On the Universality of Mass Inflation Inside Black
Holes

Jim Shung Fai Chan

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
n

Applied Mathematics

Waterloo, Ontario, Canada, 1998

(©Jim Shung Fai Chan 1998



Ly |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ofttawa ON K1A ON4

Bibliotheéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre reférence

Our file Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-30593-7



The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.



Abstract

The Cauchy horizon of the Reissner-Nordstrém black hole has been shown to bhe
uustable under the perturbation of infalling and outgoing fluxes of radiation. Its
behavior is characterized by an exponentially increasing mass function inside the
hole. In this thesis I investigate the interiors of various black holes which arise
as solutions of different low-energy candidates for quantum gravity theories. The
spacetimes I consider include (1 + 1)-dimensional dilaton spacetimes. the (2 + 1)-
dimensional black hole, a black string in 3+ 1 dimensions and Schwarzschild-anti-de
Sitter spacetime. I find that mass inflation is a process in which the divergence
of the inner mass function strongly depends on the attenuating behavior of the
late time radiation. I calculate the radiation falloff rates in different black hLole
backgrounds, both analytically and numerically, and investigate the circumnstances
which are conducive to mass inflation. In certain cases the falloff can be so strong
that the inner mass function is not divergent at the Cauchy horizon under the

perturbation of the ingoing and outgoing radiation.
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Chapter 1

Introduction

The first nontrivial and most important exact solution of Einstein’s equations was
found by Karl Schwarzschild in 1916 [1]. [2](p. 118). This solution represents a
spherically symmetric vacuum spacetime. The spacetime is interpretable as either
the exterior spacetime of a spherically symmetric object in vacuum or the space-
time of a fully gravitationally collapsed spherical object, i.e. a black hole. However
the existence of black holes remained unproven because they cannot be observed
directly. Nevertheless astronomers are able to collect suggestive evidence for their
existence by using modern observational techniques [3, 4]. For example. a rescarch
team used the images from the repaired Hubble Space Telescope to study a dark
celestial object at the center of the giant elliptical galaxy M87 in the Virgo coustel-
lation (3]. Astronomers in the team concluded that the object is a black hole after
measuring the speed of a gas disk orbiting around the dark object. They argued
that a stellar object having sufficient mass to keep the gas moving at such high
speed could not remain in equilibrium, and would necessarily undergo gravitational

collapse, leading to a black hole.
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Although Schwarzschild’s solution is indisputably important in the study of
Einstein’s General Relativity, this solution only represents the vacuum spacetime
of a spherical object, or approximates the vacuum spacetime of a nearly spherical
object. In practice, astronomers can only hope to detect a black hole by observing
nearby objects with which it is in mutual orbit, like companion stars or gas disks.
In this situation, the black hole at the center cannot be the Schwarzschild black
hole because the spacetime is no longer spherically symmetric. However a solution
representing a spacetime with axial symmetry is known due to the effort of Kerr
[5]. The Kerr solution can be interpreted as describing a rotating black Lole [6}(p.

161).

The importance of black holes in understanding gravitational theory cannot be
nnderestimated. Apart from their possible astrophysical relevance as noted briefly
above. they raise important questions which impact upon some of our most funda-
wental concepts in physics, including thermodynamics (7], causality [8]. conserva-
tion laws [9], and the development of a quantum theory of gravity [10]. This thesis is
concerned with some specific aspects of black hole physics: namely the relationships
between their interior structure and the asymptotic properties of the spacetimes in
which they reside. To set the stage for this investigation we shall, in Sectiou 1.1.
discuss the Einstein equations after introducing the spacetime metric. This math-
ematical object defines the geometry of a spacetime and is used to coustruct the
Einstein tensor Ga. In this chapter, we shall consider only the Schwarzschild and
Kerr spacetimes. The structure of these spacetimes will be discussed in Section 1.2.
We shall find that the interior of a Kerr black hole has several objectionable proper-
ties. One of these properties is that it is unstable. We shall look at this instability
problem closely in Section 1.3. This instability problem has initiated a series of in-

vestigations about the internal structure of the Kerr black hole. Recently theorists
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discovered a phenomenon called mass inflation which conld occur inside the Kerr
black hole. In this thesis we shall study mass inflation inside several black holes
which are solutions to different theories of gravity. In Section 1.4, we shall outline

the approach and content of this thesis.

1.1 Spacetimme Metrics

General Relativity envisages the gravitational force as a physical result of a “dis-
tortion” of spacetime. In this context one needs a geometrical way to describe the
spacetime. Spacetime refers to the continuum of space and time. concepts which
were treated separately in the prerelativity era prior to 1905. This geometrical
description is facilitated by using a metric. In the most general case. a metric in

an arbitrary coordinate system { z°} can be expressed as
ds® = ggdz®dz’ . (1.1)

where Einstein’s summation notation is used and the indices run from 1 to 4 in 3+1
spacetime dimensions. The metric components g,, which satisfy the equation g,, =
Yva- are functions of z° in general. For example. the simplest (3 + 1)-dimensional

spacetime metric in Relativity can be written as
ds? = -¢? a't2+d:z:2-i-dy2+dz2 (1.2)

in Cartesian coordinates or as

-c2 0 0 0 dt

2 0 1 0 0 dr
ds* = [dt dr df d¢ (1.3)

0 0 r? 0 dé

| 0 0 0 r?sin(d) || 49 |
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in spherical coordinates. The constant c is the speed of light in vacuum. Either
metric (1.2) or (1.3) represents the same spacetime. The spacetime metric is not
positive definite. That is to say if we consider a matrix with components gg.
like the one in (1.3), the determinant of this matrix is not positive. In fact. the
symnetric matrix representing a spacetime metric has only one negative eigenvalue.

The metric that has only one negative eigenvalue is called Lorentzian.

The Einstein equations were discovered in 1915 and read

8t G
o2

Gapy = Tas - (1.4)

The symmetric tensor Gg is the Einstein tensor and T, is the stress-energy-
momentum tensor. The constant G in (1.4) is the gravitational constant and ¢
is the speed of light in vacuum. These constants will be set to unity in the rest
of this thesis without loss of generality [2](p. xi). Despite the simple appearance
of equation (1.4), it represents a set of six independent, non-linear. second order
partial differential equations in 3 + 1 spacetime dimensions. (In fact there are ten
different equations in (1.4) but we always have the freedom to choose the coordi-
nate system which yields 4 degrees of freedom in 3 + 1 dimensions. Thus there
are six independent equations in (1.4).) These differential equations determine the

components of the spacetime metric.

The Einstein tensor Ggp in (1.4) is constructed from the spacetime metric in a

non-linear way. It is defined as
1
Gab = Rab—iRgab ’ (15)

where the tensor R, is the Ricci tensor and R is the Ricci scalar. They are related

to one another via the definition

R = Rug®. (1.6)
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The tensor g°° is the inverse of the metric tensor g,. The metric tensor and its
inverse are used to map covariant tensors to their contravariant counterparts or

vice versa. In this thesis, the Ricci tensor is defined as

Ry = Rcacb ’ (1.7)
Rdacb = acrabd - abracd + Fczd Pabe - Fbcd I--‘acc - (18)

The operation O is the usual partial derivative with respect to the “ct* " coordinate
z¢. The quantity R, is the Riemann curvature tensor, and the Christoffel symbol

(of the second kind) [y° is defined as

Cat° = =g (0agbd + O6gda — Dagap ) - (1.9)

DN | =

As a result, the Ricci scalar and tensor are constructed from non-linear combina-
tions of the metric tensor and its first and second partial derivatives. Therefore
the Einstein equations are a system of second order, non-linear partial differential

equations in the metric components.

As the name suggests, the Riemann curvature tensor describes the local curva-
ture of a spacetime. If all the components of this tensor vanish everywhere in a
spacetime, the spacetime is called “flat” (or Minkowski). The concept of flatness is
not coordinate-dependent because the Riemann tensor components transform from
one coordinate system to another one as follows:

Y 0! 9z° 9%7 9z* - ‘
abe Ozl dze dzb dzc = Uk

(1.10)

The Riemann tensor components on the left of the above equation are written in
the coordinate system {£°} and those on the right are written in another coordinate
system {£'}. It is understood that we can write ' = #() or 2* = #°(#). Therefore

if all the components of the Riemann tensor vanish everywhere in one coordinate
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system, the components of this tensor will be zero in other coordinate systems. If a
spacetime is not flat, one also can describe its curvature in a coordinate-independent
way, for example, using scalars which are invariant under any change of coordinates.

Thus curvature scalars like the Ricci scalar or the Kretschmann scalar
K = Rgq R4 (1.11)

can be used to describe the spacetime curvature [11].

The Schwarzschild spacetime mentioned at the beginning of this chapter can be

described by the metric

2 2 -t 2 - 2
ds? = - (1 - 2M) dt? + (1 - —M) dr? + 2 dB? + 72 sin®(0) dg? . (1.12)
T T
This metric satisfies the Einstein equations (1.4) with T,, = 0. The counstant

M in the metric is an integration constant which is interpreted as the mass of a
spherically symmetric object in vacuum [1], [2](p. 124), [6](p- 149). and is assumed

to be positive.

A more general solution satisfying the vacunn Einstein equations (i.e. Ty, = 0)

is the Kerr spacetime which is given by the metric

2Mr 2Mr a® -
2 - _ _ 2 _ — ein2 2
ds? = (1 < )dt +(1 = +251n(9)) dr
2
+ T df? + (1'2 +a?® + 2(12& sin2(¢9)) sin?(6) d¢®
- 4“?’ sin?(8) dt d¢ |, (1.13)

where ¥ = r?+a? cos?(#). As mentioned before, the Kerr metric represents a space-
time which generalizes the Schwarzschild spacetime with axial symmetry replacing
spherical symmetry. In other words, the Kerr solution can represent the spacetime

of a rotating black hole. Thus one might expect that the constant a in the metric
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above is a parameter associated with angular momentum. Indeed. we can interpret
a M as the angular momentum of the rotating black hole [5], [2](p. 314). When a

equals zero, the Kerr metric (1.13) reduces to the Schwarzschild metric (1.12).

Let us return to the Schwarzschild spacetime. The metric (1.12) becormes singu-
lar when § = 0,6 = 7,7 = 0 and r = 2 M. The first two are coordinate singularities
because the coordinate system fails to be one-to-one along the polar axis. At the
last two “points”, some of the metric components become unbounded. Therefore

it 1s natural to assume that the range of r is 2 M < r < oo for the metric (1.12).

The line r = 0 in the Schwarzschild spacetime is not simply a coordinate sin-
gnlarity. Instead it is a spacetime singularity [2](p. 153) because the spacetimic
curvature is unbounded there. This singularity cannot be removed by any coordi-
nate transformation. One way to show this is to compute the Kretschmann scalar
which is 48 M?/7° in the Schwarzschild spacetime. Since this scalar diverges at
r = 0. the spacetime has arbitrarily large curvature near r = 0. This confirms the
claim that the point © = 0 in 3-space is a curvature singularity of the Schwarzschild

solntion.

Finally, the fact that the Kretschmann scalar does not diverge at r = 2 M
suggests that the divergence in the metric components at » = 2M is a result of
a poor choice of coordinates. We can show this by transforming the metric (1.12)
fromn the coordinate system {t,r,6, ¢} to another coordinate system. For example.

consider the coordinates [12], [2](p. 153)

V = exp(z—;;) ‘/2;4,—1 . (1.15)

Fort€ Rand r € (2M, ), the coordinate U belongs to R™ and V € R*. In the
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new coordinate system {U, V, 8, ¢}, the Schwarzschild metric (1.12) becomes

32 M3

T

ds® =

exp(- 2;4 ) dU dV + r? d6* + r* sin®() d¢*® . (1.16)

where 7 is a function of U V defined implicitly by the equation

vv = (1—2—:\—4,-) exp(zjw) . (1.17)

The equation (1.17) is well-behaved for all r € R and the metric (1.16) has no
divergent components at r = 2 M. (It is not difficult to see that the components of
the inverse metric ¢®® are also finite at r = 2 M .) In other words, r = 2 M is suuply
a coordinate singularity in the metric (1.12). Since r = 0 is a spacetime singularity.

as mentioned earlier, we can consider 0 < r < oo in the new metric (1.16).

1.2 Spacetime Structure

We can visualize the structure of the Schwarzschild spacetime by considering its cor.-
formal diagram [13]. Such diagrams allow us to represent the full infinite spacetiie
in a finite-sized diagram whilst preserving the relationships between null geodesics.
(See Appendix A for the explanation of geodesics.) Hence they allow us to straight-
forwardly consider how light propagates in a given spacetime. This knowledge in
turn allows us to understand the causal relationship between points in the space-

time, and hence its causal structure.
In the case of the Schwarzschild spacetime, we ignore the coordinates 8 and ¢.
and introduce new coordinates T and X which are defined implicitly by
U = tan(T - X) , (1.18)
V = tan(T + X) . (1.19)
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The coordinates U and V are those in the metric (1.16). Under this transformation
the “point” r = oo is mapped to thelines T — X =-n/2 and T+ X = 7/2 on X-
T-plane via U = - 00 and V = oo, respectively. Moreover the hypersurface r = 2 M
1s now located at T = £X. The line r = 0 in the spacetime corresponds to the line
UV =1 on the U-V-plane. It is straightforward to show that this line is mapped
to the lines T = +m/4 on the X-T-plane. As a result. we can depict the region
0 < r < oo in the spacetime described by (1.16) (which is equivalent to (1.12)). on
figure 1.1. We have the line r = 0 in two places of the diagram, namely the top

and the bottom of it because of the symmetry in time in the Schwarzschild wetric.

Figure 1.1: The conformal structure of the Schwarzschild spacetime. An explana-

tion of the symbols ¢+, %, etc. can be found in Appendix A.

Let us consider the metric (1.2) which is the usual flat spacetime in the Cartesian
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coordinates. Light travels in this spacetime in straight lines at a speed of ¢. That

1s to say a photon’s coordinates (z,y, z) obey the equation

dz \’ dy 2 dz \?
= -c? — = — . 1.20

In other words, for a light ray, one must have ds/dt = 0. If we consider a ray of
light in the Schwarzschild spacetime at a fixed direction, i.e. for constant 8 and &.
the trajectory of the ray will be given by either U = constant or V = constant.
according to the alternative form of the Schwarzschild metric (1.16). This explains
why U and V are sometimes called lightlike coordinates. Any 45-degree line on
figure 1.1 represents a beam of light because of the equations (1.18) and (1.19). On
the other hand, a material particle in the Schwarzschild spacetime will trace a path
whose tangent slope is everywhere greater than unity in magnitude on figure 1.1
because it moves at a speed less than c in 3-space. This provides a simple way to
classify the causal relationship between two points on the diagram. A diagram such

as figure 1.1 is called a Penrose diagram [13], [6](p. 154).

Consider an observer at a finite distance + > 2 M. At a given fixed instant
(which may be taken to be T' = 0 without loss of generality because the spacetime
is static) this observer will be located somewhere between 0 < X < w/2 along
the X-axis in figure 1.1. As t increases for the observer, a path in the conformal
diagram is traced out. Such a path is called the world line of the observer. and
extends upward in the direction of the flow of time. On a conformal diagram. if
the slope of a given world line is always greater than unity in magnitude, the line
is timelike. If the slope of a curve on a conformal diagram has magnitude 1. the
curve is lightlike; if its magnitude is always less than unity, the curve is spacelike.

All known massive objects have timelike world lines.

For a freely falling observer remaining outside r = 2 M as ¢ tends to infinity.
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the world line approaches the “point” ¢+ in the diagram. However an observer
wandering into the region r < 2 M can never leave this region because his or her
world line will always have a slope whose magnitude is greater than one. The
lightlike hypersurface r = 2 M is called event horizon because any event that takes
place inside it cannot be observed by any exterior observer. No signal can pass
through this hypersurface from r < 2M to r > 2 M. The event horizon defines
the boundary of a black hole. If a spherical star of mass M has all its material
concentrated within its Schwarzschild radius R, = 2 M, it becomes a black hole.
This can happen when the star is so massive that its gravitational pull eventually
dominates the internal outward pressures of the star. This leads to a decrease in
the radius of the star. Once the star’s radius shrinks to its Schwarzschild value.
it is impossible for the implosion to be reversed or stopped. This process is called

gravitational collapse, first described by Oppenheimer and Snyder [14].

According to figure 1.1, an observer entering the Schwarzschild black hole is not
only trapped inside the hole forever but will unavoidably run into the spacetime
singularity at r = 0. Since the Kretschmann scalar diverges at » = 0, there is an
wfinite spacetime curvature there. The observer will be crushed by tremendous
tidal forces near the singularity. In the case of a collapsing star, its constituent

material will experience unbounded tidal forces near the singularity.

We can similarly construct a Penrose diagram for the Kerr metric (1.13): it is
shown in figure 1.2 [6](p. 165). However this diagram is valid only for § = 0. Note
that in addition to the boundary of the black hole (event horizon) r = r, which is
a lightlike hypersurface, there is another important lightlike hypersurface r = r_.

where

r+ = M+VM?=a? (1.21)
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and M > a for physical celestial objects [15](p. 231). As with the Schwarzschild
black hole any straight line of slope +1 on this Penrose diagram represents the path

of a light ray.

Cauchy Horizon r=-00
r=r.

Event Horizon
r=r.

Figure 1.2: Conformal diagram for the Kerr spacetime with § = 0.

The other lightlike hypersurface » = r- has the following interesting property.
In figure 1.2, it is not difficult to see that for any point causally preceding the
hypersurface 7 = r. (that is below the line » = r.), its past lightcone is always
confined to regions I and II. In other words, every past directed, non-spacelike curve
passing through such a point will intersect a spacelike Cauchy surface in regions I

and II. Therefore we can formulate a well-posed Cauchy problem in regions I and
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I1. However for any point inside the hypersurface r = r-, some of its past directed.
non-spacelike curves cannot intersect any Cauchy surface in regions I and II. In
other words, any field at that point depends upon some data outside of regions I
and II. In this sense, the future predictability of physical law breaks down at r = r_
because a well-posed Cauchy problem cannot be formulated properly in regions I
and II. We call this lightlike hypersurface a Cauchy horizon. The definition of a
Cauchy horizon can be found in Appendix A.

The Kerr spacetime has a singularity on the equatorial plane § = n/2 at r = 0
which is enclosed by the Cauchy horizon. One can show that this is a curvature
singularity by calculating the Kretschmann scalar. The scalar diverges when T in
(1.13) vanishes. This singularity is not a point in 3-space; rather it is a ring on the
equatorial plane in 3-space [2](p. 315). Thus the coordinate r is not really a radial
coordinate. The hypersurface r = 0 in figure 1.2 is not shown as a siugularity
because the diagram is drawn for § = 0. Since r = 0 away from the equatorial
plane is not a spacetime singularity, one can extend the spacetime beyond + = 0
in the diagram. We might interpret the region r < 0 as another universe which is

asymptotically flat at large |r]| [2](p. 316).

The interior of the Kerr black hole also admits closed timelike curves near the
ring singularity [6](p. 162). A spacetime that admits closed timelike curves is
believed to be unphysical because it implies that an observer in such spacetime

could visit his or her own past while traveling forward in time.

In fact, the Kerr spacetime is not the only black hole spacetime that has event
and Cauchy horizons. When a spherically symmetric black hole carries a nonzero
electric charge, its spacetime has a causal structure similar to that of the Kerr space-
time. This electrically charged Schwarzschild solution is called Reissner-Nordstrém
solution [16], [6](p. 158). The presence of charge renders the Reissner-Nordstrom
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solution less widely applicable to astrophysical situations because celestial bodies
are electrically neutral in general. Nevertheless this spacetime is useful in the study
of black hole physics because its causal structure is similar to that of the Kerr space-
time but is mathematically simpler than the Kerr metric. When a rotating star is
electrically charged, the spacetime becomes a Kerr-Newman spacetimue which also

has two horizons [17].

1.3 Instability of the Cauchy Horizon

It follows from the Singularity Theorems [18], [6](p. 263) that a spacetime singu-
larity unavoidably arises whenever a black hole is formed. However the Singularity
Theorems do not shed any light on the nature and location of these singularities.
As discussed previously, the Kerr black hole exhibits a curvature singularity only
at 7 = 0 on the equatorial plane. There is no sign of any physical singularity at
the Cauchy horizon in this dual-horizon black hole. However the Cauchy horizons
in those dual-horizon black holes are found to be unstable [19](p. 222). A brief
discussion will illustrate why this is so.

As discussed in the previous section, the world line of a freely falling observer
remaining outside a Schwarzschild black hole eventually approaches the point i*.
This is also true for observers remaining outside the Kerr and Reissner-Nordstrém
black hole event horizons. The curve 'y in figure 1.3 represents the world line of
an observer located at § = 0 outside a Kerr black hole. This curve has a finite
length in figure 1.3 but represents an infinite passage of time because the point B
represents the limit ¢ — oo for all timelike geodesics outside the black hole. We
shall refer to observers with world lines extending to the point B in figure 1.3 as

immortal
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Cauchy
Horizon
r=r.

Event Horizon
r=r,

Figure 1.3: The world lines of two observers, one on each side of the event hLorizon.
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Figure 1.3 also shows another observer with world line I~ inside the black hole.
This observer’s world line joins a point a, where r. < r < r,. to another point b
(r < r-) through the point ¢ which is at the Cauchy horizon r = r_.. Unlike the
curve 'y, the world line I'- of this observer represents only a finite lapse of time.
In other words, this observer takes a finite amount of time to go from point a to b.

or just to point c.

If the immortal observer with world line I', throws just one photon into the black
hole every year, there will be infinitely many photons thrown into the hole. These
photons are represented by the dotted lines of slope minus one in the diagramn. On
the other hand, the observer with the world line . will receive these photons one by
one. However, the frequency of reception of the photons increases while the interior
observer approaches the point c. Although the external observer emits infinitely
many photons in an infinite time, the internal one will receive them in finite time
because the time to reach point c is finite. As a result, the photon reception rate
diverges when the internal observer moves towards the Cauchy horizon. If each
photon has the same energy, the photon energy density in the neighborhood of the
Cauchy horizon becomes unbounded. In this sense, the Cauchy horizon is a place
where a spacetime singularity might arise. Although the divergent energy deunsity
at the Cauchy horizon is a consequence of pouring an infinite energy into the black
lole (infinite number of photons of the same energy), it is possible to obtain a
divergent energy density at the horizon by putting a finite amount of energy into
the black hole. We shall see this effect in the thesis. Since mass-energy gives rise
to spacetime curvature, theorists conjectured that the infinite energy density at the
Cauchy horizon would destroy the horizon by turning it into a spacetime singularity.
The lightlike hypersurface would become a spacelike curvature singularity like the
one inside the Schwarzschild black hole. In this way, the loss of predictability
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problem mentioned in the last section would be eliminated [2](p. 318).

Needless to say, an immortal being could do something more interesting than
throwing photons into a black hole forever. The setup of eternally emitted photons
mentioned above is just illustrative. However nature has a mechanism that tends
to keep black holes irradiated for arbitrarily long periods of time. ( Here we refer
to a physical black hole. The Kerr and Reissner-Nordstrom black holes should be
excluded because they require exact symmetry, namely axial or spherical symine-
try. In reality, one will not expect any celestial body to be perfectly spherical or
axially symmetric. However, many celestial objects are very close to being sym-
metric. Therefore we can consider the asymmetries as perturbations to the black

hole spacetime which possesses exact symmetry. )

We expect that the exterior of an aging, electrically neutral and sufficiently
massive star that undergoes gravitational collapse will settle down to a Kerr black
hole {2](p. 312). Any asymmetries it initially has will be washed out during the pro-
cess. These asymmetries decay and induce gravitational radiation [20] which will
propagate throughout the exterior of the star. Similar to electromagnetic radiation.
gravitational radiation propagates at the speed of light [21](p. 255) and can play the
sae role as the electromagnetic radiation in triggering instability at the Cauchy
horizon. Although the flux of gravitational radiation originates from the collapsing
star, it does not all go outward and leave the star behind. Some of it interacts
with the gravitational field created by the star and is scattered backward. Conse-
quently the asymmetries of the star induce a flux of radiation which will irradiate
the Cauchy horizon after the black hole is formed. This stream of gravitational
radiation flows into the black hole forever due to continual scattering, although its
intensity decreases. The decrease in amplitude is at a rate inversely proportional

to some power of time. Thus the presence of the asymmetries during the collapse
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induces a decaying but everlasting flux of radiation which irradiates the black hole.
Eventually these fluxes are focused along the Cauchy horizon. Both numerical and
analytic investigations using the Reissner-Nordstrom background (22, 23] show that

radiation fields diverge at this lightlike hypersurface.

The presence of an infinite radiation density at the Cauchy horizon is not suffi-
cient to conclude that the spacetime curvature diverges there because all considera-
tions of this process thus far have assumed the validity of a background spacetime.
which is the Reissner-Nordstrém spacetime. (Recall that this spacetime is non-
singular at the Cauchy horizon.) However it is widely believed that if we take
the back-reaction of the divergent stress-energy temsor into account. the Cauchy
horizon would turn into a spacetime singularity. In order to do this one must
solve the Einstein equations with the infalling radiation as a source. This was first
done by Hiscock [24] who modeled the effect of the back reaction by using the
Reissner-Nordstrom-Vaidya spacetime [25]. This black hole spacetime is siinilar to
the Reissner-Nordstrém spacetime but the black hole is irradiated. Hiscock showed
that the Ricci scalar and Kretschmann scalar remain finite at the Cauchy horizon
but that a freely falling observer crossing the Cauchy horizon experiences an infinite
tidal force. Hiscock concluded that the back reaction on the Reissner-Nordstrom
geometry turns the Cauchy horizon into a so-called whimper singularity [24]. This
1s a singularity in which all the curvature scalars are finite and the components of
the Riemann tensor are bounded in some non-parallel propagated frames; however
there exists at least one curve to the singularity along which the Riemann tensor
components are unbounded in a parallel propagated frame [26](p. 160). Whimper
singularities are expected to be unstable, and can be turned into curvature scalar

singularities under the slightest perturbation [27].

We have seen that the inclusion of infalling radiation in the Reissner-Nordstrom
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background induces only a mild whimper singularity at the Cauchy horizon. Pois-
son and Israel [28] recently showed that a much stronger spacetime singularity
1s found when outgoing radiation is put in the Reissner-Nordstrém-Vaidya back-
ground. Such a singularity is characterized by a divergence of an internal mass
parameter inside the black hole. This phenomenon, which yields a scalar curvature
singularity at the Cauchy horizon, is called mass inflation. Despite the mass be-
coming unbounded, observers outside the black hole cannot detect this catastrophe

because it occurs inside the event horizon.

After Poisson and Israel had discovered the mass inflation phenomenon. Ori
demonstrated the phenomenon by using a simpler model [29]. Due to the simplicity
of the model, he was able to compute the tidal distortion at the Cauchy horizomn.
It turned out to be finite, and he argued that the mass inflation singularity is
weak enough for the continuation of spacetime beyond the Cauchy horizon. This
viewpoint is completely different from that of Hiscock [24] and Poisson-Israel [28].
On the other hand. Yurtsever [30] and Gnedins [31] suggested that the Cauchy
horizon of the Reissner-Nordstrém black hole corresponds to a strong spacelike
singularity under generic perturbation. This is again different from the point of
view in (28, 32]. These authors claimed that the Cauchy horizon will become a
lightlike singularity under the mass inflation process. However Gnedius’ result was
shown to be incorrect (33, 34]. Moreover the argument by Yurtsever that null
singularities cannot be generic was also shown to be wrong [35]. Thus we believe

that the Cauchy horizon will become a lightlike singularity when it is perturbed.
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1.4 OQOutline of the Thesis

With the preceding considerations in mind, we shall focus on the mechanism of

mass inflation in this thesis, towards three specific ends.

First we shall consider the circumstances under which the phenomenon of mass
inflation can take place in spacetimes other than the prototypical Reissner-Nord-
strom background mentioned above. Since the very existence of a Cauchy horizon
raises fundamental questions about the predictability of physical theory, it is impor-
tant to understand the extent to which mass inflation is a generic process. Some
of the black hole spacetimes considered in this thesis have different asymptotic
properties than the Reissner-Nordstréom case, whereas others arise as solutions to
gravitational theories other than General Relativity, e.g. string theory and its gen-
eralizations to dilaton gravity. Moreover these theories predict dual-horizon black
holes which have very different properties than the Reissner-Nordstrom case. In-
deed. it turns out that the inner mass parameters of some black holes do not diverge
in some cases. However the mass inflation mechanism does have some basic features

which are shared by different black hole backgrounds.

The second goal is to examine how the spacetime geometry affects the specific
details of the mass inflation phenomenon. Originally Poisson and Israel showed

that the inner mass parameter m;, diverges as

Mmin(v) ~ " %Jm(v), (1.22)

when the advanced time v goes to infinity [28]. The positive constant x is the surface
gravity at the Cauchy horizon (defined in Appendix A) and the mass-energy of the
radiation influx ém is inversely proportional to some power of v in the Reissner-

Nordstrom background. Hence the term exp(xv) always dominates the decaying
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dm. In some of the spacetimes mentioned above, the surface gravity « at the Cauchy
horizon vanishes, and it is interesting to understand the phenomenon in this case.
We find that under certain conditions mass inflation can still occur. but the rate of

divergence differs from the prototypical Reissner-Nordstrém case.

Finally, we consider how differing spacetime geometries affect the influx of ra-
diation. By studying wave propagation in different spacetime backgrounds, we find
that an inverse power-law decay of §m is not always valid. Indeed, this decay rate is
particularly sensitive to the asymptotic properties of the spacetime. In some cases.
for example, instead of an inverse power decay, dm can die out at an exponential
rate. In this case, the terms exp(x v) and dm(v) compete in equation (1.22). It is
evident that the increasing term exp(xv) does not always dominate the decaying
dm. and so mass inflation can be stopped. As we shall see in Chapter 7. the radi-
ation decay rate in a (3 + 1)-dimensional, asymptotically anti-de Sitter hlack hole

spacetime 1is not governed by any simple law.

In Chapter 2, we shall review mass inflation at a more technical level. The
Reissner-Nordstrom-Vaidya spacetime will be discussed. followed by the mass in-
flation calculations in this background. In addition to the method used by Poisson
and Israel, another simpler method introduced by Ori [29] will be explained as well.

All the mass inflation calculations after Chapter 2 make use of this method.

After the readers are familiar with the phenomenon, we shall move on to Chap-
ter 3 in which mass inflation in two (1+1)-dimensional spacetimes is studied. These
spacetimes come from a dilaton theory of gravity which was originally proposed for
studying quantum gravity. Although the dimension of these spacetimes is different.
we shall see that mass inflation can take place in a similar fashion as in the Reissner-
Nordstrém-Vaidya spacetime. These (1 + 1)-dimensional black holes not only serve

as toy models for testing mass inflation in theories other than General Relativity,
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but also provide examples with zero surface gravity at the Cauchy lhorizon. The

consequence of a vanishing surface gravity will also be examined.

We turn next to a consideration of the behavior of the decaying term dm. In
Chapter 4, we shall consider scalar waves in asymptotically flat spacetimes with an
arbitrary number of (odd) dimensions. Scalar waves are considered because other
waves with higher spin, like gravitational waves, obey wave equations similar to
the one for scalar waves [36], [37](p. 244), [38]. Although the main results of this
chapter have been obtained before, the method employed to determine the falloff
rate differs from that used previously. Furthermore, the analytic results obtained
in this chapter provide us with a cross-check of the numerical approach we take in
studying scalar waves. This numerical approach will be used in subsequent chapters

in studying the radiation falloff rates in other spacetimes.

In Chapter 5 the methods outlined in Section 4.1 will be used to revisit the
(1 + 1)-dimensional black holes considered in chapter 3. We first check if the use
of an inverse power falloff of §m in Chapter 3 is appropriate. We find that only
one of the two dilaton black hole backgrounds induces this kind of falloff in the
scalar waves. Waves in the second dilaton black hole background decay away at
an exponential rate. This conclusion is supported by both analytic and nuineric
investigations. The effect of this exponential radiation falloff on mass inflation will
be discussed.

We shall study mass inflation in 2 + 1 dimensions in Chapter 6. This 3D black
hole spacetime is a solution to the Einstein equations in 2 4+ 1 dimensions. This
black hole spacetime is indeed a (2 + 1)-dimensional anti-de Sitter space with iden-
tification. The black hole background allows an exact mass inflation calculation
even when the hole is rotating because the metric is simpler in 2 4+ 1 dimensions.

The appropriate radiation falloff rate in the background will also be calculated an-
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alytically and numerically. In this case, the scalar waves do not decay away at
an inverse power rate. The correct radiation falloff rate will then be used in the
mnass inflation calculation. In this chapter, we shall also consider a spacetime which
comes from a (3 + 1)-dimensional string theory. However, this spacetime does not
represent a black hole; it is interpretable as an infinite black string. We shall only
briefly discuss the radiation and mass inflation problems in this case because this

spacetime is similar to the 3D black hole spacetime.

Chapter 7 is devoted to a study of radiation falloff in a (3 + 1)-dimensional
Schwarzschild-anti-de Sitter spacetime. The motivation for this study arises from
the desire to obtain a comparison with both the asymptotically flat Schwarzschild
case and the anti-de Sitter 3D black hole. We shall see that the late time behavior
of the waves can be much more complicated than that described for either of these
latter two cases, and a wide range of falloff behavior is possible depending on the
relative magnitudes of the mass and cosmological constant. Any computation of
mass inflation in such a spacetime will necessarily have to take this falloff behavior

into account.

The last chapter of this thesis will summarize the results in the previous chap-
ters. Conclusions will be drawn and the direction for future research will be dis-

cussed.



Chapter 2

Review of Mass Inflation

The mass inflation phenomenon can be demonstrated in various ways [28. 29. 39.
40]. It also takes place in many other theories of gravity [41, 42, 43, 44, 45, 46, 47].
In this chapter, however, we shall study the mechanism by using the continuous
cross-flow model which is used by Poisson and Israel in their original paper. Ori's
thin-shell model will also be discussed because it gives an exact mass inflation
formula due to its simplicity. This model is important for our purposes because it

formns the basis for the mass inflation calculations in the thesis.

Since Poisson and Israel discovered the phenomenon in a Reissner-Nordstrom
background which is irradiated by fluxes of ingoing and outgoing radiation. we
shall review this spacetime geometry in Section 2.1 before we study their method
of calculation in Section 2.2. Finally we shall look at Ori’s thin-shell model in

Section 2.3.

24
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[\
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2.1 Background Spacetime

The Reissner-Nordstrom solution represents the spacetime of a static and spheri-
cally symmetric black hole with an electric charge. Thus the spacetime is filled with
an electromagnetic field. Because of this, the stress-energy tensor in the Einstein
equations (1.4) is no longer zero; it equals the stress-energy tensor T.s associated
with the Maxwell tensor. If we employ a metric which implies spherical symmetry

in 3-space, 1.e.
ds® = gu(t,r)dt* +2g.,(¢,7)dtdr + g (t,7)dr? + 17 [d6? + sin?(8) dg? | . (2.1)

the Maxwell tensor becomes

0 -1 00
¢ ———— |1 000
Fab = 2 = get Jrr +gtr2 (22)
T 0 0 00
(0 0 00

where the indices a and b run from 1 to 4. The electromagnetic field tensor (2.2)

0.

satisfies the sourceless Maxwell’s equations V(,Fp) = 0 and VtF, = 473,
The constant g above represents an electric charge. It is not difficult to show that

the stress-energy tensor for the electric field reads

~Gee  -Ger 0 0
-~ 1 1 q2 =gtr -~Grr 0 0
T = — | Fae B — = F. F“’,,]: (2.
T 4n [ byt Jab 8nrt 0 0 72 0 (2.3)
0 0 0 r%sin%(6) |

The solution to the Einstein equations with the stress-energy tensor Tab above
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is the Reissner-Nordstrom metric which reads

dr?
2 _ 2 2 02
ds* = -N(r)dt +N(r) +7r°dQ2° (2.4)
2M 2
N(r) = 1__+q_2. (2.5)
T T

The function N is called lapse function which describes how the spacelike hyper-
surfaces of constant ¢ evolve. The derivative of this function measures the gravi-
tational force on a sphere r = constant. We introduce the surface gravity « which
is given by x = | N'(r)/2]| in this case. Further explanation for the lapse func-
tion and the surface gravity can be found in Appendix A. The terin dQ? above
equals d6? + sin?(8) d¢?. If the electric charge q is zero, this metric reduces to the
Schwarzschild metric (1.12). Thus it is obvious that the positive constant M is the
mass of this spherical black hole [16], [6](p. 156). This metric has singularities at

§=0.80=xn.7 =7y and r = 0, where

2
re = M+M —% (2.6)

so that N(ry) = 0. We have assumed that M? > ¢? for physical reasons. (It is
difficult for astrophysical bodies to maintain substantial electric charge |q| > M
without being neutralized [2](p. 314).) The first two singularities at § = 0 and
§ = m are coordinate singularities. The other singularities at radii r = ry are
also coordinate singularities [6](p. 157). They are analogous to the coordinate
singularity at 7 = 2 M in the Schwarzschild metric (1.12). Finally, the point r = 0in
3-space is a spacetime singularity because the Kretschmann scalar in this spacetime
equals

K = £(6M2r2—12Mq2r+7q4). (2.7)

r8

Since this curvature scalar diverges at r = 0, the line 7 = 0 in the spacetime is
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a curvature singularity. The conformal diagram for this dual-horizon black hole is

given in figure 2.1.

r = constant

Timelike

-a——— Singularity

b
‘:
=
5
t = constant >3
3
&
3
¥
Event Horizon /
r=r,

r=0

Cauchy Horizon
r=r.

Figure 2.1: Conformal diagram for the Reissner-Nordstrém spacetime with M2 > 42

If we define the “tortoise coordinate” p as [48](p. 665)

dr

p — ——

N(r)’

the spacetime metric can be written as

ds? = -N(r) [dtz-dp2]+r2d92.
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This coordinate tends to positive infinity when r — oo, and it goes to negative
infinity when r approaches to ry. By introducing an advanced time v and retarded

time u. which are defined as

v = t+p, (2.10)

u = t—p (2.11)
so that © < t < v for positive p, the metric (2.9) admits another form
ds? = -N(r)dvdu+r*dQ? (2.12)
or the Eddington-Finkelstein metric forms [2](p. 153)

ds?

- N(r)dv? + 2dvdr + r*dQ? (2.13)

ds? -N(r)du® — 2dudr + % d? . (2.14)

Frow these, we see that the coordinates v and u are null because in any fixed direc-
tion. i.e. when 8 and ¢ are constant. ds? vanishes for constant v or u. Furthermore.
at constant v. p decreases while the time increases. On the other hand. at constant
w, the tortoise coordinate p increases when t grows. For these reasons. v and w are
called ingoing and outgoing null coordinates, respectively. Notice that all forms
of the Reissner-Nordstrom metric above have the coordinate singularities at § = 0
and 6 = w. and the spacetime singularity at » = 0. The hypersurfaces r = r, are
not coordinate singularities in the Eddington-Finkelstein metrics because g,, and
g*® are bounded at r = r4 [6](p. 150). However the metrics (2.4), (2.9) and (2.12)
are still singular at r = rg.

Since the metric (2.13) is non-singular at r = r,, the coordinate  has a range
0 < r < oo for all values of v € R. This portion of the Reissner-Nordstrom
spacetime is represented by the shaded area in figure 2.1. As we can see in the

diagram, the Cauchy horizon is located at v = oo.
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We now consider an irradiated Reissner-Nordstrém black hole. When the hole is
showered by infalling radiation, the spacetime is no longer stationary. We introduce

a coordinate system {v,r,8, ¢} with a metric
ds? = -Ny(v,r)dv? +2dvdr+r*dQ° . (2.15)

The coordinate v is an ingoing null coordinate as the one we have seen before
[49]. When there is infalling radiation in the spacetime, the stress-energy tensor
becomes Ty = Ty + T.s . The additional term T.s describes the radiation [50]. We

can express this tensor as

Tab = pinlalbw (216)

I, = -0,v = -6, (2.17)

where z' is the coordinate v. The function p;, is the energy density of the radiation.
It was mentioned in Chapter 1 that the ingoing radiation is infinitely blueshifted
near the Cauchy horizon; thus we are interested in the high frequency radiation
whose wavelength is small relative to the scale of spacetime curvature. This justifies
the use of the Isaacson’s effective stress-energy tensor for the gravitational radiation
[50] which is simply (2.16). It is straightforward to show that the solution to the

Einstein equations is [25, 50]

2 in 2
N(v,r) = 1 2mn(®) & (2.18)
T T
d
%min(v) = 47rlpy, . (2.19)

One can show that equation (2.19) is consistent with the conservation law VT, = 0
[2](p- 69). This solution is called the charged Vaidya solution because it is the
electrically charged version of the Vaidya solution. (The Vaidya solution represents

a Schwarzschild black hole being irradiated by ingoing radiation [25, 49].)
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The function m;, in equations (2.18) and (2.19) is interpretable as the mass of
the irradiated black hole. This interpretation becomes obvious when m;, is constant
because it is then simply the mass of a Reissner-Nordstrom black hole. When m,
is v-dependent, the spacetime becomes non-stationary but it is still asymptotically
flat. The asymptotic flatness induces a notion of gravitating mass as follows. The
vector £* = (1,0,0,0) in the coordinate system {v,r, 8, ¢} is the generator of an
asywptotic time translation symmetry in this charged Vaidya spacetime. In other
words, £ satisfies the condition L¢gay — 0 when r — oo [2](p. 283) because the
Lie derivative L¢ of the metric components g, equals 9,9, [2](p. 439). The energy

£ of the spacetime is then given by [2](p. 291)

1 2x pw
£ = -— lm / €34ap V2P dz? dz® | (2.20)
o Jo

87 r—=cx

where the term €gpq is the Levi-Civita tensor, and z*® = ¢ and z* = ¢. By using

Maple V’s tensor package, it is straightforward to show that

2

1 2w agb 7.2 7.3 _ ) q
-— €34qp V2 dz*dz® = my, — — . (2.21)
87t Jo Jo T

Therefore £ equals m;,, and this justifies the claim that m;, is the mass of the

irradiated black hole.

We now consider a charged spherical object which emits radiation. That is to
say there is outgoing radiation in the Reissner-Nordstrom background. In this case.

the stress-energy tensor for the outgoing radiation becomes

Teb = PoutMamy , (2.22)
ng = -0Ou = -4, (2.23)

in a coordinate system {u,r,6, ¢} with a metric

ds®* = - Nu(u,r)du® —2dudr +r*d9° . (2.24)
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Analogous to v in the metric (2.15), the coordinate u is an outgoing null coordinate
in the metric above. The solution to the Einstein equations with Ty, = Thy + Tas

reads

3 2 M () 4 ﬁ

New(u,7) = 1 5 (2.25)
T r

d

—Mge(u) = -477% poye . (2.26)

du

We interpret the function m.,, as the mass of the central object by using the equa-
tion (2.20). This interpretation is consistent with the fact that m.,, is decreasing.

which is evident from the right side of (2.26), when the object is radiating.

2.2 Continuous Cross-Flow Model

The continuous cross-flow model devised by Poisson and Israel [28] requires the
presence of continuous fluxes of both incoming and outgoing radiation. These two
streams of radiation are manipulated in such a way that they cross each other near
the Cauchy horizon of the Reissner-Nordstrém black hole background. When there
1s either ingoing or outgoing radiation in the spacetime. the metric solution has
a simple form as shown in the last section. For the cross-flowing configuration.
however, it is not easy to solve the field equation for the metric. Poisson and Isracl

attack this problem as follows [28].

Since the spacetime is assumed to be spherical, they write the metric as
ds® = g, dz*dz" +r2dQ? (2.27)

where the Greek indices run from 1 to 2 and the function 7 depends upon z*. One
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can show that the four-dimensional Einstein tensor G, can be split into [28]

G, = -%{2r§,‘?ur+§w [1—(vr)2-2r€72r]} : (2.28)
T
) 5
Ges = rvzr—rzR, (2.29)
1 =9 r*R
= — - — 2.
Gee 2 (9) [rVr 5 ] (2.30)

The operator V denotes the covariant derivative and R the Ricci scalar associated

with the two-dimensional Lorentzian metric g,,.

We notice that the metric (2.27) is equivalent to (2.1) in the previous section.
In the coordinate system for (2.1), the stress-energy tensor for the electromagnetic
field is given by (2.3). Therefore the electromagnetic part of the stress-energy tensor

in the coordinate system {z*,6, ¢} is simply
- qz
Too = g [~ G a8 + 72 8% 8% + 72 sin®(0) 8%, 6% | . (231)
8§mwrt

For the cross-flowing radiation, Poisson and Israel write the radiation part of

the stress-energy tensor as

- 1

T = —— [LdV)laly + Lo(U)nams ] (2.32)
dnr

. = -0,V , (2.33)

ng = -0,U. (2.34)

The functions L; and L, represent the luminosities of the ingoing and outgoing
radiation, respectively [28]. The coordinates {U,V} in (2.32) are some arbitrary
outgoing and ingoing null coordinates whose relationship to the coordinates z* will
be defined later. Equation (2.32) says that the stress-energy tensor for the cross-
flowing radiation is a superposition of the stress-energy tensor for ingoing radiation
and that for outgoing radiation. Isaacson [50] showed that for polychromatic radia-

tion, the stress-energy tensor is simply a superposition of the stress-energy tensors
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of each monochromatic mode of the radiation. Therefore we assume that there is

no interaction between the two streams of radiation.

Since the total stress-energy tensor T, must be conserved, the sum of the di-
vergences of Ty, and T, vanishes. We know that the electromagnetic part of the
stress-energy tensor obeys the conservation law; the radiation part T, thus inher-
its the divergence-free property from T,,. This four-dimensional conservation law

V"Tab = 0 reduces to

Ve (r*Tw) = 0. (2.35)
Equation (2.35) represents the usual 4-dimensional divergence-free property of T,
but is expressed in terms of the 2-dimensional metric g,,,.

It is convenient to work with the scalar functions f(z#), x(z*) and m(z*) [28].

These functions are invariant and related through the equations

2
f(z*) = g 0,rdr = 1—2—'"'7(3#—)+3—2 : (2.36)
1 O &
K(z*) = -0 f = ""(rf )+‘;’5. (2.37)

It is obvious that the function mn is the mass of the black hole if we turn off either

L; or L, in f',,b. In terms of these functions, the field equations becorme [28]

Vil + 8§ = -4nrT,, | (2.38)
R-28x = 0. (2.39)
The solution of these equations describes a Reissner-Nordstrom black hole back-

ground in the presence of ingoing and outgoing radiation described by the stress-

energy tensor (2.32).

By using the definition of f, one can manipulate equations (2.38) and (2.39)
and obtain [28]

Vim = -(4n)?2r3T, T . (2.40)
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In a double null coordinate system, the 2-metric can be written as
G dz'dz” = -2 dUdV , (2.41)
and equation (2.40) becomes
-2e7 %7 fybfym = -%e'“ Li(V)L,(U) . (2.42)

For a well-posed problem, we expect that the value of m(U, V) on a characteristic
surface described by the equations U = U, and V = V, is given a priori. As a result

the wmass function m(U.V) can be integrated as

m(U,V) = m(U,V,) +m(U,,V) = m(U..V,)

UV L) L)
M /u /v rU.V) exp(20@.V)) 72U - (2.43)

The spacetime of the model constructed by Poisson and Israel is shown in fig-
ure 2.2. It is covered by the coordinates {U, V.4, ¢} but 6 and ¢ are suppressed In
the diagram. The interior of the Reissner-Nordstrom black hole is perturbed by two
streams of radiation. The ingoing stream is turned on at V = V; and is turned off
at V' = V;. The outgoing stream is switched on during the interval U; < U < Uy.
These two fluxes cross each other in a region between the event and Cauchy hori-
zons. We denote the radiation-free region before U = U; and V = V; by region L.
The region before U = U; but after V = V4 is called region II. Finally. region III is
the sector when U > Uy and V > V;. These three regions are radiation-free and

they are patches of the usual Reissner-Nordstrém spacetime.

Since the radiation is supposed to be electrically neutral, the electric charge q 1s
the same everywhere in figure 2.2. This is not true for the mass though. Region I is
a portion of the Reissner-Nordstrom spacetime with a constant mass M, . Similarly

region II and region III have constant masses of M, and M3, respectively. In
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Cauchy Horizon —_— .

Timelike
Singularity

U=U: = Vr
V=V

Figure 2.2: Reissner-Nordstrom background perturbed by cross-flowing streamns of
radiation. The streams of scattered radiation come from the asymmetries of a

collapsing star.
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the inflow region between regions I and II, the spacetime is the charged Vaidya
spacetime with infalling radiation. We denote the mass parameter in this region
by m;(V). This is analogous to mi,(v) in equation (2.18). In the outflow region
outside the cross-flow region, we denote the mass parameter as m,(U) because this
region is a portion of the charged Vaidya spacetime with outgoing radiation which
is described by equations (2.24) to (2.26). However since the outflow stream is
inside the black hole, we must switch the sign of u in order to have an increasing
mass parameter Moye(u) = Mmoue(-1) [28]. The mass parameter in the cross-flow

region is denoted by mx(U, V') which is given by equation (2.43).
Since the null coordinates {U, V'} are arbitrary, we can choose them to be

V = -exp(-sv), (2.44)

U = -exp(-x,1u), (2.49)

where v and u are the advanced and retarded times. Now we can easily associate
the null coordinates in the cross-flowing region to those in the pure inflow or pure
outflow regions. The Cauchy horizon is now located along the line V = 0 because
the surface gravity s, at the inner horizon in region II is positive and v — oo at
the horizon. The other positive constant «, is also the surface gravity at the inner
horizon. However it is the inner horizon of the ertended region I which is not shown
in figure 2.2. In other words, &, is the same as x, except the mass M, replaces M,.
In terms of the retarded and advanced times, the two mass parameters m (V) and

m,(U) are related to m;,(v) in

2 in 2
ds? = - [l_ln#.*.q—z] dv? + 2dv dr + r2 dQ? (2.46)
T
and Meye(u) in
= 2
ds? = -[1_M+‘I_z} du? + 2 du dr + r2 dQ? (2.47)
T r
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Mmin(v) = mi(- exp(-K2v)) , (2.48)

Mou(w) = mo(-exp(-K1u)) . (2.49)

Therefore the luminosity functions L; and L, can be written as

ckav dm;. (v dv \? 1 dm, (v
L,—(-e "2 ) = ._(_) <__> = N—zzexp(chzv) d( ) (2.50)

dv dv v
e _ Giee(u) [(du\? 1 o diue(u)
Lo(-e ) = T (dU) = exp(2 K u) 0 (2.51)

In order to sew these patches of spacetime together continuously. all the wass

parameters must obey the following conditions:

mi(V;) = my(U;) = mx(U Vi) = M, , (2.52)
mi(Vy) = M, , (2.53)
mx(Us.Vy) = M. (2.54)
mx(U, Vi) = my(U), (2.55)
mx(Ua V) = my(V) . (2.56)

As a result, equation (2.43) for the cross-flow region can be written as

mx(U,V) = m,(U)+mi(V) - M,

U v Li(V)dV
+ /u AU LoU) /v r(U,V) exp(2a(U, V))

(2.57)

for U € (Ui, Us) and V € (V;, V§). The luminosity L; is given by equation
(2.50). Tne advanced time v relates to V by equation (2.44). Since the term
dmin [dv, according to the result by Price [20], decreases at a rate 1/v?, where p is

a positive integer, the luminosity L;(V) reads

L(V) o« o5 [la(-V)] 7 (2.58)
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which diverges at the Cauchy horizon V = 0. The integer p > 12 comes from the
late time radiation falloff rate measured in advanced time v [28]. Poisson and Israel
showed that the term r exp(2¢) is finite while the inflow approaching the Cauchy
horizon. They argued that the V integration in (2.57) must be unbounded when V;
goes to zero. That is to say mx diverges when the ingoing stream approaches to
the Cauchy horizon [28]. Thus Poisson and Israel concluded that the mass in region
III diverges due to the divergent mass in the cross-flow region. This inflating mass
parameter is expected to seal the Cauchy horizon by turning it into a spacetime
singularity. However the divergence of the mass parameter cannot be detected by
the observers outside the black hole because no signal can escape from the event

horizon.

2.3 Thin-Shell Model

Although Poisson and Israel showed that the inner mass parameter increases with-
ont bound at the Cauchy horizon, their approach is mathematically complicated.
By realizing that the mass inflation mechanism relies little on the quantity of the
outgoing radiation, Ori came up with a simpler model shortly after the discovery of
the phenomenon. The new model allows a better estimation of the rate of growth of
the mass parameter. He constructed his model by replacing the continuous stream
of outflowing radiation by an outgoing thin null shell. That is to say his model
describes an outgoing null shell in a Reissner-Nordstrom black hole which is also

irradiated by ingoing radial radiation [29].

In order to construct this configuration, Ori matched two patches of the charged
Vaidya solution along a null line S between the event and Cauchy horizons. This

is shown in figure 2.3. Regions I and II are two different copies of the charged
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Vaidya solution for ingoing radiation (2.15) with different mass parameters rn,; and
m,. respectively. The difference in m, and m, implies that the null line S can be
interpreted as representing a thin .she]l of outgoing radiation. In other words, the
discontinuity in the spacetime along S represents the presence of a thin shell. By

using Price’s result for late time radiation {20], m,; can be assumed to be

mi(vy) = M —dm(vy) , (2.99)
h
dm(v) = 1 (2.60)

where M, h and p are positive constants and vy is the advanced time in region
. The integer exponent p determines the decay rate of the ingoing radiation and
it is greater than or equal to 12 for gravitational radiation. The constant h is
arbitrary but the other constant M is interpretable as the final mass of the black
hole measured by an observer at spatial infinity. This is obvious because when the
advanced time v, goes to infinity, the exterior mass of the black hole m, tends to

M. Moreover. since the metric of region I reads

ds* = -Ny(vy,7)dv,? + 2dv, dr + 12 dQ? . (2.61)
2 2

Mnr) = 1-22@) & (2.62)
T T

the Cauchy horizon is given by

q2
- = M 1 —-4/1- W . (263)

On the other hand, the geometry of region II is described by the inetric

ds® = - Ni(vs,7)dvs? 4+ 2dv, dr +r2dQ2? | (2.64)
2m,(v 2
Nz(vzﬂ‘) = 1- # ;1-_2 ’ (2.65)

mz(v2) = my(v1) + Am(v,) , (2.66)
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Timelike
Singularity

Event Horizon

Figure 2.3: The 45° line S represents an outgoing thin null shell on this conformal
diagram for the charged Vaidya background.
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where Am is the mass-energy of the outgoing null shell S. Ori showed that the mass

parameter m; increases without bound when S approaches the Cauchy horizon.

This can be shown in the following way. The shell’s null generators can be
parameterized by an affine parameter A so that they are characterized by the radius
T = R(A) and advanced time v()). Without loss of generality, this parameter is
assumed to be negative outside the Cauchy horizon and equal zero at the horizon.
The function R(A) has the same value when the shell is observed from either region
I or region II because the surface element r2 dQ? is the same in both regions. This
is not the case for the advanced time v. In general, regions I and IT have their own
advanced time coordinates v; and wv,, respectively. Therefore the advanced time

associated with the shell is divided into v;(A) and wv,(A) for regions I and II.

In order for S to be null, we must have the null condition

R(N) 1 -
O 5 Ni(w:(A), R(A)) | (2.67)

where the subscript ¢ is either 1 or 2 for regions I or II. respectively. In the rest
of this section, the overdot denotes derivative with respect to A. We introduce a

function M which is defined as

L)
[X]

N3

+
Sl
ﬂ

M(r) (2.68)
whereby N;(v;, R) can be written as

N{('U,’,R) = %[M(R)—m,(v‘)] . (269)

Notice that M is the same in both regions and has the same dimensions as mass.

The null generator must satisfy the equation

() = -3 M), BQ)) (50 (2.70)
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which is one of the Euler-Lagrange equations for geodesics. The primes in the
equation above denote partial derivatives with respect to the spatial variable R.

We can rewrite equation (2.70) as

1

: 1 o
oy [M(R(A))—§N;(v;(/\),R(,\))] (N2 . (2.71)

v;:(A)

Ori introduced a function z;(A) which is important in the rest of the calculation.
This function is defined as [29]

R())
vi(A)

zi(A) (2.72)

We multiply this function by R and simplify it by using the equations (2.67) and
(2.69). We then obtain

ZA)R(A) = M(RQA)) —mi(w(})) - (2.73)
On the other hand, if we differentiate this function with respect to A. we have
#(A) = M(R()) (2.74)

after using equations (2.67) and (2.71). As a result, if we know the function R. the

spacetime in both regions can be determined by the following set of equations:

A
5(0) = Zi+ [ MI(R(Q)) dC (2.75)

o = [FEQ
w(A) = / 0% | (2.76)
m(ui(A)) = M(R(A)) — z(A) R()) . (2.77)

The integration constants Z; are as yet unknown. There is no integration constant

for the integral of v because it is irrelevant in the rest of the calculation.

Let us compute the two integration constants Z, and Z,. When ) is close to

zero, the shell is in the exterior neighborhood of the Cauchy horizon which is given
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by A = 0. In this case it follows from (2.75) that z; can be approximated as
zi(A) = Z;+M'(r-)A = Z;— ko1 A, (2.78)

where

K = -iM'(r-) = iz M? — g2 (2.79)
T- T

is the surface gravity at the Cauchy horizon r.. By using this approximation.

equation (2.76) can be approximated as

vi(A) = /A&_’*mdc = —:Tln( Z —,\) (2.80)

[
in a small neighborhood of A = 0. Because the advanced time v, in region I goes to
positive infinity at the Cauchy horizon (A = 0), we conclude that Z, = 0 according

to (2.80). Consequently we obtain
A = -exp(-k-v) (2.81)

i a small neighborhood of the exterior of the Cauchy horizon.

Since Am = m; —m, and m; are given by equation (2.77), the mass of the null

shell S reads

Am(v(A)) = -2, R()\) (2.82)

by using equation (2.75). Inside the black hole, R must be negative and we conclude
that Z; must be positive in order to have a positive mass-energy for the shell. The

specific value of Z,, however, is not important in the calculation.

We now calculate the radial function R. The condition (2.67) for the null shell

in region I can be written as

dR(vy) _ 1 {1 _ 2n-7,1(v1) _ q? }
dv, 2 R(vi)  [R(w)]?

(2.83)
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The tilde is used to denote the functional dependence on v; instead of A in R. that
is R(v1(A)) = R(A). As mentioned before, the exterior mass parameter m, is given
by (2.59). We observe that equation (2.83) is an ordinary differential equation in R
which has a series solution in v, [43]. It is not difficult to show that the asymptotic

expansion of the solution R at r. reads

d?
dv?

om(v) — 1 ié'm(v) + O(

K- T- k-2r. dv

R(v) = r +

Jm(v)) . (2.84)

Finally we recall that the mass-energy of the outgoing null shell is given by
equation (2.82). According to the expansion (2.84), R()A) has a leading order term
of

dR(v,) . - (P
—dv_‘vl(’\) ~ -

— 1) h exp(k- v;)
1 K27 v, P ’

R(A) =

(S
[0}
(4]

where equations (2.60) and (2.81) have been used. It follows from equations (2.82)

and (2.85) that

Am(vy) =~ (p — 1) h Z; exp(x- v;) ' (2.86)

K27 P

Thus Am diverges when v, goes to infinity because the exponential growth is domi-
nant compared to the inverse power attenuation of 1/v,”. In other words. when the
shell S approaches the Cauchy horizon (v; — o), its mass increases without bound.
Consequently the inner mass parameter m, also diverges while S approaches the
horizon. Furthermore, as a portion of the charged Vaidya spacetime. region II has

a zero Ricci scalar but its Kretschmann scalar reads
8
Rupeq R®? = = [szz(vz) r? —12 ma(va) ¢* r + 7q4] . (2.87)

This implies that the spacetime has a scalar curvature singularity at the Cauchy

horizon induced by the divergence of the inner mass parameter m,.



Chapter 3

Mass Inflation In 1 + 1 Dimensions

Investigation of lower dimensional theories of gravity could be interesting and en-
couraging because these theories provide an alternative arena for studying the
physics of gravity. This might deepen our understanding of the generic features
of gravity. Such theories have been particularly useful in elucidating the basic fea-
tures of classical gravity [51], in developing models for exploring the hack-reaction
problem in black hole radiation [52], and in constructing simple model theories of
quantum gravity [53]. The computational aspects of problems in lower dimensional
theories of gravity are more tractable than those in 3 + 1 dimensions. often af-
fording a greater measure of conceptual insight. An example of this is the search
for an exact solution to the Dirac equation for massive spinor particles in (I+1)-
dimensional vacuum background which allows an explicit demonstration (albeit in
a very simplified context) of the equality of the vacuum expectation value of the
stress energy outside of a black hole for both scalars and spinors [54. 55]. Similar
calculations can only be done approximately in 3 + 1 dimensions though. Other

examples include studies of the generic properties of black hole solutions [51], black

45
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hole radiation [52, 55. 54], cosmology [56], singularities [57] and quantumn gravity
[53].

Note that in (14 1)-dimensional spacetimes, the metric tensor g,; has only three
different components. The two degrees of coordinate freedom reduce the number of
unknown metric components to just one. However the first obstacle to be overcome
in making use of any (1 + 1)-dimensional theory of gravity is that the Einstein
tensor G, is identically zero in 1 + 1 dimensions for all metric tensors g,,. Hence
the Einstein equations in 1 + 1 dimensions imply a zero stress-energy tensor. In

this sense, the Einstein equations have no dynamical content in 1 + 1 dimensions.

In order to cope with this difficulty, several theories of gravity in two dimen-
sions have been proposed. One of them is the non-critical string-inspired dilaton
theory using the low-energy string effective action in 1 + 1 dimensions [58]. Dif-
ferent models with different parameters can be proposed using this theory. Many
classical solutions of this theory have been found. Because these models are mathe-
matically simple, they are useful as toy models in the investigation of the problemns
about perturbative renormalizability [59], black hole evaporation [52] and black

liole thermodynamics [58]. This low energy string effective action has the form

S = /dzz:\/-—g'e'”’[R+7(Vq&)z—%e""’FabF“b-i-V((ﬁ)], (3.1)

where the indices run from 1 to 2. In this action, R is the Ricci scalar, F,, is the
Maxwell tensor and ¢ is the scalar dilaton field. The constants v and ¢ are coupling

parameters and V is the potential function of the dilaton field.

This form of the action is related to the (3+1)-dimensional spherically symmetric
gravity in the following way. Pure gravity in 3 + 1 dimensions corresponds to the

action

s@ = /d‘z\/-g(“) RW | (3.2)
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where gt*) and R(% are the determinant of the metric and the Ricci scalar in 3 +1

dimensions, respectively. If we rewrite this action using a metric of the form
ds? = ¢  dz*dz” +e ¥ dQ? (3.3)
where g and v run from 1 to 2, we obtain

5@ = /er\/~g‘2’e'” [R(2)+2(V1/))2+2e2"’]
+4/d22 gV (Y, | (3.4)

where V is the covariant derivative operator with respect to the two-dimensional
metric (¥ ,. The quantity g(® is the determinant of g, and R® is the Ricci

scalar for ¢(?) This action, apart from the total derivative which is often dis-
9, P

v

carded. is of the same form as equation (3.1).

If we prescribe the potential function as
k
Vig) = 3 a.e®?, (3.5)
n=0
where & is some positive integer and the a,, are some coupling constants, the action

(3.1) can be written as

-9 1 2 2
S = /d%. “ge?? [R+7(V¢)2—Z w F® +Q* + ae??

k
+ /dz:z:\/-_g [Zane“"-w—swa} : (3.6)

n=2
In this form, we have chosen € = 0 and have denoted a, and a; in (3.5) by Q2 and .
The last term 87 Ly in (3.6) does not come from the action (3.1). This additional
term is added by hand in order to include a matter contribution. The symbol Lar
denotes the matter Lagrangian which has the property that §.£,, [0gab = /g T
where T is the stress-energy-momentum tensor. In the rest of this chapter we

shall choose T% to be the stress-energy tensor of a null fluid as that in Ori’s model.
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A choice of the values of the parameters v, Q, o, and a, is tantamount to a
particular choice of theory. In the next two sections, we shall consider two distinct
choices of the parameters. Each of these choices leads to a set of field equations

whose solution is interpretable as a multi-horizon black hole spacetime.

Our goal in this chapter is to study mass inflation in black holes with several
horizons within the event horizon. We first study mass inflation with non-zero
surface gravity at the Cauchy horizon in the two dilaton background spacetimes in
Sections 3.1 and 3.2. After these, we turn our attention to vanishing surface gravity

in Section 3.3 in which the mass inflation mechanism will be challenged.

3.1 First Dilaton Background

By varying the vector potential in the Maxwell tensor, and also varying the dilaton

field and the metric tensor, the action (3.6) gives the following field equations (58]:
0 = V,(e?? Ft) . (3.7)

k
0 = R+~,v2¢—7(v¢)2—iF2+Q2—Z(n—l)a,,ezw. (3.8)

n=2

2 1 2
87!'8'¢Tab = 2vab¢_2v2¢g¢xb+(7_4) [va¢vb¢—§(v¢)~gab

1 1
+2(v¢)zgab—§ [Fachc—szgabJ
1 k
-3 [Q2+ae2¢+ Zanez""} Jab - (3.9)
n=2

In the Eddington-Finkelstein metric

ds®> = 2dvdz — N(v,z)dv?, (3.10)
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when ¥ =0 = 2 and Q =0, these field equations admit the solution [58. 44]

q
= = 3.11
¢ = -ln|jz—=z,| (3.12)
Nw,z) = dE)-mb) (3.13)
r—z,
2 k
q 1 Qn 2-2n
= (z— — 1 - —z, 3.14
M) = (z=z0) |1+ gt 0 S e — a7 (314)
with the use of stress-energy tensor
T = plaly. (3.15)

1 2

The coordinates z! and z? are v and z respectively. The energy density p relates

to the function m through the equation

dm(v)
dv

. (3.16)

Siwilar to the definition (2.17) in the last chapter, the null vector I, in (3.195)
is defined as l; = -4',. This metric can represent a black hole spacetime [58].
This is easy to see when the energy density vanishes. In this case, the function
m becomes a constant, say M. One can manipulate the coupling parameters so
that M equals M at some finite z. This defines the event horizon of a black Lole.
Because the lapse function N tends to 1 when |z| approaches infinity, this metric
can be interpreted as an asymptotically flat black hole spacetime. In the rest of

this thesis, this interpretation of the spacetime is understood.

Due to the presence of the parameters a,, the function M is a polynomial of

degree 2k — 2 in 1/(z — z,). Thus the black hole spacetime allows a multi-horizon
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structure for specific values of a,. Moreover this asymptotically flat spacetime is
singular at z = z,. This point is a spacetime singularity because for any metric of
the form (3.10), the Ricci scalar equals - 8., N(v,z). The divergence of the Ricci
scalar at = r, suggests that we could divide the z-v-plane into two separate sets
along z = z,. Each of them is interpreted as an asymptotically flat universe with
a one-way-collapse solution (3.11) to (3.14). In this thesis, we shall focus on the
universe > z, for simplicity. The calculation for the left one is analogous to that

for the right universe.

Since the stress-energy tensor (3.15) describes infalling radiation in the space-
time. (this is similar to the stress temsor (2.16),) this black hole is irradiated by
infalling radiation which has an energy density of 5. When p vanishes. the function
n(v) becomes a constant which is the ADM mass of the black hole [60. 44]. When
. is v-dependent, it is the mass of the black hole measured by an observer at uull
infinity. The constants ¢ and z, in the solution are integration coustants corre-
sponding to the electric charge of the hole and the choice of the spatial coordinate’s
origin. respectively. The constant z, will be chosen to be zero in the rest of this

section without loss of generality.

Consider the matching of two patches of solution (3.11) to (3.14) along an
ountgoing null line S as shown in figure 3.1. This matching scheme is identical to the
one used by Ori and is explained in Section 2.3 of the last chapter. This construction
of the spacetime describes, in addition to influx, a null particle propagating outward
between the Cauchy and event horizons. The two spacetime sectors in regions
I and II share the same electric change ¢ and potential parameters a, but the
spacetime in region I is characterized by a mass parameter of m,, whereas region

Il is distinguished by another mass parameter m,, which is different from my.

According to the metric (3.10), any outgoing null line satisfies the autonomous
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Figure 3.1: A null line S divides the spacetime into regions I and II.
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differential equation

£(A) 1

where A is an affine parameter and the overdot denotes derivative with respect to
A. This equation is analogous to (2.67). We denote the value of the z coordinate
of the outgoing null line S by a function X(A) and choose the parameter A to be

zero at the Cauchy horizon and negative outside it.
One of the Euler-Lagrange equations for geodesics implies that the null gener-
ators for S satisfy the equation

oy - L[w]? : .
(A = -5 [WJ [X) M (X(A) = M(X(A)) +mi(vi(A))] - (3.18)

(One can show that the other Euler-Lagrange equation for the geodesics can be
obtained by differentiating equation (3.17) with respect to A.) We have used an
overdot to denote the derivative with respect to A and prime for the derivative with

respect to X. In analogy with equation (2.72), we define

X(\)

z(A) 50 (3.19)

so that we obtain the equations
2z(A) X(A) = M(X(A)) =—mi(v(N)) , (3.20)
BN = 2 M(X() (3.21)

after using (3.13), (3.17) and (3.18). We observe that this pair of equations is anal-
ogous to the pair (2.73) and (2.74). The function X is defined along the boundary
between the regions I and II which are characterized by the functions m; and v;.

The index ¢ is either 1 or 2 for regions I or II accordingly. It follows from (3.19) to
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(3.21) that

1 rA
() = Z"+§/o M X(C)) dC . (3.22)
_ X
v(A) = / 0% | (3.23)
mi(v:(A)) = M(X(A))-2z(0)X(N) . (3.24)

These three equations are the counterparts of those in (2.75) to (2.77). They are
situilar to those three in on page 42 because of the resemblance in the lapse functions
N. They will determine the evolution of the spacetime once the boundary function

X is known.

By using the equations (3.22) and (3.24), the “mass” of the null particle is given

by
Am(A) = ma(va(d)) —my(vi(A)) = 2(Z; — Z,) X(N) . (3.25)
We also define a constant
M = my(vi()) +dm(vy(A)) (3.26)

as the mass of the black hole observed in region I after the hole has absorbed all
the infalling radiation of mass-energy ém. This equation is identical to (2.59) in
which the dm is given by (2.60). For this (1 + 1)-dimensional spacetime. we assume

that the radiation also decays at the rate

h

'Ulp—l

Jm(vl) =

(3.27)

at late time, where h and p are positive constants. This ansatz is expected to be

correct because the lapse function in this spacetime reads

2

N = 1—§+0(i> (3.28)
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which is structurally similar to the lapse function of the Schwarzschild solution.
Therefore we have reason to believe that waves propagate in a similar way in the two

backgrounds. The detailed justification of (3.27) will be postponed until Chapter 5.

Equation (3.22) has an approximate solution
z(A) = Z; -k X_ A (3.29)

in the neighborhood of A = 0. The constant X_ denotes the position of the Cauchy
horizon which corresponds to X(A = 0). This approximation is the counterpart
of (2.78) in Ori’s mass inflation calculation. The surface gravity . at the Cauchy

horizon is defined as

o _ 1d[ME@)-M _MI(X.)
- = -2 dz[ z ]z:X. - 2X. (330)

This constant is always positive if M‘(X.) # 0 because the slope of the graph of
M(X) at X. is negative as shown in figure 3.2. The other case where x. = 0 will

be studied in the last section of this chapter.

According to equations (3.23) and (3.29), in the neighborhood of A = 0. we can

approximate v; as

w(d) =~ /Aﬁdq = hiln(hZX —A) . (3.31)

Since the Cauchy horizon corresponds to the limit v, — oo, we infer that Z; must
be zero. This also implies that Z; > 0 in order to have a positive A in (3-29)

because X must be negative inside the black hole of the right universe.

Given the condition (3.17) for the null generators, we can write X as an asymp-

totic series in v;. This condition in region I reads

X(\) 1 M(X(A)) -my(n())
o) -2 X0 ’ (8:32)

Q.
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Figure 3.2: A sample graph of M(X) in the first solution.
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where equation (3.13) has been used. By using (3.26), the equation above can be
written as

Sm(vy) = dilxzwl) + M~ M(X(v)) (3.33)

which is an ordinary differential equation for X(v,). The function X (v,) is related

to X(A) via the equation X (v;(A)) = X(A). If we let

X(v1) = X +¢(v), (3.34)

the function M( X(v;)) can be expanded in a Taylor series as

o (n)
M(X(v)) = M(X )+ M'(X.)e +ZM (X-)

n=2

e*(v)  (3.35)

when € is small enough, because M is a polynomial in 1 /X. In the vicinity of X .

the condition 0 < € « 1 holds. After putting this expansion into (3.33). we obtain

: = MU(X
fm(v) = 2X(w)€(n) - M(X) efmy) - 3o 2A)

n=2

(v1)  (3.36)

n!
becanse M(X.) = M. This differential equation can be solved by expressing €
as a series in 1/v;, thus X has an asymptotic series in v;. For the first order

approximation. we have dm = - M’(X_) e which yields

dm(v,)
e(n1) = T % (3.37)
As a result, equation (3.34) becomes
X)) = X. + 1 dm(v,) + O d& (3.38)
)= A 2k X. ! dvy ™o ’

In region I, the advanced time v; can be approximated as

1
w(d) ~ -—lnfA| (3.39)
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in some negative neighborhood of A = 0. By using equations (3.38) and (3.39). we

obtain
: dX 1 d
= Z0(\) x - ———— " 5m . 3.40
X(A) dvy vi(A) 2r-2X_ A dv, ™ ( )
Therefore equations (3.25), (3.27) and (3.40) yield
(p— 1) h Z,
~ - 3.41
Am(3) k-2 X. AvoyP(N) (341)
which can be written as
Am (p - l)hZ2 exp(h‘" vl) . (342)

k-2 X. v P
This expression for the mass-energy of the null particle S is identical to (2.86) and
it induces mass inflation in the inner region of the black hole. When the particle
S approaches the Cauchy horizon, v; goes to infinity and triggers an expomnential
increase in Am because k- is positive. Although Am is attenuated by the term
01"P. it does not halt the inflation because v, grows slower than the exponential
term exp(k- v;). Therefore the inner mass parameter m, = m; + Am diverges at

the Cauchy horizon as well.

3.2 Second Dilaton Background

We now consider another model in the dilaton theory in 1 + 1 dimensions. The
action (3.6), when v = 4, ¢ = 0 and the parameter Q is set to some positive

constant, gives the field equations [58, 44]
0 = V(R , (3.43)

0 = R+4V2¢—4(V¢)2—;1-F2+Q2—i(n—l)a,,ez"‘ﬁ. (3.44)

n=2
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1
87e?®T,, = 2vab¢—2v’¢gab+2(w)2gab—nggab

1 1 1 £
~3 [FachC_ ZFzgab] - 5905 Zanez""’ . (3.49)

n=2

If the stress-energy tensor (3.15) is used, these field equations have a solution [44]

Fi, = f = qe*¢, (3.46)
¢ = -g(z—za), (3.47)
Nv.z) = % [M(z) —m(v)] e . (3.48)
Q . 2 a, n
M(z) = -2-e“’ [14-%;e“4’-@n=2me2 ¢ (3.49)

in the coordinate system (3.10). The constant q represents an electric charge and
r, represents the freedom in the choice of origin of the spatial coordinate. We
can ensure that this solution represents a black hole spacetime by choosing the
parameters (), q and a, appropriately. The function m(v). which satisfies the
differential equation (3.16), is the mass of the black hole [60]. Since the stress-
energy tensor (3.15) represents the ingoing radiation, this black hole (with possibly
multiple horizons) is also irradiated. This spacetime is also asymptotically flat as

z — oo but is singular when z goes to - co.

Consider the matching of two patches of solution (3.46) to (3.49) along an
outgoing null line S. This is similar to the matching scheme we have seen in the
last section. This time we define the function z as

o exB(-26(X(4)))
(A) = 50 '
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The Euler-Lagrange equation for geodesics in this case reads

i) = L (ae(x)) — @ MOxX)) + @m(ua))] e (35

along the null line S as shown in figure 3.1. The variable ) is the affine parameter
of the null particle and it increases to zero at the Cauchy horizon. The function
X equals the coordinate z along S. As a result the set of equations analogous to
(3.22) to (3.24) can be obtained and reads

1, ,9
2N = Zit g [T M) dC . (3.52)
rexp(-24(X(()))
(X)) = d¢ 3.53
u(d) = [ ST (3.53)
mi(vi(A)) = M(X(A)) = Qz(X) X(A) . (3.94)
Again we have used the subscripts 1 and 2 to distinguish the quantities m. v. z

and Z in regions I and II. Equation (3.52) is found by calculating z; with the use
of (3.17), (3.47), (3.48) and (3.51). We use the definition of z in (3.50) to derive
(3.53). Finally by using the equations (3.17) and (3.48), we obtain equation (3.54)

when we compute z; X.

In this case, equations (3.52) and (3.54) give the mass-energy of the null particle

S as
Am(A) = my(A) —mi(A) = Q(Z, — Z5) X(N) . (3.59)

Simnilar to the approximation in the last section, equation (3.52) can be approxi-

mated as
zi(A) = Z;— ke ?HX-) )\ (3.56)

where the surface gravity - reads
1

0 M'(X.)e?¢X-) (3.57)

K. =
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As is shown in figure 3.3, M(X) at the Cauchy horizon X. equals M and it has a
negative slope there. This implies that x_ is always positive. For the moment we
shall consider the case M'(X_) # 0; the other possibility will be investigated in the

next section.

Figure 3.3: A sample graph of M(X) in the second solution.

Since Z; must be zero for the reason as that given in the previous section. Zy is

positive in order for S to have a positive energy. Moreover equation (3.53) in region
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I can be approximated as

A
v (A) = _L/ ez¢(X.)—2¢>(X(<))£ ~ __1_ In| A| (3.58)
K- ¢ K-
in some neighborhood of A = 0. On the other hand, when | A| < 1, 2z = Z, which
unplies
A x1 A
v () = / 2K [Zd( = &) — (3.59)

We now compute the function X. If we define a function X (v,(A)) = X(A) and
expand X at X. by using the null condition (3.17), we obtain

Xoy) = X_+exp<g¢:_(~X-))

This expansion for X around the Cauchy horizon X. allows us to write

exp(24(X.)) d .
(2B L) (3.61)

d
dm(vy) + 0( E&n) . (3.60)

X(\)

Because this (1 + 1)-dimensional spacetime is also asymptotically flat. we adopt
the radiation falloff rate

Sm(v) = — (3.62)

pP-1

which is the same as equation (3.27) in the previous section and equation (2.60)
in the Reissner-Nordstrém background. When A tends to zero from below. we find

that Am approximately equals

Am()) ~ - BZ I)Z 222/\23:1:((/\2#()(.)) . (3.63)

We replace A by v, using (3.59), and approximate the inner mass parameter ma(v,)
near the Cauchy horizon as
hr.P? (p—1)hr-P?

M- IIn] Z; exp(24(X-)) v2 ||P"" vz |In| Z; exp(2¢(X-)) v |
(3.64)

ma(vy) =
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We conclude that in the case M’(X_) < 0, the mass in region II of this (1 + 1)-
dimensional dilaton black hole spacetime becomes unbounded near the Canchy

horizon where v, = 0.

The divergence of the inner mass parameters in these dilaton black hole space-
times is expected to induce a curvature singularity at the Cauchy horizon. We
recall that the Ricci scalar for the spacetime of the form (3.10) is proportional to
the second derivative of N(v.z) with respect to z. It is clear that the mass func-
tions survive after differentiating the lapse functions (3.13) and (3.48) twice with
respect to z. As a result. the divergence of the inner mass parameter at the Cauchy

lhorizon is tantamount to the presence of the scalar curvature singularity there.

3.3 Zero Surface Gravity at Cauchy Horizon

In the last two sections. we have found that mass inflation occurs in the (1 +1)-
dimensional spacetimes (3.10, 3.13. 3.14) and (3.10. 3.48. 3.49). However. since
the lapse functions we studied are polynomials of some function of = with degree
greater than 2, it is possible for the surface gravity at the Cauchy horizon to be
zero for certain values of the coupling parameters. This corresponds to the case
when M'(X) equals zero at X = X_. according to equations (3.30) and (3.57).
More generally. it is possible for the first n derivatives of M(X) to be zero at the
Cauchy horizon in the two dilaton solutions, where n is some positive integer. Such

configurations will introduce qualitatively different behavior near the horizor.

Since M(X) is a polynomial of some functions of z in both solutions, it has
some finite order derivatives which are non-zero at the Cauchy horizon X = X_.
Thus we suppose there exists a positive integer b > 1 such that for every integer

n € [1,b], we have M(")(X_) = 0 but MEFD(X ) # 0. In the last two sections.
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we have seen the consequence of having b = 0, namely x. # 0. Furthermore we
also have the condition M(X.) = M as before, where M is the asymptotic mass

of the black hole in region I.

In the first dilaton solution, the lapse function with constant mass can be ex-
pressed as

N(z) = Nlneam = ﬂi;ﬂ—{ = (z-X.)(z— X )" P(z) . (3.65)

where X, > X_ > 0 is the location of the event horizon. The function P represents
the zeroes correspond to the horizons within the second (Cauchy) horizon or other
complex roots of N(z). The detail of this function is not important to us except
for the property that it is positive definite for all z > X.. It is clear from equation
(3.65) that N™)(X_) = 0 when n is less than or equal to . This 1s consistent with
the definition of b which is introduced in the last paragraph. This equation also
imnplies that NG+ (X_) # 0.

For the second dilaton solution. we have

N(z) = Nln=m = %[M(z)—M]ewﬂ

- [e-u(:)_e-w(xn] [e-zas(z)_e-zes(x.)}"“ P(e'2¢(==)) . (3.66)

Although we used P to represent the function corresponding to all other roots of
N. the one in (3.66) is different from the one in equation (3.65). Nevertheless it
1s also positive definite for all z > X.. The integer b given here yields the sawe

properties on the lapse function as the one in (3.65).

After differentiating the lapse function N(z) in (3.65) b+1 times and evaluating
the result at X_, we obtain the equation

M(b+1)(X_)

v = (b+1)I(X. — X, )P(X.) . (3.67)
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The version of this equation for the second dilaton background solution reads

3 M(b+1)(X_ ) e2d(X-)
Q

b+1 EXP(-2 (X)) —exp(-24(X+)) o/ -240x.
b+ 1)1 Q% (26T T 4] P(e2¢%-)) | (3.68)

Since we assume X, > X_, we conclude that MEFD(X_) must be negative for both
solutions. This is true because P is positive at the Cauchy horizon and exp(- 2 ¢)

1s an increasing function in the second solution.

In the case when the first b derivatives of M at X. vanish. equation (3.36) for
the first dilaton solution becomes

M(b+1)(X.)

dmin) = 2[X-+ew)] ) - =55

Etl(v) 4+ -+ (3.69)

One can show that this non-linear differential equation in € has a solution

kM 1
e(v) = (;) +0(m>. (3.70)

2(b+1)! X.

-m > 0. (3.71)

Unlike the case M’(X_) # 0, the leading order term of € is independent of the decay
rate of the late time radiation dm. Equation (3.70) is deduced with the assulption
that dm is proportional to v'~?, where p > 4 is a positive integer. The reason for p
being at least 4 will be given in Chapter 4. Equation (3.70) indicates some of the
qualitative differences between the cases of non-vanishing and vanishing surface
gravity. For the second solution, it is not difficult to show that the analogue of
(3.69) reads

M(b+1)(x_)

Jm(vl) = Q e 29(X-) o-24(e(n1)) e'(vl) _ n i

e v) +--- . (3.72)
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where €(v,) = X(v;) — X.. This equation has a solution

i L\ b

X(v) = X'+(E) +o(v1i/b) , (3.73)
(b+1)'Q exp(-2¢(X.))

ko= - e > 0. (3.74)

We observe that the term §m also plays no role in the leading order term in (3.73).
As before, we have assumed that dm dies off at a rate of O( 1/v?~1). This assump-

tion can be relaxed to include any dm which decays faster than 1/v(1/6+1),

When M'(X.) = 0, k. = 0 and the approximations in both (3.29) and (3.56)
become poor because z; is just a constant. In order to improve the approximation.
we have to go back to the equations (3.22) and (3.52) and revise the approximation.

These two equations share a common property that
zi(A) < M'(X(A)) . (3.75)

By expanding X at X_, z has an expansion

) M“’*””(X. ) /\A"’+2’(X. ) )
5()) ——r—eb(z\)+web+l(/\)+0(eb+ (A)) . (3.76)

Thus we have

o 1 1L MOe(X ) [k
a(d) = '(1+3) X- wy T 2(b +1)! [vl(/\)} (3.77)

for the first solution and

z ~ - 1Y cogx) 1 MO+2)(x ) [ RS2V
1(A) = (1+b)e vl(/\)+ BT | my (3.78)

for the second one. On the other hand, in the first solution the definition of the

function z implies

z1(A) =

. 1/b
X [")] 1 (3.79)

a)  lam ] wm
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in the neighborhood of X.. Similarly equation (3.50) of the second solution yields

) = RN g [ }”b L .
N VI w@] am o O

After combining equations (3.77) and (3.79) for the first dilaton backgronnd
solution or equations (3.78) and (3.80) for the second solution, we obtain a differ-
ential equation for v;(A). It is not difficult to show that in both backgrounds we

Lave a solution
ni(A) o« AP+ 0(AP) . (3.81)
This equation in turn implies that
X(A) = X-+0(2) . (3.82)

According to the equations (3.25) and (3.55). the mass-energy of the outgoing null
particle S is proportional to the derivative of X with respect to A. When the surface

gravity vanishes. the mass-energy of S becomes
Am(A) <« 1+0(A) . (3.83)
We now see that the inner mass parameter
ma(A) = my(A) + Am(A) (3.84)

is bounded when S approaches the Cauchy horizon where A = 0. In other words.
there is no mass inflation near the Cauchy horizon when the surface gravity at the

horizon vanishes.

This result should not surprise anyone because the mass inflation mechanism for
non-vanishing surface gravity strongly depends on the fact that v; is logarithmic in

A (equations (3.39) and (3.58)). For example, we can see that the logarithmic terms
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in (3.64) enable the divergence of the inner mass parameter m, when v, approaches
zero. This logarithmic behavior of v, is the result of having the leading order term
of z; to be proportional to A. Thus deviation from the linear behavior of zpin Ais
expected to alter the mass inflation mechanism. This result is true for both dilaton
solutions in 1 + 1 dimensions. In contrast to that of the non-zero surface gravity
case, the dominant part of the inner mass parameter with zero surface gravity is

independent of the radiation residual mass ém.

It is worth noting that although the lapse functions are very different in the
two dilaton backgrounds, the mass inflation calculations in both spacetiines resciu-
ble one another. Moreover the result of the calculations, namely the inner wmass
parameters, are similar in the two cases as well. This similarity has much to do
with the use of the same radiation residual mass §m. Recall that in both dilaton
spacetimes, we assume that §m has the form (3.27) even though the lapse functions
are different. In Chapter 5, we shall see that this ansatz is not the most natural
choice for the second dilaton background. After using a more reasonable §m in the
second solution and recalculating the inner mass parameter. we shall see that the
mass parameter behaves differently. Indeed the role of dm in the mass inflation
mechanism is so important that a change in the power of the inverse power falloff
ansatz could alter the conclusion. We shall demonstrate this point by considering

the following in the vanishing surface gravity geometry.

In the zero surface gravity calculation, we assumed that the radiation residual
mass dm(v) dies out at a rate faster than 1/v(!*+1/®)_ This leads to an ¢ of order
O(v' ‘/b) for both dilaton solutions. In equation (3.69), this assumption mplies
that the left side of the equation plays no role in the dominant part of €. For the
second dilaton background, the null condition yields (3.72), and we can see that dm.
also plays no role in this background. For simplicity, we shall use the first dilaton
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solution to show the resurrection of mass inflation.

We let dm to be proportional to 1/v(1+1/8) which is the critical falloff rate for
mass inflation when the surface gravity vanishes. Although this rate might not be
physical. we employ it only for demonstration purposes. The use of this residual

wass at critical decaying rate yields a first order approximation equation

M(b'H)(X. )

dm(v) = 2X.€(v) T

+1(v) (3.85)

which is similar to (3.69). In this case, the term ém in (3.89) cannot be ignored in

the first order approximation. For concreteness. we write

h

dm(v) = TSy (3.86)

where A is a positive constant. It is not difficult to show that the solution for (3.85)

reads

e(v) = (5)1% . (3.87)

v
where the coefficient K > 0 satisfies the algebraic equation

h(b+1)!

. 1/b
(k- K)K AEET

(3.88)

The constant % in this equation is simply the one in (3.71). When A in (3.88)
vanishes, K equals k and (3.87) reduces to (3.70). At the beginning of this section.

we have shown that M®*1)(X_) is negative which implies that

K>k>0. (3.89)

By using the equations (3.19) and (3.22), we obtain the equation

- (ed) B L
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for the leading order approximation. This equation has a solution
v(A) = [CA] (=) (3.91)

The integration constant C' must be negative so that the term inside the square
brackets above is always positive outside the Cauchy horizon. On the other hand.

the other constant « satisfies the equation

x|
o U'I
o

a+l = S 5 0. (3.92)

- % e
The term a + 1 is positive because b is a positive integer and k < K. This agrees
with the fact that v in (3.91) tends to positive infinity when A goes to zero from
below. Finally with the help of (3.91) we can express ¢ in (3.87) in terms of A and

obtain
e(v(A)) = KYb(CA)lettile (3.93)

By using equation (3.92), it is straightforward to show that

a+1 K K -1
= [f“’(rl)J <1 (3:34)

This equation implies mass inflation at the Cauchy horizon because the mwass-energy
of the null particle S is given by -2 2, X(/\) Recall that the function € is the
difference between X(\) and X.. Therefore differentiating X with respect to \ is
equivalent to calculating é(A). Since (a+1)/b is less than unity according to (3.94).
we conclude that é(A) rmost be divergent as A — 0°. This implies the divergence of

Am and m; when S approaches the Cauchy horizon.

In this calculation for vanishing surface gravity at the Cauchy horizon, we have
learned two important lessons. We now understand that the detailed geometry of

the black hole could affect the mass inflation mechanism. This is similar to the case
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in the Reissner-Nordstrém-de Sitter background in 3 + 1 dimensions [61]. Merely
having a Cauchy horizon and cross-flowing radiation do not guarantee the phe-
nomenon. The question of how the lapse function behaves at the horizon should
be taken into account in the analysis. Secondly the role played by the residual
radiation mass dm deserves further investigation. In the previous calculation. we
have witnessed a competition between the falloff of the residual mass and a growing
termn due to the geometry of the spacetime. If §m shrinks too fast. mass inflation
simply does not occur which gives regularity of spacetime at the Cauchy horizon.
On the other hand, when the attenuation from the residual mass is weak enough.
the phenomenon resumes and produces a scalar curvature singularity at the hyper-

surface.

The two (1 + 1)-dimensional spacetimes studied in this chapter are not the
ouly spacetimes with vanishing surface gravity at the Cauchy horizon. In 3 +
1 dimensions, the extremal Reissner-Nordstrom black hole also has zero surface
gravity at the Cauchy horizon. In this case, the metric is given by equations
(2.4) and (2.5) with ¢> = M2. The conformal diagram for this extreinal Reissner-
Nordstrém black hole is shown in figure 3.4 [6](p. 160). Since the lapse function

can be rewritten as

M)z , (3.95)

Ny = (1=

T

it is clear that the surface gravity x = - N’(r)/2 vanishes at the Cauchy horizon
r = M. Although this spacetime has a property of zero surface gravity at the
Canchy horizon. we shall not use it as a background spacetime for demonstrating the
mass inflation phenomenon. In order to carry out a mass inflation calculation. we

wust turn the static Reissner-Nordstrom spacetime into a charged Vaidya spacetime
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near the Cauchy horizon. This charged Vaidya spacetime has a mass parameter
m(v) = M. - dm(v) . (3.96)

Since we would like to have a vanishing surface gravity at the Cauchy horizon. we
must have ¢*> = M.%. That is to say m —» M, = lg| as v goes to infinity. Since the
mass 7 1s an increasing function, at any finite advanced time v, we have m < lql-
This inequality says that the spacetime is not a black hole spacetime at any finite
time; rather it is a naked singularity spacetime (2l(p- 315). In other words. in
order to have x = 0 at the Cauchy horizon of a Reissner-Nordstrém spacetiime with
coustant q, one must begin with a naked singularity spacetime, i.e. with no black
hole! Indeed one can construct a black hole spacetime with zero surface gravity
at the Cauchy horizon by introducing a charge current in the spacetime. However
the problem will become too complicated for demonstrating mass inflation. The
two spacetimes studied in this chapter do not have the naked singularity problem

because the Cauchy horizons are always inside the event horizons.

In the next section we shall leave the problem of mass inflation temporarily and

cousider the falloff behavior of ém in a more elegant fashion.
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Figure 3.4: Conformal diagram for an extremal Reissner-Nordstrém black hole.



Chapter 4

Scalar Waves in D + 1 Dimensions

In the last chapter we have seen that mass inflation takes place in (1+1)-dimensional
dilaton spacetimes. This is true at least in the case when the surface gravity at the
Cauchy horizon is non-vanishing. However when the surface gravity of the inner

lorizon vanishes. the mechanism can change radically.

In the investigation, we have taken for granted that the late time radiation falloff

rate obeys an inverse power law so that

d 1
ETR(’U) ~ 1; . (41)

The rate of change of the mass is decreasing because p is a positive integer and
v increases with time. This result was first discovered by Richard Price in the
early seventies when he studied perturbations near a Schwarzschild black hole [20].
The number p is determined by the mode of the radiation, namely p = 2 (21 + 2).
where [ is the mode of the spherical harmonics. As was mentioned in Chapter 1.
the presence of the radiation is a consequence of the gravitational perturbation

which originates from the spacetime asymmetry. The gravitational wave which

73



CHAPTER 4. SCALAR WAVES IN D + 1 DIMENSIONS 74

corresponds to [ = 2 implies that p = 12 in 3 + 1 dimensions. In the last chapter.
we chose p > 4 instead of 12 because the (1 + 1)-dimensional spacetime has no

rotational degrees of freedom. This accounts for the use of { = 0 in 1+1 dimeunsions.

Since the two solutions of the dilaton black holes in 1 + 1 dimensions are also
asymptotically flat, we employed the radiation falloff rate (4.1) for the exterior mass
in the last chapter. Asymptotic flatness was believed to be relevant because the
late time behavior of the radiation at a point is dominated by the waves that have

traveled a large distance. A brief explanation of this can be found in [38].

In Section 3.3, we have seen that the radiation falloff rate can affect the resnlt
of mass inflation calculations. This is the case at least when the surface gravity
at the Cauchy horizon becomes zero. It is thus important to ensure that the use
of equation (4.1) in the calculation is reasonable. The purpose of this chapter is
to investigate the circumstances under which this is the case for a general class
of asymptotically flat spacetimes. The results we obtain confirmn those obtained
previously in more restricted contexts by Price {20] and by Ching et. al. [38].
However the analytic mnethods used in this chapter are quite different from those in
the literature. Furthermore, they provide a cross-check for the numerical methods
used. These methods will be employed in later chapters for spacetimes which are

not asymptotically flat.

Before we justify the use of (4.1) as the late time radiation decay in (1 + 1)-
dimensional dilaton spacetimes, let us consider a wave propagation problem in this
chapter. In Section 4.1, we shall formulate the wave propagation problem in D + 1
dimensions mathematically. This formulation provides the basis for analytic study
and numeric simulation in the rest of this thesis. Since Price’s inverse power falloff
rate for the late time radiation is important in the mass inflation calculation. we

shall give a review of this falloff rate in Section 4.2. However the demonstration of
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the inverse power decay will be done in a Schwarzschild-like black hole in D + 1

dimensions, where D is an odd integer.

4.1 General Setup

We shall study the scalar wave equation in arbitrary dimensions because black
holes in 2 + 1 dimensions will be considered later in this thesis. Strictly speaking
we should consider the wave equation of a spin-2 field which is an appropriate
description for the gravitational radiation. A massless scalar wave is studicd in
this thesis as an analogue of the gravitational wave because the field equation for
the scalar wave not only captures the essential features of the spin-2 wave [23].
[37](p. 244) but is mathematically simpler than that for the spin-2 wave [62. 63].
Moreover, by using the scalar wave equation. the results obtained in this chapter
are directly comparable to those in [20. 38]. For the number of spatial dimensions
D being a positive integer greater than or equal to 1, the scalar wave equation in

D + 1 dimensions reads
V0 = ¢RV (4.2)

where £ is an arbitrary constant. If this constant equals to (D —1)/(4D). eqnation

(4.2) will be conformally invariant [2](p. 447).

We simplify the problem by considering static, spherically symmetric (D +1)-
dimensional spacetimes which have metrics of the form

dr?

ds? = -N(r)dtz-{-N(r)

+12dQp_,? . (4.3)

The function N is the lapse function of the spacetime and dQp_,? is the metric of

a (D — 1)-dimensional unit sphere. This metric (4.3) is sufficient for the discussion
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in the rest of the thesis. Further simplification can be made if we assume
¥ = r=DV2y ) YR . (4.4)

The parameter [ only admits non-negative integer values because the functions Y,P

are the D-dimensional spherical harmonics which satisfy the equation
I*[vP] = -1g+D-2)v”. (4.5)

The product -I(l + D — 2) is the eigenvalue of the operator L? which is the an-
gular derivative operator. In fact, equation (4.5) can be derived from the scalar
equation V? (r' Y, ) = 0 in D-dimensional Fuclidean space. It is straightforward
to show that equation (4.2) reduces to the following equation after the use of the

aforementioned simplifications:
-O0up(t, )+ N(r) 3, [N(r) O-4(t.7)] — N(r) Vo(r)¥(t.7) = 0. (4.6)

The function V,(r) in (4.6) is defined as

-1 d _ _
Vi) = er+ 22 Ly ¢ B3Py g
+(2z+z)—3;)r(221+13—1) )

in which the Ricci scalar in D + 1 dimensions with metric (4.3) is given by

1

R = —5 %{rf’-l [1-N()]} . (4.8)

One can rewrite the wave equation (4.6) as
'att¢(t7r) + N(T‘) £[¢(t‘r)] =0 (49)
with the help of the spatial differential operator

L = 0.[N(r)d,] - V(r) . (4.10)
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Alternatively if we introduce the tortoise coordinate

p = ;(:) . (4.11)
equation (4.6) can be written as
Qt(t,p) = 0pp¥p(t,p) + V(p)¥(t.p) = 0. (4.12)
The function V which is defined as
Vip) = N(r(p)) Ve(r(p)) (4.13)

plays the role of a potential which is induced by the background spacetime geometry.
Although the potential V', when it is written in terms of p. can be very complicated.
equation (4.12) has the familiar form of a potential scattering problem. By using
the retarded time u = ¢ — p and advanced time v = ¢ + p. equation (4.12) adinits

another form
1
OwP(n,v) = - 1 N(r(u,v)) V.(r(u,v)) ¥(u.v) . (4.14)
In this thesis. we shall solve the scalar wave equation (4.2) by using either equation
(4.9). (4.12) or (4.14), or a combination of these equations.

In the case of the Schwarzschild background, the graph of V has a sharp peak
(see figure 4.1) which can be thought of as a barrier. Since the lapse function for

the Schwarzschild spacetime is given by N(r) = 1 — 2 M/r, we have

p = (4.19)

which spans the whole real line for 2M < r < co. By using the equation (4.7). we

obtain

V = N(r)V(r) = (1-2M) [l(l+1)+2M] . (4.16)

T r2 r3
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This potential tends to zero when p goes to negative infinity (r — 2 M) and positive
infinity (r — oo) but it has a peak at finite distance. Figures 4.2 and 4.3 show the
same potential barrier but in differing length scales. The barrier in figure 4.2 is
shown in a semi-log scale which reveals the fact that V goes to zero exponentially
as p — -oo. It is interpreted this way because a straight line on a graph in this
scale represents exponential growing or shrinking. On this graph, the straight line
has a slope of about 300/1400 ~ 0.21 = 0.5 log(e). This number can be explained
as the following. First of all, figures 4.1 to 4.3 are drawn by using the value M = 1.
When p tends to negative infinity (this is equivalent to r — 2 M from above). V
goes to zero due to the decrease of the factor N(r). By using the equation (4.15).
we can write N = 2M exp((p —r)/(2M)) /r which tends to exp(p/(2M) —1)
when r — 2 M. Therefore the potential V should increase at a rate exp( p/(2 M))
near r = 2 M. By converting this rate into 10!°8(<)#/(2M) e caqn see that the graph

represents the exponential increase of V correctly.

On the other hand, the straight line with negative slope in figure 4.3 implies that
when p — co. V' tends to zero at a rate inversely proportional to some power of p.
Note that this straight line has a different interpretation because figure 4.3 is in a
log-log scale. According to the graph. the slope is roughly - 5/2.5 which implies that
V ~ 10728 a large distance. This is consistent with equation (4.16) because

V =0(1/r*) at large r and p ~ r for large r.

Equation (4.12) can be integrated numerically by using the finite difference
wethod [64](p. 2). We first discretize the D’Alembert operator 9,, ~ O,, as

(Ot — B, ) U(t, p) —> Y(t — At, p) Z(be(;f) + ¥(t + At, p)
_ Blt.p— Dp) — 29(t,p) + (¢, p + Ap)
(Ap)?
+0((a8)?) +0((ap)?) (4.17)
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Figure 4.1: Potential for the Schwarzschild background.
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Figure 4.2: The potential V' in figure 4.1, but in a semi-log scale.
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V(p)

Figure 4.3: The potential in figure 4.1, but in a log-log scale. Only positive p is

shown in this graph.
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by using Taylor’s theorem. In order to formulate a well-posed Cauchy problem.
we must include the initial conditions on the field ¥ as part of the problem. For

simplicity we choose these conditions to be

Y(t=0.p) = 0 (4.18)

Op(t =0,p) = u(p) (4.19)

in the rest of the thesis. In this thesis we shall employ a Gaussian distribution
with finite support for u(p). We shall see. in the Green's function approach. that
the time response of the field ¥ is dictated by the Green's function. The initial
conditions turn out to be some scaling factors which are time-independent. Since
we are only interested in the late time response of the wave. the details of the initial

condition are not important to us.
Discretizing condition (4.19) yields

Y(At.p) — (- At.p)

t2) . (4.2
S AL u(p) + O(At*) (4.20)

After dividing the upper half of the p-t-plane into meshes of size Ap x At. we define

the following:

P(mAt,nAp) = Ymn . (4.21)
Vinldp) = V,, (4.22)
u(nlp) = u, ., (4.23)

where m € Z* and n € Z. The mesh size has to satisfy the condition Ap > At so
that the numerical rate of propagation of data is never smaller than its analytical

counterpart [64](p. 53). The discretization of the Cauchy problem above then
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unplies
Yorn = -Atu,, ) (4.24)
Yoo = 0, (4.25)
At? At?
d’m-{»l.n = 2-2 A_pz - Atz l/n. ¢m.n - Tpm—l.n + Apg [d’m.n-l + d’m.n-(»l ] -

(4.26)

As a result. we can follow the evolution of the field ¥ from the time ¢ = 0 to

arbitrarily late times, within the capability of the computer.

In the case when the black hole geometry is asymptotically flat. the tortoise
coordinate p goes from negative infinity to positive infinity. Our Cauchy problemw is
similar to the infinite string problem in which the initial data propagates towards
the left and right indefinitely. The initial data does not propagate in both directions
indefinitely when the background is asymptotically anti-de Sitter. In this type of
black hole spacetime. the tortoise coordinate goes from minus infinity to zero in
the exterior region of the black hole. (It is possible for the tortoise coordinate
to be semi-infinite even when the spacetime is not asymptotically anti-de Sitter
[65. 66].) In this case. the right-propagating data cannot travel in the positive
direction forever. In analogy with the semi-infinite vibrating string problem. a
boundary condition at spatial infinity (i.e. p = 0) is needed in order to formulate the
problem appropriately. There are two types of boundary condition that are widely
used in the anti-de Sitter backgrounds: the Dirichlet and Neumann conditions [67].

In our case, the former reads
P(t,p=0) = 0 (4.27)
while the latter is simply

db(t,p=0) = 0. (4.28)
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We shall employ either one of these conditions for our analytic and numeric com-

putations whenever a boundary condition at spatial infinity is needed.

4.2 Waves in Schwarzschild-like Background

In this section we shall study the behavior of radiation falloff in asymptotically flat
background spacetimes which resemble the Schwarzschild spacetime. As we have
seen in the previous chapters, the radiation falloff rate in late time is inportant in
the mass inflation calculation. In particular. it is the inverse power rate of radiation
attenuation that makes mass inflation possible. We shall present the results of the
numnerical calculation first because this will give the readers a better idea of Low

the radiation decays at an inverse power rate. and what the late time radiation is.

Figure 4.4 shows a sample of an inverse power decay for a scalar wave in the
Schwarzschild background of mass M. We solve the wave equation (4.12) numer-
ically using the scheme discussed in the previous section. The compact initial
Gaussian impulse is centered at a distance r = 10 M (or p = 12.76 M). For siw-
plicity we choose [ = 1 for the spherical harmonic and mass M = 1. In fact the
potential barrier shown in figures 4.1 to 4.3 is created by using these values of the
parameters. Since the background is a Schwarzschild spacetime, the Ricci scalar
vanishes and the choice of £ becomes irrelevant. Figure 4.4 depicts how the mag-
nitude of the scalar field ¢ at a distance r = 20 M (i.e. p = 24.40 M) evolves in
time. We can see that the disturbance of the initial impulse (which is centered at
r = 10 M) takes about 10 units of time to reach the observation point r = 20 M.
Prior to t = 200 the field’s intensity decreases and the decay is accompanied by
oscillation of the quasi-normal modes [38]. After ¢ = 200 the scalar field dies out

monotonically at a rate inversely proportional to time ¢. It is this portion of the
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graph ¢ > M that corresponds to the late time radiation falloff.

10 T

10 4

10 "

W(t,24.40) |

10° b Slope = -5.0138
107°H
-12
10 L1 -
10' 10° 16°

Figure 4.4: The decay of a scalar wave in Schwarzschild background with [ = 1.

Indeed the “late time” is not really late after all. If we had a Schwarzschild
black hole of 1000 solar masses and a scalar wave impulse was emitted at a distance
r = 10 M which is about 1.5 x 10* kilometers, figure 4.4 says that an observer at
a distance 20 M (about 3 x 10*km) away would start seeing the monotonic decay
of the wave at the time one second after the emission of the impulse. (The time
scale in this case is given by 1000 Mg x G/c® = 0.0049, where My is a solar mass.)
In other words, the quasi-normal ringing phenomenon lasts only about one second.

followed by the late time inverse power falloff of the wave. By using the linear
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regression technique, we find the slope of the straight line on the graph to be
-9.01. in agreement with the analytic prediction of - (2 + 3) [20]. Figure 4.5 shows
another decay of scalar wave which has a late time falloff rate of -3.02. This rate
also agrees with the analytic prediction because this diagram is the (I = 0)-analogue
of figure 4.4. (That is to say figure 4.5 corresponds to a simulation using [ = 0.

M = 1. initial impulse at r = 10 M and observation at + = 20 M)

Slope = -3.0151

[W(t,24.40) |

Figure 4.5: The decay of a scalar wave in Schwarzschild background with [ = 0.

Figure 4.5 represents a case where the initial impulse is placed outside the peak

of the potential barrier, and the observation is made further away from the barrier.
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In the mass inflation process, the relevant decaying ingoing radiation must be found
near the Cauchy horizon which is inside the black hole. However the result shown
in figure 4.5 1s obtained far away from the Schwarzschild black hole. Therefore it
wight be invalid to use the inverse power decay rate, which is obtained outside the
event horizon. for the radiation inside the black hole. Figure 4.6 shows another
numerical simulation in the Schwarzschild background with { = 0. The initial
impulse is also placed at » = 10 M in this case but the observation is made at a
distance r = 2.000002 M (p = -25.65 M). In other words. the observer is very
close to the event horizon of the black hole. and he or she is on the left side of the
potential barrier. It is clear from the diagram that the late time radiation falloff
also decreases at the inverse power rate - (21 + 3). In other words. the gravitational
red shift at the event horizon does not alter the falloff rate in the Schwarzschild
background. Therefore it is valid to employ the inverse power rate for the radiation

decay in the mass inflation calculation.

We are now ready to analytically demonstrate Price’s inverse power radiation
falloff rate. The method shown here is similar to those in [20. 68] but an asywp-
totic matching argument is used in this thesis. Let us consider a scalar wave in a
(D + 1)-dimensional background which is asymptotically flat. For the remainder
of this chapter we shall restrict ourselves to the case where the number of spatial
dimnensions D is odd. The motivation of this restriction is closely related to Huy-
gen’s Principle, which implies that the scalar wave obeying the equation V20 = (
always develops a tail when the number of spatial dimensions is even. regardless of
whether or not the asymptotically flat background is sourceless [69](p. 291). The
wethod used in this section cannot be applied to even spatial dimensions because
the method makes use of the absence of radiation tails in the flat spacetime. This

weakness of the method will be apparent when it is discussed in detail. Neverthe-
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lW(t,-25.65) |

Siope = -3.0494
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Figure 4.6: The decay of a scalar wave in Schwarzschild background with [ = 0. In

this case, the observation of the decay is made at a point close to the event horizon.
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less, we shall study the radiation falloff and mass inflation in a (2 + 1)-dimensional
black hole in a later chapter, and another method for calculating the radiation

falloff rate will be discussed.

We consider a static. spherically symmetric spacetime with metric of the form
(4.3). Inspired by the work of Ching et. al. [38, 70|, the lapse function we shall

study is generalized to the form

r

R,

The constants a and 3 are integers, where # > 0 but « > 0. The other constant

mﬂ=1—ﬂ(m )ﬁ. (4.29)

ra

™ is a positive real number. When we have @ = 1, 8 = 0 and D = 3. this lapse
function reduces to the one in Schwarzschild spacetime of mass m/2. The constant
R, is a scale constant so that v/ R, is dimensionless. We suppose this lapse function
represents a black hole spacetime for appropriate values of m, a. (3 and R,. We shall
find the falloff pattern of the scalar wave in this black hole background. Althongh
the form of (4.29) is more general than we need for this thesis. since our methods
can cover this case we include it for completeness. By using this lapse function.
we can compute the Ricci scalar (4.8). and then the potential function (4.7). The

lapse function (4.29) gives a potential function
(21+D-3)(2t+D~-1)

Velr) = 4r2
+m4£(D—1—a)(D—-2—Z)—(D—l)(D—-3—2a) {:_ii:)
26(2D-3—-2a)-D+1 aPY(r)
+7TL,B 2 ra+2
B-2(,
+mﬂw—1M5;%l, (4.30)

where o(r) = In|r/R,|.

We first find the static solution 1s(r) of the wave equation (4.9). This is equiv-

alent to looking for the solution of the equation L[%s(r)] = 0. This solution can
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be expressed as a series; one can show that ¥s(r) has the form

cj(r

bs(r) = w73 B0, v+lz , (4.31)

Ju
j=0 =0 T

where the constant v = [+ (D — 3)/2. Notice that v is an integer when the spatial
dimension D is odd. Except when D = 1 this integer is always positive for { > 0.
Hence it is the first sum in the solution (4.31) that is physically relevant since it

vaunishes for large r. Therefore we choose it as the static solution. i.e.

¥s( 2 il (4.32)

For the remainder of this chapter. we assume that D > 3 so that this choice of
¢s(r) is valid. The case when D = 1 will be studied in the next chapter for the
two solutions of the dilaton theory in 1 + 1 dimensions. The coefficients ay(r) and
co(r) in (4.31) are arbitrary constants but the other coefficients are polynomials in

7(r) =In|r/R,|. Those coefficients a,(r). ¢;(r). az(r). ca(r). etc. can be generated
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by the following equations.

1;01(r) = maP(r)a(r)
_mid ;f+-12 “ W (14 G+ 1) e () aslr))
.\ m(l+<2r)7(i+10-2) W(2(r+1)+ G+ aa(r) as(r))
_m8 [z+f2(ii;3-2a)l W(1+(+1)a.oP () ajir))
_ ""ﬁ;’:fl‘ Aw(20r+1)+ G+ Do () as(r)
_m{(D - 22—;2 (1D —1-a) W(1+ (G +1)ad?(r)ar))
mé(D~2—a)

T W (200 + 1) + G + Dao?(r) as(r) )

27+1)(D-1-a)
N mfﬂ('-;g;f‘za) W(2(r+1)+ (G +1) .o r)a;(r))
_mpB(B-1)¢
29 +1
mpB(B~1)¢
+ 2v+1

W(1+(j + 1) a.o®2(r) as(r))

W(2(r+ 1)+ (G + Dad®2(r)air)) . (4.33)
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¢r(r) = mal(r)cj(r)
m(l+a)(l+ D -2)
+ 2y +1
_ml(l;f;lz_a)W(-27+(j+1)a,ff"(r)6i(‘”))
mB(+D -2
_ B(2—7++1 9)W(1+(j+1)a-(f”'1(r)6j(r))
mB 2D -3-2a)+1]
29+1
m{(D-2—-a)(D-1-a)
+ 29+1
) mf(D“22-71) P12 (a4 (G + Do) esir))
+meﬂ(2213;f—2a)W(1+(J~+1)a,aﬂ-‘(r>c,~(r>)
mp(B-1)¢
29 +1
_mBB-1¢
27+1

W(l +(7+ l)a.rrﬁ(r)c'j(r))

(-27+ G+ Do () c5(r) )

W(1+ (G +1) aa?(r)e(r))

W(1+ G +1) a0 %) ¢s(r))

+

W(-2v+ G+ Da.a®(r)ci(r) ) . (4.34)

The function W used above is defined as

W(s. f(r)) = rt '%d{. (4.35)

where s is a real number and f is some function. This function W lhas a property
that if f is a constant and s # 1, then W(s. f(r)) equals a constant. When s is
unity but f is again a constant, W( s. f(r)) is proportional to a(r) = In|r/R,|. In
the case when f(r) is no longer a constant but a polynomial of o(r), the function W
gives another polynomial of ¢(r). The index j in equations (4.33) and (4.34) runs
from zero to infinity. It is obvious that when the background is flat, i.e. 7 = 0, all
a;(r) and c;(r) vanish except ag and co. If m # 0, these coefficients are polynomials

in o(r).
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We follow the approach in the papers [20, 68] and let
Yr o= 3 Bilr) [4"0(w) + (- 1) S (v)] (4.36)
i=0

be the form of the initial wave. The initial wave is the wave emitted by the central
collapsing object at the onset of the gravitational collapse. In other words. this is
the time when ¢ « r. The functions g(u) and f(v) are as yet unknown. The term
g (u) represents i integrations of the function g(u) with respect to wu; siwilarly
for fC9(v). Using (4.36), equation (4.14) becomes

1 d
0 = N(r)=By(r) [¢"(u) - fV(v)]

2 dr

1 = d - ip(-i -
-V Y { L] B(r)] -2 2731'4-1(7‘)} [479(w) + (- 1) F9(0) | . (437)
=0

We determine the functions B;(r) by setting the coefficients of the terms g™ () +

(- 1)* f{")(v) in (4.37) to be zero. As a result. we obtain

Bo(r) = 1, (4.38)
1 d 1
Bini(r) = N() T-Bir) =5 [Vilr) Bitr)dr . (439)
where i = 0.1.2,-.- We have set By(r) = constant = 1 without loss of gener-

ality. The pair of equations above allow us to generate B;(r) hierarchically in a

straightforward manner.

We can split each B;(r) into two parts. denoted by BF(r) and BT(r). The
term Bf(r) is defined as the m-independent portion of B;(r), while BT (r) is the
rest which is m-dependent. Physically speaking, the part BP(r) represents the
wave on the lightcone because it is the part that would have been generated if the
background were flat (m = 0). Price referred to this part as the primmary wave
which depends only on the mode of the spherical harmonics. The other part B (r)

is called the tail of the wave because it is created by the presence of the spacetine
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curvature (m # 0) and is off the lightcone due to scattering. Given equations (4.38)

and (4.39), one can show that the primary part of B;(r) is simply

Dy +1+1)
24 D(y +1—d)r

BF(r)

3

(4.40)

When D is odd, v is an integer and the sequence { BP(r) }2, truncates at i = v+1.
In other words, there are a finite number of terms for the primary part of By(r) in
odd spatial dimensions. However if D is even, the sequence constitutes infinitely
many terms, thus the primary part of the initial wave ¥; will have infinitely many

terms in (4.36).

Let us consider the tail part of B;(r). Uunlike the primary part. BI(r) has no
simple solution. Fortunately one can always generate B;(r) recursively. and hence
BT (r). It is worth noting that BT (r) is of order O(rfﬁ(r)/r“"' ) Moreover BT (r)
does not truncate itself. regardless of whether the number of spatial dimensions is
odd or even. That is to say there are infinitely many terms in (4.36) corresponding
to the tail part of the wave. As was mentioned above, in even spatial dimensions.
there are also infinitely many terms for the primary part in (4.36). In this sense.
the primary and tail parts of the wave are indistinguishable when D is an even
integer. This will lead to a breakdown of this approach, and this is why we restrict

ourselves to odd D in this chapter.

Since 7 is an integer in odd spatial dimensions, it is convenient to define the

functions G(u) and F(v) as
G(u) = gt (u) and F(v) = fC"(v) (4.41)
so that the initial wave can be expressed as ¢ = ¥ Bi(r) Ty ¥ (u, v) where

T (u,v) = GO (u) + (- 1) FO-9(v) . (4.42)
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When the background is flat (m = 0), only the first v + 1 terms of BF(r) survive
in B;(r). Because we expect that any outgoing radiation will propagate to spatial

infinity without any scattering in a flat background, we must have
FO(v) = FO @) = ... = F(y) = FO®@) = 0. (4.43)

Recall that F(v) represents the scattered ingoing radiation [68] and the Bf(r) are
non-zero ouly for 0 < ¢ < . Therefore having F(v) = 0 ensures no ingoing wave

in the flat background spacetime.

For concreteness, we suppose the scalar wave starts leaving the collapsing star
at retarded time u = Uy; that is to say the scalar field is zero before v = Us.

Continuity of the field at u = Uy requires that [20]

GMN(Uy) = GO NUy) = -+ = GO = GOU) = 0 (4.44)
G =[G, 6w =[G . e (4as)

We also assume that there is essentially no emission from the star after w = U, >
Uy (due to gravitational red shift [20]). When the star possesses no initial static
woment at the onset of collapse. i.e. 5 = 0, the outgoing primary part of the wave

must be zero for all v > U; > U, and we have
GMu) = G Nw) = ... = GW(w) = GV@) = 0. (4.46)

Only the first ¥ + 1 G’s vanish because the terms G(u) to G (u) represent the
primary wave and are responsible for the emission from the star. This condition

further implies

G (u) = /Uu GO¢)d¢ = /UUl G(¢)d¢ = constant (4.47)
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for all w > U;. Therefore if there is no static moment before u = Uy, the scalar
wave after time u = U] is

busv, = 3 Bi(r) T (uv) (4.48)

1=v+1
where Tt *(u, v) is only a constant and Bi(r) = BY(r) is of order O(rrﬂ(r)/r‘+" )
Consequently the first term of this solution which is time-independent is of order
()(a'ﬁ(r)/r'”""H ) Physically, this says that the tail of the perturbation persists
after the time u = U;. The primary part of the wave has been “washed out” by

the gravitational red shift before » = U; [20].

The situation is more complicated if the collapsing object carries a static 1no-
ment at the onset of the collapse because the static wave Ps(r) can also be divided
into the primary and tail parts. In this case, we superimpose ¥s(r) of (4.32) and
Yi(r) of (4.36) together to form a new initial scalar wave. We also suppose that
only the tail of the perturbation persists after the retarded time u = U, [20]. For

the superimposed initial wave this cutoff condition requires

0) 27 4!
G (‘ll.) = -(2—7)-"00, VuZUIZUO (449)
which yields
GM(u) = GO () = ... = GMu) = 0. (4.50)

The restriction on G(u) above is different from the one in (4.46) because we want to
ensure that the m-independent part of (4.32) can be canceled by the primary part
of (4.36) properly after the time U;, leaving the combined Pr to be m-dependent

for w > U;. As a result, the wave with initial static moment will become

doo, = 52U 4 S BT T ) (4.51)

Ja
i=1 r t=vy+1




CHAPTER 4. SCALAR WAVES IN D + 1 DIMENSIONS 97

One can show that the first sum in the equation above is of order O( aP(r)/rre )
because the coefficient function a;(r) is a polynomial in 7(r) with degree 3. In the
second sum, the term T ! (%, v) is linear in « and the other term BT, (r)is of order

O(”ﬁ(r)/r‘v-f-a-f-l )

Now we turn our attention to the scalar wave at late time. By late time. we

mean ¢t 3> r. For the late time wave .. we introduce another ansatz [68]

v = ZC r) Ti(u.v) . (4.52)
i=0
Ti(uv) = I9)+ (-1} HO(v) . (4.53)

By substituting ¥ = ¢, equation (4.14) becomes

0 = %N(T)E[C’u(r)]Tg(u.v)
e 180 S{ Gl -2 o } 1w s

Similar to what we did before, we set the coefficients of TP (u.v) to be zero and

obtain a set of equations

L[Co(r)] = 0. (4.55)

L[Cin(r)] = 2L, i=0.1.2.-.. (4.56)
dr

Unlike the case for the initial wave ¥;, recursive generation of the sequence of
functions Ci(r) is not straightforward because it involves inverting the differential

operator L. We first solve for the zero order equation (4.55) and obtain a solution

Colr) = rrer 3L (4.57)
7=0

The coefficient functions c¢;(r) are those introduced in equation (4.31).
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The other inhomogeneous differential equation (4.56) can be solved as a series

solution. We can represent the solution as
. = pYtiH J 4.5
Ci(r) = Z el (4.58)
=0
where i = 0,1,2.--- When ¢ = 0, it is understood that ci(r) = cj(r). These
coefficients cj-(r) can be calculated by using the recurrence relations

28 (29 + 1) (y +2)!

alr) = 4 = T2y + 1+ )
dEir) = maf(r)cditi(r)
2fllwci+u+nawhdﬂ)
+%;’:_PW(-%—1—i+(j+1)a-6§+1(r))
m ([ + 2L(l++1D_2) W(-i+(j+1)a.rf”( ) '“(T))
) ml(l-;f+—12—a)w(_27_1—i+( + D aa?(r) () )
_mﬂgffthv0i+o+Uaﬂ“%ﬂ¢Wﬂ)
_ :;:ill W(-27-1-i+ (G +1) a.o®}(r)c(r) )
_"‘5ﬁ(22'3;f‘2“)W(-zv—l—i+(j+1)a CT;((:)))
+gnuD—2;ﬁ&?-1—“*w(z+0+naa();“u0
m§ (D -2 -a)

. . c;-+1('r)
27+ (D-1-a)? W<‘27‘1"+(J+1)a- e )

méB(2D -3 -2a)
+ 2
29 +1
_mpB(B-1)¢
29+1
mpB(B-1)¢
+ 29+1

W(-i+ (5 +1)a,a?(r) i (r))
W(-2y —1—i+(j+1)a,o"2(r)c(r))

W(-i+ (5 + 1) a,a®2(r) it (r) ) . (4.60)
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Therefore we can compute all the coefficients cj.(r) by using the coefficients ¢;(r)
and the recurrence relations above. Since each coeficient ci(r) is a constant instead
of a polynomial in o(r), we can estimate the order of the late time wave ¥ as

x

Yo = Y O(r) Tpi(u,v) . (4.61)

1=0

Finally we match the late time solution ¥ to the initial solution v; at some
transient period where u. v and r are of the same order. Since the background is
asymptotically flat, the tortoise coordinate p tends to r when r — oco: thus there
exists a transient region so that p has an order similar to that of 7. As a result. if ¢
has the same order as r, the variables u, v and r must be in the same order in the

transient region. The initial wave 9,>p, in this period hecomes

ab(r) . L.

Yusv, ~ O vl B without initial static moment .
B

am\r . . .

Yusu, ~ 0( ( )) , with initial static moment .
- r'7+<!
In order to have consistent orders in the transient period. we must have
A
0 (Inj¢]) |
T (t.t) ~ O(m (4.62)

if there is no initial static moment. On the other hand the order of 71" must be

t2vt+lt+a

B
TO(t. t) ~ 0<&1—'t—”—) (4.63)

if there is a static moment at the onset of collapse. Equations (4.62) and (4.63) give
the time response of ¥, which is the scalar wave at late time. The inverse power

falloff behavior modified by a logarithmic term was first noted by Ching et al. [70].

For a Schwarzschild background, we set D = 3, « = 1 and B = 0 and obtain
7 = L, yielding the familiar inverse power decay rate according to equations (4.62)
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and (4.63) [20. 68]. Since we have chosen the initial condition (4.18) in our numnerical
simnulation, there is no initial static moment for the wave. Consequently the falloff
in figure 4.4 has a power of - (2! + 3) instead of - (2{ + 2). This shows that the

analysis presented in this section is consistent with the results in [20. 38. 68].



Chapter 5

(1 4+ 1)-Dimensional Dilaton

Gravity Revisited

After the study of late time radiation falloff in a Schwarzschild-like background
in the last chapter, we move on to the study of radiation falloff belhavior in the
(1 + 1)-dimensional dilaton spacetimes. For simplicity. we shall consider the static
spacetimes, that is to say the masses of the two black holes in Chapter 3 arc

constant. The two metric solutions (the static versions) share the form
dz?

N(z) "

The first dilaton solution has a lapse function given by equations (3.13) and (3.14)

ds? = -N(z)dt® +

(9.1)

which reads

1 & a, 2_92
z @ 4z2 2 Z = (5:2)

The second dilaton spacetime’s lapse function is given by (3.48) and (3.49) and its

static version reads

K
N(z) = 1—- ——e Q=) T e2Qz) _ L S In_en@lems) (53
Q 2Q2 Q2 n=2 " 1 ' .

101
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In these background spacetimes the scalar wave equation (4.2) becomes

8 — N(z) 8, [ N(z) 8, ¥ ] — £ N(z) d‘%N(z) ¥ = 0. (5.4)

Notice that the metric (5.1) does not need the transformation (4.4) to put (4.2)
mmto the form (4.6). This is possible only when the spatial dimension is one: in
this case there are no spherical harmonics in the spacetime. By using the tortoise

coordinate

dz .
p = /N(,B) . ('J"J)

equation (5.4) above can be written as
3::‘1’ - 0pp\p + V(p) ‘I’ = O N (56)

where the potential V is given by

d?
Vip) = -&N(=(p)) V(=) - (9.7)

z=z(p)

Since we are only interested in the qualitative behavior of the wave. we sunplify

the two lapse functions into the form

and
N(z) = 1-—eQ@E%+) (5.9)

for the first and second dilaton solutions, respectively. This simplification allows
exact analytic calculation for the scalar wave. The constant X, denotes the position

of the event horizon of the black hole which is represented by the metric (5.1)
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with the lapse function (5.9). With these simplified lapse functions. the tortoise

coordinates and the potential become

p = z+ M %-1‘. (5.10)
M]2eM
Vip) = |1—- — | 25 5.11
(°) [ r(p)] z3(p) (5-11)
for the first solution and
p = %mleQ(=-x+’—1|, (5.12)
vip) = eq@r —=2@p) (5.13)

[1+exp(Qp)]°

for the second dilaton solution. These two tortoise coordinates extend over the

whole real line for the exterior of the black holes.

The tortoise coordinate for the first dilaton solution has the same form as the
one (4.15) in the Schwarzschild background. Generally if £ is strictly positive. the
potential (5.11) behaves like the one (4.16) with zero moment (i.e. [ = 0) in the
Schwarzschild case. This allows us to immediately conclude that the late time
radiation falloff outside the first dilaton black hole obeys an inverse power decay
pattern if £ > 0. We shall not consider the case £ < 0 because a negative poteuntial
implies that the wave outside the black hole gains energy from the spacetime but

this is not physical.

For the second dilaton solution, the scalar field ¥ satisfies the partial differential

equation

0 -0, 0+ Ve —XP@QP) o _ 4 5.
o T exp (@A) (5-14)

where V) = £ Q2. Once again, the case £ < 0 does not interest us. We shall devote

the next section to finding the solution of this differential equation for V, > 0 and
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examining the falloff behavior of the scalar wave in this background. In Section 5.2
the mass inflation calculation will be re-examined by using the revised radiation
falloff rate. We shall find that the inner mass parameter can be finite at the Cauchy
horizon due to a stronger radiation attenuation in the second dilaton background

spacetime.

5.1 Waves in the Second Dilaton Background

The procedure of finding the solution for equation (5.14) is as follows. We first
write down the representation of the solution ¥ in terms of a Green's function.
The rest of the problem then reduces to looking for the correct Green's function
[69](p. 223). We shall Fourier transform the problem from the time domain to the
frequency domain and obtain a new Green's function in the frequency space. Once
we have solved for this Green's function. an inverse Fourier transformation will give

the solution ¥(t. p).

We assume that there exists a Green’s function

[S4]
[S—y
(4]
o

Glp.G;t—7) = G((, pit —7) (5.
which is zero when t < 7. We define a differential operator D as
D = 8u—08,,+V(p) (5.16)
so that the Green's function corresponding to this operator has the property
DG(p, (it =7) = [ — 00 + V(p)] G(p, (it —7) = 8(t—T)d(p— () . (5.17)
The inner product between D¥(r,¢) and G(p, ;¢ — 7) then implies
Utp) = [T[G(p. it =) 8U(r,C) = B(r.0) &Glo, (it~ 7) (=2, dr
+ /: [G(p.(:t) 0:%(0,¢) + ¥(0,¢) 8:G(p, (;t)] dC . (5.18)
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As a result, we have changed the question from finding ¥(¢, p) to searching for an

appropriate Green's function G.

We now carry out a Fourier transformation and define

Glp.Giw) = [ Glo.Gitye™rds, (5.19)

where G is the Green's function in the frequency domain. The inverse transformna-

tion is
1 = - y
Glp.Cit) = 5= [ GlpGw)e ™ du . (5.20)
2w J-x
In the frequency domain, equation (5.17) becomes
DG(p.Gw) = [-w? =8, +V(p)] Glp.Cw) = dp~¢)  (521)
provided that G(p. (;t) satisfies the conditions
. o= T 4y = 5.99
lim G(p.¢:t) = lim 8.G(p.(:t) = 0. (5.22)
On physical grounds these assumptions are reasonable because any localized quan-
tity is expected to be dispersed throughout the space by means of wave propagation.
Mathematically, these assumptions are consistent with the Fourier transformability

of the function G(p.(:;t) which must be absolutely integrable in ¢ over R. The

Green's function in the frequency space can be represented as

[ f((w) g(p;w)

_ W(wig.f) esr
Glo,Gw) = | (5.23)
f(p;w) g((;w) )
| Wiwig. 0 te<c,

where the function W (w; g, f) is the Wronskian of two linearly independent func-
tions g(p;w) and f(p;w), that is

W(wig,f) = g(piw)0,f(p;w) — flp;w) dpg(p;w) . (5.24)
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These functions are two independent solutions of the equations

Df(p;w) = Dg(p;w) = 0. (5.

(¥4
[QV]
.

Cousequently the Wronskian W (w: g, f) is independent of p.

Let ¥ (p;w) be the Fourier transformation of the solution U(t.p). We impose

boundary conditions on the functions f(p:w) and g(p;w) so that

flpw) x ¥(p:w) and 0pf(p:w) x 8,%(p:w) (5.26)
as p — -oo. When p — oco. we require that
g(pw) x ¥(p:w) and dpg(p;w) o« 9,¥(p:w) . (5.27)

Ou the right side of equation (5.18), after we have used the inverse Fourier trans-
formation (5.20) in the first integral and interchanged the integrals with respect to
dw and dr. the representation of ¥(t. p) simply becomes

x

Utp) = [ [Glp.G:t)89(0.0) + (0.0 AC(p.C:t) | dC . (5.28)

<

Equation (5.23). (5.26) and (5.27) are used in order to remove the first integral in
(9.18). We observe that the time response of the wave ¥(t.p) cowes entirely from
the Green's function G(p, (;t) and its derivative. As a result. the late time behavior

of G determines that of the scalar wave.

There are two solutions for the differential equation Dh(p;w) = 0. namely

hi(piw) = e'i“”F(-u,l+u;1—p;z(p)), (5.29)

ha(piw) = €“PF(-v,14+v;1—pl-2z2(p)). (5.30)
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The function F is the hypergeometric function and z is defined as

- _exp(Qp) .
z(p). = T+ exp(Qp) - (5.31)

The potential V' in (5.13) can be written as V4 z (1 — z). The two parameters in the

hypergeometric function are given by

g o= ia, (5.32)

1 1 a7
= -—4+=./1 .
Y 513

-

Because p € R. z has a range of (0. 1) which guarantees absolute convergeuce in

(5.33)

the hypergeometric function [71](p. 556). At the boundary p — -oo (the event

horizon of the black hole) we employ the condition
flpiw) = etvr when p—-00 (5.34)

as the ingoing wave condition [38]. At the other end. namely the spatial infinity.

we use the condition

glpiw) = eve when p — oo (5.39)

which represents an outgoing free wave because the spacetime is asymptotically
flat. These boundary conditions simply mean that there are no waves coming from
the black hole nor spatial infinity. The convention of -7 for the ingoing wave and
+i for the outgoing wave is determined by the convention of the (inverse) Fourier

transformation (5.20). These boundary conditions determine the two functions

f(p:w) and g(p;w) as

flpiw) = h(pw) = e F(-v,1+v;1 - p:z(p)) , (5.36)

9(piw) = hapjw) = €“PF(-v,1+ ;51— p;1l - 2(p)) . (5.37)
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One can show that the Wronskian of g and f is given by

W(w:g,.f) = -2iwF(2(p)) F(1-z(p))
+Qz(p) [1-z(p)] F(2(p)) F'(1-2z(p))
+Qz(p) [1—2(p)] F(1—2(p)) F'(2(p)) . (5.38)

where F'(-) is the shorthand notation of F(-v,1+v;1 — u:-) and the prime denotes
differentiation of F(-v,1 4 v;1 — p; z) with respect to the last argument z. Since
the differential equation satisfied by f and g is a linear. homogeneous second order
one. the Wronskian of g and f must be p-independent. In other words. the equation
above is not seusitive to the value of p although individual terms in (5.38) depend
npon this variable. We make use of this property and calculate the Wronskian
(5.38) at p = 0. At this point. 2(0) = 1 — 2(0) = 1/2. With the help of the
equalities [71](eqn. 15.1.26 and 15.2.4)

() - rlerrniond) - R,
%F(a.b;c;z) = c:1 [Fla.b:c—1;z) — F(a.bic:z)] . (5.40)

we obtain
W(wg. f) = %F(%) [QF'(%)—étin(%)] (5.41)

for which the term inside the square bracket equals

QF'(%) "4i“’F(é) = r([-,fiz]l/‘;?(g(l_ﬂu]/z) '

The inverse Fourier transformation is given by the equation (5.20). We evaluate

this integral by analytically extending w to complex values and using Cauchy’s

residue theorem. The integration contour is chosen to be a large, closed semi-circle
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on the lower half w-plane, with center at w = 0. By Jordan's lemma [72]. the
contribution from the arc of the large semi-circle goes to zero as the radius of the

arc tends to infinity. The Green’s function then becomes
G(p,(;t) = 1 ZRes{ G’(p.(;w)e""‘“} (5.43)

because there is no branch cut in either f(p;w) or g(p;w) in this case [73](p. 160).
[71](p. 255). This is different from the Schwarzschild case in which the function
g(p:w) has a branch cut along the negative imaginary axis on the complex w-plane
(38]. It is the presence of the branch cut that yields the inverse power radiation
falloff rate in the Schwarzschild background. The term Res{k(z)} denotes the
residue of the function k(z) at a pole. As a result. we conclude that G(p.(:¢). and
thus ¥(¢.p). decays to zero exponentially because the poles always have negative

1naginary parts.

We check this conclusion of exponential falloff by conducting several numerical
simulations. Several sample graphs of the potential V(p) of (5.13) are given in
figure 5.1. Figures 5.2 to 5.4 show the falloff response of the scalar wave in this
(1 + 1)-dimensional dilaton spacetime. These graphs are generated with the event
horizon at X, = -30. The initial impulse is located at z = - 15 and the observation
15 measured at £ = -10 (i.e. p = 20). These graphs clearly show that the scalar

wave dies out at an exponential rate.

We consider a case where X, = 30, £ = 10, Q = 1 and the initial unpulse
is placed at z = -15 but the observation point is at p = -32.15 (or z = -30 +
107 ™). This case is comparable to the simulation associated with figure 5.2 because
all the parameters save the observation point are the same in both cases. The
observation point in this simulation is very close to the event horizon = = X, .

thus this simulation means to investigate the effect of gravitational redshift on
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V(p) 107}

10-250 |

107°%F

-200 -150 -100 -50 0] 50 100 150 200

Figure 5.1: Two sample potentials V(p) for the scalar wave in the second dilaton

spacetime.
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Figure 5.2: Scalar wave decay behavior in the second dilaton spacetime with £ = 10.

Q=1
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Figure 5.3: Scalar wave decay behavior in the second dilaton spacetime with 1)

£€=10.Q=5andii) € =1,Q =1.
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Figure 5.4: Scalar wave decay behavior in the second dilaton spacetime with £ <

1/4.
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the radiation falloff rate. Moreover the observer is located between the black hole
and the peak of the potential function V. The result of this simulation is given
in figure 5.5. It is obvious that the exponential falloff rate shown in figure 5.5 is
the same as the rate in figure 5.2. Therefore it is valid to use the large-distance

radiation falloff rate in the mass inflation calculation.

The exact exponential falloff rate in these graphs can be explained by the lo-
cation of the poles in the Green's function G(p.(;w). On the lower half w-plane.
there are infinitely many poles for the Green's function (5.23). They come from the
roots of the Wronskian (5.41) in w which comes into play through the parawmeter
ft. According to the equations (5.39) and (5.42), these poles come from the four

gamma functions and they are located at points such that

Sl—p=v) = -k . (5.44)
SE—pty) = -k (5.45)

Slatv) = ks (5.46)
Sl=ptv) = -k (5.47)

where k. k2. k3 and k4 are non-negative integers.

The dominant exponential decay rate in the Green's function G(p.(:t) is deter-
wined by the pole closest to the real axis on the lower half w-plane. On the lower

half of this complex plane, we suppose
w = A-1i|B| (5.48)

so that
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Figure 5.5: Scalar wave decay behavior in the second dilaton spacetime with £ = 10.
@Q = 1. This diagram is similar to figzure 5.2 but the observation is made near the

event horizon of the black hole.
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where A. B € R. By using the equations (5.44) to (5.47), we conclude that

A = -2Im(v)

Bl = £ [1+42k —Re(v)]
A = %Im(l/)

IBl = 2 [2+2k; +Re(v)]
A = -ZIm(v)

|B| = % [2k;—Re(v)]

A = %Im(u)

Bl = £ [1+2ks+Re(v)]

where v is given by
1 1
= -—+-\/1—-4¢.

v 2+2 '3

These four sets of equations can be combined into two which are

A = -—?—Im(u)

Bl = 2 (b~ Re(v)]

A = %Im(u)

|Bl = %[1+k2+Re(u)]

Once again the integers k), and k; are non-negative.

It is clear that if the parameter £ < 1/4, then v is real and the number A must

be zero in (5.55) and (5.56). As a result of these purely imaginary poles in w. the
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Green's function G(p,(;t) in (5.43) does not have any oscillatory part and becomwes
monotonically decreasing in time. This property is passed to the scalar field as we
have seen in figure 5.4. On the other hand, when £ > 1/4, the poles in w have

non-zero real parts which induce the oscillatory character in ¥(%. p).

Let us first consider the case £ > 1/4 more carefully. When £ > 1/4. the real
part of v is simply -1/2. If we compare the two equations for |B| in (5.55) and
(5.96). the smallest possible |B]|, which yields the w nearest to the w-real axis.
cowmes from equation (5.55) with k; = 0 or equation (5.56) with k; = 0. In any

case. |B| = @/4 and the w that gives dominant exponential falloff rate is

w = %(i\/4£—1—i) . (5.57)

This corresponds to the dominant exponential decay rate of exp(- Q t/4) in ¥. This

agrees with what we found in figures 5.2 and 5.3.

If £ < 1/4 but £ > 0 (the latter condition comes from the positivity of the

potential V'), w is always purely imaginary because
1 1
Re(v) = u:-;(l— 1—4{) € (-;,O) . (9.58)

In this case, not both equations (5.55) and (5.56) give the same |B| that leads to

dominant exponential decay. Only the equation (5.55) with &; = 0 produces

w = 4%(1-,/1-45) (5.59)

which is the closest pole to the real axis on the lower half of the w-plane. Therefore
the magnitude of the scalar wave decays monotonically in the exponential manner
at a rate of exp(-Q (1 -1 - 4{) t/4). This also agrees with the numerical

result as shown in figure 5.4.
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5.2 Mass Inflation in the Second Background

With the correct late time radiation falloff rate in hand, we are ready to revise the
mass inflation calculation and see how the exponential falloff modifies the mecha-
nism in the second dilaton background. When the surface gravity at the Cauchy
horizon is zero, we have seen that even an inverse power radiation falloff 1/t? (with
p 2> 4) does not trigger a divergence of the mass-energy of the null particle S.
Thus it is not surprising that when the falloff rate is exponential, the inner mass

paraineter remains bounded.

In the case the surface gravity at the Cauchy horizon is non-zero. something
interesting happens beneath the event horizon. First of all. the mass inflation
calculation from equation (3.50) to (3.59) remains unaffected because these cal-
culations deal with the geometrical aspect of the problem. In other words. the
calculation does not involve the late time radiation falloff which manifested itself

through the residual mass dm(v,). If the radiation dies out at a rate
U(t,z) ~ e =2 (5.60)
where a is some positive number, the residual mass dmn(t) will satisfy the relation

d
E&m(t) ~ et (5.61)

As a result, we have to recalculate equation (3.60).

We introduce two functions F and E which are related to M as
M(X() = F(e2HXN) = F(E(n()) (5.62)

so that the lapse function (3.48) along the null line S becomes

2
N = QE_(vl)'[f(E(’vl))—ml(vl)] . (0.63)
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The null condition (3.17) then gives

d%E = F(E()) -m(wn) = F(E(vy)) - M +dm(v) . (5.64)

By defining E(v,) = E. + ¢(v,) and expanding the function F(E) at the point

E_ =exp(-2¢(X-)) in the equation above, we obtain
€(v1) = dm(v) + F(E-)e(vy) + O ) (5.65)

because F(E.) = M. Furthermore, F'(E.) is negative since the surface gravity.

which is positive definite, at Cauchy horizon is

P -%M’(X.)e”‘x-’ = -F'(E.). (5.66)

The linearized version of equation (5.65) has a solution

(vy) = e*m /6m(v1)e"‘ " dy, . (5.67)

Given d7n is exponential in vy, it is obvious that e(v,) is also exponential at the

sawe rate as din. Finally because X relates to E through the equation

- 1 e(vy)
= X. += 5.6
X(v) X +an'1+ 5| (5.68)
the replacement for (3.60) is
X(vn) =~ X + %eu’(x')ﬂ&m(vl) : (5.69)

where 3 is a constant for € = 8dm. Afterall equation (3.60) is not really replaced
by a completely different equation.

As a result, the mass-energy of the null particle Am()) becomes

Am(A) = -Q2Z,X(A\) = -hZ,e?¥X-) [d_d_

U1

(A) . (5.70)

om(v,) J ﬁvl
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According to equations (3.58) and (5.61), Am becomes

~a vy

Am(v,) ~ e e~ " (5.71)

in the neighborhood of the Cauchy horizon at which v; = co. It is clear that Am
does not necessary diverge at the Cauchy horizon if @ > «.: in which case mass
inflation does not occur at all. This is analogous to a case discussed in [61]. In
fact. due to the multi-horizon structure of the black hole. one could manipulate the

parameters q and a, in equation (3.49) in such a way that x. is smaller than «.

An example of such geometry is given by the following lapse function:

2M 2_2a a
N(z) = 1- 5 2% | q Xe 2 o40(z) _ 252 eS%(=) (5.72)
By choosing the q and a, appropriately, this lapse function can be written as
-Q(z-Xy4) 1 -0@-x4) l -Qe-x4) .
N(z) = [l—e ] 1-—e 1——e . (5.73)
T2 T3

where v, and 3 are constants which satisfy the condition v; > v¥» > 1. This

condition ensures that
1 1
X+ > X. = X+ - 5 111(’72) > X3 = X+ - 5 111(73) . (574)

The constants X;. X. and X; corresponds to the positions of the event horizon.
Canchy horizon and a third horizon. respectively. This geometry with £ = 1.
Q=1 X; =-30, v2 = 10 and v; = 10.5 induces a late time radiation falloff rate
of exp(-0.24t) which is evident from figure 5.6. On the other hand. the surface
gravity at X_ is 62 = Q (72 — 1) (1 — 72/73)/2 = 0.2143. Because this number is
less than 2 x 0.24, we conclude that mass inflation cannot occur in this backgrouund
due to the strong exponential attenuation from the radiation falloff. Therefore
a spacetime that induces an exponentially shrinking wave can destroy the mass

mflation mechanism.
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Figure 5.6: Scalar wave falloff in the triple-horizon geometry. The initial impulse

is at z = - 15 and the observation is made at z = - 10 (p = 20).
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Nevertheless an exponential radiation falloff does not necessary stop the mass
inflation. The case shown in figure 5.6 is an example where the radiation attenuation
dominates. One can always find an example for the opposite situation. Indeed we
can understand the competition between x. and a with the help of the result for
the single-horizon case. In the single-horizon case. the exponential decay rate of
the radiation reads exp(- at/2), where o = Q/2 for £ = 1 > 1/4. Recall that
this result comes from the equation (5.57) of the last section. The constant Q
plays an important role here because when we switch from the z coordinate to the
p coordinate, it is the exponent of the tortoise coordinate according to equation
(9.12). When the spacetime is determined by the lapse function (5.73). the tortoise

coordinate reads

) T2 73 Q(z~X4)
T In -1
P@) = am ey Bl |
- T3 Ql=—X4+) _ 1
0 =D ey e |
T2 Qz—X4) _ 5.75
o= 1) e =5y e 1. (5.79)

In the triple-horizon example. the role of the Q@ in (5.12) is replaced by another
constant @ (72—1) (y3—1)/(v2 73). Thus the condition for suppressed mass inflation

1s expected to be

a =

lQ(’Yz—l)(’Ys—l) > K o= (12—1) (1_7_2> Q. (5.76)
2 Y2 Y3 T3/ 2

The inequality above implies
3 < 147 (5.77)

which is satisfied by the case associated to figure 5.6 (v = 10, y3 = 10.5). Oun
the other hand, if this condition is significantly violated, the surface gravity at the

Cauchy horizon is expected to be greater than the exponent of the radiation falloff.
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This is confirmed by another numerical test shown in figure 5.7. In this sirnulation.
the inequality (5.77) is violated and the resultant falloff rate gives a/2 = 0.24.
However the surface gravity at the Cauchy horizon is 0.75 which is larger than c.
In this case. mass inflation occurs at the Cauchy horizon and produces a scalar

curvature singularity there.
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Figure 5.7: Scalar wave falloff in another triple-horizon black hole. Mass inflation
is expected in this background because the surface gravity x. is much larger than

that of the black hole background associated to figure 5.6.



Chapter 6

Mass Inflation In 2 + 1 Dimensions

So far we have only studied the asymptotically flat backgrounds in odd spatial
dimensions. We now turn our attention to a (2+1)-dimensional black hole spacetime
which is not asymptotically flat. This spacetime is interesting because the rotating
version of it affords an exact mass inflation calculation [47] which is difficult to

carry out in 3 + 1 dimensions [74, 75, 76].

The (2+1)-dimensional black hole spacetime, discovered by Baiiados. Teitelboim
and Zauelli [77. 78]. is a spacetime satisfying the 3D vacuum Einstein equatious

with a negative cosmological constant (A < 0), that is
Gap +Agay = 0. (6.1)

The solution of the vacuum Einstein equations is given by

dr? 2
2 _ R N Y
ds? = -N(r)dt YRt [N%(r)dt +d9 ] (6.2)
where
2 J?
N(r) = -Ar —M+m, (6.3)
9 J
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The variable J has arange 0 < ¥ < 2x. The constant M > 0 is the quasi-local mass
of the black hole and J is its angular momentum [79]. The black hole undergoes
uniform rotation when J is a non-zero constant. The function N has two roots

r =14 when |[J| < M/,/|A|, where

: = M J1—a L -
ryt = STA] (1:!: 1 lAle . (6.9)

This spacetime is indeed a three dimensional anti-de Sitter spacetime with iden-

tification 9 — ¥ + 27 k, where & is an integer [77]. In other words, the Ricci scalar
in this spacetime everywhere equals a negative constant (6 A). In particular. the
curvature is finite at r = 0. The three dimensional anti-de Sitter spacetime can be

embedded in a four-dimensional flat space
ds* = -du® — dv?+ dz® + dy? (6.6)
as a hyperboloid
ut -2t 4yt = - (6.7)

where [* = -1/A [6](p. 131). We can transform this anti-de Sitter spacetime to
the 3D black hole spacetime (6.2) as follows [77]: When r > r,. we transform the

coordinates {u.v,z,y} into {¢,r,9} by the equations

v = /A(r) cosh(¥) , (6.8)
v = /B(r) sinh(t) , (6.9)
z = /A(r) sinh(d) , (6.10)

v/ B(r) cosh(f) , (6.11)

<
i
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where

In the region 7. < r < r,, we have

The Killing vector

Y

u

A(r) cosh(¥

-\/- B(r) cosh(t

A(r) sinh(Y

- /- B(r) sinh(¢

and when 0 < r < r_. the transformation reads

£

- B(r) sinh(%) .

in the 3D black hole spacetime (6.2) can be written as

ou 0
dd Ou

v d 9z 8 Oy 8

395y 59 95 T 99 oy

127

(6.16)
(6.17)
(6.18)
(6.19)
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which is simply {77]

- T+ 9 _ .9 ~(,9 .., 9 )
£ = 7 (za_u+uaz)—l (yav+vay). (6.26)

It is straightforward to show that ¢ - £ equals

re2—r.? 2 _ 2

é.f = r? = 1‘-2+‘_12_-(u2—$2) = 7.+-_L22_(v2—y2) : (6’27)

In the original anti-de Sitter spacetime, the Killing vector £ can be spacelike. nnll
or timelike. This property is not manifest in the 3D black hole spacetime because
r? is not negative in (6.2). In fact, one identifies points in the original spacetime
under a discrete isometry of the Lorentz group so that the Killing vector £ is
always spacelike in the 3D black hole spacetime. The identification is 9 — J +2 7 &
(77]. Indeed the 3D black hole spacetime can be extended through “r = 07 to
another region in the anti-de Sitter space. Unfortunately the Killing vector not
only becomes timelike in the extended region, it induces closed timelike curves in
that region due to the identification ¥ — ¥ + 27 k. As a result, causality is violated
if we extend the 3D black hole spacetime to the region “r? < 0”. Although the
spacetime curvature is regular at » = 0 in the 3D black hole. the causal structure
starts becoming unphysical at = 0. In this sense, Bafiados, Teitelboiin and Zanelli
called 7 = 0 a causal singularity [77]. It was subsequently shown by Maun and Ross
that a collapsing cloud of dust in this black hole spacetime will have infinite density
which induces diverging curvature at the center r = 0 [80]. Moreover quantuin
considerations also show that r = 0 is quantum mechanically unstable [67]. In this
thesis, we shall adopt the point of view that equation (6.2) represents a black hole

spacetime with “singularity” at r = 0 [47].

Figure 6.1 shows the causal structure of this 3D black hole spacetie sub ject to

the condition |J| < M/\/|A| [77]. There are two horizons in this spacetime. namely
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an outer one at r = r, and an inner (Cauchy) horizon at » = r_. Although this
spacetime might be interpreted as having an infinite number of Cauchy horizons
[G](p. 133), the Cauchy horizon we are referring to in this thesis is the one where
r =r-. The dual-horizon structure of this 3D black hole is a result of the non-zero
angular momentum J. In other words. if the black hole is non-spinning. there is
only one horizon - the event horizon. This is analogous to the relationship between

Schwarzschild and Kerr black holes in 3 + 1 dimensions.

If we define new coordinates v and 4 as

r dc
v = t+ [ 2 (6.28)
-/ N(¢)
r N?(¢)
8§ = J- —d( . (6.29)
Mo ¢
wetric (6.2) becomes
ds® = -(|A|r2—M)dv2+2dvdr—.]d'vd9+r2d92. (6.30)

In this coordinate system, it is clear that 8, and Jy are Killing vectors. As one
approaches the Cauchy horizon from outside. r decreases and N(r) approaches

zero from below. Thus by (6.28) the null coordinate v tends to positive infinity.

Before we present the mass inflation calculation. we consider the late time wave
behavior in this 3D black hole background in the next section because the calcula-
tion depends upon how radiation dies off. In Section 6.1, we shall find that a scalar
wave dies off in this background at an exponential rate. This conclusion is drawn
from an exact analytic investigation using a static 3D black hole. The knowledge
of the exponential radiation falloff will be used in Section 6.2 in which the mass
inflation calculation will be discussed. We shall find that the inflation mechanism
in this spacetime is very similar to those we discussed before, despite the fact

that this spacetime is rotating and asymptotically non-flat. We shall also learn
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that mass inflation can occur only when the radiation attenuation is weak enough
because there is a competition in the inner mass parameter formula between the
exponential blueshift related to the surface gravity at the Cauchy horizon and the
exponential attenuation of the radiation intensity. This competition calls for a more
detailed study of the radiation decay because the one given in Section 6.1 is not suf-
ficient to determine the radiation falloff rate used in the mass inflation calculation
in the non-static background. This detailed study is given in Section 6.3. In pre-
vious chapters. numerical simulations served as a check of the analytic calculation.
However due to the complexity of the non-static spacetime structure in the present
case. the numerical computation carried out in Section 6.3 will play an essential
role in determining the radiation falloff rate. We shall find that it is possible for
the 1nass inflation to be suppressed due to strong radiation attenuation. In the last
section of this chapter, we shall consider a (3 + 1)-dimensional spacetimne which
could be considered as a close relative of this 3D black hole spacetiine. However
this spacetime comes from a string theory and it represents an infinite black string
which 1s a one-dimensional “black object”. Radiation falloff and mass inflation in

this spacetime will be discussed.

6.1 Radiation Falloff

When the angular momentum J equals zero, the 3D black hole metric (6.2) reduces
to the same form as (4.3). Therefore the wave equation (4.2) in this static black

hole spacetime can be reduced to (4.12) with

3|A| M +40

V) = = (1-88) + — (6.31)
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after using the substitution (4.4). In this case, the tortoise coordinate p is given by

dr 1 \/_7'— \/—l (6.32)

N ¥4

p = =
N(r) 2 /AlM ,/ T+ VM |
For this non-rotating black hole, there is only one horizon which is at r = R, =

VM/|A|. When r goes from R, to infinity, the tortoise coordinate has a range of

(-00.0), i.e. this coordinate is semi-infinite in this geometry. We can write r in

terms of p explicitly as

_ /]ZL/I- 1 +exp(2/|A| M p) - (6.33)

Al 1 — exp(2 \/|A| M p)

For a conformally invariant wave in 2 + 1 dimensions. the parameter ¢ in (4.2)

equals 1/8 and the potential V = N V. becomes

Vip) = Vo —XBldp) (6.34)

[1+exp(Ap)]®

For convenience, we have defined

Vo = |A|(M+408) > 0. (6.35)
A= 24/AlM > 0. (6.36)

We have cliosen to consider a conformal wave (i.e. £ = 1/8) because if the value of

the parameter £ is other than 1/8, the potential

3A? M (M +412)

Vo= NV = Z-(1-84r -—(212 M+12¢ M) - e (6.37)

becomes unbounded as r — oco. This divergence of V at a finite p(p = 0 as
T — oo) imposes a lot of difficulties in writing the code for the numeric calculation.

With the potential (6.34), the wave equation (4.12) is identical to (5.14) with

A in (6.34) being replaced by Q. Recall that the wave equation (5.14) cormes from
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the second (1 + 1)-dimensional dilaton spacetime. There is an important difference
between the two cases, namely that p is semi-infinite instead of bi-infinite in this

case. which complicates the calculation.
We shall solve the scalar wave equation by using the Green's function approach.

The scalar field ¥ of (4.2) can be expressed as

v = —\;—Fdi(t,p)e“". (6.38)

The field ¢ can be represented by a Green's function G as

wito) = [ x [Glp.(;) Beb(0,C) +%(0,¢) AG(p, C:t)] dC . (6.39)

This Green's function in the timne domain is related to another Green's function G

in the frequency domain through the equation

1 o _ .
Glp.(it) = 2—ﬂLG<p,c;w)e"“dw. (6.40)

The Green's function in the frequency space can be represented as

[ f((iw) g(p;w)

- Wiw:g.f) Hos<e
Glp.Ciw) = | (6.41)
flpw) g(¢ w) i
| W@ f) p<C.

where the function W(w;g, f) is the Wronskian defined in equation (5.24). Finally
our original problem of the wave equation (4.12) with potential (6.34) relates to

the Green’s function via the two functions f and g which satisfy the equations

(«* + 0, = V(p)] Flpiw) = 0, (6.42)
(<% + 85 = V(p)] 9(piw) = 0. (6.43)
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These functions are different because they satisfy different bonndary conditions.

namely
{ Hpiw) o< dlpiw) when p — - oo . (6.44)
Opflpw) o Jpp(piw)
gow) = Pew) (6.45)
Opg(piw) o< O,9(p:w)

The function &(p;w) is simply ¥(t.p) in the frequency space. As a result. if we
know f and g, we know ¥. As in the previous chapter, the time dependence of ¥
cowes solely from the Green's function G. Thus knowing the time response of G is

sufficient for us to infer the late time behavior of the scalar wave U.

Although we have obtained the general solution of the differential equation

2, 5 _ exp(Ap) _ _ ;
{w +6,, — W [1+exp(z\p)]2 } h(ipiw) = 0 (6.46)

in the last chapter, namely equations (5.29) and (5.30). we shall write the solutions

for this static 3D black hole differently as

hi(piw) = e*i“”F(—u,l+u;1:}:p;z(p)) . (6.47)
__exp(Ap)
2
po= i (6.49)
l
v = -l+i (6.50)

2 VM’

The functions hy and h- satisfy the differential equation because h- is simply h, of
(5.29) and Ay is the negative w version of h.. Because p runs from minus infinity
to zero, z in this case has a range of (0, 1/2) which also ensures the convergence in

the hypergeometric function F [71](p. 556). Besides the obvious similarity between
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the pair Ay and h- over hy and h,, the other advantage of employing A+ is the

sitnplicity of the Wronskian. One can show that
W(wihi h) = hy(p;w)Ooh-(piw) — h-(p;w) G,hy(pw) = -2iw . (6.51)

Thus the Wronskian vanishes at the point w = 0 at which k, = A-.

At the event horizon of the 3D black hole, we impose the ingoing wave condition
flpiw) = eive when p — -o00 (6.92)

as before (p. 107). This boundary condition determines the choice of f as
flpiw) = h-(pw). (6.33)

The boundary condition at spatial infinity is more complicated than before because
the black hole spacetime is an anti-de Sitter spacetime with identifications. In
other words, waves in the p-t coordinates cannot travel in the positive p direction
indefinitely because spatial infinity (r = oo) corresponds to p = 0. We thus need a

boundary condition at p = 0. Choosing the Dirichlet condition at p = 0. i.e.
Y(t,p=0) = 0. (6.54)
the function g(p;w) becomes

glpiw) = hy(pw)— Ah-(p;w), (6.55)

where the coefficient A is defined as

= h4(0w) .

When p vanishes, z equals one half and A4 (0; w) can be simplified [71](eqn. 15.1.26)
so that

pr2u DL+ #) D(1/2 = [ +v]/2) T(1-[u—v]/2)

A= PN =0 TUF T a/D T+ =l

(6.57)
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We observe that A is unity when w equals zero. As a result. g vanishes at w = 0

because hy = h- at this frequency.

Had we chosen the Neumann condition instead of the Dirichlet condition for .

that is
Qp(t, pYlp=0 = O, (6.58)
the function g(p.w) would simply become
g(piw) = hi(piw)— Bh-(p:w) . (6.59)

where

O,h4 (0: w)
0,h- (0;w)
g2u LA+ p)  Tl[u+v]/2) T(1/2—[p-v]/2)

D(1—p) D(1/2+ [p+v]/2) T([p-v]/2) (6.60)

Similar to the case of using the Dirichlet condition, we note that g becomes zero at
the point w = 0. It is clear that the type of boundary condition at spatial infinity

only affects the coefficient of A- in g.

Now we combine everything and obtain

Glp.C <o) = s=h(Gw) [halpiw) = Ahe(pw)] . (6.01)

Equation (6.61) above is the Green'’s function in the frequency space with the use
of the Dirichlet boundary condition at spatial infinity. If the constant A in (6.61)
is replaced by B, the equation will become the Green’s function corresponding to
the use of the Neumann condition at p = 0. The remainder of the problem is to
bring the Green’s function from the frequency domain back to the time domain

because we are only interested in the time response of the radiation, especially at
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the late time. The equation that transforms the Green's function is given by (5.20)
in the previous chapter. The integral in this equation will be replaced by a contour
integral on the complex w-plane. The contour of integration is chosen to be the
standard large. closed semi-circle on the lower half w-plane. By Jordan's lemuma.
the contribution from the arc of the large semi-circle goes to zero as the radins of

the arc tends to infinity. The Green’s function then becomes

Glp.¢;t) = i > Res{G(p.(;w) exp(-iwt) } (6.62)

because there are no branch cuts in the Gamma functions [71](p. 255) and the
hypergeometric functions [73](p. 160) in this case. The poles of the Green's function
Gp.C; w) within the contour come from the Gamma functions of the coefficient A

or coefficient B, depending on which boundary condition is used at p=0.

Let us consider the Dirichlet case first. The poles from the coefficient 4 corre-

spond to
l+p = -k, (6.63)
1 u+v
1_ - k. 6.64
5 5 2 (6.64)
1_“;” = -ky, (6.65)

where ky, k; and k3 are non-negative integers. The dominant expounential decay
rate 1s determined by the pole closest to the real axis on the lower half w-plane.

According to the three equations above, there are two such poles, namely

! 3
= £———A-il). 6.66
¢ oV ' (6.66)

As a result, the exponentially decaying Green’s function G implies that Y also
decays in this manner at a rate of exp(-3At/4) when the Dirichlet condition is

used at the boundary p = 0.
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The next graph shows the numerical results using the potential (6.34). We
used the same initial condition as the one in the numerical computation for the
Schwarzschild case in Chapter 4. Since the background spacetime has a time-
like spatial infinity in this case, we integrate equation (4.12) numerically with the
Dirichlet boundary condition at r = oo (i.e. p = 0.) Figure 6.2 illustrates the
falloff behavior of the wave using different potentials. In the graph, the initial
Gaussian impulse is located at twice the black hole radius (2 R,) and the observa-
tion is made at 4 Ry. The straight line asymptotes of the ringing behavior on the
semilog graph correspond to the exponential falloffs, numerically confirining that
the wave exponentially decays in this static 3D black hole background at a rate
exp(-3At/4).

The change from the coefficient A to B in (6.61) for the Neumann condition at
the spatial infinity causes the singular terms in G to be ['(1 + ). T(- [+ v]/2) and

[(1/2 — [ — v]/2). These gamnma functions imply the singularities at

p = -k-1, (6.67)
g o= 2ky—v (6.68)

where ki, k; and k3 are also non-negative integers. A quick inspection concludes
that 3 dies out to zero at an exponential rate of exp(-At/4) because the poles

which are closest to the real w-axis are

l A
= *—msA=-1—. 6.70
“ oV T 's (6.70)

Figure 6.3 illustrates the numerical results using the Neumann boundary con-
dition at p = 0. It is clear from the graph that the scalar wave also exponentially

decays when the Neumann condition is used. One can see that the falloff rate is
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Figure 6.2: Exponential falloff for a conformal scalar wave using the Dirichlet

boundary condition.
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three times slower than that in the Dirichlet case because the dominant poles in

this case are three times closer to the real w-axis than those in the Dirichlet case.

10 1 T ] T
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101 Regression Slope = -0.05008 / In(10)
/
107 | ) _
& 107§ |
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= 1078 i
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-i0
10 H .
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V Regression Slope = -0.2509 / In(10)
-14
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0 50 100 150 200 250

Figure 6.3: Exponentially decaying scalar waves using the Neumann condition.

In this 3D black hole spacetime, the potential V always has the absolute max-
imum Vg at p = 0, according to equation (6.34). This is evident from figure G.4.
Moreover there is no sharp peak in the potential. As a result, all observers are

always on the left side of the potential maximum. This is different from the case
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for the Schwarzschild background in which an observer could either be on the left
or on the right of the potential maximum (sharp peak). Since in the 3D black hole
background all observers are in a region in which the potential decreases in the

decreasing-p direction, they will observe similar falloff behavior for the radiation.

0.25f

Q.2

0.1

0.05

0
-40 -35 -30 -25 -20 -15 -10 =5 0

Figure 6.4: The graph of potential function (6.34) with A = 0.02 and Vo=1.
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6.2 Mass Inflation Calculation

We now consider mass inflation in the rotating 3D black hole background. The

stress-energy tensor of the null dust in this rotating background has the form

pin 0 0
[(Tas] = 0 00 (6.71)
0 00

in the coordinate system {v.r.6}. Putting the stress-energy tensor (6.71) into the

(2 + 1)-dimensional Einstein equations
Gab+Agas = 87GT, . (6.72)
we obtain an exact solution [47]
ds® = -a(v.r)dv® +2dvdr — Jdvdf + r* d6> . (6.73)
where a(v.7) = |A|r?* — m(v). The function m satisfies the equation

d
—m(v) =167 Gr p;, (6.74)
dv

because 7 p;i is a function of v, as may easily be shown from the conservation laws.
As usnal, we interpret rn as the mass function of the spacetime described by (6.73)
(79]. This metric is the (2+ 1)-dimensional rotating analogue of the Vaidya solution

which 1s spherically symmetric.

We consider a pulse of outgoing radiation between the event and Cauchy hori-
zons of the black hole spacetime (6.73) as in the mass inflation setup in the Vaidya-
Reissner-Nordstrom background or the (1 + 1)-dimensional dilaton black hole back-

grounds. However the pulse S in this case is a null ring in -8 coordinates. We
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denote the region enclosed by this ring as II and its complement as region I. char-
acterized by the mass parameters m,(v,), and m,(v,), respectively. This setup is
very close to the one depicted in figure 2.3 on page 40 or figure 3.1 on page 51. In
other words, there is an outgoing null ring inside the 3D black hole which is irradi-
ated by fluxes of ingoing radiation described by the stress-energy tensor (6.71). We
match two patches of the solution (6.73) as before along the ring S which is found
between the event and Cauchy horizons. Any null ray in this rotating black lLole

background satisfies the equation
-av?(A) + 29(A) F(A) = J9(A) B(A) + r3(A) 63(A) = O (6.75)

where A is the affine parameter which is chosen to be zero at the Cauchy horizon
and negative in region I. The overdot. once again. represents differentiation with

respect to A. The geodesic equations in this black hole spacetime are

29 = -0,a(v,r)v® +2r6% . (6.76)
d _ )
0 = -JA—[-Jv+2r 9] . (G.77)

Equation (6.77) implies that

8(\) = > o(A) . (6.78)

where we have set the constant of motion g(&s,u) to zero. The vector u is the

3-velocity of the ring [2](p. 442).

By using (6.78), equation (6.76) can be written as

d [2
= [;] = M), (6.79)
where M(r) is defined as |A|r* + J?/(4r?). Equation (6.78) also simplifies the null
condition (6.75) as

297 = [M(r) —m(v)]9%. (6.80)
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The null condition above is in the same form as equation (2.67) or (3.17). In fact

we can rewrite (6.79) as

d[1 1
5[;] = SON(.7) (6.81)

which is identical to equation (2.70). The function N(v.r) in the above equation

equals M(r) — m(v) in this rotating 3D black hole background.

After defining a function R(A) such that 27 R is the perimeter of the ring S and

another function

2R(A)
z(A) 500 (6.82)
it is straightforward to show that (6.79). (6.80) and (6.82) give the set of equations
A
z(A) = R(}) [Zi +/ M( R(C))dC} : (6.83)
w(A) = 2 / z‘(C (6.84)
mi(vi(A)) = M(R(A)) + ROA) M (R(A)) — 2(}) . (6.89)

As usual the subscript 7 is either 1 or 2 for regions I or II respectively. The priwe
denotes differentiation with respect to the spatial coordinate R. By comparing the
equations above with those in (2.75 - 2.77), (3.22 - 3.24) or (3.52 - 3.54). we observe
that the set of equations (6.83) to (6.85) is quite different from the other sets. This
can be explained by the fact that the mass m(v) in N(v,r) of the 3D black hole is
isolated from the r-dependent part. That is to say 9N/8m is not a function of = in
this spacetime. Because of this, the computation of dz/d\ from (6.82) produces an
m-dependent answer, which is not what one would obtain by using the other three
background spacetimes. Thus isolating the mass m in the set of equations is done
differently in this spacetime, thereby yielding a different looking set of matching

equations.
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Since the outgoing null ring is inside the black hole, its mass-energy is given by
Am(A) = my(A\) —my(N) = (21 — Z2) R()) . (6.86)

By using an argument similar to the one given on page 43, we conclude that Z;
must be zero. Furthermore since R(A) is expected to be negative inside the black

hole, the sign of Z, must be positive in order to have a positive A in (6.86).

Equation (6.83) can be approximated near the Cauchy horizon as
z(A) = R(A) [Z:i -2k 2] . (6.87)

where k. is defined as

1
K- = -‘2—M,(7‘-) (6.88)
and r. is the value of r at the Cauchy horizon. Because the derivative of M
must be negative at r-, k. is positive. Once we know the approximated z in the

neighborhood of A = 0, the other function v; becomes

A 2
which yields
1
m(A) = -=IfA|, (6.90)
va(A) = Z%)‘. (6.91)

Similar to what we did before, by using the null condition (6.80) and assuming
that

R(vl) = 1. +¢(vy) , (6.92)
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it 1s not difficult to show that

e(vy) = Ke”‘-‘."-i-ée"“"‘ /e"‘"‘ §m(vy) dv, | (6.93)

where K is an integration constant. This result, with the use of equation (6.90).

umplies that

e~ "M Fm(v(A)) . (6.94)

. v (A)
R\ = K+%/ e~ v m(v) dv —

K-
The analysis in the previous section suggests that the residual mass dm(vy) should
be exponentially decreasing. If this decay rate is given by dm(v;) = h exp(- av,).
then R will be either decreasing or increasing, depending on the relative size of
£ and a. When k. > a, R will diverge at a rate of exp( |k- — a|v; ) because v,
goes to infinity when the ring moves towards the Cauchy horizon. However it will
deflate at a rate exp(-|a —x-|v;) to K if @ > k.. The case k. = « does not
interest us because the two cases k. > a and @ > x- have included the mmflating
and deflating scenarios; not to mention the measure zero chance of having x_ equal
. Rearranging equation (6.86) yields

haZ,

(ke ~a)ur (A} G.95
2k (ke — a) ¢ (6.95)

ma(A) = M —2Z, K —he e 4

It is obvious that when a > k., the inner mass parameter m, 1s bounded from
above which signifies the inhibition of mass inflation. In the case of the second
dilaton black hole in Chapter 5, we have seen that the radiation attenuation can
exceed the exponential growth due to the geometry at the Cauchy horizon. Since
a 1s determined by the falloff rate of the residual mass dm of the radiation. there
is a competition between the strength of the surface gravity at the Cauchy horizon
and the decay of the radiation. Unfortunately whether or not w. is greater than
a in this rotating 3D black hole is unclear because the conclusion of exponeuntial

decay of radiation is inferred from the use of an unrotating black hole which has
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no Cauchy horizon at all. The analysis in the previous section only suggests that
radiation outside a spinning black hole in three dimensions decays exponentially
but the study fails to tell us the strength of the decay outside the rotating black
hole. In the next section, we shall consider a special case of radiation falloff in a

rotating black hole background.

6.3 Radiation Outside a Spinning 3D Black Hole

In section 6.1, we have seen that a conformally invariant scalar wave exponentially
decays outside a static 3D black hole. When the black hole rotates. that is .J # 0. we

also find an exponential decay rate for the scalar wave, as we shall now demounstrate.

If we assumne that

P(t,7)
g

that is to say there is no “spherical harmonic” component in the wave. the conformal

(t.r.9) = (6.96)

scalar wave equation V?*® = R ¥/8 in the rotating 3D black hole background will
also reduce to the form (4.12). The tortoise coordinate p is defined as (4.11) and

the potential function reads

_ 3|A| 1 d N(r)
Vo(r) = -T+2—r$N(T)— 1.2 (6.97)

Although the form of the metric (6.2) is different from the form in (4.3). the po-
tential function (6.97) is identical to (4.7) with D = 2, I = 0 and € = 1/8. where
R = 6 A for this 3D black hole spacetime.

In the stationary case, the black hole has two horizons ry. The function N (r)

can then be written in terms of r, and r. as

N(r) = I:\—zl (rP=r?) (P2 -r.7) . (6.98)
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The tortoise coordinate p can be expressed by using r4+ as

1

A = i |

T —7T.

T+ T

1‘—1‘+

T'+7'+

—r.In

} . (6.99)

The function p(r) has no closed form inverse but we can express the inverse in a

series as [81]

T+ Y = 2n
= n . 6.100
0p) T2 &° (e)Y ( )
where
T-
g = — < 1. (6.101)
T+
- A
y = i1zexeldo) (6.102)
1 + exp(A p)
A= 2Alry, (1-06%) > 0. (6.103)
The coefficients a, (o) are given as
ao(s) = 1. (6.104)
, 3—0?
= -0 — G].Ur
a,(a) a 31— 072 ( 9)
25 -174% + 30
2 = 4 N 6106
as(o) T 5 (1 — %) ( )
_ 2 4 _ g5 46
as(7) = -a° 1008 — 1039 0° + 3680* — 450 . (6.107)

315 (L — 02)8

which are of order O( 0™ ). If ¢ is small enough, we can employ an approximation

—_ o = (6.108)
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Substituting this approximation into the potential V = N V., we obtain

r?or ) (r? —4r?)  exp(Ap)
ry? [1+exp(Ap)]*
r-?  exp(2Ap)
4% [1 + exp(Ap)]*
, -4 exp(3Ap)
4% [14exp(Ap)]®

It is obvious that the first term in the potential above has a form identical to the

Vip) ~ A2

+ 12A% (27,2 - 37.2)

+ 80A (6.109)

potential (6.34) in the static case. Since A > 0 but p < 0. the second term in
the potential (6.109) is always weaker than the first one. This suggests that we
way iteratively solve the wave equation, treating the first term as the lowest order

potential, the second term as the first correction to this approximation. and so on.

Let us ignore the third term in the potential (6.109) for a moment. For clarity.

we define the following:

2 __ _2 , 2__4 _2 /\ ‘
‘/O(P) = A2 (1'+ T ) (’;'f' T ) exp( p) 5 . (6110)
T+ [1+exp(Ap)]
.2 2 p)
Vilp) = 12A%(2r,2—3r.2) 1 _XR(2Ap) 6.111
1(p) (274 T )T+2 (LT exp(Ap) T ( )
D = -w?-8,,+ Volp) + Vilp) , (6.112)
Dy = -w®=8,,+ Vi(p) . (6.113)

When we follow the Green's function approach as was demonstrated in Section G.1.
we shall obtair: the solution (6.39). The Green’s function in the frequency space Is
given by equation (6.41), where D_f(p;w) = Dg(p; w) = 0. The equation D f(p: w) =
0 has a representation

P)U-(¢) — U-(p) U+(¢)
W(w;U-,Uy,)

floiw) = folpi) + [ 22 Q) FGw)d (6.114)

at p = -oco. The functions U, (p) and U. (p) satisfy the equations DyU,(p) = 0
and D,U. (p) = 0. The other function fy(p;w) satisfies not only the same equation
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as Uy (p) and U (p) but also the boundary condition at p — - co. In other words.
fo(p: w) is simply the solution (6.53) and U are hy in our case with different values
of A. g and v. Similarly the solution of Dg(p;w) = 0 around p = 0 is given by

glpiw) = go(p;W)—/p0 UJ’(p)%}((i).;_(fb(f))UJ'(oVL(C)g(CW)dC. (6.115)

where gy(p;w) is (6.55) if the Dirichlet condition at the spatial infinity is adopted.

We first compute the Wronskian W (w; g, f) for f(p;w) and g(p: w) above. Since
the Wronskian is p-independent, the simplest way to calculate it is to evaluate the
quantity at the point p = 0. It is not difficult to show that the expressions (6.114)
and (6.115) for f and g admit the Wronskian [81]

W(wg,f) = W(wig. fo) + W(w:go. f)(p)I°=2 . (6.116)
= W(wigo, fo) = W(w:g, fo)lp)li=2 . - (6.117)

Since g(p:;w) and f(p;w) satisfy a differential equation which differs from that
satisfied by go(p:w) and fo(p;w). the Wronskians W (w: go, f) and W(w: g. f) are
functions of p in general. The second term on the right side of either (6.116) or
(6.117), which originates from the correction potential V;, induces an extra (p-

independent) term in the Wronskian W (w; g, f).

Because of the presence of f (or g) inside the integral of equation (6.114) (or
(6.113)), the equation is in fact an integral equation in f (or g). We employ the

first Born approximations for f(p;w) and g(p:w) and obtain

flpiw) = fi(pjw
= fo(pv

)
) —
glpiw) = gi(p;w)
w)

if Pelp) e () = ) RelO) ) 0y ac . (6.118)

oc 2w

/0 hi(p) h-(C) = h-(p) B+ () ,

2w

= go(p;w) +1 V1(€) 90(¢) dC . (6.119)
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As a result, the Wronskian W(w; g, f) can be approximated as

W(w;g.f) = W(w;go, fo) + W(w;go, /1)(p)I° .
= Wiwigo fo) + [_aslow) folpre) Vilp)dp - (6.120)

Since there are no branch cuts in either f, or g; but there are poles in the lower
half w-plane in the Green’s function G (6.41), there is an exponentially decaying

wave tail in this rotating 3D black hole background.

Figure 6.5 shows the graphs of two potentials V in this stationary case with zcro
angular harmonics (i.e. { = 0). One can show that when the ratio |A|J2/M? >
16/25. the potential function V. becomes negative for some r > r,. This behavior
is illustrated in one of the curve in the diagram. where V(p) becomes negative when
lp| is sufficiently large. However the ratio |A| J2/M? cannot exceed unity for whicl
value the black hole is extremal. In figure 6.6, we can see that the potential V
in both cases vanish at an exponential rate towards the event horizon. We put a
Gaussian impulse at a distance 27,. The numerical response of the scalar wave over
timme at a distance 4 is shown in figure 6.7. This diagram shows the exponentially
decaying property of the wave. The shape of the falloff in the diagram differs from
that of the other graphs like figures 5.2, 5.3 and 5.6 because there are no angular
harmonics (i.e. [ = 0) in this case. In fact if we set { = 0 in the static 3D black hole
case, we shall find the shape of the falloff resembles that in figure 6.7 because the
frequency (6.66) (when the Dirichlet condition is used at r = oo) or (6.70) (when
the Neumann condition is used) has no real part. As a result, the Green's function

(6.62) is not oscillatory.

For a rotating 3D black hole we have shown that a J9-independent scalar field
also has late time exponential decay. In this spacetime, one can calculate the

wass inflation rate using this result. Equation (6.95) at the end of the last section
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Figure 6.5: Potential function V(p) of two spinning 3D black hole backgrounds
with (i) [A| J2/M? =102 and (ii) |A| J2/M? = 0.8
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Figure 6.6: Exponentially decaying behavior of |V (p)| near the black hole event

horizon
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Figure 6.7: Exponential decay of the conformally invariant scalar waves in the

spinning 3D black hole background.
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describes how the inner mass parameter evolves. Whether mass inflation will occur
or not is determined by the relative size of the surface gravity x- at the Cauchy
horizon and the value of « in the falloff rate exp(- @t) of the mass-energy of the
ingoing radiation. For example when A = -0.1, M = 0.01 and J = 0.001. the
surface gravity at the Cauchy horizon is 2.0 but the parameter a is only 0.087
according to figure 6.7. Table 6.1 shows some other values of @ and & in the rotating
3D black hole backgrounds. We find from the table that for the term |A|.J2/M?
being sufficiently small, the surface gravity . is always larger than the radiation
attenuation rate a. On the other hand, when this term |A| J2/M? is large enough
but below the extremal value, the value of a becomes larger than .. Therefore the
cowpetition between the surface gravity . and radiation attenuation rate « could

turn the mass inflation either on or off.

6.4 A Spinoff

In this section, we turn our attention to a (3 + 1)-dimensional spacetime which
15 similar to the 3D black hole spacetime we have studied. This spacetime is an
exact solution to a low-energy effective string theory which can be interpreted as
a rotating black cosmic string [82]. On any axial plane of the black string. the
geometry is identical to the spacetime of the 3D black hole. Thus mass inflation

can also occur in this black string spacetime in 3 + 1 dimensions [45].

The effective (3 + 1)-dimensional action we are considering is given by [82]
1
s=[dzy35 [R — (V) = 3¢ V3 Hy HY 420 eV™ — swa] . (6.121)

The scalar field ¢ is a dilaton field, the tensor H,. = OcBay) is the curl of the

skew-symmetric Kalb-Ramond field B,, and A is a positive constant. The term Ly
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Al M J |A] J2/M? k. a k.
0.1 0.5 103 4x 1077 710 0.63 1100
0.1 0.1 102 1075 63 0.28 230
1 1 0.01 1074 200 2.8 71
0.1 0.01 1073 10-3 2.0 0.087 23
0.1 0.1 0.1 0.1 0.59 0.25 2.4
0.05 | 0.005 | 0.01 0.2 0.062 | 0.035 1.8
0.1 0.005 | 0.01 0.4 0.052 | 0.040 1.3
0.125 | 0.005 | 0.01 0.5 0.046 | 0.041 1.1
5.4 0.03 0.01 0.6 0.59 0.57 1.04
2.52 0.1 0.05 0.63 0.69 0.68 1.01
6.03 0.03 0.01 0.67 0.53 0.54 0.98
0.175 | 0.005 | 0.01 0.7 0.034 | 0.035 | 0.97
0.2 0.005 | 0.01 0.8 0.027 | 0.031 | 0.87

Table 6.1: The exponential falloff rate «, which is found by graphical wmethod. can

be greater than the surface gravity . in the rotating 3D black holes.
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is the matter Lagrangian which is independent of the dilaton and Kalb-Ramond
fields [45].

Varying the action (6.121) with respect to the fields ¢, B,y and gq, gives us [45]

2V3 + %@e'zﬁ¢HabcH“bc+2\/§Ae‘/§¢ = 0. (6.122)
V.[e?V?eH] = 0, (6.123)
871’Tab = Gab et Ae\/id’gab - e'z‘ﬁ [Ha,’j Hbij - éH"jk Hijk GJab
1
- [VG¢V5¢— §(V¢)2.‘]¢xb] . (6.124)
This set of equations has a stationary vacuum solution
1 A
= —1 , 6.125
b = o5l o (6.125)
A2

Hape = Zagremc . (6.126)
2 2 dr? 2 9 2 2 -
ds* = -N(r)dt’ + —— +7? [N (r)dt +dd | +dz? . (6.127)

N(r)

where Q is an integration constant. The functions N and N? in the metric (6.127)
are given as

JZ

N(r) = Ar* - M + ypoiE (6.128)
J

No(r) = 3 (6.129)
. A2

A = i (6.130)

Because points in the J-space are identified with a period of 27, the spacetime

manifold has a topology S' x R® which represents a stationary, axially symmetric
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spacetime. The metric solution is then interpretable as a straight. spinning black
cosmic string of infinite length in 3 + 1 dimensions (82, 45]. The metric (6.127) is
equivalent to ds? = ds2, + dz?, where ds?p is the 3D black lole metric we have
considered on page 125. Readers are reminded that the constant A in (6.128) is
positive and A in equation (6.3) is negative. We interpret the constants of inte-
gration M and J as the mass and angular momentum per unit length of the black
string respectively. The other constant Q is the charge of the axion field dual to

the tensor Hy. [82].

Due to the similarity to the 3D black hole spacetime, it is not surprising that
wass inflation can take place in this background spacetime. This can be shown by
watching two Vaidya-versions of this black string spacetime along an outgoing null
cylinder which is axial symmetric along the string. The rest of the calculation is
sitnilar to the one given in Section 6.2 and one will conclude that the mechanismn for
wass inflation in this black string spacetime is identical to the one in the 3D black
hole spacetime. In other words. mass inflation could take place in this spinning
black string spacetime as well [45].

The wave propagation problem in this spacetime is quite similar to that in
the 3D black hole background despite the fact that the spacetime is now (3 + 1)-
dimensional. One can show that the wave equation (4.2) on page 75 becomes (4.12)

if we suppose

Y(t, )
Jr

The Ricci scalar in this black string spacetime reads

¥

cos(k z) . (6.131)

& 2 d 1{ d, s 1
R = -5 N(r) = —Nr)+ [rE;N (r)} (6.132)
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and the potential V equals N V, with the function

1—4£i
2r dr

N(r)—%wcug [r %N"(T)]-. (6.133)

) = 6N+

After substituting the equations (6.128) and (6.129) into (6.133), the potential

function becomes

Ver) = K- ==(86-1)+ (6.134)

It is worth noting that the parameter ¢ is chosen to be 1/8 in the last few sections
because this is the value for which the potential V is finite at spatial infinity. By
choosing € = 1/8 in (6.37), V ~ O(1) as r — oo and thus V is bounded there.
Due to the extra degree of freedom in the z direction, this (3 + 1)-dimensional
black string spacetime can have a finite potential at spatial infinity for any value
of { greater than 1/8, e.g. £ = 1/6. Therefore one can remove the constant terms
in (6.134) and carry out a numerical simulation for the scalar field P. A sawple
time response of the scalar field is given in figure 6.8 from which, as we expect. the
field decays exponentially in a way identical to that in the rotating 3D black hoie
background. As a result, mass inflation can take place in a black string spacetiine

ouly if the radiation falloff rate is mild enough.
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A=-1,M=1,J=0.01 .

Regression Slope = -1.425 / In(10)

I\Il(t,-9.26) I

Figure 6.8: Exponentially decaying wave in the black string spacetime



Chapter 7

Schwarzschild-Anti-de Sitter

Background

In the last few chapters. we have studied several dual-horizon and ulti-horizon
black hole spacetimes. Although these spacetimes have different properties. we
found that the mass inflation calculations are very similar from one background to
another. Whether mass inflation actually takes place in these spacetimes turns out
to be determined by how the radiation dies out in these spacetimes. In this chapter
we shall turn our attention to the radiation falloff problem in the Schwarzschild-
anti-de Sitter (SAdS) spacetime in 3 + 1 dimensions. This spacetine is used to
study the radiation problem because we can regard the spacetime as a relative of
the Schwarzschild spacetime in which the radiation falloff property has been known
since the early 1970s [20]. Moreover it is the (3 + 1)-dimensional analogue of the 3D
black hole spacetime which has been studied in the last chapter. Thus the study of
the radiation falloff in the SAdS black hole spacetime provides a comparison with

that in the Schwarzschild spacetime and in the 3D black hole spacetime. However

161
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we shall find that this spacetime has a completely different and unexpected radiation
falloff character. Although we shall not consider mass inflation in this spacetime.
any calculation of mass inflation for this case will have to take into account the

results obtained in this chapter.

The Schwarzschild-anti-de Sitter (SAdS) solution is an exact solution to the vac-
num Einstein’s equations with a negative cosmological constant in 3 + 1 dimensions
(83](p. 183). [6](p. 131). The metric of this spacetime reads

2

dr
2 _ 2 2 2 ] 2
ds* = -N(r)dt Nt [d6? + sin?(8) dg? ] . (7.1)
N(r) = -§r2+1—%, (7.2)
3 T

where M is the mass of the black hole and the cosmological constant A is negative
in this case. The lapse function (7.2) is functionally identical to the lapse function
(6.3) in the 3D black hole spacetime as r — co. It is not difficult to see that this
15 a black hole spacetime with a black hole radius Rj. defined by N(R,) = 0. By

using this radius, we can write the lapse function as

2
Ny = My RBG+IAMR (7.3)
3 3r
which is simply
_ 1A 2 2, 3
N(r) = 5 (T=Be) | "+ Rer + Ry +IAI : (7.4)

Given the metric of the form (7.1), we can reduce the scalar wave equation (4.2)
into (4.12) by using the substitution (4.4). The potential V is given by equation
(4.13) in which

!
V(r) = %1(1—66)+ (“2'1)+2f. (7.5)
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The tortoise coordinate (4.11) of this spacetime reads

_ Ry In T — Ry
© T THAlRS V72 + Ry + Ry? + 3/|A]
[ 2 R
V3 (2 + |A] R?) [mtan( JIAL (27 + Ry) ) _1} -
VIAL(L+ Al B?) /4 + [A] R,? V3 /4 + |A| B

2
which obviously has no inverse in closed form. As a result, we cannot write the

+

potential V in p explicitly.

Since the 3D black hole spacetime is an anti-de Sitter spacetime with identifi-
cation. one might expect that the scalar waves in the SAdS background also have
similar late time radiation falloff behavior. This view might be strengthened by
comparing the potential functions (7.5) in the SAdS background and (6.31) in the
3D black hole background. One would agree that the two functions bear some re-
semblance. The discussion in Section 6.4 of the last chapter also fueled this belief
because the black string spacetime is (3+1)-dimensional and is asymptotically anti-
de Sitter in the direction perpendicular to the string axis. However waves behave

differently in the SAdS background.

For the rest of this section we shall consider the case £ = 1/6 (i.e. the conformal
scalar field) in the wave equation (4.2). In the conformally invariant case. the
potential function V, in equation (7.5) is identical to that for the scalar wave in
the Schwarzschild background, in which the Ricci scalar vanishes. Due to the
similarity between the 3D black hole spacetime and the 4D black string spacetime,
we shall only compare the results in the SAdS spacetime with the results in the 3D
black hole spacetime. Comparing the results in the 4D black string case should be

straightforward.

The difference between the behavior of waves in the 3D black hole background
and the SAdS background can be understood by examining the shape of the po-
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tential V. In both cases the potentials are decreasing exponentially in p towards
the event horizon. In the (2 + 1)-dimensional case (either rotating or static) this
function attains a maximum at a distance r = oo (p = 0). This is no longer true
in the SAdS background because spatial infinity (which is also given by p = 0} is
not the place at which V' has an absolute maximum (for p € R™). As with the case
in the Schwarzschild black hole background (figure 4.1), the potential V attains a
maximum not far away from the event horizon. This hump just outside the black
hole is a result of the use of the lapse function (7.2) which has the term 2 M/r. The
presence of this term is responsible for the occurrence of the hump. In the SAdS
case. the shape of the potential V is shown in figure 7.1. Unlike the Schwarzschild
case. the tortoise coordinate p for the SAdS background is bounded above at zero
because the leading order term in the lapse function is proportional to r? at large
distance. This has a consequence that all the outgoing waves that propagate away
from the SAdS black hole will eventually return to the hole due to the boundary
condition at p = 0. Nevertheless these returning waves will reflect off towards the
spatial infinity when they come close to the right side of the hump. This is a com-
pletely different behavior from the 3D black hole case. in which the ingoing wave
from spatial infinity p = 0 continues its journey to the black hole unhindered. It
is not difficult to imagine that in this SAdS background. waves bounce back and

forth in the exterior region of the potential V forever.

We observe from figure 7.1 that when [A| is small (potentials (a) to (c)). the
peak of the potential V' moves to the left, lengthening the scalar waves’ traveling
time from this maximum to the spatial infinity p = 0. When [ vanishes (cases (c)
and (C)), we have V(0) = 0 because the value of V at p = 0 is (I + 1) |A|/3 in
general. Therefore the potentials (a) and (b) have non-zero value at that point
although this feature is not apparent on the graph due to the smallness of |A|. We
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Figure 7.1: Potential V for the SAdS background. The six potentials are generated
with By, =2 and (a) A=-100%1=2,(b) A=-10%1=1, (c) A=-10"%.1 = 0.
(A)A=-100%1=2,(B)A=-1021=1,(C) A =-10"2.1=0.
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also observe that the peak-height is considerably higher than the magnitude of V
at p = 0. This property becomes more pronounced for large [. This causes the
waves to bounce back and forth in the region outside the peak. Nevertheless. part
of the waves can surmount the peak (thereby going into the black hole) because the
peak-height is still finite. However it can take a long time for a significant amount

of waves to leave the trapped region outside the peak.

We solve the wave equation (4.12) with (7.2) and (7.5) numerically. The results
of the numerical integration are given in the next few graphs. These graphs are
created so that the initial impulses are located at a distance r = 2 R, and the
time response of the waves is observed at r = 5 R;, where Ry = 2 in all cases. In
figures 7.2 and 7.3. the moment of the wave is chosen to be [ = 0. These diagraius
show the falloff behavior of a conformal scalar wave at the distance p = -267.16
(r = 5Ry). The simulation for figure 7.2 uses the Dirichlet condition (4.27) at
p = 0 but a Neumann boundary condition (4.28) is employed for figure 7.3. Since
the cosmological constant [A| was chosen to be relatively small in both cases. namely
IA| = 107* < 1, we can see on both log-log graphs that there are clearly inverse
power decay behaviors. According to the graphs, this decay rate is roughly ¢ 3
which agrees with the one in the Schwarzschild case. However this inverse power
falloff does not last very long after the return of the outgoing wave from the spatial
infinity. Both diagrams show these returning wavefronts on the far right sides of

the two diagrams.

Figure 7.4 shows another simulation for scalar wave falloff in this SAdS back-
ground. In this simulation, we have [ = 0, A = -10"* and the Dirichlet boundary
condition is used. This is similar to the setup associated with figure 7.2. However
we put the initial impulse at 7 =5 R, (p = - 267.2) and the observation is made at
r = 1.000001 R, (p = -305.5). In other words, this is another near-horizon simu-
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Figure 7.2: Scalar wave of I = 0 decays away in the SAdS background with A =
-107*. Dirichlet condition is used at p = 0.
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lation for radiation behavior. By comparing the diagrams 7.2 and 7.4. we see that

the radiation behavior is similar even if the observer is very close to the black hole.

10 T
107'F 4
10-2g E
7~ 4
V) 1
3 107k 3
("P b
g 10-5§ E
1°-GF
10-7; <
N
10 — n
10° 10°

Figure 7.4: Scalar wave falloff pattern of [ = 0 using A = -10"* and Dirichlet

condition at p = 0. The observation in this case is close to the event horizon.

For small |A| and nonzero [, the falloff behavior resembles the case of | = 0.
There is a quasi-normal oscillation initially, followed by the inverse power falloff
behavior as shown in figures 7.5 and 7.6. Finally we see that some of the scalar
waves arrive the observation point r = 5 R, from spatial infinity after the time

t = 500.



CHAPTER 7. SCHWARZSCHILD-ANTI-DE SITTER BACKGROUND 170

10° —— —_—

| Y(L,-267.16) |

Figure 7.5: Loglog graph of the scalar wave decay behavior in the SAdS background

with A =-10"% and [ = 1. Dirichlet condition is used in this case.
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Figure 7.6: Similar graph to figure 7.5 but using the Neumann condition (A =-10"*
and | =1).
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Since the finite height of the potential maximum allows the scalar waves to
surmount the peak and propagate into the black hole, we expect that the peak
value of the second returning wave is smaller than that of the first one. However
this property is unclear from simple inspection of figures 7.2 to 7.6. Figures 7.7 to
7.10 are the numerical results we obtained using the potential functions (A) and
(C) in figure 7.1. We compute the large |A] case (JA| = 0.01) with both Dirichlet
(figures 7.7 and 7.9) and Neumann (7.8 and 7.10) boundary conditions. For these
large |A| cases we obtain more returning waves in a reasonable amount of CPU
time. From these graphs, we can see that the scalar wave does indeed decrease but
over a much larger time scale. Figures 7.7 and 7.8 indicate that the peak-height
of the scalar wave has an approximate exponential falloff for { = 0. For [ > 0. the
peak-height has a more complicated behavior illustrated in figures 7.9 and 7.10.
Over long time scales the maximum peak-height of the scalar wave has a very wild.
approximately exponential falloff. From these graphs, it is clear that the radiation
falloff pattern is complicated by the spherical harmonics [ and the relative sizes of
A and M in the background spacetime. In some cases. the decay law appears to be
approximately exponential but in other cases. it is difficult to qualitatively describe

the complicated falloff pattern.
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Figure 7.7: Semilog graph of the scalar wave decay behavior in the SAdS back-

ground using A =-10"2, [ = 0 and the Dirichlet condition.



CHAPTER 7. SCHWARZSCHILD-ANTI-DE SITTER BACKGROUND 174

10 ¢ —T T T T T
_ 10" \ :
g ﬂ
o0 H
=i m
!
£

1072} m

10-3 L ] 1 1

0 200 400 600 800 1000 1200
t

Figure 7.8: Conformally invariant scalar wave decay behavior using A = -10°2,

{ = 0 and the Neumann condition.
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Figure 7.9: Semilog graph of the scalar wave decay behavior using A =-1072, [ = 2
and the Dirichlet condition.
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Figure 7.10: The simulation for this semilog graph uses the same inputs as the one
in figure 7.9 but Neumann boundary condition replaces the Dirichlet condition in

this case.



Chapter 8

Conclusion

The infinite blueshift of the ingoing radiation at the Cauchy horizon of the Reissner-
Nordstrom black hole has suggested that this hypersurface is unstable since the late
1960s. The search for a spacetime singularity at the Cauchy horizon was fruitless
until Poisson and Israel discovered the mass inflation phenomenon in 1989. This
process is characterized by an unbounded mass parameter at the null hypersurface.
This inflating mass induces a scalar curvature singularity at the Cauchy horizon.
with the result that analytic continuation of the spacetime beyond the horizon
wight be inappropriate [28, 29]. This bizarre catastrophe inside the event horizon is
expected to occur naturally and to cure the global hyperbolicity problem. Although
a spherical. electrically charged collapsing star, which has a Reissner-Nordstrom
geometry as its exterior spacetime, is a rare species in the family of collapsing stars.
wass inflation is expected to be commonly found among the rotating collapsing stars
which are expected to settle down to the Kerr black holes. Since the spacetime
structure of the Kerr black holes is similar to that of the Reissner-Nordstréom black

holes, theorists believe that the mass inflation process can take place inside a real
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black hole [28].

This mass inflation phenomenon is triggered by the presence of radiation. both
infalling and outgoing. While the presence of the outgoing radiation separates
the spacetime into the inner and outer parts, the infalling stream is focused along
the Cauchy horizon at which unusual energy transfer to the inner mass parameter
becomes possible [28]. Because the gravitational potential energy can be arbitrarily
negative, the huge gain of gravitating mass during the mass inflation process in fact

comes from the abyss of the gravitational potential energy [84](p. 184).

In Chapter 2, we reviewed the phenomenon in the Reissner-Nordstrom back-
ground. The original scheme used by Poisson and Israel and the simpler model
devised by Ori were explained. In Chapters 3 and 5, we demonstrated that mass
inflation can take place in two asymptotically flat black hole spacetimes which are
solutions to a (1 + 1)-dimensional dilaton theory of gravity. We have seen in Chap-
ter 6 that the phenomenon can also occur in a rotating black hole which is a solution
to the Einstein equation in 2+ 1 dimensions. Although it is not shown explicitly in
this thesis, a rotating black cosmic string from a string theory in 3 + 1 dimensions

also provokes the catastrophe at its Cauchy horizon [45].

We showed in those chapters that mass inflation can occur in theories other than
General Relativity, in dimensions other than 3 + 1 and in background spacetimes
other than static, asymptotically flat spacetime. In the context of Ori's method.
the mass inflation calculation always produces three matching equations along an
outgoing null line S which is the border of two patches of spacetimne solutious.
In other words, we can always find an appropriate function z(\) which gives the
matching equations (with the use of the Euler-Lagrange equation and the null
condition.) Furthermore we observe that the mass-energy of the null shell (it is

a null particle in 1 + 1 dimensions or a null ring in 2 + 1 dimensions) is always
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proportional to R(A) (or X(A)) where R (or X) is the spatial coordinate of the null
line S. In all the cases we have studied, the function R()) has a strong dependence
on the residual mass-energy of the infalling radiation dm. Indeed the mass inflation
calculations before the involvement of §m in all the examples discussed in this
thesis are very similar. Important differences appear after the residual mass of the

infalling radiation is taken into account.

Because the qualitative behavior of the infalling radiation mass-energy dn varies
fromn background to background, one cannot assume Price’s radiation falloff rate in
any background spacetime. In the Reissner-Nordstréom background. the radiation
dies off outside the black hole at a rate proportional to 1/tP at late time [20].
where p is some positive integer. This falloff rate also applies to the radiation
behavior in the first dilaton black hole background in Section 3.1. However the
second dilaton black hole background studied in Section 3.2 admits an exponential
radiation falloff rate despite the fact that it is also asymptotically flat. Such a falloff
rate i1s stronger than the inverse power one. This exponential radiation falloff rate
can also be found in the background spacetimes of the rotating 3D black hole and
the black string in Chapter 6. We found that if the attenuation of the radiation
mass-energy is too strong, the inner mass parameter of the black hole can remain
bounded. The mass diverges only when the radiation falloff is mild enough. In
the calculation with non-zero surface gravity at the Cauchy horizon. we found that
the inverse power radiation falloff is sufficiently weak for the occurrence of mass
nflation at the Cauchy horizon, regardless of the value of p in the falloff rate
1/t7. On the other hand, when the late time radiation decays exponentially, only
those spacetimes with slowly decreasing §m will sustain mass inflation. Thus if
the background spacetime induces exponential radiation falloff, the mass inflation

process quantitatively depends upon this falloff rate.
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Even when the surface gravity at the Cauchy horizon vanishes, it is the function
dm that determines whether the inner mass parameter diverges or not. As has been
seen In Section 3.3, if dm is proportional to 1/¢*, where a is a positive real number
instead of an integer, there is a narrow range for a such that the phenomenon can
take place. This number a is determined by how “fast” the surface gravity vanishes
at the Cauchy horizon. If the lapse function N has a property N (r.) = 0 and
N®U(r ) = 0 forall 0 < n < b, n € Z, where r. denotes the location of the
Canchy horizon, mass inflation will take place when a = 1 + 1/b. If a is greater
than 1+ 1/b, i.e. the radiation attenuation is stronger than 1/t!*'/% mass inflation

cannot take place in this vanishing surface gravity case.

Determining the radiation falloff rate analytically is not always straightforward.
as we have seen in Chapters 4, 5 and 6. As we saw in Chapter 7, even if numerical
methods are employed. it can be difficult to describe the radiation falloff behavior.
A complete mass inflation analysis must include the mass inflation calculation and
the radiation falloff rate calculation. One should not underrate the importance and

difficulty of the latter calculation in the analysis.

The fact that the stability of the Cauchy horizon depends upon the radiation
falloff rate has been shown before (85, 86, 61]. In particular, it was shown in
[85. 86] that in the Reissner-Nordstrom-de Sitter spacetime, the Cauchy horizon
is stable only if the surface gravity at the Cauchy horizon is less than the surface
gravity at the Cosmological horizon of the spacetime. However the discussion in
[85, 86] is not in the context of the mass inflation process. Some of the spacetimies
with mass inflation at the Cauchy horizon considered in this thesis provide further
examples of this point. In fact the second dilaton spacetime in 1 + 1 dimensiouns
with non-vanishing surface gravity at the Cauchy horizon studied in Section 3.2 and

Chapter 5 is the most interesting example because the spacetime is asymptotically
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flat but the radiation falloff rate is exponential. Radiation in this spacetime behaves
in such a way that the stability of the Cauchy horizon depends crucially upon the
radiation falloff rate.

Markovi¢ and Poisson argued that when quantum effects at the horizon are
included, the Cauchy horizon of the Reissner-Nordstrom-de Sitter spacetime must
be unstable (87]. One interesting problem for future research is to consider the
stability of the Cauchy horizon in the second dilaton spacetime when such quantum

effects are taken into account.

If physical spacetimes are globally hyperbolic as suggested by the strong coswmic
censorship conjecture [88](p. 617), then mass inflation is of interest as a process for
insuring the global hyperbolicity of the dual-horizon black holes in 3+1 dimensions.
However this process is not a generic mechanism of sealing the Cauchy horizons. as
we have seen in this thesis. It happens that either our physical (3 + 1)-dimensional
spacetime described by General Relativity is ideal for mass inflation to occur or
there exists a generic mechanism which would forbid the spacetime to extend be-
yond the Cauchy horizon. Thus investigation of stability of the Cauchy horizon has

not been closed. Further research in this direction is necessary.



Appendix A

Vocabulary

J7 is the future null infinity. It represents the region where ¢ + r — oo at finite

t—r.

J~ is the past null infinity. It represents the region where t — r — - oo at finite

t+r.
#° 1s the spacelike infinity which is defined as the intersection between J* and 7-.
¢* is the set of future endpoints of every timelike geodesic in the spacetime.
¢~ 1s the set of past endpoints of every timelike geodesic in the spacetime.

Achronal set is asubset of a spacetime manifold such that any curve lying entirely

in the set is not timelike.

Cauchy horizon is defined as the boundary of the domain of dependence of a

closed achronal set.
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Domain of dependence D(S) of a closed achronal set S C M is defined as
D(S) = D*(S)u D™ (S), where

Every past inextendible timelike
D*(S) = {peM .

curve through p intersects S

D (S) =

curve through p intersects S

Every future inextendible timelike
pEM i

Event horizon is the boundary of a black hole. It is the boundary of the manifold
M\ J(J7*), where M is the spacetime manifold and J™(J+) is the causal
past of the future null infinity 7+ of M.

Future endpoint p € M of a timelike or null curve 7(t) in the spacetime manifold
M satisfies the following condition: For every neighborhood O of p. there
exists 7 € R such that for all £ > 7, we have v(t) € O.

Future inextendible curve is a curve without any future endpoint.

Geodesic is the curve that minimizes the distance between two points in a Rie-
mannian metric space. In a Lorentzian metric space. it maximizes the distance
between two points. In General Relativity, the non-spacelike geodesics of the
spacetime are the world lines of freely falling bodies or the world lines of null

particles.

Lapse function N is defined as N = -t%n,, where * is a vector field satisfying
the condition ¢* V,7 = 1 and n® is a unit normal vector field to the spacelike
hypersurfaces Z,. The set of hypersurfaces ., which are parameterized by
the global time function 7, foliates the spacetime manifold.
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Surface gravity « for a stationary spacetime is defined as
2 1 agb
K = - 5 vafb v E )

where , is a Killing vector satisfying the equation §la Vb = 0. For a wetric
of the form (2.4), £ can simply be &,* which gives V,& V2€* =- [ N'(r)]? /2.
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