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Abstract

The thesis consists of two chapters. The first chapter is the paper named “Betti numbers of
nearly G2 and nearly Kähler 6-manifolds with Weyl curvature bounds” which is now in the
journal Geometriae Dedicata. Here we use the Weitzenböck formulas to get information
about the Betti numbers of compact nearly G2 and compact nearly Kähler 6-manifolds.
First, we establish estimates on two curvature-type self adjoint operators on particular
spaces assuming bounds on the sectional curvature. Then using the Weitzenböck formulas
on harmonic forms, we get results of the form: if certain lower bounds hold for these
curvature operators then certain Betti numbers are zero. Finally, we combine both steps
above to get sufficient conditions of vanishing of certain Betti numbers based on the bounds
on the sectional curvature.
The second chapter is the paper written with my supervisor Spiro Karigiannis named
“A special class of k-harmonic maps inducing calibrated fibrations”, to appear in the
journal Mathematical Research Letters. Here we consider two special classes of k-harmonic
maps between Riemannian manifolds which are related to calibrated geometry, satisfying
a first order fully nonlinear PDE. The first is a special type of weakly conformal map
u : pLk, gq Ñ pMn, hq where k ď n and α is a calibration k-form on M . Away from the
critical set, the image is an α-calibrated submanifold of M . These were previously studied
by Cheng–Karigiannis–Madnick when α was associated to a vector cross product, but we
clarify that such a restriction is unnecessary. The second, which is new, is a special type of
weakly horizontally conformal map u : pMn, hq Ñ pLk, gq where n ě k and α is a calibration
pn ´ kq-form on M . Away from the critical set, the fibres u´1tupxqu are α-calibrated
submanifolds of M . We also review some previously established analytic results for the
first class; we exhibit some explicit noncompact examples of the second class, where pM,hq

are the Bryant–Salamon manifolds with exceptional holonomy; we remark on the relevance
of this new PDE to the Strominger–Yau–Zaslow conjecture for mirror symmetry in terms
of special Lagrangian fibrations and to the G2 version by Gukov–Yau–Zaslow in terms of
coassociative fibrations; and we present several open questions for future study.
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Preliminaries

Both chapters of this thesis are parts of Riemannian geometry, however they are only
tangentially related to each other. They both involve studies of special structures on
Riemannian manifolds. Hence, we keep motivations of each topic separate, and in this
section we just introduce common notation as to not repeat it twice. However, each
chapter will also have its own small notation section.

All manifolds are oriented Riemannian manifolds. For the first chapter we crucially need
the assumption of compactness, however, not for the second chapter. As usual a superscript
on a manifold such as Mn means dimM “ n.
We often use the Riemannian metric (via the musical isomorphism) to identify vector
fields and 1-forms. By T k we denote k-tensors, by Sk the symmetric k-tensors, by S2

0 the
traceless symmetric 2-tensors, by Ωk the k-forms, and ‹ for the Hodge star operator.
We also define the wedge product without any constants, meaning that for α, β P Ω1 we
set

α ^ β :“ α b β ´ β b α,

and extend to the higher order forms to preserve associativity.
The inner product on k-forms we define as follows. For α, β P Ωk:

xα, βy “
1

k!
αi1...ikβi1...ik ,

in terms of a local orthonormal frame.
We write div : T m Ñ T m´1 for the Riemannian divergence, given in terms of a local
orthonormal frame by

pdivAqj1¨¨¨jm´1 “ ∇iAij1¨¨¨jm´1 .

Finally, for σ P Ωk and h P T 2, we define h ˛ σ P Ωk as:

ph ˛ σqi1¨¨¨ik :“ hi1pσpi2¨¨¨ik ` hi2pσi1pi3¨¨¨ik ` ¨ ¨ ¨ ` hikpσi1¨¨¨ik´1p.
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Chapter 1

Betti numbers of nearly G2 and
nearly Kähler 6-manifolds with Weyl
curvature bounds

1.1 Introduction

1.1.1 Motivation

There is a long history of using Bochner-Weitzenböck technique to conclude vanishing
results of Betti numbers of compact Riemannian manifolds assuming curvature bounds. In
this chapter we establish several results, particulary for compact nearly G2 and compact
nearly Kähler 6-manifolds. We show that certain bounds on the sectional curvature imply
vanishing of the second or the third Betti numbers.
Nearly G2 and nearly Kähler 6-manifolds are spin, positive Einstein manifolds, which
by Myers’s theorem implies that they have finite fundamental group and hence b1 “ 0.
They are the only possible manifolds whose metric cones have Spinp7q and G2 holonomy,
respectively. These, in turn, are useful from the physics perspective as they provide local
models for the simplest type of interesting singularities. Hence, studying the topology of
compact nearly G2 and compact nearly Kähler 6-manifolds might lead to new insights.
See [36] and [37] for results relating Betti numbers and linear stability.

1.1.2 Organization of the chapter and main results

Following Bourguignon-Karcher [6], we consider two curvature-type operators R̂ P S2pΩ2q, R̊ P

S2pS2q and the usual sectional curvature R̄ coming from the Riemannian curvature. We
prove the following theorems that give us bounds on these operators in terms of the bounds

1



on the sectional curvature.
Here is a summary of the main results. Throughout, ra ˘ bs means ra ´ b, a ` bs.
First, we reprove the following result from [6].
Theorem 1.2.12 Assume δ ď R̄ ď ∆. Then the eigenvalues of R̂ on Ω2 lie in the following
interval:

„

´p∆ ` δq ˘
4tn

2
u ´ 1

3
p∆ ´ δq

ȷ

.

Then, for nearly G2 or nearly Kähler 6-manifolds, we improve the previous result on certain
subspaces: Corollary 1.2.14 Assume δ ď R̄ ď ∆. Moreover let M be a nearly G2 or a
nearly Kähler 6-manifold. Then on Ω2

14 or Ω2
8, respectively, the eigenvalues of R̂ lie in the

following interval:
„

´p∆ ` δq ˘
7

3
p∆ ´ δq

ȷ

.

Next, we again reprove a theorem from [6] for R̊ in the general setting:
Corollary 1.2.16 Assume δ ď R̄ ď ∆. Then all but one of the eigenvalues of R̊ on S2 lie
in the following interval:

„

1

2

ˆ

p∆ ` δq ˘ pn ´ 1qp∆ ´ δq

˙ȷ

,

and the other one lies in the interval:

r´pn ´ 1q∆,´pn ´ 1qδs .

Following, we slightly improve the estimates for R̊ in the Einstein case:
Theorem 1.2.17 Suppose M is Einstein with Einstein constant k. Assume δ ď R̄ ď ∆.
Then the eigenvalues of R̊ on S2

0 lie in the intersection of the following intervals:

r´k ` nδ, k ´ pn ´ 2qδs, rk ´ pn ´ 2q∆,´k ` n∆s.

Next, for the nearly Kähler 6-manifolds, we can talk about eigenvalues of R̊ on S2
`0 Ď S2

(see Remarks 1.5.30 and 1.5.49). Hence, we are able to get a better estimate in this case:
Theorem 1.2.19 Assume δ ď R̄ ď ∆. Assume we are in the setting of a nearly Kähler
6-manifold. Then the eigenvalues of R̊ on S2

`0 (see Remark 1.5.30 for definition) lie in the
following interval:

„

1

2

ˆ

p∆ ` δq ˘ 3p∆ ´ δq

˙ȷ

“ r2δ ´ ∆, 2∆ ´ δs.

Finally, we will see that again, on a nearly Kähler 6-manifold, we have a specific relationship
between R̂ on Ω2

8 and R̊ on S2
`0, see Remark 1.2.22. This allows us to get estimates for

R̂ on Ω2
8 in terms of the ones for R̊ on S2

`0 and vice versa. That is we can combine
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Corollary 1.2.14 and Theorem 1.2.19 to get the following two statements:
Theorem 1.2.15 Let M be a nearly Kähler 6-manifold. Let δ ď R̄ ď ∆. Then the
eigenvalues of R̂ on Ω2

8 lie in the intersection of the following intervals:

r´4 ` p∆ ` δq ˘ 3p∆ ´ δqs ,

„

´p∆ ` δq ˘
7

3
p∆ ´ δq

ȷ

.

Theorem 1.2.25 Let M be a nearly Kähler 6-manifold. Let δ ď R̄ ď ∆. Then the
eigenvalues of R̊ on S2

`0 lie in the intersection of the following intervals:

„

1

2

ˆ

p∆ ` δq ˘ 3p∆ ´ δq

˙ȷ

,

„

2 `
1

2

ˆ

´ p∆ ` δq ˘
7

3
p∆ ´ δq

˙ȷ

.

In the next section, where we introduce the Weitzenböck formulas (which relates the Lapla-
cian ∆ and the rough Laplacian (or Bochner Laplacian) ∇˚∇ in terms of the Riemannian
and Ricci curvatures) for 2-forms and 3-forms on nearly G2 or nearly Kähler 6-manifolds,
the results are not new and can be found in the literature. However, we aim to keep the
chapter as self-contained as possible, so we include all the proofs, but we cite the results
when appropriate.
The main idea is that for nearly Kähler and nearly G2 manifolds, harmonic 2-forms and
harmonic 3-forms are of a special algebraic type. In the case of 2-forms this means that we
need to consider the map R̂ (or Ŵ , where W is the Weyl tensor) only on certain subspaces
of Ω2.
Moreover, when we apply the Weitzenböck formulas to harmonic forms to obtain suffi-
cient conditions for certain Betti numbers to vanish in terms of lower bounds of Ŵ and
W̊ (which is equivalent to some lower bounds on R̄ and R̊), we get better estimates by
considering the Weitzenböck formulas written in the intermediate forms. For example,
consider (1.5.61):

∆β “ ∇˚∇β ` 8β ` Ŵβ, for any β P Ω2.

Assuming β “ h ˛ ω (see Section 1.5.2) is harmonic for some h P S2
`0, we can rewrite this

as:
0 “ ∇˚∇β ` p8h ` 2W̊hq ˛ ω “ p∇˚∇h ´ 2hq ` p8h ` 2W̊hq ˛ ω,

which is Proposition 1.5.62. So, even though the last part is a well-known formula, we
actually get better sufficient conditions for vanishing of b2 in terms of the lower bound of
W̊ by using the intermediate step above. Similar things happen in other cases as well.
We summarize the results we obtain in the folowing table:

3



Sufficient conditions for vanishing of Betti numbers
Manifold type b2 “ 0 b3 “ 0

Compact nearly
G2

S2pΩ2
14q Q Ŵ ě ´

5τ20
8

(1.4.7) S2pS2
0 q Q W̊ ě ´

3τ20
8

(1.4.14), or

S2pΩ2
14q Q Ŵ ě ´

τ20
4
(1.4.14)

Compact nearly
Kähler

S2pΩ2
8q Q Ŵ ě ´8 (1.5.63), or S2pS2

´q Q W̊ ě ´9
2
(1.5.70), or

of dim 6 S2pS2
`0q Q W̊ ě ´4 (1.5.63) S2pΩ2

8q Q Ŵ ě ´3 (1.5.70)

We also use the fact that there are no parallel non-zero 2-forms and no parallel non-zero
traceless symmetric 2-tensors. This is true because the restricted holonomy is exactly
SOpnq. One can see this by observing that nearly G2 and nearly Kähler manifolds admit
a Killing spinor which implies that they are not locally reducible and nonsymmetric (the
arguments can be found in [4]), hence the result follows by Berger’s classification. As corol-
laries, we obtain sufficient conditions for vanishing of the Betti numbers from inequalities
δ ď R̄ ď ∆, which we again summarize in the following table:

Sufficient conditions for vanishing of Betti numbers
Manifold type b2 “ 0 b3 “ 0

Compact nearly
G2

´p∆ ` δq ´ 7
3
p∆ ´ δq ě ´

3τ20
4

(1.4.8) ∆ ď
11τ20
80

(1.4.15), or

δ ě
τ20
112

(1.4.15)

Compact nearly
Kähler

´p∆` δq ´ 7
3
p∆´ δq ě ´10 (1.5.64), or δ ě 1

4
(1.5.71), or

of dim 6 p∆ ` δq ´ 3p∆ ´ δq ě ´6 (1.5.64) ∆ ď 17
8
(1.5.71)

Finally, for both nearly G2 and nearly Kähler cases, we check our results on one example of
a compact normal homogeneous manifold. The corollaries discussed above may not appear
to be that useful for the known examples, as calculating the bounds for R̄ is a harder
process than just getting the bounds for R̂ and R̊. However, our theorems are not limited
to just these known examples, hence are interesting on their own.

Since the work of this chapter is mostly algebraic in nature, it is possible it can be adapted
to other settings. For this, we would need an Einstein metric, a decomposition of forms
which is preserved by R̂ and R̊ and harmonic forms to be of special algebraic type.
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1.1.3 Notation

Throughout this paper pMn, gq is a compact connected Riemannian manifold.
We define the Kulkarni–Nomizu product as follows. For s, t P T 2 we define s ⃝̂ t P T 4 to
be:

ps ⃝̂ tqijkl :“ siltjk ` sjktil ´ siktjl ´ sjltik. (1.1.1)

To simplify the interval notation, by ra ˘ bs, we mean ra ´ b, a ` bs, for a, b P R, b ą 0.
Finally, whenever we refer to δ ď ∆, these are any real numbers.

Remark 1.1.2. Let Riem be the Riemann curvature tensor. We will write Rijkl for
Riemijkl, Rij for Ricij :“ Rkijlg

kl and R :“ Ricij g
ij for the scalar curvature when there is

no confusion.
Also we define the traceless Ricci tensor:

Ric0 :“ Ric´
1

n
Rg.

Then on a general Riemannian manifold of dimension n ě 3 we have the following orthog-
onal decomposition of Riem (see [5]). Define

traceless Ricci part: E :“
1

n ´ 2
Ric0 ⃝̂g,

scalar part: S :“
R

2npn ´ 1q
g ⃝̂ g,

Weyl part: W :“ Riem´E ´ S.

Then we have:
Riem “ S ` E ` W.

Also, we say that pMn, gq is Einstein with Einstein constant k if Ric “ kg. In this case the
scalar curvature is R “ nk and Ric0 “ 0, thus E “ 0. So, Riem “ S ` W, for an Einstein
metric.
We also have, by construction, that Wkijlgkl “ 0.

1.2 Curvature estimates

Throughout this section, we let pM, gq be a Riemannian manifold. First, we define a notion
of a curvature tensor A. Then following Bourguignon-Karcher [6] we introduce two self-
adjoint operators Â and Å and in Sections 1.2.1 and 1.2.2 we obtain multiple results for
bounds of Ŵ and W̊ in terms of bounds on the sectional curvature R̂, where W is the
Weyl tensor. In particular, we strengthen some of the results from [6] in the nearly G2 and
nearly Kähler of dimension 6 settings.

5



Definition 1.2.1. We say an element A P T 4 is an algebraic curvature tensor, if the
following properties hold:

• Aijkl “ ´Ajikl “ ´Aijlk “ Aklij.

• Aijkl ` Akijl ` Ajkil “ 0 (Bianchi identity).

Let R be the set of algebraic curvature tensors. Note that R is a module over C8. ▲

Remark 1.2.2. If s, t P S2, then s ⃝̂ t P R. This follows directly from the definition of
⃝̂ in (1.1.1). Hence, it follows from Remark 1.1.2 that W is also a curvature tensor.

Definition 1.2.3. Let A P R. Following Bourguignon-Karcher [6], we define

Â P S2
pΩ2

q as pÂβqij “ Aijklβkl, for β P Ω2.

Å P S2
pS2

q by pÅhqij “ Akiljhkl, by h P S2,

Ā by ĀpX ^ Y q “
ApX, Y, Y,Xq

}X ^ Y }2
, for linearly independent X, Y P ΓpTMq.

In particular, in an orthonormal frame: Āpei ^ ejq “ Aijji, for i ‰ j (with no sum over
indices). We also call Ā the sectional curvature of A, it is a smooth function on the space
of 2-planes on M . ▲

For the sake of completeness, we show that indeed, Â P S2pΩ2q and Å P S2pS2q.
Let β, γ P Ω2. Then:

pÂβqij “ Aijklβkl “ ´Ajiklβkl “ ´pÂβqji.

xÂβ, γy “
1

2
Aijklβklγij “

1

2
βklAklijγij “ xβ, Âγy.

Now, let h, s P S2. Then:

pÅhqij “ Akiljhkl “ Aljkihlk “ pÅhqji.

xÅh, sy “ Akiljhklsij “ hklAljkisij “ hlkAjliksji “ xh, Åsy.

Remark 1.2.4. We can extend the map Â to any k-form for k ą 2 as follows: for β P Ωk

we define Âβ P Ω2
Â

Ωk´2 as

pÂβqi1...ik´2
:“ Ai1i2abβabi3...ik´2

,

that is, we just fix the last k´ 2 indices and think of β as a 2-form in the first two indices.
Also, note that Wkijlgkl “ 0 implies that for any h P S2, we have W̊h P S2

0 .

From now on we will also use R, R̂, R̊, R̄ instead of Riem, ˆRiem, etc., which should be clear
from the context, and similarly for W .

6



Lemma 1.2.5. The following identities hold:

• g⃝̂̄g “ 2.

• g⃝̂̂g “ ´4 Id .

• g⃝̂̊g “ 2 Id on S2
0 ,

where by g⃝̂̄g we mean that we apply the¯operator to g ⃝̂ g P R. Similarly, for the g⃝̂̂g
and g⃝̂̊g.

Proof. For any X, Y P ΓpTMq, we have:

pg⃝̂̄gqpX ^ Y q “
pg⃝̂gqpX, Y, Y,Xq

}X ^ Y }2

“
2}X}2}Y }2 ´ 2xX, Y y2

}X ^ Y }2

“ 2.

Next, let β P Ω2 and h P S2
0 . Then in an orthonormal frame:

p ˆpg ⃝̂ gqβqij “ pg ⃝̂ gqijklβkl

“2pgilgjk ´ gikgjlqβkl

“2pβji ´ βijq

“ ´ 4βij,

and

p ˚pg ⃝̂ gqhqjl “ pg ⃝̂ gqijklhik

“2pgilgjk ´ gikgjlqhik

“2phlj ´ trphqgjlq

“2hjl.

giving us the required results.

In order to simplify the proofs of the following theorems we make the following definition:

Definition 1.2.6. Assume that:
δ ď R̄ ď ∆,

where δ,∆ are any real constants. This means that for allX, Y P ΓpTMq with }X^Y }2 “ 1,
we have δ ď R̄pX ^ Y q ď ∆.
Define

R0 :“ R ´
δ ` ∆

4
g ⃝̂ g.

7



Now, by Lemma 1.2.5, R̄0 “ R̄ ´ δ`∆
2

, so that

|R̄0| ď
∆ ´ δ

2
. (1.2.7)

Note that R0 P R, because both R, g ⃝̂ g P R. ▲

Next, we note that in the Einstein case, Ŵ and R̂ differ by a constant multiple of the
identity. The same holds for W̊ and R̊ on S2

0 (the constant is not the same though).

Lemma 1.2.8. Assume M is Einstein with Einstein constant k. Then

Ŵ “ R̂ `
2k

n ´ 1
Id,

W̊ “ R̊ ´
k

n ´ 1
Id, on S2

0 .

Proof. By Remark 1.1.2, W “ R ´ S. Using Lemma 1.2.5, we have

Ŝ “
R

2npn ´ 1q
g⃝̂̂g “ ´

nk

2npn ´ 1q
4 Id “ ´

2k

n ´ 1
Id .

Similarly on S2
0 we have

S̊ “
R

2npn ´ 1q
g⃝̂̊g “

nk

2npn ´ 1q
2 Id “

k

n ´ 1
Id,

hence, the results follow.

Finally, we have an observation about the a priori values of δ,∆ in the Einstein case.

Remark 1.2.9. Assume pMn, gq is Einstein with Einstein constant k. Let δ ď R̄ ď ∆.
Then:

δ ď
k

n ´ 1
ď ∆.

Proof. We compute

nk “ R “

n
ÿ

i“1

Rii “

n
ÿ

i,j“1

Rijji “
ÿ

i‰j

R̄pei ^ ejq ď npn ´ 1q∆,

as when i “ j, Rijji “ 0. So, k ď pn ´ 1q∆. The other inequality is done similarly.
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1.2.1 Estimates for R̂

In this section we investigate what sectional curvature bounds tell us about the bounds of
R̂. Since in the Einstein case, R̂ and Ŵ differ by a constant multiple of the identity map,
one can use the result above to get bounds for Ŵ .
First, we prove a lemma which gives us bounds for R0 in terms of bounds of R̄. Note that
one can similarly obtain bounds for R itself, but we do not need this.

Lemma 1.2.10. Assume δ ď R̄ ď ∆. Let X, Y, Z,W P TM be unit length. Then
|R0pX, Y, Z,W q| ď 2

3
p∆ ´ δq.

Proof. This result is Lemma 3.7 in [6], but we provide all the details.
Without loss of generality, assume X ‰ ˘W and Y ‰ ˘Z. Otherwise, swap Z and W . If
even after swapping, that is not achieved, it means, Z and W are multiples of each other,
so R0pX, Y, Z,W q “ 0.
We claim that

6R0pX, Y, Z,W q “R0pX, Y ` Z, Y ` Z,W q ´ R0pY,X ` Z,X ` Z,W q

´ R0pX, Y ´ Z, Y ´ Z,W q ` R0pY,X ´ Z,X ´ Z,W q.
(1.2.11)

Expanding the RHS we get:

R0pX, Y, Y,W q ` R0pX,Z, Z,W q ` R0pX, Y, Z,W q ` R0pX,Z, Y,W q

´ R0pY,X,X,W q ´ R0pY, Z, Z,W q ´ R0pY,X,Z,W q ´ R0pY, Z,X,W q

´ R0pX, Y, Y,W q ´ R0pX,Z, Z,W q ` R0pX, Y, Z,W q ` R0pX,Z, Y,W q

` R0pY,X,X,W q ` R0pY, Z, Z,W q ´ R0pY,X,Z,W q ´ R0pY, Z,X,W q

“4R0pX, Y, Z,W q ´ 2
´

R0pZ,X, Y,W q ` R0pY, Z,X,W q

¯

“6R0pX, Y, Z,W q,

as claimed. Now, consider one of the terms R0pX, Y ` Z, Y ` Z,W q:

R0pX, Y ` Z, Y ` Z,W q

“
1

4

´

R0pX ` W,Y ` Z, Y ` Z,X ` W q ´ R0pX ´ W,Y ` Z, Y ` Z,X ´ W q

¯

“
}Y ` Z}2

4

´

}X ` W }
2R0p

X ` W

}X ` W }
,
Y ` Z

}Y ` Z}
,
Y ` Z

}Y ` Z}
,
X ` W

}X ` W }
q

´ }X ´ W }
2R0p

X ´ W

}X ´ W }
,
Y ` Z

}Y ` Z}
,
Y ` Z

}Y ` Z}
,
X ´ W

}X ´ W }
q

¯

.

Now, note that for unit length vectors S, T we have:

|R0pS, T, T, Sq| “ |R̄0pS, T q|p}S}
2
}T }

2
´ xS, T y

2
q ď |R̄0pS ^ T q|.

9



Thus:

|R0pX, Y ` Z, Y ` Z,W q| ď
}Y ` Z}2

4

´

}X ` W }
2
|R̄0p

X ` W

}X ` W }
^

Y ` Z

}Y ` Z}
q|

` }X ´ W }
2
|R̄0p

X ´ W

}X ´ W }
^

Y ` Z

}Y ` Z}
q|

¯

ď
}Y ` Z}2

4
p}X ` W }

2
` }X ´ W }

2
q
∆ ´ δ

2
(by (1.2.7))

“ }Y ` Z}
2∆ ´ δ

2
.

Hence, applying the same inequalities for the other terms, equation (1.2.11) becomes:

6|R0pX, Y, Z,W q| ď p}Y ` Z}
2

` }X ` Z}
2

` }Y ´ Z}
2

` }X ´ Z}
2
q
∆ ´ δ

2
“ 4p∆ ´ δq,

which yields the desired result.

We are ready to get to the main theorem of this section. The first part applies to any
manifold, however on certain subspaces of manifolds with G2 or SUp3q-structure, we can
improve the result.

Theorem 1.2.12. Assume δ ď R̄ ď ∆. Then the eigenvalues of R̂ lie in the following
interval:

„

´p∆ ` δq ˘
4tn

2
u ´ 1

3
p∆ ´ δq

ȷ

.

Proof. Assume r̂ is an eigenvalue of R̂ with 0 ‰ β P Ω2 the corresponding unit eigenvector.
Note that R̂0 “ R̂ ` p∆ ` δq Id, by Remark 1.2.5 and Definition 1.2.6. So, β is also an
eigenvector for R̂0 with the eigenvalue r̂0 “ r̂ ` pδ ` ∆q.
Assume β is of rank 2p, so there exists an orthonormal basis te1, . . . , enu such that β “

10



p
ÿ

i“1

βiei ^ eī, where ī “ i ` p. Then we have

r̂0βj “ pr̂0βqjj̄

“ pR̂0βqjj̄

“

p
ÿ

i“1

βipR̂0pei ^ eīqqjj̄

“

p
ÿ

i“1

βipR0qpljj̄pei ^ eīqpl

“

p
ÿ

i“1

βipR0qpljj̄pδipδīl ´ δilδīpq

“ 2
p

ÿ

i“1

βipR0qīijj̄.

Now, take |βj| ‰ 0 maximal to obtain from the above that

|r̂0| ď 2
p

ÿ

i“1

ˇ

ˇ

ˇ

βi
βj

ˇ

ˇ

ˇ
|pR0qīijj̄|

“ 2
ÿ

i‰j

ˇ

ˇ

βi
βj

ˇ

ˇ|pR0qīijj̄| ` 2|pR̄0qpej ^ ej̄q| (1.2.13)

ď 2pp ´ 1q
2

3
p∆ ´ δq ` 2

∆ ´ δ

2
(by Lemma 1.2.10 and (1.2.7))

“
4p ´ 1

3
p∆ ´ δq

ď
4tn

2
u ´ 1

3
p∆ ´ δq.

Recalling that r̂0 “ r̂ ` pδ ` ∆q, we get the required result.

Adding onto the work of Bourguignon-Karcher [6], the previous theorem can be improved
for nearly G2 or nearly Kähler 6-manifolds on certain subspaces.

Corollary 1.2.14. In the nearly G2 case on Ω2
14 or in the nearly Kähler case on Ω2

8 the
eigenvalues of R̂ lie in the following interval:

„

´p∆ ` δq ˘
7

3
p∆ ´ δq

ȷ

.

See Sections 1.4.1 and 1.5.1 for the descriptions of these manifolds and subspaces. Note
that just the presence of a G2 or an SUp3q structure is not enough, as we need R̂ to preserve

11



those subspaces.
Note that the previous Theorem 1.2.12, only would have given us 11

3
instead of 7

3
.

Proof. For both the G2-structure case on Ω2
14 or for the SUp3q-structure case on Ω2

8, if

we assume β is of rank 2p “ 2, 4, 6, then there exist canonical forms β “

p
ÿ

i“1

βiei ^ eī,

where ī “ i` p, such that
k

ÿ

i“1

βi “ 0, for some orthonormal basis te1, . . . enu (in the case of

G2-structures, see [9], and in the case of SUp3q-structure, this follows because Λ2
8 – sup3q).

Taking |βj| ‰ 0 maximal forces the other βi’s, of which there are at most two, to be of the

same sign, meaning that |βj| “
ÿ

i‰j

|βi|. Thus, continuing from (1.2.13), we can improve the

previous estimate to:

|r̂0| ď 2
ÿ

i‰j

ˇ

ˇ

βi
βj

ˇ

ˇ|pR0qīijj̄| ` 2|pR̄0qpej ^ ej̄q|

ď 2
2

3
p∆ ´ δq ` 2

∆ ´ δ

2
(by Lemma 1.2.10 and (1.2.7))

“
7

3
p∆ ´ δq.

which is enough to conclude the result.

We will see that in the nearly Kähler case, the operators Ŵ and W̊ are closely related on
certain subspaces. See Remark 1.2.22. Hence, we summarize the estimates for R̂ on Ω2

8 in
the following Corollary:

Corollary 1.2.15. Let M be a nearly Kähler 6-manifold. Let δ ď R̄ ď ∆. Then the
eigenvalues of R̂ on Ω2

8 lie in the intersection of the following intervals:

r´4 ` p∆ ` δq ˘ 3p∆ ´ δqs ,

„

´p∆ ` δq ˘
7

3
p∆ ´ δq

ȷ

.

Proof. This follows from Remark 1.2.22.

1.2.2 Estimates for R̊

Note that when M is Einstein, R̊, W̊ preserve S2
0 . This is because W̊h P S2

0 for any h P S,
by the properties of the Weyl tensor, and since R̊ and W̊ differ by a constant on S2

0 , we
get the required observation.

First, we prove a therorem that gives us bounds for R̊ on S2 in terms of bounds of R̄.
Next, we assume that M is Einstein which allows us to improve the result on S2

0 .
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Theorem 1.2.16. Assume δ ď R̄ ď ∆. Then all but one of the eigenvalues of R̊ on S2 lie
in the following interval:

„

1

2

ˆ

p∆ ` δq ˘ pn ´ 1qp∆ ´ δq

˙ȷ

,

and the other one lies in the interval:

r´pn ´ 1q∆,´pn ´ 1qδs .

Proof. On S2
0 , R̊ “ R̊0 ` δ`∆

4
g⃝̂̊g “ R̊0 ` δ`∆

2
Id, by Lemma 1.2.5 and Definition 1.2.6.

Recall that by Definition 1.2.6 we have that R̊ “ R̊0 ` δ`∆
4
g⃝̂̊g.

First, we show that |R̊0| ď n´1
2

p∆´δq: Let 0 ‰ h P S2
0 be a unit eigenvector of R̊0 with the

eigenvalue r̊0. Assume h is of rank p for some 1 ď p ď n. Then there exists an orthonormal

basis te1, . . . , enu such that h “

p
ÿ

i“1

hiei b ei. Thus:

r̊0hj “ pR̊0hqjj

“ pR0qmjljhml

“ pR0qmjljhmδml

“
ÿ

m

pR0qmjmjhm.

Take |hj| ‰ 0 maximal. We obtain from the above that:

|̊r0| ď
ÿ

m

ˇ

ˇ

ˇ

hm
hj

ˇ

ˇ

ˇ
|pR0qmjmj|

ď pp ´ 1q|R̄0|

ď pn ´ 1q
∆ ´ δ

2
,

yielding the required result.
Next, we investigate the eigenvalues of R̊´R̊0 “ δ`∆

4
g⃝̂̊g. It is easy to check that pg⃝̂̊gqg “

2p1 ´ nqg, and we know that g⃝̂̊g “ 2 Id on S2
0 , by Lemma 1.2.5.

Hence, the result follows from the Weyl’s inequality for eigenvalues applied to R̊ “ R̊0 `

pR̊ ´ R̊0q.

Theorem 1.2.17. Suppose M is Einstein with Einstein constant k. Assume δ ď R̄ ď ∆.
Then the eigenvalues of R̊ on S2

0 lie in the intersection of the following intervals:

r´k ` nδ, k ´ pn ´ 2qδs, rk ´ pn ´ 2q∆,´k ` n∆s.
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Proof. For simplicity, introduce R
1

:“ R ´ δ
2
g ⃝̂ g. Then R̄

1

“ R̄ ´ δ and R̊
1

“ R̊ ´ δ Id,

by Remark 1.2.5. Hence, R̄
1

ě 0. By R̊1 we will mean˚applied to R1, and similarly for R̄1.
Let 0 ‰ h P S2

0 be a unit eigenvector of R̊ with the eigenvalue r̊. Note that h is also an
eigenvector of R̊

1

with the eigenvalue r̊1 “ r̊´ δ. Assume h is of rank p for some 1 ď p ď n.

Then there exists an orthonormal basis te1, . . . , enu such that h “

p
ÿ

i“1

hiei b ei. Thus:

r̊1hj “ pR̊1hqjj

“ pR1
qmjljhml

“ pR1
qmjljhmδml

“

p
ÿ

m“1

pR1
qmjmjhm

“ ´

p
ÿ

m“1

pR̄1
qmjhm.

Take |hj| ‰ 0 maximal. By replacing h by ´h, if necessary, assume that hj ą 0. Note that
now for all m, ´1 ď hm

hj
ď 1. Then since R̄

1

ě 0, we have:

´r̊1
“

p
ÿ

m“1

hm
hj
R̄1

pem ^ ejq

ď

n
ÿ

m“1

R̄1
pem ^ ejq

“

n
ÿ

m“1

pR̄ ´ δqpem ^ ejq

“

n
ÿ

m“1

R̄pem ^ ejq ´ pn ´ 1qδ.

Finally, note that
n

ÿ

m“1

pR̄qmj “

n
ÿ

m“1

Rmjjm “ Rjj “ kgjj “ k (where the j was fixed.)

Hence,
´p̊r ´ δq “ ´r̊1

ď k ´ pn ´ 1qδ,

which gives the required
r̊ ě ´k ` nδ.
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However, (this was not present in the Bourguignon-Karcher paper) since ´1 ď hm

hj
, we can

also do the following:

´r̊1
“

p
ÿ

m“1

hm
hj
R̄1

pem ^ ejq

ě ´

p
ÿ

m“1

R̄1
pem ^ ejq

ě ´

n
ÿ

m“1

R̄1
pem ^ ejq

“ ´pk ´ pn ´ 1qδq.

Hence, we also get
´p̊r ´ δq “ ´r̊1

ě ´k ` pn ´ 1qδ,

which is just
r̊ ď k ´ pn ´ 2qδ.

Thus, we have
´k ` nδ ď r̊ ď k ´ pn ´ 2qδ.

The other inequality
k ´ pn ´ 2q∆ ď r̊ ď ´k ` n∆

is proven in the similar way by introducing R2 :“ R ´ ∆
2
g ⃝̂ g, so R̄2 ď 0.

Remark 1.2.18. In [6], the authors proved the estimate

´k ` nδ ď R̊ ď ´k ` n∆, on S2
0 .

which is weaker than Theorem 1.2.17.

Proposition 1.2.19. Assume δ ď R̄ ď ∆. Assume we are in the setting of a nearly Kähler
6-manifold. Then by Remark 1.5.49, R̊ preserves S2

0` and we claim that the eigenvalues of

R̊ on S2
`0 lie in the following interval:

„

1

2

ˆ

p∆ ` δq ˘ 3p∆ ´ δq

˙ȷ

“ r2δ ´ ∆, 2∆ ´ δs.

Proof. As in Corollary 1.2.14, we use the fact that for an element h P S2
0` (which by

Proposition 1.5.31 is isomorphic to Λ2
8 – sup3q) we can find a canonical form h “

ř6
i“1 hieib

ei with e1, . . . , e6 an orthonormal frame and h1 “ h2, h3 “ h4, h5 “ h6 with h1`h2`h3 “ 0.
We proceed in the same way as in the proof of Theorem 1.2.16. Let 0 ‰ h P S2

0` be a
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unit eigenvector of R̊0 and let r̊0 be the corresponding eigenvalue. Put h in the canonical
form as above. By replacing h by ´h and by swapping hi’s if necessary, we can assume
|h1| ą 0 is maximal, h1 “ h2 ą 0 and as before, h3 “ h4, h5 “ h6. This forces h3, h5 to be
non-positive with

|h3| ` |h5| “ |h4| ` |h6| “ h1. (1.2.20)

As before, we get:
r̊0h1 “

ÿ

m

pR0qm1m1hm.

Dividing through by h1 ą 0, and using (1.2.7) with (1.2.20) we get:

|̊r0| ď
ÿ

m

hm
h1

|pR0qm1m1|

“ |pR0q2121| `
|h3|

h1
|pR0q3131| `

|h4|

h1
|pR0q4141| `

|h5|

h1
|pR0q5151| `

|h6|

h1
|pR0q6161|

ď 3max |R̄0|

ď
3p∆ ´ δq

2
,

which along with the same details as in Theorem 1.2.16 concludes the proof.

Remark 1.2.21. In the Einstein setting, Theorem 1.2.16 tells us that the eigenvalues of
R̊ on S2

0 lie in
„

1

2

`

p∆ ` δq ˘ pn ´ 1qp∆ ´ δq
˘

ȷ

,

which is a weaker result than the one in Theorem 1.2.17. It is immediately clear that on a
nearly Kähler 6-manifold, on S2

0`, the interval from Theorem 1.2.19 is a better result than
Theorem 1.2.16.
One can also show that Theorem 1.2.19 is also stronger than Theorem 1.2.17. For example,
let us show that 2δ´∆ ě ´5` 6δ. So, we need 5 ě 4δ`∆. This is clearly true, as we can
pick an orthonormal frame where R1212 “ ∆. Then we know that R1i1i ě δ for i “ 3, 4, 5
and

ř5
i“2R1i1i “ 5, which is the Einstein constant for a nearly Kähler 6-manifold. Hence

the result follows. All the other inequalities are similar.

Remark 1.2.22. In the proof of Theorem 1.5.62, we will show that on a nearly Kähler
6-manifold, for β P Ω2

8, which must equal h ˛ ω for some unique h P S2
0`, we have that

Ŵβ “ p2W̊hq˛ω. Hence, if β “ h˛ω is an eigenvector of Ŵ with the eigenvalue λ, then h is
an eigenvector W̊ with the eigenvalue λ

2
. This clearly means that rangepŴ q “ 2 rangepW̊ q,

where by range of a self-adjoint operator we mean the closed interval from the smallest
eigenvalue to the largest one.
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By Lemma 1.2.8 we have that Ŵ “ R̂ ` 2 Id, W̊ “ R̊ ´ Id on S2
0 .

Hence, assume that δ ď R̄ ď ∆. Then by Corollary 1.2.14, the range of Ŵ on Ω2
8 lies in

„

2 ´ p∆ ` δq ˘
7

3
p∆ ´ δq

ȷ

. (1.2.23)

Similarly, by Theorem 1.2.19, the range of W̊ on S2
0` lies in

„

´1 `
1

2

ˆ

p∆ ` δq ˘ 3p∆ ´ δq

˙ȷ

. (1.2.24)

However, since rangepŴ q “ 2 rangepW̊ q, Ŵ on Ω2
8 also lies in

r´2 ` p∆ ` δq ˘ 3p∆ ´ δqs ,

which is clearly not the same interval as in (1.2.23). Since we cannot say that one of
the intervals is always better than the other one, we will use them both by taking their
intersection. Similarly, we can also obtain a second interval for W̊ on S2

0`.

We summarize the estimates in the case of a nearly Kähler 6-manifold for R̊ on S2
0 .

Corollary 1.2.25. Let M be a nearly Kähler 6-manifold. Let δ ď R̄ ď ∆. Then the
eigenvalues of R̊ on S2

`0 lie in the intersection of the following intervals:

„

1

2

ˆ

p∆ ` δq ˘ 3p∆ ´ δq

˙ȷ

,

„

2 `
1

2

ˆ

´ p∆ ` δq ˘
7

3
p∆ ´ δq

˙ȷ

.

Proof. This follows from Remark 1.2.22.

1.3 General Weitzenböck formulas

In this section we rederive the well-known general Weitzenböck formula and then simplify it
in the case that the manifold is Einstein. More information can be found in [38], [33], [35].
Let pMn, gq be a Riemannian manifold. For α P Ωk and T P T k we have:

pdαqi1...ik`1
“

k`1
ÿ

j“1

p´1q
j´1∇ijαi1...îj ...ik`1

,

pd˚αqi1...ik´1
“ ´∇pαpi1...ik´1

,

p∇˚∇αqi1...ik´1
“ ´∇p∇pαi1...ik´1

,

p∇˚T qi2...ik “ ´∇pTpi2...ik .
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Proposition 1.3.1. General Weitzenböck formula
For α P Ωk we have:

p∆αqi1...ık “ p∇˚∇αqi1...ık`

k
ÿ

j“1

αi1...u...ikRiju (u is at jth position)

`
ÿ

1ďlăjďk

αi1...u...p...ikRijilpu (u and p are at lth and jth positions respectively)

Proof. First we compute

pdd˚αqi1...ik “

k
ÿ

j“1

p´1q
j´1∇ijpd

˚αqi1...îj ...ik

“

k
ÿ

j“1

p´1q
j´1∇ijp´∇pαpi1¨¨¨îj ...ik

q

“

k
ÿ

j“1

p´1q
j∇ij∇pαpi1¨¨¨îj ...ik

,

and

pd˚dαqi1...ik “ ´∇ppdαqpi1...ik

“ ´∇pp∇pαi1...ik `

k
ÿ

j“1

p´1q
j∇ijαpi1...îj ...ik

q

“ p∇˚∇αqi1...ik ´

k
ÿ

j“1

p´1q
j∇p∇ijαpi1...îj ...ik

.

Thus we obtain

p∆αqi1...ik “ pdd˚αqi1...ik ` pd˚dαqi1...ik

“ p∇˚∇αqi1...ik `

k
ÿ

j“1

p´1q
j
p∇ij∇p ´ ∇p∇ijqαpi1...îj ...ik

.
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Apply the Ricci identity to the last term to get:

k
ÿ

j“1

p´1q
j
p∇ij∇p´∇p∇ijqαpi1...îj ...ik

“ ´

k
ÿ

j“1

p∇ij∇p ´ ∇p∇ijqαi1...p...ik (where p is at jth position)

“

k
ÿ

j“1

k
ÿ

l“1

Rijpiluαi1...u...p...ik (u and p are at lth and jth positions respectively)

“

k
ÿ

j“1

Rijppuαi1...u...ik `

k
ÿ

j“1

ÿ

jąl

Rijpiluαi1...u...p...ik (first term is when l “ j)

`

k
ÿ

j“1

ÿ

jăl

Rijpiluαi1...p...u...ik

“

k
ÿ

j“1

Rijuαi1...u...ik `

k
ÿ

l“1

ÿ

jąl

Rijpiluαi1...u...p...ik `

k
ÿ

j“1

ÿ

ląj

Riluijpαi1...p...u...ik

“

k
ÿ

j“1

Rijuαi1...u...ik ` 2
ÿ

jąl

Rijpiluαi1...u...p...ik

Now let
L :“ 2

ÿ

jąl

Rijpiluαi1...u...p...ik .

By the first Bianchi identity, we have

L “ 2
ÿ

jąl

Rijpiluαi1...u...p...ik

“ ´2
ÿ

jąl

pRijilup ` Rijupilqαi1...u...p...ik

“ 2
ÿ

jąl

Rijilpuαi1...u...p...ik ` 2
ÿ

jąl

Rijuilpαi1...u...p...ik

“ 2
ÿ

jąl

Rijilpuαi1...u...p...ik ´ L.

Thus:
L “

ÿ

jąl

Rijilpuαi1...u...p...ik .
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Concluding, we get the required:

p∆αqi1...ik “ p∇˚∇αqi1...ik `

k
ÿ

j“1

Rijuαi1...u...ik `
ÿ

jąl

Rijilpuαi1...u...p...ik .

From Proposition 1.3.1 we obtain the Weitzenböck formula for 2-forms:
Let β P Ω2. Then:

p∆βqab “ p∇˚∇βqab ` Rapβpb ` Rbpβap ` Rabpqβpq. (1.3.2)

Corollary 1.3.3. Assume M is Einstein with Einstein constant k. Then the Weitzenböck
formula for 2-forms simplifies to:

∆β “ ∇˚∇β ` 2k
n ´ 2

n ´ 1
β ` Ŵβ,

where the Ŵ notation is defined in Section 1.2.3.

Proof. In the Einstein case we have Ric “ kg. Hence, each of the Ricci terms in (1.3.2) is
equal to kβab.
The last term is:

Rabpqβpq “ pR̂βqab “ ppŴ ´
2k

n ´ 1
Idqβqab “ pŴβqab ´

2k

n ´ 1
βab,

by Lemma 1.2.8. Thus, putting everything together, we get:

∆β “ ∇˚∇β ` 2pkβq ` pŴβ ´
2k

n ´ 1
βq “ ∇˚∇β ` 2k

n ´ 2

n ´ 1
β ` Ŵβ,

as required.

From Proposition 1.3.1 we obtain the Weitzenböck formula for 3-forms:
Let β P Ω3. Then:

p∆βqabc “ p∇˚∇βqabc ` Rauβubc ` Rbuβauc ` Rcuβabu ` Rabpuβpuc ` Racpuβpbu ` Rbcpuβapu.
(1.3.4)

Corollary 1.3.5. Assume M is Einstein with Einstein constant k. Then the Weitzenböck
formula for 3-forms simplifies to:

p∆βqabc “ p∇˚∇βqabc ` 3k
n ´ 3

n ´ 1
βabc ` Wabpuβpuc ` Wacpuβpbu ` Wbcpuβapu.

Note that the last three terms can be written as pŴβqabc ` pŴβqcab ` pŴβqbca, by using
notation of Remark 1.2.4.
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Proof. In the Einstein case we have Ric “ kg. Hence, each of the Ricci terms in (1.3.4) is
equal to kβabc.
Now, consider the term Rabpuβpuc of (1.3.4). This is pR̂βqabc, which is equal to ppŴ ´
2k
n´1

Idqβqabc “ Wabpuβpuc ´ 2k
n´1

βabc, by Lemma 1.2.8. Similarly, we can do the same for the
other terms to get the required result:

p∆βqabc “ p∇˚∇βqabc ` 3pkβabcq ` Wabpuβpuc ` Wacpuβpbu ` Wbcpuβapu ´ 3p
2k

n ´ 1
βabcq

“ p∇˚∇βqabc ` 3k
n ´ 3

n ´ 1
βabc ` Wabpuβpuc ` Wacpuβpbu ` Wbcpuβapu.

1.4 Nearly G2 manifolds

First, in Section 1.4.1 we recall some facts about G2 structures and nearly G2 manifolds.
In Section 1.4.2 we observe some properties about the curvature of nearly G2 manifolds.
Finally, in Section 1.4.3 we simplify the Weitzenböck formulas for harmonic 2 and 3-forms
and using the assumption of compactness of our manifolds, we get the necessary conditions
of vanishing of b2 and b3 in terms of bounds on R̄, R̊, and R̂.

1.4.1 Preliminaries

Throughout this sectionM7 is a manifold with a G2 structure. That means thatM admits
a non-degenerate 3-form φ (see [24] for more details). Note that φ determines a metric
g and orientation, hence also the Hodge-star ‹. Then we also have that ψ :“ ‹φ is a
non-degenerate 4-form. First, we list some results for manifolds with a G2-structure.

Proposition 1.4.1. We use the following identities from [24]:

• φijkφabk “ δiaδjb ´ δibδja ´ ψijab.

• φijkψabck “ δiaφjbc ` δibφajc ` δicφabj ´ δajφibc ´ δbjφaic ´ δcjφabi.

• φijkψabjk “ ´4φiab.

• ψijklψabkl “ 4δiaδjb ´ 4δibδja ´ 2ψijab.

• ψijklψajkl “ 24δia.

Remark 1.4.2. We have the following descriptions of the orthogonal decompositions of
Ω2 and Ω3 into irreducible subspaces (see [24]):

Ω2
“ Ω2

7 ‘ Ω2
14

Ω3
“ Ω3

1 ‘ Ω3
7 ‘ Ω3

27,

where the subscripts denote the corresponding dimensions. In particular:
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• Ω2
7 “ tX ⌟ φ : X P ΓpTMqu “ tβ P Ω2 : ‹pφ ^ βq “ ´2βu,

or equivalently, β P Ω2
7 iff βijψijkl “ ´4βkl ô βij “ Xkφijk for Xk “ 1

6
βijφijk

• Ω2
14 “ tβ P Ω2 : β ^ ψ “ 0u “ tβ P Ω2 : ‹pφ ^ βq “ βu,

or equivalently, β P Ω2
14 iff βijψijkl “ 2βkl ô βijφijk “ 0.

• Ω3
1 “ tfφ : f P C8pMqu – Rg,

• Ω3
7 “ tX ⌟ ψ : X P ΓpTMqu – Ω2

7,

• Ω3
27 – S2

0 ,

where the isomorphisms are obtained using the ˛ map with φ (although different notation
is used in [24], instead of ˛ there).
Similarly, we have isomorphisms between the irreducible subspaces of Ω4 and S2 ‘ Ω2

7 via
˛ with ψ. In particular, let γ P Ω3, ζ P Ω4. Then γ “ A ˛ φ and ζ “ B ˛ ψ for some unique
A “ 1

7
ptrAqg ` A0 ` A7, B “ 1

7
ptrBqg ` B0 ` B7 P S2 ‘ Ω2

7. Define

γ̂ia :“ γijkφajk and ζ̂ia :“ ζijklψajkl.

Then:

trA “
1

18
trpγ̂q,

pA0qia “
1

8
pγ̂ia ` γ̂aiq ´

1

28
trpγ̂qgia,

pA7qia “
1

24
pγ̂ia ´ γ̂aiq.

and we have similar formulas for B, but they will not be used here.

Definition 1.4.3. A manifoldM with a G2 structure φ has four independent torsion forms
corresponding to a G2 structure φ:

τ0 P C8
pMq, τ1 P Ω1

7, τ2 P Ω2
14, τ3 P Ω3

27,

defined by the equations:

dφ “ τ0ψ ` 3τ1 ^ φ ` ‹τ3

dψ “ 4τ1 ^ ψ ` ‹τ2.

We say thatM is nearly G2 if dφ “ τ0ψ and dψ “ 0 for some τ0 ‰ 0. It follows in this case
that τ0 must be constant. Note that the condition of being nearly G2 is also equivalent to
the fact that the only non-zero component of the torsion tensor is τ0. These manifolds are
positive Einstein and one might want to scale the metric so that τ0 “ 4 (in this case we
will also have Ric “ 6g), as we do for the nearly Kähler case. However, we keep it more
general. ▲
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Proposition 1.4.4. For a nearly G2 manifold we have the following formulas:

∇pφijk “
τ0
4
ψpijk,

∇pψijkl “
τ0
4

pδlpφijk ` δjpφikl ´ δkpφijl ´ δipφljkq,

ÿ

p

∇p∇pφijk “ ´
τ 20
4
φijk.

Proof. The first two formulas are in [24]. The third formula is demonstrated in Proposition
2.4 of [1].

1.4.2 Curvature identities

On a nearly G2 manifold we have: Ric “
3τ20
8
g (also see [24]), so the Einstein constant

k “
3τ20
8

and R “
21τ20
8

. Applying the result from Lemma 1.2.8 we get:

Ŵ “ R̂ `
τ 20
8
Id,

W̊ “ R̊ ´
τ 20
16

Id, on S2
0 .

(1.4.5)

Also, note that the Weyl tensorWijkl lies in Ω2
14 in the first two or the last two indices. This

is because from Theorem 4.2 in [24], we have Rijklφklm “ ´
τ20
8
φijm. By Remark 1.2.4, we

can write this as R̂φ “ ´
τ20
8
φ. By (1.4.5), we get Ŵφ “ R̂φ `

τ20
8
φ “ 0. By Remark 1.4.2,

this is equivalent to the fact that W lies in Ω2
14 in the first two indices. Because of its

symmetries, the same holds in the last two indices.
Hence, we can also conclude that Ŵ , R̂ preserve the space Ω2

14. Consider Ŵ first. The
2-form pŴβqab “ Wabijβij will always lie in Ω2

14. So, vacuously, it preserves Ω2
14. Next,

since R̂ and Ŵ differ by a constant multiple of the identity, R̂ also preserves Ω2
14. This

fact means that we can consider Ŵ (and R̂) as a self-adjoint operator only on Ω2
14 which

will provide better estimates when we apply the Bochner-Weitzenböck techniques.

1.4.3 Weitzenböck formulas

In this section we establish sufficient conditions for the Betti numbers b2 or b3 to vanish,
in terms of bounds on Ŵ and W̊ respectively. As a corollary, we can get those sufficient
conditions in terms of bounds on R̂.
The simplified Weitzenböck formulas obtained in this section can be found in the literature,
but possibly in different forms (see [1]). As we mentioned in the introduction, we again
reprove all the results in a simple, direct way.
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We will use Theorems 3.8 and 3.9 from [12], which state the every harmonic 2-form lies in
Ω2

14, and every harmonic 3-form lies in Ω3
27.

2-forms

We apply Corollary 1.3.3 to the nearly G2 setting to get:

∆β “ ∇˚∇β `
5τ 20
8
β ` Ŵβ, for any β P Ω2. (1.4.6)

Theorem 1.4.7. Let M be a compact nearly G2 manifold. If S2pΩ2
14q Q Ŵ ě ´

5τ20
8
, then

b2 “ 0.

Proof. Let β P Ω2 be harmonic. Then β P Ω2
14. Substituting it in (1.4.6), and using the

assumption that Ŵ ě ´
5τ20
8
, we get by integration that ∇β “ 0. Hence β “ 0, as there are

no parallel non-zero 2-forms.

Theorem 1.4.8. Let M be a compact nearly G2 manifold. Let δ ď R̄ ď ∆ with ´p∆ `

δq ´ 7
3
p∆ ´ δq ě ´

3τ20
4
. Then b2 “ 0.

Proof. If ´p∆ ` δq ´ 7
3
p∆ ´ δq ě ´

3τ20
4
, then by Corollary 1.2.14 we have that R̂ ě ´

3τ20
4
.

So, we use equation (1.4.5) to get that Ŵ ě ´
5τ20
8

and hence b2 “ 0 by Theorem 1.4.7.

3-forms

We apply Corollary 1.3.5 to the nearly G2 setting to get:

p∆βqabc “ p∇˚∇βqabc`
3

4
τ 20βabc`Wabpuβpuc`Wacpuβpbu`Wbcpuβapu, for any β P Ω3. (1.4.9)

The aim now is to simplify this formula for harmonic β. First, we do this more generally,
we will just assume β P Ω3

1 ‘Ω3
27, which includes all the harmonic forms. Then we will see

what we can get from the assumption of β being harmonic and then we use all these steps
to get a simpler formula.
Recall definitions of Div and ˛ from Section 1.1.3, and also for h P S2, let h̃ P T 2 be defined
as

h̃kc “ p∇ihjkqφijc. (1.4.10)

Proposition 1.4.11. Let M be nearly G2. Let β P Ω3
1 ‘ Ω3

27, so that β “ h ˛ φ for some
h P S2. Then:

∆ph ˛ φq “ p∇˚∇h ` τ 20h `
τ0
2
h̃symm ´

τ0
12

ppDiv h ´ ∇ trhq ⌟ φq ` 2W̊hq ˛ φ.
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Proof. First, consider the term Wabpuβpuc from (1.4.9):

Wabpuβpuc “ Wabpuphpsφsuc ` husφpsc ` hcsφpusq

“ 2Wabpuhpsφsuc,

as the first two terms in the brackets are skew in p, u and the last term vanishes because
W P S2pΩ2

14q. Hence,

Wabpuβpuc ` Wacpuβpbu ` Wbcpuβapu “ 2hpspWabpuφsuc ` Wacpuφsbu ` Wbcpuφasuq,

and define γabc to be equal to this expression. Since γ P Ω3, γ “ A˛φ for some A P S2 ‘Ω2
7.

We have:

γ̂at “γabcφtbc

“2hpspWabpuφsuc ` Wacpuφsbu ` Wbcpuφasuqφtbc

“4hpspWabpuφsucφtbcq

(since W P S2
pΩ2

14q and we use skew-symmetry in b, c on the first two terms)

“4hpsWabpupδstδub ´ δsbδut ´ ψsutbq (by Proposition 1.4.1)

“ ´ 4phpsWaspt ` hpsWabpuψsutbq. (because the Ricci tensor of W is zero, i.e. Wabbu “ 0)

Now, note that:

Wabpuψsutb “ ´ pWapub ` Waubpqψsutb

“Wapubψstub ´ Waubpψsutb

“2Wapst ´ Wabupψsbtu

(swap the indices b, u and use that W P S2
pΩ2

14q with Remark 1.4.2)

“2Wapst ´ Wabpuψsutb.

Hence, we have
Wabpuψsutb “ Wapst,

and thus

γ̂at “ ´4phpsWaspt ` hpsWapstq

“ 8pW̊hqat.

Next, we have that trpγ̂q “ 0 because Wipqi “ 0. Also, we see that γ̂ is symmetric. Hence,
by Remark 1.4.2,

A “ A0 “
1

4
γ̂ “ 2W̊h.
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Thus, the term with Weyl tensors in the Weitzenböck formula is equal to γ “ A ˛ φ “

2pW̊hq ˛ φ.
Next, we compute ∇˚∇β “ ∇˚∇ph ˛ ϕq as follows:

∇˚∇ph ˛ ϕqabc “ ´ ∇s∇sphapφpbc ` hbpφapc ` hcpφabpq

“ ´ p∇sp∇shapqφpbc ` ∇sp∇shbpqφapc ` ∇sp∇shcpqφabpqq

´ 2p∇sphapq∇spφpbcq ` ∇sphbpq∇spφapcq ` ∇sphcpq∇spφabpqq

´ phap∇s∇spφpbcq ` hbp∇s∇spφapcq ` hcp∇s∇spφabpqq

“pp∇˚∇h `
τ 20
4
hq ˛ φqabc (by Proposition 1.4.4)

´
τ0
2

p∇sphapqψspbc ` ∇sphbpqψsapc ` ∇sphcpqψsabpq.

Let σabc :“ ∇sphapqψspbc ` ∇sphbpqψsapc ` ∇sphcpqψsabp. As σ P Ω3, σ “ B ˛ φ for some
unique B P S2 ‘ Ω2

7. Then:

σ̂at “ σabcφtbc

“ ∇sphapqψspbcφtbc ` 2∇sphbpqψsapcφtbc

“ ∇sphapqp´4φtspq ` 2∇sphbpqpδtsφbap ` δtaφsbp ` δtpφsab ´ δsbφtap ´ δabφstp ´ δpbφsatq

(by Proposition 1.4.1)

“ ´4∇sphpaqφspt ´ 2∇sphbtqφsba ` 2∇sphspqφpat ` 2∇sphpaqφspt ´ 2∇sphppqφsat

“ ´2h̃at ´ 2h̃ta ` 2pDiv h ⌟ φqat ´ 2p∇ trh ⌟ φqat

“ ´4ph̃symmqat ` 2ppDiv h ´ ∇ trhq ⌟ φqat.

Note that tr σ̂ “ ´4ph̃symmqaa “ ´4h̃aa “ ´4∇iphjaqφija “ 0. Thus, by Remark 1.4.2 we
have:

pB0qia “
1

8
pσ̂ia ` σ̂aiq “ ´ph̃symmqia,

pB7qia “
1

24
pσ̂ia ´ σ̂aiq “

1

6
ppDiv h ´ ∇ trhq ⌟ φqia.

We conclude that:

σ “ p´h̃symm `
1

6
ppDiv h ´ ∇ trhq ⌟ φqq ˛ φ.

Putting everything together we get:

∆ph ˛ φq “p∇˚∇h `
τ 20
4
h ´

τ0
2

p´h̃symm `
1

6
ppDiv h ´ ∇ trhq ⌟ φqq `

3

4
τ 20h ` 2W̊hq ˛ φ

“p∇˚∇h ` τ 20h `
τ0
2
h̃symm ´

τ0
12

ppDiv h ´ ∇ trhq ⌟ φq ` 2W̊hq ˛ φ,

as claimed.
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Proposition 1.4.12. Let M be a compact nearly G2 manifold. Let β P Ω3
27 Ě H3, so that

β “ h ˛ φ for some h P S2
0 . Then β is harmonic if and only if:

h̃ “ ´
3τ0
4
h P S2 and Div h “ 0.

Proof. Since M is compact, β is harmonic if and only if d˚β “ 0 and dβ “ 0.
First, we calculate the Ω2

7 component of h̃. This is done by contracting it with φ. That is,
by Remark 1.4.2, π7ph̃q “ X ⌟ φ, where Xk “ 1

6
h̃ijφkij. So:

Xk “
1

6
h̃ijφkij

“
1

6
p∇ahbiqφabjφkij

“
1

6
p∇ahbiqpδakδbi ´ δaiδbk ´ ψabkiq

“
1

6
p∇khbb ´ ∇ihkiq

“ ´
1

6
pDiv hqk.

Thus:

π7ph̃q “ X ⌟ φ where X “ ´
1

6
Div h.

Now, consider the condition d˚β “ 0:

´pd˚βqkl “∇jβjkl

“∇jphjpφpkl ` hkpφjpl ` hlpφjkpq

“∇jphjpqφpkl ` hjp∇jpφpklq ` ∇jphkpqφjpl

` hkp∇jpφjplq ` ∇jphlpqφjkp ` hlp∇jpφjkpq

“pDiv h ⌟ φqkl ` hjp
τ0
4
ψjpkl ` h̃kl ` hkp

τ0
4
ψjjpl ´ h̃lk ` hlp

τ0
4
ψjjkp

“pDiv h ⌟ φqkl ` 2ph̃skewqkl.

Hence, using the formula for π7ph̃q, we get:

´d˚β “Div h ⌟ φ ` 2pπ7ph̃q ` π14ph̃qq

“Div h ⌟ φ ´
1

3
Div h ⌟ φ ` 2π14ph̃q

“2π14ph̃q `
2

3
Div h ⌟ φ.

27



Thus, we have that:

d˚β “ 0 if and only if

#

π14ph̃q “ 0,

Div h “ 0.

Next, we consider the second condition dβ “ 0. Since dβ P Ω4, by Remark 1.4.2, dβ “ B˛ψ
for some unique B P S2 ‘ Ω2

7. Then dβ “ 0 iff B “ 0 iff xdβ “ 0. So:

pxdβqia “pdβqijklψajkl

“p∇iβjkl ´ ∇jβikl ` ∇kβijl ´ ∇lβijkqψajkl

“p∇iβjkl ´ 3∇jβiklqψajkl

“p∇iphjpφpkl ` hkpφjpl ` hlpφjkpqqψajkl

´ 3p∇jphipφpkl ` hkpφipl ` hlpφikpqqψajkl

“3∇iphjpφpklqψajkl ´ 3∇jphipφpklqψajkl ´ 6∇jphkpφiplqψajkl.

We calculate each of these terms separately:

3∇iphjpφpklqψajkl “ 3∇iphjpqφpklψajkl ` 3hjp∇ipφpklqψajkl

“ ´12∇iphjpqφpaj `
3τ0
4
hjpψipklψajkl

“
3τ0
4
hjpp4δiaδpj ´ 4δijδpa ´ 2ψipajq (by Proposition 1.4.1)

“ 3τ0pptrhqδia ´ hiaq

“ ´3τ0hia.

Next:

´3∇jphipφpklqψajkl “ ´3∇jphipqφpklψajkl ´ 3hip∇jpφpklqψajkl

“ 12∇jphipqφpaj ´
3τ0
4
hipψjpklψajkl

“ 12∇jphipqφpaj `
3τ0
4
hip24δpa (by Proposition 1.4.1)

“ 12h̃ia ` 18τ0hia.
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Finally:

´6∇jphkpφiplqψajkl “ ´ 6∇jphkpqφiplψajkl ´ 6hkp
τ0
4
ψjiplψajkl

“ ´ 6∇jphkpqφiplψajkl ´
3τ0
2
hkpψpijlψakjl

“ ´ 6∇jphkpqpδiaφpjk ` δijφapk ` δikφajp ´ δapφijk ´ δjpφaik ´ δkpφajiq

´
3τ0
2
hkpp4δpaδik ´ 4δpkδia ´ 2ψpiakq (by Proposition 1.4.1)

“ ´ 6p∇jphipqφajp ´ ∇jphkaqφijk ´ ∇jphkjqφaik ´ ∇jptrhqφajiq

´ 6τ0phia ´ ptrhqδiaq

“ ´ 6h̃ia ` 6h̃ai ´ 6pDiv h ⌟ φqia ´ 6τ0hia.

Combining all the results we get:

pxdβqia “ 6ph̃ia ` h̃aiq ` 9τ0hia ´ 6pDiv h ⌟ φqia

“ 12ph̃symmqia ` 9τ0hia ´ 6pDiv h ⌟ φqia.

Thus, we have that:

dβ “ 0 if and only if

#

h̃symm “ ´3τ0
4
h,

Div h “ 0.

Summarizing, β is harmonic if and only if h̃symm “ ´3τ0
4
h, π14ph̃q “ 0,Div h “ 0. But we

know that Div h vanishes if and only if π7ph̃q vanishes, so h̃skew “ 0 and h̃ “ h̃symm. Hence
we get the required result.

Corollary 1.4.13. Let M be a compact nearly G2 manifold. Assume β is harmonic. Then
β P Ω3

27, so that β “ h ˛ φ for some h P S2
0 . Then:

∇˚∇h `
5τ 20
8
h ` 2W̊h “ 0.

Proof. By assumption, β is harmonic, so the left hand side of the Weitzenböck formula
in Proposition 1.4.11 vanishes. Next, by Proposition 1.4.12, h̃symm “ h̃ “ ´3τ0

4
h and

Div h “ 0. Also, we know trh “ 0. Substituting all these terms into Proposition 1.4.11,
we get the required result.

Theorem 1.4.14. Let M be a compact nearly G2 manifold. If S2pS2
0 q Q W̊ ě ´

3τ20
8
or

S2pΩ2
14q Q Ŵ ě ´

τ20
4
, then b3 “ 0.
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Proof. For the first part, we use (1.4.9) and the proof of Proposition 1.4.11 to get that if
β “ h ˛ φ P Ω3

27 is harmonic for some h P S2
0 , then:

∇˚∇β ` p
3τ 20
4
h ` 2W̊hq ˛ φ “ 0.

Hence, the result follows by integration and the fact that there are no parallel non-zero
3-forms. Note that using Corollary 1.4.13 in order to get a similar result would have been

worse, as we would have been able to only conclude that if S2pS2
0 q Q W̊ ě ´

5τ20
16

then b3 “ 0.

This is because ∇˚∇β “ p∇˚∇h´
τ20
8
hq ˛ φ, so we can see that even though the left hand

side is obviously non-negative, we cannot conclude that from the right hand side.
The second part trivially follows from (1.4.9).

Theorem 1.4.15. Let M be a compact nearly G2 manifold. Let δ ď R̄ ď ∆ with ∆ ď
11τ20
80

or δ ě
τ20
112

. Then b3 “ 0.

Proof. Recall that the Einstein constant k “
3τ20
8
. Then by Theorem 1.2.17, on S2

0 , R̊ ě

´
3τ20
8

` 7δ and R̊ ě
3τ20
8

´ 5∆. Hence, by (1.4.5), W̊ ě ´
7τ20
16

` 7δ and W̊ ě
5τ20
16

´ 5∆.

In order for b3 “ 0, by Theorem 1.4.14 we want W̊ ě ´
3τ20
8
. We have ´

7τ20
16

` 7δ ě ´
3τ20
8

iff

δ ě
τ20
112

; and
5τ20
16

´ 5∆ ě ´
3τ20
8

iff ∆ ď
11τ20
80

. Hence, the result follows from Theorem 1.4.14.

Recall that, a priori, by Remark 1.2.9, we have that δ ď
τ20
16

ď ∆.

Also, note that we do not use Corollary 1.2.14 along with the statement that S2pΩ2
14q Q Ŵ ě

´
τ20
4

implies that b3 “ 0. This is because the sufficient conditions in terms of the bounds

on the sectional curvature we would have obtained imply that ∆ ď
11τ20
80

or δ ě
τ20
112

.

1.5 Nearly Kähler 6-manifolds

First, in Sections 1.5.1 and 1.5.2 we establish some preliminaries for 6-manifolds with an
SUp3q-structure. In particular, we give various descriptions of irreducible subspaces of Ω2

using the ˛ map. Next, in Section 1.5.3 we introduce nearly Kähler 6-manifolds and in
Sections 1.5.4 and 1.5.5 we establish several identities involving curvature and harmonic 2
and 3-forms. Finally, in Section 1.5.6 we simplify the Weizenbock formulas for harmonic
2 and 3-forms and using the assumption of compactness of our manifolds, we get the
necessary conditions of vanishing of b2 and b3 in terms of bounds on R̄, R̊, and R̂.

1.5.1 Preliminaries

For this section as well, most of the results can be found in [14], [34], [36], [31], [30] and
other sources on nearly Kähler manifolds. Nevertheless, we include as many details as
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possible.
First we consider a general SUp3q-structure on a Riemannian 6-manifold pM, gq. This
means that M6 has an almost complex structure J compatible with the metric g, and a
complex 3-form Ω “ ψ` ` iψ´ satisfying

ψ`
^ ψ´

“
2

3
ω3

“ 4 volM .

Also in this case, gC , φ and ψ defined as:

gC :“ r2g ` dr2,

φ :“ ´r2dr ^ ω ` r3ψ`,

ψ :“ ´r3dr ^ ψ´
´ r4

w2

2
.

give a metric cone G2-structure on R` ˆ M.
Hence, in a local orthonormal frame we get:

φ0ij “ ´ωij ψ0ijk “ ´ψ´
ijk (1.5.1)

φijk “ ψ`
ijk ψijkl “ ´p‹ωqijkl.

We also list the following identities that hold, without proof:

ωikωil “ δkl, ‹ψ
`

“ ψ´, ‹ψ´
“ ´ψ`, ‹ω “

1

2
ω2. (1.5.2)

Looking at the last identity in coordinates gives us:

p‹ωqijkl “ ωijωkl ` ωjkωil ` ωljωik. (1.5.3)

Proposition 1.5.4. The following identities hold:

• ψ`
ijkωak “ ´ψ´

ija. (1.5.5)

• ψ´
ijkωak “ ψ`

ija. (1.5.6)

• ψ`
ijkωjk “ 0 “ ψ´

ijkωjk. (1.5.7)

• ψ`
ijkψ

`
abk “ δiaδjb ´ δibδja ´ ωiaωjb ` ωibωja. (1.5.8)

• ψ`
ijkψ

`
ajk “ 4δik. (contraction of the previous one) (1.5.9)

• ψ`
ijkψ

´
abk “ δiaωjb ` δjbωia ´ δibωja ´ δjaωib. (1.5.10)

• ψ`
ijkψ

´
ajk “ 4ωia. (contraction of the previous one) (1.5.11)

• ψ´
ijkψ

´
abk “ δiaδjb ´ δibδja ´ ωiaωjb ` ωibωja. (same as ψ`

ijkψ
`
abk) (1.5.12)
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• ψ´
ijkψ

´
ajk “ 4δik. (contraction of the previous one) (1.5.13)

• ωikp‹ωqabck “ δiaωbc ` δibωca ` δicωab. (1.5.14)

• ωikp‹ωqabik “ 4ωab. (contraction of the previous one) (1.5.15)

• ψ`
ijkp‹ωqabck “ ´δiaψ

`
jbc ´ δibψ

`
ajc ´ δicψ

`
abj (1.5.16)

`δajψ
`
ibc ` δbjψ

`
aic ` δcjψ

`
abi ´ ωijψ

´
abc

• ψ`
ijkp‹ωqabck “ ´ψ´

ijaωbc ´ ψ´
ijbωca ´ ψ´

ijcωab. (alternative expression) (1.5.17)

• ψ`
ijkp‹ωqabjk “ 2ψ`

iab. (contraction of the previous one) (1.5.18)

• ψ´
ijkp‹ωqabck “ ψ`

ijaωbc ` ψ`
ijbωca ` ψ`

ijcωab. (1.5.19)

• ψ´
ijkp‹ωqabjk “ 2ψ´

iab. (contraction of the previous one) (1.5.20)

• p‹ωqijklp‹ωqabkl “ 2δiaδjb ´ 2δibδja ` 2ωijωab. (1.5.21)

• p‹ωqijklp‹ωqajkl “ 12δia. (contraction of the previous one) (1.5.22)

Proof. We repeatedly use (1.5.1) along with G2-contraction identities. For (1.5.5):

ψ`
ijkωak “

6
ÿ

k“1

φijkp´φ0akq

“ ´

6
ÿ

k“0

φijkφ0ak

“ ´pδi0δja ´ δiaδj0 ´ ψij0aq

“ ψ0ija

“ ´ψ´
ija.

Contracting both sides of (1.5.5) with wau we get:

ψ`
ijkωakωau “ ´ψ´

ijaωau

ψ`
ijkδku “ ψ´

ijaωua

ψ`
iju “ ψ´

ijaωua,

which gives us (1.5.6).
Contracting on (1.5.5) and (1.5.6) on j, a immediately gives (1.5.7).
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Next, for (1.5.8):

ψ`
ijkψ

`
abk “

6
ÿ

k“1

φijkφabk

“

6
ÿ

p“0

φijkφabk ´ φij0φab0

“ pδiaδjb ´ δibδja ´ ψijabq ´ ωijωab

“ pδiaδjb ´ δibδjaq ` pp‹ωqijab ´ ωijωabq.

“ δiaδjb ´ δibδja ` ωjaωib ` ωbjωia (by (1.5.3))

“ δiaδjb ´ δibδja ´ ωiaωjb ` ωibωja.

Contracting (1.5.8) on j, b gives us (1.5.9):

ψ`
ijkψ

`
ajk “ 6δia ´ δia ` ωijωja

“ 6δia ´ δia ´ δia

“ 4δia.

Next, for (1.5.10):

ψ`
ijkψ

´
abk “

6
ÿ

k“1

φijkp´ψ0abkq

“ ´

6
ÿ

k“0

φijkψ0abk

“ ´pδi0φjab ` δiaφ0jb ` δibφ0aj ´ δ0jφiab ´ δajφ0ib ´ δbjφ0aiq

“ δiaωjb ` δibωaj ´ δajωib ´ δbjωai

“ δiaωjb ` δjbωia ´ δibωja ´ δjaωib.

Contracting (1.5.10) on j, b will give us (1.5.11):

ψ`
ijkψ

´
ajk “ 6ωia ´ ωia ´ ωia

“ 4ωia.

Next, we show that ψ´
ijkψ

´
abk “ ψ`

ijkψ
`
abk, which means that (1.5.12) and (1.5.8) are the

same. Using (1.5.5), we have:

ψ´
ijkψ

´
abk “ ψ`

ijsωksψ
`
abtωkt

“ ψ`
ijsψ

`
abtδst

“ ψ`
ijsψ

`
abs.
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Thus, we also get (1.5.13):
ψ´
ijkψ

´
ajk “ ψ`

ijkψ
`
ajk “ 4δia.

Next, for (1.5.14):

ωikp‹ωqabck “

6
ÿ

k“1

p´φ0ikqp´ψabckq

“

6
ÿ

k“0

φ0ikψabck

“ δ0aφibc ` δ0bφaic ` δ0cφabi ´ δaiφ0bc ´ δbiφa0c ´ δciφab0

“ δiaωbc ` δibωca ` δicωab.

Contracting (1.5.14) on i, c yields (1.5.15):

ωikp‹ωqabik “ ωba ` ωba ` 6ωab

“ 4ωab.

For the next identity, there are two ways of computing the desired contractions yielding
two different expressions (1.5.16) and (1.5.17). First, we use the usual way:

ψ`
ijkp‹ωqabck “

6
ÿ

k“1

φijkp´ψabckq

“ ´

6
ÿ

k“0

φijkψabck ` φij0ψabc0

“ ´pδiaφjbc ` δibφajc ` δicφabj ´ δajφibc ´ δbjφaic ´ δcjφabiq ` p´ωijqψ
´
abc

“ ´δiaψ
`
jbc ´ δibψ

`
ajc ´ δicψ

`
abj ` δajψ

`
ibc ` δbjψ

`
aic ` δcjψ

`
abi ´ ωijψ

´
abc.

Second, we can also use the previous results to get:

ψ`
ijkp‹ωqabck “ ψ´

ijuωkup‹ωqabck

“ ´ψ´
ijuωukp‹ωqabck

“ ´ψ´
ijupδauωbc ` δbuωca ` δcuωabq

“ ´ψ´
ijaωbc ´ ψ´

ijbωca ´ ψ´
ijcωab.

Note that both contractions of (1.5.16) and (1.5.17) on j, c yiled the same result (1.5.18):

ψ`
ijkp‹ωqabjk “ ´ψ`

abi ` ψ`
iba ` ψ`

aib ` 6ψ`
abi ´ ωijψ

´
abj

“ ´ψ`
iab ´ ψ`

iab ´ ψ`
iab ` 6ψ`

iab ´ ψ`
abi

“ 2ψ`
iab,
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and

ψ`
ijkp‹ωqabjk “ ´ψ´

ijaωbj ´ ψ´
ijbωja

“ ψ´
iajωbj ´ ψ´

ibjωaj

“ ψ`
iab ´ ψ`

iba

“ 2ψ`
iab.

Since the second way of computing the contraction of ψ` and ‹ω gave us a nicer expression,
we use it again for (1.5.19):

ψ´
ijkp‹ωqabck “ ´ψ`

ijuωkup‹ωqabck

“ ψ`
ijuωukp‹ωqabck

“ ψ`
ijupδauωbc ` δbuωca ` δcuωabq

“ ψ`
ijaωbc ` ψ`

ijbωca ` ψ`
ijcωab.

Contracting (1.5.19) on j, c yields (1.5.20):

ψ´
ijkp‹ωqabjk “ ψ`

ijaωbj ` ψ`
ijbωja

“ ´ψ`
iajωbj ` ψ`

ibjωaj

“ ψ´
iab ´ ψ´

iba

“ 2ψ´
iab.

Finally, we compute (1.5.21):

p‹ωqijklp‹ωqabkl “

6
ÿ

k,l“1

ψijklψabkl

“

6
ÿ

k,l“0

ψijklψabkl ´

6
ÿ

k“0

ψijk0ψabk0 ´

6
ÿ

l“0

ψij0lψab0l

“

6
ÿ

k,l“0

ψijklψabkl ´ 2
6

ÿ

k“1

ψ´
ijkψ

´
abk

“p4δiaδjb ´ 4δibδja ´ 2ψijabq ´ 2pδiaδjb ´ δibδja ´ ωiaωjb ` ωibωjaq

“2δiaδjb ´ 2δibδja ` 2pp‹ωqijab ` ωiaωjb ` ωajωibq

“2δiaδjb ´ 2δibδja ` 2ppωijωab ` ωjaωib ` ωbjωiaq ` ωiaωjb ` ωajωibq

“2δiaδjb ´ 2δibδja ` 2ωijωab.

Contracting (1.5.21) on b, j gives us (1.5.22):

p‹ωqijklp‹ωqajkl “ 12δia ´ 2δia ` 2δia “ 12δia.
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Remark 1.5.23. We have the following descriptions of the orthogonal decompositions of
Ω2 and Ω3 into irreducible subspaces (see [14]):

Ω2
“ Ω2

1 ‘ Ω2
6 ‘ Ω2

8,

Ω3
“ Ω3

1‘1 ‘ Ω3
6 ‘ Ω3

12,

where the indices denote the corresponding dimensions. In particular:

• Ω2
1 “ tβ P Ω2 : ‹pβ ^ ωq “ 2βu “ Rω,

• Ω2
6 “ tβ P Ω2 : ‹pβ ^ ωq “ βu “ tX ⌟ ψ` : X P ΓpTMqu,

• Ω2
8 “ tβ P Ω2 : ‹pβ ^ ωq “ ´βu is the space of primitive forms of type p1, 1q,

or equivalently, β P Ω2
8 iff βijψ

`
ijk “ 0 and βijwij “ 0,

• Ω3
1‘1 “ Rψ`

À

Rψ´,

• Ω3
6 “ tX ^ ω : X P ΓpTMqu,

• Ω3
12 is the space of primitive forms of type p1, 2q ` p2, 1q, or equivalently, Ω3

12 “ S2
´ ˛ ψ`,

where the S2
´ is defined in Section 1.5.2.

Remark 1.5.24. Consider the map P : Ω2 Ñ Ω2 given by Ppβq “ ‹pβ ^ ωq, for β P Ω2.
In a local orthonormal frame:

pPβqab “
1

2
βijp

ω2

2
qijab “

1

2
βijp‹ωqijab.

We can extend the map P to all of T 2 via the formula above. Then we have S2 “ kerpPq

and for β P Ω2, Remark 1.5.23 says that:

Ppβq “ 2π1pβq ` π6pβq ´ π8pβq. (1.5.25)

Proposition 1.5.26. Let β “ β0 ` λω ` X ⌟ ψ`, where β0 P Ω2
8. Then:

• λ “ 1
6
βijωij.

• Xk “ 1
4
βijψ

`
kij.

Proof. Recall that pβ0qijψ
`
ijk “ 0, pβ0qijωij “ 0, and ωijψ

`
ijk “ 0.

For the first identity, contract

βij “ pβ0qij ` λωij ` Xaψ
`
aij (1.5.27)

with ωij to get:

βijωij “ λωijωij “ 6λ.
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Similarly, contracting (1.5.27) with ψ`
kij gives us:

βijψ
`
kij “ Xaψ

`
aijψ

`
kij “ 4Xaδak “ 4Xk.

as claimed.

Lemma 1.5.28. Let β P Ω2
8. Then βω “ ωβ, where by βω P T 2 we mean pβωqij “ βikωkl,

and similarly for ωβ.

Proof. Since, β P Ω2
8, by Remark 1.5.24, we have that Pβ “ ´β, which in a local orthonor-

mal frame is 1
2
βijp‹ωqijab “ ´βab. Also, recall that βijωij “ 0. Using Proposition 1.5.4, we

have:

pβωqst “ βsuωut

“ ´
1

2
βijp‹ωqijsuωut

“
1

2
βijωtup‹ωqijsu

“
1

2
βijpδitωjs ` δjtωsi ` δstωijq

“ βijδitωjs ` 0

“ βtjωjs

“ ωsjβjt

“ pωβqst,

as claimed.

1.5.2 The ˛ operator

The results in this section are very similar to the ones in Remark 1.4.2. We describe the
isomorphisms coming from the ˛ map. This time, however, we give most of the details.
Recall the definition of the ˛ map: let σ P Ωk. For h P T 2, we define:

ph ˛ σqi1¨¨¨ik :“ hi1pσpi2¨¨¨ik ` hi2pσi1pi3¨¨¨ik ` ¨ ¨ ¨ ` hikpσi1¨¨¨ik´1p.

Definition 1.5.29. Let β be a 2, 3, or 4-form. Then we define β̂ P T 2 as follows:

for β P Ω2, β̂ia :“ βikωak,

for β P Ω3, β̂ia :“ βijkψ
`
ajk,

for β P Ω4, β̂ia :“ βijklp‹ωqajkl. ▲
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Remark 1.5.30. Let
S2

` :“ th P S2
|hω ´ ωh “ 0u

S2
´ :“ th P S2

|hω ` ωh “ 0u

which are the spaces of symmetric 2-tensors which commute and anti-commute with ω (or
equivalently with J), respectively.
Note that S2

´ Ă S0. This can be easily seen by recalling that ω2 “ ´ Id, and so

trphq “ ´ trpphωqωq “ ´ trpp´ωhqωq “ trpωhωq “ trphqω2
“ ´ trphq.

Hence, we can further decompose

S2
` “ Rg ‘ S2

`0

where S2
`0 are the traceless elements of S2

`.
Concluding, we have the orthogonal decomposition:

S2
“ Rg ‘ S2

`0 ‘ S2
´.

It is easy to check that S2
`0 has dimension 8 and S2

´ has dimension 12.

2-forms

Proposition 1.5.31. In the case of 2-forms, the ¨ ˛ ω map is an isomorphism of the
following spaces:

Rg –Ω2
1,

Ω2
6 –Ω2

6,

S2
`0 –Ω2

8.

Proof. For the first two maps it will be clear that they are isomorphisms. For the last one,
we just check that the image under the ¨ ˛ ω map lies in the required subspace. Then by
the next Proposition 1.5.32, which shows that the map is invertible, we conclude that it is
also an isomorphism. So, we have:

pg ˛ ωqij “ gipωpj ` gjpωip “ 2ωij.
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Next, take any β “ X ⌟ ψ` P Ω2
6. By Proposition 1.5.4 and 1.5.26, we have:

pβ ˛ ωqij “ βipωpj ` βjpωip

“ Xaψ
`
aipωpj ` Xaψ

`
ajpωip

“ ´Xaψ
`
aipωjp ` Xaψ

`
ajpωip

“ Xaψ
´
aij ´ Xaψ

´
aji

“ 2Xaψ
´
aij

“ 2Xaψ
´
ija

“ ´2Xaωapψ
`
ijp

“ ´p2JpXq ⌟ ψ`
qij,

where we have used that

pJpXqqp “ xJpXq, epy “ ωpX, epq “ Xaωap.

Finally, take any h P S2
`0. Then:

ph ˛ ωqijωij “ phipωpj ` hjpωipqωij

“ hipδpi ` hjpδpj

“ 2 trh

“ 0,

and

ph ˛ ωqijψ
`
ijk “ phipωpj ` hjpωipqψ`

ijk

“ pphωqij ` pωhqijqψ
`
ijk

“ 2phωqijψ
`
ijk (since hω “ ωh for h P S2

`)

“ 2hipωpjψ
`
ijk

“ 2hipωpjψ
`
kij

“ ´2hipψ
´
kip

“ 0,

because h P S2. This shows that h ˛ ω P Ω2
8. Hence, the result follows.

Proposition 1.5.32. Let β P Ω2. Then β “ h ˛ ω for some unique h “ 1
6
trphqg ` X ⌟

ψ` `h`0, where X P ΓpTMq, h`0 P S2
`0. Then h “ 1

2
β̂, where β̂ is as in Definition 1.5.29.

This implies that

trphq “
1

2
trpβ̂q, Xk “

1

8
β̂iaψ

`
kia, h`0 “

1

2
β̂symm ´

1

12
trpβ̂qg.

Also, clearly β “ 0 iff h “ 0 iff β̂ “ 0.
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Proof. We compute β̂ as follows:

β̂ia “ βikωak

“ ph ˛ ωqikωak

“ phipωpk ` hkpωipqωak

“ hipδap ` hkpωipωak

“ hia ` p
1

6
trphqδkp ` Xuψ

`
ukp ` ph`0qkpqωipωak

“ hia `
1

6
trphqδia ` Xuψ

`
ukpωipωak ´ ωipph`0qpkωka

“ hia `
1

6
trphqδia ´ Xuψ

´
ukiωak ´ pωh`0ωqia

“ hia `
1

6
trphqδia ` Xuψ

´
uikωak ´ ph`0ω

2
qia

“ hia `
1

6
trphqδia ` Xuψ

`
uia ` ph`0qia

“ 2hia.

as claimed.
So, we get 2 trphq “ trpβ̂q along with

β̂symm “ 2p
1

6
trphqg ` h`0q

which means that

h`0 “
1

2
β̂symm ´

1

6
trphqg “

1

2
β̂symm ´

1

12
trpβ̂qg.

Finally, by Proposition 1.5.26, we get that

2Xk “
1

4
pβ̂skewqiaψ

`
kia “

1

4
β̂iaψ

`
kia.

4-forms

Proposition 1.5.33. Let β P Ω4. Then β “ h ˛ p‹ωq for some unique h P Ω2
6 ‘ S2

`.

Proof. It is easy to check that:

‹ph ˛ ωq “ p
1

4
trphqg ´ hT q ˛ p‹ωq.

Now, since β P Ω4, we have ‹β P Ω2. Then by Proposition 1.5.31, ‹β “ h ˛ ω, for some
unique h P Ω2

6 ‘ S2
`.

Hence,

β “ ‹p‹βq “ p
1

4
trphqg ´ hT q ˛ p‹ωq.
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Note that the map h ÞÑ p1
4
trphqg´ hT q is an automorphism of Λ2

6 ‘ S2
`. This is because it

can be seen that under this map, Ω2
6 is mapped to itself and for h P S2

` we have:

h ÞÑ
1

4
trphqg ´ h,

which is injective, as 1
4
trphqg´h “ 0 iff h “ cg, for some c P R, but then 1

4
6cg “ cg, hence

c “ 0. Also, since g, h commute with ω, 1
4
trphqg ´ h also commutes with ω, so is in S2

`.
Thus, we get the required result.

Proposition 1.5.34. Let β P Ω4, so β “ h ˛ p‹ωq for some unique h P Ω2
6 ‘ S2

`. Then

β̂ “ 8 trphqg ` 12h6 ` 12h`0,

where β̂ is as in Definition 1.5.29.

Proof. We compute β̂:

β̂ia “ βijklp‹ωqajkl

“ phipp‹ωqpjkl ` hjpp‹ωqipkl ` hkpp‹ωqijpl ` hlpp‹ωqijkpqp‹ωqajkl

“ hipp‹ωqpjklp‹ωqajkl ` 3hjpp‹ωqipklp‹ωqajkl

“ hip12δpa ` 3hjpp2δiaδpj ´ 2δijδpa ` 2ωipωajq

“ 12hia ` 6 trphqδia ´ 6hia ` 6hjpωipωaj

In the proof of Proposition 1.5.32, we computed that for h P Ω2
6 ‘ S2

`, hkpωipωak “ hia.
Hence,

β̂ia “ 6hia ` 6 trphqδia ` 6hia

“ 12hia ` 6 trphqδia

“ 12p
1

6
trphqg ` h6 ` h`0qiaq ` 6 trphqδia

“ 8 trphqδia ` 12ph6qia ` 12ph`0qia.

Corollary 1.5.35. Let β P Ω4, so β “ h ˛ p‹ωq for some unique h “ 1
6
trphqg ` h6 ` h`0.

Then:

trphq “
1

48
trpβ̂q,

ph`0qia “
1

12
pβ̂symmqia ´

1

72
trpβ̂qδia “

1

24
pβ̂ia ` β̂aiq ´

1

72
trpβ̂qδia,

ph6qia “
1

12
pβ̂skewqia “

1

24
pβ̂ia ´ β̂aiq.
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Also, clearly β “ 0 iff h “ 0 iff β̂ “ 0.

Proof. In Proposition 1.5.34 we proved that

β̂ “ 8 trphqg ` 12h6 ` 12h`0. (1.5.36)

Taking traces of both sides, we get

trpβ̂q “ 48 trphq.

Hence,

h`0 “
1

12
pβ̂symm ´ 8 trphqgq “

1

12
β̂symm ´

2

3
¨
1

48
trpβ̂qg “

1

12
β̂symm ´

1

72
trpβ̂qg.

Taking skew-symmetric parts of (1.5.36) gives us the required

12h6 “ β̂skew.

3-forms

Proposition 1.5.37. In the case of the 3-forms, the ¨ ˛ ψ` map is an isomorphism of the
following spaces:

Rg ‘ Rω – Ω3
1‘1,

Ω2
6 – Ω3

6,

S2
´ – Ω3

12.

Proof. Computing g ˛ ψ` and ω ˛ ψ` gives us:

g ˛ ψ`
“ 3ψ`.

pω ˛ ψ`
qijk “ ωipψ

`
pjk ` ωjpψ

`
ipk ` ωkpψ

`
ijp

“ ωipψ
`
jkp ` ωjpψ

`
kip ` ωkpψ

`
ijp

“ ´ψ´
jki ´ ψ´

kij ´ ψ´
ijk

“ ´3ψ´
ijk,
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which is enough to conclude that Rg ‘ Rω – Ω3
1‘1.

Next, take any X ⌟ ψ`, with X P ΓpTMq. Then:

ppX ⌟ ψ`
q ˛ ψ`

qijk “pX ⌟ ψ`
qipψ

`
pjk ` pX ⌟ ψ`

qjpψ
`
ipk ` pX ⌟ ψ`

qkpψ
`
ijp

“Xuψ
`
uipψ

`
pjk ` Xuψ

`
ujpψ

`
ipk ` Xuψ

`
ukpψ

`
ijp

“Xupψ`
uipψ

`
jkp ` ψ`

ujpψ
`
kip ` ψ`

ukpψ
`
ijpq

“Xupδujδik ´ δukδij ´ ωujωik ` ωukωij

` δukδji ´ δuiδjk ´ ωukωji ` ωuiωjk

` δuiδkj ´ δujδki ´ ωuiωkj ` ωujωkiq

“2Xupωuiωjk ` ωujωki ` ωukωijq

“2pJX ^ ωqijk,

which again is enough to see that Ω2
6 – Ω3

6.
For the last isomorphism, we avoid the details, because this is how we defined Ω3

12 in
Remark 1.5.23.

Proposition 1.5.38. Let β P Ω3, so β “ h ˛ ψ` for some unique h P Rg ‘ Rω ‘ Ω2
6 ‘ S2

´.
Then

β̂ “ 2 trphqg ` 12λω ` 4h6 ` 4h´,

where β̂ is as in Definition 1.5.29, and λ is the coefficient of ω in h, meaning that the
unique part of h in Rω is λω.

Proof. Let h6 “ X ⌟ ψ`, for some unique X P ΓpTMq. Now, we just compute β̂ :

β̂ia “ βijkψ
`
ajk

“ ph ˛ ψ`
qψ`

ajk

“ phipψ
`
pjk ` hjpψ

`
ipk ` hkpψ

`
ijpqψ`

ajk

“ hipψ
`
pjkψ

`
ajk ` 2hjpψ

`
ipkψ

`
ajk

“ hip4δpa ` 2hjppδiaδpj ´ δijδpa ´ ωiaωpj ` ωijωpaq

“ 4hia ` 2 trphqδia ´ 2hia ` 2hjpωjpωia ` 2hjpωpaωij.
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We compute the last two terms separately:

2hjpωpaωij “ 2p
1

6
trphqδjp ` λωjp ` Xuψ

`
ujp ` ph´qjpqωpaωij

“
1

3
trphqωpaωip ` 2λωjpωpaωij ´ 2Xuψ

`
ujpωapωij ` 2ωijph´qjpωpa

“ ´
1

3
trphqδia ´ 2λδajωij ` 2Xuψ

´
ujaωij ` 2pωh´ωqia

“ ´
1

3
trphqδia ´ 2λωia ´ 2Xuψ

´
uajωij ´ 2ph´ω

2
qia

“ ´
1

3
trphqδia ´ 2λωia ´ 2Xuψ

`
uai ` 2ph´qia

“ ´
1

3
trphqδia ´ 2λωia ` 2ph6qia ` 2ph´qia.

Next,

2hjpωjpωia “ 2p
1

6
trphqδjp ` λωjp ` Xuψ

`
ujp ` ph´qjpqωjpωia

“ 0 ` 12λωia ` 0 ` 0

“ 12λωia.

Hence, combining these parts we get:

β̂ia “ 2hia ` 2 trphqδia ` p´
1

3
trphqδia ´ 2λωia ` 2ph6qia ` 2ph´qiaq ` 12λωia

“ 2p
1

6
trphqδia ` λωia ` ph6qia ` ph´qiaq `

5

3
trphqδia ` 10λωia ` 2ph6qia ` 2ph´qia

“ 2 trphqδia ` 12λωia ` 4ph6qia ` 4ph´qia,

as claimed.

Corollary 1.5.39. Let β P Ω3, so β “ h ˛ ψ` for some unique h “ 1
6
trphqg ` λω ` X ⌟

ψ` ` h´, where X P ΓpTMq. Then:

trphq “
1

12
trpβ̂q,

ph´qia “
1

4
pβ̂symmqia ´

1

24
trpβ̂qδia “

1

8
pβ̂ia ` β̂aiq ´

1

24
trpβ̂qδia,

λ “
1

72
β̂iaωia,

Xk “
1

16
β̂iaψ

`
kia.
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Also, clearly β “ 0 iff h “ 0 iff β̂ “ 0.

Proof. In Proposition 1.5.38 we proved that:

β̂ “ 2 trphqg ` 12λω ` 4h6 ` 4h´. (1.5.40)

Taking traces of both sides yields

trpβ̂q “ 12 trphq.

Next, taking symmetric parts of both sides of (1.5.40) gives us:

β̂symm “ 2 trphqg ` 4h´.

Thus,

h´ “
1

4
pβ̂symm ´ 2 trphqgq “

1

4
β̂symm ´

1

24
trpβ̂qg.

On the other hand, comparing skew-symmetric parts of both sides of (1.5.40) gives us:

β̂skew “ 12λω ` 4h6

We recall Proposition 1.5.26 to get

12λ “
1

6
pβ̂skewqiaωia “

1

6
β̂iaωia

and

4Xk “
1

4
pβ̂skewqiaψ

`
kia “

1

4
β̂iaψ

`
kia,

which concludes the proof.

1.5.3 Nearly Kähler 6-manifolds

Let pM6, g, J,Ωq be a compact connected 6-manifold with an SUp3q-structure. We say it
is nearly Kähler if:

∇Xω “ ´X ⌟ ψ` and ∇Xψ
`

“ X ^ ω. (1.5.41)

In dimension 6 it is equivalent to p∇XJqpXq “ 0, for all X P ΓpTMq, but ∇J ‰ 0. Also,
by [34] it is also equivalent to dω “ 3∇ω or that dω “ ´3ψ` and dψ´ “ 4ω2

2
. Moreover,

one can check that in this case the conical G2 structure on M ˆ R is torsion-free. Finally,
it is a fact that all nearly Kähler manifolds in dimension 6 are positive Einstein. With our
choice of normalization, the Einstein constant is 5.
In a local orthonormal frame we can write (1.5.41) as:

∇iωjk “ ´ψ`
ijk and ∇iψ

`
jkl “ δijωkl ` δikωlj ` δilωjk (1.5.42)

Note that contracting the second identity on i, j gives us

∇iψ
`
ikl “ 6ωkl ` ωlk ` ωlk “ 4ωkl. (1.5.43)
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1.5.4 Curvature identities

On a nearly Kähler manifold we have the Einstein constant k “ 5. Applying the result
from Lemma 1.2.8 we get:

Ŵ “ R̂ ` 2 Id,

W̊ “ R̊ ´ Id, on S2
0 .

(1.5.44)

Proposition 1.5.45. The following identities hold:

• Rpqiuψ
`
liu “ ´2ψ`

pql. (1.5.46)

• Rpqiuψ
´
viu “ ´2ψ´

pqv. (1.5.47)

• Rpqjuωju “ ´2ωpq. (1.5.48)

Proof. For the first identity (1.5.46), we show that computing contraction of ψ´ and ∇∇ω
yields the required result. Explicitly,

∇p∇qωij “ ∇pp´ψ`
qijq

“ ´pδpqωij ` δpiωjq ` δpjωqiq (by (1.5.42))

Now, we use the Ricci identity to get:

´Rpqiuωuj ´ Rpqjuωiu “ p∇p∇q ´ ∇q∇pqωij

“ ´pδpiωjq ` δpjωqiq ` pδqiωjp ` δqjωpiq.

Contracting both sides with ψ´
ijl and using skew-symmetry of both sides in i, j we get:

´2Rpqiuωujψ
´
ijl “ ´2δpiωjqψ

´
ijl ` 2δqiωjpψ

´
ijl

2Rpqiuψ
´
iljωuj “ ´2ψ´

pjlωjq ` 2ψ´
qjlωjp

2Rpqiuψ
`
ilu “ ´2ψ´

pljωqj ` 2ψ´
qljωpj

´2Rpqiuψ
`
liu “ ´2ψ`

plq ` 2ψ`
qlp

“ 4ψ`
pql,

which yields (1.5.46).
For (1.5.47), contract (1.5.46) with ωvl to get:

Rpqiuψ
`
liuωvl “ ´2ψ`

pqlωvl

Rpqiuψ
`
iulωvl “ ´2p´ψ´

pqvq

Rpqiup´ψ´
iuvq “ ´2p´ψ´

pqvq

Rpqiuψ
´
viu “ ´2ψ´

pqv,
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as desired.
Finally, as for the first identity, we first compute ∇∇ψ` and then contract it with ψ´.
Explicitly,

∇p∇qψ
`
jkl “ ∇ppδqjωkl ` δqkωlj ` δqlωjkq

“ ´pδqjψ
`
pkl ` δqkψ

`
plj ` δqlψ

`
pjkq (by (1.5.42)).

Now we use the Ricci identity to get:

´Rpqjuψ
`
ukl ´ Rpqkuψ

`
jul ´ Rpqluψ

`
jku “p∇p∇q ´ ∇q∇pqψ`

jkl

“ ´ pδqjψ
`
pkl ` δqkψ

`
plj ` δqlψ

`
pjkq

` pδpjψ
`
qkl ` δpkψ

`
qlj ` δplψ

`
qjkq.

Contracting both sides with ψ´
jkl and using the skew-symmetry in j, k, l we get (1.5.48):

´3Rpqjuψ
`
uklψ

´
jkl “ ´3δqjψ

`
pklψ

´
jkl ` 3δpjψ

`
qklψ

´
jkl

´3Rpqjup4ωujq “ ´3ψ`
pklψ

´
qkl ` 3ψ`

qklψ
´
pkl

12Rpqjuωju “ ´12ωpq ` 12ωqp

Rpqjuωju “ ´2ωpq.

Remark 1.5.49. Proposition 1.5.45 says that R̂ “ ´2 Id on ψ`
ijk, ψ

`
ijk, ωij. Recall that

by (1.5.44), we have Ŵ “ R̂ ` 2 Id . Hence, Ŵψ`, Ŵψ´, Ŵω are all equal to 0, which is
exactly what is needed in order for W to be in Ω2

8 (in the first two or the last two indices),
by Remark 1.5.23. Hence, we have that pWβqab “ Wabijβij will always lie in Ω2

8. Thus,

since R̂ and Ŵ differ by a constant, we can conclude that both Ŵ and R̂ preserve Ω2
8.

We claim that W̊ preserves both S2
´ and S2

`0. For the first subspace, let h P S2
´. Then we

compute:

ppW̊hqωqab “ pW̊hqauωub “ Wkaluhklωub

“ ´pWklua ` Wkualqhklωub

“ ´Wkualhklωub

“ ´Wubalhklωku (because W P Ω2
8 in the first (last) two indices)

“ ´Wubalωklhku (because h P S2
´)

“ Wublkωalhku

“ ´Wklubhkuωal

“ ´pW̊hqlbωal

“ ´pωpW̊hqqab,
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as claimed. The other case is similar, along with recalling thatW is Ricci-traceless. Finally,
since W̊ and R̊ differ by a constant on S2

0 , R̊ also preserves that splitting.
These fact mean that we can consider Ŵ (W̊ resp.) as a self-adjoint operator only on
Ω2

8 (S2
´ and S2

`0 resp.) which will provide better estimates when we apply the Bochner-
Weitzenböck techniques.

1.5.5 Harmonic forms

In this section we derive some useful properties about the harmonic forms. We will use
the fact that harmonic 2-forms lie in Ω2

8 and harmonic 3-forms lie in Ω3
12. See [14, Theorem

3.8].

Definition 1.5.50. For h P S2, let h̃ P T 2 be defined as

h̃kc :“ p∇ihjkqψ`
ijc. ▲

Proposition 1.5.51. Let h P S2
´. Then:

• p∇ahkiqωak “ ´pDiv hqkωki.

• p∇uhikqψ´
uibωka “ h̃ab ` 4phωqab.

Proof. Since, h P S2
´, we have

hikωka ` ωikhka “ 0.

Differentiate it to get:

0 “ p∇uhikqωka ` hikp∇uωkaq ` p∇uωikqhka ` ωikp∇uhkaq

“ p∇uhikqωka ´ hikψ
`
uka ´ ψ`

uikhka ` ωikp∇uhkaq. (1.5.52)

Contract (1.5.52) on a, u to get:

0 “ p∇ahikqωka ` ωikp∇ahkaq

“ ´p∇ahkiqωak ` ωikpDiv hqk

which gives the desired
p∇ahkiqωak “ ´pDiv hqkωki.

For the second identity, contract both sides of (1.5.52) with ψ´
uib to get:

0 “ p∇uhikqωkaψ
´
uib ´ hikψ

`
ukaψ

´
uib ´ ψ`

uikhkaψ
´
uib ` ωikp∇uhkaqψ´

uib
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The first term is what we need to solve for. So let us simplify the others separately:

hikψ
`
ukaψ

´
uib “ hikψ

`
kauψ

´
ibu

“ hikpδkiωab ` δabωki ´ δkbωai ´ δaiωkbq

“ 0 ` 0 ´ hibωai ´ hakωkb

“ ´pωh ` hωqab

“ 0.

Similarly, we have:

ψ`
uikhkaψ

´
uib “ hkaψ

`
kuiψ

´
bui “ hka4ωkb “ 4phωqab,

and

ωikp∇uhkaqψ´
uib “ p∇uhkaqψ´

ubiωki “ p∇uhkaqψ`
ubk “ ´p∇uhkaqψ`

ukb “ ´h̃ab.

Hence,
p∇uhikqωkaψ

´
uib “ h̃ab ` 4phωqab.

Proposition 1.5.53. Let h P S2, so that h̃ P T 2 “ S2 ‘ Ω2. Then h̃skew P Ω2
8.

Proof. By Remark 1.5.24, it is enough to show that Ph̃ “ ´h̃skew. So, we compute:

pPh̃qij “
1

2
h̃abp‹ωqijab

“
1

2
p∇uhvaqψ`

uvbp‹ωqijab

“
1

2
p∇uhvaqp´δuiψ

`
vja ´ δujψ

`
iva ´ δuaψ

`
ijv ` δivψ

`
uja ` δjvψ

`
iua ` δavψ

`
iju ´ ωuvψ

´
ijaq

“
1

2
p0 ` 0 ´ p∇ahvaqψ`

ijv ` p∇uhiaqψ`
uja ` p∇uhjaqψ`

iua ` 0 ´ p∇uhvaqωuvψ
´
ijaq

“
1

2
p´ppDiv hq ⌟ ψ`

qij ´ p∇uhaiqψ
`
uaj ` p∇uhajqψ

`
uai ` pDiv hqkωkaψ

´
ijaq

(by Proposition 1.5.51)

“
1

2
p´ppDiv hq ⌟ ψ`

qij ´ h̃ij ` h̃ji ` pDiv hqkψ
`
kijq

“
1

2
p´ppDiv hq ⌟ ψ`

qij ´ 2ph̃skewqij ` ppDiv hq ⌟ ψ`
qijq

“ ´ph̃skewqij.

as claimed, concluding the proof.
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Proposition 1.5.54. Let M be compact nearly Kähler. Let β P Ω3
12 Ě H3. Hence, β “

h ˛ ψ` for some unique h P S2
´. Then β is harmonic iff Div h “ 0, h̃ “ 2ωh “ ´2hω P S2.

Proof. Note that in fact, since h is symmetric, ω is skew, and that they anticommute, we
have ωh P S2. So the last condition is equivalent to h̃symm “ 2ωh and h̃skew “ 0.
Since M is compact, β is harmonic if and only if d˚β “ 0 and dβ “ 0. Let us look at each
of these conditions separately. So, we have:

0 “ ´ pd˚βqkl

“∇jβjkl

“∇jphjpψ
`
pkl ` hkpψ

`
jpl ` hlpψ

`
jkpq

“p∇jhjpqψ`
pkl ` p∇jhkpqψ`

jpl ` p∇jhlpqψ`
jkp ` hjpp∇jψ

`
pklq ` hkpp∇jψ

`
jplq ` hlpp∇jψ

`
jkpq

“pDiv h ⌟ ψ`
qkl ` p∇jhpkqψ`

jpl ´ p∇jhplqψ
`
jpk ` hjppδjpωkl ` δjkωlp ` δjlωpkq

` 4hkpωpl ` 4hlpωkp (by (1.5.43))

“pDiv h ⌟ ψ`
qkl ` h̃kl ´ h̃lk ` p0 ` hkpωlp ` hlpωpkq ` 4phkpωpl ` hlpωkpq

“pDiv h ⌟ ψ`
qkl ` 2ph̃skewqkl ` 3phω ` ωhqkl

“pDiv h ⌟ ψ`
qkl ` 2ph̃skewqkl,

where we have used that h P S2
´ Ď S2

0 . Recall that by Proposition 1.5.53, h̃skew P Ω2
8,

hence, looking at the types we get:

d˚β “ 0 if and only if

#

Div h “ 0,

h̃skew “ 0.

Next, by Corollary 1.5.35, we know that dβ “ 0 iff xdβ “ 0. We have:

xdβia “ pdβqijklp‹ωqajkl

“ p∇iβjkl ´ ∇jβikl ` ∇kβijl ´ ∇lβijkqp‹ωqajkl

“ p∇iβjklqp‹ωqajkl ´ 3p∇jβiklqp‹ωqajkl. (1.5.55)
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We will compute each term of (1.5.55) separately. First we have:

p∇iβjklqp‹ωqajkl “ ∇iphjpψ
`
pkl ` hkpψ

`
jpl ` hlpψ

`
jkpqp‹ωqajkl

“ 3∇iphjpψ
`
pklqp‹ωqajkl

“ 3p∇ihjpqψ`
pklp‹ωqajkl ` 3hjpp∇iψ

`
pklqp‹ωqajkl

“ 3p∇ihjpq2ψ`
paj ` 3hjppδipωkl ` δikωlp ` δilωpkqp‹ωqajkl

“ 0 ` 3hijωklp‹ωqajkl ` 6hjpδikωlpp‹ωqajkl

“ 12hijωaj ´ 6hjpωplp‹ωqajil

“ 12hijωaj ´ 6hjppδapωji ` δjpωia ` δipωajq

“ ´12phωqia ´ 6hjaωji ´ 6 trphqωia ´ 6hjiωaj

“ ´12phωqia ` 6pωh ` hωqia

“ ´12phωqia.

For the second term of (1.5.55), we have:

´3p∇jβiklqp‹ωqajkl “ ´3∇jphipψ
`
pkl ` hkpψ

`
ipl ` hlpψ

`
ikpqp‹ωqajkl

“ ´3∇jphipψ
`
pklqp‹ωqajkl ´ 6∇jphkpψ

`
iplqp‹ωqajkl. (1.5.56)

Here again, we compute both terms of (1.5.56) separately. First we have:

´3∇jphipψ
`
pklqp‹ωqajkl “ ´3p∇jhipqψ`

pklp‹ωqajkl ´ 3hipp∇jψ
`
pklqp‹ωqajkl

“ ´3p∇jhipq2ψ`
paj ´ 3hippδjpωkl ` δjkωlp ` δjlωpkqp‹ωqajkl

“ ´6p∇jhpiqψ
`
jpa ´ 3hipδjpωklp‹ωqajkl

“ ´6h̃ia ´ 3hij4ωaj

“ ´6h̃ia ` 12phωqia.

For the second term of (1.5.56) we use Proposition 1.5.51 to get:

´6∇jphkpψ
`
iplqp‹ωqajkl “ ´6p∇jhkpqψ`

iplp‹ωqajkl ´ 6hkpp∇jψ
`
iplqp‹ωqajkl

“ 6p∇jhkpqpψ´
ipaωjk ` ψ´

ipjωka ` ψ´
ipkωajq ´ 6hkppδjiωpl ` δjpωli ` δjlωipqp‹ωqajkl

“ ´6pDiv hqsωspψ
´
ipa ` 6p∇jhkpqψ´

ipjωka ` 0 ´ 6hkpωplp‹ωqaikl ´ 6hkpωlip‹ωqapkl ` 0

“ 6pDiv hqsψ
´
iapωsp ´ 6p∇jhpkqψ´

jpiωka ´ 6hkppδapωik ` δipωka ` δkpωaiq ` 0

“ 6pDiv hqsψ
`
ias ´ 6ph̃ai ` 4phωqaiq ´ 6hkaωik ´ 6hkiωka ` 0

“ 6pDiv h ⌟ ψ`
qia ´ 6h̃ai ´ 24phωqia ´ 6pωh ` hωqia

“ 6pDiv h ⌟ ψ`
qia ´ 6h̃ai ´ 24phωqia.
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Thus, combining the last two results we simplify (1.5.56) to get:

´3p∇jβiklqp‹ωqajkl “ p´6h̃ia ` 12phωqiaq ` p6pDiv h ⌟ ψ`
qia ´ 6h̃ai ´ 24phωqiaq

“ 6pDiv h ⌟ ψ`
qia ´ 12ph̃symmqia ´ 12phωqia.

And so, returning to (1.5.55), we have:

xdβia “ ´12phωqia ` 6pDiv h ⌟ ψ`
qia ´ 12ph̃symmqia ´ 12phωqia

“ 6pDiv h ⌟ ψ`
qia ´ 12ph̃symmqia ´ 24phωqia,

which implies:

dβ “ 0 if and only if

#

Div h “ 0,

h̃symm “ ´2hω.

Hence, we get that β is harmonic iff Div h “ 0 and h̃ “ ´2hω “ 2ωh.

Proposition 1.5.57. LetM be compact nearly Kähler. Let β P Ω2
8 Ě H2. Hence, β “ h˛ω

for some unique h P S2
`0. Then β is harmonic iff Div h “ 0, h̃ “ ´3hω P Ω2

8.

Proof. First, note that

βij “ ph ˛ ωqij “ hipωpj ` hjpωip “ phωqij ` pωhqij “ 2phωqij.

As in the proof of the previous theorem, β is harmonic if and only if d˚β “ 0 and dβ “ 0.
Looking at each of the conditions separately, we get:

0 “ ´pd˚βqk “ ∇pβpk “ 2∇pphpuωukq

“ 2pDiv hquωuk ` 2hpu∇pωuk

“ 2pDiv hquωuk ´ 2hpuψ
`
puk

“ 2pDiv hquωuk.

Since ω is non-degenerate, we get that:

dβ “ 0 if and only if Div h “ 0.

Next, by Corollary 1.5.39, we have that dβ “ 0 iff xdβ “ 0. We have:

0 “ xdβia “ pdβqijkψ
`
ajk

“ p∇iβjk ´ ∇jβik ` ∇kβijqψ
`
ajk

“ p∇iβjkqψ`
ajk ´ 2p∇jβikqψ`

ajk. (1.5.58)
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We will compute each term of (1.5.58) separately. First we have:

p∇iβjkqψ`
ajk “ 2∇iphjuωukqψ`

ajk

“ 2p∇ihjuqωukψ
`
ajk ` 2hjup∇iωukqψ`

ajk

“ 2p∇ihjuqp´ψ´
uajq ` 2hjup´ψ`

iukqψ`
ajk

“ 0 ´ 2hjupδiaδuj ´ δijδua ´ ωiaωuj ` ωijωuaq (by (1.5.8))

“ ´2δia trh ` 2hia ` 0 ´ 2pωhωqia

“ 2hia ´ 2phω2
qia (because h P S2

`0)

“ 4hia. (1.5.59)

For the second term of (1.5.58) we have:

´2p∇jβikqψ`
ajk “ ´4∇jphiuωukqψ`

ajk

“ ´4p∇jhiuqp´ψ´
uajq ´ 4hiup´ψ`

jukqψ`
ajk

“ 4p∇jhiuqψ´
uaj ´ 4hiup4δuaq (by (1.5.9))

“ 4p∇jhiuqψ´
uaj ´ 16hia. (1.5.60)

Conbining (1.5.59) and (1.5.60), we get that:

0 “ xdβia “ 4p∇jhiuqψ´
uaj ´ 12hia.

So, dβ “ 0 iff xdβ “ 0 iff p∇jhiuqψ´
uaj “ 3hia iff p∇jhiuqψ´

uajωat “ 3hiaωat.

Since p∇jhiuqψ´
uajωat “ p∇jhiuqψ`

ujt “ ´h̃it, we get that:

dβ “ 0 if and only if h̃ “ ´3hω.

Hence, we conclude that β is harmonic iff Div h “ 0 and h̃ “ ´3hω.
It is easy to see that hω P Ω2 for h P S2

`0, so by Proposition 1.5.53, in this case we indeed

have h̃ “ ´3hω P Ω2
8.

1.5.6 Weitzenböck formulas

The following formulas can be found in [36], however we include the proofs, and when
deriving sufficient conditions for vanishing of b2 and b3, we use slightly different forms of
these formulas.

2-forms

We apply Corollary 1.3.3 to the nearly Kähler setting to get:

∆β “ ∇˚∇β ` 8β ` Ŵβ, for any β P Ω2. (1.5.61)
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Proposition 1.5.62. Let β “ h˛ω P Ω2
8 for some h P S2

`0. Assume β is harmonic. Then:

∇˚∇h ` 6h ` 2W̊h “ 0.

Proof. Using (1.5.61), it is enough to show that ∇˚∇β “ p∇˚∇h ´ 2hq ˛ ω and Ŵβ “

2pW̊hq ˛ ω. So, we proceed with the first claim:

p∇˚∇βqab “ ´∇s∇sβab

“ ´ ∇s∇sph ˛ ωqab

“ ´ ∇s∇sphapωpb ` hbpωapq

“ ´ pp∇s∇shq ˛ ωqab ´ 4p∇shapqp∇sωpbq

´ 2hap∇s∇sωpb (because h P S2
`0 and hence hapωpb “ hbpωap)

“ ´ pp∇s∇shq ˛ ωqab ` 4p∇shapqψ`
spb ` 8hapωpb

(by (1.5.42) and (1.5.43), ∇s∇sωpb “ ´4ωpb)

“pp∇˚∇hq ˛ ωqab ` 4h̃ab ` 8phωqab

“pp∇˚∇hq ˛ ωqab ´ 12phωqab ` 8phωqab (by Proposition 1.5.57)

“pp∇˚∇hq ˛ ωqab ´ 4phωqab

“pp∇˚∇h ´ 2hq ˛ ωqab (becase h ˛ ω “ 2hω for h P S2
`0).

For the second claim, we know that since β P Ω2
8, then Ŵβ P Ω2

8. Hence by Propo-
sition 1.5.32, Ŵβ “ f ˛ ω, for some f P S2

`0. The same proposition also tells us that

f “ 1
2
pŴβqikωak. Computing, we have:

fia “
1

2
pŴβqikωak “

1

2
Wikuvβuvωak “

1

2
Wikuvph ˛ ωquvωak “ Wikuvhupωpvωak

“ ´pWkuiv ` Wuikvqhupωpvωak (by the Bianchi identity)

“ pWivuk ` Wuivkqωkahupωvp

“ Wivukωkahupωvp ` Wuivkωkahupωvp

“ Wivakωkuhupωvp ` Wuiakωkvhupωvp

(by Lemma 1.5.28 and W P Ω2
8 in first (last) two indices)

“ Wivakhkuωupωvp ´ Wuiakhupδkp (we use that h P S2
`0 and that ω2

“ ´ Id)

“ Wivakhkuδuv ´ Wuiakhuk

“ Wivakhkv ´ Wuiakhuk

“ Wvikahvk ` Wuikahuk

“ 2pW̊hqia,

as claimed. Hence, the proof is complete.
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Theorem 1.5.63. Let M be a compact nearly Kähler 6-manifold. If S2pΩ2
8q Q Ŵ ě ´8,

or equivalenty S2pS2
`0q Q W̊ ě ´4, then b2 “ 0.

Proof. Let β P Ω2 be harmonic. Then β P Ω2
8, as mentioned in the start of Section 1.5.5.

Substituting it in (1.5.61), and using the assumption that Ŵ ě ´8, we get that β “ 0, as
there are no parallel non-zero 2-forms.
Using the fact that Ŵβ “ 2pW̊hq ˛ ω, where β “ h ˛ ω P Ω2

8, for h P S2
`0 we get the other

equivalent condition.
Note that using Proposition 1.5.62 in order to get a similar result would have been worse,
as we would have been able to only conclude that if S2pS2

`0q Q W̊ ě ´3 then b2 “ 0. This
is because ∇˚∇β “ p∇˚∇h´ 2hq ˛ ω, so we can see that even though the left hand side is
obviously non-negative, we cannot conclude that from the right hand side.

Theorem 1.5.64. Let M be a compact nearly Kähler 6-manifold. Let δ ď R̄ ď ∆ with
´p∆ ` δq ´ 7

3
p∆ ´ δq ě ´10 or p∆ ` δq ´ 3p∆ ´ δq ě ´6 . Then b2 “ 0.

Proof. If the conditions above hold, then by Corollary 1.2.15 we have that R̂ ě ´10. So,
we use (1.5.44) to get that Ŵ ě ´8 and hence b2 “ 0 by Theorem 1.5.63.

3-forms

We apply Corollary 1.3.5 to the nearly Kähler setting to get:

p∆βqabc “ p∇˚∇βqabc`9βabc`Wabpuβpuc`Wacpuβpbu`Wbcpuβapu, for any β P Ω3. (1.5.65)

Proposition 1.5.66. Let β P Ω3
12, so β “ h ˛ ψ` for some unique h P S2

´. Assume β is
harmonic. Then:

∇˚∇h ` 8h ` 2W̊h “ 0.

Proof. Substitute a harmonic β into (1.5.65) to get the vanishing of the left hand side.
Now, the goal is to rewrite the RHS as A ˛ ψ` for some A P Rg ‘ Rω ‘ S2

´ ‘ Ω2
6. Then

we can conclude that A “ 0. By Proposition 1.5.54, since β is harmonic, Div h “ 0 and
h̃ “ 2ωh. Keeping this in mind, we will simplify each term of the RHS of (1.5.65) one by
one. We start with ∇˚∇β :

p∇˚∇βqabc “ ´ ∇s∇sphapψ
`
pbc ` hbpψ

`
apc ` hcpψ

`
abpq

“pp∇˚∇hq ˛ ψ`
qabc ´ 2pp∇shapqp∇sψ

`
pbcq ` p∇shbpqp∇sψ

`
apcq ` p∇shcpqp∇sψ

`
abpqq

´ phapp∇s∇sψ
`
pbcq ` hbpp∇s∇sψ

`
apcq ` hcpp∇s∇sψ

`
abpqq.

(1.5.67)
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First, note that:

∇s∇sψ
`
ijk “ ∇spδsiωjk ` δsjωki ` δskωijq

“ δsip´ψ`
sjkq ` δsjp´ψ`

skiq ` δskp´ψ`
sijq

“ ´3ψ`
ijk.

Hence, the third term in (1.5.67) is equal to:

´phapp∇s∇sψ
`
pbcq`hbpp∇s∇sψ

`
apcq`hcpp∇s∇sψ

`
abpqq “ 3phapψ

`
pbc`hbpψ

`
apc`hcpψ

`
abpq “ p3h˛ψ`

qabc.

In order to calculate the second term of (1.5.67), we define the 3-form σ by:

σabc :“ p∇shapqp∇sψ
`
pbcq ` p∇shbpqp∇sψ

`
apcq ` p∇shcpqp∇sψ

`
abpq.

We claim that σ “ 2h ˛ ψ`. In order to get this, we first calculate σ̂ and then use
Corollary 1.5.39. So,

σ̂at “σabcψ
`
tbc

“pp∇shapqp∇sψ
`
pbcq ` p∇shbpqp∇sψ

`
apcq ` p∇shcpqp∇sψ

`
abpqqψ`

tbc

“p∇shapqp∇sψ
`
pbcqψ

`
tbc ` 2p∇shbpqp∇sψ

`
apcqψ

`
tbc

“p∇shapqpδspωbc ` δsbωcp ` δscωpbqψ
`
tbc ` 2p∇shbpqpδsaωpc ` δspωca ` δscωapqψ`

tbc

“0 ` p∇bhapqψ`
btcωpc ` p∇chapqψ`

ctbωpb ` 2p∇ahbpqψ`
tbcωpc

` 2p∇phbpqψ`
btcωac ´ 2p∇chbpqψ`

cbtωap (as Div h “ 0)

“ ´ p∇bhapqψ´
btp ´ p∇chapqψ´

ctp ´ 2p∇ahbpqψ´
tbp ´ 0 ´ 2h̃ptωap

“ ´ 2p∇bhapqψ´
btp ´ 0 ´ 2h̃ptωap

“2p∇bhpaqψ´
bpt ´ 2pωh̃qat

“ ´ 2p∇bhpaqψ`
bpuωtu ´ 2pωh̃qat

“ ´ 2h̃auωtu ´ 2pωh̃qat

“2ph̃ωqat ´ 2pωh̃qat

“4pωhωqat ´ 4pω2hqat (because h̃ “ 2ωh)

“ ´ 4phω2
qat ` 4hat

“8hat.

Hence, σ̂ “ 8h P S2
0 . Thus, by Proposition 1.5.39, σ “ 1

4
σ̂ ˛ ψ` “ 2h ˛ ψ`, as claimed.

Thus, returning to (1.5.67), we get:

∇˚∇β “p∇˚∇hq ˛ ψ`
´ 2σ ` 3h ˛ ψ`

“p∇˚∇h ´ 4h ` 3hq ˛ ψ`

“p∇˚∇h ´ hq ˛ ψ`. (1.5.68)
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Next, we proceed to the terms in (1.5.65) with the Weyl tensors. Recall that W is in Ω2
8

with respect to the first two or the last two indices. Hence, Wabijψ
`
abc “ 0. So, we have:

Wabpuβpuc “ Wabpuphpsψ
`
suc ` husψ

`
psc ` hcsψ

`
pusq

“ 2hpsWabpuψ
`
suc.

Similarly, we have:

Wacpuβpbu “ 2hpsWacpuψ
`
sbu,

Wbcpuβapu “ 2hpsWbcpuψ
`
asu.

Thus, the Weyl terms in (1.5.65) are equal to:

Wabpuβpuc ` Wacpuβpbu ` Wbcpuβapu “ 2hpspWabpuψ
`
suc ` Wacpuψ

`
sbu ` Wbcpuψ

`
asuq.

Now, we define the 3-form γ via

γabc – hpspWabpuψ
`
suc ` Wacpuψ

`
sbu ` Wbcpuψ

`
asuq.

We claim that γ “ pW̊hq ˛ ψ`. Again, to get this, we first need to calculate γ̂. We have:

γ̂at “ γabcψ
`
tbc

“ hpspWabpuψ
`
suc ` Wacpuψ

`
sbu ` Wbcpuψ

`
asuqψ`

tbc

“ 2hpsWabpuψ
`
sucψ

`
tbc ` 0

“ 2hpsWabpupδstδub ´ δsbδut ` ωutωsb ` ωbuωstq

“ 0 ´ 2hpbWabpt ` 2hpsWabpuωutωsb ` 2hpsWabpuωbuωst. (1.5.69)

We will simplify the last two terms of (1.5.69) separately. Recall Lemma 1.5.28 which
implies that W and ω commute. Also, we have that h and ω anticommute. Hence, for the
third term we have:

2hpsWabpuωutωsb “ 2Wabpuωuthpsωsb

“ ´2ωpuWabutωpshsb

“ ´2δusWabuthsb

“ ´2Wabsthsb

“ 2Wbasthbs

“ 2pW̊hqat.
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For the fourth term of (1.5.69) we have:

2hpsWabpuωbuωst “ ´2Wabpuωubhpsωst

“ ´2ωpuWabubhpsωst

“ 0,

because Wabub “ 0. Thus, returning to (1.5.69), we get:

γ̂at “ ´2hpbWabpt ` 2pW̊hqat ` 0

“ 2Wabtphbp ` 2pW̊hqat ` 0

“ 4pW̊hqat.

Hence, γ̂ “ 4W̊h P S2
0 . Thus, by Proposition 1.5.39, γ “ 1

4
γ̂ ˛ψ` “ pW̊hq ˛ψ`, as claimed.

This finishes the proof of the proposition, as substituting all the results into (1.5.65), we
get:

0 “ pp∇˚∇h ´ hq ` 9h ` 2γq ˛ ψ`
“ p∇˚∇h ` 8h ` 2W̊hq ˛ ψ`.

Theorem 1.5.70. Let M be a compact nearly Kähler 6-manifold. If S2pS2
´q Q W̊ ě ´9

2

or S2pΩ2
8q Q Ŵ ě ´3, then b3 “ 0.

Proof. The first statement follows from the fact that using (1.5.68) we can rewrite Propo-
sition 1.5.66 as: if β “ h ˛ ψ` is harmonic for some h P S2

´, then:

0 “ ∇˚∇β ` p9h ` 2W̊hq ˛ ψ`.

Hence, assuming S2pS2
´q Q W̊ ě ´9

2
and using the fact that there are no nonzero parallel

h P S2
0 , we get b3 “ 0.

Note that using Proposition 1.5.66 in order to get a similar result would have been worse,
as we would have been able to only conclude that if S2pS2

´q Q W̊ ě ´4 then b3 “ 0. This
is because ∇˚∇β “ p∇˚∇h´ hq ˛ψ`, so we can see that even though the left hand side is
obviosuly non-negative, we cannot conclude that from the right hand side.
Next, S2pΩ2

8q Q Ŵ ě ´3 implies b3 “ 0 because of (1.5.65).
Note that the condition S2pΩ2

8q Q Ŵ ě ´3 is weaker than the condition S2pS2
´q Q W̊ ě ´9

2
.

This is because in the proof of Proposition 1.5.66 we show that Wabpuβpuc ` Wacpuβpbu `

Wbcpuβapu “ p2pW̊hq˛ψ`qabc, for β “ h˛ψ` P Ω3
12, where h P S2

´. That means if we assume

that S2pΩ2
8q Q Ŵ ě c, then W̊ ě 3c

2
, where c P R, but not vice versa.

Theorem 1.5.71. Let M be a compact nearly Kähler 6-manifold. Let δ ď R̄ ď ∆ with
δ ě 1

4
or ∆ ď 17

8
. Then b3 “ 0.
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Proof. Recall that the Einstein constant k “ 5. Then by Theorem 1.2.17, on S2
0 , R̊ ě

´5 ` 6δ and R̊ ě 5 ´ 4∆. Hence, by (1.5.44), W̊ ě ´6 ` 6δ and W̊ ě 4 ´ 4∆.
In order for b3 “ 0, by Theorem 1.5.70 we want W̊ ě ´9

2
. We have ´6 ` 6δ ě ´9

2
iff

δ ě 1
4
; and 4 ´ 4∆ ě ´9

2
iff ∆ ď 17

8
. Hence, the result follows. Recall, that a priori, by

Remark 1.2.9, we have that δ ď 1 ď ∆.
Also, note that we do not use Corollary 1.2.15 along with the statement that S2pΩ2

8q Q Ŵ ě

´3 implies that b3 “ 0. This is because the sufficient conditions in terms of the bounds on
the sectional curvature we would have obtained imply that ∆ ď 17

8
or δ ě 1

4
.

1.6 Examples

We only consider normal homogeneous spaces G{H (see [8].) Denote the Lie algebras of
G and H by g and h respectively. Let m be the orthogonal complement of h in g.
Having a bi-invariant metric on G induces a metric on G{H which gives us a Riemannian
submersion π : G Ñ G{H. The usual decomposition into vertical and horizontal sub-
spaces corresponds to the decomposition g “ m ‘ h. Hence, using the formula (3.30) and
Corollary 3.19 from [8] gives us that for X, Y, Z,W P m we have:

RpX, Y, Z,W q “
1

4
pxrX,W s, rY, Zsy ´ xrX,Zs, rY,W syq `

1

4
pxrX,W sh, rY, Zshy

´ xrX,Zsh, rY,W shyq ´
1

2
xrZ,W sh, rX, Y shy.

Letting X “ W,Y “ Z yields:

RpX, Y, Y,Xq “
1

4
}rX, Y sm}

2
` }rX, Y sh}

2. (1.6.1)

The first formula will allow us to calculate sharp bounds for R̊, R̂ and the second one
bounds for R̄, which we use to check the theorems.

Before going to specific examples, we briefly outline the process of how we get the bounds
for R̂ and R̊.
Consider R̂ first. Note that this is a self-adjoint operator, hence it is bounded by the
smallest and the largest eigenvalues. So, if we take any local orthonormal frame fα of Ω2,
find all the entries of the matrix R̂αβ corresponding to this linear operator, we can find its
eigenvalues.
We already have that ei^ej for i ă j is an orthonormal frame for Ω2. Let fα “ ei^ej, fβ “

eu ^ ev be any two such basis elements. Then from the proof of Theorem 1.2.12, we
have

R̄αβ “ pR̂fα, fβq “
1

2
pR̂fαqklpfβqkl “

1

2
pR̂pei ^ ejqqklpeu ^ evqkl “ pR̂pei ^ ejqquv “ 2Rijuv.
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So, we use Maple to find all the values Rijuv and thus the matrix R̂αβ. As mentioned
before, its largest and smallest eigenvalues are the sharp bounds we are looking for.

Next, we want to also find the bounds for R̊ on S2. As before, it is enough to find the
eigenvalues corresponding to this linear self-adjoint operator.
Let M be of dimension n. Then S2 has dimension npn`1q

2
.

Let te1, . . . , enu be an orthonormal frame, with the dual frame te1, . . . , enu. Now, let:

fij :“ ei b ej ` ej b ei, for i ă j,

fii :“ ei b ei, for i “ 1, . . . , n.

Note that these fij, fii form a frame for S2. Let them be denoted just as fα. We will still
specify if the fα we take is one of fij, for i ă j, or one of fii. So, now, we want to find

the matrix representation of R̊ in terms of the basis of fα’s. Note that this frame is not
orthonormal, but we do not need it to be, since the eigenvalues of the matrix will turn out
to be all the same.
First, note that for h P S2 we have:

h “

n
ÿ

i,j“1

hijei b ej “
ÿ

iăj

hijpei b ej ` ej b eiq `

n
ÿ

i“1

hiiei b ei “
ÿ

iăj

hijfij `

n
ÿ

i“1

hiifii.

That means that the fβ component of h, which we will denote by hβ is equal to hij, for

fβ “ fij, i ď j. Next, we need to find how R̊ acts on these basis elements fα. We claim
that:

pR̊fijqab “ Riajb ` Rjaib, for i ă j, (1.6.2)

pR̊fiiqab “ Riaib. (1.6.3)

We calculate:

pR̊fijqab “
ÿ

k,l

Rkalbpfijqkl

“
ÿ

k,l

Rkalbpei b ej ` ej b eiqkl

“
ÿ

k,l

Rkalbpδikδjl ` δjkδilq

“Riajb ` Rjaib.

Also,

pR̊fiiqab “pR̊pei b eiqqab “ Riaib.
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as claimed.

From (1.6.2) and (1.6.3) it is easy to get that the fβ component of R̊fα, which we denote

by R̊αβ is equal to:

• if fα “ fij, fβ “ fst, i ă j and s ă t, then R̊αβ “ Risjt ` Rjsit,

• if fα “ fij, fβ “ fss, i ă j, then R̊αβ “ 2Risjs,

• if fα “ fii, fβ “ fst, s ă t, then R̊αβ “ Risit,

• if fα “ fii, fβ “ fss, then R̊αβ “ Risis.

Note that we actually need bounds for R̂ or R̊ on specific subspaces of Ω2 or S2 respectively,
but this will be easy to get as we know what these operators do on the complements of the
subspaces we are looking for.
Also, for both examples we identify sup2q with R3 as follows: a1?

2
I ` a2?

2
J ` a3?

2
K ÐÑ

pa1, a2, a3q, where I “

ˆ

i 0
0 ´i

˙

, J “

ˆ

0 ´1
1 0

˙

, K “

ˆ

0 i
i 0

˙

is the standard basis for

sup2q. This takes the inner product trpa˚bq on sup2q to the usual one in R3. For a, b, c, d P

sup2q, it is straightforward to verify that:

xra, bs, rc, dsy “ 2pxa, cyxb, dy ´ xa, dyxb, cyq,

|ra, bs|2 “ 2|a|
2
|b|2 ´ 2xa, by2.

(1.6.4)

1.6.1 SUp3qˆSUp2q

Up1qˆSUp2q

We describe some of the aspects of the nearly G2 structure on this G{H. See [1] for
more information. By SUp2qd we denote the following embedding of SUp2q into SUp3q ˆ

SUp2q:

SUp2qd “ tp

ˆ

A 0
0 0

˙

, Aq, A P SUp2qu.

Also, by Up1q we mean the following embedding into subgroup of SUp3q ˆ tIu Ď SUp3q ˆ

SUp2q:

Up1q “ tp

¨

˝

eit 0 0
0 eit 0
0 0 e´2it

˛

‚, Iq, t P Ru.

Then SUp3qˆSUp2q

Up1qˆSUp2q
is a normal homogeneous space with the metric B “ ´ 1

24
p6 trpuvqq `

4 trpwzqq (this is a multiple of the Killing form), for pu,wq, pv, zq P g “ sup3q ‘ sup2q.
With such a choice of a metric one obtains a nearly G2 structure with τ0 “ ´ 12?

5
and

hence the Einstein constant k “ 54
5
with R “ 378

5
. Then we have the following orthogonal

decomposition:
g “ h ‘ m,
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with
h “ up1q ‘ sup2qd and m “ sup2qo ‘ m1

where:

up1q “ spantp

¨

˝

i 0 0
0 i 0
0 0 ´2i

˛

‚, 0qu, sup2qd “ tp

ˆ

a 0
0 0

˙

, aq, a P sup2qu,

sup2qo “ tp

ˆ

2a 0
0 0

˙

,´3aq, a P sup2qu,m1
“ tp

ˆ

0 z
´z̄T 0

˙

, 0q, z P C2
u.

We define the following quantities:

f1paq :“ p

ˆ

a 0
0 0

˙

, aq P sup2qd Ď h, for a P sup2q,

f2paq :“ p

ˆ

2a 0
0 0

˙

,´3aq P sup2qo Ď m, for a P sup2q,

g1prq :“ pr

¨

˝

i 0 0
0 i 0
0 0 ´2i

˛

‚, 0q P up1q Ď h, for r P R,

g2pzq :“ p

ˆ

0 z
´z̄T 0

˙

, 0q P m1
Ď m, for z P C2,

|z|
2 :“ |z1|

2
` |z2|

2
“ z̄T z, for z “

ˆ

z1
z2

˙

P C2.

Note that all f1, f2, g1, g2 are linear. Next, we compute their norms with respect to the
metric B, where the norm squared is denoted by } ¨ }2 “ Bp¨, ¨q. So:

}f1paq}
2

“ ´
1

24
p6 trp

ˆ

a 0
0 0

˙2

q ` 4 trpa2qq “ ´
1

24
p6 trpa2q ` 4 trpa2qq “ ´

5

12
trpa2q “

5

12
|a|

2.

}f2paq}
2

“ ´
1

24
p6 trp

ˆ

2a 0
0 0

˙2

q ` 4 trpp´3aq
2
qq “ ´

1

24
p24 trpa2q ` 36 trpa2qq trpa2q

“ ´
5

2
“

5

2
|a|

2. (1.6.5)

}g1prq}
2

“ ´
1

24
p6r2 trp

¨

˝

i 0 0
0 i 0
0 0 ´2i

˛

‚

2

qq “ ´
1

24
p6r2p´6qq “

3

2
r2.

}g2pzq}
2

“ ´
1

24
p6 trp

ˆ

0 z
´z̄T 0

˙2

qq “ ´
1

4
trp

ˆ

´zz̄T 0
0 ´z̄T z

˙

q

“
1

4
ptrpzz̄T q ` z̄T zq “

1

4
2z̄T z “

1

2
|z|

2.
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Now, we want to find bounds on R̄, so take X “ f2paq ` g2pzq, Y “ f2pbq ` g2pwq P m for
some a, b P sup2q and z, w P C2, with }X}2 “ }Y }2 “ 1, BpX, Y q “ 0. So, we have:

1 “ }X}
2

“ }f2paq}
2

` }g2pzq}
2

“
5

2
|a|

2
`

1

2
|z|

2,

1 “ }Y }
2

“ }f2pbq}
2

` }g2pwq}
2

“
5

2
|b|2 `

1

2
|w|

2,

0 “ BpX, Y q “ Bpf2paq ` g2pzq, f2pbq ` g2pwqq

“ Bpp

ˆ

2a z
´z̄T 0

˙

,´3aq, p

ˆ

2b w
´w̄T 0

˙

,´3bqq

“ ´
1

24
p6 trp

ˆ

2a z
´z̄T 0

˙ ˆ

2b w
´w̄T 0

˙

q ` 4 trpp´3aqp´3bqqq

“ ´
1

24
p6 trp

ˆ

4ab ´ zw̄T 2aw
´2z̄T b ´z̄Tw

˙

q ` 36 trpabqq

“ ´
1

24
p24 trpabq ´ 6 trpzw̄T

q ´ 6z̄Tw ` 36 trpabqq

“ ´
1

24
p60 trpabq ´ 6w̄T z ´ 6z̄Twq,

and thus:

w̄T z ` z̄Tw “ 10 trpabq.

Next, we need to calculate rX, Y s. We have:

rX, Y s “ rf2paq ` g2pzq, f2pbq ` g2pwqs

“ rf2paq, f2pbqs ` rg2pzq, f2pbqs ` rf2paq, g2pwqs ` rg2pzq, g2pwqs.

We will calculate each term separately:

rf2paq, f2pbqs “ rp

ˆ

2a 0
0 0

˙

,´3aq, p

ˆ

2b 0
0 0

˙

,´3bqs

“ p

ˆ

4ra, bs 0
0 0

˙

, 9ra, bsq

“ 6f1pra, bsq ´ f2pra, bsq.
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Next:

rg2pzq, f2pbqs “ rp

ˆ

0 z
´z̄T 0

˙

, 0q, p

ˆ

2b 0
0 0

˙

,´3bqs

“ pr

ˆ

0 z
´z̄T 0

˙

,

ˆ

2b 0
0 0

˙

s, 0q

“ p

ˆ

0 0
´2z̄T b 0

˙

´

ˆ

0 2bz
0 0

˙

, 0q

“ p

ˆ

0 ´2bz
´2z̄T b 0

˙

, 0q

“ ´2g2pbzq.

Similarly:

rf2paq, g2pwqs “ ´rg2pwq, f2paqs “ 2g2pawq.

Finally:

rg2pzq, g2pwqs “ pr

ˆ

0 z
´z̄T 0

˙

,

ˆ

0 w
´w̄T 0

˙

s, 0q

“ p

ˆ

´zw̄T 0
0 ´z̄Tw

˙

´

ˆ

´wz̄T 0
0 ´w̄T z

˙

, 0q

“ p

ˆ

´zw̄T ` wz̄T 0
0 ´z̄Tw ` w̄T z

˙

, 0q

“ p
´z̄Tw ` w̄T z

´2i

¨

˝

i 0 0
0 i 0
0 0 ´2i

˛

‚, 0q ` p

ˆ

´zw̄T ` wz̄T ` ´z̄Tw`w̄T z
2

I 0
0 0

˙

, 0q

(Let A :“ ´zw̄T
` wz̄T `

´z̄Tw ` w̄T z

2
I P sup2q)

“ g1p
´z̄Tw ` w̄T z

´2i
q ` p

ˆ

A 0
0 0

˙

, 0q

“ g1p
´z̄Tw ` w̄T z

´2i
q `

3

5
f1pAq `

1

5
f2pAq.

Hence we conclude that:
rX, Y s “ rX, Y sm ` rX, Y sh,

where

rX, Y sm “ f2p´ra, bs `
1

5
Aq ` g2p2paw ´ bzqq,

rX, Y sh “ f1p6ra, bs `
3

5
Aq ` g1p

´z̄Tw ` w̄T z

´2i
q.
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Applying the formula (1.6.1) for the sectional curvature, along with (1.6.5), we get:

R̄pX ^ Y q “
1

4
}rX, Y sm}

2
` }rX, Y sh}

2

“
1

4
p}f2p´ra, bs `

1

5
Aq}

2
` }g2p2paw ´ bzqq}

2
q ` }f1p6ra, bs `

3

5
Aq}

2

` }g1p
´z̄Tw ` w̄T z

´2i
q}

2

“
1

4
p
5

2
| ´ ra, bs `

1

5
A|

2
`

1

2
|2paw ´ bzq|

2
q `

5

12
|6ra, bs `

3

5
A|

2

`
3

2

´

´z̄Tw ` w̄T z

´2i

¯2

“
5

8
p|ra, bs|2 `

1

25
|A|

2
`

2

5
trpra, bsAqq `

1

2
|aw ´ bz|

2

`
5

12
p36|ra, bs|2 `

9

25
|A|

2
´

36

5
trpra, bsAqq ´

3

8
p´z̄Tw ` w̄T zq

2

“
125

8
|ra, bs|2 `

7

40
|A|

2
´

11

4
trpra, bsAq `

1

2
|aw ´ bz|

2
´

3

8
p´z̄Tw ` w̄T zq

2.

It is straightforward to check that for a P sup2q, w P C2 we have:

|aw|
2

“
1

2
|a|

2
|w|

2. (1.6.6)

Polarizing, we also get:

xaw, azy “
1

2
|a|

2
xw, zy,

xaz, bzy ` xbz, azy “ |z|
2
xa, by,

xaz, bwy ` xbw, azy ` xbz, awy ` xaw, bzy “ xa, bypxz, wy ` xw, zyq.

For simplicity, define:

α :“ xz, wy P C,
σ :“ ´xaw, bzy P C,
φ :“ ´xaz, bwy P C.
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Then some calculation yields that:

125

8
|ra, bs|2 “

125

4
|a|

2
|b|2 ´

125

4
xa, by2,

7

40
|A|

2
“

7

20
|z|

2
|w|

2
´

7

80
α2

´
7

80
ᾱ2

´
7

40
αᾱ,

´
11

4
trpra, bsAq “

11

4
pσ ` σ̄ ´ φ ´ φ̄q,

1

2
|aw ´ bz|

2
“

1

4
|a|

2
|w|

2
`

1

4
|b|2|z|

2
´ σ ´ σ̄,

´
3

8
p´z̄Tw ` w̄T zq

2
“ ´

3

8
α2

´
3

8
ᾱ2

`
3

4
αᾱ.

Recall that we assumed:

1 “
5

2
|a|

2
`

1

2
|z|

2,

1 “
5

2
|b|2 `

1

2
|w|

2,

α ` ᾱ “ ´10xa, by.

Isolating xa, by, |a|2, |b|2 and substituting these resullts into expressions found earlier, we
get that:

R̄pX ^ Y q “ 5 ´
12

5
|z|

2
´

12

5
|w|

2
`

3

2
|z|

2
|w|

2
´

31

40
α2

´
31

40
ᾱ2

´
1

20
αᾱ

`
7

4
σ `

7

4
σ̄ ´

11

4
φ ´

11

4
φ̄.

Note that each σ, σ̄, φ, φ̄ in absolute value is ď 1
2
|a||b||z||w|, by Cauchy-Schwarz and (1.6.6).

Hence:

R̄pX ^ Y q ď 5 ´
12

5
|z|

2
´

12

5
|w|

2
`

3

2
|z|

2
|w|

2
`

3

2
|α|

2
`

9

2
|a||b||z||w|

ď 5 ´
12

5
|z|

2
´

12

5
|w|

2
` 3|z|

2
|w|

2
`

9

2
|a||b||z||w|.

One can check that on 1 “ 5
2
|a|2 ` 1

2
|z|2, 1 “ 5

2
|b|2 ` 1

2
|w|2,

R̄pX ^ Y q ď
37

5
.

Numerical evidence suggests that 1
5

ď R̄pX ^ Y q, however the author was unable to verify
this. Nevertheless, we have 0 ď R̄pX ^ Y q and we can show that both values 1

5
and 37

5
can

be achieved:

a “ b “ 0, z “
?
2

ˆ

1
0

˙

, w “
?
2

ˆ

i
0

˙
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gives orthonormal X, Y with R̄pX ^ Y q “ 37
5
, and

a “ ´

?
5

5
I, b “ 0, z “ 0, w “

?
2

ˆ

0
i

˙

gives orthonormal X, Y with R̄pX ^ Y q “ 1
5
.

A computation on Maple reveals that eigenvalues of R̂ on Ω2 are
´

´ 114
5

¯

1
,
´

´ 66
5

¯

3
,

´

´ 18
5

¯

7
,
´

6
5

¯

10
where by the subscript we denote its multiplicity. Note that this makes

sense, because for β P Ω2
7, from Remark 1.4.2, β “ X ⌟ φ and hence a quick calculation

gives that R̂β “ X ⌟ pR̂φq “ X ⌟ p´
τ20
8
φq “ ´

τ20
8
β “ ´18

5
β, so we get seven eigenvalues

´18
5
. Hence, we conlude that on Ω2

14, ´114
5

ď R̂ ď 6
5
.

Similarly, Maple shows that eigenvalues of R̊ on S2 are
´

´54
5

¯

1
,
´

´47
5

¯

1
,
´

´23
5

¯

7
,
´

13
5

¯

8
, 55,

´

37
5

¯

6
.

Again, this makes sense, as we know that R̊g “ ´
3τ20
8
g “ ´54

5
g. Hence, on S2

0 ,´
47
5

ď R̊ ď
37
5
.

So, we summarize and check the theorems. We have:

1

5
ď R̄ ď

37

5
,

´
114

5
ď R̂ ď

6

5
on Ω2

14,

´
47

5
ď R̊ ď

37

5
on S2

0 .

Corollary 1.2.14 gives us that ´122
5

ď R̂ ď 46
5
on Ω2

14 which is consistent.

Corollary 1.2.17 gives us that ´47
5

ď R̊ ď 49
5
on S2

0 , which is also consistent with the first
inequality being sharp.
For the main Theorems, we know in this case that b2 “ 1. So it must be false that Ŵ ě ´18
on Ω2

14, by Theorem 1.4.7. By (1.4.5), we have that Ŵ ě ´19.2 on Ω2
14, with the eigenvalue

value ´19.2 achieved. Hence, we get no contradiction.
As for Theorem 1.4.14 we cannot predict whether W̊ ě ´54

5
on S2

0 or Ŵ ě ´36
5

on Ω2
14

must hold or not, because b3 “ 0. However, these inequalities do not hold as we have
W̊ ě ´56

5
on S2

0 and Ŵ ě ´96
5
on Ω2

14 with these lower bounds attained. This shows that,
in general, these sufficient conditions are not necessary.

1.6.2 SUp2qˆSUp2qˆSUp2q

SUp2q

First, we describe the nearly Kähler structure on this G{H.
The SUp2q in the denominator is embedded diagonally in the numerator, meaning it
is:

tpA,A,Aq P SUp2q ˆ SUp2q ˆ SUp2q : A P SUp2qu.
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Recall that we decompose g “ h ‘ m. Then m “ tpa, b,´pa ` bq : a, b P sup2qqu.
Equipping G with the metric Bppa, b, cq, pu, v, wqq “ 1

3
ptrpa˚uq ` trpb˚vq ` trpc˚wqq, for

pa, b, cq, pu, v, wq P g makes G{H into a normal homogeneous space with scalar curvature
30.
The nearly Kähler structure is obtained from the almost complex structure, which is defined
as follows:

Jppa, b, cqq “
2

?
3

pb, c, aq `
1

?
3

pa, b, cq,

for pa, b, cq P m. It follows from c “ ´a ´ b that J2 “ ´ I .
Define the following quantities:

fpaq :“ pa, a, aq P h Ď g, for a P sup2q

gpb, cq :“ pb, c,´pb ` cqq P m Ď g, for b, c P sup2q.

Then for pa, b, cq P g, we have that

pa, b, cqh “ fp
a ` b ` c

3
q,

pa, b, cqm “ gp
2a ´ b ´ c

3
,

´a ` 2b ´ c

3
q.

(1.6.7)

Note that also |fpaq|2 “ |a|2, and |gpb, cq|2 “ 1
3
p|b|2 ` |c|2 ` |b ` c|2q.

We want to calculate the bounds on R̄. Clearly from the formula (1.6.1) for R̄, we see that
0 ď R̄. We claim that R̄ ď 9

4
. Take X, Y P m with }X}2 “ 1 “ }Y }2, BpX, Y q “ 0. Let

X “ gpb, cq, Y “ gpd, eq, for b, c, d, e P sup2q. Then:

rX, Y s “ rpb, c,´pb ` cqq, pd, e,´pd ` eqqs

“ prb, ds, rc, es, rb, ds ` rc, es ` rb, es ` rc, dsq.

Let A :“ rb, ds, B :“ rc, es, C :“ rb, es ` rc, ds so that rX, Y s “ pA,B,A ` B ` Cq.
By (1.6.7):

rX, Y sh “ fp
1

3
p2A ` 2B ` Cqq,

rX, Y sm “ gp
1

3
pA ´ 2B ´ Cq,

1

3
p´2A ` B ´ Cqq.
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Hence, equation (1.6.1) gives:

R̄pX ^ Y q “
1

4
|rX, Y sm|

2
` |rX, Y sh|

2

“
1

4
¨
1

3
p|
1

3
pA ´ 2B ´ Cq|

2
` |

1

3
p´2A ` B ´ Cq|

2
` |

1

3
p´A ´ B ´ 2Cq|

2
q

` |
1

3
p2A ` 2B ` Cq|

2

“
1

108
|A ´ 2B ´ C|

2
`

1

108
| ´ 2A ` B ´ C|

2
`

1

108
| ´ A ´ B ´ 2C|

2

`
1

9
|2A ` 2B ` C|

2

“
1

108
p|A|

2
` 4|B|

2
` |C|

2
´ 4xA,By ´ 2xA,Cy ` 4xB,Cyq

`
1

108
p4|A|

2
` |B|

2
` |C|

2
´ 4xA,By ` 4xA,Cy ´ 2xB,Cyq

`
1

108
p|A|

2
` |B|

2
` 4|C|

2
` 2xA,By ` 4xA,Cy ` 4xB,Cyq

`
1

9
p4|A|

2
` 4|B|

2
` |C|

2
` 8xA,By ` 4xA,Cy ` 4xB,Cyq

“
1

2
|A|

2
`

1

2
|B|

2
`

1

6
|C|

2
`

5

6
xA,By `

1

2
xA,Cy `

1

2
xB,Cy.

Using (1.6.4) we now get:

|A|
2

“ |rb, ds|
2

“ 2|b|2|d|
2

´ 2xb, dy
2,

|B|
2

“ |rc, es|2 “ 2|c|2|e|2 ´ 2xc, ey2,

|C|
2

“ |rb, es ` rc, ds|
2

“ |rb, es|2 ` |rc, ds|
2

` 2xrb, es, rc, dsy

“ 2|b|2|e|2 ´ 2xb, ey2 ` 2|c|2|d|
2

´ 2xc, dy
2

` 4pxb, cyxe, dy ´ xb, dyxc, eyq,

xA,By “ xrb, ds, rc, esy “ 2pxb, cyxd, ey ´ xb, eyxc, dyq,

xA,Cy “ xrb, ds, rb, es ` rc, dsy “ xrb, ds, rb, esy ` xrb, ds, rc, dsy

“ 2p|b|2xd, ey ´ xb, eyxb, dy ` xb, cy|d|
2

´ xb, dyxc, dyq,

xB,Cy “ xrc, es, rb, es ` rc, dsy “ xrc, es, rb, esy ` xrc, es, rc, dsy

“ 2pxc, by|e|2 ´ xc, eyxb, ey ` |c|2xd, ey ´ xc, dyxc, eyq.
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Substituting the above into R̄pX ^ Y q, we get:

R̄pX ^ Y q “|b|2|d|
2

´ xb, dy
2

` |c|2|e|2 ´ xc, ey2

`
1

3
|b|2|e|2 ´

1

3
xb, ey2 `

1

3
|c|2|d|

2
´

1

3
xc, dy

2
`

2

3
xb, cyxe, dy

´
2

3
xb, dyxc, ey `

5

3
xb, cyxd, ey ´

5

3
xb, eyxc, dy

` |b|2xd, ey ´ xb, eyxb, dy ` |d|
2
xb, cy ´ xb, dyxc, dy ` |e|2xc, by

´ xc, eyxb, ey ` |c|2xd, ey ´ xc, dyxc, ey.

(1.6.8)

Recall that we assumed }X}2 “ 1 “ }Y }2, BpX, Y q “ 0. Hence 1 “ }X}2}Y }2 ´BpX, Y q2.
(Note this is just saying }X ^ Y }2 “ 1. We could have assumed just this, however, the
first assumption makes the argument easier.) We have:

}X}
2

“
1

3
p|b|2 ` |c|2 ` |b ` c|2q “

2

3
p|b|2 ` |c|2 ` xb, cyq.

}Y }
2

“
1

3
p|d|

2
` |e|2 ` |d ` e|2q “

2

3
p|d|

2
` |e|2 ` xd, eyq.

BpX, Y q “
1

3
pxb, dy ` xc, ey ` xb ` c, d ` eyq

“
1

3
p2xb, dy ` 2xc, ey ` xb, ey ` xc, dyq. (1.6.9)

Hence,

1 “}X}
2
}Y }

2
´ BpX, Y q

2

“
4

9
p|b|2 ` |c|2 ` xb, cyqp|d|

2
` |e|2 ` xd, eyq ´

1

9
p2xb, dy ` 2xc, ey ` xb, ey ` xc, dyq

2.

or equivalently,

9

4
“|b|2|d|

2
` |b|2|e|2 ` |b|2xd, ey ` |c|2|d|

2
` |c|2|e|2 ` |c|2xd, ey ` |d|

2
xb, cy ` |e|2xb, cy

` xb, cyxd, ey ´ xb, dy
2

´ xc, ey2 ´
1

4
xb, ey2 ´

1

4
xc, dy

2
´ 2xb, dyxc, ey ´ xb, dyxb, ey

´ xb, dyxc, dy ´ xc, eyxb, ey ´ xc, eyxc, dy ´
1

2
xb, eyxc, dy,

which can be rearranged to get:

|b|2|d|
2

` |b|2xd, ey ` |c|2|e|2 ` |c|2xd, ey ` |d|
2
xb, cy ` |e|2xb, cy ´ xb, dy

2
´ xc, ey2

´xb, dyxb, ey ´ xb, dyxc, dy ´ xc, eyxb, ey ´ xc, eyxc, dy

“
9

4
´ |b|2|e|2 ´ |c|2|d|

2
´ xb, cyxd, ey `

1

4
xb, ey2 `

1

4
xc, dy

2
` 2xb, dyxc, ey `

1

2
xb, eyxc, dy.
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Substituting this into (1.6.8), we get:

R̄pX, Y q “
9

4
´

2

3
|b|2|e|2 ´

2

3
|c|2|d|

2
`

4

3
xb, cyxd, ey ´

1

12
xb, ey2 ´

1

12
xc, dy

2

`
4

3
xb, dyxc, ey ´

7

6
xb, eyxc, dy

“
9

4
´

1

12

˜

8
´

|b|2|e|2 ` |c|2|d|
2

´ 2xb, cyxd, ey ´ 2xb, dyxc, ey ` 2xb, eyxc, dy

¯

¸

´
1

12

´

xb, ey ´ xc, dyq
2
¯

.

We claimed that R̄ ď 9
4
, hence it is enough to show that

|b|2|e|2 ` |c|2|d|
2

´ 2xb, cyxd, ey ´ 2xb, dyxc, ey ` 2xb, eyxc, dy ě 0.

We note that this expression is equal to:

p|b|2|e|2 ´ xb, ey2 ` |c|2|d|
2

´ xc, dy
2

´ 2xb, cyxd, ey ` 2xb, dyxc, eyq

` pxb, ey2 ` 2xb, eyxc, dy ` xc, dy
2
q ´ 4xb, dyxc, ey

“ p
1

2
|rb, es|2 `

1

2
|rc, ds|

2
´ xrb, es, rc, dsyq ` pxb, ey ` xc, dyq

2
´ 4xb, dyxc, ey

“
1

2
|rb, es ´ rc, ds|

2
` pxb, ey ` xc, dyq

2
´ 4xb, dyxc, ey. (1.6.10)

We assumed that BpX, Y q “ 0, so from (1.6.9), we get that xb, ey ` xc, dy “ ´2pxb, dy `

xc, eyq. Thus, continuing with (1.6.10), we get:

1

2
|rb, es ´ rc, ds|

2
` 4pxb, dy ` xc, eyq

2
´ 4xb, dyxc, ey,

which is always non-negative because for any real x, y, we have 4px ` yq2 ´ 4xy “ 4px2 `

xy ` y2q ě 0.
Finally, we need to show that the bounds 0 ď R̄ ď 9

4
are sharp. To do this, we take an

explicit orthonormal basis for m:

e1 “ gp

?
3

2
I, 0q, e2 “ gp

?
3

2
J, 0q, e3 “ gp

?
3

2
K, 0q,

e4 “ gp
1

2
I,´Iq, e5 “ gp

1

2
J,´Jq, e6 “ gp

1

2
K,´Kq.

For this basis we also have: Jei “ ei`3, 1 ď i ď 3.
Then one easily calculates that R̄pe1 ^ e4q “ 0, R̄pe1 ^ e2q “ 9

4
, as we claimed.

A computation on Maple reveals that eigenvalues of R̂ on Ω2 are ´73,´27, 15, where by
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the subscript we denote its multiplicity. Note that this makes sense, as we know from the
discussion following the proof of Proposition 1.5.45 that R̂ is ´2 Id on Ω2

1 and Ω2
6, so we

get seven eigenvalues ´2. Hence, we conlude that on Ω2
8, ´7 ď R̂ ď 1.

Similarly, Maple shows that eigenvalues of R̊ on S2 are ´51,´42,
´

´ 3
2

¯

3
, 210,

´

5
2

¯

5
. Again,

this makes sense, as we know that R̊g “ ´5g, because the Einstein constant is 5. Hence,
on S2

0 ,´4 ď R̊ ď 5
2
. Furthermore, using that Ŵβ “ 2pW̊hq ˛ ω for β “ h ˛ ω P Ω2

8, where

h P S2
`´, it can be easily shown that in fact the eigenvalues

´

´ 3
2

¯

3
,
´

5
2

¯

5
occur on S2

`0

and ´42, 210 occur on S2
´. So, we summarize and check the theorems. We have:

0 ď R̄ ď
9

4
,

´7 ď R̂ ď 1 on Ω2
8,

´4 ď R̊ ď
5

2
on S2

0 ,

´
3

2
ď R̊ ď

5

2
on S2

`0,

´4 ď R̊ ď 2 on S2
´.

Corollary 1.2.15 gives us that ´15
2

ď R̂ ď 3 on Ω2
8 which is consistent.

Corollary 1.2.17 gives us that ´4 ď R̊ ď 5 on S2
0 , which is consistent with the first

inequality being sharp.
Corollary 1.2.25 gives us that ´7

4
ď R̊ ď 7

2
on S2

`0, which is also consistent.

For the main theorems, we know in this case that b3 “ 2. So it must be false that W̊ ě ´4
on S2

0 , by Theorem 1.5.70. By (1.5.44), we have that ´5 ď W̊ on S2
0 , with the eigenvalue

value ´5 achieved. Hence, we get no contradiction. Similarly, R̂ achieves ´7, so Ŵ achieves
´5, hence we indeed have that Ŵ ě ´3 is false.
As for Theorem 1.5.63 we cannot predict whether Ŵ ě ´8 on Ω2

8 (or equivalenty S2pS2
`0q Q

W̊ ě ´4) must hold or not, because b2 “ 0. However, we can actually deduce the vanishing
of b2, since by (1.5.44), we can get that ´5 ď Ŵ on Ω2

8, so the assumption of the theorem is
satisfied. Finally, note that it is even possible to deduce that b2 “ 0 from Theorem 1.5.64,
since we get that ´p∆`δq´ 7

3
p∆´δq ě ´10 and p∆`δq´3p∆´δq ě ´6 both hold.
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Chapter 2

A special class of k-harmonic maps
inducing calibrated fibrations

2.1 Introduction

The natural partial differential equations which arise in Riemannian geometry are usually
second order. Some important examples are:

(i) an Einstein metric [Ricg “ λg, where Ric is the Ricci curvature]

(ii) a minimal submanifold [H “ 0, where H is the mean curvature]

(iii) a Yang–Mills connection ∇ on a vector bundle [pd∇q˚F∇ “ 0, where F∇ is the
curvature]

(iv) a k-harmonic map u : pM1, g1q Ñ pM2, g2q between Riemannian manifolds
divp|du|k´2duq “ 0

All of the above geometric objects are also variational. That is, the PDEs are Euler–
Lagrange equations for some natural geometric functional or “energy”, and hence such
objects are critical points of these functionals, but may not in general be (local) min-
ima.

A common feature is that when there is additional geometric structure present, one can
identify a natural special class of solutions which:

• satisfy a (usually fully nonlinear) first order PDE, and

• are actually global minimizers of the functional within a particular class of variations.

With respect to the particular examples above, these special first order solutions are:

(i) a special holonomy metric: Calabi–Yau, hyperkähler, quaternionic-Kähler, G2, or
Spinp7q. These are all Einstein, and most are Ricci-flat. [The condition of special
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holonomy is first order on the metric in each case, but there does not seem to be any
unified way of describing these, and it is unknown if they are global minimizers of
the Einstein–Hilbert functional within some particular class of variations.]

(ii) a calibrated submanifold of a special holonomy manifold. These are all minimal. The
calibrated condition is a first order condition on the immersion. They are global
minimizers of the volume functional in a given homology class.

(iii) an instanton on a vector bundle over a special holonomy manifold. These are all
Yang–Mills. The instanton condition is a first order condition on the connection,
being an algebraic condition on the curvature. In many cases, a characteristic class
argument shows that they are global minimizers of the Yang–Mills energy.

Note that all the special first order solutions in (i), (ii), and (iii) described above are
related to Riemannian manifolds with special holonomy. [This is not necessary. Classical
self-dual and anti-self-dual instantons are special Yang–Mills connections on a Riemannian
4-manifold, with no special holonomy.]

In this paper, we discuss two classes of special first order solutions to (iv) above, called
Smith maps. They are special types of k-harmonic maps u : pM1, g1q Ñ pM2, g2q between
pairs of Riemannian manifolds, which are intimately related to both calibrated geometry
and conformal geometry :

• For u : pLk, gq Ñ pMn, hq, with k ď n and α P ΩkpMq a closed calibration, we
define a Smith immersion, which is a special type of weakly conformal k-harmonic
map. If L0 is the open subset on which du ‰ 0, then u : L0 Ñ M is an immersion,
whose image upL0q is k-dimensional α-calibrated submanifold of pM,hq. Moreover,
the notion of Smith immersion is invariant under conformal change of the domain
metric g. Conversely, if u : pLk, gq Ñ pMn, hq is a weakly conformal k-harmonic map
such that upL0q is α-calibrated, then u is a Smith immersion. (Theorem 2.3.2.)

• For u : pMn, hq Ñ pLk, gq, with n ě k and α P Ωn´kpMq a closed calibration, we
define a Smith submersion, which is a special type of weakly horizontally conformal
k-harmonic map. IfM0 is the open subset on which du ‰ 0, then the fibres u´1tupxqu

of u : M0 Ñ L are pn´kq-dimensional α-calibrated submanifolds of pM,hq. Moreover,
the notion of Smith submersion is invariant under horizontally conformal change of
the domain metric h. Conversely, if u : pMn, hq Ñ pLk, gq is a weakly horizontally
conformal k-harmonic map such that the fibres of u|M0 are α-calibrated, then u is a
Smith submersion. (Theorem 2.4.10.)

The notion of Smith immersions was previously studied by Cheng–Karigiannis–Madnick
in [10] and [11, Section 3.3], inspired by an unpublished preprint of Smith [40]. We review
it here, and clarify that it extends from calibrations associated to vector cross products to
any calibrations. (This was implicit in [11, Section 3.3].) The notion of Smith submersions
is new in the present chapter.

74



In each case, we establish a fundamental pointwise inequality in Theorems 2.3.2 and 2.4.10,
respectively, which itself is obtained by combining the fundamental inequality of calibrated
geometry and the Hadamard inequality. We then use these pointwise inequalities, together
with the assumption that dα “ 0, to prove the associated integral energy inequalities in
Theorems 2.3.6 and 2.4.18, respectively, when the domain is compact. This immediately
yields the k-harmonicity of such maps. We also give direct proofs of k-harmonicity by
differentiating the Smith equations, which also explicitly show the importance of the dα “ 0
assumption.

The two constructions should also be viewed as special first order versions of the following
particular classical results [44, (3.5) and (3.10)] from harmonic map theory:

• a Riemannian immersion u : pL, gq Ñ pM,hq is harmonic ðñ the image is minimal,

• a Riemannian submersion u : pM,hq Ñ pL, gq is harmonic ðñ the fibres are mini-
mal.

In the final section, we briefly discuss the analytic results for Smith immersions which
were established in [10], discuss several explicit examples of Smith submersions with non-
compact domains, comment on the relevance of Smith submersions to the SYZ and GYZ
“conjectures” involving special Lagrangian and coassociative fibrations, and collect several
open questions for future study.

Conventions and notation.

All manifolds are oriented Riemannian manifolds, though not necessarily compact. As
usual a superscript on a manifold such as Mn means dimM “ n. All maps between
manifolds are smooth.

We often use the Riemannian metric (via the musical isomorphism) to identify vector fields
and 1-forms, and more generally tensors of mixed type with covariant tensors. We use T m

for the space of smooth m-tensors (that is, smooth sections of the mth tensor power of the
cotangent bundle), we use Ωp for the space of p-forms, ‹ for the Hodge star operator, and
vol for the Riemannian volume form. We use ∇ for the Levi-Civita connection. We write
div : T m Ñ T m´1 for the Riemannian divergence, given in terms of a local orthonormal
frame by pdivAqj1¨¨¨jm´1 “ ∇iAij1¨¨¨jm´1 . (We sum over repeated indices.)

For us, a calibration α is a comass one differential form, not necessarily closed. (Some
authors call this a semi-calibration or pre-calibration.) When α is also closed, we call it a
closed calibration.

The following result is a version of Hadamard’s inequality that we use frequently.

Proposition 2.1.1 (Hadamard’s inequality). Let A : pV n1
1 , g1q Ñ pV n2

2 , g2q be a linear map
between real inner product spaces where nk “ dimVk. Define |A|2 :“ trpA˚Aq (and similarly
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for other linear maps between real inner product spaces). Then |Λn1A| ď 1
p
?
n1qn1

|A|n1 with

equality if and only if A˚g2 “ λ2g1 with λ2 “ 1
n1

|A|2.

Proof. A proof can be found, for example, in [10, Corollary 2.5 and Lemma 2.1].

2.2 Preliminaries

In this section we review some standard material on calibrations and p-harmonic maps.

2.2.1 Calibrations

The classical theory of calibrated geometry was initiated by Harvey–Lawson [20]. A good
reference for beginners is the text of Joyce [23]. Let pMn, hq be a Riemannian mani-
fold.

Definition 2.2.1. Let α P Ωk on pMn, hq. We say that α is a calibration if

αpv1 ^ ¨ ¨ ¨ ^ vkq ď |v1 ^ ¨ ¨ ¨ ^ vk| for all v1, . . . , vk P TxM and all x P M. (2.2.2)

This is clearly equivalent to saying that

´1 ď αpe1, . . . , ekq ď 1 for all orthonormal e1, . . . , ek P TxM and all x P M .

Let Lk be an oriented submanifold of M . We say L is calibrated with respect to α if
α|L “ volL, where volL is the Riemannian volume form associated to the orientation and
the induced metric h|L. (That is, L is α-calibrated if equality in (2.2.2) is attained on each
oriented tangent space TxL of L.) ▲

The classical fundamental theorem of calibrated geometry of Harvey–Lawson [20] says that if
the calibration form α is closed, then a calibrated submanifold is locally volume minimizing
in its homology class. In particular, if dα “ 0, then a calibrated submanifold is minimal
(has vanishing mean curvature).

We collect here some results and definitions on calibrations which are needed later.

Lemma 2.2.3 (The first cousin principle). Let α P Ωk be a calibration, and let Lx P

ΛkpTxMq be an oriented k-dimensional subspace which is calibrated with respect to α. If
e1, . . . ek´1 are orthonormal in Lx and w P LK

x , then αpe1, . . . , ek´1, wq “ 0.

Proof. We can choose ek P Lx so that e1, . . . , ek is an oriented orthonormal basis of Lx.
Let wt “ pcos tqek ` psin tqw. Then e1, . . . , ek´1, wt are orthonormal for all t P R. Thus we
have that

fptq :“ αpe1, . . . , ek´1, wtq “ pcos tqαpe1, . . . , ek´1, ekq ` psin tqαpe1, . . . , ek´1, wq
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satisfies fptq ď 1 for all t P R with equality at t “ 0. Thus f 1p0q “ αpe1, . . . , ek´1, wq “

0.

Proposition 2.2.4. If α P Ωk is calibration, then ‹α P Ωn´k is also a calibration.

Proof. Using the metric we can identify ΛkpTxMq with ΛkpT ˚
xMq. Let Πx “ e1 ^ ¨ ¨ ¨ ^ ek,

where e1, . . . , ek are orthonormal. Then using the fact that ‹ is an isometry, we have

p‹αqpΠxq “ gp‹α,Πxq “ gp‹
2α, ‹Πxq “ ˘gpα, ‹Πxq “ ˘αp‹Πxq P r´1, 1s,

because α is a calibration.

Definition 2.2.5. Let α P Ωk. Define Pα : ΓpΛk´1pTMqq Ñ ΓpTMq by

gpPαpv1 ^ ¨ ¨ ¨ ^ vk´1q, vkq “ αpv1 ^ ¨ ¨ ¨ ^ vkq.

That is, Pα is the vector-valued pk ´ 1q-form obtained by “raising an index” on α using
the metric. ▲

Remark 2.2.6. For some calibrations α, the vector-valued form Pα is a vector cross prod-
uct. This means that |Pαpv1 ^ ¨ ¨ ¨ ^ vk´1q|2 “ |v1 ^ ¨ ¨ ¨ ^ vk´1|

2. This holds, in particular,
for the Kähler calibration of degree 2, and for the associative and Cayley calibrations.
See [10, Section 2] for more details. One of the key points of our Section 2.3 below is the
observation that the results of [10] continue to hold for all calibrations, not just for those
for which Pα is a vector cross product.

Proposition 2.2.7. Let α P Ωk. The adjoint PJ
α : ΓpTMq Ñ ΓpΛk´1pTMqq is given by

PJ
α pvq “ p´1q

k´1v α.

(There is a metric identification here of Λk´1pTMq and Λk´1pT ˚Mq.)

Proof. Let v1, . . . , vk P ΓpTMq. We compute

gpPαpv1 ^ ¨ ¨ ¨ ^ vk´1q, vkq “ αpv1 ^ ¨ ¨ ¨ ^ vkq

“ gpv1 ^ ¨ ¨ ¨ ^ vk, αq

“ p´1q
k´1gpvk ^ v1 ^ ¨ ¨ ¨ ^ vk´1, αq

“ p´1q
k´1gpv1 ^ ¨ ¨ ¨ ^ vk´1, vk αq,

hence the result follows.
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2.2.2 Harmonic maps and p-harmonic maps

We briefly review some basic facts about harmonic maps and p-harmonic maps. For more
details, the reader can consult Eells–Lemaire [13] or Baird–Gudmundsson [2].

If u : pMn1
1 , g1q Ñ pMn2

2 , g2q is a smooth map between Riemannian manifolds, then its
differential du is a smooth section of T ˚M1 b u˚TM2, and its value at x P M1 is the
linear map dux : TxM1 Ñ TupxqM2. The bundle T ˚M1 b u˚TM2 has a natural fibre metric
g´1
1 b u˚g2 which allows us to define the smooth function |du|2 on M1. One can also verify
that

|du|
2

“ trg1pu˚g2q. (2.2.8)

A useful observation is that if e1, . . . , en1 is a local orthonormal frame for pM1, g1q, then

|dux|
2

“

n1
ÿ

i“1

pu˚g2qxpei, eiq “

n1
ÿ

i“1

g2pduxpeiq, duxpeiqq. (2.2.9)

Definition 2.2.10. Let u : pM1, g1q Ñ pM2, g2q be a smooth map. Let p P r2,8q. If M1 is
compact, then the p-energy of u is defined to be

Eppuq :“
1

p
?
pqp

ż

M1

|du|
pvolM1 .

Note that up to a constant factor (which is chosen for later convenience), the p-energy is
the pth power of the Lp norm of du. We say that a map u is p-harmonic if it is a critical
point of the functional Ep. That is, a p-harmonic map is a solution to the Euler–Lagrange
equation for the p-energy functional. This equation is

divp|du|
p´2duq “ 0 P Γpu˚TM2q, (2.2.11)

and is called the p-harmonic map equation. When p “ 2, this reduces to the classical elliptic
harmonic map equation divpduq “ 0, and a 2-harmonic map is just called a harmonic map.
But for p ą 2 this equation is a degenerate elliptic equation.

More generally, the section of u˚TM2 given by

τppuq :“ divp|du|
p´2duq (2.2.12)

is called the p-tension of u, so a map u is p-harmonic if and only if it has vanishing p-
tension. In fact, the p-tension τppuq is, up to a positive factor, the negative gradient of the
p-energy functional with respect to the L2 inner product.

Note that if M1 is not compact we can still take equation (2.2.11) as the definition of
p-harmonic. ▲
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The p-energy and p-harmonic map equation are related to conformal geometry as follows.
Let f be a positive function on M1, so g̃1 “ f 2g1 is another metric on M1 in the same
conformal class as g1. Then we have

|du|
2
g̃1,g2

“ f´2
|du|

2
g1,g2

and volM1,g̃1 “ fn1volM1,g1 .

It follows that

Ep,g̃1,g2puq “
1

p
?
pqp

ż

M1

|du|
p
g̃1,g2

volM1,g̃1 “
1

p
?
pqp

ż

M1

fn1´p
|du|

p
g1,g2

volM1,g1 ,

and thus the p-energy of a map u : pMn1
1 , g1q Ñ pMn2

2 , g2q is conformally invariant (that
is, depends only on the conformal class of g1) if p “ n1. With a bit more effort, one can
similarly compute that

τp,g̃1,g2puq “ f´pτp,g1,g2puq ` f´p´1
|du|

p´2
pn1 ´ pqg1pdf, duq,

which again shows that the notion of a p-harmonic map depends only on the conformal
class of g1 if p “ n1.

The case that has received the most attention classically is the conformal invariance of
the 2-energy (also called the Dirichlet energy) from a 2-dimensional oriented Riemannian
manifold pΣ2, gq into another Riemannian manifold pM,hq. Since this depends only on the
conformal class of g on Σ2, we see that the notion of a harmonic map from a Riemann
surface Σ2 into a Riemannian manifold is well-defined.

See Remarks 2.3.7 and Remarks 2.4.19 for the precise formulation of “conformal invariance”
for Smith immersions and Smith submersions.

2.3 Smith immersions

The notion of a Smith immersion was studied by Cheng–Karigiannis–Madnick in [10]
and [11, Section 3.3] where it was assumed that the calibration form α is induced from a
vector cross product. In this section we introduce a slightly modified definition of Smith
immersions which applies to any calibration α, not just those induced by vector cross
products. In the vector cross product case, our new definition is equivalent to the earlier
definition. Moreover, our more general definition still enjoys all the analytic properties
established in [10, Sections 4 and 5]. See Section 2.5.1.

In this section, u : pLk, gq Ñ pMn, hq is a smooth map between Riemannian manifolds,
with k ď n. Recall that u : pLk, gq Ñ pMn, hq is an immersion if rankpduxq “ k for all
x P L.

79



2.3.1 Smith immersions and the energy inequality

Before we can define Smith immersions, we recall some facts about (weakly) conformal
maps.

Definition 2.3.1. A smooth map u : pLk, gq Ñ pMn, hq is called (weakly) conformal if

u˚h “ λ2g

for some smooth function λ ě 0 which is continuous (and smooth away from 0) on L. This
function λ is called the dilation. It then follows from (2.2.8) that necessarily λ2 “ 1

k
|du|2.

Let L0 Ď L be the open set where |du| ‰ 0. From u˚h “ 1
k
|du|2g, we deduce that

u|L0 : L0 Ñ M is an immersion. When L0 “ L, we say that u is a conformal immersion.
An immersion u : pLk, gq Ñ pMn, hq is called a Riemannian immersion if u˚h “ g on L, or
equivalently if it is a conformal immersion with dilation λ “ 1. ▲

Theorem 2.3.2. Let u : pLk, gq Ñ pMn, hq be a smooth map. Let α P ΩkpMq be a calibra-
tion. Then

u˚α ď λkvolL, where λ “ 1?
k
|du|. (2.3.3)

Moreover, equality holds if and only if:

• u˚h “ λ2g (so u is a weakly conformal immersion), and

• the image upL0q is calibrated with respect to α.

Proof. We trivially have equality at points where du is zero. Let x P L0. Let e1, . . . , ek be
an orthonormal frame for TxL. Then we have

pu˚αqpe1 ^ ¨ ¨ ¨ ^ ekq “ αppΛkduqpe1 ^ ¨ ¨ ¨ ^ ekqq

ď |pΛkduqpe1 ^ ¨ ¨ ¨ ^ ekq| (because α is a calibration)

“ |Λkdu| |e1 ^ ¨ ¨ ¨ ^ ek|

ď λk (by Proposition 2.1.1),

which concludes the proof of (2.3.3).

Equality holds if and only if equality holds in the two inequalities of the above computation.
If the second inequality above is an equality, then by Proposition 2.1.1 we have u˚h “ λ2g,
so u is weakly conformal. Let x P L0 and let e1, . . . , ek be an orthonormal frame for TxL, so
1
λ
dupe1q, . . . ,

1
λ
dupekq is an orthonormal frame for dupTxLq Ď TupxqM . If the first inequality

above is an equality, then we see that we must have αp 1
λ
dupe1q ^ ¨ ¨ ¨ ^ 1

λ
dupekqq “ 1. That

is, the image upL0q is calibrated with respect to α.
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Definition 2.3.4. If equality holds in (2.3.3), we say that u is a Smith immersion with
respect to α. That is, a Smith immersion with respect to α is a smooth map u : pLk, gq Ñ

pMn, hq such that

u˚α “
1

p
?
kqk

|du|
kvolL, u˚h “

1

k
|du|

2g, (2.3.5)

at all points on L. [However, recall that the first equation automatically implies the second
equation.] Note that, strictly speaking, a Smith immersion is only actually an immersion
on the open subset L0 “ tx P L : dux ‰ 0u of L. ▲

Theorem 2.3.6 (Energy Inequality). Let α P ΩkpMq be a closed calibration. Let u : pLk, gq Ñ

pMn, hq be a Smith immersion with respect to α. Suppose L is compact. Then u is k-
harmonic in the sense that it is a critical point of Ek.

Proof. For any smooth map u : pLk, gq Ñ pMn, hq, let λ “ 1?
k
|du|. Using (2.3.3) we have

Ekpuq “
1

p
?
kqk

ż

L

|du|
kvolL “

ż

L

λkvolL ě

ż

L

u˚α “ rαs ¨ u˚rLs,

where we have used the fact that α is closed. Thus the k-energy of u is bounded from
below by a topological quantity, as it depends only on the cohomology class rαs and the
homotopy class of u. Moreover, by Theorem 2.3.2, equality holds if and only if u is a
Smith immersion. This shows that such maps are local minimizers of Ek and thus are
k-harmonic.

We note that Theorem 2.3.6 still holds if L is noncompact. See Theorem 2.3.15.

Remark 2.3.7. Since a Smith immersion u : pLk, gq Ñ pMn, hq with respect to α P ΩkpMq

is in particular a k-harmonic map (when dα “ 0), by the discussion at the end of Sec-
tion 2.2.2, we expect that the notion of a Smith immersion should depend only on the
conformal class rgs of the metric on the domain L. Indeed, this is true even without the
assumption that dα “ 0. To see this, suppose g̃ “ f 2g for some smooth positive function
on L. From (2.2.8) we get

rλ2 “
1

k
|du|

2
rg,h “ f´2 1

k
|du|

2
g,h “ f´2λ2,

and clearly ĂvolL “ fkvolL. It follows that the Smith immersion equations u˚α “ λkvolL
and u˚h “ λ2g are invariant under conformal scaling of the domain metric g on L.
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2.3.2 Direct proof that Smith immersions are k-harmonic

In Theorem 2.3.15 below we show directly that a Smith immersion satisfies the k-harmonic
map equation, in the sense that τkpuq “ 0, without assuming L is compact. This argument
appeared earlier in [10, Section 3.5] under the assumption that α induces a vector cross
product Pα by raising an index. We provide a slightly modified argument here to show that
this assumption was in fact unnecessary. First we need some preliminary results.

Proposition 2.3.8. Let u : pLk, gq Ñ pMn, hq be a Smith immersion with respect to the
calibration form α P Ωk on M . Then we have

Pα ˝ Λk´1
pduq ˝ ‹L “

p´1qk´1

p
?
kqk´2

|du|
k´2du. (2.3.9)

Proof. The equation is trivially satisfied at points where du is zero. Let x P L0. Also,
recall that we necessarily have u˚h “ λ2g. Let e1, . . . , ek be an oriented orthonormal basis
for TxL. We compute

hpPαpΛk´1duqpe1 ^ ¨ ¨ ¨ ^ ek´1q, dupekqq “ αppΛk´1duqpe1 ^ ¨ ¨ ¨ ^ ek´1q, dupekqq

“ u˚αpe1 ^ ¨ ¨ ¨ ^ ekq

“ λkvolLpe1 ^ ¨ ¨ ¨ ^ ekq

“ λkgp‹pe1 ^ ¨ ¨ ¨ ^ ek´1q, ekq

“ λk´2u˚hp‹pe1 ^ ¨ ¨ ¨ ^ ek´1q, ekq

“ λk´2hpdup‹pe1 ^ ¨ ¨ ¨ ^ ek´1qq, dupekqq.

Denoting A :“ PαpΛk´1duq : ΛkpTxLq Ñ TupxqM , the above says

hpApe1 ^ ¨ ¨ ¨ ^ ek´1q, dupekqq “ λk´2hpdup‹pe1 ^ ¨ ¨ ¨ ^ ek´1qq, dupekqq. (2.3.10)

Recall that dupTxLq is α-calibrated by Theorem 2.3.2. Suppose w P pim duxqK. Then we
have

hpApe1 ^ ¨ ¨ ¨ ^ ek´1q, wq “ hpPαpdupe1q ^ ¨ ¨ ¨ ^ dupek´1q, wq

“ αpdupe1q, . . . , dupek´1q, wq “ 0

by Lemma 2.2.3. Hence we have shown that imA Ď im dux. It therefore follows from (2.3.10)
and the fact that dux is injective that

Pα ˝ pΛk´1duq “ λk´2du ˝ ‹L.

Using that ‹2 “ p´1qk´1 on 1-forms, we obtain the desired result.
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In the case where Pα is a vector cross product, it was shown in [10, Proposition 2.32]
that (2.3.9) is equivalent to our Smith immersion equation (2.3.5). In fact this holds in
general.

Proposition 2.3.11. We have shown that if u : pLk, gq Ñ pMn, h, αq is a Smith immersion,
then

Pα ˝ Λk´1
pduq ˝ ‹L “ p´1q

k´1 |du|k´2

?
k
k´2

du. (2.3.12)

The converse also holds. That is, if (2.3.12) holds, then u is a Smith immersion.

Proof. Let x P L. If dux “ 0, which satisfies (2.3.12) at x, then u is a Smith immersion
at x. Now assume dux ‰ 0. Let e1, . . . , ek be a oriented orthonormal basis of TxL. Let
i, j P t1, . . . , ku. Then we have

‹Lei “ p´1q
i´1e1 ^ ¨ ¨ ¨ ^ pei ^ ¨ ¨ ¨ ^ ek.

Evaluating both sides of (2.3.12) on ei and taking inner product with dupejq we get

p´1q
k´1λk´2hpdupeiq, dupejqq “ p´1q

i´1hpPαpdupe1q ^ ¨ ¨ ¨ ^ zdupeiq ^ ¨ ¨ ¨ ^ dupekqq, dupejqq

“ p´1q
i´1u˚αpe1 ^ ¨ ¨ ¨ ^ pei ^ ¨ ¨ ¨ ^ ek ^ ejq

“ p´1q
k´1u˚αpe1 ^ ¨ ¨ ¨ ^ ej ^ ¨ ¨ ¨ ^ ekq.

We deduce that
#

λk´2hpdupeiq, dupejqqvolL “ u˚α if i “ j,

hpdupeiq, dupejqq “ 0 if i ‰ j.

Using the above we compute

u˚α “
1

k
λk´2

ÿ

i

hpdupeiq, dupeiqqvolL

“
1

k
λk´2

ÿ

i,j

hpdupeiq, dupejqqvolL

“
1

k
λk´2

|du|
2volL “ λkvolL,

and thus u is a Smith immersion in the sense of Definition 2.3.4.

Lemma 2.3.13. Let u : pLk, gq Ñ pMn, hq be a Smith immersion with respect to the cali-
bration α. Then u˚p∇V αq “ 0 for any V P ΓpTMq.
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Proof. The equation is trivially satisfied at points where du is zero. Let x P L0. Let
e1, . . . , ek be an oriented orthonormal basis for TxL. Then from the proof of Theorem 2.3.2,
we have that 1

λ
dupe1q, . . . ,

1
λ
dupekq is an oriented orthonormal basis for dupTxLq Ď TupxqM ,

which is calibrated by α. Thus we have

1
λku

˚
p∇V αqpe1 ^ ¨ ¨ ¨ ^ ekq “ u˚

p∇V αqp 1
λ
e1 ^ ¨ ¨ ¨ ^ 1

λ
ekq

“ V
`

αp 1
λ
dupe1q ^ ¨ ¨ ¨ ^ 1

λ
dupekqq

˘

´
ÿ

j“1

αp 1
λ
dupe1q ^ ¨ ¨ ¨ ^ ∇V p 1

λ
dupejqq ^ ¨ ¨ ¨ ^ 1

λ
dupekqq.

(2.3.14)

The first term in (2.3.14) vanishes because α calibrates dupTxLq. By skew-symmetry of
α, the only component of ∇V p 1

λ
dupejqq in the span of 1

λ
dupe1q, . . . , 1

λ
dupekq which can

contribute to
αp 1

λ
dupe1q ^ ¨ ¨ ¨ ^ ∇V p 1

λ
dupejqq ^ ¨ ¨ ¨ ^ 1

λ
dupekqq

is the 1
λ
dupejq component. But since 1

λ
dupejq has constant (unit) length, the covariant

derivative ∇V p 1
λ
dupejqq is orthogonal to 1

λ
dupejq. We deduce that

αp 1
λ
dupe1q ^ ¨ ¨ ¨ ^ ∇V p 1

λ
dupejqq ^ ¨ ¨ ¨ ^ 1

λ
dupekqq “ αp 1

λ
dupe1q ^ ¨ ¨ ¨ ^ w ^ ¨ ¨ ¨ ^ 1

λ
dupekqq

for some vector w orthogonal to the α-calibrated k-plane spanned by 1
λ
dupe1q, . . . ,

1
λ
dupekq.

It then follows from Lemma 2.2.3 that each of the terms in the last line of (2.3.14) also
vanish, so u˚p∇V αq “ 0.

The next result is exactly [10, Proposition 3.20], but with a harmless sign error corrected.
We include it for completeness and comparison with Theorem 2.4.29 in the case of Smith
submersions.

Theorem 2.3.15. Let u : pLk, gq Ñ pMn, hq be a Smith immersion with respect to the
calibration form α P Ωk. If dα “ 0, then u is k-harmonic in the sense that τkpuq “ 0.

Proof. We show that the k-tension τkpuq of equation (2.2.12) vanishes at any point x P L.
Let

B “ Pα ˝ Λk´1
pduq ˝ ‹L P ΓpT ˚L b u˚TMq.

By Proposition 2.3.8, it suffices to show that divpBq “ 0, which is a smooth section of
u˚TM . Let µ denote the Riemannian volume form on L, and identify 1-forms and vector
fields using the musical isomorphism. Recall that ‹v “ v µ for any vector field v on L, so
p‹vqi1¨¨¨ik´1

“ vjµji1¨¨¨ik´1
. We also have pPαqb1¨¨¨bk´1a “ αb1¨¨¨bk´1a.
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Take Riemannian normal coordinates B

Bxi ,
B

Bya
centred at x and upxq respectively. At the

point x, we compute

divpBqa “ p∇jBqaj

“ ∇jpPα ˝ Λk´1
pduq ˝ ‹Lqaj

“
1

pk ´ 1q!
∇jpPα ˝ Λk´1

pduqqi1¨¨¨ik´1aµji1¨¨¨ik´1

“
1

pk ´ 1q!
∇j

ˆ

Bub1

Bxi1
¨ ¨ ¨

Bubk´1

Bxik´1
pPαqb1¨¨¨bk´1a

˙

µji1¨¨¨ik´1

“
1

pk ´ 1q!
∇j

ˆ

Bub1

Bxi1
¨ ¨ ¨

Bubk´1

Bxik´1
αb1¨¨¨bk´1a

˙

µji1¨¨¨ik´1

“
1

pk ´ 1q!

Bub1

Bxi1
¨ ¨ ¨

Bubk´1

Bxik´1
p∇jαb1¨¨¨bk´1aqµji1¨¨¨ik´1

`
1

pk ´ 1q!

k´1
ÿ

ℓ“1

B2ubℓ

BxjBxiℓ
Bub1

Bxi1
¨ ¨ ¨

zBubℓ

Bxiℓ
¨ ¨ ¨

Bubk´1

Bxik´1
αb1¨¨¨bk´1aµji1¨¨¨ik´1

,

where the p as usual denotes omission. The second term vanishes by (skew)-symmetry in
j, iℓ. For the first term, we have

∇jα “ ∇ B

Bxj
α “

Bubk

Bxj
∇ B

Bybk

α,

which we write as Bubk

Bxj ∇bkα. Thus we have

divpBqa “
1

pk ´ 1q!

Bub1

Bxi1
¨ ¨ ¨

Bubk´1

Bxik´1

Bubk

Bxj
p∇bkαb1¨¨¨bk´1aqµji1¨¨¨ik´1

.

Relabelling j as ik, we have

divpBqa “
p´1qk´1

pk ´ 1q!

Bub1

Bxi1
¨ ¨ ¨

Bubk

Bxik
p∇bkαb1¨¨¨bk´1aqµi1¨¨¨ik .

By the skew-symmetry of µ, if we swap bℓ and bm in the factor p∇bkαb1¨¨¨bk´1aq above, the
sign of the right hand side changes. We therefore can write

divpBqa “
p´1qk´1

pk ´ 1q!

Bub1

Bxi1
¨ ¨ ¨

Bubk

Bxik
1

k

k
ÿ

ℓ“1

p∇bℓαb1¨¨¨bℓ´1abℓ`1¨¨¨bkqµi1¨¨¨ik

because for each ℓ when we swap a with bk and then bk with bℓ we introduce two minus
signs which cancel. Finally we use the fact that α is closed to write

0 “ pdαqab1¨¨¨bk “ ∇aαb1¨¨¨bk ´

k
ÿ

ℓ“1

p∇bℓαb1¨¨¨bℓ´1abℓ`1¨¨¨bkq.
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Combining these we obtain

divpBqa “
p´1qk´1

k!

Bub1

Bxi1
¨ ¨ ¨

Bubk

Bxik
∇aαb1¨¨¨bkµi1¨¨¨ik

“ pu˚∇aαqi1¨¨¨ikµi1¨¨¨ik ,

which vanishes by Lemma 2.3.13, completing the proof.

2.4 Smith submersions

We introduce a new class of maps u : pMn, hq Ñ pLk, gq between Riemannian manifolds
with n ě k, where the domain is equipped with a calibration form α of degree n´k. These
maps are a special class of k-harmonic maps satisfying a first order nonlinear differential
equation, and have the property that when dα “ 0, the smooth fibres are α-calibrated
submanifolds of M .

In this section, u : pMn, hq Ñ pLk, gq is a surjective smooth map between Riemannian
manifolds, with n ě k. Recall that u : pMn, hq Ñ pLk, gq is a submersion if rankpduxq “ k
for all x P M .

2.4.1 (Weakly) conformally horizontal submersions

In order to be able to define the submersion analogue of “weakly conformal”, we need to first
recall the horizontal/vertical splitting of TM associated to a submersion u : M Ñ L.

Definition 2.4.1. Let u : pMn, hq Ñ pLk, gq be a smooth surjection. Let M0 Ď M be the
open set where |du| ‰ 0. Suppose that the restriction u|M0 : M0 Ñ L is a submersion, so
that rankpduxq “ k for all x P M0. Then the tangent bundle TM0 of M0 decomposes as

TM0
“ pker duq ‘K pker duq

K,

where ker du “ VM0 is the vertical subbundle, which has rank n´k, and pker duqK “ HM0

is the horizontal subbundle, which has rank k.

It follows that an m-tensor α P T m on M0 is a smooth section of
à

p`q“m

pker duq
bp

b ppker duq
K

q
bq,

with p ď n ´ k, q ď k. We denote by αpp,qq the component of α which lies in

T pp,qq :“ Γppker duq
bp

b ppker duq
K

q
bq

q

and we say that αpp,qq is of type pp, qq.
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It follows that the metric h onM0 decomposes as h “ h2,0`h0,2, where h2,0 is the metric on
the vertical subbundle ker du, and h0,2 is the metric on the horizontal subbundle pker duqK.
In particular, we have

trhph0,2q “ k. (2.4.2)

Finally, we use Ωpp,qq to denote the totally skew-symmetric elements of T pp,qq. ▲

Definition 2.4.3. A smooth surjection u : pMn, hq Ñ pLk, gq is called (weakly) horizontally
conformal if for every point x P M , we either have dux “ 0, or if dux ‰ 0, then rankpduxq “

k is maximal and
u˚g “ λ2hp0,2q

for some smooth function λ ą 0 on M0. We can extend λ2 by zero to obtain a contin-
uous non-negative function on M . This function λ is called the dilation. It then follows
from (2.2.8) that necessarily λ2 “ 1

k
|du|2.

When M0 “ M , we say that u is a horizontally conformal submersion. A submersion
u : pMn, hq Ñ pLk, gq is called a Riemannian submersion if u˚g “ hp0,2q on M , or equiva-
lently if it is a horizontally conformal submersion with dilation λ “ 1. ▲

Remark 2.4.4. Let u : pMn, hq Ñ pLk, gq be weakly horizontally conformal. Restricted
to the open subset M0, the map u|M0 is a submersion, and thus by the implicit function
theorem each fibreM0Xu´1tupxqu for x P M0 is a smooth pn´kq-dimensional submanifold
of M0.

Remark 2.4.5. Let u : pMn, hq Ñ pLk, gq be a smooth surjection. Over M0 we get a
canonical orientation on the horizontal subbundle pker duqK from the class ru˚volLs. Then
the vertical subbundle ker du inherits a unique orientation such that volker du ^ volpker duqK “

volM .

If u is (weakly) horizontally conformal, then by Definition 2.4.3, we have that for any
x P M0, the map

pduqx :
`

pker duxq
K, λ2pxqhp0,2q

x

˘

–
`

TupxqL, gupxq

˘

is an orientation preserving isometry.

For the remainder of this section, we assume that u : pMn, hq Ñ pLk, gq is horizontally
conformal. (Equivalently, it is weakly horizontally conformal and we work only on the
open subset M0 where it is horizontally conformal.) We collect several results that are
needed to study Smith submersions.

Lemma 2.4.6. Let β P ΩppLq. Then u˚β is of type p0, pq.

Proof. Let v1, . . . , vp P ΓpTMq. Then pu˚βqpv1, . . . , vpq “ βpdupv1q, . . . , dupvpqq, so if at
least one of the vi lies in ker du, then pu˚βqpv1, . . . , vpq “ 0.
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Lemma 2.4.7. Let α P Ωpp,qqpMq. Then ‹α P Ωpn´k´p,k´qqpMq. Moreover, for any form
β, we have p‹βqpn´k´p,k´qq “ ‹pβpp,qqq.

Proof. This follows from the fact that volM P Ωpn´k,kqpMq.

Lemma 2.4.8. Let α P Ωpp,qqpMq. Then for any v P ΓpTMq, the form vp1,0q α is of type
pp ´ 1, qq and the form vp0,1q α is of type pp, q ´ 1q.

Proof. This is clear from definition of the interior product.

Lemma 2.4.9. Let α P Ωp0,kqpMq. Let Pα be as in Definition 2.2.5, and let PJ
α be its

adjoint map as in Proposition 2.2.7. Then we have

PαP
J
α “ |α|

2πp0,1q,

where πp0,1q : ΓpTMq Ñ ΓpTM p0,1qq is the orthogonal projection.

Proof. First, note that since α is of type p0, kq, and the metric h on TM is of type p2, 0q `

p0, 2q, the map Pα takes values in the horizontal subbundle TM p0,1q “ pker duqK. Consider
any v P ΓpTMq and w P ΓpTM p0,1qq. By Proposition 2.2.7 we have PJ

α v “ p´1qk´1v α.
Hence we have

gpPαP
J
α v, wq “ p´1q

k´1gpP pv αq, wq

“ p´1q
k´1αppv αq ^ wq

“ gpα,w ^ pv αqq.

Recall that v pw ^ αq “ pv wqα ´ w ^ pv αq, and thus w ^ pv αq “ gpv, wqα because
w ^ α “ 0 since it is of type p0, k ` 1q. Hence, we get

gpPαP
J
α v, wq “ gpv, wq|α|

2,

and the result follows.

2.4.2 Smith submersions and the energy inequality

We can now consider the notion of a Smith submersion.

Theorem 2.4.10. Let u : pMn, hq Ñ pLk, gq be a smooth surjection. Let α P Ωn´kpMq be
a calibration. Then

α ^ u˚volL ď λkvolM , where λ “
|du|
?
k
. (2.4.11)

Moreover, equality holds if and only if:
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• u˚g “ λ2hp0,2q (so u is a weakly horizontally conformal submersion) and,

• the fibres of the restriction of u to M0 are calibrated with respect to α.

Proof. We trivially have equality at points where du is zero. Let x P M0. If dux is not
maximal rank, then u˚volL vanishes, while λ ą 0, so the inequality (2.4.11) is satisfied and
indeed is always a strict inequality at such points.

Now consider x P M0 such that dux has maximal rank k. Let e1, . . . , ek be an oriented or-
thonormal basis of pker duxqK and ẽ1, . . . , ẽn´k be an oriented orthonormal basis of ker dux.
With our choice of orientations from Remark 2.4.5 we have volM “ ẽ1 ^ ¨ ¨ ¨ ^ ẽn´k ^ e1 ^

¨ ¨ ¨ ^ ek. Then we have

pα ^ u˚volLqpẽ1 ^ ¨ ¨ ¨ ^ ẽn´k ^ e1 ^ ¨ ¨ ¨ ^ ekq

“ αpẽ1 ^ ¨ ¨ ¨ ^ ẽn´kqu˚volLpe1 ^ ¨ ¨ ¨ ^ ekq (by Lemma 2.4.6)

ď 1 ¨ volLppΛkduqpe1 ^ ¨ ¨ ¨ ^ ekqq (because α is a calibration)

“ |pΛkduqpe1 ^ ¨ ¨ ¨ ^ ekq|

“ |Λkdu| |pe1 ^ ¨ ¨ ¨ ^ ekq|

ď λk (by Proposition 2.1.1),

which concludes the proof of (2.4.11).

Equality holds if and only if equality holds in the two inequalities of the above computation.
If the second inequality above is an equality, then by Proposition 2.1.1 we have u˚g “

λ2hp0,2q, so u is weakly horizontally conformal. Let x P M0 and let ẽ1, . . . , ẽn´k be an
orthonormal frame for ker dux. If the first inequality above is an equality, then we see that
we must have αpẽ1^¨ ¨ ¨^ ẽn´kq “ 1. That is, the smooth fibreM0Xu´1tupxqu is calibrated
with respect to α.

Definition 2.4.12. If equality holds in (2.4.11), we say that u is a Smith submersion
with respect to α. That is, a Smith submersion with respect to α is a smooth map
u : pMn, hq Ñ pLk, gq such that

α ^ u˚volL “
1

p
?
kqk

|du|
kvolM , u˚g “

1

k
|du|

2hp0,2q, (2.4.13)

at all points onM . [However, recall that the first equation automatically implies the second
equation.] Note that, strictly speaking, a Smith submersion is only actually a submersion
on the open subset M0 “ tx P M : dux ‰ 0u of M . ▲

Before we prove the Smith submersion energy inequality in Theorem 2.4.18 below, which
is analogous to Theorem 2.3.6 for Smith immersions, we first show that in the Smith
submersion case we can rewrite the equation in a useful alternative form.
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Lemma 2.4.14. Let u : pMn, hq Ñ pLk, gq be weakly horizontally conformal with dilation λ.
Let α P Ωn´kpMq be a calibration, so ‹α P ΩkpMq is also a calibration by Proposition 2.2.4.
At at point x where dux ‰ 0, the following are equivalent:

(i) u˚volL “ λkp‹αqp0,kq,

(ii) pker duqK is calibrated with respect to ‹α,

(iii) ker du is calibrated with respect to α.

Proof. (i) ðñ (ii). Let e1, . . . , ek be an oriented orthonormal basis of pker duxqK. Then
since

p‹αqpe1, . . . , ekq “ p‹αq
p0,kq

pe1, . . . , ekq and pu˚volLqpe1, . . . , ekq “ λk,

we have that u˚volL “ λkp‹αqp0,kq if and only if p‹αqpe1, . . . , ekq “ 1 if and only if pker duqK

is calibrated with respect to ‹α.

(ii) ðñ (iii). Let ẽ1, . . . , ẽn´k be an oriented orthonormal basis of ker dux. Note that

volM “ ẽ1 ^ ¨ ¨ ¨ ^ ẽn´k ^ e1 ^ ¨ ¨ ¨ ^ ek.

Thus we have

αpẽ1, . . . , ẽn´kq “ hpα, ẽ1 ^ ¨ ¨ ¨ ^ ẽn´kq

“ hp‹α, ‹pẽ1 ^ ¨ ¨ ¨ ^ ẽn´kqq “ hp‹α, e1 ^ ¨ ¨ ¨ ^ ekq “ p‹αqpe1, . . . , ekq,

and the result follows.

Corollary 2.4.15. Let u : pMn, hq Ñ pLk, gq be a smooth surjection. Let λ “
|du|
?
k

and

α P Ωn´kpMq be a calibration. Then the following are equivalent:

(i) u˚volL “ λkp‹αqp0,kq and u˚g “ λ2hp0,2q,

(ii) α ^ u˚volL “ λkvolM .

Proof. Both equations are trivially satisfied at the points where du is zero. Let x P M0.

Suppose that (i) holds. By Lemma 2.4.14, we have that pker duqK is calibrated with
respect to ‹α. Combining this with u˚g “ λ2hp0,2q and using Theorem 2.4.10, we obtain
α ^ u˚volL “ λkvolM .

Conversely, suppose (ii) holds. From Theorem 2.4.10 we know that u is horizontally con-
formal and α calibrates ker du. Hence by Lemma 2.4.14 we also have u˚volL “ λkp‹αqp0,kq,
so (i) holds.

90



Remark 2.4.16. Corollary 2.4.15 establishes two equivalent formulations of Smith sub-
mersion. The original definition of Smith submersion in (2.4.13) is precisely (ii) of Corol-
lary 2.4.15, since the first equation in (2.4.13) implies the second. However, in the alter-
native formulation (i) of Corollary 2.4.15, we need both equations. The first does not in
general imply the second.

Moreover, the original definition in (2.4.13) arises as the case of equality in the general
inequality of (2.4.11). Similarly, we can show that if we assume the second equation in (i)
of Corollary 2.4.15, then we claim that we always have the inequality

u˚volL ě λkp‹αq
p0,kq. (2.4.17)

However, the inequality (2.4.17) need not hold in general if we do not assume u˚g “ λ2hp0,2q.

To see that (2.4.17) holds if u˚g “ λ2hp0,2q, note that both sides are sections of the oriented
line bundle kerpduqK whose space of sections is Ωp0,kq. Hence we can compare any two
elements. Clearly the inequality holds on MzM0 as both sides are zero. Let x P M0. Let
e1, . . . , ek be an oriented orthonormal basis of pker duxqK. Then since u˚g “ λ2hp0,2q we
have

u˚volLpe1 ^ ¨ ¨ ¨ ^ ekq “ λk,

and since ‹α is also a calibration we have

λkp‹αq
p0,kq

pe1 ^ ¨ ¨ ¨ ^ ekq “ λkp‹αqpe1 ^ ¨ ¨ ¨ ^ ekq ď λk.

Thus the inequality (2.4.17) holds if u˚g “ λ2hp0,2q.
Finally, as in the immersion case, there is another equivalent form of the Smith equation,
which we prove in Propositions 2.4.21 and 2.4.25.

Theorem 2.4.18 (Energy Inequality). Let α P Ωn´kpMq be a closed calibration. Let
u : pMn, hq Ñ pLk, gq be a Smith submersion with respect to α. Suppose M is compact.
Then u is k-harmonic in the sense that it is a critical point of Ek.

Proof. For any smooth map u : pMn, hq Ñ pLk, gq, let λ “ 1?
k
|du|. Using (2.4.11) we have

Ekpuq “
1

p
?
kqk

ż

M

|du|
kvolM “

ż

M

λkvolM ě

ż

M

α ^ u˚volL “ prαs Y u˚
rvolLsq ¨ rM s,

where we have used the fact that α is closed. Thus the k-energy of u is bounded from
below by a topological quantity, as it depends only on the cohomology class rαs and the
homotopy class of u. Moreover, by Theorem 2.4.10, equality holds if and only if u is a
Smith submersion. This shows that such maps are local minimizers of Ek and thus are
k-harmonic.

We note that Theorem 2.4.18 still holds if M is noncompact. See Theorem 2.4.29.
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Remark 2.4.19. Smith submersions also enjoy a sort of “conformal invariance”, but it is
slightly more complicated. (This is expected, because a Smith submersion u : pMn, hq Ñ

pLk, gq with respect to α P Ωn´kpMq is in particular a k-harmonic map (when dα “ 0),
so by the discussion at the end of Section 2.2.2, this notion would depend only on the
conformal class rhs of the metric on the domain M only in the particular special case
n “ k.

In general, if n ą k, we have the following. Let h “ hp2,0q ` hp0,2q be the decomposition of
the metric h on M in terms of the horizontal/vertical splitting as in Definition 2.4.1. A

horizontally conformal scaling of h is a new metric rh “ hp2,0q ` f 2hp0,2q for some smooth
positive function on L. (That is, we only conformally scale the horizontal part of the
metric h). Since du is zero on vertical vectors, from (2.2.9) we get

rλ2 “
1

k
|du|

2
rh,g

“ f´2 1

k
|du|

2
h,g “ f´2λ2,

and clearly ĂvolM “ fkvolM . It follows that the Smith submersion equations α ^ u˚volL “

λkvolM and u˚g “ λ2hp0,2q are invariant under horizontally conformal scaling of the domain
metric h on M .

2.4.3 Direct proof that Smith submersions are k-harmonic

In Theorem 2.3.15 below we show directly that a Smith submersion satisfies the k-harmonic
map equation, in the sense that τkpuq “ 0, without assuming M is compact. First we need
some preliminary results.

Lemma 2.4.20. Let α P Ωn´kpMq be a calibration. Let u : pMn, hq Ñ pLk, gq be a Smith
submersion with respect to α. Then we have

p‹αq
p1,k´1q

“ 0, and ∇α “ 0 on ker du.

Proof. The first statement follows from Lemma 2.2.3, because by Corollary 2.4.15 and
Lemma 2.4.14, the form ‹α calibrates pker duqK. For the second statement, since α P

Ωn´kpMq and ker du is pn ´ kq-dimensional, it is enough to show that

p∇Xαqpẽ1 ^ . . . ^ ẽn´kq “ 0,

for any local orthonormal frame ẽ1, . . . , ẽn´k of ker du. Since by Lemma 2.4.14, α calibrates
ker du, we have that αpẽ1 ^ ¨ ¨ ¨ ^ ẽn´kq “ 1. Hence we have

p∇Xαqpẽ1 ^ ¨ ¨ ¨ ^ ẽn´kq “ X
`

αpẽ1 ^ ¨ ¨ ¨ ^ ẽn´kq
˘

´

n´k
ÿ

j“1

αpẽ1 ^ ¨ ¨ ¨ ^ p∇X ẽjq ^ ¨ ¨ ¨ ^ ẽn´kq

“ 0 ´

n´k
ÿ

j“1

αpẽ1 ^ ¨ ¨ ¨ ^ p∇X ẽjq ^ ¨ ¨ ¨ ^ ẽn´kq.
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Now for any fixed j, the term αpẽ1 ^ ¨ ¨ ¨ ^ p∇X ẽjq
p0,1q ^ ¨ ¨ ¨ ^ ẽn´kq vanishes by the first

statement. Next note that since the ẽj are of norm 1, the vector field ∇X ẽj is always
orthogonal to ẽj, and thus ẽ1, . . . , p∇X ẽjq

p1,0q, . . . , ẽn´k are linearly dependent for any j, so
αpẽ1 ^ ¨ ¨ ¨ ^ p∇X ẽjq

p1,0q ^ ¨ ¨ ¨ ^ ẽn´kq also vanishes, which concludes the proof.

Proposition 2.4.21. Let u : pMn, hq Ñ pLk, gq be a Smith submersion with respect to the
calibration form α P Ωn´k on M . Then we have

‹LΛ
k´1

pduqp¨ ‹αq “
p´1qk´1

p
?
kqk´2

|du|
k´2du. (2.4.22)

Proof. The equation is trivially satisfied at points where du is zero. Let x P M0. Also,
recall that we necessarily have u˚g “ λ2hp0,2q, and that from Corollary 2.4.15 we also have
u˚volL “ λkp‹αqp0,kq.

For simplicity of notation, let Pp0,kq denote Pp‹αqp0,kq . Note that Pp0,kq P ΓpΛp0,k´1qpTMq b

pTMqp0,1qqq. Using this, for any v1, . . . , vk P TxM we have

gp‹Lpdupv1q ^ ¨ ¨ ¨ ^ dupvk´1qq, dupvkqq “ volLpdupv1q ^ ¨ ¨ ¨ ^ dupvkqq

“ pu˚volLqpv1, . . . , vkq

“ λkp‹αq
p0,kq

pv1, . . . , vkq

“ λkhpPp0,kqpv1, . . . , vk´1q, vkq

“ λkhp0,2q
pPp0,kqpv1, . . . , vk´1q, vkq

“ λk´2
pu˚gqpPp0,kqpv1, . . . , vk´1q, vkq

“ λk´2gpdupPp0,kqpv1, . . . , vk´1qq, dupvkqq.

Since dux is surjective, we get

‹Lpdupv1q ^ ¨ ¨ ¨ ^ dupvk´1qq “ λk´2dupPp0,kqpv1, . . . , vk´1qq

or equivalently
‹LΛ

k´1
pduq “ λk´2du ˝ Pp0,kq on Λk´1

pTxMq. (2.4.23)

From the proof of Corollary 2.4.15, we had |p‹αqp0,kq| “ 1. Combining this with Lemma 2.4.9
gives

Pp0,kqP
J
p0,kq “ |p‹αq

p0,kq
|
2 πp0,1q

“ πp0,1q. (2.4.24)

Composing with PJ
p0,kq

on the right of both sides of (2.4.23) and using (2.4.24) and Propo-

sition 2.2.7, since du ˝ πp0,1q “ du, we obtain

‹LΛ
k´1

pduqp¨ p‹αq
p0,kq

q “
p´1qk´1

p
?
kqk´2

|du|
k´2du.
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Comparing the above with (2.4.22), we see that it remains to verify that

Λk´1
pduqp¨ p‹αq

p0,kq
q “ Λk´1

pduqp¨ ‹αq.

To see this, we take any v P TxM and compute

Λk´1
pduqpv p‹αq

p0,kq
q

“ Λk´1
pduqppvp1,0q

` vp0,1q
q p‹αq

p0,kq
q

“ Λk´1
pduqpvp0,1q

p‹αq
p0,kq

q (because vp1,0q
p‹αq

p0,kq
“ 0)

“ Λk´1
pduqpvp0,1q

p‹αq
p0,kq

` vp1,0q
p‹αq

p1,k´1q
q (because p‹αq

p1,k´1q
“ 0 by Lemma 2.4.20)

“ Λk´1
pduqpv ‹αq

p0,k´1q (by Lemma 2.4.8)

“ Λk´1
pduqpv ‹αq (because du is zero on vertical vectors),

concluding the claim.

Proposition 2.4.25. We have shown that if u : pMn, h, αq Ñ pLk, gq is a Smith submer-
sion, then

‹LΛ
k´1

pduqp¨ ‹αq “ p´1q
k´1 |du|k´2

?
k
k´2

du. (2.4.26)

The converse also holds. That is, if (2.4.26) holds, then u is a Smith submersion.

Proof. Let x P M . If dux “ 0, which satisfies (2.4.26) at x, then u is a Smith submersion at
x. Now assume dux ‰ 0. Let e1, . . . , em be an oriented orthonormal bases of pkerpduqxqK.
Note that a priori we do not know that m “ k. However, we have that 1 ď m ď k. Let
i, j P t1, . . . .mu.

We first observe that

Λk´1
pduqpei ‹αq “ Λk´1

pduqpei ‹αq
p0,k´1q

“ Λk´1
pduqpe

p0,1q

i ‹αq
p0,k´1q (because ei is already of type p0, 1q)

“ Λk´1
pduqpe

p0,1q

i p‹αq
p0,kq

q

“ Λk´1
pduqpei p‹αq

p0,kq
q. (2.4.27)

Evaluating both sides of (2.4.26) on ei, using (2.4.27), and taking inner product with dupejq

94



we get

p´1q
k´1λk´2gpdupeiq, dupejqq “ gp‹LΛ

k´1
pduqpei p‹αq

p0,kq
q, dupejqq

“ u˚volLppei p‹αq
p0,kq

q ^ ejq

“ u˚volLpei pp‹αq
p0,kq

^ ejq ´ p´1q
k
p‹αq

p0,kqei ejq

“ u˚volLp0 ` p´1q
k´1δijp‹αq

p0,kq
q (because Ωp0,k`1q

“ 0)

“ p´1q
k´1δiju

˚volLpp‹αq
p0,kq

q

“ p´1q
k´1δiju

˚volLp‹αq.

Note that

u˚volLp‹αq volM “ hpu˚volL, ‹αq volM “ u˚volL ^ ‹
2α “ u˚volL ^ p´1q

kpn´kqα “ α^u˚volL.

We deduce that
#

λk´2gpdupeiq, dupejqq volM “ α ^ u˚volL if i “ j,

gpdupeiq, dupejqq “ 0 if i ‰ j.

Using the above we compute

α ^ u˚volL “
1

m
λk´2

ÿ

i

gpdupeiq, dupeiqq volM

“
1

m
λk´2

ÿ

i,j

gpdupeiq, dupejqq volM

“
1

m
λk´2

|du|
2volM

ě
1

k
λk´2

|du|
2volM

“ λkvolM .

Combining with Theorem 2.4.10 we get the desired equality, and thus u is a Smith sub-
mersion in the sense of Definition 2.4.12.

Proposition 2.4.28. Let P P ΓpT ˚M b ΛqpTMqq. Under the identification of vector
fields with 1-forms using the metric, assume that P is totally skew-symmetric. Then
divpΛqpduqpP qq “ ΛqpduqpdivpP qq.

Proof. We trivially have equality at points where du is zero. Let x P M0. Take Riemannian
normal coordinates B

Bxi ,
B

Bya
centred at x and upxq respectively. For simplicity of notation,

let
A :“ Λq

pduqpP q P ΓpT ˚M b Λq
pTLqq.
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Expressing the components of A and P in terms of these normal coordinates at the point
x, we compute

A
v1¨¨¨vq
j “

`

Λq
pduqpPjq

˘v1¨¨¨vq

“
1

q!
P

t1¨¨¨tq
j

ˆ

Λq
pduq

ˆ

B

Bxt1
^ ¨ ¨ ¨ ^

B

Bxtq

˙˙v1¨¨¨vq

“
1

q!
P

t1¨¨¨tq
j

ˆ

Bus1

Bxt1
B

Bys1
^ ¨ ¨ ¨ ^

Busq

Bxtq
B

Bysq

˙v1¨¨¨vq

“ P
t1¨¨¨tq
j

Buv1

Bxt1
¨ ¨ ¨

Buvq

Bxtq
(by skew-symmetry of P in t1 ¨ ¨ ¨ tq).

From this we obtain

pdivAq
v1¨¨¨vq “ p∇jAq

v1¨¨¨vq
j

“ p∇jP q
t1¨¨¨tq
j

Buv1

Bxt1
¨ ¨ ¨

Buvq

Bxtq

` P
t1¨¨¨tq
j

q
ÿ

ℓ“1

B2uvℓ

BxjBxtℓ
Buv1

Bxt1
¨ ¨ ¨

zBuvℓ

Bxtℓ
¨ ¨ ¨

Buvq

Bxtq
,

where the second term above is zero by symmetry in j, tℓ of
B2uvℓ

BxjBxtℓ
and skew-symmetry of

P
t1¨¨¨tq
j , by our assumption on P . But then the first term is just:

Λq
pduqpdivpP qq

v1¨¨¨vq ,

which completes the proof.

Theorem 2.4.29. Let u : pMn, hq Ñ pLk, gq be a Smith submersion with respect to the
calibration form α P Ωn´k. If dα “ 0, then u is k-harmonic in the sense that τkpuq “ 0.

Proof. By equation (2.2.12) and Proposition 2.4.21, we need to show that

divp‹LΛ
k´1

pduqp¨ ‹αqq “ 0.

However, ‹L commutes with ∇. Moreover, the section ¨ ‹α P ΓpT ˚M b Λk´1pT ˚Mqq is
totally skew-symmetric. Hence, by Proposition 2.4.28, it is enough to show that

divp¨ ‹αq “ 0.

But for any β P Ωq we have divp¨ βq “ ´d˚β, because

divp¨ βqs1¨¨¨sq´1 “ ∇ipp¨ βqiqs1¨¨¨sq´1 “ ∇iβis1¨¨¨sq´1 “ ´pd˚βqs1¨¨¨sq´1 .

So if dα “ 0 then divp¨ ‹αq “ ´d˚ ‹ α “ 0, which concludes the proof.
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2.5 Discussion

In this section we review analytic properties of Smith immersions, discuss examples of
Smith immersions and Smith submersions, make some remarks on the relevance to the
SYZ and GYZ conjectures of mirror symmetry involving calibrated fibrations, and present
several questions for future study.

2.5.1 Analytic results for Smith immersions

Numerous analytic results for Smith immersions were proved in Cheng–Karigiannis–Madnick
[10, Sections 4 and 5]. In that paper the authors assumed that the calibration form
α P ΩkpMq was associated to a vector cross product (VCP), but as we showed in Sec-
tion 2.3, this assumption was not necessary. All the analytic results used the form (2.3.5)
of the Smith immersion equation. In this section we informally review these analytic re-
sults. (Note that when k “ 2 these analytic results concern J-holomorphic maps and are
classical.) See [10] for precise statements.

Removable singularities. If u is a C1
loc Smith immersion on a punctured open ball in Rk

with finite k-energy, then u extends to a C1 Smith immersion across the puncture.

Energy gap. There exists a “threshold energy” ε0 ą 0 such that every Smith immersion
u : Sk Ñ M with k-energy less than ε0 is constant. (That is, any nontrivial solution
has a minimum k-energy.) This is used to show that there are only a finite number of
“bubbles”.

Compactness modulo bubbling. Let W Ď L be open, and let tWmumPN an increasing
sequence of open sets exhausting W , and gm a sequence of metrics on Wm such that
gm Ñ g in C8

loc on W . Let um : pWm, rgmsq Ñ pM,hq be a sequence of Smith immersions
with uniformly bounded k-energy.

Then there exists a Smith immersion u8 : pW, g|W q Ñ pM,hq and a (possibly empty) finite
subset B “ tx1, . . . , xNu of L such that (after passing to a subsequence) the following three
properties hold:

(a) um Ñ u8 in C1
loc on W zB uniformly on compact subsets of W zB,

(b) as Radon measures on L, we have |dum|kvolL Ñ |du8|kvolL `
řN

i“1ciδpxiq, where δpxiq
is a Dirac measure at xi, and each ci ě 1

2
ε0, where ε0 is the “threshold energy”. This

says that the energy density can concentrate at points, where a minimum amount of
energy is lost.

(c) If the um have uniformly bounded p-energy for some p P pk,8s, then B “ ∅. (There
is no bubbling.)

(In practice we take W “ L or L “ Sk and W “ Skztp´u, where p´ is the south pole.
See [10, Remark 4.13] for details.)
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This result can be applied to a sequence um : L Ñ M of Smith immersions representing the
same homology class in HkpMq, as they have a uniform k-energy bound. For each xi, by
rescaling about xi and using conformal invariance, and reapplying this result, we obtain a
“bubbled off” Smith immersion ũ8,i : S

k Ñ M . This process stops after a finite number of
iterations due to the energy gap.

No energy loss. We have limmÑ8 Ekpumq “ Ekpu8q `
ř

iEkpũ8,iq. This says that the
limiting k-energy is the sum of the k-energy of u8 plus the k-energy of each of the bubble
maps.

Zero neck length. We have u8pxiq “ ũ8,ipp
´q, where p´ is the south pole of Sk. This

says that for m ąą 0, then um is homotopic to the connect sum u8#p#
i
ũ8,iq.

It would of course be very interesting to establish analogous analytic results for Smith
submersions. However, the conformal invariance of Smith immersions, as detailed in Re-
mark 2.3.7, was used crucially to establish the above analytic results. By contrast, Re-
mark 2.4.19 says that Smith submersions are only horizontally conformally invariant. But
perhaps this is indeed the right notion that is needed in this context. The authors plan to
investigate this question further.

2.5.2 Examples of Smith maps

In this section we discuss some examples of Smith maps.

Example 2.5.1. Let pMn, hq be a Riemannian manifold equipped with a calibration form
α P ΩkpMq. Let ι : Lk Ñ Mn be an immersion of an oriented manifold Lk into M , and
equip L with the pullback metric g “ ι˚h, so that ι is a Riemannian immersion. Suppose
that ιpLq is α-calibrated, which means that ι˚α “ volL. Then ι is a Smith immersion with
dilation λ “ 1. Thus, any α-calibrated submanifold gives rise to a Smith immersion, but
the notion of Smith immersion is more general.

Indeed, if f : pL, gq Ñ pL, gq is an orientation-preserving conformal diffeomorphism, then
u “ ι ˝ f is also a Smith immersion, with the same image upLq “ ιpLq, but u need not be
a Riemannian immersion. ▲

There are several examples of Smith submersions where the domain pMn, hq is noncompact,
given by explicit cohomogeneity one special holonomy metrics on total spacesMn of vector
bundles over a base Lk, and equipped with a parallel calibration form α P ΩkpMq. These
include the Bryant–Salamon examples [7] of G2 and Spinp7q manifolds, and (very likely)
also include the Stenzel examples [41] of Calabi–Yau metrics on T ˚Sm. The Smith submer-
sion is the projection map u : M Ñ L, and the fibres are pn´ kq-dimensional submanifolds
calibrated by ‹α P Ωn´kpMq.
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In these examples, we have du ‰ 0 everywhere on M , so M0 “ M . (See the discussion in
Section 2.5.3 for why we cannot expect this to happen if M is compact.) We now discuss
these examples in detail.

Example 2.5.2. Consider the spinor bundle M7 “ {SpS3q over the round S3. There is a
torsion-free G2-structure φ on M7, with dual 4-form ψ “ ‹φ, inducing a metric h which
has holonomy G2. The projection u : pM7, hq Ñ pS3, gq is a submersion. We claim that
the map u is a Smith submersion with respect to the calibration form α “ ψ P Ω4pMq.

To see this, we use the notation of [25, Section 3.1]. We have local vertical vector fields
ζ0, ζ1, ζ2, ζ3 and horizontal vector fields b1, b2, b3. The function r ě 0 is the distance from
the zero section in the fibres of M . Then it is known that for c0, c1 ą 0, κ ą 0 we have a
torsion-free G2 structure defined by

φ “ 3κpc0 ` c1r
2
qu˚volS3 ` 4c1pb1 ^ Ω1 ` b2 ^ Ω2 ` b3 ^ Ω3q, (2.5.3)

where Ωi are vertical 2-forms and such that the induced metric is

h “ p3κq
2
3 pc0 ` c1r

2
q
2
3u˚gS3 ` 4

´ c31
3κ

¯
1
3
pc0 ` c1r

2
q

´ 1
3 pζ20 ` ζ21 ` ζ22 ` ζ23 q.

Hence, we see that hp0,2q “ p3κq
2
3 pc0 ` c1r

2q
2
3u˚gS3 which gives u˚gS3 “ λ2hp0,2q for

λ “ p3κq
´ 1

3 pc0 ` c1r
2
q

´ 1
3 .

By Corollary 2.4.15, it remains to verify that u˚volS3 “ λ3φp0,3q. But we immediately see
from (2.5.3) that

φp0,3q
“ 3κpc0 ` c1r

2
qu˚volS3 “ λ´3u˚volS3 ,

which gives the desired equality.

Since the G2-structure is torsion-free, in particular we have that dψ “ 0. Consequently,
the map u : M Ñ S3 is 3-harmonic and the fibres are calibrated by ψ. (That the fibres of
this G2-manifold are coassociative submanifolds is of course well-known.) ▲

Example 2.5.4. Consider the manifold M7 “ Λ2
´pT ˚X4q of anti-self dual 2-forms over

X, where X4 is either the round S4 or the Fubini–Study CP2. There is a torsion-free
G2-structure φ on M7, with dual 4-form ψ “ ‹φ, inducing a metric h which has holonomy
G2. The projection u : pM7, hq Ñ pX4, gq is a submersion. We claim that the map u is a
Smith submersion with respect to the calibration form α “ φ P Ω3pMq.

To see this, we use the notation of [26, Section 4.1]. There exist positive functions w
and v which depend only on the radial coordinate in the vertical fibres and satisfy certain
differential equations such that we have a torsion-free G2 structure given by

φ “ v3volV ` w2vdθ,
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where volV is the volume form for the vertical part and θ is the canonical 2-form on
Λ2

´pT ˚Xq. The dual 4-form can be expressed as

ψ “ ψp0,4q
` ψp2,2q where ψp0,4q

“ w4 u˚volX , (2.5.5)

and the metric h induced by φ is given by

h “ w2 u˚gX ` v2gV .

Hence, we see that hp0,2q “ λ´2u˚gX for λ “ w´1. By Corollary 2.4.15, it remains to verify
that u˚volX “ λ4ψp0,4q. But this is immediate from (2.5.5).

Since the G2-structure is torsion-free, in particular we have that dφ “ 0. Consequently,
the map u : M Ñ X4 is 4-harmonic and the fibres are calibrated by φ. (That the fibres of
this G2-manifold are associative submanifolds is of course well-known.) ▲

Example 2.5.6. Consider the manifold M8 “ {S´pS4q of negative chirality spinors over
the round S4. There is a torsion-free Spinp7q-structure Φ onM8, inducing a metric h which
has holonomy Spinp7q. The projection u : pM8, hq Ñ pS4, gq is a submersion. We claim
that the map u is a Smith submersion with respect to the calibration form α “ Φ P Ω4pMq.

To see this, we use the notation of [26, Section 4.2]. There exist positive functions w
and v which depend only on the radial coordinate in the vertical fibres and satisfy certain
differential equations such that we have a torsion-free Spinp7q structure given by

Φ “ w4 u˚volS4 ` w2v2β ` v4volV , (2.5.7)

where volV is the volume form on the vertical part and β is some p2, 2q-form. The metric
h induced by Φ is given by

h “ w2 u˚gS4 ` v2gV .

Hence, we see that hp0,2q “ λ´2u˚gS4 for λ “ w´1. By Corollary 2.4.15, it remains to verify
that u˚volS4 “ λ4Φp0,4q. But this is immediate from (2.5.7).

Since the Spinp7q-structure is torsion-free, in particular we have that dΦ “ 0. Consequently,
the map u : M Ñ S4 is 4-harmonic and the fibres are calibrated by Φ. (That the fibres of
this Spinp7q-manifold are Cayley submanifolds is of course well-known.) ▲

Example 2.5.8. There is an explicit cohomogeneity one Calabi–Yau metric h on the
total space of M2m “ T ˚pSmq, called the Stenzel metric. When m “ 2 this is the classical
Eguchi–Hanson metric, and whenm “ 3 it is the Candelas–de la Ossa conifold metric. (See
the paper of Ionel–Min-Oo [21] for a concrete simple description of these metrics.) Being
Calabi–Yau, this Riemannian manifold pM2m, hq is equipped with a holomorphic complex
volume form Υ P Ωpm,0qpMq such that α “ RepΥq P ΩmpMq is a special Lagrangian
calibration.
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Let u : M2m Ñ Sm be the projection. The fibres of u are special Lagrangian submanifolds.
It seems very likely that u is a Smith submersion, so that it is horizontally conformal and an
m-harmonic map. The authors did not explicitly verify this. At least when m “ 4, such a
verification should be possible using the many useful explicit formulas in Papoulias [32]. ▲

It would be interesting to examine if other known calibrated fibrations can be described by
Smith submersions. For example, Goldstein exhibits a special Lagrangian torus fibration on
the Borcea–Voisin manifold in [16] and other special Lagrangian fibrations in noncompact
Calabi–Yau manifolds with symmetry are discussed by Gross [17] and Goldstein [15].

Moreover, Karigiannis–Lotay [25] exhibit other coassociative fibrations on the Bryant–
Salamon G2-manifold Λ2

´pS4q, very different from the obvious one in Example 2.5.4, and
Trinca [43] similarly exhibits a nontrivial Cayley fibration on the Bryant–Salamon Spinp7q-
manifold {S´pS4q, very different from the obvious one in Example 2.5.6. Attempting to
verify if these fibrations can be described by a Smith submersion seems to be an interesting
but difficult problem.

2.5.3 Calibrated fibrations and the SYZ and GYZ “conjectures”

In this section we briefly discuss the potential relevance of Smith submersions to the
Strominger–Yau–Zaslow [42] “conjecture” in Calabi–Yau geometry, as well as to the anal-
ogous Gukov–Yau–Zaslow “conjecture” in G2 geometry. The authors are certainly not
experts on the mathematics involved here, and we know even less about the physics. Nev-
ertheless, we feel it worthwhile to make a few remarks. We put “conjecture” in quotes
in both cases, as these ideas are predominantly motivated by physics, and their precise
mathematical formulations are constantly evolving. Our brief discussion here is far from
exhaustive, and is only meant to pique the reader’s interest for further inquiry.

Roughly speaking, Strominger–Yau–Zaslow argue in [42] that one should expect (at least
for certain types of points near the boundary of the moduli space) that a compact Calabi–
Yau complex 3-fold should admit a fibration over a real 3-dimensional base, necessarily
with singular fibres. The generic (smooth) fibre should be a special Lagrangian torus.
The mathematical inspiration comes from the deformation theory of McLean [29], which
shows that a compact special Lagrangian 3-manifold L3 in a Calabi–Yau 6-manifold lo-
cally smoothly deforms in a family of dimension b1pL3q. One then expects to construct the
“mirror Calabi–Yau manifold” by dualizing smooth fibres and then somehow compactify-
ing.

Similarly, Gukov–Yau–Zaslow explain in [18] that, again under certain conditions, a com-
pact torsion-free G2-manifold should admit a fibration over a 3-dimensional base, again
with singular fibres. The generic (smooth) fibre should be a coassocative submanifold
with is topologically either T 4 or K3. Again, this is inspired by McLean’s result in [29]
that a compact coassociative 4-manifold L4 in a torsion-free G2-manifold locally smoothly
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deforms in a family of dimension b2`pL4q, modulo orientations.

A kew observation by Joyce [22], discussed also in [23, Chapter 9], is that special Lagrangian
fibrations of compact Calabi–Yau manifolds should not be expected to be smooth gener-
ically. Rather, Joyce provides evidence that they should be piecewise-smooth, with the
singularities of the map being related to topology change of the fibres. This suggests that
the set of critical fibres should be relatively large. Indeed, Joyce argues that singular fi-
bres should generically be of codimension one. It is reasonable to believe that analogous
statements should hold for coassociative fibrations of compact torsion-free G2-manifolds.
(Baraglia [3] gives a rigorous intricate argument proving that such coassociative fibrations
necessarily must have singular fibres.)

When the domain pM,hq of a Smith submersion is noncompact, there exist many explicit
examples of calibrated fibrations, and at least some are definitely Smith submersions, as
discussed in Section 2.5.2. However, if pM,hq is compact, then we expect that there must
necessarily exist singular fibres. It would be interesting to see this directly by studying the
PDE (2.4.13) satisfied by a Smith submersion.

More generally, it is crucially important to understand the size of the critical set

M c
“ MzM0

“ tx P M : dux “ 0u

of a Smith submersion. Similarly, the critical set Lc “ LzL0 “ tx P L : dux “ 0u of a
Smith immersion is still very mysterious. In the classical case, when pM,hq is an almost
Kähler manifold equipped with the Kähler calibration form α “ ω P Ω2pMq, then a Smith
immersion u : pL2, gq Ñ pM,hq with respect to ω is a J-holomorphic map. In this case,
when L is compact it is known, by methods of unique continuation, that the critical set Lc

is a finite set of points. (See McDuff–Salamon [28, Sections 2.3–2.4] for details.) It is an
important open problem to see if such methods can in any way be effectively applied to
general Smith immersions and Smith submersions. Of course, we certainly do not expect
the critical sets to be of dimension zero in general.

2.5.4 Questions for future study

Many questions arise naturally from our study, which are somewhat speculative. Some of
these are:

Deformation theory of Smith maps. What is the deformation theory of a Smith map
(immersion or submersion)? From Example 2.5.1, any calibrated submanifold gives rise
to a Smith immersion. The work of McLean [29] studies the deformation theory of (com-
pact) calibrated submanifolds. Interestingly, there are two kinds of behaviours. Special
Lagrangian and coassociative submanifolds deform smoothly, while complex, associative,
and Cayley submanifolds in general have obstructed deformations. (The second class are

102



essentially those calibrated submanifolds whose calibration forms are associated to vector
cross products, except for higher dimensional complex submanifolds.)

However, at first glance, the Smith submersion equation does not seem to see the difference
between those calibrations which have smooth deformation theories and those which are
obstructed (respectively called branes and instantons by Leung–Lee [27]). Thus, it is
important to reconcile the distinction in McLean’s deformation theories with the existence
theory of Smith submersions. For example, if the domain pM,hq is compact, so that the
smooth fibres of a Smith submersion are compact calibrated submanifolds, and if α is an
associative or Cayley calibration, then we should not in general expect existence of Smith
submersions with respect to α, because associative and Cayley submanifolds are in general
obstructed. (Of course, examples do occur, such as the obvious projections from a 7-torus
or 8-torus with their standard G2 or Spinp7q-structures.)

It would be interesting to see if the deformation theory of Smith immersions is “better
behaved”. Note that we aways have the freedom of precomposing by an orientation-
preserving conformal diffeomorphism. Such deformations should be considered in some
sense trivial. We are interested in deformations of Smith immersions which are transverse
to such trivial deformations. For example, start with a (compact) associative or Cayley
submanifold, and describe it by a Smith immersion. Can we always deform it (nontrivially)
as a Smith immersion? This would give a class of calibrated submanifolds with a particular
type of allowed singularities which nevertheless have smooth deformation spaces.

Stability. We have seen from the energy inequalities that Smith immersions and Smith
submersions are global minimizers of the k-energy in a particular class of maps. Suppose
that u is a k-harmonic map, which is stable in the sense that the second variation of
the k-energy at u is nonnegative, so u is a local minimum of the k-energy. Under what
additional assumptions on the geometry of the source and target could we ensure that
such a stable k-harmonic map is necessarily a Smith map? The classical example of such
a stability theorem is the demonstration by Siu–Yau [39] that a stable harmonic map from
S2 “ CP1 into a compact Kähler manifold pM,h, ωq with positive holomorphic bisectional
curvature is necessarily ˘-holomorphic. Generalizing such a result should involve finding
analogues of “positive holomorphic bisectional curvature” in Riemannian manifolds with
special holonomy.

Constructing Smith maps via flows. If a general stability theorem as described in the
previous paragraph could be established, then one could use this to attempt to construct
examples of Smith immersions or Smith submersions by running the k-harmonic map heat
flow. This is the negative gradient flow of the k-energy. One would have to show that
(under certain assumptions on the geometries of the source and target) that the flow exists
for all time and converges to a k-harmonic map. Then one would hope to argue that the
limit must in fact be a Smith map.
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