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Abstract

The thesis consists of two chapters. The first chapter is the paper named “Betti numbers of
nearly G5 and nearly Kahler 6-manifolds with Weyl curvature bounds” which is now in the
journal Geometriae Dedicata. Here we use the Weitzenbock formulas to get information
about the Betti numbers of compact nearly G2 and compact nearly Kahler 6-manifolds.
First, we establish estimates on two curvature-type self adjoint operators on particular
spaces assuming bounds on the sectional curvature. Then using the Weitzenbock formulas
on harmonic forms, we get results of the form: if certain lower bounds hold for these
curvature operators then certain Betti numbers are zero. Finally, we combine both steps
above to get sufficient conditions of vanishing of certain Betti numbers based on the bounds
on the sectional curvature.

The second chapter is the paper written with my supervisor Spiro Karigiannis named
“A special class of k-harmonic maps inducing calibrated fibrations”, to appear in the
journal Mathematical Research Letters. Here we consider two special classes of k-harmonic
maps between Riemannian manifolds which are related to calibrated geometry, satisfying
a first order fully nonlinear PDE. The first is a special type of weakly conformal map
u: (L¥, g) — (M™, h) where k < n and « is a calibration k-form on M. Away from the
critical set, the image is an a-calibrated submanifold of M. These were previously studied
by Cheng—Karigiannis—Madnick when « was associated to a vector cross product, but we
clarify that such a restriction is unnecessary. The second, which is new, is a special type of
weakly horizontally conformal map u: (M™, h) — (L*, g) where n > k and « is a calibration
(n — k)-form on M. Away from the critical set, the fibres u~'{u(x)} are a-calibrated
submanifolds of M. We also review some previously established analytic results for the
first class; we exhibit some explicit noncompact examples of the second class, where (M, h)
are the Bryant—Salamon manifolds with exceptional holonomy; we remark on the relevance
of this new PDE to the Strominger—Yau-Zaslow conjecture for mirror symmetry in terms
of special Lagrangian fibrations and to the Gy version by Gukov—Yau—Zaslow in terms of
coassociative fibrations; and we present several open questions for future study.
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Preliminaries

Both chapters of this thesis are parts of Riemannian geometry, however they are only
tangentially related to each other. They both involve studies of special structures on
Riemannian manifolds. Hence, we keep motivations of each topic separate, and in this
section we just introduce common notation as to not repeat it twice. However, each
chapter will also have its own small notation section.

All manifolds are oriented Riemannian manifolds. For the first chapter we crucially need
the assumption of compactness, however, not for the second chapter. As usual a superscript
on a manifold such as M™ means dim M = n.

We often use the Riemannian metric (via the musical isomorphism) to identify vector
fields and 1-forms. By T* we denote k-tensors, by S* the symmetric k-tensors, by S the
traceless symmetric 2-tensors, by QF the k-forms, and  for the Hodge star operator.

We also define the wedge product without any constants, meaning that for o, 3 € Q' we
set

anf=a®p—-LRa,

and extend to the higher order forms to preserve associativity.
The inner product on k-forms we define as follows. For o, 3 € QF:

1
<Oé; 5> = Hail...ikﬁil...iw

in terms of a local orthonormal frame.
We write div: 7™ — T™ ! for the Riemannian divergence, given in terms of a local

orthonormal frame by
(le A)jl"'jmfl = ViAijl‘..jmfl.

Finally, for o € QF and h € T2, we define h o o € QF as:

(hoo)

iy T hilpapiQ"'ik + hi2p0i1pi3"'ik ot hikpgi1~~~ik—1p'

viil



Chapter 1

Betti numbers of nearly G5 and
nearly Kahler 6-manifolds with Weyl
curvature bounds

1.1 Introduction

1.1.1 Motivation

There is a long history of using Bochner-Weitzenbock technique to conclude vanishing
results of Betti numbers of compact Riemannian manifolds assuming curvature bounds. In
this chapter we establish several results, particulary for compact nearly Gy and compact
nearly Kahler 6-manifolds. We show that certain bounds on the sectional curvature imply
vanishing of the second or the third Betti numbers.

Nearly Gy and nearly Kahler 6-manifolds are spin, positive Einstein manifolds, which
by Myers’s theorem implies that they have finite fundamental group and hence b; = 0.
They are the only possible manifolds whose metric cones have Spin(7) and Gy holonomy,
respectively. These, in turn, are useful from the physics perspective as they provide local
models for the simplest type of interesting singularities. Hence, studying the topology of
compact nearly GG and compact nearly Kahler 6-manifolds might lead to new insights.
See [36] and [37] for results relating Betti numbers and linear stability.

1.1.2 Organization of the chapter and main results

Following Bourguignon-Karcher [0], we consider two curvature-type operators ReS 2(Q?), Re
S§?%(8?%) and the usual sectional curvature R coming from the Riemannian curvature. We
prove the following theorems that give us bounds on these operators in terms of the bounds



on the sectional curvature.

Here is a summary of the main results. Throughout, [a + b] means [a — b, a + b].

First, we reprove the following result from [0].

Theorem 1.2.12 Assume 0 < R < A. Then the eigenvalues of R on Q2 lie in the following
interval:

[—(A +6) + %(A - 5)] .

Then, for nearly G5 or nearly Kahler 6-manifolds, we improve the previous result on certain

subspaces: Corollary 1.2.14 Assume 0 < R < A. Moreover let M be a nearly G or a
nearly Kéahler 6-manifold. Then on Q%, or Q2 respectively, the eigenvalues of R lie in the
following interval:

l—(A L)+ g@ - 5)] |

Next, we again reprove a theorem from [6] for R in the general setting: )
Corollary 1.2.16 Assume 6 < R < A. Then all but one of the eigenvalues of R on S? lie
in the following interval:

B((A £6) £ (n—1)(A —5)” ,
and the other one lies in the interval:
[—(n—1)A, —(n —1)d].

Following, we slightly improve the estimates for R in the Einstein case: B
Theorem 1.2.17 Suppose M is Einstein with Einstein constant k. Assume § < R < A.
Then the eigenvalues of R on S¢ lie in the intersection of the following intervals:

[k +nd, k— (n—2)0],[k — (n —2)A, —k + nAl.

Next, for the nearly Kihler 6-manifolds, we can talk about eigenvalues of R on S2, < §?
(see Remarks 1.5.30 and 1.5.49). Hence, we are able to get a better estimate in this case:
Theorem 1.2.19 Assume § < R < A. Assume we are in the setting of a nearly Kahler
6-manifold. Then the eigenvalues of R on S2, (see Remark 1.5.30 for definition) lie in the
following interval:

[%((A+5) J_r3(A—5))] 26— A,2A — 4.

Finally, we will see that again, on a nearly Kéhler 6-manifold, we have a specific relationship
between R on Q2 and R on &2, see Remark 1.2.22. This allows us to get estimates for
R on Q2 in terms of the ones for R on §? and vice versa. That is we can combine
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Corollary 1.2.14 and Theorem 1.2.19 to get the following two statements:
Theorem 1.2.15 Let M be a nearly Kéahler 6-manifold. Let 6 < R < A. Then the
eigenvalues of R on Q2 lie in the intersection of the following intervals:

[—4+(A+5)J_r3(A—5)],[ (A+6) + (A 5)]

Theorem 1.2.25 Let M be a nearly Kahler 6-manifold. Let ¢ < R < A. Then the
eigenvalues of R on 8% lie in the intersection of the following intervals:

B((A+6)i3(A—5)>],[2+%( (A+5)+ LA 5))]

In the next section, where we introduce the Weitzenbock formulas (which relates the Lapla-
cian A and the rough Laplacian (or Bochner Laplacian) V*V in terms of the Riemannian
and Ricci curvatures) for 2-forms and 3-forms on nearly Go or nearly Kéhler 6-manifolds,
the results are not new and can be found in the literature. However, we aim to keep the
chapter as self-contained as possible, so we include all the proofs, but we cite the results
when appropriate.

The main idea is that for nearly Kahler and nearly Go manifolds, harmonic 2-forms and
harmonic 3-forms are of a special algebraic type. In the case of 2-forms this means that we
need to consider the map R (or W, where W is the Weyl tensor) only on certain subspaces
of 2.

Moreover, when we apply the Weitzenbock formulas to harmonic forms to obtain suffi-
cient conditions for certain Betti numbers to vanish in terms of lower bounds of W and
W (which is equivalent to some lower bounds on R and R) we get better estimates by
considering the Weitzenbock formulas written in the intermediate forms. For example,
consider (1.5.61):

w

AB = V*VB + 88 + WS, for any § € Q2.

Assuming 3 = how (see Section 1.5.2) is harmonic for some h € 8%, we can rewrite this
as:

0=V*VS + (8h + 2Wh) ow = (V*Vh — 2h) + (8h + 2Wh) o w,

which is Proposition 1.5.62. So, even though the last part is a well-known formula, we
actually get better sufficient conditions for vanishing of b, in terms of the lower bound of
0% by using the intermediate step above. Similar things happen in other cases as well.
We summarize the results we obtain in the folowing table:



Sufficient conditions for vanishing of Betti numbers

Manifold type H by =0 ‘ bs =0
Compact nearly | S2(Q2,) > W > — 5T° (1.4.7) S2(82) s W = (1 4.14), o
Go

SMZ) s W =~ (1.4.14)

Compact nearly | S*(Q2) > W > —8 (1.5.63), or S*(S%) oW = —g (1.5.70), or
Kéhler
of dim 6 S2(82,) 3 W = —4 (1.5.63) S2(02) 2 W = —3 (1.5.70)

We also use the fact that there are no parallel non-zero 2-forms and no parallel non-zero
traceless symmetric 2-tensors. This is true because the restricted holonomy is exactly
SO(n). One can see this by observing that nearly G5 and nearly Kéhler manifolds admit
a Killing spinor which implies that they are not locally reducible and nonsymmetric (the
arguments can be found in [1]), hence the result follows by Berger’s classification. As corol-
laries, we obtain sufficient conditions for vanishing of the Betti numbers from inequalities
§ < R < A, which we again summarize in the following table:

Sufficient conditions for vanishing of Betti numbers

Manifold type H by =0 \ bs =0

Compact nearly | —(A +46) — £(A—46) > 370 (1.4.8) A< HTO (1.4.15), o
Go
§> T (1.4.15)

112
Compact nearly | —(A+6)—Z(A—48) > —10 (1.5.64), or | 6 > 1 (1.5.71), or
Kahler
of dim 6 (A+0)—3(A—6) = —6 (1.5.64) A <A (15.71)

Finally, for both nearly G2 and nearly Kahler cases, we check our results on one example of
a compact normal homogeneous manifold. The corollaries discussed above may not appear
to be that useful for the known examples, as calculating the bounds for R is a harder
process than just getting the bounds for R and R. However, our theorems are not limited
to just these known examples, hence are interesting on their own.

Since the work of this chapter is mostly algebraic in nature, it is possible it can be adapted
to other settings. For this, we would need an Einstein metric, a decomposition of forms
which is preserved by R and R and harmonic forms to be of special algebraic type.



1.1.3 Notation

Throughout this paper (M™, g) is a compact connected Riemannian manifold.
We define the Kulkarni-Nomizu product as follows. For s,t € T2 we define s ® t € T* to
be:

(S @ t)ijkl = siltjk + Sjktil — Siktjl — Sjltik- (111)

To simplify the interval notation, by [a + b], we mean [a — b, a + b], for a,be R, b > 0.
Finally, whenever we refer to 0 < A, these are any real numbers.

Remark 1.1.2. Let Riem be the Riemann curvature tensor. We will write R;;. for
Riem;jp;, Rij for Ricy; == Riijg™ and R = Ric;; g¥ for the scalar curvature when there is
no confusion.

Also we define the traceless Ricei tensor:

1
Ric’ := Ric ——Ry.
n

Then on a general Riemannian manifold of dimension n > 3 we have the following orthog-
onal decomposition of Riem (see [5]). Define

1
traceless Ricci part: E = — Ric’ ®yg,
/,’L —
1 t: S il ®
scalar part: S = ,
P 2n(n — 1)9 J

Weyl part: W = Riem —F — S.

Then we have:
Riem=S+FE+W.

Also, we say that (M™, g) is Einstein with Einstein constant k if Ric = kg. In this case the
scalar curvature is R = nk and Ric® = 0, thus £ = 0. So, Riem = S + W, for an Einstein
metric.

We also have, by construction, that Wy;jigr = 0.

1.2 Curvature estimates

Throughout this section, we let (M, g) be a Riemannian manifold. First, we define a notion
of a curvature tensor A. Then following Bourguignon-Karcher [6] we introduce two self-
adjoint operators A and A and in Sections 1.2.1 and 1.2.2 we obtain multiple results for
bounds of W and W in terms of bounds on the sectional curvature R where W is the
Weyl tensor. In particular, we strengthen some of the results from [6] in the nearly G5 and
nearly Kéhler of dimension 6 settings.



Definition 1.2.1. We say an element A € T* is an algebraic curvature tensor, if the
following properties hold:

o Aijri = —Aji = —Aijik = Akuij-
° Aijkl + Akijl + Ajkil =0 (Bianchi 1dent1ty)
Let R be the set of algebraic curvature tensors. Note that R is a module over C'”. A

Remark 1.2.2. If 5, € S§?, then s ® t € R. This follows directly from the definition of
@ in (1.1.1). Hence, it follows from Remark 1.1.2 that W is also a curvature tensor.

Definition 1.2.3. Let A € R. Following Bourguignon-Karcher [6], we define
Ae SH0?) as (AB)y = Ay, for B e Q2.

A e 82(8?) by (Ah)ij = Agijhu, by h e 82,
AX, Y)Y, X)
[ X A Y2
In particular, in an orthonormal frame: A(e; A e;) = Aijji, for i # j (with no sum over

indices). We also call A the sectional curvature of A, it is a smooth function on the space
of 2-planes on M. A

For the sake of completeness, we show that indeed, A € S2(Q2) and A € S%(S?).
Let 3,7 € Q2. Then:

Aby A(X AY) = , for linearly independent X,Y € I'(T'M).

(AB)ij = AijiiBr = —AjmBu = —(AB);s.
n 1 1 ~
(AB,y) = EAijlek:l%‘j = §5klz4klij%j = (B, Av).
Now, let h, s € S%. Then:
(A’Zih)ij = Agijhi = Aijrilur = (/Olh)ji-
(Ah,s) = Agijhisi; = haAijrisi; = higAjiins;i = (h, As).

Remark 1.2.4. We can extend the map A to any k-form for k > 2 as follows: for 8 € QF
we define A3 € Q2 X) Q2 as

(Aﬁ)z'l...z‘k,z = Ailz‘gabﬁabz‘g...ik,y

that is, we just fix the last k — 2 indices and think of g as a 2-form in the first two indices.
Also, note that Wy;;g, = 0 implies that for any h € 8%, we have Whe Se.

From now on we will also use R, Ii’, IO%, R instead of Riem, Riém, etc., which should be clear
from the context, and similarly for W.



Lemma 1.2.5. The following identities hold:
* 9Oy = 2.
e gg = —41d.
° g@g =21Id on 8%,
where by g g we mean that we apply the™ operator to g ® g € R. Similarly, for the g@g
and g g.
Proof. For any X,Y € I'(T' M), we have:

(4@9)(X, Y)Y, X)

(9OINX AY) = XAV
_ 22X Py - (X, Y)?
|X A Y2
— 2.

Next, let 8 € O and h € §3. Then in an orthonormal frame:

((g ® g)ﬁ)z‘j =(g® g)z‘jklﬁkl
=2(gugjx — girgjt) Bri
:2(@@ - 5@')

= - 4ﬂij7
and
(g @ gh)ji = (9 @® g)ijrhix
=2(9a9ik — girgji) ik
=2(hy; — tx(h)g;)
=2h;;.
giving us the required results. [

In order to simplify the proofs of the following theorems we make the following definition:

Definition 1.2.6. Assume that:
§ < R<A,

where 0, A are any real constants. This means that for all X, Y € I'(T'M) with | X AY|? = 1,

we have § < R(X A Y) < A.

Define
0+ A

4

Ry =R - g g.



Now, by Lemma 1.2.5, Ry = R — %, so that

|Ro| < A2_5. (1.2.7)

Note that Ry € R, because both R, g (®» g € R. A

Next, we note that in the Einstein case, W and R differ by a constant multiple of the
identity. The same holds for W and R on S (the constant is not the same though).

Lemma 1.2.8. Assume M is Einstein with Einstein constant k. Then

2k

n —

W =R+

1d,
1

W=R- Id, on S¢.

n—1

Proof. By Remark 1.1.2, W = R — S. Using Lemma 1.2.5, we have

. R A nk 2k
S=—— =———4Id = — Id.
2n(n — 1)9@9 2n(n —1) n—1
Similarly on 82 we have
R 5 nk k
= = 21d = Id
S s AL s oy g 1
hence, the results follow. O

Finally, we have an observation about the a priori values of §, A in the Einstein case.

Remark 1.2.9. Assume (M™", g) is Einstein with Einstein constant k. Let 6 < R < A.
Then:

0 < b < A.
n—1
Proof. We compute
nk =R = ZR“ = Z Rijji = ZR(QZ VAN €j) < n(n - 1)A7
i=1 ij=1 oy
as when ¢ = j, R;;;; = 0. So, k < (n — 1)A. The other inequality is done similarly. O



1.2.1 Estimates for R

In this section we investigate what sectional curvature bounds tell us about the bounds of
R. Since in the Einstein case, R and W differ by a constant multiple of the identity map,
one can use the result above to get bounds for w.

First, we prove a lemma which gives us bounds for R, in terms of bounds of R. Note that
one can similarly obtain bounds for R itself, but we do not need this.

Lemma 1.2.10. Assume 6 < R < A. Let X, Y, Z, W € TM be unit length. Then

Proof. This result is Lemma 3.7 in [6], but we provide all the details.
Without loss of generality, assume X # +W and Y # +Z7. Otherwise, swap Z and W. If
even after swapping, that is not achieved, it means, Z and W are multiples of each other,
so Ro(X,Y, Z, W) = 0.
We claim that

6Ry(X,Y, Z, W) =Ro(X,) Y+ ZY + Z W) - Ry(Y, X+ Z, X + Z, W)

(1.2.11)
—Ry(X,)Y = ZY —Z W)+ Ry(Y, X —Z,X — Z,W).

Expanding the RHS we get:
RO(X7KKW) + R()(X? Z7 Z7 W) + RO(X7 Y) Z7 W) + RO(Xv ZaKW)
- RO(Y7X>X> W) - RO(Y7 Z7 Z? W) - RO(K X7 Zv W) - RO(}/’ Z7X> W)
—Ry( X, Y)Y, W) —Ro(X,Z, ZW) + Ro(X,Y, Z,W) + Ry(X, Z,Y, W)
+ RO(Y7 XvXa W) + RO(Y7 Z) Z7 W) - RO(Y7 X7 Z7 W) - RO(}/’ Zva W)
—4Ry(X.Y, Z,W) — 2<R0(Z, X,Y,W) + Ry(Y, Z, X, W)>
=6Ry(X,Y, Z, W),
as claimed. Now, consider one of the terms Ro(X,Y + Z)Y + Z, W):

Ry X, Y +Z Y +Z W)
1

4<R0(X+W,Y+Z,Y+Z,X+W)—RO(X—M/,Y+Z,Y+Z,X—W))

|Y+Z]2< o  X+W Y+Z Y+Z X+W
— 2 (1 + W R , , , )
1 X AWV + 21 TV + 21 X+ W]
X-W Y+7Z2 Y+72 X-W
— X = W2 Rof , , , )).
X WY+ 21 TV + 21 [X =W

Now, note that for unit length vectors S,T" we have:

|[Ro(S.T,T,8)| = | Ro(S, D)|(ISPIT* = (8, T)%) < [Ro(S A T)].

9



Thus:

- X+ W Y+7
X +W|* R
X-W . Y+Z>>
X =w[ Y +Z|

Y +z|”
4

+ [ X = WP | Ro

|Ro(X,)Y + Z,Y + Z, W)| <

Y + ZJ?
g—
4

=Y+ Z*

A—9
(X + WP + [ X = W[*)=—— (by (1.2.7))
A -9
—

Hence, applying the same inequalities for the other terms, equation (1.2.11) becomes:

A—90
6|Ro(X,Y, Z W) < (IY + Z|* + [ X + Z|* + [Y = Z|” + | X = Z|")——
=4(A —-9),
which yields the desired result. O]

We are ready to get to the main theorem of this section. The first part applies to any
manifold, however on certain subspaces of manifolds with G5 or SU(3)-structure, we can
improve the result.

Theorem 1.2.12. Assume § < R < A. Then the eigenvalues of}? lie in the following

mterval: .
4[§J —1

—(A+9) + (A—éﬂ.

Proof. Assume 7 is an eigenvalue of R with 0 # 8 € Q2 the corresponding unit eigenvector.
Note that Ry = R + (A 4 9)1d, by Remark 1.2.5 and Definition 1.2.6. So, f is also an
cigenvector for Ry with the eigenvalue 7y = 7 + (6 + A).

Assume f is of rank 2p, so there exists an orthonormal basis {ej,...,e,} such that § =

10



p
Z Bie; A €;, where 1 = i + p. Then we have

i=1
PoBj = (7of);;
= (RoB)j;
= Bi(Ro(es A €7));5
i=1
p
= Bi(Ro)pi(ei A 1)
i=1
p
= Bi(Ro)pij (81p67 — 0udz)
=1
P
=2 Bi(Ro)iijj-
i=1
Now, take |5;] # 0 maximal to obtain from the above that
p
) Bi
70| < 22 3, |(Ro)iij;
i=1 "7
Bi =
=2) }E“(Ro)ﬁjﬂ +2|(EKo)(e; A €5)] (1.2.13)
i#j
2 A—-9§
<2(p-— 1)§(A —0)+2 (by Lemma 1.2.10 and (1.2.7))
4p — 1
=T (a-)
415 -1
< L(A —0).
3
Recalling that 7y = 7 + (0 + A), we get the required result. O

Adding onto the work of Bourguignon-Karcher [6], the previous theorem can be improved
for nearly G2 or nearly Kéhler 6-manifolds on certain subspaces.

Corollary 1.2.14. In the nearly Gy case on Q2, or in the nearly Kdhler case on Q2 the
eigenvalues of R lie in the following interval:

7
—(A+6)i§(A—5)].

See Sections 1.4.1 and 1.5.1 for the descriptions of these manifolds and subspaces. Note
that just the presence of a Gy or an SU(3) structure is not enough, as we need R to preserve
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those subspaces.
Note that the previous Theorem 1.2.12, only would have given us % instead of %

Proof. For both the Gy-structure case on Q3, or for the SU(3)-structure case on Q2, if
P

we assume [ is of rank 2p = 2,4,6, then there exist canonical forms g = Z Bie; A €3,
i=1

k
where i = i + p, such that Z Bi = 0, for some orthonormal basis {ey,...e,} (in the case of

=1
Go-structures, see [9], and in the case of SU(3)-structure, this follows because A2 =~ su(3)).
Taking |5;| # 0 maximal forces the other f3;’s, of which there are at most two, to be of the
same sign, meaning that |5;| = 2 |8;|. Thus, continuing from (1.2.13), we can improve the
i#]
previous estimate to:

o <2y y%umﬁjﬂ +2|(Ro)(ej A )
g I
A—§

2
< 2§(A —0)+2 (by Lemma 1.2.10 and (1.2.7))

- g(A —5).

which is enough to conclude the result. O

We will see that in the nearly Kahler case, the operators W and W are closely related on
certain subspaces. See Remark 1.2.22. Hence, we summarize the estimates for R on Q3 in
the following Corollary:

Corollary 1.2.15. Let M be a nearly Kahler 6-manifold. Let 6 < R < A. Then the
eigenvalues of R on Q2 lie in the intersection of the following intervals:

g(A—é) .

Proof. This follows from Remark 1.2.22. O]

[—4+(A+6)J_r3(A—5)],[—(A+5)J_r

o

1.2.2 Estimates for R

Note that when M is Einstein, R, W preserve Sg.o This is because Whe Sz for any h e S,
by the properties of the Weyl tensor, and since R and W differ by a constant on S2, we
get the required observation.

First, we prove a therorem that gives us bounds for R on 8% in terms of bounds of R.
Next, we assume that M is Einstein which allows us to improve the result on S3.

12



Theorem 1.2.16. Assume 0 < R < A. Then all but one of the eigenvalues oflo% on S? lie
in the following interval:

E((Am)i(n—l)(A—@)]»

and the other one lies in the interval:
[—(n—1)A, —(n —1)d].

Proof. On &2, R=Ry+ %g@g = Ry + % Id, by Lemma 1.2.5 and Definition 1.2.6.
Recall that by Definition 1.2.6 we have that R= }O%o + %g@g.
First, we show that | Ro| < 2L(A—§): Let 0 # h € S¢ be a unit eigenvector of Ry with the
eigenvalue 7. Assume h is of rank p for some 1 < p < n. Then there exists an orthonormal
p
basis {e1,...,e,} such that h = Z h;e; ® e;. Thus:
i=1
= (Roh);
(RO)mJlJ
(RO)mgljhf 5ml

:Z( 0 mjmj m
m

Take |h;| # 0 maximal. We obtain from the above that:

. hm
ol < 35 |7 | (Bo)mimi
m J
< (p - 1)lRol
A—9§
<(n-—1)——
(n ) 2 )

yielding the required result.
Next, we investigate the eigenvalues of R—Ry = 5+A g@ g. It is easy to check that (g@ 9)g =
2(1 —n)g, and we know that g@g =2Id on &2, by Lemma 1.2.5.

Hence, the result follows from the Weyl’s inequality for eigenvalues applied to R=Ry+
(k- Ro) O

Theorem 1.2.17. Suppose M is Einstein with Einstein constant k. Assume 6 < R < A.
Then the eigenvalues of R on S lie in the intersection of the following intervals:

[k +nd, k— (n—2)0],[k — (n —2)A, —k + nAl.
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Proof. For simplicity, introduce R == R — %g @ g. Then R = R — 6 and R =R- 0 1d,
by Remark 1.2.5. Hence, R > 0. By R we will mean " applied to R, and similarly for R'.
Let 0 # h € 52 be a unit eigenvector of R with the eigenvalue 7. Note that h is also an
eigenvector of R’ with the eigenvalue 1’ = 7 — 9. Assume h is of rank p for some 1 < p < n.

Then there exists an orthonormal basis {ey, ..., e,} such that h = Z h;e; ® e;. Thus:
i=1

#h; =

—~

R'h);;
R/)mjlj
(R,)mglj h 5ml

p
- Z (R mjmjhm

—~

Take |h;| # 0 maxnnal By replacing h by —h, if necessary, assume that h; > 0. Note that

now for all m, —1 < < 1. Then since R > 0, we have:
p h B
—7 = 2 fR’(em A €))

m=1 ""J

< Z R (em A €;)
m=1

= Z (R—10)(em A €;)
m=1

= 2 R(em A ej) — (n—1)6.
m=1

Finally, note that 2 (R)pmj = Z Ry jim = Rj; = kg;; = k (where the j was fixed.)
m=1 m=1
Hence,

—(F=8) = —# < k— (n—1)5,

which gives the required
—k + no.
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However, (this was not present in the Bourguignon-Karcher paper) since —1 < h—m we can
also do the following:

L
—F'zZ—m (em A €;)
m=1h]
p
> — Z R(em A €;)
m=1
> — Z R'(em A €;)
= —(k: —(n—1)d).

Hence, we also get
which is just

Thus, we have

—k+nd <7 <k-—(n—2)F6.

The other inequality
k—(n—-2)A<r<-k+nA

is proven in the similar way by introducing R” := R — £9 @ g, so R” < 0. O
Remark 1.2.18. In [0], the authors proved the estimate

—k+nd < R < —k +nA, on S2.
which is weaker than Theorem 1.2.17.

Proposition 1.2.19. Assume § < R < A. Assume we are in the setting of a nearly Kahler
6-manifold. Then by Remark 1.5.49, R preserves S5, and we claim that the eigenvalues of

R on 82, lie in the following interval:

B((AM) iB(A—é))] — 26— A,2A - 4],

Proof. As in Corollary 1.2.14, we use the fact that for an element h € 83, (which by
Proposition 1.5.31 is isomorphic to A2 = su(3)) we can find a canonical form h = 3% | h;e,®
e; with eq, ..., eg an orthonormal frame and hy = hg, hs = hy, hs = hg with by +ho+hs = 0.
We proceed in the same way as in the proof of Theorem 1.2.16. Let 0 # h € 87, be a
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unit eigenvector of Jféo and let 7y be the corresponding eigenvalue. Put h in the canonical
form as above. By replacing h by —h and by swapping h;’s if necessary, we can assume
|h1| > 0 is maximal, hy = hy > 0 and as before, hy = hy, hs = hg. This forces hs, hs to be
non-positive with

|ha| + [hs| = [ha| + |he| = T (1.2.20)

As before, we get:
75;0h1 = Z(RO)mlmlhm-

m

Dividing through by h; > 0, and using (1.2.7) with (1.2.20) we get:

o o
ol < 23 o1 (Bo

= |(Ro)2121| + s ‘|(Ro)3131| + s |\(Ro)4141| + s ||(Ro)5151| + |h ||<R0>6161|
< 3max | Ry
< 3(A2— (5)7
which along with the same details as in Theorem 1.2.16 concludes the proof. O]

Remark 1.2.21. In the Einstein setting, Theorem 1.2.16 tells us that the eigenvalues of
R on & lie in

B((A +6) £ (n—1)(A - )

which is a weaker result than the one in Theorem 1.2.17. It is immediately clear that on a
nearly Kahler 6-manifold, on &3, the interval from Theorem 1.2.19 is a better result than
Theorem 1.2.16.

One can also show that Theorem 1.2.19 is also stronger than Theorem 1.2.17. For example,
let us show that 20 — A > —5+64. So, we need 5 > 46 + A. This is clearly true, as we can
pick an orthonormal frame where Ri210 = A. Then we know that Ry;1; = 0 for i = 3,4,5
and Z?:z Ry;1; = 5, which is the Einstein constant for a nearly Kéhler 6-manifold. Hence
the result follows. All the other inequalities are similar.

Remark 1.2.22. In the proof of Theorem 1.5.62, we will show that on a nearly Kéhler
6-manifold, for 3 € Q3, which must equal h ¢ w for some unique h € S§,, we have that
Wj = (2Wh)<>w Hence, if 8 = how is an eigenvector of W with the eigenvalue A, then h is
an eigenvector W with the eigenvalue 3. This clearly means that range(W) = 2 range(W)
where by range of a self-adjoint operator we mean the closed interval from the smallest
eigenvalue to the largest one.
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By Lemma 1.2.8 we have that W = R+ 21d, W = R — Id on S2. )
Hence, assume that § < R < A. Then by Corollary 1.2.14, the range of W on Q2 lies in

Wl 3

l2— (A +0) + (A—a)]. (1.2.23)

Similarly, by Theorem 1.2.19, the range of W on 8§, lies in

l—1 + %((A+5) ¢3(A—5))]. (1.2.24)

A

However, since range(W) = 2range(W), W on Q2 also lies in
[-2+ (A +9) +3(A—-9)],

which is clearly not the same interval as in (1.2.23). Since we cannot say that one of
the intervals is always better than the other one, we will use them both by taking their
intersection. Similarly, we can also obtain a second interval for W on &3, .

We summarize the estimates in the case of a nearly Kahler 6-manifold for R on S3.

Corollary 1.2.25. Let M be a nearly Kahler 6-manifold. Let 6 < R < A. Then the
eigenvalues of R on 8%, lie in the intersection of the following intervals:

B((A+6)i3(A—5))],[2+%<—(A+6)ig(A—6))].

Proof. This follows from Remark 1.2.22. O

1.3 General Weitzenbock formulas

In this section we rederive the well-known general Weitzenbock formula and then simplify it
in the case that the manifold is Einstein. More information can be found in [38], [33], [35].
Let (M™, g) be a Riemannian manifold. For a € QF and T € T" we have:

k+1 '
= (—1)]71V1-.04.

7 7,1...7:]'...Z'k+17
1

+

(da)

U1l

<.
Il

(d*a)ilmik—l = _vpapil-uikfl?
(V*Va)i i = —VpVpau, iy,
<V*T>12’Lk = _vapiQ...ik‘
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Proposition 1.3.1. General Weitzenbock formula
For a € Q% we have:

k

(A)iy., = (V*V);, . 1k+2a11---u--~lk i (u is at j" position)
j=1

+ Z iy Piiypu (u and p are at 1" and 3% positions respectively)
I<l<j<k

Proof. First we compute

-

(dd*a)i,.q = ) (—1) 7'V, (d*)

110500

<
Il
—

I

(—l)j_lvij (—VpOé

pi1-~~ij...ik)

<
Il
—_

(—l)jViija

pi1~~~ij...ik’

<
Il
—_

I

and

(d*da)hlk = -V (da)pil g

_ .7
- Pall A + 2 vljapll‘..lj...lk)

k
= (V*Va)ii, — 2. (-1 V, Via, s

L B 7S W SO A 9
Jj=1

Thus we obtain
(Aa)i,..q, = (dd* ), ., (d*da)il i

(vww,ﬁz Vi,V — V,Vi)a

7j=1

pzl...z]...zk

18



Apply the Ricci identity to the last term to get:

k
D=1 (Vi V=V, Vi) )a

7j=1

pzl..lz]...zk -

k
Z Vi,Vy =V, Vi), . p..i, (Where p is at 4™ position)

Z Z Ri piuiy..u..p..iy (w and p are at ™ and j* positions respectively)
Jj=11=1

k
Z i ppuQiy .y Z ZRijpiluailmu-upmik (first term is when [ = j)

J=1j5>1

+ Z Z Ri iy @iy p..u.. iy

Jj=1j<l

k k
zjuail...u...ik + Z 2 Rijpiluail...u...p...ik + Z 2 Riluijpail...p...u...ik

= 1=135>1 j=11l>j

|M?r

>

= Z zjuail...u...ik +2 Rijpiluail...u.,.p...ik
j=1 j>l

Now let
L =2 Z Ri]-piluail...u...p...ik'

7>l

By the first Bianchi identity, we have

7>l

= _2Z<Rijizup + Rijupil)ail...u..‘p...ik

7>l

7>l 7>l

= 22 Rijilpuah...u...p...ik — L.

7>l

Thus:
L= Z Rijilpuail...u...p...ik-

7>l
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Concluding, we get the required:

j=1 Jj>l

From Proposition 1.3.1 we obtain the Weitzenbock formula for 2-forms:
Let B € Q2. Then:

(AB)ab = (V*VB)ab + RapBpb + RopBap + RabpgBpq- (1.3.2)

Corollary 1.3.3. Assume M is Finstein with Einstein constant k. Then the Weitzenbdck
formula for 2-forms simplifies to:

_9 .
AB = V*Vj + 2kn—15 + W,
n J—
where the W notation is defined in Section 1.2.5.

Proof. In the Einstein case we have Ric = kg. Hence, each of the Ricci terms in (1.3.2) is
equal to kfBu.

The last term is:

2k

n—1

Id)ﬂ)ab = (Wﬁ)ab - nz—_klﬁab?

Rabpqﬁpq = (Rﬂ)ab = ((W -

by Lemma 1.2.8. Thus, putting everything together, we get:

n

AB = V*VB+2(kB) + (WS — nz—_klﬁ) = V*V3 + 2k— fﬁ + W8,

n —

as required. O

From Proposition 1.3.1 we obtain the Weitzenbock formula for 3-forms:
Let B € Q3. Then:

(Aﬁ>abc = (V*vﬁ)abc + Rauﬁubc + Rbuﬁauc + Rcuﬁabu + Rabpuﬁpuc + Racpuﬁpbu + Rbcpuﬁapu-
(1.3.4)

Corollary 1.3.5. Assume M is Einstein with Einstein constant k. Then the Weitzenbick
formula for 3-forms simplifies to:

n—3
(A6>abc = (V*Vﬁ)abc + Bkmﬁabc + Wabpuﬂpuc + Wacpuﬁpbu + Wbcpuﬁapu-

Note that the last three terms can be written as (Wﬁ)abc + (Wﬁ)cab + (Wﬁ)bca, by using
notation of Remark 1.2.4.
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Proof. In the Einstein case we have Ric = kg. Hence, each of the Ricci terms in (1.3.4) is
equal to kfBgpe. ) .
Now, consider the term RuppufBpuc 0f (1.3.4). This is (Rf)ape, which is equal to ((W —
nQ—fl 1d)5)abe = WabpuBpuc — f—flﬁabc, by Lemma 1.2.8. Similarly, we can do the same for the
other terms to get the required result:

2k
(Aﬁ)abc = (V*vﬁ)abc + B(kﬁabc> + Wabpuﬁpuc + Wacpuﬁpbu + Wbcpuﬁapu - B(Tlﬁabc)

(V vﬁ)abc + 3]{7 16abc + Wabpuﬁpuc + Wacpuﬁpbu + Wbcpuﬁapu [

1.4 Nearly GGy manifolds

First, in Section 1.4.1 we recall some facts about G5 structures and nearly G, manifolds.
In Section 1.4.2 we observe some properties about the curvature of nearly GGy manifolds.
Finally, in Section 1.4.3 we simplify the Weitzenbock formulas for harmonic 2 and 3-forms
and using the assumption of compactness of our manifolds, we get the necessary conditions
of vanishing of b, and b5 in terms of bounds on R, }C:Z, and R.

1.4.1 Preliminaries

Throughout this section M7 is a manifold with a G structure. That means that M admits
a non-degenerate 3-form ¢ (see [21] for more details). Note that ¢ determines a metric
g and orientation, hence also the Hodge-star . Then we also have that ¢ = xp is a
non-degenerate 4-form. First, we list some results for manifolds with a Gs-structure.

Proposition 1.4.1. We use the following identities from [2]]:
® ©ijkPabk = 0ialjb — 0ip0ja — Vijab-
® ViitVabek = OiaPjbe + dibPaje T OicPabi — OajPibe — ObjPaic — OcjPabi-
® @z‘jk¢abjk = —4Piap-
® ViitWapki = 4050055 — 40ip0ja — 2ijap.
® Vijritajkl = 240iq.

Remark 1.4.2. We have the following descriptions of the orthogonal decompositions of
0? and Q? into irreducible subspaces (see [24]):

P =00,
P=BoBo0,

where the subscripts denote the corresponding dimensions. In particular:
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Q2 ={X2p: XeT(TM)} = {BeQ:x(p A B) =28},

or equivalently, 8 € Q2 iff 8,0 = —48u < Bij = Xipiji for Xy = £6i;0ijk
O = {Be@: Bt =0}={Be:x(pnB) =5},

or equivalently, 8 € Q3, iff 8;jviju = 280 < Bijpije = 0.

Of = {fe: f € C*(M)} = Ry,

O3 = {X 144 X e D(TM)} = 2,

o 03 = S8F,

where the isomorphisms are obtained using the ¢ map with ¢ (although different notation
is used in [21], instead of ¢ there).

Similarly, we have isomorphisms between the irreducible subspaces of Q! and §* ® Q2 via
o with 9. In particular, let v € 93, € Q* Then v = Ao ¢ and ¢ = B ¢ 1) for some unique
A=1L(trA)g+ Ay + A7, B = 1(tr B)g + By + By € S* @ Q2. Define

~
~

Yia ‘= YijkPagjk and Gia = CijkiWVajkl-

Then:
trA = itr('if)
18 ’
(Ao)ia = 1(%’@ + Yai) — x tr () ia
8 28
(Ar)in = o3 (Gin — ).

and we have similar formulas for B, but they will not be used here.

Definition 1.4.3. A manifold M with a G4 structure ¢ has four independent torsion forms
corresponding to a G structure ¢:

70 € C*(M), e O, e Q2 e QS
defined by the equations:

dp = Tot) + 371 A @ + *T3
dp =41y A Y+ *To.

We say that M is nearly Gs if dp = 1791 and dip = 0 for some 75 # 0. It follows in this case
that ) must be constant. Note that the condition of being nearly (G5 is also equivalent to
the fact that the only non-zero component of the torsion tensor is 75. These manifolds are
positive Einstein and one might want to scale the metric so that 79 = 4 (in this case we
will also have Ric = 6¢), as we do for the nearly Kéhler case. However, we keep it more
general. A
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Proposition 1.4.4. For a nearly Go manifold we have the following formulas:
70
VoPije = Vpiik;

70
prijkl :Z(élp(pijk + 5jp90ikl - 5kp90ijl - 5ip()0ljk)7
2
-
2 VpVpije = — Zo%'jk-
P

Proof. The first two formulas are in [24]. The third formula is demonstrated in Proposition
2.4 of [1]. O

1.4.2 Curvature identities

On a nearly G5 manifold we have: Ric = %g (also see [21]), so the Einstein constant

k= 3T° and R = 21T° . Applying the result from Lemma 1.2.8 we get:

~ N 7'2
W=~R+21d,
8 (1.4.5)

Wzé—wld 0n$2

Also, note that the Weyl tensor Wy, lies in 02, in the first two or the last two indices. This
2
is because from Theorem 4.2 in [21], we have R;jk@kim = *%%‘jm- By Remark 1.2.4, we

can write this as Ry = —%g@. By (1.4.5), we get Wy = Ry + ggo = 0. By Remark 1.4.2
this is equivalent to the fact that W lies in 92, in the first two indices. Because of its
symmetries, the same holds in the last two indices.

Hence, we can also conclude that W, R preserve the space Q3,. Consider W first. The
2-form (Wﬁ)ab = WapijBi; will always lie in OQ3%,. So, vacuously, it preserves 032,. Next,
since R and W differ by a constant multiple of the identity, R also preserves Q2,. This
fact means that we can consider W (and R) as a self-adjoint operator only on 2, which
will provide better estimates when we apply the Bochner-Weitzenbock techniques.

1.4.3 Weitzenbock formulas

In this section we establish sufficient conditions for the Betti numbers by or b3 to vanish,
in terms of bounds on W and W respectively. As a corollary, we can get those sufficient
conditions in terms of bounds on R.

The simplified Weitzenbock formulas obtained in this section can be found in the literature,
but possibly in different forms (see [1]). As we mentioned in the introduction, we again
reprove all the results in a simple, direct way.
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We will use Theorems 3.8 and 3.9 from [12], which state the every harmonic 2-form lies in
Q2,, and every harmonic 3-form lies in Q3.

2-forms

We apply Corollary 1.3.3 to the nearly G5 setting to get:

2
AB = V*V§ + 5%5 + WA, for any e Q2. (1.4.6)

Theorem 1.4.7. Let M be a compact nearly G, manifold. If S2(Q2,) 3 W > —%, then
by = 0.

Proof. Let B € Q? be harmonic. Then 3 € Q2,. Substituting it in (1.4.6), and using the

A 2
assumption that W > —5%, we get by integration that Vg = 0. Hence § = 0, as there are
no parallel non-zero 2-forms. n

Theorem 1.4.8. Let M be a compact nearly Go manifold. Let 6 < R < A with —(A +
) —1(A=6)=—T8 Then by = 0.

Proof. If —(A +6) — g(A —0) = —%, then by Corollary 1.2.14 we have that R > —ﬁ.

So, we use equation (1.4.5) to get that W= —% and hence by = 0 by Theorem 1.4.7. [J

3-forms

We apply Corollary 1.3.5 to the nearly G5 setting to get:
" 3
(Aﬂ)abc = (V vﬂ)abc_‘_ZT()Qﬂabc+Wabpuﬁpuc+Wacpu5pbu+Wbcpuﬁapu7 for any B € QB- (149)

The aim now is to simplify this formula for harmonic . First, we do this more generally,
we will just assume (3 € Q3 @ Q3., which includes all the harmonic forms. Then we will see
what we can get from the assumption of 5 being harmonic and then we use all these steps
to get a simpler formula.
Recall definitions of Div and ¢ from Section 1.1.3, and also for h € 82, let h € T2 be defined
as

hkc = (vihjk>90ijc- (1410)

Proposition 1.4.11. Let M be nearly Gy. Let 3 € Q3 @ Q3. so that B = ho ¢ for some
he 8%, Then:
70

12((Divh —Vitrh) J¢) +2Wh)o .

A(hop) = (V*Vh + 72h + %ﬁsymm -
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Proof. First, consider the term W, Bpue from (1.4.9):

Wabpuﬁpuc = Wabpu(hpsgpsuc + hfus%ppsc + hcs@pus)
= 2Wabpuhp590$ucu

as the first two terms in the brackets are skew in p,u and the last term vanishes because

W e §%(Q2,). Hence,

Wabpuﬁpuc =+ Wacpuﬁpbu =+ Wbcpuﬁapu = 2hps(Wabpu905uc + Wacpu(psbu + Wbcpu@asu)a

and define 4. to be equal to this expression. Since v € Q3,7 = Ao for some A € S?@® 2.
We have:

~

Vat ="VabePtbe
=2hyps(Wabpusue + WaepuPsvu + WoepuPasu) Pibe
=4h,s(WabpuPsucPtve)
(since W e S?(€2,) and we use skew-symmetry in b, ¢ on the first two terms)

=4hpsWabpu (05t0ub — Osp0ut — Ysutp) (by Proposition 1.4.1)
= — 4(hpsWaspt + hpsWappu®sutn). (because the Ricci tensor of W is zero, i.e. Wy, = 0)

Now, note that:

WabpuVsuts = — Wapub + Waubp) Usutp
=WapusWVstub — WaubpWsutp
=2Wapst — WabupUsitu
(swap the indices b, u and use that W e S?(Q7,) with Remark 1.4.2)

:2Wapst - Wabpu¢sutb~
Hence, we have
Wabpuwsutb = Wapst7
and thus

;}/at = _4(hpsWaspt + hpsWapst)
= 8(Wh)a.

Next, we have that tr(4) = 0 because Wy, = 0. Also, we see that 4 is symmetric. Hence,

by Remark 1.4.2,

1 o
A= Ao =4 =2Wh,
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Thus, the term with Weyl tensors in the Weitzenbock formula is equal to v = Ao =
2(Wh) <.
Next, we compute V*V = V*V(h ¢ ¢) as follows:

V*V(h o @)ape = — VsVis(RapPpbe + PopPape + NepPabp)
= — (Vs(Vshap)opbe + Vs (Viship)Pape + Vs (Vishep)Parp))
— 2(Vs(hap)Vs(ppve) + Vis(hip) Vs(Pape) + Vis(hep) Vs (@arp))
- (hapvsVS(‘Ppr) + hbpvsVS(‘PaPC) + hCPVSVS(QOabp))

2
=((V*Vh + %h) o ©)abe (by Proposition 1.4.4)
70

- 5(v3<hap)wspbc + vs<hbp)¢sapc + Vs(hcp)¢sabp)'

Let 0ape == Vis(hap)Vspre + Vis(hip)Vsape + Vis(hep)Vsabp. As 0 € O3, 0 = B o for some
unique B e S?@® Q% Then:

Oat = OabePibe
= V(hap)VspbePive + 2V s(Rip) VsapePibe
= Vs(hap)(—4¢1sp) + 2V s(hup) (8t5Pbap + OtaPstp + OtpPsab — OspPtap — OabPstp — OpbPsat)
(by Proposition 1.4.1)

= _4vs(hpa)<;pspt - 2vs(hbt)90sba + QVs(hsp)QOpat + 2vs(hpa)905pt - 2vs(hpp)(psat
— —2hg — 24 + 2(Divh 1) e —2(Vtrh 10w

= —4(hsymm)at + 2(Divh — Vtrh) 1¢)q.

Note that tr 6 = —4(hsymm)aa = —4haa = —4Vi(hja)@ija = 0. Thus, by Remark 1.4.2 we
have:

1. .
(BO)ia = é(gia + Uai) = _(hsymm)im

1 1
(87)m = ﬁ(a-m — &ai> = 6((D1V h — th‘ h) _ (p)ia-
We conclude that:

~ 1
o = (—hsymm + 6((Divh —Vitrh) 1)) oe.

Putting everything together we get:

2

5 1 .

A(hoy)=(V*Vh+ %Oh — %(—hsymm + 6((Divh —Vitrh)Jp)) + %rgh + 2Wh) o ¢
To 70

=(V*Vh + 15h + 5 Psymm — 12((Divh —Vitrh) J¢) +2Wh)op,
as claimed. O
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Proposition 1.4.12. Let M be a compact nearly Gy manifold. Let 3 € Q3, 2 H3, so that
B =hog for some he S3. Then 3 is harmonic if and only if:

= —%hesz and Divh = 0.

Proof. Since M is compact, 8 is harmonic if and only if d*8 = 0 and df = 0.
First, we calculate the Q2 component of h. This is done by contracting it with . That is,
by Remark 1.4.2, m;(h) = X 1 ¢, where X = %hijwk,-j. So:

1~
Xy = éhijSOkzj
1
= g(vahbi)s%bj@kij
1
= é(vahbz‘)(5ak5bz’ — 0aiObk — Vabki)

1
= g(vkhbb — Vihu)

1

Thus: )
(k) =X J¢ where X = ~5 Div h.

Now, consider the condition d*f = 0:

=V, (hjppri + hip@ijpt + Pip@iip)
=V (hjp)pprt + hipV i (@pri) + Vi(hip) i
+ hip Vi (Pipt) + Vi(lup)pinp + hipVi(©jip)
‘ T - i - i
=(Divh J@)u + hjpzol/)jpkz + I + hkpzo%'jpl — hy + thzo%'jkp

=(D1Vh _ Sp)kzl + 2(hskzew)kl-

Hence, using the formula for 7;(h), we get:

—d*B =Divh 1+ 2(mr(h) + ma(h))

1
=Divh_|<p—§Divh_|<,0+27T14(h)

2
=2m14(h) + 3 Divh 1.
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Thus, we have that:

7T14(iL) = 0,

d*8 =0 if and only if
{Divh =0.

Next, we consider the second condition d = 0. Since df e/£24, by Remark 1.4.2, df = Bo
for some unique B € 82 @ Q2. Then dB = 0 iff B = 0 iff d3 = 0. So:

(dB)ia

(dB)ijr1tajni

(ViBjri — VBt + ViBiji — VibBiji)Yajri

(ViBjkr — 3V Birt) Vajni

(Vilhjppprt + Pap@ipt + TupPinp) ) Vajni

— 3(V(hipppkt + hipPipt + Pip@ikp) ) Vajr

=3V (hjppit)Vajir — 3V j(Rip@prt)Vajki — 6V (Rkpipt)Vajl-

We calculate each of these terms separately:

3Vi(hjpPpkt)Vajr = 3V i(hjp) Cpritajit + 3hjpVi(Oprt)Vajil

37'
= *12vi(hjp)90paj 0 p¢lpkl¢ajk‘l

3
= 20 B (465005 — 45ij5pa — 2ipa;) (by Proposition 1.4.1)

= 370((tr h)ém — hm)
= _37—0hia-

Next:

=3V (hipopr)Vajtr = —3V(hip) pritajr — 3hipV (Opri)Vajrl

3T,
= 12Vj(hip)80paj 40 zpw]pklwajkl

37
= 12vj(hip)90paj °

= 12h,, + 1879h,,.

h2p245pa (by Proposition 1.4.1)
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Finally:

-
—6V i (MipPipt)Yajrt = — 6V (M) Qipi¥ajir — thpzol/ijipl%jkl

3T
== 6Vj(hkp>(piplwajkl ‘ hkplppz]lwak]l

= — 6V, (hip)(Siappin + 5¢j90apk + 0ikPajp = OapPijk — OjpPaik — OkpPaji)
— %hkp(élépa&k — 46pk0ia — 24piar) (by Proposition 1.4.1)

= — 6(V;(hip)Pajp — Vj(hwa)isk — Vji(hieg)air — Vi (tr h)paji)
— 67’0(hm — (tr h)(5m)

= — 6ilia + 6Bai — 6(D1V h @)ia - GTOhia-

Combining all the results we get:

(d/B)ia = 6(iLia + iLai) + 97—0hia - 6(D1V h So)ia
= 12(Bsymm>ia + 97—0hia - 6(D1Vh - So)ia-

Thus, we have that:

h = _3np
ds =0 if and only if sy 4
Divh = 0.
Summarizing, 3 is harmonic if and only if Bsymm = 3Toh 7T14(il) = 0,Divh = 0. But we

know that Div h vanishes if and only if 7T7(h) vanishes, $0 hgrew = 0 and b = hsymm Hence
we get the required result. O]

Corollary 1.4.13. Let M be a compact nearly Go manifold. Assume [ is harmonic. Then
B e Q3. so that = hop for some he S;. Then:

* 57—(? T
\Y% Vh—l—?h—i-%/vh:().

Proof. By assumption, § is harmonic, so the left hand side of the Weitzenbock formula

in Proposition 1.4.11 vanishes. Next, by Proposition 1.4.12, hsymm =h = 3T"h and
Divh = 0. Also, we know trh = 0. Substltutlng all these terms into Proposmon 1.4.11,
we get the required result. D

Theorem 1.4.14. Let M be a compact nearly Go manifold. If S*(S2) W > —3%07”'
S02,) s W =~ then by = 0.
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Proof. For the first part, we use (1.4.9) and the proof of Proposition 1.4.11 to get that if
B = hope Q3 is harmonic for some h € S, then:

N 378 o
\Y% Vﬁ-F(Th—FQWh)OgO:O

Hence, the result follows by integration and the fact that there are no parallel non-zero
3-forms. Note that using Corollary 1.4.13 in order to get a similar result would have been

worse, as we would have been able to only conclude that if S2(S2) s W > 5T° then b3 = 0.
This is because V*V§ = (V*Vh — gh) o, so we can see that even though the left hand

side is obviously non-negative, we cannot conclude that from the right hand side.
The second part trivially follows from (1.4.9). O

Theorem 1.4.15. Let M be a compact nearly Go manifold. Let § < R < A with A < HTO

Then bs = 0.

5> I

2

Proof. Recall that the Einstein constant & = 34;’— Then by Theorem 1.2.17, on &2, R >

—38 4 75 and R > 28 — 5A. Hence, by (1.4.5), W > =78 4 75 and W > 2% — 5A.
In order for by = 0, by Theorem 1.4.14 we want W > 3T° . We have —i + 7(5 320 iff
0= 1127 and 5T° —b5A > 3T° iff A < HTO . Hence, the result follows from Theorem 1.4.14.
Recall that, a priori, by Remark 1.2.9, we have that § < 16 < A.
Also, note that we do not use Corollary 1.2.14 along with the statement that S?(Q3,) 3 W=
—% implies that b3 = 0. This is because the sufficient conditions in terms of the bounds

117'O O

0 or 0 =

2
on the sectional curvature we would have obtained imply that A < 5

1.5 Nearly Kahler 6-manifolds

First, in Sections 1.5.1 and 1.5.2 we establish some preliminaries for 6-manifolds with an
SU (3)-structure. In particular, we give various descriptions of irreducible subspaces of (22
using the ¢ map. Next, in Section 1.5.3 we introduce nearly Kahler 6-manifolds and in
Sections 1.5.4 and 1.5.5 we establish several identities involving curvature and harmonic 2
and 3-forms. Finally, in Section 1.5.6 we simplify the Weizenbock formulas for harmonic
2 and 3-forms and using the assumption of compactness of our manifolds, we get the
necessary conditions of vanishing of b, and bs in terms of bounds on R, R and R.

1.5.1 Preliminaries

For this section as well, most of the results can be found in [11], [31], [36], [31], [30] and
other sources on nearly Kéahler manifolds. Nevertheless, we include as many details as
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possible.

First we consider a general SU(3)-structure on a Riemannian 6-manifold (M, g). This
means that M% has an almost complex structure J compatible with the metric ¢, and a
complex 3-form Q = ¢ + it~ satisfying

2
Pt AT = gw?’ = 4voly .
Also in this case, g¢o, ¢ and v defined as:

go =1’g + dr?
@ = —rdr A w+ 3T,
2

P = —r3dr A v — T4w—.

2
give a metric cone Go-structure on R* x M.
Hence, in a local orthonormal frame we get:
Poij = —Wij Voijk = — Vi (1.5.1)
Pijk = Yin Vijrr = —(¥w)ijh-

We also list the following identities that hold, without proof:

Wikt = O, T =P T = =T ww = Sw (1.5.2)
Looking at the last identity in coordinates gives us:
(*W) ikt = WijwWit + WjkWwi + WijWik- (1.5.3)
Proposition 1.5.4. The following identities hold:
o U ur =~ (1.5.5)
o U tak = V. (1.5.6)
o Uik =0 = ¥ywik. (1.5.7)
o U5t = 0ialjp — 0indja — WiaWjp + WirWja- (1.5.8)
o b = 40ir. (contraction of the previous one) (1.5.9)
° wz?kw(;)k = 5iawjb + (5jbwia — (Sibw]‘a — (5jawib. (1510)
o @/}jj‘kgba_]k = dw;,. (contraction of the previous one) (1.5.11)
o Vi Uan = 0iadjp — Oindja — WiaWjp + WirWja- (saMme as Yt ) (1.5.12)
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® Vo = 40ir. (contraction of the previous one)
® Wik (*W)abek = OiaWhe + dipWea + Gicab-
o Wi (*W)apix = dwap. (contraction of the previous one)
o Ul (3W)aber = —0ia¥ e — it — Oicy;
+0aj Ve + Obj¥aie + OcjWVap — WijWape
o Ul (3W)abek = —VijaWhe — Vipea — Vijelab (allernative expression)
o U5 (xw)apjk = 205y, (contraction of the previous one)
o o (W )aber = VifaWie T Vi Wea + Ui Wab-
o Ui (*W)anjk = 29, (contraction of the previous one)
o (%)t (*wW)abkt = 203005 — 20304 + 2wW;jWap.
o (xw)ijri(*W)ajkr = 128;4. (contraction of the previous one)

Proof. We repeatedly use (1.5.1) along with G5-contraction identities. For (1.5.5):

6
Y ipWak =
ijk*ak zjk SOUak

= - 2 PijkPoak
—(6i00ja — biadj0 — Vijoa)
= Yoija
~ Yija-
Contracting both sides of (1.5.5) with wg, we get:
wz‘;kwakwau = _¢i;awau
ijéku Zb;jawua

zju = wzyawiww

which gives us (1.5.6).
Contracting on (1.5.5) and (1.5.6) on j, a immediately gives (1.5.7).
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Next, for (1.5.8):

zjkwabk Z PijkPabk

6
= Z PijkPabk — PijoPabo

”d

(6za53b 'Lb(sja wz]ab) WijWab
= (5ia5jb - 5ib5ja) ((*W)ijab - wijwab).
= 5ia5jb — (52'(,53'& + WjiaWip + WhjWia (by (153))

= 0ia0jb — 0ip0jq — WigWjp + WipWjqa-
Contracting (1.5.8) on 7, b gives us (1.5.9):

wz]k ajk — 6 - 5ia + WijWia
- 65ia - 62’a - 5ia
= 4.

Next, for (1.5.10):
6
77Z};]_k¢a_bk = Z ij ¢Oabk

== Z PijkVoabk
k=0

—(bi0%jab + GiatPojb + OibPoaj — 00jPiab — dajPoib — ObjPoai)
= 0iqWjp + Oipwaj — OqjWip — OpjWai

= 0iqWjp + 0jpWia — OipWja — 0jaWip-
Contracting (1.5.10) on j,b will give us (1.5.11):

W;k%_yk 6wza Wiq — Wiq

Next, we show that 1,0, = ¥ ¥a, Which means that (1.5.12) and (1.5.8) are the
same. Using (1.5.5), we have:

w;kw&;k = ¢;;5Wkswa+btwkt
ij swabt (SSt

wz]s abs*
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Thus, we also get (1.5.13):
%}kngk = kwa]k
Next, for (1.5.14):

Wik (%W ) abek = Z(-@om)(—%bck)

6

h—1
= Z PoikYabek
k

=0 0aPibe + 50b§0azc + 500@ab7, - 5ai900bc - 5bi§0a00 - 5ciS0ab0
= 5zawbc + 6zbwca + 5zcwab

Contracting (1.5.14) on 4, ¢ yields (1.5.15):
Wik (¥W)abik = Wha + Wha + 6Wab
= 4wab.

For the next identity, there are two ways of computing the desired contractions yielding
two different expressions (1.5.16) and (1.5.17). First, we use the usual way:

6
wzgk(*w)abck = Z z]k wabck

= — Z CijkWabek + PijoVabeo
k=0

_(5ia30jbc + (Sib(pajc + 5icgpabj - 5aj80ibc - (5bj(10aic - 5cj90abi) + <_wij)w(;)c
= —0ia¥he = OibVaje — Oictap; T 0ajVibe + ObjVaic + Oci¥api — WisWUape-

Second, we can also use the previous results to get:

Ui (30 )aber = V5 Wi (30 abek
= — 1y, Wuk (*W) abek
= — i (Oaupe + Opuea + deuWas)
—VijaWbe — VijWea — YijeWab-

Note that both contractions of (1.5.16) and (1.5.17) on j, ¢ yiled the same result (1.5.18):

+ —
¢ijk(*w)abjk = abz + Qibzba + ¢azb + 6770;})1 - wijwabj
= wzab zab zab + 677Z}zab abz
= szalﬂ
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and

Vi W) abjk = —Vi5aWj — YijpWia

= wi?zjwbj o wlbjwa]

+ ot
iab iba

= 2¢7,ab

Since the second way of computing the contraction of )" and *w gave us a nicer expression,
we use it again for (1.5.19):

Vi (W) abek = —135,Whu (¥0) abek
= U5 Wk (%W ) abek
= ¢;§u(5auwbc + Opulea + Ocuab)
= Y5aWhe + Y ifWea + Vi Wab-
Contracting (1.5.19) on j, ¢ yields (1.5.20):

Qﬁ%k(*w)abjk = ¢;;awbj + wi—;bwja
= — Vi + Vit Way
= 1/}2'7117 - wi;a
= 2¢;4-

Finally, we compute (1.5.21):

(*w)ijrr (%W ) abkt = Z YijriVabkl
6
Z ¢z]kl¢abkl Z wzykowabko Z w1]0l¢ab0l

6
= Z VijriPabki — QZ Vi Vabk

k,l=0
=(46;0655 — 401050 — 21/fijab) — 2(6ia0jb — dip0ja — WiaWjp + WibWiq)
:252'(15]'1) — 2(51'5(5]',1 + 2((*w)ijab + WiaWjb + wajwib)
:25ia5jb — 25ib5ja + 2((wijwab + wjawib + wbjww) + wiaw]‘b + wajwib)
:252'@(5]'5, — 25ib5ja + Qwijwab.
Contracting (1.5.21) on b, j gives us (1.5.22):

(*w)ijkl(*w)ajkl = 125ia — 2(51'(1 + 2(51'(1 = 125m. O
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Remark 1.5.23. We have the following descriptions of the orthogonal decompositions of
0? and Q3 into irreducible subspaces (see [14]):

P =002,
0° = Q?@l ® Qg ® Q?ﬁy
where the indices denote the corresponding dimensions. In particular:
OF = (e 02 +(B Aw) - 28} - Ru,
O3 = {Fe 2 +(f Aw) = B} = (X 10" X e I(TM)},
02 ={BeQ?: x(B Aw)=—p0} is the space of primitive forms of type (1, 1),

or equivalently, 8 € QF iff §;;0%, = 0 and fjw; = 0,

M1 = RYT DRy,

W ={Xrw:Xel(TM)},

3, is the space of primitive forms of type (1,2) + (2,1), or equivalently, Q3, = S o ¢+,
where the 8% is defined in Section 1.5.2.

Remark 1.5.24. Consider the map P : Q? — Q2 given by P(3) = (8 A w), for 8 € Q%
In a local orthonormal frame:

w2

1 1
(Pﬂ)ab = 55@(7)@@ = §Bz‘j(*w)ijab-

We can extend the map P to all of 7?2 via the formula above. Then we have §? = ker(P)
and for 5 € Q?, Remark 1.5.23 says that:

P(B) = 2m1(8) + ms(B) — ms(5). (1.5.25)

Proposition 1.5.26. Let 8 = By + A\w + X 29T, where 5y € Q2. Then:
o Xi = 185155

PTOOf. Recall that (BO)ij z—;k = 0, (ﬂo)ijwij = 0, and wijiﬁi—;k = 0
For the first identity, contract

Bis = (Bo)ij + Awij + Xat; (1.5.27)
with w;; to get:

ﬁijwij = )\wijwij = 6)\
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Similarly, contracting (1.5.27) with 1 gives us:
Bi]',[?bljij = Xa,lvbc;qub]jij = 4Xa6ak; = 4Xk
as claimed. 0

Lemma 1.5.28. Let 8 € Q2. Then Bw = wpf, where by fw € T? we mean (Bw)i; = Bixwri,
and similarly for wp.

Proof. Since, 8 € Q2, by Remark 1.5.24, we have that P = —3, which in a local orthonor-
mal frame is %ﬁij(*w)ijab = —fBa. Also, recall that f;;w;; = 0. Using Proposition 1.5.4, we
have:

(Bw) st — 65uwut

1
= _iﬁij<*w>ijsuwut

1
= §6ijwtu(*w)ijsu

1
= Q@j(@tsz + 0jws; + 5stwij)
= Bijouwjs + 0
= 5tjsz

= ws; Bt

= (Wﬂ)st,

as claimed. O

1.5.2 The ¢ operator

The results in this section are very similar to the ones in Remark 1.4.2. We describe the
isomorphisms coming from the ¢ map. This time, however, we give most of the details.
Recall the definition of the ¢ map: let o € QF. For h € T2, we define:

(hoo)

iriy = NirpOpigeiy + NigpOirpigeiy +++ + RigpOiy iy _yp-

Definition 1.5.29. Let 5 be a 2,3, or 4-form. Then we define B e T2 as follows:

for 6 € 02 Bia = BitWak,
for Be Q3 By, = BijkWYains
for 5 e Q, Bm = Bijkt(*W)ajkt- A
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Remark 1.5.30. Let
S? = {h € 8*|hw — wh = 0}

S? = {h e S*hw + wh = 0}

which are the spaces of symmetric 2-tensors which commute and anti-commute with w (or
equivalently with J), respectively.
Note that 8?2 < S,. This can be easily seen by recalling that w? = —1Id, and so

tr(h) = — tr((hw)w) = —tr((—wh)w) = tr(whw) = tr(h)w? = —tr(h).

Hence, we can further decompose
Si=Rg®S,

where 82 are the traceless elements of S2.
Concluding, we have the orthogonal decomposition:

SP=RgdS&*,®S°.

It is easy to check that &2 has dimension 8 and §? has dimension 12.

2-forms

Proposition 1.5.31. In the case of 2-forms, the - o w map is an isomorphism of the
following spaces:

Rg =2,
02 =02,
8%, =02,

Proof. For the first two maps it will be clear that they are isomorphisms. For the last one,
we just check that the image under the - ¢ w map lies in the required subspace. Then by
the next Proposition 1.5.32, which shows that the map is invertible, we conclude that it is
also an isomorphism. So, we have:

(gow)ij = Gipwpj + Gjpwip = 2w
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Next, take any = X 19T € Q2. By Proposition 1.5.4 and 1.5.26, we have:

(Bow)y =

= Bipwp; + Bipwip
=X w

wpj + X T Wip

aip

—Xota;

ajp

azpw]p + X ¢ajpwlp

=X 77Z)azy ¢ajz

=2X.90,

where we have used that

(J(X))p =

Finally, take any h € 52,. Then:

(how)ijwi; =

and

(h © w)lj ijk

_2)(a(-‘-)ap¢Jr

a'aij

= 2X.;

a¥ija

ijp

—(2J(X) 197)y5,

<J(X)’ 6p> = W(X’ ep) = Xawap'

(hipwpi + Rjpwip)wij
= NipOpi + NjpOp;
=2trh

= (hipwyp; + hjpwip)wigk
((hw)ij + (wh)ij) i
2(hw)ijtsy, (since hw = wh for h e §3)

= 2hpwp; wz]k
= 2hpwp; wkij
= —2hiyty,,

=0,

because h € 82, This shows that ko w € Q2. Hence, the result follows.

]

Proposition 1.5.32. Let 3 € Q2. Then B = how for some unique h = %tr(h)g + X 1

YT+ hyo, where X e T(TM), hyg € 82,

This implies that

tr(h) = 2 tr(B),

Also, clearly 5 =0 iff h =0 z'[fB = 0.

1.

1. 1
gﬁiawljim h+0 = éﬁsymm - E tr
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Proof. We compute 3 as follows:

Bia = ﬁikwak
= (h <& w)ikwak
= (hipwpk + hkpwip)wak

= NipOap + RipwipWak

= hia (5 H Sk + Xty + (i)

= hj, + étr(h)ém + quikpwipwak — wip(h40) pkWra
= R + %tr(h)c?m — X iWak — (Whiow)iq

= hia 5 () + X — (o)

1
= hjq + 5 tr(h)dia + Xutia + (hi0)ia

as claimed. X
So, we get 2tr(h) = tr(f) along with

A 1
Bsymm = 2(6tr(h/)g + thO)
which means that
1. 1 1. 1 A
:_smm__th = —Psymm — =t .
h+0 2/8 ) 6 r( )g 2/6 Y 12 r(/B)g

Finally, by Proposition 1.5.26, we get that
22X, = i(ﬁskew)m?ﬁ;}a = iBz’aw[:m' O
4-forms
Proposition 1.5.33. Let € Q*. Then 3 = ho (*w) for some unique h € QF ® S3.
Proof. Tt is easy to check that:
x(how) = (}l tr(h)g — h') o (*w).

Now, since 8 € Q*, we have x5 € Q2. Then by Proposition 1.5.31, *3 = h o w, for some
unique h e Q2D S2.
Hence,

§ = #(x8) = (5 tr()g — K)o (x).
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Note that the map h — (3 tr(h)g — h") is an automorphism of AZ@®S?. This is because it
can be seen that under this map, Q2 is mapped to itself and for h € S we have:

1

which is injective, as %‘tr(h)g —h = 0iff h = cg, for some ¢ € R, but then %1609 = cg, hence
¢ = 0. Also, since g, h commute with w, }Ltr(h)g — h also commutes with w, so is in §2.
Thus, we get the required result. O]

Proposition 1.5.34. Let S € Q*, so § = ho (sw) for some unique h € Q3 ® S%. Then

~

B = 8tr(h)g + 12hg + 12h 4,

where B s as in Definition 1.5.29.
Proof. We compute /3’:

Bz’a = Bijkl(*w)ajkzl
= (hip(*w)pjar + hyp(*W)ipht + P (W) it + hup (*w)ijkp) (W) ajnt
= hip (%) pjt (¥ ) ajir + 3hjp (%) ipht (xW) ajit
= hipl20,4 + 3hjp(20ia0p; — 20i0pa + 2Wipwaj)
= 12h;q + 6tr(h)diq — 6hiq + 6hjpwipa;

In the proof of Proposition 1.5.32, we computed that for h € Q2 ® Si, hipwipWar = Nig-
Hence,

Bia = 6hig + 6 t1(h)dia + 6hia
= 12hia + 6tr(h)5m
1
= 12(6 tr(h)g + h(j + h+0)z’a> + 6t1"(h>(5m
= 8tr(h)5w + 12(h6)ia + 12(h+0)m. ]

Corollary 1.5.35. Let € Q*, so 8 = ho (xw) for some unique h = %tr(h)g + hg + ho.
Then:

tr(h) = tr(B),
eolia =5 Bamm)ia = =5 66 (B)oia = 52 (Bra + fur) = =5 t(3)6
( +O>za —12<6symm)za 79 r ia = 5\Pia ai 79 r ias
1 4 1 . .
<h6>ia :E<5skew)ia = ﬁ(ﬁia - 6{11‘)'
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Also, clearly B =0 iff h =0 z'jj‘B = 0.

Proof. In Proposition 1.5.34 we proved that

~

B =8tr(h)g + 12hg + 12h . (1.5.36)
Taking traces of both sides, we get
tr(5) = 48tr(h).

Hence,

2 1 5 1

1 - 1 5 1
h+0 = E(ﬁsymm - Str(h>g) = Eﬁsymm 9 g tl‘(ﬁ)g - Eﬁsymm - ﬁ

3 18 tr(3)g.

Taking skew-symmetric parts of (1.5.36) gives us the required

12h6 = Bskew' [

3-forms

Proposition 1.5.37. In the case of the 3-forms, the - o™ map is an isomorphism of the
following spaces:

Proof. Computing g o " and w o™ gives us:

goyT =3¢
(W o )ijr = Wipthyiy + Wiplig + Wpil,
= wipw;;cp + ij%:rz’p + wkpwi—;p
= — Vi — Yy — Vi
= —3¢i}k,

42



which is enough to conclude that Rg @ Rw =~ Q.
Next, take any X 14", with X € I'(T'M). Then:

(X a9™) o™ )ije =(X 39T )ity + (X W)jp%k (X 29T )ity
uwmp pjk + Xy ?jjp ipk + Xuthy, ukp lgp
=Xu ( uip Jkp w“JPwklP + Qﬂukp m))
Xu(0uj0ik — Ouklij — WyjWik + WykWi;
+ 0urdji — 0uiljr — WukWji + Wyijk
+ 0uiOkj — OujOri — Wyilkj + WyjWii)
=2X (wyiwjk + WyjWki + Wykij)
=2(JX A w)ijk,
which again is enough to see that Q% ~ Q3.

For the last isomorphism, we avoid the details, because this is how we defined Q3, in
Remark 1.5.23. ]

Proposition 1.5.38. Let $ € Q3, so 8 =hoy" for some unique h € Rg@Rw® Q2D S2.
Then

B =2tr(h)g + 12Xw + 4hg + 4h_,
where B 1s as in Definition 1.5.29, and X is the coefficient of w in h, meaning that the
unique part of h in Rw is Aw.

Proof. Let hg = X 147, for some unique X € I'(T'M). Now, we just compute B

Ba = Bisitbe
= (ho @Z)Jr) ajk
= (h p]k + hjzﬂﬁzpk + hkp¢zgp)¢agk
hip®pirlain + 20p i1 Vain
= hipA6pa + 2Ry (0ia0p; — 0:ii0pa — WiaWp; + WijWpa)
= 4hq + 2tr(h)0iq — 2hiq + 2hjpwipwia + 2hjpwpawi;.
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We compute the last two terms separately:

1
2hjpwpawij = 2(5 t1(R)Gp + Awip + Xuthyyy, + (he)p)patoss
1
=3 tr(h)wWpaip + 2AwjpWpaij — 2Xu¢:jpwapwij + 2w;; (h_) jpwpa

1
= —g tr(h)ém — 2)\§ajwij + 2qu7 Wij + Z(Wh,LU)ia

uja

;ajwij — 2(h_w2)m

1
=3 tr(h)0iq — 2 \wiq — 2X, 0

1
= —§ tr(h)ém — 2)\wm — 2Xu + + Q(h,)m

uai

1
= —g tr(h)dm — 2X\wj, + 2(h6)ia + Q(h_)m.
Next,

1
2hjpwjpww = 2<6 tr(h)5jp + )\wjp + Xu ;rjp + (h_)jp)wjpww

=0+ 12 \w;y + 0+ 0
= 12)\wm.

Hence, combining these parts we get:

~

Bia = 2hsa + 2tr(h)ds0 + (—% b2 (h)6is — 220t + 2(he)ia + 2(h_Yia) + 1220
1 5)
= 2(6 tr(h)ém + )\wia + (hﬁ)z’a + (h—)ia) + § tr(h)éw + 10)\0)1'@ + 2(h6)ia + 2(h_)7;a
= 2tr(h)6ia + 12 wj, + 4(h6>ia + 4(h_)ia,
as claimed. O

Corollary 1.5.39. Let 3 € Q3, s0 § = hotpt for some unique h = §tr(h)g + dw + X 1
Yt + h_, where X e T'(TM). Then:

tr(h) = tr(5),

1 . 1 N 1 n 1 o
(h—)ia :Z(/Bsymm)ia - ﬂ tr(ﬂ)dia = g(ﬁia + 5ai) - ﬂ tr(ﬁ)éiaa
1 -
A :iﬁiawim

1 .
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Also, clearly B =0 iff h =0 z'jj‘B = 0.

Proof. In Proposition 1.5.38 we proved that:

~

p=2tr(h)g + 12 \w + 4hg + 4h_. (1.5.40)
Taking traces of both sides yields
tr(3) = 12 tr(h).
Next, taking symmetric parts of both sides of (1.5.40) gives us:
Baymm = 2tr(h)g + 4h_.
Thus,

1 . 1~
h_ = _(Bsymm - 2tr(h)g) = Zﬁsymm -

On the other hand, comparing skew-symmetric parts of both sides of (1.5.40) gives us:
Bskew = 12 \w + 4h6

We recall Proposition 1.5.26 to get

12X\ = é(Bskew)iawia = é@mwm
and . 1.
4X), = Z(ﬁskew)mw;’a = Zﬂia%a,
which concludes the proof. O

1.5.3 Nearly Kahler 6-manifolds

Let (M5, g,J,Q) be a compact connected 6-manifold with an SU(3)-structure. We say it
is nearly Kahler if:

Vxw=—-X 19T and Vx¢t = X A w. (1.5.41)

In dimension 6 it is equivalent to (VxJ)(X) = 0, for all X € I'(T'M), but VJ # 0. Also,
by [34] it is also equivalent to dw = 3Vw or that dw = —3¢" and dy~ = 4%2. Moreover,
one can check that in this case the conical G4 structure on M x R is torsion-free. Finally,
it is a fact that all nearly Kahler manifolds in dimension 6 are positive Einstein. With our
choice of normalization, the Einstein constant is 5.

In a local orthonormal frame we can write (1.5.41) as:

Vl-wjk = _w:;k and Vzw;?cl = 5ijwkl + 5ikwl]' + 5ilek (1542)
Note that contracting the second identity on i, j gives us

Vb = 6wi + wi + wi = 4w (1.5.43)
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1.5.4 Curvature identities

On a nearly Kéhler manifold we have the Einstein constant £k = 5. Applying the result
from Lemma 1.2.8 we get:

W =R+ 2Id,
. . (1.5.44)
W =R-1d, on S;.
Proposition 1.5.45. The following identities hold:
b pqiu¢;u = -2 ;ﬁ (1546)
® RpginWyin = —2Upg- (1.5.47)
o Ryjjuju = —2wp,. (1.5.48)

Proof. For the first identity (1.5.46), we show that computing contraction of )~ and VVw
yields the required result. Explicitly,
VpVwij = vp<_¢¢;j>
= —(OpgWij + Opiwjq + Opjwyi) (by (1.5.42))

Now, we use the Ricci identity to get:

—Rpgiuwuj — Rpgjuwin = (VpVq — ViV )wi
= —(dpiwjq + 5pjwqi) + (0giwijp + 5qupi)~

Contracting both sides with ¢, and using skew-symmetry of both sides in 7, j we get:

*QquiuWiji;l = *25piqu¢i;l + 25qiwﬁp¢l’;l
2Rpgiuthy;wuj = =20, 3wiq + 20 5Wip
Qquiu¢;fu = _Q@Uﬁjwqj + 2@%]'“17]'

_2quiu7vb;iru = —2 ;lq + 2¢;Ep

= 4,
which yields (1.5.46).
For (1.5.47), contract (1.5.46) with w,; to get:
Rypgiupp ot = =21 0l
Rpquuthiywor = =2(=pq)
Bpgin(=tinn) = =2(=1pg0)
quiuw;iu = —2 p_qv7
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as desired.
Finally, as for the first identity, we first compute VV4¢ ™ and then contract it with ¢~.
Explicitly,

ViV ;'?cl = Vp(5qukl + Ogrwij + §qlek)
—(8g¥h + Oantbn; + Sqtby) (by (1.5.42)).

Now we use the Ricci identity to get:

_qujqujkl - qukuwjt;l - qulud’;‘?@u (V V V \Y ) gkl
= — (Ogj Vs + Oarp; + datir)
+ (0pjWgps + Opkty; + Opithgip,)-

Contracting both sides with 1, and using the skew-symmetry in j, k, 1 we get (1.5.48):

_3qujuw:kl¢j_kl = —30g ¢ ik T 35pj¢;kz¢j_kz
—3Rpgjuldwn;) = *3¢;kz¢;kz + 3¢;kl¢p_kz
12Rpgjuwju = —12wpq + 12w,

qujuwju = _prq . O

Remark 1.5.49. Proposition 1.5.45 says that R = —2Id on @/Juk,@b;;k,wij. Recall that

by (1.5.44), we have W = R+ 21d. Hence, Wi)t, W¢—, Ww are all equal to 0, which is
exactly what is needed in order for W to be in 2 (in the first two or the last two indices),
by Remark 1.5.23. Hence, we have that (W 3)u = Wapij/fi; will always lie in Q2. Thus,
since R and W differ by a constant, we can conclude that both W and R preserve Q2.

We claim that W preserves both 82 and 82,. For the first subspace, let h € §2. Then we
compute:

(Wh)w)as = (Wh)auwus = Watahiwas
= —~(Whiua + Wiuat) hiwus
= ~Wiuathiiwup
= —Wuparhriwry (because W e Qg in the first (last) two indices)
= —Wupawrihi (because h € S?)
= WupikWai icu
= —WhiiubhiuWa
= _<Wh)lbwal

= —(W(Wh))a,
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as claimed. The other case is similar, along with recalling that W' is Ricci-traceless. Finally,

since W and R differ by a constant on Sg, R also preserves that splitting.

These fact mean that we can consider W (W resp.) as a self-adjoint operator only on
02 (8% and 82 resp.) which will provide better estimates when we apply the Bochner-

Weitzenbock techniques.

1.5.5 Harmonic forms

In this section we derive some useful properties about the harmonic forms. We will use

the fact that harmonic 2-forms lie in 22 and harmonic 3-forms lie in 3,. See |

3.8].
Definition 1.5.50. For h € 82, let h € T2 be defined as

h (V h]k) A

ijc*

Proposition 1.5.51. Let h € §%. Then:
o (Vihii)war = —(Div h)pwps.
o (Vyhip)V i = Bap + 4(hw)ap
Proof. Since, h € 82, we have
hikwia + wikhika = 0.

Differentiate it to get:

0

(Vuhik)wka + hik<vuwka) + (Vuwik)hka + wik<vuhka)
(Vihie)wra — hiktlyrg — Yutirhka + Wik(Viulika).-

Contract (1.5.52) on a,u to get:

0 = (Vaohir)wia + wit(Vahia)
= _(vahki)wak + wik(DiV h>k

which gives the desired
(Vahki)wak = —(DiV h)kwki.

For the second identity, contract both sides of (1.5.52) with ¢, to get:

0= (vuhzk)wkad]&b - hikl/};rkad)uzb ¢uzkhka¢uzb + wlk(v hka)¢uzb
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The first term is what we need to solve for. So let us simplify the others separately:

hikkaVuip = Pit Vi i
= hir(Oriwap + dapri — OkpWai — OaitWis)
=0+ 0 — hapwai — Narwrs
—(wh + hw)ae
= 0.

Similarly, we have:

¢uzkhkawuzb hka¢kuz¢bu1 hka4Wk;b = 4<hw)ab7

and

Wzk(v hkawmb (vuhka)¢;biwki - (V hka)wubk - (Vuhka)w;kb = _iLab-

Hence,

(V h,k)wkawmb b + 4(hw) ]
Proposition 1.5.53. Let h € S, so that he T? = S2@® Q. Then hypew € Q2.

Proof. By Remark 1.5.24, it is enough to show that Ph = —hgew. S0, we compute:

. 1~
(Ph)ij = §hab(*w)ijab

1
= 5 (V hva)wuvb(*w)i]’ab

1 _
= §(Vuhva)< ulwv]a u]¢zva - 6uawz—;v + 521}¢’j(:]a + 5]U¢zua + 5(1”Uwzju wuvwwa)

= (0 +0-— (V hva) (V hja) iua +0— (vuhva)wuvwi;a)

v (V hw) uja

= LDV R) 56y — (T,
(by Proposition 1.5.51)

uaj (V hﬂj) uai (DIV h)kwkad}i;a)

— %( ((DIV h) _ ’(p+) — h” + hﬂ + (DIV h)kwk23>

= S (DivR) 59)y — 2wy + (Div ) 59%)y)

= - (hskew)ij .

as claimed, concluding the proof. O
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Proposition 1.5.54. Let M be compact nearly Kahler. Let [ € Q‘;’Q D H3. Hence, B =
h ot for some unique h € S*. Then B3 is harmonic iff Divh = 0, h = 2wh = —2hw € S2.

Proof. Note that in fact, since h is symmetric, w is skew, and that they anticommute, we
have wh € S%. So the last condition is equivalent to hsymm = 2wh and hskew = 0.

Since M is compact, (8 is harmonic if and only if d*8 = 0 and df = 0. Let us look at each
of these conditions separately. So, we have:

0=—(d"B)u
=V;(hjp ;kl + Iyt it T hlpw]k:p)
=(Vihjp) Vg + (Vihap)jy + (Vihap) 0, + hp (Vi) + hup(Vi007,) + hup (Vi)
(Div h 2P+ (Vi) — (V)5 + hip(85pwit + Sjxwip + Gjuwpe)
+ 4dhpwp + Ahipwi, (by (1.5.43))
(Divh 3™ + hag — g, + (0 + By + hupeopr,) + 4(hapwpr + hipwiy)
=(Divh 29" + 2(hskew)in + 3(hw + wh)

(DIV h ¢+)kl + 2(}:Lskew>kl7

Jpk

where we have used that h € 8 = S§7. Recall that by Proposition 1.5.53, Pskew € Qz,
hence, looking at the types we get:

] ) Divh = 0,
d*B =0 if and only if -
hskew = 0.

Next, by Corollary 1.5.35, we know that df = 0 iff CYB = 0. We have:

B = (dB)iju(¥) st
= (ViBijr — ViBiri + ViBiji — ViBijk) (%w) ik
= (ViBjkt) (xw)ajrt — 3(VBikt) (xw)ajni- (1.5.55)
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We will compute each term of (1.5.55) separately. First we have:

(ViBik) (5w ajrt = Vg + hapthiy + hupthi,) (%) aji
= 3Vz’(hjp¢;kz)<*w)ajkl
= B(V-hjp)@/);kl(*w)ajkl + 3N (Vith ) (3@ ajit
= 3(Vihjp)2tf + 3hp (Sipwis + Oirwrp + Gawpn) (%) ajri
= 0 + 3hyjwi(*w)ajkr + 6hpdikwip (*w) ki
= 12h;jWaj — 6hjpwp (*W)ajil
= 12hjwa; — 6hjp(apwji + Gjpwia + GipWway)
= —12(hw)iq — 6hjqwj; — 6tr(h)wiq — 6hjiw,;
= —12(hw)iq + 6(wh + hw);q
= —12(hw)q-

For the second term of (1.5.55), we have:

=3(V;Bikt) (3 ajit = =3V (hipthpy + Piptiy + Tuptis,) (30) ajii
= =3V (hiptpy) (3 ) ajit — 6V (hpthiny) (%) avt- (1.5.56)

Here again, we compute both terms of (1.5.56) separately. First we have:

=3V(hsp ;kl)(*w)ajkl —3(V,hip) pkl(*w)ajkl - 3hip(vjw;kl)(*w)ajkl
—3(V;hip)2¢ pa]
—=6(Vjhpi)1pe — Bhipdjpwit (W) aji

= —6hi, — 3hijdw,;

= —6hiq + 12(hw)iq-

— 3hip(Gjpwir + djrwip + dj10pk) (FW) aj

For the second term of (1.5.56) we use Proposition 1.5.51 to get:

6V (Paptiy) (3 )ajit = —6(V jPp) iy (30 ) ajit — 6hup(V00,) (5 ajn
= 6(Vhip) (Vipatin + VYipjWha + Yippwas) — 6y (8jiwpt + Gjpwis + 0wip) (W) ajk

= —6(Div h)wsptip + 6(Vihip) i, iwka + 0 — 6hgpwp (%w) ikt — 6Rkpwii (%W )aprr + 0
= 6(Div h), wi;pwsp — 6(Vhp)¥piWka — 6hip(Oapwi + OipWia + Okpwai) + 0

— 6(Div h)gth, — 6(hai + 4(hw)a;) — 6hiawin — 6hpiwrg + 0

— 6(Div h W)m — 6hg; — 24(hw)iq — 6(wh + hw)iq

— 6(Divh 20" )j0 — 6ha; — 24(hw)ia.
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Thus, combining the last two results we simplify (1.5.56) to get:

_S(Vjﬁikl)(*w)ajkl = (-6?1/1'@ + 12(}%&))1@) + (6(D1Vh | w+)ia — 6ilm' — 24(h(.d)m)

— 6(Divh 19 )ia — 12(haymm)ia — 12(hw)iq-

And so, returning to (1.5.55), we have:

—~ ~

dBi, = —12(hw)i + 6(DIvh 297 )i — 12(hsymm )ia — 12(hw)iq
= 6(Divh 29 )ia — 12(hsymm)ia — 24(hw)ia,
which implies:
] ) Divh = 0,
dpg =0 if and only if -
Psymm = —2hw.
Hence, we get that 8 is harmonic iff Divh = 0 and h = —2hw = 2wh. ]

Proposition 1.5.57. Let M be compact nearly Kihler. Let § € Qf 2 H*. Hence, § = how
for some unique h € 8%,. Then (3 is harmonic iff Divh = 0, h = —3hw € Q3.

Proof. First, note that
51'3‘ = (h OC«J)U = hipij + hjpwip = (hW)ij + (U.)h)w = Q(hw)w

As in the proof of the previous theorem, § is harmonic if and only if d*5 = 0 and df = 0.
Looking at each of the conditions separately, we get:

0= —(d*B)r = VpBpr = 2Vp(hpuwur)
2(Div h)ywur, + 2hp, V pwuk
2(Div h)ywur — 2hp 07,
2(

puk
Div h),wyk-

Since w is non-degenerate, we get that:
ds =0 if and only if Divh = 0.
Next, by Corollary 1.5.39, we have that dg = 0 iff c/lB = (0. We have:
0= dBi, = (Bt

= (ViBjk — VB + ViBij) Y
= (viﬁjk) ;rjk - 2(vj6ik)w;_jk' (1-5-58)
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We will compute each term of (1.5.58) separately. First we have:

(ViBjx)¥s, ajk = Zv‘(hjuwuk)wijk
=2(V; hju)wukwajk + 2h;(V; wuk)wagk;
= 2(Vihju) (= ¥ua;) + 2R (=i )0 0
=0 — 2Ry, (8ia6uj — 0ij0ua — WiaWyj + WijWya) (by (1.5.8))
= —20;,trh + 2h; + 0 — 2(whw);q
= 2his — 2(hw?)ia (because h € S%)
— 4Ry (1.5.59)
For the second term of (1.5.58) we have:

AV B = — AV (hiawu)
= —4(V;hiu) (—¥ya;) — hia( =07 )0
AV by — Ah(46.0)  (by (15.9))
— A(V; i) — 16h. (1.5.60)
Conbining (1.5.59) and (1.5.60), we get that:

0 = dBy, = 4(Vhu )0,

uaj

—12h,,.

uaj
So, dﬂ—Olffdﬁ—Olff(V hiw ),
Since (Vjhiu) ¥y, iwat = (Vihi )0,

dg =0 if and only if h = —3hw.

Hence, we conclude that 8 is harmonic iff Divh = 0 and h = —3hw.
It is easy to see that hw € Q2 for h € 82, so by Proposition 1.5.53, in this case we indeed
have h = —3hw € Q3. O

3hia 1H (thiu)wuajwat - 3hmwat

iLit, we get that:

ua]

uaj u]t

1.5.6 Weitzenbock formulas

The following formulas can be found in [36], however we include the proofs, and when
deriving sufficient conditions for vanishing of by and b3, we use slightly different forms of
these formulas.

2-forms

We apply Corollary 1.3.3 to the nearly Kahler setting to get:
AB = V*VB + 88 + WS, for any 8 € Q2. (1.5.61)
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Proposition 1.5.62. Let § = how € QF for some h € §2. Assume 3 is harmonic. Then:
V*Vh + 6h + 2Wh = 0.

Proof. Using (1.5.61), it is enough to show that V*V3 = (V*Vh — 2h) o w and Wg =
2(Wh) o w. So, we proceed with the first claim:

(V*VB)ab = =VsVsBa

=—VVs(how)w

= — Vs Vis(hapwpb + hipwap)

= — ((VsVsh) ow)ap — 4(Vshap)(Vswpp)

— 2hap VsV swyp, (because h € SJQFO and hence hqpwpn = hipwap)
= — ((VsVih) 0 w)ap + 4(Vihap)th sy + 8hapwyp
(by (1.5.42) and (1.5.43), V Vwu, = —4wyy)

((V*Vh) 0 w)ap + 4hap + 8(hw)ap
((V*Vh) o w)ap — 12(hw)ap + 8(hw)as (by Proposition 1.5.57)
(( )
((

V*Vh) o w)ap — 4(hw)ap
V*Vh — 2h) o w)ap (becase how = 2hw for h e 82).

For the second claim, we know that since § € QF, then Wj3 e Q2. Hence by Propo-
sition 1.5.32, W = fow, for some f € 8%;. The same proposition also tells us that

f= %(Wﬁ)ikwak. Computing, we have:

1

1 . 1
fia = §(Wﬁ>ikwak = §V[/ikuvﬁuvwak = §V[/zkuv(h <>W)uvwak = Wikuvhupwpvwak

= —(Wiuiv + Waike) hupWppWar, (by the Bianchi identity)
= (Wivur + Waivk)WkaRupWop
= WivukWiaPupwop + WaivkWia PupWop
= WivakWrulupwop + Waiak Wiy RupWuyp
(by Lemma 1.5.28 and W e Q2 in first (last) two indices)
= WivakhkuWupwop — WaiakhupOr, (we use that h € S7, and that w® = —1d)
= WivakhruwOus — Waiakhuk
= Wivakhio — Waiarlvuk
= Waoikahok + Waikalvur
= Q(Wh)m;

as claimed. Hence, the proof is complete. O
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Theorem 1.5.63. Let M be a compact nearly Kihler 6-manifold. If S*(Q%) 3 W = -8,
or equivalenty S*(S%,) > W = —4, then by = 0.

Proof. Let 8 € Q% be harmonic. Then 3 € Q2 as mentioned in the start of Section 1.5.5.
Substituting it in (1.5.61), and using the assumption that W = —8, we get that 8 = 0, as
there are no parallel non-zero 2-forms.

Using the fact that Wj3 = Q(Wh) ow, where B = how € Q3, for h € 82, we get the other
equivalent condition.

Note that using Proposition 1.5.62 in order to get a similar result would have been worse,
as we would have been able to only conclude that if $*(S%,) 2 W = —3 then by = 0. This
is because V*V = (V*Vh — 2h) 0w, so we can see that even though the left hand side is
obviously non-negative, we cannot conclude that from the right hand side. O

Theorem 1.5.64. Let M be a compact nearly Kdhler 6-manifold. Let § < R < A with
—(A+6)—L(A=08)=—-10 or (A +6) —3(A—68) = —6 . Then by = 0.

Proof. 1f the conditions above hold, then by Corollary 1.2.15 we have that R > —10. So,
we use (1.5.44) to get that W > —8 and hence b, = 0 by Theorem 1.5.63. O

3-forms

We apply Corollary 1.3.5 to the nearly Kahler setting to get:

(Aﬂ)abc = (V*vﬂ)abc'i_gﬁabc+Wabpu6puc+Wacpuﬁpbu+Wbcpu6apua for alny 6 € QS‘ (1565)

Proposition 1.5.66. Let 5 € Q3,, so B = hovy™ for some unique h € 8*. Assume 3 is
harmonic. Then:

V*Vh + 8h + 2Wh = 0.

Proof. Substitute a harmonic § into (1.5.65) to get the vanishing of the left hand side.
Now, the goal is to rewrite the RHS as A o 9™ for some A € Rg® Rw ® S? @ Q2. Then
we can conclude that A = 0. By Proposition 1.5.54, since 8 is harmonic, Divh = 0 and
h = 2wh. Keeping this in mind, we will simplify each term of the RHS of (1.5.65) one by
one. We start with V*Vj :

(V*v5>abc == vsvs(hap ;};c + hbpw;pc + hcpw(jbp)
=((V*Vh) 0 ¥ )ape = 2((Vihap) (Vsthppe) + (Vshup) (Vitbgne) + (Vihap)(Vithgy,))
- (hap(vsvs i ) + hbp(vsVS¢+ ) + hczv(vsvﬂ/’;rbp))‘

pbc apc

(1.5.67)
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First, note that:

Vi Vathin = Vi(Ssiwjn + Osjwri + Sspwiy)
- 551(_ ;;k) + 5Sj(_ ;;m) + 5516( d}sz])
= _31/J’ij

Hence, the third term in (1.5.67) is equal to:
_(hap(VSVS ;-)Ec>+hbp(v \Y 7vbtzpc)_|_h010(v \ wabp)) (h’ap pbc+hbpwapc+hCP¢;rbp) = (3h0w+)abc-
In order to calculate the second term of (1.5.67), we define the 3-form o by:

Oabe = (Vshap>(vs ]—;;c) (V hbp)(v ¢apc) (vSth)(vsw;—bp)'

We claim that ¢ = 2h ¢ ", In order to get this, we first calculate & and then use
Corollary 1.5.39. So,

'ij

Oat =0abcw£c
=((Vshap)(Vstpe) + (Vship) (Vstlape) + (Vshep) (Vi) Wibe
:(vshap)( pbcw}tbc + Q(V hbp)(v ,lvbapc)wtbc
=(Vshap) (0spwpe + dspwep + Oscwpp)Vppe + 2(Vship) (Osawpe + dspWea + GscWap) Vs
=0+ (Vohap)Upsepe + (Vehap)Yoppp + 2(Vahip) ¥ wpe
+ 2(Vphip) s wWae — 2(V chip )10 wap (as Divh = 0)
— (Vohap)tiy, = (Vehap) oy = 2(Vahup) iy, = 0 = 2hprtvey
== 2(Vbhap)¢btp -0- thtwap
=2(Vihpa) Uy — 2(wh)as
= — 2(Vihpa) Vgt — 2(wh)at
= — 2hguwiy — 2(wh) o
=2(hw)ar — 2(wh)a
—4(whw) e — 4(w?h) e (because h = 2wh)
= — 4(hw?)gs + 4hgs
=8Ny

Hence, 6 = 8h € S2. Thus, by Proposition 1.5.39, ¢ = i& oYt =2h o™, as claimed.
Thus, returning to (1.5.67), we get:
V*VB =(V*Vh) o™ — 20+ 3hotp™
(V*Vh —4h + 3h) o™
—(V*Vh — h) o4 (1.5.68)

l
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Next, we proceed to the terms in (1.5.65) with the Weyl tensors. Recall that W is in Q2
with respect to the first two or the last two indices. Hence, W45, = 0. So, we have:

Wabpuﬁpuc = abpu(hpswzw + hus ;LSC + hcs ;rus>
= 2hpsWabpu¢+

suc*

Similarly, we have:

Wacpuﬁpbu = 2hpsWacpu¢;E)ua
Wbcpuﬁapu = 2hpstcpu’lp;5u'

Thus, the Weyl terms in (1.5.65) are equal to:

Wabpuﬂpuc + Wacpuﬁpbu + Wbcpuﬂapu = 2hps(Wabpuw;c + Wanuw;E)u + Wbcpuw;_su)'

Now, we define the 3-form v via

Yabe = hps(Wabpuw;;w + Wacpuw;u + Wbcpuwg_su)'

We claim that v = (Wh) opt. Again, to get this, we first need to calculate 4. We have:

Vot = ’yabcw;,;
= hpS(Wabpuwstw + W%pud’;m + WbCpu¢;u)¢£c
= thswabpuwztcwjbc +0
= 2hpsWabpu (0st0ub — OspOut + WytWsh + WhuWst)
=0 — 2hp,Wappt + 2hpsWappuwuws + 2Rps Wappu Wiy Wst- (1.5.69)

We will simplify the last two terms of (1.5.69) separately. Recall Lemma 1.5.28 which
implies that W and w commute. Also, we have that A and w anticommute. Hence, for the
third term we have:

2hpsWabpuwutwss = 2Wappuwut hpswsh
= —2wpu Wabutwpshsp
= —20usWaputhsp
= —2Wapsiths
= 2Whastls
= Z(Wh>at.
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For the fourth term of (1.5.69) we have:

2hfpsWabpuwbuwst = _2Wabpuwubh/pswst
= _2wquabubhpswst

because Wpp, = 0. Thus, returning to (1.5.69), we get:

Yot = =2 Wapps + 2(Wh) g + 0
= 2Woapiphtp + 2(Wh)a: + 0
== 4(Wh)at'

Hence, 4 = AWh e S2. Thus, by Proposition 1.5.39, v = i’yow* = (Wh)opb*, as claimed.
This finishes the proof of the proposition, as substituting all the results into (1.5.65), we
get: .

0= ((V*Vh—h)+9h+2y) o™ = (V*Vh +8h + 2Wh)oypt. [

Theorem 1.5.70. Let M be a compact nearly Kihler 6-manifold. If S2(S2) s W > —
or S2(Q2) s W = —3, then by = 0.

oo

Proof. The first statement follows from the fact that using (1.5.68) we can rewrite Propo-
sition 1.5.66 as: if § = h ¢ ¢* is harmonic for some h € S?, then:

0= V*VB + (9h + 2Wh) o p*.

Hence, assuming §%(S?) > W > —g and using the fact that there are no nonzero parallel
h e 82, we get by = 0.

Note that using Proposition 1.5.66 in order to get a similar result would have been worse,
as we would have been able to only conclude that if S2(S2) 5 W > —4 then by = 0. This
is because V*V 3 = (V*Vh — h) o™, so we can see that even though the left hand side is
obviosuly non-negative, we cannot conclude that from the right hand side.

Next, S2(Q2) 3 W > —3 implies by = 0 because of (1.5.65).

Note that the condition S2(Q2) 3 W > —3 is weaker than the condition S2(S2) 3 W > -2,
This is because in the proof of Proposition 1.5.66 we show that WappuBpue + WacpuBpbu +
WoepuBapu = (2(Wh)<>w+)abc, for 8 = hoyt € Q3,, where h € §2. That means if we assume
that S2(Q2) 3 W > ¢, then W > 3¢ where ¢ € R, but not vice versa. O

Theorem 1.5.71. Let M be a compact nearly Kdihler 6-manifold. Let § < R < A with

52%07‘A<1—87. Then bz = 0.
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Proof. Recall that the Einstein constant & = 5. Then by Theorem 1.2.17, on SZ, R >
—5+460 and R =5 — 4A. Hence, by (1.5.44), W > —6 + 66 and W > 4 — 4A.

In order for b3 = 0, by Theorem 1.5.70 we want W = —g. We have —6 + 60 > —% iff
o= }1; and 4 — 4A > —% iff A < %. Hence, the result follows. Recall, that a priori, by
Remark 1.2.9, we have that 6 <1 < A.

Also, note that we do not use Corollary 1.2.15 along with the statement that S*(Q2) 3 W >
—3 implies that b3 = 0. This is because the sufficient conditions in terms of the bounds on

the sectional curvature we would have obtained imply that A < %7 ord > }1. O

1.6 Examples

We only consider normal homogeneous spaces G/H (see [3].) Denote the Lie algebras of
G and H by g and b respectively. Let m be the orthogonal complement of b in g.

Having a bi-invariant metric on G induces a metric on G/H which gives us a Riemannian
submersion 7 : G — G/H. The usual decomposition into vertical and horizontal sub-
spaces corresponds to the decomposition g = m @ §. Hence, using the formula (3.30) and
Corollary 3.19 from [3] gives us that for XY, Z, W € m we have:

RX,Y, 2,W) =3 ([X, W), IY, Z) — (X, ZL [V, W) + 5 (X, Wy, [V, 20y
(X, 21 [V, W) — 02, W [X, Y]y
Letting X = W)Y = Z yields:
R(X,Y.Y,X) = Z|[X, V]ul? + |[X, Y], (1.6.1)

The first formula will allow us to calculate sharp bounds for ﬁi, R and the second one
bounds for R, which we use to check the theorems.

Before going to specific examples, we briefly outline the process of how we get the bounds
for kR and R.

Consider R first. Note that this is a self-adjoint operator, hence it is bounded by the
smallest and the largest eigenvalues. So, if we take any local orthonormal frame f, of Q2
find all the entries of the matrix f%a,g corresponding to this linear operator, we can find its
eigenvalues.

We already have that e; A e; for ¢ < j is an orthonormal frame for Q%. Let f, = e; Ae;, f5 =
ey A €, be any two such basis elements. Then from the proof of Theorem 1.2.12, we
have

~

Raﬁ = (Rfom f,@) = %(Rfa)kl(fb’)kl = %(é(ez N 6j))kl(€u AN ev)kl = (R(ez AN ej))uv = 2Rijuv-
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So, we use Maple to find all the values R;;,, and thus the matrix éag. As mentioned
before, its largest and smallest eigenvalues are the sharp bounds we are looking for.

Next, we want to also find the bounds for Ron &2. As before, it is enough to find the
eigenvalues corresponding to this linear self-adjoint operator.

Let M be of dimension n. Then S? has dimension @
Let {ej,...,e,} be an orthonormal frame, with the dual frame {e!,. .., e"}. Now, let:

fij=ei®e; +e; Qe fori < j,
fi=e®e, fori=1,...,n.

Note that these f;;, fi; form a frame for S*. Let them be denoted just as f,. We will still
specify if the f, we take is one of f;;, for i < j, or one of f;. So, now, we want to find
the matrix representation of R in terms of the basis of fa’s. Note that this frame is not
orthonormal, but we do not need it to be, since the eigenvalues of the matrix will turn out
to be all the same.

First, note that for h € S? we have:

h = Z hije; ® e = Zhi]‘(ei ®ej+e;Qe) + Z hie; ® e; = Zhijfij + Z hii fii-
i1

ij=1 i<j i=1 i<j

That means that the fz component of h, which we will denote by h” is equal to h;, for
fs = fij,i < j. Next, we need to find how R acts on these basis elements f,. We claim
that:

(Rfii)ab = Riajo + Rjain, fori < j, (1.6.2)
(Rfii)ab = Riai- (1.6.3)
We calculate:

(Rfii)ab =D Reann(fij)
Il

= Z Riap(e; ®ej + e ® e

k,l

= Z Riarn(0ir01 + 65164)
el

=Riajp + Rjqiv-
Also,
(éfii)ab :(é<ei ® ei))ab = Riaip-
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as claimed.

From (1.6.2) and (1.6.3) it is easy to get that the fs component of Rf.., which we denote
by R,z is equal to:

it fo = fij, fs = [, <jand s <t then Raﬁ Risjt + Rjsit,

if fo = fij, fs = fss,© < j, then Raﬁ = 2R;gjs,

if fo= fiis fo = fur,5 <t, then Ros = Rigis,

if fo = fis f5 = fos, then Rag = Rigs.

Note that we actually need bounds for Ror Ron specific subspaces of Q2 or S? respectively,
but this will be easy to get as we know what these operators do on the complements of the
subspaces we are looking for.

Also, for both examples we identify su(2) with R* as follows: ST+ %S+ BK —

1 0 0 —1 0 72\ . .
(aq,a9,a3), where I = (0 —i) ,J = (1 0 ) VK = (z O) is the standard basis for

su(2). This takes the inner product tr(a*b) on su(2) to the usual one in R3. For a,b,c,d €
su(2), it is straightforward to verify that:

(la, 0], [, d]) = 2(¢a, )b, d) = {a, d)b, )),
[a, b]I* = 2]al*[b]* — 2(a, b)".

(1.6.4)

SU(3)xSU(2)
L.6.1 Tiysoe

We describe some of the aspects of the nearly G, structure on this G/H. See [!] for
more information. By SU(2),; we denote the following embedding of SU(2) into SU(3) x
SU(2):

U(2)s = {(<€1 8) A), AeSU@)}.

Also, by U(1) we mean the following embedding into subgroup of SU(3) x {I} < SU(3) x
SU(2):

et 0 0
U ={([ 0o e 0 |]I),teR}.

0 0 e—2it
Then % is a normal homogeneous space with the metric B = —(6tr(uv)) +
4tr(wz)) (this is a multiple of the Killing form), for (u,w), (v,2) € g = su(3) @ su(2).
With such a choice of a metrlc one obtains a nearly G structure with 7, = —\1/—25 and
hence the Einstein constant k = = w1th R = 328. Then we have the following orthogonal
decomposition:

g=hdm,

61



with
h=u(l) ®su(2)y; and m = su(2), dm’

where:
1 0 O
. a 0
(1) =span{(| 0 7 0 |,0)},5u(2)s = {( ,a),a € s5u(2)},
‘ " 0 0 —2¢ H <0 O) ‘

su(2), = {(<20a 8) —3a),a e su(2)},m = {((_OT g) 0),2€C2).

We define the following quantities:

fi(a) = ((g 8) ,a) € su(2)y € b, for a e su(2),

fola) = (<20a 8) ,—3a) € su(2), < m, for a € su(2),

0 0
i 0 |,0)eu(l)<h, forrekR,
0 .
ga(z) = (<—zT S) ,0)em’ < m, for z e C?

22

12)? i= |21|? + |20f* = 272, for z = (Zl) e C2.

Note that all fi, fs, g1, g2 are linear. Next, we compute their norms with respect to the
metric B, where the norm squared is denoted by || - |*> = B(,-). So:

P = = grou((§ )+ 4@ =~ 0u(@) + 4u(e) = - Z a(e?) = o

(@) = 56 tr((20“ 8) )+ dtr((—30)%) = — (24 tx(a) + 36 tx(a?)) tr(a?)

21
5 5 .
_ 5 _ 5 1.6.
> 2 (1.65)
1 i 00\ 1 3
) = —sfor ([0 7 0 | ) =~k 0r(=6) = 2r®
00 —2

)l = g0 3)2» —o((Ty )

1 1 1
= Z(tr(zZT) +22) = ZQZT,Z = §|z\2.
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f2(b) + g2(w) € m for

Now, we want to find bounds on R, so take X = fy(a) + g2(2),Y =
= 0. So, we have:

some a,b € su(2) and z,w € C?, with | X|? = |Y|? =1, B(X,Y)

1= X = (@)l + loa(2)IP = 2lal + 5P

L= VP = A0 + lgaw)]” = D2 + Sl

0= B(X,Y) = B(fa(a) + g2(2), fo(b) + g2(w))
-5 2% §) s b))

~—gou(( 25 5 (2 b))+ au(sa-sm)

1 4ab — zwT  2aw
= _ﬂ(6 tr(( osTh ZTw)) + 36 tr(ab))

1

= —5;(24tr(ab) — 6 tr(zw”) — 627w + 36 tr(ab))
1

= —5;(60tr(ab) — 60"z — 6z"w),

and thus:

w’z + 2"w = 10 tr(ab).

Next, we need to calculate [X,Y]. We have:

[X,Y] = [fala) + g2(2), f2(b) + ga(w)]
= [f2(a), £2(0)] + [92(2), fa(0)] + [f2(a), g2(w)] + [92(2), g2(w)].

We will calculate each term separately:
2a 0 20 0

= (5" 5) ot
= 6/f1([a,b]) — f2([a,b]).
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Next:

Similarly:

Finally:

(] = (% 5) (Lo §)10)

7w+ w z
_ZTw _|_ wTZ Z 0 0 —T =T 72T’u)+’LI)TZ I O
:( 5 0 i 0 70)+(<_2w —|—wz0+—2 O>70)
e 00 —2i
=T T

(Let A= —zw” +wz’ + %WI € su(2))

—ZTw + w2 A0
= 91(_—22.) + ((0 0) ,0)

—ZTw + w2 3

)+ SA(A) + L fo(A)

—ol——; 5

Hence we conclude that:
[X,Y] = [X,Y]a + [X,Y]s,

where

(X, Y] = fo(—[a,b] + %A) T 9o(2(aw — b2)),

X, Y]y = (6l ]+ 24) + g

—zTw + w2

)
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Applying the formula (1.6.1) for the sectional curvature, along with (1.6.5), we get:

R(X A Y) =411, Y]ul? + X, Y], ?

=21~ b] + S AP + Lga(2aw — 2))[?) + | fu(6a, 8] + S A) P

o (CE
:i@ ~ab] + %AF + %|2(aw b)) + %,6[@5] . gA‘z
_ =T —T 9
)
= (1, B + AP + 2 tr([a B14)) + law — beP
+ (361, b + 2%\,412 - % tr([a, b A)) — g(_sz -z
11

125

7 1 3
2, Digp_ 22 A) 4 = 29O/ T o7 2)2.
S [a, b]| —|-40| \ 1 tr([a, b] )+2\aw bz 8( Ziw +w z)

It is straightforward to check that for a € su(2),w € C? we have:
o _ Ly oo
law]” = §|a| lw|*. (1.6.6)
Polarizing, we also get:
1
<CL’LU, CLZ> = §‘a‘2<w7 Z>7
(az,bz) + {bz,az) = |z[*(a, ),
laz,bw) + (bw,az) + {(bz,aw) + {aw, bz) = {a,b)({z,w) + {(w, z)).
For simplicity, define:

a = {z,w) e C,
o = —{aw,bz) € C,
¢ = —(az,bw) e C.
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Then some calculation yields that:

125 125 125
=5 [a, 0] = T|a|2\b’2 - T<a,b>2,
7 7 7 7 7
LAl = a2l - L2~ La2 - Laa
1041 = gglAl vl = 550" — 550" — g
11 11
I tr([a,b]A) = Z(U +0—p—9),
1 1 1
5!6“0 —bz|* = Z\a\Qlw\Q + Z|b\2\2|2 —0 -0,
3 3 3 3
—g(—ETw +wlz)? = —ga2 - §@2 + Zozo_z
Recall that we assumed:
5
L= 2l + 52
5 1
1=—|b* + =|w|?
B + Sl

Isolating {a, by, |a|?, |b]* and substituting these resullts into expressions found earlier, we
get that:

12 12 3
RXAY)=5- €|z|2 — €|w|2 + §|z|2|w|2 ——a— —a° — —aa
N 7 N 711 11

AR SR

Note that each 0,7, ¢, ¢ in absolute value is < 3|a|[b||z||w|, by Cauchy-Schwarz and (1.6.6).
Hence:

12

5
12 12 9

<5-— €|z|2 — €|w|2 + 3|z |w]? + §|a|\b||z||w|.

3 3 9
wl + Sl Pl + Slal® + Slal plllw|

One can check that on 1 = 2|a]* + $|2[%,1 = 2|b? + 3|w|?,

R(X AY) < %7

Numerical evidence suggests that % < R(X AY), however the author was unable to verify
this. Nevertheless, we have 0 < R(X A'Y) and we can show that both values : and & can

5
be achieved: ‘
azsz,ZZ\/i((l)),wz\/i(é)
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gives orthonormal X,Y with R(X AY) = 2 and

az—%gf,bzo,z:O,w:ﬁ(?)

gives orthonormal X,Y with R(X AY) = 1

A computation on Maple reveals that eigenvalues of R on Q2 are < — %) , < — 65—6> ,
1 3

5 5
sense, because for 8 € Q2 from Remark 1.4.2, ﬁ X 1 and hence a quick calculation

( — §> , (§> where by the subscript we denote its multiplicity. Note that this makes
7 10

gives that R = X 4 (Ry) = X 1(— T; p) = 4816 = —280, so we get seven eigenvalues
—§ Hence, we conlude that on Q3%,, — 114 <R<&.

Slmllarly, Maple shows that eigenvalues ofR on 8% are ( ) ( ) , <—§> , (E) , D5, (g) .
1 7 8 6

Cﬂ

5

Again, this makes sense, as we know that Rg = — g g Hence, on 82,—% < R <
37

=

So, we summarize and check the theorems. We have:

1 - 37
- R < =
5 5
114 .~ 6
—? X R g on 914,
47 37
5 e
Corollary 1.2.14 gives us that —122 < R < 18 on 02, which is consistent.
Corollary 1.2.17 gives us that —% <R< 45—9 on 82, which is also consistent with the first

inequality being sharp.

For the main Theorems, we know in this case that b, = 1. So it must be false that W > —18
on Q2,, by Theorem 1.4.7. By (1.4.5), we have that W > —19.2 on Q2,, with the eigenvalue
value —19.2 achieved. Hence, we get no contradiction.

As for Theorem 1.4.14 we cannot predict whether W > —2 on & or W= —3 on O3,
must hold or not, because b3 = 0. However, these inequalities do not hold as we have
W > —% on 8¢ and W= —% on 2, with these lower bounds attained. This shows that,
in general, these sufficient conditions are not necessary.

SU(2)xSU(2)xSU(2)
1.6.2 N

First, we describe the nearly Kahler structure on this G/H.
The SU(2) in the denominator is embedded diagonally in the numerator, meaning it
is:

{(A, A, A) e SU(2) x SU(2) x SU(2) : A e SU(2)}.
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Recall that we decompose g = h @ m. Then m = {(a,b,—(a +b) : a,b € su(2))}.
Equipping G with the metric B((a,b,¢), (u,v,w)) = i(tr(a*u) + tr(b*v) + tr(c*w)), for
(a,b,c), (u,v,w) € g makes G/H into a normal homogeneous space with scalar curvature
30.

The nearly Kahler structure is obtained from the almost complex structure, which is defined
as follows:

J((a,b,¢)) = %(b, ¢a) + \/%(a, bec),

for (a,b,c) € m. It follows from ¢ = —a — b that J? = — 1.
Define the following quantities:

f(a) == (a,a,a) e h < g, for a € su(2)
g(b,c) == (b,c,—(b+c)) emc g, for b, c € su(2).

Then for (a,b,c) € g, we have that

a+b+c
(a’vbv c)f) = f(T)v

20 —b—c —a+2b—c (1.6.7)
(a,b, ) = g5, 225,

Note that also |f(a)[* = |af?, and |g(b, ¢)* = £(|b]* + |c[> + [b + c|?).

We want to calculate the bounds on R. Clearly from the formula (1.6.1) for R, we see that
0 < R. We claim that R < 2. Take X,Y € m with | X[* =1 = |Y|?, B(X,Y) = 0. Let
X =g(b,c),Y = g(d,e), for b,c,d, e € su(2). Then:

(X, Y] =[(b,e,=(b+¢)),(d,e,—(d +¢€))]
= ([b.d], [e,e], [b,d] + [e, e] + [b,e] + e, d]).
Let A = [b,d],B = [c,e],C = [be] + [c,d] so that [X,Y] = (A, B,A+ B + ().
By (1.6.7):

(X, Y], — f(%(2A L2B+ ),

[X,Y]m = g(%(A —92B-0), %(—m +B-C)).
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Hence, equation (1.6.1) gives:

_ 1

ROXAY) =], VIl + X, YTy
1
3

1 1 1 1

—  Z(|2(A=2B =) +|5(—24+ B —-C)? + |=(—A - B—20)])
4 3'3 3 3
+13(2A+21}3+(J)|2

=—|A-2B—-C|?+ —|-24A+B—-C]?P+—| - A—B—-2C?
108’ ¢l +108’ * CF+ 108| ¢l

+ = |2A +2B + O
108(!A!2 + 4Bl + |C]? — 4A, B) — 2(A,C) + &B, C))

1
+ 1—08(4|A|2 + B + |C]* = 4A,B) + 4A,C) — 2B, 0))

+ 1—08(1AP + |B]? + 4|C]* + 2{A, B) + 4 A, C) + 4B, C))

§(4|A|2 +4|B|? + |C]* + 8(A, B) + 4(A,C) + 4B, CY)

gt tiops 1 1

Using (1.6.4) we now get:

A" = |[b, d][* = 2[bl*|d|* — 2(b, d)*,
|BI* = I[e,e]* = 2lc/*|e]* — 2, ),
(CT* = [b,e] + [e.d]]* = |[b,e]l” + |[e,d]* + X[b,e], [e,d])
= 2[b*le* — 2(b, €)" + 2cf*|d|* — 2{e, d)* + 4((h, e)e, d) — (b, d)c, e)),
(A, B) = ([b,d], [e,e]) = 2(¢b, e)Xd, €) = (b, e)e, D)),

(A, C) = ([b,d], [b,e] + [e,d]) = <[b,d], [b e]) + ([b, d], [e, d])
= 2([b]*(d, &) = b, ex(b,d) + b, )ld]* — (b, d)e, d)),
(B, C> (e el [bye] + [e.d]) = (e, €], [b,e]) + (e ], e, d])

A

2((e,byle]” — (e, exh,e) + [e[*(d, €) — {c, d)e, €)).
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Substituting the above into R(X AY), we get:
R(X AY) =[oP[d]* = (b, d)” + |c]?|e]” — e, e)?
1 1 1 1 2
S L BPlef? — (b + Sl — e d)? + 20b.cxed)

- §<b, dXc,e) + g<b, eXd, e — §<b, eXe, dy
+ |b|2<d7 6> - <b7 €><b7 d> + |d|2<b7 C> - <b7 d><C, d> + |€|2<Ca b>
—{c,exb ey + |c|*{d, e) — {c,d){c,e).

Recall that we assumed | X|? =1 = |Y|?, B(X,Y) = 0. Hence 1 = | X|?|Y]? — B(X,Y)2

(Note this is just saying || X A Y||*> = 1. We could have assumed just this, however, the
first assumption makes the argument easier.) We have:

(1.6.8)

X2 = S0 + Jef? + [b+ ) = S(62 + Jel? + b, ).
V17 = S0P +1ef? + 1d + ef?) = S(dP + [ef? + (d, ).
B(X,)Y) = %(<b, dy+{c,e) +{b+c,d+e))
= %(2<b, dy + 2{c,e) + (b,e) + {c,d)). (1.6.9)
Hence,
L= XY~ BOXY)?

=g(|b\2 + |e)? + b, ) (|d]* + |e]* + {d, e)) (2(b, dy + 2{c, e) + (b, e) + {c,d))*.

1
9
or equivalently,
9
7 =[P1dP + BPlel” + [b1*(d, €) + [el*|d]* + [el*[e]* + [c[*(d, &) + |dI*(b, &) + [e (b, ¢)
1 1
+ <ba C><d7 6> B <b7 d>2 - <Ca €>2 - Zl<ba €>2 - 4_1<C’ d>2 - 2<b7 d><C7 €> - <ba d><b7 €>
1
- <b’ d><C, d> - <Cv €><b7 €> - <Cv €><Cv d> - §<b7 €><Ca d>7
which can be rearranged to get:

b21dI* + [bI*(d, €) + |c*|e]? + e[, e) + [d]*(b, &) + [e]*(b, &) — (b, d)* = (¢, e)?
—(b,d){b, ey — (b,d)c,d) — {c,exb,ey —{c,e)c,d)

= BPlel? ~ eI — (5,6Xd, €+ by e)? + e d)? + 20, ) + b€ ).
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Substituting this into (1.6.8), we get:

_ 9 2 2 4 1 1
X, V) == = Z|b)le|* — Z|e|?|d|® + =¢b,eXd, e) — —(b,e)* — —{c,d)?

4 7
+ §<b, d)c, ey — 6<b, exe,dy
=§—fgciw%%+wfwﬁ—%a@@x>—%a@@x>+%a@@dﬁ)

— (e~ eadry).
We claimed that R < %, hence it is enough to show that

b%[e]? + |c|?[d|? — 2¢b, c){d, e) — 2(b,d){c, e) + 2(b,eXc,d) = 0.
We note that this expression is equal to:

(1B1%lef* = <b,€)” + [e|d|* — e, d)* — 2(b, €){d, e) + 2(b, d){c, €))

+ ({b, )* + 2(b, eX{c,dy + {c,d)?) — 4b,d)c, e)
= (el + Slle,d)? = <lbs el e, D) + (b ) + e, )2 — 4db, e )

= %|[b, e] — [e,d]|* + ({b,e) + {c,d))? — 4b, d){c, e). (1.6.10)

We assumed that B(X,Y) = 0, so from (1.6.9), we get that (b,e) + {c,d) = —2({(b,d) +
{¢,ey). Thus, continuing with (1.6.10), we get:
1
§|[b7 6] - [Ca d]‘2 + 4<<b7 d> + <C7 €>)2 - 4<b7 d><C, 6>7
which is always non-negative because for any real z,y, we have 4(x + y)? — 4oy = 4(x* +
ry + y*) = 0. B
Finally, we need to show that the bounds 0 < R < % are sharp. To do this, we take an
explicit orthonormal basis for m:

V3 V3 V3
er = 9(7[7 0), ey = 9(7% 0), e3 = 9(7& 0),
1 1 1
64:.9(5[7_[)7 65:g(§J7_J)7 66:g<§K7_K)

For this basis we also have: Je; = €43, 1 <1< 3.
Then one easily calculates that R(e; A es) = 0, R(e1 A e2) = 2, as we claimed.

A computation on Maple reveals that eigenvalues of R on 02 are —T5, —2;, 15, where by
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the subscript we denote its multiplicity. Note that this makes sense, as we know from the
discussion following the proof of Proposition 1.5.45 that R is —21Id on 02 and Q2, so we
get seven eigenvalues —2. Hence, we conlude that on Q2 —7 < R < 1.

Similarly, Maple shows that eigenvalues of R on S? are —5;, —4s, (— %)3, 210, <g> R Again,

this makes sense, as we know that ]O%g = —5g, because the Einstein constant is 5. Hence,
on 8§¢,—4 < R < 2. Furthermore, using that W5 = 2(Wh) ow for § = how € QF, where

heS?2 3 2

<_, it can be easily shown that in fact the eigenvalues ( — 5)3, <§>5 occur on 8%

and —45, 2y occur on S2. So, we summarize and check the theorems. We have:

-9
O0<R< -,

4
—7<R<1on
- b
—4<R<§0n83,

3 o b
—§<R<§on8_2m,
—4<R<2o0n&?

Corollary 1.2.15 gives us that —% <R<
Corollary 1.2.17 gives us that —4 < R
inequality being sharp.

Corollary 1.2.25 gives us that —;71 <R< % on 8%, which is also consistent.

For the main theorems, we know in this case that b3 = 2. So it must be false that W= —4
on 82 , by Theorem 1.5.70. By (1.5.44), we have that —5 < W on 82, with the cigenvalue
value —5 achieved. Hence, we get no contradiction. Similarly, R achieves —17,s0 W achieves
—5, hence we indeed have that W = —3 is false.

As for Theorem 1.5.63 we cannot predict whether W > —8 on Q2 (or equivalenty S?(S2,) 3
W= —4) must hold or not, because by = 0. However, we can actually deduce the vanishing
of by, since by (1.5.44), we can get that —5 < W on Q2, so the assumption of the theorem is
satisfied. Finally, note that it is even possible to deduce that by = 0 from Theorem 1.5.64,
since we get that —(A+8) —Z(A—6) > —10 and (A+0) —3(A—0) = —6 both hold.

on 2 which is consistent.

N

5 on 82, which is consistent with the first
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Chapter 2

A special class of k-harmonic maps
inducing calibrated fibrations

2.1 Introduction

The natural partial differential equations which arise in Riemannian geometry are usually
second order. Some important examples are:

(i) an Einstein metric [Ric, = Ag, where Ric is the Ricci curvature]

(ii) a minimal submanifold [H = 0, where H is the mean curvature]

(iii) a Yang-Mills connection V on a vector bundle [(dV)*FY = 0, where FV is the
curvature]

(iv) a k-harmonic map u: (M, g1) — (M, go) between Riemannian manifolds
div(|du|*2du) = 0

All of the above geometric objects are also wvariational. That is, the PDEs are Euler—
Lagrange equations for some natural geometric functional or “energy”, and hence such
objects are critical points of these functionals, but may not in general be (local) min-
ima.

A common feature is that when there is additional geometric structure present, one can
identify a natural special class of solutions which:

e satisfy a (usually fully nonlinear) first order PDE, and

e are actually global minimizers of the functional within a particular class of variations.
With respect to the particular examples above, these special first order solutions are:

(i) a special holonomy metric: Calabi-Yau, hyperkahler, quaternionic-Kéhler, G,, or
Spin(7). These are all Einstein, and most are Ricci-flat. [The condition of special
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holonomy is first order on the metric in each case, but there does not seem to be any
unified way of describing these, and it is unknown if they are global minimizers of
the Einstein—Hilbert functional within some particular class of variations.]

(ii) a calibrated submanifold of a special holonomy manifold. These are all minimal. The
calibrated condition is a first order condition on the immersion. They are global
minimizers of the volume functional in a given homology class.

(iii) an instanton on a vector bundle over a special holonomy manifold. These are all
Yang—Mills. The instanton condition is a first order condition on the connection,
being an algebraic condition on the curvature. In many cases, a characteristic class
argument shows that they are global minimizers of the Yang—Mills energy.

Note that all the special first order solutions in (i), (ii), and (iii) described above are
related to Riemannian manifolds with special holonomy. [This is not necessary. Classical
self-dual and anti-self-dual instantons are special Yang—Mills connections on a Riemannian
4-manifold, with no special holonomy.|

In this paper, we discuss two classes of special first order solutions to (iv) above, called
Smith maps. They are special types of k-harmonic maps u: (M, g1) — (Ms, g2) between
pairs of Riemannian manifolds, which are intimately related to both calibrated geometry
and conformal geometry:

e For u: (L¥,g) — (M"™ h), with k < n and a € QF(M) a closed calibration, we
define a Smith immersion, which is a special type of weakly conformal k-harmonic
map. If L% is the open subset on which du # 0, then u: LY — M is an immersion,
whose image u(L°) is k-dimensional a-calibrated submanifold of (M, k). Moreover,
the notion of Smith immersion is invariant under conformal change of the domain
metric g. Conversely, if u: (L*, g) — (M™, h) is a weakly conformal k-harmonic map
such that u(L°) is a-calibrated, then u is a Smith immersion. (Theorem 2.3.2.)

o For u: (M™ h) — (L* g), with n > k and o € Q"%(M) a closed calibration, we
define a Smith submersion, which is a special type of weakly horizontally conformal
k-harmonic map. If MY is the open subset on which du # 0, then the fibres u='{u(x)}
of u: M® — L are (n—k)-dimensional a-calibrated submanifolds of (M, k). Moreover,
the notion of Smith submersion is invariant under horizontally conformal change of
the domain metric h. Conversely, if u: (M™ h) — (L*,g) is a weakly horizontally
conformal k-harmonic map such that the fibres of u|y 0 are a-calibrated, then u is a
Smith submersion. (Theorem 2.4.10.)

The notion of Smith immersions was previously studied by Cheng—Karigiannis—Madnick
in [10] and [ 1, Section 3.3], inspired by an unpublished preprint of Smith [10]. We review
it here, and clarify that it extends from calibrations associated to vector cross products to
any calibrations. (This was implicit in [1 1, Section 3.3].) The notion of Smith submersions
is new in the present chapter.
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In each case, we establish a fundamental pointwise inequality in Theorems 2.3.2 and 2.4.10,
respectively, which itself is obtained by combining the fundamental inequality of calibrated
geometry and the Hadamard inequality. We then use these pointwise inequalities, together
with the assumption that da = 0, to prove the associated integral energy inequalities in
Theorems 2.3.6 and 2.4.18, respectively, when the domain is compact. This immediately
yields the k-harmonicity of such maps. We also give direct proofs of k-harmonicity by
differentiating the Smith equations, which also explicitly show the importance of the da = 0
assumption.

The two constructions should also be viewed as special first order versions of the following
particular classical results [11, (3.5) and (3.10)] from harmonic map theory:

e a Riemannian immersion u: (L, g) — (M, h) is harmonic <= the image is minimal,

e a Riemannian submersion u: (M,h) — (L, g) is harmonic <= the fibres are mini-
mal.

In the final section, we briefly discuss the analytic results for Smith immersions which
were established in [10], discuss several explicit examples of Smith submersions with non-
compact domains, comment on the relevance of Smith submersions to the SYZ and GYZ
“conjectures” involving special Lagrangian and coassociative fibrations, and collect several
open questions for future study.

Conventions and notation.

All manifolds are oriented Riemannian manifolds, though not necessarily compact. As
usual a superscript on a manifold such as M™ means dim M = n. All maps between
manifolds are smooth.

We often use the Riemannian metric (via the musical isomorphism) to identify vector fields
and 1-forms, and more generally tensors of mixed type with covariant tensors. We use 7™
for the space of smooth m-tensors (that is, smooth sections of the m'® tensor power of the
cotangent bundle), we use QP for the space of p-forms, » for the Hodge star operator, and
vol for the Riemannian volume form. We use V for the Levi-Civita connection. We write
div: 7™ — 7™ ! for the Riemannian divergence, given in terms of a local orthonormal
frame by (divA);,...j,. 1 = Vidijij._.- (We sum over repeated indices.)

For us, a calibration o is a comass one differential form, not necessarily closed. (Some
authors call this a semi-calibration or pre-calibration.) When « is also closed, we call it a
closed calibration.

The following result is a version of Hadamard’s inequality that we use frequently.

Proposition 2.1.1 (Hadamard’s inequality). Let A: (V]", g1) — (V4'2, g2) be a linear map
between real inner product spaces where ny, = dim Vi.. Define |A]* = tr(A*A) (and similarly
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for other linear maps between real inner product spaces). Then |A™ A| <
equality if and only if A*gy = N2g; with \2 = nil|A|2.

Proof. A proof can be found, for example, in [10, Corollary 2.5 and Lemma 2.1]. ]

2.2 Preliminaries

In this section we review some standard material on calibrations and p-harmonic maps.

2.2.1 Calibrations

The classical theory of calibrated geometry was initiated by Harvey—Lawson [20]. A good
reference for beginners is the text of Joyce [23]. Let (M", h) be a Riemannian mani-
fold.

Definition 2.2.1. Let a € Q% on (M", h). We say that « is a calibration if
afvp A AvE) <o A A forall vy, ... v € T,M and all z € M. (2.2.2)
This is clearly equivalent to saying that

—1<aley,...,ex) <1 forall orthonormal ey, ..., ex € T,M and all x € M.

Let LF be an oriented submanifold of M. We say L is calibrated with respect to a if
alp = voly,, where voly, is the Riemannian volume form associated to the orientation and
the induced metric h|y. (That is, L is a-calibrated if equality in (2.2.2) is attained on each
oriented tangent space T, L of L.) A

The classical fundamental theorem of calibrated geometry of Harvey—Lawson [20] says that if
the calibration form « is closed, then a calibrated submanifold is locally volume minimizing
in its homology class. In particular, if daw = 0, then a calibrated submanifold is minimal
(has vanishing mean curvature).

We collect here some results and definitions on calibrations which are needed later.

Lemma 2.2.3 (The first cousin principle). Let o € QF be a calibration, and let L, €
AF(T,M) be an oriented k-dimensional subspace which is calibrated with respect to o If

e1,...ex_1 are orthonormal in L, and w e L, then a(ey, ..., ex_1,w) = 0.
Proof. We can choose e, € L, so that ej,..., e, is an oriented orthonormal basis of L,.
Let wy = (cost)ex + (sint)w. Then ey,. .., ex_1,w; are orthonormal for all ¢ € R. Thus we
have that

f(t) == aler,...,ex_1,w;) = (cost)aley, ..., ex_1,ex) + (sint)a(er, ..., ex_1,w)
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satisfies f(t) < 1 for all ¢ € R with equality at t = 0. Thus f'(0) = a(e,...,e_1,w) =
0. ]

Proposition 2.2.4. If a € QF is calibration, then xa € Q"% is also a calibration.

Proof. Using the metric we can identify A®(T, M) with A*(T*M). Let I, = e; A -+ A e,
where ey, ..., e, are orthonormal. Then using the fact that * is an isometry, we have

(xa)(IL) = g(xa, TLy) = g(+*a, #1L) = £g(a, +IL,) = ta(+IL,) € [-1,1],
because « is a calibration. ]
Definition 2.2.5. Let a € Q%. Define P,: ['(A*1(TM)) — I'(TM) by
g(Po(v1 A+ Avg_q),0k) = (v A -+ A V).

That is, P, is the vector-valued (k — 1)-form obtained by “raising an index” on « using
the metric. A

Remark 2.2.6. For some calibrations «, the vector-valued form P, is a vector cross prod-
uct. This means that |Py(vy A -+ A vp_1)]* = |vg A -+ A vg_1|%. This holds, in particular,
for the Kéahler calibration of degree 2, and for the associative and Cayley calibrations.
See [10, Section 2] for more details. One of the key points of our Section 2.3 below is the
observation that the results of [10] continue to hold for all calibrations, not just for those
for which P, is a vector cross product.

Proposition 2.2.7. Let a € QF. The adjoint P]: T(TM) — T'(A*=Y(T'M)) is given by

(There is a metric identification here of A*=Y(T' M) and A**(T*M).)
Proof. Let vy, ... v, € I'(TM). We compute

g(Py(v1 Ao Avg_q),0) = (v A -+ A Ug)
=g(vy A AU, Q)

D gup Avr A - A iy, @)

Il
—

_l)k_lg(m A A U, U @),

I
~~

hence the result follows. O
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2.2.2 Harmonic maps and p-harmonic maps

We briefly review some basic facts about harmonic maps and p-harmonic maps. For more
details, the reader can consult Eells—Lemaire [13] or Baird-Gudmundsson [2].

If w: (M", 1) — (M3?, ¢2) is a smooth map between Riemannian manifolds, then its
differential du is a smooth section of T*M; ® u*T'M,, and its value at = € M, is the
linear map du, : T, M; — T,z M,. The bundle T*M; ® u*T' M, has a natural fibre metric
g1 ®u* gy, which allows us to define the smooth function |du|? on M;. One can also verify
that

|du|? = tr,, (u*ga). (2.2.8)

A useful observation is that if ey, .. ., €,, is a local orthonormal frame for (M, g1), then

1

|du,|* = Z(U*gz>x<6i, e;) = Zlgg(dum(ei), dug(e;)). (2.2.9)

i=1 =1

Definition 2.2.10. Let u: (M, g1) — (Ma, g2) be a smooth map. Let p € [2,00). If M is
compact, then the p-energy of u is defined to be

= ; ulPvo
B = (o JMI (dulPvoly,.

Note that up to a constant factor (which is chosen for later convenience), the p-energy is
the p™ power of the LP norm of du. We say that a map u is p-harmonic if it is a critical
point of the functional E,. That is, a p-harmonic map is a solution to the Euler-Lagrange
equation for the p-energy functional. This equation is

div(|dulP~2du) = 0 € T'(u*T M>), (2.2.11)

and is called the p-harmonic map equation. When p = 2, this reduces to the classical elliptic
harmonic map equation div(du) = 0, and a 2-harmonic map is just called a harmonic map.
But for p > 2 this equation is a degenerate elliptic equation.

More generally, the section of u*T M, given by
7 (u) = div(|dul?*du) (2.2.12)

is called the p-tension of u, so a map u is p-harmonic if and only if it has vanishing p-
tension. In fact, the p-tension 7,(u) is, up to a positive factor, the negative gradient of the
p-energy functional with respect to the L? inner product.

Note that if M; is not compact we can still take equation (2.2.11) as the definition of
p-harmonic. A
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The p-energy and p-harmonic map equation are related to conformal geometry as follows.
Let f be a positive function on M;, so §; = f2g¢; is another metric on M; in the same
conformal class as ¢g;. Then we have

\du|§1792 = fﬁ2|du‘§1,92 and VO|M1,§1 = meOlMl,gl'

It follows that

1 1 _
By 1.9, (1) = W JM ‘duylgjl,gQVOIMl,gl = (\f—p)l’ JM ™ p\du|§1,g2V0|Ml,g1,
1 1

and thus the p-energy of a map u: (M{",g1) — (M3?,g2) is conformally invariant (that
is, depends only on the conformal class of ¢1) if p = ny. With a bit more effort, one can
similarly compute that

Tp,g1,92 (u) = S P Tog1.00 (u) + fﬁp71|du’p72<n1 —p)g1(df, du),

which again shows that the notion of a p-harmonic map depends only on the conformal
class of gy if p = ny.

The case that has received the most attention classically is the conformal invariance of
the 2-energy (also called the Dirichlet energy) from a 2-dimensional oriented Riemannian
manifold (X2, ¢) into another Riemannian manifold (M, k). Since this depends only on the
conformal class of g on X2, we see that the notion of a harmonic map from a Riemann
surface Y% into a Riemannian manifold is well-defined.

See Remarks 2.3.7 and Remarks 2.4.19 for the precise formulation of “conformal invariance”
for Smith immersions and Smith submersions.

2.3 Smith immersions

The notion of a Smith immersion was studied by Cheng—Karigiannis—Madnick in [10]
and [11, Section 3.3] where it was assumed that the calibration form « is induced from a
vector cross product. In this section we introduce a slightly modified definition of Smith
immersions which applies to any calibration «, not just those induced by vector cross
products. In the vector cross product case, our new definition is equivalent to the earlier
definition. Moreover, our more general definition still enjoys all the analytic properties
established in [10, Sections 4 and 5]. See Section 2.5.1.

In this section, u: (L*, g) — (M™ k) is a smooth map between Riemannian manifolds,
with & < n. Recall that u: (L*, g) — (M™ h) is an immersion if rank(du,) = k for all
xe L.
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2.3.1 Smith immersions and the energy inequality

Before we can define Smith immersions, we recall some facts about (weakly) conformal
maps.

Definition 2.3.1. A smooth map u: (L, g) — (M™, h) is called (weakly) conformal if
u*h = \%g
for some smooth function A > 0 which is continuous (and smooth away from 0) on L. This

function \ is called the dilation. It then follows from (2.2.8) that necessarily \? = %|du|2.

Let L° = L be the open set where |du| # 0. From w*h = |du|?g, we deduce that
ulpo: L° — M is an immersion. When L° = L, we say that u is a conformal immersion.
An immersion u: (L*, g) — (M™, h) is called a Riemannian immersion if u*h = g on L, or
equivalently if it is a conformal immersion with dilation A = 1. A

Theorem 2.3.2. Let u: (LF, g) — (M™, h) be a smooth map. Let a € Q¥(M) be a calibra-
tion. Then
w*a < Nvolp,  where A = \/ig|du| (2.3.3)

Moreover, equality holds if and only if:

o u*h = N\2g (so u is a weakly conformal immersion), and

o the image u(L°) is calibrated with respect to .

Proof. We trivially have equality at points where du is zero. Let x € L°. Let eq,. .., e be
an orthonormal frame for T, L. Then we have

(w*a)(eg A - Aer) = al(AFdu)(eg A -+ A eg))

< |(A*du)(ep A -+ A e)] (because « is a calibration)

< M\ (by Proposition 2.1.1),

which concludes the proof of (2.3.3).

Equality holds if and only if equality holds in the two inequalities of the above computation.
If the second inequality above is an equality, then by Proposition 2.1.1 we have u*h = \2g,
so u is weakly conformal. Let z € L° and let e, . .., e; be an orthonormal frame for 7}, L, so
Tdu(ey), ..., ydu(ey) is an orthonormal frame for du(T,L) < T, M. If the first inequality
above is an equality, then we see that we must have a(sdu(er) A -+ A ydu(e;)) = 1. That
is, the image u(L) is calibrated with respect to a. ]
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Definition 2.3.4. If equality holds in (2.3.3), we say that u is a Smith immersion with
respect to a. That is, a Smith immersion with respect to « is a smooth map u: (L¥, g) —
(M™ h) such that

wra =

1 1
du|*voly, u*h = —|dul?g, 2.3.5
at all points on L. [However, recall that the first equation automatically implies the second
equation.] Note that, strictly speaking, a Smith immersion is only actually an immersion
on the open subset L° = {z € L : du, # 0} of L. A

Theorem 2.3.6 (Energy Inequality). Let o € QF(M) be a closed calibration. Letw: (L*,g) —
(M™ h) be a Smith immersion with respect to o. Suppose L is compact. Then u is k-
harmonic in the sense that it is a critical point of Ej.

Proof. For any smooth map u: (LF,g) — (M™, h), let X\ = \/LE|du| Using (2.3.3) we have

Fe(u) ﬁ L dul*vol;, — L Mol > L v = [a] - u[L],

where we have used the fact that « is closed. Thus the k-energy of u is bounded from
below by a topological quantity, as it depends only on the cohomology class [«] and the
homotopy class of u. Moreover, by Theorem 2.3.2, equality holds if and only if u is a
Smith immersion. This shows that such maps are local minimizers of E; and thus are
k-harmonic. O

We note that Theorem 2.3.6 still holds if L is noncompact. See Theorem 2.3.15.

Remark 2.3.7. Since a Smith immersion u: (L*, g) — (M™, h) with respect to a € QF(M)
is in particular a k-harmonic map (when da = 0), by the discussion at the end of Sec-
tion 2.2.2, we expect that the notion of a Smith immersion should depend only on the
conformal class [g] of the metric on the domain L. Indeed, this is true even without the
assumption that do = 0. To see this, suppose § = f2g for some smooth positive function
on L. From (2.2.8) we get

~ 1 1 .
N = E|du f%h =f 2E|du|§’h = 2\

and clearly vol . = fFvoly. Tt follows that the Smith immersion equations u*a = Afvoly,
and u*h = \%g are invariant under conformal scaling of the domain metric g on L.
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2.3.2 Direct proof that Smith immersions are k-harmonic

In Theorem 2.3.15 below we show directly that a Smith immersion satisfies the k-harmonic
map equation, in the sense that 73 (u) = 0, without assuming L is compact. This argument
appeared earlier in [10, Section 3.5] under the assumption that « induces a vector cross
product P, by raising an index. We provide a slightly modified argument here to show that
this assumption was in fact unnecessary. First we need some preliminary results.

Proposition 2.3.8. Let u: (L* g) — (M™ h) be a Smith immersion with respect to the
calibration form o€ QF on M. Then we have

_1)k—1

P, o A*"Y(du) o xp, = <—

(du) o *y (V)2

Proof. The equation is trivially satisfied at points where du is zero. Let z € L°. Also,

recall that we necessarily have u*h = A2g. Let ey, ..., e, be an oriented orthonormal basis
for T, L. We compute

|dul*~2du. (2.3.9)

h(Py(A*Ydu)(eq A - A ep_r), duler)) = a((AF7Tdu)(eg A -+ A ep_y), duley))
=u*aley A A eg)
= MNvolp(er A - A ey)
= Ng(x(er A -+ Aep_1), er)
= N2 h(x(eg A - A ep_t1), ex)
= N 72h(du(x(eq A -+ A ep_t)), duley)).
Denoting A := P, (A*'du): A*(T,L) — T, M, the above says
h(A(ey A -+ Aegp1),du(er)) = N 72h(du(x(er A - A ep_1)), duler)). (2.3.10)

Recall that du(T,L) is a-calibrated by Theorem 2.3.2. Suppose w € (im du,)*. Then we
have

h(A(er A -+ Aeg_1),w) = h(Pa(du(er) A -+ A du(eg_1), w)
= a(du(ey),...,du(ex—1),w) =0

by Lemma 2.2.3. Hence we have shown that im A < im du,. It therefore follows from (2.3.10)
and the fact that du, is injective that

P, o (A*'du) = Ni2du o %,

Using that #? = (—=1)*7! on 1-forms, we obtain the desired result. O
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In the case where P, is a wvector cross product, it was shown in [10, Proposition 2.32]
that (2.3.9) is equivalent to our Smith immersion equation (2.3.5). In fact this holds in
general.

Proposition 2.3.11. We have shown that ifu: (L*,g) — (M™, h,«) is a Smith immersion,

then
|k72

— |j/1i’“‘2 du. (2.3.12)
k

The converse also holds. That is, if (2.3.12) holds, then u is a Smith immersion.

P, o AF"Y(du) o x;, = (—1)

Proof. Let © € L. If du, = 0, which satisfies (2.3.12) at z, then u is a Smith immersion

at . Now assume du, # 0. Let e1,..., e, be a oriented orthonormal basis of T, L. Let
i,7€{l,...,k}. Then we have

xpei = (—=1)"rer A AEG A A e

Evaluating both sides of (2.3.12) on e; and taking inner product with du(e;) we get

(1) 'h(Py(du(er) A -+ A c@(\ez) A - A du(eg)), du(ej))
= (D" ufaler A AEG A Aeg A€y

(—1)’“_1)\k_2h(du(ei), du(e;))

(_1)k—1u*a(el AN NEFA A ek).

We deduce that
AkiQh(du<ei)7du(€j))V0|L =u*a ifi=j,
h(du(e;), du(e;)) = 0 if 4+ j.

Using the above we compute

1
uro = E)\k’2 Z h(du(e;), du(e;))voly,

1

— EA’“‘Q%Zh(du(ei),du(ej))V°|L

1
= E)\k_2|du|2vo|L = Mvolp,

and thus u is a Smith immersion in the sense of Definition 2.3.4. O

Lemma 2.3.13. Let u: (L*, g) — (M"™, h) be a Smith immersion with respect to the cali-
bration . Then u*(Vya) =0 for any V e T'(TM).
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Proof. The equation is trivially satisfied at points where du is zero. Let z € L°. Let
€1, .. .,e, be an oriented orthonormal basis for T, .. Then from the proof of Theorem 2.3.2,
we have that $du(e), ..., ydu(ex) is an oriented orthonormal basis for du(T,L) = Ty M,
which is calibrated by a. Thus we have

/\—lku*(VVoz)(el A A ek) w*(Vya )( N €k)
V(a(zdu A du(ek)))
Z u(er) A+ A Vy(sdu(e)) A= A fdu(ey)).

J=1

The first term in (2.3.14) vanishes because « calibrates du(T,L). By skew-symmetry of
a, the only component of Vy(3du(e;)) in the span of $du(e;), ..., sdu(e;) which can
contribute to

a(sduler) A - A Vy(sdu(e;)) A - A sdu(er))

is the +du(e;) component. But since ;du(e;) has constant (unit) length, the covariant
derivative Vy (sdu(e;)) is orthogonal to +du(e;). We deduce that

a(sdu(er) A AVy(sdu(e;)) A A sdule)) = al(sdu(er) A Aw A - A sduley))
for some vector w orthogonal to the a-calibrated k-plane spanned by $du(ey), ..., sdu(ey).

It then follows from Lemma 2.2.3 that each of the terms in the last line of (2.3.14) also
vanish, so u*(Vya) = 0. O

The next result is exactly [10, Proposition 3.20], but with a harmless sign error corrected.
We include it for completeness and comparison with Theorem 2.4.29 in the case of Smith
submersions.

Theorem 2.3.15. Let u: (L, g) — (M™ h) be a Smith immersion with respect to the
calibration form o € QF. If da = 0, then u is k-harmonic in the sense that Tp(u) = 0.

Proof. We show that the k-tension 73 (u) of equation (2.2.12) vanishes at any point = € L.
Let
B = P,oA*"Y(du) o x; e T(T*L @ u*TM).

By Proposition 2.3.8, it suffices to show that div(B) = 0, which is a smooth section of
u*I'M. Let p denote the Riemannian volume form on L, and identify 1-forms and vector
fields using the musical isomorphism. Recall that *v = v_u for any vector field v on L, so
(¥V)iy ip_y = Ujfbjiyeip_,- We also have (Py)py by ya = Vbyby_yja-
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Take Riemannian normal coordinates =%, =% centred at  and u(z) respectively. At the

axia aya
point x, we compute
diV(B)a = (va)aj
= V;(Py o A¥ 1 (du) o x1),;

1 —
= WV](PQ O Ak 1(du))il~~~ik71a,U/jZ'1.,,ik71
1 aubl aubk_l
- m 7 ((3.1:11 Oxtk—1 (Pa)bl'”bkla> Hgiy-wip_y

1 oubt Oubr-1

1 outr oubr
= (k _ 1)| aa’,‘il T 51’”—1 (vjabl"'bk—la)ujil"'ik—l

1 Rl gt gy dube Qubee
" (k—1)! & 0z gzt O™ VU opie T ogin (rebkaaljindi
)

where the ™ as usual denotes omission. The second term vanishes by (skew)-symmetry in
J,1¢. For the first term, we have

oubr

Vjazvia: .Vaa,
oxJ oxd oyPk
. . b
which we write as 25+ V,, ov. Thus we have

1 ou™ Oubr—1 Oy br
(k—1)! ox  dxin—1 Ogd (Vo 01y i

div(B), =

Relabelling j as i, we have

(_1)k_1 oulr Oubx
(k - 1)' a.Til o (9(1;% (vbkabl“'bkfla)/ﬁil---ik-

div(B), =

By the skew-symmetry of p, if we swap by and b, in the factor (Vy, ap,..b,_,a) above, the
sign of the right hand side changes. We therefore can write

(D oudr  oubk 1

diV(B>a = (k? — 1>! Oxit Oin E£:1(vbiabl'“biflablﬁ»l”'bk)Iuil"'ik

because for each ¢ when we swap a with b, and then b, with b, we introduce two minus
signs which cancel. Finally we use the fact that « is closed to write

k

0 = (da)abl...bk = Vaabl...bk — Z(Vbeabl“'be—labe+1"‘bk)‘
(=1
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Combining these we obtain

(=) tour  oub

diV(B)a = o e . e Vaabl...bkuil...ik
= (Y 40)iy by
which vanishes by Lemma 2.3.13, completing the proof. O

2.4 Smith submersions

We introduce a new class of maps u: (M™ h) — (L*, g) between Riemannian manifolds
with n > k, where the domain is equipped with a calibration form « of degree n—k. These
maps are a special class of k-harmonic maps satisfying a first order nonlinear differential
equation, and have the property that when da = 0, the smooth fibres are a-calibrated
submanifolds of M.

In this section, u: (M™, h) — (L* g) is a surjective smooth map between Riemannian
manifolds, with n > k. Recall that u: (M" h) — (LF, g) is a submersion if rank(du,) = k
for all z € M.

2.4.1 (Weakly) conformally horizontal submersions

In order to be able to define the submersion analogue of “weakly conformal”, we need to first
recall the horizontal /vertical splitting of T'M associated to a submersion u: M — L.

Definition 2.4.1. Let u: (M™, h) — (L*, g) be a smooth surjection. Let M° = M be the
open set where |du| # 0. Suppose that the restriction u|p0: MY — L is a submersion, so
that rank(du,) = k for all z € M°. Then the tangent bundle TM° of M decomposes as

TM® = (ker du) @, (ker du)*,

where ker du = V MY is the vertical subbundle, which has rank n—k, and (ker du)* = HM?°
is the horizontal subbundle, which has rank k.

It follows that an m-tensor a € 7™ on MY is a smooth section of

P (ker du)® ® ((ker du)™)®,

p+gq=m
with p < n —k, ¢ < k. We denote by a?9 the component of a which lies in
T®D = D ((ker du)® @ ((ker du))®?)

and we say that a®? is of type (p,q).
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It follows that the metric h on M° decomposes as h = h>?+h%2, where h?? is the metric on
the vertical subbundle ker du, and h%? is the metric on the horizontal subbundle (ker du)*.

In particular, we have
try, (h*?) = k. (2.4.2)

Finally, we use Q"9 to denote the totally skew-symmetric elements of 7®%. A

Definition 2.4.3. A smooth surjection u: (M™, h) — (L, g) is called (weakly) horizontally
conformal if for every point x € M, we either have du, = 0, or if du, # 0, then rank(du,) =
k is maximal and

U*g _ )\Zh(O,Q)
for some smooth function A > 0 on M°. We can extend A\? by zero to obtain a contin-

uous non-negative function on M. This function A is called the dilation. It then follows
from (2.2.8) that necessarily \* = +|dul>.

When M° = M, we say that u is a horizontally conformal submersion. A submersion
w: (M™, h) — (L*,g) is called a Riemannian submersion if u*g = h(®?» on M, or equiva-
lently if it is a horizontally conformal submersion with dilation A = 1. A

Remark 2.4.4. Let u: (M", h) — (L*, g) be weakly horizontally conformal. Restricted
to the open subset M, the map w0 is a submersion, and thus by the implicit function

theorem each fibre M° nu~'{u(z)} for x € M is a smooth (n— k)-dimensional submanifold
of M°.

Remark 2.4.5. Let u: (M", h) — (L*,g) be a smooth surjection. Over M° we get a
canonical orientation on the horizontal subbundle (ker du)* from the class [u*vol.]. Then
the vertical subbundle ker du inherits a unique orientation such that volyer gu A VOl(ker guyt =
voly,.

If u is (weakly) horizontally conformal, then by Definition 2.4.3, we have that for any
x € MY, the map

(du)e: ((ker dus)™, N(2)h$?) = (Tuw) L, gu(a))
is an orientation preserving isometry.

For the remainder of this section, we assume that u: (M™ h) — (L* g) is horizontally
conformal. (Equivalently, it is weakly horizontally conformal and we work only on the
open subset M° where it is horizontally conformal.) We collect several results that are
needed to study Smith submersions.

Lemma 2.4.6. Let € QP(L). Then u*f is of type (0,p).

Bdu(vy), ..., du(vy,)), so if at

Proof. Let vy,...,v, € I'(T'M). Then (u*ﬁ)(vl,... p) =
=0. ]

least one of the v; lies in ker du, then (u*f)(v1, ..., v,)
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Lemma 2.4.7. Let o € QP9 (M). Then xa € QU=F=P*k=0(N). Moreover, for any form
B, we have (xB)F=Pk=0) = «(3P0),

Proof. This follows from the fact that voly, € QM=% (M), O

Lemma 2.4.8. Let o€ QPO (M). Then for any v e T(TM), the form v o is of type
(p —1,q) and the form vV _Ja is of type (p,q — 1).

Proof. This is clear from definition of the interior product. m

Lemma 2.4.9. Let a € QO®(M). Let P, be as in Definition 2.2.5, and let P] be its
adjoint map as in Proposition 2.2.7. Then we have

PuPT = a0,
where 7OV T(TM) — T(TM©®V) is the orthogonal projection.

Proof. First, note that since « is of type (0, k), and the metric h on T M is of type (2,0) +
(0,2), the map P, takes values in the horizontal subbundle TM©®V = (ker du)*. Consider
any v € I'(TM) and w e T(TM©Y). By Proposition 2.2.7 we have PJv = (—=1)* v a.
Hence we have
g(P.Plv,w) = (=1 g(P(via),w)
= (=D a((vaa) A w)
= g(a,w A (vaa)).

Recall that v1(w A ) = (vow)a —w A (vaa), and thus w A (vaa) = g(v, w)a because
w A a = 0 since it is of type (0, k + 1). Hence, we get

9(PaPyv,w) = g(v,w)lal?,

and the result follows. O

2.4.2 Smith submersions and the energy inequality

We can now consider the notion of a Smith submersion.

Theorem 2.4.10. Let u: (M™ h) — (L¥,g) be a smooth surjection. Let o € Q" *(M) be
a calibration. Then

(2.4.11)

HE

a A ufvol, < MNvoly,  where A =

Moreover, equality holds if and only if:
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o u*g = Ah2 (s0u is a weakly horizontally conformal submersion) and,

e the fibres of the restriction of u to M° are calibrated with respect to o.

Proof. We trivially have equality at points where du is zero. Let x € M°. If du, is not
maximal rank, then u*vol;, vanishes, while A > 0, so the inequality (2.4.11) is satisfied and
indeed is always a strict inequality at such points.

Now consider z € M? such that du, has maximal rank k. Let e, ..., e, be an oriented or-
thonormal basis of (ker du,)* and é,, ..., &,_ be an oriented orthonormal basis of ker du,.
With our choice of orientations from Remark 2.4.5 we have voly; = €1 A -+ A € A €1 A
-+ A €. Then we have

(a Au™volL)(Ex A Aéppg Aep A Aey)
=a(éy A Ay p)utvolp(er A A eg) (by Lemma 2.4.6)
< 1-volp(A*du)(ey A -+ A ey)) (because « is a calibration)
= |[(A*du)(ey A - A ep)]
= |A*dul|(ex A -+ A e

< \F (by Proposition 2.1.1),

which concludes the proof of (2.4.11).

Equality holds if and only if equality holds in the two inequalities of the above computation.
If the second inequality above is an equality, then by Proposition 2.1.1 we have u*g =
A2h02) 5o u is weakly horizontally conformal. Let x € M° and let é&;,...,é,_; be an
orthonormal frame for ker du,. If the first inequality above is an equality, then we see that
we must have a(é; A+ -+ Aé,_x) = 1. That is, the smooth fibre M° nu~'{u(z)} is calibrated
with respect to a. O

Definition 2.4.12. If equality holds in (2.4.11), we say that u is a Smith submersion
with respect to a. That is, a Smith submersion with respect to « is a smooth map
w: (M™ h) — (L*, g) such that

1
a A utvoly = |du|*volyy, utg = %|du|2h(0’2), (2.4.13)

1
(Vk)*
at all points on M. [However, recall that the first equation automatically implies the second

equation.] Note that, strictly speaking, a Smith submersion is only actually a submersion
on the open subset M° = {z € M : du, # 0} of M. A

Before we prove the Smith submersion energy inequality in Theorem 2.4.18 below, which
is analogous to Theorem 2.3.6 for Smith immersions, we first show that in the Smith
submersion case we can rewrite the equation in a useful alternative form.
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Lemma 2.4.14. Letu: (M™, h) — (L*, g) be weakly horizontally conformal with dilation .
Let o€ Q" F(M) be a calibration, so xa € Q¥(M) is also a calibration by Proposition 2.2.4.
At at point x where du, # 0, the following are equivalent:

(i) u*voly, = \F(xa)(0F),
(ii) (ker du)* is calibrated with respect to xc,

(iii) ker du is calibrated with respect to «.

Proof. (i) <= (ii). Let ey,...,e; be an oriented orthonormal basis of (ker du,)*. Then
since

(xa)(er, ..., ex) = (%) (ey, ... ex) and (u*volp)(er,. .. er) = AF,
we have that u*vol, = M (xa)®*) if and only if (*a)(ey,...,e;) = 1 if and only if (ker du)*

is calibrated with respect to *a.

(11) < (iii). Let é,...,€, 1 be an oriented orthonormal basis of ker du,. Note that
Volyy =€y A  A€p_p ACLA -+ A €.

Thus we have

Oé(él, ey én—k) = h(Oé, él VANMERVAN én—k)
= h(xa,*x(é4 A -+ A i) = h(*a,eq A -+ Aeg) = (*a)(eq,. .., ex),
and the result follows. O
Corollary 2.4.15. Let u: (M™ h) — (L*,g) be a smooth surjection. Let \ = % and

a e QVF(M) be a calibration. Then the following are equivalent:
(i) u*voly = N(»a)O%) and u*g = N2h(0?),

(ii) a A u*voly, = Nvoly,.

Proof. Both equations are trivially satisfied at the points where du is zero. Let x € M°.

Suppose that (i) holds. By Lemma 2.4.14, we have that (kerdu)’ is calibrated with
respect to . Combining this with u*g = A\?h(®? and using Theorem 2.4.10, we obtain
a A u*voly = Mevoly,.

Conversely, suppose (ii) holds. From Theorem 2.4.10 we know that w is horizontally con-

formal and « calibrates ker du. Hence by Lemma 2.4.14 we also have u*voly, = \¥(xa)(®),

so (1) holds. O
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Remark 2.4.16. Corollary 2.4.15 establishes two equivalent formulations of Smith sub-
mersion. The original definition of Smith submersion in (2.4.13) is precisely (ii) of Corol-
lary 2.4.15, since the first equation in (2.4.13) implies the second. However, in the alter-
native formulation (i) of Corollary 2.4.15, we need both equations. The first does not in
general imply the second.

Moreover, the original definition in (2.4.13) arises as the case of equality in the general
inequality of (2.4.11). Similarly, we can show that if we assume the second equation in (i)
of Corollary 2.4.15, then we claim that we always have the inequality

u*voly = \F(xa) (O, (2.4.17)

However, the inequality (2.4.17) need not hold in general if we do not assume u*g = A\2h(%2).

To see that (2.4.17) holds if u*g = A2h(®?) note that both sides are sections of the oriented
line bundle ker(du)* whose space of sections is Q). Hence we can compare any two
elements. Clearly the inequality holds on M\M? as both sides are zero. Let x € M°. Let
e1,...,e, be an oriented orthonormal basis of (ker du,)*. Then since u*g = A2h(®? we
have

u*volp(ey A - A e) = AR,

and since x« is also a calibration we have
MNe(xa)OF) (e Ao A eg) = AE(xa)(eg A -+ A eg) < AR

Thus the inequality (2.4.17) holds if u*g = A2h(02),
Finally, as in the immersion case, there is another equivalent form of the Smith equation,
which we prove in Propositions 2.4.21 and 2.4.25.

Theorem 2.4.18 (Energy Inequality). Let a € Q" *(M) be a closed calibration. Let
u: (M, h) — (L*,g) be a Smith submersion with respect to . Suppose M is compact.
Then u s k-harmonic in the sense that it is a critical point of Ej.

Proof. For any smooth map u: (M™, h) — (L*, g), let X\ = \/LE|du| Using (2.4.11) we have

1

Ex(u) = NCL JM |du|*voly, = JM Nvoly, = JMa A u*volp = ([a] u u*[vol]) - [M],

where we have used the fact that « is closed. Thus the k-energy of u is bounded from
below by a topological quantity, as it depends only on the cohomology class [a] and the
homotopy class of u. Moreover, by Theorem 2.4.10, equality holds if and only if u is a
Smith submersion. This shows that such maps are local minimizers of E, and thus are
k-harmonic. O]

We note that Theorem 2.4.18 still holds if M is noncompact. See Theorem 2.4.29.
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Remark 2.4.19. Smith submersions also enjoy a sort of “conformal invariance”, but it is
slightly more complicated. (This is expected, because a Smith submersion w: (M", h) —
(LF, g) with respect to a € Q"%(M) is in particular a k-harmonic map (when da = 0),
so by the discussion at the end of Section 2.2.2, this notion would depend only on the
conformal class [h] of the metric on the domain M only in the particular special case

n = k.
In general, if n > k, we have the following. Let h = h(*0 4+ 102) be the decomposition of
the metric h on M in terms of the horizontal/vertical splitting as in Definition 2.4.1. A
horizontally conformal scaling of h is a new metric h = h29 + #2102 for some smooth
positive function on L. (That is, we only conformally scale the horizontal part of the
metric h). Since du is zero on vertical vectors, from (2.2.9) we get

W = duf} = flduf, = FN

and clearly vol = fFvolys. It follows that the Smith submersion equations a A u*vol;, =
Nevoly, and u*g = N2h(9?) are invariant under horizontally conformal scaling of the domain
metric h on M.

2.4.3 Direct proof that Smith submersions are k-harmonic

In Theorem 2.3.15 below we show directly that a Smith submersion satisfies the k-harmonic
map equation, in the sense that 7 (u) = 0, without assuming M is compact. First we need
some preliminary results.

Lemma 2.4.20. Let o € Q" %(M) be a calibration. Let w: (M™ h) — (L¥, g) be a Smith
submersion with respect to . Then we have

(x)LF=D = 0, and Va =0 on ker du.

Proof. The first statement follows from Lemma 2.2.3, because by Corollary 2.4.15 and
Lemma 2.4.14, the form *a calibrates (ker du)®. For the second statement, since a €
Q"=*(M) and ker du is (n — k)-dimensional, it is enough to show that

(Vxa)(é1 A ... Aépyg) =0,

for any local orthonormal frame €y, ..., é,_j of ker du. Since by Lemma 2.4.14, « calibrates
ker du, we have that a(é; A -+ A é,_x) = 1. Hence we have

(Vxa)(@ A Aépp) = X(a(ér A AEny)) — 2 alég A A(VXE) Ao A Epy)

n—k
0= N @ A A (VxE) A A Gn).

<.
Il
_
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Now for any fixed j, the term a(& A -+ A (Vx&) @Y A - A &, 1) vanishes by the first
statement. Next note that since the €; are of norm 1, the vector field Vxé; is always
orthogonal to é;, and thus &y, ..., (Vxé&;)?, ... &,  are linearly dependent for any j, so
(€ A A (Vxé) O Ao A E, ) also vanishes, which concludes the proof. O

Proposition 2.4.21. Let u: (M™, h) — (L*, g) be a Smith submersion with respect to the
calibration form o€ Q"% on M. Then we have

*, AR (du) (Lxa) = %Mﬂkqdu. (2.4.22)

Proof. The equation is trivially satisfied at points where du is zero. Let z € M°. Also,

recall that we necessarily have u*g = A2h(%? | and that from Corollary 2.4.15 we also have

u*voly, = \F(xa) k),

For simplicity of notation, let Py denote P,yor. Note that P € L(ACH(TM) ®
(TM)©OV)). Using this, for any vy, .., v, € T, M we have
g(xp(du(vy) A -+ A du(vg—1)), du(vy)) = volr(du(vy) A -+ A du(uvg))
= (u*volp)(v1, ..., vg)
= N (%) O®) (vy, . 0p)
= Nh(Pog (1, v6-1), vk)
— )\kh(O’Q)(P(07k) (V1,0 V1), Uk)
= N2 (u*g) (Pogy (U1, -+, Up—1), Ug)
= N2 g(du(Pogy(v1, - . ., vp—1)), du(vy)).

Since du, is surjective, we get
*r(du(vr) A A du(vg-1)) = N 2du(Po g (vr, - - - v5-1))

or equivalently
« A (du) = N 2duo Py on AM YT, M). (2.4.23)

From the proof of Corollary 2.4.15, we had |(*a)(®®)| = 1. Combining this with Lemma 2.4.9
gives

Py Ph sy = 1(xa) O 7O = 70D, (2.4.24)
Composing with P(E’k) on the right of both sides of (2.4.23) and using (2.4.24) and Propo-
sition 2.2.7, since du o 7%V = du, we obtain
k-1 0.k)y _ (=D ks
* AT (du) (o (xa) DY) = ———|du|""“du.

(VE)=
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Comparing the above with (2.4.22), we see that it remains to verify that
AR (du) (-0 (%) OP)) = AR du) (-oxa).

To see this, we take any v € T, M and compute

AR (du) (v (xa) )
— AL )00 + w0 (x) O)
= A* L (du) (0O 2 (xa) OR)) (because v 10 (xa)OF) = )
— A (du) (0OY 5 (xa) O 4 510 5 (xa) BED) - (because (xa) B = 0 by Lemma 2.4.20)
— A (du) (va %) OFD (by Lemma 2.4.8)
= A" (du)(va*a) (because du is zero on vertical vectors),
concluding the claim. O

Proposition 2.4.25. We have shown that if u: (M™ h,a) — (L*, g) is a Smith submer-
sion, then

* L AR (du) (Lxa) = (—1)F du. (2.4.26)

The converse also holds. That is, if (2.4.26) holds, then w is a Smith submersion.

Proof. Let x € M. If du, = 0, which satisfies (2.4.26) at x, then u is a Smith submersion at
x. Now assume du, # 0. Let e1,..., e, be an oriented orthonormal bases of (ker(du),)*.
Note that a priori we do not know that m = k. However, we have that 1 < m < k. Let

i,j€{l,....m}.
We first observe that

A (du) (e %) = A (du) (65 %a) OFD)

M %) @R (because ¢; is already of type (0,1))

= A* L (du)(e;a (xa) M), (2.4.27)

Evaluating both sides of (2.4.26) on e;, using (2.4.27), and taking inner product with du(e;)
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we get

(=1 N2 g(dules), due;)) = g(x A (du)(ei0 () ™), du(ey))
= u*volp((e; () ®™) A ¢;)
= u*voly (e, () O A ;) — (=1)*(xa)@Pe; se;)
= u*vol, (0 + (=1)¥716;;(xa) M) (because QOFHD = 0)
= (=1)* 15 u*vol ((xa) )

= (—1)k_15ijU*VO|L(*Oé).
Note that

n—k)

u*voly (xa) voly, = h(u*voly, *a) voly, = u*voly A ¥*ac = u*voly, A (—1)’“( a=anu*voly.

We deduce that
Ne=2g(dule;), du(ej)) volpyr = a A u*voly, if i = j,
g(du(e;), du(e;)) =0 if 1 # j.
Using the above we compute

1
a A utvoly, = E)\k_2zilg(du(ei), du(e;)) volys

1
= E)\k’2 Z g(du(e;), du(e;)) voly
2y

1
= — X2 |du|?voly,
m
1
> E)\k_2|du]2vo|M
= Mvoly,.

Combining with Theorem 2.4.10 we get the desired equality, and thus u is a Smith sub-
mersion in the sense of Definition 2.4.12. m

Proposition 2.4.28. Let P € T'(T*M ® AY(TM)). Under the identification of vector
fields with 1-forms using the metric, assume that P 1is totally skew-symmetric. Then

div(AY(du)(P)) = AY(du)(div(P)).

Proof. We trivially have equality at points where du is zero. Let x € M°. Take Riemannian

?ormal coordinates a‘;, # centred at x and u(x) respectively. For simplicity of notation,
et

A= A9(du)(P) € D(T*M @ AY(TL)).
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Expressing the components of A and P in terms of these normal coordinates at the point
T, we compute

AU (A9 (du) (Py))

J
1 ety 0 o )\
- EPJ' (Aq(du) (ﬁxtl R gt

_ lptl...tq out 0 duts @ N\
TR orh oyst AR oxta Oysa
t1--tg ou’t ou’ .
= P, S (by skew-symmetry of P in ;- -t,).

From this we obtain

(div A)" = (V;A)07

ity OU™ ouva

J— . tl ..
= (V; P)j oxt Oxta
L phita 1 02uve oun o Qu Out
J & Oxdozte oxtt - Ot Ot

where the second term above is zero by symmetry in j,1, of aij‘g;ie and skew-symmetry of

P;l'"tq, by our assumption on P. But then the first term is just:

A?(du)(div(P))" s,
which completes the proof. O]

Theorem 2.4.29. Let u: (M"™ h) — (L*,g) be a Smith submersion with respect to the
calibration form a € Q" %, If da = 0, then u is k-harmonic in the sense that 7,(u) = 0.

Proof. By equation (2.2.12) and Proposition 2.4.21, we need to show that
div(* A" (du) (- L xa)) = 0.

However, *;, commutes with V. Moreover, the section -_ixa € ['(T*M @ A*Y(T*M)) is
totally skew-symmetric. Hence, by Proposition 2.4.28, it is enough to show that

div(-u*a) = 0.
But for any g € Q7 we have div(-1 ) = —d*f3, because
div( 2 B)sysgr = Vil(-2B)i)siowsg-1 = ViBisysgr = —(d*B) 51541 -

So if da = 0 then div(-u*a) = —d* x @ = 0, which concludes the proof. O
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2.5 Discussion

In this section we review analytic properties of Smith immersions, discuss examples of
Smith immersions and Smith submersions, make some remarks on the relevance to the
SYZ and GYZ conjectures of mirror symmetry involving calibrated fibrations, and present
several questions for future study.

2.5.1 Analytic results for Smith immersions

Numerous analytic results for Smith immersions were proved in Cheng-Karigiannis-Madnick
[10, Sections 4 and 5]. In that paper the authors assumed that the calibration form
a € QF(M) was associated to a vector cross product (VCP), but as we showed in Sec-
tion 2.3, this assumption was not necessary. All the analytic results used the form (2.3.5)
of the Smith immersion equation. In this section we informally review these analytic re-
sults. (Note that when k = 2 these analytic results concern J-holomorphic maps and are
classical.) See [10] for precise statements.

! Smith immersion on a punctured open ball in R*
with finite k-energy, then u extends to a C' Smith immersion across the puncture.

Removable singularities. If u is a C}!

Energy gap. There exists a “threshold energy” €y > 0 such that every Smith immersion
u: S¥ — M with k-energy less than ey is constant. (That is, any nontrivial solution

has a minimum k-energy.) This is used to show that there are only a finite number of
“bubbles”.

Compactness modulo bubbling. Let W < L be open, and let {W,,},eny an increasing
sequence of open sets exhausting W, and g, a sequence of metrics on W,, such that
gm — g in C2. on W. Let up: (Wi, [gm]) — (M, h) be a sequence of Smith immersions

with uniformly bounded k-energy.

Then there exists a Smith immersion uy: (W, glw) — (M, h) and a (possibly empty) finite
subset B = {z1,...,zy} of L such that (after passing to a subsequence) the following three
properties hold:

(&) Uy — Uy in C, on W\B uniformly on compact subsets of W\B5,

(b) as Radon measures on L, we have |du,, |*vol;, — |du|*vol, + 31N ¢;6(x;), where §(z;)
is a Dirac measure at z;, and each ¢; > %60, where ¢ is the “threshold energy”. This
says that the energy density can concentrate at points, where a minimum amount of
energy is lost.

(c) If the u,, have uniformly bounded p-energy for some p € (k, 0], then B = @. (There
is no bubbling.)

(In practice we take W = L or L = S¥ and W = S*\{p~}, where p~ is the south pole.
See [10, Remark 4.13] for details.)
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This result can be applied to a sequence u,,: L — M of Smith immersions representing the
same homology class in Hx(M), as they have a uniform k-energy bound. For each z;, by
rescaling about x; and using conformal invariance, and reapplying this result, we obtain a
“bubbled off” Smith immersion @, ;: S¥ — M. This process stops after a finite number of
iterations due to the energy gap.

No energy loss. We have lim,, .o, Ej(un) = Ex(uw) + X}, Ex(tin,;). This says that the
limiting k-energy is the sum of the k-energy of uy, plus the k-energy of each of the bubble
maps.

Zero neck length. We have uy(z;) = @y i(p~), where p~ is the south pole of S*. This
says that for m >> 0, then w,, is homotopic to the connect sum wuq#(#Us ;).

It would of course be very interesting to establish analogous analytic results for Smith
submersions. However, the conformal invariance of Smith immersions, as detailed in Re-
mark 2.3.7, was used crucially to establish the above analytic results. By contrast, Re-
mark 2.4.19 says that Smith submersions are only horizontally conformally invariant. But
perhaps this is indeed the right notion that is needed in this context. The authors plan to
investigate this question further.

2.5.2 Examples of Smith maps

In this section we discuss some examples of Smith maps.

Example 2.5.1. Let (M™, h) be a Riemannian manifold equipped with a calibration form
a € QF(M). Let t: L¥ — M™ be an immersion of an oriented manifold L* into M, and
equip L with the pullback metric g = t*h, so that ¢ is a Riemannian immersion. Suppose
that «(L) is a-calibrated, which means that ¢*« = vol,. Then ¢ is a Smith immersion with
dilation A = 1. Thus, any a-calibrated submanifold gives rise to a Smith immersion, but
the notion of Smith immersion is more general.

Indeed, if f: (L,g) — (L, g) is an orientation-preserving conformal diffeomorphism, then
u = o f is also a Smith immersion, with the same image u(L) = ¢(L), but u need not be
a Riemannian immersion. A

There are several examples of Smith submersions where the domain (M™, h) is noncompact,
given by explicit cohomogeneity one special holonomy metrics on total spaces M™ of vector
bundles over a base L¥, and equipped with a parallel calibration form a € QF(M). These
include the Bryant—Salamon examples [7] of Gy and Spin(7) manifolds, and (very likely)
also include the Stenzel examples [11] of Calabi-Yau metrics on 7%S™. The Smith submer-
sion is the projection map w: M — L, and the fibres are (n — k)-dimensional submanifolds
calibrated by *a € Q" *(M).
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In these examples, we have du # 0 everywhere on M, so M® = M. (See the discussion in
Section 2.5.3 for why we cannot expect this to happen if M is compact.) We now discuss
these examples in detail.

Example 2.5.2. Consider the spinor bundle M7 = $(S?) over the round S3. There is a
torsion-free Go-structure ¢ on M7, with dual 4-form 1) = *ip, inducing a metric h which
has holonomy G,. The projection u: (M7, h) — (S3,g) is a submersion. We claim that
the map v is a Smith submersion with respect to the calibration form a = ¢ € Q*(M).

To see this, we use the notation of [25, Section 3.1]. We have local vertical vector fields
o, (1, (2, (3 and horizontal vector fields by, by, b3. The function » > 0 is the distance from
the zero section in the fibres of M. Then it is known that for ¢y, c; > 0,k > 0 we have a
torsion-free GG structure defined by

Y = 3%(00 + clr2)u*v0|53 + 461([)1 A+ by AQy+ b3 A 93), (253)

where €; are vertical 2-forms and such that the induced metric is

3.1
h = (3%)%(00 + clrg)%u*gsa + 4(;—;) ° (co + 017“2)_%({’3 + Clz + C22 + C32)

Hence, we see that h(©2) = (3k)5 (co + ¢1r2)3u*ggs which gives u*ggs = A2h(®? for

A= (36)73(co + c1r?) 3.

0.3) But we immediately see

By Corollary 2.4.15, it remains to verify that u*volgs = A3
from (2.5.3) that

0% = 3k(cy + c1r)utvolgs = A3u*volgs,
which gives the desired equality.

Since the Go-structure is torsion-free, in particular we have that dy» = 0. Consequently,
the map u: M — S3 is 3-harmonic and the fibres are calibrated by 1. (That the fibres of
this Go-manifold are coassociative submanifolds is of course well-known.) A

Example 2.5.4. Consider the manifold M7 = A? (T*X*) of anti-self dual 2-forms over
X, where X* is either the round S* or the Fubini-Study CP?. There is a torsion-free
Gy-structure ¢ on M7, with dual 4-form 1) = x¢, inducing a metric h which has holonomy
Gy. The projection u: (M7, h) — (X%, g) is a submersion. We claim that the map u is a
Smith submersion with respect to the calibration form o = ¢ € Q3(M).

To see this, we use the notation of [26, Section 4.1]. There exist positive functions w
and v which depend only on the radial coordinate in the vertical fibres and satisfy certain
differential equations such that we have a torsion-free GGy structure given by

@ = v3voly + wvdf,
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where voly, is the volume form for the vertical part and 6 is the canonical 2-form on
A2 (T*X). The dual 4-form can be expressed as

P =0 4 22 where 0% = w* u*voly, (2.5.5)
and the metric h induced by ¢ is given by
h =w?u*gx + vigy.

Hence, we see that h(*? = \~2u*gx for A = w='. By Corollary 2.4.15, it remains to verify
that u*voly = A4 But this is immediate from (2.5.5).

Since the Go-structure is torsion-free, in particular we have that dp = 0. Consequently,
the map u: M — X* is 4-harmonic and the fibres are calibrated by ¢. (That the fibres of
this Go-manifold are associative submanifolds is of course well-known.) A

Example 2.5.6. Consider the manifold M® = §_(S*) of negative chirality spinors over
the round S*. There is a torsion-free Spin(7)-structure ® on M®, inducing a metric h which
has holonomy Spin(7). The projection w: (M3 h) — (5%, g) is a submersion. We claim
that the map w is a Smith submersion with respect to the calibration form o = ® € Q*(M).

To see this, we use the notation of [26, Section 4.2]. There exist positive functions w
and v which depend only on the radial coordinate in the vertical fibres and satisfy certain
differential equations such that we have a torsion-free Spin(7) structure given by

® = w' u*volg: + w?v?B + vivoly, (2.5.7)

where voly, is the volume form on the vertical part and [ is some (2, 2)-form. The metric
h induced by @ is given by
h = w?u*ggs + v3gy.

Hence, we see that h(*?) = A\~2u*ggs for A = w™'. By Corollary 2.4.15, it remains to verify
that u*volgs = A*®(4 But this is immediate from (2.5.7).

Since the Spin(7)-structure is torsion-free, in particular we have that d® = 0. Consequently,
the map u: M — S* is 4-harmonic and the fibres are calibrated by ®. (That the fibres of
this Spin(7)-manifold are Cayley submanifolds is of course well-known.) A

Example 2.5.8. There is an explicit cohomogeneity one Calabi-Yau metric h on the
total space of M?™ = T*(S™), called the Stenzel metric. When m = 2 this is the classical
Eguchi-Hanson metric, and when m = 3 it is the Candelas—de la Ossa conifold metric. (See
the paper of Tonel-Min-Oo [21] for a concrete simple description of these metrics.) Being
Calabi—Yau, this Riemannian manifold (M?™, h) is equipped with a holomorphic complex
volume form YT e QO (M) such that o = Re(Y) € Q™(M) is a special Lagrangian
calibration.
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Let uw: M?™ — S™ be the projection. The fibres of u are special Lagrangian submanifolds.
It seems very likely that u is a Smith submersion, so that it is horizontally conformal and an
m-harmonic map. The authors did not explicitly verify this. At least when m = 4, such a
verification should be possible using the many useful explicit formulas in Papoulias [32]. A

It would be interesting to examine if other known calibrated fibrations can be described by
Smith submersions. For example, Goldstein exhibits a special Lagrangian torus fibration on
the Borcea—Voisin manifold in [16] and other special Lagrangian fibrations in noncompact
Calabi-Yau manifolds with symmetry are discussed by Gross [17] and Goldstein [15].

Moreover, Karigiannis—Lotay [25] exhibit other coassociative fibrations on the Bryant—
Salamon Go-manifold A2 (S%), very different from the obvious one in Example 2.5.4, and
Trinca [43] similarly exhibits a nontrivial Cayley fibration on the Bryant—Salamon Spin(7)-
manifold $_(S*), very different from the obvious one in Example 2.5.6. Attempting to
verify if these fibrations can be described by a Smith submersion seems to be an interesting
but difficult problem.

2.5.3 Calibrated fibrations and the SYZ and GYZ “conjectures”

In this section we briefly discuss the potential relevance of Smith submersions to the
Strominger—Yau—Zaslow [12] “conjecture” in Calabi-Yau geometry, as well as to the anal-
ogous Gukov—Yau—Zaslow “conjecture” in G geometry. The authors are certainly not
experts on the mathematics involved here, and we know even less about the physics. Nev-
ertheless, we feel it worthwhile to make a few remarks. We put “conjecture” in quotes
in both cases, as these ideas are predominantly motivated by physics, and their precise
mathematical formulations are constantly evolving. Our brief discussion here is far from
exhaustive, and is only meant to pique the reader’s interest for further inquiry.

Roughly speaking, Strominger—Yau—Zaslow argue in [12] that one should expect (at least
for certain types of points near the boundary of the moduli space) that a compact Calabi—
Yau complex 3-fold should admit a fibration over a real 3-dimensional base, necessarily
with singular fibres. The generic (smooth) fibre should be a special Lagrangian torus.
The mathematical inspiration comes from the deformation theory of McLean [29], which
shows that a compact special Lagrangian 3-manifold L? in a Calabi-Yau 6-manifold lo-
cally smoothly deforms in a family of dimension b'(L?). One then expects to construct the
“mirror Calabi—Yau manifold” by dualizing smooth fibres and then somehow compactify-
ing.

Similarly, Gukov—Yau-Zaslow explain in [1%] that, again under certain conditions, a com-
pact torsion-free Go-manifold should admit a fibration over a 3-dimensional base, again
with singular fibres. The generic (smooth) fibre should be a coassocative submanifold
with is topologically either 7% or K3. Again, this is inspired by McLean’s result in [29]
that a compact coassociative 4-manifold L? in a torsion-free Gy-manifold locally smoothly

101



deforms in a family of dimension b2 (L*), modulo orientations.

A kew observation by Joyce [22], discussed also in [23, Chapter 9], is that special Lagrangian
fibrations of compact Calabi—Yau manifolds should not be expected to be smooth gener-
ically. Rather, Joyce provides evidence that they should be piecewise-smooth, with the
singularities of the map being related to topology change of the fibres. This suggests that
the set of critical fibres should be relatively large. Indeed, Joyce argues that singular fi-
bres should generically be of codimension one. It is reasonable to believe that analogous
statements should hold for coassociative fibrations of compact torsion-free Go-manifolds.
(Baraglia [3] gives a rigorous intricate argument proving that such coassociative fibrations
necessarily must have singular fibres.)

When the domain (M, h) of a Smith submersion is noncompact, there exist many explicit
examples of calibrated fibrations, and at least some are definitely Smith submersions, as
discussed in Section 2.5.2. However, if (M, h) is compact, then we expect that there must

necessarily exist singular fibres. It would be interesting to see this directly by studying the
PDE (2.4.13) satisfied by a Smith submersion.

More generally, it is crucially important to understand the size of the critical set
M= MM ={xeM:du, =0}

of a Smith submersion. Similarly, the critical set L¢ = L\L° = {z € L : du, = 0} of a
Smith immersion is still very mysterious. In the classical case, when (M, h) is an almost
Kéhler manifold equipped with the Kéhler calibration form a = w € Q*(M), then a Smith
immersion u: (L% g) — (M, h) with respect to w is a J-holomorphic map. In this case,
when L is compact it is known, by methods of unique continuation, that the critical set L¢
is a finite set of points. (See McDuff-Salamon [28, Sections 2.3-2.4] for details.) It is an
important open problem to see if such methods can in any way be effectively applied to
general Smith immersions and Smith submersions. Of course, we certainly do not expect
the critical sets to be of dimension zero in general.

2.5.4 Questions for future study

Many questions arise naturally from our study, which are somewhat speculative. Some of
these are:

Deformation theory of Smith maps. What is the deformation theory of a Smith map
(immersion or submersion)? From Example 2.5.1, any calibrated submanifold gives rise
to a Smith immersion. The work of McLean [29] studies the deformation theory of (com-
pact) calibrated submanifolds. Interestingly, there are two kinds of behaviours. Special
Lagrangian and coassociative submanifolds deform smoothly, while complex, associative,
and Cayley submanifolds in general have obstructed deformations. (The second class are
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essentially those calibrated submanifolds whose calibration forms are associated to vector
cross products, except for higher dimensional complex submanifolds.)

However, at first glance, the Smith submersion equation does not seem to see the difference
between those calibrations which have smooth deformation theories and those which are
obstructed (respectively called branes and instantons by Leung—Lee [27]). Thus, it is
important to reconcile the distinction in McLean’s deformation theories with the existence
theory of Smith submersions. For example, if the domain (M, h) is compact, so that the
smooth fibres of a Smith submersion are compact calibrated submanifolds, and if a is an
associative or Cayley calibration, then we should not in general expect existence of Smith
submersions with respect to «, because associative and Cayley submanifolds are in general
obstructed. (Of course, examples do occur, such as the obvious projections from a 7-torus
or 8-torus with their standard Gy or Spin(7)-structures.)

It would be interesting to see if the deformation theory of Smith immersions is “better
behaved”. Note that we aways have the freedom of precomposing by an orientation-
preserving conformal diffeomorphism. Such deformations should be considered in some
sense trivial. We are interested in deformations of Smith immersions which are transverse
to such trivial deformations. For example, start with a (compact) associative or Cayley
submanifold, and describe it by a Smith immersion. Can we always deform it (nontrivially)
as a Smith immersion? This would give a class of calibrated submanifolds with a particular
type of allowed singularities which nevertheless have smooth deformation spaces.

Stability. We have seen from the energy inequalities that Smith immersions and Smith
submersions are global minimizers of the k-energy in a particular class of maps. Suppose
that u is a k-harmonic map, which is stable in the sense that the second variation of
the k-energy at u is nonnegative, so u is a local minimum of the k-energy. Under what
additional assumptions on the geometry of the source and target could we ensure that
such a stable k-harmonic map is necessarily a Smith map? The classical example of such
a stability theorem is the demonstration by Siu—Yau [39] that a stable harmonic map from
S? = CP! into a compact Kéahler manifold (M, h,w) with positive holomorphic bisectional
curvature is necessarily t+-holomorphic. Generalizing such a result should involve finding
analogues of “positive holomorphic bisectional curvature” in Riemannian manifolds with
special holonomy.

Constructing Smith maps via flows. If a general stability theorem as described in the
previous paragraph could be established, then one could use this to attempt to construct
examples of Smith immersions or Smith submersions by running the k-harmonic map heat
flow. This is the negative gradient flow of the k-energy. One would have to show that
(under certain assumptions on the geometries of the source and target) that the flow exists
for all time and converges to a k-harmonic map. Then one would hope to argue that the
limit must in fact be a Smith map.
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