
Triangle count estimation and label
prediction over uncertain streaming

graphs

by

Ipsita Mohanty

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Ipsita Mohanty 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis aims to integrate the notions of uncertainty with graph stream process-
ing, presenting probabilistic models to enhance real-time analytical capabilities in graph
database systems. These systems are crucial for managing interconnected data in various
domains, such as social networks, traffic networks, and genomic databases, where data often
contains incomplete or probabilistic connections that complicate processing and analysis.

We develop and validate two main methodologies: a martingale-based approach for
approximating triangle counts in edge uncertain streaming graphs and a Graph Neural
Network (GNN)-based method for dynamic label prediction in attribute uncertain stream-
ing graphs. Both methods demonstrate robust performance in handling dynamic and
uncertain data, thus opening new avenues for future research in expanding the scope of
graph-based analytics. This work lays the groundwork for future developments in uncer-
tain graph processing, suggesting pathways to refine these approaches and explore new
applications in dynamic environments.

iii

Acknowledgements

I extend my deepest gratitude to Prof. Tamer Özsu, whose unwavering support and men-
torship have been pivotal throughout my academic journey. Prof. Özsu not only taught
me invaluable skills in time management and research methodology but also significantly
boosted my confidence and motivation. His vast knowledge served as a constant resource,
enriching my understanding of big data and its possibilities. His open-mindedness, kind-
ness, wisdom, intelligence, and thoughtfulness have profoundly shaped my professional and
personal growth. I also extend my thanks to Prof. Lukasz Golab and Prof. Grant Weddell
for their willingness to read and review my thesis.

Being a member of the Data Systems Group has been a privilege and a rich source of
learning. Every moment has been a learning opportunity, from seminars and weekly lunch
talks to engaging with researchers and contributing to the lab committee. A heartfelt thank
you goes to my friends and colleagues, who have been my support system throughout this
journey - Kriti, Aida, Sairaj, Shubhankar, Xiangru, Pulkit, Lian, Max, Chao, Zeynep,
Shirley, and countless others whose names I regrettably cannot mention individually.

I also owe a profound debt of gratitude to my family, whose unwavering support has
been my foundation throughout this journey. To my parents, whose love and guidance
have been my constant compass, thank you for instilling in me the values of hard work
and perseverance. To my grandparents, whose stories and wisdom have enriched my life
and inspired me to aim high, your experiences have taught me more than any book could.
And to my brother, Shreyarth, thank you for the endless encouragement and for always
believing in me even when doubts clouded my path. Your collective support and sacrifices
have not only shaped who I am but have also made this academic achievement possible. I
am eternally grateful and proud to share this success with you all.

iv

Dedication

This thesis is dedicated to my parents, Kuntala and Chittaranjan, and my brother, Shre-
yarth.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Types of Uncertainty in Graphs . 4

1.2 Research Challenges . 5

1.3 Contributions and Organization . 6

2 Background & Related Works 9

2.1 Uncertain Graphs . 9

2.1.1 Possible World Semantics . 9

2.1.2 Uncertain Graph Management and Mining 12

2.2 Overview of Research on Uncertain Graphs 13

vi

2.2.1 Reliability Queries . 13

2.2.2 Graph Pattern Matching . 14

2.2.3 Influence Maximization . 15

2.3 Streaming Graphs . 16

2.3.1 Unboundedness and Real-Time Processing 17

2.3.2 Graph Mining Problems . 18

3 Edge Uncertain Streaming Graphs 21

3.1 Edge Uncertain Streaming Graph Model 22

3.2 Estimating the Number of Active Vertices 22

3.3 Active vertex estimation example . 28

3.4 Estimating the Number of Triangles . 29

3.4.1 Doob or Exposure Martingales [4] 31

3.4.2 Edge Exposure Martingale . 34

3.5 Triangle count estimation example . 39

3.6 Experimental Evaluation . 39

3.6.1 Data Generation . 40

3.6.2 Experimental Platform . 41

3.6.3 Accuracy Experiments . 42

3.6.4 Latency Experiments . 45

4 Label Uncertain Streaming Graphs 47

4.1 Definitions and Target Measures . 48

4.2 Label Prediction . 50

4.2.1 Embedding generation . 51

4.2.2 Label Classification . 51

4.3 Experimental evaluation . 53

4.3.1 Experimental Platform . 54

4.3.2 Accuracy Experiments . 54

4.3.3 Latency Experiments . 55

vii

5 Conclusion and Future Work 61

5.1 Future Work . 62

References 63

viii

List of Figures

1.1 Interaction network of Mic17 obtained from the STRING database. All
interactions (i.e., uncertain edges) are derived from experimental evidence . 2

2.1 Set of possible worlds of the Uncertain Graph with its probability of occurrence 11

2.2 Graph Snapshot G1 corresponding to [t0, t4] 14

3.1 Streaming graph . 25

3.2 Graph Snapshot G1 corresponding to [t0, t4] 25

3.3 Graph Snapshot G2 corresponding to [t2, t6] 25

3.4 Graph Snapshot G3 corresponding to [t4, t8]. Notice that the node B has
expired. 26

3.5 Graph Snapshot G4 corresponding to [t6, t10] 26

3.6 Example Graph . 29

3.7 The edge exposure martingale with n = m = 3, representing the number
of distinct colours required for acceptable vertex colouring. The edges are
exposed in the order “bottom, left, right”. The value of Xi are given by
tracing from the central node to the leaf. 37

3.8 Degree distribution in Wikipedia-election dataset 41

3.9 Degree distribution in Facebook dataset 42

3.10 log-log graph of degree distribution in Wikipedia-election dataset 43

3.11 log-log graph of degree distribution in Facebook dataset 44

3.12 Degree distribution in our synthetic dataset 45

ix

3.13 log-log graph of degree distribution in our synthetic dataset 46

4.1 The GraphSAGE aggregate approach [23] 48

4.2 The message passing mechanism. Image source: CS224 slides Stanford Uni-
versity . 53

4.3 log-log graph of degree distribution in the synthetic dataset with 5 labels . 54

4.4 Edge label distribution in the synthetic dataset with 5 labels 55

4.5 Accuracy of prediction algorithm with 5 labels 56

4.6 log-log graph of degree distribution in the synthetic dataset with 10 labels 57

4.7 Edge label distribution in the synthetic dataset with 10 labels 57

4.8 log-log graph of degree distribution in the synthetic dataset with 10 labels 58

4.9 Edge label distribution in the synthetic dataset with 10 labels 58

4.10 Accuracy of prediction algorithm with 10 labels 59

4.11 Accuracy of prediction algorithm with 15 labels 60

x

List of Tables

3.1 Accuracy results . 46

xi

Chapter 1

Introduction

Graph database systems (GDBMS) have been gaining immense popularity over the last
few years. These systems make it easy to model complex interconnected data like social
networks, information networks, traffic networks, genome databases, and medical and gov-
ernment records. GDBMSs can also efficiently organize image [45] and video [26] data.
Many graphs, such as web and social networks, can have trillions of edges and are often
dynamic – i.e., their structure changes over time. Graph database systems thus become
essential for the practical storage, processing, and analysis of these large, evolving, and
complex databases.

In many real-life scenarios, researchers and practitioners often encounter uncertain data.
This uncertainty often stems from the inherent limitations in our observations, which may
often only capture the partial aspects of complex realities we seek to understand. Moreover,
the presence of noise in the observations further increases the complexity. These errors and
inaccuracies can often blur the actual state of affairs.

Consider the example of medical data. While some diseases may exhibit precise and
deterministic relationships between symptoms and underlying causes, many others present
a more ambiguous landscape. In such cases, medical practitioners must navigate through
a maze of potential diagnoses, considering various factors and probabilities before arriving
at a conclusion.

This type of uncertainty pervades various fields, including but not limited to cell bi-
ology, finance, climate science, and social networks. In Protein-Protein Interaction (PPI)
networks (see Figure 1.1), connections between two protein molecules denote possible in-
teractions, typically identified through often uncertain and noisy experiments. This uncer-

1

tainty can be effectively captured by assigning an uncertainty or, in more concrete terms,
a probability to the existence of each connection. Likewise, in social networks, the prob-
ability of having a connection or “edge” between two users can serve as a proxy for the
likelihood of interaction or influence exerted by one user on the other. Thus, uncertainty
is intrinsic to graph data, which can arise due to a multitude of factors like inaccuracies
in measurements [3], unreliability and ambiguity of data sources [10], imprecise prediction
models [54, 2], or deliberate alterations made for privacy purposes [8]. In all these cases,
data can be more effectively represented as an uncertain graph, that is a graph whose ver-
tices, edges, or attributes are accompanied by a probability of existence or validity. This
probabilistic framework not only helps acknowledge the inherent uncertainties within data
but also facilitates a more nuanced understanding of the underlying uncertainties inherent
in various real-world phenomena.

Figure 1.1: Interaction network of Mic17 obtained from the STRING database. All inter-
actions (i.e., uncertain edges) are derived from experimental evidence

Further, in various modern contexts like product transactions, online feeds, and social
networking, graphs continuously “emerge,” i.e., entities and connections arrive over time.
These are called streaming graphs, and their notable feature is that they are unbounded in
nature, and it is impractical for processing systems to have a “holistic” view of the entire

2

graph at any particular time. The ongoing evolution of these graphs leads to unpredictable
stream durations, varied data distributions, and irregular arrival rates. Update events are
focused on the most recent graph topology, resulting in non-uniform arrival patterns and
the possibility of out-of-sequence data arrival from multiple sources and transmission delays
beyond the processing unit’s control.

Thus, merging the notions of uncertainty and streaming is the natural next step. Com-
bining streaming and uncertain graph concepts offers significant advantages, particularly
in domains where data evolves continuously and carries inherent uncertainties. Some of
the reasons why combining these concepts might be beneficial are the following:

• Real-time decision making: Streaming graphs depict evolving data, while uncer-
tain graphs factor in uncertainties like missing information or probabilistic relation-
ships. This merger enables real-time decision-making with a nuanced understanding
of uncertainties, thus enhancing outcome reliability.

• Improved analytics and insights: Integrating uncertainty into streaming graphs
allows analytics to consider the probability of events or relationships, yielding richer
insights. For instance, in fraud detection, understanding uncertainty in transaction
patterns aids in nuanced risk assessments.

• Enhanced predictive modelling : By incorporating the dynamic nature of data
and its uncertainties, merging these concepts improves predictive modelling. This is
particularly useful in scenarios like predictive maintenance, where models must adapt
to new data and uncertainties in sensor readings or environmental conditions.

• Robustness in dynamic environments: Combining streaming and uncertain
graph concepts helps build robust models that handle rapid environmental changes
and noisy or incomplete data. This ensures reliable insights despite the dynamic
nature of the data.

• Optimized resource allocation: Understanding real-time network states and un-
certainties in demand or supply improves resource allocation in applications like
network traffic management or supply chain optimization, leading to more efficient
operations and anticipation of potential issues.

• Facilitating complex event processing: Integration of these concepts enhances
complex event processing systems, enabling them to react to evolving patterns while
considering uncertainties, thereby offering a comprehensive event processing solution.

3

Inspired by the mentioned applications, this thesis centres on integrating streaming graphs
and uncertain graphs. It examines classical issues in streaming data mining and explores
how embracing uncertainties enables advanced analysis. The outcome encapsulates the
nature of dynamic data and inherent uncertainties, facilitating informed decisions and
resilient applications across diverse domains.

1.1 Types of Uncertainty in Graphs

In an uncertain or probabilistic graph, uncertainty can be associated with any one or
multiple of the following components:

• Edge uncertainty: Uncertainty in edges is a well-studied concept in uncertain
graph research, focusing on the probability of a connection existing between two
vertices. This uncertainty arises from various sources, including noise, measurement
errors, inference processes, and predictive modelling. Additionally, the probability
associated with an edge can encapsulate a range of different edge characteristics [6].
As an example, in a social media context, a popular musician may have a stronger
influence on their followers regarding music and style updates, while a well-known
political figure might have a more significant impact with tweets focused on political
issues among their audience.

• Vertex uncertainty: The concept of vertex uncertainty has been examined in
relation to device networks and the execution of graph pattern-matching queries.
The most common way to understand vertex uncertainty is by associating it with
the likelihood that the vertex actually exists. This interpretation helps assess the
reliability of vertices within networks, especially when analyzing complex network
structures or addressing pattern-matching queries. For example, [53] introduced the
notion of identity uncertainty, that is, uncertainty about whether each real-world
entity is represented by one or multiple vertices in the graph.

• Attribute/Label uncertainty: Uncertainty regarding an attribute or label per-
tains to the ambiguity in the attribute values linked to the vertices or edges. This
concept finds application in various graph-related contexts, including graph pattern
matching, the creation and handling of uncertain query graphs, and the execution of
queries on RDF (Resource Description Framework) data. Such uncertainty plays a
critical role in interpreting and processing data accurately within these applications.

4

The existing work on these types of uncertainties focuses on static graphs, while the focus
in this thesis is on the emergence of these concepts in streaming graphs. In particular, we
investigate edge uncertainty and label uncertainty. We delve into one extensively studied
problem within each realm, specifically Approximate Triangle Counting for edge un-
certainty and Label Prediction for label uncertainty. Further details on these topics will
be explored in subsequent chapters.

1.2 Research Challenges

The main focus of this thesis is uncertain streaming graphs : a dynamic and probabilistic
framework where edges and/or attributes are imbued with probabilities that reflect the
inherent uncertainty in their existence and characteristics. In this context, the system
receives timestamped payloads (defined precisely in Chapter 2), capturing the temporal
evolution of the graph structure and properties. The uncertainty information is assumed
to be associated with each payload, and we examine and analyze the structural patterns of
these payloads aggregated over a desired timeframe. By delving into uncertain streaming
graphs, this thesis aims to inspire novel methodologies and algorithms capable of effectively
analyzing and extracting meaningful insights from streaming data in real-time scenarios.

Streaming graph processing is an essential area of research that addresses the processing
and analysis of graph data in real-time or near-real-time. As the data continuously evolves,
streaming graph processing poses unique challenges compared to static graph processing.
Adding the uncertainty to the streaming graph problem adds another layer of complexity
to the model. Here are some of the key research challenges in this field:

• Unboundedness: Streaming data presents a unique challenge due to its potentially
infinite nature, constantly arriving without a predetermined endpoint. This continu-
ous influx thus requires innovative approaches to managing, storing, and processing
the data, as traditional batch processing methods become impractical in this context.
One effective strategy in response to this challenge is to employ a time-based window
analysis technique on the graph stream. By implementing such an approach, we can
effectively segment the data into finite chunks based on time intervals, allowing for
more efficient processing and analysis of the streaming data. This method enables
real-time insights and decision-making, which is crucial in dynamic environments
where getting real-time results is paramount.

5

• Modelling uncertainties: A key challenge lies in formulating effective method-
ologies for modelling uncertainty within graph representations. Firstly, for effective
encapsulation of inherent uncertainties and interdependencies in graph streams, a
robust probabilistic framework for the graph stream must be established. Secondly,
within the context of a streaming system, it is challenging to continually update the
model to incorporate the latest information as new data arrive, as this may result
in a significant computational overhead, particularly in scenarios requiring exten-
sive model retraining or Bayesian updating procedures. Further, guaranteeing the
consistency and validity of the model in response to new incoming data becomes
increasingly complex. This thesis shows that a simple Bayesian update analogous to
the PageRank algorithm works well for simple cases.

• Benchmarking and evaluation: Since analyzing uncertain streaming graphs presents
a fresh challenge, it is crucial to establish standardized benchmarks and evaluation
criteria to gauge the effectiveness and precision of algorithms designed for uncertain
stream processing. While conducting tests on static uncertain graph frameworks
offers insights, devising evaluation strategies and metrics tailored to this specific is-
sue is imperative. This ensures a more comprehensive understanding of algorithm
performance in dynamic, real-time environments.

Addressing these challenges requires interdisciplinary approaches that combine graph the-
ory, probability and statistics, algorithm design, data management strategies, and efficient
computation models.

1.3 Contributions and Organization

As previously mentioned, there are numerous methods to integrate uncertainties into
streaming data. Specifically, within this thesis, our attention is centred on edge and la-
bel/attribute uncertainties. To elaborate further, we concentrate on addressing a single
problem within each domain and present a thorough framework for tackling these chal-
lenges. Brief details of the problems are outlined below:

• Approximate triangle counting in edge uncertain streaming graphs
Counting triangles plays a crucial role in graph processing. Various graph models
have extensively employed it as a network analysis metric (e.g., calculating tran-
sitivity ratios). Further, it has various practical applications such as spam detec-
tion, finding hidden thematic structures within the Web, and link recommendations.

6

Given the probabilistic nature of our model, we leverage graph theoretic principles
and probabilistic methodologies to establish an asymptotically tight estimate of the
triangle count within a defined temporal window. This approach allows for a rig-
orous characterization of the triangular connectivity patterns within evolving graph
structures, thus facilitating deeper insights into their dynamics and functionalities.
Further, as there is no actual “counting” involved, we get faster results than deter-
ministic models. This thesis allows for trading off running time against exactness.
Furthermore, it enables approximating the number of triangles in a graph that does
not completely fit in the main memory.

• Label prediction in attribute uncertain streaming graphs
Label prediction in graph streams can be highly complex due to the dynamic nature
of graphs and the need to capture interdependencies between labels. In general, for
static graphs, machine learning frameworks in a semi-supervised context can provide
significant flexibility. Unlike strictly supervised or unsupervised learning, graph-
based machine learning can utilize the structure and connectivity of the graph to infer
labels, exploiting both labelled and unlabeled data within a connected framework.
However, as streaming systems require real-time/near-real-time computations, using
these computation-intensive ML models for link prediction becomes impractical.

This thesis enhances the prediction process by leveraging the uncertainty model to
achieve accelerated outcomes. Given the inherently probabilistic nature of predic-
tions, prioritizing speed does not significantly compromise accuracy, enabling tear
real-time results while conserving computational resources.

The remainder of the thesis is organized as follows -

• Chapter 2 presents background information and summarizes the related existing work
on uncertain graph analysis and stream management and processing systems.

• Chapter 3 establishes formal foundations for representing the uncertain graph model
targeted in this thesis. It tackles the problem of approximate triangle counting, as
described above, and gives rigorous proofs ascertaining the tightness and correctness
of the calculated bound.

• Chapter 4 focuses on the design and implementation of a label prediction framework
that extends the probabilistic model and uses it to predict new edges and their
attributes. It employs a simple GNNmodel to analyze subgraph patterns and predicts
edge attributes accordingly.

7

• Finally, Chapter 5 summarizes the experiments that validate the correctness of the
models discussed in Chapter 3 and Chapter 4 and presents their results. We also
discuss some limitations of our model and directions for future research.

8

Chapter 2

Background & Related Works

This chapter is structured around three principal sections. Section 2.1 and Section 2.2 pro-
vide an overview of the core concepts and the necessary background on uncertain graphs
and discuss existing relevant literature in this field. Then Section 2.3 introduces the prelim-
inary definitions related to streaming graphs, examining the existing work in this domain
that is relevant to this thesis.

2.1 Uncertain Graphs

Before delving into the core concepts, we first define the uncertain graph model used in the
thesis. These definitions form the basis of the discussions and methodologies that follow.

2.1.1 Possible World Semantics

In recent years, there has been a notable increase in research dedicated to exploring various
aspects of uncertain graph data. This includes its representation, storage, query processing,
analysis, and mining. A widely adopted method for expressing the semantics of edge
uncertain graphs (EUG) is through the possible world model [42], [27]. This model suggests
that an EUG represents a probability distribution across all potential scenarios or possible
worlds. Each possible world represents a deterministic graph where any particular edge
could potentially exist. For example, an EUG withm edges yields 2m possible deterministic
graphs, which are derived by sampling independently each edge with its corresponding
probability.

9

Definition 1 (Graph). An undirected graph G = (V,E) is a collection of n = |V | vertices,
and E ⊆ V × V is a set of m = |E| edges.
Definition 2 (Edge Uncertain Graph). A EUG G, is a tuple (V,E, p) where V represents
the set of n vertices in the graph, E ⊆ V × V is the set of m edges, and the function
p : E → [0, 1] assigns to each edge in E its corresponding probability or likelihood of
existence.

Definition 3 (Possible World Graph). A deterministic graph, G ⊆ G, can be described by
the pair (V,EG), where EG is a subset of E. This is one of the 2m possible worlds that can
be generated by G. The probability of sampling this specific graph G from G is given by-

Pr(G) =
∏
e∈EG

p(e)
∏

e′∈E\EG

(1− p(e′))

Figure 2.1 illustrates an EUG with five vertices and seven edges and three of its 27 = 128
possible worlds with their sampling probability.

One may note that the probabilities of the existence of all possible worlds derived from
an EUG are independent of each other, and they add up to 1.

The semantic framework outlined for EUG can also be applied to label uncertain graphs
(LUG).

Definition 4 (Labelled Graph). A labelled graph G can be represented as a four-element
tuple (V,E,Σ, L) where V is the set of vertices, E ⊆ V × V is the set of edges, Σ is a set
of labels, L : E → Σ is a function that assigns labels to edges.

Definition 5 (Label Uncertain Graph). A label-uncertain graph, denoted as G, can be
defined by a quintuple (V,E,Σ, pe, pl). In this tuple, V is the collection of n vertices within
the graph, E ⊆ V × V constitutes the set of m edges, and Σ denotes the collection of
possible labels. The function pe : E → [0, 1] assigns to each edge in E its corresponding
probability or likelihood of existence and the function pl : E × Σ → [0, 1] maps each edge
and its associated label to a probability value, indicating the likelihood of each edge-label
combination.

Definition 6 (Possible World Graph). A possible world graph G = (VG, EG,ΣG, L) is an
instantiation of an uncertain graph G = (V,E,Σ, p) where VG ⊆ V , EG ⊆ E, Σ′ ⊆ Σ and
L : EG → ΣG is a function that assigns labels to edges. The probability of sampling this
specific graph G from G is given by -

Pr(G) =
∏
e∈EG

pe(e)pl(e, L(e))
∏

e′∈EG\E

(1− pe(e
′))

10

A

B

C

D E

0.4

0.2 0.6

0.8
0.70.3

0.5

=⇒

Uncertain Graph G

A

B

C

D E

Pr(G) = 0.0084

A

B

C

D E

Pr(G) = 0.168

A

B

C

D E

Pr(G) = 0.0269

...

Possible Worlds of G

Figure 2.1: Set of possible worlds of the Uncertain Graph with its probability of occurrence

11

Definition 7. PWG(G) is used to denote the set of all possible world graphs derived from
an EUG or LUG G.

2.1.2 Uncertain Graph Management and Mining

In the domain of uncertain graphs, a considerable amount of research and development ac-
tivity has focused on addressing the challenges associated with its mining and management.
Various tasks, such as subgraph similarity search [52], the evaluation of graph reliability
to ascertain reachable nodes from given query points [30], frequent subgraph mining [57],
reliable clustering [36] have been of particular interest. The possible-world model has been
widely used to represent the indeterminate nature of these graphs. Nonetheless, this ap-
proach is not without its drawbacks, chiefly the considerable computational load it imposes.
The root of the challenge lies in the rapid escalation of potential deterministic graphs that
emerge as the uncertain graph expands - in essence, an uncertain graph with m edges could
present 2m possible worlds, and adding even one extra edge means this number doubles.
Such vast possibilities render the tasks of query processing and data mining on uncertain
graphs notably infeasible due to their extensive computational demands.

To manage this computational challenge and streamline the analysis of uncertain graphs,
sampling methods [33] have emerged as a powerful solution. Sampling approaches involve
selecting a representative subset of possible worlds to approximate the overall structure
and behaviour of the uncertain graph. This approximation allows for a more practical
approach to processing and mining while reducing the need for exhaustive computation
across every potential graph configuration. Through these techniques, researchers and an-
alysts can achieve a balance between computational feasibility and the precision of results
derived from uncertain graph data.

Among the various sampling techniques available, the Monte Carlo method is notably
the most widely utilized. It involves selecting a potential instance G from the set of all
possible worlds PWG(G), based on its probability Pr(G). The variance of the sampled
distribution is then reduced by leveraging the particular constraints of the given problem
[52]. Nonetheless, the Monte Carlo method is not without its limitations. For instance, the
sampling time for a possible world in a graph containing m edges is O(m). Furthermore,
to maintain the approximation error ϵ below a certain threshold δ with a high confidence
level, it necessitates sampling of O(1

ϵ2 log
1
δ) possible worlds, where 0 < ϵ, δ < 1.

12

2.2 Overview of Research on Uncertain Graphs

Uncertain graphs have become a significant focus for researchers due to their wide-ranging
applications in representing ambiguous interconnected data. Khan et al. [31] have pub-
lished an extensive text on this subject. Uncertain graphs are increasingly prevalent in new
applications, capturing the interest of both the database and data mining communities.
Simple tasks, like reachability and shortest path queries, are #P complete in the uncertain
graph domain. Additionally, uncertain networks see the development of intricate queries
and analytics, including pattern recognition, information spread, and influence maximiza-
tion. This section will explore various problem types associated with uncertain graphs and
review existing research in the area.

2.2.1 Reliability Queries

A fundamental problem that has been extensively studied in the context of uncertain graphs
is the problem of s−t reliability, which determines the likelihood R(s, t) that a target node
t can be reached from a source node s. This task has been proven to be #P−hard, which
is why various efficient algorithms based on sampling and indexing have been developed.
This discussion includes some of these methods from other studies.

• Monte Carlo Sampling
This basic sampling method, as outlined in [20], involves sampling K out of the 2|E|

possible world graphs from the uncertain graph G based on the probability associated
with the existence of independent edges. Here, the authors use a straightforward
hit-and-miss approach to calculate the estimator R̂(s − t) for R(s − t) by taking
the mean of the reachability score on each of the sampled graphs. Further, it has
been proven that this calculated estimator is indeed an unbiased estimator, i.e.,
E(R̂(s, t)) = R(s, t), and its variance follows a Binomial distribution [27, 20]. In
Chapter 3, we more or less adopt a similar approach with streaming graphs, applying
martingale models to show that our estimator is unbiased and adheres to the law of
large numbers.

• Indexing via BFS Sharing
Building on Monte Carlo sampling, Zhu et al. [55] developed an offline method to
generate K possible worlds from the uncertain graph G. This method involves using
a compact bit-vector structure, as shown in Figure 2.2, which minimizes storage

13

overhead. This structure maintains a single graph, assigning a bit vector of size
K to each edge. Each bit in this vector indicates the presence of the edge in a
corresponding sampled graph. This approach of sharing BFS has the same variance
as basic Monte Carlo sampling but significantly reduces the time required for online
s− t reliability estimation by preparing the possible worlds offline.

Expanding on these concepts, additional sampling techniques have been introduced to
reduce both storage demands and the variance of the reliability score estimator. Jin et al.
[27] introduced a recursive sampling method that uses a divide-and-conquer strategy to
create the possible worlds. This approach was further refined by Kempe et al. [29], who
developed a dynamic programming method that uses a sampling table at the bottom to
facilitate memoization, making the algorithm iterative and thus reducing the size of the
recursive stack.

Numerous other strategies for computing the reliability score are well-documented in
[28], which provides a comprehensive comparison of various algorithms and their perfor-
mances. According to this paper, no single approach is superior; each has its trade-offs,
including factors such as Relative Error, Running Time, and Memory Usage, with different
algorithms exhibiting varying efficiencies in these areas.

A

B C

D

10011
11100

10001

00110

11111

Figure 2.2: Graph Snapshot G1 corresponding to [t0, t4]

2.2.2 Graph Pattern Matching

A considerable amount of research has been devoted to finding efficient solutions for pattern
matching over uncertain graphs. Unlike reachability or shortest-path queries, which focus
on reachability and path between two specific vertices, pattern-matching queries consider
the connections among groups of vertices.

14

More formally, the graph pattern matching problem is defined as follows. Given a graph
pattern query q with n vertices {v1, . . . , vn} and an uncertain graph G, and a pre-defined
threshold ϵ, the objective is to retrieve all sets of vertices S = {u1, . . . , un} in G such that
the pattern matching probability of existence of S in G is at least ϵ.

Though pattern matching over uncertain graphs is NP-hard, a filtering-and-verification-
based framework can be employed to speed up the search process [19]. It has been further
proven that the pattern-matching query can be answered in polynomial time #P -complete
[20].

A significant amount of work has been done on the pattern-matching problem via
subgraph isomorphism in deterministic graphs as well [12, 51]. The goal here is to produce
a candidate answer set that is close to the exact answer set and perform a series of subgraph
isomorphism tests to ensure its validity.

The graph isomorphism tests are quite expensive; in order to reduce the number of
isomorphism tests, Fan et al. [19] relaxed strict query conditions by limiting the number of
hops in graph patterns or integrating regular expressions as edge constraints [18]. Ma et al.
[38] propose topology-constrained graph pattern matching queries, which can be processed
within polynomial time [18, 19]. Additionally, Fan et al. [19] develop strategies for graph
updates to avoid rerunning query algorithms. Despite these advancements, these methods
primarily involve online query processing, which does not scale well for very large graphs.

In response, Cheng et al. [41] and Zou et al. [56] have explored pattern matching
over large directed graphs by imposing reachability constraints. Both studies leverage
pre-stored decomposed graphs in relational databases, utilizing advanced join algorithms
to handle pattern-matching queries efficiently [41, 56]. These improvements emphasize a
trend toward optimizing graph pattern matching to manage larger datasets effectively.

2.2.3 Influence Maximization

Influence Maximization (IM) is a critical algorithmic problem in social influence analysis
that aims to select a set of k users (called the seed set) from a social network to maximize
the expected number of users who become influenced (referred to as influence spread).
This issue has gathered extensive attention over the past decade due to its significant
potential for application and substantial technical challenges. In the realm of e-commerce,
when a user purchases a product, they are said to be “influenced” or “activated”. The
traditional viral marketing challenge centers on identifying the top-k seed users within a

15

network to maximize the expected influence spread using a specific influence propagation
model. The choice of k, the number of seed users, typically depends on the marketer’s
strategy and indicates how many consumers the marketer can initially reach and influence
through methods such as advertising, free samples, and discounts.

Domingos et al. [15] formulate IM as an optimization problem modelling the network as
a Markov Random field where each customer’s probability of buying an object is influenced
both by the desirability of the object and the influence of the other customers. Several
following works have proposed new methods to improve the efficiency and accuracy of the
measure. For instance, [9] developed an almost linear time algorithm for the influence
maximization problem, obtaining the near-optimal approximation factor of (1− 1/e− ϵ),
for any epsilon > 0, in time O((m + n)klog(n)/ϵ2), where m,n is the number of edges
and vertices in the graph respectively, k is the seed size, and e is the base of the natural
logarithm, while ensuring the same approximation guarantee as [15].

Numerous variations of the influence maximization problem have been explored. For
instance, Barbieri et al. [8] develop a model that captures the viral adoption process
of products influenced by social connections and product characteristics. They employ
an iterative scaling technique to fine-tune the parameters that enhance the likelihood of
successful propagation under their model. Similarly, Bharathi et al. [7] investigate the
dynamics of innovation diffusion in a competitive environment where multiple firms deploy
viral marketing strategies for competing products, aiming to optimize the spread of their
innovations. This study uniquely considers scenarios where subsequent campaigns are
aware of their competitors’ initial seed nodes, adding a strategic layer to the marketing
efforts. Furthermore, Lappas et al. [32] formulate the k-effectors problem, examining its
complexity across various graph structures. They focus on identifying a set of k active
nodes that most accurately explain the observed activation patterns within a network,
according to a specific information-propagation model. This approach aims to delineate
a clear activation pattern, shedding light on how information spreads through different
network topologies and contributing to a deeper understanding of the mechanisms driving
influence in social networks.

2.3 Streaming Graphs

This section includes definitions and notations used to describe the data processing ap-
proaches for streaming graphs. The definitions are taken from [40] and [44].

16

Definition 8 (Streaming Record). A streaming record (sr) is a pair (τ, P) where τ is the
event (application) timestamp of the record assigned by the data source, and P defines the
payload of the record.

Definition 9 (Streaming Graph Edge). A streaming graph edge (sge) is a quadruple
(τ, src, trg, l) where (src,trg) ∈ V × V are vertex pairs, l represents the label of the sge,
and τ is the event (application) timestamp assigned by the external data source.1

Definition 10 (Input Graph Stream). An input graph stream is a continuously growing
sequence of streaming graph edges SI = [sge1, sge2, . . .] where each sgei = (τi, srci, trgi, li)
represents an edge e ∈ E labelled li ∈ Σ between vertices srci, trgi ∈ V and sges are
non-decreasingly ordered by their timestamps.

As outlined in Chapter 1, the sheer volume of incoming data surpasses manageable pro-
cessing capabilities. Therefore, it becomes crucial to establish the notion of windows that
enables processing this unbounded data in finite batches, making it manageable. Further
processing the entire stream at once would require unlimited memory and computational
resources. Windowing constrains resource usage by limiting the scope of data being pro-
cessed at any one time.

Definition 11 (Window). A window of size w indexed by k, Wk, over a streaming graph
is a finite multi-set of sgrs denoted as a range [Wk,Wk + w). Here, Wk thus represents
the start time of the window.

Definition 12 (Time-based Sliding Window). A time-based sliding window with window
size w and slide parameter β is a window that slides after every β time unit. Thus, at time
unit t, the active window has index k = ⌊t/β⌋ and Wk = k · β. Thus, the window is given
by [Wk,Wk + w)

Definition 13 (Graph Snapshot). A graph snapshot is a pair of vertex and edge sets
G = (V,E) forming a graph at a time point t by the sgrs within a corresponding window.
For simplicity, a graph snapshot is denoted as Gk = (Vk, Ek) where k = ⌊t/β⌋ and β is the
slide parameter.

2.3.1 Unboundedness and Real-Time Processing

As elaborated in Chapter 1, streaming data is characterized by unboundedness – i.e., it
is not possible to estimate its total size. Such data is typically analyzed using stream

1It is assumed that a single or multiple external data source generates sges and arrive in order.

17

processing techniques. To frame our understanding, we draw upon insights from prior
studies [40, 44] to portray streaming data through the lens where edges are integrated with
time stamps.

Further, building on the groundwork established by the foundational studies [13, 48, 46,
43], this thesis delves into operations/queries on streaming graphs that require real-time
processing. This aspect distinguishes it from the conventional static graph framework,
wherein the graph remains unchanged and is entirely retrievable for analysis. In stark
contrast, streaming graphs are in a state of constant flux, necessitating the execution of
updates even when the full graph context is not present.

2.3.2 Graph Mining Problems

Numerous studies have introduced effective approaches tailored to specific graph mining
tasks within the context of streaming graphs. Below, we examine some of the most exten-
sively researched applications in the domain of streaming graph mining:

1. Motif Counting
A motif is defined as any connected and unlabeled graph pattern. The process of
counting motifs with a given number of vertices, known as k-motifs, involves deter-
mining the prevalence of these motifs within a graph. This task has become partic-
ularly significant in analyzing streaming graphs, where traditional methods may be
inadequate due to the continuous influx of data. Research in this area often lever-
ages probabilistic and sampling techniques to estimate motif frequencies, aiming for
approximations that balance accuracy and computational feasibility. For instance,
Wang et al. [49] have developed methods to sample edges from streaming data ef-
fectively, thus enabling real-time motif counting. Similarly, Chen and Lui [11] have
introduced a universal unbiased estimator that adapts across various scenarios to pro-
vide reliable motif statistics, reflecting a shift towards more dynamic and adaptable
analytical tools in graph processing.

2. Pattern Matching
The domain of graph pattern matching has been a fertile ground for research, partic-
ularly with challenges such as the subgraph isomorphism problem, which is known to
be NP-complete [21]. To address this complexity, there have been several proposals
to simplify the problem into more manageable forms. For example, Fan et al. [19]
introduce a matching-based bounded simulation, effectively reducing certain graph

18

pattern matching tasks to cubic time complexity, a significant reduction from po-
tentially intractable scenarios. This approach was later refined to achieve quadratic
time complexity [25], further optimizing the process. Additionally, ongoing innova-
tions like those by Collins and Smith [14] focus on incremental subgraph pattern
matching algorithms, which adapt to changes in the graph over time, thus under-
scoring the evolving nature of graph analysis tools that aim to handle dynamic data
environments efficiently.

3. Frequent Subgraph Mining
Frequent subgraph mining aims to identify all labelled patterns within a graph G
that occur more frequently than a specified threshold τ . This challenge has tradi-
tionally been tackled by analyzing static snapshots of streaming graphs at intervals.
However, recent advancements have shifted towards more continuous and dynamic
methodologies, such as window-based computation, which allow for the ongoing as-
sessment of subgraph frequencies. For instance, Abdelhamid et al. [1] have developed
an incremental mining system that maintains a specialized data structure to track
emerging patterns and those close to meeting frequency thresholds. This method
ensures that data analysts can keep pace with rapid changes within the graph. Fur-
thermore, techniques like those introduced by Aslay et al. [5], which employ reservoir
sampling, are instrumental in detecting frequently occurring k-vertex subgraphs in
real-time, illustrating a significant shift towards more responsive and timely graph
analytics.

Addressing graph mining challenges in streaming graphs presents considerable difficulties
primarily due to the immense sizes of resulting graphs, which often exceed the capacity
of standard memory systems. Different strategies have been developed to manage these
issues, focusing on both in-memory and disk-resident solutions.

For scenarios where maintaining the entire graph in memory is not feasible, some re-
searchers have concentrated on enhancing disk-resident data management. This involves
optimizing I/O access patterns to efficiently count the exact number of graph patterns
without requiring extensive in-memory operations [14]. These approaches help manage
large-scale data by relying on the hard disk for storage while minimizing the latency and
overhead typically associated with disk access.

Conversely, other studies [1] have explored the use of in-memory algorithms that in-
corporate random sampling techniques. These methods selectively store portions of the
induced graph in the main memory, enabling the accurate estimation of measurements

19

while ensuring the graph remains manageable within the available memory constraints.
This strategy leverages the speed of in-memory processing while mitigating the limitations
posed by memory size through intelligent sampling.

A prevalent technique for handling the unbounded nature of data streams is windowing,
a cornerstone concept in stream processing. Windowing divides the continuous stream into
finite segments called windows. This segmentation is crucial for performing operations like
window aggregations or joins. The specific type of window used—determined by how the
stream is split and which data tuples are included—greatly influences the content of the
window, the outcome of windowed operations, and the feasibility of various application
scenarios.

In recent years, the variety and complexity of window types have expanded signifi-
cantly as researchers and practitioners seek to cater to diverse application needs. Standard
fixed-size windows, such as tumbling or sliding windows, may not meet all the demands
of intricate stream processing applications. Consequently, more adaptive window types
have been proposed. These include data-driven windows that adjust dynamically based on
the characteristics of the data, such as punctuation-based windows and session windows,
which allow for more flexibility and relevance in data processing. Additionally, concepts
like Frames have been introduced to tailor windowing mechanisms more closely to specific
processing requirements, illustrating a broader trend toward customization in stream pro-
cessing technologies. A recent article by Verwiebe1 et al. [47] gives an extensive survey of
window types for stream processing systems.

Overall, these advancements reflect a growing sophistication in handling streaming
graph data, emphasizing efficiency, scalability, and adaptability to a range of processing
scenarios.

20

Chapter 3

Edge Uncertain Streaming Graphs

As discussed in the previous chapters, efficiently counting motifs in large graphs is an essen-
tial building block for analyzing the structure of large networks. One of the fundamental
yet crucial substructures within these graphs is the triangle, constituting the smallest
complete subgraph. Various graph metrics, including local clustering coefficients and tran-
sitivity ratios, rely on the computation of the number of triangles. Notably conspicuous in
social networks, where connections often proliferate among friends of friends, triangles play
a pivotal role. This ubiquitous presence across diverse networks has spurred the emergence
of pivotal analytical concepts such as transitivity ratios and clustering coefficients in the
domain of complex network analysis.

This chapter presents the Edge Uncertain Streaming Graph Model, aimed at approxi-
mating the count of triangles in a streaming graph. We also demonstrate the asymptotic
tightness of this estimate. To achieve this, we break down the problem into two subtasks:

1. Estimating the number of active vertices: The initial phase involves accurately gaug-
ing the number of active vertices within the graph snapshot.

2. Estimating the number of triangles: Subsequent to determining the active vertices,
we focus on estimating the number of triangles.

The subsequent sections of the chapter are structured as follows: Section 3.1 outlines all
necessary definitions for the edge uncertain graph model, with subsequent sections focusing
on each of the above subtasks individually.

21

3.1 Edge Uncertain Streaming Graph Model

This section combines the uncertain graph model discussed in Section 2.1 with the stream-
ing graph model in Section 2.2 to establish and define the edge uncertain streaming graph
model. This is the basis of the proposed approach to triangle counting.

Definition 14 (Edge uncertain streaming graph edge). An edge uncertain streaming graph
edge is a quadruple (τ, src, trg, p) where (src, trg) ∈ V × V is an edge between vertices
src, trg ∈ V , p ∈ [0, 1] denotes the probability of the existence of this edge, and τ is the
event timestamp.

Definition 15 (Edge uncertain graph snapshot). An edge uncertain graph snapshot (EUG)
over a window Wk is a triple GWk

= (VWk
, EWk

, pWk
) where VWk

and EWk
are vertices and

edges that are in window Wk and pWk
is the set of probabilities of EWk

.

In the remainder, we omit the window subscript for simplicity and simply refer to the
snapshot as Gk.

3.2 Estimating the Number of Active Vertices

As previously mentioned, a crucial step in estimating the triangle count within a window
involves first determining the number of active vertices it contains. Essentially, the goal is
to forecast the count of active vertices in an upcoming window without having to list each
one explicitly. To achieve this, we employ a probabilistic model that provides predictions.
We demonstrate that this model is both unbiased and precise in its estimations.

Consider a EUG snapshot Gk at a given time t. Suppose the count of vertices in the
preceding EUG snapshot Gk−1 is denoted as n. For each incoming edge et = (t, src, trg, pe)
in the graph, the following probabilities are discerned:

• The probability that both vertices src and trg are already included in Gk−1 equals
1
n2 . Consequently, the vertex count in Gk remains n.

• The probability that only one of the vertices src or trg was present in Gk−1 is
2pe

(
1− 1

n−1

)
1
n , This indicates that the vertex count in Gk increases to n+ 1.

• The probability that neither vertex src nor vertex trg was present in Gk−1 is given

by pe
(
1− 1

n

)2
, resulting in an increase to n+ 2 for the vertex count in Gk.

22

We define a random variable Xe that represents the number of vertices incident to an edge
e ∈ Ek \ Ek−1 added to Gk−1 at time t. Consequently, the total number of vertices added
due to the shift in this time window can be given by

n′ =
∑

e∈Ek\Ek−1

Xe

The expected value of n′ is derived using:

E[n′] = E

 ∑
e∈Ek\Ek−1

Xe


and by the linearity of expectations, we can write -

E[n′] =
∑

e∈Ek\Ek−1

E[Xe].

Now, considering all possible probabilities as discussed above, we can obtain E[Xe] by
doing the following calculations.

E[Xe] = 0 · 1
n2

+ 1 · 2pe
(
1− 1

n− 1

)
1

n
+ 2 · pe

(
1− 1

n

)2

≈ 2pe

(
1− 1

n

)
Intuitively, this means that for every new edge e ∈ Ek \ Ek−1 the expected number of
new vertices it adds to the window k is approximately 2pe

(
1− 1

n

)
. Enumerating this

expectation for all edges in the set Ek \ Ek−1, by linearity of expectation, we can say -

E[n′] ≈ 2
(
1− 1

n

) ∑
e∈Ek\Ek−1

pe (3.1)

Here, E[n′] is the expected number of vertices added to window k − 1 when it slides from
k − 1 to k.

It should be emphasized that our analysis thus far has not considered the potential
impact of edge deletions on the estimate. Under the sliding window model, some vertices
present in Gk−1 may no longer be relevant in Gk because they “expire” or become obsolete

23

when the window slides. To illustrate this concept, refer to the example depicted in Fig-
ure 3.1. In this figure, we observe a streaming graph in which edges are introduced over
time. For instance, at time t0, we witness the arrival of the edge (A,B), followed by the
edge (B,C) at t3, and so forth.

For this example, let us assume a window size of four units and a slide interval of two
units. The first window, i.e., the window corresponding to k = 1, encompasses all activity
from time t = t0 to t = t4, resulting in a graph snapshot as shown in Figure 3.2. As the
window advances, we migrate from G1 to G2 which corresponds to the time interval [t2, t6].
The subsequent snapshot, as visualized in Figure 3.3, does not include the edge (A,B)
because it falls outside of G2’s temporal scope. In this scenario, we classify the edge (A,B)
as having “expired”. Moreover, as the window slides again to k = 3 corresponding to the
interval [t4, t8], we further observe the expiration of the edge (B,C), which consequently
renders the vertex B defunct within that snapshot. Thus, it becomes important to accom-
modate this phenomenon of vertex “expiry” while estimating the count of active vertices,
ensuring our model accurately reflects the fluid nature of the graph’s topology over time.

Furthermore, the disappearance of a vertex from one window does not necessarily imply
its permanent removal from the entire graph sequence. As indicated in Figure 3.5 vertex
B again makes a reappearance in the snapshot G4, demonstrating the recurrent nature of
vertices in the graph.

To incorporate the concept of vertex expiration, as previously outlined, we reformulate
our methodology using a probabilistic strategy. It is crucial to understand that within the
context of our streaming model, it is the edges that dictate the inclusion and exclusion
of vertices in a graph snapshot; not the other way around. Therefore, all our incremental
computation is centred toward the arrival and deletion of edges, not vertices.

When the window slides from k− 1 to k, for a vertex associated with an expiring edge,
i.e., e ∈ Ek−1 \ Ek, its inclusion in Vk is only possible if its degree at time t is ≥ 1. If this
condition is not met, the vertex is excluded from Vk and thus is not present in the EUG
snapshot Gk

More formally, let d(u) represent the total count of edges connected to u ∀u ∈ Vk. For
every vertex u associated with e ∈ Ek−1 \Ek, if d(u) ≥ 1, it is still present in Gk when the
window moves from k− 1 to k. By definition, for deterministic graphs, d(u) = (# of edges
incident to u). For uncertain graphs, however, d(u) is also a probabilistic quantity, which
entirely depends on the probability of the existence of edge incident to u. To calculate this,
let us introduce a binary random variable Ye ∈ {0, 1} corresponding to an edge e such that
Ye = 1 if e exists in the PWG, and 0 otherwise. It can be easily said that Pr(Ye = 1) = pe

24

A

B

B

C

A

D

C

D

F

C

A

F

E

B

D

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 3.1: Streaming graph

A

B

C

D

Figure 3.2: Graph Snapshot G1 corresponding to [t0, t4]

A

B

C

D

F

Figure 3.3: Graph Snapshot G2 corresponding to [t2, t6]

25

A

D C

F

B

Figure 3.4: Graph Snapshot G3 corresponding to [t4, t8]. Notice that the node B has
expired.

A

E

D

B

F C

Figure 3.5: Graph Snapshot G4 corresponding to [t6, t10]

26

and Pr(Ye = 0) = 1− pe. Further, for any graph G ∈ PWG(Gk),

d(u) =
∑
e∈Iu

Ye

where Iu is the set of edges incident to u in Gk.
And for u in order to be relevant in the next window, it should have d(u) ≥ 1. The

probability of this event can be given by

Pr[d(u) ≥ 1] = Pr

[∑
e∈Iu

Ye ≥ 1

]
applying Markov’s inequality to the above equation, we get

Pr[d(u) ≥ 1] = Pr

[∑
e∈Iu

Ye ≥ 1

]
≤

E
[∑

e∈Iu Ye
]

/
1

=
∑
e∈Iu

pe

This result essentially says - that for a vertex u associated with an edge that expires when
the window moves, there is a probability ≤

∑
e∈Iu pe that it still sustains in the next

window. To make the analysis easier, let us consider another random variable Xv ∈ {0, 1}
for every vertex v ∈ Vk−1 such that Xv = 0 if the vertex v is removed from the snapshot
when the window slides, and 1 otherwise. i.e.

Xv =

{
1 if d(v) ≥ 1

0 otherwise

From the above arguments, it’s easy to note that

Pr[Xv = 1] = Pr[d(u) ≥ 1] ≤
∑
e∈Iu

pe

Note that this argument is for a single vertex. Extrapolating it to encompass all vertices
linked to edges that are set to expire, we can express the count of vertices, denoted as n′′

that are not removed from Gk when the window slides can be given by

n′′ =
∑

e∈Ek−1\Ek

∑
u∈S

Xu

27

where S = (src, trg) associated to the edge e.

Using linearity of expectations, the expected value of n′′ can be derived as

E[n′′] =
∑

e∈Ek−1\Ek

∑
u∈S

E[Xu] (3.2)

=
∑

e∈Ek−1\Ek

∑
u∈S

Pr[d(u) ≥ 1] (3.3)

≤
∑

e∈Ek−1\Ek

∑
u∈S

∑
e∈Iu

pe (3.4)

= 2
∑

e∈Ek−1\Ek

pe (3.5)

Combining Equation 3.1 and Equation 3.5, the total number of vertices |Vt| in the window
corresponding to time t is upper bounded by

|Vk| ≤ 2
(
1− 1

n

) ∑
e∈Et\Ek−1

pe + 2
∑

e∈Ek−1\Ek

pe +

∣∣∣∣∣∣
⋃

e∈Ek−1\Ek

(srce, trge)

∣∣∣∣∣∣ (3.6)

Where the last term corresponds to the vertices associated with the edges that do not
expire.

3.3 Active vertex estimation example

In this section, we detail the process of estimating the active vertex count. We exemplify
this process using a simple example EUG snapshot Gk at time t as shown in Figure 3.6.
At time t+ 1 assume two new sge’s (t+ 1, D, F, 0.9) and (t+ 1, I, J, 0.2) appears and one
existing edge (B,C, 0.2) expires. By the estimate proposed above, the edges corresponding
to Et \Ek−1 are the new edges that come in at time t+1, i.e., (D,F) and (I, J). The edge
that is expiring is (B,C), and for our case, there are 5 vertices {A,B,C,D,E}, which are
associated with edges that do not expire when the window slides.

By our estimate, the total number of new vertices in the window corresponding to t+1

28

can be calculated by

|Vt+1| ≤ 2
(
1− 1

n

) ∑
e∈Ek\Ek−1

pe + 2
∑

e
∑

e∈Ek−1\Ek

pe

∣∣∣∣∣∣
⋃

e∈Ek−1\Ek

(srce, trge)

∣∣∣∣∣∣
= 2

(
1− 1

5

)
(0.9 + 0.2) + 2(0.2) + 5

= 7.16

As shown in the figure, this estimate is very close (slightly larger) to what we observe.
Further, by the law of large numbers, we can say that the estimate becomes even closer
when we have a large number of vertices in the window.

A

B

C

D E

0.2

0.8
0.7

0.3

0.5

Gt

A

B

F

D E I

J

0.8

0.3

0.9

0.8

0.7

0.2

0.5

Gt+1

Figure 3.6: Example Graph

3.4 Estimating the Number of Triangles

To estimate the number of triangles in an EUG snapshotGk, we model it as edge exposure
martingales [4]. Martingales are a sequence of random variables that describe a stochastic
process where, at a particular time, the conditional expectation of the next value in the
sequence is equal to the present value, regardless of all prior values.

29

Definition 16 (Martingale). A sequence of random variables X1, X2, . . . , is said to be a
martingale sequence if for all i > 0, we have

E[Xi|X1, . . . , Xi−1] = Xi−1

The notion of martingales has its roots in the gambling arenas of Western Europe,
where it became known through the eponymous betting system. In this system, gamblers
would respond to a loss by wagering an amount that would recoup all previous losses. In
the era predating the imposition of table limits, this strategy was perceived as virtually
failproof, contingent on the assumption that an eventual win would nullify all accumulated
losses. However, the critical question arises: what occurs when a gambler runs out of
money and is unable to place a further bet?

Specifically, consider the game of roulette, where the objective is to predict the final
resting sector of a small white ball on a wheel divided into 38 segments: 18 black, 18 red,
and 2 green. The game’s operation is simple: the wheel is spun, wagers are laid, and
the ball is released onto the wheel in motion. Over time, friction diminishes the wheel’s
rotation, culminating in the ball settling into one of the segments.

Bettors stake their money on the colour—red or black—of the segment in which the
ball will halt, with even odds being the norm. If a gambler stakes k and their prediction
holds, they receive 2k; if not, they lose their money.

Let Xi denote the gambler’s wealth after i betting rounds. This amount is the previous
wealthXi−1 adjusted by the wager’s outcome. Although the outcomes of successive spins of
the roulette wheel are independent events, the gambler’s wagers are not – they depend on all
previous outcomes of the roulette wheel (thus the gambler’s current fortune). Therefore,
Xi does not represent the aggregate of an independent random variable series. With a
probability of 18/38, the gambler anticipates a successful wager, but with a probability of
20/38, expects a loss.

Consequently, the expected value of Xi+1, given the historical data of the wheel and the
gambler’s funds, is invariably lower than Xi. Thus, the gambler is perpetually poised to
lose on the next bet. At some point T , the betting ceases, and the focal point becomes the
expected value of the gambler’s wins/losses at this point. One can appeal to the theoretical
underpinnings of martingales to ascertain this expected value. As will be elaborated in
subsequent sections, probabilistic techniques render the calculation of this expectation not
only straightforward but also highly accurate.

Martingale’s theories extend their influence beyond the realms of finance and gambling,
penetrating varied sectors like public health and computational intelligence. For instance,

30

in public health, martingale methods are applied to the modelling of epidemics [50], pro-
viding a structure for forecasting the trajectory and zenith of disease transmission amid
uncertainty. In the domain of computational intelligence, martingales offer a framework
for evaluating the efficacy of machine learning algorithms [13], particularly in environments
characterized by the processing of unpredictable data sequences and projecting their an-
ticipated evolution through successive rounds.

3.4.1 Doob or Exposure Martingales [4]

Consider Ω1,Ω2, . . . ,Ωn as probability spaces defined over discrete sets S1, S2, . . . , Sn re-
spectively, and an arbitrary function f : S1 × · · · × Sn → R. Let y⃗ = {y1, y2, . . . , yn} such
that y1 is sampled independently from S1, y2 from S2, and so on.

For a given vector a⃗ ∈ S1, S2, . . . , Sn, we can then define a sequence of random variables
X0, . . . , Xn as follows:

X0(⃗a) = E⃗
y
[f(y⃗)],

X1(⃗a) = E⃗
y
[f(y⃗)|y1 = a1],

X2(⃗a) = E⃗
y
[f(y⃗)|y2 = a2 ∧ y1 = a1],

...

Xi(⃗a) = E⃗
y
[f(y⃗)|

∧
j≤i

(yj = aj)]

where the subscript in Ey⃗ indicates that the expectation is taken over the random choice
of y⃗. It is crucial to note that Xn(⃗a) = f(a1, a2, . . . , an)

Lemma 3.4.1. The sequence of random variables X0, . . . , Xn is a martingale.

Proof. We need to verify that for arbitrary values of x0, . . . , xi we have:

E[Xi+1|(Xi = xi) ∧ · · · ∧ (X0 = x0)] = xi

31

Let E be the event (Xi = xi) ∧ · · · ∧ (X0 = x0). Using the definition of expectation, we
can say:

E⃗
y
[Xi+1(y⃗)|E] =

∑
a⃗∈(S1,S2,...,Sn)

E

[
Xi+1|E ∧

∧
j≤i

yj = aj

]
Pr

[∧
j≤i

(yj = aj)|E

]

Notice that the summands where a⃗ /∈ E would cancel, and we’ll be left with

∑
a⃗∈E

E

[
Xi+1|E ∧

∧
j≤i

yj = aj

]
Pr

[∧
j≤i

(yj = aj)|E

]

and it suffices to verify that, whenever Xi(⃗a) = xi

E⃗
y

[
Xi+1(y⃗)|

∧
j≤i

(yj = aj)

]
= xi

Let Pri denote the probability on Ωi. As Xi+1(y⃗) only depends on (y1, y2, . . . , yn), we can
say:

E⃗
y

[
Xi+1(y⃗)|

∧
j≤i

(yj = aj)

]
=

∑
yi+1∈Si+1

Pri+1[yi+1]Xi+1(a1, a2, . . . , an, yi+1)

=
∑

yi+1∈Si+1

Pri+1[yi+1] E⃗
b

[f (⃗b)|(bi+1 = yi+1 ∧
∧
j≤i

(bj = aj)]

= E⃗
b

[f (⃗b)|
∧
j≤i

(bj = aj)]

= Xi(⃗a)) = xi

Here the sequence X0, . . . , Xn is the exposure martingale for the function f .

Let us try to understand this with an example. An exposure martingale can be under-
stood through the lens of a repetitive betting game that unfolds in real time. Imagine that
each round of the game, labelled as trial k, yields a potential reward Xk. The cumulative
experience of the game up to the ith trial is represented by the sequence X1, . . . , Xi−1.
The stake for the ith trial is strategically determined based on the results of all prior trials;
a history of wins may encourage the player to increase their bet, whereas a sequence of

32

losses might prompt a more conservative wager. Consequently, the earnings from the cur-
rent trial are contingent on the invested amount, which is directly linked to the outcomes
of all preceding trials.

This interdependence means that as the game progresses, the outcomes from each
trial progressively “unveil” or “expose” the trajectory of the game, reflecting the core
principle of an exposure martingale. In such a scenario, the current state of play provides
no advantage in predicting the outcome of the subsequent trial beyond what was already
known. Each trial’s result serves as a revelation that informs the next decision, creating a
chain of interconnected outcomes that epitomize the unfolding of an exposure martingale
in a real-world setting.

Given this motivation, we look at some strong probabilistic results that strengthen the
martingale model even more. Specifically, we look at concentration inequalities related
to this exposure model that would help us verify our calculated estimates with utmost
certainty.

Theorem 3.4.2 (Azuma’s Inequality [4]). Let c = X0, . . . , Xn be an exposure martingale
with the property

|Xi+1 −Xi| ≤ 1

for all 0 ≤ i ≤ n. Then
Pr[|Xn − c| > λ

√
n] < 2e−λ2/2

where the condition |Xi+1 −Xi| ≤ 1 is called the Lipschitz Conditions.

Proof. Consider Yi = Xi − Xi−1 so that |Yi| ≤ 1 and E[Yi|Xi−1, . . . , X0] = 0. Then for
α > 0, Set

h(x) =
eα + e−α

2
+

eα − e−α

2
x

Then ∀x ∈ [−1, 1], eαx ≤ h(x) as y = h(x) is a chord through the points x = ±1 of the
convex curve y = eαx. Thus,

E[eαYi |Xi−1, . . . , X0] ≤ E[h(Yi)|Xi−1, . . . , X0]

= h(E[Yi|Xi−1, . . . , X0])

= h(0)

= coshα

≤ e−α2

33

Further,

E[eαXn] = E[
n∏

i=1

eαYi]

= E[(
n−1∏
i=1

eαYi)E(eαYm|Xm−1, . . . , X0)]

≤ E[
n−1∏
i=1

eαYi]e−α2/2

Using Markov’s Inequality, we can further say -

Pr[Xn > λ
√
n] = Pr[eαXn > eαλ

√
n] < E[eαXn]/eαλ

√
n ≤ eα

2n/2−αλ
√
n

Setting α = λ/
√
n

Pr[Xn > λ
√
n] < e−λ2/2

and further by symmetry,

Pr[|Xn − c| > λ
√
n] < 2e−λ2/2 (3.7)

The conclusion drawn above provides a significant insight into the behavior of processes
modeled as martingales. Specifically, it proves that if a martingale process adheres to the
condition |Xi+1 − Xi| ≤ 1, i.e., the absolute difference between successive terms of the
process does not exceed one, then the real-world manifestation of this process will align
closely with its theoretical expected value. This condition essentially implies a constraint
on the volatility or variance within the process, ensuring that changes from one term to
the next can be calculated with bounded error.

3.4.2 Edge Exposure Martingale

The discourse on martingales thus far has been situated within the framework of temporal
processes, wherein the outcome at any given moment is a function of preceding outcomes.
The challenge arises when we attempt to apply this martingale model to the domain of
graph theory. We are about to delve into how this model is applicable within the context

34

of uncertain graphs. Let us consider a visual example to cultivate an intuitive grasp of
this concept. For the sake of simplicity, we take into account an edge uncertain graph
denoted as G(n, p) where n represents the number of vertices and each pair of vertices has
a probability p of being connected by an edge. Consequently, the total number of possible
edges in this graph is m =

(
n
2

)
. 1

If we consider, for a moment, the vertex colouring problem in the setting of an EUG,
the problem presents itself quite naturally for visual comprehension. Our motive here
is to provide an intuitive understanding of the model and then talk about the rigorous
mathematical proofs. Consider the vertex colouring problem, where the objective is to
determine the smallest set of unique colours needed to colour every vertex of a given graph
so that no two adjacent vertices share the same colour. For illustrative purposes, we will
explore a basic case where n = 3 and m = 3. In Figure 3.7, it is postulated that the edges
become evident sequentially in the following order: “bottom, left, right”.

Figure 3.7 demonstrates how, as each edge is revealed—or ‘exposed’—in the stipulated
sequence, we can apply a colouring strategy that adapts to the evolving structure of the
graph. Note that there are 23 sample graphs, and each has a probability 1

8 of being
materialized. Let us go through the example step by step:

1. When we have no information about the edges, the expected number of colours for
the given case can be calculated by

1

8
(1 + 2 + 2 + 2 + 2 + 2 + 2 + 3) = 2 = X0

2. Upon the disclosure of the initial edge, which in our scenario is the bottom edge,
there are two potential outcomes to consider. This edge might be present, which
occurs with a probability of 0.5, or it might be absent in the actual graph. Thus,
the figure branches into two: if the bottom edge exists, we need at least two colours
as there exists an edge between a pair of vertices, but if it doesn’t, we can get away
with using just one colour. That is,

• if the bottom edge exists, as shown in the graph, the expected number of colours
required = 1

4(2 + 2 + 2 + 3) = 2.25

• similarly, if the bottom edge is absent, as shown in the graph, the expected
number of colours required = 1

4(2 + 2 + 2 + 1) = 1.75

1This example has been taken from [4]

35

So X1 can take two values depending on whether or not the bottom edge is present.
Note that

E[X1|X0] =
1

2
· 2.25 + 1

2
· 1.75 = 2 = X0

which satisfies the very definition of the martingale model.

3. Similarly, when we receive information about the left edge, the analysis further
branches into two. Again note that

• E[X2|X1, X2] =
1
2 · 2.5 +

1
2 · 2 = 2.25 = X1 for the case where the bottom edge

was present

• E[X2|X1, X2] =
1
2 · 2 +

1
2 · 1.5 = 1.75 = X1 for the case where the bottom edge

was absent.

4. Same analysis can be extended for X3 and it can be easily checked from the figure
that it is consistent with the martingale model

It is interesting to note that this particular modelling of the vertex colouring problem
aligns with the criteria mentioned in Theorem 3.4.2. While this can be readily verified
by referencing Figure 3.7, we can also visualize it in a more straightforward way. At the
step where an additional edge is exposed, in the worst case, the resolution could simply
involve assigning an entirely new colour to one of the vertices connected by the newly
exposed edge. This would increase the count of total distinct colours required by 1, which
is consistent with Theorem 3.4.2.

For the scope of this thesis, our objective is to estimate and bound the number of
triangles in an EUG snapshot Gk = (Vk, Ek, pk), where |Vk| = n and |Et| = m. Following
from the above example, we first order the edges in Ek as e1, e2, . . . , em. Let f : 2m → R
be a function where f(G) gives the number of triangles in G and G ∈ PWG(Gk) is a graph
sampled from Gk.

We define a martingale X1, . . . , Xm by giving the values Xi(H) where G ∈ PWG(Gk):

Xi(H) = E [f(G)|ej ∈ G←− ej ∈ H, 1 ≤ j ≤ i] (3.8)

Note that Xm(H) is simply f(H) and X0(H) = E[f(H)] where H is sampled from Gk.

In other words, to determine Xi(H), the process commences with the revelation of the
first i edge pairs, denoted as e1, e2, . . . , ei, check if they are present in H. Subsequent edges

36

2

2.25

1.75

2.5

1.5

2

2

3

2

2

2

2

2

2

1

X0 X1 X2 X3

Figure 3.7: The edge exposure martingale with n = m = 3, representing the number of
distinct colours required for acceptable vertex colouring. The edges are exposed in the
order “bottom, left, right”. The value of Xi are given by tracing from the central node to
the leaf.

37

remain unseen and are presumed to follow a random distribution. In this context, Xi(H)
is then the conditional expectation of f(G) based on this partial insight. Specifically, when
i = 0, no edges have been disclosed, and thus, X0 is a constant with its value equal to

E[f(H)]. On the contrary, at i = m, every edge is revealed, thus Xm = f(H). The
martingale, thus, moves from no information to full information in small steps.

Further, we observe that when a single of one edge, there can be an increase of maximum
n− 2 triangles in the given sample. i.e.

|f(H)− f(H ′)| ≤ n− 2 < n

Where H and H ′ differ by one edge. In order to have a function that satisfies the constraint
discussed in Theorem 3.4.2, we define another function g(H) such that g(H) = f(H)/n.
And thus,

|g(H)− g(H ′)| ≤ 1

Here, the function g satisfies the Lipschitz Condition as stated in Theorem 3.4.2. Thus,
the corresponding edge exposure martingale Y0, . . . , Ym, also satisfies

|Yi − Yi−1| ≤ 1

As proved in Theorem 3.4.2 we directly get our result

Pr[|g(H)− c| ≥ λ
√
m] > 2e−λ2/2 (3.9)

where c = E[g(H)] and E[g(H)] can be found using Algorithm 1. Note that N(v)∀v ∈ Vk
returns the set of neighbours of v.

Further, if we make λ→∞ arbitrarily slowly, we can see that the distribution of g(H)
is tightly concentrated around c.

We employ this finding to establish the appropriate value of λ and offer an estimate
for the number of triangles present in a given snapshot. Subsequently, to validate the
correctness of our derivation, comprehensive experiments are presented and analyzed in
Section 3.6.

It’s crucial to emphasize that this approach is applicable only to motifs conforming
to the Lipschitz condition when represented as Martingales. For subgraphs with a huge
number of edges, the count of subgraphs completed upon adding a specific edge is ≥ O(n),
thereby breaching asymptotic tightness when transitioning from function f to g.

38

Algorithm 1: Calculating expected number of triangles in an EUG snapshot

Input : EUG Snapshot G∥ = (Vk, Ek, pk)
Output: E[g(H)] where H ∈ PWG(Gk)

1 E[g(H)] = 0 for v0 ∈ Vk do
2 for v1 ∈ N(v0) do
3 for v2 ∈ N(v1) do
4 E[g(H)] = E[g(H)] + pv0,v1pv1,v2pv2,v0
5 end

6 end

7 end

3.5 Triangle count estimation example

Consider the same example as given in Figure 3.6. Using the algorithm discussed above,
the number of triangles in Gk can be calculated by

p(A,D)p(D,E)p(E,D) = 0.28

which essentially says that out of 100 possible world graphs generated from Gk, 28 of them
would have just 1 triangle.

3.6 Experimental Evaluation

In this section, we present the experimental evaluation that utilizes synthetically con-
structed streaming graphs, which allows for the precise management of vertex degree distri-
bution and verification that the input streaming graph adheres to our presupposed charac-
teristics. First, we analyze various real-world graphs derived from open-source repositories
such as SNAP [34] and Konect 2. Leveraging insights from these analyses, we synthesize a
graph that replicates these real-world graph characteristics. Subsequently, we imbue this
synthetic graph with random probability values and timestamps corresponding to each
edge in the graph to resemble a real streaming scenario.

To simulate a streaming environment reminiscent of live data flow, we use Apache
Kafka. This setup involves a producer component that dispatches streaming data, com-

2Konect - http://konect.cc/

39

http://konect.cc/

prising edges as previously described, and a consumer component tasked with ingesting
this edge data to give an estimated count of triangles. For the purpose of validation, within
each window of analysis, we draw a sample graph based on the assigned edge probabilities
and execute a brute-force triangle count on this sampled graph. This empirical count is
then set against our estimated values to gauge accuracy.

An extensive exposition of each component within this experimental framework, en-
compassing the generation of synthetic graphs, the streaming simulation through Apache
Kafka, and the validation methodology, will be provided in the subsequent subsections.

3.6.1 Data Generation

We employ a synthetic data generator designed to replicate the attributes of real-world
streaming graphs closely. We use the NetworkX library [22] from SciPy to emulate the
preferential attachment graph. This simulation is pivotal for our research, as it allows us
to test our hypotheses and methodologies in a controlled environment that reflects realistic
conditions. To establish this realistic simulation, our approach incorporates the analysis
of various real-world network graphs. We specifically examine the degree distribution of
each vertex within these graphs, a critical step that involves calculating the probability
mass function (PMF) for a given degree k, denoted as PMF(k). This function represents
the likelihood that a given vertex within the network has a degree of k.

An important aspect of our analysis involves the graphical representation of PMF(k)
against k on a log− log scale. Given that triangle counting is crucial for the calculation of
clustering coefficients— a metric pivotal in the study of network structure — we selectively
target datasets that exhibit either a) high or b) low clustering coefficients. Building upon
this selection criterion, we proceed to craft synthetic datasets that closely mirror these
specific clustering attributes.

Figure 3.8 illustrates the degree distribution within an undirected network sourced from
the KONECT project. This network charts the interactions among free-ranging Eastern
Grey Kangaroos (Macropus giganteus) within the Nadgee Nature Reserve located in New
South Wales, Australia. Each vertex corresponds to an individual kangaroo, and edges
indicate recorded interactions. The graph is characterized by a high clustering coefficient,
indicative of the tendency for certain kangaroo groups to interact closely. Conversely,
Figure 3.11, derived from the SNAP repository, delineates the friendship relationships in a
Facebook dataset. This network is distinguished by a notably lower clustering coefficient.

40

Despite this disparity in clustering coefficients, the degree distribution curves for both the
kangaroo and Facebook networks exhibit a marked similarity.

As shown in Figure 3.10 and Figure 3.11, notably, for higher values of k, these plots
demonstrate a linear relationship, suggesting that the degree distributions of these real-
world networks exhibit scale-free properties. The data generator (taking ideas from [44])
adopts a preferential attachment process to replicate these scale-free characteristics in
the synthetic data. This is operationalized through the utilization of the well-known
Barabási–Albert (BA) model, a method for generating random networks that inherently
exhibit scale-free properties. By leveraging this model, as shown in Figure 3.13, we are
able to generate synthetic networks that not only bear resemblance to real-world data in
terms of structure but also in how nodes within these networks are interconnected, thus
providing a robust foundation for our subsequent analyses.

Figure 3.8: Degree distribution in Wikipedia-election dataset

3.6.2 Experimental Platform

Experiments are run on a Linux server of Xeon(R) Platinum 8380 CPU containing 160
cores and 2 threads per core, resulting in a total of 320 logical processing units and 1
Terabyte of DDR4 RAM.

41

Figure 3.9: Degree distribution in Facebook dataset

3.6.3 Accuracy Experiments

This section presents the accuracy evaluations of our proposed estimates. We have gen-
erated a synthetic dataset as previously detailed and established a streaming simulation
via Apache Kafka. The simulation architecture consists of a producer that streams edge
data and a consumer that processes this data to estimate the number of triangles present.
We employ a sampling technique for each analytical window to validate our estimates,
constructing a graph that adheres to the predefined edge probabilities. On these graphs,
we implement a brute-force approach to counting triangles, providing an empirical baseline
for comparative analysis with our algorithmic estimates.

The results, tabulated in Table 3.1, present the accuracy of our estimates across various
window sizes and slide intervals. In our case, the accuracy is calculated by:

Accuracy = 100 ·
(
1− |estimated # triangles− total # triangles|

total # triangles

)
42

Figure 3.10: log-log graph of degree distribution in Wikipedia-election dataset

As can be observed, when the slide interval approaches the window size (a high slide-
to-window size ratio), the accuracy of the estimates is reduced. This decline in precision
could be attributed to the compression of the distribution that occurs when we divide
the triangle counting function f by the number of vertices n to generate g to satisfy the
Lipschitz condition. As n grows, our estimates potentially diverge more from the actual
values. Conversely, excessively small ratios also yield subpar results, likely due to the
breach of the Law of Large Numbers that our assumptions rest upon.

Optimal outcomes are observed when the slide interval is approximately 20% of the
window size, suggesting a balanced slide-to-window ratio conducive to accurate estimations.

It is important to note that, as our model represents a novel approach that has not been
previously studied, we lack an established baseline or gold standard for direct comparison.
This inherent limitation means that our results must be interpreted within the context of
new research rather than benchmarked against existing solutions.

The primary objective of this thesis is to demonstrate the feasibility of constructing a
predictive model capable of yielding reasonably good results with minimal latency. The
assertion of “satisfactory” performance pertains to our ability to achieve these results
within the constraints and goals set forth by our research.

43

Figure 3.11: log-log graph of degree distribution in Facebook dataset

When evaluating accuracy, it is essential to consider the specific context and objectives
of the study. In practical applications, acceptable or satisfactory levels of accuracy can
vary significantly based on the use case, domain requirements, and the relative importance
of latency versus precision. In our case, the emphasis was placed on achieving a balance
between prediction quality and computational efficiency.

The absence of a baseline means that our findings should be regarded with caution.
However, the fact that our model performs reasonably well and meets the intended low-
latency criteria is a promising indicator of its potential utility. Future research could build
upon our work to establish comparative baselines and further refine the model, thereby
providing a more comprehensive assessment of its effectiveness.

44

Figure 3.12: Degree distribution in our synthetic dataset

3.6.4 Latency Experiments

Conducting latency experiments is unnecessary. Since our methodology revolves purely
around computational calculations without the need for intensive graph traversal, the cal-
culation times are very small. We report wall clock time measurements for latency as in
Table 3.1.

45

Figure 3.13: log-log graph of degree distribution in our synthetic dataset

Slide interval

Window Size 5 mins 10 mins 20 mins

30 mins 64.55 63.89 34.31
45 mins 65.05 66.92 57.79
60 mins 70.37 71.26 71.44
90 mins 47.22 59.91 71.26
120 mins 39.88 51.34 69.98

Table 3.1: Accuracy results

46

Chapter 4

Label Uncertain Streaming Graphs

The task of link prediction has received considerable attention across various fields, such as
data mining, machine learning, recommendation systems, and network science [35, 23, 54].
The objective is to predict future connections within a graph, utilizing methodologies
that range from neighbourhood-based approaches to matrix factorization and supervised
learning despite the constraints posed by the streaming data. This chapter presents a
novel link prediction algorithm for graph streams, emphasizing the design of probabilistic
structures that enable real-time prediction with accuracy comparable to more traditional,
computation-intensive methods.

The subsequent sections of this chapter discuss the structure and components of the
graph edge-label prediction problem within the context of streaming graphs. First, we
clearly define the streaming label prediction problem, followed by an in-depth exploration of
core, neighbourhood-oriented link prediction metrics, specifically the Common Neighbour
and Jaccard coefficient [35]. These metrics serve as pivotal target measures in our analysis
of streaming label prediction.

To tackle the label prediction challenge comprehensively, we partition it into two dis-
tinct yet interconnected subproblems:

1. Estimating the Future Graph Structure: The initial step involves estimating
the number of vertices that will appear in the forthcoming data window. Leveraging
insights from Section 3.2, we establish an upper limit on the count of new vertices
expected to materialize in the upcoming window, providing a predictive outlook on
the graph’s expansion (Section 4.1).

47

2. Predictive Modeling Using Graph Neural Networks (GNNs): With an esti-
mated graph structure at hand, we employ a sophisticated GNN-based framework for
link-label prediction, aiming to foresee potential connections within the forthcoming
window. This model integrates learned graph features and topological information
to effectively predict future edge formations and their labels. Figure 4.1 visually
summarizes our approach (Section 4.2).

Together, these subproblems form a comprehensive methodology for addressing the dy-
namic and multifaceted nature of the streaming label prediction problem, integrating data
from past observations with advanced predictive algorithms to inform and refine future
predictions. We discuss them individually in the subsequent sections.

Figure 4.1: The GraphSAGE aggregate approach [23]

4.1 Definitions and Target Measures

We first start with a slightly revised definition of graph snapshot that takes into account
the uncertainty.

Definition 17 (Graph Snapshot). At any given time t, a graph snapshot Gk is a four-tuple
(Vk, Ek, Lk,Σk) where k, Vk, Ek are the same as defined in Definition 13 and Σk is the set
of distinct edge-labels seen the window k and Lk : Ek → Σk is a function that associates
labels to the edges.

48

Next, we explore two basic neighbourhood-based graph proximity measures, which serve
as critical metrics for assessing the efficacy of our label prediction model. These measures
are fundamental to the process of label prediction, encapsulating the core objectives our
model seeks to achieve. Throughout this chapter, our model strives to optimize these
metrics, treating them as benchmark standards for the task at hand. We henceforth refer
to these graph measures as target measures for our analysis of streaming label prediction.

Define a set τ(u, k) such that it contains all the vertex-label pairs incident to u ∈ Vk for
the graph snapshot Gk. Taking ideas from [35], we define the following target measures:

• Common Neighbour: The concept of “Common Neighbour” suggests that two
vertices x and y in a graph are more likely to form a link in the future if they share a
significant number of neighbours, represented by the overlap of their neighbour sets
τ(x, k) and τ(y, k). This idea is grounded in the observation that shared neighbours
often imply a higher chance of interaction or connection. For instance, in social net-
works, two people with many mutual friends are more likely to meet and establish a
connection. The most straightforward implementation of this concept in link predic-
tion algorithms uses the score function defined by the intersection of the neighbour
sets of the two vertices, score(x, y) := |τ(x) ∩ τ(y)|, which quantifies the number
of common neighbours. We use this measure as a heuristic while implementing our
machine-learning model.

Formally,

Definition 18 (Common Neighbour). For any u, v ∈ Vk

CN(u, v) = |τ(u, k) ∩ τ(v, k)|

• Jaccard Coefficient: The “Jaccard Coefficient” is another popular metric used
predominantly in information retrieval to measure the similarity between two sets.
It evaluates the likelihood that both vertices x and y share a feature f that one
of them has. In the context of graph-based models, where features are akin to the
labels incident to vertices in a graph snapshot, the Jaccard Coefficient is calculated
as score(x, y) := |τ(x)∩τ(y)|/|τ(x)∪τ(y)|. This ratio provides a normalized measure
of similarity, ranging between zero (no commonality) and one (identical sets), thus
offering a more nuanced assessment compared to the absolute count of common
neighbours.

Formally,

49

Definition 19 (Jaccard Coefficient). For any u, v ∈ Vk

JC(u, v) =
|τ(u, k) ∩ τ(v, k)|
|τ(u, k) ∪ τ(v, k)|

4.2 Label Prediction

In the context of streaming graphs, predicting the new incoming vertices, edges, and their
corresponding attributes for subsequent windows requires a preliminary assessment of the
active vertex count expected in the upcoming window. As discussed in Section 3.2, we
have already formulated an approximation for the count of active vertices. This estimation
will be integrally applied within the current analytical framework. With an estimation of
the vertex population at hand, the next logical step is to predict the incoming edges and
their corresponding labels.

To achieve this, we devise a Graph Neural Network (GNN) model, drawing conceptual
inspiration from the GraphSage module found within the NetworkX library. The algorithm
at the core of this model is designed to compute vertex embeddings by sequentially navigat-
ing through the neighbourhood of each anticipated vertex within a given graph snapshot.
This process effectively performs an ‘aggregation’ of the embeddings from adjacent vertices
and uses them to calculate the embedding of the current vertex. Subsequently, these em-
beddings are utilized to formulate predictions for the ensuing window. When the expected
window actually arrives, we use this data to retrain the model and update the embeddings.

This iterative methodology is crucial for capturing the local structural intricacies and
edge attributes, i.e., each vertex embedding is calculated such that it encompasses the
characteristics of its neighbourhood. The model adeptly uses the collective characteristics
and interrelations of neighbourhood vertices through its aggregation mechanism, thereby
fortifying the predictive modelling of vertex embeddings. The process of associating these
labels has a computational complexity of O(n2), where n = |Vk| and Vk represents the set
of vertices within a particular graph snapshot Gk = (Vk, Ek, Lk).

In the remainder, we discuss the vertex embedding generation mechanism using the
aggregation methodology and how we use these embeddings to predict the edge label pairs
in the next window. Here, we assume that the estimate provided in Section 3.2 gives us
the expected vertices in the new window, and we use it to generate embeddings and make
predictions.

50

4.2.1 Embedding generation

In this section, we will explore the technique for creating vertex embeddings with an
aggregation method and then detail how we use these vertex representations to forecast
connections and their labels in future network snapshots. This discussion is based on the
vertex count projection found in Section 3.2, which we’ll leverage to craft embeddings and
perform predictions.

Building upon our earlier discussion, we create a vertex’s embedding by combining in-
formation from neighbouring vertices and the associated edge labels. For a graph snapshot
denoted as Gk = (Vk, Ek, Lk,Σk), we assign a sequential rank to all labels encountered to
date, labelling each l ∈ Σk with a unique number from 1 to |Σk|. This numbering stays
consistent in all windows. Denote the embedding of vertex u at iteration i as eiu. At itera-
tion i for vertex u in Gk, we follow the same updating procedure proposed by Hamilton et
al. [23]:

mi
u = Wi · hi−1

u +Wr · AGG({mi−1
v + L(u, v), ∀v ∈ N(u)})

In this equation, Wi and Wr are matrices that the learning process will fine-tune, and N(u)
lists all neighbouring vertices to u. The function L(u, v) specifies the numerical identifier
for the label of the edge between vertices u and v.

The AGG function aggregates input from the vertex’s neighbours and their edge labels.
To keep our model straightforward, we use a mean aggregation approach, defined as:

AGG({mi−1
v + L(u, v), ∀v ∈ N(u)}) = 1

|N(u)|
∑

v∈N(u)

mi−1
v + L(u, v)

Integrating all the elements, we describe the embedding generation Algorithm 2.

Note that the aggregation step at the ith iteration depends on the representations
generated in the previous (i.e., i − 1th) iteration. Putting it all together, the embedding
generation model can be visualized as shown in Figure 4.2. We use the GraphSage module
in the NetworkX library to implement this in our model.

4.2.2 Label Classification

Upon the stabilization of the algorithm, which is indicated by the convergence of the
embeddings, we proceed to utilize them to estimate the likelihood of a connection between
pairs of vertices, along with identifying the edge label of such potential connection. This

51

Algorithm 2: Embedding generation algorithm

Input : Graph Snapshot Gk = (Vk, Ek, Lk,Σk); input features {xu,∀u ∈ Vk};
depth Q; weight matrices W q,∀q ∈ {1, . . . , Q}; neighbourhood function
Q : u→ 2Vk

Output: Vector representations zu for all u ∈ Vk

1 m0
u ← xu,∀u ∈ Vk ;

2 for q = 1 . . . Q do
3 for u ∈ V do
4 mi

u ← AGGi({mi−1
v + L(u, v),∀v ∈ N (u)})

5 end
6 mi

u ← mi
u/∥mi

u∥2,∀u ∈ Vk
7 end
8 zv ← mi

u,∀u ∈ Vk

predictive phase involves evaluating pairs of vertex embeddings and deducing the numerical
attribute that signifies the nature of the connection. Essentially, for every pair of vertices,
if an edge between them exists, the model returns the numeric value of the label that
is most likely to be associated with it and 0 if the edge is not expected to exist. We
use a Multi-Layer Perceptron (MLP) [?], which takes in the element-wise product of the
embedding vector for a pair of vertices and outputs the type of label expected between
them.

Label(u, v) = MLP (mu ⊙mv)

This label association step takes O(n2) where n = |Vk| and Vk is the vertex set in a
particular graph snapshot Gk = (Vk, Ek, Lk), as we need to iterate over every pair of
vertices in the graph snapshot.

Further, in order to learn the weight matrices in an unsupervised setting, we apply a
graph-based loss function that minimizes the error in prediction.

Loss = −mean(log(correct predictions + ϵ)) + mean(log(1− incorrect predictions + ϵ))

where ϵ = 1e− 10 is used for numeric stability.

52

Figure 4.2: The message passing mechanism. Image source: CS224 slides Stanford Uni-
versity

4.3 Experimental evaluation

In this section, we present the experimental evaluation of the discussed predictive GNN
model. Following the methodology discussed in Section 3.6, we generate a synthetic graph
dataset, which follows a preferential attachment policy [44] and associate labels to them
randomly. Similar to Section 3.6, we employ the Barabási–Albert (BA) model, a renowned
method for generating random networks that inherently exhibit scale-free properties, and
associate labels to the generated graph randomly.

To emulate the streaming environment, we use Apache Kafka to set a producer and
consumer instance where the producer dispatches streaming edges, and then the consumer
ingests this data and runs the GNN module to predict labels in the next window. Similar
to the previous experiments, we use a sliding window-based management system to do our
computations.

53

4.3.1 Experimental Platform

Experiments are run on a Linux server of Xeon(R) Platinum 8380 CPU containing 160
cores and 2 threads per core, resulting in a total of 320 logical processing units and 1
Terabyte of DDR4 RAM.

4.3.2 Accuracy Experiments

We consider a synthetic dataset with a total 5 labels for the first set of experiments. The
corresponding vertex degree distribution and edge label distribution for our dataset are
presented in Figure 4.3 and Figure 4.4.

Figure 4.3: log-log graph of degree distribution in the synthetic dataset with 5 labels

Given this, we depict in Figure 4.5 the accuracy of the prediction of our model along
with the baseline. It is interesting to see that after seeing about 57 windows, we start
getting stable results.

54

Figure 4.4: Edge label distribution in the synthetic dataset with 5 labels

We repeat the experiments for synthetic datasets with a higher number of distinct labels.
We generate a dataset with 100, 000 vertices, with 10 and 15 edge labels. Figure 4.6 and
Figure 4.7 show the vertex degree distribution and edge label distribution for the 10-label
case and Figure 4.8 and Figure 4.9 show the vertex degree distribution and edge label
distribution for the 15-label case.

Figure 4.10 and Figure 4.11 represent the label prediction accuracy for the 10 and 15
label cases respectively. Notice that in both cases, the accuracy is pretty much stable after
around 100 windows, and 80% of the edge labels are being predicted correctly.

4.3.3 Latency Experiments

Similar to Section 3.6, conducting latency experiments are unnecessary. Since our method-
ology is purely predictive, i.e., we are interested in the next window, the objective is to
finish the computation before the window materializes.

55

Figure 4.5: Accuracy of prediction algorithm with 5 labels

56

Figure 4.6: log-log graph of degree distribution in the synthetic dataset with 10 labels

Figure 4.7: Edge label distribution in the synthetic dataset with 10 labels

57

Figure 4.8: log-log graph of degree distribution in the synthetic dataset with 10 labels

Figure 4.9: Edge label distribution in the synthetic dataset with 10 labels

58

Figure 4.10: Accuracy of prediction algorithm with 10 labels

59

Figure 4.11: Accuracy of prediction algorithm with 15 labels

60

Chapter 5

Conclusion and Future Work

Graph database systems are being extensively used to manage complex, interconnected
data across various sectors, including social networks, transportation networks, and ge-
nomic databases, among others. Often, this data is dynamic, characterized by incomplete
or probabilistic connections that pose significant challenges to data processing and anal-
ysis. This thesis introduces a novel framework designed to incorporate the management
of uncertainty within streaming graphs, significantly boosting capabilities for real-time
decision-making and analytical processes.

The focus of this research primarily lies in addressing uncertainties related to edges
and labels within these graphs. We delve into specific challenges in each area, developing
comprehensive strategies to tackle these complexities effectively. First, we explore the
problem of approximate triangle counting in edge uncertain streaming graphs. For this,
we adopt a martingale-based approach, which allows for precise estimation of triangle
numbers within specific graph windows.

Subsequently, we address label prediction in attribute uncertain streaming graphs.
Here, we implement a framework based on Graph Neural Networks (GNNs), which is finely
tuned to adapt to the evolving structure of the graph and accurately predict forthcoming
labels.

Through rigorous experimental validation, we demonstrate the effectiveness of both the
martingale-based approach for triangle counting and the GNN-based method for label pre-
diction. The results from these experiments are promising, showing that the methodologies
developed not only address the challenges posed by uncertain and dynamic data but also
perform exceptionally well in real-world scenarios.

61

5.1 Future Work

While the probabilistic modeling method deployed in this thesis has achieved satisfactory
results across the datasets tested, yet significant potential exists for further refinement and
expansion. A notable avenue for future research is the extension of the martingale-based
method to encompass larger subgraphs, including those with a greater number of vertices.
Although the Lipschitz condition’s applicability becomes limited as the subgraph size in-
creases, it would be insightful to determine the threshold beyond which the approximation
yields diminishing returns.

Additionally, our model could be expanded beyond subgraph counting to address reach-
ability queries. Specifically, it would be interesting to explore if and how vertices may
connect over time within the probabilistic framework of our model. Another intriguing
aspect to consider is the influence maximization problem within streaming windows, which
could potentially enhance the understanding of influence dynamics over temporal graphs
compared to static analyses.

The majority of existing work on uncertain graphs relies heavily on sampling multiple
independent possible worlds to estimate the likelihood of specific properties. An inno-
vative research direction might involve identifying a single “optimal” possible world that
sufficiently preserves the inherent properties of the graph. This approach would challenge
the traditional multiple-sampling strategies and could redefine how uncertain graphs are
processed.

Given the challenges of exact computation in large-scale uncertain graphs, there is
a fundamental trade-off between scalability and efficiency versus accuracy. Identifying
specific application areas and their particular needs is crucial—such as the balance be-
tween efficiency and accuracy or the trade-offs between false positive and false negative
rates. Additionally, understanding the costs associated with probing uncertain edges and
fine-tuning algorithm-specific parameters to optimize outcomes remains a critical area for
development. For example, applications that require highly precise identification of reliable
entities might benefit from a reliable path-based method rather than more computation-
ally intensive sampling techniques. Each of these directions offers the potential to advance
the field and tailor uncertain graph processing techniques to meet the diverse demands of
real-world applications better.

62

References

[1] Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhattachar-
jee, Yuan-Chi Chang, and Panos Kalnis. Incremental frequent subgraph mining on
large evolving graphs. In Proc. 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 1767–1768, 2018.

[2] Eytan Adar and Christopher Ré. Managing uncertainty in social networks. IEEE
Data Eng. Bull., 30:15–22, 01 2007.

[3] Charu Aggarwal and Philip Yu. A survey of uncertain data algorithms and appli-
cations. IEEE Transactions on Knowledge and Data Engineering, 21:609 – 623, 06
2009.

[4] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, New York, second
edition, 2004.

[5] Cigdem Aslay, Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, and
Aristides Gionis. Mining frequent patterns in evolving graphs. In Proc. 27th ACM
International Conference on Information and Knowledge Management, CIKM ’18,
page 923–932, New York, NY, USA, 2018. Association for Computing Machinery.

[6] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Topic-aware social influence
propagation models. In Proc. 2012 IEEE 12th International Conference on Data
Mining, pages 81–90, 2012.

[7] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influence maximiza-
tion in social networks. In Internet and Network Economics, pages 306–311, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[8] Paolo Boldi, Francesco Bonchi, Aristides Gionis, and Tamir Tassa. Injecting uncer-
tainty in graphs for identity obfuscation. Proc. VLDB Endow., 5(11):1376–1387, 2012.

63

[9] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing
social influence in nearly optimal time. In Proc. 25th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’14, page 946–957, USA, 2014.

[10] Lei Chen and Changliang Wang. Continuous subgraph pattern search over certain and
uncertain graph streams. IEEE Transactions on Knowledge and Data Engineering,
22(8):1093–1109, 2010.

[11] Xiaowei Chen and John C.S. Lui. A unified framework to estimate global and local
graphlet counts for streaming graphs. In Proc. 2017 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2017, ASONAM ’17,
page 131–138, New York, NY, USA, 2017.

[12] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: towards verification-free
query processing on graph databases. In Proc. 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07, page 857–872, New York, NY,
USA, 2007.

[13] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance
queries via 2-hop labels. In Proc. Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’02, page 937–946, USA, 2002.

[14] John B. Collins and Steven T. Smith. Network discovery for uncertain graphs. In
Proc. 17th International Conference on Information Fusion, pages 1–8, 2014.

[15] Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proc. 7th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’01, page 57–66, New York, NY, USA, 2001.

[16] Krogan et al. Global landscape of protein complexes in the yeast saccharomyces
cerevisiae. Nature, 440(7084):637–643, 2006.

[17] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and Yinghui Wu.
Incremental graph pattern matching. page 925–936, 2011.

[18] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. Adding regular ex-
pressions to graph reachability and pattern queries. In Proc. IEEE 27th International
Conference on Data Engineering, ICDE’11, pages 39–50, 2011.

64

[19] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu.
Graph pattern matching: from intractable to polynomial time. Proc. VLDB Endow.,
3(1–2):264–275, 2010.

[20] George S. Fishman. A comparison of four monte carlo methods for estimating the
probability of s-t connectedness. IEEE Transactions on Reliability, 35(2):145–155,
1986.

[21] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[22] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynam-
ics, and function using networkx. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[23] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Proc. of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017.

[24] S.S. Haykin. Neural Networks: A Comprehensive Foundation. International edition.
Prentice Hall, 1999.

[25] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite
and infinite graphs. In Proc. IEEE 36th Annual Foundations of Computer Science,
pages 453–462, 1995.

[26] Noureldien Hussein, Efstratios Gavves, and Arnold WM Smeulders. Videograph:
Recognizing minutes-long human activities in videos. In Proc. ICCV Workshop on
Scene Graph Representation and Learning, 2019.

[27] Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. Distance-constraint reachability
computation in uncertain graphs. Proc. VLDB Endow., 4(9):551–562, 2011.

[28] Xiangyu Ke, Arijit Khan, and Leroy Lim Hong Quan. An in-depth comparison of
s-t reliability algorithms over uncertain graphs. Proc. VLDB Endow., 12(8):864–876,
2019.

[29] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proc. 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD’03, page 137–146, 2003.

65

[30] Arijit Khan, Francesco Bonchi, Aristides Gionis, and Francesco Gullo. Fast reliability
search in uncertain graphs. In Proc. International Conference on Extending Database
Technology, EDBT, Athens, Greece, March 24-28, 2014, pages 535–546, 2014.

[31] Arijit Khan, Yuan Ye, and Lei Chen. Introduction to Uncertain Graphs, pages 1–10.
Springer International Publishing, Cham, 2018.

[32] Theodoros Lappas, Evimaria Terzi, Dimitrios Gunopulos, and Heikki Mannila. Find-
ing effectors in social networks. In Proc. 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’10, page 1059–1068, 2010.

[33] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proc. 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’06, page 631–636, 2006.

[34] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[35] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social net-
works. In Proc. 12th International Conference on Information and Knowledge Man-
agement, CIKM ’03, page 556–559, 2003.

[36] Lin Liu, Ruoming Jin, Charu Aggarwal, and Yelong Shen. Reliable clustering on
uncertain graphs. In Proc. 12th IEEE International Conference on Data Mining,
pages 459–468, 2012.

[37] Paul Liu, Austin R. Benson, and Moses Charikar. Sampling methods for counting
temporal motifs. In Proc. 12th ACM International Conference on Web Search and
Data Mining, WSDM ’19, page 294–302, 2019.

[38] Ming-ming Ma, Hao Chen, Xiu-ming Wang, and Xiao He. Inversion of shear velocity
profile in a cased borehole. In Proc. 2012 Symposium on Piezoelectricity, Acoustic
Waves, and Device Applications, pages 310–313, 2012.

[39] Walaa Eldin Moustafa, Angelika Kimmig, Amol Deshpande, and Lise Getoor. Sub-
graph pattern matching over uncertain graphs with identity linkage uncertainty. In
Proc. 30th IEEE International Conference on Data Engineering, pages 904–915, 2014.

[40] Pacaci, Anil. Models and Algorithms for Persistent Queries over Streaming Graphs.
PhD thesis, University of Waterloo, 2022.

66

http://snap.stanford.edu/data

[41] Panos Parchas, Nikolaos Papailiou, Dimitris Papadias, and Francesco Bonchi. Uncer-
tain graph sparsification. IEEE Transactions on Knowledge and Data Engineering,
30(12):2435–2449, 2018.

[42] Michalis Potamias, Francesco Bonchi, Aristides Gionis, and George Kollios. k-nearest
neighbors in uncertain graphs. Proc. VLDB Endow., 3(1–2):997–1008, 2010.

[43] Stephan Seufert, Avishek Anand, Srikanta Bedathur, and Gerhard Weikum. Ferrari:
Flexible and efficient reachability range assignment for graph indexing. In Proc. 29th
IEEE International Conference on Data Engineering, pages 1009–1020, 2013.

[44] Sheshbolouki, Aida. Mining Butterflies in Streaming Graphs. PhD thesis, University
of Waterloo, 2023.

[45] Suprosanna Shit, Rajat Koner, Bastian Wittmann, Johannes Paetzold, Ivan Ezhov,
Hongwei Li, Jiazhen Pan, Sahand Sharifzadeh, Georgios Kaissis, Volker Tresp, and
Bjoern Menze. Relationformer: A unified framework for image-to-graph generation.
In Proc. 17th European Conference on Computer Vision, page 422–439, 2022.

[46] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. Reachability querying: Can it be
even faster? IEEE Transactions on Knowledge and Data Engineering, 29(3):683–697,
2017.

[47] Juliane Verwiebe, Philipp M. Grulich, Jonas Traub, and Volker Markl. Survey of
window types for aggregation in stream processing systems. The VLDB Journal,
32(5):985–1011, 2023.

[48] Sarisht Wadhwa, Anagh Prasad, Sayan Ranu, Amitabha Bagchi, and Srikanta Be-
dathur. Efficiently answering regular simple path queries on large labeled networks.
In Proc. 2019 International Conference on Management of Data, SIGMOD ’19, page
1463–1480, 2019.

[49] Pinghui Wang, John C.S. Lui, Don Towsley, and Junzhou Zhao. Minfer: A method
of inferring motif statistics from sampled edges. In Proc. 32nd IEEE International
Conference on Data Engineering, pages 1050–1061, 2016.

[50] Wikipedia. Martingale (betting system) — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Martingale%20(betting%

20system)&oldid=1217696798, 2024. [Online; accessed 09-April-2024].

67

http://en.wikipedia.org/w/index.php?title=Martingale%20(betting%20system)&oldid=1217696798
http://en.wikipedia.org/w/index.php?title=Martingale%20(betting%20system)&oldid=1217696798

[51] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: a frequent structure-based
approach. In Proc. ACM SIGMOD International Conference on Management of Data,
SIGMOD’04, page 335–346, 2004.

[52] Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. Efficient subgraph similarity
search on large probabilistic graph databases. Proc. VLDB Endow., 5(9):800–811,
2012.

[53] Ye Yuan, Guoren Wang, Haixun Wang, and Lei Chen. Efficient subgraph search over
large uncertain graphs. Proc. VLDB Endow., 4(11):876–886, 2011.

[54] Hao Zhou, Anna A. Shaverdian, H. V. Jagadish, and George Michailidis. Querying
graphs with uncertain predicates. In Proc. 8th Workshop on Mining and Learning
with Graphs, MLG ’10, page 163–170, 2010.

[55] Rong Zhu, Zhaonian Zou, and Jianzhong Li. Top-k reliability search on uncertain
graphs. In Proc. IEEE International Conference on Data Mining, pages 659–668,
2015.

[56] Lei Zou, Lei Chen, and M. Tamer Özsu. Distance-join: pattern match query in a large
graph database. Proc. VLDB Endow., 2(1):886–897, 2009.

[57] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Mining frequent subgraph
patterns from uncertain graph data. IEEE Transactions on Knowledge and Data
Engineering, 22(9):1203–1218, 2010.

68

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Types of Uncertainty in Graphs
	Research Challenges
	Contributions and Organization

	Background & Related Works
	Uncertain Graphs
	Possible World Semantics
	Uncertain Graph Management and Mining

	Overview of Research on Uncertain Graphs
	Reliability Queries
	Graph Pattern Matching
	Influence Maximization

	Streaming Graphs
	Unboundedness and Real-Time Processing
	Graph Mining Problems

	Edge Uncertain Streaming Graphs
	Edge Uncertain Streaming Graph Model
	Estimating the Number of Active Vertices
	Active vertex estimation example
	Estimating the Number of Triangles
	Doob or Exposure Martingales alon04
	Edge Exposure Martingale

	Triangle count estimation example
	Experimental Evaluation
	Data Generation
	Experimental Platform
	Accuracy Experiments
	Latency Experiments

	Label Uncertain Streaming Graphs
	Definitions and Target Measures
	Label Prediction
	Embedding generation
	Label Classification

	Experimental evaluation
	Experimental Platform
	Accuracy Experiments
	Latency Experiments

	Conclusion and Future Work
	Future Work

	References

