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Abstract

The QCD axion is one of the best motivated extensions to the Standard Model of
particle physics that could also serve as the dark matter. The thesis will demonstrate new
experimental observables that could be used to search for the axion. These observables
are based on piezoelectric materials that spontaneously break parity symmetry, thereby
enabling sensitivity to the axion’s fundamental, model independent coupling to gluons.

The first observable explores how axion dark matter could generate an oscillating me-
chanical stress in a piezoelectric crystal. We call this new phenomenon “the piezoaxionic
effect”. When the frequency of axion DM matches the natural frequency of a bulk acoustic
normal mode of the piezoelectric crystal, the piezoaxionic effect is resonantly enhanced and
can be read out electrically via the piezoelectric effect. We also point out another, subdom-
inant phenomenon present in all dielectrics, namely the “electroaxionic effect”. An axion
background can produce an electric displacement field in a crystal which in turn will give
rise to a voltage across the crystal. We find that this model independent coupling of the
QCD axion may be probed through the combination of the piezoaxionic and electroaxionic
effects in piezoelectric crystals with aligned nuclear spins, with near-future experimental
setups applicable for axion masses between 10−11eV to 10−7eV, a challenging range for
most other detection concepts.

The second observable, the “piezoaxionic force” demonstrates how a piezoelectric crys-
tal can be used to source virtual QCD axions in the laboratory, giving rise to a new
axion-mediated force. The presence of parity violation in the piezoelectric crystal, com-
bined with aligned nuclear spins, provides the necessary symmetry breaking to generate
an effective in-medium scalar coupling of the axion to nucleons. We propose a detection
scheme that uses the axion’s model-dependent pseudoscalar coupling to nuclear spins, such
that the new force can be detected by its effect on the precession of a sample of polarised
nuclear spins. When the distance between the source crystal and the detector is modulated
at the Larmor precession frequency of the nuclear spins, the signal is resonantly enhanced.
We predict that near-future experimental setups should be sensitive to the axion in the
unexplored mass range from 10−5eV to 10−2eV.

v



Acknowledgments

I am extremely grateful to my advisor Mina for providing me with the opportunity to
tackle important questions about the universe every day, and for always pushing me to
pursue the truth about nature even when the going gets extremely tough. It has been a
privilege to learn from her exceptional intuition and broad knowledge of physics.

I would also like to extend a huge thank you to Ken Van Tilburg, who I consider
my honorary co-advisor. Ken is an incredibly creative and insightful physicist, and his
contributions were invaluable in producing the work in this thesis.

A special thank you to Junwu Huang, who has patiently listened to so many of my ques-
tions during my studies. Your knowledge and feedback have been a big part of my growth
as a physicist. Thank you also to Matt Johnson and Jaume Gomis for their mentorship
during my PhD.

I am very appreciative of all my wonderful collaborators: Davide Racco, Mario Reig,
Jon Engel, Andy Geraci, Kendrick Smith and Selim Hotinli.

I am grateful for all of the people at PI who have been a part of my journey here:
my PSI classmates who stayed on with me, Kasia, Aiden, Francisco, Sara and Ramiro,
my officemates past and present: Finn, Taillte and Raquel, all of the bistro staff and my
friends at the PI orchestra, especially Dan and Gang.

Finally, a big thank you to Alexandre for your unwavering support over these past five
years. You have made my time at PI very special.

vi



Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgments vi

List of Figures x

List of Tables xii

1 Introduction 1

2 Axion Theory 8

2.1 The Strong CP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Axion Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Axion Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The Misalignment Mechanism . . . . . . . . . . . . . . . . . . . . . 12

2.3 Couplings of the Axion to the Standard Model . . . . . . . . . . . . . . . . 16

2.3.1 Axion-Gluon Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



2.3.2 Axion-Photon Coupling . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Axion-Fermion Couplings . . . . . . . . . . . . . . . . . . . . . . . 20

3 The Piezoaxionic Effect for Dark Matter 25

3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Other Axion Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 The Piezoaxionic Force 68

4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Systematics and Noise sources . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Summary and Outlook 83

References 86

APPENDICES 104

viii



A Appendices for the Piezoaxionic Effect 105

A.1 Atomic Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Long-wavelength Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.3 Piezoelectric Equivalent Circuit Components . . . . . . . . . . . . . . . . . 110

A.4 More Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B Appendices for the Piezoaxionic Force 117

B.1 MQM and Rotational Invariance . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Nuclear Spin Polarization Via Hyperfine Interactions . . . . . . . . . . . . 118

B.3 Magnetic Quadrupole Moment Matrix Elements . . . . . . . . . . . . . . . 119

ix



List of Figures

1.1 The QCD axion landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 An example unit cell of a piezoelectric crystal . . . . . . . . . . . . . . . . 6

2.1 Basic setup of the CASPER experiment . . . . . . . . . . . . . . . . . . . 17

2.2 Setup for the ARIADNE experiment . . . . . . . . . . . . . . . . . . . . . 22

3.1 The relativistic enhancement factor as a function of proton number . . . . 37

3.2 A simplified illustration of the proposed experimental setup for the piezoax-
ionic effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Equivalent electric circuit of the experimental set-up for the piezoaxionic
effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Axion induced voltage and crystal quality factor as a function of frequency. 50

3.5 Total impedance of input circuit as a function of frequency and circuit res-
onant frequency as a function of inductance and capacitance. . . . . . . . . 52

3.6 Amplitude spectral densities of all noise sources considered in the experi-
mental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Sensitivity to an oscillatory theta angle θ̄a as a function of frequency for a
single shot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Axion parameter space probed by the setup described in Sec. 3.2. . . . . . 61

3.9 Axion-electron coupling sensitivity . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Experimental setup for the piezoaxionic force setup . . . . . . . . . . . . . 75

4.2 Sensitivity to the gluon coupling for a monopole-dipole force generated by
the nuclear Schiff moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



4.3 Sensitivity to the gluon coupling for a monopole-dipole force generated by
the nuclear magnetic quadrupole moment (MQM). . . . . . . . . . . . . . 77

4.4 Sensitivity to the gluon coupling for a dipole-dipole force . . . . . . . . . . 78

4.5 Magnetic field norm along z-axis and y-axis of sample . . . . . . . . . . . . 82

xi



List of Tables

3.1 List of primary symbols appearing in the four subsections . . . . . . . . . . 27

3.2 Candidate crystals categorized by their symmetry structure . . . . . . . . . 45

3.3 Fiducial parameters for the idealized setup. . . . . . . . . . . . . . . . . . . 47

4.1 Estimated Schiff moments and MQMs of deformed (octupole or quadrupole)
nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



Chapter 1

Introduction

The Standard Model of particle physics (SM) is our most robust theory of the fundamental
particles of nature and their interactions. It encompasses the strong, weak, and electro-
magnetic forces, with the latter two merged into the electroweak force. These forces are
mediated by photons, W and Z bosons, and gluons. The SM matter content consists of
quarks, which are charged under the strong force and combine to form composite particles
like protons and neutrons, alongside leptons such as electrons and neutrinos. Finally, the
SM is completed by the Higgs boson particle, discovered at the Large Hadron Collider
(LHC) in 2012 [2, 3], which is responsible for endowing mass to the W and Z bosons,
quarks and leptons. Precision tests of the SM such as the measurement of the anomalous
magnetic dipole moment of the electron have been confirmed to a remarkable precision of
12 decimal places [4], heralding the SM as one of our most accurate theories of nature.

Despite these enormous achievements, the SM remains unable to provide solutions to
several critical questions. These include the relatively “light” mass of the Higgs boson,
despite its potential sensitivity to large corrections from unknown physics at higher energy
scales (the hierarchy problem) [5, 6]; the origin of the asymmetry between matter and
antimatter in the universe (baryogenesis) [7]; the source of the tiny masses of neutrinos [8];
an explanation for why we observe the three generations of quarks and leptons with varying
masses and mixing patterns (the flavour problem) [9]; the elusive nature of dark energy
[10, 11]; how we can integrate gravity on the same footing as the other fundamental forces;
the unexpected absence of charge-parity symmetry violation in strong interactions (the
strong CP problem) [12–15] and the nature of dark matter [16]. This thesis will explore
how these last two issues may be interlinked through the hypothetical axion particle, and
it will propose new experimental observables that could address them.
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The Strong CP Problem concerns the non-violation of the combined charge conjugation
(C) and parity reversal (P) symmetries by the strong force of the SM [17–19]. Here C
symmetry signifies the invariance of the theory if we reverse the sign of the charges of
particles, which switches particles and antiparticles, and P symmetry refers to invariance
under a reversal of the sign of spatial coordinates from (x, y, z) to (−x,−y,−z). If the
strong force were to violate CP symmetry, this would naturally produce an experimentally
measurable signature through the generation of an electric dipole moment (EDM) for
the neutron. At present, no EDM for the neutron has been measured, setting extremely
stringent constraints on the possibility of CP violation in this sector of the SM [20].

There are multiple reasons to be surprised by these observations. Violation of CP
symmetry in the SM within the electroweak sector was verified over 60 years ago [21].
Thus, even if we set the QCD sector of the SM, which describes the strong force, to be
invariant under CP, it does not enhance the overall symmetry of the SM. While the SM
suffers from other “fine-tuning” problems, notably the hierarchy problem of the Higgs mass,
the strong CP problem is more peculiar in that it does not have an anthropic solution [22].
In other words, it would be impossible for us to exist if the mass of the Higgs had a slightly
different value, whereas it appears that our universe could accommodate a much larger CP
violation within the QCD sector without altering its properties that are essential to our
existence. The strong CP problem will be discussed more precisely in section 2.1.

The second issue tackled in this thesis is the nature of the DM, whose existence is
supported by a wide range of extremely compelling evidence. Astrophysical studies have
pointed to its existence since 1933 through galaxy rotation curves [23], with more recent
research continuing to confirm this observation [24]. Gravitational lensing, the distortion
of light due to distant galaxies’ gravitational fields, provides further astrophysical evi-
dence [25, 26]. Cosmological evidence, derived from observations of the cosmic microwave
background (CMB) and combined with results from big bang nucleosynthesis (BBN), has
solidified our current cosmological model of lambda cold dark matter (ΛCDM) [27]. This
model precisely accounts for the abundances of the cosmological constant, dark and bary-
onic matter, indicating that 27% of the universe’s energy density is comprised of cold,
non-relativistic DM, which interacts extremely weakly with the ordinary baryonic matter
of the SM. It is clear, however, that none of the particles within the SM can account for the
DM. Neutrinos, our most weakly interacting particles, would be too hot in temperature
and would therefore be in tension with our models for the formation of large-scale structure
in the universe [28, 29]. Although alternative models posit that DM may not be a particle
but rather a modification of gravity [30, 31], this explanation faces challenges in accurately
describing observations of galaxy clusters [32].

It is thus clear that we must look beyond the SM to find a candidate particle for the
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DM. Theoretical physicists have provided us with a plethora of models, but how do we
determine which of these are the best motivated? A crucial model-building ingredient
is that the DM candidate has a consistent cosmological history in which it is produced
with the right temperature and the precise cosmological abundance that we observe in the
universe today. Better yet, the particle could also solve additional problems in the SM. A
highly motivated solution that ticks all of these boxes is the hypothetical axion particle
[12–14]. The axion is a pseudoscalar particle proposed to provide a mechanism for solving
the strong CP problem. The axion gains a potential from QCD processes such that when
the axion is at the minimum of its potential, the strong CP problem is solved dynamically
[33]. This mechanism is reviewed in greater detail in section 2.1.1. In addition, the presence
of a large number of axion-like particles (ALPs) appears to be a generic prediction of string
theory [34]. We will clarify now that this thesis will refer to the particle that solves the
strong CP problem of QCD simply as an “axion” or sometimes the “QCD axion” for
emphasis. While the QCD axion is the focus of this thesis, we will occasionally comment
on other light, weakly interacting pseudoscalar particles that do not solve the strong CP
problem; these are known as “ALPs”.

The axion has a number of well-motivated cosmological production mechanisms that
will be discussed in further detail in section 2.2.1, but we will introduce the most relevant
here: the misalignment mechanism [35–37]. The framework of quantum field theory (QFT)
tells us that particles are realised as excitations of an underlying quantum field. Early in
the universe, when the temperature is higher than the QCD scale at which hadrons confine,
the axion is massless. During this period, the axion field takes on a random initial value.
As the universe expands and its temperature cools below the QCD confinement scale, the
axion gains a mass. The equation of motion for the axion field becomes:

ä(x) + 3Hȧ(x) +m2
a(T )a(x) = 0. (1.1)

where dots above terms indicate derivatives with respect to time, a(x) is the axion field,
ma(T ) is its (temperature dependent) mass, and Ha is the Hubble parameter, which defines
the expansion rate of the universe. This is the equation of a damped harmonic oscillator,
where the friction term is set by the Hubble parameter. Initially, the system is overdamped,
and the axion is frozen at its initial field value. As the universe continues to expand and
cool and the size of the damping becomes less relevant, the axion rolls down towards the
minimum of its potential. The oscillations of the axion field around the minimum of its
potential correspond to a coherent state of cold, non-relativistic particles, with a final
abundance that can vary depending on the initial value of the axion field – precisely what
is needed for DM.

How can we search for the axion in the laboratory? To move forward, we must first
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ask ourselves two more questions — what is the mass of the axion today and what sort
of interactions does it have with the SM? It turns out that both of these questions are
answered simultaneously by the theory of the axion. The axion’s defining coupling is to
the gluons of QCD, and the strength of this interaction, characterised by the so-called
axion decay constant fa, is inextricably linked to the axion’s (low temperature) mass1 [38]:

ma = 5.691(51)

(
109GeV

fa

)
meV (1.2)

The focus of the thesis will be on the development of new experimental observables that
target this fundamental coupling of the axion to gluons. In addition to this coupling,
however, is the possibility of model-dependent couplings to the other particles of the SM,
in other words, couplings whose strengths are dependent on the specific way that we embed
the axion in the SM. These topics are discussed in section 2.3, including examples of existing
experimental directions that could probe a variety of couplings.

As can be seen from Eq. 1.2, axion theory does not provide us with a singular prediction
for the mass of the axion, but rather a line in parameter space that could span many
orders of magnitude. A guide to our current understanding of the potential parameter
space where we can look for the axion is summarized in Figure 1.1. The possibility of an
axion with a mass above 10−2eV is constrained by astrophysical observations. If axions had
such large couplings, their production rates in stars and supernovae would lead to faster
cooling than our observations [39]. This limits the available parameter space of the axion
to masses that are considered extremely light relative to many other well-motivated dark
matter candidates such as weakly interacting massive particles (WIMPs), whose masses
are typically in the GeV range. Such a vast difference in the mass regime points to a need
for conceptually new experimental strategies to search for the axion. While the frontier
of discovering new fundamental particles has historically required us to build colliders of
increasing energy, discovering the axion will instead likely require low-energy, precision
experiments.

When searching for light, bosonic DM such as the axion, we must also alter the way
we picture DM interacting with our detectors. When considering models of fermionic dark
matter, we are restricted to consider masses above 100eV. The origin of this bound is
that fermions are restricted to a single particle per quantum state. Thus, within dense
systems in our universe like dwarf galaxies, the occupation numbers of fermionic DM
would become too high to allow for small particle masses [28]. Conversely, there is no

1Natural units, where ℏ = c = kB = 1, will be used throughout this thesis. Here they are used to
describe mass, so 1 eV = 1.7× 10−36 kg.
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Figure 1.1: The QCD axion landscape: the shaded areas designate current and upcoming
constraints on the axion, while the green outlined areas are the parts of parameter space
that could potentially be probed with the new observables in this thesis. From right to left,
the yellow shaded region is excluded by cooling of astrophysical objects [39], the dark pink
is excluded by axion to photon conversion in the ADMX microwave cavity experiment [40]
(the light pink is projected for upcoming ADMX runs), the blue region is excluded by black
hole superradiance [34, 41], and the red region is excluded by kinematics of dwarf galaxies
[42]. The limit where the axion decay constant fa reaches the Planck scale is indicated,
since a QCD axion with fa above this scale is less well motivated.

such restriction on a bosonic DM particle. In fact, our choice of experimental techniques
becomes motivated by such a transition into the low mass regime where we must consider
high occupation numbers. Here it becomes more appropriate to think of bosonic DM as a
coherent, oscillating classical field, whose frequency is set by the DM particle’s mass, and
its amplitude is determined by its density. This treatment stands in contrast to the more
traditional picture of DM direct detection, where we might imagine looking for individual,
heavy particles scattering off the atoms in our detectors.

The core idea behind the experimental observables of this thesis is that a common class
of materials, piezoelectrics, provides the necessary symmetry structure to allow us to access
a range of new physical observables for the axion’s gluon coupling. A piezoelectric crystal
is a type of crystal that can convert mechanical energy, in the form of stress or strain,
into electrical energy, i.e., a potential difference across the crystal, and vice versa. The
microscopic origin of this property arises from its point group symmetry. The symmetry
groups of piezoelectric crystals are non-centrosymmetric, meaning that they lack a point
in the unit cell which is invariant under a parity transformation: the transformation of a
point (x, y, z) to the point (−x,−y,−z), as can be seen in figure 1.2. Piezoelectricity turns
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Figure 1.2: An example unit cell of a piezoelectric crystal. On the left hand side the
unit cell does not have a dipole moment. Upon applying a stress to the unit cell, it is
deformed to the shape on the right hand side, and the unit develops a polarization. This
is a consequence of the lack of inversion symmetry at any point in the unit cell.

out to be a relatively common property of crystals; of the 32 possible crystal point groups,
20 of these are piezoelectric.

It is this lack of parity symmetry within the crystal that creates the possibility of
probing new parity even observables for the axion, of which two possibilities will be explored
in this thesis. The axion field itself is pseudoscalar and violates parity and time-reversal
(T) symmetries (and thus by the CPT theorem, it also violates combined CP symmetry).
One can then see that the combination of parity oddness from both the axion field and
the piezoelectric crystal structure together allows us to access parity even observables.
The remaining crucial ingredient is how to counteract the T symmetry violation of the
axion field, which will be achieved by polarising the nuclear spins inside the crystal, thus
providing an additional source of T-oddness.

The first of the new observables that we will explore in this thesis involves the generation
of an oscillating mechanical strain in a piezoelectric crystal sourced by a background of
axion dark matter. The target observable of a strain already has a well-studied history
in precision searches for gravitational waves and scalar dark matter [43]. We coined this
effect the “Piezoaxionic Effect”. Much like the piezoelectric effect has a converse, we later
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realised that in addition to being able to detect the axion particle, a piezoelectric crystal
could also serve as a source of axions in the laboratory. This led to the second experimental
observable demonstrated in this thesis: a search for a new force mediated by the axion and
sourced by a piezoelectric crystal. This idea builds upon existing experimental searches
for axion-like particles (ALPs) via their new forces such as the ARIADNE experiment
[44]. While a search for a new force would not require the axion to also be the DM, it
nevertheless probes a mass range where the axion could still potentially also serve as the
DM.

The structure of this thesis will be as follows. In chapter 2, we will review the back-
ground theory and motivation for the axion, including the strong CP problem, production
mechanisms for the axion, and different couplings to the SM. In chapter 3, we will discuss
the piezoaxionic effect for dark matter detection, and in chapter 4, we will discuss the
piezoaxionic force.
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Chapter 2

Axion Theory

In this chapter, we will provide a brief overview of several key topics: the strong CP
problem and the axion solution, the cosmological production of axion dark matter and its
treatment in experiments, the various model-dependent and independent couplings of the
axion, and a collection of existing experimental directions that can probe these couplings.
The experiments mentioned represent only a small sample of the proposals found in recent
publications. Some of the content in this chapter is drawn from the following reviews and
textbooks:[45–49].

2.1 The Strong CP Problem

As suggested in the introduction of this thesis, we can add a new renormalizable term to
the SM that is invariant under its gauge symmetries but also violates P and T symmetries
(and hence also CP symmetry):

∆L0 =
αs

8π
θ0G

a
µνG̃

µν a (2.1)

αs =
g2s
4π

is the SU(3)c gauge coupling, and G̃µν a = 1
2
ϵµνλρGa

λρ (in Minkowski space). This
term can also be written as a total divergence of a vector:

∆L0 =
αs

4π
θ0∂µK

µ (2.2)

Kµ = ϵµνλρ ·
(
Ga

ν∂λG
a
ρ +

1

3
fabcGa

νG
b
λG

c
ρ

)
(2.3)
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Since this is a surface term it does not contribute to the classical equations of motion.
Nevertheless, at the quantum level it can contribute non-perturbatively via instanton con-
figurations.

Quantum effects also generate a contribution to the observable θ parameter of QCD
through the quark mass terms:

LM = q̄LM̂qqR + h.c. (2.4)

where qL/R are the quark fields and M is their mass matrix. A chiral rotation of quark
fields makes the masses real and therefore physical by removing any phases. However,
through the axial anomaly, this redefinition generates a new term that is proportional to
the same operator as Eq. 2.1:

∆Lθ =
αs

8π

(
θ0 +Arg

(
det(M̂q)

))
Ga

µνG̃
µν a ≡ αs

8π
θ Ga

µνG̃
µν a. (2.5)

θ now contains terms originating from two completely different sources of physics. The
first is present even in the absence of quarks in the theory, whereas the second comes from
the Yukawa couplings. There is thus no reason to assume that either is zero, or that they
should cancel each other out.

The presence of a CP violating θ term generates a neutron electric dipole moment
(EDM) dn of the order [50]:

dn ∼ θ · 10−16 e cm. (2.6)

This can be compared to experimental constraints, which find an upper bound on dn of
[20]:

dn ≲ 10−26 e cm. (2.7)

These results tell us that θ must be incredibly small:

|θ| < 10−10. (2.8)

This is the strong CP problem – the question of how two different sources of physics within
the SM conspire to cancel to such high precision.

2.1.1 The Axion Solution

Suppose that we extend the SM with a new axial U(1) symmetry:

qL → eiβqL, qR → e−iβqR. (2.9)
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This new U(1) symmetry, known as Peccei-Quinn (PQ) symmetry, could rotate away θ
[14]. PQ symmetry is explicitly broken by the Yukawa couplings of quarks to Higgs:

LY = Y d Q̄H DR + Y uQ̄iσ2H
∗UR. (2.10)

where Y are the Yukawa couplings of the SM, Q,H,D and U are the SM fields, and σ
denotes a Pauli matrix. PQ symmetry would be exact at the classical level if we could
also perform the transformations H → iβH for first term, and H → −iβH for second
term on the right hand side, which will motivate the UV completions considered later in
this section. But even if PQ is an exact classical symmetry, there would still be the issue
that PQ symmetry is spontaneously broken by quark masses. This spontaneous symmetry
breaking leads to a massless Nambu-Goldstone-Boson, the axion, which transforms via a
shift symmetry:

a(x) → a(x) + βfa. (2.11)

Here fa is a constant with dimension of mass known as the axion decay constant, and is
related to the scale of PQ symmetry breaking. The axion enters the low energy Lagrangian
as a phase in the quark mass matrix

LM = q̄RMqe
−2i a

fa qL + h.c. (2.12)

but like in Eq. 2.5, this phase can again be rotated into the θ term to arrive at:

La =
αs

8π

a(x)

fa
Ga

µν G̃
µν a. (2.13)

The overall effective theta parameter is then:

θ̄(x) = θ +
a(x)

fa
(2.14)

We now see that quantum effects have explicitly broken PQ symmetry, so the axion must
be a pseudo-Nambu-Goldstone boson.

Following the QCD phase transition when chiral symmetry is broken, non-perturbative
effects generate a potential for the axion [38], given by:

V (a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)
2 sin

2

(
a(x)

2fa
+
θ

2

)
(2.15)
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where fπ ≈ 130MeV is the pion decay constant. We see that the axion potential is periodic
in 2π, and has a minimum at ⟨θ̄(x)⟩ = 0, dynamically solving the strong CP problem. From
the potential, the mass of the axion is found to be:

m2
a =

mumd

(mu +md)
2

m2
πf

2
π

f 2
a

. (2.16)

We will now very briefly describe the benchmark UV completions for implementing PQ
symmetry with the SM:

• PQWW : Includes an additional Higgs doublet such that the transformation of the
Higgs that preserves PQ symmetry suggested below eq. 2.10 becomes possible. The
PQ breaking scale is then associated with the EW scale, and there is a prediction for
a heavy axion with ma ∼ 15keV. This simple model has already been ruled out by
experiment [12, 13].

• DFSZ : Includes a second Higgs doublet as before, but also an additional PQ charged
complex scalar that is a singlet under the SM gauge group [15, 51] such that the
axion is a linear combination of the phases of all three scalars in the theory. This
raises the PQ symmetry breaking scale beyond experimentally constrained regions.
This model also features couplings of the axion to both SM leptons and quarks.

• KSVZ : Includes a second Higgs doublet, a complex scalar and new heavy, quarks
that are charged under PQ but neutral under electroweak symmetry. The axion
is associated to the phase of the complex scalar [52, 53]. There are no tree level
couplings of the axion to the SM quarks and leptons in this model.

A review of further possible models can be found in reference [54].

2.2 Axion Dark Matter

In the introduction of this thesis, we stated that axions with masses above 10−2 eV are
constrained by stellar cooling (see figure 1.1). This constraint implies that axion dark
matter must primarily consist of very light particles. When bosonic dark matter particles
are light, it becomes more appropriate to treat them as a classical field. This rationale
can be explained as follows: consider a cubic volume of dark matter, with dimensions set
by the de Broglie wavelength of the axion, λDB = 1

mav
, where v = 10−3 represents the
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local velocity of dark matter. Using the fact that the energy density of dark matter in our
galaxy is measured to be 0.4GeV cm−3 [55, §27], we can estimate the number of particles

within this volume as N ∼ 1024
(

10−6 eV
m

)4
. Quantum corrections to the classical picture

should be significantly suppressed by factors of 1√
N
, making them negligible. This shift to

the classical picture is appropriate when the occupation number of the axion particles is
large, N ≫ 1. In our galaxy, this transition occurs when ma ≲ 1 eV. We can write the
classical axion dark matter field as [56]:

θ̄(t) ≈ θ̄0 cos(mat) (2.17)

θ̄0 =

√〈
θ
2
〉
=

√
2ρa

mafa
≈ 4× 10−19

√
ρa
ρDM

(2.18)

where ρa is the axion density and ρDM is the dark matter density. The axion acts as
a classical field up to its coherence time τcoh, which is determined by the inverse kinetic
energy spread of the axion DM:

τcoh ≃ 2π

ma

2

v20
≃ 1

ma

(
4π × 106

)
. (2.19)

.

In the following section we will review the cosmological production of axions. If axions
were produced thermally like a WIMP, they would be relativistic and thus would be hot
dark matter, which is excluded from accounting for the entirety of dark matter [57]. We
will study an alternative mechanism that produces cold dark matter.

2.2.1 The Misalignment Mechanism

The classical equations of motion for an axion in an FRW spacetime are given by:

ä(x) + 3Hȧ(x)− 1

R2
∇2a(x) +

∂V (a, T )

∂a
= 0 (2.20)

where dots denote time derivatives, R is the scale factor of the universe, H = Ṙ/R is
the Hubble parameter, and spatial derivatives are taken with respect to comoving coordi-
nates. For simplicity, we will ignore the periodic behaviour and take the small-angle limit,
∂V (a,T )

∂a
≈ ma(T )

2a(x). The full potential is necessary in the case that the axion takes
initial field values close to the top of its cosine-shaped potential, leading to interesting phe-
nomenological signatures [58]. The author of this thesis wrote a paper on model-building
for such a scenario in the early stages of their PhD, which can be found at [59].
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Early in the universe when the T > ΛQCD ∼ 200MeV and QCD is deconfined, the axion
potential is negligible and the axion is massless. Each Hubble patch starts with a random
initial misalignment angle for the axion field in the range θ̄i ∈ [0, 2π); since the potential
is flat, all values are equally likely. After T < ΛQCD, the axion gains a temperature
dependent mass and the dynamics of the axion field begin to unfold [35]. There are two
distinct possibilities for the subsequent evolution of the axion field depending on whether
or not PQ symmetry is broken after inflation. We will focus on the case of PQ symmetry
broken before or during inflation, and is not subsequently restored after inflation.

PQ symmetry not restored after inflation

Inflation stretches all Hubble patches and establishes homogeneous initial conditions, en-
suring that the axion’s initial misalignment angle is uniform everywhere post-inflation.
Consequently, we can disregard the gradient term in Eq. 2.20, and the equation of motion
becomes:

ä+ 3Hȧ+m2
a(T )a = 0 (2.21)

We will assume that the following dynamics occur during the radiation domination epoch
of the universe, as the axion should act as dark matter before matter-radiation equality.

We can solve the equation of motion using the WKB approximation: we assume the
solution is composed of a slowly varying amplitude and a quickly varying phase:

a(t) = A(t)eiϕ(t). (2.22)

Plugging this into the equation of motion, we find separate equations for the real and
complex parts:

Ä

A
− ϕ̇2 + 3H

Ȧ

A
+ma(T )

2 = 0 (2.23)

2Ȧ+ A
ϕ̈

ϕ̇
+ 3AH = 0 (2.24)

Since we expect the fast frequency scale of the phase to be of order ma, we neglect the
terms

Ä

A
,H

Ȧ

A
≪ ϕ̇2,m2

a

From Eq. 2.23, we then find the result:

ϕ̇2 = m2
a (2.25)

ϕ(t) =

∫
dt′ma(t

′) + const. (2.26)
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Putting this into 2.24 gives us:

Ȧ− A

2

(
3H +

ṁa

ma

)
= 0 (2.27)

This equation takes a solution of the following form:

A(t) =
C

R3/2ma(t)1/2
(2.28)

Now taking the real part of Eq. 2.22, we find:

a(t) =
C

R3/2ma(t)1/2
cos

∫
t0

dt′ma(t
′). (2.29)

We can now examine this solution in two limiting regimes. When H > ma(T ), the axion
is overdamped and frozen at its initial misalignment angle. We find the energy density in
the axion field to be:

ρa =
1

2
f 2
am

2
a(t)θ

2
i . (2.30)

In the opposite limit as H < ma(T ), the axion begins to oscillate around the minimum of
its potential, and the energy density scales as:

⟨ρa(t)⟩ =
C2

2ma(t)

f 2
am

2
a(t)

R3
(2.31)

where the averaging is over fast oscillations. Patching these two solutions together at the
crossover point when the axion begins to oscillate (H ∼ ma(T )), one finds:

C2 = ma(Tosc)R
3(Tosc)θ

2
i . (2.32)

This can now be used to find the energy density at later times by including how it dilutes
with expansion:

ρa(T ) ≃
1

2
f 2
ama(Tosc)ma(T )

(
R(Tosc)

R(T )

)3

θ2i (2.33)(
R(Tosc)

R(T0)

)3

=

(
g∗s(T )

g∗s(Tosc)

)(
T0
Tosc

)3

(2.34)

where g∗ is the effective number of degrees of freedom in entropy. The final ingredient is
to understand how the axions mass depends on temperature. The classic result from the
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dilute instanton gas approximation (DIGA) gives a power law dependence of the axion
mass on temperature, with an approximate form [46, 60]:

ma(T )
2 ∼ mumdms

f 2
a

Λ9
QCD

T 8
(2.35)

If we say that at the present day the axion mass is given by its zero-temperature value,
ma(T ) = ma, where ma is given by Eq. 1.2, we find:

Ωa =
ρa
ρcrit

≈ 0.25 θ2i

(
fa

5× 1012GeV

)1.2

(2.36)

where Ωa is the dimensionless energy density today, and ρcrit is the critical energy density
of the universe. We see that the abundance of QCD axion dark matter today is a function
of the axion’s initial misalignment angle and its decay constant fa.

If we want fa ∼ GUT scale, which is relevant for the dark matter parameter space
featured in chapter 3 of this thesis, we would need θi ∼ 10−5. There are two possible
scenarios to mitigate this fine tuning:

• Entropy Dilution: this could originate from a period of early matter domination.
Additional entropy from the reheating process would dilute the axion DM abundance
[37, 61].

• Anthropics : different patches of the universe have different initial misalignment an-
gles. Since inflation causes exponential expansion, we are no longer in causal contact
with these other patches. Different patches may have different DM densities, but
perhaps our patch is necessary for the existence of life [62].

PQ symmetry restored after inflation

In this scenario, different Hubble patches in the universe have different values of the initial
misalignment angle θi. We can calculate the contribution to the axion abundance from
misalignment, as in the previous scenario, by considering the average angle, ⟨θi⟩ ∼ π/

√
3.

If this were the sole contribution to the abundance, it would yield an extremely predictive
result, with the axion mass being approximately 30µeV [63].

However, the PQ phase transition also results in the formation of topological defects
such as axion walls and strings [64]. In the previous scenario, these were diluted away
by inflation, but when they are not, their decay results in an additional population of
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non-relativistic axions. Determining this contribution requires complex simulations and
detailed computations, and there are still significant uncertainties with a wide range of
results, ranging from a contribution comparable to that from misalignment to several
orders of magnitude larger. For a more detailed understanding of this topic, see references
[48, 63, 65].

2.3 Couplings of the Axion to the Standard Model

2.3.1 Axion-Gluon Coupling

While the defining coupling of the axion is to gluons, there are as yet no laboratory exper-
iments capable of reaching QCD axion dark matter parameter space via this interaction
[66]. It is also the subject of fewer proposed experiments relative to more model dependent
couplings such as the photon coupling, which will be discussed later in this chapter.

A key existing experimental direction for this coupling is provided by the CASPER
experiment, which will be outlined here. Axion dark matter produces an oscillating neutron
electric dipole moment [50, 67]:

dn(t) ≈ 10−3 θ(t) e fm. (2.37)

which a frequency set by the axion mass. The interaction of this dipole moment in an
electric field is given by:

HEDM = −dn(t) · E (2.38)

and a corresponding torque:
τEDM = dn(t)× E. (2.39)

The idea of the CASPER experiment is to use a material with a strong internal electric
field, which can be found in ferroelectric type materials, and to polarize the nuclear spins
in the material using an external magnetic field (see figure 2.1). The presence of axion dark
matter will cause the spins inside the crystal to precess off axis, leading to a new source
of magnetization within the crystal. When the natural frequency of the spins, the Larmor
frequency, matches the axion’s frequency, this magnetization is resonantly enhanced. The
Larmor frequency of the spins is given by:

ωL = γnB0 (2.40)

where γn is the nuclear gyromagnetic ratio. The subsequent magnetization on resonance,
ωL ≈ ma, scales as:
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Figure 2.1: Basic setup of the CASPER experiment. A nuclear spin with magnetic moment
µn is polarized in a constant external magnetic field B0. The internal electric field of a
material E that contains the spin, together with an axion induced EDM dn, produce a
torque on the magnetic moment. The new component of axion-induced magnetization can
be read out using a SQUID. Figure taken from [68].

M ≈ nSpµndnE T2 (2.41)

where nS is the number density of spins in the material, p is their polarization, T2 is the
transverse coherence time of the nuclear spins and µn = e

2mp
is the nuclear magneton. The

transverse coherence time T2 corresponds to the timescale over which the spins contributing
to the magnetization will dephase, and is a material dependent property. Increasing T2
is one of the major technological challenges towards such a setup reaching QCD axion
sensitivity.

Given the the largest possible laboratory B-fields are around ∼ 30T , this corresponds
to an upper limit on the axion mass that can be probed by this type of experiment of
ma ∼ 10−6eV. This falls within the optimal sensitivity of a SQUID magnetometer (su-
perconducting quantum interference device) [69], around 10 Hz - 106 Hz. At the lower
frequency end of this range, around kHz frequencies and below, the axion is already con-
strained by black hole superradiance [41] as can be seen in figure 1.1.

Finally, it should be noted that the mass-coupling relation of the QCD axion in Eq. 1.2,
which is determined by the axion’s gluon coupling, can be broken in principle. In practice,
a modification to lower the mafa product of the QCD axion, which would increase the
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effective theta angle amplitude in Eq. 2.1, requires a fine tuning of both the first and
second derivatives of the potential, to preserve the Peccei-Quinn solution to the strong CP
problem and to partially cancel the QCD contributions to the axion mass, respectively.
Even with significant model-building efforts, this part of parameter space is precarious,
as finite-density and finite-temperature effects can undo the fine tuning in the vacuum,
leading to wildly different in-medium minima in stellar systems [70]. A significant increase
in the mafa product is generically only fine-tuned in the first derivative of the potential,
but would lower the rms θa angle and thus would be much harder to detect.

2.3.2 Axion-Photon Coupling

The axion photon coupling is defined as [38]

L ⊃ 1

4
gaγγa(x)FµνF̃

µν =
1

4
gaγγa(x)E ·B (2.42)

gaγγ =
αEM

2πfa

[
E

N
− 2

3

4md +mu

md +mu

]
(2.43)

The first term on the right hand side of Eq. 2.43 is a model dependent contribution, where
E is the electromagnetic anomaly of the axial current associated with the axion and N
is the colour anomaly. For DFSZ axions, E/N = 8/3, whereas for KSVZ, E/N = 0.
The second term is a model-independent contribution that derives from the fundamental
coupling of the axion to gluons of Eq. 2.13 via a quark field redefinition. More precisely,
to arrive at Eq. 2.43 the quark fields are redefined as:

q =

(
u
d

)
→ eiγ5

a
2fa

Qa

(
u
d

)
, Qa =

M−1
q

⟨M−1
q ⟩

(2.44)

Depending on the UV completion of the axion, given the opposite signs of the two con-
tributions it is possible that they could conspire to produce a small coupling. The two
benchmark models above, however, are already within the reach of microwave cavity halo-
scope experiments within a small mass window.
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Haloscopes

A starting point for considering experimental probes of the axion-photon coupling is the
modification of two of Maxwell’s equations:

∇ · E = ρ− gaγγB ·∇a (2.45)

∇×B =
∂E

∂t
+ J− gaγγ

(
E×∇a− ∂a

∂t
B

)
. (2.46)

Axion haloscopes are designed to detect axion dark matter through its conversion to pho-
tons in a strong magnetic field, the prototype being the ADMX experiment [40, 71]. They
use a cylindrical electromagnetic cavity with a very high quality factor (Qc ∼ 105), perme-
ated by a static, homogeneous magnetic field B0. If the de Broglie wavelength of the axion
is large compared to the size of the cavity, we can neglect the spatial derivatives of the
axion in the modified Maxwell equations when solving for the cavity modes. The power
on resonance (ωnl = ma) for a given cavity mode is found to be:

P = g2aγγV B
2
0ρaC

1

ma

min(Qc, Qa) (2.47)

where V is the volume of the cavity, ρa is the local energy density of dark matter, Qc is
the quality factor of the cavity, and C is a geometric form factor for the cavity that takes
into account the overlap between the penetrating magnetic field B0 and the cavity electric
field, given by:

C =
|
∫
V
d3xE ·B0|2

B2
0 V
∫
V
d3xϵ|E|2

. (2.48)

where E is the electric field of the relevant cavity mode, and ϵ is the dielectric constant.
The largest form factor is C = 0.69 for the TM010 mode.

The cavity is tuned by moving a dielectric rod or metal post inside in order to change
the fundamental frequency. Since the axion has a very large open parameter space, a key
measure of the effectiveness of such an experiment is the frequency scanning rate. For the
ADMX experiment, the scanning rate scales as:

df

dt
=

12GHz

year

(
4

SNR

)2(
V

500L

)2(
B0

7T

)2

C2

×
(gaγγ
0.72

)4 ( ρa

0.3GeV cm−3

)(3K

Tn

)2(
f

GHz

)2
QL

Qa

(2.49)
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where Tn is the sum of the physical temperature of the cavity plus the noise temperature
of the microwave receiver that detects the photons from axion-to-photon conversion [72].
The haloscope is sensitive to axions with Compton wavelengths roughly comparable to
the cavity size. The ADMX experiment has already begun to probe the QCD axion mass
window between 10−6eV and 10−5eV.

2.3.3 Axion-Fermion Couplings

The most generic couplings of the axion to fermions can be written as:

Laff = −gfs aψ̄fψf +
gfp
2mf

∂µaψ̄fγ
µγ5ψf (2.50)

where the first term is a scalar coupling of the axion, and the second is a pseudoscalar
coupling. The scalar coupling gfs requires an extra source of P and T violation in addition
to the axion in order to be generated. This could be supplied by the CP violation already
present in the SM through the CKM matrix, however, this is usually small – we will review
this case below for nuclear couplings. In the non-relativistic limit, the second term on the
right hand side becomes

gfp
2mf

σ ·
[
∇a+ ȧ

pf

mf

]
(2.51)

Nucleon Couplings

The couplings for nuclei are model dependent but do contain an irreducible contribution
derived from the axion gluon interaction of Eq. 2.1. For the scalar nucleon coupling, we
have [73]:

gNs ∼ 10−3010
9GeV

fa
. (2.52)

where the additional parity violation required has been sourced by the electroweak sector of
the SM. Bigger couplings are possible if considering an ALP or additional BSM fields up to
gNs ∼ 10−21 (109GeV/fa), where the upper bound is set by constraints from EDM searches
[74]. For the pseudoscalar coupling, there is an irreducible contribution from the gluon
coupling in addition to model dependent contributions, characterised by the coefficient
CN :

gNp ≡ CNmN

fa
≃ CN × 10−9 10

9GeV

fa
(2.53)
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In the KSVZ model, there are no model dependent contributions and we only have the
irreducible coefficients from QCD:

Cp ≈ 0.47(3), Cn ≈ 0.02(3) (2.54)

whereas in the DFSZ model,

Cp ≈ −0.182 + 0.435 sin2 β ± 0.025 (2.55)

Cn ≈ 0.160− 0.414 sin2 β ± 0.025 (2.56)

where tan β = vu/vd is the ratio of the VEVs of the two Higgs doublets in the SM. From
unitarity arguments, tan β ∈ [0.28, 140] [63].

Electron Couplings

The axion coupling to fermions does not have a model independent coupling directly derived
from the gluon coupling, with the exception of very small radiative corrections via the
photon/meson couplings. There can be tree level pseudoscalar couplings depending on the
UV completion of the axion:

gep ≡
Ceme

fa
(2.57)

Ce = sin2 β/3 (DFSZ) (2.58)

Ce = 0 (KSVZ) (2.59)

since only the DFSZ model features couplings of the axion to leptons [63].

New macroscopic forces

The fermion couplings above can be used to generate macroscopic forces that are medi-
ated by the axion [76], with three possibilities depending on the combination of scalar
(monopole) and pseudoscalar (dipole) couplings:

Uss(r) =
g1sg

2
s e

−mar

4π r
(2.60)

Usp(r) =
g1sg

2
p

8πmf2

(
ma

r
+

1

r2

)
e−mar(σ̂2 · r̂) (2.61)

Upp(r) =
g1pg

2
p

16πmf1mf2

(
(σ̂1 · σ̂2)

(
ma

r2
+

1

r3

)
− (σ̂1 · r̂)(σ̂2 · r̂)

(
m2

a

r
+

3ma

r2
+

3

r3

))
e−mar

(2.62)
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Figure 2.2: Setup for the ARIADNE experiment. A dense mass sources an effective axion-
induced magnetic field, which unlike a real magnetic field, can penetrate the magnetic
shielding containing the detection sample. Spin-polarized 3He is used to detect the axion
magnetic field, by looking for a new, anomalous component of its magnetization. When
the segmented source mass is rotated to match the Larmor frequency of the spins, the
signal is resonantly enhanced. Figure taken from [75].

The first of these, the monopole-monopole force, is often searched for as a correction to
Newton’s inverse square law [77]. The second two forces will be explored as a probe of
the axion in chapter 4 of this thesis, building upon an existing experimental proposal for
detecting monopole-dipole forces mediated by an ALP known as ARIADNE [44, 75, 78],
which will be described in this section.

The starting point is that the monopole-dipole force can also be expressed as an “ef-
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fective” magnetic field

Usp = Beff · σ̂2 (2.63)

Beff =
2

γf

g1sg
2
p

8πmf

(
ma

r
+

1

r2

)
e−marr̂ (2.64)

where γf is the fermion gyromagnetic ratio. The ARIADNE experiment uses a dense mass
to source an effective axion-induced magnetic field that is directed perpendicular to the
polarization direction of a sample of spin polarized 3He (figure 2.2). Magnetic shielding
around the 3He blocks real magnetic fields so that only the axion magnetic field can reach
the sample. The source mass is made up of n segments and is rotated at a fixed frequency,
such that the axion magnetic field takes on the frequency ω = nωrot. This frequency is
matched to the Larmor frequency of a sample of polarised nuclear spins, ωL = 2µnBext,
so that the signal is resonantly enhanced. In this way, the helium spins are acting as an
amplifier and transducer of the axion magnetic field, turning it into a larger, real magnetic
field. This leads to an anomalous magnetisation of the sample that scales as:

M(t) ≈ ns

2
p µn γN Beff t cos(ωt) (2.65)

where ns is the polarized spin density in the material, p is the polarization fraction and
µn is the nuclear magnetic moment. The magnetization grows linearly until t ∼ T2, the
transverse coherence time of the nuclear spins. This anomalous magnetization can be
picked up by a SQUID magnetometer. The axion mass range that can be probed by
this experiment is determined by the separation of the source mass and spin sample in the
experiment, since the force is finite range, and peaks when the axion’s Compton wavelength
is comparable to the separation. The current design scans the mass range between 10−5eV
to 10−2eV, corresponding to forces of range 1cm to 0.001cm. The main noise source in
the experiment derives from spin decoherence in the 3He sample, and sets the minimum
magnetic field that the setup is sensitive to:

Bmin ≈ p−1

√
2b

nsµ3HeγV T2

= 3× 10−19 T×
(
1

p

)√(
b

1 Hz

)(
1 mm3

V

)(
1021 cm−3

ns

)(
1000 s

T2

)
.

(2.66)

where b is the bandwidth and V is the volume of 3He. The current forecasts for the
ARIADNE experiment suggest sensitivity to new ALP parameter space. Reaching the
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QCD axion, however, is challenging since the irreducible contribution of the QCD axion to
the scalar coupling of Eq. 2.50 without additional CP violating BSM fields is very small,
as can be seen in Eq. 2.52. The results of chapter 4 will address how we can hope to reach
the QCD axion via a new effective coupling present within piezoelectric crystals.
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Chapter 3

The Piezoaxionic Effect for Dark
Matter

When axions make up (all or a component of) the DM of our Universe, they manifest as a
background that violates parity (P) and time reversal (T) invariance. In this chapter, we
show how a P-violating axion DM background produces a stress in piezoelectric crystals, a
new observable that we call the piezoaxionic effect. Piezoelectric crystal structures break
parity, by definition. Therefore, no symmetry forbids the occurrence of stress (even under P
and T) upon application of an electric field (odd under P and even under T)—the converse
piezoelectric effect [79, 80]. Vice versa, an electric field results from an applied stress—the
piezoelectric effect [81, 82]. For such a material, a stress can appear across the crystal in
an axion DM background, by analogy to the (converse) piezoelectric effect. For the axion
coupling to anomaly of the strong interactions, which violates simultaneously P and T, a
piezoelectric crystal with polarized nuclear spins is needed for the stress to appear. When
the oscillation frequency of the axion DM wave matches an acoustic resonance frequency
of the crystal, the axion-induced stress results in a resonantly enhanced strain.

Such strain, or simply put, a change in the length of a crystal, is an observable that has
been used for decades in the context of resonant-mass gravitational wave detectors [83–
85]. Resonant-mass GW detectors measure absolute changes in length much more more
precisely than LIGO [86]. A subset of the authors in this paper has shown in the past
that such sensitivity can be used to probe scalar DM [87]. The AURIGA collaboration
implemented this idea and used their existing data to place the most stringent constraints
thus far on (P- and T-even) scalar DM that couples to the electron and/or the photon [88],
showing sensitivity to strains as small as 10−25, provided the signal has a sufficiently long
coherence time.
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We expand on these ideas and demonstrate how a resonant-mass detector made from a
piezoelectric crystal can be used to detect QCD axion DM with masses between 10−11 eV
and 10−7 eV. While several axion couplings may produce a signal in our setup, the most
promising one at low frequencies is the irreducible coupling of the QCD axion to gluons.

There is one more observable associated with the P- and T-violating nature of an axion
background. Aligned nuclear spins in any dielectric material, bathed in QCD axion DM,
source electric displacements [89], that produce an oscillating voltage difference across two
opposing surfaces of the material. We call this phenomenon the electroaxionic effect. As
we will see, this effect does not benefit from the same enhancement through mechanical
resonance as the piezoaxionic effect, but nevertheless contributes to the axion signal when
using an electrical readout. A similar electroaxionic effect is also present for derivative
couplings of axion-like particles.

The observables discussed in this paper differ significantly from solid-state EDM exper-
iments [90–94] as well as nuclear-magnetic-resonance-based techniques for QCD axion DM
detection [95], since they do not require the application of an electric field to be effective
or the use of ferroelectric materials. Furthermore, both of these types of experiments rely
on detecting a change in the magnetization of the sample due to a reversal of the electric
field (solid-state EDM experiments) or due to the precession of the spins in the axion back-
ground. The piezoaxionic and electroaxionic effects produce an oscillatory signal without
any change in the direction of the aligned spins.

Our paper is structured as follows. In Sec. 3.1, we calculate the piezoaxionic and
the electroaxionic tensors in piezoelectric crystals, focusing on the axion coupling to the
QCD anomaly. In Sec. 3.2, we describe the experimental setup, delineate the signal,
discuss noise sources and possible backgrounds, and present our forecast for the reach to
axion parameter space. Finally, we present estimates for other couplings in Sec. 3.3 and
discuss our assumptions and future directions in Sec. 3.4. We use natural units wherein
ℏ = c = kB = 1. For the convenience of the reader, Tab. 3.1 summarizes the main symbols
used in this chapter.
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Table 3.1: List of primary symbols appearing in the four
subsections of both Secs. 3.1 and 3.2, their transforma-
tions (even = +, odd = −) under parity P and time-
reversal T (where relevant), and the subsections where
they first appear.

Quantity Symbol P T Subsection
Axion mass, decay constant ma, fa 2
Axion frequency f
Axion coherence time τcoh
Effective theta angle (with axion) θa − −
Schiff moment (magnitude) S − − 3.1.1
Schiff moment S − +
Nuclear spin Iα + −
Atomic charge, number Z, A 3.1.2
Atomic matrix element Mα − +
Relativistic enhancement factor R
Wavefunction |s⟩, |pj⟩ coefficients ϵs, ϵpj
Effective quantum numbers νs, νpj
Mass density (crystal) ρ 3.1.3
Heavy-nucleon number density nN

Volume of unit cell Vc
Potential energy density (crystal) U
Strain Sαβ + +
Stress Tαβ + +
Electric field Eα − +
Electric displacement Dα − +
Elastic stiffness (at constant D) cDαβ,γδ + +
Impermittivity (at constant S) βS

αβ + +
Piezoelectric tensor hα,γδ − +
Piezoaxionic tensor ξα,γδ − +
Electroaxionic polarizability ζαβ + +
Impedance of circuit element X ZX 3.2.1
Inductance LX

Capacitance CX

Resistance RX

Mutual inductance, coupling MX , kX

27



Table 3.1 (continued)

Quantity Symbol P T Subsection
Crystal length in direction i ℓi

3.2.2

Mechanical resonance frequency f0
Natural resonance frequency fnat
Mechanical displacement ui
Sound speed (longitudinal) vD

Electromechanical coupling k
Quality factor Q(ω)
Axion-induced voltage, current Va, Ia
SQUID flux ΦSQ

Noise spectral density (voltage) SV

3.2.3
Loss angle of X δX
Temperature T
SQUID noise parameter ηSQ
Cooling power, decay heat Q̇
Signal-to-noise ratio SNR

3.2.4
Resonance frequency (circuit) fres
Shot time tshot
Total integration time tint

3.1 Theory

In this section, which is split into three parts, we work out the theory of the piezoaxionic
and electroaxionic effects. In section 3.1.1 reviews the generation of P- and T-violating
electromagnetic moments of nuclei due to this coupling, in particular the Schiff moment.
Section 3.1.2 explains how a Schiff moment leads to energy shifts at the atomic level, with
further details on atomic matrix elements provided in App. A.1. Finally, in Sec. 3.1.3, a
mapping of these atomic energy shifts to the piezoaxionic and electroaxionic crystal tensors
is outlined.
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3.1.1 Nucleus

In this section, we compute the θa-dependent Schiff moment of nuclei. The most basic
P- and T-violating electromagnetic moment of a nucleus is its electric dipole moment
(EDM). (An EDM is P-odd and T-even, but its alignment with spin, which itself is P-even
and T-odd, is what violates P and T separately.) Our ability to probe nuclear EDMs in
atomic systems is, however, restricted by Schiff’s screening theorem [67, 96–99]. In any
system composed of nonrelativistic, pointlike, charged particles (e.g. an atom or crystal),
the bare EDMs of all particles are perfectly screened by a spatial rearrangement of the
(monopole) electric charges. However, nuclei have a finite radius R0, so the position of
their EDMs need not coincide with their centers of charge. One can systematically take
into account these finite-size effects through a nuclear multipole expansion: an EDM at
dimension 1, a magnetic quadrupole moment (MQM) at dimension 2, an electric octupole
moment (EOM) and a Schiff moment at dimension 3, etc. The EDM is screened, the MQM
only has effects in magnetic materials, and effects on the electronic wavefunction from the
EOM are suppressed by the angular-momentum barrier near the nucleus [98]. (Moments
at dimension 4 and higher are completely negligible.)

Hence our focus on the Schiff moment, which interacts with electrons via the Hamilto-
nian:

HS = 4πeS ·∇δ(r), (3.1)

where ∇δ(r) is to be evaluated on the electron wavefunction. Like an EDM, a Schiff
moment is P-odd and T-even, but its alignment with the nuclear spin violates both P and
T invariance. Note that the effective operator on electrons is P-odd and T-even. A Schiff
moment [99]

S = SEDM + Sch (3.2)

can arise from EDMs of the constituent nucleons

SEDM =
∑
j=p,n

{
1

6
e

[
rj(rj · dj)−

1

3
⟨r2⟩ch dj

]
(3.3)

+
1

6
e
(
r2jrj − ⟨r2⟩ch rj

)}
and from an asymmetrical distribution of charge (i.e. protons) within the nucleus

Sch =
∑
p

1

10
e

(
r2prp −

5

3
⟨r2⟩ch rp

)
. (3.4)
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In Eq. 3.3, the sum over j runs over all nucleons (protons p and neutrons n), while the
sum in Eq. 3.4 runs over all protons. Above, we have also used shorthand for the mean
squared radius of the nuclear charge distribution (with density ρch):

⟨r2⟩ch ≡ 1

Z

∫
d3r r2ρch(r), (3.5)

with Z the total nuclear charge. The magnitude of the Schiff moment is defined as S ≡
⟨Sz⟩M=I , i.e. the magnitude of the expectation value of S in the +z-direction, for a fully
polarized nuclear spin along the +z-direction (M = I).

As we derive below, the effects from the Schiff moment are largest in high-Z nuclei,
because of their larger size and because of relativistic enhancement effects of the electron
density for heavy nuclei (see Sec. 3.1.2 for this second effect). In Sec. 3.1.1, we evaluate
the size of the Schiff moments from bare nucleon EDMs through Eq. 3.3. In Sec. 3.1.1, we
review the PT-violating nuclear forces that arise at finite θa, and then evaluate the resulting
Schiff moments via Eq. 3.4 in non-deformed nuclei in Sec. 3.1.1, and in octupole-deformed
nuclei in Sec. 3.1.1.

Schiff moment from the EDM of a valence nucleon

A theta term, from a static θ or from an oscillating θa in a QCD axion DM background,
induces a typical nucleon EDM of order [50, 67]:

dn ≈ 10−3 θa e fm. (3.6)

This nucleon EDM in turn produces a nuclear Schiff moment in nuclei with odd atomic
number A. For an odd-A nucleus with a static, spherically symmetric core of radius R0 ≃
r0A

1/3 with r0 ≈ 1.2 fm, the valence nucleon EDM leads to a Schiff moment magnitude [98]:

SEDM =
1

10
dnR

2
0

2

5

(K + 1)

(I + 1)
(3.7)

∼ 10−3 θa e fm
3 (K + 1)

(I + 1)

(
A

230

)2/3

,

with K ≡ (l − I)(2I − 1), I the nuclear spin, and l the valence nucleon’s orbital angular
momentum. The nuclear core may exhibit significant polarizability and deformations from
sphericity, in which case the estimate of Eq. 3.7 will receive large corrections. However,
in those cases, the SEDM contribution to the Schiff moment will be subdominant to the
asymmetric charge distribution of the nucleus, to which we turn next.

30



P−and T−violating forces

Forces between nucleons that violate parity and time-reversal symmetries can cause an
asymmetric (parity-odd) charge distribution of the nucleus that is aligned with the nuclear
spin, thus generating a Schiff moment Sch via Eq. 3.4 [100–102]. Since this is a tree-level
effect from light-meson exchange between nucleons, this contribution to the Schiff moment
will typically dominate over the loop-level effect from Eqs. 3.6 and 3.7. To leading order,
these P- and T-violating forces are mediated by pion exchange; in the heavy-pion limit
(mπR0 ≫ 1) and nonrelativistic approximation, they are given by the effective interaction
potential:

VPT =
1

2mNm2
π

(ηabσa − ηbaσb) ·∇δ(ra − rb). (3.8)

where mN ≃ mn ≃ mp is the nucleon mass, the Pauli matrix σ acts on the spin Hilbert
space of the nucleons a and b, and r on the position Hilbert space. The effective couplings
among protons p and neutrons n are:

ηpp = −ηnp = gs(g0 + g1), (3.9)

ηnn = −ηpn = gs(g1 − g0). (3.10)

The coupling gs is the standard P- and T-conserving pion-nucleon coupling, while g0, and
g1 are the P- and T-violating isoscalar and isovector couplings, respectively, sourced by the
θa term. We assume the numerical values [103]:

gs ≈ −13.45, (3.11)

g0 ≈ (15.5± 2.6)× 10−3 θa, (3.12)

g1 ≈ −0.2g0. (3.13)

We neglect the numerically smaller isotensor pion-nucleon coupling g2. The contribu-
tions to VPT from exchange of ρ and ω mesons have been argued by Refs. [104, 105] to
be smaller than the pion-exchange contributions from Eq. 3.8, by the numerical factor
0.3(m2

π/m
2
ρ,ω).

Non-deformed nuclei

The P- and T-odd internucleon potential of Eq. 3.8 provides the symmetry breaking needed
to create a P-odd charge distribution of a nucleus. Since the values of θa of interest are
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tiny (cfr. Eq. 2.18), we will evaluate the Schiff moment in perturbation theory:

⟨Sch⟩ =
∑
n

⟨0|VPT|n⟩ ⟨n|Sch|0⟩
E0 − En

+ h.c., (3.14)

where the sum is over nuclear states n with energies En; n = 0 labels the ground state.

In the nuclear shell model, where the core is treated as a static source, only a valence
proton can generate a nonzero Schiff moment. The effective mean-field interaction potential
of the valence nucleon (with label a) stemming from Eq. 3.8 becomes:

VPT =
1

2mNm2
π

ηaσa ·∇aρ(ra), (3.15)

ηa ≡ ηap
Z

A
+ ηan

A− Z

A
, (3.16)

with ρ the number density of core neutrons and protons normalized as
∫
d3r ρ(r) = A. (In

the above formulae, we ignore corrections of order 1/A and 1/Z.) The contribution to the
Schiff moment from a valence proton in the nuclear shell model is [100]:

Sch ≃ e

10

ηa
2mNm2

π

ρ0
U0

R2
0 ≃

3eηa
4π2mN

R2
0 (3.17)

with ρ0 ≃ 3/(4πr30) the nucleon number density, and U0 ≃ 3π/(60m2
πr

3
0) the spherically

symmetric potential of the nuclear core.

However, excitations of core protons, which are dynamics not captured within the nu-
clear shell model, by either a valence proton or neutron, can yield Schiff moment contri-
butions of similar size as the expression in Eq. 3.17 [106]. This means that P- and T-odd
forces can generate Schiff moments in nuclei with either an odd number of protons or an
odd number neutrons. Numerically, the effect in Eq. 3.17 is typically much larger than
that of Eq. 3.7. For example, one finds:

Sch

(
181
73Ta

)
≃ 0.2 θa e fm

3 (3.18)

for the stable nucleus of 181
73Ta, which has one valence proton. Estimates for other stable

isotopes of heavy nuclei can be found e.g. in Ref. [99].

Octupole-deformed nuclei

A class of nuclei with strongly enhanced P- and T-violating moments are those possessing
permanent octupole deformations or soft octupole modes. (For reviews on deformed nuclei,
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see Refs. [107–110].) Such nuclei typically have anomalously large values for certain transi-
tion matrix elements, paired with small energy splittings between opposite-parity nuclear
levels. The origin of these two signatures and their role in collective enhancements of the
nuclear Schiff moment will be summarized here, following Refs. [111, 112].

We first discuss permanent octupole deformation of heavy nuclei. Analogously to the
Born-Oppenheimer approximation in molecules, where one factorizes rotational motion of
a “rigid” shape from the internal excitations (vibration, electronic excitations, etc.), we
can consider the shape of the nucleus in the intrinsic (body-fixed) frame of the nucleus.
Assuming the nuclear core to be axially symmetric and of constant density (equal for
protons and neutrons), the core shape is described by the location of its surfaceR, expanded
into the following multipoles l:

R = R0

(
1 +

∑
l=1

βlYl0

)
, (3.19)

where the βi parameters characterize the strength of the dipole, quadrupole, octupole, etc.
deformations. The dipole deformation β1 is fixed such that the center of mass/charge is at
the origin. In the intrinsic frame, and with the above assumptions, the Schiff moment can
then be straightforwardly calculated using Eq. 3.4:

S
(int)
ch = ZeR3

0

3

20π

∑
l=2

(l + 1)βlβl+1√
(2l + 1)(2l + 3)

, (3.20)

with the main piece typically coming from the first term ∝ β2β3.

If a deformed nucleus is reflection asymmetric in its intrinsic frame, then in the labo-
ratory frame, its ground state wavefunction will be composed of a parity doublet:

Ψ± =
1√
2
(|IMK⟩ ± |IM −K⟩). (3.21)

Here I is the nuclear spin,M is the quantum number of Iz, and K that of the operator I ·n,
with n the nuclear axis. The wavefunctions Ψ± are good parity states since ⟨Ψ±|n|Ψ±⟩ = 0,
i.e. there is no average orientation of the nuclear axis, and P and T are preserved. Turning
around the argument, a tell-tale signature of static octupole deformation of a nucleus is
the presence of a low-lying opposite-parity level with the same angular momentum as the
ground state. (In reality, the members of the parity doublet are not exactly degenerate due
to Coriolis forces and other effects; these are analogous to the rovibrational and vibronic
couplings that signal corrections to the Born-Oppenheimer approximation for molecular
states.)
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Interactions that violate both P and T can mix these opposite-parity states of a spin-
polarized nucleus, and partially align the nuclear axis with the nuclear spin, leading to
a collective enhancement of the Schiff moment. The perturbed wavefunctions under the
interaction Hamiltonian of Eq. 3.15 are:

Ψ̃+ = Ψ+ + α̃Ψ−, Ψ̃− = Ψ− − α̃Ψ+, (3.22)

where

α̃ =
⟨Ψ−|VPT|Ψ+⟩

∆E±
≈ 0.5 θa

ηa
0.1

50 keV

∆E±

β3
0.1

(
230

A

)1/3

, (3.23)

with ∆E± ≡ E+−E− the energy splitting of the doublet and ηa the effective coupling of the
valence nucleon as in Eq. 3.16. Within this framework, we then finally have ⟨Ψ̃±|nz|Ψ̃±⟩ =
2α̃KM/[(I + 1)I], and since the ground-state wavefunction typically has K = I [111], a
laboratory-frame Schiff moment of

Sch = 2α̃
I

I + 1
S
(int)
ch (3.24)

≈ 5 θa e fm
3 ηa
0.1

50 keV

∆E±

β2
0.12

(
β3
0.1

)2
Z

88

(
A

230

)2/3

.

Contributions from higher-order deformations of the nucleus are usually subdominant. We
observe that the collective (Z-enhanced) effect of static octupole deformation can lead to
very large Schiff moments, compared to the contributions from valence nucleons in non-
deformed nuclei (Eqs. 3.17 and 3.18) and from bare EDMs of the valence nucleons (Eq. 3.7).
Tabulations of the parameters β2, β3, and ∆E± can be found in Ref. [113] for the ground
states of nearly all nuclei, though estimates with other nuclear structure models often give
different results [114, 115].

The class of nuclei with collectively enhanced Schiff moments extends beyond those with
static octupole deformations, and includes also those with soft octupole modes. Ref. [112]
showed that it is sufficient to have a significant octupole-deformation-squared, i.e. ⟨β2

3⟩ ≠ 0,
even if ⟨β3⟩ = 0, for a nucleus to have a Z-enhanced Schiff moment. This dynamical oc-
tupole deformation can be thought of as a collective nuclear octupole vibration with angular
frequency ∆E±, and corresponding zero-point amplitude-squared inversely proportional to
this frequency, ⟨β2

3⟩ ∝ 1/∆E±, as for any quantum harmonic oscillator.

An ideal octupole-enhanced candidate nuclear isotope (with either static or dynamical
deformation) should thus have an opposite-parity level with a small energy gap above the
ground state. For the experimental concept proposed in this paper, the isotope needs to
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be (meta)stable (cfr. the discussion on heating from radioactivity in Sec. 3.2.3). Energy
splittings and half-lives are tabulated in Ref. [116]. Three potentially suitable isotopes
were suggested in Ref. [117], together with estimates of their Schiff moments:

Sch

(
153
63Eu

)
≈ 3.7 θa e fm

3, (3.25)

Sch

(
235
92U
)

≈ 3.0 θa e fm
3, τ1/2 ≈ 7× 108 yr, (3.26)

Sch

(
237
93Np

)
≈ 6.0 θa e fm

3, τ1/2 ≈ 2× 106 yr. (3.27)

In addition, the isotopes 161
66Dy and 155

64Gd are known to have very small energy gaps between
the ground state and the excited state of opposite parity [116], which suggests a possible
octupole enhancement. According to Ref. [113], they are not statically octupole deformed,
but they could still exhibit significant dynamical octupole deformation. We therefore
estimate the Schiff moment from soft octupole vibrations using Eq. 3.24 as suggested in
Ref. [112], with the squared octupole deformation estimated using the collective B(E3)
octupole transition probability for neighbouring even-even nuclei found in e.g. Ref. [118]:

B(E3)0+→3− =

(
3

4π

)2 (
ZeR3

0

)2 ⟨β2
3⟩ . (3.28)

Data from Ref. [116] with Eqs. 3.24 and 3.28 then yields our estimates:

Sch

(
161
66Dy

)
≈ 4 θa e fm

3, (3.29)

Sch

(
155
64Gd

)
≈ 1 θa e fm

3. (3.30)

Despite these encouragingly large fiducial values, the accuracy of the predictions in this
section is under poor control, as different nuclear structure models suggest widely different
values [109, 110]. More theoretical support is needed to identify suitable candidate isotopes
for a large-scale experiment, and to provide accurate and precise determinations of the
predicted Schiff moments in the presence of a nonzero θa parameter.

3.1.2 Atom

In Eq. 3.1 of Sec. 3.1.1, we already wrote down the parity-odd electrostatic potential
for electrons produced by a nuclear Schiff moment. This potential can mix opposite-
parity electronic states, or equivalently, lead to an atomic energy shift if the electronic
wavefunction already breaks parity (which is the case inside a piezoelectric crystal).
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The energy shift of an atom with a polarized nuclear spin1 and Schiff moment, from
the perturbing Hamiltonian in Eq. 3.1, is:

⟨HS⟩ = −4πeS
∑
j,mj ,k

Îkϵsϵ
∗
pj,mj

Mj,mj ,k + c.c., (3.31)

≡ −4πeS
∑
k

MkÎk; (3.32)

where the quantum numbers j and mj are those of the total angular momentum and

its projection on the z-axis, respectively, the index k denotes spatial direction, Îk is the
direction of the nuclear spin (normalized such that |Î| = 1 corresponds to a fully polarized
nuclear spin state, and |Î| = 0 an unpolarized state), and Mj,mj ,k = ⟨s0| r̂k ∂rδ3(r) |p0j,mj

⟩
is an atomic matrix element. The coefficients ϵs and ϵpj,mj

parametrize the admixture

of atomic s and pj,mj
valence electron states, i.e. |ψel⟩ = ϵs |s0⟩ +

∑
j,mj

ϵpj,mj
|p0j,mj

⟩, and
characterize the breaking of parity symmetry by the crystal potential. (This treatment of
the atom’s wavefuction in a crystal is only possible in the tight-binding approximation,
which holds to leading order for the insulating crystals considered in this paper.) The
admixture of opposite-parity states in the atom’s ground state in the crystal allows for a
piezoaxionic effect linear in the Schiff moment, without the need of other parity-breaking
sources such as the application of an external electric field. We expand on this procedure
in App. A.1.

The energy shift of Eq. 3.32 can be reliably calculated in perturbation theory up to
a wavefunction normalization constant, as the Schiff interaction of Eq. 3.1 is a short-
distance effect where screening effects are unimportant. Armed with only a few inputs,
namely Es ≡ α2me/2νs and Epj ≡ α2me/2νpj with effective quantum numbers νs and νj,
the normalization of the radial part of the wavefunctions can be fixed by the matching
procedure of Ref. [98, Ch. 8]. This leads to a matrix element of the form:

Mj,mj ,k = ⟨Ωs|r̂k|Ωp,j,mj
⟩ Z2

a40(νsνpj)
3/2

Rj (3.33)

where a0 ≡ 1/αme is the Bohr radius, Ω are the spinor spherical harmonics as in Ref. [119,
§24], and their angular matrix elements in Eq. 4.11 are O(1) and evaluated in App. A.1.

1Technically, we are referring here to the polarization of an ensemble of nuclear spins, within which we
are studying a single atom.
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Figure 3.1: The relativistic enhancement factor Rj of Eqs. 3.34 and 3.35 as a function of
the proton number Z, assuming an atomic number of A ≈ 2Z, for two values of the total
electron angular momentum j = 1/2, 3/2.

The relativistic enhancement factors Rj are defined as:

R 1
2
=

3γ 1
2
(2γ 1

2
− 1)

2γ 1
2
+ 1

4

Γ2(2γ 1
2
+ 1)

(
a0

2ZR0

)2−2γ 1
2

(3.34)

R 3
2
=

6
[
(γ 1

2
+ 1)(γ 3

2
+ 2) + Z2α2

]
Γ(2γ 1

2
+ 1)Γ(2γ 3

2
+ 1)

, (3.35)

×
(
γ 1

2
+ γ 3

2
− 2
)( a0

2ZR0

)3−γ 1
2
−γ 3

2

,

γj =

√(
j +

1

2

)2

− Z2α2. (3.36)

These enhancement factors are defined such that they go to unity in the limit Zα → 0,
and evaluate to about 3–8 for nuclei of interest, with 60 ≲ Z ≲ 93, see Fig. 3.1.
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A numerical estimate of the energy shift yields:

⟨HS⟩ ≈ 2.0× 10−24 eV (3.37)

×
(
Z

80

)2 R (νs νp)
− 3

2

10

S

θa e fm
3

ϵsϵpÎk ⟨Ωs|r̂k|Ωp⟩
1

,

where we assume θa is given by the rms amplitude of Eq. 2.18, i.e. that the QCD axion
makes up all of the DM.

3.1.3 Crystal

Up to this point, we have reviewed how QCD axion DM gives rise to an oscillatory θa angle,
nuclear Schiff moments (Sec. 3.1.1), and atomic energy shifts (Sec. 3.1.2). In this section,
we will show how the latter translates in effective stresses and electric displacements in
macroscopic crystals.

The internal energy density U of the crystal can be expanded to quadratic order around
its equilibrium as:

U =
S⊺cDS

2
−D⊺hS+

D⊺βSD

2
− S⊺ξÎθa −D⊺ζÎθa. (3.38)

Here the independent variables are the strain 2-tensor S, the electric displacement vector
D, the nuclear spin polarization direction Î (normalized so that saturated spin polariza-
tion corresponds to |Î| = 1), and the axionic theta angle θa. The proportionality constants
of the first three terms are given by the elastic stiffness 4-tensor (at constant electric
displacement) cD, piezoelectric 3-tensor h, and dielectric impermittivity 2-tensor (at con-
stant strain) βS. In the last two terms, we introduce new interactions at linear order in
the nuclear Schiff moment direction, whose proportionality constants we will refer to as
the “piezoaxionic” 3-tensor ξ and “electroaxionic” 2-tensor ζ. In absence of these two
nuclear-spin-induced contributions, the internal energy density above reduces to the usual
expression for a piezoelectric crystal, which can be found e.g. in Ref. [120, Ch. 5]. Su-
perscripts ⊺ denote transposed quantities. We assume all quantities are given at (or near)
zero temperature. We have also integrated out short-wavelength fluctuations, such as in-
dividual atomic displacements, a more detailed treatment of which is given in App. A.2;
all quantities in Eq. 3.38 should be understood to be (nearly) homogeneous.

The constitutive equations for the stress T and electric field E can be written as first
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derivatives of the internal energy density of Eq. 3.38 [120],

T =
∂U

∂S
= +cDS− h⊺D − ξÎθa, (3.39)

E =
∂U

∂D
= −hS + βSD− ζÎθa. (3.40)

Equations 3.39 and 3.40 reveal that an axion DM background in the presence of nuclear
spin polarization manifests itself both as a stress across the crystal due to ξ and an electric
field due to ζ.

For the subsequent discussion of our proposed experimental setup and sensitivity, it is
instructive to introduce Voigt notation. In this notation, the independent components of
3×3 symmetric tensors such as the strain Sαβ and stress Tαβ are reduced to 6 dimensional
“vectors” Si and Ti, and the indices of their proportionality constants are reduced similarly
(see App. A.2 for further details). The above equations can thus be written as:

Tn = +cDnkSk − h⊺nkDk − ξnkÎkθa, (3.41)

En = −hnkSk + βS
nkDk − ζnkÎkθa; (3.42)

with Einstein summation convention on repeated indices.

The piezoaxionic tensor in Eq. 3.38 can be computed from the atomic matrix element
M of Sec. 3.1.2 through

ξnk =
∂

∂θ

NS∑
t=1

4πeS
∂

∂Sn

∑
j,mj

[
ϵsϵ

∗
pj,mj

Mj,mj ,k

Vc
+ c.c.

]
(t)

≡ ξ̃nk
4πeNS

Vc

dS

dθ
Mk, (3.43)

which follows directly from Eq. 3.32, and where the subscript t = 1, . . . , NS runs over the
spin-polarized nuclei (which are all assumed to have the same Schiff moment S) in the unit
cell with volume Vc. The electroaxionic tensor is given by a similar formula:

ζnk =
∂

∂θ

NS∑
t=1

4πeS
∂

∂Dn

∑
j,mj

[
ϵsϵ

∗
pj,mj

Mj,mj ,k

Vc
+ c.c.

]
(t)

≡ ζ̃nk
4πeNS

Vc

ea20
α

dS

dθ
Mk. (3.44)
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In Eqs. 3.43 and 3.44, we have defined the dimensionless quantities ξ̃ and ζ̃, respectively,
and are the only factors through which the electron wavefunction properties of the atoms
in the crystal enter.

A density functional theory (DFT) calculation of ξ̃ and ζ̃ for materials of interest is
left to future work. Here, we will content ourselves with naive dimensional analysis (NDA)
estimates, guided by crystal symmetry principles and augmented with certain measured
crystal tensors. From NDA, we expect the “conventional” crystal tensors to be given by:

cDnk ≡ c̃Dnk
Ncα

a0Vc
, (3.45)

hnk ≡ h̃nk
Ncea0
Vc ε

, (3.46)

βS
nk ≡ β̃S

nk (3.47)

with Nc the number of atoms per unit cell and ε the relevant component of the dielectric
tensor for a given mode. The factor of ε is necessary to convert between the density of
electric dipole moments produced by the piezoaxionic effect and the resultant electric field.
This NDA approach, which we have been unable to find in the literature, typically agrees
with the measured (and/or calculated) values of the corresponding stiffness, piezoelectric-
ity, and dielectric properties within an order of magnitude. The disagreement between the
universal NDA approach and individual material properties is captured by the tensors c̃Dnk,

h̃nk, and β̃
S
nk, which generally have O(1) dimensionless coefficients.

Crystal symmetry dictates that certain components of crystal tensors vanish. For ex-
ample, h̃kn and ξ̃kn are odd under a parity transformation of the crystal lattice, so they
must vanish identically for parity-even crystals. The piezoaxionic effect can therefore only
be present in crystals with piezoelectric point groups, which constitute 20 geometric crystal
classes (out of a total of 32) [121]. The point group of the crystal further constrains re-
lations among the components of the piezoelectric and piezoaxionic tensors. For example,
for the crystal class 32 which includes quartz, the symmetry of the piezoelectric tensor is
given by:

hnk =

h11 −h11 0 h14 0 0
0 0 0 0 −h14 −h11
0 0 0 0 0 0

 , (3.48)

and the ξ tensor has exactly the same symmetry structure. The electroaxionic tensor ζ̃nk is
even under a parity transformation of the crystal structure, and is generally nonvanishing
for any crystal.
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Based on the crystal symmetries and the parity properties of the different coefficients,
we expect that: (

ξ̃nk

)⊺
∼ h̃nk and ζ̃nk ∼ β̃S

nk, (3.49)

allowing a preliminary estimate of the piezoaxionic and electroaxionic tensors from mea-
surements of piezoelectric and dielectric properties. The relations in Eq. 3.49 capture
suppression (enhancement) effects in the crystal, leading to numerically small (large) h̃nk
and ξ̃nk. In the case of quartz, for example, the piezoelectric tensor components are
e11 = 0.17C/m2 and e14 = −0.041C/m2 at room temperature [122], corresponding to

h̃11 = 0.80 and h̃14 = −0.19 (these piezoelectric constants are related as hmi = βS
nmeni [123,

Ch. IIIA]), suggesting that the piezoaxionic and electroaxionic tensors in the quartz crystal
are also O(1). (Quartz is not a good candidate material, primarily due to the smallness
of the 29

14Si Schiff moment.) We have verified this NDA estimate for a number of materials

using measured values also found in reference [122]. For langasite, h̃11 = 0.71, and for PZT

(Lead Zirconate Titanate), h̃33 can vary from ∼ 20− 70.

We do not expect Eq. 3.49 to hold much better than up to an O(1) number. Firstly,
piezoelectricity depends on electron charge redistribution (under strain) in the entire unit
cell, whereas piezoaxionicity only depends on electronic wavefunction changes near spin-
polarized nuclei of interest. Secondly, only electron wavefunction components with minimal
angular momentum (and thus large nuclear overlap) contribute to the piezoaxionic effect,
whereas there is no such restriction for piezoelectricity.

In summary, we have shown that a nuclear Schiff moment can lead to stresses and
electric fields via Eqs. 3.39 and 3.40, respectively. QCD axion dark matter generates
oscillatory Schiff moments, so these stresses and electric fields also oscillate in time, and can
in turn excite acoustic modes and currents, which we aim to detect with setups described
in the next section.

Finally, we provide a numerical estimate of the magnitude of the piezoaxionic effect.
From Eq. 3.39, the stress induced by a Schiff moment is equal to the stress induced by an
equivalent strain of:

Seq ∼
∣∣∣(cD)−1

ξÎθa

∣∣∣ ∼ ξ̃P

c̃D
NS

Nc

Z2R
(νsνp)3/2

4πe

αa30

dS

dθ
θa (3.50)

∼ 3× 10−26 ξ̃P

c̃D
NS

Nc

(
Z

80

)2 R(νsνp)
− 3

2

10

S

θa e fm
3
, (3.51)
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where we have assumed that the amplitude of θa is that of Eq. 2.18 and that S is linear in
θa. The fiducial equivalent strain of Eq. 3.51 is just one order of magnitude smaller than the
constraints achieved by the AURIGA collaboration, which set a limit on strains induced by
scalar dark matter in an aluminum resonant-mass detector at the level of S ∼ few× 10−25,
based on a one-month data set [88].

3.2 Experiment

In Sec. 3.1, we reviewed the mechanisms by which QCD axion DM can mix opposite-parity
electronic states through short-range interactions with the nucleus, most notably via the
nuclear Schiff moment induced by the irreducible QCD axion coupling. It is well known
that the resulting effective Hamiltonian induces nuclear spin precession in parity-violating
systems. This effect has been exploited in isolated atoms or molecules, where parity is
broken by a background electric field, to perform static measurements of the strong CP
angle θ [124]. Refs. [89, 95] proposed using this nuclear precession effect combined with
nuclear magnetic resonance techniques in solid-state systems, to look for an oscillatory θa
angle from QCD axion DM. Both of these aforementioned schemes rely on changes in the
spin state, specifically transverse polarization, as their primary signature.

The experimental setup we describe in this section utilizes the piezoaxionic effect of
Eq. 3.43 in piezoelectric crystals with spin-polarized nuclei. This setup does not rely on
changes of the magnetization of the crystal. Instead, with the nuclear spin polarization
fixed both in magnitude and direction, the oscillatory Schiff moment changes the electronic
wavefuction so that the crystal lattice structure is no longer in equilibrium, resulting in
a stress given by Eq. 3.39. This axion-induced stress excites bulk acoustic modes in the
piezoelectric crystal, whose electromechanical coupling admits an electric readout of this
strain. Concurrently, the secondary electroaxionic effect parametrized by the ζ tensor of
Eq. 3.44 is also generally present in any crystal, and produces an additional electric field
contribution via Eq. 3.40.

Our proposed setup detects axion DM through the measurement of these bulk acoustic
mode excitations. The acoustic modes are read out electrically (capacitively), and the
resulting current is fed to a superconducting quantum interference device (SQUID). The
main advantage of our proposal is the extraordinarily low mechanical losses of certain
piezoelectric crystals. This fact implies very high quality factors (Q-factors) of bulk acoustic
modes, and low thermal noise. The associated mechanical Q-factors can be much larger
than those of solid-state nuclear spin precession systems or those of purely electric modes.
Furthermore, centimeter-scale crystals have natural mechanical resonance frequencies in
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the MHz range, providing natural amplification around all of the harmonics, with further
scanning possible through electrical loading by an external circuit, as explained below.

We sketch a simplified experimental setup in Sec. 3.2.1, where we also discuss possi-
ble candidate materials. For concreteness, we quantitatively describe the signal for one
particular geometry in Sec. 3.2.2. We discuss different backgrounds and how they can be
mitigated in Sec. 3.2.3. We finally present our sensitivity forecasts for our simplified setup
with an idealized material in Sec. 3.2.4.

variable 

elements


+

transformer

SQUID
piezoelectric 


crystal

Figure 3.2: A simplified illustration of the proposed experimental setup. The axion-induced
stress and resulting strain signal in a piezoelectric crystal with polarized nuclear spins is
read out capacitively and ultimately measured through a SQUID. The circuit includes vari-
able inductive and capacitive elements to scan around the mechanical resonance frequency,
as well as a transformer circuit for impedance matching with the SQUID.

3.2.1 Setup

Our proposed setup consists of a piezoelectric crystal with electrodes placed on two of its
faces, connected to a SQUID via a transformer circuit and variable input inductor and
capacitor, as shown schematically in Fig. 4.1. For simplicity of description, we will take
the crystal to be a rectangular prism in the form of a thin plate, with electrodes on the two
opposing major faces. The nuclear spins are aligned along an appropriately chosen crystal
axis in order to maximize sensitivity. For nuclear spins, O(1) polarization can be achieved
through the application of a large magnetic field at the cryogenic temperatures relevant
for this experiment, since the Zeeman energy is of order the temperature µNB ≈ 3.7mK
at B = 10T. Due to the long relaxation times in solids, this polarization can be preserved
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for extended periods of time under application of a moderate magnetic field on the order
of 10−4–10−3T [125].

We focus our treatment of the signal in Sec. 3.2.2 on the thickness expander mode,
which has an acoustic wave vector and electric field perpendicular to the major faces;
other geometries and modes are also possible and are discussed in App. A.4. Bulk acoustic
modes in thin piezoelectric plates have been widely studied (see for example [126–128])
and utilized in industrial, sensing, and fundamental physics applications [129, 130]. We
note that curvature of some of the crystal surfaces may help localize acoustic modes in the
transverse direction and help minimize clamping losses [131], but for illustrative purposes
we ignore this complication.

Vm

Rm

Lm

Cm

Cc

ZBI

VBI

L1

C1

Va

LiL2 LSQ

M12 Mi

Zcrys

Figure 3.3: Equivalent electric circuit of the experimental set-up described in Sec. 3.2.1
and shown in Fig. 4.1. The axion signal appears as an in-series voltage, Va, to the piezo-
electric crystal with capacitance Cm, inductance Lm, and resistance Rm around mechanical
resonance. Two of the crystal’s faces are connected to electrodes, resulting in a clamped
capacitance Cc. The electrodes are connected to variable electrical components L1 and C1.
The current inside the circuit is read out inductively by a SQUID through a transformer.
The SQUID and transformer contribute also a back-impedance ZBI to the circuit (see text
for more details).

The axion signal and the electromechanical dynamics of the crystal will be further
expounded in the next section, where we show that they can be modeled by an effective
axion voltage Va in series with an effective “primary” impedance Zcrys, respectively, as
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shown in the equivalent circuit of Fig. 3.3. Near one of the acoustic resonances, the primary
impedance can then further be approximated with an effective mechanical capacitance
Cm, inductance Lm, and resistance Rm (see App. A.3), all in parallel with the “clamped
capacitance” Cc. The electrodes are connected to a variable capacitor C1 and a variable
inductor with self-inductance L1. The latter has a mutual inductance M12 to an inductor
with self-inductance L2, as part of a transformer circuit. The current inside the transformer
circuit is sent to a SQUID with input inductance Li, mutual inductance Mi, and SQUID
self-inductance LSQ, as depicted in Fig. 3.3.

Class Candidates

32
NaDyH2S2O9

BiPO4

3m
UOF4

UCd

4mm
DySi3Ir
PbZrxTi1−xO3 (PZT)
DyAgSe2

4̄2m
DyAgTe2
Dy2Be2GeO7

mm2 UCO5

Table 3.2: Candidate crystals for our setup, categorized by their crystal structure, as found
in Ref. [132]. The nucleus with the largest Schiff moment in each compound is printed in
bold.

Materials

The sensitivity of our setup relies crucially on a number of material properties, most impor-
tantly piezoelectric and dielectric properties, low mechanical losses, and a high concentra-
tion of nuclei with large Schiff moments. In this section, we identify a number of suitable
crystals with these properties, and discuss possible measures to improve the sensitivity of
a given crystal.

Before discussing candidate materials, we point out that since piezoelectric crystals are
anisotropic, the orientation of different crystal cuts can result in significantly different ma-
terial properties. These include variations in temperature coefficients, frequency stability,
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resonator quality factors, and spurious modes. For the example of quartz-type resonators,
a comparison of state-of-the-art cuts and their properties can be found in Refs. [133, 134],
while Ref. [134] also presents a comparison of the properties of SC- and LD- cut resonators
at cryogenic temperatures. Non-contacting electrode designs where the electrodes are not
deposited on the resonator itself can further reduce acoustic losses [126, 129, 134].

Piezoelectrics make up a large class of materials; of the 32 possible crystal symmetry
classes, 20 exhibit piezoelectricity [135]. Nevertheless, the success of just a handful of
piezoelectric crystals, for example quartz and langasite, has meant little previous need
to explore the wide arena of potential materials. We provide in Tab. 4.1 an indicative
(but not exhaustive) list of promising candidate materials collected from the database of
The Materials Project [132]. The properties of these materials are predicted using density
functional theory (DFT) and matched to an experimentally determined crystal structure.
We searched for crystals with a high concentration of nuclei with large Schiff moments.
We have also listed the crystal symmetry group as this can give an indication of whether
crystals in that group have been grown for the purposed of resonators in the past, or
whether the crystal could be ferroic. For examples of piezoelectric crystal classes and their
properties, see Ref. [127].

We expect that the ideal material will be comprised of a single crystal and not be
ferromagnetic or ferroelectric, so as to reduce losses associated with movement of domain
walls. This is not a requirement however – for instance we consider the reach of PZT in
figure 3.8, which is ferroelectric and has a poor quality factor but compensates due to its
strong piezoelectric effects, and therefore a large piezoaxionic tensor. A number of optimal,
octupole-deformed nuclei are listed at the end of Sec. 3.1.1. In practice, the electronic
properties of Eu (europium) and Gd (gadolinium) mean that their compounds are usually
ferromagnetic. As a result, Tab. 4.1 mainly contains compounds of U (uranium) and Dy
(dysprosium). We have also included crystals containing 209

83Bi and
207
82Pb as examples of

high-Z nondeformed nuclei (Sec. 3.1.1).

While DFT can be used to predict the unit cell volume, stiffness, dielectric, and piezo-
electric properties of a candidate crystal with good accuracy, the loss angles of the material
(the imaginary parts of the crystal tensors) remain critical unknowns that must be deter-
mined experimentally. Any resonator’s quality factor can nevertheless be further improved
by increased purity, choice of cut, surface polishing, use of energy-trapping geometries, and
lower temperature. It has been suggested that these measures can reliably improve the
quality factor of many crystals by 3–4 orders of magnitude, with Q factors approaching
1010 for quartz [126, 129]. While the exact choice of material for our setup is still to be
determined, we think the requirements are not overly restrictive, and can hopefully be
satisfied by existing crystals. This will require future experimental investigation.
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Parameter Value/Formula Parameter Value/Formula
ρ 12 g cm−3 Vc amuA/ρ

NS 5 [SSQ
Φ ]1/2 2.5× 10−7Φ0Hz

−1/2

Nc 10 LSQ 0.1 nH
Z 92 RSQ 10Ω
A 200 ηSQ 20

S 5 θa e fm
3 ki, k12 0.75

nN NS/Vc Li 1µH

R(νsνp)
− 3

2 10 C1, L1, L2 variable

M1 Z2R(νsνp)
− 3

2a−4
0 δL1 10−6

vD
√
ρ/cD11 δC1 0

cD11 Ncα/a0Vc δc 10−9

βS
11 1/3 δβ 10−6

h11 Ncea0/Vc δh 0

ζ11 (4π)2NSa
2
0MS/Vc ⟨Î1⟩ 1

ξ11 4πeNSMS/Vc T 1mK

Table 3.3: Fiducial parameters for an idealized setup assumed throughout this work. The
definitions of each symbol can be found in the main text, primarily Sec. 3.1.3 and Sec. 3.2.2.

3.2.2 Signal

In this section, we describe the axion DM signal and how it excites the crystal’s electrome-
chanical modes, as well as the entire circuit. We focus on the thickness expander mode,
with electric field parallel to the thickness direction (normal to the electrodes). It should
be noted that the relevant indices for these modes will change depending on the crystal
class; for concreteness, they have been chosen with quartz-type symmetry class 32 in mind.
Other possible modes and geometries are discussed in App. A.4, and could be useful for
searching for axion signals at lower frequencies and with other crystal classes.

Thickness expander mode of a thin plate

Other than the excitation due to the piezoaxionic effect, the setup and treatment below
are analogous to that of Ref. [123, Sec. 3.V.D]. We will take the piezoelectric crystal to
be a rectangular prism with side lengths ℓi of high aspect ratio (thin plate): ℓ1 ≪ ℓ2, ℓ3.
We are interested in the “fast thickness expander mode”: an electro-acoustic wave with
both the propagation and displacement in the thickness direction, i.e. wavenumber k ∝ x̂1
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and displacement u ∝ x̂1. Such a mode only has a normal strain S1 ̸= 0, while the other
5 strain components vanish identically. For a high-permittivity dielectric medium with
negligible flux leakage, we have that the electric displacements D2 and D3 vanish on the
minor faces, and because all gradients are in the x1 direction, they also vanish in the bulk.
Furthermore, inside the insulating crystal, we have ∇ ·D = 0, so D1 is spatially uniform.
Since the major faces are connected to electrodes in our fiducial setup, we are interested
only in the electric field in the thickness direction. The constitutive Eqs. 3.41 and 3.42
therefore reduce to:

T1 = +cD11 S1 − h11D1 − ξ11Î1θa; (3.52)

E1 = −h11S1 + βS
11D1 − ζ11Î1θa. (3.53)

The equation of motion for this effectively one-dimensional acoustic mode is ρü1 =
∂1T1 = cD11∂

2
1u1, the latter equality following from uniformity of D1, Î1, and θa. The

solution to this equation that also satisfies the boundary conditions T1 = 0 at x1 = 0, ℓ1 is:

u1 =
h11D1 + ξ11Î1θa

ω
vD
cD11

[
sin

ωx1
vD

− tan
ωℓ1
2vD

cos
ωx1
vD

]
, (3.54)

with vD =
√
cD11/ρ the crystal sound speed. Above, the quantities u1, D1, and θa are

assumed to be oscillatory with angular frequency ω; the factors of eiωt are not shown.

The voltage difference

V =

∫ ℓ1

0

dx1E1 = ZcrysI + Va (3.55)

measured across the electrodes attached to the crystal can be separated in a term equal to
the current I = iωℓ2ℓ3D1 times the impedance

Zcrys =
1

iωCc

[
1− k2

2vD

ωℓ1
tan

ωℓ1
2vD

]
(3.56)

and the axion-induced voltage

Va = −
{
h11ξ11
cD11

2vD

ω
tan

ωℓ1
2vD

+ ζ11ℓ1

}
Î1θa (3.57)

proportional to the nuclear spin polarization fraction Î1 and axion-induced, oscillatory
theta angle θa. In Eq. 3.56, we have defined the clamped capacitance Cc ≡ ℓ2ℓ3/(ℓ1β

S
11)
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and the electromechanical coupling factor:

k2 ≡ h211
cD11β

S
11

. (3.58)

The axion-induced voltage Va thus appears in series with that of the entire equivalent cir-
cuit of the crystal resonator. In the top panel of Fig. 3.4, we plot in black the axion voltage
amplitude, Va, near the crystal’s fundamental mechanical frequency f ≃ f0 ≡ vD/2ℓ1 (ver-
tical black dashed line). (The fundamental resonance frequency is sometimes also referred
to as the “anti-resonance frequency”, because it maximizes the effective impedance of the
unloaded crystal.) We also define the natural resonance frequency fnat = ωnat/2π as the fre-
quency at which the imaginary part of the crystal impedance Zcrys vanishes, and is depicted
as the vertical gray dashed line in Fig. 3.4. Below the fundamental frequency f < f0, the
ξ and ζ contributions (plotted separately in red and blue, respectively) add constructively,
while they add destructively above the mechanical resonant frequency. (This cancellation
depends on the relative sign between ξ and ζ, which we have taken to be the same here;
an opposite relative sign causes a cancellation below the fundamental resonance.) Near
the fundamental resonance frequency, the voltage from the piezoaxionic effect dominates,
due to the enhancement of the bulk acoustic mode displacement amplitude (Eq. 3.54).
This resonant enhancement turns out to be crucial to reach sensitivity to QCD axion DM
parameter space.

Losses in the system are introduced through the complex stiffness and impermittivity
tensors:

cD11 = Re
{
cD11
}
(1 + iδc), (3.59)

βS
11 = Re

{
βS
11

}
(1− iδβ); (3.60)

where the loss angles δc and δβ parametrize the mechanical and dielectric losses in the
piezoelectric crystal. (For all quantitative results in this work, the signal response and
noise treatment utilizes the above loss angles, not resistive elements such as Rm from
Sec. A.3 and shown in Fig. 3.3.) The effective quality factor Q of the piezoelectric
plate, as a circuit element referred to the primary circuit, can be calculated as Q(ω) =
(stored energy)/(energy dissipated per cycle). One then finds a frequency-dependent qual-
ity factor:

Q(ω) =
1

ωCcRe {Zcrys}

[
1 + k2

1− 3vD

ωℓ1
sin ωℓ1

vD

1 + cos ωℓ1
vD

]
. (3.61)
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Figure 3.4: Left: Axion induced voltage Va from Eq. 3.57 as function of frequency f for the
idealized crystal with parameters shown in Table 3.3. The piezoaxionic (red dashed) and
electroaxionic (blue dashed) contributions are plotted separately, giving the total voltage
in black. The piezoaxionic effect changes sign, and adds constructively (destructively)
to the axioelectric polarizability effect just above (below) the fundamental mechanical
resonance frequency (dashed black vertical line), for our choice of relative sign between the
piezoaxionic and electroaxionic coefficients ξ and ζ. Right: Crystal quality factor Q from
Eq. 3.61 as a function of frequency f for the same idealized crystal. The fundamental and
the natural resonance frequencies f0 and fnat are depicted by the black and dashed gray
vertical lines, respectively.
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The quality factor is plotted in the bottom panel of Fig. 3.4. We observe that, near the
fundamental mechanical resonance frequency, the quality factor approaches the inverse of
the mechanical loss angle δc. Far away from this resonance, the quality factor asymptotes
to the inverse dielectric loss angle δ−1

β , which is empirically much worse than the mechan-
ical one for most materials. Thermal noise is therefore substantially reduced near the
fundamental mechanical frequency of the system compared to that of a purely electrical
resonator (Sec. 3.2.3).

Readout circuit components

Having described the signal and response of the piezoelectric crystal, we now turn to the
other circuit components used for the readout of the signal due to the axion voltage of
Eq. 3.57, which are qualitatively similar to that of other experimental setups [130, 136–
139]. The total impedance Ztot of the circuit loop containing the piezoelectric crystal,
which we shall refer to as the input circuit, is:

Ztot = Zcrys +
1

iωC1

+ iωL1 +∆ZBI (3.62)

The second and third terms in Ztot are the impedances of the capacitor with capacitance
C1, and inductor with self-inductance L1, respectively. These two impedances serves as
the main loads of the resonator, and can be used to control the setup’s resonant frequency
fres = ωres/2π, i.e. the frequency at which Im{Ztot} vanishes, as shown in Fig. 3.5. As
discussed in Sec. 3.2.4, changing L1 or C1 is one of the methods that can be used to shift
the resonance frequency of the circuit and scan (continuously) over possible axion masses.
The transformer circuit and the SQUID contribute a fourth term to Ztot in Eq. 3.62, the
back impedance [69]:

∆ZBI =
ω2M2

12

iωL2 + iωLi + ω2M2
i

(
1

iωLr +
1
Rr

) , (3.63)

where Lr and Rr are the reduced dynamical inductance and resistance of the SQUID,
respectively [140]. This back impedance is typically negligible under optimal operating
conditions.

The ultimate readout observable is the flux ΦSQ through the SQUID:

ΦSQ =
I M12Mi

Li + L2

, (3.64)
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Figure 3.5: Left: Total impedance as referred to the input circuit of Fig. 3.3, for fixed
C1 = Cc/3 and different values of the transformer inductance L1. For small L1 = 0.01mH
(black), the resonance frequency fres below the fundamental mechanical resonance angular
frequency f0 (black dashed line) is shifted up above the natural resonance frequency fnat
(gray dashed line) due to the finite value of C1. For increasing L1, the resonance frequency
is tuned downwards, as indicated by the blue lines for L1 = 12.0, 12.5mH. For yet larger
inductances L1 = 16.0, 16.5mH, the resonance frequency associated with the mode above
the fundamental mechanical resonance approaches f0 (red lines). Right: Resonance angular
frequency ωres (in units of ω0) as a function of L1 and C1. Blue (red) colors indicate the
resonant branch below (above) ω0, like in the top panel. For both panels, the parameters
of the idealized crystal used are given in Tab. 3.3.

52



where I is the input circuit current, which receives an additive contribution Ia due to the
axion voltage Va from Eq. 3.57:

Ia =
Va
Ztot

. (3.65)

We take the mutual inductances to have fixed coupling coefficients k12 ≡ M12/
√
L1L2

and ki = Mi/
√
LiLSQ, respectively. While the flux through the SQUID (from the axion

voltage) is maximized when L2 = Li, it is not generally optimal in view of back action noise
(see Sec. 3.2.3). We note that the readout signal, for fixed axion voltage, is enhanced for
two reasons in the above setup. Firstly, the axion signal current from Eq. 3.65 is enhanced
on resonance (when |Im{Ztot}| is small). Secondly, the transformer current steps up the
current in the transformer circuit by a factor of O(

√
L1/L2), resulting in a corresponding

enhancement of the flux through the SQUID.

3.2.3 Backgrounds

In Sec. 3.2.2, we computed how the axion DM background sourced the signal voltage Va in
the input circuit, and how this propagated to a flux ΦSQ through the SQUID. In this section,
we will outline the main backgrounds that compete with this signal. These noise sources
can be divided into three categories: thermal noise due to dissipative circuit elements
(Sec. 3.2.3), SQUID flux noise (Sec. 3.2.3), and spin projection noise, i.e. magnetization
noise (Sec. 3.2.3). For direct comparison to the axion voltage Va, we quantify all noise
sources in terms of their equivalent voltage noise spectral densities:

Stot
V = Sth

V + SSQ
V + Sspin

V (3.66)

as referred to the input circuit, and assume a noise model with vanishing cross-correlations
between voltage and current (see Ref. [141] for more discussion). We also comment on non-
thermal vibration or seismic noise (Sec. 3.2.3), as well the limitations in cryogenic cooling
arising from the possible use of metastable nuclei such as 235

92U and 237
93Np (Sec. 3.2.3).

Thermal Noise

Thermal noise due to the lossy circuit elements is the primary source of noise on and near
resonance. Its equivalent voltage noise spectral density Sth

V can be written as:

Sth
V = 4T Re {Ztot} = Scrys

V + SC1
V + SL1

V + SBI
V , (3.67)
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where T is the thermodynamic temperature, and the breakdown in terms of different ther-
mal noise sources is the same as in the sum of Eq. 3.62. The thermal noise is proportional
to the real part of the impedance, and thus to the loss angles δc and δβ for the crystal
circuit element, δC1 for the capacitor with complex capacitance C1 = |C1|(1 + iδC1), and
δL1 for the inductor with complex inductance L1 = |L1|(1 − iδL1). The thermal voltage
noise from the SQUID back impedance is linearly proportional to Rr. In the top panel
of Fig. 3.6, we plot representative values for the thermal voltage noise Scrys

V of the crystal
(blue), as well as SL1

V of the inductor (green). The contribution SBI
V of the back-action

impedance of the SQUID readout system is negligible, and we assume the capacitance has
a negligible loss angle (compared to that of Cc). Fiducial parameters for the setup are
given in Tab. 3.3. The combined thermal noise is seen to dominate the total noise (black)
on resonance. The total noise off-resonance is dominated by the SQUID noise to which we
turn next.

SQUID Noise

The voltage noise spectral density for the SQUID amplifier consists of current imprecision
noise Sflux

I (due to the finite precision with which the flux can be read out) and back action
noise Sback

V :
SSQ
V,tot = |Ztot|2Sflux

I + Sback
V . (3.68)

As demonstrated in Ref. [141, Apps. E, F], under operating conditions with vanishing
cross-correlated noise, these two noise sources are related by:

Sback
V =

η2SQω
2

Sflux
I

, (3.69)

where ηSQ ≥ 1 determines the noise temperature T SQ
N = ηSQω/π at each angular frequency

ω, and saturation of the inequality is achieved at the standard quantum limit (SQL). We
take ηSQ = 20 as a fiducial SQUID sensitivity, a value that has already been reached in a
read-out circuit of a kHz-frequency mechanical resonator [142].

The imprecision noise of the SQUID is related to the finite flux noise spectral density
SSQ
Φ , and quantifies how small a flux ΦSQ can be read out by the device. Translating this

flux noise to an equivalent current noise in the input circuit gives:

Sflux
I =

(Li + L2)
2

k212k
2
i L1L2LiLSQ

SSQ
Φ . (3.70)

54



10 15

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

S1/
2

V
[V

Hz
1/

2 ]

10 15

10 13

10 11

10 9

10 7

S1/
2

[P
aH

z
1/

2 ]

total
crystal
L1 inductor
SQUID flux
SQUID back-action
SQUID back-impedance

0.0634 0.0636 0.0638 0.0640 0.0642
axion frequency f [MHz]

10 19

10 18

10 17

10 16

10 15

10 14

10 13

10 12

S1/
2

[e
fm

3
Hz

1/
2 ]

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

S1/
2

[V
m

1
Hz

1/
2 ]

10 19

10 18

10 17

10 16

10 15

10 14

10 13

S1/
2 a

[H
z

1/
2 ]

Figure 3.6: Amplitude spectral densities of all noise sources considered in the experimental
setup with a crystal of dimensions ℓ1 = 4 cm and ℓ2,3 = 40 cm, variable capacitance C1 =
Cc/10, and variable inductance L1 = 0.06H. All other parameters are the fiducial ones
from Tab. 3.3. The top panel depicts noise sources expressed as equivalent voltage noise
amplitudes S

1/2
V of Eqs. 3.66, 3.67, and 3.70, as referred to in the input circuit of Fig. 3.3.

Via Eq. 3.57, they can be expressed as effective noise amplitudes for ζ11θa (right axis of
top panel) and ξ11θa (middle panel). In the bottom panel, they are shown as effective
noise amplitudes for the Schiff moment S (left axis) and the QCD θa angle (right axis), via
Eqs. 3.43 and 3.44.
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As mentioned in Sec. 3.2.2, the value of L2 that maximizes the flux through the SQUID
at fixed coupling coefficients k12 and ki (and thus minimizes Sflux

I ) is L2 = Li. However,
this flux maximization also maximizes the back action noise, cfr. Eq. 3.69, and is typically
suboptimal. Ref. [141][App. F] found the best operating point for any search for a near-
monochromatic signal with log-uniform priors on its frequency; in the limit of T ≫ ω,
which applies to our low-frequency setup, this corresponds to:

Sback
V = 2T Re{Ztot}, (3.71)

which we take to hold on resonance. For any resonance frequency of our system, we try to
satisfy Eq. 3.71 by tuning the value of L2. This could also be improved in future by using
a readout that can perform back-action evading measurements, for example [143].

The energy resolution of an optimized SQUID is limited by the uncertainty principle
to satisfy the inequality [144]:

SSQ
Φ

2LSQ

≳ π, (3.72)

a limit that has been nearly saturated within a factor of O(1) by many groups [145]. For
the purposes of our projections, we assume fiducial SQUID parameters from reference [142]
of [SSQ

Φ ]1/2 = 2.5 × 10−7Φ0Hz
−1/2, LSQ = 0.1 nH and Li = 1µH, where Φ0 = π/e is the

magnetic flux quantum. The SQUID’s energy resolution is however not the sensitivity-
limiting factor, which is instead the balancing of back impedance and back action and
imprecision noise of Eqs. 3.63, 3.69 and 3.70.

In the top panel of Fig. 3.6, we plot the equivalent imprecision voltage noise of the
SQUID flux noise in red (the first term in Eq. 3.70); off-resonance, imprecision noise is the
sensitivity-limiting factor. In gold, we plot the corresponding back action voltage noise at
the optimal operating point of Eq. 3.71, which is always of order the thermal noise from
the other circuit components.

Spin Noise

For a crystal to exhibit the piezoaxionic effect due to the irreducible coupling of QCD axion
DM, it needs to be populated by a high density of nuclear spins, whose fluctuations—spin
projection noise or magnetization noise—can source an effective noise voltage in the circuit.
The effective magnetic field noise spectral density of these spin fluctuations is [95]:

Sspin
B =

µ2
NnN

8ℓ1ℓ2ℓ3

T2
1 + T 2

2 (ω − µNB0)2
, (3.73)
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where µN , nN , and T2 are the nuclear magnetic moment, the nuclear spin density, and the
transverse spin relaxation time, respectively. There is generically a static magnetic field B0

present in the material, from an externally applied field and/or from the aligned nuclear
spins (unless they cancel each other). The resulting voltage noise spectral density into the
input circuit can then be estimated as:

Sspin
V = ω2ℓ21C

2
cS

spin
B ≃ ℓ2ℓ3

8ℓ1 (βS
11)

2

µ2
NnN

T2
, (3.74)

where we have assumed ω ≫ µNB0. The voltage amplitude spectral density of these spin
fluctuations evaluates to [Sspin

V ]1/2 ≈ 1.0 × 10−16VHz−1/2 for a magnetic moment equal
to a nuclear magneton µN ≡ e/2mp, a typical solid-state transverse spin relaxation time
T2 = 10−3 s, and otherwise the same parameters as used in Fig. 3.6; this value is far below
the other noise sources depicted in the top panel.

Magnetization noise can also arise from fluctuating magnetic impurities in the crystal.
The electron impurity spin noise is similar to the one shown above, with µN substituted
by the effective electron magnetic moment µe ∼ µB ≡ e/2me and correspondingly shorter
transverse relaxation times T ′

2 ∼ 10−3 T2, since the electrons interact µe/µN ∼ 103 times
more strongly with their environment. Magnetic impurity concentrations as low as 1 part
per billion have previously been reported [146]. We find this source of noise to be sub-
dominant to nuclear magnetization noise as long as magnetic impurities are kept to below
1 part per million, and certainly below the other noise sources plotted in Fig. 3.6, even
for much higher concentrations. Magnetization noise would however become the dominant
source of broadband noise for any version of our proposed experiment with order-unity
polarization fraction of electron spins. For such magnetically ordered materials, magne-
tomechanical effects such as magnetostriction [147] and piezomagnetism [123, Ch. VII]—
lattice strain/stress proportional to magnetic fields—must also be considered in the noise
budget, but are highly suppressed for the nonmagnetic crystals (with only nuclear spin
polarization) considered in this work.

Vibration Noise

Non-thermal, external sources of vibration, such as those from seismic noise or human
activity must be isolated from the crystal’s acoustic modes. Around f ∼ kHz frequencies,
the displacement noise amplitude spectral density S

1/2
disp is empirically found to scale as [148]:

S
1/2
disp ∼ β 10−13mHz−1/2

(
kHz

f

)2

(3.75)
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with β a parameter ranging from 1 to 10 depending on the amount of surrounding human
activity. In order to keep this vibration noise down to an equivalent strain noise amplitude
of S

1/2
strain ∼ 10−25Hz−1/2—as needed to detect the piezoaxionic effect from QCD axion DM

(see Eq. 3.51)—in a crystal of thickness ℓ ∼ cm at f ∼ MHz, one requires a vibration
attenuation of at least −160 dB. In other words, the rms displacement of the crystal’s
major surfaces (off-resonance) needs to be suppressed by at least 8 orders of magnitude
compared to the rms absolute displacement of the environment in the same frequency band.
Such levels of vibration mitigation are well within the −240 dB attenuation levels achieved
by the AURIGA collaboration at f ∼ 900Hz [149].

Cooling Limitations

In order to achieve our target sensitivity, a crystal containing a high concentration of nuclei
with octupole-enhanced Schiff moments needs to be cooled to cryogenic temperatures.
Some candidate nuclear isotopes, such as 235

92U and 237
93Np, are radioactive. The decay heat

[150] from these metastable nuclei presents a challenge, as the cooling power of dilution
refrigerators is limited.

A dilution refrigerator’s cooling power Q̇ depends chiefly on the target temperature T
and the 3He flow rate ṅ [151]:

Q̇ ≈ 8.4µW

(
ṅ

10−3mol/s

)(
T

10mK

)2

, (3.76)

with a (high) fiducial flow rate indicated in brackets.

The largest crystal size 4×40×40 cm3 under consideration, with a density of 12 g/cm3,
contains 64 kg of heavy (and potentially radioactive) nuclei, if they make up 10 g/cm3 in
terms of mass density. The decay heating power of e.g. 235

92U is approximately 60µW/kg
[150], which would preclude reaching temperatures below 200mK. This problem is even
more severe for 237

93Np, which has a decay heating power of 0.02W/kg.

This decay heat makes the presence of metastable nuclei in a cryogenic environment
challenging, if not prohibitive. As noted in Sec. 3.1.1, there are several stable nuclear
isotopes with octupole-enhanced Schiff moments which do not suffer from this problem.
Finally, it may also be possible to cool a single acoustic mode below the thermodynamic
temperature of the crystal via optomechanical methods [152]. Such futuristic experimental
directions are outside the scope of this work.
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3.2.4 Sensitivity

In Secs. 3.2.2 and 3.2.3, we calculated the axion signal voltage Va (Eq. 3.57 and Fig. 3.4)
and the voltage noise spectral density Stot

V (Eq. 3.66 and Fig. 3.6), respectively, as referred
to the input circuit. We will now synthesize these results to compute the sensitivity of our
proposed experiment.

After one “shot” of time tshot, which we assume to be larger than the coherence time
τcoh of the axion DM signal in Eq. 2.19, the signal-to-noise ratio (SNR) is:

SNRshot =

√
|Va|2

√
tshotτcoh
Stot
V

, (3.77)

where Stot
V is to be evaluated at an angular frequency of ω = ma. The SNR of a single shot

is largest whenever |Va|2/Stot
V is largest, which typically only occurs for axion frequencies

f = ma/2π in a small bandwidth around the resonance frequencies fres = ωres/2π of the
complete circuit. This is shown in Fig. 3.7, which assumes a crystal of size 4× 40× 40 cm3

with parameters given in Table 3.3. The red curve is a SNRshot = 1 contour expressed in
terms of θa sensitivity as a function of axion frequency. In addition to noise suppression,
whenever a resonance is close to a fundamental resonance frequency of the crystal (the
vertical black dashed line in Fig. 3.7), the sensitivity is enhanced further due to the increase
of the axion voltage signal (see Fig. 3.4 and also the bottom panel of Fig. 3.6).

The narrow instantaneous bandwidth of the setup necessitates a scanning strategy to
achieve sensitivity to a broad range of axion masses. Our suggested strategy in this paper is
to dial the resonance frequencies by changing the electric loads, namely the readout circuit’s
capacitance C1 and inductance L1 between each shot. For the resonance peak below the
mechanical resonance, we take C1 = 10 |Cc|, and C1 = 0.1 |Cc| for the resonance peak above
the mechanical resonance frequency. We suggest scanning the resonance frequency with a
large number N = 104 shots over regularly spaced steps in the range of [2ωnat − ω0, 3ω0 −
2ωnat] by changing the inductance L1 in incremental steps. The value of the inductance
needed lies in a range of a few orders of magnitude around the typical impedance-matched
value of |L1| ∼ 1/(ω2

0|Cc|). The total SNR of all shots is computed as:

SNRtot =
∑
shots

(
SNR−4

shot

)−1/4
. (3.78)

The isocontour SNRtot = 1 as a result of this procedure is plotted as the red line of Fig. 3.7.

Figure 3.8 shows in blue the forecasted sensitivity for 13 crystals with thicknesses ℓ1
logarithmically spaced between 4 cm and 2 cm and an aspect ratio of 10 (i.e. transverse sizes
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Figure 3.7: Sensitivity to an oscillatory theta angle θ̄a as a function of frequency for a
single shot (red line) and for a scan around the mechanical resonance frequency of the first
acoustic thickness expander mode of an idealized crystal with fiducial parameters given by
Tab. 3.3. The green line shows the prediction for QCD axion DM.
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Figure 3.8: Axion parameter space probed by the setup described in Sec. 3.2 and parame-
ters given in Tab. 3.3 as a function of the axion decay constant fa (inverse, vertical axis) and
the axion mass ma (the top axis also indicates the corresponding frequency f). The blue
and red shaded regions show the reach (SNRtot = 1 with Eq. 3.78) by scanning electrically
around the first acoustic modes of a series of crystals with 13 different thicknesses. The
gold region outlines the ultimate reach assuming mechanical scanning of the frequency for
the parameters indicated. The ultimate reach, limited by a combination of SQUID noise
and the crystal thermal noise, is shown for different values of ηSQ, the parameter indicating
how close the SQUID operates to the quantum limit (see Sec. 3.2.3 and Sec. 3.2.4 for more
details).Similarly, the sensitivity achieved by the electroaxionic effect alone is outlined by
the brown dashed line. The QCD axion relation between the mass and the decay constant
(Eq. 1.2) is shown in green. The gray shaded regions are disfavored from BH superradi-
ance [41], BBN [153], the structure of the Sun [70], white dwarfs [154], and neutron star
binary mergers [155]. The brown dotted line is the projected sensitivity for commercially
available PZT crystals with ηSQ = 1, assuming an O(1) concentration of 207

82 Pb
.
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ℓ2 = ℓ3 = 40 → 20 cm), for a total integration time of tint = 10 yr, and other parameters
matching those of Fig. 3.7 and Tab. 3.3. Sensitivity to the QCD axion can be reached for
such a setup over an octave in axion masses. The red region is a scaled-down version of
the setup with 13 different values of ℓ1 = 4 → 2mm, 64 identical crystals hooked up in
series, and an aspect ratio of ℓ2,3/ℓ1 = 20.

The gold region in Fig. 3.8 is the parameter space that can plausibly be covered by
setups similar to those previously described, assuming mechanical scanning of frequency,
which is not discussed in detail in this work. Mechanical scanning would allow taking full
advantage of the high Q factor around the resonance frequency. This plotted region is
constructed by interpolating between the on-resonance sensitivity for 4 setups (indicated
by gold circles) with dimensions ℓ1 × ℓ2 × ℓ3 equal to 40 × 40 × 4 cm3, 4 × 40 × 40 cm3,
4× 40× 40mm3, and 0.01× 1× 1mm3, respectively. The third and fourth fiducial setups
assume a large number of crystals in series and parallel at any one time, namely 64 × 1
and 512 × 32 = 8192. For each setup, we take C1 = 0.1 |Cc| and L1 = (ω2

0|Cc|)−1. To
cover an octave within a 10-year integration time, the shot time is assumed to be tshot =
tint/(Qres ln 2) where Qres ≡ ωres/∆ω is the inverse fractional bandwidth, and ∆ω is the
range of ω over which S(ω) < 4S(ωres). With those assumptions, sensitivity to the QCD
axion may be attained over a mass range of ma ∈ [10−11 eV, 10−8 eV] for a fiducial SQUID
noise temperature determined by ηSQ = 20, and over [10−11 eV, 10−7 eV] for a quantum-
limited amplifier (ηSQ = 1). Also shown is the reach due to the electroaxionic effect
(dashed brown), which is weaker. The superiority of the piezoaxionic effect is due to the
enhancement of the axion-induced voltage on resonance and the large Q factor associated
with mechanical oscillations of the crystal. The brown dotted line in figure 3.8 corresponds
to the reach of the piezoaxionic effect using commercially available PZT-7A [122] grown
with a 100% abundance of the lead isotope 207

82Pb, assuming the same experimental setup
and a quantum-limited amplifier (ηSQ = 1). The mechanical and electrical loss angles of
the crystal have been taken conservatively to be of the order of 10−3.

The green line in Fig. 3.8 shows the QCD axion prediction, while gray regions indicate
previously known constraints. Black-hole (BH) superradiance [34, 156] is a process wherein
the spontaneous/stimulated production of axions can extract a large amount of angular
momentum from BHs; we take the updated constraints from Ref. [41], outlining parameter
space that is inconsistent with spin measurements on five known BHs in x-ray binary
systems. (These are lower bounds on fa, as axion self-interactions can quench this process.)
At sufficiently small values of fa, the value of θa could be so large that the neutron-proton
mass difference at neutron freeze-out alters big-bang nucleosynthesis (BBN) predictions
significantly [153]. The region labeled “Sun” is excluded by direct measurements of the
Sun, as the in-medium reduction of the axion potential will generically destabilize the
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axion to |θa| ∼ π at those small values of fa [70]. A similar destabilization can occur much
more easily (for much larger fa) in neutron stars, with the sourced axion field altering
short-range forces within a double-neutron-star binary system—shown are corresponding
gravitational-wave (GW) constraints from Ref. [155]. Near nuclear saturation densities, as
exhibited by supernova remnants and cores of neutron stars (e.g. SN1987A and Cassiopeia
A, respectively), axion production through the nuclear coupling is very efficient, leading
to a bound of order fa ≳ 108GeV (outside the plot range in Fig. 3.8), though the precise
value of this bound is not yet settled [55, §91]. As discussed in Sec. 2.3.1, any bounds (and
also our projections) above the QCD axion line prediction of Fig. 3.8 are model-dependent
due to the fine-tuning needed in this part of the parameter space.

In summary, Fig. 3.8 illustrates how the piezoaxionic effect can be used to search for
the irreducible coupling of QCD axion DM. For other setups and proposals to search for
this coupling, see Refs. [68, 95, 157–159]. Because of derivative suppression, this is also
a challenging mass range for detection concepts that search for other couplings of QCD
axion DM [68, 160–163]. The parameters of Tab. 3.3 should be taken as indicative, with
significant research and development needed to achieve the sensitivity curves of Fig. 3.8 in
practice. Nevertheless, we believe our idealized forecast demonstrates that the piezoaxionic
effect can be a powerful probe of QCD axion DM.

3.3 Other Axion Couplings

In Secs. 3.1 and 3.2, we have focused on the irreducible coupling of QCD axion DM in
Eq. 2.13, and the resulting P- and T-violating effects. Generic axion-like particles (ALP),
as well as the QCD axion [38], can have shift-symmetric couplings to fermions and photons:

L ⊃ Gaγγ

4
aFµνF̃

µν −
∑

f=p,n,e

Gaff

2
∂µaψfγ

µγ5ψf , (3.79)

with F̃ µν ≡ ϵµνρσFρσ/2. The shift symmetry [a → a + constant] of the resulting action
implies that all physical effects from these couplings are proportional to derivatives of
the axion field, i.e. ∂µa, where now a can be a generic ALP or the QCD axion. We
do not consider in detail the effects from the axion-photon coupling in this work, as our
preliminary calculations indicate they are numerically small, and electrical resonator setups
such as those of Refs. [136–138, 160, 164] are better suited.
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For the axion-fermion couplings, one finds the following single-particle Hamiltonian:

Hf =
Gaff

2
∂µaγ

0γµγ5 ≃ −Gaff

2
σf ·

[
∇a+ ȧ

pf

mf

]
, (3.80)

with σf , pf , and mf the spin, momentum, and mass of the fermion f , respectively. The
nonrelativistic limit was taken in the second equality. The “axion wind” interaction, the P-
even and T-odd operator proportional to ∇a (and thus the axion velocity) in Eq. 3.80, has
been proposed to search for ALPs and the QCD axion, by detecting changes in transverse
magnetization from precessing nuclear [89] and electron spins [165].

In a parity violating medium, the P-odd and T-even operator proportional to ȧ in
Eq. 3.80, generically contributes to the internal energy density U of Eq. 3.38 an additive
correction:

U ⊃
unit cell∑

e

⟨He⟩
Vc

= −Gaeeȧ

2Vc

∑
e

〈
ψe

∣∣∣pe · σe

me

∣∣∣ψe

〉
, (3.81)

since there is no symmetry that forbids such a nonzero contribution, in analogy to the
piezoelectric effect. The axion-nucleon coupling GaNN yields numerically small effects in
what follows, since nuclear contributions to the crystal lattice dynamics are suppressed
by positive powers of me/mN and/or R0/a0, so we focus on electronic contributions from
hereon; the sum in Eq. 3.81 is over all electrons in the unit cell. Note that since the
operator in Eq. 3.81 is T-even, the electrons need not be spin-polarized or unpaired, which
is advantageous from the point of view spin-noise backgrounds (Sec. 3.2.3). The internal
energy density correction of Eq. 3.81 results in corresponding additive changes to the
constitutive equations for the stress and electric field (e.g. Eqs. 3.41 and 3.42):

Tn =
∂U

∂Sn

⊃ −Gaeeȧ

2
θn ≡ −Gaeeȧ

2

αNc

Vc
θ̃n, (3.82)

En =
∂U

∂Dn

⊃ −Gaeeȧ

2
ηn ≡ −Gaeeȧ

2

αNc

Vc

ea20
α
η̃n; (3.83)

where by NDA, the 2-tensors θ̃n and η̃n should be of order unity. In Eqs. 3.82 and 3.83,
we estimate that there are Nc number of valence electrons, and that each matrix element
in Eq. 3.81 is O(α). Unlike in the case of the piezoaxionic and electroaxionic effects from
a Schiff moment, where only j = 1/2 electrons around a high-Z nucleus contribute, here
all valence electrons participate.

In Fig. 3.9, we show that with the same setup as described in the previous section, one
is also sensitive to the axion-electron coupling of ALP DM. (The sensitivity calculation
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Figure 3.9: Sensitivity to the derivative axion-electron coupling Gaee of Eq. 3.79 as a
function of mass ma of the axion-like particle. The setup and parameters are the same as
in Fig. 3.8, with the additional assumption of θ̃1 = η̃1 = 1 in Eqs. 3.82 and 3.83. The gray
region indicates couplings strongly disfavored by cooling of white dwarf (WD) stars [166].
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is completely analogous to the steps in Sec. 3.2 with the appropriate substitutions of the
axion-induced effects in Eqs. 3.41 and 3.42 with those of Eqs. 3.82 and 3.83, and is not
repeated here.) The ultimate reach is up to one order of magnitude stronger than the bound
|Gaee| ≲ 3 × 10−13/me, obtained from considering the influence of axion-induced excess
cooling on white-dwarf luminosity functions [166]. While sensitivity to the irreducible
coupling of the QCD axion requires a crystal hosting nuclei with large Schiff moments, a
competitive reach to Gaee—and scalar DM couplings [87]—can be already realized with
commercially available crystal resonators such as quartz or gallium arsenide, and is thus
an interesting target for a pilot experiment.

3.4 Discussion

In this work, we have described two new axion DM phenomena, and proposed an experi-
mental concept that may discover QCD axion DM through its model-independent coupling
over several decades in mass range. The setup relies on the intrinsic parity breaking in
piezoelectric crystals. In such a material, an axion background results in a stress that
can resonantly excite bulk acoustic modes if the axion frequency matches a fundamen-
tal acoustic frequency (or any of its harmonics) of the crystal, a phenomenon that we
call the “piezoaxionic effect”. Due to the piezoelectric effect, this excited mode produces
a voltage difference across the material that can be read out electrically. An axion back-
ground will also generically give another, non-resonant, additive contribution to this voltage
difference—the “electroaxionic effect”. Our proposed setup is capable of detecting axions
from tens of kHz to up to hundred(s) of MHz using well-known techniques from resonant-
mass detectors developed for gravitational-wave detection, and low-noise electrical readout
circuits used in other axion and dark-photon DM experiments. The most exciting signal
is produced by the irreducible P- and T-violating coupling of the QCD axion to gluons,
which furthermore requires that the piezoelectric crystal contain spin-polarized nuclei (to
break T symmetry) with large Schiff moments. A detectable signal can also arise from
the derivative coupling of axion-like particles to electrons, which is less challenging exper-
imentally since the occurrence of the piezoaxionic effect for this coupling does not require
polarized spins or the presence of special nuclear isotopes.

On the theoretical front, our treatment in Sec. 3.2.2 of the magnitude of the signal
carries a large fractional uncertainty. The three bottlenecks are: a systematically improv-
able computation of nuclear Schiff moments proportional to θa (Sec. 3.1.1); an accurate
determination of (soft) octupole deformation parameters for (meta)stable nuclear isotopes
(Sec. 3.1.1); and a DFT calculation of the ξ and ζ 3-tensors (Sec. 3.1.3), as well as the θ
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and η 2-tensors for the ALP-electron coupling (Sec. 3.3). While difficult, these theoretical
issues are not insurmountable, and we plan on addressing them in a future publication.

More research and development is also needed on the experimental front, regarding
the following four issues in particular. Firstly, once a suitable crystal is identified using
nuclear and crystal DFTs, its synthetic growth methods need to be studied and evaluated.
Secondly, the elastic and electric loss angles δc and δβ need to be experimentally determined
at cryogenic temperatures, as well as optimal cut geometries and clamping methods to
minimize external losses and optimize the signal. Thirdly, more investigation of frequency
scanning strategies is desirable: this work showed that electric loading can effectively
tune the resonance frequency (and retain sensitivity in a fractional bandwidth of order k2

in Eq. 3.58), but a (coarse) mechanical loading would reduce the total number of crystals
needed to cover a fixed frequency range, and put less stringent requirements on the electrical
components of the readout circuit (L1, C1, and the SQUID). Finally, it is worthwhile to
study the feasibility of quantum-optics-based refrigeration of single acoustic modes (as
opposed to the entire crystal), which would suppress the primary background (thermal
noise) in our proposed setup and thus further enhance its sensitivity to this guaranteed
signal of QCD axion DM. In a shorter time frame, and without these four advances,
pathfinder experiments would already be sensitive to other dark matter candidates such as
pseudoscalars coupled to electrons (Sec. 3.3 and Fig. 3.9) and scalars coupled to electrons
and/or photons [87].

This work studies the implementation of the piezoaxionic effect in the direct detection
of DM; in forthcoming work, we will outline its potential applications to static searches for
P- and T-violating phenomena. This new observable thus opens up exciting new avenues
in the search for physics beyond the Standard Model.
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Chapter 4

The Piezoaxionic Force

In the previous chapter, we pointed out that inside a crystal with a P-violating (piezo-
electric) lattice structure and polarized nuclear spins (which provide the breaking of T
invariance), a QCD axion DM background can manifest itself as a periodic stress that
coherently excites a macroscopic strain via Eq. 2.13. We coined this phenomenon “the
(converse) piezoaxionic effect”, and proposed a new class of DM searches for the QCD
axion based on bulk acoustic resonators. (Previous works [89, 167] had noticed that the
same coupling can also cause nuclear spin resonance under similar conditions.) Just as
piezoelectricity consists of a direct effect (stress generating an electric field) and a converse
effect (an electric field producing stress), piezoaxionicity can also be employed to directly
generate an axion field.

In this chapter, we discuss a new signature of the QCD axion—the piezoaxionic force—
wherein a spin-polarized pyroelectric crystal sources a static monopole axion field through
the defining coupling of Eq. 2.13. The resulting in-medium scalar coupling can be orders
of magnitude larger than the in-vacuum scalar coupling predicted in the SM, without the
need for additional CP violation in the fundamental theory. The ferroaxionic effect can
be used as a model-independent source for monopole-dipole forces mediated by the QCD
axion, thus motivating a new category of short-range force experiments.

This paper is structured as follows. In Sec. 4.1, we explain how this new coupling
arises, and estimate its effective size for some candidate nuclei and crystals. In Sec. 4.2, we
describe an experimental setup that can be used to detect the ferroaxionic force, based on a
modification of the ARIADNE experiment [44]. The forecasted sensitivity of this modified
setup is discussed in Sec. 4.3, and several anticipated noise sources and systematics are
addressed in Sec. 4.4. We conclude in Sec. 4.5.
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4.1 Theory

Axion interactions— At low energies below QCD confinement, Eq. 2.18 reduces to an
effective Lagrangian for the QCD axion coupled to nucleons N (we ignore couplings to
electrons and photons):

L ⊃ (∂a)2

2
− m2

aa
2

2
− a

fa
(ρS + ρM)

− gNs aN̄N +
gNp
2mN

∂µaN̄γ
µγ5N. (4.1)

Its mass is inversely related to the decay constant fa through Eq. 1.2. The factors ρS and
ρM are effective in-medium energy densities from interactions of the nuclear Schiff moments
(SM) S and magnetic quadrupole moments (MQM) M in the material; they are the subject
of this work and will be estimated below.

First, we quote the expected in-vacuum scalar (gNs ) and pseudoscalar (gNp ) couplings to
nucleons. The scalar coupling is CP-violating: in the SM augmented by the QCD axion,
it is proportional to the CKM phase, yielding the estimate [168]:

gNs ∼ 10−30 10
9GeV

fa
(4.2)

for both N = proton, neutron (isospin breaking is suppressed). The numerical value
is highly uncertain but unlikely to be more than an order of magnitude smaller than
in Eq. 4.2 due to several independent contributions of similar magnitude [73]. It can
be larger than in Eq. 4.2 with additional sources of CP violation beyond the Standard
Model. For example, infrared “tadpole” contributions to the QCD axion potential that
shift the induced minimum of the axion potential at a/fa = θind can boost it to gNs ≈
1.5×10−21

(
θind/10

−10
)
(109GeV/fa) [73], with the numerical value roughly saturating the

experimental upper limit on |dn| and thus |θ| [20]. The pseudoscalar coupling to nucleons
is not CP violating, and has a generic size of:

gNp ≡ cNmN

fa
≈ cN × 10−9 10

9GeV

fa
. (4.3)

The interaction of Eq. 2.13 irreducibly yields the coefficients cproton ≈ 0.47(3) and cneutron ≈
0.02(3) (e.g. in the KSVZ model [52, 53]). These can easily receive corrections from
derivative couplings to quarks: e.g. in DFSZ axion models [15, 51], cproton ≈ −0.617 +
0.435 sin2 β ± 0.025 and cneutron ≈ 0.254− 0.414 sin2 β ± 0.025 [38].
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Axion source— A P- and T-odd “monopole” axion configuration is generated via the
equation of motion: (

□+m2
a

)
a (t,x) = −ρS + ρM

fa
− gNs nN ≡ j(t,x). (4.4)

The source of P and T violation on the RHS can be explicit through gNs and/or spontaneous
through the in-medium SM or MQM energy densities ρS and ρM; we shall see that the
latter two can generate larger axion fields than the scalar coupling of Eq. 4.2. In the
quasistatic approximation, the axion field solution to Eq. 4.4 is a(t,x) =

∫
d3x′ (4π|x −

x′|)−1e−ma|x−x′|j(t,x′). At a point a distance D away from a uniform slab of thickness
h and large transverse area A ≫ h2, D2, the gradient of the slab-induced theta angle is
approximately:

∇θa ≃ −D̂
j

2mafa
e−maD

(
1− e−mah

)
, (4.5)

where (slow) time dependence may enter implicitly either through D or j.

Similarly, a “dipole” axion field configuration may sourced from an ensemble of spins
σN with number density nN via the pseudoscalar coupling:

a(t,x) = (gNp /8πmN)

∫
d3x′ nN(x

′)e−ma|x−x′||x− x′|−3(1 +m|x− x′|)(x− x′) ·σN , (4.6)

which yields the theta angle gradient

∇θa ≃ −D̂
(
D̂ · σN

) gNp nN

4mNfa
e−maD

(
1− e−mah

)
. (4.7)

from a uniform slab of large transverse area. The parametric ratio of Eqs. 4.5 and 4.7 is
2j/cNmafanN after using Eq. 4.3.

The gradient of the induced theta angle is the observable quantity of interest, as detec-
tion is most sensitively performed via the Hamiltonian

H ⊃ −
gNp
mN

σN ·∇θa, (4.8)

through a spin precession process analogous to nuclear magnetic resonance. The combina-
tion of Eqs. 4.5 & 4.8 (Eqs. 4.7 & 4.8) yields a monopole-dipole (dipole-dipole) potential.
Ref. [44] has charted out the sensitivity of these potentials proportional to gNs g

N
p and

(gNp )2, respectively. In this work, we propose sourcing a QCD axion gradient through its
irreducible coupling, via the spontaneous P and T violation—parametrized by the energy
densities ρS and ρM of SMs and MQMs—that a parity-odd crystal with polarized nuclear
spins may exhibit.
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Schiff Moment— The QCD axion field generated via the SM is proportional to:

ρS = 4πenS
∂S

∂θa
MS · Î (4.9)

MS =
∑
j,mj

ϵs,mj
ϵ∗pj,mj

MS: j,mj
+ c.c., (4.10)

where nS is the density of nuclei with large Schiff moments, MS is an atomic matrix
element related to mixing between the nuclear SM potential and atomic electrons, with
direction given by the intrinsic electric polarization vector of the (necessarily pyroelectric)
crystal, and I is the nuclear spin vector, normalized such that |Î| = 1 corresponds to a
fully polarized nuclear spin state.The quantum numbers j and mj are those of the total
angular momentum and its projection on the z-axis, respectively. The coefficients ϵs and
ϵpj,mj

parametrize the admixture of atomic s and pj,mj
valence electron states, i.e. |ψel⟩ =∑

mj
ϵs,mj |s0⟩ +

∑
j,mj

ϵpj,mj
|p0j,mj

⟩, and characterize the breaking of parity symmetry by

the crystal potential. The atomic matrix element is [1, 169]:

MS: j,mj
= ⟨Ωs|r̂|Ωp,j,mj

⟩ Z2

a40(νsνpj)
3/2

Rj, (4.11)

where Ωi are spherical spinor wavefunctions [170] §35 and Rj is a relativistic enhancement
factor [98], ranging from 1–9 and increasing with the size of the nucleus.

The axion signal from the SM is largest for a heavy, deformed nuclei with a large SM
dependence on θa, a large number density in the crystal nS, and then only within suitable
crystals. The ferroaxionic effect is proportional to the dimensionless vector ϵsϵ

∗
p ⟨Ωs|r̂|Ωp⟩,

whoseO(1) matrix elements are listed in [1, App. A], and can only have nonzero expectation
value in the pyroelectric crystal classes [121]. Based on naive dimensional analysis, the
wavefunction admixtures ϵs,p should also be O(1) in strong pyroelectrics, but a precise
determination requires input from ab initio methods such as density functional theory
(DFT) (e.g. [171]).
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Magnetic Quadrupole Moment— The effective MQM energy density in Eq. 4.4 is
given by [169]:

ρM = enM
∂M

∂θa
tfgAfg (4.12)

tfg =
1

4I (2I − 1)

[
IfIg + IgIf −

2

3
δfgI(I + 1)

]
(4.13)

Afg =
Z2α

a30(νsνpJ )
3/2

CJ
∑
mJ

ϵs,mJ
ϵ∗pmJ

(4.14)

⟨Ωp3/2,mJ
|σf r̂g + σgr̂f − 2(σ · r̂)r̂gr̂f |Ωs1/2⟩+ c.c.

where CJ is an O(1) numerical coefficient detailed in App. B.3 and σ is the electron
spin operator. Only nuclei with spin I ≥ 1 may exhibit an MQM. The MQM also requires
breaking of rotaitonal symmetry, which can be achieved through a nuclear spin polarization,
as detailed in appendix B.1.

Since the MQM operator is linear in electron spin it requires magnetic ordering. The
first two terms in the second line of eq. 4.14 are linear in the radial vector and are therefore
non-zero in a pyroelectric material due to its unique axis of spontaneous polarization. The
last term is cubic in the radial vector and is therefore a parity odd, rank three tensor in the
electron’s position space, which is also symmetric in its indices. These symmetry properties
are shared by the piezoelectric tensor of a material, and suggest that the MQM can be
non-zero in not only in the pyroelectrics necessary for the SM but also in the broader class
of piezoelectric materials (of which pyroelectrics are a subset).

Individual matrix elements without the mixing ϵi are give in appendix B.3. Following
the same reasoning as the SM, we expect the terms:

ϵs,mj
ϵ∗pmj

⟨Ωp3/2,mj
|σf r̂g + σgr̂f − 2(σ · r̂)r̂f r̂g|Ωs1/2⟩

to be no larger than O(1).

4.2 Setup

The envisioned experimental setup could be somewhat similar to that proposed in Ref.
[44] and refined in Ref. [174]. An oblate spheroidal cavity filled with laser-polarized 3He
can be used to sense the effective magnetic field sourced by a spin-polarized piezoelectric
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Sdef Mdef

(θa e fm
3) (θa e fm

2)
153
63 Eu 0.15 [172] 1.0

235
92 U∗ 3 [173] 3.1

237
93 Np∗ 0.75 [172] 1.3

Table 4.1: Estimated Schiff moments and MQMs of deformed (octupole or quadrupole)
nuclei. The Schiff moments were calculated in the references given, whereas the MQMs
are estimated using the results in chapter 10 of [169] and [112] with pion-nucleon couplings
from [103] (see also [1]). ∗ indicates a metastable radioactive nucleus.

source mass doped with heavy nuclei that exhibit a large Schiff moment and/or magnetic
quadrupole moment. The spheroidal shape results in a uniform magnetic field inside the
sample for samples polarized along one of the principal axes. The source mass generates
an axion potential from three distinct mechanisms: (1) its Schiff moment, (2) its nuclear
magnetic quadrupole moment, and (3) the dipole-dipole coupling from polarized nuclei
resulting from both the gluon and fermion coupling of the axion to matter. The source
mass has a flat plate geometry to maximize the amount of material near the NMR sample
within the Compton wavelength of the axion. For the search from the Schiff moment
or MQM, the nuclear spins of the source mass should be polarized in-plane, whereas to
search for the dipole-dipole interaction the source mass should be polarized out of plane,
as illustrated in Fig. 4.1.

The spheroidal 3He sample is inside of a quartz sample block that can be coated with
a layer of superconducting thin film magnetic shielding as well as additional layers of
superconducting foils. The source mass distance to the sample d can be modulated at the
nuclear larmor precession frequency to drive coherent precession and Rabi oscillations in
the sample. A linear stage can be used to actuate the position of the source mass with
respect to the sample block. The precessing transverse magnetization is read out using a
SQUID magnetometer.

Ferroaxionic crystals— The ideal material for this setup should contain a high density
of heavy nuclei with either large Schiff or magnetic quadrupole moments. In addition, the
material should also be magnetic so that the polarized electron spins can be used to transfer
their polarization onto the nuclear spins, as detailed in appendix B.2. Potential materials
include europium barium titanate Eu0.5Ba0.5TiO3[175], Np3OF12 and NpIO5 [132].
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Proposed measurement protocol. The experiment could be performed inside a dilution
refrigerator with a large bore and a vector magnet, to facilitate polarizing the source mass
either in-plane or out-of-plane. The 3He sample block can be maintained at 4 K, while
the source mass and its linear translation stage can be connected to the dilution fridge
mixing chamber plate and cooled to 20 mK. After magnetization, the field can ramped
down, and at this point the Nb is heated above Tc and re-cooled in zero field to minimize
trapped magnetic flux. Laser polarized 3He can be produced at room temperature above
the cryostat and pumped into the sample block for the measurements.

4.3 Sensitivity

We assume a source mass plate transverse dimensions of 300 λ and thickness 10 λ for two
specific geometries. We expect the sensitivity to be fundamentally limited by quantum
spin projection noise in the NMR sample. The minimum transverse magnetic resonant
field this setup is sensitive to is given by:

Bmin ≈ p−1

√
2ℏb

nsµ3HeγV T2
= 3× 10−19 T× (4.15)

(
1

p

)√(
b

1 Hz

)(
1 mm3

V

)(
1021 cm−3

ns

)(
1000 s

T2

)
.

Here V is the sample volume, γ is the gyromagnetic ratio for 3He = (2π)× 32.4 MHz/T, b
is the measurement bandwidth, and µ3He = −2.12× µn is the 3He nuclear moment, where
µn is the nuclear Bohr magneton. Figs. 4.2, 4.3 and 4.4 show the expected sensitivity,
assuming a 3He sample with T2=1000 s, and a 1-year integration time. SQUID sensitivity
used in figures 4.2 and 4.3 folows the ARIADNE projects in reference [44]: for λa < 0.1mm,

the sensitivity is 0.15 fT√
Hz

(
1cm2

104λ2
a

)
, and for λa > 0.1mm, it is 0.15 fT√

Hz
.

4.4 Systematics and Noise sources

Several of the systematics and noise sources are in common with those discussed in Refs.
[44, 174], except with the additional complication being from the magnetized nature of
the source mass. The main systematics and noise sources in the present setup are ex-
pected from magnetic gradients and background vibrtaions, magnetic fields that are not
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Figure 4.1: Experimental setup. A polarized 3He sample senses the effective magnetic field
sourced by a spin-polarized source mass which generates an axion potential from its Schiff
moment, its nuclear magnetic quadrupole moment, and the polarized nuclei from both the
gluon and fermion coupling of the axion to matter.
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Figure 4.2: Sensitivity to the gluon coupling for a monopole-dipole force generated by
the nuclear Schiff moment. The blue (green) curves correspond to the material NpOF12

(Eu0.5Ba0.5TiO3). Thick (thin) lines correspond to D = 1.0mm (0.15mm). Solid (dashed)
lines correspond to cN for the model-dependent dipole coupling of 1 (0.1). The grey line is
the ultimate SQUID sensitivity, whereas the colored lines correspond to a magnetization
noise limited setup.
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Figure 4.3: Sensitivity to the gluon coupling for a monopole-dipole force generated by the
nuclear magnetic quadrupole moment (MQM). Lines correspond to the same setup as fig.
4.2.
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Figure 4.4: Sensitivity to the gluon coupling for a dipole-dipole force, proportional to 1/fa,
as a function of axion mass ma. Lines correspond to the same setup as fig. 4.3.
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adequately screened by the superconducting shield, and noise due to trapped flux in the
superconducting shield. Magnetic gradients within the sample block itself can be reduced
using superconducting gradient compensation coils, and the applied magnetic field at the
3He sample can be set using a “D”-shaped half-Helmholtz coil, using the methods described
in Ref. [176]. Backgrounds from magnetic impurities, the Barnett effect, are expected to
be less significant. Depending on the applied ambient field used to preserve spin polariza-
tion during the measurement, effects from the finite magnetic susceptibility of the source
mass sample also can be significant.

Fig. 4.5 shows the magnetic field profile extending away from the source mass assuming
polarized nuclear spins in the sample with a magnetization of 103 A/m. The field at the
front surface of the sample chamber is estimated to be of order Guass, so the shielding
factor required on the front is approximately 1018. We consider a two-layer superconducting
shield, composed of a 1 µm thick Nb film and a 10 µm thick Pb foil. The penetration depth
of the foil is approximately 39 nm, which should provide adequate shielding for thickness
greater than 2 µm. Although the sample region is enclosed in superconducting shielding,
openings are required to facilitate electrical connections to the SQUID readout as well
as the current loops for setting the Larmor frequency at the sample and minimizing the
gradient of the field, as described in Ref. [176]. To maximally screen the magnetic field
of the magnetized source mass from the sample, we consider a single tube opening in the
back of the sample chamber. For a tube, the shielding factor depends on the length l and
radius a of the tube as cosh [1.84z/a] [177].

It is important to also consider the detail for how the wiring for the SQUID magnetome-
ter and gradient compensation coils and “D” shaped Helmholtz coils is connected through
the tube opening [176]. For example, as discussed in Ref. [176], if a superconducting wire
extends down the length of the shielded tube at the rear of the sample enclosure, due to
topological effects of the region not being simply connected, the Meissner screeing effect is
severely reduced, and the external magnetic field can penetrate into the sheilded volume.
To avoid this, a transition from superconducting to normal metal is needed e.g half way
down the length of the tube, as indicated in Ref. [176]. This the effective length of the
tube can be conservatively considered as the length of the normal metal portion. From
Fig. 4.5, we estimate the magnetic field from the magnetized source mass at the location of
the back of the sample block a few cm away to be on the order of 10−7 T. We estimate the
required aspect ratio of ∼ 18 and tube length 90 mm will suffice to achieve the sensitivity
shown in Figs. 4.2, 4.3 and 4.4.

Acoustic vibrations. As in the setup used for the ARIADNE experiment [44], acoustic
vibrations can cause magnetic field variations due to the image magnetization arising from
the Meissner effect in the superconducting shields. For a 0.1 µm wobble in the source
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mass stage plate at ωm/2π = 10 Hz, for a suitable size probe we roughly estimate a
δx ∼ 2 nm vibrational amplitude of the sample chamber. The helium gas mixture in
our regime has a sound speed of order 300 m/s, so the motion of the gas molecules can
follow the displacement of the shield adiabatically for a motion of this amplitude at 10
Hz. We therefore expect no significant magnetic field fluctuations, provided the quartz
enclosure containing the sample moves rigidly. We can estimate the degree to which this
approximation breaks down by considering the quartz wall thickness, size, and known
elastic properties. Assuming δx = 2 nm, we find that the relative motion between the
sample chamber and the shield coating on the outside surface of the quartz block from
elastic deformations is 10−17 m. With a gradient of 10−5 T/m, this corresponds to a field
background of ∼ 10−22 T. Incoherent background vibration of the source mass stage plate
also should remain below 0.1 µm amplitude at 10 Hz, since this would produce magnetic
field noise of 5× 10−19 T/

√
Hz at the resonant frequency, which can in principle begin to

limit the sensitivity.

4.5 Conclusions

In this work, we have established a new monopole-dipole force mediated by the QCD
axion that is generated by a magnetic piezoelectric crystal. This new force could lead
to an observable signal in an NMR-like experiment, probing several orders of unexplored
parameter space in a range that is complimentary to cavity experiments and astrophysical
bounds. The origin of this force is a new effective scalar coupling of the QCD axion
that derives from its irreducible, parity and time reversal violating coupling to gluons,
together with the large intrinsic parity violation provided by the lattice structure of the
piezoelectric crystal, and the time-reversal violation provided by its magnetic ordering.
The proposed experimental setup could directly follow the ARIADNE axion experiment,
which is currently under construction [78, 174].

Due to Schiff screening, the new scalar coupling presented in this work requires either
a nuclear Schiff or magnetic quadrupole moment (Sec. 4.1). While both of these produce
a signal of a similar size, the MQM may be favorable since its symmetry properties allow
a broader class of materials. Future work will be needed to confirm the ideal material,
as well as density functional theory calculations to precisely determine the size of atomic
parity violation within the crystal. The large difference between the magnetization noise
in the NMR sample and the fundamental SQUID noise limit indicates potential for big
improvements in sensitivity, which may be accessed through squeezing procedures.

The setup in this paper will also be sensitive to a dipole-dipole force that could be
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produced by either the QCD axion or an axion-like particle (fig. 4.4). Depending on the
size of the model dependent dipole coupling coefficient cN , this force can be either more
or less sensitive than the piezoaxionic monopole-dipole force. It should nevertheless be
pointed out that the piezoaxionic monopole-dipole force is orders of magnitude bigger
than the monopole-dipole force that is sourced by the CP violation of the Standard Model
in vacuum. Ultimately, the piezoaxionic force, unlike the dipole-dipole force, would provide
conclusive evidence that the mediating particle is indeed the QCD axion of the strong CP
problem.
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Figure 4.5: (upper) Magnetic field norm along the z-axis of the sample extending away
from the source mass center. Parameters chosen as described in text. (lower) as above but
from the source mass edge along the y-axis.
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Chapter 5

Summary and Outlook

The axion stands out as one of our best motivated targets for new physics beyond the
standard model and as a candidate for the dark matter. Its light mass and broad parameter
space call for conceptually new experimental approaches. Ongoing efforts are already
underway to construct and operate various experiments, each targeting different couplings
and mass scales. However, very few of these experiments currently possess the sensitivity
required to reach the QCD axion’s parameter space. Particularly challenging to probe and
therefore underexplored is the axion’s defining, model-independent coupling to gluons. This
thesis has endeavored to demonstrate how we can use existing experimental technologies
and methods to probe the gluon coupling via new precision experimental observables.

A core idea of this thesis is that a piezoelectric crystal provides the key spontaneous
breaking of parity symmetry necessary to access parity even observables for the pseu-
doscalar axion field. The first observable explored in this thesis, the piezoaxionic effect for
dark matter, describes how we can leverage piezoelectric crystals to produce an oscillating
mechanical strain from a background axion dark matter field. This strain is resonantly
enhanced when the natural frequency of the crystal is matched to the mass of the axion.
A crucial obstacle to probing the axion’s gluon coupling in macroscopic systems is Schiff’s
theorem, whereby the electric dipole moment of a nucleus is shielded by the surrounding
electrons. Schiff’s theorem can be violated by incorporating heavy or significantly octupole
deformed nuclei, which motivates the specific materials that could be used in this setup
to provide the best sensitivity to the axion. The oscillating strain in the material, via
the piezoelectric effect, would subsequently generate an alternating current that could be
readout via a SQUID. We found the projected sensitivity to the axion to cover the mass
range from 10−11eV to 10−7eV. As a benchmark, we also examined this setup’s sensitivity
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to the model-dependent axion-electron coupling, and found that it had the potential to
also reach sensitivities below current bounds from white dwarf cooling.

In the chapter on the piezoaxionic force, we explored how piezoelectric crystals can also
act as a source of axions. The core of the idea stems from generating a new effective scalar
coupling of the axion to nucleons. Since the coefficient of this scalar operator is P and
T odd, it requires a source of P and T breaking external to the SM and the axion field.
In previous works in the literature, this symmetry violation was supplied by assuming
new fields beyond the standard model in addition to the axion [73]. In this thesis, we
proposed generating an effective scalar coupling in-medium using a piezoelectric crystal
and polarized spins in the material. This coupling could be used to generate off-shell
axions that constitute a new force, with a range determined by the mass of the axion. On
the detection side, this force interacts with spins via a pseudoscalar coupling of the axions,
and can cause a sample of nuclear spins to precess. By shielding away magnetic fields, we
can isolate an anomalous precession generated by the axion. The signal can be resonantly
enhanced when we mechanically pulse our source crystal at the natural frequency of the
nuclear spins in our detector — the Larmor precession frequency. This setup could be
applicable to an axion within the mass range 10−5eV to 10−2eV, and would build on
existing experiments looking for forces mediated by axion-like particles [44].

This thesis provides new theoretical frameworks and suggests corresponding experimen-
tal setups with projected axion sensitivities. But what are the next steps to discovery? A
number of key areas require further investigation: precise determination of nuclear Schiff
moments and material couplings, and experimental exploration of suitable materials. The
first of these, accurate determination of nuclear Schiff moments, the author is already in-
vestigating in collaboration with specialists in nuclear theory and will appear in a future
work. Searching for ideal materials could entail a mixture of experimental and compu-
tational investigation. While some material properties such as piezoelectric coefficients
can be predicted using ab initio computational techniques like Density Functional Theory
(DFT), other properties will need dedicated experimental investigation, such the mechan-
ical quality factors of materials at cryogenic temperatures. DFT could also be essential in
precisely determining the mixing of opposite parity electron wave functions in the vicinity
of nuclei, designated ϵs,p in this thesis, which is required to understand the couplings of
the axion induced Schiff moment to the material strain or scalar nucleon coupling.

One of the biggest challenges in building an axion detector is scanning the axion’s
mass across multiple orders of magnitude. The currently allowed parameter space for the
axion is vast, and covering it all with sufficient sensitivity within a reasonable time frame
is a formidable task. Indeed, most proposed axion experiments would have remarkable
sensitivity on resonance if we knew precisely which axion mass to target from the outset.
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Finding optimal scanning strategies is therefore an important task, especially for the dark
matter experiment proposed in this thesis. If one could find a way to mechanically scan by
changing the resonant frequency of the crystal continuously, it could make a huge impact
on the total parameter space we could probe with such an experiment. An idea for the
future could be to consider different geometries, such as different shaped cuts of crystals or
systems where the boundary conditions, i.e., the electrodes, could be continuously varied
to probe a greater number of resonances within the same setup.

What lies ahead? The concepts explored here should inspire us to pursue further regions
of the axion’s parameter space, and our various experimental directions and approaches
beyond this thesis should be seen as complementary to one another. The search for the
axion challenges us to showcase our ingenuity and creativity. Rather than reaching for
ever higher energies, it asks us to meticulously test the fundamental laws of nature with
utmost precision. One can only imagine how marvelous it will be if we discover new
physical principles beyond the standard model, or perhaps even dark matter, in the next
few decades within a single laboratory.
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[7] Dietrich Bödeker and Wilfried Buchmüller. Baryogenesis from the weak scale to the
grand unification scale. Rev. Mod. Phys., 93:035004, Aug 2021.
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théorie des phénomènes électriques. J. Phys. Theor. Appl., 10(1):381–394, 1881.

[80] J. Curie and P. Curie. Contractions et dilatations produites par des tensions dans
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and Roger Bourquin. Quality factor measurements of various types of quartz crystal
resonators operating near 4k. IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, 63(7):975–980, 2016.
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Appendix A

Appendices for the Piezoaxionic
Effect

A.1 Atomic Matrix Elements

In this appendix, we elaborate on the calculation of the atomic matrix elements used in
Sec. 3.1.2. Symmetry dictates that to produce an expectation value for a P-even observable
such as an energy shift or mechanical stress, ones requires an even number of P-violating
perturbations. In other words, we know that a perturbation to an atomic orbital induced by
a P-violating potential from a nuclear Schiff moment, e.g. HS, is not sufficient on its own to
produce a P-even effect at linear order by symmetry. The second P-violating perturbation
is sourced by the potential of the piezoelectric crystal lattice, Vcrys. We assume Vcrys
constitutes only a small correction to the atomic potential, such as in the tight-binding
model for insulating materials [191].

For specificity, let us suppose that the ground-state wavefunction is |s0⟩, a mixed s-wave
state with j = 1/2 and equal admixtures of mj = ±1/2, perturbed by the crystal potential
as:

|s̃⟩ = C

|s0⟩+
∑
j,mj

|p0j,mj
⟩
⟨p0j,mj

|Vcrys |s0⟩
E0

s − E0
pj,mj

 (A.1)

≡ ϵs |s0⟩+
∑
j,mj

ϵpj,mj
|p0j,mj

⟩ , (A.2)
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with C = 1 −
∑

j,mj

∣∣ ⟨p0j,mj
|Vcrys |s0⟩

∣∣2/(E0
s − E0

pj,mj
)2. The superscript 0 denotes an un-

perturbed atomic wavefunction, and {j,mj} indicate the relativistic orbitals of the atomic
p-level, i.e. (j = 1/2,mj = 1/2,−1/2) and (j = 3/2,mj = 3/2, 1/2,−1/2,−3/2). In prac-
tice, one can perform the above and following calculations for the mj = +1/2 admixture of
the |s0⟩ ground state, and then average the final result with the same for the mj = −1/2
admixture.

The ϵ coefficients can be read off from matching Eqs. A.1 and A.2. They can in
principle be computed ab initio within the framework of DFT, but care must be taken to
compute atomic orbital projection coefficients in the presence of many valence electrons,
and to ensure that the variation (with external strain or electric field/displacement) of these
coefficients respects the point group symmetries of the crystal. This technically difficult
calculation is left to future work, and instead we will use order-of-magnitude estimates
based on experimentally measured quantities in Sec. 3.1.3.

We can now consider the leading-order energy shift when the atomic wavefunctions are
perturbed by both the Schiff and crystal potentials as:

⟨s̃|HS|s̃⟩ =
∑
j,mj

ϵsϵ
∗
pj,mj

⟨s0|HS |p0j,mj
⟩+ c.c., (A.3)

which directly leads to Eqs. 3.32 and 4.11 in the main text. The angular parts of the
matrix elements between the spinor spherical harmonics Ωl,j,mj

in Eq. 4.11 are:

⟨Ωs, 1
2
,+ 1

2
| r̂ |Ωp, 1

2
,+ 1

2
⟩ = −1

3
ẑ, (A.4)

⟨Ωs, 1
2
,+ 1

2
| r̂ |Ωp, 1

2
,− 1

2
⟩ = −1

3
x̂+

i

3
ŷ, (A.5)

⟨Ωs, 1
2
,+ 1

2
| r̂ |Ωp, 3

2
,+ 3

2
⟩ = − 1√

6
x̂− i√

6
ŷ, (A.6)

⟨Ωs, 1
2
,+ 1

2
| r̂ |Ωp, 3

2
,+ 1

2
⟩ = +

√
2

3
ẑ, (A.7)

⟨Ωs, 1
2
,+ 1

2
| r̂ |Ωp, 3

2
,− 1

2
⟩ = +

1

3
√
2
x̂− i

3
√
2
ŷ; (A.8)
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and similarly for the l = 0,mj = −1/2 admixture:

⟨Ωs, 1
2
,− 1

2
| r̂ |Ωp, 1

2
,+ 1

2
⟩ = −1

3
x̂− i

3
ŷ, (A.9)

⟨Ωs, 1
2
,− 1

2
| r̂ |Ωp, 1

2
,− 1

2
⟩ = +

1

3
ẑ, (A.10)

⟨Ωs, 1
2
,− 1

2
| r̂ |Ωp, 3

2
,+ 1

2
⟩ = − 1

3
√
2
x̂− i

3
√
2
ŷ. (A.11)

⟨Ωs, 1
2
,− 1

2
| r̂ |Ωp, 3

2
,− 1

2
⟩ = +

√
2

3
ẑ, (A.12)

⟨Ωs, 1
2
,− 1

2
| r̂ |Ωp, 3

2
,− 3

2
⟩ = +

1√
6
x̂− i√

6
ŷ, (A.13)

Transitions with |∆j| ≥ 2 or |∆mj| ≥ 2 are forbidden by selection rules.

A.2 Long-wavelength Reduction

In this appendix, we derive Eq. 3.38 as the long-wavelength description of the crystal,
reduced from the full energy functional that includes short-wavelength degrees of freedom,
which are “integrated out”. We also derive how the piezoaxionic tensor ξ and the axioelec-
tric tensor ζ relate to wavefunction coefficients that can be computed within DFT and to
the atomic matrix elements of Sec. 3.1.2. Our treatment of the short-wavelength modes is
based on Refs. [120, 211, 212].

Denote the position of atom I = (l, s) by

RI
α ≡ Rl

α + τ sα + ulsα , (A.14)

where Rl is the position of the lth unit cell in the Bravais lattice, τ s is the relative position
of the sth atom within the unit cell, and uls is the out-of-equilibrium deviation. In what
follows, vector indices will be {α, β, γ, . . . } subscripts running over the 3 spatial directions,
unit cell labels {l,m} superscripts running over N unit cells with volume Vc, and atomic
labels within the unit cell {s, t} superscripts.

We can express the total internal energy density around equilibrium to quadratic order
in deviations, namely a homogeneous strain Sαβ and electric displacement vector Dα as
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well as the individual atomic displacements ulsα , as:

U = (A.15)

+
1

2
c0αβ,γδSαβSγδ − h0α,γδDαSγδ +

1

2
β∞
αβDαDβ

+
1

2NVc

∑
lm,st

C ls,mt
αβ ulsαu

mt
β

− e

NVc

∑
l,s

Zs
αβu

ls
αDβ +

1

NVc

∑
l,s

Gs
α,γδu

ls
αSγδ

− ζ0αβ ÎαθaDβ −
∑
s

ξ0,sα,γδ Î
s
αθaSγδ

− e

NVc

∑
l,s

W s
αβu

ls
α Î

s
βθa.

In the first two lines of the above equation, we have defined the bare elastic tensor c0αβ,γδ, the
bare piezoelectric tensor h0α,γδ, the bare dielectric impermittivity tensor β∞

αβ, the interatomic

force matrix C ls,mt
αβ , the effective charge matrix Zαβ

s , the internal strain tensor Gs
α,γδ, and

homogeneous electric displacement vector Dβ (inhomogeneous vector field contributions
are absorbed into C). Finally, ξ0 and ζ0 are the bare piezoaxionic and electroaxionic
tensors of Eqs. 3.43 and 3.44, respectively, while the effective “axionic charge tensor” W s

αβ

is given by:

W s
αβ = 4πe

dS

dθ

∂

∂ulsα

∑
j,mj

[
ϵsϵ

∗
pj,mj

Mj,mj ,β + c.c.
]
.

We can write Eq. A.15 in a more compact matrix form:

U = (A.16)

+
1

2
S⊺c0S−D⊺h0S+

1

2
D⊺β∞D− Î

⊺
θaξ

0S− Î
⊺
θaζ

0D

+
1

NVc

{
1

2
u⊺Cu− eu⊺ZD+ u⊺GS− eu⊺WÎθa

}
,

with bold type indicating matrix form of the tensors, and index contractions understood
through tensor ordering and the transpose ⊺.

We are interested in long-wavelength modes of strain S and electric displacement vector
D, with short-wavelength atomic displacements u integrated out. These “short modes”
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can be integrated out by requiring that the force on each atom vanishes:

0 =
∂U

∂u
⇒ u = C−1

[
eZD−GS+ eWÎθa

]
. (A.17)

Insertion of this solution back into Eq. A.16 yields:

U = (A.18)

+
1

2
S⊺cDS−D⊺hS+

1

2
D⊺βSD− Î

⊺
θaξS− Î

⊺
θaζD,

which is identical to Eq. 3.38 in the main text, with the effective crystal tensors given by:

cD = c0 − G⊺C−1G

NVc
, (A.19)

βS = β∞ − e2
Z⊺C−1Z

NVc
, (A.20)

h = h0 − e
Z⊺C−1G

NVc
, (A.21)

ξ = ξ0 − e
W⊺C−1G

NVc
, (A.22)

ζ = ζ0 + e2
W⊺C−1Z

NVc
. (A.23)

ξ and ζ are the piezoaxionic and electroaxionic effective tensors after integrating out the
high-wavenumber modes. This procedure is analogous to the well-known correspondence
for the standard crystal tensors cD, βS, and h to their bare counterparts c0, β∞, and h0.

In much of the main text, we follow Voigt notation to describe the constitutive equa-
tions and dynamics implied by Eq. A.18, for clarity, and consistency with literature on
piezoelectric crystals. The Voigt prescription reduces the order of symmetric tensors by
removing repeated components; for instance, it reduces all 3 × 3 symmetric tensors to 6
dimensional vectors. The strain tensor is given by:

Sαβ =

Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz

 , (A.24)

and is therefore simplified to the 6-dimensional vector:

Si = (Sxx, Syy, Szz, Syz, Sxz, Sxy) (A.25)

= (S1, S2, S3, S4, S5, S6) , (A.26)
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such that the scalar product is preserved, i.e.:∑
α,β

SαβSαβ =
∑
i

SiSi. (A.27)

Vectors (1-tensors) such as Dβ still have 3 components, while 4-tensors and 3-tensors
reduce to 6 × 6 and 6 × 3 “2-tensors” (in the Voigt convention), respectively. It is now
straightforward to rewrite the constitutive Eqs. (3.40), and (3.39) in Voigt notation as
Eqs. (3.42) and (3.41) in Sec. 3.1.3, for example.

A.3 Piezoelectric Equivalent Circuit Components

To separate the immittance of the piezoelectric crystal into constituent electrical compo-
nents, we make use of the power series [193]:

tanx =
∞∑
j=1

8x

(2j − 1)2π2 − 4x2
. (A.28)

Each subsequent term in the expansion corresponds to an overtone of the mechanical res-
onance. In the vicinity of the fundamental resonance, we can approximate the immittance
by the first term in the series. For modes whose electric field is along the direction of
acoustic wave propagation, e.g. Eq. 3.56 this gives an expression for the impedance of the
form:

Z =
1

iωCc

(
1− k2

8

π2 − 4(ωℓ/2v)2

)
. (A.29)

Equation A.29 is equivalent to the following electrical components, arranged as in Fig. 3.3

Cm =
8Cck

2

π2 − 8k2
, (A.30)

Lm =
ℓ2

8Cc k2v2
. (A.31)

To take into account mechanical losses, we add a resistor to the circuit whose value is set
by the mechanical quality factor Qm of the crystal:

Rm =
π ℓ

8Cc k2 v

1

Qm

. (A.32)
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We reiterate that we do not use the circuit elements of Eqs. A.30–A.32 in the analysis in the
main text—we use the exact expression of Eq. 3.56 with imaginary crystal tensors. They
are shown here to illustrate that near any mechanical resonance frequency, the behavior of
the crystal can be accurately described by “standard” circuit elements.

In App. A.4, we include additional modes that could be used in our setup. For modes
such as the whose electric field is in the perpendicular direction to the acoustic excitation,
using Eq. A.28 gives an admittance of the form:

Y =
1

Z
= iωCc

(
1 +K2 8

π2 − 4(ωℓ/2v)2

)
. (A.33)

The equivalent circuit components are given by:

Cm =
8CcK

2

π2
, (A.34)

Lm =
ℓ2

8CcK2v2
, (A.35)

Rm =
π ℓ

8CcK2 v

1

Qm

. (A.36)

A.4 More Modes

In the main text (Sec. 3.2), we introduced the thickness expander mode, which is well
understood and known to possess high mechanical quality factors in cryogenically cooled
quartz and similar materials [126, 134]. Here we present two more modes that could be
relevant for our setup. These have been constructed with the symmetry group of quartz,
32, in mind, but can be easily adapted to crystals of other symmetry groups. Much of the
analysis in this appendix is based on the modes presented in [123].

First, we give an example of a length expander mode, which could be useful at low
frequencies. Since the mechanical resonance frequency of this mode is set by the (longer)
length dimension of a crystal bar rather than the thickness dimension of a thin plate, it
could probe lower frequencies using a crystal of similar size compared to a thickness mode.
The length expander mode, however, typically has a lower mechanical Q-factor than the
thickness mode [128].

The second mode we include in this appendix is a thickness mode of a thin plate with
a lateral electric field. Like the thickness mode in the main text, the acoustic excitations
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propagate in the thickness direction of the crystal, i.e. the shortest dimension of the
thin plate, but the electrodes are now placed on the minor faces so that the direction of
electrical excitation is perpendicular to the thickness direction instead of parallel. This
mode is less well explored experimentally but has some theoretically promising features:
the axion induced voltage is integrated over the length of the plate rather than the thickness
direction, which could increase the signal size by around an order of magnitude, while in
principle having similar mechanical losses to the standard thickness mode. In addition, the
electromechanical resonance frequency of the crystal coincides with the resonant frequency
of the signal, unlike in the parallel field case where the signal frequency coincides with
antiresonance, which could also improve the sensitivity of the setup and make frequency
scanning simpler.

Another useful measure for comparing the potential effectiveness of different modes
is the electromechanical coupling factor k, which expresses the proportion of electrical
energy that can be converted into mechanical energy by the crystal, or vice versa, and
can be seen as a measure of the strength of electro-elastic interactions of a given mode
[123]. High coupling factors suggest a larger piezoaxionic signal due to efficient conversion
of mechanical energy, and can also be seen directly from Eq. A.32 to lower the mechanical
losses of the system. We will see that the new modes here have coupling factors that are
comparable to the original length expander mode, which has k ∼ 0.09 for quartz with
parameters as given in [197].

We focus on longitudinal modes rather than shear modes since these develop larger
quality factors at very low temperatures [129, 139]. Nevertheless, we briefly mention here
that one of the most commonly used modes in quartz is the thickness shear mode, which
has the largest coupling factor k ∼ 0.14. To obtain analogous expressions for Va, Zcrys,
and Q for the thickness shear mode, a similar analysis to Sec. 3.2 applies if ones takes
the thickness, wavenumber, and electric field to be aligned in the 2-direction (ℓ2 ≪ ℓ1, ℓ3,
k ∝ x̂2, and E ∝ x̂2), and the displacement in the 1-direction (u ∝ x̂1). The constitutive
equations then take the same form as Eqs. 3.52,3.53 with the replacements: T1 → T6,
S1 → S6, E1 → E2, D1 → D2, Î1 → Î2, c

D
11 → cD66, h11 → h26, β

S
11 → βS

22, ξ11 → ξ62, and
ζ11 → ζ22.

Length expander mode in bar with the axion-induced electric field parallel to
length

Consider a narrow bar with its length along the x1-direction, and cross-sectional dimensions
that are small compared to its length: ℓ2, ℓ3 < ℓ1. The electrodes are placed on the faces
normal to the x1-direction. Like with the thickness modes, D2 = D3 = 0 andD1 is spatially
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uniform. Negligible cross-sectional dimensions gives only T1 ̸= 0. We therefore choose D
and T as independent variables, which suggests using the following alternative form of the
constitutive equations [123]:

S1 = +sD11T1 + g11D1 + ξ′11Î1θa, (A.37)

E1 = −g11T1 + βT
11D1 − ζ T

11Î1θa. (A.38)

We see that the nuclear spins should be polarized in the x1 direction. The matrices of
proportionality constants, written in terms of those contained in the internal energy of
Eq. A.16, are given by:

sD = (cD)−1, (A.39)

g = h sD, (A.40)

βT = βS − h sD h⊺, (A.41)

ξ′ = sD ξ, (A.42)

ζT = ζ + h sD ξ; (A.43)

where superscripts T and D denote tensors defined at constant stress or electric displacement
(and superscript ⊺ once again denotes a transpose).

The equation of motion for this mode is ρü1 = ∂1T1 = ∂21u1/s
D
11. The solution to

this equation that also satisfies the boundary conditions at the free surfaces T1 = 0 at
x1 = (0, ℓ1) is:

u1 =
g11D1 + ξ

′
11Î1θa

ω/vD
(A.44)

×
[
sin

ωx1
vD

− tan
ωℓ1
2vD

cos
ωx1
vD

]
,

with vDb =
√

1
ρsD11

the crystal sound speed for a bar with constant-D conditions. Above, the

quantities u1, D1, and Î1 are again assumed to be oscillatory with angular frequency ω.

Rearranging the constitutive equation for the component E1 in terms of S1 gives:

E1 = −g11
sD11

S1 +

(
g211
sD11

+ βT
11

)
D1 +

(
g11ξ

′
11

sD11
+ ζT11

)
Î1θa, (A.45)
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which can be integrated over the length of the crystal to find the voltage across the elec-
trodes like for the thickness modes:

V =

∫ ℓ1

0

dx1E1 = ZI + Va, (A.46)

Va = −
[
g11ξ

′
11

sD11

2vD

ω
tan

ωℓ1
2vD

− ℓ1

(
g11ξ

′
11

sD11
+ ζT11

)]
Î1θa, (A.47)

Z =
1

iωCc

[
1− k2

2vD

ωℓ1
tan

ωℓ1
2vD

]
, (A.48)

Cc =
ℓ2ℓ3
ℓ1

(
g211
sD11

+ βT
11

)−1

, (A.49)

k =
g11√

g211 + βT
11s

D
11

. (A.50)

For quartz, the coupling factor k of this mode is ∼ 0.10, which is comparable to the
thickness expander mode in the main text.

Thickness expander mode with axion-induced electric field perpendicular to
thickness

Like in Sec. 3.2, we will again take the piezoelectric crystal to be a rectangular prism
with side lengths ℓi of high aspect ratio (thin plate): ℓ2 ≪ ℓ1, ℓ3. Notice this time we have
oriented the crystal slightly differently, with l2 rather than l1 being the thickness dimension.
The faces with electrodes are normal to the x1-direction, which leads to the boundary
condition that on the faces with electrodes E2 = E3 = 0. The surfaces with electrodes
are also equipotential surfaces, meaning that E1 is independent of x2, i.e. ∂E1/∂x2 = 0
The plate is considered to be laterally clamped, so that only S2 ̸= 0, with the other 5
strains vanishing identically. On the free surfaces at x2 = (0, l2), the stress T2 = 0. These
conditions suggest that the independent variables are chosen to be S and E, which leads
to the constitutive equations:

T2 = +cE22S2 − e12E1 − ξE21Î1θa, (A.51)

D1 = +e12S2 + ϵS11E1 − ζ ′11Î1θa. (A.52)
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The nuclear spins are polarized in the x1 direction. The Voigt matrices of proportionality
constants are given by:

cE = cD − h⊺ϵSh, (A.53)

ϵS = (βS)−1, (A.54)

e = ϵSh, (A.55)

ξE = ξ + h⊺ϵSζ, (A.56)

ζ′ = ϵSζ. (A.57)

The wave equation for this mode is ρü2 = ∂2T2 = c22 ∂
2
2u2. As usual, we take harmonic

factors to be implicit. The solution to the wave equation that satisfies the boundary
conditions listed above is given by

u2 =
e12E1 + ξE21Î1θa

cE22ω/v
E

(A.58)

×
[
sin

ωx2
vE

− tan
ωℓ2
2vE

cos
ωx2
vE

]
,

with vE =
√

cE22
ρ

the crystal sound speed for a bar with constant-E conditions.

We can now find the current in the piezoelectric by integrating the time derivative of
the electric displacement over its thickness:

I = ℓ3

∫ ℓ2

0

Ḋ1 dx2, (A.59)

while the voltage across the electrodes is given by the integral over its length:

V =

∫ ℓ1

0

E1 dx1, (A.60)
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this gives the results:

I =
V

Z
+ Ia, (A.61)

Ia = iωℓ3

[
e12 ξ

E
21

cE22

2vE

ω
tan

ω l2
2vE

− ζ ′11l2

]
Î1θa, (A.62)

1

Z
= iωCc

[
1 + k2

2vE

ωℓ2
tan

ωℓ2
2vE

]
, (A.63)

Cc =
ℓ2ℓ3
ℓ1

εS11, (A.64)

k =
e12√
cE22ϵ

S
11

; (A.65)

where we see that the axion signal enters as a current source in parallel with the crystal.
The coupling factor k in quartz is almost identical to the other thickness expander mode,
with both having k ∼ 0.09 for quartz parameters. Converting to an equivalent voltage
source gives:

Va = IaZ =
ℓ1
ϵS11

{
1 + k2

2vE

ωℓ2
tan

ω ℓ2
2vE

}−1

(A.66)

×
[
e12 ξ

E
21

cE22

2vE

ωℓ2
tan

ω ℓ2
2vE

− ζ ′11

]
Î1θa.

At the mechanical resonance frequency of the plate, f = 2vE

l2
, the admittance 1/Z diverges,

implying that the plate is also at electromechanical resonance (assuming it is not yet loaded
by external electrical components). The equivalent circuit components can be found using
Eqs. A.34, A.35 and A.36.

The additional modes presented in this appendix suggest that by changing the ori-
entation of the crystal, the direction of nuclear spin polarization and the placement of
electrodes, one could improve the frequency range and sensitivity of the experiment when
subject to limitations in number of crystals and their size. A full optimization analysis
including a larger variety of crystal modes such as these will be left to future work.

116



Appendix B

Appendices for the Piezoaxionic
Force

B.1 MQM and Rotational Invariance

The MQM of a nucleus is proportional to the tensor:

tfg =
1

4I (2I − 1)

[
IfIg + IgIf −

2

3
δfgI(I + 1)

]
(B.1)

Where I of any general dimension is given by:

(Ix)ab =
ℏ
2
(δa,b+1 + δa+1,b)

√
(I + 1)(a+ b− 1)− ab (B.2)

(Iy)ab =
i ℏ
2

(δa,b+1 − δa+1,b)
√
(I + 1)(a+ b− 1)− ab (B.3)

(Iz)ab = ℏ(I + 1− a)δa,b (B.4)

For an ensemble of spins:

⟨tfg⟩ = tr(ρ tfg) = ρab(tfg)ba (B.5)

where ρ is the density matrix describing the ensemble of nuclear spins. When the spins
are unpolarized, the density matrix is given by:

ρab = δab
1

2I + 1
(B.6)
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so we find

⟨tfg⟩ =
1

2I + 1
(tfg)aa (B.7)

By rotational symmetry, we can see immediately that ⟨tfg⟩ = 0 for f ̸= g. We will now
examine the diagonal elements f = g. Using eq. B.4:

(Iz)ab(Iz)ba =
2I+1∑
a=1

(I + 1− a)2 (B.8)

so we find

⟨Iz Iz⟩ =
I(I + 1)

3
= ⟨Ix Ix⟩ = ⟨Iy Iy⟩ (B.9)

where the second and third equalities follow from rotational invariance. We can then see
for diagonal elements, ⟨tfg⟩ = 0 once again. This suggests that we need a breaking of
rotational invariance in the ground state of our nuclei, which will be supplied by polarizing
the nuclear spins.

B.2 Nuclear Spin Polarization Via Hyperfine Interac-

tions

Nuclear spin polarization in equilibrium at temperature T and an external magnetic field
B0:

⟨Î⟩ = B̂0 tanh

[
µB0

T

]
. (B.10)

For µ = µN (nuclear magneton), B0 = 10T, and T = 10mK, we have µB0/T ≈ 0.366. In
a magnetic material with polarizable electron spins, however, the effective magnetic field
at the nucleus may be increased due to hyperfine interactions, allowing for O(1) nuclear
polarization at higher temperatures, i.e. ⟨Hhf⟩ = −µ ·Bint, where

⟨αJ I F M |Hhf |α′ J I F M⟩ = 1

2
AK

+B
3
4
K(K + 1)− I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)

(B.11)

K = F (F + 1)− J(J + 1)− I(I + 1) (B.12)
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and J = L+S is electron angular momentum, F = I+J is the total angular momentum of
the atom, A is the magnetic hyperfine structure constant, and B is the electric quadupole
constant.

For the isotope Eu-153, the expected hyperfine energy splittings are of the order of
∆Ehf ≈ 10−6eV for the first excited 6P5/2 state, corresponding to a temperature of 0.01K
[181]. For Np-237, ∆Ehf ≈ 10−5eV, meaning that temperatures as high as 0.1eV should
suffice for O(1) nuclear spin polarizations [180].

For Np-237, this higher temperature has the added advantage that it is at the threshold
temperature before which the setup will become too heated by the radiation emitted. A
dilution refrigerator’s cooling power depends on the target temperature T and the 3He
flow rate ṅ [151]:

Q̇ ≈ 8.4µW

(
ṅ

10−3mol/s

)(
T

10mK

)2

. (B.13)

The decay heating power of 23592 U is approximately 60µW/kg [150] and for 237
93 Np is 0.02W/kg.

For the maximum volume of material considered here, (300mm)2 × 0.5cm, this limits the
two materials listed here containing 237

93 Np, with densities around 6.5g/cm3, to a minimum
temperature of around 0.1K.

B.3 Magnetic Quadrupole Moment Matrix Elements

The derivation of the MQM operator is detailed in references [169, 183]. The coefficient of
the MQM operator in eq. 4.14 is given explicitly by:

Cj =
96(κ1 + κ2 − 2)sgn(κ1)sgn(κ2)(sin(π(γ1 − γ2)))

π
2∏

i=−2

((γ1 − γ2 − i)(γ1 − γ2 + i))

(B.14)

γ =
√

(j + 1/2)2 − Z2α2 (B.15)

κ = (l − j)(2j − 1) (B.16)

where j, l and total and orbital angular momentum respectively, and the indices 1, 2 refer
to the two states in the matrix element of eq. 4.14. The individual matrix elements of
⟨Ωp3/2,mj

|σmr̂k + σkr̂m − 2(σ · r̂)r̂kr̂m|Ωs1/2⟩ are:
mj,s = +1/2,mj,p = +3/2:
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
0 0 −

√
3
2

5

0 0 −1
5
i
√

3
2

−
√

3
2

5
−1

5
i
√

3
2

0

 (B.17)

mj,s = +1/2,mj,p = +1/2:  −
√
2
5

0 0

0 −
√
2
5

0

0 0 2
√
2

5

 (B.18)

mj,s = +1/2,mj,p = −1/2:  0 0 3
5
√
2

0 0 − 3i
5
√
2

3
5
√
2

− 3i
5
√
2

0

 (B.19)

mj,s = +1/2,mj,p = −3/2:
√
6
5

−1
5

(
i
√
6
)

0

−1
5

(
i
√
6
)

−
√
6
5

0
0 0 0

 (B.20)

mj,s = −1/2,mj,p = +3/2: −
√
6
5

−1
5

(
i
√
6
)

0

−1
5

(
i
√
6
) √

6
5

0
0 0 0

 (B.21)

mj,s = −1/2,mj,p = +1/2:  0 0 3
5
√
2

0 0 3i
5
√
2

3
5
√
2

3i
5
√
2

0

 (B.22)

mj,s = −1/2,mj,p = −1/2: 
√
2
5

0 0

0
√
2
5

0

0 0 −1
5

(
2
√
2
)
 (B.23)
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mj,s = −1/2,mj,p = −3/2: 
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 (B.24)
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