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Abstract

The intelligent information processing performed in humans is now being mimicked in
a new generation of adaptive machines as the state-of-the-art technology. Inspired by
the functionality of brain nerve cells, artificial neural networks can learn to recognize
complex patterns and functions, and based on the biological principle of “survival of
the fittest”, genetic algorithms are developed as powerful optimization and search
techniques. Likewise, fuzzy logic imitates the mechanism of approximate reasoning
performed in the human mind, and hence can reason with linguistic and imprecise
information.

Although these intelligent techniques have produced promising results in some
applications, certain complex problems cannot be solved using only a single technique.
Each technique has particular computational features (e.g. ability to learn, explanation
of decisions) that make it suitable for particular problems and not for others. These
limitations have motivated the creation of intelligenr hybrid systems where two or
more techniques are combined. Although there is an increasing interest in the
integration of fuzzy logic, neural networks, and genetic algorithms to build intelligenr
hybrid systems, no systematic synthesis framework has been developed so far.
Therefore, the objective of this thesis is to construct an intelligent learning scheme
that incorporates the merits and overcomes the limitations of the three paradigms. The
applications considered for the proposed scheme are modeling and control.

The generic topology of the system used in this thesis has a transparent structure;
its parameters, links, signals and modules have their own physical interpretations.
Moreover, the learning scheme uses task decomposition to identify the systems’
parameters. The leaming task is decomposed into three subtasks (phases). The first
phase performs a coarse identification for the systems’ numerical parameters using
unsupervised leaming (clustering) algorithms. The second phase finds the linguistic-
association parameters (linguistic rules) using unsupervised as well as supervised
learning algorithms. In the third phase, the numerical parameters are optimized and
fine-tuned using supervised leaming and search techniques. The performance of the
scheme is assessed by testing it on two benchmark modeling applications. The results
are compared to that of other intelligent modeling approaches to show the performance
characteristics of the proposed scheme. The scheme is also assessed by applying it to
nonlinear control problems. The synchronous machine voltage regulation and speed
stabilization problems have been tackled using the proposed scheme. Several
comparative studies are carried out to show the advantages of the proposed control
approach over conventional approaches.
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Chapter 1

Introduction

1.1 Preface

Humans are hybrid information processing machines. Qur actions are governed by a
combination of genetic information acquired through leamning. Information in our genes
hold successful survival methods that have been tried and tested over millions of years of
evolution. Human leaming consists of a variety of complex processes that use
information acquired from interactions with the environment. It is the combination of
these different types of information processing methods that has enabled humans to
succeed in complex, rapidly changing environments.

This type of hybrid information processing is now being mimicked in a new
generation of adaptive machines as the state-of-the-art technology. The applications
range from aircraft control systems that diagnose and repair themselves to systems that
can successfully trade in foreign exchange markets [1-8]. At the heart of these adaptive
machines are inrelligent computing systems, some of which are inspired by the
mechanics of nature.

Neural Networks (NNs), for example, are inspired by functionality of nerve cells in
the brain. Like humans, neural networks can learn to recognize patterns by repeated
exposure to many different examples. They are good at recognizing complex patterns
such as hand-written characters and financial markets decisions.

Genetic Algorithms (GAs), are also naturally inspired and based on the biological
principle of “survival of the fittest”. The main idea behind a genetic algorithm is the
evolution of a problem’s solution over many generations, with each generation having a
better solution than its predecessor.
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While these intelligent techniques have produced encouraging results in particular
tasks, certain complex problems cannot be solved by a single intelligent technique alone.
Each intelligent technique has particular computational properties (e.g. ability to learn,
explanation of decisions) that make them suitable for particular problems and not for
others. For example, while neural networks are good at recognizing complex patterns,
they are not good at explaining how they reach their decisions. Fuzzy logic systems,
which can reason with imprecise information, also have particular strengths and
limitations. They are good at explaining their decisions but they cannot automatically
acquire the rules they use to make those decisions (lack of leaming ability). These
limitations have been a central driving force behind the creation of intelligent hybrid
systems where two or more techniques are combined in a manner that overcomes the
limitations of individual techniques [9].

1.2 Problem

A leading application domain for intelligent hybrid systems is process modeling and
control. Control systems based on fuzzy logic and neural networks are no longer just
research topics. Indeed. their popularity has redefined the field of Intelligent control, in
which much activity is now devoted to the investigation of hybrid architectures that
integrate neural networks, fuzzy logic, genetic algorithms and other novel (or newly

resurgent) technologies.

Since fuzzy logic approach has been proposed by Zadeh [10-11], fuzzy modeling and
control are considered one of the most attractive strategies in tackling complex control
and decision systems. Fuzzy logic strategies are particularly suitable for nonlinear
systems with imprecise and/or uncertain knowledge of their parameters and behavior.
Fuzzy control systems, unlike conventional control systems, have a large number of
parameters to be tuned during the design process. However, most of the current
implementations and designs of fuzzy models/controllers rely mainly on a substantial
amount of heuristic observations to express the system strategy’s knowledge and tune its
parameters [9, 12]. Therefore, the practical development of such systems still suffers
from two critical problems: finding the system-strategy’s initial rules, and tuning the
initial rules and their membership -functions. Moreover, it is difficult for human experts
to examine all input-output data recorded from a complex process to find, and tune the
rules and their membership functions within fuzzy systems. Therefore, a fuzzy logic
system should be integrated (or augmented) with some techniques that can provide
learning, adaptation and optimization capabilities to this system.
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Neural networks and genetic algorithms are promising learning synergisms to be
integrated with fuzzy logic in order to construct a suitable intelligent hybrid system for
modeling and control applications. This integration enables the system to handle both
quantitative and qualitative knowledge. In other words, the system can be learned from
the available input-output properties (data) as well as the designer experience.

1.3 Objectives

Although there is an increasing interest in the integration of fuzzy logic, neural
networks, and genetic algorithms to build intelligent systems for modeling and control
applications, such integration of these three technologies (according to our knowledge)
can’t be found in the literature so far. However, there is already significant literature in
the integration of neural networks or genetic algorithms with fuzzy logic for modeling
and control. Hence, one of the objectives of the current research is to construct an
intelligent leaming scheme that incorporates the merits of the three paradigms with
application focused on modeling and control.

Another objective is to overcome the limitations of each approach by compensating
such limitations with some of the salient features in other approaches. For example,
neural networks have limitations in handling qualitative knowledge and they are black
box approaches which their actions or decisions can’t be expressed by natural language.
This limitation is well compensated by the linguistic reasoning provided by fuzzy logic.
On the other hand, fuzzy logic lacks the capability for learning and adaptation which is
compensated by the powerful leaming and adaptation capabilities in neural networks.
Genetic algorithms, when integrated with fuzzy logic and neural networks, grant this
hybrid system with robust search and optimization technique that reduces the
dependency on the designer experience for synthesizing a model or controller.

One of the main advantages behind the popularity of fuzzy control is that it is a
model-free approach with high capability of reasoning under nonlinearity and
uncertainty. This advantage is preserved in the inrelligent hybrid system proposed in this
thesis. The proposed synthesis approach does not depend on a priori quantitative model
of the plant under study or need to evaluate any parameter in this plant. However, the
input-output properties (data) of the plant under study is mainly required to perform the
learning/adaptation/optimization tasks in this approach. This does not present an
obstacle as such data, in most cases, is usually available or easy to be collected.

Also, an invaluable objective in the proposed approach is to utilize and incorporate
all the available sources of information about the plant in the synthesis process. These
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sources could take the form of observations and/or experience, numerical data or model,
and linguistic data. The synthesis as well as the topology of the proposed hybrid system
are organized in a manner that can satisfy this objective.

1.4 Approach

In order to synthesize an intelligent hybrid system, two requirements have to be
specified. The first requirement is the topology (structure) which shows the distribution
of the different parameters of the system and how they interact together. The second
requirement is the leaming scheme which adapts the system parameters according to the
received information from the surrounding environment.

In this thesis, the selected topology of the system is transparent. In other words, all
its parameters, links, signals, and modules have their own physical interpretations (or
meanings). Unlike most neural networks structures, the structure used does not have a
black box form, instead it has a glass box form. This important feature grants us a better
understanding of the system’s reaction and behavior.

The number of parameters which should be found in order to synthesize the
intelligent systems, are usually large. Also, the parameters themselves take different
forms such as numerical numbers or linguistic associations (like linguistic rules).
Identifying all these parameters instantaneously is a very difficult task and found to be
impractical. Thus, it is more convenient to divide the leaming scheme into subtasks. In
this thesis, the proposed leaming scheme is divided into three phases. The first phase
performs a coarse identification for the systems’ numerical parameters using
unsupervised leamning (clustering) algorithms. The second phase is used to find the
linguistic-association parameters (linguistic rules) using unsupervised as well as
supervised leaming algorithms. In the third phase, the numerical parameters are
optimized and fire-tuned using supervised leamming and search techniques.

Numerical data as well as expert knowledge could be incorporated together in all the
three learning phases. However, the utilization of the expert knowledge, in the second
leaming phase, is more vital and effective. The selection of the numerical training data
has also a remarkable effect on the overall design specially in control applications. Thus,
the incorporation of expert knowledge in choosing the appropriate training data is also
effective.
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1.5 Thesis overview

The dissertation spans nine chapters. Chapter 2 presents a review of the fundamental
concepts of fuzzy control, neuro-control, and neuro-fuzzy control with an extensive
survey of the work done in these areas. Moreover, an overview on genetic algorithms
and the work emphasizing the application of them in the optimization of fuzzy and
neuro-controllers are presented.

In Chapter 3, the proposed inzelligent hybrid learning scheme as well as the
suggested topology are described. Also, the associated task decomposition and the
suggested candidates for each subtask are discussed in details.

In Chapter 4, the coarse identification leaming phase is described. The suggested
techniques are also presented in detail. A comparative study among them is carried out
using different evaluating indices.

In Chapter 5, the linguistic-rule formation phase is described, the proposed
algorithms are presented, and a comparative study among them using a well-known
benchmark is carried out.

In Chapter 6, the optimization learning phase is described, the proposed algorithms
are also presented, and a comparative study using a well-known benchmark is carried
out. Moreover, a sensitivity analysis is performed to investigate the effect of some
parameters on the algorithms used in this learning phase.

In Chapter 7, the application of the proposed hybrid learning scheme in modeling of
complex dynamical systems is presented. Two well-known benchmarks are used to show
the effectiveness of the proposed scheme.

In Chapter 8, the application of the proposed hybrid learning scheme in nonlinear
control problems is presented. The proposed scheme is used to design different control
schemes for synchronous machines. A review of the state-of-the-art applications of
artificial intelligence techniques in synchronous-machine control is presented. The
synchronous-machine voltage regulation and speed stabilization problems are tackled.
Many comparative studies are carried out to show the advantages of the proposed
control approaches over conventional approaches.

In Chapter 9, the contribution of this dissertation is emphasized. Conclusions and
suggested future work are also presented.



Chapter 2

Background and Literature Survey

2.1 Introduction

In recent years it has been recognized that to realize more flexible control systems it is
necessary to incorporate other elements, such as logic, reasoning and heuristics into
the more algorithmic techniques provided by conventional control theory [13], and
such systems have come to be known as intelligent control systems. The technical
committee on intelligent control of the IEEE Control Systems Society has defined the
general characteristics of intelligent control as having an ability 0 emulate human
capabilities, such as planning, learning and adaptation [14-15]. Learning and
adaptation especially are essential characteristics of intelligent control systems, and
while adaptation does not necessarily require a learning ability for systems to be able
to cope with a wide variety of unexpected changes and environments, learning is
invariably required.

It is necessary 10 specify the characteristics that qualify a system to be justifiably
recognized as an intelligent control system. First and foremost, intelligent control
systems are designed to maintain satisfactory closed-loop system performance and
integrity over a wide range of operating conditions. The characteristics of the system
must therefore relate to the complexity of the plant, including non-linear and time-
variant plant behavior, dimensional and other multivariable characteristics, the
complexity of the desired performance objective, imperfection and uncertainties in the
measurements, and an ability to cope with component failures.

In recent years the use of the terminology ‘intelligent control’ has come to embrace
diverse methodologies combining conventional control theory and emergent techniques
based on physiological metaphors, such as neural networks, fuzzy logic, artificial

6
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intelligence, genetic algorithms and a wide variety of search and optimization
techniques. This chapter reviews the aspects of these emergent techniques, namely,
fuzzy logic, neural networks and genetic algorithms that pertain to the realization of
intelligent control systems. The fundamental concepts of each paradigm are also
discussed.

2.2 Fuzzy logic control

Conceptually, fuzzy logic control systems are rule-based expert systems which
comprise if .... then (condition/action) rules of the form {11]

Rule": IF X,isAjand X, isA; ... X, is A,
THEN Y,isBjandVY,isB; ... Y, is B,

(2.1

where X; € U, and Y; € V, are process input and output variables, and A;” and B;" are
their actual values for the rth rule, respectively. These values generally depict
linguistic (or fuzzy) terms, such as high, cold, negative which are represented by fuzzy
sets defined on the corresponding universes of discourse U, and V,. It is common to
use the membership function p. of the fuzzy set A, to represent the set itself. One of
the most popular membership descriptions is the Gaussian function, which is defined
as

{%#f 2.2)

where m; is the centroid of the fuzzy set (membership function) and o; its width. This
type of membership functions is characterized by only two parameters, m and G.

filx)=¢

Each fuzzy ‘if ... then’ rule defines a fuzzy hyperset given by the Cartesian product
of the fuzzy sets of the variables in the rule, i.e. B = Pa/” X Pa2X ... X Pan’ = Ug/~
The interpretation and membership functions of these rules depend on the {-norm
operator used for the implication of the rule [16]. Typically, the ‘min’ and ‘algebraic
product’ operations are used and, respectively, interpreted as

e min

Ha-g = min(la, lLa) (2.3)
e algebraic product

Ha-g = Ha X Hp (2.4)

where {14,z is the resultant confidence factor of a fuzzy rule.
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The most common fuzzy inference method is the so called superstar (°)
composition rule [11, 17-18] which can be described as follows. Let A = {A;, A; ...
A,} € U be the inputs to the fuzzy system. The membership function of the jth output
fuzzy set from the rth rule is given by

e (¥) = Heas ) = Sup(Ua(x)*Hiz ) (2.5)

where * is a f-norm operator such as ‘min’ or ‘algebraic’ product, and pug(y) is the
resultant membership function of the jth output of the rth rule after applying the fuzzy
inference. The overall result from a set of R fuzzy rules is an aggregation of the pg
fuzzy sets, performed a number of ways using -conorms, such as union or algebraic
sum. To obtain a nonfuzzy output from these rules, one of several different
defuzzification techniques is applied [17-18]. For example, using the Mean-Of-
Centers (MOC) method the output can be obtained as

R

2 B/n,

b.="R ! (2.6)
P

J

where E',’ is the central support of the consequence fuzzy set of each rule and p . is
J

the weight of each rule determined from equation (2.5). It is clear that employing
different operators for inference or aggregation can result in different behavior of the
fuzzy system. The most commonly used f-norms (f-conorms) are min (max) and
algebraic product (algebraic sum).

An alternative approach of fuzzy inference, which was meant to overcome the fact
that the supstar inference results in an output which is a fuzzy set rather than a real-
valued variable, hence, requiring the use of defuzzifiers, is introduced by Takag:-
Sugeno [19]. The Takagi-Sugeno fuzzy controller uses fuzzy rules which have an ‘if’
part similar 10 Zadeh [11] rules, but whose ‘then’ part is a nonfuzzy quantity
expressed as a polynomial. The ‘then’ part is composed as a linear function of ‘if’ part
variables. Rules are typically of the form:

Rule: IF X,isAjandX,isA;... X, is A]
THEN Y=B"= b, +b/x,+bjx,+ ... byx

()]

nn

where b; and x; are scalar quantities. The overall output from all the rules is obtained
as weighted average of the rule outputs



Chapter 2. Background and Literature Survey

(2.8)

where w’ is the truth value of each rule and is calculated as a product of the
membership grades of the antecedents

wh= n “A-’m (2.9)
1=l !

Notice that this technique has similarity with the Zadeh approach if algebraic
product and mean-of-centers are used for inference and defuzzification. The Takagi-
Sugeno approach provides a compact form suitable for application of parameter-
estimation methods. On the other hand, it excludes the possibility for incorporating
human expert knowledge.

Figure 2.1 shows a general configuration for implementing a fuzzy logic control
system. The system has five distinguishable components: a fuzzifier for converting
inputs to fuzzified values in the universe of discourse, a knowledge base containing ail
the information about fuzzy membership functions of the input variables, a rule base
consisting of fuzzy control rules, an inference logic such as pattern matching or
supstar composition, and a defuzzifier such as the weighted averaging technique,
center of gravity method, and mean of maxima method.

...........................................................................

Knowledge Controller
base Rule base \
Inputs Scaling il;z;;ﬁ Inf Defuzziﬁmﬁon,gd Pl 0 utput
U factors, : crence |, ant
normalization | denormalizationf

.........................................................................

| Output-scaling factors,
normalization Sensors

Figure 2.1 A simple fuzzy logic control system block diagram.
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Lee [17-18] has presented a survey on different fuzzy controllers design
techniques. In particular, the survey includes a discussion of fuzzification and
defuzzification strategies, the derivation of the database and control ruies, the
definition of fuzzy implication, and an analysis of fuzzy reasoning mechanisms. A
general methodology for constructing a fuzzy controller has been also described
together with the assessment of its performance.

2.3 Neural networks applications in control

Artificial neural networks (ANNs) are biologically inspired and represent a major
extension of computation [20]. They embody computational paradigms, based on a
biological metaphor, to mimic the computations of the brain. The improved
understanding of the functioning of the neuron and the pattern of its interconnections
has enabled researchers to produce the necessary mathematical models for testing their
theories and developing practical applications. The basic element of any neural
network structure is called ‘neuron’ which is an extremely simple processing element
that has multiple inputs and a single output. An input (0 a neuron could be from the
surrounding environment or from other neurons. Also, a neuron output could be fed
into other neurons or directly into the surrounding environment. The output of a
neuron is constructed by taking the weighted sum of its inputs transformed by a
transfer function. Neural networks gain their overall processing capability by
connecting these simple neurons to other neurons with an associated weight, which
determines the structure of the signal that is transmitted from a neuron to another. The
total collection of weights are the parameters that completely specify the model of the
process which this net represents. Therefore, in order to learn or identify this model
one needs a systematic strategy for adjusting these weights which is called the learning
algorithm. In order for the net to learn, one needs to present a number of examples (0
the net whose attributes are known and are representatives for the unknown model.
This set of given examples is called the training set.

The use of neural networks in control systems can be seen as natural step in the
evolution of control methodology to meet new challenges [21]. Looking back, the
evolution in the control area has been fueled by three major needs: the need to deal
with increasingly complex systems, the need to accomplish increasingly demanding
design requirements, and the need to attain these requirements with less precise
advanced knowledge of the plant and its environment - that is, the need to control
under increased uncertainty. Today, the need to control, in a better way, increasingly
complex dynamical systems [22] under significant uncertainty has led to re-evaluation

10
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of the conventional control methods, and it has made the need for new methods quite
apparent [21-26].

Extensive research has been done in the application of neural networks in control
systems [27]. In efforts to provide a consistent classification for the large number of
diverse applications, Werbos [28] suggested five categories based on network
functional approaches. These are: supervised control, where NNs are trained on a
database of correct signals; direct inverse control, where NNs leamn the mapping
between a desirable response trajectory and the control signals that produce it: neural
adaptive control where NNs are used in place of standard techniques of model-based
adaptive control such as identification of dynamical models; dynamic optimization;
and adaptive critic control such as reinforcement learning. These categories are
described as follows:

1. Supervised control: The training of neural controllers based on human-expert
experience is sometimes the only feasible design method, especially for controllers
of complex and poorly defined processes for which no suitable conventional
controller exists, but for which human experts often make reasonable control
decisions based on experience and intuition. Similarly, the neural network may be
trained on the actions provided by a conventional controlier. The performance of
the neural controller in both cases will be limited by the performance of the
original controller, and hence this approach is only advantageous in situations
where the original controller is computationally more expensive, such as in a
process with fast dynamics.

2. Direct inverse control: A common application technique is to train the neuro-
controller using process open-loop input-output data so that it is able to extract
the inverse mapping between the output and control input. Supervised learning is
used to learn the mapping between the process state signals and control signals as
shown in Figure 2.2. Subsequently, during the operation stage the network is
provided with the desired values of the plant output and infers a suitable control
signal, and hence used directly as the controller. Direct inverse control is based on
the assumption that there exists a one-to-one mapping from the input state to the
output state, in which case there also exists an inverse map from the output state
to the input state. The plant must, however, be open-loop stable. The inverse map
is learned by randomly traversing the input space and building up a database of
input-output pairs. Problems are encountered if the mapping from control inputs
to plant output is not invertible, or is not one-to-one.

11
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3.

Neural adaptive control: Adaptive control techniques can be categorized roughly
into two classes according to the means by which the controller parameters are
adjusted. First is the direct approach such as model reference control where
controller parameters are continuously adjusted using, for example, an error-
gradient based method to minimize an error between the plant and the reference
model. The second approach is the indirect or self-tuning method where first a
model of the plant is identified, and then the parameters of this model are used to
design the controller. Both the controller and the model may be represented by
several networks. In predictive control using NN, a model is used to predict future
values of the controlled variable over a horizon of interest, which may be operated
in parallel with the process to derive actual on-line plant parameters.

Dynamic optimization: In this approach, the NN is trained to discover and
optimize a control strategy, without guidance of examples or training patterns.
The waining procedure is, in most cases, carried out on a model of the process:
however, schemes where this can be conducted on the plant itself, are significantly
more important since the performance of the trained neural controller will be
bounded by the accuracy of the model used as shown in Figure 2.3. The training
procedure involves assuming a set of parameters for a given neural controller and
evaluating a performance measure for the set. A performance measure is used as a
training signal. The inputs to the controller are, in general, current and past values
of the plant inputs and outputs. Supervised learning techniques can be extended o
achieve a self-learning controller using multiple networks [29]. For example, one
network is used as an emulator and learns the system dynamics while another is
used to control the emulator by minimizing the error between the desired output
and the output of the emulator.

Adaptive critic control: The adaptive critic family of designs is more complex
than the other four. One of the most popular such critic designs is the
reinforcement learning scheme. Reinforcement control schemes are minimally
supervised learning algorithms; the only information that is made available is
whether or not a particular set of control actions has been successful. The original
application attempted to balance an inverted pendulum, subject to the constraints
that the platform should not move more than a certain distance from its starting
point and that the inverted pendulum remained approximately upright. If either of
these constraints was violated, a failure signal was sent to the learning algorithms.
The solution proposed by Batero et al. [30] was to construct a control scheme that
was composed of two adaptive elements; an Associative Search Element (ASE)
and an Adaptive Critic Element (ACE). The ASE attempts to reproduce the
optimal control signal that satisfies the given performance objectives, while the

12
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ACE attempts to monitor the performance of the controller internally and to
provide an internal reinforcement signal which is used to train the ASE, as

illustrated in Figure 2.4.

Cs?n::ll Unkown
g Plant —
Inverse
plant
model
Learn

Figure 2.2 Direct inverse plant modeling.

optimization loop
— Assessment/ Plant
desired control action Pl
output Controller ant

feedback loop

v

Figure 2.3 Dynamic optimization control architecture.
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external | reinforcement

Adaptive
Critic
Element
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Associative
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feedback loop

Figure 2.4 An ASE/ACE reinforcement system'’s architecture.

2.4 Genetic algorithms overview

Genetic algorithms (GAs) are powerful search and optimization algorithms based on
the mechanics of natural selection and natural genetics. GAs can be characterized by
the following features [31-34].

e A scheme for encoding solutions to the problem, referred to as chromosomes or
strings.

e An evaluation function (referred to as a fitness function) that rates each
chromosome relative to the others in the current set of chromosomes (referred to
as a population).

e Aninitialization procedure for a population of chromosomes (strings).

e A set of operators which are used to manipulate the genetic composition of the
population (such as recombination, mutation, crossover, etc.).

e A set of control parameters that provide initial settings for the algorithm and its
operators. Also, the algorithm terminating condition should be specified.

A candidate solution (in a GA) for a specific problem is called a chromosome and
consists of a linear list of genes, where each gene can assume a finite number of values
(alleles). A population consists of a finite number of chromosomes. The genetic
algorithm evaluates a population and generates a new one iteratively, with each
successive population referred to as a generation. Given an initial population P(0), the

14
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GA generates a new generation £(1) based on the previous generation P(r-/) as follows
[34]:

Initialize P(t)—>P(0) :P(t) Population at time t
Evaluate P(0)
While (not terminate-condition) do
begin
te—t+1 :Increment generation

select P(t) from P(1-1)
recombine P(t) :apply genetic operators (crossover, mutation)
evaluate P(1)
end
end.

The GA uses three basic operators to manipulate the genetic composition of a
population: reproduction, crossover, and mutation. Reproduction is a process by
which the most highly rated chromosomes in the current generation are reproduced in
the new generation. Crossover operator provides a mechanism for chromosomes to
mix and match attributes through random processes. For example, if two
chromosomes (parents) are selected at random (such as [a; b; ¢; d; ;] and [a; b2 c; d;
€:]) and an arbitrary crossover site is selected (such as ‘3"), then the resuiting two
chromosomes (offspring) will be {a, b, ¢, d2 e;] and [a, b> ¢ d; ;] after the crossover
operation takes place. Mutation is a random alteration of some gene values in a
chromosome. Every gene in each chromosome is a candidate for mutation, and its
selection is determined by the mutation probability.

In order to understand how genetic algorithms work we have to introduce the
Holland's schema theory (35]. A schema is a similarity template among different
chromosomes. A schema (over the binary space without loss of generality) is a string
of type (a;, 2z, ...,a;, ..., ), 3 € {0, 1, *}. The ‘*’ symbol is a don’t care symbol
which accepts both ‘1’ and ‘0’. A schema is a template that describes a sub-space of
strings that match the schema at all loci where the schema is specific (specifies either
‘I" or ‘0’), and regardless of the value the strings exhibit at the loci of the ‘*’ symbol.

The mathematical basis of Holland’s schema theorem arises from the observation
that in evaluating the fitness of a chromosome one also derives implicit knowledge
about the schemata which describe that chromosome. The accuracy of this
extrapolation depends on the specificity of the given schema. At the micro-level of a
GA, the search is viewed through the space of chromosomes. However, the essence of
the schema theorem is that one can also view the changing population as a search
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through the set of schemata which the chromosomes instantiate. Since each
chromosome is an instantiation of 2° possible schemata, in testing a chromosome one
derives a great deal of implicit information regarding the ‘fitness’ of the schemata it
belongs to. Holland calls this “implicit parallelism”, and this observation is a major
part of the explanation of the power of the GA search.

With the schema theorem in hand, the essence of the chromosome structure in GA
optimization becomes clearer. By selecting chromosomes from a sampled population
with a probability relative to their fitnesses, one selects representatives of a particular
schemata proportionate to their average fitness. The average fitness of a schemata is
an artificial quantity that only indicates which chromosome templates are more
promising to investigate, and by how much more.

The frequency m(H, t) of a schema H at generation ¢, will change at generation
time r+/ proportionally to the respective selection probability for reproduction. More
precisely, the growth of a schema due to the proportional replication is given by [33]

m(H, t+1)=m(H, t)—f%)- (2.10)

where the numerator f(H) is the average fitness of all chromosomes belonging to the
schema H. Similarly, the denominator 7 is the average fitness of the entire
population.

Schemata may be disrupted due to crossover (unless, of course, the crossover is
pertormed between identical chromosomes), and therefore, the expected growth of a
schema of equation (2.10) is disrupted accordingly. If P, is the probability for a
crossover, and &H) is the metric distance between the first and the last specific
schema positions, then the probability of a schema to be disrupted due to crossover is
given by [33]

pﬁ.@ (2_11)
n-1

A schema can also be disrupted due to mutation. If the probability of a mutation is
P, and the number of specific positions contained in the schema is denoted by the
order of the schema o(H), then the probability of a schema being disrupted by a
mutation is given by

o(H) P, (2.12)
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and the approximated growth of a schema under crossover and mutation is

m(H, t+1)2 m(H, t)—j%[l-l’cs—(ﬂ—l)—o(H)Pm] (2.13)
n_

The schema theorem explains why GAs exhibit high efficiency in search spaces
that contain structurally similar sub-spaces, i.e. similarities that can be associated with
characteristic performance. Thus, by observing the similarities between chromaosomes
one can advance the search with great efficiency resulting from the implicit
parallelism.

As powerful optimization and search techniques, genetic algorithms are used in
control systems design by applying them in off-line tuning of controller parameters.
For example, Section 2.6 shows how fuzzy controllers could be augmented with
genetic algorithms to optimize their parameters and find their rules.

2.5 Fuzzy-neural networks in control systems

There is a rapidly growing interest in the fusion of fuzzy systems and neural networks
to obtain the advantages of both methods while avoiding their individual drawbacks.
The possibility of integration of these two paradigms has given rise to a rapidly
emerging field of fuzzy neural networks. Fuzzy neural networks have become an area
of great activity in control engineering and many important problems have been
successfully addressed.

There are two distinctive approaches for fuzzy-neural integration. On the one hand,
many paradigms that have been proposed simply view a fuzzy-neural system as any
ordinary multilayered feedforward neural network which is designed to approximate a
fuzzy control algorithm [36-37]. On the other hand, there are those approaches which
aim to realize the process of fuzzy reasoning and inference through the structure of a
connectionist network [38-40]. Fuzzy-neural networks are, in general, neural networks
whose nodes have ‘localized fields’ which can be compared with fuzzy rules and
whose connection weights can similarly be equated to input or output membership
functions. The majority of reported studies on fuzzy-neural control applications
address one of the following functions:
¢ using neural networks to tune fuzzy systems [41];

e extracting fuzzy rules from given numeric data examples {37, 40];
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e developing hybrid systems combining neural networks and fuzzy systems in
various implementation forms [42].

The simplest attempt in merging of fuzzy logic and neural controllers is to make
the NN learn the input-output characteristics of a fuzzy controller [43-44]. The NN in
this case imitates the fuzzy controller but the only advantage is that the trained NN
output has more smoothing robust actions than that of the fuzzy controller.

Evidently, the most common trend has been to apply neural networks to tune the
membership functions for defined sets of rules. Horikawa et al. [45], for instance,
start with a fixed number of rules whose membership functions are subsequently
perturbed through backpropagation until they fit a given data.

A new approach that is rapidly gaining interest is to create special architectures out
of standard feedforward networks that can be interpreted as fuzzy controllers (39, 40,
42}. The membership functions and sets of rules are constructed from data examples
using multi-step procedures that involve learning the membership functions, forming
rule representations and constructing computational networks. From the input to the
output, these networks are constructed to replicate the structure of a fuzzy controller
using either multiple layers or separate networks [40, 46]. Lin and Lee {40], for
example, proposed a general neural-network connectionist that performs the fuzzy
control actions. The proposed fuzzy control/decision network can be constructed from
training examples using a multi-step learning scheme. The first step is used to find the
initial membership functions using Kohonen self-organizing feature maps [47], the
second step is used to find the fuzzy rules using a competitive learning technique, and
the third step is used to optimize the input/output membership functions using a
backpropagation algorithm. Another example is the work of Hung (12], in which he
proposed the application of Kohonen self organizing feature maps and learning vector
quantization algorithms for the creation of two-stage training networks for generating
fuzzy principles rules from experimental input/output data. The previous examples
assume the availability of sufficient training data but in the case of the difficulty of
obtaining such training data, reinforcement learning techniques have been proposed
and successfully used [42, 48].

Neural networks have also been designed to generate rules autonomously by self-
learning methods. Nie and Linkens {49, 50] have studied an approach that uses an
iterative learning technique to reduce the error between the controlled plant and a
reference model, by repeatedly operating the plant through a reference-input profile.
The reference model is used to provide desirable plant outputs which guide the
modification of the neural networks weights until the error between the actual plant
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and the reference model is sufficiently reduced with the number of iterations of plant
operation. Kyung and Lee [S51] have proposed an approach which relies on on-line
input-output characteristics of a network-based fuzzy controller to form its rules.
Called a quasi-fuzzy logic controller (QFLC), its functional blocks emulate the
components of the traditional fuzzy controller, consisting of an inference network and
a defuzzification network Learning is achieved through both reinforcement learning
and on-line backpropagation.

Jang and Sun [52] have reviewed the fundamental and the advanced developments
in neuro-fuzzy synergism for modeling and control. They formalized the adaptive
networks as a universal representation for any parameterized models. The fuzzy model
under the framework of adaptive networks is called Adaptive-Network-based Fuzzy
Inference System (ANFIS). They have introduced the design methods for ANFIS in
both modeling and control applications.

2.6 Fuzzy-genetic applications in control systems

A common difficulty in fuzzy systems is the need for their parameters to be specified
by human designers. Following their successful application to a variety of learning and
optimization problems, GAs have been proposed as a learning method that can enable
automatic generation of optimal parameters for fuzzy controllers, based on an
objective criteria. Fusion of fuzzy systems and genetic algorithms has recently
attracted interest and a number of successful applications have been reported. There
are three application approaches for this fusion. In one case, linguistic fuzzy rules of a
conventional fuzzy controller are fixed and their membership functions are optimized
[53]. In the second case, the membership functions of specified linguistic values are
fixed and the GA is used to determine an optimal set of rules for the application [54,
55]. There is a third approach which combines both and in which rules and
membership functions are adjusted simultaneously [56-59]. For example, Homaifar
and McCormick [59] have proposed a genetic algorithm to tune the fuzzy rules and
their membership functions simultaneously; however, they have introduced many
assumptions to reduce the number of parameters (search apace) and decrease the
convergence computation time. '

The interdependence between the linguistic variables and their membership
functions suggested that both of them should be adjusted to achieve superior
performance. Thus, the membership functions are adjusted individually for each rule
and it has been shown that this approach can achieve better results than the other
methods. However, one drawback with this type of application is that the ability to
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interpret and explain the behavior of the fuzzy controller may subsequently be lost,
since the membership functions are no longer associated with only one linguistic name.

Genetic algorithms in general, and also in combination with fuzzy logic, have been
very successful in other off-line optimization problems [60], including robot motion
planning [33, 61], pH concentration conwrol [53], and shop floor job scheduling
problems [62]. GAs have also been applied to fuzzy pattern-classification from
numerical data. Ishibuchi et al. [63], for example, have proposed a GA to select the
most appropriate fuzzy rules from a large set of available fuzzy rules in order to
construct a minimal compact set of rules that maximizes the number of correct
classifications.

Genetic algorithms, and for that matter any stochastic search techniques, are not
suited to real-time control problems because they take a long time to converge and
may also inflict severe consequences on the process if produced unpredicted results.

2.7 Neuro-genetic algorithms

Genetic algorithms and artificial neural networks both are techniques for learning and
optimization which have been adopted from biological systems. They are both self-
learning methods but they use quite different approaches. Neural networks use
inductive learning and in general require examples, while GA use deductive learning
and require an objective evaluation (fitness) function. A synergism between the two
techniques has been recognized which can be applied to enhance each technique
performance in what may be referred to as evolutionary neural networks. This is a
very recent field and hence there are very few studies. Schaffer et al. [64] present a
survey of studies on combination of GAs and NNs.

An area that attracted the most interest is the use of GAs as an alternative learning
technique in place of gradient-descent methods, such as, error backpropagation.
Supervised learning algorithms suffer from a possibility of getting trapped on sub-
optimal solutions. GAs enable the learning process to escape from entrapment in local
minima in instances where the backpropagation algorithm converges prematurely.

Many studies, on the other hand, have attempted to take advantage of both
techniques in hybrid networks. For example, algorithms which combines GA and
backpropagation have been shown to exhibit better convergence properties than the
pure backpropagation [65, 66]. The GA is used to rapidly locate the region of optimal
performance and then gradient descent backpropagation can be applied in this region.

20



Chapter 2. Background and Literature Survey

GAs have also been studied as a generalized structure/parameter learning in neural
networks. This type of learning combines, as complimentary tools, both inductive
learning through synaptic weight adjustment and deductive learning through the
modification of the network topology to obtain automatic adaptation of system
knowledge to the domain environment [67]). Such hybrid systems are capable of
finding both weights and the architecture of a neural network, including the number of
layers, the number of processing elements per layer and the connectivity between
processing elements [68, 69]. This approach has also been extended to fuzzy neural
networks [70, 71]. Cliff et al. [72] presented theoretical studies of the use of a genetic
algorithm to dynamically evolve neural networks that reflect the complexity of the
environment.

2.8 Summary

Over recent years, several techniques have been proposed in the literature for
implementing integrated fuzzy-peural, fuzzy-genetic, and neuro-genetic control
systems. Many of these have been reviewed in this chapter. However, there is no
available approach that integrates the three paradigms (fuzzy logic, neural networks,
and genetic algorithms) in one system to capture the merits in each paradigm and to
avoid their individual limitations. It has been shown, from the discussion in this
chapter, that there are great opportunities for their future integration. Therefore, the
main purpose of the next chapter is to present how this integration is achieved and
illustrate the advantages and new features that the new hybrid system has.
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Synthesis of Hybrid Systems

3.1 Linguistic modeling

The principle of incompatibility, formulated by L. Zadeh [11], explains the
inadequacy of traditional quantitative techniques when used to describe complex and
humanistic systems. Zadeh has suggested a linguistic (qualitative) analysis for these
systems in place of the conventional quantitative analysis. Accordingly, linguistic
modeling of complex systems has become one of the most important issues [73-76]. A
linguistic model is a knowledge-based representation of a system; its rules and
input/output variables are described in a linguistic form which can be easily
understood and handled by a human operator; in other words, this kind of
representation of information in linguistic models imitates the mechanism of
approximate reasoning performed in the human mind.

The fuzzy set theory formulated by Zaden [10] has been considered an appropriate
representation method for linguistic terms and human concepts. Mamdani’s pioneering
work in fuzzy control [3] has motivated many researchers to pursue their research in
fuzzy modeling {73-81]. Fuzzy modeling uses a natural descriptive language to form a
system model based on fuzzy logic with fuzzy predicates.

The knowledge representation in fuzzy modeling can be viewed as having two
classes. The first (class A), as suggested by Takagi and Sugeno in [19], can represent
a general class of static or dynamic nonlinear systems. It is based on *““fuzzy partition”
of input space and it can be viewed as the expansion of a piecewise linear partition
which is represented as
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R:If x,isAland x, is AS, ..., and x,,, is A}, a1
then y' = a, +ajx,+...+a,,x,,

where R’ (i=1, 2, ..., ¢) denotes the ith fuzzy rule, and x; (j= [,2, ..., m) is the input and
y' is the output of the fuzzy rule R'. A/, AS, ..., An' (i=1,2.....c) are fuzzy membership
functions which can be bell-shaped, trapezoidal, or triangular, etc., and usually they
are not associated with linguistic terms. From (3.1), it is noted that Takagi and
Sugeno approach approximates a nonlinear system with a combination of several
linear systems by decomposing the whole input space into several partial fuzzy spaces
and representing each output space with a linear equation. This type of knowledge
representation does not allow the output variables to be described in linguistic terms
which is one of the drawbacks of this approach. Another drawback is that the
parameter identification of this model is carmried out iteratively using a nonlinear
optimization method [19, 79]. The implementation of this method is not an easy task
(77, 80, 81], as the problem of determining the optimal membership parameters
involves a nonlinear programming problem.

The second class of knowledge representation (class B) in fuzzy models was
developed by Mamdani [82] and used by Lin and Lee [40] and Sugeno and Yasukawa
{76]. The knowledge is presented in these models as

R: If x;is Af and x; is A:;. oo and x,,, is A,‘;, (3.2)

then y'is B'

where A/, A, ..., A, B'(i=1,2,....c) are fuzzy membership functions which are bell-
shaped, trapezoidal, or triangular, etc., and usually associated with linguistic tenns.
This approach has some advantages over the first approach. The consequent parts are
presented by linguistic terms, which makes this model more intuitive and
understandable and gives more insight into the model structure. Also, this modeling
approach is easier to implement than the first approach [81]. This second form (class
B) of knowledge representation will be adopted throughout this work as we are more
concerned with the linguistic modeling approaches.

Many studies regarding finding the rules and tuning the membership function
parameters of fuzzy models have been reported [73-81]. Neural networks are
integrated with fuzzy logic in a form of Fuzzy Neural Networks (FNNs) and used to
build fuzzy models {40, 83-88]. Many algorithins have been proposed to train these
FNNs [83-88], and Jang et al. {85] have reviewed the fundamental and advanced
developments in neuro-fuzzy synergisms for modeling and control. However, efficient
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design of fuzzy models/controllers that provides both interactivity with humans as well
as accuracy, still needs more considerable investigation and focusing research.

In this chapter, an outline of a systematic approach for building fuzzy
models/controllers with an optimized (efficient) performance is proposed. The
suggested model topology, that can support the incorporation of both qualitative and
quantitative information during the identification process, is described in detail. The
proposed approach integrates fuzzy logic, neural networks, and genetic algorithms in a
systematic way to utilize their strengths.

3.2 The neuro-fuzzy model topology

In this thesis, the Neuro-Fuzzy (NF) model is built using the multilayer fuzzy neural
network shown in Figure 3.1. The system has a total of five layers as proposed by Lin
and Lee [40]. A model with two inputs and a single output is considered here for
convenience. Accordingly, there are two nodes in layer 1 and one node in layer 5.
Nodes in layer 1 are input nodes that directly transmit input signals to the next layer.
Layer 5 is the output layer. Nodes in layers 2 and 4 are “term nodes” and they act as
membership functions to express the input/output fuzzy linguistic variables. A bell-
shaped function is adopted to represent a membership function, in which the mean
value m and the variance ¢ are adjusted through the learning process. The two fuzzy
sets of the first and the second input variables consist of n; and n, linguistic terms,
respectively. The linguistic terms, such as positive large (PL), positive medium (PM),
positive small (PS), zero (ZE), negative small (NS), negative medium (NM), negative
large (NL), are numbered in descending order in the term nodes. Hence, n;+n> nodes
and n; nodes are included in layers 2 and 4, respectively, to indicate the input/output
linguistic variables.

Each node of layer 3 is a “rule node” and represents a single fuzzy control rule. In
total, there are n;xn; nodes in layer 3 to farm a fuzzy rule base for two linguistic input
variables. The links of layers 3 and 4 define the preconditions and consequences of the
rule nodes, respectively. For each rule node, there are two fixed links from the input
term nodes. Layer 4 links, encircled in dotted line, are adjusted in response to varying
control situations. By contrast, the links of layers 2 and 5 remain fixed between the
input/output nodes and their corresponding term nodes. The NF model can adjust the
fuzzy rules and their membership functions by modifying layer 4 links and the
parameters that represent the bell-shaped membership functions for each node in
layers 2 and 4. For convenience we use the following notation to describe the functions
of the nodes in each of the five layers:
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netL  :the net input value to the i-th node in layer L,

ot : the output value of the i-th node in layer L,

mi, oL : the mean and variance of the bell-shaped function of the i-th node in layer
L,

Wi : the link that connects the output of the j-th node in layer 3 with the input to

the i-th node in layer 4.

.
Layer 5
Output Node

Layer 4
Output Term
Nodes

Layer 3
Rule Nodes

%

Layer 2
Input Term
Nodes
X
Layer 1
Input Nodes

I I

Figure 3.1 Topology of the neuro-fuzzy model.

Layer 1: The nodes of this layer directly transmit input signals to the next layer. That
is, '

O)l=1,, 0l =1, (3.3)

Layer 2: The nodes of this layer act as membership functions to express the linguistic
terms of input variables. For a bell-shaped membership function, they are
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o} ori = 1.2, .....,n
net? =4 f ! (3.4)
02 fori=n1+1, ..... .ll1+f12
nell-z—m.,-z 2
2 [+ .
O =e ! fori=12,...... , n,+n, (3.5)

Note that layer 2 links are all set to unity.

Layer 3: The links in this layer are used to perform precondition matching of fuzzy
rules. Thus, each node has two input values from layer 2. The correlation-minimum
inference procedure is utilized here to determine the firing strengths of each rule. The
output of the nodes in this layer is determined by fuzzy AND operation. Hence, the
functions of the layer are as follows:

net} = min(0?,0}). i=n,(j-1)+(k-ny) o
forj=12, ... .n; k=n,+1ln,+2 ... .n,+n, )

o;

= net,?z fori=12,..., n,*n, 3.7
The link weights in this layer are also set to unity.
Layer 4: Each node of this layer performs the fuzzy OR operation to integrate the field

rules leading to the same output linguistic variable. The functions of the layer are
expressed as follows:

m

net! = I'V,-J,-Oj3 (3.8)
=1

0; =min(l,net;) fori=12, ....n; (3.9)

The link weight W;; in this layer expresses the association of the j-th rule with the i-th
output linguistic variable. It can take only two values; either | or 0.

Layer S: The node in this layer computes the output signal of the NF model. The

output node together with layer 5 links act as a defuzzifier. The center of area
defuzzification scheme [17-18], used in this model, can be simulated by
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n
net} = )fmjojoj (3.10)
J=t
5
net,
o} = — (3.11)
44
2.0;0;

J=1

Hence, the j-th link weight in this layer is m*c;?.

3.3 The hybrid learning scheme

In this section, a three-phase learning scheme for the proposed neuro-fuzzy
connectionist model is presented [87]. In phase one, unsupervised learning algorithms
are used to locate the initial membership functions by clustering the data into an
appropriate number of clusters. In phase two, supervised as well as unsupervised
learning algorithms are used to find the fuzzy rules. In phase three, supervised learning
algorithms are used to optimally adjust (fine-tune) the input/output membership
functions. To initiate the learning scheme, training data must be provided from the
outside world.

3.3.1 Learning Phase One

The problem for the first learning phase can be stated as: “Given the training input
data xi(1), i=1, .....n, t=1, ..., N (no. of training examples), the desired output value
yi(t). i=1.2, .....m, the fuzzy partitions {T(x}| and IT(y)l, and the desired shapes of
membership functions, we want to locate the initial membership functions™. In this
phase. the network works in a two-sided manner; that is, the nodes and the links at
layer four are in the up-down transmission mode (follow the dotted arrows in Figure
3.1) so that the training input and output data are fed into this network from both
sides.

To form the membership functions, this learning phase clusters each input/output
vector in the training data into an appropriate number of clusters, which could be
determined from the designer’s experience or using assessment techniques (clustering
validity measures) for measuring clustering quality. The number of clusters represents
the required fuzzy partition of the input/output space (i.e., the size of the term set of
each input/output linguistic variable).

There are many clustering techniques that could be used in this learning phase.

27



Chapter 3. Synthesis of Hybrid Systems

However, the following candidates present some of the most suitable for building
fuzzy membership functions:

Kohonen Self-Organizing feature Maps (SOM) (47].
Fuzzy C-Means clustering (FCM) [89].

Mountain function algorithm [90].

Subtractive clustering [91].

P~

Mountain function as well as subtractive clustering algorithms are usually used to
serve as tools to obtain the initial estimation of the cluster centers, which can be fine-
tuned after that using Kohonen self-organizing feature maps or fuzzy c-means
clustering algorithms. However, in situations where only approximate, not too exact,
values of cluster centers are needed, these approaches can act as a stand alone
clustering algorithm. Accordingly, the study in this work will focus on the first two
algorithms as they give more accurate clustering, and these algorithms will be initiated
by distributing the initial clusters centers regularly within the clustering space. The
details of this study will be presented in Chapter 4.

3.3.2 Learning Phase Two

After the initial parameters of the membership functions have been found, the training
signals from both external sides can reach the outputs of term nodes at layer two and
layer four. Furthermore, the outputs of term nodes at layer two can be transmitted to
rule-nodes through the initial architecture of layer-three links. Thus we can get the
firing strength of each rule node. Based on these rule firing strengths (denoted as
ng(t)'s) and the outputs of term nodes at layer four (denoted as O*(1)'s), we want to
decide the correct consequence-link for each rule node (from the connected n; layer-
four-links) to find the n;xn; fuzzy rules, by one of the following learning algorithms:

Competitive Learning Algorithms (CLA) [92].
Minimum Distance Algorithm (MDA) [87].
Maximum Matching Factor Algorithm (MMFA) [93].
Static Genetic Algorithm (SGA) [94].

Lol S

After applying one of the above learning algorithms using the whole training data
set, the link weights at layer four represent the strength of the existence of the
corresponding rule consequence. Among the links which connect a rule node (layer 3)
and the term nodes (layer 4) of the output linguistic node, at most one link with
maximum weight is chosen and the others are deleted. Hence, only one term in an
output linguistic variable's term set can become one of the consequences of a fuzzy
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rule. If all the link weights between a rule node and the term nodes of an output
linguistic node are very small, then all the corresponding links are deleted, meaning
that this rule node has little or no relation to this output linguistic variable. If all the
links between a rule node and the layer-four nodes are deleted, then this rule node can
be eliminated since it does not affect the outputs.

After the consequences of rule nodes are determined, the rule combination is
performed to reduce the number of rules. The criteria for a set of rule nodes to be
combined into a single rule node are: 1) they have exactly the same consequences, 2)
some preconditions are common to all the rule nodes in this set, 3) the union of other
preconditions of these rule nodes composes the whole term set of some input linguistic
variables.

The details of these algorithms as well as a comprative study between them will be
presented in Chapter 5.

3.3.3 Learning Phase Three

After the fuzzy rules are found, the whole network structure is established, and the
third-learning phase is started in order t0 optimally adjust the parameters of the
membership functions. Optimization, in the most general form, involves finding the
most optimum solution from a family of reasonable solutions according to an
optimization criterion. For all but a few trivial probiems, finding the global optimum
can never be guaranteed [95, ch. 14]. Hence, optimization in the last three decades has
focused on methods to achieve the best solution per unit computational cost.

The problem for this supervised learning phase can be stated as: “Given the
training input data x;(1), i=1, .....n, the desired output value y;(t), (=12, .....m, the
fuzzy partitions IT(x)! and IT(y)l, the desired shapes of membership functions, the
initial parameters of the membership functions, and the fuzzy rules, adjust the
parameters of the membership functions optimally”. In this phase, the network works
in the feedforward manner; that is, the nodes and the links at layer four are in the
down-up transmission mode (follow the solid lines in Figure 3.1). The proposed idea is
to use one of the following algorithms:

1. Backpropagation algorithm [96].
2. Multi-Resolutional Dynamic Genetic Algorithm (MRD-GA) [97].
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The details of these algorithms as well as a comparative study between them will

be presented in Chapter 6. The whole three-phase learning scheme is summarized in
the following flow chart (Figure 3.2).

Training data and
expent knowledge

Cluster the data to find
the initial membership-function
parameters using SOM or FCM.

Form the fuzzy rules using
CLA, MDA, MMFA, or
SGA.

Eliminate weak rules.

Combine similar rules.

Optimize the membership-function
parameters using BP or MRD-GA

Figure 3.2 Flow of the hybrid learning scheme.



Chapter 4

Coarse Identification Phase

4.1 Introduction

By looking at the problems included in the identification of fuzzy models/controllers,
we can divide the identification into two levels: structure-identification and parameter-
identification. The structure identification of a system has to solve two problems: in
the first one, one has to find the input variables and in the second one, one has to find
the most appropriate fuzzy partitioning of each input/output variable.

In ordinary system identification, parameters are the coefficients in a functional
system model. In a fuzzy model, the parameters are those in the membership functions
of fuzzy sets. There is no big difference except in the number of parameters, that are
much more in fuzzy identification. In principle, the structure identification problem
and parameter identification problem can’t be separately solved, which makes the
identification task very complicated. In our approach, we simplify the identification by
solving the parameter identification problem after the structure identification one.

Clustering is a tool that attempts to assess the relationships among patterns of a
data set by organizing the patterns into groups or clusters such that patterns within a
cluster are more similar to each other than are patterns belonging to different clusters.
Clustering is used here to form the initial membership functions for the input/output
variables. For each variable, each cluster represents a linguistic term and the number
of clusters represents the fuzzy partition.

The unsupervised neural-network algorithms are available candidates to find
clusters of data that can represent fuzzy membership functions. One of these
candidates is Kohonen’s Self-Organizing feature Maps (SOM) algorithm [47] that
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constructs internal models to capture regularities in their input data vectors without
receiving any additional information from the outside world.

Another available candidate is the Fuzzy C-Means (FCM) algorithm proposed by
Bezdek {89] in 1981. He has suggested the use of an objective function approach for
clustering the data into hyperspherical clusters. Both of the SOM and FCM algorithms
are adapted in this chapter to solve the parameter identification problem by finding the
initial centers m’s and widths ¢'s of the bell-shaped membership functions of fuzzy
models.

Also, in this chapter, it is suggested to solve the structure identification problem
using, what’s called, Clustering Validity Measures (CVMs) to assess the quality of
clustering for each input/output variable. Three CVMs are presented here with a
comparison between them. Also, a detailed assessment of each clustering algorithm
together with a comparative study are presented.

4.2 Self-Organizing Feature Maps

In the Kohonen's Self-organizing feature Map (SOM) that is shown in Figure 4.1, the
four output neurons are arranged on a 2-dimensional lattice (higher-dimensional maps
can generally be defined). Each input vector component is connected to each neuron
via a synaptic weight that is calculated in the training mode. Each neuron possesses a
weight vector that has the same size as the input vector.

Output Layer (Feature Map)

Input Vector

Figure 4.1 Neural network architecture of Kohonen'’s
self-organizing feature map.
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The purposes of the SOM algorithm are to cluster the input space into a finite
number of classes represented by the neural-network weight-vectors, and to perform a
topology-preserving mapping of high dimensional input vectors (i.e., long vectors)
onto a lower dimensional surface represented by the location of the neuron on the grid.

In the SOM network, unsupervised learning is achieved in the feature map layer
through competition. When an input pattern from the training set is presented to the
network each neuron in the feature map layer computes the relative Euclidean distance
between its weight vector and the input vector. The units then compete for the
privilege of learning. Thus, the unit with the minimum Euclidean distance is chosen as
the winning unit. This unit and its immediate neighbors on the grid are the only units
permitted to leamn in this pattern presentation by updating their weight vectors. During
training, the weight adjustment is proportional to the difference between the input
vector and weight vector.

After training, any input vector stimulates only the neuron whose weight vector is
the closest to the input vector in the input space. The weight vectors, therefore,
represent certain averages of disjoint set or classes of input vectors.

The problem of finding the membership-function parameters of a fuzzy model can
be stated as: “Given the input vectors x;(t), i=1, ..., N, the desired fuzzy partitioning,
and the desired shapes of membership functions, we want 10 initially locate the
membership functions”.

The bell-shaped function is considered here to represent fuzzy membership
functons due to its simplicity, continuity and adaptability. This function is given by
the following equation:

{9
ﬂ(x) =¢ o (4. l)
Using the above function, the SOM algorithm is adapted to find the center m; and

the width g; of the i-th membership function by the following equations {40):
Ix(t) - mclo.\-es:(‘)ﬂ = ﬂﬂn[g,’SCIIX(I) - ’"i(‘)“ (4.2)
Melosest T+ 1D =My coq(D+ a(t)[x(t) —Mejpsest (r)] (4.3)

m;(t+1)=m@) for m; =m “44)

closest
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where a(t) is a monotonically decreasing scalar learning rate, c is the required fuzzy
partitioning, and ¢ is the iteratton counter.

Once the centers of membership functions are found. their widths can be

determined by the N-nearest-neighbors heuristic, by minimizing the following
objective function with respect to the widths o;'s, i.e.,

I %= m-m Y |
=l z( - )_J @.5)

where r is an overlap parameter that usually ranges from 1.0 to 2.0. Since it is
difficult to find the widths from Equation (4.5), they can be roughly determined by the
first-nearest-neighbor heuristic as

—- mn; — mdoxrstl

G = (4.6)
r

1

4.3 Fuzzy C-Means Clustering

The Fuzzy C-Means (FCM) clustering [89] is the fuzzy equivalent of the nearest mean
“hard™ clustering algorithm {98], which minimizes the following objective function
with respect to fuzzy membership p; and cluster centroid n;,

c N

J, =2 ([.Li )n"xj -m,-ﬂz 4.7)

=l j=

where ¢ is the number of clusters, N is the number of input vectors (data points), and n
> | is the fuzziness index [89]. The FCM algorithm is performed in the following
steps.

Step 1: Initialize memberships p; of x; belonging to cluster ¢ such that

M~

i=l

Step 2: Compute the fuzzy centroid m; fori =1, 2, ..., c using

N n
Z(l’-i) X
m; = -F},v———- (4.9)

()

j=t
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Step 3: Update the fuzzy membership p; using

-

— g fl(n=0)
_ ﬂxi m;

I =
=
ZI"/ - '".~"
=l

u (4.10)

Step 4: Repeat steps 2 and 3 until the value of J, is no longer decreasing.

After the algorithm converges to strict local minima of J,, the resultant ni;’s are the
optimal centers of the bell-shaped membership functions in the fuzzy model. In order
to find the widths (o;'s) of the membership functions, the following algorithm is used:

Fori=1ltoc

{le=l]
N

Define the cost function fic)=3|e { i - U
=t

Find the o; value that minimizes the cost function f{c;).
End

The o; that minimizes the cost function can be found using the well-known Least
Mean Squares (LMS) algorithms.

4.4 Clustering Validity Measures

The subjective nature of the clustering problem precludes a realistic mathematical
comparison of all clustering techniques. Hence, an intimately related important issue
to the clustering problem is the “cluster validity” which deals with the significance of
the structure imposed by a clustering method. A cluster validity function is used to
measure the quality of a clustering by measuring how closely the data points are
associated to the cluster centers. The level of association or classification can be
measured by defining a membership function for each cluster. If the value of one of
the memberships is significantly larger than the others for a particular data point, then
that point is identified as being a part of the subset of the data presented by the
corresponding cluster center.

As a fuzzy clustering validity function Bezedek [89] designed the partition
coefficient S/ to measure the amount of “overlap” between clusters.
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N

si=+ 3, ) (4.11)

N =1 j=t

In this form, $7 is inversely proportional to the overall average overlap between
pairs of fuzzy subsets. In particular, there is no membership sharing between any pairs
of fuzzy clusters if S/ = 1. Finding the ¢ value that produces the maximum S/ value is
the method to find a valid (appropriate) clustering of any data set. Disadvantages of
the partition coefficient S/ are the lack of direct connection to the geometrical property
of the data and its monotonic-decreasing tendency with the increase of c¢.

Another fuzzy clustering validity function is proposed by Xie er al [99]. This
function measures the overall average compactness and separation of a fuzzy c-
partition. In this function. the separation of the fuzzy c-partition is defined with the
parameter s, where

5 = (dmin )2 (4.12)
dpin = rt_l.i;l"m,- -m jﬂ- (4.13)

A larger s indicates that all the clusters are more separated. The average compactness
measure of the data in all the fuzzy subsets is given by

c N 2
Y ¥yl -mj (4.14)
i=lj=1

The compactness and separation validity function S2 is defined as the ratio of
compactness 7 to the separation s. The overall expression is given by

c N 5 2
NN
52 =2 1 - (4.15)

As a special case, using the FCM algorithm with n=2, $2 can be shown to be

§2 = _12__2 (4.16)
N*(dmin)

which is very easy to calculate. From (4.15) and (4.16), it is clear that the smaller the
validity measure S2 the better is the fuzzy clustering, and the smallest S2 indicates a
valid optimal fuzzy partition.
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The third validity criterion presented here is proposed by Sugeno et al [76]. They
used a validity function defined by the following equation:

N ¢

33=j§§(ug)"(

5 -mff ~fz-m) e

where x is the average of the data (x, i=1, 2, 3, ......, N).

As seen in (4.17), the first term of the right-hand side is the variance of the data in
a cluster and the second term is that of the clusters themselves. Therefore the optimal
clustering is expected to minimize the variance in each cluster and to maximize the
variance between clusters. So, the minimum value of S3 indicates an optimal valid
fuzzy clustering.

4.5 Testing and Evaluation Results

Three different well-known benchmarks are used in this section to compare between
the SOM and FCM algorithms, and evaluate their effectiveness in building fuzzy
membership functions. The benchmarks are also used to investigate the effectiveness
of the cluster validity measures described above. In each benchmark, the number of
clusters in the data is already known in advance. Also, it is known to which cluster
each point in the data set belongs. Thus, the results found by each algorithm are
compared with the actual results.

4.5.1 Example 1

The well-known Anderson’s Iris data [100] consists of 150 four-dimensional vectors.
The components of a vector are the measurements of the petal length, petal width,
sepal length, and sepal width of a particular Iris plant. There are 50 flowers in each of
the three subspecies of Iris represented in the data, so it is assumed that an effective
validity function should indicate the presence of three clusters. In the numerical
representation of the data, two of the classes have substantial overlap, while the third
is well separated from the other two (linearly separable). Thus, one can argue in favor
of both ¢=2, and ¢=3 for this data as a valid clustering. We have divided this data into
two equal groups. The first is used for training, and the other is used for testing.

The SOM algorithm (presented in Section 4.2) is applied to cluster the Iris training

data with r = 1.5. The three validity measures (57, S2, and S3) are used to identify the
number of clusters in the data. The results of the analysis are shown in Table 4.1. The
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maximum of S/ is produced at ¢ = 3, which matches the actual number of clusters.
However, the minimum values of both S2 and S3 are produced at ¢'=2 and ¢'=5,
respectively. Both of them failed to match the actual clustering. However, S2 produced
more accepted clustering partition as mentioned before. The learning and the testing
results of the Iris data using the SOM are summarized in Table 4.2, which shows a
performance of 88%. The results show that the algorithm performance depends on the
resultant centers m;s and not on the value of the parameter r (which is used to
evaluate the widths o; s using equation (4.6)).

Table 4.1 Validity measures of Iris data after SOM (r =1.5).

No. of Si S2 S3
Clusters
2 0.0245
3 0.0833 -1.5772
4 0.1798 0.1573
5 0.2016 0.0729
6 0.1531 0.0735 -3.3706
7 ().0876 0.0702 -1.4447
Table 4.2 SOM results of Iris Data.
r 75 Learning Samples 75 Testing Samples
Hit Miss Hit Miss
1.0 65 10 67 8
1.5 65 10 67 8

Then, the FCM algorithm (presented in Section 4.3) is applied to cluster the Iris
data withn=2 &= 10°% andc = 2, 3 ... 7. The three validity measures (S/, S2, and
$3) are used to identify the number of clusters in the data. The results of the analysis
are shown in Table 4.3. The minimum of S3 is produced at ¢* = 3, which matches the
actual number of clusters. However, both the minimum value of S2 and the maximum
value of S/ are produced at ¢"=2, which are also acceptable results. The learning and
the testing results of the Iris data using the FCM algorithm are summarized in Table
4.4, which shows a performance of 90%. The resultant widths ;s do not affect the
results on Table 4.4. However, they affect the validity measures values. These widths
are found as proposed in Section 4.3. Table 4.5 shows a rough comparison between
the speed of both the SOM and FCM algorithms in the clustering of the Iris data at ¢
= 3. This comparison is just presented as an indication of the relative speed between
the two algorithms.

38



Chapter 4. Coarse ldentification Phase

Table 4.3 Validity measures of Iris data after FCM.

No. of Y 52 S3
Clusters

: maias
4 0.6638 0.2841 -11.0526

5 0.6027 0.5290 -10.3867

6 0.5646 0.3555 -10.2185

7 0.5246 0.3535 -9.9166

Table 4.4 FCM results of Iris data.

75 Learning Samples 75 Testing Samples
Hit Miss Hit Miss
68 7 67 8

Table 4.5 The speed of both SOM and FCM.

SOM FCM
No. of Flops 1,505,352 128,039
No. Iterations 10,000 15
Flops/Iteration 151 8536

4.5.2 Example 2

The second example uses an artificially generated data proposed by Windham [{101].
The data set consists of a two-dimensional data pictured in Figure 4.2. It is obtained
by choosing 50 points at random in each of the disks of radius one centered at the
points (2, 1), (2, -1), (-2, 1), and (-2, -1), respectively. As the figure indicates, it would
be reasonable to expect that a clustering algorithm would identify the presence of four
clusters. However, the presence of only two clusters is justifiable. A set of 200
different data points is also generated in the same way for the testing purposes.

The SOM algorithm is used with r = 1.0, and 2.0. The results of the analysis are
shown in Table 4.6. S/, S2, and 53 have failed to produce an optimal number of
clusters that matches the actual number of clusters (¢ = 4), but S2 has a justifiable
result. The clustering and testing results are summarized in Table 4.7. The resuits
show that the SOM performance is around 67%.
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Disks Data (radius = 1.0)
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Figure 4.2 Disks data distribution (radius=1.0) of example 2.
Table 4.6 Validity measures of disks data (radius=1.0) after SOM.
No. of S1 52 S3
Clusters r=1 r=1 r=1 r=2
2 0.0908 194651 0.1842
3 0.6519 -243.07 -145.00
4 0.3841 0.1100 0.3437 0.0268 -210.56 -76.477
5 0.3474 0.0835 1.0006 0.0285 -133.28 -60.714
6 0.1347 0.9974 0.0528 | -336.71
7 0.2011 0.7004 0.0379
Table 4.7 SOM results of disks data (radius=1.0).
r 200 Learning Samples 200 Testing Samples
Hit Miss Hit Miss
2.0 135 65 132 68
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Table 4.8 Validity measures of disks data after FCM.

No. of Si S2 S3
Clusters

Nown A WwN

Thus, the FCM algorithm is used to cluster the data withn =2, € = 10°, and ¢ =
2, 3....7, and the validity measures are used to identify the number of clusters. The
results of the analysis are shown in Table 4.8. The minimum of S3 is produced at ¢” =
4, which matches the actual number of clusters. However, both S/ and 52 produced
justifiable results but failed to match the actual clustering. The learning and the testing
results of FCM algorithm are summarized in Table 4.9, showing a 99.5%
performance. Table 4.10 shows a rough comparison between the speed of both SOM
and FCM algorithms at ¢ = 4.

Table 4.9 FCM results of disks data.

200 Learning Samples 200 Testing Samples
Hit Miss Hit Miss
199 1 199 1

Table 4.10 The speed of both SOM and FCM.

SOM FCM
No. of Flops 1,075,600 419,905
No. Iterations 10,000 22
Flops/Iteration 108 19087

4.5.3 Example 3

The data in this example is artificially generated exactly in the same way like the
previous example, except that the radii of the disks are 1.5 rather than 1. As can be
seen in Figure 4.3, because of the overlap of the disks, this data set appears to have
two clusters rather than four. Thus, an optimal clustering of two is an acceptable
result. Different 200-points data set is also generated in the same way for testing
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purposes.
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Figure 4.3 Disks data distribution (radius=1.5) of example 3.

The SOM algorithm is used with r = 1.0. The three validity measures are used to
identfy the number of clusters in the data. The results of the analysis are shown in
Table 4.11. S1, and S3 have failed to produce an optimal number of clusters that
matches the actual number of clusters (¢ = 4), but S2 produces an acceptable result.
The clustering and the testing results are summarized in Table 4.12. The results show
that the SOM performance is around 75%.

Table 4.11 Validity measures of disks data (radius = 1.5) after SOM.

No. of S! S2 53
Clusters

NOo s wN
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Table 4.12 SOM results of disks data (radius = 1.5).

r 200 Learning Samples 200 Testing Samples
Hit Miss Hit Miss
1.0 151 49 148 52

Then, the FCM algorithm is applied with n = 2, and € = /0, and the validity
measures are used to identify the number of clusters. The results of the analysis are
shown in Table 4.13. The minimum of S3 is produced at ¢” = 4, which matches the
actual number of clusters. Both S7 and S2 produce acceptable results (¢ = 2). The
results of FCM algorithm are summarized in Table 4.14, showing a 90% performance.

Table 4.13 Validity measures of disks data (radius=1.5) after FCM.

No. of Si 52 53
Clusters

2 H -350.52
3 0.7086 0.2628 425.29
4 0.6559 0.1494

5 0.5990 0.2805 -525.40
6 0.5718 0.2077 -520.62
7 0.5487 0.1963 -536.94

Tabie 4.14 FCM results of disks data.

200 Learning Samples 200 Testing Samples
Hit Miss Hit Miss
183 17 178 22

5.4.4 The effect of n

In this section, we study the effect of n (the weighting exponent of the FCM algorithm)
on the validity measures (S/, S2, and S3). The Iris data (150 samples) is used in this
study. The data is clustered with different values of n (n = [ ... 7) and different values
of ¢ (¢ = 2 ... 10). Table 4.15 lists the optimal values of ¢ chosen by each of the
validity measures. We have shaded those cells of the table which agree with the
preferred (actual or acceptable) value of ¢ for the Iris data.

43



Chapter 4. Coarse Identification Phase

Table 4.15 Optimal values of ¢ chosen by each validity measure.

From the analysis in Table 4.15, it is noticed that the most workable range of # is
from 2.0 to 4.0, where n=2 has often been the preferred choice for many users [102].
The three validity measures have reasonable results within this range. The S3 measure
is extremely sensitive to the values of n outside this range. However, it produces the
best results among the other measures within this range.

4.6 Conclusions

The SOM and FCM algorithms have been used for building fuzzy membership
functions for three benchmarks. Table 4.16 shows a comparison between the two
algorithms extracted from the results in this chapter. Both algorithms have good
convergence and stability features. However, the performance of the FCM algorithin
exceeds that of the SOM algorithm in all the evaluation tests.

Table 4.16 A comparison between SOM and FCM.

View point SOM FCM
Convergence & Stability Good Good
Performance: Example | 88% 90%
Performance; Example 2 67% 99.5%
Performance: Example 3 75% ' 90%

Average Performance 77% 93%
Speed Slower Faster
Clustering assessment by S/ Inconsistent Acceptable
Clustering assessment by S2 Inconsistent Acceptable
Clustering assessment by S3 Inconsistent Excellent

The speed of the SOM algorithm depends on the initial learning rate and the
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required accuracy (€). It is found that if the required accuracy of both the SOM and
FCM algorithms are the same, the FCM algorithm is still faster. However, for small
data sets (few hundreds of data points), the speed difference between the two
algorithms is not of major concern, especially in off-line applications. The three
validity measures (S/, S2, and S3) are used to assess the quality of clustering
produced by each algorithm. The three measures failed to produce consistent results
from the clusters found by the SOM algorithm. On the other hand, the S/ and S2
measures have produced acceptable results from those found by the FCM algorithm
and S3 measure has produced excellent results. Therefore, it can be concluded that the
quality of clustering produced by the FCM algorithm is more appropriate than that of
the SOM algorithm in building fuzzy membership functions, however, SOM algorithm
is still useable.

The validity measure §3 [76] shows an excellent performance with the FCM
algorithm. The optimal fuzzy partition found by this measure always matches the
actual partition in all the benchmarks used. However, this measure shows high
sensitivity to the weighting exponent n. The suggested workable range of n is from 2.0
to 4.0. Beyond this range, S3 has produced inconsistent results. This drawback of this
measure is not of major concem if we know that n=2.0 is the most popular value used
by many designers [102].

Finally, the FCM algorithm is recommended to be used in building fuzzy

membership functions, and S3 validity measure to be used in finding the most
appropriate fuzzy partition (the optimal number of membership functions).
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Rule-Formation Phase

5.1 Introduction

In many of the real-world control problems, the human operator interaction is an
essential part of the control loop. The environment facing this human controller, in
such complex control systems, is sO complicated that no mathematical model exists,
or, the mathematical model is strongly nonlirear so that a systematic design method
does not exist.

To design a controller that can replace the human operator in a control loop, we
tirst need to see what information is available. Since in this work, we consider only a
model-free design, there are usually two kinds of information available to us:

e The experience of the human controller that is usually expressed as some
linguistic “[F-THEN" rules. These rules state in what situations which actions
should be taken.

¢ Sampled input-output data pairs that are recorded from successful control by the
human controller, or that give enough information about the dynamics of the plant.

The human experience alone is usually considered incomplete as, in many cases,
some information will be lost when humans express their experience. Also, it is
difficult for human experts to examine all input-output data recorded from a complex
process to find, and wne the IF-THEN rules and their membership functions within
fuzzy control systems [12]. Accordingly, there is a need for systematic approach to
find the linguistic fuzzy rules from the input-output data of a complex plant. The
required approach should decrease or eliminate the dependency on the human
experience in forming the rules, but at the same time, should allow the incorporation of
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this experience, in order to utilize all the available information in generating the rules.

In this chapter, four different techniques are presented to form the fuzzy-linguistic
rules from the input/output data of a complex plant. These techniques are: the
Competitive Learning Algorithm (CLA), Minimum Distance Algorithm (MDA),
Maximum Matching-Factor Algorithm (MMFA), and Static Genetic Algorithm
(SGA). A well-known benchmark is used to test the four techniques by building four
different models for this benchmark. The performance of the four models is illustrated
and, accordingly, each technique is evaluated. A comparison among the four
techniques is also presented. Conclusions are drawn from the assessment of each
technique.

5.2 Learning techniques

While fuzzy logic provides a mathematical morphology to emulate certain perceptual
and linguistic attributes associated with human cognition, artificial neural networks
offer exciting advantages such as learning, adaptation, fault-tolerance, and
generalization. The similar parallelism properties of neural-nets and fuzzy-logic
systems make their integration more suitable for solving and studying the behavior of
imprecisely-defined complex systems [103]. The strengths of both systems can be
utilized to form the fuzzy rules and tune their membership functions within a fuzzy
controller [83-88].

In this section we present four learning schemes for finding the linguistic-fuzzy
control rules. To initiate the learning schemes, training data and the desired or selected
coarse of fuzzy partition must be provided from the outside world. Also, the initial
centers (m’s) and widths (o°s) of the membership functions have to be found. Chapter
4 has presented different techniques to find the initial membership functions.

After the parameters of the membership functions have been found, the training
signals from both external sides can reach the outputs of the term nodes at layer 2 and
layer 4. Furthermore, the outputs of term nodes at layer two can be transmitted to
rule-nodes through the initial architecture of layer-three links. Thus, we can get the
firing strength of each rule-node. Based on these rule-firing strengths (denoted as
Oys) and the outputs of term-nodes at layer four (denoted as Og"s), we want to
decide the correct consequence-link for each rule node (from the connected n; layer-
four-links) to find the n;xn; rules. Four algorithms are presented here to perform this
task.
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5.2.1 CLA Algorithm [92]

Step 1: the links at layer four are initially fully connected. We denote the weight of
the link between the ith rule node and jth output term node as wy, and initialize it with
zero value. In this case, we have n;xns;xn; weights.

Step 2: wjis calculated according to the following pseudocode:

Fori=1, 2, ..., n;xn;

Forj=1 2, .. n;
Fork =1, 2, .... N (the no. of available training examples)

D= 4. 3
“t’j-wij+0kj( WU+OL‘)

End
End
End

Here Oy" serves as a win-loss index of the jth term node at layer 4. The theme of
this law is that ‘learn if win’. In the extreme case, if Oy, is ‘0-1" threshold function,
then the above law says ‘learn only if win’.

Step 3: After the competitive learning is performed through the whole training data
set, the link-weights at layer 4 represent the sirength of the existence of the
corresponding rule consequence. Among the links, which connect rule node and term
nodes of an output linguistic variable, at most one link with maximum weight is
chosen and the others are deleted. Hence, only one term in an output linguistic
variable's termm set can become one of the consequences of a fuzzy logic rule, If all the
link-weights between a rule node and the term nodes of an output linguistic node are
very small, then all the corresponding links are deleted, meaning that this rule node has
little or no relation to this output linguistic variable. If all the links between a rule node
and the layer-four nodes are deleted, then this rule node can be eliminated since it does
not affect the outputs.

5.2.2 MDA Algorithmm [87]
Step_l: We denote the Euclidean distance between the ith rule node and the jth
output term node as dj;, and initialize it with zero value. In this case, we have n;xn;xn;

d’s.
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Step 2: djis calculated according to the following pseudocode:

Fori=1, 2, ..., NpXn;
Forj = 1. 2. veey M3
Fork =1, 2, ..., N(the no. of available training exampies)

2
if Oy’ > . then dij =Jd; +(01‘L:1,_ _0’_;)

End
End
End

where 7\ is a specified threshold value. This value depends on the distribution of the
training patterns, and is selected by heuristics for the best performance measure, as
will be seen later in Section 5.3.

Step 3:  After calculating all the ¢’s using the previous code considering all the
available training patterns, the rule-consequences can be determined form these factors
according to the following pseudocode:

Fori=1, 2. ..., n;xn;
Find the minimum distance dpix from the set d; ([ dy: j=1, 2. ..., n;]).
Find the corresponding term-node index (jmin) Of dmin,
Delete all the layer-four-links of the i-th rule-node except the one connecting it
with the term-node of index jmmns
End

5.2.3 MMFA Algorithm [93]

Step 1: For each layer-three-rule node we construct n; matching factors. In this case,
we have n;xn»xn; matching factors. Each matching factor is denoted as M; with zero
initial value, where the subscript { is the rule-node-index (i=1, 2, ..., n;xn,), and the
subscript j is the output-linguistic-variable-index (output-term-node-index) (j=1, 2, ...,
n;).

Step 2: Mjis calculated according to the following pseudocode:

Fori=1, 2, ..., n;xn;
Forj=1,2, .., n;
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Fork=1, 2, ..., N (the no. of available training exampies)

Mij Otherwise

M ij + Olii if 0,; is the maximum element in the set O,f
M ij =
End
End
End

Step 3:  After calculating all the M’s using the previous code considering all the
available training patterns, the rules consequences can be determined form these
factors according to the following pseudocode:

Fori=1, 2, ..., nxn,
Find the maximum maiching-factor M, from the set M, ([ M j=1, 2, ..., n;/),
Find the corresponding term-node index (jmax) 0f Mpar
Delete all the laver-four-links of the i-th rule-node except the one connecting it
with the term-node of index jmax

End.

Step 4: From the above algorithm, only one term in the output linguistic variable's
term set can become the consequence of a certain fuzzy-logic rule. If all the matching
factors of a rule-node are very small (meaning that this rule has small or no eftect on
the output), then all the corresponding links are deleted, and this rule-node is
eliminated.

5.2.4 Static Genetic Algorithm [94]

The proposed SGA uses decimal-integer strings to encode the fuzzy rules. The
decimal strings are considered a more suitable representative method than the binary
strings. This representation allows the use of more compact-size strings. The number
of alleles (individual locations which make up the string) is determined from the total
number of fuzzy rules. From the NF model configuration shown in Figure 3.1, we
have mxn; rules. It is allowed for each allele to take any value in the set [I, 2, ..., 9],
where 1 represents NL, 2 represents NM, 3 represents NS, 4 represents NVS, 5
represents ZE, 6 represents PVS, 7 represents PS, 8 represents PM, and 9 represents
PL.

The GA proposed here is called static to distinguish it from the dynamic one that
will be proposed later in Section 6.3. The SGA is coded using the well-structured
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language C+. The program allows the user to define the values for population size
(pop_size), maximum number of generations (max_gen), probability of crossover
(pcross), and probability of mutation (pmut). In order to select the individuals for the
next generation, the tournament selection method is used. In this method, two members
of the population are selected at random and their fitness values compared. The
member with higher fitness advances to the next generation. An advantage of this
method is that it needs less computational effort than other methods. Also, it does not
need a scaling process (like the roulette wheel selection) [31]. However, the particulars
of the reproduction scheme are not critical to the performance of the SGA; virtually,
any reproduction scheme, in such kind of genetic algorithm, that biases the population
toward the fitter strings works well {53].

The proposed SGA uses the Mean Squared Error (MSE) (the error is the difference
between the actual output and the estimated output by the fuzzy model) as a fitness
function. Simply, for each chromosome, (1/MSE) is considered as the fitness measure
of it. The MSE is calculated from N data points as

MSE = - g i)2 5.1
_-—N- Z(u[ "'ul-) ( . )

i=1

where r; is the actual value and £ is the estimated value.

The usual GA terminating condition is a maximum number of allowabie
generations or a certain value of MSE required to be reached. In this SGA algorithm,
the stopping criterion is the execution of a certain number of generations without any
improvement in the best fitness value. In this criterion, you do not need to specify a
required MSE value (which usually unknown in advance) or a required number of
generations (where there is no guarantee that this number will produce an appropriate
solution). This SGA uses simple crossover (single point crossover) and mutation

operators.

The proposed SGA pseudocode is as follows.

Initialize P(t)—->P(0). : P(1) Population at time 1.
Initialize best_fir = 0. : The best fitness value.
Evaluate P(0).

Search for the best fitness of P(0) and assign best_fit to it.
While (not terminate-condition) do

Begin
1—t+1 :Increment generation.
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Select P(t) from P(t-1) using tournament selection criteria.
Recombine P(t) :apply genetic operators (crossover, mutation).
Evaluate P(1).
Search for the best fitness of P(1) and compare it with best_fit, if larger then do
Begin
Assign best_fit to the best fitness value of P(1).
End
End
End.

5.3 Simulation studies

The presented algorithms are examined using the well-known example of system
identification given by Box and Jenkins [104]. The process is a gas furnace with a
single input u(z) and a single output y(r): gas flow rate and CO-, concentration,
respectively. The data set consists of N=296 pairs of experimental input-output
measurements. The sampling interval is 9 seconds.

The inputs to the fuzzy model are selected to be v(z-1) and u(1-4), respectively, as
in [73]. The y(t-1) input variable is modified to be y’(z-1), where y'(t-1) = ¥(t-1) -
Vmeans ¥mean 15 the average of all the y’s. Each of the input variables is partitioned into
seven linguistic sets (n;=n.=7). The output of the fuzzy model is y’(z), where the actual
process output is ¥(z) = ¥’(t) + Vmean- The model output y'(z) is partitioned into nine
linguistic sets (n;=9).

The gas furnace is modeled using the fuzzy-neural network shown in Figure 3.1.
The SOM algorithm (Section 4.2) is used to determine the initial centers and widths of
the 23 member functions of the input/output variables. The three scaling factors of this
model are determined as ‘Gu=0.658', ‘Gy=0.227", and ‘Go=7.909". The resultant
membership functions after finishing this learning phase are shown in Figure 5.1.

The CLA algorithm (Section 5.2.1) is then applied to find the fuzzy rules. Twenty-
eight rules are only considered and shown in Table 5.1. The other 21 rules are deleted
because their weights are very small (less than 5% of the highest weight). Usually, the
rules with very small weights produce incorrect consequences due to the lack of
adequate training examples in the region of these rules. Including these rules in the
model may have detrimental effect. For example, including all the 49 rules that are
found by the CLA algorithm produces an MSE of 2.3271. However, deleting the 21
weak rules results in an MSE of 2.1717. The blank rules could be filled by smoothing
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out and/or extrapolating the existing rules. Leaving this rules blank implies a 'no
action’ state for the output and this sometimes gives better performance than filling the
blank spaces with imprecise consequences. The output of the model with 28 rules is
shown in Figure 5.2.

The membershlp Fns for the u(t—4) mput signal.

§ OO

-1.5 -0.5 1.5

-

The membership Fns for the y*(t-1) input signal.

0000

(o]
-1.5 -0.5 1.5

The membership Fns for the y*(t) output signal.

Figure 5.1 The normalized membership functions after SOM.

Table 5.1 The complete fuzzy associative memory matrix with CLA rules.

u(k-4)

yt-1)| NL | NM | NS | ZE | PS | PM | PL
NL NM | NM | NL
NM NS | NS | NS | NM | NM
NS ZE | NVS | NVS | NS
ZE PVS | PVS | NVS | NVS
PS PVS | PVS | PVS
PM PS | PS | PS | PS
PL | PL | PL | PL | PM | PM

All entries correspond to y (t)
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The output of gas furhace model.
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Figure 5.2 Output of the gas furnace model with CLA rules.

The MDA algorithm (Section 5.2.2) is then applied to find the fuzzy rules. Thirty-
four rules are found and shown in Table 5.2. The other 15 rules are deleted as they are
found to have insignificant effect. After many trials and simulation studies, it is found
that the best MSE value of 0.9709 is produced at 1. = 0.17. The gas furnace output
with MSE of 0.9709 is shown in Figure 5.3. The main disadvantage of this algorithm
is the difficulty of finding the . value that gives the most appropriate set of rules.
Table 5.3 shows the MSE values at different n.’s.

The purpose of using a threshold value 1. is to ensure that the training patterns,
that are employed to find a certain rule, are in an active status. In other words, the
algorithm uses only the training patterns that activate the rule node in layer 3, which is
associated with a certain fuzzy rule. Employing all the training patterns (passive and
active) deteriorate the algorithm performance as shown in Table 5.3 at n= 0.0.
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Table 5.2 The complete fuzzy associative memory matrix with MDA rules.

u(k-4)
yat-) | NL | NM | NS | ZE | PS | PM | PL
NL NM | NM NL
NM NVS | NVS | NVS | NS NM
NS PVS | ZE | NVS | NVS | NVS | NVS
ZE PVS | PVS ZE | NVS NS
PS PS PS PVS | PVS | PVS ZE
PM PS PS PVS | PVS
PL PL PM PM PM
All entries correspond to y (t)
The output of gas fumace model.
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Figure 5.3 Qutput of the gas furnace model with MDA rules.
Table 5.3 The change of MSE with 1.
N 0.0 0.05 0.07 0.11 0.15 0.17 0.2 0.25 0.35
MSE || 41.05 |14.0590]2.7514}1.4027|1.0173{0.9709 | 0.9740| 0.9913} 0.9962
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The MMFA algorithm (Section 5.2.3) is used to find the linguistic fuzzy rules of
the gas furnace model. Out of the 49 rules of the fuzzy model, 37 rules are only
considered. The rest are deleted because they have very small matching factors (less
than 5% of the highest matching factor of all the rules). The 37 rules are shown in
Table 5.4. The model is simulated as shown in Figure 5.4, and its MSE value is found
to be 0.9441.

Table 5.4 The complete fuzzy associative memory matrix with MMFA rules.

u(k4)
)] NL | NM | NS | ZE | PS | PM | PL
NL NS NS NM NL
NM NVS | NVS | NVS | NS NS
NS ZE ZE NVS | NVS | NVS | NS
ZE § PVS | PVS | ZE ZE | NVS | NVS
PS PS PVS | PVS | ZE ZE ZE
PM PS PS PS PVS | PVS
PL PL PM PS PM PM
All entries correspond to y (t)
The output of gas furnace model.
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Figure 5.4 Output of the gas furnace model with MMFA rules.
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Finally, the SGA algorithm (Section 5.2.4) is used to find the linguistic fuzzy rules
of the gas furnace model. The algorithm is executed using a population size of 150 to
decrease the chances of pre-mature convergence. Also, It is applied many times with
different crossover and mutation probabilities, to obtain the best possible result. A
satisfactory performance of the SGA is reached when the probability of crossover and
mutation are set to 0.9 and 0.01, respectively. Out of the possible 49 rules of the fuzzy
model, 37 rules are only considered. The rest are deleted because of their negligible
effect (they have less than 5% of the highest firing rate of all the rules). The 37 rules
are shown in Table 5.5. The model is simulated as shown in Figure 5.5, and its MSE
value is found to be 0.6492 with the convergence rate shown in Figure 5.6.

Table 5.5 The complete fuzzy associative memory matrix with SGA rules.

u(k-4)
ya-)| NL | NM | NS | ZE | Pps | PM | PL
NL NS | NM | NM | MM
NM NVS| NS | NVS | NS | NM
NS NVS| ZE | ZE | NVS | NVS | NS

ZE | NVS| PS ZE ZE | NVS | NS
PS PM | PVS | PVS ZE PVS | NVS
PM PS PS PVS | PVS PS
PL PL PS PM PM PM
All entries correspond to y (t)

5.4 Conclusions

This chapter presents four techniques to extract linguistic modeling/control rules from
the input-output data of any plant. All the algorithms are implemented using the C++
language on a Pentium 166MHz. The techniques are tested using a well-known
benchmark. The comparison among the different approaches is shown in Table 5.6.
The CLA technique compared to the other techniques has a relatively low
performance. Moreover, it has a relatively short execution time but not the shortest.
The performance of the MDA algorithm is better than that of the CLA algorithm.
However, the main disadvantage of this algorithm is finding the n. value that gives the
most appropriate set of rules as discussed before in Section 5.2.2. For this reason it is
not as fast as the CLA and MMFA algorithms. The MMFA performance exceeds
those of CLA and MDA and its execution time is also the shortest (among the four
techniques).
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The output of gas furnace model.
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Figure 5.5 Qutput of the gas furnace model with SGA rules.

The convergence of the GA with population size of 150.
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Figure 5.6 The SGA convergence rate with pcross=0.9 and pmut=0.01.
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The SGA technique has the best performance but, at the same time, is much slower
than the others. The SGA algorithm has a difficulty of estimating the pop_size, pcross,
and pmut parameters that give the most appropriate performance. The CLA, MDA,
and MMFA techniques are unsupervised leaming algorithms while the SGA technique
is a kind of supervised leaming algorithm. For this reason the SGA algorithm is
considered more robust than the other algorithms as it takes a feed-back guiding signal
from the outside world, and it is expected to have the best performance and longest
execution time.

The main performance difference among the four techniques occurs in the regions
with low density of training data. In the regions with high training data density, they
produced almost the same rules. This gives an indication about the behavior of these
algorithms if a lack of and/or imprecise information exists.

The SGA is found to be the most suitable technique if the performance and the
accuracy are the major concemns of the designer, especially if all these techniques run
off-line. Also, the MMFA algorithm is the most suitable one if the performance is
required with high speed, for instance, on-line and real-time applications. In other
words, the MMFA has the best performance per unit computational cost ratio.

Table 5.6 The comparison among the different techniques.

Algorithm | No. of Rules MSE Computation Time | Learning Mode
Name
CLA 28 2.1717 10.12 sec. Unsupervised
MDA 34 0.9707 19.87 sec. Unsupervised
MMFA 37 0.9441 3.17 sec. Unsupervised
SGA 37 0.6492 30 min. Supervised
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Optimization Phase

6.1 Introduction

In Chapter 4, we introduced the coarse identification phase of the hybrid learning
scheme. Using this learning phase, we can find the most appropriate fuzzy partitioning
for each input/output variable, the input/output scaling factors, and the initial
parameters of the membership functions.

In Chapter 5, the rule-formation phase of the proposed learning scheme is
presented. Using one of the techniques proposed in this phase, the linguistic “If-Then”
rules could be extracted from both the input/output data and the expert knowledge.

[n this chapter, the initial parameters of the membership functions, that are found
in the coarse identification phase, will be optimized to give the best performance of the
fuzzy model/controller according to a certain assessment criterion. Two different
algorithms are described here to perform the optimization task. These techniques are:
the Back-Propagation (BP) algorithm and the Multi-Resolutional Dynamic Genetic
Algorithm (MRD-GA). A well-known benchmark is used to test and evaluate the two
techniques. A comparative study between the two techniques is also presented.
Conclusions are drawn from the assessment of each technique.

6.2 Back-propagation algorithm

The back-propagation training algorithm [96] is a generalization of the Least Mean
Squares (LMS) algorithm. It uses a gradient-descent search technique to minimize a
cost function equal to the mean square difference between the desired and the actual

60



Chapter 6. Optimization Phase

network outputs. The network is trained by presenting all training data repeatedly. The
network parameters are adjusted after trial using side information specifying the
correct class until parameters converge and the cost function is reduced to an
acceptable value. An essential component of the algorithm is the iterative method that
propagates error terms required to adapt parameters back from nodes in the output
layer to nodes in lower layers.

The goal of this supervised learning algorithm (refer to Figure 3.1) is to minimize
the error function

1 * 2
= 0=y @) (6.1)

where ¥(1) is the desired output, and y*(z) is the current output. The learning rules of
each layer can be driven as follows:

Layer 5: The error signal of the output node is
*
53 = (0 -y (1) 62)

The mean (center) and the variance (width) of each output membership function are
adapted by

4 A4
85 0',-0,-
1 n,

m}(k+1)=m} k) +n (6.3)

m m
1,4 1,4 44,4
m; U,-[ch()j ]—();‘(ijcj()l) 6.4)
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~.
n

Gik+)=c}(k)+ns}

fori=1,2,..,n;3

where 1 is the learning rate of the network, and it is selected according to the problem
and the experience of the designer, and it is preferred to be small and less than one.

Layer 4: The error signal of each node is
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n3 n3
4 4 4 A4 4 4 _4 4
j= r=1
54 =57 = J 6.5)

"4
[Zlcjoj)
j:

fori= 1,2, ey N3

Layer 3: No parameter needs to be adjusted in this layer, and only the error signal
needs to be computed and propagated backward. That is,

3 4
8 = _Zl“'g'sj (6.6)
J:

fori=1,2, ..., nyxn.

Layer 2: The mean and the variance of the input membership functions can be updated
by

0E ;20! —m})

b 2
mi(k+1)=m(k)- : 6.7
n 30;2 (012)2
9 i _ 2 2
G2k +1) =62k -n L o2 XA i) ©6.8)
0o o)
fori= 1,2,3. ........ 0+
oF
where = (6.9)
80,-2 %qk

where the summation is performed over the rule nodes that O;’ feeds into, and

83 if OF is minimunt in kth nle node s input
0 = { k if O is nuninuum in kth nde node’ s inp: (6.10)

0, otherwise

After the error function converges to the desired error value, the resultant centers
and widths represent the optimized membership functions of the fuzzy model.
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6.3 Multi-resolutional dynamic genetic algorithm

A new approach is proposed here to use GAs for the optimization of the membership
functions parameters. Problem-specific knowledge is used to tailor GAs to the needs
of this learning phase. The main attribute of the proposed approach is that the fuzzy-
model configuration is dynamically adapted while the optimization process is running.
Accordingly, the proposed Multi-Resolutional Dynamic Genetic Algorithm (MRD-
GA) changes its search space with the change of the problem configuration and with
the advance of generations. The MRD-GA search space monotonically gets narrower
and narrower, while the model parameters get closer and closer to the optimal values.
Figure 6.1 illustrates this attribute by showing the behavior of one of the model
parameters (a center of a membership function) during the optimization process. The
ellipses in the figure represent the search space and the centers of these ellipses
represent the different values taken by the center of the membership function. The
figure shows how the resolution of the search space increases with the advance of
generations, as the number of search points is kept constant and the search area gets
smaller and smaller.

Low Resolution
Advance of
Generations

High Resolution

L 4

The location of the membership function center

Figure 6.1 The adaptation process in the MRD-GA.
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The MRD-GA is coded using the well-structured language C++. The program
allows the user to define the values for population size (pop_size), maximum number
of generations (max_gen), probability of crossover (pcross}, and probability of
mutation (pmut). In order to select the individuals for the next generation, the
tournament selection method is used. In this method, two members of the population
are selected at random and their fitness values compared. The member with higher
fitness advances to the next generation. An advantage of this method is that it needs
less computational effort than other methods. Also, it does not need a scaling process
(like the roulette wheel selection). However, the particulars of the reproduction scheme
are not critical to the performance of the MRD-GA; virtually, any reproduction
scheme that biases the population toward the fitter strings works well [53].

The MRD-GA uses decimal-integer strings to encode the model parameters. The
decimal strings are considered a more suitable representative method than the binary
strings. This representation allows the use of more compact-size strings. The number
of alleles (individual locations which make up the string) is determined from the total
number of fuzzy sets used to partition the spaces of the input/output variables. For the
model configuration shown in Figure 3.1, we have (nu=n,+n;+n;) membership
functions. Each bell-shaped membership function is defined by two parameters (the
center m, and the width ¢). To optimize the membership functions, we have to
optimize (n.x2) parameters. Thus, the MRD-GA uses strings of length n.x2 alleles. It
is allowed for each allele to take any value in the set [1, 2, ..., 9]. To convert the aliele-
value to a new center or width of a certain membership function, we use the following
procedure:

Step 1: The initial values of the centers and widths of the fuzzy controller are entered
to the GA program. for example, (n1;,l i=1,2, ..., ny) and (Gl i=1,2, ..., ny).

Step 2: The new centers and widths are calculated from the allele values as
m; = M + (S; - 5)*0, 6.11)
O, = Cio + (S(ivas) - 5)*dg ' (6.12)

where m; and o; are the new center and width values, respectively, s; is the value of the
i-th allele in the string, and &, and &, are the offsets of the centers and widths,
respectively. It is recommended to set these offsets to very small values (around
0.001). This allows a more stable convergence of the MRD-GA.
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Step 3: If the allele value s; of any center or width equals ‘5" then no change occurs.
If s; is greater than ‘S’ then a positive change occurs (the center or width increases). If
it is less than ‘S’ then a negative change occurs (the center or width decreases).

The MRD-GA uses the Mean Squared Error (MSE) (the error is the difference
between the actual output and the estimated output by the fuzzy model) as a fitness
function. Simply, for each chromosome (I/MSE) is considered as the fitness measure
of it. The MSE is calculated from N data points as

MSE = at’?

M=

1 A 2
— (u: —u:) (6.13)
Nizi

where u; is the actual value, and #&; is the esimated value.

The MRD-GA can also use a fitness function that has an inverse proportionality
with some of controller performance indices such as the settling time, overshoot, and
integral of error. An example of such fitness function is

1

= (6.14)
k[ e(8)’ dt +&,T,

f

where f is the fitness function, e(1) is the controller output error at time ¢, T, is the
settling tme, and &, and k; are weighting factors.

Each t generations, the offset values (8, and &) decrease according to the
following decaying functions:

O =8, %0, 0<8, <1 (6.15)

dg5 =045 X0g 0<04 <1 (6.16)

where 0., and 6, are the modifying factors for the centers and widths, respectively.
The decaying functions can take any decaying shape such as an exponential decay.
The usual GA terminating condition is a maximum allowable number of generations
or a certain value of MSE required to be reached. In this GA algorithm, the stopping
criterion is the execution of a certain number of generations without any improvement
in the best fitness value. In this criterion, you do not need to specify a required MSE
value (which is usually unknown in advance) or a required number of generations
(where there is no guarantee that this number will produce an appropriate solution).
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The MRD-GA pseudocode is:

Initialize P(t)—P(0). :P(t) Population at time t.
Initialize best_fit = 0. : The best fitness value.
Evaluate P(0).

Search for the best fitness of P(0) and assign best_fit to it.
While (not terminate-condition) do
Begin
te—t+1 :Increment generation.
If mod(1/2)=0 then modify (decrease) 8, and ds as given in (6.15), and (6.16).
Select P(1) from P(t-1) using tournament selection criteria.
Recombine P(t) :apply genetic operators (crossover, mutation).
Evaluate P(t).
Search for the best fitness of P(t) and compare it with best_fit. if larger then do
Begin
Assign best_fit to the best fitness value of P(1).

Adapt the centers and the widths ((my,) i=1.2, ..., ng) and (Gl (=12, ... ny))
according to the state of the chromosome having the best fitness using (6.11), and
(6.12).
End
End
End.

The above GA offers exciting advantages over the conventional GA [105-107] (the
conventional GA is like the one described in Section 2.4, which its parameters are kept
constant during the optimization process (i.e. static GA)). The MRD-GA allows a
dynamic increase in the resolution of the search space (by decreasing &, and d) as the
model parameters approach their optimal values. It also changes the nature of the
model-identification problem from a static type to a dynamic type (by adapting m;, &
G continuously) which decreases the chances of the GA premature convergence, as
this dynamic feature preserves the diversity within the GA’s populations.

6.4 Testing and evaluation study

The benchmark used in this section is the one used in the previous chapter (the gas
furnace model [104]). The initial parameters of the input/output membership functions
are found by SOM and shown in Figure 5.1. The MMFA algorithm is used to find the
37 linguistic rules that are shown in Figure 5.4. Both BP algorithm and MRD-GA
algorithm will be used to optimize the parameters of the membership functions, in
order to build an accurate linguistic fuzzy model for the gas furnace.
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The BP algorithm is applied with different leamning rates (n). It is found that, using
the gas fumnace data, the BP algorithm gets trapped in local minima except with very
small leaming rates (0.001~0.005), and also suffers from divergence problems using
large learning rates (0.5~2). Figure 6.2 shows the convergence curves of BP algorithm
using various learning rates.

The MRD-GA is then applied to optimize the membership function parameters.
This algorithm has many control parameters which should be selected before running,
such as the population size (pop_size), crossover probability (pcross), type of the
crossover operator, mutation probability (pmut), the offset values (8n and &), the
modifying factors (8, and 6,), and the decaying time constant (7). The last five
parameters are mainly used to convert the genetic algorithm from an integer
optimization technique to a continuos optimization one. The effect of the first three
parameters on the performance of the MRD-GA will be studied, as the algorithm is
more sensitive to the variation in these parameters than the others.

To study the effect of the pop_size, the MRD-GA parameters are set as follows:
pcross = 0.9, pmut = 0.1, chromosome-length = 46, 8, = 0.0006, &, = 0.00025, 8, =
0.99, 8,=0.99, and T = 10. To study the pop_size effect on the search performance of
the proposed MRD-GA. the MRD-GA is applied four times with different population
sizes (pop_size = 80, 50, 30, and 12). After finishing the second leamning phase and
before applying the MRD-GA, the model has an MSE value of 0.9441. This MSE
value is decreased to 0.111 after 4972 generations of the MRD-GA using pop_size =
50 (note that the MSE value reached 0.15 after only 900 generations). The MSE
decay rates using different population sizes are shown in Figure 6.3.

Convergence of BP with difterent leaming rates.
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Figure 6.2 Convergence curves of back-propagation algorithm.
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The convergence of the GA with different population sizes.
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Figure 6.3 The MRD-GA convergence rates with different population sizes.

To compare and evaluate the performance of the MRD-GA that uses different
population sizes, an MSE value of 0.14 is selected to be the stopping criteria. The
results in Table 6.1 show that the increase in the population size decreases the number
of generations needed to attain this MSE, and increases the accuracy. However, we are
more concerned about the computation time, which is directly proportional to the
population size for the same number of generations. The population size of 12 requires
less computation than the other population sizes to reach an MSE of 0.14, but the
minimum MSE attained is larger than the others. A compromise between the accuracy
and the computation amount should be done in selecting the appropriate population
size. From the results in Table 6.1, it is obvious that there is no big difference in the
accuracy for 80, 50, and 30 population sizes. Accordingly, it is recognized that the
proposed MRD-GA has less sensitivity to the population size than the conventional
GA due to its dynamic feature. Therefore, population sizes around 30 are considered
suitable for this modeling example.

Table 6.1 Convergence speed at different population sizes.

Population No. of Generations § minimum MSE
Size for MSE =0.14 (4000 Gen.)
80 1119 0.1192
50 1176 0.1206
30 1355 0.1223
12 2338 0.1333
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To study the effect of the crossover probability on the performance of the MRD-
GA, The algorithm is applied to optimize the parameters of a second order dynamic-
system (which will be explained in details in Section 7.3). The algorithm parameters
are set as follows: pop_size = 20, pmut = 0.05, chromosome-length = 48, &, =
0.0001, 85 = 0.0001, 8, =0.99, 8,=0.99, and T = 25. The MRD-GA is applied many
times with different crossover probabilities. After finishing the second learning phase
and before applying the MRD-GA, the model has an MSE value of 0.2058. This MSE
value is decreased to 0.0374 after 5533 MRD-GA generations using a single point
crossover with pcross value of 0.25. The MSE decay rates using different crossover
probabilities are shown in Figure 6.4. To compare and evaluate the performance of the
MRD-GA that uses different crossover probabilities, an MSE value of 0.041 is
selected to be the stopping criterion. The results in Table 6.2 show the effect of pcross
on the convergence rate of the MRD-GA. Each entry in this table is the average of
three individual runs. A low pcross value (0.1-0.3) limits the MRD-GA from
reproducing fitter individuals through the advance of generations, while a high pcross
value (0.95~1.0) has a detrimental effect on the diversity of the population which may
cause a premature convergence. The previous two factors have a considerable effect
on the search performance of the MRD-GA. Table 6.2 shows that the search
performance has two peaks at pcross values of 0.6 and 0.9 respectively. At these
values, the giobal (overall) effect of the two factors are minimum. Accordingly, the
intermediate range of pcross (0.5~0.9) is considered, in this example, suitable for the
proposed MRD-GA.

Table 6.2 The convergence speed of different crossover rates.

Probability of No. of Generations for
crossover MSE = 0.041
0.10 4201
0.25 2807
0.50 2545
0.60 2328
0.75 3175
0.85 2659
0.90 1784
0.99 2331
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The convergence of the GA with different crossover rates.
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Figure 6.4 MRD-GA convergence curves with different crossover rates.

The performance of the proposed MRD-GA is then investigated using a different
type of crossover operators (2-point crossover). The 2-point Crossover operator uses
two randomly selected sites instead of one to perform the crossover operation. For
example, if we have two chromosomes; {a, a; a; as as as], [by b2 bs bs bs bs] and the
selected two sites are 2 and 5. The resultant offspring chromosomes will be [a; a2 by b,
bs a5}, [bi ba a; a5 as bs]. Table 6.3 shows that the 2-point crossover operator has
degraded the performance of the algorithm. This result sustains the results of De
Jong’s study [108]. An intuitive explanation for this observation can be found by
counting the number of unique operators involved [31]. In the case of simple
crossover, we have not just a single operator but a set of /-/ (where [ is the string
length) operators. With a 2-point crossover there are [(/-1)/2 different ways of picking
the two crossover points. As a result, each operator is less likely to be preserved. With
more mixing and less structure, these more involved crossover operators become like a
random shuffle and fewer important schemata can be preserved, especially for short
strings. This also explains the good performance of the 2-point crossover at high
crossover rates (0.99), at which some randomization is needed to preserve the
population diversity.
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Table 6.3 Comparison between 1-point crossover and 2-point crossover.

No. of generations for MSE = 0.041
Pcross value 1-point crossover 2-point crossover
0.25 2807 3024
0.60 2328 3289
0.90 1784 2396
0.99 2331 1951

6.5 Conclusions

This chapter presenis two techniques to optimize the parameters of the membership
functions of a fuzzy model. The BP and MRD-GA are implemented using the C+
language on a Pentium 166MHz, and then tested using the gas furnace benchmark. A
comparative study of these approaches is shown in Table 6.4.

The table shows that the MRD-GA has better performance (better MSE).
However, it takes more time to converge than the BP. Both of the two algorithims are
supervised algorithms. The BP algorithm minimizes the MSE between the desired and
the fuzzy model outputs. For this reason, it needs both input and output data samples
to work. However, the input-output data is usually available in modeling applications
but not in control applications, in which the output of the controller can not be
specified in advance. On the contrary, the MRD-GA algorithm optimizes an objective
function. This objective function can be tailored to the needs of the designer, without
the necessity to obtain output data samples for the system under study. This feature
makes the MRD-GA suitable for both modeling and control purposes as will be shown
in Chapters 7 and 8.

One of the disadvantages of the MRD-GA is the existence of many control
parameters that should be determined before applying the algorithm. A sensitivity
study for some of these parameters is presented in Section 6.3, in order to give the
reader a brief guide for the selection of these parameters. On the other hand, the BP
algorithm has the advantage of having only one control parameter (1) or two if a
momentum term is added to the algorithm.

The MRD-GA has also other advantages over the back-propagation (BP)

algorithm. The MRD-GA allows one to obtain intermediate solutions, which the BP
usually can’t offer; also, the GA does not suffer from convergence problems with the
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same degree that the BP suffers (i.e.. the MRD-GA is more robust). The BP,
especially in hardly nonlinear problems, is much more likely to get trapped in local
minima than the MRD-GA, which is more likely to converge toward a global solution.
A justification for this feature is that the MRD-GA has parallel processing and
dynamic properties that prevent premature convergence to occur and simultaneously
offer various solution candidates for the optimization problem in every generation. On
the other hand, BP algorithm does not have these features and its convergence uses a
successive linearization procedure with step sizes dependent on the used leamning rate
and/or momentum factor.

Some sensitivity analyses have been done to study the effect of some control
parameters on the performance of the MRD-GA. Of course, the type of data used in
this analysis has an undeniable effect on the results of this study. However, the main
purpose is just to give a quick guide for the user to select appropriate values for the
control parameters. From the study, it is found that the proposed algorithm is less
sensitive to the change of the pop_size than the conventional (static) GA [106], and
pop_size values in the range of 20~50 are considered appropriate for most of the
applications. Also, pcross values in the range of 0.5~0.9 are considered suitable for
this algorithm. It is also noticed from the study that the 1-point crossover operator
gives better performance than the 2-point crossover operator does. This is due to the
fact that the 2-point crossover produces an excessive random shuffling for the
chromosomes in an algorithm that does not need more sources of population diversity,
which implicitly exists due to the dynamic feature of this algorithm.

Table 6.4 Comparative study between the BP and MRD-GA algorithms.

View Point Back-Propagation MRD-GA
Benchmark Gas Furnace Data Gas Furnace Data
Best MSE 0.143 0.111
Iterations 20,000 epochs 4,972 generations
Computation Time 49 min. 124 min.
Programming Environment C4++ C++
Computing Environment Pentium 166MHz Pentium 166MHz
Leamning Mode Supervised,to | Supervised, to optimize
minimize the MSE an objective function
No. of control parameters Few (like 1) Many (like pop_size,
pcross, and pmut)
Convergence Subject to get trapped | Clever at escaping from
in local minima local minima
Applicability Less flexibility More flexibility
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Intelligent Modeling of Complex Systems

7.1 Introduction

Linguistic modeling of complex irregular systems constitutes the heart of many control
and decision-making systems, and fuzzy logic represents one of the most effective
algorithms to build such linguistic models. In this chapter, two well-known
benchmarks are modeled using the proposed hybrid learning scheme. The
performances of the models built for the two benchmarks provide a full assessment for
the proposed intelligent hybrid system. Moreover, to show the effectiveness of the
proposed approach, this approach is compared with other intelligent modeling
approaches.

7.2 Gas furnace model

The benchmark used in this section is the one used in Chapters 5 & 6 (the gas furnace
model [104]). The gas furnace is modeled using the fuzzy-neural network shown in
Figure 3.1. The initial parameters of the input/output membership functions are found
by SOM and are shown in Figure 5.1. The MMFA algorithm is used to find the 37
linguistic rules that are shown in Figure 5.4. The MRD-GA algorithm (Section 6.4) is
then used to optimize the parameters of the membership functions, in order to build an
accurate linguistic fuzzy model for the gas furnace.

The computation time elapsed to perform the whole learmning scheme is roughly
determined as shown in Table 7.1. The resultant membership functions and the model
output are shown in Figure 7.1 and 7.2, respectively. The MSE decrease rates using
different population sizes are also shown in Figure 6.3.
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Table 7.1 Computation time of the gas furnace model.

Implementation C++ codes on a Pentium 166 MHz.
Computation Phase I Phase I Phase HI
Time 2 sec. 3 sec. 124 min.
Learning Mode Unsupervised Unsupervised Supervised
(9000 epochs) (37 rules) (4972 generations)

The membership Fns for the u(t-4) input signal.

The membership Fnis for the y*(t—1) input signal.

1
0.5F .
1 ' L
-1.5 -1 -0.5 0 0.5 1 1.5
The membership Fns for the y'(t) output signal.
L 4 T T 1
' |
0.5F .
0 1 L L
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 7.1 The optimized membership functions after the MRD-GA.
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The output of gas fumace model.
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Figure 7.2 Output of the gas furnace fuzzy model.

In Table 7.2, our fuzzy model is compared with other models identified from the
same data. It can be seen that our model outperforms ali the other models in its class
(class B, refer to equation 3.2). In comparison with class-A models (refer to equation
3.1), Sugeno’s model {79] has less MSE value using six inputs but, at the same time,
has much higher MSE value using the same inputs used by our model (y(k-1), and
w(k-4)). Also, this model is quite difficult to build {77, 80, 81]; the most difficult
aspect lies in the identification of the premise structure, mainly the membership
functions of the input variables. For each membership function, at least two or three
parameters have to be calculated through a nonlinear programming procedure. The
choice and computation of these membership functions are rather tricky and subjective
so that it is possible for different designers to sometimes get completely different
results.

Wang’s model (class A) [77] has comparable results and less number of rules;
however, the number of rules does not necessarily give a reliable indication of the
number of unknown parameters of the model. For exampie, in Wang’s model [77] five
class-A rules are used with two inputs, the number of unknown parameters in this case
(in both the premise and consequent parts) are 35. In our model, 37 class B rules are
used with two inputs and 46 unknown parameters. Bearing in mind that our model
shows about 30% decline in the MSE value and provides a linguistic description for
the gas furnace system, these two advantages, in our view, compensate for the
difference in the number of parameters (46 versus 35).
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Table 7.2 Comparison of our model with other models.

Model Name Type Inputs Number of Rules

MSE

Tong’s model [109] | Fuzzy, Class B Vil 19
Ug4

Pedrycz’s model [74] | Fuzzy, Class B Yel 81
U4

Xu's model [75] Fuzzy, Class B Vel 25
Ugs

Ye-i

Yi2
Box’s model {104] Linear U3

Ui
Ugs

Ye1
Yi2
Sugeno’s model [79] Fuzzy, Class A Yi-3 2

Ug-3
Uis
Ugs

Sugeno’s model (79] | Fuzzy, Class A Yil 2
U4

Yt
Sugeno’s model [(76] | Fuzzy, Class B Ugs 6
Uiy

Wang’s model [77] | Fuzzy, Class A Yil 5
Ug4

Our model Fuzzy, Class B Y-l 37
U4

0.469

0.320

0.328

0.202

0.068

0.359

0.190

0.158

0.111

7.3 Second-order system’s model

This example is taken from Narendra et al. [22] in which the plant to be identified is

given by the second-order highly nonlinear difference equation
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Training data of 500 points are generated from the plant model by assuming a
random input signal ‘u,’ uniformly distributed in the interval [-2, 2]. This data is used
to build a linguistic-fuzzy model for this plant.

The plant is modeled using the FNN described in Section 3.2. The model has three
inputs U, Y, and y,.,, and a single output y;. The inputs u; and y,.; are intuitively
partitioned into five fuzzy linguistic spaces {NL, NS, ZE, PS, PL}, the input y,; is
partitioned into three fuzzy spaces {N, Z, P} and the output y, is partitioned into
eleven fuzzy spaces {NVL, NL, NM, NS, NVS, ZE, PVS, PS, PM, PL, PVL}. The
SOM algorithm described in Section 4.2 is used to determine the initial centers and
widths of the 24 membership functons of the input/output variables of the fuzzy
model. The four scaling factors of this fuzzy model are determined from this learning
phase as ‘G, = 0.7476°, ‘G;= 04727, ‘G, = 0.6261", and ‘G, = 5.5781".

Accarding to the structure of this fuzzy-neural network, the number of rules (rule-
nodes in the third layer) is 5x5x%3 = 75. The MMFA algorithm (Section 5.2.3) is used
1o find the 75 rules of this fuzzy model and the results are shown in Table 7.3.

The MRD-GA (Section 6.3) is applied to optimize the parameters of the dynamic-
system model. The algorithm parameters are set as follows: pop_size = 20, pmut =
0.05, chromosome-length = 48, 8, = 0.0001, &; = 0.0001, 6, =0.99, 85=0.99, and T
= 25. After finishing the second learning phase and before applying the MRD-GA, the
maodel has an MSE value of 0.2058. This MSE value is decreased to 0.0374 after
3517 generations using a single point crossover with pcross value of 0.9 (note that the
MSE value reached 0.06 after only 470 generations). The computation time used to
perform this learning process is illustrated in Table 7.4. The MSE decay rates using
different crossover probabilities are shown in Figure 6.4.
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Table 7.3 The complete FAM matrices with the fuzzy rules.

Ye2=N
Ykl
Uy NL NS ZE PS PL
NL NS NM NM NVL NVL
NS NS NS NM NL NL
ZE ZE NVS NS NS NS
PS PVS PVS ZE NVS NVS
PL PL PM PS ZE ZE
Ye2=Z
- |
Ui NL NS ZE PS PL
NL NL NM NM NM NS
NS NM NM NS NVS ZE
ZE NVS NVS NVS ZE ZE
PS PVS ZE PVS PVS PM
PL PVS PVS PS PM PS
Yi2=P
Yk
Uy NL NS ZE PS PL
NL NL NM NS NVS PVS
NS NS NS NVS ZE PS
ZE NVS NVS ZE PS PM
PS ZE ZE PS PM PL
PL PVS PVS PS PL PVL

All entries correspond 1o yi

Table 7.4 The computation time of the second order model.

Implementation C++ cades on a Pentium 166 MHz.
Computation Phase I Phase II Phase III
Time 4 sec. 7 sec. 59 min.
Leamning Mode Unsupervised Unsupervised Supervised
(12000 epochs) (75 rules) (3517 generations)

After the learning process is finished, the model is tested by applying a sinusoidal
input signal u, = sin(2nk/25) to the fuzzy model. The output of both the fuzzy model
and the actual model are shown in Figure 7.3. The fuzzy model has a good match with
the actual model with an MSE of ‘0.0403". Another test is carried out using an input
signal 1, = 1.6xcos(2mk/30). The result is shown in Figure 7.4 and the MSE in this
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case is '0.0369’. Afier extensive testing and simulations, the fuzzy model proved an
excellent performance in forecasting the output of the complex-dynamic plant.
Remember that in this example only 500 data points are used to build the model; while
in [22], 100,000 data points have been used to identify a neural network model. It can
be expected that the performance of the identified fuzzy model may be further
improved if the number of data points used to build the model is increased.

Forecasting Using A Fuzzy Model.
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Solid line: Actual model
Dashed line: Fuzzy mode! u(k) = sin(2°pi°*k/25)
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Figure 7.3 Testing of the fuzzy model vs. the actual model.

[n order to compare our modeling approach with that of Sugeno’s (19, 79] and
Wang's [77] approaches, both of these approaches are implemented. The Sugeno’s
approach is implemented using the MATLAB fuzzy-logic toolbox. The approach [52]
applies the Least-Squares Algorithm (LSA) and the back-propagation gradient descent
method for identifying the linear (consequent) and nonlinear (premise) parameters of
the class-A fuzzy rules, respectively. The core function of this algorithm is
implemented using an-optimized-for-speed C code. Wang’s approach is implemented
using the C++ programming language. The approach uses the Fuzzy C-Means (FCM)
clustering algorithm [89] to find the premise parameters of the class-A fuzzy rules,
then applies the least squares algorithm to find the consequent linear parameters of the
rules.
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Forecasting Using A Fuzzy Model.
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Figure 7.4 Testing of the fuzzy model vs. the actual model.

Table 7.5 compares our modeling approach with both of Sugeno's and Wang's
approaches. The models are leamed from the previously randomly generated 500 data

pairs and tested by applying a sinusoidal input signal 1 =

sin(2nrk/25). All the

experiments are carried out on a Pentium 166MHz PC. The comparison shows the
advantages of our modeling approach.

Table 7.5 A modeling comparison using the second order system.

View point Our Model Sugeno’s Model Wang's Model
Type Class B Class A Class A
Input variables 1(k), v(k-1). v(k-2) | utk), v(k-1), v(k-2) | w(k), v(k-1), y(k-2)
No. of rules 75 12 8
No. of linear - 48 32
parameters
No. of nonlinear 48 14 - 48
parameters
Total no. of 48 62 80
parameters
Learming MSE 0.0374 0.5072 0.6184
Testing MSE 0.0403 0.2447 0.2037
Computation time 59 min. 91 min. 19 min.
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Chapter 8

Intelligent Control of Synchronous Machines

8.1 Introduction

The highly interconnected nature of power systems makes their operation and control
complex processes. The disturbances in some elements may affect the whole system
operation and stability, causing poor power quality or even interruption of power
supply [110-112]. For analytical studies. researchers have classified the power system
stability into three categories [110-114]:

1. Steady-state stability: This corresponds to the stability of a power system around
an operating point. If the system is able to maintain synchronism after small
changes in operating conditions, it is said that it has steady-state stability.

2. Transient stabiliry: This refers to the ability of a power system to regain stability
after a sudden and severe disturbance. System faults, line-switching, and large
changes in loads can be considered as severe disturbances that may lead to
transient stability problems.

3. Dynamic stability: It is the stability of a power system under small and sudden
disturbances. These types of disturbances can lead to long-term sustained
oscillations [113].

Many techniques have been proposed to control synchronous generators in order to
overcome stability problems. One of the most basic techniques is to introduce damper
windings in synchronous generators [111-112] to damp out the speed oscillations.
Other methods include governor control [114-117], capacitor switching control {118-
119] and excitation control [120-122]. Out of these methods, excitation control has
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been given most attention because a synchronous generator excitation loop has a small
time constant as compared to a mechanical governor time constant and, hence, fast
response is expected.

Since the beginning of the late 1950’s and early 1960’s most of the generating units
have been equipped with a continuously-acting Automatic Voitage Regulator (AVR)
to improve the voltage profile at the consumer end and to enhance the power system
transient stability. Power System Stabilizers (PSSs) have been used to enhance the
performance of the AVRs. These stabilizers provide a supplementary control signal (in
phase with the speed deviation of the rotor) to the excitation control loop [111, 123-
124]. The whole system configuration is shown in Figure 8.1.

In the study of a single-machine infinite-bus system, the power system experiences
only a single-mode of oscillation. This is not the case in real power systems in which a
large number of synchronous generators, with quite different inertia constants, are
connected together through transmission lines. In such systems, it is common to find
two groups (or more) of generators that are weakly inter-connected. This results in
multi-mode oscillation phenomenon, which is divided into three modes of oscillation
[110]:

. Inter-machine mode: which describes frequencies related 10 closely coupled
generators that swing relative to each other. These frequencies are in the range of
0.8-2.0 Hz.

2. Local mode: usually refers to oscillations occurring in plant transients, caused by
generator rotors that oscillate relative to the combined equivalent inertia of the
whole plant. Local mode oscillation frequencies are in the range of 0.5-1.5 Hz.

3. Inter-area modes: these frequencies are caused by coherent groups of generators in

one area which swing relative to a number of other coherent groups of generators
in other areas. These frequencies are in the range of 0.1-0.7 Hz.

8.2 Review

Starting from the late 1950’s, various types of techniques and control theories have
been used for synchronous-machine contro! in order to enhance the stability of power
systems. We categorize these techniques into three different groups as follows.
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1. Conventional control techniques: These include Proportional-Integral-Derivative
control (PID), lead-lag compensators and pole placement strategies.

2. Modern control techniques: These include linear optimal control, adaptive control,
and H. (robust) control strategies.

3. Artificial intelligence techniques: These include Expert Systems (ES), Neural
Networks (NN), Fuzzy Logic (FL), and Hybrid-Fuzzy control strategies.

+ A
Govemnor | -

- Ao

PX] 'm/m Generator PS
Steam
\
A

Exciter
-V,
AV

R + vr!t
I+ Upss

PSS

Figure 8.1 Block diagram of a generating unit including the AVR and PSS.

Designed using classical control theory, conventional PSSs (CPSSs) have been
able to improve the stability limits of the system. However, their performance may
deteriorate with changes of the operating point. This is because the conventional PSSs
are designed using a linearized model of the machine at a prescribed operating point
and, in practice, power systems are highly non-linear with stochastic operation in
nature. For example, the gain of a plant increases with the generator loading [120].
Thus, controller parameters that are optimum for one set of operating conditions, may
not be optimum for another set of operating conditions. This has opened the door for
more research using modern control techniques.
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The linear optimal control is one of the modern control techniques [125-127]. The
main drawback of this technique is that it is based on a linearized system model that
corresponds to a given operating point. Thus, it also has the same limitations that
faced the CPSSs. Another alternative is the adaptive control, which has been found o
suit the stochastic nature of power systems. The advantage of adaptive power system
stabilizers (APSS) is their ability to adjust controller parameters on-line according to
the current operating conditions. Using complex algorithms for parameter
identification and optimization, APSSs can provide good damping over a wide range
of system operating conditions {128-131]. A. control has also been successfully
applied to off-line design of AVRs [132] as well as PSSs [133-134]. Both APSS and
H.. control have demonstrated that it is possible to achieve much better performance
than with CPSSs. However, most modemn control techniques require extensive
mathematical calculations, which implies the need for high-speed processors, and high
implementation costs.

Recently, Artificial Intelligence (AI) control techniques have been applied as
alternatives for both the conventional control and modern control techniques. Table
8.1 gives a snapshot on the state-of-the-art and an overview on the Al applications in
synchronous-machine control. For more details, the reader is referred to [166] as a
comprehensive review. Four Al techniques have been used in the literature so far.
Expert systems are used more often as a supervisory controller than as an automatic
controller. They are useful in assisting the human operator but can not replace him/her
compietely. Neural networks have been successfully applied; however, they have
limitations in handling qualitative knowledge, and it is very difficult to come to a
reasonable interpretation of the overall structure of the network in terms of humanly
understandable concepts. Fuzzy logic controllers interpret the expert knowledge into a
form of If-Then rules, but they lack a systematic way to find their parameters.

Fuzzy-neural-networks based controllers utilize the strengths of both fuzzy logic
and neural networks. Also, genetic-based fuzzy approaches present powerful
optimization and synthesis tools for a controller design. However, still not enough
work has been done in the application of these approaches in synchronous-machine
control. Therefore, the research using the latter approaches is encouraged due to their
power in handling both quantitative and qualitative knowledge.

Many Al-based synchronous-machine controllers have been successfully
implemented and tested in labs [149, 150, 153, 155]. However, not many controllers
have been implemented on-line in industry and/or power-stations. The reasons for that
could be the state of the AI techniques as a new technology, and the usual
conservativeness of the industrial utilities for upgrading a running system.
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Table 8.1 An overview of Al applications to synchronous machines control.

Application References Approach Comments
Stability 135, 136 Expert System | Determines the exact cause of
Assessment the instability, and helps the
operator to maintain the system
stability.
PSS 137 ES (rule-based) ) Uses heuristic if-then rules.
PSS 138-144 Neural Network | Different back-propagation
techniques.
PSS 145 Neural Network | Redial basis function for lead-
lag controller.
PSS 146 Neural Network | Nonlinear power flow dynamics.
PSS 147-154 Fuzzy Logic Heuristic rules, Lab tests.
AVR 155 Fuzzy Logic Heuristic rules, Lab tests.
PSS stability 156 Fuzzy Logic Shows robustness of FLL PSSs.
PSS 157 FL + NN Fuzzy control+Neuro-prediction
routine.
PSS 158 Fuzzy Logic Self-Organizing, ARMA model.
PSS 159 Fuzzy Logic Moadification of terminal
feedback voltage.
PSS + AVR 160 Fuzzy Logic Two control loops.
PSS 161 LQR + FNN Complicated Design.
PSS 162 Neuro-Fuzzy Self-organizing, heuristic
rformance index.
PSS 163 Neuro-Fuzzy Large training set, emulates an
APSS.
AVR 87 Neuro-Fuzzy Off-line 3-phase self-leamning
approach.
PSS 164, 165 Fuzzy-Genetic | Optimized controller, many

assumptions.

In this chapter, the hybrid learning scheme proposed in Chapter 3 is used to design
three different control schemes for synchronous machines. The first controller is a
Neuro-Fuzzy Automatic Voltage Regulator (NF AVR) for a synchronous generator to
improve its voltage stability. The second controller is a Neuro-Fuzzy Power System
Stabilizer (NF PSS) for a single-machine infinite-bus system. The third one is a neuro-
fuzzy power system stabilizer for a synchronous machine in a multi-machine power-
system environment to suppress multi-mode oscillations.
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8.3 NF AVR for a synchronous generator

Figure 8.2 shows the block diagram of the excitation-control system in the classical
feedback control form. The proposed Neuro-Fuzzy Controller (NFC) is used as an
Automatic Voltage Regulator (AVR) for a synchronous generator (87]. We refer later
to this controller as the Neuro-Fuzzy Automatic Voltage Regulator (NF AVR). The
inputs to this NF AVR are the error and the rate of change of the generator terminal
voltage (del_volt), as shown in Figure 8.2.

Ve | Exciter |- Pt Ve
AVR | U Yy, xaer ant v

Generator & Power
Del_volt System

4

Figure 8.2 Excitation control system using the NF AVR.

3
3

Three scaling factors G., Gy, and G, are used within the NF AVR to adjust the
input/output values of the controller into proper ranges [167]. With the help of these
factors, we can say that the NF AVR consists of a normalized NF AVR and three
scaling factors, as shown in Figure 8.3. In the normalized NF AVR, the centers of the
input/output membership functions of the controller lay in the range of (-1, 1].

8.3.1 Pre-trained NF AVR

The NF AVR is initially designed from the author experience and knowledge of the
control objectives. In this design, the centers of the input/output variables are
distributed regularly on the specified range of the normalized NF AVR [-1, 1]. Figure
8.4 shows the distribution of the bell-shaped membership functions of the three
variables of the normalized NF AVR. The variances (widths) of all the functions are
equal, and each has the value of ‘1/6°.

The scaling factors of the initial design of the NF AVR are selected to be ‘G, =
1/60°, ‘G4 = 1/10°, and ‘G, = 1/16°. These settings are based on author’s experience
and on trial and error procedures. The control rules of this initial design are shown in
the Fuzzy Associative Memory (FAM) matrix shown in Table 8.2. Logic, intuition,
experience and knowledge of control objectives have been used to form these rules.
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Figure 8.3 Topology of the NF AVR.
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Table 8.2 The FAM matrix with initial rules.
error

del_ volt| NL{NM| NS|ZE | PS | PM
NL PL | PL|PL|PL|PM{PS
NM PL{ PL|{PM|PM| PS | ZE
NS PL | PM | PS | PS | NS |NM
ZE PL | PM| PS | ZE | NS | NM
PS PL |PM|[ PS | NS | NS | NM
PM PM| ZE | NS |NM|NM| NL
PL ZE | NS [NM/{ NL | NL | NL

All entries correspond to out_vlot

SRR A

The intuitive version of the NF AVR is applied to control the terminal voltage of
the synchronous generator. The reference-setting of the terminal voltage is 220V.
Figure 8.5 shows the response of the synchronous generator during severe load-
resistance changes; the disturbances caused by the load-resistance are exhibited in
Figure 8.6. The simulation sampling time is 0.15 seconds. The simulation study in this
section is based on a simple linear model of the synchronous generator that assumes a
constant speed during load disturbances. Figure 8.5 contains 10,600 samples that will
be used as training patterns to design a learned NF AVR. Each pattern consists of two
elements [V{(k), Vi(k)]. These training patterns include a lot of information about the
dynamical behavior and input/output properties of the synchronous generator.

8.3.2 First Learning Phase of The NF AVR

The self-organizing feature map (SOM) algorithm is used to find the initial centers and
widths of the leammed version of the NF AVR, as described before in Section 4.2. The
training examples shown in Figure 8.4 are used as the input data to this algorithm. The
resultant membership functions, after this unsupervised learning process, are shown in
Figure 8.7. According to the results of the self-organized map algorithm, the scaling
factors of the NF AVR are adapted to be ‘G. = 1/19.5’, ‘G4 = 1", ‘G. = 1/58.4". The
NF AVR, after the first learning phase, is used to control the synchronous generator
during the occurrence of the disturbances shown in Figure 8.6. The response of the
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generator is shown in Figure 8.8. It is clear that the settling time of the terminal
voltage is improved due to the SOM.

The membership Fns for the emror input signal.

1.5

Figure 8.4 The membership functions of the intuitive NF AVR.
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Figure 8.5 Synchronous machine response-before training.
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Figure 8.6 Resistive-load disturbances.
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The membership Fns for the error input signal.

T v s

] |
“l W

-15 -1 0.5 [e] oS 1

The membership Fns tor the del_volt input signal.

1.5

r — -r

A > FE—

-15 -1 -0.5 o as 1

The membership Fns for the output U signal.

—

|
OSMM/\
o s z

-1.5 -1 -0.5 o oS 1

Figure 8.7 NF AVR membership functions after SOM.
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Figure 8.8 The generator response after SOM.

8.3.3 Second Learning Phase of The NF AVR

The Minimum Distance Algorithm (MDA) proposed by the author, and described in
Section 5.2.2, is used to find the rules of the NF AVR. In Table 8.3, the rules thai
their linguistic values written in bold-italic face, are found by the MDA algorithm,
and then the rest of the rules are found using straight forward logic by smoothing and
extrapolating the generated ruies. Logic are mainly used in some rule-space regions
that do not have enough training data to produce consistent fuzzy rules.

After the new rules have been found, the NF AVR after the second learning phase,
is used to control the synchronous generator during the disturbances shown in Figure
8.6, the response is exhibited in Figure 8.9. [t is obvious that the settling-times of the
terminal voltage are better than before, while, the over/funder-shoots have not
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significantly changed.

error

del volt] NE | NM ) N PS | PM
NL PL | PL | PL | PL | NL |NM
NM PL | PL| PL | PM|{NM|NM
NS PL{PL|PL| PS|NS|NM
ZE PL |PM| PS { ZE | NS | NM
PS PL |PM| PS | NS | NL | NL
PM PL |PM | PM |NM | NL | NL
PL PL | PM | PM| NL | NL | NL

All entries correspond to out_vlot

1338333

Table 8.3 The FAM matrix with new rules.

8.3.4 Third Learning Phase of The NF AVR

In this learning phase. the error back-propagation algorithm (described in Section 6.2)
is used to optimize the membership functions of the NF AVR. The fuzzy-neural
network is trained to learn the inverse dynamics of the synchronous generator. Here,
the leaming rate (1) is 0.1 and the accepted average RMS error is < 0.05. Figure 8.10
shows the optimized membership functions of the NF AVR after this learning phase.
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Figure 8.9 The generator response after new rules.
After the NF AVR is already leamed from the input/output properties of the

synchronous generator, it has been applied to control the generator while the
disturbances shown in Figure 8.6 occur. The response of the generator is shown in
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Figure 8.11. It is clear that the settling times of the terminal voltage are much better
than those before learning (around 45% decrease). Also, the over/funder-shoots are
decreased by about 10%.
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Figure 8.10 The optimized membership functions.

Synchronous Generator Terrmunal Voltage ~ After Learning
T v T

280 T Y
250 .
240 4
-
=
-]
>
3 230 1
€
-
220 1
210F -1
200 . " L 2 2
[+ 2000 4000 8000 8000 10000 12000
Time Samples

Figure 8.11 The response after the learning process has been completed.

Extensive simulation studies of the synchronous generator have been carried out to
prove the effectiveness of the NF AVR. The studies show that the synchronous-
generator response has improved during the learning phases of the NF AVR.
Simulation also shows that the generator response, after the learning phases have been
completed, is much better than the pre-learned response; in terms of settling times,
over/under-shoots, and rising/falling times.
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8.4 NF PSS for a synchronous machine

This study is based on a detailed model of a single-machine (5® order model [112]) connected to a
constant voltage bus (infinite bus) through a transformer unit and parallel transmission lines, as
shown in Figure 8.12. For comparison purposes, both the NF PSS and CPSS are included in the
system.

Govemnor
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Figure 8.12 Power-system model configuration.

The generator is operating at a terminal power of 0.9 pu and 0.9 power factor lag. Under these
conditions, the CPSS is designed and carefully tuned for the best performance, i.e. the overshoot
and settling time are minimized. The parameters of the CPSS are kept unchanged for all the tests
described in this paper. The output of the CPSS is limited in the range [-0.1pu, 0.1pu] and its
transfer function is given as:

9
7 -
2.55(1+0.1s) _Aw @.1)
(1+2.55)(1+0.03s)"

UPSS(S) =0.1

The inputs to the proposed NF PSS are the speed deviation (Aw) and the rate of speed-change
(Aw). The NF PSS consists of a normalized NF PSS and three scaling factors K, K., and K, as
shown in Figure 8.13. In the normalized NF PSS, the centers of the membership functions of all the

controller variables lay in the range (-1, 1].
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Figure 8.13 Topology of the NF PSS.

The training data for the NF PSS is collected from the measurements of the speed-deviation of
the synchronous machine while undergoing oscillations due to a 3-phase short circuit on Line 2 at
the transformer bus. The short circuit is cleared after 0.17 sec by opening the second transmission
line. This fault type is selected to cover the widest possible range of oscillations. The output of the
CPSS has been disconnected by opening the switch during the fault and included in the training
data. A total of 400 samples are collected and shown in Figure 8.14.

The 400 Samples Training Data.
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Figure 8.14 The NF PSS training data.

The partitioning of the normalized NF PSS is chosen, by the author’s experience in fuzzy-
controllers design, to be seven for each input/output variable (n;=n-=n;=7). The SOM algorithm
(Section 4.2) is used to determine the initial centers and widths (with r=2.0) of the 21 membership
functions of the input/output variables from the data shown in Figure 8.14. The centers of NL and
PL membership functions of the NF PSS output are fixed at -1 and 1, respectively, and the K,
scaling factor is set to be 0.1, in order to keep the NF PSS output in the range [-0.1pu, 0.1pu]. The
K. and Ky, scaling factors are determined from the SOM as 0.3925 and 0.03 respectively.

The MMFA algorithm (Section 5.2.3) is then used to find the linguistic-fuzzy rules. The
author’s experience in PSS’s design is also employed to find out and/or check the rules, especially
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in the regions where low density of training data exists. The extracted 49 rules are shown in Table
8.4.

Table 8.4 The fuzzy associative memory matrix with the rules.
Aw
A | NL|NM|NS}|ZE | PS |PM| PL
NL. | NL | NL| NL| NL | NL| NL|NL
NM [ NL|NL|NL|NL| NS |NS|NS
NS | NL{ NM|NM | NS |ZE | PM | PM
ZE |NM{NM| NS | ZE | PS | PM | PM
PS {NM| NS | ZE | PS | PM | PM | PL
PM | ZE | PS |PM | PM | PL | PL | PL
PL PS |PM | PL | PL | PL| PL | PL
All entries correspond to Upss

The MRD-GA algorithm (Section 6.3) is then applied to optimize the parameters of the NF
PSS. The algorithm parameters are set as follows: population size = 50, probability of crossover =
0.9, probability of mutation = 0.05, chromosome-length = 37, 3;=0,=0.0001, 6,=6,=0.99, and
1=20. The centers of the ZE membership functions of the three NF PSS variables are fixed at 0.0,
and the centers of NL and PL membership functions of the output are fixed at -1 and I,
respectively. Accordingly, there are 16 centers and 21 widths to be tuned by the MRD-GA.

The objective of the MRD-GA is to

Min{{ Aw(1)*> di} subjectto f0.0)=0 (8.2)

where Upss = lAw, Am) is the fuzzy controller mapping. This constraint ensures zero steady-state
error of the controller; for the same reason, the ZE membership functions are also centered at 0.0.
The MRD-GA algorithm stopped after 2000 generations and the objective function decrease rate is
shown in Figure 8.15. The response of the synchronous machine after the 3-phase fault, with the
CPSS and the trained NF PSS, is also shown in Figure 8.16.

A number of studies have been performed to investigate the effectiveness of the proposed NF
PSS and to compare its results with those of the CPSS.

e Test 1: The generator is operating at 0.9pu power and 0.9 pf lag, and a 20% step increase in the
input mechanical power (P,) is applied and then removed after 4.5 seconds. System response,
using the CPSS and NF PSS, is shown in Figure 8.17.

e Test 2: The generator is operating at 0.2pu power and 0.9 pf lead, and a 50% step increase in Py,
is applied and then removed 4.5 seconds later. The responses are shown in Figure 8.18.
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The convergence of the GA with population size of 50.
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Figure 8.15 The MRD-GA convergence rate.
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Figure 8.16 Response to 3-ph fault at power 0.9pu, 0.9 pf lag.
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Figure 8.17 Response to 20% increase in P, (0.9pu, 0.9 pf lag).
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oTest 3: The generator is operating at 0.9pu power and 0.9 pf lag, and a2 3% step increase in the
reference voltage (V..) is applied and then removed after 4.5 seconds. The system response, using

the CPSS and NF PSS, is shown in Figure 8.19.

oTest 4: The generator is operating at 0.9pu power and 0.9 pf lag, and Line 1 is opened and then
closed 4.5 seconds later. The system response is shown in Figure 8.20.

oTest 5: To study the sensitivity of both the CPSS and NF PSS to the imprecision or even
vagueness in system parameters, the responses of the generator with different values of inertia-
constants (H=4, 10, and 16) are shown in Figures 8.21 and 8.22, respectively. The generator is
operating at 0.4pu power and 0.9 pf lag, while 2 80% step increase in Pp, is applied and then
removed after 4.5 seconds. Of course, it is not realistic that the inertia-constant of a synchronous
generator changes after installation. However, the main purpose of this test is to show the
capability of both controllers to cope with the change in the system’s configuration.

oTest 6: The generator is operating at 0.9pu power and 0.9 pf lag, and a 3-phase short circuit
occurred at the middle of Line 1 and then cleared after 0.17 sec by opening the line. The system

response is shown in Figure 8.23.
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Figure 8.18 Response to 50% increase in Py, (0.2pu, 0.9 pf lead).
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Synchronous Machine Responses with CPSS and NF PSS.
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Figure 8.19 Response to 3% increase in V. (0.9pu, 0.9 pf lag).
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Figure 8.20 Response to Line 1 switching (0.9pu, 0.9pf lag).
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Synchronous Machine Responses with Different Inertias (NF PSS).
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Figure 8.22 Response to different inertia constants (NF PSS).
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Figure 8.23 Response to 3-phase fault at the middle of Line 1.

Test results for various conditions show that the proposed NF PSS has better performance than
the CPSS. It provides good damping over a wide operating range and significantly improves the
transient and dynamic performance of the synchronous machine. The NF PSS shows also less
sensitivity to the change of the system parameters than the CPSS as illustrated by Figures 8.21 and
8.22. The approximate reasoning feature of the NF PSS makes it capable of coping with different
power-system configurations with satisfactory performance, without the need to be re-tuned. A
clear advantage of the presented design method is the use of a compact-size training data (400
samples); while in Farag et al. [87] and Hariri et al. {163] 10,600 and 18,000 samples are used,
respectively. Also, in the third phase an objective function, which can be tailored according to the
designer needs, is used. The above features make the design method systematic and more
convenient.
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8.5 NF PSS for multi-machine power-system environment

To evaluate the effectiveness of the proposed NF PSS, a transient stability simulation study is
performed on the nine-bus three-machine power system shown in Figure 8.24. Each machine is
represented by a fourth-order two-axis nonlinear model. Details of the system’s data can be found
in {110, ch. 3].

G2

[§8]

Figure 8.24 Three-machine nine-bus power system model.

The details of the operating point of the power system are given in Table 8.5. Under these
operating conditions of Table 8.5, three CPSSs are designed, one for each generator. The
parameters of the CPSS are kept unchanged for all the tests performed and reported in this study.
The outputs of the CPSSs are limited in the range [-0.1pu. 0.1pu] and their transfer functions are
identical and given as [110]:

10s(1 + 0.5685)°
(1+10s)1+0.02275)%

Upss(s) = (8.3)
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Table 8.5 Loading Conditions.
P (pu) Q (pu) Terminal Volt.
Gl 0.716 0.027 1.040£0.0°
G2 1.630 0.0067 1.025£9.3°
G3 0.850 -0.109 1.02524.7°
Load A 0.125 0.050 0.996£4.0°
Load B 0.090 0.030 1.013£-3.7°
Load C 0.100 0.035 1.016£0.7°

The inputs to the proposed NF PSS are the speed deviation (Aw) and the rate of the speed-
change (Aw). The NF PSS consists of a normalized NF PSS and three scaling factors K., Kg,, and
K., as shown in Figure 8.25. In the normalized NF PSS, the centers of the membership functions of
all the controller variables lie in the range [-1, 1].

Aw

Ka

—

AT —

Ko

s Normalized
NF PSS

K, —

Figure 8.25 Topology of the NF PSS.

An optimized NF PSS is designed for generator (G2). The training data for this NF PSS is
collected from the measurements of the speed-deviation of the generator which undergoes
oscillations due to a 3-phase short circuit on Line 5-7, adjacent to Bus 7. The short circuit is
cleared after 8 cycles by successful reclosing of Line 5-7. This fault type is selected to cover the
widest possible range of system'’s oscillations. A total of 600 data samples are collected; they are

plotted as in Figure 8.26.
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The 600 Samples Training Data.
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Figure 8.26 The NF PSS training data.

The FCM algorithm (Section 4.3) is used to determine the most appropriate fuzzy partitions for
the input/output variables and the initial centers and widths of their membership functions from the
data shown in Figure 8.26. Table 8.6 shows the results of the clustering assessment using the §3
clustering validity measure (CVM) mentioned in Section 4.4 (Equation 4.17). For each NF PSS
variable, the shaded area contains the lowest value for the $3 CVM, and the associated number of
clusters (c) is considered the most appropriate fuzzy partition. Accordingly, the best partitioning of
the normalized NF PSS is found to be seven for the A input (n»=7) and nine for both the Aw input
and U, output (n,=n3=9). However, in this design we will use (n;=7) to decrease the number of
rules from 63 to 49 (more compact-size knowledge base) and to produce a simpler fuzzy controller.

The centers of the NL. and PL membership functions of the NF PSS output are fixed to -1 and
1, respectively; and the K, scaling factor is set to be 0.1 in order to keep the NF PSS output in the
range [-0.1pu, 0.1pu]. The K, and K, scaling factors are determined from the FCM algorithm as
‘0.1478" and ‘0.0195’, respectively.
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Table 8.6 Clustering assessment by S3 CVM.

c Aw Aw Upss

2 -7.4261 -1.6797 -.2684
3 -9.8097 -138.0168 -184.097
4 -15.5272 -136.7000 | -192.228
S -16.4018 -165.3186 | -196.943
6 -16.3481 -168.4599 | -193.490
7 -16.3261 -171.7263 [ -197.499
8 -17.4982 -169.0656 | -200.511
9 -17.6664 -166.9547 | -200.762
10 -17.3814 -165.0680 | -200.193
11 -17.5540 -160.9201 -200.569

The SGA algorithm (Section 5.2.4) is then used to find the linguistic-fuzzy rules. The algorithm
parameters are set as follows: population size = 80, probability of crossover = 0.9, probability of
mutation = 0.15, chromosome-length = 49. The computation time elapsed to perform this learning
phase is about 20 minutes on a Pentium 166MHz. The author’s experience in PSS’s design is also
employed to find out and/or check the rules, especially in the portions where low density of training
data exists. The extracted 49 rules are shown in Table 8.7; the convergence curve of the SGA is
exhibited in Figure 8.27.

Table 8.7 The fuzzy associative memory matrix with the rules.

Aw
Aw | NL |[NM | NS | ZE | PS | PM | PL
NL ! NL | NL|NL;NL|NL|NL|NM
NM i NL |[NM|NM|NM|NM| ZE | PS
NS INM|[ NS | NS [NVS| ZE |PVS| PS
ZE | NS [NS|NS|ZE [PVS| PS | PS
PS [NVSINVS| PS | PS | PS |PM | PM
PM { PS | PS|PS|{PM|PM| PL | PL
PL PS |PM | PM | PM| PL | PL | PL

All entries correspond to Upss
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The convergence of the SGA with population size of 80.
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Figure 8.27 The SGA convergence rate.

The MRD-GA (Section 6.3) is then applied to optimize the parameters of the NF PSS. The
algorithm parameters are set as follows: population size = 100, probability of crossover = 0.9,
probability of mutation = 0.05, chromosome-length = 41, §;=8,=0.0001, 6,=6,=0.99, and 1=20.
The centers of the ZE membership functions of the three NF PSS variables are fixed at 0.0, and the
centers of NL and PL membership functions of the output are fixed at -1 and 1, respectively.
Accordingly, there are 18 centers and 23 widths to be tuned by the MRD-GA.

The objective of the MRD-GA is to

Min{[Ao(r)* dt} subjectto f10,0)=0 (8.4)
where Upss = AAw, Aw) is the FC mapping. This constraint ensures zero steady state error of the
controller. The MRD-GA algorithm has stopped after 1000 generations. The objective function

decrease rate is shown in Figure 8.28. The computation time used to perform this learning phase is
about 83 minutes on a Pentium 166 MHz PC.
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The convergence of the MRD-GA with pop size of 100.
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Figure 8.28 The MRD-GA convergence rate.

Several studies have been performed to investigate the effect of the proposed NF PSS and
compare the results with those of the CPSS. Some of these studies are presented here.

®Test 1: The generators are operating at the operating point indicated in Table 8.5. A 3-phase
fault occurs on Line 5-7, near Bus 7. The fault is cleared by opening the line after 8 cycles and
then the line is reclosed successfully. In this test, no PSSs are installed on G1 and G3. Figure
8.29 shows the power-system response in two cases; when the CPSS is installed on G2, and when

the NF PSS is installed on G2.

®Test 2: The power system is operating at the operating point indicated in Table 8.5. A 3-phase
fault occurs on Line 5-7, near Bus 7. The fault is cleared by opening the line after 6 cycles
without successful reclosing of the line. In this test, a CPSS is installed on both Gl and G3.
Figure 8.30 shows the power-system response in two cases; when the CPSS is installed on G2,
and when the NF PSS is installed on G2.

®Test 3: The generators are operating at the operating point indicated in Table 8.5. Step changes
on the input mechanical power of the three generators occur simultaneously as follows: 10%
decrease on G1, 25% increase on G2, and 5% decrease on G3. CPSSs are installed on G1 and
G2. Figure 8.31 shows the power-system response in two cases; when the CPSS is installed on
G2, and when the NF PSS is installed on G2.

¢ Test 4: The generators are operating at the operating point indicated in Table 8.5. Step changes
on the input mechanical power of the three generators occur simultaneously as follows: 15%
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increase on G1, 20% decrease on G2, and 5% increase on G3. No PSSs are installed on Gl or
G3. Figure 8.32 shows the power-system response in two cases; when the CPSS is installed on
G2, and when the NF PSS is installed on G2.

Responses with the NF PSS and CPSS.
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Figure 8.29 Response to a 3-phase fault with successful reclosing.
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Responses with the NF PSS and CPSS.
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Figure 8.30 Response to a 3-phase fault without successful reclosing.
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Responses with the NF PSS and CPSS.
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Figure 8.31 Response 10 step changes in the mechanical power inputs.
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Responses with the NF PSS and CPSS,
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Figure 8.32 Response to step changes in the mechanical power inputs.
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In this study, an optimized NF PSS is proposed to improve the transient and dynamic stability
of a synchronous generator working in a multi-machine power system environment. Again, only
600 data samples are used here; while in Farag et al. [87] and Hariri et al. [163] 10,600 and
18,000 samples are used, respectively. Also, in the third leaming phase an objective function,
which can be tailored according to the designer needs, is used to add to the flexibility of the design
method. The above features make the design method systematic and more convenient.

Simulation results for various tests show that the proposed NF PSS has better performance than
that of the CPSS. It provides good damping for multi-modes of oscillations under different
disturbances and significantly improves the transient and dynamic performance of the overall
multi-machine power-system. Moreover, the results show the good coordination and cooperation
between CPSSs and the proposed NF PSS while working together in the same power system; as
illustrated by Figures 8.29 and 8.32. This feature should encourage power-system engineers to
replace conventional power-system stabilizers with neuro-fuzzy power-system stabilizers without
the doubt of encountering performance and/or stability problems.
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Conclusions and Future Work

9.1 Conclusions

This thesis introduces a generic framework for synthesizing intelligent hybrid systems
for modeling and control applications. The proposed framework integrates neural
networks, fuzzy logic, and genetic algorithms in a single comprehensive paradigm,
which consists of a generic architecture and a hybrid learning scheme. The developed

paradigm maintains the following salient features:

e The system’s architecture has a transparent structure. Its parameters, links,
signals and modules have their own physical interpretations (meanings). This
feature allows a better understanding and deeper insight into the system’s behavior
and provides easier debugging and troubleshooting during the design.

e The leamning scheme is composed of three phases. The first phase performs a
coarse identification for the system’s numerical parameters using unsupervised
leaming (clustering) algorithms. The second phase finds the linguistic-association
parameters (fuzzy rules) using unsupervised as well as supervised leaming
algorithms. In the third phase, the numerical parameters are optimized and fine-
tuned using supervised leaming and search techniques. This task decomposition
makes the identification process systematic and more convenient.

e The proposed framework allows the incorporation of numerical input/output data
and expert knowledge during the synthesis process. The leaming algorithm in all
its phases uses the available numerical data. Expert knowledge can help in finding
the appropriate fuzzy partitioning for the input/output variables. Moreover, in the
second phase, this knowledge plays an important role in forming and/or checking
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the linguistic-fuzzy rules that are found by numerical algorithms. In the third
phase, expert knowledge guides the formation of the fitness function of the MRD-
GA, specially in control applications. In addition, it is utilized to choose the
appropriate control-parameter values for different learning algorithms.

The above features have provided the proposed paradigm with many advantages;
these advantages are:

e The system combines the merits of each individual technique. For example, it
combines the learning ability in neural networks, the approximate and linguistic
reasoning in fuzzy logic, as well as the optimization and search capabilities of
genetic algorithms. Moreover, it overcomes the limitations of individual
techniques.

e The system has the ability of incorporating qualitative as well as quantitative
knowledge during learning. Furthermore, it is able to describe its decisions in an
explicit natural language.

o The system preserves the model-free control feature that the classical fuzzy
control offers. It does not need any information about the internal parameters of
the plant under control.

e The system requires compact-sized data sets for the learning process, compared
with what neural networks usually require [97]; this significantly decreases the
learning-computation time.

e The system provides more robustness than, for example, classical fuzzy or neural-
network systems, as the proposed system exploits all available sources of
information in the synthesis procedure. In other words, the system utilizes
available observations or experience which neural networks can’t do.
Furthermore, it utilizes the available input/output numerical data which classical
fuzzy systems can’t do either.

Many new algorithms have been proposed throughout the thesis. In addition, a
number of well-known algorithms have been adapted to suit the assigned function in
the synthesis process. The performance of these algorithms is outlined hereafter:

¢ In the first learning phase, the Kohonen's self-organizing feature maps and the
fuzzy c-means clustering algorithm are adapted to perform coarse-identification
for the numerical parameters and to find the most appropriate fuzzy partitioning.
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Three clustering-validity measures have been used to assess the quality of
clustering produced by the two algorithms. Several tests and evaluations [168]
have shown that the fuzzy c-means clustering algorithm outperforms Kohonen's
self-organizing feature maps.

e In the second leamming phase, four different algorithms are presented. The
competitive leamning algorithm is adapted to find the linguistic-association
parameters (fuzzy rules). Three algorithms are proposed as well; the minimum
distance algorithm, the maximum matching-factor algorithm, and the static genetic
algorithm. Evaluation studies [94] have shown that the static genetic algorithm
provides the best performance among the four algorithms. However, because it is
a supervised leaming algorithm it tends to be much slower. The maximum
matching factor algorithm has consistently performed better and faster than both
competitive learning and minimum distance algorithms. Finally, the static genetic
algorithm is recommended if accuracy is the only concern, and the maximum
matching factor algorithm is recommended if a high performance per unit
computational cost is required.

e In the third leaming phase, the well-known backpropagation algorithm is adapted
to optimize the numerical parameters initially identified in the first leaming phase.
Moreover, a multi-resolutional dynamic genetic algorithm is proposed for the
same optimization task (93, 97]. A sensitivity analysis for the effect of different
control-parameters on the performance of the muiti-resolutional dynamic genetic
algorithm has been carried out. Three parameters have been considered for this
analysis; the population size, the crossover probability, and the type of the
crossover operator. Population sizes in the range of 20-~50 and crossover
probabilities in the range of 0.5~0.9 are considered appropriate for most
applications. The analysis indicates that the single-point crossover operator gives
better performance than the double-point crossover operator. Compared to
backpropagation algorithm [169], the multi-resolutional dynamic genetic
algorithm tends to be more accurate but slower to converge. It also shows more
clevemess at escaping from local minima and more flexibility in its application to
modeling and control problems.

The effectiveness of the proposed intelligent hybrid scheme in modeling of
complex systems, is assessed using two benchmarks [97]. The benchmarks are highly
nonlinear and difficult to model using conventional methods. Detailed comparative
studies with other modeling approaches that use intelligent techniques, have been
carried out [97]. Compared with such approaches, the proposed scheme shows
superior performance and obvious advantages. The accuracy of the proposed scheme
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exceeds most of the other techniques while preserving the advantage of “linguistic
modeling™ that some other approaches do not have.

To investigate the effectiveness of the proposed intelligent hybrid scheme in
nonlinear control, this is used in synchronous machine voltage-regulation and speed-
stabilization studies. A neuro-fuzzy automatic voltage regulator is designed and tuned
using the proposed scheme [87]. Extensive simulation studies show an improvement in
the synchronous generator response from a leamning phase to the next. Also, the
simulation shows that the generator response, after learning has been completed, is
much better in terms of settling times, over/under-shoots, and rising/falling times.

A neuro-fuzzy power system stabilizer for a single-machine infinite-bus system is
synthesized using the proposed scheme [170]. Only 400 data samples are used in the
synthesis process. The effectiveness of the neuro-fuzzy stabilizer is compared with
that of a conventional power system stabilizer. Test results for various conditions
show that the proposed neuro-fuzzy stabilizer has better performance than the
conventional stabilizer. It provides good damping over a wide operating range and
significantly improves the transient and dynamic performance of the synchronous
machine, under different disturbances. The neuro-fuzzy stabilizer is less sensitive to
changes in the system parameters than a conventional one.

Moreover, a neuro-fuzzy power system stabilizer for a multi-machine power
system environment is designed and optimized using the proposed scheme [171]. A
compact-sized training data of only 600 samples, is used in the design. Simulation
results for various tests show that the proposed neuro-fuzzy stabilizer has better
performance than that of a conventional stabilizer. It provides good damping for multi-
mode oscillations under different disturbances, and significantly improves the transient
and dynamic performance of synchronous machines in a multi-machine environment.
Furthermore, the results show the good coordination and cooperation between
conventional power system stabilizers and the proposed neuro-fuzzy stabilizer while
working together in the same power system. Accordingly, power-system engineers are
encouraged to upgrade the power systems with neuro-fuzzy stabilizers without the
doubt of encountering performance or stability problems. .
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9.2 Future work
Based on this thesis, some future research directions are suggested:

e Extending the sensitivity study to include other control parameters of the multi-
resolutional dynamic genetic algorithm proposed in this thesis. The effect of the
probability of mutation, the offsets (8, and §;), and the decaying time constant (1)
can be examined in this study.

¢ Evaluating the employment of other heuristic search algorithms in the optimization
phase of the leaming scheme. Evolutionary programming techniques and
evolutionary strategies are promising candidates for this study.

e Investigating the applicability of intelligent hybrid systems for on-line adaptation
and real-time leamning/control applications. There are two directions in this study.
In the first direction, the adaptation process is performed for the linguistic-fuzzy
rules and in this case the developed controller is called “self-organizing
controller”. In the other direction, the parameters of the membership functions
(centers and widths) are adapted and in this case the developed controller is called
“adaptive controller”.

¢ Studying the hardware implementation issues for the proposed intelligent control
scheme. This helps to give more insight into the applicability of such intelligent
algorithms for industrial purposes.

e Investigating the applicability of the proposed leaming scheme in other
applications such as classification, pattern recognition, image processing, vision

and robotics.

e Applying the proposed leaming scheme in other power-systems applications such
as load forecasting and fault diagnosis.
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Appendix A

Synchronous-Machine Infinite-Bus Data

K
e AVR Model: Ef=—2VR _(y V. +U
e f 1+5TAVR( ref 4 pss)
bg .
e Governor Model: g=(a, + )]
8 1+sT,

e Simulation Parameters:

Xq=1.24 Xe=0.7 Ryue = 0.007
Xiatage=0.14 Xeea = 1.33 Re1a = 0.00089
K aurping = 0.027 H=346 Kavr =200
Tavwr =0.01 E¢ (upper limit) = 7pu  E¢ (lower limit) = -7 pu
a, = -0.001238 b, =-0.17 T,=0.25

Ziine. = 0.009+ 0.22 Ziine.x = 0.009+j 0.22 Zastormer = 0.014j 0.12

All resistances and reactances are in per-unit values, and time-constants are in seconds.
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