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Abstract

Landfast ice polynyas — areas of open water surrounded by ice — are important features
in many Northern coastal communities, and their automated detection from spaceborne
synthetic aperture radar (SAR) imagery is positioned to support on-ice travel safety under
changing Arctic sea ice and climate conditions. The characteristically small spatial scales
and sparse distribution of landfast ice polynyas present key challenges to their detection,
and limit the suitability of established methods developed for SAR-based sea ice and open
water classification at broader spatial scales.

This thesis explores the development of deep learning-based object detection networks
for landfast ice polynya detection in dual-polarized C-band SAR imagery, having three
main contributions. The first is a characterization of landfast ice polynya signatures and
separability in SAR imagery based on datasets of polynyas mapped over several seasons
near the communities of Sanikiluaq, NU, and Nain, NL. Results from this analysis highlight
the challenging and variable nature of polynya signatures in dual-polarized backscatter in-
tensity, motivating the use of convolutional neural networks (CNNs) to capture relevant
textural, geometric and contextual polynya features. The second contribution is the de-
velopment and evaluation of CNN-based object detection networks for polynya detection,
drawing on advancements in the natural-scene small object detection field to address the
challenging size and sparsity characteristics of polynyas. A simplified detection network
architecture optimized for polynya detection in terms of feature representation capacity,
feature map resolution, and training loss balancing is found to reliably detect polynyas with
sufficient size and local contrast, and demonstrates good generalization to regions not seen
in training. The third contribution is an assessment of detection model generalizability
between imagery produced by Sentinel-1 (S1) and Radarsat Constellation Mission (RCM)
SAR sensors, illustrating the ability for models trained only on S1 imagery to effectively
extract and classify polynya features in RCM despite differences in resolution and noise
characteristics.

Across regions and sensors, missed polynyas are found to have smaller sizes and weaker
signatures than detected polynyas, while false predictions are often caused by boundary ar-
eas between smooth and rough landfast ice. These represent fundamental limits to polynya
/ landfast ice separability in the medium-resolution, dual-polarized C-band SAR imagery
used in this thesis, motivating future research into multi-temporal, multi-frequency, and/or
higher-resolution SAR imagery for polynya detection. Ongoing and future progress in the
development of robust landfast ice hazard detection systems is positioned to support com-
munity sea ice safety and monitoring.
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Chapter 1

Introduction

1.1 Motivation

In coastal communities across the circumpolar Arctic, landfast sea ice is relied upon for
travel, sustenance hunting, and other activities throughout the winter season [16, 39, 63].
As ice and climate conditions change in response to warming air and ocean temperatures
[100, 1], many Inuit — peoples Indigenous to Arctic regions — have expressed concerns
related to the safety of on-ice travel [36, 141, 124]. In particular, some Inuit have identified
the location of landfast ice polynyas — recurring areas of open water in landfast ice — as
a priority piece of information that could assist in planning safe on-ice travel [16]. While
experienced Inuit hunters and travellers are often familiar with recurring polynya locations,
there have been concerns that the timing and locations of some polynyas are changing.

Synthetic Aperture Radar (SAR) imagery is well suited to provide information on
community-scale ice conditions given its darkness and cloud penetrating capabilities, high
spatial and temporal resolution at northern latitudes, and sensitivity to sea ice and water
geophysical properties. Methods that automate the interpretation of SAR imagery offer the
potential to extract relevant, salient and timely information about potential ice hazards
such as polynyas, and could be leveraged to systematically monitor these features over
time in support of geophysical and climate change-related studies. The uptake of digital
platforms that connect those planning on-ice travel with satellite imagery and derived
information products present opportunities for such automated hazard detection systems
to deliver impact.

While community-relevant landfast ice polynyas have in some cases been documented
by local ice experts [35] and studied in biological [131, 55] and socio-environmental [39, 119,
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108] contexts, a previous lack of structured datasets cataloguing these small-scale features
has precluded their previous study from a SAR pattern recognition perspective. Such a
study is positioned to draw on known SAR sensitivities to sea ice and water, as well as
recent advances in deep learning-based small object detection in other imaging contexts.
The research described in this thesis represents a first exploration of deep learning-based
landfast ice polynya detection from SAR imagery.

1.2 Thesis Objectives

The development and evaluation of deep learning models for landfast ice polynya detection
in dual-polarized C-band SAR imagery is pursued with the following objectives:

1. Characterize landfast ice polynya signatures in SAR imagery and describe key chal-
lenges to their automated detection;

2. Develop deep learning-based object detection networks to address these challenges,
and assess their suitability for automated localization of polynyas based on original
datasets developed in collaboration with Inuit ice experts;

3. Evaluate the generalizability of developed polynya detection models between regions;

4. Evaluate the generalizability of developed polynya detection models between SAR
sensors and image products.

1.3 Thesis Organization

The remainder of this thesis is outlined as follows:

• Chapter 2 provides background on the context and content of this research;

• Chapter 3 describes the development of original polynya datasets used as a basis for
this study, and analyses the signatures and separability characteristics of polynyas
from landfast ice in dual-polarized SAR imagery;

• Chapter 4 presents the key developments in adapting, optimizing, and assessing
object detection networks for polynya detection in Sentinel-1 imagery;

2



• Chapter 5 presents an assessment of the generalization characteristics of models be-
tween Sentinel-1 and Radarsat Constellation Mission (RCM) imagery toward multi-
sensor, multi-region hazard detection systems; and

• Chapter 6 concludes the thesis, reflecting on progress, limitations, and next steps.
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Chapter 2

Background

2.1 Sea Ice in a Community Context

Sea ice is a fundamental part of life for Indigenous peoples across the circumpolar Arctic.
Landfast sea ice — that fastened to land — has been used by Inuit as a platform for
subsistence hunting, resource gathering, travel, and other cultural activities for thousands
of years [63, 93]. The resulting expertise in sea ice features and conditions relevant to
safe and efficient on-ice travel can be seen in the rich and detailed local terminologies for
ice, snow, winds, and weather in communities across Inuit Nunaat [39, 8] — this body
of knowledge, language, skills, and values passed down between generations is sometimes
referred to as Inuit Qaujimajatuqangit (IQ) [134, 71]. As the Arctic warms at a rate
exceeding the global average [24] and associated impacts such as thinning ice, changes in
freeze- and break-up timing, and unexpected weather patterns are observed [1, 36, 107, 38],
many Inuit have expressed concerns around the safety of on-ice travel that are compounded
by socio-cultural changes challenging the transfer of IQ to younger generations [64, 8, 37].

Amidst these changes are opportunities to connect Inuit knowledge and technologically-
derived information on ice and weather conditions in support of on-ice travel safety and
climate change adaptation. Indeed, many Inuit regularly combine local knowledge and
observations with information from online environmental services such as weather and tide
forecasts when planning travel [25, 16], but have identified key gaps in these services related
to interpretability, local relevance, and internet bandwidth requirements [124, 16]. Partici-
patory mapping and training initiatives have been co-developed by Inuit and southern facil-
itators to help equip Inuit GIS specialists to regularly produce local travel safety maps high-
lighting ice features and hazards relevant to travel in their own communities [141, 140, 8].
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Such mapping often leverages synthetic aperture radar (SAR) satellite imagery, which has
been identified as a potentially useful source of information on community-scale ice con-
ditions for its winter coverage of the Arctic, high spatial resolution, and sensitivity to sea
ice and water geophysical properties [121, 77]. However, challenges in interpreting SAR
images can pose a barrier to their use as a reliable information source [77, 121].

A digital platform that integrates many of these sources of information is the SIKU
mobile application (siku.org) developed by the Arctic Eider Society (AES), an Inuit-driven
organization based in Sanikiluaq, Nunavut. Many Inuit in communities across Canada,
Alaska, and Greenland use SIKU to access satellite imagery and ice information prod-
ucts, share observations while out on the land, and manage community-based monitoring
projects addressing local research priorities [16, 17]. SIKU’s integration of observation-
and knowledge-sharing between users, environmental information products, and satellite
imagery provides a platform to develop and validate technologies in collaboration with
communities that address local information priorities. For instance, some Inuit have iden-
tified the location of landfast ice polynyas as an important piece of information to know
before travelling, due to their socio-ecological importance as well as to the hazards they
pose to on-ice travel [16]

The regular availability of high-resolution satellite SAR imagery offers a means to iden-
tify sea ice hazards like polynyas when planning on-ice travel. In particular, there is a
strong opportunity for algorithmic identification of polynyas in SAR imagery based on
known microwave sensitivities to sea ice and open water. Outputs of such detection algo-
rithms on a platform like SIKU could be weighed and validated against ice observations
made by those on the ground, all within the same digital ecosystem. Reflecting a collab-
oration between AES and the University of Waterloo’s Vision and Image Processing Lab,
the algorithmic detection of landfast ice polynyas from SAR imagery is the focus of this
thesis.

2.2 Landfast Ice Polynyas

Polynyas, broadly defined, are persistent and/or recurrent areas of open water or reduced
ice concentration where thicker sea ice would typically be expected. Beyond this definition,
there is significant diversity in the taxonomy of polynyas. A widespread categorization is
of polynyas as either “latent-heat”, wherein polynyas are maintained by the latent heat
of fusion during ice production and export, or “sensible-heat”, wherein ice production is
prevented within the polynya due to the continual replacement of warm sea water [7].
Observing that these two mechanisms are often both present, Morales Maqueda et. al

5
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[102] proposed a taxonomy of “shelf-water” (a.k.a. “coastal”) and “deep-water” polynyas,
differentiating between those occurring over or beyond continental shelves. Williams et. al
[139] presented a framework for studying polynyas more directly in terms of their partic-
ular forcing mechanisms, categorized as “mechanical” factors causing ice divergence and
“heating” factors preventing ice growth.

Many wind-driven, latent-heat coastal polynyas on the scale of hundreds to thousands
of kilometers in extent are important sites of atmosphere-ocean heat flux, gas exchange, sea
ice production and associated high-density water masses that contribute to thermohaline
circulation [50, 7]. Such large-scale polynyas have been studied extensively with remote
sensing data to characterize and infer polynya dynamics, causal mechanisms, and sea ice
production, e.g. [50, 132, 58, 94]. In contrast, sensible-heat polynyas occurring within
landfast sea ice of relevance to on-ice travel near coastal communities, referred to herein
as “landfast ice polynyas”, have spatial scales on the order of hundreds of meters and are
typically created and maintained by tidal forcing of warm seawater over sills or through
topographic channels [131, 139].

Landfast ice polynyas are ecological hotspots [131, 55], and key socio-environmental
features for nearby communities [119, 108, 39]. Indeed, the breadth of terminologies used
by Inuit across and within regions to describe polynyas, e.g. [10, 66, 39, 121], demonstrates
their importance and prevalence in many communities. While the locations and patterns
of polynyas have been documented in some cases by local ice experts, e.g. [35, 39], the
detection of small-scale landfast ice polynyas has not previously been studied from a remote
sensing perspective.

2.3 Remote Sensing of Polynyas with Synthetic Aper-

ture Radar

2.3.1 Why SAR?

Polynyas, as with most things, are most easily seen and interpreted by the human eye in
the visible spectrum of light. Spaceborne “optical” sensors, operating with similar theory
to everyday cameras, capture reflected sunlight in the visible range and can provide high-
resolution (centimeter- to meter-scale) images in which thick sea ice and open water can
clearly be distinguished. However, optical sensors possesses two fundamental constraints
that limit their utility to the spaceborne remote sensing of sea ice. First, the “passive”
(reflectance-based) nature of these sensors means that sunlight is required to form an image.
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Figure 2.1: Panorama photograph of a landfast ice polynya near Sanikiluaq, NU, captured
on foot in January 2024.

Second, the visible-spectrum wavelengths captured by optical sensors do not penetrate
cloud. In Arctic coastal environments, cloud cover is frequent and much of the winter
season sees little to no sunlight due to Earth’s axial tilt. Optical image availability is
thus limited or nonexistent for monitoring sea ice in the winter. Sensors operating at
neighbouring infrared wavelengths sensitive to surface temperature also suffer occlusion by
cloud cover.

Passive microwave (PM) sensors overcome these limitations by capturing microwave
energy emitted by the earth’s surface. The brightness temperatures of sea ice and water
are separable, and PM has been used as the workhorse data for monitoring regional-scale
sea ice concentration (SIC) for decades [117]. PM data have also been used for large-scale
polynya study based on SIC thresholds defining regions of open water (OW). However, the
relatively low microwave energy intensity naturally emitted by materials limits the available
signal and ultimately spatial resolution of PM sensors. For instance, the AMSR2 PM
sensor has a maximum spatial resolution of 3x5 km. Identifying this resolution limitation
in studying small-scale polynyas, Liu et. al used an original super-resolution network [88] to
downscale AMSR2 PM images and use derived SIC estimates to study a transient polynya
event off the coast of Greenland [89]. While this approach improved results for the study
of coastal polynyas, even the 1.5x1.5 kilometer footprints of the fourfold super-resolved
AMSR2 pixels are still too large to resolve many landfast ice polynyas.

In contrast, “active” sensors that emit their own electromagnetic energy in the mi-
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crowave spectrum offer reliable, year-round coverage of polar regions at meter-scale res-
olutions. Synthetic Aperture Radar (SAR) sensors have been developed to provide such
valuable imagery, and are a basis for the contributions developed in this thesis.

2.3.2 SAR Fundamentals

The general principle of radar (RAdio Detection And Ranging) systems is the directed emis-
sion of electromagnetic (EM) energy and subsequent reception of signals “backscattered”
from objects within the radar aperture. The received signal power from a radar-illuminated
target is determined by the transmitted power, Pt, the distance from radar to target, r, the
antenna gain at the target, Gt, the “radar cross-section” of the target, σ, and the effective
area of the receiving antenna, Ar [112, 143]:

Pr =
Pt

4πr2
×Gt ×

σ

4πr2
× Ar (2.1)

Mathematically, σ represents the cross-sectional area of a sphere having a perfectly-
conducting surface that re-radiates incident EM waves completely and uniformly in all
directions. In practice, particularly in the context of radar-based geophysical measurement,
target objects or surfaces generally absorb some proportion of incident energy, and the
energy they do return is rarely uniformly scattered. Broadly, the proportion and direction
of incident radar energy scattered by a surface is a function of its dielectric permittivity
(electrical properties influenced by, e.g., salinity and moisture), its roughness at scales
similar to the radar wavelength, λ, and its geometry (at scales larger than λ) relative to
the radar [80, 51, 143]. Differences in these characteristics between materials and surfaces
at various EM wavelengths and polarizations is good news for radar remote sensing, as
it allows for distinction between targets. Given measurements taken with a fixed and
known set of radar parameters, equation 2.1 can be inverted to find σ and thus infer target
properties.

To exploit the sensitivity of radar backscatter to surface geophysical properties and map
features of interest from space, satellite sensors must produce two-dimensional images with
sufficiently high spatial resolution. While traditional “real-aperture” radars can be flown in
a side-looking configuration to generate such two-dimensional (range and azimuth) images,
their resolution is limited by the dimensions of the transmitting antenna. For instance,
a radar flown on a satellite orbiting 693km above the Earth, slanted from nadir by 20◦,
transmitting at a wavelength of 5cm with a 12.3-meter antenna could, at the theoretical
limit described by Moreira et. al [103], achieve a spatial resolution of 3 kilometers in
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Figure 2.2: (a) Basic geometry of a spaceborne SAR system (not drawn to scale) and (b)
different scattering scenarios based on surface properties. θ refers to incidence angle, λ to
radar wavelength, and ϵ′ to the real component of the relative complex permittivity of the
surface, e.g. described in [52].

azimuth — clearly insufficient to delimit targets on the scale of hundreds of meters. By
coherently summing multiple illuminations of a surface during an overpass, a radar system
can simulate a larger physical antenna via precise signal processing and thereby drastically
increase spatial resolution. This technique is called “synthetic aperture” radar (SAR) and
has been widely used for aerial and spaceborne radar remote sensing since the 1980s [56].
Using the same radar parameters described above, the European Space Agency’s Sentinel-1
SAR satellite produces images with spatial resolutions finer than 5 meters [32].

SAR systems have several parameters important to geophysical remote sensing appli-
cations including polynya detection. These properties are briefly summarized here.

Wavelength, λ, describes the EM wavelength transmitted and received by the SAR
system. Longer wavelengths have lower spatial resolution for the same antenna size, but
penetrate farther into materials [52] yielding higher potential for volume scattering mech-
anisms (Fig 2.2b).
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Polarization describes the orientation of EM waves transmitted and received by the
SAR sensor. For instance, “HV” indicates EM waves transmitted at horizontal polarization
and corresponding backscattered signals measured at vertical polarization. SAR systems
may transmit and/or measure near-simultaneously at different polarizations, e.g. providing
coincident “dual-polarized” HH and HV images. The known polarization of outgoing and
incoming energy lends another window through which to infer target properties.

Incidence Angle (IA), θ, describes the angle of incident EM energy transmitted by a
SAR system from vertical relative to Earth’s surface, or a model thereof. Higher IA corre-
sponds to a more oblique viewing geometry; distance between sensor and target increases
with IA, but so too does roughness in terms of perceived vertical surface fluctuations.

Spatial resolution, often given in ground range and azimuth coordinates, defines the
smallest distance between two targets that can be delimited unambiguously by a SAR
system. SAR satellites often produce images with different spatial resolutions by using
different imaging modes. The primary tradeoff to producing higher-resolution SAR images
is generally an associated reduction in swath width (i.e., spatial coverage), which ultimately
decreases the available temporal resolution for a given region. To account for varying
spatial resolutions across SAR image products, the measured backscatter intensity σ must
be normalized to the area over which the measurement was made [143]. For sufficiently
level surfaces the ground area defined by an ellipsoidal Earth model is typically used [126],
producing the “backscatter coefficient” σ0 = σ/A. This coefficient is then usually converted
to decibels (dB) [122]: σ0 = 10 log(σ0

linear).

Noise-equivalent sigma zero (NESZ) is an estimate of the thermal noise floor of
the SAR receiver, expressed in σ0. Measurements at or near this threshold provide little to
no information regarding the imaged surface or target, being instead dominated by noise.

The research described in this thesis leverages C-band (λ ≈ 5.5cm), dual-polarized
HH-HV SAR imagery based on its operational availability over Arctic coastal regions. The
dataset is described in chapter 3.

2.3.3 SAR Sensitivities to Sea Ice and Open Water

The sensitivities of HH and HV C-band SAR backscatter to snow, sea ice, and seawater
properties are well understood, having benefited from several decades of polar microwave
remote sensing research. The key sensitivities relevant to landfast ice polynya detection
are summarized here.

Seawater has high a high dielectric permittivity due to its polarity and salinity content,
and thus causes surface scattering [122]. Under calm conditions, specular reflection leads to
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backscatter intensity that decreases rapidly, and approximately linearly in the logarithmic
domain, with incidence angle [92]. Wind roughening of open water creates surface waves to
which SAR backscatter is sensitive as a function of wavelength, polarization, and imaging
geometry; in general, stronger winds aligned with the SAR range axis lead to increased
backscatter intensity in HH, while HV is less affected [27].

Microwave backscatter from seasonal (“first-year”) sea ice, including landfast ice, is also
dominated by surface scattering mechanisms due to persistent salinity within the ice [122].
Surface roughness and geometry relative to the SAR sensor are thus the primary controls
on backscatter intensity. Level first-year sea ice tends to produce low backscatter intensity
at both HH and HV polarizations, with HV backscatter often being below the noise floor
of the SAR system [27]. Deformed ice features such as pressure ridges and piled ice around
polynyas or near the floe edge increase backscatter intensity, particularly in HV due to
strong depolarization effects [27]. HH backscatter intensity has been shown to decrease
linearly with incidence angle over first-year ice [96, 99], with HV showing a similar but less
pronounced trend [98, 91]. Thin ice, such as that which may form within polynyas, has
been observed to produce backscatter intensities in HH polarization that increase rapidly
with ice growth due in part to the development of rough crystalline structures on the
otherwise smooth ice surface, e.g. [97].

With the possible exception of newly formed ice in cracks, leads, and polynyas, sea
ice is almost always covered by snow. At the low temperatures typical of winter-period
Arctic environments, snow tends to be sufficiently “dry” for C-band microwaves to transmit
through and scatter at the ice/snow interface. As air and snow temperatures increase,
saline liquid water content (brine) develops and contributes to microwave scattering within
the snowpack [43]. Increased brine volume fraction has been shown to increase C-band
backscatter over snow-covered first-year ice during transitions from cold to warmer air
temperatures, e.g. [6, 104].

Together, these established sensitivities yield an expectation for the dual-polarized C-
band signatures of landfast ice polynyas. At sufficiently high incidence angles and low
wind roughening conditions, open water polynyas are expected to yield lower backscatter
intensities than landfast ice, although these signatures may overlap with low backscatter
intensities over smooth landfast ice. Low incidence angles and/or high wind roughening
may produce higher backscatter over open water than over landfast ice. Thin ice develop-
ment within polynyas may cause low to high backscatter (relative to surrounding landfast
ice) depending on the stage of growth. HV-polarized backscatter may offer some utility
in identifying areas of deformed landfast ice, however this utility may be limited by prox-
imity to the sensor noise floor. Backscatter over landfast ice may increase as melt onset
approaches due to increased brine volume fraction in the overlying snowpack. In summary,
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Figure 2.3: Sentinel-1 SAR image (σ0 dB) acquired May 5, 2016, over the Belcher Islands
in Hudson Bay. Composited as (R=HV, G=HH, B=HH), with each band clipped to (0.5,
99.5) percentiles. Annotations indicate different sensitivities of HH and HV backscatter
intensity to ice types and open water. Relatively high HH backscatter over smooth landfast
ice in this image may reflect a brine-wetted snowpack as spring air temperatures increase.
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polynya signatures are expected to vary with a number of imaging and environmental
factors. This is explored empirically in chapter 3.

2.3.4 Methods for Sea Ice / Water Classification with SAR

Classification, in the broadest terms, refers to the process of assigning a name or label, ŷ,
to a set of features derived from measurements or observations, x, of some configuration
of reality, y. In a SAR remote sensing context, an image of backscatter values represents
a set of measurements, x, and the remote sensing scientist’s definition of what was imaged
(type of land cover [110], tonnes of biomass per hectare [125], polynya or landfast ice, etc.)
constitutes the label, y. In general there exists some underlying “forward model”, f , that
completely describes the observation process:

x = f(y); (2.2)

The objective of classification is to solve the “inverse problem”, i.e., invert f to infer y
from x:

ŷ = g(x), where g ≈ f−1. (2.3)

In practice f is often unknown due to the complex physical processes and sources of
noise that make up real-world measurement, and is rarely invertible via analytical means.
f−1 is thus often estimated empirically from a set of previously obtained {x, y} pairs
(“labelled” or “training” data) via an optimization scheme that seeks to minimize the
difference between model prediction, ŷ, and label, y. This approach to classification model
development is called supervised learning.

The polynya detection research described in this thesis follows a supervised learning
approach, drawing inspiration from a large body of previous research on SAR-based sea ice
and open water classification. This body of research includes investigations into different
types of SAR imagery and derived features (x)1, classification models (g), and target labels
(y). A brief summary highlighting methods and findings relevant to landfast ice polynya
detection in dual-polarized C-band SAR imagery is given subsequently.

1A more rigorous notation might distinguish between measurements and features, which have been
lumped together here for brevity. Indeed, as will be seen, some forms of g operate on derived features
while others operate directly on measurements.
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Pixel-Based Classifiers

The most straightforward classifiers use a SAR image pixel’s backscatter intensity directly
to infer class membership (e.g. sea ice type or open water) based on thresholds chosen to
minimize expected error based on per-class backscatter distributions in a training/analysis
dataset. This has been implemented for first-year ice and open water classification from
single- and dual-polarized SAR imagery with, e.g., Bayesian [91], decision tree [40], and
neural network [73] classifiers. While these approaches yield some success, the overlap
in dual co-/cross-polarized backscatter distributions between classes under different envi-
ronmental and imaging conditions has been found to limit classifier performance. Fur-
thermore, the pixel-based nature of such classifiers makes them sensitive to multiplicative
speckle noise present in SAR imagery. It is widely recognized that the incorporation of
spatial features is positioned to better discriminate sea ice and water classes from SAR
images [122].

Textural Features

The utility of SAR image texture features was identified early in the exploration of au-
tomated sea ice classification models, guided by the hypothesis that sea ice and open
water surfaces would present distinct spatial patterns and correlation scales based on their
different physical properties.

Similä [123] investigated the use of the autocorrelation feature on two VV-polarized
ERS-1 SAR images for sea ice and water classification, and indeed observed higher correla-
tion for sea ice than water at spatial windows ranging from 700m2 to 1.9km2. Karvonen et.
al [72] later used autocorrelation implemented on a segment-wise basis to classify open wa-
ter and first-year sea ice in HH-polarized Radarsat-1 SAR imagery. This method achieved
90% overall accuracy for open water classification, but the authors note that the algorithm
tended to misclassify small areas of water as ice in part due to signature ambiguities with
level landfast ice areas.

Grey level co-occurrence matrix (GLCM) features are another texture measure that
have been investigated [5, 22, 92, 118] and applied operationally [79, 145] for sea ice type
and ice / open water classification from dual-polarized SAR imagery. GLCM texture fea-
tures have also been explored in studies investigating the detection of small-scale open water
features within first-year sea ice. For instance, Zitman [148] studied the detection of hun-
dred meter-scale plume-driven polynyas from dual-polarized Sentinel-1 SAR imagery using
GLCM features. A limitation to small-target detection consistently encountered by these
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studies is the positive relationship between window size and classification performance. In-
deed, Zitman found that window sizes less than 440m2 did not produce satisfactory classifi-
cation between polynya open water and surrounding sea ice. Lohse [92] similarly observed
that classification accuracy between open water and first-year ice increased steadily with
window size from 200m2 (worst performance) to 2.04km2 (best performance). This pattern
suggests a limitation in the ability of GLCM and other window-based texture measures to
effectively detect landfast ice polynyas on the scale of hundreds of meters.

Deep Learning Approaches

Rather than relying on task-agnostic image features that require manual design and selec-
tion, deep learning classifiers leverage large amounts of data to learn task-specific image
features that optimize the classification objective. Convolutional neural networks (CNNs)
are a type of deep learning model originally developed for natural-scene image analysis, and
have been applied widely across many domains. Indeed, many recent approaches to SAR-
based sea ice classification have demonstrated the efficacy of CNNs in learning discrimi-
native features to accurately classify ice types and open water under a range of conditions
[61, 82]. CNN-based approaches have been formulated as either image patch classification
tasks, whereby the network makes one prediction per image, e.g. [12, 76, 54, 74, 101] or
semantic segmentation tasks, whereby the network makes a prediction per image pixel, e.g.
[137, 114, 83, 28, 20].

While CNN-based segmentation networks have been found to work well for relatively
balanced ice/water classes, the comparative sparsity and small size of landfast-ice polynya
targets challenge the suitability these models, which traditionally struggle to capture fine-
grained spatial detail [19, 69]. On the other hand, patch classification methods do not
yield sufficient localisation precision for small polynya targets, and are at greater risk of
overfitting to land formations correlated with polynya occurrence in repeat-observation
training datasets. These characteristics, along with the compact geometries of polynyas,
motivate an object detection formulation for landfast ice polynya detection.

2.4 Convolutional Object Detection Networks

Object detection networks refer generally to deep learning-based classifiers that seek to
predict a set of bounding boxes and associated class scores that delimit targets of inter-
est in an input image. Convolutional object detection networks are those that leverage
convolutional neural networks to extract learned features from input images, from which
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bounding box predictions are made. The fundamental building blocks of convolutional ob-
ject detection networks are summarized in this section, laying groundwork for experimental
investigations conducted in chapter 4.

2.4.1 Convolutional Neural Networks

The theory and mechanisms behind convolutional neural networks (CNNs) stem from
fully-connected artificial neural networks (ANNs). ANNs are directed graphs composed
of sequentially-connected layers of simple computational units (biologically-inspired “neu-
rons”) parameterized by learnable connection weights. Equation 2.4 describes the output
o of a single neuron i of layer l in response to the outputs of all N neurons in the previous
layer l − 1. This response is governed by connection weights wij, a bias term bi, and a
nonlinear activation function fa. By composing a sufficient number of neurons and layers
in this way, ANNs can theoretically approximate any continuous function [59].

oli = fa(
N∑
j=1

wijo
l−1
j + bi) (2.4)

While ANNs can be applied directly to image analysis by assigning an input neuron to
each image pixel [78], the fully-connected layers are extremely parameter-dense and thus
produce models that are computationally inefficient and difficult to optimize with limited
training data. Rather than explicitly modelling the interactions of all image pixels at once,
CNNs model only local interactions of pixels via sliding windows with translation-invariant
parameters. This is implemented with the 2D convolution operation [46]:

(g ∗ f)[x, y] =
∞∑

i=−∞

∞∑
j=−∞

f [x− i, y − j]g[i, j] (2.5)

Here, f represents the image and g a convolutional kernel (a relatively small matrix with
translation-invariant weight values) with a center at [i, j] = [0, 0]. f and g must have the
same number of dimensions — if f is an image with 3 channels, g should be HxWx3 (e.g., a
commonly used CNN kernel size is 3x3). At each location [x, y], the convolution operation
yields the sum of the Hadamard (element-wise) product between f and g centered at [x, y].
Over all [x, y] this can be understood as “sliding” the kernel across the image and producing
a 2D “feature map” identical in size to the input image2. CNNs treat convolutional kernel

2This assumes the use of image-boundary padding, which is typically the case in CNNs
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Figure 2.4: Illustration of a standard CNN architecture. fa represents a nonlinear acti-
vation function. A first convolutional layer with three filters is depicted; deeper layers
typically use more filters and thus produce more feature maps.
*Conv. layers often include other operations not illustrated, e.g. batch normalization and downsampling.

weights as learnable parameters analogous to w of ANNs, creating learnable translation-
invariant feature extractors that possess relatively few parameters independent of input
image size.

The architecture of a CNN subsequently follows similar compositional principles to
that of an ANN: each convolutional layer is composed of multiple kernels and a nonlinear
activation function, and several sequential layers, each operating on the outputs of the pre-
vious layer, are used. This repeated nonlinear composition of spatial features progressively
expands the field of view, or “receptive field”, of CNNs, allowing the networks to capture
both small-scale intensity patterns and broader-scale contextual information within images
at various levels of abstraction. For instance, it has been observed that many CNNs trained
on natural images learn features similar to Gabor filters and colour blobs in early layers,
while deeper layers learn higher-level task-specific features [144].

Most CNN architectures increase the number of kernels, or feature “channels”, with
network depth to increase capacity for learning complex relationships between lower-level
features needed for accurate task-specific pattern recognition. A practical challenge in ex-
panding feature representation capacity in this way is the memory requirements associated
with storing increasing numbers of full-resolution feature maps. For this reason, and to
increase the receptive fields of deeper layers, it is common practice to progressively down-
sample the spatial resolution of feature maps concurrent with the expansion of feature
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channels. This is often implemented with pooling operations or strided convolutions.

CNNs are typically optimized iteratively using the backpropagation algorithm [116],
adjusting network weights based on their contributions to prediction error as measured
by an objective function. This is done by calculating the gradient of a differentiable
loss function with respect to individual weights throughout the network, an optimization
scheme known as gradient descent [3]. In a supervised training context this loss function
is often a measure of dissimilarity between the model prediction, ŷ, and the training label,
y. Loss function selection is an important design element in the development of a CNN as
it ultimately guides what the network learns.

2.4.2 Developments in Small Object Detection

Building on and contributing to the remarkable success of CNNs for image analysis, the
natural-scene computer vision field has driven the rapid development of convolutional ob-
ject detection networks in the last decade [87, 149]. Detection networks have broadly devel-
oped along two phylogenies: “two-stage” detectors, which include a region proposal module
followed by a more fine-grained classifier, and “single-stage” detectors, which discard the
extra step and predict final detections directly. Two-stage detectors generally achieve
higher detection accuracy at the cost of increased computation, while single-stage detec-
tors are faster but tend to perform worst on dense and/or small objects [149]. “YOLO”
[111] and “Faster-RCNN” [113] are foundational single- and two-stage detection models,
respectively. A persistent challenge in both natural-scene and optical remote sensing im-
age analysis contexts is that of detecting small targets with characteristically low spatial
extents, weak features, and, frequently, sparse occurrence patterns that result in highly
imbalanced training datasets [90, 53]. These challenges of target size and sparsity are
clearly present in the SAR-based landfast ice polynya detection problem, motivating the
examination of methods developed within the “small object detection” domain to address
these limitations.

Two broad approaches have been proposed regarding the detection of small targets:
multi-scale feature fusion and input super-resolution. In traditional object detection net-
work configurations, only the last, deepest feature layer produced by a CNN is used for
bounding box prediction. Spatial downsampling operations within the CNN run the risk
of discarding important discriminative and/or localization information on small targets
available at higher resolutions in earlier layers. However, the more complex features of the
deepest layer may still be needed for accurate target classification. The fusion of high spa-
tial resolution, shallow features with low-resolution, deep features was proposed by Lin et.
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al [84] for object detection. This method, developed on top of the Faster-RCNN detector
and called “Feature Pyramid Network”, achieved state-of-the-art performance on small ob-
ject detection and continues to be referenced widely as a baseline [149]. Farther upstream,
input super-resolution approaches seek to increase the pixel extent of small objects in the
input image while enhancing their discriminative feature information. This approach, often
realized with generative adversarial networks (GANs), has been found to improve results
on natural scene [105] and optical remote sensing [136] small object detection tasks.

In settings of target sparsity relative to the “background” class, the supervised training
process is at risk of being guided too heavily by a vast number of background examples and
not sufficiently learning discriminative features or decision boundaries for the rare target
class. Two key approaches proposed for handling these difficulties are sampling positive
and negative examples during training, and the use of modified loss functions to better
focus on positive examples. Positive/negative sampling strategies seek to constrain the
training loss signal to focus on extracting and discriminating representative target and
background features. This has been realized both with negative example sub-sampling,
e.g. as implemented at the bounding box level in Faster-RCNN [113], and positive example
over-sampling, e.g. [75]. A risk of negative sub-sampling is a loss of representative negative
samples, while positive over-sampling can lead the model to overfit to specific targets; data
augmentation strategies can be leveraged to decrease the risk of the latter. Rather than
discarding negative samples, Lin et. al [85] proposed an alternative loss function, “focal”
loss, that down-weighs loss for more confident predictions while increasing loss for less
confident predictions, prompting the network to “focus” more on rare, poorly-classified
targets during training. This loss function significantly improved performance over the
more standard cross-entropy loss in the extremely imbalanced single-stage detection setting
[85].

While hundreds of papers have been published on the topic of small object detection
in natural scene and optical remote sensing images, most seek to address the same key
challenges related to image and feature resolution and positive/negative example represen-
tation during training [90, 53]. The methods discussed represent foundational approaches
to addressing these challenges, warranting investigation for the development of baseline
landfast ice polynya detection networks.

2.4.3 Faster-RCNN and Feature Pyramid Network

The two-stage Faster-RCNN (FRCNN) object detection network [44] with Lin et. al’s
Feature Pyramid Network (FPN) [84] was chosen as a foundational architecture for this
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Figure 2.5: Architectural diagram of the Faster-RCNN object detection network with
Feature Pyramid Network, as interpreted from the original papers [113, 84]. The backbone
CNN is abbreviated (fewer stages than in [84]) for clarity.

research based on its widespread use as a baseline detector and demonstrated advantages
over one-stage detection networks on small-object detection tasks in natural-scene and
remote sensing contexts [53, 90, 87]. FRCNN comprises three sub-networks, as illustrated
in Fig. 2.5:

1. A “backbone” CNN, chosen here as FPN, that extracts learned features from input
images;

2. A lightweight CNN-based Region Proposal Network (RPN) that, operating on feature
maps produced by the backbone network in a sliding-window fashion, predicts binary
“objectness” scores and localization offsets for a set of prior “anchor boxes” of various
sizes and aspect ratios sampled densely across the feature map, yielding a set of score-
ranked object proposals;

3. A Region-of-Interest Head (RoI Head) network comprising fully-connected neural
network layers that predict class probability scores and refined bounding box posi-
tions for the top-N scoring RPN object proposals from their corresponding backbone-
produced features.

In the backbone network, FPN attempts to synthesize semantically strong, high-resolution
feature maps by sequentially merging low-resolution feature maps produced by deeper net-
work stages with higher-resolution feature maps produced by shallower network stages. As
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described in [84], this is done on a pairwise basis by first subjecting both feature maps to a
learnable 1x1 convolution to expand or compress the number of feature channels to a com-
mon value, then upsampling the deeper features to the dimension of the shallower features
before combining the feature maps via element-wise addition. A learnable 3x3 convolution
is applied following feature addition to reduce potential aliasing caused by upsampling.
The backbone network stages included in the FPN is an important design element that in-
fluences the complexity and resolution of features used for downstream detection. Several
configurations are explored for polynya detection in section 4.3.

FRCNN is typically trained in an end-to-end fashion (all three sub-networks jointly)
based on four loss functions, two in the RPN and two in the RoI Head sub-networks. By
the standard implementation, both sub-networks apply cross-entropy loss to objectness
and class probability scores, respectively, and a smoothed L1 loss [44] to the x- and y-
coordinate offsets between predicted boxes classified as “positive” and the ground-truth
boxes they intersect. Of these four loss functions, that applied to objectness scores in the
RPN, Lobj, is of particular importance to small, sparse object detection problems. This
scoring is responsible for selecting a small proportion of candidate boxes from thousands
of densely-sampled anchors, and thus faces the greatest positive/negative class imbalance
in the model. It is typically implemented as binary cross-entropy (CE) loss as in equation
2.6, where score pobj ∈ [0, 1] represents the predicted objectness probability of an anchor
box with label y ∈ {0, 1}. This and alternative RPN objectness loss functions are also
investigated in section 4.3.

LCE
obj =

{
−log(pobj) if y = 1
−log(1− pobj) otherwise

}
(2.6)

During FRCNN model training and inference there are several operations that are not
learned, but rather implemented with user-defined hyperparameters. The categorization of
“positive” and “negative” predicted boxes, for instance, is implemented with user-defined
thresholds on the intersection-over-union (IoU) metric, a measure of overlap between a
predicted box, A, and ground-truth box, B, described by equation 2.7. Such definitions are
needed for class-balanced loss sampling during training and predicted box categorization
during evaluation. The greedy non-maximum suppression (NMS) algorithm described in
[45] is applied in the RPN and RoI Head sub-networks to eliminate redundant or conflicting
predictions with high overlap, also based on user-defined IoU thresholds. The RPN and
RoI Head sub-networks only forward a limited number of top-scoring boxes based on user-
defined maximums that reflect the expected number of targets in each image. These and
other hyperparameters are discussed further in section 4.1.2.
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IoU =
A ∩B

A ∪B
(2.7)

Finally, during model inference, predicted boxes from the RoI Head sub-network hav-
ing maximum target-class confidence scores below a user-defined threshold, τscore, are dis-
carded. This threshold affords control over the degree of confidence required for a pre-
dicted box to be considered a model “detection”. During evaluation, detections scoring
above τscore are categorized against ground-truth labels using an IoU threshold, τIoU , which
describes the overlap necessary to categorize each detection as a true positive (TP) or false
positive (FP), and each target as true positive or false negative (FN). τscore and τIoU differ
from model hyperparameters as they can be modified after model training, e.g. to evaluate
a model in different ways. Evaluation methods and metrics are described in more detail in
section 4.2.8.
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Chapter 3

Dataset Synthesis & Characterization

Given a lack of previous studies on the remote sensing of community-relevant landfast ice
polynyas, it was necessary to first build and characterize datasets of polynya observations
in SAR imagery to enable the development and evaluation of detection models. This
chapter describes the synthesis and characterization of two such datasets. Section 3.1
describes the regions of interest (RoIs), imagery, and labels that comprise each dataset;
section 3.2 investigates the separability characteristics of polynyas from landfast ice in the
datasets’ dual-polarized SAR imagery; and section 3.3 explores the influences of imaging
and environmental factors on polynya signature variability.

3.1 Dataset Synthesis

The development of landfast ice polynya datasets described subsequently was carried out
in close collaboration with the Arctic Eider Society (AES, https://arcticeider.com/)
and SmartICE (https://smartice.org/), organizations with established connections to
the communities of Sanikiluaq, Nunavut, and Nain, Nunatsiavut (NL). A methodology for
mapping sea ice hazards, part of a broader initiative of Inuit-driven IQ mobilization, e.g.
[141, 142], was developed by SmartICE and AES in consultation with the author regarding
requirements for machine learning. Mapping of Nain polynyas was carried out by Inuit
SmartICE operators in Nain, while mapping of Sanikiluaq polynyas was carried out by the
author. Polynyas mapped around Sanikiluaq were validated with local ice experts during
a visit to Sanikiluaq in January 2024.
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Figure 3.1: Map showing study areas encompassing landfast ice around the communities of
Sanikiluaq, NU, and Nain, NL. Near-infrared, green and blue bands of Sentinel-2 imagery
captured April 2, 2021 and April 16, 2021, respectively, are shown (Copernicus Sentinel
data 2021). These areas capture common travel routes used in each community.

3.1.1 Regions of Interest

Sanikiluaq, NU, is located on the Belcher Islands in Hudson Bay, while Nain is located
in Nunatsiavut (NL) on the east coast of Canada, as illustrated in Fig. 3.1. Both com-
munities are primarily Inuit by population, and travel over landfast ice by snow machine
for hunting, leisure, and environmental monitoring is common [15, 9, 63]. For both com-
munities, landfast ice typically forms in December/January and breaks up in May/June,
and contains sensible-heat polynyas due to the presence of many small islands which cause
localized areas of high current. These polynyas typically persist throughout the winter
season and recur in similar locations from year to year, but may open or close irregularly
when the thermodynamic balance between warm, tidally-forced seawater and sub-freezing
air temperatures is perturbed. Both regions are at a low latitude relative to other Northern
communities and thus have more winter sunlight, providing greater optical satellite data
coverage that can be leveraged for polynya mapping.
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3.1.2 Imagery

Dual-polarized Sentinel-1 (S1) SAR imagery was obtained via Google Earth Engine (GEE)
[48] for the 2016 through 2022 winter and spring seasons over Sanikiluaq, and the 2020-
2022 seasons over Nain. For consistency and based on data availability defined by the S1
observation scenario over the RoIs [30], EW-mode GRDM images having HH+HV polar-
ization were downloaded. This imagery has a nominal spatial resolution of 93 x 87 meters
(range x azimuth) and a pixel spacing of 40 meters [32]. Processing algorithms applied to
S1 backscatter images in the GEE catalogue include additive noise removal, radiometric
calibration to σ0, orthorectification using the SRTM 30m DEM, and decibel scaling [47].
Incidence angle values for each pixel are included alongside backscatter channels in the
imagery. No speckle filtering algorithms were applied, as CNNs have proven capable of
isolating speckle in SAR imagery [21, 120] and are thus positioned to learn the most effec-
tive speckle reduction strategies to perform well on the detection task represented by the
training labels. All S1 data was stored in 32-bit floating point format.

Sentinel-2 (S2) multispectral imagery was also obtained from GEE. B4, B3, B2 (RGB,
respectively) and B8 (near-infrared) bands from level-2A S2 image tiles with less than 60%
cloud mask coverage were downloaded. Each of these bands has 10m resolution and pixel
spacing. All S1 and S2 images were reprojected to UTM zones 17N and 21N for Sanikiluaq
and Nain datasets, respectively.

3.1.3 Land and Landfast Ice Delimitation

Weekly regional ice charts from the Canadian Ice Service (CIS) Ice Archive
(https://iceweb1.cis.ec.gc.ca) were used to delimit the approximate landfast ice extent
within the RoI on a weekly basis. To more precisely delimit land areas, a landmask was
derived from the GSHHG version 2.3.7 coastlines dataset [138]. Morphological closing [127]
was applied to fill small gaps (up to 400m) between the landmask and landfast ice areas
delimited by the coarser-resolution ice charts.

3.1.4 Polynya Mapping

In both datasets, polynya segmentation labels were generated based on visual inspection of
S1 and S2 imagery. Sanikiluaq polynyas were mapped from January 22 to May 14 across
seven consecutive seasons (2016-2022), and Nain polynyas were mapped from March 19 to
May 14 across three consecutive seasons (2020-2022).
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Figure 3.2: Examples of polynya and landfast ice appearance in Sentinel-2 optical and
Sentinel-1 dual-polarized SAR imagery (σ0). (a) & (b) indicate dependence of polynya
backscatter intensity on incidence angle in HH polarization, and low backscatter intensity
in HV polarization over landfast ice and open water regions largely dominated by ther-
mal noise. (c) demonstrates an area of smooth ice of similar scale and appearance in S1
backscatter to polynya signatures.

Given the high volume of imagery, persistent nature of polynyas, and inconsistent avail-
ability of low-cloud optical imagery, mapping was carried out on a per-week, rather than
per-image, basis. In other words, one set of polynya labels was generated per week based
on all available imagery for that week. When available, low-cloud S2 imagery provided un-
ambiguous polynya identification and delimitation (illustrated in Fig. 3.2). It is noted that
thin new ice can appear transparent and thus be difficult to identify in spaceborne optical
imagery such as S2. While a band combination using B8 (near-infrared, 842nm) rather
than B4 (red, 665nm) was found to better highlight thin ice in some cases, the presence of
thin ice cover within polynyas was not catalogued during mapping. When no low-cloud S2
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imagery was available for a given week and location, polynya presence was inferred from
a combination of known polynya locations, signature in S1 images for that week, and any
available low-cloud S2 imagery from the previous week. To reflect potential ambiguities in
S1 backscatter around suspected polynya locations, a discrete confidence rating from 1 to
3 was assigned to each polynya label. Only those polynyas mapped with a confidence score
of 1, indicating the observation of a clear polynya signature in S2 imagery for that week
or a probable signature in S1 imagery at a recurring polynya location, were considered as
targets for training and evaluation of detection models (data volume implications are given
in table 3.1).

Feb 01 Mar 01 Apr 01 May 01
Observation Date

2022

2020

2018

S1 S2

Figure 3.3: Example of Sentinel-1 (S1) and low-cloud Sentinel-2 (S2) image availability
for a single recurring polynya area near Sanikiluaq (55°55’15”N, 80°03’30”W) over three
years. S2 coverage frequency varies between years, and is typically much lower than S1. A
reduction in S1 volume in 2022 reflects the loss of the Sentinel-1B satellite in Dec. 2021.

Fig. 3.3 demonstrates the relative frequencies of S1 and low-cloud S2 observations
for a single recurring polynya location within the Sanikiluaq RoI over the course of three
different seasons. Given observed and previously studied challenges in spectral reflectance-
based cloud masking over snow-covered regions [130, 65], an approximate definition for
“low-cloud” in this analysis was taken as the total coverage of S2 tiles having less than
60% cloudy-pixel percentage based on the QA60 cloud mask [31].

All mapping was carried out in ArcGIS Pro [29], and mapped polygons were exported
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Table 3.1: Number of S1 polynya observations in Sanikiluaq and Nain datasets before and
after confidence and size filtering

Target criteria
Sanikiluaq Nain
(01/22 - 05/14, (03/19 - 05/14,

2016 - 2022) 2020 - 2022)

All 8505 438
Confidence-1 7741 339
Area ≥ 100m radius-equivalent 5089 306

and saved in shapefile format. Each polygon includes metadata on confidence score, the
specific imagery used to delimit the polynya, and the spatial area of the polygon.

3.1.5 Dataset Characteristics

Data Volume and Polynya Target Filters

For the Sanikiluaq dataset, 305 S1 EW SAR images were downloaded and polynya mapping
produced 3,484 per-week polynya labels with 8,505 corresponding S1 observations. For the
Nain dataset, 18 S1 EW images were downloaded and mapping produced 391 polynya
labels with 438 S1 observations1.

As shown in Fig. 3.4, many mapped polynyas were extremely small and infeasible to
detect in 40m S1 EW pixels. An areal extent of 31,415m2, corresponding to a circular
target with a 100m radius, i.e., a 5x5-pixel bounding box in 40m imagery, was chosen
as a minimum target size threshold. This is referred to hereafter as the “100m radius-
equivalent” area. In addition to polynyas mapped with low confidence, polynyas below the
100m radius-equivalent size threshold were flagged to be excluded from model training and
evaluation. After confidence and size filtering, the Sanikiluaq dataset contained 5,089 S1
polynya observations and the Nain dataset contained 306 S1 polynya observations.

Size Distributions of Mapped Polynyas

The distributions of mapped confidence-1 polynya areas derived from segmentation labels
and corresponding bounding box long-edge lengths in 40m S1 imagery are shown in Fig.

1The notably lower imagery volume in the Nain dataset compared to Sanikiluaq is due to the use of
fewer years, fewer weeks per year, and different S1 acquisition scenarios between regions
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Figure 3.4: Distribution of mapped polynya sizes for Sanikiluaq and Nain datasets. Only
polynyas with a mapped confidence score of 1 (high confidence) are included.

3.4. The Sanikiluaq region is seen to contain smaller polynyas on average than the Nain
region, however polynyas in both regions are clearly on the scale of tens to hundreds of
meters in extent. For the object detection task in 40m SAR imagery, most targets are well
below the commonly used 30x30-pixel definition of “small objects”. Indeed, the median
bounding box long-edge length for targets above the 5-pixel size threshold is 11 pixels for
the Sanikiluaq dataset and 18 pixels for the Nain dataset.

3.2 Polynya Separability in Dual-Polarized SAR

3.2.1 Methods

The backscatter signatures of polynya areas, as mapped on a weekly basis, versus landfast
ice, as delimited by CIS charts and a higher-resolution landmask, were characterized on
both full-scene and polynya-local scales in each S1 SAR image. These different scales
of analysis were carried out to illustrate potential differences in the difficulties of isolating
polynyas from all landfast ice in a large region versus delimiting polynyas from immediately
surrounding landfast ice. The full-scene analysis included a large (n=50M) sample of all
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landfast ice pixels in all S1 images across seasons2, while the local-scale analysis pulled
landfast ice pixels only from dynamically-sized square windows centered on each mapped
polynya. For a polynya having a bounding box long-edge length L, a square window was
drawn with dimensions 2L. Box-plot distributions and the Jeffries-Matusita distance were
used to illustrate the degree of separability between polynya and landfast ice classes. Given
the known dependence of dual-, and in particular, HH-polarized backscattering intensity
on incidence angle for sea ice and water classes [91], separability analyses were carried out
by incidence angle in bins of 4◦.

Jeffries-Matusita Distance

The Jeffries-Matusita (JM) distance is a widely-used index for quantifying separability
between distributions, e.g. [23], yielding values from 0 (highly non-separable) to 2 (perfectly
separable). It is defined as

Jij = 2(1− e−dij), (3.1)

where dij is the Bhattacharyya distance between distributions of, in this case, the mea-
sured backscatter intensity values (σ0 image pixels), x, of the polynya and landfast ice
classes. The non-parametric Bhattacharyya measure as described in [70] was used, im-
plemented as in equation 3.2 where pc(x) represents per-class distributions of backscatter
values. This approach was motivated by the observed occurrence of bimodal σ0 distribu-
tions within some incidence angle bins, which are not well represented by parameterized
unimodal distributions (e.g. normal [42] or Wishart [23]) as have been used in other studies.

dij = − ln

(∑
x

√
pice(x)ppolynya(x)

)
(3.2)

Contrast-Based Polynya Separability Metric

Given the observed variability of polynya backscatter signatures, a contrast-of-backscatter-
means metric (equations 3.3 and 3.4) was developed as a simple representation of lo-
cal polynya separability in backscatter intensity. This approach was used in place of a
distribution-based separability measure such as JM distance due to the limited number of

2This sampling was motivated by computational challenges in simultaneously processing 305 full-scene
SAR images, i.e. ∼ 2 bn landfast ice pixels
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Table 3.2: Number of S1 polynya observations stratified by varying thresholds on local
contrast-of-backscatter-means metric, δµHH (eq. 3.3).

Target criteria Sanikiluaq Nain

δµHH ≥ +5dB 81 4
δµHH ≥ +3dB 322 10
δµHH ≥ +1dB 1066 37
No contrast criteria 5089 306
δµHH ≤ -1dB 2723 216
δµHH ≤ -3dB 1704 151
δµHH ≤ -5dB 949 112

pixels available on a per-polynya basis and the associated sensitivity of variance estimates.
The metric is computed on a per-window basis, with each window centered on a mapped
polynya. A dynamic window size of twice the polynya’s bounding box long-edge length was
used, consistent with the distribution plotted in Fig. 3.4. It was observed that contrast
decreased with larger relative window sizes (up to 4x the polynya bounding box long-edge
length was tested), possibly due to rough ice formations causing higher backscatter in-
tensities near polynya edges and thereby increasing contrast with low-backscatter polynya
open water areas. Mapped polynya polygons were used to delimit pixels contributing to
µσ0 polynya, while land and landfast ice masks were used to isolate landfast ice pixels con-
tributing to µσ0 ice. This metric offers a proxy for target difficulty (i.e., polynyas with
higher absolute contrast are more visually salient and statistically separable than those
with low absolute contrast) of use in subsequent detection experiments. Table 3.2 illus-
trates the distribution of S1 polynya observations in both datasets by measured backscatter
contrast in HH, while Fig. 3.5 demonstrates the appearance of polynyas with different local
contrast levels.

δµHH = µσ0
HH polynya − µσ0

HH local ice (3.3)

δµHV = µσ0
HV polynya − µσ0

HV local ice (3.4)

3.2.2 Results

In aggregate across all polynyas mapped with high confidence and having spatial areas
greater than the 100m radius-equivalent, low overall separability from landfast ice in HH-
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δμ = -1.1dBδμ = -3.7dBδμ = -5.7dB δμ = +3.4dB

Figure 3.5: Examples of HH-polarized S1 observations with different δµHH values (eq. 3.3).
Viewing window dimensions correspond to those used for calculation of δµ, i.e., twice the
mapped polynya’s bounding box long-edge length. Land areas are masked in brown.

Table 3.3: Number of observations and mean contrast metrics (eqs. 3.3 & 3.4) by incidence
angle (IA). Standard deviations of contrast metrics are given in parentheses.

IA Threshold N. Observations Mean δµHH [dB] Mean δµHV [dB]

Sanikiluaq
None 5089 (100%) -1.75 (3.39) -1.87 (2.84)
≥ 25◦ 3670 (72.1%) -2.53 (3.10) -2.28 (3.12)
≥ 35◦ 1965 (38.6%) -3.05 (3.22) -2.41 (3.12)

Nain
None 306 (100%) -3.21 (3.37) -2.78 (2.88)
≥ 25◦ 306 (100%) -3.21 (3.37) -2.78 (2.88)
≥ 35◦ 168 (54.9%) -3.77 (3.30) -2.79 (3.00)

and HV-polarized backscatter intensity was found for both Sanikiluaq (n=5089 polynya
observations) and Nain (n=306 polynya observations) datasets. JM distances computed
by incidence angle bins of 4◦ were consistently below 0.5, while the mean HH-polarized
local contrast metric (eq. 3.3) was -1.75 dB for Sanikiluaq and -3.21 dB for Nain (table
3.3). Separability patterns related to incidence angle and landfast ice pixel population
were nonetheless observed.

Considering first the intensity-based separability of polynyas in the Sanikiluaq dataset
(Fig. 3.6a), separability in HH increased with incidence angle over the medium range (∼
29◦ to 37◦), while observations taken at the lowest incidence angles (∼ 19◦ to 23◦) showed
slightly higher separability than those at the low-to-medium range (∼23◦ to 29◦). Simul-
taneously, separability from nearby landfast ice was greater than that from all landfast
ice in the RoI for incidence angles above 25◦, following observations made during polynya
mapping that landfast ice backscatter tends to increase near polynyas. This may be due to
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Figure 3.6: Backscatter intensity distributions in HH- and HV- polarized σ0 of polynya
pixels (left group) vs. polynya-local (center group) and large samples of all (right group)
landfast ice pixels in the Sanikiluaq (a) and Nain (b) datasets. Box-plot whiskers indicate
1.5x the interquartile range. Jeffries-Matusita (JM) distances between polynyas and the
two ice populations are calculated and plotted by the same incidence angle bins as those
used for box-plotting.

33



deformed ice features associated with polynya forcing mechanisms, such as current-driven
piling or fracture. This “contextual” pattern, i.e., the presence of a polynya conditionally
influencing ice class backscatter distributions, highlights the advantage of spatial classifiers
over pixel-based classifiers for polynya detection. Separability in HV was very low (JM
distances below 0.25) for all incidence angles and ice pixel populations, commensurate with
the observation that backscattering intensities were below the NESZ threshold of -22dB.

Polynya separability in backscatter intensity was observed to be somewhat higher for
the Nain dataset than that for the Sanikiluaq dataset. This higher separability for Nain
polynyas is possibly related to their larger size relative to Sanikiluaq polynyas, allowing
them to be better resolved by the medium-resolution S1 imagery. Nonetheless, the separa-
bility of Nain polynyas was also found to be low, with JM distances consistently below 1. It
is also noted that the significantly smaller number of Nain polynya observations introduce
more uncertainty into the analysis of this region than Sanikiluaq.

Overall, these results emphasize the challenging signatures of landfast ice polynyas in
dual-polarized backscatter intensity, limiting the potential of detection approaches using
only intensity threshold-based classifiers previously applied in other sea ice / water classi-
fication contexts (e.g. [13, 40]).

3.3 Imaging & Environmental Controls on Polynya

Separability

As discussed in section 2.3.3, backscattering intensity from sea ice and water is known
to be sensitive to several imaging and geophysical parameters relevant to the synthesized
polynya datasets. Key sensitivities include those to 1) incidence angle, 2) wind roughening
of open water, 3) potential thin ice growth within polynyas, and 4) snow cover wettening
in response to warming (e.g. towards the onset of spring melt). Motivated by these
known sensitivities and the observed variability of polynya S1 signatures in the dataset, an
exploratory analysis was carried out to investigate the degree to which signature variability
could be explained by these imaging and environmental parameters.

3.3.1 Methods

An investigation into the influence of the aforementioned imaging and environmental pa-
rameters on the local backscatter contrast measures was carried out on the Sanikiluaq
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dataset, given its higher volume of imagery and diversity of unique polynyas relative to
the Nain dataset. A significant challenge in this endeavour, however, is the shortage of
operational weather stations around the Belcher islands and resultant data sparsity with
which to conduct rigorous correlative analyses. An exploratory foray was nonetheless made
with regional-scale ERA5 reanalysis data provided by ECMWF [57] for the possibility that
coarse patterns in some of these regional data might provide an initial outlook on controls
for the observed variability in polynya signatures in the developed dataset.

Regression analyses of backscatter contrast versus incidence angle, instantaneous wind-
speed, and average temperature over the 12 hours preceding imaging time were performed,
alongside a visual analysis of backscatter contrast by time of year (a nonlinear relationship
was expected). Hourly 10-meter horizontal wind and 2-meter temperature variables from
ERA5, distributed on a 0.25◦ latitude-longitude grid (∼ 28km lat. by 15km lon. over the
Belcher Islands), were used for respective analyses. In each case, the model variable was
interpolated to each SAR polynya observation in space and time, and matched with the
polynya’s contrast-of-means metrics as a measure of polynya separability from surrounding
landfast ice.

3.3.2 Results

Table 3.4: Coefficients of determination (R2) for imaging and ERA5 environmental vari-
ables on backscatter contrasts δµHH and δµHV (eqs. 3.3 and 3.4) of mapped polynyas areas
vs. surrounding landfast ice.

Parameter R2 for HH Contrast (δµHH) R2 for HV Contrast (δµHV )

Incidence Angle 0.183 0.0708
Instantaneous Windspeed 0.117 0.0570
Mean 12h 2m Temperature 0.0176 0.0611

IA + Windspeed 0.297 0.122
IA + Windspeed + Temp 0.324 0.199

Fig. 3.7 and table 3.4 demonstrate the sensitivity of HH backscatter intensity within
mapped polynya areas to incidence angle and windspeed, while HV is less affected. Con-
sistent with expectations, polynyas show greater contrast with respect to surrounding
first-year landfast at high incidence angles and low windspeeds. The step-change in local
contrast occurring in May reflects an increase in backscattering intensity over landfast ice
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Figure 3.7: Investigating controls of imaging and environmental parameters on contrast
between polynyas and surrounding landfast ice backscatter intensity. Given the strong
variance with incidence angle (a), contrast observations by windspeed (b) and day-of-year
(c) are coloured by IA to illustrate the combined controls on contrast.
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areas, generally corresponding with early melt onset timing for the region. This pattern is
consistent with previous findings related to the sensitivity of C-band σ0 to warming snow
cover parameters such as brine volume, e.g. [104].

These findings, while based on coarse regional-scale data and clearly not perfect predic-
tors of polynya backscattering contrast, do in combination explain 30% of the variability in
local polynya contrast. They provide evidence supporting the expectation that incidence
angle, wind roughening, and seasonality are indeed controls on the separability of polynyas
from surrounding landfast ice particularly in HH-polarized SAR. A more detailed charac-
terization of these factors would require higher-resolution measurements of polynya-local
environmental parameters coincident with SAR image acquisitions, which was out of the
scope of this thesis research.

3.4 Chapter Conclusions

The datasets of mapped landfast-ice polynyas presented in this chapter have been shown to
contain small, sparse targets with variable separability from landfast ice in dual-polarized
C-band SAR backscatter intensity. This separability was shown to be too low for the effec-
tive use of pixel-based classifiers, with incidence angle-binned Jeffries-Matusita distances
between polynya and landfast ice classes consistently below 0.5. An exploratory analysis
of controls on polynya signature variability found that HH backscatter intensity contrast
between polynyas and landfast ice increased with incidence angle (R2 = 0.18), decreased
with model windspeeds (R2 = 0.12), and underwent a rapid increase near early melt on-
set. The HV-polarized backscatter intensity over landfast ice and open water areas was
found to lie below the sensor noise floor. Polynya datasets were stratified by a separabil-
ity heuristic based on local backscatter intensity, yielding groups of labeled targets with
varying difficulties for retrieval method development and assessment.
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Chapter 4

Object Detection Networks for
Polynya Detection in Sentinel-1 SAR

In chapter 3, the problem of detecting landfast ice polynyas in dual-polarized SAR im-
agery is shown to be one of identifying small, sparse targets with varying and frequently
low separability in backscatter intensity. This frequently low separability limits the ex-
pected performance of pixel-based classifiers that have been used in other SAR-based sea
ice classification contexts [146, 91]. As discussed in chapter 2, textural features of SAR
images such as spatial autocorrelation or GLCM have been used to differentiate between
sea ice and open water, however their efficacy in doing so generally depends on the use
of spatial windows larger than the extent of most landfast ice polynyas considered in this
research (Fig. 3.4). CNNs, having previously shown efficacy for SAR-based sea ice clas-
sification, are well positioned to exploit the large volume of training data generated for
this study to capture heterogeneous but distinct intensity-level, textural, geometric and/or
contextual features of polynyas through supervised learning. In particular, an object de-
tection formulation presents a desirable set of mechanisms to handle target sparsity while
capturing the inherent geometric compactness of polynyas.

The overall objective of research described in this chapter is the development and
evaluation of a convolutional object detection network for landfast ice polynya detection
in Sentinel-1 SAR imagery using the dataset described in chapter 3. This is broken down
into three sub-objectives:

1. Guided by advancements in the natural-scene small object detection field, optimize
polynya detection model performance by investigating key design elements related to
feature representation capacity, input spatial resolution, and training loss balancing;
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2. Evaluate the developed model under a range of data scenarios to characterize input
feature importance, the influence of data augmentation for regional generalizability,
and the capacity of the model to detect targets with varying levels of backscatter
separability;

3. Identify model capabilities and limitations from predictions on held-out evaluation
datasets.

These investigations are presented in sections 4.3, 4.4, and 4.5, respectively, for which
sections 4.1 and 4.2 lay important methodological groundwork.

4.1 Adapting Faster-RCNN to a Polynya Detection

Context

Chapter 2 motivated the use of the Faster-RCNN (FRCNN) [113] object detection network
for landfast ice polynya detection based on its demonstrated success and continued use as
a baseline model in small object detection for natural-scene and optical remote sensing
contexts. Nonetheless, several characteristics of the landfast ice polynya detection prob-
lem diverge from the natural-scene domains for which object detectors like FRCNN were
developed, limiting the “off-the-shelf” applicability of such models to this task. These
characteristics include the following:

Imaging modality - While model parameters for detection networks pre-trained on
natural-scene benchmark datasets are widely available in the present deep learning ecosys-
tem from platforms like pytorch [106] or MMDetection [18], the use of such pre-trained
networks for SAR image analysis has met limited success in previous studies due to the
significantly different viewing geometries and imaging modalities between natural-scene
RGB and spaceborne SAR images [62].

Target characteristics - Polynya signatures in dual-polarized SAR imagery are, as
demonstrated in chapter 3, heterogeneous in backscatter intensity, extremely small, and
sparsely distributed within landfast ice. Despite these challenges, the set of features in-
volved in detecting polynyas in SAR imagery is likely to be less complex than that needed
to detect densely distributed, frequently occluded targets with tens to hundreds of unique
class labels in a multitude of settings, as is often the challenge in natural-scene contexts [86].
Specifically, detection models with fewer parameters than widely-available natural-scene
benchmark models are likely appropriate for polynya detection.
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Areas and targets of interest - Landfast ice polynya detection models should ignore
areas of open water beyond the landfast ice edge, areas of continuous land, and mapped
polynyas that do not meet the confidence, size, or target separability criteria described in
chapter 3. Such selective filtering should be handled within the model, rather than solely
as a post-processing step, to ensure all boxes contributing to training loss correspond either
to polynyas meeting all target criteria or landfast ice.

Preliminary modifications to adapt FRCNN to the preceding characteristics of the
polynya detection task are described in this section, representing a starting point used for
the experiments described in sections 4.3 and 4.4. An implementation of FRCNN in the
pytorch v2.1 deep learning framework [106] (pytorch.org) was modified following the design
elements described subsequently.

4.1.1 Backbone Network

The EfficientNet-B0 CNN was used as a backbone feature extraction network in the Faster-
RCNN detector implemented in this study. The EfficientNet family of networks [133] is
based on a Neural Architecture Search jointly optimizing model accuracy and floating
point operations per second, leveraging inverted bottleneck [109] and squeeze-excitation
[60] mechanisms for their representational efficiency and ability to model inter-channel de-
pendencies, respectively. The EfficientNet models have demonstrated parameter efficiency
in learning representative features on benchmark computer vision datasets, e.g. achieving
better top-1 accuracy on the ImageNet dataset than the commonly used ResNet-50 CNN
with 4.9x fewer learnable parameters [133]. Following the hypothesis that binary polynya /
ice classification from dual-polarized SAR can be achieved from a relatively lightweight set
of features, the smallest version of the EfficientNet networks — EfficientNet-B0, detailed
in table 4.1 — was selected for this study.

4.1.2 Faster-RCNN Hyperparameterization

The hyperparameters of FRCNN detection models designed to handle tens or hundreds
of densely-distributed object classes in natural-scene images typically employ classification
sub-networks with thousands of neurons predicting hundreds or thousands of proposal
boxes per image [44]. Given the sparse, two-class nature of the polynya detection problem,
several hyperparameters were modified to simplify the network and better adapt it to this
context. A complete list of FRCNN hyperparameters and the values used in the adapted
model is given in appendix A, reflecting the following modifications in each sub-network.
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Table 4.1: Summary of the full EfficientNet-B0 feature extraction (“backbone”) network
used in this research, as designed in [133]. MBConvX units are the building blocks of
the network, consisting of an inverted bottleneck with channel expansion ratio X and a
squeeze-excitation operation. Each stage may repeat the same block a number of times.
S0 represents the original dimension of a square input image, e.g. 128x128 pixels.

Stage index Output feature size # Output channels # Parameters

S-1 S0/2 16 0.15M
S-2 S0/4 24 0.17M
S-3 S0/8 40 0.22M
S-5 S0/16 112 1.0M
S-7 S0/32 320 3.8M

Region Proposal Network (RPN) - Modifications to four aspects of the RPN
sub-network were made. First, anchor box sizes were reduced based on the distribution
of target polynya sizes in the synthesized datasets (Fig. 3.4). Second, the IoU thresholds
defining positive and negative anchor boxes were both reduced. A reduction in the positive
threshold, defining the minimum IoU between an anchor box and a ground-truth box for the
anchor to be considered a positive example, allows more anchors to be classified as positive
even if they do not perfectly match the labelled polynya’s bounding box. A reduction in
the negative threshold, defining the maximum IoU between an anchor box and a ground-
truth box for the anchor to be considered a negative example (i.e., the landfast ice class),
ensures that boxes partially overlapping a polynya are not considered negative. These
modifications were implemented to place more emphasis on the detection rather than the
precise localization of polynyas and to reduce ambiguity in the loss signal for partially-
covered targets. Third, the number of top-scoring boxes passed from the RPN to the
RoI Head was reduced from 2000 during training and 1000 during inference to 100 for
both training and inference. This reduction reflects the prior knowledge that, given their
sparse distribution, only a handful of polynyas will likely ever exist in a single SAR image
patch (discussed in section 4.2.4). Finally, the number of boxes sampled for objectness
loss computation was reduced from 256 to 64 to reduce the expected imbalance of positive
versus negative anchor boxes during training — this hyperparameter is explored further in
section 4.3.1.

RoI Pooling - The RoI pooling layer creates fixed-size feature vectors for each RPN
object proposal by sampling the backbone-produced feature maps from a grid of fixed
dimensions placed within the bounds of the variable-sized object proposals. Given the
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smaller polynya target and corresponding RPN anchor box sizes relative to typical natural-
scene targets, the pooling grid dimensions were reduced from 7x7 to 3x3. In addition to
reducing probable redundancy from over-sampling the low-resolution features at deeper
backbone layers, this modification drastically reduces the number of parameters in the
fully-connected layers of the RoI Head network.

RoI Head - Modifications to three aspects of the RoI Head sub-network were made.
First, the number of neurons in each fully-connected layer was reduced from 1024 to 128.
This reflects the lower complexity of binary polynya/ice classification versus multi-class
natural-scene targets, and also greatly reduces the number of parameters in the RoI Head
sub-network. Second, the IoU threshold defining negative boxes was reduced from 0.5 to
0.3 with similar rationale to the RPN, however was kept higher than 0.1 to penalize low-
precision detections more heavily than in the RPN. Finally, the number of boxes sampled
for classification loss computation was reduced from 512 to 32 to again reduce the expected
imbalance of positive versus negative examples. This was informed by the expected number
of polynya targets within each polynya-containing image patch (on the order of 1-10) and
the role of the RoI Head network in refining top proposals from the RPN rather than
filtering out thousands of easy negatives, motivating the use of a more balanced training
set. It is noted that for the standard FRCNN geared towards natural-scene targets, a
larger number of loss samples is taken for classification in the RoI Head (512) than in
the RPN (256). This is because the former makes multi-class predictions while the latter
makes binary (“objectness”) predictions. In the polynya detection context both networks
make binary (polynya/ice) predictions, so a smaller loss sample is appropriate.

In summary, these hyperparameter modifications loosen the overlap-based definition of
positive boxes, tighten the definition of negative boxes, and reduce the number of boxes
forwarded by the RPN, the number of boxes sampled for loss computation, and the number
of learnable parameters in the RoI Head sub-network. The resultant balancing of learnable
parameter densities throughout the network is illustrated by Fig. 4.1. The distribution of
parameters in the adapted network appears much better suited to the polynya detection
context: the backbone network has the most parameters to learn discriminative polynya
features, the RPN has the second most to determine effective decision boundaries between
rare polynya targets and heterogeneous landfast ice, and the RoI Head has the fewest to
refine RPN proposals. Indeed, evaluation results increased considerably with the adapted
hyperparameterization over the default hyperparameterization, as reported in table 4.6.
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Figure 4.1: Comparison of FRCNN learnable parameter densities with (a) the default
FRCNN hyperparameters [113] and (b) the adapted hyperparameters described in section
4.1.2. The number of learnable parameters for each sub-network are given in millions and
their relative proportion, based on a 7-stage backbone EfficientNet-B0 network with 320
feature channels in the final layer (S-7 of table 4.1).

4.1.3 Modifications to Handle Landfast Ice Areas & Selective
Targets

The pytorch v2.1 [106] implementations of RPN and RoI Head sub-networks were extended
to handle two requirements particular to the polynya detection context. Firstly, anchor and
proposal boxes that occurred beyond the landfast ice floe edge (as delimited by regional
ice charts) or that were centered on land areas (as delimited by the GSHHG [138]-derived
landmask) were discarded during model inference and training. Secondly, during training,
negative boxes that covered “non-target” polynyas (mapped polynyas not meeting one or
more target criteria) were discarded and excluded from loss computation.

These modifications allowed for selective control of the negative and positive boxes that
contribute to the optimization objective (i.e., loss) during model training. Such “selective
negatives” include only those boxes containing landfast ice, excluding water beyond the
floe edge, land, or polynyas not meeting certain target criteria. Non-target polynyas were
defined as those mapped with low confidence or not meeting the size threshold as described
in section 3.1.5. Additionally, the local separability measure δµHH was used to categorize
some polynyas as non-targets via minimum contrast thresholds used as a proxy for target
difficulty. This is discussed further in section 4.4.1. Fig. 4.2 illustrates the selective
sampling of negative and positive boxes from an image patch during training.
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Figure 4.2: Illustration of selective training samples in S1 images taken Mar. 9, 2021
(left) and April 9, 2018 (right). Each red dot indicates the centrepoint of 9 negative RPN
anchor boxes, while red boxes represent those with the highest RPN objectness scores
after predicted offsets are applied. These top-N scoring boxes (for this illustration, N is
set to 32) are used for RPN objectness loss computation, Lobj. All predictions classified
as positive are shown as green boxes. Blue boxes represent “non-target” labels ignored
during training, e.g. polynyas not meeting the size threshold. Boxes centered over land,
with centrepoints indicated by black dots, are discarded during training and inference.

4.2 Training and Evaluation Methods

4.2.1 Addressing Correlation between Polynyas and Land

An important characteristic of the synthesized landfast ice polynya dataset is the presence
of multiple observations of the same recurring polynyas throughout and across seasons.
This introduces a strong correlation between polynya occurrence and local topography, i.e.,
unique land formations that show up in SAR backscatter every time a recurring polynya
is imaged. A risk in training spatial models on such a dataset is an overfit to specific land
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Region Use Seasons N. Scenes

Sanikiluaq
Training 2016-2022 278 (90%)
Evaluation 2016-2022 27 (10%)

Nain Evaluation 2020-2022 18 (100%)

Table 4.2: Training and evaluation dataset partitioning.

formations correlated with polynya occurrence, which may go unnoticed if the models are
evaluated against these same land-correlated targets. It should be noted that some degree
of land correlation with polynya occurrence can reasonably be interpreted as a useful feature
for polynya detection, as topographic narrows often contribute to the forced-convection
mechanisms that create polynyas. It is an overfit to specific land geometries that do not
generalize well to identifying other causal topographic patterns that is of concern. While
section 4.2.6 proposes mitigation strategies leveraging data augmentation in the training
set, section 4.2.2 describes the selection of evaluation datasets that in combination are
resilient to and indicative of potential land-overfit behaviour.

4.2.2 Training & Evaluation Datasets

To capture the true generalization performance of polynya detection models between re-
gions with different topographies, training was carried out only on polynya observations
from the Sanikiluaq dataset, while a subset of Sanikiluaq observations and all Nain obser-
vations were held out and used for evaluation. As summarized in table 4.2, this yielded
278 training and 27 evaluation scenes for the Sanikiluaq dataset (Jan. 22 to May 14, 2016-
2022) and 18 evaluation scenes for the Nain dataset (Mar. 19 to May 14, 2020-2022). The
27 Sentinel-1 scenes from the Sanikiluaq dataset held out for evaluation were selected to
provide representation across seasons, time of year, and target separability characteristics,
i.e., a diversity in the number of polynya targets in each scene based on the local contrast
measure δµHH (equation 3.3). These characteristics for each Sanikiluaq and Nain evaluation
scene are detailed in Appendix B.

4.2.3 Contrast-Based Polynya Target Definitions

Analyses of polynya and landfast ice signatures described in section 3.2 illustrated vari-
able and frequently low polynya separability from surrounding landfast ice. Rather than
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Figure 4.3: Model training workflow. LFI stands for landfast ice.

attempting to train models to detect polynyas in all conditions inclusive of those that pro-
duce extremely low and, based on observation during mapping, infeasible, separability, an
approach to training models to detect “feasible” polynya signatures was desired.

Knowledge of imaging and environmental parameters that influence dual-polarized
backscatter intensity from sea ice and water, outlined in section 2.3.3, could in principle be
used to predict polynya separability and thus stratify a training and evaluation dataset. For
instance, lower separability would be expected under conditions of strong wind roughening
or low imaging incidence angle. However, the attempt to predict variations in polynya
separability from available imaging and (notably limited) environmental data described in
section 3.3 left a significant proportion (∼ 70%) of this variability unexplained. Therefore,
rather than attempting to stratify the dataset based on imaging conditions, an empirical
approach to target selection for model training and evaluation was taken. The contrast-
of-backscatter-means measure introduced in section 3.2.1 (eq. 3.3) was used to describe
the separability of each SAR polynya observation, enabling a stratification of the dataset
into groups representing varying levels of target difficulty. Due to the higher separability
characteristics illustrated in section 3.2, the HH-polarized contrast measure was used.

As a baseline configuration, polynya observations having a separability described by
δµHH ≤ −3dB were used as training and evaluation targets. Table 3.2 lists the number
of polynyas corresponding to this criteria. Alternative contrast-based target definitions,
including the absence of such, are explored in section 4.4.1.
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4.2.4 Image Patching & Patch Sampling

As full-scene SAR images are generally too large to process at once with CNN models, a
patch-based model training and inference approach was used. Patches of size 128x128 were
taken based, at the lower bound, on the distribution of polynya sizes (Fig. 3.4), and at the
upper bound on the flexibility to upsample patches as a feature resolution-enhancement
method. Patches were generated with 30% overlap such that all polynyas with dimensions
less than 38 pixels would be fully covered by at least one patch. Such patching is a common
approach to aerial and spaceborne remote sensing image analysis, e.g. [101, 2].

Given the small and sparse nature of polynya targets, there is a significant imbalance
(≈ 102) in the number of generated image patches that contain polynyas vs. those that do
not — hereafter referred to as “positive” and “negative” patches, respectively. This imbal-
ance in the classification of patches exists alongside a further imbalance in the number of
polynya vs. ice pixels within most polynya-containing patches (also ≈ 102). Training on
all negative patches would thus lead to a high computational load for many redundant neg-
ative examples, and produce an extreme positive/negative class imbalance. On the other
hand, sufficient negative examples must be provided during training to capture the true
statistical distribution of the class, i.e., representing the spatial and temporal variability
of landfast ice in the RoI.

To address these tradeoffs, a dynamic negative patch sub-sampling scheme was used.
First, all patches generated from full-scene training images were classified as positive or
negative based on their full coverage of, or total non-intersection with, a target polynya. At
each epoch, all positive training patches were included, and a random sample of negative
patches was taken at a ratio Kneg ≥ 0 with respect to the number of positive patches:
N

neg
= Kneg · Npos. This produced a consistent number of training samples and posi-

tive/negative patch balance at each epoch, while capturing the diversity of the negative
class over many epochs. This scheme, implemented with Kneg = 2, was found to out-
perform static sampling of an equivalent or larger number of negative patches in terms of
precision and recall (defined in subsection 4.2.9), respectively.

4.2.5 Data Normalization

Min-Max normalization of images was performed, mapping HH, HV, and IA channel values
from the clipped ranges [-30dB, 0dB], [-45dB, -15dB], and [19◦, 49◦], respectively, to the
range [0, 1]. Ranges for backscatter values were based on the distributions observed in
the datasets, as reported in chapter 3. This normalization scheme has been implemented
successfully for other CNN-based sea ice classification studies, e.g. [12].
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4.2.6 Data Augmentation

To increase the variance of land patterns in the SAR backscatter intensity images and
thus attempt to lessen the risk of model overfit to polynya-correlated land formations, a
set of affine data transforms was used. Illustrated in Fig. 4.4, these included horizontal
and vertical flipping, random rotation of up to 45◦, and a square crop up to half of the
original image size, implemented to preserve all targets in the image and subsequently
rescaled to the original resolution using bilinear upsampling. As a baseline configuration, all
transforms were applied with a probability of 50%. The exploration of other configurations,
including the absence of augmentation during training, is described in section 4.4.

(c) Rotate

(a) Flip (b) Crop + Resize

(d) E.g.: Combined

Figure 4.4: Illustration of affine data transforms applied to input image patches and labels:
(a) horizontal and vertical flipping, (b) a square crop-and-resize policy that guarantees
coverage of all targets in the original input image, (c) a rotation from 0 to 45◦, and (d) an
example of all augmentations applied probabilistically in composition.
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4.2.7 Model Training

Model training was carried out using a standard stratified 5-fold cross-validation approach
(e.g. [67]), whereby the entire population of training patches (all those generated from
Sanikiluaq S1 training scenes) was split into 5 groups containing consistent ratios of positive
to negative patches, with each group used in turn as a validation set for a model trained
on the other 4 groups. All experiments followed an identical training scheme, training all
sub-networks jointly and from scratch using a fixed number of epochs with a monotonically
decaying learning rate. Specific training-related hyperparameters are detailed in table 4.3.
Training was carried out on single 32GB NVIDIA Tesla V100 GPUs provided by the Digital
Research Alliance of Canada (alliancecan.ca), leveraging experiment-tracking tools offered
by the Weights & Biases platform (wandb.ai/site).

Table 4.3: Model training hyperparameters used throughout experiments.
∗ Batch size refers to the number of images, not bounding boxes, per batch.

Hyperparameter Value

N. Epochs 60
Optimizer Stochastic Gradient Descent,

e.g. [115, 49]
Momentum 0.9
Weight Decay None
Learning Rate Cosine decay; 0.01 → 0.001
Batch size∗ 64

4.2.8 Full-Scene Model Inference

During evaluation, each evaluation scene was first divided into 30%-overlapping, 128x128-
pixel patches. Patches having over 20% coverage beyond the floe edge or over 80% coverage
of land were discarded. Model inference was performed on each remaining patch, then
per-patch predictions were merged back into full-scene pixel space and subject to NMS
(the same deduplication algorithm used within FRCNN) with an IoU threshold of 0.1.
This overlap-and-deduplicate strategy ensured that every polynya measuring less than 38
pixels (largest dimension) was completely covered by at least one patch, with the highest-
confidence detection from all target-covering patches taking precedence. After discarding
predicted boxes below a user-defined score threshold, τscore, full-scene detections were then
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evaluated against target labels based on mapped polynyas and target criteria. Model
detections were classified as TP or FP relative to target polynyas based on a configurable
IoU threshold, τIoU . Target polynyas not detected by the model were categorized as FN.

It is emphasized that, following this full-scene inference scheme, models were evaluated
on a heavily imbalanced number of negative (land and landfast ice only) versus positive
(target polynya-containing) image patches. This imbalance was on the scale of 102 to 103

depending on the stringency of the target polynya criteria applied.

4.2.9 Evaluation Metrics

For a given τscore and τIoU , precision (eq. 4.2) and recall (eq. 4.1) metrics describing
the specificity (commission error) and sensitivity (omission error) of detections may be
calculated. The f1-score (eq. 4.3) is defined as the harmonic mean between precision and
recall.

recall, r =
#TP

#TP +#FN
(4.1)

precision, p =
#TP

#TP +#FP
(4.2)

f1 = 2
p · r
p+ r

(4.3)

While precision and recall metrics are of great practical use for understanding a model’s
hit, miss, and false alarm rates, they are sensitive to the chosen τscore, which may capture
the distribution of predicted box scores differently for individual models and thus provide
limited utility for model intercomparison. For this reason, it is standard to assess object
detection models across a range of score thresholds to understand their performance more
holistically. This is commonly done graphically with precision-recall (PR) curves and
quantitatively with the average precision (AP) score. PR curves plot a model’s precision
score at uniformly-sampled recall values from 0 to 1, while the AP metric takes the average
of these precision scores. The standard AP metric introduced by Everingham et. al [34]
is implemented using 11 precision scores corresponding to uniformly-sampled recall levels
from 0 to 1. The precision scores are defined as pinterp(r), describing the highest precision
value achieved for a recall level equal to or higher than r [34]:
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AP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r). (4.4)

All evaluation metrics reported in this thesis, including AP, were computed for τIoU
= 0.1 across detections from all scenes in the respective evaluation datasets1. This low
threshold allows predicted boxes having relatively low intersection with target boxes to be
classified as true positives, adding resilience to label imprecision (a known challenge for
small-target datasets, e.g. [147]).

4.3 Optimizing Key Detection Model Design Elements

Leveraging the adapted FRCNN model of section 4.1 and the training and evaluation
strategies of section 4.2, this section reports the investigation of three important model
design elements to optimize the detection of small, sparse landfast ice polynya targets.
These elements, following advancements in the natural-scene and optical remote sensing
small object detection fields discussed in chapter 2, include feature representation capacity,
input image and feature map resolution, and loss function selection, parameterization,
and balancing. Table 4.4 summarizes the experimental configurations pursued. Unless
otherwise noted, all experiments described in this section were performed using {HH, HV,
IA} input channels, affine data augmentation applied with a probability of 50% per patch,
and target polynyas having a local separability in backscatter intensity adhering to δµHH

≤ −3dB. These data elements are explored further in section 4.4.

4.3.1 Methods

Feature Extraction Network Depth Selection

Following the hypothesis that an effective set of features for landfast ice polynya detec-
tion in dual-polarized SAR imagery is less complex than that required for the multi-class
natural-scene contexts for which EfficientNet and Faster-RCNN were originally developed,
an investigation into the minimum feature extraction network depth required to yield ef-
fective performance on the polynya detection task was carried out. An ablation study was

1Note that τIoU , used for categorizing model detections during evaluation, is distinct from the IoU
threshold hyperparameters used for categorizing boxes within the model during training.

51



Table 4.4: Key Faster-RCNN design elements investigated in this section, as discussed
in section 4.3.1. Configurations with * indicate those used between experiments unless
otherwise indicated.

Design Parameter Configurations

Backbone network stages S-1, S-2, S-3*, S-5, S-7, FPN-357

Input image resolution 128x128*, 256x256, 512x512, 128x128 + FPN-123

RPN loss balancing CE16, CE64*, CE256, focalγ=0, α=0.9, focalγ=0, α=0.99,
focalγ=2, α=0.25, focalγ=5, α=0.25

performed whereby the EfficientNet-B0 backbone network (table 4.1) was truncated at
progressively deeper stages from 1 to 7, with the final feature map being used by the RPN
and RoI Head sub-networks for bounding box classification and regression. A configuration
using FPN to reconstruct a stage-3 feature map from a stage-7 feature map was compared
to the uni-directional configurations.

As the objective of this experiment was to ascertain the minimum feature complexity
(network depth) sufficient for the RPN and RoI Head sub-networks to detect polynyas,
the effect of changing feature map resolutions at different network stages due to internal
downsampling operations was viewed as a confounding factor that might independently in-
fluence bounding box prediction performance. In particular, the resolution degradation at
deeper network stages was expected to reduce the utility of feature maps at these stages for
original-resolution input images, potentially under-representing the utility of more complex
features for detecting polynyas. An attempt to alleviate this was pursued by upsampling
input image patches for configurations using 5- and 7-stage backbone networks by factors
of 2x and 4x, respectively. Thus, 3-, 5-, and 7-stage networks produced feature maps with
equivalent dimensions for downstream bounding box prediction. For each configuration
the network was trained from scratch, allowing it to learn features best suiting the avail-
able number of stages while being nonetheless constrained by the chosen depth. In these
experiments, notation as “S-X” describes a backbone network without FPN that includes
stages from 1 to X, and notation as “FPN-357” describes a backbone network with FPN
where the largest number denotes the deepest backbone network stage reached and the
smallest number indicates the shallowest stage reconstructed. Table 4.5 summarizes the
number of learnable parameters associated with each network depth configuration.
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Table 4.5: Number of feature extraction network parameters by stage utilisation. Each
configuration represents the indicated EfficientNet stages plus an FPN lateral connection
consisting of a 1x1 convolution mapping to a 128-channel feature map followed by a 3x3
anti-aliasing convolution, as used in the experimental protocol.
∗Includes convolutional layers for FPN lateral connections and anti-aliasing operations

Stage Utilisation N. Conv Blocks N. parameters

S-1 2 0.15M
S-2 4 0.17M
S-3 6 0.22M
S-5 12 1.0M
S-7 17 3.8M

FPN-357 17+∗ 5.5M

Input Image Upsampling

A common method to address limitations in small-object detection results in natural scene
and optical remote sensing contexts is that of super-resolution, i.e., increasing the resolu-
tion of an input image to enhance available small target information and thereby improve
the chance of detection [53, 135]. While single-image super-resolution has been recently
pursued with generative adversarial networks (GANs) trained to map low-resolution images
or feature maps to high resolution [81, 4], this approach can be resource-intensive both in
terms of computation as well as design and training times when adapting the method to a
new domain. Given the geometric simplicity of polynya targets in SAR relative to object-
dense, natural-scene RGB images with higher edge densities, colour details, and occlusions,
a simple bilinear upsampling approach was used to investigate the influence of input image
scale on detection performance results. Input image sizes of 128x128 (original), 256x256
(2x upsample), and 512x512 (4x upsample) were tested using a 3-stage backbone network
(S-3 of table 4.5) based on results from feature depth experiments (section 4.3.3). A con-
figuration having an input image size of 128x128 with an FPN-123 backbone configuration
was also tested, reconstructing a feature map with an equivalent spatial resolution to a
3-stage network subject to a 512x512 input image. This explores the relative efficacy of
the feature-level resolution merging of FPN versus input image-level upsampling.

RPN Loss Function Selection and Parameterization

To address the massive imbalance in positive and negative anchors, a balanced sampling
scheme is typically used alongside CE loss in the RPN sub-network, whereby a fixed number
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of boxes from each image are sampled for loss computation at a set ratio of negative to
positive boxes. Both the number of boxes and balancing ratio are network hyperparameters
(appendix A). If there are fewer positive boxes than that prescribed by the ratio, the sample
is padded with sampled negative boxes. Given the extremely small and sparse polynya
targets, there are typically only a handful of positive anchor boxes per positive input patch,
thus the boxes sampled for loss computation are dominated by negatives. A larger sample
size may lead to a higher diversity of negative examples and reduce model false positives,
however the associated increase in imbalance may reduce the model’s sensitivity to polynya
targets. To investigate this imbalance problem, three CE loss sampling configurations
were tested: “CE16” (16 boxes), “CE64” (64 boxes), and “CE256” (256 boxes). These were
investigated alongside the image patch-balancing parameterKneg described in section 4.2.4,
for which values of 2 and 6 were used.

Rather than relying on an imbalance-insensitive loss function and requisite sampling
scheme, Lin et. al [85] proposed “focal loss”, an alternative loss function for anchor scor-
ing. This function is cross-entropy loss (equation 2.6) weighted by γ ≥ 0, an exponential
“focusing” parameter that emphasizes poorly-classified (e.g., rare) examples, and a rare-
class balancing parameter α ∈ [0, 1]. With these modifications, all negative and positive
anchors are used for loss computation.

Lfocal
obj =

{
−(α)(1− pobj)

γlog(pobj) if y = 1
−(1− α)(pobj)

γlog(1− pobj) otherwise

}
(4.5)

Motivated by the success of focal loss in guiding effective anchor scoring under ex-
tremely imbalanced conditions in the one-stage RetinaNet detector [85, 90], several pa-
rameterizations of the function commensurate with ranges suggested by the authors [85]
were attempted alongside CE-balancing experiments. These parameterizations are sum-
marized in table 4.4. All experiments in this section used 128x128-pixel input images with
a 3-stage backbone network (S-3) and a negative patch sampling ratio (Kneg) of 2.

4.3.2 Model Convergence During Training

Prior to examining inference results on the evaluation datasets, a brief case study is pre-
sented here illustrating model convergence during training. This is an important step in
ensuring that models have been properly trained and that their evaluation results can
indeed be used to draw realistic conclusions.

Training and validation loss curves of the four FRCNN loss functions (as described in
section 2.4.3) are shown in Fig. 4.5 for the best-performing model configuration across
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Figure 4.5: Training and validation loss curves of the 4 FRCNN sub-networks for the best-
performing model configuration (“*”) of table 4.4. Each loss curve indicates the mean
(trend line) and min/max (shaded sleeve) loss values for 5 cross-validated models. Each
step corresponds to one training epoch, i.e. a pass over the full training dataset.

experiments in this section. Loss values per epoch are summed and normalized by the
number of image patches in the train or validation dataset. Both training and validation
losses are calculated from a subset of all predictions in each patch: RPN objectness and
RoI Head classification losses sample a fixed number of boxes per patch, while RPN and
RoI Head regression losses are calculated only for positive boxes. RPN regression loss is
normalized by the number of anchor locations in the patch, while RoI Head regression loss
is normalized by the number of proposal boxes passed from the RPN.

RPN objectness loss is seen to decrease rapidly and smoothly in both training and
validation, representing the RPN’s improvement in predicting polynya vs. ice labels for
highly imbalanced anchor boxes. RPN regression loss converges but plateaus in training
and validation, suggesting a limit to the bounding box precision achievable by the model.
RoI Head classification loss initially decreases rapidly but plateaus (with only marginal
steady improvements) higher than RPN objectness loss in both training and validation.
Since RPN passes boxes with the highest objectness scores to the RoI Head, the higher
classification loss in the Head likely reflects the increased difficulty of the negative exam-
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ples forwarded by the RPN. This is an implicit form of hard-negative mining for the Head
sub-network, however it is clear only marginal improvements are made on classifying these
“hard negatives” over the course of training. Finally, the RoI Head regression loss demon-
strates a striking increase and plateau in both training and validation. Considering that
this loss is calculated only for positive boxes forwarded from the RPN, however, it can be
understood that as the RPN improves its classification performance, more positive boxes
are forwarded and thus used for regression loss calculation in the RoI Head. Subsequently,
little bounding box localization refinement is accomplished by the RoI Head on top of the
regression predicted by the RPN.

These convergence patterns are representative of most models trained in this chap-
ter. They illustrate the relative importance of the RPN objectness classification predic-
tor, which converges the most significantly and influences downstream components of the
model. They also suggest that the role of the RoI Head network in binary ice/water clas-
sification and localization may be somewhat redundant in relation to the RPN, although
some improvement seems to be made in classifying difficult negative examples. Ultimately,
the analysis of sub-network convergence patterns is limited by the relatively small sample
sizes taken for loss computation, and thus subsequent assessment of model performance is
carried out with respect to model inference results on held-out evaluation datasets.

4.3.3 Results & Discussion

Evaluation results for investigations into feature depth, input resolution, and loss balancing
are presented and discussed in this section. Fig. 4.6 shows the mean precision-recall
curves for each experiment, while table 4.6 records numerical evaluation metrics with mean
and variance for five cross-validated models per experiment. AP scores (eq. 4.4) are
used to illustrate the overall performance of models, while recall (eq. 4.1) and precision
(eq. 4.2) metrics taken at τscore= 0.8 illustrate results that can be achieved in terms of
model sensitivity and specificity. This threshold on τscore was informed by observed score
distributions of true-positive boxes predicted by the detection models, and was taken for its
yield of higher recall values than f1-optimal score thresholds. Alternative precision/recall
metrics can be estimated visually using the precision-recall curves. Note that it is possible
for one model to present a higher AP score but a lower precision at τscore than another
model; this may happen when the first model predicts higher-scoring boxes than the second
model, leading to higher recall but lower precision for the same score threshold (the average
precision over all score thresholds may still be higher for the first model).

Where differences in model performance responses to certain design elements occur
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Figure 4.6: Precision-Recall curves at τIoU= 0.1 for investigations into (a) feature extrac-
tion network depth, (b) input image upsampling, and (c) RPN cross-entropy loss sampling
and focal loss parameterization corresponding to results in table 4.6. Results are generated
for δµHH ≤ −3dB targets with Affinep50 augmentation on HH, HV, IA input features.

between the two evaluation datasets (Sanikiluaq and Nain), interpretive preference is gen-
erally given to results on the Nain dataset since this region was completely held-out during
training and thus better represents a model’s ability to retrieve and classify relevant ice /
water features with no aid from potential land correlations discussed in section 4.2.1. The
inclusion of both datasets in subsequent analyses is useful for identifying instances where
overfit to land is suspected.
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Table 4.6: Evaluation metrics for investigations into model hyperparameterization, back-
bone feature utilisation, input image resolution, and loss function selection, sample bal-
ancing, and parameterization. Metrics means across 5 cross-validated models are reported
in percentage points, followed by standard deviation in parentheses. All metrics are cal-
culated for τIoU= 0.1. Precision and recall values are given for τscore= 0.8. Boldface rows
indicate the best-performing configuration for each experiment based on interpretations
discussed in section 4.3.3. Configurations with * indicate those used between experiments.

Experiment Sani. AP Sani.
Recall

Sani.
Precision

Nain AP Nain
Recall

Nain
Precision

Hyperparameters
Original 52.1 (1.11) 46.6 (1.80) 61.0 (2.15) 56.2 (4.26) 53.9 (7.85) 56.1 (2.32)

* Adapted 67.1 (0.59) 80.0 (0.93) 39.8 (2.70) 65.6 (2.02) 78.4 (1.85) 28.3 (2.15)

Backbone Stages
S-1 48.7 (1.75) 62.8 (2.33) 26.1 (2.44) 56.8 (2.11) 72.1 (4.12) 17.5 (1.37)
S-2 61.2 (2.69) 72.4 (1.12) 35.3 (3.07) 63.9 (2.37) 77.2 (2.51) 23.8 (4.78)

* S-3 67.1 (0.59) 80.0 (0.93) 39.8 (2.70) 65.6 (2.02) 78.4 (1.85) 28.3 (2.15)
S-5 72.4 (1.36) 86.1 (1.08) 39.9 (1.88) 60.6 (2.20) 75.0 (3.64) 26.6 (3.43)
S-7 72.0 (0.83) 85.7 (1.79) 39.5 (2.18) 63.5 (2.17) 75.8 (3.96) 29.1 (2.10)

FPN-357 70.6 (1.88) 81.6 (1.53) 39.7 (1.31) 61.6 (2.72) 75.0 (1.63) 30.5 (3.47)

Input Image Resolution
* 128x128 (orig.) 67.1 (0.59) 80.0 (0.93) 39.8 (2.70) 65.6 (2.02) 78.4 (1.85) 28.3 (2.15)

256x256 71.3 (0.81) 85.7 (1.73) 38.0 (2.70) 64.3 (3.90) 81.6 (2.08) 22.8 (2.50)
512x512 70.3 (1.18) 84.9 (1.87) 40.8 (2.49) 59.7 (1.92) 79.9 (2.94) 24.7 (2.54)

128x128 + FPN-123 73.0 (1.06) 83.6 (2.78) 44.6 (4.06) 62.4 (2.49) 78.5 (1.79) 24.9 (2.52)

Patch & CE Loss Sampling
Kneg=2; CE16 68.7 (2.09) 87.9 (1.44) 27.9 (2.31) 64.7 (2.90) 81.1 (4.09) 20.9 (1.31)

* Kneg=2; CE64 67.1 (0.59) 80.0 (0.93) 39.8 (2.70) 65.6 (2.02) 78.4 (1.85) 28.3 (2.15)
Kneg=2; CE256 62.0 (1.57) 66.1 (0.97) 52.5 (3.96) 62.1 (1.71) 71.9 (1.73) 38.0 (0.73)
Kneg=6; CE16 74.1 (2.65) 84.6 (2.57) 46.4 (4.85) 56.2 (4.65) 68.0 (4.77) 29.1 (3.53)
Kneg=6; CE64 71.3 (0.92) 74.5 (1.01) 61.6 (2.14) 64.9 (0.85) 72.6 (3.37) 42.5 (5.69)
Kneg=6; CE256 66.4 (2.18) 61.7 (3.47) 72.9 (1.68) 61.7 (3.69) 61.8 (7.57) 53.3 (2.91)

Focal Loss (Kneg=2 ∀)
Fγ=0, α=0.90 64.0 (2.00) 76.4 (1.94) 35.2 (4.44) 61.6 (2.27) 76.9 (4.45) 26.7 (3.30)
Fγ=0, α=0.99 59.9 (1.48) 73.5 (1.91) 31.9 (2.95) 58.1 (4.06) 72.2 (4.43) 23.7 (2.50)
Fγ=2, α=0.25 55.3 (2.45) 68.1 (2.07) 36.9 (2.80) 57.1 (2.86) 72.8 (3.43) 23.4 (3.41)
Fγ=5, α=0.25 56.6 (1.02) 69.6 (1.62) 30.7 (6.20) 57.3 (3.18) 72.2 (5.14) 23.2 (2.13)

Feature Extraction Network Depth

Differences in performance patterns on Sanikiluaq and Nain evaluation datasets were ob-
served in response to feature extraction network depth. For Sanikiluaq, evaluation per-
formance increased significantly with network depth to a maximum at 5 stages, while
evaluation performance on Nain varied less and peaked at a network depth of 3 stages.
The 3-stage network also outperformed the baseline configuration of FPN-357 on the Nain
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dataset, but not on the Sanikiluaq dataset. This difference is believed to be an arte-
fact of polynya-land correlation; increased feature complexity offered by deeper backbone
networks may allow these networks to partially “overcome” data augmentation strategies
that seek to obscure polynya-land correlation, e.g. by learning rotation- and scale-invariant
representations of specific land features that shallower networks cannot. Thus, following
the signal from evaluation performance on the completely held-out Nain dataset, it is ob-
served that a 3-stage EfficientNet-B0 network offers sufficient representational capacity to
discriminate landfast ice and open water features for effective polynya detection. To illus-
trate the significance of this finding, the 3-stage EfficientNet-B0 network has nearly 20x
fewer learnable parameters (0.2M) as the 7-stage network (3.6M — table 4.5), and was
found to consume 50% less GPU memory during training.

Input Image Upsampling

Limited improvements in polynya detection performance were observed with upsampled
input images using a 3-stage (S-3) backbone network. While a modest improvement on
the Sanikiluaq evaluation dataset was observed with 2x-upsampled images, performance
actually decreased with input image size on the Nain evaluation dataset. This decrease is
attributed to a greater imbalance in the number of RPN anchors — for the same anchor
sample spacing, a 4x-upsampled input image (512x512) has 16 times the number of anchors
as the original image (128x128). As denser anchor spacing relative to original input di-
mensions was identified as a possible mechanism to improve detection performance, anchor
spacing was not normalized to scale for these experiments (anchor sizes, naturally, were).
The use of feature-level resolution merging with FPN slightly outperformed the equivalent
image-upsampling approach (128x128 input image with FPN-123 backbone vs. 512x512
input image with S-3 backbone) on both datasets, however did not outperform the un-
modified scale (128x128 with S-3) on the Nain evaluation set. Differences in performance
between the datasets regarding scale may be due to the occurrence of smaller polynyas
in the Sanikiluaq dataset (Fig. 3.4), however it is difficult to conclude that performance
improvements on the Sanikiluaq dataset in response to upsampling are related to better
discrimination of open water features more than they are to an increased capacity to learn
correlated land features. Regardless, these experiments illustrate the ability of the FRCNN
detection model to handle small (e.g. 10x10 pixel) targets in dual-polarized SAR imagery,
and demonstrates the efficacy of feature-level resolution enhancement with FPN in this
context relative to more computationally-intensive input image upsampling operations.
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Loss Function Selection, Sampling & Parameterization

Findings related to RPN objectness loss function design revealed that the configuration
used in the baseline FRCNNmodel (cross-entropy loss sampling 64 anchor boxes per image)
outperformed modifications related to both CE loss sampling and focal loss parameteriza-
tions as interpreted from evaluation results on the Nain dataset. As shown in Fig. 4.6,
smaller, more class-balanced samples (N=16) for CE loss increased polynya recall at the
cost of precision, while larger (N=256) samples increased precision at the cost of recall.
The same loss sampling configurations applied to an input image patch sampling scheme
with 3x more negative patches (Kneg= 6) revealed the same tradeoff with higher precision
and lower recall scores. While overall performance (AP10) on the Sanikiluaq evaluation set
was maximized for Kneg = 6, Nain evaluation results were stronger for Kneg = 2. A possi-
ble explanation for this is that models trained on less balanced data may learn to condition
more strongly on land correlations that can be exploited on the Sanikiluaq evaluation set
but not Nain. CE16 and CE64 sampling yielded similar overall performance results for
Sanikiluaq and Nain datasets, demonstrating the efficacy of the dynamic negative patch
sampling scheme described in section 4.2.4 in capturing sufficient diversity of the negative
class. Based on the maximum AP10 score for the Nain evaluation set, CE64 with Kneg = 2
was identified as the strongest-performing configuration.

All focal loss parameterizations, evaluated for Kneg = 2, performed worse on both
evaluation datasets than most sampled CE loss configurations. Interestingly, parameter-
izations equivalent to balanced cross-entropy (higher loss weighting for positive boxes)
outperformed those using the focusing parameter γ. Based on these results, further tuning
of the focusing parameter beyond the ranges recommended in [85] was not pursued.

4.3.4 Conclusions from Model Optimization Experiments

To summarize, three main findings were observed from the detection model optimization
experiments described in this section:

1. A simplified 3-stage feature extraction network with 20x fewer parameters than
the original 7-stage network demonstrated a similar capacity to detect landfast ice
polynyas with less tendency to overfit to polynya-correlated land formations, vali-
dating the hypothesis that polynya detection requires a much simpler set of features
than natural-scene object detection contexts;

2. Using a backbone network with fewer downsampling operations precluded the need
for image- or feature-level resolution enhancement strategies to detect small targets;
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Table 4.7: Various data scenarios investigated with the polynya-optimized FRCNN net-
work. Configurations with † indicate those used for the model optimization experiments
of section 4.3, and * those used between experiments in this section.

Design Parameter Values

Input features {HH}, {HV}, {HH, HV},
{HH, IA}*, {HH, HV, IA}†

Data augmentation scheme No augmentation,
Affinep50*

†, Affinep100

Target polynya criteria (δµHH) ≥+1dB, None (all targets),
≤-1dB, ≤-3dB*†, ≤-5dB

3. Sampled cross-entropy loss outperformed focal loss for objectness prediction in the
RPN, with middle-ground sample sizes (64 boxes per image) outperforming larger
(256) and smaller (16) samples.

4.4 Detection Model Evaluation under Different Data

Scenarios

This section evaluates the performance of the optimized Faster-RCNN detection network
in different data scenarios to provide a comprehensive assessment of the generalization
capability of the model. Analysis on the performance variation also provides insights on
feature importance and characteristics of the polynya detection problem. Specifically, this
section aims to answer three key research questions:

1. Which dual-polarized C-band SAR input channels (of {HH, HV, IA}) provide utility
for detecting polynyas in landfast ice?

2. Does data augmentation improve detection model generalizability between regions?

3. What are the performance drop-off characteristics of detection models trained to
detect increasingly difficult polynya targets?
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4.4.1 Methods

Experiments reported in this section leveraged the optimized FRCNN polynya detection
model developed in section 4.3 (indicated by boldface rows in table 4.6) and the same
training and evaluation strategies described in section 4.2.

Importance of SAR Polarization and Incidence Angle for Polynya Detection

Various combinations of decibel-scaled HH- and HV-polarized backscatter intensity (σ0)
and incidence angle (IA) features were used as input to the model, with an ablation carried
out as summarized in table 4.7. The model architecture was unmodified between config-
urations except for the first convolutional layer to accommodate the varying number of
input image channels.

Importance of Geometric Data Augmentation for Multi-Region Generalization

To evaluate the importance of data augmentation for generalizing from Sanikiluaq polynyas
seen in training to Nain polynyas revealed only during evaluation, three variations on the
data augmentation scheme described in section 4.2.6 were compared. In one, no trans-
formations were performed; in another, all transforms were applied with a probability of
50%; in the third, the rotation and crop-then-rescale augmentations were applied every
time while flipping was applied with a probability of 50%.

Detection Performance across Polynya Separability Levels

Given the variability and frequently low separability of polynya signatures in backscatter
intensity, a key question in developing polynya detection models was the response in model
performance to increasing polynya target difficulties in terms of backscatter separability.
From a research standpoint such an investigation illustrates the capacity of CNNs to cap-
ture challenging polynya targets that intensity-based classifiers would struggle with, while
from an application standpoint it provides an expectation for the capacities and limitations
of model performance.

As discussed in section 4.2.3, the local backscatter intensity contrast measure δµHH was
used as a simple proxy for the separability of polynya observations in the dataset. In
this experiment, different thresholds on δµHH were applied to define several polynya tar-
get populations. These included all polynyas (no contrast requirement), polynyas having
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Figure 4.7: Precision-Recall curves at τIoU= 0.1 for investigations into (a) SAR input
features, (b) data augmentation schemes, and (c) contrast-based polynya target definitions
corresponding to results in table 4.8.

higher backscatter intensity than surrounding landfast ice (δµHH ≥ +1dB), and polynyas
having lower backscatter intensity than landfast ice with different minimum contrast lev-
els (δµHH ≤ {−1dB,−3dB,−5dB}). Models trained to detect both “dark” and “bright”
polynyas performed less well than the more specialized models, and are not described fur-
ther. For each configuration, a distinct model was trained end-to-end and evaluated on
targets meeting the corresponding criteria. “Non-targets” not meeting contrast criteria
were ignored in training and evaluation as described in section 4.1.3.

4.4.2 Results & Discussion

Evaluation results related to SAR input feature utility, the influence of data augmentation
on regional generalization, and detection performance for varying polynya separability
levels are discussed in this section. Fig. 4.7 shows the mean precision-recall curves for each
experiment, while table 4.8 records numerical evaluation metrics.

Importance of SAR Polarization and Incidence Angle

HH and incidence angle (IA) input features were found to produce the strongest polynya
detection performance for the baseline model on the held-out Nain evaluation dataset,
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Table 4.8: Evaluation metrics for investigations into SAR input features, data augmen-
tation scheme, and polynya target definition. Mean performance metrics across 5 cross-
validated models are reported in percentage points, followed by standard deviation in
parentheses. All metrics are calculated for τIoU = 0.1. Precision and recall values are given
for τscore= 0.8. Boldface rows indicate the best-performing configuration for each exper-
iment based on interpretations discussed in section 4.4.2. Configurations with † indicate
those used for model optimization experiments (sections 4.3.1 & 4.3.3), and * those used
between experiments in this section.

Experiment Sani. AP Sani.
Recall

Sani.
Precision

Nain AP Nain Recall Nain
Precision

Input Features
† {HH, HV, IA} 67.1 (0.59) 80.0 (0.93) 39.8 (2.70) 65.6 (2.02) 78.4 (1.85) 28.3 (2.15)

{HH, HV} 68.6 (3.17) 81.0 (2.03) 41.2 (3.37) 58.0 (7.04) 70.4 (8.53) 31.1 (1.00)
{HH} 63.0 (0.95) 79.0 (0.92) 33.2 (1.60) 63.6 (3.90) 76.6 (4.08) 28.10 (2.28)

* {HH, IA} 64.4 (1.79) 79.0 (1.73) 33.0 (2.63) 67.5 (1.63) 79.5 (2.33) 26.2 (1.58)
{HV} 32.9 (3.34) 37.9 (3.40) 34.0 (3.23) 12.5 (1.00) 14.6 (1.64) 12.9 (3.50)

Augmentation
No Augmentation 72.4 (2.57) 85.3 (2.79) 32.3 (2.37) 54.1 (5.20) 72.8 (3.68) 19.4 (2.71)

*† Affinep50 64.4 (1.79) 79.0 (1.73) 33.0 (2.63) 67.5 (1.63) 79.5 (2.33) 26.2 (1.58)
Affinep100 59.4 (1.39) 73.6 (2.88) 33.5 (5.30) 66.8 (1.87) 79.6 (2.74) 27.8 (5.77)

Target Criteria
δµHH≥ +1dB 12.8 (1.07) 6.90 (1.00) 21.1 (6.94) 9.30 (0.03) 0.00 (0.00) 20.0 (40.0)

None (all targets) 49.7 (1.33) 45.4 (2.27) 60.4 (4.37) 36.8 (1.68) 37.5 (1.56) 39.2 (3.51)
δµHH ≤ −1dB 56.4 (2.26) 62.5 (1.16) 45.2 (4.32) 56.2 (1.86) 64.4 (0.91) 35.1 (6.07)

*† δµHH ≤ −3dB 64.4 (1.79) 79.0 (1.73) 33.0 (2.63) 67.5 (1.63) 79.5 (2.33) 26.2 (1.58)
δµHH ≤ −5dB 73.7 (1.50) 91.2 (0.94) 38.8 (2.75) 74.5 (1.91) 90.2 (2.06) 24.0 (1.33)

while HH and HV produced better results for the Sanikiluaq dataset. We infer that the
improvement on Sanikiluaq evaluation results with HV is an artefact of overfit to strong
land signals in HV backscatter, which, despite the use of affine data augmentation, allows
the model to overfit more to correlated land features in training and evaluation sets. On the
Nain dataset the model is not able to leverage specific land features learned in Sanikiluaq-
only training, and given the low backscatter intensity over landfast ice and water, HV
effectively introduces a source of noise to model inference. This interpretation is strongly
supported by the results from HV-only models, which perform much better for Sanikiluaq
than Nain, giving a sense for the degree of land overfit that is not remedied by the Affinep50
data augmentation policy. The modest performance gain in Nain evaluation results when
including incidence angle information indicates some utility in conditioning HH backscatter
intensities on IA for discriminating landfast ice and water features, and it is noted that the
limited number of Nain polynya observations at low incidence angles may under-represent
this utility.
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Importance of Geometric Data Augmentation

Findings from the data augmentation experiment illustrated the tendency of models to
overfit to specific land features highly correlated with polynya occurrence in single-region
training and evaluation datasets. When no data augmentation scheme was used, the de-
tection model performed very strongly on the Sanikiluaq evaluation dataset but poorly on
the Nain evaluation dataset. Introducing affine transformations during training reduced
performance on the Sanikiluaq evaluation set, but increased performance greatly on the
Nain dataset. This suggests that in the scenario with no data augmentation, the model
focuses “too much” on polynya-correlated land features present in the Sanikiluaq training
and evaluation datasets but not present in the Nain dataset. The use of affine transforma-
tions, which jointly rotate, flip, crop and rescale polynya, ice and land geometries during
training, weaken the prior available for the Sanikiluaq evaluation dataset but prompt the
model to learn more general features better able to detect Nain polynyas. Increasing the
augmentation frequency from 50% to 100% was not found to yield improvements on the
Nain evaluation dataset, while further reducing performance on the Sanikiluaq evaluation
dataset.

These findings emphasize the importance of data augmentation schemes in this and
similar repeat-observation contexts, as well as the utility of evaluating on a completely
held-out region to more accurately assess the true generalization potential of developed
models. More involved augmentation strategies that could further decouple ice/water
signatures from unwanted spatial correlations, such as the copy-paste augmentation [41],
may warrant exploration in future works.

Detection Performance across Polynya Separability Levels

Detection model performance metrics showed a monotonic increase for both evaluation
datasets with the imposed polynya/ice backscatter intensity contrast threshold measured
by δµHH . In other words, models trained to only detect polynyas with δµHH ≤ −5dB
achieved higher AP10 scores than models trained to detect polynyas with δµHH ≤ −3dB,
which scored better than those on δµHH ≤ −1dB targets. Nonetheless, the baseline FRCNN
model was able to detect many challenging −1dB polynyas, for instance achieving target
recall values of nearly 70% for Sanikiluaq and 55% for Nain with reasonable precision (55%
& 35%, respectively). Models trained to detect −5dB targets achieved 90% recall on both
datasets, with somewhat lower precision rates given the fewer true-positive targets used to
normalize the number of false positives (eq. 4.2). Table 3.2 can be consulted for assurance
that the −1dB-trained models did indeed learn to detect more polynyas than −5dB-trained
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models. Models failed to detect most “bright” polynya targets with δµHH ≥ +1dB. As there
are very few polynya observations with δµHH ≥ +3dB, the poor results here indicate the
weak signature of these observations and the lower separability from landfast ice, perhaps
due to signature similarities to areas of rough landfast ice (higher σ0).

4.4.3 Conclusions from Investigations into Data Scenarios

In summary, quantitative evaluation results from investigations into SAR input feature
importance, data augmentation, and minimum target separability revealed the following:

1. HV provided limited utility in detecting polynyas from landfast ice, capturing land
patterns but not ice/water signatures;

2. Affine data augmentation strategies significantly improved the generalization capa-
bility of polynya detection models to regions not seen in training, e.g. increasing the
AP10 score on the Nain evaluation dataset from 0.54 to 0.68;

3. Models trained to detect only high-contrast polynyas outperformed those trained
to detect more challenging polynyas, with AP10 scores on the fully held-out Nain
evaluation dataset increasing from 0.37 for models trained to detect all polynyas, to
0.75 for models trained to only detect polynyas with δµHH≤ −5dB .

4.5 Inference Results on Evaluation Images

To better understand the capabilities and limitations of the developed polynya detection
models, inference examples on held-out evaluation images are examined and discussed in
this section. All predictions shown are from the optimized model architecture of section
4.3, indicated by the boldface rows of table 4.6.

Fig. 4.8 illustrates two scenes from the Sanikiluaq and Nain evaluation datasets where
the model detected all high-contrast target polynyas (defined by δµHH≤ −5dB) and made
very few false positive (FP) predictions. Target polynyas are delimited precisely and have
high confidence scores. Both scenes occur later in the season (April 4 and May 6). HH-
polarized backscatter over landfast ice is seen to be relatively high and fairly homogeneous,
likely related to volume scattering mechanisms within a warming snowpack, and polynyas
have high backscatter contrast. Under similar conditions in other evaluation scenes, detec-
tion model results had consistently high recall and precision.
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Figure 4.8: Example model predictions on held-out Sanikiluaq (left) and Nain (right)
evaluation scenes. Both scenes demonstrate strong model performance for high-contrast
polynya targets (δµHH≤ −5dB), having 100% target recall and near 100% precision.

Fig. 4.9 illustrates regions of a different evaluation scene from the Nain evaluation
dataset alongside the closest available S2 observation, and compares the predictions of
a model trained to detect target polynyas with δµHH ≤ −1dB and δµHH ≤ −5dB. In
particular, the occurrence of false positive predictions over areas that transition quickly
between low and high backscatter intensity is demonstrated. Upon close inspection of the
S2 imagery in Fig. 4.9c, these regions can be seen to correspond to boundaries between
smooth and rough landfast ice in some cases. It was observed that such polynya-lookalike
areas were more frequently predicted by models trained to detect polynyas with weaker
signatures, e.g. δµHH ≤ −1dB targets, illustrating an inherent precision-recall tradeoff for
the dual-polarized landfast ice polynya detection task.
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Figure 4.9: Close-up predictions from models (M) trained on different polynya target
definitions on a Nain S1 evaluation scene acquired March 26, 2021, with a reference S2
image acquired March 30, 2021. True positive (TP), false positive (FP), false negative
(FN), and non-target polynya (NT) boxes are shown. The model trained on more difficult
targets (δµHH≤ −1dB) (a) detects polynyas that the δµHH ≤ −5dB model does not, but
(b) misses more targets, and (b & c) predicts more false positives. False positives tend to
occur at boundaries between low and high backscatter intensity, e.g. in transitions between
smooth and rough landfast ice as seen upon close inspection of the S2 image in (c).

Finally, Fig. 4.10 shows that missed polynyas (false negatives) consistently possessed
weaker signatures (lower contrast) and smaller sizes than most detected (true positive)
polynyas. Polynyas with local separability described by δµHH ≤ −5dB and bounding box
long-edge lengths above 15 pixels (600m) were consistently detected in the evaluation
datasets for both RoIs.
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Sanikiluaq Nain

Figure 4.10: Distributions of categorized predictions (τIoU= 0.1, τscore= 0.8) from a δµHH≤
−1dB model on both evaluation datasets across local polynya contrast (δµHH) and bounding
box sizes. False negatives occur at lower contrasts and smaller sizes.

4.6 Chapter Conclusions

This chapter described the development and evaluation of an FRCNN-based object detec-
tion network for landfast ice polynya detection in dual-polarized Sentinel-1 SAR imagery.
Through several sensitivity and ablation studies carried out on the adapted FRCNN model,
a peak in detection performance leveraging a relatively shallow (3-stage) feature extraction
network was observed, alongside an agnosticism to input image upsampling on the ability
to detect small targets and an empirical advantage of using sampled cross-entropy loss over
several parameterizations of the imbalance-motivated focal loss. HH-polarized backscatter
intensity and incidence angle information were found to yield the strongest detection re-
sults, and the use of affine data augmentation during training was found to significantly
improve model generalization between regions. Models trained to detect polynyas having
higher contrast in backscatter intensity with surrounding landfast ice outperformed those
trained to detect polynyas having lower contrast.

The optimized detection model proved capable of detecting a substantial proportion
of polynyas from observations not seen during training. For instance, the model located
79.5% of moderately difficult Nain polynyas (δµHH≤ −3dB), representing half of polynya
observations across all imaging and environmental conditions over 3 years from a region
not seen during training, with a precision of 26.2%. The same model achieved 79.0%
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recall at 33.0% precision on the held-out Sanikiluaq evaluation scenes. Geometric data
augmentation strategies (affine transformations) were found to play a critical role in model
generalization between regions, counteracting the tendency of networks to overfit to region-
specific, polynya-correlated land formations.

Ultimately, the variable separability and small sizes of landfast ice polynyas in medium-
resolution, dual-polarized SAR imagery were found to limit the achievable performance of
single-image detection models evaluated on all polynya targets under all imaging condi-
tions. Even after optimization efforts, missed polynyas were found to consistently possess
smaller sizes and lower contrast in backscatter intensity, while false positive predictions
were often caused by lookalike patterns in landfast ice, e.g. at boundaries between smooth
and rough ice. Nonetheless, under imaging and environmental conditions leading to clear
polynya signatures in the SAR imagery (e.g., δµHH ≤ −5dB), optimized models proved
capable of consistently detecting sub-kilometer scale open water targets with high (e.g.,
> 90%) recall and reasonable (e.g., ≥ 24%) precision.
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Chapter 5

Generalizing Polynya Detection
Networks from Sentinel-1 to
Radarsat Constellation Mission SAR
Imagery

Operationally-oriented SAR image classification systems that leverage the available diver-
sities of satellite sensors and imaging modes with similar radar parameters are positioned
to benefit from increased temporal resolution and more robust availability. For landfast ice
polynya detection, increased temporal resolution of SAR observations offers an opportunity
to produce more reliable estimates of polynya locations over a given time window, and to
better track dynamic events such as polynya freeze-up or opening. The vulnerability in
relying on a single SAR mission is illustrated in the polynya dataset described in chapter
3 by a significant reduction in Sentinel-1 (S1) imaging frequency for the 2022 season (e.g.
Fig. 3.3). This reduction was in response to the failure of the Sentinel-1B satellite in De-
cember 2021. Meanwhile, the Canadian Space Agency’s Radarsat Constellation Mission
(RCM), comprised of three individual SAR satellites, has been providing dual-polarized
C-band SAR imagery over Arctic coastal regions since 2019. The ability of landfast ice
polynya detection models to operate on both S1 and RCM SAR imagery is thus of interest.

While a motivation for the calibration of SAR backscatter values is indeed sensor
agnosticism at like frequencies and polarizations, different SAR beam modes, resolutions,
noise characteristics, incidence angle ranges, and processing workflows available to SAR
data users may introduce practical differences in the image products available. In the deep
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Figure 5.1: Conceptual overview of this chapter and its relation to methods and results
presented in chapter 4.

learning context, few studies have investigated task-specific generalization characteristics
of developed models between S1 and RCM imagery. In this chapter, the ability of CNN-
based polynya detection networks trained on Sentinel-1 EW imagery to achieve similar
performance on RCM ScanSAR 50-meter (SC50M) imagery is assessed. The evaluation
performance of “original” S1-trained models developed in chapter 4 is compared to that of
models additionally fine-tuned on a small amount of RCM imagery.

5.1 Data

5.1.1 RCM Imagery

Acquisition

RCM imagery was downloaded from Natural Resource Canada’s Earth Observation Data
Management System (EODMS) using the EODMS CLI library (https://github.com/
eodms-sgdot/eodms-cli) version 3.3.1, both provided by Natural Resources Canada (NR-
CAN). Based on availability over both regions of interest, ScanSAR 50-meter resolution
(SC50M) imagery ordered by the Canadian Ice Service was downloaded. While SC50M
imagery was available over the Nain RoI for all three years of interest (2020-2022), the
acquisition mode over the Sanikiluaq RoI transitioned in 2022 to the ScanSAR low-noise
(SCLN) beam mode with 100m resolution. To provide consistency for this analysis, only
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Table 5.1: Number of processed ScanSAR 50-meter (SC50M) images for each RoI by year

Year
N. SC50M Images

Sanikiluaq Nain
(01/22 - 05/14) (03/19 - 05/14)

2020 35 75
2021 47 76
2022 0 70

SC50M imagery available over the Sanikiluaq RoI for years 2020 and 2021 was downloaded.
Image availability is summarized in table 5.1.

Processing

Processing of RCM products downloaded from EODMS to calibrated imagery was carried
out using a processing codebase developed by the Canadian Ice Service and shared under
a joint project agreement including the University of Waterloo research team. Processing
steps included calibration to σ0 and reprojection to UTM 17N and 21N zones for Sanikiluaq
and Nain RoIs, respectively, using degree-2 polynomial interpolation to produce 40m pix-
els. No speckle filtering or incidence angle normalisation was performed, consistent with
Sentinel-1 processing described in chapter 3. A noise subtraction algorithm accounting for
scalloping effects in the azimuth dimension relevant to SC50M imagery was not available
in the processor at the time of writing. No noise subtraction was performed, as 1D (range-
only) subtraction does not account for these non-stationary characteristics in azimuth, e.g.
near subswath boundaries. Since the S1 EW imagery used in this research did undergo
noise subtraction, the resultant difference in noise characteristics between the RCM and
S1 imagery used in this chapter is considered a variable to which model performance may
be sensitive.

5.1.2 Polynya Labels

The same mapped polynya labels described in chapter 3 and used in chapter 4 were used
for model evaluation on RCM imagery. These labels were verified and extended with RCM
imagery for weeks where S1 coverage had not been available.
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5.1.3 Polynya Signature Characterisation

Polynya signatures in RCM SC50M imagery were assessed following an identical methodol-
ogy to that in chapter 3, using incidence angle-binned box plots and Jeffries-Matusita (JM)
distances to evaluate separability in backscatter intensity on both polynya-local and full-
scene scales. Fig. 5.2 illustrates the results of this analysis, showing patterns in backscatter
intensity distribution and polynya/ice separability consistent with those observed in S1 im-
agery (Fig. 3.6). JM distances between polynya and ice classes are consistently below 0.5
in HH-polarized backscatter, and below 0.25 in HV. The RCM imagery includes obser-
vations at higher incidence angles than S1 (47◦-55◦), for which polynya/ice separability
decreases in the Sanikiluaq dataset relative to SC50M observation at the S1 far range
(e.g., 43◦-47◦). These findings reinforce the conclusion made in chapter 3 that polynya
separability in dual-polarized backscatter intensity alone is not sufficient for the use of
pixel-based classifiers.

5.2 S1-Trained Model Performance on RCM Imagery

5.2.1 Methods

The best-performing polynya detection model from chapter 4, summarized in table 5.2,
was evaluated against the processed RCM imagery for both RoIs following three different
protocols:

A. “Original” S1-trained models were evaluated directly on the RCM evaluation datasets;

B. S1-trained models were fine-tuned on a small number of RCM images from the
Sanikiluaq RoI before being evaluated on the RCM and S1 evaluation datasets;

C. S1-trained models were fine-tuned on a mix of RCM and original S1 training im-
ages from the Sanikiluaq RoI before being evaluated on the RCM and S1 evaluation
datasets.

All protocols followed the full-scene evaluation methodology described in section 4.2.
Fine-tuning methods for protocols B and C are described subsequently.
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Figure 5.2: Backscatter intensity distributions in HH- and HV- polarized RCM SC50M
SAR images of polynya pixels (left group) vs. polynya-local (center group) and large
samples of all (right group) landfast ice pixels in the Sanikiluaq (a) and Nain (b) datasets.
Box-plot whiskers indicate 1.5x the interquartile range. Jeffries-Matusita distances between
polynyas and the two ice populations are calculated and plotted by the same incidence angle
bins as those used for box-plotting.
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Table 5.2: Model configuration and data inputs used for RCM generalization experiments
described in this chapter. Design parameter notation can be reviewed in the referenced
sections of chapter 4.

Design Parameter Value

Model (4.3)
Backbone network stages S-3
Input image scale 128x128
RPN loss function & sampling CE64

Data (4.4)
Input Features {HH, IA}
Data augmentation scheme Affinep50
Target polynya criterion δµHH ≤ −3dB

Fine-Tuning Data Selection & Sampling

Of the 82 RCM SC50M scenes available over the Sanikiluaq RoI, 72 were used for evaluation
(all three protocols) and 10 were held out for fine-tuning (protocols B and C). The 10 scenes
used for fine-tuning were selected in the same manner as the 27 S1 evaluation scenes for the
Sanikiluaq RoI (section 4.2.2), providing representation across seasons, time of year, and
target separability characteristics as measured by δµHH (equation 3.3). These images were
patched into 30%-overlapping 128x128-pixel sub-images, and the negative patches were
dynamically sampled during fine-tuning following the methodology described in section
4.2.4.

During fine-tuning for protocol C, both RCM and an equivalent number of S1 patches
from the original training dataset were sampled. While these S1 patches had (likely, in
the case of negatives) already been seen during training of the original model, they were
re-used to constrain the re-parameterization of model to minimize loss on RCM imagery
without compromising performance on S1 imagery.

Fine-Tuning Hyperparameter Selection

Fine-tuning was performed by first initializing FRCNN networks with the optimized model
weights of chapter 4, then continuing end-to-end model training (updating all sub-networks
jointly) for 10 epochs at an initial learning rate of 0.005 that decayed to 0.001 with a cosine
schedule. These hyperparameters yielded similar convergence patterns and slightly better
evaluation performance than training for 3 or 20 epochs, or the use of an initial learning
rate of 0.01.
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Figure 5.3: Fine-tuning training and validation loss for protocols B (RCM only) and C
(RCM + S1). Each step corresponds to one epoch (a pass over the full fine-tuning dataset).

5.2.2 Results & Discussion

Fine-Tuning Convergence

Training and validation loss during fine-tuning is first inspected to indicate the degree to
which model prediction patterns changed for protocols B and C. Loss is calculated the
same way here as in section 4.3.2, where the total loss reported is a summation of the
four sub-network losses described in section 2.4.3. As seen in Fig. 5.3, little additional
model convergence was achieved in detecting δµHH ≤ −3dB polynya targets through fine-
tuning on RCM imagery. While training loss decreased somewhat over the 10 epochs for
protocol-B models fine-tuned only on RCM imagery, training loss for protocol-C models
seeing both S1 and RCM imagery did not decrease, and validation loss for both protocols
did not decrease significantly. These patterns indicate that predictions made for bounding
boxes sampled for loss (limited negatives) by the original S1-trained model did not change
significantly in response to fine-tuning on RCM imagery. This might be due to the similarity
of features extracted by the “original” backbone network on S1 and RCM imagery, and
the resultant efficacy of the existing decision boundaries within the RPN and RoI Head
sub-networks on those features. In other words, the lack of further convergence during
fine-tuning suggests a degree of baseline generalizability from S1 EW to RCM SC50M
imagery for polynya detection without modification. Given the limited data used for fine-
tuning and the nature of loss sampling, however, these observations must be supported
with evaluation results before conclusions can be drawn.
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Figure 5.4: Precision-Recall curves for polynya detection models on S1 and RCM imagery,
(a) without fine-tuning (protocol A) and (b) after fine-tuning with RCM and S1 image
patches (protocol C).

Quantitative Evaluation Results

Evaluation metrics on S1 and RCM imagery for both RoIs are given for all protocols in
table 5.3 and illustrated for protols A and C in Fig. 5.4. The “original” model (protocol A)
performs similarly well at detecting polynyas in RCM imagery as S1 for the Sanikiluaq RoI,
however performs worse on RCM imagery for the Nain dataset with an 11-point decrease in
AP10 compared to S1. After fine-tuning this model only on RCM image patches (protocol
B), performance on S1 imagery drops severely (17.6 points in AP10) on the Sanikiluaq
dataset and to a lesser degree (4.4 points) on the Nain dataset, while increasing modestly
on RCM imagery for both RoIs (1.9 and 0.7 points, respectively). Fine-tuning on both
RCM and S1 image patches (protocol C) not only alleviates the performance drop on S1
imagery for the Sanikiluaq RoI (4.4 points in AP10), but also increases performance in S1
on the Nain dataset (2.2 points) in addition to increasing performance on RCM imagery
for both datasets to a similar degree as protocol B (2.7 and 0.7 points).

While fine-tuning on both RCM and S1 imagery (protocol C) demonstrates the strongest
quantitative results, the related performance gains on detecting polynyas in RCM imagery
are modest compared to the original S1-trained model performing “out-of-the-box”. This
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Table 5.3: Evaluation metrics for original and fine-tuned models on RCM and S1 images
over Sanikiluaq and Nain. For protocols B and C, mean performance metrics across 5
models cross-validated on the fine-tuning (FT) training dataset are reported in percentage
points, followed by standard deviation in parentheses. Differences in mean AP relative to
protocol A are also indicated. All metrics are calculated for τIoU= 0.1. Precision and recall
values are given for τscore= 0.8.

Protocol (Model) Eval. Dataset AP Recall Precision

A (Original)

Sanikiluaq S1 64.4 79.0 33.0
Sanikiluaq RCM 62.5 78.8 30.1
Nain S1 67.5 79.5 26.2
Nain RCM 56.5 75.1 24.2

B (FTRCM )

Sanikiluaq S1 46.8 (0.46) −17.6 52.2 (2.5) 50.2 (2.0)
Sanikiluaq RCM 64.4 (0.64) +1.9 71.2 (1.3) 48.0 (0.94)
Nain S1 63.0 (1.3) −4.5 71.7 (0.72) 26.9 (3.3)
Nain RCM 57.2 (1.9) +0.7 69.4 (1.4) 33.9 (2.2)

C (FTRCM+S1)

Sanikiluaq S1 60.0 (2.1) −4.4 70.9 (1.3) 40.5 (2.2)
Sanikiluaq RCM 65.2 (0.8) +2.7 76.6 (0.9) 40.1 (1.4)
Nain S1 69.7 (0.4) +2.2 75.7 (0.6) 28.0 (3.2)
Nain RCM 57.2 (1.1) +0.7 72.1 (1.5) 29.1 (2.2)

supports the interpretation put forward in convergence analysis that the S1-trained model
generalizes relatively well to SC50M imagery without any modification. However, the sig-
nificant drop in AP10 on the Nain RCM dataset (12.5 points lower than the Nain S1 dataset
for protocol C) prompts investigation.

Qualitative Evaluation Results

Fig. 5.5 shows an example of protocol-C model predictions on an RCM SC50M evaluation
image from the Nain dataset. All target polynyas were detected precisely in this scene,
despite the model having never seen the Nain region during training or fine-tuning in either
S1 or RCM imagery. However, the scene also contains several FP predictions that occur
near land and often in areas of radar shadow. These shadows occur at high incidence angle
(IA), i.e., oblique viewing geometries, when vertical terrain blocks radar illumination of
adjacent down-range surfaces [14]. As illustrated by Fig. 5.6a, the RCM SC50M imagery
over the Nain RoI has a higher IA range and a greater density of images at these high IAs
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Figure 5.5: Example of fine-tuned model predictions on an SC50M RCM image captured
May 7, 2022, over the Nain RoI. The image has an incidence angle range of 39◦ to 44◦

(left to right). True positive and false positive predictions are shown in the left and right
columns, respectively. Predicted confidence scores are indicated above each bounding box.

compared to the S1 imagery. A higher number of false positives is seen for images at far
range, and many of these false positives were observed to correspond to terrain shadow.
This is believed to be a significant contributing factor to the reduced performance observed
on the Nain RCM dataset. The impact on the Sanikiluaq dataset is believed to be less
pronounced in part due to the development of polynyas in areas that are less shadowed by
terrain in the east-west direction, i.e., approximately the range dimension of polar-orbiting
SAR satellites.

While radar shadows from land imaged at high incidence angles are mostly covered by
the dataset’s landmask, it is difficult to discard FP predictions that partially cover land
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Figure 5.6: Distributions of fine-tuned model predictions over evaluation image and target
parameters. (a) Number of FP predictions per scene against each scene’s median incidence
angle; (b) categorized predictions by local polynya contrast (δµHH) and bounding box size.

without discarding TP boxes that also often do so. In the evaluation approach used thus far,
only boxes which are centered on land are discarded. It may be possible to discard a greater
number of FP without compromising TPs through more detailed post-processing, e.g. by
analyzing the fractional land coverage of FP versus TP boxes and identifying a threshold
to use for filtering. More generally, for regions with significant vertical terrain features
and possible shadowing of polynyas, it may be worth considering the use of radiometric
terrain correction based on a digital elevation model (DEM) to alleviate the impact of
geometric distortions on the SAR backscatter signal. For instance, calibration to γ0 rather
than σ0 normalizes measured backscatter to the observed surface in the SAR geometry
based on a digital elevation model, rather than to a “flat” surface based on an ellipsoid
model of Earth [126]. Even such calibration cannot, however, reconstruct backscatter over
completely shadowed areas. Another, more limiting, solution might be to flag and discard
model predictions under conditions with a high risk of shadow, such as observations near
land at high incidence angles (e.g. above 40◦ based on Fig. 5.6a) or more precisely by
estimating shadowed areas with a DEM and known imaging geometry and masking model
outputs over these regions.

Consistent with observations of model performance on the S1 evaluation datasets, both
the “original” S1-trained model and the fine-tuned model missed polynyas with small sizes
(< 15 pixels) and low contrast (δµHH< −5dB) in the RCM imagery for both RoIs. This is
illustrated by the distributions in Fig. 5.6b.
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5.3 Chapter Conclusions

This chapter investigated the ability of polynya detection models trained on Sentinel-1
EW imagery to generalize to RCM ScanSAR 50-meter imagery, and assessed the utility of
fine-tuning on a small amount of data to do so. The following conclusions are made:

1. Models trained on Sentinel-1 EW imagery maintained similar performance in detect-
ing polynyas in RCM SC50M imagery without any modification;

2. Fine-tuning jointly on a small number of RCM images and previously-seen S1 images
offered modest performance improvements on RCM without degrading performance
on S1;

3. False positive predictions were observed to occur over areas of terrain-induced radar
shadow, reducing model precision at high incidence angles (≥ 40◦) near land forma-
tions with significant elevation.

Overall, the generalization performance of polynya detection models between dual-
polarized S1 and RCM image products indicates a level of feature extraction and classifi-
cation invariance to sensor noise characteristics, and supports their utility for multi-sensor
application. Such application unlocks significant increases in temporal resolution and re-
duces availability risk of derivative information products.
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Chapter 6

Conclusion

6.1 Summary

This thesis has explored the use of CNN-based object detection networks for detecting
landfast ice polynyas relevant to coastal communities from dual-polarized SAR imagery.
Chapter 3 described the synthesis of datasets of SAR polynya observations across several
seasons, and demonstrated the challenging signatures of small, sparse polynya targets in
landfast ice whose separability varies with imaging incidence angle, windspeed, and sea-
sonality. Chapter 4 presented the development and evaluation of a Faster-RCNN-based
object detection network for landfast ice polynya detection. The sensitivity of detection
model performance to key design elements inspired by advancements in the natural-scene
small object detection field was investigated. A lightweight 3-stage feature extraction net-
work was found to produce favourable results for polynya detection, while input image
upsampling and alternative balanced loss functions were not found to provide utility. The
optimized model was evaluated under several data scenarios which demonstrated the im-
portance of geometric data augmentation techniques for inter-region model generalization
and the low utility of noise-dominated HV backscatter over landfast ice for ice/water dis-
crimination. In chapter 5, the capability of detection models trained on S1 SAR imagery to
detect polynyas in RCM imagery with similar radar parameters was evaluated. Detection
performance transferred well without modification, with similar qualitative prediction pat-
terns in RCM as in S1. Decreases in quantitative evaluation metrics in the RCM dataset
over the Nain RoI reflected the susceptibility of the model to terrain shadow effects adjacent
to landfast ice occurring at high incidence angle ranges.

Overall, optimized detection models were able to retrieve a significant portion of polynya

83



targets with moderate precision characteristics. For instance, on an evaluation dataset of
Sentinel-1 polynya observations from the completely held-out Nain region, models detected
∼80% of target polynyas representing half of observations under all imaging and environ-
mental conditions, at ∼25% precision. For both regions and SAR sensors, missed polynyas
consistently possessed lower separability in HH backscatter intensity (local contrast less
than 5dB) and smaller sizes (less than 600m), while false predictions often occurred at the
boundaries of smooth and rough ice or near land.

While the diverse optimization efforts and comprehensive analyses of model predic-
tions described in this thesis yield models with reasonable performance, they simultane-
ously point to fundamental limits in the sensitivity and specificity that can be achieved
from single-image predictions with medium-resolution, dual-polarized C-band SAR. While
further single-image detection network optimization is not expected to yield substantial
benefits given these limitations, other approaches are suggested for the improvement of
landfast ice polynya detection models developed in this thesis.

6.2 Future Work

6.2.1 Leveraging Polynya Spatio-Temporal Patterns

Given their persistent and recurrent nature, polynyas can be viewed as spatio-temporal
features, i.e., possessing signatures in both space and time. The detection models developed
in this thesis have only operated on the former of these dimensions. In contrast, models
that consider a series of consecutive SAR images may be able to exploit differences in the
temporal evolution of polynya versus landfast ice backscatter signatures and thus widen the
decision boundary between the two classes. Indeed, the use of learned spatial and temporal
features for sea ice classification has been investigated previously, e.g. with separate CNN
and LSTM models in [129] and with a combined convolutional LSTM model in [128]. Key
challenges in the application of such models to polynya detection include the non-uniform
timesteps between SAR observations (e.g. Fig. 3.3) as well as the identified variability in
polynya separability between images.

An alternative spatio-temporal approach might operate on model predictions rather
than on images directly. On a region-by-region basis, the belief that a polynya exists at
a given location, as derived from previous predictions, offers a strong prior regarding the
probability that a polynya currently exists at that location. Parallels to video object de-
tection and tracking emerge from this formulation; for instance, the spatio-temporal small
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object detection network proposed by Bosquet et. al [11] correlates model detections be-
tween video frames with the goal of strengthening true positive detections while discarding
false positives. Key differences in the polynya detection context are that polynyas do not
move significantly between frames, but that their ability to be detected may vary between
observations depending on imaging and environmental conditions.

6.2.2 Leveraging Multifrequency & Next-Gen SAR

Several analyses presented in this thesis have made it clear that a fundamental challenge
encountered in this research is the frequent overlap of landfast ice and open water signatures
in dual-polarized C-band SAR backscatter intensity, as well as the small sizes of polynyas
in the medium-resolution imagery products available on an operational basis over Arctic
coastal regions. Meanwhile, the utility of L-band SAR has received significant attention
for sea ice and water classification, and studies combining both C- and L-band imagery
have shown the complementary potential of such multifrequency analysis, e.g. [97, 95]. In
particular, L-band backscatter has been found to have utility for mapping deformed sea ice
features [26] as well as identification of early-stage ice types [97]. These sensitivities could
perhaps be leveraged to identify areas of rough ice that contribute to false positives in C-
band model predictions, or increase the contrast of polynyas with thin ice cover otherwise
missed in C-band. Future availability of L-band imagery provided by missions such as
NISAR [68] and ROSE-L [33] represents a possible avenue for advancements in polynya
and other ice hazard detection systems.

More broadly, continued improvements in SAR sensor resolutions and noise character-
istics will benefit applications like landfast ice hazard detection operating at the limits
of both. Ultimately, the provision of community-relevant SAR-based sea ice information
products depends on the regular coverage of northern coastal regions, requiring ongoing
investments from data providers, governments, and users.
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Table A.1: Faster-RCNN hyperparameters used for the adapted polynya detection models
in this thesis. Modifications to FRCNN defaults are discussed in section 4.1.2.
†This hyperparameter is modified in the experiments of section 4.3.1

Hyperparameter FRCNN [113]
default

Adapted

Region Proposal Network
Conv. kernel size 3x3 3x3
Conv. depth 1 1
Anchor sizes {128, 256, 512} {8, 16, 32}
Anchor aspect ratios {1:1, 1:2, 2:1} {1:1, 1:2, 2:1}
Positive anchor IoU threshold 0.7 0.5
Negative anchor IoU threshold 0.3 0.1
NMS threshold 0.7 0.7
Post-NMS Top-N (train) 2000 100
Post-NMS Top-N (inference) 1000 100
Obj. loss samples per image 256 64†

Obj. loss positive fraction 0.5 0.5

RoI Pooling
Pooling window 7x7 3x3
RoIAlign sampling ratio 2 2

RoI Head Network
N. FC layers 2 2
N. neurons / layer 1024 128
Positive box IoU threshold 0.5 0.5
Negative box IoU threshold 0.5 0.3
NMS threshold 0.5 0.5
Cls. loss samples per image 512 32
Cls. loss positive fraction 0.25 0.5
Top-N per image (inference) 100 100
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Table B.1: All Sentinel-1 EW scenes held out during training and used for polynya detection
model evaluation in chapters 4 and 5.

Sanikiluaq Dataset Nain Dataset

Date IA [◦]

N. Targets with δµHH ≤

Date IA [◦]

N. Targets with δµHH ≤

-1dB -3dB -5dB -1dB -3dB -5dB

01-25-2017 19.2 - 29.2 1 1 1 03-19-2020 34.1 - 46.8 2 0 0

02-13-2017 41.4 - 46.8 2 2 2 03-30-2020 20.7 - 38.1 2 1 1

03-21-2017 41.4 - 46.7 0 0 0 03-31-2020 34.1 - 46.8 9 6 5

04-12-2017 24.3 - 36.0 16 13 7 04-11-2020 20.7 - 38.1 3 2 2

02-11-2018 19.2 - 27.5 9 8 5 04-23-2020 20.7 - 38.1 5 3 1

02-20-2018 41.4 - 46.8 5 3 1 04-24-2020 34.1 - 46.8 14 11 9

03-08-2018 24.3 - 36.0 26 10 8 05-05-2020 20.7 - 38.1 8 4 2

04-02-2018 33.6 - 43.1 24 18 8 05-06-2020 34.1 - 46.8 10 10 9

05-07-2018 24.3 - 36.0 13 10 0 03-25-2021 20.7 - 38.1 7 5 3

02-01-2019 24.3 - 36.0 0 0 0 03-26-2021 34.1 - 46.8 10 4 2

02-15-2019 41.4 - 46.7 6 5 2 04-06-2021 20.7 - 38.1 1 0 0

03-11-2019 41.4 - 46.7 5 4 2 04-07-2021 34.1 - 46.8 8 5 3

04-02-2019 24.3 - 36.0 3 0 0 04-18-2021 20.7 - 38.1 14 6 4

05-01-2019 19.2 - 27.5 13 8 2 04-19-2021 34.1 - 46.8 19 10 6

01-29-2020 41.4 - 46.7 4 3 3 04-30-2021 20.7 - 38.1 7 4 3

03-09-2020 24.3 - 36.1 16 10 8 05-01-2021 34.1 - 46.8 9 6 5

03-20-2020 19.2 - 27.5 8 5 4 03-21-2022 34.1 - 46.8 4 2 1

04-19-2020 19.2 - 27.7 12 8 6 04-02-2022 34.1 - 46.8 5 4 3

05-04-2020 41.3 - 46.7 12 11 8 Total 137 83 59

01-27-2021 24.3 - 36.1 18 10 6

02-15-2021 33.5 - 43.1 23 10 15

02-27-2021 33.5 - 43.1 10 10 6

03-16-2021 24.3 - 36.1 3 0 0

04-04-2021 33.5 - 43.1 18 14 11

04-29-2021 41.3 - 46.7 7 6 5

01-29-2022 33.5 - 43.1 14 11 7

03-16-2022 19.2 - 27.7 3 3 1

Total 271 183 108
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Glossary

hyperparameters Design elements of a model usually chosen by hand and fixed during
the optimization (model training) process 21, 40, 43, 49

natural-scene Refers to optical-wavelength images, usually RGB, taken from a human
perspective 18, 38
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