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Abstract

The control of electromagnetic systems, which is governed by Maxwell’s equations, is
of interest for various reasons such as controlling plasma in a nuclear fusion reactor or
magnetically trapping antiparticles for observation. Proving that a controlled system is
exponentially stable is of particular interest, as exponential stability infers that the sys-
tem will converge asymptotically to a steady state solution. A tool called the multiplier
method is considered, which allows for exponential stability to be demonstrated by defining
an auxiliary functional and proving it is bounded by the system energy and the energy’s
time derivative in a particular way. If an appropriate bound is shown, exponential stabil-
ity is not only guaranteed, but the exponential function which bounds the L2 norm of the
system variables will be fully determined in terms of the systems parameters. Currently,
there is ongoing work into generalizing the multiplier method approach for a class of prob-
lems known as Port-Hamiltonian systems. This thesis aims to contribute to this work by
formulating Maxwell’s equations as a Port-Hamiltonian system, and using this formulation
as a basis for determining how to choose the auxiliary functional needed in the multiplier
method.
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Chapter 1

Introduction

Control of electromagnetic systems is a topic that has been of interest in recent years,
with applications such as the control of plasma inside a nuclear fusion reactor [35, 37]. An
important aspect of control that is worth considering is stabilization. Stabilization is the
process of stabilizing a system via a control input in order to have the system decay to its
steady state. One approach to stability analysis is the multiplier method [14], which this
thesis aims to apply to electromagnetic systems.

This thesis is structured as follows. In Chapter 2 the necessary requisite mathematics
needed to prove well-posedness is discussed. The tools used to analyse partial differen-
tial equations (PDE) is the formalism of abstract PDE systems and the Lumer-Phillips
theorem [10, 22]. Chapter 2 also reviews the topic of port-Hamiltonian systems (PHS).
Port-Hamiltonian systems are a particular subclass of differential equations which nice
properties such as passivity (a notion that relates to the rate of change of the systems total
energy). Port-Hamiltonian systems are broken into two categories: finite-dimensional or
ordinary differential equations (ODE) systems and infinite-dimensional or PDE systems.
The study of Maxwell’s equations as a port-Hamiltonian system is an active area of re-
search of growing interest [7, 27, 31, 35]. Finally Chapter 2 will also discuss stability, and
in particular exponential stability. Exponential stability provides an exponential bound on
the decay of solutions to the steady state. The main tool this thesis will use to prove expo-
nential stability is the multiplier method approach which was outlined in [14, 36]. Recently,
[21] has demonstrated a methodology for applying the multiplier method to determine the
exponential stability of port-Hamiltonian systems.

In Chapter 3 necessary background into electromagnetism is provided. Mostly adapt-
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ing material from [3, 6, 18], the start of this chapter will introduce Maxwell’s equations,
formulate an equivalent problem in terms of free charge and current, and discuss physically
relevant boundary conditions. The second half of this chapter is dedicated to setting up
a system that is of interest to study and in proving well-posedness of the boundary value
control problem.

Finally, Chapter 4 will outline the main result of the thesis. Several papers over the
last 20 years [11, 16, 25, 26, 28, 32] have discussed the stabilization of Maxwell’s equations
for various circumstances, but the main result this chapter will follow is [14]. This paper
considered Maxwell’s equations in a region with zero internal charge or current, and was
able to apply the multiplier method to demonstrate exponential stability. Section 4.1 will
go over the results outlined in [14] in detail, while also expanding the results to allow for
arbitrary positive constants ε and µ, which the paper set to be equal to one. Section 4.2
will expand on the results to demonstrate that a controlled system with controller u = ky
is exponentially stable for 0 ≤ k < 1.
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Chapter 2

Mathematical Background

Before establishing a physical model for an electromagnetic system, some mathematical
concepts need to be established which will be used throughout this thesis.

It is import to prove the well-posedness of the model to ensure a unique solution exists.
To this end, section 2.1 and section 2.2 will present some background on the well-posedness
of PDEs through the use of semigroup theory including the Lumer-Phillips theorem.

Motivation for some work done later in the thesis will be obtained by using the port-
Hamiltonian structure of the model, so the concept of port-Hamiltonian systems needs to
be established. To introduce the topic, finite-dimensional PHS will be discussed in section
2.3. After the concept is motivated, section 2.4 will discuss infinite-dimensional PHS in a
single spatial dimension. The topic of higher spatial dimensions will be withheld until the
end of Chapter 3 so that Maxwell’s equations can be introduced first.

The last topic this chapter will cover is the multiplier method approach for stability.
Section 2.5 will introduce the notion of stability and discuss the multiplier method approach
which will be used later in the thesis.
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2.1 Well-Posedness and Strongly Continuous Semi-

groups

For a problem to be considered well-posed in mathematics, it must satisfy the following
three conditions [12]:

1. A solution to the problem exists,

2. this solution is unique, and

3. the solution depends continuously on the initial data.

The first two conditions make sense since the analysis of a problem most often requires
a solution to the problem to exist and for this solution to be unique. In our case it does
not make sense to discuss the exponential decay of the systems solution if the solution
does not exist. The last condition requires that we can bound any two solutions if their
initial conditions are close. Closeness is always considered with regards to some norm that
applies to the function spaces being considered. For this thesis, the L2 norm is the natural
choice since it will be shown later that the system energy is just a weighted L2 norm. The
L2 norm over a region (denoted || · ||) is defined by the L2 inner product (denoted < ·, · >).
Let f,g ∈ Rn and let our region of interest be denoted as Ω, then the inner product and
norm over the space L2(Ω) are defined as

< f,g >=

∫
Ω

f · g dΩ, (2.1)

||f|| =
√

< f, f >, (2.2)

where f · g =
n∑

k=1

fkgk is the standard dot product.

Remark 2.1.1. It should be noted that the well-posedness of a problem depends on the
choice of what Hilbert space defined the state space for the problem. A problem may not
be well-posed on a given Hilbert space and may require a subspace to be taken. From the
discussion in [22, Examples 2.32 and 2.33], choosing a suitable state space for PDEs is not
a trivial choice and restrictions on the state space often need to be made to ensure well-
posedness. Often, these restrictions can be motivated by analysis of the systems energy.
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There are several established methods of proving well-posedness for PDEs which could
be used, but for this thesis the notion of strongly continuous semigroups (C0-semigroups)
will be used to prove Well-Posedness. Definitions, theorems, and proofs will follow from
Chapters 5-6 of [10]. Since our target goal is to analyze a PDE system, we should first set
up an abstract PDE system to consider. Let z(t) ∈ Rn we are interested in proving the
well posedness of the differential equation

ż(t) = Az(t) z(0) = z0 (2.3)

where ż refers to the total time derivative d
dt
z, and A is a differential operator.

Next the definition of a C0-semigroup is provided as follows.

Definition 2.1.2 (C0-Semigroup). Let Z be a Hilbert Space. (T (t))t≥0 is called a C0-
semigroup if the following holds:

1. For all t ≥ 0, T (t) is a bounded linear operator on Z,

2. T (0) = I, the identity operator,

3. T (t+ s) = T (t)T (s) for all t, s ≥ 0,

4. for z0 ∈ Z, we have that ||T (t)z0 − z0||Z converges to zero as t goes to zero.

At the moment it is not entirely clear how the mathematical structure of C0-semigroups
will help in the analysis of the well-posedness of PDEs. The next definition will serve as a
bridge between semigroup theory and PDEs.

Definition 2.1.3 (Infinitesimal Generator). Let (T (t))t≥0 be a C0-semigroup of the Hilbert
space Z. If the limit

lim
t→0

T (t)z0 − z0
t

exists, then we say z0 is in the domain of A (z0 ∈ D(A)) and we define
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Az0 = lim
t→0

T (t)z0 − z0
t

. (2.4)

We call A the infinitesimal generator of the C0-semigroup (T (t))t≥0.

With the concept of an infinitesimal generator defined, we can finally establish the
connection between C0-semigroups and PDEs. It will be shown that if the differential
operator A in the abstract system (2.3) generates a C0-semigroup, then for initial data
z0 ∈ D(A) ⊆ Z a classical solution exists. If z0 is instead only in the set Z, then we say a
mild solution exists. We define a classical solution and a mild solution as follows.

Definition 2.1.4 (Classic solution). A differentiable function z : R → Z is called a
classical solution of (2.3) if for all t ≥ 0 we have that z(t) ∈ D(A) and (2.3) is
satisfied.

Definition 2.1.5 (Mild solution). A continuous function z(t) : R → Z is called a mild

solution of (2.3) if
t∫
0

z(s)ds ∈ D(A), z(0) = z0 and

z(t)− z(0) = A

t∫
0

z(s)ds, for all t ≥ 0 (2.5)

The following theorem will be needed to prove the existence of a solution when A
generates a C0-semigroup.

Theorem 2.1.6. Let (T (t))t≥0 be a C0-semigroup on a Hilbert space Z with an infinitesimal
generator A : D(A) ⊆ Z → Z. Then the following results hold:

1. for z0 ∈ D(A) and t ≥ 0, T (t)z0 ∈ D(A)

2.
d

dt
(T (t)z0) = AT (t)z0 = T (t)Az0 for z0 ∈ D(A) and t ≥ 0,

3. for all z0 ∈ Z, lim
s→∞

(
1
s

∫ s

0
T (t)z0dt

)
= z0.

Proof. For 1 and 2, let s ≥ 0 and consider
T (t+ s)z0 − T (t)z0

s
. Since T (t+s) = T (t)T (s) =

T (s)T (t), this expression can be rewritten as
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T (t+ s)z0 − T (t)z0
s

= T (t)

(
T (s)z0 − z0

s

)
=

T (s)T (t)z0 − T (t)z0
s

.

Taking the limit as s → 0, this expression becomes

lim
s→0

T (t+ s)z0 − T (t)z0
s

= T (t) lim
s→0

(
T (s)z0 − z0

s

)
= lim

s→0

T (s)T (t)z0 − T (t)z0
s

.

First we analyse the middle term. Not that since A is the infinitesimal generator of

(T (t))t≥0, by definition the limit lim
s→0

(
T (s)z0 − z0

s

)
exists and is equal to Az0.

Since the limit exists, we know that T (t)Az0 also exists.

Since the limit exists, lim
s→0

T (s)T (t)z0 − T (t)z0
s

= AT (t)z0 and T (t)z0 ∈ D(A) by defi-

nition

Lastly, lim
s→0

T (t+ s)z0 − T (t)z0
s

is just the definition of the derivative of T (t)z0 with

respect to t. Therefore, we conclude

d

dt
(T (t)z0) = AT (t)z0 = T (t)Az0.

For 3, let z0 ∈ Z and α > 0. By the definition of a C0-semigroup, we can choose τ > 0
such that ||T (t)z0 − z0||Z ≤ α for all t ∈ [0, τ ].

||1
s

s∫
0

T (t)z0dt− z0||Z = ||1
s

s∫
0

T (t)z0 − z0dt||Z

≤ 1

t

s∫
0

||T (t)z0 − z0||Zdt

≤ α for all t ∈ [0, τ ].
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This is the definition of convergence, so we can conclude that limit exists and 1
s

s∫
0

T (t)z0dt →
z0.

The fact that a classical solution exists is a consequence of this theorem, as stated in
the following corollary.

Corollary 2.1.7. Consider the abstract PDE

ż(t) = Az(t) z(0) = z0,

where z0 ∈ D(A) ⊆ Z. If A generates a C0-semigroup (T (t))t≥0, then z(t) = T (t)z0 is
the classical solution to the problem, and the problem is well-posed.

If we relax the requirement for the initial condition such that z0 ∈ Z, then z = T (t)z0
is the unique mild solution. If the classical solution exists, then the mild solution is equal
to the classical solution.

Proof. Proof for the classical solution.

By theorem 2.1.6,

ż(t) =
d

dt
(T (t)z0) = AT (t)z0 = Az(t).

Moreover, since T (0) = I we have that z(0) = T (0)z0 = z0. Therefore, this is a solution
to the PDE.

Now to prove the solution is unique, suppose for contradiction there is another solution
y(t) ̸= z(t). Define w(s) = T (t− s)y(s).

Let s, h ∈ R such that s, s+ h ∈ [0, t], then

w(s+ h) + w(s)

h
=

T (t− s− h)y(s)− T (t− s)y(s)

h
+ T (t− s− h)

y(s+ h)− y(s)

h
. (2.6)
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Since y is a classical solution, y ∈ D(A). This means

lim
h→0

T (t− s− h)y(s)− T (t− s)y(s)

h

= −T (t− s) lim
h→0

T (h)y(s)− y(s)

h
= −T (t− s)Ay(s). (2.7)

Now we consider the term T (t − s − h)
y(s+ h)− y(s)

h
. Taking the limit as h goes to

zero,

lim
h→0

T (t− s− h)
y(s+ h)− y(s)

h
= lim

h→0
T (t− s− h) lim

h→0

y(s+ h)− y(s)

h
= T (t− s)ẏ(s),

where separating the limit like this is valid because T (t) is continuous. Since y is a
classical solution, ẏ(s) = Ay(s) so we have

lim
h→0

T (t− s− h)
y(s+ h)− y(s)

h
= T (t− s)Ay(s) (2.8)

Taking the limit as h → 0 of (2.1) and substituting (2.1) and (2.1) in, we obtain

ẇ(s) = lim
h→0

w(s+ h) + w(s)

h
= −T (t− s)Ay(s) + T (t− s)Ay(s) = 0. (2.9)

Since ẇ(s) = 0, it follows that w(s) is constant for all s. Therefore

y(t) = T (0)w(t) = w(t) = w(0) = T (t)y(0) = T (t)z0 = z(t),

We have proven that y(t) = z(t), so the solution is unique.
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Lastly, it is easy to confirm that the solutions depend continuously on the initial data.
Let w = T (t)w0 and y = T (t)y0 be the classical solutions to ż(t) = Az(t) with initial
conditions z(0) = w0 and z(0) = y0 respectively. Let α > 0 be given. The goal is to show
that for some δ > 0 if ||w0 − y0|| ≤ δ then ||w(t)− y(t)|| ≤ α.

Since (T (t))t≥0 is a C0-semigroup, T (t) is bounded. For an operator to be bounded, it
means that for all z ∈ D(A) then there exists a C > 0 such that ||T (t)z|| ≤ C||z||. Let

δ =
α

C
. Then

||w(t)− y(t)|| = ||T (t)w0 − T (t)y0||
= ||T (t)(w0 − y0)||
≤ ||T (t)||op||w0 − y0||
≤ Cδ

= α.

Therefore if A generates a C0-semigroup (T (t))t≥0, the PDE described by (2.3) has a
classical solution z = T (t)z0 which is unique and continuously depends on the initial data.
Hence, the problem is well-posed.

Proof for the mild solution.

Let z0 ∈ Z. Let s ≤ t and consider the following integral

T (s)− I
s

t∫
0

T (u)z0du =
1

s

t∫
0

T (s+ u)z0du− 1

s

t∫
0

T (u)z0du. (2.10)

Using the substitution v = s+ u on the second integral,

T (s)− I
s

t∫
0

T (u)z0du =
1

s

s+t∫
s

T (v)z0dv −
1

s

t∫
0

T (u)z0du. (2.11)

The two integrals on the right hand side of (2.1) can be broken apart as
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1

s

s+t∫
s

T (v)z0dv =
1

s

t∫
s

T (v)z0dv +
1

s

s+t∫
t

T (v)z0dv, (2.12)

and

1

s

t∫
0

T (u)z0du =
1

s

s∫
0

T (u)z0du+
1

s

t∫
s

T (u)z0du. (2.13)

Substituting (2.1)-(2.1) into (2.1), the integrals from s to t cancel resulting in the
expression

T (s)− I
s

t∫
0

T (u)z0du =
1

s

s+t∫
t

T (v)z0dv −
1

s

s∫
0

T (u)z0du. (2.14)

Preforming the substitution v = t+ u on the second integral, we finally arrive at

T (s)− I
s

t∫
0

T (u)z0du =
1

s

s∫
0

T (u+ t)z0du− 1

s

s∫
0

T (u)z0du

=
1

s

s∫
0

T (u)(T (t)− I)z0du. (2.15)

From Theorem 2.1.6, lim
s→0

1
s

s∫
0

T (u)(T (t)−I)z0 = T (t)z0− z0. Since this limit exists, we

have that

lim
s→0

T (s)− I
s

t∫
0

T (u)z0du = T (t)z0 − z0.

Thus, since the limit exists by Definition 2.1.3
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t∫
0

T (u)z0du ∈ D(A),

and the limit is equal to A
t∫
0

T (u)z0du.

For z(t) = T (t)z0,
t∫
0

z(s)ds ∈ D(A), z(0) = z0, and

z(t)− z(0) = A

t∫
0

z(s)ds.

Therefore, z(t) = T (t)z0 is the mild solution.

To prove uniqueness, assume for contradiction that there exists a mild solution y(t)
such that y(t) ̸= z(t). Let w(t) = y(t) − z(t). Then w(0) = y(0) − z(0) = z0 − z0 = 0.
Moreover since both y(t) and z(t) are mild solutions,

w(t) = y(t)− z(t) = y(0)− z(0) + A

t∫
0

(y(s)− z(s))ds = A

t∫
0

w(t)ds.

In addition,

lim
h→0

T (h)
t∫
0

w(s)ds−
t∫
0

w(s)ds

h
= lim

h→0

T (h)
t∫
0

y(s)ds−
t∫
0

y(s)

h
− lim

h→0

T (h)
t∫
0

y(s)ds−
t∫
0

y(s)

h
.

Since both y(t) and z(t) are mild solutions, both of the limits on the right exist. We can

conclude then that
t∫
0

w(s)ds ∈ D(A). Hence, w(t) is itself a mild solution to the abstract

problem ẇ(t) = Aw(t) with w(0) = 0. We conclude by the existence proof that the mild
solution to this problem is w(t) = T (t)w(0) = 0. So y(t) = z(t) which contradicts the
assumption that the mild solutions are distinct.
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Continuous dependence on initial conditions follows from the same proof as the in the
classical solution proof.

2.2 Lumer-Phillips Theorem

The previous section demonstrated that for an abstract PDE ż = Az(t) if A is an infinites-
imal generator of a C0-semigroup then the problem is well-posed. The remaining issue is
how do we prove A generates a C0-semigroup? This section will answer this question by
using the Lumer-Phillips theorem to conclude a class of problems do in fact generate a
C0-semigroup. This section will follow the definitions and theorem statements outlined in
chapter two of [22]. The Lumer-Phillips theorem provides a condition for A to generate a
contraction semigroup.

Definition 2.2.1 (Contraction semigroup). Let (T (t))t≥0 be a C0-semigroup with infinites-
imal generator A. (T (t))t≥0 is called a contraction semigroup if the operator norm of T (t)
given by

||T (t)||op = sup
z∈D(A),z ̸=0

||T (t)z||
||z||

,

satisfies ||T (t)||op ≤ 1 for all t ≥ 0.

Theorem 2.2.2 (Lumer-Phillips). Let A : D(A) ⊆ Z → Z be a closed, densely defined
operator on a Hilbert space Z. The operator A generates a contraction semigroup on Z if
and only if for all real ω > 0,

1. ||(ωI − A)z|| ≥ ω||z|| for all z ∈ D(A),

2. ||(ωI − A∗)z|| ≥ ω||z|| for all z ∈ D(A∗),

where A∗ refers to the adjoint operator of A.

Since this theorem requires the operator to be closed and densely defined, what it means
to be closed and dense both need to be defined. Consider the following definitions.
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Definition 2.2.3 (Closed). Let X and Y be Hilbert spaces and let A : D(A) ⊆ X → Y
be a linear operator. A is called closed if for any sequence {zk} satisfying zk ∈ D(A),
lim
k→∞

zk = z, and lim
k→∞

Azk = y, we have that z ∈ D(A) and Az = y.

Definition 2.2.4 (Dense). Let Z be a Hilbert space. The subspace W ⊆ Z is called dense
in Z if for every z ∈ Z and α > 0 there is a w ∈ W such that ||w − z|| < α

Moreover, a proper definition of what an adjoint operator is will be needed in order to
use the Lumer-Phillips theorem. The definition of an adjoint operator is taken from [23]
as follows.

Definition 2.2.5 (Adjoint operator). Let A be a linear operator on a Hilbert space Z. The
adjoint of A : D(A) ⊆ Z → Z, denoted A∗, is given by the operator that satisfies

< Az,w >Z=< z,A∗w >Z ∀z, w ∈ Z (2.16)

with the domain

D(A∗) = {w ∈ Z :< Az,w >Z=< z, v >Z For some v ∈ Z and all z ∈ Z}. (2.17)

Moreover, we call A Self-adjoint if A = A∗ and D(A) = D(A∗).

Proof of the Lumer-Phillips theorem follows from the more general Hille-Yosida the-
orem. For a statement of the Hille-Yosida theorem and proof of both the Hille-Yosida
theorem and the Lumer-Phillips theorem, see [10] chapter 6.1.

The following corollary serves as a sufficient condition to satisfy the Lumer-Phillips
theorem without having to consider a constant ω.

Corollary 2.2.6. Let A : D(A) ⊆ Z → Z be a closed, densely defined operator on a
Hilbert space Z. The operator A generates a contraction semigroup on Z if

• Re < Az, z >≤ 0 for all z ∈ D(A)
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• Re < A∗z, z >≤ 0 for all z ∈ D(A∗)

Where Re refers to the real component of the inner product.

Proof. Suppose the conditions the corollary hold. First we prove ||(ωI − A)z|| ≥ ω||z||.
Let z ∈ D(A), we have that

||(ωI − A)z||2 = ω2||z||2 + ||Az||2− < ωz,Az > − < Az, ωz >

= ω2||z||2 + ||Az||2 − ω < z,Az > −ω < Az, z >

Inner products satisfy conjugate symmetry, so < a, b >= < b, a > where the overbar
notation refers to the complex conjugate. Moreover, for any complex or real number a,
a+ ā = 2Re(a). Thus we can conclude

||(ωI − A)z||2 = ω2||z||2 + ||Az||2 − 2ωRe < Az, z >≥ ω2||z||2

since ||Az||2 ≥ 0 and by assumption Re < Az, z >≤ 0. Taking the root of both sides,
this is equivalent to ||(ωI − A)z|| ≥ ω||z||.

The proof for ||(ωI − A∗)z|| ≥ ω||z|| is the exact same except replace A with A∗ and
let z ∈ D(A∗).

2.3 Finite-Dimensional Port-Hamiltonian Systems

A port-Hamiltonian system (PHS) is a particular subclass of systems of differential equa-
tions that have a dissipative structure. We refer to systems of ODEs that obey a port-
Hamiltonian structure as finite-dimensional port-Hamiltonian systems. This is to distin-
guish these systems from PDE systems, which are referred to as infinite-dimensional PHS.
In this chapter, the idea of PHS will be introduced through the easier finite-dimensional
case first in order to build intuition and help motivate the infinite-dimensional case.
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Port-Hamiltonian systems get their name from the Hamiltonian, which in the case of
physical systems which do not have explicit time dependence is equal to the total energy
of the system [34]. A PHS is a differential equation which is formulated in terms of the
system energy, which is useful for showing things such as energy decay. This section will
follow [5] chapter 2 and [10] chapters 2 and 4.

There are many ways to formulate a PHS, but for our uses the following definition will
suffice.

Definition 2.3.1 (Finite dimensional Port-Hamiltonian system). Let z ∈ Z ⊆ Rn, the
state space of a dynamical system. Moreover, let H : Z → R be the systems Hamiltonian.

A finite dimensional PHS is given as

ż(t) = [J (z)−R(z)]
∂H
∂z

+G(z)u(t)

y = G(z)T
∂H
∂z

(2.18)

which satisfies the conditions that J (z) = −J (z)T is skew-adjoint and R(z) ≥ 0 is
positive semi-definite. Here u(t) ∈ Rk is a control (input) for the system, and y(t) ∈ Rk is
an observer (output). R(z) represents some resistive structure inherent to the system.

The conditions on J (z), and R(z) were made to ensure the system is passive. A passive
system is a system defined as follows[22, Definition 7.1].

Definition 2.3.2 (Passivity). Consider a dynamical system

ż(t) = Az(t) +Bu(t), (2.19)

y(t) = Cz(t) +Du(t), (2.20)

where z(t) ∈ Z, u(t) ∈ U , y ∈ Y. Here Z,U ,Y are all Hilbert spaces, B,C, and D are
all bounded operators on their respective spaces and A generates a C0-semigroup.

This system is called passive if for some positive semi-definite self-adjoint operator P
we have

1

2

d

dt
< z(t), Pz(t) > ≤ < u(t),y(t) > .
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For finite-dimensional systems with quadratic Hamiltonian, this condition is equivalent
to Ḣ(t) ≤ u · y.

Passivity is a desirable property because it allows us to make conclusions about the
stability of a closed loop system with imperfect knowledge of the component systems. A
system being passive allows us to apply the passivity theorem [22, Corollary 7.8] to relate
the external stability of either the control system or the open loop system to the stability
of the closed loop system.

Definition 2.3.3 (External stability). A system is externally stable if for every input
u(t) ∈ L2(0,∞;U) and zero initial condition, the output is also in L2(0,∞;Y).

Theorem 2.3.4 (Passivity Theorem). If both plant and controller are passive, and at least
one of the two systems is externally stable, then the closed loop is externally stable and also
passive.

This theorem says that if the uncontrolled system and the system for the control law
are both passive and we demonstrate the external stability of either of these systems, then
the controlled system is stable.

Theorem 2.3.5 (Energy Balance). The PHS (2.18) is passive.

Proof.

Ḣ(z) =
∂H
∂z

T

ż

=
∂H
∂z

T (
[J (z)−R(z)]

∂H
∂z

+G(z)u(t)

)
=

∂H
∂z

T

J ∂H
∂z

− ∂H
∂z

T

R∂H
∂z

+
∂H
∂z

T

Gu.

Since J = −J T we have
∂H
∂z

T

J ∂H
∂z

= −J |∂H
∂z

|2 ≤ 0. Moreover, since R is positive

semi-definite, −∂H
∂z

T

R∂H
∂z

≤ 0.

Using these inequalities, the equality above can be rewritten as
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Ḣ(z) ≤ ∂H
∂z

T

Gu

=

(
GT ∂H

∂z

)T

u

= yTu

= uTy.

A consequence of this theorem gives a direct relation between the energy decay and
the input-output of the system. To better see how systems can fit into a PHS framework,
consider the following example.

Example 2.3.6. Consider the model of a cart attached to a spring and a damper on a
track (Figure 2.1). Assume the spring has a spring constant k, the damper has a damping
constant c, and that the cart has an external force applied Fapplied = αu(x). For simplicity,
it is assumed that friction is negligible and can be ignored.

Figure 2.1: Cart attached to a spring and damper

The spring force is modeled by Hooke’s law Fs = −kx, and the damper is modeled by
the damping force Fd = −cẋ.

From Newton’s 3rd law, the dynamics of the system are described by

mẍ = Fnet = −kx− cẋ+ αu(x). (2.21)
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In this case, there is no explicit time dependence in the total energy, so the Hamiltonian
and energy coincide and are given by the spring potential and kinetic energy of the cart

H =
1

2
kx2 +

1

2
mẋ2. (2.22)

To convert this problem into a PHS, we need to reduce the order from a second-order
ODE to a first-order system of ODEs. Let z1 = x, z2 = ẋ so that the system can be
rewritten as

ż =

[
ż1
ż2

]
=

[
ẋ
ẍ

]
=

1

m

[
mz2

−kz1 − cz2 + αu

]
.

Computing the derivatives of H w.r.t z1 and z2 we have ∂H
∂z

=

[
kz1
mz2

]
. Therefore the

system can be rewritten in the form

ż =

(
1

m

[
0 1
−1 0

]
− c

m2

[
0 0
0 1

])
∂H
∂z

+
α

m

[
0
1

]
u(x).

Clearly, J = 1
m

[
0 1
−1 0

]
is skew-ajoint and R = c

m2

[
0 0
0 1

]
is positive semi-definite.

Pairing the system with an observer y = α
m
[0 1]∂H

∂z
= αz2 = αẋ, it has been demonstrated

that this mass cart system can be modelled in a port-Hamiltonian framework.

2.4 Infinite-Dimensional Port-Hamiltonian Systems in

One Spatial Dimension

In the prior section the topic of PHS for ODEs was discussed. Our goal is to find an
analogous setup for PDEs which obey the nice properties of finite-dimensional PHS. In
particular, we want a system which is formulated in terms of the Hamiltonian and is pas-
sive. This section will follow [10] chapters 7 and 11, as well as [20].

Before attempting to set up our abstract PHS in finite dimensions, some intricacies
that come as a result of working with PDEs need to be discussed. First and foremost,
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PDEs have a spatial domain that needs to be considered. While ODEs only need an initial
condition, PDE theory tells us that we need to also mention boundary conditions if we
have any hope for our problem to be well-posed. Moreover, unlike ODE systems which
can only have a control acting directly on the system, PDEs permit the use of boundary
control and observation. With this in mind, our definition of an infinite-dimensional PHS
will be formulated as a boundary control problem.

Another difference that a PDE system will have comes from the form of the Hamilto-
nian. For ODEs, the Hamiltonian is a function which maps the state space to a real value.
Since the Hamiltonian corresponds to the total energy for most physical systems, PDEs
will have a Hamiltonian of the form

H(t) =

∫
Ω

h(z, x) dΩ, (2.23)

where Ω is the domain of the space being considered, and h(z, x) is the Hamiltonian
density. A particular subclass of problems that are of interest are problems with a quadratic
Hamiltonian density. In this case, the Hamiltonian is given by

H(t) =
1

2

∫
Ω

zTh(x)z dΩ, (2.24)

for some weight matrix h. Since we want the PHS to be passive, we will need to look at
the total time derivative of the Hamiltonian. Taking the time derivative of (2.23) results
in

Ḣ(t) =

∫
Ω

∂h

∂z

T

∂tz dΩ.

This would suggest that the analogous system should be reformulated in terms of
∂h

∂z
.

We are interested in first order partial differential equations of the form

∂tz = (P1∂x + P0)(hz). (2.25)
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To define a infinite-dimensional PHS that has dynamics which are structured as (2.25),
we need to discuss a suitable boundary control and observer. To accomplish this, we first
define the boundary flow and boundary effort of the system, since formulating the control
and observer in terms of these quantities will be convenient.

Definition 2.4.1 (Boundary Flow and Effort). Recall Ω = [a, b]. Consider the PDE system
defined by (2.25). The boundary effort e∂ and boundary flow f∂ are defined by[

f∂
e∂

]
= R0

[
(hz)(b)
(hz)(a)

]
, (2.26)

where

R0 =
1√
2

[
P1 −P1

I I

]
. (2.27)

Now we can define a first-order infinite-dimensional PHS.

Definition 2.4.2 (First-order linear PHS). Let Z be the state space of a dynamic system
over a region Ω = [a, b] ∈ R equipped with the inner product

< f, g >Z=
1

2

b∫
a

gThfdx. (2.28)

Let P0, P1 ∈ Rnxn be n×n square matrices such that P0 is skew-adjoint (i.e P T
0 = −P0)

and P1 is self-adjoint (i.e P T
1 = P1). Let h(x) be self-adjoint and bounded such that for

some m,M > 0 we have mI ≤ h(x) ≤ MI for all x. Finally let WB and WC be matrices

such that WB and

[
WB

WC

]
have full rank. The system which satisfies these conditions and

is given by

∂tz = (P1∂x + P0)(hz), (2.29)

u = WB

[
f∂
e∂

]
, (2.30)

y = WC

[
f∂
e∂

]
, (2.31)
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is called a linear first-order infinite-dimensional PHS. The associated Hamiltonian is
the quadratic Hamiltonian

H(t) =
1

2

b∫
a

zThzdx.

With the conditions set in this definition, well-posedness of the boundary control prob-
lem is guaranteed via Lumer-Phillips theorem (see [10, Theorem 11.3.5] for details).

This definition can be extended to allow for a resistive structure similar to the ODE
case. From [20], we can instead write (2.29) as ∂tz = (J −R)(hz), where J = P1∂x + P0

and R ≥ 0 is positive semi-definite.

Now all that remains is to prove that the system as defined is passive. First a couple
of technical results are proven.

Lemma 2.4.3. Let R0 =
1√
2

[
P1 −P1

I I

]
and define Σ =

[
O I
I O

]
,

Then RT
0ΣR0 =

[
P1 O
O −P1.

]
Proof. Doing simple block matrix multiplication and using the fact that P T

1 = P1,

1

2

[
P1 I
−P1 I

] [
O I
I O

] [
P1 −P1

I I

]
=

1

2

[
I P1

I −P1

] [
P1 −P1

I I

]
=

1

2

[
2P1 O
O −2P1

]

Theorem 2.4.4. Assume the system ∂tz = (P1∂x + P0 − R)(hz) which obeys all of the
conditions outlined in Definition 2.4.2. Moreover assume that y,u ∈ Rn so that the system
has full measurements. Then the system is passive with an energy balance

˙H(t) ≤ 1

2

[
u
y

]T
PWB ,Wc

[
u
y

]
, (2.32)

where
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PWB ,Wc =

([
WB

WC

]
Σ

[
WB

WC

]T)−1

(2.33)

Proof. Taking a time derivative of H(t) and using product rule

Ḣ(t) =
1

2

b∫
a

∂tz
Thz+ zh∂tzdx

=
1

2

b∫
a

((P1∂x + P0 −R)(hz))T (hz) + (hz))(hz))T (P1∂x + P0 −R)(hz)dx

=
1

2

b∫
a

(∂x(hz))
TP T

1 (hz) + (hz)P1∂x(hz) + (hz)T (P T
0 + P0)(hz)− (hz)T (R+RT )(hz)dx.

Using the fact that P T
0 = −P0, P

T
1 = P1, RT = R,

Ḣ(t) =
1

2

b∫
a

(∂x(hz))
TP1(hz) + (hz)P1∂x(hz)− (hz)TR(hz)dx

=
1

2

b∫
a

∂x((hz)
TP1(hz))− (hz)TR(hz)dx

≤ 1

2

[
(hz)TP1(hz)

]b
x=a

.

The last step used the fundamental theorem of calculus and the fact that R is positive
definite. Notice that
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[
(hz)TP1(hz)

]b
x=a

= ((hz)(b))TP1((hz)(b))− ((hz)(b))TP1((hz)(b))

=

[
(hz)(b)
(hz)(a)

]T [
P1 O
O −P1.

] [
(hz)(b)
(hz)(a)

]
=

[
(hz)(b)
(hz)(a)

]T
RT

0ΣR0

[
(hz)(b)
(hz)(a)

]
=

[
f∂
e∂

]T
Σ

[
f∂
e∂

]
.

Since we are assuming both u and y are n-dimensional,

[
WB

WC

]
is a square matrix with

full rank. Linear algebra tells us this matrix is invertible, so we can write

[
f∂
e∂

]
=

[
WB

WC

]−1 [
u
y

]
.

Moreover, it is easy to verify using block multiplication that Σ = Σ−1. Putting this all
together,

1

2

[
(hz)TP1(hz)

]b
x=a

=

[
u
y

]T [
WB

WC

]−T

Σ−1

[
WB

WC

]−1 [
u
y

]
=

[
u
y

]T ([
WB

WC

]T
Σ

[
WB

WC

])−1 [
u
y

]
=

[
u
y

]T
PWB ,Wc

[
u
y

]
,

completing the proof.

As desired, we have formulated a passive system which interacts via the boundary and
is formulated in terms of the Hamiltonian.

To demonstrate how in practice this works, consider the following example.
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Figure 2.2: 1D vibrating string with both ends free

Example 2.4.5 ([10], Example 11.3.6). Consider the problem of a 1D vibrating string on
the domain [a, b] ∈ R. We assume that both sides of the string are free to move up and
down (Figure 2.2).

The model for this system is given by

∂ttw(x, t) =
1

d(x)
∂x(T (x)∂xw(x, t)), (2.34)

where d(x) is the mass density of the string and T (x) is Young’s modulus, both prop-
erties of the material the string is made of. Both d and T are taken to be strictly positive
and bounded quantities. Physically ∂tw represents the velocity of the string, and T (x)∂xw
represents the force acting on the string. Assume a classical solution w ∈ C2([a, b] × R)
exists.
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The Hamiltonian for this system is given as

H(t) =
1

2

b∫
a

d(x)(∂tw)
2 + T (x)(∂xw)

2dx. (2.35)

Suppose both ends of the string are controlled via an external force. This is modelled
by the boundary condition [

u1(t)
u2(t)

]
=

[
T (a)∂xw(a, t)
T (b)∂xw(b, t)

]
. (2.36)

Moreover, the physically measurable quantity in this problem is the velocity of the strings
at both ends. Thus we desire an observer of the form[

y1(t)
22(t)

]
=

[
∂tw(a, t)
∂tw(b, t)

]
. (2.37)

First, we aim to recast our dynamics into a port-Hamiltonian structure. Notice the
Hamiltonian can be rewritten as

H(t) =
1

2

b∫
a

[
d(x)∂tw
∂xw

]T [ 1
d(x)

0

0 T (x)

] [
d(x)∂tw
∂xw

]
dx. (2.38)

This gives us a quadratic Hamiltonian with density h(x) =

[ 1
d(x)

0

0 T (x)

]
and state space

variable z =

[
d(x)∂tw
∂xw

]
.

Taking a time derivative of z while making use of the fact that since we are assuming w ∈
C2 we can interchange the order of second derivatives to obtain ∂xtw = ∂tx = ∂x(

1
d(x)

z1),

∂tz =

[
d(x)∂ttw
∂txw

]
=

[
∂x(T (x)z2)
∂x(

1
d(x)

z1).

]

Notice that hz =

[ 1
d(x)

z1
T (x)z2

]
, so by using a rotation matrix we can write
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∂tz =

[
0 1
1 0

]
∂x(hz).

This is the form of (2.25) with P1 =

[
0 1
1 0

]
, P0 = O. What is left is to recast the

boundary conditions in port-Hamiltonian form. First we determine the boundary flow and
effort.

[
f∂
e∂

]
= R0

[
(hz)(b)
(hz)(a)

]
=

1√
2


0 1 0 −1
1 0 −1 0
1 0 1 0
0 1 0 1

[(hz)(b)(hz)(a)

]
. (2.39)

When worked out, this matrix multiplication results in

[
f∂
e∂

]
=

1√
2


T (b)z2(b, t)− T (a)z2(a, t)

1
d(b)

z1(b, t)− 1
d(a)

z1(a, t)
1

d(b)
z1(b, t) +

1
d(a)

z1(a, t)

T (b)z2(b, t) + T (a)z2(a, t)

 .

Setting WB = 1√
2

[
−1 0 0 1
1 0 0 1

]
, we have that[
u1

u2

]
= WB

[
f∂
e∂

]
.

Moreover we set WC = 1√
2

[
0 −1 1 0
0 1 1 0

]
, which results in[

y1(t)
y2(t)

]
= WC

[
f∂
e∂

]
.

Clearly WB has rank 2, and

[
WB

WC

]
has rank 4, so the requirements for this to be a PHS

are met.
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2.5 Stability

Exponential stability is defined as follows [10, Definition 8.8.1].

Definition 2.5.1 (Exponential Stability). Let z(x, t) be the state space variables for a
dynamical system defined over a region Ω. We say that the system is exponentially
stable with regards to some norm || · || if there exists constants M, q > 0 such that for all
t ≥ 0

||z(x, t)|| ≤ Me−qt||z(x, 0)||. (2.40)

One of the more common approaches to proving a system’s stability comes from Lya-
punov theory. In Lyapunov theory, we demonstrate exponential stability by defining a
suitable Lyapunov functional V (t).

Coming up with a suitable Lyapunov function is not always trivial. Often, the system
energy H(t) can be used as a Lyapunov function but this is not always the case. In cases
where the system energy is not enough to prove exponential stability, one approach is
modify the energy with additional terms to define a new Lyapunov functional which will
demonstrate exponential stability. For this we introduce the multiplier method approach
based on [36, Chapter 7.6].

Example 2.5.2. Consider the initial and boundary value problem for the 1D wave equation
on an open domain (a, b) ∈ R

∂ttw(x, t) = ∂xxw(x, t) (x, t) ∈ (a, b)× [0,∞), (2.41)

w(a, t) = 0 t ∈ [0,∞), (2.42)

∂xw(b, t) + β2∂tw(b, t) = 0 t ∈ [0,∞), (2.43)

w(x, 0) = w0(x),∂tw(x, 0) = q0(x) x ∈ (a, b). (2.44)

Assume that a unique classical solution w ∈ C2((a, b)) exists. The energy for this
system is

H(t) =

b∫
a

(∂xw)
2 + (∂tw)

2dx. (2.45)
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We can set this up as a system by taking z1 = ∂xw and z2 = ∂tw. When written like
this, H =< z, z >. Taking the time derivative of the energy

Ḣ = 2

b∫
a

∂xw∂xtw + ∂tw∂ttwdx

= 2

b∫
a

∂xw∂txw + ∂tw∂ttwdx,

where the order of the partial derivatives could be swapped since w ∈ C2. Doing inte-
gration by parts on the first term,

Ḣ = 2 ∂xw(x, t)∂tw(x, t)|bx=a +

b∫
a

∂tw∂xxw − ∂tw∂ttwdx.

The integrand is zero since ∂ttw = ∂xxw. Substituting the boundary conditions into the
first term leaves us with

Ḣ = −2β(b)2(∂tw(b, t))
2. (2.46)

From (2.46) it is clear that the energy is decreasing. This implies that ∂tw(x, t) and
∂xw(x, t) must be decreasing. This is not enough information to conclude that the system
is stable. To gain more information about the system, we use the multiplier method.

Let m = x be our multiplier, and define

w(t) =

b∫
a

2m(∂tw)(∂xw)dx, (2.47)

First we take a time derivative of w(t) and simplify,
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ẇ(t) = 2

b∫
a

m(∂ttw)(∂xw) +m(∂tw)(∂xtw)dx

= 2

b∫
a

m(∂xxw)(∂xw) +m(∂tw)(∂xtw)dx. (2.48)

Notice

∂x(m(∂xw)
2) = (∂x)

2 + 2m(∂xxw)(∂xw), (2.49)

∂x(m(∂tw)
2) = (∂t)

2 + 2m(∂xtw)(∂tw), (2.50)

Substituting (2.49) and (2.50) into (2.48) and applying the boundary conditions,

ẇ(t) =

b∫
a

∂x(m(∂xw)
2 +m(∂tw)

2)− (∂xw)
2 − (∂tw)

2dx

=
[
m(∂xw)

2 +m(∂tw)
2
]b
x=a

−H(t)

= b(∂xw(b, t))
2 + b(∂tw(b, t))

2 −H(t)

= b(1 + β4)(∂tw(b, t))
2 −H(t)

= −b
1 + β4

β2
Ḣ(t)−H(t).

Moreover,

|w(t)| = 2

∣∣∣∣∣∣
b∫

a

m(∂tw)(∂xw)dx

∣∣∣∣∣∣ ≤ 2b

b∫
a

|∂tw||∂x|dx ≤ 2b

b∫
a

(∂t2)
2 + (∂xw)

2dx = 2bH(t).

(2.51)

Here an argument from [21] is applied. Define for α > 0,
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Vα = H + αw. (2.52)

Then

H(t)− α|w(t)| ≤ Vα ≤ H(t) + α|w(t)|.

Using (2.51), (1 − 2bα)H(t) ≤ H(t) − α|w(t)| and H(t) + α|w(t)| ≤ (1 + 2bα)H(t).
Thus,

(1− 2bα)H(t) ≤ Vα(t) ≤ (1 + 2bα)H(t) (2.53)

For α ≤ 1
2b

we are guaranteed that Vα ≥ 0. Taking a time derivative of Vα,

V̇α(t) = Ḣ(t) + ẇ(t) ≤
(
1− αb

1 + β4

β2

)
Ḣ(t)− αH(t).

For α ≥ β2

b(1+β4)
,

V̇α(t) ≤ −αH(t).

Finally, (2.53) implies −αH(t) ≤ − 1
(1+2bα)

Vα(t), so

V̇α(t) ≤ − 1

(1 + 2bα)
Vα(t).

A direct consequence of this is Vα(t) = Vα(0)e
−qt where q = 1

(1+2bα)
.

We conclude exponential stability by observing that from (2.53)

Vα(0) ≤ (1 + 2bα)H(0),

(1− 2bα)H(t) ≤ Vα(t),

which means for M = 1+2bα
1−2bα

, q = 1
(1+2bα)

and α ∈ [ β2

b(1+β4)
, 1
2b
],

H(t) ≤ Me−qtH(0).
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Remark 2.5.3. Note that β2

(1+β4)
≤ 1

2
for all β This can be seen by considering the extrema

of the function f(x) = x2

1+x4 .

f ′(x) =
2x

1 + x4
− x2(4x3)

(1 + x4)2
=

2x(1− x4)

(1 + x4)2

Clearly, f ′(x) = 0 for x = 0 and |x| = 1. The minimum is f(0) = 0, and the maxi-
mum(s) are f(1) = f(−1) = 12

1+14
= 1

2
. Therefore 0 ≤ f(x) ≤ 1

2
for all x.

The consequence of this is is the set [ β2

b(1+β4)
, 1
2b
] is guaranteed to be non-empty, so there

is always an α such that the system is exponentially stable.
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Chapter 3

Maxwell’s Equations

Electromagnetism is modelled by a set of four equations known as Maxwell’s equations.
These equations relate the electric field, magnetic fields, electric charge density, and the
charge electric current density. Maxwell’s equations are a fundamental set of governing
equations for electromagnetism, so they are usually considered to be the starting set of
equations when dealing with classical electrodynamics. In free space, Maxwell’s equations
are given as

∇ · E = ε0ρtot (3.1)

∇ ·B = 0 (3.2)

∂tB = −∇× E (3.3)

ε0µ0∂tE = ∇×B− µ0Jtot. (3.4)

Here E is the electric field, B is the magnetic field, Jtot is the total current density
and ρtot is the total charge density. This set of equations is a collection of previously de-
duced physical laws. In particular, (3.1) is Gauss’ law, (3.3) is Faraday’s law, and (3.4)
is Ampére’s law with a correction by Maxwell. The second equation (3.2) is an unnamed
divergence free condition for the magnetic field.

This chapter will discuss Maxwell’s equations in matter. Section 3.1 will discuss how the
existence of matter causes there to be bound charge and current. Since bound charge and
bound current cannot be directly interacted with, it is convenient to absorb terms related
to the bound charge and current into the fields and reformulate in terms of just the free
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charge and current. Section 3.2 will go over a derivation for physical boundary conditions
and discuss the impedance boundary condition that is commonly considered for electro-
magnetic systems. After the physical boundary conditions are established, sections 3.3-3.5
will set up a particular system we are interested in analysing, discussing the energy of the
system, and converting the problem to an abstract system so well-posedness can be proven.

3.1 Maxwell’s Equations in Matter

While Maxwell’s equations in terms of the total charge and density are always valid, this
is not always the most convenient way to consider the system. Bound charges and cur-
rents cannot be directly interfaced with, so if the goal is to control an electromagnetic
system it is ideal to reformulate in terms of things that can be interacted with. The goal of
this section will be to rewrite Maxwell’s equations in terms of only free charge and current
density. Most of this section will follow [6], with discussion on non-linear materials from [3].

In matter, an electric field will cause the electrons to align with the field. This alignment
will cause the existence of a bound charge density which in turn will create an internal
electric field called the polarization (denoted P). Similarly a magnetic field will cause
electrons to flow and create an internal bound current, causing an internal magnetisation
(denoted M). From here on, we will assume we are dealing with electromagnetism in a
region Ω made of some material (interchangeably, the material will also be referred to as
Ω).

The following lemma will state how the bound charge density and bound current density
relates to the electric polarization and the magnetisation. Derivations of these quantities
can be found in [6, Chapters 4.2.1, 6.2.1, and 7.3.5].

Lemma 3.1.1. Let P be the electric polarization and M be the magnetization of a material
Ω. The associated bound charge density is

ρb = −∇ ·P. (3.5)

Moreover, there are two types of bound current density. The first, denoted Jb comes
directly from the magnetization and is given by the expression
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Jb = ∇×M. (3.6)

The second type of bound current density, which we will call the polarization current
density, comes from the flow of bound charges and is given by

Jp = ∂tP (3.7)

Denote the free charge and current densities as ρ and J respectively. The total charge
(resp. current) density can be written as the sum of the free and bound charge (resp.
current) as ρtot = ρ+ ρb (resp. Jtot = J+ Jb + Jp). Applying Lemma 3.1.1, we obtain

ρ = ρf −∇ ·P (3.8)

J = Jf +∇×M+ ∂tP. (3.9)

Before proceeding to convert Maxwell’s equations to being in terms of only the free
charge and current density, we need to define the following:

Definition 3.1.2. Consider a material Ω. Let E be the electric field, B be the magnetic
field, P be the electric polarization inside Ω, and M be the magnetization inside Ω.

The electric displacement is

D = ε0E+P. (3.10)

The magnetic displacement is

H = µ−1
0 B−M (3.11)

(See page x for a complete list of notation).

Now we are equipped to convert Maxwell’s equations to a form where only the free
charge and current density are explicitly included.

35



Theorem 3.1.3. Maxwell’s equations (3.1)-(3.4) inside a material Ω with an electric po-
larization P and magnetization M can be written as

∇ ·D = ρf (3.12)

∇ ·B = 0 (3.13)

∂tB = −∇×E (3.14)

∂tD = ∇×H− Jf . (3.15)

Proof. First consider Gauss’ law (3.1). Substituting in the expression for the total charge
density (3.8),

ε0∇ · E = ρ−∇ ·P.

Rearranging, we obtain ∇ · (ε0E + P) = ρ. The term inside the divergence is exactly
what was defined to be D, completing the first part of the proof.

Now consider Ampére’s law (3.4). Substituting the expression for the total current
density (3.9)

ε0∂tE = µ−1
0 ∇×B− J−∇×M− ∂tP.

Putting the derivative terms together, we arrive at the expression

∂t(ε0E+P) = ∇× (µ−1
0 B−M)− J.

The term inside the time derivative is once again by definition D, and the term inside
the curl was defined to be H, completing the proof.

While this new formulation of Maxwell’s equations is only in terms of the free charge and
current density, the system has too few equations to solve for all of the unknown variables.
In total (3.12)-(3.15) represent 16 unknowns (three for each component of E,B,D,H,J
and one for ρ) to be solved in 8 equations (1 each for the first two equations, 3 each for
the second two). In order to have a well-posed system we need some constitutive laws that
relate some of the variables.
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First, note that J and ρ must be related. Current represents the flow of charges, so
the existence of a free current density implies that the charge distribution must change in
time. This relationship is given by the continuity equation

∂tρ = −∇ · J. (3.16)

The remaining constitutive laws relate the electric field (resp. magnetic displacement)
to the polarization (resp. magnetization). Since the polarization is created in response to
the electric field, it is expected that the polarization should be a function of the electric
field. Similarly, the the magnetization should be related to the magnetic field. A power
series relationship

P = χ(1)
e E+ χ(2)

e |E|2 + · · · , (3.17)

M = χ(1)
m H+ χ(2)

m |H|2 + · · · , (3.18)

is typically assumed, where in general χ(i) are tensors of sufficient rank to ensure that
P,M ∈ R3. While this general case is important in many applications such as non-
linear optics [3], most applications can just assume a linear model [18]. The following
simplifications are defined as below:

Definition 3.1.4. Let Ω be a material. We say Ω is linear if the relationship between the
polarization and electric field (resp. magnetization and magnetic displacement) are

P = ε0χeE, (3.19)

M = χmH. (3.20)

The values χe and χm (which are known as electric and magnetic susceptibility respec-
tively) are in general non-constant 3× 3 matrices.

We further say that Ω is homogeneous if χe and χm are constants, and isotropic if
χe and χm are scalar quantities.

Going forward, we will assume that the material Ω being considered is a linear, isotropic,
and homogeneous material. This means we can write our constitutive laws as
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D = ε0(1 + χe)E = εE, (3.21)

B = µ0(1 + χm)H = µH. (3.22)

The constants ε and µ will be assumed positive. While there is some interest in ma-
terials which have negative values for the permittivity and permeability such as the study
of metamaterials (i.e materials created as a composite mesh of different substances in a
lattice) [29], these quantities are positive for normal materials.

The remaining quantity for which we need a constitutive relation is the free current
density. For many materials such as conductors, this relationship comes in the form of
Ohm’s law [6, Chapter 7.1.1],

J = η−1E. (3.23)

The quantity η is known as the electrical resistivity of the system, and in the case of
homogeneous and isotropic materials is constant.

Remark 3.1.5. The typical notation in the literature for (3.23) is J = σE, where σ is
the conductivity. The conductivity is exactly equal to the inverse of the resistivity. Since σ
is also commonly used to denote the surface current density, the choice to use η has been
made to avoid confusion.

Remark 3.1.6. Ohm’s law as stated holds well for conductors where the velocity of the
flowing electrons is sufficiently small. In the case where the velocity is large, the relation
is

J = η−1(E+ v×B). (3.24)

This type of constitutive law is necessary in the study of plasma [35]), but for our sake
we will assume that (3.23) holds.

These constitutive laws have brought the number of unknown functions down to 6
unknown quantities. Making the choice of using D and B as the representative vectors
describing the electric and magnetic fields, these quantities are the three components each
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for D,B. Substituting in the constitutive relationships for D and B we have the following
system

∇ ·D = ρ, (3.25)

∇ ·B = 0, (3.26)

∂tD = µ−1∇×B− J, (3.27)

∂tB = −ε−1∇×D, (3.28)

∂tρ = −∇ · J, (3.29)

with J = η−1ε−1D. This system has now gone from under defined to over defined. As
it turns out, the first two equations are not necessary to understand the dynamics of the
system. Using the interchange of derivatives it can be shown that if the first two equations
hold for the initial conditions, then (3.27)-(3.29) imply they hold for all time.

Proposition 3.1.7. Consider the system described in (3.25)- (3.29). Let (D(x, 0),B(x, 0)) =
(D0(x),B0(x)) be the initial state of the system and let ρ0(x) = ρ(x, t) be the initial free
charge density. If ∇ ·D0 = ρ0 and ∇ ·B0 = 0, then ∇ ·D = ρ and ∇ ·B = 0 for all times.

Proof. Assume initially ∇ ·D0 = ρ0 holds. From Faraday’s law

∂tD = µ−1∇×B− J.

Assume continuous mixed partials. Taking the divergence of both sides

∂t∇ ·D = µ−1∇ · (∇×B)−∇ · J
= 0 + ∂tρ

= ∂tρ,

where the fact that the divergence of a curl is always zero was used. Integrating both
sides with respect to t from 0 to t,

∇ ·D−∇ ·D0 = ρ− ρ0.

If ∇ ·D0 = ρ0, then ∇ ·D = ρ as required.
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Now consider Amphére’s law

∂tB = −ε−1∇×D.

Assume continuous mixed partials and take the divergence of both sides

∂t∇ ·B = −ε−1∇ · (∇×D) = 0.

Integrate with respect to t from 0 to t

∇ ·B−∇ ·B0 = 0.

If ∇ ·B0 = 0, then ∇ ·B = 0 as required.

Proposition 3.1.7 demonstrates that if the initial conditions satisfy (3.25) and (3.26),
the divergence equations will be satisfied for all time. Therefore we can absorb the first
two equations into the set of permissible initial conditions and consider only (3.27)−(3.29)
when discussing the dynamics of the system.

3.2 Boundary Conditions

To derive physically relevant boundary conditions, the fact that Maxwell’s equations should
be valid locally both just inside and just outside of Ω will be used. The method outlined
in [6] will be followed for this derivation, but done more rigorously by dealing with limits
of regions. These conditions hold for general materials so the derivation will be done using
(3.12)-(3.15) instead of using the equations for linear media.

Theorem 3.2.1. Consider Maxwell’s equations (3.12)- (3.15) for a region Ω. Then at the
boundary of Ω, which we denote as Γ, the following equations must hold locally for each
point on the boundary.

n · (D−Dex) = −σ, (3.30)

n · (B−Bex) = 0, (3.31)

n× (E−Eex) = 0, (3.32)

n× (H−Hex) = −K, (3.33)
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where Eex,Dex,Bex,Hex refer to external fields outside Ω, σ is the surface charge den-
sity, and K is the surface current density.

Proof. A proof of (3.30) and (3.33) will be provided, since the other two proofs are just
easier variations of the same techniques. In order to prove these local conditions, we need
to first convert the problem to its integral form. Let Σ ⊂ R3 be a closed region with a
boundary ∂Σ. Integrating Gauss’ law over this region results in∫

Σ

∇ ·D dΩ =

∫
Σ

ρ dΩ.

By definition, since ρ is the free charge density, the right side of the quality will just be
the free enclosed charge Qenc. Applying the Divergence Theorem to the left side to convert
to an integral over the boundary will yield∫

∂Σ

D · n dΓ = Qenc.

Let p = (p1, p2, p3) ∈ Γ be a point on the surface of Ω. Without loss of generality take
the coordinate system to be such that the z-axis is in the direction of the outward unit
normal at p. Let Di denote the i-th component of D for i = x, y, z. Finally, we let our
region Σ be defined for some a, b > 0 as the box

Σ =
{
x ∈ R3 : |x− p1| ≤ a, |y − p2| ≤ a, |z − p3| ≤ b; a, b > 0

}
The box Σ can be broken up into six surfaces. These are the faces corresponding to

x = p1 − a, x = p1 + a, y = p2 − a, y = p2 + a, z = p3 − b, and z = p3 + b. Labeling
these regions as ∂1 through ∂Σ6, and denote Di to refer to the i-th component of D for
i = x, y, z,
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D · n = −Dz(x, y, p3 − b) x ∈ ∂Σ1,

D · n = Dz(x, y, p3 + b) x ∈ ∂Σ2,

D · n = −Dz(x, p2 − a, z) x ∈ ∂Σ3,

D · n = Dz(x, p2 + a, z) x ∈ ∂Σ4,

D · n = −Dz(p1 − a, y, z) x ∈ ∂Σ5,

D · n = Dz(p1 + a, y, z) x ∈ ∂Σ6,

where

∂Σ1 = {x ∈ R : z = p3 − b, |x− p1| ≤ a, |y − p2| ≤ a},
∂Σ2 = {x ∈ R : z = p3 + b, |x− p1| ≤ a, |y − p2| ≤ a},
∂Σ3 = {x ∈ R : y = p2 − a, |x− p1| ≤ a, |z − p3| ≤ b},
∂Σ4 = {x ∈ R : y = p2 + a, |x− p1| ≤ a, |z − p3| ≤ b},
∂Σ5 = {x ∈ R : x = p1 − a, |y − p2| ≤ a, |z − p3| ≤ b},
∂Σ6 = {x ∈ R : x = p1 + a, |y − p2| ≤ a, |z − p3| ≤ b}.

Combining these results,

∫
∂Σ

D · n dΓ =

∫∫
|x− p1| < a
|y − p1| < a

Dz(x, y, p3 + b)−Dz(x, y, p3 − b) dxdy

+

∫∫
|x− p1| < a
|z − p3| < b

Dy(x, p2 + a, z)−Dz(x, p2 − a, z) dxdz

+

∫∫
|x− p1| < a
|z − p3| < b

Dx(p1 + a, y, z)−Dx(p1 − a, y, z) dydz.
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Taking the limit as b → 0, the last two integrals vanish since their domains of integration
go to zero. For the first integral, denote Dz(x, y, p3) to be the z-component of the field
interior to Ω, and Dex

z (x, y, p3) to be the z-component of the field exterior to Ω at z = p3.
Let g(x, y) = −(Dz(x, y, p3)−Dex

z (x, y, p3)). We can now write∫∫
|x− p1| < a
|y − p1| < a

g(x, y) dxdy = Qenc. (3.34)

By the Average Value Theorem (see any introductory calculus textbook, for instance,
[33, pg. 997])

gavg =
1

a2

∫∫
|x− p1| < a
|y − p1| < a

g(x, y) dxdy. (3.35)

In the limit as b → 0 the only enclosed charge is the surface charge σ(x, y). Applying
the Average Value Theorem,

Qenc =

∫∫
|x− p1| < a
|y − p1| < a

σ(x, y) dxdy = a2σavg. (3.36)

Substituting (3.35) and (3.36) into (3.34),

a2gavg = a2σavg.

Since a > 0, we can divide by a2 on both sides. As a → 0, the average value of g(x, y)
will approach g(p1, p2) and similarly σavg = σ(p1, p2). This means locally

g(p1, p2) = −(Dz(p1, p2, p3)−Dex
z (p1, p2, p3)) = σ(p1, p2, p3)

Since p was arbitrary, this relation must hold locally for all p ∈ Γ. Note that since it
was chosen that the coordinates ensured z was in the same direction as the outward normal
at p, this is equivalent to saying
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n · (D−Dex) = −σ.

Now to prove (3.33), we similarly aim to convert the equation into its integral form to
proceed. Now let S ⊂ R3 be a surface enclosed by a loop ∂S. Taking the surface integral
of (3.33) over S yields

∫
S

(∇×H) · n dΓ =

∫
S

∂tD · n dΓ +

∫
S

J · n dΓ.

The free surface current density is defined as the quantity J such that the enclosed free
current is equal to Ienc =

∫
S

J · n dΓ. Applying Stokes’ Theorem to the integral with the

curl to convert to a line integral over ∂S we have∫
∂S

H · dℓ = d

dt

∫
S

D · n dΓ + Ienc

As before, let p = (p1, p2, p3) be some point on the surface of Ω. Without loss of
generality, we assume the z-axis is in the direction of the outward unit normal, and the
x-axis is in the direction of K, the free surface current density at p. Note that this choice
in axis is okay since K must be tangent to the surface and thus orthogonal to the normal
vector, allowing for an orthonormal coordinate system to be defined. Finally, let S be
defined by the square

S = {x ∈ R3 : x = p1, |y − p2| ≤ a, |z − p3| ≤ b; a, b > 0}.

We will consider each part of the overall equality separately. First note that that in
the limit as b → 0

d

dt

∫
S

D · n dΓ → 0,

because the domain of integration will vanish. Next, we note that for the average
current density, Ienc = 2aKavg · x̂ since Kavg · x̂ = |Kavg|. Finally,
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∫
∂S

H·dℓ =
p3+b∫

p2−b

Hz(p1, p2+a, z)−Hz(p1, p2−a, z)dz+

p2+a∫
p3−a

Hy(p1, y, p3−b)−Hy(p1, y, p3+b)dy.

In the limit as b → 0, the first integral’s domain of integration collapses, so the first
term goes to zero. By the same argument as in the case of Gauss’ law, for f(y) =
Hy(p1, y, p3, p3)−Hex

y (p1, y, p3),

p2+a∫
p3−a

Hy(p1, y, p3)−Hex
y (p1, y, p3)dy = 2afavg(p1, y, p3).

Putting things together,

favg(p1, y, p3) = Kavg · x̂.

Taking a to be small but nonzero, the average values approach the values evaluated at
p, so once again we have

Hy(p1, p2, p3)−Hex
y (p1, p2, p3) = K · x̂.

Since p is arbitrary, this must hold for all p ∈ Γ. Note that ŷ = ẑ× x̂, so we can rewrite
the above as

(H−Hex) · (ẑ × x̂) = K · x̂.

Using the cyclical property of the scalar triple product and replacing ẑ with n,

−(n× (H−Hex)) · x̂ = K · x̂.

Since x̂ is just in the direction of K, this is just telling us that the component of
(n× (H−Hex)) that is parallel to K is equal to K. Both components are already in this
direction, so we can just drop the dot product with x̂ to finally obtain

n× (H−Hex) = −K.
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These are general continuity equations that any electromagnetic field must satisfy. Since
these equations were derived using Maxwell’s equations, from Proposition 3.1.7, if the ini-
tial conditions satisfy Gauss’ law (3.1) and the divergence condition for B (3.2), then (3.30)
and (3.31) are satisfied.

It is worth making note of some particular physical boundary conditions.

Definition 3.2.2 (perfect conductor). A perfect conductor is defined as a material
which has zero resistivity.

Since Ohm’s law holds for perfect conductors, this is equivalent to saying a perfect
conductor permits zero internal electric field, since J = η−1E is only finite if E = 0.

A perfect conductor gives rise to prefect conducting boundary condition. Suppose Ω is
connected to a perfect conductor at the boundary Γ, then there is no electric field external
to Ω inside the perfect conducting region. From (3.32) we require

n×D = 0, (3.37)

where E has been swapped with D by dividing both sides by ε. Another important
model for the boundary conditions is the impedance boundary condition. According to
[18], in many substances such as metals the penetrative depth of the electromagnetic fields
is low. If the penetrative depth is small in comparison to the thickness of a conductor, the
fields in the medium will be a highly damped plane wave [8]. A consequence of this is that
the tangential components of the electric and magnetic fields (and thus, the magnetic field
B and the electric displacement D) can be related. This relationship can be used in place
of the boundary condition for the surface, and is given by

n× (n×D) +

√
ε

µ
n×B = 0. (3.38)

This condition is a first-order approximation to the dynamics at the boundary and
has been shown to be accurate numerically for short computational time [1]. This model
assumes that at least locally, the problem can be considered as a plane wave entering a flat
surface [8]. To account for regions where the surface is not sufficiently flat locally to make
this approximation, this condition can be generalized as

n× (n×D) + rn×B = 0, (3.39)
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for a positive scalar function r > 0 to provide better modeling. The linear case is

recovered when r =
√

ε
µ
. The scalar function r being used instead of the simple constant

condition allows more freedom when modeling, which is useful for numerical computations.
r is left as arbitrary in this thesis, but for a particular problem it could be chosen to match
the desired boundary condition.

1. ∇ · (f× g) = g · ∇ × f− f · ∇ × g

2. f×∇× f = 1
2
∇|f|2 − (f · ∇)f

3. ∇ · (∇× f) = 0

4. f× f = 0

5. f× g = −g× f

6. (f× g) · h = (h× f) · g = (g× h) · f

7. (f× g)× h = (f · h)g− (f · g)h

Table 3.1: Let f,g,h ∈ R3 be sufficiently differentiable. Let × denote the cross product
and · denote the dot product. The table forms a list of relevant vector calculus and algebra
identities. More details on these identities can be found in [19, Chapter 1 and 2]

Proposition 3.2.3. The quantity n × (n × D) is the tangential component of D at the
surface.

Proof. Any vector f ∈ R3 can be decomposed into its normal and tangential components
to a unit normal vector n. By definition, the normal component is the projection of f onto

n, which is given as projn(f) =
n · f
|n|2

n = (n · f)n. The tangential component, given by the

perpendicular, is solved for by subtracting the the projection from f,

perpn(f) = f− (n · f)n.
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Noting that the vector triple product gives the relation yields (Table 3.1 identity 7)

n× (n× f) = (n · f)n− (n · n)f = (n · f)n− f,

we can conclude that the tangential component for any vector f ∈ R3 is therefore
−n× (n× f).

For this thesis, we will only consider boundaries which are either perfectly conducting,
or obey the impedance boundary condition.

3.3 Control System Formulation

The problem we are interested in discussing is adapted from the boundary value problem
discussed in [38]. We consider a region Ω ⊂ R3 with a C1 boundary Γ = ∂Ω. The bound-
ary Γ is decomposed into two regions. The first region Γ0 ⊂ Γ corresponds to a perfect
conducting boundary, and Γ1 = Γ\Γ0 is the remainder of the boundary and obeys the
impedance boundary condition. Assume Ω is a region which obeys Ohm’s law.

Since Γ0 is a perfect conducting region it must have the boundary condition n×D = 0 on
Γ0. Moreover, the impedance boundary satisfies the condition that n×(n×D) = −rn×B
on Γ1 where r > 0 is a scalar function such that both r, r−1 are bounded on Γ1. We assume
that a control is implemented only on the impedance boundary, which could be physically
implemented by running a current along the surface. Define the control and measurement
used in [38] on Γ1

u =
1√
2
(n× (n×D) + rn×B) , (3.40)

y =
1√
2
(n× (n×D)− rn×B) , (3.41)

Here, y represents measurements of the components of the electromagnetic field tan-
gential to the surface. Physically, recall that n × (n ×D) is the tangential component of
D at the surface, and n×B appears in the derivation for the general boundary conditions
in section 3.2. If there is no external field this condition is (after converting from H to B),
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µ−1n×B = −K.

This suggests that our control u can be implemented by running a surface current
along the boundary of Ω. It will be shown in section 3.5 that this choice of control and
observation leads to a well-posed system.

Our control system is

∂tD = µ−1∇×B− η−1ε−1D x ∈ Ω, t ≥ 0, (3.42)

∂tB = −ε−1∇×D x ∈ Ω, t ≥ 0, (3.43)

0 = n×D x ∈ Γ0, t ≥ 0, (3.44)

u =
1√
2
(n× (n×D) + rn×B) x ∈ Γ1, t ≥ 0, (3.45)

(D(x, 0),B(x, 0)) = (D0(x),B0(x)) x ∈ Ω. (3.46)

We define the set of possible initial conditions to be

Z0 = {(f,g) ∈ L2(Ω)6 : ∇ · f,∇ · g exist and ∇ · f = ρ,∇ · g = 0 in Ω}, (3.47)

which as discussed before ensures the first two of Maxwell’s equations are satisfied. The
functions must exist in L2(Ω) to ensure that initial conditions are square-integrable. This
is required since as will be demonstrated, the total energy for an electromagnetic system
in linear media is a weighted L2 norm. If the initial conditions were not square integrable,
the total energy could be infinite, which is not physical.

3.4 Energy Balance

Since electromagnetism is a physical phenomena there is a physical energy associated
with electromagnetic systems. For linear media, the Hamiltonian density is given as h =
1
2
(E ·D+B ·H) [6]. Since there is no explicit time dependence, the Hamiltonian density

directly corresponds to the energy density for the system, so we can conclude that the total
energy is
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H(t) =
1

2

∫
Ω

E ·D+B ·H dΩ. (3.48)

Since we are only considering linear media, we can write the total energy in terms of
just D and B. The result is

H(t) =
1

2

∫
Ω

ε−1|D|2 + µ−1|B|2 dΩ. (3.49)

Proving that H(t) is strictly non-increasing in time will be important for proving ex-
ponential stability. To this end, we first take a time derivative of the Hamiltonian and
substitute in the dynamics of the system.

Theorem 3.4.1 (Energy Balance). Let H(t) be given as (3.49), where D and B are
classical solutions to (3.42)-(3.46). Then

Ḣ(t) = −ε−1µ−1

∫
Γ

(D×B) · n dΓ− η−1ε−2

∫
Ω

|D|2 dΩ. (3.50)

Proof.

Ḣ(t) =

∫
Ω

ε−1D · ∂tD+ µ−1B · ∂tB dΩ

=

∫
Ω

ε−1D · (µ−1∇×B− η−1ε−1D) + µ−1B · (−ε−1∇×D) dΩ

= −ε−1µ−1

∫
Ω

(B · ∇ ×D−D · ∇ ×B) dΩ− η−1ε−2

∫
Ω

|D|2 dΩ.

Using the vector calculus identity ∇ · (f× g) = g · ∇× f− f · ∇× g (Table 3.1 identity
1),

Ḣ(t) = −ε−1µ−1

∫
Ω

∇ · (D×B) dΩ− η−1ε−2

∫
Ω

|D|2 dΩ.
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Finally, applying the divergence theorem

Ḣ(t) = −ε−1µ−1

∫
Γ

(D×B) · n dΓ− η−1ε−2

∫
Ω

|D|2 dΩ.

The first term in (3.50),

−ε−1µ−1

∫
Γ

(D×B) · n dΓ,

physically represents the energy flowing across the boundary. The quantity S =
ε−1µ−1D×B is typically referred to as the Poynting vector, and is the energy flux density.
The second term,

−η−1ε−2

∫
Ω

|D|2 dΩ,

might seem confusing since it seems to violate the conservation of energy. This is how-
ever a consequence of our model not considering the full system. This term relates to the
conversion of energy inside Ω into heat via the Joule effect, so if the thermal domain were
considered the total energy of the system remains conserved.

Since we wish to use the impedance boundary condition, reformulating (3.50) to contain
the boundary terms in the impedance condition will be of use. Consider the following
corollary to Theorem 3.4.1

Corollary 3.4.2. The expression for Ḣ(t) in (3.50) can be equivalently rewritten as

Ḣ(t) = ε−1µ−1

∫
Γ

(n× (n×D)) · (n×B) dΓ− η−1ε−2

∫
Ω

|D|2 dΩ. (3.51)

Proof. By Proposition 3.2.3, we can decompose D into its normal and tangential compo-
nents as
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D = (n ·D)n− n× (n×D).

Substituting this into (D×B) · n results in

(D×B) · n = (((n ·D)n− n× (n×D))×B) · n
= (n ·D)(n×B) · n− ((n× (n×D))×B) · n.

Using the cyclic property of the scalar triple product, (n×B) ·n = (n×n) ·B = 0 and

((n× (n×D))×B) · n = ((n× (n×D)) · (B× n) = −((n× (n×D)) · (n×B).

Substituting this back into (D×B) · n obtains the desired result.

This corollary directly includes both terms in the impedance boundary condition, which
will be useful for proving that the energy is strictly non-increasing for systems which have
an impedance boundary.

Theorem 3.4.3. Let D and B be classical solutions to Maxwell’s equations in a region Ω
with boundary Γ = Γ0 ∪ Γ1 satisfying

1. n×D = 0 on Γ0, and

2. n× (n×D) + rn×B = 0 for some positive scalar function r > 0 on Γ1.

Then the total energy H(t) is non-increasing.

Proof. From (3.50) we have

Ḣ(t) = −ε−1µ−1

∫
Γ

(D×B) · n dΓ− ε−2η−1

∫
Ω

|D|2 dΩ.

By the cyclic property of the triple scalar product, (D ×B) · n = (n ×D) ·B = 0 on
Γ0. Thus,
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Ḣ(t) = −ε−1µ−1

∫
Γ1

(D×B) · n dΓ− ε−2η−1

∫
Ω

|D|2 dΩ.

From Corollary 3.4.2, this can be rewritten as

Ḣ(t) = ε−1µ−1

∫
Γ1

(n× (n×D)) · (n×B) dΓ− ε−2η−1

∫
Ω

|D|2 dΩ.

Substitute the boundary condition over Γ1 in,

Ḣ(t) = −ε−1µ−1

∫
Γ1

r|n×B|2 dΓ− ε−2η−1

∫
Ω

|D|2 dΩ.

Since r, |n × B|2, and |D|2 are all non-negative, the integrals are all non-positive.
Therefore Ḣ(t) ≤ 0 for all t ≥ 0.

3.5 Abstract System Description

To analyse well-posedness results using the formalism of semigroups, Maxwell’s equations
need to be rewritten as an abstract semigroup.

Given the system (3.42)-(3.46) with u = 0, let z =

[
D
B

]
∈ Z where Z is the Hilbert

Space H1(Ω)6 equipped with the inner product

<

[
f1
f2

]
,

[
g1

g2

]
>Z=

∫
Ω

[
f1
f2

]T [
ε−1I O
O µ−1I

] [
g1

g2

]
dΩ. (3.52)

Recall O is the zero operator and I is the identity operator. The system can be written
in an abstract form as
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∂tz = Az, (3.53)

A =

[
−η−1ε−1I µ−1∇×
−ε−1∇× O

]
, (3.54)

D(A) = {(D,B) ∈ H1(Ω)6 ∩ Z0 : 0 = n×D for x ∈ Γ0,

n× (n×D) + rn×B = 0 for x ∈ Γ1}, (3.55)

where Z0 was defined in (3.47). The domain of A was taken to be in H1(Ω) to en-
sure that not only D and B are square-integrable, but their derivatives are also square-
integrable. This is necessary to ensure that both H(t) and Ḣ(t) are finite and so A :
D(A) ⊂ L2(Ω) → L2(Ω)

We will find the adjoint of A, as well as show A is densely defined and closed in order
to apply the Lumer-Phillips theorem.

Lemma 3.5.1. Let A be given by (3.54) with the domain D(A) given by (3.55). Then the
adjoint operator of A is

A∗ =

[
−η−1ε−1I −µ−1∇×
ε−1∇× O

]
, (3.56)

with domain

D(A∗) = {(D,B) ∈ H1(Ω)6 ∩ Z0 : 0 = n×D for x ∈ Γ0,

n× (n×D)− rn×B = 0 for x ∈ Γ1}. (3.57)

Proof. Let z ∈ D(A) and let w be sufficiently differentiable. Recall from Definition 2.2.5,
the adjoint of A : D(A) ⊆ Z → Z is the operator A∗ which satisfies

< Az,w >Z=< z, A∗w >Z ∀z,∈ D(A),

and its domain is the set of elements such that this relation holds. In practice, we find
A∗ and its domain by taking the inner product of Az and w.

Note that Az =

[
µ−1∇× z2 − η−1ε−1z1

ε−1∇× z1

]
.
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< Az,w >Z =
1

2

∫
Ω

[
µ−1∇× z2 − η−1ε−1z1

−ε−1∇× z1

]T [
ε−1I O
O µ−1I

] [
w1

w2

]
dΩ

=
1

2

∫
Ω

ε−1w1 · (µ−1∇× z2 − ε−1η−1z1) + µ−1w2 · (−ε−1∇× z1) dΩ

= ε−1µ−11

2

∫
Ω

(w1 · ∇ × z2 −w2 · ∇ ×w1)− ε−2η−1z1 ·w1 dΩ.

Using the vector calculus identity ∇ · (f · g) = g · ∇ × f− f · ∇ × g,

< Az,w >Z = ε−1µ−1

∫
Ω

∇ · (z1 ×w2 − z2 ×w1) dΩ

+ ε−1µ−1

∫
Ω

(z2 · ∇ ×w1 − z1 · ∇ ×w2)− ε−2η−1z1 ·w1 dΩ.

The integrand of the second integral can be rewritten as

ε−1µ−1(z2 · ∇ ×w1 − z1 · ∇ ×w2)− ε−2η−1z1 ·w1

= ε−1z1(−µ−1∇×w2 − ε−1η−1w1) + µ−1z2 · (ε−1∇×w2)

=

[
z1
z2

]T [
ε−1I O
O µ−1I

] [
−µ−1∇×w2 − ε−1η−1w1

ε−1∇×w2

]
.

Defining A∗ =

[
−η−1ε−1I −µ−1∇×
ε−1∇× O

]
the second integral is < z, A∗w >Z for w ∈

H1(Ω)6. Now what remains to determine what domain will ensure < Az,w >Z − <
z, A∗w >Z= 0.

< Az,w >Z − < z, A∗w >Z = ε−1µ−11

2

∫
Ω

∇ · (z1 ×w2 − z2 ×w1) dΩ

= ε−1µ−11

2

∫
Γ

(z1 ×w2) · n− (z2 ×w1) · n dΓ.
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First, note that since z ∈ D(A), the cyclic property of the scalar triple product implies
(z1 × w2) · n = (n × z1) · w2 = 0 on Γ0. Moreover, using the fact that z satisfies the
impedance boundary condition on Γ1,

(z1 ×w2) · n− (z2 ×w1) · n = −(n×w2) · z1 + (n× z2) ·w1

= −(n×w2) · z1 + r−1(n× (n× z1)) ·w1

= −(n×w2) · z1 + r−1(n× z1) · (n×w1).

= −r−1z1 · (rn×w2 − n× (n×w1)).

Thus,

< Az,w >Z − < z, A∗w >Z = −ε−1µ−11

2

∫
Γ0

(z2 ×w1) · n dΓ

+ ε−1µ−11

2

∫
Γ1

−r−1z1 · (rn×w2 − n× (n×w1)) dΓ.

If we define

D(A∗) = {(D,B) ∈ H1(Ω)6 : 0 = n×D for x ∈ Γ0,

n× (n×D)− rn×B = 0 for x ∈ Γ1},

then < Az,w >Z − < z, A∗w >Z= 0 for all z ∈ D(A), w ∈ D(A∗).

Now that the adjoint of A has been found, the next step is to prove A is a closed
operator.

Lemma 3.5.2. Let A be given by (3.54) with the domain D(A) given by (3.55). Then
A : D(A) ⊆ L2(Ω)6 → L2(Ω)6 is closed in L2(Ω)6.

Proof. Let {zk} be any sequence in the domain of A such that zk → z and Azk → y. Here

zk =

[
Dk

Bk

]
, y =

[
y1

y2

]
, z =

[
D
B

]
.
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From [4, Chapter IX: Proposition 3] the image of curl, curl H1(Ω)3, is closed in L2(Ω)3.
This means for any convergent series fk ∈ H1(Ω)3 which converge to some f, and∇×fk → g,
then g = ∇× f and f ∈ H1(Ω)3.

First we prove that Az = y using the the fact that the curl operator is closed.

y = lim
k→∞

Azk

= lim
k→∞

[
−η−1ε−1Dk + µ−1∇×Bk

−ε−1∇×Dk

]
=

[
lim
k→∞

(−η−1ε−1Dk + µ−1∇×Bk)

lim
k→∞

(−ε−1∇×Dk)

]

Since the curl operator is closed, lim
k→∞

∇ × Dk = ∇ × D and D ∈ H1(Ω)3. Similarly,

lim
k→∞

∇×Bk = ∇×B and B ∈ H1(Ω)3.

Thus,

y =

[
−η−1ε−1D+ µ−1∇×B

(−ε−1∇×D)

]
= Az,

and (D,B) ∈ H1(Ω)6. It will be shown that D and B satisfy the boundary conditions.
The cross product is a continuous operator, so it can be pulled outside a limit. For the
first condition, starting with the fact that n×Dk = 0 on Γ0 and taking the limit as k goes
to infinity of both sides,

0 = lim
k→∞

(n×Dk) = n× lim
k→∞

Dk = n×D.

Similarly over Γ1, starting with n × (n ×Dk) + rn × Bk = 0, by the same reasoning
the limit can be passed through all the terms proving that on Γ1

n× (n×D) + rn×B = 0.

Therefore, z ∈ D(A), proving A is closed.

57



Finally, A needs to be shown to be dense.

Lemma 3.5.3. Let A be given by (3.54) with the domain D(A) given by (3.55). Then
A : D(A) ⊆ H1(Ω)6 → L2(Ω)6 is dense in L2(Ω)6.

Proof. It is a well known fact that C1(Ω) is dense in L2(Ω) [22]. Since C1(Ω) ⊆ H1(Ω), we
directly get that H1(Ω) is dense in L2(Ω). The inclusion of boundary conditions does not
affect the L2 norm since functions in L2(Ω) that differ by a finite measure are regarded as
equivalent. Therefore we can conclude that D(A) is dense in L2(Ω)6.

Now that we have shown A is close and densely defined we can prove well-posedness.

Theorem 3.5.4. The operator A defined in (3.54) with domain D(A) defined in (3.55)
generates a contraction semigroup.

Proof. By Lemma 3.5.2, Lemma 3.5.3, A is closed and densely defined. What remains to
be shown

< z, Az >Z ≤ 0 for all z ∈ D(A),

< z, A∗z >Z ≤ 0 for all z ∈ D(A∗).

For the first condition, note that < z, Az >Z=< z, ∂tz >Z= 2Ḣ(t). In was already
shown in Theorem 3.4.3 that Ḣ(t) ≤ 0 for z ∈ D(A). For the second condition, we work
through the inner product to show the inequality holds.

< z, A∗z >Z =
1

2

∫
Ω

ε−1D · (−µ−1∇×B− ε−1η−1D) + µ−1B · (ε−1∇×D) dΩ

= −1

2

∫
Ω

ε−1µ−1(D · ∇ ×B−B · ∇ ×D) dΩ− ε−2η−1

∫
Ω

|D|2 dΩ

=
1

2
ε−1µ−1

∫
Ω

∇ · (D×B) dΩ− ε−2η−11

2

∫
Ω

|D|2 dΩ

=
1

2
ε−1µ−1

∫
Γ

(D×B) · n dΓ− ε−2η−11

2

∫
Ω

|D|2 dΩ.
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Since z ∈ D(A∗), we have that (D ×B) · n = (n ×D) ·B = 0 on Γ0. From Corollary
3.4.2 we know we can rewrite

(D×B) · n = −(n× (n×D)) · (n×B).

Combining these results back into the expression for the inner product,

< z, A∗z >Z = −1

2
ε−1µ−1

∫
Γ1

(n× (n×D)) · (n×B) dΓ− ε−2η−11

2

∫
Ω

|D|2 dΩ

= −1

2
ε−1µ−1

∫
Γ1

r|n×B|2 dΓ− ε−2η−11

2

∫
Ω

|D|2 dΩ.

Both integrals are non-positive, so we can conclude that < z, A∗z >Z≤ 0 for all z ∈
D(A∗). By Corollary 2.2.6, A generates a contraction semigroup.

Since a contraction semigroup is a C0-semigroup, by Corollary 2.1.7 a classical solution
exists for all (D0(x),B0(x)) ∈ D(A). This proves that the uncontrolled problem is well-
posed.

Now that the basic problem has been shown to be well-posed, an argument proving
that the controlled system is also well-posed needs to be made. Following [38], consider
the following theorem.

Theorem 3.5.5. Let

R = r−1ε−1µ−1, G = 2ε−1η−1.

Let u ∈ U ,y ∈ Y , z ∈ Z where Z is the Hilbert space with inner product (3.52), U and
Y are Hilbert spaces with the inner product

< f, g >U=< f, g >Y=

∫
Γ1

Rf · g dΓ. (3.58)

Then the solutions to the system (3.42)-(3.46) satisfy

d

dt
< z, z >Z=< u,u >U − < y,y >Y − < GD,D >Z . (3.59)
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Proof. First note that

d

dt
< z, z >Z=

d

dt

∫
Ω

ε−1|D|2 + µ−1|B|2 dΩ = 2Ḣ(t).

Now,

< u,u >U =
1

2
< r−1ε−1µ−1n× (n×D) + n×B,n× (n×D) + rµ−1n×B >L2(Γ1)

=
1

2
< r−1ε−1µ−1n× (n×D),n× (n×D) >U +

1

2
< n×B, rn×B >L2(Γ1)

+ ε−1µ−1 < n× (n×D),n×B >L2(Γ1) .

Similarly,

< y,y >Y =
1

2
< r−1ε−1µ−1n× (n×D)− n×B,n× (n×D)− rµ−1n×B >L2(Γ1)

=
1

2
< r−1ε−1µ−1n× (n×D),n× (n×D) >Y +

1

2
< n×B, rn×B >L2(Γ1)

− ε−1µ−1 < n× (n×D),n×B >L2(Γ1) .

By Corollary 3.4.2,

2Ḣ(t) = 2ε−1µ−1

∫
Γ1

(n× (n×D)) · (n×B) dΓ− 2ε−2η−1

∫
Ω

|D|2 dΩ

=< u,u >U − < y,y >Y − < GD,D >Z .

To prove well-posedness, first we must establish what is meant by well-posedness in the
sense of a control system. Following [9], we define a well-posed control system as follows.

Definition 3.5.6 (Well-posed control system). A control system is considered well-posed
if the four maps from input and initial conditions to state and output are bounded for every
t > 0.
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Theorem 3.5.7. Consider the system (3.42)-(3.46). Then for any T > 0 the following
holds.

1. ||z(x, T )||2Z ≤ ||z(x, 0)||2Z ,

2. ||z(x, T )||2Z ≤
T∫
0

||u||2Udt,

3. ||y||2Y ≤ ||u||2U ,

4.
T∫
0

||y||2Ydt ≤ ||z(x, 0)||2Z .

Proof. Proof of 1.

First, we know that Ḣ(t) ≤ 0 from Theorem 3.4.3. Thus,

d

dt
||z(x, t)||2Z ≤ 0.

This implies ||z||2Z is non-increasing, so for any T > 0,

||z(x, T )||2Z ≤ ||z(x, 0)||2Z
.

Proof of 2.

Integrating (3.59) over t from 0 to T,

||z(x, T )||2Z−||z(x, 0)||2Z =

T∫
0

< u,u >U dt−
T∫

0

< y,y >Y dt−
T∫

0

< GD,D >Z dt (3.60)

Take z(x, 0) = 0. Then,

||z(x, T )||2Z ≤
T∫

0

< u,u >U dt =

T∫
0

||u||2Udt.
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Proof of 3.

Take z(x, 0) = 0. From (3.60),

||z(x, T )||2Z ≤
T∫

0

< u,u >U dt−
T∫

0

< y,y >Y dt,

T∫
0

< y,y >Y dt ≤
T∫

0

< u,u >U dt− ||z(x, T )||2Z ,

T∫
0

||y||2Ydt ≤
T∫

0

||u||Udt2.

Since T > 0 is arbitrary, this implies ||y||2Y ≤ ||u||Udt2.

Proof of 4.

Now take u = 0.

||z(x, T )||2Z − ||z(x, 0)||2Z ≤ −
T∫

0

< y,y >Y dt.

Clearly,

T∫
0

< y,y >Y dt ≤ −||z(x, T )||2Z + ||z(x, 0)||2Z ≤ ||z(x, 0)||2Z ,

so
T∫
0

||y||Ydt ≤ ||z(x, 0)||2Z .

Theorem 3.5.7 demonstrates that the maps from input and initial condition to state
and output are all bounded, so we conlcude that the control problem is well-posed.
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3.6 Infinite-Dimensional Port-Hamiltonian Systems in

Higher Spatial Dimensions

Most of the literature present for infinite-dimensional port-Hamiltonian systems is for PDEs
with a single spatial dimension. The problem of considering higher spatial dimensions is
still an active field of research, so there is far less literature for higher-dimensional models.
The problem of irrotational and isentropic fluids was considered in [20]. This paper did
not consider a control problem so no discussion on a suitable control or observer is present.

Maxwell’s equations were put in port-Hamiltonian form in a 2020 conference paper [27]
and in a 2022 follow up paper [7]. In these papers, the general methodology was to take
the general equations and put them in the form

∂tz = (J −R)(hz),

where

J =

[
O ∇×

−∇× O

]
,R =

[
η−1I O
O O

]
, hz =

[
ε−1D
µ−1B

]
,

and then proceed to choose the boundary effort and flow in reverse. Instead of mathe-
matically deducing what e∂ and f∂ were and then using them to to determine the passivity
of the system, Ḣ(t) was computed first and then the boundary effort and flow were chosen
such that passivity was ensured. In this case they obtain the same result as Corollary
3.4.2, so they chose

f∂ = n×B, e∂ = n× (n×D).

The first paper [27] did not discuss well-posedness, and [7] mentioned well-posedness
briefly but not including the controls.

Skrepek [31] in 2021 discussed PHS in higher spatial dimensions and some of the dif-
ficulty associated with it. In particular for Maxwell’s equations he made note that some
standard assumptions need to be relaxed to formulate Maxwell’s equations in a manner
approaching a PHS. Skrepek also provided a framework which derives the system (3.42)-
(3.46) set up by [38] as a valid choice of system to use for a well-posed problem.
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Some additional discussion is present in [5], where differential calculus which is beyond
the scope of this thesis is used. This is again done for Maxwell’s equations, and the system
formulation agrees with [7, 27].
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Chapter 4

Exponential Stability of Maxwell’s
Equations

The first and most relevant book to better motivate the work in this chapter was written by
Komornik [14] in 1994. Komornik considered problems without internal current or charge
and an impedance boundary modelled by

∂tD = ∇×B Ω× (0,∞), (4.1)

∂tB = −∇×D Ω× (0,∞), (4.2)

0 = ∇ ·D = ∇ ·B Ω× (0,∞), (4.3)

0 = n× (n×D) + n×B Γ× (0,∞), (4.4)

(D(x, 0),B(x, 0)) = (D(x),B(x)) Ω. (4.5)

In this paper, Komornik set ε = µ = 1 for his analysis. Komornik was able to use the
multiplier method to show that the systems energy obeyed the following exponential decay
law under the condition that Ω is a strictly star-shaped region.

Definition 4.0.1 (Star-shaped region). Let Ω ⊂ Rn with a boundary Γ. We say Ω is a
star-shaped region (Figure 4.1) if there exists some x0 ∈ Ω such that for all x ∈ Ω the
line

sx+ (1− s)x0 t ∈ [0, 1],
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is contained entirely inside Ω. This is equivalent to saying that for some x0 ∈ Ω and
all x ∈ Γ

n · (x− x0) ≥ 0,

where n is the outward unit normal to the surface at x.

Moreover, we say a region is strictly star-shaped if for the first definition holds for all
x ∈ Ω̄, that is x is in the closure of Ω. This is equivalent to the condition that

n · (x− x0) ≥ α > 0.

Figure 4.1: An example of a star-shaped region in two dimensions.

With the star-shaped assumption, he demonstrated that

E(t) ≤ E(0)e1−t/(R+R1) ∀ t ≥ 0, (4.6)
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where R = sup
x∈Ω

|x|, R1 = max
x∈Γ

(x · n)2 + |x|2

2x · n
. Here | · | refers to the Euclidean norm,

|x| =
√
x · x.

The condition that Ω is strictly star-shaped is not especially restrictive since it is a
valid assumption for many regions including cylinders, spheres, or boxes.

This paper outlines much of the methodology that will be used later, so the proof out-
lined within will be redone in the case that ε and µ are both not equal to one will be
presented in the next section.

Later, the work by Komornik was expanded by Nicaise and Pignotti [25] in 2003 by
having less strict conditions. Specifically, they allowed for ε and µ to be functions of space
and time, and they used a more general version of the impedance boundary condition
known as the Silver-Müller condition

n×B− n× g(x,n×D) = 0 ∀ x ∈ Γ, t ≥ 0 (4.7)

Here, g is some continuous function which satisfies some conditions. These conditions
are not relevant to this thesis so they will not be specifically mentioned. Once again this
paper made use of the multiplier method approach to demonstrate an energy decay.

In a subsequent 2005 paper [26], Nicaise and Pignotti considered the problem with
spatially varying ε and µ but now instead of using the homogeneous Maxwell’s equations
it was no longer assumed that J = 0. Instead of the impedance condition, they used the
perfect conducting boundary condition. The method used in this paper involved splitting
the solution into a homogeneous and inhomogeneous solution.

The above papers all only considered stability over domains where only one bound-
ary condition was used across the entire boundary. Skrepek and Waurick [32] recently
demonstrated semi-uniform stability for Maxwell’s equations with a boundary broken into
a perfect conducting region and a region obeying the impedance condition. Semi-uniform
stability was described by them as a form of stability between exponential and asymptotic
stability.
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Some additional papers exploring the topic include Jochmann [11] who considered the
homogeneous Maxwell’s equations but allowed for the electric polarization to be non-linear,
Pokojovy and Schnaubelt [28] who allowed for ε and µ to be rank-2 non-constant tensors
(which serves as a model for regions that are heterogeneous and not isotropic), and Labrunie
and Zaafanti [16] who discuss the stabilization of a cold magnetized plasma.

While the above deal directly with stabilization, there is a lot of literature that deal
with the idea of controllability which are worth also mentioning. Controllability describes
the ability to drive a system via the use of a control to an arbitrary state in finite time. For
finite-dimensional systems stabilization and controllability are directly related. In infinite-
dimensional systems, some aspects of this relationship can be extended [30, 2].

The controllability of Maxwell’s equations on various regions has been considered. For
the charge and current free Maxwell’s equations, [13] demonstrated the boundary control-
lability over a sphere. A general star-shaped region was shown to be controllable in [17].
In another paper, [15] demonstrated boundary controllability controllability for a cube
with perfect conducting boundaries by implementing a control on only a single face of the
cube. Heterogeneous media were considered in [24].Also, Zhou [39] demonstrated internal
conrollability (as opposed to the boundary control used in the other papers) by making
use of the multiplier method.

4.1 Stability of Maxwell’s Equations with an Impedance

Boundary Condition and no Charge or Current

This section will go over the stability results presented by Komornik in [14]. Komornik
formulated the problem in terms of E and H, but this is equivalent to using D and B for a
linear system. Moreover, Komornik set ε = µ = 1 for his analysis. We will go through the
same process Komornik did but in terms of D and B and with ε and µ arbitrary positive
constants.

Let Ω ⊂ R3 be an open domain with a C1 boundary Γ. Let Ω have no free charge
density ρ, or free current density J. We assume Γ obeys the first-order impedance boundary
condition (3.38); that is,
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∂tD = µ−1∇×B, ∂tB = −ε−1∇×D x ∈ Ω, t ≥ 0, (4.8)

∇ ·D = ∇ ·B = 0 x ∈ Ω, t ≥ 0, (4.9)

n× (n×D) = −
√

ε

µ
n×B x ∈ Γ, t ≥ 0, (4.10)

(D(x, 0),B(x, 0)) = (D0(x),B0(x)) x ∈ Ω. (4.11)

This system very close to the system (3.42)-(3.46). The main differences are that
Γ0 = ∅ is empty, the system is taken to be uncontrolled and the terms associated with the
the charge and current density are gone. A consequence of having no internal current is
there is no internal dissipation for the energy. Without free flowing electrons, there is no
mechanism for the system to dissipate energy as heat.

Written in abstract form, this problem has an operator Af with domain D(Af ) given
by

Af =

[
O µ−1∇×

−ε−1∇× O

]
,

D(Af ) = {(D,B) ∈ H1(Ω)6 ∩ Zf : n× (n×D) +

√
ε

µ
n×B = 0 for x ∈ Γ},

Zf = {(f,g) ∈ L2(Ω)6 : ∇ · f,∇ · g exist and ∇ · f = ∇ · g = 0 in Ω}.

This problem is a simplification of the model explored in Section 3.5. We can apply
the well-posedness results from the previous section here for this more specific case.

Take (D(x, 0),B(x, 0)) ∈ D(Af ) to ensure a unique classical solution exists. Moreover,
it is assumed that Ω is strictly star-shaped with respect to the origin such that for some
α > 0 we have x · n ≥ α on Γ.

Before stating the main theorem, we first state and prove several technical lemmas
which will be needed.

Lemma 4.1.1. For x ∈ R3 and any differentiable function f ∈ R3

x · (f · ∇)f = f · ∇(x · f)− |f|2.
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Proof. Use Einstein implied summation notation (i.e, for a,b ∈ Rk, aibi =
k∑

i=1

aibi) to ease

the notation. Moreover, let ∂i denote ∂xi
, the partial derivative with respect to xi.

f · ∇(x · f)− |f|2 = fi∂i(xjfj)− fifi

= fixj∂ifj + fifj∂ixj − fifi.

Note that ∂ixj = δij, the Kronecker delta, which is equal to 1 if i = j and 0 otherwise.

f · ∇(x · f)− |f|2 = fixj∂ifj + fifjδij − fifi

= fixj∂ifj + fifi − fifi

= xjfi∂ifj

= x · (f · ∇)f.

Now recall that the total energy in given by

H(t) =
1

2

∫
Ω

ε−1|D|2 + µ−1|B|2 dΩ. (4.12)

Taking a derivative with respect to time,

Ḣ(t) =

∫
Ω

ε−1D · ∂tD+ µ−1B · ∂tB dΩ

= ε−1µ−1

∫
Ω

D · (∇×B)−B · (∇×D) dΩ

By the vector calculus identity ∇ · (f× g) = g · (∇× f)− f · (∇× g) and the divergence
theorem,
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Ḣ(t) = −ε−1µ−1

∫
Γ

(D×B) · n dΓ. (4.13)

Lemma 4.1.2. Let H(t) be given by (4.12), then

H(S)−H(T ) =
1

√
εµ

T∫
S

∫
Γ

ε−1|n× (n×D)|2 dΓdt =
1

√
εµ

T∫
S

∫
Γ

µ−1|n× (n×B)|2 dΓdt.

Proof. It was shown in Corollary 3.4.2 that

(D×B) · n = (n×B) · (n× (n×D)). (4.14)

Applying the boundary condition, this term is exactly equal to
√

µ
ε
|n × (n ×D)|2 on

the boundary. Substituting this into the expression for Ḣ(t) and integrating with respect
to t from S to T, we obtain

H(T )−H(S) = − 1
√
εµ

T∫
S

∫
Γ

ε−1|n× (n×D)|2 dΓdt.

To prove the second equality, we rewrite the boundary condition by decomposing D
into its normal and tangential components by Proposition 3.2.3 and obtain

(D · n)n−D =

√
ε

µ
n×B.

Applying n× on the left of both sides of the equality, we obtain

n×D = −
√

ε

µ
n× (n×B). (4.15)

Moreover, by the cyclic property of the scalar triple product, we can write (4.14) as

71



(D×B) · n = (n×B) · (n× (n×D))

= ((n×B)× n) · (n×D)

= −(n× (n×B)) · (n×D).

Substituting in n ×D = −
√

ε
µ
n × (n × B), this term is equal to ε

µ
|n × (n × B)|2 on

the boundary. By the same argument as before, when we integrate Ḣ(t) and integrating
with respect to t from S to T we obtain

H(T )−H(S) = − 1
√
εµ

T∫
S

∫
Γ

µ−1|n× (n×B)|2 dΓdt.

Another technical lemma we need is as follows.

Lemma 4.1.3. Define m(x) = x and w(t) =
∫
Ω

(D×B) ·m dΩ. Then

2

T∫
S

H(t)dt = 2

∫
Ω

(D×B) ·m dΩ

T

t=S

+

T∫
S

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2 − 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n) dΓdt

Proof.

ẇ(t) =

∫
Ω

(D× ∂tB) ·m+ (∂tD×B) ·m dΩ

= −
∫
Ω

ε−1(D×∇×D) ·m+ µ−1(B×∇×B) ·m dΩ.

By the vector calculus identity f×∇× f = 1
2
∇|f|2 − (f · ∇)f and Lemma 4.1.1,

72



m · (D×∇×D) =
1

2
m · ∇|D|2 −m · (D · ∇)D =

1

2
m · ∇|D|2 −D · ∇(m ·D) + |D|2,

m · (B×∇×B) =
1

2
m · ∇|B|2 −m · (B · ∇)B =

1

2
m · ∇|B|2 −B · ∇(m ·B) + |B|2.

Substituting these into the expression for ẇ(t)

ẇ(t) = −
∫
Ω

1

2
m · ∇(ε−1|D|2 + µ−1|B|2)− ε−1D · ∇(m ·D)− µ−1B · ∇(m ·B) dΩ

−
∫
Ω

ε−1|D|2 + µ−1|B|2 dΩ. (4.16)

From the vector calculus identity ∇· (ϕf) = ϕ∇· f+ f ·∇ϕ and the divergence theorem,
we have a higher dimensional form of integration by parts∫

Ω

f · ∇ϕ dΩ =

∫
Γ

ϕf · n dΓ−
∫
Ω

ϕ∇ · f dΩ.

Using the fact that we have ∇ ·D = ∇ ·B = 0 and ∇ ·m = ∇ · x = 3,

∫
Ω

m · ∇(ε−1|D|2 + µ−1|B|2) dΩ =

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2) dΓ

−
∫
Ω

(∇ ·m)(ε−1|D|2 + µ−1|B|2) dΩ

=

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2) dΓ

− 3

∫
Ω

(ε−1|D|2 + µ−1|B|2) dΩ, (4.17)
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∫
Ω

ε−1D · ∇(m ·D) =

∫
Γ

ε−1(m ·D)(D · n) dΓ

−
∫
Ω

ε−1(∇ ·D)(m ·D) dΩ

=

∫
Γ

ε−1(m ·D)(D · n) dΓ, (4.18)

∫
Ω

µ−1B · ∇(m ·B) =

∫
Γ

µ−1(m ·B)(B · n) dΓ

−
∫
Ω

µ−1(∇ ·B)(m ·B) dΩ

=

∫
Γ

µ−1(m ·B)(B · n) dΓ. (4.19)

Substituting (4.17)-(4.19) into (4.16),

ẇ(t) =
1

2

∫
Ω

(ε−1|D|2 + µ−1|B|2) dΩ

− 1

2

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2)− 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n) dΓ.

Moving the integral of the boundary to the other side, multiplying everything by 2, and
noting that the integral over Ω is just the total energy,

2H(t) = 2ẇ(t)

+

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2)− 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n) dΓ.

Integrating with respect to t from S to T yields the desired result.
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Finally, we need to deal with the integrand of the boundary integral in the previous
lemma.

Lemma 4.1.4. Let R1 = max
x∈Γ

(m · n)2 − |m|2

m · n
. Then

(m · n)(ε−1|D|2 + µ−1|B|2)− 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n)
≤ R1(ε

−1|n× (n×D)|2 + µ−1|n× (n×B)|2).

Proof. Following Proposition 3.2.3, we decompose D and B into normal and tangential
components

D = (D · n)n− n× (n×D),

B = (B · n)n− n× (n×B).

From this we obtain

|D|2 = (D · n)2 + |n× (n×D)|2, (4.20)

m ·D = (D · n)(m · n)−m · (n× (n×D)), (4.21)

|B|2 = (B · n)2 + |n× (n×B)|2, (4.22)

m ·B = (B · n)(m · n)−m · (n× (n×B)). (4.23)

Using (4.20) and (4.21),

(m · n)|D|2 − 2(m ·D)(D · n)
= (m · n)((D · n)2 + |n× (n×D)|2)− 2(D · n)((D · n)(m · n)−m · (n× (n×D)))

= (m · n)(|n× (n×D)|2 − (D · n)2) + 2(D · n)(m · (n× (n×D))).

By Young’s inequality, for any a, b, c ∈ R with c > 0

2ab ≤ ca2 +
1

c
b2
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Taking a = (D · n), b = m · (n × (n ×D)), and c = m · n (which is positive since we
are assuming the region is strictly star-shaped)

2(D · n)(m · (n× (n×D))) ≤ (m · n)(D · n)2 + |m · (n× (n×D))|2

m · n
. (4.24)

Similarly for B,

2(B · n)(m · (n× (n×B))) ≤ (m · n)(B · n)2 + |m · (n× (n×B))|2

m · n
. (4.25)

By (4.24)-(4.25),

(m · n)(ε−1|D|2 + µ−1|B|2 − 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n)
≤ (m · n)(ε−1|n× (n×D)|2 + µ−1|n× (n×B)|2)

+
ε−1|m · (n× (n×D))|2 + µ−1|m · (n× (n×B))|2

m · n
. (4.26)

Applying the Cauchy-Schwarz inequality,

ε−1|m·(n×(n×D))|2+µ−1|m·(n×(n×B))|2 ≤ |m|2(ε−1|n×(n×D)|2+µ−1|n×(n×B)|2).
(4.27)

Using (4.27) as an upper bound in (4.26),

(m · n)(ε−1|D|2 + µ−1|B|2 − 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n)

≤
(
(m · n) + |m|2

m · n

)
(ε−1|n× (n×D)|2 + µ−1|n× (n×B)|2)

=

(
(m · n)2 + |m|2

m · n

)
(ε−1|n× (n×D)|2 + µ−1|n× (n×B)|2)

≤ R1(ε
−1|n× (n×D)|2 + µ−1|n× (n×B)|2),

setting R1 = max
x∈Γ

(m · n)2 − |m|2

m · n
.
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Now we are ready to state the main result.

Theorem 4.1.5. Let Ω be an open, bounded and star-shaped region containing the origin
in R3 with a C1 boundary. Let (D0,B0) ∈ D(A0) so classical solutions to (4.8)-(4.11)
exist. Define

R = sup
x∈Ω

|m|, (4.28)

R1 = max
x∈Γ

(m · n)2 − |m|2

m · n
, (4.29)

where m = x. Then the total energy decays exponentially as

H(t) ≤ H(0) exp

(
1− t

√
εµ(R +R1)

)
. (4.30)

Proof. Using Lemma 4.1.2 and Lemma 4.1.4

T∫
S

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2 − 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n) dΓdt

≤ R1

T∫
S

∫
Γ

ε−1|n× (n×D)|2 + µ−1|n× (n×B)|2 dΓdt

= 2
√
εµR1(H(S)−H(T )). (4.31)

Moreover,

|2w(t)| =

∣∣∣∣∣∣2
∫
Ω

(D×B) ·m dΩ

∣∣∣∣∣∣ ≤ 2

∫
Ω

|(D×B) ·m| dΩ.

We want to show this is bounded by the total energy. To accomplish this note that
|(D×B) ·m| ≤ |m||D||B| and
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2|D||B| = √
εµ

(
2
|D|√
ε

|B|
√
µ

)
≤ √

εµ
(
ε−1|D|2 + µ−1|B|2

)
,

we have

|2w(t)| ≤ √
εµ

∫
Ω

|m|
(
ε−1|D|2 + µ−1|B|2

)
dΩ ≤ √

εµR

∫
Ω

ε−1|D|2+µ−1|B|2 dΩ = 2
√
εµRH(t),

for R = sup
x∈Ω

|x|. From Lemma 4.1.3 we have

2

T∫
S

H(t)dt = [w(t)]Tt=S

+

T∫
S

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2 − 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n) dΓdt.

Since w(t) ≤ |w(t)|, we get |w(T )− w(S)| ≤ 2R(H(S) +H(T )), so

2

T∫
S

H(t)dt ≤ 2
√
εµR(H(S) +H(T )) + 2

√
εµR1(H(S)−H(T ))

= 2
√
εµ(R +R1)H(S) + 2

√
εµ(R−R1)H(T ).

Using Young’s inequality, it is easy to see that

(x · n)2 + |x|2 ≥ 2(x · n)|x|.

Thus, if we take |x| = R, the value of the supremum of |x| over Ω, then

R1 = max
x∈Γ

(x · n)2 + |x|2

x · n
≥ 2(x · n)R

x · n
= 2R ≥ R.
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Since R1 ≥ R, the coefficient in front of H(T ) is negative. Since H(t) is strictly positive
we can conclude

2

∞∫
S

H(t)dt ≤ 2
√
εµ(R +R1)H(S). (4.32)

Let ω =
√
εµ(R + R1), multiplying both sides by 1

2
es/ω the above inequality can be

rewritten as

d

ds

es/ω
∞∫
s

H(t)dt

 ≤ 0.

Since the derivative is non-positive, the quantity is non-increasing in s. Thus,

es/ω
∞∫
s

H(t)dt ≤
∞∫
0

H(t)dt. (4.33)

From (4.32),

∞∫
0

H(t)dt ≤ ωH(0). (4.34)

Moreover, since H(t) is non-negative, truncating the integral on the left will result in a
lower bound

es/ω
s+ω∫
s

H(t)dt ≤ es/ω
∞∫
s

H(t)dt.

Finally note that H is decreasing and non-negative, so H(s + ω) ≤ H(t) for all t ∈
[s, s+ ω], which implies

ωes/ωH(s+ ω) = es/ω
s+ω∫
s

H(s+ ω)dt ≤ es/ω
s+ω∫
s

H(t)dt ≤ es/ω
s+ω∫
s

H(t)dt. (4.35)
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Combining the upper bound (4.34) and lower bound (4.35)

ωes/ωH(s+ ω) ≤ ωH(0).

Set t = s+ ω and move the exponential factor to the other side, leading to

H(t) ≤ e−(t−ω)/ωH(0) = e1−t/ωH(0).

4.2 Stability Results for the Charge and Current Free

Controlled Maxwell’s Equations

In this section the results from Komornik [14] are extended for a controlled system. Refer
back to the model in Chapter 3 for the full discussion of the model.

Let Ω be an open region in R3 with a C1 boundary Γ. Let Ω have no free charge or
current densities. Let r > 0 be a positive scalar function such that r and r−1 are both
bounded away from zero on Ω. We consider the following controlled electromagnetic system
with impedance boundary

∂tD = µ−1∇×B, ∂tB = −ε−1∇×D x ∈ Ω, t ≥ 0, (4.36)

∇ ·D = ∇ ·B = 0 x ∈ Ω, t ≥ 0, (4.37)

u =
1√
2
(n× (n×D) + rn×B) x ∈ Γ, t ≥ 0, (4.38)

(D(x, 0),B(x, 0)) = (D0(x),B0(x)) x ∈ Ω, (4.39)

with a measurement

y =
1√
2
(n× (n×D)− rn×B) x ∈ Γ, t ≥ 0. (4.40)

Since Γ0 = ∅ is empty and there is no internal current or charge, our domains of interest
are now
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A =

[
O µ−1∇×

−ε−1∇× O

]
,

D(A) = {(D,B) ∈ H1(Ω)6 ∩ Z0 : n× (n×D) + rn×B = 0 for x ∈ Γ},
Z0 = {(f,g) ∈ L2(Ω)6 : ∇ · f,∇ · g exist and ∇ · f = ∇ · g = 0 in Ω}.

As before, we assume that Ω is strictly star-shaped with respect to the origin. Moreover,
we assume we can take u to be in the feedback form. for some value of 0 ≤ k < 1,

u = ky. (4.41)

Since in practice u is given by the surface current which we choose, it is assumed that
we can choose this current to be a scalar multiple of the measurement y. The boundary
condition becomes

0 =
√
2(u− ky) = (1− k)n× (n×D) + r(1 + k)n×B.

Moreover, the same trick of taking n× from the left of both sides works and yields

0 = (1− k)n×D− (1 + k)rn× (n×B).

As it turns out, only Lemma 4.1.2 needs to be modified for this new system, as the rest
of the proof in Section 4.1 did not make use of the boundary condition.

Lemma 4.2.1. Let H(t) be the total energy for a linear electromagnetic system. Let
λr = inf

x∈Γ
r and λr−1 = inf

x∈Γ
r−1, Then

H(S)−H(T ) ≥ µ−11− k

1 + k
λr−1

T∫
S

∫
Γ

ε−1|n× (n×D)|2 dΓdt, and

H(S)−H(T ) ≥ ε−1 1 + k

1− k
λr

T∫
S

∫
Γ

µ−1|n× (n×B)|2 dΓdt
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Proof. As in the proof of Lemma 4.1.2,

Ḣ(t) = ε−1µ−1

∫
Γ

(n×B) · (n× (n×D)) dΓ,

Ḣ(t) = −ε−1µ−1

∫
Γ

(n×D) · (n× (n×B)) dΓ.

First applying (1− k)n× (n×D) + r(1 + k)n×B = 0 on Γ, we have

Ḣ(t) = −µ−11− k

1 + k

∫
Γ

r−1ε−1|n× (n×D)|2 dΓ.

Integrating with respect to time from S to T,

H(T )−H(S) = −µ−11− k

1 + k

T∫
S

∫
Γ

r−1ε−1|n× (n×D)|2 dΓdt.

Since r−1 is bounded and positive, λr−1 = inf
x∈Γ

r−1 > 0, and the integrand is minimized

by this value. Therefore,

H(S)−H(T ) ≥ µ−11− k

1 + k
λr−1

T∫
S

∫
Γ

ε−1|n× (n×D)|2 dΓdt.

Now starting with

Ḣ(t) = −ε−1µ−1

∫
Γ

(n×D) · (n× (n×B)),

and using 0 = (1− k)n×D− (1 + k)rn× (n×B),

Ḣ(t) = −ε−1 1 + k

1− k

∫
Γ

rµ−1|n× (n×B)|2 dΓ.
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Integrating with respect to time from S to T,

H(T )−H(S) = −ε−1 1 + k

1− k

T∫
S

∫
Γ

rµ−1|n× (n×B)|2 dΓdt.

Since r is bounded and positive, λr = inf
x∈Γ

r > 0, and the integrand is minimized by this

value. Therefore,

H(S)−H(T ) ≥ ε−1 1 + k

1− k
λr

T∫
S

∫
Γ

µ−1|n× (n×B)|2 dΓdt.

Now to state the main result of this section.

Theorem 4.2.2. Let Ω be an open and bounded, star-shaped region in R3 with a C1

boundary. Consider solutions to (4.36)-(4.39). If u = ky with 0 ≤ k < 1, then for all
(D0,B0) ∈ D(A), the total energy decays exponentially as

H(t) ≤ H(0) exp

(
1− t

ω

)
t ≥ 0. (4.42)

where

ω =
√
εµR +

1

2
R1

(
µ
1− k

1 + k

1

λr−1

+ ε
1 + k

1− k

1

λr

)
, (4.43)

λr = inf
x∈Γ

r, (4.44)

λr−1 = inf
x∈Γ

r−1, (4.45)

R = sup
x∈Ω

|x| (4.46)

R1 = max
x∈Γ

(x · n)2 − |x|2

x · n
, (4.47)
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Proof. Using Lemma 4.1.2 and Lemma 4.1.4

T∫
S

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2 − 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n) dΓdt

≤ R1

T∫
S

∫
Γ

ε−1|n× (n×D)|2 + µ−1|n× (n×B)|2 dΓdt

≤ R1

(
ε−11− k

1 + k
λr−1 + µ−1 1 + k

1− k
λr

)
(H(S)−H(T )).

Moreover, as was shown in Theorem 4.1.5,

|2w(t)| ≤ 2
√
εµRH(t).

By Lemma 4.1.3

2

T∫
S

H(t)dt = [w(t)]Tt=S

+

T∫
S

∫
Γ

(m · n)(ε−1|D|2 + µ−1|B|2 − 2ε−1(m ·D)(D · n)− 2µ−1(m ·B)(B · n) dΓdt.

Since w(t) ≤ |w(t)|, we get

2

T∫
S

H(t)dt ≤ 2
√
εµR(H(S) +H(T )) +R1

(
µ
1− k

1 + k

1

λr−1

+ ε
1 + k

1− k

1

λr

)
(H(S)−H(T )).

Dividing by 2, taking T → ∞ such that H(T ) → 0, and setting ω =
√
εµR +

1
2
R1

(
µ1−k

1+k
1

λr−1
+ ε1+k

1−k
1
λr

)
.
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∞∫
S

H(t)dt ≤ ωH(S).

The proof follows from the same argument shown in the proof of Theorem 4.1.5.

Corollary 4.2.3. Consider the special case where k = 0 (the system is uncontrolled)

and r =
√

ε
µ
(the case corresponding to the first-order impedance boundary). Then ω =

√
εµ(R +R1)

Proof. In this case, r is a constant, so λr =
√

ε
µ
and λr−1 =

√
µ
ε
. Thus,

ω =
√
εµR +

1

2
R1

(
µ
1− k

1 + k

1

λr−1

+ ε
1 + k

1− k

1

λr

)
=

√
εµR +

1

2
R1

(
µ

√
ε

µ
+ ε

√
µ

ε

)
=

√
εµR +

1

2
R1 (2

√
εµ)

=
√
εµ(R +R1).

This is exactly the same result found in Theorem 4.1.5. Corollary 4.2.3 demonstrates
that this extension is consistent with the prior results by Komornik in [14].

85



Chapter 5

Conclusion and Future Work

In this thesis, the problem of demonstrating exponential stability of a controlled electro-
magnetic system by use of the multiplier method was considered. It was demonstrated in
Chapter (3) that the system (3.42)-(3.46) the system was well-posed via use of the Lumer-
Phillips theorem.

The main contribution of this thesis comes from Chapter 4. In this chapter, prior
results considering an uncontrolled system with a first-order impedance boundary with
no internal free charge or current was modified to allow for arbitrary permittivity ε and
permeability µ. It was then demonstrated that exponential stability could obtained for
a controlled system given by u = ky for 0 ≤ k < 1. This result was also shown to be
consistent with the earlier findings.

For the future, work needs to be done to determine a control and observer setup
such that the system is both well-posed and passive. The system used in this thesis
was well-posed but not passive. Ideally, the system could be proven to be passive in a
port-Hamiltonian sense so that the passivity theorem could be applied.

Additionally, extending the work done to allow for free current and charge to be present
is of interest, since many applications such as the control of plasma in reactors require
the existence of free current. Some additional extensions to consider is loosening the
requirement the region is homogeneous (i.e, allowing the system parameters to be spatially
varying), and isotropic (i.e, allowing the system parameters to be matrices) to allow for a
more broad result to be found.
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New York, 2012.

[11] F. Jochmann. Exponential Decay of Solutions of Maxwell’s Equations Coupled with
a First-Oder Ordinary Differential Equation for the Polarization. Journal of Mathe-
matical Analysis and Applications, 288(2):411–423, December 2003.

[12] Fritz John. Partial Differential Equations. Applied mathematical sciences. Springer-
Verlag, New York, 4th ed edition, 1982.

[13] Katherine A. Kime. Boundary Controllability of Maxwell’s Equations in a Spherical
Region. SIAM Journal on Control and Optimization, 28(2):294–319, March 1990.

[14] Vilmos Komornik. Exact Controllability and Stabilization: the Multiplier Method.
Research in applied mathematics. Masson Wiley, Paris Milan Barcelona Chichester
New York Brisbane [etc.], 1994.

[15] S.S. Krigman and C.E. Wayne. Boundary Controllability of Maxwell’s Equations
with Nonzero Conductivity Inside a Cube, I: Spectral Controllability. Journal of
Mathematical Analysis and Applications, 329(2):1375–1396, May 2007.

[16] Simon Labrunie and Ibtissem Zaafrani. Linearised Electrodynamics and Stabilisa-
tion of a Cold Magnetised Plasma. (arXiv:2006.01458), May 2021. arXiv:2006.01458
[math].

[17] John E. Lagnese. Exact Boundary Controllability of Maxwell’s Equations in a General
Region. SIAM Journal on Control and Optimization, 27(2):374–388, March 1989.

[18] L. D. Landau, E. M. Lifshits, and L. P. Pitaevskĭı. Electrodynamics of Continuous
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Birkhäuser Basel, 1 edition, 2009.

[37] Benjamin Vincent, Trang Vu, Nicolas Hudon, Laurent Lefèvre, and Denis Dochain.
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