are 
di sai buted reguiarl y on the specifTed range of the normalized NF AVR [- 1, 1 1. Figure 
8.4 shows the distribution of the bell-shaped mernbership functions of the three 
variables of the nmalized NF AVR. The variances (widths) of al1 the fûnctions are 
equal, and each has the value of ' 1/6'. 

Exciter 
vt 

The scaling factors of the initial design of the NF AVR are selected to be 'Ci, = 
1/60'. 'Gd = l/107. and 'G. = 11 16'. These settings are based on author's experience 

and on triai and error procedures. The conml niles of this initial design are show in 

the Fuuy Associative Memory (FAM) mahix show in Table 8.2. Logic. intuition, 
experience and knowledge of control objectives have been used to form these niles. 
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Figure 8.3 Topology of the NF AVR. 

Table 8.2 The FAM maîrix with initial mies. 

del volt 1 NL 1 NM 1 NS 1 ZE 1 PS 1 PM 1 PL 

Al1 enuies conespond to out-vlot 

The intuitive version of the NF AVR is appiied to control the terminal voltage of 

the synchronous generator. The reference-setung of the terminal voltage is 220V. 
Figure 8.5 shows the respcmse of the synchronous generator during severe load- 
resistance changes; the disturbances caused by the Ioad-resistance are exhibited in 

Figure 8.6. The simulation sampling time is 0.15 seconds. The simulation study in Lhis 
section is bas& on a simple Linear mode1 of the synchronous generator that assumes a 

constant speed during load disturbances. figure 8.5 contains 10,600 samples that will 
k used as training patterns to design a Ieamed NF AVR, Each pattern consists of two 
elements pdk) ,  V,(k)]. These training patterns include a lot of information about the 
dynamitai behavior and inputhutput propeftïes of the synchronous generator. 

83.2 First Learning Phase of The NF AVR 

The seif-organizing feature rnap (SOM) algorithm is used to find the initial centers and 
widths of the learned version of the NF AVR, as described before in Section 4.2. The 
training examples show in Fîgure 8.4 are used as the input data to this algorithm. 'lhe 

resultant membership functions, after this wisupervised leaming process, are shown in 

Figure 8.7. According to the results of ihe self-organized map algorithm, the scaling 
factors of the NF AVR are adapted to be 'Ge = 1/19.5', 'Gd = 1'. 'G, = 1/58.4*. 'The 

NF AVR, after the first leaniing phase, is used to conml the synchronous generator 
during the occurrence of the disnubances shown in Figure 8.6. nie response of the 
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generator is shown in Fxgure 8.8. It is clear that the settling time of the terminal 
voltage is improved due to the SOM. 

f he mertbershb Fns for the enar input signai. 
1 1 

The merribenhp Fns for the ouIpul U signd. 
I r I T 1 

Figure 8.4 The membership functions of the intuitive NF AVR. 

Figure 8.5 S ynchronous machine response-before training. 

O I C A  ,, & 4A 5c.k & 7& - - 1- 
Figure 8.6 Resistive-load disturbances. 



Chapter 8. Intelligent Conml of Synchronouc Machines 

The rnombershlp Fm for Vie del-von Input slgnai. 

Figure 8.7 NF AVR membership functions after SOM. 

Figure 8.8 The generator response after SOM. 

8.3.3 Second Learning Phase of The NF AVR 

The Miniinum Distance Aigorithm (MDA) proped  by the author, and described in 
Section 5.2.2, is used to find the mies of the NF AVR. In Table 8.3, the rules thai 

their tinguistic vaIues written in bold-italk face, are found by the MDA algorithm, 
and then the rest of the rules are found using straight forward logic by smoothing and 

extrapolating the generated rules. Lagic are mainiy used in some rule-space regions 
that do not have enough training data to produce consistent fuzzy rules. 

After the new rules have been found, the NF AVR after the second teaming phase, 
is used to contml the synchronous generator during the disturbances shown in Figure 
8.6; the response is exhibited in Figure 8.9. It is obvious that the settling-times of the 

terminal voltage are better than before, while, the ovedunder-shoots have mit 
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Table 8.3 The FAM nlatnx with new niles. 

8.3.4 Third Learning Phase of The NF AVR 

in this Iearning phase. the error back-propagation algorithm (describeci in Section 6.2) 

is used to aptimize the membership functions of the NF AVR. The fuzzy-neural 
network is trained to learn the inverse dynamics of the synchronous generator. Here. 
the l&ng rate (q) is O. 1 and the accepted average RMS error is 1 0.05. Figure 8.10 

shows the optimized membership fùnctions of the NF AVR &er this learning phase. 

Figure 8.9 The generator response afkr new rules. 

Mer the NF AVR is akeady learned h m  the inputloutput properzies of the 
synchronous generatur, i t  has been appïied to conml the generator while the 
disturbances shown in Figure 8.6 occur. The response of the generatm is shown in 
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Figure 8.1 1. It is clear thaf the s a n g  times of the terminal voltage are much better 
than those before Ieaniing (around 45% decrease). Aiso. the ovm/under-shoots are 
decreased by about IO%. 

The membership Fno for the enur h m  sim. 

ïha membership Fns for the del-voit input scgnal. 

The membersMp Fls for the output U signai. 
I 1 

Figure 8.10 The optimized membership tùnctions. 

Extensive simulation studies of the synchronous generator have been carried out to 

prove the effectiveoess of the NF AVR The studies show that the synchmnous- 
generator rcqmnse has improved during the leamhg phases of the NF AVR. 
Simulation also shows mat the genemcn response, after the leaming phases have been 
cornpleted, is much better than the pre-learned response; in terms of seethg times. 
overlunder-shoots, and rising/falling times. 

Synchronous Olcrualor Tmrminal  Voitag. - Atirr toaming 
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Figure 8.1 1 The respnse after the learning process has been cornpleted. 
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8.4 NF PSS for a synchronous machine 

This study is based on a detailed model of a single-machine (srn order model [ l  121) connecteci to a 
constant voltage bus (infinite bus) through a transformer unit and parallel transmission lines, as 

show in Figure 8.12- For cornparison purposes. both the NF PSS and CPSS are included in the 
system. 

1 Line 2 L/ 

! Exciter 1 I 

'Au 
CPSS + SN>' f +  

Figure 8.12 Power-system model configuration. 

The generator is openting at a terminal power of 0.9 pu and 0.9 power factor hg. Under these 
conditions. the CPSS is designed and carefully tuned for the best performance. Le. the overshoot 

and settling time are minimizeci. The parameters of the CPSS are kept unchanged for al1 the tests 
described in this paper. The output of the CPSS is limited in the range [-O.lpu. O.lpu] and its 
transfer function is given as: 

The inputs to the proposed NF PSS are the speed deviation (Am) and the rate of speed-change 
(Am). The NF PSS consists of a normalized NF PSS and three scaling factors K,,,. &,,, and K,,, as 
shown in Figure 8.13. In the n o d i z e d  NF PSS. the centen of the membership functions of aii the 
controller variables lay in the range (-1, I l .  
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Figure 8.13 Topology of the N F  PSS. 

The training data for the N F  PSS is collected from the measurements of the speeddeviation of 

the synchronous machine while undergoing oscillations due to a 3-phase short circuit on Line 2 at 

the transformer bus. The short circuit is cleared after 0.17 sec by opening the second transmission 

line. This fault type is selected to cover the widest possible range of oscillations. The output of the 
CPSS has been discomected by opening the switch during the fault and included in the training 

data. A total of UW) sarnples are collected and shown in Figure 8.14. 

The 400 Samples Training Data 
1 

Figure 8.14 The NF PSS training data. 

The partitioning of the normalized NF PSS is chosen. by the author's experience in f u u y -  
controllen design. to be seven for each inpudoutput variable (ni=nmi=7). The SOM algorithm 

(Section 4.2) is used to determine the initial centers and widths (with ~ 2 . 0 )  of the 2 1 membership 

functions of the inputIoutput variables from the data shown in Figure 8.14. The centers of NL and 

PL membership functions of the NF PSS output are f d  at - 1 and 1. respectively. and the K. 
scaling factor is set to be 0.1. in order to keep the NF PSS output in the range [-O. lpu. O. lpu]. The 

K, and I<dl. scaling factors are detemllned fiom the SOM as 0.3925 and 0.03 respectively. 

The MMFA algorithm (Section 5.1.3) is then used to fmd the linguistic-fuuy des .  The 

author's experience in PSS's design is also employed to fmd out andor check the rules. especially 
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in the regions where low density of training data exists. The extracteci 49 rules are shown in Table 
8.4. 

Table 8.4 The fuzzy associative memory matrix with the rules. 

AI1 entries correspond to U m  

The MRD-GA algorihm (Section 6.3) is then applied to optimize the parameters of the NF 
PSS. The algorithm parameten are set as foIlows: population size = 50, probability of crossover = 
0.9. probability of mutation = 0.05. chromosome-length = 37. Smd+O-OOO1. 0&a .99 .  and 
r=20. The centers of the ZE membership functions of the three NF PSS variables are fmed at 0.0, 
and the centen of NL and PL membenhip functions of the output are fixed at -1 and 1, 

respectively. Accordingly. there are 16 centers and 21 widths to be tuned by the MRD-GA. 

The objective of the MRD-GA is to 

where Upss =f iAu,  Am) is the fuzzy controller mapping. This constraint ensures zero steady-state 
error of the conuol1er; for the sarne reason, the ZE membership functions are also centered at 0.0. 
The MRD-GA algorithm stopped afier 2000 genentions and the objective function decrease rate is 
show in Figure 8.15. The response of the synchronous machine after the 3-phase fault, with the 

CPSS and the trained NF PSS, is also shown in Figure 8.16. 

A number of studies have been perforrned to investigate the effectiveness of the proposed NF 
PSS and to compare its results with those of the CPSS. 

Test 1: The generator is operating at 0.9pu power and 0.9 pf lag, and a 20% step in- in the 
input mechanical power (Pd is applied and then removed afier 4.5 seconds. System response. 
using the CPSS and NF PSS, is shown in Figure 8.17. 

Test 2: The generator is operating at 0.2pu power and 0.9 pf lead, and a 50% step increase in Pm 
is applied and then removed 4.5 seconds later. The responses are shown in Figure 8.18. 
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Figure 8.15 The MRD-GA convergence rate. 

Synchronous Machine Responses wth CPSS and NF PSS. 
5 [ t 

-.- CPSS 

--- NF PSS 

Figure 8.16 Response to 3-ph fault at power 0.9~~. 0.9 pf lag. 

Figure 8-17 Response to 20% increase in Pm (0.9pu. 0.9 pf lag). 
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Test 3: The generator is operating at 0.9pu power and 0.9 pf lag. and a 3% step increase in the 

reference voltage (V,) is applied and then removed after 4.5 seconds. The system response. using 

the CPSS and NF PSS. is show in Figure 8.19. 

Test 4: The generator is operating at 0.9pu power and 0.9 pf hg, and Line L is opened and then 

closed 4.5 seconds later. The system response is shown in Figure 8.20. 

Test 5: To study the sensitivity of borh the CPSS and NF PSS to the irnprecision or even 

vagueness in system parameten. the responses of the generator with different values of inertia- 

constants (H=4, 10. and 16) are shown in Figures 8.21 and 8.22. respectively. The generator is 

opeming at 0.4pu power and 0.9 pf lag, while a 808 step increase in Pm is applied and then 

removed after 4.5 seconds. Of course. it is not realistic that the inenia-constant of a synchronous 

generator changes after installation. However, the main purpose of this test is to show the 

capability of both controllen to cope with the change in the system's configuration. 

Test 6: The generator is operating at 0.9pu power and 0.9 pf lag. and a fphase shon circuit 

occurred at the rniddle of Line 1 and then cleared afier 0.17 sec by opening the line. The system 

response is shown in Figure 8.23. 

Synchronous Machine Responsen wth CPSS and NF PSS. 
1 

c - -- - -  - -  _ _  -.- CPSS - 
--- NF PSS 

* 

- 

- 
- - . --- -- --  - 

14 - ' - .' 
13' 

O 1 2 3 4 5 6 7 8 9 
Tirne in seconds 

Figure 8.18 Response to 50% increase in Pm (0.2pu. 0.9 pf lead). 
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Time in seconds 

Figure 8.19 Response to 3% increase in V, (0.9pu. 0.9 p i  lag). 

-.- CPSS 

--- NF PSS 

Figure 8.20 Response to Line 1 switching ( 0 . 9 ~ ~ .  0.9pf lag). 

Synchronous Machine Rerponses with Olflerent Inca (CPSS). 

Figure 8.21 Response to different inertia constants (CPSS). 
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Synchronour Machine Reaportses wl!b Dlffemnt InerIiaa (NF PSS). 

O 1 2 3 4 5 6 7 8 9 
rrme in seconds 

Figure 8.22 Response to different inertia constants (NF PSS). 

Synchronous Machine Responses wtth CPSS and NF PSS. 

1 1 
O 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Time in seconds 

Figure 8.23 Response to 3-phase fauIt at the middle of Line 1. 

Test results for various conditions show that the proposed NF PSS has better performance than 
the CPSS. It provides good darnping over a wide operating range and significantiy improves the 

transient and dynamic performance of the synchronous machine. The NF PSS shows also less 

sensitivity CO the change of the system parameters than the CPSS as illustrated by Figures 8.21 and 
8.22. ï h e  approximate reasoning feature of the N F  PSS rnakes it capable of coping with different 

power-system configurations with satisfactory performance, without the need to be re-tuneci. A 

clear advantage of the presented design method is the use of a compact-size training data (40 
samples); whiIe in Farag et al. [87] and Hariri et al. [ 1631 10,600 and 18,000 sarnples are used, 
respecîively. Also, in the third phase an objective function, which can be tailoreci according to the 

designer ne&, is used. The above features make the design rnethod systematic and more 
convenient. 
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8.5 NF PSS for multi-machine power-system environment 

To evaluate the effectiveness of the proposed NF PSS, a transient stability simuIation study is 

performed on the nine-bus the-machine power system shown in Figure 8.24, Each machine is 
represented by a fourth-order two-axis nonlinear model. Detriils of the system's data can be fond 

in [110. ch. 31. 

Figure 8.24 Three-machine nine-bus power system model. 

The details of the openting point of the power system are given in Table 8.5. Under these 

operating conditions of Table 8.5. three CPSSs are design& one for each generator. The 

parameters of the CPSS are kept unchangeci for al1 the tests performed and reported in this study. 

The outputs of the CPSSs are limited in the range [Q.lpu. 0-lpu] and their transfer functions are 

identical and given as [ 1 IO]: 
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Table 8.5 M i n g  Conditions. 

The inputs to the proposed NF PSS are the speed deviation (Am) and the rate of the speed- 
change (Am). The NF PSS consists of a normalized NF PSS and three scaling factors L. L. and 

L, as show in Figure 8.25. In the n o d i z e d  NF PSS. the centen of the membership functions of 
dl the controller variables lie in the range [-1. 11. 

Figure 8.25 Topology of the NF PSS. 

An optirnized NF PSS is designed for genentor (G2). The training data for this N F  PSS is 
collected from the measurements of the speeddeviation of the genemtor which undergoes 
oscillations due to a 3-phase shon circuit on Line 5-7. adjacent to Bus 7. The shon circuit is 

cleared afier 8 cycles by successful reclosing of Line 5-7. This fault type is selected to cover the 

widest possible range of system's oscillations. A total of 600 data samples are collected; they are 
plotted as in Figure 8.26. 
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Figure 8.26 The NF PSS training data. 

The FCM algorithm (Section 4.3) is used to deterrnine the most appropriate fuzzy partitions for 
the inputfoutput variabIes and the initial centers and widths of their membership functions from the 
data s h o w  in Figure 8.26. Tabie 8.6 shows the results of the clustering assessrnent using the S3 
clustering validity m a u r e  (CVM) mentioned in Section 4.4 (Equation 4.17). For each NF PSS 
variable, the shaded area contains the Iowest value for the S3 CVM, and the associated number of 
clusters (c) is considered the most appropriate fuzzy partition. Accordingly, the test partitioning of 
the normalized NF PSS is found to be seven for the Am input ( n ~ 7 )  and nine for both the Am input 
and U, output (nl=n3=9). However, in this design we will use (nl=7) to decrease the nurnber of 
mles from 63 to 49 (more compact-size knowledge base) and to produce a simpler f u z y  controller. 

The centers of the NL and PL membership fùnctions of the N F  PSS output are fmed to -1 and 
1, respectively; and the K,, scaling factor is set to be O. 1 in order to keep the NF PSS output in the 

range [-O. 1 pu, O. 1 pu]. The K, and fb, scaling factors are determineci from the FCM algorithm as 
'0.1478' and '0.0195'. respectively. 
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Table 8.6 Clustering assessrnent by S3 CVM. 

The SGA dgorithm (Section 5.2.4) is then used to frnd the linguistic-fuuy rules. The aigorithm 

parameters are set as follows: population size = 80, probability of crossover = 0.9, probability of 
mutation = 0.15. chromosome-length = 49. The computation time elapsed to perform this learning 
phase is about 20 minutes on a Pentium 166MH.z. The author's experience in PSS's design is also 
empIoyed to find out ancilor check the mies. especially in the portions where low density of training 

data exists. The extracted 49 d e s  are show in Table 8.7; the convergence curve of the SGA is 
exhibited in Figure 8.27. 

Table 8.7 The fuuy associative memory rnatrix with the rules. 
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The convergence of the SGA with populaüon size of 80. 

Figure 8.27 The SGA convergence rate. 

The MRD-GA (Section 6.3) is then applied to optimize the parameters of the NF PSS. The 
algorithm parameten are set as follows: population size = LOO, probability of crossover = 0.9. 

probability of mutation = 0.05, chromosome-length = 41. 6&&.OOO 1, 8e8,-0.99. and r=20. 
The centers of the ZE mernbership functions of the three NF PSS variables are fixed at 0.0, and the 

centers of NL and PL membenhip functions of the output are fmed at -1 and 1.  respectively. 
Accordingly, there are 18 centers and 23 widths to be tuned by the MRD-GA. 

The objective of the MRD-GA is to 

where Upss =AAu Am) is the FC mapping. This consmint ensures zero steady state error of the 

controller. The MRD-GA algorithm has stopped after 1000 generations. The objective function 

decrease rate is shown in Figure 8.28. The computation tirne wed to perfom this leaming phase is 
about 83 minutes on a Pentium 166 MHz PC. 
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The convergence of the MRO-GA with pop size of 100. 

Figure 8.28 The MRD-GA convergence rate. 

Several studies have been performed to investigate the effect of the proposed M PSS and 

compare the results with those of the CPSS. Some of these studies are presented hem. 

Test 1: The generaton are operating at the operating point indicated in Table 8.5. A 3-phase 

fault occurs on Line 5-7. near Bus 7. The fault is cleared by opening the line after 8 cycles and 

then the Iïne is reclosed successfully. In this test, no PSSs are installeci on G1 and G3. Figure 

8.29 shows the power-system response in two cases; when the CPSS is installed on GZ, and when 
the NF PSS is installed on G3. 

Test 2: The power system is operating at the operating point indicated in Table 8.5. A 3-phase 

fault occun on Line 5-7, near Bus 7. The fault is cleared by opening the line after 6 cycles 

without successfu1 reclosing of the line. In this test, a CPSS is installed on both G1 and G3. 
Figure 8.30 shows the power-system response in two cases; when the CPSS is installai on G2, 

and when the NF PSS is insta1Ied on GZ. 

Test 3: The generators are operating at the operating point indicated in Table 8.5. Step changes 
on the input mechanical power of the three generaton occur simu1taneousIy as foiiows: 10% 
decrease on Gl, 25% increase on G2, and 5% decrease on G3. CPSSs are installeci on Gl and 

GZ. Figure 8.3 1 shows the power-system response in nvo cases; when the CPSS is instailed m 

G2, and when the NF PSS is installed o'n G2. 

Test 4: The generaton are operating at the operating point indicated in Table 8.5. Step changes 

on the input mechanical power of the three generaton occur simultaneously as follows: 15% 
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increase on G1. 20% decrease on G2, and 5% increase on G3. No PSSs are installed on G1 or 
G3. Figure 8.32 shows the power-system response in two cases; when the CPSS is insulied ai 
G2, and when the NF PSS is installed on G2. 

Responses with the NF PSS and CPSS. 
I 1 I 

- 

- 

- NFPSS 

... CPSS 

Time in seconds 

Responses with the NF PSS and CPSS. 

- NFPSS 

... C PSS 

1 2 3 4 5 
Time in SeCOnds 

Figure 8.29 Response to a 3-phase fault with successful reclosing. 
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Responses with the NF PSS and CPSS. 

I 

2 3 4 
Tirne in seconds 

Figure 8.30 Response to a 3-phase fault without successful reclosing. 
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Figure 8.3 1 Response to step changes in the mechanical power inputs. 
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Responses with the NF PSS and CPSS. 
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Responses with the NF PSS and CPSS. 
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Figure 8.32 Response to step changes in the mechanical power inputs. 
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In this study, an optimized NF PSS is propoed to impmve the transient and dynarnic stabiiity 
of a synchronous generator working in a multi-machine power system environment. Again, only 

600 data samples are used here; while in Farag et al. 1871 and Hariri et al. [163] 10,600 and 

18,000 samp1es are used, respectively. Also, in the third Iearning phase an objective function, 
which can be taiIored according to the designer needs, is used to add to the flexibility of the design 
methoci. The above features rnake the design method systematic and more convenient. 

Simulation results for various tests show that the proposed NF PSS has better performance than 
that of the CPSS. It provides good darnping for multi-modes of oscillations under different 
disturbances and significantly improves the transient and dynamic performance of the overd1 
multi-machine power-system. Moreover. the results show the good coordination and cooperation 
between CPSSs and the proposed NF PSS while working together in the same power system; as 
iltustrated by Figures 8.29 and 8.32. This feature should encourage power-system engineers to 
replace conventiond power-system stabilizers with neuro-fuzzy power-system stabilizers without 
the doubt of encountering performance andor stability problerns. 
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Conclusions and Future Work 

9.1 Conclusions 

This thesis introduces a generic framework for synthesizing intelligent hybrid systeins 

for modeling and control applications. The proposed framework integrates neural 

networks, fuuy logic, and geneiic algorithms in a single comprehensive paradigm, 
which consists of a generic architecture and a hybrid leming scheme. The developed 
paradigm maintains the following salient features: 

The system's architecture has a transparent structure. Its parameters, links, 
signals and modules have their own physical interpretations (meanings). This 
feature allows a better understanding and deeper insight into the system's behavior 
and provides easier debugging and troubleshooting dunng the design. 

The leaming scheme is composed of three phases. The first phase performs a 

coarse identification for the system's numerical parameters using unsupervised 
leaming (clustering) algorithms. The second phase finds the linguistic-association 
parameters (fuzzy mies) using ~ n s u p e ~ i s e d  as weli as supervised ~eaming 
algorithms. In the third phase, the numerical parameters are optimized and fine- 
tuned using supervised leaming and search techniques. This task decomposition 
makes the identification process systematic and more convenient 

The proposed framework allows the incorporation of numencal inputfoutput data 
and expert knowledge during the synîhesis process. The leaniing aigorithm in al1 
its phases uses the available numerical data. Expert knowledge can help in finding 
the appropriate fuzzy partitioning for the input/output variables. Moreover, in the 

second phase, this knowledge plays an important role in fomiing a d o r  ckking 
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the linguistic-fuuy rules that are found by numerical algorithrns. In the third 
phase. expert knowledge guides the formation of the fimess function of the MRD- 
GA, specidly in control applications. In addition, it is utilized to c h s e  the 

appropriate control-parameter values for different learning algorithms. 

The above features have provided the proposed paradigm with many advamges; 
these advantages are: 

The system combines the merits of each individual technique. For example, it 

combines the learning ability in neural networks, the approxhte  and linguistic 
reasoning in f-uzzy Iogic, as well as the optimization and search capabilities of 
genetic algorithms. Moreover, it overcornes the limitations of individual 

techniques. 

The system has the ability of incorporating qualitative as well as quantitative 

knowledge during learning. Furthemore, it is able to desmbe its decisions in an 
explicit natural language. 

The system preserves the modeI-free control feature that the classical fuuy 

control offers. It does not need any information about the internai parameters of 
the plant under control. 

n i e  system requires compact-shed data sets for the learning process. cornpared 

with what neural networks uswlly require [97]; this significantly decreases the 
leamingcomputation tirne. 

The system provides more robustness han. for example, classical fuuy or neural- 

network systems, as the proposed system exploits al1 available sources of 

information in ihe synthesis procedure. In other words, the system utihes 

available observations or experience which neural networks can't do. 

Furthemore, it utilizes the available inpuiloutput numerical data which classical 
fuuy systems can't do either. 

Many new algorithms have ken proposed throughout the thesis. In addition. a 
number of well-known algorithms have been adapted to suit the assignai hinction in 
the synthesis process. The performance of these dgoriîhms is outiined hereafter: 

In the first learning phase, the Kohonen's self-organizing feature rnaps and the 

f ~ y  c-means clustering algorithm are adapted to perforrn coarse-identification 
for the numencal parameters and to find the most appropnate fuzzy partitioning. 
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T h e  clustering-validity measures have been used to mess  the quality of 
clustering produceci by the two algorithm. Several tests and evaluations [168] 
have shown that the fuuy c-means ciustering algorithm outperforrns Kohonen's 
sel f-organizing fea ture maps. 

In the second Iearnùig phase, four different dgorithms are presented. The 
competitive leaniing algorithm is adapted to find the linguistic-association 
parameters (Fuzzy rules). Three algorithms are proposed as weii; the minimum 
distance algorithrn, the maximum rnatching-factor algorithm and the static genetic 
algorithm. Evaiuation studies [94] have shown that the static geneiic aigorithm 
provides the best performance arnong the four dgonthrns. However. because it is 
a supervised learning algorithrn it tends to be much slower. The maximum 
matching factor algonthm has consistently perforrned better and faster than both 
competitive Iearning and minimum distance algorithm. Finaily, the static genetic 
algorithm is recornmended if accuracy is the only concern, and the maxihum 

matching factor algorithrn is recornmended if a high performance per unit 
computational cost is required. 

In the third iearning phase, the well-known backpropagation algorithm is adapted 
to optimize the numerical parameters initidly identifieci in the fint learning phase. 
Moreover. a multi-resolutional dynarnic genetic algorithm is proposed for the 
sarne optirnization task [93, 971. A sensitivity analysis for the effect of différent 
control-parameten on the performance of the multi-resolutional dynamic genetic 
algorithm has ken  carried out. Three parameters have been considered for this 
analysis; the population size, the crossover probability. and the type of the 
crossover operator. Population sizes in the range of 20-50 and crossover 
probabilities in the range of 0.5-0.9 are considered appropriate for most 
applications. The analysis indicates that the single-point crossover operator gives 
better performance than the double-point crossover operator. Compared to 
bac kpropagation algorithm [ 1691, the rnulti-resolutional dynarnic genetic 
algorithm tends to be more accurate but slower to converge. It also shows more 
clevemess al escaping from I d  minima and more flexibility in its application to 
modeling and control problems. 

The effectiveness of the proposed intelligent hybrid scheme in modeling of 
cornplex systems, is assessed using two benchmarks [97]. The benchmarks are highly 
nonlinear and dificult to mode1 using conventional methods. DetaiIed comparative 
studies with other modehg approaches that use intelligent techniques, have been 
carried out [97]. Compared with such approaches, the proposed scheme shows 
superior performance and obvious advantages. The accuracy of the proposed scbeme 
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exceeds most of the other techniques while preserving the advancage of "linguistic 
modeling" that some other approaches do not have. 

To investigate the effectiveness of the propooed intelligent hybrid scheme in 

nonlinear control, this is used in synchronous machine voltage-regulation and speed- 
stabiiiza tion studies. A neuro- fuuy au tomatic voltage regulator is designed and tuned 
using the proposeci scheme [87]. Extensive simulation studies show an improvement m 

the synchronous generator response from a learning phase to the next. Also, the 
simulation shows that the generator response. afier learning has been completed. is 
much better in terms of settling thes, overhnder-shoots, and rising/fdling times. 

A neuro-fuzzy power system stabilizer for a single-machine infinite-bus system is 
synthesized using the proposed scheme [170]. Only 400 data samples are used in the 
synthesis process. The effectiveness of the neuro-fuzzy stabilizer is compared with 
that of a conventional power system stabilizer. Test results for various conditions 
show that the proposed neuro-fuuy stabilizer has better performance than the 
conventional stabilizer. It provides good darnping over a wide operating range and 
significantly irnproves the transient and dynarnic performance of the synchronous 
machine. under different disturbances. The neuro-fuuy stabilizer is less sensitive to 
changes in the system parameters than a conventional one. 

Moreover. a neuro-fuzzy power system stabilizer for a mu1ti-machine power 
system environment is designed and optimized using the proposed scheme [ 17 11. A 

compact-sized training data of only 600 samples. is used in the design. Simulation 
results for various tests show that the proposed neuro-fuuy stabilizer has better 
performance than that of a conventional stabilirer. It provides good darnping for multi- 
mode oscillations under different disturbances, and significantly improves the transient 

and dynamic performance of synchronous machines in a multi-machine environment. 
Funhermore, the results show the good coordination and cooperation between 
conventional power system stabilizers and the proposed neuro-funy stabilizer whüe 
w orking together in the same power sy stem. According ly, power-sy stem engineers are 

encouraged to upgrade the power systems with neuro-fuzzy stabilizers without the 
doubt of encounte~g performance or stability problems. . 
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9.2 Future work 

Based on this thesis. some future research directions are suggested: 

Extending the sensitivity study to include other control parameters of the multi- 
resolutionai dynamic genetic algorithm proposed in this thesis. The effect of the 

probability of mutation. the offsets (6, and 6,). and the decaying time constant (s) 
cm be examineci in this study. 

Evaluating the employment of other heuristic search algorithrns in the optimization 

phase of the learning sc heme. Evolu tionary programming techniques and 
evolutionary strategies are promising candidates for this study. 

Investigating the appIica bility of intelligent hybrid systems for on-line adaptation 
and real-time learningkontrol applications. There are two directions in this study. 
in the first direction, the adaptation process is performed for the linguistic-fuuy 
d e s  and in this case the developed controller is called "self-organizing 

controtler". In the other direction, the parameters of the membenhip functions 
(centers and widths) are adapted and in this case the developed controller is cailed 
"adaptive controller". 

Studying the hardware implementation issues for the proposed intelligent controI 
scheme. This helps to give more insight into the applicability of such intelligent 
algorithm for industrial purposes. 

investigating the applicability of the proposed Ieaming scheme in other 

applications such as classification. pattern recognition, image processing, vision 

and robotics. 

Applying the proposed leaming scheme in other power-systems applications such 
as Ioad forecasting and fault diagnosis. 



Appendix A 

Synchronous-Machine Infinite-Bus Data 

AVR Model: 

Governor Model: 

Simulation Parameters: 

&= 1.24 &= 0.7 Rmt, = 0.007 

X-,= O. 14 Xficld = 1.33 RfKld = 0.00089 

= 0.027 H = 3.46 K A V R  = 200 

TAvR = 0.0 I & (upper lirnit) = 7 pu Ef (lower limit) = -7 pu 

a, = -0.001238 b, = -0.17 T, = 0.25 

Zti,., = O.O09+j 0.22 ZtiW2 = 0.009+j 0.22 LfQnrr = O.Ol+j 0.12 

Al1 resistances and reactances are in per-unit values. and timesonstants are in seconds. 
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