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Abstract

Instrumentalists who play popular music often learn songs by ear, using recordings
in lieu of sheet music or tablature. This practice was made possible by technology that
allows musicians to control playback events. Until now, researchers have not studied
the human-recording interactions of musicians attempting to learn pop songs by ear.
Through a pair of studies analyzing the content of online videos from YouTube, we gen-
erate hypotheses and seek a better understanding of by-ear learning from a recording.
Combined with results from neuroscience studies of tonal working memory and aural
imagery, our findings reveal a model of by-ear learning that highlights note-finding as a
core activity. Using what we learned, we discuss opportunities for designers to create a
set of novel human-recording interactions, and to provide assistive technology for those
who lack the baseline skills to engage in the foundational note-finding activity.
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Foreword

I’ve been writing and selling software for musicians that learn by ear1 since 2009, and
have more than 20 years of industry experience—17 of which I’ve spent working exclu-
sively for myself. I also learn music primarily by ear without the aid of tablature or sheet
music, and have done so since I was a child. However, after doing this for more than 30
years I had not quite understood the significance of learning music in this way. But I am
a software developer; not much of a musician.

When I started my Master’s studies, I appeared—guns blazing—ready to embark on
building a novel feature for my software. I had a body of literature to follow, and proofs
of concept to build. It was not long before I realized the error in my ways. Traditionally, I
have built products to satisfy my own needs, and such a feature would absolutely satisfy
one of my many wishes as a user of the software. However, I could not explain how my
idea was going to satisfy what musicians actually need, or want.

While this sounds like a marketing problem, it is far more philosophical. If I design
products based on my own needs, and I am a musician—to some degree—then why do I
find it difficult to explain the reasoning behind my own needs? It turned out that I didn’t
quite understand what it means to learn music by ear—the prevalence of the practice,
the mechanics behind it, etc.

Trying to find answers within the literature, it became clear that there was a big
hole—finding information about how popular musicians interact with technology while
learning music by ear. My thesis is an attempt to start filling this void with two founda-
tional studies that lead to a collection of design recommendations.

1https://capoapp.com

1
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Chapter 1

Introduction

Instrumentalists that play popular music often learn to play melodies, harmonies, com-
plex solos, and entire songs by ear. These musicians use recordings in place of sheet
music, and they interact with those recordings as they work towards playing the music
they hear on their instruments (Bennett 1980). With the growing popularity of mu-
sic streaming (IFPI 2022), these interactions now typically occur on smartphones and
computers using software from music streaming services. Aside from a near-unlimited
library of music, these apps offer little beyond the pre-existing set of human-recording
interactions provided by record, cassette tape, and compact disc (CD) players.

Purpose-built hardware and software can offer an additional set of interactions with
recordings. These interactions include placing marks at key moments in the recording,
repetitive playback between set locations (looping), and controlling the rate and pitch of
playback independently. Such features might assist musicians trying to identify and re-
produce notes on their instruments. However, we have not discovered any research that
confirms this is the case. Rather, it is the underlying technology that is well-documented
in the literature (e.g., De Götzen et al. 2000; Duxbury et al. 2002; Röbel 2003a), and
it appears that features are built around this technology with little regard to the actual
nature of the task.

My aim is to take a step towards improving upon this state of affairs. I want to better
understand how musicians learn by ear, observe how they are doing it today, and try to
develop novel human-recording interactions based on real-world findings. A great deal
of design insight can be derived from observations of people interacting with technology.
I argue that this can be achieved—at low cost—through analysis of YouTube videos.
Here I present the results of two such studies, and the implications of our findings on the
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designs of purpose-built features.

In the first study, we analyzed a set of 18 videos depicting real-world examples of
skilled popular musicians learning from recordings. In these videos, musicians can be
seen interacting with music playback, seeking notes and/or chords on their instrument,
and—in some cases—struggling while doing so. Based on our observations, we uncov-
ered a set of hypotheses about the ear-learning task and how it connects to technology,
grounded in real-world data. For example, transcribing a recording—to produce some
form of notation—does not appear to contribute to the by-ear learning activity. Also,
different musicians use different strategies to retain notes in memory. We also see that
one’s familiarity with a song seems to make by-ear learning go more smoothly.

We then analyzed and coded 29 lesson videos (all but one from YouTube) in the
second study to characterize the process of by-ear learning, and identify differences in
how it is taught. Using what we learned from the first study, and a survey of neuro-
science and psychology literature about short- and long-term memory for music, we also
identified where memory is called upon while a musician learns a song by ear. The re-
sults from this study helped explain differences we saw in the approaches of experienced
musicians—not only are lessons taught differently, but certain techniques for identifying
and retaining notes seem to rely less on tonal working memory than others.

Using what we learned, we present a conceptual model of by-ear learning that illus-
trates how note-finding lies at the foundation of each of its sub-tasks. That is, regardless
of whether the musician is seeking the song’s key, chords, melody, or solo, they begin
by copying one or more individual notes from the recording. This foundational element
requires that the player can accurately imitate pitches vocally, or that they can retain a
note in pitch working memory for as long as it takes to find the note on their instrument.
However, it can be modified such that neither skill is necessary for a musician to copy
notes.

Finally, we present a set of recommendations for the designers of purpose-built tech-
nology intended for musicians that learn by ear from recordings. Among these recom-
mendations are tools that help a musician develop familiarity with a song, create mem-
ories of musical sequences, and playback controls that respect the capacity and fragility
of pitch working memory. Each of these recommendations are based upon a collection
of real-world observations that came from user-uploaded videos found on YouTube, and
all of them can be implemented today—some by using existing techniques from music
information retrieval (MIR) and digital signal processing (DSP).

3



1.1 Overview

Given the breadth of my research, this thesis is organized differently from most others.
Instead of a single, all-encompassing Background or Related Work chapter, I have two
that serve its purpose.

Learning By Ear (Chapter 2) provides a background of by-ear learning, the kinds of
memory that appear related to the task, and the technology that allows it to happen. Op-
portunities and Limits of Online Video Studies (Chapter 3) shares examples of previous
studies that used YouTube as a data source, and explores ethical, methodological, and
technical considerations for running a study on YouTube. Following this, A Hypothesis-
Generating Study of Musicians Learning by Ear (Chapter 4) describes our YouTube-based
study of experienced musicians learning by ear, and the findings we obtained from our
observations. Towards an Understanding of the By-Ear Learning Task (Chapter 5) ex-
plores lesson videos found on YouTube to identify sub-tasks of by-ear learning and how
they relate to one’s memory. Finally, Designing Technology Supports for By-Ear Learning
(Chapter 6) presents a model of by-ear learning sub-tasks, and a set of design recom-
mendations for purpose-built technology products.

4



Chapter 2

Learning By Ear

It is common for popular musicians to build their repertoire and improve their skills by
mimicking what they hear in recordings. Those who instead rely upon tablature or sheet
music to learn popular songs are merely enjoying the hard work of a transcriber who
themselves used the recording as source material (Bennett 1980). Still, while “the an-
swers” might be findable online and in printed materials, playing exactly what is written
on the page is unlikely to produce a satisfying result, as notation is limited in its ability
to communicate subtle details in rhythm and performance that often contribute to what
makes a recording memorable.

By-ear learning has been a backbone of western popular music for many decades, and
it still plays an important role in the development of pop musicians.

2.1 Popular Musicians and Informal Learning

While one could argue that all genres of music are—at some point in time, or to some
group of people—popular, in this thesis we are concerned with musicians that play an
instrument in one of the myriad genres of music that (roughly) derive from the blues
originating in the southern United States—country, rock, pop, jazz, hip hop, R&B, funk,
and so on. H. Stith Bennett, who embedded himself with local musicians in the 1970s
to study their progression from amateurs to professionals, defined his use of rock to be
similarly broad:

In this respect, my use of the term rock is intentionally imprecise. It certainly
includes any usage of the term as a combining form: country-rock, folk-rock,
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jazz-rock, progressive-rock, and even punk-rock; and it overlaps a variety of
other usages that might typify music, such as middle-of-the-road, easy listen-
ing, old favorites, standards, party music, and bar music. A precise definition
is actually unattainable. (Bennett 1980, xvii)

Given the challenging nature of such a definition, and ongoing evolution of music, we
propose a more relaxed one: popular music is that which an aspiring musician is unlikely
to find among the printed materials offered by their school or private music teachers, yet
is popular among their contemporaries. In rare cases where the material may appear
in the curriculum, it is unlikely to take its true form, as Campbell (1995) notes. “Rock
music that ‘makes it’ into a school program is thus often antiseptic, a pale imitation of
its true colours.” Musicians who feel motivated to learn such music have little choice but
to become self-sufficient when their needs are unmet at school. We can imagine their
exasperation: “Fine! If I can’t learn what I want at school or in music lessons, I’ll figure
it out on my own.”

And that’s precisely what they do: the by-ear learning of popular music is most often
a solitary activity (Bennett 1980; Campbell 1995; Green 2017). Bennett recognized that
a musician’s initial attempts to learn from a recording happen in private, freeing them
from the worry that others may deem their skills inadequate (Bennett 1980). While he
characterized this as an incomplete exercise—a precursor to the song getting “worked
up” as a group, Groce (1989) and Campbell (1995) later found in interviews that musi-
cians instead learned their parts in full before practice. That way, these musicians could
show up prepared to play alongside their bandmates, and ensure practice went smoothly
(Groce 1989). Despite these differences in how much players were expected to know
before turning up to their group practice sessions, these authors all make the same claim
that by-ear learning happens alone, behind closed doors.

Those musicians who spoke with Groce and Bennett engaged in song getting to per-
form covers with their local bands, but Bennett (1980) found that this exercise also
helped them develop the musical vocabulary that eventually led to the creation of their
own original songs. Lucy Green’s interviews with popular musicians during the 1990s
built upon this research by focusing more closely on the learning process itself, and
discovered that—regardless of their exposure to a formal music education—popular mu-
sicians rely upon informal, by-ear methods to develop the skills for the genre they go on
to (re)produce professionally (Green 2017).
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2.2 Learning By Ear, from Recordings

Lars Lilliestam found that—at least in 1996—there was little research on the practice of
playing by ear, partly due to the dominance of Western art music, in written form, and
the associated pedagogy in the music literature (Lilliestam 1996). At present, little has
changed in this regard—especially when considering the specific needs and practices of
popular musicians.

One of Bennett’s key insights is that popular musicians use recordings as the formal
notation system from which they develop a repertoire, and ultimately their own playing
technique (Bennett 1980, 1983). Even when popular musicians turn to a teacher, or refer
to notation while they are learning, the teacher will have learned the song by ear, and
the notation was transcribed directly from the recording, as Bennett notes.

[. . . ] rock sheet music is itself derived from recordings in most cases, and
although it is transcribed by experts into the conventions of traditional mu-
sical notation, the process differs little from the direct song-getting process
which I have described. The generally poor repute in which rock sheet music
is held among rock musicians is inherent in the limitations of the traditional
notation system: Rock musicians tend to play in ways for which conventional
notation does not exist. This phenomenon has promoted and will continue
to promote experimentation with written notation systems which can more
adequately convey unconventional sounds, just as the art music world is now
filled with experimental notation systems. In either case the primacy of sound
over literature is surfacing. (Bennett 1980, 142-143)

While on-paper notation systems—on a traditional staff, or in tablature form—can
serve as a memory aid or a written form of communication with others, the recording
stands as the source of truth for popular instrumentalists. The musicians interviewed by
Bennett (1980) would learn material almost exclusively from recordings heard on the
radio, or during private sessions spent with vinyl records or cassette tapes. Similarly,
the musicians interviewed by Groce (1989) would be given cassette tapes from which
to learn their individual parts before band practice, and the young rock musicians inter-
viewed by Campbell (1995) interacted with recordings played from either cassettes or
CDs.
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2.3 Studies of By-Ear Learning Methods

Previous studies of ear learning focused on participants with little to no professional
musical experience. Researchers recruited high-school or university students enrolled
in music lessons or non-musical novices. Lahav et al. (2005) recruited musically näıve
college students in their study of auditory-motor interactions as the students learned
melodies by ear on a piano. Varvarigou & Green (2015) categorized the ear learning
styles and strategies from in-lesson observations of 75 music students, using the stu-
dents’ initial contacts with isolated recordings of bass guitar melodies to characterize
their learning styles, and subsequent interactions to identify their strategies. McPherson
et al. (1997) conducted interviews with high school wind instrumentalists after admin-
istering ear learning proficiency tests to ask them about their approach to the task. Os-
wald (2022) studied the methods used by high schoolers to learn melodies by ear using
custom-built software that was instrumented to measure the frequency of their interac-
tions with the music. Few studies have focused exclusively on the techniques employed
by experienced players. Woody & Lehmann (2010) recruited 24 college musicians with
both formal and informal experience to learn melodies by ear, and reported their strate-
gies based on post-activity interviews with these musicians. Johansson (2004) instead
studied the by-ear chord learning strategies by observing and interviewing musicians
with far more experience—having played an average of approximately 20 years—with
even representation among six (reportedly all-male) bass, keyboard, and guitar players
trained either informally or formally.

Additionally, researchers who study the methods of those learning by ear tend to focus
only on short melodic phrases, and provide participants with audio material that is un-
characteristic of a pop music recording. For example, Lahav et al. (2005) had participants
learn the melodies from eight-bar songs using custom-designed software that synthesized
MIDI notes on virtual instruments, allowing them to hear the accompaniment alongside
the melody they learned to play by ear. Oswald (2022) had students also learn eight-bar
melodies, though they were played from solo recordings using custom-designed audio
software. Varvarigou & Green (2015) allowed students to listen to a repeating four-bar
“pop-funk style” pattern played by a full band, but the students learned the bass melody
while listening to a solo recording of it.

In contrast, Johansson (2004) presented participants with full-length band recordings
to study the chord learning strategies of experienced rock musicians. However, these
musicians were asked to play along with the recording to learn its chords while hearing
it for the first time. That is, the participants were not allowed to stop or rewind the
recording while identifying chords—their “performance” of the song was recorded in
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one take, then analyzed.

2.4 Memory and Music

To play songs by ear, musicians rely upon their memories of recordings. On a short time
scale, musicians have to retain one or more just-heard notes in tonal working memory
long enough for them to be found on an instrument. However, musicians can also draw
upon longer term memories to sing, or learn to play well-known nursery rhymes such
as Twinkle, Twinkle, Little Star on their instrument using only their recollection of its
melody.

2.4.1 Tonal Working Memory

People can retain—on average—approximately seven digits in working memory (Miller
1956). This allows people to write down a phone number shortly after hearing it, or
perform mental math. It is also the case that people can remember and manipulate
auditory memories in a similar way (Schulze et al. 2018). Here we focus on one specific
element of auditory working memory that is closely related to music: pitch- or tonal
working memory.

Capacity

The processes that maintain tonal working memory appear to be separate from ver-
bal memory (Schulze & Koelsch 2012). However, both may involve the same internal
phonological- or tonal loop where words or tones are rehearsed, and it appears that their
capacity may be linked (Schulze & Tillmann 2013). That is, those who can remember
more digits than others can seemingly also remember more pitches.

Unfortunately, the method often used to evaluate one’s tonal memory capacity bears
little resemblance to the note seeking task of learning by ear. In many studies, partici-
pants hear one or more tones, a silent pause, and another sequence of tones that they
are asked to compare with the first—correctly identifying a match or mismatch indicated
they were remembered (Akiva-Kabiri et al. 2009; Schulze et al. 2012; Schulze & Till-
mann 2013; Ding et al. 2018). By contrast, in ear learning, one must retain pitch(es) in
memory, and compare them to attempts made to reproduce it on their instrument.
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Despite these differences, these studies suggest that working memory for tones has
an upper limit. While testing the hypothesis that the duration of tones would have an
impact on memory capacity, Akiva-Kabiri et al. (2009) tested participants using both
six- and nine-tone sequences. Schulze et al. (2012) tested the forward recognition task
with five- to seven-tone sequences, but used only three- to five-tone-long sequences for
their backward recognition task—asking participants to recall if the second tonal se-
quence was a reversal of the first. Similarly, Schulze and Tillmann (2013) later used
five- and six-tone sequences for the forward task, but only three tones for the backward
task—compensating for a significant drop in recognition performance they observed dur-
ing a pilot experiment with longer sequences. Greenspon et al. (2017) opted to test
participants with three- and four-note melodies. The selection of sequence lengths for
many of these tests was based on earlier work, which includes that of Pembroke (1986)
who tested the transcription accuracy of music theory students, or Miller’s seminal study
(1956) that claims seven digits can be retained in working memory.

Ding et al. (2018) does directly measure tonal working memory capacity in terms of
note quantity. Here the researchers compared the performance of musicians and non-
musicians, and also tested both musical and non-musical (i.e. not aligned to the Western
music scale) sequences of tones between 2–24 notes long. Among their results, they
report a marked difference between the maximum length of musical sequences for which
musicians (16) and non-musicians (8) could demonstrate an above-chance recognition
rate. However, both groups perform equally with a maximum of 8-tone sequences of
random pitches that they could recognize.

Even though the above experiments look nothing like learning notes or chords from
a popular music recording, three things seem clear from this survey of readings on short-
term tonal memory: (1) the number of notes that can be held in working memory has an
upper limit, (2) that number is likely very small, and (3) it seems to vary based on one’s
musical training.

Accuracy

Four studies asked participants to reproduce pitches as accurately as possible using an
“instrument”. In the implicit note memory (INM) task, a sine wave tone with a target
pitch is played, and after some delay the participants are asked to make adjustments to a
different tone until it matches their memory of the target (Van Hedger et al. 2015). This
test provides researchers with a continuous measure of accuracy (i.e. distance from the
target pitch) and offers insight beyond the binary result of “remembered” or “forgotten”.
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While the INM task is more like singing a pitch1 than locating it on a musical instrument
with discrete keys or frets, it more closely resembles what musicians do while learning
from a recording.

In the INM task conducted by Van Hedger et al. (2015), participants were played tar-
get tones with frequencies aligned to the Western music scale, and after hearing 1000 ms
of white noise they were played a different tone 1–7 semitones above or below the tar-
get. This second tone is adjustable using on-screen buttons that increment or decrement
the pitch by either 33% or 66% of a semitone. For all 17 participants, the average error
was within 40 cents (less than half of a semitone) of the target, and this figure decreased
with the number of years spent playing an instrument. Their worst performer was within
an average of 78 cents of the target—less than a semitone, or a one-fret difference on a
guitar.

Wisniewski and Tollefsrud (2023) tested INM by playing a randomly selected tone in
the range of 500–1000 Hz for 1s followed by a randomly selected 2, 4, 6, or 8s retention
period (i.e. a silent pause). Then, users could apply fine-grained adjustments to a 500 Hz
tone using a MIDI touchpad for up to 20 s, or earlier using a confirmation button on the
touchpad. Here the researchers found that participants lost precision in their ability to
reproduce tones as the retention duration increased.

Tollefsrud et al. (2024) modified the above scheme for testing INM in two separate
experiments. For both, the target tone consisted of a fundamental plus a number of
harmonics, and when the participants were asked to match the target they did not start at
the same 500 Hz, but rather a pitch that corresponded to the first position that their finger
was placed on the touchpad. Additionally, while the tones were also random, they were
log-spaced within different ranges—134–357 Hz in the first experiment, and a wider
150–642 Hz band in the second. Most significantly, these researchers filled the retention
period with either silence, white noise, or a number of tones played at different pitches,
and found that the latter appeared to cause the most interference to the participants’
memory. However, this interference did not seem to cause them to forget the target tone
completely. Rather, their accuracy was lower when those participants tried to match it.

What all of these studies have in common is that participants are asked to match the
pitch of a target tone. In all cases, the participants are provided with a tool for producing
tones that is conceptually similar to playing an instrument. Here, the participants must
rely upon their tonal working memory to maintain the target pitch while comparing it

1See also Hutchins & Peretz (2012), who describe a slider instrument that was meant to be compared
with vocal pitch matching in an INM-like test.
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to those they produce mechanically—a process that more closely resembles a musician
copying notes from a recording with their instrument.

Duration

In those experiments where participants were asked to recall if a tone sequence matched
one played earlier, the time interval between the two sequences was fixed. In Schulze
& Tilma’s (2013) study, participants were given 3 seconds between the target and com-
parison sequences. Ding et al. (2018) gave participants only 1 second before they were
asked to recall the sequence. Akiva-Kabiri et al. (2009) did not report the interval be-
tween sequences.

Those studies that chose to vary the delay period tested single tones. Mathias et
al. (2021) specifically recruited musicians for their tests, and asked them to report
whether a second tone had a higher or lower pitch than the first after 0.5, 2, 5, or
10 seconds. As discussed earlier, Wisniewski and Tollefsrud (2023) tested participants
using randomly selected 2, 4, 6, or 8 s retention periods between the target tone and
their attempt to match it.

Given how few studies tried to measure the lifetime of a tonal memory, it is difficult
to say how long one can expect to retain a note. However, this period of time appears to
be very short for single tones—less than 10 s, and presumably shorter as more tones are
added.

Vocal Pitch Imitation

There appears to be a link between short-term tonal memory and one’s ability to ac-
curately imitate pitches vocally. For example, Greenspon & Pfordresher (2019) reported
that those with larger spans of tonal memory and better auditory imagery skills were also
more accurate pitch imitators. Halpern & Pfordresher (2022) found in one experiment
that those who could accurately reproduce melodies using their voice could more accu-
rately recall notes from memory. In their second experiment, the researchers showed
that those with high scores in a test of vocal pitch imitation demonstrated lower error
rates when reproducing the starting note of a pop song recording they were familiar
with. Additionally, they found years of musical training—0–12 years in this sample, with
a mean value of 2—did not correlate with accuracy in this experiment. This connection
between one’s memory and singing ability may be explained by the vocal sensorimotor
loop (Berkowska & Dalla Bella 2009; Pfordresher et al. 2015). Specifically, a combination
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of perception and fine motor planning that may be related to the encoding process for
tonal memories.

Unfortunately, research shows that not everyone can reproduce pitches accurately
with their voice. Pfordresher & Demorest (2021) found that approximately half the
632 participants they evaluated were able to do so, and the authors estimate the pro-
portion is lower among the general population—that about a third of them can accu-
rately reproduce pitches using their voice. However, those who are unable to reproduce
pitches vocally can still match pitches using other means. In a study by Hutchins & Peretz
(2012), they found that both musicians and non-musicians could more accurately repro-
duce pitches using a slider instrument that produced a voice-like sound than they could
with their own voice. Note that in this study, the researchers did not ask participants to
match their memory of a tone, but rather one that was playing continuously. Addition-
ally, the continuous slider is unlike most pop music instruments that produce discrete
tones, which could suggest that instrumental pitch reproduction is more easily achieved
in such an exercise.

The results of the above studies suggest there is a connection between one’s ability
to reproduce pitches vocally and their tonal working memory. However, we have not
seen studies that indicate whether one can improve upon their tonal working memory by
practicing the ability to reproduce pitches accurately, or vice versa. Fortunately, we see
some evidence that indicates those who may be deficient in either skill can still match
pitches using other means.

Summary

The above studies do not test whether people can remember or reproduce pitches heard
in a recording of pop music. However, they provide us with insight into the most basic
mechanisms that may be involved in doing so. Specifically, these studies tell us that
people can hold very few notes in short-term memory, they can use their memory of
pitches to reproduce them mechanically, and these memories cannot be retained for very
long.

2.4.2 The Mind’s Ear

Auditory imagery is a form of perceptual long-term memory that allows people to recall—
sometimes quite vividly—songs that they have heard in the past (Hubbard 2010). Effec-
tively, these people can seemingly hear music with their mind’s ear (Covington 2005).
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Involuntary musical imagery (INMI)—colloquially known as earworms—are segments
of a recently-heard recording (or performance) that replay in one’s mind without any
prompting, often during periods when it is left free to wander (Kubit & Janata 2022).
This phenomenon is not a unique experience for musicians—it can also occur for those
who neither sing nor play an instrument (Beaty et al. 2013; Liikkanen & Jakubowski
2020). That is, memories of recordings can be formed before one learns to sing or play
from them.

There is evidence that such long-term memories can be formed intentionally using
looping segments of audio. Kubit & Janata (2022) composed a collection of novel instru-
mental musical loops, and presented them repeatedly to participants before testing their
ability to recall them. Here the researchers attempted to induce episodes of INMI, and
wanted to see how that might impact the participants’ long-term memory for musical
sequences. Participants were scored for their ability to correctly recall the loops shortly
after hearing them in the first session, and again one week later before completing a
survey about the INMI experiences they had since the initial listening session. Kubit &
Janata found that those participants who experienced INMI during the week between
sessions demonstrated better accuracy when recalling those musical sequences, and sug-
gest that INMI might play a role in the formation of long-term musical memories.

2.4.3 Absolute Pitch

When we say that a person has absolute pitch, we generally mean that they can readily
name the notes they hear just as one might name colours on sight; but this skill is rare:
it is estimated that fewer than 0.01% of the population have this ability (Deutsch 2013).

However, while most people can’t name the notes they hear, a significant portion of
the population can seemingly remember the absolute pitches of music they have heard
before. In two experiments performed by Van Hedger et al. (2018), participants listened
to segments from well-known recordings of popular music that was either played in
the original key, or transposed ±1 semitone, and they could identify whether the song
was in the correct key or not more than 60% of the time. Interestingly, those who
scored well at this task also scored high in an INM task that was administered before
the experiment, suggesting that those who demonstrate good tonal working memory
capacity seem to form more accurate memories of songs. A later study by Van Hedger et
al. (2023) showed that participants could also identify whether novel versions of popular
recordings—either cover performances obtained from YouTube, or melodies played on a
synthesized piano—were played in the original key.
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Not only can people recognize whether a song is in the correct key, but it appears
many can also reproduce notes in the correct key from memory. For example, in an
experiment conducted by Halpern & Pfordresher (2022), participants were presented
with a curated list of pop songs, and asked to choose the 10 they were most familiar
with. For each song, participants attempted to reproduce the first note of the song on
a digital (piano) keyboard—without hearing it, or trying to sing or hum the notes first.
Out of the 46 undergraduate students they tested, 33% got within ±2 semitones of the
true pitch, and 17% were within ±1. In Levitin’s (1994) study, participants were asked
to sing popular songs they were familiar with—more than half sung the first three notes
within a semitone of the correct pitch, transposed to match their vocal range. That is, if
the original pitch was C3, it would be considered a perfect match if the participant sung
C2 or C4, and -1 semitone away if they sung B2 or B4.

2.4.4 Memory of Melodies

In an experiment conducted by Halpern (1989), participants were asked to sing the first
note of familiar songs (a collection that included Twinkle, Twinkle, Little Star; Joy to
the World; and Somewhere Over The Rainbow), and while the starting pitches of men and
women differed by an average of 11 semitones for the same songs, each person produced
four trials that were stable within 1.28 semitones. Unlike the studies we discussed in
Section 2.4.3 that asked participants to recall popular music recordings, all but one of the
songs—Somewhere Over the Rainbow—were found to have notated versions with varying
starting notes (and hence, keys) (Halpern 1989, Table 1). That is, these songs are not
universally associated with a starting pitch. However, people appeared to maintain an
internally consistent stable reference pitch in memory that is reflected in their attempts
to reproduce them.

If a person remembers a melody in a specific key, they can still recognize it when
heard in a different key—they perceive the two performances as the same piece of mu-
sic, and their memory likely consists of a more abstract encoding than a set of absolute
pitches and durations (Snyder 2014). In two experiments conducted by Plantinga &
Trainor (2005), parents familiarized their infant children with an English folk song for
seven days, then returned to the lab on the eighth day to measure the infant’s preference
for one of two melodies. In the first experiment of 32 infants (13 female, 19 male, mean
age of 6.02 months), the researchers found that the infants showed preference for trans-
posed versions of the familiar folk songs over ones they were not familiarized with. In the
second experiment (32 infants, 15 female, 17 male, mean age of 6.1 months), the infants
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were presented the same song twice—once in its original key, and once transposed—and
the researchers found no significant effect of the transposition on the infant’s preference.
These experiments provide evidence that—even at a very early age—one’s memory for
melody is not tied to specific pitches.

Combined with the studies we saw in Section 2.4.3, the literature suggests that the
memory of melodies has two major components—a pitch-independent set of contours or
intervals, and a pitch reference that anchors the melody to one or more prior listening
events.

2.4.5 Long-Term Memory and Musical Structure

Long-term memories are a result of structural changes to the brain, and they can last
a lifetime. Such memories are unconsciously held in the mind, and are activated when
one’s experiences cue associations with existing memories (Snyder 2014). For exam-
ple, this mechanism is called upon in Halpern’s (1989) study where participants were
provided with lyrics to help activate their memory of songs.

Additionally, long-term memories can be developed further when they are recalled
repeatedly, provided they are semantic and not episodic (or autobiographical) memories;
the latter can change upon recall, and the former requires repeated exposure to develop
(Snyder 2014). Reflecting on the discussion in Section 2.4.2, it makes sense why INMI
helps reinforce one’s long-term memory of a song—each experience triggers the recall of
the memory formed during (possibly repeated) listening.

The representation of a long-term musical memory is not fully understood, though it
appears hierarchical in nature. Segmentation—delineating structural boundaries within
a musical piece—is foundational to the encoding of such a long-term memory, and differs
at each hierarchical level; for example, significant transitions between segments of a
melody at a lower level, and major harmonic changes at a higher level (Snyder 2014).
Additionally, one’s ability to judge significance and form hierarchies may depend on
factors such as their exposure to similar music, or musical training.

2.4.6 Summary

This body of literature provides us with valuable insight into the kind of memory that is
called upon while learning songs by ear—from recordings, or even long-held memories.
Short-term, tonal working memory allows a musician to recall one or more notes for a
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brief period of time while attempting to play those same notes on their instrument, and
their ability to vocally reproduce pitches may improve their ability to encode such mem-
ories. Additionally, musicians can form rich, long-lasting memories of a piece of music
that allow them to be replayed in their minds, and their experiences of INMI seem to
help in the long-term encoding process. Such memories appear to be somewhat accurate
in terms of their connection to the absolute pitch of the original recording, though one’s
memory of the music is not merely a collection of pitches and durations. Rather, what
people remember is more abstract, and allows for recognition and reproduction with
respect to changing reference pitches.

2.5 Technological Supports

Here we explore the technology that enables musicians to learn music directly from
recordings. From the record players that first allowed them to play music on demand,
to DSP and MIR methods that analyze and manipulate digital audio signals, learning
popular music by ear was largely a technical revolution.

2.5.1 Purpose-Built Technology

A musician’s ability to interact with a recording is limited by the technology used to play
it. At one extreme, a radio offers the least control. The musician encounters a song by
chance, and would have to wait for another opportunity to hear it again—ideally with
their instrument in tow. By obtaining a physical copy of the recording, musicians could
use a record player to start and stop playback at will. Having this level of control is
essential, as Bennett notes that:

[. . . ] recorded songs are not gotten through the usual mode of audience
exposure to playback events, but by the specifically defined event of copying
a recording by playing along with it and using the technical ability to play
parts of it over and over again. (Bennett 1980, 138)

If their turntable allowed it, the musician could also slow the playback of a 33rpm
record to 16rpm with the press of a button. This interaction allowed musicians to hear
quickly-played phrases at half speed. However, some musicians appeared to require more
than this, and used their ingenuity. As Jerry Garcia of the Grateful Dead recounts in an
interview with Bill Barich, one could manually alter the rate of playback:
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[. . . ] I’d picked up the five-string banjo in the Army. I listened to records,
slowed them down with a finger, and learned the tunings note by note.
(Barich 1993)

Fortunately, finer control did not always require such lateral thinking: some record
and cassette players offered additional features that improved the ear-learning musi-
cian’s quality of life. For example, the Marantz Superscope C-190 was a cassette player
sold in the late 1970s that offered variable playback speed with adjustments of ±20%. It
also had a resettable counter mechanism and review/cue features that—together—could
help musicians locate specific points in a recording. Devices like these that offered use-
ful features for those learning by ear were not necessarily marketed at musicians. For
example, one might wish to slow playback while transcribing a spoken interview.

Unfortunately, both vinyl records and cassette tapes had significant limitations. Re-
ducing playback speed would cause the pitch of the recording to change, and the media
would degrade with repeated use. As digital audio became more readily available in CDs
and later formats, this limitation disappeared; provided the physical media was handled
delicately and kept clean. Digital audio also introduced precision to navigating record-
ings: the beginning of a track was easily found and revisited, and players with LCD
displays indicated the track position in minutes and seconds. Such affordances allow the
musician to note the time where a verse begins, for example, and return to the same spot
during a later session—even when using another CD player.

What we refer to as purpose-built technology in this domain are features—not specific
to musicians—that the manufacturer intends its customers to use as they interact with
recordings. For example, the C-190 cassette player provides a purpose-built continuous
speed adjustment control, but a record player leaving enough space for a finger to drag
along the turntable is very likely a “happy accident”. Long after the introduction of
CDs, more intentional designs started to appear once sufficient DSP capabilities became
available. For example, the TASCAM CD-GT12 is a product that was targeted specifically
at musicians (the GT stands for Guitar Trainer). This device could play standard CDs,
but most importantly it allowed playback to be slowed without changing the pitch of the
original recording.

In addition to hardware, many software packages were introduced with purpose-built
features that help musicians learning by ear. For example, the Amazing Slow Downer first
appeared on the Mac in 2000, and is still actively maintained.3 Unlike hardware offer-

2https://tascam.com/int/product/cd-gt1/top
3https://www.ronimusic.com/download/versioninfo/asd mac history/History.txt
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ings, software enjoys the benefit of a near-infinite design space in which new, musically-
oriented human-recording interactions can be explored further.

2.5.2 Manipulating Playback Speed

The playback speed of a digital audio recording can be modified without affecting its
pitch by using techniques such as waveform similarity overlap-add (WSOLA), and the
phase vocoder that operates in the frequency domain (Portnoff 1976; Driedger & Müller
2016). The latter is better suited for use with pop song recordings as frequency domain
techniques are far more adept at manipulating polyphonic audio. However, care must
be taken in the implementation in order to avoid creating undesirable, audible artifacts
such as phasiness, and transient smearing (Laroche & Dolson 1997).

Briefly, the phase vocoder consists two main stages. During the analysis stage, the
incoming signal is divided into evenly-spaced overlapping time blocks that are processed
using the Fast Fourier Transform (FFT) to generate spectral frames. In the synthesis stage
this is reversed: an inverse transform of the spectral frames produce the time domain
output signal. This is an identity transformation that can reproduce the input signal
unmodified (Portnoff 1976). However, to slow audio, new spectral frames are generated
by interpolating the analysis frames before synthesizing the output. Audible artifacts are
introduced as a result of this interpolation stage.

To combat audible phasiness artifacts, it is important that the phase components are
interpolated correctly between the spectral frames. Puckette (1995) introduced a phase
locking technique that ensures the phase component of adjacent FFT channels move in
sync with one another. Laroche & Dolson (1997) extend this core idea by selectively
applying phase locking to only peaks in the FFT spectrum. Průša & Holighaus (2017)
later expanded the approach by tracking and propagating phase gradients in the time
(inter-frame) and frequency (inter-channel) axes, and claim that this resolves all phase
vocoder artifacts. However, the researchers admit that listeners may actually prefer a
combination of their technique with one that deliberately sharpens transients.

Eliminating transient smearing requires that transients from the original signal are
preserved in the synthesized output. Duxbury et al. (2002) split the signal into steady-
state and transient components, and they ensure that the original transients appear in the
output by briefly resetting the stretch ratio to 1.0 and re-initializing phase components
during periods of high transience. To overcome the impact of these temporary speed-
ups, the stretch ratio is adjusted adaptively so that the output signal retains the tempo of
the original recording. Röbel (Röbel 2003a,b) instead proposes a method that precisely
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locates transients within the analysis windows, and reinitializes phase components in
narrower bands of the spectrum. Both approaches leverage the core idea that the onset
of a new sound is not continuing those vibrations that came prior—a new starting point
must be established by reinitializing the phase components that belong to the source of
the transient.

Using these transient-preserving techniques requires a compromise between frequency
and temporal resolution: shorter analysis windows offer more temporal detail, but do so
at the expense of coarsely spaced frequency bins. Conversely, longer ones trade temporal
detail for the ability to more accurately resolve sinusoidal peaks. Juillerat & Hirsbrunner
(2017) attempt to get the best of both worlds by splitting the input signal into three
parts—low, medium, and high transience—and each is processed at a different resolu-
tion. In this novel approach, phase processing is performed only on the frames with
the highest frequency resolution, while a magnitude-only phase vocoder manages the
medium- and high-transience signals that enjoy progressively better temporal resolu-
tions.

As we have shown, a time stretching implementation grows more complex as it be-
comes important to preserve the clarity of the original recording when it is slowed. It is
important that—even at extreme stretching ratios— the intelligibility of individual notes
is preserved so that musicians can hear them clearly, and with the same relative spacing
in time as the original recording.

2.5.3 Computational Understanding of Recorded Music

Today we can extract a great deal of musically meaningful information directly from
digital audio recordings. Research in the field of MIR has provided methods that make
it seem unnecessary for musicians to learn music by ear. For example, the ability to
locate beats in the recording, recognize the song’s key, and estimate the chords. These
individual tasks each have a rather long history of research, which we will briefly touch
upon below.

In general, most tasks in MIR are performed in one of two ways: using heuristic
methods, or with the aid of deep learning. Here we are primarily interested in heuris-
tic methods due to the practicality of their implementation. Specifically, it is difficult to
obtain a sufficiently large corpus of (often commercial) audio recordings to train with,
and it can be time-consuming to align existing labels to a collection of audio data (Bit-
tner et al. 2019). Further, most of the canonical data sets suffer from issues like the
under-representation of certain rare chord classes (McFee & Bello 2017). Additionally,
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expanding a training corpus requires a great deal of expert labour (Burgoyne et al. 2011).
In light of these challenges, and my specific research goals, deep learning methods will
receive far less attention below.

The locations of every beat in a recording—which may not be spaced equally in a
live performance—can be extracted using both heuristic and deep learning methods.
Heuristic beat tracking methods generally begin by measuring perceptually significant
events called onsets to generate a continuous-valued novelty curve, using filter banks
in the time domain (Scheirer 1998), analyzing successive frames of spectral data in the
frequency domain (Bello et al. 2005; Dixon 2006; Thornburg et al. 2007; Robertson et al.
2013; McFee & Ellis 2014b), or synthesizing a more consistent pulse from those frames
(Grosche & Müller 2009, 2011). Such a novelty curve can be turned into a set of beat
locations using a dynamic programming algorithm by Ellis (2007) that retains values
above a threshold, locates the peaks, then identifies those that most likely correspond to
the tactus—the pulse that corresponds to the times when someone would tap their foot
along with a song (Klapuri et al. 2006). In contrast to heuristic methods, those that rely
on deep learning can often provide the beat locations with no need for a novelty curve
(Böck & Schedl 2011; Böck et al. 2014; Zhao et al. 2022; Cheng & Goto 2023).

It is also possible to estimate the key of a song from its recording. That is, the spe-
cific major or minor scale that defines the tonal centre of the piece of music. While we
class many of these methods as heuristic, early methods rely upon supervised training,
or statistical data that was collected from a corpus of notated music (Temperley 1999).
For example, the key estimation algorithm by Gòmez (2006) tests a vector that repre-
sents the mean harmonic content of a recording against a set of statistically-informed
templates for each possible key. Unlike more modern methods, some early key detec-
tion algorithms still rely upon the supervised training of Hidden Markov Models (Peeters
2006a,b; Lee 2007; Noland & Sandler 2007), though their architectures are largely in-
formed by heuristics. A recent approach by Korzeniowski & Widmer (2017) instead uses
a dense convolutional neural network (CNN) to build a classifier that can estimate a
song’s key using its spectral representation as input.

Extracting the chords from a recording is of particular interest to popular musicians,
and there are very many approaches for doing so. The importance of this task is apparent,
as chord recognition has enjoyed more than 20 years of active research (Pauwels et al.
2019). As with key estimation, early methods for chord recognition rely upon super-
vised training of HMMs (Sheh & Ellis 2003; Papadopoulos & Peeters 2007; Harte 2010;
McVicar et al. 2014). Such systems work from chromagrams, a modified version of the
spectrogram that collapses the full range spectral data to a 12-dimensional vector at each
time instant. The choice of method for generating this representation can have a signif-

21



icant impact on the system’s performance (Cho et al. 2010; Cho & Bello 2011, 2014).
Deep learning methods are also plentiful, with a wide variety of architectures that range
from CNNs (Korzeniowski & Widmer 2016), to encoder-decoder RNNs (McFee & Bello
2017), and even the use of transformers (Chen & Su 2019; Park et al. 2019). Most of
these systems only consider the simplest chord qualities: major and minor. However,
some researchers have proposed systems that can draw from larger vocabularies (Cho &
Bello 2014; McFee & Bello 2017; Park et al. 2019).

Tasks such as these can work together to develop a semantic understanding of what
is happening in a musical recording. While they are theoretically capable of producing
sheet music as output (see, e.g., Donahue et al. 2022), this understanding can also be
leveraged for the sake of a musician that is trying to learn a recording by ear. We explore
these possibilities further in Chapter 6.

2.5.4 Summary

By-ear learning is made possible by the technology that allows for on-demand playback
of recordings. When they are provided with controls to reduce the speed of playback,
musicians can gain an advantage by hearing notes that are played too quickly in the orig-
inal recording at a more comfortable pace. However, it was a set of DSP algorithms that
let them do so without a corresponding drop in the pitch of playback. Using techniques
from the field of MIR, we have an opportunity to provide novel tools that further improve
upon the experience of musicians learning by ear.

2.6 Summary

Popular musicians have been learning music by ear for decades, and they do so by using
recordings in place of sheet music. However, we have seen nothing in the literature that
attempts to characterize exactly how experienced musicians interact with recordings as
they learn from them. What we do find in the literature is evidence that these interactions
are occurring. We also find a great deal of literature dedicated to the technology that
powers the specific interaction of slowing playback, as well as newer technologies that
have the potential to drive novel interactions in the future.
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Chapter 3

Opportunities and Limits of Online
Video Studies

In this chapter we explore the benefits of using online video as research data, discuss how
it has been used in various fields, and present some difficulties researchers may face when
conducting studies of their own. Underlying all good research is a keen consideration of
ethics, so we also discuss how online video studies face unique challenges in this regard.

Much of this chapter is applicable to any online service that hosts video content.
However, our focus is almost exclusively directed at research conducted using videos
obtained from YouTube—it is prevalent in the literature, and also what we used in our
own studies.

3.1 Why Study Online Videos?

A study of videos obtained from an online source such as YouTube is especially attractive
for researchers as it requires very little investment to begin. Additionally, studying a skill
that requires access to a participant’s working environment, or their collection of non-
portable tools can incur prohibitive travel and/or shipping costs. While it is conceivable
that a researcher could make a convincing case to obtain the necessary funding, it might
be wasteful to do so for early-stage studies.

For instance, a video-based study can allow a researcher without sufficient domain
expertise to prepare for more conventional in-person studies. By analyzing a collection
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of videos that depict skilled human activities, a researcher could reinforce their domain-
specific knowledge in preparation for an ethnography, or a contextual inquiry. Addition-
ally, the results of such an online video study can generate hypotheses (e.g., Chapter 4)
that shape the research questions in the researcher’s future work.

User-generated videos posted online can serve as a proxy for in-person observations
of what people do “in the wild”. This is evidenced by studies in many fields of research,
such as healthcare (Sampson et al. 2013) and human-computer interaction (Bartolome
& Niu 2023). Additionally, researchers have studied a diverse set of human activities in
this way, such as cooking (Paay et al. 2015), the use of touchscreens (Hourcade et al.
2015; Vatavu et al. 2022), gaming (Dao et al. 2021; Wentzel et al. 2022; Gonçalves et al.
2023), administering healthcare to infants (Harrison et al. 2014, 2018), and physical
altercations in public places (Weenink et al. 2022a,b).

3.1.1 Unparalleled Access to People and Spaces

By studying user-generated online videos, researchers have the opportunity to observe
populations that would be difficult (or impossible) to recruit, and in locations that would
otherwise be inaccessible.

Some spaces are challenging to replicate in a lab environment, or impractical to ob-
serve in person. For example, Paay et al. (2015) studied YouTube videos of people cook-
ing together in kitchens, and claimed that placing a researcher and/or camera in peoples’
homes would be both impractical and detrimental to such a study. Li et al. (2021) also
studied cooking videos found on YouTube, though they focused on the ways that blind
or visually impaired people prepared food in their kitchens. Dao et al. (2021) gathered
clips from “VR fails” compilations on YouTube that were captured in private residences.
Given the physical contact and injuries to both person and property, a researcher would
be unlikely—for ethical reasons, and also self-preservation—to capture such events in an
in-person study.

Another opportunity presented by online video content is the potential for gather-
ing information within contexts that may otherwise be “off limits”, such as commercial
spaces. For example, Chattopadhyay et al. (2021) were able to observe software devel-
opers in “day in the life” videos, who often included footage from their workplaces. Re-
searchers may not be so lucky to obtain such candid material if they instead approached
companies for on-site access of their employees. Similarly, Harrison et al. (2014; 2018)
were able to collect videos of infants receiving health care that—presumably—were all
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captured in medical facilities that may not have allowed such wide access to conduct
their observations.

The quantity and geographic diversity of spaces that are accessible to researchers is
also quite wide. For example, Nielsen et al. (2023) were able to observe human-robot
interactions in a variety of public spaces that included grocery stores, shopping malls,
and airports—the latter of which were located in South Korea, the United States, and
Singapore.

Studies have also used YouTube to gather observations from virtual environments,
often collecting data of events that researchers would be unlikely to capture during in-
tentional ethnographic embeddings within those spaces. Zheng et al. (2023) studied
instances of harassment and other risks to users in social VR environments, using video
captures uploaded to YouTube as a way to gain access to spaces that only exist in VR.
Gonçalves et al. (2023) similarly used video captures of blind users playing visual-centric
video games to discover various strategies they used to navigate those virtual worlds.

In other HCI studies, the use of YouTube videos gave researchers direct access to ob-
serve how people with a range of physical disabilities interacted with various technolo-
gies like touch screens and game controllers (Anthony et al. 2013; Wentzel et al. 2022;
Vatavu et al. 2022; Gonçalves et al. 2023). For example, Wentzel et al. (2022) per-
formed a content analysis of 74 YouTube videos to identify the different ways that people
configured multi-modal inputs to control PC and console games for disabled gamers. It
would be challenging to execute such studies with in-person subjects, let alone recruit a
sufficient number of willing participants that fit the complex needs of those studies.

Many of the above studies also benefit from their potential to gather data across
time. For example, if one were to try and replicate the study by Anthony et al. (2013), a
researcher could identify whether touchscreen interactions have changed meaningfully
over the past 10 years. Additionally, by focusing on specific individuals by way of their
YouTube channels a researcher could conduct something that resembles a longitudinal
study. For example, in a study like O’Leary’s (2020) that focused on popular ukulele
channels, a researcher could measure the rate at which one’s skills as a musician have
progressed over a number of years.

3.1.2 Observing Human Behaviour and Interactions With Technol-
ogy

Studying a collection of videos allows researchers to observe more subtle elements of
their content. For example, one can study the actions and expressions that accompany
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what is said in a video; identify non-verbal sounds produced by instruments, animals, or
other physical objects that may not be seen; and also the interactions between people
and their environment. For example, Harrison et al. (2014; 2018) performed a quali-
tative content analysis of YouTube videos to review the methods used to soothe infants
during immunizations and blood tests. Weenink et al. (Weenink et al. 2022a,b) stud-
ied interactions between people during the events leading up to physical altercations in
public. Gibson (2022) very closely analyzed video reviews of a single guitar pedal, and
characterized details about how the product was presented to viewers, such as reviewers
trying to describe its sound verbally.

However, researchers have also used YouTube to gather observations of people inter-
acting with technology in real-life situations. For example, Anthony et al. (2013) studied
how people with limited motor abilities interact with touchscreens, and found that some
use their nose or feet to activate the touch-sensitive surface. Lovato & Piper (2015) an-
alyzed videos of children interacting with Apple’s Siri voice assistant, and found it was
used for making phone calls, to express anger, or simply to satisfy the child’s curiosity.
Hourcade et al. (2015) analyzed videos of toddlers and infants interacting with touch-
screen tablets, capturing information such as the position of children in relation to the
device, and whether it was held by a parent, laid on a table, propped up, etc. Mauriello et
al. (2018b) analyzed video footage of novices using thermal cameras, and identified sit-
uations where they are used such as pointing the cameras at everyday objects to see how
they appear differently when viewed in infrared. Komkaite et al. (2019) studied videos
of people demonstrating the use of insertable devices—those implanted in the body, of-
ten placed beneath one’s skin—to understand both their interactions with the technology,
and why they chose to have it implanted. In the study of VR fails by Dao et al. (2021), in-
teractions with VR technology were observed in a collection of videos depicting negative
outcomes for VR users, and identified a collection of breakdowns in those interactions
when the users hit the limits of the technology—for example, slapping spectators, or
hitting walls. Wentzel et al. (2022) observed how a variety of assistive devices are used
and configured by users with mobility challenges so that they could play video games on
both consoles and gaming PCs. Vatavu et al. (2022) were able to identify a number of
problems faced by wheelchair users interacting with public displays, such as input areas
that were out of reach. Nielsen et al. (2023) studied how people interacted with robots
that were installed in public places, specifically focusing on unguided interactions—those
that occurred without training, or help from staff. Gonçalves et al. (2023) studied the
video captures of blind and visually impaired users playing video games, and discovered
how they interact in novel ways with those games to navigate them, or make it easier for
themselves to perform game-specific tasks.
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In nearly all of these studies, the researchers’ findings could be used to guide the
design of novel technologies, or improvements to existing ones. By watching footage
of people in their natural environment—at home, or their workplace—researchers can
access insights that would otherwise be difficult to obtain.

3.2 How Online Video Studies Are Conducted

3.2.1 Obtaining Videos

YouTube offers a search function that allows its users to find videos matching a given
set of keywords. While many researchers use the website (e.g., Rotman et al. 2009;
Harrison et al. 2018; Kong et al. 2019; Vatavu et al. 2022), the availability of an offi-
cial API provides an opportunity for programmatic queries of YouTube’s video collection
(e.g., Rieder et al. 2018; Wentzel et al. 2022; Zheng et al. 2023). The latter method
can offer some insulation from YouTube’s recommender system, though researchers who
use the web front-end have employed private (or incognito) browsing functionality to
achieve the same goal (e.g., Vatavu et al. 2022; Altunisik et al. 2022). Regardless of the
method used to access YouTube’s search functionality, we focus here on the various query
strategies that researchers use to obtain a collection of videos.

Quite often, researchers gather videos with searches that specify single keywords. For
example, Basch et al. only specified “Ebola” (Basch et al. 2015) or “Zika virus” (Basch
et al. 2017) in their studies of the information spread about those infectious diseases,
and Blythe & Cairns (2009) searched for “iPhone 3G” to study the public’s reception of
Apple’s device.

As the researcher’s concerns broaden, or the topic of study cannot be characterized
with a single term, it is necessary for researchers to conduct multiple searches. For
example, Kong et al. (2019) specified 11 query strings that included “vape tricks”, “e-
cig smoke tricks”, and “how to do vape tricks”, but did not explain how they generated
their list. By contrast, Harrison et al. (2014) indicated that “baby injection” and “baby
vaccine” were chosen based on results from Google Trends indicating both terms were
frequently specified in searches.

A common method found in the HCI literature is to form a cartesian product from
two sets of keywords, and perform queries with each possible combination of them (e.g.,
Anthony et al. 2013; Li et al. 2022; Wentzel et al. 2022). For example, combining
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[Apple, Android, . . . ] with [tablet, smartphone, . . . ] would yield “Apple tablet”, “Ap-
ple smartphone”, “Android tablet”, and “Android smartphone”. This approach can yield
many queries, and hence a large number of videos to consider. For example, Wentzel et
al. (2022) performed 480 queries to obtain a total of 2061 unique candidate videos that
ultimately produced the final set of 74 videos that were studied. Unfortunately, it is not
made clear exactly how that set was whittled down to such a small size, or how many of
the 2061 videos had to be viewed during that process. Mauriello et al. (2018b) expanded
upon this idea by automatically generating additional search terms using video metadata
gathered during an initial round of queries.

Unfortunately, the increasing complexity in researchers’ methods is a direct conse-
quence of YouTube’s limited query functionality, which lacks the kind of features one
might expect to find in an academic database—for example, boolean operators, or the
ability to specify that only titles or descriptions are matched. We discuss this issue further
in Section 3.3.1. A related problem is that these strategies yield an overwhelming number
of videos—most of which are irrelevant. We discuss how researchers try to work with
these large data sets efficiently in Section 3.3.2.

3.2.2 Evaluating Information in Videos

Quite often, researchers are not concerned with the details of the physical activities
of people who appear in videos. Rather, it is the information being conveyed—often
verbally—that is most salient.

In public health, there are many studies that focus on the spread of (mis)information
about viruses. For example, Basch et al. analyze the content of YouTube videos that
discuss Zika (2017) and COVID-19 (2020) viruses, and both Basch et al. (2015) and
Pathak et al. (2015) studied videos about Ebola Virus Disease. In the field of health
informatics, Madathil et al. (2015) conducted a systematic review of studies that evaluate
the overall quality of healthcare information that can be found in YouTube videos.

There are also studies concerned with public safety and well-being that aim to derive
meaning from the content in the videos. In these studies, what the researchers seek to
understand is not directly tied to what it is they are searching for. For example, Kong et
al. (2019) studied YouTube videos that depict 25 different vape tricks to better under-
stand how vaping is promoted to youth online. Kelly-Hedrick et al. (2018) performed a
content analysis of videos discussing experiences with infertility to determine what top-
ics or attributes appear to attract more viewers. Hawkins and Filtness (2017) analyzed
the content of videos on YouTube to study perceptions of driver sleepiness.
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In music education, researchers have used YouTube to study the content of instrumen-
tal lesson videos. For example, Kruse & Veblen (2012) analyzed guitar, banjo, fiddle, and
mandolin lesson videos to identify the topics covered, teaching methods, and other de-
tails such as where the video was filmed, and the perceived age of the teacher. Whitaker
et al. (2014) studied a wider range of videos related to music education, and extracted
characteristics such as the genre or instrument that was featured, and whether the video
contained a lesson, a performance, or if it was technology-focused. O’Leary (2020) stud-
ied lesson videos from popular ukulele channels on YouTube, reporting the distribution
of video types, and the proportion of views for each type.

3.2.3 Analyzing Audiovisual Content

Video is an attractive medium for research because it is an incredibly rich source of
data. Not only can researchers study what is said in a video, but they can also analyze
body language, identify objects in the video, or judge its musical content. However,
the methods used to study audiovisual media differs greatly depending on the field, the
subject matter of the videos, and the researchers’ goals. In many cases, these methods
have been developed long before online video was used as research data.

In some studies, videos are labeled superficially, often to supplement a more in-depth
analysis. For example, Blythe & Cairns (2009) assigned categories such as unboxing,
review, or demonstration, to a set of iPhone-related videos on YouTube. They applied
labels based on a mixture of their metadata (e.g., the word “unboxing” appears in the
title) and what is observed in the video (a product is removed from its packaging). Paay
et al. (2012; 2013; 2015) similarly assigned categories to cooking videos, such as home
videos, providing cooking advice, or documentary-like. In studies of consumer health
videos, researchers consider whether YouTube videos were produced by news organi-
zations, health professionals, or independent sources (e.g., Basch et al. 2015; Pathak
et al. 2015; Basch et al. 2017, 2020). O’Leary (2020) studied ukulele video channels
on YouTube, and videos were assigned to categories such as tutorials, performances, or
equipment reviews. These labeling practices are necessary for studies where researchers
expect to discover variety in the kinds of videos that are considered. That is, these re-
searchers are often not seeking videos that depict the exact same task. For example, if
O’Leary (2020) focused only on tutorials, or Blythe & Cairns (2009) on unboxing videos.

When researchers wish to study data that can only be gathered by watching the
videos, the axes on which they are labeled become more fine-grained. These axes may
be based upon existing theoretical frameworks, or developed inductively using a small
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subset of the data. For example, Anthony et al. (2013) extracted characteristics of the
videos they watched such as the kinds of devices used, the context where the video was
captured (e.g., at home, at work), and the perceived age of those who appeared in the
videos. Wentzel et al. (2022) coded videos that depicted the gaming setups of users
with limited mobility, noting the quantity and kind of devices that appeared in videos,
as well as the various ways people interacted with these devices. Similarly, Vatavu et
al. (2022) gathered information about the touch capabilities and orientation of interac-
tive displays that appeared in videos of wheelchair users interacting with them. When
Dao et al. (2021) studied VR “breakdowns” by analyzing clips from a set of YouTube
compilation videos, they considered details such as the presence of spectators, and if
the video feed from the VR headset was made visible to them. In their study of dash-
cam footage of motor vehicle collisions and near-misses with moose, Rea et al. (2018)
noted whether the driver swerved or slowed their vehicle, or which direction the moose
approached from.

Sometimes researchers aim to quantify certain elements of a video based on what
they observe while watching it. For example, Harrison et al. (2014; 2018) used the
FLACC (Face, Legs, Activity, Cry, Consolability) scale and the Neonatal Facial Coding Sys-
tem (NFCS) to obtain a measure of pain from videos of infants receiving immunizations
and blood tests. In their dashcam study, Rea et al. (2018) timed how long the moose
was visible before a collision or near-miss, and measured—in lane widths—how much
vegetation was cleared from the driver’s view.

Researchers can also extract very rich data from videos that allows them to perform
even deeper analyses of their content. For example, Paay et al. (2012; 2013; 2015) gen-
erated layout diagrams of the kitchens depicted in the videos, including details such as
the camera’s position and where people stood in relation to one another. As an alter-
native to transcription, researchers can also use established methods from conversation
analysis and ethnomethodology (ten Have 2023) to yield rich data from videos. These
methods have been used to analyze human behaviour in online videos (Weenink et al.
2022a,b), or study details about how products are reviewed (Gibson 2022), but they
also have their place in HCI (Crabtree et al. 2000; Crabtree & Rodden 2004; Suchman
2006; Fischer et al. 2016; Tuncer et al. 2020, 2021). For example, Suchman’s (2006,
ch. 9) seminal study in the 1980s analyzed users’ interactions with a photocopy machine
to identify flaws in the design of a built-in “expert help system”. More recently, Tuner
et al. (2020; 2021) analyzed the recordings of 10 pairs of participants interacting with
YouTube as they followed instructional videos to perform everyday tasks such as applying
makeup or changing the brakes on a bicycle.

There is clearly a wide range of techniques that researchers have used to extract data
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from audiovisual content. Additionally, these techniques can be combined to suit the
researcher’s goals, the kind of videos that are being considered, or the information that
is to be obtained.

3.2.4 Grounded Theory on YouTube

Qualitative studies of online videos appear to be well-suited for the application of the
grounded theory method (Corbin & Strauss 2008; Charmaz 2014). For example, re-
searchers can expect to encounter variability in the information density within a collec-
tion of user-generated videos, and grounded theory allows for a mixture of data sources
that contribute different details to the study (Corbin & Strauss 2008). Additionally, the
wealth of video data that is available from sources like YouTube allows researchers to
engage in purposeful sampling methods (Patton 2014) that can guide the collection of
additional data based upon emerging concepts.

In the case of a video-based study, analysis consists of the researcher coding videos
based on their observations, comparing them with codes applied to other videos, and
gradually discovering those things that videos have in common with each other, or where
they differ. The codes are collected into concepts, and then categories (or themes). As new
data and insights emerge, existing data may be revisited to refine the findings. During
this process, researchers create memos that capture the evolution of their thinking, and
ultimately these analytical notes are meant to become the results intended for publica-
tion. This iterative practice is meant to cease when theoretical or conceptual saturation
is achieved—the point at which nothing new is learned from additional data (Corbin &
Strauss 2008).

True to its name, this research practice is meant to produce theories that are grounded
in real-world data. However, this practice rarely allows a theory to develop from only a
single study. For practical reasons, studies that follow this method can only offer a step
in that direction. That is, a typical grounded theory study yields what Corbin & Strauss
(2008) call a “rich, thick description”, and an analysis of the concepts that emerged.
This discussion in the literature occurs alongside—and remains grounded in—the data
that was collected. For example, each of the categories will contain elements from the
data (usually, quotes) to help illustrate their concepts.

Unfortunately, the seemingly flexible nature of grounded theory leads to an appar-
ent difficulty for researchers to apply it consistently across a variety of studies (Qureshi
& Ünlü 2020). This challenge can also be seen in HCI research. For example, Li et
al. (2022) use a mixture of open coding and affinity diagramming to generate themes
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under which codes were grouped and refined. By contrast, Rotman & Preece (2010)
collected codes and concepts while analyzing the video content, later arranging them
hierarchically to reveal higher-level concepts. Both studies ultimately appear to produce
the same kind of results, but these kinds of variations in their descriptions make it chal-
lenging for other researchers to identify a sound practice to follow.

An additional challenge—not unique to video-based studies in HCI—is that what may
appear to be an application of grounded theory is actually qualitative content analysis
(Cho & Lee 2014). For example, Niu et al. (2022) describes a grounded-theory-based
approach that only yields the code book that is used for a more conventional content
analysis. However, they do not appear to use purposeful sampling, collect data in tandem
with coding, nor do they claim to have reached theoretical or conceptual saturation—the
point at which nothing new is learned from additional data (Corbin & Strauss 2008).
By contrast, we find all of these elements in a study by Rotman et al. (2009), who
studied users’ feelings towards the YouTube community using both video transcripts and
comments from viewers.

3.3 Why Online Video Studies Are Challenging

3.3.1 Systematicity and Exhaustiveness

Many YouTube video studies claim that one of their benefits is systematicity. We find
this claim suspect. While not all reviews that claim to be systematic can be conducted
like those performed by medical researchers (Clark 2013), reviews of video content from
YouTube are often so far removed from such a methodology that it feels disingenuous to
label them as systematic.

One characteristic of systematic literature reviews is reproducibility—that one can
expect a given search query using academic databases can be repeated at a later date
(Sampson et al. 2013), and only those papers published since the initial query would
differ. A future researcher that repeats this query must consider that authors may with-
draw publications, however such events are uncommon and unlikely to impact the set
of literature significantly. Unfortunately, such repetition is impossible when querying
YouTube using default parameters, as it returns unstable results—even when executed
on the same calendar day. Experimental results that demonstrate this phenomenon are
presented in Section 3.3.4.
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I am certainly not the first to express discomfort with the idea of systematicity in a
YouTube video study. Sampson et al. (2013) performed a systematic review of YouTube-
based consumer health studies to design a methodology that informed those of subse-
quent systematic video review studies (e.g., Harrison et al. 2014, 2018). In this re-
view, the researchers pointed out that sites like YouTube have content that changes daily,
and a relevance algorithm that is proprietary and unstable. They propose that one can
overcome this challenge by ending the screening process based on pre-defined stopping
criteria—e.g., once 20 consecutive videos are found ineligible. Sampson et al. suggest
that the researcher must be comfortable knowing that videos will be missed, yet they also
claim—without evidence—that “the likelihood of missing a large number is low given the
relevance ranking” (Sampson et al. 2013, p.11).

Online video services like YouTube rely upon the uploader to supply metadata with
their videos—a title, description, and tags—that serve as both a description of the content
for viewers, and something that the search engine can index. While my own experiments
(Section 3.3.4) suggest that a video’s transcript, or other aspects of their content, may not
be considered in searches via YouTube’s own website, the Google search engine allows
content creators to opt in to a more sophisticated indexing that can surface relevant
moments within videos1.

However, there are specific phenomena that can only be analyzed based on what is
seen and heard in the videos. That is, behaviours may not be accompanied by spoken de-
scriptions of what is happening, and certain activities could be deemed too insignificant
to describe in either the title or description of a video when it is uploaded. Therefore,
what researchers seek in the videos cannot be directly queried, and identifying those that
are relevant to the study requires human review.

3.3.2 Attempts to Achieve Efficiency and Quality

As we have seen in Section 3.2.1, researchers compensate for YouTube’s limited query
features by executing many queries. Unfortunately, this process yields very many videos
that are largely irrelevant. Further, videos do not have abstracts that researchers can
rapidly skim. When their metadata fails to indicate the videos are ineligible, they must
be viewed by researchers.

Watching a large number of videos to determine their eligibility can be slow work, so
it is important that researchers adopt a filtering procedure that maximizes their efficiency.

1https://developers.google.com/search/docs/appearance/structured-data/video
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Using a purposeful sampling strategy (Rotman & Preece 2010; Patton 2014) to guide
their YouTube searches, Nielsen et al. (2023) collected and watched a total of 494 videos.
After removing duplicates and unavailable videos, the researchers reduced this set to 104
videos after two separate rounds of filtering. First, they coarsely evaluated each video—
quickly applying one or more labels to help them eliminate videos from future viewings.
Next, the researchers watched the videos more closely to identify more subtle issues,
such as whether the video appeared to be staged. Using this two-stage filtering strategy,
they minimized how much time was spent watching irrelevant footage.

Of course, it would be ideal if researchers could reduce or eliminate the need to watch
videos altogether. Mauriello et al. (2018a) developed a tool that automates both the
expansion of the video collection and the identification of those that are most relevant. In
a study employing this tool, Mauriello et al. (2018b) began with a collection of keywords
that returned 1,092 unique videos from a number of (unreported) initial searches. Using
query-expansion techniques, they performed more searches using additional keywords
obtained from the titles and descriptions of the initial set, raising their total to 6,790
videos. After manually coding a subset (772) of the videos, the researchers trained a ML
model to automatically classify the video’s relevance and topic using a bag-of-words model
of their titles and descriptions. This process led to a dataset of 1,686 unique videos from
which they randomly sampled 1,000. Finally, they removed videos that were deemed
off-topic to obtain a final total of 675 that were used in the study.

While the automated method developed by Mauriello et al. (2018a) can save a great
deal of manual labour, it is unlikely to capture relevant videos for studies of human
behaviours as it relies upon the video’s metadata. In our own studies, the metadata
field rarely matched the activities we sought to study. For example, some users filled
the description with promotional materials such as links to a subscription, or directing
viewers to purchase goods using affiliate links. Rarely did we encounter descriptions that
characterized what could be observed in the videos.

Ideally, an automated tool would be adapted to take more features into account,
perhaps obtained directly from audiovisual content. For example, if the phenomenon
is associated with a specific object (e.g., a guitar is in frame), or spoken phrase (e.g.,
“learn by ear”), researchers could use object recognition and automatic transcriptions to
extract additional details that could be queried. However, this approach has its limits—a
researcher could surface videos where a guitar or piano appears in the frame, but cannot
identify how or if the guitar is used.

However, even if researchers could overcome these limitations, it would be impracti-
cal to build such a tool. Object recognition and transcription would require direct access
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to the video files for hundreds or thousands of videos found on YouTube. Each of them
must be downloaded, which would almost certainly violate YouTube’s terms of service.

Setting that issue aside, it seems unlikely that AI-driven tools could answer more
subtle questions, such as “Are the workers in this video using safe practices?”, “Are they
wearing PPE correctly?”, or “Is the musician in the video learning music from a recording,
or just playing alongside it?” Until science has caught up to provide such capabilities,
manual viewing is still necessary. While we are skeptical that AI-driven content analysis
can provide researchers with a more searchable panopticon, it is plausible that near-term
advancements to large language models could power tools that make such queries possi-
ble. In the meantime, researchers must resign themselves to the human-powered process
of reviewing large swaths of content as efficiently as they can.

3.3.3 My Own Such Attempts

An Application for Video Triage

In March 2023, I developed a prototype application for macOS called YouTubeTranscripts
(YTT) to help me maintain a paper trail while querying and qualifying videos for study.
While it was helpful during the early stages of my research projects, the tool is not
suitable for distribution.

YTT is a document-based application. Each document represents a collection of
queries and their results. The user adds queries to the document whenever they exe-
cute a YouTube search. The date, keywords, and parameters used to conduct each query
are retained, which would allow a researcher to see a history of all the queries they have
attempted, and how many results each of them returned.

Upon selecting a query, the user can triage its results by navigating videos in a master-
detail arrangement. That is, selecting a video from the table will reveal additional meta-
data in a detail view with an embedded YouTube player. Based on the video’s content,
the user may choose to either favourite or reject the video, at which point a modal dialog
prompts them to enter a reason for doing so. Only those videos marked as favourites are
available for further analysis.

Video analysis consists of both watching the video and seeing its transcript at the
same time. As the video progresses, the corresponding line of transcript is highlighted.
Similarly, selecting a line of transcript will seek to that place in the video. Lines of
transcript could then be converted into annotations, which retained the timestamp and
transcript text and allowed the user to capture notes about those statements.
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While this appears to comprise much of what a YouTube video researcher would need
to obtain, deem eligible, and ultimately code their collection of videos, it is far from
a complete solution in the state it now sits. In my own studies, YTT was only helpful
insofar as it helped me evaluate the suitability of certain query terms, and allowed me
to rapidly navigate through large lists of videos. The latter was afforded by the fact that
YTT is a native macOS application developed using SwiftUI, and accessing YouTube via
an embedded player—far more responsive compared to managing browser tabs, facing
un-skippable advertisements, etc.

I built YTT with the help of third-party Python libraries that almost certainly violate
YouTube’s Terms of Service by accessing clandestine API endpoints. I did this out of ne-
cessity, because the default quota for the official API is much too restrictive to use during
development or actual research. I could certainly integrate the official APIs to eliminate
this concern. However, I would have to apply for additional quota as a researcher to get
any utility out of the application, and it would also require that every other user does
the same in order to use the application. For these reasons, I do not feel comfortable
distributing YTT in its current form as an open-source project.

Ultimately, YTT was motivated by a lack of efficiency in the process of manually
reviewing a large collection of videos, and the overhead that is added by maintaining a
paper trail. Resolving these issues seem to be desiderata for any video-based researcher
who works with YouTube, and I hope that one day I or another researcher can make this
process require far less labour and organizational discipline than it does now.

Rapid Clip Analysis

In the hypothesis-generating study (Chapter 4), many of the videos in the collection
contained a lot of irrelevant footage. For example, discussion about the song featured
in the video, or interaction with a virtual audience during a live stream. Even though
I took care to capture the timestamps of significant events in the videos, it eventually
became too cumbersome to navigate between browser tabs to compare clips with one
another. For example, when watching two clips from different videos that demonstrate
an instrument being played while the recording is also playing, I could identify that one
was for the purpose of seeking notes, and the other player was practicing what they had
learned.

Having worked with Final Cut Pro2 in the past, I had experience resolving a similar
problem—isolating only the good takes among hours of raw footage. This was achieved

2https://www.apple.com/final-cut-pro/
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using Final Cut’s keywords feature3 that allows (possibly overlapping) segments of video
to be assigned one or more keywords. After a collection of videos are marked up in
this way, the interface allows a user to filter and browse only those clips with specific
keywords. For example, upon selecting the “playing-while-listening” keyword, I could
rapidly review this specific behaviour across the entire set of videos.

While I found this helpful to complete my project, the experience left much to be
desired from the perspective of a researcher. For example, entering longer keywords
with spaces, and defining keywords that overlap others can exercise one’s patience. An
application that offers a user interface that takes inspiration from Final Cut Pro, but
designed specifically for qualitative research, would certainly be welcome.

This strategy required that I first download each of the videos before study, which
required the use of command-line tools that violate YouTube’s terms of service. It is up
to other researchers to determine whether obtaining the videos in this way is an ethical
practice for their particular work. In my own situation, the videos are merely being
cached in local storage until the study is concluded, and I have no intention to distribute
these files.

3.3.4 Observations of YouTube Search Behaviour

On May 2, 2023, I performed an experiment using the results of queries obtained using
the YouTube Data Tools4 website. The test was simple: I ran the same query ("learn
songs by ear"|"learn music by ear"|"learn tunes by ear") five times using dif-
ferent orderings: relevance, date, rating, viewCount, and relevance again. For each
search, the query string, date range (before Jan 1, 2023), and maximum number of
videos (200) was held constant. All queries were performed within a 5 minute time
span.

Despite requesting a maximum of 200 results, no list of videos was that large. In
the queries that specified an ordering of date, rating, and viewCount, a collection of 68
videos were returned. However, the same query sorted by relevance returned 191 videos,
then 187 when it was repeated five minutes later. Such discrepancies between the results
of identical queries triggered further investigation.

Each of the 68-video lists contained the same set of video IDs. Both of the larger,
relevance-ordered lists returned the same 68 videos before the rest of their results, but

3https://support.apple.com/en-ca/guide/final-cut-pro/ver68416335/mac
4https://tools.digitalmethods.net/netvizz/youtube/
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their rankings were inconsistent between the two. For example, the third-ranked video
moved up to the second position, and the three videos ranked 10–12th moved up to po-
sitions 8, 10, and 9, respectively. Additionally, 26 videos disappeared from the relevance-
ordered results when it was repeated 5 minutes later. Upon reviewing this list of missing
videos, they were ranked at position 90 and below, and all but two of them had titles
that were relevant to the query.

The 68 videos common to all queries contained either “learn songs by ear” or “learn
music by ear” in their title. However, the titles of videos appearing only in the relevance-
ordered searches contained substrings such as “learning songs by ear”, “learn any song by
ear”, etc. The inclusion of these possibly-relevant videos suggest that relevance-ordered
searches on YouTube are capable of matching semantic meanings, and perhaps the date-,
viewCount-, and rating-ordered queries apply more simplistic string matching to the
titles of videos. However, I discovered that two videos in the relevance-ordered queries
contained “learn songs by ear” in their title, yet they did not appear in the other sets. This
evidence suggests that those queries returning 68 videos provided incomplete results.

In many studies, researchers perform searches directly on the website (e.g., Altunisik
et al. 2022; Basch et al. 2020). To confirm that YouTube Data Tools was not behaving
differently from a search performed on the YouTube website, I searched on May 2, 2023
using the same query string, and specified that results should be ordered by date. The
search returned near-identical results to my prior tests—68 videos matched the set I had,
plus an additional 10 that were uploaded after January 1, 2023. This discrepancy was
caused by my inability to specify such a date range on the website to match my earlier
results.

On May 4th, 2023—two days after my first experiments—I repeated the same queries
using YouTube Data Tools. They were executed in the same order as the first experiment,
but there were only three minutes separating the first and last relevance queries. The
same set of 68 videos were returned in the date-, viewCount-, and rating-ordered queries
as before, and two new sets of 197 videos each were returned by the two relevance
queries. Again, both relevance-ordered queries ranked the same 68 videos before the
rest.

My first video study (Chapter 4) was conducted using the entirety of the above data.
That is, I formed the union set of all the above search results for a total of 255 videos that
required screening. The screening process was time-consuming, and returned a final set
of only 18 videos that were used in the study. Remarkably, all 18 appeared in the smallest
set of 68 videos.

Based on the above observations, I formed the following six hypotheses. First, it
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appears that date-, rating-, and viewCount-ordered queries are quite stable. Second, the
results from these queries rank highest in a relevance-ordered search. Third, the titles
in the date-, rating-, and viewCount-ordered query results all match the query string.
Fourth, those queries do not include all results with a match for the keyword in the title.
Fifth, the relevance-ordered queries demonstrate instability between repeated trials. And
sixth, the videos that appear only in relevance-ordered queries are largely irrelevant.

Recommendations

When conducting a study that is based upon the experience of ordinary people who
use the YouTube website, researchers should use the default relevance ordering when
searching for videos. This was the appropriate choice for studies like those focusing on
the content of videos presented to consumers seeking healthcare information (e.g., Basch
et al. 2015; Pathak et al. 2015; Basch et al. 2017, 2020).

If the researcher’s aim is to find videos with titles that closely match a query string,
a date-, rating-, or viewCount-ordered search appears to provide the most stable results.
However, such a strategy is only useful when the subject matter allows for it. For ex-
ample, our search for by-ear learning videos provided only 68 results, but search terms
that return thousands of matches will get truncated. In such cases, the ordering should
be selected carefully so that the results are not impacted. For example, a date-ordered
search that gets truncated will omit older videos that may have high ratings, and possibly
high-quality content.

Considering my observations, it may seem strange for a researcher to consider giving
up more than 100 videos if they chose a date-ordered instead of a relevance-ordered
query. However, after conducting our hypothesis-generating study (Chapter 4), which
used the union set of all the relevance-ordered queries, each of the 18 videos obtained
from our filtering process were all contained in the stable set of 68. Considering that we
had to manually filter the list of 255 videos, sticking with the date-ordered query would
have saved us a considerable amount of time.

3.4 Ethical Considerations

In-person studies require ethics review, which creates barriers between the would-be
researcher and their study, and rightly so. However, this can be a major problem during
preliminary work, when the methodology is not yet concrete, or researchers need to
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expand their domain knowledge based on real-world observations. For every change to
the method, or as additional rounds of interviews or observations are required, the ethics
review board must be consulted before the study can continue. This makes online video
studies particularly attractive, as there is no need for the researchers to interact with
those they study. However, researchers must understand that studying online video does
not completely absolve them from their ethical responsibilities. Legewie & Nassauer
(2018) provide a list of five ethical areas that the researchers should consider when
assessing the ethics of their video-based studies: informed consent, unique opportunities,
privacy, transparency, and minimizing harm. Here we summarize each of these, focusing
specifically on those elements that are relevant to my own research, and those that relate
to the previous work discussed above.

On the surface, it may appear that any video a researcher can watch on YouTube
is available to use in their research because the uploader chose not to mark it as pri-
vate. However, nobody that appeared in the video—including the uploader—consented
to have their actions analyzed by researchers. Additionally, it is possible to encounter
years-old videos that have not been widely viewed. For example, in Chapter 4 we use
three videos that were 1–3 years old and had only 22-25 views. Such videos are effec-
tively invisible to the public until a researcher calls attention to them, which is problem-
atic if the uploader was unaware they were visible to the public, or they had intended to
take them down. As with many ethical considerations, this lack of consent is not neces-
sarily a dead end for the researcher. When weighed against the assessments made in the
following areas, the use of certain videos like these can indeed be ethically acceptable.

Online video data allows researchers to observe events that would otherwise be im-
possible (or itself unethical) to capture in a lab environment. For example, Dao et
al. (2021) cannot ethically ask participants in a VR headset to stand too close to a wall,
hoping they walk into it. Similarly, Rea et al. (2018) cannot ask participants to drive dan-
gerously close to moose, and Weenink et al. (2022b; 2022a) should not provoke fights
in public. User-generated videos found online also give researchers an opportunity to
observe real-world behaviour in a naturalistic setting, without influencing the actions of
those performing them—e.g., in their homes, cars, or on public transit. Moreover, the
financial cost to execute online video studies is often far less than the travel or remuner-
ation required to do them in person, and thus more likely to be conducted.

Researchers should take extra care to respect the privacy of those they observe in
videos, especially in the absence of informed consent. While researchers may simply
omit the names or faces of those appearing in videos, it is prudent to also prevent those
details from being easily obtained. For example, taking care to omit any information—
video IDs, URLs, or titles—that can be easily traced back to those videos. A common
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practice in the literature only refers to videos based on researcher-assigned identifiers
(e.g., Komkaite et al. 2019; Dao et al. 2021). In some cases, researchers may wish
to exercise additional caution when including quotes from videos—particularly those
dealing with sensitive subjects. For example, when Schuman et al. (2019) could not
obtain consent to publish certain quotes from war veterans, the researchers took care to
ensure that YouTube searches for those quotes did not reveal the videos in the first 20
results.

Naturally, researchers should be prepared to share their data in its raw form with
those peers who wish to either verify or replicate their work. This can be particularly
challenging in the face of copyright, and the terms of service for sites like YouTube.
However, sometimes it is necessary to download videos locally to help facilitate their
analysis. To use an example from our first study (Chapter 4), local copies of each video
let me review their footage more efficiently, and in the second (Chapter 5), local copies
allowed me to obtain higher quality automated transcriptions. In cases like these, video
files should be omitted from the data set that is shared with others. Of course, there is a
risk that one or more videos have been removed from YouTube, or made unavailable for
viewing in certain geographic regions. Researchers should therefore consider whether
such a potential scenario could threaten the validity of their work, and take reasonable
measures.

It is most important that researchers ensure their work does not inflict any kind of
harm upon those people they are studying. Of course, withholding their identity from
publication is a good place to start. However, when topics are particularly sensitive (e.g.,
religious or political beliefs, sexuality, gender identity, trauma, or disability) and people
who appear in videos could face any kind of harm (e.g., loss of income, disruption of
family life, or physical violence) upon having their identity revealed, then researchers
should exercise additional caution when sharing video data with other researchers. For
example, anonymizing and/or redacting transcript data, or producing a set of video files
that are modified to conceal peoples’ identities.

As with all ethical considerations, researchers must exercise judgement in all of the
above areas before deciding to proceed with a study. However, researchers may not value
all concerns equally, and the importance of each varies depending on the subject matter
of the research. For example, one may choose to prioritize transparency over privacy
when they are studying the behaviour of celebrities, or the videos have tens of millions
of views. In contrast, a researcher investigating insurance fraud may have accidentally
discovered whistle-blowers, and place more emphasis on obtaining informed consent,
and protecting their identity to avoid retaliation.
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Whether or not these decisions are clear, researchers should still consider discussing
their concerns with members of an ethics review board. While many studies using
YouTube videos omit any discussion about ethics approval (Sampson et al. 2013), we
encountered those where an IRB deemed approval was unnecessary (e.g., Basch et al.
2017; Kelly-Hedrick et al. 2018), and others where approval was obtained (e.g., Harrison
et al. 2014; Borgos-Rodriguez et al. 2019; Schuman et al. 2019).

3.5 Summary

The wide use of online video in research is a testament to its value as a source of data. It
provides benefits such as access to a massive library of videos, the opportunity to observe
real-world phenomena, and the potential for researchers to study populations that may
otherwise be unreachable. However, there are also limits to what can be achieved in a
study that relies upon services such as YouTube.

YouTube is certainly not the only place that video is created or watched online; Tik-
Tok, Snapchat, Twitch, Facebook, and Twitter all offer significant video features, and
researchers have certainly studied the content found on such platforms (see, e.g., Bar-
tolome & Niu 2023). However, YouTube’s use in research for analyzing video content
appears most prevalent. It offers a mechanism to query and view its content without an
account, and also a set of APIs that can do the same.5 Hence, it is currently the most
convenient place for researchers to gather and analyze the content of videos.

For example, YouTube’s query mechanism is opaque, does not return consistent re-
sults, and appears not to search beyond a video’s uploader-provided metadata. These
technical challenges can lead to researchers struggling to locate videos that are truly rel-
evant among large collections, unless they take measures to find efficiencies in manual
labour earlier in the data collection pipeline.

Despite their convenience, online videos are not an appropriate source of data for
all studies. Researchers must not only consider whether their research questions can be
answered using a collection of videos obtained online, but also whether it is ethical to do
so.

5Twitch also offers an API (https://dev.twitch.tv/docs/api/reference/), though it appears to be oriented
toward searching for streamers, or specific games that appear in videos.
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Chapter 4

A Hypothesis-Generating Study of
Musicians Learning by Ear

In this preliminary study, we set out to identify opportunities for the designers of purpose-
built technology to improve upon the process of by-ear learning. Our findings are based
on a content analysis of 18 videos that were collected from YouTube, each depicting
real-world examples of musicians learning from recordings by ear.

We discovered a number of remarkable elements in this set of videos that will drive
further inquiry, such as the different strategies used by musicians to retain notes in mem-
ory while playing by ear—a topic we explore further in the following chapters. Addition-
ally, we demonstrate that such a study of expert practitioners can be conducted without
introducing a financial cost, and without the need for ethics approval. Our methodol-
ogy provides a model for researchers and designers to gather enough information that
would help them decide whether to proceed with larger, more costly studies. Further, it
has the potential to shape such future work in ways that can improve the researcher’s
effectiveness.

4.1 Study Goals and Approach

We wish to understand how modern, experienced popular musicians interact with record-
ings as they learn music by ear. Specifically, we would like to know more about the kinds
of technology they use today, how they control recordings as they learn, their strate-
gies for reproducing the notes and sounds they hear on their instrument, and how they

43



work towards playing the song themselves. Based on these insights, we hope to identify
opportunities to help these musicians improve upon their process.

We are interested primarily in musicians with experience learning by ear. They al-
ready have a set of strategies that afford them the ability to expand their repertoire in
this way. We care less about whether these musicians are professionals, because learning
music by ear may not be tied to their source of income. For example, popular musicians
who make a living from their performances may lack these capabilities, only perform-
ing music they wrote, and having little desire to play other people’s songs. Similarly,
a musician that plays for their own entertainment may have mastered the skill of song
acquisition, and ritually learn new songs that they like shortly after release.

Further, we choose to focus on instrumentalists, not vocalists. This decision is largely
pragmatic. In our filtering methodology, we use the presence of an instrument to help
us rapidly select eligible videos. Admitting singers into the study would require in-depth
viewing at an early stage that would make the process far less tractable.

Much literature about popular musicians learning by ear comes from before the ubiq-
uitous availability of technology playing an endless supply of music. We argue that to
construct a theoretical frame from this material, upon which we would then build and
test hypotheses, would be disingenuous. Also, existing studies on popular musicians
are weighted heavily towards rock and blues players that learned by ear during the 70s
and 80s. Further, many of these studies were based upon interview responses, where re-
searchers sometimes reported difficulty getting musicians to recognize the significance of
the activity, and describe their process (Green 2017; Bennett 1980). When studies aimed
to observe by-ear learning strategies, they did not choose to study those with experience,
or—in the case of Johansson (2004)—when he recruited musicians with experience, they
were asked to perform the (rather unusual) task of learning as they heard a recording
for the first time.

Thus, we wanted to execute our study with few preconceived ideas about the way
musicians learn by ear, and form hypotheses by identifying notable phenomena while
observing people doing it. Our study’s design was partly influenced by that of Rueben
et al. (2021), who similarly lacked a theoretical frame, and conducted a hypothesis-
generating study to understand how participants formed mental models of a robot’s
behaviour. Where our study differs most notably is that we draw upon observations
of YouTube videos for which we have no control over content, and no guarantees that
relevant examples can even be obtained.

To conduct an in-person study of experienced musicians learning by ear would be
highly impractical. Since musicians typically learn by ear in private, we would have to
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bear the expense of traveling to either meet them where they practice their craft, or have
them visit us on-site. We could possibly reduce costs by selecting a small number of cities
that are known for having a large and diverse music community. However, we would
surely face challenges trying to situate ourselves in the practice spaces of musicians while
also adequately recording their activities, similar to what Paay et al. (2015) recognized
about most home kitchens. To invite musicians into a lab would require that we ask them
to replicate the environment in which they choose to work: bring their instrument(s),
and other elements that they need to learn successfully.

We could mitigate these difficulties by asking musicians to participate remotely, but
this presents additional challenges. Assuming we find willing participants that are open
to sharing this private activity with us, they must also have a certain set of skills and
equipment to ensure that we can capture their learning adequately. While cell phone
cameras are ubiquitous, and the population has grown more comfortable with videocon-
ferencing software since the COVID-19 pandemic, these sessions are still fraught with
technical issues that—if they don’t put an end to the session—could negatively impact
the participant’s demeanour.

Participants who publish videos of themselves learning music by ear typically have
attained a baseline level of competency that suits our study, and we can exclude those
who do not. This self-selecting nature of our study population is likely to produce the
same results as recruiting participants that: (1) have established by-ear learning strate-
gies, (2) can film themselves performing the task, and (3) are able to clearly demonstrate
the process while possibly also explaining their actions clearly. A deficiency in any one of
these elements could disqualify participants from either of a remote-participant or video
study like ours.

4.2 Method

4.2.1 Video Collection

Using the YouTube Data Tools1 website to perform our queries, we combined the results
from 5 searches executed between May 2–5, 2023. For each search, the query string
("learn songs by ear"|"learn music by ear"|"learn tunes by ear’’), date range
(prior to January 1, 2023), result ordering (by relevance) and maximum number of
videos (200) was held constant. These query results were obtained from an experiment

1https://tools.digitalmethods.net/netvizz/youtube/
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that demonstrates YouTube’s inconsistent relevance-ordered results (Section 3.3.4), and
merged to produce a collection of 255 unique videos.

Conceptually, we treat these videos as a sample of the corpus available on YouTube,
and do not intend to draw any parallels to a systematic review. We view this collection
of videos as analogous to a response to a call for participants—just as recruitment may
yield a number of inappropriate or unqualified interviewees, the videos require scrutiny
before we decide to include them in the study.

4.2.2 Video Selection

We used a filtering approach inspired by that of Nielsen et al.’s (2023) study of unguided
human-robot interactions in public places. Specifically, we selected relevant videos by ap-
plying high-level labels to each video after briefly reviewing their content, and retained
only the ones depicting genuine instances of learning by ear. We rejected many videos
in seconds: if we failed to identify an instrument while scrubbing the timeline and re-
viewing video thumbnails, the video was eliminated. For example, if the video contained
only a talking head or graphical slideshow, but the content still seemed relevant to by-ear
learning, the video would be categorized as describing-not-doing, and thus rejected. Such
efficiencies helped make this video study tractable.

When we encountered videos depicting an instrument in the hands of a musician,
they got slightly more scrutiny—we sampled brief segments of those videos to assess
whether the player was legitimately learning the material in an audio recording, or merely
giving a prepared lesson. For example, one video contained only hypothetical examples
based on nursery rhymes, and the presenters acted out the process of finding notes on
their instrument.

168 of the videos in the set were uploaded to the same channel, and largely depicted
musical performances or comedic content. The musical performances were given by a
solo pianist, but the comedic videos were entirely unrelated: they featured animated
musical performances from popular movies and TV shows, with the original soundtrack
replaced by over-dubbing the actual notes that would be sounded if the animated charac-
ter struck the notes that appeared to be played. Fortunately, these two categories of video
from this channel used a consistent title scheme that allowed us to apply labels en masse
based on the video’s metadata. One video from this uploader claimed to demonstrate
how they learn by ear, however it was a six hour long livestream. While sampling short
intervals of this video, we found instances of the player taking requests and performing
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for their audience, and the video was excluded.2

Three of the videos in the collection were segments from a larger transcription ses-
sion, and we decided to exclude the second and third parts of the video. This move
echoes a strategy we found among the findings from Sampson et al.’s (2013) systematic
literature review of YouTube studies: omitting all but the first in a multi-part series.

This filtering process yielded a total of 18 videos for further analysis, which we la-
belled V1 through V18.

4.2.3 Video Analysis

We watched each of the videos in its entirety as we took notes with varying levels of de-
tail. Our goal was not to transcribe the videos. Rather, we wrote a mixture of high-level
summaries, timestamped quotations, and brief descriptions of notable events from each
video that could be compared with others, and easily revisited as common themes devel-
oped. Videos often contained stretches of irrelevant content, and it was more important
to capture the time ranges that depicted the kinds of activities we wanted to analyze. For
example, we marked periods where the musician interacted with a recording, and not
those where viewers are asked to “like and subscribe”.

We met regularly to discuss remarkable findings that emerged from the videos, and
those we deemed worthy would trigger further study. Videos were reviewed over the
time ranges relevant to the phenomena, paying close attention to different details with
each viewing. For example, once it was deemed significant that musicians often sang
melodies, we would re-watch those videos, using our notes to direct us to relevant seg-
ments. Then, we looked more closely to identify whether they sung alongside the record-
ing, after stopping playback, or while identifying notes on their instrument.

Late in the study, these reviews became more frequent as we continued to refine our
findings, and the process became more difficult to maintain. It is at this point that we
decided to download all 18 videos to local storage and review their footage in Final Cut
Pro (Section 3.3.3).

2Later in the study, we discovered this video contained legitimate segments of learning that we missed.
Had it passed the initial screening, we would have likely excluded it based on its six-hour duration.
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4.2.4 Summary

The above method of querying, filtering, and analysis of the videos’ content is largely
tailored for use in a preliminary, hypothesis-generating video study. Our query strategy
is less comprehensive compared to other HCI studies that combine sets of keywords to
generate a large set of search terms in an attempt to maximize the number of relevant
videos retrieved (e.g., Anthony et al. 2013; Wentzel et al. 2022; Vatavu et al. 2022).
However, breadth was less of a concern for us, because we were not interested in “drink-
ing from the firehose” at this early stage of our research—we did not feel ready to process
an overwhelming amount of video material just yet.

4.3 Overview of the Videos

The 18 videos we chose to study had durations that ranged from a minute and 31 seconds
to over an hour and 14 minutes. The average duration of the videos was approximately
22 minutes, and half were less than 15 minutes long. In sum, the total viewing time of
the videos was more than six hours and 38 minutes. According to the metadata, videos
were uploaded to YouTube between November 4, 2017 and November 18, 2022.

Two videos depicted saxophonists, two depicted pianists, and the rest depicted gui-
tarists. All 18 videos in our collection depicted perceptibly male presenters.

Overall, these videos failed to garner a large audience. The most-watched video
had 28,923 views, and the median view count was only 541. To put these numbers in
perspective, a video from the original set of 255 was viewed more than 8 million times.
Despite the low viewership, we were surprised to discover videos that had only a few
dozen views, yet carried some of the most valuable footage.

While viewing these videos, it often felt as though we were watching responses that
were submitted to us in a participant study. Had we requested our participants to film
themselves learning a piece of music by ear while talking us through their process, we
would expect to obtain a set of videos like many of those we collected from YouTube.
However, not all the videos were as transparent and raw as we would like.

For example, two of the videos—V6 and V8—came from the same source in livestream
format, where the guitarist interacted with his audience via text chat. While this video
appeared to be unedited, and the musician in the videos was clearly very adept at learn-
ing songs by ear, their behaviour in the video was clearly influenced by the virtual pres-
ence of the audience. For example, they learned songs that were requested by viewers,
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and at one point they got stuck on a chord and exclaimed, “Gosh darn it. This is what I
was worried about. Now I’m going to be stumped here.” This may have been an expres-
sion of embarrassment and/or discomfort with struggling in front of others, and lends
credence to Bennett’s assessment regarding the desire for privacy during this learning
activity (Bennett 1980).

We also encountered some videos that were edited heavily, such as V4. It was only
91 seconds in duration, and depicted short segments of the process of ear learning. De-
spite its brief presentation, the footage that remained in the video demonstrated genuine
learning: we observed the player making mistakes as they experimented until the cor-
rect notes were found. In other videos, editing was not used to produce succinct content.
Rather, it was used to intersperse footage from the presenter’s computer screen record-
ings with their demonstrations.

4.4 Results

Here, we identify patterns common to many of the videos, and discuss how these give
rise to hypotheses for further analysis.

4.4.1 Scope of Learning

In only three of the videos did we observe musicians working to learn the entirety of a
song. However, only V2 provides evidence that they did so successfully—the guitarist
includes their performance of the whole song at the end of the video. In the rest of the
videos, musicians learned only portions of songs—solos, riffs, or a subset of the chords.
For many popular songs, the repetition in subsequent verses and choruses means that
learning one is often sufficient to know how the others are played. The guitarist in V1
helps to explain this before closing their video:

There’s basically only 3 parts to the entire song. There’s the intro; a little fast
riff [singing], that leads us right into the verse. The verse always goes twice.
Um, chords in the verse: D, G, E minor, A, D, happens again. Then we move
into that second part where we play a B major chord into F sharp minor. That
happens twice before we hit A and then we hang in on E before hitting the
intro again and that leads us back into the verse again, right? That’s how I do
it. Rather than thinking of every chord all the time, I think about what chords
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are in the part and then I group them in my mind and like spread it out into
different sections.

This repetitive tendency of popular music makes it such that learning the core skill of
finding chords, or individual notes by ear, allows any musician—with sufficient time and
effort—to learn the entirety of any song by learning the first instance of each repeated
section. This could explain why so many musicians chose to include such short segments
of learning: it may be the case that their interactions within one section of a recording
are highly intensive in the beginning, while subsequent repetitions of those sections may
be learned more quickly, or skipped altogether. Some musicians may only care to learn
segments of songs that carry some degree of novelty. Of course, it is also plausible
that these decisions were necessitated by the medium—YouTube limits uploads to 15
minutes in duration for unverified accounts3, and succinct videos may attract viewers
with shrinking attention spans.

This led us to wonder whether there is a not a universal set of recording interactions,
but rather ones that are specific to the musician’s scope of learning. For instance, a
musician learning a solo might reach for tools that allow for manipulating the playback
speed, whereas a musician interested in chords or other high-level structural elements
might not require such features. However, our videos contain evidence to the contrary.
The musician in V16 was learning a guitar solo within a pop song, and the guitarist in V17
was learning to play fingerstyle chords on their acoustic guitar to match the recording.
However, it was the guitarist in V17 that chose to slow, and loop the playback—the player
learning the guitar solo could do so at full speed. This suggests that a musician’s need to
slow playback is not exclusive to those players learning solos.

We identified two avenues of inquiry that should be considered for future study. First,
we would like to further understand this dichotomy between those musicians who strive
to learn only segments, and those who work towards playing the entirety of a song.
Second, we think that those who wish to learn songs as a whole may benefit from a
more structure-oriented graphical representation of a recording—one that exploits the
repetition found in many popular songs to aid learning, memory, and recall.

4.4.2 Transcription and the Role of Notation

In three of the videos, musicians transcribed the notes from the recording to generate
sheet music for the songs as they learned them. Unlike the process of transcribing speech,

3https://support.google.com/youtube/answer/71673
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wherein words are recorded as they are recognized, the musicians in these videos did not
enter the notes they heard until they were located on their own instrument.

The musicians recorded notation onto a staff (V18), or as guitar tablature (V2 and
V17) using software designed for those purposes. To verify the correctness of their sheet
music, the presenters in these videos did not sight-read what they entered. Instead, they
used the software’s built-in synthesizer to perform their sheet music virtually so they
could assess whether the notes were representative of the original recording. This evi-
dence suggests that while by-ear learning is necessary to produce notation, the converse
may not be true.

In V17 and V18, the stated goal of the videos was to demonstrate the transcription
process. However, it is unclear why they felt motivated to create sheet music. Only
the guitarist in V2 states explicitly the role that transcription plays in their own process:
“The reason [you generate tablature] is that you can accurately learn even complicated
rhythms. Another reason is to remember.” That is, this guitarist claims the notation
helps them reason about rhythm patterns, and also serves as a memory aid. However,
despite this claim about using tablature to learn rhythm accurately, the guitarist con-
tradicts this by learning the song’s (quite rhythmically complex) solo later in the video
without appearing to enter or use any tablature.

In the 15 remaining videos, musicians do not produce any notation using software,
or by placing marks onto paper, but they demonstrate the same set of skills that we see
in the videos about transcription. It is apparent that musicians can learn music by ear
without writing anything down, and producing notation is not necessary to learn music
by ear.

From these observations we identified some ripe opportunities for future work to
develop an understanding of the role that notation plays for musicians as they learn by
ear. For example, it seems obvious that recording notes as tablature or on a staff—either
digitally, or on paper—serves the role of a memory aid or transmission mechanism for
what was learned by ear, though it does not seem that this notation facilitates the ear
learning process. Further, it would appear that those who rely upon notation for later
recall may benefit from technological tools that can store and display notation alongside
the recordings they are learning.

4.4.3 Use of Technology

It was not always clear what technology the musicians used to play and interact with
recordings, but in eight of the eighteen videos we could observe its use. In some, the

51



creator of the video included a screen capture; the rest merely pointed a camera at the
screen. In all the videos depicting technology, none included purpose-built hardware
devices—only software running on a smartphone or computer. Among this set of eight
videos, musicians used YouTube for music playback in three of them. Three other videos
used non-specialized players—Music (on the iPhone), Spotify, and iTunes (on a Mac).
In one of the remaining videos, the musician used Digital Audio Workstation (DAW)
software. Finally, we discovered a single video that featured purpose-built software—
Transcribe!4, running on a Mac—though the musician used it to play audiovisual content
(i.e. a video). For this as well as the videos where YouTube was used, we only considered
the musician’s interactions with the audio component of the media. Because there were
so few videos that presented the use of technology visually, we used a more general
approach: rather than focusing on specific software or hardware, we instead looked for
evidence that suggested the musicians were using specialized features. To do this, we
observed how the musicians interacted with the recordings by watching their actions and
listening to both the audio playback and their narration as they learned their parts.

Because so few videos placed technology prominently in the frame, we tried to iden-
tify purpose-built features using a combination of body language, dialogue, and apparent
changes in audio playback. For example, in V12 the saxophonist’s shoulder raises slightly
before stating YouTube was used to slow playback, we hear the music start, and his shoul-
der lowers again. This sequence of turns in the video allows us to infer slowing was used,
and that the saxophone player controlled the playback event (Knoblauch et al. 2014).

Given that the majority of the musicians from the videos we studied do not employ
features from purpose-built technology, it would appear that they are no better off than
their counterparts were more than 40 years ago. In the 14 videos that did not contain
special-purpose technology, these thirteen musicians5 listened to the recordings at full
speed, and they were content to repeat passages with little precision. This group of
musicians could be handed a record, cassette, or CD player with the same music they
learned in their videos, and—provided they knew how to operate the equipment—the
act of learning the music by ear would look very much the same.

With so few occurrences of purpose-built technology use, we are left wondering
whether such technology is helpful, or in broad use among experienced players. How-
ever, it certainly sparks the need for further inquiry. Additionally, we question whether
experienced musicians feel no need for their features once they become proficient, or are
simply unaware of them.

4https://seventhstring.com
5The same musician appears in V6 and V8.
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4.4.4 Temporary Note Retention

When learning music by ear, musicians must first recall one or more of the notes from
a recording before they can be repeated. Similar to working memory, which lets us
carry a phone number or similarly small piece of data before it is utilized, it seems that
musicians would have to retain a string of pitches for some duration before they could
repeat them on their instrument. We observed three different strategies—often used in
combination—that musicians deployed to briefly remember one or more notes.

In eleven of the videos, musicians played their instrument while listening to the
recording at the same time. Many of them did this to verify the correctness of the notes
they learned using other strategies. However, as a note-finding strategy itself, musicians
played atop the recording to hunt for anchoring notes—to identify the chords, or key of
the song. For example, the saxophonist in V12 plays scales over the recording of the solo
he is learning to find the one that suits it best. In those instances where the musician
appeared to locate the notes of interest as the recording played, it came after a delay—
the player was repeating phrases heard moments before, and was effectively confirming
correctness. That is, they could use their mind’s ear (discussed below), only without
stopping the recording so frequently.

Eight of the videos provided us with examples where musicians would sing (or hum)
the notes they hear in the recording. Some of the musicians in this group continued to
sing these notes as they look for the same pitches on their instrument, but others appear
to repeat the notes to simply hold them in memory—just as one might recite a phone
number. The musicians that sing while hunting for the correct note appeared to create
audible goal tones they used for comparison as they narrowed the error between their
instrument and their voice. In contrast, the other musicians alternated between their
singing and playing, implying that these goal tones are “heard” elsewhere.

Ten of our videos—some in common with the aforementioned subset—contain ex-
amples of musicians that demonstrate their exclusive use of the mind’s ear (Covington
2005). That is, these musicians could listen to the recording, retain the notes of interest
in their mind, and then locate them on the instrument without supplementary audible
feedback. In the case of saxophone players, their breath is used exclusively on the in-
strument: these musicians cannot produce sounds simultaneously humming and playing
notes on the saxophone until they match up. This practice is demonstrated in V12, where
a saxophonist repeatedly sings the melody they are trying to learn—both alongside the
recording, and after it is stopped—in an attempt to internalize those notes before at-
tempting to play them on their saxophone. Again, this is much like what Covington
saw:
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[. . . ] performers consistently spoke of mental hearing as preceding what
emerged from an instrument. That is, mental hearing is recognized as being
more accurate than performing and needs to direct the actual performance.
Working out phrasing and fine-tuning one’s acuity for pitch need to occur
in one’s mental ear. The inner ear provides the leadership for performing—
mental hearing is the leader for the next note, the dynamic shape of a passage,
and intonation. (Covington 2005)

When musicians used humming or singing as a part of their method, their voice
plays the role of another instrument on which they can play notes more readily. That
is, learning to sing the notes they hear is an exercise in ear learning that comes more
naturally to those musicians. It might be the case that more experienced musicians shed
this intermediate step once they develop the ability to play notes with their instrument
as naturally as they can hum them.

Considering these findings, we wish to understand how memory plays a role while
learning by ear. We expect that people with working memory limitations, or limited
experience, may need to work differently as they learn by ear. Perhaps they can learn
few notes at once, and would benefit from technological supports: the ability to restart
playback from a specific note, or work in shorter segments. We should also consider
the needs of wind and brass instrumentalists with an under-developed mind’s ear. For
example, offering repetitive playback of phrases, or continuously sounding individual
notes. Finally, those with a highly-developed melodic memory may benefit from tech-
nology that exploits this ability—allowing musicians to navigate recordings in musically
relevant, bite-sized chunks.

4.4.5 Familiarity with the Music

In eight of the videos we analyzed, the musicians made explicit claims to suggest that
their on-camera attempt to learn the recording was their first experience doing so. The
guitarist in V11 stated this fact emphatically: “I can promise you I have never heard
this song before.” Many of these videos were filmed to satisfy requests—from friends, or
their online audience—for the musicians to demonstrate their own process for learning
songs by ear. It appears that deliberately choosing an unfamiliar song helps the musician
convey their intention to portray a genuine attempt. However, it is not clear whether this
ability to learn a song cold (i.e. without hearing it in advance) is a necessary skill for
musicians that learn by ear, and why the musicians in these videos chose to approach
their demonstration in this way.
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Despite making no claims about their unfamiliarity with the recording, the guitarist in
V1 provides us with a helpful anecdote that may explain the need for this skill: they were
once asked to substitute for a lead guitarist on short notice, and had to learn another
band’s material to prepare for four performances over two days. Similarly, the guitarist
in V15 explained that they often need to learn on the spot when asked by students to
teach them songs the guitarist did not know how to play. These anecdotes, combined
with the explicit statements in eight of the videos, suggests that learning unfamiliar
material is indeed an important skill for some musicians to develop.

While eight of the musicians lend evidence to suggest the need for learning new ma-
terial quickly, it appears that those who are most familiar with the music seem to struggle
less while learning it. For example, the guitarist in V14 explains that—despite learning a
song that was new to them—they listened repeatedly to the recording before attempting
to learn it. That is, they intentionally developed a familiarity with the song first. In doing
so, the guitarist appears to have constructed enough of an aural image in their mind that
they could demonstrate the song’s main riff before starting their concerted effort to learn
from the recording. They claimed that they could visualize themselves playing the riff
on the fretboard as they were listening, which supports the idea that this guitarist has
considerable skill with their instrument.

Even though specific recordings may not have been familiar to the musicians, it was
often apparent that most songs in the videos fell within a collection of music they were
already well acquainted with. For example, the guitarist in V10 claimed that “I don’t
even know this one” while listening to one of the songs they attempted to learn in this
video, but later suggested there were others by the same artist that they already knew. In
the video, this example was one among a set of country songs that he could play himself
rather quickly after hearing them. Similarly, in V14 we see a rock guitarist learning a
rock song, and in V2 a metal guitarist learning metal.

The guitarist in V7 was clearly familiar with jazz music, though in the video they were
trying to identify jazz chords that were originally played on a piano. Unlike the players
in V2, V10, and V14, who could readily draw upon guitar-oriented idioms, the guitarist
in V7 had to discover the voicing on the guitar that best represented what the pianist
played in the recording. They worked more slowly because they had not yet developed
the required finger routes—those shapes and scales that get programmed into the player’s
brain, and sets the frame of what they can play (Lilliestam 1996). This evidence suggests
that familiarity with both the genre and instrument being copied contribute to the ease
of learning.

We feel that it would be useful to explore further how one’s familiarity with a song
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impacts the learning experience, and whether the practice of repeated, intentional listen-
ings of a recording beforehand should be prerequisites for the learning process. Addition-
ally, one’s familiarity could be exploited in a technological tool that hopes to encourage
one’s learning by ear—for example, highlighting songs that have a high play count in the
user’s music library. Although we did not encounter an example of a “fish out of water”
learning to play music entirely outside their most familiar genres, performed on different
instruments, we wonder whether that is a function of one’s limited taste, or perhaps this
mismatch adds some level of difficulty to the task that we are unaware of. Future work
could certainly explore this further.

4.4.6 Application of Music Theory

Among the set of videos, eight guitarists and one pianist set out to identify the names of
chords in the song they were learning. That is, they stated both the root of the chord, and
whether it was major or minor (including any extensions or inversions, if applicable.)
While naming chords may appear to demonstrate some knowledge of music theory—
albeit at a basic level—we instead wish to think about how the musician deploys this
knowledge to their advantage.

To give an illustrative example, we compare the chord finding approaches of the
guitarists in V6 and V13. In V13, the guitarist starts by identifying the bass notes in the
recording, and auditions both major and minor variations of possible chords to identify
which one sounds correct, using a trial and error approach. In contrast, the guitarist in
V6 first identifies the key of F major, then refers to chords numerically (“the four chord”,
“the two chord”). By knowing the diatonic chords (i.e. those that occur in the key), the
musician can immediately determine whether a chord is major or minor by the position
of the bass note in the key. Further, this guitarist can also draw upon a vocabulary of
common chord progressions (e.g., vi-ii-V-I, I-IV-V), and anticipate what chords came after
those they just identified. The strategies we observed resemble some of those identified
by Johansson (2004), though in his study they were divided based on whether they were
deployed while listening, or playing.

There appears to be a similar split among the musicians learning individual notes—
those who start by determining the key or scale of the recording, and those who instead
hunt for individual notes on their instrument. The guitarist in V11 describes the latter
strategy as follows:

[. . . ] I’ll just find a nearby note [plays note]. If that note sounds too high, I’ll
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go down [plays note on adjacent fret]. If it sounds too low—say I hit this note
first [plays note one fret lower than the first]—then I’ll go up.

Interestingly, those musicians who tried to identify the key in the videos also used
similar techniques to do so. For example, the saxophone player in V12 suggested they
also employed a trial and error approach:

So I identified by playing through different notes like in church—when I used
to play keyboard in church—I would start picking random notes and would
start going chromatically up and down until one of those notes stood out to
me. And if it did stand out to me, then I would test the scale. So, D stood
out to me, so I tested the D minor pentatonic because it sounds bluesy. And,
I saw that all the notes worked. So there’s a good chance that this song is in
D when learning by ear.

Another strategy that we observed for locating the song’s key made reference to a
song’s home base—a chord or “note that feels like home”, as described by the guitarist
in V15. Rather than auditioning the whole scale to hear what fits best, the musicians
deploying this strategy would instead look for a single chord or note that sounded like
the root of a given scale, then they worked through a limited number of possibilities to
locate it.

The key difference between those who found the key before learning individual notes
and those who didn’t is that once they acquired the key, subsequent experimentation
seemed to disappear. For example, the D minor pentatonic scale reduces the musician’s
search space significantly to only 5 out of the 12 chromatic tones in an octave, which un-
doubtedly helps speed up the process. We observe this benefit in V12 when, after hearing
and singing a phrase from the song, the saxophonist could replicate it immediately on
the first try.

Generally, those musicians that could apply their knowledge of music theory appeared
to struggle less with the acquisition of chords and notes. This certainly deserves further
study, especially when we consider the possible implications for the designers of purpose-
built technology. However, we wonder whether this apparent grasp of theory is instead
a proxy for the proficiency of the player. That is, a saxophone player who has practiced a
scale hundreds of times has not only learned its name, but has the muscle memory to play
it with ease, and perhaps recognizes its intervals. Similarly, a guitarist who has developed
a sizeable repertoire of popular songs has played the most common chord progressions
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repeatedly, and hence can anticipate—or hear—certain sequences of chords. Therefore,
it seems unlikely that developing one’s understanding of music theory independently
from its application on an instrument would improve their ability to learn how to play it
themselves.

4.5 Discussion

4.5.1 Limitations of Our Study

As stated earlier, the majority of musicians only shared footage of themselves learning
short portions of songs. This tendency to provide a piecemeal presentation of the process
makes it difficult for us to observe the strategies musicians use to work out entire pieces
of music. Moreover, we only had one video that contained a performance of the song
learned by ear. That means we cannot gauge whether the strategies we observed in the
videos were actually effective.

While the self-selecting nature of musicians posting to YouTube allowed us to study
those with some baseline level of competency, we risk collecting a set of examples that
are largely performative in nature. For example, we have no way to verify that a musician
has not heard a recording before filming their video, or that their struggle to locate notes
on their instrument is authentic.

The videos we studied all contained perceptibly male musicians, which is especially
unfortunate for a modern study. While we are aware of videos on YouTube that feature
perceptibly female musicians learning by ear, our queries and filtering strategy failed to
capture them for this study. In our follow-up study of lesson videos (Chapter 5), we in-
clude three such musicians, though they were still vastly under-represented. We hope to
rectify this imbalance by taking concrete steps in future work to increase representation
across a more diverse set of gender identities.

We intentionally used a simple query methodology for this study that resulted in a
small data set, and acknowledge that it would have taken little effort to multiply its
size—using snowball sampling, additional query strings, and other more sophisticated
techniques. However, given the nature of our study—generating hypotheses, and not
presenting results based on our data—we feel this possible oversight should be forgiven.
This was a preliminary study, which required a great deal of effort to categorize the
videos, then generate a collection of observation data. Given the wide range of methods
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used in this aspect of other YouTube video studies, and experimental results that chal-
lenge researchers’ claims of systematicity, we felt it was necessary to save the design of a
more comprehensive strategy for future work.

4.5.2 Future Work

For us to test whether the desired set of interactions changes depending on the musician’s
scope of learning (i.e. how much of a song to learn), we would have to recruit musicians
with experience learning entire songs, melodies, and instrumental solos by ear. Such a
study should present all participants with suitable (to their instrument, genre) recorded
material to learn from. Ideally, this would occur over two phases: one where participants
learn using their preferred tools, and one where researchers supply a tool that has a
wide range of human-recording interactions. In the latter configuration, the participants
would be provided with sufficient training so that the entirety of the interactions are
accessible to them. However, the former is necessary so that we can control for existing
habits that may drive participants toward features they have existing familiarity with.

A similar study could test whether musicians learning entire songs would benefit from
structure-oriented graphical representations. For example, recordings could be presented
with one of three modalities: a simple timeline, a timeline rendered using a waveform
representation, and an interface that presents the measures and sections. Each would
provide navigation that is appropriate to the interface, such as tapping on a numbered
measure to begin playback from that point.

Testing whether transcription plays a role in the by-ear learning process would require
either an in-person or remote study where participants are divided into two groups:
those who are free to transcribe as they learn a piece by ear, and those who are asked
not to record anything onto paper. Because transcriptions vary based on one’s chosen
instrument, and the detail of the material they are learning, segmentation of these results
could be particularly interesting. For example, pianists may be more comfortable sight-
reading, and may be more apt to rely upon transcriptions compared to guitarists.

To better understand the proliferation of purpose-built technology products among
those who learn by ear, it seems that a survey would provide us with sufficient insight.
We not only wish to enumerate the use of such technology among musicians, but also
gather additional information about how their usage evolves as their learning skills im-
prove. Ideally, this would be a carried out as a longitudinal study that follows early-
intermediate instrumentalists to see how their opinions shift. However, a single survey
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could gather additional valuable information such as one’s frequency of by-ear learning,
and the scenarios in which they must employ these skills.

In order to gauge technological supports for musicians that have not yet developed
the working memory required to learn longer-running musical phrases, we would need
a mixture of participants with varying levels of experience, and also a way to gauge their
working memory with respect to one another. What we are hoping to find is that one
of a number of provided tools causes those with (measured) limited working memory
to learn more efficiently. A difficulty with such a study is accounting for neurodivergent
participants—e.g., the limited working memory of those with ADHD (Vassileva et al.
2001).

To explore the impact of one’s level of familiarity with a piece of music before learning
it by ear, a rather simple experiment could supply participants with a previously-unheard
recording of music, and let them hear it an increasing number times before asking them
to learn it themselves. Not only would we measure the duration of the learning session—
expecting that to negatively correlate with the number of listenings— but also observe
how the musician’s interactions with the recording change.

Finally, we wish to discover more about the role that a musician’s grasp of music
theory plays as they learn by ear. It seems unlikely that we would find many experienced
musicians who completely lack theoretical knowledge, because they may well develop
some baseline vocabulary as they grow more comfortable playing their instrument—
especially if they do so with others. Further, there is a good chance that musicians have
been exposed to some degree of music theory at a young age—those who showed an
early interest in music may have taken piano lessons, or were fortunate to have music
classes during elementary school. Therefore, it seems disingenuous to seek out those
with experience who eschew such learning. Instead of comparing musicians based upon
their breadth of knowledge—seeking evidence that one’s grasp of theory contributes to
their by-ear learning aptitude—we think observations of by-ear learning sessions are
also necessary for such a study. Specifically, we would wish to focus on the written and
spoken terminology employed during the learning session in order to discover which
parts of music theory are called upon.

4.6 Summary

We set out to clarify our understanding about how musicians learn from recordings by
ear, and observed 18 in-the-wild examples of them doing so. From these observations,

60



we formed a set of hypotheses that lead us towards future studies.

This study made it clear that the methods employed by experienced musicians to
learn from recordings seemed to play a more significant role than technology did—we
observed few interactions with purpose-built technology. However, we saw musicians
use different strategies to translate what they heard into a rendition of notes on their
instrument.

Remarkably, we witnessed some musicians singing notes while seeking them on the
instrument, and others that were unable to do so. However, both had to retain notes in
their mind’s ear while seeking them. We also saw evidence that familiarity with a song
or genre of music may provide musicians with some additional benefits—perhaps addi-
tional context, or maybe long-held memories that aided with learning. These findings
led us to conduct the survey of literature found in Section 2.4, and start to develop an
understanding of musical memory.

The variations of the methods used by musicians could be explained by differences
in foundational abilities, such as limited working memory, or an inability to sing pitches.
However, it could also be the case that musicians are simply taught a mixture of strategies
for doing so—some of which seem less effective than others. Unfortunately, we have
not discovered a body of literature that sheds light on these variations in the methods
employed by musicians who learn by ear from recordings. As a result, we conduct our
own study of this question in Chapter 5.
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Chapter 5

Towards an Understanding of the
By-Ear Learning Task

Through an analysis of lesson videos acquired primarily from YouTube, we wish to char-
acterize the task of learning by ear from recordings. Based on findings from the previous
study (Chapter 4), we also focus our analytic lens to identify those parts of the lesson
where one’s memory for music (Section 2.4) is called upon. Specifically, we looked for
instances where teachers discuss short-term or working memory, where it is used in the
process of learning by ear, and any suggestions that musicians should develop or leverage
their familiarity with a piece of music.

What we learn from this study is two-fold. First, we confirmed that musicians teach
a wide variety of methods to learn songs by ear from recordings. Second, we find that
memory not only plays a significant role in this process, but also that a musician’s foun-
dational memory abilities can help explain some of the differences we see between meth-
ods.

5.1 Study Goals and Approach

In a preliminary study (Chapter 4), we learned that musicians used varying techniques to
learn notes during their interactions with recordings, especially while trying to remember
and play the notes heard in a recording. For example, some musicians found it necessary
to sing each note while seeking it on their instrument, while others appeared to sing for
the sole purpose of remembering the notes. However, we could only hypothesize about
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the cause of these differences. While a saxophone player is unable to simultaneously sing
a note while seeking it on the instrument, this does not explain why a guitarist could find
their notes without having to sing them. Perhaps each of these musicians were taught
to find notes in a certain way, but maybe they happened upon a practice that suited
their own memory abilities. In this study, we set out to answer the following research
questions.

RQ1: How are musicians taught to learn songs by ear from recordings? We hypothesize
that analyzing a collection of lessons should allow us to form an approximate model of
the task that a musician is taught to follow when learning a song from a recording.

RQ2: What differences exist between the teachings of by-ear learning’s component tasks?
Based on our findings in the previous study, we expect to find differences in tasks such
as finding notes or chords. For example, some may rely upon their knowledge of theory
while others do not.

RQ3: How does the musical memory of a musician play a role in by-ear learning? Again,
our previous study suggests that memory plays a role when a musician needs to copy
notes from a recording on their instrument, as does our research into musical memory
(Section 2.4). Related, RQ3.1: Do teachers explain how one’s memory for music is related
to by-ear learning? An answer to this question could shed light on the importance of
one’s musical memory, explained from a teacher’s point of view.

YouTube contains a wealth of relevant video data, and is an appropriate choice for
many of the reasons discussed in Section 3.1. Further, analyzing lesson content on
YouTube has already proven useful for other studies in the field of music education (e.g.,
Kruse & Veblen 2012; Whitaker et al. 2014; O’Leary 2020). We also know that a suitable
collection of ear-learning lessons exists on YouTube. Many such videos surfaced during
the prior study, but failed to meet our eligibility criteria—they lacked a genuine example
of by-ear learning, and instead focused on explaining it in a lesson format. In the present
study, finding such explanations was precisely our goal.

We also wish to focus on videos that are widely viewed, and those videos that reg-
ular YouTube users are going to find when they search for lessons about learning by
ear. Videos that rank high in a user’s search are likely to have retained viewers’ atten-
tion, been liked, or commented upon. Presumably, the level of audience engagement
should indicate something about the perceived value of its content, but this approach
could introduce a bias towards entertainment over effectiveness—for example, surfacing
poor-quality videos that attract vitriolic comments. To provide contrast, we also ana-
lyze the content of a commercially available, multi-instrumental DVD video lesson about
learning songs by ear from recordings (Huckabee 2004). This video will provide another
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source of comparison for both the quality and relevance of content found among the
online videos.

Given the apparent lack of a standard pedagogical framework for by-ear learning from
recordings, we use an approach inspired by grounded theory (Section 3.2.4). Specifically,
the content of videos is coded openly, then grouped into concepts and categories progres-
sively as we gather additional data. Then, we review these data as hypotheses develop,
and identify similarities and differences between notable concepts or categories.

5.2 Method

5.2.1 Obtaining Videos and Transcripts

The video collection started with a two-hour-long DVD from my own personal library
(Huckabee 2004), and one video from the previous study. We then added the results
of a YouTube search performed on February 16th, 2024 with the query string "how to"

"learn songs by ear"|"learn music by ear’’. Results were sorted by view count,
and we considered only the top 15 most-seen videos from this list.

The first 16 videos were biased towards guitarists, and the query string did not seem
characteristic of a regular YouTube user. Thus, we simplified the query, and added the
name of a specific instrument to each. Our instrument selection was based upon the
prevalence of instruments in popular music—the piano (/keyboard, 70%), guitar (50%),
and bass (30%) were most-credited among the Billboard Hot 100 Songs from 20231.
Despite not appearing in this list, we also considered the saxophone because it is inher-
ently monophonic, and at times has been found regularly in popular music (McKinney
2017). Instrument-specific searches used the same prefix string—learn songs by ear

on—followed by: piano, guitar, bass, or saxophone. Each search was sorted by rele-
vance to match the default behaviour on the YouTube website. Searches were performed
between February 26th and March 4th, 2024, and we considered only the top 5 results
from each.

The above searches were all performed using the YouTube Data Tools2, a website
that accesses YouTube via its official search API. For each online video, we obtained

1https://www.billboard.com/charts/year-end/2023/hot-100-songs/. Performer credits were obtained
from Apple Music.

2https://tools.digitalmethods.net/netvizz/youtube/
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IDs Query Qty

V0xx n/a - seed videos 2
V1xx "how to" "learn songs by ear"|"learn music by ear" 9
V2xx learn songs by ear on piano 5
V3xx learn songs by ear on guitar 4
V4xx learn songs by ear on bass 4
V5xx learn songs by ear on saxophone 5

Total 29

Table 5.1: The video IDs for each of the six rounds of data collection, including the query
terms and the number of eligible videos that were analyzed.

automatically generated transcripts from YouTube. Using Aiko3, the DVD video lesson
was transcribed using a local copy of the whisper v2 model from OpenAI4. The quality of
the transcript was superior to those obtained from YouTube, so we downloaded the rest
of the videos to local storage and transcribed each of them. For those videos where Aiko
failed to generate a usable transcript, we continued with YouTube’s version.

The main criteria used to determine video eligibility in this study was duration (up to
one hour long), instrument, and language. In the first search, we rejected a drumming
video that was longer than one hour, one video in Spanish, and a violinist teaching with
Arabic Maqam music. In the instrument-specific searches, one bass video was omitted
for being longer than one hour. The two-hour-long DVD was the sole exception to this
rule.

We identify videos using a numeric code corresponding to the query they were ob-
tained from. When videos appeared across multiple searches, we assigned them an ID
that represents the first instrument-specific search they appeared in. For example, a
video in both the 12th position of the general search results and the first position of the
saxophone results was assigned V501 rather than V112. Another that appeared 5th in
the piano-specific search and 4th in guitar-specific search but was assigned V205. See
Table 5.1 for a list of queries, the codes associated with them, and how many videos each
contributed to the study.

3https://sindresorhus.com/aiko
4https://openai.com/research/whisper
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5.2.2 Coding Videos

The videos were analyzed iteratively, beginning with the open coding (Corbin & Strauss
2008; Charmaz 2014) of transcripts. We coded fine-grained segments—on the order of
1-3 statements long—in a way that represented what the presenter was saying or doing.
Our codes include things such as Finding one note at a time, Pausing playback after first
note is heard, or Suggesting that one may need to start by learning notes one at a time.
Codes were grouped into concepts, then arranged hierarchically into categories. For
example, we grouped the above codes into the concept One Note at a Time, and combined
it with the One Chord at a Time and Bite-Sized Pieces concepts to form the Working in
Chunks sub-category that sat beneath the top-level Memory for Music category.

Following an approach inspired by grounded theory (Section 3.2.4), coding was per-
formed in tandem with our data collection. We captured memos as concepts and cate-
gories began to form, and met regularly to discuss the emergent findings. Additionally,
we continually revisited the data to help refine our thinking about those categories we
deemed most remarkable.

We coded a total of 29 videos, and identified 5 top-level categories: About By-Ear
Learning, About the Teacher, Prescribed Order of Learning, Recognition Strategies, and
Memory for Music.

5.3 Results

Here we present the most notable categories that we identified, all of which apply
to by-ear learning. In these videos, we observed people speaking from a position of
experience—teaching to the audience. While we can neither assess their credentials or
competence, we refer to those people generally as teachers, and viewers as students.

One category—About the Teacher—is entirely superfluous to our study. It captured
sub-categories such as self-promotion, openness to audience feedback, and statements re-
lated to the teacher’s own skills. Here we find (paraphrased) calls to “like and subscribe”,
“buy my e-book”, or “sign up for my online course”; requests to “leave a comment below”,
or “send me a message if you have questions”; and claims such as “I am still building my
music theory knowledge”, or demonstrating their skills by learning a set of songs re-
quested by their viewers. We merely gathered these codes to help us shape the coding
practices that led to our results.
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5.3.1 About By-Ear Learning

Many online teachers shared the opinion that pop music instrumentalists should strive
to learn music by ear. Their statements were most often platitudes, merely suggesting
that it is the most important thing to learn (V001, V503), or that it makes you a better
musician (V302, V303). Some teachers helped shed light on these ideas with more con-
crete claims: repeated practice develops your ear (V001) over time; also, learning music
by-ear frees you from needing lessons, sheet music, or tablature (V001, V201, V303) which
generally isn’t great (V001, V303, V504), partly because it doesn’t allow you to learn the
nuances of a performance (V001, V302, V505) such as bending notes on a guitar, or slur-
ring notes on a saxophone. Additionally, teachers claimed that by-ear learning helps with
your ability to improvise (V114, V501, V503).

Teachers also frequently suggested that—while it can be challenging, or slow at first—
by-ear learning gets easier with repeated practice. Sometimes this statement was made
with respect to the entire journey of learning by ear—that the student should expect the
process to take considerable time in the beginning, and that learning more songs by ear
will lead to improvements (V001, V109, V203, V204, V303, V305, V402, V403, V501,
V503). One teacher characterized this progression as “exponential” (V501), but the rest
suggested by contrast that it required consistency, and would develop more slowly over
time. Two of the teachers also claimed that finding notes gets easier over the course of
learning a song, especially once the first note is found (e.g., V001, V303).

Some teachers claimed that learning by ear may prove to be a taxing activity. For
example, students may need to set aside certain songs because sometimes it’s just too
hard (V001), or that one may need to take frequent breaks because you can’t do it for
long (V001, V501) as fatigue may set in.

5.3.2 Prescribed Learning Order

When teachers provided students with a set of steps for learning songs by ear, they most
often suggested that students learn the key first (V101, V115, V202, V203, V204, V301,
V302, V305, V502, V505). Whether or not key-finding was the recommended starting
point, guitarists were instructed to identify chords before learning either melodies or solos
(V101, V301). Otherwise, saxophone players learned only melodies or solos, and bass
players learned bass lines. Pianists seemed to be mixed in this regard, either learning the
melody before finding chords (V201), or vice versa—learning the left-hand harmony before
the melody (V202, V204).
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Teachers often expressed that the process of learning songs is a repeated application
of sub-procedures (V109, V301, V001, V501, V502, V503, V504). That is, learning chords
is a repetition of the chord-finding process, melody notes a repetition of note-finding,
and this continues until segments are learned, then sections, and finally the whole song.
For example, the saxophone player in V501 says, “keep repeating the process and just
keep taking it one note at a time.” The guitarist in V301 shares a similar sentiment about
chord finding, “it’s more or less a rinse and repeat process to find the rest of your chord
progressions.”

In some videos, the overall sequence was difficult to ascertain—the teachers either
lacked a lesson plan, diverged from it, or planned to discuss tangential topics. For exam-
ple, in V110 the content was largely recommending the use of high-quality headphones,
an audio interface, and digital audio workstation software—all of which had links (some
with affiliate tokens) in the video’s description. In V101 and V205, the videos spent
more time discussing music theory than providing concrete suggestions about how to
learn from recordings.

In many lessons, teachers assumed students already have certain prerequisites, though
they were not always stated explicitly. For example, in V401 the bass teacher says, “What
you need to know to develop your ear is when you land that note, it’s correct, right?”,
whereas most others simply assumed the student could tell when a note was incorrect—
for example, when the guitar teacher in V109 says, “hopefully you’ll be able to tell if it’s
not the correct note and then you’re going to move in either direction chromatically, so
fret by fret so as to make sure you don’t skip over the correct note until you find that
note.”

Some teachers mentioned that students should be able to match pitches vocally (V401,
V503). However, this skill was not to be confused with being able to sing. For example,
the bass teacher in V401 says, “You don’t have to have a beautiful singing voice. I cer-
tainly don’t have a beautiful singing voice. But what you at least need to do is when you
hear a note, you need to try to match the pitch with your voice.”

Other such prerequisite skills were knowing topics from music theory such as scale
degrees (V305), and certain elements of instrumental proficiency like knowing the note
names on the fretboard (V305), or knowing how to play scales (V305, V502, V503, V504).
By contrast, some teachers suggested that anyone can learn by ear (V204, V303, V501),
or you can start learning immediately (V001, V302)—claiming that even those early in
their instrumental journey can start to learn how to play music by-ear.
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5.3.3 Recognition Strategies

Extracting Salient Notes

While learning from a recording, it is important that the pitches of interest can be accu-
rately reproduced by the loudspeakers or headphones with which the musician is listening
to the recording (V001, V110, V402, V501). Alternatively, they suggested making adjust-
ments so that salient notes sound more prominent (V001) by using an equalizer or other
such tone knobs. While this is certainly a concern for bass players, listening for the bass
notes is also the most commonly suggested method for finding chords, which is discussed
separately below.

Regardless, the musician needs to listen carefully for the salient notes (V001, V002,
V115, V301, V402, V505), which can require a great deal of focus and concentration.
Salient notes are sometimes difficult to hear when there is a difference in timbre as the
teacher in V001 explains: “In other words, even if your voice and a saxophone and a
piano are all playing the same note, they all have a little different texture, and this textu-
ral difference can confuse your sense of pitch, at least until you get a little experience.”
He also describes how recordings can have unique characteristics that may further con-
tribute to this challenge.

Understand that every recording is different. Each producer that releases a
recording treats the mix a little differently. Some like for the solo instrument
to be way above the level of the other instruments so it’ll really stand out,
while others like it just slightly above the others so it’ll be well supported.
Some like it drowned in reverb, while others like it relatively dry. Some like
the stereo panning drastically spread out, while others like it close to centre
so that when a radio station plays it and a channel gets lost, the recording will
still have all its parts. So each recording you try to figure out will be different
as to how vividly you can hear your hero. (V001, 1:01:15)

The bass teacher in V402 describes an exercise for students to practice their listening
skills, and demonstrates how hearing can be focused on individual instruments in a song.
He explains that—much like our vision—other instruments begin to “blur” as one’s focus
shifts. In a similar vein, students may need to ignore the song’s lyrics so they can focus
on listening for only the notes in a melody (V201).

Musicians can also employ singing to identify and extract salient notes, such as the
individual voices in a chord (V202), or the bass notes (V401). However, singing appears

69



to be more significant as a memory aid (Section 5.3.4). Because not all students can do
this, the teacher in V401 suggests practicing “when you’re driving in your car, you’re on
your way to work, you’re at home, you’re chilling, you’re listening to music, wherever
you are listening to music, please sing those bass lines.”

Finding and Naming Notes

To locate a note on the instrument, it is often taught as a random search (V001, V002,
V115, V301, V303, V401, V404, V501). That is, the musician plays some arbitrary note,
then makes adjustments to match what they hear—if the pitch is too high, they play
lower notes, and vice versa. To ease the pain of such a strategy, teachers recommended
that students limit the search to the song’s key (V115, V203, V302, V404) so that they
have fewer notes to test.

Once the note is found, it must be named before it can be written down, or used to
determine which chord to play on a guitar. For pianists, bassists, and guitarists this is
often a matter of looking down at the position of their fingers, and recalling which note is
produced at that position (V101, V109, V301, V303, V305). For those who are proficient
with scales on a guitar, piano, or saxophone, or they can sing solfege, the note’s name can
be assigned based on their interval from the tonic note (V201, V503).

We wish to point out that teachers rarely spoke about perfect- or absolute pitch (Sec-
tion 2.4.3), which would make the aforementioned note-finding strategies unnecessary.
When teachers mentioned perfect pitch (V302, V501), they seemed to assuage a stu-
dent’s concerns of unattainability. For example, during the opening of V501 the saxo-
phone teacher says, “I don’t have perfect pitch and I don’t think you need to have perfect
pitch in order to be able to learn stuff by ear.”

Identifying the Song’s Key

Teachers described two methods to identify the tonic note—the first note in the key
that shares its name (e.g., F is first note of both F major or F minor). Some teachers
suggested this note can be found in common locations of the tonic. For example, it might
be the first or last note (V204, V501) in the song, or the first or last in a verse or chorus.
An alternative method has the musician play a single note while also listening to the
recording, then evaluating how well it fits (V404, V505).

Once the tonic note was known, an additional step is necessary to determine whether
the key is major or minor. To achieve this, the musician can experiment by auditioning
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scales alongside the recording (V101, V202, V305, V404, V505) to choose which sounds
most correct.

This second step can be skipped if the musician instead searches for chords. That is, if
the tonic chord is major, or minor, then so is the key. They do this using similar methods
as above, either by looking for them in common locations (V001, V204), or by listening
for the chord that sounds most like “home base” (V001, V101, V202, V401).

Using one’s knowledge of music theory, key identification can be done using a differ-
ent two-stage process that relies on a test of set membership. Here the musician starts
by identifying the melody notes (V203, V301), or chords (V109, V115, V205). Then,
they look for the key that contains all of them. This strategy is notable because it runs
counter to the advice to learn the key first, which is supposed to help make note- and
chord-finding go more quickly.

Finding Chords

The most-recommended method for finding chords is similar to the two-stage method
for identifying the song’s key. That is, first the root of the chord is identified by finding
the bass note (V001, V002, V107, V115, V202, V205, V301), and then the quality of the
chord must be identified—whether it is major, minor, diminished, etc.

Quality identification is sometimes taught as a process of trial and error. Here, the
teacher recommends that the student auditions major and minor chord candidates (V001,
V109, V204) alongside the recording to hear which sounds correct choice. However, a
more efficient method involves some music theory knowledge. That is, by knowing the
song’s key, the quality of the chords can be deduced immediately (V109, V202, V204,
V301).

Other trial and error methods can yield both the root and chord together. For exam-
ple, if the key of the song is already known then chords can be drawn at random from the
set of seven diatonic chords that belong to the key (V202, V305), and by using a process
of elimination (V204) the list of choices shrinks as new chords are learned.

A modified version of this method relies upon one’s knowledge of commonly used
chord progressions (V203, V205), reducing the initial set to only three or four. If the
melody is already known, then the musician can choose from those chords having a
note in common with the melody (V001), or one that simply sounds correct alongside it
(V201, V204). In V204, the teacher sings the melody and listening for those chords that
match, and in V201 they listen for the chords that sound correct against the melody of
Twinkle, Twinkle, Little Star.
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What to Expect in Pop Music

Some teachers discussed how the chord progressions in popular music are rather simple
in practice—consisting of few chords, often in predictable sequences (V203, V205, V301,
V305). Teachers also discussed other commonalities such as the prevalence of 4/4 time
(V109), or that pop songs usually contain only major and minor chord qualities (V205).
Additionally, teachers would discuss things that are less likely to occur, such as changing
keys (V305), the use of non-diatonic harmony (V205), or diminished chords (V301,
V305). In V301, the teacher even suggests that hearing a seventh degree bass note
more likely indicates the first inversion of the dominant (V) chord than the diminished
seventh (vii°). Knowing about these common practices in popular music helps to simplify
the task of identifying chords, and very little about music theory is required to achieve
these efficiencies.

Music Theory Fundamentals

While knowledge of music theory is not required to identify the individual notes or
chords, it certainly appears to help make these tasks go more quickly. In some of the
lessons, teachers chose to include brief discussions about theory. In most of these in-
stances, teachers talked about the concept of diatonic chords (V201, V202, V205, V301,
V305). Some taught this concept in relation to the circle of fifths (V101, V205), and
one explained it in the context of the Nashville Number System (de Clercq 2019) (V301).
Presumably, these teachers chose to include such discussions because they felt this was
the baseline level of theory that is necessary to learn songs by ear, or at least makes it go
more smoothly.

Leveraging Purpose-Built Technology

Many teachers suggested that students try slowing down playback while learning by ear
(V001, V109, V115, V501, V504, V505) as a way to help them listen for fast-moving
notes or chords. Most often, this feature was demonstrated using the slowing function-
ality built into the YouTube web player. The teacher in V001 explains exactly why this
feature is beneficial while learning by ear.

But the main thing to remember is that slowing down a fast passage can be a
real equalizer. It can reduce an advanced solo to being just as easy as London
Bridge or Old MacDonald Had a Farm. (V001, 54:54)
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The use of looping playback was also discussed by teachers (V001, V109, V504).
However, the teacher in V001 has specific recommendations for when students should
use this feature.

You may be tempted to repeat something for hundreds of repetitions in hopes
that the passage will eventually soak into your brain through osmosis. I’ve
never seen it work on any of my students. Sure, let it repeat four or five times
to become acquainted, if you feel like it’ll help, but eventually you’re going
to have to stop the tape, try to hum what you’ve just listened to, and then
try to search for each note one at a time. [. . . ] The only time you should
ever be playing along with the recording is after you’ve already learned it or
if you’re just using the recording for something to jam along with to practice
your improvising. (V001, 1:05:17)

Identifying Things Directly By Ear

Some teachers recommended that students try to develop the skill of relative pitch—by-
ear recognition of intervals, or the relative distance between notes (V002, V115, V201,
V203, V205, V401, V403, V501). Teachers suggested that this could be improved with
the help of solfege singing (V002, V201, V302, V401). The most basic form of this tech-
nique was demonstrated in V201, where the piano teacher sung the major scale from the
tonic note of the song’s key, up to the note they were seeking. That revealed its interval
from the tonic, and then the note’s name.

Sometimes teachers spoke about a simpler, more intuitive sort of recognition. For
example, being able to recognize whether a key or chord is major or minor based on
whether it sounds “happy” or “sad”, respectively (V109, V301, V404). Or, simply trying to
make rough judgements about the distances between notes while learning them (V001,
V201, V303) so that the trial and error process isn’t a series of completely random draws.

5.3.4 Memory for Music

Playing Familiar Melodies From Memory

In five lesson videos, the teachers’ first recommendation for musicians who want to start
learning by ear was roughly the same: begin practicing by learning songs that can readily
be sung from memory. Most often, these were children’s nursery rhymes.
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Among the nursery rhymes, Twinkle, Twinkle, Little Star appeared most frequently
(V002, V201, V303, V501). In V501, the teacher explains this choice: “So the first thing
you’re going to want to do is pick a song that you want to try and learn. This will likely
be something that you already are familiar with and can maybe even sing and have it
in your head.” However, their lesson demonstrated this process using a recording of the
song they found on YouTube. In all other cases, the exercise was meant to be performed
from memory.

In V001, the teacher used an entirely different set of nursery rhymes from the rest.
He begins his demonstration of note-finding using My Country ’Tis of Thee, Old McDonald
Had a Farm, and London Bridge. Among these demonstrations, he states “If you’re just
starting out, I recommend that you pick out as many of these easy children’s songs as
possible because it will help to sharpen your ear and hone your skills.”

There were two videos in which nursery rhymes were not called upon, but a core
component of the lesson consisted of learning a popular song entirely from memory. In
V203, the teacher reconstructs a pop song beginning with his memory of its vocal melody.
After identifying a set of melody notes, they deduce the song’s key before proceeding to
determine the harmony (Section 5.3.3) that accompanies the melody. A similar practice
can be seen in V201 and V204.

Developing Familiarity With Songs

Some teachers made it explicit that students should listen to, and familiarize themselves
with a recording before they start trying to learn from it (V105, V109, V402, V404,
V504). In V105 the teachers refer to this activity as active listening: “when you put
everything else away and only concentrate on listening to the song, paying really close
attention to the actual song and intently listening to it.” Their rationale for intensively
listening to the song beforehand is that it makes the process go more smoothly. “[. . . ]
the more committed you are to doing this, the easier it’s gonna be to learn the song later
on when you get into these other steps, because you’re gonna be familiar with it already
and you’re gonna kind of know what’s coming.” In V402, the bass teacher says “Listen
and pay attention. Listen to the words, the sections, and as you listen over and over,
you’ll be able to anticipate what comes next, you know, as the song moves along. So
you’ll be learning the form of the song without even trying [. . . ]”

This active listening exercise is meant to happen outside of the musician’s attempts to
learn the song on their instrument, as one teacher in V105 describes, “[. . . ] give it some
really good active listening time where you’re not doing anything, not even walking. Just

74



sit on a couch or in a chair, put your headphones on, listen, no phones, no distractions.”
We also see this in Chapter 4, where one guitarist claimed to be learning a song that
was new to them, and they intentionally listened to it repeatedly beforehand to develop
familiarity. That guitarist was doing precisely what the teacher in V109 says: “[. . . ]
you’re going to want to have listened to that piece of music a lot and be super familiar
with it.”

Intentional Short-Term Storage

In the lesson videos, it was most often suggested that students try to sing or hum notes
to retain them (V001, V002, V106, V107, V108, V109, V115, V203, V204, V301, V303,
V401, V403, V404, V501, V502, V503, V504, V505). That is, upon recognizing those
notes that are salient the musician must then recall and imitate those pitches vocally.
Sometimes, bass notes must be sung one or more octaves higher to match the vocal
range of the singer (V002, V107, V401, V505).

The guitar teacher in V301 suggests that singing is meant to help students remember
notes: “[. . . ] one of the best tips when searching for your note is to hum the notes
yourself. This way you can keep it in your head as opposed to having to listen to it over
and over.” However, this may not be possible right away, as the saxophone teacher in
V502 suggests that students need to have “heard it enough times that [they] can sing it
or hum it without needing any help.”

Some musicians vocalized pitches as a way to retain notes as they seek them on the
instrument. For example, in V203 the piano teacher demonstrates that a note is sung
continuously while walking chromatically up the piano keys to match its pitch. However,
a saxophone player cannot do both things at once due to the nature of the instrument—
the teacher in V505 only sings the phrase to remember it, but we hear only his saxophone
while he seeks the notes.

Another way that both pitches can be heard at once is to try and seek notes on the
instrument while the recording is playing. For example, in V115 we see a guitar teacher
that advises playing over the recording while trying to locate the roots of chords. The
bass teacher in V401 also demonstrates simultaneous playing over the recording, though
it is a reconstruction of his first attempt as a thirteen year old to learn the song—he later
recommends that students sing notes to remember them.
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Short-Term Memory Delicacy, and Chunking

The teacher in V001 expressed that one’s working memory for notes can be fragile, and
disrupted when incorrect notes are played: “When it sounds wrong, you lose the tune in
your head, you go back and play the tape again.” This may explain why he also suggests
that humming or singing should be done only after playback is stopped: “Figuring out
licks, as you’ve seen in this program, is always done with the recorder off. You play the
recording, you stop the recording, and then you search for the note on your instrument.”
We also also see this practice in other videos, such as the saxophone teacher in V505 who
sings phrases to remember them while the recording is stopped, and the teacher in V501
who stops the recording after only a single note is played.

All I want you to focus on is just how the note sounds. The easiest way to
do this is to just pause the song as soon as you hear the first note. [demon-
stration] Okay so there’s the first note. Now you just want to try to match it
with either your instrument or your voice. Sometimes it can be easier with
your voice because you have it in your head then and you can basically listen
to that note over and over again until you can match it on your instrument.
(V501, 1:26)

Continuing playback may cause a disruption to tonal working memory, but this could
also be an issue of capacity. Teachers recommended that notes (V001, V301, V501) or
chords (V109) should (initially) be learned one at a time. They may recognize that a
beginner has not yet developed the tonal working memory capacity to learn more than
that in each chunk. However, it seems that teachers believe this should improve with
practice (V001, V501). For example, the teacher in V501 says “Once you can consistently
and quickly get one note at a time try to get two. Eventually you’ll be able to get entire
phrases and you won’t even need to slow down the song.”

It appears that teachers also try to work within the limits of their full tonal working
memory. Teachers encourage students to take this into account while they learn, as the
saxophone player in V505 describes using the following analogy: “When you have a big
hamburger, you don’t try to eat the whole thing at one time. You take little bites.” Failing
to do so leads to the situation encountered by the saxophone player in V501, who—while
trying to learn a song that was requested by his audience—says “[. . . ] I always struggle
with memorizing longer phrases. I got the first few notes but by the time I got to the end
of the phrase I didn’t really remember what it sounded like.”
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Musicians may also reach their limits as they begin to accumulate what they learn.
While learning a mandolin solo in V001, the teacher says “[. . . ] there was a lot to that,
and a lot I’m trying to keep in my head at the same time. In a case like this, you might
write all this down.” Here they are simultaneously retaining the just-learned notes in
memory while also ingesting new ones from the recording and learning how to play them
as well. Another recommendation from teachers was for students to write the individual
notes (V301) or chords (V109) down as they learned, or producing something like sheet
music (V109, V501). In V109, the teacher walks the student through the process of
capturing the bars in the song, the chords within, and also suggests that students try to
capture strumming patterns.

The Mind-Instrument Connection

One common selling point of by-ear learning is that it improves the student’s musician-
ship, and fluency with their instrument. However, it seems that this fluency can reach
that with which we can speak or sing after considerable practice, as described by the
teacher in V001: “Eventually, your fingers go automatically [on your instrument] to ev-
erything you hear,” which appears to come after “search[ing] for hundreds of little tunes
with your fingers.” Other teachers appear to imply the same outcome from repeated
practice—that it eventually takes less time to locate notes on the instrument with practice
(V001, V201, V303). Just as some teachers suggested that students learn to sing the
major scale in solfege (Section 5.3.3), others said that knowing more scales makes the
process easier (V302, V504). That is, being able to play the major scale (and others) nat-
urally in all 12 keys would effectively provide an instrumentalist with the same benefit
as learning to sing those scales—having some degree of familiarity with the production
and recognition of their intervals.

The teacher in V001 likens vocal pitch reproduction to playing an instrument that
the student already has experience with: “You had hours and hours of practice, and you
finally got to where your vocal cords became an extension of your ear and your brain.”
In a similar vein, the guitar teacher in V302 asks students to repeat a spoken statement
and claims, “If you were able to repeat that, you can play by ear.”

In those instances when students were not instructed to write down the notes and
chords they learned, some teachers recommended that notes or phrases are progressively
fused together (V502, V504) as a way to memorize them. That is, gradually building up
to playing an entire sequence of notes by repeatedly playing them from the start as
successive notes or phrases are learned—playing the first note, then the first two, and so
on until the entire song or section of interest can be played.
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5.4 Discussion

Analyzing lesson videos helped us understand the process of by-ear learning from the
perspective of those who teach other musicians to do it. As we have seen in Section 5.3.1,
teachers claim it is important for musicians to learn by ear. Admittedly, one expects to
find such statements from those who choose to engage in (and especially teach) this
method of learning. However, the common use of by-ear learning in popular music
(Section 2.1), and the inability of notation to capture what can be heard in recordings
(Section 2.2) help reinforce this notion of importance.

5.4.1 RQ1: How are musicians taught to learn songs by ear from
recordings?

Based on our analysis, learning a song by ear requires that musicians execute one or
more repetitions of sub-tasks, which we roughly characterize below. Because we did not
find a consensus among teachers with respect to their order (Section 5.3.2), we present
the sub-tasks with a weak ordering.

Playing Melodies From Memory—when it is taught—is presented as a preparatory ex-
ercise that precedes one’s attempts to learn songs from recordings. As we discussed in
Section 5.3.4, this is most often demonstrated using well-known nursery rhymes such
as Twinkle, Twinkle, Little Star. The common appearance of this introductory exercise
among the lesson videos suggests that teachers consider it to be a foundational (or pre-
requisite) skill that is necessary for by-ear learning.

Learning the Key is commonly taught as the entry point to learning a song. Once
identified, the song’s key make subsequent sub-tasks easier to execute because there are
fewer notes—seven, and not twelve—to consider while learning. However, the student
must possess a baseline knowledge of music theory to enjoy such efficiencies, which is
why we see teachers often discussing music theory in their lessons (Section 5.3.3).

Learning the Chords is often the next (and possibly last) step for guitarists, and usually
only one component of what a pianist is asked to learn—we do not see bass and saxo-
phone teachers explaining this to students. This sub-task is taught in a way that is meant
to be executed repeatedly throughout the song. Upon learning one or more repeating
sequences of chords (chord progressions), the player has a complete representation of the
song that they can perform with a band, sing alongside, or possibly combine with the
melody and/or solo.
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Learning the Melody may precede chord-finding—especially when its notes are used
to identify the key. While it is an optional sub-task for guitar and piano players, it was
often all that a saxophone player was taught to learn from a pop song. Learning the Bass
Line is largely the same activity, but is specific to bass players. Similar to learning chords,
teachers often taught note-finding as a method that is to be applied repetitively, to learn
one or more notes at a time.

Learning the Solo was not frequently taught in the videos, though it is the primary
goal of learning for some players (e.g., the saxophone player in V505). This differs
only slightly from learning the notes in a melody. Specifically, solos often demonstrate
advanced instrumental skills, and include specific performance elements that can make
them more challenging to mimic—for example, identifying that notes were bent on a
guitar, or notes slurred on a saxophone.

Teachers effectively claim that—by applying the above tasks in (roughly) this order—
the student can “learn a song” by ear. However, what they are actually teaching students
to do is create their own derivative performance of the original recording. When a musi-
cian copies only the portion of a recording they can play on their instrument, then per-
forms their part—without singing, or accompaniment from other band members—they
produce an incomplete rendition that is unlikely to be recognized by a listener. To attain
a more complete rendition, musicians create instrumental covers of songs that can stand
on their own; we saw this demonstrated by piano teachers in V202, V203, and V204.
Presumably, it is the nature of the piano that explains why only these videos contained
this practice: ten distinct notes can be played by ten fingers, allowing the harmony and
melody to be performed together.

Given that the goals or abilities of the musician are likely to differ, we expect that
the application of the above steps is piecemeal in practice. It also comes as no surprise
that we found such a great deal of variation between the lessons, and how each task was
taught.

5.4.2 RQ2: What differences exist between the teachings of by-ear
learning’s component tasks?

For most of the sub-tasks we listed above, there appears to be a dichotomy between
techniques that rely upon music theory, and those that do not. For example, we saw
in Section 5.3.3 that the key of a song can be found by testing a list of melody notes
for set membership—requiring that the musician knows which key contains them all; by
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contrast, they can simply evaluate whether a song sounds happy (major) or sad (minor)
once the tonic note is identified by ear. Similarly, in Section 5.3.3 we learned that once
the key is found, the musician can determine a chord’s quality immediately based on their
knowledge of diatonic chords; or, they can just play both major and minor variations of
a chord to listen for that which sounds correct. To find the notes in the melody, solo,
or bass line, we saw in Section 5.3.3 that the musician can limit their search to those in
the song’s key; or, they can simply test every single one using the trial-and-error method.
When teaching these sub-tasks, teachers often framed the theory-based versions as being
more efficient. However, we saw lessons teaching both theory-based and theory-free
methods, as well as lessons teaching one or the other.

Regardless of whether theory was involved—we noticed additional variations be-
tween the techniques used to execute the sub-tasks. For example, we saw in Section 5.3.3
that key finding can be done testing the membership of either notes, or chords. The lat-
ter method is especially strange, given that the student is identifying the key after it
would have been beneficial to know that information. For example, the guitarist in V115
locates the chords (and its bass notes) using the theory-free method of trial and error
before deducing the song’s key using their knowledge of diatonic chords.

Each of the key- and chord-finding methods described above could be made easier
with the help of MIR techniques. At one extreme, this exercise could be made redun-
dant by estimating the key or chords using one of the approaches we discussed in Sec-
tion 2.5.3. However, one could imagine a method that doesn’t automate the process
completely—allowing the musician to continue participating in the by-ear recognition
process. For example, a musician could be provided with theory-based tools that narrow
their key or chord choices based on a set of notes they already identified.

We also found significant differences in the way notes are identified by ear. For ex-
ample, in Section 5.3.4, we discussed how some teachers describe note-finding in a way
that advocates singing a note while it is sought on the instrument; or, they suggest that
students learn to identify intervals by ear (Section 5.3.3); and we also observed teachers
like the one in V505 who sings to remember, but can seemingly compare notes in his
mind.

There are indeed differences in the way that by-ear learning is taught to musicians.
This confirms our hypothesis, and certainly helps to explain the source of differences we
observed between the methods used by musicians to locate notes on the instrument in
Chapter 4.
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5.4.3 RQ3: How does the musical memory of a musician play a role
in by-ear learning?

The student’s memory for music is called upon in a number of places in the by-ear learn-
ing task, given our results in Section 5.3.4. Also, much of what we observed can be
linked to the literature we discussed earlier in Section 2.4.

When suggesting that students try playing nursery rhymes from memory on their
instrument (Section 5.3.4), teachers are asking their students to draw upon their long-
term memory of that melody. We know from Section 2.4.4 that such memories are not
merely a collection of absolute pitches, which explains why the student is often told they
can start singing or playing from an arbitrary note. To reproduce the melody on their
instrument, the students call upon sensorimotor memories to generate candidate notes,
and their tonal working memory (Section 2.4.1) allows them to compare those pitches
they hear with the targets in their mind.

To match a pitch from the recording—in the melody, the root note for a chord, or
the tonic of the key—students are effectively being asked to encode the salient pitch in
tonal working memory. Students were often taught to sing or hum the salient pitch(es)
that they heard, which may help the student encode them in memory (Section 2.4.1).
Here, the absolute pitch must be retained for as long as it takes the student to find the
correct note on their instrument. Again, the student’s tonal working memory facilitates
this comparison. When the memory of a pitch is lost, the student must start over by
listening to the recording again (Section 5.3.4).

We saw that students were sometimes taught to continue singing the pitch from the
recording while seeking it on the instrument (Section 5.3.4), which gives them more time
to do so. However, this method does not appear to rely upon tonal working memory,
as the comparison is happening live between two audible tones—similar to how one
might tune a guitar aurally, relative to another pitch. Unfortunately, this method is
inaccessible to saxophone players, as we have also discussed in Section 5.3.4. Therefore,
instrumentalists who cannot sing and produce notes at the same time must rely upon
their tonal working memory to retain pitches for long enough that they can be found.

Finally, we also found evidence of a different sort of long-term memory—one that is
formed when students develop familiarity with a recording intentionally (Section 5.3.4).
Here, teachers are not asking students to remember the entire tonal content of the song.
Rather, it appears that this exercise helps students develop context that will help frame
their learning. These listening sessions are helpful because they can either facilitate
the creation of long-term memories, or reinforce existing ones by cueing their recall
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(Section 2.4.5).

RQ3.1: Do teachers explain how one’s memory for music is related to by-ear learn-
ing?

In the discussion above, we used our understanding of the literature to connect the by-
ear learning sub-tasks to memory. Sometimes, teachers made this connection explicitly,
though they did so in general terms. For example, in Section 5.3.4 we saw claims that
singing helps “keep it in your head” (V301), and that it’s necessary to have listened
“enough times [to] sing it or hum it without needing any help” (V502). We did not expect
teachers to provide in-depth explanations about short-term memory, but statements such
as these helped explain why the teacher thinks it is important for students to sing or hum
notes, or listen to a segment repeatedly.

In one case, we saw a teacher explaining that excessive attempts to match a pitch may
cause the student to “lose the tune in [their] head” (V001). This mirrors findings from
the literature (Section 2.4.1) that suggest tonal working memory can be disrupted by
additional pitches that are heard after the target that is to be matched. This connection
could help explain why some teachers suggested students continue vocalizing pitches
while seeking them on the instruments.

Our results also showed that teachers sometimes acknowledged the limited capacity
of short-term memory. For example, we reported in Section 5.3.4 that students are taught
to work in short segments, and that teachers themselves encountered limits to their
working memory. Additionally, students are told that they may need to write notes down
as they begin to accumulate, and their short-term memory becomes full.

We also observed that teachers expressed how a student’s capacity for notes would
continue to develop over time (Section 5.3.4). This suggests that the student’s tonal
working memory may get trained as they continue to learn from recordings.

5.4.4 Connections to Prior Results

Our findings in this study helped explain some of the behaviours that we observed in
Chapter 4. In Section 4.4.1 we hypothesized that musicians learned only portions of
whole songs because of the repetitive nature of popular music. While some teachers
acknowledged this musical simplicity (Section 5.3.3), in Section 5.3.2 we also see that
the ear learning process itself is repetitive. In Section 4.4.2, it appeared that musicians
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created notation as a long-term memory aid, and teachers recommended doing so for
the same reason in Section 5.3.4. We observed very few experienced musicians using
purpose-built technology features in Section 4.4.3, but in Section 5.3.3 we found teachers
frequently recommending that students slow down playback to help them learn fast-
moving passages—supporting our hypothesis that musicians might outgrow the need for
certain assistive features as they gain experience.

Many of the observations we discussed in Section 4.4.4 had matching results in the
present study. When some of the musicians played alongside the recording, they demon-
strated the trial-and-error key- (Section 5.3.3) and chord-finding (Section 5.3.3) meth-
ods taught in the lesson videos. Those musicians who sung what they heard—sometimes
while seeking notes on the instrument—were doing so in order to help them remem-
ber those notes (Section 5.3.4). In Section 4.4.4 we hypothesized that one’s ability to
remember notes may influence how they proceed to learn songs, which lines up with
teachers recommending that students start out by learning one note (or chord) at a time
(Section 5.3.4).

We also found evidence in Section 4.4.5 that developing familiarity with a record-
ing may help musicians learn them more quickly, which matches recommendations from
teachers that students do the same (Section 5.3.4). In Section 4.4.6, we saw musicians
employing strategies we found in lesson videos for finding chords (Section 5.3.3), notes
(Section 5.3.3), and also the key (Section 5.3.3) of songs. We hypothesized in Sec-
tion 4.4.6 that knowledge of theory and common patterns in pop music may speed up
the learning process, which is supported by what we observed teachers claiming in lesson
videos (Section 5.3.3, Section 5.3.3).

5.4.5 Limitations

A significant challenge of using online videos is that there is a lack of uniformity in
the video data. Unlike a (semi-)structured interview, the person in the video cannot be
directed to remain on topic, or asked to discuss the task in full. For example, the teacher
in V402 said nothing about whole-song learning—they did not discuss finding the song’s
key, or locating notes on the instrument. However, that same lesson revealed valuable
information about focusing one’s hearing on salient notes in the recording, and helped
shed light on what was said in other videos.

Our understanding of the task is built from a mixture of descriptions and demonstra-
tions that were provided by people teaching others how to learn by ear. This certainly
colours the results such that our characterization of the by-ear learning process may be
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skewed towards beginners. However, our findings mirrored our observations of expe-
rienced musicians that demonstrated this skill in Chapter 4. That is, there is evidence
suggesting our results are generalizable to non-beginner ear-learners.

A single DVD video (V001) covered the widest range of topics, and explained them
most clearly. This could have been a function of its duration—allowing time for exposition—
though much of that time was filled with descriptions of technology and repeated demon-
strations. However, because this video was produced to be sold, it is conceivable that
the lesson content was more deliberately planned; ensuring a high-quality product. It
is therefore likely that studying better-prepared materials could have yielded additional
data, and newer materials may have contained more extensive use of purpose-built tech-
nology. Therefore, a future study of lessons may be helped by considering other com-
mercially available materials such as online courses.

Gender imbalance was evident in this study, though we do not believe this biased the
results. For example, none of the women appearing in the videos introduced concepts
that contradicted what was seen elsewhere. Only three perceptibly female musicians
appeared across six of the videos—one taught alongside a male guitarist in four of them,
another taught with a guitar on her own, and one taught a solo lesson on a piano.
Because we consider the content of lessons that are most likely to be found by musicians
seeking online instruction, we do not believe this element can easily be corrected for.
However, it may be the case that musicians would continue looking further down the list
of results to select teachers that they identify with, just as one might skip over lessons
from guitarists who perform different genres. To confirm this, a future study may wish
to crowdsource the selection of videos from a diverse set of musicians to see how that
impacts the representation reflected by the lessons.

Guitar players were over-represented in this collection of videos, introducing certain
biases into the data. For example, playing melodies is not prevalent in their practice
except as a preparatory learning activity, whereas melodies are necessary for non-singing
solo pianists that must integrate them into their performances. It would be easy to
correct this bias in our study—discarding the V0xx and V1xx videos, and ensuring that
we capture an equal number of eligible videos from each instrument. However, this bias
towards guitarists does not appear to impact our results; none of the categories referred
only to guitar (V0xx, V1xx, V3xx) videos.
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5.5 Summary

From an analysis of 29 lesson videos, we further developed our understanding of the
process musicians follow to learn songs by ear from recordings. Specifically, we mapped
out the by-ear learning task as a set of sub-tasks that allow musicians to learn songs from
recordings when they are followed in (a weakly ordered) sequence. We also discussed
how these sub-tasks differed between lessons—some requiring the use of music theory,
for example.

Using what we learned from the neuroscience and psychology research in Section 2.4,
we could identify where memory plays a role during the by-ear learning process—e.g.,
tonal working memory allows musicians to compare a notes on the instrument with a
remembered target pitch. Additionally, we found that teachers sometimes acknowledged
the connection between memory and learning by ear. For example, some teachers ad-
vised working in short segments to account for a beginner’s capacity—one note at a time,
until the student can remember more than that.

Our findings helped explain differences in by-ear learning that we observed in Chap-
ter 4. For example, some musicians in the prior study continued singing pitches from
the recording while seeking the matching note on their instrument. In the present study,
we saw teachers recommending this approach as well as those where a note is not sung
again once it is remembered. This technique does not appear to engage tonal working
memory, and could be a useful one for those musicians who have yet to develop theirs.

We now have a much clearer picture of the by-ear learning task, a better understand-
ing of the variations between its sub-tasks, and we have identified where memory plays
a role in the process. Our findings reveal clear opportunities for designers to create or
modify existing technology so that musicians can learn by ear more effectively. In Chap-
ter 4 we will use what we learned to present a conceptual model of the by-ear learning
task, and provide recommendations for the designers of purpose-built technology for
musicians that learn from pop music recordings.
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Chapter 6

Designing Technology Supports for
By-Ear Learning

We have seen in Section 2.5.3 that researchers can extract a great deal of musical infor-
mation directly from a digital audio recording. For example, we can locate points in time
when notes are played, extract their pitches, estimate the key and harmony—we seem
to have all the tools necessary to automatically transcribe a recording. However, we dis-
cussed in Chapter 2 how popular music has a long history of informal learning practices
that include by-ear learning. Also, not every popular musician can read music. Even if
they could, sheet music fails to capture many elements of a performance that musicians
seek to copy from a recording (Section 5.3.1). Thus, it makes little sense for designers of
by-ear learning tools to consider an approach that strives to produce sheet music.

As we saw in Section 5.3.1, by-ear learning is described as a path to musicianship.
There, teachers claimed learning by ear is an important skill to develop, and leads to
concrete benefits such as developing the ability to improvise. While improvisation may
not necessarily be a goal for all popular musicians, it is a skill that demonstrates mastery
of the instrument—playing notes that the musician conjures in their mind’s ear (Sec-
tion 2.4.2). Therefore, it is important that by-ear learning tools continue encouraging
this practice rather than trying to automate it away.

Based on what we learned in Chapter 4 and Chapter 5, we claim there are opportu-
nities for designers to improve upon the ear-learning musician’s experience with novel
human-recording interactions. In this chapter, we describe each of these alongside rec-
ommendations for technology designers to realize them. We provide Table 6.1 for an
overview of our design recommendations and their basis in literature and in our studies.
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However, we will first synthesize what was learned in the two studies to present a
conceptual model of the by-ear learning task. In doing so, we highlight the core activity
that lies at the foundation of each sub-task that a musician carries out while learning a
song by ear.

6.1 Modelling the By-Ear Learning Task

As we discussed in Section 5.4.1, learning a song by ear involves a mixture of discrete
sub-tasks: identifying the song’s key, its chords, and the individual notes in a melody,
bass line, or solo. We also saw how these sub-tasks can be executed in different ways:
some methods call upon music theory, and others do not; some require that the musician
can sing and remember notes, and others do not. However, when we attempt to model
these tasks, we discover a common thread that runs through them.

We begin by thinking about the sub-tasks as a set of procedures executed by musicians,
wherein they consume input, and produce output. When viewed in this manner, each
of the sub-tasks consume the same input (musical audio), but produce different outputs.
For example, key-finding results in the song’s key, and chord-finding produces chords
played on an instrument; both begin with playback of the song recording.

6.1.1 Playing Melodies From Memory

We begin our modelling with one sub-task that is an exception to the above definition—
playing a melody from memory, which—as we have seen in Section 5.3.4—is most often
taught using well-known nursery rhymes. This procedure differs in that it technically has
no input.1

As illustrated in Figure 6.1a, melody playing begins with the musician’s memory of
pitches. Then, they produce a set of audible notes on their instrument, and—if they
choose—they can assign names to the notes they played. However, because this proce-
dure lacks external input, the target pitches are arbitrarily chosen by the musician—they
may begin with a random starting note on the instrument, or attempting to match imag-
ined pitches based upon their ability to sing them.

1No input at the time of performance, that is. The underlying memory was formed years prior, with
input that may have taken the form of a lesson from an early childhood educator or a family activity.
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encode memory of

focus hearing on

sensorimotor activation produces

note name(s)

(optionally) identify

(b)

audible note(s)

incoming sound

salient (melody) note(s)
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Δ
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Figure 6.1: A conceptual model of (a) playing melodies from memory, and (b) copying
notes from a recording. These diagrams make it evident why learning nursery rhymes
from memory (Section 5.3.4) is a foundational exercise. In (c), we modify the note-
copying model to not rely on tonal working memory (Section 6.1.6).

Starting from this set of imagined target notes, the musician calls upon sensorimotor
activations to produce notes on their instrument. A musician with highly developed sen-
sorimotor memories can produce the correct notes almost immediately—just as naturally
as one might sing them, as we discuss in Section 5.3.4. By contrast, a musician who lacks
such a skill will still rely upon the methods discussed in Section 5.3.3 to play each note.
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6.1.2 Copying Notes From a Recording

Whether the musician is learning a vocal melody, a bass line, or a solo from a recording,
our model of the procedure is identical (Figure 6.1b). It differs from a memorized nurs-
ery rhyme in that the musician is now listening for salient notes among what they hear
in the recording, and encoding them as short-term tonal memories.

Isolating the salient notes from a whole-band recording is not always a trivial exercise,
depending on the notes the musician is trying to copy. As we have seen in Section 5.3.3,
musicians may have to practice focused listening, and ensure that their equipment can
reproduce (or be adjusted to make prominent) the frequencies of the notes they wish to
copy—a potential challenge when seeking low-frequency bass notes. When learning a
solo, the musician may struggle to hear notes when they are played too quickly. Addi-
tionally they must be sensitive to the performance details such as vibrato, slurs, or the
subtle differences between bending and sliding notes on a guitar that may be difficult
to ascertain by ear. Musicians can use video footage of a performance to observe these
techniques in use, provided it exists; when it does, the camera is more likely to be trained
on the singer than any particular instrument.2

Once the salient notes have been identified, the musician now encodes them into
tonal working memory (Section 2.4.1) so they can be reproduced in the same way that
the musician did to play a nursery rhyme. Where this differs from the above procedure
is that these memories have a limited capacity, short lifespan, and are easily disrupted by
other pitches as we discussed earlier in Section 5.3.4 and Section 2.4.1. This is why the
modelled procedure may have to be repeated by the musician for individual notes before
they develop the ability to learn two or more at a time.

6.1.3 Identifying Chords

All of the methods that teachers described for finding chords began with the identifica-
tion of bass notes, as discussed in Section 5.3.3. However, identifying these notes is no
different from the procedure we described for copying them from a recording. In Fig-
ure 6.2, we see that this procedure is carried over in its entirety, except for one important

2As an illustrative example, see this live performance by Stevie Ray Vaughan at 0:43:
https://www.youtube.com/watch?v=kfjXp4KTTY8#t=43s. He sings “She’s my pride and joy”, then re-
sponds with a guitar riff that is played entirely off-camera. By contrast, we have a full view of his picking
and fretting hands during the solo at 1:44.
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Figure 6.2: A conceptual model of finding chords from a recording, which is built upon
the note-finding procedure shown in Figure 6.1b.

change: the musician must name the root note in order to identify the chord. All that
remains is the identification of the chord’s quality.

We saw teachers explaining both theory- and listening-oriented methods for doing
this in Section 5.3.3, all of which are captured in Figure 6.2. The theory-oriented meth-
ods use the song’s key (identification is discussed below), or knowledge of the individual
notes (voices) in chords that are common with melody notes that were identified earlier.
By contrast, the methods that don’t rely upon music theory require that the musician
consults the incoming sound (or perhaps a rich aural image stored in memory) to deter-
mine the chord’s quality—either listening for a happy- or sad-sounding chord, recognizing
the intervals, or (not pictured) playing candidate chords with the same root note—e.g.,
major and minor variations—to choose the one that sounds correct.
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6.1.4 Identifying the Song’s Key

We have seen key-finding methods in Section 5.3.3 that—like chords—are varied in their
approach. In Figure 6.3 we see models of two such methods: one that relies upon music
theory, and one that does not. Again, at the left of both diagrams we see the same note-
finding procedure we discussed above. In the theory-based method (Figure 6.3a), the
musician is seeking a collection of melody notes, which must all be named. From this
list of names, and the musician’s knowledge of the notes belonging to each key, they can
identify the key of the song. By contrast, the intuitive method (Figure 6.3b) requires
that the musician listens for the note that sounds like the tonic of the key, and names it.
Then, they consult the recording (or their memory of it) to gauge whether the song has
a happy or sad sound to it to determine the key’s mode—whether it is major or minor.
Alternatively, they can test both major and minor key variations by playing each scale
alongside the recording to test which sounds better (not pictured).

Note that we have also chosen not to picture two methods that are nearly identical
to what we describe above, except the musician begins with one chord that sounds like
the tonic, or a set of chords that they use to test key membership. In the method that
begins with the tonic, it has the benefit that the quality of the chord also hints to the
mode of the key—e.g., an F major tonic chord indicates the key of F major. In both cases,
chord-finding works exactly the same as we discussed above: starting with the same
note-finding procedure that yields bass (root) notes.

6.1.5 Isn’t It All Just Learning Melodies?

It should be clear by now that each of the sub-tasks for learning a song from a recording
begin with the same activity: copying individual notes. We cannot claim that one can
learn chords as long as they can learn a melody from a recording. However, we would
feel confident arguing the converse—that one has little hope to learn chords, or the song’s
key using the above methods if they are unable to learn melody notes from a recording.

We also described how learning notes from a recording is itself built upon the foun-
dational task of playing a melody from memory. That is, an in-memory representation
of notes is transformed into an attempt to play them on the instrument. However, this
does not lead to the same kind of argument as above. That is, while playing notes from
memory does not guarantee the ability to learn from a recording, we have seen that one
can indeed learn melodies from a recording without having to play notes from memory.
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Figure 6.3: A conceptual model of learning the song’s key (a) using a method that relies
upon music theory, and (b) using an intuitive method that seeks both the tonic and
quality by ear.

6.1.6 Learning Without Tonal Working Memory

We know from Section 2.4.1 that not everyone is capable of remembering or reproducing
pitches accurately, so it stands to reason that some musicians may not possess this ability.
We also see in Section 5.3.4 that some of the taught methods—singing while the note
is located, or locating the note while the recording plays—do not appear to call upon
tonal working memory. Additionally, we have observed experienced musicians using
such strategies in Section 4.4.4. However, we do not know whether these musicians
are compensating for a tonal working memory deficiency, or they are simply following
the procedure they were taught. Regardless, they all demonstrate by-ear learning is still
possible without engaging with their tonal working memory.

In the models discussed above, we have assumed that musicians have the tonal work-
ing memory skills to remember one or more pitches, and compare them to notes played
on the instrument. However, we can eliminate this requirement by replacing the note-
finding procedure in all the models with the one pictured in Figure 6.1c. In this diagram,
the triangle represents a difference operation that comprises the comparison between the
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salient notes that are to be learned, and those notes the musician plays on their instru-
ment. Effectively, the musician’s goal is to eliminate the difference they hear between
those two pitches, though the musician must hear the salient notes for long enough that
they can close this gap. We further discuss this challenge in Section 6.5, when we present
technological supports that are designed to aid musicians who lack the requisite skills,
or prefer to work this way.

While we can see that it is possible to learn songs by ear without tonal working mem-
ory, musicians using this method are limited to learning only one note at a time. Those
without the requisite skills may become frustrated working at this pace, and unlikely
to learn by ear. To improve the experience for these musicians, we discuss tools for
measuring and developing tonal working memory in Section 6.7.

6.1.7 Summary

Here we have presented a collection of simplified conceptual models that help character-
ize the by-ear learning task as we observed it being demonstrated and taught across two
studies. Additionally, we illustrated how the sub-tasks relate to one another, and con-
cluded that finding individual notes in recordings lies at the root of all the sub-tasks of
by-ear learning. Further, we discussed how musicians can still execute all the sub-tasks
without relying upon tonal working memory: by substituting a modified version of the
note-finding sub-task.

We have revealed a clear opportunity for technology designers who can exploit these
insights to create novel human-recording interactions. Specifically, designers should aim
to allow users to effectively normalize each of the above recording-driven sub-tasks to one
of learning melodies. That is, we should strive to make each sub-task equally challenging
in terms of the extraction of salient notes, storing them in working memory, and offering
aids for those who are unable to do so.

Designers may also strive to take a further step, and try to usher users towards a level
of familiarization with recordings that leads to the formation of long-term memories
like those that allow them to play Twinkle, Twinkle, Little Star. Specifically, aiming for
musicians to remember the salient notes, eliminating the need for musicians to engage
so intensely with recordings while trying to learn notes one at a time—ultimately making
a pop song as easy to learn as a nursery rhyme.
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6.2 Technology for Cultivating Familiarity

When musicians need to learn a song—regardless of whether it is new to them, or a long-
time favourite—they should first dedicate some time to develop familiarity with it. By
doing so, it provides a sort of orientation to the song’s content. At the time of learning,
musicians can recognize the general structure of the song, and anticipate which parts
come next.

We suggest that the designers of by-ear learning technology should consider how
they might leverage existing familiarity in their users, or allow users to cultivate their
familiarity with a song intentionally.

6.2.1 The Importance of Familiarity

Musicians develop familiarity naturally through the processes of hearing, distracted lis-
tening, or attentive listening that occur during the musician’s enculturation (Green 2017,
p. 24). That is, becoming familiar with songs while hearing them in the background at
the grocery store, noticing them on the radio, or listening to them for enjoyment.

However, in Chapter 4 we observed experienced musicians making a point to demon-
strate by-ear learning with songs they had not heard before. By contrast, none of the
teachers we observed in Chapter 5 characterized learning by ear in this way. Rather,
we saw teachers suggesting that students develop familiarity with a recording intention-
ally. This active listening exercise we saw in Section 5.3.4 differs from what Lucy Green
(2017, p. 61) calls purposive listening. The latter characterizes the listening activity
that comprises the ear-learning session, often accompanied by an instrument; the former
lies somewhere between Green’s attentive and purposive listening. Specifically, active
listening is meant to develop the musician’s contextual understanding of a song, which—
according to the bass player in V402—allows them to “anticipate what comes next”.
This may be related to the structural understanding that develops in their memory with
repeated listenings (Section 2.4.5).

From our observations in Section 4.4.5, experienced musicians might occasionally
challenge themselves to learn songs without first developing familiarity with them. Al-
ternatively, these musicians might encounter real-world scenarios that do not allow them
the opportunity to do so. However, we have also seen evidence in Section 4.4.5 that—
despite appearing to possess sufficient skill to learn by ear without doing so—experienced
musicians might choose to develop familiarity intentionally to gain an advantage while
learning.
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In addition to the development of a contextual understanding, we hypothesize that
intentional, repeated listening sessions with a song improves the musician’s ability to
learn it because of the associative nature of long-term memory (Section 2.4.5). That is,
active listening sessions help the musician strengthen their existing memory of the song
by cueing its recollection. When the musician later attempts to learn the song by ear
on their instrument, hearing short segments of the recording cues the activation of their
long-term memory; this increases their their short-term memory capacity by providing
the necessary association for chunking to occur (Snyder 2014).

6.2.2 Measuring and Developing Familiarity

Familiarity may be a neglected element of by-ear learning in technology products, likely
because it is easy to assume familiarity has already been established. Therefore, we see
a ripe opportunity for software designers to provide a unique advantage for their users
who learn by ear. Technological supports can take many forms, but here we discuss two
possible directions.

First, designers can try to estimate a user’s existing familiarity with songs. For exam-
ple, using the number of times the user has played a specific song, software can gauge
their familiarity in relation to other songs. A list of recommended songs could be pro-
vided to users based on estimated familiarity scores, or users could be discouraged from
learning songs with low scores. Unfortunately, this technique is only possible if the avail-
able interface to a user’s music library surfaces this information; for example, Spotify’s
web API3 only provides an estimate of global popularity, but Apple’s API offers access to
the number of times a track has been played.4 However, even if it were easy to access this
data, counting a user’s exposure from the play count is likely to capture many distracted
listening (Green 2017, p. 24) events that may not contribute to one’s familiarity with a
song.

The second approach instead encourages, or facilitates, the active listening sessions
we saw described by teachers in Section 5.3.4. At the most basic level, designers can
simply communicate the importance of active listening sessions in their user interface.
However, designers might instead choose an extreme approach: enforcing that songs are

3https://developer.spotify.com/documentation/web-api/reference/get-track
4https://developer.apple.com/documentation/mediaplayer/mpmediaitem/1621694-playcount. How-

ever, this is limited to their iOS platform, and it appears to increment only when the user completes
playback of a song in its entirety.
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heard in their entirety before users can access song-learning features. Naturally, the lat-
ter approach risks irritating (and losing) users, but a well-designed feature can strike a
healthy balance between the two. What we recommend is that designers simply aim to
make active listening accessible in the moment when a user’s intention is directed towards
learning the song. The design goal would be to motivate users to participate—especially
those who might otherwise skip this step—and make the experience enjoyable. For ex-
ample, the user interface could provide coaching (e.g., recommending the instrument is
set aside; a distraction-free space is sought), calming visuals, and present the user with
statistics (e.g., time spent listening; number of sessions with this song) at the end of
each session. Across repeated attempts to learn the song, users should be encouraged
to revisit these active listening sessions so that their long-term memory of the song is
reinforced (Section 2.4.5).

Both approaches would be improved by a mechanism to directly assess the user’s fa-
miliarity with the song they wish to learn. For example, if a user could be quizzed about
the content of the song they are to learn, it would help establish their level of familiarity
and provide metrics that show improvements with additional listening sessions. Design-
ers may be able to achieve this result by asking users to restore a rearranged version of
the song to its correct order, or asking users to complete a sequence using one of multi-
ple choices of audio clips. However, future study is required in order to determine the
effectiveness of either method for evaluating one’s familiarity with a song.

6.2.3 Summary

Whether they have fond memories of songs that drove them to learn to play their in-
strument, or a catchy song heard on the radio, it seems reasonable to assume that most
songs are already familiar to musicians who wish to learn them by ear. However, we have
showed that musicians believe this is not enough, and it is beneficial to develop famil-
iarity with songs intentionally before learning them, and obtain context through active
listening sessions.

Our recommendation to designers is that purpose-built software should not only at-
tempt to estimate a user’s existing familiarity with a song, but proactively foster the user’s
active listening practices. By making it easy for users to deeply engage with songs before
(and during) their attempts to learn them, designers can potentially improve the user’s
ability to learn songs by ear.
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6.3 Technology That Interfaces With Working Memory

Regardless of their by-ear learning proficiency, musicians must work within the limits of
their memory while they learn from a recording. Specifically, they need to consider the
capacity, duration, and delicate nature of their tonal working memory while they execute
the foundational task of copying notes from a recording.

Here we recommend that technological tools offer a set of playback controls that are
designed in a way that matches our understanding of the by-ear learning task, and tonal
working memory. That is, we want to offer musicians a set of tools that provide them
with the best chance of remembering the notes they heard while seeking the notes on
their instrument.

6.3.1 Working in Bite-Sized Pieces

As we have discussed in Section 2.4.1, tonal working memory has limited capacity. We
also found that teachers recognize this limitation (Section 5.4.3)—for example, by sug-
gesting students learn only one note at a time in the beginning, or that they take “little
bites” (V505) of the recording.

With time, teachers expect that students will experience an increase in their capacity,
aligning with research from Ding et al. (2018) (discussed further in Section 2.4.1) that
showed musicians could remember longer sequences of notes than non-musicians. How-
ever, we also saw in Section 5.3.4 that teachers themselves encountered limits to their
memory in demonstrations, so we can see clearly that this progression has a clear upper
bound.

Based on what we have seen, musicians can only ingest few notes from a recording at
a time. Additionally, the number of notes is variable—not all musicians need (or want)
to progress through a recording note by note.

6.3.2 Tonal Working Memory Disruption

We know notes do not last very long in short-term memory (Section 2.4.1). However,
it appears this is especially true when musicians try to find them on the instrument, as
we saw in Section 5.3.4. Specifically, as the musician hears the pitches of their incorrect
attempts to play it, their memory of the target must be refreshed. This problem is likely a
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consequence of short-term pitch memories getting disrupted by the sound of new pitches,
as we discussed in Section 2.4.1.

However, it is not only the pitches that emit from the musician’s instrument that cause
disruption, but also the pitches of additional notes heard in the playback of the recording.
That is, audible pitches that continue to play after the target note(s) may negatively
impact the musician’s tonal working memory. In Section 5.3.4, we saw teachers either
stating or demonstrating that note-finding should occur exclusively while playback is
stopped—ideally before superfluous notes can be heard.

Musicians cannot predict how many attempts it will take to find the correct note on
their instrument, and certain notes may prove more challenging than others to copy;
such disruptions are inevitable. However, if they can listen only to the note(s) they wish
to find, musicians can avoid disrupting their short-term tonal memory prematurely.

6.3.3 Memory-Friendly Playback Controls

Because tonal working memory has a limited capacity, and is easily disrupted, playback
technology must be adapted so that users can control the flow of tonal information. That
is, designers should ensure that users can avoid becoming overwhelmed while they are
learning—playback must not start before, or proceed beyond those notes the user wishes
to hear.

Fortunately, technology already allows precise starting and ending points to be de-
fined, as users can mark such locations in purpose-built applications like the Amazing
Slow Downer and Transcribe!. By placing these marks, playback only allows the region
of audio between them to be heard.

Unfortunately, this affordance—as it is most often implemented—has two significant
flaws. First, the user is required to identify the precise locations where playback is to be
started and stopped, and—once the note(s) are learned—the user must re-define these
locations for each subsequent (group of) note(s) they wish to learn. This procedure
is rather fiddly, in practice. The second flaw is that these locations are represented as
points in time (e.g., 1:09.53), which fails to represent the musical content captured by
the recording.

Ideally, designers should offer musicians a mechanism to navigate recordings in a way
that is musically significant. That is, in addition to time-oriented movement specified
in minutes and seconds, designers should also allow musicians to place cursors or set
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regions using units that more closely match their mental model of a song—thinking in
terms of measures and beats, sections, or individual notes, for example.

To provide these facilities requires the kind of musical understanding that we discuss
in Section 2.5.3. For example, beat tracking provides the location of each beat in the
recording, and would allow designers to offer navigation that is aligned to this unevenly-
spaced grid of points. At a finer scale, software designers may wish to also offer access
to an even finer grid of points that are aligned to a subdivision of the beats, or individual
note onsets.

Armed with these capabilities, users would be able to define regions of playback
in a way that is musically relevant—for example, starting at the second beat of bar
12, and ending three notes later. Similarly, they would be able to shift these playback
regions such that the start and end always align to note onsets, effectively maintaining
the number of notes contained in each playback region.

6.3.4 Summary

While copying notes from a recording, musicians need to work in segments that are sized
to correspond with their tonal working memory capacity. Additionally, it is important that
musicians hear only the note(s) they wish to learn so that this short-term memory is not
disrupted by excessive pitch information.

Designers can help users by allowing them to learn within the limits of their tonal
working memory, specifying precisely how much of the recording is heard when the user
initiates playback. To improve upon existing methods, designers can leverage techniques
from MIR to provide users with a musically meaningful way to define these segments.
Doing so reduces the burden on users—it eliminates the need to make fine adjustments in
the software, and allows the user to remain focused on the foundational task of copying
notes from the recording.

6.4 Technology to Facilitate Playing From Memory

Teachers only seem to ask students to play melodies entirely from memory before learn-
ing to play songs from recordings (see Section 5.3.4), but it is never suggested to do so
afterwards. However, some musicians can learn songs from a long-lived memory of a
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pop song recording, and it appears that those who do so struggle less with the limits of
tonal working memory.

Here we discuss suggestions for the design of tools that facilitate this method of learn-
ing. Specifically, we explain how designers can turn segments of pop songs into long-term
memories using techniques inspired by the neuroscience and psychology literature found
in Section 2.4.2.

6.4.1 The Nursery Rhyme Exercise

In Section 5.3.4, we saw five teachers describing an exercise that asked students to play
nursery rhymes from memory. One teacher noticed a connection between humming
nursery rhymes and learning to play solos, which helps explain why this exercise is foun-
dational for learning by ear.

So what’s the difference in humming a tune and figuring out licks off of CDs?
Absolutely nothing, really. Humming London Bridge is humming a tune that
you’ve already learned in the past, and a hot solo on a CD is a tune that you’re
fixing to learn in the future. You learned London Bridge on your vocal cords,
and you’re learning your favourite CD on your guitar. Or maybe, to be honest,
you’re really going to learn it on your vocal cords, and then transfer it to your
instrument. (V001, 12:28)

Because it appears first, teachers must consider this task easy enough for beginners to
understand, and that their students are likely to achieve a successful result. Additionally,
their common choice of Twinkle, Twinkle, Little Star has a widely-recognized melody
(to English language speakers—see, e.g., Humpal 1998; Looi et al. 2003) and does not
require students to prepare before making attempts of their own. Further, because no
interactions with recordings are necessary to complete this exercise, a student need not
worry about their lack of familiarity with (or access to) purpose-built tools that can
facilitate the repetitive listening required to refresh their memory.

However, we find it curious that this exercise is relegated to the beginning of one’s
journey of by-ear learning. That is, we did not observe teachers recommending that
students continue this practice afterwards, or adapt it for different material. Do teachers
think that people are unable to remember the melodies of pop songs? Research suggests
otherwise, as we have seen in Section 2.4.2, Section 2.4.3, and Section 2.4.4.
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6.4.2 Playing Pop Music From Memory

We encountered two piano teachers in Section 5.3.4 who demonstrated they could learn
a pop song using only long-held memories of its recording. In both cases the teachers
appeared to have developed the same kind of memory that one might have of a nursery
rhyme.

The primary difference between pop songs and nursery rhymes is that a commercial
recording often contains a full band, with singing combined with one or more instru-
ments. By contrast, a nursery rhyme was likely learned during early childhood (Humpal
1998), as an unaccompanied melody sung by (and possibly along with) a teacher. How-
ever, despite the richness of information in a pop recording, we know from our survey of
the literature in Section 2.4.2 that such auditory memories can be formed intentionally.
Additionally, we know that these memories might even allow the correct key from the
recording to be recalled (Section 2.4.3).

We can see from the two piano teachers that the salient melody notes can be readily
accessed from these long-term auditory memories, and the teachers could also recognize
whether or not chords were correct. Also, despite the nature of tonal working memory—
that it has a limited lifespan, and is easily disrupted—the short-term memory of the
melody notes can seemingly be restored with ease from the long-held auditory memory.
Therefore, it appears rather robust, and notes are unlikely to be lost while a musician
locates them on the instrument.

Despite not seeing this method used in other videos, working entirely from memory
seems like a practice worth replicating. That is, internalizing the vocal melodies of popu-
lar songs, or the notes in a solo, to a point that they can be recalled as readily as nursery
rhymes. To accomplish this kind of practice, musicians would need a way to form mem-
ories of pop music recordings that persist for much longer than their short-term memory
can hold it.

6.4.3 Forming Long-Term Memories

As we have discussed in Section 2.4.2, instilling such memories is possible; this is demon-
strated by Kubit & Janata, (2022) who induced INMI in their participants to improve their
long-term memory of musical sequences. To achieve the same outcome, designers can
provide users with a mechanism to create bespoke earworms that will help them form
long-term memories of segments from songs they wish to learn.
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Designers should ensure that users can define segments that are aligned to the loca-
tions of beats (as discussed earlier in Section 6.3.3) so that loops play seamlessly, and in
time with the original recording. Additionally, designers may want to consider generating
these segments automatically—for example, from a verse, chorus, or solo—by employing
techniques such as music structure analysis and segmentation (see, e.g., McFee & Ellis
2014a; Nieto & Bello 2016).

Once segments are defined, designers should make them available in contexts where
users would normally listen to music—for example, while doing chores, or commuting.
However, their playback should employ the methods we described in Section 2.5.2 to play
the segments on repeat at a slower rate. Such a modification may help users remember
complex passages from a solo that are played too quickly for them to sing or remember
in full. Ideally, designers should strive to make learning these phrases as easy for users
to remember as nursery rhymes.

Designers may want to consider additional steps to prevent playback from becoming
tedious for users to listen to—for example, limiting the amount of repetition. Design-
ers can also inject novelty into the playback in a way that may help improve the users
memory by encouraging recall. Using a technique used by Kubit & Janata (2022) to test
their participants’ memory of musical sequences, designers can periodically insert brief
periods of silence that causes the user to generate imagery for missing portions of the
segment while anticipating what comes next. By also using knowledge of the beat lo-
cations in the original recording, these periods of silence can be inserted such that they
preserve the rhythmic context of the loops.

6.4.4 Summary

Musicians that are asked to play nursery rhyme melodies entirely from memory appear
to face little struggle with their tonal working memory capacity. Ideally, musicians may
want to try and replicate this practice with melodies or solos learned from pop record-
ings.

To facilitate this activity, we recommend that designers consider offering users a way
to listen to repeating segments of the pop recording so they can proactively form long-
term memories while they are not actively learning from the recording. Additionally, by
manipulating complex segments such that they play more slowly, designers can offer a
method that makes learning solos as easy as playing a nursery rhyme from memory.
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6.5 Assistive Technology for Retaining Notes

Not everybody can accurately recall a single pitch; those who can, remember it for a
short time. However, a pitch must be retained in memory long enough that a musician
can locate the note on their instrument. Continuing to sing the note appears to help
compensate for this, but it is not always possible for musicians to do so.

Here we explain how designers can provide tools that help their users who experience
these limitations. Specifically, we discuss how a pitch can be transformed from one that
is briefly audible into a pitch that can be heard indefinitely while the user seeks the note
on their instrument.

6.5.1 Pitch Working Memory Limitations

In the tonal working memory studies we discussed in Section 2.4.1, not all partici-
pants exhibited perfect scores when they were asked to remember a single pitch. How-
ever, teachers in video lessons often assumed students could do this, as we saw in Sec-
tion 5.3.2. Specifically, teachers assumed that students could recognize whether a pitch
they heard moments before was played correctly on their instrument.

To identify whether a note played on the instrument is correct, the target pitch must
be held in the musician’s tonal working memory (Section 2.4.1). Effectively, the musician
needs to recall the aural image of the correct pitch so that it can be compared to what
they are hearing from the instrument. When they are unable to do so, musicians may
try to reproduce the target pitch vocally while comparing both of the sounds they are
hearing at once, as we have seen in Section 5.3.4.

6.5.2 Vocal Pitch Imitation Deficiency

Unfortunately, the literature we discussed in Section 2.4.1 suggests that people who lack
a strong tonal working memory may also be unable to sing pitches accurately, and vice
versa. Additionally, a large minority of the population may lack the ability to reproduce
pitches accurately using their voice. Such limitations in singing and tonal working mem-
ory abilities would certainly make it challenging for musicians to learn from recordings
by ear.

We also noticed in both of our studies that saxophone players had no such luxury to
sing a note continuously, regardless of their singing ability—their breath was necessary
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to produce notes on the instrument. Combined with those who cannot accurately imitate
pitches with their voice, there is a segment of musicians who are unable to compensate
for a lack of tonal working memory capacity.

Fortunately, we saw in Section 2.4.1 that both musicians and non-musicians seem to
be adept at accurately reproducing pitches mechanically, provided the target pitch is still
audible. That is, people can make adjustments to an instrument-like device and match a
pitch they are hearing at the same time.

6.5.3 Assisted Note Retention

Based on our findings, we recommend that system designers offer playback facilities that
allow musicians to hear pitches for longer durations than they are audible in the original
recording. That is, users must be given ample time to hear the pitch while seeking its
match on their instrument. Such a feature has uses beyond that of compensating for a
user’s limited tonal working memory or inability to sing. By increasing their duration,
notes played quickly can be held frozen while the user takes their time doing any of the
following: identifying the note that is salient, singing it for retention, or locating the note
on their instrument.

Time stretching functionality is already available, but offers only limited help in this
regard. For example, a sixteenth note played at a tempo of 120 bpm, would still only
be audible for 500 ms when slowed to a quarter of the original speed—often the slowest
available playback rate. This provides very little time for the musician to compare what
they are playing to what they hear in the recording. Looping playback around a single
note helps, but the repeated attack of the note onset creates audible artifacts that may
distract from the pitch itself.

Instead, we recommend that designers try to synthesize the note(s) from the record-
ing, allowing the user to hear them indefinitely. That is, capturing the timbre of the
recording during that instant of time, and generating a new sound that maintains the
characteristics of the original. This can be achieved in many ways: using granular syn-
thesis (Schnell & Schwarz 2005; Schnell et al. 2000), or by synthesizing sinusoids (Serra
& Smith 1990). The latter method, or one that extracts harmonic elements from tran-
sients (e.g., Juillerat & Hirsbrunner 2017) can help reduce the impact of un-pitched per-
cussive sounds that may muddy the spectrum. Of course, each approach has its strengths
and weaknesses that the designer must weigh. For example, identifying and synthesizing
sinusoids discards timbral information from the original recording that the user may still
wish to hear.
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We also recommend that designers combine this approach with the navigation en-
hancements we discuss in Section 6.3.3. Specifically, allowing users to advance note-by-
note, or by using subdivisions of the beat grid.

6.5.4 Summary

As we have seen, musicians may struggle to learn songs by ear when they have a tonal
working memory deficiency. Additionally, they cannot always compensate for this limi-
tation by trying to sing notes while seeking them on the instrument.

What we recommend is that designers provide a mechanism for users to hang on to
the sound of notes for much longer than they are heard in the recording, giving them
ample opportunity to find them on their instrument. Using a mixture of synthesis tech-
niques, and those that power the foundational time-stretching effect, designers can pro-
vide benefits for users that extend beyond compensating for their limitations, such as
assisting with salient note identification.

6.6 Assistive Technology for Salient Note Identification

In a recording of music performed by a full band, it can be difficult to identify the notes
that are salient to the musician. By identification, we refer to the act of recognizing one
or more notes from among a full band’s performance that the musician wishes to play,
and not the playing or naming of those notes. For example, listening for notes played by
a rhythm guitarist, whose role is to support the rest of the band—including a lead singer,
who will be placed more prominently in the song’s mix.

What we suggest here is that designers offer methods that help users achieve this au-
ral identification. Specifically, we recommend that salient notes should be made audible
in isolation, and that designers offer users a method to carry out the identification of
these notes in a more systematic way.

6.6.1 Listening for Pitches Can Be Challenging

To learn music from a recording, a musician needs to hear which notes they need to
play. We have seen in Section 5.3.3 that identifying salient notes in a full band recording
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may not be straightforward—because of timbral differences between instruments, and
variations in mixing techniques. Additionally, notes that are played too quickly are not
audible for long enough that the musician can concentrate on identifying the salient
ones.

As explained by the teacher in V001, musicians may face challenges when trying to
copy notes that are played on instruments different from theirs. For example, a guitar
player trying to copy the notes of a saxophonist, or learning guitar chords to be played
on a piano. These differences in timbre—the harmonic properties that characterize in-
dividual instruments—can pose challenges for musicians when attempting to recognize
notes.

When a song is mixed, the audibility of individual instruments is fixed by the mixing
engineer. They control the volume of each instrument, and use tools like equalization
and compression to effectively sculpt their spectral contribution to the recording. These
modifications, combined with psychoacoustic masking effects, can cause notes to seem-
ingly disappear in the presence of louder sounds, or when different instruments play the
same notes (Wichern et al. 2016).

6.6.2 Isolating Salient Notes

In Section 5.3.3 we saw teachers recommending that students practice focused listening—
placing their attention on specific instruments, causing others to seemingly blur into the
background. We also observed that students were told to sing the salient notes they hear
the recording, presumably to extract the notes so that the student could confirm what
they heard was correct.

In a perfect world, musicians would be able to access the original stems, or tracks from
the mixing desk (or software) that was used to produce the recording they are learning
from. That way, they could lower the volume of, or mute, all except for the instrument
playing the notes they are trying to copy.

Today, such control is possible using music source separation, which aims to de-mix
the audio into individual stems (e.g., Nakano & Goto 2023; Rouard et al. 2023; Schaffer
et al. 2022). While these techniques are impressive, they are still imperfect. For example,
they are often trained only to separate a limited subset of the instruments—vocals, bass,
drums, and “the rest of the band”—and there are significant barriers to obtain sufficient
data to train state-of-the-art models (Pereira et al. 2023). For example, one would require
access to a large number of original multitrack recordings from the commercial studios
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that produced them. One could conceivably commission the production of music for such
a training data set, but it is unlikely to be large enough, or capture the variety of mixing
and mastering techniques that have evolved over many decades.

6.6.3 Auditioning Salient Notes

Designers may wish to consider a more straightforward alternative that allows users to
extract salient notes themselves. That is, the user would be provided with a mechanism
to produce the salient notes in isolation, and compare their own notes with the recording.

Such a feature could work as follows. The user marks a segment of the recording
with one or more notes that they find difficult to isolate. Then, the software alternates
between playing the segment, and recording the user singing the notes they heard. Once
they think they have the notes, they can disarm the recording, and playback will continue
to alternate between the original, and the recording of the musician’s singing. The user
may continue to arm and disarm the recording function until they feel they have worked
out the correct notes. To facilitate this, designers must ensure that the user’s recorded
interpretation of the notes is synchronized with the original.

If they cannot, or choose not to sing, the musician could instead produce notes using
their instrument. However, this requires that they are already competent enough to play
what they hear, and hence are much further along in their learning. For these musicians,
this feature is still quite useful—it allows them to check that what they have played is
correct.

When musicians can neither sing nor play the notes on their instrument, designers
should instead offer a proxy that allows musicians to produce audible notes mechanically.
This is similar to an activity we saw in Chapter 4, where musicians created sheet music
in software, and used a built-in sequencer to play their notation entries and evaluate
whether they sounded correct. However, designers should ensure that the entries are
synchronized with the recording when they are played. For example, users could place
notes on a timeline that is defined by the recording. During playback, those entries would
be made audible in unison with the recording, and the user would have an opportunity
to alternate between hearing the two.
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6.6.4 Summary

Musicians sometimes face recordings that make it difficult to hear the notes they want
to learn. Through focused listening exercises, and by singing what they hear, musicians
can improve their chances of identifying these tough-to-hear notes.

Designers can improve the experience of users by making the salient notes audible in
isolation, or by offering an interface that helps users identify salient notes themselves.
By alternating between playback of the recording, and those notes the musician has
produced—with their voice, instrument, or using a proxy—users could hear their inter-
pretation of the notes juxtaposed with the recording, and judge whether they captured
the correct ones.

6.7 Developing Foundational Skills

Just as there appears to be a foundational task sitting at the core of the by-ear learning
sub-tasks, there is a core set of skills that musicians should have in place before they can
copy notes from a recording. Specifically, musicians need to know when a pitch matches
those heard in the recording, and they should also be able to accurately match a pitch
using their voice.

We see an opportunity for designers to create tools that help users develop these core
skills. Whether they exist as standalone products or they are integrated into existing
ones, designers can usher prospective users towards learning by ear, or improve the
skills of those who already use their products.

6.7.1 The Foundational Skills of Budding By-Ear Learners

In Section 5.3.2 we saw that teachers often assumed their students possessed certain
prerequisite skills. Among these skills were recognizing when a note played on the in-
strument matched the pitch heard in the recording, or being able to reproduce pitches
by singing or humming them. These skills are foundational to the task of learning by
ear, because they are necessary when copying notes from a recording—a foundational
element of the by-ear learning sub-tasks (Section 6.1.5). However, we know from Sec-
tion 2.4.1 that not everybody possesses these skills. Either people lack them completely,
or there is room for improvement. For example, some people may only reproduce pitches
vocally with middling accuracy, or they can only remember one pitch at a time.
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The need to reproduce pitches vocally is not called upon once a musician has a well-
developed tonal working memory. For example, we have observed in both our studies
that musicians could seek notes on the instrument without singing them at the same
time. However, we know from Section 5.3.4 that studies suggest tonal working memory
and vocal pitch matching are related skills. Therefore, it is plausible that by develop-
ing someone’s ability to reproduce pitches vocally, it could improve their tonal working
memory—further improving the chance of success when learning by ear.

Note that reproducing a pitch accurately and singing well are two very different skills,
and the latter is unnecessary for instrumentalists who wish to learn by ear. In some
lesson videos, we observed teachers claiming they had poor singing voices, but they still
demonstrated the ability to reproduce pitches, as we saw in Section 5.3.2. Additionally,
the kind of pitch reproduction that is called upon while learning by ear does not require
absolute precision. Specifically, it is acceptable to sing notes one or more octaves away
from what is heard in the recording in order to fit one’s vocal range, as we have seen in
Section 5.3.4.

If musicians have deficiencies in pitch working memory or vocal pitch reproduction,
they can benefit from what we proposed in Section 6.5. However, for them to most
efficiently learn by ear, and also improve their musicianship, it is ideal that musicians
work towards building these foundational skills.

6.7.2 Evaluating Tonal Working Memory Comparisons

To measure one’s ability to identify that a tone is correct, we recommend that designers
create tests inspired by the literature discussed in Section 2.4.1. In one kind of test,
users would be played two tones separated by a delay, and asked whether the second
matches the first. In the other kind of test, designers can present users with a target
tone, then—after some delay—ask them to match its pitch.

In the simpler test configuration, designers are measuring the user’s baseline ability
to recognize that a probe tone matches the target. Consistent failures in this test would
reveal that a user is unable to tell whether the note they played on their instrument
matches the one heard in the recording, and should preclude the user from performing
further tests discussed below.

The more difficult test is one that measures the user’s tonal working memory accu-
racy—the user’s ability to correctly match a target tone held in memory. We recommend
that designers consider offering as many as three methods for matching a pitch in this
way: mechanically, vocally, and using their instrument.
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For mechanical pitch-matching, designers can offer users a virtual instrument with
continuous pitch adjustments, measuring the difference between their entry and the tar-
get pitch. Vocal pitch matching would record the user’s singing, using the same eval-
uation techniques researchers used in the studies we saw in Section 2.4.1. Finally, in-
strumental pitch matching would be largely identical, though its evaluation may need to
be adjusted such that designers account for inevitable tuning deviations between instru-
ments.

By executing the above tests, designers can help their users understand whether they
can accomplish the critical task of knowing when they correctly matched a pitch from a
recording. Designers may wish to integrate such critical tests in their ear-learning soft-
ware, in a manner similar to the “you must be this tall to ride” signs found at amusement
parks. If users consistently fail these tests, they could be encouraged to practice the req-
uisite skills, or consider employing assistive methods like those discussed in Section 6.5.

6.7.3 Training Vocal Pitch Imitation

If a user demonstrates any deficiency in their tonal working memory, designers may wish
to offer tools that allow users to practice matching pitches without asking them to re-
member anything. For example, designers could present users with a continuously play-
ing target tone that the user is asked to match. By providing visual feedback, designers
can indicate to users how close they are to the target pitch.

Based on what we learned from the studies in Section 2.4.1, training vocal pitch
imitation could help users develop baseline tonal working memory skills. By creating
the necessary sensorimotor connections to produce tones accurately, users who engage
in this training may improve their ability to encode tonal memories.

6.7.4 Summary

Alongside the technology that aids a musician learning recordings, there are opportu-
nities for tools that teach those core skills that by-ear learning requires. For example,
one’s ability to recognize if a pitch is correct or not, or to reproduce pitches by singing,
humming, or whistling. While we do not know the prevalence of such limitations among
musicians, it is worth considering the ways designers can help them reach the necessary
baseline.
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Specifically, we recommend that designers offer training for the core skills of by-ear
learning: building a suite of tests that attempt to develop a musician’s baseline level of
tonal working memory, and their ability to reproduce a pitch using their voice.

6.8 Next Steps and Future Work

We have provided a set of design recommendations that are all based on the results of
studies we conducted in Chapter 4 and Chapter 5, as well as the literature on memory
that we discussed in Section 2.4. However, each of these recommendations call for
additional study to validate and shape the design of what we have proposed.

For example, in Section 6.4, we proposed that designers should allow musicians to ex-
tract beat-aligned segments of songs that can be heard on repeat away from the learning
context. In doing so, designers would foster the creation of long-term memories of notes.
However, we are unable to offer guidance in terms of the duration of these segments, or
how many repetitions are necessary to provide the desired result. While our proposed
practice resembles the study design of Kubit & Janata (2022), the two are not entirely
the same; participants heard sequences with the same duration, and they were not asked
to reproduce what they remembered a week later. Therefore, product designers and aca-
demics should conduct studies that test how well musicians would perform in a by-ear
learning context; researchers might ask musicians to learn segments of varying duration,
and test whether they can reproduce notes from the segment on their instrument after
some time has passed.

In most cases, our design suggestions are presented in the context of augmenting
existing technology; e.g., our suggestion in Section 6.3 to limit the region of playback,
or describing in Section 6.5 how a segment of the recording could be re-synthesized to
play continuously. Testing the efficacy of these human-recording interactions would best
be carried out by modifying existing tools that are used to learn by ear. In an academic
setting, both new and existing users of the tool could be recruited to see how effectively
they can learn notes from recordings. Such a study would certainly require participation
from product vendors to allow the necessary alterations to their products, and fortunately
such partnerships are commonplace in academia.
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6.9 Summary

It is important that the designers of by-ear learning tools foster those musicians who
choose to learn from recordings. Rather than evolving these products towards the direc-
tion of producing automatic sheet music, designers should instead continue to embrace
this recording-driven method of learning.

We have shown how copying notes from a recording lies at the core of learning by ear.
Musicians must do it while learning melodies, solos, bass lines, chords, and even the key
of the song. The key implication of this finding is that designers should focus on making
sure that their tools allow musicians to effectively copy notes—even if they lack the base-
line tonal working memory skills. There is a clear opportunity for designers to optimize
their technological tools by leveraging an understanding of the musician’s memory. By
doing so, designers not only help musicians remember notes in the recording, but also
make their tools accessible to those who cannot (yet) do so.

In this chapter we have described six aspects of by-ear learning that can either be
improved upon, or built in to all-new products and features. First, designers can facilitate
the process of focused listening, helping users develop familiarity with the recording of
a song. Second, we recommend that designers offer playback controls that consider
the musician’s limited working memory, and allow them to navigate the recording in
musically meaningful ways. Third, designers can use ideas from the neuroscience and
psychology literature to usher users towards remembering musical sequences over longer
periods. Fourth, we explained how designers can help those users who have difficulty
retaining and singing notes they hear in the recording. Fifth, we describe ways that users
can be assisted during the process of isolating salient notes within a busy recording of
a full band. Sixth, we describe some opportunities for designers to possibly develop the
foundational skills that may be limited or missing in those musicians who wish to learn
music from recordings.

All of our recommendations in this chapter are well-grounded in existing literature,
and also our observations of lessons and experienced practitioners. However, each of
these recommendations also provide direction for researchers and practitioners to con-
duct future work in the form of prototyping, and evaluating the effectiveness of these
interventions through user studies.
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Chapter 7

Conclusion

In this thesis, I have demonstrated the value of conducting an online video-based study
to generate design recommendations. Specifically, the insight derived from two such
studies can be applied today to improve upon the experience of those musicians who
learn by ear from recordings (Chapter 2).

Video-based studies like ours are time-consuming—especially when they are con-
ducted by very few researchers. However, the limited financial investment and ease of
access makes such studies attractive for independent researchers or very small teams.
In Chapter 3 we discussed the advantages, practices, and pitfalls of running an online
video study, and methods that we and others have employed to save time. We also pre-
sented some of the unique ethical considerations that are necessary when conducting
such studies.

By analyzing a collection of 18 videos obtained from YouTube (Chapter 4), we de-
veloped a baseline understanding of the ways musicians interact with recordings as they
learn by ear, and generated hypotheses to guide future work. We found that musicians
who produced sheet music did not actually use it while learning, intentional familiariza-
tion with a recording may help with learning them, and that musicians employed varying
techniques for retaining the notes they heard in memory.

We then analyzed a collection of 29 lesson videos (Chapter 5) to help characterize the
by-ear learning process, and explain the variations in technique that we observed in the
first study. Our findings revealed differences in the way by-ear learning is taught, and we
identified a collection of sub-tasks that comprise the by-ear song learning process. Using
what we learned from neuroscience and psychology research in Chapter 2, we identify
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how the process of learning by ear calls upon a musician’s memory, and discuss how
some teachers acknowledge where memory plays a role.

In Chapter 6, we presented a conceptual model of the by-ear learning sub-tasks based
on our findings, and showed that each of them are built upon copying individual notes
from a recording. Effectively, by creating technology that facilitates this activity, design-
ers can facilitate the whole process of learning songs by ear. Among our recommenda-
tions for designers, we suggest offering tools that develop a musician’s familiarity with
recordings, and describe how to assist musicians that have difficulty retaining notes in
tonal working memory. All of our recommendations can be built today using existing
techniques.

While all of our design recommendations are grounded in observations and research,
specific designs must be implemented and studied to determine whether these interven-
tions have the intended impact; ideally, in partnership with the companies who produce
tools for musicians who learn by ear. Our work creates a number of possible directions
for future research to evaluate their effectiveness.

Our design recommendations are driven entirely by real-world observations that
came from user-uploaded videos on YouTube. Our studies generated hypotheses, trig-
gered additional research, helped us understand by-ear learning, and revealed opportu-
nities for designers to improve the musician’s toolbox for doing so.
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