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Abstract 

This thesis inves tigates resource allocation at an output port of an Asynchronous 

Transfer Mode (ATM) switch. The resources considered are b d e r  space and link 

capacity. The objectives are to provide efficient use of resources to obtain bet- 

ter cell loss performance, to guarantee a minimum amount of resources to protect 

weU-behaved trafic, and to be feasible. To this end, the Complete Sharing with 

VirtuaI Partition (CSVP) resource allocation strategy introduced by Wu and Mark 

[WM95] is applied to both buffer space and link capacity allocations to constitute 

the Work-conserving Weighted Round Robin-Complete S h e g  with Virtual Par- 

tition (VVRR-CSVP) resource allocation mechanism. This allocation mechanisrn 

provides fbll sharing of b d e r  space and link capacity among aIl tr&c flows' i-e.. 

adopts a work-consenring queneing discipline. and thus achieves maximum resource 

utilization. It also possesses the mechanics to guarantee minimum amounts of buffer 

space and link capacity. 

The Work-conserving WRR-CSVP resource allocation mechanisrn was imple- 

mented as an application program with an architecture that permits direct map- 

ping to hardware design, in order to obtain insights for implementation. Then. an 

emulator was developed by adding peripheral software to it to evaluate system per- 

formance such as cell loss, ceIl delay, and cell delay variation. The efficiency of our 

resource docation mechanisrn and its capability to guarantee a minimum amount 

of resources are demonstrated by emulation for both single node and end-to-end 

performance. I t  is also shown that the virtud partitioning of buffer space can be a 

u s a  tool to adjust cell loss performance without a£Eecting cell delay and cell delay 



variation. Three implement ation issues are raised regarding the det ailed algorit hms 

and some altemative mechanisms are pro~osed. These alternatives are compared 

for their cell loss performance and design guidelines are provided. 

Finally, a hardware design derived from the software irnplementation is pro- 

posed and its feasibility is discussed. Our resource allocation mechanism should be 

implementable for small switches, such as 4 x 4. 
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Chapter 1 

Introduction 

1.1 Background 

The necessity of high speed public network service to support forthcoming mul- 

timedia applications was predicted in the 1980's and the concept of the Broad- 

band Integated Services Digital Network (B-ISDN) was established [See. e . 0  

[Hanâg, Kle911). In fact, the recent emergence of the popular internet services 

proved the insufficient bandwidth of current public telecommunication services. 

The demand for larger bandwidth is higher than ever. 

Asynchronous Transfer Mode (ATM) has been adopted as the protocol stan- 

dard for the B-ISDN by the Comité Consultatif International de Télégraphique et 

Téléphonique ( C CITT) , which is now the International Telecommunication Union- 

Telecommunication S tandardization Sector (ITU-T) [CCI89]. The protocol refer- 

ence mode1 [CCISla], the speufication of ATM Layer [CCISlb], the functional de- 

scription of ATM adaptation layer (AAL) [CCISZc], and the spedcat ion of AAL 
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[CCISld] were published by the CCITT in 1991. The ATM Forum was formed 

to hirther pursue the details of the protocol standard contained in "ATM User- 

Network Interface Specification" [ForSB]. In the meantirne: some commercial prod- 

ucts of the local area network (LAN) version of ATM have already launched into 

the market. Reports of actual use of ATM networks can be found in [NGT+95, 

KKiM'9 71. 

The heterogeneous services supported by ATM networks include applications 

such as packetized voice, image, video, electronic message, transaction data, and 

file transfer. which create various types of traftic flows. Often, these different ap- 

plications have varied requirements of quality of service (QoS). such as cell loss 

ratio, cell delay. and cell delay variation. For example, packetized voice and video 

transmission services may require a certain delay bound while being able to tolerate 

a certain amount of loss, whereas transaction data and file transfer services may 

require very s m d  loss ratio but can tolerate some delay. It is one of the goals of 

ATM networks to provide guaraateed QoS to users while achieving the best net- 

work efficiency possible. In order to accomplish this goal. network resources at 

multiplexers and switches have to be careMy managed. This work is concerned 

with resource allocation at multiplexers and switches, paying attention mainly to 

cell loss performance. 

1.1.1 ATM Networks 

An ATM nehork  is a mesh network, where ATM multiplexers and demultiplexers 

are located at the edge of the network, and the ATM switches in the interior of 
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the network. User t r a c  enters an ATM network fiom an ATM multiplexer, rnay 

traverse ATM swit ches, and exits a t  an ATM demultiplexer. 

The architecture of ATM is built to support various user applications in the same 

structure. Various user applications generate tr&c flows with k a n t  characteris- 

tics. A srnall fixed size block, referred to as a ce[% is adopted as the transmission 

unit of ATM networks in order to absorb the variations. 

Some applications create intense traffic for a short period of t h e  but do not 

utilize the bandwidth of the network throughout the c d  duration. Taking this into 

consideration, the architecture of ATM is airned at achieving bandwidt h efficiency 

by statisticdy multiplexing such bursty t r a c  flows in order to support more users' 

which is referred to as multiplexing gain. Buffering of cells at the ATM multiplexers 

and the ATM switches is necessary to realize statistical multiplexing. 

An ATM c d  is 53 bytes, which consists of a 5-byte header field and a 48-byte 

information field. The stnicture of an ATM cell is illustrated in Figure 1.1 [CCISlb. 

For951. The mode of service is comection-oriented and switching and multiplexing 

are cell-oriented. An ATM connection, virtual circuit (VC), is identiiied by a pair 

of Virtual Path Identifier (VPI) and Virtual Channel Identifier (VCI). 

1.1.2 ATM Switch 

At an ATM switch, the paths of cells from input ports to output ports may c o f i c t  

internally. Also, more than one cell arriving at  the input ports may be destined for 

the same output port and create output coxfbcts. These switching c o d c t s  may 

cause blocking of cells. It is one of the objectives of ATM switches to route cells 
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Figure 1.1: ATM ceU format 

arriving at the input ports successfully to the destination output ports. In order to 

solve output conflict, buffering of cells is necessary since the capacities of an input 

link and an output link are the same. BufFering of cells is also needed tu obtain 

multiplexing gain, as mentioned in the previous subsection. The cells in the b&es 

have to be transmitted to the output link in some order. Thus, the key functions 

of an ATM switch are routing, buffering, and scheduling. 

The design of an ATM switch which minimizes the blocking of cells due to 

switching conflict has been a major challenge in the realization of ATM networks. In 

fact. the ATM switches currently in the market are non-blocking. A number of ATM 

switch designs have been proposed, focusing mainly on routing. The various design 

approaches in the early years are summarized in [TobSO]. The shared medium type 

switches, such as the Synchronous Composite Packet Switching [TYNCS7], are built 

on a bus or ring structure and use a medium sharing method such as tirne division 



multiplexing. This architecture is simple and provides non-blocking. However, the 

shared medium architecture faces significant difliculties in increasing the interna1 

speed to handle a large numter of input ports. The shared memory type switches. 

such as the Prelude switch [DCS88]: the general-purpose ATM switch [KSCSl]. and 

the Shared B d e r  Memory Switch [EK0+93], also realize non-blocking. However. 

this architecture is known to be unsuitable for a large switch [AD88]. 

Larger switches are needed for the wide area nehKork (WAN) version of ATM. 

The space-division type switch, in which the routes for cells fkom the input ports 

to the output ports are established simultaneously, may be the solution to realize a 

large non-blocking switch. A banyan network is a multistage interconnection net- 

work where there exists exactly one path Eom any input port to any output port. 

Well-known interconnection networks such as ornegay flip, cube, shde-exchange. 

and baseline belong to the class of banyan networks. In banyan networks? not only 

blocking due to output codic t  but also intemal blocking is inherent; the contention 

of a link inside rnay occur due to the confiiction of paths of input-port-output-port 

pairs. In order to increase throughput of the banyan based switches, b d e r s  rnay 

be placed internally such as the Integrated Service Packet Network [Tu.86]. Perfor- 

mance of the buffered banyan swikhes is studied in [KLGgOb]. Intemal blocking 

can be avoided by a particular interconnection of banyan network, which is referred 

to as a sort-banyan network [KLGgOa, Huigl]. Intemal blocking can also be avoided 

by adclhg a Batcher sorter network in &ont of a banyan network. This Batcher- 

banyan is adopted in switches such as the Sunshine switch [GSL94I1 the MULTI- 

PAC switch [TurSO], and the Shared Concentration and Output Queueing switch 
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[CM93, CM941. The Pipeline banyan switch [WYgrj] consists of a control plane 

and data planes, which are of the same banyan topology; the control plane is used 

for path reservation wkile the actual cell transmission is performed on data planes. 

The Shuffleout [BD GP94, D G P N ]  uses an interconnection of different switching 

elements firoui those used in banyan networks to prevent internal blocking without 

internal bsering. A crossbar switch, such as the Bus Matrix Switch [NTFH87]. 

consists of an m a y  of cross points. each of which corresponds to an input port- 

output port pair. In a Knockout switch, a broadcast bus fÏom each input port is 

connected to the output ports by dropping lines to achieve a complete interconnec- 

tion of input port-output port pairs [YHA87, EYH87, Chaglb, MLLK95, KL951. 

By allowing multipaths fiom input ports to the destination output ports. both in- 

terna and output blockings can be avoided. Such an architecture is proposed in 

[LSSSb. WLG94, Kim94, JU95, MSH951. 

The location of buffers has a s igdcan t  impact on switch performance. Between 

input and output queueing, the output queueing approach has been shown to be 

more efficient (KHM87, HKSS]. Therefore, output queueing is generally preferred. 

There is another reason to favor output queueing. It is known that a sophisticated 

service scheduling scheme is necessary to guarantee delay QoS, as we further discuss 

in the following subsection. Output queueing provides the flexibility to implement 

such a scheduling scheme: an output port system consisting of a bufFer allocation 

controller and a service scheduler can be adopted, if a fast non-blocking switching 

fabric, where cells are routed fkom input ports to output ports without blocking, 

is available. Such an architecture can be seen in [Chagla, CU95, LLG961. By 
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Figure 1.2: An outpiit buffering ATM switch 

assuming a non-blocking switching fabric, this work considers such an output port 

system of an ATM switch illustrated in (Figure 1.2). 

1.1.3 Service Scheduling Schemes 

The average delay and delay variation have been the issue of study on traditional 

communication networks, which provide best effort services. However . ATM net- 

works intend to provide QoS parantee; delay sensitive sources such as real-time 

applications may require bowided delay and delay variation. This c a b  for sophis- 

ticated scheduling of ceUs for transmission. 

One of the objectives of scheduling schemes proposed for ATM switches is to 

partition the link capacity and provide the required bandwidth to each VC so that 

the delay and the delay variation bounds are provided. It is a chdenging task 
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to reach this objective since ATM networks are slotted time systems due to the 

fixed size ce&. In order to support as many VCs as possible or to offer better 

performance to each VC, it is generdy preferred for scheduling schemes to be 

efficient in the utilization of the link capacity. The scheduling scheme also needs to 

be computationally inexpensive in order to cope with the speed of ATM networks 

and to support a number of VCs. 

A number of scheduling schemes have been proposed and are summarized in 

[Zha95], where the scheduling schemes are categorized into the classes of work- 

conserving schemes and non-work-conserving schemes. When a server never be- 

cornes ide  as long as packets (or c d s )  exist in the queue (or buEer) to transmit' 

the queueing system is said to be work-conseruing (See. e.g., [Kle76? KK771). There- 

fore, the work-conserving schedullig schemes ma,ximaUy utilize link capacity. With 

a non-work-conserving discipline, on the other hand, the server may become idle 

even when there are cells in the buffer waiting to be transmitted. Therefore, the 

non-work-conserving schemes may not maximally utilize the link capacity. How- 

ever, generdy speaking, the non-work-conserving scheduling schemes adopt corn- 

putationally less expensive algorithms. such as iked time slot assignrnent S. t han 

the work-conserving schemes. 

The class of work-conserving schemes includes VirtualClock [ZhaSl], Packetized 

Generalized Processor Sharing (P GPS) [DKSSO, P G93], Worst-case Fair Weighted 

Fair Queueing (WF2Q) [BZ96], Self-Clock Fair Queueing (SCFQ) [Gol94j, Delay 

Earliest-Due-Date (Delay-EDD) [FVSO? ZS941, and Head-Of- the-Line Earlies t-Due- 

Date (HOL-EDD) [VM96, Vis961. VirtualClock scheme aims to emulate the time 



division multiplexing. P GPS and WF2 Q at temp t to approximate duid fair queueing 

(FFQ) or Generalized Processor Sharing (GPS) (See, e.g.: [Kle76]). Unlike PGPS or 

W'W, SCFQ approximates FFQ without maintainhg a reference FFQ. In Delay 

EDD, which is an extension to the conventional Earliest-Due-Date-First scheduling: 

a deadline is assigned to each cell to provide bounded delay. HOGEDD attempts 

to transmit ceUs belonging to a VC in a constant interdeparture time without 

time-s tamping. For these work-conserving scheduling schemes, efforts have been 

made to obtain not only a single-node delay bouncl but also an end-to-end delay 

bound for some classes of input traffic such as the ( a ' p )  tr&c mode1 [CruSla] or 

the (Xmin,Xave, 1, Smax) traffic modd [FV90] (Sec: e.g.. [PG94, Gol95. Zha95, 

VisSG]). These work-conserving scheduling schemes require sorted priority queue 

algorithms and thus may become computationdy expensive when a large number of 

VCs are supported. Some of these schemes also require floating point calcdations. 

The non-work-conseming schemes may not utilize the link capacity as effi- 

ciently as the work-consenring schemes but have their advantages. Not only do 

they guarantee delay bound but they also bound the output t r a c  so that the 

end-to-end delay is bounded for a more general class of tratfic than those used 

in the analysis of the work-consenring scheduling schemes. In addition. as al- 

ready mentioned, they usually adopt simpler algorithms. The class of non-work- 

conserving schemes includes Weighted Round Robin ( WRR) [KS CS 1. FUU95]. Hi- 

erarchical Round Robin (=) [KKKSO], Stopand-go [Go190], Jitter Earliest-Due- 

Date (Jitter-EDD) [VZFSl], and Rate-Controlled Static Priority (RCSP) [ZFSS]. 

In WRR, the t h e  ax is  is divided into fixed length kames of S tirne slots. The 



kth VC receives Sk time dots for every fkame. Thus the transmission rate given 

to this VC, Ck is given by Ck = C x S k / S .  where C is the link capacity. Since 

S and Sk are integers, the capacity allocation granularity to provide Ck is limited. 

However, since the time slot allocation is fixed and no cornparison is required. the 

WRR is seen to be one of the computationally least expensive schemes. HRR in- 

troduces hierarchical structure into WRR to improve the granularity of capacity 

allocation. S top-and-go scheme utilizes ano ther haming strategy. where arriving 

hames are defined for an input Li&. and departing &ames for an output link; the 

amiving frames are mapped to the departing kames by introducing a constant de- 

lay: the transmission of c d s  tkat have arrived during a fiame is dways postponed 

until the beginnkg of the next kame to ensure the cells on the same fiame at the 

source stay in the same frame throughout the network. In this scheme. synchro- 

nization between input and output links is necessary, and thus it may be difEcult 

to actually implement this scheme since generally? input and output links are not 

synchronized in ATM networks. Jitter-EDD extends Delay-EDD to provide delay 

variation bounds by the-stamping the difference between the deadline and the ac- 

tua1 finishing tirne. A RCSP server consists of a rate-controller and a static priority 

scheduler, and provides flexibility in the allocation of delay and bandwidth. 

A class of scheduling schemes referred to as Rate-Controlled Service (RCS) 

was introduced by Zhang and Ferrari [ZF94]. The non-work-conserving scheduling 

schemes listed above belong to this class. The end-to-end delay bound of the 

schednling schemes belonging to the RCS is studied in [ZF94, Zha95, GGPSSG]. 

The non-work-conserving schemes can be easily modified to be work-conserving. It 
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is shown in (GGPS 961 that the RCS schemes created From the non-work-conserving 

schemes have the same end-teend delay bound as the original RCS schemes. 

By focushg on two parameters, the latency and the allocated rate, a class of 

scheduling schemes referred to as Latency-Rate Semers was introduced by Stiliadis 

and Varma, and the end-to-end delay bound was derived [SVSG]. This class includes 

scheduling schemes suck as VirtualClock, P GPS, S CFQ, and WRR. 

There are a few approaches to control cell loss performance by scheduling, such 

as the threshold-based priority scheme in [LS93a] and the work-conserving schemes 

proposed in [LS96b]. 

It should be noted that in order to provide VC based deiay performance guaran- 

tee by the scheduling schemes listed in this subsection, it is necessary to maintain 

VC based queues of cells in the b d e r  space. Therefore, the propos& of these 

scheduling schemes assume complete partitioning buifer allocation and some &O 

assume infinite buffer space for analysis. 

1.1.4 Buffer Allocation Schemes 

As already mentioned, buffering of cells is necessary at an output port of a non- 

blocking ATM switch not only to support arrivals destined to the same output 

port but also to sustain bursts and obtain statistical multiplexbg gain. Buffer 

allocation for ATM switches is often discussed for the shared memory type switch 

architecture, where the bufEer space is shared among the output ports (See, e.g., 

[CGGK95, LS96al). This work, however, considers the b d e r  sharing among the 

traffic flows. the VCs, at an output port. 
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The b&er size caunot be infinite and shortage of bufFer space leads to a high 

loss probability. Therefore, efficient use of the finite bnffer space has been one of 

the most significant issues of study in traditional communications networks. The 

complete sharing (CS). the complete partitioning (CP), and the partial shanng 

(PS) b d e r  allocation schemes are well studied for Poisson arrivals and exponential 

service time in [KKSO]. The Sharing with Maximum Queue Length, the Sharing 

with a Minimum Allocation, and the Sharing with a Maximum Queue and Minimum 

Allocation strategies are discussed for the PS scheme. 

ATM networks impose new challenges. The bursty traffic of ATM networks 

and the low cell loss requirements of the users demand a large buffer space and 

thus an efficient use of the b&er space. The efficiency is accomplished by sharing 

the buffer space. However, when the bnffer space is shared by two or more tr&c 

flows. a bursty traffic flow may mornentarily over-subscribe the buffer space aud 

cause unnecessary ceU loss for a non-bursty trafic flow since such a tr&c %ow 

may require a certain amount of b d e r  space constantly. In. order to prevent this 

from occurring, a mechanisrn to guarantee a minimum amount of bufFer space 

is necessary. In addition, since ATM is connection-oriented. the order of cells 

belonging to the same t r a c  flow has to be preserved. 

The protocol of ATM specifies the C d  Loss Prionty (CLP) field in the header 

of an ATM c d  (See Figure 1.1). Thus, providing a very low loss ratio to the high 

priority ce& designated by the CLP field has been the main focus of study in buffer 

allocations for ATM switches. 

Generdy speaking, there are two kinds of cell priontization strategies. One is 
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to divide traflic flows into two pnority classes, high and low, depending on the cell 

loss sensitivity of the source applications. Cell loss prioritization for this strategy 

can be accomplished by a scheduling scheme using two priority queues assigned to 

the two priority classes (See, e.g., [LS93a]). The other priorîtization strategy is to 

give higher priority to the significant cells in the same t r a c  flow. In this case. 

the two priority queue rnechanisms above may not be able to preserve the order of 

cells. Some other mechanislr is necessary. 

A shared buffer constructed by a single fist-in-fist-out; (FIFO) queue maintains 

the order of cells while achieving b a e r  efficiency. The cells are transmitted by the 

Head of Line order of the FIFO queue. Several priority mechanisms have been 

proposed using this single FIFO queue. Nested thresholds are given to the FlFO 

queue to restrict the admission of cells with different priorities in [PF91]. In [LS91] 

and [KHBG91], a PS scheme and a mechanism referred to as the pushout scheme 

are discussed. In this PS scheme, the fkst T space of the FIFO queue is shared 

and the rest of space is dedicated for higher priority ceus, i.e., when the total bufFer 

occupancy exceeds T, only high priority cells are admitted. The scherne using the 

pushout mechanism d o w s  traffic flows to fully share the b a e r  space; when the 

buffer becouies saturated, higher priority arrivais are admitted by pushing out lower 

priority ce& in the b d e r  space, Le., the F E 0  queue, while lower pnority arrivais 

are blocked. A PS strategy where a maximum of L space is dowed to the low 

priority cells is discussed in [CGK94]. A temporary buffer can be placed between 

the switching fabric and the actual buffer space to examine the admission of c e b  

arriving in the same t h e  dot. A pushout scheme where low priority cells may be 
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pushed out if the buffer space is over-subscribed by a VC even if' the entire buffer 

space is not fidl is introduced and compared with the other PS schemes and the 

pushout scheme described previously in [TEFP94]. The performance of the pushout 

b&er is studied in [CT94] and [KW94]. 

The queue manager in [CU951 de& with the celI loss and the cell delay priorities 

using several queues of different priority. The server transrnits the ceus according 

to the prionty given to the queues. The cell admission adop ts a pushout mechanism 

with priorities: a cell of a higher priority rnay be admitted by pushing out a cell in 

a lower priorîty queue. Hardware implementation is also discussed. Note that this 

queue manager cannot preserve the order of ce& when a different priority is given 

to  the c e h  belono& to the same t r a c  flow. 

The service scheduiing schemes discussed in the previous section requLe VC 

queues. The single FIFO queue approach described above is not suitable for such 

scheduling schemes. VC queues can be easily established by the CP scheme. How- 

ever. since VC traftic rnay be very burs ty, a significantly large b d e r  space rnay be 

necessary, while the space rnay not be utilized most of the t h e  since the silence 

period may be very long. The CS scheme rnay be a choice for efficiency. However. 

if the bnrsts of two different t r A c  flows collide, it may lead to a large loss rate 

for one of these two t r a c  flows. Or if there is a fairly constant tr&c How. this 

flow rnay suffer from a high cell loss by the bursty trafic even if this flow does not 

require a large buffer space. The Complete Sharing and Virtual Partition (CSVP) 

introduced by Wu and Mark [WM95] is a better mechanism to handle VC queues. 

The CSVP buffer allocation scheme fully utilises the buffer space by complete shar- 
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ing while guaranteeing a minimum buffer space doca ted  by the virtual partition 

using a pushout mechanism. In [WM95], the characteristics of the CSVP buffer 

allocation scheme are analyzed for the multiplexing of two classes of Markov fluid 

processes using a fluid-flow model. The Pushout with Threshold (POT) policy in 

[CGGK95] is the CSVP scheme applied to buffer sharing among the output ports 

of a 2 x 2 shared memory type switch. The switch with POT policy is shown to 

achieve an optimal throughput for Poisson &vals and exponential service t h e .  

1.1.5 End-t O-end Performance Evaluation 

The QoS provided to a VC is defined on an end-teend basis. Therefore: it is impor- 

tant to assess end-to-end performance of ATM networks. Simulation is a straight- 

forward approach to evainate end-to-end performance of ATM networks although it 

may be time consuming. Simulations of a tandem single-server queue model to eval- 

uate end-bend performance of ATM networks are conducted in [Grugl,  YKFSI]. 

More practical trafic is considered in [NLGSG]. A simulation study of a more 

complex topology is performed in [Fri91]. 

ATM networks provide connectioii-oriented services. Therefore, end-to-end per- 

formance analysis of an ATM network would involve investigations of the behavior 

of a connection. This behavior can be studied by a tandem connection of single- 

server queues, where a single server models an output port of a switch in the phys- 

ical chain. Such an approach is used tu analyze conventional narrowband packet 

switching networks with Poisson input [Kle76. HayS4I. In [Fis91], an approxi- 

mation approach using a GIi/GIi/l  model is applied. In [OMM91], the per-ffow 
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interdepartue-time dis tnbution is derived for multiplexiLLg of hterrup ted Bernoulli 

Processes and the departure process is applied as input traffic at the downstream 

node. In [SBPDSS]; a Geo /D/ l  model is used. The trafic characteristics of the 

interior of an ATM network are &O s tudied in [DM95]. End-to-end delay variation 

is studied by characterizhg the departure t r a c  in [MSBS'I]. In [RMW94], it is re- 

ported that the departure process in response to an ON-OFF input, where the ON 

and OFF periods are geometrically distributed, can be approximated by another 

ON-OFF model with different parameter values although the ON and OFF periods 

are no longer geometncally dis tribut ed. 

A merging and splitting technique for the analysis of networks with two-state 

Markov models was originally introduced in [Vit861 and was extended to more 

complex source models and splitting mechanisms in [Stag~].  This approach can 

be seen as another way to decompose a network. In this approach, a network is 

decomposed into the merging points and split ting points. However, the application 

of this technique to the cell streams of ATM networks has not been solved. 

Upper bound analysis is often used to evaluate cell delay and cell delay variation. 

As already mentioned, for the purpose of QoS guarantee, the bounds of end-to-end 

delay and delay variation are the significant performance measmes. Cruz introduced 

a new approach for end-to-end performance analysis which considers delay bound 

instead of traditional mean delay [Crugla, CruSlb]. This approach is extended to 

tail distribution andysis by [Kur92]. Yaron and Sidi applied this method to more 

general source models [YS93]. The performance analysis of the work-conserving 

scheduling schemes introduced in the previous subsection also uses Cruz's approach. 
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However, this approach is not applicable to loss evaluation. 

1.2 Motivation, Objectives, And Methodology 

Non-blocking ATM swit ching fabncs have s t arted to become a reality and resource 

allocation at an output port to provide QoS pa ran tee  is now a s igdcant  issue 

of study. Although mechanisms to provide paranteed delay and delay variation 

performance have been well studied and a nunber of scheduling schemes have been 

proposed. a mechanism to provide low cell loss performance is yet to be further 

discussed. The bursty t r a c  and the low cell loss requirements of ATM networks. 

together with QoS guarantees, c d  for an efficient use of resources, i-e.. bufFer 

space and link capacity. while paranteeing of the minimum amount of resources is 

essential to protect well-behaving users. It is important to fuid a feasible resource 

docation scheme at  the output ports of ATM switches, which allocates both b d e r  

space and link capacity to satisfy these criteria above. 

The results by Wu and Mark [WM95] show that the C S W  butfer allocation 

scheme obtains eincient use of b d e r  space and robustness of buffer allocation 

to guarantee a minimum b d e r  space. This scheme is capable of providing VC 

based queues and thus is suitable for the scheduling schemes proposed for ATM 

switches. If efficient use of link capacity and a guarantee of a minimum amount 

of transmission capacity can be achieved by applying the C S W  strategy to ca- 

pacity allocation, a resource allocation mechanism constructed by cornbining this 

scheduling scheme with the CSVP buffer allocation scheme may be the solution for 

low cell loss senrices. To this end, we propose the Work-conserving WRR-CSVP 
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resource allocation mechanism, which provides maximum resource utilization since 

it is work-conserving, while guaranteeing a minimum amount of buffer space and 

transmission capacity. Furt hermore, if this Work-conserving WRR-CSVP resource 

allocation mechanism can be made feasible at an output port of an ATM switch, 

it will provide a significant impact on the design of ATM switches. Therefore. it is 

necessary to provide detailed feasible algorit hms for implementation. 

In order to investigate the performance and feasibility of the Work-conserving 

WRR-CSVP resource allocation mechanism, an emulation approach is adopted in 

this study. The Work-conserving WRR-CSVP resonrce allocation mechanism is 

implemented as a program on a workstation in order to obtain insights for imple- 

mentation. Then, an emulator is constmcted by developing peripheral software 

to evaluate the cell loss. ceU delay, and cell delay variation performances of the 

Work-conserving WRR-CSVP resource docation mechanism. The cell loss perfor- 

mance of the CSVP scheme was analyzed in [WM95] using a fluid-flow model. For 

tractability, the analysis is limited to a single-node case with two t r agc  flows. The 

emulation approach allows us to investigate the performance for more than two 

tr&c flows and to evaluate other performance measures, such as cell delay and cell 

delay variation, which were not a d a b l e  in [WM95], although our main focus is 

on the cell loss performance. Furthermore, not only is the performance of a single 

node studied, but also the end-to-end performance. 

The software design is mapped to a hardware design specification. The feasibil- 

ity is determined by examining the hardware design. 
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1.3 Contributions 

The major contributions of this dissertation are: (i) the proposal of the Work- 

consenring WRR-CSVP resource allocation mechanism; (ii) software implementa- 

tion of the mechanism with an architecture that pcrmits direct mapping to hardware 

design; and (iii) hardware design and irnplementation specification. The Work- 

conserving WRR-CSVP provides a feasible resource allocation for ATM multiplex- 

ers and switches. This mechanism maximdy utilizes available buffer space and link 

capacity while guaranteeing a minimum amount of buffer space and transmission 

capacity to each traffic flow. By developing an emulator, not only is an understand- 

ing of various performance aspects obtained but also insights for implementation 

of the mechanism are acquired. From these insights, a hardware design is proposed 

and the conditions for implementation are clarified. 

1.4 Scope 

In Chapter 2, the concept of the CSVP resource allocation strategy is introduced. 

This concept is applied to both butfer and capacity allocation to construct the 

Work-conserving WRR-CSVP resource allocation rnechanism investigated in detail 

in this thesis. Then, the performance measures are defined and the queueing be- 

havior is studied. In Chapter 3, the detailed algorithms for the Work-conserving 

WRR-CSVP resource alIocation mechanism are deçcribed and the development of 

an emulator is discussed. Three implementation issues are raised regarding the de- 

tailed algorithms and some alternative mechanisms are proposed. The performance 
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of a single node is studied by emulation in Chapter 4. Also, alternatives proposed 

in Chapter 3 are examined to provide design guidelines in Chapter 4. The emula- 

tor is extended to examine the end-teend performance in Chapter 5, using Motion 

Pictures Expert Group (MPEG) video data as test sources. Chapter 6 proposes 

the implementation strategies for the Work-conservbg WRR-CSVP resource do- 

cation mechanism and discuss its feasibility. Concluding remarks are presented in 

Chapter 7. 



Chapter 2 

The Work-conserving 

WRR-CSVP 

Introduction 

2.1.1 Generic Node 

As aheady mentioned in Chapter 1: non-blocking ATM switching fabrics have al- 

ready started to appear in the market. Therefore, assuming such a switching fab- 

ric, we consider an output-buffering non-blocking ATM switch. Our focus is on 

the mechanisms between an output port of a switching fabric and an output luik, 

where c d s  fiom the s w i t c b g  fabnc are bufFered and transmitted to the output 

link. The essential fimction of this buEered output port system is queue rnanage- 

ment and servicing of multiple traffic flows. Note that this system uses the same 

resource allocation mode1 as an ATM multiplexer. Thus. we refer to this as a 
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generic node. The resource of a generic node is a combination of buffer space and 

link capacity. 

An ATM link is a slotted charnel. Therefore, it is appropriate to assume a 

slotted time system, where a time slot is a time interval long enough to transmit 

one cell. In this chapter, a queueing mode1 of the output port system, or a generic 

node, is formulated as a discrete-the system. The performance measures are &O 

defined in this chapter. 

2.1.2 The CSVP Resource Allocation Strategy 

The objectives of the resource allocation mechanism investigated in this work are: 

to utilize resources efficiently and to guarantee a minimum amount of resources. If 

resources are utilized efficiently, a large number of traffic flows can be supported. or 

lower ceU loss ratio services can be provided for the same t r a c  conditions, @en 

the same amount of resources. By guaranteeing a mkimum amount of resources. a 

maximum level of ceIl loss can be assured. For given finite amount of resources, if 

the resources are shared by all traffic flows, it is maximally utilized and a minimum 

aggregate c d  loss ratio is achieved (See, e.g., [CR87]). The c d  loss ratio of bursty 

traffic is also expected to improve owing to the multiplexing gain attained by corn- 

plete sharing. Let us refer to this as an e s c i e n t  use of resources. As discussed in 

Section 1.1.4, however, if the resources are completely shared without any restnc- 

tion, some traffic flows may s&er fkom nnnecessarily high cell loss ratios. This 

occurs because a bursty tr&c flow may over-subscribe the b d e r  space and cause 

a momentary lack of buffer space for another tr&c flow. When the finite resources 
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are completely partitioned, the resources may not be m&dy utilized. However, 

a minimum amount of resources is guaranteed to each t r a c  flow. Let us refer to 

this as a robust allocation of resources. 

In the CSVP resource allocation strategy introduced in [WM95], the resources 

are shared completely and maximally utilized while a minimum amount of resources 

specified by the virtual partition is paranteed to each tr&c flow. Let K be the 

number of tr&c flows supported by a generic node. The CSVP resource allocation 

strategy is defined as follows: 

Definition 1 (CSVP Strategy) 

In the CSVP resource allocation scheme, 

1. the total resources are partitioned in to  K segments by virtual partition ac- 

cording to the t r a f i c  loads ( o r  some measurement o r  estimation). 

2. under-utilized segments of resources can be utzlzzed by a n  over-subsnibing 

flow, and 

3. this over-subscribed portion o f  resources vtill be returned to the under-utiligng 

Jows when they  need the over-subscribed portion. 

2.2 The Work-conserving WRR-CSVP Resource 

Allocation Mechanism 

Let us consider a generic node characterized by a buffer of B spaces and a service 

capacity of C cells/s. 
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Figure 2.1: The SSVP b d e r  allocation scheme 

2.2.1 The CSVP Buffer Allocation Scheme 

In [WM95]: the CSVP strategy is applied to buffer allocation using a pushout op- 

eration. The C S W  b&er allocation scheme? illustrated in Figure 2.1: is described 

as follows (wM951: 

CSVP Buffer Allocation Scheme: 

1. The total bdfer size B is divided into K segments! Bk: k = 1 J . S  - -  , IC,  such 

xK BE. that B = k=i 

2. The entire buifer space is shared by K trafic flows. Therefore, when the 

b&er is not fd? cells belonging to any tr&c flow are accepted upon arrival. 

3. When the buffer is one of the tr&c flows, Say the ith flow, may occupy 

fewer spaces than Bi. Then there is at least one tr&c flow, Say the jth 

flow, that must be occupying more than Bi spaces. The admission policy will 

admit a newly arriving cell belonging to the ith traffic flow by pushing out a 

cell belonging to the j th  traffic flow from the butfer, but will reject a newly 

arriving cell of the jth t r a c  flow. 

The pushout operation is illustrated in Figure 2.2. 
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Fiorne 2.2: The pushout operation of the CSVP buffer allocation scheme 

When there are only two tr&c flows supported, if a t r a c  flow is under- 

subscribing the b d e r  space in a M buffer, the other traffic flow is the only traffic 

flow which is over-subscribing the b d e r  space. Thus, the description above was 

sufncient for the analysis in [WM95], where only the case of h o  traffic flows was 

considered. However, the existence of more than two t r a c  flows cornplicates the 

problem: there may be two or more tr&c flows over-subscribing the bufFer spaee 

and thus some mechanism is necessary to determine a traffic flow to be pushed out. 

This selection mechanism is fiirther discussed in Section 3.3.2. 

2.2.2 The WRR Scheduling Scheme 

If the CSVP strategy can be applied to capacity allocation, it may form a suitable 

scheduling scheme to incorporate with the CSVP b&er allocation scheme. The 

objectives for the scheduling scheme here are to guarantee a minimum bandwidth 

to each traffic flow and to maximize the utilization of total 1Lik capacity. It is im- 
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portant for the resource allocation mechanism, a combination of a buffer ailocation 

scheme and a scheduling scheme, to be feasible at an output port of an ATM switch. 

Therefore: a computationally less expensive scheduling scheme is preferable' consid- 

ering the computational cost of the CSVP buEer allocation scheme (See Chapter 6 

for further discussion of computational cost ) . 

As discussed in Section 1.1.3, the WRR scheduling scheme described in [KSCSl, 

RRA95] is one of the computationally least expensive scheduling schemes proposed 

for ATM switches, which provides a minimum bandwidth guarantee and a delay 

bound to each traffic flow. Another advantage of the WRR scheme is that the 

output traffic is bounded and thus the traftic characteristics in the interior of the 

network become predictable [RRA95]. In fact. the end-to-end delay is bounded 

IZha95, GGPS961. One of the most important drawbacks of the WRR schedul- 

ing scheme is the lack of the granulacity of capacity allocation as pointed out in 

Section 1.1.3. 

The WRR scheduling scheme provides cell transmissions on a cychc basis. where 

the cycle time is S slots. 

WRR Scheduling Scheme: 

1. The service cycle, S? is divided into Sk, k = 1.2, , K. satisfying S = 

2. For every S time slots, Sk dots are allocated to the kth traffic flow. 

3. At most one cell belon& to the trafnc fiow t o  which the tirne slot is assigned 

is transmitted. 
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Figure 2.3: The WRR scheduling scheme 

4. If tkere is no c d  belonging to the trafic flow to which the time slot is assigned. 

no ceU is transmit ted. 

By this capacity allocation, the kth traffic flow receives a service capacity of Ck 

cellsfs given by 

The WRR scheduling scheme can be seen as a CP resource allocation strategy a p  

plied to capacity allocation. The WRR scheduling scheme is illustrated in Figure 2.3 

The WRR s cheduling scheme belongs t O the class of non- work-conserving schemes: 

no cell transmission may take place even when there is a c d  in the buffer waiting to 

be transmitted. A time dot  is said to be wasted, if the server is idle when the b&r 

is not empty. How many t h e  slots are actually wasted by the W .  scheduling 

scheme? Our emdation study indicates that a fairly large number of t h e  slots (10 

to 20 % of the unused t h e  slots) are wasted by the WRR scheduling scheme (See 
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Section 4.3.1 and Appendix B). Can we make the WRR scheduling scheme, which 

is a CP capacity allocation, more efficient by applying the CSVP strategy? The 

WRR scheduling scheme can be made more efficient by reassigning the wasted dots 

to the other traaic flows. This mechanism is achieved by mo-g Item 4 of the 

WRR scheduling scheme as follows: 

4. If there is no cell belono& to the traffic flow to which the t h e  dot is d o -  

cated, a cell belonging to another busÿ t r a c  flow is transmitted. 

This enhanced scheduling scheme can be seen as an application of the CSVP strat- 

egy to capacity allocation: the time slot reassignment operation enables the system 

to M y  utilize the service capacity while the WRR scheduling scheme guarantees a 

minimum capacity of Ck to the kth traffic flow. Note that this enhanced scheduling 

scheme belongs to the dass of work-conserving schemes. Therefore. this scheme is 

referred to as the Work-conserving WRR scheduling scheme. The addition of the 

t h e  slot reassignment operation preserves the delay bound by the WRR schedul- 

ing scheme [GGPSSG]. However, it should be noted that the output trffic is no 

longer bounded and thus the cell loss performance inside the network may be un- 

predict able. 

Similar to the pushout operation, further consideration is 

than two t r s c  flows are supported. In such a case: there 

necessq  when 

may be two or 

more 

more 

t r a c  flows occupying the b&er space and thus eligible to receive the reassigned 

time dot. A mechanism is necessary to determine which traffic flow is to receive 

the reassigned time slot. This mechanism is firther discussed in Section 3.4.3. 
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2.2.3 The Work-conserving WRR-CSVP Mechanism 

A queueing discipline ( Q D )  specifies both b&er allocation and service scheduling 

schemes. The work-conserving property of queueing systems ( See, e.g., [Klei'6. 

KK771) is specified for the QD's with deterministic service t h e  and finite b d e r  

space, and a class of QD's refmed to as work-conseiving discipline ( W C D )  is defined 

by Clare and Rubin [CR871 as foIlows: 

Definition 2 (Work-conservation [CRS?]) 

Let V denote a set of QD's where cell Zoss ratio ezists. A work-conseniing discipline 

(WCD) is a QD in 2) for which: 

1. no ce22 is blocked from entry  lrnless the buffer is full. 

2. n o  ce12 is rernoved pn'or t o  transmission unless the bufler is full and it is 

replaced by a n e u  arrivai, 

Y .  transmission occurs wheneuer the buffer Zs not  empty.  and 

4 .  cells are imnaediately remoued after the y are transmitted. 

A WCD maximizes throughput and thus provides the lowest aggegate cell loss 

ratio for given total bufFer size, total link capacity. and input traffic [CRS'I]. 

The CSVP b d e r  allocation scheme and the Work-conserving WRR scheduling 

scheme are combined to cons titute a QD referced to as the Work-consenting WRR- 

CSVP resource docation mechanism under investigation. This resource allocation 

scheme satisfies the conditions above and thus belongs to the dass of WCD's. A 

combination of the Work-conserving WRR scheduling scheme and the CS b d e r  
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allocation scheme, the Work-conserving WRR-CS resource allocation scheme. also 

satisfies the above criteria and thus is a WCD. 

Queueing Mode1 of a Generic Node 

2.3.1 Timing Structure 

In our queueing model. it is assnmed that there is a transmission buffer. Therefore. 

when a scheduling decision is made. a ceIl is transferred to this transmission b a e r  

immediately and a cell space is created in the buffer. It is common to have a 

transmission buffer since the speed of an output link is much slower (it takes one 

cell time to transmit a cell) than the speed of the operations inside of an ATM 

switch. In fact. the hardware design proposed in Chapter 6 uses a transmission 

buffer. 

Let us specify the order of operations of the system in a time slot. In the nth 

t h e  dot. the operations of the system occur as follows. Let A denote the slot 

time length. Let O < 6 < c < A/2. The scheduling decision is made at n A  - E .  

If there is a cell in the buffer which satisfies the scheduling conditions, the cell is 

transferred from the buffer space to the transmission b& by n A  - 6, and thus. a 

cell space is created in the buffa. Then, between n A  - 8 and nA. the cells arrive 

to the sys tem. The admission of these newly arriving c e h  is examined in a random 

order between n A  and n A  + 6. The cell admissions and losses occur during this 

tirne. The system is rneasured at time n A  + c. This timing structure is ihstrated 

in Figure 2.4. Note that the parameters, b and E ,  are chosen for convenience of 
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t = 
Slot duration A 

I 

Possible departure The system is measured 
of a cell from the H 

a t this time 
bufTer space to the 
transmi&on buffer CeU admiions and lossea 

H 

Figwe 2.4: Timing structure 

s p e c e n g  the order of operations. Therefore. the symmetric structure around nA 

does not represent actual operations of a real system. Hereafter. the c d  transfer 

from the b d e r  space to the transmission buffer is referred to as cell transmission 

since the ceIl is transmitted to the output link by the end of the time dot. 

2.3.2 Performance Measures 

Let the initial time be dot time n = O. Let uk(n) be an indicator h c t i o n  defined 

by : 

1. if a ceU of kth tr&c flow is transmitted in the nth dot. 

0, otherwise. 
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Let u(n) be an indicator function which indicates whether a cell is transmitted in 

the nth time dot, i-e., 

1, if a c d i s  transmitted in the n th  dot. 
(2.3) 

O? otherwise. 

Note that u(n) = ~ f = ~  ni(n)? i.e., at most one cell can be transmitted in one 

dot interval. Denote the number of cells belongulg to the kth t r s c  flow that are 

transmitted during [O, n] by Uk(n) = xy==, uk(i). Let U ( n )  be the number of cells 

transmitted during [O, n],  Le., U ( n )  = Ci=, ~ ( i ) .  Note that U ( n )  = CC=, uk(n). 
Denote the number of ceUs belono@ng to the kth traffic flow which are blocked 

kom entry in the n th  time slot by Ik(n)' and denote the number of ce& belonging 

to the kth trafEc flow which are pushed out in the n t h  time dot by pk(n). The 

aggreegate number of cells blocked is given by l(n) = CE, Zk(n) and pushed out by 

p(n) = xfZl pe(n). Let Lk(n)  denote the number of cells of the kth traffic flow that 

are blocked during [O: n], i.e., Lk(n) = CL, I k ( i ) ,  and let L(n) denote the number 

of ceUs that are blocked &om entering the buffer during [O, n], Le., L(n) = xi=o 1 (i). 

Similarly, let Pk(n) be the number of cells of the kth t r a c  flow that are pushed 

out during [O1 n], Le., &(n) = z:='=, pk(i) and let P ( n )  denote the number of ceus 

that are pushed out fkom the b&er during [O, n], i.e., P(n)  = CL, p ( i )  Note that 

L(n) = xhi L&) and P ( n )  = CE, P&). 
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Cell Loss Ratio 

As previously mentioned, our main interest is in the cell loss performance. The cell 

loss ratio is defined as follows: 

Definition 3 (Cell Loss Ratio) 

The aggregate cell loss ratio, r ,  is defined by: 

The ce21 loss ratio of the kth trafic flow, r k ,  k = 1.2, . K is defined by: 

We assume stationarity, i.e., that the cell loss ratios: r and r i ,  exist. Therefore. 

with s ac i en t ly  long observation penods. [O. NI, the aggegate cell loss ratio and 

the cell Loss ratios of the kth trafic flow are approximated by: 

and 

respec tively. 
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Ce11 Delay and Cell Delay Variation 

The c d  delay and cell delay variation performances are also examined. First. we 

define cell delay at a generic node as follows: 

Definition 4 (Cell Delay) 

Cel l  d e l a y  a t  a genen'c  n o d e  is defined o n l y  f o r  the cells which are t r a n s m i t t e d .  L e t  

n, be t h e  d o t  t i m e  t h a t  a ce11 is a d m i t t e d  to the buaer a n d  le t  nd be t h e  s lot  t i m e  

t h a t  t h e  ce11 t r a n s m i s s i o n  comple tes  a n d  t h e  ce11 leaves  t h e  s y s t e m .  The ceil delay. 

d .  is def ined by: 

Note that it takes one slot time to transmit a ceIl in the transmission buffer to the 

output link. Therefore. 

Let dkYi be the queueing delay of the ith departure among the &(n) departures 

belonging to the kth traffic flow during [O, n] . The mean ce11 delay of the aggregate 

tr&c and the kth traffic flow are defined as follows: 

Definition 5 (Mean Ce11 Delay) 

T h e  rnean  cell d e l a y  of t h e  aggregate process,  2, is g i u e n  by: 
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The mean  cell delay of the kth t r a f i c  Jow, dk, k = 1: 2, - : K. Es given by: 

Cell delay variation is a measure of the dispersion about the mean cell delay. 

The standard deviation is used to rneasure cell delay variation. 

Definition 6 (Cell Delay Variation) 

The standard deviation of cell delay of the  aggregate process. cd. 6 given by: 

The  stcndard deviation of cell delay of the k t h  t r a f i c  jîow, CT& k = 1. S. - . K .  is 

given by: 

Under a stationarity assumption, if the observation interval! [O' NI, is sufficiently 

long: the approximations to these performance measures are given by: 
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and 

( S .  16) 

Wasted S M  Rate 

The WRR scheduling scheme may waste time dots. A wasted t h e  dot is defined 

as follows: 

Definition 7 (Wasted Time Slot) 

The nth t h n e  d o t  is said to  be qwasted if and only if 

and 
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where x(n - 1 )  is the total buBe+ ocmpancy in the (n - 1)th time d o t ,  ie.. at the 

beginniirg of the nth time slot, n A  - 6. 

In order to assess the amount of waste, a measure of waste is introduced. Let W(n)  

be the number of time slots that have been wasted during [O, n] and let Wk(n) 

be the number of wasted time slots belonging to the kth traffic flow during [O'n]. 

Let vk(n) be the number of tirne slots that the kth t r a c  flow received for ce11 

transmission during [O'n]. Wasted dot rate is d e h e d  as follows: 

Definition 8 (Wasted Slot Rate) 

The wasted  do t  rate. w ,  of the aggregate trafic LE 

W b )  w = lim -. 

defined by: 

(2.30) 

The -wasted d o t  rate, wk(n),, of the k th  trafic fEoq k = 1: 2- . K ,  is defined by: 

Again. we assume the stationarity, i.e., the existence of the wasted slot rates. Thus, 

if the observation interval, [O, NI, is sdiciently long, the wasted dot rates are 

approximated by: 
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and 

Note that wasted slot rate is d e h e d  only for the systems with WRR scheduling 

scheme since the Work-conserWig WRR scheduling scheme does not waste time 

slots. 

2.3.3 Queueing Models 

The WRR-CSVP System 

Let us formulate a queueing mode1 of the WRR-CSVP resource allocation mecha- 

nism. R e d  that B denotes the buffer size and K denotes the number of traffic 

flows snpported. Let zk(n):  Iç = 1- 2: : K. be the number of ceUs belonging to 

the kth tr&c flow in the b d e r  in the nth time dot. The total bufEer occupancy 

in this time dott  z(n), is given by x(n) = xfZl rk (n ) .  Let z; be the number of 

celIs belonging to the kth traflic flow in the b d e r  initially, i.e., at O - E .  The total 

buffer occupancy in the buffer initially, z- , is given by z- = xLl +;. Let a&). 

II = 1.2. . , K, be the number of arrivals belonging to the kth traffic flow in the 

nth time dot. The aggregate nnmber of arrivals in this time slot, a(n). is given by 

a(n)  = zbl ak(n). The total buffer occupancy is described by 
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The total number of ceUs discarded, i.e., blocked or pushed out. in a time slot is 

given by: 

where [y]+ = max[O, ZJ]. Now- let us desaibe the behavior of the kth t r a c  flow. 

The b d e r  occupancy of the kth trafic fiow is described by: 

To further assess the behavior of the queueing system based on the WRR- 

CSVP resource allocation mechanism. it is necessary to determine the values of 

lr(n). pi(n), and uk(n). The values of lk(n) and pk(n) are determined by the 

cell admission according to the CSVP b d e r  allocation scheme. The cell admis- 

sion decision has to consider the following factors: the arrivals in the time slot. 

ak(n)i and the butfer occupancies after ceu transmission, (xk(n - 1) - uk(n)). The 

constants for the decision indude the total buffer size B and the virtual b d e r  

allocations: Bk. Let us denote the set of pk(n) and the set of &(n) by the vectors 

I(n) = (11 (n), 22 (n) : . . : ZK (n) ) and p (n) = (pl (n): p2 (n) 7 ' 1 PK (n)) - Simi1ar.y. 

we denote the number of arrivais. the buffer occupancies, and the indicator func- 

tions by a(n) = (al(n):a2(n),- ,a&)), ~ ( n )  = (xl(n),x2(n).- , x K ( n ) ) ,  and 

~ ( n )  = (ul (n). u2 (n), , uK(n) ) .  The cell admission decision by the CSVP b d e r  



allocation scheme can be expressed in a functional form as: 

where Q is a functional operator or mapping. 

The analytical approach in [W3195] was limited to K = 2 since the dimension of 

the system increases for K > 2 and it becomes difficult to apply the same approach. 

In addition. for K > 2.  the pushout operator Q is no longer trivial. As already 

pointed out the pushout traffic flow selection in [Wh4951 is valid only for K = 2. 

When more than two tr&c flows are supported. ie., K > 2. there rnay be two or 

more traffic flows over-subscribing the b d e r  space and thus it is necessary to select 

one. Therefore, the argument in [WiM95] is no longer directly applicable. There can 

be a selection policy such as pushing out a traffic flow which is over-subscribing the 

b d e r  space most ; other policies are further discussed in Section 3.3.2. Furthermore. 

a set of input values to d may not determine a unique set of output values: several 

sets of potential output may resdt with certain probabilities. These factors make 

the sys tem analytically intractable. 

In the WRR scheduling scheme, each time dot is assigned to one of the trafic 

flows. We denote the set of time slots assigned to the kth traffic flow by Ok, 

k = 1,2, , K. The indicator function, nr (n) for the WRR scheduling scheme is 

thus further specified by: 

1, if n E Ok and x& - 1) > O? 

0: otherwise. 
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The cell loss relationship of the CSVP and the CP buffer allocation schemes is 

studied in the following. It is shown that the c d  loss ratio achieved by the CSVF' 

scheme is less than or equal to the cell loss ratio achieved by the CP scheme for 

any input h&c. A similar relationship was numerically observed in [WM95]. 

The WRR-CSVP system for the kth traffic flow is a queueing system with a 

Bk partitioned (guaranteed) buffer space and an extra B - Bk shared b d e r  space 

which may potentially be available. In the WRR-CP system, a Bk butfer space is 

strictly allocated to the lcfh traffic f o w  and there is no extra space available. The 

WRR schednling scheme provides exactly the same time slot allocation to both 

systems. Therefore, the c d  loss ratio of the kth tr&c flow in the WRR-CSVP 

system should be less than or equal to that in the WRR-CP system. Thus we have 

the following : 

Theorem 1 Let iik(n) denote the buffer occupcncies of the k t h  traf ic  flow in the 

nth tzme d o t  in the WRR-CP system. Assume that the buffer occupancies of both 

the WRR-CSVP sys tem and the WRR-CP system are equal in the initial tzme d o t .  

ie.. x k ( 0 )  = iZk(0). Giuen identical input t ra f ic ,  i f  the same amount of buffer space 

and service capacity are allocated to  the kth t ra f i c  fEow in both systems, the cell loss 

ratio, r k  B, k = 1,2, - -  , K ,  of the kth t ra f i c  flow in the WRR-CSVP system and 

the cell 203s ratios, Fr. 'S., k = 1,2.  - ? K ,  of the kth t ra f i c  flow in the WRR-CP 

sys tem satisfy 
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Proof: Let Ük(n)  be the number of ce& belonging to the kth trafiic flow that are 

transmitted during [O: n] in the WRR-CP syçtem. And let Lk(n) be the number 

of blocked cells belonging to the kth t r a c  flow during [O, ni. Note that no cell is 

pushed out in the WRR-CP system. 

First. we show q ( n )  2 Zh(n), n = 1, Zi - .. Since the WRR scheduling scheme 

is a fixed tirne slot allocation scheme. the patterns of the time slot allocation in 

the both systems are exactly the same. Recall that the bufFer occupancy at the 

beginning of the time slott based on wLich the service scheduling decision is made. 

is equal to the bufFer occupancy of the previous time slot. Le.. 

x&A - E )  = xk(n - 1 ) .  

Therefore. the value of the indicator fnnction is given by 

/ 

uk(n) = 1 and ük(n) = O ,  

uk(n) = 0 and Ük(n) = 1? 

{ uk(n) = Ck(n) = 1: 

uk(n) = ük(n) = 0. 

\ 

if n E and xk(n - 1) > 0 and s k ( n  - 1 )  = 0. 

i f n  E and xk(n-1)  = 0 and Zk(n - 1 )  >o.  

if n E Ok, and xk(n - 1 )  > O and Zk(n - 1 )  > 0 .  

if n 4 Ok. or (2.34) 

i f n  E Ok, and z k ( n -  1 )  = Zk(n- 1) = 0. 

Therefore, if 
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then 

In the WRR-CS system, the buffer space, Bk: is guaranteed, whereas in the 

WRR-CSVP system, not only the buffer space. Bk: is guaranteed but also the kth 

t r a c  may utilize some extra b d e r  spaces. Therefore, it is easily derived that if 

for the same arriva1 pattern to the two systems. 

The system is measured at n A  + E :  Le., 

and 
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Therefore. from Inequalities (2.35) to (2.38), it is dear that if 

for n = 1.2, . Since xk(0) = 2k(0) Y by induction we obtain 

+ k W  2 &(n), 

By applying (2.43) to (2.34), we have 

U d n )  2 O&), 

The number of arrivals belonging to the kth tr&c flow during [Ol n]' A&)? is 

equal in both systems. i.e., 

Thus, from Inequalities (2.43) and (2.44): 

Lk(n) + &(TL) 5 ih(n). IL = 0,1, . 
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The number of ~~ in the two systems being equal also gives 

Hence. 

The Work-consewing WRR-CSVP System 

The time slot reassignment operation is contained in a condition of the indicator 

function uk(n). Let the nth tirne slot be assigned to the kth tr&c flow by the WRR 

scheduling scheme, i.e., n E Oc. The time dot reassignment operation reassigns 

the time slot to the other trafEc flow, if there is no ceLl belonging to the kth tr&c 

%ow in the buffer. Let kR be the tr&c flow to which the time dot is reassigned. 

The determination process lias to consider the b a e r  occupancies at the begirinlng 

of the nth tirne slot, xk(n - 1)'s. Thus? this determination process of time dot 

reassi,ment is expressed by the operator, #, such as: 

which appears in a condition of uk(n). The time dot reassignment operator, $. 

may also consider the virtual b d e r  space allocation, (BI ,  Bz, - : BK). 
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The analytical approach in [WM95] was limited to K = 2 since the dimension 

of the system increases for K > 2 and it becomes difEcult to apply the same 

approach. Furthermoreo the analytical complexïty increases for K > 2 since the 

pushout operator, 0: is no longer trivial. In addition. the time slot r e a ~ s i ~ m e n t  

operator y5 is no longer trivial for K > 2. As aLeady pointed out. when more than 

two t r a c  flows are supported? Le., K > 2, there may be two or more traffic flows 

occupying the b&er space and thus it is necessary to select one. There can be a 

policy to choose a traffic flow such as reassigning a time slot to a traffic flow which is 

occupying the b d e r  space most; other policies are further discussed in Section 3.4.3. 

Furthemore, a set of input values to $J may not determine a unique set of output 

values; several sets of potential output may result with certain probabilities. These 

factors contribute to make the system analyticdy intractable. 

Using the t h e  dot reassignment operator. the indicator function of the Work- 

conserving WRR scheduling scheme is further specified by: 

l? if n E Qi, and x&- 1) > O, or 

n $ ek and k = $ J ( x ( n -  1)) .  

0, otherwise. 

This indicator hinction is applied in Equation (2.29) to describe the queueing be- 

havior. i t  should be noted that the cell admission operator. @ ?  defined in Equa- 

tion (2.30) includes the indicator fûnctinn, ur(n): in its arguments because in a 

tirne slot, cell admission is determined based on the state of b d e r  space after ceLl 

transmission. 
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For the aggregate process? the indicator function. u(n). is simplified to 

( 0, otherwise. 

'Lis equation is equiva dent to Equation (9) in iCRS71. Using this formula. the 

number of ceus in the system is expressed as: 

and the number of cells blocked or pushed out fiom the aggregate process is de- 

scribed by: 

These equations are equivalent to Equations (4) to (7) in [CRS7]. Thus the Work- 

conserving WRR-CSVP system is a WCD, and the following conservation relation- 

shown in [CR87], holds: 

Proposition 1 (Conservation Law [CR87]) Let X be the aggregate load and 
- 
AL, k = 1,2, , K ,  be the average load of the kth t ra f ic  Jow. Denote X = 
- - - 

( A l ,  . : XK) and r = (ri, rz, - , rK) . For fized arr iva  statistics and buffer 

capacity, the aggregate cell loss ratio, r i s  invariant for al1 WCD's, and the per- 
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Jow cell loss ratios satisfy 

where '." is the Euclidean inner product. 

This means that the aggegate cell loss ratio is constant regardless of the position 

of the virtual partition for a given total buffer size and input traffic. It should S o  

be noted that the Work-conserving WRR-CS system exhibits the same aggregate 

c d  loss ratio as the Work-consenring WRR-CSVP system, since it is also a WCD. 

It was reported in [Wh4951 that the cell loss performance is sensitive to virtual 

partitioning of the CSVP scheme: it was numericdy observed that if the virtually 

allocated butfer space becornes larger, the resultant cell loss ratio becomes smaller. 

This confirms our intuition that if a larger bufFer space is guaranteed to a traffic 3owo 

the cell loss performance of the traffic dow should improve. Although the system 

becomes analytically intractable for K > 2, a non-increasing relation between cell 

loss ratio and virtually allocated bufFer space can be shown for the case of two 

tr&c fiows, Le., K = 2. 

Theorem 2 Given identical input trafic, consider two buffer space allocations by 

the Work-conseming WRR-CSVP systern, (Bi, B2) and ( B ~ .  &): whem Bi + B2 = 
4 

B~ +B? = B. If 
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and the initial condition LS given by 

~ k ( 0 )  = 5*(0) = O, 

for k = 1.2, where T r  and are the cell loss ~ u t i o s  of the k t h  traf ic  fEow in the 

(BI  B2) buffer and the (8,: &) bufler, respectively. 

The proof of Theorem 2 is provided in Appendk A. 

2.4 Concluding Remarks 

The queueing model discussed in this ckap ter may be analytically intract able. and 

thus a closed form solution may not be avaïlable, although numerical calcdation 

by iteration may be possible. In this work, however, an emulation approach was 

adopted in order to obtain insights for implementation. An emdator was con- 

structed in the following manner: the Work-conserving WRR-CSVP resource alle 

cation scheme was implemented as an application program on a workstation; then. 

peripheral software to numerically examine its performance was built around it. It 

should be noted that the pedormance of the system can be obtained numerically by 

iterations applied to the queueing model in this chapter since it is a discrete-time 

system. However, it may be as time consuming as to obtain results by emulation. 
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Chapter 3 provides the detailed algonthms of the Work-conserving WRR-CSVP 

resource allocation mechanism, including tr&c flow selection for the pushout and 

the time slot reassignment operations. The design of an emulator is also discussed 

in Chapter 3. 



Chapter 3 

Design Of Algorithms And 

Emulator 

Introduction 

4 s  aheady mentioned, an emulation approach is taken in this work. The Work- 

conserving WRR-CSVP resource docation mechanism is implemented as an ap- 

plication program on a workstation. This software is designed so that it can easily 

be transformed to firmware. Then. the peripheral software, such as the cell gen- 

erator representing traffic sources, the £ree cell pool, and some additional parts to 

collect s tatis tics, is developed to cons titute an emulator. The term "emulation" 

is used to emphasize that the Work-conserving WRR-CSVP resource allocation 

mechanism is implemented as a finite state machine. The software implernentation 

of the Work-conserving WRR-CSVP resource allocation scheme provides us with 

some insight s for implement ation. In fact , the development of an emulator leads 
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us to the hardware design specified in Appendix C. The emulation approach also 

allows us to investigate various performance aspects, such as ceU loss, cell delay. 

and ceU delay variation, for more than two trafic flows. 

In order to implement the Work-conserving WRR-CSVP resource allocation 

scheme, the operations of the CSVP bufEer allocation scheme provided in [WM95] 

need to be refined into the detailed algorithms. Also, the operations of the Work- 

c o n s e h g  WRR scheduling scheme need to be refined. Furthermore. it is pointed 

out in Chapter 2 that a mechanism is needed to handle more than two t r a c  flows 

for both the pushout and the tirne slot reassignment operations. It is necessary 

to provide a clear detailed algonthmic description of the Work-conserving WRR- 

CSVP resource allocation mechanism which is capable of handling more than two 

t r a c  fiows. 

It is also of interest to know how the b d e r  space of the Work-consenring WRR- 

CSVP resource allocation should be imphmented. In order to enable the admission. 

pushout, and service of cells, the buffer space must be structured suitably for these 

operations. 

In this chapter, the design of the algorithms of the Work-conserving WRR-CSVP 

resource allocation mechanism is discussed. The resource allocation mechanism is 

divided into two modules: the Cell Admission Conholler module and the Service 

Scheduler module. The CeU Admission Controller module performs cell admission 

according to the CSVP buffer allocation scheme. The Service Scheduler module per- 

forms cell transmission according to the Work-conserving WRR scheduling scheme. 

The design in this chapter also describes the BufFer Space, which is a data structure 
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designed for the operations of the Work-conserving WRR-CSVP resource allocation 

mechanism. 

A brief description of the design of an emulator is also provided in this chapter. 

Based on the design, an emulator is developed and the algorithms of the Work- 

conserving WRR-CSVP resource allocation mechanism are validated. 

Hereafter. the term Trafic Class is used to represent the unit of traffic to which 

our resource allocation mechanism is applied. A Tr&c Class may constructed by 

a superposition of tr&c flows from mini-sources. 

3.2 Buffer Space 

The operations of the CSVP b d e r  allocation scheme? the admission, blocking, and 

pushout of the ce&- are performed on a Trafic Class basis. Since it is necessary 

to preserve the order of arrivals for service, a queue of a Traffic Class, a VC queue. 

needs to be a FIFO queue. It is standard in software design to implement a FIFO 

queue by a logical linked list. In addition, the elasticity of a chab by a logical 

linked list is most suitable for the CSVP b d e r  allocation scheme. where the length 

of the chah ranges from O to the size of the total buffer space. 

What is the suitable mechanism to select a ceIl to be pushed out then? The 

cells in the over-subsaibed portion of the b d e r  are the c d s  which are admitted 

by taking advantages of the complete sharing of the buffer space, i.e., they are the 

cells which could have been discarded had the buffer been f d ,  or had the buffer 

space been completely partitioned. Therefore, it is deemed appropriate to push out 

a cell in the over-subscribed portion of the buffer. 



Figure 3.1: Doubly linked list 

The last cell of the queue of the over-subscribing T r a c  Class is in the over- 

scribed portion of the b d e r .  And the operation to deque a cell at the tail of a 

queue, the LIFO operation. can be easily implemented if the cells are chained by 

a doubly linked Zist (Figure 3.1). Thus, the Buffer Space is constructed by a set 

of FIFO/LIFO queues, each of which is assigned to each Traffic Class. Another 

advantage of using a chah structure is that unused space (&ee ce&) can be easily 

managed by a queue of empty spaces. It should be noted that there are other 

implementations to pushout a cell in the over-subscribed portion of the buffer. For 

example. a single forward chain with an additional tail pointer which indicates the 

head of the over-subscribed portion can pushout a cell pointed by this second tail 

pointer [Pre97]. 

Let K be the number of Tr&c Classes supported. The FIFO/LIFO queues of 

TrafEc Classes are maintained by the following parameters: the total b& size and 

the buffer thresholds, the amount of virtually allocated space, are the constants. 

B and Bk' k = 1,2, , K, respectively; and the total buffer occupancy and the 

buffer occupancies of the TraBc Classes are stored in the variables, x and +a, 
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Figure 3.2: The B&er Space 

k = 1,2,  : K ,  respectively. The B d e r  Space is illustrated in Figure 3.2. 

3.3 Ce11 Admission Controller 

3.3.1 Basic Operations of the CeU Admission Controller 

The Buffer .kllocation Controller examines the admission of the amvals cell by ceU 

in each tirne dot. It is assumed that the examination of c d  admission is applied 

in a random order to the cells arriving in the same t h e  slot since it is unbiased 

and thus deemed appropriate. The admission of a cell is examined accordmg to 

the CSVP scheme and the procedure is repeated until all arrivals in the t h e  slot 

are examined. Recail that kp denotes the T r S c  Class to be pushed out. The 
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admission rule by the CSVP b d e r  docation scheme is further specifkd in the 

following : 

CeIl Admission by the CSVP Scheme: 

1. IdentiS. T r a c  Class k to which the c d  belongs. 

put the cell into the FIFO/LIJ?O queue belonging to Traffic Class k. 

Set 3: = x + 1 and xr, = xk + 1. 

drop the cell. 

(b) if Z k  < Bk. 

find a Traffic Class which is over subscribing the buffer space. i.e.. 

find kp such that th, > Bkp.  

Pushout a ceIl belonging to Traific Class kp using the LIFO opera- 

tion. 

Set x k ,  = xk, - 1. 

Admit the arriving c d  into the queue of T r a c  Class k t r a c  using 

the FIFO operation. 

Set x k  = zk + 1. 

By applying this c d  admission procedure repeatedly to all the arrivals in the 

t h e  slot in a random order, the numbers of ce& admitted, dropped, and pushed 
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out become clear, Le., the output of the cell admission operator. <P. for the time 

slot is obtained. 

3.3.2 Pushout Class Selection Methods 

As aheady pointed out, when there are more than two T r d c  Classes, there may be 

two or more TrafEic Classes over-subscribing the b d e r  space. Thus, an additional 

mechanism is necessary to determine the Tr&c Class, kp, to be pushed out. The 

random selection is defined by: 

1. Random selection: Evduate x k  - Bk. k = 1 . 2 , -  . . K. Choose kp at 

random among k's such that xi - Bk > 0. 

Since this method does not require comparisons, it may be computationally inex- 

pensive, dthough it requires the use of a pseuderandom number generator. There- 

fore. this method may be preferred if it performs satisfactorily. 

There rnay be advantages to using a more sophisticated selection method. in 

spite of the computational cost for comparisons. We consider policies to penalize a 

greedy TkafIic Class. If a Traffic Class is greedy. it is likely that the T r a c  Class 

over-subsaibes the bufFer space in a large amount. Therefore: the following method 

can be adopted: 

2. Largest Excess by Absolute Amount selection: Evaluate x k  - Bk, k = 

1.2, - - , K. Choose kp such that x k ,  - Bk, = maxk(xk - Bk). 

However, it rnay be more appropnate to evaluate excess by relative amount to the 

allocated b d e r  space, i.e., 
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3. Largest Excess by Relative Amount selection: Evaluate xk - Bk, k = 

1,2, - - K. Choose kp such that (xk, - Bk,)/&, = maxk(xk - Bk)/Bk. 

This method involves floating point calculations and may not be preferable. Note 

that when the b&er space is evenly docated, Le.! each Traffic Class receives the 

same amount of b&er space by the Wtual partition, the l q e s t  excess by relative 

amount selection method is equivalent to the largest excess by absolute amount 

selection. These sophisticated methods require K - 2 comparisons. 

Another idea is to prioritize the selection as follows: 

4. Priority selection: Evaluate x k  - Bk- k = 1: 2, , K. Choose kp with 

highest priority level: xkp' among T r a c  Classes k's such that xr; - Bk > 0. 

The priority level, n k  , k = 1.2 ,  - , Ko is preassigned. 

This method reqnires at most K - 2 comparisons. 

It may be necessary to -break tieso' in these sophisticated methods. In such 

cases, random selection is adopted to resolve the situation. 

The cell loss performance of these selection methods needs to be examined to 

determine which one should be adopted. In Chapter 4. they are compared by 

emulation. 

3.4 Service Scheduler 

Let ks be the Trafiic Class to which the current time dot is to be assigned by the 

scheduling scheme. The main procedure of the Service Scheduler module in a t h e  

slot is as follows: 
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1. Determine T r a c  Class ks to receive the transmission. 

2. Select the FIFO/LIFO queue of T r a c  Class ks. 

3. Transfer the cell at the head of the queue to the transmission buffer. 

4. Set xk, = xk, - 1; and x = z - 1. 

3.4.1 Basic Operations of the WRR Service Scheduler 

In order to develop the Service Scheduler based on the WRR scheduling scheme. the 

patterns of the time dot allocation within a service cycle have to be  specified. Ex- 

haustive service is one of the simplest time slot allocation patterns, where a Traffic 

Class receives the time slots consecutively until it has received its share before pass- 

ing control to the next Traffic Class. There is no iterative comparisons. Usudy.  the 

WRR scheduling scheme assumes Exhaustive service (See, e-g., [KKKSO. RRA951). 

Let s be the number of remaining time slots in the current service cycle. Let sk. 

k = 1.2, - - - . K. be the number of time slots yet to be received by Class Ic trafic 

during the current cycle. Set the initial value s = O. Let n be the parameter indi- 

cating the Traffic Class whose eligibility is examined. The algorithm to obtain ks 

in a t h e  slot is specified as follows: 

Exhaustive service: 

Step 1: If s = 0. set s = S and sk = Sk, k = 1 , 2 : - -  , K; set is = 1; and go to 

Step 3. 

Step 2: Ifs, = 0, transfer control to the next Tr&c Class by n = R + 1. 
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Figure 3.3: Exhaustive service 

Step 3: Set s, = s, - 1 and s = s - 1. 

Step 4: Set ks = n. 

Exhaustive service is austrated in Fi,gure 3.3. 

The grandarity of the capacity allocation is limited ~ L L  the WRR scheduling 

scheme; in order to have a better ganularity, a long service cycle is necessary. 

However. it is known that a long service cycle can cause a larger cell loss ratio and 

ce11 delay by Exhaustive service [RRA95]. This is because WRR scheduling is a 

fked time slot allocation scheme and t h e  dots can be wasted. Therefore. it is 

important to have a mechanism other than Exhaustive service if we are to have a 

long service cycle and yet avoid cell loss and ce11 delay performance degradation. 

Exhaustive service may also cause undesirable bursts in the output traffic. In 

Exhaustive service, Traffic Class k receives at most Sk consecntive t h e  dots. The 

numba of ce& belonging to Tr&c Class k in the b u f k  and the number of arrivals 

belonging to Traffic Class k may result in a situation where Sk ce& belonging to 

Traffic Class k are emitted to the output link consecutively. This series of cells can 

be seen as a burst if Sk is large. And the bu£Fer occupancies and arrival patterns 

of the other Tr&c Classes can create the consecutive emissions of more than Sr, 

ceus. The burst may cause poor system performance at the downstream nodes. 
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Figure 3.4: Round Robin service 

Round Robin service is one of the alternative mechanisms where slots are al- 

located to Tr&c Classes on an altemating basis [KSCSl]. This can reduce slot 

wastage and is expected to perform weU, especially whon the capacity is fairly 

evenly docated.  In addition, Round Robin senrice may prevent undesirable bursts 

in the output t r a c  because there will be at most K t h e  slots between two cell 

emissions belonging to Tr&c Class k with Round Robin service, The algorithm of 

Round Robin service is specified by replacing S tep 2 in Exhaustive service: 

Round Robin service: 

Step 2: Transfer control to the next T r a c  Class by K = K + 1. If K > K: set 

K = 1. Ifs, = O! repeat the above until n satisSing s, > O is found. 

Round Robin service is Uustrated in Figure 3.4. Note that this Step 2 requires 

a t  most K cornparisons to find K s.t. s, > O. Theref'ore, Round Robin service is 

deemed more cornplex than Exhaustive service. 

3 A.2 Time Slot Reassignment Mechanism 

The WRR scheduling scheme can be made more escient by reassigning potent idy 

waçted time slots to another Traffic Class. The algonthm of the time slot reas- 

signment operation is specsed in the following. Recall that kR denotes the Traffic 
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Class to whick the current time slot is to be reassigned. The time dot reassignment 

operation replaces Step 4 of Exhaustive and Round Robin services: 

T ime Slot Reassignment Operation: 

Step 4: If x, > 0, set ks = ic; otherwise: examine the butfer occupancy of the 

other Traffic Classes, zh, k = 1 , 2 , - - -  : K -  1 : ~ + 1 , - - -  : K: andfind kR such 

that xkR > O. Set ks = kR. 

This t h e  dot reassignment operation is expected to improve the ceU loss and cell 

delay performances drastically. Also? it is of interest to examine the effect of the 

long service cycle with Exhaustive service. The time slot reassignment operation 

may reduce the effect. 

3 -4.3 Time Slot Reassignment Class Selection Met hods 

It is pointed out in Chapter 2 that a mechanism must be added to the time s b t  

reassignment operation to select the Traffic Class kR to receive the reassigned tirne 

dot in order to handle more than two Tr&c Classes. A number of selection methods 

can be considered such as S tandby Queue in [ZF93] and Carry-Over in [SMT96]. 

S tandby Queue is an additional queue to store all the cells in the butfer in FIFO 

order. When a time dot is reassigned, the cel! at the head of Standby Queue is 

transmitted. In this scheme, the numbers of queueing and dequeueing operations 

are doubled, and an entry in Standby Queue has to be removed whenever a cell 

is transmitted according to the decision by the WRR scheduling scheme. This 

increases the amount of operations. Carry-Over is used to achieve h e r  grandarity 

of capacity allocation and requires floating point calculations. In this work. we 
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consider the following methods to select a Traffic Class: which are computationally 

less expensive than these two methods. 

The random selection is defmed as follows: 

1. Random selection: Evaluate xk, k = 1,2 ,  K. Choose kR at random 

among k's such that xr > 0. 

Since this method does not require comparisons? it rnay be computationally inex- 

pensive, although it requires the use of a pseudo-random number generator. There- 

fore. this method rnay be preferred if it performs satisfactorily. 

There may be advantages to using a more sophisticated policy, in spite of the 

computational cost for comparisons. We consider policies to favor Traffic Classes 

in burst. When a Traffic Class is in burst. it is likely that it occupies the buffer 

space in a large amount. Therefore, the methods in the following can be adopted: 

2. Largest Occupancy by Absolute Amount selection: Evaluate xb. k = 

1,2, - - ? K. Choose kR such that X k R  = maxk x k .  

3. Largest Occupancy by Relative Amount selection: Evaluate x k .  k = 

1.2,  K. Choose kR such that xk, /Bc,  = maxb xk/Bk.  

The largest occupancy by relative amount selection method involves floating point 

calculations. The buffer space allocated by the virtual partition can be taken into 

consideration as follows: 

4. Largest Excess by Absolute Amount selection: Evaluate xk - Bk, k = 

1,2: , K. Choose kR such that xk, - BkR = maa(zk - Bk) and q, -Bk, > 
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O. If there is no Traffic Class satisfying this condition, adopt the largest 

occupancy by absolute amount selection. 

Note that a similar method where the excess is measured by relative amount to the 

buffer space Wtually allocated is equivalent to the largest occupancy by relative 

a m o u t  method and thus excluded. Also note that when the bufFer space is evenly 

allocated, Le., each Traffic Class receives the same amount of b d e r  space by the 

virtual partition, the three methods above are equivalent . These sophis ticated 

methods require K - 2 comparisons. 

Ano t her idea is t O priori tize the selec tion: 

5 .  Priority selection: Evaiuate xk, k: = 1.2, - .K. Choose kR with highest 

pnority level. wk,! among k's such that xk > O. The priority level. mi. 

li. = 1,2. . ? K: is preassigned independently to the priority level of pushout. 

This method requires at most K - 2 comparisons. 

It may be necessary to "break ties* in these sophisticated methods. In such 

cases, random selection is adopted to resolve the situation. 

The cell loss performance of these selection mechanisms needs to be examined 

to determine which one should be adopted. In Chapter 4, they are compared by 

emulation. 

It should be noted that the WRR scheduling scheme in [KSCSl] is work- 

conserving using a different mechanism. A service cycle is divided into several 

subcycles in which different Traffic Classes are assigned to be eligible. which is 

indicated by the eligibility bits, each of which corresponds to a subcycle. in the 

table of VC information. This architecture d o w s  flexibility in setting the pattern 
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of visit within a service cycle, including Exhaustive and Round Robin services. At 

the be-g of each subcycle, the eligible T r a c  Classes indicated by the eligibil- 

ity bits are examined for readiness, ie., if they have a c d  to be transmitted in the 

bdFer and the readiness is indicated by the ready bit in the table of VC informa- 

tion. Only the ready TrafEc Classes receive transmission in the subcycle then the 

next subcycle is initiated. Thus, the actual length of subcycles and service cycles 

varies depending on the readiness of the Traffic Classes. It should be noted that the 

queueing mode1 defined in Chapter 2 is no longer applicable since the indication 

function? uk(n),  is different . 

3.5 Emulation Systern 

3.5.1 Structure of the Emulator 

The Cell Admission Controller and the Service Scheduler described in the previ- 

ous sections and the CeU Departure module, which completes cell transmission. 

together with the data structures such as the BufFer Space and the Transmission 

B d e r .  constitute the software implementation of the Work-conserving WRR-CSVP 

resource allocation mechanism. and are the core parts of the emulator. Three other 

modules are added to cons truct an emulator, which provide us with means to eval- 

uate system performance such as cell loss, cell delay and ceIl delay variation. The 

emulation system consists of the following six modules: 

1. The Free Queue is a queue of fiee cells. A cell is a data structure representing 

au ATM cell. The cells are taken from the Free Queue upon generation by 
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the cell generator. The cells are retunied to the Free Queue upon discard. 

pushout, and departure. 

2. The Cell Generator represents the traffic sources and generates cells in each 

thne dot. 

3. The Random Shuffler prepares arriving ceUs in each time slot in a random 

order so that cell admission is performed in a random order. 

4. The Cell Admission Controller performs the CSVP butfer allocation scheme. 

5. The Service Scheduler selects a cell to be trmsmitted. transfers it to the 

Transmission Buffer, and starts the transmission in each time slot. 

6. The Ce11 Departure module cornpietes cell transmission. 

These modules are connected as follows: 

The Cell Generator module is connected to the Free Queue module to generate 

cells and to the Random Shualer module by a FIFO queue. 

0 The Random S h d e r  module is connected to the Cell Admission Controller 

module by a FIFO queue. 

The Cell Admission Controller module is connected to the Service Scheduler 

module by the Buffer Space, a set of FIFO/LIFO queues, and to the Free 

Queue module for dropping and pushing out cells. 

0 The Service Scheduler module is connected to the Buffer Space and to the 

Transmission B a e r  . 
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Figure 3.5: Structure of the emulator 

a The CeU Departure module is c o ~ e c t e d  to the Transmission B d e r  and to 

the Free Queue. 

The structure of the emulator is illustrated in Figure 3.5. 

3.5.2 Basic Operations 

R e d  the timing structure of a t h e  slot in Section 2.1.3. According to this timing 

structure, the operation of the emulation system in a time slot is specified as follows. 

Operation of Emulator in a Time Slot: 

Step 1: Obtain T r a c  Class ks according to the Work-consenring WRR scheduling 

scheme. If x k S  > O: transfer the cell belonging to tr&c class ks in the Buffer 

Space to the Transmission Buffer and set x = x - 1. (Service Scheduler) 

Step 2: The cells are generated by the cell generator by obtaining f?ee cells fkom 

the Free Queue. The cells are put into the FIFO queue connected to the 
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random s h d e r .  (Cell Generator) 

Step 3: The Random Shuffler obtains ce& out of the input FIFO queue connected 

to the CeU Generator and feeds them in a random order into the output FIFO 

queue connected to the CeU Admission Controller. (Random S h d e r )  

S tep 4: The CeU Admission Controller takes the cells from the input FIFO queue 

and processes them according to the CSVP buffer allocation scheme. Admit- 

ted ceIls are queued in the B G e r  Space and blocked and pushed-out ceUs are 

returned to the Free Queue. (Cell Admission Controller) 

St ep 5: The ce11 in the Transmission Buffer leaves the system. The c d  is returned 

to the Free Queue. (Cell Departure) 

The Cell Admission Controller. the Service Scheduler, and the Cell Depar- 

ture rnodels, which performs the Work-consenring WRR-CSVP resource allocation 

mechanism, are validated by the test programs with a thorough set of test patterns. 

The Cell Generator and the Random ShuWer contain probabilistic operations using 

a pseudo-random number generator. These parts are independently validated by 

collecting statistical measurements such as f i s t  and second moments and comparing 

the values with those derived using analytical models. 



Chapter 4 

Performance Of A Generic Node 

4.1 Introduction 

The performance of the Work-conserving WRR-CSVP resource ailocation mecha- 

nism is evaluated in this chap ter using a single-server queueing mode1 introduced in 

Chapter 2. It is of interest to observe the efficient use of resources by o u  resource 

allocation mechanism to achieve better cell loss performance, and to demonstrate 

the robustness of resource docation of the mechanisrn to protect well-behaving 

traffic flows. 

First, the advantages of the Work-coiiserving WRR scheduling scherne are ex- 

amined. It is shown that the addition of the time dot reassignment operation con- 

siderably improves system performance by the efficient use of Zink capacity. Then. 

the CSVP buffer allocation scheme is examined fiom the view point of its efficient 

use of b d e r  space to obtain a better aggregate c d  loss ratio. and its robustness of 

b d e r  allocation to provide protection, especially for non-bursty trafEc. to achieve 
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lower ceU loss for well-behaved traEc. The effect of Wtual partitionkg is also 

inves tigated. 

Ano ther important topic of investiga.tion is the design issues raised in Chap ter 3. 

The three issues raised are: the mechanics of service to realize the WRR schednling 

scheme, Exhaustive and Round Robin services; the traffic class selection method 

for the pushout operation; and the traffic dass selection method for the time dot 

reassignment operation. The proposed alternatives in Chapter 3 for these issues 

are examined and design guidelines are provided. 

The main resdts of this chap ter were also presented in [YIM96]. 

4.2 Input Trafic 

4.2.1 T r d c  Models 

Characterization of ATM source t r a c  is known to be a chdenging task and a n  

appropriate model has not been agreed upon. For example, one of the most signif- 

icant characteristics of an ATM source, b*urstiness, is not yet uniquely defined. In 

the experiments in this chapter, a trafic model which is considered to approximate 

some ATM sources is used: knowing that this model may not snfficiently represent 

all ATM sources. A tr&c source of a Traflic Class is cieated by a superposition of 

mini-sources, the models of which are d e h e d  in the following. 

The bursty t r a c  mode1 of a mini-source used here is an Intemipted Bernoulli 

Process (IBP, see eg., [MOSM90])o which is one of the commonly used ON-OFF 

source models in ATM network research. An IBP is defined as follows: 
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Figure 4.1: State transition diagram of an IBP 

Definition 9 (Int errupt ed Bernoulli Process) 

An IBP is defined by the 3-tuple (aJ, A) such that: 

1. An IBP source is defined as a two-state, ON and OFF. discrete-tirne Markov 

model. 

2. The  d a t e  transition from OFF sttzte to  ON state occurs v i t h  probability a per 

d o t  and from ON state to OFF state wzth probability /3 per d o t .  

9. A t  mos t  one ce11 is generated in each tzme slot. 

4.  While in OFF state, no  ce11 is generated. 

5. Whzle in ON state, a ce11 is generated wzth probabzlzty X per d o t .  

(See Figure 4.1 .) 

A Bernoulli process is used to model a &-source of non-bursty trafEc. The 

definition of Bernoulli process is as follows: 

Definition 10 (Bernoulli Process) 

A Bernoulli process is defined by the parameter, AB,  and at mos t  one ce11 is gener- 

ated wzth probability AB per slot. 
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Note that As is the average cell generation rate of a Bernoulli process. A Bernoulli 

process can be seen as a special case of an IBP specified in the following: 

Remark 1 A Bernoulli process with the parameter As is equivalent to an IBP wi th  

the parameters (a: p, A )  = (1, O. A B ) .  

We construct a traffic source of a Traffic Class by a superposition of statisticdy 

identical IBP mini-sources. The statistical characteristics of an IBP mini-source are 

determined by three parameters, (a$, A) ;  a ditferent parameter value set creates 

a different type of IBP mini-source. In order to distinguish IBP mini-sources of 

different ckaracteristics, the notion of Trafic Ripe is introduced. A Traffic Type 

detennines the statistical characteris tics of a mini-source. We define Trafic Type 

in the following: 

Definition 11 ( T r a c  Type) 

A Traf ic  Type i, i = 1 ,2:  --., spec i ' e s  the parameter values: (%,Pi' A;). An IBP 

mini-source i s  said to be Type i i f  its parameter values (a, ,û7 A) = (a;? pi. A;). 

A Tr&c Class is determined by the number of IBP mini-sources and the T r a c  

Type to which the mini-sources belong. The definition of T r a c  Class in this 

chapter is thus given as follows: 

Definition 12 (Thflic Class) 

Tra f i c  Class k, k = 1,2,  , K ,  is de t emzned  by the number of IBP mini-sources 

nk and their Tra f ic  Type ik. The t r a f i c  f b w  of D a f i c  h s  k is generuted by a 

superposition of nr IBP mini-sources of T ra f i c  Type ik. 
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The Traffic Types used to create the results presented in this chapter are shown 

in Table 4.1. The characteristics of each Traffic Type presented in Table 4.1 are 

the following: a, P ,  and X are the parameters of an IBP mini-source: denotes 

the average c d  generation rate; and x & is an indicator of burstiness, where 

pi denotes the average peak duration t h e  and X; is the peak ceLl generation rate. 

Other T r a c  Types are also used to create the results provided in Appendix B. 

Table 4.1: Tr&c Types 

In our experiments, the values: 7: 9: 10: and 20: are chosen for the number of 

mini-sources in a TrafIic Class, nk. These are the lowest numbers of ON-OFF mini- 

sources to be superposed in order to obtain the effect of sufficient burstiness and 

non-trivial characteristics in the aggregate traffic (See, e.g.. [SWSG, DL86. HL86j). 

The average load of each min-source is set so that the total average utilization 

becomes 90%. The average peak rates are set in the range of 10M bps to 151M bps: 

Type 1 
Type 2 
Type 4 
Type 8 
Type 9 
Type 10 
Type 11 
Type 12 
Type 14 

and the average peak duration is set in the range of 167 cell times to 1000 cell times. 

The average peak rate and the average peak duration used here are approximately 

1.0 
0.001 

0.0005 
0.001 
0.002 
1.0 

0.001 
0.0005 
0.001 

0.03 
0.03 
0.03 

0.0466 
0.04 

0.0225 

0.0 1 0 . 0 3 ~ ~  
0.002 
0.001 
0.002 
0.006 
0.0 

0.09 
0.09 
0.14 
0.16 

0.0225 
0.002 
0.001 
0.002 

0.0675 
0.0675 
0.055 

0.0225 
0.0225 
0.01S 
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within the range of the video t r s c  used in Section 5.6, although adjustments are 

made to obtain 90% average utilization by using a shorter silence period. 

It should be noted that pi x Xi is shown tc be insufficient to represent burstiness 

in t e r m s  of resultant cell loss ratio (See Appendix B). In fact, resource dimensioning 

regarding cell loss performance is still an open problem. The resource dimensioning 

for our experiment is performed empiricdy. We do not delve into the resource 

dimensioning problem since o u  emulation is t h e  consuming and thus it is difficult 

to obtain a sufficient amount of data to discuss resource dimensioning. 

4.3 Characteristics of the Work-conserving WRR- 

CSVP System 

The characteristics of the Work-conserving WRR-CSVP resource allocation mech- 

anism are examined by ernulation. The results in this section are produced using 

Exhaustive service with a short service cycle. It has been confirmed that the results 

with Round Robin service are approximately the same for this service cycle length. 

The randorn selection method is used for both pnshout operation and time dot 

reassignment operations . 

4.3 -1 Advant ages of the Work-conserving WRR Scheduling 

Scheme 

The Work-conserving WRR scheduling can be seen as a capacity allocation by 

the CSVP strategy, while the WRR scheduling scheme can be seen as a capacity 
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allocation by the C P  strategy. Since the Work-conserving WRR scheduling scheme 

maicimdy utilizes the link capacity. we expect that it exhibits a better aggregate 

c d  loss performance than the WRR scheduhg scheme. As discussed in Chapter 1. 

our interest is in the VC based scheduling schemes and thus the capacity allocation 

by the CS strategy. fist-corne-first-served: is not considered. 

It is important to examine the Work-conserving WRR-CSVP resource alloca- 

tion rnechanism in a heterogeneous traffic situation, since the actual ATM network 

situation is expected to be heterogeneous. Let us examine the cell loss improvement 

by the Work-conserving WRR scheduling scheme using a heterogeneous tr&c sit- 

uation: Case 1, shown in Table 4.2. Each Traffic Class receives a buf'Fer space of 

300 cells by the CSVP b d e r  allocation scheme, i.e., Bk = 300, X: = 1: 2.3; and 1/3 

of the total link capacity by the Work-conserving WRR and the WRR scheduling 

schemes. i-e., S = 9 and Sk = 3: k = 1,2 .3 .  

Table 4.2: Heterogenous traffic situation 

I Class 1 I Class 2 I Class 3 
I 1 1 

Case 1 1 Twe 1 x 10 1 Type 2 x 10 1 Type 4 x 10 

Table 4.3 shows that the Work-consenring WRR scheduling scheme achieves 

much bet ter cell loss performance than the WRR scheduling scheme. Botk the cell 

delay and the cell delay variation performances are also improved by the Work- 

conserving WRR scheduling scheme (Table 4.4). Evidently, the Work-conserving 

WRR scheduling scheme has a clear advantage. The better performances of the 

Work-conserving WRR scheduling scheme are achieved by utilizing a fairly large 
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Table 4.3: Cell loss performance (x10 -~?  95% confidence interval) 

1 Cell loss ratio 

Table 4.4: C d  delay and cell delay variation performances ( x 102, 95% confidence 
i n t e r d )  

Aggregate 
Class 1 
Class 2 

1 I 

Aggregate ( 3.5 f 0.12 1 0.96 f 0.054 1 5.3 f 0.13 1 2.2 & 0.12 

4.1 f 0.35 1 0.25 i 0.11 
(unde tected) 

2.9 k 0.26 

Standard deviation (cell tirne) 

(undet ec ted) 
0.15 i 0.10 

WRR I WC-WRR I WRR 1 WC-WRR 
Mean cell delay 
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amount of slots wasted by the WRR scheduling scheme (Table 4.5). These results 

Table 4.5: Wasted slot rates ( x IO-'. 95% confidence interval) 

1 Wasted dot rate 
7 

Aggregatel 1.0k0.020 
Class 1 1 0.99 & 0.0050 

I 

Class 2 1 1.0 * 0.012 
Class 3 1 1.1 & 0.052 

indicate that the Work-conserving WRR scheduling scheme is preferable for a better 

performance achieved by the efficient use of link capacity, if the Work-conserving 

WRR schedullig scheme is implementable. Similar results for the diaèrent cases 

can be found in Appendùc B. 

4.3.2 Advantages ofthe CSVP Scheme 

Let us now examine the CSVP buffer allocation scheme. The most important ad- 

vantages of the CSVP b d e r  allocation scheme previously discussed are the efficient 

use of buffer space and the robust docation of b d e r  space. These advantages are 

demonstrated by evaluating cell loss performance. In addition. another advantage is 

discovered kom the observations of c d  delay and cell delay variation performances 

for different virtual partition. 

BuEer Efficiency 

If the b d e r  space is completely shared such as in the CS or the CSVP b d e r  

allocation schemes, it is known to achieve better b d e r  efficiency because in such a 



CHAPTER 4. PERFORMANCE OF A GENERIC NODE 75 

b d e r  allocation scheme, an aniving cell is admitted as long as there is an empty 

space in the buffer and thus the entire buffer space is maximdy utilized. The buffer 

efficiency of the CSVP scheme is dem onstrated by comparing its aggregate c d  loss 

performance with that of the CP scheme, wkere the bufFer space is partitioned and 

not shared. This aspect of the CSVP scheme was observed nnmericdy in [WM95] 

for a fluid-flow model. Here. it is shown that our discrete t r a c  system is also 

b d e r  efficient. 

Table 4.6 compares the aggregate cell loss performance of the CP' the CS and 

the CSVP buffer allocation schemes. The aggegate cell loss ratios of the CS and 

Table 1.6: The aggregate cell loss performance of the CP. CS. and CSVP b&er 
allocation schemes ( x  IO-^, 95% confidence interval) 

Aggregate 1 3.0 k 0.11 1 0.28 10.078 1 0.25 IO.11 
CP 1 CS 

the CSVP schemes are less than a tenth of that of the CP scheme due to the b a e r  

efficiency. It should be noted that the Work-conserving WRR-CSVP mechanism 

and the Work-conserving WRR-CS mechanism exhibit the same aggregate cell loss 

ratio due to Conservation Law (Proposition 1 in Chapter 2).  

In order to achieve the level of cell loss performance of Traflic Classes 2 and 

3 achieved by the CSVP scheme, where buffer space of 300 ce& is allocated to 

each Traffic Class, b d e r  spaces of about 600 cells to Tr&c Class 2 and 700 ceus 

to TrafEic Class 3 are necessary by the CP scheme. The CSVP scheme requires 

approximately half of the buffer space than the CP scheme for these Traffic Classes. 

No ceU losses were detected for TrafEic Class 1 in either scheme. These results show 

CSVP 



Table 4.7: The cell loss performance of the CP and CSVP buffer allocation schemes 
( x 95% confidence interval) 

the efficient use of b d e r  space of the CSVP scheme and indicate that the CSVP 

scheme is effective when the b d e r  space is limited and bursty traffic is supported. 

Robustness of Buffer Allocation 

CSVP 
0.15 & 0.10 
0.60 k 0.27 

Class 2 
Class 3 

The CS and CSVP buffer allocation schemes exhibit a better aggregate cell loss 

ratios than the CP scheme. What are the cell loss ratios experienced by the T r S c  

Classes? Who benefits from the efficient use of b d e r  space? The CP scheme 

may not be buffer efficient. However? it guarantees a minimum buffer space to 

each Traffic Class and thus achieves robustness of bufFer allocation. The b d e r  

space allocated to each T r a c  Class is guaranteed in the CP scheme and c a n o t  

be violated by the other TrafEc Classes. On the other hand, in the CS scheme. 

there is no guarantee. Therefore. although the CS scheme may be b d e r  efficient 

and attain a better aggregate cell loss performance, some Tk&c Classes may s d e r  

from a larger cell loss due to temporarily reduced bufFer space. The CSVP scheme 

guarantees a minimum b d e r  space to each Traffic Class by the Wtual partition 

and the pushout operation, while achieving a completely shared buffer space. 

Table 4.8 compares the cell loss ratio by the CPI the CS and the CSVP buffer 

docation schemes using Case 1. In Case 1: Tr&c Class 1 is non-bursty and thus 

CP (600 cells to Class 2) 
0.16 i: 0.10 

- 

CP (700 ce& to Class 3) 
- 

0.56 & 0.27 
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Table 4.8: The cell loss performance of the CP, CS, and CSVP buffer allocation 
schemes ( x l O P 3 ,  95% confidence interval) 

should not suffer high cell loss ratio if a buffer space of 300 cells is guaranteed. In 

fact, for the CP scheme, no cell losses were detected for Tr&c Class 1. However. 

this class suffers fkom a high cell loss ratio under the CS scheme. B y  the CSVP 

scheme, no cell losses for Tr&c CIass 1 were detected. The CSVP scheme par- 

antees a buffer space of 300 ceUs for Traffic Class 1. The celI Ioss ratio of Traffic 

Class 3 is also slightly improved by the CSVP scheme. This better cell loss per- 

formance for T r a c  Classes 1 and 2 is actually accomplished by limiting the b d e r  

subscription of Tr&c Class 3: the most bursty tr&c; the cell loss ratio of TrafEc 

Class 3 by the CSVP scheme is larger than that of the CS scheme. The CSVP 

buffer allocation scheme limits the b d e r  occupancy of bursty t r a c  and protects 

non-bursty traffic, while achieving bet ter aggregate ceil loss performance for a given 

total buffer size. 

These results show that the CSVP scheme is suitable for heterogeneous tr&c 

situations, where bursty and non-bursty t r a c  coexist, to protect non-bursty traffic. 

Undetected cell loss is guaranteed for non-bursty trafic if a s d c i e n t  amount of 

bufEer is virtudy docated. 

CS 1 I CSVP 
0.21*0.058 ( (undetected) 
0.29 I0.08 1 0.15 20.10  
0.35 -t 0.10 1 0.60 2 0.27 

Class 1 
class 2 
Chss 3 

CP 
(undetected) 

1.9 + 0.35 
7.2 ZIZ 0.29 
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Figure 4.2: Virtual partitioning vs. cell loss ratio (Case 2) 

Virt u d  Partitioning 

It is shown in [WMSS] that cell loss performance is sensitive to the Wtual  parti- 

tioning of the CSVP bufFer allocation scheme. For the case of two Thflic Classes. 

a non-increasing relation between the Wtually allocated buffer space and the cell 

loss ratio is shown (Theorem 2). Figure 4.2 Uustrates this relation using Case 2 

shown in Table 4.9. The total b d e r  size is 400 cells. i.e.. B = 400; and 315 of 

Table 4.9: Two Traffic Class case 

I czass 1 1 Class 2 
I I 

Case 2 1 Type8 x 9 ( Type9 x 7 

link capacity is allocated to T r f i c  Class 1 and 215 to 'Itaffic Class 2, Le., S = 5: 

and SI = 3 and S2 = 2. 

Here, we investigate the case of three T r S c  Classes. Figure 4.3 shows the cell 
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Figure 4.3: Virtual partitioning vs. cell loss ratio (Case 1) 

loss performance witk various virtual partitionings using Case 1. The sensitivity of 

cell Ioss is evident but not the non-increasing relation. The fluctuation of the cell 

loss ratios between allocations 150 and 500 is within the range of the confidence 

interval. However? the cell loss ratio of TrafEc Class 2 from allocations 500 to 600 

shows some singdarity. It appears that the non-increasing relation may not hold 

at sinodar points. such as when a b d e r  space of 600 cells is docated to Sraffic 

Class 1 in this case. An analytical approach may be necessary to understand this 

p henomenon. 

Axe the cell delay and the ce11 delay variation performances sensitive too? In- 

teres tingly, they seem insensitive to the virtual partitioning (Figure 4.4). The same 

tendency is observed for Case 2 (See Appendix B). Cell delay and c d  delay varia- 

tion performance is determined by the service scheduling scheme if an infinite buffer 

is assumed. In our experiments, the buffer space is sufficiently large to achieve very 
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C~~ l (dehy) 4- 
Clas 2 (ddayj + - 
Class 3 (delrry) * 

Clas  1 (&ation) .x- - 
C l a s  2 (variation) & 
C l m  3 (variation) -t- 

Figure 4.4: Vktual partitioning vs. mean cell delay and ceU delay variation (Case 1) 

small cell loss ratios. Therefore, the impact of the b&er size to ceU delay and cell 

delay variation may be minimal, and the efFect of virtual partitioning on cell delay 

and cell delay variation is s m d .  

The insensitivity of ceU delay and cell delay variation to virtual partitioning 

suggests that the cell loss performance of T r a c  Classes can be adjusted by an 

appropriate virtual partitioning without aEecting the cell delay and the cell delay 

variation performances. The Wtual partition can be a u s d  tool to tune cell loss 

performance. 

4.4 Design Guidelines 

The following design issues were Ieft inconclusive in the discussion of the algonthm 

design in Chapter 3: 



1. mechanics of service to implement the WRR scheduling scheme. 

2. traffic class selection rnethod for 

(a) the pushout operation of the CSVP buffer docation scheme and 

(b) the tirne dot  reassignment operation of the Work-conserving WRR schedul- 

ing scheme. 

Two mechanics of service, Exhaustive service and Round Robin service, are pro- 

posed to implement the WRR scheduling scheme, and various methods are sug- 

gested for traffic class selection. In this section, these alternatives are compared for 

cell loss performance in order to provide design guidelines. 

4.4.1 Mechanics of Service 

As discussed in Section 3.4.1, for the WRFt scheduling scheme, Exhaustive service 

is known to have a performance degradation problem. Round Robin service solves 

the problem if the capacity is evenly docated. where the pattern of service is the 

same for any lengtk of service cycle. Wken the link capacity is unevenly distributed. 

however, Round Robin service may not be able to provide sufEiuent compensation 

for a longer service cycle. Case 3 shown in Table 4.10 is introduced to create an 

uneven capacity allocation with an uneven traaic situation. Traffic Types 10 to 12 

are created by morlifving the peak generation rate, X i ,  of Traffic Types 1: 2: and 4: 

which comprise Case 1. The average cell generation rate of Tr&c Class 3 is twice 

as much as that of the other Traffic Classes. Thus, twice as much capacity and 

b d e r  space is given to T r a c  Class 3. Each of 'ItafEc Classes 1 and 2 receives 114 
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Figure 4.5: Service cycle length vs. cell loss ratio (WRR) 

of the total capaWty and Tr&c Class 3 receives 112 by S = 12' and Si = S2 = 3 

and S3 = 6. The total b a e r  size is 400 cells; and 100 cells are allocated to each 

of Traffic Classes 1 and 2 and 200 c e h  to Trafic Class 3? Le.: BI = B2 = 100 and 

B3 = 200. In the following, the two services are examined using Case 3. Similm 

Table 4.10: Uneven traffic situation 

results for another uneven case are provided in Appendix B. 

Let us f i s t  examine the ceU loss performance. It is evident in Figure 4.5 that. 

with Exhaustive service, the cell loss ratio increases with the length of service cycle. 

Round Robin service reduces the ceU loss ratio somewhat. 

Figure 4.6 indicates that not only the cell loss performance but also the cell 

Case 3 
Class 3 

Type 12 x 20 
Class 1 ' Class 2 

Type 10 x 10 Type 11 x 10 



Figure 4.6: Service cycle length vs. mean cell delay (WRR) 

delay performance degrades with Exhaustive service when the service cycle is longer. 

Round Robin service reduces the problem. On the other hand. the effect on the 

cell delay variation performance is not straightforward (Figure 1.7). The ceIl delay 

variation of Traffic Class 1: the non-bursty class. increases? while that of Tr&c 

Classes 2 and 3. the bursty classes, decreases slightly by Exhaustive service. Round 

Robin service reduces the problem. 

Does the same problem occur for the Work-conserving WRR scheduling scheme? 

Figure 4.8 shows the effect of the length of service cycle on the cell loss performance 

when the Work-conserving WRR scheduling scheme is adopted. The cell loss perfor- 

mance degadation with Exhaustive service for a long service cycle is much smaller 

than that of the WRR scheduling scheme. The problems of a long smvice cycle 

seem to be somewhat compensated for by the tirne dot  reassignment operation. 

With Exhaustive service, the mean cell delay of T r a c  Class 1 increases for a 



CHAPTER 4. PERFORMANCE OF A G E N ' C  NODE 
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Round ILobii ( C h  3) e t -  - i 

Figure 4.7: Service cycle length vs. cell delay variation (WRR) 

Exhaustive (Ch% 1) + 
Round Rubin (Clas 1) - - 

Exhaustive (Cl= 2) &- 
Round Robin (Class 3) .x- - _. 

Exhaustive (Cl- 3) 6 
Round Robin (Clas 3) -*- 
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Service cyde lengrh 

Figure 4.8: Senrice cycle length vs. c d  loss ratio (Work-conserving WRR) 
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Figure 4.9: Service cycle length vs. mean cell delay (Work-conserving WRR) 

longer service cycle but that of the other Tr&c Classes does not seem to change 

(Figure 4.9). Round Robin service provides sufficient compensation. Figure 4.10 

shows that the cell delay variation of Traffic Class I increases with Exhaustive 

service. and Round Robin service reduces the problem. 

These observations show that, when the Work-conserving scheduling scheme is 

adopted. Exhaustive service functions sufficiently well to provide low cell loss per- 

formance. Therefore, Exhaustive seMce may be adopted for its simpler operation 

if cell loss is more important performance measure. However, Round Robin service 

may be necessary for a longer service cycle if the c d  delay or the cell delay varia- 

tion is of concern. In addition, as dready pointed out in Section 3.4.1, Exhaustive 

service may cause undesirable bursts in the output tranic. Round Robin service 

may still be preferable. 
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Figure 4.10: Service cycle length vs. cell delay variation (Work-conserving WRR) 

4.4.2 Traffic Class Selection Methods 

The t r a c  class selection methods proposed for the pushout and the time slot 

reassignment operations in Chapter 3 are categorized into the following three kinds: 

1. randorn selection method, 

2. methods based on b&r occupancy? and 

3. prioritization method. 

The methods belonging to the second category for the pushout operation are the 

foIlowing two: 

1. Largest Excess by Absolute Amount? iuid 

2. Largest Excess by Relative Amount, 

and for the the time slot reassignment, the following three: 
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1- Largest Occupancy by Absolute Amount, 

2. Largest Occupancy by Relative Amount, and 

3. Largest Excess by Absolute Amount. 

The random selection method is used as a point of reference; the methods belonging 

to the second and the third categories are examined in cornparison to the random 

selection method. R e d  that random selection may be necessary to break ties for 

the metliods of the second and the third categories. Therefore. the random selection 

method may have to be implemented after d. Cell loss performance is sensitive 

to virtual partitioning while cell delay and cell delay variation are insensitive. In 

fact, these measures are observed to be insensitive to the methods discussed here. 

Therefore, we focus on the cell loss performance. The results in the following are 

produced using Exhaustive service with a short service cycle. It has been c o n h e d  

that the results with Round Robin service are approximately the same for this 

service cycle lengt h. 

Methods Based on Buffer Occupancy 

Three steps are taken to investigate the t r a c  dass selection methods based on 

buffex occupancy. First. we examine the pushout operation. Next. the time dot 

reassignment operation is dealt with. Then, a combination of the pushout and the 

t h e  slot reassignment operations is discussed. R e c d  that when the buffer space 

is equally docated to Traffic Classes, the methods based on b d e r  occupancy are 

equivalent. Therefore. we examine the methods using an uneven trafic situation, 



Case 3, where the buffer space is nnevenly allocated. Similar results for another 

uneven case can be found in Appendix B. 

PUS hout The larges t excess by absolute amount and the largest excess by relative 

amount tr&c class selection methods are e x h e d .  R e c d  that these methods 

require K - 2 comparisons. It is expected that the bursty traffic, especially the 

burstiest Traffic Class 3' is pushed out most frequently and experiences an increased 

ceU loss ratio with the methods based on butfer occupancy. The random selection 

method may have a similar effect since with this method, the frequency of over- 

subscription of the b d e r  space by a Traffic Class determines the fiequency with 

which the Traffic Class is pushed out. Table 4.11 shows that neither the largest 

excess by absolute amount nor the largest excess by relative amount increases the 

cell loss ratio noticeably hom that of random selection. Therefore. the random 

Table 4.11: Cell loss ratio of different tr&c class selection methods for the pushout 
operation ( x IO-= 95% confidence interval) 

I 
- 

I 1 

Class 3 1 3.9 it: 0.57 1 4.2 =t 0.51 1 4.3 5 0.50 

selection method, which requires the use of a pseudo-random number generator, 

Relative excess 
(undetected) 
2.2 & 0.31 

may be preferred to avoid increasing number of comparisons when the number of 

VCs, K, increases. 

Absolute excess 
(undetected) 
1.9 k 0.26 

Class 1 
Class 2 

R a d o m  
(undetected) 
2.0k0.35 
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Time Slot Reassignment For the time slot reassignment operation. the largest 

occupancy by absolute amount , largest occupancy by relative amount. and largest 

excess by absolute amount tr&c class selection methods are examined. R e d  

that these methods require K - 2 comparisons. We expect that the most bursty 

t r a c ,  Traffic Class 3, receives a larger amount of t h e  slot reassignments and thus 

shows a s m d e r  cell loss ratio with these methods. The random selection method 

may perform similarly since with this method, the frequency of subscription of the 

b d e r  space by a Tr&c Class determines the frequency with which the Traffic Class 

receives a reassigned time slot. Table 2.12 shows that these methods yield similar 

c d  loss performance. Therefore, the random selection methodo which requires the 

Table 4.12: Cell loss ratio of different traffic class selection methods for the time 
dot reassignment operation ( x  IO-=, 95% confidence interval) 

1 .  , , .  
Class 2 1 2.0 i 0.35 1 2.3 & 0.34 1 2.2 f 0.23 j 2.2 -t 0.32 

use of a pseudo-random number generator, may be preferred to avoid increasing 

number of cornparisons when the number of VCs, K, increases. 

Absolute excess 
(undetected) 

Combination of the Two The combination of the different tr&c class selection 

methods for the pushout and the time slot reassignment may intens@ the effect 

of these operations and create meanin* ditferences in the ceU loss performance. 

Table 4.13 compares various combinations. As seen in Table 4.13, no combination 

of the tr&c class selection methods for the pushout and the t h e  slot reassignment 

Ciass 1 
Absolute occup. 
(undetected) 

Random 
(undetected) 

Relative occup. 
(undetected) 



Table 4.13: Cell loss ratio of different combinations of tr&c class selection methods 
for the pushout and the time dot reassignment operations ( x  10-~. 95% confidence 
in t enml) 

operations creates sufticiently large differences in the cell loss performance to adopt 

these methods. This result further supports the random selection met hod. 

tirne slot 
pushout 
Class 1 
Class 2 

-- 

time slot 
puskout 
Class 1 
Class 2 
Class 3 

Prioritizat ion 

Random 
Random 
(undetected) 
2.0 & 0.35 

Absolute occupancy 

Our next question is whether prioritization of the tr&c class selection for the 

pushout and time slot reassignment operations creates any effect on cell loss per- 

formance. In order to assess the effect of prioritization, we create Case 4 where 

five identical T r a c  Classes, Classes 1 to 5, are supported by the resource dota- 

tion mechanism. Each Tr&c Class consists of a superposition of ten Type 14 IBP 

mini-sources. The buffer space and the link capacity are equivalently allocated. 

i .e . ,Bk=150,  h = 1 , 2 ? - o g , 5 , a n d S = 1 5 a n d S k = 3 ,  k = 1 ~ 2 : - - ~ 5 .  Thesame 

three steps are taken: first, we examine the prioritization of the pushout operation; 

next, that of the t h e  dot  reassignment operation; and then, the combination of 

Absolute excess 
(undetected) 
2.6 k 0.45 

Relative excess 
(undetected) 
2.9 k 0.21 

Relative occupancy 
Absolute excess 1 Relative excess 

Absolute excess 

(undetected) 
2.2 d~ 0.30 
4.2 k 0.45 

Absolute excess 
(undetected) 
2.5 k 0.47 
4.4 31 0.39 

(undetected) 
2.2 & 0.36 
4.4 z t  0.55 

Relative excess 
(undetected) 
2.4 k 0.28 
4.3 31 0.64 
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the pushout and time slo t reassignment operations is discussed. 

Pushout The prioritization of the t r a c  class selection for the pushout opera- 

tion is examined while the random selection method is adopted for the time slot 

reassignment operation. We consider the priority settings shown in Table 4.14. 

The cell loss performances resulting from these priority settings are shown in Ta- 

Table 4.14: Priority settings of the pushout operation 

U . C - ,  

Set t ina21 h i ~ h  1 low 1 low 1 low 1 low 
Settino 1 

u 1 u I 1 l I 

Setting31 high 1 high 1 high 1 high 1 low 

Class 1 1 Class 2 1 Class 3 1 Class 4 1 Class 5 
Random selection (no priority) 

ble 4.15. When no priority is given. the cell loss performances of the Traffic Classes 

Table 4.15: CeU loss ratios by different prioritization of the pushout operation 
( x  IO-^, 95% confidence interval) 

are approximately the same. In Setting 2, Traffic Class 1 receives the priority to 

be pushed out over T r a c  Classes 2 to 5. As a result, Traffic Class 1 experiences 

a higher cell loss ratio. In Setting 3, Traffic Classes 1 to 4 receive the priority to 

be pushed out over Traffic Class 5. Thus, Tr&c Class 5 experiences a srnder cell 

Setting 3 
0.97 k 0.29 

Class 2 
Class 3 
Class 4 

Setting 2 
1.2 & 0.28 Class 1 

Setting 1 
0.90 & 0.20 
0.90 k 0.19 
0.97 k 0.24 
0.81 I 0.28 

0.71 k 0.015 
0.80 k 0.21 
0.71 k 0.18 

0.96 2 0.23 
1.0 k 0.31 
1.0 & 0.24 



loss ratio than others. However. these differences in cell loss performance are not 

large enough to make a significant impact. Considering that the priority method 

requires at most K - 2 comparisons, and thus becomes computationaliy expensive 

when K is large, the contribution of this method to cell loss performance is small. 

Time Slot Reassignment Adoptinp the random selection mechanism for the 

pushout, we examine the prioritization of trafnc class selection for the time dot 

reassignment operation. The priority set tings considered are shown in Table 4.16. 

Table 4.17 shows the cell loss pedormance resulting from these various prioritiza- 

Table 4.16: Priority settings of the time slot reassignment operation 

( Class 1 1 Class 2 1 Class 3 1 Class 4 1 Class 5 
1 1 

Setting 1 1 Random selection (no priority ) 

tions. When no priority is given, the c d  loss performances of the Trafic Classes 

- . - - .  

Table 4.17: Cell loss ratios by different prioritization of the time slot reassignment 
operation ( x  IO-^. 95% confidence interval) 

Setting 4 
Setting5 

1 Setting 1 1 Settina 4 1 Settine. 5 

I 

Class 2 1 0.90 f 0.19 1 0.83 f 0.30 1 0.70 10 .15  
r 

Class 3 1 0.97 k 0.24 1 0.57 I O 2 5  1 0.70 * 0.13 

high 
high 

are approxixnately the same. In Setting 4. T r a c  Class 5 has the priority to re- 

low 1 low 
hi& 1 high 

low 
high 

low 
10w 
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ceive reassigned time dots over Tr&c Classes Z to 4. As a result . T r a c  Class 5 

experiences a smaller cell loss ratio than others. In Setting 5, Traffic Classes 1 to 4 

have the priori& to receive reassigned t h e  slots over Traffic Class 5. Thus, Trafic 

Class 5 experiences a larger cell loss ratio than others. However, these differences 

are not large enough to make a significant impact. Considering that the priority 

method requires at most K - 2 comparisons, and thus becomes computationally 

expensive when K is large. the contribution of this method to cell loss performance 

is small. 

Combination of the Two Our question now is if the combination of the prioriti- 

zations of the pushout and the t h e  slot reassignment can do any better. Table 4.18 

shows the Werent  priority setting combiuations of the traffic class selection of the 

pushout and the tirne slot reassignment operations. As we can see in Table 4.19. 

Table 1.18: Priority settings of the pushout and the t h e  slot reassignment opera- 
tions (p: pushout, t : time slot reassignment ) 

I I Class 1 I Class 2 I Class 3 1 Class 4 1 Class 5 
Setting 1 

Setting6 - 

Setting 7 

the contribution of these settings to the cell loss performance is not sufficiently 

p 
t 

p 

Random selection (no priosity) 
R a d o m  selection (no priority) 

high 1 low 1 low 1 low 1 low 
t ' high ' low low low low 

' - 

low 
low 
Iow 
hiah 

Setting 8 ' p ' high i high high hi& 

Setting9 

low 
high 

p 
t 

t 
p 
t 

low 
high 

high 
low 

low 
high 

high 

low 
high 

high high 

high 
low 

high 
hi& 
low 

high 
low 

high 
low 
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large considering its computational cos t for comparisons. Therefore, it is recom- 

Table 4.19: Cell loss ratios by different prioritization of the pushout and the time 
slot reassignment operations ( x 10-~, 95% contidence interval) 

mended to adopt the random selection method for both the pushout and the time 

slo t rea~s i~pment  operations. 

Class 1 
C ~ S  2 
Class 3 
Class4 
Class 5 

4.5 Concluding Remarks 

The work-conserving WRR scheduling scheme considerably improves cell loss. ce11 

delay. and cell delay variation performance compared to the FVRR scheduhg 

scheme by the efficient use of Iink capacity. The improvement is large enough 

to consider the addition of the time slot reassignment operation in spite of the 

increased computational cost. Note that minimum bandwidth guarantee is inker- 

ent to the Work-conseming WRR scheduling scheme. The bufFer efficiency of the 

CSVP b&er allocation scheme is clearly observed. I t  is also demonstrated that 

the CSVP scheme guarantees a miniaum buffer space to each TrafEc Class. Thus, 

the Work-conserving WRR-CSVP mechanism exhibits the efficient use of resources 

and the robnstness of resource allocation siiitable for an output port of an ATM 

switch to perform VC based resource docation. 

Setting 1 1 Setting 6 Setting 7 
0.73~t0.19 
0.67+0.10 
0.60&0.17 
0.66h0.20 

0.90&0.20 0.88i0.20 
Setting 8 1 SettGg 9 
0.96A10.21 
1.0&0.22 
0.98k0.25 
1.1f:0.29 

1.4 1: 0.31 / 0.94 ï 0.24 

0.90 50.19 / 0.81 k0.19 
0.97k0.24 10.89f 0.33 

0.47k0.15 
1.4i0.25 
1.1f 0.20 
1.3k0.27 
1.2 f 0.29 

O.SOk0.28 
0.91 & 0.24 

0.88k0.23 
0.65 & 0.16 
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Another advantage of the CSVP scheme observed is that cell loss performance 

is sensitive to Wtual partitioning, while cell delay and celi delay variation perfor- 

mances are not. This suggests tkat c d  loss performance can be adjusted by virtual 

partitioning wittiout affecthg c d  delay and cell delay variation. Further investi- 

cation is conducted in Chap ter 5 regardhg the &ect of vktual partitioning on the 
O 

end-to-end performance. 

The two service mechanics of the WRR scheduling scheme, Exhaustive and 

Round Robin services: are compared. The adoption of the time slot rea~si~pment  

operation reduced the drawback of Exhaustive service in ce11 loss performance. 

Therefore. Exhaustive service may be acceptable for its less computational cost. 

However, a problem still exists where c d  delay and c d  delay variation are con- 

cerned. Round Robin service showed better performance. Also, Exhaustive service 

rnay cause undesirable bursts in the output tr&c and increase the cell loss at the 

downstream nodes. Thus. if feasible? Round Robin service rnay be recommended. 

We attempt to capture this burst problem of Exhaustive service by end-to-end 

performance evaluation in Chapter 5. 

The traffic class selection methods for the pushout and the time slot reassign- 

ment operations are also examined. None of the tr&c class selection methods based 

on b&er occupancy result in signuicantly different cell loss performance from the 

random selection method. The contribution of prioritization is also small. The 

random selection method does not require comparisons and thus may be compu- 

t a t iondy Iess expensive, although the use of a pseudo-random number generator 

is necessary. In addition, the random selection method may be necessary to break 



ties after dl. Therefore, the adoption of the random selection method for both the 

pushout and and the t h e  slot reassi,went operations is recommended. 

The Work-consenring WRR-CSVP resource docation mechanism performs welI 

and possesses some preferable characteristics. In Chapter 5, we further investigate 

the characteristics of the resource allocation mechanism fiom the perspective of 

end- to-end performance. With d these advant ages , the Work-conserving WRR- 

CSVP resource allocation mechanism is recommendable for adoption at an output 

port of an ATM switch if the computationd cost can be overcome. In order to 

cope with the speed of ATM networks, it is preferred to implement the resource 

allocation mechanisrns in hardware. We discuss the implementation strategies for 

the Work-conserving WRR-CSVP resource allocation mechanism and examine the 

feasibility in Chapter 6. 



Chapter 5 

End-To-End Network 

Performance 

5.1 Introduction 

It is shown by emulation in Chapter 4 that the Work-conserving WRR-CSVP re- 

source allocation mechanisrn achieves efficient use of resources and robustness in 

resource docation at a single generic node. However, as mentioned in Section 1.1 .S. 

QoS has to be provided on an end-to-end basis in ATM networks. Thus. it is impor- 

tant to examine the Work-conswing WRR-CSVP resource allocation mechanism 

in a network environment and to evaluate its end-to-end performance. For this pur- 

pose, a network emulator is developed and the end-to-end performance is evaluated 

in this chapter. 

As pointed out in Section 3.4.1, Exhaustive service may cause undesirable bursts 

in the output t ra6c when the service cycle is long. We attempt to demonstrate 
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this problem. 

One of the advantages of the Work-conserving WRR-CSVP resource allocation 

mechanism discussed in Section 4.3.2 is the effect of virtual partitioning. Virtual 

partitioning of buffer space affected cell loss performance but did not show notice- 

able effect on ceU delay and c d  delay variation. If this is also true for end-to-end 

performance, then virtual partitioning can be used to adjust cell loss without affect- 

ing cell delay and cell delay variation. We examine the effect of virtual partitioning 

on the end-to-end performance and the performance at the downstream nodes. 

It is also of interest to examine our resource allocation mechanism for practical 

trafic. The Motion Pictures Expert Group (MPEG) coding scheme [Gd911 is an 

accepted standard coding scheme that is currently in use. The trafic created by 

this coding method is known to be very bursty. We have created traffic flows from 

existing MPEG coded pictures as test sources to hirther examine the advantages of 

the Work-conserving WRR-CSVF' resource allocation mechanism in an end-to-end 

context . 

5.2 Network Mode1 

5.2.1 Topology of the Network 

An ATM network is a mesh network of ATM switches with the ATM multiplexers 

at the network entry points and the ATM demdtiplexers at the network exit points. 

In Chapter 2? we modeled an ATM multiplexer or an output port of a non-blocking 

output-buffering ATM switch using a single-semer model. An end-to-end network 



Figure 5.1: The path of the reference flow 

partition is modeled by a tandem connection of single-server queues. as shown in 

Figure 5.1. The traffic flow that traverses this network Erom the entry node to the 

exit node is referred to as the Reference Class: and the other tr&c flows supported 

by the nodes on the path are referred to as Background Classes. 

It should be noted that, in reality. there may be a strong correlation between 

a Background Class at one node and a Background Class at another node. For 

example, a Background Class may take the same path as the Reference Class. 

However, for simplicity of the emulator? we assume that all Background Classes are 

independent. 

5.2.2 Network Emulator 

An emulator of an end-to-end network is developed by connecting the generic node 

emulators in tandem. A few functions are added to the generic node emulator to 

construct a tandem network. At the interior and the exit nodes, an input link 

replaces one of the traffic sources; an upstream node is connected to this Link. 

When a cell belonging to the Reference Class departs an upstream node, the cell is 

transferred to the link connecting to the downstream node. The downstream node 
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receives this c d  in the same manner as it receives ce& fkom the Cell Generator. At 

the exit node, end- t O-end performance statis tics are collected for ce& belonging to 

the Reference Class. In each time dot, the set of the operations at a generic node. 

selvice scheduluig, cell generation, ceIl admission, and ceIl departue, is performed 

&om the entry node to the exit node dong the path. Also, MPEG data stream 

sources are added to the Cell Generator. A superposition of MPEG data stream 

sources constitutes a Trafic Class to obtain a sufficient amount of average load for 

onr emulatoro since the average load of each of the MPEG data streams available 

for us was very low. 

5.2.3 Performance Measures 

Let M be the number of nodes on the path induding the entry and the exit nodes. 

Therefore. the entry node is the f is t  node and the exit node is the ikfth. Let Lm(n). 

rn = 1.2, M ?  be the number of cells belonging to the Reference Class that are 

blocked at  the mth node during [O,n], and let Pm(n), m = 1,2. - - M. be the 

number of cells belonging to the Reference Class that are pushed out at the mth 

node during [O, n]. Let uM(n) be the number of cells belonging to the Reference 

Class that departed fiom the Mth node during [O: n]. 

End-to-end CeU Loss Ratio 

The end-to-end cell loss ratio is defined as follows: 
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Definition 13 (End-to-end Cell Loss Ratio) 

T h e  end-to-end ce11 loss ratio, T E ,  is defined by: 

By a stationarity assumptiono we have 

for N >> 0. 

End-to-end CelI Delay and Cell Delay Variation 

End-to-end c d  delay is defined only for those cells departing fkom the exit node. 

Let e. m = 1,2.  - - , M, be the c d  delay of the ith departure among the uM(n) 
departures of the Reference Class &om the mth node. The propagation delay is 

ignored since it is constant. The end-to-end cell delay is defined by the s u m  of the 

cell delays dong the path. 

Definition 14 (End-to-end Cell Delay) 

The end-to-end cell delay, de,;, for t he  ith departure of the Reference Class from 

the Mth node is d e f i e d  as follows: 

The mean end-to-end ceU delay is defined as follows: 
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Definition 15 (Mean End-to-end Cell Delay) 

The mean end-to-end ce11 deloy, dB, is given by: 

The standard deviation around the mean end-to-end cell delay is used to  measure 

the end-t +end c d  delay variation. 

Definition 16 (End-to-end Cell Delay Variation) 

The standard deviat ion of  the end-to-end cell delay . 02, is given 6y: 

By a stationarity assumption, we have 

and 

for N > 0. 
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5.3 Exhaustive Service vs. Round Robin Service 

It is pointed out in Section 3.4.1 that Exhaustive senrice rnay cause an undesirable 

burst in the output traffic if the service cycle is long. Exhaustive service allocates 

consecutive Sk t h e  dots to Traffic Class k in a service cycle. Therefore, a combi- 

nation of backlog of ceUs in the b&er and the arrival pattern of a Traffic Class k 

can result in the emissions of Sk cells consecutively, which c m  be seen as a burst 

of length Sk. And the b d e r  occupancies and arrival patterns of the other T r S c  

Classes can make this burst longer. 

The burst should be able to be detected by observing cell loss performance. 

Assume that the Background Classes are non-bursty and constantly occupy t heir 

share of bufîer space. Then, if the Reference Class is bursty. the b d e r  space needed 

to support the burst will not be a d a b l e  and result in a higher cell loss ratio. Also. 

the buffer space for the Background Classes may be violated by the burst of the 

Reference Class and the Background Classes may experience higher cell loss ratios 

as weU. 

In order to create such a situation- the following scenario is prepared. We con- 

struct a two-node network. The Reference Class is generated by a superposition 

of ten statisticdy identical Bernoulli processes with X = 0.033. The two Back- 

ground Classes at each node are also created with the same tr&c mode1 as the 

Reference Class. Therefore, the average load of each node is 99% and 113 of the 

link capacity is doca ted  to each Trafiic Class. At the first node, a b d e r  space of 

300 cells is allocated to each Tr&c Class to enable sufficient backlog in the buffer 

space. A bntfer space of 135 cells is allocated to  each class at the second node. 
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Figure 5.2: Cell loss ratio at the 2nd node 

le - 05 

8e - 06 

Table 5.1: Cell loss ratio at the 2nd node ( x  10-~,  95% confidence interval) 

1 Exhaustive (service cycle = 450) 

- I I I I l I L I - 
Exhcrustive {Clas  1) + 

Round Robin (Clus  1) -+ - 
Exhiuiscive (Clcm 2) - Round Robin (Cljss 2) *x* - ' 
Exhaustive (Class 3) & 

SerJice cycle length at ühe 1st node 

which is the minimum buffer space to obtain nearly undetected cell loss. The cell 

loss performance at the second node is observed to detect the burst. 

When Exhaustive service is adopted, some ce11 loss are detected at the second 

node for all three Traffic Classes, wkile no cell loss is detected with Round Robin 

senice (Figure 5.2). Unfortunately, however, this result is inconclusive due to the 

large confidence interval by our emulator shown in Table 5.1. 

Although the creation of bursts by Exhaustive could not be demonstrated: 

Class 1 
Class 2 
Class 3 

Round Robin service is adopted throughout the remainder of this chapter in order 

0.53 k 0.74 
0.76 & 1.2 
0.30~t0.49 
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to eliminate the possibility. 

5.4 Efficiency and Robustness 

The Work-conserving WRR-CSVP resource allocation mechanism is shown to uti- 

lize b d e r  space efficiently and provide robust b d e r  docation at a generic node in 

Section 4.3.2. Here, we examine if these advantages are extended to the end-to-end 

performance. 

5.4.1 Buffer Efficiency 

In order to demonstrate the b d e r  efficiency of the CSVP b&r allocation scheme. 

the cell loss performance of the CP and the CSVP schemes are compared in Sec- 

tion 4.3.2. The buffer efficiency of the CSVP scheme results in a better aggregate 

cell loss ratio at a generic node. The bursty trafic benefits f h o m  the b d e r  efficiency 

and experiences a lower cell loss ratio. If this is true throughout the network? the 

aggregate cell loss ratio at each node on the path should be lower. 

The network of the CP butfer allocation scheme is created by connecking the 

generic nodes with the Work-conserving WRR-CP resource allocation mechanism 

in tandem. We construct a three-node network and use tr&c situation Case 1 

in Section 4.3.2 as follows. The burstiest traffic, Tkaffic Class 3: is chosen as the 

Reference Class. T r S c  Classes 1 and 2 are used as the Background at each node, 

Le.: all nodes have the same Background Class tr&c condition. The butfer and 

capacity allocation conditions at each node are also the same as the genenc node 

of Case 1 in Section 4.3.2. 



Table 5.2: The aggregate ceU loss ratio at each node ( x  10-~' 95% confidence inter- 
4 

Table 5.3: The end-to-end cell loss ratio ( x 10e3 ? 95% confidence interval) 

Table 5.2 shows that the aggregate cell loss ratio by the CSVP scheme is much 

smaller than that by the CP scheme at all  nodes. Buffer efficiency of the CSVP 

scheme is effective throughout the network. 

The bursty Reference Class benefits from the efficient use of buffer space. as 

further discussed in the following subsection. Therefore, the end-to-end cell loss 

ratio is also smaller by the CSVP scheme (Table 5.3).  This maans that buffer effi- 

ciency of the CSVP scheme is effective also on the end-to-end cell loss performance 

to support bursty trafEc. Note that the CS scheme achieves the best end-to-end 

cell loss ratio among the three schemes. This low cell loss is achieved by violating 

CP 

the b d e r  space for the other Tr&c Classes as shown in the following. 

CS I CSVP 
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Table 5.4: The ceIl Loss ratios of Traffic Class 1 ( x ~ O - ~ ,  95% confidence interval) 

I CP I CS 1 CSVP 

5.4.2 Robustness of Buffer Allocation 

1st node 
2nd node 
3rdnode 

In the CS buffer allocation scheme. the buffer space is not guaranteed. Therefore. 

our emulation study in Section 4.3.2 indicated that the buffer space for the non- 

bursty traffic was violated by the bursty tr&c and resulted in an unnecessarily 

(undetected) 
(undetected) 
(undetected) 

high cell loss ratio at a generic node. Bursty tragic may violate the buf£'er space for 

non-bursty tr&c and cause higher cell loss ratio for the non-bursty traffic if the 

CS scheme is adopted. 

The network of the CS buffer docation scheme is created by connecting the 

generic nodes with the Work-conserving WRR-CS resource docation mechanism 

in tandem. We examine the robustness of buffer allocation by the CSVP scheme. 

Le.. capability to parantee a minimum buffer space, by comparing the cell loss 

performance with that of the CS and the CP schemes. 

Table 5.4 shows the ceU loss ratios of Tr&c Class 1 for Case 1, which is used to 

examine buffer efficiency in the previous subsection. The non-bursty trafic: Traaic 

Class 1, s a e r s  fkom a high cell loss ratio at all nodes with the CS scheme. The 

buffer space for Tr&c Class 1 is protected by the CSVP scheme and no ceU loss 

is detected. The burstiest Reference Class, T r S c  Class 3, took advantages of the 

0.20 10.050 
0.13 ir 0.079 
0.043k0.042 

CS scheme, where no regulation of b d e r  subscription is ad.opted and resulted in a 

(undetected) 
(undetected) 
(undetected) 
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Table 5.5: The cell loss ratio of Traffic Class 3 as the Reference Class ( x IO-=. 95% 
confidence intenml) 

1 1 

End-to-end 1 (undetected) ( 0.49 f 0.12 1 (undetected) 

bet ter end-teend cell loss performance shown in Table 5.3 at  the cost of increased 

ce11 loss for TrafEc Class 1. 

VVhen non-bursty traffic flow traverses a network where bursty t r a c  exists 

at the nodes on the path, it is necessary to protect the buffer space allocated 

to the non-bnrsty tr&c throughout the path. Let the non-bursty traffic, Traffic 

Class 1: be the Reference Class. The bursty Traffic Classes 2 and 3 are used as the 

Background Classes at each node on the path. With the CS scheme. the cell loss 

ratio of the Reference Class s ibdcant ly  degrades at each node and a high end- 

to-end cell loss ratio is seen in Table 5.5. By the CSVP scheme, the b d e r  space 

allocated to the Reference Class is guaranteed and protected at ail nodes and thus 

no cell loss is detected. The robustness of bnffer allocation by the CSVP scheme 

protects non-bursty tr&c fkom the violation by bursty tr&c, which is one of the 

most significant properties of our resource allocation mechanism, since the tr&c 

situation in ATM networks is expected t O be heterogeneous. 

1st node 
2nd node 
3rdnode 

' imdetected) ' 0.20 k 0.078 ' (undetected) 
(undetected) 
(undetected) 

(undetected) 
fundetected) 

0.15 & 0.078 
0.143~0.047 
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BURE docation to C h  3 st the 1st node 

Figure 5.3: Virtual partitionhg vs. cell loss ratio at the 2nd node 

5.5 Virtual Partit ioning 

It was shown in Section 4.3.2 that the cell loss performance is sensitive to virtual 

partitioning, whereas the cell delay and the cell delay variation performances are 

insensitive. What is the effect of virtual partitioning on the end-to-end perfor- 

mance? If the end-to-end cell loss ratio is significantly affected, while the effect 

on the end-to-end cell delay and delay variation is minimal, the Wtual partition 

will be a strong tool to adjust the end-to-end cell loss performance. The three- 

node network used in the previous section is used to examine the effect of Wtual 

partitioning. Traffic Class 3 is chosen to be the Reference Class. 

The effect of the Wtual partitioning at  the f i s t  node is already observed in 

Section 4.3.2. Let us examine if the virtual partitioning at  the h s t  node has any 

impact on the second node. Figure 5.3 shows the &ect on the cd loss performance 

at  the second node. The effect is too s m d  to detect. The effect of the Wtual 
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Buffer allocation to C b  3 at the 1st node 

Figure 5.4: Virtual partitioning vs. mean cell delay and ceIl delay Mnation at the 
2nd node 

partitioning at the first node on the ceIl delay and the cell delay Mnation at the 

second node is shown in Figure 5.4. There appears to be no &ect. 

The impact of c d  loss ratio at the f i s t  node is strong on the end-to-end cell loss 

performance, i.e.? the Ç s t  node is the bot tlenedc node. Thus? the effect of the vir- 

tua1 partitioning on the end-to-end cell loss performance is apparent in Figure 5.5. 

However, the cell delay and the cell delay variation performances do not seem to be 

atfected (Figure 5.6). These results strongly support the virtual partition as one of 

the tools to adjust the ce11 loss service quality. 
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I I 7 t I 1 
O 100 200 300 400 500 600 

B d e r  docation to C1ss 3 at the 1st node 

Figure 5.5: Virtual partitioning vs. end-to-end cell loss ratio 

01 I I 
1 I I 1 

0 100 2\10 300 400 500 600 
Buifer docation to C l m  3 at the 1st node 

Figure 5.6: Virtual partitioning vs. mean end-to-end cell delay and ceU delay 
variation 
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5.6 MPEG Video Data Stream 

5.6.1 MPEG Video Data 

The MPEG ftst-phase (MPEG-1) video compression [IS094] is an international 

standard for video compression, primarily developed for the storage of video data 

[GalSl]. For actual data transmission over a network, where some losses of data may 

occur, the MPEG second-phase (MPEG-2) standard [IS095] was developed and is 

expected to be adopted for the broadcasting of High Definition Television (HDTV) 

[Min95 , ACD+95]. Public-domain software referred to as i'LIPEGToo1 [UAHf 941 

was developed to meate MPEG coded data and to obtain some statistics. 

In order to transmit W E G  coded data, the data stream has to be segmented 

into ATM cells. The ATM cell segmentations of W E G - 1  has been studied. al- 

though MPEG-1 may not be designed for data transmission. The cell seogmenta- 

tion of MPEG coded video data can be performed for different coding layers of 

MPEG. frame layer? slice layer, and macroblock layer. Macroblock layer cell seg- 

mentation is discussed in [GH93]. The characteristics of cell streams generated by 

MPEG sources for different coding layers are examined in [PZ94]. The cell delay 

and cell delay variation performance using 1MPEG-2 coded video data is studied by 

simulation for tandem FIFO queues in [NLGSG]. 

In this section, MPEG-1 coded video data are used as the test sources and 

the ceIl loss? cell delay and cell delay variation are examined. A tool referred to as 

mpegcell  [Che961 is applied to create c d  streams from the MPEG data; mpegcell  uses 

the information obtained by MPEGTool. In mpegcell, fkame layer cell segmentation 
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is adopted and no spacing between cell emissions is applied. The cell stream created 

by kame level cell segmentation can be very bursty if the ce& belonging to the same 

frame are emitted to the network without spacing. Therefore, in practice, some 

spacing between cell emissions may be introduced to reduce burstiness. and/or slice 

level ceU segmentation may be used. Here, however, the Work-conserving FVRR- 

CSVP resource allocation scheme is tested using the highiy bursty trattic of fkame 

level cell segmentation withont spacing. It should be noted that hame layer c d  

~e~menta t ion  may require a maximum delay of 2 hame times for cell segmentation 

and assembly. 

5.6.2 Performance Evaluation 

The MPEG coded video data used in the emulation study are iisted in Table 5.6. 

These are the data with sufficiently long duration and high intensity to be suitabie 

for our emulator. We consider a tr&c situation Case 5: shown in Table 5.7. T r a c  

Class 1 is the Trafic Class of the MPEG video sources. This T r a c  Class is used 

as the Reference Class and traverses the network. The other Traffic Classes are the 

Background Classes: Tr&c Class 2 io bursty t r a c  created by a superposition of 

IBP mini-sources; and T r a c  CIass 3 is non-bursty trafic created by a superposition 

of Bernoulli process &-sources. This setting can be seen as a situation where a 

video channel shares the resources with data and voice charnels. Each channel 

supports a number of sources. 

A seven-node network is created. The resource allocation conditions are the 

same at all nodes and the resource dimensioning was performed empirically. At 
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Table 5.6: MPEG sources 

Description 
A short animation movie 

Name 
RedsNightmare 

ear t h-cif 

Pca 

25 

30 

974899.86 

1 Both animation and actual 

hames/s 
25 

with scene changes. 
An animation of the earth 

551481.36 

Avg. rate (b/s) 
597776.45 

rotating. No scene change. 
Scenes of aircrafts flying. 

I I I 1 a canyon seen from a aying 1 
/ canyon 1 30 

I I I 1 geometrical patterns. No 1 

237193.72 

zoom 

1 f 1 1 scene change. 1 

rnovie. Contains some scene 1 
changes. 
An animation of the scene of 1 

I 

30 

Table 5.7: T r a c  Classes of Case 5 

b tpintro 

jet 

genesisp 

- - 

Class 3 1 Type 1 ~ 1 0  

945774.17 
aircraft. No scene change. 
A n  animation zooming some 

25 

30 

24 

442061.71 

182210.99 

444903.84 

An introduction of a movie 
with some scene changes. 
Similar to kanyon'. No 
scene change. 
A part of one of the 
Startrek movies. Contains 
some scene changes. 
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Table 5.8: The aggregate cell loss ratios ( x 

4th node 1 0.44 f 0.18 
5th node 1 0.53 z t  0.16 

each node, the total buffer size is 550 cells and the docation is: 300 ce& to 

Traffic Class 1; and 125 ce& to each of Trafic Classes 2 and 3. Le., BI = 300 

and B2 = B3 = 125. For the capacity allocation, 112 of the total link capacity is 

docated to Traffic Class 1 and 114 to each of Traffic Classes 2 and 3. i.e.. S = 20. 

and SI = 10 and S2 = S3 = 5. 

Let us examine the b d e r  efficiency first . A network with the Work-conserving 

WRR-CP resource allocation mechanism is constructed for cornparison purposes. 

The aggegate cell loss ratio shown in Table 5.8 indicates the buffer efficiency of 

the CSVP scheme. The aggregate ceLl loss ratio is much better with the CSVP 

scheme at all nodes. Therefore, the C S W  scheme is more b d e s  efficient than the 

CP scheme. 

Table 5.9 shows the end-to-end cell loss ratio and the cell loss ratio of the bursky 

Reference Class at each node. The end-to-end cell loss ratio is smaller with the 

CSVP scheme than the CP scheme. This is mainly due to the cell loss performance 

at the first node, which has a significant impact on the end-to-end cell loss ratio. 

The b d e r  efficiency of the CSVP scheme contnbutes to obtain a lower end-to-end 

(undetected) 
(undetected) 

6th node 
7th node 

0.46 I 0.16 
0.36 3~ 0.14 

iundetected) 
(undetected) 



Table 5.9: The end-to-end c d  loss ratio and the c d  loss ratios at each node of 
Traffic Class 1 ( x 95% confidence interval) 

Table 5.10: The cell loss ratios of Traffic Class 2 ( x W3; 95% confidence interval) 

CSVP CP CS 
3.6 & 2.6 
3.6 & 2.6 

(undetected) 
(undetected) 
(undetected) 
(undetected) 
(undetected) 
(undetected) 

cell loss ratio for bursty traffic. Another bursty class: T r 5 c  Class 2 also benefits at 

all nodes and experiences a much lower cell loss (Table 5.10). Bursty Background 

t r a c  also benefits fkom the b&er efficiency of the CSVP scheme. 

1s the non-bursty class, Sr&c Class 3, protected? Table 5.1 1 shows the cell loss 

experienced by Trafic Class 3 at each node. At the first node, where the bursty 

MPEG coded video traffic enters the network, Tr&c Class 1 is geedy for the buffer 

space. Thus, this bursty Reference Class and another bursty class! T r a c  Class 2: 

2.3 & 2.1 
2.3 & 2.1 

(undetected) 
(undetected) 
(undetected) 
(undetected) 
(undetected) 
(undetected) 

I 

End-to-end 1 29.7 k 13.1 
1st node 
2nd node 
3rd node 
4thnode 
5thnode 
6thnode 
7th node 

1st node 
2nd node 

29.7 k 13.1 
(undetected) 
(undetected) 
(undetected) 
(undetected) 
(undetected) 
(undetected) 

CS 
0.070 & 0.047 
(undetected) 

CP 
0.98 I 0.50 
0.67 k 0.32 

CSVP 
0.00033 k 0.00075 

(undetected) 
(undetected) 
(undetected) 
(undetected) 
(unde tected) 
(undetected) 

3rd node 
4th node 
5thnode 
6th node 
7th node 

0.79 & 0.24 1 (undetected) 
0.92 k 0.38 
1.1k0.34 

0.98 rt 0.34 
0.76 I 0.30 

(undetected) 
(undetected) 
(undetected) 
(undetected) 



Table 5.11: The cell loss ratios of TraEc Class 3 ( x  95% confidence interval) 

CP 1 CS CS VP 
I l 

1st node 1 [undetected) 1 0.066 f 0.048 

1 \ r i s  - I  

5th node 1 (undetected) 1 (undetected'l 

2nd node 
3rd node 

(undetected) 
(undetected) 
(undetected) 

6th node 
7th node 

- - 

(undetected) (undetected) 
(undetected) 

4th node I (undetected) 
(undetected) 
(undetected) 
(undetected) 
(undetected) 

(undetected'l 

. r ,  \ - I 

(undetected) 
(undetected) 

cause unnecessary c d  loss for the non-bursty trafnc. Trafic Class 3, with the CS 

scheme. The undetected cell loss for Tr&c Class 3 shown in Table 5.11 shows that 

the CSVP scheme guarantees a minimum butfer space. The robustness of buffer 

allocation of the CSVP scheme is effective. 

(undetected) 

From the second node to the seventh node, no cell loss is detected with any 

butfer allocation scheme. It may be the Work-conserving WRR scheduling scheme 

with Round Robin service that reduces the burstiness of the Reference Class at 

the first node and results in undetected cell loss at the downstream nodes. The 

emulation using Case 1 in the previous section shows the same tendency. R e c d  

that Exhaustive service may increase the burstiness and cause a higher cell loss ratio 

at the downstream nodes. These observations suggest that scheduiing schemes rnay 

have a significant impact on the ceU loss performance at the downstream nodes. 

Let us examine the cell delay and the c d  delay variation now. The end-to-end 

cell delay and cell delay variation performances are shown in Table 5.12. R e c d  

(undetected) , (undetectedl 

that &ame layer cell segmentation requires a maximum delay of 2 fiame times 

for cell segmentation and assembly. An intefiame t h e  is 1/30 seconds, which is 
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Table 5.12: The end-to-end cell delay and c d  delay variation performances ( x 102? 
95% confidence interval) 

(ceU time) I CP I CS 1 CSVP 

approximately 12347 cell times. The largest burst is caused by the largest type 

of kame in the MPEG coding, intra-frame (1-hame)' and the size of the burst is 

around 300 consecutive cells on average for ou- MPEG coded video sources (The 

largest burst can be over 500 cells). The end-teend cell delay and delay variation 

observed in our emdation are much s m d e r  than the cell segmentation and assembly 

delay. even if the size of the burst is taken in to account. Therefore, the end-teend 

delay and delay Mnation observed here may be tolerable for some applications. 

The Work-conserving WRR-CSW resoarce allocation achieves a bet ter aggre- 

gate ceU loss ratio throughout the path of MPEG coded video traffic due to its 

efficient use of resowces. The efficiency benefits bursty tr&c to obtain a lower 

end- t O-end cell loss performance. The resource allocation mechanisrn &O protec ts 

non-bursty t r a c  at all nodes from potential high cell loss caused by sharing the 

resources with bursty MPEG video t r d c  without a regdation. This shows the 

robustness of resource allocation of the Work-conserving WRR-CSVP resource al- 

location mechanism. Our resource docation mechanism is, thus, suitable for the 

situations where bursty tratfic, such as MPEG video data, and non-bursty tr&c 

coexis t . 

It should be noted that the largest portions of the end-to-end cell delay and cell 

CeU delay 
CeU delay variation 

I 

1.8 k 0.11 1 1.9 f 0.13 
1.5 k 0.12 1 1.9 i 0.16 

1.9 f 0.15 
1.8 5 0.17 
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Table 5 -13: The cell delay performance at  each node ( x IO2, 95% confidence interval) 

Table 5.14: The cell delay variation performance at each node (x lo2 .  95% confi- 
dence interval) 

delay variation are incwed at the first node (Tables 5.13 and 5.14). The impact 

of the first node is also significant for cell loss performance (Table 5.9). These 

results suggest that the control at such a bottleneck node is significant to achieve 

the required QoS, such as cell loss, cell delay, and cell delay variation. 
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5.7 Concluding Remarks 

The Work-conserving WRR-CSVP resource allocation mechanism has been investi- 

gated from the network viewpoint. An end-to-end network is modeled by a tandem 

connection of single-server queues and an emulator of such a network partition is 

developed by connecking a number of generic node emulators in tandem. 

An attempt is made to demonstrate bursts in the output traffic caused by Ex- 

haustive service. Although the result is inconclusive due to the limited accuracy 

of our emulator, it is recommended to adopt Round Robin s e ~ c e  to avoid this 

potential problem. 

The efficient use of resources and the robustness of resource allocation inherent 

in the Work-conserving WRR-CSVP resource allocation mechanism are shown to 

have s i g d c a n t  impacts on the end-to-end cell loss performance. These aspects 

of our resource allocation meclianism are s igdcant ,  especially in heterogeneous 

tr&c situations expected in ATM networks. 

Another advantage of the Work-conserving WRR-CSVP resource allocation 

mechanism is the effect of virtual partitioning. It is demonstrated that the end- 

to-end ceU loss performance is sensitive to virtual partitioning at the bottleneck 

node while the end-to-end cell deIay and the end-to-end cell delay variation are 

insensitive to it. This suggests that the virtual partition can be a tool to tune the 

end-to-end ceU loss performance without affecting the end-bend ceIl delay and the 

end- t O-end celi delay variation. 

The Work-conserving WRR-CSVP resource allocation scheme is applied to han- 

dle MPEG coded video data streams. It is shown that our resource allocation 
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scheme is effective when highly bursty tr&c such as MPEG coded video data 

shares the network resources with other bursty andfor non-bursty traffic. 



Chapter 6 

Implementation Strategies And 

Feasibility 

6.1 Introduction 

The effectiveness of the Work-conserving WRR-CSVP resource allocation mecha- 

nism presented in Chapters 2 and 3 has been dernonstrated by emulation results 

in Chapters 4 and 5. In Chapter 3, the detailed dgorithms to implement the 

Work-conserving WRR-CS VP mechanism as an application software is discussed. 

Here? the algorithms are divided into several processing entities t O achieve par d e l  

processing . 

As discussed in Section 3.2' the implementation of the buffer space is an impor- 

tant issue. A suitable memory structure needs to be investigated. The design of 

the random selection method is another question to be examined. 

In this chapter, we provide design and implementation strategies for the Work- 
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conserving WRR-CSVP mechanism. The feasibility of the proposed design is ex- 

amined by assessing the size of the memory space and the computational costs of 

the operatiom. The design specification is provided in Appendix C: the precise 

structures of the memory space and the detailed operations of the processing enti- 

ties are describ ed 

the ceU admission 

in the specification. In the following discussion. the focus is on 

and the service mechânisrns. 

6.2 General Structure 

The operations of the Work-conserving WRR-CSVP resource allocation mechanism 

are divided into five processing entities to achieve paralle1 processing. We refer to 

a processing entity as a state machine (SM). The five SMs are: the Pre-Bdering 

SM (PB-SM); the Cell Buffering SM (CB-SM); the Buffer -4Uocation SM (BA-SM): 

the Service Scheduling SM (SS-SM): and the Cell Transmission SM (CX-SM). 

The actual buffer space is realized by the B d e r  Space (BS) memory seogneent. 

The Pre-Buffer (PB) segment and the Transmission BufFer (XB) segment are added 

to cope with the speed mismatch among the SMs and the switching fabric. The 

VCs supported at an output port are managed with the data kept in the VC Table 

(VCT) memory segment. 

The general structure of the system is Uustrated in Figure 6.1, with the func- 

tionalities described in the following section. 
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Figure 6.1: General structure of the Work-conseming Wm-CSVP resource alloca- 
tion scheme 
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6.3 Implementation Strategies 

6.3.1 Paralle1 Processing 

In the following, the functionalities of the SMs and the PB, BSI and XI3 memory 

segments are described. The descriptions are given by following the flow of cells 

indicated by arrows in Figure 6.1. 

The speed of the switching fabric is expected to be very high. In order to d o w  

sufficient time for the BA-SM to perform complex cell admission. the PB seopent 

is placed between the switching fabric and the actual bdfer space, the BS segment. 

The PB-SM transfers the cells from the switching fabnc and temporarily stores 

them in the PB segment. Such an architecture c m  also be seen in [THP94]. 

The BA-SM performs the cell admission according to the CSVP b d e r  docation 

scheme. If the cell can be admitted. the BA-SM finds an empty space in the BS or 

creates an empty space with a pushout operation. The random method is adopted 

for the trafic class selection of the pushout operation. In order to avoid the load of 

time consnming cell copy operation for the BA-SM. the CB-SM is added to copy 

the admitted ceIls in the PB to the BS. 

The SS-SM selects a cell to be transmitted according to the Work-consenring 

WRR schednling scheme. The random method is adopted for the traffic class 

selection of the time dot reassignment operation. In order to avoid the complex 

memory contention problem between the SS-SM and the BA-SM, they are designed 

to work in sequence, i.e., the SS-SM activates the BA-SM upon its completion of 

the operation in a tirne slot. However, this may require very high speed operations 
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Figure 6.2: Timing structure of the SMs 

of the SS-SM and the BA-SM. 

It takes one fidl c d  time to transmit a c d  to the output W. Therefore. a 

transmission buffer, the XI3 segment, is placed between the BS seopent and the 

output link. The scheduling entity, the SS-SM: transfers a c d  to the XB. and 

the CX-SM transmits a cell in the XB to the output hk. The CX-SM operates 

independent of the other SMs and the switching fabric without memory contention. 

The switching fabric and the other four SMs, the PB-SM, the CB-SM. the BA- 

SM, and the SS-SM, have timing dependencies. Let N be the number of the output 

ports of the switching fabnc. i.e., at most N cells arrive in a time slot. The timing 

structure of the SMs to achieve pardel processing is illustrated in Figure 6.2. At 

ta the ATM switching fabnc starts emitting the first cell. The PB-SM starts as 

soon as the switching fab& starts emitting the first ceIl and completes the transfer 

of the first c d  to the PB at tl and the nth c d  at f .  The SS-SM starts its job in 

the time dot at t,, completes it at tk, and activates the BA-SM. The BA-SM cannot 

start its job on the nth cell until the nth cell is transferred from the switching fabric 



by the PB-SM at t,. Thus, the BA-SM starts processing the 1st ceU at th > tl 

and the nth cell at tL-, > t,, and completes the job on the last c d  at th. The 

CB-SM cannot start its job on the nth cell until the BA-SM completes its job on 

the nth c d  at tn. However, it should not be difficdt for the CB-SM to complete its 

job on the nth cell by t;,, since the operation of the CB-SM between t', and t:,, 

is essentidy copying of a cell and thus deemed simpler than the operation of the 

BA-SM on a cell between t k  and t;,, . Therefore, the on ly  overhead of the CB-SM 

is the processing of the last cell, the Nth  cell, i.e.. t, -th. Note that 1 slot time is 

approximately S.7ps. 

6.3.2 Buffer Space Management 

As discussed in Section 3.2, the full sharing of b d e r  space and the FIFO/LIFO op- 

erations of the Work-conserving WRR-CSVP mechanism can be easily implemented 

by doubly linked lists. A FIFO VC queue by a logical linked list is implemented 

in [KSCSl]. Hardware implementation of a forward chain can also be seen in the 

memory shared switch architecture in [EKOC93]. A more complex memory man- 

agement using a doubly Iinked list is acLieved by a Memory Controller (MEC) 

chip developed by a group fiom Sumitorno Electric Industries. Ltd. for their Fiber 

Dis tnbuted Data Interface (FDDI) LAN products [KTTCS9]. O ther advantages of 

a doubly linked Est indude memory efficiency? flexibility, and easy recovery of a 

broken chain. Also: an advantage is that the empty space can be maintained easily. 

The doubly linked list of the empty space in the b d e r  is referred to as the Free 

Queue in this chapter and Appendix C. 
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-4nother possible architecture is to utilize address queues. Such an architecture 

is used in the ATM switch designs in [Chagla. CU95, LSSGa]. This may be a simpler 

architecture but it is not suitable for the CSVP b d e r  allocation scheme for the 

following reason. The size of address is 4 bytes and the size of a cell is 53 bytes. Let 

B be the maximum number of c e h  the buffer can contain. Le.: the size of buffer 

space. A VC may occupy the entire b d e r  space so the size of an address queue 

is 4 x B bytes wMe the total b&er size is 53 x B bytes. Since each VC requires 

one address queue and the nurnber of VCs supported is expected to be large. the 

memory space necessary for the address queues can easily surpass the size of the 

memory space for the actnal b d e r  space. However. the mernory space for the 

address queues is sparsely used because only a maximum of B cells are permitted 

to occupy the actual buffer space. Therefore: this architecture is memory inefficient 

and the b&er efficiency of the CSVP scheme cannot be effective. 

6.3.3 Random Selection Method 

In order to implement the random selection method for the pushout and the time 

slot reassignment operatiom. it is necessary to iden te  the eligible VCs. The BuEer 

Subscribing Comection Table (BSCT) and the Buffer Over-Subscribing Comection 

Table (BOSCT), are designed to contain the list of eligible VCs in the proposed 

design in Appendix C. The random selection can be made by selecting a VC from 

these tables at random using a pseudo-random number generator. The tables have 

to be updated whenever the eligibilities of VCs change. The procedures to maintain 

the BSCT and the BOSCT are also included in the design specification presented 



CHAPTER 6. IMPLEMENTATION STR,A.TEGIBS AND FEASIBILITY 132 

6.4 Discussion on Feasibility 

6.4.1 Design Parameters 

The following design parameters are used. Let the size of the ATM switching fabric 

be N x N, Le., the ATM switching fabric possesses N input ports and N output 

ports. Let K be the maximum number of VCs that this output port can support. 

The value of K may be 1arge.r or smalIer than the number of input ports of the 

switching fabric: N .  Let B be the size of the b&er space in number of cells, Le.. a 

maximum of B ceus can be stored in the output port buffer. 

6.4.2 Necessary Amount of Memory Space 

Let us first examine the size of memory needed in this design. The size of the 

memory segments and remnants are as follows. (Bits have been rounded up to 

bytes.) 

0 The PB segment: 58 x N bytes. 

The BS segment: 62 x B bytes. 

The XB segment: 54 x 3 bytes. 

The VCT segment: 20 x K bytes. 

The BSCT segment: 4 x K bytes. 
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The BOSCT seoment: 4 x (K - 1) bytes. 

0 The memory remnants: 31 bytes. 

In total, 58 x N + 62 x B + 28 x K + 191 bytes of memory are necessary. Assume 

that we have a 1024 x 1024 ATM switching fabric, i.e., N = 1024, and that one 

output port supports a maximum of 1024 VCs, Le., K = 1024. Since the b d e r  

space is shared by 1024 VCs, each VC may not need a large space. Let us assume 

that we provide 10 cells of b d e r  space for each VC at an output port. This gïves 

a total buffer size of B = 10240, Le., at most 10240 cells can be buffered. which is 

reasonably large for an output port, considering that the average load of the input 

traftic is lower than the capacity of the output link. Under these assumptions, the 

amount of n e c e s s q  memory space is 723135 bytes: approximately 723K bytes. 

In order to have an ATM switch with the Work-conserving WRR-CSVP resource 

allocation mechanism at its output ports, 723K bytes of memory is necessary at 

each output port and 723M bytes for the entire switch. The curent  technology 

of dual-port random access memory (RAM) can meet this requirement to enable 

concurrent access, which may be necessary for the implementation of the PB, the 

BS! and the XS segment S. The actual memory space for storing cells in the buffer is 

53 x B bytes, and thus, the overhead is 58 x N +9 x B +25 x K +- 191 bytes. In our 

example, the overhead is only approximate1y 193K bytes. which is approximately 

27% of the entire memory space. This ratio approachs 15% when the buffer size B 

becomes larger. 
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6.4.3 Computational Costs 

The operations of the PB-SM, the CB-SM, and the CX-SM are very simple and 

straightforward (See, Figures C.8. C.9, and C.10 in Appendix C )  and the dgo- 

rithmic state machines (ASM) for these can easily be developed. Considering the 

timing structure in Figure 6.2, the speed requirements for these SMs may not be 

too difficult to rneet. Thus, we concentrate our discussion on the SS-SM and the 

BA-SM. 

The ideal situation concerning timing is that the SS-SM completes its job by t l .  

i.e., th = t l .  This allows the BA-SM a maximum time to operate since it can only 

start its job at t l  at the earliest. 

1s it possible to implementation our Work-conserving WRR scheduling scheme 

in a very largescale integration (VLSI) chip? Let us h s t  consider the implemen- 

tation of the operation of the WRR scheduling scheme. According to our design in 

Appendix C! the procedure of the WRR scheduling scheme contains two loops: the 

renewal of a service amount docated to each VC, RCk, k = 1, 2: - - , K: requires at 

most K iterations of restoration of the original values upon the re-initialization of 

each service cycle (See Figure C .12); and R o u d  Robin service requires at most K 

cornparisons to h d  next VC (See Figure C.14). A complementary metal-oxide semi- 

conductor (CMOS) chip of a 4 x 4 shared memory switch is designed in [KSCSl]. 

This chip handles 256 VCs at each output port. As described in Section 3.4.3; 

the WRR scheme by Katevenis' group dows various patterns of service includ- 

ing Exhaustive and Round Robin services. Therefore, it is possible to adopt their 

architecture to implement our WRR scheme, although the mechanism to make it 
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work-conserving is different . 

The time slot reassignment operation added to the WRR scheduling scheme 

may inaease the difficulties of VLSI implementation. Reassignment of time slot 

and renewal of the BSCT and the BOSCT are the key additional functions to the 

WRR scheme. Although reassignment of a tirne dot is a straightforward operation 

(Figure C. 15): the operation of the SS-SM also includes the removals of an entry 

from BSCT and BOS CT, which require at most K and K - 1 comparisons. respec- 

tively (See Section C.3.7). Cornputational cost increases due to these loops as the 

number of supported VCs, Ko increases. 

The SS-SM also pedorms copying of a c d ,  which should be easily matched 

with the similar operation performed by the PB between t l  and t?. Therefore? if 

the operations other than copying can be completed by t l :  ie. ,  this part of the 

SS-SM matches the speed of the switching fab+ the SS-SM becomes ideal for our 

timing situation. . 

The ES-SM is the most complex entity and possibly the bottleneck for fast 

operation. and thus is the most critical part of implementation. The ideal case is 

that the BA-SM can process a cell using as much as or less t h e  than the PB-SM to 

process the subsequent ceU. i.e., t k  - tk-, 5 tWl - t,. This will result in t; = t,+ 

O therwise, the opaating time difference of the two SMs will accumulate. 

The CS scheme is aheady implemented by Katevenis' g o u p  [KSCSl]. Their 

design includes VPI-VCI matching to identify the VC in the VCT, which requires 

at most K comparisons. It also maintains logical linked lists of VC queues. What 

are the additional functions to make a CS scheme to be a CVSP scheme? They 
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are the branch in the flowchart in Figure C.18 where 'BOr > BTr7 is examined for 

pushout, and the additions of an entry to the BSCT and the BOSCT. Note that the 

operation of cell admission by pushout, the additional branch in Figure C.18. rnay 

seem straightforward in Figure C.20, but i t  includes the removals of an entry from 

BSCT and BOSCT, which require at  most K and K - 1 comparisons, respectively. 

Another addition to the CS scheme by Katevenis' group is the maintenance of 

doubly linked lists of VC queues, which requires twice as many operations as that 

of logical linked lists. 

Let us summarize the operational complexity relative to the design parameters. 

According to the flowcharts in Appendix C, the operation of the SS-SM contains at 

most 4K loops, and the operation of the BS-SM requires at most 3K - 1 loops to 

process a cell, and in total, at  most (3K - 1) x N loops. Therefore. switch size. N' 

and the number of supported VCs, K: are the deciding factors of computational 

cos t . Considering the existent implementation such as the switch by Katevenis' 

gcoup? it rnay be possible to implement the Work-conserving WRR-CSVP resource 

allocation mechanism in a 4 x 4 switch, where 256 VCs are supported at  each output 

port. i.e.. N = 4 and K = 256. When switch size N increases. however. we may 

have to wait for the progress of hardware technobgy. It shodd be noted that the 

use of the reduced instruction set cornputer (RIS C) microprocessor to implement 

the SS-SM and the BS-SM is a possibility. IR such a case, the design specification 

provided in Appendix C is immediately applicable. 



Chapter 7 

Conclusions and Furt her Study 

7.1 Overview 

One of the s igdcan t  challenges in ATM networks is to provide QoS parantees 

and to achieve efficient use of resonrces to obtain better ce11 lass performance. 

With a non-blocking output-buffering ATM switch. the resources at an output port 

of an ATM switch, a combination of b d e r  space and link capacity. have to be 

carefdy managed for these purposes. Since the traffic is expected to be bursty. 

a complete sharing approach can realize considerable efficiency. However. it is 

necessary to have some robustness of resource docation to guarantee a minimum 

amount of resources. The CSVP resource allocation strategy introduced by Wu and 

Mark [WM95] provides such efficiency and robustness of resource allocation. The 

CSVP strategy was applied to buffer allocation for the case of two traffic iows in 

[WM95] and the cell loss performance was studied using fluid-flow approximation. 

The analysis was limited to the case of two tr&c flows due to the analytical 
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intractability of the queueing model. 

It was intended in this work to propose a resonrce docation mechanism that 

manages both b&r space and capacity allocation, and is feasible at an output 

port of an ATM switch. The rnechanism has to provide efficient use of resources to 

obtain better cell loss performance and robust allocation of resources to guarantee 

a minimum amount of resources to each traffic flow to protect well-behaved traffic. 

To this end, the CSVP strategy was applied &O to capacity docation to form 

the Work-consenring WRR scheduling scheme, and was combined with the CSVP 

b&er allocation scherne to constitute the Work-conserving WRR-CSVP resource 

allocation mechanism. 

In Chap ter 2: the Work-consenring WRR-CSVP resource docation mechanism 

was defmed and a queueing model was established. B y  analysis, the cell loss ratio of 

the WRR-CSVP mechanism was shown to be smder or equd to that of the WRFL- 

CP mechanism (Sheorem 1). A non-increasing relation between c d  loss ratio and 

virtudy allocated b d e r  space in the Work-conserving WRR-CSVP mechanism for 

the case of two traffic flows is also derived (Theorem 2). 

The Work-conserving WRR-CSVP resource docation rnechanism was imple- 

mented as an application program on a workstation to obtain insights for actual 

implementation. Then, peripheral modules were developed to constmct an emula- 

tor in order to examine the characteristics of our resource allocation mechanism. In 

Chapter 3, the detailed algorithms of the Work-conserving WRR-CSVP resource al- 

location mechanism were described. The algorithms included the handling of more 

than two t r s c  flows. The implementation of the buffer space was &O discussed. 
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Three design issues were raised by proposing some options: the mechanics of the 

WRR scheduling scheme, Exhaustive or Round Robin services; the operations of 

the b d e r  allocation scheme to select a tr&c 0ow to be pushed out when more 

than two traffic flows are supported; and the operation of the scheduling scheme to 

select a traf£ic flow to receive a reassigned time dot. It was necessary to examine 

these options t O de termine the bes t choice. 

In Chapter 4: an emdation study was conducted to investigate the advantages of 

the Work-conserving VVRR-C SVP resource allocation mechanism. An at temp t was 

made to demonstrate the efficiency of capacity allocation by the Work-conseming 

WRR schedulinp scheme. and the b d e r  efficiency and the robustness of b d e r  do- 

cation of the CSVP b d e r  allocation scheme by emulation. Also, the effect of virtual 

partitioning on cell loss and ceU delay was investigated. The cell loss performance 

was sensitive to Wtual partitioning but the cell delay and the cell delay varia- 

tions were insensitive. The design issues pointed out in Chap ter 3 were examined 

by emulation. The random selection method for pushout time slot reassignment 

operation was shown to perform suffrcientIy. 

The Work-conserving WRR-CSW resource allocation mechanism was examined 

on an end-teend basis in Chapter 5. In theory, Exhaustive s e ~ c e  may create bursts 

in the output t r a c ,  but this phenornenon could not be demonstrated. However. 

we stilI recornmend Round Robin services to avoid potential bnrsts. The bdFer effi- 

ciency and the robustness of b d e r  allocation of the Work-conserving WRR-CSW 

scheduhg scheme were demons trat ed by the end- to-end performance. The effects 

of W t u d  partitioning on the downstream nodes and the end-to-end performance 
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were also examined. Virtual partitioning has a noticeable impact on the end-to-end 

cell loss but the effect on the end-teend cell delay and cell delay variation is mini- 

mal. The eEciency of the Work-conserving WRR-CSVP mechanisrn was shown to 

be s i0dcant  in handling very bursty traffic such as MPEG coded video signals, 

while the robustness of resource allocation was also shown to protect wd-behaved 

t r d c  from such bursty traffic. 

In Chapter 6, a hardware design strategy was discussed. The Work-conserving 

WRR-CSVP resource allocation mechanism is di-zided into the five parallel process- 

ing entities with three main memory segments. The memory size and the cornputa- 

tional cost were examined and the feasibility was discussed. The detailed algorithms 

of the processing entities and the structure of the memory space are provided in 

Appendix C. Computational cost rnay still be a problem in implementing a large 

switch but the proposed mechanism may be feasible for s m d  switches such as 4 x 4. 

Contributions 

The Work-conseMng WRR-CSVP resource allocation mechanism is proposed to 

docate resources, a combination of b d e r  space and link capacity. at an output 

port of an ATM switch. By this mechanism, the resources are utilized efficiently and 

a minimum amount of resources is guaranteed to each trafEc flow. Our mechanism 

is effective especidy for heterogeneous traffic situations where bu~sty  and non- 

bursty t r a c  flows coexist. Another advantage of the Work-conserving VCrrtR- 

CSVP mechanism is t hat the cell loss performance is sensitive to virtual partitioning 

of the CSVP bufFer allocation scheme but the c d  delay and cell delay variation 
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performances are not. This is also true in the case of end-twend performance. 

Therefore, the virtual partition may be a useful tool to adjust c d  loss performance 

only. These advantages indicate the importance of the propo~ed resource allocation 

mechanism to handle heterogeneous tr&c situations of ATM networks with bursty 

trafEc flows. 

The Work-consenring WRR-CSVP resource docation mechanism was imple- 

mented as an application software on a workstation. Some implementation insights 

were obtained to provide design guideliaes. This led to the hardware design spec- 

3 e d  in Appendix C. Our hardware design offers a practical possibility. Once the 

speed matching difficulty is overcome by the advanced hardware technology. the 

proposed resource allocation mechanism has defhite advantages. 

7.3 Suggestions for Further Study 

The Work-conserving WRR scheduling scheme has some disadvantages. The lack of 

granularity of capacity allocation may become a problem. The unpredictability of 

the characteristics of the output traffic may incur some problems. What constitutes 

the most suitable scheduling scheme for ATM switches remains an issue. 

Another issue of discussion is the level of control. We considered a VC based 

control. However, the Work-consenring WRR-CSVP resource allocation mechanism 

may be more suitable for a coarser level of control. The VCs of similar t r a c  

characteristics can be bundled to form a class of trafic and the Work-conserving 

WRR-CSVP resource allocation mechanism can be applied to these traffic classes. 

This will reduce the complexity drasticdy. and the actual implementation may not 
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be too difficult. Note that the TraEc Classes used in our emulation are actually 

superpositions of mini-sources. Thns, they can be seen as a traffic class created by 

bundling VCs. 

An empirical resource dimensioning is used in the emulation work. Resource 

dimensioning, especidy bufFer dimensioning, is a ditficult yet important issue for 

further study. 



Appendix A 

Analysis Of Virtual Partit ioning 

AS Introduction 

The aggregate cell loss ratio of the Work-conserving WRR-CSVP resource a b  

cation mechanism is constant regardless of the position of the virtud partition 

(Proposition 1 in Chapter 2) .  However, it affects cell loss performance of traffic 

flows (See Section 4.3.2). It is shown in this appendix that a non-increasing rela- 

tion between the W t u d y  doca ted  b d e r  space and the resultant ceIl loss ratio 

exists for the case of two tr&c flows: a larger b d e r  space vir tudy allocated to 

a traffic flow results in a srnaller or equal cell loss ratio of the t r a c  flow. The 

following arguments take advantage of the simplicity of the pushout and the tirne 

slot reassingment operations when there are only two t r a c  flows. 

Two traffic flows, T r a c  Classes 1 and 2, are multiplexed, i.e., K = 2. Let B 

be the total b d e r  size. We compare two ditferent Wtual partitionings. Systems B 

and B. The first Wtual partitiming, System B? allocates Bi and Bz b a e r  spaces 



to Tr&c Classes 1 and 2 respectively. The second virtnd partitioning, System B. 
docates Bi and Ê(, buffer spaces to Tr&c Classes 1 and 2 respectively. Note that 

* - 
BI+B2 = BI+-& = B. Let x k ( n )  and &(TL) ,  k = 1,2, denote the bufFer occupancies 

of Tr&c Class k at the nth time slot in Systems B and respectively. Let r k  and 

TE denote the c d  loss ratios of Traffic Class k in Systems B and B respectively. 

We first examine the effect of the service scheduling in a time dot. Then. the 

effect of the cell admission to the buffer occupancy in a time slot is examined. These 

observations lead to the non-increasing relation, i.e., if 61c > Bk, then ii 5 rr,. 

A.2 Buffer Occupancy After Service Scheduling 

Let us first examine the effect of the service scheduling on the buffer occupancies. 

Recd  the timing structure in Section 2.3.1. In the nth tirne sloto the service 

scheduling decision according to the Work-conserving WRR scheduling scheme is 

made at n A  - E and the ceU is transferred to the transmission b d e r  immediately. 

Thus, a ceIl space is created in the buffer space by nA - 6. The scheduling decision 

is made at n A  - E, where the buffer occupancy is equal to that of the (n - 1)th 

t h e  slot. Recall that the following relation holds since the Work-conserving WRR- 

CSVP resource allocation mechanism is a WCD [CRS'I]: 

at any slot time n. Therefore? 
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Remark 2 

at any d o t  time n. 

Let and âk(n) .  k = 1: 2. be the indicator functions of Systems B and B: 

respectively. The b a e r  occupancy and the indicator fnnction of each Traffic Class 

satis& the following relations: 

Lemma 1 When only two T ~ a f i c  Classes, Traf ic  Classes I and 2: are suppported 

by the Work-conservirq WRR-CSVP resoarce allocation mechanism, i e . !  K = 2. 

the indicator functions of Systems B and 8 in the nth time slot satisfy one of the 

following 3 cases: 



Proof: In the h s t  case, the buffer occupancy at the service scheduling decision 

making is identical in both systems. Therefore. we have identical values for the 

indicator functions. 

In the second case: the only situation that cause ûk(n) > ui(n), i.e.: Traffic 

Class k receives the service in System B while the other Baf f ic  Class receives the 

service in System B, is when xk(nA - E )  = O. However, this contradicts with 

Inequality (A.5). Therefore, Inequality (A.6) holds. 

The third case can be easily derived by replacing x k  with Sk and Îk with zr in 

the argument of the second case. 

Since the indicator fnnctions, uk(n) and Ûk(n), k = 1,2. take the value of O or 

1, the following relations can be easily derived from Lemma 1. 



and 
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then 

and 

Note that due to Remark 2? the foUowing equation holds: 

Remark 3 

at any time dot n. 

A.3 Buffer Occupancy After Ce11 Admission 

Let us now examine the effect of the cell admissions to the buffer occupancies. Recall 

that ak(n)? k = 1.2, denotes the number of arrivals belon,@ng to Traffic Class k in 

the nth t h e  dot and that a(n) = ai(n) + az(n) .  The following properties hold for 

the butfer occupancies . 

Lemma 2 When only tuo Trafic Chses ,  Trafic Classes 1 and 2: are supported 

b y the Work-conserving WRR- CSVP resource allocation mechanism. and the buffer 
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space is allocated to satisfy 

g-iven identical input traf ic ,  if 

ik(nA - 6) 3 x&A - 6) 

and 

and 

for any t ime d o t  n. 

Proofr We assume that k = 1 without loss of generality. The possible situations 

are the following 3 cases: 

1. xi(nA - 6) 2 Bi and &(nA - 6) 2 B,, 

2. x&A - 6) 2 Bi and &(nA - 6) < hl, and 



3. zl(nA - 6) < Bi and Si(nA - 6) < BI, 

and the case where q ( n O  - 6) < BI and Îl(nA - 6) 2 Ê1 does not occur due 

to Inequalities (8.19) and (A.20). In the foilowing: each case is examined and the 

relations are shown to hold. 

If there is no cell blocking or pushout, i.e.. 

a(n) = al(n) + az(n) 5 B - x ( n A  - b). 

and 

Therefore. obviously Inequalities A.21 and A.22 hold. Hence, we only consider the 

case where the cell blockings and/or pushouts occurs, Le.. 

where from Remark 3, 
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Note that the b d e r  is full after the cell admissions in both systems, Le.? 

xl(nA + e )  + rz(nA +- E) = 3E1(nA + E) + i2(nA + E) = B. 

Case 1 (zi(nA - 6 )  2 BI and El(nA - 6 )  2 B ~ ) :  Traffiç Class 1 is subscribing 

equal to or larger than the allocated buffer space in both systems. Sherefor one of 

the foUowing 3 cases occurs: 

xl(nA + e)  = zi(nA - 6) - a2(n) > BI. and 

Sl(nA + e )  = &(,A - 6 )  -a&) > BI. 

xl(nA + E )  = xl(nA - 6 )  - a2(n) > Bi, and 

&(nA+e) = B ~ .  

\z,(nD+e) = Bi. and 

Hence, Inequalities (A.21) and (A.22) hold. 
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Case 2 ( t l (nA  - 6) 2 BI and El(nA - 6 )  < B~): Traffic Class 1 is subscribing 

the b d e r  equal to or larger than the allocated space, Bi. in System B whde it is 

under-subscribing the b d e r  space in S ystern B. This leads to the following 4 cases: 

I f a , ( n )  < - 2 1 ( n A  - 6) and a&) < z l ( n A  - 6) - BI: 

x l ( n A  + c )  = xl(nA - 6 )  - a&) > Bi. and 

Zi(nA + c )  = i l ( n A - 6 )  +ai(n) < BI. 
(A.32) 

I f a i ( n )  < Bi - q ( n A  - 6 )  and a 2 ( n )  2 z l ( n A  - 6 )  - Bi. 

a E a l ( n )  2 BI - z l ( n A  - 6 )  and a2(n) < q ( n A  - 6) - BI- 

{ 
x l ( n A  + c) = x l ( n A  - 6 )  -a?(n)  > Bi: and 

S l ( n A + e )  = BI.  
(-4 -34) 

If al(n) 2 B~ - r l ( n A  -d)  and a2(n) 1 z l ( n A  - 6 )  - B I ,  

x l ( n A +  a) = Bi, and 

i i1(nA+e)  = Bi. 

Hence. Inequalities (A.2 1) to (A.22) hold. 



Case 3 (+A - 6) < Bl and Î,(nA - d) < Bi): TrafEc Classes 1 is under- 

snbscribing the buffer çpace in both systems. Thus, one of the following 3 cases 

occurs: 

xl(nA + E )  = xl(nA - 6) + a+) < Bi: and 

r l ( n A + r )  = rl(nA - 6) +a+) < Bi. 

If' al(n) 2 Bi - Il(nA - 6). 

Hence. Inequalities (A.21) and (A.22) hold. 

Note that due to Remark 3 and the proof of Lemma 2, the following equation 

holds: 
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Remark 4 

at any tzme d o t  n. 

A.4 Non-increasing Relation 

The following property holds for the system at n - 1 and n. 

Lemma 3 Assume that 

and 
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and 

Proof- By definitioq x k ( n  - 1) = xk(nA - E )  and iik(n - 1) = Îr(nA - e) ,  k = 1.2.  

Also by definition, xi (n) = xk (nA + e )  and Ik (n) = El, (nA + E )  k = 1,2. Therefore. 

it is straightforward form Corollary 1 and Lernma 2 that lnequalities (A.43) and 

(4.44) hold. 

Assuming that the buffer is empty at the initiation of the system, the foIlowing 

property of the cell loss ratio in the two systems is derived. 

Theorem 2 Given identical input trafic: consider two bzlffer space allocations by  

the Work-conserwing WRR-CSVP sscherne, (Bit Bz)  and fi2): where Bi + B? = 

& + & = B .  rf 

and the initial condition is given by 

~ ~ ( 0 )  = t k ( 0 )  = 0: 
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f o r  k = 1.2. 

Proof: By induction, Lemma 3 with the initial condition, Equation (A.46). gives 

that 

at any time dot n. 

Denote the total number of cells transmitted during [O. n] by Uk(n) and &(n) 

From Lemma 1 and Inequality (A.48), it is obvious that 

Let L&) and Lk(n) be the number of cells blocked during [Oo n] in Systems B 

and B, respectively. And let &(n) and Pk(n) be the number of c e h  pushed out 

during [O1 n] in Systems B and B? respectively. 

The numb er of arrivals belonging to Tr&c Class k during [O, n] ? Ak ( n ) = 

xm=, ak(m),  is equal in both systems, i.e., 

at any time slot n. Thus, fiom Inequalities (A.48) and (A.49), 
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at any t h e  do t  n. The number of arrivals in the two systems being equal &O gives 

Hence 



Appendix B 

Additional Data Of Single Node 

Case 

B.1 Traffic Types 

The Traffic Types used in our emulation are listed in Table B.1. Types 1 to 7 are 

chosen to possess the same average load: Type 1 is a Bernoulli process and thus 

is nonbursty; and Types 2 to 7 are bursty with different parameter d u e s  so that 

they have different burstiness. Types 8 and 9 are used to create a traffic situation 

of two Traflic Classes. Uneven t r a c  load situations are created using Types 10 to 

13. Type 14 is used to examine the prioritization of the pushout and the time slot 

reassignment operations. 

Let us examine Tr&c Types 1 to 7 which possess the same average load. By 

creating homogeneous trafic situations using these and cornparing the performance, 

the Merence of these Tr&c Types can be assessed. The homogeneous traaic sit- 
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Table 8.1: T r a c  Types 

uations are created as follows: construct three statistically identical T r a c  Classes 

each of which is generated by a superposition of ten identical mini-sources: the ho- 

mogeneous cases, Cases i, i = 1, - * - ,7, are created by the mini-sources belonging 

to Traffic Type i: each Traffic Class receives 300 ce11 buffer space and 113 of total 

link capacity by the Work-consenring WRR-CSVP resource allocation mechanism. 

The cell loss, cell delay. and cell delay variation performances of these cases are 

presented in Table B.2. Let us discuss the measure of burstiness. If the tr&c flows 

with the same average cell generation rate experience different cell loss ratios, the 

Merence must be caused by the different burstiness of the t r 6 c  3ows. Therefore. 

the measure of burstiness should reflect the different c d  loss ratios, Le., a good 

measure of burstiness should allow us to estimate the cell loss ratio. Our experiment 
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Table B -2: S ystem performance with homogeneous t r a c  situation (ceu loss ratio: 
x 10-~;  cell delay and ceU delay variation: x IO2 slot time: 95% confidence interval) 

Case 1 
Case 2 
Case 3 

CeU loss ratio 
(undetected) 

Cell delay 
0.053 zk 0.00019 

1 1 L 

Delay variation 
0.058 & 0.00036 

\ r 

0.37 k 0.10 
3.0 z t  0.38 

Case 4 1 3.5 f 0.26 1 1.8 31 0.086 
Case 5 
Case 6 

shows that the Traffic Classes which possess the same value of pi x Xi result in 

3.1 k 0.075 

L I I 

different cell loss ratios. This measure does not reflect the resultant cell loss ratios. 

1.1 zt 0.046 
2.0 * 0.056 

Case 7 1 45 5 1.5 1 3.4 zt 0.050 

It is clear that some other measures of burstiness are necessary to estimate the 

2.0 * 0.080 
2.9 & 0.061 

4.4 3~ 0.057 
3.7 & 0.062 

31 -+ 2.6 
13 I 1.2 

4.3 & 0.039 

cell loss performance? and to obtain a good resource dimensioning to develop a 

3.2 -+ 0.100 
2.6 & 0.076 

better c d  admission control mechanism. Table B.3 presents the wasted dot rates 

of each class when the WRR scheduling scheme is adopted. It shows that the bursty 

Table B.3: Wasted dot rates of WRR in homogeneous tr&c situation ( x IO-'. 95% 
confidence interval) 

1 Wasted dot rate 

Case 3 1 1.1 10.017 
Case 4 1 1.1 * 0.018 
Case 5 1 1.7 k 0.027 

tr&c causes larger waste of tirne slots. The adoption of the Work-conserving WRR 

Case 6 
Case 7 

1.4 0.023 
1.9 0.027 
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scheduling scheme is especially important when the tr&c is bursty. 

B .2 Advantages of the Work-conservation WRR 

Scheduling Scheme 

Considering the different cell loss ratios in Table B.2 and take the measure of 

burstiness. pi x X i ,  into account, we choose Traffic Types 1: 2. 4? and 6 to represent 

the different level of burstiness in order to further examine the advantages of the 

Work-conserving WRR scheduling scheme. 

The heterogeneous tr&c situations' Cases 8 to 10: are created by the various 

combinations of Traaic Types 1, 2, 4. and 6, which represent different level of 

burstiness (Table B.4). The result for Case 8 is presented in Chapter 4 as Case 1. 

Table B .4: Heterogenous traffic situations 

Class I 1 Class 2 Class 3 

Here, the rest of the cases, Cases 9 to 11, are shown. The amount of allocated 

resource is the same as Case 1 in Chapter 4. 

Table B.5 shows the ceU loss performance for Cases 9 to 11. The advantages of 

the Work-conserving WRR scheduling scheme is evident. 

The cell delay and c d  delay performances for Cases 9 to 11 are shown in Ta- 
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Table B.5: Cell loss performance (x10-=, 95% confidence interval) 

Case 9 1 Case 10 
1 WRR 1 WC-WRR. 1 WRR 1 WC-WRR 

8.4 & 0.76 
(undetected) 
3.4 0.63 

Aggregate 
Class 1 
Class 2 
Class 3 

- 

213~2.0 
(undetected) 
4.9 & 0.69 
59 z t  5.4 

Aggregate 1 33 ï 1.2 
Class 1 1 6.6 rt 0.81 

bles B.6 to B.8. respectively. This also shows the advantages of the Work-conserving 

8.4 f 0.76 
1.0 10.26 

Class 2 
Class3 

~~ scheduling scheme. 

6.3 3z 0.48 
(mdetected) 
0-75 & 0.17 
18 s 1.3 

Table B .6: Cell delay and c d  delay variation performances (Case 9, x 102. 95% 
confidence interval) 

25 I 1.4 
(undetected) 
15 dz 1.4 
60 & 4.2 

1 

15 & 1.3 
723~3.3 

Class 3 1 9.6I0.19 ( 4.9 f 0.12 1 8.4 k0.083 1 6.1 k0.066 

3.4 d~ 0.63 
22k1.7 

(ceU t h e )  

Aggregate 
Class 1 

The wasted slot rates are shown in Table B.9. 

Class 2 1 3.7 f 0.13 1 1.1 f 0.049 

Mean c d  delay 

4.2 5 0.16 ( 2.9 f 0.051 

Standard deviation 
VVRR 

4.4 31 0.069 
0.16 k 0.00053 

VVRR 
6.6 zk 0.078 
0.14 & 0.0011 

wc-VVRR 
2.0 & 0.052 

0.086 & 0.0014 

wc-WRR 
4.2 k 0.061 
0.10 AZ 0.0013 
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Table B.7: Cell delay and ceU delay variation performances (Case 10, x IO', 95% 
confidence int erval) 

(cell time) 1 Mean cell delay 1 Standard deviation 

Aggregate 
Class 1 

I 

Class 3 1 9.3 & 0.24 1 4.7 & 0.17 1 8.2 f 0.093 1 6.0 C 0.100 

I 1 I I 

Table B.8: Cell delay and cell delay variation performances (Case 11, xlO? 95% 
confidence interval) 

4.9 & 0.068 
0.16 z t  0.00086 

Class 2 1 5.4 rt: 0.19 1.6 41 0.13 

2.2 41 0.10 
0.085 k 0.0015 

( c d  time) 

! 1 1 f 

Class 3 1 8.3 f 0.15 1 4.3 f 0.21 1 7.4 5 0.075 1 5.5 I0.12 

Table B.9: Wasted dot rates (x10-', 95% confidence interval) 

Case 9 1 Case 10 1 Case 11 

6.9 k 0-061 ' 4.3 k 0.11 

Mean cell delay 
WRR 1 WC-WRR 

4.0 3~ 0.10 
2.0 2 0.12 

f I 

0.14 k 0.0015 

Standard deviation 
WRR 1 WC-WRR 

0.10 10.00097 

6.1 f 0.052 
3.9 f 0.056 

Aggregate 1 5.6 f 0.065 
Class 1 ) 3.5 3~ 0.076 

Aggregate 
Cfass 1 

2.3 f 0.11 
1.1 i 0.081 

Class 2 
Class 3 

1.2 i: 0.020 
0.99 k 0.0036 

! I 

1.2 f 0.016 
0.99 3~ 0.0051 

1.0 f 0.025 / 1.1 I 0.032 
1.5 + 0.060 1 1.5 & 0.049 

1.3 + 0.017 
1.0 & 0.024 
1.2 & 0.034 
1.6 & 0.055 



APPENDlX B. ADDITIONAL DATA OF SINGLE NODE CASE 

Cl- 1 (delay) + 
CI- 3 fdelay) -+ 

Cl- l (variation) 
Clas 2 (variation) - x .  - 

Figure B. 1: Virtual partitioning vs. mean c d  delay and cell delay variation 

B.3 Virtual Partitioning 

The relationship between Wtual partitioning and cell delay and ceIl delay variation 

performance for the case of two Traific Classes are shown in Figure B.1. 

B.4 Exhaustive Service vs. Round Robin Service 

Another uneven case; Case 12 is s h o w  in Table B.lO. Traffic Type 12 generating 

Table B.lO: Uneven t r a c  situation, Case 12 

Case 12 1 Type 10 x 10 1 Type 11 x 10 1 Type 13 x 2C 

T r a c  Class 3 in the uneven traffic situation in Chapter 4 is replaced by another 

bursty t r a c ,  TrafFic Type 13. The amount of resource docated is the same as 

Class 3 Class 1 Class 2 
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Figure B -2: Service cycle length vs. ceU loss ratio (WRR) 

0.07 ! 
b L 1 1 1 1 1 I 

Case 3 in Chapter 4. 

The cell loss, cell delay. and cell delay variation performances for the different 

service cycle length of the WRR scheduling scheme are presented in Figures B.2 to 

B -4: respectively. 

The ceU loss, cell delay. and cell delay variation performances for the different 

service cycle length of the Work-conserving WRR schednling scheme are presented 

in Figures B -5 to B .7, respectively. 

0.06 

o 0.05 - 
a 

2 

B.5 Trafic Class Selection Methods 

Exhaustive ( C h  1) -+ " 
Round Robin ( C ~ S  1) -+ - - Exhaustive { C h  2 ) + - 
Round Robin (Chsa 2)  -:. - 

- Exhaustive f C h  3) - 
Round Robin (Cljss 3) O + -  . 

An uneven t r a c  situation shown in Table B.11 is created. The average cell gen- 

eration rate of Tr&c Class 2 is twice as much as that of the other T r a c  Classes. 

Thus, twice as much capacity and bdFer space is given to Traffic Class 2. Each of 

T r d c  Classes 1 and 3 receives 1/4 of the total capacity and Traffic Class 2 receives 

g 0.04 - - 

0 0 '  - - 
Semce cycle length 
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Exhaustive ( C h  1) + 
Round Robin ( C h  1) + - 

E h u s t i v e  [ C h s  2) + 
Round Robin (b 2) ex. - 

O 100 200 300 400 500 GO0 700 300 
Service cycle Iength 

Figure B.3: Service cycle length vs. mean cell delay (WRR) 

I I 1 I I 1 I I 

Exhausti\.e ( C h  L f  + - 
Round Robin (ch3 1) + - 

Exhaustive ( C h  2) + - 
Round Robin (CLass 3) =x- - 

Exhaustive ( C h  3) & 1 
Round Robin [ C h  3 )  -+- 

O LOO 200 300 400 500 600 700 800 
Semice cycle length 

Figure B.4: Service cycle length vs. ce11 delay variation (WRR) 

Table B.11: Uneven tr&c situation, Case 13 

Case 13 
Class 1 I Class 2 

Type 10 x 10 1 Type 11 x 20 
Class 3 

Type 12 x 10 
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Exhausrive (C1a.s 1) 3- 
Round Robin ( C h  1) - - 

Exhaustive (Clas 2) & 
Round Robin (Clas3 2) **. - 

Exhausive ( C h  3) Y 

Roud Robin (Cl- 3) O+. , 

O 100 200 300 -100 500 600 700 800 
Service cycle Iength 

Fiogue B.5: Service cycle length vs. cell loss ratio (Work-conserving WiRR) 

Exhaustive (Clm 1) + 
Round Robin (Cl- 1) - - 
Exhaustive (Class 2) 4- 

Round Robin (Clas3 2) - 
Exhauscive (Cljss 3) 9 

Round Robin (Cl- 3) -.*O 

Figure B.6: Service cycle length vs. mean cell delay (Work-consenring WRR) 
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Exhauscive (Cl- 1) + 
Round Robin (C las  1) - - 

Exhaustive (Cl- 2) 4- 
Round Robin ( C h  2) .A. - 

Exhauscive (Cl- 3) 
Round Robin (Clas  3) . 

0 100 300 300 O 500 600 700 5011 
Service cyde Iength 

Figure B. 7: Service cycle lengt h vs. cell delay variation ( Work-conserving WRR) 

112 by S = 12, and SI = S3 = 3 and S2 = 6 .  The total b d e r  size is 400 cells; and 

100 cells are allocated to each of Traffic Classes 1 and 3, and 200 cells to TrafEc 

Class 2, Le.. BI = B3 = 100 and Ba = 200. In Tables B.12 to B.14. the similar 

results discussed in Section 4.4.2 can be seen. 

Table B.12: CeU loss ratio of different traffic class selection methods for the pushout 
operation ( x 10-~ ,  95% confidence interval) 

1 Random 1 Absolute excess I Relative excess 

1 

Class 3 1 3.6 z t  0.25 / 3.7 I0.73 1 3.5 0.40 

(undetected) 
1.2 k 0.16 

(undetected) 
1.3 & 0.28 

Class 1 
Class 2 

(undetected) 
1.2IO.24 
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Table B.13: Cell loss ratio of different trafic c h s  selection methods for the time 
slot reassignment operation ( x  10-~: 95% confidence interval) 

Class 2 1 1.2-1 0 . 2 4  1 1.3 k 0.17 1 1.5 3~ 0.24 1 1.3 -C 0.22 
I I I I 

Class 3 i 3.6 k 0.25 1 4.0 i~ 0.46 1 3.4 & 0.38 1 3.5 i 0.49 

Absolute excess 
(undetected) 

Table B. 14: CeU loss ratio of different combinations of t r a c  class selection methods 
for the pushout and the time slot reassignment operations ( x ~ O - ~ ,  95% confidence 
interval) 

Relative occup. 
(undetected) Class 1 

Class 3 1 3.6 z t  0.25 1 3.4 5 0.69 1 4.1 3~ 0.50 

Randorn 
(undetected) 

t h e  slot 
pushout 
Class 1 

time slot 1 Relative occupancy 1 Absolute excess 

Absolute occup. 
(undetected) 

h n d o m  
Random 
(undetected) 

Class 2 1 1.2 & 0.24 

pushout 
Class 1 
Class 2 

Absolute occupancy 
Absolute excess 
(undetected) 
1.1 f: 0.25 

- 1 

Relative excess 
(undetec t ed) 
1.3 st 0.29 

Absolute excess 
(undetected) 
1-4 k 0.24 

Class 3 1 3.6 31 0.40 

Relative excess 
(undetected) 
1.6 rt: 0.14 
4.0 I 0.43 1 3.6 & 0.59 4.0 & 0.60 

Absolute excess ( Relative excess 
(undetected) 
1.3 zk 0.22 

(undetected) 
1.4 =t 0.22 
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Design Specification Of The 

Work-conserving WRR-CSVP 

C.1 General Scope 

This specification de& with the design of the memory space and the processing 

entities to implement the Work-conserving WRR-CSVP resource allocation mech- 

anism at an ontput port of an ATM switch. The general structure is iuustrated in 

Figure 6.1 and the implementation strategies are discussed in Section 6.2. The data 

structures designed on the memory space are specified in detail here but the actual 

implementation of the memory space is left to the implementer's decision. The 

larger memory segments may require RAM but some memory remnants may be 

implemented as registers. The algonthms are specified using flowcharts of pseudo- 

assembler but the actud implementation of the SMs such as CMOS design is not 

discussed. However. it should not be too difficult to develop ASMs for the PB-SM 
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and the CB-SM since these are essentially copying operations of cells. The CX-SM 

performs a standard electrical- b o p  t icd (E/O) conversion and transmits a cell into 

the output link. Therefore, this also is easily developed as an E/O module and its 

peripheral. The rest of the SMs, the SS-SM and the BA-SM, may be implemented 

using a micropro cessor. 

This design specification considers a VC based management of b d e r  space and 

capacity allocations. The cells belonging to the same VC in the b d e r  are main- 

tained by VC queues. C d  admission is outside of scope of this design specification 

and assumed to be given. 

The design of memory space is described in Section C.2. The specifications of 

the SMs are found in Section C.3. The SMs may share the same memory space. 

Therefore. there are potential memory contention problems. The solutions to these 

problems are briefly discussed in Section (2.4. 

C.2 Specification of Memory Space Design 

C.2.1 Addressing of the Memory Space 

The size of address space should be examined. Let us assume that a maxixnum 

number of VCs is K = 1024. For example, if 2 ce& are allocated to each VCI we 

have a total buffer size of B = 2048. Since the size of a cell is 53 bytes, the BS 

must be at least 110592 bytes. Thus, at least 3 bytes are necessary to handle this 

address space. We adopt more commonly used Cbyte address. This should provide 

snfncient address space. In order to s i m p e  some operations and enable the use 



PBC, l I? I 4 1 

Figure C.l: The Pre-Buffer (PB) 

of commonly a d a b l e  packages, the PB and the BS segments are padded to make 

the size of each entry of the segments in a multiple of bytes. 

C.2.2 Memory Segments to Store C e b  

Pre-Buffer (PB) segment 

The PB segment is Uustrated in Figure C.1. The cells from the output port of the 

switching fabric is temporarily stored in the PB segment by the PB-SM before being 

stored in the actual buffer space in the BS segment. The PB segment is comprised 

of N entries, where N is the switch size. Each entry, PBEntry,, i = 1.2. - , N ,  
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consists of t k e e  fields specified in the following. The subscript i of these fields 

indicates that the field belongs to the PBEntryi. The size of an entry is 58 bytes 

including padding . 

PBC (Pre-Buffer Cell) field The PBCi, i = l? 2, , N, field is a field to store 

a cell from the switching fabric temporardy. The PB-SM writes a cell in this field: 

the BA-SM reads the header information of the cell to examine the admission; and 

the CB-SM copys the cell to the BS. Since the size of an ATM cell is 53 bytes. the 

size of the PBCi field is 53 bytes. 

BL (Buffer Location) field The BLi, i = 1,2: , N ,  field is a Pbyte field to 

store a location in the BS. The BA-SM finds a space in the BS for the cell in PBCi 

according to the CSVP buffer allocation scheme and writes the address to this field: 

and the CB-SM reads this field and transfers the cell in PBC; to the location. 

PBS (Pre-Buffer Status)  field The PBSi, i = 1,2. , N T  field is a 2-bit field 

which indicates the state of the PBEntm. The value of this field indicates the 

following states: 

a If PBS; = 'OO', the PBEntry, is ide.  

a If PBS; = 'Ol', a cell from the switching fabric is stored in the PBC; by the 

PB-SNI. 

If PBSi = 'IO', the c d  in the PBCi is admitted to the buffer and the space 

in the BS is prepared by the BA-SM. The location is stored in the BLi field. 
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Figtue C.2: The state transition of the PBS; field 

If PBSi = 11'. the admission decision of the cell in the PBCi by the BA-SM 

is to discard. 

The PB-SM changes this field from '00' to '01' upon the completion of cell transfer: 

the BA-SM changes this field from ; D l w  to '10' after filling the BL; field? or honi 

'10' to 11' upon the decision to discard: and the CB-SM changes this field fkom '10' 

or '11' to '00'. The state transition diagram is shown in Figure C.2. 

Buffer Space (BS) segment 

The BS segment is illustrated in Figure C.3. The BS sebpent is the implementation 

of the actual output b d e r  space. Since the size of b d e r  is B, the BS segment is 

comprised of B entries. Each entry, BSEntryj, j = 1,2. , B, consists of four fields 

specfied in the following. These fields include the chain information to maintain 

the doubly link lists of the VC queues. The subscript j of these fields indicates 

that the field belongs to the BSEntryj. The size of an entry is 62 bytes including 

padding . 



APPENDUC C. DESIGN SPECIFICATION OF THE WORK-CONSERVIIDTG 

WRR-CSVP 1'75 

I 
i bit ' 

l 53 byta :tmc.,4byteq 4 
I I I l 

(7 bits) 

Figure C.3: The B d e r  Space (BS) 
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BC (Buffer Cell) field The BC;, i = 1. 2, , B: field is a field to store a cell 

for output bdering. The CB-SM transfers a cell Erom the PB to this field; and the 

SS-SM moves the ceU in this field to the XB. Since the size of an ATM cell is 53 

bytes, the size of the BC; field is 53 bytes. 

NT (Next) field The NTi, i = 1 , 2 . - - -  ,B:  field is a 4-byte field to store the 

address of the next cell in the VC queue. 

PV (Previous) field The PVi. i = 1.2, - B: field is a Cbyte field to store the 

address of the previous cell in the VC queue. 

AS (Availability Status) field The AS;' i = 1' 2: , B. field is a 1-bit field 

used by the enqueue and dequeue functions of the Free Queue of the BSEntry's 

to indicate the status of the BSEntryi. The value of the ASi field indicates the 

following states: 

If ASi = 'O', the BSEntry, is in the f?ee queue. 

+ If ASi = 'l', the BSEntry; is active. 

Transmission Buffer (XB) segment 

The XB segment is Uustrated in Figure C.4. In order to avoid rnemory contention 

problem between the SS-SM and the CX-SM, the XB segment is placed between 

the BS segment and the output link. The XB segment is a ring b d e r  consisting of 

three entries. By having three entries, the complete independence of the two SMs 

is achieved even if there is a subtle timing problem. It should be noted. however. 
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Figure C.4: The Transmission Butfer (XB) 

that a sophisticated hardware implementation c m  avoid the problem with two 

entries. The SS-SM selects a c d  in the BS according to the Work-consedg 

WRR scheduling scheme and copys the cell to the XB: and the CX-SM transmits 

the cell in the XB to the output link. Each entry of the XB segment: XBEntryi. 

i = 1.2: 3, consists of two fields speciiied in the following. The subscript i of these 

fields indicates that the field belongs to the XSEntry,. The size of an entry is 54 

bytes including padding. 

XC (Transmission Cell) field The XC;, i = 1,2 ,3 ,  field is a field to store a 

cell to be transmitted. The SS-SM transfers a cell in the BS to this field: and the 

CX-SM transmits the c d  in this field. Since the size of an ATM cell is 53 byte? 

the size of the XC; field is 53 bytes. 

Transmission Status (XS) field The XSi ,  i = 1: 2: 3, field is a 1-bit field to 

indicate the state of the XBEntry;. The value of the XSi field indicates the following 

states: 

If XSi = 'O7, the BSEntry, is ide.  
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CX-AS M 

Figure C.5: The state transition of the XS; field 

If XS; = 'lo, a cell is set in the XCi for transmission. 

The SS-SM changes this field fkom '0' to '1'; and the CX-SM changes it fiom -1' to 

'0'. The state transition diagram is shown in Figure (2.5. 

C.2.3 Memory Segment to  Manage The VCs 

The VCs are managed by the VCT segment. In the following, 2 bytes are assumed 

for the counters~ such as the size of allocated buffer. the b d e r  occupancy. the 

number of time slots to be doca ted  within a service cycle, and the tirne slots 

consumed. For these counters, a %byte integer is sufficiently large. 

VCT (Virtual Circuit Table) segment 

The VCT segment is illustrated in Figure C.4. The VCT contains the information 

necessary to maintain and operate the VCs at the output port system. This includes 

the field to maintain the VC queues. The VCT is comprised of K entries: where K is 

a maximum number of VCs supported at this output port. Each entry, VCTEntryk. 

k = 1'2, . : K, consists of eight fields specified in the following. The subscript k 

of these fields indicates that the field belongs to the VCTEntryk. The size of an 

entry is 20 bytes. Since c d  admission is assumed to be given, we assume that the 
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Figure C.6: The Virtual Circuit Table (VCT) 

VPI. VCI, BT, and AC fields are set. 

The WRR scheduIing scheme is performed using the VCT, where the active VCs 

are listed from the top consecutively. This implementation is simple and suaicient. 

VPI (Virtual Path Identifier) field The V P b ,  k = 1.2. , K, field is a field 

to store VPI of the ATM connection. Mthough the size of the VPIk field is 12 bits? 

2 bytes are allocated to this field to make it a multiple of bytes. 

VCI (VirtuaI Channel Identifier) field The VCIk, k = 1,2: , K.  field is a 

2-byte field to store VCI of the ATM connection. The combination of the V P 4  field 

and this field is used by the BA-SM to ident* the entry of the VCT representing 

the VC to which the cell in the PB belongs. 
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BO (Buffer Occupancy) field The BOk, k = 1? 2: - K, field is a 2-byte field 

to store the nnmber of cells belonging to the VC of the VCTEntry, in the BS. The 

SS-SM decrements the value of this field upon a s e ~ c e  and the BA-SM increments 

upon admission of a cell and decrements upon a pushont of a cell. 

BT (Buffer Threshold) field The BTk. k = 1.2 ,  , K' field is a 2-byte field 

to store the size of the docated buffer space in the number of cells by the virtual 

partition of the CSVP buffer allocation scheme to the VC of the VCTEntryk. 

RC (Remaining Capacity) field The RCk, k = 1: 2, - : K: field is a %byte 

field to store the amount of remaining t h e  slots for the VC of the VCTEntryb in 

the curent service cycle. The SS-SM renews the value of this field at the beginning 

of a service cycle and decrements each time the WRR scheduhg scheme selects 

the VC of the VCTEntryk for the time dot. 

AC (Allocated Capacity) field The ACk, k = 1: 2, : K. field is a %-byte 

field to store the amount of allocated capacity in the number of t h e  dots in a 

service cycle to the VC of the VCTEntryk. 

HOQ (Head of Queue) field The HOQp,  k = 1: 2, , K. field is a Pbyte field 

to store the address of the cell at the head of the VC queue. 

TOQ (Tail of Queue) field The TOQk, k = 1: 2, - , K, field is a Cbyte field 

to store the address of the cell at the tail of the VC queue. 
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(2.2.4 Memory Segments for the VC Selection Mechanism 

Buffer Subscribing Connection Table (BSCT) segment 

The BS CT segment consists of K entries. Each entry, BSCTEntrykt k = 1: 2: - K 

contains the addresses of the VCTEntryk7s of the VCs currently subscribing the 

bufFer space, i.e., BOk > O. Thus the size of each entry is 4 bytes. The table is 

filled fkom the top consecutively. The detailed operation on this segment is provided 

in Section C.3.7. 

Buffer Over-Subscribing Connection Table (BOSCT) segment 

The BOSCT segment consists of K - 1 entries. Each entry, BOSCTEntry,. k = 

1,2, . , K - 1: contains the address of the VCTEntryk's of the VCs currently 

over-subscribing the buffer space, i.e.? BOk > BTk. Thus the size of each entry is 

4 bytes. The table is f led  from the top consecutively. The detailed operation on 

this segment is provided in Section C.3.7. 

C e  2.5 Memory Remnant s 

Pre-buffering Status (PS) remnant The PS remnant is a 1-bit remnant to in- 

dicate the state of the pre-buffering process. The value of the PS remnant indicates 

the following states: 

If PS = ' O y ,  the pre-buffering of the ceUs from the switching fabric is currently 

undertaken by the PB-SM. 



PB-ASM 

CB-ASM 

Figure C.7: The state transition of the PS; remnant 

If PS = '1': the pre-buffering of the current time dot is completed by the 

PB-SM. 

The PB-SM changes the value of this field fkom 'O7 to '1' when it completes the 

pre-bufferhg of the current time slot before halting; and the CB-SM changes the 

value of this field fkom '1' to 'O' when it completes its operation for the current 

t h e  slot. The state transition diagram is shown in Figure C.7. 

Head of Free Queue (HOFQ) remnant The empty space in the BS is main- 

tained by the Free Queue. The HOFQ remnant is a Cbyte remnant to store the 

address of the cell at the head of the Free Queue. 

Tai1 of Fkee Queue (TOFQ) remnant The TOFQ remnant is a Cbyte remnant 

to store the address of the ceU at the tail of the Free Queue. 

Free Queue Length (FQL) remnant The FQL remnant is a 2-byte remnant 

to store the number of empty spaces in the BS, i.e., the length of the Free Queue. 

Total Buffer Occupancy (TBO) remnant The TB0 remnant is a 2-byte 

remnant to store current total b d e r  occupancy in the number of cells. The BA- 

SM inaeases the value of this field: and the SS-SM decreases it. 
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Total Buffer Size (TBS) remnant The TBS remnant is a 2-byte remnant to 

store the size of the buffer in the number of ceUs. The BA-SM uses this value for 

the ceIl admission process. 

Remaining Service (RS) remnant The RS remnant is a 2-byte remnant to 

store the number of remaining time slots of the curent service cycle. The SS-SM 

uses this remnant for the service scheduling. 

Service Cycle (SC) remnant The SC remnant is a %byte remnant to store 

the length of the service cycle in the number of time slots. The SS-SM uses this 

remnant for the service scheduluig. 

Buffer Subscribing Connection Counter (BSCC) remnant The BSCC 

remnant is a 2-byte remnant to store the number of VCs which are currently sub- 

scribing the buffex space. Thus, it also indicates the number of entries fdled fkom 

the top in the BSCT. The BA-SM increments the value of this remnant: and the 

SS-SM and BA-SM decreases it. 

Buffer Over-Subscribing Connection Counter (BOSCC) remnant The 

BOSCC remnant is a 2-byte remnant to store the number of VCs which are currently 

over-subscribing the b d e r  space. Thus, it also indicates the number of entries filled 

from the top in the BOSCT. The BA-SM innements the value of this remnant; and 

the SS-SM and BA-SM decreases it. 
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Number of Virtual Circuit (NVC) remnant The W C  remnant is a %-byte 

remnant to store the number of VCs currently supported by the output port. The 

SS-SM uses this value for the service scheduling. Since c d  admission is assumed 

to be given, we assume that a valne is already set to this remuant. 

Current Virtual Circuit Pointer (CVCP) remnant The CVCP remnant is 

a Cbyte remnant to store the address of the VCTEntryh which receives the service 

in the current tirne dot. This remnant is used by the SS-SM. 

Pansmission Buffer Pointer (XBP) remnant The XBP remnant is a Cbyte 

remnant to store the address of the XBEntry;. The SS-SM transfers a ceIl in the 

BS to the location indicated by XBPi field when the scheduling decision is made. 

C.3 Specifications of State Machines 

The algorithm of the Work-conserving WRR scheduling scheme is performed by 

the SS-SM, and that of the CSVP buaér allocation scheme by the BA-SM. The 

flowchart of these SMs are transferred kom the validated cornputer program of the 

emulator. The a1gorith.m~ of the other SMs are straightforward. 

C.3.1 Assumed Standard Procedures 

The FIFO/LIFO operations of the VC queues and the Free Queue are assumed to 

be given. The operations assumed are: 

Enqueue: add an BSEntry to the tail of the queue. 
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Dequeue: remove an BSEntry fkom the head of the queue. 

a Tkuncate: remove an BSEntry from the tail of the queue. 

The procedure to obtain an integer randomly f?om the range of 1 to a specified 

integer n, random() ,  is also assumed to be available by a pseudo-random number 

generator. The function, m = random(n) returns an integer m E {1,2, - n) at 

random, i.e., according to the uniform distribution. 

The sorting procedures of tables by mat ching the value of the field(s ) are tnvial 

and are also assumed to be given. 

The iteration operations are expressed using abstract parameters such as i, j .  

and k. 

C.3.2 Pre-Buffering SM (PB-SM) 

The flowchart of the PB-SM is shown in Figure C.8. The PB-SM transfers the cells 

from the switching fabnc to the PBCi fields of the PB. The PB-SM is activated 

at the beginning of each t h e  slot. The PB-SM stores the cells fiom the top ents, 

of the PB and advances to the subsequent entnes. When the transfer of a ceU is 

completed, the PB-SM changes the PBSi field fkom '00' to '01'. When dl cells 

arriving in the current time dot  are stored in the BS, the PB-SM changes the PS 

from '0' to T. Then, it halts until the next time slot. 

C.3.3 Cell Buffering SM (CB-SM) 

The flowchart of the CB-SM is shown in Figure C.9. The CB-SM transfers the 
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Figure C.8: The Pre-Buffering SM (PB-SM) 

PS r 'O' 1 

Figure C.9: The Cell BufiFering SM (CB-SM) 



Figure C.10: The Cell Transmission SM (CX-SM) 

cells in the PBCi of the PB to the BCj of the BS. The CB-SM is activated at the 

beginning of each t h e  dot. The CB-SM deah with the PB from the top entry 

and advarices to the subsequent entries. When the PBS; tums to 'IO', the CB-SM 

transfers the cell to the BS at the location in BL;, and tums PBSi to '00'. When 

the PBSi turns to ' I l7 ,  the CB-SM turns P M i  to '00'. If the PBS; remains as '00' 

and the PS turns to 'l?, the CB-SM changes the value of the PS from '1' to '0' and 

halts until the next tirne dot. The CB-SM also changes the value of the PS hom 

'1' to 'O7 and halts when it reaches the end of the PB. 

C.3.4 Cell Transmission SM (CX-SM) 

The flowchart of the CX-SM is shown in Figure C.lO. The CX-SM transmits a ceU 
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in the XB to the output link. Unlike the other SMs, the CX-SM mns continuously 

and does not h d t  after a cell transmission since a cell transmission takes a cell time 

(one t h e  slot). When the CX-SM sees the XSi to be 'l', it transmits the cell in 

XCi to the output link. Then, when the c d  transmission is completed, the CX-SM 

changes the value of the XSi fkom '1' to '0'. When the CX-SM sees the XSi to 

be -0': it waits until the next time slot. Then, the CX-SM advances to the next 

entry of the XB. Since the XI3 is a three-entry ring-buffer. the subsequent entry 

fkom XBEntry, is XBEntry,. At the initiation of the system. the CX-SM starts 

its operation from the XBEntry, while the SS-SM from XBEnhy,. By having one 

entry between the two, the faster SS-SM never overwrites on the entry that the 

CX-SM is transmitting. 

(3.3.5 Service Scheduling SM (SS-SM) 

The general fiowchart of the SS-SM is shown in Figure C.11. The SS-SM is activated 

at the beginning of each time slot. The SS-SM identifies a VC to receive cell 

transmission according to the Work-conserving WRR scheduling scheme. Then. 

the SS-SM obtains the c d  at  the head of the VC queue and transfers the c d  in 

the BCj of the BS to the XC; indicated by XBP. Then, it changes the XSi from 'O' 

to '1' and advances the XBP to the subsequent entry in the XB. At the initiation 

of the system, the SS-SM starts its operation from the XBEntry,. After these 

operations, the SS-SM activates the BA-SM and halts until the next t h e  slot. The 

actual transmission wiu take place in the next time dot by the CX-SM. 

Figure C.12 shows the algorithm of the WRR scheduling scheme. The Exhaus- 
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Figure C.11: The S e M c e  Scheduling SM (SS-SM) 



Figure C. 12: The WRR scheduling scheme 

tive and the Round Robin services are further specified in Figures C.13 and C.14: 

respectively. The extra complexity of the Round Robin service is the loop in the 

algorît hm. 

The tirne dot reassignment operation is shown in Figure C.15. 

The selected cell is transferred to the XB by the a lgo f i th  in Figure C.16. 

C.3.6 BuEer Allocation SM (BA-SM) 

The general flowchart of the BA-SM is shown in Figure C. 17. The B A-SM performs 

the cell admission according to the CSVP buffer allocation scheme. In each time 

dot, the BA-SM is activated by the SS-SM. The BA-SM examines the c d  admission 

from the cell in the top entry of the PB and advances to the subsequent entries. 
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Figure C.13: The Exhaustive service 

Figure C.14: The Round Robin service 
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CVCP = DSfXEn<r>., e-l 

Figure C. 15: The time dot reassingment operation 

Figure (2.16: The copy of a cell in the BS to the XB 



Figure C.17: The Butfer Allocation SM (B A-SM) 

When the PBS; field of the PB tums to '01'. the BA-SM performs the ceJl admission 

examination of the cell in the PBCi. The cell admission examination is shown in 

Figures C.18. Note that the first procedure in the flowchart. where matching of 

VPI-VCI pair is performed, requires at most K comparisons. 

If the cell is admitted to an empty space, the BA-SM locates an available entry 

in the BS and stores the address of the BSEntryj to the BLi field in the PB. Then, 

the BA-SM changes the PBSi field fiom '01' to '10'. It also enqueues the BSEntryj 

in the VC queue. The cell admission to non-empty b d e r  is shown in Figure C. 19. 

The cell may be admitted to a fidl b d e r  using the pushout operation shown in 

Figue C.20. 

If the cell is blocked, the BA-SM changes the PBSi from -01' to '11'. Then the 
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Q b t w  VCrEn(l).. b 
matchin6 VPI-VCI pair u 

Figure C.18: The cell admission examination 

BL. = kBC, a 

Figure C.19: The c d  admission to an emp ty space 
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BO,. = :? Q- 

Figure C.20: The cell admission by the pushout operation 
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Figure C.21: Addition of an entry to the BSCT 

BA-SM advances to the subsequent entry in the PB. If the PBS; remains as '00' 

and the PS turns to '1'? the BA-SM hdts. The BA-SM also hd ts  when it reaches 

the end of the PB. 

C.3.7 Operations of the BSCT and the BOSCT 

The operations to add an entry to the BSCT is shown in Fiogu.re C.21. And the 

operations to remove an entry £?om the BSCT is shown in Fiorne C.22. Since the 

structure and the size of an entry of the BOSCT segment are the same as those of the 

BSCT segment, the operations of the BSCT and the BOSCT are basicdy identical. 

The operations can be obtained by replacing %SC" with "BOSC" in Figures C.21 

and C.32. Note that the procedure to find "BSCTEntry, = &VCTEntryk7 or 

"BOSCTEntry, = &VCTEntrykn requires at most K cornparisons for the BSCT. 

and K - 1 for the BOSCT. 

C .4 Discussion on Memory Contention Problems 

As already mentioned in the specification, the memory contention problem between 

the SS-SM and the CX-SM for the XB segment is solved by having three entries. 
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BSCC = BSCC - 1 F T -  

Figure C.22: Rernoval of an entry from the BSCT 

Since the SS-SM and the BA-SM operate in a serial order. there is no memory 

contention problem between thern. It is obvious that there is no memory contention 

problem between the BA-SM and the CB-SM at the BS because the CB-SM cannot 

copy a cell in the PB to the BS until the BA-SM finds a space for the cell. sets the 

address to the BLi field, and changes the PBS; field 5om '01' to 'IO7. 

The only other potential memory contention problem is in the sharing of the PB 

segment among the PB-SM, the BA-SM, and the CB-SM. The starting of operations 

on an entry by these SMs WU not cause any problem due to the state transition 

mechanism of the PBS; field. The BA-SM cannot start the admission examination 

of a cell in the PB until the PB-SM changes the PBSi field from '00' to '01'; and the 

CB-SM ccannot start its operation on the cell until the BA-SM changes the PBSi 

field from '01' to 'IO' or 'W. However, a problem may occur at the recognition 
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of the end of operation for the t h e  slot. How c m  the BA-SM and the CB-SM 

detect that there is no more c d s  to be operated in the tirne slot and halt? For 

this purpose, the PS remnant is designed to n o t e  that the PB-SM completed its 

operation for the t h e  slot to the BA-SM and the CB-SM. Only when the PBS; 

field of the next entry of the PB remains as '00' and the PS turns to '1': i.e.? the 

PB-SM is halting, the BA-SM and the CB-SM terminate their operations in the 

t h e  slot. It should be noted, however: that when all entries of the PB seopent is 

fillecl by the PB-SM, there is no subsequent entry, but the BA-SM and the CB-SM 

may seek the subsequent entry and be unable to read the PBSi field of the entry. 

Thesefore, a mechanisrn for the BA-SM and the CB-SM to recognize the end of the 

PB is necessary. 
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